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Preface to the Second Edition

In 2013 the world mathematical community is celebrating the 100th anniver-
sary of Paul Erdős’ birth. His personality is remembered by many of his
friends, former disciples, and over 500 coauthors, and his mathematics is as
alive and well as if he was still among us. In 1995/1996 we were preparing
the two volumes of The Mathematics of Paul Erdős not only as a tribute to
the achievements of one of the great mathematicians of the twentieth century
but also to display the full scope of his œuvre, the scientific activity which
transcends individual disciplines and covers a large part of mathematics as
we know it today. We did not want to produce just a “festschrift”.

In 1995/1996 this was a reasonable thing to do since most people were
aware of the (non-decreasing) Erdős activity only in their own particular area
of research. For example, we combinatorialists somehow have a tendency to
forget that the main activity of Erdős was number theory.

In the busy preparation of the volumes we did not realize that at the end,
when published, our volumes could be regarded as a tribute, as one of many
obituaries and personal recollections which flooded the scientific (and even
mass) media. It had to be so; the old master left.

Why then do we think that the second edition should be published?
Well, we believe that the quality of individual contributions in these volumes
is unique, interesting and already partly historical (and irreplaceable—
particularly in Part I of the first volume). Thus it should be updated and
made available especially in this anniversary year. This we feel as our duty
not only to our colleagues and authors but also to students and younger
scientists who did not have a chance to meet the wandering scholar personally.
We decided to prepare a second edition, asked our authors for updates and
in a few instances we solicited new contributions in exciting new areas. The
result is then a thoroughly edited volume which differs from the first edition
in many places.

On this occasion we would like to thank all our authors for their time and
work in preparing their articles and, in many cases, modifying and updating
them. We are fortunate that we could add three new contributions: one by
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vi Preface to the Second Edition

Joel Spencer (in the way of personal introduction), one by Larry Guth in
Part IV of the first volume devoted to geometry, and one by Alexander
Razborov in Part I of the second volume devoted to extremal and Ramsey
problems. We also wish to acknowledge the essential contributions of Steve
Butler who assisted us during the preparation of this edition. In fact Steve’s
contributions were so decisive that we decided to add him as co-editor to
these volumes. We also thank Kaitlin Leach (Springer) for her efficiency and
support. With her presence at the SIAM Discrete Math. conference in Halifax,
the whole project became more realistic.

However, we believe that these volumes deserve a little more contem-
plative introduction in several respects. The nearly 20 years since the first
edition was prepared gives us a chance to see the mathematics of Paul
Erdős in perspective. It is easy to say that his mathematics is alive; that
may sound cliché. But this is in fact an understatement for it seems that
Erdős’ mathematics is flourishing. How much it changed since 1995 when
the first edition was being prepared. How much it changed in the wealth
of results, new directions and open problems. Many new important results
have been obtained since then. To name just a few: the distinct distances
problem, various bounds for Ramsey numbers, various extremal problems, the
empty convex 6-gon problem, packing and covering problems, sum-product
phenomena, geometric incidence problems, etc. Many of these are covered by
articles of this volumes and many of these results relate directly or indirectly
to problems, results and conjectures of Erdős. Perhaps it is not as active
a business any more to solve a particular Erdős problem. After all, the
remaining unsolved problems from his legacy tend to be the harder ones.
However, many papers quote his work and in a broader sense can be traced
to him.

There may be more than meets the eye here. More and more we see that
the Erdős problems are attacked and sometimes solved by means of tools that
are not purely combinatorial or elementary, and which originate in the other
areas of mathematics. And not only that, these connections and applications
merge to new theories which are investigated on their own and some of which
belong to very active areas of contemporary mathematics. As if the hard
problems inspire the development of new tools which then became a coherent
group of results that may be called theories. This phenomenon is known to
most professionals and was nicely described by Tim Gowers as two cultures.
[W. T. Gowers, The two cultures of mathematics, in Mathematics: Frontiers
and Perspectives (Amer. Math. Soc., Providence, RI, 2000), 65–78.] On one
side, problem solvers, on the other side, theory builders. Erdős’ mathematics
seems to be on one side. But perhaps this is misleading. As an example,
see the article in the first volume Unexpected applications of polynomials
in combinatorics by Larry Guth and the article in the second volume Flag
algebras: an interim report by Alexander Razborov for a wealth of theory
and structural richness. Perhaps, on the top level of selecting problems and
with persistent activity in solving them, the difference between the two sides
becomes less clear. (Good) mathematics presents a whole.
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Time will tell. Perhaps one day we shall see Paul Erdős not as a theory
builder but as a man whose problems inspired a wealth of theories.

People outside of mathematics might think of our field as a collection
of old tricks. The second edition of mathematics of Paul Erdős is a good
opportunity to see how wrong this popular perception of mathematics is.

La Jolla, USA R.L. Graham
Prague, Czech Republic J. Nešetřil





IN MEMORIAM

Paul Erdős

26.3.1913–20.9.1996

The week before these volumes were scheduled to go to press, we learned that
Paul Erdős died on September 20, 1996. He was 83. Paul died while attending
a conference in Warsaw, on his way to another meeting. In this respect, this
is the way he wanted to “leave”. In fact, the list of his last month’s activities
alone inspires envy in much younger people.

Paul was present when the completion of this project was celebrated
by an elegant dinner in Budapest for some of the authors, editors and
Springer representatives attending the European Mathematical Congress. He
was especially pleased to see the first copies of these volumes and was perhaps
surprised (as were the editors) by the actual size and impact of the collection
(On the opposite page is the collection of signatures from those present at
the dinner, taken from the inside cover of the mock-up for these volumes).
We hope that these volumes will provide a source of inspiration as well as a
last tribute to one of the great mathematicians of our time. And because of
the unique lifestyle of Paul Erdős, a style which did not distinguish between
life and mathematics, this is perhaps a unique document of our times as well.

R.L. Graham
J. Nešetřil
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Preface to the First Edition

In 1992, when Paul Erdős was awarded a Doctor Honoris Causa by Charles
University in Prague, a small conference was held, bringing together a distin-
guished group of researchers with interests spanning a variety of fields related
to Erdős’ own work. At that gathering, the idea occurred to several of us
that it might be quite appropriate at this point in Erdős’ career to solicit a
collection of articles illustrating various aspects of Erdős’ mathematical life
and work. The response to our solicitation was immediate and overwhelming,
and these volumes are the result.

Regarding the organization, we found it convenient to arrange the papers
into six chapters, each mirroring Erdős’ holistic approach to mathematics.
Our goal was not merely a (random) collection of papers but rather a
thoroughly edited volume composed in large part by articles explicitly
solicited to illustrate interesting aspects of Erdős and his life and work.
Each chapter includes an introduction which often presents a sample of
related Erdős’ problems “in his own words”. All these (sometimes lengthy)
introductions were written jointly by editors.

We wish to thank the nearly 70 contributors for their outstanding efforts
(and their patience). In particular, we are grateful to Béla Bollobás for his
extensive documentation of Paul Erdős’ early years and mathematical high
points; our other authors are acknowledged in their respective chapters. We
also want to thank A. Bondy, G. Hahn, I. Ouhel, K. Marx, J. Načeradský
and Ché Graham for their help and for the use of their works. At various
stages of the project, the book was supported by AT&T Bell Laboratories,
GAČR 2167 and GAUK 351. We also are indebted to Dr. Joachim Heinze
and Springer Verlag for their encouragement and support. Finally, we would
like to record our extreme debt to Susan Pope (at AT&T Bell Laboratories)
who somehow (miraculously) managed to convert more than 50 manuscripts
of all types into the attractive form they now have.

Here then is a unique portrait of a man who has devoted his whole being
to “proving and conjecturing” and to the pursuit of mathematical knowledge

xi
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and understanding. We hope that this will form a lasting tribute to one of
the great mathematicians of our time.

Murray Hill, USA R.L. Graham
Praha, Czech Republic J. Nešetřil
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the Asymptotics of Matchings, Covers and Colorings . . . . . . . . . . . 343
Jeff Kahn

The Origins of the Theory of Random Graphs . . . . . . . . . . . . . . . . . . . . 371
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Contents xix

How Abelian is a Finite Group? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
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Paul Erdős: Life and Work

Béla Bollobás

B. Bollobás (�)
Department of Pure Mathematics and Mathematical Statistics, University
of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, England

Trinity College, Cambridge, CB2 1TQ, England, UK

Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152, USA
e-mail: B.Bollobas@dpmms.cam.ac.uk

Dipping into the mathematical papers of Paul Erdős is like wandering into
Aladdin’s Cave. The beauty, the variety and the sheer wealth of all that
one finds is quite overwhelming. There are fundamental papers on number
theory, probability theory, real analysis, approximation theory, geometry,
set theory and, especially, combinatorics. These great contributions to
mathematics span over six decades; Erdős and his collaborators have left
an indelible mark on the mathematics of the twentieth-century. The areas of
probabilistic number theory, partition calculus for infinite cardinals, extremal
combinatorics, and the theory of random graphs have all practically been
created by Erdős, and no-one has done more to develop and promote the use
of probabilistic methods throughout mathematics.

Erdős is the mathematician par excellence: he thrives on mathematics,
living in a state of continuous excitement; he raises, answers and commu-
nicates questions, picking up the problems of others and making incisive
contributions to them with lightning speed.

Considering what a mild-mannered man he is, it is surprising that
everything about Erdős and his mathematics is extreme. He has written
over 1,400 papers, more than any mathematician since Euler, and has more
than 400 coauthors. If the Guinness Book of Records had categories related
to mathematical activities, Paul Erdős would hold many of the records by
a margin one could not even attempt to estimate, like the thousands of
problems posed, the millions of miles travelled, the tens of thousands of
mathematical discussions held, the thousands of different beds slept in, the
thousands of lectures delivered at different universities, the hundreds of
mathematicians helped, and so on.

Today we live in the age of big mathematical theories, bringing together
many sophisticated branches of mathematics. These powerful theories can
be very successful in solving down-to-earth problems, as in the case of
Andrew Wiles’s wonderful proof of Fermat’s Last Theorem. But no matter
how important and valuable these big theories are, they cannot constitute
all of mathematics. There are a remarkable number of basic mathematical
questions that we would love to answer (nay, we should answer!) which seem

1
DOI 10.1007/978-1-4614-7258-2 1,
© Springer Science+Business Media New York 2013

R.L. Graham et al. (eds.), The Mathematics of Paul Erdős I,
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2 Béla Bollobás

to withstand all our assaults. There is a danger that we turn our backs on
such questions, persuading ourselves that they are not interesting when in
fact we mean only that we cannot tackle them with our favourite theories. Of
course, such an attitude would not be in the proper spirit of science; surely,
we should say that we do want to answer these questions, by whatever means.
And if there are no theories to help us, no bulldozers to move the earth, then
we must rely on our bare hands and ingenuity. It is not that we do not want
to use big theories to crack our problems, but that the big theories around
are unable to say anything deep about our questions. And, with luck, our
hands-on approach will tie up with available theories or, better still, will lead
to new, more sensitive theories.

Ernst Straus, who as a young man was Einstein’s assistant, reported
that the reason why Einstein had chosen physics over mathematics was
that mathematics was so full of beautiful and attractive questions that one
might easily waste one’s life working on the “wrong” questions. Einstein was
confident that in physics he could identify the “central” questions, and he
felt that it was the duty of a scientist to pursue these questions and not let
himself be seduced by any problem-no matter how difficult or attractive it
might be.

The philosophy of Erdős has been completely different. Throughout
his long career, he has been happy to pursue the beautiful problems he
encountered, and has raised many others. But this is not an ad hoc
process: Erdős has an amazing instinct for discerning beautiful problems
that, while appearing innocuous, in fact go right to the heart of the matter.
These problems are not chosen indiscriminately; they frequently lead to the
discovery of unexpected and exciting phenomena. Like Ramanujan, Erdős
uses particular instances of problems to explore an area. Rather than taking
whole countries in one sweeping move, he prefers first to occupy some nearby
castles, from which he can weigh up the unknown territory before making his
next move.

For over 60 years now, Erdős has been the world’s most celebrated
problem solver and problem poser. Unrivalled, king, nonpareil, . . . . He has
been called an occidental Ramanujan, a modern-day Euler, the Mozart of
mathematics. These glowing epithets accurately capture the different facets
of Paul Erdős—each is correct in its own way. He has a unique talent to pose
penetrating questions. It is easy to ask questions that lead nowhere, questions
that are either impossibly hard or too easy. It is a completely different matter
to raise, as Erdős does, innocent-looking problems whose solutions shed light
on the shape of the mathematical landscape.

An important feature of the problems posed by Erdős is that they
carry differing monetary rewards. Needless to say, this is done in jest, but
the prizes do indicate Erdős’s assessment of the difficulty of the problems.
How different this is from the annoying habit of some mathematicians, who
casually mention a problem as if they hadn’t even thought about it, when in
fact they are telling you the central problem they have been working on for
a long time!
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Two features of his mathematical œuvre stand out: his mastery of
elementary methods and his advocacy of random methods. Starting with his
very first papers, Erdős championed elementary methods in diverse branches
of mathematics. He showed, again and again, that elementary methods often
succeed against overwhelming odds. In many brilliant proofs he showed
that, rather than bringing somewhat foreign machinery to bear on some
problems, and thereby trying to fit a square peg into a round hole, one can
progress considerably further by facing the complications, going deep into the
problem, and tailoring our approach to the intrinsic difficulties of the problem.
This philosophy can pay unexpected dividends, as shown by Charles Read’s
solution of the Invariant Subspace Problem, Miklós Laczkovich’s solution of
Tarski’s problem of “Squaring the Circle”, and Tim Gowers’ recent solutions
of Banach’s last unsolved problems, including the Hyperplane Problem.

As to probabilistic methods, by now it is widely acknowledged that
these can be remarkably effective in tackling main-line questions in diverse
areas of mathematics that have nothing to do with probability. It is worth
remembering, though, that when Erdős started it all, the idea was very
startling indeed. That today we take it in our stride is a sign of the tremendous
success of the random method, which is very much his method, still frequently
called the Erdős method.

Paul Erdős was born on 26th March 1913, in Budapest. His parents were
teachers of mathematics and physics; his father translated a book on aircraft
design from English into Hungarian. The young Paul did not go to elementary
school, but was brought up by his devoted mother, Anna, and, for 3 years,
between the ages of 3 and 6, he had a German Fräulein. His exceptional
talent for mathematics was evident by the time he was 3: his agility at mental
arithmetic impressed all comers, and he was not yet 4 when he discovered
negative numbers for himself. With the outbreak of the First World War,
his father was drafted into the Austro-Hungarian army, and served on the
Eastern Front. He was taken prisoner by the Russians, and sent to Siberia to
a prisoner of war camp, from which he returned only after about 6 years.

After the unconditional surrender of Hungary at the end of the War, the
elected government resigned, as it could not accept the terms of the Allies.
These terms left Hungary only the rump of her territory, and in March 1919
the communists took over the country, with the explicit aim of repelling
the Allies. The communists formed a Dictatorship of the Proletariat, usually
referred to as the Commune, after its French equivalent in 1871, and set about
defending the territory and forcibly reforming the social order.

The Commune could not resist the invasion by the Allies and the
Hungarian “white” officers under Admiral Horlhy, and it fell after a struggle
of 3 months. Unfortunately for the Erdős family, Anna Erdős had a minor
post under the Commune, and when Horthy came to power, she lost her job,
never to teach again. Later she worked as a technical editor.

He studied elementary school privately with his mother. After that, in
1922, the young Erdős went to Tavaszmező gymnasium, the first year as a
private pupil, the second and third years as a normal student, and the fourth
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year again as a private pupil. After the fourth year he attended St. Stephen’s
School (Szent István Gimnázium) where his father was a high school teacher.
At this time Erdős also received significant instruction from his parents as
well. As it happened, my father entered the school just as Erdős left it, so
they share many classmates, although they met only many years later.

By the early 1920s the Mathematical Journal for Secondary Schools
(Középiskolai Matematikai Lapok) was a successful journal, catering for
pupils with talent for mathematics. The journal had been founded in 1895
by a visionary young man, Dániel Arany, who hoped to raise the level of
mathematics in the whole of Hungary by enticing students to mathematics
through beautiful problems. The backbone of the journal was the year-long
competition. Every month a number of problems were set for each age group;
the readers were invited to submit their solutions, which were marked, and
the best published under the names of the authors.

The young Erdős became an ardent reader of this journal, and his love
of mathematics was greatly fanned by the intriguing problems in it. In some
sense, Erdős’s earliest publications date to this time, with the appearance of
his solutions in the journal. On one occasion Paul Erdős and Paul Turán were
the only ones who managed to solve a particular problem, and their solution
was published under their joint names. This was Erdős’s first “joint paper”
with Turán, whom he had not even met at the time, and who later became
one of his closest friends and most important collaborators.

Mathematicians, and especially young mathematicians, learn much from
each other. Erdős was very lucky in this respect, for when at the age of 17
he entered the Pázmány Péter Tudományegyetem (the science university of
Budapest) he found there an excellent group of about a dozen youngsters
devoted to mathematics. Not surprisingly, Erdős became the focal point of
this group, but the long mathematical discussions stimulated him greatly.

This little group included Paul Turán, the outstanding number theorist;
Tibor Gallai, the excellent combinatorialist; Dezső Lázár, who was later
tragically killed by the Nazis; George Szekeres and Esther Klein, who later
married and subsequently emigrated to Australia; László Alpár, who became
an important member of the Hungarian Mathematical Institute; Márta Svéd,
another member of the group who went to live in Australia; and several
others. Not only did they discuss mathematics at the university, but also in
the afternoons and evenings, when they used to meet at various public places,
especially by the Statue of Anonymous, commemorating the first chronicler
of Hungarian history.

Two of Erdős’s professors stand out: Lipót Fejér, the great analyst, and
Dénes König, who introduced Erdős to graph theory. The lectures of König led
to the first results of Erdős in graph theory: in answer to a question posed in
the lectures, in 1931 he extended Menger’s theorem to infinite graphs. Erdős
never published his proof, but it was reproduced in König’s classic, published
in 1936.
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As an undergraduate, Erdős worked mostly on number theory, obtaining
several substantial results. He was not even 20, when in Berlin the great Issai
Schur lectured on Erdős’s new proof of Bertrand’s postulate. He wrote his
doctoral dissertation as a second year undergraduate, and it was not long
before he got into correspondence with several mathematicians in England,
including Louis Mordell, the great number theorist in Manchester, and
Richard Rado and Harold Davenport in Cambridge. All three became Erdős’s
close friends.

When in 1934 Erdős finished university, he accepted Mordell’s invitation
to Manchester. He left Hungary for England in the autumn of 1934, not
knowing that he would never again live in Hungary permanently. On 1st
October 1934 he was met at the railway station in Cambridge by Davenport
and Rado, who took him to Trinity College, and they immediately embarked
on the first of their many long mathematical discussions. Next day Erdős met
Hardy and Littlewood, the giants of English mathematics, before hurrying
on to Mordell.

Mordell put together an amazing group of mathematicians in Manchester,
and Erdős was delighted to join them. First he took up the Bishop Harvey
Goodwin Fellowship, and was later awarded a Royal Society Fellowship. He
was free to do research under Mordell’s guidance, and he was soon producing
papers with astonishing rapidity. In 1937 Davenport left Cambridge to join
Mordell and Erdős, and their life-long friendship was soon cemented. I have a
special reason to be grateful for the Erdős-Davenport friendship: many years
later, I was directed to my present home, Trinity College, Cambridge, only
because Davenport was a Fellow here, and he was a good friend of Erdős.

In 1938 Erdős was offered a fellowship at the Institute for Advanced Study
in Princeton, so he soon thereafter sailed for the U.S., where he was to spend
the next decade. The war years were rather hard on Erdős, as it was not
easy to hear from his parents in Budapest, and when he received news, it was
never good. His father died in August 1942, his mother later had to move
to the Ghetto in Budapest, and his grandmother died in 1944. Many of his
relatives were murdered by the Nazis.

In spite of being cut off from his home, Erdős continued to pour forth
wonderful mathematics at a prodigious rate. Having arrived in America, he
spent a year and a half at Princeton, before starting on his travels. He visited
Philadelphia, Purdue, Notre Dame, Stanford, Syracuse, Johns Hopkins, to
mention but a few places, and the pattern was set: like a Wandering Scholar
of the Middle Ages, Erdős never stopped again. In addition to the many
important papers he wrote by himself, he collaborated more and more with
mathematicians from diverse areas, writing outstanding joint papers with
Mark Kac, Wintner, Kai Lai Chung, Ivan Niven, Arye Dvoretzky, Shizuo
Kakutani, Arthur A. Stone, Leon Alaoglu, Irving Kaplansky, Alfred Tarski,
Gabor Szegő, William Feller, Fritz Herzog, George Piranian, and others.
Through correspondence, he continued his collaboration with Paul Turán,
Harold Davenport, Chao Ko and Tibor Gallai (Grünwald).
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In 1954, he left the U.S. to attend the International Congress of
Mathematicians in Amsterdam. He had also asked for a reentry permit at
that time but his request was denied. So he left without a reentry permit
since in his own words, “Neither sam nor joe can restrict my right to travel.”
Left without a country, Israel came to his aid, offering him employment at the
Hebrew University in Jerusalem, and a passport. He arrived in Israel on 30th
November 1954, and from then on he has been to Israel practically every year.
Before leaving Israel for Europe in July 1955, he applied for a return visa to
Israel. When the officials asked him whether he wanted to become an Israeli
citizen, he politely refused, saying that he did not believe in citizenship.

After the upheaval following his trip to Amsterdam, he first returned to
the U.S. in 1959; the relationship between Erdős and the U.S. Immigration
Department was finally normalized in 1963, and since then he has had no
problems with them.

In the Treaty of Yalta, Hungary was placed within the Soviet sphere of
influence; the communists, aided by the Russians, took over the government,
and turned Hungary into a People’s Republic. For ordinary Hungarians,
leaving Hungary even for short trips to the West became very difficult.
Nevertheless, in 1955 Erdős managed to return to Hungary for a short
time, when his good friend, George Alexits, pulled strings and convinced
the officials that, if Erdős were to enter the country, he should be allowed to
leave.

Later Erdős could return to Hungary at frequent intervals, in order to
spend more and more time with his mother, as well as to collaborate with
a large number of Hungarian mathematicians, especially Turán and Rényi,
In those dark days, Erdős was the main link between many Hungarian
mathematicians and the West.

As a young pupil, I first heard him lecture during one of his visits: not
only did he talk about fascinating problems but he also cut a flamboyant
figure, with his suntan, Western suit and casual mention of countries I was
sure I could never visit. I got to know him during his next visit: in 1958,
having won the National Competition, I was summoned to the elegant hotel
he stayed in with his mother. They could not have been kinder: Erdős told
to me a host of intriguing questions, and did not talk down to me, while his
mother (whom, as most of their friends, I learned to call Annus Néni or Aunt
Anna) treated me to cakes, ice cream and drinks. Three years later they got
to know my parents, and from then on they were frequent visitors to our
house, especially for Sunday lunches. My father, who was a physician, looked
after both Erdős and Annus Néni.

Seeing them together, there was no doubt that they were very happy
in each other’s company: these were blissful days for both of them. Erdős
thoroughly enjoyed being with his mother, and she was delighted to have
her son back for a while. They looked after each other lovingly; each worried
whether the other ate well and slept enough or, perhaps, was a little tired.
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Annus Néni was fiercely proud of her wonderful son, loved to see the many
signs that her son was a great mathematician, and revelled in her role as
the Queen Mother of Mathematics, surrounded by all the admirers and well-
wishers. She was never far from Erdős’s mathematics either: she kept Erdős’s
hundreds of reprints in perfect order, sending people copies on demand.

Annus Néni was not young, having been born in 1880, but her health was
good and she was very sharp. To compensate for the many years when they
had been kept apart, Annus Néni started to travel with her son in her 80s;
their first trip together being to Israel in November 1964. From then on they
travelled much together: to England in 1965, many times to other European
countries and the U.S., and towards the end of 1968 to Australia and Hawaii.
When, tinged with envy, we told her that it must be wonderful to see the
world, she replied “You know that I don’t travel because I like it but to be
with my son.” It was a tragedy for Erdős when, in 1971, Annus Néni died
during a trip to Calgary. Her death devastated him and for years afterwards
he was not quite himself. He still hasn’t recovered from the blow, and it is
most unlikely that he ever will.

Erdős’s brushes with officialdom were not quite over: the communists
also managed to upset him. In 1973 there was an international meeting in
Hungary, to celebrate his 60th birthday. Erdős’s friends from Israel were
denied a visa to enter Hungary; this outraged him so much that for 3 years
he did not return to Hungary.

With the collapse of communism and with the end of the Cold War, Erdős
has entered a golden age of travel: not only can he go freely wherever he wants
to, but he is even welcomed by officials everywhere.

Having started as a mathematical prodigy, by now Erdős is the doyen
of mathematicians, with more friends in mathematics than the number of
people most of us meet in a lifetime. As he likes to put it in his inimitable
way, he has progressed from prodigy to dotigy. As a Member of the Hungarian
Academy of Sciences, Erdős has a permanent position in Budapest. During
summer months, he frequently stays in the Guest House of the Academy,
two doors away from my mother, visiting Vera Sós, András Hajnal, Miklós
Simonovits, András Sárközy, Miklós Laczkovich, and inspiring many others.
Another permanent position awaits him in Memphis, where he stays and
works with Ralph Faudree, and his other friends, Dick Schelp and Cecil
Rousseau. In Israel he visits all the universities, including the Technion in
Haifa, Tel Aviv, Jerusalem and the Weizman Institute. But for years now,
Erdős has had many other permanent ports of call, including Kalamazoo,
where Yousef Alavi looks after him; New Jersey and the New York area,
where he stays with Ron Graham and Fan Chung and talks to many others
as well, including János Pach, Joel Spencer, Mel Nathanson, Peter Winkler,
Endre Szemerédi, Joseph Beck and Herb Wilf; Calgary, mostly because of
Eric Milner, Richard Guy and Norbert Sauer; Atlanta, with Dick Duke,
Vojtěch Rödl, Ron Gould and Dwight Duffus. And the list could go on and
on, with Athens, Baton Rouge, Berlin, Bielefeld, Boca Raton, Bonn, Boston,
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Cambridge, Chicago, Los Angeles, Lyon, Minneapolis, Paris, Poznań, Prague,
Urbana, Warsaw, Waterloo, and many others.

Honours have been heaped upon Erdős, although he could not care less.
Every fifth year there is an International Conference in Cambridge on his
birthday, and in 1991 Cambridge also awarded him a prestigious Honorary
Doctorate, as did the Charles University of Prague a year later, and many
other universities since. On the occasion of his 80th birthday, he was honoured
at a spate of conferences, not only in Cambridge, but also in Kalamazoo, Boca
Raton, Prague and Keszthély.

Nowadays Erdős lectures in more places than ever, interspersing his
mathematical problems with stories about mathematicians and his remarks
about life. He dislikes cold but, above all, hates old age and stupidity, and
so he appreciates the languages in which these evils sound similar. Thus, old
and cold and alt and kalt go hand in hand in English and German, and in no
other language he knows. But Hindi is better still because the two greatest
evils sound almost the same: buddha is old and budu is stupid.

Erdős is fond of paraphrasing poems, especially Hungarian poems, to
illustrate various points. The great Hungarian poet at the beginning of this
century, Endre Ady, Wrote: Legyen átkozott aki a helyembe áll! (Let him be
cursed who takes my place!) As a mathematician builds the work of others, so
that his immortality depends on those who continue his work, Erdős professes
the opposite: Let him be blessed who takes my place!

But Erdős does not wait for posterity to find people to continue his work:
his extraordinary number of collaborators ensures that many people carryon
his work all around the world. The collaborators who particularly stand out
are Paul Turán, Harold Davenport, Richard Rado, Mark Kac, Alfréd Rényi,
András Hajnal, András Sarközy, Vera Sós and Ron Graham: they have all
done much major work with Erdős. In a moment we shall see a brief account
of some of this work. Needless to say, our review of Erdős’s mathematics
will be woefully brief and inadequate, and will also reflect the taste of the
reviewer.

Erdős wrote his first paper as a first-year undergraduate, on Bertrand’s
postulate that, for every n ≥ 1, there is a prime p satisfying n < p ≤
2n. Bertrand’s postulate was first proved by Chebyshev, but the original
proof was rather involved, and in 1919 Ramanujan gave a considerably
simpler proof of it. In his fundamental book, Vorlesungen über Zahlentheorie,
published in Leipzig in 1927, Landau gave a rather simple proof of the
assertion that for some q > 1 and every n ≥ 1, there is a prime between
n and qn. However, Landau’s q could not be taken to be 2. In his first paper,
Erdős sharpened Landau’s argument, and by studying the prime factors of the
binomial coefficient

(
2a
a

)
, gave a simple and elementary proof of Bertrand’s

postulate.
Erdős was quick to develop further the ideas in his first paper. In 1932,

Breusch made use of L-functions to generalize Bertrand’s postulate to the
arithmetic progressions 3n+1, 3n+2, 4n+1 and 4n+3: for every m ≥ 7 there
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are primes of the form 3n+ 1, 3n+ 2, 4n+ 1 and 4n+ 3 between m and 2m.
By constructing expressions containing, as factors, all terms of the arithmetic
progression at hand, and rather few other factors, Erdős managed to give an
elementary proof of Breusch’s theorem, together with various extensions of it
to other arithmetic progressions. These results constituted the Ph.D. thesis
Erdős wrote as a second-year undergraduate, and published in Sárospatak in
1934.

Schur, who had been Breusch’s supervisor in Berlin, was quick to
recognize the genius of the author of the beautiful elementary proof of
Breusch’s theorem. When, a little later, Erdős proved a conjecture of Schur
on abundant numbers, and solved another problem of Schur, Erdős became
“der Zauberer von Budapest” (“the magician of Budapest”)—no small praise
from the great German for a young man of 20.

Abundant numbers figured prominently among the early problems tackled
by Erdős. In his lectures on number theory, Schur conjectured that the
abundant numbers have positive density: limx→∞A(x)/x exists, where A(x)
is the number of abundant numbers not exceeding x. (A natural number
n is abundant if σ(n), the sum of its positive divisors, is at least 2n.) The
beautiful elementary proof Erdős gave of this conjecture led him straight
to other problems concerning the distribution of the values of real-valued
additive arithmetical functions f(n), that is functions f : N → R satisfying
f(ab) = f(a) + f(b) whenever (a, b) = 1.

These problems were first investigated by Hardy and Ramanujan in 1917,
but were more or less forgotten for over a decade. As eventually proved by
Erdős and Wintner in 1939, a real-valued additive arithmetical function f(n)
behaves rather well if the following three series are convergent:

∑

|f(p)|>1

1/p,
∑

|f(p)|≤1

f(p)/p and
∑

|f(p)|≤1

f(p)2/p,

with the summations over primes p. To be precise, the three series above are
convergent if and only if limx→∞A(x)/x exists for every real c, where Ac(x)
stands for the number of natural numbers n ≤ x with f(n) < c.

In 1934, Turán gave a marvelous proof of an extension of the Hardy-
Ramanujan theorem on the “typical number of divisors” of a natural number.
Writing ν(n) for the number of distinct prime factors of n (so that ν(12) = 2),
Turán proved that

N∑

n=1

{ν(n) − log logn}2 = N log logN + o(N log logN).

It is a little disappointing that Hardy, one of the greatest mathematicians
alive, failed to recognize the immense significance of this new proof. Erdős,
on the other hand, not only saw the significance of the paper, but was quick
to make use of the probabilistic approach and so became instrumental in
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the birth of a very fruitful new branch of mathematics, probabilistic number
theory. In a ground-breaking joint paper he wrote with Kac in 1939, Erdős
proved that if a bounded real-valued arithmetical function f(n) satisfies∑

p f(p)2/p = ∞ then, for every x ∈ R,

lim
m→∞Ax(m)/m = Φ(x),

where Ax(m) is the number of positive integers n ≤ m satisfying

f(n) <
∑

p≤m

f(p)/p+ x

( ∑

p≤m

f(p)2/p

)1/2

,

and, as usual

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt

is the standard normal distribution. In other words, the arithmetical function
f(n) satisfies the Gaussian law of error! It took the mathematical community
quite a while to appreciate the significance and potential of results of this
type.

Note that for ν(n), the number of prime factors of n, the Erdős-Kac
theorem says that if x ∈ R is fixed then

lim
m→∞

1

m

∣∣{n ≤ m and ν(n) ≤ log logm+ x(log logm)1/2}∣∣ = Φ(x).

Starting with his very first papers, Erdős championed “elementary” meth-
ods in number theory. That the number theorists in the 1930s appreciated
elementary methods was due, to some extent, to Shnirelman’s great success in
studying integer sequences, with a view of attacking, perhaps, the Goldbach
conjecture. To study integer sequences, Shnirelman introduced a density, now
bearing his name: an integer sequence 0 ≤ a1, < a2 < . . . is said to have
Shnirelman density α if

inf
x≥1

1

x

∑

an≤x

1 = α.

Thus if a1 > 1 then the Shnirelman density of the sequence (an)∞n=1 is 0.
Khintchine discovered the rather surprising fact that if (an)∞n=1 is an

integer sequence of Shnirelman density α with 0 < α < 1, and (bn)∞n=1 is the
sequence of squares 02, 12, 22, . . . , then the “sum-sequence” (an + bm) has
Shnirelman density strictly greater than α. The original proof of this result,
although elementary, was rather involved.

When Landau lectured on Khintchine’s theorem in 1935 in Cambridge,
he presented a somewhat simplified proof he had found with Buchstab.
Nevertheless, talking to Landau after his lecture, Erdős expressed his view
that the proof should be considerably simpler and, to Landau’s astonishment,
as soon as the next day he came up with a “proper” proof that was both
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elementary and short. In addition, the new proof also made it clear what the
result had to do with squares: all one needs is that every positive integer is
the sum of at most four squares. If (bn) is such that every positive integer
is the sum of at most k terms bn, then the sum-sequence (an + bm) has
Shnirelman density at least α + α(1 − α)/2k. It says much about Landau,
that he immediately included this beautiful theorem of Erdős into the
Cambridge “Tract” he was writing at the time (Neue Ergebnisse der additiven
Zahlentheorie, published in 1937).

The difference between consecutive primes has attracted much attention.
Writing pn for the nth prime, the twin prime conjecture states that pn+1−pn
is infinitely often equal to 2, that is lim infn→∞(pn+1 − pn) = 2. At
the moment we seem to be very far from a proof of this conjecture; in fact,
there seems to be no hope to prove that lim infn→∞(pn+1 − pn) < ∞. The
Prime Number Theorem, asserting that π(x) ∼ x/ log x, where π(x) is the
number of primes p ≤ x, implies that c = lim infn→∞(pn+1 −pn)/ log pn ≤ 1,
but Erdős was the first to prove, in 1940, that c < 1. Later Rankin showed
that c ≤ 59/60, and then Selberg that c ≤ 15/16. Subsequent improvements
were obtained by Bombieri and Davenport and by Huxley; the present record,
c ≤ 0.248, is held by Maier.

Independently, Erdős and Ricci showed that the set of limit points of
the sequence (pn+1 − pn)/ log pn has positive Lebesgue density and yet, no
number is known to be a limit point.

Concerning large gaps between consecutive primes, Backlund proved in
1929 that lim supn→∞(pn+1 − pn)/ log pn ≥ 2. In quick succession, this was
improved by Brauer and Zeitz (1930), by Westzynthius (1931), and then by
Ricci (1934), to

lim sup
n→∞

pn+1−pn
log pn log log log pn

> 0.

By making use of the method of Brauer and Zeitz, Erdős proved in 1934 that

lim sup
n→∞

(pn+1−pn)(log log log pn)2

log pn log log pn
> 0.

In 1938 this result was improved by Rankin, who smuggled a factor
log log log log pn into the denominator: there is a c > 0 such that

pn+1 − pn > c
log pn log log pn log log log log pn

(log log log pn)2
(1)

for infinitely many values of n. It seems to be extremely difficult to improve
this result, to the extent that Erdős is offering (according to him, perhaps a
little rashly) $10,000 for a proof that (1) holds for every c. The original value
of c given by Rankin was improved by Maier and Pomerance in 1990.

Although in the 1930s elementary methods were spectacularly successful
in additive number theory and in the study of additive arithmetical functions,
they did not seem to be suitable for the study of the distribution of primes.
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It was not only a desire for diverse proofs that urged mathematicians to search
for elementary proofs of results proved by deep analytical methods: many
mathematicians, including Hardy, felt that if the Prime Number Theorem
(PNT) could be proved by elementary methods then the Riemann Hypothesis
itself might yield to a similar attack. This belief was reinforced by the result
of Norbert Wiener in 1930 that the prime number theorem is equivalent to
the fact that the zeta function ζ(s) = ζ(σ+ it) has no zero on the line σ = 1.

Next to the PNT, Dirichlet’s classical theorem on primes in an arithmeti-
cal progression, proved in 1837, was a test case for the power of elementary
methods. In 1948 Atle Selberg found an ingenious elementary proof of
Dirichlet’s theorem; indeed, Selberg proved that if k and l are relatively
prime numbers then

lim inf
x→∞

1

log x

∑

p≤x;p≡l(mod k)

p−1 log p > 0.

Shortly after this, Selberg proved the following fundamental formula:
∑

p≤x

(log p2) +
∑

pq≤x

log p log q = 2x log x+O(x), (2)

where p and q run over primes. This formula is an easy consequence of the
PNT, but what caused the excitement was that Selberg gave a completely
elementary proof. Thus the fundamental formula could be a starting point
for elementary proofs of various theorems in number theory which previously
seemed inaccessible by elementary methods.

Using Selberg’s fundamental formula, Erdős quickly proved that pn+1/
pn → 1 as n → ∞, where pn is, as before, the nth prime. Even more, Erdős
proved (in an entirely elementary way) that if c > 1 then

lim inf
n→∞

log x

x
(π(cx) − π(x)) > 0. (3)

Erdős communicated this proof of (3) to Selberg, who, 2 days later, using

(2), (3) and the ideas in the proof of (3), deduced the PNT limn→∞
π(x) log x

x
= 1. Thus an elementary proof of the PNT was found!

A little later Selberg found it possible to argue directly from (2), without
making any use of (3); this is the way he wrote up his paper in the autumn of
1948. In a separate paper, Erdős stated (2), referred to Selberg’s final proof
of the PNT (not published at the time), gave his own proof of (3), Selberg’s
deduction of the PNT from (2) and (3), and a joint simplified deduction
of the PNT from (2). In the Mathematical Reviews the great Cambridge
mathematician A.E. Ingham found it convenient to review these two papers
together. As he wrote, “All previous proofs have been by ‘transcendental ’
arguments involving some appeal to the theory of functions of a complex
variable. Successive proofs have moderated the demands on this theory, or
invoked alternative analytical theories (e.g., Fourier transforms), but there
remained a nucleus of complex variable theory, namely the proposition that
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Riemann zeta-function ζ(s) = ζ(σ + it) has no zeros on the line σ = 1; and
this could hardly be avoided, except by a radically new approach, since the
PNT is in a clearly definable sense ‘equivalent’ to this property of ζ(s). It has
long been recognized that an ‘elementary’ proof of the PNT, not depending
on analytical ideas remote from the problem itself, would (if indeed possible)
constitute a discovery of the first importance for the logical structure of the
theory of the distribution of primes. An elementary (though not easy) proof
is given, in various forms, in these two papers”.

“In principle, [the papers] open up the possibility of a new approach, in
which the old logical arrangement is reversed and analytical properties of ζ(s)
are deduced from arithmetical properties of the sequence of primes. How far
the practical effects of this revolution of ideas penetrate into the structure of
the subject, and how much of the theory will ultimately have to be rewritten,
it is too early to say.”

For the startling elementary proof of the Prime Number Theorem Selberg
was awarded a Fields Medal, and Erdős a Cole Prize, given every fourth year
to the author of the best paper in algebra and number theory published in
an American journal.

Let us say a few words about the contributions of Erdős to asymptotic
formulae. One of the glorious achievements of the Hardy-Ramanujan partner-
ship was the striking formula for p(n), the number of different partitions of n
(ignoring the order of the summands). By using powerful analytic methods
that eventually led to the celebrated circle method of Hardy and Littlewood,
in 1918 Hardy and Ramanujan gave an extremely good approximation for
p(n); later Rademacher improved the approximation a little and turned it
into an analytic expression for p(n). A weak form of the Hardy-Ramanujan
result states that

p(n) ∼ 1

4
√

3n
eπ

√
2n/3,

and Hardy and Ramanujan also gave an elementary proof of

log p(n) ∼ π
√

2n/3.

Two decades later, Erdős set about proving that elementary methods can go
considerably further, and in 1942 he proved that

p(n) ∼ a

n
eπ

√
2n/3

for some positive constant a.
Taking his cue from the Hardy-Ramanujan result mentioned a little

earlier, that most integers n have about log logn prime factors, Erdős also
proved, with Lehner, that “almost all” partitions of a positive integer n
contain about

A(n) =
1

π

√
3n/2 logn
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summands. Furthermore, there is also a beautiful distribution about A(n): for
x ∈ R, the probability that a random partition of n has at most A(n) + x

√
n

summands tends to

e−
√

6
π e−π

√
x/6

.

Some years later, in 1946, Erdős returned to another variant of this problem.
Given n ∈ N , what is the most likely number of summands in a random
partition of n? Writing k0(n) for this number, it is not clear that k0(n) is well-
defined although, as was shown later by Szekeres, this is the case. However,
what does seem to be clear is that k0(n) is about A(n). Erdős proved that,
in fact,

k0(n) = A(n) +

√
6

π

(

log

√
6

π

)
√
n+ o(

√
n).

Another circle of problems that has occupied Erdős for over 60 years
originated with a question raised by Sidon when Erdős and Turán went to
see him. Given a sequence S of natural numbers and k ∈ N, write rk(n) for
the number of representations of n in the form

n = a1 + a2 + · · · + ak,

with ai ∈ S and 1 ≤ a1 < a2 < . . . < ak. Call S an asymptotic basis of
order k if rk(n) ≥ 1 whenever n is sufficiently large. In 1932 Sidon asked
Erdős the following question. Is there an asymptotic basis of order 2 such
that r2(n) = o(nε) for every ε > 0? The young Erdős confidently reassured
Sidon that he would come up with such a sequence. Erdős was right, but it
took him over 20 years: he proved in 1954 in Acta (Szeged) that for some
constant c there is a sequence S such that

1 ≤ r2(n) < c logn

if n is large enough.
What can one say about rk(n) rather than r2(n)? In 1990, Erdős and

Tetali proved that for every k ≥ 2 there are positive constants c1, c2, and
a sequence S such that c1 logn ≤ rk(n) ≤ c2 logn if n is large enough.
In fact, Erdős and Tetali gave two proofs of this theorem; the easier of
the two gets the result as a fairly simple consequence of Janson’s powerful
and ingenious correlation inequality. The related conjecture of Erdős and
Turán, made in 1941, that if r2(n) ≥ 1 for all sufficiently large n then
lim supn→∞ r2(n) = ∞, is still far from being solved, although it seems
possible that much more is true, namely if r2(n) ≥ 1 whenever n is large
enough then lim supn→∞ r2(n)/ logn > 0.

In 1956, Erdős and Fuchs proved a remarkable theorem somewhat related
to Sidon’s problem but originating in a result of Hardy and Landau. Let us
write r(n) for the number of lattice points in Z

2 in the circle of radius
√
n,

so that r(n) is the number of integer solutions of the inequality x2 + y2 ≤ n.
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Gauss was the first to prove that r(n) stays rather close to its expectation,
namely r(n) − πn = O(n1/2). In 1906, Sierpiński returned to the study of
r(n), and showed that, in fact, r(n)−π(n) = O(n1/3). The question whether
this bound is essentially best possible or could be improved: intrigued many
of the best number theorists in the first few decades of this century: including
Hardy, Littlewood, Landau and Walfisz. In 1925 Hardy and Landau gave an
exact expression for r(n) − π(n) is terms of Bessel functions. They showed
also that r(n) does not stay too close to its expectation π(n), namely that

lim sup
n→∞

|r(n) − π(n)|
(n logn)1/4

> 0.

Erdős and Fuchs, proved that this result has nothing to do with the sequence
of squares 02, 12, . . . but it holds in great generality. Indeed, let 0 ≤ a1 ≤ a2 ≤
· · · be any sequence of integers, and for n ∈ N let r∗(n) be the number of
solutions of the inequality ai + aj ≤ n. Then, as proved by Erdős and Fuchs
for every positive real α we have

lim sup
n→∞

|r∗(n) − αn|
(n logn)1/4

> 0.

Erdős contributed much to the theory of diophantine approximation.
Recall that a sequence (φn) ⊂ [0, 1] is said to be uniformly distributed if
for all 0 ≤ α < β ≤ 1 we have

lim
n→∞

1

n

∑

κ≤n,α≤φκ≤β

1 = β − α. (4)

Weyl proved in 1916 that (φn) ⊂ [0, 1] is uniformly distributed if, and only if,

lim
n→∞

1

n

n∑

j=1

e2πiκφj = 0

for every non-zero integer k, Needless to say, this necessary and sufficient
condition gives no information about the speed in (4). To get some
information about the speed of convergence, one needs a “finite” form of
Weyl’s criterion. A finite form was given by van der Corput and Koksma in
1936, but a stronger conjecture of Koksma in his 1936 book on Diophantine
approximation remained unproved until 1948, when Erdős and Turán proved
the following remarkable theorem.

Let φ1, . . . , φn ∈ [0, 1], and set sk =
∑
j = 1ne2πiκφj . Suppose that |sk| ≤

ψ(k) for k = 1, . . . ,m. Then for all 0 ≤ α < β ≤ 1 we have
∣
∣
∣
∣(β − α)n−

∑

α≤φj≤β

1

∣
∣
∣
∣ ≤ C

{
n

m
+

n∑

k=1

ψ(k)/k

}

for some absolute constant C.
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This result has had numerous applications, starting with the following
beautiful theorem from the original Erdős-Turán paper. For n ≥ 2, let

f(z) = zn + an1z
n−1 + · · · + a1z + a0 =

n∏

j=1

(z − zj)

be such that zj| ≥ 1 for every j. For 0 < θ < 1 set Mθ = max|z|=θ |f(z)| and
define g(n, θ), 2 ≤ g(n, θ) ≤ n, by

Mθ/
√

|a0| = en/g(n,θ).

Then for all 0 ≤ α < β ≤ 2π we have
∣∣
∣
∣
β − α

2π
n−

∑

α≤arg zj≤β

1

∣∣
∣
∣ < C log(4/θ)

n

log g(n, θ)
,

where C is an absolute constant.
Note that if Mθ/

√|a0| is “not too large”, say at most e
√
n, then the error

term above is O(n/ logn).
Other applications were found by Egerváry and Turán, Környei, and

others. When, in 1988, Laczkovich cracked Tarski’s 50-year old problem on
squaring the circle, he made substantial use of this theorem of Erdős and
Turán from 1948.

There are very few people who have contributed more to the fundamental
theorems in probability theory than Paul Erdős; here we shall state only
a small fraction of the major results of Erdős in probability theory. The
law of the iterated logarithm was proved around 1930 by Khintchine and
Kolmogorov, with further contributions from Lévy. To state this fundamental
result, let X1, X2, . . . be independent Bernoulli random variables, with
P(Xn = −1) = P(Xn = 1) = 1

2 for every n, and set Sn =
∑n

i=1Xi. The
law of the iterated logarithm states that lim supn→∞ Sn/

√
2n log logn = 1

almost surely. Putting it another way, for t ∈ [0, 1], let t = 0.ε1(t)ε2(t) . . .
be its dyadic expansion, or equivalently, set εn(t) = 0 or 1 according as the
integer part of 2nt is even or odd. (Thus the variables Xn(t) = 2εn(t)− 1 are
as above.) Set fn(t) =

∑n
k=1 εk(t) − n

2 . Then the law of iterated logarithm
states that

lim sup
n→∞

fn(t)

(n2 log logn)1/2
= 1

for almost every t ∈ (0, 1].
Let φ(n) be a monotone increasing non-negative function defined for all

sufficiently large integers. Following Lévy, this function φ(n) is said to belong
to the upper class if, for almost all t,

fn(t) ≤ φ(n)

provided n is sufficiently large, and it belongs to the lower class if, for almost
all t, fn(t) > φ(n) for infinitely many values of n. Then the law of the iterated
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logarithm states that φ(n) = (1+ε)(n2 log logn)1/2 belongs to the upper class
if ε > 0, and to the lower class if ε < 0.

In 1942, Erdős considerably sharpened this assertion when he proved that
a function

(
n

2 log logn

)1/2 {
log logn+ 3

4 log3 n + 1
2 log4 n+ . . .

1
2 logk−1 n+

(
1
2 + ε

)
logk n

}

belongs to the upper class if ε> 0, and to the lower class if ε> 0. (We write
logk for the k times iterated logarithm.) Not surprisingly, Erdős gave
an elementary proof, and made no use of the results of Khintchine and
Kolmogorov. Furthermore, as he indicated, the result could easily be extended
to the case of Brownian motion. Some years later, Erdős returned to this topic
in a joint paper with K.L. Chung.

In addition to the papers that were instrumental in creating probabilistic
number theory, Erdős wrote some important papers with Mark Kac proving
several basic results of probability theory. Let X1, X2, . . . , Xn be independent
random variables, each with mean 0 and expectation 1. As before, set
Sk =

∑k
l=1Xl, k = 1, . . . , n. In 1946, Erdős and Kac determined the limiting

distributions of max1≤k≤n Sk and max1≤k≤n |Sk|, which turned out to be
independent of the distribution of the Xi.

Although this result was important, the method of proof was even more
so: Erdős and Kac proved that if the theorem can be established for one
particular sequence of independent random variables satisfying the conditions
of the theorem, then the conclusion of the theorem holds for all sequences
of independent random variables satisfying the conditions of the theorem.
Erdős and Kac called this the invariance principle. Since then, this principle
has been widely applied in probability theory.

Erdős and Kac promptly proceeded to apply their powerful invariance
principle to extending a beautiful result of Paul Lévy, proved in 1939. To
state this result, let X1, X2, . . . be independent random variables, each with
mean 0 and variance 1, such that the central limit theorem holds for the
sequence. As before, let Sk = X1 + · · · + Xk, and let Nn be the number of
Sk, 1 ≤ k ≤ n, which are positive. Erdős and Kac proved in 1947 that, in
this case,

lim
n→∞P(Nn/n < x) =

2

π
arcsinx1/2

for all x, 0 ≤ x ≤ 1. Thus Nn/n tends in distribution to the arc sin
distribution.

What Paul Lévy had proved in 1939 is that this arcsin law holds in the
binomial case P(Xk = 1) = P(Xk = −1) = 1/2.

In 1953 Erdős returned to this theme. In a joint paper with Hunt he
proved that if X1, X2, . . . are independent zero-mean random variables with
the same continuous distribution which is symmetric about 0 then, almost
surely,
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lim
n→∞

1

logn

n∑

k=1

sinSk

k
= 0.

In his joint papers with Dvoretzky, Kac and Kakutani, Erdős contributed
much to the theory of random walks and Brownian motion. For example,
in 1940, Paul Lévy proved that almost all paths of a Brownian motion in
the plane have double points. This was extended by Dvoretzky, Erdős and
Kakutani in 1950: they proved that for n ≤ 3 almost all paths of a Brownian
motion in R

n have double points, but for n ≥ 4 almost all paths of a Brownian
motion in R

n are free of double points. In 1954, in a paper dedicated to Albert
Einstein on his 75th birthday, Dvoretzky, Erdős and Kakutani returned to
this topic, and proved that almost all paths of a Brownian motion in the
plane have k-multiple points for every k, k = 2, 3 . . .; in fact, for almost all
paths the set of k-multiple points is dense in the plane.

Let us say a few words about classical measure theory. A subset of a
metric space is of first category if it is a countable union of nowhere dense
sets. There are a good many striking similarities between the class of nullsets
and the class of sets of first category on the line. Indeed, both are σ-ideals
(i.e. σ-rings closed under taking subsets), both include all countable sets and
contain some sets of cardinality c, both classes have power 2c, both classes
are invariant under translation, neither class contains an interval, in fact, the
complement of any set of either class is a set dense in R, the complement of
any set of either class contains a member of the class with cardinality c, and
so on.

Of course, neither class includes the other; also, it is easily seen that
R = A∪B, with A of first category andB a nullset. Nevertheless, the existence
of numerous common properties suggests that the two σ-ideals are similar in
the sense that there is a one-to-one mapping f : R → R such that f(E) is a
nullset if and only if E is of first category. In 1934 Sierpiński proved that this
is indeed the case, provided we assume the continuum hypothesis. Sierpiński
went on to ask whether the stronger assertion is also true that, assuming
the continuum hypothesis, there is a function simultaneously mapping the
two classes into each other. In 1943 Erdős answered this question in the
affirmative.

Assuming the continuum hypothesis, there is a one-to-one map f : R → R

such that f(E) is a nullset if and only if E is of first category, and f(E) is of
first category if and only if E is a nullset. In fact, f can be chosen to satisfy
f = f−1.

Of the many results of Erdős in approximation theory, let us mention some
beautiful theorems concerning Lagrange interpolation. Let X = {xi,n}, n =
1, 2, . . . , i = 1, 2, . . . , n, be a triangular matrix with

− 1 ≤ x1,n < x2,n < · · · < xn,n ≤ 1 (5)
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for every n. The values xi,n are the nodes of interpolation. As usual, for
1 ≤ k ≤ n, define the fundamental polynomials lk,n(X) as

lk,n(X) =
∏

i	=k

(x − xi,n)/

n∑

j=1

∏

i	=j

(xk,n − xi,n).

so that lk,n(X) is the unique polynomial of degree n−1 with zeros at xi,n, i �=
k, with lk,n(Xk,n) = 1.

The Lebesgue functions and the Lebesgue constants of the interpolation
are

λn(x) =

n∑

k=1

|lk,n(x)| and λn = max
−1≤x≤1

λn(x).

In fact, one frequently considers a generalization of the Lebesgue constants
as well: for −1 ≤ a < b ≤ 1 set

λn(a, b) = max
a≤x≤b

λn(x),

so that λn = λn(−1, 1).
Faber showed before the First World War that if X is any set of nodes

satisfying (5) then λn ≥ 1
6 logn for every n.

Much research was done on improving this inequality. After a series of
papers with Turán, in 1942 Erdős proved the asymptotically best possible
inequality that

λn >
2

π
logn+O(1)

for every matrix X .
In 1931 Faber’s inequality was extended by Bernstein, who proved that

there is an absolute constant c > 0 such that

λn(a, b) ≥ c logn,

provided −1 ≤ a < b ≤ 1, and n is sufficiently large, depending on (a, b). In
other words, the L∞-norm of the restriction of λn(X) to the interval (a, b)
grows at least as fast as c logn.

In a beautiful paper, written jointly with Szabados, Erdős proved in 1978
the much stronger result that a similar assertion holds for the normalized
L1-norms.

There is an absolute constant c > 0 such that if X is an arbitrary system
of nodes satisfying (5), −1 ≤ a < b ≤ 1, and n is sufficiently large, then

∫ b

a

λn(x) dx ≥ c(b− a) logn.

In the special case a = −1, b = 1, the result had been announced by Erdős in
1961, but the proof in the Erdős-Szabados paper in 1978 was along different
lines and simpler.
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Let us turn to a substantial extension of some classical results of Faber
and Bernstein. Given a system X of nodes satisfying (5), and a function F
on [−1, 1], let

Ln(F,X, x) =

n∑

k=1

F (xk,n)lk,n(x)

be the nth Lagrange interpolation polynomial of F . Thus Ln(F,X, x) is the
unique polynomial of degree at most n− 1 whose value at xkn is F (xkn), 1 ≤
k ≤ n. Extending a result of Faber from 1914, Bernstein proved in 1931 that,
for every triangular matrix X satisfying (5), there is a continuous function
F and a point x0, −1 ≤ x0 ≤ 1, such that

lim sup
n→∞

|Ln(F,X, x0)| = ∞. (6)

In 1936, Géza Grünwald and Marcienkiewicz proved that if X is the “good”
Chebyshev matrix then for some continuous function F relation (6) holds for
almost every x0, and 1978 Privalov proved the same assertion for the class
of Jacobi matrices.

After these results concerning special classes of matrices, in 1980 Erdős
and Vértesi proved the striking result that a similar assertion holds for every
matrix X satisfying (5): there is always a continuous function F such that (6)
holds for almost every x0. The proof is intricate and ingenious.

To conclude our brief list of results on approximation theory, let us return
to an early major result of Erdős. It has been known since Newton that
interpolation polynomials can be used to approximate definite integrals of
functions. Indeed, as proved by Stieltjes, if the nth row of X consists of the
roots of the nth Legendre polynomial then

lim
n→∞

∫ 1

−1

ln(F,X, x) dx =

∫ 1

−1

F (x) dx

for every Riemann integrable function F.
Later this result was extended to other matrices X formed by the zeros of

polynomials that were orthogonal in [−1, 1] with respect to a weight function
of the form (l− x)α(1 + x)β for some α and β. However, this was not known
for any general class of weight functions; furthermore, the result of Stieltjes
could not even be sharpened to

lim
n→∞

∫ 1

−1

|Ln(F,X, x) − F (x)| dx = 1.

In 1937, Erdős and Turán solved both problems. Let p(x) ≥ M > 0 be
Riemann integrable over [−1, 1], and let ω0(x), ω1(x), . . . be orthogonal
polynomials in [−1, 1] with respect to p(x), with ωn(x) being a monic
polynomial of degree n. Let An, Bn be constants with Bn ≤ 0 such that

Rn(x) = ωn(x) +Anωn−1(x) +Bnωn−2(x)
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has n different roots in [−1, 1], and let X be the set of nodes formed by the
roots of the polynomials R1, R2, . . .. Erdős and Turán proved that in this case
every Riemann integrable function F (x) on [−1, 1] satisfies

lim
n→∞

∫ 1

−1

|Ln(F,X, x) − F (x)| dx = 0.

Much of Erdős’s work in real analysis concerns so-called Tauberian
theorems. The origin of these results is a theorem of Tauber stating that
if

∑
anx

n → s as x → 1−, and nan → 0 as n → ∞, then
∑
an is

convergent (to sum s). Hence if nan → 0 and
∑
an is Cesàro summable then∑

an is convergent. Soon after the turn of the century, Landau, Hardy and
Littlewood founded a flourishing branch of analysis by making extensive use
of deep results resembling this theorem of Tauber. These Tauberian theorems
claim that if a series is summable with a certain method of summation and
satisfies certain additional conditions then it is also summable with a weaker
method of summation. For example, Hardy and Littlewood proved in 1911
that if

∑
an is Borel summable (i.e. limx→∞ e−x

∑
snx

n/n! exists, where
sn = a1 + . . . + an) and

√
nan → 0 then

∑
an is convergent. The second

part of the elementary proof of the PNT was, essentially, such a Tauberian
theorem.

Shortly after the elementary proofs of the Prime Number Theorem
were found, Erdős proved that the PNT can be deduced from Selberg’s
fundamental formula alone, without any reference to other properties of the
sequence of primes. What Erdős needed was the following Tauberian theorem:
if an ≥ 0 and

∑n
k=1 ak(Sn−k + k) = n2 +O(n) then sn = n+O(1). Here, as

before, sn = a1 + · · · + an.
Hardy and Littlewood also considered lacunary series and proved, among

others, that under certain lacunarity conditions Abel-summability implies
summability. In 1943, Meyer-König proved a similar lacunarity theorem for
Euler summability: if

∑
an is Euler summable (i.e. limn→∞ 2−n

∑n
k=0

(
n
k

)
sk

exists) and an = 0 except if n = ni, where n1 < n2 < · · · satisfies ni+1/ni ≥
c > 1, then

∑
an is convergent. Meyer-König went on to conjecture the much

stronger assertion that instead of ni+1/ni ≥ c > 1 it suffices to demand that
ni+1 − ni > A

√
ni for some A > 0. In 1952 Erdős came very close to proving

this conjecture: he showed that the assertion is true if A > 0 is sufficiently
large.

Another Tauberian theorem of Erdős, proved with Feller and Pollard in
1949, is important in the theory of Markov chains. Let p0, p1, . . . be non-
negative, with

∑
pk = 1 and μ =

∑
kpk, and suppose that P (z) =

∑∞
0 pkz

k

is not a power series in zt for any integer t > 1. Then |P (z)| < 1 for |z| < 1;
in particular, (1 − P (z))−l is analytic in |z| < 1, say

1

1 − P (z)
=

∞∑

k=0

ukz
k.
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The Erdős-Feller-Pollard Theorem states that limk→∞ uk = 1/μ if μ < ∞ and
uk → ∞ if μ = ∞. The theorem has important consequences in probability
theory, and in 1951 de Bruijn and Erdős also used it to study recursion
formulae.

In a beautiful paper written with Niven in 1948, Erdős extended a result
relating the zeros of a complex polynomial to the zeros of its derivative.
Among other results, Erdős and Niven proved that if r1, r2, . . . , rn are the
zeros of a complex polynomial, and R1, R2, . . . , Rn−1 are the zeros of its
derivative then

1

n

n∑

j=1

|z − rj | ≥ 1

n− 1

n−1∑

j=1

|z −Rj |

for every z ∈ C, with equality if, and only if, all the, zeros rj are on a half-line
emanating from z.

In a difficult paper written with Szegő in 1942, Erdős tackled a problem
concerning real polynomials. Extending Markov’s classical theorem that if a
polynomial f of degree n satisfies |f(x)| ≤ 1 for −1 ≤ x ≤ 1, then |f ′(x)| ≤ n2

for −1 ≤ x ≤ 1, Schur proved in 1919 that if f is a polynomial of degree n
with |f(x)| ≤ 1 for −1 ≤ x ≤ 1, then |f ′(x0) ≤ 1

2n
2, provided −1 ≤ x0 ≤ 1

and f ′′(x0) = 0. Writing mn for the smallest constant that would do in the
inequality above instead of 1

2 , Erdős and Szegő proved that for n > 3 the
extremum mnn

2 is attained for x0 = 1 (or −1) and the so-called Zolotarev
polynomials. This enabled Erdős and Szegő to determine limn→∞mn as well
(which turned out to be 0.3124 . . . ).

Whatever branch of mathematics Erdős works in, in spirit and attitude
he is a combinatorialist : his strength is the hands-on approach, making use
of ingenious elementary methods. Therefore it is not surprising that Erdős
helped to shape twentieth-century combinatorics as no-one else: with his
results, problems, and influence on people, much of combinatorics in this
century owes its existence to Erdős.

One of the fundamental results in combinatorics is a theorem (to be
precise, a pair of theorems) proved by F.P. Ramsey in 1930. Erdős was the first
to realize the tremendous importance of this “super pigeon-hole principle”,
and did much to turn Ramsey’s finite theorem into Ramsey theory, a rich
branch of combinatorics, as witnessed by the excellent monograph of Graham,
Rothschild and Spencer. In a seminal paper written in 1935, Erdős and his
co-author, George Szekeres, tackled the following beautiful problem of Esther
Klein: can we find, for a given n, a number N(n) such that from any set of N
points in the plane it is possible to select n points forming a convex polygon?
Erdős and Szekeres showed that the existence of N(n) is an easy consequence
of Ramsey’s theorem for finite sets. In fact, they discovered Ramsey’s theorem
for themselves, and were told only later that they had been beaten to it by
Ramsey. It is remarkable that Ramsey, working in Cambridge, and Erdős and
Szekeres, working in Budapest, arrived at the same result independently and
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in totally different ways, but within a few years of each other. As it happened,
the proof given by Erdős and Szekeres is much simpler than the original, and
it also gives much better upper bounds for the various Ramsey numbers. In
particular, they proved that if k, l ≥ 2 then

R(k, l) ≤
(
k + l − 2

k − l

)
,

where the Ramsey number R(k, l) is the smallest value of n for which every
graph of order n contains either a complete graph of order k or l independent
vertices.

In view of the simplicity of the proof of the Erdős-Szekeres bound, it is
amazing that over 50 years had to pass before the bound above was improved
appreciably. In 1986 Rödl showed that there is a positive constant c > 0 such
that

R(k, l) ≤
(
k + l − 2

k − 1

)
/ logc(k + l),

and, simultaneously and independently, Thomason replaced the power of the
logarithm by a power of k + l. To be precise, Thomason proved that

R(k, l) ≤ k−1/2+A
√
log k

(
k + l − 2

k − l

)

for some absolute constant A > 0 and all k, l with k ≥ l ≥ 2.
Concerning the lower bounds for R(k, l), especially R(k, k), the situation

seems to be even more peculiar. It is not even obvious that R(k, k) is not
bounded from above by a polynomial of k. Indeed, it was again Erdős,

who gave, in 1947, the following lower bound: if
(
n
k

)
2−(k2)+1 < 1 then

R(k, k) > n. Erdős’s proof is remarkable for its simplicity and its influence
on combinatorics. Although there are very few mathematicians who do not
know this proof, we present it here, since it is delightful and brief. Consider

the set of all 2(n
2) graphs on {1, 2, . . . , n}. What is the average number of

complete subgraphs of order k? Since each of the
(
n
k

)
possible complete

subgraphs of order k is contained in 2(n
2)−(k

2) of our graphs, the average is(
n
k

)
2−(k

2) < 1/2. Similarly, the average number of complete subgraphs of order

k in the complements of our graphs is also
(
n
k

)
2−(k

2) < 1/2. Consequently,
there is some graph G on {1, 2, . . . , n} such that neither G nor its complement
Ḡ contains a complete graph of order k. Hence R(k, k) > n, as claimed.

It took over three decades to improve this wonderfully simple lower bound:
in 1977 Spencer showed that an immediate consequence of the Erdős-Lovász
Local Lemma is that

R(k, k) ≥ k2k/2

(√
2

e
+ o(1)

)

,
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which is only about a factor 2 improvement. Needless to say, the combina-
torialists are eagerly awaiting a breakthrough that more or less eliminates
the gap between the upper and lower bounds for R(k, k), but judging by the
speed of improvements on the original bounds of Erdős, we are in for a long
wait.

Erdős did not fail to notice that the other theorem of Ramsey from
1930, concerning infinite sets, also had a tremendous potential. In the 1950s
and 1960s, mostly with his two great collaborators, Rado and Hajnal, Erdős
revolutionized combinatorial set theory.

Ramsey’s theorem concerning infinite sets, in its simplest form, states
that if G is an infinite graph then either G or its complement Ḡ contains an
infinite complete graph. While this is very elegant, in order to express more
complicated results succinctly, it is convenient to rely on the Erdős-Rado
arrow notation. Given cardinals r, a and bγ , γ ∈ Γ, where Γ is an indexing
set, the partition relation

a → (bγ)rγ∈Γ

is said to hold if, given any partition
⋃

γ∈Γ Iγ , of the set A(r) of all subsets of
cardinality r of a set A with |A| = a, there is a γ ∈ Γ and a subset Bγ of A
with |Bγ | = bγ such that Br

γ ⊂ Iγ . The same notation is used to express the
analogous assertion when some or all the symbols r, a and bγ denote order
types rather than cardinalities. If Γ is a small set then one tends to write out
all the bγs.

Thus, in this notation, the infinite Ramsey theorem is that

ℵ0 → (ℵ0,ℵ0)r

for every integer r, with r = 2 being the case of graphs.
In 1933, Sierpiński proved that there is a graph of cardinality 2ℵ0 which

has neither an uncountable complete graph nor an uncountable independent
set:

2ℵ0 �→ (ℵ1,ℵ1)2,

so the “natural” extension of Ramsey’s theorem is false. Sierpiński’s result
says that one can partition the pairs of real numbers in such a way that every
uncountable subset of R contains a pair from both classes. This partition
somewhat resembles a Bernstein subset of R.

If we are happy with one of the classes being merely countably infinite
then Ramsey’s theorem extends to all cardinals. This was proved in 1941 by
Dushnik and Miller for regular cardinals, and extended by Erdős to singular
cardinals. Thus,

κ → (κ,ℵ0)2.

In the language of graphs, this means that if a graph on κ vertices does
not contain a complete subgraph on κ vertices then it contains an infinite
independent set.
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The Erdős-Rado collaboration on partition problems started in 1949.
One of their first results is an attractive assertion concerning Q, the set of
rationals. If G is a graph on Q then either G or its complement Ḡ contains a
complete graph whose vertex set is dense in an interval. Years later this was
considerably extended by Galvin and Laver.

After a good many somewhat ad hoc results, in 1956 Erdős and Rado
gave the first systematic treatment of “arrow relations” for cardinals; in
their fundamental paper, “A partition calculus in set theory”, they set out to
establish a ‘calculus’ of partitions. Among many other results, they proved
that if λ ≥ 2 and ρ ≥ ℵ0 are cardinals then

(λρ)+ → ((λρ)+, (ρ+)ρ)2,

but

λρ � ((λ · ρ)+, ρ+)2.

In the special case λ = 2 and ρ = ℵ0, the last relation is precisely Sierpiński’s
theorem.

In proving their positive results, Erdős and Rado used so called “tree
arguments”, arguments resembling the usual proof of Ramsey’s infinite
theorem, but relying on sequences of transfinite length. Another important
ingredient is a stepping-up lemma, enabling one to deduce arrow relations
about larger cardinals from similar relations about smaller ones. Thus the
trivial relation ℵ1 → (ℵ1)1ℵ0

implies that

(2ℵ0)+ → (ℵ1)2ℵ0
.

In 1965, in a monumental paper “Partition relations for cardinal numbers”,
running to over 100 pages, Erdős, Hajnal and Rado presented an almost
complete theory of the partition relation above for cardinals, assuming the
generalized continuum hypothesis. For years after its publication, its authors
lovingly referred to their paper as GTP, the Giant Triple Paper.

In fact, Erdős had taken an interest in extensions of Ramsey’s theorem
for infinite sets well before the Dushnik-Miller result appeared. In 1934, in
a letter to Rado, he asked whether if we split the countable subsets of a set
A of cardinality a into two classes then there is an infinite subset B of A,
all of whose countable subsets are in the same class. In the arrow notation,
does a → (ℵ0,ℵ0)ℵ0 hold for some cardinal a? Almost by return mail, Rado
sent Erdős his counterexample (which is, by now, well known), constructed
with the aid of the axiom of choice. Later this question led to the study of
partitions restricted in some way, including the study of Borel and analytic
partitions, and to many beautiful results of Galvin, Mathias, Prikry, Silver,
and others.

The first results concerning partition relations for ordinals were also
obtained in 1954. In November 1954, on his way to Israel, Erdős passed
through Zürich. He told his good friend Specker that he was offering $20 for
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a proof or disproof of the conjecture of his with Rado that ω2 → (ω2, n)2.
Within a few days, Specker sent Erdős a proof which is, by now, well
known. Erdős had high hopes of building on Specker’s proof to deduce that
ωn → (ωn, 3)2 for every integer n ≥ 3, but could prove only ω2n → (ωn+1, 4)2.
A little later Specker produced an example showing that

ωn �→ (ωn, 3)2

for every integer n > 3.
Neither Specker’s proof, nor his (counter)example worked for

ωω → (ωω, 3)2.

Erdős rated this problem so highly that eventually, in the late 1960s, he
offered $250 for a proof or counterexample. The prize was won by Chang in
1969 with a very complicated proof, which was later simplified by Milner and
Jean Larson.

The remaining problems are far from being easy, and Erdős is now offering
$1,000 for a complete characterization of the values of α and n for which

ωωα → (ωωα

, n)2

holds.
The theory of partition relations for ordinals took off after Cohen

introduced forcing methods and Jensen created his theory of the constructible
universe. Not surprisingly, in many questions “independence reared its ugly
head”, as Erdős likes to say. In addition to Erdős, Hajnal and Rado, a
host of excellent people working on combinatorial set theory contributed
to the growth of the field, including Baumgartner, Galvin, Larson, Laver,
Máté, Milner, Prikry and Shelah. An account of most results up to the
early 1980s can be found in the excellent monograph “Combinatorial Set
Theory: Partition Relations for Cardinals” by Erdős, Hajnal, Máté and Rado,
published in 1984.

In 1940 Turán proved a beautiful result concerning graphs, vaguely related
to Ramsey’s theorem. For 3 ≤ r ≤ n, every graph of order n that has more
edges than an (r − 1)-partite graph of order n contains a complete graph
of order r. It was once again Erdős who, with Turán, Gallai and others,
showed that Turán’s theorem is just the starting point of a large and lively
branch of combinatorics, extremal graph theory. In order to formulate the
quintessential problem of extremal graph theory, let us recall some notation.
As usual, we write |G| for the order (i.e. number of vertices) and e(G) for
the size (i.e. number of edges) of a graph G. Given graphs G and H , the
expression H ⊂ G means that H is a subgraph of G. Let F be a fixed graph,
usually called the forbidden graph. Set

ex(n;F ) = max{e(G) : |G| = n and F �⊂ G}.
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and

EX(n;F ) = {G : |G| = n, e(G) = ex(n;F ), and F �⊂ G}.
We call ex (n;F ) the extremal function, and EX (n;F ) the set of extremal
graphs for the forbidden graph F . Then the basic problem of extremal graph
theory is to determine, or at least estimate, ex(n;F ) for a given graph
F and, at best, to determine EX(n;F ). From here it is but a short step
to the problem of excluding several forbidden graphs, i.e. to the functions
ex(n;Fl, . . . , Fk) and EX(n, F1, . . . , Fk) for a finite family F1, . . . , Fk of
forbidden graphs.

Writing Kr for the complete graph of order r, and Tk(n) for the unique
k-partite graph of order n and maximal size (so that Tk(n) is the k-partite
Turán graph of order n), Turán proved, in fact, that EX(n;Kr) = {Tr−1(n)},
i.e. Tr−l(n) is the unique extremal graph, and so ex(n;KΓ) = tr−1(n), where
tr−1(n) = e(Tr1(n)) is the size of Tr−1(n).

As it happens, Erdős came very close to founding extremal graph theory
before Turán proved his theorem: in 1938, in connection with sequences of
integers no one of which divided the product of two others, proved that for
a quadrilateral C4 we have ex(n;C4) = O(n3/2). However, at the time Erdős
failed to see the significance of problems of this type: one of the very few
occasions when Erdős was “blind”.

Before we mention some of the important results of Erdős in extremal
graph theory, let us remark that in 1970 (!) Erdős proved the following
beautiful extension of Turán’s theorem (so the rest of the world had been
blind). Let G be a graph without a Kr, with degree sequence (di)

n
1 . Then

there is an (r− 1)-partite graph G∗ (which, a fortiori, contains no Kr either)
with degree sequence (d∗i )n1 , such that di ≤ d∗i for every i. In this theorem,
the achievement is in the audacity of stating the result: once it is stated, the
proof follows easily.

Erdős conjectured another extension of Turán’s theorem which was
proved in 1981 by Bollobás and Thomason. The conjecture was sharpened
by Bondy. Let |G| = n and e(G) > tr−1(n). Then every vertex x of maximal
degree d in G is such that the neighbours span a subgraph with more than
tr−2(d) edges. In this instance it is also true that once the full assertion has
been made, the proof is just about trivial; in fact, it is simply a minor variant
of the proof of the previous theorem of Erdős.

It is fitting that the fundamental theorem of extremal graph theory is a
result of Erdős, and his collaborator, Stone. Note that, by Turán’s theorem,
the maximal size of a Kr-free graph of order n is about r−2

r−1

(
n
2

)
, in fact,

trivially,

r − 2

r − 1

(
n

2

)
≤ tr(n) ≤ r − 2

r − 1

n2

2
.

Writing, as usual, Kr(t) for the complete r-partite graph with t vertices in
each class, Erdős and Stone proved in 1946 that if r ≥ 2, t ≥ 1 and ε > 0 are
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fixed and n is sufficiently large then every graph of order n and size at least(
r−2
r−1 + ε

)
(
n
2

)
contains a Kr(t). In other words, even εn2 more edges than

can be found in a Turán graph guarantee not only a Kr but a “thick” Kr,
one in which every vertex has been replaced by a group of t vertices.

Prophetically, Erdős and Stone entitled their paper “On the structure
of linear graphs”; this is indeed the significance of the paper: it not only
gives us much information about the size of extremal graphs, but it is also
the starting point for the study of the structure of extremal graphs. If F
is a non-empty r-chromatic graph, i.e. χ(F ) = r ≥ 2, then, precisely by
the definition of the chromatic number, F is not a subgraph of Tr−l(n), so
ex(n;F ) ≥ tr−l(n) ≥ r−2

r−1

(
n
2

)
. On the other hand, F ⊂ Kr(t) if t is large

enough (say, t ≥ |F |), so if ε > 0 and n is large enough then

ex(n, F ) <

(
r − 2

r − 1
+ ε

)(
n

2

)
.

In particular, if χ(F ) = r ≥ 2 then

lim
n→∞ ex(n, F )/

(
n

2

)
=
r − 2

r − 1
,

that is the asymptotic density of the extremal graphs with forbidden subgraph
F (r − 2)/(r − 1). Needless to say, the same argument can be applied to the
problem of forbidding any finite family of graphs: given graphs F1, F2, . . . , Fk,
with min χ(Fi) = r ≥ 2, we have

lim
n→∞ ex(n, F1, . . . , Fk)/

(
n

2

)
=
r − 2

r − 1
.

Starting in 1966, in a series of important papers Erdős and Simonovits went
considerably further than noticing this instant consequence of the Erdős-
Stone theorem. Among other results, Erdős and Simonovits proved that if
G ∈ EX(n;F ), with χ(F ) = r ≥ 2, then G can be obtained from Tr−1(n) by
the addition and deletion of o(n2) edges. Later this was refined to several
results concerning the structure of extremal graphs. Here is an example,
showing how very close to a Turán graph an extremal graph has to be.
Let F1, . . . , Fk be fixed graphs, with r = minχ(Fi), and suppose that F1 has
an r-colouring in which one of the colour classes contains t vertices. Let
Gn ∈ EX(n;F1, . . . , Fk). Then, as n → ∞,

(i) The minimal degree of Gn is ((r − 2)/(r − 1) + o(1))n,
(ii) The vertices of Gn can be partitioned into r − 1 classes such that each

vertex is joined to at most as many vertices in its own class as in any
other class,

(iii) For every ε > 0 there are at most cε = c(ε;F1, . . . , Fk) vertices joined to
at least εn vertices in their own class,

(iv) There are 0(n2−1/t) edges joining vertices in the same class,
(v) Each class has n/(r − 1) +O(n1−1/2t) vertices.
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Returning to the Erdős-Stone theorem itself, let us remark that Erdős
and Stone also gave a bound for the speed of growth of t for which Kr(t)
is guaranteed to be a subgraph of every graph with n vertices and at least
((r − 2)/(r − 1) + ε)

(
n
2

)
edges.

Let us write t(n, r, ε) for the maximal value of t that will do. Erdős and
Stone proved that t(n, r, ε) ≥ (logr−1(n))1−δ for fixed r ≥ 2, ε > 0 and
δ > 0, and large enough n, where logk(n) is the k times iterated logarithm
of n. They also thought it plausible though unproved that logr−1(n) would
be about the “best” value.

This assertion was conjectured in several subsequent papers by Erdős, so
it was rather surprising when, in 1973, Erdős and Bollobás proved that, for
fixed r ≥ 2 and 0 < ε < I/(r − 1) the correct order of t(n, r, ε) is, in fact,
logn.

A little later, in 1976, Erdős, Bollobás and Simonovits sharpened this
result, and the dependence of the implicit constant on r and ε was finally
settled by Chvátal and Szemerédi, who proved that there are positive absolute
constants c1 and c2 such that

c1
logn

log(1/ε)
≤ t(n, r, ε) ≤ c2

logn

log(1/ε)

whenever r ≥ 2 and 0 < ε < 1/(r − 1).
For a bipartite graph F , the general Erdős-Stone theorem is not sensitive

enough to provide non-trivial information about ex(n;F ), since all it tells us
is that ex(n;F ) = o(n2). It was, once again, Erdős, who proved several of
the fundamental results about ex(n;F ) when F is bipartite. In particular, he
proved with Gallai in 1959 that for a path Pl of length l we have

ex(n; pl) ≤ l − 1

2
n.

By taking vertex-disjoint unions of complete graphs of order l, we see that
this inequality is, in fact, an equality whenever l|n. The determination of
ex(n;Pl) was completed by Faudree and Schelp in 1973.

Another ground-breaking result of Erdős concerns supersaturated graphs,
i.e. graphs with slightly more edges than the extremal graph. An unpublished
result of Rademacher from 1941 claims that a graph of order n with more
than n2/4� = t2(n) edges contains not only one triangle but at least n/2�
triangles. In 1962 Erdős extended this result considerably; he showed that for
some constant c > 0 every graph with n vertices and n2/4� + k edges has
at least kn/2� triangles, provided 0 ≤ k ≤ cn. Later, this led to a spate of
related results by Erdős himself, Moon and Moser, Lovász and Simonovits,
Bollobás and others.

Erdős, the problem-poser par excellence, could not fail to notice how
much potential there is in combining Ramsey-type problems with Turán-type
problems.
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The extremal graph for Kr, namely the Turán graph Tr−1(n), is stable in
the sense that if a Kr-free graph G on n vertices has almost as many edges
as Tr−1(n), then G is rather similar to Tr−1(n); in particular, it has a large
independent set. Putting it another way, if G is Kr-free and does not have a
large independent set then e(G) is much smaller than tr−l(n).

This observation led Erdős and Sós to the prototype of Ramsey-Turán
problems. Given a graph H and a natural number l, let f(n;H, l) be the
smallest integer m for which every graph of order n and size more than m
either contains H as a subgraph, or has at least l independent vertices.

Erdős and Sós were especially interested in the case H = Kr and l = o(n),
and so in the function

l(r) = lim
ε→0

lim
n→∞ f(n;Kr, εn�)/

(
n

2

)
.

It is easily seen that l(3) = 0, and in 1969 Erdős and Sós proved that l(r) =
(r − 3)/(r − 1) whenever r ≥ 3 is odd.

The stumbling block in determining l(r) for even values of r was the
case r = 4. Szemerédi proved in 1972 that f(4) ≤ 1/4, but it seemed likely
that f(4) is, in fact, 0. Thus it was somewhat of a surprise when in 1976
Erdős and Bollobás constructed a graph on a k-dimensional sphere that shows
f(4) = 1/4. In fact, this graph is rather useful in a number of other questions
as well; it would be desirable to construct an infinite family of graphs in this
vein.

Erdős, Hajnal, Sós and Szemerédi completed the determination of l(r) in
1983 when they showed that l(r) = (3r − 10)/(3r − 4) whenever r ≥ 4 is
even. Note that the condition that our graph does not have more than o(n)
independent vertices, does force the graph to have considerably fewer edges:
Turán’s theorem tells us that without the condition on the independence
number the limit would be (r − 2)/(r − 1).

Erdős was still a young undergraduate, when he became interested in
extremal problems concerning set systems. It all started with his fascination
with Sperner’s theorem on the maximal number of subsets of a finite set with
no subset contained in another. Sperner proved in 1928 that if the ground
set has n elements then the maximum is attained by the system of all n/2�-
subsets. Erdős was quick to appreciate the beauty and importance of this
result, and throughout his career frequently returned to problems in this
vein.

In 1939, Littlewood and Offord gave estimates of the number of real
roots of a random polynomial of degree n for various probability spaces of
polynomials. In the course of their work, they proved that for some constant
c > 0, if zl, z2, . . . , zn are complex numbers with |zi| ≥ 1 for each i, then of
the 2n sums of the form ±z1 ± z2 ± . . .± zn no more than

cr2n(logn)n−1/2 (7)

fall into a circle of radius r.
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On seeing the result, Erdős noticed immediately the connection with
Sperner’s theorem, especially in the real case. In fact, Sperner’s theorem
implies the following best possible assertion. If x1, . . . , xn are real numbers of
modulus at least 1, then no more than

(
n

n/2

)
of the sums ±x1 ± x2 ± . . .± xn

fall in an open interval of length 2. From here it was but a short step to show
that the maximal number of sums that can fall in an open interval of length
2r is precisely the sum of the r largest binomial coefficients

(
n
k

)
.

Concerning the complex case, Erdős improved the Littlewood-Offord
bound (7), to an essentially best possible bound, by removing the factor
logn. More importantly, Erdős conjectured that the Sperner-type bound
holds not only for real numbers, as he noticed, by for vectors of norm at
least 1 in a Hilbert space. This beautiful conjecture was proved 20 years
later by Kleitman and, independently, by Katona. In 1970, Kleitman gave a
strikingly elegant proof of the even stronger assertion that if x1, x2, . . . , xn
are vectors of norm at least 1 in a normal space, then there are at most

(
n

n/2

)

sums of the form ±x1 ± x2 ± . . . ± xn such that any two of them are at a
distance less than 2.

With Offord, in 1956 Erdős tackled the original Littlewood-Offord
problem concerning random polynomials. They concentrated on the class
of 2n polynomials of the form fn(x) = ±xn ± xn−1 ± . . . ± 1. Refining the
result of Littlewood and Offord, they proved that, with the exception of
o((log logn)−1/3)2n polynomials, the equations fn(x) = 0 have

2

π
logn+ o

(
(log n)2/3 log logn

)

real roots.
Let us turn to some results concerning hypergraphs, the objects most

frequently studied in the extremal theory of set systems. For a positive integer
r, an r-uniform hypergraph, also called an r-graph or r-uniform set system,
is a pair (X,A), where X is a set and A is a subset of X(r), the set of all
r-subsets of X . The vertex set of this hypergraph is X , and A is the set of
(hyper) edges. The vertex set is frequently taken to be [n] = {1, . . . , n}, and
our hypergraph is often referred to as a “collection of r-subsets of [n]”. For
r = 2 an r-graph is just a graph. Although r-graphs seem to be innocuous
generalizations of graphs, they are much more mysterious than graphs.

The most influential paper of Erdős on hypergraphs, “Intersection
theorems for systems of finite sets”, written jointly with Chao Ko and Richard
Rado, has a rather curious history. The research that the paper reports on
was done in 1938 in England. However, at the time there was rather little
interest in pure combinatorics, and the authors went their different ways:
Erdős went to Princeton, Chao Ko returned to China, and Rado stayed in
England. As a result of this, the paper was published only in 1961.

In its simplest form, the celebrated Erdős-Ko-Rado theorem states the
following. Let A ⊂ [n](r), that is let A be a collection of r-subsets of the set
[n] = {1, 2, . . . , n}. If n ≥ 2r and A is intersecting, that is if A ∩ B �= ∅
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whenever A,B ∈ A, then |A| ≤ (
n−1
r−1

)
. Taking A = {A ∈ [n](r) : 1 ∈ A}, we

see that the bound is best possible. This result has been the starting point
of much research in combinatorics. By now there are a good many proofs of
it, including a particularly ingenious and elegant proof found by Katona in
1972.

The more general Erdős-Ko-Rado theorem states that if 1 ≤ t ≤ r, A ⊂
[n](r) and A is t-intersecting, that is if |A ∩B| ≥ t whenever A,B ∈ A, then
|A| ≤ (

n−t
r−t

)
, provided n is large enough, depending on r and t.

In the original paper it was proved that n ≥ t+ (r− t)
(
r
t

)3
will do. Once

again, the bound on |A| is best possible, as shown by a collection of r-subsets
containing a fixed t-set. But the bound on n given by Erdős, Ko and Rado
is far from being best possible. For i = 0, 1, . . . , r − t, let

Ai = {A ∈ [n](r) : |A ∩ [t+ 2i]| ≥ t+ i}.
It is clear that each Ai is a t-intersecting system, and it so happens that
|A1| > |A0| if n < (t + 1)(r − t + 1). Thus the best we can hope for is that
the Erdős-Ko-Rado bound

(
n−t
r−t

)
holds whenever n ≥ (t+ 1)(r − t+ 1).

It took many years to prove that this is indeed the case. In 1976 Frankl
came very close to proving it: he showed it for all t except the first few values,
namely for all t ≥ 15. Finally, by ingenious arguments involving vector spaces,
Richard Wilson gave a complete (and self-contained) proof of it in 1984.

The Erdős-Ko-Rado theorem inspired so much research that in 1983 Deza
and Frankl considered it appropriate to write a paper entitled “The Erdős-
Ko-Rado theorem – 22 years later”.

The first Erdős-Rado paper that appeared in print, in 1950, contained
their canonical Ramsey theorem for r-graphs, to be precise, for N

(r), the
collection of r-subsets of N. This is yet another Erdős paper which had much
influence on the development of Ramsey theory, especially through the work
of Graham, Leeb, Rothschild, Spencer, Nešetřil, Rödl, Deuber, Voigt and
Prömel. To formulate this result, let X ⊂ N or, for that matter, let X be any
ordered set, and let r be an integer. A partition of X(r) into some classes
(finitely or infinitely many) is said to be canonical if there is a set I ⊂ [r]
such that two r-sets A = (a1, . . . , ar), B = (b1, . . . , br) ∈ X(r) belong to the
same class if, and only if, ai = bi for every i ∈ I. Here we assumed that
a1 < . . . < ar and b1 < . . . < br. Thus in a canonical partition, A and B
belong to the same class if, and only, for each i ∈ I, the ith element of A is
identical with the ith element of B.

Note that if all we care about is whether two r-sets belong to the same
class or not, then for every ordered set X with more than r elements, X(r)

has precisely 2r distinct canonical partitions, one for each subset I of [r]. If
X is infinite then there is only one canonical partition with finitely many
classes: this is the canonical partition belonging to I = ∅, in which all r-sets
belong to the same class.
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The Erdős-Rado canonical Ramsey theorem claims that if we partition
N

(r) into any number of classes then there is always an infinite sequence
of integers x1 < x2 < . . . on which the partition is canonical. If N

(r) is
partitioned into only finitely many classes then, as it was just remarked, on
X = {x1, x2, . . .} the canonical distribution belongs to I = ∅, that is all r-sets
of X belong to the same class. Thus Ramsey’s theorem for infinite sets is an
instant consequence of the Erdős-Rado result.

The canonical Ramsey theorem has attracted much attention: it has been
extended to other settings many times over, notably by Erdős, Rado, Galvin,
Taylor, Deuber, Graham, Voigt, Nešetřil and Rödl.

In 1952 Erdős and Rado gave a rather good upper bound for the Ramsey
number R(r)(n, . . . , n)k = R(r)(n; k) concerning (r)-graphs: R(r)(n; k) is the
minimal integer m such that if [m](r) is partitioned into k classes then there
is always a subset N ∈ [m](n) all of whose r-sets are in the same class.
Putting it slightly differently, R(r)(n; k) is the minimal integer m such that
every k-colouring of the edges of a complete r-graph of order m contains a
monochromatic complete r-graph of order n. Writing exps k for the s times

iterated exponential so that exp1 k = k, exp2 k = kk, and exp3 k = kk
k

, Erdős
and Rado proved that

R(r)(n; k)1/n < expr−1 k.

Although this seems a rather generous bound, in their GTP, Erdős, Hajnal
and Rado proved that for r ≥ 3 we have

R(r)(n; k)1/n > expr−2 k.

Erdős believes that the right order is given by the upper bound.
An important question concerning hypergraphs is to what extent the

Erdős-Stone theorem can be carried over to them. The density d(G) of an
r-graph G = (X,A) of order n is

d(G) = |A|/
(
n

r

)
,

so that 0 ≤ d(G) ≤ 1 for every hypergraph. Call 0 ≤ α ≤ 1 a jump-value for
r-graphs if there is a β = βr(α) > α such that for every α′ > α and positive
integer m there is an integer n such that every r-graph of order at least n
and density at least α′ contains a subgraph of order at least m and density at
least β. An immediate consequence of the Erdős-Stone theorem is that every
α in the range 0 ≤ α < 1 is a jump-value.

In 1965 Erdős proved that, for every r ≥ 1, 0 is a jump-value for r-graphs
and, in fact, βr(0) = r!/rr will do. This is because if α′ > 0, m ≥ 1 and n is
sufficiently large then every r-graph of order at least n and density at least

α′ contains a K
(r)
r (m), a complete r-partite r-graph with m vertices in each

class. Clearly,
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d(K(r)
r (m)) = mr/

(
rm

r

)
∼ r!

rr
.

This seems to indicate that every α, 0 ≤ α < 1, is a jump-value for r-graphs
for every r ≥ 3 as well. Nevertheless, for years no progress was made with the
problem so that, eventually, Erdős was tempted to offer $1,000 for a proof
or disproof of this assertion. In 1984, Frankl and Rödl won the coveted prize
when they showed that 1 − l−(r−1) is not a jump-value for r-graphs if r ≥ 3
and l > 2r. In spite of this beautiful result, we are very far from a complete
characterization of jump-values.

The important topic of Δ-systems was also initiated by Erdős. A family
of sets {Aγ}γ∈Γ is called a Δ-system if any two sets have precisely the same
intersection, that is if the intersection of any two of them is

⋂
γ∈ΓAγ . Given

cardinals n and p, let f(n; p) be the maximal cardinal m for which every
collection of m sets, each of size (at most) n, contains a Δ-system of size p.
In 1960, Erdős and Rado determined f(n; p) for infinite cardinals but found
that surprising difficulties arise when n and p are finite. Even the case p = 3
seems very difficult, so that they could not resolve their conjecture that

f(n; 3) ≤ cn (8)

for some constant c.
As Erdős and Rado pointed out, it is rather trivial that f(n; 3) > 2n.

Indeed, let A be the collection of n-subsets of a 2n-set {x1, . . . , xn, y1, . . . , yn}
containing precisely one of xi and yi for each i. Then |A| = 2n and A does
not contain a Δ-system on three sets.

Abbott and Hanson have improved this bound to f(n; 3) > 10n/2, but
due to the very slow progress with the upper bound, for years now Erdős
has offered $1,000 for a proof or disproof of (8). Recently, Kostochka has
made some progress with the problem when he proved that f(n; 3) <

n!
(

c log log n
log log logn

)−n

.

Let us turn to a flourishing area of mathematics that was practically
created by Erdős. This is the theory of random graphs, started by Erdős and
then, a little later, founded by Erdős and Rényi,

Throughout his career, Erdős had a keen eye for problems likely to yield
to either combinatorial or probabilistic attacks. Thus it is not surprising that
he had such a tremendous success in combining combinatorics and probability.

At first, Erdős used random methods to tackle problems in main-
stream graph theory. We have already mentioned the delightful probabilistic
argument Erdős used in 1947 to give a lower bound for the Ramsey number
R(k, k). A little later, in 1959, a more difficult result was proved by Erdős
by random methods: for every k ≥ 3 and g ≥ 3 there is a graph of
chromatic number k and girth g. Earlier results in this vein had been proved
by Tutte, Zykov, Kelly and Mycielski, but before this beautiful result of
Erdős, it had not even been known that such graphs exist for any k ≥ 6.
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Later ingenious constructions were given by Lovász, Nešetřil and Rödl, but
these constructions lead to considerably larger graphs than obtained by
Erdős.

In a companion paper, published in 1961, Erdős turned to lower bounds
for the Ramsey numbers R(3, l), and proved by similar probabilistic argu-
ments that R(3, l) > c0l

2/(log l)2 for some positive constant c0. In 1968,
Graver and Yackel gave a good upper bound for R(3, l), which was improved,
in 1972, by Yackel. As expected, further improvements were harder to come
by. In 1980, Ajtai, Komlós and Szemerédi proved that R(3, l) < c1l

2/ log l; the
difficult proof was simplified a little later by Shearer. Very recently, J.B. Kim
improved greatly the lower bound due to Erdős, and so now we know that
the order of R(3, l) is l2/ log l.

Almost simultaneously with his beautiful applications of random graphs
to extremal problems, Erdős, with Rényi, embarked on a systematic study of
random graphs. The first Erdős-Rényi paper on random graphs, in 1959,
is about the connectedness of Gn,M , the random graph with vertex set
[n] = {1, 2, . . . , n}, withM randomly chosen edges. Extending an unpublished
result of Erdős and Whitney, they proved, among others, that if c ∈ R and
M = M(n) =  1

2n(logn+ c)� then

lim
n→∞P(Gn,M is connected) = e−e−c

.

This implies, in particular, that if M = M(n) =  1
2n(log n+ ω(n))� then

lim
n→∞P(Gn,M is connected) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ω(n) → −ω,
e−e−c

if ω(n) → c ∈ R,

1 if ω(n) → ∞.

The result is easy to remember if one notes that the “obstruction” to
the connectedness of a random graph is the existence of isolated vertices: if
|ω(n)| is not too large, say at most log logn, then Gn,M is very likely to be
connected if it has no isolated vertices (and if it does have isolated vertices
then, a fortiori, it is disconnected).

By now, quite rightly, this is viewed as a rather simple result, but when
it was proved, it was very surprising. To appreciate it, note that a graph of
order n with as few as n− 1 edges need not be disconnected, and a graph of
order n with as many as (n− 1)(n− 2)/2 edges need not be connected.

A little later, in 1960, in a monumental paper, entitled “On the evolution
of random graphs”, Erdős and Rényi laid the foundation of the theory of
random graphs. As earlier, they studied the random graphs Gn,M with n
labelled vertices and M random edges for large values of n, as M increased
from 0 to n

(
2

)
. They introduced basic concepts like “threshold function”,

“sharp threshold function”, “typical graph”, “almost every graph”, and so
on. An important message of the paper was that most monotone properties
of graphs appear rather suddenly. A property Qn of graphs of order n is said
to be monotone increasing if Qn is closed under the addition of edges. Thus
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being connected, containing a triangle or having diameter at most five are
all monotone increasing properties. Erdős and Rényi showed that for many a
fundamental structural monotone increasing property Qn there is a threshold
function, that is a function M∗(n) such that

lim
n→∞P(Gn,M has Qn) =

{
0 if M(n)/M∗(n) → 0,

1 if M(n)/M∗(n) → ∞.

Later it was noticed by Bollobás and Thomason that in this weak sense
every monotone increasing property of set systems has a threshold function;
recently a considerably deeper result has been proved by Friedgut and Kalai,
which takes into account the automorphism group of the property, and so is
much more relevant to properties of graphs.

The more technical part of the “Evolution” paper concerns cycles, trees,
the number of components and, most importantly, the emergence of the giant
component. Erdős and Rényi showed that if M(n) = cn� for some constant
c > 0 then, with probability tending to 1, the largest component of Gn,M is
of order logn if c < 1

2 , it jumps to order n2/3 if c = 1
2 and it jumps again,

this time right up to order n if c > 1
2 . Quite understandably, Erdős and

Rényi considered this “double jump” to be one of the most striking features
of random graphs.

By now, all this is well known, but in 1960 this was a striking discovery
indeed. In fact, for over two decades not much was added to our knowledge of
this phase transition or, as called by many a combinatorialist, the emergence
of the giant component. The investigations were reopened in 1984 by the
author of these lines with the main aim of deciding what happens around
M = n/2�; in particular, what scaling, what magnification we should use to
see the giant component growing continuously. It was shown, among others,
that if M = n/2 + s and s = o(n) but slightly larger than n2/3 then, with
probability tending to 1, there is a unique largest component, with about 4s
vertices, and the second largest component has no more than (log n)n2/s2

vertices. Thus, in a rather large range, on average every new edge adds four
new vertices to the giant component!

With this renewed attack on the phase transition the floodgates opened,
and quite a few more precise studies of the behaviour of the components near
the point of phase transition were published, notably by Stepanov (1988),
Flajolet, Knuth and Pittel (1989), �Luczak (1990, 1991) and others. To cap it
all, in 1993 Knuth, Pittel, Janson and �Luczak published a truly prodigious
(over 120 pages) study, “The birth of the giant component”, giving very de-
tailed information about the random graph Gn,M near to its phase transition.

Erdős and Rényi also stated several problems concerning random graphs,
thereby influencing the development of the subject. In 1966, they themselves
solved the problem of 1-factors : if n is even and M = M(n) = n

2 (logn+ c)�
then the probability that Gn,M has a 1-factor tends to e−e−c

as n → ∞; the
“obstruction” is, once again, the existence of isolated vertices.
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The Hamilton cycle problem was a much harder nut to crack. As a
Hamiltonian graph is connected (and has minimal degree 2), it is rather
trivial that if, with probability tending to 1, Gn,M has a Hamilton cycle and
if M = M(n) is written as

M = M(n) =
n

2
(logn+ log logn+ ω(n)),

then we must have ω(n) → ∞. On the other hand, it is far from obvious that a
“typical”Gn,M is Hamiltonian, even ifM = cn logn� for some large constant
c. This beautiful assertion was proved in 1976 by Pósa, making use of his
celebrated lemma. Several more years passed, before Komlós and Szemerédi
proved in 1983 that ω(n) → ∞ also suffices to ensure that a “typical” Gn,M is
Hamiltonian. A little later Bollobás proved a sharper, hitting time type result
that had been conjectured by Erdős and Spencer, connecting Hamiltonicity
with having minimal degree at least 2.

The chromatic number problem from the 1960 “Evolution” paper of Erdős
and Rényi was the last to fall. In 1988 the author of this note proved that

picking one of the 2(n
2) graphs on [n] at random, with probability tending to

1, the chromatic number of the random graph is asymptotic to log 2
2 n/ logn.

Earlier results had been obtained by Grimmett and McDiarmid, Bollobás and
Erdős, Matula, Shamir and Spencer, and others, and subsequent refinements
were proved by Frieze, �Luczak, McDiarmid and others.

The tremendous success of the theory of random graphs in shedding
light on a variety of combinatorial, structural problems concerning graphs
foreshadows the use of random methods in other branches of mathematics.
Graphs carry only a minimal structure so they are bound to yield to detailed
statistical analysis. However, as we acquire more expertise in applying
results of probability theory, we should be able to subject more complicated
structures to statistical analysis. In keeping with this philosophy, having
founded, with Rényi, the theory of random graphs, Erdős turned to “the
theory of random groups” with another great collaborator, Paul Turán. In a
series of seven substantial papers, published between 1965 and 1972, Erdős
and Turán laid the foundations of statistical group theory.

For simplicity, let us consider the symmetric group Sn, and let πn be a
random element of Sn, with each of the n! possibilities equally likely. Thus
πn is a random permutation of [n] = {1, 2, . . . , n}, and every function of πn
is a random variable. One of the simplest of these random variables is the
order O(πn) of a permutation πn.

Concerning g(n) = maxπ∈Sn O(π), the maximal order of a permutation,
it was already shown by Landau in 1909 that

lim
n→∞

log g(n)√
n logn

= 1.

Thus O(πn) is always small compared to the order of the group Sn, although
it can be rather large!
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In contrast, for a single cycle of length n has order n, although such cycles
constitute a non-negligible fraction, namely a fraction 1/n, of all possible
permutations. What is then the order of most elements of Sn?

As the starting point of their investigations, Erdős and Turán proved
that for a “typical” permutation πn, the order O(π) is much smaller than
the maximum g(n) = exp{(n logn)1/2(1 + o(l))}, and much larger than n. In
fact, if ω(n) → ∞ (arbitrarily slowly, as always) then

lim
n→∞P(| logO(πn) − 1

2
log2 n| ≥ ω(n) log3/2 n) = 0.

Thus the “typical” order is about 1
2 log2 n.

Erdős and Turán went on to prove that, asymptotically, O(πn) has a
log-normal distribution: as n → ∞,

√
3(logO(πn) − 1

2
log2 n)/ log3/2 n

tends, in distribution, to the standard normal distribution, i.e. if x ∈ R then

lim
n→∞P

(√
3(logO(πn) − 1

2 log2 n)

log3/2 n

)

= Φ(x).

Having established this central limit theorem, which by now is known
as the Erdős-Turán law, they went on to study the number W (n) of
different values of O(πn). (Thus W (n) is the number of non-isomorphic cyclic
subgroups of Sn.) Erdős and Turán proved that

W (n) = exp

{
π

√
2n

3 logn
+O

(√
n log logn

logn

)}
,

and, with the exception of o
(
W (n)

)
values, all are of the form

exp

{

(1 + o(1))

√
6 log 2

π

√
n logn

}

.

In Sn there are p(n) conjugacy classes, where p(n) is the partition function
mentioned earlier, and studied in detail by Hardy and Ramanujan. As the
order of a permutation π ∈ Sn depends only on its conjugacy class K, it is
natural to ask what the distribution of O(K) is if the p(n) conjugacy classes
are considered equiprobable. Here we have written O(K) for the order of any
permutation in K. Erdős and Turán proved that, with probability tending
to 1,

O(K) = exp((A0 + o(1))
√
n),

where

A0 =
2
√

6

π

∑

j 	=0

(−1)j+1

3j2 + j
≈ 1.81.
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All these results are proved by hard analysis, using Tauberian theorems
and contour integration, somewhat resembling the Hardy-Ramanujan analy-
sis; there is no reference to soft analysis or general theorems in probability
theory or group theory that would get round the hard work. Thus it is not
surprising that, over the years, many of the results of Erdős and Turán have
been given shorter, more probabilistic proofs, that lead to sharper results.
In particular, the Erdős-Turán law was studied by Best in 1970, Bovey in
1980, Nicolas in 1985 and Arratia and Tavaré in 1992. To date, the last word
on the topic is due to Barbour and Tavaré, who used the Ewens sampling
formula, derived by Ewens in 1972 in the context of population genetics, to
give a beautiful proof of the Erdős-Turán law with a sharp error estimate. It
is fascinating that, in order to get a small error term, Barbour and Tavaré
had to adjust slightly the approximating normal distribution:

supx

∣∣P
[{ 1

3 log3 n}−1/2(logO(πn) − 1
2 log2 n+ logn log logn) ≤ x

] − Φ(x)
∣∣

= O
(
(logn)−1/2

)
.

Numerous other problems of statistical group theory have been studied,
including the problem of random generation. Dixon proved in 1969 that
almost all pairs of elements of Sn generate Sn or the alternating group
An, and recently Kantor and Lubotzky proved analogues of this result for
finite classical groups. Because of problems arising in computational Galois
theory, one is also interested in a considerably stronger condition than mere
generation. The elements x1, . . . , xm of a group G are said to generate G
invariably if G is generated by y1, . . . , ym whenever yi is conjugate to xi. for
i = 1, 2, . . . ,m. Dixon showed in 1992 that for some constant c > 0, with
probability tending to 1, c(logn)1/2 randomly chosen permutations generate
Sn invariably. In 1993 �Luczak and Pyber, confirming a conjecture of McKay,
proved that for every ε > 0 there is a constant C = C(ε) such that C random
elements generate Sn with probability at least 1 − ε.

�Luczak and Pyber also proved a conjecture of Cameron; they showed that
the fraction of elements of Sn that belong to transitive subgroups other than
Sn or An tends to 0 as n → ∞.

Needless to say, in spite of these powerful results, many important
questions remain unanswered, indicating that statistical group theory is still
in its infancy.

When writing about the contributions of Erdős to mathematics, it
would be unforgivable not to emphasize the enormous influence he exerts
through his uncountably many problems. At the International Congress
of Mathematicians in Paris in 1900, David Hilbert emphasized with great
eloquence the importance of problems for mathematics. “The clearness and
ease of comprehension insisted on for a mathematical theory I should still
more demand for a mathematical problem, if it is to be perfect. For what is
clear and easily comprehended attracts; the complicated repels us.”
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For lack of space, we shall confine ourselves to one more of the problems
of Erdős that have been solved, and to three particularly beautiful unsolved
questions.

There is no doubt that the most difficult Erdős problem solved to date
is the problem on arithmetic progressions. In 1927 van der Waerden proved
the following conjecture of Baudet: if the natural numbers are partitioned into
two classes then at least one of the classes contains arbitrarily long arithmetic
progressions. Over the years, this beautiful Ramsey-type result has been the
starting point of much research. Quite early on, in 1936, Erdős and Turán
suspected that partitioning the integers is an overkill: it suffices to take a
“large” set of integers. Thus they formulated the following conjecture: if A
is a set of natural numbers with positive upper density, that is, if

lim sup
n→∞

|A ∩ [n]|
n

> 0,

then A contains arbitrarily long arithmetic progressions.
Roth was the first to put a dent in this Erdős-Turán conjecture when,

in 1952, he proved that A must contain arithmetic progressions of length
3. Length 4 was much harder: Szemerédi proved it only in 1969. Having
warmed up on length 4, in 1974 Szemerédi proved the full conjecture; the
long and difficult proof is a real tour de force of combinatorics. The story
did not end there: in 1977 Fürstenberg gave another proof of Szemerédi’s
theorem, using tools of ergodic theory; the methods of this proof and the
new problems it naturally led to revolutionized ergodic theory.

Let us turn then to the three unsolved Erdős problems we promised. The
first asks for a substantial extension of Szemerédi’s theorem. Let a1 < a2 < . . .
be a sequence of natural numbers such that

∑
1/an = ∞. Is it true then that

the sequence contains arbitrarily long arithmetic progressions? It is not even
known that Roth’s theorem holds in this case, i.e., that the sequence contains
an arithmetic progression with three terms. If this is not enough to indicate
that this problem is rather hard, it is worth noting that Erdős offers $5,000 for
a solution. A rather special case of the conjecture would be that the primes
contain arbitrarily long arithmetic progressions.

The last two are also rather old conjectures, but each carries “only” a $500
price-tag. Let f(n) be the minimal number of distinct distances determined
by n distinct points in the plane. Erdős conjectured in 1946 that

f(n) >
cn√
logn

for some absolute constant c > O. The lattice points show that, if true, this
is best possible. Chung, Szemerédi and Trotter have proved that f(n) is at
least about n4/5.

The third problem is from the 1961 paper of Erdős, Ko and Rado; it is,
in fact, the last unsolved problem of that paper. (However, Ahlswede and
Khachatrian have just announced a proof of the conjecture.)
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Let A be a 2-intersecting family of 2n-subsets of [4n] = {1, 2, . . . , 4n}.
Thus if A,B ∈ A then A,B ⊂ [4n], |A| = |B| = 2n, and |A ∩ B| ≥ 2. Then
the Erdős-Ko-Rado conjecture states that

|A| ≤ 1

2

(
2n

2n

)
− 1

2

(
2n

n

)2

.

It is easily seen that, if true, this inequality is best possible. Indeed, let A
be the collection of 2n-subsets of [4n], containing at least n+1 of the first 2n
natural numbers. Then A is clearly 2-intersecting, and for every 2n-subset A
on [4n], the system contains precisely one of A and its complement Ā, unless
A (and so Ā as well) contains precisely n of the first 2n natural numbers.

It is widely known that vast amounts of thought and ingenuity are
required in order to earn $500 on an Erdős problem; even so, this problem
may be far harder than its price-tag suggests.

Although this brief review does not come close to doing justice to
the mathematics of Paul Erdős, it does indicate that he has enriched the
mathematics of this century as very few others have. He has clearly earned
a mathematical Oscar for lifetime achievement, several times over. May he
continue to prove and conjecture for many years to come.

Added in Proof

Sadly, this was not to be. On 20 September 1996, while attending a mini-
semester at the Banach Center in Warsaw, Professor Paul Erdős was killed
by a massive heart attack. Although in the last year he started to show signs
of aging, his death was premature and entirely unexpected.

We combinatorialists have just become orphans.

B.B.
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If I have seen further, it is by standing on the shoulders of Hungarians—
Peter Winkler

Paul Erdős was a giant of twentieth century mathematics. Born in 1913 he
was a child prodigy whose talents were well cultivated in his native Budapest.
Dubbed Der Zauberer von Budapest he moved onto the world stage in his
early 20s. And there he stayed, extraordinarily active right until his death in
1996.

In 1999 when his longtime friend and collaborator Vera Sós organized
a memorial conference we participants were stunned. Komjáth on infinite
graphs, Pomerance on special arithmetic functions, Hajnal on partition
relations, Graham on Ramsey theory, Simonovits on Extremal Graph theory,
Lubinsky on interpolation, Alon and this author on probabilistic methods—
none of us individually had realized the breadth of Erdős’s contributions.

Paul’s place in the mathematical pantheon will be a matter of strong
debate for in that rarefied atmosphere he had a unique style. The late Ernst
Straus described this style in a commemoration of Erdős’s 70th birthday.

In our century, in which mathematics is so strongly dominated by
“theory constructors” he has remained the prince of problem solvers
and the absolute monarch of problem posers. One of my friends - a
great mathematician in his own right - complained to me that “Erdős
only gives us corollaries of the great metatheorems which remain
unformulated in the back of his mind.” I think there is much truth
to that observation but I don’t agree that it would have been either
feasible or desirable for Erdős to stop producing corollaries and
concentrate on the formulation of his metatheorems. In many ways
Paul Erdős is the Euler of our times. Just as the “special” problems
that Euler solved pointed the way to analytic and algebraic number
theory, topology, combinatorics, function spaces, etc.; so the methods
and results of Erdős’s work already let us see the outline of great new
disciplines, such as combinatorial and probabilistic number theory,
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combinatorial geometry, probabilistic and transfinite combinatorics
and graph theory, as well as many more yet to arise from his ideas.

Straus, who worked as an assistant to Albert Einstein, noted that Einstein
chose physics over mathematics because he feared that one would waste
one’s powers in pursuing the many beautiful and attractive questions of
mathematics without finding the central questions. Straus goes on,

Erdős has consistently and successfully violated every one of
Einstein’s prescriptions. He has succumbed to the seduction of every
beautiful problem he has encountered—and a great many have succumbed
to him. This just proves to me that in the search for truth there is room
for Don Juans like Erdős and Sir Galahad’s like Einstein.

Tim Gowers, in his beautiful and influential essay “The Two Cultures
of Mathematics” discusses this distinction between theory constructors and
problem solvers in detail. He gives Erdős as the archetypal problem solver
and gives a spirited defense of the problem solver mode of doing mathematics.
He worries that such a defense is necessary:

. . . mathematicians in the theory-building areas often regard what they are
doing as the central core (Atiyah uses this exact phrase) of mathematics,
with subjects such as combinatorics thought of as peripheral and not
particularly relevant to the main aims of mathematics.

Today, however, discrete math is a respected area of mathematics. Gowers
himself was awarded the Fields Medal in 1998, Terence Tao was awarded
the Fields Medal in 2006, László Lovász was awarded the Kyoto Prize in
2010, all for work with a strong combinatorial component. In 2012 the
Abel Prize was awarded to Endre Szemerédi. Szemerédi’s work is almost
entirely combinatorial and follows closely in the footsteps of Paul Erdős.
This respect certainly did not exist a 100, even 50 years ago. Discrete Math
was often dismissed as “puzzle math” and the phrase “the slums of topology”
(sometimes attributed to J. H. C. Whitehead) was widely and disparagingly
used to describe it.

The rise of the Discrete has, I feel, two main causes. The first was The
Computer, how wonderful that this physical object has led to such intriguing
mathematical questions. The second, with due respect to the many others,
was the constant attention of Paul Erdős with his famous admonition “Prove
and Conjecture!” Ramsey Theory, Extremal Graph Theory, Random Graphs,
how many turrets in our mathematical castle were built one brick at a
time with Paul’s theorems and, equally important, his frequent and always
penetrating conjectures.

My own research specialty, The Probabilistic Method, owes its existence
to Paul Erdős. I have proposed the term Erdős Magic for the area as a
tribute to Erdős. It began in 1947 with a 3 page paper in the Bulletin of
the American Mathematical Society. Paul proved the existence of a graph
having certain Ramsey property without actually constructing it. In modern
language he showed that an appropriately defined random graph would have
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the property with positive probability and hence there must exist a graph
with the property. For the next 20 years Paul was a “voice in the wilderness”,
his colleagues admired his amazing results but adoption of the methodology
was slow. But Paul persevered—he was always driven by his personal sense of
mathematical aesthetics in which he had supreme confidence—and today the
method is widely used in both Discrete Math and in Theoretical Computer
Science.

My own introduction to Erdős was not atypical. I had managed to
solve one of his ten dollar problems. Erdős would give such small monetary
awards for solutions of his conjectures. To receive such an award was heaven
incarnate. We met and I nervously explained my argument. Instantly he saw
how my methods could be used on a very different problem. This became
our first joint paper and I became one of his disciples. This occurred in the
late 1960s, a tumultuous time when “do your own thing” was the admonition
that resonated so powerfully. But while others spoke of it, this was Paul’s
modus operandi. He had no job; he worked constantly. He had no home; the
world was his home. Possessions were a nuisance, money a bore. He lived
on a web of trust, traveling ceaselessly from Center to Center, spreading his
mathematical pollen.

What drew so many of us into his circle? What explains the joy we have
in speaking of this gentle man? Why do we love to tell Erdős stories? I’ve
thought a great deal about this and I think it comes down to a matter of belief,
or faith. We know the beauties of mathematics and we hold a belief in its
transcendent quality. In Kronecker’s immortal words: Die ganzen Zahlen hat
der liebe Gott gemacht, alles andere ist Menschenwerk. Mathematical truth
is immutable, it lies outside physical reality. When we show, for example, that
two n-th powers never add to an n-th power for n ≥ 3 we have discovered a
Truth. This is our belief, this is our core motivating force. Yet our attempts to
describe this belief to our nonmathematical friends is akin to describing the
Almighty to an atheist. Paul embodied this belief in mathematical truth.
His enormous talents and energies were given entirely to the Temple of
Mathematics. He harbored no doubts about the importance, the absoluteness,
of his quest. To see his faith was to be given faith. The religious world has a
name for such people—they are called saints. We knew him as Uncle Paul.

I do hope that one cornerstone of Paul’s, if you will, theology will long
survive. I refer to The Book. The Book consists of all the theorems of
mathematics. For each theorem there is in The Book just one proof. It is the
most aesthetic proof, the most insightful proof, what Paul called The Book
Proof. When one of Paul’s myriad conjectures was resolved in an “ugly” way
Paul would be very happy in congratulating the prover but would add, “Now,
let’s look for The Book Proof.” This platonic ideal spoke strongly to those of
us in his circle. The mathematics was there, we had only to discover it.

The intensity and the selflessness of the search for truth were described by
the writer Jorge Luis Borges in his story La biblioteca de Babel. The narrator
is a worker in a library that contains on its infinite shelves all wisdom. He
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wanders its infinite corridors in search of what Paul Erdős might have called
The Book. He cries out,

To me, it does not seem unlikely that on some shelf of the universe there
lies a total book. I pray the unknown gods that some man—even if only
one man, and though it have been thousands of years ago!—may have
examined and read it. If honor and wisdom and happiness are not for
me, let them be for others. May heaven exist though my place be in hell.
Let me be outraged and annihilated but may Thy enormous Library be
justified, for one instant, in one being.

In the summer of 1985 I drove Paul to Yellow Pig Camp—a mathematics
camp for talented high school students. It was a beautiful day—the students
loved Uncle Paul and Paul enjoyed nothing more than the company of eager
young minds. In my introduction to his lecture I discussed The Book but I
made the mistake of describing it as being “held by God.” Paul began his
lecture with a gentle correction that I shall never forget. “You don’t have to
believe in God,” he said, “but you should believe in The Book.”



I. Early Days

Introduction

We do not have much to add here. We only want to express our gratitude
to Arthur Stone, Cedric Smith, William Tutte and Irving Kaplansky for
their personal recollections of those days when many contemporary theories
were being created. In those early days, Erdős’ interests were almost entirely
devoted to number theory and, as seen from his own contribution, as well
as from the other contributions to this chapter, number theory is an old
love which does not fade. But so is an early combinatorial puzzle solved by
four young Cambridge undergraduates (three of which are among authors
of this chapter). C. Smith related this puzzle to P. Erdős while W. Tutte,
in his characteristic style, connects his very recent research to his own early
beginnings.

But perhaps it is very fitting to include two quotations by two of Erdős’
closest and earliest collaborators and colleagues from their own recollections
of the early days in Budapest in the 1930s.
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I have known Paul Erdős long enough to be a bit personal. We met
daily at the university, made excursions practically every Sunday
with a group of other fellow students, steady members of which were
(among others) Gy. Szekeres and T. Gallai. The main subject of
conversations was mathematics; since Gallai and Erdős attended the
graph theoretical lectures of D. König, graph theory was discussed
often. The first graph-theoretical result of Erdős, an extension of
Menger’s theorem to infinite graphs, arose as early as 1931; it was
an answer to a question of König a few weeks after König raised it
in his course. This was published in König’s classical book in 1936
(probably nowhere else). . .

Erdős’ main interest in the thirties was number theory but gradually
more and more combinatorial moments occurred even in these works.
As a clear sign of this I quote from a paper of his entitled “On
sequences of integers no one of which divides the product of two
others and on some related problems” which appeared in 1938: “The
argument was really based upon the following theorem for graphs.
Let 2k points be given. We split them into two classes each containing
k of them. The points of two classes are connected by segments such
that the segments form no closed quadrilateral. Then the number
of segments is less than 3k3/2.” No doubt he was not far from the
discovery of extremal graph theory before 1938.

P. Turán (Art of Counting, p. xvii)

We had a very close circle of young mathematicians, foremost among
them Erdős, Turán and Gallai; friendships were forged which became
the most lasting that I have ever known and which outlived the
upheavals of the thirties, a vicious world war and our scattering to
the four corners of the world. I myself was an “outsider,” studying
chemical engineering at the Technical University, but often joined the
mathematicians at weekend excursions in the charming hill country
around Budapest and (in summer) at open air meetings on the
benches of the city park.

Paul, then still a young student but already with a few victories in
his bag, was always full of problems and his sayings were already a
legend. He used to address us in the same fashion as we would sign
our names under an article and this habit became universal among
us; even today I often call old members of the circle by a distortion
of their initials.

“Szekeres Gy., open up your wise mind.” This was Paul’s customary
invitation—or was it an order?—to listen to a proof or a problem of
his. Our discussions centered around mathematics, personal gossip,
and politics. It was the beginning of a desperate era in Europe. Most
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of us in the circle belonged to that singular ethnic group of European
society which drew its cultural heritage from Heinrich Heine and
Gustav Mahler, Karl Marx and Cantor, Einstein and Freud, later to
become the principal target of Hitler’s fury.

G. Szekeres (Art of Computing, p. xix, xx)

And we are happy to include here a standard Erdős article of those days.
Well slightly nonstandard this time: My favorite problems from all fields. . .



Some of My Favorite Problems and Results

Paul Erdős

P. Erdős (Deceased)
Mathematical Institute, Hungarian Academy of Sciences, Budapest Pf. 127,
1364, Hungary

1. Introduction

Problems have always been an essential part of my mathematical life. A well
chosen problem can isolate an essential difficulty in a particular area, serving
as a benchmark against which progress in this area can be measured. An
innocent looking problem often gives no hint as to its true nature. It might
be like a “marshmallow,” serving as a tasty tidbit supplying a few moments
of fleeting enjoyment. Or it might be like an “acorn,” requiring deep and
subtle new insights from which a mighty oak can develop.

As an illustration of how hard it can be to judge the difficulty of a problem,
I’d like to tell the following anecdote concerning the great mathematician
David Hilbert. Hilbert lectured in the early 1920s on problems in mathematics
and said something like this—probably all of us will see the proof of the
Riemann Hypothesis, some of us (but probably not I) will see a proof

of Fermat’s last theorem but none of us will see the proof that 2
√
2 is

transcendental. In the audience was Carl Ludwig Siegel, whose deep research
contributed decisively to the proof by Kusmin a few years later of the

transcendence of 2
√
2. In fact, shortly thereafter Gelfond and a few weeks

later Schneider independently proved the αβ is transcendental if α and β are
algebraic, β is irrational and α �= 0, 1.

In this note I would like to describe a variety of my problems which I would
classify as my favorites. Of course, I can’t guarantee that they are all “acorns,”
but because many have thwarted the efforts of the best mathematicians for
many decades (and have often acquired a cash reward for their solutions), it
may indicate that new ideas will be needed, which can in turn, lead to more
general results, and naturally, to further new problems. In this way, the cycle
of life in mathematics continues forever.

2. Number Theory

My first serious problem was formulated in 1931 and it is still wide open.
Denote by f(n) the largest number of integers 1 ≤ a1 < a2 < · · · < ak ≤ n

all of whose subset sums
k∑

i=1

εiai are distinct, where εi = 0 or 1. The powers
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of 2 have this property and I conjectured that

f(n) <
logn

log 2
+ c (1)

for some absolute constant c. I offer $500 for a proof or disproof. The
inequality

f(n) <
logn

log 2
+

log logn

log 2
+ c1

is almost immediate, since there are 2k sums of the form
∑

i εiai and they
must be all distinct and all are less than kn. In 1954, Leo Moser and I proved
by using the second moment method that

f(n) <
logn

log 2
+

log logn

2 log 2
+ c2

which is the current best upper bound.
Conway and Guy found 24 integers all ≤ 222 for which all subset sums

are distinct, which implies f(2n) ≥ n+ 2 for n ≥ 22. Perhaps

f(2n) ≤ n+ 2 for all n?

Perhaps the following variant of the problem is more suitable for computation.
Let 1 ≤ b1 < b2 < · · · < bm be a sequence of integers for which all the subset

sums
m∑

i=1

εibi, εi = 0 or 1, are distinct. Is it true that

min bm > 2m−c (2)

for some absolute constant c? Inequality (2) is of course equivalent to (1).
The determination of the exact value of min bm is perhaps hopeless but for
small m the value of min bm can no doubt be determined by computation,
and I think this would be of some interest.

Perhaps my favorite problem of all concerns covering congruences. It was
really surprising that it had not been asked before. A system of congruences

ai (mod ni), n1 < n2 < . . . < nk (3)

is called a covering system if every integer satisfies at least one of the
congruences in (3). The simplest covering system is 0 (mod 2), 0 (mod 3), 1
(mod 4), 5 (mod 6) and 7 (mod 12). The main problem is: Is it true that for
every c one can find a covering system all of whose moduli are larger than c?
I offer $1,000 for a proof or disproof.

Choi [2] found a covering system with n1 = 20, and a Japanese
mathematician whose name I do not remember found such a system with
n1 = 24. If the answer to this question is positive, denote by f(n) the smallest
integer k for which there is a covering system

ai (mod ni), 1 ≤ i ≤ k, n1 = t, k = f(t).
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It would be of some mild interest to determine f(t) for the few values of
t = n1 for which we know that covering systems exist.

Many further unsolved problems can be asked about covering systems.
Selfridge and I asked: Is there a covering system all of whose moduli are odd?
Schinzel asked: Is there a covering system where ni � nj for i �= j? Schinzel
used such covering systems for the study of irreducibility of polynomials.
Related to this is a question of Herzog and Schőnheim: Does there exist a
finite group which can be partitioned into cosets of different sizes?

More generally, let n1 < n2 < · · · be a sequence of integers. Is there
a reasonable condition which would imply that there is a covering system
whose moduli are among the ni? Quite likely there is no such condition.
Let us now drop the condition that the set of moduli is finite, but to avoid
triviality we insist that in the congruence ai (mod ni), only the integers ≥ ni

are considered. When if ever can we find such a system?
Perhaps it is of some interest to tell how I came upon the problem of

covering congruences. In 1934 Romanoff [20] proved that the lower density
of integers of the form 2k + p, with p prime, is positive. This was surprising
since the number of sums 2k +p ≤ x is cx. Romanoff in a letter in 1934 asked
me if there were infinitely many odd numbers not of the form 2k + p. Using
covering congruences I proved in [8] there is an infinite arithmetic progression
of odd numbers no term of which is of the form 2k + p. Independently, Van
der Corput also proved that there are infinitely many odd numbers not of
the form 2k + p. In [3] Crocker proved there are infinitely many odd numbers
not of the form 2k1 + 2k2 + p, but his proof only gives the number of integers
≤ x which are not of this form is > c log log x. This surely can be improved
but I am not at all sure if the upper density of the integers not of the form
2k1 +2k2 +p is positive. One could ask the following (probably unattackable)
problem: Is it true that there is an r so that every integer is the sum of a
prime and at most r powers of 2? Gallagher [14] proved (improving a result
of Linnik) that for every ε there is an rε so that the lower density of the
integers which are the sum of a prime and rε powers of 2 is at least 1− ε. No
doubt, lower density always could be replaced by density, but a proof that
the density of the integers of the form 2k + p exists seems untouchable.

I think that every arithmetic progression contains infinitely many integers
of the form 2k1 + 2k2 + p. Thus, covering congruences cannot be used to
improve the result of Crocker.

On diophantine equations, my most important paper is my result with
Selfridge: The product of consecutive integers is never a power. Perhaps in

fact for k > 3 the product
k∏

i=1

(n + i), n > k, always has a prime factor

p > k for which p2 �

k∏

i=1

(n+ i). Unfortunately, this seems hopeless at present.

Perhaps the product
m∏

j=1

(n + jk), m > 3, (i.e., the product of more than
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3 terms of an arithmetic progression) is never a power. Ramachandra, Shorey
and Tijdeman have important results in this direction (see the paper “Some
methods of Erdős applied to finite arithmetic progressions” by Shorey and
Tijdeman in this volume).

The following Tauberian theorem is connected to the elementary proof of
the prime number theorem by Selberg and myself. Let ak > 0, st =

∑
i≤t ai

and suppose

n∑

k=1

ak(k + sn−k) = n2 +O(n). (4)

Then sn = n+O(1).
This result is clearly related to Selberg’s fundamental inequality

∑

p<x

(log p)2 +
∑

pq<x

log p log q = 2x log x+O(x).

My original proof of (4) was very complicated. It was simplified by Siegel and
later by Shapiro. I am certain further results of this type can be obtained.

Let me now move on to some problems which originally arose in con-
nection with van der Waerden’s classic theorem on arithmetic progressions.
Nearly 80 years ago, Schur conjectured that if we color the integers with
� colors, there is always formed a monochromatic arithmetic progression of
k terms. In 1927, van der Waerden found an ingenious proof, and, in fact,
he proved that there is a least integer W (k, �) such that for every partition
of the integers 1 ≤ t ≤ W (k, �) into � classes, there is always an arithmetic
progression of k terms belonging to a single class. Let W (k) denote W (k, 2).
The proof given by van der Waerden gave a very poor estimate for W (k), e.g.,
it was not even primitive recursive. It was a great achievement a few years ago
when Shelah gave a primitive recursive bound for W (k). Probably, his bound

is still much too large and perhaps W (k) < 22
k

. The first nontrivial lower
bound W (k) > 2k/2 was given by Rado and myself. The current best bound

is W (p+ 1) ≥ p · 2p, p prime, due to Berlekamp. I believe limn→∞
f(n)
2n = ∞

has been proved by Beck (but this is not yet published). The first task would
be to prove that W (k) > (2+ε)k, and perhaps W (k)1/k → ∞. Graham offers

$1,000 to prove W (k) ≤ 22
. .

.
2

(where there are k 2’s in the tower) for all k.
Over 60 years ago, Turán and I thought that this was a Turán type of

problem and not a Ramsey type (this terminology did not exist at the time!).
In fact, let rk(n) be the smallest integer for which every sequence of integers
1 ≤ a1 < a2 < · · · < at ≤ n with t ≥ rk(n) contains an arithmetic progression

of k terms. It is easy to see that limn→∞
rk(n)

n exists for any k. We conjectured

that rk(n)
n → 0 as n → ∞. This of course would imply van der Waerden’s

theorem. We did not at first realize the difficulty of our conjecture and hoped
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that one might be able to get better estimates for W (k) this way. At first we
thought rk(n) < n1−ε but 50 years ago, R. Salem and D. C. Spencer proved

r3(n) > n1−c log logn

and in 1946, Behrend proved

r3(n) > n exp(−c
√

logn)

which is the current record. Forty years ago Roth proved

r3(n) > cn/ log logn.

The current record is due to Heath-Brown and Szemerédi:

r3(n) ≤ n/(logn)α, α ≈ 1/4.

I offer $500 for a proof that r3(n) < n/(logn)c for every c, and $1,000 for
any asymptotic formula for rk(n). This is probably unattackable at present.

In the early 1970s I offered $1,000 for a proof that rk(n)/n → 0 as n→ ∞
and this was accomplished by Szemerédi in 1974. His proof is a masterpiece
of combinatorial reasoning, and his regularity lemma, introduced in an early
form in his proof, has subsequently found many applications in combinatorics
and graph theory. Unfortunately, his proof used van der Waerden’s theorem
and so could not be used for the estimation of W (k). Furstenberg also
proved rk(n)/n → 0 as n → ∞ by using ergodic theory, and his methods
already have many applications to various problems in combinatorial number
theory. In fact, there is a growing number of results in combinatorial number
theory which only can be proved by methods of ergodic theory (so far).
Unfortunately, Furstenberg’s methods do not help in estimating W (k).

An old conjecture in number theory states that for every k there are k
primes in an arithmetic progression. This problem seems unattackable; the
largest currently known arithmetic progression of primes has 22 terms. Many
years ago I made the following conjecture which, if true, would settle the
problem: Let al < a2 < · · · be a sequence of integers satisfying

∞∑

k=1

1

ak
= ∞. (5)

Then the ak’s contain arbitrarily long arithmetic progressions. I offer $5,000
for a proof (or disproof) of this. Neither Szemerédi nor Furstenberg’s methods
are able to settle this but perhaps the next century will see its resolution.

Perhaps for every ε > 0 there is an n0(ε, k) so that if n0(ε, k) < a1 <
a2 < · · · is a sequence of integers which does not contain a k-term arithmetic
progression then

∑
i

1
ai
< ε.

Here is a related problem which is completely hopeless at present. Is it
true that for every k there are k consecutive primes in arithmetic progression?
In the present state of science, the problem is unattackable even for k = 3.
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It is well known that there are infinitely many triples of primes forming an
arithmetic progression but it is not yet known if this holds for quadruples.

Let a1 < a2 < · · · be an infinite sequence of integers which does not
contain a k-term arithmetic progression. Is it true that

∑

i

1

ai
≤

(
1

2
+ o(1)

)
lnW (k)? (6)

If true, (6) is trivially best possible, and would be a considerable strengthen-
ing of (5). The inequality

∑

i

1

ai
< c lnW (k)

would already be a sensational result.
I should point out that it is very difficult to determine exact values of

W (k). So far, we only know

W (3) = 9, W (4) = 35, W (5) = 178.

W (6) is certainly unknown and perhaps beyond the range of computers. For
more complete references on these topics, the reader can consult the books
of Graham, Rothschild, and Spencer [15], Nešetřil and Rödl [19], Erdős and
Graham [12], and Guy [16].

I now move on to Sidon sequences and related problems. Let A = {a1 <
a2 < · · · } be a finite or infinite sequence of integers, and let

A(x) =
∑

ai≤x

1.

Denote by f(n) the number of solutions of n = ai + aj . I first met Sidon in
1932. He posed two problems. The first was this: Does there exist an infinite
sequence A for which for all n > n0, f(n) > 0, but so that for every ε > 0,
f(n)/nε → 0 as n → ∞. In other words, A should be a basis of order 2 but the
number of solutions of n = ai + aj should be small. I liked the problem very
much and optimistically assured Sidon that I would construct such a sequence
in a few days. In fact, it took me 20 years to prove there is a sequence A for
which

c1 logn < f(n) < c2 logn. (7)

This is of course much stronger than what Sidon asked for, but I never have
found a constructive proof of (7), or for that matter, even for Sidon’s original
question. My proof shows that if you select a random sequence A in which

each n is put in A with probability c
(
logn
n

)1/2
then almost all such A satisfy

(7).
Turán and I conjectured that if f(n) > 0 for n > n0 then

lim supn→∞ f(n) = ∞. I offer $500 for a proof or disproof of this. I also
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offer $100 for a constructive proof of Sidon’s original question. I conjecture
there is no sequence A for which

f(n)/ logn→ c, 0 < c <∞. (8)

In other words, (7) is nearly best possible. I offer $500 for a proof or disproof
of (8). Sárközy and I proved that

|f(n) − c logn|
(log n)1/2

→ 0 (9)

is not possible for any c, which is much weaker than (8). Perhaps an even
stronger result than (8) holds. Put

c1 = lim inf
f(n)

logn
, c2 = lim sup

f(n)

log n
.

Then there is an absolute constant c so that for all A, c2 − c1 > c.
This conjecture may be a bit too optimistic but I could never find a
counterexample.

Now let us discuss Sidon’s second question. Find a sequence A for which
A(x) is as large as possible and for which f(n) = 0 or 1, i.e., the sums ai +aj ,
i < j, are all distinct. Such sequences are now called Sidon sequences. Sidon
was led to these problems by his study of lacunary trigonometric series. The
greedy algorithm easily gives an infinite Sidon sequence A which for every x
satisfies

A(x) > cx1/3. (10)

It took about 50 years until Ajtai, Komlós and Szemerédi (finally) improved
(10). They showed it is possible to have

A(x) > c(x log x)1/3. (11)

Probably there is a Sidon sequence A for which A(x) > x1/2−ε but this at
present is far beyond reach. Rényi and I proved that for every ε > 0 there is a
sequenceA with A(x) > n1/2−ε for which f(n) < c(ε). I proved lim sup A(n)

n1/2 ≥
1
2 which was strengthened by Krückerberg to lim sup A(n)

n1/2 ≥ 1√
2

but the truth

is surely 1. Does there exist such a sequence with A(x) > x1/2/(log x)c? A
sharpening of our old conjecture with Turán would state: If an < Cn2 for
all n then lim sup f(n) = ∞. In fact, for what functions t(n) → ∞ does
an < n2t(n) imply lim supn→∞ f(n) = ∞.

Here is an old conjecture of mine: Let a1 < a2 < · · · be an infinite
sequence for which all the triple sums ai +aj +ak are distinct: Is it then true
that lim sup an/n

3 = ∞. I offer $500 for a proof or disproof of this. Turán and
I observed that Sidon sequences behave quite differently. We proved that if
a1 < a2 < · · · < ak ≤ n is a Sidon sequence, and we denote by S(n) = max k,
then

S(n) < n1/2 + cn1/4. (12)
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Chowla and I noticed that the construction of Singer for perfect difference
sets immediately gives

S(n) > n1/2 − n1/2−ε. (13)

I am fairly sure that

S(n) = n1/2 +O(nε). (14)

for every ε > 0, and it might even be true that

S(n) = n1/2 +O(1). (15)

I offer $1,000 for clearing up these two problems. Incidentally, Singer proved
that there are p + 1 residues a1, a2, . . . , ap+1 (mod p2 + p + 1) (where p is
a prime power) so that every nonzero residue t (mod p2 + p + 1) can be
expressed uniquely in the form t ≡ ai − aj (mod p2 + p+ 1), 1 ≤ i, j ≤ p+ 1.
This beautiful result easily gives (13).

Given an infinite sequence S = a1 < · · · < an < · · · of positive integers,
denote by Rn(S) = Rn the number of representations of the integer n in the
form n = ai+aj. My result with Fuchs states that for any positive constant c,
the relation

N∑

n=0

Rn = cN + o(N1/2 log−1/2N)

cannot hold (irrespective of the nature of S). I hope that the Erdős-Fuchs
result will survive us by centuries. We proved our result when I visited
Cornell in the summer of 1954 and the paper appeared in 1956. Fuchs
also considered our result important. Montgomery and Vaughan now have
a somewhat sharper result.

Many years ago, I conjectured that every finite Sidon sequence a1 < · · ·
< at can be completed into a perfect difference set of Singer. In other words,
there is a p = qα and a Singer set

a1 < a2 < · · · < at < at+1 < · · · < ap+1 < p2 + p+ 1

which is a perfect difference set for p2 + p + 1. I now feel this conjecture is
perhaps too optimistic and I would be very happy for a proof of the following
weaker conjecture: Let a1 < a2 < · · · < at be a Sidon sequence. Then for
every ε > 0 there is a Sidon sequence a1 < · · · < at < at+1 < · · · < an for
which an < (1 + ε)n2. If true, this conjecture would imply that there is a
Sidon sequence for which

lim inf
n→∞

an
n2

= 1. (16)

In view of (12), this would be best possible.
I proved that for every Sidon sequence, lim infn→∞ an/n

2 = ∞, and in
fact, more precisely,
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lim sup
n→∞

an
n2 logn

> 0. (17)

The reader will notice that (11) and (17) are very far apart. I conjecture
that (11) and probably (17) can be improved a great deal. I expect there is
a Sidon sequence so that for every ε > 0 and n > n0,

an < n2+ε. (18)

I offer $1,000 for a proof or disproof of (18).
Sárközy and I recently conjectured that if a1 < a2 < · · · and b1 < b2 < · · ·

are two infinite sequences for which an/bn → 1, and if g(n) denotes the
number of solutions of n = ai + bj, then if g(n) > 0 for all n then

lim sup
n→∞

g(n) = ∞. (19)

If true, (19) would greatly strengthen our old conjecture with Turán: f(n) > 0
for all n ⇒ lim supn→∞ f(n) = ∞. It is not even clear to me that this implies
f(n) ≥ 2 for infinitely many n. Our conjecture is perhaps too optimistic.
Observe that the condition an

bn
→ 1 cannot be replaced by c1 < an/bn < c2.

To see this, let the ak’s be the integers of the form
∑

i εi22i, εi = 0 or 1, and
let the bk’s be the integers of the form

∑
i εi22i+1. Clearly, every n can be

uniquely expressed in the form ai + bj . Perhaps if ε > 0 is sufficiently small
then

1 − ε < an/bn < 1 + ε

and f(n) > 0 will imply lim sup f(n) = ∞. (However, this conjecture also
seems too optimistic.)

Let me conclude this topic with one more conjecture. Let a1 < a2 < · · ·,
be an infinite sequence of integers, and let h(n) denote the number of
integers not exceeding n of the form ai + aj , Suppose that for every ε > 0,
h(n)/n1−ε → ∞ as n → ∞. Is it then true that lim sup f(n) = ∞? Perhaps
even this conjecture is too much to ask for and one instead should first look
for a counterexample. For more complete references and many more results
in this area, the reader should consult the excellent book of Halberstam and
Roth [17]. (I understand a new and greatly enlarged edition is in preparation.)

I conjectured long ago that if f(n) = ±1 then for all c there is a d such
that

max
n

∣∣
∣
∣

n∑

k=1

f(kd)

∣∣
∣
∣ > c.

In fact, perhaps

max
n

∣
∣
∣
∣

∑

k=1
<n/d

f(kd)

∣
∣
∣
∣ > c logn.



60 Paul Erdős

If true, this would be best possible. I certainly offer $500 to settle this
annoying problem.

Next I would like to make some remarks about probabilistic number
theory (cf. the excellent books of Elliott [5, 6]). First, though, I have to discuss
the preprobabilistic era (i.e., when I did not know probability). Denote by
σ(n) the sum of the divisors of n. If σ(n) = 2n then n is perfect, if σ(n) ≥ 2n
then n is abundant, and otherwise n is deficient. Bessel-Hagen stated in his
book that it did not seem to be known whether or not the density of the set of
abundant numbers existed. Behrend, Chowla and Davenport (using Fourier
analysis) proved that the density did exist. I independently gave a different
proof, using elementary methods.

A number n is called primitive abundant if n is abundant but every proper
divisor of n is deficient. Denote by A(x) the number of primitive abundant
numbers less than x. I proved

x

exp c1(log x log log x)1/2
< A(x) <

x

exp c2(log x log log x)1/2
.

Ivic simplified the proof and obtained better constants but

A(x) =
x

exp(1 + o(1))c(log x log log x)1/2

is still open. Michael Avidon, who is a student of Pomerance, found a better
bound. The sum of the reciprocals of the primitive abundant numbers is
therefore convergent and consequently the density of the abundant numbers
exists. Later I proved that the distribution function of σ(n) is purely singular.

Denote by ν(n) the number of prime factors of n. In 1917, Hardy and
Ramanujan proved that for almost all n,

∣
∣ν(n) − log logn

∣
∣ < f(n)(log logn)1/2

for any f(n) → ∞. Turán found a very simple proof of this and in 1935,
I proved that the density of integers n for which ν(n) > log logn is 1/2. Also
I proved that the density of integers for which σ(n) > σ(n+ 1) is 1/2. I used
Brun’s method and the Central Limit Theorem (which I did not know at the
time) in the binomial case. This was easy without using probability theory.

Now suppose f(n) is an additive function. I proved that the distribution
function of f(n) exists provided the following three series converge:

∑

|f(p)|≥1

1

p
,

∑

|f(p)|≤1

f(p)

p
,

∑

|f(p)|≤1

f2(p)

p
.

This is analogous to the “three series” theorem of Kolmogoroff, which of
course I did not know. I conjectured that the convergence of the three series
was both necessary and sufficient for the existence of the distribution function
but this I could not prove because of gaps in my knowledge. In March of
1939, Kac gave a talk at the Institute for Advanced Study in Princeton.
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He stated the following conjecture: Let f(n) be an additive function for which
|f(p)| < 1, f(pα) = f(p) (this is assumed only for the sake of simplicity), and

∑

p<x

f(p)

p
= A(x),

∑

p<x

f2(p)

p
= B(x) → ∞.

Then the density of integers n for which

f(n) < A(n) + c
√

2B(n)

is

1√
2π

∫ 1

−∞
exp(−x2)dx.

He further stated that he could prove it if f(n) =
∑

p|n f(p) is replaced by

fk(n) =
∑

p|n
p<pk

f(p). I realized that if in fact Kac could prove this, then

by using Brun’s method, I could prove his conjecture. After the lecture
we got together and soon saw that by combining our knowledge (i.e., the
Central Limit Theorem and Brun’s method) we could indeed prove the
conjecture. Thus, we would say with a little impudence that probabilistic
number theory was born. Using our theorem with Kac, Wintner and I proved
that the convergence of the three series mentioned really is both necessary
and sufficient for the existence of the distribution function. Of course, many
nice problems remain open in this field. I refer the reader to the book of
Elliott.

Davenport and I proved in 1935 that for any integer sequence 1 < a1 <
a2 < · · · , the sequence of multiples always has a logarithmic density which
equals its lower density. Suppose a1 < a2 < · · · is an integer sequence with
positive upper logarithmic density. Davenport and I proved that there is an
infinite subsequence where air divides air+1 . I also proved that if

∑
i

1
ai log ai

is large then the sequence cannot be primitive, i.e., ai � aj cannot hold.
Now the following problem is annoying: Let 1 < α1 < α2 < · · · be a

sequence of real numbers and assume that for all i �= j, k we have

|kαi − αj | ≥ 1. (20)

Note that if the αi’s are integers then (20) implies that no αi divides any αj ,
i �= j. Does (20) imply

∑

i

1

αi logαi
= ∞ or

1

log x

∑

αi<x

1

αi
→ ∞ as x → ∞?

I offer $500 for settling this annoying diophantine problem.
Let εn → 0 arbitrarily slowly. Then the density of integers which have

a divisor in (n, n1+εn) tends to 0 as n → ∞. This is a best possible
strengthening of a result of Besicovitch. I conjectured infinitely long ago that
the density of integers which have two divisors d1 and d2 with d1 < d2 < 2d1
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exists and is 1. This, and much more was finally proved by Maier and
Tenenbaum (for which they collected $250). For more results in this subject,
see the books of Halberstam-Roth [17] and Hall-Tenenbaum [18].

Let me close this section with a few problems about (my old friends)
the primes. In fact, my very first paper was on a new proof of Chebyshev’s
theorem: “Chebyshev said it and I’ll say it again; there is always a prime
between n and 2n”. Kalmár and I independently found in 1939 a very simple
proof that

∏
p≤n p ≤ 4n, and I found a simple proof that

∑
1
p = ∞, but

perhaps these are trifles.
Set dn = pn+1 − pn (where, as usual, pn denotes the nth prime). I proved

in 1934 that for infinitely many n we have

d(n) >
c logn log logn

(log log logn)2

and in 1938, Rankin added a factor of log log log log n to the numerator. I
used to offer $10,000 for a proof that

dn >
c logn log logn log log log logn

(log log logn)2

holds for every c and infinitely many n. However, I would now like to offer
only $5,000 for this conjecture, and instead offer $10,000 for a proof that

dn > (logn)1+ε (21)

for some ε > 0. Of course, this would also imply the previous conjecture, so
I suppose that (21) would actually cost me $15,000!

Ricci and I proved that the set of limit points of dn/ logn has positive
measure. No doubt they are everywhere dense. Maier has the sharpest partial
results and he has collected $250 more than once for some of these. Maier
and I had dinner at Pomerance’s house one night and afterwards, Maier drove
me to my hotel. I told Maier to stop at the library on the way so I could
find my paper which would show that I owed him $250. Sure enough, we
found the reference and I handed Maier the well-deserved $250. The next
day Pomerance said jokingly that this was certainly an expensive taxi ride.

In 1937, Kalmár and I proved that for every ε > 0, there is an elementary
proof for

(1 − ε)
n

lnn
< π(n) < (1 + ε)

n

lnn
, n > n0(ε). (22)

Our proof did not give an elementary proof of the prime number theorem
since it was based on the following fact. Let δ = δ(ε) be small but fixed.
Then one can find a k so that for every k < t < k2,

t∑

n=1

μ(n) < δt (23)
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where μ is the usual Möbius function. That such a k exists follows from the
prime number theorem but (23) can be shown by a finite computation. This
was a curious logical situation which was perhaps folklore but surely deserved
publication.

This is what happened. In the Spring of 1939 I met Rosser at a meeting
at Duke University and I told him of our result. Rosser in fact already
had a manuscript where he proved the analogous result for arithmetic
progressions as well. Thus, Kalmár and I decided not to publish and agreed
that Rosser could mention our result in his paper. However, Rosser’s paper
never appeared. (It seems the referee, who was not a number theorist, had
difficulties in reading it, and Rosser eventually lost interest). Diamond and I
still felt that these results deserved publication and we tried to reconstruct
our old proof with Kalmár. In any case, we found a proof which was perhaps
not identical to the original and which appeared around 1980 in Enseignement
Math. Incidentally, the Tauberian theorem of Ingham seems to imply that
the prime number theorem should follow from the general asymptotic formula
for n! but no one has ever found an elementary proof of Ingham’s Tauberian
theorem.

3. Polynomials

Let me now turn to polynomials. Turán and I obtained many important
results on the distribution of the roots of polynomials based on the asymptotic
properties of the polynomials. I also obtained many inequalities about
polynomials with Gallai (who in those days was called Grünwald), Offord and
many others. As an example, I state an elementary result with Gallai (which
somebody as a joke called it a generalization of a theorem of Archimedes):
Let the polynomial f(x) have real roots f(−1) = f(1) = 0 and no other roots
in [−1, 1], and suppose sup−1≤x≤1 f(x) = 1. Then

∫ 1

−1

f(x)dx ≤ 4/3

with equality only for f(x) = 1 − x2.
I have a long paper on polynomials with Herzog and Piranian in which we

state many problems and results. Here I only want to mention one: For every
εn > 0 there is a polynomial fn(z) =

∏n
i=1(z − zi), |zi| = 1, for which the

measure of the set for which |fn(z)| < 1 is less than εn. It would be of some
interest to determine the dependence of εn on n, e.g., perhaps εn > 1/(logn)c.

Offord and I proved that among all polynomials

n∑

k=1

εkzk, εk = ±1,
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for all but o(2n/(logn log logn)1/2) polynomials the number of real roots is

2

π
logn+O

(
(logn)2/3 log logn

)

(this sharpened earlier results of Littlewood and Offord).
Clarkson and I (and independently, Laurent Schwartz) proved that if∑

k 1/nk < ∞ and f(x) is a continuous function on (−1, 1) which can be

approximated by polynomials gn,k(x) =
∑k

i=1 aix
ni then f(x) is analytic in

the unit circle. A very well known theorem of Müntz and Szász asserts that
if
∑

k 1/nk = ∞ then every continuous function can be approximated by
polynomials gn(x) =

∑
i aix

ni , and that
∑

k

1/nk = ∞ is necessary for this,

as well. Our result makes this result clearer.
To end this section I would like to mention an old result on polynomials

which was later followed up by a number of mathematicians. Let fn(x) be
a polynomial of degree n with only real roots, none in (−1, 1), and with
|f(x)| ≤ 1 for −1 ≤ x ≤ 1. Then

sup
−1≤x≤1

|f ′(x)| ≤ en

2
.

Here, en
2 is best possible. If we take −1 + c < x < 1− c then we get |f ′(x)| <

4
c2
√
n and we only have to assume that f(x) has no roots in the interior of

the unit circle.

4. Combinatorics

One of my very favorite problems here is the following old conjecture of Faber,
Lovász and myself: Let G1, . . . , Gn be n edge-disjoint complete graphs on n
vertices. We conjectured more than 20 years ago that the chromatic number
of

⋃n
i=1Gi is n. I offer $500 for a proof or disproof. Not long ago Kahn proved

that the chromatic number of
⋃n

i=1Gi is at most (1 + o(1))n. I immediately
gave him a consolation prize of $100. It might be of interest to determine the
maximum of the chromatic number of

⋃n
i=1Gi if we require that Gi

⋂
Gj ,

i �= j, is triangle-free, or should have size at most 1, but it is not clear we get
a nice answer in these cases.

A family of sets Ai, i = 1, 2, . . . , is called a strong �-system if all the
intersections Ai

⋂
Aj , i �= j, are identical. The family is called a weak �-

system if we only assume that all the sizes |Ai

⋂
Aj |, i �= j, are the same.

Rado and I [9, 10] investigated the following question: Denote by f(n, k)
the smallest integer for which every family of sets Ai, 1 ≤ i ≤ f(n, k), with
|Ai| = n for all i contains k sets which form a strong �-system. In particular,
we proved

2n < f(n, 3) < 2nn!
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Rado and I conjectured that

f(n, 3) < cn3 (24)

for some constant c3. No doubt, it is true that

f(n, k) < cnk .

I offer $1,000 for a proof or disproof of (24). Recently, Kostochka proved (see
his article in this volume)

f(n, 3) < n!

(
c log logn

log log logn

)−n

.

I gave Kostochka a consolation prize of $100. More recently, Axenovich,
Fonder-Flass and Kostochka improved this to

f(n, 3) < (n!)1/2+ε

for every ε > 0 provided n > n0(ε).
Let f(n) → ∞ arbitrarily slowly. Is it true that there is a graph G of

infinite chromatic number such that for every n, every subgraph of G of n
vertices can be made bipartite by the omission of at most f(n) edges? I offer
$250 for a proof or disproof. It would be of interest to prove or disprove the
existence of a graph G of infinite chromatic number for which f(n) = o(nε)
or f(n) = o

(
(log n)c

)
.

Many years ago I asked: Is there a sequence A of density 0 for which
there is a constant c(A) so that for n > n0(A), every G(n, c(A)n) contains
a cycle whose length is in A? (Here, G(n, e) denotes a graph with n vertices
and e edges). This question seems very interesting to me and I certainly offer
$100 for an answer. I am almost certain that if A is the sequence of powers
of 2 then no such constant exists. What if A is the sequence of squares? I
have no guess. Let f(n) be the smallest integer for which every G(n, f(n))
contains a cycle of length 2k for some k. I think that f(n)/n → ∞ but that
f(n) < n(logn)c for some c > 0.

Next, I would like to discuss some problems connected to Ramsey’s

theorem. Denote by r
()
k (p1, . . . , p) = n the smallest integer so that if you

color the k-tuples of |S| = n by � colors, there will always be for some
i a subset of S of size pi all of whose k-tuples have color i. (Often, we

will omit writing the superscript (�).) The existence r
()
k (p1, . . . , p) was

first proved by Ramsey. It will be convenient to use the arrow notation

introduced by Rado: n → (p1, . . . , p)
()
k means that r

()
k (p1, . . . , p) ≤ n.

Of course, n � (p1, . . . , p)
k(�)

means that r
()
k (p1, . . . , p)k > n. Also, we

will use the square bracket notation introduced by Hajnal, Rado and myself:

n → [p1, . . . , p]
()
k means that if we color the k-tuples of a set S by � colors,

there always is for at least one i, a subset Si of S of size pi, no k-tuple of
which is colored with color i. If all the pi are equal to the same p, we will

simply write n → (p)
()
k and n → [p]

()
k .
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As has been written elsewhere (see [11]), Ramsey’s theorem was rediscov-
ered in 1933 by Szekeres. He and I proved

cn2n/2 < r2(n, n) <

(
2n− 2

n− 1

)
(25)

or in the arrow notation
(

2n− 2

n− 1

)
→ (n)22 and cn2n/2 � (n)22.

In other words, if one 2-colors the edges of a complete graph on
(
2n−2
n−1

)

vertices, there is always a monochromatic complete subgraph K(n) on n
vertices.

Denote by f(n) the smallest integer for which f(n) → (n)22 holds, so that
f(n) = r22(n, n). I offer $100 for a proof that limn→∞ f(n)1/n exists, and $250
for the value c of this limit. It follows from (25) that

√
2 ≤ c ≤ 4. Perhaps c =

2? Very little progress has been made in resolving these questions. Spencer has
improved the constant in (25), and Thomason showed f(n) <

(
2n−2
n−1

)
/n1/2−ε.

My proof of the lower bound of (25) is nonconstructive. I offer $100 for a
constructive proof that f(n) > (l+ε)n. Frankl and Wilson have a constructive
proof that f(n) > nc logn. It is now known that

c1n
2

logn
< r2(3, n) <

c2n
2

logn
.

The upper bound is due to Ajtai, Komlós and Szemerédi. The recent lower
bound was proved by J. H. Kim using very clever probability arguments. It
would be nice to have an asymptotic formula for r2(3, n). I used to think that
the probability method would give

r2(4, n) > n3−ε

and, in fact, more generally,

r2(k, n) >
nk−1

(logn)2

for fixed k as n → ∞. It now seems that I am wrong and new ideas will
be required. The current record for a lower bound of r2(4, n) is cn5/2 due to
Spencer. The proof of Ajtai, Komlós and Szemerédi gives

r2(�, n) < cn−1/ logn

for fixed �.
For more general Ramsey numbers, much less is known. Hajnal, Rado

and I proved

2cn
2

< r3(n, n) < 22
n

. (26)

We believe the upper bound is closer to the truth, although Hajnal and I
have a result which seems to favor the lower bound. We proved that if we
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color the triples of a set of n elements by two colors, there is always a set
of size s = (log n)1/2� on which the distribution is unbalanced, i.e., one of
the colors contains at least (12 + ε)

(
s
3

)
triples. This is in strong contrast to

the case k = 2, where it is possible to 2-color the pairs of an n-set so that in
every set of size f(n) logn, where f(n) → ∞, both colors get asymptotically
the same number of pairs. We would begin to doubt seriously that the upper
bound in (26) is correct if we could prove that in any 2-coloring of the triples
of an n-set, some set of size s = (logn)ε� for which at least (1− η)

(
s
3

)
triples

have the same color. However, at the moment we can prove nothing like this.
Hajnal proved

r3(n, n, n, n) > 2c2
n

which very strongly favors the upper bound in (26).
I now turn to an old conjecture of Graham and myself which lies at the

interface of Ramsey theory and number theory. Is it true that no matter how
one k-colors the integers ≥ 2 one can always find a solution to

1 =
∑

a∈A

1

a
, for a finite monochromatic subset A? (27)

We could never prove this even for k = 2. If the answer is in the affirmative,
then determine or estimate the smallest integer f(k) for which any k-coloring
of {2, 3, . . . , f(k)} has the desired property. One can conjecture that if the
integers are k-colored then for one of the color classes, every positive rational
can be represented as a finite sum of the

∑
a∈A

1
a . In fact, let 1 < a1 < · · · ≤

ak ≤ n be a sequence of integers satisfying
∑k

i=1
1
ai
> f(n). Is it true that if

f(n)

(log logn)2
→ ∞

then there is always a subsequence of the ai’s the sum of whose reciprocals
sum to 1. The strongest conjecture we could not disprove states there is an
absolute constant c so that if

∑

ai<n

1

ai
> (c+ ε)(log logn)2

then (27) has a solution among the ai’s, but if c+ ε is replaced by c− ε then
this no longer holds. Perhaps all this is a bit too optimistic, but we do believe
that if

∑

ai<n

1

ai
> c logn

then (27) has a solution in the ai’s, which if true, would show that our problem
is a “Turán”-type problem.

I have worked quite a lot on problems in extremal graph theory. Since
there are several excellent sources for such problems (the book of Bollobás
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[1] and the survey paper of Simonovits [21]). I will restrict myself to just a
few nice problems here.

Let H be a graph. The Turán number Tn(H) of H is the smallest integer
en for which every G(n, en) contains H as a subgraph. Simonovits and
I conjectured long ago that if H is bipartite and every induced subgraph
of H has a vertex of degree < r, then

Tn(H) < cn2−1/(r−1). (28)

This conjecture is open even for r = 3. We further conjecture that if H has
an induced subgraph, every vertex of which has degree ≥ r, then

Tn(H) > n2+ε−1/(r−1)

I offer $500 for a proof or disproof of each of our conjectures.
Denote by fn(H) the number of graphs on n vertices which do not contain

H as a subgraph. Clearly fn(H) > 2Tn(H). I conjectured

fn(H) < 2(1+o(1))Tn(H). (29)

This is open even for H = C4. It is well known that Tn(C4) = (12 +o(1))n3/2.
On the other hand Kleitman and Winston only proved

fn(C4) < 2cn
3/2

.

Simonovits and I also conjectured that every G(n, Tn(H)) contains at least
two copies of H . This is also open for C4.

5. Geometry

I want to conclude this paper with some problems in geometry. Since there are
several excellent sources for such problems (the book by Croft, Falconer and
Guy [4] and the survey article of Erdős-Purdy [13]), I will limit my remarks.

Let x1, . . . , xn be n distinct points in the plane. Denote by f(n) the
minimum possible number of distinct distances d(xi, xj). Thus, any set of n
points in the plane determines at least f(n) distinct distances. I conjectured
[7] in 1946 that

f(n) > cn/
√

logn. (30)

The lattice points show that (30) if true is best possible. I offer $500 for a
proof or disproof of (30).

Denote by g(n) the maximum number of times the same distance can
occur, i.e., g(n) is the maximum number of pairs for which d(xi, xj) = 1,
where the maximum is taken over all configurations x1, . . . , xn. I conjectured
in my 1946 paper that

g(n) < n1+c/ log log n (31)
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for some c > 0. The lattice points again show that (31) if true is best possible.
I offer $500 for a proof or disproof of (31). The best results so far are f(n) >
n3/4 and g(n) < n5/4 + ε for any ε > 0 and n > n0(ε).

Let x1, . . . , xn be n distinct points in the plane. Let h(n) be the largest
integer so that for every xi there are ≥ h(n) points equidistant from xi. Is
it true that for n > n0(ε) we have h(n) = o(nε)? I offer $500 for a proof but
only $100 for a counterexample.

Szemerédi conjectured that if x1, . . . , xn are n points in the plane with
no three on a line then they determine at least n/2� distinct distances (but
he could only prove n/3).

Let x1, . . . , xn be a convex polygon in the plane. Consider the
(
n
2

)

distances d(xi, xj) and assume that the distance ui occurs si times. Clearly

∑

i

si =

(
n

2

)
.

I conjectured and Fishburn proved that
∑

i

s2i < cn3.

I also conjectured that
∑

i s
2
i is maximal for the regular n-gon for n > n0. If

convexity is not assumed then I conjectured that
∑

i

s2i < n3+ε (32)

for any ε > 0 and n > n0(ε). I offer $500 for a proof or disproof of (32).
An old conjecture of mine states that if x1, . . . , xn are n points with no

five points on a line then the number of lines containing four of the points is
o(n2). I offer $100 for a proof or disproof. An example of Grünbaum shows
that the number of these lines can be > cn3/2 for some c > 0, and perhaps
n3/2 is the correct upper bound. Sylvester observed that one can give n points
in the plane so that the number of points passing through exactly three of

our points is as large as n2

6 − cn for some constant c > 0.
Purdy and I considered the following related problem. If we no longer

insist that no five of the xi can be on a line then the lattice points in the
plane show that we can get cn2 distinct lines each containing four (or more)
of our points, and in fact, c1n

2 containing exactly four of them. Denote by
f(n) the maximum number of distinct lines which pass through at least four
of our points. Determine or estimate f(n). Perhaps if there are cn2 distinct
lines each containing more than three points, then there is an h(n) → ∞ so
that there is a line containing h(n) distinct points. We can not even prove
h(n) ≥ 5 but we suspect h(n) → ∞, and perhaps h(n) > εn1/2 for some
ε > 0. It is easy to see that h(n) < cn1/2 for some c > 0.

Finally, let me state the Erdős-Klein-Szekeres problem. This has quite a
nice history which can be found in [11]. Let f(n) be the smallest integer r
so that any configuration of r points in the plane with no three on a line
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must contain the vertices of a convex n-gon. It is known that f(4) = 5 and
f(5) = 9. Szekeres conjectured that f(n) = 2n−2 + 1. It is known that

2n−2 + 1 ≤ f(n) ≤
(

2n− 4

n− 2

)
+ 1

and these bounds have remained unchanged for many years. I would certainly
pay $500 for a proof of Szekeres’ conjecture.
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1. Dedication

This paper has no connection with the two papers jointly authored by Paul
Erdős and myself; nor does it overlap any of the many conversations we had.
But I feel it is appropriate to dedicate the paper to him. It has the flavor of the
mathematics we both particularly enjoyed: very explicit problems challenging
us to answer “yes” or “no”.

Let me take the occasion to express my admiration to Paul for his style,
his enthusiasm, and his incredible ability to do something effective on just
about any problem posed to him. I shall mention just one sample: the so-called
Erdős-Kaplansky lemma which appears on page 67 of Jacobson’s Structure of
Rings. This came about when I mentioned to him the then unsolved problem
of determining the dimension of the full dual of an infinite dimensional vector
space over a division ring D. The key point needed is to exhibit as many
linearly independent sequences as the cardinal number of D. When D is
commutative, Vandermonde does the trick, but a different idea is needed
to cope with noncommutativity. He listened politely, but of course we all
(or almost all) do that. But within twenty-four hours he did much more:
he returned with a novel workable idea. Needless to say, Paul is equally at
home in the finite or infinite, and this was a dandy example of a delicate
Zornification. (Incidentally, although it is very late in the day, I take this
publication as an opportunity to publicly ask Jake to delete my name in a
future printing. The person who merely asked the question should not have
his or her name attached to a theorem.)

To conclude this dedication I mention a theorem which I learned from
him (along with a slick proof): any countably infinite set has continuum
many infinite subsets such that any two have finite intersection. There have
been two occasions where this was just what I needed: on page 41 of Linear
Algebra and Geometry—A Second Course, and in the paper Representations
of separable algebras in volume 19 of Duke. If I had never met Paul, two
problems might still be awaiting solution.

Happy birthday, Paul!
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2. Introduction

In a recent paper [1] Arno settled two questions that go back to Gauss:
he showed that the classical list of 54 imaginary quadratic fields with class
number 4 is complete, and deduced the completeness of the following well
known list of 33 numbers not divisible by 4 which are uniquely expressible as
a sum of three squares:

1, 2, 3, 5, 6, 10, 11, 13, 14, 19, 21,
22, 30, 35, 37, 42, 43, 46, 58, 67, 70, 78,
91, 93, 115, 133, 142, 163, 190, 235, 253, 403, 427.

(1)

Remark 1. (a) Through some mysterious slip the number 19 disappeared
from Arno’s list.

(b) Until Sect. 7 uniqueness is always to be taken in the simple minded sense,
ignoring order and signs.

(c) To get all integers which are uniquely expressible as a sum of three
squares, take all products of the numbers in (1) by powers of 4.

It is timely to seek similar results for ternary forms other than x2 + y2 +
z2. Now there is substantial literature concerning formulas for the number
of representations of integers by ternary forms. The relation between this
literature and what I do here will be discussed in Sect. 7. In the body of the
paper, in an elementary and self-contained way, I deduce from Arno’s theorem
results on three ternary forms. The final section explores three other forms.

The three selected forms are x2+y2+2z2, x2+2y2+2z2, and x2+2y2+4z2.
I chose these because in Dickson’s book [4, pp. 96–97] they are discussed right
after sums of three squares and used later in the book in treating Waring’s
problem for cubes. So this is my homage to Dickson, who introduced me to
integral quadratic forms in a course during the summer of 1938, possibly the
last time he presented his famous elementary course on number theory.

In stating Theorems 1–3 three lists extracted from (1) play a role. The
first consists of the even numbers in (1):

2, 6, 10, 14, 22, 30, 42, 46, 58, 70, 78, 142, 190. (2)

For the second list divide the entries of (2) by 2:

1, 3, 5, 7, 11, 15, 21, 23, 29, 35, 39, 71, 95. (3)

The last consists of the entries in (1) which are congruent to 1 (mod 4):

1, 5, 13, 21, 37, 93, 133, 253. (4)

Theorem 1. The numbers uniquely represented by x2 + y2 + 2z2 consist of
(3) and 4k6 (k = 0, 1, 2 . . .).

Theorem 2. The numbers uniquely represented by x2 + 2y2 + 4z2 consist of
(2), (4), and 4k3 (k = 0, 1, 2 . . .).
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Theorem 3. The numbers uniquely represented by x2 + 2y2 + 4z2 consist of
(3) and four even numbers: 2, 10, 26, 74.

Note that in Theorem 3 the list is finite.
Although the information is not needed in this paper, it is probably

helpful for the reader to have available the integers not represented by the
four forms under discussion.

x2 + y2 + z2 and x2 + 2y2 + 2z2 : 4k(8n+ 7),

x2 + y2 + 2z2 and x2 + 2y2 + 4z2 : 4k(16n+ 14).

3. Four One to One Correspondences

In this section we establish various equalities between numbers of representa-
tions. In each case a map will be defined, followed by a display of its inverse.
In the first instance the routine verification that the product both ways is
the identity will be presented; after that the details will be left to the reader.

Let A be a given odd integer. We define three numbers N , P , Q as follows:
N is the number of representations of 2A by x2 + y2 + z2, P the number of
representations of A by x2 + y2 + 2z2, and Q the number of representations
of A by x2 + y2 + 4z2.

Lemma 1. N = P = Q.

Proof of N = P . Given a representation A = u2 + v2 + 2w2 we pass to 2A =
(u+v)2+(u−v)2+(2w)2. For the reverse map, suppose that 2A = r2+s2+t2

is given. Note that two of r, s, t must be odd and the third even. Say t is
even. We pass to A = [(r + s)/2]2 + [(r − s)/2]2 + 2(t/2)2. After u, v, ww →
u + v, |u − v|, 2w, to perform the second map we note that u and v have
opposite parities, so that u + v and |u − v| are odd. Thus the second map
sends u + v, |u − v|, 2w back into u, v, w. For the product the other way,
r, s, t → (r + s)/2, |r − s|/2, t/2 and then back to r, s, t. �

Proof of P = Q. Given a representation A = u2 + 2v2 + 4w2, we pass to
A = u2 + 2v2 + (2w)2. For the reverse, given A = r2 + s2 + 2t2 we note
that r and s have opposite parities. Assume that s is even and pass to A =
r2 + 4(s/2)2 + 2t2. �

Lemma 2. Let B be any integer. Then the number of representations of B
by x2 +y2+2z2 equals the number of representations of 2B by x2 +2y2+2z2.

Proof. Given B = u2 + v2 + 2w2 we pass to 2B = 2u2 + 2v2 + (2w)2. For
the reverse, given 2B = r2 + 2s2 + 2t2 we note that r is even and pass to
B = 2(r/2)2 + s2 + t2. �
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Lemma 3. Assume C ≡ 1 (mod 4). Then the number of representations of
C by x2 +y2+z2 equals the number of representations of C by x2 +2y2+2z2.

Proof. From C = u2 + 2v2 + 2w2 we pass to C = u2 + (v + w)2 + (v − w)2.
For the reverse, write C = r2 + s2 + t2 and note that C ≡ 1 (mod 4) implies
that two of r, s, t are even and the third odd. Say r and s are even. We pass
to C = 2[(r + s)/2]2 + 2[(r − S)/2]2 + t2. �

4. Partial Results Obtainable Without Reference
to Class Numbers

The next lemma will be used in proving Lemma 5.

Lemma 4. In a representation by x2 + y2 + 2z2 of a number divisible by 8,
x, y, and z must be even.

Proof. We have

8D = x2 + y2 + 2z2. (5)

Necessarily x and y have the same parity. Suppose that they are odd. Then,
since the square of any odd number is congruent to 1 (mod 8), we have x2 +
y2 ≡ 2 (mod 8). The element 2z2 is congruent to 2 or 0 (mod 8), according
as z is odd or even. In either case (5) is contradicted. Therefore x and y are
even and it follows that z is even. �

Lemmas 5 and 6 are of course portions of Theorems 1 and 2. They are
presented at this point to emphasize that their proofs do not require class
number information. All that is needed is the following sharpening of the
three square theorem, first published by Legendre in 1798: if a number is not
divisible by 4 and not congruent to 7 (mod 8) then it has a representation
as x2 + y2 + z2 with the greatest common divisor of x, y, and z equal to 1.
This quickly implies that the entries in (1) are square free. See [2, p. 304] for
more details.

In short: Lemmas 5 and 6 could have been proved 200 years ago.

Lemma 5. The even numbers uniquely represented by x2 + y2 + 2z2 are the
multiples of 6 by powers of 4.

Proof. Let 2F be uniquely represented by x2+y2+2z2. Note in the first place
that F is a sum of three squares. This follows from the form of the numbers
represented by x2 + y2 + z2 and x2 + y2 + 2z2, as exhibited at the end of
Sect. 2. But we can see this at once directly: if 2F = u2 + v2 + 2w2, u and v
must have the same parity and we deduce F = [(u+v)/2]2+[(u−v)/2]2+w2.
A similar remark is needed in Lemma 6 and will be left to the reader.

Write F = r2+s2+t2. Then 2F = (r+s)2+(r−s)2+2t2. We can permute
r, s, and t and so r and s are eligible to play the role of t. We get more than
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one representation of 2F by x2 + y2 + 2z2 unless r = s = t = G, say. Thus
F = 3G2. Furthermore, this argument is applicable to any expression of F as
a sum of three squares and so F = G2 +G2 + G2 is the only representation
of F a sum of three squares. By the remarks preceding the statement of
Lemma 5, we see that F is a multiple of 3 by a power of 4, and so 2F has
the form 4k6. We still have to verify that these numbers 4k6 are uniquely
represented by x2 + y2 + 2z2. The number 6 is checked by inspection, and
Lemma 4 looks after the others. �

Lemma 6. Assume that H is congruent to 3 (mod 4) and that H is uniquely
represented by x2 + 2y2 + 2z2, then H = 3.

Proof. The argument is similar. We observe that H is a sum of three squares.
When we write H = r2 + s2 + t2 all three are odd. With any choice for r we
can write

H = r2 + 2[(s+ t)/2]2 + 2[(s− t)/2]2.

Therefore r = s = t = J , say. Moreover H = J2 + J2 + J2 is the only
representation of H as a sum of three squares. It follows that H must be 3.�

This section concludes with another preliminary lemma.

Lemma 7. Suppose that 2K is uniquely represented by x2 +2y2+4z2. Then
K is uniquely represented by x2+2y2+2z2, and in this unique representation
y = z.

Proof. Suppose that

K = u2 + 2v2 + 2w2 = r2 + 2s2 + 2t2.

Then

2K = 2u2 + (2v)2 + 4w2 = 2u2 + 4v2 + (2w)2

= 2r2 + (2s)2 + 4t2 = 2r2 + 4s2 + (2t)2.

The assumed uniqueness shows that u = r and that v = w = s = t. �

5. Proofs of Theorems 1–3

Proof of Theorem 1. Lemma 1 has looked after the odd numbers uniquely
representable by x2 + y2 + 2z2, showing that they are given by (3). Lemma 5
looks after the even numbers. �
Proof of Theorem 2. Lemma 2 takes care of even numbers, Lemma 4 ac-
counts for the odd ones congruent to 1 (mod 4), and Lemma 6 asserts that
for those congruent to 3 (mod 4) the only possibility is 3. �



76 Irving Kaplansky

Proof of Theorem 3. Lemma 1 looks after odd numbers. For even numbers,
Lemma 7 is ready. It calls for us to examine all the numbers in Theorem 2 and
check whether in their unique representation by x2+2y2+2z2 we have y = z.
The survivors get doubled. The work is facilitated by initially discarding all
numbers in Theorem 2 which are not represented by the binary form x2+4y2.
It turns out that the survivors are 1, 5, 13, and 37; their doubles are 2, 10,
26, and 74. �

6. The Literature

As remarked in Sect. 2, there is a substantial literature on the number
of representations of integers by ternary forms. Here the representations are
being counted in the inflated sense, meaning that both the order and the signs
of the summands are taken into account. During the 1920s there was a flurry
of work, including the papers [3, 5], and [9] by Bell, Jones, and Uspensky.

(It gives me pleasure to cite a research paper by Eric Temple Bell;
I had the privilege of meeting him during a 1950 visit to Caltech. Several
generations of readers, including myself, have appreciated his expository and
historical writing. Let me mention also his science fiction, written under
the pseudonym John Taine. I specially recommend Green Fire; The Purple
Sapphire and Quayle’s Invention are also excellent. The Iron Star is still in
print. Constance Reid has informed me that her current project is a biography
of Bell.)

A fairly definitive result appears as Theorem 86 on page 194 of [6]. It
applies to all positive definite ternary forms. As is to be expected, what is
being counted is the total number of representations by all the forms in a
genus. Separating out a single form in a genus is an extra enterprise; the
papers [7] and [8] make a contribution to this.

Let me cite a sample from [5], using the notation of that paper. Jones
writesN(n) for the number of representations of n by x2+y2+z2 and A(n) for
the number of representations of n by x2 + y2 + 2z2. Then A(n) = N(2n)/3
when n is odd; this is quite parallel to the N = P portion of Lemma 1,
and leads quickly to Theorem 1 for odd numbers. The next statement is
A(2n) = N(n). This has no counterpart in my paper; it is a typical example of
the fact that counting all the representations usually leads to neater formulas.
But if the target is unique representation in the simple minded sense then
for even numbers we must argue as in Lemma 5.

It is only for a handful of forms that we are ready to derive results on
unique simple minded representations; for the others we have to wait for more
information on class numbers.
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7. Concluding Remarks

(a) The form x2+2y2+3z2. This form is treated in [4, p. 101] by a reduction
to x2 + 2y2 + 2z2. Nevertheless, this is one of the forms that is waiting
for more information on class numbers. But I was curious and Noam
Elkies generously took the time to program and run a computation up
to 16,383(= 214 − 1). For odd numbers the resulting list was (6).

1, 5, 7, 13, 17, 23, 47, 55. (6)

For even numbers the result is recorded in Theorem 5 below. This was
sufficiently striking that I decided to return to the drawing board to
see whether I could prove it now. It turned out that there was enough
information available to derive the needed preliminary theorem on a
case with two representations.

Theorem 4. The even numbers with exactly two representations by x2 +
y2 + 2z2 are

2, 4, 12, 22, 38, 44, 86, 134, 326 (7)

and multiples of the entries in (7) by powers of 4.

From this Theorem 5 was deducible.

Theorem 5. The even numbers uniquely represented by x2 + 2y2 + 3z2 are
the odd powers of 2.

Theorem 5 is an addition to the growing list of theorems suggested by a
computer and then proved.

The proofs of Theorems 4 and 5 follow the pattern of those of Theo-
rems 1 –3, with appropriate minor changes. I am omitting them, offering
them as exercises for the reader.

(b) The forms x2 + 2y2 + 3z2 and x2 + 2y2 + 3z2.

One way of measuring progress is by the size of the discriminant. The
forms x2 + y2 + z2 and x2 + y2 + 2z2 are the only ones with discriminants
1 and 2, respectively. There are two forms of discriminant 3: x2 + y2 + 3z2

and x2 + 2y2 + 2z2. However, the latter is so closely related to x2 + 2y2 + 3z2

that it merits no attention at this time. So I regard x2 + y2 + 3z2 as the next
challenge. It, too, has to wait for class number information but right now it
is another tempting target for computation.

It is convenient to bring in x2 + 3y2 + 3z2 as well, because then we can
ignore multiples of 3, which simply bounce us back and forth between these
two forms. Elkies found (8) and (9) for the numbers prime to 3 upto 16,383
uniquely represented by x2 + y2 + 3z2 and x2 + 3y2 + 3z2, respectively. (Note
that the entries in (9) have to be congruent to 1 (mod 3) to be eligible for
any kind of representation.) To get the full answer for x2 + y2 + 3z2 adjoin
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multiples of (8) by even powers of 3 and multiples of (9) by odd powers of 3.
For the other form the parities are reversed.

1, 2, 7, 10, 11, 14, 19, 22, 23, 26, 31, 34, 38,
46, 47, 55, 59, 70, 71, 86, 94, 115, 119, 154, 166.

(8)

1, 10, 13, 22, 34, 37, 46, 58, 82, 85, 130, 142, 190, 253. (9)

The lists (6), (8) and (9) could be compared with those obtainable by
assuming the completeness of the existing lists of imaginary quadratic fields
for class numbers bigger than 4. I have not undertaken this comparison as
yet.

(c) Numbers of the form 8n + 3 with two representations as a sum of
three squares. These numbers need not wait for more class number
information: they can be treated right now. The task is entirely
straightforward. There is, however, one thing to note. It will not be
the case here that the numbers are square free. This introduces a
complication; the technique needed to cope with it is available in pages
307–308 of [2].

(d) The form xy + xz + yz. Here is a different chapter in the subject:
the representation of an integer n by xy + xz + yz. This is a ternary
quadratic form, but it is indefinite. If we allow x, y, and z to take both
positive and negative values, then any n would have an infinite number
of representations. The situation is remedied by a restriction to positive
values. More precisely, we take n positive and allow x, y, z to be 0 as well
as positive (note that in fact only one of the three can be 0). Then there is
in this context again a connection between the number of representations
and class numbers. Indeed the number of representations of n (in the
inflated style where the order counts, but of course this time signs do
not enter) is three times the number of equivalence classes of positive
definite binary quadratic forms of discriminant n. To be honest, for this
to work perfectly requires a little creative accounting: representations
that use a zero are given weight 1/2, and the forms a(x2 + y2) and
a(x2 + xy + y2) get weights 1/2 and 1/3, respectively.

The idea goes back to Liouville. It was taken up again in the 1920s by
Mordell and Bell. The note [10] by R. F. Whitehead presents a model concise
proof in half a page. Starting with Whitehead’s note, a curious reader can
trace the earlier references.

Suppose we examine the number of representations in the simple minded
style. It takes only a glance to see that the integers with exactly one
representation are 1 and 2. Those with exactly two representations are 4,
5, 10, 13, 22, 37, and 58. This could have been proved around 1970 as soon as
Baker and Stark (separately) found the classical list of imaginary quadratic
fields with class number 2 to be complete. Of course more can be done now
that we are up to class number 4, but I leave that story for another day.
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In closing I heartily thank Noam Elkies. In addition to the computations
noted above, he ran others that confirmed the correctness (upto 16,383) of
Theorems 1–4.
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1. Introduction

If you stand on the famous Chain bridge in Budapest, you will see below
you the broad sweep of the Danube. But this broad river arose from the
confluence of many small streams. Indeed, there is a point near St. Moritz,
where if a rain drop happens to fall a few centimeters to the north, it will
make its way into the Rhine, and so to the North Sea. If it falls a little
to the west, it will join the Adda and the Po, and end up in the Adriatic,
whereas to the east it would run into the Inn, the Danube, and the Black
Sea. An apparently negligible movement at the start can make a difference
of hundreds of kilometers later on.

We can compare this to the flow of events in life. Each event has its
own sequence of consequences. The consequences of different events will
flow together, and evolve to and fro in an unpredictable manner like the
sinuous bends of a river. But there is one important difference. A river is
the union of its component streams. If one stream dries up, it will make
only a trivial difference to the final flow of the river. But an event is the
intersection of previous events, in the sense that if only one apparently small
and unimportant component fails, it may make a very great difference to the
final consequences.

2. The Erdős Conjecture

Here we look at a typical conjecture of Erdős’s, one which was apparently
a conjecture of no special importance, and trace the flow of events resulting
from it and its combination with other flows, to see how, very plausibly, it
became of considerable importance to us all.

Around 60 years ago Erdős was a young man in Cambridge. He suggested
the conjectures

(a) Any dissection of a square into a finite number of smaller squares must
contain at least two squares of equal size,

(b) At least two such equal squares must touch. (We take the word
“dissection” to have its obvious meaning. To be strictly accurate, we
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would say that the union of the component squares is the original square,
and any two component squares intersect, if at all, in part or all of an
edge. But, in what follows, we will try to present the discussion in a
simple and obvious way, leaving matters of complete rigor to be supplied,
if desired, by the reader.)

This conjecture was noticed by W. R. Dean, then a Cambridge lecturer
(later a London professor). He sometimes visited Christ’s Hospital (a famous
boys’ school). On one such visit he mentioned the conjecture, conceivably
thinking that it might be decided by some of the more capable mathematically
inclined pupils. At least one of the pupils, Arthur H. Stone, took note of
the conjecture. Soon afterwards, he gained a scholarship to Trinity College
Cambridge.

3. The Cambridge Students

Among the other schoolboys sitting the scholarship examination was one,
Cedric A. B. Smith, feeling very miserable. His great ambition was to study
mathematics at Cambridge. But he had just failed one vital examination.
And now he was faced with an impossibly difficult exam paper. The situation
seemed desperate, and he was near to bursting into tears. But at that moment
someone, rejoicing in a warm sunny summer’s day, walked past, cheerfully
whistling the Mexican waltz, “Over the Waves.” Life once more seemed worth
living—perhaps the exam paper was not totally impossible. And if, unlike
Arthur Stone, Cedric Smith did not get a scholarship, at least he was admitted
to Trinity, and his ambition was fulfilled. (Incidentally, both he and Arthur
were told that their applied mathematics was much better than their pure,
which explains how it comes about that Stone is now a leading topologist.)

So, not long afterwards, Cedric Smith walked into his very first university
lecture, on geometry, with great excitement. What new revelations were in
store? He already knew much geometry—about angles, areas, lines, rectan-
gles, triangles, circles, conics, poles and polars, tetrahedra, dodecahedra, and
all that nonsense. But the lecturer mentioned none of that. He added points
together, and multiplied points by noncommutative numbers. At the end,
Smith said to the young man next to him, “That was very confusing.” The
reply was, “Not at all. I thought it was a very good lecture. When is the next
lecture?”—“At 11.”—“No it isn’t, it’s at 10.”

So the two walked into a 10 o’clock lecture. They did not know that there
was a typing error in the timetable, and that it was an advanced lecture.
They did not know that, because the lecturer’s Russian accent was so thick
that for 30 min they did not understand one word.

After the lecture, Smith found that his new friend was R. Leonard Brooks,
the future discoverer of Brooks’s Theorem in Graph Theory (though that was
not obvious at the time.)
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Later on, when Mr. Besicovitch produced some weird mispronunciation
of an English word, and the class roared with laughter, he sternly defended
himself. “Feefty meelion peeple speek yore kind of Eenglesh. Fife handred
meelion peeple speek my kind of Eengleesh.”

Came the Christmas vacation. Smith went out shopping, and met
someone he thought he had seen in lectures. They both stopped. The other
young man said:

“What are you doing here?”— “I live here.”

There followed a long silence, then Smith asked:

“What are you doing here?”—“I live here.”

Another long silence, then the other said:

“I must do the shopping.”

and walked off. But when they got back to Cambridge, it turned out that
the other was Arthur H. Stone, and that, like Brooks, he had a room in New
Court. Smith introduced Stone to Brooks, while Brooks introduced us to a
student of chemistry, William T. Tutte, also of New Court, saying that Tutte
was good at chess.

While we knew that we were real mathematicians, we were still broad
minded enough to talk to someone who was only a chemist. Tutte put a
problem to us: find a semipotential function, i.e., a function S(x) such that

S(S(x)) = exp x. (1)

We couldn’t. So Tutte said: let a be such that S(a) = a. Then

exp a = S(S(a)) = S(a) = a. (2)

For example, we might have a = 0.318 + 1.337i. Differentiate (1) repeatedly,
and substitute a for x in each relation. We find the successive derivatives of
the function S(x) at a, and hence its Taylor series.

This looked plausible, though we weren’t then sure if it converged. Here
is a sketch of a justification. Write ln2 x for ln lnx, ln3 x for ln ln lnx, and so
on. If x is near a, the iterated sequence lnn x converges geometrically to a,
with asymptotic ratio ln′ a = 1/2. Hence as n increases, the limit

f(x) = lim[an(lnn x− a)] (3)

exists, and satisfies f(exp x) = a · f(x), i.e.,

exp x = f−1(a · f(x)). (4)

So S(x), defined as f−1(
√
af(x)) satisfies (1), and its Taylor series can be

found exactly as Tutte did.
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Fig. 1 (a) Moroń’s squared rectangle, with horizontal side 64 and vertical side 66.
(b) An electrical network representing Moroń’s rectangle, with total current 64 and
potential drop 66

4. Squaring a Square

Stone then introduced us to the question of whether a square can be divided
into unequal squares (though he didn’t then know that it came from Erdős.)
We spent some 3 years working on the problem.

The first advance was to realize it was easy to find rectangles divided
into unequal squares, as in Fig. 1a. We drew a rough figure, something like
Fig. 1a. Then the conditions that the interior squares fitted together gave a
set of homogeneous linear equations. We solved these (using suitable short
cuts). The result was always a rectangle of uniquely defined shape, although
clearly it could be magnified in size by any constant factor. Unfortunately,
the two sides were never equal, and never had any very simple ratio. (We
later found that the rectangle shown in Fig. 1a had been already discovered
by Moroń [1925].)

The second stage was to replace the rectangle by an electrical network of
wires, all of unit resistance, as shown in Fig. 1b.

Each horizontal line in the rectangle becomes a node in the network.
Each square becomes a wire (edge) joining the two nodes corresponding to
the horizontal lines between which the square lies. Each wire carries a current
equal to the side of the corresponding square. Since the wires have unit
resistance, this equals the potential drop along the wire. The linear relations
stating that the squares fit together become Kirchhoff’s (1847) laws: the first
law, that the total current entering any node must equal the total current
leaving it, except for the “source” and “sink” nodes at the top and bottom
respectively, and the second law that the total change in potential round a
circuit must be zero.

It follows that the total current is equal to the horizontal side of the
corresponding rectangle, and the total potential drop between source and
sink is equal to the vertical side.
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We can, if we wish, “complete” the network by adding a “battery wire”
joining the sink and source, containing a battery providing the electromotive
force necessary to drive the currents through the network, as in Fig. 1b.
Obviously, we can rotate the rectangle through a right angle, so that
“horizontal” and “vertical” are interchanged. If we do this we get a new
network. The relation of this to the former one is simply that the two
completed networks are topological duals.

We can again calculate the currents (= sides of component squares) by
noting that Kirchhoff’s laws provide linear equations, and the solutions are
given by determinants. But a more interesting way is to use spanning trees,
following Kirchhoff [1847].

For the moment, consider a spanning tree in the network, one not
including the battery wire, as in Fig. 2. Imagine that only the wires in this
tree are now conductive: we could imagine the other wires cut. Let a unit
current flow from source to sink, as in Fig. 2. It will follow a uniquely defined
path. Repeat for every such spanning tree, and add the currents. We get the
currents shown in Fig. 1b.

Fig. 2 A unit current flowing through a spanning tree

To show that in general this procedure gives the network currents, we
show that Kirchhoff’s two laws hold. Clearly Kirchhoff’s first law holds for
the current in each spanning tree, as in Fig. 2, and hence in the total.

To verify Kirchhoff’s second law, we introduce a new construction. The
trees already considered are those spanning trees in the completed network
which do not include the battery edge. Now take a spanning tree which
does include the battery edge, and again suppose that all edges not in this
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tree are cut. Then the nodes will divide into two classes, those connected
through the tree to the positive pole of the battery, and those connected to
the negative pole. To nodes in the first set give potential 1, and to those in the
second set potential 0. Repeat for all spanning trees containing the battery
edge, and add the potentials. We get a set of potentials which necessarily
obey Kirchhoff’s second law. It remains to show that the current in any wire,
as derived by the first construction, is equal to the difference in potential
between its end nodes, as derived by the second construction. But that is
a consequence of the theorem, that if e1 and e2 are two edges in a graph,
then a spanning tree including e1 but not e2 provides in the obvious way one
including e2 but not e1. Take e1 and e2 to be the battery wire and the wire
in question.

From these results it follows that the total current flowing through the
network (= horizontal side of the corresponding rectangle) is equal to the
number of spanning trees in the network which do not include the battery
wire. We called this the “complexity” of the (uncompleted) network. The
total potential drop (= the vertical side of the rectangle) equals the number
of spanning trees in the completed network which do include the battery wire.
But spanning trees in graphs are the same as the bases of the corresponding
matroids. In fact we were dealing with regular patroids [Smith 1972, 1974].

A surprise occurred when Brooks cut up a squared rectangle into its
component squares to form a jigsaw, and challenged his mother to put them
together again to form a rectangle. She did so, but it was not the rectangle he
had started with. The phenomenon was explained by Tutte. As an example,
consider the electrical networks of Fig. 3a, b, corresponding to two rectangles
made up of the same squares differently arranged. (Both have total current
= horizontal side 1,025 and total potential drop = vertical side 592). (These
are not the rectangles tried out on Brooks’s mother, but two new rectangles
constructed by Tutte.)

Tutte pointed out that the nodes P , Q, in Fig. 3a are symmetrically
related to A, B, and C, so they have equal potentials equal to the average of
the potentials of A, B, and C. So one can pick Q up and put it down on top
of P without changing currents, thus deriving Fig. 3b.

Tutte now went on to change Fig. 3a–c, by reflecting the interior of the
triangle in a horizontal mirror, leaving the external connections unaltered,
obtaining in Fig. 3c, d, another pair of rectangles composed of the same
squares.

Acknowledgment. Figure 3 was taken (with suitable modifications) from
Figs. 31 and 32 of J. D. Skinner, Squared Squares: Who’s Who and What’s
What. With kind permission from the author.

Now a new surprise, all four networks had the same total currents, and
total potential drops, so that all four corresponding rectangles had the same
horizontal and vertical sides, though not all the component squares were
shared. Tutte explained that as follows. The uncompleted networks 3a and
3c are topologically isomorphic, hence contain the same number of spanning
trees, and hence the same total currents. If we add battery wires, then any
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Fig. 3 Four electrical networks, each representing a squared rectangle with hori-
zontal side 1,025 (= total current) and vertical side 592 (= total potential drop). (a)
and (b) correspond to rectangles composed of the same squares differently arranged,
and so also do (c) and (d)
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spanning tree including the battery wire and the wire BC in 3a gives rise to
one including the battery wire and the wire A′B′ in 3c. So the numbers of
spanning trees including the battery wire are the same in 3a and 3c, so the
total potential drops are equal.

Brooks, on the one hand, and Stone and Smith on the other, simultane-
ously and independently carried these ideas further, and each succeeded in
producing two rectangles of the same size and shape containing all different
squares, with the exception that two corner squares were the same. By placing
these two rectangles so that the equal corner squares were superimposed, they
each succeeded in producing a square divided into unequal squares, by the
construction shown in Fig. 4.

Erdős’s conjecture was incorrect!! (Stone et al. 1940). (But Sprague 1939,
beat us by a short head.)

Fig. 4 A method of obtaining a square dissected into unequal squares from two
squared rectangles having only one square in common, and that at a corner in each
rectangle

A number of other workers have since been interested in the problem, and
the state of investigation up to date is described in Skinner [1993]. However,
from the point of view of the present discussion, the important fact is that
by this time that, notwithstanding that we knew that Tutte was a chemist,
we were extremely impressed by his mathematical ability.

5. Wartime Developments

The year 1939 was rather like the present (1993), in that there was severe
unemployment. The students of Trinity College, Cambridge, organized a
camp in the Lake District to give some unemployed both a holiday, with
excursions, and also an opportunity to do some work making a lakeside path.
One of the participants was a Tutor (later professor) Patrick Duff. But one
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day it rained hard, Patrick Duff’s tent collapsed, and he was taken into the
big house to dry. Cedric Smith followed to talk to him. Patrick Duff said:

“Do you know Bill Tutte?”–

“Yes.” –

“We’re very worried. He’s no good” –

“He got a first class degree.” –

“His supervisor is disappointed” –

“Well, he’s very good at maths.” –

“Prove it.”

So Smith sent a letter to the College, detailing Tutte’s achievements. But
Trinity sounded rather unimpressed.

Quite soon war broke out. Stone had just arrived in Princeton with a
Visiting Fellowship. He wrote back to the remaining three, saying that he
had met a Hungarian named Erdős, who pronounced English in a Hungarian
manner, so that “pineapple upside down cake” became “pinnayopp-play
oopshiday dovn tsockay,” But that did not prevent them collaborating
mathematically.

Quite soon Tutte joined a group at Bletchley Park. What they did
there was a profound secret. But the group contained some of Britain’s
best mathematicians, and was strongly suspected to dealing with codes and
ciphers. Why was Tutte asked to go to Bletchley, and not to a chemical
establishment? Presumably through Smith’s letter, declaring him to be
an excellent mathematician, even though previously the letter had a cool
reception.

For 3 years Smith was a porter at Addenbrooke’s Hospital, Cambridge.
One day near the end of the war he was cycling past the hospital when he
saw Prof. Duff, and waved. Prof. Duff shouted “Stop! STOP!! S T O P!!!”

“What’s the matter!!??” –

“Do you know Bill Tutte’s address?” –

“Yes, Why??”

“We’ve been told to elect him to a Fellowship at Trinity. But they
didn’t tell us why, or what his address is. So we can’t send a telegram
to congratulate him.”

The past may now be only a memory. But during the war the Germans
had occupied most of western Europe, so that Britain had to get all vital
supplies across the Atlantic, constantly menaced by German submarines.
The situation was not at all good. It would have helped to be able to
decode German messages. The Poles had secretly examined a German coding
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machine as it was transported across the Polish Corridor, so the coding device
was known. It was simple, but fiendishly clever, and was found very difficult to
decode by even the top mathematicians at Bletchley. Very plausible rumor
says that Tutte supplied the vital clue, possibly avoiding military defeat.
The consequences of a Nazi victory would have been horrific—civilization
was saved. And it all began with a conjecture by Erdős!

6. Postwar Developments

To round off this story, we may briefly say what eventually became of the
various dramatis personae. W. R. Dean became Professor at University
College London. Leonard Brooks became an Income Tax Inspector—but
continued to develop mathematical ideas. Arthur Stone was another Fellow
of Trinity, and after a time at Manchester, he and his wife Dorothy both
became Professors of Mathematics at the University of Rochester, NY. Bill
Tutte, now truly a mathematician, via Toronto became Professor at Waterloo,
then Fellow of the Royal Society of Canada, Distinguished Professor, Fellow
of the Royal Society of London, and Founding President of the Institute of
Combinatorics and its Applications. Not bad for only a chemist!

As for Cedric Smith, he heard that the Galton Laboratory needed a
statistician. (The Galton lab is the human genetics section at University
College London.) This seemed an interesting possibility for a first academic
post. He applied, and was interviewed by Prof. Lionel Penrose, and by Prof.
J. B. S. Haldane, who greeted him with “you know why you’ve come here.
Prof. Penrose thinks there might be a job for you. But I don’t think so.”
Nevertheless it did turn out to be a reasonable first job, for Smith is still
there after 47 years.

This gave him a good chance to get to know the famous Erdős in person.
Thus, after he had got married, his mother-in-law complained of the phone
ringing and a deep voice (guess who) saying, “How are you? Vair is your
slave? Is he preaching?” (in conventional English = Where is your husband?
Is he lecturing?). Said she, indignantly, “I haven’t got a slave.”

The University of London ran a series of seminars. Erdős attended every
One. That is to say, he sat there for the first 15 min, with a look on his face as
if to say “I know all that.” Then he walked out. There came the time when
Erdős himself was the speaker. Could he walk out on himself? It seemed
improbable. We waited to see. After 15 min he turned, faced the audience,
said “Rado can explain all this better than I can.”, and sat down.

Later there came an invitation from the Bolyai Mathematical Society
to attend a combinatorial conference in Hungary, and so to see Erdős in his
own town. Smith and Tutte went to the Hungarian Legation in London to get
visas. “What can we do for you gentlemen?” asked the official.—“We want to
go to a mathematical conference.”—“We know all about you, gentlemen. We
can’t give you visas.”—“Why not?”—“Permission has not yet come through
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from Budapest.”—“Well,” said Smith, “if you don’t give me a visa now, I’m
not going.” Anxious phone calls followed, then the official said, “You are very
fortunate, gentlemen. Permission has just come through from Budapest.”

Smith took the visa home, then looked at it. As he remembers, it said
something like “Egy bemenet, semmi kimenet.” He phoned his father-in-law
and asked, “Doesn’t that mean ‘one entry, no exit?’ ”—“Yes. What about
it?”–“I would like to come back.”–“Well, if you’re worried, I’ll phone the
Hungarian legation.” They replied, “We are not mathematicians. We are
only lawyers. We say that if you go in you must come out. What’s worrying
you?”

So next day Smith found himself, feeling hungry, in a train crossing
Belgium. He went to the dining car. Opposite him sat someone reading a
German chemical treatise. Smith speaks little German, and stayed silent.

However, when Smith held up a banknote to pay the bill the German
leaned over and said “C’est trop.” Smith tried to say, in schoolboy French,
that he only wanted change. The Frenchman asked, “Quelle est votre nation-
alité?”, to which Smith replied “Anglais.” There was a long silence, which
did not seem too polite, so Smith asked the Frenchman, “Quelle est votre
nationalité?”—“Oh, I’m American. ‘What are you going to Frankfurt for?”—
“I’m not going to Frankfurt.”—“Then where are going?”—“To Budapest.”—
“Budapest?”, said the American, “Budapest? that’s where I was born.
What are you going to Budapest for?”—“A mathematical conference.”—“A
mathematical conference”, said the Hungarian, “I know some mathemati-
cians. Do you know a mathematician called Erdős?”—“Everyone knows
Erdős.”—“His father was my mathematics schoolteacher.”—“He will be at
the conference.”—“Give him my regards. Do you know a mathematician
called Stone?”—“There are lots of mathematicians called Stone. But the
only one I know went to America and married a mathematician.”—“Was her
name Margaret?”—“No, her name is Dorothy.”—“Then that must be the
Stone I know.”—“He will be at the conference.”— “Give him my regards.”

At Wien Smith found an old second class carriage, more decrepit than
anything he ever remembered seeing, labeled “Orient express, Budapest,
Bucuresti”, and drawn by an ancient steam engine.

When it got to Hegyeshalom they put an electric locomotive onto the
train, and it rushed through the darkness until it cam to a hill of lights, and
a broad river. Itt a nagy szép h́ıres főváros Budapest. Ilyen boldogság!! But
what to do next?

Here he was in the home town of not only Erdős but also of very many
other famous mathematicians. Dr. Surányi, the Society Secretary met him
and took him to his hotel. A group of mathematicians were there, possibly
including Erdős. At the next table sat someone wearing a St. Johns College
Cambridge tie. Smith nervously asked him “Don’t I know your tie?”—“No,
you don’t. You think it’s a St. Johns tie. It isn’t. It’s my old school tie. The
stripes are narrower.” Smith looked up. There was Gabriel Dirac, come for
the conference, wearing a genuine St. Johns tie. The ties were compared.
There was no visible difference.
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The conference went wonderfully well, with Hungarian hospitality and
organization. But that is a story for another occasion.

Erdős is not only one of a line of most distinguished mathematicians
coming from Hungary. He must also be one of the most respected, and one
treated with the greatest affection by all mathematicians. It is both a great
pleasure and a great honor to greet him on his 80th birthday, “much love to
Uncle Paul”,

“Sok szeretettel a Pali Bácsikának!!”
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Encounters with Paul Erdős

Arthur H. Stone

A.H. Stone (Deceased)
Department of Mathematics, Northeastern University, Boston, MA 02115, USA

1. Encounters with Paul Erdős

My first encounter with Paul Erdős was curiously indirect. As a pre-
undergraduate at Cambridge (England) in 1934, I learned from one of
the Trinity College tutors that a mathematician named Erdős, passing
through Cambridge, had mentioned an intriguing conjecture (attributed to
Lusin, I believe), implying that a square could not be dissected into a
finite number of unequal smaller square pieces. I passed this problem on
to three fellow students, and we eventually found methods that produced
counterexamples [1]. Of recent years the advent of high-speed computing has
given rise to a considerable industry listing large numbers of dissections of
squares into unequal squares ([2] and [6] for example), an industry that could
continue indefinitely as there are infinitely many different dissections of this
kind.

I first met Erdős a few years later (around 19401) at Princeton, where I
was a graduate student. Nearly all the mathematicians there were friendly
and approachable, but Erdős excelled them all in that he was always willing
to listen, with attention and encouragement, to other people’s mathematics,
even to lowly graduate students. He listened to my thesis results as they
emerged, as he had listened to my wife’s (already completed) thesis. This, we
found, was and is typical of him.

When I next met Erdős we were at Purdue (1942?2), during World War II.
His arrival there, for a stay of some months, began a little inauspiciously.
Before setting out for the mathematics department, he had engaged a room
and left his luggage there. At the mathematics department he found he
needed something from his room, and Douglas Olds, of the Purdue faculty,
volunteered to walk there with him. As Professor Olds told it, they walked
and walked and walked, until he asked Erdős “Is it much further?” “Fascism
Stalinism!” was the reply “I thought you were taking me there”.

As this indicates, Paul was (and is) strongly interested in politics, with
rather liberal views. He disapproved both of Communism as practiced in

1 P. Erdős remarks: autumn 1939
2 P. Erdős remarks: 1943
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Joedom and of some of the American reactions to it. “Joe” and “Sam” often
rated disapproving remarks. He also disapproved, in general, of Providence,
which he would refer to as the “S. F.” (Supreme Fascist). At that time he
espoused the cause of China—not then “Red China”—and used to raise quite
a bit of money for this cause by volunteering to drink small quantities of
“poison” (i.e., alcoholic beverages) for so many dollars for China. (Nowadays
the U.S. custom for raising money for good causes is for volunteers to walk
so many miles at so much per mile, paid for by other volunteers. This at least
encourages a healthier lifestyle.)

Naturally we continued to discuss mathematics, and wrote a couple of
joint papers [3, 4]. Paul’s method for writing joint papers was, of course, for
him to convey just the essence of his share of the argument; it was up to the
co-author to write the actual paper. (I believe Alexandre Dumas père used
a somewhat similar system.) Unlike many mathematicians, he then showed
little interest in music; but there was one record (a “78” of course) I had that
he was very fond of—Myra Hess playing her piano arrangement “Jesu Joy of
Man’s Desiring” from Bach’s cantata. It is a beautiful piece, and he would
often ask to hear it.

My later encounters with Paul Erdős have been somewhat hit-or-miss;
for example, last Spring my wife and I left our home near Boston to attend
a conference in Columbus at which he was expected to speak, but instead
he gave a talk near Boston precisely during our absence. As someone said,
the Heisenberg uncertainty principle applies to him; you cannot determine
simultaneously his position and his velocity. We have sometimes successfully
attended the same conference—for example a combinatorial one in Calgary,
Canada (1969), resulting in [5], and one on “Real Analysis” in Smolenice
(1991). And we have corresponded, the usual Erdős letter beginning “Dear
Stone, Let p1, p2, . . . , pn be distinct primes” (or points or whatnot), and
listing some interesting but (to me) hopelessly difficult conjectures.

In addition to the foregoing traits, here are two more that even a casual
acquaintance with Paul would reveal. First, he delighted in small children
and infants. (They were the “superbosses” , in his terminology, outranking
older females who were merely “bosses”.) Second, it may be observed that
I have been a bit vague about some dates. But he would remember them
exactly. He remembers events of interest to his friends, too; as someone said,
he remembers the incidence matrix.

2. Some (Very) Elementary Number Theory

Theorem 1. The two Diophantine equations

x2 = λmy ± 1

have at most two nontrivial solutions between them.



Encounters with Paul Erdős 95

Here λ ≥ 1 and m ≥ 2 are given integers, and for “nontriviality” we
require the unknown integers x and y to be greater than 1.

It is convenient to refer to the equations as (∗,+) and (∗,−) respectively,
and to abbreviate “nontrivial solution” by “solution”. Thus the assertion is
that (∗,±) has at most 2 solutions.

Proof. Write (∗,±) as the pair of Pell equations x2 = μz2 ± 1 where, if y is
odd, μ = λm and z = m(y−1)/2, and if y is even, μ = λm2 and z = m(y−2)/2.
In either case we have m | μ (so μ > 1) and z ≥ 1. We can assume that μ is
not a square, else there are no (nontrivial) solutions.

If the equation x2 = μz2 − 1 has solutions, let (x1, z1) be the smallest
positive one. If not, let (x1, z1) be the smallest positive solution of x2 = μz2+1
(which certainly exists). In either case, note that (x1,m) = 1. It is well known
(see e.g. [10]) that all (nontrivial) solutions of x2 = μz2 ± 1 are of the form
(xr, zr) (r = 1, 2, . . .) where

xr + μ1/2zr = (x1 + μ1/2z1)r, xr − μ1/2zr = (x1 − μ1/2z1)r.

Thus zr can be expressed as the finite sum

zr =

(
r

1

)
xr−1
1 z1 +

(
r

3

)
xr−3
1 z31μ+

(
r

5

)
xr−5
1 z51μ

2 + · · · (1)

Lemma 1. If rz1 is a multiple of mt for some nonnegative integer t, and if
(m, 3) = 1, then (for s = 1, 2, . . . ,

[
r−1
2

]
)
(

r
2s+1

)
z1m

s is a multiple of mt+1.

Let p be a prime factor of m, say with multiplicity α ≥ 1, and first suppose
p ≥ 5. In the expression

(
r

2s+ 1

)
z1m

s =
r(r − 1) · · · (r − 2s)

1 · 2 · · · (2s+ 1)
z1m

s,

count the number of occurrences of p as a factor. In the numerator, the factors
rz1m

s provide α(t+ s) occurrences of p. In the denominator, the number is
[

2s+ 1

p

]
+

[
2s+ 1

p2

]
+ · · · < (2s+ 1)(p−1 + p−2 + · · · to ∞) =

2s+ 1

p− 1

which is less than 1
4 (2s + 1) < s. So

(
r

2s+1

)
z1m

s is a multiple of pβ where,
β = α(t+ s) − (s− 1) ≥ α(t+ 1).

In the remaining case p = 2, the same argument shows that the number of
occurrences of 2 as factor in the denominator is at most 2s. In the numerator,
besides α(t+s) occurrences from rz1m

s, s of the factors r−1, r−2, . . . , r−2s
are even and (assuming for the moment that s ≥ 2) at least one of them is
a multiple of 4. So

(
r

2s+1

)
z1m

s (where s ≥ 2) is a multiple of 2γ where
γ = α(t+ s) + (s+ 1) − 2s = β ≥ α(t+ 1) as before.

But if s = 1,
(

r
2s+1

)
z1m

s = r(r−1)(r−2)
1·2·3 z1m, a multiple of 2δ where

(because (r − 1)(r − 2) is even) δ ≥ α(t+ 1); and Lemma 1 follows.
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Remark 1. The lemma would fail if p = 3 were allowed; for instance (with
r = 6, z1 = 5, m = 3, s = 1) 6 · 5 is a multiple of 3 but

(
6
3

) · 5 · 3 is not a
multiple of 9.

Lemma 2. If x ≥ 2 and z ≥ 1 are integers such that x2 = μz2 ± 1, and
if z is a power of m and (m, 3) = 1 and m | μ, then (given μ) x and z are
uniquely determined.

We know x = xr and z = zr for some r ≥ 1. First suppose x1 > 1; we
show that r = 1. Observe that r is necessarily odd, for otherwise (1) shows
that x1 | zr; but (x1,m) = 1, contradicting that z is a power of m. So we can
assume, for a contradiction, that r ≥ 3. There are now at least 2 terms on
the right of (1). Let mt be the highest power of m dividing the first of these,
namely

(
r
1

)
xr−1
1 z1. By Lemma 1 the other terms are multiples of mt+1. Thus

zr is greater than mt but not divisible by mt+1, again contradicting that z is
a power of m.

Finally, if x1 = 1, we must have μ = 2 and the trivial “solution” (x1, z1)
has been excluded here because x ≥ 2. The same argument as before shows
that r < 3, so necessarily r = 2.

To deal with the case in which 3 | m, we first show that Lemma 1 continues
to hold provided 9 | m and s > 1. We state this as

Lemma 3. If rz1 is a multiple of mt for some nonnegative integer t, and if
9 | m, then (for s = 2, 3, . . . ,

[
r−1
2

]
),

(
r

2s+1

)
z1m

s is a multiple of mt+1.

In view of Lemma 1 it suffices to check the occurrences of the prime 3
in r(r−1)...(r−2s)

1·2·...(2s+1) z1m
s where s ≥ 2. In the numerator there are α(t + s) from

rz1m
s, as before, together with at least one from (r − 1) . . . (r − 2s). In

the denominator, as before, there are fewer than (2s+ 1)/2, hence at most s.
Altogether

(
r

2s+1

)
z1m

s is a multiple of 3θ where θ = α(t+s)+1−s ≥ α(t+1),
as before, and Lemma 3 follows.

A modified form of Lemma 2 now holds:

Lemma 4. If x ≥ 2 and z ≥ 2 are integers such that x2 = μz2 ± 1, and if z
is a power of m, and 3 | m and 3m | μ, then (given μ) x and z are uniquely
determined.

As in Lemma 2 we have that x = xr and z = zr for some positive integer r.
We show that r must be just one of 1 and 3.

Define t as in Lemma 2, and first suppose r ≥ 5. There are then at least
3 terms on the right of (1). By Lemma 3, all but the first 2 of these are
multiples of mt+1. The sum of the first two can be written

rxr−3
1 z1u where u =

1

3
μz21

((
r − 1

2

)
+ 3

)
± 1.

Now we observe that (u,m) = 1. In fact, if p is a prime factor of m other
than 3 we clearly have p | (u∓ 1), so p is not a factor of u. And if p = 3 this
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still holds because 9 | μ. Since (x1,m) = 1 also, we see that the sum of the
first two terms in (1) is a multiple of mt but not of mt+1, contradicting that
z is a power of m.

As in Lemma 2, r cannot be even here, so r can only be 1 or 3. We show
these alternatives are mutually exclusive.

Suppose not. Then both z3 = 3x21z1 + z31μ, and z1, are powers of m; so
their quotient, 3x21 + z21μ, is also a power of m, and in particular a multiple
of m. Hence m | 3x21; but (m,x1) = 1, so m | 3, forcing m = 3. We also
have x21 = μz21 +1 (the alternative −1 being excluded here because it is not a
quadratic residue mod 3), so 3x21 +z21μ = 4μz21 +3 is a power of m = 3, and
so also is (4μz21 + 3)/3 = 12(μ/9)z21 + 1. This is impossible, as it is greater
than 1 and congruent to 1 mod 3.

The theorem now follows readily from Lemma 2 when m is not a multiple
of 3, and from Lemma 4 when 3 | m by the following modification of the
initial transformation to Pell equations. Put

μ = λm3 if y is odd, λm2 if y is even

and

z = m(y−3)/2 or m(y−2)/2 respectively.

Then the equations (∗,±) reduce to x2 = μm2+1 (the − sign being impossible
now because 3 | μ). In each case, Lemmas 2 and 4 show that, if (nontrivial)
solutions for x and z exist, they are unique, given μ, As there are two
possible values for μ in each case, there are at most two (nontrivial) solutions
altogether for (∗,±). �

Remarks

(i) For certain values of λ and m there actually are two nontrivial solutions
to (∗,±); for instance, 52 = 3 ·23+1, 72 = 3 ·24+1; and 112 = 15 ·23+1,
312 = 15 · 26 + 1. There can also be additional trivial “solutions”, for
instance 22 = 3 · 20 + 1 and 42 = 15 · 20 + 1.

(ii) From the way in which the two possible values of μ arise, if there are
two solutions to (∗,±), one will have an odd value of y and the other an
even one.

(iii) If λ is a square, the equations (∗,±) can have at most one solution
between them, for y must be odd and there is only one value of μ to
consider.

(iv) The equation (∗,−) can have solutions only if −1 is a quadratic residue
mod λm. But I do not know whether (∗,−) can then have more than
one (nontrivial) solution, nor whether the two equations (∗,±) can have
one solution each.

(v) The equations x2 = 10y ± 1 have no solutions other than the trivial
32 = 101 − 1. For, as in (iii), we have only one value of μ to consider;



98 Arthur H. Stone

namely μ = 10; and then x1 = 3, z1 = 1. (Thus the numbers
100 . . .001, 11 . . . 111 in the usual scale of ten, and of more than one
digit, are never squares.) Of course, much more than this is known;
see [9].

(vi) Background A problem in the American Mathematical Monthly (E 2511,
January 1975, p. 73), due to M. Olitsky, reduces to solving the
Diophantine equations x2 + 1 = 5y, x2 + 1 = 2 · 5y. The solution (ibid.,
April 1976, p. 291) mentioned references [7–9] below. And the equations
suggested the present generalization to x2 = λmy ± 1.
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On Cubic Graphs of Girth at Least Five

William T. Tutte

W.T. Tutte (Deceased)
Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

It is an honor to be asked to contribute a paper to so historically important a
collection. Yet it can be embarrassing too. In my case I ask distractedly
“What can I write about? The researches I have completed have been
published already, or at least have been submitted to Journals. The work I
am engaged upon is incomplete, may be anticipated, perhaps even fallacious.
And what else can there be?”

But perhaps I can say something about what I am doing now, mathe-
matically, though my discourse may be more speculative than demonstrative.
Something about how it came to interest me and what I hope to get from it.

It seems that someone once conjectured that every cubic graph without
a Tait coloring contains a subdivided Petersen graph (or is a Petersen graph
itself). Some time last summer (1994), this conjecture having come up several
times in conversation, I reacted against it. “So what?” I asked, “Probably
every sufficiently nonplanar cubic graph has that property!”

On later reflection I realized that in this hasty dismissal I had another
conjecture, and even one that a graph-theorist might reasonably hope
to prove.

Over the next few months that conjecture, having persisted in my
thoughts, changed its form somewhat and acquired some qualifications.
I recalled that the Petersen graph was famous as the smallest cubic graph of
girth 5. I also knew of cubic graphs of girth less than 5 that obviously did
not contain a Petersen graph. So I began to think of the new conjecture as
being about cubic graphs of girth 5 or more.

After these months of incubation the conjecture reformulated itself as the
problem of classifying the “critical” cubic graphs. A critical cubic graph was
to be defined as one of girth ≥5 that contained (in subdivision) no other cubic
graph of girth ≥5. Obviously any finite cubic graph of so high a girth would
either be critical itself or would contain a subdivided critical cubic graph.
One hoped there would not be too many critical cubic graphs. Perhaps only
the Petersen graph and the graph of the regular dodecahedron?

There was an elementary theorem about critical cubic graphs that seemed
relevant to the problem of classification. Suppose we have a cubic graph G of
girth at least 5 and delete an edge A, suppressing its now-divalent ends to get
a small cubic graph H . Then H also has girth at least 5 unless A “impinges”
on a pentagon P of G. “Impinges” means that A is not an edge of P but does
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have one end in P . Since G contains a subdivision of H we infer that if G is
critical each of its edges must impinge upon a pentagon of G.

From this theorem there developed a theory of “semicubic” subgraphs
of a critical cubic graph G. (A graph is semicubic if each of its vertices has
valency either 2 or 3). Let us define a “free” edge of a semicubic graph J of
girth 5 as one that impinges on no pentagon of J . Let us say that such a graph
J is “open” if it has a free edge and “closed” otherwise. Given such a J with
a free edge A it was found possible to make a list of all the semicubic graphs
of girth 5 that could be obtained from J by uniting it with a pentagon that
was impinged upon by A. Then one had a theorem saying that if a critical
graph G contains J then it must contain also one of those more complicated
derivatives of J . Each of these derivatives, if open, had to be treated in the
same way, and so on. The end result was a list of closed semicubic graphs
such that each critical graph G must contain as a subgraph some member of
the list.

Getting this theorem was a long and tedious process. Getting from it to
the desired classification was a long and arduous task. “O Murphy” I groaned,
“Wherefore doth thy Law throw me always the hard ones?”

In the course of the investigation I encountered three more critical cubic
graphs that I thought interesting. One consisted of a nonagon and three
outside vertices each joined to the nonagon by three edges. Another could
be derived from a cube by the following construction. Two opposite sides of
one face are bisected and the points of bisection are joined by a new segment.
The opposite face of the cube is treated likewise, but so that the two new
segments are perpendicular. Then the two new segments are bisected and
their mid-points are joined by a new edge.

Another critical cubic graph can be constructed from a rectangle with two
long sides and two short ones. Inside it, as a frame we draw two pentagons
having one edge in common. Their vertices opposite the common edge are
joined to the mid-points of the short sides of the rectangle. Their other
vertices are joined to the points of trisection of the long sides. All these
joins are such as to preserve planarity. Finally each pair of opposite corners
of the rectangle are joined by a new edge, to give a critical cubic graph of
crossing number 1.

After adding these three graphs to the Petersen graph and the dodecahe-
dral graph I now had a list of five “interesting” cubic graphs. I called them
the Z-graphs, and noted that they were all cyclically 5-connected.

There was a gaggle of other critical cubic graphs that I thought less
interesting. Each of these had an isthmus or a 2-bond, or a 3-bond that
separated circuits. Perhaps one could, in a way, eliminate these by showing
that a cubic graph K of girth at least 5 and of sufficiently high cyclic
connectivity must contain a subdivision of a Z-graph? I an now satisfied that
there is such a theorem. It requires only that K be cyclically 4-connected.
More hard work, and with many false starts!
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Work on the original conjecture cannot be regarded as complete until we
have an extensive and simply defined class of cubic graphs that must contain
(in subdivision) a Petersen graph and not merely “some Z-graph”). Perhaps
there is a hint of such a theorem in the fact that the Petersen graph is, in
a way, more nonplanar than the other Z-graphs. The dodecahedral graph is
planar. The one derived from a rectangle has crossing number 1. The one from
a cube can be made planar by deleting one edge, and the nonagonal one by
identifying two vertices. But the Petersen graph has crossing number 2 and it
cannot be made planar by either of those two tricks. If sufficiently high cyclic
connectivity in K ensures the appearance (in subdivision) of a cyclically
5-connected Z-graph, then perhaps sufficiently complex nonplanarity will
ensure the appearance of a Petersen graph, that most nonplanar of the Z-
graphs?

Meanwhile I am happy to present some of the facts in a book dedicated
to the Master.



II. Number Theory

Introduction

It is difficult to estimate the relative impact of Erdős’ research in different
areas of mathematics. But it is a fact that Erdős started with number theory
(e.g., out of his first 60 papers only 2 are not related to number theory)
and that among his publications, the number theory papers have highest
frequency. His achievements are well known and are amply mirrored by
contributions to this chapter (which is the largest of all the chapters of these
volumes).

The papers by Ahlswede and Khachatrian, Konyagin and Pomerance,
Nathanson, Nicolas, Schinzel, Shorey and Tijdeman, Sárközy and Sós, and
Tenenbaum survey and relate to various parts of Erdős’ research, and they
complement in various respects his own recollections given in an earlier
chapter.

Some of these papers are research articles, such as the papers by Ahlswede
and Cai, Sárközy, Tenenbaum and Bergelson et al. (which includes Erdős
himself as a coauthor).

Although we believe this is a representative sample of Erdős’ activities
in this area, many problems and particular research directions are not
covered. The reader should bear in mind that Erdős himself considered the
probabilistic methods in number theory together with his work on prime
numbers as his main contributions to number theory. Probabilistic methods
are covered by the next section as well.

In 1995/1996, when the content of these volumes was already crystallizing,
we asked Paul Erdős to isolate a few problems, both recent and old, for each
of the eight main parts of this book. To this part on infinity he contributed
the following collection of problems and comments.
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Erdős in his own words
Here is a purely computational problem (this problem cannot be attacked

by other means at present). Call a prime p good if every even number 2r ≤
p − 3 can be written in the form q1 − q2 where q1 ≤ p, q2 ≤ p are primes.
Are there infinitely many good primes? The first bad prime is 97 I think.
Selfridge and Blecksmith have tables of the good primes up to 1037 at least,
and they are surprisingly numerous.

I proved long ago that every m < n! is the distinct sum of n − 1 or
fewer divisors of n!. Let h(m) be the smallest integer, if it exists, for which
every integer less than m is the distinct sum of h(m) or fewer divisors of m.
Srinivasan called the numbers for which h(m) exists practical. It is well known
and easy to see that almost all numbers m are not practical. I conjectured
that there is a constant c ≥ 1 for which for infinitely many m we have h(m) <
(log log m)c. M. Vose proved that h(n!) < cn1/2. Perhaps h(n!) < c(log n)C2 .
I would be very glad to see a proof of h(n!) < nε.

A practical number n is called a champion if for every m > n, we have
h(m) > h(n). For instance, 6 and 24 are champions, as h(6) = 2, the next
practical number is 24, h(24) = 3, and for every m > 24, we have h(m) > 3.
It would be of some interest to prove some results about champions. A table
of the champions < 106 would be of some interest. I conjecture that n! is not
a champion for n > n0.

The study of champions of various kinds was started by Ramanujan
(Highly composite numbers, Collected Papers of Ramanujan). See further
my paper with Alaoglu on highly composite and similar numbers and many
papers of J. L. Nicolas and my joint papers with Nicolas.

The following related problem is perhaps of some mild interest, in
particular, for those who are interested in numerical computations. Denote by
gr(n) the smallest integer which is not the distinct sum of r or fewer divisors of
n. A number n is an r-champion if for every t < n we have gr(n) > gr(t). For
r = 1 the least common multiple Mm of the integers ≤ m is a champion for
any m, and these are all the 1-champions. Perhaps the Mm are r-champions
too, but there are other r-champions; e.g., 18 is a 2-champion.

Let fk(n) be the largest integer for which you can give fk(n) integers
ai ≤ n, for which you can not find k + 1 of those that are relatively prime.
I conjectured that you get fk(n) by taking the multiple ≤ n of the first k
primes. This was proved for small k by Ahlswede, and Khachatrian disproved
it for k ≥ 212. Perhaps if n ≥ (1+ ε)p2k, where pk is kth prime, the conjecture
remains true.

Let n1 < n2 < . . . be an arbitrary sequence of integers. Besicovitch proved
more than 60 years ago that the set of the multiples of the ni does not have to
have a density. In those prehistoric days this was a great surprise. Davenport
and I proved that the set of multiples of the {ni} have a logarithmic density
and the logarithmic density equals the lower density of the set of multiples
of the {ni}. Now the following question is perhaps of interest: Exclude one
or several residues mod ni (where only the integers ≥ ni are excluded).
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Is it true that the logarithmic density of the integers which are not excluded
always exists? This question seems difficult even if we only exclude one residue
mod ni for every ni.

For a more detailed explanation of these problems see the excellent
books by Halberstam and Roth, Sequences, Springer-Verlag, and by Hall and
Tenenbaum, Divisors, Cambridge University Press.

Tenenbaum and I recently asked the following question: let n1 < n2 < . . .
be an infinite sequence of positive integers. Is it then true that there always
is a positive integer k for which almost all integers have a divisor of the form
ni + k? In other words, the set of multiples of the ni + k (1 ≤ i < ∞) has
density 1. Very recently Ruzsa found a very ingenious counterexample.

Tenenbaum thought that perhaps for every ε > 0 there is a k for which
the density of the multiples of the ni + k has density > 1 − ε.

In a paper (Proc. London Math. Soc. (1970) dedicated to the memory of
Littlewood) Sárközy and I state the following problem: Let 1 ≤ ai < a2 <
. . . < an+2 ≤ 3n be n+ 2 integers. Prove that there always are three of them
ai < aj < ak for which aj + ak ≡ 0 (mod ai). The integers 2n ≤ t ≤ 3n show
that n+ 1 integers do not suffice.

Perhaps a proof or disproof will be easy. As far as I know, the problem
has been rather forgotten.

Many more problems are contained in the book P. Erdős and R. L.
Graham, Old and New Problems and Results in Combinatorial Number
Theory, the second edition of which should appear soon.

*****

So much for Paul Erdős. The progress on his problems since 1995/1996
has been considerable and many of his results and problems became the
subject of intensive study. For example research on sum sets (reported in
this book in the Nathanson article) led to the celebrated Freiman–Ruzsa
theorem, which in turn has been instrumental in the Green–Tao proof of
arithmetic progressions in primes (see the Ramsey theory chapter in Vol II).
For sum sets, see the comprehensive book:

I. Z. Ruzsa, Sumsets and Structure. In: Combinatorial Number Theory
and Additive Group Theory (A. Geroldiner, I. Z. Ruzsa, eds.) Advanced
Courses in Mathematics CRM, Birkhäuser, 2009, 87–210.

In another, yet broadly related, direction, the celebrated sum–product
theorem of Erdős and Szemerédi became the basis for many similar results
dealing with the sum–product phenomenon in both the finite and infinite
setting. This in turn has found many applications.

P. Erdős, E. Szemerédi, On sums and products of integers, Studies in
Pure Mathematics, Birkhauser, Basel, 1983, 213–218.

T. Tao, The sum-product phenomenon in arbitrary rings, Contributions
to Discrete Math. 4,2 (2009), 59–82.
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J. Solymosi, Incidence and Spectra of Graphs. In: Combinatorial Number
Theory and Additive Group Theory (A. Geroldiner, I. Z. Ruzsa, eds.)
Advanced Courses in Mathematics CRM, Birkhäuser, 2009, 299–314.

It is only fitting to remark that these questions are close to those
considered by L. Guth article in Part IV devoted to geometry. The progress
in combinatorial number theory in the last decade was spectacular. Perhaps
P. Erdős didn’t expect that. Here is an evidence of this: He mentions in the
introduction of his article in this volume (Some of my favourite problems and
results) an anecdote about Hilbert’s wrong estimation on what is a difficult
problem. Well the same happened to him: In the above article he states that

“An old conjecture in number theory states that for every k there are k
primes in an arithmetic progression. This problem seems unattackable”.

Well as we know the opposite is exactly what happened. But the Erdős
related conjecture is still open and (quoting him again) “neither Szemerédi
nor Furstenberg” (nor Gowers nor Green and Tao) “are able to settle this.”

For the general development of combinatorial number theory, see recently
published book:

T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press,
2006.

Note also that since 2000 there has been published the electronic journal
of combinatorial number theory, Integers, which has P. Erdős as part of its
logo (www.integers-ejcnt.org).

www.integers-ejcnt.org
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Summary Let In be the lattice of intervals in the Boolean lattice Ln. For
A,B⊂In the pair of clouds (A,B) is cross-disjoint, if I ∩ J = ∅ for I ∈ A, J ∈ B.
We prove that for such pairs |A||B| ≤ 32n−2 and that this bound is best possible.

Optimal pairs are up to obvious isomorphisms unique. The proof is based on a
new bound on cross intersecting families in Ln with a weight distribution. It implies
also an Intersection Theorem for multisets of Erdős P, Schőnheim J (1969) On the
set of non pairwise coprime division of a number. In: Proc. of the Colloquium on
Comb. Math. Dalaton Füred, pp 369–376.

1. The Results

Consider the set [n] = {1, 2, . . . , n}, the set of all its subsets Ln, and the
lattice of intervals In = {I = [A,B] : A,B ∈ Ln}, where [A,B] = {C ∈ Ln :
A ⊂ C ⊂ B}, if A ⊂ B, and [A,B] = I∅ (the empty interval), if A �⊂ B. The
lattice operations ∧ and ∨ are defined by

[A,B] ∧ [A′, B′] = [A,B] ∩ [A′, B′], (1)

[A,B] ∨ [A′, B′] = [A ∩A′, B ∪B′]. (2)

Here the empty interval I∅, is represented by [[n], ∅]. The pair (A,B) with
A,B ⊂ In \ {I∅} is cross-disjoint, if

I ∧ J = I∅ for I ∈ A, J ∈ B. (3)

Let us denote the set of those pairs by Dn.

Theorem 1. For n = 1, 2, . . .

max{|A||B| : (A,B) ∈ Dn} = 32n−2.
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Equality is assumed for

A∗ = {I ∈ In : I = [A,B], 1 /∈ B}, B∗ = {I ∈ In : I = [A,B], 1 ∈ A}.
All optimal pairs are obtained by replacing 1 in the definition of A∗ and

B∗ by any element m of [n], and by exchanging the roles of these two sets.

We shall relate cross-disjoint pairs of clouds from In to cross-intersecting
pairs of clouds from Ln with a suitable weight.

Recall from [1] that (U ,V) with U ,V ⊂ Ln is cross-intersecting, if

U ∩ V �= ∅ for U ∈ U and V ∈ V . (4)

We denote the set of these pairs by Pn. Furthermore we introduce the
weight w : Ln → N by

w(A) = 2n−|A| for A ∈ Ln. (5)

Theorem 2. For (U ,V) ∈ Pn

W (U)W (V) �
∑

U∈U
w(U) ·

∑

V ∈V
w(V ) ≤ 32(n−1)

and the bound is best possible. Moreover, for any optimal pair (U ,V) there
exists a t ∈ [n] such that U = V = {A ∈ Ln : t ∈ A}.

2. Another Description for In\{I∅}
We associate [A,B] ∈ In \ {I∅} with a ternary sequence Ψ([A,B]) =
(x1, x2, . . . , xn), where

xt =

⎧
⎨

⎩

0 if t /∈ B
1 if t ∈ A
2 if t ∈ B \A.

Ψ : In \ {I∅} → {0, 1, 2}n is bijective.
If Ψ([A,B]) = xn and Ψ([A′, B′]) = yn, then

[A,B] ∧ [A′, B′] = I∅ ⇔ ∃t ∈ [n] : {xt, yt} = {0, 1}. (6)

For (A,B) ∈ Dn the associated pair (X ,Y) = (Ψ(A),Ψ(B)) has the
property:

For xn ∈ X , yn ∈ Y {xt, yt} = {0, 1} for some t ∈ [n]. (7)

We can view (X ,Y) as families of cross-disjoint subcubes of the n-dimensional
unit cube or as families of cross-disjoint cylinder sets in {0, 1}n in the sense
of measure or probability theory. In this interpretation 2 stands for the set
{0, 1}.
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Henceforth we consider pairs (X ,Y); X ,Y ⊂ {0, 1, 2}n; satisfying (7). We
call them cross-disjoint. The set of these pairs is denoted by D∗

n. Our first
goal in proving Theorem 1 is to show that for (X ,Y) ∈ D∗

n

|X ||Y| ≤ 32(n−1). (8)

3. Down-Up-Shifts

The proof of Theorem 1 goes in several steps. At first we show here that
any (X ,Y) ∈ D∗

n can be transformed into another pair in D∗
n with the same

cardinalities and with invariance under down-up-shifts. They are defined as
follows.

For any Z ⊂ {0, 1, 2, }n and any t ∈ [n] set

dt(Z) =
{

(z1, . . . , zt−1, i, zt+1, . . . , zn) : i = 0, . . . , j − 1; j ≥ 1 and

|{z : (z1, . . . , zt−1, z, zt+1, . . . , zn) ∈ Z}| = j
}
. (9)

This is the down-shift of Z in the t-th component. Similarly, ut(Z), the
up-shift of Z in the t-th component is obtained by exchanging 0 and 1 in
the t-th component of the sequences in dt(Z). We formulate an immediate
consequence of our definitions.

Lemma 1. For any (X ,Y) ∈ D∗
n and t ∈ [n], then also (dt(X ), ut(Y)) ∈ D∗

n.

We say that (X ,Y) with X ,Y ⊂ {0, 1, 2}n is down-up-extremal, if

(dt(X ), ut(Y)) = (X ,Y) for all t ∈ [n]. (10)

4. Relation to Cross-Intersection in Ln

Next we introduce the mappings σi : {0, 1, 2}n → Ln by

σi(z
n) = {t : zt = i, 1 ≤ t ≤ n} for i = 0, 1. (11)

We also put for Z ⊂ {0, 1, 2}n
σi(Z) = {σi(zn) : zn ∈ Z}. (12)

These mappings make it possible to convert cross-disjoint pairs of clouds
from the interval lattice In into cross-intersecting pairs of clouds from the
Boolean lattice Ln.

More precisely we have the following result.

Lemma 2. Suppose that (X ,Y) with X ,Y ⊂ {0, 1, 2}n is down-up-extremal.
Then (X ,Y) is cross-disjoint exactly if (σ0(X ), σ1(Y)) is cross-intersecting,
that is, X ∩ Y �= ∅ for X ∈ σ0(X ) and Y ∈ σ1(Y).
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Proof. Suppose that (X ,Y) is cross-disjoint, but that
(
σ0(X ), σ1(Y)

)
is not

cross-intersecting. Then there exist xn ∈ X , yn ∈ Y, and a non-empty set
E ⊂ [n] such that (xt, yt) = (1, 0) for t ∈ E and {xt, yt} �= {1, 0} for
t /∈ E. However, since (X ,Y) is down-up-extremal, the sequence x′n obtained
from xn by replacing for t ∈ E with xt = 1 by x′t = 0 must be in X
and this sequence is not disjoint with yn. This contradiction proves that
(σ0(X ), σ1(Y)) is cross-intersecting. The reverse implication is obvious. �

5. Theorem 1 from Theorem 2

Notice that for A ⊂ [n]

|σ−1
0 (A)| = |σ−1

1 (A)| = 2n−|A|. (13)

Therefore also for any A,B ⊂ [n] and X ,Y ⊂ {0, 1, 2}n
|σ−1

0 (A) ∩ X| ≤ 2n−|A|, |σ−1
1 (B) ∩ Y| ≤ 2n−|B|. (14)

Now in upper bounding |X ||Y| for (X ,Y)∈D∗
n we can assume by Lemma 1

that (X ,Y) is down-up-extremal and by Lemma 2 that (σ0(X ), σ1(Y)) ∈ Pn.
Hence Theorem 2 implies that for U = σ0(X ) and V = σ1(Y)

W (U)W (V) ≤ 32(n−1)

and thus by (14) and (13)

|X ||Y| =
∑

U∈U
|σ−1

0 (U) ∩ X| ·
∑

V ∈V
|σ−1

1 (V ) ∩ Y|

≤
∑

U∈U
2n−|U| ·

∑

V ∈V
2n−|V | = W (U) ·W (V) ≤ 32n−1. (15)

The characterization of the optimal pairs follows from the one in
Theorem 2. We use right away the sequence terminology. If (X ,Y) ∈ D∗

n is
optimal, then applications of operations (dt, ut) and σ0, σ1 lead to an optimal
(U ,V) ∈ Pn by (15).

By the uniqueness part of Theorem 2 for some t ∈ [n], without loss of
generality say t = n, we have U = V = {A ∈ Ln : t ∈ A}. Furthermore
(σ−1

0 (U), σ−1
1 (V)) = ({0, 1, 2}n−1 × {0}, {0, 1, 2}n−1 × {1}).

It remains to be seen that (d−1
n , u−1

n ) leads to no non-isomorphic pairs.
We have

d−1
n ({0, 1, 2}n−1 × {0}) = X (0) × {0} ∪̇ X (1) × {1} ∪̇ X (2) × {2},
u−1
n ({0, 1, 2}n−1 × {1}) = Y(0) × {0} ∪̇ Y(1) × {1} ∪̇ Y(2) × {2},

where by the optimality the X (i)’s and also the Y(i)’s partition {0, 1, 2}n−1.
Therefore for some i and some j, (2, 2, . . . , 2) ∈ X (i) ∩ Y(j). But now by (7)
necessarily {i, j} = {0, 1} and X (i′) = ∅ for i �= i′,Y(i′) = ∅ for j �= j′. We
have arrived at the desired form.
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6. Auxiliary Results for Proving Theorem 2

Obviously in deriving an upper bound on W (U)W (V) for (U ,V) ∈ Pn we can
always assume that U and V are upsets.

Moreover we can replace (U ,V) by the pair of images (Sij(U), Sij(V))
under the familiar left-shifting Sij :

For any ε ⊂ Ln, and i < j,

Sij(E) =

{
EΔ{i, j} if i /∈ E, j ∈ E and EΔ{i, j} /∈ ε,
E otherwise.

(16)

for E ∈ ε and

Sij(ε) = {Sij(E) : E ∈ ε}.
Just verify that (U ,V)∈Pn implies (Sij(U), Sij(V))∈Pn, that |Sij(U)| =

|U|, |Sij(V)| = |V|, and that

W (Sij(U)) = W (U),W (Sij(V)) = W (V). (17)

Clearly, finitely many applications of left-shifting operators results in a
pair, which is invariant under further such operations. We call such a pair
left-shifted.

Let now (U ,V) ∈ Pn be a pair of left-shifted upsets.
For the analysis of such pairs we introduce the following sets and families

of sets.
For A ⊂ [n] its projection on [n− 1] is

pA = A ∩ [n− 1] (18)

and for A ⊂ Ln we define

pA = {pA : A ∈ A}. (19)

Furthermore we partition A into

A0 = {A ∈ A : n /∈ A}, A1 = {A ∈ A : n ∈ A}. (20)

Thus also U0, U1, V0, V1, pUi and pVi (i = 0, 1) are well-defined.
Since U and V are upsets

pU0 ⊂ pU1 and pV0 ⊂ pV1. (21)

Lemma 3. If (U ,V) ∈ Pn cannot be enlarged without violating the cross-
intersection property and U ,V are left-shifted upsets, then for all U ∈ U1

with pU ∈p U1 \ pU0 there exists a V ∈ V1 with pV ∈ pV1 \ pV0 such that

(i) pU ∩ pV = ∅, pU ∪ pV = [n− 1] and
(ii) For all V ′ with pV

′ ∈ pV1 \p V0 and V ′ �= V necessarily pU ∩ pV
′ �= ∅.

Exchanging the roles of U and V gives analogous statements. Furthermore

(iii) pU0 = pU1 ⇔ pV0 = pV1.
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Proof. (i) For every U ∈ U1 with pU ∈ pU1 \ pU0 there must exist a V ∈ V1

with pV ∈p V1\pV0 with pU∩pV = ∅, because otherwise U is intersecting
on [n− 1] with all V ∗ ∈ V1, and by (21) with all V ∗ ∈ V , and thus one
can enlarge U by U \ {n} in contradiction to our assumptions.

Furthermore for this V pU ∪ pV = [n − 1], because otherwise for some
i ∈ [n − 1] \ pU ∪ pV U

∗ = Sin(U) ∈ U by assumption and U∗ ∩ V = ∅ in
contradiction to the fact that (U ,V) ∈ Pn.

(ii) The forgoing argument shows that pV
′ �⊂ pV . and that necessarily pU ∩

pV
′ �= ∅, because pU ∪ pV = [n− 1].

(iii) This follows from (i), (ii) and the analogous statements obtained by
exchanging the roles of U and V . �

7. Proof of Theorem 2

We proceed by induction on n. The case n = 1 is verified by inspection. For
n ≥ 2 we can consider a (U ,V) satisfying the assumptions of Lemma 3.
Case: pU0 = pU1.

By (iii) in Lemma 3 we have also pV0 = pV1. However (pU0, pV0) ∈ Pn−1

and by the induction hypothesis

W (pU0)W (pV0) ≤ 32(n−2). (22)

Now just calculate that in the present case

W (U)W (V) = [W (pU0) · 2 +W (pU1)] · [W (pV0) · 2 +W (pV1)]

= 3W (pU0) · 3W (pV0) ≤ 32(n−1).

Case: pU0 �=p U1.
By Lemma 3 pV0 �= PV1 and there are subsets U ∈ U1, V ∈ V1 satisfying

(i). For all V ′ ∈ V0 necessarily pU ∩p V
′ �= ∅ and again by Lemma 3 also for

all V ′ ∈ V1 \{V }, V ′ �= V, pU ∩ pV
′ �= ∅. This means that (U ∪{U \{n}},V \

{V }) ∈ Pn and symmetrically (U \ {U},V ∪ {V \ {n}}) ∈ Pn.
Moreover we see that

W (U ∪ {U \ {n}}) = W (U) + 2n−|U|+1, (23)

W (V \ {V }) = W (V) − 2n−|V | = W (V) − 2|U|−1 (by (i)), (24)

W (U \ {U}) = W (U) − 2n−|U|, (25)

and

W (V ∪ {V − {n}}) = W (V) + 2n−|V |+1 = W (V) + 2|U| (by (i)). (26)
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By the optimality of (U ,V) we conclude with (23) and (24) that

W (U)W (V) ≥ W (U ∪ {U \ {n}})W (V \ {V })

= (W (U) + 2n−|U|+1)(W (V) − 2|U|−1)

= W (U)W (V) − 2|U|−1W (U) + 2n−|U|+1W (V) − 2n (27)

and with (25) and (26) that

W (U)W (V) ≥W (U \ {U})W (V ∪ {V \ {n}})

= (W (U) − 2n−|U|)(W (V) + 2|U|)

= W (U)W (V) + 2|U|W (U) − 2n−|U|W (V) − 2n. (28)

Now (27) and (28) yield

− 2|U|−1W (U) + 2n−|U|+1W (V) ≤ 2n (29)

and

2|U|W (U) − 2n−|U|W (V) ≤ 2n. (30)

The double of the left hand side in (29) plus the left hand side of (30) equals
3 · 2n−|U|W (V) and satisfies

3 · 2n−|U|W (V) ≤ 3 · 2n.

This is equivalent to

W (V) ≤ 2|U|. (31)

Similarly, by doubling the left hand side of (30) and adding to it the left
hand side of (29) leads to the inequality

W (U) ≤ 2n−|U|+1. (32)

The two inequalities imply

W (U)W (V) ≤ 2n+1 < 32(n−1) for n ≥ 2. (33)

We calculate that for U = V = {A ⊂ [n] : 1 ∈ A}
W (U)W (V) = 32(n−1).

Finally we prove uniqueness. We have learnt already that for optimal left-
shifted pairs (U ,V) necessarily pU0 = pU1, pV0 = pV1 and that by the
induction hypothesis W (pU0)W (pV0) = 32(n−2). Thus U = V = {A ⊂ [n] :
1 ∈ A}. In general, every optimal pair (U∗,V∗) can be left-shifted to
(U ,V). Since the left-shifting operators don’t change cardinalities of subsets,
there must be a singleton {t} in both, U∗ and V∗. Consequently we have
U∗ = V∗ = {A ⊂ [n] : t ∈ A}.
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8. A Common Generalization of Theorem 2
and a Theorem of Erdős-Schőnheim [9]

In deriving their Intersection Theorem for multisets Erdős and Schőnheim
established first an Intersection Theorem with weights for Ln. Those weights
w(A), A ∈ Ln, are increasing in |A|, whereas our weights w(A) = 2n−|A|

used in Theorem 2 are decreasing in |A|. The latter does not allow to just
choose the “heavier” one of A and Ac = [n] \ A in order to construct an
optimal configuration. This difference makes things more difficult in our case.
Nevertheless we can give a unified approach.

Let W = {Wi : 1 ≤ i ≤ n} be positive reals which give rise to the weight
w on Ln:

w(A) =
∏

t∈A

Wt for A ⊂ [n] (34)

and

W (A) =
∑

A∈A
w(A) for A ⊂ Ln. (35)

Define

α(n,w) = max{W (A) : A ⊂ Ln is intersecting} (36)

(i.e. A ∩B �= ∅ for A,B ∈ A).
We recall first a result of [9].

Theorem 3.

α(n,w) ≤ 1

2
max
A⊂[n]

(
w(A), w(Ac)

)
(37)

and the bound is best possible when Wi ≥ 1 for i ∈ [n].

Proof. Clearly an intersecting A can have at most one of the sets A and Ac

as member. �

One can construct an optimal intersecting family A(n,w) in the case

wi ≤ 1 for i ∈ [n] (38)

as follows:

(a) If w(A) > w(Ac), then A ∈ A(n,w).
(b) If w(A) = w(Ac) and |A| > |Ac|, then A ∈ A(n,w).
(c) If w(A) = w(Ac) and |A| = |Ac|, then take anyone of A,Ac into

A(n,w) and keep the other out of A(n,w). Clearly, W (A(n,w)) =
1
2

∑

A⊂[n]

max{w(A), w(Ac)}.

By (38) and (a)–(c) A(n,w) is an upset and also intersecting, because
for A,B ∈ A(n,w)A ∩ B = ∅ implies Ac ⊃ B and thus Ac ∈ A(n,w) in
contradiction to (a)–(c).
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However, without condition (38) the A(n,w) described above need not
be an upset or intersecting.

For example when wi < 1 for all i ∈ [n], then the biggest weight is assigned
to the empty set, which cannot occur in an intersecting family. Therefore (37)
is not tight.

Fortunately an analysis of the proof of our Theorem 2 leads us to the
right generalization.

First of all by relabelling we can always assume that

w1 ≥ w2 ≥ · · · ≥ wn. (39)

Let now m be the largest index with wm ≥ 1, if it exists, and otherwise
set m = 0. Set W ′ = {wi : i ∈ [m]}, w′(B) =

∏

i∈B

wi for B ⊂ [m].

Next define

A∗(n,w) =

{ {A ⊂ [n] : A ∩ [m] ∈ A(m,w′)} if m ≥ 1,
{A ⊂ [n] : 1 ∈ A} if m = 0.

(40)

Clearly,

A∗(n,w) = A(n : w), if (38) holds. (41)

Theorem 4.

α(n,w) = W (A∗(n,w)). (42)

Proof. We use induction on n−m.
The case n−m = 0 or n = m is the case covered by Theorem 3.

Case: n−m > 0
Suppose that A is an optimal intersecting family, that is,

W (A) = α(n,w). (43)

Since (39) holds, the left-pushing operator Sij can be applied, because
it does not decrease the total weight. We can therefore assume that A is
invariant under such operations. Also we can assume that A is an upset,
because adding an A′ ⊂ [n] to A with A′ ⊃ A for some A ∈ A does not affect
the intersection property and could only increase the total weight.

We use again the projection p on [n − 1] and our earlier definitions

pA, pA,Ai, and pAi(i = 0, 1). Since A is an upset

pA0 ⊂ pA1. (44)

Case: pA0 = pA1.
Since pA0 is intersecting, by the induction hypothesis in this case

W (A) = W (pA0) + wnW (pA1) = (1 + wn)W (pA1)

≤ (1 + wn)W (A∗(n− 1, w′′)) = W (A∗(n,w)),

where w′′ = (wi)
n−1
i=1 and the last identity follows with definition (40).
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Case: pA �= pA1.
Here there is an A ∈ A1 with A \ {n} /∈ A0 and there must be a B ∈ A1

with

B ∩ A = {n}, (45)

because otherwise one can enlarge A by A \ {n}. Now the same ideas as used
in the proof of Lemma 3 apply and give

pA ∪ pB = [n− 1] (46)

and consequently that the B with these properties is unique, because
otherwise there is an i ∈ pA ∪ pB and, since Sin(A) ∈ A, by (45)

Sin(A) ∩B = (pA ∪ {i}) ∩ (Bp ∪ {n}) = ∅.
This is a contradiction.
Since A and B can be exchanged, we can assume that.

w(A) ≥ w(B) (47)

and consequently that

w(A \ {n}) =
w(A)

wn
> w(A) ≥ w(B), (48)

because wn < 1, if n−m > 0.
Finally, since B is the unique member of A satisfying (45) (A\{B})∪{A\

{n}} is intersecting and by (48) has bigger weight than A. This contradicts
the optimality of A. The case pA0 �= pA1 cannot arise. �

9. Maximal Families of Disjoint Intervals

One might wonder what can be said about families A ⊂ In with

A ∧B = I∅ for A,B ∈ A. (49)

The family A corresponds to a set A∗ ⊂ {0, 1, 2}n by the mapping Ψ of
Sect. 2. A∗ has the property:

for all xn, yn ∈ {0, 1, 2}n for some t ∈ [n]{xt, yt} = {0, 1}. (50)

One readily verifies that |A| ≤ 2n, and equality occurs for A∗ = {0, 1}n.
In fact the problem is equivalent to Shannon’s zero error capacity problem
for the matrix

⎛

⎝
1 0
0 1
1
2

1
2

⎞

⎠ .

As Shannon noticed in [11], it equals log2 2 = 1.
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Summary. When the kind invitation of Ron Graham and Jaroslav Nešetřil, to
write in honour of Paul Erdős about aspects of his work, reached us, our first
reaction was to follow it with great pleasure. Our second reaction was not as
clear: Which one among the many subjects in mathematics, to which he has made
fundamental contributions, should we choose?

Finally we just followed the most natural idea to write about an area which
just had started to fascinate us: Density Theory for Integer Sequences.

More specifically we add here to the classical theory of primitive sequences and
their sets of multiples results for cross-primitive sequences, a concept, which we
introduce. We consider both, density properties for finite and infinite sequences. In
the course of these investigations we naturally come across the main theorems in
the classical theory and the predominance of results due to Paul Erdős becomes
apparent. Several times he had exactly proved the theorems we wanted to prove!
Many of them belong to his earliest contribution to mathematics in his early
twenties.

Quite luckily our random approach led us to the perhaps most formidable
period in Erdős’ work. It reminds us about a statement, which K. Reidemeister
[18, ch. 8] made about Carl Friedrich Gauss: “. . . Aber das Epochale ist doch die
geniale Entdeckung des Jünglings: die Zahlentheorie.”

1. Classical Results

At first we set up our notation. N denotes the set of positive integers and
P = {p1, p2, . . .} = {2, 3, 5, . . .} denotes the set of all primes. For the number
u, v ∈ N we write u | v, if u divides v. Further (u, v) stands for the largest
common divisor and 〈u, v〉 denotes the smallest common multiple of u and v.

In case (u, v) = 1, u and v are said to be relatively prime (or coprimes).
The greatest prime factor of u is written as p+(u). For i ≤ j, [i, j] equals
{i, i + 1, . . . , j} and (i, j] equals {i + 1, . . . , j}. Any set A ⊂ N can also be
viewed as an increasing sequence (ai)

∞
i=1 where A = {ai : i ∈ N}, and vice

versa. We reserve the letter A for such sets or sequences. It is convenient to
use the abbreviations A(x) = A ∩ [1, x] and |B| for the cardinality of any
set B. We also use φ(x, y) = |{n ∈ [1, x] : p+(n) > y}|.

The lower and upper asymptotic density of A are

d A = lim inf
x→∞

|A(x)|
x

and d A = lim sup
x→∞

|A(x)|
x

. (1)
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If d A = d A, then A possesses the asymptotic density d A = d A = d A.
Related quantities are

δ A = lim inf
x→∞

1

log x

∑

ai≤x

1

ai
and δ A = lim sup

x→∞
1

log x

∑

ai≤x

1

ai
, (2)

the logarithmic lower and upper density of A. If δ A = δ A, then A possesses
logarithmic density δ A = δ A = δ A.

In the first half of the century there was noticeable interest in the study
of density properties of the set of multiples

M(A) = {m ∈ N : for some a ∈ A a | m} (3)

of infinite sequences A of positive integers. This naturally relates to the study
of primitive sequences.

A sequence A = (ai)
∞
i=1 is primitive, if

ai � aj for i �= j. (4)

One readily verifies that every A contains a unique subsequence P (A) which
is primitive and satisfies

M
(
P (A)

)
= M(A). (5)

Actually,

P (A) = {a ∈ A : � b ∈ A, b �= a and b | a} (6)

One question of Chowla (see [2]) opened the subject: Does d M(A) exist for
every A ⊂ N?

This can readily be shown to be the case for all finite A, however, this was
open for a longer time and finally settled in the negative by Besicovitch [2]
in the infinite case.

Theorem 1 (Besicovitch [2]). For every ε > 0 there is an A ⊂ N with

d M(A) ≥ 1

2
and d M(A) ≤ ε.

Actually, the A’s are constructed as unions of suitable intervals. The
primitive sequence P (A) generating the M(A) of Theorem 1 gives the next
famous result.

Theorem 2 (Besicovitch [2]). For every ε > 0 there is primitive sequence
A′ with

d A′ ≥ 1

2
− ε and d A′ ≤ ε.

This shows that a question of Davenport and Erdős (see [7, 13]), whether
every primitive sequence has asymptotic density 0, has a negative answer.

We derive next an upper bound on d A because it is instructive and
beautiful. For any primitive A = {a1, . . . , aα} ⊂ [1, 2n] let di denote the
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greatest odd divisor of ai. Then necessarily d1, . . . , dα are all distinct and
hence

|A| = α ≤ n. (7)

Theorem 3 (Behrend [3]). For every primitive A, d A ≤ 1
2 .

Example 1 (Everybody). {n+ 1, . . . , 2n} is primitive and has density 1
2 .

This simple fact is very relevant in the analysis of infinite primitive
sequences.

Now Paul Erdős enters the scene.

Theorem 4 (Erdős [5]). For a primitive A �⊃ {1}
∞∑

i=1

1

ai log ai
< ∞.

It is an open problem of Erdős whether
∞∑

i=1

1
ai log ai

≤
∞∑

i=1

1
pi log pi

.

By Abel summation it can be shown that for any set B ⊂ N

0 ≤ d B ≤ δ B ≤ δ B ≤ d B ≤ 1. (8)

Since 1
log n

∑
N<ai≤n

1
ai

≤ ∑

N<ai≤n

1
ai log ai

, by Theorem 4 δ A = 0 for

primitive A. Also by (8) d A = 0. We state this result.

Theorem 5 (Erdős [5]). For every primitive sequence A, d A = δA = 0
or (equivalently)

1

log n

∑

ai≤n

1

ai
= o(1) as n → ∞. (9)

Logarithmic density has turned out to be an appropriate measure! Also, what
can be said about the speed in (9)?

Theorem 6 (Behrend [3]). There is a constant γ such that for every
primitive sequence A

1

log n

∑

ai≤n

1

ai
≤ γ

1

(log log n)
1
2

for n ≥ 3. (10)

In the proof the general case is reduced toA’s consisting entirely of square-
free integers and their analysis is based on Sperner’s Lemma [1]! This gave a
strong impetus also to combinatorial extremal theory starting with [12] and
continuing with [24], . . ., [30] and many, many others.

Theorem 6 is best possible in the sense that γ cannot be replaced by o(n).

Theorem 7 (S. Pillai [8]). There exists a positive constant c, such that to
every x ≤ 3 corresponds a primitive set Ax with
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1

log x

∑

ai≤x

1

ai
>

c

(log log x)
1
2

.

Subsequently Erdős, Sárközy, and Szemerédi [20] showed that c can be
chosen as (2π)−

1
2 − ε for any ε > 0 and that this is best possible.

The last three theorems concern in essence only finite primitive sequences.
Related to infinite primitive sequences in the true sense is the following.

Theorem 8 (Erdős, Sárközy, Szemerédi [21]). For every infinite prim-
itive sequence A

∑

ai≤x

1

ai
= o

(
log x

(log log x)
1
2

)

and this bound is best possible.

We draw attention also to a survey paper of Erdős, Sárközy, and
Szemerédi [22] and to a related paper of Pomerance and Sárközy [23].

Concerning d A there is the following improvement of Theorem 3.

Theorem 9 (Erdős [14]). Let A be an infinite primitive sequence, then for
every a ∈ A of the form a = 2u(2v + 1) ≤ n;u, v ≥ 0,

|A(n)| ≤ n−
⌊

1

2
n

⌋
−
⌊

1

2

(
n

3u(2v + 1)
− 1

)⌋
.

Hence, d A < 1
2 . After Besicovitch’s negative answer to Chowla’s

question, it is natural to address the next question: Under which conditions
on A does d M(A) or δ M(A) exist? Davenport-Erdős and Erdős answered
all these questions: We derive here the simplest and most transparent result,
Theorem 10 below, in order to explain the important role of a quantity, which
we consider to be a density concept for sets of multiples and denote as μ.

Since A is fixed, we write M for M(A). Further we denote by Mm =
Mm(A) the set of multiples of the first m elements of A, namely a1, a2, . . . ,
am. Mm can be represented as the union of a finite number of congruence
classes, and therefore possesses asymptotic density. If we denote by M (i)(n)
the natural numbers, not exceeding n, which are divisible by ai but not
divisible by anyone of a1, . . . , ai−1, then we have

Mm(n) =

ṁ⋃

i=1

M (i)(n). (11)

By inclusion-exclusion for every i = 1, 2, 3, . . .,

|M (i)(n)| =

⌊
n

ai

⌋
−
∑

j<i

⌊
n

〈ai, aj〉
⌋

+
∑

k<j<i

⌊
n

〈ak, ai, aj〉
⌋
− · · ·
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and

d M (i) = lim
n→∞

|M (i)(n)|
n

=
1

ai
−
∑

j<i

1

〈aj , ai〉 + · · · .

Therefore by (11)

d Mm =

m∑

i=1

d M (i). (12)

Since 0 <
m∑

i=1

d M (i) < 1 and d M (i) ≥ 0, lim
m→∞d Mm =

∑∞
i=1 d M(i) exists.

We define now the “density” μ by

μ A = lim
m→∞d Mm(A), A ⊂ N. (13)

Since Mm(A) ⊂ M(A), we see immediately that

μ A ≤ d M(A). (14)

Suppose now that
∞∑

i=1

a−1
i < ∞. Then d M(A) ≤ d Mm(A) +

∞∑

i=m+1

1
ai

and

thus d M(A) ≤ μ A ≤ d M(A).

Theorem 10 ([17]). If
∞∑

i=1

a−1
i <∞, then dM(A) exists and equals μA.

Here are the highlights.

Theorem 11 (Davenport-Erdős [7], also [13]). For any A ⊂ N, M(A)
has logarithmic density and

δM(A) = d M(A) = μA.

Theorem 12 (Erdős [11]). A necessary and sufficient condition for dM(A)
to exist is

lim
ε→0

lim sup
n→∞

1

n

∑

n1−ε<ai≤n

|M (i)(n)| = 0. (15)

Even though condition (15) looks complicated, it yields a useful sufficient
condition.

Theorem 13 (Erdős [11]). If A ⊂ N satisfies for some constant c, |A(n)| ≤
cn

log n for n ≥ 2, then d M(A) exists.

The case A ⊂ P is included here. The result is best possible in the
following sense.

Theorem 14 (Erdős [12]). For any monotonically increasing function Ψ :
N → R+ with lim

n→∞ Ψ(n) = ∞ there exists an A ⊂ N such that



124 Rudolf Ahlswede and Levan H. Khachatrian

|A(n)| ≤ const
n Ψ(n)

log n
for large n,

but d M(A) does not exist.

We present now two further results with many applications.
The first of them was probably motivated by Example 1. It shows how

the set of multiples of certain intervals behaves in density. This is the key idea
in Besicovitch’s construction [2]. Erdős improved the length of the intervals.

Theorem 15 (Erdős [5]). The intervals (T 1−ε, T ] ⊂ N satisfy

lim
ε→0
T→∞

d M((T 1−ε, T ]) = 0.

The second result is the famous Behrend Lemma in a dual formulation,
that is, for X ⊂ N we use M(X) instead of N \M(X).

Lemma 1 (Behrend [10]). Let A,B ⊂ N be finite, then

d M(A) · d M(B) ≤ d
(
M(A) ∩M(B)

)
.

Moreover, equality holds exactly if the primitive sets P (A) and P (B)
satisfy (a, b) = 1 for all a ∈ P (A), b ∈ P (B).

Finally there are also several papers concerning the growth of φ(x, y) [15].
We use later only the following result.

Theorem 16 (Chowla and Vijayaraghavan [15]).

lim
x→∞

φ(x, xθ)

x
= log

1

θ
, for

1

2
≤ θ < 1.

Remark 1. We apologize for not including in our sketch several results
of basic nature such as Rogers inequality [17] and others. Our selection is
guided by our present research interest. The reader may consult the books by
Halberstam and Roth [17] and Hall and Tenenbaum [19].

2. New Results

We introduce a seemingly basic and new concept.
The pair of sets (or sequences) (A,B) with A,B ⊂ N is called cross-

primitive, if

a � b and b � a for all a ∈ A, b ∈ B. (16)

It is convenient to denote the set of all cross-primitive pairs (A,B) with
A,B ⊂ N(x) (resp. N) by Cross(x) (resp. Cross(∞)). We are again interested
in density properties. We begin with the finite case and define

c(x) = max
(A,B)∈Cross(x)

|A| · |B|
x2

.
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Theorem 17. For all x ∈ N, c(x) < 1
4 and

lim
x→∞ c(x) =

1

4
.

Remark 2. As analogue for a primitive sequence see the simple Example 1
and (7). We believe that our construction is optimal for large x. Erdős thinks

that the deviation of max
(A,B)∈Cross(x)

|A||B| from x2

4 is of the order xα for some

α > 1.

The infinite case shows more complex behaviour and that’s the case where
also several classical results on primitive sequences are used.

Theorem 18.

max
(A,B)∈Cross(∞)

d A · d B =
1

16
.

The maximum is assumed for a pair with densities.

One auxiliary result for proving this Theorem deserves special attention.
It is an infinite form of Behrend’s Lemma 1, but by no means an easy
extension. On the other hand, it involves the essence of the Davenport-Erdős
Theorem 11 and expresses it in an elegant way.

Lemma 2. For arbitrary A,B ⊂ N

d M(A) · d M(B) ≤ d (M(A) ∩M(B)).

We use another auxiliary result, which should be known to the experts,
but we could not find stated in the literature.

Lemma 3. For any 0 < λ ≤ 1, and any q1 ∈ P, 1
q1

≤ λ, there exists a set of

primes Q = {q1 < q2 < · · · } ⊂ P with

d M(Q) = λ.

Finally, we enter the world of pathologies discovered by Besicovitch.

Theorem 19.

sup
(A,B)∈Cross(∞)

d A · d B = 1.

The supremum cannot be assumed: For A = {a1, . . .}, d B ≤ 1 − 1
a1
.

Remark 3. The construction in the proof of this Theorem can be used to
show that in Lemma 2 d cannot be replaced by d.
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3. Proof of Theorem 17

Since for (A,B) ∈ Cross(x), A and B must be disjoint and 1 /∈ A ∪ B

necessarily |A| + |B| < x and |A|·|B|
x2 < 1

4 . Therefore also c(x) < 1
4 for all

x ∈ N.
To complete the proof, we have to construct a sequence (Ax, Bx)∞x=1 with

(Ax, Bx) ∈ Cross(x) and

lim
x→∞

|Ax| · |Bx|
x2

=
1

4
. (17)

We define for a θ, 12 ≤ θ < 1, which we adjust later,

Ax = {a ∈ N : x1−θ ≤ a ≤ x and p+(a) ≤ xθ},
Bx = {b ∈ N : b ≤ x and p+(b) > xθ},

and observe that for a θ in the specified interval (Ax, Bx) ∈ Cross(x). Hence

|Ax| ≥ x− x1−θ − |Bx|. (18)

Now Theorem 16 says that lim
x→∞

|Bx|
x = log 1

θ and since x1−θ = o(x),

|Bx| ∼ x log
1

θ
, |Ax| � x(1 − log

1

θ
). (19)

We choose now θ such that log 1
θ = 1−log 1

θ = 1
2 , that is, θ = e−

1
2 ∼ 0.6065 >

1
2 . Clearly, (19) implies now (17).

Remark 4. A good estimate of |Bx| is possible, because Bx can be partitioned
according to the biggest prime in the decomposition of its members. These
biggest primes are essentially known in magnitude by the Prime Number
Theorem. Our first proof followed this line. Then we learnt about [15].

4. Proof of Lemma 2

Behrend’s Lemma implies that for every n ∈ N

d M(A(n)) · d M(B(n)) ≤ d
(
M(A(n)) ∩M(B(n))

)
. (20)

Since A(n), B(n) and thus also A(n) ∩B(n) are monotonically increasing in
n, we have

M(A(n)) ∩M(B(n)) ⊂M(A) ∩M(B)

and therefore

d
(
M(A(n)) ∩M(B(n))

) ≤ d
(
M(A) ∩M(B)

)
. (21)

Since d
(
M(A(n)) ∩M(B(n))

)
= d (M(A(n)) ∩M(B(n))), (20) and (21)

imply
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d M(A(n)) · d M(B(n)) ≤ d (M(A) ∩M(B)). (22)

Now by Theorem 11

lim
n→∞d M(A(n)) = d M(A), lim

n→∞d M(B(n)) = d M(A)

and therefore

d M(A)d M(B) ≤ d (M(A) ∩M(B)).

5. Proof of Lemma3

For any Q = {q1 < q2 < . . .} ⊂ P by the Prime Number Theorem (or weaker
versions)

|Q ∩ [1, n]| < const · n

log n
.

Therefore by Theorem 13 M(Q) possesses asymptotic density and by
Theorem 11

d M(Q) = d M(Q) =

∞∑

i=1

q(i),

where

q(i) =
1

qi
−
∑

j<i

1

qjqi
+

∑

k<j<i

1

qkqjqi
− . . . , (23)

because Q ⊂ P. Therefore

∞∑

i=1

q(i) = 1 −
∞∏

i=1

(
1 − 1

qi

)

and now the statement follows from
∑∞

i=1
1
pi

= ∞, because − log(1− 1
qi

) > 1
qi

and for any null sequence {ai}∞i=1 of positive numbers with
∑∞

i=1 ai = ∞ any
real number r > 0 equals

∑∞
j=1 aij for a suitable subsequence {aij}∞j=1.

6. Proof of Theorem 18

We show first that for (A,B) ∈ Cross(∞)

d A · d B ≤ 1

16
. (24)

We associate with (A,B) the sets

A∗ = M(A) \ (M(A) ∩M(B)),

B∗ = M(B) \ (M(A) ∩M(B)),
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and observe that also (A∗, B∗) ∈ Cross(∞). Moreover, we notice that

A ⊂ A∗ and B ⊂ B∗ (25)

and that

M(A) ∩M(B) = M(C), (26)

where

C = {〈a, b〉 : a ∈ A, b ∈ B}. (27)

By our definitions and properties (25) and (26) we have also

A ∩ [1, x] ⊂ (M(A) ∩ [1, x]) \ (M(C) ∩ [1, x]) (28)

and therefore

|A ∩ [1, x]| ≤ |M(A) ∩ [1, x]| − |M(C) ∩ [1, x]|. (29)

Let now (xi)
∞
i=1 be an increasing sequence of positive integers with

lim
i→∞

|M(A) ∩ [1, xi]|
xi

= d M(A). (30)

Then by (29) and (30)

d A ≤ lim inf
i→∞

|A ∩ [1, xi]|
xi

≤ d M(A) − lim inf
i→∞

|M(C) ∩ [1, xi]|
xi

≤ d M(A) − d M(C).

(31)

Now we lower bound d M(C) by Lemma 2:

d M(C) = d (M(A) ∩M(B)) ≥ d M(A) · d M(B)

and conclude that

d A ≤ d M(A) − d M(A) · d M(B) = d M(A)(1 − d M(B)). (32)

Symmetrically

d B ≤ d M(B)(1 − d M(A)) (33)

and thus finally

d A · d B ≤ d M(A)(1 − d M(A)) · d M(B)(1 − d M(B)) ≤ 1

4
· 1

4
=

1

16
.

We construct now (A,B) ∈ Cross(∞) with

d A · d B =
1

16
. (34)

By Lemma 3 there is a Q = {q1 ⊂ q2 . . .} ⊂ P with

d M(Q) =
1

2
and q1 > 2. (35)
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Set

A = {a ∈ N : 2 | a and qi � for all qi ∈ Q},
B = {b ∈ N : 2 � b and b ∈ M(Q)}.

Equivalently

A = M({2}) \ (M({2}) ∩M(Q)) and B = M(Q) \ (M({2}) ∩M(Q)).

Also, it is clear that (A,B) ∈ Cross(∞) and that M({2}) ∩M(Q) = M(C),
where

C = {2qi : qi ∈ Q}.
Obviously |C ∩ [1, n]| ≤ const n

log n and again by Theorem 13 M(C) has

asymptotic density and is given by the formula d M(C) =
∞∑

i=1

q
(i)
∗ , where

q
(i)
∗ =

1

2qi
−
∑

j<i

1

2qjqi
+

∑

k<j<i

1

2qkqjqi
. . . =

q(i)

2
.

Hence d M(C) = 1
2

∞∑

i=1

q(i) = d M(Q)
2 = 1

4 . Therefore

d A = dM({2})−d (C) =
1

2
− 1

4
=

1

4
,d B = dM(Q)−d (C) =

1

2
− 1

4
=

1

4
,

and (34) holds.

7. Proof of Theorem 19

Let us fix δ > 0, δi > 0 for i ∈ N,
∞∑

i=1

δi = δ and 0 < θ < 1.

By Theorem 15 for a δi > 0 there are positive numbers T (δi) and λ(δi)
such that

d M([T 1−λi , T ]) < δi for T > T (δi), λi < λ(δi). (36)

We fix arbitrary λi ∈ (0, λ(δi)) for i ∈ N and λ∗ ∈ (0, 1). Now (36) and
the definition of density tell us that for Tj > T (δj) (j = 1, 2, . . . , i) and
S > S(λ∗, T1, T2, . . . , Ti, λ1, . . . , λi, δ1, . . . , δi) (suitable) simultaneously

|M([T
1−λj

j , Tj]) ∩ [S1−λ∗
, S]|

S − S1−λ∗ < δj for j ≤ i. (37)

Now let R1 be an integer with the properties

R1 > T (δ1) and
1

Rλ1
1

< θ. (38)

We fix the interval [R1−λ1
1 , R1]. Let L1 be an integer with the properties
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L1−λ1
1 > R1 and L1−λ1

1 > S(λ1, R1, λ1, δ1). (39)

We choose the interval [L1−λ1
1 , L1]. Furthermore, we choose R2, L2 such

that L1 < R1−λ2
2 , R2 < L1−λ2

2 , R1−λ2
2 > max{T (δ2), S(λ2, L1, λ1, δ1)}, 1

R
λ2
2

<

θ and L1−λ2
2 > S(λ2, R1, R2, λ1, λ2, δ1, δ2). We fix now intervals [R1−λ2

2 , R2]
and [L1−λ2

2 , L2]. Continuing this procedure, for every i∈N we choose Ri, Li

such that Li−1 < R1−λi

i < L
(1−λi)

2

i , R1−λi

i > max{T (δi), S(λi, L1, . . . , Li−1,

λ1, . . . , λi−1, δ1, . . . , δi−1)}, 1

R
λi
i

< θ, and L1−λi

i >S(λi, R1, . . . , Ri, λ1, . . . , λi,

δ, . . . , δi). We fix intervals [R1−λi

i , Ri] and [L1−λi

i , Li]. By our construction
one has for every i ∈ N

|M([R
1−λj

j , Rj ]) ∩ [L1−λi

i , Li]|
L− L1−λi

< δj for all j ≤ i (40)

and analogously

|M([L
1−λj

j , Lj]) ∩ [R1−λi

i , Ri]|
Ri −R1−λi

i

< δj for all j ≤ i− 1. (41)

Now we introduce (disjoint) sets

A∗ =

∞⋃

i=1

[R1−λi

i , Ri], B
∗ =

∞⋃

i=1

[L1−λi

i , Li] (42)

and consider the sets

A = A∗ \M(B∗), B = B∗ \M(A∗). (43)

It is clear from this definition that (A,B) ∈ Cross(∞). The upper densities
dA and d B are lower bounded now with the help of (40) and (41). For every
i ∈ N the number of integers in A, which do not exceed Ri is at least

|[R1−λi

i , Ri] \ (M(B∗) ∩ [R1−λi

i , Ri])|

≥ (Ri −R1−λi

i ) −
i−1∑

j=1

|M([L
1−λj

j , Lj]) ∩ [R1−λi

i , Ri]|

> (Ri −R1−λi

i ) − (Ri −R1−λi

i ) ·
i−1∑

j=1

δj > (Ri −R1−λi

i )(1 − δ).

Therefore, for every i ≥ 1, |A∩[1,Ri]|
Ri

>
Ri−R

1−λi
i

Ri
(1 − δ) =

(
1 − 1

R
λi
i

)

(1 − δ) > (1 − θ)(1 − δ), because 1

R
λi
i

< θ for all i ∈ N. Hence, d A ≥
(1 − θ)(1 − δ). Similarly d B ≥ (1 − θ)(1 − δ) and therefore

d A · d B ≥ (1 − θ)2(1 − δ)2.

The result follows, because θ and δ can be made arbitrarily small.
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8. Concluding Remarks

The notion of cross-primitive pairs can be generalized to that of cross-
primitive k-tuples of sets (A1, . . . , Ak). The understanding here is that any
pair (Ai, Aj) (i �= j) is cross-primitive. Cross(x) then becomes Crossk(x). We
guess that

1. lim
x→∞ max

(A1,...,Ak)∈Crossk(x)

∏k
i=1

|Ai|
x = ( 1

k )k

2. max
(A1,...,Ak)∈Crossk(∞)

∏k
i=1 d Ai = ( 1

k )k(k−1
k )k(k−1)

3. sup
(A1,...,Ak)∈Crossk(∞)

∏k
i=1 d Ai = 1.
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Summary. We show that if a set B of positive integers has positive upper density,
then its difference set D(B) has extremely rich combinatorial structure, both
additively and multiplicatively. If on the other hand only the density of D(B)
rather than B is assumed to be positive, one is not guaranteed any multiplicative
structure at all and is guaranteed only a modest amount of additive structure.

1. Introduction

Given a subset B of the set N of positive integers, denote by D(B) its
“difference set”. That is D(B) = {x − y : x, y ∈ B and x > y}. We are
concerned here with difference sets which are “large” in one of two senses.
That is, we ask either that d̄(B) > 0 or that d̄(D(B)) > 0 where

d̄(A) = lim sup
n→∞

∣
∣A ∩ {1, 2, . . . , n}∣∣/n.

We show in Sect. 2 that if d̄(B) > 0, then D(B) has an incredibly rich
algebraic structure. We show for example that given any function f : N −→ N,
there must exist a sequence 〈xn〉∞n=1 so that {∑n∈F an · xn : F is a finite
nonempty subset of N and for each n ∈ F, 1 ≤ an ≤ f(n)} ∪ {∏n∈F x

an
n : F

is a finite nonempty subset of N and for each n ∈ F, 1 ≤ an ≤ f(n)} ⊆ D(B).
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With no sort of largeness assumptions at all (beyond the requirement that
B should have at least three members) one must always be able to get some
a and b with {a, b, a+ b} ⊆ D(B). (Given x < y < z in B, let a = y − x and
b = z−y.) Infiniteness by itself doesn’t help much. Indeed, it is easy to see that
ifB = {2n : n ∈ N}, then for no a, b, and c is {a, b, c, a+b, a+c, b+c, a+b+c} ⊆
D(B). On the other hand, we show in Sect. 3 that if d̄(D(B)) > 0, one can
always find a, b, and c with {a, b, c, a+ b, a+ c, b+ c, a+ b+ c} ⊆ D(B).

We have not been able to determine whether D(B) (where d̄(D(B)) > 0)
must contain some 4 elements with all of their sums. However, we do show
in Sect. 3 that one can find sets B with d̄(D(B)) arbitrarily close to 1/2 such
that D(B) contains no five elements and all of their sums. We also show that
we can find sets B with d̄(D(B)) arbitrarily close to 1 such that D(B) does
not contain any {a, b, a · b}.

2. The Difference Set of a Set of Positive Density

We show here that if d̄(B) > 0, then D(B) has a rich additive and
multiplicative structure. Many of the results in this section are from the
dissertation of the first author [2]. We begin by stating a well known result
about sets of positive upper density, whose proof we leave as an exercise.

Lemma 1. Let A ⊆ N such that d̄(A) > 0 and let k ∈ N such that 1/k <
d̄(A). Then given any t1, t2, . . . , tk in N there exist some i < j in {1, 2, . . . , k}
with d̄((A − ti) ∩ (A− tj)) > 0.

Note by way of contrast that it is easy to get two disjoint sets both with
upper density equal to 1. It is an immediate consequence of Lemma 1 that if
d̄(B) > 0, then D(B) is an IP∗-set. That is, given any sequence 〈xn〉∞n=1 in
N there is some finite nonempty subset F of N such that

∑
n∈F xn ∈ D(B).

(To see this: for each i, let ai =
∑i

n=1 xn and pick i < j such that d̄
(
(B −

ai) ∩ (B − aj)
)
> 0. Then

∑j
n=i+1 xn ∈ D(B).) Therefore, by Bergelson and

Hindman [4, Theorem 2.6] there is some sequence 〈xn〉∞n=1 with {∑n∈F xn : F
is a finite nonempty subset of N}∪{∏n∈F xn : F is a finite nonempty subset
of N} ⊆ D(B). We show in Theorem 5 below that a stronger conclusion holds,
(without invoking any results from [4]).

We shall utilize in our proofs two results from ergodic theory. The first of
these is Furstenberg’s famous correspondence principle which was first used
in his proof of Szemerédi’s Theorem [6, 7]. Recall that a measure preserving
system is a quadruple (X,B, μ, T ) where X is a nonempty set, B is a σ-
algebra of subsets of X , μ is a nonnegative σ-additive measure defined on B
with μ(X) = 1 (so that (X,B, μ) is a probability measure space), and T is an
invertible measure preserving transformation of X . (That is, T is continuous,
and whenever B ∈ B, T−1B ∈ B and μ(T−1B) = μ(B).)
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Theorem 1 (Bergelson [1, Proposition 2.1] and Furstenberg [6,
Theorem 1.1]). Let B ⊆ N with d̄(B) > 0. There exist a measure preserving
system (X,B, μ, T ) and a set A ∈ B such that μ(A) = d̄(B) and for all n ∈ N,
d̄(B ∩ (B − n)) ≥ μ(A ∩ T nA).

Given measure preserving systems (X1,B1, μ1, T1) and (X2,B2, μ2, T2) we
follow standard practice and denote by (X1 ×X2,B1 × B2, μ1 × μ2, T1 × T2)
the system where X1 ×X2 is the cartesian product, B1 ×B2 is the σ-algebra
generated by sets of the form A1 × A2 for A1 ∈ B1 and A2 ∈ B2, μ1 × μ2

is the measure on B1 × B2 determined by (μ1 × μ2)(A1 × A2) = μ1(A1) ·
μ2(A2) and T1 × T2 is the measure preserving transformation defined by
(T1 × T2)((x1, x2)) = (T1(x1), T2(x2)).

Theorem 2. Let T1, T2, . . . , Tk be invertible commuting transformations of
a probability measure space (X,B, μ). Assume that p1(n), p2(n), . . . , pk(n) are
polynomials with integer coefficients such that pi(0) = 0 for i ∈ {1, 2, . . . , k}.
Let A ∈ B with μ(A) > 0. Then there exists n ∈ N such that μ(A ∩
T

p1(n)
1 T

p2(n)
2 . . . T

pk(n)
k A) > 0.

Proof. This is exactly [3, Theorem 4.2] except that the conclusion there has
n ∈ Z \ {0}. To derive this version we utilize the product space (X ×X,B ×
B, μ × μ). For i ∈ {1, 2, . . . , k}, let Si = Ti × ι, where ι is the identity.
For i ∈ {k+1, k+2, . . . , 2k}, let Si = ι×Ti−k and let pi(n) = pi−k(−n). Then
S1, S2, . . . , S2k are invertible commuting transformations of (X×X,B×B, μ×
μ) and (μ× μ)(A×A) > 0 so pick (using [3, Theorem 4.2]) n ∈ Z \ {0} such

that (μ×μ)((A×A)∩Sp1(n)
1 S

p2(n)
2 . . . S

p2k(n)
2k (A×A)) > 0. If n > 0 we see from

the first coordinate that μ(A∩ T p1(n)
1 T

p2(n)
2 . . . T

pk(n)
k A) > 0. If n < 0 we see

from the second coordinate that μ(A ∩ T p1(−n)
1 T

p2(−n)
2 . . . T

pk(−n)
k A) > 0. �

We shall see in Theorem 5 that whenever d̄(B) > 0, D(B) contains sums
and products from a sequence where terms are allowed to repeat a restricted
number of times. We present first a special case so we may introduce the
proof in a relatively uncomplicated setting.

Theorem 3. Let B ⊆ N with d̄(B) > 0. Then there is some sequence
〈xn〉∞n=1 such that {∑n∈F anxn : F is a finite nonempty subset of N and
for each n ∈ F , an ∈ {1, 2}} ∪ {∏n∈F x

an
n : F is a finite nonempty subset of

N and for each n ∈ F , an ∈ {1, 2}} ⊆ D(B).

Proof. Pick by Theorem 1 a measure preserving system (X,B, μ, T ) and some
A ∈ B such that μ(A) = d̄(B) and for each n ∈ N, d̄(B ∩ (B − n)) ≥
μ(A ∩ T nA). Observe that {n ∈ N : μ(A ∩ T nA) > 0} ⊆ D(B). For m ∈
N and a sequence 〈xn〉mn=1 in N let E(〈xn〉mn=1) = {∑n∈F anxn : F is a
nonempty subset of {1, 2, . . . ,m} and for each n ∈ F, an ∈ {1, 2}} and let
C(〈xn〉mn=1) = {∏n∈F x

an
n : F is a nonempty subset of {1, 2, . . . ,m} and for



136 Vitaly Bergelson, Paul Erdős, Neil Hindman, and Tomasz �Luczak

each n ∈ F, an ∈ {1, 2}}. We construct a sequence 〈xn〉∞n=1 by induction so
that for each m, E(〈xn〉mn=1∪C(〈xn〉mn=1) ⊆ {n ∈ N : μ(A∩T nA) > 0} which
will suffice by our observation.

To ground the induction consider the measure space (X×X×X,B×B×
B, μ×μ×μ), let S1 = (T × ι× ι), S2 = (ι×T × ι), S3 = (ι× ι×T ), p1(n) = n,
p2(n) = 2n, and p3(n) = n2. (Recall that ι is the identity.) Pick by Theorem 2

some x1 ∈ N such that (μ× μ× μ)((A×A×A) ∩ Sp1(x1)
1 S

p2(x1)
2 S

p3(x1)
3 (A×

A × A)) > 0. From the first coordinate we see that μ(A ∩ T x1
1 A) > 0, from

the second coordinate we see that μ(A ∩ T 2x1
1 A) > 0, and from the third

coordinate we see that μ(A ∩ T x2
1

1 A) > 0. Since E(〈xn〉1n=1) = {x1, 2x1} and
C(〈xn〉1n=1) = {x1, x21}, the grounding is complete.

Now let m ∈ N be given and assume we have chosen 〈xn〉m−1
n=1 with

E((xn)m−1
n=1 ) ∪ C(〈xn〉m−1

n=1 ) ⊆ {n ∈ N : μ(A ∩ T nA) > 0}. Let b = 3m−1

and enumerate (with repetitions if need be) {0}∪E(〈xn〉m−1
n=1 ) as 〈yj〉bj=1 and

enumerate {1} ∪ C(〈xn〉m−1
n=1 ) as 〈zj〉bj=1. Now consider the measure space

(�4b
j=1X, �

4b
j=1B, �4b

j=1μ). Let H = �
b
j=1((A∩T yjA)× (A∩T yjA)×A×A), let

μ̄ = �
4b
j=1μ, and note that μ̄(H) > 0. (Our induction hypothesis tells us that

each μ(A∩T yjA) > 0.) Let S1 = �
b
j=1(T×ι×ι×ι), S2 = �

b
j=1(ι×T×ι×ι), S3 =

�
b
j=1(ι×ι×T zj ×ι), and S4 = �

b
j=1(ι×ι×ι×T zj). Let p1(n) = n, p2(n) = 2n,

p3(n) = n , and p4(n) = n2. Pick by Theorem 1, some xm ∈ N such that

μ̄(H ∩ Sp1(xm)
1 S

p2(xm)
2 S

p3(xm)
3 S

p4(xm)
4 H) > 0.

To see that E(〈xn〉mn=1) ⊆ {n ∈ N : μ(A ∩ T nA) > 0}, let ∅ �=
F ⊆ {1, 2, . . . ,m} and for each n ∈ F , let an ∈ {1, 2}. If m /∈ F , then∑

n∈F anxn ∈ E(〈xn〉)m−1
n=1 ), so we assume m ∈ F . Pick j ∈ {1, 2, . . . , b}

such that
∑

n∈F anxn = yj + amxm. If am = 1, we see by looking at
coordinate 4j − 3 that μ(A ∩ T yjA ∩ T xm(A ∩ T yjA)) > 0; in particular
μ(A ∩ T yj+xmA) > 0. If am = 2, we see by looking at coordinate 4j − 2 that
μ(A ∩ T yjA ∩ T 2xm(A ∩ T yjA)) > 0; in particular μ(A ∩ T yj+2xmA) > 0.

To see that C(〈xn〉mn=1) ⊆ {n ∈ N : μ(A ∩ T nA) > 0}, let ∅ �=
F ⊆ {1, 2, . . . ,m} and for each n ∈ F , let an ∈ {1, 2}. If m /∈ F , then∏

n∈F x
an
n ∈ C(〈xn〉m−1

n=1 ), so we assume m ∈ F . Pick j ∈ {1, 2, . . . , b} such
that

∏
n∈F x

an
n = zj · xam

z . If am = 1, we see by looking at coordinate
4b − 1 that μ(A ∩ (T zj )xmA) > 0 so that μ(A ∩ T zjxmA) > 0. If am = 2,

we see by looking at coordinate 4b that μ(A ∩ (T zj)x
2
mA) > 0 so that

μ(A ∩ T zjx
2
mA) > 0. �

We observe in fact that if one has sets B1, B2, . . . , Bn with each d̄(Bi) > 0,
then the conclusion of Theorem 3 applies to

⋂n
i=1D(Bi). To see this one

simply starts with the product system (�n
i=1Xi, �

n
i=1Bi, �

n
i=1μi, �

n
i=1Ti) where

(Xi,Bi, μi, Ti) is the system given by Theorem 1 for Bi.
Recall that a set B ⊆ N is an IP∗ set if and only if whenever 〈xn〉∞n=1 is a

sequence in N, one has FS(〈xn〉∞n=1) ∩B �= ∅. We pause now to observe that
neither of the conclusions of Theorem 3 follow from the fact that D(B) is an
IP∗ set.
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Theorem 4. There is an IP∗ set A such that for no sequence 〈xn〉∞n=1 is
{∑n∈F anxn : F is a finite nonempty subset of N and for each n ∈ N,
an ∈ {1, 2}} ⊆ A and for no sequence 〈yn〉∞n=1 is {∏n∈F y

an
n : F is a finite

nonempty subset of N and for each n ∈ N, an ∈ {1, 2}} ⊆ A.

Proof. Let B = N \ {x2 : x ∈ N}. Since one clearly cannot get any sequence
〈xn〉∞n=1 with {∑n∈F xn : F is a finite nonempty subset of N} ⊆ {x2 : x ∈ N},
one has that B is an IP∗ set. And no sequence 〈yn〉∞n=1 has any y2n ∈ B.

Now by Deuber et al. [5, Theorem 3.14], there is a partition N = C1 ∪C2

such that for no sequence 〈xn〉∞n=1 is {∑n∈F xn : F is a finite nonempty subset
of N} ⊆ C1 and for no sequence 〈yn〉∞n=1 is {∑n∈F1

yn +
∑

n∈F2
2yn : F1, and

F2 are finite nonempty subsets of N and max F1 < minF2} ⊆ C2. Then C2

is an IP∗ set. Let A = B ∩C2. Since the intersection of two IP∗ sets is again
an IP∗ set (see [4]), we have that A is as required. �

The next theorem is our major result of this section. Considerably
stronger statements are in fact available with the same proof. However, we
are trying to keep the results easily comprehensible.

Theorem 5. Let B ⊆ N with d̄(B) > 0 and let f : N → N. Then there is
some sequence 〈xn〉∞n=1 such that {∑n∈F anxn : F is a finite nonempty subset
of N and for each n ∈ F, an ∈ {1, 2, . . . , f(n)}} ∪ {∏n∈F x

an
n : F is a finite

nonempty subset of N and for each n ∈ F , an ∈ {1, 2, . . . , f(n))} ⊆ D(B).

Proof. We describe how to modify the proof of Theorem 3. First define
E(〈xn〉mn=1) and C(〈xn〉mn=1) analogously. At the grounding level one takes

the measure space (�
2f(1)−1
i=1 X, �

2f(1)−1
i=1 B, �2f(1)−1

i=1 μ). One lets Pi(n) = i · n
for i ∈ {1, 2, . . . , f(1)} and lets pi(n) = ni−f(1)−1 for i ∈ {f(1) + 1, f(1) +
2, . . . , 2f(1) − 1}.

At the induction stage, one lets b =
∏m−1

i=1 (f(i) + 1) and enumerates
E(〈xn〉m−1

n=1 ) ∪ {0} as 〈yi〉bj=1 and enumerates {1} ∪ C(〈xn〉m−1
n=1 ) as 〈zj〉bj=1.

Then one uses the measure space (�
b·2·f(m)
j=1 X, �

b·2·f(m)
j=1 B, �b·2·f(m)

j=1 μ), and lets

H = �
b
j=1(�

f(m)
i=1 (A ∩ T yjA) × �

f(m)
i=1 A). Using the obvious definitions of

S1, S2, . . . , S2·f(m) and p1, p2, . . . , p2·f(m) one completes the proof. �

3. Additive Structure in Dense Difference Sets

For the remainder of the paper we look at difference sets D(B) where we no
longer require that d̄(B) > 0, but only that d̄(D(B)) > 0.

Because difference sets are defined additively one would not necessarily
expect them to have any multiplicative structure. On the other hand,
Theorem 5 might make one suspect that they would have some multiplicative
structure. We begin this section by showing that they need not.
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Theorem 6. Let ε > 0. There is a set B such that d̄(D(B)) > 1 − ε and
there do not exist a and b in N with {a, b, a · b} ⊆ D(B).

Proof. Pick α ∈ N such that 1/2α < ε. Define a sequence 〈f(r)〉∞r=0 by f(0) =
2+α and f(r+1) = 2(f(r)+α)+1. Let 〈xn〉∞n=1 enumerate

⋃∞
r=0{2f(r), 2f(r)+

1, . . . , 2f(r)+α−1} in increasing order and note that for all n in N, xn < 2f(n).
Let B = {2f(n) : n ∈ N} ∪ {2f(n) + xn : n ∈ N}. Then D(B) = {xn : n ∈
N} ∪ {2f(n) + xn − 2f(m) : m,n ∈ N and m < n} ∪ {2f(n) − 2f(m) : m,n ∈ N

and m < n} ∪ {2f(n) + xn − 2f(m) − xm : m,n ∈ N and m < n} ∪ {2f(n) −
2f(m) − xm : m,n ∈ N and m < n}. Now given any r ∈ N we have |{xn : n ∈
N} ∩ {1, 2, . . . , 2f(r)+α}| > 2f(r)+α − 2f(r) so d̄(D(B)) ≥ 1 − 1/2α > 1 − ε.

If a = xn, then for some r ∈ N ∪ {0}, we have 2f(r) ≤ a < 2f(r)+α. If
a ∈ D(B)\{xn : n ∈ N} then there exist m and n in N with m < n such that
2f(n)−2f(m)−xm ≤ a ≤ 2f(n)+xn−2f(n). Since 2f(n)−2f(m)−xm > 2f(n)−1

we conclude that for any a ∈ D(B) there is some n ∈ N∪{0} with 2f(n)−1 <
a < 2f(n)+α. Now suppose we have a ≤ b in D(B) such that a · b ∈ D(B).
Pick m ≤ n ≤ r in N ∪ {0} such that 2f(m)−1 < a < 2f(m)+α, 2f(n)−1 <
b < 2f(n)+α, and 2f(r)−1 < a · b < 2f(r)+α. If n < r we have 2f(n)−1 <
a · b < 2f(m)+f(n)+2α so f(r) ≤ f(m) + f(n) + 2α ≤ 2f(n) + 2α < f(r), a
contradiction. Thus n = r so that 2f(m)+f(n)−2 < a · b < 2f(r)+α = 2f(n)+α.
Then f(m) < α+ 2 = f(0) ≤ f(m), a contradiction. �

Theorem 7. Let B ⊆ N and assume d̄(D(B)) > 0. There exist a, b, c in N

such that {a, b, c, a+ b, a+ c, b+ c, a+ b+ c} ⊆ D(B).

Proof. If d̄(B) > 0 we are done by Theorem 5 so we assume d̄(B) = 0.
Enumerate B in order as 〈xn〉∞n=1. The result of this theorem is almost free.
That is given any r > s > n > k, if we let a = xr − xs, b = xs − xn, and
c = xn − xk, then a+ b = xr − xn, b+ c = xs − xk, and a+ b+ c = xr − xk.
The only problem then is to find r > s > n > k such that xr −xs +xn−xk ∈
D(B).

Let α = d̄(D(B)) and pick l ∈ N such that 1/l < α. For each t we have

d̄(B − t) = d̄(B) = 0. Let E = D(B)
⋃l

k=1(B − xk). Then E = {xr − xs :
r, s ∈ N and r > s > l} and d̄(E) = α. Pick by Lemma 1 some k < n ≤ l
such that d̄((E − xk) ∩ (E − xn)) > 0. In particular (E − xk) ∩ (E − xn) �= ∅
so pick r > s > l and t > m > l such that xr −xs −xk = xt −xm −xn. Then
r > s > l ≥ n > k and xr − xs + xn − xk = xt − xm as required. �

We now set out to show that we can produce sets B with d̄(D(B))
arbitrarily close to 1/2 such that D(B) does not contain FS(〈an〉5n=1) for any
a1, a2, a3, a4, a5. (Here FS(〈an〉mn=1) = {∑n∈F an : ∅ �= F ⊆ {1, 2, . . . ,m}}.)
We first introduce the sets B (whose dependence on α is suppressed).

Definition 1. Fix α ∈ N with α > 4. Let 〈xn〉∞n=1 enumerate in increasing
order (N2 + 1) ∩ (

⋃∞
t=0{2αt+2, 2αt+2 + 1, . . . , 2αt+α−2 − 1}). Let B = {2αn :

n ∈ N} ∪ {2αn + xn : n ∈ N}.
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One sees immediately that one can get a1, a2, a3, and a4 with FS(〈an〉4n=1)
⊆ D(B). Indeed let s < m be given, pick l and r such that 2αr+2 < xl <
xl +2αm−2αs < 2αr+α−2, let xk = xl +2αm−2αs, and pick v and t such that
2αt+2 < xv < xv + 2αk − 2αs < 2αt+α−2. Then let a1 = 2αm − 2αs = xk − xl,
a2 = 2αl − 2αm, a3 = 2αk − 2αl, and a4 = xv. Then FS(〈an〉4n=1) ⊆ D(B).
In fact, one can show that any sequence of length 4 with its sums contained
in D(B) must fit this description. The computations are longer and more
painful than those on which we are embarking, so we omit them.

Definition 2. Let α and 〈xn〉∞n=1 be as in Definition 1. Then A1 = {xn : n ∈
N}, A2 = {2αn + xn − 2αm : n,m ∈ N and m < n}, A3 = {2αn − 2αm − xm :
n,m ∈ N and m < n}, A4 = {2αn − 2αm : n,m ∈ N and m < n}, and
A5 = {2αn + xn − 2αm − xm : n,m ∈ N and m < n}.

Observe that D(B) =
⋃5

i=1 Ai.
We next prove two lemmas to aid in our computations.

Lemma 2. Let n1, n2,m1,m2 ∈ N and let γ1, γ2, δ1, δ2 ∈ {0, 1} with n2 ≥
n1 and m2 ≥ m1. If 2αn2 + 2αn1 + γ2xn2 + γ1xn1 = 2αm2 + 2αm1 + δ2xm2 +
δ1xm1 , then

(1) (n2, n1, γ2, γ1) = (m2,m1, δ2, δ1) or
(2) n2 = n1 and (n2, n1, γ2, γ1) = (m2,m1, δ1, δ2).

Proof. We assume without loss of generality that n2 ≥ m2. If we had n2 > m2

we would have 2αm2 + 2αm1 + δ2xm2 + δ1xm1 < 4 · 2αm2 = 2αm2+2 < 2αn2 <
2αn2 + 2αn1 + γ2xn2 + γ1xn1 , a contradiction. Thus n2 = m2. Assume first
that γ2 �= δ2 and assume without loss of generality that γ2 = 1 and δ2 = 0,
Then xn2 = 2αm1 − 2αn1 + δ1xm1 − γ1xn1 . We claim m1 = n1. If we had
m1 < n1 we would have xn2 ≤ 2αm1 − 2αn1 + δ1xm1 < 2 · 2αm1 − 2αn1 < 0.
Suppose now m1 > n1. Then xn2 < 2αm1 + δ1xm1 < 2αm1+1 and xn2 ≥
2αm1 − 2αn1 − γ1xn1 > 2αm1 − 2 · 2αn1 > 2αm1−1. But for some r we have
2αr+2 < xn2 < 2αr+α−2, a contradiction. Thusm1 = n1 so xn2 = (δ1−γ1)·xn1

and hence δ1 = 1, γ1 = 0 and n1 = n2 so that conclusion (2) holds.
Now assume γ2 = δ2. Then we have 2αm1 + γ1n1 = 2αm1 + δ1m1. As in

the first paragraph we see n1 = m1 so γ1n1 = δ1n1 so γ1 = δ1. �

Lemma 3. Let n1, n2, n3,m1,m2,m3 ∈ N and let γ1, γ2, γ3, δ1, δ2, δ3 ∈
{0, 1} with n3 ≥ n2 ≥ n1 and m3 ≥ m2 ≥ m1. Assume 2αn3 + 2αn2 + 2αn1 +
γ3xn3 + γ2xn2 + γ1xn1 = 2αm3 + 2αm2 + 2αm1 + δ3xm3 + δ2xm2 + δ1xm1 .
Then some one of the following conclusions holds. In any event we have
γ1 + γ2 + γ3 = δ1 + δ2 + δ3 and max{n1, n2, n3} = max{m1,m2,m3}.
(1) (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ3, δ2, δ1)
(2) n2 = n1 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ3, δ2, δ1)
(3) n3 = n2 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ2, δ3, δ1)
(4) n3 = n2 = n1 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ1, δ2, δ3)
(5) (n3, n2, γ3, γ2, γ1) = (m3,m2, δ3, δ2, δ1) and γ3 �= γ2 and n1 �= m1.
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Proof. We assume without loss of generality that n3 ≥ m3, If we had n3 > m3

we would have 2αm3 + 2αm2 + 2αm1 + δ3xm3 + δ2xm2 + δ1xm1 < 6 · 2αm3 <
2αn3 <αn3 +2αn2 + 2αn1 + γ3xn3 + γ2xn2 + γ1xn1 , a contradiction. Thus we
must have n3 = m3. If also γ3 = δ3 we have 2αn2 + 2αn1 + γ2xn2 + γ1xn1 =
2αm2 + 2αm1δ2xm2 + δ1xm1 so Lemma 2 applies and yields conclusion (1) or
conclusion (2).

Thus we assume γ3 �= δ3 and assume without loss of generality that
γ3 = 1 and δ3 = 0. Then xn3 = 2αm2 − 2αn2 + 2αm1 − 2αn1 + δ2xm2 −
γ2xn2 + δ1xm1 − γ1xn1 . We observe that if we had m2 < n2 we would have
xn3 < 4 · 2αm2 − 2αn2 < 0.

Consequently m2 ≥ n2. We claim in fact m2 = n2 so suppose instead that
m2 > n2. Then xn3 < 4 ·2αm2 = 2αm2+2 and xn3 > 2αm2 −4 ·2αn2 > 2αm2−1.
But there is some r ∈ N such that 2αr+2 < xn3 < 2αr+α−2, a contradiction.
Thus m2 = n2 as claimed. Consequently we have xn3 = 2αm1 − 2αn1 + (δ2 −
γ2)xn2 + δ1xm1 − γ1xn1 .

Case 1. δ2 = γ2. Then we have xn3 = 2αm1−2αn1+δ2xm1−γ1xn1 . Reasoning
as above we conclude m1 = n1. Then xn3 = (δ1−γ1)·xn1 so δ1 = 1, γ1 = 0,
and n3 = n1. Then conclusion (4) holds.

Case 2. δ2 �= γ2. We claim that we must have δ2 = 1 and γ2 = 0. To see
this suppose instead δ2 = 0 and γ2 = 1. Then xn3 = 2αm1 − 2αn1 −
xn2 + δ1xm1 − γ1xn1 . One cannot have n1 > m1 for then one would have
xn3 < 0. If we had n1 = m1 we would have xn3 = −xn2 + (δ1 − γ1)xn1 .
Since xn3 > 0 one would have to have δ1 = 1 and γ1 = 0. But then one
would have xn3 + xn2 = xn1 forcing xn1 to be even. Thus one must have
n1 < m1.

Now we claim that xn2 > 2αm1−1. Suppose instead that xn2 < 2αm1−1.
Now xn3 < 2 · 2αm1 and for some r2αr+2 < xn3 < 2αr+α−2 so xn3 < 2αm1−2.
That is 2αm1 − 2αn1 − xn2 + δ1xm1 − γ1xn1 < 2αm1−2 so 2αm1 + δ1xm1 <
2αm1−2 + 2αn1 + xn2 + γ1xn1 < 2αm1−2 + 2αm1−2 + 2αm1−1 = 2αm1 , a
contradiction. Thus we have xn2 > 2αm1−1.

But now for some s we have 2αs+2 < xn2 < 2αs+α−2 so xn2 > 2αm1+2.
But then we have xn3 = 2αm1 − 2αn1 − xn2 + δ1xm1 − γ1xn1 < 2αm1 +
δ1xm1 − 2αm1+2 < 0, a contradiction. Thus we have established that δ2 = 1
and γ2 = 0.

Then we have that xn3 = 2αm1 − 2αn1 + xm2 + δ1xm1 − γ1xn1 . Since
xn3 , xm2 , xm1 , and xn1 are all odd we conclude δ1 = γ1. If also m1 = n1 we
conclude that xn3 = xm2 so n3 = m2 = n2 and conclusion (3) holds. Thus
we assume m1 �= n1. In this case conclusion (5) holds. �

We now begin an embarrassingly long sequence of computational lemmas.

Lemma 4. If a, b ∈ A1 ∪ A2 then a+ b /∈ D(B).
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Proof. Suppose a, b ∈ A1∪A2 and a+b ∈ D(B). Then a+b is even so a+b ∈
A4 ∪A5. Pick s < r and δ ∈ {0, 1} such that a+ b = 2αr − 2αs + δ(xr − xs).
We consider three cases.

Case 1. a, b ∈ A1. Pick n,m ∈ N such that a = xn and b = xm. Then
xn + xm + 2αs + δxs = 2αr + δxr so adding 2αn + 2αm to both sides we
get by Lemma 3 that 1 + 1 + δ = δ, a contradiction.

Case 2. a, b ∈ A2. Pickm < n and l < k such that a = 2αn+xn−2αm and b =
2αk+xk−2αl. Then 2αn+xn−2αm+2αk+xk−2αl = 2αr−2αs+δ(xr−xs)
so 2αn +2αk +2αs +xn +xk +δxs = 2αr +2αm +2αl +δxr so by Lemma 3,
1 + 1 + δ = δ, a contradiction.

Case 3. Not case 1 or case 2. Without loss of generality a ∈ A1 and b ∈ A2.
Pick n such that a = xn and pick l < k such that b = 2αk +xk −2αl. Then
xn +2αk +xk−2αl = 2αr−2αs+δ(xr−xs) so we again get a contradiction
using Lemma 3. �

Lemma 5. If a, b ∈ A3, then a+ b /∈ D(B).

Proof. Pick n > m and k > l such that a = 2αn − 2αm − xm and b = 2αk −
2αl−xl. Suppose a+b ∈ D(B), in which case since it is even, a+b ∈ A4∪A5.
Pick δ ∈ {0, 1} and s < r such that a + b = 2αr − 2αs + δ(xr − xs). Then
2αn +2αk +2αs + δxs = 2αr +2αm +2αl +xl +xm + δxr so that by Lemma 3,
δ = 1 + 1 + δ, a contradiction. �

Lemma 6. Let m < n and l < k be given and let a = 2αn − 2αm − xm and
b = 2αk − 2αl. If a+ b ∈ D(B), then l = n.

Proof. Since a + b is odd we have a + b ∈ A1 or a + b ∈ A2 or a + b ∈ A3.
We show first that the first two possibilities cannot hold. Indeed if we had
a + b ∈ A1, then for some r, 2αn − 2αm − xm + 2αk − 2αl = xr so that
2αn + 2αk + 2αr = 2αm + 2αl + 2αr + xm + xr so that by Lemma 3, 1 + 1 = 0.
A similar contradiction is obtained from the assumption that a + b ∈ A2.
Thus we may pick s < r such that a+ b = 2αr − 2αs − xs. Then 2αn + 2αk +
2αs + xs = 2αr + 2αm + 2αl + xm. By Lemma 3 we have that max{n, k, s} =
max{r,m, l}. Since l < k ≤ max{n, k, s} we have l �= max{r,m, l}. Similarly
m �= max{r,m, l} and s �= max{n, k, s}. Thus max{r,m, l} = r. Assume first
k ≤ n. Then n = max{n, k, s} so n = r so 2αk+2αs+xs = 2αm+2αl+xm. By
Lemma 2 we have max{k, s} = max{m, l}. Since l < k we have l �= max{m, l}
so l < m so conclusion (2) of Lemma 2 cannot hold.

If we had k ≤ s we would have (m, l) = (s, k), while l < k. Thus s < k
so (k, s, 0, 1) = (m, l, 1, 0), a contradiction. Thus we have n < k so that
k = max{n, k, s} and hence k = r. Then 2αn + 2αs + xs = 2αm + 2αl + xm.

By Lemma 2 max{n, s} = max{m, l}. Since m < n we have m �=
max{m, l} so (l,m) = (n, s) or (l,m) = (s, n). The latter is impossible since
m < n so in particular n = l. �
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Lemma 7. Let l < k and m < n in N be given with k ≥ n and let μ,
τ ∈ {0, 1}. Let a = 2αk −2αl + τ(xk −xl) and let b = 2αn−2αm +μ(xn−xm)
and assume that a+ b ∈ D(B). Then some one of the following holds:

(1) n = l and μ = τ ;
(2) n = l and μ = 0 and τ = 1 and there is some v < m such that xk − xl =

2αv − 2αm − 2αv;
(3) n ≤ l and μ = 1 and τ = 0 and there is some v > m such that xk − xl =

2αm + xv − xm; if n < l, then v = n; or
(4) n ≤ l and μ = r = 0 and xk − xl = 2αn − 2αm.

Proof. Since a + b is even we must have a + b ∈ A4 ∪ A5. So pick r >
s in N and ν ∈ {0, 1} such that a + b = 2αr − 2αs + ν(xr − xs). Then
2αk + 2αn + 2αs + τxk + μxn + νxs = 2αr + 2αl + 2αm + νxr + τxl + μxm.
By Lemma 3, max{k, n, s} = max{r, l,m}. Since l < k,m < n, and s < r we
have max{r, l,m} = r and s �= max{k, n, s}. Since k ≥ n, k = max{k, n, s}.

Case 1. n ≥ s. If we had m ≥ l we would then have k ≥ n ≥ s and r > m ≥ l
so that by Lemma 3 we would have (k, n) = (r,m) while m < n. Thus
l > m. We then have k ≥ n ≥ s and r > l > m so by Lemma 3 some one
of the following holds:

(a) (k, n, s, τ, μ, ν) = (r, l,m, ν, τ, μ),
(b) n = s and (k, n, s, τ, μ, ν) = (r, l,m, ν, μ, τ),
(c) k = n and (k, n, s, τ, μ, ν) = (r, l,m, τ, ν, μ),
(d) k = n = s and (k, n, s, τ, μ, ν) = (r, l,m, μ, τ, ν), or
(e) (k, n, τ, μ, ν) = (r, l, τ, ν, μ), and τ �= μ and s �= m.

If μ = τ we have that conclusion (1) of the current lemma holds. So assume
μ �= τ . This eliminates (a) and (d) above. The fact that m < l eliminates
(b) above. The fact that l < k eliminates (c) above. Thus we have (e) must
hold. Observe also that τ �= ν. (If so one would have 2αn+2αs+μxn+νxs =
2αl + 2αm + τxl +μxm so that by Lemma 2 one would have m = s, which
is forbidden by (e).)
There are thus two possibilities. First one could have μ = ν = 0 and τ = 1.
In this case 2αs + xk = 2αm + xl so 2αm − 2αs = xk − xl > 0 so s < m
and conclusion (2) of the current lemma holds. Second one could have
μ = ν = 1 and τ = 0. In this case 2αs + xl + xs = 2αm + xk + xm so that
xk − xl = 2αs − 2αm + xs − xm and conclusion (3) of the current lemma
holds.

Case 2. n < s. Since s < r = k we have then k > s > n. By Lemma 3 we
then have that (k, s) = (r, l) or (k, s) = (r,m). Since m < n, the latter
alternative is impossible and hence m < l. Also l < k = r so we have r >
l > m. Since n �= m we have only one possibility from Lemma 3, namely
that (k, s, τ, ν, μ) = (r, l, τ, ν, μ) and τ �= ν. Since k = r and s = l we then
have 2αn+τxk+μxn+νxl = 2αm+νxk+rxl+μxm. Suppose τ = 1. Then we
have ν = 0 so xk − xl = 2αm − 2αn +μ(xm − xn) < 0, which is impossible.



Dense Difference Sets and Their Combinatorial Structure 143

Thus τ = 0 and ν = 1 and hence xk − xl = 2αn − 2αm + μ(xn − xm).
If μ = 1 this gives conclusion (3) of the current lemma while if μ = 0 it
gives conclusion (4). �

Lemma 8. Assume a ≥ b ≥ c and {a, b, c} ⊆ A4 ∪ A5 and {a + b, a +
c, b + c, a + b + c} ⊆ D(B). Then there exist k > l > m > s in N such that
a = 2αk − 2αl, b = 2αl − 2αm, and c = 2αm − 2αs = xk − xl.

Proof. Since a, b, and c are in A4 ∪A5 we have k > l, n > m, and r > s in N

and τ , μ, ν in {0, 1} such that a = 2αk − 2αl + τ(xk − xl), b = 2αn − 2αm +
μ · (xn − xm) and c = 2αr − 2αs + ν · (xr − xs). Since a ≥ b ≥ c we have
k ≥ n ≥ r. Applying Lemma 7 to a+ b we have one of:

(1) n = l and μ = τ ;
(2) n = l and μ = 0 and τ = 1 and there is some v < m such that xk − xl =

2αm − 2αv;
(3) n ≤ l and μ = 1 and τ = 0 and there is some v > m such that xk − xl =

2αv − 2αm + xv − xm; if n < l, then v = n ; or
(4) n < l and μ = τ = 0 and xk − xl = 2αn − 2αm.

Applying Lemma 7 to b+ c we have one of:

(1)′ r = m and ν = μ;
(2)′ r = m and ν = 0 and μ = 1 and there is some t < s such that xn−xm =

2αs − 2αt.
(3)′ r ≤ m and ν = 1 and μ = 0 and there is some t > s such that xn−xm =

2αt − 2αs + xt − xs ; if r < m, then t = r; or
(4)′ r < m and ν = μ = 0 and xn − xm = 2αr − 2αs.

Now from (1)′, (2)′, (3)′ and (4)′ we see that in any event r ≤ m and from
(1), (2), (3) and (4) we see that n ≤ l. Thus r ≤ m < n ≤ l. Thus applying
Lemma 7 to a+ c we have one of:

(3)∗ r < l and ν = 1 and τ = 0 and xk − xl = 2αr − 2αs + xr − xs ; or
(4)∗ r < l and ν = τ = 0 and xk − xl = 2αr − 2αs.

We show first that (1) must hold. From (3)∗ or (4)∗ we conclude τ = 0
so (2) cannot hold.

Now suppose that (3) or (4) holds and pick v > m and γ ∈ {0, 1} such
that xk−xl = 2αv−2αm+γ ·(xv−xm). Since (3)∗ or (4)∗ holds pick λ ∈ {0, 1}
such that xk − xl = 2αr − 2αs + λ · (xr − xs). Then 2αv + 2αs + γxv + λxs =
2αr+2αm+λxr+γxs. Since s < r and m < v we conclude from Lemma 2 that
(v, s) = (r,m). But we have already observed that r ≤ m so r ≤ m = s < r,
a contradiction.

We have thus established that (1) holds. In particular we know μ = τ
from (1) and τ = 0 from (3)∗ or (4)∗ so μ = τ = 0. We now show that (1)′

holds. Since μ = 0 we know (2)′ cannot hold.
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Since (1) holds we know that a = 2αk − 2αl and b = 2αl − 2αm so that
a+ b+ c = 2αk − 2αm + 2αr − 2αs + ν · (xr − xs). Also a+ b+ c ∈ A4 ∪A5 so
pick w > u in N and ρ ∈ {0, 1} such that a+b+c = 2αw−2αu +ρ · (xw −xu).
Then 2αk + 2αr + 2αu + νxr + ρxu = 2αw + 2αm + 2αs + ρxw + νxs. Now
max{k, r, u} = max{w,m, s} and m < k and s < r so w = max{w,m, s}.
Also m ≥ r > s so we have w > m > s. Since r ≤ m < k and u < w we have
k = max{k, r, u}. Thus k = w. We suppose (3)′ or (4)′ holds and consider
two cases.

Case 1. m = r. Then (4)′ cannot hold so (3)′ holds and hence ν = 1. We also
conclude that r ≥ u. (For if r < u then by Lemma 3 we have (k, u) =
(w,m) so m = u > r = m.) Now since w > m > s the only possibilities
in Lemma 3 are for conclusion (1) or (5) to hold. If conclusion (1) held
we would have (k, r, u, 0, 1, ρ) = (w,m, s, ρ, 0, 1) which is impossible. Thus
(k, r, 0, 1, ρ) = (w,m, 0, ρ, 1) so ρ = 1. Thus we have 2αu + xm + xu =
2αs + xk + xs so xk − xm = 2αu − 2αs + xu − xs and hence u > s.
Also by (3)′ pick t > s such that xn − xm = 2αt − 2αs + xt − xs. Since
ν = 1, (3)∗ holds so we have xk − xl = 2αr − 2αs + xr − xs. Since l = n
we then have xk − xm = 2αt + 2αr − 2 · 2αs + xt + xr − 2 · xs. Thus
2αu − 2αs + xu − xs = 2αt + 2αr − 2 · 2αs + xt + xr − 2 · xs so that
2αu + 2αs + xu + xs = 2αt + 2αr + xt + xr . Thus by Lemma 2 we have
(u, s) = (t, r) or (u, s) = (r, t).

But r > s and t > s, a contradiction.
Case 2. m > r. Then from (3)′ or (4)′ we have that xn − xm = 2αr −

2αs + ν · (xr − xs). Now w > m > s and (w,m) �= (k, r) so by Lemma 3
we must have k > u > r. Since s < r we must then have conclusion
(5) of Lemma 3 must hold and consequently ρ �= 0, i.e, p = 1. Thus
2αr +νxr +xm = 2αs +νxs +xk so that xk −xm = 2αr−2αs +ν · (xr −xs)
so xk − xm = xn − xm and hence k = n. Since n = l < k, this is a
contradiction.

Thus we have established that (1)′ holds. Thus μ = τ = ν so (3)∗ does
not hold so (4)∗ holds. The conjunction of (1), (1)′, and (4)∗ is precisely the
conclusion of this lemma. �

Lemma 9. Let a1, a2, a3, and a4 in N be given such that FS(〈an〉4n=1) ⊆
D(B). Then there is some i ∈ {1, 2, 3, 4} such that ai ∈ A1 ∪ A2 and {aj :
j ∈ {1, 2, 3, 4} and j �= i} ⊆ A4 ∪ A5.

Proof. Suppose first that {a1, a2, a3, a4} ⊆ A4 ∪A5 and assume without loss
of generality that a1 ≥ a2 ≥ a3 ≥ a4. Applying Lemma 8 to a1, a2, and a3
we pick k > l > m > s in N such that a1 = 2αk − 2αl, a2 = 2αl − 2αm, and
a3 = 2αm−2αs. Applying Lemma 8 to a1, a3, and a4 we conclude that m = l,
a contradiction.
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Now by Lemma 4 at most one i has ai ∈ A1∪A2 and by Lemma 5 at most
one i has ai ∈ A3 so to complete the proof it suffices to show that no ai ∈ A3.
Suppose we have some ai ∈ A3 and assume without loss of generality that
a1 ∈ A3.

Case 1. Some j has aj ∈ A1 ∪ A2. Without loss of generality a2 ∈ A1 ∪ A2.
We may further assume without loss of generality that a3 ≥ a4. Since
FS(< a1 + a2, a3, a4 >) ⊆ A4 ∪ A5 we have by Lemma 8 some k > l ≥
m > s such that a3 = 2αk − 2αl and a4 = 2αm− 2αs. (If a1 +a2 is between
a3 and a4 we have l > m. Otherwise equality holds.) Pick u > v in N such
that a1 = 2αu − 2αv −xv. Since a1 + a3 ∈ D(B) we have by Lemma 6 that
l = u. Since a1 + a4 ∈ D(B) we have by Lemma 6 that s = u. But s < l,
a contradiction.

Case 2. {a2, a3, a4} ⊆ A4∪A5. Without loss of generality a2 ≥ a3 ≥ a4. Then
by Lemma 8 we have some k ≥ l > m > s such that a2 = 2αk − 2αl, a3 =
2αl−2αm, and a4 = 2αm−2αs. Applying Lemma 6 to (a1, a2) and (a1, a4)
we again get l = u = s, a contradiction. �

We temporarily abandon our assumption that α has a fixed value in order
to state the next theorem.

Theorem 8. Let ε > 0 be given. There is a set B ⊆ N with d̄(D(B)) >
1/2 − ε such that no a1, a2, a3, a4, and a5 have FS(〈an〉5n=1) ⊆ D(X).

Proof. Pick α ∈ N such that 1/2α−5 < ε. Define B as in Definition 1. Observe
that A1 ⊆ D(B) and d̄(A1) ≥ 1/2−1/2α−5 since |A1∩{1, 2, . . . , 2αt+α−2}| ≥
1
2 ((2αt+α−2 − 2αt+2)).

Suppose now one has a1, a2, a3, a4, and a5 with FS(〈an〉5n=1) ⊆ D(B).
Applying Lemma 9 first to a1, a2, a3, and a4 one has without loss of generality
that a1 ∈ A1∪A2 and {a2, a3, a4} ⊆ A4∪A5. Applying Lemma 9 to a2, a3, a4,
and a5 one sees that a5 ∈ A1 ∪A2. Then applying Lemma 4 to a1 and a5 one
obtains a contradiction. �

We close with two questions which are raised by Theorems 7 and 8.

Question 1. If B ⊆ N and d̄(D(B)) > 0, must there exist a1, a2, a3, and
a4 in N with FS(〈an〉4n=1) ⊆ D(B)?

Since always d̄(B∩(B−t)) ≥ 2·d̄(B)−1, one easily sees that if d̄(D(X)) >
1−1/2m−1, there will exist a1, a2, . . . , am with FS(〈ai〉mi=1) ⊆ D(X). (See [8,
Theorem 4.5].) To utilize this to obtain FS(〈an〉5n=1) one needs d̄(D(X)) >
1 − 1/16.

Question 2. If d̄(D(X)) = 1/2 or even if d̄(D(X)) > 1/2 must there exist
a1, a2, a3, a4, and a5 in N with FS(〈an〉5n=1) ⊆ D(X)?
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Summary. We prove that a maximum subset of {1, 2, . . . , n} containing no
solutions to x + y = 3z has �n

2
� elements if n 	= 4, thus settling a conjecture

of Erdős. For n ≥ 23 the set of all odd integers less than or equal to n is the unique
maximum such subset.

1. Introduction

Many classical problems in computational number theory focus upon subsets
S of positive integers with the property that for all x, y, z in S, we have
x+y �= kz, for a fixed positive integer k. The history can be dated from 1916,
when Schur [5], in work related to Fermat’s Last Theorem, proved that the
set of positive integers cannot be partitioned into finitely many sum-free sets,
i.e., sets having no solution to x+y = z. This result is a Ramsey-type theorem
which predates Ramsey’s Theorem. In 1927, van der Waerden [9] considered
subsets having no solution to x+y = 2z, or in other words, subsets containing
no three-term arithmetic progression. His celebrated theorem states that the
positive integers cannot be partitioned into finitely many subsets each of
which contains no k-term arithmetic progressions. In 1952, Roth proved that
a set of positive upper density contains three-term progressions [4]. This was
improved by Szemerédi to four-term progressions [7] and later to the general
k-term progressions [8].

A problem which appears in several undergraduate combinatorics texts
is to show that a maximum subset of {1, . . . , n} containing no solutions to
x+y = z (x, y, z not necessarily distinct) has size �n

2  . In Sect. 2 of this paper
we find all such subsets and prove the following theorem:

Theorem 1. A maximum subset of {1, . . . , n} containing no solution to x+
y = z (x, y, z not necessarily distinct) has size �n

2  . If n ≥ 3 is odd there are
precisely two maximum subsets: the odd integers less than or equal to n and
{x ∈ Z | n+1

2 ≤ x ≤ n}. If n ≥ 4 is even there are at least three maximum
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subsets: {x ∈ Z | n+1
2 ≤ x ≤ n} and the two maximum subsets for the odd

number n − 1. For even n ≥ 10 these three are the only ones. For smaller
even numbers, {1, 4}, {2, 5, 6}, {1, 4, 6}, and {2, 3, 7, 8} are the only additional
ones.

Let f∗(n, 2) denote the maximum size subset of {1, . . . , n} containing
no three-term arithmetic progressions (such subsets contain no solutions to
x+y = 2z, but now, for the problem to make sense, x, y, z are distinct). Roth
first showed [4] that

f∗(n, 2) = O

(
n

log log n

)
.

The current best bounds are, for appropriate absolute constant ci,

ne−c1
√
log n < f∗(n, 2) <

c2n

(log n)c3

where the lower bound was proved by Salem and Spencer [6] (see also
Behrend [1]), and the upper bound was proved by Heath-Brown and
Szemerédi [3].

Erdős conjectured that a maximum subset of {1, . . . , n} having no
solutions to x + y = 3z (x, y, z not necessarily distinct) has size no more
than a small constant more than �n

2  . In Sect. 3 we verify this conjecture by
proving the following theorem:

Theorem 2. Let Tn be a subset of {1, . . . , n} of maximum size such that
x+ y = 3z has no solutions with x, y, z ∈ Tn (x, y, z not necessarily distinct).
If n �= 4 then |Tn| = �n

2  .
In Sect. 4 we show that for sufficiently large n there is a unique maximum

such subset:

Theorem 3. If n ≥ 23 and Tn is a subset of maximum size of {1, . . . , n}
having no solutions to x + y = 3z then Tn is the set of all odd integers less
than or equal to n.

We use the standard notation �  and  � for least integer not less than
and greatest integer not greater than, respectively. For a and b nonnegative
integers we let [a, b] denote the set of all integers x such that a ≤ x ≤ b.

2. Maximum Sum-Free Sets of {1, . . . , n}
Proof of Theorem 1. First we show the maximum size is always �n

2  . Let
Un be a maximum sum-free subset of {1, . . . , n} and let p be the largest
integer in Un. Then at most one integer in each of the pairs (i, p − i), i =
1, 2, . . . , �p−2

2  is in Un, so |Un| ≤ �p
2 ≤ �n

2  . Clearly, there are subsets which
attain this bound, so |Un| = �n

2  .
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To characterize the maximum subsets we consider two cases depending
on the parity of n.

Case 1 (n odd). Let n ≥ 5 be the smallest odd integer such that there exists
a maximum sum-free subset Un of {1, . . . , n} which is not the odd integers
less than or equal to n or

[
n+1
2 , n

]
. Clearly n ∈ Un (or else |Un| ≤ �n−1

2  <
�n
2  ), so if n− 1 /∈ Un then, by the minimality of n, either Un is the set of

all odd integers less than or equal to n (which is impossible by assumption)
or Un = [n−1

2 , n − 2] ∪ {n} which is impossible since n−1
2 + n+1

2 = n. So
we can assume n− 1 and n are in Un.

Let G be the graph with vertex set V = {vi | i ∈ [2, n−3
2 ]∪ [n+1

2 , n−2]}
of size n − 4 where {vi, vj} is an edge of G if and only if i + j = n or
i + j = n− 1. Then G is the path vn−2, v2, vn−3, v3, . . . , vn−3

2
, vn+1

2
(with

an odd number of vertices). Since n−1 and n are in Un, 1 and n−1
2 are not,

so the other n−3
2 integers in Un must be the indices of an independent set

of vertices in G (i.e., no two of them adjacent). The only sufficiently large
independent set in G is the maximum independent set which has indices
[n+1

2 , n− 2], so Un = [n+1
2 , n].

Case 2 (n even). If n ≥ 4 is even and n /∈ Un, then certainly Un must be one
of the two maximum subsets for the odd integer n− 1. It is easy to check
that the statement in the theorem about when n is 4, 6, or 8 is correct.
Let n ≥ 10 be the smallest even integer such that there exists a maximum
sum-free subset Un of {1, . . . , n} which contains n but is not [n2 + 1, n]. If
n−1 /∈ Un, we let Un−2 = Un∩[1, n−2], so that |Un−2| = n−2

2 . Un−2 cannot
be the odd integers less than or equal to n − 3 because 3 + (n − 3) = n.
And Un−2 cannot be [n−2

2 , n − 3] or [n2 , n − 2] because n
2 /∈ Un. So Un−2

cannot be any of the three kinds of maximum subsets for even n described
in the theorem. So by the minimality of n we would have to have n = 10
and Un−2 = {2, 3, 7, 8}. This cannot be because 2+8 = 10. Hence, as with
the odd case, n− 1 and n are both in Un.

Now let H be the graph with vertex set V = {vi | i ∈ [2, n−2
2 ] ∪

[n+2
2 , n − 2]} of size n − 4 where {vi, vj} is an edge of H if and only if

i + j = n or i + j = n − 1 or {i, j} = {n − 2, n−2
2 }. Then H is the cycle

vn−2, v2, vn−3, v3, . . . , vn+2
2
, vn−2

2
. Since n− 1 and n are in Un,1 and n

2 are

not, so the other n−4
2 integers in Un must be the indices of an independent

set of vertices in H . There are two possibilities: [2, n−2
2 ] and [n+2

2 , n−2]. If
n ≥ 10 the first of these cannot occur because it contains 2 and 4 (If n = 6
the first possibility gives us {2, 5, 6} while if n = 8 it gives {2, 3, 7, 8}.). So
we have Un = [n2 + 1, n] which completes the proof. �
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3. The Size of a Set with No Solution to x + y = 3z

We observe that if Tn is a set containing no solutions to x + y = 3z and if
w ∈ Tn, then 1

2w,
2
3w,

3
2w, and 2w cannot be in Tn (because x, y, z need not

be distinct).

Proof of Theorem 2. The set of all odd integers less than or equal to n has no
solutions to x+ y = 3z so |Tn| ≥ �n

2  . It is easy to check that |Tn| = �n
2  for

n = 1, 2, 3, 5 (there are three ways to choose T5: {1, 3, 4}, {1, 3, 5}, or {1, 4, 5}.
The first of these shows that |T4| = 3.) So it remains to show |Tn| ≤ �n

2  
for n ≥ 6. Let n be the smallest integer greater than or equal to 6 such that
|Tn| > �n

2  . We can assume n is even and n ∈ Tn (otherwise n−1 is a smaller
counter-example).

Case 1. Tn has no integer x such that n
3 < x ≤ 2n

3 . By the minimality of n
at most

⌈n
3 �/2

⌉
of the integers in [1, n

3 �] are in Tn provided n
3 � �= 4. So

|Tn| ≤
⌈n

3 �
2

⌉
+

∣
∣
∣
∣

[⌊2n

3

⌋
+ 1, n

] ∣∣
∣
∣

=

{
n
2 if n = 0 or 2 (mod 6)
n
2 + 1 if n = 4 (mod 6).

So we are done if n �= 4 (mod 6) and n
3 � �= 4. If n

3 � = 4 then n = 12
or n = 14 and the respective candidates for a set of size greater than n

2
are {1, 3, 4, 9, 10, 11, 12} and {1, 3, 4, 10, 11, 12, 13, 14}. However, neither is
acceptable because 1 + 11 = 3 · 4.

It remains only to consider n = 6k + 4 (k = 1, 2, 3, . . .), in which case
the candidate for a counter-example is to choose k + 1 of the integers in
[1, 2k + 1] and all the integers in [4k + 3, 6k + 4]. If 2k + 1 /∈ Tn then
more than half of the first 2k integers are in Tn, so 2k = 4, n = 16, and
the candidate is {1, 3, 4, 11, 12, 13, 14, 15, 16} which fails again because it
contains 1, 4, and 11. So 2k+ 1 ∈ Tn and 6k+ 3 is a forbidden sum. Since
[4k + 3, 6k + 2] ⊆ Tn it follows that Tn ∩ [1, 2k] = ∅. This is impossible
since k + 1 of the first 2k + 1 integers are in Tn.

Case 2. Tn has an integer x such that n
3 < x ≤ 2n

3 .

In fact x �= 2n
3 since n ∈ Tn. Assume x is the largest integer in Tn such

that n
3 < x < 2n

3 . Then the integers in W = [3x − n, n] can be arranged in
pairs as follows:

(3x− n+ j, n− j) j = 0, 1, 2, . . . n−
⌈

3x

2

⌉

Since the sum of the integers in each pair is 3x, at most one integer from
each pair can be in Tn.
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If x is even then |W | is odd and one of the pairs is (3x2 ,
3x
2 ). In this case

Tn contains at most 1
2 (|W | − 1) integers from W and, by the minimality of

n, at most n−|W |+1
2 integers from [1, 3x− n− 1]. So |Tn| ≤ n

2 .
If x is odd, then |W | is even and at most 1

2 |W | integers from W can be in
Tn. So at most 1

2 (n− |W |) integers from [1, 3x−n− 1] can be in Tn provided
3x − n − 1 �= 4. So we are done except for the possibility that 3x − n = 5.
In this case one of the pairs of integers in W is (3x−1

2 , 3x+1
2 ) = (n+4

2 , n+6
2 ).

Since x is the largest integer in Tn which is less than 2n
3 and since x =

n+5
3 < n+4

2 < n+6
2 , we must have n+6

2 > 2n
3 (so that one integer in this pair

can be in Tn). Solving this gives n < 18. Since n ≥ 6, the only possibilities
are n = 10, x = 5 and n = 16, x = 7. The first of these is impossible because
n ∈ Tn but Tn cannot contain both 5 and 10. For the second possibility, since
7 ∈ Tn certainly 14 /∈ Tn so the only candidate is {1, 3, 4, 7, 11, 12, 13, 15, 16}.
But Tn cannot contain 1, 4, and 11 so the proof is complete. �

4. Maximum Sets with No Solutions to x + y = 3z

Choosing lots of smaller integers to go into a set Tn which has no solutions
to x + y = 3z clearly eliminates some of the larger integers from inclusion.
If the smaller included integers follow a simple pattern it may be possible to
get a simple description of the eliminated larger integers.

Lemma 1. Let w be an odd integer greater than or equal to 3. If T is a set
which contains no solutions to x + y = 3z and if T contains all odd positive
integers less than or equal to w, then T contains no even integer less than 3w.

Proof. The result is easy to verify for w = 3. If w ≥ 5 and v is any even
number less than 3w, then (precisely) one of the integers v+ 1, v+ 3, v+ 5 is
equal to 3t where t is an odd number less than or equal to w. �

In proving Theorem 3 we will make frequent use of the maximum size
subsets of {1, . . . , n} with no solutions to x + y = 3z for n ≤ 22. We have
calculated them all and display them for even n between 6 and 22 inclusive.
To get all such maximum subsets for n = 2p − 1 for p = 3, 4, . . . , 11, just
choose the ones for n = 2p which do not include the integer 2p.

Proof of Theorem 3. Suppose the theorem is false and let n ≥ 23 be the
smallest counter-example with Tn a subset of {1, . . . , n} of size �n

2  which
contains an even integer. It is easy to see that 23 cannot be added to any
of the maximum subsets of {1, . . . , 22} listed in the table without producing
a solution to x + y = 3z, so n ≥ 24. By the minimality of the counter-
example we can assume n is even and n ∈ Tn. We divide the proof into cases
(and subcases) along the lines of the proof of Theorem 2.
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Case 1. Tn has no integer x such that n
3 < x ≤ 2n

3 . Let y be the largest
integer in Tn such that y ≤ n

3 . Then 3y is a forbidden sum and at most
one member of each pair (i, 3y − i) i = 1, 2, . . . , y can be in Tn. Since Tn
has no integers strictly between y and 2y

n

2
= |Tn| ≤ y + |[3y, n]| = n− 2y + 1.

So, y ≤  1
4 (n+ 2)� and, since Tn ∩ [y + 1,  2n

3 �] = ∅,

n

2
≤ |Tn ∩ [1, y]| +

⌈n
3

⌉

≤
⌈y

2

⌉
+
⌈n

3

⌉
(if y �= 4)

≤
⌊
n+ 6

8

⌋
+
⌈n

3

⌉
.

The only even solutions greater than 22 for this inequality are n =
26, 28, 34 with corresponding values y = 7, 7, 9 respectively. If n = 34
and y = 9 then Tn must contain five of the first nine integers, which
(see Table 1) must be {1, 3, 5, 7, 9}, and everything in [23, 34]. Since
24 + 3 = 3 · 9 this cannot happen. If y = 7 and n = 26 or n = 28,
then Tn contains everything in [18, 26] or [19, 28] respectively. But 7 ∈ Tn,
so 21 is a forbidden sum, and, since 19 and 20 are in Tn (in both cases),
neither 1 nor 2 can be in Tn. Since four of the first seven positive integers
must be in Tn this is a contradiction (see Table 1). If y = 4, then |Tn∩[1, y]|
could be as much as 3 in the above inequalities, but n

2 ≤ 3 + �n
3  has no

solutions for n ≥ 24. So Case 1 cannot occur.
Case 2. Tn has an integer y such that

n

3
< y ≤ 2n

3
(1)

Let x be the largest integer in Tn satisfying (1). Then 3x is a forbidden
sum and the integers in W = [3x − n, n] can be arranged in pairs( 3x

2 � − i, � 3x
2  + i

)
i = 0, 1, . . . , n−� 3x

2  such that the sum of the integers
in each pair is 3x. If x is even then 3x

2 is paired with itself. All other pairs
(for x even or odd) have distinct integers.

If x is even then, because of the above pairing,

|Tn ∩W | ≤ |W | − 1

2
(2)

But by Theorem 2,

Tn ∩ [1, 3x− n− 1] ≤
⌈

3x− n− 1

2

⌉
=
n− |W | + 1

2
(3)
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Table 1 Maximum subsets of 1, . . . , n with no solutions to x + y = 3z
for 6 ≤ n ≤ 22 (except the set of all odd integers less than or equal to n)

n Tn

6 1 3 4 1 5 6
1 4 5 2 5 6

8 1 3 4 7 1 5 6 8
1 5 6 7 2 5 6 8
2 5 6 7 1 6 7 8

2 6 7 8
10 1 3 4 7 10 1 7 8 9 10

1 3 7 9 10 2 7 8 9 10
1 4 7 9 10 3 7 8 9 10

12 1 3 4 7 10 12 1 3 9 10 11 12
14 1 3 9 10 11 12 13 1 3 10 11 12 13 14

1 3 9 10 11 12 14 3 4 10 11 12 13 14
1 3 4 10 12 13 14

16 1 3 4 7 10 12 13 16 1 3 4 12 13 14 15 16
3 4 7 11 12 13 15 16 1 3 11 12 13 14 15 16
1 3 4 7 12 13 15 16 3 4 11 12 13 14 15 16
1 3 7 11 12 13 15 16

18 1 3 4 12 13 14 15 16 17 1 3 4 13 14 15 16 17 18
20 1 3 4 13 14 15 16 17 18 19 1 3 4 14 15 16 17 18 19 20

1 3 4 13 14 15 16 17 18 20
22 1 3 4 7 10 12 13 16 19 21 22 1 3 5 15 16 17 18 19 20 21 22

1 3 4 15 16 17 18 19 20 21 22 1 4 5 15 16 17 18 19 20 21 22

Since n−|W |+1
2 + |W |−1

2 = n
2 , equality must hold in (2) and (3). So Tn

contains precisely one integer out of each pair of distinct integers above.
And Tn ∩ [1, 3x − n − 1] must be a maximum subset of [1, 3x − n − 1]
containing no solutions to x+ y = 3z.

If x is odd then |W | is even, so Tn must contain precisely one integer
out of each pair ofW and Tn∩[1, 3x−n−1] = 3x−n−1

2 , unless 3x−n−1 = 4.
If 3x− n − 1 = 4 then it would be possible to have Tn ∩ [1, 4] = {1, 3, 4}
and Tn contain precisely one integer from all but one of the pairs and no
integer from that one pair.

Subcase 2a. � 3x+1
2  ≤ 2

3n.
If x is even then both integers of the pair (3x2 − 1, 3x2 + 1) are less than

or equal to 2
3n. Since x is the largest integer in Tn which is less than or

equal to 2
3n, neither integer in this pair is in Tn which is a contradiction.

If x is odd, neither integer in the pair ( 3x
2 �, � 3x

2  ) can be in Tn, which
again is a contradiction unless 3x− n− 1 = 4. But since n ≥ 24

3x+ 3

2
=
n+ 8

2
≤ 2

3
n

so neither integer in the pair ( 3x
2 � − 1, � 3x

2  + 1) can be in Tn either, so
Subcase 2a cannot occur.
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Subcase 2b. Assume the two following inequalities:
⌈

3x+ 1

2

⌉
>

2

3
n (4)

and

3x− n > 23 (5)

Since Tn∩[1, 3x−n−1] is a maximum subset of [1, 3x−n−1] containing
no solutions to x+y = 3z and since 23 ≤ 3x−n−1 < n, by the minimality
of n as a counter-example, Tn ∩ [1, 3x− n− 1] must be the set of all odd
integers less than or equal to 3x−n−1. By Lemma 1, Tn contains no even
integer less than or equal to 68, so n ≥ 70.

If x is even, then inequality (4) becomes

x >
4n− 6

9
. (6)

And 3x− n− 1 is odd so, by Lemma 1, Tn contains no even integers less
than or equal to 3(3x − n − 1) − 1, which by (6) is greater than n − 10.
If x is odd then (4) becomes

x >
4n− 3

9
(7)

and Tn contains no even integers less than or equal to 3(3x − n − 2) − 1
which by (7) is also greater than n− 10. So Tn contains at most five even
integers, and hence there are at most five odd integers less than n which
are not in Tn. Let mi = 2�n

6  + 2i− 1 and pi = 3mi − n, i = 1, 2, . . . , 11.
It is easy to check that {mi} and {pi} are each sets of 11 distinct odd
integers less than or equal to n and clearly not both mi and pi can be in
Tn for any i = 1, . . . , 11. Hence there are at least six odd integers less than
n which are not in Tn, which shows Subcase 2b cannot occur.

Subcase 2c. Inequality (4) holds but (5) does not.

Hence

2

3
n <

⌈
3x+ 1

2

⌉
≤ n

2
+ 12 (8)

from which it follows that n ≤ 70. So only a finite number of possibilities
remain to be checked, and this could be done one by one (by hand or
computer). We prefer to avoid this by considering the following possibilities.

2c(i). Assume (8) holds and also assume

⌈n
3

⌉
+ 3 ≤ x ≤ n

2
(9)
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If x is even, inequality (8) simplifies to

4n− 6

9
< x ≤ n+ 22

3
(10)

And if x is even then, as we showed before, |Tn∩[1, 3x−n−1]| = 3x−n
2 .

By inequality (9), 3x − n − 1 ≥ 9 > 5, so 3x − n − 1 ∈ Tn. Since
Tn ∩ [

x+ 1,  2n
3 �] = ∅, we must have [3x −  2n

3 � + 1, 2x − 1] ⊆ Tn,
since these integers are each paired with an excluded integer in the
pairing of [3x− n, n] we discussed before (3x−  2n

3 � might not be in
Tn because it might be equal to 3x

2 ). But 3(3x−n− 1) is a forbidden
sum so Tn∩ [7x−3n−2, 6x−3n+  2n

3 �−4] = ∅. Let a = 7x−3n−2,
b = 6x − 3n +  2n

3 � − 4, and c = 3x − n − 1. With x satisfying (9)
and (10) it is easy to check that a ≥ 0 and c ≥ 9. Since Tn∩ [a, b] = ∅
and c ∈ Tn we certainly have a contradiction if a ≤ c ≤ b. We also
have a contradiction if a ≤ b < c and b − a + 1 ≥ c − b + 2 because
then

c+ 1

2
= |Tn ∩ [1, c]| ≤ |Tn ∩ [1, a− 1]| + (c− b)

≤ a

2
+ c− b

≤ c− 1

2
.

Hence we have a contradiction if the conditions a ≤ c and 2b ≥ a+c+1
are both satisfied, i.e., if

n−
⌊

2n

3

⌋
+ 3 ≤ x ≤ 2n+ 1

4
.

But that is precisely our assumption in (9).
If x is odd then inequality (8) simplifies to

4n− 3

9
<
n+ 23

3
(11)

and the argument is similar. In this case it turns out that [3x −
 2n

3 �, 2x− 1] ⊆ Tn and that 9x− 3n− 3 or 9x− 3n− 6 is a forbidden
sum, but we still get a contradiction with inequality (9).

2c(ii). Assume (8) holds and x > n
2 .

If x is even there are eight ordered pairs of values for n ≥ 24 and x
which satisfy (8) when x > n

2 . We list them as triples (n, x, 3x−n−1):

(24, 14, 17) (30, 16, 17)
(26, 14, 15) (32, 18, 21)
(26, 16, 21) (34, 18, 19)
(28, 16, 19) (38, 20, 21)
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Since |Tn ∩ [1, 3x − n − 1]| = 3x−n
2 we see (by the table) that if

3x−n−1 is equal to 21 or 15 then Tn must contain all the odd integers
less than or equal to 15 and (by Lemma 1) no even integers at all.
That eliminates four triples. Since 3x−n−1 ∈ Tn and x is the largest
integer in Tn less than 2n

3 , we cannot have x < 3x−n−1 ≤ 2n
3 . That

eliminates three more triples, leaving only (24, 14, 17). If 3x−n−1 =
17, then 15 ∈ Tn (by the table). But x = 14 < 15 ≤ 2

3 · 24, so we get
a contradiction here as well.

If x is odd there are ten such triples (n, x, 3x− n− 1):

(24, 13, 14) (30, 17, 20)
(24, 15, 20) (32, 17, 18)
(26, 15, 18) (34, 19, 22)
(28, 15, 16) (36, 19, 20)
(28, 17, 22) (40, 21, 22)

We will show just the argument for (32, 17, 18) here. Since  2n
3 � = 21,

we must have Tn∩[18, 21] = ∅. Since |Tn∩[1, 18]| = 9, by the table (or
by Theorem 2) 17 must be in Tn. Also, |Tn∩ [22, 32]| must be 7. Since
51 is a forbidden sum, at most one integer in each of the pairs (22, 29),
(23, 28), (24, 27), (25, 26) is in Tn. By the table 15 ∈ Tn, so 30 ∈ Tn,
which means |Tn∩ [22, 32]| ≤ 6 a contradiction. The other nine triples
can be disposed of with similar (and mostly simpler) arguments.

2c(iii). Assume (8) holds and x < �n
3  + 3.

The only possibility here is n = 28 and x = 12. Then 3x−n = 8, so |Tn∩
[1, 7]| = 4 and Tn contains precisely one member of each pair (18 − i, 18 + i)
i = 1, 2, . . . , 10. Since  2n

3 � = 18, Tn ∩ [13, 18] = ∅, so [19, 23] ⊆ Tn. But 21
is a forbidden sum, so neither 1 nor 2 can be in Tn. This is a contradiction
since (by the table) if |Tn ∩ [1, 7]| = 4, either 1 or 2 must be in Tn. �

5. Related Problems and Remarks

For k a positive integer not equal to 2, let f(n, k) be the maximum size of
a subset S of {1, . . . , n} such that there are no solutions to x+ y = kz with
x, y, z (not necessarily distinct) integers in S (the problem does not make
sense for k = 2). In this paper we determined f(n, 1) and f(n, 3) for all
n and found all maximum such subsets. The determination of f(n, k) when
k ≥ 4 has a very different flavor, and we have some results in this direction [2].

Let g(t) be the maximum “size” (appropriately defined) of a subset S
of the closed interval [0, 1] having no solutions to x + y = tx where t is a
fixed positive number. Finding g(t) is a continuous analog of finding f(n, k).
It turns out there is a strong connection between these problems if k ≥ 4,
but not for k = 3. For k = 1 we remark that the maximum set

[n+1
2 �, n] of

Theorem 1 does have a continuous analog, while the set of all odd integers
less than or equal to n does not.
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In [2] we show that if k ≥ 3 then the positive integers can be partitioned
into finitely many subsets each of which has no solutions to x+ y = kz.

For k any positive integer, let f∗(n, k) be the maximum size of a subset
of {1, . . . , n} having no solutions to x+y = kz where x, y, z must be distinct.
Clearly, f(n, k) ≤ f∗(n, k). It is easy to show that f∗(n, 1) = �n+1

2  . There
are many values of n for which f(n, 3) is smaller than f∗(n, 3). For example,
the set [1, 4]∪ [12, 18] shows that f∗(n, 3) ≥ 11. However, we join Paul Erdős
in conjecturing that f∗(n, 3) = f(n, 3) = �n

2  for sufficiently large n. We also
suspect there is a unique maximum set for sufficiently large n. One could
do some computer work to obtain some information as to the likelihood of
this conjecture being correct. To get a proof one could follow the lines of our
proofs in this paper. Unfortunately, the minor inconvenience of f(4, 3) being
greater than 2 would become the major headache of f∗(n, 3) being greater
than �n

2  for many small values of n.
Of course the problem of narrowing the bounds for f∗(n, 2) is one of the

most intriguing problems in combinatorics.
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Summary. We discuss some simple deterministic algorithms that establish
primality for a robust set of primes in polynomial time. The first 6 sections comprise
the intact original article published in the first edition of this volume in 1997.
The last 2 sections discuss developments in this fast-moving field to early 2013, and
refer to the prior sections in the past tense. The bibliography for the original article
and the new update have been combined.

1. Introduction

In this paper we present several algorithms that can find proofs of primality
in deterministic polynomial time for some primes. In particular we show this
for any prime p for which the complete prime factorization of p− 1 is given.
We can also show this when a completely factored divisor of p−1 is given that
exceeds p1/4+ε. And we can show this if p−1 has a factor F exceeding pε with
the property that every prime factor of F is at most (log p)2/ε. Finally, we
present a deterministic polynomial time algorithm that will prove prime more
than x1−ε primes up to x. The key tool we use is the idea of a smooth number,
that is, a number with only small prime factors. We show an inequality for
their distribution that perhaps has independent interest.

It is known that if one assumes the Riemann hypothesis for Dirichlet
L-functions, then the prime recognition problem is in the complexity class P .
Thus, from Miller and Bach we know that for every odd composite number n
there is some integer a in the range 1 < a < min{n, 2(logn)2} such that n is
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not a strong probable prime to the base a, and so n is proved composite. If an
odd number n is a strong probable prime to every base a in the above range,
then n is prime. Thus assuming the above extended Riemann hypothesis,
every prime p can be deterministically supplied with a proof of its primality
in O((log p)3) arithmetic steps with integers at most p.

The results in this paper do not rely on the truth of any unproved
hypotheses.

It has been known since Lucas that it is easy to find a proof of primality for
a prime p if the complete factorization of p− 1 is known. Indeed one merely
has to present a primitive root for p and prove it is one using the prime
factorization of p − 1. Though we know no fast deterministic algorithm
for finding a primitive root for a prime p, the probabilistic method of just
choosing random integers until a primitive root is found works very well
in practice. The expected number of tries is O(log log p). In fact, one can
show that the expected number of random choices to find a set of numbers
which generate (Z/pZ)∗ as a group is O(1). (Note also that it is a simple
matter to deterministically fashion a primitive root out of a set of generators
with knowledge of the complete prime factorization of p− 1.) Our algorithm
requires O((log p)10/7) tries, and does not guarantee that it will find a
primitive root or a set of generators, but it does prove primality and it is
deterministic.

It is also known (see Brillhart, Lehmer, Selfridge [8]) that if one has a
fully factored divisor F of p − 1, where F > p1/3, then one can quickly
decide if p is prime or composite. Again, this involves choosing numbers at
random. We show how the prime or composite nature of p can be decided
deterministically and in polynomial time. In addition, we only require F >
p1/4+ε. In another algorithm we only need F > pε, but for the method to be
fast, F must be smooth.

While many of the algorithms in this paper are only of theoretical interest,
it is likely that at least some of the ideas have practical value. In particular,
an algorithm we present below which allows one to decide whether n is prime
or composite, when it is known that all prime factors of n are 1 mod F with
F ≥ n3/10, should be a practical addition to the Brillhart, Lehmer, Selfridge
“n− 1 test”.

It is to be expected that some of the ideas presented here would be of
use in the “n + 1 test” and the combined “n2 − 1 test”. These elementary
tests are often used in conjunction with the Jacobi sums test (see [6] and
references there), and it is possible that a few ideas presented here will be of
use in that context as well. However, as stated above, our primary emphasis
in this paper is theoretical and not practical.

Let ψ(x, y) denote the number of integers n ≤ x free of prime factors
exceeding y. In [15], Erdős and van Lint show that in some sense ψ(x, y) can

be approximated by the binomial coefficient
(π(y)+[u]

[u]

)
where u = log x/ log y

and π(y) denotes the number of primes not exceeding y. In fact an elementary
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combinatorial argument shows that ψ(x, y) ≥ (π(y)+[u]
[u]

)
, so one side of the

approximation is easy. In this paper we obtain the lower bound x/(log x)u =
x1−log log x/ log y, which is valid whenever x ≥ 4 and 2 ≤ y ≤ x. This
lower bound for ψ(x, y) is attractive for its simplicity and near universality.
However, one should note that it is a good approximation to ψ(x, y) only in
the range (log x)1+ε ≤ y ≤ exp((log x)ε). The inequality in the special case
y = (log x)2 was previously established by Lenstra [19], and for a similar
purpose.

Our main idea in this paper is to build up a large subgroup of (Z/nZ)∗

using a small set of generators. Specifically, if p is the least prime factor of
n and a is an integer with 1 < a < p, let Gn(a) denote the subgroup of
(Z/nZ)∗ generated by j mod n for j = 2, 3, . . . , a. From the above estimate
for ψ(x, y), we have

#Gn([(logn)c]) ≥ ψ(n, (log n)c) > n1−1/c,

whenever n ≥ 4 and 2 ≤ (log n)c < p, with p the least prime factor of n.
Thus we can create an “exponentially large” subgroup of (Z/nZ)∗ with a
“polynomially sized” set of generators. The idea of using smooth number
estimates to show that one has built up a large subgroup of (Z/pZ)∗ for p
prime was first used in 1926 by Vinogradov [28] to estimate the least positive
residue mod p that is not a k-th power.

It was previously shown by Pintz, Steiger and Szemerédi [22] that there
are infinitely many primes p that can be proved prime in deterministic
polynomial time. They require for their primes p that p − 1 has a divisor
which is a power of 3 and exceeds p1/3. Thus they could only show there are
more than x2/3−ε such primes up to x. As mentioned above, we replace the
“2/3” with 1.

Our result in Sect. 3 on deciding if n is prime or composite in deterministic
polynomial time, when the complete prime factorization of n−1 is given, was
anticipated by Fellows and Koblitz [16], though their algorithm is not as fast
as ours.

We mention a few other results that are somewhat relevant. Adleman
and Huang [1] have given a probabilistic algorithm for primality proving that
has expected polynomial time. Much earlier, Solovay and Strassen [27] had
given a probabilistic algorithm for compositeness proving that has expected
polynomial time. In [23], the second author showed that for every prime p
there is a proof that p is prime that can be verified in O(log p) arithmetic
steps with integers at most p. Previously, Pratt [25] had shown via Lucas’s
test the existence of a primality proof that requires O((log p)2) arithmetic
steps. These two papers show only the existence of these proofs; they do not
show how to find them quickly.

We wish to thank W. R. Alford, Ronald Burthe, Andrew Granville,
Hendrik Lenstra, and Jeff Shallit for some helpful remarks.
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2. A Lower Bound for the Distribution
of Smooth Numbers

We say an integer n is y-smooth if no prime factor of n exceeds y. Let ψ(x, y)
denote the number of integers n in [1, x] that are y-smooth. In this section
we are going to prove the following theorem.

Theorem 1. If x ≥ 4 and 2 ≤ y ≤ x, then ψ(x, y) > x1−log log x/ log y.

We begin with a few lemmas. Let π(x) denote the number of primes p
with p ≤ x.

Lemma 1. For x ≥ 37 we have π(x) − π(x1/2) > (7/9)x/ log x.

This lemma follows from Rosser and Schoenfeld [26, Theorem 1] and a
simple calculation. The next lemma is well known; we give the proof for
completeness.

Lemma 2. Let pk denote the kth prime. For x ≥ 1 we have

ψ(x, pk) >
(log x)k

k!

k∏

j=1

1

log pj
.

Proof. An integer n ≤ x which is pk-smooth has its prime factorization
in the form pa1

1 p
a2
2 . . . pak

k where a1, a2, . . . , ak are non-negative integers
and

∑
aj log pj ≤ log x. Thus ψ(x, pk) is the number of lattice points

(a1, a2, . . . , ak) ∈ Z
k with each aj ≥ 0 and

∑
aj log pj ≤ log x. Putting

each such lattice point at the “lower left” corner of a unit cube with edges
parallel to the axes, a region is described which is strictly larger than the
simplex

{
(y1, . . . , yk) ∈ R

k : each yj ≥ 0,

k∑

j=1

yj log pj ≤ log x

}
.

Thus ψ(x, pk) exceeds the k-dimensional volume of this simplex, which is

(log x)k(k!)−1
k∏

j=1

(log pj)
−1. �

Proof of Theorem 1. We verify the theorem directly for pairs x, y with 2 ≤
y < 37 and x < 120. Assume now that 2 ≤ y < 37 and x ≥ 120. Since the
theorem is trivial when log y < log log x, we may assume y ≥ 3. It is not
hard to show that

x1−log log x/ log 37 <
(log x)2

log 3 log 4
(1)
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for x ≥ 120. But the left side of (1) is greater than x1−log log x/ log y and the
right side of (1) is less than ψ(x, 3) by Lemma 2. Since ψ(x, 3) ≤ ψ(x, y), the
theorem holds in this range.

Now assume 37 ≤ y ≤ x. Let u = log x/ log y and let {u} = u − [u]
denote the fractional part of u. If m is a positive integer with m ≤ y{u} and
n is a product of [u] not necessarily distinct primes in the interval (y1/2, y],
then N = mn is y-smooth and N ≤ y{u}y[u] = yu = x. Moreover, since
m has at most one prime factor in (y1/2, y], it follows that the number of
representations of N as a product mn in this way is at most [u]+1. In fact, if
{u} ≤ 1/2, then N has at most one representation as mn. We conclude that

ψ(x, y) ≥
{

[y{u}](π(y) − π(y1/2))[u]/([u] + 1)!, if {u} > 1/2

[y{u}](π(y) − π(y1/2))[u]/[u]!, if {u} ≤ 1/2.
(2)

Note that using y ≥ 37, we have

[
y{u}

]
>

{
6
7y

{u}, if {u} > 1/2
1
2y

{u}, if {u} ≤ 1/2.
(3)

Also, from Lemma 1, we have

(π(y) − π(y1/2))[u] >

(
7

9
· y

log y

)[u]

=

(
7u

9

)[u]
y[u]

(log x)[u]
.

Thus

y{u}(π(y) − π(y1/2))[u] >

(
7u

9

)[u]

(log x){u}
yu

(log x)u

=

(
7u

9

)[u]

(log x){u}x1−log log x/ log y.

Using this inequality with (2) and (3) we have that the theorem will hold if
we show

(
7u

9

)[u]

(log x){u} ≥
{

7
6 ([u] + 1)!, if{u} > 1/2

2[u]! if{u} ≤ 1/2.
(4)

We now show

(
7k

9

)k

> 2(k + 1)! for every integer k ≥ 6. (5)
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This holds by inspection for k = 6, 7, 8, 9. For any non-negative integer k, the
arithmetic-geometric mean inequality implies that

(
k + 2

2

)k+1

≥ (k + 1)!.

Using this and the easily verified inequality

(
7k

9

)k

> 2

(
k + 2

2

)k+1

for k ≥ 10,

we have (5). Note that (5) implies (4) when u ≥ 6.
Suppose that 3 ≤ u < 6 and {u} ≤ 1/2. We verify for k = 3, 4, 5 that

(
7k

9

)k

> 2k!,

so that (4) holds for these values of u.
Suppose now that 2.5 < u < 6 and {u} > 1/2. We verify for k = 2, 3, 4, 5

that

(
7(k + 1/2)

9

)k (
log(37k+1/2)

)1/2

>
7

6
(k + 1)!,

so that (4) holds for these values of u. (We use that x = yu ≥ 37u.)
Now suppose 2.2 ≤ u ≤ 2.5. We have

(
7u

9

)[u]

(log x){u} ≥
(

7(2.2)

9

)2

(log(372.2))0.2 > 4 = 2[u]!,

so the theorem holds here too.
In the range 1 ≤ u < 2.2 we use another estimate for ψ(x, y). The number

of integers up to x divisible by a prime p is [x/p]. Thus

ψ(x, y) ≥ [x] −
∑

y<p≤x

[
x

p

]
> x− 1 − x

∑

y<p≤x

1

p
(6)

where p runs over primes.
First assume that 1.6 ≤ u < 2.2. Then x ≥ 371.6 > 286. It follows from

Theorem 5 in Rosser and Schoenfeld [26] that

∑

y<p≤x

1

p
< log log x− log log y +

1

2(log x)2
+

1

2(log y)2

≤ log 2.2 +
1

2(log(371.6))2
+

1

2(log 37)2
< 0.85.
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Thus from (6) we have

ψ(x, y) > 0.15x− 1 > 0.14x.

But

x1−log log x/ log y =
x

(log x)u
≤ x

(log(371.6))1.6
< 0.07x,

so the theorem holds in this range.
Finally assume 1 ≤ u < 1.6. Then from Theorem 5 and its Corollary in

[26] we have that

∑

y<p≤x

1

p
< log log x− log log y +

1

(log x)2
+

1

2(log y)2

≤ log 1.6 +
1

(log 37)2
+

1

2(log 37)2
< 0.59,

so that from (6) we have

ψ(x, y) > 0.41x− 1 > 0.38x.

But

x1−log log x/ log y ≤ x

log 37
< 0.28x,

so we have the theorem here as well. This concludes the proof of Theorem 1. �

3. When n− 1 Is Fully Factored

In this section we present and analyze two deterministic algorithms that will
decide if a positive integer n is prime or composite when the complete prime
factorization of n−1 is known. The first algorithm uses the Brillhart, Lehmer,
Selfridge “n− 1 test” (see [8]). The second algorithm is somewhat faster and
uses a new result presented below.

We begin with a factorization algorithm that is very fast, but unfortu-
nately is usually unsuccessful in factoring composite numbers.

The base B factorization method. We are input integers n, B with n > B ≥ 2.
This algorithm attempts to find a nontrivial factorization of n.

Step 1 Write n in the base B : n = cdB
d + cd−1B

d−1 + . . . + c0, where
c0, . . . , cd are integers in the interval [0, B − 1] and cd > 0.

Step 2 Compute c = gcd(c0, . . . , cd). If c > 1, return c as a proper factor of
n and stop.
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Step 3 Factor f(x) = cdx
d + . . . + c0 into irreducible polynomials in Z[x]

with the algorithm of [18].
Step 4 If f(x) is irreducible in Z[x], the algorithm has failed, so stop.

If f(x) = g1(x)g2(x) . . . gk(x) where each gi(x) is irreducible in Z[x], then
return g1(B)g2(B) . . . gk(B) as a nontrivial factorization of n and stop.

That each gi(B) is a proper factor of n in Step 4 follows from [7]. Thus
the algorithm is correct. From the analysis in [18], it follows that the running
time of the algorithm is (log n)O(1).

We shall only be applying the base B factorization method in the cases
d = 2, 3 and in these cases it should be considered “overkill” to use the
algorithm of [18] to factor f(x) in Step 3. In particular, if d = 2, then c2x

2 +
c1x+ c0 factors if and only if c21 − 4c0c2 is a square, in which case it is trivial
to write down the factorization. Further, it is easy to detect squares and take
square roots of squares with a binary search. Thus the time for Step 3 in the
case d = 2 is O(log n) arithmetic steps with integers at most n. (Newton’s
method is even better than a binary search; its complexity is O(log log n)
arithmetic steps with integers at most n.)

When d = 3 we can again use a binary search in Step 3. In particular,
f(x) factors if and only if it has a rational root, and if one rational root is
found, we can reduce the problem to the quadratic case. It is more convenient
to replace f(x) with c23f(x) = g(c3x), since g(x) factors if and only if it has
an integer root. However, every integer root of g divides g(0), so if g(0) �= 0,
then every integer root is in the interval [−|g(0)|, |g(0)|] and may be located
with essentially a binary search. Thus again Step 3 can be accomplished
in O(log n) arithmetic steps with integers at most n. (Note that Newton’s
method could be applied here as well.)

We now describe an algorithm based on the Brillhart, Lehmer, Selfridge
n− 1 test.

Algorithm 1. We are input an integer n > 4 and the complete prime
factorization of n − 1. This deterministic algorithm decides if n is prime
or composite.

Let F (1) = 1. For a = 2, 3, . . . , [(log n)3/2] do the following:

Step 1 If a is composite, let F (a) = F (a−1) and go to Step 7. If aF (a−1) ≡ 1
mod n, let F (a) = F (a−1) and go to Step 7. Verify that an−1 ≡ 1 mod n.
If not, declare n composite and stop.

Step 2 Using the prime factorization of n− 1, find the least positive divisor
E(a) of n− 1 with aE(a) ≡ 1 mod n.

Step 3 Verify that (aE(a)/q − 1, n) = 1 for each prime factor q of E(a). If
not, declare n composite and stop.

Step 4 Let F (a) = lcm{F (a− 1), E(a)}. Compute F (a).
Step 5 If F (a) ≥ n1/2, declare n prime and stop.
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Step 6 If n1/3 ≤ F (a) < n1/2, attempt to factor n by the base F (a)
factorization method. If n is factored nontrivially, declare n composite and
stop. If n is not factored, declare n prime and stop.

Step 7 If a < [(log n)3/2], get the next a. Otherwise declare n composite
and stop.

Proof of correctness. Since (log n)3/2 < n for every integer n > 1, Step 1 is
correct by Fermat’s little theorem. It is clear that Step 3 is correct from the
definition of E(a).

Suppose r is a prime factor of n and we have reached Step 4 of the
algorithm for a particular a. Consider the subgroup Gr(a) of (Z/rZ)∗ defined
in the Introduction. We shall show that #Gr(a) = F (a). For each prime
j with j ≤ a we have jF (a) ≡ 1 mod n, so that jF (a) ≡ 1 mod r. Thus
#Gr(a)|F (a). Further, if j is a prime with j ≤ a and F (j) > F (j − 1), then
from Step 3 the order of j in (Z/rZ)∗ is E(j). Since F (a) is the least common
multiple of those numbers E(j) with j prime, j ≤ a, and F (j) > F (j − 1),
we have F (a)|#Gr(a). Thus #Gr(a) = F (a), as asserted.

We conclude that if we have reached Step 4 of the algorithm for a
particular a, then for each prime factor r of n we have r ≡ 1 mod F (a).
Thus the correctness of Steps 5 and 6 follows from [8].

Suppose now that a = [(log n)3/2] and we have reached Step 7. Thus
F (a) < n1/3. Suppose n is prime. For every a-smooth integer m in the range
1 ≤ m ≤ n we have m mod n ∈ Gn(a). Thus

F (a) = #Gn(a) ≥ ψ(n, a) = ψ(n, (log n)3/2) > n1/3,

where the last inequality follows from Theorem 1 and the fact that (log n)3/2 >
2 for n > 4. This is a contradiction and so Step 7 is correct.

We conclude that Algorithm 1 is correct. �

Analysis of runtime. We measure the runtime by the number of arithmetic
steps with integers no larger than n. By an arithmetic step we mean addition,
subtraction, multiplication, division with remainder, greatest common divi-
sor, and finding an inverse for a member of (Z/nZ)∗. Using naive arithmetic,
an arithmetic step can be accomplished in O((log n)2) bit operations. Using
the FFT, an arithmetic step can be accomplished in Oε((log n)1+ε) bit
operations for each ε > 0.

One can use the sieve of Eratosthenes to prepare a list of all of the primes
up to (log n)3/2 in time O((log n)3/2 log log n). For each prime number a,
Step 1 can be accomplished in O(log n) arithmetic steps. Since the number
of such primes is O((log n)3/2/ log log n), an upper bound for the time spent
in Step 1 is O((log n)5/2/ log log n).

To do Step 2 we use a variation of the algorithm of [9]. First consider
the case where n − 1 is squarefree; say n − 1 = q1 . . . qk with q1, . . . , qk
distinct primes. Then to find E(a) it suffices to find the set of qi which
divide E(a). But qi|E(a) if and only if a(n−1)/qi �≡ 1 mod n. The algorithm
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of [9] computes all of the residues a
∏

j �=i qj mod n = a(n−1)/qi mod n for
i = 1, . . . , k. It breaks the computation into steps where at a particular
step we are taking a residue x mod n and computing xqj mod n for some j.
Each qj is used O(log(k + 1)) times, so that the total number of arithmetic
operations with integers at most n is

O

⎛

⎝
k∑

j=1

log qj log(k + 1)

⎞

⎠ = O(log n log(k + 1)).

Now consider the general case where we no longer assume that n − 1 is
squarefree. Say n− 1 = qα1

1 . . . qαk

k with the qi’s distinct primes and the αi’s

positive integers. We have qβi

i ||E(a) if and only if βi is the least non-negative

integer with a(n−1)q
βi−αi
i ≡ 1 mod n. To compute the βi’s we combine the

ideas from the squarefree case with a binary search. In the first step, we let

m1 = q
[α1/2]
1 . . . q

[αk/2]
k and let a1 = am1 mod n. We use the algorithm of

[9] with a1 and the numbers q
αi−[αi/2]
i to decide if βi ≤ [αi/2] or [αi/2] <

βi ≤ αi for each i = 1, . . . , k. In the first case we replace q
[αi/2]
i in m1

with q
[αi/4]
i . In the second case we replace q

[αi/2]
i in m1 with qαi−[αi/4]. Thus

we have a number m2, we form a2 = am2 mod n and again we use the
algorithm of [9], this time with the qi’s raised to exponents about αi/4.
Continuing in this fashion we compute the βi’s and thus E(a). In the l-th
step of this algorithm we are using the algorithm of [9] with numbers whose

product is about n2−l

. Thus the number of arithmetic operations for the l-
th step is O(2−l log n log(k + 1)). Moreover, we can compute al from al−1

in O(2−l log n) arithmetic operations. Thus summing over l, the number of
steps for Step 2 for a particular value of a is O(log n log(k+1)). The number
of values of a for which we perform Step 2 is O(log n). (To see this, note that
we only perform Step 2 when F (a) > F (a− 1) and that F (a) is the product
of the integers F (j)/F (j − 1) for 2 ≤ j ≤ a.) Since k = O(log n), we have
that the total time spent in Step 2 is O((log n)2 log log n) arithmetic steps
with integers at most n.

For Step 3, note that to compute the greatest common divisor it is
sufficient to work with aE(a)/q mod n rather than aE(a)/q. If E(a) =

qβ1

1 . . . q
βk′
k′ where q1, . . . , qk′ , are distinct primes and β1, . . . , βk′ , are positive

integers, let a1 =
∏
aq

βi−1

i mod n. We use the algorithm of [9] to compute

a1
∏

j �=i
qj mod n = aE(a)/qi mod n for each i. The number of steps is

O(log E(a) log(k′ + 1)) = O(log n log(k + 1)), where k ≥ k′ is the number
of distinct prime factors of n− 1. Thus as with Step 2, the total time spent
in Step 3 is O((log n)2 log log n) arithmetic steps with integers at most n.

Steps 4, 5, and 7 are each O(1) arithmetic steps for each a and, as
remarked above, Step 6 is O(log n) arithmetic steps for each a. Note that
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we visit Steps 4, 5, and 6 for O(log n) values of a and we visit Step 7
for O((log n)3/2) values of a. Thus the total time for all of these steps is
O((log n)2) arithmetic steps with integers at most n.

We conclude that in the worst case, Algorithm 1 runs in O((log n)5/2/
log log n) arithmetic steps with integers at most n. We have proved the
following theorem.

Theorem 2. Given an integer n > 4 and the complete prime factorization
of n − 1, Algorithm 1 correctly decides if n is prime or composite. Further,
Algorithm 1 uses at most O((log n)5/2/ log log n) arithmetic steps with
integers at most n.

We remark that in some cases when Algorithm 1 declares n composite, a
nontrivial factorization of n may also be found. In particular, this is true in
Steps 3 and 6. However most composite inputs will be proved composite in
Step 1 with a = 2, in which case no nontrivial factorization of n is produced.

The next algorithm may be considered an extension of the Brillhart,
Lehmer, Selfridge n− 1 test. We shall use it as a subroutine in an improved
version of Algorithm 1 we present below.

Algorithm 2. This deterministic algorithm finds the complete prime
factorization of n when input integers n, F such that F ≥ n3/10 > 1 and
each prime factor of n is 1 mod F .

Step 1 If n ≤ 243, factor n by trial division and stop.
Step 2 If F ≥ n1/3, use the method of [8] and stop. (That is, if F ≥ n1/2,

declare n prime; if n1/3 ≤ F < n1/2, use the base F factorization method
to factor n. Note that if the base F factorization succeeds in factoring n,
then it produces the prime factorization of n, while if it fails, then n is
prime.)

Step 3 We have n3/10 ≤ F < n1/3. Attempt to factor n by the base
F factorization method. If this succeeds in splitting n, report it as the
complete prime factorization of n and stop. Let c1, c2, c3 be the base F
“digits” of n, so that n = c3F

3 + c2F
2 + c1F + 1.

Step 4 Let c4 = c3F +c2 so that n = c4F
2+c1F +1. If either c4x

2 +c1x+1
or (c4 − 1)x2 + (c1 + F )x + 1 are reducible in Z[x], this may lead to a
factorization of n as in the base F factorization method. If so, report this
factorization as the prime factorization and stop.

Step 5 Develop the continued fraction for c1/F and let u/v, u′/v′ be
consecutive convergents with v < F 2/

√
n ≤ v′. Let u0 = ±u′, v0 = ±v′ be

such that uv0 + u0v = 1.
Step 6 For each integer d with |d − c4v/F | < 2n3/2/F 5 (≤ 2) do the

following. Find all integral roots s of the polynomial

fd(x) = y3 − c1y
2 + c4y + Fzy + z
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where y = dv0 + vx, z = −du0 + ux. For any integral root s found with
(dv0+vs)F+1 a nontrivial factor of n, report this number and its cofactor
in n as the prime factorization of n and stop. If n is not split in this step,
then declare n prime and stop.

Proof of correctness. We first show that if n is factored in Step 3, then this
step produces the complete prime factorization of n. First, it is clear that
n has at most three prime factors. Thus if f(x) = c3x

3 + c2x
2 + c1x + 1

factors into three linear factors in Z[x], then these give, upon substituting
F for x, the prime factorization of n. Suppose conversely that n has three
prime factors. Thus there are positive integers a1, a2, a3 with n = (a1F +
1)(a2F +1)(a3F +1). Since n > 243 we have F 4 > 3n, so that a1a2a3 < F/3.
Thus a1a2 + a1a3 + a2a3 ≤ 3a1a2a3 < F and a1 + a2 + a3 < F . We conclude
that c3 = a1a2a3, c2 = a1a2 + a1a3 + a2a3, c1 = a1 + a2 + a3 and that
f(x) = (a1x+ 1)(a2x+ 1)(a3x+ 1). That is, the base F factorization method
will find the complete prime factorization of n.

Suppose now that n has exactly two prime factors so that there are
positive integers a1, a2 with n = (a1F + 1)(a2F + 1). Assume a1 ≤ a2. If
we obtain any nontrivial splitting of n in any step of the algorithm, evidently
this gives the complete prime factorization of n. We now show that if n has
not been factored in Steps 3 and 4 of the algorithm and if n is composite,
then it will be factored in Step 6.

Since n = c4F
2 +c1F +1 = a1a2F

2+(a1+a2)F +1, there is some integer
t ≥ 0 with

a1a2 = c4 − t, a1 + a2 = c1 + tF. (7)

From the failure of Step 4 to find a1, a2, we have t ≥ 2. Thus

a2 ≥ a1 + a2
2

≥ c1 + 2F

2
≥ F (8)

and

a1 <
n

a2F 2
≤ n

F 3
. (9)

We have from (7) that

t ≤ a1 + a2
F

≤ a1a2 + 1

F
<
c4
F
<

n

F 3
. (10)

Also (7) gives us the equation

a1c1 + a1tF = a21 + c4 − t. (11)

From the elementary theory of continued fractions we have

∣∣
∣
c1
F

− u

v

∣∣
∣ ≤ 1

vv′
≤

√
n

vF 2
. (12)
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Using (11) we have

a1u+ a1tv − c4v

F
= a1v

(u
v

− c1
F

)
+ (a1c1 + a1tF )

v

F
− c4v

F

= a1v
(u
v

− c1
F

)
+ (a21 + c4 − t)

v

F
− c4v

F

= a1v
(u
v

− c1
F

)
+ (a21 − t)

v

F
.

Thus from (9), (10), (12) and the fact that v < F 2/
√
n we have that

∣∣
∣a1u+ a1tv − c4v

F

∣∣
∣ < a1v

√
n

vF 2
+
( n

F 3

)2 v

F
<

n

F 3

√
n

F 2
+
n2

F 7

F 2

√
n

=
2n3/2

F 5
.

(13)

Let d = a1u + a1tv. Note that the general solution to yu + zv = d is
given by

y = dv0 + vs, z = du0 − us,

where s runs over the integers. Let s be the unique integer with

a1 = dv0 + vs, a1t = du0 − us.

From (11) we have that s satisfies

(dv0 + vs)2 + c4 − du0 − us

dv0 + vs
= (dv0 + vs)c1 + (du0 − us)F.

Thus from (13) we see that s is an integral root for one of the polynomials
fd(x) presented in Step 6. This concludes the proof of correctness of
Algorithm 2. �

Since the computation of the convergents u/v and u′/v′ in Step 5 of the
algorithm can be made part of the extended Euclidean algorithm for c1 and
F , it is clear that the runtime of Algorithm 2 is dominated by the calculations
of the possible integer roots of the four cubic polynomials in Step 6. Thus
Algorithm 2 runs in O(log n) arithmetic operations with integers at most n
if a binary search is used to find the roots as discussed in connection with
the base B factorization method above.

We now use Algorithm 2 in the framework of Algorithm 1.

Algorithm 3. We are input an integer n > 5 and the complete prime
factorization of n − 1. This deterministic algorithm decides if n is prime
or composite.

Let F (1) = 1. For a = 2, 3, . . . , [(log n)10/7] do the following:

Steps 1–4 These are exactly the same as in Algorithm 1 except that when
F (a) = F (a− 1) we go to Step 6.
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Step 5 If F (a) ≥ n3/10, find the complete prime factorization of n with
Algorithm 2 and stop.

Step 6 If a < [(log n)10/7], get the next a. Otherwise declare n composite
and stop.

We have already proved in connection with Algorithm 1 that if we do
Steps 1–4 for j = 2, 3, . . . , a, and we have not stopped, then every prime
factor of n is 1 mod F (a). Thus Algorithm 2 is appropriate to use in Step 5.
Suppose a = [(log n)10/7] and we are in Step 6. If n is prime and Gn(a) is as
before, then, as with the proof of correctness of Algorithm 1, we have

F (a) = #Gn(a) ≥ ψ(n, a) = ψ(n, (log n)10/7) > n3/10

by Theorem 1. Thus Step 6 is correct. We conclude that Algorithm 3 is
correct.

We have the following theorem.

Theorem 3. Given an integer n > 5 and the complete prime factorization
of n− 1, Algorithm 3 correctly decides if n is prime or composite. Moreover,
it uses at most O((log n)17/7/ log log n) arithmetic operations with integers
at most n.

4. When n− 1 Is Partially Factored

In this section we describe a deterministic polynomial time algorithm that
decides if n is prime or composite when n and a fully-factored divisor F of
n− 1 are input with F > n1/4+ε.

Algorithm 4. We are input an integer n and a number ε with n > e3,
0 < ε ≤ 3/4 and (log n)5/(4ε) < n. We are also input integers F , R with n−
1 = FR and F > n1/4+ε, and we are input the complete prime factorization
of F . This deterministic algorithm decides if n is prime or composite.

Let F (1) = 1. For a = 2, 3, . . . , [(log n)5/(4ε)] do the following:

Step 1 If a is composite, let F (a) = F (a−1) and go to Step 7. If aRF (a−1) ≡
1 mod n, let F (a) = F (a − 1) and go to Step 7. Verify that an−1 ≡ 1
mod n. If not, declare n composite and stop.

Step 2 Using the prime factorization of F , compute E(a), the order of
aR mod n in (Z/nZ)∗. Thus E(a) is the least positive divisor of F with
aRE(a) ≡ 1 mod n.

Step 3 For each prime factor q of E(a), verify that (aRE(a)/q − 1, n) = 1.
If not, declare n composite and stop.

Step 4 Let F (a) = lcm{F (a− 1), E(a)}. Compute F (a).
Step 5 If F (a) ≥ n3/10, get the complete prime factorization of n by

Algorithm 2. In particular, if n is prime, declare it so and stop; if n is
composite declare it so and stop.
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Step 6 If F (a) > n1/4+ε/5, attempt to factor n by the base F (a) factor-
ization method. If this succeeds in splitting n, then declare n composite
and stop. Let c1, c2, c3 be the base F (a) “digits” of n so that n =
c3F (a)3+c2F (a)2+c1F (a)+1. Let c4 = c3F (a)+c2. If either c4x

2+c1x+1
or (c4 − 1)x2 + (c1 + F (a))x + 1 are reducible in Z[x], this may lead to
nontrivial factorization of n by substituting F (a) for x. If so, declare n
composite and stop.

Step 7 If a < [(log n)5/(4ε)] get the next a. If a = [(log n)5/(4ε)] and F (a) ≤
n1/4+ε/5 declare n composite and stop. If a = [(log n)5/(4ε)] and F (a) >
n1/4+ε/5, declare n prime and stop.

Proof of correctness. Since (log n)5/(4ε) < n, Step 1 is correct. Step 3 is
clearly correct. We recall the definition of Gr(a) from the Introduction. If we
have passed Step 3 of the algorithm for 2, 3, . . . , a, then F (a)|#Gr(a) and
#Gr(a)|RF (a) for each prime factor r of n. In particular r ≡ 1 mod F (a).
Thus it is appropriate to use Algorithm 2 in Step 5.

It is clear that Step 6 is correct since it only declares n composite when
it succeeds in splitting n. Suppose we are in Step 7 and a = [(log n)5/(4ε)].
If n is prime, then as in the analysis of Algorithm 1, we have

RF (a) ≥ #Gn(a) ≥ ψ(n, a) = ψ(n, (log n)5/(4ε)) > n1−4ε/5

by Theorem 1. Since R < n3/4−ε, we thus have F (a) > n1/4+ε/5. We conclude
that if F (a) ≤ n1/4+ε/5, then Step 7 is correct in declaring n composite.
Suppose finally we are in Step 7, a = [(log n)5/(4ε)], F (a) > n1/4+ε/5 and
n is composite. Since Step 6 was not able to split n, we have as with the
analysis of Algorithm 2 that n is the product of two primes. (It is here where
we use the hypothesis n > e3 since this assures that F (a)4 > n1+4ε/5 >
n((log n)5/(4ε))4ε/5 = n log n > 3n.) Say n = r1r2 where r1 ≤ r2 are primes
and r1 = b1F (a)+1, r2 = b2F (a)+1, where b1, b2 are positive integers. Again
from the failure of Step 6 to factor n and the argument for Algorithm 2
(see (11) and (9)) we have

b2 ≥ b1 + b2
2

≥ F (a), b1 <
n

b2F (a)2
≤ n

F (a)3
.

Thus

#Gr2(a) ≤ (RF (a), r2 − 1) ≤ (n− 1, r2 − 1)

= (b1b2F (a)2 + (b1 + b2)F (a), b2F (a))

= (b1b2F (a) + b1 + b2, b2)F (a) = (b1, b2)F (a)

≤ b1F (a) =
b1
b2
b2F (a) <

n

F (a)4
r2 < n−4ε/5r2.
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On the other hand, as before, we have

#Gr2(a) ≥ ψ(r2, a) = ψ(r2, (log n)5/(4ε)) ≥ ψ(r2, (log r2)5/(4ε)) ≥ r
1−4ε/5
2

by Theorem 1. These last two displays are incompatible. Thus Step 7 is
correct in declaring n prime when a = [(log n)5/(4ε)] and F (a) > n1/4+ε/5.
This concludes the proof of correctness for Algorithm 4. �

The runtime analysis for Algorithm 4 is argued analogously to that of
Algorithm 1. We have the following theorem.

Theorem 4. On input of an integer n > e3, a number ε in the range 0 < ε ≤
3/4 with (log n)5/(4ε) < n, integers F , R with n− 1 = FR and F > n1/4+ε,
and the complete prime factorization of F , Algorithm 4 correctly decides
if n is prime or composite. The runtime is O((log n)1+5/(4ε)/ log log n)
arithmetic operations with integers at most n.

5. Primes Recognizable in Deterministic Polynomial
Time

The algorithms in the preceding two sections to determine whether n is prime
or not all hypothesized substantial information about the factorization of n−1
(or knowledge about the prime factors of n). In this section we present an
algorithm that can be applied to any number n. For most numbers, this
algorithm will not be very efficient—in fact it will take exponential time.
However there are also many primes for which the algorithm will work in
polynomial time—more than x1−ε of them up to x. Before we give this result,
we first state the algorithm.

Algorithm 5. Suppose we are input a positive integer n > 5 × 1014. This
deterministic algorithm decides if n is prime or composite.

Step 1 Continue using trial division on n − 1 until a fully factored divisor
F of n− 1 is found with F > n1/3.

Step 2 Use Algorithm 4 with inputs n, ε = 1/12, F , R = (n− 1)/F .

It is clear that Algorithm 5 is correct. It is also clear that for some numbers
it is a terrible algorithm. For example, if n is even, one might well spend
exponential time discovering that n is composite. Nevertheless, Algorithm 5
is able to prove prime quite a few numbers in polynomial time.

Theorem 5. For each ε > 0 there are numbers k and x0 such that if x ≥ x0,
then the number of primes p ≤ x which Algorithm 5 proves prime in at most
(log p)k arithmetic steps with integers at most p exceeds x1−ε.



On Primes Recognizable in Deterministic Polynomial Time 175

The proof of this theorem depends strongly on the distribution of primes
p for which p− 1 has a large smooth divisor. We establish such a result now.

Theorem 6. There are effectively computable positive constants c1, x1 with
the following property. Suppose x ≥ x1, log x ≤ y ≤ x1/20 and N(x, y) is
the number of primes p ≤ x such that p− 1 has a y-smooth divisor exceeding
x1/3. Then N(x, y) ≥ x/(c1 log x)1+u/3, where u = log x/ log y.

Proof. Let x2 be the number xε,δ in Theorem 1 of [4], where ε = 1/11 and
δ = 1/60. If x ≥ x2, let d1, d2, . . . , dk be the possible “exceptional moduli”
corresponding to x in this theorem, so that they all exceed log x and k =
k(x) = O(1). Let qi denote the greatest prime factor of di for i = 1, . . . , k.

Let

P = {q prime : y/2 < q ≤ y} \ {q1, . . . , qk}.
Thus if an integer d is composed solely of primes from P , then no di divides d.
From Mertens’s Theorem we have that if x is sufficiently large, then

1

2 log y
<

∑

q∈P

1

q
<

∑

q∈P

1

q − 1
<

1

log y
. (14)

Let v = �(log(x1/3))/ log(y/2) and let D(P , v) denote the set of integers
d composed of v not necessarily distinct primes from P . If d ∈ D(P , v), then
clearly d > x1/3 and d is y-smooth. Further, if x is sufficiently large, then

d ≤ y1+(log(x1/3))/ log(y/2) = y(x1/3)log y/ log(y/2) ≤ x2/5.

Thus if x is sufficiently large and d ∈ D(P , v), we have from Theorem 1
in [4] that

π(x, d, 1) :=
∑

p≤x,d|p−1

1 ≥ 9

10ϕ(d)
· x

log x
, (15)

where p runs over primes and ϕ denotes Euler’s function.
For n a positive integer, let (n,P) denote the largest divisor of n composed

of only primes from P . For p a prime, let d(p, v) denote the number of divisors
of p− 1 which come from D(P , v). Note that d(p, v) = 1 if and only if there
is some d ∈ D(P , v) with d|p− 1 and ((p− 1)/d,P) = 1. Thus
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N(x, y) ≥
∑

p≤x
d(p,v)>0

1 ≥
∑

p≤x
d(p,v)=1

1 =
∑

d∈D(P,v)

∑

p≤x,d|p−1
((p−1)/d,P)=1

1

=
∑

d∈D(P,V )

∑

p≤x
d|p−1

1 −
∑

d∈D(P,v)

∑

p≤x,d|p−1
((p−1)/d,P)>1

1

(16)

≥
∑

d∈D(P,V )

∑

p≤x
d|p−1

1 −
∑

d∈D(P,v)

∑

q∈P

∑

p≤x
dq|p−1

1

=
∑

d∈D(P,v)

π(x, d, 1) −
∑

d∈D(P,v)

∑

q∈P
π(x, dq, 1).

From (15) we have

∑

d∈D(P,v)

π(x, d, 1) ≥ 9

10
· x

log x

∑

d∈D(P,v)

1

ϕ(d)
(17)

if x is sufficiently large. From the Brun-Titchmarsh inequality we have

∑

d∈D(P,v)

∑

q∈P
π(x, dq, 1) !

∑

d∈D(P,v)

∑

q∈P

x

ϕ(dq) log(x/(dq))

! x

log x

⎛

⎝
∑

d∈D(P,v)

1

ϕ(d)

⎞

⎠
∑

q∈P

1

q − 1

<
x

log x log y

∑

d∈D(P,v)

1

ϕ(d)
,

where we use (14) for the last inequality. Putting this estimate and (17) into
(16) we have for all sufficiently large x that

N(x, y) ≥ 4

5
· x

log x

∑

d∈D(P,v)

1

ϕ(d)
. (18)

We now estimate this last sum. We have from (14) that
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∑

d∈D(P,v)

1

ϕ(d)
>

∑

d∈D(P,v)

1

d
≥ 1

v!

⎛

⎝
∑

q∈P

1

q

⎞

⎠

v

= exp(−v log v − v log log y +O(v))

= exp(−1

3
u log u− 1

3
u log log y +O(u))

= exp(−1

3
u log log x+O(u)).

Putting this in (18) we have the theorem. �

Proof of Theorem 5. First note that from Theorem 6, if k ≥ 1 is arbitrary,
then the number of primes p ≤ x for which p − 1 has a (log x)k-smooth
divisor F with F > x1/3 is at least x1−1/(3k)+o(1) as x→ ∞. For such primes
p, Step 1 of Algorithm 5 takes at most O((log x)k) arithmetic steps with
integers at most p. The number of arithmetic steps with integers at most p
to complete Step 2 of Algorithm 5 is O((log p)16/ log log p).

It suffices to establish the theorem for values of ε satisfying 0 < ε < 1/48.
In this case let K > K ′ > 1/(3ε) be arbitrary. If p > x1/3 and c is any
constant, then (log p)K > c(log x)K

′
for all large x. Thus if x is large, p is a

prime with p ≤ x and p − 1 has a (log x)K
′
-smooth divisor F > x1/3, then

Algorithm 5 takes at most (log p)K steps with integers at most p to prove p
prime. By the above, the number of such primes is at least x1−1/(3K′)+o(1)

for x→ ∞. As 1 − 1/(3K ′) > 1 − ε, the theorem follows. �

6. More Primes Recognizable in Deterministic
Polynomial Time

In this section we describe a deterministic algorithm that recognizes many
more primes in polynomial time than our previous methods. Covered is any
prime n with a divisor F of n− 1 exceeding nε and such that all of the prime
factors of F are at most (log n)k. The running time is about O((log n)2/ε +
(log n)k). We also show that for most such primes, the 2/ε can be reduced
to 1/ε. A corollary of this algorithm is an improved version of Theorem 5.
There if we were willing to spend time (log n)k on trying to prove n prime,

we would succeed for about x1−(3k)−1

primes up to x. With the methods of
this section we will succeed for about x1−k−2

primes up to x.
If n is prime and the order of b in (Z/nZ)∗ is E, then for any a with aE ≡ 1

mod n, there is some exponent j ∈ {1, 2, . . . , E} with a ≡ bj mod n. Thus if
it is shown that no such j exists, then it is proved that n is composite. How
difficult is it to do this test? If we have already prepared the complete set {bj
mod n : j = 1, 2, . . . , E}, then testing if there is some j with a ≡ bj mod n
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can be accomplished by a binary search in O(log E) steps. Thus we have the
initial step of preparing the set of powers of b, which takes E steps, and then
each subsequent test takes O(log E) steps.

In the case when E = qβ with q prime and β ≥ 1, we can do a
precomputation taking q steps, with each subsequent test taking O(β2 log q)
steps. Here is how. Suppose the order of b mod n in (Z/nZ)∗ is qβ. Assuming

that we have already computed bq
β−1

mod n (if not, this takes an additional
O(β log q) steps for the precomputation), we can compute the set

B = {bjqβ−1

mod n : j = 1, . . . , q}

in q steps. Now suppose we are presented with some integer a with the order
of a mod n in (Z/nZ)∗ equal to qα, with 0 ≤ α ≤ β, and we wish to see if
there is some integer j with a ≡ bj mod n. If α = 0 or 1, then if j exists it
is a multiple of qβ−1, and so we test for membership of a mod n in B by a
binary search. As an induction hypothesis suppose 1 < α ≤ β and we have
already described how to find j for any a′ for which the order of a′ mod n
in (Z/nZ)∗ properly divides qα. Note that the order of aq mod n is qα−1, so
we may use our inductively described algorithm to search for some integer
j0 with aq = bj0 mod n. Suppose we have found j0. Then it must be that
qβ−(α−1) divides j0 and, in particular, q|j0. Then ab−j0q

−1

mod n has order
dividing q. But we have already described how in this case we may search for
an integer j1 with ab−j0q

−1 ≡ bj1 mod n. If these searches are successful, we
may take j = j1 + j0q

−1. Totaling up the time spent, we have used α binary
searches in the set B, we have done α−1 modular multiplications, and we have
done α − 1 modular powerings with exponents at most qβ (in fact, at most
qβ−1). The latter computation dominates, taking O(αβ log q) = O(β2 log q)
arithmetic steps with integers the size of n.

The computation of B, which is the precomputation step of this method,
we call “Set up (b, qβ)”. The subsequent search for an exponent j we call
“Test (b, qβ; a)”. With these subroutines we are now ready to describe the
main algorithm of this section.

Algorithm 6. We are given positive integers n, F , R and a positive number
ε such that n > 4, 2 ≤ (log n)2/ε < n, n − 1 = FR, and F > nε. This
algorithm decides if n is prime or composite.

Let F (1) = 1. For a = 2, 3, . . . , �(log n)2/ε do the following.

Step 1. Check if n is even or if n is a nontrivial power. If so, declare n
composite and stop.

Step 2. Verify that an−1 ≡ 1 mod n holds. If not, declare n composite and
stop.

Step 3. Compute E(a), the order of aR mod n in (Z/nZ)∗. Let F (a) =
lcm{E(a), F (a − 1)}. For each prime q|F (a)/F (a − 1), verify that
(aRE(a)/q − 1, n) = 1 holds, declaring n composite and stopping if not.
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Step 4. For each prime q and positive integers α, β with qα ‖ (E(a),

F (a− 1)) and qβ ‖ F (a− 1) do Test (bq, q
β ; aRE(a)q−α

). If this test proves
n composite, then declare this and stop.

Step 5. For each prime q and positive integer β with q|F (a)/F (a− 1) and

qβ ‖ F (a), let bq = aRE(a)q−β

mod n and do Set up (bq, q
β).

Step 6. If F (a)log a > nlog log n, declare n prime and stop. If a <
�(log n)2/ε , get the next a. If a = �(log n)2/ε , declare n composite
and stop.

Proof of correctness. Suppose we have made it to Step 6 and a = �(log n)2/ε .
Suppose n is prime. From Theorem 1 we have #Gn(a) > n1−ε/2. Every
b ∈ Gn(a) satisfies b(n−1)F (a)/F ≡ 1 mod n, so #Gn(a) ≤ (n − 1)F (a)/F <
n1−εF (a). Thus F (a) > nε/2, so that F (a)log a > nlog log n. Hence it is correct
to declare n composite when this inequality fails.

Suppose n is composite and suppose we have made it to Step 6 for a
particular a. From Step 1 we know that n is divisible by at least two distinct
odd primes. From Step 3 we know that each prime factor of n is 1 mod F (a).
Let F = {b mod n : bn−1 ≡ 1 mod n}. By the Chinese remainder theorem,
this subgroup of (Z/nZ)∗ is isomorphic to the direct product of the groups
Fp = {b mod pα : bn−1 ≡ 1 mod pα} where pα runs over the prime powers
with pα ‖ n. Since p is an odd prime, (Z/pαZ)∗ is cyclic so that #Fp =
(n− 1, ϕ(pα)) = (n− 1, p− 1). Thus for each prime power qβ with qβ ‖ F (a)
we have qβ |#Fp. Since n has at least two distinct prime factors p, the number

of b mod n ∈ F with bq
β ≡ 1 mod n is at least q2β . From Step 2, Gn(a) is a

subgroup of F . And from Step 4 we have that Gn(a) has exactly qβ members

b mod n with bq
β ≡ 1 mod n. Thus the index of Gn(a) in F is at least the

product of the prime powers qβ with qβ ‖ F (a), which is F (a). We have from
Theorem 1 that

n1−log log n/ log a < #Gn(a) ≤ 1

F (a)

∏

p|n
(n− 1, p− 1) <

n

F (a)
,

so that F (a) < nlog log n/ log a. Hence it is correct to declare n prime when
F (a)log a > nlog log n. This concludes the proof of correctness. �

Analysis of runtime. For each integer k ≤ log n/ log 2 we can check if n is a
k-th power by computing [n1/k] with a binary search and seeing if [n1/k]k = n.
When k ≥ 3, the binary search may begin with [n1/(k−1)]. Thus the number
of arithmetic operations to see if n is a k-th power is O( log k

k log n), so the
total number of arithmetic operations for Step 1 is O(log n(log log n)2).

The time for Step 2 is at most O((log n)1+2/ε).
For each a, the time for Step 3 is O(log n log log n). Thus the total time

for Step 3 is O((log n)1+2/ε log log n).
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As we have seen, each implementation of Test (bq, q
β ; a) in Step 4 takes

time O(β2 log q). Thus the total time for Step 4 is O((log n)2+2/ε).
Each time we do Set up (bq, q

β) in Step 5, it takes time O(q + β log q).
Thus if Ω is the total number of prime factors of F , counted with multiplicity,
and if each prime factor q of F satisfies q ≤ B: then the total time for Step 5
is O(BΩ + Ω2 log n) = O(B log n+ (log n)3).

Thus the total number of arithmetic steps with integers at most n is
O((log n)2+2/ε +B log n).

We have the following theorem.

Theorem 7. On input of positive integers n, F , R and a positive number ε
with n > 4, 2 ≤ (log n)2/ε < n, n−1 = FR and F > nε, Algorithm 6 correctly
decides if n is prime or composite. The running time is O((log n)2+2/ε +
B log n) arithmetic steps with integers at most n, where B is the largest
prime factor of F .

We remark that the term (log n)2+2/ε in the running time may be
replaced with ε(log n)2+2/ε/ log log n if we perform Steps 2 to 4 only for
prime values of a.

The time bound in Theorem 7 is only an upper bound. With the aid of the
next result we will be able to show that most primes for which Algorithm 6
is applicable are proved prime in a considerably shorter time.

Theorem 8. For 2 ≤ y ≤ x let R(x, y) denote the number of primes p
in the range y < p ≤ x such that (Z/pZ)∗ is not generated by the set {a
mod p : 1 ≤ a ≤ y}; that is, such that Gp([y]) �= (Z/pZ)∗. Then R(x, y) <

8x2 log log(x2)/ log y.

Proof. Let Z denote the set of y-smooth numbers up to x2. Suppose p is a
prime counted by R(x, y). Then #Gp([y]) divides (p− 1)/q for some prime q.
Thus the set Z occupies at most (p− 1)/q residue classes mod p, so there are
at least p/2 residue classes mod p free of elements of Z. Thus by the large
sieve (see Theorem 3, p. 159 in [12]) we have

#Z ≤ 4x2

1
2 · R(x, y)

.

Thus from Theorem 1 we have

R(x, y) ≤ 8x2

#Z =
8x2

ψ(x2, y)
< 8x2 log log(x2)/ log y, (19)

which completes the proof of the theorem. �

Because of the use of Theorem 1 in the proof, Theorem 8 is only fairly
good when y is a power of log x. If we let v = 2 log x/ log y and use a stronger
estimate for ψ(x2, y) (see [10]) we may obtain the following result which is
valid in the same range as is Theorem 8:
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R(x, y) ≤ exp(v(log v + log log v − 1 + (log log v − 1)/ log v)

+O(v(log log v/ log v)2)).

This estimate is implicit in the dissertation of Pappalardi [21, Sect. 3.3].
The estimate has an inexplicit constant, though an actual numerical value
could be provided in principle. We remark that Vinogradov, Linnik and
Fridlender have discussed problems related to the estimation of R(x, y).

Theorem 9. Let x, ε > 0 be arbitrary and let E(x, ε) denote the number of
primes p with (log p)2/ε < p ≤ x for which there is some integer F > pε

with F |p − 1 and such that if Algorithm 6 is run on n = p, F , ε, then
F (a)log a ≤ plog log p for a = �(log p)1/ε . Then E(x, ε) < 9x3ε + e32.

Proof. Suppose Algorithm 6 is run on n = p, F , ε where F |p− 1 and F > pε.
If F (a) = F with a = �(log p)1/ε , then F (a)log a > plog log p. Thus we may
assume that if p is counted by E(x, ε), then F (a) < F with a = �(log p)1/ε .
Thus (Z/pZ)∗ is not generated by {j mod p : 1 ≤ j ≤ a}. We conclude from
Theorem 8 that

E(x, ε) − E(x1/2, ε) ≤ R(x, �(log x1/2)1/ε )
≤ R(x, (log x1/2)1/ε)

< 8x2ε log log(x2)/ log log(x1/2).

Note that if x ≥ e32, then log log(x2)/ log log(x1/2) ≤ 3/2. Thus if k is

that positive integer with x2
−k

< e32 ≤ x2
−(k−1)

then

E(x, ε) =
k−1∑

i=0

(E(x2
−i

, ε) − E(x2
−i−1

, ε)) + E(x2
−k

, ε)

<

k−1∑

i=0

8(x2
−i

)3ε + E(e32, ε)

< 9x3ε + e32,

which concludes the proof of the theorem. �

We remark that Theorem 8 can also be used in the context of Algorithm 4
to give a small improvement in that algorithm for most primes.

We now give an algorithm similar to Algorithm 5.

Algorithm 7. Suppose we are input a positive number ε and an integer
n > 4 with 2 ≤ (log n)2/ε < n. This algorithm attempts to decide if n is
prime or composite.
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Step 1. Using trial division, find the largest divisor F of n − 1 composed
of primes up to (log n)1+1/ε. If F ≤ nε, then stop for the algorithm has
failed.

Step 2. Use Algorithm 6 on n, F , ε, terminating with failure if the
parameter a exceeds �(log n)1/ε .
From the proof of Theorem 6, for each number ε with 0 < ε < 1, there is a

number x2(ε), such that if x ≥ x2(ε), the number N of primes p ≤ x for which

p−1 has a (log p)1+1/ε-smooth divisor exceeding pε satisfies N > 2x1−ε2 . For
such primes p we make it past Step 1 of Algorithm 7. From Theorem 9 we
have that if 0 < ε ≤ 1/4, then at least half of these primes are proved prime
in Step 2 of Algorithm 7, though x2(ε) may have to be adjusted. We thus
have the following result.

Theorem 10. Let ε be any number with 0 < ε ≤ 1/4. There is a number
x2(ε) such that if x ≥ x2(ε) then the number of primes p ≤ x which

Algorithm 7 proves prime exceeds x1−ε2 .

We remark that the running time of Algorithm 7 is O((log n)2+1/ε)
arithmetic steps with integers at most n. Thus Theorem 10 improves on
Theorem 5 since there if one wants to prove prime x1−ε2 primes up to x, the
bound for the running time is about (log n)1/(3ε

2).

7. Update on Primality Testing: Background

The previous sections comprised the original article in the first edition of this
volume published in 1997. This section and the next one summarize the state
of primality testing in 2013, 16 years later.

The subject of primality testing concerns the creation and analysis of
efficient algorithms for deciding whether a given integer n > 1 is prime or
composite. This subject is closely related to, but distinct from, factoring.
Some algorithms, such as trial division, can accomplish both tasks, but the
most efficient methods are tailored to one or the other.

From a practical point of view, the story of primality testing is a
simple one. In real-world applications one does not require mathematical
certitude, a tiny possibility of error being acceptable, so various random
algorithms that have been known for decades and are easy to implement may
be used. An example, commonly known as the Miller–Rabin test, runs in
O((log n)2+ε) bit operations (using fast arithmetic subroutines) and almost
certainly returns a correct verdict on the primality of a given input n,
with the bonus that a composite verdict is mathematically correct. Even
the simple base-2 Fermat congruence 2n−1 ≡ 1 (mod n) when applied to
a large random input n almost certainly steers one right (a number n for
which the congruence holds is almost certainly prime, a number n for which
it does not hold is definitely composite). Indeed, as shown by Erdős [13],
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composite numbers n satisfying 2n−1 ≡ 1 (mod n) are much scarcer than
primes. For more details on these and similar tests see [11] and the references
there.

But a problem as fundamental as deciding primality cries out for a
thorough mathematical analysis. Here too, where no possibility of error is
to be tolerated, there is both a theoretical and practical side. The practical
primality tester has specific numbers n in mind that are to be tested, and
wishes to implement an algorithm that will give a completely correct answer.
It is possible for such an algorithm to use randomness, where coins are flipped
(figuratively), but there is no doubt in the output, the only issue being the
running time of the algorithm. A simple but illustrative example is that of
finding a quadratic nonresidue for a given prime p. This is an integer k such
that the congruence x2 ≡ k (mod p) has no integral solutions. We know
that for an odd prime p exactly (p − 1)/2 choices for k in {1, . . . , p − 1}
are quadratic nonresidues. Moreover, via either Euler’s criterion or the law
of quadratic reciprocity for Jacobi symbols, it is possible to decide quickly
(and deterministically) if a candidate k works or not. So a random and
quick method to find a quadratic nonresidue k is to choose randomly from
{1, . . . , p − 1} until one is found. This simple algorithm runs in expected
polynomial time. Remarkably, without assuming an unproved hypothesis
(the Extended Riemann Hypothesis), we know no deterministic method for
finding a quadratic nonresidue that runs in polynomial time.

Long before our article was published, we had the Adleman–Huang test
[1], a random primality test with running time expected to be polynomial
(and, as opposed to the Miller–Rabin test, there is no doubt in the output).
Based on the arithmetic of Jacobian varieties of hyperelliptic curves of genus
2 (and also on elliptic curves), it is a very difficult result, requiring an
entire volume for its analysis. Other tests, based on elliptic curves (practical
improvements of the Goldwasser–Kilian test) are not theoretically complete,
but stand as excellent practical primality proving algorithms for those who
do not wish to have any possibility of error. Again, see [11] for more on this.

And this brings us to the last holdout of the theorist: a deterministic
primality test that runs in polynomial time. Such a test has long been
known (in fact, a version of the Miller–Rabin test), but it relies on the
Extended Riemann Hypothesis in a similar way as the quadratic nonresidue
problem mentioned above. Withot any unproved hypothesis, we had the APR
test [2] with complexity O((log n)c log log log n), tantalizingly close to being
polynomial. We also had an interesting result of Pintz, Steiger, and Szemerédi
that presented a set of primes, with counting function to x of about x2/3,
which could be recognized in deterministic polynomial time. These primes p
were characterized by p− 1 being divisible by a very large power of 3.

In our paper we showed that any prime p can be proved prime by a
deterministic algorithm in polynomial time, provided we have a fully-factored
divisor F > pε of p−1. Furthermore, a simple procedure identifies more than
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x1−ε primes p up to x with such a fully-factored divisor in p− 1, and so we
have many primes that are recognizable in polynomial time. The case when
F > p1/2+ε was done earlier by Fürer [17] (we only learned of this paper
recently), and the case when p− 1 itself is fully factored was rediscovered by
Fellows and Koblitz [16].

Our paper had one practical component for those interested in imple-
menting a primality test. The so-called “n − 1 test” of Brillhart, Lehmer,
and Selfridge requires a fully-factored divisor of p − 1 larger than p1/3. Our
paper was able to reduce the exponent 1/3 in this practical test to 3/10.
(For positive exponents smaller than 3/10 our algorithm still has polynomial
complexity, but it is not so practical.) More recently, an analog of this
improvement was accomplished for the “n + 1 test”, see [11], though it is
no longer deterministic.

8. Update on Primality Testing: Derandomization
and the AKS Algorithm

By far the most important development since our article was the AKS
algoritm [3], named for its inventors, Agrawal, Kayal, and Saxena. Their
algorithm is deterministic and it distinguishes between primes and composites
in polynomial time. Further it does not depend on any unproved hypotheses
for its analysis.

Like the algorithms in our paper and in many other approaches to
primality testing, the AKS algorithm either recognizes n as composite by
a series of simple tests, or if n passes all of these tests, a group is built up
that is so large that n is inescapably prime. (For more on this line of thought
see [24].)

Two analyses of the AKS algorithm are presented in [3], a more
elementary analysis using effective tools and running time O((log n)10.5+ε),
and an analysis using ineffective tools and running time O((log n)7.5+ε). Both
of these estimates are upper bounds for the true running time, conjectured
to be O((log n)6+ε). A version of the AKS algorithm with this running time
and effective tools is presented in the preprint [20] and is described in [11].

Unfortunately, the AKS algorithm has not proved to be numerically
competitive with previous primality tests. Even a random version with
expected running time O((log n)4+ε) (see [5]) is not competitive.

In [3] a conjecture is made that suggests a version of the AKS algorithm
has running time O((log n)3+ε). Using a heuristic of Erdős [14] on Carmichael
numbers, Lenstra and Pomerance (unpublished) have given a plausibility
argument that this AKS conecture is false.

Since we knew already a random polynomial-time algorithm for primality
testing, the AKS test might be thought of as a derandomization, even though
it bears little resemblance to the Adleman–Huang test. Similarly, the Fürer



On Primes Recognizable in Deterministic Polynomial Time 185

and Fellows–Koblitz algorithms for proving the primality of a prime p where
a large part of p − 1 is factored are derandomizations of an algorithm of
Lucas, as improved by Proth, Pocklington, and Lehmer early in the twentieth
century. Our paper as well contains a derandomization (and extension) of the
Brillhart, Lehmer, Selfridge n− 1-test, as mentioned. In [29], Źra�lek applied
some of the methods of our paper to derandomize a factorization algorithm,
namely the p−1 method of Pollard. Here, one is expected to find quickly those
prime factors p of n which have the additional property that all of the prime
factors of p − 1 are small. (For this reason, some implementers of the RSA
cryptosystem use prime factors p, q where both p− 1, q− 1 have large prime
factors, so-called safe primes.) The Pollard p − 1 method uses randomness
and Źra�lek derandomizes it. In a later paper he again uses similar ideas, this
time to factor polynomials over some finite fields Fp.
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1. Introduction

Let A be a subset of an abelian group. Let hA denote the set of all sums of
h elements of A with repetitions allowed, and let h∧A denote the set of all
sums of h distinct elements of A, that is, all sums of the form a1 + · · · + ah,
where a1, . . . , ah ∈ A and ai �= aj for i �= j.

Let A be a set of k congruence classes modulo a prime p. The Cauchy-
Davenport theorem states that

|2A| ≥ min(p, 2k − 1),

and, by induction,

|hA| ≥ min(p, hk − h+ 1)

for every h ≥ 2. Erdős and Heilbronn conjectured 30 years ago that

|2∧A| ≥ min(p, 2k − 3).

They did not include this conjecture in their paper on addition of residue
classes [10], but Erdős has frequently mentioned this problem in lectures
and papers (for example, Erdős-Graham [9, p. 95]). Dias da Silva and
Hamidoune recently prove this conjecture. They used linear algebra and the
representation theory of the symmetric group to show that

|h∧A| ≥ min(p, hk − h2 + 1)

for every h ≥ 2.
The purpose of this paper is to give a complete and elementary exposition

of this proof. Instead of representation theory, we will use the combinatorics
of the h-dimensional ballot numbers.

2. Multi-dimensional Ballot Numbers

The standard basis for Rh is the set of vectors {e1, . . . , eh}, where

e1 = (1, 0, 0, 0, . . . , 0)

e2 = (0, 1, 0, 0, . . . , 0)
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...

eh = (0, 0, 0, . . . , 0, 1).

The lattice Zh is the subgroup of Rh generated by the set {e1, . . . , eh}, so
Zh is the set of vectors in Rh with integral coordinates. Let

a = (a0, a1, . . . , ah−1) ∈ Zh

and

b = (b0, b1, . . . , bh−1) ∈ Zh.

A path in Zh is a finite sequence of lattice points

a = v0,v1, . . . ,vm = b

such that

vj − vj−1 ∈ {e1, . . . , eh}
for j = 1, . . . ,m. Let vj−1, vj be successive points on a path. We call this a
step in the direction ei if

vj = vj−1 + ei.

The vector a is called nonnegative if ai ≥ 0 for i = 0, 1, . . . , h− 1. We write

a ≤ b

if b− a is a nonnegative vector.
Let P (a,b) denote the number of paths from a to b. The path function

P (a,b) is translation invariant in the sense that

P (a + c,b + c) = P (a,b)

for all a,b, c ∈ Zh. In particular,

P (a,b) = P (0,b− a).

The path function satisfies the boundary conditions

P (a, a) = 1,

and

P (a,b) > 0 if and only if a ≤ b,

If a = v0,v1, . . . ,vm = b is a path, then

vm−1 = b− ei

for some i = 1, . . . , h, and there is a unique path from b− ei, to b. It follows
that the path counting function P (a,b) also satisfies the difference equation

P (a,b) =
h−1∑

i=0

P (a,b− ei).
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Let a ≤ b. For i = 0, 1, . . . , k−1, every path from a to b contains exactly
bi − ai steps in the direction ei+1. Let

m =

h−1∑

i=0

(bi − ai).

Every path from a to b has exactly m steps, and the number of different
paths is the multinomial coefficient

P (a,b) =
(
∑h−1

i=0 (bi − ai))!
∏h−1

i=0 (bi − ai)!
=

m!
∏h−1

i=0 (bi − ai)!
. (1)

Let h ≥ 2. There are h candidates in an election. The candidates will be
labelled by the integers 0, 1, . . . , h − 1. Suppose that m0 votes have already
been cast, and that candidate i has received ai votes. Then

m0 = a0 + a1 + · · · + ah−1.

We shall call

v0 = a = (a0, a1, . . . , ah−1)

the initial ballot vector. There are m remaining voters, each of whom has one
vote, and these votes will be cast sequentially. Let vi,k denote the number of
votes that candidate i has received after k additional votes have been cast.
We represent the distribution of votes at step k by the ballot vector

vk = (v0,k, v1,k, . . . , vh−1,k).

Then

v0,k + v1,k + · · · + vh−1,k = k + m0

for k = 0, 1, . . . ,m. Let

vm = b = (b0, b1, . . . , bh−1)

be the final ballot vector. It follows immediately from the definition of the
ballot vectors that

vk − vk−1 ∈ {e1, . . . , eh}
for k = 1, . . . ,m, and so

a = v0,v1, . . . ,vm = b

is a path in Zh from a to b. Therefore, the number of distinct sequences of m
votes that can lead from the initial ballot vector a to the final ballot vector
b is the multinomial coefficient

(∑h−1
i=0 (bi − ai)

)
!

∏h−1
i=0 (bi − ai)!

=
m!

∏h−1
i=0 (bi − ai)!

.
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Let v = (v1, . . . , vh) and w = (w1, . . . , wh) be vectors in Rh. The vector
v will be called increasing if

v1 ≤ v2 ≤ · · · ≤ vh,

and strictly increasing if

v1 < v2 < . . . < vh.

Now suppose that the initial ballot vector is

a = (0, 0, 0, . . . , 0)

and that the final ballot vector b = (b0, b1, . . . , bh−1) is nonnegative and
increasing. Let

m = b0 + b1 + · · · + bh−1.

Let B(b0, b1, . . . , bh−1) denote the number of ways that m votes can be cast
so that all of the k-th ballot vectors are nonnegative and increasing. This is
the classical h-dimensional ballot number. Observe that

B(0, 0, . . . , 0) = 1

and

B(b0, b1, . . . , bh−1) > 0

if and only if (b0, b1, . . . , bh−1) is a nonnegative, increasing vector. These
boundary conditions and the difference equation

B(b0, b1, . . . , bh−1) =

h−1∑

i=0

B(b0, . . . , bi−1, bi − 1, bi+1, . . . , bh−1)

completely determine the function B(b0, b1, . . . , bh−1).
There is an equivalent combinatorial problem. Suppose that the initial

ballot vector is

a∗ = (0, 1, 2, . . . , h− 1),

and that the final ballot vector

b = (b0, b1, . . . , bh−1)

is nonnegative and strictly increasing. Let

m =

h−1∑

i=0

(bi − i) =

h−1∑

i=0

bi −
(
h

2

)
.

Let B̂(b0, b1, . . . , bh−1) denote the number of ways that m votes can be cast
so that all of the ballot vectors vk are nonnegative and strictly increasing.
We shall call this the strict h-dimensional ballot number.
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A path v0,v1, . . . ,vm in Zh will be called strictly increasing if every
lattice point vk on the path is strictly increasing. Then B̂(b0, b1, . . . , bh−1) is
the number of strictly increasing paths from a∗ to b = (b0, . . . , bh−1).

The strict h-dimensional ballot numbers satisfy the boundary conditions

B̂(0, 1, . . . , h− 1) = 1

and

B̂(b0, b1, . . . , bh−1) > 0

if and only if (b0, b1, . . . , bh−1) is a nonnegative, strictly increasing vector.
These boundary conditions and the difference equation

B̂(b0, b1, . . . , bh−1) =

h−1∑

i=0

B̂(b0, . . . , bi−1, bi − 1, bi+1, . . . , bh−1)

completely determine B̂(b0, b1, . . . , bh−1).
There is a simple relationship between the h-dimensional ballot numbers

B(b0, b1, . . . , bh−1) and B̂(b0, b1, . . . , bh−1). The lattice point

v = (v0, v1, . . . , vh−1)

is nonnegative and strictly increasing if and only if the lattice point

v′ = v − (0, 1, 2, . . . , h− 1) = v − a∗

is nonnegative and increasing. It follows that

a∗ = v0,v1,v2, . . . ,vm = b

is a path of strictly increasing vectors from a∗ to b if and only if

0,v1 − a∗,v2 − a∗, . . . ,b− a∗

is a path of increasing vectors from 0 to b− a∗. Thus,

B̂(b0, b1, . . . , bh−1) = B(b0, b1 − 1, b2 − 2, . . . , bh−1 − (h− 1)).

For 1 ≤ i < j ≤ h, let Hi,j be the hyperplane in Rh consisting of

all vectors (x1, . . . , xh) such that xi = xj . There are
(
h
2

)
such hyperplanes.

A path

a = v0,v1,v2, . . . ,vm = b

will be called intersecting if there exists at least one vector vk on the path
such that vk ∈ Hi,j for some hyperplane Hi,j .

The symmetric group Sh acts on Rh as follows: For σ ∈ Sh and v =
(v0, v1, . . . , vh−1) ∈ Rh, let

σv = (vσ(0), vσ(1), . . . , vσ(h−1)).

A path is intersecting if and only if there is a transposition τ = (i, j) ∈ Sh

such that τvk = vk for some lattice point vk on the path.
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Let I(a,b) denote the number of intersecting paths from a to b. Let
J(a,b) denote the number of paths from a to b that do not intersect any of
the hyperplanes Hi,j . Then

P (a,b) = I(a,b) + J(a,b).

Lemma 1. Let a be a lattice point in Zh, and let b = (b0, . . . , bh−1) be a
strictly increasing lattice point in Zh. A path from a to b is strictly increasing
if and only if it intersects none of the hyperplanes Hi,j, and so

B̂(b0, . . . , bh−1) = J(a∗,b).

Proof. Let a = v0,v1, . . . ,vm = b be a path, and-let

vk = (v0,k, v1,k, . . . , vh−1,k)

for k = 0, 1, . . . ,m. If the path is strictly increasing, then every vector on
the path is strictly increasing, and so the path does not intersect any of the
hyperplanes Hi,j . Conversely, if the path is not strictly increasing, then there
exists a greatest integer k such that the lattice point vk−1 is not strictly
increasing. Then 1 ≤ k ≤ m, and

vj,k−1 ≤ vj−1,k−1

for some j = 1, . . . , h− 1. Since the vector vk is strictly increasing, we have

vj−1,k ≤ vj,k − 1.

Since vk−1 and vk are successive vectors in a path, we have

vj−1,k−1 ≤ vj−1,k

and

vj,k − 1 ≤ vj,k−1.

Combining these inequalities, we obtain

vj,k−1 ≤ vj−1,k−1 ≤ vj−1,k ≤ vj,k − 1 ≤ vj,k−1.

This implies that

vj,k−1 = vj−1,k−1

and so the vector vk−1 lies on the hyperplane Hj−1,j . Therefore, if b is a
strictly increasing vector, then a path from a to b is strictly increasing if and
only if it is non-intersecting, and so J(a,b) is equal to the number of strictly
increasing paths from a to b. It follows that J(a∗,b) is equal to the strict
ballot number B̂(b0, . . . , bh−1). This completes the proof. �

Lemma 2. Let a and b be strictly increasing vectors. Then

P (σa,b) = I(σa,b)

for every σ ∈ Sh, σh �= id.
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Proof. If a is strictly increasing and if σ ∈ Sh, σ �= id, then σa is not strictly
increasing, and so every path from σa to b must intersect at least one of the
hyperplanes Hi,j . This completes the proof. �

Lemma 3. Let a and b be strictly increasing lattice points. Then
∑

σ∈Sh

ε(σ)I(σa,b) = 0.

Proof. Since a is strictly increasing, it follows that there are h! distinct lattice
points of the form σa, where σ ∈ Sh, and none of these lattice points lies on
a hyperplane Hi,j . Let Ω be the set of all intersecting paths that start at any
one of the h! lattice points σa and end at b. We shall construct an involution
from the set Ω to itself.

Let σ ∈ Sh, and let

σa = v0,v1, . . . ,vm = b

be a path that intersects at least one of the hyperplanes. Let k be the least
integer such that vk ∈ Hi,j for some i < j. Then k ≥ 1 since a is strictly
increasing, and the hyperplane Hi,j is uniquely determined since vk lies on a
path. Consider the transposition τ = (i, j) ∈ Sh. Then

τvk = vk ∈ Hi,j ,

τσa �= σa,

and

τσa = τv0, τv1, . . . , τvk = vk,vk+1, . . . ,vm = b

is an intersecting path in Ω from τσa to b. Moreover, k is the least integer
such that a lattice point on this new path lies in one of the hyperplanes,
and Hi,j is still the unique hyperplane containing vk. Since τ2 is the identity
permutation for every transposition τ , it follows that if we apply the same
mapping to this path from τσa to b, we recover the original path from σa
to b. Thus, this mapping is an involution on the set Ω of intersecting paths
from the h! lattice points σa to b. Moreover, if σ is an even (resp. odd)
permutation, then an intersecting path from σa is sent to an intersecting
path from τσa, where τ is a transposition and so τσ is an odd (resp. even)
permutation. It follows that the number of intersecting paths that start at
even permutations of a is equal to the number of intersecting paths that start
at odd permutations of a. This means that

∑

σ∈Sh
ε(σ)=1

I(σa,b) =
∑

σ∈Sh
ε(σ)=−1

I(σa,b).

This statement is equivalent to the Lemma. �
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Let [x]k denote the polynomial x(x − 1) · · · (x − k + 1). If bi, σ(i) are
nonnegative integers, then

[bi]σ(i) = bi(bi − 1)(bi − 2) · · · (bi − σ(i) + 1)

=

{
bi!/(bi − σ(i))! if σ(i) ≤ bi

0 if σ(i) > bi.

Theorem 1. Let h ≥ 2, and let b0, b1, . . . , bh−1 be integers such that

0 ≤ b0 < b1 < · · · < bh−1.

Then

B̂(b0 + b1 + · · · + bh−1) =
(b0 + b1 + · · · + bh−1 − (

h
2

)
)!

b0!b1! · · · bh−1!

∏

0≤i<j≤h−1

(bj − bi).

Proof. Let a∗ = (0, 1, 2, . . . , h − 1), and let b = (b0, b1, . . . , bh−1) ∈ Zh.
Applying the previous lemmas, we obtain

B̂(b0, b1, . . . , bh−1) =

= J(a∗,b)

= P (a∗,b) − I(a∗,b)

= P (a∗,b) +
∑

σ∈Sh

σ 	=id

ε(σ)I(σa∗,b)

= P (a∗,b) +
∑

σ∈Sh

σ 	=id

ε(σ)P (σa∗,b)

=
∑

σ∈Sh

ε(σ)P (σa∗,b)

=
∑

σ∈Sh

σa∗≤b

ε(σ)

(
b0 + · · · + bh−1 − (

h
2

))
!

∏h−1
i=0 (bi − σ(i))!

=

(
b0 + · · · + bh−1 − (

h
2

))
!

b0!b1! · · · bh−1!

∑

σ∈Sh

σa∗ 	=b

ε(σ)[b0]σ(0)[b1]σ(1) · · · [bh−1]σ(h−1)

=

(
b0 + · · · + bh−1 − (

h
2

))
!

b0!b1! · · · bh−1!

∑

σ∈Sh

ε(σ)[b0]σ(0)[b1]σ(1) · · · [bh−1]σ(h−1)
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=

(
b0 + · · · + bh−1 − (

h
2

))
!

b0!b1! · · · (bh−1!

∣∣
∣
∣
∣
∣∣
∣
∣

1 [b0]1 [b0]2 · · · [b0]h−1

1 [b1]1 [b1]2 · · · [b1]h−1

...
1 [bh−1]1 [bh−1]2 · · · [bh−1]h−1

∣∣
∣
∣
∣
∣∣
∣
∣

=

(
b0 + · · · + bh−1 − (

h
2

))
!

b0!b1! · · · bh−1!

∏

0≤i<j≤h−1

(bj − bi).

This completes the proof. �

We state the following corollary with the notation that is used later in
the proof of the Erdős-Heilbronn conjecture.

Corollary 1. Let h ≥ 2, let p be a prime number, and let i0, i1, . . . , ih−1 be
integers such that

0 ≤ i0 < i1 < · · · < ih−1 < p

and

i0 + i1 + · · · ih−1 <

(
h

2

)
+ p.

Then

B̂(i0, i1, . . . , ih−1) �≡ 0 (mod p).

Proof. This follows immediately from the Theorem. �

3. A Review of Linear Algebra

Let V be a finite-dimensional vector space over a field F , and let T : V → V
be a linear operator. Let I : V → V be the identity operator. For every
nonnegative integer i, we define T i : V → V by

T 0(v) = I(v) = v,

T i(v) = T (T i−1(v))

for all v ∈ V . To every polynomial

p(x) = cnx
n + cn−1x

n−1 + · · · + c1x+ c0 ∈ F [x]

we associate the linear operator p(T ) : V → V defined by

p(T ) = cnT
n + cn−1T

n−1 + · · · + c1T + c0I.

The set of all polynomials p(x) such that p(T ) = 0 forms a nonzero, proper
ideal J in the polynomial ring F [x]. Since every ideal in F [x] is principal,
there exists a unique monic polynomial pT (x) = pT,V (x) ∈ J such that pT (x)
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divides every other polynomial in J . This polynomial is called the minimal
polynomial of T over the vector space V .

A subspace W of V is called invariant with respect to T if T (W ) ⊆ W ,
that is, if T (w) ∈ W for all w ∈W . Then T restricted to the subspace W is a
linear operator on W with minimal polynomial pT,W (x). Since pT,V (T )(w) =
0 for all w ∈W , it follows that PT,W (x) divides pT,V (x), and so

deg(pT,W ) ≤ deg(pT,V ), (2)

where deg(p) denotes the degree of the polynomial p.
For v ∈ V , the cyclic subspace with respect to T generated by v is the

smallest subspace of V that contains v and is invariant under the operator T .
We denote this subspace by CT (v), Let vi = T i(v) for i = 0, 1, 2, . . .. Then
CT (v) is the subspace generated by the vectors

{v, T (v), T 2(v), T 3(v), . . .} = {v0,v1,v2,v3, . . .}
and

dim(CT (v)) = l,

where l is the smallest integer such the vectors v0,v1, . . . ,vl are linearly
dependent. This means that there exist scalars c0, c1, . . . , cl−1 in the field F
such that

vl + cl−1vl−1 + · · · + c1v1 + c0v0 = 0.

Let

p(x) = xl + cl−1x
l−1 + · · · + c1x+ c0.

Then

p(T )(v0) = T l(v0) + cl−1T
l−1(v0) + · · · + c1T (v0) + c0I(v0)

= vl + cl−1vl−1 + · · · + c1v1 + c0v0

= 0,

and so

p(T )(vi) = p(T )(T i(v0)) = T i(p(T )(v0)) = T i(0) = 0

for i = 0, 1, 2, . . .. Therefore, p(T ) = 0 on the cyclic subspace CT (v) = C,
and so p(x) is divisible by the minimal polynomial PT,C(x), and

m = deg(pT,C) ≤ deg(p) = l.

On the other hand, since

pT,C(T )(v) = 0,

it follows that the vectors v0,v1, . . . ,vm are linearly dependent, and so

l ≤ m.
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This implies that l = m and so, by inequality (2),

dim(CT (v)) = deg(pT,C) ≤ deg(pT,V )

for all v ∈ V .
If T (f) = af for some a ∈ F and some nonzero vector f ∈ V , then a is

called an eigenvalue of T and f is called an eigenvector of T with eigenvalue a.
The spectrum of T , denoted σ(T ), is the set of all eigenvalues of T . If V has
a basis consisting entirely of eigenvectors of T , then T is called a diagonal
operator.

The following inequality plays a central role in the proof of the Erdős-
Heilbronn conjecture.

Lemma 4. Let T be a diagonal linear operator on a finite-dimensional vector
space V , and let σ(T ) be the spectrum of T . Then

dim(CT (v)) ≤ |σ(T )| (3)

for every v ∈ V .

Proof. Let a ∈ σ(T ), and let f be an eigenvector with eigenvalue a. Let W
be the one-dimensional subspace generated by f . Then W is invariant with
respect to T , and pT,W (x) = x − a. It follows that x − a divides pT,V (x),
and so

∏

a∈σ(T )

(x− a)

divides pT,V (x). Let dim (V ) = k. If T is a diagonal linear operator, then V
has a basis {f0, f1, . . . , fk−1} of eigenvectors, and

∏

a∈σ(T )

(T − a)(fi) = 0

for i = 0, 1, . . . , k − 1. It follows that
∏

a∈σ(T )(T − a)(v) = 0 for all v ∈ V ,
and so

pT,V (x) =
∏

a∈σ(T )

(x − a).

In particular, the degree of pT,V (x) is equal to the number of distinct
eigenvalues of T . It follows that, if T is a diagonal operator on a finite-
dimensional vector space V , then

dim(CT (v)) ≤ deg(pT,V ) = |σ(T )|
for every v ∈ V . This completes the proof. �

Lemma 5. Let T : V → V be a linear operator on the vector space V , and
let {f0, f1, . . . , fk−1} be eigenvectors of T with distinct eigenvalues. Let

v0 = f0 + f1 + · · · + fk−1,
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and let CT (v0) be the cyclic subspace generated by v0. Then

dim(CT (v0)) = k

and

{v0, T (v0), T 2(v0), . . . , T k−1(v0)}
is a basis for CT (v0). If dim(V ) = k, then CT (v0) = V .

Proof. We first show that the vectors f0, f1, . . . , fk−1 are linearly independent.
If they are linearly dependent, then there is a minimal subset of the vectors
f0, . . . , fk−1 that is linearly dependent, say, f0, . . . , fl−1. Moreover, l ≥ 2 since
fi �= 0 for i = 0, 1, . . . , k − 1. There exist nonzero scalars c0, c1, . . . , cl−1 such

that
∑l−1

i=0 cifi = 0. Let ai ∈ σ((T )) be the eigenvalue corresponding to the
eigenvector fi. Then

T

(
l−1∑

i=0

ci(fi)

)

=

l−1∑

i=0

ciT (fi) =

l−1∑

i=0

ciaifi = 0.

Since

l−1∑

i=0

cial−1fi = al−1

l−1∑

i=0

cifi = 0,

it follows that

l−1∑

i=0

ci(ai − al−1)fi =

l−2∑

i=0

ci(ai − al−1)fi = 0,

which contradicts the minimality of l, since ci(ai − al−1) �= 0 for i < l −
1. Thus, the vectors f0, . . . , fk−1 are linearly independent, and span a k-
dimensional subspace W of V . Moreover, W is an invariant subspace, since
it has a basis of eigenvectors of T . Since

v0 = f1 + · · · + fk ∈W,

it follows that

CT (v0) ⊆ W

and so

dim(CT (v0)) ≤ dim(W ) = k.

The vector T i(v0) ∈ CT (v0) for every nonnegative integer i. Since

T i(v0) = ai0f0 + ai1f1 + · · · + aik−1fk−1,

the matrix of the set of vectors {v0, T (v0), T 2(v0), . . . , T k−1(v0)} with
respect to the basis {f0, . . . , fk−1} is
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⎛

⎜
⎜
⎜⎜
⎜
⎝

1 a0 a20 · · · ak−1
0

1 a1 a21 · · · ak−1
1

1 a2 a22 · · · ak−1
2

...
...

...
. . .

...
1 ak−1 a

2
k−1 · · · ak−1

k−1

⎞

⎟
⎟
⎟⎟
⎟
⎠
,

and its determinant is the Vandermonde determinant
∏

0≤i<j≤h

(aj − ai) �= 0.

It follows that {v0, T (v0), T 2(v0), . . . , T k−1(v0)} is a set of linearly indepen-
dent vectors, and so

dim(CT (v0)) ≥ k = dim(W ).

Therefore, dim(CT (v0)) = k. If dim(V) = k, then CT (v0) = V . This
completes the proof. �

4. Alternating Products

Let ∧hV denote the h-th alternating product of the vector space V . Then
∧hV is a vector space whose elements are linear combinations of expressions
of the form

v0 ∧ v1 ∧ · · · ∧ vh−1,

where v0,v1, . . . ,vh−1 ∈ V . These wedge products have the property that

v0 ∧ v1 ∧ · · · ∧ vh−1 = 0

if vi = vj for some i �= j, and

vσ(0) ∧ vσ(1) ∧ · · · ∧ vσ(h−1) = ε(σ)v0 ∧ v1 ∧ · · · ∧ vh−1

for all σ ∈ Sh.
If {e0, . . . , ek−1} is a basis for V , then a basis for ∧hV is the set of all

wedge products of the form

ei0 ∧ ei1 ∧ · · · ∧ eih−1
,

where

0 ≤ i0 < i1 < . . . < ih−1 ≤ k − 1,

and

dim(∧hV ) =

(
k

h

)
.
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Every linear operator T : V → V induces a linear operator

DT :
h∧
V →

h∧
V

that acts on wedge products according to the rule

DT (vi0 ∧ · · · ∧ vih−1
) =

h−1∑

j=0

vi0 ∧ · · · ∧ vih−1
∧ T (vij ) ∧ vij+1 · · · ∧ vih−1

. (4)

The operator DT is called the derivative of T .

Lemma 6. Let T be a diagonal linear operator on V , and let σ(T ) be the

spectrum of T . For h ≥ 2, let DT :
∧h

V → ∧h
V be the derivative of T . If

T has distinct eigenvalues, that is, if |σ(T )| = dim(V ), then

σ(DT ) = h∧σ(T )

and

|h∧σ(T )| ≥ dim(CDT (w)) (5)

for every w ∈ ∧hV .

Proof. Let σ(T ) = {a0, a1, . . . , ak−1}, and let {f0, f1, . . . , fk−1} be a basis of
eigenvectors of V such that T (fi) = aifi for i = 0, 1, . . . , k − 1. Then (4)
implies that

DT (fi0 ∧ · · · ∧ fih−1
) = (ai0 + · · · + aih1

)(fi0 ∧ · · · ∧ fih−1
).

It follows that DT is a diagonal linear operator on ∧hV , and its spectrum
σ(DT ) consists of all sums of h distinct eigenvalues of T , that is,

σ(DT ) = h∧σ(T ).

Applying inequality (3) to the vector space ∧hV and the operator DT , we
obtain

|h∧σ(T )| = |σ(DT )| ≥ dim(CDT (W ))

for every w ∈ ∧hV . This completes the proof. �

Theorem 2. Let T be a linear operator on the finite-dimensional vector
space V . Let h ≥ 2, and let DT : ∧hV → ∧hV be the derivative of T .
For v0 ∈ V , define

vi = T i(v0) ∈ V

for i ≥ 1, and let

w = v0 ∧ v1 ∧ · · · ∧ vh−1 ∈ ∧hV.
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Then for every r ≥ 0

(DT )r(w) = (DT )r(v0 ∧ v1 ∧ · · · ∧ vh−1)

=
∑

B̂(i0, i1, . . . , ih−1)vi0 ∧ vi1 ∧ · · · ∧ vih−1
,

where the sum is over all integer lattice points (i0, i1, . . . , ih−1) ∈ Zh such
that

0 ≤ i0 < i1 < · · · < ih−1 ≤ r + h− 1

and

i0 + i1 + · · · + ih−1 =

(
h

2

)
+ r,

and where B̂(i0, i1, . . . , ih−1) is the strict h-dimensional ballot number corre-
sponding to the lattice point (i0, i1, . . . , ih−1).

Proof. The proof will be by induction on r. Let r = 0. Since

B̂(0, 1, 2, . . . , h− 1) = 1,

we have

(DT )0(w) = w

= v0 ∧ v1 ∧ · · · ∧ vh−1

= B̂(0, 1, 2, . . . , h− 1)v0 ∧ v1 ∧ · · · ∧ vh−1.

Suppose the result holds for some integer r ≥ 0. Then

(DT )r+1(w) = DT ((DT )r(w))

= DT
(∑

B̂(i0, i1, . . . , ih−1)vi0 ∧ vi1 ∧ · · · ∧ vih−1

)

=
∑

B̂(i0, i1, . . . , ih−1)DT (vi0 ∧ vi1 ∧ · · · ∧ vih−1
)

=
∑

B̂(i0, i1, . . . , ih−1)

h−1∑

j=0

(vi0 ∧ · · · ∧ vij−1 ∧ T (vij ) ∧ vij+1 ∧ · · · ∧ vih−1
)

=
∑

B̂(i0, i1, . . . , ih−1)

h−1∑

j=0

(vi0 ∧ · · · ∧ vij−1 ∧ vij+1 ∧ vij+1 ∧ · · · ∧ vih−1
)

=
∑

C(i0, i1, . . . , ih−1)vi0 ∧ vi1 ∧ · · · ∧ vih−1
,

where the last sum is over all integer lattice points (i0, i1, . . . , ih−1) ∈ Zn

such that

0 ≤ i0 < i1 < · · · < ih−1 ≤ r + h
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and

i0 + i1 + · · · + ih−1 =

(
h

2

)
+ r + 1,

and the integer C(i0, i1, . . . , ih−1) satisfies the difference equation

C(i0, i1, . . . , ih−1) =

h−1∑

j=0

B̂(i0, . . . , ij−1, ij − 1, ij+1, . . . , ih−1)

This difference equation determines the strict h-dimensional ballot numbers,
and so

C(i0, i1, . . . , ih−1) = B̂(i0, i1, . . . , ih−1).

Therefore, the result holds in the case r+ 1. This completes the induction.�

5. Erdős-Heilbronn, Concluded

Theorem 3. Let p be a prime number, and let A ⊆ Z/pZ, where |A| = k.
Let 2 ≤ h ≤ k. Then

|h∧A| ≥ min(p, hk − h2 + 1).

Proof. Let A = {a0, a1, . . . , ak−1}. Let V be a vector space of dimension k
over the field Z/pZ, and let {f0, f1, . . . , fk−1} be a basis for V . We define the
diagonal linear operator T : V → V by

T (fi) = aifi

for i = 0, 1, . . . , k − 1. The spectrum of T is

σ(T ) = A.

Let

v0 = f0 + f1 + · · · + fk−1,

and define

vi+1 = T (vi) = T i(v0)

for i ≥ 0. By Lemma 5, the cyclic subspace generated by v0 is V , and the set
of vectors {v0,v1, . . . ,vk−1} is a basis for V . The alternating product

∧h V
is a vector space with a basis consisting of the

(
k
h

)
wedge products of the

form

vi0 ∧ vi1 ∧ · · · ∧ vih−1
,

where

0 ≤ i0 < i1 < · · · < ih−1 ≤ k − 1.
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Let

w = v0 ∧ v1 ∧ · · · ∧ vh−1 ∈
h∧
V.

By inequality (5),

|h∧A| = |σ(DT )| ≥ dimCDT (w).

Therefore, it suffices to prove that

dimCDT (w) ≥ min(p, hk − h2 + 1).

This is equivalent to proving that the vectors

w, (DT )(w), (DT )2(w), . . . , (DT )n(w)

are linearly independent in the alternating product
∧h V , where

n = min(p, hk − h2 + 1) − 1 = min(p− 1, hk − h2).

Let 0≤r≤n. By Theorem 2, the vector (DT )r(w) is a linear combination
of the vectors

vi0 ∧ vi1 ∧ · · · ∧ vih−1

such that

0 ≤ i0 < i1 < . . . < ih−1 ≤ r + h− 1

and

i0 + i1 + · · · + ih−1 =

(
h

2

)
+ r. (6)

Let I be the interval of integers [0, k − 1]. Since

h∧I =

[(
h

2

)
, hk −

(
h+ 1

2

)]
=

(
h

2

)
+ [0, hk − h2],

it follows that there is at least one basis vector vi0 ∧ vi1 ∧ · · · ∧ vih1
in the

expansion of (DT )r(w) such that

0 ≤ i0 < i1 < · · · < ih−1 ≤ k − 1 < k ≤ p

and

i0 + i1 + · · · + ih−1 =

(
h

2

)
+ r ≤

(
h

2

)
+ n <

(
h

2

)
+ p.

By Theorem 2, the coefficient of this basis vector is the strict h-dimensional
ballot number B̂(i0, i1, . . . , ih−1) and

B̂(i0, i1, . . . , ih−1) �≡ 0 (mod p)

by Corollary 1.
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Suppose that the vector vi0∧vi1∧· · ·∧vih1 satisfies il ≥ k for some l. Since
every vector vl ∈ V with l ≥ k is a linear combination of v0,v1, . . . ,vk−1, it
follows that vi0 ∧ vi1 ∧ · · · ∧ vih1 is a linear combination of basis vectors of
the form vj0 ∧ vj1 ∧ · · · ∧ vjh−1

, where

0 ≤ j0 < j1 < · · · < jh−1 ≤ k − 1

and

j0 + j1 + · · · + jh−1 <

(
h

2

)
+ r.

It follows that (DT )r(w) is a linear combination of basis vectors vi0 ∧ vi1 ∧
· · · ∧ vih−1

such that either

i0 + i1 + · · · + ih−1 <

(
h

2

)
+ r

or

i0 + i1 + · · · + ih−1 =

(
h

2

)
+ r,

and in the latter case the basis vector appears with a coefficient that is
nonzero modulo p. This implies that the vectors w, (DT )(w), . . . , (DT )n(w)
are linearly independent in the cyclic subspace CDT (w), and the proof of the
Erdős-Heilbronn conjecture is complete. �

6. Remarks

This proof only requires that A be a subset of a field, and does not require
that the field be Z/pZ. Let F be an arbitrary field. Let p be the characteristic
of F if the characteristic is positive, and let p = ∞ if the characteristic is
zero. Then we have, in fact, proved that if A ⊆ F and |A| = k ≤ p, then
|h∧A| ≥ min(p, hk − h2 + 1) for all h ≥ 1.

The Cauchy-Davenport theorem was proved by Cauchy [3] in 1813.
Davenport [5] rediscovered the result in 1935. I. Chowla [4] immediately
extended the Cauchy-Davenport theorem to composite moduli. Other gener-
alizations have been obtained by Pillai [14], Shatrovskii [20], Pollard [15, 16],
Brakemaier [2], and Hamidoune [12]. Davenport [6] discovered in 1947 that
Cauchy had proved the Cauchy-Davenport theorem first.

The Erdős-Heilbronn conjecture originated in the 1960s. Partial results on
the Erdős-Heilbronn conjecture were obtained by Rickert [18], Mansfield [13],
Rödseth [19], Pyber [17], and Freiman, Low, and Pitman [11]. Dias da Silva
and Hamidoune [8] proved the conjecture by using results from representation
theory and linear algebra. This algebraic technique had previously been
applied to additive number theory by Dias da Silva and Hamidoune [7] and
Spigler [21].
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The derivation of the formula for the strict ballot number B̂(b0, . . . , bn−1)
follows a paper of Zeilberger [22].

Using combinatorial ideas from the proof of Dias da Silva and Hamidoune,
Alon, Nathanson, and Ruzsa [1] found a different proof of the Erdős-
Heilbronn conjecture that uses only the simplest properties of polynomials.
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On Landau’s Function g(n)
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1. Introduction

Let Sn be the symmetric group of n letters. Landau considered the function
g(n) defined as the maximal order of an element of Sn; Landau observed that
(cf. [9])

g(n) = max lcm(m1, . . . ,mk) (1)

where the maximum is taken on all the partitions n = m1 + m2 + · · · + mk

of n and proved that, when n tends to infinity

log g(n) ∼
√
n logn. (2)

More precise asymptotic estimates have been given in [11, 22, 25]. In [25] and
[11] one also can find asymptotic estimates for the number of prime factors of
g(n). In [8] and [3], the largest prime factor P+(g(n)) of g(n) is investigated.
In [10] and [12], effective upper and lower bounds of g(n) are given. In [17], it
is proved that limn→∞ g(n+1)/g(n) = 1. An algorithm able to calculate g(n)
up to 1015 is given in [2] (see also [26]). The sequence of distinct values of
g(n) is entry A002809 of [24]. A nice survey paper was written by W. Miller
in 1987 (cf. [13]).

My very first mathematical paper [15] was about Landau’s function, and
the main result was that g(n), which is obviously non decreasing, is constant
on arbitrarily long intervals (cf. also [16]). I first met A. Schinzel in Paris in
May 1967. He told me that he was interested in my results, but that P. Erdős
would be more interested than himself. Then I wrote my first letter to Paul
with a copy of my work. I received an answer dated of June 12 1967 saying “I
sometimes thought about g(n) but my results were very much less complete
than yours”. Afterwards, I met my advisor, the late Professor Pisot, who, in
view of this letter, told me that my work was good for a thesis.

The main idea of my work about g(n) was to use the tools introduced
by S. Ramanujan to study highly composite numbers (cf. [19, 20]). P. Erdős
was very well aware of this paper of Ramanujan (cf. [1, 4–6]) as well as of
the symmetric group and the order of its elements, (cf. [7]) and I think that
he enjoyed the connection between these two areas of mathematics. Anyway,
since these first letters, we had many occasions to discuss Landau’s function.
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Let us define n1 = 1, n2 = 2, n3 = 3, n4 = 4, n5 = 5, n6 = 7, etc. . . . , nk

(see a table of g(n) in [16, p. 187]), such that

g(nk) > g(nk − 1). (3)

The above mentioned result can be read:

lim(nk+1 − nk) = +∞. (4)

Here, I shall prove the following result:

Theorem 1.

lim(nk+1 − nk) < +∞. (5)

Let us set p1 = 2, p2 = 3, p3 = 5, . . ., pk = the k-th prime. It is easy to
deduce Theorem 1 from the twin prime conjecture (i.e. lim(pk+1−pk) = 2) or
even from the weaker conjecture lim(pk+1−pk) < +∞. (cf. Sect. 4 below.) But
I shall prove Theorem 1 independently of these deep conjectures. Moreover I
shall explain below why it is reasonable to conjecture that the mean value of
nk+1 − nk is 2; in other terms one may conjecture that

nk ∼ 2k (6)

and that nk+1 − nk = 2 has infinitely many solutions. Due to a parity
phenomenon, nk+1 − nk seems to be much more often even than odd;
nevertheless, I conjecture that:

lim(nk+1 − nk) = 1. (7)

The steps of the proof of Theorem 1 are first to construct the set G
of values of g(n) corresponding to the so called superior highly composite
numbers introduced by S. Ramanujan, and then, when g(n) ∈ G, to build
the table of g(n+d) when d is small. This will be done in Sects. 4 and 5. Such
values of g(n+d) will be linked with the number of distinct differences of the
form P−Q where P andQ are primes satisfying x−xα ≤ Q ≤ x < P ≤ x+xα,
where x goes to infinity and 0 < α < 1. Our guess is that these differences
P − Q represent almost all even numbers between 0 and 2xα, but we shall
only prove in Sect. 3 that the number of these differences is of the order of
magnitude of xα, under certain strong hypothesis on x and α, and for that a
result due to Selberg about the primes between x and x+ xα will be needed
(cf. Sect. 2).

To support conjecture (6), I think that what has been done here with
g(n) ∈ G can also be done for many more values of g(n), but, unfortunately,
even assuming strong hypotheses, I do not see for the moment how to
manage it.

I thank very much E. Fouvry who gave me the proof of Proposition 2.
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1.1 Notation

p will denote a generic prime, pk the k-th prime; P,Q, Pi, Qj will also denote
primes. As usual π(x) =

∑
p≤x 1 is the number of primes up to x.

|S| will denote the number of elements of the set S. The sequence nk is
defined by (3).

2. About the Distribution of Primes

Proposition 1. Let us define π(x) =
∑

p≤x 1, and let α be such that 1
6 <

α < 1, and ε > 0. When ξ goes to infinity, and ξ′ = ξ + ξ/ log ξ, then for all
x in the interval [ξ, ξ′] but a subset of measure O((ξ′ − ξ)/ log3 ξ) we have:

∣∣
∣
∣π(x+ xα) − π(x) − xα

log x

∣∣
∣
∣ ≤ ε

xα

log x
(8)

∣
∣
∣∣π(x) − π(x − xα) − xα

log x

∣
∣
∣∣ ≤ ε

xα

log x
(9)

∣∣
∣
∣
x

log x
− Qk −Qk−1

logQ

∣∣
∣
∣ ≥

√
x

log4 x
for all primes Q, and k ≥ 2. (10)

Proof. This proposition is an easy extension of a result of Selberg (cf. [21])
who proved that (8) holds for most x in (ξ, ξ′). In [18], I gave a first extension
of Selberg’s result by proving that (8) and (9) hold simultaneously for all x in
(ξ, ξ′) but for a subset of measure O((ξ′ − ξ)/ log3 ξ). So, it suffices to prove
that the measure of the set of values of x in (ξ, ξ′) for which (10) does not
hold is O((ξ′ − ξ)/ log3 ξ).

We first count the number of primes Q such that for one k we have:

ξ

log ξ
≤ Qk −Qk−1

logQ
≤ ξ′

log ξ′
. (11)

If Q satisfies (11), then k ≤ log ξ′
log 2 for ξ′ large enough. Further, for k fixed,

(11) implies that Q ≤ (ξ′)1/k, and the total number of solutions of (11) is

≤
log ξ′/ log 2∑

k=2

(ξ′)1/k = O(
√
ξ′) = O(

√
ξ).

With a more careful estimation, this upper bound could be improved, but this

crude result is enough for our purpose. Now, for all values of y = Qk−Qk−1

logQ

satisfying (11), we cross out the interval
(
y −

√
ξ′

log4 ξ′ , y +
√
ξ′

log4 ξ′

)
. We also

cross out this interval whenever y = ξ
log ξ and y = ξ′

log ξ′ . The total sum of

the lengths of the crossed out intervals is O
(

ξ
log4 ξ

)
, which is smaller than
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the length of the interval
(

ξ
log ξ ,

ξ′

log ξ′

)
and if x

log x does not fall into one of

these forbidden intervals, (10) will certainly hold. Since the derivative of the
function ϕ(x) = x/ log x is ϕ′(x) = 1

log x − 1
log2 x

and satisfies ϕ′(x) ∼ 1
log ξ for

all x ∈ (ξ, ξ′), the measure of the set of values of x ∈ (ξ, ξ′) such that ϕ(x)
falls into one of the above forbidden intervals is, by the mean value theorem

O
(

ξ
log3 ξ

)
, and the proof of Proposition 1 is completed. �

3. About the Differences Between Primes

Proposition 2. Suppose that there exists α, 0 < α < 1, and x large enough
such that the inequalities

π(x+ xα) − π(x) ≥ (1 − ε)xα/ logx (12)

π(x) − π(x− xα) ≥ (1 − ε)xα/ logx (13)

hold. Then the set

E = E(x, α) = {P −Q;P,Q primes, x− xα < Q ≤ x < P ≤ x+ xα}
satisfies:

|E| ≥ C2x
α

where C2 = C1α
4(1 − ε)4 and C1 is an absolute constant (C1 = 0.00164

works).

Proof. The proof is a classical application of the sieve method that Paul
Erdős enjoys very much. Let us set, for d ≤ 2xα,

r(d) = |{(P,Q);x− xα < Q ≤ x < P ≤ x+ xα, P −Q = d}|.
Clearly we have

|E| =
∑

0<d≤2xα

r(d) 	=0

1 (14)

and
∑

0<d≤2xα

r(d) = (π(x + xα) − π(x))(π(x) − π(x− xα)) ≥ (1 − ε)2x2α/ log2 x.

(15)
Now to get an upper bound for r(d), we sift the set

A = {n;x− xα < n ≤ x}
with the primes p ≤ z. If p divides d, we cross out the n’s satisfying n ≡ 0
(mod p), and if p does not divide d, the n’s satisfying

n ≡ 0 (mod p) or n ≡ −d (mod p)
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so that we set for p ≤ z:

w(p) =

{
1 if p divides d

2 if p does not divide d.

By applying the large sieve (cf. [14, Corollary 1]), we have

r(d) ≤ |A|
L(z)

with

L(z) =
∑

n≤z

(
1 +

3

2
n|A|−1z

)−1

μ(n)2

⎛

⎝
∏

p|n

w(p)

p− w(p)

⎞

⎠

(μ is the Möbius function), and with the choice z = (23 |A|)1/2, it is proved in
[23] that

|A|
L(z)

≤ 16
∏

p≥3

(
1 − 1

(p− 1)2

) |A|
log2(|A|)

∏

p|d
p>2

p− 1

p− 2
.

The value of the above infinite product is 0.6602 . . . < 2/3. We set f(d) =∏
p|d
p>2

p−1
p−2 , and we observe that |A| ≥ xα − 1, so that for x large enough

r(d) ≤ 32

3α2

|A|
log2 x

f(d). (16)

Now, for the next step, we shall need an upper bound for
∑

n≤x f
2(n). By

using the convolution method and defining

h(n) =
∑

a|n
μ(a)f2(n/a)

one gets h(2) = h(22) = h(23) = . . . = 0 and, for p ≥ 3, h(p) = 2p−3
(p−2)2 ,

h(p2) = h(p3) = . . . = 0, so that
∑

n≤x
f2(n) =

∑

n≤x

∑

a|n h(a) =
∑

a≤x
h(a)

⌊x
a

⌋

≤ x
∑∞

a=1

h(a)

a
= x

∏

p≥3

(
1 +

2p− 3

p(p− 2)2

)
(17)

= 2.63985 . . .x ≤ 8

3
x.

From (15) and (16), one can deduce

(1 − ε)2x2α

log2 x
≤

∑

0<d≤2xα

r(d) 	=0

r(d) ≤ 32

3α2

|A|
log2 x

∑

0<d≤2xα

r(d) 	=0

f(d)
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which implies

∑

0<d≤2xα

r(d) 	=0

f(d) ≥ 3α2x2α(1 − ε)2

32|A| .

By Cauchy-Schwarz’s inequality, one has
( ∑

0<d≤2xα

r(d) 	=0

1

)( ∑

0<d≤2xα

r(d) 	=0

f2(d)

)
≥ 9α4x4α(1 − ε)4

1,024|A|2

and, by (14) and (17)

|E| ≥ 9α4x4α(1 − ε)4

1,024|A|2
/

8

3
(2xα) =

27

16,384

x3α(1 − ε)4

|A|2 ·

Since |A| ≤ xα + 1, and x has been supposed large enough, Proposition 2 is
proved. �

4. Some Properties of g(n)

Here, we recall some known properties of g(n) which can be found for instance
in [16]. Let us define the arithmetic function � in the following way: � is
additive, and, if p is a prime and k ≥ 1, then �(pk) = pk. It is not difficult to
deduce from (1) (cf. [13] or [16]) that

g(n) = max
(M)≤n

M. (18)

Now the relation (cf. [16, p. 139])

M ∈ g(N) ⇐⇒ (M ′ > M =⇒ �(M ′) > �(M)) (19)

easily follows from (18), and shows that the values of the Landau function
g are the “champions” for the small values of �. So the methods introduced
by Ramanujan (cf. [19]) to study highly composite numbers can also be used
for g(n). Indeed M is highly composite, if it is a “champion” for the divisor
function d, that is to say if

M ′ < M =⇒ d(M ′) < d(M).

Corresponding to the so-called superior highly composite numbers, one
introduces the set G : N ∈ G if there exists ρ > 0 such that

∀M ≥ 1, �(M) − ρ logM ≥ �(N) − ρ logN. (20)

Equations (19) and (20) easily imply that G ⊂ g(N). Moreover, if ρ > 2/ log 2,
let us define x > 4 such that ρ = x/ log x and

Nρ =
∏

p≤x

pαp =
∏

p

pαp (21)
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with

αp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p > x

1 if p
log p ≤ ρ < p2−p

log p

k ≥ 2 if pk−pk−1

log p ≤ ρ < pk−1−pk

log p

then Nρ ∈ G. With the above definition, since x ≥ 4, it is not difficult to
show that (cf. [11, (5)])

pαp ≤ x (22)

holds for p ≤ x, whence Nρ is a divisor of the least common multiple of the
integers ≤ x. Here we can prove

Proposition 3. For every prime p, there exists n such that the largest prime
factor of g(n) is equal to p.

Proof. We have g(2) = 2, g(3) = 3. If p ≥ 5, let us choose ρ = p/ log p >
2/ log 2. Nρ defined by (21) belongs to G ⊂ g(N), and its largest prime factor
is p, which proves Proposition 3. �

From Proposition 3, it is easy to deduce a proof of Theorem 1, under the
twin prime conjecture. Let P = p + 2 be twin primes, and n such that the
largest prime factor of g(n) is p. The sequence nk being defined by (3), we
define k in terms of n by nk ≤ n < nk+1, so that g(nk) = g(n) has its largest
prime factor equal to p. Now, from (18) and (19),

�(g(nk)) = nk

and g(nk + 2) > g(nk) since M = P
p g(nk) satisfies M > g(nk) and

�(M) = nk + 2. So nk+1 ≤ nk + 2, and Theorem 1 is proved under this
strong hypothesis.

Let us introduce now the so-called benefit method. For a fixed ρ > 2/ log 2,
N = Nρ is defined by (21), and for any integer M ,

M =
∏

p

pβp ,

one defines the benefit of M :

ben(M) = �(M) − �(N) − ρ logM/N. (23)

Clearly, from (20), ben(M) ≥ 0 holds, and from the additivity of � one has

ben(M) =
∑

p

(
�(pβp) − �(pαp) − ρ(βp − αp) log p

)
. (24)

In the above formula, let us observe that �(pβ) = pβ if β ≥ 1, but that
�(pβ) = 0 �= pβ = 1 if β = 0, and, due to the choice of αp in (21), that, in
the sum (24), all the terms are non negative: for all p and for β ≥ 0, we have

�(pβ) − �(pαp) − ρ(β − αp) log p ≥ 0. (25)
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Indeed, let us consider the set of points (0, 0) and (β, pβ log p) for β integer
≥ 1. For all p, the piecewise linear curve going through these points is convex,
and for a given ρ, αp is chosen so that the straight line L of slope ρ going

through
(
αp,

pαp

log p

)
does not cut that curve. The left-hand side of (25), (which

is ben(Npβ−αp)) can be seen as the product of log p by the vertical distance

of the point
(
β, pβ

log p

)
to the straight line L, and because of convexity, we

shall have for all p,

ben(Npt) ≥ t ben(Np), t ≥ 1 (26)

and for p ≤ x,

ben(Np−t) ≥ t ben(Np−1), 1 ≤ t ≤ αp. (27)

5. Proof of Theorem 1

First the following proposition will be proved:

Proposition 4. Let α < 1/2, and x large enough such that (10) holds. Let
us denote the primes surrounding x by:

. . . < Qj < . . . < Q2 < Q1 ≤ x < P1 < P2 < . . . < Pi < . . . .

Let us define ρ = x/ log x,N = Nρ by (21), n = �(N). Then for n ≤ m ≤
n+ 2xα, g(m) can be written

g(m) = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . . Qjr

(28)

with r ≥ 0 and i1 < . . . < ir, j1 < . . . < jr, Pir ≤ x+ 4xα, Qjr ≥ x− 4xα.

Proof. First, from (18), one has �(g(m)) ≤ m, and from (23) and (18)

ben(g(m)) = �(g(m)) − �(N) − ρ log
g(m)

N
≤ m− n ≤ 2xα (29)

for n ≤ m ≤ 2xα.
Further, let Q ≤ x be a prime, and k = αQ ≥ 1 the exponent of Q in

the standard factorization of N . Let us suppose that for a fixed m, Q divides
g(m) with the exponent βQ = k + t, t > 0. Then, from (24), (25), and (26),
one gets

ben(g(m)) ≥ ben(NQt) ≥ ben(NQ) (30)

and

ben(NQ) = Qk+1 −Qk − ρ logQ

= logQ

(
Qk+1 −Qk

logQ
− ρ

)
.
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From (21), the above parenthesis is nonnegative, and from (10), one gets:

ben(NQ) ≥ log 2

√
x

log4 x
. (31)

For x large enough, there is a contradiction between (29), (30) and (31), and
so, βQ ≤ αQ.

Similarly, let us suppose Q ≤ x, k = αQ ≥ 2 and βQ = k − t, 1 ≤ t ≤ k.
One has, from (24), (25) and (27),

ben(g(m)) ≥ ben(NQ−t) ≥ ben(NQ−1)

and

ben(NQ−1) = Qk−1 −Qk + ρ logQ

= logQ

(
ρ− Qk −Qk−1

logQ

)
≥ log 2

√
x

log4 x

which contradicts (29), and so, for such a Q, βQ = αQ.
Now, let us suppose Q ≤ x, αQ = 1, and βQ = 0 for some m,n ≤ m ≤

n+ 2xα. Then

ben(g(m)) ≥ ben(NQ−1) = −Q+ ρ logQ = y(Q)

by setting y(t) = ρ log t− t. From the concavity of y(t) for t > 0, for x ≥ e2,
we get

y(Q) ≥ y(x) + (Q − x)y′(x) = (Q− x)
( ρ
x

− 1
)

= (x−Q)

(
1 − 1

log x

)
≥ 1

2
(x−Q)

and so,

ben(g(m)) ≥ 1

2
(x−Q)

which, from (29) yields

x−Q ≤ 4xα.

In conclusion, the only prime factors allowed in the denominator of g(m)
N are

the Q’s, with x− 4xα ≤ Q ≤ x, and αQ = 1.
What about the numerator? Let P > x be a prime number and suppose

that P t divides g(m) with t ≥ 2. Then, from (26) and (23),

ben(Npt) ≥ ben(Np2) = P 2 − 2ρ logP.

But the function t %→ t2 − 2ρ log t is increasing for t ≥ √
ρ, so that,

ben(NP t) ≥ x2 − 2x > 2xα
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for x large enough, which contradicts (29). The only possibility is that P
divides g(m) with exponent 1. In that case, from the convexity of the function
z(t) = t− ρ log t, inequality (26) yields

ben(g(m)) ≥ ben(NP ) = z(P ) ≥ z(x) + (P − x)z′(x)

= (P − x)

(
1 − 1

log x

)
≥ 1

2
(P − x)

for x ≥ e2, which, with (29), implies

P − x ≤ 4xα.

Up to now, we have shown that

g(m) = N
Pi1 . . . Pir

Qj1 . . .Qjs

with Pir ≤ x + 4xα, Qjs ≥ x − 4xα. It remains to show that r = s. First,
since n ≤ m ≤ n+ 2xα, and N belongs to G, we have from (18) and (19)

n ≤ �(g(m)) ≤ n+ 2xα. (32)

Further,

�(g(m)) − n =

r∑

t=1

Pit −
s∑

t=1

Qjt

and since r ≤ 4xα, and s ≤ 4xα,

�(g(m)) − n ≤ r(x + 4xα) − s(x − 4xα)

≤ (r − s)x+ 32x2α.

From (32), �(g(m)) − n ≥ 0 holds and as α < 1/2, this implies that r ≥ s for
x large enough. Similarly,

�(g(m)) − n ≥ (r − s)x,

so, from (32), (r − s)x must be ≤ 2xα, which, for x large enough, implies
r ≤ s; finally r = s, and the proof of Proposition 4 is completed. �

Lemma 1. Let x be a positive real number, a1, a2, . . . , ak, b1, b2, . . . , bk be
real numbers such that

bk ≤ bk−1 ≤ . . . ≤ b1 ≤ x < a1 ≤ a2 ≤ . . . ≤ ak

and Δ be defined by Δ =
∑k

i=1(ai − bi). Then the following inequalities

x+ Δ

x
≤

k∏

i=1

ai
bi

≤ exp

(
Δ

x

)

hold.
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Proof. It is easy, and can be found in [16, p. 159]. �

Now it is time to prove Theorem 1. With the notation and hypothesis of
Proposition 4, let us denote by B the set of integers M of the form

M = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . .Qjr

satisfying

�(M) − �(N) =

r∑

t=1

(Pit −Qjt) ≤ 2xα.

From Proposition 4, for n ≤ m ≤ 2xα, g(m) ∈ B, and thus, from (18),

g(m) = max
(M)≤m
M∈B

M. (33)

Further, for 0 ≤ d ≤ 2xα, define

Bd = {M ∈ B : �(M) − �(N) = d}.
I claim that, if d < d′ (which implies d ≤ d′−2), any element of Bd is smaller
than any element of Bd′ . Indeed, let M ∈ Bd, and M ′ ∈ Bd′ . From Lemma 1,
one has

M

N
≤ exp

(
d

x

)
and

M ′

N
≥ x+ d′

x
≥ x+ d+ 2

x
.

Since d < 2xα < x, and et ≤ 1
1−t for 0 ≤ t < 1, one gets

M

N
≤ 1

1 − d/x
=

x

x− d
.

This last quantity is smaller than x+d+2
x if (d + 1)2 < 2x + 1, which is true

for x large enough, because d ≤ 2xα and α < 1/2.
From the preceding claim, and from (33), it follows that, if Bd is non

empty, then

g(n+ d) = maxBd.

Further, since N ∈ G, we know that n = �(N) belongs to the sequence (nk)
where g is increasing, and so, n = nk0 . If 0 < d1 < d2 < . . . < ds ≤ 2xα

denote the values of d for which Bd is non empty, then one has

nk0+i = n+ di, 1 ≤ i ≤ s. (34)

Suppose now that α < 1/2 and x have been chosen in such a way that
(12) and (13) hold. With the notation of Proposition 2, the set E(x, α) is
certainly included in the set {d1, d2, . . . , ds}, and from Proposition 2,

s ≥ C2x
α (35)



218 Jean-Louis Nicolas

which implies that for at least one i, di+1 − di ≤ 2
C2

, and thus

nk0+i+1 − nk0+i ≤ 2

C2
.

Finally, for 1
6 < α < 1

2 , Proposition 1 allows us to choose x as wished, and
thus, the proof of Theorem 1 is completed. �

With ε very small, and α close to 1/2, the values of C1 and C2 given in
Proposition 2 yield that for infinitely many k′s,

nk+1 − nk ≤ 20,000.

To count how many such differences we get, we define

γ(n) = Card{m ≤ n : g(m) > g(m− 1)}.
Therefore, with the notation (3), we have nγ(n)

= n.
In [16, 162–164], it is proved that

n1−τ/2 ! γ(n) ≤ n− c
n3/4

√
logn

where τ is such that the sequence of consecutive primes satisfies pi+1 − pi
! pτi . Without any hypothesis, the best known τ is > 1/2.

Proposition 5. We have γ(n) ≥ n3/4−ε for all ε > 0, and n large enough.

Proof. With the definition of γ(n), (34) and (35) give

γ(n+ 2xα) − γ(n) ≥ s & xα (36)

whenever n = �(N), N = Nρ, ρ = x/ log x, and x satisfies Proposition 1. But,
from (21), two close enough distinct values of x can yield the same N .

I now claim that, with the notation of Proposition 1, the number of primes
pi between ξ and ξ′ such that there is at least one x ∈ [pi, pi+1) satisfying
(8), (9) and (10) is bigger than 1

2 (π(ξ′) − π(ξ)). Indeed, for each i for which
[pi, pi+1) does not contain any such x, we get a measure pi+1 − pi ≥ 2, and if
there are more than 1

2 (π(ξ′)−π(ξ)) such i′s, the total measure will be greater

than π(ξ′) − π(ξ) ∼ ξ/ log2 ξ, which contradicts Proposition 1.
From the above claim, there will be at least 1

2 (π(ξ′) − π(ξ)) distinct N ’s,
with N = Nρ, ρ = x/ log x, and ξ ≤ x ≤ ξ′. Moreover, for two such distinct
N , say N ′ < N ′′, we have from (21), �(N ′′) − �(N ′) ≥ ξ.

Let N (1) and N (0) the biggest and the smallest of these N ’s, and n(1) =
�(N (1)), n(0) = �(N (0)), then from (36),

γ(n(1)) ≥ γ(n(1)) − γ(n(0)) ≥ 1

2
(π(ξ′) − π(ξ)) ξα & ξ1+α

log2 ξ
. (37)

But from (21) and (22), x ∼ logNρ, and from (2),

x ∼ logNρ ∼
√
n logn with n = �(Np)
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so

ξ ∼
√
n(1) logn(1)

and since α can be choosen in (37) as close as wished of 1/2, this completes
the proof of Proposition 5. �
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1. Introduction

Our first joint paper with Erdős appeared in 1966. It was a triple paper with
Szemerédi written on divisibility properties of sequences of integers which
is one of Erdős’ favorite subjects. Nine further triple papers written on the
same subject followed it, and since 1966, we have written altogether 52 joint
papers with Erdős. On this special occasion I would like to return to the
subject of our very first paper. In Sect. 2, I will give a survey of the related
results, while in Sect. 3, I will study a further related problem.

2. Survey of the Results on Divisibility Properties
of Sequences of Integers

Throughout this paper, the following notations will be used: N denotes the
set of the positive integers. c1, c2, . . . denote positive absolute constants. If
f(x) = 0(g(x)), then we write f(x) ! g(x). If A ⊂ N, n ∈ N, then we write

s(A, n) =
∑

a∈A,a≤n

1

a
,

t(A, n) =
∑

a∈A,2≤a≤n

1

a log a
,

s(A) =
∑

a∈A

1

a

and

t(A) =
∑

a∈A,2≤a

1

a log a
.
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For n ≥ 3 we put

�(A, n) = s(A, n)(logn)−1

and

m(A, n) = t(A, n)(log logn)−1

These quantities can be called as “logarithmic density” and “log log density”
of A. In fact, both of them can be considered as densities since if the infinite
sequence A ⊂ N possesses asymptotic density, then the limit of both �(A, n)
and m(A, n) is equal to the asymptotic density of A.

If A ⊂ N and there are no a, a′ with a ∈ A, a′ ∈ A, a �= a′ and a|a′, then
A is said to be primitive.

In 1935, Behrend [6] proved the following result:

Theorem 1. If n ∈ N, n > n0,A ⊂ {1, 2, . . . , n} and A is primitive, then
we have

�(A, n) < c1(log logn)−1/2.

The proof of this nice theorem is of a combinatorial nature; the crucial
tool in the proof is Sperner’s theorem on subsets of finite sets. So that it
is an Erdős-type result, except that it is due to Behrend and not to Erdős;
however, it is just a matter of a few months that now this result is known as
Behrend’s theorem and not as Erdős’ theorem. The story is the following:

Due to the steadily worsening political atmosphere in Hungary in the
early thirties, Erdős was forced to leave the country in 1934. He took a train
for Cambridge, and during the travel he felt very depressed since he had to
leave all his relatives and friends for the unknown. Thus to cheer himself up,
he started to do some mathematics. After a while, he ended up with the result
formulated in Theorem 1. Arriving to Cambridge, Davenport and Radó were
waiting for him at the station. Erdős told them his new result immediately.
They said that, indeed, it was a nice result but unfortunately, Behrend had
proved it a few months earlier. Erdős [9] consoled himself soon by proving
a series of important new results in combinatorial number theory. Moreover,
he had another result on primitive sets not anticipated by anyone. Indeed, he
proved that for the “log log density” of a primitive set better estimate can
be given, than for the “logarithmic density”:

Theorem 2. If n ∈ N, n > n0, A ⊂ {1, 2, . . . , n} and A is primitive, then
we have

t(A, n) < c2

(so that m(A, n) < c2(log logn)−1).

This theorem might suggest that Theorem 1 can be improved. This is not
so as Pillai [28] pointed out:
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Theorem 3. If n ∈ N, n > n0, then there is a primitive set A such that
A ⊂ {1, 2, . . . , n} and

�(A, n) > c3(log logn)−1/2.

If A ⊂ N is an infinite sequence of positive upper logarithmic density,
then it cannot be primitive by Theorem 1. Davenport and Erdős [8] proved
that having this assumption, more can be said:

Theorem 4. If A ⊂ N is an infinite set such that

lim
n→+∞ sup �(A, n) > 0,

then A contains an infinite subsequence a1, a2, . . . such that ai|ai+1 for i =
1, 2, . . ..

For n ≥ 3, write

G(n) = max �(A, n)(log logn)1/2

where the maximum is taken over all primitive sets A ⊂ {1, 2, . . . , n}. Then
by Theorems 1 and 3, for n > n0 we have

c4 < G(N) < c5.

In 1948, Erdős [10] proved a result which implies that for n > n0(ε) we have

G(n) > (2π)−1/2 − ε.

On the other hand, Anderson [2] showed that for n > n0(ε) we have

G(n) < π−1/2 + ε.

In 1967, Erdős, Szemerédi and I [20] determined the best possible value of
the constants in Theorems 1 and 3 by proving that we have

G(n) = (1 + o(1))(2π)−1/2.

Moreover, in [21] we showed that for infinite sets, Theorem 1 can be improved:

Theorem 5. If A ⊂ N is an infinite primitive set, then for n → +∞ we
have

�(A, n) = o((log logn)−1/2).

Alexander [1] and Erdős, Szemerédi and I [17] sharpened Theorem 4 in
various directions. In [18] and [19], Erdős, Szemerédi and I studied the number
of divisibility relations up to a certain bound, i.e., the function

f(A, n) = |{(a, a′) : a, a′ ∈ A, a|a′, a′ ≤ n}|.
In [22], we gave a survey of all these results and our other related works. This
survey paper contained many unsolved problems. The two most interesting
problems are, perhaps, the following ones:
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Problem 1. Is it true that if a1, a2, . . . are real numbers with 1 < a1 <
a2 < · · · , and for i, j, k ∈ N, i �= j we have

|ai − kaj | ≥ 1,

then
( ∑

ai≤n

1

ai

)
(log n)−1 < c6(log logn)−1/2

and
∑

ai≤n

1

ai log ai
< c7?

(This would generalize Theorems 1 and 2, respectively.)

Problem 2. Is it true that for all ε > 0 there is a K = K(ε) such that if
A ⊂ N and A is primitive, then we have

∑

a∈A,K≤a

1

a log a
< 1 + ε?

Haight [24], resp. Erdős and Zhang Zhenxiang [23] have certain partial
results, but in their original form both problems are unsolved yet.

Pomerance and Sárközy [29] studied the following problem: if l(A, n) is
large enough to ensure the existence of pairs a, a′ with a, a′ ∈ A, a �= a′,
a|a′, then what can be said about the arithmetic properties of the quotients
a′/a (with a|a′)? If P is a finite set of prime numbers, A ⊂ N and there are

no a, a′ with a ∈ A, a′ ∈ A, a �= a′, a|a′ and a′
a | ∏

p∈P
p, then A is said to be

P-primitive. In [29] we proved the extension of Theorem 1:

Theorem 6. If n ∈ N, n > n0,P is a set of prime numbers not exceeding n
with

s(P) =
∑

p∈P

1

p
> cs,

A ⊂ {1, 2, . . . , n} and A is P-primitive, then we have

�(A, n) < c9(s(P))−1/2.

We showed that, apart from the values of the constants n0, c8 and c9, the
theorem is best possible for all n and P , i.e., there exist n1, c10, c11 such that
if n > n1 and P is a set of prime numbers not exceeding n with s(P) > c10,
then there is a set A such that A ⊂ {1, 2, . . . , n}, A is a P-primitive and

�(A, n) > c11(s(P))−1/2.
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Moreover, we discussed some consequences of the theorem and some further
related problems. The most interesting problem, that we could not settle, is
the following one:

Problem 3. Is it true that if k, n ∈ N, n > n0(k), A ⊂ {1, 2, . . . , n}, a ≡ a′

(mod k) for all a, a′ ∈ A and

�(A, n) > c12k
−1(log logn)−1/2,

then there exist integers a, a′ such that a, a′ ∈ A, a �= a′ and a|a′?
For A ⊂ N, n ∈ N write

d(A, n) =
∑

a∈A,a|n
1,

and let

D(A, x) = max
n≤x

d(A, n).

In [13–15] and [16], Erdős and I studied the function D(A, x).
Further related results have been proved by Anderson [3, 4], Erdős and

Sárközy [12], Meijer [26, 27], Sattler [30], Anderson, Cohen and Stothers [5],
Cohen [7], Klotz [25] and Erdős [11].

3. A Further Result on P-Primitive Sets

In this section, we will extend Theorem 2 to P-primitive sets (in the same
way as Theorem 6 extends Theorem 1 to P-primitive sets).

If n ∈ N, n ≥ 3 and P is a set of prime numbers not exceeding n, then let

L(P , n) = max �(A, n)

and

M(P , n) = maxm(A, n)

where in both cases the maximum is taken over all P-primitive sets A =
{1, 2, . . . , n}. In the special case when P consists of all the primes not
exceeding n, by Theorems 2 and 3 we have

M(P , n) = o(L(P , n)). (1)

We will show that this also holds in the more general case when P contains
all or “almost all” the large primes, and it will be shown that a condition of
this type is necessary.

Theorem 7. There are absolute constants n0, c13 with the following proper-
ties: Assume that n ∈ N, n > n0 and P is a set of primes not exceeding n. If
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∑

p≤n,p/∈P

1

p
≥ 100 (2)

then let y denote the smallest positive integer y such that

log log log y >
∑

y<p≤n,p/∈P

1

p
; (3)

if the left-hand side of (2) is < 100, then let y = 10. Assume that A ⊂
{1, 2, . . . , n} and A is A-primitive. Then we have

t(A) < c13 log log y. (4)

Note that Theorem 7 is certainly superior to Theorem 6, i.e., (1) holds if

∑

p≤n,p/∈P

1

2
<

(
1

2
− ε

)
log log logn

(namely, in this case y in Theorem 7 satisfies log log y < (log logn)1/2−ε/2).
Moreover, Theorem 7 is superior to Theorem 6 in the important special case
when P is of the form

P = {p : z < p ≤ n, p prime}. (5)

In this special case we obtain

Corollary 1. There are absolute constants n0, c14 such that if n > n0, 1 ≤
z ≤ n, A ⊂ {1, 2, . . . , n} and

t(A) > c14 log log(z + 3) (6)

then there are a, a′ with a ∈ A, a′ ∈ A, a �= a′, a|a′ and p(a′/a) > z.

Note that in the z = 1 special case we obtain Theorem 2.
Corollary 1 (and thus also Theorem 7) is best possible apart from the

value of the constants n0, c14. Indeed, if we take A = {1, 2, . . . , [z]}, then
clearly we have

t(A) < c15 log log(z + 3)

and there are no a, a′ with a ∈ A, a′ ∈ A, a �= a′, a|a′ and p(a/a′) > z.

Proof of Theorem 7. Put

A1 = {a : a ≤ y, a ∈ A},A2 = {a : y < a, a ∈ A}
so that

t(A) = t(A1) + t(A2). (7)

Clearly we have
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t(A1) =
∑

2≤a≤y,a∈A

1

a log a
≤

∑

2≤a≤y

1

a log a

= (1 + o(1)) log log y < c16 log log y. (8)

Now we will estimate t(A2). Write P =
∏

p∈P
p, and for m ∈ N, m > 1, let

p(m) denote the smallest prime factor of m. Consider all the integers of the
form

ad where a ∈ A2, d|P and p(d) > a or d = 1. (9)

Now we will show that these numbers are distinct. We will prove this by
contradiction: assume that

ad = a′d′, a < a′, d|P, d′|P, p(d) > a or d = 1, and p(d′) > a′ or d′ = 1.

(10)

It follows that

d′|ad (11)

and either d′ = 1 or p(d′) > a′ > a; in both cases we have

(a, d′) = 1. (12)

It follows from (11) and (12) that d′d. Then by (10) we have

a · d
d′

= a′

whence a|a′ and a′
a = d

d′ |d, d|P so that a′
a |P which contradicts the assumption

that A is P-primitive. This proves that, indeed, the numbers of form (9) are
distinct. Let B denote the set of these numbers.

If b = ad ∈ B, then the prime factors of ad do not exceed n. Thus by
Mertens’ formula

∏

p≤x

(
1 − 1

p

)
= (1 + o(1))c17(log x)−1, (13)

we have

s(B) =
∑

ad∈B

1

ad
≤

∏

p≤n

( +∞∑

k=0

1

pk

)
=

∏

p≤n

(
1 − 1

p

)−1

< c18 logn. (14)

On the other hand, by (13) and the definition of y we have

s(B) =
∑

ad∈B

1

ad
=

∑

a∈A2

(
1

a

∑

d|P
p(d)>a or d=1

1

d

)
=

∑

a∈A2

(
1

a

∏

p∈P,p>a

(
1 +

1

p

))

=
∑

a∈A2

(
1

a

∏

a<p≤n

(
1 +

1

p

) ∏

a<p≤n,p/∈P

(
1 +

1

p

)−1)



228 András Sárközy

≥
∑

a∈A2

(
1

a

∏

a<p≤n

(
1 +

1

p

) ∏

y<p≤n,p/∈P

(
1 +

1

p

)−1)

> exp

(
−

∑

y<p≤n,p/∈P

1

p

) ∑

a∈A2

(
1

a

∏

a<p≤n

(
1 +

1

p

))
(15)

> c19 exp(− log log log y)
∑

a∈A2

1

a

∏

a<p≤n

(
1 − 1

p

)−1

> c20(log log y)−1
∑

a∈A2,2≤a

1

a

logn

log a

= c20(log log y)−1(logn)t(A2) (16)

since

1 + x < ex for all x > 0

and

∏

p≤x

(
1 +

1

p

)
=

∏

p≤x

(
1 − 1

p2

) ∏

p≤x

(
1 − 1

p

)−1

= (1 + o(1))c21
∏

p≤x

(
1 − 1

p

)−1

for x→ ∞.

It follows from (14) and (16) that

t(A2) < c22 log log y. (17)

Finally, (4) follows from (7), (8) and (17), and this completes the proof
of Theorem 7. �

Proof of Corollary 1. We apply Theorem 7 with the set P defined by (5).
Then the right-hand side of (3) with z in place of y is 0, thus the number y
defined in Theorem 7 satisfies either y ≤ z or y = 10. Thus by Theorem 7,
for a P-primitive set we have

t(A) < c13 log log y ≤ c13 log log max(z, 10) < c23 log log(z + 3).

Thus choosing c14 = c23 in Corollary 1, (6) implies that A is not P-primitive
which completes the proof of Corollary 1. �

Appendix

The paper above appeared in 1997. Since that time, 10 related papers have
been published; they will be listed at the end of this Appendix. I will keep
the notations and reference numbers (from [1–30]) of the original paper while
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the reference numbers of the papers published since 1997 will start with [31].
In this appendix my goal is to present a short survey of these recent papers.

In [35] Ahlswede, Khachatrian and Sárközy extended the study of the
density of “large” primitive sets from the logarithmic density and “loglog
density” to other densities defined in terms of different weight functions.
Among others they proved that if the weight function f : N → [0,∞) is
“smooth” in a well defined sense, then for ε > 0, N > N0(ε, f) there is a
primitive set A ⊂ {1, 2, . . . , N} such that its density with respect to f is
greater, than (1 − ε) 1

log logN , and if a conjecture of Erdős is assumed then
this lower bound is essentially best possible.

In [34] Ahlswede, Khachatrian and Sárközy studied “large” primitive sets
consisting of squarefree integers. Among others, they proved that considering
all the primitive sets A ⊂ {1, 2, . . . , N} consisting of squarefree integers we
have

max
A

∑

a∈A

1

a
= (1 + o(1))

6

π2

logN

(2π log logN)1/2

which settles a conjecture of Pomerance and Sárközy [29].
In [22] we wrote: “The following problem seems difficult: Let b1 < · · · be

an infinite sequence of integers. What is the necessary and sufficient condition
that there should exist a primitive sequence a1 < · · · satisfying an < cbn
for every n?” This was one of the favorite problems of Erdős. However, in
this original form the problem seems hopelessly difficult. Thus Ahlswede,
Khachatrian and Sárközy [32] studied the following milder and more realistic
version of the problem: How fast can the counting function A(x) = |A∩ [1, x]|
of an infinite primitive set grow? It follows from Erdős’s Theorem 2 above
that for a primitive set A we must have

A(x) <
x

(log log x)(log log log x)

for infinitely many x ∈ N, and we proved in [32] that for ε > 0 there is an
infinite primitive set A with

A(x) >
x

(log log x)(log log log x)1+ε
.

Martin and Pomerance [40] improved on this result significantly. Denote the
k-fold logarithm of x by logk x. They proved (in a slightly simplified form):
for any integer k ≥ 3 and every real number ε > 0 there exists a primitive
set A such that

A(x) ' x

log2 x · · · logk−1 x(logk x)1+ε
;

this estimate leaves a very small gap between the best lower and upper
bounds.
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Porubsky [41] generalized some of the results on primitive sequences of in-
tegers to multiplicative arithmetical semigroupsG satisfying J. Knopfnacker’s
“Axiom A”.

For A ⊆ N let QA denote the set of the integers which can be represented
as a quotient a/a′ with a, a′ ∈ A, and let Q∞

A denote the set of the
integers which have infinitely many representation in this form. Ahlswede,
Khachatrian and Sárközy [31] studied the size properties of QA and Q∞

A
under various density assumptions on A.

If p1 < p2 < · · · < pt are primes, r < t, a = p1 . . . pr and b =
p1 . . . prpr+1 . . . pt, then a is said to be a prefix of b. If the set A ⊆ N is such
that no element of it is a prefix of another then A is said to be prefix-free.
The notion of suffix and suffix-free set is defined similarly. In [33] Ahlswede,
Khachatrian and Sárközy studied density properties of prefix-free and suffix-
free sets.

Let y1, y2, . . . , yn, . . . be integers greater than 1. Then the products y1,
y1y2, . . . , y1y2 · · · yn, . . . are called initial products. Beigböck, Bergelson,
Hindman and Strauss [36] proved that if A ⊂ N is “additively large” in a
well defined sense then it contains initial products of a given length, resp.
infinite sequence of initial products.

In 1938 Erdős [39] estimated the maximal number of positive integers
up to N with the property that no one of them divides the product of two
others. Chan, Győri and Sárközy [38], resp. Chan [37] extended this problem
by studying sets of integers such that no one of them divides the product of
k others.
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12. P. Erdős and A. Sárközy, On the divisibility properties of sequences of integers,
Proc. London Math. Soc. (3) 21 (1970), 97–101.
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20. P. Erdős, A. Sárközy and E. Szemerédi, On an extremal problem concerning
primitive sequences, J. London Math. Soc. 42 (1967), 484–488.

21. P. Erdős, A. Sárközy and E. Szemerédi, On a theorem of Behrend, J. Australian
Math. Soc. 7 (1967), 9–16.
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1. Introduction

In this paper we give a short survey of additive representation functions, in
particular, on their regularity properties and value distribution. We prove a
couple of new results and present many related unsolved problems.

The study of additive representation functions is closely related to
many other topics in mathematics: the first basic questions arose from
Sidon’s work in harmonic analysis; analytical methods (exponential sums)
and combinatorial methods are equally used; Erdős and Rényi introduced
probabilistic methods, etc.

Paul Erdős played a dominant role in the advance of this field. As
Halberstam and Roth write in their excellent monograph [23] written on
sequences of integers:
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learned so much.

2. Notations

The set of integers, non-negative integers, resp. positive integers is denoted
by Z,N0 and N. A,B, . . . denote (finite or infinite) subsets of N0, and their
counting functions are denoted by A(n), B(n), . . . so that, e.g.,

A(n) = |{a : 0 < a ≤ n, a ∈ A}|.
A1 + A2 + · · · + Ak denotes the set of the integers that can be represented
in the form a1 + a2 + · · · + ak with a1 ∈ A1, . . . , ak ∈ Ak; in particular, we
write A + A = 2A = S(A). For A ⊂ N, D(A) denotes the difference set
of the set A, i.e., the set of the positive integers that can be represented in
the form a − a′ with a, a′ ∈ A. For A = {a1, a2, . . .} ⊂ N0, k ∈ N we write
k × A = {ka1, ka2, . . .}.

Representation Functions

For A ⊂ N0, n ∈ N0 the number of solutions of the equations

a+ a′ = n a, a′ ∈ A,
a+ a′ = n, a, a′ ∈ A, a ≤ a′

and

a+ a′ = n, a, a′ ∈ A, a < a′

is denoted by r1(A, n), r2(A, n), resp. r3(A, n) and are called the additive
representation functions belonging to A.

For g ∈ N, B2[g] denotes the class of all (finite or infinite) sets A ⊂ N0

such that for all n ∈ N0 we have r2(A, n) ≤ g, i.e., the equation

a+ a′ = n, a, a′ ∈ A, a ≤ a′

has at most g solutions. The sets A ∈ B2[1] are called Sidon sets.
If F (n) = O(G(n)), then we write F (n) ! G(n).

3. The Representation Function of General Sequences.
The Erdős-Fuchs Theorem and Related Results

Erdős and Turán [22] proved in 1941 that for an infinite set A ⊂ N, the
representation function r1(A, n) cannot be a constant from a certain point
on. Dirac [6] and Newman proved that the same holds with r2(A, n) in place
of r1(A, n). Since their proof is short and elegant, we present it here:
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Let

f(x) =
∑

a∈A
xa (for x real, |x| < 1).

If r2(A, n) = k for n > m, then

1

2
(f2(x) + f2(x2)) =

+∞∑

n=0

r2(A, n)xn = Pm(x) + k
xm+1

1 − x

where Pm(x) is a polynomial of degree ≤ m. If x → −1 from the right, then
the right-hand side has a finite limit while the left-hand side tends to +∞.
This contradiction proves the theorem.

Moreover, in [22] Erdős and Turán conjectured that their result can be
sharpened in the following way: if A ⊂ N and c > 0, then

N∑

n=1

r1(A, n) = cN +O(1)

cannot hold.
In [12], Erdős and Fuchs proved two theorems one of which sharpens the

above mentioned result of Erdős and Turán:

Theorem 1 (Erdős and Fuchs [12]). If A = {al, a2, . . .} ⊂ N, c > 0, or
c = 0 and ak < Ak2 ( for k = 1, 2, . . .), and i = 1, 2, 3, then

lim sup
N→+∞

1

N

N∑

n=0

(ri(A, n) − c)2 > 0.

Their other, better known result (in fact, this is the result known as
“the Erdős-Fuchs theorem”) proves the conjecture of Erdős and Turán in the
following sharper form:

Theorem 2 (Erdős and Fuchs [12]). If A ⊂ N, c > 0, then

N∑

n=1

r1(A, n) = cN + o(N1/4(logN)−1/2) (1)

cannot hold.

One of the most important problems in number theory is the circle
problem, i.e., the estimate of the number of lattice points in the circle
x2 + y2 ≤ N . Writing

Δ(N) = |{(x, y) : x, y ∈ Z, x2 + y2 ≤ N}| − πN,

the problem is to estimate Δ(N). By a classical result of Hardy and Landau,
one cannot have

Δ(N) = o(N1/4(logN)1/4). (2)
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The importance of Theorem 2 is based on the fact that the special case
A = {12, 22, . . .} of it corresponds to the circle problem, and the Ω-estimate
proved in the much more general Theorem 2 is only by a logarithm power
worse than (2).

Theorem 2 has been extended in various directions. Bateman, Kohlbecker
and Tull [3] studied the more general problem when the left-hand side of (1) is
approximated by an arbitrary “nice” function (instead of cN). Vaughan [40]
extended the result to sums of k(≥ 2) terms (see also Hayashi [24]).
Richert [29] proved the multiplicative analogue of Theorem 2. Sárközy [34]
extended Theorem 2 by giving an Ω-result on the number of solutions of

a+ b ≤ N, a ∈ A, b ∈ B.

Jurkat showed (unpublished) that the factor (logN)−1/2 on the right-hand
side of (1) can be eliminated, and recently, Montgomery and Vaughan [28]
published another proof of this result.

Erdős and Sárközy [14, 15] showed that if f(n) → +∞, f(n+ 1) ≥ f(n)
for n > n0 and f(n) = o

(
n

(logn)2

)
, then

max
n≤N

|r1(A, n) − f(n)| = o
(
(f(N))1/2

)
(3)

cannot hold (see also Vaughan [40], Hayashi [24, 25]). Erdős and the authors
continued the study of the regularity properties of the functions ri(A, n)
in [16, 17] and [18], first by studying the monotonicity properties of these
functions (see also Balasubramanian [2]). In an interesting way, here the
three representation functions r1(A, n), r2(A, n), r3(A, n) behave completely
differently.

We proved

Theorem 3 (P. Erdős, A. Sárközy, V. T. Sós [17]).

(a) r1(A, n) can be monotone for n > n0 only in the trivial case when A
contains all the positive integers from a certain point on; A(N) = N− c
for N > n1.

(b) There is an infinite set A such that N −A(N) & N1/3 and r3(A, n) is
monotone increasing for n > n0.

(c) If

lim
N→∞

N −A(N)

logN
= +∞

then r2(A, n) cannot be increasing from a certain point on. (See also
Balasubramanian [2].)

But we still do not have the answer for

Problem 1. Does there exist an infinite set A such that N \ A is infinite
and r2(A, n) is increasing from a certain point on?
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As Theorem 6 below shows, it may change the nature of the problem
completely if a “thin” set of sums can be neglected. Here we mention two
problems of this type:

Problem 2. Does there exist a set A ⊂ N such that N− A is infinite and

r1(A;n+ 1) ≥ r1(A, n)

holds on a sequence of integers n whose density is 1? If such a set exists, then
how “dense” can N \ A be?

Problem 3. Does there exist an arithmetic function f satisfying f(n) → ∞,
f(n+ 1) ≥ f(n) for n > n0, and f(n) = o

(
n

(logn)2

)
, and a set A such that

|r1(A, n) − f(n)| = o
(
(f(n))1/2

)

holds on a sequence of integers n whose density is 1?

Next we studied the following problem: for which sets A ⊂ N is
|r1(A, n+ 1)− r1(A, n)| bounded? Since we have recently given a survey [21]
of these results, thus we do not present further details here.

We complete this section by adding two problems that the first author of
this paper could not settle in [34].

Problem 4. Is it true that if a1 < a2 < · · · and b1 < b2 < · · · are infinite
sets of positive integers with

lim
k→+∞

ak
bk

= 1

and c > 0, then

|{(i, j) : ai + bj ≤ N}| = cN +O(1)

cannot hold?

Problem 5. Is it true that if a1 < a2 < · · · is an infinite set of positive
integers with

ak+1 − ak & a
1/2
k

and f(n) is a “nice” function (say, its second difference f(n + 2) −
2f(n+ 1) + f(n) ≥ 0) with

n ! f(n) ! n1+ε,

then

|{(i, j) : 0 < |ai − aj | ≤ N}| = f(N) +O(1)

cannot hold?

(This would cover Dirichlet’s divisor problem in the same way as the
Erdős-Fuchs theorem covers the circle problem.)
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4. A Conjecture of Erdős and Turán and Related
Problems and Results

In 1941 Erdős and Turán [22] formulated the following attractive conjecture:

Conjecture 1 (Erdős and Turán [22]). If A ⊂ N and r1(A, n) > 0 for
n > n0 (i.e., A is an asymptotic basis of order 2), then r1(A, n) cannot be
bounded:

lim sup
n→+∞

r1(A, n) = +∞. (4)

This harmlessly looking conjecture proved to be extremely difficult: since
1941 no serious advance has been made. Erdős and Turán formulated an even
stronger conjecture:

Conjecture 2 (Erdős and Turán [22]). If a1 < a2 < · · · is an infinite
sequence of positive integers such that for some c > 0 and all k ∈ N we have
ak < ck2, then (4) holds.

Erdős and Fuchs [12] remarked that having the same assumptions as in
Conjecture 2, the mean square of r1(A, n) can be bounded: there are a c > 0
and an infinite set A ⊂ N such that ak < ck2 for all k ∈ N and

lim sup
N→+∞

1

N

(
N∑

n=1

r21(A, n)

)

< +∞. (5)

Answering a question of Erdős, Ruzsa has proved recently the analogous
result in connection with Conjecture 1:

Theorem 4 (Ruzsa, [32]). There is an infinite set A ⊂ N such that
r1(A, n) > 0 for all n > n0 and (5) holds.

If Conjecture 1 is true, then assuming that A ⊂ N, A is infinite and
r2(A, n) is bounded, the function r2(A, n) must assume the value 0 infinitely
often. Erdős and Freud [11] conjectured that having the same assumptions,
r2(A, n) must assume also the value 1 infinitely often, i.e., there are infinitely
many integers n ∈ S(A) whose representation in the form

a+ a′ = n, a, a′ ∈ A, a ≤ a′ (6)

is unique. This attractive conjecture seems to be true although probably it
is very difficult. Moreover, they write “Probably there are “more” integers n
with a unique representation of the form (6) than integers n with more than
one representation.” We will show that this is not so; at least for A ∈ B2(g),
g ≥ 3.

Theorem 5. For every g ∈ N, g ≥ 2 there is an infinite set A ⊂ N0 such
that A ∈ B2[g] and for ε > 0, n > n0 we have
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|{n : n ≤ N, r2(A, n) = 1}| < (1 + ε)
2

2g − 3
|{n : n ≤ N, r2(A, n) > 1}|. (7)

Proof. Let E = {e1, e2, . . .} be an infinite Sidon set, and define A by

A = 2g × E + {0, 1, . . . , g − 1}.
We will show that this set A has the desired properties:

(i) A ∈ B2[g],
(ii) A satisfies (7).

If r2(A, n) ≥ 1 for some n ∈ N, i.e., n ∈ S(A), then, by the construction
of the set A, n can be represented in the form

(2ge+ i) + (2ge′ + j) = 2g(e+ e′) + (i+ j) = n (8)

where

e, e′ ∈ E , (9)

0 ≤ i, j ≤ g − 1, (10)

2ge+ i ≤ 2ge′ + j, (11)

and r2(A, n) is equal to the number of integers e, e′, i, j satisfying (8), (9),
(10) and (11). It follows from (10) and (11) that

e ≤ e′ (12)

and

0 ≤ i+ j ≤ 2g − 2. (13)

Define the integers u, v by

n = 2gu+ v, 0 ≤ v < 2g. (14)

Then it follows from (8), (13) and (14) that

e+ e′ = u (15)

and

i+ j = v (16)

(where v ≤ 2g − 2). Since E is a Sidon set, (12) and (15) determine e and
e′ uniquely. Thus r2(A, n) is equal to the number of pairs (i, j) satisfying
(10), (11) and (16). If e < e′, then (11) holds automatically, and the number
of solutions of (10) and (11) is v + 1 for v ≤ g − 1 and 2g − v − 1 for
g − 1 < v ≤ 2g − 2. Denote the set of the integers n that can be represented
in the form

n = 2g(e+ e′) + i (where e < e′, e, e′ ∈ E) (17)
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with i = 0 or 2g − 2 by K, and let L denote the set of the integers n of
form (17) with 1 ≤ i ≤ 2g−3. Then it follows from the discussion above that

r2(A, n)

{
= 1 for n ∈ K
> 1 for n ∈ L (18)

and clearly we have

K(n) =
2

2g − 3
L(n) +O(1). (19)

Finally, if r2(A, n) ≥ 1 and n /∈ K∪L, then n can be represented in the form

n = 2ge+ v with e ∈ E , 0 ≤ v ≤ 2g − 2;

let M denote the set of the integers n of this form. Clearly,

M(n) = o(K(n)). (20)

It follows from (18), (19), (20) and

{n : n ∈ N, r2(A, n) ≥ 1} = K ∪ L ∪ M
that

|{n : n ≤ N, r2(A, n) = 1}| = (1 + o(1))
2

2g − 3
|{n : n ≤ N, r2(A, n) > 1}|

which completes the proof of the theorem. �

By Theorem 5, it is not true that if r2(A, n) is bounded, then

r2(A, n) = 1 (21)

holds more often than

r2(A, n) > 1.

On the other hand, we think that (21) must hold for a positive percentage of
the elements of S(A):

Problem 6. Show that if A ⊂ N is an infinite set such that r2(A, n) is
bounded, then we have

lim sup
n→+∞

|{n;n ≤ N, r2(A, n) = 1}|
S(A, N)

> 0. (22)

Note that it could be shown that the lim sup in (22) cannot be replaced
by lim inf.

Moreover, if (22) is true, then for sets A ∈ B2[g] one might like to give a
lower bound in terms of g for the lim sup in (22). Perhaps Theorem 5 is close
to the truth so that this lim sup is & 1

g . The special case g = 2 seems to be
the most interesting and, perhaps, in this case there is a good chance for a
reasonable lower bound:
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Problem 7. Assuming, that A ⊂ N is an infinite set with A ∈ B2[2], i.e.,
r2(A, n) ≤ 2 for all n, give a lower bound for

lim sup
n→+∞

|{n : n ≤ N, r2(A, n) = 1}|
|{n : n ≤ N, r2(A, n) = 2}| .

By Theorem 5, this lim sup can be ≤ 2; is it true, that it is always ≥ 2?

By our conjecture formulated in Problem 6, the assumption

r2(A, n) = O(1) (23)

implies that r2(A, n) = 1 must hold for a positive percentage of the elements
of S(A). First we thought that (23) can be replaced by the weaker condition
that r2(A, n) is bounded apart from a “thin” set of integers n and still the
same conclusion holds. Now we will show that this is not so and, indeed, for
every finite set U ⊂ N there is a set A such that, apart from a “thin” set of
integers n, r2(A, n) assumes only the prescribed values u ∈ U with about the
same frequency.

For A ⊂ N0, u ∈ N denote the set of the integers n ∈ N with

r2(A, n) = u

by Su(A) so that S(A) =
⋃+∞

u=1 Su(A).

Theorem 6. Let k ∈ N and let u1 < u2 < . . . < uk be positive integers.
Then there is an infinite set A ⊂ N0 such that writing

B = N \
( k⋃

i=1

Sui(A)

)

we have

Sui(A, N) =
N

k
+O(Nα)

and

B(N) = O(Nα)

where α = log 3
log 4 .

(Here Sui(A, N) denotes the counting function of Sui(A).)
Thus, e.g., there is a set A such that r2(A, n) = 2 for all but O(Nα)

values of n with n ≤ N .

Proof. The proof will be based on the following lemma:

Lemma 1. Let F and G denote the set of the non-negative integers that can
be represented in the form

∑m
i=0 εi2

2i, resp.
∑m

i=0 εi2
2i+1 where εi = 0 or 1

for all i, and write H = F ∪ G. Then
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(i) Every n ∈ N has a unique representation in the form

f + g = n, f ∈ F , g ∈ G;

(ii) S(F , N) = O(Nα);
(iii) S(G, N) = O(Nα);
(iv) We have

∣
∣{n : n ∈ N, r2(H, n) > 1}∣∣ = O(Nα).

Proof. (i) is trivial.
(ii) follows from the fact that if n ∈ S(F), then representing n in the form

n =
∑m

i=0 εi4
i where εi = 0, 1, 2 or 3, we have 0 ≤ εi ≤ 2 for all i, i.e.,

the digit 3 is missing.
(iii) follows from (ii) and G = 2 × F .

Finally, (iv) follows from (i), (ii) and (iii), and this completes the proof
of the lemma. �

Now we will construct a set A of the desired properties. Denote the
elements of the set G (defined in Lemma 1) by (0 =)g1 < g2 < · · · , write
Gi = {g1, g2, . . . , gui} and Li = k × (F + Gi) + {i} for i = 1, 2, . . . k, and

finally, let A =
(⋃k

i=1 Li

)⋃
(k × G). Clearly, it suffices to show that

(i) If i ∈ {1, 2, . . . , k}, n ∈ N, n ≡ i (mod k) and n is large enough
(depending on ui), then n has exactly ui representations as the sum

of an element of
⋃k

j=k Li and an element of k × G;
(ii) For 1 ≤ i ≤ j ≤ k we have

|{n : n ≤ N, n ∈ Li + Lj}| = O(Nα);

(iii) S(k × G, N) = O(Nα).

To prove (i), define m by n = km+ i, and consider a representation of n
in the desired form:

�+ kg = n = km+ i, � ∈
k⋃

j=1

Lj , g ∈ G, (24)

By the definition of the sets Lj , we have � ∈ Lj if and only if

� = k(f + gt) + j (25)

for some f ∈ F , 1 ≤ t ≤ uj. It follows from (24) and (25) that

k(f + gt + g) + j = km+ i. (26)

By 1 ≤ i, j ≤ k, this implies that i = j. Thus (26) can be written in the
equivalent form

f + g = m− gt.
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By (i) in Lemma 1, for m > gui and each of t = 1, 2, . . . , ui, this equation
has exactly one solution in f and g. Again by (i) in Lemma 1, these ui pairs
(f, g) determine distinct solutions (�, g) of (24).

To complete the proof of (i), it remains to show that distinct pairs (�, g),
(�′, g′) satisfying (24) (also with (�′, g′) in place of (�, g)) determine distinct
representations of n if n is large enough, i.e., if

�+ kg = n = �′ + kg′ (27)

and n is large, then � �= kg′, �′ �= kg. Indeed, assume that contrary to this
statement we have

� = kg′, �′ = kg. (28)

Then by (27) and (28), �+ �′ = n. Hence

� ≥ n/2 (29)

or �′ ≥ n/2; we may assume that (29) holds. By (25) and (28) we have

� = k(f + gt) + j = kg′. (30)

By 1 ≤ j ≤ k, it follows that j = k. Thus (30) implies

f + gt + 1 = g′. (31)

By (25) and (29), we have

f → +∞ as n → +∞. (32)

It is easy to see that

lim
x→+∞ min

f∈F , g∈G,
f,g>x

|f − g| = +∞. (33)

By (32) and (33), (31) cannot hold for t ≤ uk and large n. This contradiction
completes the proof of (i).

To prove (ii), observe that n ∈ Li + Lj implies that

n ∈ k×(F+Gi)+{i}+k×(F+Gj)+{j} = k×S(F)+({i+j}+k×Gi+k×Gj).

Here {i+j}+k×Gi+k×Gj is a finite set (in fact, it has at most u2k elements).
Thus (ii) follows from Lemma 1 (ii).
Finally, by S(k × G) = k × S(G), (iii) follows from Lemma 1 (ii). �

Remark 1. Let ri ∈ Q+, 1 ≤ i ≤ k with
∑k

i=1 ri = 1. Using the same idea
as in the proof of Theorem 6 we can prove the existence of an infinite set
A ⊆ N0 for which

Sui(A, N) = riN +O(Nα) 1 ≤ i ≤ 1

with some 0 < α < 1. It seems likely that an analogous theorem holds with
arbitrary given densities λi, 1 ≤ i ≤ k, in place of ri. If so, the proof will be
more involved.
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5. Sidon Sets: The Erdős-Turán Theorem, Related
Problems and Results

In 1932 Sidon [36] in connection with his work in Fourier-analysis considered

power series of type
∞∑

i=1

zai when
( ∞∑

i=1

zai
)h

is of bounded coefficients. This

led to the investigation of finite and infinite sequences (ai) with the property
that for g fixed the number of solutions

ai1 + · · · + aik = n

is bounded by g for n ∈ N .
Sidon sequences correspond to the case h = 2 and g = 1, i.e. r2(A, n) ≤ 1.

Recall that for g ∈ N, B2(g) denotes the class of all (finite or infinite) sets
A ⊂ N0 such that for all n ∈ N we have r2(A, n) ≤ g.

Some specific lines of investigations are the following:

(a) For A ∈ B2(g) and A ⊂ [1, . . . , N ] how large can |A| be? In the infinite
case how fast can the counting function A(n) grow?

(b) What can we say about the structure of A resp. A+A if |A| resp. A(n)
is large?

There is an excellent account on this subject in Halberstam-Roth [23] and
also a recent survey Erdős-Freud [11].

While there are many results on Sidon sets, much less is known on sets
A ∈ B2[g]. In particular, let F (N, g) denote the cardinality of the largest set
A ∈ B2[g] selected from {1, 2, . . . , N}. Chowla [5], Erdős [7] and Erdős and
Turán [22] gave quite sharp estimates for the cardinality of the largest Sidon
set selected from {1, 2, . . . , N}:

N1/2 −O(N5/16) < F (N, 1) < N1/2 +O(N1/4). (34)

On the other hand, very little is known on F (N, g) for g > 1. Clearly we
have

F (N, g) ≥ F (N, 1)
(

= (1 + o(1))N1/2
)

for all g ∈ N. Erdős and Freud [11] showed that F (N, 2) ≥ 21/2N1/2. On the
other hand, a trivial counting argument gives

F (N, g) ≤ 2g1/2N1/2.

Problem 8. Show that for all g ∈ N the limit limN→+∞ F (N, g)N−1/2

exists, and determine the value of this limit. In particular, estimate F (N, 2).

Further, very little is known on sets A ∈ B2[g] and their Sidon subsets.
Erdős, resp. Ruzsa (see [7]) studied the size of Sidon sets selected from given
sets A ∈ B2[g].

A related problem is the following:
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Problem 9. Is it true that for g ≥ 2, every Sidon set selected from
{1, 2, . . . , N} can be embedded into a much greater set A ∈ B2[g] selected
from {1, 2, . . . , N}?

In other words, if A ⊂ {1, 2, . . . , N} is a Sidon set, then let H(A, N, g)
denote the cardinality of the greatest set E such that E ∈ B2[g], E ⊂
{1, 2, . . . , N} and A ⊂ E . Is it true that writing K(N, g) = min(H(A, N, g)−
|A|), where the minimum is taken over all Sidon sets A selected from
{1, 2, . . . , N}, we have

lim
N→+∞

K(N, 2) = +∞?

How fast does the function K(N, g) grow in terms of N? Is it true that

lim
N→+∞

(K(N, g + 1) −K(N, g)) = +∞ for all g ∈ N?

A Sidon set A ⊂ {1, 2, . . . , N} is said to be maximal if there is no integer
b such that b ∈ {1, 2, . . . , N}, b /∈ A and A ∪ {b} is a Sidon set. (Note that
very little is known on the cardinality of maximal Sidon sets; see Problem 15
in [15].) Another problem closely related to Problem 9:

Problem 10. Does there exist a maximal Sidon set such that it can be
embedded into a much larger set E ∈ B2[g]?

In other words, let L(N, g) = max(H(A, N, g)− |A|) where H(A, N, g) is
the function defined in Problem 9 and the maximum is taken over all maximal
Sidon sets selected from {1, 2, . . . , N}. Is it true that

lim
N→+∞

L(N, 2) = +∞?

Is it true that

lim
N→+∞

(L(N, g + 1) − L(N, g)) = +∞

for all g ∈ N?
As Sect. 4 also shows, it may change the nature of the problem completely

if a “thin” set of sums can be neglected. Several problems of this type are:

Problem 11. How large set A can be selected from {1, 2, . . . , N} so that it
is an “almost Sidon set” in the sense that

|S(A)| = (1 + o(1))

(|A|
2

)
? (35)

It follows from a construction of Erdős and Freud [11] that there is a set
A such that A ⊂ {1, 2, . . . , N}, (35) holds and

|A| >
(

2√
3

+ o(1)

)
N1/2, (36)

so that |A| can be much greater than F (N, 1) = (1 + o(1))N1/2 (see (34)).
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In the infinite case much less is known than in the finite case. Beyond
what follows from (34), Erdős proved

Theorem 7 (Stöhr [38]). There is an absolute constant c > 0, such that
for every (infinite) Sidon sequence A

A(n) < c(n/ logn)1/2

holds infinitely often.

On the other hand, Krückeberg, improving a result of Erdős, proved in
1961

Theorem 8. There is an (infinite) Sidon sequence A such that

A(n) >
1√
2
n1/2

holds infinitely often.

It is not known whether or not the factor 1/
√

2 is best possible. The
greedy algorithm gives the existence of an (infinite) Sidon sequence for which

A(n) > n1/3 for all n.

Ajtai, Komlós and Szemerédi improved this [1]: There is a Sidon sequence A
such that

A(n) > c(n logn)1/3 for all n ≥ n0.

Weak Sidon Sets

We considered Sidon sets defined by

r2(A, n) ≤ 1 (37)

which means that we require

x+ y �= u+ v (38)

for any x, y, u, v ∈ A of which at least three are different.
In connection with some particular problems it is more appropriate to

consider Sidon sets where we require (38) only for x, y, u, v ∈ A where all
four are distinct. (So we may have an arithmetic progression of length three,
a solution of x+ y = 2u.)

If

r3(A;n) ≤ 1 (39)

holds, A is called a weak Sidon set.
It is easy to see that the maximum size of Sidon set resp. of a weak Sidon

set in [1, N ] are asymptotically the same.
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A problem of Erdős on the distribution of distances in the plane led us
to formulate the following question:

Let A∗ be a weak Sidon set. How large Sidon set A must be contained
by A∗?

Another formulation of the problem is:
Suppose that for A∗ ⊂ [1, N ] any four distinct ai1 , ai2 , ai3 , ai4 ∈ A∗

determine at least five distinct differences:
∣
∣{|aiν − aiμ |, 1 ≤ ν < μ ≤ 4}∣∣ ≥ 5.

Let h(A∗) denote the cardinality of the largest Sidon set A ⊆ A∗.
Let

f(m) = min
|A∗|=m

h(A∗)

If A∗ is a weak Sidon set, then for each a ∈ A∗ there is at most one pair
b, c ∈ A∗ such that b+ c = 2a. This implies that

f(m) ≥ 1

2
m,

Gyárfás and Lehel [27] proved that with some absolute constant δ > 1
100

(
1

2
+ δ

)
m ≤ f(m) ≤ 3

5
m+ 1.

Problem 12. Prove that lim
m→∞

f(m)
m exists and determine the limit.

It is very probable that a dense weak Sidon set contains a Sidon set of
almost the same size:

Problem 13. Suppose A∗ ⊂ [1, N ] and m = |A∗| > εN1/2. Is it true that

h(A∗) > δ(ε)N1/2

where δ → 1 if ε → 1?

Remark 2. The problem of Sidon sets resp. weak Sidon sets is related to
anti-Ramsey-type problems.

Consider the complete graph KN with vertex set V (KN ) = {1, . . . , N}
and an edge-coloring ϕ : [V ]2 → V where ϕ(a, b) = |a−b|. A Sidon set A ⊆ V
is the vertex set of a so-called totally multicolored complete subgraph (where
all the edges have different colors).

A weak Sidon set A∗ ⊆ V corresponds to the vertex set of a complete
subgraph where independent edges have different colors.

6. Difference-Sets

Above we considered mostly sums a + a′. One might like to study the
analogues of some of these problems with differences a− a′ in place of sums
a+ a′.
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Problem 14. In [19] and [20] we studied the structure of the sum set S(A)
of Sidon sets A. What can be said about the structure of the difference set
D(A) of Sidon sets A; in particular,

(a) What can be said about the number and length of blocks of consecutive
integers in D(A),

(b) About the size of the gaps between the consecutive elements of D(A),
etc.?

Another closely related problem:
In [19] we studied the solvability of the equation

D(A) = B
for fixed sets B ⊂ N and, in particular, we gave a quite general sufficient
condition for the solvability of this equation and in fact we showed that
under quite general circumstances, not only the elements of the difference set
D(A), but also the number of solutions of

a− a′ = b, a, a′ ∈ A
(for all b ∈ B) can be prescribed. The nature of the problem completely
changes if we restrict ourselves to Sidon sets A.

Problem 15. Find possibly general conditions such that for sets B ⊂ N

satisfying these conditions, there is a Sidon set A whose difference set is the
given set B.

One might like to see what is the connection between the behavior of
sums and differences (see Ruzsa [33] for a related result):

Problem 16. Consider finite sets A such that

a− a′ = d, a, a′ ∈ A
has at most two solutions for all d ∈ N What can be said about the size of
the Sidon sets, resp. sets A ∈ B2[2] selected from such a set A?

Problem 17. Do there exist numbers δ > 0, N0 such that for N > N0 there
is a set A ⊂ {1, 2, . . . , N} for which

|A| > (1 + δ)N1/2

and both

a− a′ = d, a, a′ ∈ A
a+ a′ = n, a, a′ ∈ A, a ≤ a′

have at most two solutions for all d ∈ N, n ∈ N?
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7. Generalizations

So far we have studied sums a+a′ and differences a−a′. Already in these two
cases the difficulty of problems and the results can be completely different.
It is even more so if we consider the linear form ca+ c′a′, or more generally
f(a1, . . . , ak) = c1a1 + · · · + ckak where ci ∈ Z for 1 ≤ i ≤ k and the ci’s are
fixed.

This is indicated already by the following simple but important example.

Example of Ruzsa. Let A =

{
a : a =

∞∑

i=0

εi2
2i, εi = 0 or 1

}
. Then for n ∈ N

the number of solutions

a+ 2a′ = n, a, a′ ∈ A,
is 1 for any n ∈ N.

This shows that the behavior of the representation functions depends
very much on the coefficients of the linear form. Here we formulate only a
few questions by extending the problems we discussed above.

Problem 18. For which (c1, . . . , ck) can the representation-function

R(A, c1, . . . , ck;n),

counting the number of solutions of c1a1 + · · · + ckak = n (a1, . . . , ak ∈ A),
be constant for n > N0?

Problem 19. For which (c1, . . . , ck) is there an Erdős-Fuchs-type result,
analogous to Theorems 1 and 2?

Problem 20. For which linear forms is there an Erdős-Sárközy [15]-type
result, when R1(A, c1, . . . , ck;n) cannot be too close to a “nice” function?

Problem 21. When and how the results on the monotonicity of ri(A;n)
(see Theorem 3) can be extended to the linear form c1a+ · · · + ckak?

One may generalize these problems even further by studying polynomials
f(a1, a2, . . . , ak). In particular, very little is known on products aa′. Erdős [10]
estimated the cardinality of sets A such that A ⊂ {1, 2, . . . , N} and all the
products aa′ with a, a′ ∈ A, a ≤ a′ are distinct. Moreover he [9] studied the
multiplicative analogue of the Erdős-Turán conjecture mentioned in Sect. 2.
Three further problems involving products are:

Problem 22. For A ∈ N, n ∈ N, let s(A, n) denote the number of solutions
of the equation

aa′ = n, a, a′ ∈ A, a ≤ a′.

Characterize the regularity properties of this function s(A, n) analogously
as in the papers [14–18] where we discussed the additive analogue of this
problem by studying r1(A, n), r2(A, n), r3(A, n). In particular, how well can
one approximate s(A, n) by a “nice” arithmetic function f(n)?
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Problem 23. Find a multiplicative analogue of the conjecture of Erdős and
Freud mentioned in Sect. 2 and, perhaps, this can be attacked more easily. In
other words, is it true that if A ⊂ N is an infinite set such that the function
s(A, n) defined in Problem 15 is bounded, then s(A, n) = 1 for infinitely many
values of n?

Problem 24. Roth [30, 31], Heath-Brown [26], Szemerédi [39] and others
estimated the cardinality of sets A ⊂ {1, 2, . . . , N} not containing three-
term arithmetic progressions. Find a multiplicative analogue of this problem:
estimate the cardinality of the largest set A ⊂ {1, 2, . . . , N} not containing
three term geometric progressions, i.e.,

a1a2 = a23, a1, a2, a3 ∈ A
implies that a1 = a2 = a3. (Note that the square-free integers not exceeding
N form a set A of this property.)

Ramsey-Type Problems

Many of the problems discussed above can be formulated in the following
way: if A is a “dense” set of integers, then an equation of the form

f(a2, a2, . . . , ak) = 0 (40)

can be solved with a1, a2, . . . , ak ∈ A. There are several important results of
the type where instead of considering solutions a1, a2, . . . , ak belonging to a
“dense” set A, we assume that a partition

N =

⋃

i=1

A(i) (A(i) ∩A(j) = ∅ for 1 ≤ i < j ≤ �) (41)

of N is given, and then we are looking for “monochromatic” solutions of (40),
i.e., for solutions a1, a2, . . . , ak such that all these a’s belong to the same set
A(i); a result of this type can be called a Ramsey-type theorem. In particular,
Schur [35] resp. van der Waerden [41] proved that the equation

a1 + a2 = a3,

resp.

a1 + a2 = 2a3, a1 �= a2

has a monochromatic solution for every partition (41) of N. (Indeed, van
der Waerden proved the more general theorem that for every k ∈ N and
every partition (41), there is a monochromatic arithmetic progression of k
distinct terms.) It follows from these results that for every partition (41)
both equations

a1a2 = a3
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and

a1a2 = a23, a1 �= a2

have monochromatic solutions. (Indeed, in both cases there is a solution of
the form a1 = 2b1 , a2 = 2b2 , a3 = 2b3 .)

Problem 25. Characterize the polynomials f(a1, a2, . . . , ak) such that the
Eq. (40) has a monochromatic solution for every partition of form (41)
or, at least, find further polynomials f(a1, a2, . . . , ak) with this property. In
particular, does there exist an integer m ≥ 2 such that the equation

a21 + a22 + · · · + a2m = a2m+1

has a monochromatic solution for every partition (41)?

8. Probabilistic Methods. The Theorems of Erdős
and Rényi

In [36] Sidon asked the following question: Does there exist an A ⊂ N such
that r1(A, n) ≥ 1 for all n > n0, and r1(A, n) = O(nε)? In 1956 Erdős gave
an affirmative answer in the following sharper form:

Theorem 9 (Erdős [8]). There is an infinite set A ⊂ N such that

c1 logn < r1(A, n) < c2 log n for n > n0.

Erdős proved this by a probabilistic argument. In fact, he proved that
there are “many” sets A ⊂ N with this property.

In 1960 Erdős and Rényi published an important paper in which, by using
probabilistic methods, they proved several results on additive representation
functions. The most interesting result is, perhaps, the following theorem:

Theorem 10 (Erdős and Rényi, [13]). For all ε > 0, there is a λ = λ(ε)
such that there is an infinite B2[λ] set A ⊂ N with

A(n) > n1/2−ε for n > n0(ε).

Note that for a B2[λ] set A we have A(n) = Oλ(n1/2). Thus Theorem 10
provides a quite sharp answer to Sidon’s first question, mentioned in Sect. 5.

Remarkably enough, this paper of Erdős and Rényi appeared in the same
year as their paper written “On the evolution of random graphs” which had
tremendous influence on graph theory and led to one of the most extensively
investigated and comprehensive theories in graph theory. (See Bollobás [4].)
On the other hand, the paper [13] was nearly unnoticed for about three
decades.

The paper [13] of Erdős and Rényi was somewhat sketchy. In their
monograph [15] Halberstam and Roth worked out the details. In [16], Erdős
and Sárközy extended Theorem 9 by showing that if f(n) is a “nice”
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function (e.g., combination of the functions nα, (logn)β , (log logn)γ) with
f(n) & logn, then there is an A ⊂ N such that

|r1(A, n) − f(n)| ! (f(n) logn)1/2.

(Compare this with their result [14] on Eq. (3).)
The really intensive work in this field started only about 2–3 years ago.

Erdős, Nathanson, Ruzsa, Spencer and Tetali have proved several remarkable
results. Since their papers have not appeared yet, some of them have not even
been written up yet, it would be too early to survey their work here.

Remark 3. Many of the problems in additive number theory are or can be
formulated for arbitrary groups, semigroups or for some specified structures,
like for set systems. (An independent source for Sidon-type problems is for
example coding theory.) We refer to a survey of V.T. Sós [37] on this subject.

Appendix

A1. Introduction

The paper above appeared in 1997. Since that time more than 100 papers
have been published on related problems. In this Appendix our goal is to
give a short survey of these papers. In order to limit the extent of it we will
focus on the most important results, and in the reference list we will present
only the records of the most important and most recent papers, and a few
survey papers; the references to the further related work can be found in
these papers.

A2. Notations

We will keep the notations and the reference numbers of the original paper;
thus, e.g., Problem 2 will refer to the second problem in Sect. 3 of the original
paper. On the other hand, we will refer to the sections and references in the
Appendix by using a prefix A so that, e.g., the second item in the reference
list of the Appendix is marked as [43].

A3. The Representation Function of General Sequences. The
Erdős-Fuchs Theorem and Related Results

Sárközy [88] proved the following local version of Theorem 1 of Erdős and
Fuchs: for all C > 0 there are N0 = N0(C) and C1 = C1(C) so that if A ⊂ N

and N > N0, then there is an M with

N < M ≤ N2 and

M∑

n=1

(R(n) − C)2 > C1M.
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He also showed that this result is best possible: for all ε > 0 there is an A ⊂ N

such that for infinitely many N we have

M∑

n=1

(R(n) − 2)2 < εM for all N < M <
ε

136
N2.

Ruzsa [81] proved a “converse” of the Erdős-Fuchs theorem (Theorem 2)
by showing that there exists a non-decreasing sequence A of nonnegative
integers such that

N∑

n=1

r1(A, n) = cN +O(N1/4 logN)

for some constant c > 0.
Tang [93] sharpened Vaughan’s result [40] on the extension of the Erdős-

Fuchs theorem to k term sums, and later Chen and Tang [46] estimated the
constant implied by the ordo notation.

Horváth [68] extended the Erdős-Fuchs theorem further by considering
the sum A1 + A2 + · · · + Ak of different sets A1,A2, . . . ,Ak, and later in
another paper [64] he sharpened this result.

Let A = {a1 ≤ a2 ≤ · · · } be an infinite sequence of nonnegative integers,
and write

R(A, x; k) =
∣
∣{(ai1 , . . . , aik

) ∈ Ak : ai1 + · · · + +aik ≤ x
}∣∣

and

P (A, x; k) = R(A, x; k) − cx.

Chen and Tang [45] estimated the mean square of this discrepancy P (A, x; k).
Lev and Sárközy [74] proved an Erdős-Fuchs-type theorem for finite

groups, and they showed that their result is sharp.
Horváth [65] proved the following theorem which is closely related to the

first theorem of Erdős and Fuchs (Theorem 1): If A = {a1, a2, . . . } (a1 <
a2 < · · · ) is an infinite sequence of nonnegative integers and d is a positive
integer then there is no integer n0 such that for all n > n0 we have

d ≤ r3(A, n) ≤ d+

[√
2d+

1

2

]
.

Sándor [86] proved a similar theorem, and Chen and Tang [49] extended
Horváth’s theorem to k term sums and the k term analogues of the other two
functions r1 and r2.

In our original paper we mentioned the results of Erdős and Sárközy
[14, 15] that if the function f(n) satisfies certain assumptions, then (3) cannot
hold, and that this theorem is nearly sharp. Horváth [66] extended the first
result to k term sums in place of r1(A, n), and Kiss [71] proved that Horváth’s
result is nearly best possible.
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In [16] Erdős, Sárközy and T. Sós proved that if A is an infinite set of
positive integers, and, denoting the number of blocks formed by consecutive
integers in A up to N by B(A, N), we have

lim
N→+∞

B(A, N)

N1/2
= +∞,

then the differences |r1(A, n+ 1) − r1(A, n)| cannot be bounded. They also
showed that this result is best possible. Kiss extended the theorem to kth
differences |Δk(R(n))|, and later he also showed [69] that his result is sharp.

In a recent paper Sárközy [89] studied the analogues in Z/mZ of the
problems considered in [16].

The results of Erdős, Sárközy and T. Sós [17, 18], resp. Balasubrama-
nian [2] on the monotonicity properties of additive representation functions
have been extended by Tang [94], Chen and Tang [47, 48], resp. Chen,
Sárközy, T. Sós and Tang [50] in various directions. In particular, it is proved
in [48] and [50] that if A is an infinite set of positive integers such that its
complement B = N\A satisfies certain simple conditions then r2(A, n) cannot
be ultimately increasing. However, Problem 1 is still open in its original form.

S. Giri settled the first half of Problem 2 by constructing a set A of the
desired properties (unpublished yet). It might be interesting to study the
second half of the problem as well: how dense can N \A be for such a set A?

Problems 3–5 are still open.

A4. A Conjecture of Erdős and Turán and Related Problems
and Results

Grekos, Haddad, Helou and Pihko [60] proved that if A is a set of nonnegative
integers such that

r1(A, n) ≥ 1 (A4.1)

for every n ∈ N then we have r1(A, n) > 5 for infinitely many n, and Borwein,
Choi and Chu improved this to r1(A, n) > 7.

Konstantoulas [72] proved that if there is a number n0 such that if (A4.1)
holds for n > n0 then we have r1(A, n) > 5 for infinitely many n.

By Ruzsa’s Theorem 4 there exists an asymptotic basis A of order 2 such
that for N > N0 we have

1

N

( N∑

n=1

r21(A, n)

)
< C

for some absolute constant C. In two papers Tang [92] presented explicit
values for these constants N0, C.

For m ∈ N let Rm denote the least integer such that there is a set A ⊂
Z/mZ with A + A = Z/mZ and

∣
∣{(a, b) : a + b = n, a, b ∈ A}∣∣ ≤ Rm for

all n ∈ Z/mZ. It follows from Ruzsa’s result above that Rm is bounded.
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Chen [44] proved the uniform bound Rm ≤ 288, and Chen and Tang gave
better bound for certain m values of special form.

Konyagin and Lev [73] studied and settled the Erdős-Turán problem in
infinite Abelian groups. They determined what are the infinite Abelian groups
G for which the analogue of the Erdős-Turán conjecture holds and what are
the ones for which it fails, and in both cases they provide further information
on the number of representations of the elements g of G in the form a+a′ = g
with a, a′ belonging to a basis A of G.

(See also a paper of Haddad and Helou [62].)
In Sect. 4 we mentioned the conjecture of Erdős and Freud that if A ⊂ N

is infinite and r2(A, n) is bounded then there are infinitely many n with

r2(A, n) = 1, (A4.2)

and probably there are more integers n satisfying (A4.2) than integers n with

r2(A, n) > 1.

Our Theorem 5 above disproved this second stronger version of the conjecture
of Erdős and Freud. Sándor [87] also disproved the weaker version of the
conjecture by constructing an infinite set A of nonnegative integers for
which r2(A, n) ≤ 3 for all n and it assumes only the values 0, 2 and 3
infinitely many times. Sándor’s construction also disproves the conjecture
formulated in our Problem 6 but it does not settle Problem 7. Moreover,
in Sándor’s construction the counting function A(n) of A grows slowly:
A(n) = O

(
(logn)2

)
. Thus it remains to see whether there exists a set A such

that A(n) & nc for some c > 0 and all n, r2(A, n) is bounded, and (A4.2)
has only finitely many solutions.

A5. Sidon Sets: The Erdős-Turán Theorem, Related Problems
and Results

This has been a very intensively studied field in the last 15 years. Since the
extent of this Appendix is limited thus we have to restrict ourselves to listing
some of the most important papers written on this subject. If the reader
wants to know more on the papers written on Sidon sets, then O’Bryant’s
excellent survey paper [77] can be used, while for more information on large
Bh[g] sets one should consult the paper of Cilleruelo, Ruzsa and Vinuesa [51].

In our original paper we mentioned the result of Ajtai, Komlós and
Szemerédi [1] on dense infinite Sidon sets: they proved that there is an
infinite Sidon set A with A(n) & (n logn)1/2. Ruzsa [83] improved on
this significantly by proving that there is an infinite Sidon set A with

A(n) = n
√
2−1+o(1).

Ruzsa [84] showed that there is a maximal Sidon set A ⊂ {1, 2, . . . , N}
with |A| ! (N logN)1/3.
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Erdős, Sárközy and T. Sós [19, 21] asked whether there is a Sidon set
which is also an asymptotic basis of order 3. Deshouillers and Plagne [54]
proved in this direction that there is a Sidon set which is also an asymptotic
basis of order 7, and Kiss [70] improved on this result by showing that there
is a Sidon set which is also an asymptotic basis of order 5.

Answering a question of Sárközy, Ruzsa [82] showed that there is a set
A ⊂ {1, 2, . . . , n} with |A| ≥ (

1
2 + o(1)

)
n1/2 which is both additive and

multiplicative Sidon set.
Improving on a result of Erdős, Sárközy and T. Sós [19, 20], Spencer and

Tetali [91] showed that there exists an infinite Sidon set A such that any two
consecutive elements si and si+1 of the sum set A + A satisfy si+1 − si <

Cs
1/3
i log si (for i = 1, 2, . . . ) where C is an absolute constant.
As far as we know Problems 8–12 are still open.
In our original paper we mentioned the Erdős-Turán estimate (34) for

the cardinality F (N, 1) of the largest Sidon set selected from {1, 2, . . . , N}.
By (34) we have F (N, 1) = N1/2 +O(N5/16). We remark that Babai and T.
Sós [42] generalized the notion of Sidon set to groups and they studied the
size of Sidon sets in groups. Among others, they proved that any finite group
G has a Sidon subset of cardinality greater than c|G|1/3. This seems to be
quite far from being best possible, however, as far as we know it has not been
sharpened yet.

A6. Difference-Sets

Some recent results and problems on the connection of sum sets and
difference sets are discussed in the survey and problem papers by Martin
and O’Bryant [75], Nathanson [76], Ruzsa [85] and Gyarmati, Hennecart and
Ruzsa [61].

We do not know about any papers related to Problems 14–17.

A7. Generalizations

Horváth [67] proved partial results related to Problem 18; however, the
problem is far from being settled.

On the other hand, we do not know about any papers related to
Problems 19–24. In the case of the additive problems the reason of this is
probably that the tools used in the special case of sums a1+ · · ·+ak fail when
one tries to extend them to the general case c1a1 + · · · + ckak. In the case of
the multiplicative problems there does not seem to exist such a barrier, and
one would expect that there is a better chance to achieve nontrivial results.

Ramsey-Type Problems
The problems of this type are getting quite popular.
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Erdős, Sárközy and T. Sós [59] proved that for any k ∈ N and any
k-colouring of N, almost all the even numbers have a monochromatic
representation in the form a + a′ with a �= a′. (This settled a conjecture
of Roth.) In a recent paper Borbély [43] extended this result in various
directions. (In another paper Erdős and Sárközy [56] also studied the
multiplicative analogue of the problem in [59].)

Shkredov [90] proved both density results on the solvability of nonlinear
equations of the type

f(a1, . . . , an) = 0 (A7.1)

over Z/pZ and the existence of monochromatic solutions of equations of this
type.

Csikvári, Gyarmati and Sárközy [53] also studied both density and
Ramsey-type problems involving equations of form (A7.1) over Z/mZ, N

and Q. Among others they extended Schur’s theorem [35] by proving that if
n, k ∈ N and the prime p is large enough in terms of n and k, then for any
k-colouring of Z/pZ the Fermat equation

xn + yn = zn

has a nontrivial monochromatic solution in Z/pZ. Moreover, they conjectured
that for any k colouring of N the equation

a+ b = cd, a �= b (A7.2)

has a monochromatic solution, and they proved partial results in this
direction. Later Hindman [63] proved this conjecture in a more general form.

P. P. Pach [78] studied the following questions: is it true that if k ∈ N,
and m ∈ N is large enough, then the Eqs. (A7.2) and

ab+ 1 = cd (A7.3)

have a “nontrivial” monochromatic solution in Z/mZ for any k-colouring of
it? He proved that in case of equation (A7.2) the answer is affirmative, while
in case of equation (A7.3) one needs further assumptions on the prime factor
structure of m to ensure the solvability.

Starting out from a problem of Pomerance and Schinzel, Sárközy asked
the following question: is it true that for any r-colouring of the squarefree
numbers greater than 1 the equation ab = c has a monochromatic solution?
Pomerance and Schinzel [80] proved that the answer is affirmative for r = 2,
and P. P. Pach [79] also proved this for r > 2.

A8. Probabilistic Methods. The Theorems of Erdős and Rényi

Dubickas [55] slightly sharpened Theorem 9 by showing that one can take
c1 = ε2/10 and c2 = 2e+ ε in the theorem for any 0 < ε < 1/2.
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Erdős and Rényi [13] also claimed in their paper that Theorem 10 can
be extended from sums of two terms to sums of h terms (for fixed h), i.e.,
there is a similar theorem on Bh[λ] sets in place of B2[λ] sets. However, for
h > 2 independence issues arise which are not at all easy to handle. This
problem was cleared by Vu [95] who gave a complete and correct proof for
the following theorem: for h ∈ N and h ≥ 2, and any ε > 0 there is a constant
g = g(ε) and a Bh[g] sequence A such that A(x) & x1/h−ε, and, indeed, one
can take gh(ε) ! ε−h+1. (See also the paper [52] of Cilleruelo, Kiss, Ruzsa
and Vinuesa.)

We remark that the probabilistic approach is used in many of the papers
mentioned in this Appendix.

At the end of Sect. 8 we mentioned a few papers to appear soon; these
papers appear as Refs. [57, 91] and [58].

∗
We remark that the results described above induce many further prob-

lems. In a subsequent paper we will return to some of these problems and
also present some related results.
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44. Y.-G. Chen, The analogue of Erdős-Turán conjecture in Zm, J. Number Theory
128 (2008), 2573–2581.

45. Y.-G. Chen and M. Tang, A generalization of the classical circle problem, Acta
Arith. 152 (2012), 279–290.

46. Y.-G. Chen and M. Tang, A quantitative Erdős-Fuchs theorem and its
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Acta Math. Hungar. 104 (2004), 27–37.



On Additive Representative Functions 261
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67. G. Horváth, On a property of linear representation functions, Studia Sci. Math.
Hungar. 39 (2002), 203–214.
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62 (1997), 397–402.
82. I. Z. Ruzsa, Additive and multiplicative Sidon sets, Acta Math. Hungar. 112

(2006), 345–354.
83. I. Z. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63–71.
84. I. Z. Ruzsa, A small maximal Sidon set, Ramanujan J. 2 (1998), 55–58.
85. I. Z. Ruzsa, Many differences, few sums, Ann. Univ. Sci. Budapest. Eötvös Sect.
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pp.
87. C. Sándor, Range of bounded additive representation functions, Period. Math.

Hungar. 42 (2001), 169–177.
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∏
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n
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Let An denote the largest absolute value of the coefficient of φn(x). It was
proved by E. Lehmer in 1936 that

An = Ω(n1/2).

In [E1] Erdős proved that

logAn = Ω((log n)4/3)

and in [E2] that

log logAn = Ω

(
logn

log logn

)
.

In [E8] he gave a simpler proof of the last relation and conjectured that

log logAn > c
logn

log logn

for every c < log 2 and infinitely many n. This conjecture even for c = log 2
has been proved by R. C. Vaughan [11], his result is best possible.

The paper [E10] treats the coefficient ar(n) of xr in φn(x). The authors
prove that

|ar(n)| < exp(2τ1/2r1/2 + c1r
3/8)

and

lim sup
n→∞

|ar(n)| > exp(c2(r/ log r)1/2), (r > r0)

where c1, c2 are absolute constants, c2 > 0,

τ =
∏

p prime

(
1 − 2

p(p+ 1)

)
.

The subject is still alive as shows Maier’s paper [4].
Somewhat related to the four Erdős’s papers discussed is the paper [E9],

in which the authors consider the functional

M(a1, a2, . . . , an) = max
|z|=1

∣
∣
∣∣
∣

n∏

i=1

(1 − zai)

∣
∣
∣∣
∣

(a1 ≤ a2 ≤ . . . ≤ an are positive integers) and

f(n) = min
a1,...,an

M(a1, . . . , an).

They prove that log f(n) = o(n). This result has been sharpened by F. V.
Atkinson [1].

In the paper [E3] Erdős considers the sequence Q(n) first studied by
A. Rényi. Let N(f) be the number of nonzero coefficients of a polynomial f
and let

Q(n) = minN(f2),
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where f runs through all polynomials f ∈ Q[x] with N(f) = n. Rényi proved
that Q(29) < 29. Erdős proves that Q(n) ! nc for a certain c < 1 and quotes
the conjecture at which he and Rényi independently arrived, namely that

lim
n→∞Q(n) = ∞.

A good value of the constant c has been given by W. Verdenius [12] and the
above conjecture has been proved by the writer [7]. The result of [7] has been
improved in [9] to the form

Q(n) > 2 +
log(n− 1)

log 8
(n > 1).

The subject is still alive as shown in Coppersmith and Davenport’s paper [2]
and Zannier’s paper [14].

The papers [E4] and [E12] concern the greatest prime factor P (f, x) of∏x
k=1 f(k), where f is an irreducible polynomial of degree d > 1. The first

estimate for P (f, x) in the case f = x2 + 1 was given by Chebyshev and his
result was extended to all relevant polynomials by T. Nagell in 1921 in the
following form

P (f, x) > c(f, ε)x(log x)1−ε

for all ε > 0 and a suitable c(f, ε) > 0.
In [E4] Erdős proved that

P (f, x) > x(log x)c(f) log log log x for c(f) > 0, x > x0(f)

and asserted that by a much more complicated argument one can show that

P (f, x) > x exp((log x)δ) for δ = δ(f) > 0, x > xl(f). (∗)

An attempt made in [E12] to reconstruct the proof of (∗) led only to a
weaker estimate

P (f, x) > x exp exp(c(log log x)1/3) for x > x2(f)

where c> 0 is an absolute constant. However G. Tenenbaum [10] has
succeeded in proving (∗) with any δ less than 2 − log 4.

In the paper [E5] Erdős considers the sum

S(x) =
∑

k≤x

d(f(k)),

where d(n) is the divisor function and f ∈ Z[x] is irreducible. He proves that

c1x log x ≤ S(x) ≤ c1x log x,

where c1, c2 are positive constants depending upon f .
The upper estimate, which is much deeper has been considerably

generalized by D. Wolke [13] He has replaced d(n) by a multiplicative function
and the polynomial f by a quickly growing integer valued function, both
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functions subject only to mild restrictions. The subject is still alive as shown
by Nair’s paper [6].

In the paper [E6] Erdős considers values of a polynomial free from k-
th powers. It was proved by G. Ricci in 1933 that a primitive irreducible
polynomial of degree d > 1 represents infinitely many integers free from d-th
powers. Erdős improves this as follows: every irreducible polynomial of degree
d > 2 without a fixed (d − 1)-th power divisor greater than 1 represents
infinitely many integers free from (d − 1)-th powers. This result has been
improved by C. Hooley [3], who has given an asymptotic formula for the
number of integers in question and also by M. Nair [5] who has replaced d−1
by [λd] + 1, where λ =

√
2− 1

2 . Hooley gives a tribute to Erdős by saying “It
is to the perspicacity of Erdős that we owe our present appreciation of the
manifold uses to which sieve methods can be put” (l.c., p. xi).

[E7] is a survey of problems and results, in which in particular [E4], [E5]
and [E6] are discussed.

The remaining paper [E11] contains the following theorem. Let F ∈ Z[x]
be a polynomial of degree d ≥ 2 such that F (n) ≥ 1 for all n ≥ 1. Let
OF = {F (n)}∞n=1. Then F (N) is called prime in OF , if F (n) is not the
product of strictly smaller terms in OF . If F (x) is not of the form a(bx+ c)d,
then almost all terms of OF are prime in OF . The “almost all” is indeed,
quantified. For a later, related work, see [8].
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Dedicated to P. Erdős

Summary. Since 1934 Erdős has introduced various methods to derive arithmetic
properties of blocks of consecutive integers. This research culminated in 1975 when
Erdős and Selfridge (Ill J Math 19:292–301, 1975) established the old conjecture
that the product of two or more consecutive positive integers is never a perfect
power. It is very likely that the product of the terms of a finite arithmetic
progression of length at least four is never a perfect power. In the present paper it
is shown how Erdős’ methods have been extended to obtain results for arithmetic
progressions.

1. History Until 1976

In a letter to D. Bernoulli written in 1724 Goldbach argued that the product
of three consecutive positive integers is not a square. In 1857 Mlle. A. D.
proved that it is not any perfect power. In the same year Liouville showed
by use of Bertrand’s postulate that x(x + 1) · · · (x + k − 1) is not a square
or higher power if at least one factor x, x + 1, . . . , x + k − 1 is prime, or if
k > x− 5. In particular, k! is not a perfect power for k > 1. In 1917 Narumi
[17] showed that the product of k consecutive integers is not a square for
2 ≤ k ≤ 202. In the thirties Szekeres proved that it is not a higher power for
2 ≤ k ≤ 9. For more details, see Dickson [1, pp. 679–680], Obláth [18] and
Erdős [2, p. 194].

In 1939 Rigge [22] and a few months later Erdős [4] proved that the
product of two or more consecutive positive integers is never a square by
developing Narumi’s proof. They further proved that for fixed l ≥ 3 the
equation

x(x + 1) · · · (x+ k − 1) = yl (1)
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mailto:shorey@math.tifr.res.in
mailto:tijdeman@math.leidenuniv.nl


270 T.N. Shorey and Robert Tijdeman

has at most finitely many solutions in integers x > 0, k ≥ 2, y ≥ 2. In 1940
Erdős and Siegel jointly proved that there is an absolute constant c such
that (1) has no solutions with k > c, but this proof was never published.
In 1955 Erdős [7] published a different, elementary proof by which c could
be computed. The elementary method was developed by Erdős and Selfridge
[9] in 1975 for proving that the product of two or more consecutive positive
integers is never a cube or a higher power. See Sect. 2 for a sketch of the
proof.

The equation (1) has no solutions in integers x > 0, k > 1, l > 1, y > 1.
Actually the results were more general. Rigge [22] showed that if all prime

factors of b are not greater than 1
2k, then the equation

x(x+ 1) · · · (x + k − 1) = byl in integers x > 0, k > 1, l > 1, y > 1 (2)

has no solutions with l = 2. Erdős [5] showed that
(
x+ k − 1

k

)
= yl in integers x > k, k > 1, l > 1, y > 1 (3)

is impossible for l = 3. Note that equation (3) is the same as equation (2)
with b = k! and that it involves no loss of generality to assume that x > k,
since

(
x+ k − 1

k

)
=

(
x+ k − 1

x− 1

)
.

In 1951 Erdős [6] proved that (3) has no solutions with k ≥ 4. Observe that(
50
3

)
= 1402. Erdős and Selfridge actually proved that if k ≥ 3 and x + k is

greater than the least prime ≥ k, then there is a prime p ≥ k which divides
the left side of (1) to an order which is not divisible by l. They conjectured
that for some p ≥ k the order should be one. The results suggest that it may
be true that (2) has no solutions with kl > 6 for any b composed of prime
factors ≤ k. See Sects. 5, 7 and 8 for results in this direction.

In his 1955 paper Erdős made an extension into a different direction,
namely that if from the k integers x, x + 1, . . . , x + k − 1 less than (1 − ε)
k log log k/ log k are deleted, the product of the remaining numbers is never
an l-th power provided that ε > 0, k > c(ε), l > 2 and n > kl. For l = 2 it is
allowed to delete ck/ log k numbers. See further Sect. 9.

2. Sketch of the Proof of the Erdős-Selfridge Result
for k ≥ 30,000, l ≥ 3

The proof of Erdős and Selfridge is split into the following cases:
k ≥ 30,000, l ≥ 3; 4 ≤ k < 30,000, l > 3; 1,000 ≤ k < 30,000, l = 3;

4 ≤ k < 1,000, l = 3; k = 3, l ≥ 3; l = 2. The latter case is the 1939 result of
Rigge and Erdős.
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The first case is a quantitative version of Erdős’ 1955-result. The proof
in this case can be divided in four parts. Suppose

x(x+ 1) · · · (x+ k − 1) = yl in integers x > 0, k > 1, l > 2, y > 1. (4)

Then we write

x+ j = ajx
l
j (0 ≤ j < k)

where aj is not divisible by any l-th power >1. If p divides both ai and aj ,
then p divides i− j and is therefore less than k, It follows that prime factors
≥k only occur in the xj ’s and that the aj ’s are composed of prime factors <k.

The four steps are:

(a) x > kl,
(b) The products aiaj(0 ≤ i < j < k) are distinct,
(c) There are k − π(k) distinct ai’s with product less than k!,
(d) The products aiaj(0 ≤ i < j < k) cannot be distinct.

We have a closer look at each step.
Step (a). x > kl.
By Bertrand’s postulate there is a prime in

[
x+k
2 , x + k − 1

]
. If x ≤ k,

then x+k
2 ≥ x and this prime divides the left side of (4) to the first power,

a contradiction. If x > k, then a result of Sylvester, rediscovered by Schur
(cf. [2]), states that x(x+ 1) · · · (x+ k− 1) is divisible by some prime greater
than k. Such a prime divides only one of the k factors, so x+k−1 ≥ (k+1)l.
Thus x > kl.

Step (b). The products aiaj (0 ≤ i < j < k) are distinct. Since gcd(x+ g,
x + i) < k <

√
x for g �= i by (a) and similarly gcd(x + g, x + j) <

√
x for

g �= j, we see that x + g does not divide (x + i)(x + j). Thus the products
(x + i)(x + j) (0 ≤ i ≤ j < k) are distinct. Suppose agah = aiaj with
0 ≤ g < h < k, 0 ≤ i < j < k and (x+ g)(x+ h) > (x+ i)(x+ j). Then

(x+ g)(x+ h) − (x+ i)(x+ j) = aiaj(x
l
gx

l
h − xlix

l
j). (5)

The left side of (5) is smaller than (x + k)2 − x2 = 2kx + k2 < 3kx by
(a). The right side of (5) is larger than

aiaj l(xixj)
l−1 > l(aix

l
iajx

l
j)

(l−1)/l > lx2(l−1)/l.

Thus, by (a) and l ≥ 3,

kx > x2(l−1)/l ≥ x4/3 > kx

a contradiction.
Step (c). There are k− π(k) distinct ai’s with product less than k!. Since

ag = ai implies agaj = aiaj , it follows from (b) that the numbers ai (0 ≤ i <
k) are distinct. For every prime p < k, we choose an f(p) in {0, 1, . . . , k− 1}
such that the power of p in aj for j = 0, . . . , k − 1 is maximal for j = f(p).
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In this way we select at most π(k) elements aj . The total number of factors
p in the remaining aj ’s is at most

[
f(p)

p

]
+

[
k − f(p)

p

]
+

[
f(p)

p2

]
+

[
k − f(p)

p2

]
+

[
f(p)

p3

]
+ · · ·

≤
[
k

p

]
+

[
k

p2

]
+

[
k

p3

]
+ · · · .

By counting the number of factors p in k! we see that

k! = Πp≤kp
[k/p].

Thus the product of the not selected aj ’s is less than k!. This argument of
Erdős introduced in his 1955 paper has turned out to be fundamental.

Step (d). The products aiaj (0 ≤ i < j < k) cannot be distinct. Here
Erdős and Selfridge apply an elegant graph theoretic lemma to give a
quantitative version of a result of Erdős contained in his 1955 paper.
A subgraph of a graph is called a rectangle if it comprises two pairs of vertices,
with each member of one pair joined to each member of the other.

Lemma 1 ([9, p. 295]). Let G be a bipartite graph of s white and t black
vertices which contains no rectangles. Then the number of edges of G is at
most s+

(
t
2

)
.

Proof. Let si be the number of white vertices of valency i, so
∑

i≥1 si = s.
Since there are no rectangles, each pair of black vertices is linked to at most
one white vertex. A white vertex of valency i corresponds with

(
i
2

)
black

pairs. Hence

∑

i≥2

si

(
i

2

)
≤

(
t

2

)
.

If E is the number of edges of G, then

E =
∑

i≥1

isi = s+
∑

i≥2

(i − 1)si ≤ s+
∑

i≥2

si

(
i

2

)
≤ s+

(
t

2

)
. �

The lemma is applied as follows. Let u1 < u2 < · · · < us and v1 < v2 <
· · · < vt be two sequences of positive integers such that every positive integer
up to x can be written in the form uivj . If a1 < · · · < ar < x are positive
integers such that all the products are distinct, form the bipartite graph G
with s white vertices labeled u1, . . . , us and t black vertices labeled v1, . . . , vt
and an edge between ui and vj if uivj = am for some m. Distinctness of the
products aiaj ensures that G has no rectangles, so, by Lemma 1,

r ≤ s+

(
t

2

)
.
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Using this inequality Erdős and Selfridge show that the product of any k −
π(k) of the ai’s exceed k! by proving that

ai ≥ 3.5694(i− 304) for i ≤ 6,993 (6)

ai ≥ 4.3402(i− 1,492) for i > 6,993. (7)

For (6) specific sets {u1, . . . , us} and {v1, . . . , vt} are constructed with
t = 25 and s < 353

1,260x + 4, for (7) with t = 55 and s < 2,281
9,900x + 7. With the

inequalities (6) and (7) a routine calculation using Stirling’s formula suffices
to contradict (c) when k ≥ 30,000.

It is remarkable that Lemma 1 and a variant of it can also be used to
derive a simple proof of a result that played a key role in Erdős’ 1955-paper.
By applying the Cauchy-Schwarz inequality at the last line of the proof of
Lemma 1 we obtain

E ≤ s+
∑

i≥2

(i−1)si ≤ s+

√∑

i≥2

(i− 1)2si

√∑

i≥2

si ≤ s+

√

2

(
t

2

)√
s ≤ s+t

√
s.

This yields

Lemma 2. Under the conditions of Lemma 1 the number of edges of G is
at most s+ t

√
s.

Remark 1. A slight modification of the proof yields the upper bound 1
2s +

t
√
s+ s3/2

8t .

3. Integers with Distinct Products

Denote by N(X) the maximum number of integers 1 ≤ b1 < b2 < · · · br ≤ X
so that the products bibj (1 ≤ i < j ≤ r) are distinct. Since we can take all
primes ≤ X , the number N(X) can be as large as π(X) ∼ X/ logX . Erdős
proved the striking fact that N(X) can hardly be larger. In [3], published in
1938, he proved N(X) < π(X)+8X3/4+X1/2, in [7] he showed by a different
proof that N(X) < π(X) + 3X7/8 + 2X1/2. Finally, in 1968/1969, he proved
in [8] that

N(X) − π(X) ! n3/4/(logn)3/2

and that there exist sequences such that

N(X) − π(X) & n3/4/(logn)3/2.

We use Lemmas 1 and 2 to give an elegant proof of the following estimate,
applying arguments due to Erdős.

Theorem 1. N(X) < π(X) +X7/8 +X3/4 + X1/2.
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Proof. Let 1 ≤ b1 < b2 < · · · br ≤ X be such that all the products bibj
(1 ≤ i ≤ j ≤ r) are distinct. We write bi = uivi where vi is the greatest divisor
of bi which is not greater than X1/2. First of all it is clear that the numbers
u1v1, u1v2, u2v1, u2v2 cannot all be b’s, since (u1v1)(u2v2) = (u1v2)(u2v1).

Next we show if bi = uivi with vi < X1/4, then ui must be a prime. For if
not, let p be the least prime factor of ui. If p < X1/4 then pvi < X1/2 which
contradicts the maximum property of vi. Since ui is assumed to be composite
we have p ≤ X1/2. Hence X1/4 ≤ p ≤ X1/2. But then p > vi which again
contradicts the maximum property of vi. Thus ui must be a prime indeed.

As before we form a bipartite graph G with s white vertices ui and t black
vertices vi and an edge between ui and vi if bi = uivi for some i. Distinctness
of the products bibj ensures that G has no rectangles.

First we count the number of edges in G with u-value greater than X3/4.
Since uv ≤ X , the v-value is then less than X1/4. We have shown that in
this case u is prime. By Lemma 1 we find the following upper bound for the
number of edges:

E1 ≤ π(X) +
1

2
X1/2.

Secondly we count the number of edges in G with u-value in (1, X3/4]. The
v-value is at most X1/2. By Lemma 2 we find for the number of such edges:

E2 ≤ X3/4 +X7/8.

The number N(X) is bounded by E1 +E2 ≤ π(X) +X7/8 +X3/4 +X1/2.�

4. Arithmetic Progressions Composed of Small Primes

We consider the generalisations to finite arithmetic progressions. In step (a) it
was shown that x is large compared with k. It sufficed to show that x(x+ 1)
· · · (x + k − 1) was divisible by a prime p > k. In this section we consider
the greatest prime factor of the product of the terms of a finite arithmetic
progression.

Let x, d and k be positive integers. We consider

Δ := Δ(x, d, k) := x(x+ d) · · · (x + (k − 1)d) (8)

and in particular P (Δ), the greatest prime factor of Δ Bertrand’s postulate,
proved by Chebyshev, states that for any positive integer k the sequence
k + 1, k + 2, . . . , 2k contains a prime, that is P (Δ(k + 1, 1, k)) > k. In 1892
Sylvester [32] generalised this inequality by showing P (Δ(x, d, k)) > k for
x ≥ k + d. Langevin [14] proved that P (Δ(x, d, k)) > k for x > k.

If d = 1, the problem of determining the best lower bound for x is
equivalent with the classical problem how large gaps between consecutive
primes can be. Using results on this gap problem the condition x > k can
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be replaced by x > k/13 when k > 118 by a result of Rohrbach and Weis
[RW] and by x > k.548 when k is sufficiently large by improvements of the
theorems of Hoheisel and Ingham (cf. [21, p. 193]).

For d = 2, 3, 4 and 6 Breusch, Molsen, Rohrbach and Weis, and Erdős
derived extensions of Bertrand’s postulate. References can be found in Moree
[16] who extended the results to 54 values of d less than 1,000. Each extension
provides an improvement of Langevin’s result for that value of d. The authors
showed in [28] that

P (Δ(x, d, k)) > k if d > 1 and (x, d, k) �= (2, 7, 3). (9)

They applied a sharp upper bound for π(x) due to Rosser and Schoenfeld.
In [31] they further proved that

P (Δ(x, d, k)) & kmin

(
log log(x+ (k − 1)d), log

(
x

k − 1
+ d

))

and that, for any ε > 0,

P (Δ(x, d, k)) &ε k log log(x+ (k − 1)d) for x+ (k − 1)d > k(log k)ε.

These results are based on upper bounds for the solutions for Thue-Mahler
equations due to Győry.

The stated results enable us to conclude:

Theorem 2. The equation

x(x + d) · · · (x+ (k − 1)d) = yl (10)

has no solutions in integers x > 0, d > 0, k > 1, l > 1, y > 1 with P (y) ≤ k.

Proof. For d = 1 Theorem 2 follows from Theorem 1, for d > 1 from (9). �

5. Perfect Powers in Products of the Terms of an
Arithmetic Progression, I

A natural generalisation of equation (1) is

x(x+d) · · · (x+ (k− 1)d) = yl in integers x > 0, d > 0, k > 2, l > 1, y > 1.
(11)

Without loss of generality we assume that l is a prime number. Theorem 2
implies that P (y) > k. For any numbers x, d and k it is easy to find a positive
integer A such that the left side of (11) with x replaced by Ax and d replaced
by Ad represents a perfect power. To avoid such solutions we shall assume in
the sequel that gcd(x, d) = 1.

Soon after he proved his joint result with Selfridge, Erdős conjectured
that (11) implies that k is bounded by an absolute constant and later he
conjectured that even k ≤ 3. The theory on the Pell equation yields that there
are infinitely many pairs x, d with gcd(x, d) = 1 such that x(x+ d)(x+ 2d) is
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a square. On the other hand, Euler [10] (cf. [1, p. 635]) has shown that (11)
has no solutions with k = 4, l = 2 and Obláth [19, 20] has proved that (11)
has no solutions with (k, l) = (5, 2), (3, 3), (3, 4) and (3, 5).

Marszalek [15] showed that k is bounded if d is fixed. More precisely, he
proved that (11) implies that k ≤ exp(C1d

3/2) if l = 2, k ≤ exp(C2d
7/3) if

l = 3, k ≤ C3d
5/2 if l = 4, k ≤ C4d if l ≥ 5 with explicitly stated absolute

constants C1, C2, C3, C4.
We shall consider the more general equation

x(x + d) · · · (x + (k − 1)d) = byl in integers x > 0, d > 0, k > 2, b > 0, l > 1, y > 1
(12)

subject to gcd(x, d) = 1, P (b) ≤ k, l is prime. One of us conjectured in
[33, p. 219] that (12) has only finitely many solutions with kl > 6. Shorey
[26] applied the theory of linear forms in logarithms to show that (12)
with l ≥ 3 implies that k is bounded by a computable number depending
only on P (d). Shorey and Tijdeman [27, 29] derived various improvements.
For example, they showed that there exist effectively computable absolute
constants C5, C6, C7, C8, C9 such that, for k ≥ C5,

(a) d1 ≥ C6k
l−2 (b) d1 ≥ kC7 log log k

(c) P (d) ≥ C8 log k log log k (d) lw(d) ≥ C9k
log k (l ≥ 2)

(13)

where d1 is the maximal divisor of d such that all the prime factors of d1
are ≡ 1 (mod l) and w(d) denotes the number of distinct prime factors
of d. Since d1|d, the results (a) (cf. [27, (2.7)]) and (b) (cf. [29, Theorem
1 and (2)]) provide considerable improvements of Marszalek’s estimates. In
particular k ! dε for any ε > 0. Inequality (c) (cf. [29, Corollary 1]) shows,
for l > 1, how k can be bounded in terms of P (d). Inequality (d) (cf. [27,
Theorem 1 and Corollary 1]) shows that for fixed l ≥ 2 the number k is even
bounded by a computable number depending only on w(d).

First we shall illustrate the method by showing how the extension of
Erdős’ ideas leads to a proof of (13.a).

Theorem 3 ([27, (2.7)]). Let (12) hold subject to gcd(x, d) = 1, P (b) ≤ k,
l is prime and let d1 be the maximal divisor of d such that all the prime
factors of d1 are ≡ 1 (mod l). Then, for k sufficiently large,

d1 & kl−2.

Proof. We assume l > 2. We compare with the steps in Sect. 2.
Step (a) We show that x+ (k − 1)d > kl.

Write

x+ jd = Ajy
l
j (0 ≤ j < k) (14)

where Aj is composed of primes ≤ k and yj of primes > k. Since P (y) > k,
one of the terms of the arithmetic progression is divisible by an l-th power of
a prime > k, whence
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x+ (k − 1)d > kl and x+ d > kl−1. (15)

Step (b) We show that we may assume that the Aj ’s with j ≥ k/8 are distinct.
Suppose that Ai = Aj for some i > j > 0. Then, by (14),

(i − j)d = Aj(y
l
i − ylj). (16)

Since gcd(x, d) = 1, we see that Aj |(i − j) whence Aj < k. Hence, by step
(a), yi > k and yj > k. On the other hand, d|(yli − ylj). It is well known that
every prime factor of

yli − ylj
yi − yj

(17)

is either l or ≡ 1 (mod l) and that l occurs at most to the first power in (17).
Consequently

yi − yj ≥ d/ld1. (18)

Now from (16) we derive

kd > (i− j)d > A
1/l
j (yi − yj)l(Ajy

l
j)

(l−1)/l.

If j ≥ k/8, then we obtain, by (15),

dk >
d

d1

(
x+

k

8
d

)(l−1)/l

>
d

8d1
kl−1

which implies d1 >
1
8k

l−2. Thus we may assume that the numbers Ai with
i ≥ k/8 are distinct.
Back to step (a) We show x+ (k − 1)d > kl+1/4.

If yi = 1, then x + id is composed of primes ≤ k. By the argument in
step (c) of Sect. 2 there are at most π(k) selected Ai’s and the product of the
remaining Ai’S is at most k!. Therefore, by (15) and l > 2, the number of i
with 0 < i < k and yi = 1 is bounded by

π(k) +
log(k!)

log(kl−1)
<

2k

log k
+

k

l− 1
<

5k

8

for k large. Let S0 denote the set of elements Ai with i ≥ k/8 and yi > 1.
Then |S0| ≥ k/4. Note that yi > k for Ai ∈ S0. Hence

x+ (k − 1)d ≥ max
Ai∈S0

(Aiy
l
i) ≥ 1

4
kl+1 (19)

and

x+ d ≥ 1

4
kl. (20)

Back to step (b). We show that we may assume that the Aj ’s with 0 < j < k
are distinct.
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Suppose that Ai = Aj , but i > j > 0. Then, as in step (b) above, but
now with (20) instead of (15),

dk >
d

d1
(x+ d)(l−1)/l >

1

4

d

d1
kl−1,

which implies d1 >
1
4k

l−2.
Note. We now turn to steps (c) and (d) and only later deal with step (b).

The argument given in step (c) of Sect. 2 applies similarly to the Aj ’s:
Step (c). There exists a subset T of {0, 1, . . . , k − 1} consisting of at least
k − π(k) elements such that

∏
j∈T Aj < k!.

It follows that the average value of these Ai’s is at most (k/e)k/(k−π(k))

which is asymptotically equal to k. A straightforward application of the box
principle would yield that for any η with 0 < η < 1 there are at least
ηk numbers j > 0 such that Aj ≤ k1/η. This estimate is too rough for
applications. The following lemma provides a useful sharpening of this bound
when the set {Aj}j∈T is large.

Lemma 3 (cf. [27, Lemma 6]). Let 0 < η < 1. Put S1 = {Aj}j∈T .
Suppose

|S1| ≥ k − gk

log k
(21)

where g < (1 − η) log k. Then there exists a subset S2 of S1 with at least ηk
elements satisfying

Aj ≤ Ck for Aj ∈ S2 (22)

where C = exp((g + η + .37)/(1 − η − g/ log k)).

Proof. Let S2 be the subset of S1 defined by (22). By steps (b) and (c) we
have

k! ≥ ΠA∈S1A ≥ (|S2|)!(Ck)|S1|−|S2|.

Suppose |S2| < ηk. Then, by n! > (n/e)n for n = 1, 2, . . . and the fact that
(y/x)y is monotonic decreasing in y for 0 < y < x/e and (21), we obtain

k! ≥
( |S2|
eCk

)|S2|
(Ck)|S1| ≥

( η

eC

)ηk

(Ck)k−
gk

log k

=

(
ηηC

eηCηCg/ log keg

)k

kk.

Since ηη > e−.37 for 0 < η < 1 and kk > k!, we obtain a contradiction. �

Step (d). The products AiAj(0 < i < j < k) cannot be distinct.
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By step (b) we know that the numbers Ai (i > 0) are distinct. Hence the
set T in Lemma 3 consists of at least k − 1 − π(k) > k − 2k/ log k elements
for k large. We apply Lemma 3 with g = 2 and η = 1/3. Then we find a set
S2 of at least k/3 elements Ai satisfying

Ai ≤ 60k for Ai ∈ S2

for k large. By (20), yi > k for Ai ∈ S2. We write S3 for the set of all Ai ∈ S2

with

i ≥ k

9
and Ai ≥ k

9
. (23)

Then |S3| ≥ k/10. It follows from Theorem 1 with X = 60k that the products
AiAj with Ai, Aj ∈ S3 cannot be distinct for k large.
Step (b). The products AiAj (Ai, Aj ∈ S3) are distinct. Since gcd(x+ id, x+
jd) divides both (i − j)x and (i − j)d and gcd(x, d) = 1, we have gcd(x +
id, x+jd) ≤ |i−j| < k for i �= j. Hence, by (20), gcd(x+gd, x+id) < k ≤ √

x
for g �= i and similarly gcd(x+ gd, x+ jd) <

√
x for g �= j. It follows that the

products (x+ id)(x + jd) (0 ≤ i ≤ j < k) are distinct.
Suppose there are elements Ag, Ah, Ai, Aj of S3 satisfying AgAh = AiAj

with g �= i and g �= j. Without loss of generality we may assume that

(x+ gd)(x + hd) − (x+ id)(x+ jd) = AiAj((ygyh)l − (yiyj)
l) (24)

is positive. Since d divides the left side and gcd(d,AiAj) = 1, we see that d
divides the difference of the l-th powers. Hence, by (18),

ygyh − yiyj ≥ d

ld1
.

Hence the right side of (24) is at least

(AiAj)
1/l d

d1
((Aiy

l
i)(Ajy

l
j))

l−1/l.

Since Ai, Aj ∈ S3, we obtain from (23) the lower bound

(
k

9

)2/l
d

d1

(
x+

k

9
d

)2(l−1)/l

≥ 1

92
d

d1
k2/l(x+ kd)2−2/l.

The left side of (24) is at most 2kd(x + kd). Comparing both bounds we
obtain, by (19),

162d1 ≥
(
x+ kd

k

)1−2/l

≥ 1

4
kl−2.

This completes the proof of Theorem 3. �
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6. Some Applications of Brun’s Sieve

Erdős has introduced some applications of Brun’s sieve which are used in the
proofs of (13.b), (13.c), and (13.d), but have also interest in themselves. Let
0 < z < X . Brun’s sieve implies that for any A > 0 the number Φ(X,w) of
integers ≤ X free of prime factors ≤ w satisfies

Φ(X,w) !A X Πp≤w(1 − 1

p
) for w ≤ XA

(cf. [13, p. 68]). Since Πp≤w(1 − 1
p ) ! 1

logw , we conclude that

Φ(X,w) !A
X

logw
for w ≤ XA. (25)

Erdős [5] applies (25) in the following way.

Lemma 4. Let b1, . . . , bs, denote all integers between z and X such that
every proper divisor of bi, is at most z. Then

s ! X

log(X/z)
.

Proof. If z >
√
X, then b1, . . . , bs are prime numbers and the result is obvious.

We assume z ≤ √
X . Put y = X/ log(X/z). If bi, is larger than y, then every

prime factor of bi, is greater than y/z. By (25) the number of such bi is at
most

! X

log(y/z)
.

The number of bi’s not exceeding y is at most y. Hence

s ! X

log(X/z)
+

X

log(y/z)
.

Since log(y/z) = log(X/z)− log log(X/z) ≥ 1
2 log(X/z), the result follows. �

Lemma 4 can be used to show that in a dense sequence some numbers
have a large common divisor.

Lemma 5 (cf. Erdős [5]). Let r, z,X be integers with 0 < z < X. Let
0 < a1 < a2 < · · · < ar ≤ X be a sequence of integers. Then there are at
least

r − z − c1X

log(X/z)
(26)

pairs ai, aj for which gcd(ai, aj) > z where c1 is some absolute constant.

Proof. Denote by b1, . . . , bs all integers between z and X having every proper
divisor ≤ z. Then, by Lemma 4,
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s ≤ c1X

log(X/z)
.

Obviously every integer between z and X has a divisor among the b’s. Hence
there are at least r − z − s pairs ai, aj for which gcd(ai, aj) is divisible by a
b, whence gcd(ai, aj) > z. �

Remark 2. If r > z + 2s, then a better bound is possible. Adjoin to each aj
larger than z one divisor b. If the number of ai’s corresponding to bi equal ti,
then the number of pairs is

(
ti
2

)
. Hence the total number of pairs is

∑s
i=1

(
ti
2

)
.

By the Cauchy-Schwarz inequality we obtain

s∑

i=1

(
ti
2

)
=

1

2

s∑

i=1

t2i − 1

2

s∑

i=1

ti ≥ 1

2s

( s∑

i=1

ti

)2

− 1

2

s∑

i=1

ti.

Hence we obtain, since
∑s

i=1 ti ≥ r − z > 2s,

s∑

i=1

(
ti
2

)
≥ 1

2s
(r − z)2 − 1

2
(r − z) =

1

2s
(r − z)(r − z − s).

Thus the bound (26) can be replaced by 1
2s (r − z)(r − z − s) where s =

c1X/ log(X/z).

Another result which can be derived by sieve methods and is used in the
proofs of (13) is the Brun-Titchmarsh inequality. Let π(x; k, l) denote the
number of primes ≤ x which are ≡ l (mod k). Then, for sufficiently large x,

π(x; k, l) ≤ 3x

φ(k) log(x/k)
(cf. [13, p. 110]) (27)

where φ(k) denotes Euler’s indicator function.

7. An Application of Evertse’s Bound for the Number
of Solutions of the Equation Axl − Byl = dz

In 1939 Erdős [5] also applied the following special case of Thue’s Theorem
to prove that for l > 2 and k ≥ k0(l) the equation

x(x + 1) · · · (x+ k − 1) = yl

is impossible.
The number of solutions of Axl −Byl = C, where l > 2 and A,B,C are

given positive integers, is finite.
Evertse [12], cf. [11], has calculated bounds for the number of solutions

of Axl − Byl = C. Let R(l, C) denote the number of residue classes Z
(mod C) with Z l ≡ 1 (mod C). Evertse proved that the number of solutions
of |Axl −Byl| = C in positive integers x, y with gcd(x, y) = 1 is bounded by
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αR(l, C)+β where (α, β) = (2, 4) if l = 3, (1, 3) if l = 4, (1, 2) if l = 5, (1, 1)
if l ≥ 6. It turns out that the following estimates, proved similarly, are even
more useful for our purpose.

Lemma 6 (Evertse, [12, pp. 17–18]). The number of solutions of

Axl −Byl = dz (A,B, d ∈ Z>0, l ∈ Z>2, gcd(A, d) = gcd(B, d) = 1) (28)

in integers x > 0, y > 0, z subject to gcd(x, y) = 1 and 0 < |z| < d(2l/5)−1 is
bounded by αR(l, d) + β where

(α, β) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3, 6) if l = 3
(2, 2) if l = 4
(2, 1) if l = 5, 6
(1, 3) if l = 7
(1, 2) if i ≥ 8.

It follows from the data at p. 18 of [12] that R(l, d) = lw(d1) when l is
an odd prime, where d1 is the greatest divisor of d composed of primes ≡ 1
(mod l).

We shall demonstrate how Lemma 6 can be applied to (12) We are going
to prove (13.d) in the sharpened form

lw(d1) ≥ C9k

log k
(l ≥ 5).

Without loss we may therefore assume that lw(d1) < .1k
log k . If Ai = Aj , for

some i > j, then

Aj(y
l
i − ylj) = (i − j)d.

Since gcd(Aj , d) = 1, we obtain Aj |i− j. Hence

yli − ylj = zd

where 0 < z < k ! d1/(l−2), the latter inequality by Theorem 3. Since yi and
yj are composed of primes > k and are coprime to d, we have gcd(yi, yj) = 1.
Furthermore, for k sufficiently large and l ≥ 3, |z| < d2l/5 − 1. On applying
Lemma 6 we find that the number of pairs (i, j) with i > j and Ai = Aj is
at most αlw(d1) + β which is less than .9k/ log k by our supposition.

The argument given in step (c) of Sect. 2 applies to the Aj ’s. Hence there
exists a subset T of {0, 1, . . . , k − 1} consisting of at least k − .9k

log k − π(k)

elements Aj such that
∏

j∈T Aj < k!. By the Prime number theorem we have
π(k) < 1.1k/ logk for large k. Hence we can apply Lemma 3 with g = 2 and
η = 1

3 . As in Step (d) of Sect. 5 we find a set S2 of at least k/3 elements Ai

satisfying

Ai ≤ 60k for Ai ∈ S2

for k large. Note that
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Aiy
l
i −Ajy

l
j = (x+ id) − (x+ jd) = d(i − j)

so that (yi, yj , i− j) is a solution of (28) for A = Ai, B = Aj , z = i− j < k.
The number of possible pairs Ai, Aj is too large to make a straightforward
application of the Box principle to apply Lemma 6. However, we have
Lemma 5 at our disposal. We apply this lemma with r = k/3, z = εk,
X = 60k and {aj}rj=1 is the ordered set of Ai with Ai ≤ 60k, where ε > 0

is so small that 60/ log(60/ε) < 1
20 . We obtain that for k sufficiently

large there are at least k/4 pairs Ai, Aj for which gcd(Ai, Aj) > εk. Since
gcd(Ai, d) = gcd(Aj , d) = 1, we can divide by gcd(Ai, Aj) to arrive at an
equation

Biy
l
i −Bjy

l
j = dzij

where Bi, Bj are positive integers bounded by 60/ε and |Zij | ≤ 1/ε. Hence
we have at most (60/ε)2 equations

Axl −Byl = dz

with in total at least k/4 solutions (x, y, z). By the Box principle at least one
of the equations has at least (ε/120)2k solutions. We know from (13.a) that
d is sufficiently large, whence [z] ≤ d2l/5−1. We conclude from Lemma 6 that

( ε

120

)2 k

log k
≤ αlw(d1) + β.

In this way we derive the following improvement of (13.d):

Theorem 4. Under the conditions of Theorem 3 we have

lw(d1) & k

log k
(l ≥ 5). (29)

For a slightly stronger form of (29) and for a proof not depending on
Evertse’s result, we refer to [27, Corollary 1].

8. Perfect Powers in Products of the Terms
of an Arithmetic Progression, III

In Sect. 5 we have shown how (13.a) can be proved and in Sect. 7 we have
derived a refinement of (13.d). We first show how these results can be used to
obtain formulas of the form (13.b) and (13.c). Afterwards we say something
on the remaining case l = 2.

By Theorem 4 we have lw(d1) & k. Since every prime factor of d1 is ≡ 1
(mod l), the greatest prime factor P (d1) of d1 has to be at least lw(d1). By
using the Brun-Titchmarsh theorem we even find that

P (d1) & lw(d1) logw(d1).
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If l > (log k)2, then (13.c) holds trivially. If l ≤ (log k)2, then

P (d1) & l
log k

log l
log

log k

log l
& log k log log k. (13.c)

If l ≥ log log k, then (13.b) follows from (13.a). If l < log log k, then Theorem 4
implies that, for some constant c,

d1 ≥ (cw(d1))w(d1)

whence

log d1 & log k

log l
log log k & log k log log k

log log log k

which is slightly weaker than (13.b).
The proofs given until now do not include the case l = 2. The proofs for

l = 2 start in a different way, namely by writing

x+ id = aix
2
i (i = 0, 1, . . . , k − 1) (30)

where ai is squarefree (cf. Sect. 2). Hence xi can contain prime factors < k,
but also in (30) we have P (ai) < k. It is now much harder to show that the set
{ai}k−1

i=0 has at least k − ck/ log k elements. Because of the fact that the ai’s
are squarefree, the product of the ai’s is essentially larger than [k−ck/ log k]!
and this lower bound contradicts an upper bound, due to Erdős and Rigge,
obtained by saving the powers of 2 and 3 in the product. This contradiction
yields the results (13.b), (13.c), and (13.d) for l = 2. For details see [27,
Sect. 3].

Looking once again at Erdős’ conjecture stated in the Abstract, we see
that for difference d > 1 all results up to now are for length k sufficiently
large. It follows from (13.a) and (13.b) that k should be much smaller than d.
As long as we cannot disprove that there are arbitrarily large arithmetic
progressions consisting of l-th powers there is no hope to prove Erdős’
conjecture. However, there is new hope to settle the latter assertion after
Wiles’ announcement of a proof of Fermat’s Last Theorem.

9. Generalisations and Extensions

It will be obvious from the preceding proofs that it is not necessary to require
that all terms x + id (i = 0, 1, . . . , k − 1) are almost-powers Aiy

l
i. It suffices

if there are enough almost-powers among them. As mentioned in Sect. 1 the
question how many such numbers are required was first investigated by Erdős
in 1955. Shorey [25] completed Erdős’ result by showing that also for l = 2
the equation

(x+ d1)(x + d2) · · · (x+ dt) = yl (31)
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in integers x > 0, t > 0, l > 1, y > 1, 0 ≤ d1 < d2 < · · · < dt < k implies
that

t ≤ k − (1 − ε)k
log log k

log k
(32)

for k > k0(ε), ε > 0. The proof depends on the finiteness of integral solutions
of hyper-elliptic equations under suitable conditions. Moreover, he sharpened
Erdős’ bound (32) for l > 2 considerably. Combining the elementary method
of Erdős with the theory of linear forms in logarithms, irrationality measures
of Baker for algebraic numbers and the method of Halberstam and Roth
on l-free integers, Shorey [24, 25] proved that, for k sufficiently large and
l > 2, t ≤ νlk with

ν3 =
47

56
, ν4 =

45

64
, νl <

2

3
for l ≥ 5 and νl �l−1/11 for l sufficiently large.

The authors [30] derived some results for the general equation

(x+ d1d)(x+ d2d) · · · (x+ dtd) = byl (33)

where b and d are positive integers with P (b) ≤ k and gcd (x, d) = 1 and the
other unknowns are as above. For example, they showed for any ε > 0 that
(33) with l = 2 and k ≥ k1(ε, w(d)) implies

t ≤ k − (1 − ε)k
log log log k

log k

and that (33) with prime l > 2 and k ≥ k2(ε) and lw(d) !ε kh(k)/ log k
implies that

t ≤ k − (1 − ε)
kh(k)

log k

where

h(k) =

{
log log log k if l = 3

log log k if l ≥ 5.
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9. P. Erdős & J.L. Selfridge, The product of consecutive integers is never a power,

Illinois J. Math. 19 (1975), 292–301.
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1. Introduction

Les fonctions arithmétiques associées aux systèmes de représentations d’en-
tiers, comme le développement dans une base donnée, satisfont généralement
des relations de récurrence qui facilitent considérablement l’étude de leur
valeur moyenne. Considérons par exemple la somme des chiffres en base 2,
que nous désignons par σ(n). On a

σ(2n) = σ(n), σ(2n+ 1) = σ(n) + 1 (n � 1), (1)

d’où il découle que la fonction sommatoire S(n) :=
∑

0�m<n σ(m) satisfait à

S(2n) = n+ 2S(n), S(2n+ 1) = n+ σ(n) + 2S(n) (n � 0). (2)

En particulier, si l’on pose ϕ(n) := S(n) − (n log n)/(2 log 2) (n � 1), la
première relation (2) implique ϕ(2n) = 2ϕ(n) pour tout n, de sorte que l’on
peut écrire

ϕ(n) = nG

(
logn

log 2

)
, S(n) =

n logn

2 log 2
+ nG

(
logn

log 2

)
, (3)

où G est périodique de période 1.
Dans la quasi-totalité des exemples connus, on obtient de même, sans

trop de difficulté, une formule du type
∑

m<n

am = P (n) +Q(n)G(log n) +R(n) (4)

pour une fonction arithmétique donnée {am}∞m=0, où P et Q sont des
fonctions régulières — typiquement des combinaisons linéaires de produits
de puissances nα et de puissances de logarithmes (log n)β—, R(n) est un
terme résiduel, souvent périodique et/ou borné, et G est une fonction
oscillante périodique à caractère fractal, en général continue.

Trollope [41] a donné, pour la fonction G de la formule (3), une formule
explicite impliquant en particulier qu’elle est continue, et partant bornée.
Utilisant une méthode plus simple, Delange [10] a généralisé le résultat au cas
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de la somme des chiffres en base q � 2 quelconque, que nous notons σq(n),
soit

∑

m<n

σq(m) =
q − 1

2 log q
n logn+ nGq

(
logn

log q

)
, (5)

où Gq est continue et 1-périodique. Il montre en outre que Gq n’est nulle part
dérivable et détermine son développement de Fourier.

À côté de celles de Trollope et Delange, plusieurs autres techniques sont
en fait susceptibles de fournir le calcul explicite de Gq. Nous utilisons au
paragraphe3 une approche assez générale fondée sur l’intégration complexe.
Voyons ici, par exemple, comment fonctionne, dans le cas q = 2, celle de
Brillhart, Erdős et Morton dans [2]. Soit x un nombre réel positif, dont le
développement en base 2 est

x =
∑

r� 0

εr/2
r,

avec ε0 ∈ N, εr = 0 ou 1 pour r � 1, et εr �= 1 pour une infinité de valeurs
de r. On pose

xk :=
⌊
2kx

⌋
=

∑

0�r�k

εr2k−r, et Tk :=
S(xk)

2k
− x log(2kx)

2 log 2
.

On a xk = 2xk−1 +εk. Grâce à (2), on en déduit par un calcul de routine que

Tk − Tk−1 =
εkσ(xk−1)

2k
−
∑

r�k

εr
2r+1

, (6)

ce qui implique l’existence de ϕ(x) := limk→∞ Tk. De plus, par itération puis
passage à la limite en k, la relation (6) fournit

ϕ(x) − T0 =
∑

r�1

εr
2r

{σ(xr−1) − 1
2r},

d’où

ϕ(x) = S
(x�)− x log x

2 log 2
+
∑

r�1

εr
2r

{σ(xr−1) − 1
2r} (7)

Lorsque x = n ∈ N, on a ε0 = n, εr = 0 (r � 1) et l’on retrouve bien (3).
De plus, lorsque ξ est un rationnel dyadique positif de dénominateur réduit
2m (m � 0), on a

lim
x→ξ−

σ(xr) =

{
σ(ξr) (r < m)
σ(ξm − 1) + r −m (r � m),

lim
x→ξ−

εr(x) =

⎧
⎨

⎩

εr(ξ) (r < m)
εr(ξ) − 1 (r = m).
1 (r > m)
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Cela permet de vérifier facilement que ϕ est continue sur R
+. La fonction

G de (3) peut donc être prolongée en une fonction continue sur R
+ par la

formule

G(u) := ϕ(2u)/2u.

Puisque les quantités (logn)/ log 2 sont denses modulo 1, la propriété de
périodicité observée plus haut est encore valable pour le prolongement.

La littérature abonde en exemples de situations similaires — ainsi qu’on
pourra s’en convaincre à la lecture de notre bibliographie, issue de celle
rassemblée dans la thèse de Cateland [5]. Désignons, conformément à l’usage,
par q-noyau d’une suite {an}∞n=0 l’ensemble des sous-suites

{n %→ aqkn+r : k � 0, 0 � r < qk}.
La généralisation naturelle de la propriété (1) est celle des suites
q-automatiques, i.e. dont le q-noyau est fini, voire des suites q-régulières,
c’est-à-dire dont le q-noyau engendre un module de type fini — cf. [1].
La quasi-totalité des exemples connus relève effectivement de ces deux
définitions.

Dans cette note, nous nous intéressons plus particulièrement à la non-
dérivabilité des fonctions fractales G apparaissant dans des formules de
type (4). Peu de résultats généraux sont disponibles dans cette direction.
Les travaux les plus significatifs sont ceux de Dumont-Thomas [11–13] et
Cateland [5]. On distingue essentiellement trois types de méthodes : d’une
part celles qui exploitent l’expression exacte de G(x), généralement sous la
forme d’une série liée à la représentation de x dans un système adéquat,
d’autre part celles qui établissent l’existence d’équations fonctionnelles pour
G (c’est en particulier la voie explorée par Dumont et Thomas), enfin
celles qui utilisent les divers renseignements disponibles sur les coefficients
de Fourier de G — ce qui ne fournit en général qu’une preuve de la
non-dérivabilité presque-partout, et non partout. Nous nous proposons de
développer ici une quatrième approche, sans doute la plus näıve de toutes.
Elle consiste à “oublier” la définition explicite de G pour ne retenir que la
formule (4): comme Ie membre de gauche est arithmétique, donc irrégulier, il
est naturel d’attendre que le membre de droite contienne lui aussi un certain
degré d’irrégularité — qui doit alors être nécessairement le fait du terme
fractal G(log n). Il reste ensuite à opérer un “relèvement” des valeurs de
la variable, en transportant les propriétés des G(log n) aux G(x) où x est
un nombre réel quelconque. Il est vraisemblable que ce principe puisse être
formalisé dans un contexte assez général. Nous nous contentons ici de le
mettre en œuvre dans trois cas particuliers importants de la littérature.

Le premier exemple est celui de la suite de Newman-Coquet

cn = (−1)σ(3n). (8)
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Coquet [7] établit la formule sommatoire

∑

m<n

cm = nϑG0

(
logn

log 4

)
+ 1

3η(n), (9)

où G0 est continue et l-périodique, et où l’on a posé

ϑ :=
log 3

log 4
, η(n) :=

{
0 si n est pair,
(−1)σ(3n−3) si n est impair.

Nous montrons, directement à l’aide de (9) et sans utiliser l’expression de G0,
le résultat suivant, qui est d’ailleurs implicitement contenu dans la preuve de
Coquet de la non-dérivabilité de G0.

Théorème 1. La fonction G0 n’est dérivable pour aucune valeur de x ∈ R.
Plus précisément, on a pour tout x ∈ R

G0(x+ h) −G0(x) = Ω(|h|ϑ) (h → 0). (10)

Nous considérons ensuite la suite de Rudin-Shapiro

rn := (−1)e(n), avec e(n) :=
∑

j�0

εjεj+1 si n =
∑

j�0

εj2
j .

Brillhart, Erdős et Morton établissent dans [2] la formule sommatoire

∑

m<n

rm =
√
nG1

(
logn

log 4

)
, (11)

où G1 est 1-périodique, bornée, et continue sauf aux points (log n)/ log 4,
n ∈ N

∗, et prouvent que G1 n’est dérivable en aucun point x normal en
base 4. Dans [12], Dumont et Thomas montrent que cette dernière restriction
est inutile. Notre approche directe fonctionne ici très simplement et fournit
le résultat suivant.

Théorème 2. La fonction G1 n’est dérivable pour aucune valeur de x ∈ R.
Plus précisément, on a, pour tout x ∈ R,

G1(x+ h) −G1(x) = Ω
(√|h| ) (h → 0). (12)

La troisième application concerne les suites digitales, introduites par
Cateland [5], et qui sont une généralisation de la somme des chiffres en base q.
Pour q � 2, � � 1, notons E(q, �) l’ensemble des �-uples ε = (ε0, . . . , ε−1)
avec εj ∈ {0, . . . , q − 1} pour tout j. Pour n ∈ N, on écrit n =

∑∞
j=0 εj(n)qj

le développement de n en base q et l’on pose

εk(n) := (εk(n), . . . , εk+−1(n)) ∈ E(q, �) (k = 0, 1, . . .).

On note encore

χk(n; ε) :=

{
1 si εk(n) = ε
0 si εk(n) �= ε

(
ε ∈ E(q, �)

)
, �(n; ε) :=

∑

k�0

χk(n; ε),
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avec la convention �(n; 0) = 1 pour tout n. La fonction �(n; ε) est donc égale
au nombre d’occurrences du mot ε dans la représentation q-adique de n.
Étant donnée une fonction F : E(q, �) → C telle que F (0) = 0, on définit une
suite digitale {uF (n)}∞n=0 par la formule

uF (n) =
∑

k�0

F (εk(n)) =
∑

ε∈E(q,)

F (ε)�(n; ε). (13)

On retrouve la suite σq(n) en choisissant � = 1 et F égale à l’identité.
Cateland a établi, par la méthode de Delange, la formule sommatoire générale

∑

m<n

uF (m) = AFn logn+ nGF

(
logn

log q

)
+ δF (n) (14)

avec

AF :=
1

q log q

∑

ε∈E(q,)

F (ε),

et où GF est continue et 1-périodique, et δF est q−1-périodique. Nous
donnons une preuve assez simple de ce résultat au paragraphe 3. Notre
objectif principal consiste à déduire de (14) le résultat suivant de non-
dérivabilité, qui étend optimalement celui de Cateland. Comme nous le
verrons, la démonstration, reposant sur le principe énoncé plus haut, est
extrêmement simple.

Théorème 3. Soient q � 2, � � 1, F : E(q, �) → C, et {uF (n)}∞n=0 la
suite digitale correspondante. Une condition ncessaire et suffisante pour que
la fonction 1-périodique GF associée soit nulle part dérivable est qu’il existe
un entier a � 1 tel que uF (q−1a) �= 0.

Le résultat de Cateland était conditionnel à l’hypothèse AF �= 0. Lorsque
uF (q−1a) = 0 (a � 1), uF est périodique, AF = 0, et la fonction GF est
constante.

L’auteur tient ici à remercier Jean-Paul Allouche pour son aide précieuse
lors de la préparation de cet article.

2. Démonstration des Théorèmes 1, 2 et 3

Prouvons d’abord les Théorèmes 1 et 2. Soit x ∈ [0, 1[. Nous écrivons le
dveloppement 4-adique de 4x, soit

4x =
∑

j� 0

εj/4
j,

avec 0 � εj � 3 pour tout j et εj �= 3 pour une infinité d’indices j. Ensuite,
nous définissons, pour k � 0, les nombres réels xk, yk et l’entier nk par les
formules
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nk = 4xk+k =
∑

0�j�k

εj4
k−j , nk + 1 = 4yk+k. (15)

En écrivant (9) pour n = nk et n = nk + 1 et en effectuant la différence, il
vient

cnk
= (nk + 1)ϑG0(yk) − nϑ

kG0(xk) + 1
3 (η(nk + 1) − η(nk)),

d’où

nϑ
k{G0(yk) −G0(xk)} − cnk

− 1
3{η(nk + 1) − η(nk)} +O

(
nϑ−1
k

)
. (16)

Compte tenu de la définition de η(n), il est clair que le second membre est
de valeur absolue & 1. Par ailleurs, il découle immdiatement de (15) que

nk ' 4k ' (yk − xk)−1. (17)

Il suit

|G0(yk) −G0(xk)| & (yk − xk)ϑ.

Comme

max{|x− xk|, |x− yk|} ! 4−k, (18)

cela contredit

G0(x + h) −G0(x) = o(|h|ϑ) (h → 0),

et partant implique la conclusion requise (10) du Théorème 1.
La situation est encore plus simple pour le Théorème 2. On obtient

parallèlement à (16)
√
nk{G1(yk) −G1(xk)} = rnk

+O
(
1/

√
nk

)
, (19)

d’où par (17), puisque |rnk
| = 1,

|G1(yk) −G1(xk)| & √
yk − xk.

Grâce à (18), cela implique (12) et établit ainsi le Théorème 2.
La même approche fonctionne encore pour établir le Théorème 3.

L’hypothèse F �= 0 implique uF �= 0, et, plus précisément, implique
l’existence d’un entier a, 1 � a < q, tel que uF (a) �= 0. En effet, notant

F ∗(h) := F (ε0, . . . , εj−1) pour h =
∑−1

r=0 εrq
r, on a

uF (j) =
∑

0�h<q�

αjhF
∗(h) (1 � j < q)

avec αjh � 1 si j est de la forme j = a+ qsh avec s � 0, a < qs, et αjh = 0
dans le cas contraire. En particulier, on a αjj = 1 pour 1 � j < q et αjh = 0
si h > j. La matrice carrée (αjh) est donc triangulaire supérieure, avec des 1
sur la diagonale principale. Par conséquent, elle est inversible et cela établit
la propriété indiquée.
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Cependant, lorsque � � 2, on peut avoir uF (q−1a) = 0 pour tout
a � 1 sans que uF soit identiquement nulle: pour � = q = 2 et F (1, 0) =
−F (0, 1) = 1, F (1, 1) = 0, uF est la fonction indicatrice des nombres impairs.
On peut vérifier facilement que, dans un tel cas, uF est périodique, AF = 0,
et la fonction GF est constante.

Soit alors a � 1. Nous allons montrer que si GF est dérivable en un point
x ∈ [0, 1[ alors uF (q−1a) = 0. On écrit les développements q-adiques

a =
∑

0�r�m(a)

εr(a)qr, qx =
∑

j�0

εj/q
j ,

et l’on pose

L := 2�+m(a), nk = qxk+L+k = qL
∑

0�j�k

εjq
k−j , nk +1 = qyk+L+k.

(20)

On a

nk ' qk ' (yk − xk)−1, max{|x− xk|, |x− yk|} ! q−k. (21)

Ici et dans la suite de cette démonstration les constantes implicites peuvent
dépendre de a ou F mais pas de k.

En appliquant (14) avec n et n+ 1 et en faisant la différence, on obtient,
lorsque n ≡ 0 (mod q−1),

uF (n) = AF logn+ n

{
GF

(
log(n+ 1)

log q

)
−GF

(
logn

log q

)}
(22)

+AF (n+ 1) log(1 + 1/n) +GF

(
log(n+ 1)

log q

)
+ δF (1) − δF (0),

où l’on a tenu compte de la périodicité de δF . Substituons n = nk dans cette
relation. La périodicité de GF nous permet de remplacer GF (log(n+1)/ log q)
par GF (yk) et GF (log n/ log q) par GF (xk), soit

uF (n) = AF logn+ n{GF (yk) −GF (xk)}
+AF (n+ 1) log(1 + 1/n) +GF (yk) + δF (1) − δF (0). (23)

Si GF est dérivable au point x, on a, lorsque k → ∞,

GF (xk) −GF (x) = (xk − x)G′
F (x) + o(xk − x) = (xk − x)G′

F (x) + o(1/nk),

et similairement

GF (yk) −GF (x) = (yk − x)G′
F (x) + o(1/nk).

Il suit

nk{GF (yk) −GF (xk)} = nk(yk − xk)G′
F (x) + o(1) =

G′
F (x)

log q
+ o(1).
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En reportant dans (23), on obtient

uF (nk) = AF lognk +AF +
G′

F (x)

log q
+G(x) + δF (1) − δF (0) + o(1),

et donc

uF (nk) = kAF log q +B + o(1), (24)

avec B := AF {1 + (x+ L) log q} +G′
F (x)/ log q +GF (x) + δF (1) − δF (0).

Substituons maintenant n = nk + q−1a dans (22). Les calculs qui
précédent restent valables mutatis mutandis, et l’on obtient

uF (nk + q−1a) = kAF log q +B + 0(1). (25)

Or il découle immédiatement des définitions de uF et L que

uF (nk + q−1a) = uF (nk) + uF (q−1a).

Les relations (24) et (25) impliquent donc par différence

uF (q−1a) = o(1), c’est-à-dire uF (q−1a) = 0.

Cela termine la démonstration du Théorème 3.

3. Preuve de la formule de Cateland par
intégration complexe

Nous nous proposons ici de donner une démonstration de la formule (14) en
utilisant la formule de Perron. La démarche, semblable à celle de Flajolet
et al. dans [15], possède le double avantage de ne nécessiter que quelques
calculs assez simples et de fournir directement les développements de Fourier
des fonctions GF et δF .

Au vu de (13), nous pouvons nous restreindre à estimer la valeur moyenne

de �(n, ε) pour ε = (ε0, . . . , ε−1) ∈ E(q, �) fixé. Posons h :=
∑−1

j=0 εjq
j et

V (n) :=
∑

0�m<n

�(m; ε) =
∑

k�0

∑

0�m<n

χk(m; ε). (26)

La somme intérieure est égale au nombre des entiers m ∈ [0, n− 1] qui sont
de la forme m = a+ qkh+ qk+b avec 0 � a < qk, b � 0. Elle vaut donc

∑

0�a<qk

(

1 +

⌊
n− (hqk + a + 1)

qk+�

⌋)

=
∑

0�a<qk

∫ a+1

a

(

1 +

⌊
n− (hqk + t)

qk+�

⌋)

dt

=

∫ qk

0

(

1 +

⌊
n− (hqk + t)

qk+�

⌋)

dt = qk
∫ h+1

h

(

1 +

[
n

qk+�
− t

q�

])

dt.

Pour établir la première égalité, nous avons utilisé le fait que l’intégrande du
second membre est constant sur chaque intervalle ]a, a+ 1].
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Pour évaluer la partie entière de la dernière intégrale, nous introduisons la
fonction zêta de Hurwitz, définie, pour chaque valeur du paramètre α ∈]0, 1],
par la formule

ζ(s;α) :=
∑

n�0

(n+ α)−s
(
Res > 1

)
,

et prolongée en une fonction méromorphe dans le plan complexe tout entier
ayant pour unique singularité un pôle simple en s = 1, de résidu 1. On a pour
x > 0

1 + x− α� =
1

2πi

∫ c+i∞

c−i∞
ζ(s;α)xs

ds

s
(c > 1),

sauf si x ∈ α+Z, où le membre de droite vaut x− α� + 1
2 . On obtient donc

V (n) =
∑

k�0

qk
∫ h+1

h

1

2πi

∫ 2+i∞

2−i∞
ζ(s; t/q)

(
n

qk+

)s
ds dt

s

=
1

2πi

∫ 2+i∞

2−i∞

(
n

q

)s
1

s(1 − q1−s)

∫ h+1

h

ζ(s; t/q) dtds

=
1

2πi

∫ 2+i∞

2−i∞

(
n

q

)s
qZ(s− 1;h/q)

s(1 − s)(1 − q1−s)
ds,

où l’on a posé

Z(s; t) := ζ(s; t+ 1q) − ζ(s; t) = s

∫ 1/q�

0

ζ(s+ 1; t+ u)du.

Déplaçons maintenant l’abscisse d’intégration vers la gauche jusqu’à l’axe
Re s = 1

2 . La contribution du pôle double en s = 1 vaut

n

log q

{
Z(0;h/q)

(
log(n/q) − 1 + 1

2 log q
)

+ Z ′(0, h/q)
}
.

La contribution des pôles simples pk := 1 + 2πki/ log q (k �= 0) est égale à

n
∑

k∈Z�{0}

Z(pk − 1;h/q)

pk(1 − pk) log q
e

(
k

logn

log q

)
= ngh

(
logn

log q

)
(disons),

avec la notation traditionnelle e(t) := exp {2πit}. La fonction gh est
1-périodique, et sa série de Fourier, explicitée ci-dessus, est absolument
convergente. En particulier, gh est continue.

On a

Z(0; h/q�) = q−�, ζ′(0;α) = log

(
Γ(α)√

2π

)

, Z′(0;α) = log
(

Γ(α + q−�)/Γ(α)
)
.
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Il suit

V (n) =
n

q log q

{
logn− 1 + log

(
Γ((h+ 1)/q)

Γ(h/q)q−1/2

)}
+ ngh

(
logn

log q

)
+ δh(n),

(27)
avec

δh(n) =
1

2πi

∫ 1/2+i∞

1/2−i∞

(
n

q

)s
qZ(s− 1;h/q)

s(1 − s)(1 − q1−s)
ds. (28)

Nous évaluons δh(n) en faisant appel à l’équation fonctionnelle de la
fonction zêta de Hurwitz, soit

ζ(s;α) = Γ(1 − s)
∑

r∈Z\{0}
(2rπi)s−1e(rα) (Re s < 0),

où le logarithme complexe est pris en détermination principale. On en déduit,
en posant α = h/q,

Z(s− 1;α) = −s(1 − s)Γ(−s)
∑

r∈Z�{0}
(2rπi)s−2 e(rα){e(r/q) − 1}.

Reportons dans (28) en développant 1/(q1−s − 1) =
∑

k�1 q
−k(1−s). Il vient

δh(n) =
∑

r∈Z�{0}

q�e(rα){e(r/q�) − 1}
−4π2r2

∑

k�1

1

2πiqk

∫ 1/2+i∞

1/2−i∞
Γ(−s)

(
2πrniqk−�

)s
ds.

Par la formule de Mellin inverse

1

2πi

∫ 1/2+i∞

1/2−i∞
Γ(−s)xsds = e−x − 1 (x > 0)

(où le terme −1 provient du pôle de Γ à l’origine), on obtient

δh(n) =
∑

r∈Z�{0}

∑

1�k<

qe(rh/q){e(r/q) − 1}
4π2r2qk

{1 − e(−rnqk−)}

Cela implique que δh(n) est bien une fonction q−1-périodique de n et, compte
tenu de (27), achève ainsi la démonstration.

Ajouté à la seconde édition:
En 1903, Takagi [39] a exhibé un exemple de fonction continue non

dérivable plus simple, mais essentiellement de même nature, que celui, bien
connu, de Weierstrass. La fonction de Takagi est définie par la formule

T (x) :=
∑

n�0

‖2nx‖
2n

(x ∈ R),

où ‖z‖ désigne la distance du nombre réel z à l’ensemble des entiers. Cette
fonction, qui a récemment suscité un intérêt soutenu dans la littérature
(voir notamment [19, 25]) est directement liée à la fonction périodique G
apparaissant dans le terme résiduel de la formule (3) de Trollope–Delange.
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To Paul Erdős, who held the torch.

During the summer of 1975, I spent a few days with my mother and sister
who were on holidays near La Baule. I had just left École Polytechnique,
and needed some rest after the military service. For 8 months I had been a
sub-lieutenant in the 2èmeRAMA, a semi-disciplinary unit based in Vernon,
Eure, and felt rather depressed after what had been for me a dreadful
experience. For the time being, my main concern was the starting of my
research in mathematics. I had regular “night-dreams”, and also daydreams,
seeing myself “content-free” as a mathematician, working hard but having
no ideas—and, of course, no results.

Here I was on the beach, reading Hardy & Wright and trying to make
a few notes on a pad in spite of sand and wind. I soon became fascinated
by arithmetic functions (a subject completely new to me) and considered it
hardly believable that the number r(n) of representations of an integer n as
a sum of two squares had such nice and simple properties. On the one hand,
I was trying to reconstruct the proof of the main formula, viz

r(n) = 4
∏

pν‖n, p≡1 (mod 4)

(ν + 1)
∏

pν‖n, p≡3 (mod 4)

(
1 + (−1)ν

2

)
,

along the lines of the algebraic number theory course I had taken at the
University of Paris, writing here and there on the pad: revise Kummer’s
Theorem. On the other hand, I was doing small experiments such as
computing explicitly the first integer with a given value for r(n). The smallest
n with r(n) = 32 is

1105 = 5 × 13 × 17.

There are four genuinely distinct ways of writing 1105 as a sum of two squares,
namely

1105 = 232 + 242 = 312 + 122 = 322 + 92 = 332 + 42.

Don’t you agree that this set of representations is rather odd?
Today, nearly 20 years later (this is odd too, isn’t it?), I would probably

consider the occurrence of three consecutive squares (312, 322, 332) as an
epiphenomenon, and turn my attention to what I would regard as deeper
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subjects. But, at that time, I had nothing else to bite on and so started right
away to try to describe the set of those integers N which have two genuinely
distinct representations

N = x2 + y2 = (x+ 1)2 + z2.

This turned out to be very easy, as the reader can imagine, and I soon found
out that these N are exactly those which can be written as

N = {q2 + (q + 1)2}{r2 + (r + 1)2}
with suitable relative integers q, r not equal to 0 or −1. One then retrieves

x = r + 2qr + q, y = q + r + 1, z = q − r.

For q = r = 1, we obtain N = 25 = 42 + 32 = 52 + 02, and N = 1105
corresponds to q = 6, r = 2.

Thus, 1105 was not a unique specimen and actually had infinitely many
relatives! This was nice and called for generalization. The next, obvious
step was to replace the condition that the squares should be consecutive by
imposing that they should be squares of integers with prescribed difference
n, in other words to search all N which can be written as

N = x2 + y2 = (x+ n)2 + z2

with {x, y} �= ±{x+n, z}. This was not much more difficult, and I ascertained
that these integers are exactly described by the formula

N = {q2 + (q + n)2}{r2 + (r + n)2}/n2

where 2qr ≡ 0 (mod n) and qr(q + n)(r + n)(2q + n)(2r + n) �= 0. I denoted
by g(n) the smallest such N , and left for Bordeaux with my own arithmetical
function in my pocket.

At this stage the reader might wonder when Erdős is going to enter the
scene. Such expectation, however, is perhaps significant: in one of Maurice
Leblanc’s best novels, L’Éclat d’obus, one does await the hero Arsène Lupin
for the major part of the book, but his presence is increasingly felt as
ineluctable as the plot is developed—and the fact that one of the chapters is
entitled 75 ou 155? is a purely formal coincidence for which number theorists
should give no hasty interpretation.

I arrived in Bordeaux in the early days of September, 1975, and went to
see François Dress who, I was told, had worked on sums of squares. In fact , he
was interested in Waring’s problem and had obtained new bounds for g(4)—I
mean, of course, the g-function, usually used with argument k and defined
as the smallest integer such that all numbers are sums of at most g(k) kth
powers.1 This perhaps explains, at least partly, why he wasn’t immediately

1 Balasubramanian, Deshouillers and Dress established in 1986 that g(4) = 19,
thereby closing up (in a certain sense, which would take us too far to describe here)
Waring’s classical problem.
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crazy about my g-function. To tell the truth, he thought this was a load of
piffle, but, not wanting to discourage an enthusiastic young man, he said that,
in his opinion, the significance was ε. This g-function wasn’t simply nor nicely
defined, after all, and he believed that even writing a computer program to
tabulate it up to n = 108 or 1010 might not be an easy task. A few days
later, I came up with the following formula for g(n). Put t(x) = 1

2 (x2 + 1)
and define, for integer n, the functions

ρ1(n) := max
d|n, d�√

n
d, ρ2(n) := max

d|n, d�√
n
d.

(Thus ρ1(n) and ρ2(n) are the two divisors of n closest to
√
n.) Then, denoting

by p a prime number, we have

g(1) = g(2) = 25, g(p) = 5t(p) (p > 2), g(2p) = 10t(p),

g(n) = t
(
ρ1(n)

)
t
(
ρ2(n)

)
(n odd, not a prime number),

g(2n) = 4t
(
ρ1(n)

)
t
(
ρ2(n)

)
(n not a prime number).

I was quite happy with this result and had already applied it to determine
the limit points of the set {g(n)/n2 : n ∈ N}, as well as the asymptotic
behaviour of the average (1/N)

∑
n�N g(n) . . . Dress understood I was not

going to give up easily: he erased the whole blackboard, except these new
functions ρ1, ρ2, which “were defined in less than 14 characters”, so not
unnatural; moreover, they seemed not to have been studied before. . .

By this time, about a month had passed, and I had settled in Bordeaux,
where the number theory group, created under the impulse of Pisot, was
developing in a kind of semi-familial everyday life—with its well-known
pleasant and not so pleasant implications. My ‘older brother’ (and future co-
adviser with Dress) was Jean-Marc Deshouillers, with whom I had frequent
discussions. He patiently taught me all basic notions in the field of arithmetic
functions as well as recent directions of research, and I tried to apply these
to my two newcomers.

Everybody had already noticed that these questions where ‘Erdős-like’.
After a while it became apparent that the hard problem was to evaluate the
average order of ρ1(n). Up to this date, this is still open. Dress had offered
50 francs for a proof or disproof of

x−1
∑

n�x

ρ1(n) = o
(√
x
)
.

After about 2 weeks of struggle with bare hands, I opened Halberstam and
Roth, Chap. V, and got in one night the bounds

√
x/ logx ! x−1

∑

n�x

ρ1(n) ! √
x/ log log x.

This was something, but obviously insufficient, and I had no idea of what the
next step should be.
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Fortunately, a meeting on elementary and analytic number theory
organized by Richert, Schwarz and Wirsing was scheduled in November, if
my memory is right, at Oberwolfach. Deshouillers and Dress were invited and
promised to ask Erdős about ρ1. They came back with an amazing answer:
Erdős conjectured that

x−1
∑

n�x

ρ1(n) =
√
x/(log x)δ+o(1),

with, believe me or not, δ = 1− (1+ log log 2)/ log 2 = 0.08607 . . . !! He added
that he thought the method was similar to that of his ‘Russian paper’—the
only paper Erdős ever published in the Russian language, although, as he
told me later, he does not know any Russian.

My friend Didier Nordon provided a translation and I started to study the
paper, with Deshouillers’ help. This wasn’t an easy job. I remember (and, I am
sure, so does Jean-Marc) a five-hour train trip between Paris and Bordeaux
during which we tried to understand the notation, sometimes rather obscure,
and above all the ‘philosophy’ of the man who knew about numbers.

Hardy and Ramanujan proved in 1917 that almost all integers n have
about log log n prime factors, but it was Erdős who really understood all
the possibilities opened up by this theorem. Indeed, Hardy and Ramanujan’s
proof gives more than the so-called normal order of the function Ω(n), equal to
the total number of prime factors of n, counted with multiplicity. Essentially,
the extra information is that the distribution of values of Ω(n) among integers
n � x is roughly Poisson, with mean and variance log log x. The peak of the
Poisson distribution is very narrow, and the tails are dominated, in first
approximation, by single values. Erdős took advantage of this situation by
clever splittings of the integers according to their number of prime factors
(possibly in a given range), which shed light on otherwise rather intractable
problems.

Let us give an example with the following reasoning, typical of his
approach. At the same time this will give an idea of the proof of the upper
bound in the δ-conjecture—which I could establish, along the lines foreseen
by Erdős, by the end of 1975. In Erdős’ setting (the one I used at the
time), the computations would involve factorials, because of the Poisson
probabilities, and the optimization would be rather cumbersome. However,
the ‘parametric method’, introduced in this context by Richard Hall and
which we subsequently developed together,2 simplifies the technicalities a
great deal. Suppose we want an upper estimate for the number S(x) of
integers n � x with 1

2

√
x < ρ1(n) � √

x. We give ourselves a parameter
λ ∈ (1, 32 ) and split the integers up to x into two classes, according to whether
Ω(n) > λ log log x or not. The number of elements of the first class may be
bounded, for any v ∈ (1, 32 ), by

2 See our book Divisors for an expository text on this subject.
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∑

n�x

vΩ(n)−λ log log x ! x(log x)v−1−λ log v.

The best choice is clearly v = λ, so the exponent of log x becomes −Q(λ),
with

Q(λ) = λ log λ− λ+ 1 > 0.

The above estimate follows from a classical result on non-negative arithmetic
functions (see e.g. Halberstam and Richert, 1979) and we only mention that
the version needed here may be proved elementarily in a few lines. As for the
elements of the second class, the following expression is certainly an upper
bound for any w ∈ (0, 1]

∑

n�x

wΩ(n)−λ log log x
∑

d|n, 12
√
x<d�√

x

1

= (log x)−λ logw
∑

1
2

√
x<d�√

x

wΩ(d)
∑

m�x/d

wΩ(m),

where, in the right-hand side, we have written n = md and permuted
summations. Estimating the inner sum as previously, we obtain that this is

! x(log x)w−1−λ logw
∑

1
2

√
x<d�√

x

wΩ(d)/d ! x(log x)2w−2−λ logw.

The optimal choice is now w = 1
2λ, which does belong to (0,1], and the

subsequent exponent of log x is −Q(λ) + λ log 2 − 1. Putting our estimates
together, we deduce from standard calculus that we must select λ = 1/ log 2.
The absolute value of the exponent becomes Q(1/ log 2), which is equal to
Erdős’ miraculous δ!

Erdős came to Bordeaux in March 1977. At that time, he taught me about
the law of iterated logarithm for prime factors (i.e. the jth prime factor of a
normal number is roughly exp exp j) but in the form of a basic consequence:
the largest divisor of n all of whose prime factors do not exceed y is itself
usually not much larger than y. The following, not unrelated device also
came up in the conversation: if you want to find out whether an integer has
a divisor in a given interval (y, z], you should essentially look at those prime
factors of n in the range (z/y, z], Of course, these mottos weren’t formulated
this way, and the light only came gradually. Nevertheless, I learned a great
deal during this first visit, and I must say that all other meetings proved just
as fruitful for me. It would be unfair not to mention that this unconventional
teaching was delivered with extreme patience and kindness.

Thus, Erdős, in the first instance, showed the way into the study of
divisors by giving the basic devices; this is invaluable: everybody having
worked in analytic number theory knows that the first step is very often
the most difficult. But a second help, equally important, came from the
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conjectures he made. These acted as a permanent measure of the depth of
our methods and the quality of our knowledge.

In the first rank of these, I would place the conjecture, made in the late
30s, according to which almost all integers have at least two divisors d, d′

with d < d′ � 2d. This was precisely the question to challenge the current
model for the set of divisors of a normal integer. The point is important; let
us be more explicit. According to the law of iterated logarithm the jth prime
factor of n, say pj(n), satisfies log pj(n) ≈ ej ; hence, the divisors d should be
described (assuming n squarefree for simplicity) by the formula

log d ≈
∑

1�j�Ω(n)

εje
j

where the εj take the values 0 or 1. However, since e > 2, these quantities
have increasing differences, and hence the smallest ratio between consecutive
divisors should normally stay away from zero, and indeed should be large
on a set of positive density. (This last statement is justified, for instance, by
the fact that we can assume all prime factors to be large on a set of positive
density.) Thus, the conjecture is really about the effect of the error terms
in the law of the iterated logarithm. This explains simultaneously why it
is interesting and why it is hard. This problem shares with most of Erdős’
questions the feature of being phrased in the simplest form which contains
the whole substance of the matter. It was eventually solved in 1983 by Maier
and myself, and the proof led to the following evaluation (another conjecture
of E.P.) valid for almost all integers

min
d,d′|n, d<d′

d′/d = 1 + (log n)1−log 3+o(1).

As a matter of fact, it would be hard to imagine a way to solve the initial
problem that wouldn’t give quantitative results of this kind: the question is
so pertinent that only a deeper understanding of the structure of the set of
divisors will yield an answer. This experience, and many others of a similar
type, explain why I find it sad to hear, from time to time, Erdős’ problems
qualified as anecdotal or scattered. This criticism comes from occasionally
powerful, but always ignorant, people.

Since Erdős’ first pioneering articles in the thirties, quite a few mathe-
maticians have taken part in the strange quest which I entered through 1105.
It would, of course, take us too far to give here a complete survey of the results
that have been obtained, even during the last two decades. Nevertheless, I
would like to mention another recollection.

At the Durham Symposium on Analytic Number Theory, organized
in 1979 by Halberstam and Hooley, a (gentle) mathematical controversy
occurred between Erdős and Montgomery about the normal behaviour of
the function

G(n) = |{1 � j < τ(n) : dj(n)|dj+1(n)}|,
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where dj(n) denotes the jth divisor of n. Erdős thought that G(n) = o(τ(n))
for almost all n because this fitted with another conjecture of his, namely
that, almost always,

τ+(n) := |{k ∈ [1, logn/ log 2] : ∃d, d|n, 2k < d � 2k+1}| = o
(
τ(n)

)
.

(Note that G(n) � τ+(n) for all n, since dj+i(n)/dj(n) � 2 whenever
dj(n)|dj+1(n).) The above bound for τ+(n) would have trivially implied
the d, d′-conjecture mentioned earlier, and indeed it could be regarded as
a kind of ultimate consequence of Erdős’ conception that the set of divisors
could be described by big aggregates with very large gaps between them.
Montgomery’s argument was probabilistic. Assume for simplicity that n is
even, say n = 2m. Then at least one half of the divisors dj(n) divide m;
for such a divisor, we have dj(n)|dj+1(n) unless dj+1(n) < 2dj(n) because
2dj(n) is a divisor of n. However, the intervals

(
dj(n), 2dj(n)] occupy, on

a logarithmic scale, a set of measure � (log 2)τ(n) = (logn)log 2+o(1) inside
the interval (1, n], of measure log n. Therefore, it is conceivable that the
probability that a divisor belongs to one of these intervals tends to 0. As
soon as this probability is less than 1

2 − c, we have G(n) � cτ(n).
Thus, one can see that an apparently innocent question about a seemingly

artificial function turns out to be critical to our understanding of the structure
of the divisors. It was well-known that, on a slightly larger scale, the structure
was indeed mainly in aggregates, so Erdős’ question was really: how strong is
this tendency? Is it so strong that it can destroy probabilistic effects even
in very short intervals of constant multiplicative length? As a matter of
fact, it turned out in this case that Erdős’ conjecture was wrong-headed.
In a joint work (1981), he and I proved that the density of those n with
G(n) � cτ(n) tends to 0 with c.3 It remains that the question was well-posed,
and that the answer revealed precious information about the multiplicative
structure of the integers, and particularly on the phenomena which involve
the conflict between the ordering imposed, on a large scale, by the law of
iterated logarithm and the local, random perturbations.

The purpose of the present text is to give a comprehensible (if not
comprehensive) account on Erdős’ extraordinary stamp on this part of
Probabilistic Number Theory. The reader interested in further information
may consult, besides the research bibliography, our book with R.R. Hall,
Divisors. A synthetic approach, in the frame of fractal sets, which provides
a complementary description of some models of the divisors is presented
in a joint article with Michel Mendès France (1993): the fractal dimension
of the set of divisors of a normal integer is log 2. The whole subject
has been discovered, developed and guided by Erdős’ theorems, intuitions,
and conjectures. Let these few lines be a token of admiration to the
mathematician, and of gratitude to the man.

3 But this density is strictly positive, which shows that the tendency on which
Erdős based his conjecture is nevertheless quite constraining.
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Added at the second edition:
The reader will find an update of many topics discussed in this paper

in my paper entitled Some of Erdős’ unconventional problems in number
theory, thirty-four years later, to appear in the acts of the Erdős centennial
conference, Budapest, July 2013.
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III. Randomness and Applications

Introduction

It would be foolish to try describing Paul Erdős as an applied mathemati-
cian, somebody who is looking outside of mathematics for motivation and
justification of his activity. Yet we believe that the word application in
the title is justified. An essential part of Erdős’ personality and success
is his broad knowledge and a true feeling of unity of mathematics. This
understanding brought him to many of his crucial discoveries and topics.
Randomness is a pivotal example of this Erdős approach. With M. Kac he
initiated this technique in number theory in 1939 (see the Erdős paper in
this volume) and in graph theory he did so in 1946. This technique—the
probabilistic or nonconstructive method—is by now one of the universally
accepted modern combinatorial techniques and this is also reflected by papers
in this section. The origins of the probabilistic method are described in the
paper by Spencer while the random graph papers of Erdős and Rényi are
described in the Karonski–Ruciński paper (with update). Applications of
probabilistic methods have reached virtually all mathematical disciplines as
well as many areas of theoretical computer science. The papers by Pyber,
Pudlák and Sgall, and Razborov are such examples. This does not exhaust the
papers relevant to probabilistic methods in this volume, see for example, the
papers in the second volume by Bollobás and Füredi, Kahn, Laczkovich and
Ruzsa, and the paper by Cameron (devoted to infinity). All of these papers
are related to various aspects of Erdős’ work and belong to branches pioneered
by him. By now this is well recognized and, there are, in fact, numerous books
devoted to these areas, such as: B. Bollobás: Random Graphs, B. Bollobás:
Extremal Graph Theory and also E. M. Palmer: Random graphs, P. Erdős,
J. Spencer: Probabilistic methods in combinatorics and N. Alon, J. Spencer:
The probabilistic method, and P. D. T. A. Elliot: Probabilistic number theory
(to name just a few).
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1. Tic-Tac-Toe-Like Games

The object of this 50 % survey and 50 % “theorem-proof” paper is to
demonstrate recent developments of some of the ideas initiated by Erdős
[17, 18], Erdős and Selfridge [20], Erdős and Lovász [19] and Erdős and
Chvátal [15].

The story begins with a class of deterministic games of complete
information.

The most well-known chapter of combinatorial game theory deals with
Nim-like games (a player unable to move loses). A beautiful theory was
developed by Bouton, Sprague, Grundy, and recently by Berlekamp, Conway,
Guy and others—and of course, Conway’s theory of “numbers and games”
(see the remarkable book of B-C-G [13]). These ideas can be employed
in games in which the positions are composed of several non-interacting
simpler games. Then the first thing to do is to associate values (numbers or
“generalized numbers”) with these parts. Next comes the problem of finding
ways of determining the outcome of a sum of games given information only
about the values of the separate components.

Here, however, we discuss a quite different branch of combinatorial game
theory. This branch is in such an early stage of its developments that
the experts didn’t even find a right name for the subject: it is frequently
called as Tic-Tac-Toe-like Games, or Positional Games, or Pattern Games,
or Achievement Games. We prefer the name “Tic-Tac-Toe-like games”.
In contrast to Nim-like games which start out as composites, or develop
into composites in the normal course of play, these games usually remain
as single coherent entities throughout play. So the theory of Nim-like games
(or Neumann’s “theory of games”) has little relevance to such “condensed”
games.

The best introduction to these games is Chap. 22 Lines and Squares of
Winning Ways by Berlekamp, Conway and Guy. The traditional ideas in Tic-
Tac-Toe-like games are the “strategy stealing argument”, “pairing strategies”
and in general, the trick of “decomposition into non-interacting local games”.
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Here we make a more systematic use of Ramsey Theory, and emphasize the
importance of a relatively new idea what we call the “probabilistic intuition”.
This leads to very effective global weight function strategies, and at the
same time, it provides surprisingly accurate predictions to the outcomes
of many complex games. We consider Tic-Tac-Toe-like games as a sort of
bridge between the two well-established chapters of “Random Graphs and
Hypergraphs” and “Ramsey Theory”. Also we include some applications in
Complexity Theory.

As a warm-up we start with two well-known board games which are won
by the first player to complete some kind of winning pattern.

Tic-Tac-Toe (or Noughts and Crosses): The game board is a big square
which is partitioned into 9 = 3×3 smaller squares. Whoever moves first puts
a cross in one of the nine small squares. His opponent then puts a nought into
any other square and then they alternate nought and cross in the remaining
empty squares until one player wins by getting three of his own squares in
line. There are precisely eight winning lines.

Hex: The game board is a rhombus of hexagons, the actual size of the
board being a matter of agreement between the players. Each player takes a
pair of opposite sides, his move is to take an untaken hexagon, and his object
is to form a continuous chain between his two sides. Hex was invented by
Piet Hein.

Strategy Stealing Argument

A winning strategy for a player is a list of instructions telling the player that
if the opponent does this, then he does that so if he follows this strategy,
he will win. In a tic-tac-toe type game, one can argue that the first player
can achieve at least a draw. This follows by the well-known strategy stealing
argument.

Suppose otherwise the second player has a winning strategy, and the first
player steals it. Then he can use this strategy to win the game. He randomly
takes his first move, and then pretends himself as the second player. He reads
the instruction to take action. If he is told to take a move that is still available,
he takes it. If this move was taken by him before, then he randomly takes
another move. The crucial point here is that an extra move only benefits him.
In this way, he can guarantee a win. Therefore, the second player cannot have
a winning strategy, which implies that the first player can guarantee at least
a draw.

Remember, however, when a draw is impossible, the first player wins. It is
easy to see that in Hex a draw is impossible. Therefore, whoever plays first
wins. We must warn the reader that this is a theoretical result, which assumes
that the first player doesn’t make mistakes. If he makes a mistake, then the
opponent can take advantage of the mistake, and might manage a win.
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The reader possibly noticed that the two games above have some
differences. In the tic-tac-toe game, both players can take any move, and
they also share the same winning sets. In the Hex game, both can take any
move, but they have different winning sets.

We define the class of generalized tic-tac-toe games as follows. Let there
be given a finite set X , which is the board of the game, and a family of
winning subsets of X, say F = {A1, A2, . . . , Am}, Ai ⊆ X . The two players
alternately take an element from X which is still available. That player who
takes a complete winning set first is the winner. This family of games contains
the tic-tac-toe (noughts and crosses) game as a particular case.

Since an extra move in a generalized tic-tac-toe game does not harm a
player, by the strategy stealing argument, whoever plays first has a drawing
strategy.

Theorem 1. Let X be finite, and F be an arbitrary family of subsets of X.
Then the first player can force at least a draw in the generalized tic-tac-toe
game on (X,F).

However, the “complexity” of finding this (at least) drawing strategy
is enormous. Indeed, a strategy for the first player is a function f with
domain = “the set of subsequences of the board X” such that the “next
move” f(x1, y1, . . . , xi−1, yi−1) is always an element of X different from the
“previously selected” elements x1, y1, . . . , xi−1, yi−1 of X . In a play according
to this strategy, the first player determines all his moves by f as follows:
Suppose the players alternately picked the elements x1, y1, . . . , xi−1, yi−1 ofX
in this order. Then the first player’s ith move is xi = f(x1, y1, . . . , xi−1, yi−1).

Let |X | = N . Then the total number of strategies is between

22
N

and NNN

.

The amount of computation demanded by a computer to find an optimal
strategy is a plain exponential function of the size of the board. Human brains
can sometimes diagnose shortcuts, but we cannot expect substantial shortcuts
in general. Even “small” board games are so complex that it is possible
that the existing drawing (or winning) strategies may never be found. As a
discouraging example, we mention that, Owen Patashnik, of Bell Lab, was
the first to find a first-player winning strategy in the 3-dimensional 4 × 4 × 4
tic-tac-toe (or as better called “tic-toc-tac-toe”). His 1977 program required
1,500 h of computing time, and the winning strategy contains 2,929 strategic
moves.

We emphasize that the strategy stealing argument is highly nonconstruc-
tive. It does not give much help in finding an explicit winning or drawing
strategy for the first player. For example, no explicit winning strategy in Hex
is known.
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When Can the First Player Win?

There is a rather general sufficient condition for the first player’s win.
Consider a generalized tic-tac-toe game on (X,F). The chromatic number
of F is the least integer r such that the elements of X can be colored with
r colors yielding no monochromatic A ∈ F . If the chromatic number of F is
≥ 3, then draw is impossible, so by the strategy stealing argument, the first
player has a winning strategy.

Theorem 2. Suppose that the board X is finite, and the family F of winning
sets has chromatic number at least 3. Then the first player has a winning
strategy in the generalized tic-tac-toe game on (X,F).

Note that it is a “hard” problem to decide whether a system (X,F) has
chromatic numbers ≥ 3. We have to check all the 2|X| two-colorings of X .

There is a well-established chapter of Combinatorics, called Ramsey
Theory, which is entirely devoted to families F of chromatic number ≥ 3.
We associate games with three famous results of Ramsey Theory.

Ramsey Game

If S is a set, then let [S]k denote the family of subsets of S containing exactly
k ≥ 2 elements. Following the set-theoretical traditions, we identify the
natural number n with the set of its predecessors, that is, n = {0, 1, . . . , n−1}.
So [n]2 can be regarded as a complete graph with n vertices, that is, [n]2 =
Kn. Let 2 ≤ n < N . The board of the game is [N ]2 = KN , and the two players
alternately occupy edges of this graph (i.e., elements of [N ]2) and that player
wins who picks all the edges of a complete subgraph with n vertices (i.e., all
the elements of [S]2 for some n-element subset S ⊂ N = {0, 1, . . . , N − 1})
first. This game is denoted by R(N,n) = R2(N,n).

For k ≥ 3, the game Rk(N,n) is a trivial generalization. The players
alternately occupy k-element subsets of N , and the winner is who picked all
the elements of [S]k for some n-element subset S ⊂ N first.

Van der Waerden Game

The game W (N,n) is played on the board X = {0, 1, . . . , N − 1}, and the
winning sets are the arithmetic progressions of n terms from X .

Hales-Jewett Game

This is a straightforward multidimensional generalization of the game tic-tac-
toe. The two players alternately put their marks in the cells of a d-dimensional
cube of size n× n× · · · × n = nd. The winner is the first player to have n of
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his marks in a line. More precisely, the board of the game H J(d, n) is the
set of d-tuples

X = {a = (a1, a2, . . . , ad) : 0 ≤ aj < n for each 1 ≤ j ≤ d} .
The winning sets of H J(d, n) are those n-element sequences

(
a(1), a(2), . . . , a(n)

)

of the boardX such that, for each j, the sequence a
(1)
j , a

(2)
j , . . . , a

(n)
j composed

of the jth coordinates is either strictly increasing from 0 to n− 1, or strictly
decreasing from n− 1 to 0, or constant.

The well-known theorems of Ramsey, Van der Waerden, and Hales and
Jewett state that for every integer n there is a finite threshold number
rk(n), w(n) and h(n), respectively, such that the family of winning sets in
the Ramsey Game, Van der Waerden Game and Hales-Jewett Game has
chromatic number ≥ 3 if N = rk(n), N = w(n) and d = h(n), respectively.
Therefore, by Theorem 2, the first player has a winning strategy in these
games. Unfortunately this theorem is rather weak, because either the best
upper bound on the threshold number known at present is very poor, or the
threshold number is in fact enormous. Consider e.g. the Van der Waerden
threshold number w(n). The best upper bound on w(n), due to Shelah,
is primitive recursive (Van der Waerden’s original argument couldn’t even
provide a primitive recursive upper bound), but it is still enormous for
“pedestrian mathematics”. For example, it is an open problem whether
w(n) < expn(n) holds, where expk denotes the k-fold iteration of the
exponential function exp(x) = ex. On the other hand, the best known lower
bound is plain exponential: w(n) > 2n. The situation is exactly the same in
the case of the Hales-Jewett theorem.

In the case of Ramsey theorem, however, the upper and lower bounds are
much closer to each other. It is known

2n/2 < r2(n) < 4n, (1)

2n
2/6 < r3(n) < 22

4n

, (2)

and in general, for arbitrary k ≥ 3,

expk−2(ck · n) < rk(n) < expk−1(c′k · n), (3)

where ck and c′k are absolute constants depending on k only.
It seems to be highly unlikely that the breaking points for the behavior

of these Ramsey type games is anywhere close to the behavior of the
corresponding Ramsey threshold functions, but no method is known for
handling these problems. Note that even the existence of a breaking point
is questionable. It may well happen that the first player wins e.g. the Hales-
Jewett Game H J(d, n), but the H J(d+ 1, n) game is a draw.
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Pairing Strategies

By far the most common technique to guarantee a win or a draw is to find
a decomposition of the board into disjoint pairs, and when your opponent
takes one member from a pair, you take the other one.

Every child “knows” that in the usual tic-tac-toe (i.e., the Hales-Jewett
Game H J(2, 3)) the second player can force a draw. A precise mathematical
proof of this fact can be found in Chap. 22 of Berlekamp, Conway and Guy
[13]. If the board is 4×4 and the object of the game is to find 4-in a-row (i.e.,
the Hales-Jewett Game H J(2, 4)), then again the second player can force
a draw. Exactly the same holds for all the Hales-Jewett Games of the type
H J(2, n), n = 5, 6, 7, 8, . . . (see B-C-G [13]). We just give a quick proof of
the cases n = 5 and 6 by the following pairing strategies: whenever the first
player occupies a numbered cell, the second player takes the other cell of the
same number.

n = 5 :

⎡

⎢
⎢
⎢
⎢
⎣

2 10 5 5 1
6 9 12 8 9
6 11 ∗ 11 4
7 10 12 7 4
1 3 3 8 2

⎤

⎥
⎥
⎥
⎥
⎦

If the first player takes the ∗-labeled center, the second player may take any
cell, and if the cell he is required to take by the pairing strategy is occupied,
he may play anywhere.

n = 6 :

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

1 13 2 13 3 12
6 14 5 14 4 12
7 8 15 9 10 15
16 3 11 1 16 2
17 4 11 6 17 5
7 8 18 9 10 18

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

What is more, this last numbering leads to an elegant proof that the
unrestricted 9-in-a-row (i.e., the board is an infinite chess board, and the
object of the game is to find 9-in-a-row orthogonally or diagonally) is a draw.
Cover the infinite board with copies of the 6 by 6 matrix above. The second
player can force a draw by always taking the nearest cell with the same
number as of the previous play. It is easy to see that the first player can
obtain no line longer than 8.

unrestricted 8-in-a-row: It is known that the second player has an explicit
drawing strategy. However this strategy is not a pairing strategy. To illustrate
the idea, first we outline a second proof of the fact that the unrestricted
9-in-a-row is a second player’s draw.
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Decomposition into Non-interacting Games

It was first proved by Pollak and Shannon in 1954 that for 9-in-a-row the
second player can force a draw, by using the following strategy. Tile the plane
with H-shaped heptominos (seven squares): the second player plays ordinary
tic-tac-toe in each of these 7-square regions, concentrating on preventing a
line of 3 in either a diagonal, or the horizontal or the right vertical.

Using the same idea T.G.L. Zetters (nom de guerre of some Amsterdam
combinatorists) recently showed that the second player can even draw 8-in-
a-row. Their proof uses a parallelogram-shaped tile of 12 cells, and goes some
way towards showing that 7-in-a-row is also a draw.

Next we give a general sufficient condition for the existence of pairing
strategies.

Theorem 3. Consider a generalized tic-tac-toe game on a finite system
(X,F). Assume that for any subfamily G ⊆ F ,

∣∣
∣
∣
⋃

A∈G
A

∣∣
∣
∣ ≥ 2|G|.

Then the second player can force a draw by a pairing strategy.

Proof. By the well-known König-Hall theorem, we can find disjoint 2-element
representatives: h(A) ⊂ A (A ∈ F), |h(A)| = 2, h(A) ∩ h(B) = ∅ whenever
A and B are different elements of F . (A technical twist: we in fact apply
the König-Hall theorem to the “duplicate” of F , i.e., every A ∈ F is taken
in two copies.) Now whenever the first player occupies one member from a
2-element representative, then the second player takes the other one. �

Note that there are well-known efficient (i.e. polynomial time) algorithms
to actually find the disjoint 2-element representatives.

Corollary 1. Let F be an n-uniform system, i.e., |A| = n for every A ∈ F .
Further assume that every x ∈ X is contained by at most n/2 members of F .
Then the second player can force a draw by a pairing strategy.

Proof. Observe that the criterion of Theorem 3 applies here. Indeed, for any
subfamily G ⊆ F , by a standard double-counting argument,

n|G| =
∑

A∈G
|A| =

∑

x∈⋃
A∈G A

∑

A∈G x∈A

1 ≤
∣
∣
∣
∣
⋃

A∈G
A

∣
∣
∣
∣ ·
n

2
,

and dividing by n/2,

∣
∣
∣
∣
⋃

A∈G
A

∣
∣
∣
∣ ≥ 2|G|. �
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Note that Theorem 3 is very general. It doesn’t restrict the global size
of F at all, and in fact it holds for infinite boards as well. In spite of this,
Theorem 3 is not very useful in our “condensed” games. Consider e.g. the
three Ramsey type games R2(N,n), W (N,n) and H J(d, n). We leave to
the reader to check that in the cases of Ramsey Game R2(N,n) and Van
der Waerden Game, Theorem 3 gives a ridiculously weak bound on N (like if
N < const·n then the game is a draw). For the Hales-Jewett Game H J(d, n),
in their fundamental paper [21], Hales and Jewett proved, by using Theorem 3
that if

n ≥ 3d − 1 (n odd) and n ≥ 2d+1 − 2 (n even) (4)

then the game is a draw. They conjectured that the game is always a draw if
there are at least twice as many cells as lines (which is a necessary condition
for any pairing strategy). How many lines are there? It is easy to see that
each winning line in H J(d, n) is determined by the two cells which extend
the line into the surrounding cube

(n+ 2) × (n+ 2) × · · · × (n+ 2) = (n+ 2)d.

So the total number of lines is

(n+ 2)d − nd

2
. (5)

Therefore, the Hales-Jewett conjecture is that the game is a draw whenever

nd ≥ (n+ 2)d − nd, (6)

that is,

2 ≥
(
n+ 2

n

)d

.

Since

(
n+ 2

n

)d

=

(
1 +

2

n

)d

≈ e2d/n,

(6) is equivalent to

n ≈ 2d

log 2
(7)

(compare it to the weak bounds in (4)).
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2. Weight Function Strategies: A Fake Probabilistic
Method

In 1973 a really useful sufficient condition for second-player’s draw was found
by Erdős and Selfridge [20]. Opposite to the pairing strategy and its variants,
where we decompose the position into several non-interacting small local
games, the Erdős-Selfridge approach is global.

Theorem 4. If

∑

A∈F
2−|A| <

1

2

then the second player can force a draw in the generalized tic-tac-toe game
on (X,F).

Corollary 2. If F is n-uniform and |F| < 2n−1, then the game is a draw.

The proof of Theorem 4 is based on an exponential weight function
technique. It is often called as “derandomization of the first moment method”:
indeed, the criterion in Theorem 4 ensures that in a standard random 2-
coloring of X the expected number of monochromatic members A ∈ F is less
than 1. (If the expected number of monochromatic sets is less than one, then
of course there exists a “good” 2-coloring in the sense that no monochromatic
set shows up (see Erdős [18]). This gives at least a chance for a drawing
strategy. The message of Theorem 4 is that under the global condition above
this drawing strategy really exists. Note, however, that the usual 3 × 3 tic-
tac-toe gives a family of 8 triplets, for which “good” 2-coloring exists, but
the second player cannot prevent the first one from completing a winning
triplet.)

Proof of Theorem 4. We in fact prove a stronger statement: under the
condition of Theorem 4, the second player can prevent his opponent from
completing any winning set A ∈ F . According this, we call the first and
second players “Maker” and “Breaker”, respectively.

Given any family G of subsets of X we assign the total weight

T (G) =
∑

A∈G
2−|A|

to G. Consider now a play on our family F in which the points

v1, w1, v2, w2, . . . ∈ X

were picked by the two players in this order. After Maker’s ith move, define
the “truncated family” Fi for i ≥ 1 as follows. Throw away those sets from
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F which contain any point picked by Breaker (“dead sets”), and from the
remaining sets (“survivors”) throw away the points picked by Maker, i.e.,

Fi = {A \ {v1, . . . , vi} : A ∈ F and A ∩ {w1, . . . , wi−1} = ∅}.

Maker wins if and only if some of the Fi’s contain the empty set, and since
the cardinality of the empty set is zero, in this case T (Fi) ≥ 2−0 = 1. Thus
if T (Fi) < 1 for every i ≥ 1, then Breaker wins.

We define a strategy for Breaker. Let the weight of a set A ∈ Fi be 2−|A|,
and the weight of a point of Fi be the sum of the weights of the sets in Fi it
belongs to. In his ith move Breaker picks that point of Fi which is of largest
weight. We claim that

T (Fi+1) ≤ T (Fi)

independently of Maker’s (i + 1)st move. If we prove this the result follows
since every set of F1 contains at most one point of Maker, so by hypothesis
T (F1) < 2 · 1

2 = 1. Therefore, T (Fi) < 1 for every i ≥ 1.
We check T (Fi+1) ≤ T (Fi). Right after Breaker’s ith move (that is, before

Maker’s (i+1)st move), the sum of the weights of the sets is T (Fi)−W where
W is the weight of the ith point of Breaker. On Maker’s next move he doubles
the weight of each “surviving” set containing his (i + 1)st point vi+1, so he
adds to T (Fi)−W no more than the previous weightW ′ of vi+1. But Breaker’s
ith move was a point of largest weight, so W ≥ W ′. It follows that

T (Fi+1) ≤ T (Fi) −W +W ′ ≤ T (Fi)

which was to be proved. �

Note that the strategy above has a probabilistic interpretation: it is
a greedy algorithm to minimize certain conditional probabilities—see e.g.
Chap. 15 in Alon-Spencer [1]. This weight function method is our most
important tool to handle Tic-Tac-Toe-like Games.

Note that Corollary 2 is sharp: the full branches of a binary tree with
n levels form an n-uniform family of 2n−1 winning sets such that the first
player has an easy win in n steps.

In opposition to Theorem 3, Corollary 2 gives quite good results in
Ramsey type games. In the Ramsey Game R2(N,n), the criterion holds if

(
N

n

)
< 2(n2)−1,

so the game

R2(N,n) is a draw if N ≤ 2n/2. (8)

In the other direction, by Theorem 2 and (2),
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the first player can win the R2(N,n) game if N ≥ 4n. (9)

These are the best results known at present.
Next consider the Van der Waerden Game W (N,n). Since the number

of n-term arithmetic progressions in {0, 1, . . . , N − 1} is less than N2/n, the
criterion applies if N2/n < 2n−1. This holds if

N <
√
n · 2

n−1
2 , (10)

so the game W (N,n) is a draw if (10) is satisfied.
By employing some special properties of arithmetic progressions, we can

improve on this bound (see [4]): if

N < (2 − ε)n and n > n0(ε), (11)

then the W (N,n) game is a draw. This is the best known estimation.
Finally consider the Hales-Jewett Game H J(d, n). The Erdős-Selfridge

criterion holds if

(n+ 2)d − nd

2
< 2n−1,

that is, the second player can force a draw whenever n > const ·d · log d. This
result just falls short of conjecture (7) of Hales and Jewett that the game is
a draw if n ≈ 2d/ log 2. The family of winning sets in H J(d, n), however,
has an important additional feature: any two winning lines have at most one
point in common. Set-systems with this property are called almost disjoint.
For almost disjoint set-systems the upper bound 2n−1 of Corollary 2 can be
raised considerably (see [3]).

Theorem 5. There is an absolute constant c > 0 such that for every n-
uniform almost disjoint family F of winning sets, if

|F| < 4n−c
√
n,

then the second player can force a draw in the generalized tic-tac-toe game
on (X,F).

Note that this theorem is also sharp as far as the order of magnitude is
concerned. Erdős constructed a 3-chromatic n-uniform almost-disjoint set-
system F∗ with no more than n4 · 4n n-sets (see [19]). In view of Theorem 4,
the generalized tic-tac-toe game played on this F∗ is a first-player win.

Though the family of n-term arithmetic progressions in the Van der Waer-
den game W (N,n) is not almost disjoint, the situation strongly resembles
to almost disjointness. This is why we can employ the proof-technique of
Theorem 5 to the game W (N,n), and can jump in (10)–(11) from 2n/2 up to
(2 − ε)n.
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To settle conjecture (7) about the Hales-Jewett Game H J(d, n) (at least
for sufficiently large numbers), we just need a slight refinement of Theorem 5.
The really important property is the restriction 2n−c

√
n of the local size, the

global size of the family of winning sets can be as large as (say) 2n
3/2

, and
the game is still a draw (see [3]).

Theorem 6. Let F be an n-uniform family of almost disjoint subsets of a
finite X. Assume that every x ∈ X is contained in at most 2n−c

√
n members

of F , and |F| < 2n
3/2

. Then the second player has a winning strategy in the
generalized tic-tac-toe game on (X,F).

This result can be interpreted as a sort of “game-theoretic local lemma”,
at least for almost disjoint systems.

The proofs of Theorems 5–6 are based on the same idea. We split the
game into two non-interacting parts, what we call the “BIG GAME” (a
shrinking game) and the “small game” (a growing game). The “BIG SETS”
are the unions of some “connected” subfamilies of F . The “small sets” are the
available parts of those “dangerous” members of F , which are almost entirely
occupied by the first player and are not blocked by the second player yet.
If the family of “small sets” is “sparse”, then the second player can employ
Theorem 3 to block them. The “BIG GAME” plays an auxiliary role here: by
using the strategy of Theorem 4, the second player can force that the “small
game” is always “sparse”, so that pairing strategy really works.

It is easy to see that in the Hales-Jewett Game H J(d, n), every cell of
the board n× · · · × n = nd is contained by at most (3d − 1)/2 winning lines.
So Theorem 6 applies here if

3d − 1

2
≤ 2n−c

√
n and

(n+ 2)d − nd

2
< 2n

3/2

. (12)

Inequalities (12) trivially hold if

n >

(
log 3

log 2
+ ε

)
d and n > n0(ε). (13)

Observe that (13) is asymptotically better than Hales-Jewett conjecture (7).
That is, the second player can force a draw even when pairing strategy simply
cannot exist.

3. Maker-Breaker Version

As we have seen in Sect. 1, the second player has no chance to win a
generalized tic-tac-toe game against a perfect first player. Then, why does
he not just concentrate on preventing his opponent from a win? We thus can
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name him the Breaker, and the other one the Maker. We can even take this
one step further, and consider the Maker-Breaker game even if the Breaker
moves first.

On the same system (X,F) we can play the symmetric generalized tic-
tac-toe game, and also the asymmetric Maker-Breaker version, where Maker’s
aim is to pick every element of a winning set A ∈ F , and Breaker’s aim is to
prevent Maker from doing so. The winner is the one who achieves his goal
(so a draw is impossible).

If Breaker = second-player wins the Maker-Breaker version on a system
(X,F), then the same play gives him, as a second player, (at least) a draw
in the tic-tac-toe version on (X,F). So from Theorem 2 immediately follows

Corollary 3. Assume that X is finite, and the family F of winning sets
has chromatic number at least 3. Then Maker=first-player has a winning
strategy in the Maker-Breaker version on (X,F).

The converse is not true. It is possible that Maker = first-player wins
the Maker-Breaker version while Breaker = second-player can force a draw
in the tic-tac-toe version. This happens for example in the usual 3 × 3 tic-
tac-toe: the original game is a draw but the Maker-Breaker version is a win
for Maker = first-player. It is true, however, that the same criterions as in
Theorems 4–6 are sufficient for Breaker = second-player to win the Maker-
Breaker version (and so they are automatically sufficient for Breaker = first-
player to win as well).

The proof of Theorem 4 actually gives the stronger

Theorem 7. Assume that X is finite, and

∑

A∈F
2−|A| <

1

2
.

Then Breaker = second-player has a winning strategy in the Maker-Breaker
version on (X,F).

Similarly, we have (see [3])

Theorem 8. Assume that F is an n-uniform almost disjoint family of
subsets of a finite X. Suppose further that every x ∈ X is contained in at

most 2n−c
√
n members of F , and |F| < 2n

3/2

. Then Maker = second-player
has a winning strategy in the Maker-Breaker version on (X,F).

While playing the tic-tac-toe version on an (X,F), both players have
their own threats, and either of them, fending off the other’s, may build his
own winning set. Therefore, a play is a delicate balancing between threats
and counter-threats and can be of very intricate structure even if the system
(X,F) of the game is simple.
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The Maker-Breaker version is usually simpler. Maker doesn’t have to
waste valuable moves fending off his opponent’s threats. He can simply
concentrate on his own goal. This is why we have a surprisingly simple
sufficient condition for Maker’s win (see [4]), which is usually far better
than Corollary 3 (see Theorem 9 below). Note however that, though the
Maker-Breaker version is usually simpler, it is still “very hard”. For example,
Hex is equivalent to a Maker-Breaker version: Maker = first-player wants a
connecting chain, and Breaker = second-player simply wants to prevent his
opponent from achieving his goal.

Theorem 9. Assume that F is n-uniform, and any point in X is contained
by less than half of the members of F . Suppose moreover that, fixing any two
elements of the board X, no more than d winning sets from F contain both
of them. If

|F| ≥ 2n−2 · d · |X |,
then Maker has a winning strategy in the Maker-Breaker version on (X,F),
and it doesn’t matter at all that Marker is the first or the second player.

Proof. We consider the worse case where Maker is the second player. Here
Maker “borrows” Breaker’s weight function strategy from the proof of
Theorem 4.

Given any family G of subsets of X we assign the total weight

T (G) =
∑

A∈G
2−|A|

to G. Consider now a play on our family F in which the points

v1, w1, v2, w2, . . . ∈ X

were picked by the two players in this order. After Breaker’s ith move, define
the “truncated family” Fi for i ≥ 1 as follows. Throw away those sets from
F which contain any point picked by Breaker (“dead sets”), and from the
remaining sets (“survivors”) throw away the points picked by Maker, i.e.,

Fi = {A \ {w1, . . . , wi−1} : A ∈ F and A ∩ {v1, . . . , vi} = ∅}.
Maker wins if the last total sum T (Fend) is still positive, that is, if at the
end of the game there is a “survivor”.

We define the winning strategy for Maker = second-player as follows.
Let the weight of a set A ∈ Fi be 2−|A|, and the weight of a point of Fi

be the sum of the weights of the sets in Fi it belongs to. In his ith move
Maker picks that point of Fi which is of largest weight. We claim that

T (Fi+1) ≥ T (Fi) − d

4
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independently of Breaker’s (i+ 1)st move. If we prove this, the result follows
since every set of F1 contains at most one point of Breaker, namely v1, so by
hypothesis T (F1) > |F|/2 · 2−n. Therefore,

T (Fend) > |F|2−n−1 − |X |/2 · d/4 ≥ 0,

and Maker wins.
We check T (Fi+1) ≥ T (Fi) − d

4 . Right after Maker’s ith move (that is,
before Breaker’s (i+1)st move), he doubles the weight of each “surviving” set
containing his ith point wi, so he adds to T (Fi) the weight W of his ith point
wi. On Breaker’s next move he subtracts the new weight of each “surviving”
set containing his i + 1st point vi+1, so he subtracts from T (Fi) + W the
previous weight W ′ of vi+1, and also the previous weight of those “surviving”
sets which contain both wi and vi+1:

W ′′ =
∑

B∈Fi

{wi,vi+1}⊆B

2−|B|.

By hypothesis, W ′′ ≤ d/4. Since Maker’s ith move was a point of largest
weight, so W ≥W ′. It follows that

T (Fi+1) = T (Fi) +W −W ′ −W ′′ ≥ T (Fi) − d

4
,

which was to be proved. �

If F is almost disjoint (that is, any two different winning sets have at
most one common element), then fixing two elements of the board X , no
more than one winning set can contain both of them. So we have

Corollary 4. If F is an n-uniform almost disjoint system such that any
point of X is contained in less than half of the members of F , and |F| >
2n−2|X |, then Maker has a winning strategy in the Maker-Breaker version
on (X,F), and it doesn’t matter that Maker is the first or the second player.

To appreciate Theorem 9, we study the Maker-Breaker versions of the
Ramsey type games Rk(N,n), W (N,n) and H J(d, n). Note that statement
(iv) below is a straightforward consequence of Theorem 9 (see [4]).

Theorem 10. Consider first the Maker-Breaker version of the Ramsey
Game R2(N,n):

(i) If N ≤ 2n/2 then Breaker;
(ii) If N ≥ (2 + ε)n then Maker
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has a winning strategy. For every k ≥ 3 there are positive constants ck and
c′k such that, in the Maker-Breaker version of Rk(N,n):

(iii) If N ≤ 2ck·n
k−1

then Breaker;

(iv) If N ≥ 2c
′
k·nk

then Maker

has a winning strategy.

Comparing Theorems 2 and 10 we see that the breaking point for the
Maker-Breaker version is within much-much-much closer bounds than that
of the tic-tac-toe version. For a general k, the former one is between (roughly)

2n
k−1

and 2n
k

, and the latter one is between 2n
k−1

and the tower

exp (exp (· · · exp(n) · · · ))
of height k. Moreover Theorem 10(iv) in fact proves that, in the Maker-
Breaker version of the Ramsey Game Rk(N,n), Corollary 3 (= Ramsey
theory) fails to give the true order of magnitude of the breaking point. Indeed,
the Ramsey threshold number rk(n) is known to be bigger than the tower

exp (exp (· · · exp(n) · · · )) (14)

of height k − 1 (see (3)), but Maker = first-player can win around N = 2n
k

,
which is asymptotically much smaller than (14) if k ≥ 4.

The difference between the Maker-Breaker version and the tic-tac-toe
version of the Van der Waerden Game is even more dramatic (see [4]).

Theorem 11. Let ε > 0 be arbitrary. If N is large enough depending only
on ε, then in the Maker-Breaker version of the Van der Waerden Game
W (N,n):

(i) If N ≤ (2 − ε)n then Breaker;
(ii) If N ≥ n3 · 2n then Maker

has a winning strategy.

By Theorems 2 and 11, the breaking point in the Maker-Breaker version
is around 2n, but in the tic-tac-toe version we cannot even prove the upper
bound

exp (exp (· · · exp(n) · · · )) ,
which is a tower of height n.

The situation is very similar in the Hales-Jewett Game: the best known
upper bounds in the two versions are an astronomical distance from each
other.
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Theorem 12. Let ε > 0 be arbitrary. In the Maker-Breaker version of the
Hales-Jewett Game H J(d, n):

(i) If n <
√

2d
log 2 then Maker;

(ii) If n >
(
log 3
log 2 + ε

)
d then Breaker

has a winning strategy (if n is large enough).

Finally, we return to Hex. Nobody knows an explicit winning strategy
for Hex, but there is a large class of very similar games for which explicit
winning strategies were found.

Lehman’s Theory of “the Shannon Switching Game”

The Shannon Switching Game is played on a graph representing an electrical
network in which certain nodes are labelled + and some others are labelled−.
Each edge (begin the game with them drawn in pencil) represents a
permissible connexion between the nodes at its ends. Maker, at his move may
establish one of these connexions permanently (ink over a penciled edge) and
attempts to form a chain between some + node and a − one. His opponent,
Breaker may permanently prevent a possible connexion (erase a penciled
edge) and tries to separate + from − forever. You can always suppose that
there is only one positive node and one negative one by making identifications.

Supposing this, Alfred Lehman has proved that Maker can win as second
player if and only if he can find two edge-disjoint trees which each contain all
the nodes of some subgraph containing + and−. The “only if” part is hard,
but there is an easy explicit strategy which proves “if”: whenever Breaker’s
move separates one of the trees into two parts, say A and B, Maker makes a
move on the other tree joining a vertex of A to one of B.

The game can be generalized to make the winning configurations for
Maker just those which contain a specified family P of sets of edges. (In the
original game P was the family of all paths from + to−.) Lehman proves
the “only if” part of this theorem by taking P to be the family of all trees
containing every vertex (spanning trees).

If Maker, as second player, has a win in the modified game, then by the
strategy stealing argument there must be two edge-disjoint spanning trees.
For since an extra move is no disadvantage, both players can play Maker’s
strategy. If they do this, two spanning trees will be established, using disjoint
sets of edges. Conversely, if two such trees exist, our previous strategy for
Maker actually wins for him as second player, even in the modified game.

The more detailed part of Lehman’s argument establishes that, in a
suitable sense, the modified game reduces to the original one.
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4. Complex Graph Games and Random Graphs

When a 1-1 game is overwhelmingly in favor of one of the players one can
make up for this handicap by allowing the other player to claim many points
in a move. For example, when played on a large complete graphKn, Lehman’s
game (= Maker wants a spanning tree) is overwhelmingly in favor of Maker.
So we allow Breaker to claim many edges per move: let each move of Breaker
consist of claiming b previously unclaimed edges. Clearly if b is large with
respect to n then Breaker wins, if b is small with respect to n then Maker
has a win. In the biased case Lehman’s criterion above hopelessly breaks
down. However, the following heuristic argument, due to P. Erdős, suggests
the game-theoretic threshold point has to come around n/ logn.

During a play Maker takes ≈ n2

2b edges. In particular, if b = n
2c logn , then

Maker creates a graph with ≈ c · n · logn edges. A well-known theorem from
the theory of Random Graphs states that a random graph with n points and
c · n · logn edges is “almost certainly” connected for c > 1/2 and “almost
certainly” disconnected for c < 1/2. It turns out that the game theoretic
breaking point does indeed come around b = n/ logn; more precisely, it is
between (log 2 − ε)n/ logn and (1 + ε)n/ logn for all sufficiently large values
of n.

Let us return to the random graph with n points and c · n · logn
edges. Around c = 1/2 the random graph undergoes a remarkable change:
If c < 1/2 then it has plenty of isolated points; if c > 1/2 then it contains
a Hamiltonian cycle (which trivially implies connectivity). The fundamental
difference between connectivity and the existence of Hamiltonian cycles is
that the former property can be efficiently (i.e., the “worst case” running time
is a polynomial function of the input data) proved if it holds and efficiently
disproved if it does not, but nobody knows an efficient way of disproving
that a graph contains Hamiltonian cycles. We can overcome this technical
difficulty, and are able to show that the “probabilistic intuition” works: the
breaking point for the Hamiltonian Cycle Game comes around b = n/ logn.
More precisely, if b = ( log 2

27 − ε) n
log n then Maker can build up a Hamiltonian

cycle of his own.
In general, we shall examine the following class of graph games. Two

players, Breaker and Maker, with Breaker going first, play on the complete
graph Kn of n vertices in such a way that Breaker claims b(≥ 1) previously
unselected edges per move and Maker claims one previously unselected edge
per move. Maker wins if he claims all the edges of some graph from a family of
prescribed subgraphs of Kn. Otherwise Breaker wins, that is, Breaker simply
wants to prevent Maker from doing his job.

Let Clique(n; b, 1; r) denote the game where Maker wants a complete
subgraph of r vertices (from his own edges of course). Denote by Connect
(n; b, 1) and Hamilt(n; b, 1) the games where Maker’s goal is to select a
spanning tree (i.e. a connected subgraph of Kn) and a Hamiltonian cycle of
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Kn, respectively. It is well-known that the largest clique in a random graph of
n vertices and of parameter p = 1/2 has approximately 2 logn/ log 2 vertices
with probability tending to one as n tends to infinity. In view of Erdős’
heuristic, this suggests that Maker wins the fair game Clique(n; 1, 1; r) if r is
around logn. The following result is just a reformulation of Theorem 10(i)–
(ii) (see Erdős-Selfridge [20] and Beck [4]).

Theorem 13. Breaker has a winning strategy in the fair game

Clique(n; 1, 1; 2 logn/ log 2).

On the other hand, Maker has a winning strategy in

Clique(n; 1, 1; (1 − ε) logn/ log 2)

if n is large enough depending on ε > 0 only.

The next result is due to Erdős-Chvátal [15] and Beck [5, 7].

Theorem 14. We have:

(i) If b > (1 + ε)n/ logn

then Breaker has a winning strategy in Connect(n; b, 1) if n is large enough.

(ii) If b > (log 2 − ε)n/ logn

then Maker has a winning strategy in Connect(n; b, 1) if n is large enough.

(iii) If b > (log 2/27 − ε)n/ logn

then Maker has a winning strategy in Hamilt(n; b, 1) if n is large enough.

Next we point out further instances of this exciting analogy between the
evolution of random graphs and biased graph games (see [10]). The basic
idea is that Maker’s graph possesses some fundamental properties of random
graphs (mostly “expandability” type properties) provided Maker uses his best
possible strategy.

Let us begin with a trivial observation: if b = 2n then Breaker can easily
prevent Maker even from getting a path of two edges (Breaker blocks the
two endpoints of Maker’s edge). If b = εn, ε > 0 constant, then, in view
of Theorem 14(i), Breaker can force the disconnectivity of Maker’s graph.
In fact, Breaker can force at least ε

2e
− 1

εn isolated points in Breaker’s graph,
and it goes as follows (the following argument is a straightforward adaptation
of the Erdős-Chvátal proof of Theorem 14(i)). Breaker proceeds in two stages.
In the first stage, he will claim all the edges of some clique K∗

m with m = εn/2
vertices such that none of the Maker’s edges has an endpoint in this K∗

m.
In the second stage, he will claim all the remaining edges incident with at
least ε

2e
− 1

ε n vertices of K∗
m thereby forcing at least ε

2e
− 1

εn isolated points in
Maker’s graph.
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The first stage lasts no more than m = εn/2 moves, and goes by a simple
induction by m. During his first i−1 (1 ≤ i ≤ m) moves, Breaker has created
a clique K∗

i−1 with i− 1 vertices such that none of the Maker’s edges has an
endpoint in K∗

i−1. At this moment there are i−1 < εn/2 Maker’s edges, hence
there are at least two vertices u, v in the complement of V (K∗

i−1) which are
incident with none of the Maker’s edges. On his ith move, Breaker claims
edge {u, v} and all the edges joining u and v to the vertices of K∗

i−1, thereby
enlarging K∗

i−1 by two vertices. Then Maker can kill one vertex from this
clique K∗

i+1 by claiming an edge incident with that vertex. Nevertheless, a
clique of i vertices still “survives”.

In the second stage, Breaker has m = εn/2 pairwise disjoint edge-sets:
for every u ∈ V (K∗

m), the edges joining u to all vertices in the complement of
V (K∗

m). It is easy to see that Breaker can completely occupy at least e−
1
εm of

these m disjoint edge-sets by the simple rule that he has the same (or almost
the same) number of edges from all the “surviving” edge-sets at any time.

The first result says that Maker is able to build up a cycle of length
> (1 − e−

1
200ε )n. That is, if Breaker claims εn edges per move, then Maker

has an “almost Hamiltonian cycle” in the sense that the complement is
“exponentially small” (the constant factor of 200 in the exponent is of course
very far from the best possible—here we don’t make any effort to find the
optimal, or at least nearly optimal, constants).

Theorem 15. If 0 < ε < 1/200 and Breaker selects εn edges per move then
Maker can build up a cycle of length > (1 − e−

1
200ε )n on a board Kn.

Note that if Maker just wants a path Pm of m = (1 − const
√
ε)n edges,

then he can do it in the shortest way: in m moves. Indeed, Maker can
employ the following simple greedy strategy: he keeps extending his path by
adding that available point (as a new endpoint) which has minimum degree in
Breaker’s graph. Trivial calculation shows that this greedy procedure doesn’t
terminate in m = (1 − const · √ε)n moves.

Observe that if ε = 1
200 log n then Theorem 15 gives the order of magnitude

of Theorem 14(iii).
Next question: what can we say about Maker’s largest degree (i.e. Maker’s

largest star)? Obviously Breaker can prevent Maker from having a degree
larger than 2N/b on a board KN : if Maker selects an edge {u, v} then Breaker
occupies b/2 edges from u and b/2 edges from v.

For simplicity restrict ourselves to the fair case (i.e. b = 1). As far as I
know this problem is due to Erdős (oral communication). László Székely [27]
proved (by using Lemma 3 in Beck [4]) that Breaker can prevent a star of
size n

2 + const ·√n logn. In the other direction, we can prove that Maker can
achieve a star of size n

2 +const·√n. If the complete graph Kn is replaced with
the complete bipartite graph Kn,n then we obtain the following interesting
“row-column game”.
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Theorem 16. Consider the game where the board is an n × n chessboard.
Breaker and Maker alternately select one previously unselected cell. Breaker
marks his cells blue and Maker marks his cells red. Maker’s object is to achieve

at least n
2 + k (k ≥ 1) red cells in some line (= row or column). If k =

√
n

32
then Maker has a winning strategy.

Note that the proof of Theorem 16 is based on a game theoretic second
moment method. This explains the “standard random fluctuation” of size

√
n.

Theorem 16 is in sharp contrast with the chessboard type alternating
two-coloring, where the discrepancy in every line is 0 or 1 depending on the
parity of n.

Note that a straightforward modification of the proof of Theorem 16 gives
the above-mentioned case where the board is Kn.

Proof of Theorem 15. Given a simple and undirected graph G, and an
arbitrary subset S of the vertex-set V (G) of G, denote by ΓG(S) the set
of vertices in G adjacent to at least one vertex of S. Let |S| denote the
number of elements of a set S.

The following lemma is essentially due to Pósa [26] (a weaker version was
earlier proved by Komlós-Szemerédi [22]). A trivial corollary of the lemma is
that an expander graph has a long path.

Lemma 1. Let G be a non-empty graph, v0 ∈ V (G) and consider a path
P = (v0, v1, . . . , vm) of maximum length which starts from v0. If (vi, vm) ∈
G(1 ≤ i ≤ m − 1) then we say that the path (v0, . . . , vi, vm, vm−1, . . . , vi+1)
arises by Pósa-deformation from P . Let end(G,P, v0) denote the set of all
endpoints of paths arising by repeated Pósa-deformation from P (the starting
point v0 is always fixed). Assume that for each vertex-set S ⊂ V (G) with
|S| ≤ k, |ΓG(S) \ S| ≥ 2|S|. Then |end(P,G, v0)| ≥ k + 1.

In order to use Lemma 1, we need

Lemma 2. Under the hypothesis of Theorem 15, Maker can guarantee, that
right after Breaker occupied 1

20

(
n
2

)
edges, Maker’s graph satisfies the following

property. Property A: For any vertex-set S of Kn with 1
3e

− 1
200ε n ≤ |S| ≤ n/4,

|ΓG(S) \ S| ≥ 2|S| + e−
1

200ε n where G is Maker’s graph right after Breaker
claimed 1

20

(
n
2

)
edges.

Proof. We employ a general theorem concerning hypergraph games. Let H be
a hypergraph with vertex-set V (H) and hyperedge-set E(H), and let p ≥ 1
and q ≥ 1 be integers. A(H; p, 1; q)-game is a game on H in which two players,
I and II, select p and 1 previously unselected vertices per move from V (H).
The game proceeds until 1

q |V (H)| vertices has been selected by I. II wins if

he occupies at least one vertex from every hyperedge A ∈ E(H); otherwise
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I wins. In [7] we proved the following generalization of the Erdős-Selfridge
criterion: If

∑

A∈E(H)

2−|A|/pq <
1

2
(15)

then II has a winning strategy in the (H; p,1; q)-game.
In order to employ (13), we introduce some hypergraphs. Let m be an

integer satisfying 1
3e

− 1
200εn ≤ m ≤ n/4, and let H(n;m) be the set of all

complete m×(n−3m−e− 1
200εn+1) bipartite subgraphs of Kn. The “vertices”

of H(n;m) are the edges of Kn.
Now to ensure property A, in view of (15) with p = b = εn and q = 20,

it is enough to check the following inequality:

n/4∑

m= 1
3 e

− 1
200ε n

(
n

m

)(
n−m

2m+ e−
1

200ε n− 1

)
2−m(n−3m−e−

1
200ε n+1)/20εn <

1

2
.

(16)

A standard calculation shows that (16) holds, and Lemma 2 follows from (15)
and (16). �

Now we are ready to complete the proof of Theorem 15. We show that if
Maker uses the strategy in Lemma 2, then H =“Maker’s graph at the end”

contains a cycle of
(

1 − e−
1

200ε

)
n edges.

Let G = “Maker’s graph right after Breaker occupied 1
20

(
n
2

)
edges”.

Assume that there exists a vertex-set S1 ⊂ V (Kn) with |S1| ≤ 1
3e

− 1
200ε n

such that |ΓG(S1) \ S1| < 2|S1|. Throwing away the vertices ΓG(S1) ∪ S1

from G, we get a new graph G1. Again assume that there exists a vertex-set
S2 ⊂ V (G1) with |S2| ≤ 1

3e
− 1

200εn such that |ΓG1(S2)\S2| < 2|S2|. Throwing
away the vertices ΓG1(S2) ∪ S2 from G1, we get a new graph G2, and so on.
This truncation procedure terminates (say) in t steps: Gt = Gt+1 = · · · . That
is, for any vertex-set S ⊂ V (Gt) with |S| ≤ 1

3e
− 1

200ε n,

|ΓGt(S) \ S| ≥ 2|S|. (17)

We claim

|V (Gt)| >
(

1 − e−
1

200ε

)
n. (18)

Indeed, otherwise there is an index i(≤ t) such that at the ith stage of the
truncation, the union set S = S1 ∪ · · · ∪ Si first satisfies 1

3e
− 1

200ε n ≤ |S|, so
1
3e

− 1
200ε n ≤ |S| ≤ 2

3e
− 1

200ε n < n/4 and
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|ΓG(S) \ S| < 2|S|,
which contradicts property A in Lemma 2.

It follows from (17), (18) and property A that for every vertex-set S ⊂
V (Gt) with |S| ≤ n/4,

|ΓGt(S) \ S| ≥ 2|S|. (19)

It immediately follows from (19) that Gt is a connected graph. We are
going to show that Maker can build up a Hamiltonian cycle on the vertex-set
V (Gt).

Let P be a path in Gt of maximum length. Inequality (19) ensures that
the truncated graph Gt satisfies the condition of Pósa’s lemma with k = n/4,
so (see Lemma 1) | end(Gt, P, v0)| > n/4 where v0 is one of the endpoints of P .

Let end(Gt, P, v0) = {x1, x2, . . . , xk} (k > n/4), and denote by P (xi),
1 ≤ i ≤ k a path arising from P by a sequence of Pósa-deformations (see
Lemma 1), v0 is fixed and having other endpoint xi. By Lemma 1, for every
xi ∈ end(Gt, P, vU),

| end(Gt, P (xi), xi)| > n/4. (20)

Let

close(Gt, P ) = {(xi, y) : xi ∈ end(Gt, P, v0), y ∈ end(Gt, P (xi), xi)}.

By (20) we have | close(Gt, P )| > (n/4)2/2 = n2/32. Since at this
moment Breaker’s graph contains 1

20

(
n
2

)
edges, there must exist a previously

unselected edge e1 in close(Gt, P ). Let e1 be Maker’s next move. Then

Maker’s graph G
(1)
t = Gt ∪ {e1} contains a cycle of length |P |. Moreover,

G
(1)
t = Gt ∪ {e1} is connected, thus either |P | = |V (Gt)|, and we have a

Hamiltonian cycle in the truncated vertex-set, or G
(1)
t contains a longer path

(i.e. a path of length ≥ |P | + 1).

Let P1 be a path of maximum length in G
(1)
t . Repeating the argument

above, we obtain that | close(G
(1)
t , P1)| > n2/32. Since at this moment

Breaker’s graph contains 1
20

(
n
2

)
+ εn < n2/32 edges, there must exist a

previously unselected edge e2 in close(G
(1)
t , P1). Let e2 be Maker’s next move.

Then Maker’s graph G
(2)
t = Gt ∪ {e1, e2} contains a cycle of length |P1|.

Moreover, G
(2)
t = Gt ∪ {e1, e2} is connected, thus either |P1| = |V (Gt)|, and

we have a Hamiltonian cycle in the truncated vertex-set, or G
(2)
t contains a

longer path (i.e. a path of length ≥ |P1|+ 1). By repeated application of this
procedure, in less than n moves (so the required inequality 1

20

(
n
2

)
+ n · εn <

n2/32 holds), Maker’s graph will certainly contain a Hamiltonian cycle in the
truncated vertex-set V (Gt). Theorem 15 follows. �
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Proof of Theorem 16 (a “fake second moment” method). Consider a play ac-
cording to the rules. Let x1, x2, . . . , xi be the blue cells in the chessboard
selected by Breaker in his first i moves, and let y1, y2, . . . , yi−1 be the red
cells selected by Maker in his first (i− 1) moves, and the question is how to
find Maker’s optimal ith move yi. Write

Xi = {x1, x2, . . . , xi} and Yi−1 = {y1, y2, . . . , yi−1}.
Let A be a line (= row or column) of the n×n chessboard, and introduce the
the “weight”:

wi(A) =

{
|A ∩ Yi−1| − |A ∩Xi| +

√
n

4

}+

where

{α}+ =

{
α, if α > 0;
0, otherwise.

Let y be an arbitrary unselected cell, and write

wi(y) = wi(A) + wi(B)

where A and B are the row and the column containing y.
Here is Maker’s winning strategy: at his ith move he selects that

previously unselected cell y for which the maximum of the “weights”

max
y unselected

wi(y)

is attained.
The following total sum is a sort of “variance”:

Ti =
∑

2n lines A

(wi(A))2 .

The idea of the proof is to study the behaviour of Ti as i = 1, 2, 3, . . . and to
show that Tend is “large”.

Remark 1. The more natural “symmetric” total sum

∑

2n lines A

(|Yi−1 ∩ A| − |Xi ∩A|)2

is useless because it can be large if in some line Breaker overwhelmingly
dominates. This is exactly the reason why we had to introduce the “shifted
and truncated weight” wi(A).
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First we compare Ti and Ti+1, that is, we study the effects of the cells yi
and xi+1. We distinguish two cases.

Case 1: the cells yi and xi+1 determine four different lines.
Case 2: the cells yi and xi+1 determine three different lines.

In Case 1, an easy analysis shows that

Ti+1 ≥ Ti + 1 (21)

except for the “unlikely situation” when wi(yi) = 0. Indeed,

wi(yi) = wi(A) + wi(B) ≥ wi(xi+1) = wi(C) + wi(D),

and so

Ti+1 = Ti + 2wi(yi) − 2wi(xi+1) + {2 or 1 or 0} ≥ Ti + {2 or 1 or 0}
where

{2 or 1 or 0} =

⎧
⎪⎨

⎪⎩

2, if wi(A) > 0, wi(B) > 0;

1, if max{wi(A), wi(B)} > 0,min{wi(A), wi(B)} = 0;

0, if wi(A) = wi(B) = 0.

Even if the “unlikely situation” occurs, we have at least equality: Ti+1 = Ti.
Because yi was a cell of maximum weight, for xi+1, and for every other
unselected cell x, wi(x) = 0.

Similarly, in Case 2,

Ti+1 ≥ Ti + 1 (22)

except for the following “unlikely situation”: wi(B) = 0 where A is the line
containing both yi and xi+1, and B is the other line containing yi. Even if
this “unlikely situation” occurs, we have at least equality: Ti+1 = Ti. Because
yi was a cell of maximum weight, it follows that wi(C) = 0 where C is the
other line containing xi+1, and similarly, for every other unselected cell x in
line A, wi(Dx) = 0 where Dx is the other line containing x.

If i is an index for which the “unlikely situation” in Case 1 occurs,
let unsel(i) denote the set of all unselected cells after Breaker’s ith move.
Similarly, if i is an index for which the “unlikely situation” in Case 2 occurs,
let unsel(i, A) denote the set of all unselected cells after Breaker’s (i + 1)st
move in line A containing both yi and xi+1, including yi and xi+1.

If the “unlikely situation” occurs in less than 3n2/10 moves (i.e. in less
than 60 % of the total time), then we are trivially done. Indeed, then by (21)
and (22),

Tend = Tn2/2 ≥ n2

5
.
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Since Tend is a sum of 2n terms, we have

max
2n lines A

(
wn2/2(A)

)2 ≥ n2/5

2n
=

n

10
.

That is, for some line A,

wn2/2(A) =

{
|A ∩ Yn2/2−1| − |A ∩Xn2/2| +

√
n

4

}+

≥
√
n/10

where

{α}+ =

{
α, if α > 0;

0, otherwise.

So

|A ∩ Yn2/2−1| − |A ∩Xn2/2| ≥
√
n/10 −

√
n

4
>

√
n

16
,

and Theorem 16 follows.
If the “unlikely situation” in Case 1 occurs in more than n2/10 moves

(i.e. in more than 20 % of the time), then let i0 be the first time when this
happens. Clearly

| unsel(i0)| > 2n2/10 = n2/5.

It follows that there are at least (n2/5)/n = n/5 distinct columns D
containing (at least one) element of unsel(i0) each. So wi(D) = 0 for at
least n/5 columns D, that is,

|D ∩Xi| − |D ∩ Yi−1| ≥
√
n

4

for at least n/5 columns D. Therefore, after Breaker’s i0th move,

∑

n columns D

{|D ∩Xi| − |D ∩ Yi−1|}+ >
n

5

√
n

4
. (23)

Since

1+
∑

n columns D

{|D∩Yi−1|− |D∩Xi|}+ =
∑

n columns D

{|D∩Xi|− |D∩Yi−1|}+,

by (23),

∑

n columns D

{|D ∩ Yi−1| − |D ∩Xi|}+ ≥ n3/2

20
.
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Since the number of terms on the left-side is less than n− n/5 = 4n/5, after
Breaker’s i0th move we have,

max
D

{|D ∩ Yi−1| − |D ∩Xi|} > n3/2/20

4n/5
=

√
n

16
.

Obviously Maker can keep this advantage of
√
n/16 for the rest of the game,

and again Theorem 16 follows.
Finally, we study the case when the “unlikely situation” of Case 2 occurs

for at least n2/5 moves (i.e., for at least 40 % of the time). Without loss of
generality, we can assume that there are at least n2/10 “unlikely” indices i
when the line A containing both yi and xi+1 is a row. We claim that there is
an “unlikely” index i0 when

| unsel(i0, A)| ≥ n/5. (24)

Indeed, by choosing yi and xi+1, in each “unlikely” move the set unsel(i, A)
is decreasing by 2, and because we have n rows, the number of “unlikely”
indices i when unsel(i, A) < n/5 is altogether less than n · n/5

2 = n2/10.
Now we can finish just like before. We recall that wi0(D) = 0 for those

columns D which contain some cell from unsel(i0, A) (here A is the row
containing both yi0 and xi0+1). So by (24), wi0 (D) = 0 for at least n/5
columns D, that is,

|D ∩Xi| − |D ∩ Yi−1| ≥
√
n

4

for at least n/5 columns D. Therefore, after Breaker’s i0th move,

∑

n columns D

{|D ∩Xi| − |D ∩ Yi−1|}+ >
n

5

√
n

4
. (25)

Since

1+
∑

n columns D

{|D∩Yi−1|− |D∩Xi|}+ =
∑

n columns D

{|D∩Xi|− |D∩Yi−1|}+,

by (25),

∑

n columns D

{|D ∩ Yi−1| − |D ∩Xi|}+ ≥ n3/2

20
.

Since the number of terms on the left-side is less than n− n/5 = 4n/5, after
Breaker’s i0th move we have,

max
D

{|D ∩ Yi−1| − |D ∩Xi|} > n3/2/20

4n/5
=

√
n

16
.
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Obviously Maker can keep this advantage of
√
n/16 for the rest of the game,

and again Theorem 16 follows. The proof is complete. �

5. Algorithms and Complexity

Perhaps the most interesting applications of game-theoretic ideas are in
theoretical computer science. The following is an illustration of this.

Let N denote, as usual, the set of natural numbers, and let K∞ = [N]2

be the set of pairs, that is, an explicit representation of the infinite complete
graph on the set of natural numbers.

Suppose we are given a 2-coloration (red and blue) of the edges of
K∞ = [N]2. The problem is to find a monochromatic complete subgraph of
k vertices, that is, a monochromatic copy of Kk. The well-known Ramsey’s
theorem implies the existence of such a subgraph. At each step we may ask
the color of an arbitrary edge and we are interested in the minimum number
of questions necessary. The standard proof of Ramsey’s theorem, the so-called
ramification method, guarantees that we can find a monochromatic complete
subgraph of size k within 4k steps (= questions). Here is an outline of the
procedure. In the first 22k−2−1 steps we test a star, e.g. we ask for the colors
of the edges {1, 2}, {1, 3}, . . . , {1, 22k−2}. Let {1, r}, r ∈ R and {1, b}, b ∈ B
be the sets of red and blue edges, respectively. The sum of the cardinalities of
R and B is precisely 22k−2 − 1, therefore one of them, say R has cardinality
at least 22k−3. Choosing an arbitrary element s2 ∈ R we ask the colors of the
22k−3−1 edges {s2, r}, r ∈ R(r �= s2) and so on. Finally we obtain a sequence
s1 = 1, s2, . . . , s2k−1 of vertices such that the color of the edge {si, sj}, i < j
depends on index i only. Let c(i) ∈ {red , blue} be this color. Then the
complete subgraphs induced by the vertex-sets {si : c(i) red} ∪ {s2k−1} and
{sj : c(j) blue} ∪ {s2k−1} are monochromatic. Since one of them has size at

least k, we are done. This procedure needs at most
∑2k−2

i=1 (2i − 1) < 4k steps
(= questions).

Many years ago we proved that no method can perform much faster than
this ramification procedure (see [6]).

Theorem 17. An algorithm which, for any 2-coloration of K∞, will deter-
mine a monochromatic complete subgraph with k(≥ 3) vertices requires more
than 2k/2 steps. Here a step means asking the color of a single edge.

Theorem 17 was suggested by a well-known result of Erdős [17] stating
that there exists a 2-coloration of the complete graph of const ·k2k/2 vertices
which does not contain a monochromatic Kk. The proof of Theorem 4
provides an efficient algorithmic proof of Erdős’ theorem which was originally
proved by a probabilistic argument.

Consider the following game-theoretic equivalent of the problem above.
Two players, I and II, are playing on the “board” K∞ = [N]2. On each move,
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Player I selects a previously unselected edge of K∞ = [N]2 and Player II
colors it by red or blue. Player I wins if there exists a monochromatic copy
of Kk in the graph selected by him during the play; otherwise Player II wins.
That is, the aim of Player II is simply to prevent Player I from achieving his
goal. Observe that Theorem 17 is equivalent to the statement:

Player II has a strategy such that I is unable to win within 2k/2 moves.
Recently Noga Alon found a very simple proof of Theorem 17. We briefly

describe his elegant argument. We want to show that Player II can force
r2(k)/2 questions (= moves), where r2(k) is the maximum cardinality of a
complete 2-colored graph with no monochromatic Kk. This gives, by Erdős’
bound r2(k) > const·k2k/2, the lower bound in Theorem 17 (in fact, a sightly
better bound with an extra factor of k).

Put n = r2(k) and let Player II fix a 2-coloration of the edges of Kn =
{1, 2, . . . , n}2 with no monochromatic Kk. We are going to show that Player
II can make sure that after n/2 moves the colored part of K∞ = N

2 will be
isomorphic to a subgraph of his own fixed 2-colored Kn = {1, 2, . . . , n}2 with
no monochromatic Kk. So Player I cannot win within n/2 moves.

The strategy of Player II goes as follows: let i1, i2, i3, . . . , il be the vertices
that appear in the questions of Player I (clearly l ≤ 2(n/2) = n, if at most
n/2 questions have been asked), and assume this is an enumeration of these
vertices according to the order they appear in the questions of Player I. Define
f(ij) = j (observe that Player II knows f(ij) as soon as vertex number
ij is asked, he does not have to wait to the next questions of Player I).
Now, when Player I asks for the color of {ij, is} Player II answers by telling
the color of the edge {j, s} in his own fixed 2-colored Kn = {1, 2, . . . , n}2
with no monochromatic Kk. This will guarantee what is needed: up to n/2
moves the colored graph we have will be isomorphic by f to a graph with no
monochromatic Kk.

Alon’s argument proves that any decision tree algorithm needs r2(k)/2
many queries in worst case. By employing the Erdős-Selfridge “derandom-
ization” of Erdős’ probabilistic proof for r2(k) > const · k2k, we get a simple
weight-function algorithm (= strategy), and so we can essentially reduce the
complexity of the adversary’s strategy. The “danger” of this is that the Erdős-
Selfridge lower bound might turn out to be much smaller than r2(k).

Note that our original proof for Theorem 17 was a weight-function
strategy, too, but it was more complicated.

Next we study the parallel matching complexity of the problem above,
that is, we are interested in the minimum number of steps necessary to find
a monochromatic Kn, where a step means asking the colors of many point-
disjoint edges at once. First we formulate a

Conjecture 3. A parallel matching algorithm which, for any 2-coloration of
the edges of K∞, will determine a monochromatic Kn requires more than cn

steps (i.e., exponential time), where c > 1 is an absolute constant and a step
means asking the colors in an arbitrary matching at once.
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This conjecture was suggested by the following easy corollary of the
Lovász Local Lemma (see [19]).

Theorem 18. If G is an arbitrary graph (finite or infinite) with maximum
degree at most 2n/2, then the edges of G can be 2-colored such that there is
no monochromatic Kn.

The remarkable feature of the Local Lemma is that it guarantees the
existence of a “needle in a haystack”. Indeed, if the number |G| of edges of G
is a super-exponential function of n, then the probability of “success” for the
standard random 2-coloring is an exponentially small function of |G|. So the
Local Lemma does not supply even an efficient randomized algorithm.

Recently we managed to convert some of the applications of the Lo-
cal Lemma into polynomial time sequential algorithms at the cost of a
weaker constant factor in the exponent (see [8]). The algorithmic version of
Theorem 18 goes as follows (note that its proof heavily uses game-theoretic
ideas, especially “derandomization” and the trick of “BIG GAMES” and
“small games”).

Theorem 19. Let G be a finite graph with maximum degree at most
2n/96. Then there is a deterministic sequential algorithm with running time
|G|const which produces a 2-coloring of the edges of G such that there is no
monochromatic Kn.

A natural approach to attack the Conjecture above is to try to convert
the algorithmic proof of Theorem 19 to a game-theoretic strategy. However,
some surprising (or natural) technical obstacles prevented us from realizing
this heuristic.

On the other hand, we could prove the following interesting partial result:
the Conjecture above holds if a step means asking the colors in a matching
of size ≤ 2n

2/10 at once (see [9]).

Theorem 20. A parallel matching algorithm which, for any 2-coloration of
the edges of K∞, will determine a monochromatic Kn requires more than
const · 2n/40 steps (i.e., exponential time), where a step means asking the

colors in an arbitrary matching of size at most 2n
2/10 at once.

We emphasize that 2n
2/10 is super-exponential, that is, 2n

2/10 is asymp-
totically much bigger than 4n (which is the number of edges necessary to get
a monochromatic Kn via the “ramification” method described above). This
justifies our intuition that independent edges do not help too much to build
a monochromatic Kn up.

It is worth to note that, in contrast to the Conjecture (and to Theorem 20),
where the parallel matching complexity is exponential, the parallel star
complexity of the Ramsey theorem is linear. Indeed, the ramification method
requires the testing of at most 2n−1 stars (each having at most exponentially
many edges).
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Consider the following game-theoretic equivalent of Theorem 20. Two
players, I and II, are playing on the “board”K∞ = [N]2. On each move, Player

I selects m = 2n
2/10 previously unselected point-disjoint edges of K∞ = [N]2

(i.e., an m-matching) and Player II colors it by red and blue. Player I wins if
there exists a monochromatic copy of Kn in the graph selected by him during
the play; otherwise Player II wins. That is, the aim of Player II is simply to
prevent Player I from achieving his goal. Theorem 20 is equivalent to the
statement: Player II has a strategy such that Player I is unable to win this
m-matching game within const · 2n/40 moves.
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1. Introduction

This article summarizes progress on several old hypergraph problems of Paul
Erdős and a few questions to which they led. Quite unexpectedly, there turned
out to be substantial connections between the problems under discussion,
surely some indication (if any were needed) that Erdős’ questions were the
“right” ones. Here’s a quick synopsis.

The story basically begins about 10 years ago, with Vojta Rödl’s beautiful
proof [80] of the “Erdős-Hanani” Conjecture (Sect. 4). His proof was based
on a powerful “semirandom” or “guided-random” approach. (I wish there
were a better name for this.) A similar method had earlier been used in a
less precise context by Ajtai, Komlós and Szemerédi [1] and Komlós, Pintz
and Szemerédi [70]. Substantial extensions of Rödl’s work were subsequently
achieved by Frankl and Rödl [38], Pippenger (see [87] or [42]), and Pippenger
and Spencer [77] (see Sects. 4 and 6).

Most of the work described in this paper had its beginnings in attempts
to apply these ideas to prove a nonlinear lower bound on the function n(r)
of Erdős and Lovász discussed in Sect. 3. In the event, n(r) turned out to be
linear, though discovering this would certainly not have been possible if the
results of those initial attempts (see Sect. 5) had not suggested where—or at
least where not—to look for examples.

In the meantime, an understanding of the above-mentioned results,
particularly [77], had led to a proof of the “asymptotic correctness” of
the well-known Erdős-Faber-Lovász Conjecture (Sect. 2), which proof led
eventually to a much stronger result (Theorem 12) on the asymptotic
behavior of the list-chromatic index for hypergraphs; and further efforts to
prove n(r)/r → ∞ had suggested the conjecture which eventually became the
main result of Sect. 5. (Theorem 9), and led in its turn to the investigations
mentioned in Sects. 7 and 8.

In this paper we mainly try to give an overview of these developments and
connections, with discussion of proofs limited to hints at most. More detailed
accounts of some of the material—especially more serious discussions of the
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semirandom method—may be found in [42] and [60]. (I should also say that
various bits and pieces of this article are borrowed from [60–62].)

Terminology

Throughout we use H to denote a hypergraph on vertex set V. For further
hypergraph background see, e.g., [42] or [9].

The degree (in H) of x ∈ V is the number of edges of H containing x,
and is denoted dH(x) or simply d(x). Similarly, d(x, y) denotes the number
of edges containing both of the vertices x, y and d(X) the number of edges
containing all vertices of X ⊆ V . We write D(H) for the largest degree in H.
A hypergraph is D-regular if each of its vertices has degree D.

A hypergraph is intersecting, resp. simple (or nearly-disjoint, but we won’t
use this), if any two of its edges have at least, resp. at most, one vertex in
common.

For X,Y ∈ H ∪ V , the distance from X to Y , denoted Δ(X,Y ), is the
least m for which there exists a sequence X = X0, . . . , Xm = Y from H ∪ V
such that for each i, Xi−1 is an element of Xi or vice versa.

A matching of H is a collection of pairwise disjoint edges, and the size
of a largest such collection, denoted ν(H), is the matching number of H. We
write M(H) for the set of matchings of H.

A vertex cover (clearer would be “cover of edges by vertices”) of H is a
set of vertices meeting every edge of H, while an edge cover is a collection
of edges whose union is V . Either of these may be shortened to “cover” if
there seems no danger of confusion. The vertex and edge cover numbers of H
are the minimum sizes of its vertex and edge covers, and are denoted τ(H)
and ρ(H).

Each of ν, τ , ρ has a fractional counterpart, obtained by regarding the
object in question as the solution of an integer program and taking the linear
relaxation thereof. Thus a fractional (edge) cover—the only one of the three
needed here—is a function t : H → R+ satisfying

∑

A�x

t(A) ≥ 1 ∀x ∈ V, (1)

and the fractional (edge) cover number is

ρ∗(H) = min{
∑

t(A) : t a fractional edge cover of H}.
We also say that t : H → R+ is a fractional tiling if equality holds in (1).

The chromatic index (or edge coloring number) of H, denoted χ′(H), is
the least t for which there is a “coloring” σ : H → [t] which is proper in
the usual sense that σ(A) �= σ(B) whenever A,B are distinct, nondisjoint
edges. Equivalently, χ′(H) is the least size of a collection of matchings whose
union is H. We also write φ(H) for the greatest size of a collection of pairwise
disjoint covers contained in H.
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These too have fractional versions, of which we only need the fractional
chromatic index of H, denoted (unfortunately) χ′∗(H), and defined as the
minimum value of

∑

M∈M
f(M)

over f : M → R+ satisfying
∑

A∈M∈M
f(M) ≥ 1 ∀A ∈ H.

Finally we need to say a little about asymptotic notation. For nonnegative
f, g we use f ∼ g and f � g for “f/g → 1” and “lim sup f/g ≤ 1”, with limits
taken as some relevant parameter tends to infinity. We also write f =ε g for
(1 + ε)−1 < f/g < 1 + ε. As usual we use f = O(g), f = o(g) and f = ω(g)
for (respectively) sup(f/g) < ∞, f/g → 0 and f/g → ∞.

We adopt the “uniformity convention” of [77], viz: any limiting statement
involving one or more free variables ranging over vertices, edges or hyper-
graphs is understood to hold uniformly with respect to all possible choices of
these variables, as some specified numerical parameter tends to infinity. (See
Theorem 7 for a first instance of this.)

2. The Erdős-Faber-Lovász Conjecture

To avoid trivialities, hypergraphs in this section are assumed to have no
singleton edges.

The celebrated Erdős-Faber-Lovász Conjecture may be stated as follows
(see [53]):

Conjecture 1. Any simple hypergraph H on n vertices has chromatic index
at most n.

Erdős has for many years listed this as one of his “three favorite
combinatorial problems” (the other two being the Δ-system problem of Erdős
and Rado, and the problem of Erdős and Lovász described in Sect. 3), and
currently offers $500 for its resolution (see, e.g., [29]).

Notice first of all that the Conjecture is sharp in the case H is either

(a) A projective plane or degenerate projective plane (the latter being the hy-
pergraph with vertex set {0, 1, . . . , n−1} and edge set {{0, 1}, . . . , {0, n−
1}, {1, . . . , n− 1}}), or

(b) A complete graph on n vertices, n odd.

(Sufficiently minor modifications of (b) also give equality.)
On the other hand:
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(c) For intersecting H, Conjecture 1 is just the de Bruijn-Erdős Theorem [20],
which says that if |A ∩ B| = 1 for all distinct A,B ∈ H, then |H| ≤ n
(with equality only for H as in (a)).

(d) For graphs, Conjecture 1 is contained in Vizing’s Theorem [90] stating
that the chromatic index of a simple graph of maximum degree D is at
most D+ 1. (Of course this special case—Vizing’s Theorem for complete
graphs—is easily proved directly. On the other hand, as observed, e.g.,
by Meyniel (unpublished), Berge [10] and Füredi [41], it seems likely that
the bound in Conjecture 1 can be replaced by maxx∈V | ∪A�x A|, which
for graphs reduces to Vizing’s Theorem in full.)

Graphs and intersecting hypergraphs are in some sense the extreme cases
of Conjecture 1. One of the problem’s most appealing aspects is that it
has proved so intractable despite being manageable at these extremes, and
apparently less accurate between them.

Bounds

The history of results on Conjecture 1 is rather brief, surely more an
indication of the difficulty of the problem than of any lack of attempts to
resolve it. The first significant progress was made by P. Seymour, who showed

Theorem 1 ([84]). If H is simple on n vertices, then ν(H) ≥ |H|/n, with
equality only in the cases (a) and (b).

Note this is immediate from Conjecture 1. An intermediate statement was
conjectured in [84] and proved in [68]:

Theorem 2. If H is simple on n vertices, then χ′∗ ≤ n.

Equivalently (by LP-duality),

∀f : H → R+∃M ∈ M(H) such that
∑

{f(A) : A ∈ M} ≥ n−1
∑

{f(A) : A ∈ H}. (2)

(So taking f ≡ 1 we recover Theorem 1.) The proof of Theorem 2 turned out
to be much simpler than that of Theorem 1 because it was possible to exploit
properties of a worst f in (2).

It seems to have been noticed by several people that a greedy coloring of
edges of H in any nonincreasing size order requires at most 2n− 3 colors. In
the absence of edges of size 2 this bound shrinks to about 3n/2, and Chang
and Lawler [21] showed how to modify the greedy procedure to achieve the
same bound (precisely, χ′(H) ≤ �1.5n− 2 ) in general. That Conjecture 1 is
at least asymptotically correct was subsequently proved in [58]:
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Theorem 3. If H is simple on n vertices, then χ′(H) < n+ o(n).

The proof of this is based on the “semirandom” method discussed below
(see especially Sect. 6), and actually gives χ′(H) < (1+o(1)) maxx∈V |∪A�xA|
(c.f. (d) above).

Digression: Borsuk and Larman

There’s at least a formal similarity between Conjecture 1 and the following
problem of Larman [73]. (A hypergraph is t-intersecting if any two of its
edges share at least t vertices.)

Conjecture 2. If H is a t-intersecting hypergraph on n vertices, then H =
H1 ∪ · · · ∪ Hn with each Hi (t+ 1)-intersecting.

This is motivated by, and for uniform H is a special case of “Borsuk’s
Conjecture” that every bounded set in Rd is the union of d+1 sets of smaller
diameter ([19]; see [17, 24, 46] for further discussion).

Conjecture 2 and Borsuk’s Conjecture were recently disproved in [65]. (We
again come back to Erdős. The disproof is a simple application of a Theorem
of Frankl and Wilson [39] which has its roots in the de Bruijn-Erdős Theorem
and Fisher’s inequality [36]. Erdős was also one of the first to suggest that
Borsuk’s Conjecture might be false [30].)

The case t = 1 of Conjecture 2 remains open (and interesting). Here
Füredi and Seymour (see [31, 68]) proposed the stronger conjecture that one
may use Hi’s of the form {A ∈ H : A ⊇ {x, y}} for appropriate vertex pairs
{x, y}. This too turns out to be false [64], though a simple disproof would
still be welcome. (Curiously, the random construction of [64] takes just a few
lines to describe, but as of now about 20 pages to justify.)

3. A Problem of Erdős and Lovász

In a seminal paper [33], Erdős and Lovász pose the problem of estimating,
for positive integer r,

n(r) := min{|H| : H r-uniform, intersecting, with τ(H) = r}.
That is, with how few intersecting r-edges can one force τ = r? While the
conditions here may at first glance seem a little arbitrary, notice that we must
require “intersecting,” or some substitute, to make the question nontrivial,
and that once we assume “r-uniform, intersecting,” we are just asking that τ
be as large as possible subject to these conditions. Thus the Erdős-Lovász
problem is a quite natural way of making concrete the vague question, how
can one economically force large cover number in a hypergraph with large
edges?
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Erdős and Lovász showed (writing Pr for any projective plane of order
r − 1)

n(r) ≥ 8r/3 − 3 for all r, (3)

and

n(r) ≤ 4r3/2 log r if there exists a Pr, (4)

the second inequality being an immediate consequence of

Theorem 4 ([33]). If H is a set of m ≥ 4r3/2 log r random lines from Pr,
then Pr(τ(H) = r) → 1(r → ∞).

They also conjectured that the correct rate of growth here should be
r log r. This was shown in [59]:

Theorem 5. If H is a set of m ≥ 22r log r random lines from Pr, then
Pr(τ(H) = r) → 1(r → ∞).

Of course this also gives the corresponding improvement in (4). The
correct value of m here is probably about 3r log r; see [59] or [60] for a precise
statement.

The problem from Erdős’ “list of three” was to decide whether

n(r) = O(r). (5)

This was done in [61]. The answer—that (5) is true—was probably not what
most people expected. (Certainly it wasn’t what the author expected.)

We don’t have space to go into the construction here, but want to mention
that one ingredient is the work of Chowla, Erdős and Straus [23] on the
existence of large sets of mutually orthogonal Latin squares. See also the
discussion following Theorem 9 for a small additional hint at what’s involved.

The constant in (5) is so far not very good. Quite surprisingly the best
lower bound is still (3), though I feel quite certain this could be improved
somewhat via the ideas of [57, 66] discussed in Sect. 5.

Meyer’s Problem

In connection with n(r), let us just briefly mention a related problem of
similar vintage due to J.-C. Meyer [76]. Meyer defined

m(r) = min{|H| : H a maximal intersecting, r − uniform hypergraph}
and conjectured that m(r) ≥ r2 − r + 1 (projective planes being the obvious
examples). This was disproved by Füredi [40], who showed

m(r) ≤ 3r2/4 if there exists a Pr/2+1. (6)

On the other hand, despite a fair amount of subsequent effort, it remains quite
unclear how m(r) ought to grow. As of now the best results are (from [11, 18]
and [25] respectively)
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m(r) ≤ r5 ∀r, (7)

m(r) < r2/2 +O(r) if there exists a Pr, (8)

and

m(r) ≥ 3r for r ≥ 4. (9)

(The lower bound is a slight improvement on m(r) ≥ 8r/3− 3, which follows
from (3), since trivially m(r) ≥ n(r). See also [60] for a proposed construction
for m(r) = o(r2) when there exists a Pr.)

While the examples for n(r) described above don’t seem to give anything
for m(r), they seem to me strongly to suggest the truth of

Conjecture 3. m(r) = O(r).

4. The Erdős-Hanani Conjecture and Asymptotics
of Packing and Covering Problems

Both Theorem 3 and, in a sense, the proof of (5) had their roots in yet
another Erdős problem, the so-called “Erdős-Hanani Conjecture” of 1963,
and in Rödl’s beautiful and seminal proof thereof. Here and in the next two
sections we outline work which grew out of Rödl’s Theorem. As mentioned
earlier, much of this material, and in particular the powerful “semirandom”
approach underlying it all, was discussed at some length in [42, 60], so we
will be pretty brief here, especially as regards the proofs.

The Erdős-Hanani Conjecture

For positive integer t, say a family F of subsets of a set V is a t-packing
(resp. t-cover) if each t-subset of V is contained in at most (resp. at least)
one member of F . For 2 ≤ t < k < v = |V |, let P (v, k, t) (resp. C(v, k, t))
denote the size of a largest t-packing (resp. smallest t-cover) of k-sets in V .

Erdős and Hanani [32] proved that the obvious bounds

P (v, k, t) ≤
(
v

t

)(
k

t

)−1

≤ C(v, k, t) (10)

are asymptotically tight for t = 2 and any fixed k, and conjectured the same
result for every t and k. This is Rödl’s Theorem:

Theorem 6 ([80]). For every fixed t and k,

P (v, k, t) ∼
(
v

t

)(
k

t

)−1

∼ C(v, k, t).
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(This is an asymptotic version of a well-known conjecture in the theory
of block designs which states that the bounds (10) are exact for large enough
v satisfying the obvious necessary conditions

(
k − i

t− i

) ∣
∣
∣
∣

(
v − i

t− i

)
for 0 ≤ i ≤ t− 1.

For t = 2 this was proved by R. M. Wilson in the early 1970s [93], but for
t ≥ 3 a proof still appears remote.)

In other language, Theorem 6 gives the asymptotics of the matching and
edge cover numbers of the hypergraph H =

{(
K
t

)
: K ∈ (

V
k

)}
on the vertex

set
(
V
t

)
. In fact, as shown by P. Frankl and Rödl [38], Rödl’s Theorem is just

one instance of a remarkably general packing and covering phenomenon for
hypergraphs with bounded edge sizes. An even stronger and cleaner version
of their Theorem was proved by N. Pippenger (unpublished; for the original
proof see [87] or [42]):

Theorem 7. Let k be fixed and H a k-uniform D-regular hypergraph on
n vertices satisfying

d(x, y) < o(D) for all distinct vertices x, y. (11)

Then

ν(H) ∼ n/k ∼ ρ(H).

(The Frankl-Rödl Theorem differs from Theorem 7 in requiring an explicit
bound (roughly D/(log |V |)3) on pairwise degrees. Incidentally, Theorem 7
is our first use of the “uniformity convention” (see Terminology): limits are
taken as D → ∞, with convergence uniform in x, y and H.)

The “semirandom” Approach

Joel Spencer remarks in [87] that the Erdős-Hanani Conjecture always
seemed a natural candidate for a probabilistic proof. And the proof was
probabilistic. . .

A natural way to try to prove Theorem 7, say for matchings, would be as
follows. Let H0 = H, M0 = ∅, and for i = 1, . . . do

(i) Choose Ai uniformly at random from Hi−1,
(ii) Set Mi = Mi−1 ∪ {Ai} and Hi = {A ∈ Hi−1 : A ∩ Ai = ∅}.

When Hi = ∅ we stop and take Mi to be our matching.
Most likely this procedure does work (e.g., in the sense that the random

matching it produces has expected size asymptotic to n/k), but I don’t think
anyone knows how to show this at the moment. Rödl’s fundamental insight
(translated to the proof of Theorem 7) was that we can do the analysis if at
each stage we choose a small but fixed (positive) proportion of the desired
matching M , rather than just one edge.
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To say this a little more precisely, we switch from matchings to covers for
a while. Thus we want to show ρ(H) < (1 + δ)n/k for δ > 0 fixed, H as in
Theorem 7, and sufficiently large D.

Fix ε > 0 small relative to δ. Let H0 = H, V0 = V , and iterate the
following procedure for i running from 1 to about ε−1 log(1/δ). Let Ki be a
random subset of Hi−1 chosen according to

Pr(A ∈ Ki) = ε/Di−1

(for Di see below), these events mutually independent. Set

Vi = Vi−1 \
⋃

{A : A ∈ Ki}, Hi = {A ∈ Hi−1 : A ⊆ Vi}.
After the specified number of iterations we add to ∪Ki one edge containing x
for each x ∈ V not covered by ∪Ki, and claim this (usually) gives the desired
cover. Of course what needs to be shown is that | ∪ Ki| is typically about
n/k, while |V \ ∪{A : A ∈ ∪Ki}| is small relative to n.

The key to the success of this approach is that we can understand
how various relevant quantities—|Ki|, |Vi|, |Hi|, and especially degrees in
Hi—ought to evolve, and, moreover, show that they do typically evolve
approximately as they ought. In particular, each “residual” hypergraph Hi

will be close to regular, meaning most of its vertices will have degree close to
some (predictable) Di.

To see why this might be true, suppose we fix x ∈ Vi−1 and condition on
{x ∈ Vi} (that is on {x ∈ A ∈ Hi−1 ⇒ A /∈ Ki}). Then writing XA for the
indicator of {A ∈ Hi}, dHi(x) =

∑{XA : x ∈ A ∈ Hi−1} is usually the sum
of about Di−1 Bernoulli random variables whose expectations are, because of
the approximate regularity of Hi−1 and (11), about (1 − ε/Di−1)(k−1)Di−1 .
Moreover, again because of (11), there is considerable independence among
these random variables, enough to enable us to say (via Chebyshev’s
inequality) that dHi(x) is likely to be close to its expectation.

Actual implementation of this rough description requires considerable
care. In particular, it does take some thought to convince oneself that the
various estimates don’t deteriorate unacceptably over the specified number
of iterations; but we won’t go into this here.

For the number of iterations, note that the “natural” value of Pr(x ∈
Vi|x ∈ Vi−1) is about (1− ε/Di−1)

Di−1 ≈ e−ε, so that ε−1 log(1/δ) iterations
should reduce the number of vertices to about δ|V |.
Remarks.

1. A technical but important point is that, if n is large relative to D we
cannot guarantee that all degrees in Hi are close to Di. It was precisely
in the handling of this point that Pippenger improved on [38].

2. For the matching portion of Theorem 7 we may dispense with the final
augmentation of ∪Ki and simply take our matching M to consist of all
isolated edges of ∪Ki. The number of edges which this removes from
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Ki should be about ε|Ki|, an acceptable loss. Actually the two parts
of Theorem 7 are easily seen to be equivalent, but for the proof of
Theorem 10 below one wants a procedure for generating a nicely behaved
random matching; see Theorem 11. The procedure just described—
essentially that of [77]—is an improved version of Pippenger’s original
proof designed to accomplish this.

5. Fractional Versus Integer

As stated earlier, the starting point for most of the work discussed here was
the realization that something like Theorem 7 could be used to try to prove
n(r)/r → ∞. In this section we give a little indication of this connection
and sketch the work (other than [61]) that evolved most directly from this
attempt.

Connection with n(r)

For t : H → R+, let t(H) =
∑{t(A) : A ∈ H}, define t̄ : 2V → R+ by

t̄(A) =
∑

{t(B) : B ⊇ A},
and set

αi(t) = max{t̄(W ) : W ⊆ V, |W | = i}.
For example, if H is r-regular, then for the fractional tiling t ≡ 1/r we have
α2(t) = r−1 max{d(x, y)} and (11) (with r replacing D) is equivalent to

α2(t) → 0, (12)

so that Theorem 7 is contained in

Theorem 8 ([57]). Let k be fixed, H a k-bounded hypergraph, and t : H →
R+ a fractional cover. Then

ρ(H) � t(H) (α2(t) → 0).

(A similar result holds for matchings, but we confine ourselves here to
covers.)

To see the connection with the Erdős-Lovász problem, we dualize: n(r)
is the least number of vertices in an r-regular hypergraph satisfying

d(x, y) > 0 for all distinct vertices x, y (13)

and having edge cover number r. Thus the following consequence of Theo-
rem 8 is relevant.

Corollary 1. Suppose H is r-regular with at most cr vertices, c fixed,
d(x, y) > 0 for all x, y ∈ V and
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max{d(x, y) : x, y ∈ V, x �= y} = o(r).

Then ρ(H) < (c/(c+ 1) + o(1))r.

Or undualized:

Corollary 2. Suppose H is r-uniform, intersecting, of size at most cr,
c fixed, and satisfies

max{|A ∩B| : A,B ∈ H, A �= B} = o(r). (14)

Then τ(H) < (c/(c+ 1) + o(1))r.

After a preliminary step which eliminates large edges, the connection
between Theorem 8 and Corollary 1 is provided by the observation that if
H is r-regular with n ≤ cr vertices and satisfies (13), then the function
t : H → R+ given by

t(A) = |A|/(n+ r − 1) (15)

is a fractional cover of total weight
∑

A∈H
t(A) = nr/(n+ r − 1) ≈ nr/(n+ r) ≤ cr/(c+ 1). (16)

Notice also that larger pairwise degrees—corresponding to larger intersec-
tion sizes in the original formulation—will tend to give even smaller fractional
cover number, suggesting that the best hope for proving (5) should indeed be
via something akin to the projective plane based constructions of Theorems 4
and 5. But the above results say that one cannot prove (5) with H’s in which
all edge intersections are small.

This seemed for quite a while to support the opinion that n(r)/r → ∞.
But the correct lesson, very roughly, was that one should allow a few
strategically placed small sets X with large d(X). This, it turns out, can
be done in such a way that the value of the fractional cover doesn’t shrink
too much, but we lose Theorem 8 entirely.

The proof of Theorem 8 is similar to that of Theorem 7. At each stage
we have some fractional tiling ti−1 of the remaining hypergraph Hi−1 which
guides the choice of Ki: we take each A ∈ Hi−1 to be in Ki with probability
εti−1(A).

It’s then necessary to update ti−1 in addition to Vi−1 and Hi−1. A nice
bonus of the more general framework is that, because we are not restricted
to uniform hypergraphs, the difficulty mentioned in Remark 1 at the end
of Sect. 4 here essentially takes care of itself. Our random procedure will
produce a hypergraph G ⊆ Hi−1 and approximate fractional tiling s. We can
then (with high probability) replace G by some Hi ≤ G (meaning each edge
of Hi is contained in an edge of G) and s by a fractional tiling ti of Hi such
that ti(Hi) ≈ s(G). In particular, we begin each iteration with a fractional
tiling, the fractional analogue of a regular Hi−1.
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Local Behavior

The work in [66] again grew out of attempts to push the approach of
Theorem 8 to prove n(r)/r → ∞. The general idea was that it should be
possible to relax (12) to a requirement that “locally”—that is, on small sets
of vertices—one can find ordinary (integer) covers which mimic the fractional
cover t. A way to make this precise is as follows.

For t : H → R+ and any X ⊆ V , define t|X : 2X → R+ by

t|X(A) =
∑

{t(B) : B ∩X = A}.
Write MP (X) for the matching polytope of X :

MP (X) = conv{1M : M a matching of 2X}.
Denote by b(t) the largest b such that for any X ⊆ V with |X | ≤ b we have
t|X ∈MP (X). In place of (12) we then require that b(t) → ∞. (Note this is
weaker than (12).)

Suppose for example that V (H) is partitioned into triples, and that we
allow t̄({x, y}) to be large when x, y are in the same triple and take each
edge of H to meet each triple in either 0 or 2 vertices. Then b(t) = 2 and
it’s more or less typical (e.g., take H regular and uniform) for ρ(H) to be
about (4/3)ρ∗(H), reflecting the fact that we have ρ(Γ) = (4/3)ρ∗(Γ) for the
underlying graph Γ of pairs for which t̄ is allowed to be large.

But—this was the starting point—the fractional covers (15) arising in
connection with n(r) cannot look like this, and in fact b(t) does tend
to be large in situations of interest for n(r). (To see what’s meant here,
assume most pairwise degrees in H are 1—if they’re not then we gain
substantially in (16)—and use the fact that t in (15) is given by t(A) =
(n+ r− 1)−1

∑
x∈V 1{A�x} to show that for X not too large, t|X is (usually,

approximately) in MP (X).)
At any rate, it turns out that “b(t) → ∞” is the correct relaxation of

(12), provided we at least insist that α3 be small:

Theorem 9 ([66]). Let k be fixed, H a k-bounded hypergraph, and t : H →
R+ a fractional tiling. Then

ρ(H) � t(H) (α3(t) → 0, b(t) → ∞).

This implies for example that in Theorem 8 we could replace α2(t) by

max{t̄({x, y}) : x, y ∈ X or x, y ∈ Y }
whereX∪Y is a partition of V . That is, allowing t̄ to be large on the edges of a
bipartite graph doesn’t create obstructions to good cover behavior, reflecting
the fact that fractional and integer edge cover numbers coincide for bipartite
graphs.
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(Though this has yet to be checked, Theorem 9 probably implies that
Corollary 2 holds even if we relax (14) to the analogous condition on 3-wise
intersections.)

If we allow α3(t) to be large, then the situation changes completely.
For instance, the dual, H, of a random cubic graph (as in [8, 12, 13]) is
a 3-uniform, 2-regular hypergraph which typically has no short cycles, yet
has ρ substantially greater than |V |/3. Thus the fractional tiling t ≡ 1/2 has
large b(t), yet ρ(H) is much larger than t(H).

I think it’s fair to say that it’s this phenomenon that lies at the heart of
the construction of [61]: there the “small sets X with large d(X)” mentioned
following (16) comprise a hypergraph with properties akin to those described
in the preceding paragraph.

Theorem 9 was conjectured in [60]. The proof turned out to be both harder
and much more interesting than originally anticipated, involving, centrally,
some understanding of the behavior of so-called “normal” distributions on
the set of matchings of a graph. This connection is sketched a little in Sect. 7.
The questions raised in [66] also led, if somewhat tangentially, to the work
on random matchings outlined in Sect. 8.

6. Chromatic and List-Chromatic Indices

It was suggested by Füredi [88] that the hypotheses of Theorem 7 might
guarantee the existence not just of one good matching or cover, but of a
decomposition of the entire hypergraph into matchings or covers which are
good on average. This was proved by Pippenger and Spencer.

Theorem 10 ([77]). Under the hypotheses of Theorem 7,

χ′(H) ∼ D(H) ∼ φ(H).

(As noted in [77], the second assertion of Theorem 10 follows from the
first; here we restrict our attention to χ′.)

Theorem 10 is based on an elegant variant of Theorem 7, which we state
for future reference.

Theorem 11. For every ε > 0 and k there are δ > 0 and t so that if H is a
k-uniform, D-regular hypergraph on V with

d(x, y) < δD ∀x, y ∈ V,

then there is a probability distribution p on the set M of matchings of H
satisfying

(a)
∑{p(M) : A ∈M ∈ M} =ε 1/D ∀A ∈ H,

(b) For M chosen according to p, and A ∈ H, the event {A ∈ M} is
independent of the events {{B ∈M} : Δ(A,B) > t}.
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In fact what’s shown in [77] is that the distribution obtained from the random
procedure sketched in Sect. 4 has these properties. (The present ε and δ are
not those used earlier). Of course for the expected size, say μ, of a random
matching drawn from a distribution satisfying (a), we have μ =ε n/k. This
(letting ε → 0) yields Theorem 7, and says that matchings of the desired size
are plentiful in some sense.

The proof of Theorem 10 is in the same vein as that of Theorem 7. Rather
than cover vertices by edges, we must cover edges by matchings. Again we
proceed in stages, choosing at each stage enough random matchings to cover
a small but constant fraction of the surviving edges. Here, in contrast to the
earlier situation, it is far from obvious what ought to be meant by “random
matchings”; but matchings drawn from distributions as in Theorem 11 work
very nicely (except that we should relax D-regularity in the theorem to
something like “d(x) =δ D ∀x ∈ V ”).

The point of (b)—I think this the nicest new idea here—is that it
supports use of the Lovász local lemma ([33] or e.g. [4]) to say that our
small sets of matchings have positive probability of being well-behaved at
every vertex. (Here and again in Theorems 12 and 13, application of the
local lemma requires much stronger concentration assertions than are given
by Chebyshev’s inequality. These are achieved via martingales: the so-called
“Azuma-Hoeffding” inequality ([7, 54], or e.g. [14, 75]) in the present instance,
and extensions thereof for the later results.)

List Colorings

The final (for now; see Conjecture 7) development in the direction we’ve
been discussing was an extension of Theorem 10 to list-colorings which was
conjectured in [58] and proved in [62].

Recall that the list-chromatic index, χ′
l(H), of H is the least t such that

if S(A) is a set (“list”) of size t for each A ∈ H, then there exists a proper
coloring σ of H with σ(A) ∈ S(A) for each A ∈ H. Of course χ′

l is always at
least χ′, so Theorem 10 is contained in

Theorem 12 ([62]). Let k be fixed and H a k-bounded hypergraph of
maximum degree D satisfying (11). Then

χ′
l(H) ∼ D (D → ∞).

List-colorings have recently been getting a lot of attention. Here we just
want to give enough background on list-chromatic indices of graphs to put
the graphic case of Theorem 12 in context. But see [3] for a survey of recent
results, and, e.g., [47, 48, 62] for more on what’s touched on here. Let us also
mention that we are, as usual, in Erdős territory: the study of list colorings
was initiated by Vizing in [92] and, independently, Erdős, Rubin and Taylor
in [34].
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The following central problem, now called the “list-chromatic” or “list
coloring” conjecture, seems to have been proposed several times, probably
first by Vizing in 1975 (see, e.g., [22, 47, 48] for more on this story).

Conjecture 4. For every multigraph G, χ′
l(G) = χ′(G).

The case G = Kn,n was proposed by J. Dinitz in about 1978 (see [28])
in the context of Latin squares. This version is particularly appealing, and
seems to have provided much of the initial stimulus for western interest in
such questions.

Conjecture 5 (Dinitz Conjecture). Suppose that for 1 ≤ i, j ≤ n, Si,j

is a set of size n. Then there is a partial Latin square (si,j)1≤i,j≤n with
si,j ∈ Si,j for all i, j.

(A partial Latin square of order n is an n× n array of symbols with the
property that no symbol appears more than once in any row or column.)

Let us just quickly mention that there are natural extensions of these
problems to vector spaces and matroids. For example, the following was
proposed in [62] as a common generalization of the Dinitz Conjecture and
a conjecture of G.-C. Rota [55] (see [55, 62] for more in this direction).

Conjecture 6. Let V be an n-dimensional vector space and suppose that for
1 ≤ i, j ≤ n, Si,j is a basis of V. Then there exist si,j ∈ Si,j for 1 ≤ i, j ≤ n
such that each of the sets {si,j : j = 1, . . . , n}, {si,j : i = 1, . . . , n} is a basis
of V.

For simple G, Conjecture 4 together with Vizing’s Theorem would imply
that D(G) ≤ χ′

l(G) ≤ D(G) + 1, while Theorem 12 says that D(G) is at
least the right asymptotic value. This improved several earlier bounds (e.g.,
[15, 16, 22]), the best of which was

χ′
l(G) < 7D(G)/4 + o(D(G))

due to Bollobás and Hind [16].
We haven’t had space in this very brief summary to discuss a beautiful

algebraic approach to list colorings which was introduced by Alon and Tarsi
in [5] and has had several important consequences ([27, 37] or [3]). Recently
J. Janssen [56] used this approach to give a simple and elegant proof that
χ′
l(Kn,n+1) = n + 1 (which in particular says that the Dinitz Conjecture is

not off by more than 1), and then Häggkvist and Janssen [48], taking [56] as
a starting point, showed, inter alia,

χ′
l(G) < D +O(D2/3 logD) (17)

for simple bipartite G of maximum degree D. At this writing they can also
show χ′

l(Kn) ≤ n+ 1, and expect that their method will extend to give (17)
for nonbipartite graphs.
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Semirandom Again

Theorem 12 was conjectured in [58], where a much more limited extension
of Theorem 10 was used to prove Theorem 3. (Derivation of Theorem 3 from
Theorem 12 is left as a nice exercise for the reader; or see [60].) While it was
nice to see the asymptotic correctness of Conjecture 1, it’s my (perhaps not
majority) opinion that the most important thing to come out of [58] was the
right conjecture along these lines, namely what became Theorem 12.

The special case of Theorem 12 proved in [58] requires a good under-
standing of [77] but not too much in the way of new ideas. Theorem 12, on
the other hand, for some time seemed beyond reach, an opinion influenced in
part by the apparent difficulty of even the graphic case, and in part by the
fact that the Pippenger-Spencer proof clearly would not extend.

The basic idea of the eventual proof is actually quite natural, though a
little strange in that it initially seems doomed to failure. Here’s a thumbnail
sketch in the “standard” case that all the S(A)’s are the same. (The general
case is not essentially different, but involves some fiddling to keep the relevant
parameters on track.)

We color the hypergraph in stages. At each stage we tentatively assign
each as yet uncolored edge A a random color from its current list of legal
colors. In some (most) cases, the color tentatively assigned to A will also be
assigned to one or more edges meeting A. Such edges A are simply returned to
the pool of uncolored edges. The remaining edges (those not involved in such
“collisions”) are permanently colored with their tentative colors and removed
from the hypergraph. We then modify the lists of legal colors (mainly meaning
that we delete from S(A) all colors already assigned to edges which meet A)
and repeat the process.

Martingale Concentration results together with the Lovász local lemma
are used to show that this procedure can be repeated many times, leaving
after each stage a hypergraph and modified lists, of legal colors which are
reasonably well-behaved. (Finding the correct definition of “well-behaved” is
crucial.) Eventually our control here does deteriorate, but by the time this
happens the degrees in the remaining hypergraph are small relative to the
(minimum) number of colors still admissible at an edge, and the remaining
edges can be colored greedily.

The strange feature alluded to above is that the lists of legal colors initially
shrink much faster than the degrees. (Roughly, when the degrees have shrunk
to βD, with β not too small, the lists will have size about βkD if edges are of
size k.) This at first seems unpromising, since we are accustomed to thinking
of degree as a trivial lower bound on chromatic index. What saves us here—
this is perhaps the central idea of the proof—is that the lists Si(A) (of legal
colors for A at the end of stage i) tend to evolve fairly independently, except
where obviously dependent. So for example, for a color γ which through stage
i has not been permanently assigned to any edge meeting A∩B (that is, we
condition on this being so), the probability that γ belongs to Si(B) is not
much affected by its membership or nonmembership in Si(A).
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Implementation of this idea is reasonably delicate; still, I think the
proof demonstrates considerable flexibility for the “guided-random” approach
(beyond what was already apparent from the results discussed above), and
expect to see further applications in the near future.

For example, about a year ago, J. H. Kim [69] used a similar method
to make significant progress on Vizing’s old problem [91] of upper bounds
for the chromatic number of a triangle-free graph G of maximum degree D,
proving

Theorem 13. If G is a graph of maximum degree D and girth at least 5,
then χl(G) < (1 + o(1))D/ logD.

(with the list-chromatic number χl defined in the obvious way). Here even
for large girth the best previous upper bound was about D/2 due to
Kostochka [71], though it seems reasonable to expect, particularly in view
of [1, 2, 86], that the the bound of Theorem 13 remains valid for triangle-
free G.

(Recently, R. Häggkvist told me that A. Johansson and S. McGuiness,
had just (independently) proved Kim’s result—following the method of
Theorem 12 as described in [60]—and believed that for girth 4 they could
show χ(G) = O(D/ logD) and χl(G) = o(D).)

A Conjecture

Before closing this section, we mention one more (important) problem which
recalls the “fractional vs. integer” theme of Sect. 5.

Conjecture 7. For fixed k and k-bounded hypergraph H,

χ′
l(H) ∼ χ′(H) ∼ χ′∗(H).

This goes far beyond Theorem 12, giving in effect—LP’s being regarded
as “tractable” problems—a complete understanding of the asymptotics of
chromatic and list-chromatic indices of k-bounded hypergraphs, even if we
abandon assumptions such as (11) entirely. Note it contains Theorem 12 via
Theorem 11, since the existence of a distribution p on M = M(H) satisfying

∑
{p(M) : A ∈M ∈ M} ∼ 1/D ∀A ∈ H

is the same as χ′∗(H) ∼ D.
Even the very special case of Conjecture 7,

for multigraphs G,χ′(G) ∼ χ′∗, (18)

is open, and of considerable interest. (For multigraphs χ′∗ is given by
Edmonds’ Matching Polytope Theorem ([26] or, e.g., [82]). More precise
versions of (18) were proposed by Goldberg (see [89]), Andersen [6], Seymour
[83] and again Goldberg [45]. The most important results on chromatic indices
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of multigraphs are those of Shannon [85] and Vizing [90]; see also [35]. For χ′
l

of a multigraph G, the current upper bound is 9D(G)/5, due to Hind [52].)
For one way of attacking (18) see Question 1 below.

7. Normal Distributions

As mentioned earlier, a central role in the proof of Theorem 9 is played by
so-called “normal” distributions on the set of matchings of a graph. In this
section we say what these are and try to give some idea of what they have to
do with Theorem 9. Then in Sect. 8 we describe some recent results for the
special case of uniform distribution.

Let G = (V,E) be a graph and M = M(G) the set of matchings of G.
For M ∈ M, v ∈ V , we write v ≺M if v is contained in some edge of M .

A normal distribution on M is a probability distribution p = pλ derived
from some λ : E → R+ according to

w(M) =
∏

A∈M

λA,

p(M) = w(M)/
∑

M ′∈M
w(M ′).

For p a probability distribution on M, M ∈ M chosen according to p and
Fi ∈ E, set pF1,...,Ft = Pr(F1, . . . , Ft ∈ M). We call the probabilities pF for
F ∈ E the marginals of p.

Let f : E → R+. Edmonds’ Matching Polytope Theorem says (though
not in this language) that there is a probability distribution on M with
marginals f iff

∑

F�v

f(F ) ≤ 1 ∀v ∈ V (19)

and
∑

{f(F ) : F ⊆W} ≤ |W |/2� ∀W ⊆ V. (20)

The matching polytope, MP (G), is the set of such f ’s. For normal distri-
butions the analogous characterization was observed by Rabinovich, Sinclair
and Wigderson [78]:

Theorem 14. There exists a normal distribution with marginals f if and
only if the inequalities (19) and (20) are strict for all v ∈ V and W ⊆ V .

We say that distribution p on M has the property Ed(δ) if its marginal
distribution f is in (1 − δ)MP (G), or equivalently, if the inequalities (19)
and (20) hold even when their right hand sides are multiplied by (1 − δ).
A crucial ingredient of the proof of Theorem 9 is a somewhat more technical
version of
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Lemma 1. For all δ, ε > 0, and l there exists D such that if p has Ed(δ)
and if F1, . . . , Fl ∈ E are pairwise at distance at least D in G, then

pF1,...,Fl
=ε pF1 · · · pFl

.

Thus, requiring that the marginals of p stay well away from the boundary of
MP (G) guarantees a fair amount of (approximate) independence among the
events {F ∈ M}.

Theorem 9 is proved by applying Theorem 8 to a sort of contraction of a
randomly generated subhypergraph of the given hypergraph H. To give some
idea of the relevance of Lemma 1, we make some simplifying, and slightly
vague, assumptions. (The actual proof uses some preliminary reductions to
arrive at similar, but somewhat weaker assumptions.)

Suppose Γ is a set of pairs—thought of as a graph—from V such that
max{t̄({x, y}) : {x, y} /∈ Γ} is small, and such that each A ∈ H is the union
of some collection of edges of Γ, called the parts of A, which are pairwise
far apart in Γ. Under the latter assumption, the restriction t̄|Γ is a fractional
tiling; moreover, it’s not hard to see that if b(t) is large enough then f :=
(1−ϑ)t̄|Γ ∈ (1−δ)MP (Γ) for appropriate ϑ, δ, both small positive constants.

Write F ≺ A if F is a part of A. Let p be the normal distribution with
marginals f (as shown in [78], p is unique), and let M be chosen according to
p. By the preceding remark, Lemma 1 applies to p. Define a new hypergraph
H∗ on vertex set V ∗, and t∗ : H∗ → R+ by

V ∗ = {F ∗ : F ∈ M},
H∗ = {A∗ : A ∈ H, all parts of A are in M}

(with F ∗ ∈ A∗ iff F ≺ A), and

t∗(A∗) =
∏

F≺A

f(F )−1t(A) ∀A∗ ∈ H∗.

We prove Theorem 9 by showing that typically (using “≈” and “�” only
qualitatively in what follows)

ρ(H) � ρ(H∗) � t∗(H∗) ≈ t(H).

Note for example that if the various events {F ∈ M} were mutually
independent, then we’d have E[t∗(H∗)] = t(H).

Let us just say a little about the middle inequality, which is the heart of
the matter. To prove it, we intend to apply a mild generalization of Theorem 8
to the pair (H∗, t∗). The main point (of the whole business) is to show that
t∗ is (usually and in an appropriate sense) an approximate fractional tiling
of H∗. This goes roughly as follows.

Suppose we condition on {F ∈ M} (for some F ∈ Γ) and consider
t̄∗(F ∗) =

∑{t∗(A∗) : F ∗ ∈ A∗ ∈ H∗}. This has (conditional) expectation
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∑

A�F

Pr(A∗ ∈ H∗|F ∈ M)
∏

G≺A

f(G)−1t(A) ≈ f(F )−1
∑

A�F

t(A)

= f(F )−1t̄(F ) = (1 − ϑ)−1 ≈ 1,

since according to Lemma 1 and our simplifying assumptions,

Pr(A∗ ∈ H∗|F ∈ M) = Pr(G ∈M ∀F �= G ≺ A|F ∈ M) ≈
∏

F 	=G≺A

f(G).

Moreover—we leave the reader to ponder this nicest point—Lemma 1 enables
us to use Chebyshev’s inequality to show that t̄∗(F ∗) (again conditioned on
{F ∈ M}) is usually close to its mean. (There’s a slight lie here: we should
add an assumption to the effect that for {x, y} ∈ Γ, t̄({x, y}) is not too small.)

Thus, typically, t̄∗(F ∗) will be close to 1 for most F ∗ ∈ V ∗, which is
basically what we want.

8. Random Matchings

For the rest of our discussion we consider uniform distribution on M(G)
(so the normal distribution corresponding to λ ≡ 1). The main results here,
Theorems 17 and 18, are surprisingly strong, and show that the distributions
in question are in some respects much nicer than seems to have been
previously realized.

The material of this section is a little tangential to the topics of Sects. 2–6,
but I include it here for two reasons. First, I do think of it as growing out
of the earlier work. Second, understanding the extent to which the results
described here extend to k-bounded hypergraphs would greatly enhance our
understanding of these objects, and would in some cases (see in particular
Conjecture 8 and Question 1) have specific consequences for questions
considered above.

Let G be a graph and let M be drawn uniformly at random from M(G).
Mainly following [74, p. 341], we set ξ = ξ(G) = |M | and pk(G) = Pr(ξ = k),
and let μ = μ(G) and σ = σ(G) denote respectively the mean and standard
deviation of ξ.

In what follows we deal with a sequence {Gn} of (simple) graphs. We
abbreviate ξ(Gn), μ(Gn) and σ(Gn) to ξn, μn and σn, and in addition, set
|V (Gn)| = vn, |E(Gn)| = en, D(Gn) = Dn and ν(Gn) = νn. To avoid
trivialities we always assume vn → ∞ (n → ∞).

In 1981 C. Godsil [43] gave sufficient conditions for asymptotic normality
of the distributions {pk(Gn)}:

Theorem 15. If D2
n/en → 0 then the distribution {pk(Gn)}k≥0 of matching

sizes in Gn is asymptotically normal.
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That is, for each x ∈ R

Pr(
ξn − μn

σn
< x) → 1√

2π

∫ x

−∞
e−t2/2dt (n → ∞).

The same conclusion was obtained by Ruciński [81] under a weaker
hypothesis:

Theorem 16. If νn/Dn → ∞ then {pk(Gn)}k≥0 is asymptotically normal.

The main result of [63] is a necessary and sufficient condition:

Theorem 17. The distribution {pk(Gn)}k≥0 is asymptotically normal if and
only if

νn − μn → ∞ (n → ∞). (21)

Let p(G, x) denote the probability generating function of the sequence
{pk(G)},

p(G, x) =

ν(G)∑

k=0

pk(G)xk.

A fundamental fact, proved in [51] (see also [50]) and [72], is

for every G, p(G, x) has real roots. (22)

The significance of this for our discussion was first noticed by L. Harper [49]
in his proof of asymptotic normality of the sequence {S(n, k)/Bn}k≥1 (with
S(n, k) the Stirling number of the second kind and Bn the Bell number).
Harper’s neat observation is that, given (22), a necessary and sufficient
condition for asymptotic normality of {pk(Gn)}k≥0 is that

σn → ∞. (23)

Thus Godsil and Ruciński just need to prove (23) under their respective
hypotheses (in both cases the key is the fact, shown in [51], that if
p(G, x0) = 0, then |x0| ≥ 4(D(G) − 1)), while proving Theorem 17 amounts
to bounding ν−μ as a function of σ. (The current proof gives ν−μ = O(σ8);
curiously, one can have ν − μ as large as Ω(n6), which seems likely to be the
truth.)

Having said this, let us stress that, as illustrated by the next result,
Theorem 17 is by no means a matter of replacing one unverifiable condition
by another. (We write δn for the minimum degree of Gn.)

Corollary 3. Each of the following implies asymptotic normality.

(a) νn/Dn → ∞
(b) δn = (1 − o(1))Dn

(c) νn > (1 − o(1))vn/2

(The reader might try to see why each of (a)–(c) implies (21).)
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Thus we recover Theorems 15 and 16, and for example have asymptotic
normality for any sequence of regular graphs—note Theorems 15 and 16 do
not apply to sequences of regular graphs for which degree grows in proportion
to the number of vertices—or graphs with perfect matchings. The latter
includes Harper’s theorem (again, see [43] or [79, p. 213] for the connection).
Slightly unbalanced complete bipartite graphs show that (c) can’t be relaxed
to “νn > (1 − ε)vn/2” if ε > 0 is fixed.

We don’t have space to say much about the proof of Theorem 17.
As of now it is not very easy, though there are some special cases—e.g.,
sequences of regular graphs or sequences as in Theorems 15 and 16—for which
the methods of [63] give fairly simple proofs. Though there’s no concrete
connection between these methods and the guided-random approach of earlier
sections, they do have in common a reliance on having a lot of approximate
independence in the relevant probability spaces. For the earlier results, this
independence is usually derived from something like (11). For Theorem 17,
and also for Theorem 9 (see Lemma 1), the required independence derives
from the following simple fact.

Let M be a random matching drawn from a normal distribution on a
graph G, and for vertex x, set p(x) = Pr(x ≺ M). For x ∈ V , W ⊆ V (G),
set μ(W ) = μG(W ) =

∑
w∈W p(w) and μ(W |x̄) = μG−x(W \ {x}). (Thus

μ(W ) is the expected number of vertices of W covered by M , while μ(W |x̄)
is the same number conditioned on {x ⊀M}.)

Lemma 2. If x /∈ W , then
∣
∣μ(W ) − μ(W |x̄)

∣
∣ ≤ p(x).

In particular, conditioning on {x ⊀M} changes μ(W ) by at most 1.
As noted above, Theorem 17 provides the first proof of (23) for sequences

of regular graphs. In fact, as shown even more recently in [67], the values of
μ and σ2 for a regular graph are remarkably well determined just by degree
and number of vertices:

Theorem 18. For any d-regular simple graph G,

(a) v(G) − 2μ(G) ∼ v(G)/
√
d,

(b) σ2(G) ∼ v(G)/(4
√
d)

(limits taken as d → ∞).

Actually (a) is a consequence of the finer

p(x̄) := Pr(x ⊀M) ∼ d−1/2 ∀x ∈ V (G).

(It’s worth stressing once more the use of the uniformity convention: the rates
of convergence in the last three assertions depend on nothing but d.)

The proof of Theorem 18 is again based in part on martingale concen-
tration results, in this case for martingales related to random self-avoiding
walks on the graphs in question. (The connection takes a little too long to
discuss here, but see [44] for an indication of the relation between matchings
and self-avoiding walks.)
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Let us close with a conjecture and a question which take us back to
some of the topics discussed earlier. (Though we won’t pursue the subject
here, it would also be of considerable interest to understand to what extent
Theorem 17 continues to hold for k-bounded hypergraphs; see [63] for some
speculation as to what might be true in this direction.)

Conjecture 8. For fixed k and simple, k-uniform, D-regular H,

p(v̄) ∼ D−1/k ∀v ∈ V (H).

If we relax “simple” to (11), then the conclusion should be p(x̄) → 0,
which, like Theorem 11, would say that the value of ν predicted by Theorem 7
is actually the average size of an appropriately defined random matching.
Given the sophistication of the distribution of Theorem 11 (and the difficulty
of Theorem 7 itself), it would be extremely interesting if uniform distribution
accomplished the same thing.

Finally, an affirmative answer to the following would imply (18) (in the
same way that Theorem 11 implies Theorem 10), and would also be very
interesting in its own right.

Question 1. Is it true that for each ε > 0 there exist t and D0 such that
for every D ≥ D0 and D-regular multigraph G with χ′∗(G) = D, there is a
probability distribution p on M = M(G) satisfying

(a) pA =ε 1/D ∀A ∈ E(G), and
(b) For M chosen according to p, and A ∈ H, the event {A ∈ M} is

independent of the events {{B ∈M} : Δ(A,B) > t}?

Added in Proof

Conjecture 7 for bipartite multigraphs, so in particular the Dinitz Conjecture
(Conjecture 5), was proved by Fred Galvin around the end of 1993 [F. Galvin,
The list chromatic index of a bipartite multigraph, J. Combinatorial Th. (B)
63 (1995), 153–158].

Anders Johansson [A. Johansson, An improved upper bound on the choice
number for triangle free graphs, manuscript, 1994], again along the lines of
the proof of Theorem 12, proved χl(G) = O(D/ logD) for triangle-free G
(compare Theorem 13).

Another major application of the semirandom method discussed in
Sects. 4 and 6 was given in [J.H. Kim, The Ramsey number R(3, t) has order
of magnitude t2/ log t, Random structures and Algorithms 7 (1995), 173–207].

Joel Spencer [J . Spencer, Asymptotic packing via a branching process,
Random structures and Algorithms 7 (1995), 167–172.] showed that the
“natural” proof suggested after Theorem 7 does indeed work.
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A simpler proof of Theorem 8, based on the [77] proof of Theorem 7, was
given in [J. Kahn, A linear programming perspective on the Frankl-Rödl-
Pippenger Theorem, Random Structures and Algorithms 8 (1996), 149–157].

A proof of (18), based on normal distributions and the approximate
independence results of [66], was given in [J. Kahn, Asymptotics of the
chromatic index for multigraphs, J. Combinatorial Th. (B) 68 (1996),
233–254].

The list-coloring version of (18) (so Conjecture 7 for multigraphs) was
proved in [J. Kahn, Asymptotics of the list-chromatic index for multigraphs,
Random Structures & Algorithms 17 (2000), 117–156].

Several of the above results, together with further applications of the
ideas sketched in Sect. 6, are discussed in detail in [M. Molloy and B. Reed,
Graph Colouring and the Probabilistic Method, Springer, Berlin, 2002.]
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1. Introduction

The origins of the theory of random graphs are easy to pin down. Undoubtedly
one should look at a sequence of eight papers co-authored by two great
mathematicians: Paul Erdős and Alfred Rényi, published between 1959 and
1968:

[ER59] On random graphs I, Publ. Math. Debrecen 6 (1959), 290–297.
[ER60] On the evolution of random graphs, Publ. Math. Inst. Hung. Acad.

Sci. 5 (1960), 17–61.
[ER61a] On the evolution of random graphs, Bull. Inst. Internat. Statist. 38,

343–347.
[ER61b] On the strength of connectedness of a random graph, Acta Math.

Acad. Sci. Hungar. 12 (1961), 261–267.
[ER63] Asymmetric graphs, Acta Math. Acad. Sci. Hung. 14, 295–315.
[ER64] On random matrices, Publ. Math. Inst. Hung. Acad. Sci. 8 (1964),

455–461.
[ER66] On the existence of a factor of degree one of a connected random

graph, Acta Math. Acad. Sci. Hung. 17 (1986), 359–368.
[ER68] On random matrices II, Studia Sci. Math. Hung. 3 (1968), 459–464.

Our main goal is to summarize the results, ideas and open problems
contained in those contributions and to show how they influenced future
research in random graphs.

For us it was a great adventure to return to the roots of the theory of
random graphs, and to find out again and again, how far-reaching the impact
of Erdős and Rényi’s work on the field is. The reader will find in our paper
many quotations from their original papers (always in italics). We use this
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convention to let them speak directly and to preserve their special insightful
style and way of thinking and stating the problems. Starting from there we
lead the reader through the literature, including the most current one, trying
to show how the ideas of Erdős and Rényi developed, how much time, skills
and effort to solve some of their most challenging open problems was needed.
Finally, to add some “salt and pepper” to our presentation, full of admiration
and respect, we point out to a few false statements and oversimplifications
of proofs, which have been found in their monumental legacy by the next
generations of random graph theorists.

2. The First Question: Connectivity

Although the notion of a random graph appeared in connection to the
probabilistic method already in the Erdős paper [25] (see J. Spencer’s article
in this volume), it was forgotten for a decade until Paul Erdős and Alfred
Rényi published a series of papers entirely devoted to properties of random
graphs. The model of a random graph they exclusively investigated was the
uniform one. Here is how they defined it: “Let En,N denote the set of all
graphs having n given labeled vertices and N edges. A random graph Γn,N

can be defined as an element of En,N chosen at random, so that each of the

elements of En,N have the same probability to be chosen, namely 1/
((n

2)
N

)
.”

(In this paper we adopt the original notation Γn,N .)
They were aware of existing results about other models of random graphs.

In particular, they acknowledge in a footnote to [ER61a] that E. N. Gilbert
[36] studied the connectedness of what we call today the binomial model,
where “We may decide with respect to each of the

(
n
2

)
edges, whether they

should form part of the random graph considered or not, the probability of
including a given edge being p = N/

(
n
2

)
for each edge and the decisions

concerning different edges being independent.” (In this paper we shall denote
this model by Γn,p.) In [ER61a] they mention that the investigations of
the binomial model can be reduced, due to a conditional argument they
attribute to Hajek, to that of Γn,N . However, they did not formulate
any equivalence theorem (these appeared much later in [14] and [59]) and
occasionally stated the binomial counterparts of their theorems without
proofs or repeated their proofs step by step.

Apparently they were not aware of the result of Gilbert and of the bino-
mial model at all when they wrote their first paper on random graphs,“On
random graphs I”. The question addressed there was that of connectedness of
a random graph. In fact, according to a remark in [ER59], this problem was
tried and partially solved already in 1939, when P. Erdős and H. Whitney,
in an unpublished work: “proved that if N >

(
1
2 + ε

)
n logn where ε > 0

then the probability of Γn,N being connected tends to 1 if n → ∞, but if
N <

(
1
2 − ε

)
n logn with ε > 0 then the probability of Γn,N being connected,

tends to 0 if n → ∞.”
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In the first “official” paper on random graphs, Erdős and Rényi refined
the above result as their (partial) answer to questions 1–3 from the following
list of problems they posed.

1. What is the probability of Γn,N being completely connected?
2. What is the probability that the greatest connected component (subgraph)

of Γn,N should have effectively n− k points? (k = 0, 1, . . .)
3. What is the probability that Γn,N should consist of exactly k+ 1 connected

components? (k = 0, 1, . . .)
4. If the edges of a graph with n vertices are chosen successively so that after

each step every edge which has not yet been chosen has the same probability
to be chosen as the next, and if we continue this process until the graph
becomes completely connected, what is the probability that the number of
necessary steps ν will be equal to a given number l?

Note that in problem 4 Erdős and Rényi describe a genuine random graph
process, whose advanced analysis could be carried over only two decades later.

Before turning to the proofs, they recall a recursive formula and a
generating function for the number C(n,N) of connected graphs on n labeled
vertices and with N edges, due to Riddell and Uhlenbeck, and also Gilbert.
But immediately they comment that neither of them “. . . helps much to
deduce the asymptotic properties of C(n,N). In the present paper we follow
a more direct approach.”

We now present the first result on random graphs and its proof in a
slightly modified form. The idea of the proof, however, remains unchanged.
In the 1959 paper only the middle part of the theorem below was stated
explicitly. The other two follow by letting c = cn tend to +∞ or −∞,
respectively.

Theorem 2.1 ([ER59]).

P (Γn,N is connected ) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if N
n − 1

2 logn → −∞
e−e−2c

if N
n − 1

2 logn → c

1 if N
n − 1

2 logn → ∞.

Proof. For convenience we switch to the binomial model, shortening the
original argument a lot, and, at the same time, avoiding a harmless error
in the proof of “the rather surprising Lemma” of [ER59], pointed out by
Godehardt and Steinbach [37].

To make this argument formal, assume that 2np− logn− log logn→ ∞
but np = O(log n). Thus, almost surely (i.e., with probability tending to 1
as n → ∞), there are no isolated edges in Γn,p. What remains to be shown
is that there are no components of size 3 ≤ k ≤ n

2 either. To this end
consider the random variable X counting such components. Then, bounding
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the probability that a given set of k vertices spans a connected subgraph by
kk−2pk−1, and using the inequality np > 1

2 logn, we obtain

Exp(X) ≤
n/2∑

k=3

(
n

k

)
kk−2pk−1(1 − p)k(n−k) <

∑

k

(en
k

)k

kk−2pk−1e−(n−k)pk

≤ 1

p

√
n∑

k=3

1

k2

(
enp

e(n−
√
n)p

)k

+
1

p

n∑

k≥√
n

1

n

( enp

enp/2

)k

= O

(
n

logn

log3 n

n3/2

)
+

1

logn

(
e logn

2n1/4

)√
n

= o(1).

Hence, almost surely there are no components outside the largest
one other than isolated vertices (Erdős and Rényi say that such a graph
is of type A) and the threshold for connectedness coincides with that for
disappearance of isolated vertices, i.e., for 2np− logn− log logn → ∞

P (Γn,p is connected ) = P (δ(Γn,p) > 0) + o(1).

Erdős and Rényi found the limiting value of P (δ(Γn,p) > 0) by inclusion-
exclusion. Nowadays a standard approach is by the method of moments
which serves to show that the number of isolates is asymptotically Poisson.
They used that method in the 1960 paper in a more general setting where
components isomorphic to a given graph G were considered. We shall return
to this later.

Answering question 4, they gave a somewhat oversimplified proof of the
fact that

lim
n→∞P

(
ν − 1

2n logn

n
< x

)
= e−e−2x

. �

Erdős and Rényi conclude the 1959 paper as follows. “The following more
general question can be asked: Consider the random graph Γn,N(n) with n
possible vertices and N(n) edges. What is the distribution of the number of
vertices of the greatest connected component of Γn,N(n) and the distribution of
the number of its components? What is the typical structure of Γn,N(n) (in the
sense in which, according to our Lemma, the typical structure of Γn,N(n) is
that it belongs to type A)? We have solved these problems in the present paper
only in the case N(n) = 1

2n logn+ cn. We shall return to the general case in
another paper [8].” ([8] = [ER60] on our reference list.)

As far as connectedness is concerned, in the 1961 paper Erdős and
Rényi go on and find the threshold for r-connectivity of Γn,p for every
natural r. “If G is an arbitrary non-complete graph, let cp(G) denote the
least number k such that by deleting k appropriately chosen vertices from
G (. . . ) the resulting graph is not connected. (. . . ) Let ce(G) denote the
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least number l such that by deleting l appropriately chosen edges from G
the resulting graph is not connected.” A graph is r-connected if no removal
of r or less vertices can disconnect it. When the random graph becomes
almost surely r-connected? Theorem 2.1 revealed an interesting feature of
random graphs. Namely, quite often trivial necessary conditions become
asymptotically sufficient in the sense that for a typical, large graph their
fulfillment guaranties that the property in question holds. Due to Theorem 2.1
this is the case of connectedness versus the nonexistence of isolated vertices.
For r-connectedness such natural necessary condition is that the minimum
degree (denoted in [ER61b] by c(G)) must be at least r. Otherwise removing
the vertices adjacent to a vertex of minimum degree would disconnect the
graph. Erdős and Rényi showed in 1961 that in the range 1

2n logn ≤ N ≤
n logn this is the only way one can disconnect the random graph Γn,N by
removing the smallest possible number of vertices. A minimal cutset is a set
of vertices whose removal makes the graph disconnected but no proper subset
of that set has this property. For 2 ≤ k ≤ n−1

2 let Ak be the event that there
is in Γn,N a minimal cutset of size s, 1 ≤ s ≤ r − 1, which leaves the second
largest component of size k. Arguing similarly as in the proof of Theorem 2.1,
they proved that P (

⋃
k≥2 Ak) = o(1), meaning that, almost surely, if Γn,N

is not r-connected then the only reason for that is the presence of vertices of
degree less than r. The method of moments (again, in the inclusion-exclusion
cover-up) gives that, for N(n) = 1

2n logn + r
2n log log n + an + o(n), their

number is asymptotically Poisson. We thus arrived at the main result of the
1961 paper.

Theorem 2.2 ([ER61a]). If we have

N(n) =
1

2
n logn+

r

2
n log logn+ an+ o(n)

where a is a real constant and r a non-negative integer, then

lim
n→∞P (cp(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
, (3)

further

lim
n→∞P (ce(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
(4)

and

lim
n→∞P (c(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
. (5)

In a proceeding remark they promise: “The statement (5) of Theorem 2.2
gives information about the minimal valency of points of Γn,N . In a forth-
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coming note we shall deal with the same question for larger ranges of N
(when c(Γn,N ) tends to infinity with n), further with the related question about
maximal valency of points of Γn,N .” This promise was never fulfilled. The only
trace of their interest in the vertex degrees of a random graph can be found in
the description of the last phase of the evolution of Γn,N in [ER61a]: “Phase 5.
consists of the range N(n) ∼ (n logn)w(n) where w(n) → ∞. In this range
the whole graph is not only almost surely connected, but the orders of points
are almost surely asymptotically equal. Thus the graph becomes in this phase
‘asymptotically regular’.” The proof of that statement can be found in the
last section of [ER60]. A very careful analysis of vertex degrees in a random
graph is due to Bollobás [10, 11] and can be found also in his book [14].

3. Subgraphs: The Beginning of a Theory

After having written their paper on connectivity of a random graph Erdős and
Rényi decide to write a long paper addressing several properties of random
graphs. That seminal paper was preceded by an extended abstract [ER61a],
where they outlined the main goals of the theory to be born. “Our main goal
is to show (. . . ) that the evolution of a random graph shows very clear-cut
features. The theorems we have proved belong to two classes. The theorems of
the first class deal with the appearance of certain subgraphs (e.g., tress, cycles
of a given order etc.) or components, or other local structural properties, and
show that for many types of local structural properties A a definite ‘threshold’
A(n) can be given, so that if N(n)

A(n) → 0 for n → ∞ then the probability

that the random graph Γn,N(n) has the structural property A tends to 0 for

n → ∞, while for N(n)
A(n) → ∞ for n → ∞ the probability that the random

graph Γn,N(n) has the structural property A tends to 1 for n → ∞. (. . . )
The theorems of the second class are of similar type, only the properties A
considered are not of a local character, but global properties of the graph
Γn,N(n) (e.g., connectivity, total number of components, etc.).” The existence
of a threshold in all cases they considered was a rather surprising fact for
Erdős and Rényi. Only three decades later it was proved by Bollobás and
Thomason [19] that, as a consequence of the Kruskal-Katona inequality, every
monotone property (family) of random subsets of a set has a threshold in the
above sense.

In the same abstract they comment that their proofs are “. . . completely
elementary, and are based on the asymptotic evaluation of combinatorial
formulae and on some well-known general methods of probability theory . . . .”

The first theorem of the major paper [ER60] established the threshold for
the existence of a subgraph of a given type for a broad class of subgraphs.
“If a graph has n vertices and N edges, we call the number 2N

n the ‘degree’ of

the graph (as a matter of fact 2N
n is the average degree of the vertices of G.)

If a graph G has the property that G has no subgraph having a larger degree
than G itself, we call G a balanced graph.”
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Theorem 3.1 ([ER60]). Let k ≥ 2 and l (k − 1 ≤ l ≤ (
k
2

)
) be positive

integers. Let Bk,l denote an arbitrary not empty class of connected balanced
graphs consisting of k points and l edges. The threshold function for the
property that the random graph considered should contain at least one
subgraph isomorphic with some element of Bk,l is n

2−k
l .

Among special cases they mention trees, connected unicyclic graphs,
cycles, complete graphs and complete bipartite graphs all of which are
balanced. Over 20 years later, Bollobás [9] generalized this theorem to
arbitrary (not only balanced) graphs. He, however, used a rather complicated
method. In 1985, to a great surprise to all involved, Ruciński and Vince [73]
found out that the original proof of Erdős and Rényi which was based on
the second moment method can be easily adapted to cover all graphs as well.
We now state that result in the binomial model.

Theorem 3.2 ([9]). For an arbitrary graph G with at least one edge,

lim
n→∞P (G ⊂ Γn,p) =

{
0 if p = o(n−1/mG)

1 if n−1/mG = o(p),

where mG = maxH⊆G dH and dG = |E(G)|
|V (G)| .

A crucial role in the Ruciński-Vince proof of Theorem 3.2 is played by
the quantity ΦG = minH⊆GExp(XH) . In fact, the inequalities

1 − ΦG ≤ P (G �⊂ Γn,p) ≤ c1/ΦG

obtained in that proof have been strengthened to exponential bounds

e−c2ΦG ≤ P (G �⊂ Γn,p) ≤ e−c3ΦG ,

where the L-H-S follows by the FKG inequality and the R-H-S is a special
case of a recent inequality from [42].

As far as the asymptotic distributions of subgraph counts are concerned,
Erdős and Rényi treated in [ER60] only trees and cycles. For trees of order k

they established a limiting Poisson distribution on the threshold N ∼ cn
k−2
k−1 .

They observed that the same result holds for isolated trees, since in this
range almost surely all k-vertex trees are isolated (i.e., are components of the
random graph). They also found another Poisson threshold for isolated trees
at N = 1

2kn logn+ k−1
2k n log log n+cn+o(n), beyond which isolated trees die

out (swallowed by the giant component on its way to absorb all the vertices
of the random graph). They also established an asymptotic normality of the
number of isolated trees of order k (after suitable standardization) in the
whole range of N between the two thresholds. As observed by A. Barbour
in [5], the proof given by Erdős and Rényi was not correct and in the range
N ∼ cn, c �= 1/2, the standardization was not right. However, using another
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method Barbour showed that indeed the asymptotic normality holds in the
entire range in question. For cycles and isolated cycles they established
a Poisson distribution (different in each case) at N ∼ cn and observed
that contrary to isolated trees, “. . . the probability that Γn,N contains an
isolated cycle of order k never approaches 1.” A similar result was proved for
connected unicyclic graphs. All these results were obtained by the method
of moments based on a fact from probability theory that for all distributions
which are uniquely determined by their moments (Poisson and normal are
such) the convergence of all moments of a sequence of random variables
to the moments of that distribution implies convergence in distribution
[8, Theorem 30.2]. Erdős and Rényi prove this fact as a lemma just for the
Poisson distribution, although they use it also for the normal distribution.
At the end of the paper, in a remark added in proof, they acknowledge that
N. V. Smirnov proved this lemma already in 1939.

They conclude their investigations of local properties of random graphs
with the comment: “Similar results can be proved for other types of subgraphs,
e.g., complete subgraphs of a given order. As however these results and their
proofs have the same pattern as those given above we do not dwell on the
subject any longer and pass to investigate global properties of the random
graph Γn,N .” In 1979, K. Schürger, a former Ph.D. student of Erdős, proved
similar results for complete subgraphs [74] and a few years later Karoński [47]
extended them to so called k-trees, a common generalization of trees and
complete graphs. All these particular cases led to a general result for all
strictly balanced graphs. A graph is strictly balanced if every proper subgraph
has its degree strictly smaller than the graph itself. Let us denote dG = |E(G)|

|V (G)|
and recall that XG is the number of copies of G in a random graph Γn,p.
The following result was proved independently in [9] and [48].

Theorem 3.3 ([9, 48]). If G is a strictly balanced graph and npdG → c > 0
then XG converges to the Poisson distribution with expectation cv

aut(G) .

If a graph G is balanced but not strictly balanced then the limiting
distribution of XG on the threshold, i.e. when p = Θ(n−1/dG), becomes quite
involved. Although, in principle, as shown by Bollobás and Wierman [20], it
can be computed, there is no nice closed formula. For example, when G is a
disjoint union of 2 triangles then the limit distribution is that of the random
variable

(
Y
2

)
, where Y is Poisson. When G is the triangle with a pendant edge,

the limit is
∑Z

i=1 Yi, where all random variables involved are independent
and Poisson. When G is the triangle with two pendant edges hanging at
the same vertex then XG converges to the distribution of

∑Z
i=1

(
Yi

2

)
, where

again all random variables are independent Poisson. One more example: if
G is the triangle with a path of length 2 hanging at one of it vertices, then

the limit distribution is that of
∑∑U

j=1 Wj

i=1 Yi, where all random variables are
independent Poisson. We can only hope that so far the reader is convinced
that a pattern does indeed exist.
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If G is nonbalanced, then the expectation of XG tends to infinity and one
has to normalize. It turns out that there is a nonrandom sequence an(G) → ∞
such that the asymptotic distribution of XG

an(G) coincides with that of XH ,

where H is the largest subgraph of G for which dH = mG. Clearly, H is
balanced and we are back to the balanced case. The sequence an(G) is equal
to the expected number of extensions of a given copy of H to a copy of G in
the random graph Γn,p. For details see [71, page 292].

Beyond the threshold, i.e., when npmG → ∞, XG converges after
standardization to the standard normal distribution as long as n2(1−p) → ∞.
(For bigger p XG is either Poisson or degenerate, according to the formula
XG ∼ (

n
v

)
v!

aut(G) −cn(G)Z, where Z is the binomial random variable counting

edges in the complement of Γn,p and cn(G) is the number of copies of G in Kn

containing a fixed edge. For details see [70].) This result was supplemented
by the rate of convergence in [7]. It was shown there that the total variation
distance between standardized XG and the standard normal distribution can
be bounded by O( 1√

ΦG
) as long as p �→ 1 and by O( 1

n
√
1−p

) otherwise. Recall

that ΦG → ∞ if and only if npmG → ∞.
A variant of the small subgraph problem is one when we only count

induced subgraphs of Γn,p which are isomorphic to G (induced copies).
Let YG count them. Then, denoting v = |V (G)| and l = |E(G)|, Exp(YG) =

Exp(XG)(1−p)(v
2)−l, and as long as p → 0 there is no substantial difference in

the limiting distribution of XG and YG. For p constant, however, interesting
things may happen. First of all, in contrast to XG, the variance of YG may
drop below the order of n2v−2. It does so when Exp(I|J12) = Exp(I), i.e.,
when p = l/

(
v
2

)
, where I is the indicator of the event that there is an induced

copy of G in Γn,p on the vertex set {1, . . . , v} and Jij is the indicator that
the edge ij is present in Γn,p. But if V ar(YG) = Θ(n2v−3) then still YG is
asymptotically normal, and only when the variance drops further down to
the order of n2v−4 the distribution of standardized YG becomes nonnormal
(the convolution of normal and χ2 distributions). It is a purely combinatorial
question when V ar(YG) = Θ(n2v−4). For the higher terms to cancel out one
needs that Exp(I|J12, J13, J23) = Exp(I), or, equivalently, that in addition
to p = l/

(
v
2

)
, the proportion t3 : t2 : t1 : t0 = p3 : 3p2q : 3pq2 : q3 is satisfied,

where ti is the number of induced subgraphs of G isomorphic to the graph
with 3 vertices and i edges. For p = 1

2 , an example of a graph satisfying
these requirements is the wheel on 8 vertices, i.e. the graph obtained from
the 7-cycle by joining a new vertex to every vertex of the cycle. For some
time it was an open question if such abnormal cases take place for every
rational p. A positive answer to that puzzle is due to combined efforts of
Janson, Kratochv́ıl, Kärrman and Spencer [41, 45, 49].

The random variables XG and YG are examples of sums of random
variables with only few dependent summands. In particular, the summands
forming YG are dependent only if the sets corresponding to the indices
intersect (on at least 2 vertices, in fact). The reason is that the property of
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the vertex set we are after depends only on the presence and absence of the
edges within the set. The situation changes when we move to the properties
depending also on the pairs with one endpoint in the set. Then all summands
are mutually dependent, but most just weakly. We have already encountered
such a case when studying the number of components of Γn,p which are
isomorphic to a given graph G. Clearly this property requires that there is
no edge with one endpoint in the set of vertices of a copy of G. Another
example of such “semi-induced” property is the notion of a maximal clique.
This is a complete subgraph not contained in any bigger complete subgraph
of a graph. For a vertex set to span a maximal clique one needs that no other
vertex is adjacent to all the vertices of the set. In [6] the limiting distribution
of the number of maximal k-cliques was investigated. It was proved that
for k ≥ 2 there are two Poisson thresholds for the existence of maximal k-
cliques and the phase of asymptotic normality between them. Finally, there
are characteristics which lead to sums of random variables indexed by vertex
sets, which each depend on the presence or absence of all the edges in Γn,p.
An example of this is the number of copies of G disjoint from all other copies
of G in Γn,p. Here even the expectation is difficult to obtain, and the limiting
normal distribution is still beyond ones reach.

4. Phase Transition

Sections 4–9 of [ER60] are devoted to global properties of random graphs.
The proofs follow the same pattern. First, the expectation of the quantity in
question is asymptotically evaluated. Then, using Markov’s and Chebyshev’s
inequality (the first and the second moment method, resp.) the asymptotics
of the quantities themselves are derived. As a summary of these results we
quote here how Erdős and Rényi characterize the process of the evolution
of a random graph in the paper presented to the International Statistical
Institute meeting in Tokyo in 1961 [ER61a]:

“If n is fixed large positive integer and n is increasing from 1 to
(
n
2

)
, the

evolution of Γn,N passes through five clearly distinguishable phases. These
phases correspond to ranges of growth of the number N of edges, these ranges
being defined in terms of the number n of vertices.

• Phase 1 corresponds to the range N(n) = o(n). For this phase it is
characteristic that Γn,N(n) consists almost surely (i.e. with probability
tending to 1 as n → +∞) exclusively of components which are trees. (. . . )

• Phase 2 corresponds to the range N(n) ∼ cn with 0 < c < 1/2. (. . . )
In this range almost surely all components of Γn,N(n) are either trees
or components consisting of an equal number of edges and vertices, i.e.
components containing exactly one cycle. (. . . ) In this phase though not
all, but still almost all (i.e. n− o(n)) vertices belong to components which
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are trees. The mean number of components is n − N(n) + O(1), i.e. in
this range by adding a new edge the number of components decreases by 1,
except for the finite number of steps.

• Phase 3 corresponds to the range N(n) ∼ cn with c ≥ 1/2. When N(n)
passes the threshold n/2, the structure of Γn,N(n) changes abruptly. As a
matter of fact this sudden change of the structure of Γn,N(n) is the most
surprising fact discovered by the investigation of the evolution of random
graphs. While for N(n) ∼ cn with c < 1/2 the greatest component of
Γn,N(n) is a tree and has ( with probability tending to 1 as n → +∞)

approximately 1
α

(
logn− 5

2 log logn
)
vertices, where α = 2c − log 2c, for

N(n) ∼ n/2 the greatest component has (with probability tending to 1 as
n → +∞) approximately n2/3 vertices and has rather complex structure.
Moreover for N(n) ∼ cn with c > 1/2 the greatest component of Γn,N(n)

has (with probability tending to 1 as n → +∞) approximately G(c)n
vertices, where

G(c) = 1 − 1

2c

+∞∑

k=1

kk−1

k!

(
2ce−2c

)k

(clearly G(1/2) = 0 and limc→+∞G(c) = 1).
Except this “giant” component, the other components are all relatively

small, most of them being trees, the total number of vertices belonging to
components, which are trees being almost surely n(1 − G(c)) + o(n) for
c ≥ 1/2. (. . . )

The evolution of Γn,N(n) in Phase 3. may be characterized by that the
small components (most of which are trees) melt, each after another, into
the giant component, the smaller components having the larger chance of
“survival”; the survival time of a tree of order k which is present in Γn,N(n)

with N(n) ∼ cn, c > 1/2 is approximately exponentially distributed with
mean value n/2k.

• Phase 4 corresponds to the range N(n) ∼ cn logn with c ≤ 1/2. In this
phase the graph almost surely becomes connected. (. . . )

• Phase 5 consists of range N(n) ∼ (n logn)ω(n) where ω(n) → +∞.
In this range the whole graph is not only almost surely connected, but the
orders of all points are almost surely asymptotically equal. Thus the graph
becomes in this phase “asymptotically regular”. ”

Erdős and Rényi in their fundamental paper [ER60] gave a fairly complete
“big picture” of the evolution of a random graphs. However many fascinating
questions were left unanswered. For example, how did the giant component
grow so rapidly, what is the nature of the “double jump” of its size: from
O(log n) when c < 1/2 to Θ(n2/3) when c = 1/2 and finally being of the
order of n when c > 1/2?
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Often we say that a random graph goes through the phase transition at
c = 1/2 due to an obvious resemblance of this period of its evolution to the
physical phenomena of changing the state, for example, from liquid to solid.
Here a random graph changes abruptly its state from a loose collection of
small components being trees and unicyclic to solid single giant component
dominating its structure.

The critical moment of the phase transition was unresolved until the
milestone paper of Béla Bollobás [13] who revealed the mechanism of the
formation of the giant component. He also focused the attention, for the first
time, on the nature of the phase transition phenomena, investigating this
critical moment of the evolution and looking at the beginning of so called
supercritical phase. He asked what is the typical structure of a random graph
Γn,N when N(n) = 1

2n + s , where s = o(n). In particular he proved that

the largest component is almost surely unique once s ≥ 2(logn)1/2n2/3 and
its size L1(Γn,N ) is approximately 4s while the size of the second largest
component L2(Γn,N ) is much smaller.

Bollobás gave a good lead to what we might consider as the proper
magnification if we want to get undistorted picture of the phase transition
while looking at the neighborhood of the “critical point” n/2. Due to later
results of �Luczak [58], combined with those of Kolchin [51], we know that the
correct parametrization is

N(n) =
1

2
n+ λn2/3.

When λ → −∞ then Γn,N consists of many components of the same
size as the largest one, which is still very small and consists roughly of
n2

2s2 log(s3/n2) vertices, and the large components are unable to “swallow”
each other and therefore are forced to hunt for smaller query. Hence large
components grow absorbing only small ones and no clear favorite to win the
race for the giant emerges. As the number of edgesN(n) increases, the number
of contestants decreases. When λ = constant < 0 the probability that two
specified large components will form a new component is bounded away from
zero, but still too small to ensure the creation of unique giant component. At
the same time, a big gap between the orders of large and small components
arises which prevents the creation of new large components from the small
ones. Next, as soon as λ→ ∞, all large components almost “instantly” merge
together and a unique large component emerges. This component is still not
giant, it has barely over n2/3 vertices, but it will continue to absorb other
components, first the largest ones, rapidly becoming giant.

The next result of �Luczak [58] gives a clear picture of the sizes Li(Γn,N )
of the ith largest components during the phase transition of Γn,N . Here and
throughout the paper the abbreviation a.s. stands for ‘almost surely’, a phrase
whose precise meaning was explained in the description of Phase 1. above.
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Theorem 4.1 ([58]). Let k be natural number and sn−2/3 → ∞ but s =
o(n).

(i) If N = n/2 − s then for every i = 1, 2, . . . , k and every real r

lim
n→∞P

(
Li(Γn,N ) <

n2

2s2

(
log

s3

n2
− 5

2
log log

s3

n2
+ r

))
=

i−1∑

j=0

λj

j!
e−λ,

where λ = λ(r) = 2/
√
πe−r.

Moreover, a.s. the ith largest component of Γn,N is a tree for i =
1, 2, . . . , k and Γn,N contains no component with more edges than vertices.

(ii) Let N = n/2 + s and let s′ be the unique positive solution of the equation

(
1 − 2s′

n

)
e

2s′
n =

(
1 +

2s′

n

)
e−

2s′
n .

Then a.s.
∣
∣
∣
∣L1(Γn,N ) − 2(s+ s′)n

n+ 2s

∣
∣
∣
∣ < ω(n)

n√
s

and so

|L1(Γn,N ) − 4s| < ω(n)
n√
s

+O

(
s2

n

)
.

Moreover, for every i =, 2, . . . , k and every real r

lim
n→∞P

(
Li(Γn,N ) <

n2

2s2

(
log

s3

n2
− 5

2
log log

s3

n2
+ r

))
=

i−1∑

j=0

λj

j!
e−λ,

where λ = λ(r) = 2/
√
πe−r.

Furthermore a.s. the ith largest component of Γn,N , i = 2, 3, . . . , k,
is a tree and no component of Γn,N , except for the largest one, contains
more edges than vertices.

To study the critical “interval” when the phase transition takes place,
i.e., when N(n) = 1

2n+ λn2/3 and λ→ ∓∞, requires very sophisticated and
delicate tools. Janson, Knuth, �Luczak and Pittel in their extensive, almost
140 pages long, study [40] applied machinery of generating functions with
great success. They were able to analyze the structure of evolving graphs
(and multigraphs) when edges are added one at a time and at random, with
great precision, mainly looking and so called excess and deficiency of a graph.
To give the reader a taste of their results let us quote the following theorem.
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Theorem 4.2 ([40]). The probability that a random graph or multigraph
with n vertices and 1

2n + O(n1/3) edges has exactly r bicyclic components
(i.e., components with exactly two cycles), and no components of higher cyclic
order, is

(
5

18

)r
√

2

3

1

(2r)!
+O(n−1/3).

They also study the following fascinating problem: What is the
probability that the component which during the evolution becomes the first
“complex” component (i.e., the first component with more than one cycle)
is the only complex component which emerges during the whole process?
So they ask what is the probability that the first bicyclic component is the
“seed” for the giant one. They prove that it happens quite often indeed.

Theorem 4.3 ([40]). The probability that an evolving graph or multigraph
on n vertices never has more than one complex component throughout its
evolution approaches 5π

18 ≈ 0.8727 as n → ∞.

5. Planarity and Chromatic Number

In a paper of such an enormous length one can likely find less rigorous claims.
One of such things happened in the paper [ER60] in relation to the question
when a random graph Γn,N is planar.

Since trees and components with exactly one cycle are planar, Erdős and
Rényi easily deduced from their findings about early stages of the evolution
of a random graph, that when c < 1/2 then the probability that Γn,N is
planar tends to 1. Now, to support the claim that when c passes 1/2 the
graph becomes non-planar they used the argument that Γn,N contains an
induced cycle with d diagonals. Although their claim (Theorem 8a on page
51) regarding the distribution of the number of such cycles is incorrect, as
it was pointed out later by �Luczak and Wierman [63], their intuition was
perfect and the following result is indeed true.

Theorem 5.1 ([63]). Let us suppose that N ∼ cn. If c < 1/2 the probability
that the graph Γn,N is planar is tending to 1 while for c > 1/2 this probability
tends to 0.

Such a behavior of a random graph shows the fundamental difference
in its typical structure before and after the phase transition. Now, thanks
to the contribution of �Luczak, Pittel and Wierman [64], we have more
detailed knowledge about planarity of a random graph, also during the phase
transition.

Theorem 5.2 ([64]). Let ε = ε(n) → 0 as n → ∞. Then Γn,p is:
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(i) a.s. planar, when p = (1 − ε)/n, ε3n → ∞;
(ii) Planar with probability tending to a(λ), 0 < a(λ) < 1, as n → ∞, when

p = (1 + ε)/n, where ε3n → λ and −∞ < λ < ∞ is a constant;
(iii) a.s. non-planar, when p = (1 + ε)/n, ε3n → ∞.

In the final section of the paper [ER60] Erdős and Rényi collected
unsolved problems. One of them is closely related to planarity: Another in-
teresting question is: what is the threshold for the appearance of a “topological
complete graph of order k”, i.e., of k points such that any two of them can
be connected by a path and these paths do not intersect. For k > 4 we do
not know the solution. The solution was found many years later by Ajtai,
Kómlos, and Szemerédi [2].

Another problem mentioned there turned out to be one of the central
and most challenging questions of the theory. Erdős and Rényi asked ”what
will be the chromatic number of Γn,N ?” What they knew then about this
important graph invariant was limited to facts which can be deduced from
general results regarding the evolutionary process. Here is what they were
able to conclude : “Clearly every tree can be colored by 2 colors, and thus
by Theorem 4a almost surely Ch(Γn,N ) = 2 if N(n) = o(n). As however
the chromatic number of a graph having an equal number of vertices and
edges is equal to 2 or 3 according whether the only cycle contained in such
graph is of even or odd order, it follows from Theorem 5e that almost surely
Ch(Γn,N ) ≤ 3 for N(n) ∼ nc with c < 1/2. For N(n) ∼ n/2 we have
almost surely Ch(Γn,N ) ≥ 3. As a matter of fact, in the same way, as we
proved Theorem 5b, one can prove that Γn,N contains for N(n) ∼ n/2 almost
surely a cycle of odd order. It is an open problem how large Ch(Γn,N ) is for
N(n) ∼ n/2 with c > 1/2.”

This question remained open for next 30 years, and was answered, for
large c, by �Luczak in [57]. He proved that the chromatic number χ(Γn,p)
behaves as follows.

Theorem 5.3 ([57]). Let np = c and ε > 0 be fixed. Suppose cε ≤ c + o(n)
for sufficiently large constant cε. Then

P

(
c

2 log c
< χ(Γn,p) < (1 + ε)

c

2 log c

)
→ 1 as n → ∞.

Although the original question was posed for sparse random graphs
the ideas leading to the proof came from investigations of the chromatic
number of dense random graphs. The first step toward the solution was
made by Matula [66, 67] and Bollobás and Erdős [16] who discovered high
concentration of the size of the largest independent set in Γn,p around 2 logb n,
where b = 1/(1−p) and edge probability p is a constant. It suggested that the
respective lower bound for χ(Γn,p) should be n/(2 logb n). Only a few years
later, Grimmett and McDiarmid published a paper [38] in which they showed
that a greedy algorithm, which assigns colors to vertices of a random graph
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sequentially, in such a way that a vertex gets the first available color, needs,
with high probability, approximately n/ logb n colors to produce a proper
coloring of Γn,p. It established an upper bound for the chromatic number
of dense random graph, twice as large as the lower bound. Grimmett and
McDiarmid conjectured that the lower bound sets, in fact, the correct order of
magnitude for χ(Γn,p). The right tool to settle this conjecture was delivered
by Shamir and Spencer [76]. They proved that the chromatic number of
Γn,p is sharply concentrated in an interval of length of order n1/2 but, what
perhaps was more important then their result itself, they introduced to the
theory of random graphs a new powerful technique based on concentration
measure of martingales, known in the probabilistic literature as Hoeffding-
Azuma inequality. But it was Béla Bollobás who showed how the potential of
martingale approach can be utilized to solve long standing conjecture. In his
paper [15] he proved the following theorem.

Theorem 5.4 ([15]). Let 0 < p < 1 be fixed and b = 1/(1 − p). Then for
every ε > 0

P (
n

2 logb n
< χ(Γn,p) < (1 + ε)

n

2 logb n
) → 1 as n → ∞.

Later on Matula and Kucera [68] gave an alternative proof of the above
theorem, using the second moment and “expose and merge” algorithmic
approach. �Luczak’s proof of Theorem 5.3 is in fact an ingenious blend of
the martingale and “expose and merge” techniques.

The chromatic number of a random graph is a random variable, the
distribution of which should be highly concentrated. It is easy to notice
(see above) that if p = o(n−1) then χ(Γn,p) is 2 (not counting the case when
the edge probability is of the order smaller then n−2 and therefore, with high
probability the graph is empty). One can also show that when p ∼ cn−1,
O < c < 1 then P (χ(Γn,p) = 2) → a and P (χ(Γn,p) = 3) → 1 − a, where
a = ec/2((1− c)/(1 + c))1/4. The last probabilities are simply the same as the
probabilities that Γn,p has or does not have an odd cycle. Such a behavior of
a random variable χ has been confirmed, for small edge probabilities only, by
�Luczak. He proved in [61] that if p < n−5/6−ε then the chromatic number, as
expected, takes on at most two values.

6. Asymmetric Graphs

Another interesting topic originated from a joint paper by Erdős and Rényi
in the peak of their cooperation in early 1960s [ER63]. Here is how they
describe their goals: “We shall call (. . . ) a graph symmetric, if there exists
a non-identical permutation of its vertices, which leaves the graph invariant.
By other words, a graph is called symmetric if the group of its automorphisms
has degree greater than 1. A graph which is not symmetric will be called
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asymmetric. The degree of symmetry of a symmetric graph is evidently
measured by the degree of its group of automorphisms. The question which
led us to the results contained in the present paper is the following: how can
we measure the degree of asymmetry of an asymmetric graph?”

They answer the last question in what follows: “Evidently any asymmetric
graph can be made symmetric by deleting certain of its edges and by adding
certain new edges connecting its vertices. We shall call such a transformation
of the graph its symmetrization. For each symmetrization of the graph let us
take the sum of the number of deleted edges – say r – and the number of new
edges – say s –; it is reasonable to define the degree of asymmetry A[G] of
a graph G, as the minimum of r + s where the minimum is taken over all
possible symmetrizations of the graph G. (. . . ) The question arises: how large
can be the degree of asymmetry of a graph of order n (i.e., a graph which has
n vertices)? We shall denote by A(n) the maximum of A[G] for all graphs G
of order n(n = 2, 3, . . . ).”

They first notice that A(2) = A(3) = A(4) = A(5) = 0 while A(6) =
1. In general, a rather straightforward deterministic argument leads to the
following result.

Theorem 6.1 ([ER63]).

A(n) ≤
⌊
n− 1

2

⌋
.

To find the lower bound for A(n) Erdős and Rényi use a non-constructive
argument, i.e., they show via the probabilistic method that there exists a
certain graph on n vertices with the degree of asymmetry at least n(1− ε)/2,
0 < ε < 1.

Theorem 6.2 ([ER63]). Let us choose at random a graph Γ having n given

vertices so that all possible 2(n
2) graphs should have the same probability

to be chosen. Let ε > 0 be arbitrary. Let Pn(ε) denote the probability that

by changing not more than n(1−ε)
2 edges of Γ it can be transformed into a

symmetric graph. Then we have

lim
n→∞Pn(ε) = 0.

Corollary 6.1. For any ε with 0 < ε < 1 there exists an integer n0(ε)
depending only on ε, such that for every n > n0(ε) there exists a graph G of
order n with A[G] > n(1 − ε)/2.

Indeed, for large n, Theorem 6.2 shows that almost every graph is a
counterexample to the hypothesis that its symmetrization is possible with
less than n

2 (1 − o(1)) edges.
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Hence, if we combine Theorem 6.1 and Corollary 6.1 we see that

lim
n→∞

A(n)

n
=

1

2
.

After showing that almost all labeled simple graphs are asymmetric, Erdős
and Rényi turned their attention to graphs with a prescribed number of
edges. First they noticed that since almost every tree has a cherry, i.e., a pair
of pendant vertices adjacent to a common neighbor, therefore almost every
tree on n vertices is symmetric. Furthermore they proved that any connected
graph of order n having n edges is either symmetric or its asymmetry is one
and gave the following bound.

Theorem 6.3 ([ER63]). If a graph G of order n has N = λn edges (0 <
λ < (n− 1)/2) then

A[G] ≤ 4λ

(
1 − 2λ

n− 1

)
.

Erdős and Rényi went further in their investigations. Let us quote a
few more lines from their paper [ER63]. “Another interesting question is
to investigate the asymmetry or symmetry of a graph for which not only the
number of vertices but also the number of edges N is fixed, and to ask that
if we choose one of these graphs at random, what is the probability of its
being asymmetric. We have solved this question too, and have shown that if
N = n

2 (log n+ω(n)), where ω(n) tends arbitrarily slowly to +∞ for n→ +∞,
then the probability that a graph with n vertices and N edges chosen at random

(so that any such graph has the same probability
((n

2)
N

)−1

to be chosen) should
be asymmetric, tends to 1 for n → +∞. This and some further results will
be published in another forthcoming paper.”

Unfortunately the announced paper has never been published! Several
years later this problem and the analogous one for unlabeled graphs was
attacked again by Wright [78].

Consider graphs Γn,N and Un,N picked at random from the families of
all labeled and unlabeled graphs on n vertices and with N = N(n) edges,
respectively. Here is the result of Wright.

Theorem 6.4 ([78]). If ω(n) = (2N(n)/n)−logn → ∞ then Γn,N and Un,N

are almost surely asymmetric while when ω(n) ≤ 0 then they are almost surely
symmetric.

Later �Luczak [56] gave precise results about the structure of the
automorphism group Aut(Γn,N ) of a random graph Γn,N . He studied the
symmetry of the largest component L1(n,N) of this random graph. What
he found was that when N(n) = 1

2nα(n) then there exists a constant d such
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that for α(n) ≥ d almost surely Aut(L1(n,N) is isomorphic to some product
of symmetric groups. From this result he was able to deduce the following
strengthening of the “labelled” part of Theorem 6.4.

Theorem 6.5 ([56]). Let N = n
2 (logn+ ω(n)).

(i) If ω(n) → −∞ then |Aut(Γn,N )| → ∞ a.s.
(ii) If ω(n) → c then

lim
n→∞P (|Aut(Γn,N )| = 1) = eλ(1 + λ)

lim
n→∞P (|Aut(Γn,N )| = k!) =

λk

k!
e−λ

for k = 2, 3, . . . , where λ = e−c and c is a constant.
(iii) If ω(n) → ∞ then |Aut(Γn,N )| = 1 a.s.

7. Perfect Matchings

The last three papers Erdős and Rényi wrote on the subject of random graphs
were devoted to the existence of 1-factors. In [ER64] and [ER68] they coped
with the relatively easier case of random bipartite graphs. In both papers
they consequently emphasized the matrix terminology. “In the present paper
we deal with certain random 0-1 matrices. Let M(n,N) denote the set of
all n by n square matrices among the elements of which there are exactly N
elements (n ≤ N ≤ n2) equal to 1, all the other elements are equal to 0. The

set M(n,N) contains clearly
(
n2

N

)
such matrices; we consider a matrix M

chosen at random from the set M(n,N), so that each element of M(n,N)

has the same probability
(
n2

N

)−1
to be chosen. We ask how large N has to

be, for a given large value of n, in order that the permanent of the random
matrixM should be different from zero with probability ≥ α, where 0 < α < 1.
(. . . ) A second way to formulate the problem is as follows: we shall say that
two elements of a matrix are in independent position if they are not in the
same row and not in the same column. Now our question is to determine
the probability that the random matrix M should contain n elements which
are all equal to 1 and pairwise in independent position.”

The result they prove resembles that for the connectedness (compare
Theorem 2.1).

Theorem 7.1 ([ER66]). Let P (n,N) denote the probability of the event
that the permanent of the random matrix M is positive. Then if

N(n) = n logn+ cn+ o(n)
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where c is any real constant, we have

lim
n→∞P (n,N(n)) = e−2e−c

.

Finally, they also mention graphs: “This result can be interpreted also in
the following way, in terms of graph theory. Let Γn,N be a bichromatic random
graph containing n red and n blue vertices, and N edges which are chosen at
random among the n2 possible edges connecting two vertices having different

color (so that each of the
(
n2

N

)
possible choices has the same probability).

Then P (n,N) is equal to the probability that the random graph Γn,N should
contain a factor of degree 1, i.e., Γn,N should have a subgraph which contains
all vertices of Γn,N and n disjoint edges, i.e., n edges which have no common
endpoint.” (They seem not to use the name ‘perfect matching’ at all.)

As far as the proof is concerned, “Besides elementary combinatorial and
probabilistic arguments similar to that used by us in our previous work on
random graphs (. . . ) our main tool in proving our results is the well-known
theorem of D. König, which is nowadays well known in the theory of linear
programming, according to which if M is an n by n matrix, every element
of which is either 0 or 1, then the minimal number of lines (i.e., rows or
columns) which contain all the 1-s, is equal to the maximal number of 1-s in
independent position. As a matter of fact, for our purposes we need only the
special case of this theorem, proved already by Frobenius (1917), concerning
the case when the maximal number of ones in independent positions is equal
to n (. . . ). According to the theorem of Frobenius-König 1−P (n,N) is equal
to the probability that there exists a number k such that there can be found k
rows and n−k−1 columns of M which contain all the ones (0 ≤ k ≤ n−1).”
The rest of the proof is devoted to showing that this is very unlikely for
N(n) given. It is interesting to notice that Erdős and Rényi never mention
Hall’s theorem, which is equivalent to Frobenius but far more popular in
combinatorics nowadays.

The 1968 paper is a straightforward extension of the 1964 result, where
it is shown that setting

N(n) = n logn+ (r − 1)n log logn+ nω(n)

where ω(n) tends arbitrarily slowly to infinity then almost surely the
bichromatic random graph contains r disjoint 1-factors. The only new element
of the proof is the observation that if there are no r disjoint 1-factors then
there is a way to delete some edges so that no vertex looses more than r − 1
from its degree and the resulting subgraph contains no 1-factor at all. Then
again the theorem of Frobenius is used.

The most involved of the three papers about 1-factors is that from
1966, where an ordinary (not bichromatic) random graph Γn,N is considered.
The reason is that the theorem of Tutte describing the structure of graphs
which admit 1-factors is more complex than its counterpart in the bipartite
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case. “It should be added that the problem investigated in the present paper
is much more difficult than the corresponding problem for even graphs solved
in [5]. Thus for instance in [5] we made use of the well known theorem of
D. König; the corresponding tool in the present paper is the much deeper
theorem of Tutte mentioned above.” ([5] = [ER 64])

The result of that paper says that the threshold for containing a
1-factor coincides with that for disappearance of isolated vertices, and thus
also with that for connectivity (see Theorem 2.1). The proof is long and
tedious and involves a weaker version of Tutte’s theorem ignoring the parity
of components.

Erdős and Rényi make also the following claim: “If N = 1
2n logn+O(n),

as mentioned above, with probability near to 1, Γn,N consists of a connected
component and a certain number of isolated points. With the same method
(. . . ) one can prove that if the connected component of Γn,N consists of an
even number of points, it has with probability near 1 a factor of degree one.
As the proof of this result is almost the same (. . . ) we do not go into the
details.”

The above mentioned result was proved (in a strengthened form) by
Bollobás and Thomason [18]. In order to quote that result let us extend
the notion of a perfect matching by saying that a graph satisfies property
PM if there is a matching covering all but at most one of the nonisolated
vertices. It is known that, switching to the binomial model, as soon as
2np − logn − log logn → ∞, there are only isolated vertices outside the
giant component. However, the main obstacle for the property PM is the
presence of a pair (at least two such pairs when the number of nonisolates is
odd) of vertices of degree 1 adjacent to the same vertex (called, as we already
mentioned, ‘a cherry’). The expected number of cherries is

3

(
n

3

)
p2(1 − p)2(n−3) < n3p2e−2np+6p = o(1)

if 2np− logn− 2 log logn → ∞. Again, a trivial necessary condition becomes
almost surely sufficient.

Theorem 7.2 ([18]). Let yn = 2np− logn− 2 log logn → ∞. Then

P (Γn,p ∈ PM) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if yn → −∞
e−

1
8 e

−c

if yn → c

1 if yn → ∞.

The proof, again, was based on Tutte’s theorem. Years later �Luczak and
Ruciński proposed an alternative approach, via Hall’s Theorem, invented
in [65] to attack a more general question. For a given graph G, a perfect
G-matching of a graph is a spanning subgraph which is a disjoint union of
copies of G. For G = K2 this is the ordinary notion of a 1-factor.
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In [65] it was shown that for every nontrivial tree T , the threshold is the
same as that for disappearance of isolated vertices.

Theorem 7.3 ([65]). For every tree T on t vertices and with at least one
edge, assuming n is divisible by t,

P (Γn,p has a perfect T -matching ) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if np− log n→ −∞
e−e−c

if np− log n→ c

1 if np− log n→ ∞.

The threshold for arbitraryG is not known in general. Some partial results
are contained in [4] and [72].

Coming back to the original papers of Erdős and Rényi, the last of them
is concluded by the following problem: “does a random graph Γn,N where n
is even and

N =
1

2
n logn+

r − 1

2
n log logn+ ω(n)n

where ω(n) → ∞, contain at least r disjoint factors of degree one with
probability tending to 1 for n → ∞?”

Shamir and Upfal [77] answered this question in the positive. Given a
map f of V (G) into the set of non-negative integers, define an f -factor of G
as a spanning subgraph of G in which the degree of vertex x is f(x).

Theorem 7.4 ([77]). If

p =
1

n
(logn+ (r − 1) log logn+ ω(n),

r ≥ 1, limn→∞ ω(n) = ∞ and 1 ≤ f(xi) ≤ r,
∑n

i=1 f(xi) even, then Γn,p has
an f -factor, almost surely.

Although f -factors are characterized by Tutte’s theorem, Shamir and
Upfal chose an alternative approach using an algorithmic technique (in-
troduced to random graphs by Pósa) of augmentation of sub-factors by
alternating paths. In fact, the answer to the last question of Erdős and
Rényi does not follow directly from the above result (not every r-factor
has a 1-factorization) but from the proof. In 1985 Bollobás and Frieze [17]
strengthened this answer by proving that almost surely in the random graph
process of adding edges one by one, as soon as the minimum degree becomes
r, there are r/2� disjoint hamiltonian cycles plus a disjoint perfect matching
if r is odd.

The next problem we would like to mention cannot be directly attributed
to Erdős and Rényi. Here is how Erdős describes their omission [3, Ap-
pendix B]. “When Rényi and I developed our theory of random graphs, we
thought of extending our study for hypergraphs. We mistakenly thought that
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all (or most) of the extensions would be routine and we completely overlooked
the following beautiful question of Shamir. (. . . ) Shamir asked how many
triples must one choose on 3n elements so that with probability bounded away
from zero one should get n vertex disjoint triples. Shamir proved that n3/2

triples suffice, but the truth may very well be n1+ε or even cn logn. The reason
for the difficulty is that Tutte’s theorem seem to have no analogy for triple
systems or more generally for hypergraphs.” The result mentioned by Erdős
belongs, in fact, to J. Schmidt-Pruzan and E. Shamir [75]. In 1995, Frieze
and Janson in [35] pushed the bound down to n4/3.

Fortunately, Erdős and Rényi did not overlook some other important
problems which stimulated the research in the theory of random graphs
over the years. One such problem was the threshold for existence of a
Hamiltonian cycle in a random graph. They, in fact, asked only: for what order
of magnitude of N(n) has Γn,N(n) with probability tending to 1 a Hamilton-
line (i.e., a path which passes through all vertices). This problem was first
tried by Pósa [69] and Korshunov [55] and finally solved by Kómlos and
Szemerédi [54] and, in a stronger form, by Bollobás [12]. They proved that
the threshold for Hamiltonian cycle coincides with that of disappearance of
all vertices of degree 0 and 1.

8. Update for the Second Edition

We wrote this paper back in 1995. In this second edition of the volume we
decided to leave the original text intact except for a few obvious corrections
and the proofs of Theorems 3.2 and 3.3 which have been deleted entirely.
However, several new developments have occurred afterward. Here we would
like to mention some of them along with a couple of earlier results omitted
in the first edition. Needles to say, our choice is quite subjective. For more
thorough treatment of random graphs we refer the reader to the monograph
[43] published in 2000.

In relation to connectivity, one should note that an old result of
�Luczak [60] states that the k-core of a random graph, for p large enough,
is a.s. empty or k-connected. It implies that Γn,p is a.s. c(Γn,p)-connected for
the ranges of N larger than those in Theorem 2.2.

In the domain of small subgraphs of random graphs there has been an
intense study of the so called upper tail of the random variable XG counting
copies of a given graph G in Γn,p. As far as the lower tail is concerned, whose
special case is the probability P (X = 0) discussed briefly after Theorem 3.2,
the asymptotic order of magnitude of the logarithm of P (X ≤ (1 − ε)EX)
has been determined in [39] to be −ΦG. The exponent in the upper tail,
P (X ≥ (1 + ε)EX), is of a smaller order of magnitude which is still to
be determined. In [44] general lower and upper bounds were obtained which
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differ only by a logarithmic factor. Very recently DeMarco and Kahn [21] have
found the right threshold for cliques and formulated the “right” conjecture
for the general case.

In Sect. 5, the threshold for topological cliques found in [2] has been
sharpened (see [62], a remark after Corollary 18). A significant result about
the chromatic number of a random graph appeared in [1]. Achlioptas and
Naor found therein an explicit two-point limiting distribution of χ(Γn,p),
where p = d/n, for every d > 0, strengthening a theorem from [61] mentioned
at the end of Sect. 5.

The most acclaimed result in random graph theory which appeared after
1995 is, without doubt, a solution to the celebrated Shamir problem posed
in Sect. 7. After some initial attempts (Krivelevich [52, 53] and Kim [50]), in
2008 Johansson, Kahn, and Vu [46] published a complete solution to both, the
hypergraph Shamir problem and to its random graph counterpart (triangle-
factors), receiving for their achievement the prestigious Fulkerson Prize. Quite
recently in a series of papers, Dudek, Frieze, Loh, and Speiss [22–24, 34]
obtained thresholds for the hamiltonicity of random uniform hypergraphs. In
the hardest case of so called loose Hamilton cycles they incorporated in their
proofs the result on perfect matchings from [46].

Acknowledgements We would like to thank Tomasz �Luczak for his invaluable
help in updating this paper. We are also grateful to Steve Butler for turning our
obsolete amstex file from 1995 into a modern latex file.
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30. P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hung. 14
(1963), 295–315.
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396 Micha�l Karoński and Andrzej Ruciński
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54. J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton
cycles, Discrete Math. 43 (1983), 55–63.

55. A.D. Korshunov, A solution of a problem of Erdős and Rényi on Hamilton
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Summary. We prove an unexpected upper bound on a communication game
proposed by Jeff Edmonds and Russell Impagliazzo [2, 3] as an approach for proving
lower bounds for time-space tradeoffs for branching programs. Our result is based
on a generalization of a construction of Erdős, Frankl and Rödl [5] of a large 3-
hypergraph with no 3 distinct edges whose union has at most 6 vertices.

1. Introduction

Suppose that we have two vectors u and v of length k. We want to decide
whether u = v, but our access to the bits is very limited—at any moment
we can see at most one bit of each pair of the bits ui and vi. You can imagine
the corresponding bits to be written on two sides of a card, so that we can
see all the cards but only one side of each card. After every flip we can write
down some information, but the memory is not reusable—after the next flip
we have to use new memory. We are charged for every bit of memory that
we use and for every time we flip one or more cards.

It seems natural to suppose that if we flip the cards only a few times, we
need a lot of memory. We prove an unexpected upper bound on the amount
of memory needed; our bound is asymptotically tight if the number of card
flips is constant. Our result is based on a construction of Erdős, Frankl and
Rödl [5], whose special case is a large (in the number of edges) 3-hypergraph
(a system of 3-element sets) with no 3 distinct edges whose union has at
most 6 vertices, and on a previous result of Rusza and Szemerédi [8]. This
special case of their construction corresponds to the case when only two flips
of the cards are allowed. Our main idea is a geometric interpretation of the
construction of a large set with no three element arithmetic progression due
to Behrend [1] and its generalization to higher dimensions. We discuss this
connection in Sect. 4.

In fact, Jeff Edmonds and Russell Impagliazzo proposed this game as a
tool for proving lower bounds in complexity of boolean functions and proved
that a reasonable lower bound on the sum of the number of flips and the
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number of bits of memory used during the game would imply a new lower
bound for branching programs [2, 3]. We give a simple protocol with O(log n)
probes which uses only O((log n)2) bits of memory. We discuss this connection
and protocol in Sect. 5.

First we describe the game more precisely and state some easy facts in
Sect. 2, and prove our upper bound in the communication game setting in
Sect. 3.

2. The Game

Formally we describe the game as follows. Each input x is divided into
some pieces (substrings) x1, . . . , xr in a fixed way (i.e., it is given which
coordinate belongs to which piece). Each piece corresponds to a single card.
Let Π1, . . . ,ΠT be a sequence of subsets of [1, r] and let the inputs u and v be
given. Then Πt(u, v) denotes the input consisting of the pieces xi defined as
xi = vi if i ∈ Πt and xi = ui if i /∈ Πt. These input vectors are called probes,
and each of them corresponds to a choice of a visible side for each card. The
protocol is described by the T probes Π1, . . . ,ΠT and a function F (u) on
the input vectors. If F (u) = F (Π1(u, v)) = · · · = F (ΠT (u, v)), the protocol
answers “u = v”, if not, the answer is “u �= v”. Let B be the number of bits of
memory that we need, i.e., the maximal length of F (u) over all inputs u. We
are interested in the dependency of B on T and k. In the context of timespace
tradeoff, the most important quantity is the minimal possible B + T , which
corresponds to the total communication.

This corresponds to a protocol in which we first write down some
information about u, and then after each of T flips we just check whether
the current probe is consistent with that information. It is obvious that if we
discover inconsistency, the vectors are different. Thus a protocol is correct if
no two distinct vectors pass the test. In fact, here the use of memory is even
more restricted than in the version described in the introduction—effectively
the first time the protocol writes down arbitrary information F (u) but then
after each flip we write down only a single bit indicating consistency of the
current probe. It is easy to show that this restriction increases the amount
of memory by at most the maximum of B and T , see [2].

We can describe the set of probes in another equivalent way, more
convenient for our proof. For each i ≤ r let Vi ⊆ [1, T ] denote the set of
indices of the probes such that t ∈ Vi if and only if the ith piece of Πt(u, v)
is vi (as opposed to ui in other probes). We can assume that all sets Vi are
distinct, because the pieces which appear in identical sets of probes can be
joined (we can use one card instead of two cards that are always flipped
together). Also, for every i, Vi is nonempty, as at least one probe has to look
at vi in a correct protocol. This means that r ≤ 2T − 1.

In case of T = 1, the game is just the usual communication game with
one player having access to u and the other player to v; it is easy to see
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that k bits of memory are needed to test equality in that case. Similarly, it
is easy to see that B must be at least the length of any piece ui. If we fix
all other pieces to be all zeros, then every probe is either ui or vi, and a
correct protocol needs enough memory to distinguish any two distinct inputs
ui. This shows that B ≥ k/r ≥ k/(2T − 1).

We describe the best previously known protocol; it uses B = �k/T  bits
of memory [2]. Set r = T and divide the input into r pieces of the same
length (we assume without loss of generality that k is divisible by r). Set
Πt = {t}, or equivalently Vi = {i} (i.e., each probe looks at just one piece
of v and the rest comes from u). Set F (u) = u1 ⊕ u2 ⊕ · · · ⊕ ur to be the
bitwise parity of the pieces. If the protocol answers “u = v”, we know that
F (u) = F (Π1((u, v)) = v1 ⊕ u2 ⊕ · · · ⊕ ur and hence u1 = v1. The same
argument is valid for other pieces, hence u = v and the protocol is correct.

It is easy to prove that no protocol in which the function F is linear (over
GF (2)) can be better. The equation F (u) = F (Π1(u, v)) = · · · = F (ΠT (u, v))
translates into a system of BT linear equations with 2k unknowns. If the
protocol is correct, then the points in the k-dimensional subspace defined by
u = v are the only solutions of the system of equations, and hence there have
to be at least k equations. This gives B ≥ k/T .

Jeff Edmonds conjectured that this is in fact optimal even for non-linear
protocols, i.e., B = Ω(k/T ) for every protocol [2]. We disprove this conjecture.
In fact, we prove that for constant T the easy lower bound is much closer to
the truth as our protocol needs only k/(2T −1)+O(

√
k) bits of memory. If the

number of probes is not bounded it is possible to achieve B+T = O((log k)2)
using a very simple protocol. We discuss this protocol and its consequences
in Sect. 5.

3. The Upper Bound

Theorem 1. For each parameter d and for each T there exists a protocol
with T probes such that the number of bits of memory B is at most

(
1 +

T

d

)⌈
k

2T − 1

⌉
+ (T + 2d+ 1 + log k)22T−1

Corollary 1. For T constant and d =
√
k the bound is k/(2T − 1) +O(

√
k).

Proof of Theorem 1. First we present the protocol.
Each input vector is divided into r = 2T − 1 pieces u1, . . . , ur of the same

length l = �k/r . We define the probes by taking the sets Vi, i = 1, . . . , r
to be all nonempty subsets of [1, T ]. (In other words, the probes intersect as
much as possible and the pieces are all of the same size—we have seen that
this is necessary in a good protocol.)

We represent each ui as a real vector of dimension �l/d , where d is the
parameter from the statement of the theorem, as follows. We partition ui,
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a string of l bits, into �l/d substrings of d bits. Each coordinate is one of
these substrings (in a given order) interpreted as an integer from [0, 2d − 1].
From now on we abuse the notation and by ui and vi we mean the vectors
described above, interpreted as points in the Euclidean space R�l/d�.

Now we are ready to describe the function F (u). Let ‖x‖ denote the
Euclidean norm of a vector. Let u0 denote the center of gravity of u1, . . . , ur,
i.e., u0 = (

∑r
i=1 ui)/r. The function F (u) consists of the concatenation of u0

and all the distances ‖ui − uj‖, 0 ≤ i < j ≤ r.
As always, we first examine u and write down F (u) and then for each

probe we check if the value of F is equal to F (u). This finishes the description
of the protocol.

Let us compute the number of bits of F (u). Instead of communicating u0,
we can communicate the vector ru0, as r is a scalar constant. Its coordinates
are integers from [0, r(2d − 1)], hence d + log r bits are sufficient for each
coordinate, a total of (d + log r)�l/d ≤ (1 + T/d)�k/r + T + d bits for all
coordinates. Instead of each distance we communicate its square multiplied
by r2. This is a non-negative integer bounded by r2(22d − 1)�l/d < r222dl <
2r22dk, hence it can be represented by at most T + 2d+ 1 + logk bits, a total
of (T + 2d + 1 + log k)

(
r+1
2

)
for all distances. This gives the bound in the

theorem.
To prove the correctness of the protocol, we need to prove that if two

inputs u and v have the same value of F for u and all probes Π1, . . . ,ΠT ,
then u = v. The intuitive idea is that for a given piece vi we have sufficient
information about its distances from uj , j �= i, to conclude that vi = ui.

We need a simple geometric lemma, which we prove later. Recall that a
point x ∈ Rn is affinely dependent on points x1, . . . , xr ∈ Rn if it can be
written as their linear combination

∑r
i=1 αixi such that

∑r
i=1 αi = 1.

Lemma 1. Let x, x1, . . . , xr be points in Euclidean space Rn such that x is
affinely dependent on x1, . . . , xr. Let y ∈ Rn be a point satisfying ‖x− xi‖ =
‖y − yi‖ for all i = 1, . . . , r. Then x = y.

Now we finish the proof of the theorem using this lemma. We can assume
that the pieces of input are indexed in such a way that Vi ⊇ Vj implies i ≤ j,
i.e., in the reverse topological order with respect to inclusion of the sets Vi.
(This means for example that the piece v1 appears in all probes.)

We prove by induction on i = 1, . . . , r that ui = vi. Suppose that we are
proving the induction step for i, i.e., we have to prove that ui = vi. We want
to use the lemma with x = ui, {x1, . . . , xr} = {u0, . . . , ur}−{ui}, and y = vi.
From the construction we know that x is affinely dependent on the remaining
points. We need to prove that ‖ui−uj‖ = ‖vi−uj‖ for all j = 0, . . . , r, j �= i.
We distinguish three cases.

First, let j > i. Take any t ∈ Vi − Vj . By the assumption about the
indexing of the pieces we know that such t exists. This means that (Πt)i = vi
and (Πt)j = uj (we use (Πt)i as a shorthand for (Πt(u, v))i, i.e., the point
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that represents the ith piece of the vector Πt(u, v)). Now using the fact that
F (u) = F (Πt(u, v)) we get ‖ui − uj‖ = ‖(Πt)i − (Πt)j‖ = ‖vi − uj‖.

The second case is 0 < j < i. Now take any t ∈ Vi. By induction
assumption we already know that uj = vj , hence (Πt)j = uj. As in the
previous case, we get ‖ui − uj‖ = ‖(Πt)i − (Πt)j‖ = ‖vi − vj‖ = ‖vi − uj‖.

In the last case, j = 0, take again any t ∈ Vi. We know that u0 = (Πt)0
because u0 is a part of F (u). The rest is again the same.

We have established the assumptions of the lemma, and its application
finishes the induction step. We can conclude that u = v, hence the theorem
holds. �

Proof of Lemma 1. First we prove that the vector y − x is orthogonal to
xi − xj for every i and j. Using the assumption of the lemma we have

0 =
1

2
(‖y − xi‖2 − ‖x− xi‖2 + ‖x− xj‖2 − ‖y − xj‖2)

= −yTxi + xTxi − xTxj + yTxj = (x− y)T (xi − xj).

This means that x is the projection of y on the affine subspace generated
by {x1, . . . , xr}. Using Pythagoras theorem, the projection of a point outside
the subspace is always closer to any point in that subspace, hence y has to
be identical with x. �

Let us point out that our protocol works for any r, as long as every two
pieces are distinguished by some probe. The choice of r = 2T − 1 is done to
optimize the bound.

We could have saved some communication in the protocol. Instead of
taking the center of u1, . . . , ur it is possible to communicate the shift from ur
to the center of u1, . . . , ur−1 and then to use this center instead of u0 for the
distances. If we do this, it is not necessary to communicate the distances from
ur at all. It is also not necessary to communicate the distances to the center,
as they can be computed from the other distances. But all these savings still
leave us with Θ(r2) distances to communicate.

4. The Connection with Extremal Problems

In this section we describe how the communication game can be translated
into an extremal problem about hypergraphs and how that problem is related
to extremal problems about arithmetic progressions.

Suppose that the input is divided into pieces u1, . . . , ur as before, and
let U1, . . . ,Ur be the sets of all possible values for each piece. We assume for
simplicity that all pieces have the same size, and denote m = |U1| = · · · =
|Ur| = 2k/r. Let G be the complete r-partite r-hypergraph on these sets of
vertices. This means that each edge is a set of r points, exactly one from each
Ui. Each edge of G naturally corresponds to some input vector (u1, . . . , ur).
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The function F (u) from the protocol corresponds to a coloring of the
hypergraph by 2B colors. The condition that the protocol is correct means
that for no u = (u1, . . . , ur), v = (v1, . . . , vr), all the edges corresponding to
u, Π1(u, v), . . . ,ΠT (u, v) have the same color. In other words, some specific
patterns (or subhypergraphs) are not allowed to be monochromatic. (We get
more patterns, because some pieces of u and v may be equal and we get
degenerate versions of the original pattern.)

Note that we always need at leastm colors, as the edges (u1, . . . , uT−1, uT )
and (u1, . . . , uT−1, u

′
T ) must always have different color, since this is a

degenerate version of the prohibited pattern. (This is really just a translation
of the trivial lower bound into the new language, because this degenerate
pattern just corresponds to the case in which we change just one component
of u.) This also means that every hypergraph without a prohibited pattern
has at most mr−1 edges (out of mr possible).

To prove a lower bound for the communication game it would be sufficient
to prove that any hypergraph with too many edges necessarily contains a
prohibited pattern. For the upper bound we not only need to find a large set
with no prohibited pattern, but to decompose the complete hypergraph into
a small number of such sets.

This kind of problems—to find a maximal size of a structure without
a given pattern—is well-studied in extremal combinatorics, so it is not
surprising that at least the simplest cases of our problem have been studied.
Most of the information about it that we present now is from the survey
Graham and Rödl [6] and the paper by Erdős, Frankl and Rödl [5]. These
papers also contain simple proofs for some of the results that we mention
below.

Let us look at the case T = 2 and r = 3. Now the prohibited pattern are
the 3 edges (u1, u2, u3), (u1, v2, v3) and (v1, v2, u3). The degenerate version
of this pattern are any two edges that differ in a single point. We are now
interested in the maximal number of edges of a hypergraph that does not
contain any of these patterns.

For this case Rusza and Szemerédi [8] proved a slightly better bound than
the trivial one O(m2) mentioned above, namely they proved that the number
of edges is o(m2). This is proved using Szemerédi’s regularity lemma [9], and
unfortunately does not give a good bound for “o”.

This problem is actually related to a problem of finding a large set of
numbers which contains no arithmetic progression of length 3, as was noticed
first in [8]. Suppose that we have a set A ⊆ [0, (m− 1)/2] with no arithmetic
progression of length 3. Then we construct a hypergraph without a prohibited
pattern by taking U1 = U2 = U3 = [0, (m − 1)] and putting in all edges of
the form (u, u + a, u + 2a) for a ∈ A and u arbitrary (the addition is taken
modulo m), i.e., all arithmetic progressions with one element from each set
and modulus from A.

Obviously no degenerate prohibited pattern can appear, because if two
arithmetic progressions have two points identical, the third is identical
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as well. A little checking shows that the non-degenerate prohibited pattern
corresponds exactly to the situation where the moduli a, a′, and a′′ are an
arithmetic progression of length 3. So, if we have a large set A, we have a
large hypergraph. How large can A be? The best known bounds on the size
of such A are

m

2−O(
√
logm)

< |A| < m

(logm)Ω(1)
.

The lower bound is a classical result from Behrend [1], the upper bound is
due to Heath-Brown [7]. Improving these bounds is considered to be a very
hard problem.

To have a small coloring, we need to decompose the interval [0,m] into
a small number of such sets, but that turns out to be easy. We also need to
color the edges that are not arithmetic progressions, but that is trivial by
using a new set of m/|A| colors for edges of the form (u, u + a, u + 2a + c),
for every constant c, a total of m2/|A| colors. Thus the construction based

on the largest known set |A| gives us a coloring by m2O(
√
logm) colors, which

corresponds to communicating k/3 +O(
√
k) bits in our game.

Our upper bound for the communication game is based on this construc-
tion, translated into the geometric language, so that it can be generalized into
a higher dimension. In our construction, the arithmetic progression of three
points is replaced by our two points and their geometric center. In particular
our protocol gives a construction of large r-hypergraphs without certain
prohibited patterns which generalizes the well-known case of 3-hypergraphs
with no 3 distinct edges whose union has at most 6 vertices.

5. Connection to Time-Space Tradeoffs

This communication game was proposed by J. Edmonds and R. Impagliazzo
[2] as a tool for proving lower bounds in complexity of boolean functions.
We shall briefly describe the kind of results that one could possibly obtain
without going into details in order to motivate our combinatorial result, for
more information about this connection see [3].

A branching program is an oriented acyclic graph with one source, two
sinks and each vertex, which is not a sink, having outdegree 2; the edges are
labelled by variables and negated variables so that for each vertex we have a
variable and its negation at the two outgoing edges; the sinks are labelled by
accept and reject. An input vector determines a unique path from the source
to a sink, the label at the sink determines, if the vector is accepted or not.
The reason for introducing this special kind of a circuit is that the logarithm of
the minimal number of vertices of a branching program is a natural measure of
space (also called capacity) needed for computing a boolean function. This is
because we can think of a vertex in the branching program as a configuration
of the memory of a computational device. Similarly, the maximal length of a
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path from the source to a sink corresponds to time, however this measure of
complexity is interesting only if combined with some restriction on the size
of the branching program.

Since proving nontrivial lower bounds to a single measure, such as space,
which we have described above, seems to be a very hard task, it is natural to
try to prove lower bounds for combined measures. The branching program
model of computation is an ideal combinatorial setting for proving a lower
bound for the combined measure time × space. Nevertheless, so far we
have only the trivial lower bound n logn (for an explicitly defined n-variable
boolean function).

Edmonds and Impagliazzo showed [3, 4] that if we could prove a lower
bound f(k) on the total number of bits of memory plus the total number of
flips, we could prove a lower bound of n

√
f(n)/ logn for time-space product

for oblivious branching programs for the function of element distinctness.
However, the following simple protocol discovered by Russell Impagliazzo

and the authors shows that it is possible to test the equality using only
O(log k) probes and communicating O(log k) bits about each probe. This
protocol can be converted into a protocol of the form used in Sects. 2 and 3
that uses O((log k)2) bits of memory.

We think of u and v as 0-1 vectors in real vector space Rk. We compute
the Euclidean distance of u and v and check if it is 0. To compute the distance,
u·u+v·v−2(u·v), we compute u·u and v·v each using one probe and log k bits

of communication. Then we compute the product (
∑k

i=1 ui)(
∑k

i=1 vi) using
the same probes and additional 2 log k bits of communication. To compute
the desired inner product u · v we need to subtract the sum of terms uivj for
i �= j. This is easily done using 2 log k probes—choose them so that each of
the crossterms can be computed by one of them, and for each probe sum all
of these terms assigned to it.

This protocol shows that a lower bound for element distinctness cannot
be proved using this communication game. A more general game for which
the above protocol cannot be used and thus seems as a feasible approach to
time-space lower bounds was proposed by Edmonds and Impagliazzo in [4].
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Summary. The first paper with the above title was written by Erdős and Straus.
Here we solve one of the problems considered there by proving that every group of

order n contains an abelian subgroup of order at least 2ε
√

log n for some ε > 0. This
result is essentially best possible.

We also give a quick survey of recent developments in related areas of group
theory which were greatly stimulated by questions of Erdős.

1. Introduction and a Survey

Large Abelian Subgroups

One of the most ancient questions of group theory is: does every infinite group
contain an infinite abelian subgroup?

As a byproduct of their work on the Burnside problem P. S. Novikov and
S. I. Adian (see [1]) obtained a negative answer to this question. More recently
E. Rips [62] and A. Yu Ol’shanskii (see [58]) have independently constructed
Tarski Monsters, i.e., infinite groups all of whose proper non-trivial subgroups
have order p where p is some large prime.

On the other hand as shown independently by P. Hall and C. R. Kulatilaka
[32] and M. I. Kargapolov [40] the answer is positive for locally finite groups.
Various results of similar flavour have been established since (see e.g., [74]).
Recently A. Mann [48] suggested that the “dual” class of groups should also
be considered: does every infinite residually finite group contain an infinite
abelian subgroup?

(A group is called residually finite if the intersection of its finite index
normal subgroups is trivial.)

The finite analogue of the above question goes back to Jordan (see [46]).
G. A. Miller [46] was the first to publish a complete proof of the following well
known result: a group of order pα (p prime) contains an abelian subgroup of

order at least p
√
2α.
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It was proved by P. Erdős and E. G. Straus [26] that in general a group
of order n contains an abelian subgroup of order roughly logn.

Erdős suggested that this estimate should be improved (in fact he put a
copy of their paper in my letter-box).

Our main result here is the following.

Theorem 1. Every group of order n contains an abelian subgroup of order
at least 2ε

√
logn for some ε > 0.

(Throughout this paper log denotes logarithm to the base 2.)
The proof uses an easy consequence of the Classification Theorem of finite

simple groups.
In the opposite direction Ol’shanskii [57] (see also [14]) has shown the

existence of groups of order pα without abelian subgroups of order ≥ p
√
8α.

Note that despite much effort, no explicit construction of such p-groups
is known. Indeed Ol’shanskii’s proof is one of the first applications of the
random method in finite group theory. Ol’shanskii considers certain random
Higman groups, i.e., p-groups with a central elementary abelian Frattini
subgroup (describing such a group is essentially equivalent to giving two
GF (p) vector-spaces V and W together with an alternating bilinear function
V × V → W .)

For some recent applications of this method see [4, 29, 49, 50].

The Commuting Graph

We can associate with an arbitrary group G its commuting graph Γ = Γ(G):
the vertices of Γ are the elements of G and two vertices g, h are joined by an
edge if and only if g and h commute as elements of G. The maximal cliques
of Γ correspond to maximal abelian subgroups of G, the dominating vertices
are exactly the elements of the center Z(G) of G etc.

Answering a question of Erdős, B. H. Neumann [54] (see also [28]) proved
that if Γ(G) contains no infinite independent set, then there is a finite bound
on the cardinality of independent subsets of Γ. Moreover he proved that in
this case |G/Z(G)|, the index of the center is bounded in terms of α = α(Γ),
the maximal size of an independent set of Γ.

It was proved in [60] that in fact we have |G/Z(G)| ≤ cα for some (rather
large) constant c.

Let us denote by a(G) the minimal number of abelian subgroups covering
G (note that a(G) is the chromatic number of the complementary graph
Γ(G)). It is obvious that α(Γ(G)) ≤ a(G) ≤ |G/Z(G)|.

Confirming a conjecture of Erdős and Straus [26] D. R. Mason [51] proved
that for a group of order n we have a(G) ≤ [

n
2

]
+ 1.

As noted in [26] I. M. Isaacs has shown that a(G) ≤ (α!)2. Isaacs also
observed that for extra special 2-groups we have a(G) ≥ 2α/2 (see [6] for
details).
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Erdős [23] suggested that the upper bound should be improved. Such an
improvement is a consequence of the above mentioned result from [60] namely
we have a(G) ≤ cα.

In the opposite direction as R. Baer observed (see [53]) if a(G) is finite
then |G/Z(G)| is finite. M. J. Tomkinson [69] proved that in fact we have
|G/Z(G)| ≤ 2a(G)log a(G) and suggested that perhaps |G/Z(G)| ≤ (a(G)−1)2

is true.
In response to a question of Erdős, V. Faber, R. Laver and R. McKenzie

[28] showed that if a(G) = κ is an infinite cardinal then |G/Z(G)| is still
bounded in terms of a(G). Using a Partition Theorem of Erdős, A. Hajnal and
R. Rado [25] and Tomkinson [69] improved this estimate to |G/Z(G)| ≤ 22

κ

.
Tomkinson suggests that perhaps even |G/Z(G)| ≤ 2κ is true (this would be
best possible [28]).

Given a class χ of groups we can associate with an arbitrary group G
a graph Γχ(G) as follows: the vertices of Γχ are the elements of G and two
vertices g, h are joined by an edge if and only if 〈g, h〉 ∈ χ. Thus if χ is the
class of abelian groups then Γχ(G) is the commuting graph.

J. C. Lennox and J. Wiegold [45] suggested that the questions of Erdős
should also be considered for the graphs Γχ(G) where χ is taken to be
the class of finite groups, soluble groups, polycyclic groups etc. For finitely
generated groups G they obtained certain analogues of B. H. Neumann’s
result mentioned above. Further results in this direction were obtained in
[15, 30, 39, 71, 76].

As Lennox and Wiegold noted [45] when considering infinite groups it
is necessary to restrict attention to finitely generated soluble groups, for
otherwise these analogues are no longer true. For example M. R. Vaughan-Lee
and Wiegold [73] constructed infinite perfect groups in which every two-
generator subgroup is nilpotent of bounded class (see [45] for more details
concerning similar examples).

However, such monsters are necessarily infinite. Indeed by a well known
corollary of J. G. Thompson’s characterisation of minimal simple groups if
every 2-generator subgroup of a finite group G is soluble then G itself is
soluble.

Furthermore, as Tomkinson [69] proved if a group G has an irredundant

covering by n subgroups H1, H2, . . . , Hn then

∣
∣
∣∣G :

n⋂

i=1

Hi

∣
∣
∣∣ ≤ n!. This shows

for example that if G is a finite group which can be covered by m
soluble subgroups then |G/ Sol(G)|, the index of the maximal soluble normal
subgroup of G is bounded in terms of m.

So it seems to be reasonable to investigate the properties of the graphs
Γχ(G) for arbitrary finite groups.
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Conjugacy Classes

A group G is said to be a BFC group if its conjugacy classes are finite and
of bounded size, it is called an m-BFC group if the least such upper bound
is m.

One of B. H. Neumann’s discoveries [52] was that in a BFC group the
commutator subgroup G′ is finite. Wiegold [75] conjectured that for an
m-BFC group we have |G′| ≤ m

1
2 (1+logm). This conjecture was confirmed

for nilpotent groups by Vaughan-Lee [72]. In general P. M. Neumann and
Vaughan-Lee [56] obtained the slightly weaker inequality |G′| ≤ m

1
2 (3+5 logm)

(see [17] for some improvements). The proof of the exponential bound for the
index of the centre [60] rests upon this result via the following observation:
in a finite group G every conjugacy class has size at most 4α2(Γ(G)).

Further results concerning BFC groups are to be found in
[36, Chap. VIII/9], [47, 56]. A group which has finite conjugacy classes is
called an FC group. For the extensive theory of these groups we refer the
reader to [63, 68].

Note that a group G is m-BFC exactly if δ = |G|
m −1 holds for the minimal

degree δ of the commuting graph Γ(G). The maximal degree of Γ is clearly
equal to |G| − 1. For soluble groups E. A. Bertram [7] started investigations
concerning the largest order of the centralizer of a non-central element. This
number is Δ2 − 1 where Δ2 denotes the second largest degree of Γ.

Confirming a conjecture of Bertram Isaacs [38] and J. Cossey [19]
independently proved that for G soluble we have Δ2 ≥ |G| 12 . T. Kepka and
M. Niemenmaa [41] proved using a classical result of R. Brauer and K. A.
Fowler [13] that Δ2 ≥ |G| 14 for an arbitrary finite group G. While the bound
for soluble groups is sharp, the result of Kepka and Niemenmaa can probably
be improved.

Let us denote by At(G) the number of ordered t-tuples of pairwise
commuting elements of G.

Another problem considered by Erdős and Straus [26] is that of obtaining
lower bounds for At(G). This was originally suggested by Linnik.

As observed earlier by Erdős and Turán [27] we have A2(G) = |G|k(G)
where k(G) is the number of conjugacy classes of G (note that the number of
edges in Γ(G) is 1

2 |G|(k(G) − 1)). This latter invariant has been investigated
repeatedly.

Answering a question of Frobenius, E. Landau [44] proved in 1903 that
for a given k there are only finitely many groups having k conjugacy classes.
Brauer [12] noted that Landau’s argument implies k(G) ≥ log log |G| and
proposed the problem of finding substantially better bounds.

The first such bound was established in [61]: every group G of order n ≥ 4
satisfies k(G) ≥ ε log n

(log logn)8 for some ε > 0.
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On the other hand very recently L. G. Kovács [42] constructed groups
of order n with roughly ( logn

log logn )2 conjugacy classes for certain numbers n

(cyclic extensions of the p-groups constructed in [43]).
Groups with a very large number of conjugacy classes were characterised

by P. M. Neumann [55].
As the above discussion shows we know a lot about A2(G). Erdős and

Straus [26] proved that At(G)/At−1(G) → ∞ as |G| → ∞. However it is
not clear how fast At(G) should grow when t ≥ 3. For some partial results
see [26] and the final section of this paper.

For infinite groups G. Higman, B. H. Neumann and Hanna Neumann [34]
have shown that every torsion-free group can be embedded in a torsion-free
group with just two conjugacy classes.

Furthermore Rips [62] has constructed countably infinite groups with
exactly 3 non-conjugate subgroups. In contrast S. Shelah [66] proved that
every group of cardinality ℵ1 has at least ℵ1 non-conjugate subgroups.

A few words about the rest of this paper. In Sect. 2 we establish some
general results on large subgroups of finite groups. Section 3 contains the
proof of our main result concerning abelian subgroups. In the last section
we offer some comments on some related problems. Our notation will mainly
follow that of [67].

2. Large Subgroups

We use the classification of finite simple groups via the following.

Proposition 1. Let G be a nonabelian simple group and S a Sylow subgroup
of largest order in G. If G is an alternating group then we have |S|2 log log |S| ≥
|G| and in all other cases we have |S|5 ≥ |G|.
Proof. For the alternating groups, the sporadic groups and for the Tits simple
group our statement follows by inspection. For the groups of Lie type we have
in fact |S|3 ≥ |G| as noted in [4]. �

It would be most interesting and useful to show the existence of “large”
soluble subgroups of simple groups without using the Classification Theorem.
It is curious to note that A. Chermak and A. Delgado [18] obtained an
elementary proof of a result that goes the other way around: if G is
a nonabelian simple group then for every abelian subgroup A we have
|A|2 ≤ |G|.

Following Wielandt we call a subgroup H intravariant in the group G if
every image of H under an automorphism of G is conjugate in G to H . For
example any Sylow subgroup of G is intravariant.

We are going to use the following very special case of a theorem of S. A.
Chunikhin [67, Chap. 5, Theorem 3.17].
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Proposition 2. Let G = G0 �G1 . . .�G2 = 1 be a normal series with each
Gi normal in G. Let Gi = Gi−1/Gi denote the factors. Suppose for each i
that Hi is an intravariant subgroup of Gi. Then there is a subgroup H of G
such that all the nonabelian composition factors of H occur as composition
factors of some of the groups Hi and |H | ≥ ∏ |Hi|.

Let us say that a group G is an alternating type group if all the nonabelian
composition factors of G are alternating of degree at least 8 (we exclude
alternating factors of smaller degree for technical reasons).

Corollary 1. Let G be an arbitrary finite group. Then

(a) G contains a soluble subgroup S such that

|G| ≤ |S|2 log log |S|.

(b) G contains an alternating type subgroup H such that |G| ≤ |H |5.
Proof. Let G0 � G1 . . . � Gr = 1 be a chief series of G. Then for each
i the factor group Gi = Gi/Gi−1 is a direct product of isomorphic simple
groups. If Gi is abelian we set Gi = Si, otherwise let S̄i denote a Sylow
subgroup of largest order in Gi, S̄i is a soluble intravariant subgroup of Gi

and by Proposition 1 we have |Gi| ≤ |S̄i|2 log log |Si |. Now (a) follows from
Proposition 2.

The proof of (b) is analogous. �

By a result of Dixon [20] a solvable subgroup of the symmetric group

Sym(n) has order at most 24
n−1
3 . This shows that the “log log” factor in

Corollary 1 (a) cannot be dispensed with.
A folklore consequence [33, 48] of a well known result of P. P. Pálfy [59]

and T. R. Wolf [77] is that if G is a soluble group then |F (G)|α ≥ |G| holds
for the Fitting subgroup F (G) of G (F (G) is the unique maximal nilpotent
normal subgroup) where α = 2.24399 . . .. Moreover H. Heineken [33] proved
that a soluble group G has a nilpotent subgroup H such that |H |3 ≥ |G|.

By Miller’s theorem a nilpotent group of order n =
t∏

i=1

pαi

i contains an

abelian subgroup of order at least
t∏

i=1

p
√
2αi

i (it is not clear whether this holds

for say soluble groups).
When combined the above results immediately yield that an arbitrary

group of order n contains an abelian subgroup of order at least 2
ε
√

log n
log log n .

To erase the “log log” factor here we have to consider abelian subgroups of
alternating type groups in more detail.

Before that we would like to point out another application of the above
simple ideas (and the Classification Theorem).

As Jordan proved there is a function J(n) such that whenever G is a
finite subgroup of GL(n,C) then G has an abelian normal subgroup A with
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|G : A| ≤ J(n). The best upper bound obtained for J(n) by elementary

means is roughly 2
n2

log n (see [37, 64]).
As the symmetric group Sym(n + 1) has a faithful linear representation

of degree n we know that J(n) ≥ (n+ 1)!.
Here we observe the following.

Proposition 3. J(n) ≤ (n!)20 for n sufficiently large.

Proof. Let G be a linear group of degree n. By [37, Theorem 14.16] there is
an abelian normal subgroup A of G such that |H : H ∩ A| ≤ 12n holds for
every abelian subgroup H of G.

Let S be a solvable subgroup of maximal order in G (clearly S ⊇ A).
By a result of L. Dornhoff (see [22]) a finite soluble subgroup of GL(n,C)
contains an abelian normal subgroup H of index less than cn for some c < 9.
Now |S/A| ≤ |S : H ||H : H ∩ A| ≤ 100n. Using Corollary 1 (a) we obtain
that |G : A| ≤ (100n)2 log log(100n) ≤ (n!)20 for n sufficiently large. �

Close to sharp estimates for J(n) appear in unpublished work of B.
Weisfeiler (personal communication from G. R. Robinson).

3. The Proof of the Theorem

Let G be a group of alternating type of order n. Clearly all alternating factors
of G have degree less than � = �logn . We define the numbers �i by �i =

�log
i
�n (where log

i
� denotes the i-th iterated logarithm of n) for i = 1, . . . t

where t is the largest natural number such that log
i
�n > 6 and set �t+1 = 6

and �t+2 = 4. Note that 2i+1 ≥ �i holds for i = 1, . . . , t+ 1.
We will need the following corollary of results due to Bercov [5].

Lemma 1. Suppose that a minimal normal subgroup of a finite group G is
a direct product of (isomorphic) alternating groups of degree at least 7. Then
N has a complement C in G (i.e., we have NC = G and N ∩ C = 1).

Lemma 2. Let G be a group of alternating type. There exists a series of
subgroups G0, G1, . . . , Gt of G such that

(a) G0 is soluble and its order is the product of the orders of all abelian
composition factors of G.

(b) For i = 1, . . . , t the nonabelian composition factors of Gi are alternating
groups. The number of all such factors of degree r is the same as in G
for �i > r ≥ �i+1 and otherwise it is zero.

(c) | Sol(Gi)| divides |G0|.
(d) Sol(Gi) = F (Gi) for every i.

Proof. The existence of a series of subgroups satisfying (a), (b) and (c),
follows from Lemma 1 by an obvious induction argument.
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Suppose now that G0, G1, . . . , Gt is a series of subgroups of G satisfying
(a), (b) and (c) such that the orders of the subgroups G1, . . . , Gt are minimal.
We claim that this series satisfies (d) as well.

By a well known observation [35, p. 269] if G is a group, N a normal
subgroup of G such that no proper subgroup of G has G/N as a factor group
then N is contained in the Frattini subgroup Φ(G) of G. Applying this to Gi

and Sol(Gi) we see that Sol(Gi) ⊆ Φ(Gi) ⊆ F (Gi) by the minimality of Gi

for every i. �

We also need the following useful result [3].

Lemma 3. Let G be a permutation group of degree d. If G has no alternating
composition factors of degree > D (D ≥ 6) then |G| ≤ Dt−1.

Next we prove a crucial technical lemma.

Lemma 4. Let the group H be a direct product of the alternating groups
Alt(di) (i = 1, . . . , k) with r ≤ di < 2r for some r ≥ 8. Let A be a subgroup
of Aut(H) such that A has no alternating composition factors of degree ≥ 2r.
Then

(a) |A| ≤ |H |2.
(b) For any p ≤ r (p prime) H contains an elementary abelian p-subqroup of

order at least

|H | log p
2rp .

Proof. A permutes the k factors of H . The kernel of this action K is a

subgroup of
k∏

i=1

Sym(di) and therefore we have |K| ≤ |H |2t (here we used

the fact that Aut(Alt(d)) = Sym(d) for d ≥ 7). The factor group A/K is
a subgroup of Sym(k) and by Lemma 3 its order is less than (2r)t. On the
other hand we have |H | ≥ ( r!2 )t ≥ (2r + 1)t and (a) follows.

Clearly it is sufficient to prove (b) for the case when H = Alt(d) is an
alternating group (i.e., t = 1). In this case H contains an elementary abelian

p-subgroup of order p�
d
p �.

If d ≥ 2p then 2pd
p� ≥ d and r ≥ log d imply 2rpd

p� ≥ d log d. Therefore

p�
d
p � ≥ (dd)

log p
2r p > |Alt(d)| log p

2r p .

If d < 2p then we have p
2r p
log p = (2r)2p > |Alt(d)| as required. �

Next we will list some basic properties of the generalized Fitting subgroup
F ∗(G) (see [2, Chap. 11]).

Let us recall that a group H is called quasisimple if it is a perfect central
extension of a simple group L, i.e, if H = H ′ and L ∼= H/Z(H). It is well
known that if L is an alternating group of degree at least 8 then |Z(H)|
divides 2 [67, I Chap. 3, Theorem 2.22].
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The components of a group G are its subnormal quasisimple subgroups.
The subgroup E(G) is generated by the components of G and in fact it is a
central product of the components.

The generalised Fitting subgroup is F ∗(G) = E(G) · F (G) (this again
turns out to be a central product). The most significant fact about F ∗(G) is
that CG(F ∗(G)) = Z(F ∗(G)). This means that G/Z(F ∗(G)) acts faithfully
on F ∗(G) by conjugation.

We also need two easy observations about Sol(G): if C is a normal
subgroup of G then Sol(C) = Sol(G)∩C and if C ⊆ Sol(G) then Sol(G/C) =
Sol(G)/C.

Let alt(G) denote the product of the orders of all (nonabelian) alternating
composition factors of G.

The following lemma contains a major part of the proof of our Theorem.

Lemma 5 (Main). Let us fix an index i, 1 ≤ i ≤ t, and consider the group
Gi (as in Lemma 2) and an odd prime p ≤ �i+1. Suppose that for C =
CGi(Op(Gi)) we have alt(C) ≥ x. Then G contains an abelian p subgroup of

order at least x
log p

4p�i+1 .

Proof. The centraliser C is a normal subgroup of Gi therefore Sol(C) =
Sol(Gi) ∩ C. By Lemma 2 (d) we have Sol(Gi) = F (Gi) therefore Sol(C) is
the centraliser of Op(Gi) in F (Gi) = Op(Gi)×Op′(Gi), i.e., it is Z(Op(Gi))×
Op′(Gi).

Consider the factor group C̃ = C/Op′(Gi). If C̃ has an abelian p-subgroup
P then clearly C has an abelian p-subgroup isomorphic to P . Therefore it is
sufficient to prove that C̃ has a large abelian p-subgroup.

Now Sol(C̃) = Sol(C)/Op′(Gi) ∼= Z(Op(Gi)). It follows that Sol(C̃) =

F (C̃) and in fact F (C̃) = Z(C̃) (for by definition Z(Op(Gi)) is contained in
the center of C).

Consider F ∗(C̃) = E(C̃) · F (C̃). As the nonabelian composition factors
of C̃ are all alternating groups of degree at least 8 the center of E(C̃) is a
2-group. On the other hand Z(E(C̃)) is contained in the p-group Sol(C̃), i.e,
Z(E(C̃)) = 1 and E(C̃) is a direct product of alternating groups.

C̃ acts by conjugation on F ∗(C̃) and as noted above the kernel of this
action is Z(F ∗(C̃)). As we have F (C̃) = Z(C̃) it follows that C̃/Z(F ∗(C̃))
acts faithfully on E(C̃). It is also clear that |C̃/Z(F ∗(C̃))| ≥ alt(C) ≥ x.

Using Lemma 4 (a) we obtain that |E(C̃)| ≥ √
x and by Lemma 4 (b)

E(C̃) contains an abelian p-subgroup of order at least x
log p

4p�i+1 . The statement
of the lemma follows. �

We need two more folklore observations.

Proposition 4. Let P be a p-group, p an odd prime. Suppose that Aut(P )
has an elementary abelian section (factor group of a subgroup) of order 2α.
Then |P | ≥ pα.
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Proof. Let S denote the group of automorphisms of P which stabilise
P/Φ(P ). It is well known that S is a p-group, therefore Aut(P )/S has
an elementary abelian section of order 2α. However, Aut(P )/S has a
natural embedding into GL(r, p) where |P/Φ(P )| = pr. From the structural
description of the Sylow 2-subgroups of GL(r, p) [16] the inequality α ≤ r
follows immediately. �

Proposition 5. There exists an absolute constant c such that for any n and
1 ≤ i ≤ t the product of the primes p, �i+1 ≥ p > �i+2, is at least 2ci+1 .

Proof. This follows, e.g., from the estimates in [65] using 2i+2 ≥ �i+1. �

Proof of Theorem 1. Let G be a group of alternating type. Take a subgroup
Gi such that xi = alt(Gi) ≥ 28�log logn�2√logn.

Suppose first that for some prime p, �i+1 ≥ p > �i+2, we have
alt(CGi(Op(Gi)) ≥ √

xi. By Lemma 5 Gi and therefore G contains an abelian
subgroup of order at least

x
1

8p�i+1

i ≥ 2
√
logn.

On the other hand if alt(CGi(Op(Gi))) ≤ √
xi then for A =

Gi/CGi(Op(Gi))) we have alt(A) ≥ √
xi and A ⊆ Aut(Op(Gi)). Consider

the factor group Ã = A/ Sol(A) and H = Soc(Ã). It is well known that
Soc(Ã) is a product of nonabelian simple groups and that Ã has an embedding
into Aut(H). Now it is clear that |Ã| ≥ √

xi and that Ã and H satisfy the
conditions of Lemma 4 with r = �i+1. Therefore A has a section which is

an elementary abelian 2-group of order at least x
1

8�i+1

i . By Proposition 4 it
follows that

|Op(Gi)| ≥ p
log xi
8�i+1 .

If this latter inequality holds for all primes p, �i+1 ≥ p > �i+2, then using
Proposition 5 we obtain that

∏

i+1≥p>i+1

|Op(Gi)| ≥ (2ci+1)
log xi
8�i+1 ≥ x

c
8

i .

Suppose now that G contains no abelian subgroup of order greater than
2
√
logn. It is clear that t is less than, say, 10 log logn. Therefore the product

of the xi for which xi ≤ 28�log logn�2√log n is less than 280�log logn�2√logn.
Using Lemma 2 (b) and (c) we obtain that |G0| ≥ ( alt(G)

28�log log n�3√
log n

)
c
8 .

By Lemma 2 (a) this implies that for n sufficiently large |G0|2+ 8
c ≥

alt(G) |G0| = |G|.
By the result of Heineken [33] mentioned in Sect. 2 this implies that G

contains a nilpotent subgroup of order at least |G|
1

3(2+ 8
c
) .
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Using Miller’s theorem we obtain that G contains an abelian subgroup of
order at least 2ε

√
logn for some ε > 0.

This completes the proof for alternating type groups G and by Lemma 2
(a) it follows that the Theorem holds for arbitrary finite groups. �

4. Odds and Ends

By a classical result of P. Hall [31] a p-group P of order pα has derived
length less than logα. This implies that P has an abelian section of order

at least |P | 1
log α . Combining this observation with the results of Sect. 2 we

obtain that an arbitrary group of order n has an abelian section of order at

least n
c

(log log n)2 for some c > 0. Perhaps much more is true.

Problem

Does there exist an ε > 0 such that every soluble group G has a class 2
subgroup of order at least |G|ε?

A group G is said to have property Pm if for each m element subset
{x1, . . . , xm} of G there exists a permutation π ∈ Sym(m) such that x1 · . . . ·
xm = xπ(1) · . . . · xπ(m). Let per(G) denote the smallest m such that G has
property Pm.

Much is known about groups with per(G) small [9–11]. For example R.
Brandl [11] proved that |G/F (G)| is bounded in terms of per(G).

In the opposite direction it follows from some crude estimates (see,
e.g., [9]) that if H is a subgroup of G then per(G) ≤ |G : H |(|H ′| + 1).
Therefore if G has an abelian section of order x then per(G) is less than,

say, 2(G)
x . For a group G of order n this gives us per(G) ≤ n

1− C
(log log n)2 (this

sharpens a result of Brandl [11]).
It should be possible to improve this estimate to say per(G) ≤ n

1
2 for n

sufficiently large. In fact no examples with per(G) significantly larger than
logn seem to be known (note however that per(Sym(m)) ≥ m [9]).

Let us make now a few comments concerning the behaviour of the function
At(G) (recall that At(G) is the number of pairwise commuting t-tuples of G).
Denote by At(n) the minimum of At(G) for all groups G of order n. We will
indicate how one can give a lower bound for At(n) when n is a prime-power.

Proposition 6. For every integer t ≥ 1 there exists a constant ct such that
At(p

α) ≥ ctαt−1�pα.
Sketch of the proof. Take a group P of order pα. Define a series of elements
g1, . . . , gα as follows. If we are given g1, . . . gi−1 then consider the subgroup
Pi−1 they generate (Pi−1 turns out to be a normal subgroup of P of order
pi−1). If g̃i is an element of order p in the center of P/Pi−1 then any element
of the corresponding coset of Pi can be taken as gi.
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It is clear from the definition that g1, . . . , gα are pairwise non-conjugate
elements and gi has at most pi conjugates.

Now it is obvious that At(P ) =
∑

g∈P At−1(CP (g)). As |P : CP (gi)| is

the number of conjugates of gi it follows that At(P )
|P | ≥

α∑

i=1

At−1(CP (gi))
|CP (gi)| and

that |CP (gi)| ≥ pα−i.

By induction we obtain that At(p
α) ≥ pα

α∑

i=1

ct−1(α − i)t−2� and our

statement follows easily. �

It would be most interesting to find an infinite series of p-groups Pi of
order pαi , p fixed αi → ∞ for which A2(Pi)

|Pi| ≤ cαi for some constant c. (Note

again that A2(Pi)/|Pi| is roughly the same as k(Pi).)
It is not clear how fast At(n) should grow in general for t ≥ 3. However,

we observe that (At(n)
n )

1
t−1 can at least be much smaller than n.

Proposition 7. At(Sym(m)) ≤ cm!3
mt
3 for some c > 0.

Proof. As Dixon [21] observed the number of maximal abelian subgroups of
Sym(m) is less than m! and the maximal order of an abelian subgroup is
roughly 3

m
3 . Our statement follows. �

As noted in Sect. 1 if a group G contains at most n pairwise non-
commuting elements then |G/Z(G)| ≤ cn for some large c and therefore
G can be covered by cn abelian subgroups. Erdős [24] suggested that the
value of c in [60] should be further improved.

We would like to point out that such an improvement (and an essential
simplification of the proof in [60]) could be obtained by solving a problem of
Tomkinson [69] in the special case of abelian p-groups. Tomkinson suggests
that if a group G has an irredundant covering by n subgroups H1, . . . , Hn

then |G : (H1 ∩ . . . ∩ Hn)| ≤ cn0 should hold (and that c0 should be small).
Let us see how the proof of this conjecture for abelian groups G would help us.

It is proved in [69] that if {x1, . . . , xn} is a set of pairwise non-
commuting elements of a group G having maximal size then the centralisers
CG(x1), . . . , CG(xn) form an irredundant covering of G and their intersection
coincides with Z(G). Suppose now that P is a class 2 p-group (i.e., P ′ ≤
Z(P )) and that Tomkinson’s conjecture holds for the abelian group G/Z(G).
The subgroups CP (xi)/Z(P ) form an irredundant covering of P/Z(P ) with
intersection 1, i.e., we would have |P/Z(P )| ≤ cn0 .

By some preliminary results in [60] if |P/Z(P )| ≤ cn0 holds for class 2

p-groups P then for an arbitrary group G we have |G/Z(G)| ≤ cn02100(logn)4 .
For a better understanding of the above problems it would also be useful

to consider their analogues for Lie rings.
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23. P. Erdős, On some problems in graph theory, combinatorial analysis and

combinatorial number theory, in Graph theory and Combinatorics, Acad. Press,
London (1984), 1–17.
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On Small Size Approximation Models
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Summary. In this paper we continue the study of the method of approximations
in Boolean complexity. We introduce a framework which naturally generalizes
previously known ones. The main result says that in this framework there exist
approximation models providing in principle exponential lower bounds for almost
all Boolean functions, and such that the number of testing functionals is only singly
exponential in the number of variables.

1. Introduction

Proving superpolynomial lower bounds on the complexity of explicitly given
Boolean functions is one of the most challenging tasks of the modem
complexity theory. Its importance stems from the fact that such bounds could
be easily translated into similar bounds for Turing models and, thus, would

lead to resolving central open questions in Complexity Theory like P
?
=NP

or NC
?
=P .

At the moment, however, we have succeeded in proving desired bounds
only for rather restrictive models. A substantial part of these bounds was
obtained via a general scheme originally proposed in [16, 17] and called
afterwards the method of approximations :

– On the monotone circuit size—[1, 12, 14–17];
– For bounded-depth circuits with modular gates—[2, 11, 18];
– For switching-and-rectifier networks (= nondeterministic branching

programs)—[19];
– For ⊕-branching programs (see [7] for definitions)—[6].

The reader willing to learn more about these and related results or about the
general perspective of the field is referred to the survey paper [3].

Concrete approximation models which have appeared in the literature
can be naturally subdivided into two large groups.

Models from the first group use inputs of the original function as their
error tests. Such are models from [1, 2, 11, 12, 14–18]. We will call the method
based on models of this kind the pure approximation method.

Other models use as error tests specially designed functionals, every
functional being attached to a single input. These models were studied,
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and sometimes actually used in [4–6, 8, 9, 19]. See [13] for an extended
survey; following this source, we will call the corresponding method the fusion
method. The same word “fusion” will be also used for functionals and models.

The most interesting question is, of course, to which extent the approx-
imation method might be useful in proving lower bounds for unrestricted
circuits. To that end, it was shown in [9] that the pure approximations can
not prove bounds greater than O(n2) or, more precisely, O(n · n0), where
n0 ≤ n is the number of essential variables of our function. Since every fusion
model with N functionals can always be considered as a pure approximation
model with n0 := n and n := n+ �log2N (see [9, Claim 2.5]), it follows that
lower bounds provable by any such fusion model never exceed O(n2+n logN).

On the other hand, in [9] for every function f a fusion model was exhibited
which, at least in principle, provides tight, up to a polynomial, lower bounds
on the circuit size of f . The number of fusing functionals involved in that
model was triply exponential in n, and it was also remarked in [9] that it
can be decreased to doubly exponential. The resulting model, however, is
somewhat artificial.

More natural fusion model with the number of fusing functionals being
only doubly exponential in n has been found in [5]. Their model is universal
for nondeterministic circuit size, hence it still can prove exponential lower
bounds for almost all Boolean functions. Note that. in view of the above-
mentioned limitation O(n2 + n logN), this is roughly optimal for fusion
models.

In this paper we study the question whether there exists a natural version
of the method of approximations in which proving exponential lower bounds
is possible (again, in principle) with the number of fusion functionals being
only singly exponential in the number of variables. We indeed find such a
framework generalizing both pure approximations and fusion models. In fact,
our framework is obtained by cleaning the underlying idea of approximations
from the prejudice of attaching error tests to particular input strings which
is characteristic for previous models.

More exactly, we show that for every integer-valued function t = t(n)
in the range n ≤ t(n) ≤ 2n

3n there exists an approximation model M (in

our framework) with O(t3 log2 t) error tests such that for almost all Boolean
functions f , ρ(f,M) ≥ t, where ρ(f,M) is the distance between f and M
(Theorem 2).

The main motivation for this work comes from [10], where I put forward
the thesis that the right theory capturing the kind of machinery existing
in Boolean complexity at the moment is the second-order system V 1

1 . This
system can freely talk of those approximation models in which the number
of error tests is bounded by 2O(n) (and thus error tests can be represented
by first order objects). Hence, unlike previous models, the models considered
in this paper are within the reach of V 1

1 in terms of size. It should be noted,
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however, that gaining in size we lose in the constructibility. Indeed, our proof
heavily relies upon Erdös probabilistic argument, and in order to carry it over
in V 1

1 we need an explicit construction.

2. Definition of Approximation Models

Throughout the paper, Fn stands for the set of all Boolean functions in n
variables. Let Pn 	 {x1, . . . , xn,¬x1, . . . ,¬xn} ⊆ Fn be the set of input
functions.

Let F be a finite set of arbitrary nature. We define an approximation
model M as a subset M ⊆ Fn × P(F) such that

Pn × {∅} ⊆ M (1)

supplied with two binary operations ∧, ∨ which are consistent with the
projection onto Fn. In other words, we require

f(m1 ∗m2) = f(m1) ∗ f(m2); m1,m2 ∈ M, (2)

where ∗ ∈ {∧,∨}, and we once and for all have fixed notation f(m) for
denoting the projection of m ∈ M onto the first coordinate Fn. Similarly, we
will denote the projection onto P(F) by F(m) so that m = 〈f(m),F(m)〉.

Now we give a set of definitions which is routine for the method of
approximations. Namely, let

δ∗(m1,m2) 	 F(m1 ∗m2) \ (F(m1) ∪ F(m2)); m1,m2 ∈ M,

Δ 	 {δ∗(m1,m2) | ∗ ∈ {∧,∨};m1,m2 ∈ M},

ρ(f,M)	 min

{

t

∣
∣
∣
∣∃m ∈ M ∃δ1, . . . , δt ∈Δ

(

f(m) = f &F(m) ⊆
t⋃

i=1

δi

)}

.

(3)

The intuitive idea behind this is that if the real circuit computes some
function f at a node u, then the approximating circuit must compute at u
some m ∈ M with f(m) = f (due to (2)). Now, all tests F ∈ F(m) have
already found “an error”, that is F(m) ⊆ ⋃

v δv, where the union is extended
over all nodes v lying below u, and δv ∈ Δ naturally corresponds to the node
v. For the reader familiar with previous analogous statements, this should
serve as a self-sufficient proof of the following

Theorem 1. For every f ∈ Fn and every approximation model M, we have
ρ(f,M) ≤ C(f), where C(f) is the minimal possible size of a circuit over the
basis ∧, ∨ with inputs from Pn computing f .

We conclude this section by showing that our new framework generalizes
both pure approximations and the fusion method.

Example 1. Let 〈M, ∧̄, ∨̄〉 be a legitimate model [9, Sect. 2]. Here Pn ⊆
M ⊆ Fn and ∧̄, ∨̄ are arbitrary binary operations on M. Recall that for
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ḡ, h̄ ∈ M and ∗ ∈ {∧,∨}, the subsets δ+∗ (ḡ, h̄), δ−∗ (ḡ, h̄) of {0, 1}n are defined
as follows:

δ+∗ (ḡ, h̄) 	 (ḡ ∗ h̄) \ (ḡ ∗̄ h̄),

δ−∗ (ḡ, h̄) 	 (ḡ ∗̄ h̄) \ (ḡ ∗ h̄)

(we identify a Boolean function with its set of ones). For f ∈ Fn, the distance
ρ(f,M) is the minimal t for which there exist f̄ , ḡ1, . . . , ḡt, h̄1, . . . , h̄t ∈ M
and ∗1, . . . , ∗t ∈ {∧,∨} such that

f \ f̄ ⊆
t⋃

i=1

δ+∗i
(ḡi, h̄i),

f̄ \ f ⊆
t⋃

i=1

δ−∗i
(ḡi, h̄i).

The quantity ρ(f,M) provides a lower bound on the circuit size of f .
Take now two disjoint copies Bn

+, B
n
− of {0, 1}n, and let F 	 Bn

+ ∪ Bn
−.

Consider the product Fn ×M of two {∧,∨}-algebras, and embed it into Fn ×
P(F) ≈ Fn × P(Bn

+) × P(Bn
−) as follows:

π : Fn × M → Fn × P(Bn
+) × P(Bn

−),

〈f, f̄〉 %→ 〈f, f \ f̄ , f̄ \ f〉.
We let M 	 im(π) and endow M with the structure of {∧,∨}-algebra induced
from Fn × M. Note that (1) is implied by Pn ⊆ M.

Assume that m1,m2 ∈ M; m1 = π(g, ḡ), m2 = π(h, h̄). Representing
δ∗(m1,m2) in the form δ+∗ (m1,m2) ∪ δ−∗ (m1,m2), where δ◦∗(m1,m2) ⊆ Bn◦ ,
we have:

δ+∗ (m1,m2) = ((g ∗ h) \ (ḡ ∗̄ h̄)) \ (g \ ḡ ∪ h \ h̄)

= ((g ∗ h) \ (g \ ḡ ∪ h \ h̄)) \ (ḡ ∗̄ h̄)

⊆ (ḡ ∗ h̄) \ (ḡ ∗̄ h̄) = δ+∗ (ḡ, h̄)

and similarly for δ−∗ (m1,m2). Noting that the condition

∃m ∈ M ∃δ1, . . . , δt ∈ Δ

(

f(m) = f &F(m) ⊆
t⋃

i=1

δi

)

(4)

from (3) can be rewritten in the form

∃f̄ ∈ M ∃∗i ∈ {∧,∨} ∃m(1)
i ,m

(2)
i ∈ M

(

f \ f̄ ⊆
t⋃

i=1

δ+∗i

(
m

(1)
i ,m

(2)
i

)
& f̄ \ f ⊆

t⋃

i=1

δ−∗i

(
m

(1)
i ,m

(2)
i

)
)

,

we immediately see that ρ(f,M) ≤ ρ(f,M). In other words, every legitimate
model in the sense of [9] can be simulated in our framework.
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Example 2. Let us now turn to the fusion method. In fact, we might first
apply the construction from [9] to get a pure approximation model, and then
the construction from Example 1. Things become much more transparent,
however, if we combine the two steps into one. Recall some necessary
definitions [9, 13].

Let f ∈ Fn be a fixed function, U 	 f−1(0), and V 	 f−1(1). Let Ωf ⊆
{0, 1}P(U) consist of those functionals on P(U) which satisfy the following
two conditions:

1. F is monotone,
2. There exists a (uniquely determined) z(F ) ∈ V such that for all xεi ∈ Pn,

F (xεi |U ) = xεi(z(F )).

Here, as usual, x1i 	 xi and x
0
i 	 (¬xi).

Note that these two conditions imply F (∅) = 0 and F (U) = 1.
For ḡ, h̄ ∈ {0, 1}U we say that the pair (ḡ, h̄) covers F ∈ Ωf if F (ḡ) =

F (h̄) = 1 and F (ḡ ∧ h̄) = 0. The minimal number of pairs needed to cover
the whole Ωf is denoted by ρ(f) and provides a lower bound on the circuit
size of f which is tight up to a polynomial.

Define now the mapping

π : Fn → P(Ωf ),

g %→ {F | g(z(F )) = 1 &F (g|U) = 0}.
Note that π(g) = ∅ when g ∈ Pn, and π(f) = Ωf .

Let F 	 Ωf . We take the diagonal mapping θ : Fn → Fn × P(Ωf );
g %→ 〈g, π(g)〉, denote M 	 im(θ) and endow M with the induced structure
of {∧,∨}-algebra. Equation (1) is implied by the remark above.

Now, δ∨(θ(g), θ(h)) = ∅ due to the monotonicity of every F ∈ Ωf . If
F ∈ δ∧(θ(g), θ(h)) then g(z(F )) = h(z(F )) = 1 and F ((g ∧ h)|U ) = 0. Since
F �∈ π(g) and F �∈ π(h), we have F (g|U ) = F (h|U ) = 1. Hence the pair
(g|U, h|U) covers F . As (4) in our case simplifies to ∃δ1, . . . , δt ∈ Δ(F ⊆⋃t

i=1 δi), we see that ρ(f) ≤ ρ(f,M).

Another version of the fusion method using GF (2)-affine functionals
instead of monotone functionals was proposed in [5, 6]. It can also be
embedded into our framework if we consider approximation models over the
basis {∧,⊕} rather than over {∧,∨}.

3. Main Result

In this section we prove the following:

Theorem 2. Let t = t(n) be an integer-valued function in the range n ≤
t(n) ≤ 2n

3n . Then there exists an approximation model M ⊆ Fn×P(F), where

|F| ≤ O(t3 log2 t), such that ρ(f,M) ≥ t(n) for almost all junctions f ∈ Fn.
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Proof. Let �	 20t3 ln2 t� and S 	
(

t

)
. Fix a set F of cardinality �.

For a subset M of Fn × P(F) and F0 ⊆ F , we let

M(Fo) 	 {m ∈ M | F(m) ⊆ Fo}
and

wM(F0) 	 |M(Fo)|.
Let also

wM 	 ln(E[ewM(Fo)]),

where Fo ⊆ F is a random subset of cardinality t.
We are going to define by induction on k a sequence

Pn × {∅} = Mo ⊆ M1 ⊆ . . . ⊆ M ⊆ . . . ⊆ Fn × P(F) (5)

along with binary operations ∧k,∨k : M−1 ×M−1 → M maintaining the
following properties:

1. If k ≤ k′ then ∧k′ |M�−1×M�−1
= ∧k and ∨k′ |M�−1×M�−1

= ∨k;
2. f(m1 ∗k m2) = f(m1) ∗ f(m2) for m1,m2 ∈ M−1;
3. For every m1,m2 ∈ M−1 and ∗ ∈ {∧,∨},

|F(m1 ∗k m2) \ (F(m1) ∪ F(m2))| ≤ 1;

4. For every m ∈ M \M−1, |F(m)| ≥ min(k, �);
5. wM�

≤ 2(n+ k).

Base k = 0 is obvious.
Inductive step. Assume that Mo,M1, . . . ,M−1,M and ∧k,∨k :

M−1×M−1 → M are already defined. Then we randomly extend ∧k,∨k to
∧k+1,∨k+1 : M ×M → Fn ×P(F) as follows. For (m1,m2) ∈ (M ×M) \
(M−1 ×M−1) we let

m1 ∗k+1 m2 	 (f(m1) ∗ f(m2),F(m1) ∪ F(m2) ∪ {F∗(m1,m2)}),

where F∗(m1,m2) is chosen at random from F \ (F(m1)∪F(m2)) if F(m1)∪
F(m2) �= F and arbitrarily otherwise. All F∗(m1,m2) are assumed to be
independent.

After this we let

M+1 	 M ∪ im(∧k+1) ∪ im(∨k+1). (6)

Properties 1–3 readily follow from definitions, and 4 follows from the inductive
assumption. We are going to show that 5 (with k := k + 1) also takes place
with a non-zero probability.

We may assume that k + 1 ≤ t since otherwise property 5 follows from
4 and the inductive assumption. For simplicity we will abbreviate wMi(F0)
and wMi to wi(F0), wi respectively.
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Let us first fix some F0 ⊆ F of cardinality t and estimate E[ewk+1(F0)]
for this particular F0. Denote the set

{(m1,m2, ∗) | (m1,m2) ∈ (M(Fo) ×M(Fo)) \ (M−1 ×M−1), ∗ ∈ {∧,∨}}
by A. Then |A| ≤ 2w2

k(F0) and

M+1(F0) = M(Fo) ∪ {m1 ∗k+1 +m2 | (m1,m2, ∗) ∈ U&F∗(m1,m2) ∈ Fo}.
Hence

wk+1(F0) ≤ wk(F0) +
∑

(m1,m2,∗)∈A

ξ∗(m1,m2), (7)

where ξ∗(m1,m2) is the indicator function of the event F∗(m1,m2) ∈ F0.
All ξ∗(m1,m2) are, however, independent. Therefore (7) gives us the

estimate

E[ewk+1(F0)] ≤ ewk(F0) ·
∏

(m1,m2,∗)∈A

E[eξast(m1,m2)]

≤ ewk(F0) ·
(

1 +
t(e − 1)

�

)2w2
k(F)

≤ ewk(F0)+
4t
� w2

k(F0).

Averaging this inequality over F0, we have

E[ewk+1(F0)] ≤ E[ewk(F0)+
4t
� w2

k(F0)].

Now we fix a particular choice of M+1, with the property

ewk+1 = E[ewk+1(F0)] ≤ E[ewk(F0)+
4t
� w2

k(F0)]. (8)

We will show that this implies the desired inequality wk+1 ≤ 2n+ 2k + 2 if
k + 1 ≤ t.

Let us denote ewk(F0) by θk(F0). Then the inductive assumption can be
rewritten in the form

E[θk(F0)] ≤ e2(n+k), (9)

and (8)—in the form

ewk+1 ≤ E[θk(F0) · e 4t
� ln2 θk(F0)]. (10)

The function x · aln2 x, where a = e
4t
� is, however, convex on [1,∞). Hence,

under the condition (9), the right-hand side of (10) achieves its maximal
value when θk(F0) takes on (S − 1) times the value 1, and the remaining
time—the value S · e2(n+k) − S + 1 ≤ S · e2(n+k). This gives us the estimate

ewk+1 ≤ S − 1

S
+ e2(n+k) · e 4t

� (lnS+2(n+k))2 .
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Finally,

wk+1 ≤ ln(1 + e2(n+k) · e 4t
� (lnS+2(n+k))2) ≤ 1 + 2(n+k) +

4t

�
(lnS+ 2(n+k))2

and it is easy to see that 4t
 (lnS + 2(n+ k))2 ≤ 4t

 (lnS + 2(n+ t))2 ≤ 1 due
to our choice of parameters.

When we have the desired sequence (5), the rest is easy. We let M 	⋃
≥oM. Property 1 ensures that we can glue together the partial operations

∧k,∨k to endow M with a natural structure of {∧,∨}-algebra. Property 2
gives us (2), and Property 3 lets us to conclude that ∀δ ∈ Δ, |δ| ≤ 1. Hence,
if ρ(f,m) ≤ t for some f ∈ Fn then ∃m ∈ M(f(m) = f & |F(m)| ≤ t). Due
to Property 4, we may replace here M by Mt.

However, the total number of m ∈ Mt that |F(m)| ≤ t does not exceed
∑

F0⊆F
|F0|=t

wt(F0).

Since ewtF0≤S · ewt≤S · e2(n+t) by Property 5, we have that this number
is bounded from above by S(lnS+2(n+t))≤o(22n). The theorem follows.

4. Conclusion

The most interesting open question is, of course, whether the proof of
Theorem 2 can be made constructive. The connection with V 1

1 mentioned
in Introduction suggests the following specific form of this question.

Can we find a good approximation model M such that, as a subset of
Fn×P(F), it is recognizable in polynomial time, and the operations ∧,∨ are
polynomially time computable? Here “good” means “such that ρ(fn,M) ≥
nw(1) for some choice of fn ∈ Fn”, and “polynomial” means “polynomial
in 2n”.
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The Erdős Existence Argument
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Summary. The Probabilistic Method is now a standard tool in the combinatorial
toolbox but such was not always the case. The development of this methodology was
for many years nearly entirely due to one man: Paul Erdős. Here we reexamine some
of his critical early papers. We begin, as all with knowledge of the field would expect,
with the 1947 paper Erdős P (1947) Some remarks on the theory of graphs. Bull
Amer Math Soc 53:292–294 giving a lower bound on the Ramsey function R(k, k).
There is then a curious gap (certainly not reflected in Erdős’s overall mathematical
publications) and our remaining papers all were published in a single ten year span
from 1955 to 1965.

1. 1947: Ramsey R(k, k)

Let us repeat the key paragraph nearly verbatim. Erdős defines R(k, l) as the
least integer so that given any graph G of n ≥ R(k, l) vertices then either
G contains a complete graph of order k or the complement G′ contains a
complete graph of order l.

Theorem 1. Let k ≥ 3, then

2k/2 < R(k, k) ≤
(

2k − 2

k − 1

)
< 4k−1.

Proof. The second inequality was proved by Szekeres thus we only consider
the first one. Let N ≤ 2n/2. Clearly the number of graphs of N vertices equals
2N(N−1)/2. (We consider the vertices of the graph as distinguishable.) The
number of different graphs containing a complete graph of order k is less than

(
N

k

)
2N(N−1)/2

2k(k−1)/2
<
Nk

k!

2N(N−1)/2

2k(k−1)/2
<

2N(N−1)/2

2
(∗)

since by a simple calculation for N ≤ 2k/2 and k ≥ 3

2Nk < k!2k(k−1)/2.

But it follows immediately from (∗) that there exists a graph such that neither
it nor its complementary graph contains a complete subgraph of order k,
which completes the proof of the Theorem. �

435
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Erdős used a counting argument above, in the more modern language we
would speak of the random graph G ∼ G(n, p) with p = 1

2 . The probability
that G contains a complete graph of order k is less than

(
N

k

)
2−k(k−1)/2 <

Nk

k!
2−k(k−1)/2 <

1

2

(calculations as in the original paper) and so the probability that G or G′

contains a complete graph is less than one so that with positive probability
G doesn’t have this property and therefore there exists a G as desired. Erdős
has related that after lecturing on his result the probabilist J. Doob remarked
“Well, that’s very nice but it really is a counting argument.” For this result the
proofs are nearly identical, the probabilistic proof having the minor advantage
of avoiding the annoying 2N(N−1)/2 factors. Erdős writes interchangeably in
the two styles. As the methodology has progressed the probabilistic ideas
have become more subtle and today it is quite rare to see a paper written in
the counting style. We’ll take the liberty of translating Erdős’s later results
into the more modern style.

The gap between 2k/2 and 4k for R(k, k) remains one of the most
vexing problems in Ramsey Theory and in the Probabilistic Method. All
improvements since this 1947 paper have been only to smaller order terms
so that even today limR(k, k)1/k could be anywhere from

√
2 to 4, inclusive.

Even the existence of the limit has not been shown!

2. 1955: Sidon Conjecture

Let S be a set of positive integers. Define f(n) = fS(n) as the number of
representations n = x + y where x, y are distinct elements of S. We call
S a basis if f(n) > 0 for all sufficiently large n. Sidon, in the early 1930s,
asked if there existed “thin” bases, in particular he asked if for all positive ε
there existed a basis with f(n) = O(nε). Erdős heard of this problem at
that time and relates that he told Sidon that he thought he could get a
solution in “a few days”. It took somewhat longer. In 1941 Erdős and Turán
made the stronger conjecture that there exists a basis with f(n) bounded
from above by an absolute constant—a conjecture that remains open today.
In 1955 Erdős [1] resolved the Sidon conjecture with the following stronger
result.

Theorem 2. There exists S with fS(n) = Θ(lnn).

Proof. The proof is probabilistic. Define a random set by Pr[x ∈ S] = px, the
events being mutually independent over integers x, setting

px = K

(
lnx

x

)1/2
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where K is a large absolute constant. (For the finitely many x for which this is
greater than one simply place x ∈ S.) Now f(n) becomes a random variable.
For each x < y with x + y = n let Ixy be the indicator random variable for
x, y ∈ S. Then we may express f(n) =

∑
Ixy. From Linearity of Expectation

E[f(n)] =
∑

E[Ixy ] =
∑

pxpy ∼ K ′ lnn

by a straightforward calculation.
Lets write μ = μ(n) = E[f(n)]. The key ingredient is now a large deviation

result. One shows, say, that

Pr[f(n) <
1

2
μ] < e−cμ

Pr[f(n) > 2μ] < e−cμ

where c is a positive absolute constant, not dependent on n, K or μ. This
makes intuitive sense: as f(n) is the sum of mutually independent rare
indicator random variables it should be roughly a Poisson distribution and
such large deviation bounds hold for the Poisson. Now pick K so large that
K ′ is so large that cμ > 2 lnn. Call n a failure if either f(n) > 2μ or
f(n) < μ/2. Each n has probability less than 2n−2 failure probability. By
the Borel-Cantelli Lemma (as

∑
n−2 converges) almost surely there are only

a finite number of failures and so almost surely this random S has the desired
properties. �

While the original Erdős proof was couched in different, counting,
language the use of large deviation bounds can be clearly seen and, on this
count alone, this paper marks a notable advance in the Probabilistic Method.

3. 1959: High Girth, High Chromatic Number

Tutte was the first to show the existence of graphs with arbitrarily high
chromatic number and no triangles, this was extended by Kelly to arbitrarily
high chromatic number and no cycles of sizes three, four or five. A natural
question occurred—could graphs be found with arbitrarily high chromatic
number and arbitrarily high girth—i.e., no small cycles. To many graph
theorists this seemed almost paradoxical. A graph with high girth would
locally look like a tree and trees can easily be colored with two colors. What
reason could force such a graph to have high chromatic number? As we’ll see,
there is a global reason: χ(G) ≥ n/α(G). To show χ(G) is large one “only”
has to show the nonexistence of large independent sets.

Erdős [2] proved the existence of such graphs by probabilistic means. Fix
l, k, a graph is wanted with χ(G) > l and no cycles of size ≤ k. Fix ε < 1

k ,
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set p = nε−1 and consider G ∼ G(n, p) as n → ∞. There are small cycles,
the expected number of cycles of size ≤ k is

k∑

i=3

(n)i
2i

pi =

k∑

i=3

O
(
(np)i

)
= o(n)

as kε < 1. So almost surely the number of edges in small cycles is o(n). Also
fix positive η < ε/2. Set u = n1−η�. A set of u vertices will contain, on
average, μ ∼ u2p/2 = Ω(nα) edges where α = 1 + ε − 2η > 1. Further, the
number of such edges is given by a Binomial Distribution. Applying large
deviation results, the probability of the u points having fewer than half their
expected number of edges is e−cμ. As α > 1 this is smaller than exponential,
so o(2−n) so that almost surely every u points has at least μ/2 edges. We
need only that μ/2 > n.

Now Erdős introduces what is now called the Deletion Method. This
random graph G almost surely has only o(n) edges in small cycles and every
u vertices have at least n edges. Take a specific graphG with these properties.
Delete all the edges in small cycles giving a graph G−. Then certainly G−

has no small cycles. As fewer than n edges have been deleted every u vertices
of G−, which had more than n edges in G, still has an edge. Thus the
independence number α(G−) ≤ u. But

χ(G−) ≥ n

α(G−)
≥ n

u
∼ nη

As n can be arbitrarily large one can now make χ(G−) ≥ k, completing the
proof.

The use of counting arguments became a typographical nightmare. Erdős
considered all graphs with precisely m edges where m = n1+ε�. He needed
that almost all of them had the property that every u vertices (u as above)
had more than n. The number of graphs failing that for a given set of size u
was then

n∑

i=1

((u
2

)

i

)((n
2

)− (
u
2

)

m− i

)
< (n+ 1)

((u
2

)

n

)((n
2

)− (
u
2

)

m

)

< u2n
((n

2

)− (
m
2

)

m

)
<

((n
2

)

m

)
u2n

(

1 −
(
u
2

)
(
n
2

)

)m

<

((n
2

)

m

)
u2n

(
1 − u2

n2

)m

<

((n
2

)

m

)
u2me−mu2/n2

.

Now the number of possible choices for the u points is
(
n

u

)
< nu < un
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and so the number of graphs without the desired property is
((n

2

)

m

)
u3ne−n1+ε−2η

= o

(((n
2

)

m

))

as desired. Today, with large deviation results assumed beforehand, the proof
can be given in one relatively leisurely page.

Many consider this one of the most pleasing applications of the Proba-
bilistic Method as the result seems not to call for probability in the slightest
and earlier attempts had been entirely constructive. The further use of large
deviations and the introduction of the Deletion Method greatly advanced the
Probabilistic Method. And, most important, the theorem gives an important
truth about graphs. In a rough sense the truth is a negative one: chromatic
number cannot be determined by local considerations only.

4. 1961: Ramsey R(3, k)

Ramsey Theory was one of Paul Erdős’s earliest interests. The involvement
can be dated back to the winter of 1932/33. Working on a problem of Esther
Klein, Erdős proved his famous result that in every sequence of n2 + 1 real
numbers there is a monotone subsequence of length n+ 1. At the same time,
and for the same problem, George Szekeres rediscovered Ramsey’s Theorem.
Both arguments appeared in their 1935 joint paper [10]. Bounds on the
various Ramsey functions, particularly the function R(l, k), have fascinated
Erdős ever since. We have already spoken of his 1947 paper on R(k, k). In
his 1961 paper Erdős [3] proves

R(3, k) > c
k2

ln2 k
.

The upper bound R(3, k) = O(k2) was already apparent from the original
Szekeres proof so the gap was relatively small. Only in 1994 was the correct

order R(3, k) = Θ
(

k2

ln k

)
finally shown.

Erdős shows that there is a graph on n vertices with no triangle and no
independent set of size x where x = �An1/2 lnn , and A is a large absolute
constant. This gives R(3, x) > n from which the original statement follows
easily. We’ll ignore A in our informal discussion. He takes a random graph
G(n, p) with p = cn−1/2. The probability that some x-set is independent is
at most

(
n

x

)
(1 − p)x(x−1)/2 < [ne−p(x−1)/2]x

which is very small. Unfortunately this G will have lots (Θ(n3/2)) of triangles.
One needs to remove an edge from each triangle without making any of the
x-sets independent.
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The Erdős method may be thought of algorithmically. Order the edges
e1, . . . , em of G ∼ G(n, p) arbitrarily. Consider them sequentially and reject
ei if it would make a triangle with the edges previously accepted, otherwise
accept ei. The graph G− so created is certainly triangle free. What about
the sets of x vertices. Call a set S of x vertices good (in G, not G−) if it
contains an edge e which cannot be extended to a triangle with third vertex
outside of S. Suppose S is good and let e be such an edge. Then S cannot be
independent in G−. If e is accepted we’re clearly OK. The only way e could
be rejected is if e is part of a triangle e, e1, e2 where the other edges have
already been accepted. But then e1, e2 must (as S is good) lie in S and again
S is not independent.

Call S bad if it isn’t good. Erdős shows that almost always there are
no bad S. Lets say something occurs with high probability if its failure
probability is o

(
1/
(
n
x

))
. It suffices to show that a given S = {1, . . . , x} is

good with high probability. This is the core of the argument. We expose (to
use modern terminology) G in two phases. First we examined the pairs {s, t}
with s ∈ S, t /∈ S . For each t /∈ S let d(t) be the number of edges to S. Set

Z =
∑

t/∈S

(
d(t)

2

)
.

Each d(t) has Binomial Distribution B(x, p) and so expectation xp = Θ(lnn)
so that one can get fairly easily E[Z] = Θ(n ln2 n). Note this is the same
order as x2. It is definitely not easy to show that for appropriate A, c (Erdős
takes c = A−1/2 and A large) that Z < 1

2

(
x
2

)
with high probability. The

requirement “with high probability” is quite severe. But note, at least, that
this is a pure probability statement. Lets accept it and move on. Call a pair
{i, j} ⊂ S soiled if it lies in a triangle with third vertex outside of S. At most
Z pairs are soiled so with high probability at least 1

2

(
x
2

)
pairs are unsoiled.

Now we expose the edges of G inside S. If any of the unsoiled pairs are in G
then G is good and so the failure probability is at most

(1 − p)
1
2 (x

2) < e−Ω(px2) = o

((
n

x

)−1
)

and so G is good with high probability.
Sounds complicated. Well, it is complicated and it is simultaneously

a powerful application of the Probabilistic Method and a technical tour
de force. The story has a coda: the Lovász Local Lemma, developed in
the mid-1970s, gave a new sieve method for showing that a set of bad
events could simultaneously not hold. This author applied it to the random
graph G(n, p) with p = cn−1/2 with the bad events being the existence of
the various potential triangles and the independence of the various x-sets.
The conditions of the Local Lemma made for some calculations but it was
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relatively straightforward to duplicate this result. Still, the ideas behind this
proof, the subtle extension of the Deletion Method notion, are too beautiful
to be forgotten.

5. 1962: No Local Coloring

With his 1957 paper previously discussed Erdős had already shown that
chromatic number cannot be considered simply a local phenomenon. With
this result he puts the nail in the coffin.

Theorem 3 ([4]). For any k ≥ 3 there is an ε > 0 so that the following
holds for all sufficiently large n: There exists a graph G on n vertices which
cannot be k-colored and yet the restriction of G to any εn vertex subgraph
can be 3-colored.

Often probabilistic theorems are best understood as negative results, as
counterexamples to natural conjectures. A priori, for example, one might
conjecture that if every, say, n/(lnn) vertices could be 3-colored then G could
be 4-colored. This theorem disproves that conjecture.

We examine the random graph G ∼ G(n, p) with p = c/n. As in the 1957
paper

Pr[α(G) ≥ x] <

(
n

x

)
(1 − p)(

x
2) < [(ne/x)e−p(x−1)/2]x.

When c is large and, say, x = 10n(ln c)/c, the bracketed quantity is less than
one so the entire quantity is o(1) and a.s. α(G) ≤ x and so χ(G) ≥ c/(10 ln c).
Given k Erdős may now simply select c so that, with p = c/n, χ(G) > k a.s.

Now for the local coloring. If some set of ≤ εn vertices cannot be 3-colored
then there is a minimal such set S with, say, |S| = i ≤ εn. In the restriction
G|S every vertex v must have degree at least 3—otherwise one could 3-color
S − {v} by minimality and then color v differently from its neighbors. Thus
G|S has at least 3i/2 edges. The probability of G having such an S is
bounded by

εn∑

i=4

(
n

i

)(
i

2

)
3i/2p3i/2 ≤

εn∑

i=4

[
ne

i

(
ei

3

)3/2(
c

n

)3/2]i

employing the useful inequality
(
a
b

) ≤ ( eab )b. Picking ε = ε(c) small the
bracketed term is always less than one, the entire sum is o(1), a.s. no such S
exists, and a.s. every εn vertices may be 3-colored.

Erdős’s monumental study with Alfred Rényi “On the Evolution of
Random Graphs” [8] had been completed only a few years before. The
behavior of the basic graph functions such as chromatic and clique number
were fairly well understood throughout the evolution. The argument for local
coloring required a “new idea” but the basic framework was already in place.
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6. 1963/4: Coloring Hypergraphs

Let A1, . . . , Am be n-sets in an arbitrary universe Ω. The family A =
{A1, . . . ,Am} is 2-colorable (Erdős used the term “Property B”) if there is
a 2-coloring of the underlying points Ω so that no set Ai is monochromatic.
In 1963 Erdős gave perhaps the quickest demonstration of the Probabilistic
Method.

Theorem 4 ([5]). If m < 2n−1 then A is 2-colorable.

Proof. Color Ω randomly. Each Ai has probability 21−n of being monochro-
matic, the probability some Ai is monochromatic is then at most m21−n < 1
so with positive probability no Ai is monochromatic. Take that coloring. �

In 1964 Erdős [6] showed this result was close to best possible.

Theorem 5. There exists a family A with m = cn22n which is not
2-colorable.

Here Erdős turns the original probability argument inside out. Before the
sets were fixed and the coloring was random, now, essentially, the coloring is
fixed and the sets are random. He sets Ω = {1, . . . , u} with u a parameter
to be optimized later. Let A1, . . . , Am be random n-sets of Ω. Fix a coloring
χ with a red points and b = u− a blue points. As Ai is random

Pr[χ(Ai) constant] =

(
a
n

)
+
(
b
n

)
(
u
n

) ≤ 2
(
u/2
n

)
(
u
n

) .

The second inequality, which follows from the convexity of
(
x
n

)
, indicates

that it is the equicolorings that are the most troublesome. As the Ai are
independent

Pr[no Ai monochromatic] ≤
[

1 − 2
(
u/2
n

)
(
u
n

)

]m

.

Now suppose

2u

[

1 − 2
(
u/2
n

)
(
u
n

)

]m

< 1

The expected number of χ with no Ai monochromatic is less than one.
Therefore there is a choice of A1, . . . , Am for which no such χ exists, i.e.,
A is not 2-colorable. Solving, one may take

m =

⌈
u ln 2

− ln
[
1 − 2

(
u/2
n

)
/
(
u
n

)]
⌉

Estimating − ln(1 − ε) ∼ ε this is roughly cu
(
u
n

)
/
(
u/2
n

)
. This leads to

an interesting calculation problem (as do many problems involving the
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Probabilistic Method!)—find u so as to maximize m. The answer turns out
to be u ∼ n2/2 at which value m ∼ (e ln 2)n22n−2.

Erdős has defined m(n) as the least m for which there is a family of n-sets
which cannot be 2-colored. His results give Ω(2n) = m(n) = O(n22n). Beck
has improved the lower bound to Ω(n1/32n) but the actual asymptotics of
m(n) remain elusive.

7. 1965: Unrankable Tournaments

Let T be a tournament with players 1, . . . , n (each pair play one game and
there are no ties) and σ a ranking of the players, technically a permutation
on {1, . . . , n}. Call game {i, j} a nonupset if i beats j and σ(i) < σ(j); an
upset if i beats j but σ(j) < σ(i). The fit f(T, σ) is the number of nonupsets
minus the number of upsets. One might have thought—in preprobabilistic
days!—that every tournament T had a ranking σ with a reasonably good fit.
With J.W. Moon, Erdős [7] easily destroyed that conjecture.

Theorem 6. There is a T so that for all σ

f(T, σ) ≤ n3/2(lnn)1/2.

Thus, for example, there are tournaments so that under any ranking
at least 49% of the games are upsets. Erdős and Moon take the random
tournament, for each pair {i, j} one “flips a fair coin” to see who wins the
game. For any fixed σ each game is equally likely to be upset or nonupset
and the different games are independent. Thus f(T, σ) ∼ Sm, where m =

(
n
w

)

and Sm is the number of heads minus the number of tails in m flips of a fair
coin. Large deviation theory gives

Pr[Sm > α] < e−
α2

2m .

One now uses very large deviations. Set α = n3/2(lnn)1/2 so that the above
probability is less than n−n < 1/n!. This super small probability is used
because there are n! possible σ. Now with positive probability no σ has
f(T, σ) > α. Thus there is a T with no σ having f(T, σ) > α.

The use of extreme large deviations has become a mainstay of the
Probabilistic Method. But I have a more personal reason for concluding with
this example. Let g(n) be the least integer so that every tournament T on
n players has a ranking σ with f(T, σ) ≥ g(n). Then g(n) ≤ n3/2(lnn)1/2.
Erdős and Moon showed g(n) > cn, leaving open the asymptotics of g(n).
In my doctoral dissertation I showed g(n) > c1n

3/2 and later (but see de la
Vega [11] for the “book proof”) that g(n) < c2n

3/2. Though at the time I
was but an ε Paul responded with his characteristic openness and soon [9] I
had an Erdős number of one. Things haven’t been the same since.
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IV. Geometry

Introduction

Erdős’ love for geometry, and elementary or discrete geometry in particular,
dates back to his beginnings. The Erdős–Szekeres paper has been influential
and certainly helped to create discrete geometry as we know it today. But
Erdős also put geometry to the service of other branches, giving definition
to various geometrical graphs and proving bounds on their chromatic and
independence numbers. We are happy to include papers by Moshe Rosenfeld,
Pavel Valtr, Janos Pach, Jǐŕı Matoušek and, in particular, a paper by Miklós
Laczkovich and Imre Ruzsa on the number of homothetic sets. While the
paper of Peter Fishburn is closely related to Erdős’ favorite theme, the
papers of N. G. de Bruijn (on Penrose tiling) and J. Aczél and L. Losonczi
(on functional equations) cover broader related aspects.

In 1995/6, when the content of these volumes was already crystallizing,
we asked Paul Erdős to isolate a few problems, both recent and old, for each
of the eight main parts of this book. To this part on Geometry Theory he
contributed the following collection of problems and comments.
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Erdős in his own words
Let x1, . . . , xn be n points in the plane, not all on a line, and join every

two of them. Thus we get at least n distinct lines. This follows from Gallai–
Sylvester but also from a theorem of de Bruijn and myself.

My most striking contribution to geometry is no doubt my problem on
the number of distinct distances. This can be found in many of my papers
on combinatorial and geometric problems.

Hickerson, Pach and I proved that on the unit sphere one can find n
points for which the distance

√
2 can occur among n1/3 pairs. Perhaps this

is best possible. In fact, there are n1/3 points at distance 1 from every other
point. For every 0 < α < 2 there are n points so that for every point there
are log∗ n other points at distance α—again we do not know if this is best
possible.

Purdy and I proved (using an idea of Kárteszi) that there are n points
in the plane with no three on a line for which the unit distance occurs at
least cn logn times. We have no nontrivial upper bound. If the points are in
3-space the unit distance can occur n4/3 times (Hickerson, Pach and myself)
but if we also assume that no four are on a plane, we can do no better than
cn logn.

Szekeres and I proved, that if
(
2n−4
n−2

)
+ 1 points are given in a plane no

three on a line, then we can always select among them n points which are
the vertices of a convex n-gon. Probably 2n−2 + 1 is the correct value—we
proved that 2n−2 is not enough. This problem (which was due to E. Klein,
i.e., Mrs. Szekeres) had a great influence.

*****

So much for Paul Erdős in 1996. He stated it here explicitly: the distance
problem is highlighted as the most important of his problems in geometry.
We are very fortunate that we can include in this part the paper by Larry
Guth which surveys the solution of this problem. His article also describes
the rich and fertile ground of Erdős problems in geometry.

Let us remark that some of the other advances are described in the
other chapters, for example the development related to the Erdős–Szekeres
Theorem is part of the chapter by Graham and Nešetřil in the Ramsey theory
chapter in the second volume. We cannot be exhaustive as the number of
geometrical problems and results discussed by Erdős was large. One topic
which is missing in this part is clearly incidence problems. However they
are partially covered in the number theory part and are also part of Guth’s
article.

The progress in combinatorial and discrete geometry has been spectacu-
lar. So much so that Matoušek speaks about 2010 as annus mirabilis :

J. Matoušek, The Dawn of an Algebraic Era in Discrete Geometry, Euro
CG 2011, Morschach.
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1. Introduction

Extension theorems are common in various areas of mathematics. In topology
continuous extensions of continuous functions are studied. In functional
analysis one is interested mainly in linear extensions of linear operators
preserving continuity or some other properties like bounds or norm. In algebra
extensions of homomorphisms and isomorphisms are investigated. The latter
can be considered as extensions of functional equations.

In the area of functional equations one is interested in extending
functional equations, i.e., either extending functions satisfying a functional
equation (or a system of equations) on a “restricted” set to functions which
satisfy the same equation (or system of equations) on the “maximal” set or
showing that given functions satisfying a functional equation (or a system
of equations) on a restricted set satisfy the same equation (or system) on a
“larger” set.

The first extension theorem for the Cauchy functional equation is in the
1965 joint paper [AE 65] of Erdős with Aczél who proved that, if a function
f :]0,∞[→ R satisfies the Cauchy functional equation for all positive values
of x and y, that is

f(x+ y) = f(x) + f(y) (x, y ∈]0,∞[),

then there exists a unique function F : R → R such that F (x) = f(x) if
x ∈]0,∞[ (i.e. F is an extension of f) and F satisfies the Cauchy equation
for all values of x, y:

F (x + y) = F (x) + F (y) (x, y ∈ R). (1)
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In the same paper they showed that there exist no Hamel bases of the set
of nonnegative numbers, i.e., there does not exist any set B′ whose elements
are nonnegative and any nonnegative number is representable as a linear
combination of a finite number of elements of B′ with nonnegative rational
coefficients in a unique way.

In 1960 in the problems section of Colloquium Mathematicum Erdős
[E 60] raised the following problem. If f(x + y) = f(x) + f(y) is satisfied
for almost all (x, y) in the plane (in the sense of plane Lebesgue measure)
does there exist a function F satisfying the Cauchy equation everywhere (i.e.
satisfying (1)) such that f(x) = F (x) almost everywhere (in the sense of the
linear Lebesgue measure)?

The Aczél-Erdős theorem and the problem of Erdős (solved independently
by Jurkat [J 65] and de Bruijn [B 66]) became the starting points of two
different directions of the extension theory of functional equations, which by
now is quite extensive (Kuczma [K 78] quoted already in 1978 more than 100
related papers; see also [PR 95]).

The aim of this paper is to show how the above result and problem of
Paul Erdős influenced the development of the extension theory of functional
equations.

2. Extensions of Homomorphisms

Let G, H be (multiplicatively written) groups and S be a subsemigroup of
S. Let further f : S → H be a homomorphism of S into H . Under what
conditions can f be extended in a unique way to a homomorphism of G?
With G = H = the additive group of R and S = the additive group of
positive real numbers, we get back to the Aczél- Erdős extension problem.
The general problem was treated by Aczél et al. [ABDKR 71] by proving
several theorems which under different assumptions on S gave a solution.
The first one is closely related to the extension theorem in [AE 65].

Suppose that for every element x ∈ G, different from the unit element,
either x ∈ S or x−1 ∈ S (or both). Then every homomorphism f : S → H
can be extended uniquely to a homomorphism F : G → H of G into H.

This can be proved by defining F by

F (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

E if x = e

f(x) if x ∈ S

f(x−1)−1 if x−1 ∈ S

where e, E are the unit elements of G, H , respectively.
A unique extension also exists when S generates the Abelian group G.
Indeed, in this case G = S · S−1 = {xy−l | x ∈ S, y ∈ S} and by

F (xy−1) := f(x)f(y)−1 (x, y ∈ S)
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F is well defined on G (because xy−1 = uv−l (x, y, u, v ∈ S) implies xv = uy)
and supplies the unique extension of f .

A more elaborate result is the following.
Suppose that S is a subsemigroup of the group G such that

G = S · S−1 · S · S−1 = {xy−luv−l | x, y, u, v ∈ S} (2)

and f is a homomorphism of S into H. The map f can be extended to a
homomorphism of G into H if and only if

x, y, z, u, v, w ∈ S, xy−1z=uv−1w implies f(x)f(y)−1f(z)=f(u)f(v)−1f(w).

When the extension exists, then it is unique.
There are further results in this vein in [ABDKR 71]. Martin [M 77]

generalized these results to the case when G can be represented in a product
form similar to (2) but with an arbitrary number of factors.

Necessary and sufficient conditions for the extension were found by
Osondu [O 78] in the case when S generates G:

Let S be a subsemigroup of a group G which is generated by S and f
a homomorphism of S into some group H. Then f can be extended to a
homomorphism of G into H if and only if f satisfies the following condition.

For every positive integer n and for every si ∈ S, εi ∈ {−1, 1} (i = 1, 2,
. . . , n)

n∏

i=1

sεii = e =⇒
n∏

i=1

f(si)
εi = E

holds, where e, E are the unit elements of G, H respectively.
In this result the necessary and sufficient condition seems to be too “close”

to the statement itself. A more detached condition may be desirable.

3. Extensions of the Cauchy and Pexider Equation
and Their Applications

We introduce some terminology (see Daróczy-Losonczi [DaL 67]). Let D be
a nonempty subset of R2. We write

Dx := {x | ∃y : (x, y) ∈ D},
Dy := {y | ∃x : (x, y) ∈ D},

Dx+y := {x+ y | (x, y) ∈ D}.
Then Dx, Dy are the projections of D onto the x-axis, y-axis, respectively,
and Dx+y is the projection of D, parallel to the line x+y = 0, onto the x-axis.
Let further D′ := Dx ∪Dy ∪Dx+y. We say that a function f is additive on
the set D (or satisfies the Cauchy equation on D) if f : D′ → R and
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f(x+ y) = f(x) + f(y) ((x, y) ∈ D) (3)

holds. A function F : R → R is called an (additive) extension of a function f
additive on D (we say also that F extends the Cauchy equation from D to
R

2) if F satisfies the Cauchy equation on R
2 and F (x) = f(x) for x ∈ D′.

We saw above that there exists a unique (additive) extension from R
2
+ (R+

is the set of positive reals) to R
2 (take S = R+). As Daróczy and Losonczi

[DaL 67] showed, there always exists a unique (additive) extension from a
neighborhood of (0, 0)toR2. They took the neighborhood to be circular but it
turned out [A 83] that “hexagonal neighborhoods” of (0, 0)

Hr := {(x, y) | x, y, x+ y ∈] − r, r[}
are more convenient. Indeed, if

f(x+ y) = f(x) + f(y) for (x, y) ∈ Hr (4)

then define for any t ∈ R

F (t) := nf

(
t

n

)
(n ∈ N,

t

n
∈] − r, r[).

This definition is unambiguous since, by (4),

nf

(
t

n

)
= nmf

(
t

nm

)
= mnf

(
t

mn

)
= mf

(
t

m

)
for

t

n
,
t

m
∈] − r, r[.

Clearly F (x) = f(x) for x ∈] − r, r[ (choose n = 1). The function F , so
defined, is additive on R

2 since, for arbitrary u, v ∈ R, there exists an n ∈ N

such that u
n ,

v
n ,

u+v
n ∈] − r, r[, thus, again by (4),

F (u+ v) = nf
(u
n

+
v

n

)
= nf

(u
n

)
+ nf

( v
n

)
= F (u) + F (v).

This F : R → R, extending (4) from Hr to R
2, is unique because, if also

F̄ : R → R were additive on R
2 and would satisfy F̄ (x) = f(x) for x ∈]− r, r[

then, for arbitrary t ∈ R choosing n ∈ N again so that t
n ∈] − r, r[, we get

F̄ (t) = F̄

(
n
t

n

)
= nF̄

(
t

n

)
= nf

(
t

n

)
= F (t) for all t ∈ R

as asserted.
However there may not exist an additive extension even in some very

simple cases. Let, for instance f be defined by

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x+ 1 for x ∈]2, 3[

2x+ 3 for x ∈]4, 5[

2x+ 4 for x ∈]6, 8[

. (5)

This function is additive on D =]2, 3[×]4, 5[ but no additive extension to
R

2 exists. Indeed, such an extension F would be continuous on ]2, 3[, thus
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(see e.g. [A 66]) there would exist a constant c such that F (x) = cx for
all x ∈ R which contradicts F (x) = f(x) for x ∈ D′ =]2, 3[∪]4, 5[∪]6, 8[.
Nevertheless, we see from (5), that F (x) = 2x is “nearly” an extension of
this f : it differs from f on Dx, Dy and Dx+y just by a constant each and is
additive everywhere. Such functions are called quasi-extensions.

To be exact, if

f(x+ y) = f(x) + f(y) ((x, y) ∈ D) (3)

holds and there exist constants α, β and a function F , additive on R
2, such

that

f(x) = F (x) + α for all x ∈ Dx,

f(y) = F (y) + β for all y ∈ Dy, (6)

f(z) = F (z) + α+ β for all z ∈ Dx+y

then F is an (additive) quasi-extension of f (from D to R
2). These formulas

are reminiscent of the general solution

f(x) = F (x) + α

g(y) = F (y) + β (7)

h(z) = F (z) + α+ β

(F is an arbitrary additive function on R
2, α and β are arbitrary constants)

of the Pexider equation

h(x+ y) = f(x) + g(y) ((x, y) ∈ R
2).

Since in (5) or (6) (and also in (3)) the three occurences of f are anyway
defined on possibly different intervals, this is conducive to consider (3) as a
Pexider equation

h(x+ y) = f(x) + g(y) ((x, y) ∈ D) (8)

with f, g, h defined on Dx, Dy, Dx+y, respectively. As it turns out, these
have an extension (not only quasi-extension) to R

2 from the above set
D =]2, 3[×]4, 5[ and from every open connected set (region) D.

In fact, the basic result concerning quasi-extensions of the Cauchy
equation and extensions of the Pexider equation is that from any open
connected set (region) D in R

2 there exists a unique quasi-extension of
the Cauchy equation (3) to R

2 (Daróczy-Losonczi [DaL 67]) and a unique
extension of the Pexider equation (8) to R

2 (Rimán [R 76], Aczél [A 85], and
Radó-Baker [RB 87]). The former follows from the latter. Both can be proved
by taking for D first a hexagon, like H ; above, but its centre shifted from the
origin to (a, b), showing, for Eq. (8), by substitutions that

h(u+ v + a+ b) − h(a+ b) = f(u+ a) − f(a) + g(v + b) − g(b), (9)
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where (u, v) is in the hexagon Hr around the origin. This implies (putting
v = 0 or u = 0, respectively) that

h(t+ a+ b) − h(a+ b) = f(t+ a) − f(a) = g(t+ b) − g(b) (t ∈] − r, r[).

Defining the function Φ by equating Φ(t) to this common value on ] − r, r[,
(9) shows that Φ is additive on Hr so, by what we proved above, has a unique
(additive) extension F to R

2. The functions given by

f̃(x) = F (x) − F (a) + f(a)

g̃(y) = F (y) − F (b) + g(b) (10)

h̃(z) = F (z) − F (a+ b) + h(a+ b)

(x, y, z ∈ R), and only these, extend the Pexider equation from the (a, b)-
centred hexagon to R

2. The proof that the Pexider equation has a unique
extension from any open connected region D to R

2 can be completed by
covering D by a sequence of hexagons such that each hexagon is contained
in D and any two consecutive hexagons have nonempty intersection and by
applying the above extension process to each hexagon. Of course, (10) has
the form (7) of the general solution of Pexider’s equation on R

2.
The general solution of the Pexider equation (8) on D is obtained by

replacing, in (10), −F (a)+f(a) and −F (b)+g(b) by two arbitrary constants
and −F (a+b)+h(a+b) by their sum, and restricting f̃ , g̃, h̃ to Dx, Dy, Dx+y

respectively. The function F , additive on R
2, which we have just determined,

is also the unique quasi-extension of f in (3) from D to R
2, in the sense (6).

If two of the sets Dx

⋂
Dy, Dx

⋂
Dx+y, Dy

⋂
D+x+ y are nonempty, then

the quasi-extension is an extension of the Cauchy equation.
We note that the concept of extension and quasi-extension can be

defined similarly for more general (in particular some closed) domains, ranges
(groups, vector spaces) and equations. In their paper [RB 87], quoted above,
Radó and Baker had a real or complex topological vector space as domain of
f̃ , g̃, h̃ and an Abelian group as range. We mention a few further results.

Let G and H be Abelian divisible groups and let X be a subset of G having
the properties

(i) For any x ∈ X and for all rational numbers λ ∈]0, 1[ we have λx ∈ X;
(ii) For any pair (x, y) ∈ X2 there exists an integer n, which may depend

upon x and y, such that (x+ y)/n ∈ X.

Suppose that f : X → H is additive on D := {(x, y) | x ∈ X, y ∈ X, x+ y ∈
X}. Then there exists an additive extension F : G → H of f . Moreover F
is unique if, and only if, the subgroup generated by X is G. (Ng [N 74] and
Dhombres-Ger [DG 78].)

Székelyhidi [S 72] found the general representation of functions which are
additive on an open set D ⊂ R

2. He also proved [S 81] an extension theorem
for the equation Δn+1

y f(x) = 0 where Δy is the usual difference operator
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defined by Δyf(x) := f(x+y)−f(x). Let again D ⊂ R
2, n a positive integer

and for k = 0, 1, . . . , n+ 1 let

Dk := {x+ (n+ 1 − k)y | (x, y) ∈ D}.
The result by Székelyhidi is the following. Let D ⊂ R

2 be an open and
connected set with (0, 0) ∈ D. Let n be a positive integer and f :

⋃n+1
k=0 Dk →

R be a function such that

Δn+1
y f(x) =

n+1∑

k=0

(
n+ 1

k

)
(−1)kf [x+ (n+ 1 − k)y] = 0 ((x, y) ∈ D).

Then there exists an extension F : R → R of f such that Δn+1
y F (x) = 0.

The Levi-Civitá equation

f(x+ y) =

n∑

k=1

gk(x)hk(y) (11)

is a common generalization of the Cauchy and Pexider equation and the sine
and cosine equations.

Recently the second author [L 85a, L 90] proved an extension theorem
which corresponds to the Aczél-Erdős result for Eq. (11).

Let the functions f, gk, hk :]0,∞[→ C (k = 1, . . . , n) satisfy the functional
equation (11) for all positive x, y and assume that the functions g1, . . . , gn
and h1, . . . , hn are linearly independent on ]0,∞[. Then there exists a unique
set of functions F,Gk, Hk : R → C(k = 1, . . . , n) such that

F (x + y) =

n∑

k=1

Gk(x)Hk(y) (x, y ∈ R)

and

F (x) = f(x)

Gk(x) = gk(x) (x ∈]0, ∞[; k = 1, . . . , n)

Hk(x) = hk(x)

hold. If f, gk, hk(k = 1, . . . , n) are continuous or measurable on ]0,∞[ then
so are F , Gk, Hk (k = 1, . . . , n) on R. The proof is based on the following
observation. It is known ([A 66] pp. 201–203) that the functions F1, . . . , Fn,
defined on a set A with values in an arbitrary field, are linearly independent on
A if, and only if, there exist elements a1, . . . , an ∈ A (necessarily distinct) such
that det(Fi(aj))

n
i,j=l �= 0. Thus by the linear independence of the functions

g1, . . . , gn there exist x′1, . . . , x
′
n ∈]0,∞[ such that det(gi(x

′
j))

n
i,j=1 �= 0.

Without loss of generality we may suppose that x′1 = min{x′1, . . . , x′n}. Let
xk = x′k − x′1(k = 1, . . . , n) and substitute x+ xk for x(k = 1, . . . , n) in (11).
We obtain a system of equations which can be written as

F(x+ y) = G(x)H(y) (x, y ∈]0,∞[) (12)
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where, for x ∈]0,∞[ (x1 = 0),

F(x) = (f(x+ x1), . . . , f(x+ xn))
T

G(x) =

⎛

⎜
⎝

g1(x+ x1) . . . gn(x+ x1)
...

...
g1(x+ xn) . . . gn(x+ xn)

⎞

⎟
⎠

H(x) = (h1(x), . . . , hn(x))T

and T denotes transposition. Extending the Pexider equation (12) we obtain
an extension of (11).

4. Almost Everywhere Additive Functions

The problem of Erdős, mentioned in the introduction, was inspired by
Hartman [H 61] who proved that, if f(x + y) = f(x) + f(y) is satisfied for
(x, y) ∈ A × A, where the complement of A has (linear) measure zero, then
there exists a function F : R → R satisfying the Cauchy equation everywhere
and F (x) = f(x) almost everywhere on. R Actually Hartman’s paper [H 61]
appeared later than [E 60] as a partial solution to the Erdős problem [E 60].
Jurkat [J 65] and de Bruijn [B 66] (independently) solved the problem in the
affirmative, showing that, if f(x + y) = f(x) + f(y) holds for all (x, y) ∈ D
where the Lebesgue measure of R2 \ D is zero, then there exists a function
F : R → R satisfying the Cauchy equation everywhere and F (x) = f(x) a.e.,
that is, for all x ∈ D1 where R\D1 is of Lebesgue measure zero.

Is this F an (additive) extension of f (in the sense of Daróczy-Losonczi)?
The answer is no. Counter example (by V. Zinde-Walsh, simplified by

C.T. Ng and J. Aczél, see [A 80, AD 89]):

D := {(x, y) | x, y, x+ y �= 1, 2} ∪ {(1, 1)},
i.e., D is obtained from R

2 by removing from it the lines x = 1, x = 2, y = 1,
y = 2, x+y = 1, x+y = 2 except the point (1,1). Clearly R

2\D is of Lebesgue
measure zero and D′ = R. Let

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ R\{1, 2},
1 if x = 1,

2 if x = 2.

This function is additive on D (we have f(1 + 1) = f(2) = 2 = 1 + 1 =
f(1)+f(1) and elsewhere, for (x, y) ∈ D, we get f(x) = f(y) = f(x+y) = 0)
but f is obviously not additive on D′ = R.

Questions similar to Erdős’s problem can be asked for other functional
equations and inequalities.
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Let I ⊂ R be an open interval. A function f : I → R is called almost
convex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
((x, y) ∈ I × IM),

where M ⊂ I × I is of planar Lebesgue measure zero. Kuczma [K 70] proved
that, if f : I → R is almost convex, then there exists a unique convex function
F : I → R such that F (x) = f(x) a.e. in I.

Ger [G 71, G 75] noticed that “equality almost everywhere” can also be
introduced in an axiomatic way.

A nonempty family Ik of subsets of the k-dimensional euclidean space
R

k is called a Linearly Independent Proper Ideal (abbreviated as LIPI) if

(a) A, B ∈ Ik implies A ∪B ∈ Ik,
(b) A ∈ Ik, B ⊂ A implies B ∈ Ik,
(c) R

k /∈ Ik,
(d) For every real number α �= 0, β ∈ R

k, and A ∈ Ik we have αA+β ∈ Ik.

It can be easily seen that the family Lk
0 of all subsets of Rk with Lebesgue

measure zero is a LIPI. Similarly, the families Fk and Lk
f of all sets of the

first category in R
k and of all sets having finite Lebesgue measure in R

k, are
also LIPIs.

We say that two LIPIs I2 and I1 are conjugate if for every M ∈ I2 there
exists a set U ∈ I1 such that, for every x ∈ U , the set

Vx := {y | (x, y) ∈M}
belongs to I1. In view of Fubini’s theorem, the LIPIs L2

0, F2, L2
f and L1

0, F1,

L1
f are, respectively, conjugate.

Ger [G 71] proved the following result. Let I2 and I1 be conjugate linearly
invariant proper ideals. If f : R → R satisfies the equation Δn+1

y f(x) = 0
for all (x, y) ∈ R

2M where M ∈ I2 then there exists exactly one function
F : R → R and a set U ∈ I1 such that Δn+1

y F (x) = 0 holds for all (x, y) ∈ R
2

(i.e., F is a polynomial function) and F (x) = f(x) for all x /∈ U .
Ger [G 75] found similar results for the Mikusiński equation

f(x+ y)[f(x+ y) − f(x) − f(y)] = 0

and for the Pexider equation

f(x+ y) = g(x) + h(y)

5. Some Applications

The above extension theorems have important and amusing applications.
An example is that of “aggregated allocations” see [AKNW 83, ANW 84,
AW 81].
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Suppose that there is a certain amount s of quantifiable goods (raw
materials, energy, money for scientific projects, grants etc.) is to be allocated
(completely) to m(≥ 3) projects. For this purpose a committee of n assessors
is formed. The j-th assessor recommends that the amount xij should be
allocated to the j-th project. If he (she) can count, then

∑m
j=1 xij = s. Now

the recommendations should be aggregated into a consensus allocation by
a chairman or external authority. Again the allocated consensus amounts
should add up to s. It is supposed (this is a restriction) that the aggregated
allocation for the j-th project depends only on the recommended allocations
to that project, that both the individual and the aggregated allocations
be non-negative (!) and, if all assessors recommend rejection, then the
consensus allocation to that project should be 0 (‘consensus on rejection’).
If we write the individual allocations for the j-th project as a vector xj =
(x1j , x2j , . . . , xnj) and denote the aggregated allocation by fj(xj) then these
conditions mean the following:

fj : [0, s]n → [0, s], fj(0) = 0 (j = 1, 2, . . . ,m)

and
m∑

j=1

xj = s1 =⇒
m∑

j=1

fj(xj) = s (13)

where 1 = (1, 1, . . . , 1), s1 = (s, s, . . . , s), and 0 = 01 = (0, 0, . . . , 0). With
x1 = s1, x2 = . . . = xm = 0 we get f1(s1) = s and, since the subscript
1 has no privileged role, fj(s1) = s for all j = 1, 2, . . . ,m (‘consensus on
overwhelming merit ’). Now we substitute into (13) x1 = z = (z1, z2, . . . , zn),
x3 = s1− z, x2 = x4 = . . . = xm = 0:

f1(z) = s− f3(s1− z) (z ∈ [0, s]n).

The substitution of x1 = x = (x1, x2, . . . , xn), x2 = y = (y1, y2, . . . , yn),
x3 = s1− x− y, x4 = . . . = xm = 0 gives

f1(x) + f2(y) = s− f3(s1− x− y) = f1(x + y), (14)

whenever x, y, x + y are all in [0, s]n. Putting here x = 0 we get f2(y) =
f1(0) + f2(y) = f1(y) for all y ∈ [0, s]n. Again the subscripts 1, 2 have no
privileged role, so

f1 = f2 = . . . = fm = f on [0, s]n

and (14) reduces to the Cauchy equation

f(x + y) = f(x) + f(y) ((x,y) ∈ D), (15)

where D := {(x,y) | x,y,x + y ∈ [0, s]n}. All solutions of (15) can be
extended from D (even though it is closed) to R

n ×R
n. Applying the known

result that every n-place additive function, nonnegative on an n-dimensional



Extension of Functional Equations 457

interval, is of the form of an inner product 〈a,x〉 (a is a constant vector with
nonnegative components ai), we have

fj(x1, x2, . . . , xn) =

n∑

i=1

aixi

(

ai > 0,

n∑

i=1

ai = 1; j = 1, 2, . . . ,m

)

.

We have found that the weighted arithmetic mean is the general solution of
our allocation problem.

Many applications concern local solutions of functional equations. The
functional equation

f(x+ y − xy) + f(xy) = f(x) + f(y) (x, y ∈]0, 1[, [0, 1], or R)

was introduced by Hosszú. The most complicated case is the one where f :
]0, 1[→ R and the equation holds for x, y ∈]0, 1[. The general solution is
(Lajkó [La 74])

f(x) = A(x) + b (x ∈]0, 1[)

where A : R → R is an arbitrary additive function (on R
2) and b is an

arbitrary constant. The proof is based on the fact that the function x →
f(x+ 1/2) − f(1/2) is additive on the “triangle-like” set

D = {(x, y) | −1

2
< x < 0,

1

2
+

1

2x− 1
< y <

1

2
+ 1}.

A is obtained as the quasi-extension of this function.
The extension theorem for the Levi-Cività equation (together with the

extension theorem of Daróczy-Losoncai) can be applied to the solution of
functional equations of sum form (see [L 85a, L 91]).

Kiesewetter [Ki 65] proved that the “arctan equation”

f(x) + f(y) = f

(
x+ y

1 − xy

)
(x, y ∈ R, 1 − xy �= 0) (16)

has no continuous solutions except f(x) = 0 (x ∈ R). Crstici, Muntean and
Vornicescu [CMV 83] found the local solutions of the arctan equation valid on
the set D1 := {(x, y) ∈ R

2 | xy < 1} satisfying various regularity conditions
(continuity at one point or boundedness or measurability on an interval etc.).
The general local solution on D1 was found by Muntean and Vornicescu
[MV 83].

The second author proved [L 85b, L 90] that the general solution of (16)
is the function

f(x) = A(arctanx) (x ∈ R)

where A : R → R is an arbitrary additive function (on R
2) periodic with

period π.
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This clearly implies f(tan rπ) = 0 for all rational numbers r, explaining
Kiesewetter’s result. In [L 85b, L 90, MV 83] again the extension theorem of
Daróczy and Losonczi was the main tool of the proof.

Finally we mention that the result of de Bruijn and Jurkat can be applied
to find all bounded multiplicative linear functionals on the complex Banach
algebra of Lebesgue integrable functions (under convolution) [A 80].

Reference

[A 66] J. Aczél, Lectures on Functional Equations and Their Applications, Aca-
demic Press, New York-London, 1966 [Mathematics in Science and Engineer-
ing, Vol. 19].

[A 80] J. Aczél, Some good and bad characters I have known and where they
led. (Harmonic analysis and functional equations), In: 1980 Seminar on
Harmonic Analysis. [Canad. Math. Soc. Conf. Proc., Vol. 1]. Amer Math. Soc.,
Providence, RI, 1981, pp. 177–187.

[A 83] J. Aczél, Diamonds are not the Cauchy extensionist’s best friend, C. R.
Math. Rep. Acad. Sci. Canada 5 (1983), 259—264.

[A 85] J. Aczél, it 28. Remark, Report of Meeting. The Twenty-second Interna-
tional Symposium on Functional Equations (December 16-December 22, 1984,
Oberwolfach, Germany). Aequationes Math. 29 (1985), p. l01.

[ABDKR 71] J. Aczél, J. A. Baker, D. Z. Djoković, P1. Kannappan and F. Radó,
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123.
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Eindhoven, 5600 MB Eindhoven, The Netherlands

1. Introduction

1.1

This paper will cover some details on Penrose tilings presented in lectures over
the years but never published in print before. The main topics are: (i) the
characterizability of Penrose tilings by means of a local rule that does not
refer to arrows on the edges of the tiles, and (ii) the fact that the Ammann
quasigrid of the inflation of a Penrose tiling is topologically equivalent to the
pentagrid that generates the original tiling.

The fact that any Penrose tiling is the topological dual of the Ammann
quasigrid of the inflation was first noticed by Socolar and Steinhardt [9]. They
presented it in the equivalent form that the topological dual of the Ammann
quasigrid of a Penrose tiling is the deflation of that tiling.

The Ammann quasigrid of the inflation of a Penrose tiling can also be
defined as the union of the central lines of the stacks of that tiling. Therefore
I refer to that union as the central grid of the tiling. It can be defined
independently of the original notion of Ammann grid. Actually the definition
of the central grid can also be given for other kinds of tilings where there is no
obvious definition of an Ammann grid and no obvious definition of deflation.

The paper is intended to be readable more or less independently of
previous ones, at least in the sense that all relevant notions will be explained
in the paper itself.

1.2

My geometric terminology will use the notion of shapes and 1-shapes
in the plane. A shape is an equivalence class of figures under similarity
transform. Similarity includes multiplications (with respect to a point),
shifts and rotations, but no reflections with respect to a line. In terms of
complex numbers, this similarity transform just means linear transformation.
A 1-shape is defined similarly, but without multiplications. That means that
similarity is replaced by congruence. In other words, figures with the same
1-shape have the same shape and the same size.
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Fig. 1 The 1-shapes V (thin rhomb) and W (thick rhomb)

Fig. 2 Penrose’s arrowed rhombs Va (thin) and Wa (thick)

Throughout this paper I shall use the two 1-shapes V and W , pictured in
Fig. 1. They are rhombs, with all edges having unit length. The acute angles
of V are 36◦, and those of W are 72◦. V will be called the thin rhomb and
W the thick rhomb. The word “rhomb” will always refer to a V or a W .

The arrowed rhombs Va and Wa (the subscript a stands for “arrowed”)
are obtained from V and W by putting single and double arrows on the edges
in the way depicted in Fig. 2. They will be called the Penrose rhombs.

1.3

A Penrose tiling is a tiling of the plane by Va’s and Wa’s with the property
that two tiles always have either nothing, or a vertex, or a full edge in
common; in the latter case they are called direct neighbors and it is required
that along the common edge they have the same kind of arrow in the same
direction. Figure 3 shows a fragment of such a tiling.

Various procedures for obtaining all Penrose tilings are known, like

(i) Penrose’s use of deflation, in combination with a (non-constructive)
selection argument (see [4] for an exposition).

(ii) The use of deflation, in combination with “updown-generation” (see [5]).
(iii) Forming the dual of a “pentagrid” and providing the arrows afterwards

(see [1]).

In [5] the relation between (ii) and (iii) was studied in detail.
Somewhat more complicated, but nevertheless interesting and promising,

are ways to take the Ammann bars (see [7, 9]) as the basis of the Penrose
tilings.
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Fig. 3 A piece of a Penrose tiling

1.4

One of the topics to be treated in the present paper is the question how one
can determine whether a tiling of the plane by V ’s and W ’s can be provided
with arrows so as to form a Penrose tiling with Va’s and Wa’s. It will be
shown (Sect. 2) that this can be settled by inspecting, for every rhomb in the
unarrowed tiling, the figure formed by its four direct neighbors.

Section 2 will pay attention to the question of a tiling give by the vertices
only.

2. Arrow-Free Characterization of Penrose Tilings

2.1

The term unarrowed rhomb tiling will mean a tiling of the plane with V ’s and
W ’s, with the condition that neighboring tiles have a full edge in common.

Any Penrose tiling turns into an unarrowed rhomb tiling by omitting the
arrows on the edges.

For any unarrowed rhomb tiling, any way to attach an arrow to every
edge such that it becomes a Penrose tiling, will be called an arrowing of the
tiling, and whenever such an arrowing exists the tiling is called arrowable.
Not every unarrowed rhomb tiling is arrowable. A simple counterexample is
the doubly periodic tiling by thick rhombs only.

It will be shown that the condition for an unarrowed rhomb tiling to be
arrowable can be put into a form that does not refer to arrows any more.
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2.2

Consider a figure formed by an unarrowed rhomb t and four neighboring
rhombs t1, t2, t3, t4, each one of these having one edge in common with t. It
is required that there is no overlap between any two of these rhombs (apart
from possible common edges). Let me call such a figure a cross.

If to a cross formed by t, t1, t2, t3, t4 one adds a number of further
rhombs t5, . . . , tk which all have a vertex in common with t, such that there
is no overlap between any two of t, t1, . . . , tk, and such that the areas around
the vertices of t are entirely covered, then that figure will be called an extended
cross.

2.3

An arrowing of a cross or an extended cross is a way to attach an arrow
(either single or double) to every edge in the figure such that each one of its
rhombs becomes a Penrose rhomb.

Not every cross can be arrowed. And a cross that can be arrowed is not
necessarily extendable to an extended cross that can be arrowed.

A cross will be called perfect if it is extendable to an extended cross that
permits an arrowing.

2.4

It is not hard to make a list of all possibilities for perfect crosses. Starting
with a thin rhomb t, trying all possible sets of direct neighbors t1, t2, t3, t4,
and investigating whether they have at least one arrowable extension, one
finds 6 possibilities, pairwise related by 180◦ rotation, leading to 3 different
1-shapes P1, P2, P3. Similarly, if starting from a thick rhomb, one gets to
8 possibilities, which are pairwise related by 180◦ rotation, so there are 4
different 1-shapes P4, P5, P6, P7.

For the notion “1-shape of a perfect cross” I shall also use the term
neighborhood pattern. Figure 4 gives them all.

P1 and P2 form a pair, in the sense that the mirror image of P1 has the
same 1-shape as P2. In the same sense P5 and P6 form a pair. The others,
P3, P4 and P7, are symmetric: the axis of symmetry is the short diagonal of
t in P3 and the long diagonal of t in P4 and P7.

2.5

Each one of the seven neighborhood patterns can be arrowed in exactly one
way. These arrowed patterns are called P1a, . . . , P7a, and are shown in Fig. 5.
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Fig. 4 The neighborhood patterns P1, . . . , P7

2.6

At this stage it becomes possible to answer the question which unarrowed
rhomb tilings can be arrowed.

I shall say that an unarrowed rhomb tiling satisfies the cross condition if
for each one of its rhombs the cross formed by that rhomb and its four direct
neighbors is one of the seven 1-shapes P1, . . . , P7.

Theorem 1. (i) If an unarrowed rhomb tiling of the plane is arrowable
then it satisfies the cross condition.

(ii) If an unarrowed rhomb tiling of the plane satisfies the cross condition
then it can be arrowed in exactly one way.

Proof. (i) This is little more than the fact that the list of neighborhood
patterns provided in Sect. 2 is exhaustive. If a cross is a part of an
arrowable rhomb tiling, then it also has an extension to an extended
cross that lies in that tiling, and any arrowing of the whole rhomb tiling
implies an arrowing of that extended cross.

(ii) Start from an unarrowed rhomb tiling that satisfies the cross condition.
So if t is one of the rhombs in the tiling then it is the central rhomb
of a cross of one of the types P1, . . . , P7, and that uniquely defines an
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Fig. 5 The arrowed neighborhood patterns P1a, . . . , P7a

arrowing of t according to Fig. 5. So the arrows on t are imposed by the
cross of t. They will be called the imposed arrows of t.

In this way an arrowing is prescribed for every rhomb in the tiling, but
it is the question whether neighbors get the same imposed arrow on their
common edge. To that end it has to be shown that if in the tiling two rhombs
s, t have an edge in common, then along that edge the arrow of s (imposed
by the cross of s) is the same as the arrow of t (imposed by the cross of t).
This can be checked without having the full tiling available.

If one of s, t is thin and the other one is thick, then uniqueness of arrowing
holds already for the figure consisting of that s and t only. That arrowing
on that figure is imposed by the cross of s as well as by the one of t, so in
particular the imposed arrow on the common edge is the same in both cases.

The next case is that s and t are both thin. The cases where the cross of
a thin rhomb contains a second thin rhomb are the P1 and P2 of Fig. 4. In
both cases s and t have a thick rhomb u as a common neighbor in the way
depicted in Fig. 6a (possibly with s and t interchanged). Just by observing
the pair s, u it is seen that the cross of s imposes a double arrow on the
common edge of s and t, pointing to the right. With the pair t, u the same
result is obtained for the imposed arrow of t.
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Fig. 6 The arrowing of s imposed by the cross of s and the arrowing of t imposed
by the cross of t lead to the same arrow on the common edge

The remaining case is that both s and t are thick. This is shown in Fig. 6b
(possibly with s and t interchanged). It is a part of a tiling in which the cross
condition holds for both s and t. Since the cross of s contains t it cannot
contain a thick rhomb u pasted to the edge BC: such a configuration formed
by s, t, u does not occur in any of the crosses of s shown in Fig. 4. The same
argument shows that the tiling does not contain a thick rhomb pasted to BD.

The only possibilities to paste thin rhombs to BC and BD are shown in
Fig. 6c, d.

In Fig. 6c, the only possible arrowing of the pair s, u has a double arrow
from B to A, whence that double arrow is imposed by the cross of s. The
same argument applied to the pair t, u leads to the same imposed arrow of t.

In Fig. 6d the pair t, u shows that the imposed arrow of t on AB is a
single one, pointing to the right. Inspection of the pair s, v shows the same
imposed arrow of s on AB.

This completes the proof of the theorem. �

2.7

As a corollary of the theorem of Sect. 2 it can be noted that an unarrowed
rhomb tiling can be arrowed in at most one way. This does not require
the whole theorem: uniqueness of arrowing holds already for all arrowable
extended crosses.
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2.8

Every arrowable tiling contains infinitely many copies of each one of
P1, . . . , P7. Inspection of an arbitrary Penrose tiling shows occurrences of all
these perfect crosses, and it is known that any finite configuration occurring
in any Penrose tiling occurs infinitely often in any other one.

2.9

An unarrowed rhomb tiling is completely determined by its set of vertices,
irrespective of whether the tiling is arrowable or not. In order to see this,
it suffices to check that in an unarrowed rhomb tiling any two vertices have
distance 1 if and only if they are connected by an edge of a rhomb of the
tiling.

It is also easy to see that two vertices in an unarrowed rhomb tiling have
distance between 0 and 1 if and only if they are the end-points of the short
diagonal of a thin rhomb.

The shortest distance exceeding 1 is 2 sin 36◦(= 1.17557). It is the length
of the short diagonal in a thick rhomb, but this distance may occur in a
different way between vertices in a pair of adjacent thin rhombs.

3. Deflation and Inflation

3.1

This section gives some information about inflation and deflation of Penrose
tilings. It is intended as a kind of motivating background, but will not be
used in the rest of the paper.

Penrose’s idea of inflation and deflation was very central in the discovery
of his arrowed rhomb tilings. Deflation is a certain way to get from a Penrose
tiling to a new tiling with smaller pieces (12 (−1 +

√
5) times the original

ones), and inflation is the inverse operation, leading to a tiling with bigger
pieces. For a description of the process see [1, 6–8]. It is somewhat easier
to describe the deflation as an operation on rhombus halves. The half thin
rhomb is obtained by cutting a thin rhomb along its short diagonal, the half
thick rhomb by cutting a thick rhomb along its long diagonal. For these
rhomb halves the deflation is a matter of subdivision (see [5]). This is shown
in Fig. 7.

In Sect. 2 of [5] it is explained that the idea of inflation comes naturally by
observing how in an arrowed rhombus tiling pieces can be grouped together.
Those groups form the pieces of the inflation.
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Fig. 7 The deflation of the half thin and the half thick rhomb. The full figure on
the left is a half thin rhomb, with arrows drawn at the outside. It is subdivided
into a half thin and a half thick rhomb, with arrows indicated along the edges
themselves. These two small pieces belong to the deflation. Similarly the full figure
on the right is a half thick rhomb, and here the deflation has three pieces: a half
thin rhomb and two half thick rhombs. There are of course two shapes of half thin
rhombs, which are each other’s mirror image, and similarly there are two shapes
of half thick rhombs. For the mirror images of the half rhombs shown in the figure
one has to take the mirror image subdivision.
When this subdivision operation is carried out for every half thin rhomb and every
half thick rhomb of a Penrose tiling, the smaller pieces fit together to a Penrose
tiling with smaller pieces

3.2

If deflation is applied to a tiling of a finite portion of the plane, and if the
result is enlarged by a factor 1

2 (1 +
√

5) afterwards, it becomes a tiling of a
bigger part of the plane with pieces of the original size. Infinite repetition of
this process and application of an infinite selection principle leads, albeit in
an inconstructive way, to Penrose tilings of the full plane (see [4, 6, 8]). But
the idea of inflation and deflation can also be used in a completely different
and very constructive way for the production of all infinite Penrose tilings.
The method is updown generation, a process that is controlled by taking an
arbitrary infinite path in a particular finite automaton (see [5]).

4. Duality

4.1

The key method in [1] was the production of tilings by means of their topo-
logical dual. I spend a few words here as a short independent introduction.

4.2

In any Penrose tiling the rhombs are arranged in what I shall call stacks.
Consider an arbitrary edge e of an arbitrary rhomb r of the tiling. Two
rhombs of the tiling are called e- neighbors if they have a common edge that
is parallel to e. Two rhombs of the tiling are called e-related if they can be
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connected by a chain of e-neighbors. The stack generated by r and e is the
set of all rhombs which are e-related to r.

Every rhomb of the tiling belongs to exactly two stacks, and any two
stacks have exactly one rhomb in common, unless their e’s are parallel.

The idea of a stack can at once be generalized to tilings by parallelotopes
in higher dimensional spaces. In that case there can be stacks of various
dimensions. In the two-dimensional case the stacks are one-dimensional, but
in three dimensions there are two-dimensional stacks that can be considered
as unions of one-dimensional stacks.

4.3

Consider a Penrose tiling and a stack generated by some r and e. In any
rhomb of the stack connect the mid-points of the edges parallel to e by a
straight line segment. These line segments form an infinite broken line that
can be called the back bone of the stack.

The union of the back bones of all stacks is called the skeleton of the tiling.
In a skeleton one has curves (the back bones), points (the intersection points
of the curves) and mazes (the connected components of the complement of
the union of all curves). These curves, points and mazes can be deformed
topologically without disturbing their relation to the tiling. On anyone of the
curves the order of the intersection points with other curves keeps reflecting
the order in which the corresponding stack is intersected by other stacks.
The topological deformations do not disturb the duality between skeleton
and tiling. In that duality curves correspond to stacks, points to rhombs,
mazes to rhomb vertices.

4.4

If some topological deformation of a skeleton is given, one is not yet able to
reconstruct the tiling. First one has to know, for any curve of the skeleton,
the direction and the length of the edge e that was used in the discussion
of the corresponding stack. Once all these are known, the Penrose tiling is
determined up to a parallel shift in the plane. That is, the Penrose tiling
deprived of its arrows. But the latter is no great loss: since one started from
a Penrose tiling in the first place, one knows that a consistent system of
arrows exists, and Sect. 2 takes care of the uniqueness of the arrowing.

4.5

In [1] it was shown that the skeletons are topologically equivalent to so-called
pentagrids, but this had to be taken with a grain of salt in so-called singular
cases. The pent agrids are parametrized by real numbers γ0, . . . , γ4 satisfying
γ0 + . . . + γ4 = 0. If j is one of the numbers 0, . . . , 4 and ζ = e2πi/5 then
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the set of all complex numbers z satisfying Re(zζ−j) + γj ∈ Z is a grid of
parallel lines in the complex plane. The superposition of these five grids is
called the pentagrid generated by γ0, . . . , γ4. The pentagrid is called singular
if it contains three lines passing through one point.

Key results of [1] are the following. Any non-singular pentagrid is the
dual of a Penrose tiling. The singular pentagrids do not have a dual in the
ordinary sense, but by infinitesimal perturbations they turn into grids that
do have a dual. There can be various perturbations with different effect, and
the result is that a singular grid corresponds either to 2 or to 10 different
Penrose tilings. With these extra arrangements for the singular cases, all
Penrose tilings are obtained from pentagrids.

The perturbations will get some more attention in Sect. 6 below.

4.6

The idea of producing a tiling as a topological dual of the superposition of a
number of parallel grids can be extended to general classes of tilings of spaces
of arbitrary dimension by means of parallelotopes. See [2] for a proof that
under fairly general conditions the dual covers the whole space uniquely.

4.7

It can be concluded from Sect. 4 that the skeleton of a Penrose tiling is
topologically equivalent to some regular pentagrid or to some perturbed
singular pentagrid. But remarkably, there is always a second and completely
different straight line grid with the topological structure of the skeleton. This
matter will be treated in Sects. 5 and 6, where it is also shown that there are
not just these two: there are infinitely many straight line grids with the same
topology. The pentagrid can be deformed continuously in such a way that it
always keeps the same topology and always remains a superposition of five
straight line grids, with the central grid as final result. And one can even get
beyond that.

5. Ammann Bars and Central Bars

5.1

An attractive way to introduce the Ammann bars of a Penrose tiling is to
consider both the thin and the thick arrowed rhomb as a billiard table and
to choose particular billiard ball tracks on them. These tracks can already be
shown on the rhomb halves, displayed in Fig. 8. The tracks have been chosen
in such a way that when fitting pieces together the segments combine to
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Fig. 8 The billiard ball tracks on the arrowed half rhombs. The angles at D, G,
L and Q are 90◦. The lines EF and FG form equal angles with AB, which is
expressed by saying that the billiard ball bounces at the edge AB. At E, M , N
and P there are similar cases of bouncing. Finally AD = HL, AF = HN and
JP = AE = HM . In the mirror images of these half rhombs one of course takes
the mirror image tracks

infinite straight lines. These are called the Ammann bars after their discoverer
R. Ammann (see [7, 9]).

The grid formed by these bars, called Ammann quasigrid in [9], has
some of the properties of the pentagrid used to produce the Penrose tiling
in [1]. Both are superpositions of five parallel grids, making angles which are
multiples of 72◦. In the pentagrid the parallel grids are all equidistant, but
in the Ammann quasigrid they show two different distances. On the other
hand, the Ammann quasigrid looks much simpler than the pentagrid since
its meshes show only a small finite number of shapes. A pentagrid contains
infinitely many different mesh shapes, and arbitrarily small ones.

It was observed by J.E.S. Socolar and P.J. Steinhardt (see [9]) that
dualization of the Ammann quasigrid of a Penrose tiling leads exactly to
the deflation of that tiling.

A quite simple suggestive argument can be given for this statement,
although it might not be easy to turn it into a formal proof. It is explained by
Fig. 9. The straight line billiard track segments can be continuously deformed
into the segments in Fig. 10. The points D,E,G,L,M,P can stay where they
were, but F , N and Q move. In the mirror images of these half rhombs the
corresponding things are done correspondingly. If in each rhomb of a Penrose
tiling the original billiard ball track is deformed continuously into the new
track, then the union of all segments shows the picture of a grid deforming
itself by bending its bars, all the time keeping the same topology. In the final
situation (the one of Fig. 9) each mesh contains exactly one vertex of the
deflation, and that is exactly the one produced by the dualization.

5.2

The Socolar-Steinhardt phenomenon can also be expressed like this: the
Ammann bars of the inflation of a Penrose tiling form a quasigrid that is
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Fig. 9 The deformed billiard ball tracks on the half thin and the half thick rhomb.
In the mirror images of these half rhombs mirror image tracks have to be taken.
The vertices of the deflation in the above half rhombs are A,B,C, S,H,K, J, U, T .
Having these tracks in all half rhombs of a Penrose tiling results in a set of mazes
where each maze contains exactly one deflation vertex, and in the duality that
vertex is exactly the vertex corresponding to that maze

Fig. 10 The basic segments of the central bars. In the thin rhomb ABCD (with
double arrows AB and CB) the segments are EF and GH , in the thick rhomb PQRS
(with double arrows QP and SP ) they are TU and VW . There are right angles at E,
G, T and V . The points F , H , U , W lie on the extensions of the segments CD, AD,
RS, RQ, respectively. The lengths of the bar segments are EF = GH = sin 36◦,
TU = VW = sin 72◦. The positions are determined by EB = GB = TP = V P =
0.25. Moreover DF = DH = SU = QW = (−2 +

√
5)/4 = 0.059017

the topological dual of that tiling itself. Let me call those Ammann bars of
the inflation the central bars of the tiling itself. It will be shown that they can
be defined independently of the billiard ball construction, and that a proof
for the duality can be given without reference to the argument of Sect. 5.

The name “central” was chosen because of the the central position of
these bars in the stacks of the tiling (see Sect. 6).

The central bars can be found by comparing Figs. 7 and 8. The double
arrows of the deflation are from S to A, from C to B, from T to H and from
U to J . These are all intersected orthogonally by the billiard ball track. The
distance from the intersection point to the end-point of the double arrow is
just one fourth of the length of the arrow. This shows that the central bars of
a Penrose tiling have to contain the segments EF , GH , TU , VW indicated
in Fig. 10.
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Fig. 11 The segments of the deformed bars EI , GJ in the thin rhomb and TX,
V Y in the thick rhomb, determined by DI = DJ = SX = QY = 0.1. Any maze
formed by these deformed bars contains exactly one vertex of the Penrose tiling,
and that is exactly the vertex corresponding to the maze in the duality

It has to be admitted that some of the rhombs contain further pieces of
central bars, but in order to build the full central grid it suffices to consider
those pieces of Fig. 10. Since

EB = GB = TP = VP , CF = AH = RU = RW (1)

it is obvious that in a stack the segments in the direction of the stack fit
together to a full straight line. It is easy to show directly that (1) implies
EB = GB = TP = VP = 1

4 , CF = AH = RU = RW = 1
4 (2 +

√
5), and

therefore the central bars can be introduced without any reference to the
billiard ball tracks.

The segments of Fig. 10 can be transformed into those of Fig. 11 by
continuous deformation. Taking the segments of Fig. 11 in all rhombs of
a Penrose tiling one gets something that is topologically equivalent to the
skeleton of the tiling (that was defined in Sect. 4 by connecting mid-points of
the edges).

The transition from Figs. 10 to 11 does not affect the topology of the grid.
This is not completely trivial, since (in contrast to what what was described
in Sect. 5) the operations take place partly outside the rhombs. So it has to
be made sure that the corresponding operations in neighboring rhombs do
not interfere.

In Sect. 6 the topological equivalence of pentagrid and central grid will
be shown in quite a different way.

6. Algebraic Proof of the Topological Equivalence

6.1

The various grids to be considered are generalizations of the one described in
Sect. 4. They are characterized by real numbers ωj,k, where j runs through the
set {0, 1, 2, 3, 4} and k through the set Z of all integers. The grid determined
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by these ω’s is the superposition of Γω,0, . . . ,Γω,4, where each Γω,j is is a grid
of parallel lines in the complex plane. The line with index k in Γω,j is the set
of all complex numbers z for which Re(zζ−j) = ωj,k (as before, ζ = e2πi/5).

So the pentagrid described in Sect. 4 with its five real parameters
γ0, . . . , γ4 satisfying γ0 + . . .+ γ4 = 0 is the case where ωj,k = k − γj .

6.2

In [1] it was indicated how the pentagrid defines a Penrose tiling. Singular
grids cannot be used directly: they first have to get an infinitesimal
deformation in order to admit proper dualization (see [1], Sect. 12).

A few words may be devoted to the meaning of the word “infinitesimal”
here. If in a singular pentagrid a grid line, a vertical one, say, is moved over
a small finite distance to the right, then triple intersection points may have
been avoided in a big finite range only. For a given line in a pentagrid and
a given large positive number R there exists a small positive ε such that
within the circular disk given by |z| < R all triple intersections are avoided
by shifting the line over a distance δ with 0 < δ < ε. But outside the range
R such shifts may cause other intersection points, and alter the topology.
The topology of the grid obtained by an infinitesimal shift to the right can
be defined as the limit of the topology obtained within |z| < R by means of
sufficiently small shifts of the grid line.

But of course, perturbation of a pentagrid is not just a perturbation
of a single line, but of the set of the five γ’s. I now introduce an index p
that describes which infinitesimal perturbation has to be taken. It has ten
possible values: 0, . . . , 9, but in the majority of the singular cases there are
only two that have a different effect, and in the regular cases all ten have
the same effect. In [1], Sect. 9, it was explained that the complex number
ξ =

∑4
j=0 γjζ

2j is an essential parameter for the Penrose tiling. It is related
to the real numbers μj , to be used in this section, given by

μj = γj − (γj−1 + γj+1)τ−1,

for j = 0, . . . , 4, where, as before, τ = 2 Re ζ = 1
2 (−1+

√
5), and j is taken mod

5 (so γ5 = γ0, etc.). The μ’s can be derived from ξ by Re(ξζ−2j) = (1− 1
2 τ)μj .

It was shown in [1], Sect. 11 that a pentagrid is singular if and only if for
one of the j’s there is an α of the form (1− ζ)(n0 +n1ζ+n2ζ

2 +n3ζ
3 +n4ζ

4)
with integers n0, . . . , n4 such that Re((ξ−α)ζ−j) = 0. It is not hard to show
that this condition is equivalent to the following one: for at least one value
of j there is an integer k such that (k − μj)τ is an integer.

Now consider infinitesimal perturbations of ξ, given by a positive infinites-
imal dw and a perturbation parameter p (one of the values 0, . . . , 9). The
perturbation of ξ is dξ = epπi/5dw. And perturbations of the γ’s that produce
this dξ can be taken as (cf. [1], formula (9.2)): dγj = (2/5) Re(ζ−2jdξ).

The perturbations of the μ’s turn out to be
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dμj = (1 − 1

2
τ)−1 Re(e(p−4j)πi/5)dw.

6.3

The lines of a pentagrid correspond to stacks of the Penrose tiling, and for
each stack there is a central bar according to Sect. 5. These central bars can
be evaluated in terms of the μ’s. This will be explained in Sect. 6. The result
is that the line with index k in the j-th subgrid of the pentagrid leads to a
central bar given by Re(zζ−j) = βj,k, where, at least in the case of a non-
singular grid, βj,k = (1 + 1

2τ
−1)(κ + τ�(κ − μj)τ − 1

2 τ). (�x is the usual
notation for the least integer ≥ x). In singular cases the value of �(κ− μj)τ 
can be affected by perturbation of μj if (κ−μj)τ is an integer. The effect can
be described by means of the notations �x + and �x −,intended as �x+ dw 
and �x − dw , respectively, where dw is a positive infinitesimal. This just
means

�x + = x� + 1, �x − = �x 
for all real values of x. With this notation the result for the central bar
becomes

βj,k = (1 +
1

2
τ−1)(κ+ τ�(κ − μj)τ ϕ(p,j) − 1

2
τ) (2)

where ϕ(p, j) stands for + or − according to whether Re(e(p−4j)πi/5) is < 0
or > 0.

In the non-singular cases the ϕ(p, j) can be ignored, of course. But it
should be noted that it is not so easy to see from the γ’s whether a case
is singular or not. If one does not want to bother one might just take the
ϕ(0, j) as a standard, but it is dangerous to omit the ϕ(p, j) altogether. In
the case γ0 = · · · = γ4 = 0 with its ten different perturbations the formula
βj,k = (1 + 1

2τ
−1)(κ+ τ�κτ − 1

2τ) would definitely not represent the central
bars of a Penrose tiling.

6.4

Here are some details about the derivation of the expression (2) for the central
bar of the stack corresponding to a given line of a pentagrid. For simplicity,
non-singularity will be assumed. Moreover, the (unessential) restriction is
made that j = 0, which makes it possible to talk in terms of left and right.
Moreover, the letter j becomes available for other purposes.

So the grid line is (with some integer k) Re(z) = k − γ0. The meshes
directly to the left and directly to the right of this line produce the vertices
of the rhombs of the stack. According to [1], Sect. 5, the vertices are derived
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from the meshes as follows. Take any point z in the mesh, and form the
integers Kj(z) = �Re(zζ−j) + γj ; then the vertex is

∑4
j=0Kj(z)ζj . With a

real variable t the points of the grid line are represented as (k − γ0) + it. So
the vertices corresponding to the meshes directly to the left of the line are
given by M(t) = k +

∑4
j=1�uj ζj , where uj = Re(((k − γ0) + it)ζ−j) + γj .

It will be shown that the real part of M(t) takes only four different values
if t varies. That real part is k + (�u1 + �u4 ) Re(ζ) + (�u2 + �u3 ) Re(ζ2).
Obviously �u1 + �u4 = �u1 +u4 + q, where q is either 0 or 1, and similarly
�u2 + �u3 = �u2 + u3 + r, with r either 0 or 1. With the abbreviation

A = �(k − γ0)τ + γ1 + γ4 τ/2 − �−(k − γ0)τ−1 + γ2 + γ3 τ−1/2

this leads to

Re(M(t)) = k +A+ qRe(ζ) + rRe(ζ2).

It gives the four different horizontal coordinates of the left end-points of the
horizontal edges in the stack. The right end-points are obtained by adding 1.
So all the vertices involved here are lying on eight vertical lines. The figure
formed by those eight lines has the central bar as an axis of symmetry, and
that is why the name “central” was chosen. Since Re(ζ) + Re(ζ2) = − 1

2 the
average of the eight horizontal coordinates is k + A+ 1

4 , whence the central
bar can be represented as Re(z) = k +A+ 1

4 .
From the arrowing of the horizontal vertices in the stack it is easy to

derive that this central bar cuts the doubly arrowed horizontal edges at a
point 1

4 from the end, exactly in accordance with Fig. 10.
These calculations did not yet use the condition that

∑
γj = 0. Tilings

without that condition were mentioned in [3] in connection with a riffle shuffle
card trick, and it is actually the riffle shuffle arrangement in a stack that
guarantees that there are only eight different horizontal coordinates.

But
∑
γj = 0 gives a simplification:

−(k − γ0)τ−1 + γ2 + γ3 = μ0τ − kτ − k,

and since non-singularity is assumed, this cannot be an integer. If x is not
an integer one has −�−x = �x − 1, which leads to the following formula for
the central bar:

Re(z) = (1 +
1

2
τ−1)(k + τ�(k − μ0)τ − 1

2
τ).

For the singular cases the result (2) can now be derived by obvious limit
operations.

6.5

The topological equivalence of pentagrid and central grid will now be
established directly, on the basis of (2). Figure 12 presents an illustration. It
looks reasonable to enlarge the pentagrid by a factor 5/2 when comparing
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Fig. 12 On the left there is a piece of the pentagrid with parameters γ0 = 0.2,
γ1 = 0.4, γ2 = 0.3, γ3 = −0.8, γ4 = −0.1, on the right a corresponding piece of the
central grid with the same parameters. The scale of the picture on the left is 5/2
times the one on the right. In order to facilitate the comparison of the topologies,
the lines with kj = 0 in the j-th subgrid are thicker than the others

it to the central grid (it is the same factor as in [1], Sect. 5, formula above
(5.3)), but for the topology of the grids such factors make no difference at all.

The method is as follows. Consider two grids of the form of Sect. 6, given
as Re(zζ−j) = αj,k and Re(zζ−j) = βj,k. It is assumed that for each j the
αj,k and the βj,k increase with k. And it is assumed that nowhere in the grids
three lines pass through a point. In the topological correspondence the k-th
line of the j-th subgrid of the α-grid will correspond to the k-th line of the
j-th subgrid of the β-grid, for all j and k.

If p, q, r are straight lines forming a triangle, then they determine an
orientation: seen from the inside of the triangle the circular order p, q,
r is either clockwise or counter-clockwise. This gives the criterion for the
topological equivalence in the grid: for any three lines in the α-grid the
orientation has to be the same as for the corresponding three lines in the
β-grid.

There are two kinds of triangles here. One is of the kind formed with
values j, j − 1, j + 1, the other one with j, j + 2, j + 3 (j taken mod 5). The
orientation is a simple matter of determinants. The result is as follows. The
topological equivalence of the two grids is guaranteed if for all j and for all
integers p, q, r the combination aj+1,p + aj−1,q − ταj,r has the same sign as
βj+1,p + βj−1,q − τβj,r , and αj+2,p + αj−2,q + τ−1αj,r has the same sign as
βj+2,p + βj−2,q + τ−1βj, r.

Since no three lines pass through a point none of these expressions is zero.
It is this very explicit condition that has to be verified for the regular

pentagrid and the corresponding central grid. It will be established in
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Sects. 6–6 as a theorem on inequalities that can be understood independently
of the previous sections. In order to get rid of the factor (1 + 1

2τ
−1) those

sections work with θ instead of β, where β = (1+ 1
2τ

−1)θ. And for simplicity,
Sects. 6–6 restrict themselves to j = 0; the other cases are completely similar.

6.6

If the conditions mentioned in Sect. 6 are satisfied for α and β then they are
obviously also satisfied for α and ω(λ), where 0 ≤ λ ≤ 1, and ω(λ) is obtained
by linear interpolation:

ω(λ)j,k = (1 − λ)αj,k + λβj,k.

This means that the the α-grid can be deformed continuously into the β-grid
without ever changing the topology. It is even possible to push the λ beyond 1.
The lower bound 1

2τ in Theorem 2 (Sect. 6) has the effect that the topology
of the ω(λ)-grid remains the same over the interval 0 ≤ λ < (1 − 1

2 (1 +
1
2τ

−1)τ)−1.
Section 4 discussed infinitesimal perturbations for the interpretation of

the dual of a singular pentagrid. The same thing can now be achieved with
the ω(λ), with small positive but not infinitesimal values of λ.

6.7

The Sects. 6–6 do not make use of anything said in the previous sections.
Let γ0, . . . , γ4 be real numbers with γ0 + . . . + γ4 = 0. For j = 0, . . . , 4,

kj ∈ Z, the real numbers αj,k and θj,k are defined by

αj,k = k − γj , θj,k = k + τ�(k − μj)τ − 1

2
τ,

where μj = γj − (γj−1 + γj+1)τ−1, γ5 = γ0 and τ = 1
2 (−1 +

√
5).

Let k0, . . . , k4 be integers, and abbreviate

H = α1,k1 + α4,k4 − τα0,k0 , L = θ1,k1 + θ4,k4 − τθ0,k0 ,

K = α2,k2 + α3,k3 + τ−1α0,k0 , M = θ2,k2 + θ3,k3 + τ−1θ0,k0 .

With these abbreviations the following theorem can be proved:

Theorem 2. If H �= 0 then L/H ≥ 1
2τ . If K �= 0 then M/K ≥ 1

2τ .

6.8

Here is the proof of the first part of the theorem. H and L can be expressed
like this:
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H = k1 + k4 − τk0 + τμ0,
L = k1 + k4 − τk0 + τ�(k1 − μ1)τ� + τ�(k4 − μ4)τ� − τ 2�(k0 − μ0)τ� − τ + 1

2
τ 2.

If x and y are real numbers then �x + �y − �x+ y is either 0 or 1. So

�(k1 − μ1)τ + �(k4 − μ4)τ = �(k1 + k4)τ − (μ1 + μ4)τ + p

with p = 0 or p = 1. Moreover

(k0 − μ0)τ = k1 + k4 −H,

and since (μ1 + μ4)τ = −μ0,

(k1 + k4)τ − (μ1 + μ4)τ = Hτ−1 + k0 − k1 − k4.

So there is a simple expression for L in terms of H and p:

L = τ�Hτ−1 − τ2�−H − τ +
1

2
τ2 + pτ.

Now first assume H > 0. Use p ≥ 0, −�−H ≥ 0, and note that if 0 < c < 1
then �x ≥ 1 − c+ cx for all x > 0. The special case x = Hτ−1, c = 1

2τ leads
to L/H ≥ 1

2τ .
Next assume H < 0. Use p ≤ 1, �−H ≥ 1, and note that if 0 < c < 1

then �x ≤ cx + c for all x < 0. With x = Hτ−1, c = 1
2τ it follows that

L/H ≥ 1
2τ .

6.9

The proof of the second part of the theorem is similar. K and M can be
expressed as follows: K = k2 + k3 + k0τ

−1 − τμ0 and

M = k2 + k3 + k0τ
−1 + τ�(k2 −μ2)τ + τ�(k3 −μ3)τ + �(k0 −μ0)τ − τ − 1

2
.

Note that

�(k2 − μ2)τ + �(k3 − μ3)τ = �(k2 + k3)τ − (μ2 + μ3)τ + q

where q is either 0 or 1. Moreover (k0 − μ0)τ = K − k0 − k2 − k3, and since
μ2 + μ3 = μ0τ ,

(k2 + k3)τ − (μ2 + μ3)τ = Kτ − k0.

So M can be expressed in terms of K and q:

M = τ�Kτ + �K + τq − τ − 1

2
.

If K > 0 it can be used that �K ≥ 1, whence M ≥ τ�Kτ − τ + 1
2 . If

0 < c < 1 then �x ≥ 1 − c + cx for all x > 0. With x = Kτ , c = 1
2τ

−1 this
leads to M/K ≥ 1

2τ . If K < 0 one can use the inequalities q ≥ 0, �K ≤ 0
and �x ≤ cx + c (x < 0, 0 < c < 1) with x = Kτ , c = 1

2 τ
−1. This again

leads to M/K ≥ 1
2τ , and that finishes the proof of Theorem 2.
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Distances in Convex Polygons

Peter Fishburn

P. Fishburn (�)
Lucent Technologies Bell Laboratories, Murray Hill, NJ 07974, USA

Summary. One of Paul Erdős’s many continuing interests is distances between
points in finite sets. We focus here on conjectures and results on intervertex dis-
tances in convex polygons in the Euclidean plane. Two conjectures are highlighted.
Let t(x) be the number of different distances from vertex x to the other vertices of a
convex polygon C, let T (C) = Σt(x), and take Tn = min{T (C) : C has n vertices}.
The first conjecture is Tn =

(
n
2

)
. The second says that if T (C) =

(
n
2

)
for a convex

n-gon, then the n-gon is regular if n is odd, and is what we refer to as bi-regular if
n is even. The conjectures are confirmed for small n.

1. Introduction

Let n2 = n/2�, the integer part of n/2 for n ≥ 3. We begin with three
conjectures about every convex n-gon in R

2.

C1. Its vertices determine at least n2 different distances.
C2. Some vertex has at least n2 distances to the other vertices.
C3. Each of at least n2 vertices has at least n2 distances to the other vertices.

C1 was stated by Erdős in 1946 [3] and settled affirmatively by Altman in
1963 [1]. C2, another old conjecture of Erdős, is open. C3 was suggested by
recent work with Erdős. It might be false, but we have no evidence of this.

My purpose here is to explore two conjectures related to C1–C3. We
preface them with results for C1 and C2. Throughout, a convex polygon
is unique up to similarity transformations (translation, uniform rescaling,
rotation around a point, reflection around a line). Rn denotes the regular n-
gon, and Rn+1 − 1 is the n-gon whose vertices are n of the vertices of Rn+1.
With d(x, y) the distance between x and y, a length-k run in a convex n-gon
is a sequence x0, x1, . . . , xk of successively adjacent vertices for which

d(x0, x1) < d(x0, x2) < · · · < d(x0, xk).

Theorem 1. C1 is true. Suppose convex n-gon C has exactly n2 different
intervertex distances. If n is odd then C = Rn. If n is even and n ≥ 8 then
C ∈ {Rn, Rn+1 − 1}.

Altman [1] proves all but the final sentence, which is proved in [8]. At
n = 6, a third hexagon besides R6 and R7 − 1 has exactly three intervertex
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distances (A6, defined below); at n = 4, two other quadrilaterals besides R4

and R5 − 1 have exactly two intervertex distances.
The next theorem, from [6], gives the best result known toward C2. It

implies that some vertex has at least n/3 different distances to the others. It
is not known if there is λ > 1 such that every convex n-gon (n ≥ 4) has a
vertex with at least λn/3� distances to the other vertices.

Theorem 2. For every n ≥ 4, every convex n-gon has a run of length (n+
3)/3�, and some convex n-gons have no run of length (n+ 3)/3� + 1.

The proof uses the following observation in Moser [12].

Lemma 1 (Moser’s). Every convex n-gon has a circumscribed circle with
a sub-semicircular arc ending in vertices such that the region enclosed by
this arc and the chord between its endpoints contains at least (n − 1)/3�
other vertices. Beginning from either endpoint, these vertices produce a run
of length at least (n+ 2)/3�.

Figure 1 illustrates Moser’s lemma and some special polygons, including
the bi-regular polygons A4, A6 and A8.

Convex 2k-gon A2k is called bi-regular because it is formed from two
regular polygons. A4 is composed of two equilateral triangles with a common
side. To form A2k for k ≥ 3, begin with a fixed copy R0

k of Rk with maximum
intervertex distance 1. On each ray from the center of R0

k that bisects a side,
add a vertex that has maximum distance 1 to those of R0

k. The vertices of
A2k are the k of R0

k and the added k on the perpendicular bisectors of the
sides of R0

k.
Let t(x) be the number of distances from vertex x to the other vertices

of a convex n-gon C. The t-sequence of C, which we view cyclically,
is (t(x1), t(x2), . . . , t(xn)) with x1, x2, . . . , xn the vertices in clockwise or
counterclockwise succession. Let T (C) = t(x1) + t(x2) + · · · + t(xn). We
focus on

Tn = min{T (C) : C is a convex n-gon}.
For odd n, T (Rn) = n[(n− 1)/2] =

(
n
2

)
with t-sequence ((n− 1)/2, . . . , (n−

1)/2). For even n,

Rn has t-sequence (n/2, n/2, . . . , n/2);

An has t-sequence (n/2 − 1, n/2, n/2 − 1, n/2, . . . , n/2 − 1, n/2),

so

T (Rn) = n2/2 and T (An) =

(
n

2

)
< n2/2.

Since we have no intimations of smaller values for T (C), we consider two
conjectures. The first was introduced in [4].
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Fig. 1

C4. Tn =
(
n
2

)
for all n ≥ 3.

C5. For all n ≥ 3, if T (C) =
(
n
2

)
for a convex n-gon C, then C = Rn if n is

odd, and C = An if n is even.

There is no apparent implication between these conjectures. If C4 is true,
polygons other than Rn and An might realize Tn. If C5 holds, there might be
other polygons that have T (C) <

(
n
2

)
. Because C4 implies that the minimum

average t(x) is (n− 1)/2, it strengthens C2 but is apparently independent of
C3. And C5 does not obviously imply either C2 or C3.

Suppose the preceding conjectures are all true. When n is odd, Rn is the
unique realizer for Tn and, by Theorem 1, for the minimum n2 of C1. But it
clearly does not minimize the number of vertices with t(x) ≥ n2 in regard to
C3 for n ≥ 5. When n is even and n ≥ 8, the realizers Rn and Rn+1 − 1 for
n2 in C1 differ from the unique realizer An for Tn. Moreover, since An has
exactly n/2 vertices with t(x) ≥ n/2, it gives the tightest possible realization
of C3.
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Evidence for C4 and C5 is provided in the next two sections. Section 2
sketches proofs which show that C4 is true for n ≤ 8, and Sect. 3 outlines
proofs which verify C5 for n ≤ 7. Although some of the proofs are case-
intensive, it is hoped that their ideas will encourage refinements or extensions
that will settle the conjectures fully.

Section 4 offers further remarks on C2–C5, then discusses a set of distance
problems for convex polygons motivated by the conjecture of Erdős and Moser
which says that the maximum number of pairs of vertices {x, y} in a convex
n-gon for which d(x, y) = 1 is bounded above by cn for some constant c.

2. Evidence for C4

Theorem 3. C4 is true for n ≤ 8.

Since t(x) ≥ 1 for all x, T3 ≥ 3, and T3 = 3 is uniquely realized by R3.
When t(x) = 1 for some x, the other n − 1 vertices lie on a subsemicircular
arc with center at x. Equal spacing along this arc yields the following lemma.

Lemma 2. Suppose t(x) = 1. If y is adjacent to x for convex n-gon C then
t(y) ≥ n− 2. Moreover,

T (C) ≥ (3n2 − 8n+ 9)/4 if n is odd;

T (C) ≥ (3n2 − 8n+ 8)/4 if n is even.

It follows that the minimizing t-sequence for n = 4 is (1, 2, 1, 2). Thus
T4 = 6, which is uniquely realized by A4.

For n ≥ 5, Lemma 2 implies that T (C) >
(
n
2

)
when t(x) = 1 for some

vertex, so we assume henceforth that min t(x) ≥ 2. The minimizing t-sequence
at n = 5 is then (2, 2, 2, 2, 2), with T5 = 10 realized by R5. The next section
shows that R5 is the only pentagon for which T (C) = 10.

The next lemma will be used to verify T6 = 15.

Lemma 3. If x and y are adjacent vertices of convex n-gon C and t(x) =
t(y) = 2, then n ≤ 5.

Proof. Let the hypotheses of the lemma hold. Assume without loss of
generality that x = (0, 0), y = (1, 0), and the other vertices of C lie above
the abscissa. We have d(x, y) = 1. Let dx and dy be the second intervertex
distances for x and y respectively. Since the other vertices lie at intersection
points of the x-centered circles of radii 1 and dx and the y-centered circles
of radii 1 and dy, n ≤ 6. To obtain n = 6, all four intersections above the
abscissa must occur, so assume this. Then max{dx, dy} < 2.

It is easily seen that convexity is violated at n = 6 if either dx = dy or
min{dx, dy} < 1. The latter is illustrated in Fig. 2a. Assume henceforth that
1 < dx < dy < 2 as pictured in Fig. 2b. Point q has d(x, q) = d(y, q) = 1. The
other three intersection points are p, z and v.
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Fig. 2 t(x) = t(y) = 2

We prove that convexity is violated at n = 6 by showing that q lies below
line segment vp. With dx fixed, the best chance for convexity occurs when
dy is near 2 [z near (−1, 0)] since this moves v down the dx circle. We prove
that vp intersects the perpendicular bisector ⊥ of xy above q when dy = 2.

Fix dy = 2 and let d = dx. Let s be p’s horizontal component. Since
cos θ = (1 + d2 − 1)/2d = d/2 and cos θ = s/d, s = d2/2. Then p’s vertical
component is [d2 − (d2/2)2]1/2. Similar computations for v give

p = (d2/2, [d2 − (d2/2)2]1/2)

v = (−(3 − d2)/2, [d2 − {(3 − d2)/2}2]1/2).

Line segment αp+(1−α)v has first component α(d2/2)−(1−α)(3−d2)/2,
which equals 1/2 for intersection with ⊥ when α = (4 − d2)/3. Let h be the
height at which αp+ (1 − α)v intersects ⊥. Then

h = {d(4 − d2)3/2 + (d2 − 1)[4d2 − (3 − d2)2]1/2}/6.
Since q = (1/2,

√
3/2), our claim that vp intersects 1 above q is

(4 − d2)3/2d+ (d2 − 1)[4d2 − (3 − d2)2]1/2 > 3
√

3.

Let u = d2 − 1, 0 < u < 3. Then, after squaring both sides of the preceding
inequality, it reduces to

(3 − u)3/2
√

8 + 7u− u2 > (9 − 8u+ u2)
√
u.

This holds when u ≥ 2 since its right side is then negative. Suppose u < 2.
We square sides and cancel identical terms to get 216−27u > 81u, i.e., u < 2,
so the inequality holds for all 0 < u < 3. �

It follows from min t(x) ≥ 2 and Lemma 3 that the smallest possible
T (C) at n = 6 occurs uniquely for the t-sequence (2, 3, 2, 3, 2, 3). Since this
is realized by A6, T6 = 15.
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Fig. 3 t(x) = 3, t(y) = 2

Consider n = 7. Since R7 has t-sequence (3, 3, . . . , 3), T7 ≤ 21. If adjacent
vertices never have t-counts of 2 and 3 but t(x) = 2 for some x, then T ≥ 22, as
with (2, 4, 2, 4, 3, 3, 4). Hence T ≤ 20 is conceivable only if there are adjacent
vertices with t(x) = 3 and t(y) = 2. These t-counts are possible at n = 7, but
only under special circumstances.

Lemma 4. Suppose t(x) = 3 and t(y) = 2 for adjacent vertices of C with
d(x, y) = 1. Let d1 < d2 be the second and third distances for x; let dy be the
second distance for y. Then n ≤ 7, and n ≤ 6 if min{d1, dy} < 1.

Proof (outline). Lemma 3 requires n ≤ 5 if we omit the third x distance.
Since t(y) = 2, at most two more vertices are added by x’s third distance,
so n ≤ 7. If dy < 1, straightforward geometric arguments yield a convexity
violation if n > 6. If dy > 1 but d1 < 1, convexity also forces n ≤ 6. When
1 < d2 for this case, we use the argument in the latter part of the proof of
Lemma 3. �

Figure 3 illustrates 1 < min{d1, dy} for Lemma 4. The top diagram has
all possible circle intersections (n ≤ 8). As drawn, q must be removed for
convexity at n = 7, but p could be removed instead if dy were a bit smaller.
By increasing dy we lose intersection point p, but can still have a convex
heptagon with the seven remaining points.
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Modulo minor changes in d1, d2 and dy, Fig. 3 shows the only ways we
can have a convex heptagon when there are contiguous t-counts 2 and 3. To
have T ≤ 20, the five vertices besides x and y must have a t sum no greater
than 15, or an average of t ≤ 3 per vertex. It is easily checked that no other
vertex has t = 2, and some clearly have t ≥ 4, so in fact T (C) ≥ 22 for
these heptagons. We conclude that T7 = 21, which is attainable only with
t-sequence (3, 3, . . . , 3).

Finally, consider n = 8 where A8 with t-sequence (3, 4, 3, 4, 3, 4, 3, 4) gives
T8 ≤ 28. By Lemmas 2 and 3, the minimum sum of adjacent t-counts for a
convex octagon is 6, with (t(x), t(y)) either (4, 2) or (3, 3). In the first case,
addition of a d3 circle centered at x on Fig. 3 will give a T (C) for n = 8 at
least in the low 30’s. A similar analysis for (3, 3) yields a similar result. I omit
details. It follows that T8 = 28.

At the present time I know of no convex octagon for which 28 < T (C) <
32. We have T (R8) = 32, but R8 is not the only octagon with T = 32. An
example is O1 on Fig. 6 in [9]. Its t-sequence is (2, 5, 4, 5, 2, 5, 4, 5).

3. Evidence for C5

Theorem 4. C5 is true for n ≤ 7.

The preceding section verifies this for n ≤ 4 and shows for n ∈ {5, 6, 7}
that the unique t-sequences that have T (C) =

(
n
2

)
are

(2, 2, 2, 2, 2) for n = 5

(2, 3, 2, 3, 2, 3) for n = 6

(3, 3, 3, 3, 3, 3, 3) for n = 7.

These t-sequences are assumed throughout this section. We also let m denote
the number of different intervertex distances in a convex polygon.

Suppose n = 5. If m = 2, we have R5 by Theorem 1. If m = 3, Theorem 2
and Fig. 2 in [9] show that t(x) ≥ 3 for some vertex. Suppose m = 4. Denote
the four distances by d1 through d4 and label each vertex with its two
distances. Suppose without loss of generality that one is labeled d1d2 and
another d1d3. Then each of the other three vertices has (d1 or d2) and (d1 or
d3), and to obtain a fourth distance one of these has label d1d4, so each of
the remaining two also has (d1 or d4). Then, because t(x) = 2 for all vertices,
all five have label d1, and this yields the contradiction that one of the other
labels is used on only one vertex. A similar contradiction holds when m > 4,
so R5 is the only pentagon with t-sequence (2, 2, 2, 2, 2).

Let n = 6. Label the vertices 1 through 6 in succession clockwise and
let jk denote d(j, k). By Theorem 2 there is a run of length 3. Assume
for definiteness that 12 = a < 13 = b < 14 = c: see Fig. 4a, where
circled numbers give the t-sequence. By Moser’s construction [12] there is
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Fig. 4 n = 6, (t(1), . . . , t(6)) = (3, 2, 3, 2, 3, 2)

a minimum-diameter circumscribed circle that contains three vertices that
give a triangle with each interior angle no greater than π/2: see Figs. 4b, c. If
one of the resulting subsemicircular sectors contains two of the other vertices,
its end vertices both have t ≥ 3, a contradiction to the t-sequence pattern
(2,3,2,3,2,3). We therefore have the arrangement of Fig. 4c, where all three
vertices of the noted triangle have either t = 2 or t = 3. If they have t = 3, we
get a contradiction, for each of other three vertices has t = 2, which would
force us back to Fig. 4b or to the conclusion that some vertex lies outside
the circle. As a consequence, Moser’s construction implies the arrangement
shown in Fig. 4a.

Because the sectors outside the sides of Moser’s triangle are subsemicir-
cular, 21 < 26 and 23 < 24. Since t(2) = 2, we have 23 = 21 = a and
26 = 24. By analogy, 43 = 45, 42 = 46, 65 = 61 and 64 = 62. Since
26 = 24 = 46, Moser’s triangle is equilateral: see Fig. 4d. Let d = 26. We
have 43 = 45 < d = 42 = 46, c = 41 and t(4) = 2. A simple geometric
argument implies that c = d: if c = 43 with 1 as pictured, 3 would lie outside
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the circle. This brings us to Fig. 4e. For reasons similar to those just given for
c = d, we have 25 = 63 = c. Therefore triangles 124 and 326 are congruent,
so the line through 1 and 3 is parallel to the line through 6 and 4, and as a
consequence a′ = a∗. Similarly, a′ = a, so all sides of the hexagon have the
same length. These and the six c diagonals define A6.

My proof that R7 is the only convex heptagon C with t-sequence
(3, 3, . . . , 3) is unreasonably long. A shorter proof is needed. The main steps
in mine are as follows:

1. Show that C = R7 if all sides are equally long.
2. Prove that d(x, z) > max{d(x, y), d(y, z)} whenever x, y and z are

consecutive vertices.

Label the points 1 through 7 clockwise in such a way that Moser’s lemma for
n = 7 gives 1 through 4 in a subsemicircular sector of a circumscribed circle.
Set 12 = a < 13 = b < 14 = c.

3. Prove that 17 = a, 16 = b and 15 = c.
4. Apply the result just proved in a sequence of steps (the first is 43 <

42 < 41 ⇒ 45 = 43, 42 = 46, 41 = 47 = c) to conclude that C = R7.

The main labor involves eliminating other possibilities in step 3.

4. Discussion

Conjecture C4, which claims that Tn equals
(
n
2

)
, evolved from work on C2, and

in turn suggested conjectures C3 and C5. It has been featured here because
its appealing form and global character may suggest approaches that prove
it as well as its parent C2.

We noted earlier that, in view of An, C3 is formulated as tightly as
possible for even n. This is not true for odd n. At least four vertices of a
convex pentagon have t ≥ 2, and at least five vertices of a convex heptagon
have t ≥ 3. A small challenge is to give a convincingly tight alternative to C3
for odd n.

Another set of conjectures for distances in convex polygons is based
on multiplicity vectors. The multiplicity vector of n-gon C is r(C) =
(r1(C), r2(C), . . . , rm(C)) where m is the number of different intervertex
distances and ri(C) is the number of times the ith most-frequent distance
occurs, ties resolved arbitrarily. Thus r1(C) ≥ r2(C) ≥ · · · ≥ rm(C) ≥ 1 and∑
ri(C) =

(
n
2

)
.

Let ri(n) = max{ri(C) : C is a convex n-gon}. Erdős and Moser [7]
conjecture that r1(n) < cn for some constant c. The best general bounds
we are aware of are 2n− 7 ≤ rl(n) ≤ πn(2 log2 n − 1), due to Edelsbrunner
and Hajnal [2] and Füredi [11] respectively.
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It is known [5] that r2(n) = n for 5 ≤ n ≤ 8 and that r2(25) > 25. We
do not know the smallest n at which the second most-frequent distance can
exceed n, nor do we have a very good idea of the growth rate of r2(n)/n.

It is not known if r3(n) > n for some n.
We conjecture [4, 5] that Σ[ri(C)]2 is maximized uniquely over all convex

n-gons at C = Rn, except for n ∈ {4, 6, 8}. The nonregular maximizers for
the exceptional cases are identified in [9].

Many years ago Danzer (see [1]) disproved an Erdős conjecture [3] by
constructing a convex 9-gon in which each vertex has three others equidistant
from it. Fishburn and Reeds [10] constructs a convex 20-gon in which each
vertex has three others distance 1 from it. Erdős and Fishburn [4] conjecture
that there is no convex n-gon in which every vertex has distance 1 to four
other vertices. If true, then r1(n) ≤ 3n− 6.
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in Combinatorics

Larry Guth

L. Guth (�)
Department of Mathematics, MIT, Cambridge MA 02139, USA
e-mail: lguth@math.mit.edu

In the last 6 years, several combinatorics problems have been solved in an
unexpected way using high degree polynomials. The most well-known of these
problems is the distinct distance problem in the plane. In [Erdős46], Erdős
asked what is the smallest number of distinct distances determined by n
points in the plane. He noted that a square grid determines ∼ n(logn)−1/2

distinct distances, and he conjectured that this is sharp up to constant factors.
Recently, an estimate was proven that is sharp up to logarithmic factors.

Theorem 1 ([Guth–Katz11], building on [Elekes–Sharir10]). For any
n point set in the plane, the number of distinct distances is ≥ cn(logn)−1.

The main new thing in the proof is the use of high-degree polynomials.
This new technique first appeared in Dvir’s paper [Dvir09], which solved
the finite field Nikodym and Kakeya problems. Experts had considered
these problems very difficult, but the proof was essentially one page long.
The method has had several other applications. The joints problem was
resolved in [Guth–Katz10]. The argument was simplified and generalized in
[KSS10] and [Quilodrán10], leading to another one page proof. A higher-
dimensional generalization of the Szemerédi-Trotter theorem was proven in
[Solymosi–Tao12]. And several fundamental theorems in incidence geometry
were reproved in the paper [KMS12].

The new trick in these proofs can be summarized as follows. We want
to understand some finite set S in a vector space. We consider a minimal
degree (non-zero) polynomial that vanishes on the set S. Then we use
this polynomial to study the problem. This strategy is somewhat surprising
because the statements of the problems often involve only points and lines.
The joints problem and the finite field Nikodym problem can be solved in a
page each using high degree polynomials but seem very difficult to solve
without polynomials. Why polynomials play such a crucial role in these
problems is somewhat mysterious.

The point of this essay is to explain how these new methods work and to
reflect on them philosophically. The main theme is the connection between
combinatorics and algebra (polynomials).

Here is an outline of the essay.
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We begin by giving two detailed examples of the polynomial method: the
finite field Nikodym problem and the joints problem. This is the subject of
Sect. 1: Examples of the polynomial method.

Once we’ve seen a couple examples of this method, we’re going to work
on understanding “where it comes from”. In Sect. 2, we discuss where the
method comes from historically. We discuss related arguments from other
areas of mathematics. Polynomials are fundamental mathematical objects,
and there are many different perspectives about them. Section 2 is called
‘Perspectives on polynomials’. We will see perspectives about polynomials
coming from number theory, coding theory, and differential geometry. Each
of these perspectives helps to understand why polynomials are useful in these
combinatorial problems.

In Sect. 3, we describe the new results in incidence geometry proven with
polynomials, and we put them in perspective in the field. We recall the
Szemerédi-Trotter theorem—a central result in the field—and discuss why
the problem is difficult. We discuss one of the important methods in the
field—the cutting method of [CEGSW90]. The Szemerédi-Trotter theorem
involves lines in the plane. More generally, it is interesting to try to study
k-dimensional objects in n-dimensional space. There are new challenges in
higher dimensions. In particular, there is a new difficulty in dealing with
objects of codimension > 1, such as lines in R

3 or 2-planes in R
4. We take

some time to explain why this type of problem is hard to understand
using previous methods. The distinct distance problem appears at first sight
(and second and third. . . ) as a problem about circles in the plane, but Elekes
found a way to rephrase it as a problem about curves in three dimensions.
In particular, we will meet two theorems about lines in R

3 that are closely
connected to the distinct distance problem and that illustrate the difficulties
of incidence geometry in codimension > 1.

In Sect. 4, we explain how polynomials can be used to study incidence
geometry. Section 4 is called ‘Combinatorial structure and algebraic struc-
ture’. We will explain the main ideas in the proofs of the two theorems at the
end of Sect. 3. More broadly, we will try to explain the mechanisms why a
configuration with a lot of combinatorial structure is forced to have a special
polynomial structure.

This essay is for a volume on the mathematics of Paul Erdős. Erdős’s
ideas influenced the work we describe in many ways. He posed the distinct
distance problem in [Erdős46]. This paper was one of the first papers in
incidence geometry, perhaps the first, and the problem has shaped many
ideas in the field. I am a big admirer of hard problems that are simple to
state. The most exciting—in my opinion—is a simply stated problem that is
hard for a new reason. I think Erdős’s distance problems are such problems.
They helped create and guide a whole field of math. Mathematicians working
in incidence geometry have made a great effort to clarify the nature of the
difficulty of these problems, and then to find methods to deal with these
difficulties. We describe here one chapter of this story.



Unexpected Applications of Polynomials in Combinatorics 495

1. Examples of the Polynomial Method

Because some of the arguments are so short, I think the best introduction to
the polynomial method is to look at some proofs. We give detailed sketches
of two proofs, and then we will step back and talk about them.

1.1 The Main Ingredients

There are two basic facts about polynomials which are the main ingredients
in the arguments. If F is a field, let PolyD(Fn) be the space of polynomials
over F with degree ≤ D and n variables. PolyD(Fn) is a vector space over F.

Proposition 1.1. The vector space PolyD(Fn) has dimension
(
D+n
n

) ≥
Dn/n!.

Proof. A basis is given by the monomials xD1
1 , . . . , xDn

n with D1 + · · · +
Dn ≤ D. By the ‘stars and stripes’ argument, the number of monomials
is
(
D+n
n

)
.

As a corollary, we can estimate the degree of a polynomial that vanishes
at prescribed points.

Corollary 1.2 (Parameter counting). If S ⊂ F
n is a finite set, then there

is a non-zero polynomial that vanishes on S with degree ≤ n|S|1/n.
In rough terms, when we choose a polynomial in PolyD(Fn), we have(

D+n
n

)
parameters at our disposal. As long as

(
D+n
n

)
> S, we have enough

parameters to arrange a non-zero polynomial that vanishes at every point of
S. Linear algebra makes this heuristic rigorous.

Proof. We let Fcn(S,F) be the vector space of functions from S to F.
Restricting polynomials to the set S gives a (linear) map PolyD(Fn) →
Fcn(S,F). There is a non-zero polynomial of degree ≤ D vanishing on S if
and only if this linear map has a non-trivial kernel. As long as the dimension
of the domain is bigger than the dimension of the range, the linear map does
have a non-trivial kernel. The dimension of the domain is

(
D+n
n

)
, and the

dimension of the range is |S|. By a brief computation, we can always choose
D ≤ n|S|1/n so that

(
D+n
n

)
> |S|.

The second main fact is that a non-zero polynomial in one variable
cannot have more zeroes than its degree. A little more generally, we have
the following.

Lemma 1.3 (Vanishing lemma). If L is a line in a vector space and P is
a polynomial of degree ≤ D, and if P vanishes at D + 1 points of L, then P
vanishes on L.

With little more than these tools, we will solve two hard problems about
how lines intersect in vector spaces.
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1.2 The Nikodym Problem in Finite Fields

Let Fq be a finite field with q elements. A set N ⊂ F
n
q is called a Nikodym set

if for each point x ∈ F
n
q , there is a line L so that L \ {x} ⊂ N . The question

is, “how big does a Nikodym set need to be?” The paper [Dvir09] proves that
a Nikodym set needs to have at least cnq

n elements—it needs to contain a
definite fraction of the points in F

n
q .

The history. The problem above is a finite-field adaptation for a problem
in Euclidean geometry. A set N ⊂ [0, 1]n is called a Nikodym set if for each
x ∈ [0, 1]n, there is a line L so that N contains L ∩ [0, 1]n \ {x}. The main
question is “how big does a Nikodym set need to be?” Nikodym proved in the
20s that there are Nikodym sets of measure 0. The Nikodym conjecture says
that the (Hausdorff or Minkowski) dimension of a Nikodym set is always n.
(This roughly means that the δ neighborhood of a Nikodym set must contain
nearly δ−n δ-boxes.)

The Nikodym conjecture is a major open question in harmonic analysis.
From our brief description, it’s not at all clear why the problem is con-
sidered important. The Nikodym problem turns out to have connections to
fundamental problems in Fourier analysis and PDE, including the restriction
problem. The restriction problem was raised by Stein in the 1960s, and it
has played a major role in Fourier analysis ever since then. The Nikodym
conjecture is a close cousin of the more well-known Kakeya conjecture.
The connection between these geometrical questions and problems in Fourier
analysis and PDE is described in [Laba08] and [Tao01].

Mathematicians have put a lot of effort into the Nikodym and Kakeya
problems but remain far from a complete solution. Because the problems
seem difficult, analysts have begun working on a variety of cousins and
model problems that may shed some light back on the original problems.
In [Wolff99], Wolff proposed looking at the finite field analogues of these
questions. Proving that the Minkowski dimension of a Nikodym set in [0, 1]n is
at least α is analogous to proving that a Nikodym set in F

n
q has � qα elements.

In particular, Dvir’s theorem is analogous to the Nikodym conjecture.

The proof of the finite field Nikodym conjecture. Let us assume that
N ⊂ F

n
q is a Nikodym set with < (10n)−nqn elements. Let P be a non-zero

polynomial that vanishes on N with minimal degree.

1. By parameter counting, the degree of P is ≤ n|N |1/n < q − 1.
2. By the vanishing lemma, P (x) = 0 at every point x ∈ F

n
q . To see this,

consider the line L given by the definition of the Nikodym set. We know
that x ∈ L and that |L ∩N | ≥ q − 1. So P vanishes on q − 1 points of L,
and since deg(P ) < q − 1, P must vanish on all of L.

3. Once we know that P vanishes at every point (and that deg(P ) < q − 1),
it’s not hard to show that all the coefficients of P are zero. In other words,
P is the zero polynomial and we have a contradiction.
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The Kakeya problem. The Nikodym problem is a close cousin of the more
well-known Kakeya problem. A Kakeya set in R

n is a set containing a unit
line segment in each direction. The Kakeya conjecture says that any Kakeya
set in R

n must have dimension n. A Kakeya set in F
n
q is a set containing a

line “in every direction”. More precisely, a Kakeya set contains a translate
of any line in F

n
q . By a small modification of the argument above, [Dvir09]

proves that any Kakeya set in F
n
q contains ≥ c(n)qn points.

The influence. This proof shocked the harmonic analysis community.
Analysts exchange stories about where they were when they heard about it.
In [Erdős], Erdős told a story about how hard it is to judge the difficulty of
a problem. This is the most dramatic example that I have personally
encountered. The Nikodym and Kakeya and restriction problems are closely
connected, notoriously difficult problems of analysis. I believe that the finite
field version was considered roughly as difficult as the original version until
it was proven in one page. (To be fair, I should also say that the finite field
version was only open for about 10 years, and it was much less studied than
the original problem.)

After the shock, people tried to adapt the new method to the original
Nikodym and Kakeya problems in Euclidean space. So far, not much has
been proven this way. It remains to be seen whether these methods will lead
to progress in harmonic analysis. But the polynomial method has had a lot
of influence in combinatorics. In this section we give one more example: the
joints problem.

1.3 The Joints Problem

Suppose that L is a set of L lines in R
n. (The case n = 3 is a good case

to keep in mind.) A joint is a point that lies in n lines of L with linearly
independent tangent directions. In other words, if the lines of L thru x do
not all lie in a hyperplane, then x is a joint. The problem is, how many
joints can we make with L lines? The joints theorem says that the number of
joints is � L

n
n−1 . This number is sharp up to constant factors. For example,

consider S hyperplanes in general position. Any n− 1 hyperplanes intersect
in a line, giving L =

(
S

n−1

)
lines. Any n hyperplanes intersect in a point, and

each of these points is a joint for our set of lines. So the number of joints is(
S
n

) ∼ L
n

n−1 .

The history. The joints problem was posed by Chazelle, Edelsbrunner,
Guibas, Pollack, Seidel, Sharir, and Snoeyink in [CEGPSSS92]. They thought
of the problem as a model problem for some difficult (still open) problems con-
nected with computer vision. The original problem was in three dimensions.
The best known bound before the polynomial method was that the number
of joints is � L1.62, [Feldman–SharirS05]. The paper [Guth–Katz10] proved
the joints conjecture in three dimensions using the polynomial method.
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The papers [KSS10] and [Quilodrán10] simplified the proof and generalized
the result to any dimension.

The proof. We will prove the following main lemma: In any arrangement of
lines in R

n with J joints, one of the lines contains � J1/n joints. The theorem
follows from this main lemma by elementary counting. Given L lines and
J joints, we remove the lines one at a time, using the main lemma to find an
unpopular line to take out. Each time we remove a line, at most J1/n joints
disappear. Therefore, J � LJ1/n, and rearranging gives the theorem.

To prove the main lemma, we let P be a non-zero polynomial of minimal
degree that vanishes on all the joints.

1. By parameter counting, the degree of P is � J1/n.
2. If a line l contains > deg(P ) joints, then P vanishes on the whole line.

So it suffices to find a line l ∈ L so that P is not identically zero on l.
3. If P vanishes on all of the lines of L going thru a joint x, then ∇P vanishes

at x. This is because ∇P (x) vanishes in the direction tangent to each line,
and the span of the tangent directions is all of R

n. So if P vanishes on
all the lines in L, then each partial derivative ∂jP vanishes at each joint.
We know that P is not constant, so one of these partial derivatives is non-
zero, and it has degree < deg(P ). This contradicts the definition of P as
having minimal degree.

The influence. Starting from these two proofs, this little trick with high
degree polynomials has become a major tool in incidence geometry. It has
helped resolve several old problems and led to new proofs and perspectives
about fundamental theorems. We will discuss the resulting ideas in Sects. 3–4.

1.4 Why Polynomials?

The proofs of the finite field Nikodym conjecture and the joints conjecture
feel like the “right” proofs to me because they are so short and because
the problems seemed very difficult before. But the proofs still seem a little
mysterious to me. These are questions about points and lines, and yet it
seems to be crucially important to use high degree polynomials to understand
them. Is it really much harder to prove these results without using high degree
polynomials? If so, why are polynomials so connected with these problems?
I have been thinking about these questions and discussing them with people
for several years. In this essay, I will share the observations that I know. I still
wish I understood the questions better.

If we play around with questions about how lines intersect in R
3, then we

will come to an important example that involves a degree 2 algebraic surface.
Let’s try a few questions, beginning very naively. If L is a set of lines, an
intersection point is a point that lies in at least two lines.
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Question 1. Given L lines in R
3, how many intersection points can

there be?

There can be at most
(
L
2

)
intersection points, since any two lines intersect

at most once. This upper bound is sharp. If all the lines lie in a plane, and if
they lie in general position within the plane, then there will be

(
L
2

)
distinct

intersection points.
Perhaps a set of lines in space can have many intersection points only by

clustering in a plane? We can probe this issue with the following question.

Question 2. Suppose that L is a set of L lines in R
3 with ≤ 10 lines in any

plane. How many intersection points can there be?

Remarkably, there can still be ∼ L2 intersection points. Here we come
to a crucial example involving a degree 2 algebraic surface. The surface is
defined by the equation z = xy. This surface contains a lot of lines. For any
number b ∈ R, let Hb be the “horizontal” line (x, b, bx), x ∈ R. For any
number a ∈ R, let Va be the vertical line (a, y, ay), y ∈ R. The horizontal
lines and the vertical lines both lie in the surface z = xy. The horizontal
line Hb and the vertical line Va intersect at (a, b, ab). Let L consist of L/2
horizontal lines and L/2 vertical lines. These lines intersect at L2/4 distinct
points, so L has � L2 intersection points. The intersection of a plane with
the surface z = xy is a degree 2 algebraic curve, and so it contains at most
two lines. Therefore, any plane contains ≤ 2 lines of L.

(This degree 2 surface is an example of a regulus. Reguli play an important
role in the approach to the joints problem in [CEGPSSS92].)

Although Question 2 is about points and lines, the key examples do not
just involve linear objects (lines, planes, etc.)—they also involve algebraic
surfaces. This example gives one motivation why polynomials play a role in
incidence problems about lines and points.

Let’s follow our investigation a bit further. Lines may have many
intersection points by clustering in a plane or in a degree 2 surface. Let’s
forbid both types of clustering.

Many Intersections Problem. Suppose that L is a set of L lines in R
3

with ≤ 10 lines in any plane or degree 2 surface. How many intersection
points can there be?

This time, there will be far less than L2 intersection points. The methods
of [CEGPSSS92] show that the number of intersection points is � L5/3. Using
the polynomial method, the paper [Guth–Katz11] shows that the number
of intersection points is � L3/2. This estimate plays a role in the distinct
distance estimate, and we will discuss it more later.

The many intersection problem is a significant open problem. The best
current upper bound on the number of intersection points is ∼ L3/2.
The examples I know all have � L intersection points.
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We can get a little perspective on this problem by naive parameter
counting. The set of lines in R

3 is a 4-dimensional manifold. If we choose
L lines, we are choosing 4L parameters. In fact, there is no real loss in
generality in assuming that each line is given by a graph x = az+b, y = cz+d.
So we can specify L lines by 4L real parameters a1, . . . , aL, b1, . . . , bL, etc.
The condition that line i intersects line j can be described by one algebraic
equation in the parameters ai, bi, ci, di, aj , bj, cj , dj . If we want our lines to
have I intersection points, then we need to solve I equations in 4L variables.
This naive parameter counting suggests that getting significantly more than
4L intersection points requires some kind of structure or coincidence. A bit
more rigorously, I believe that if we replace the set of lines by a “generic”
4-parameter set of curves in R

3, then no arrangement will have more than
4L intersection points.

Here is the philosophical question behind the many intersections problem.
Morally, any arrangement with more than 4L intersection points exists
only because of some special structure in the set of lines. Now what
special structures could the set of lines have? There is some structure from
linear algebra. There is also some structure from polynomials and algebraic
geometry. Are there any other ‘special structures’ of the set of lines in R

3?
In summary, some important examples in incidence geometry come from

algebraic surfaces. It is interesting to ask whether all the examples come from
algebraic surfaces. The polynomial method gives an approach to prove this
type of statement in some cases. The main goal of Sect. 4 is to explain how
this works.

2. Perspectives on Polynomials

In this section, we explore how this polynomial trick is connected to other
parts of math. We will consider three other areas. The areas are diophantine
problems in number theory, error-correcting codes in computer science, and
surface area estimates in differential geometry. These areas give different
perspectives on what makes polynomials special and useful functions.

2.1 There Are Lots of Polynomials: Thue’s Work
on Diophantine Approximation

Let’s begin with a warmup problem. What is the smallest possible degree of
a non-zero polynomial P ∈ R[x, y] that vanishes at the million points (j, 2j)
where j is an integer in the range [1, 106]?

The first approach one might try is to write down polynomials that

vanish at the prescribed points. For example, we might try
∏106

j=1(x − j) or
∏106

j=1(y − 2j). Either of these options has degree 106. We might try to craft a
more clever formula that improves the degree. I don’t know how to write down
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any explicit formula with degree ≤ 105. But the optimal degree is less than
1,500. This follows by parameter counting, as in Sect. 1.1. The dimension of
Poly1,498(R2) is

(
1,500

2

)
> 106, and so there is a non-zero polynomial of degree

≤ 1,498 vanishing at all million points. This type of situation appeared in
Thue’s work on diophantine equations and approximation. Here is Thue’s
central result.

Theorem 2.1 (Thue 1909). Suppose that β is an irrational algebraic
number of degree d > 2. If p/q is any rational number, then

|β − p/q| ≥ c(β)q−
d
2−1.01.

As an immediate corollary, Thue proved that a huge class of diophantine
equations in two variables have only finitely many integer solutions. For ex-
ample, the following equations have only finitely many integer solutions.

1. x3 − 2y3 = 6.
2. x4 + 11xy3 + 17y4 = 29.
3. x5 + 2x2y3 + 9y5 = 9.

Thue’s corollary can be stated as follows:

Corollary 2.2. If P (x, y) ∈ Z[x, y] is a homogeneous polynomial of degree
d ≥ 3 which is irreducible, and if n is an integer, then the equation P (x, y) =
n has only finitely many integer solutions (x, y) ∈ Z

2.

Thue’s result was dramatically more general than any previous theorem
about diophantine equations. To get a sense of how Thue’s diophantine
approximation result implies the corollary, consider equation 1 above.
Dividing through by y3 we get (x/y)3 − 2 = 6|y|−3. This formula shows that
x/y is a very good rational approximation of 21/3. With a little manipulation,
it follows that |21/3 − (x/y)| ≤ 100|y|−3. In contrast, Thue’s theorem on
diophantine approximation says that |21/3 − (x/y)| ≥ c|y|−2.51. Comparing
these inequalities, we see that |y| is uniformly bounded, and then it follows
that there are only finitely many solutions.

We will give a very partial sketch of Thue’s proof, and we will see how it
connects with our warmup question about polynomials.

Before Thue, the main theorem about diophantine approximation was
Liouville’s theorem.

Theorem 2.3 (Liouville 1840s). If β is an algebraic number of degree d > 1,
and p/q is any rational number, then

|β − p/q| ≥ c(β)q−d.

The idea of the proof is simple and we describe it here. By assumption,
β is a root of a degree d polynomial Q(x) ∈ Z[x]. Since d is the minimal
degree of such a polynomial, it’s not hard to check that Q(p/q) is non-zero.
But Q(p/q) is a rational number with denominator qd, and so |Q(p/q)| ≥ q−d.
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But Q(β) = 0, and since Q is minimal, it’s not hard to check that Q′(β) �= 0.
So |Q(p/q)| has the same order of magnitude as |β − p/q|, and we see that
|β − p/q| ≥ c(β)q−d. In rough terms, the polynomial Q “protects” β from
rational approximations because Q(β) = 0 but Q(p/q) cannot be too small.

Liouville’s theorem is not strong enough to prove finiteness for any
diophantine equation. When d = 2, Liouville’s theorem is optimal, but for
any d > 2, Thue was able to improve the exponent −d. Any improvement of
the exponent in Liouville’s theorem implies the finiteness corollary. In other
words, once we know that |β − p/q| ≥ c(β)q−d+ε for any ε > 0, then Thue’s
finiteness result follows.

Thue had the idea to use other polynomials besides just Q in order
to protect β. Looking for other polynomials of one variable doesn’t turn
up anything, but Thue had the remarkable idea to use polynomials of
two variables. If P (x, y) ∈ Z[x, y] is a polynomial of two variables that
vanishes (maybe to high order) at (β, β), then P can “protect” β from
pairs of good rational approximations (p1/q1, p2/q2). To prove that |21/3 −
(x/y)| ≥ c|y|−2.51, Thue requires an infinite sequence of auxiliary polynomials
Pj(x, y) ∈ Z[x, y] which vanish at (21/3, 21/3) to different orders. Each of these
polynomials protects (21/3, 21/3) from rational approximations (p1/q1, p2/q2)
in certain ranges, and working all together they provide enough protection
to prove Thue’s theorem.

Thue carefully by hand crafted this infinite sequence of polynomials
Pj(x, y). He was able to construct the desired polynomials by hand when
β is a dth root of a rational number. He became stuck trying to generalize
his method to other algebraic numbers, because he didn’t know how to
construct the auxiliary polynomials. The problem of looking for these
auxiliary polynomials is similar to our warmup problem. At a certain point,
Thue gave up trying to craft the polynomials he needed. Instead, he proved
that they must exist by counting parameters, essentially as we did above.

At the 1974 ICM, Schmidt gave a lecture [Schmidt74] on Thue’s work
and its influence in number theory. He wrote,

The idea of asserting the existence of certain polynomials rather than
explicitly constructing them is the essential new idea in Thue’s work.
As Siegel [1970] points out, a study of Thue’s papers reveals that Thue
first tried hard to construct the polynomials explicitly (and he actually
could do so in case βd is rational).

This idea reminds me of the probabilistic method. Thue proved that his
auxiliary polynomials exist using the pigeon-hole principle. No one knows
how to give an explicit formula for these polynomials, but there are so many
polynomials that some of them are guaranteed to work.

Thue’s wonderful argument has many similarities to the proofs in Sect. 1.
All the arguments have the following general outline. First, by counting
parameters, we find a polynomial that vanishes at certain places. Second, we
use basic facts about polynomials to understand what the polynomial does



Unexpected Applications of Polynomials in Combinatorics 503

at other places. Polynomials work in these arguments because they have a
combination of rigidity and flexibility. Polynomials obey rigid properties like
the vanishing lemma, which make them useful in the second step. On the
other hand, there are lots of polynomials, which make them rather flexible in
the first step. It’s somewhat remarkable that such a large space of functions
obeys such rigid properties.

2.2 The Resilience of Polynomials: Polynomials
in Coding Theory

The two main ingredients in the proofs of finite field Nikodym and joints
are the parameter counting lemma and the vanishing lemma. This team of
ingredients appeared together earlier in the theory of error-correcting codes.
Dvir has a background in coding theory, and this circle of ideas may have
influenced his proof of the finite field Nikodym conjecture.

Let Fq be a finite field with q elements, and let PolyD(Fq) be the vector
space of all polynomials over Fq of degree ≤ D. Because of the vanishing
lemma, any two polynomials in PolyD(Fq) can only agree at ≤ D points.
As long as D is much less than q, any two polynomials in PolyD(Fq) look
very different from each other. This makes them interesting tools for building
error correcting codes.

Here is a typical situation in coding theory. Q is a polynomial over Fq

of degree ≤ q/1,000. We want to transmit or save Q, but the data gets
corrupted, and instead we end up with a function F : Fq → Fq. Suppose we
know that F (x) = Q(x) for at least (51/100)q values of x. Is it possible to
recover Q from F?

It follows immediately from the vanishing lemma that Q can be recovered
from F in theory. Suppose that Q1 and Q2 are polynomials of degree ≤
q/1,000 that agree with F for ≥ (51/100)q values of x. Then Q1−Q2 vanishes
for at least (2/100)q values of x, and so Q1 − Q2 is zero by the vanishing
lemma. Hence there is only one polynomial Q ∈ Polyq/1,000(Fq) consistent
with the data F .

But there’s a deeper question that remains: can we recover Q from F in
a practical way? The argument above tells us that we can find Q by testing
all the polynomials of degree ≤ q/1,000—but the length of this procedure is
more than exponential in q. In the mid-1980s, Berlekamp and Welch gave a
polynomial-time algorithm to recover Q from F [BW86].

We consider the graph of F : the set {(x, y) ∈ F
2
q|F (x) = y}. This graph

looks like a cloud of points. Inside the cloud of points a certain algebraic
structure is hidden: most of the points lie on the graph of Q. How can we
search out this algebraic structure hidden in the cloud of points?

The main idea of the algorithm is to find the lowest degree non-zero
polynomial P (x, y) that vanishes on the graph of F . On the one-hand, we
can find an optimal P with an efficient algorithm. On the other hand, this
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optimal P uncovers the hidden algebraic structure in the cloud of points:
looking at the zero set of P , the graph of Q jumps off the page.

We begin by explaining how to find this optimal P . This discussion is
closely connected to the parameter counting argument in Sect. 1. Suppose
we want to check whether there is a non-zero polynomial of degree ≤ D
that vanishes on a set S ⊂ F

2
q. Let PolyD(F2

q) denote the space of all the
polynomials with degree ≤ D. Let Fcn(S,Fq) be the vector space of all the
functions from the set S to Fq. This is a vector space of dimension |S|. Let
R : PolyD(F2

q) → Fcn(S,Fq) be the restriction map which restricts each
polynomial to the set S. The map R is a linear map between vector spaces,
and it’s not hard to write down an explicit matrix for it. The basic operations
of linear algebra can be done in polynomial time. We can check whether R has
a non-trivial kernel, and if it does we can find a non-zero element in the
kernel. Doing this for each degree D, we find in polynomial time a non-zero
polynomial P that vanishes on the graph of F and has minimal degree.

In the discussion so far, we treated the variables x and y on equal terms.
Berlekamp and Welch actually treat them differently. This makes sense if we
look back at the problem we’re trying to attack. We’re hoping to find the
graph of Q, which is defined by y − Q(x) = 0. This defining equation has
degree 1 in y and high degree in x. In order to adapt to the problem, it turns
out to be a good idea to use polynomials P (x, y) of degree 1 in y and high
degree in x. From now on we just consider polynomials P (x, y) = P0(x) +
yP1(x). By the same linear algebra argument, we can find such a polynomial
P which vanishes on the graph of F , and where max(deg(P0), deg(P1)) is as
small as possible.

We can also give an estimate for this degree. If we consider P0, P1 of
degree ≤ D, then we get a vector space of polynomials of dimension 2D+ 2.
We want to find a polynomial that vanishes on the graph of F , which has
q points. As long as 2D+ 2 > q, such a polynomial is guaranteed to exist by
parameter counting. Therefore, we know that the degree of P0, P1 is ≤ q/2.

Let’s summarize. We found a polynomial P (x, y) = P0(x)+yP1(y) which
vanishes on the graph of F , where the degrees of P0 and P1 are as small
as possible and definitely ≤ q/2. This polynomial will help us to unlock the
information hidden in F .

The key point is that P vanishes on the graph of Q! This follows in a few
simple steps.

1. We know P = 0 on the graph of F . In other words, P (x, F (x)) = 0 for all
x.

2. But we know that F usually agrees with Q. So P (x,Q(x)) = 0 for at least
(51/100)q values of x.

3. But P (x,Q(x)) = P0(x) + Q(x)P1(x) is a polynomial in x of degree ≤
q/2 + q/1,000 < (51/100)q.

4. By the vanishing lemma, P (x,Q(x)) is the zero polynomial!
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We have proven that P (x,Q(x)) = P0(x) +Q(x)P1(x) is identically zero.
Hence Q(x)P1(x) = −P0(x). We know P0 and P1, and now we can recover Q
by doing polynomial division. This is the Berlekamp–Welch algorithm.

There is a more visual way of explaining how to recover Q, which makes
the graph of Q jump off the page. We let the set of errors be E := {x ∈
Fq|F (x) �= Q(x)}. Adding a few more lines to the argument above, one can
prove that the zero set of our polynomial P is the union of the graph of Q
and a vertical line x = e at each error e ∈ E. Looking at the zero set of P ,
the set of errors is immediately visible, together with a large chunk of the
graph of Q. From this large chunk of the graph of Q, we can quickly recover
Q itself.

Computer scientists working on error-correcting codes found a new set
of questions about polynomials, very different from questions that pure
mathematicians have considered. Working on these questions gave new
perspectives about polynomials. Writing about coding theory in [Sudan95],
Sudan referred to the resilience of polynomials: we can significantly distort
the polynomial Q, but the information in Q survives. There is a lot more
work on polynomials and coding theory. Some of it is described in [Sudan95]
and in [Trevisan04]. The parameter counting lemma and the vanishing lemma
continue to be important players.

2.3 Efficiency of Polynomials: Polynomials in Geometry

The last step of the proof of the distinct distance problem was influenced
by ideas about polynomials in differential geometry. The overarching idea is
that polynomials are geometrically efficient.

We begin with an older result about the efficiency of complex polynomials.
The zero sets of complex polynomials are minimal surfaces. Let’s formulate
a precise result. We identify C

n with R
2n and equip it with the standard

Euclidean metric. Let P be a complex polynomial Cn → C. Let Z(P ) denote
the zero set of P . If the zero set of P does not contain any critical points of
P , then Z(P ) is a submanifold of real dimension 2n− 2.

Theorem 2.4 ([Federer69]). Suppose that P : C
n → C is a complex

polynomial, and that F : R
2n → R

2 is a smooth function, so that P = F
outside of the unit ball B2n ⊂ R

2n = C
n. Also, suppose that Z(P ) and Z(F )

don’t contain any critical points, which implies that they are both manifolds.
Then

Vol2n−2 Z(P ) ∩B2n ≤ Vol2n−2 Z(F ) ∩B2n.

This theorem says that complex algebraic surfaces do not waste any
volume.

In this section, we will be interested in analogous results for real polyno-
mials. Initially, it seems that there can be no such result. The Weierstrauss
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approximation theorem says that any continuous function on a compact
subset of R

n can be C0 approximated by real polynomials. This basically
means that real polynomials have no special properties at all.

But if we slightly shift the question, there is an interesting theorem
discovered only in the last 10 years. Instead of focusing on one polynomial
at a time, we focus on the space PolyD(Rn), the space of all polynomials of
degree ≤ D. Individual polynomials may be wasteful with volume, but we
will see that the space PolyD(Rn) is efficient with volume. This follows from
two results, one old and one new.

Proposition 2.5. If P is a non-zero polynomial in PolyD(Rn), then

Voln−1 Z(P ) ∩Bn ≤ C(n)D.

This is a classical result. Because P is a degree D polynomial, a line
can intersect Z(P ) at most D times unless the whole line lies in Z(P ).
The Crofton formula describes how the volume of a hypersurface can be
reconstructed in terms of the number of intersections between the surface
and all of the lines in space. When we plug our estimate on the intersection
numbers into the Crofton formula, it follows that the volume of Z(P ) ∩ Bn

is ≤ C(n)D.
Now comes the new result. Gromov compared PolyD(Rn) with other

vector spaces of the same dimension and saw that PolyD(Rn) has approxi-
mately the smallest zero sets.

Theorem 2.6 ([Gromov03], see also [Guth09]). If W is a vector space of
continuous functions Bn → R, and if dimW = dim PolyD(Rn), then there
exists F ∈ W so that

Voln−1 Z(F ) ∩Bn ≥ c(n)D.

The proof uses a result from topology, but in some ways it is similar to
the proof of finite field Nikodym or joints. A leading role is played by the fact
that dim PolyD(Rn) ∼ Dn.

The contribution from topology is the Stone–Tukey ham sandwich
theorem. The original ham sandwich theorem says that given three finite
volume sets in R

3, there is a plane that bisects all three. This theorem was
proven by Banach in the late 1930s. Stone and Tukey generalized the result.
For one thing, they generalized it to higher dimensions, but they did much
more than that. They realized that the argument does not apply only to
perfectly flat planes but also to many other families of surfaces. Stone and
Tukey figured out the right way to formulate the theorem, making it much
more general. The formulation is based on functions instead of hypersurfaces.

We say that a continuous function F bisects a finite volume set U if the
subset of U where F > 0 has half the volume of U and the subset where
F < 0 has half the volume of U .
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Theorem 2.7 (Stone–Tukey 1942). Suppose W is a vector space of continu-
ous functions on a domain Ω ⊂ R

n, so that for every non-zero F ∈ W , Z(F )
has measure 0. Let U1, . . . , UN ⊂ Ω be finite volume sets, where N < dimW .
Then there is a non-zero F ∈W which bisects each Ui.

We can now sketch the proof of Gromov’s theorem. If there is a non-zero
function F ∈ W so that Z(F ) has positive (n-dimensional!) measure, then it
has infinite (n− 1)-dimensional volume, and we are done. So we can assume
that each Z(F ) has measure 0, and we can apply the Stone–Tukey ham
sandwich theorem. Let Ui be ∼ Dn disjoint balls in Bn each of radius ∼ D−1.
We choose a non-zero function F ∈ W that bisects each ball. A classical
result in geometry says that a surface bisecting a ball needs to have a certain
minimal volume. In fact, the smallest bisecting surface is a disk through the
center of the ball.

Bisection lemma. If a hypersurface bisects Bn(r), then it has volume at
least c(n)rn−1.

Therefore, Z(F )∩Ui ≥ c(n)D−(n−1). And Z(F )∩Bn � DnD−(n−1) = D.
This finishes the sketch of Gromov’s estimate.

These ideas from geometry/topology give a new twist to the polynomial
method. Using linear algebra, we can find a non-zero polynomial P ∈
PolyD(Rn) that vanishes on a set of points p1, . . . , pN as long as N <
dim PolyD(Rn). This fact plays a key role in the solutions of the finite
field Nikodym problem and the joints problem. Now using the Stone–Tukey
theorem from topology, we can find a non-zero polynomial P ∈ PolyD(Rn)
that bisects some sets U1, . . . , UN as long as N < dim PolyD(Rn). The proof
of the distinct distance estimate uses this new twist. We will explain how to
use it in Sect. 4.

3. Some Methods and Problems in Incidence
Geometry

In this section, we describe the impact of the polynomial method in incidence
geometry. We begin by recalling some important results and methods in the
subject. Then we will come to the new applications of the polynomial method.
We will try to motivate these results, and we will discuss why they are hard
to prove with previous methods.

This section motivates the results, and in the next section, we will discuss
the proofs of these results.

3.1 Incidence Theory in the Plane

Suppose that L is a set of lines in the plane. Let Sr(L) be the set of r-rich
points: the set of points that lie in ≥ r lines of L. One of the basic questions
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in the field is, “for a given number of lines and a given number of r, how
big can Sr(L) be?” This question was answered in a fundamental theorem of
Szemerédi and Trotter.

Theorem 3.1 ([ST83]). If L is a set of L lines in the plane, then |Sr(L)| �
L2r−3 + Lr−1.

This theorem is a central result of incidence geometry.
The first estimates about this problem exploit the following basic fact:

Basic Fact. Two lines intersect in at most one point.

Using just this fact and doing some counting arguments, we get some
basic estimates. We call these estimates ‘basic’ because they follow just from
the basic fact above.

Basic estimate 1. |Sr(L)| � L2r−2.

At each point of Sr(L), there are
(
r
2

)
pairs of lines intersecting. In total,

there are only
(
L
2

)
pairs of lines, and each pair only intersects once. Therefore,

|Sr(L)| ≤ (
L
2

)(
r
2

)−1 ∼ L2r−2. Another short counting argument gives the
following further estimate.

Basic estimate 2. If r ≥ 2L1/2, then |Sr(L)| � L/r.

These estimates are not as strong as the conclusion of the theorem.
For example, if r = L1/2, then the theorem says that |Sr(L)| � L1/2, but
the basic estimates give only � L.

There is a crucial example in the story showing that a proof of the
Szemerédi–Trotter theorem requires some quite different ideas. The example
involves lines over finite fields. Let Fq denote the finite field with q elements.
Let L be the set of q2 non-vertical lines y = mx+ b, m, b ∈ Fq. Each point of
F
2
q lies in q different lines of L. So we have |Sq(L)| = q2. Since q = L1/2, we

have |SL1/2(L)| = L. For L lines in R
2, the Szemerédi–Trotter theorem gives

the much better bound |SL1/2(L)| � L1/2. Now it is still true in F
2
q that two

lines intersect in at most one point. Therefore, we cannot possibly prove the
Szemerédi–Trotter theorem just by exploiting the fact that two lines intersect
in at most one point.

The main philosophical issue in the proof is to figure out what other
information about lines in R

2 we can use. We need to use something that is
true in R

2 but false in F
2
q. There are several approaches to the problem, and

in some way they all use the topology of the plane.

3.2 The Cutting Method

The cutting method was introduced by Clarkson, Edelsbrunner, Guibas,
Sharir, and Welzl in [CEGSW90]. They used the method to give an elegant
proof of the Szemerédi–Trotter theorem. They were also able to prove
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incidence geometry results in higher dimensions. We will discuss this more
below. Cutting plays a crucial role in the later applications of the polynomial
method.

We illustrate the cutting method by describing the main idea of the
proof of the Szemerédi–Trotter theorem. The proof is a divide-and-conquer
argument. We cut the plane into pieces using D red lines. Here D ! L is
a parameter we can play with, and the D red lines don’t have to be lines
from L. The complement of the red lines consists of convex polygonal cells.
The idea is that we use the basic estimates for the points and lines in each
cell, and then sum up the pieces. This idea works well as long as the lines of
L and the points of Sr(L) are evenly distributed among the cells.

Let’s be a little more precise about what we may hope for. The D red lines
cut the plane into ∼ D2 cells. If the points were evenly distributed among
the cells, we would have the following:

Equidistribution 1. Each cell contains � |Sr(L)|D−2 points of Sr(L).

Now a line may enter at most D + 1 cells, because it can only cross each
red line once. Since there are ∼ D2 cells, each line enters only a small fraction
of the cells. If the lines were evenly distributed among the cells, we would
have the following

Equidistribution 2. Each open cell intersects � LD−1 lines of L.

If we are allowed to choose any D, and find D red lines that evenly
distribute Sr(L) and L, then using the basic estimates in each cell and adding
the results we get the conclusion of the Szemerédi–Trotter theorem. In fact,
we don’t need to evenly distribute both Sr(L) and L—either one will suffice.
We state this precisely as a proposition.

Proposition 3.2. Let L be a set of L lines in the plane and fix some r.
Let i = 1 or 2. Suppose that for any 1 ≤ D ≤ L, we can find D lines cutting
the plane into ∼ D2 cells so that Equidistribution i holds. Then |Sr(L)| �
L2r−3 + Lr−1.

The proof of this result is just a calculation. When I first did this
calculation, I thought I had understood the main idea of the proof of
Szemerédi–Trotter. Getting the points or lines to evenly distribute among
the cells seemed like a minor point to me. My wrong intuition went like
this: if I just put down the dividing lines without thinking too much, then
the points wouldn’t have a reason to concentrate in any particular cells, so
they would probably end up pretty evenly distributed. With a little more
experience, I think that this intuition was totally wrong.

Here’s an alternate perspective. If I choose D red lines, then I have 2D
real parameters at my disposal. I would like each of D2 cells to contain ∼
|Sr(L)|/D2 points of Sr(L). I am trying to satisfy ∼ D2 conditions. In essence,
I have 2D variables, and I am hoping to solve D2 equations. Without other
information, this is a plan that sounds unlikely to work.
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Here’s an example of a set of points which is impossible to equidistribute.
Take any set of points lying on a closed convex curve in the plane. Each red
line intersects the curve in at most 2 points. Therefore, D red lines cut the
curve into ≤ 2D pieces. It follows that most of the ∼ D2 cells contain no
points of the set.

This divide-and-conquer plan actually does work, driven by one further
crucial idea. The crucial idea is to choose the D red lines independently at
random from among the lines of L. If we do this, the lines of L interact with
the red lines in a good way, and we get something close to Equidistribution 2.
We briefly give intuition why this may work. Suppose that we first randomly
pick D/10 red lines from the lines of L and look at the resulting cells. If one
of these cells contains ≥ 100LD−1 lines of L, then it is very likely that one of
them will be chosen among the next D/10 red lines, and the cell will get cut
into smaller pieces. Cells intersecting more than 100LD−1 lines have a brief
half-life, and this suggests that at the end of the process almost all cells will
intersect � LD−1 lines of L. This gives (a bit of) the flavor of the random
line argument. We have left out some important details. The cutting method
involves some further care, and the random cutting needs to be refined a
little. But choosing a random subset of D lines from L is a crucial first step.

3.3 Problems in Higher Dimensions

Generalizations of the Szemerédi–Trotter theorem are a central subject of
incidence geometry. One natural direction is to work in higher dimensions.
Instead of lines in the plane, we can consider k-planes in R

n. Some of the
proofs of the Szemerédi–Trotter theorem are very planar, and it is difficult to
generalize them to R

n for n ≥ 3. For example, [Székely97] gives a beautiful
proof of the theorem using crossing numbers of graphs. This proof generalizes
to a huge variety of problems in the plane, but it seems very difficult to
generalize it to higher dimensions. The cutting method was invented partly
in order to attack higher-dimensional problems.

Let’s summarize how to adapt the method to higher dimensions. The gen-
eral divide-and-conquer strategy still makes sense. To divide R

n into cells,
we need D red hyperplanes instead of D red lines. They divide R

n into
∼ Dn cells. If we have some kind of equidistribution, we still get interesting
estimates. Moreover, if we are studying a set of (n − 1)-dimensional planes
in R

n, then we can randomly choose D hyperplanes from our set, and we
get some type of equidistribution. The objects don’t necessarily have to
be planes—we can also study codimension 1 spheres, paraboloids or other
shapes.

But if we are studying k-planes in R
n for k < n−1, then there is a major

difficulty: k-planes do not divide R
n into cells. If we try to choose (n − 1)-

planes so that the k-planes are equidistributed among the cells, we cannot
use the key random trick above. We are stuck with ∼ D parameters hoping
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to satisfy ∼ Dn conditions. Moreover, there are examples of arrangements of
k-planes in R

n where no arrangement of hyperplanes gives equidistribution.
These examples generalize the set of points on a convex curve described
above.

In summary, there is a major obstacle in dealing with objects of
codimension> 1. The joints problem is one of the simplest incidence problems
in codimension > 1. That’s one reason the joints problem is interesting
and important. Following the joints theorem, it looks reasonable to use the
polynomial method to attack other incidence problems in codimension > 1.
We will see a number of results in this direction.

Before the polynomial method, I only know of one sharp estimate about
incidences in codimension > 1. This is Toth’s complex generalization of the
Szemerédi–Trotter theorem [Toth03]. If L is a set of L complex lines in C

2,
Toth proved that |Sr(L)| � L2r−3+Lr−1—the same estimate as for real lines
in R

2. From the point of view of topology, C2 is homeomorphic to R
4 and

the complex lines are homeomorphic to R
2, and so in a topological sense the

codimension is 2. Toth’s proof is adapted from the first proof of Szemerédi
and Trotter, and it is technically difficult.

In his work on the complex problem, Toth raised the following question.
Suppose that L is a set of k-planes in R

2k, and that any two k-planes
of L intersect in ≤ 1 point. (In other words, we forbid two k-planes to
contain a common line.) Is it still true that the number of r-rich points
is � L2r−3 + Lr−1. This is a bold higher-dimensional generalization of
the Szemerédi-Trotter theorem (and it also includes the complex version of
the Szemerédi-Trotter theorem). Recently, Solymosi and Tao proved Toth’s
conjecture up to a factor of Lε using the polynomial method.

Theorem 3.3 ([Solymosi–Tao12]). If L is a set of L k-planes in R
2k, and

if any two planes of L intersect in ≤ 1 point, then for any ε > 0, the number
of r-rich points of L is ≤ C(ε)Lε(L2r−3 + Lr−1).

3.4 Distance Problems in the Plane

There are many deep open problems in incidence geometry even for curves in
the plane. One example is the unit distance problem (which Erdős’s posed
in [Erdős46] alongside the distinct distance problem). It asks, given n points
in the plane, how many pairs of points can have distance 1? In all known
examples, the number of unit distances is � n1+ε. (In a square grid with
a well-chosen spacing, the number of unit distances is slightly superlinear,
but � n1+ε for any ε > 0.) The paper [SST] gives the best currently
known bound: the number of unit distances is � n4/3. This bound is closely
connected with the Szemerédi–Trotter theorem. The unit distance problem is
analogous to the Szemerédi–Trotter problem with unit circles in place of lines.

The reason for the difficulty seems to be the following. If we replace unit
circles by “unit parabolas” (parabolas of the form y = x2 + ax+ b), then the
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bound n4/3 is tight. To improve the n4/3 bound, we need to find and use a
property that is true for unit circles and false for unit parabolas. There’s no
clear candidate for this property or how to use it.

The distinct distance problem can also be phrased as a problem about
circles in the plane, and it is difficult for similar reasons.

Elekes found a completely different way of thinking about the distinct
distance problem, connecting it to problems in higher codimension like the
ones we discussed in the last section.

3.5 Partial Symmetries

Suppose G is a group acting on a space X . If P ⊂ X is a finite set, then we
can look at the symmetries of P under the group action. We define

G(P ) := {g ∈ G such that g(P ) = P}.
Elekes started a study of partial symmetries. A partial symmetry of P is

a group element that maps a large chunk of P to another large chunk of P .
More precisely we define the r-rich partial symmetries by

Gr(P ) := {g ∈ G such that |g(P ) ∩ P | ≥ r}.
It’s interesting to try to understand the size and structure of Gr(P )

in different situations. Elekes realized that this natural problem is closely
connected to the distinct distance problem and to the incidence geometry of
curves in 3-dimensional space. In these connections, the group G is the group
of orientation-preserving rigid motions of the plane.

Conjecture 3.4 ([Elekes–Sharir10]). If P is a finite set in the plane, and
r ≥ 2, then

|Gr(P )| � |P |3r−2.

(If P is a square grid, then this bound is tight up to a constant factor for
all 2 ≤ r ≤ |P |/10.)

Elekes and Sharir proved this conjecture for r = 3 using the polynomial
method. Nets Katz and I proved the conjecture in [Guth–Katz11].

This conjecture is closely related to the distinct distance problem. Elekes
realized that if a set P has few distinct distances, then it must have lots of
partial symmetries. We sketch the reason. Let Q(P ) be the set of distance
quadruples, defined as follows.

Q(P ) := {(p1, q1, p2, q2)|dist(p1, q1) = dist(p2, q2)}.
If there are few distinct distances, then it stands to reason that there

will be many pairs of points at the same distance. By a Cauchy–Schwarz
argument, one gets |d(P )||Q(P )| � |P |4, where d(P ) is the number of distinct
distances of the set P . So if there are few distinct distances, then |Q(P )| will
be large.
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On the other hand, each quadruple in Q(P ) suggests a partial symmetry
of P . For each quadruple of Q(P ), there is a unique rigid motion g ∈ G so
that g(p1) = p2 and g(q1) = q2. The rigid motion takes two points of P to
two other points of P , so it belongs to G2(P ). In this way, we get a map
E : Q(P ) → G2(P ). We want to use this map to count Q(P ). If the map E
were injective, we would have |Q(P )| ≤ |G2(P )|, which in turn is � |P |3. The
map E is actually not injective. If |g(P )∩P | = r, then the preimage E−1(g)
has size ∼ r2, because there are

(
r
2

)
pairs of points in g(P )∩P , and each pair

yields a distance quadruple. Based on this observation, it’s straightforward
to relate Q(P ) and Gr(P ):

|Q(P )| ∼
|P |∑

r=2

r|Gr(P )|.

Plugging in the Elekes–Sharir conjecture gives |Q(P )| � ∑|P |
r=2 |P |3r−1 ∼

|P |3 log |P |, and so |d(P )| � |P |/ log |P |. So the Elekes–Sharir conjecture
implies the new bound for the distinct distance problem.

The next observation of Elekes is that understanding the size of |Gr(P )| is
an incidence geometry problem where the background is the group G instead
of Euclidean space. Instead of lines in R

3, we consider the following special
curves in G. For any two points p1, p2 ∈ R

2, define

Sp1,p2 := {g ∈ G such that g(p1) = p2}.
These curves are natural objects from the point of view of the group structure
of G. The curves Sp1,p1 are 1-dimesional subgroups of G, and the curves Sp1,p2

are their cosets.
For a finite set P ⊂ R

2, let S(P ) denote the |P |2 curves {Sp1,p2}p1,p2∈P .
Next, we observe that a group element g is in Gr(P ) if and only if g lies in
≥ r of the curves of S(P ). This follows directly from the definition. If g is
in Gr(P ), then it means that g : P1 → P2 bijectively, where P1 and P2 are
subsets of P with size r. For each point p1 ∈ P1, we have g ∈ Sp1,g(p1), so g
lies in r curves of S(P ). The converse direction is similar. So we can redefine
Gr(P ) in the following way:

Gr(P ) = {g|g lies in ≥ r curves of S(P )}.
Understanding the size ofGr(P ) is closely analogous to understanding the

number of r-rich points of a set of lines in R
3. In particular, both problems

involve objects of codimension 2, and they involve the difficulties discussed
in Sect. 3.3.

In the future, mathematicians may consider the incidence theory of
subgroups and cosets inside of a Lie group G by working intrinsically inside
of G. For the time being, we are much more comfortable in Euclidean space,
and we choose coordinates on G so that we get a problem about curves
in Euclidean space. In the particular case of our curves S(P ) in our group
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G, there is a good choice of coordinates where the curves become straight
lines in R

3. In these coordinates, the Elekes–Sharir conjecture reduces to the
following two theorems about straight lines in R

3. The theorems were proven
in [Guth–Katz11].

Theorem A. Suppose that L is a set of L lines in R
3 with ≤ L1/2 lines in

any plane or degree 2 surface. Prove that the number of intersection points
of lines of L is � L3/2.

In particular, this theorem gives the best known estimate on the many
intersection problem that we discussed in Sect. 1.

Theorem B. Suppose that L is a set of L lines in R
3 with ≤ L1/2 lines in

any plane. For 3 ≤ r ≤ L1/2, prove that the number of r-rich intersection
points of L is � L3/2r−2.

I like to think of this theorem as a generalization of the Szemerédi–Trotter
theorem to lines in R

3. There are probably many generalizations of that
theorem to higher dimensions. Toth’s conjecture is one generalization,
and Theorem B is another generalization with a different flavor.

3.6 Conclusion

Studying incidence geometry problems in codimenson > 1 presents particular
challenges. The polynomial method is the most effective tool currently
available for studying these problems. The simplest case is the case of lines
in R

3. For lines in R
3, the joints theorem and Theorems A and B give a good

picture of what we now understand. The many intersections problem is a
good example of what we still don’t understand. In higher dimensions, the
Solymosi–Tao result on the Toth conjecture is the main example of what we
now know. This result is remarkable (partly) because it works with arbitrarily
high dimensions and arbitrarily high codimensions.

Several problems can be transformed into incidence geometry problems
in higher codimension. We have seen that the distinct distance problem in
the plane and the partial symmetries of plane sets are both related to the
incidence structure of lines in R

3.
In the next section we will describe how to attack these problems using

high-degree polynomials, extending the ideas from the proofs of finite field
Nikodym and joints.

4. Combinatorial Structure and Algebraic Structure

In this section, we will discuss the proofs of Theorems A and B. The proofs
are based on the polynomial method, and the key point is the connection
between combinatorial structure and algebraic structure.



Unexpected Applications of Polynomials in Combinatorics 515

We saw earlier that lines in R
3 may have many intersection points

by clustering into either a plane or a degree 2 surface. Theorem A is a
(partial) converse to this observation: more than L

3
2+ε intersection points

may be formed only if the lines cluster into a plane or a degree 2 surface.
Theorem A says that a certain combinatorial structure forces a certain
algebraic structure. Our goal in this section is to explore how combinatorial
structure can force algebraic structure.

We will see two different mechanisms how combinatorial structure can
force algebraic structure. We begin by considering what we mean by algebraic
structure.

4.1 Algebraic Structure for Finite Sets

If X ⊂ R
n, let deg(X) be the smallest degree of a non-zero polynomial

that vanishes on X . We have seen that for a finite set X , deg(X) � |X |1/n.
Of course particular finite sets can have much lower degree. For instance, any
subset of a plane has degree 1. For generic sets, the |X |1/n bound is sharp.
So a generic finite set has deg(X) ∼ |X |1/n. Any set with degree significantly
smaller than |X |1/n has non-trivial algebraic structure.

There is a similar discussion for finite unions of lines. If X is a union
of L lines in R

n, then deg(X) � L
1

n−1 . The proof is straightforward, so we
sketch it here. Suppose that D is a degree so that (D+1)L < dim PolyD(Rn).
Then we can choose a non-zero polynomial of degree ≤ D that vanishes at
D+ 1 points on each of the L lines. By the vanishing lemma, this polynomial
vanishes on each line. A short calculation shows that we can choose D �
L

1
n−1 . In summary, any union of L lines has degree � L

1
n−1 . If a union of L

lines has degree significantly smaller than this, then it has some non-trivial
algebraic structure.

With this definition of algebraic structure, we can begin to explore how
combinatorial structure forces algebraic structure.

Proposition 4.1 (Degree reduction). Suppose that L is a set of L lines
in R

3. Suppose that each line contains ≥ A (distinct) intersection points with
other lines of L. Then the degree of the union of the lines is ≤ 105L/A.

(If A ≤ L1/2, then the conclusion of the proposition is worthless, because
every set of L lines has degree ≤ 4L1/2 anyway. But if A is much bigger than
L1/2, then the lines have non-trivial algebraic structure.)

Here is the idea of the proof. We saw above that for any L′ lines of L,
there is a non-zero polynomial which vanishes on those lines with degree
≤ 10(L′)1/2. We let L′ ⊂ L be a subset of L′ random lines of L, and we
consider the polynomial P that vanishes on them. If A and L′ are large
enough, then this polynomial has to vanish on many other lines. Let l be
another line of L. If l intersects the lines of L′ at > deg(P ) points, then P
will vanish on l also. The expected number of intersection points between l
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and the lines of L′ is A(L′/L). Whenever A(L′/L) > 100(L′)1/2, the expected
number of intersection points is > 10 deg(P ). In this situation, the polynomial
P will vanish on the vast majority of the lines of L. Choosing L′ optimally, we
get a polynomial of degree ≤ 105L/A that vanishes on most of the lines of L.
(And with a little extra technique, we can get a polynomial that vanishes on
all of the lines of L.)

I think this proposition is fundamental to the polynomial method.
It shows that a set of lines with a lot of intersections must have an algebraic
structure. This algebraic structure is an important clue to try to understand
such sets of lines. Once we know that the set of lines has a non-trivial
algebraic structure, it’s natural to try to use algebra and algebraic geometry
to understand the set better.

4.2 Ruled Surfaces

The proof of Theorem A is based on the theory of ruled surfaces. An algebraic
surface Z(P ) ⊂ R

3 is called ruled if each point of Z(P ) lies in a line in Z(P ).
If is called doubly ruled if each point of Z(P ) lies in two different lines in
Z(P ). There is a classification of doubly ruled surfaces, and in particular the
following result is relevant for us.

Proposition 4.2. A doubly ruled algebraic surface Z(P ) ⊂ R
3 is a union of

planes and degree 2 surfaces.

Theorem A is a discrete analogue of this proposition from algebraic
geometry. To try to make the analogy as close as possible, we state a small
variation of Theorem A.

Theorem A′. Suppose that L is a set of L lines in R
3, and that each line

contains ≥ 1010L1/2 intersection points with other lines of L. Then the lines
of L are contained in a union of 10−5L1/2 planes and degree 2 surfaces.

In this analogy, the set of intersection points of the lines of L is a ‘discrete
approximation of a surface’. Each of these points lies in two lines of L, and
each line of L contains many points of our ‘discrete surface’. The hypothesis
is that we have a kind of ‘discrete doubly ruled surface’, and the conclusion
is that L is contained in a union of planes and degree 2 surfaces.

The degree reduction argument is a first step to prove Theorem A′. It tells
us that the lines of L are contained in the zero set of a polynomial P of degree
≤ 10−5L1/2. This is the right bound for the degree, but we still have to prove
that the polynomial factors into polynomials of degree 1 and 2. We have to
understand better the structure of the polynomial P . We will see that the
combinatorial structure of the lines of L is connected with the geometric
structure of Z(P ). We explain the connection in the next subsection.
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4.3 Contagious Structures

Suppose that l is a line in Z(P ). If there are> deg(P ) critical points of P on l,
then every point of l is critical. The property of being critical is ‘contagious’.

Let’s give another example of a contagious property. Suppose now that
l ⊂ Z(P ) and that each point of l is non-critical. A regular point x in Z(P )
is called flat if the curvature of Z(P ) vanishes at x—equivalently if there is a
plane thru x which is tangent to Z(P ) to second order. If the line l contains
more than 3 deg(P ) flat points, then every point on the line is flat. So being
flat is also a contagious property.

These properties are contagious because they are described by (other)
polynomials. A point is critical if and only if ∂1P , ∂2P , and ∂3P all vanish.
These partial derivatives have degree ≤ deg(P )−1. It follows by the vanishing
lemma that being critical is contagious. With a little more work, being flat is
also described by polynomials. For any polynomial P , there exists a finite list
of polynomials SP with degree ≤ 3 deg(P ), and a (regular) point x ∈ Z(P )
is flat if and only if SP (x) = 0. It doesn’t take that much work to construct
SP , and then we see that being flat is contagious too.

To see how to use contagious properties, we will begin by discussing triple
intersection points, because the method is a little easier. Suppose that L is
a set of L lines in R

3 and each line contains ≥ 1010L1/2 triple intersection
points. By degree reduction, these lines lie in Z(P ) for a polynomial P of
degree ≤ 10−5L1/2. Since the number of triple points on each line is much
more than the degree, any contagious property of the triple points will spread
to all of the lines.

Triple intersection points indeed have interesting properties. If x lies in
3 lines in Z(P ) and the lines are not coplanar, then x is a critical point of
P , as we saw in the proof of the joints theorem. On the other hand, if x is
not a critical point and x lies in three lines of Z(P ), then x is a flat point.
The three lines must lie in the tangent plane of Z(P ), and then the tangent
plane hugs Z(P ) along three lines, which forces it to be tangent to Z(P ) to
second order. Anyway, every triple intersection point is either critical or flat.
Since these properties are contagious, every point in the union of the lines of
L must be either critical or flat.

Contagious properties don’t just spread from points to lines. If there are
many lines with a contagious property, then it can spread to a whole surface.
This follows from the following version of Bezout’s theorem.

Theorem 4.3. If P and Q are polynomials in three variables, and if they
have no common factor, then Z(P )∩Z(Q) contains at most deg(P ) · deg(Q)
lines. In particular, if P is irreducible and Z(P )∩Z(Q) contains > deg(P ) ·
deg(Q) lines, then Q vanishes on Z(P ).

Remember that our L lines lie in Z(P ) where deg(P ) ≤ 10−5L1/2. Each
of the lines is either critical or flat. Suppose for a moment that they are all
flat. (The critical case is similar.) For the sake of exposition, let’s also assume
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that P is irreducible. The number of flat lines is L ≥ 1010(deg(P ))2. Each
polynomial of SP vanishes on these lines. The degree of each polynomial of
SP is ≤ 3 deg(P ). By the Bezout theorem, SP vanishes on Z(P ). This means
that every point of Z(P ) is flat. Then it follows that Z(P ) is a plane.

In general, the polynomial P may be reducible and there may be several
components, but a similar argument shows that they are all planes. We have
sketched the proof of the following result, which essentially appears in
[EKS11].

Theorem 4.4 ([EKS11]). If L is a set of L lines in R
3, and each line

contains ≥ 1010L1/2 triple intersection points, then the union of the lines
is contained in ≤ 10−5L1/2 planes.

This theorem is the case r = 3 of Theorem B.
It is harder to understand intersection points than triple intersection

points. The problem is that if x lies in two lines in Z(P ), then it doesn’t
imply that x is either critical or flat. It’s not clear right away if there is
another contagious property that we can use instead.

To approach this question, let’s step back and try to understand where
contagious properties come from. We can build contagious properties by
looking at polynomials in P and the derivatives of P . If RP is a polynomial
of degree ≤ C in P and its derivatives, then RP (x) is a polynomial in x of
degree ≤ C deg(P ). We can use any such RP in place of SP in the argument
above. Algebraic geometry helps understand what geometric properties of
Z(P ) at a point x can be described by some polynomial equations in P and
its derivatives. In short there are a lot of contagious properties.

We give one more example. A point x ∈ Z(P ) is called flecnodal if and
only if there is a non-zero vector v so that P vanishes in the direction v to third
order at x. It’s not immediately obvious that being flecnodal is contagious,
but it is. There is a polynomial FP , called the flecnode polynomial, of degree
at most 11 deg(P ), and a point x ∈ Z(P ) is flecnodal if and only if FP (x) = 0.
This polynomial and this result were discovered by Salmon in the 1800s.

Stepping back from the details, we can describe the moral of the proof of
Theorem A′. If x lies in two lines in Z(P ), it leads to some equations about
P and the derivatives of P at x. These equations are all contagious, and so
they end up holding at every point of Z(P ). So all the points of Z(P ) have
a lot in common with the intersection points. After working out the details,
it follows that every point of Z(P ) lies in two lines in Z(P ). The surface
Z(P ) is doubly ruled. By the classification of doubly ruled surfaces, Z(P ) is
a union of planes and degree 2 surfaces. We also know that the degree of P
is ≤ 10−5L1/2. Hence all the lines of L lie in ≤ 10−5L1/2 planes and degree
2 surfaces.



Unexpected Applications of Polynomials in Combinatorics 519

4.4 Polynomial Cell Decompositions

Theorem B involves a combination of all of the difficulties we have encoun-
tered in this essay so far. It is a problem about lines in R

3, so the codimension
is > 1. This suggests that the proof needs to use high degree polynomials.
We saw in the last section how to prove the case r = 3 with the polynomial
method, and I don’t have any idea how to approach the problem without it.
But for large r, Theorem B is false over finite fields like the Szemerédi–Trotter
theorem. This suggests that the proof needs to use the topology of R3.

The proof of Theorem A does not generalize to Theorem B. It breaks
down in the very first step: the degree reduction argument does not work.

The proof of Theorem B involves a combination of (almost) all of the
methods that we’ve discussed in this essay. The key step is to build cell
decompositions using polynomial surfaces, combining the cutting method and
the polynomial method.

Instead of cutting space with D hyperplanes, we cut space with a degreeD
polynomial. A degree D polynomial surface has many good features in
common with a union of D hyperplanes. The complement of D hyperplanes
consists of ∼ Dn components. The complement of a degree D polynomial
surface consists of � Dn components, and there are ∼ Dn components in
many examples. We will call these components cells. In each case, a line can
only enter at most D + 1 cells.

The union of D hyperplanes is a special case of a degree D polynomial
surface, but there are many more polynomial surfaces. Using polynomial
surfaces gives us much more flexibility, and we have a better chance to
prove equidistribution. Recall that we would like some equidistribution among
∼ Dn cells, which means we are trying to achieve ∼ Dn conditions. Choosing
D hyperplanes gives us ∼ D degrees of freedom. But choosing a degree D
polynomial surface gives us ∼ Dn degrees of freedom. Having so much more
freedom, it looks more realistic to get equidistribution. Here is a precise result
about building cell decompositions with polynomial surfaces.

Lemma 4.5 (Polynomial cell decomposition lemma). If S is any finite
set in R

n, and if D ≥ 1 is any integer, then there is a non-zero polynomial
P ∈ PolyD(Rn) so that each component of the complement of Z(P ) contains
≤ C(n)|S|D−n points of S.

We should make an important caveat right away. The lemma does not
say that all the points of S are in the complement of Z(P ). Some or even all
the points of S could lie in Z(P ).

The proof of the cell decomposition lemma is based on the Stone–Tukey
ham sandwich theorem, which we discussed in Sect. 2.3. The ham sandwich
theorem allows us to cut a bunch of sets in half. By using it repeatedly, we
can cut our set of points into halves, then quarters, then eighths. . . Here is a
detailed sketch.
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1. The ham sandwich theorem says that given N finite volume open sets, we
can choose a polynomial of degree � N1/n that bisects all of them.

We are dealing with finite sets, which have volume zero. Suppose that
we have N finite sets S1, . . . , SN . We let Uj be the ε-neighborhood of Sj .
We apply the theorem to Uj and take the limit as ε goes to zero. In this way
we get the following more combinatorial result.

2. If S1, . . . , SN are finite sets, then there is a polynomial P of degree � N1/n

so that P > 0 on at most half the points of Sj and P < 0 on at most
half the points of Sj . (Remark: P might vanish on some or even all of the
points of Sj .)

3. We have a set S that we want to divide into 2J fairly even pieces. Pick a
plane that bisects S. Then pick a surface that bisects each half, leaving us
with four sets of cardinality at most |S|/4. Next pick a surface that bisects
each of these four sets. Continuing in this way, we have cut S into 2J pieces
of cardinality at most |S|2−J by a union of J algebraic hypersurfaces.
The degrees of these hypersurfaces are bounded by step 2, and adding up
we get a total degree � 2J/n as desired.

Next we discuss how to use the polynomial cell decomposition lemma.
We consider an arrangement of lines L, and we let S be the set of r-rich
points. We build a polynomial cell decomposition. If all the points of S lie in
the cells, then we can proceed by a divide-and-conquer argument as in the
cutting method. We know that each cell has the same number of points of
S, and we know the number of lines that enter an average cell. In each cell,
we can use a more elementary method to count r-rich points. Adding up the
contributions from all of the cells, we see that the number of r-rich points is
� L3/2r−2—the conclusion of Theorem B.

This is not a complete proof of Theorem B. It may happen that most or
all of the points of S lie in Z(P ), and then the argument breaks down. Here
is a slightly more optimistic way of looking at the situation.

The polynomial cell decomposition argument gives a second, completely
different mechanism by which combinatorial structure forces algebraic struc-
ture. If L is a set of L lines with significantly more than L3/2r−2 r-rich
points, then the argument above shows that almost all of the r-rich points
lie in Z(P ) for a polynomial P of surprisingly low degree. Since there are
many r-rich points on each line, it follows that the lines lie in Z(P ) also, and
the conclusion is that the degree of L is far below L1/2. The combinatorial
structure of having many r-rich points forces algebraic structure.

Once the set of lines has algebraic structure, the rest of the proof of
Theorem B is similar to the proof of Theorem A, using contagious properties.

The polynomial cell decomposition has had several other applications.
The paper [Solymosi–Tao12] uses it to prove the higher-dimensional general-
ization of the Szemerédi–Trotter theorem. The paper [KMS12] uses it to give
new proofs and perspectives on several fundamental theorems of incidence
geometry.
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4.5 Final Summary

The proofs we have been studying get off the ground by proving that
arrangements with a lot of combinatorial structure must have unexpectedly
low degree. We have seen two mechanisms to find these unexpectedly low
degree polynomials. One mechanism is the degree reduction lemma. This
lemma is proven by combining the parameter counting argument and the
vanishing lemma. It’s based on the proof of the finite field Nikodym conjecture
and recovery algorithms for error-correcting codes. The second mechanism
is the polynomial cell decomposition method. This mechanism is based on
the polynomial method, but also on the cutting method and surface area
estimates from differential geometry.

Once we know that the arrangement we are studying lies in the zero set
of a polynomial of unexpectedly low degree, then it’s natural to try to use
that polynomial to study the set. The contagious structures are one tool to
do that.
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Summary. We investigate the maximal number S(P, n) of subsets of a set of n
elements homothetic to a fixed set P . Elekes and Erdős proved that S(P, n) > cn2 if
|P | = 3 or the elements of P are algebraic. For |P | ≥ 4 we show that S(P, n) > cn2

if and only if every quadruple in P has an algebraic cross ratio. Moreover, there is
a sequence Sn of numbers such that S(P, n) � Sn whenever |P | = 4 and the cross
ratio of P is transcendental.

AMS Subject Classification: primary 52ClO, secondary 05D99.

Let C denote the set of complex numbers. We say that the sets A,B ⊂ C
are homothetic, and write A ∼ B, if B = a · A + b = {ax+ b : x ∈ A} with
suitable a, b ∈ C, �= 0. If P and A are finite subsets of C then let

s(P,A)
def
= |{X ⊂ A : X ∼ P}|,

where |H | denotes the cardinality of H . In [2] G. Elekes and P. Erdős
investigated the behaviour of the sequence

S(P, n)
def
= max

|A|=n
s(P,A).

It is easy to see that S(P, n) ≤ 2n(n− 1) holds for every finite P and n ∈ N.
Elekes and Erdős proved that the order of magnitude of S(P, n) is close to
n2 for every P ; namely

S(P, n) ≥ c · n2−b·log−a n

holds for every n ≥ |P | with positive constants a, b, and c depending on P
but not on n. They also showed that
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S(P, n) ≥ c · n2 (n ≥ |P |) (1)

if |P | = 3 or if the elements of P are algebraic, and asked whether or not
this is true for every finite P . In this paper we answer this question in the
negative, and characterize the sets satisfying (1).

Our characterization will be given in terms of the cross ratio and
projective equivalence. The cross ratio of the distinct complex numbers a,
b, c, d is defined by

(a; b; c; d)
def
=
c− a

c− b
:
d− a

d− b
.

A map f : A → B (A,B ⊂ C) is said to be projective if it preserves the cross
ratios of the quadruples of A. Two sets are projective equivalent if there
is a projective bijection between them. Note that P and P ′ are projective
equivalent whenever |P | = |P ′| ≤ 3. Our main result is the following.

Theorem 1. For every finite P the following are equivalent.

(i) There is a positive constant c such that (1) holds.
(ii) The cross ratio of every quadruple of P is algebraic.
(iii) There is a set P ′ such that P and P ′ are projective equivalent, and the

elements of P ′ are algebraic.

First we prove the implication (ii) =⇒ (iii). Suppose that the set P =
{a1, . . . , ak} satisfies (ii), where a1, . . . , ak are distinct complex numbers and
k ≥ 4 (if k ≤ 3 then the statement is obvious). Let f(x) = (px+ q)/(rx + s)
(x ∈ C), where p, q, r, s are chosen such that ps − qr �= 0, rai + s �= 0 for
i = 1, . . . , k, and f(ai) is algebraic for i = 1, 2, 3. Let P ′ = f(P ). Since
f is projective, P and P ′ are projective equivalent. For the same reason,
the cross ratio of the numbers f(a1), f(a2), f(a3), f(ai) is algebraic for every
4 ≤ i ≤ k, Since the first three of these numbers are algebraic, so is f(ai).
Thus the elements of P ′ are algebraic, and hence P satisfies (iii).

The implication (iii) =⇒ (i) is an immediate consequence of the following
theorem and of the result of Elekes and Erdős stating that (1) holds if the
elements of P are algebraic.

Theorem 2. Let |P | = |P ′| = k, and suppose that P and P ′ are projective
equivalent. Then there are positive constants c1 and c2 depending only on k
such that

c1 · S(P, n) ≤ S(P ′, n) ≤ c2 · S(P, n) (2)

for every n ≥ k.

Lemma 1. For every Q ⊂ C, |Q| = k and n ≥ k we have S(Q, kn) ≤
k2kS(Q,n).

Proof. Let E ⊂ C be such that |E| = kn and s(Q,E) = S(Q, kn). Let N
denote the number of pairs (C,D) such that C ⊂ D ⊂ E, C ∼ Q and |D| = n.
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Clearly, N = S(Q, kn)
(
kn−k
n−k

)
. On the other hand, as each D contains at most

S(Q,n) C’s, we have N ≤ (
kn
n

)
S(Q,n). This gives

S(Q, kn)

S(Q,n)
≤

(
kn
n

)

(
kn−k
n−k

) =
kn(kn− 1) . . . (kn− k + 1)

n(n− 1) . . . (n− k + 1)
< k2k. �

Proof of Theorem 2. The statement of the theorem is obvious if k = 1 or
k = 2, so that we may assume k ≥ 3. Let a, b, c be distinct elements of P ,
let f be a projective bijection from P onto P ′, and let f(a) = a′, f(b) = b′,
f(c) = c′. We can suppose that a = a′ = 0 and b = b′ = 1, since otherwise we
replace P by (P − a)/(b− a) and P ′ by (P ′ − a′)/(b′ − a′). This replacement
will not affect the projective equivalence of the sets P and P ′, nor will it
change the values of S(P, n) and S(P ′, n).

Let A ⊂ C be such that |A| = n and s(P,A) = S(P, n). If X ⊂ A
and X ∼ P then there are elements x, y ∈ X such that X = {x + p(y −
x) : p ∈ P}. Therefore, if T denotes the set of all pairs (x, y) ∈ A × A
satisfying x + p(y − x) ∈ A for all p ∈ P , then we have |T | ≥ S(P, n). Let
λ = c(c′ − 1) · (c′(c− 1))−1, and let μ be a number to be fixed later. We put

B = {x+ p′(λy + μ− x) : (x, y) ∈ T, p′ ∈ P ′}.
If x �= λy + μ, then the set Ux,y = {x + p′(λy + μ − x) : p′ ∈ P ′} is similar
to P ′. We can select the number μ in such a way that x �= λy + μ for every
(x, y) ∈ A×A, and the sets Ux,y ((x, y) ∈ A×A) are distinct. Fixing such a
μ it follows that

s(P ′, B) ≥ |T | ≥ S(P, n). (3)

For every p ∈ P we denote p′ = f(p),

Ap = {x+ p(y − x) : (x, y) ∈ T }, Bp = {x+ p′(λy + μ− x) : (x, y) ∈ T }.
and

φp(x+ p(y − x)) = x+ p′(λy + μ− x) ((x, y) ∈ T ).

First we show that φp is a well-defined map from Ap onto Bp. To this end we
have to prove that if (x, y) ∈ T, (u, v) ∈ T and

x+ p(y − x) = u+ p(v − u), (4)

then

x+ p′(λy + μ− x) = u+ p′(λv + μ− u). (5)

If p = p′ = 0 or p = p′ = 1 then the implication (4) =⇒ (5) is clear. If p = c,
p′ = c′, then (4) implies (1 − c)x + cy = (1 − c)u + cv. Therefore, by the
definition of λ,
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x+ c′(λy + μ− x) = (1 − c′)x+ λc′y+ c′μ =
1 − c′

1 − c
((1 − c)x+ cy) + c′μ =

1 − c′

1 − c
((1 − c)u + cv) + c′μ = (1 − c′)u+ λc′v + c′μ = u+ c′(λv + μ− u),

which gives (5). Finally suppose p ∈ P \ {0, 1, c}. Since f is projective, we
have (0; 1; c; p) = (0; 1; c′; p′) and thus λ = p(p′ − 1) · (p′(p − 1))−1. Then
a computation identical to the one above shows that (4) implies (5) in this
case as well. This proves that the map φp is well-defined, and it is clear that
φp(Ap) = Bp.

It follows from the definition of T that Ap ⊂ A, and hence |Ap| ≤ n.
Thus we have |Bp| ≤ n, and then |B| ≤ ∑

p∈P |Bp| ≤ kn. Combining with
(3), this gives S(P ′, kn) ≥ S(P, n). Then, by Lemma 1, we obtain S(P ′, n) ≥
k−2kS(P, n). Interchanging the roles of P and P ′ we get the other inequality
of (2). �

In order to prove the implication (i) =⇒ (ii) of Theorem 1, we may assume
that |P | = 4. Indeed, if (i) holds for P then it holds for every four-element
subset of P as well, and if (ii) holds for every four-element subset of P , then
it also holds for P .

Let α be a transcendental number, and denote

Sn = S ({0, 1, 2, α}, n) (n ≥ 4).

The value of Sn does not depend on the choice of α. Indeed, if β is another
transcendental number, then there is a field-automorphism σ of C such that
σ(α) = β. For every X ⊂ C, |X | = 4 we have X ∼ {0, 1, 2, α} if and
only if σ(X) ∼ {0, 1, 2, β} and this easily implies that S({0, 1, 2, α}, n) =
S({0, 1, 2, β}, n) for every n ≥ 4.

Theorem 3. There are positive absolute constants c1 and c2 such that
for every quadruple P ⊂ C, if the cross ratio of the elements of P is
transcendental, then

c1 · Sn ≤ S(P, n) ≤ c2 · Sn

for every n ≥ 4.

Proof. Let P = {a, b, c, d} and (a; b; c; d) = α. We put β = 2/(2−α) and P ′ =
{0, 1, 2, β}. Since (0; 1; 2;β) = α, the sets P and P ′ are projective equivalent.
Consequently, by Theorem 2, there are absolute constants c1, c2 > 0 such
that c1 · S(P ′, n) ≤ S(P, n) ≤ c2 · S(P ′, n) for every n ≥ 4. Also, since
β is transcendental, we have S(P ′, n) = Sn by the remark preceding the
theorem. �

Now, in order to prove the implication (i) =⇒ (ii) of Theorem 1, it is
enough to show that Sn = o(n2) as n→ ∞. Indeed, suppose this is true, and
let P ⊂ C be a four-element set for which (i) holds but (ii) does not. Then,
by Theorem 3, c2 · Sn ≥ S(P, n) ≥ c · n2 for every n ≥ 4, a contradiction.
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The rest of the paper will be devoted to the proof of Sn = o(n2). In the
sequel we denote

S(n, c) = S({0, 1, 2, c}, n) (c ∈ C \ {0, 1, 2}, n ∈ N).

Lemma 2. For every n we have S(n, c) ≥ Sn for all, but a finite number of
c ∈ C.

Proof. Let α be transcendental and let A = {a1, . . . , an} ⊂ C be such that
s({0, 1, 2, α}, A) = Sn. This means that there is a set I of quadruples of
indices such that |I| = Sn and for every (i, j, k,m) ∈ I we have

ai − 2aj + ak = 0 and (α− 1)ai − αaj + am = 0. (6)

Let

V =

{ n∑

i=1

ri · ai : ri ∈ Q(α), i = 1, . . . , n

}
,

then V is a linear space over the field Q(α). Let B = {b1, . . . , bd} be a basis
of V , and let

ai =
d∑

j=1

rij · bj (i = 1, . . . , n) (7)

be representations with rij ∈ Q(α) for every i = 1, . . . , n and j = 1, . . . , d.
Since the coefficients of ai, aj , ak, am in the equations (6) belong to Q(α), and
b1, . . . , bd are linearly independent over Q(α), it follows that substituting the
representations (7) into the equations (6) we obtain identities. In other words,
for every choice of the variables x1, . . . , xd, the numbers

ci =

d∑

j=1

rij · xj (i = 1, . . . , n) (8)

will satisfy the equations

ci − 2cj + ck = 0 and (α− 1)ci − αcj + cm = 0 (9)

for every (i, j, k,m) ∈ I. The right-hand sides of (8), as linear forms, are
different, because for xj = bj they have different values (namely a1, . . . , an).
Then x1, . . . , xd can be chosen to be integers such that the values of the
corresponding c1, . . . , cn are different. Indeed, for every i1 �= i2, the set
{(xl, . . . , xd) : ci1 = Ci2} is a hyperplane, and Zd cannot be covered by
finitely many hyperplanes. Clearly, if the xj ’s are integers then ci ∈ Q(α) for
every i = 1, . . . , n.

We have proved that there are distinct elements ci ∈ Q(α) satisfying the
equations (9). For every i = 1, . . . , n there is a rational function Ri with
rational coefficients such that ci = Ri(α). Thus we have

Ri(α) − 2Rj(α) +Rk(α) = 0 and (α− 1)Ri(α) − αRj(α) +Rm(α) = 0
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for every (i, j, k,m) ∈ I. Since α is transcendental, the rational functions
Ri(t)−2Rj(t)+Rk(t) and (t−1)Ri(t)−tRj(t)+Rm(t) must be identically zero
for every (i, j, k,m) ∈ I. Therefore, whenever the numbers R1(c), . . . , Rn(c)
are defined (that is, c is not a root of the denominator of R1 · . . . ·Rn), and are
distinct, then the set Ac = {R1(c), . . . , Rn(c)} contains Sn subsets similar to
{0, 1, 2, c}. The rational functions Ri are distinct, since they have different
values at α. Then |Ac| = n for all but a finite number of c’s, and for such a
c we have S(n, c) ≥ S({0, 1, 2, c}, Ac) ≥ Sn. �

We remark that, in fact, S(n, c) = Sn holds for all but finitely many
c ∈ C. As we shall not need this result, we omit the proof. What we need is
the fact that Sn ≤ S(n, k) for every k ∈ N, k > k0(n). This implies

lim sup
n→∞

Sn

n2
≤ lim sup

n→∞

(
lim sup
k→∞

S(n, k)

n2

)
, (10)

and hence, in order to prove Sn = o(n2), it is enough to show that the right-
hand side of (10) is zero. In the next theorem we prove somewhat more.

Theorem 4.

lim
n→∞
k→∞

S(n, k)

n2
= 0.

Let z, q1, . . . , qd ∈ Z and X1, . . . , Xd ∈ N. We shall say that the set

R(z, q1, . . . , qd;X1, . . . , Xd) =

{
z+

d∑

i=1

xiqi : xi ∈ Z, 0 ≤ xi < Xi(i = 1, . . . , d)

}

is a d-dimensional arithmetical progression of size
∏d

i=1Xi. We shall need
the following theorem proved by G. A. Freiman in [3–5] and I. Z. Ruzsa in
[6].

Theorem 5. If A ⊂ Z, |A| = n, and |A+A| ≤ cn, then A is contained in a
d-dimensional arithmetical progression of size not exceeding c′n, where d and
c′ only depend on c.

Let A ⊂ Z be a finite set, let G = (A,E) be a graph, and put S = {a + b :
(a, b) ∈ E}. The following result was proved by A. Balog and E. Szemerédi
in [1].

Theorem 6. If |A| = n, |E| ≥ c1n
2 and |S| ≤ c2n, then there is a subset

A′ ⊂ A such that |A′| ≥ c3n and |A′+A′| ≤ c4n, where c3 and c4 only depend
on c1 and c2.

As Balog and Szemerédi remark, these two theorems can be combined to
obtain the following result: if |A| = n, |E| ≥ c1n

2 and |S| ≤ c2n, then there
is a d-dimensional arithmetical progression R of size not exceeding c5n such
that |R ∩ A| ≥ c6n, where d, c5, c6 depend only on c1 and c2. In the next
lemma we prove a slight improvement of this result.
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Lemma 3. If |A| = n, |E| ≥ c1n
2 and |S| ≤ c2n, then there is a d-

dimensional arithmetical progression R of size not exceeding c11n such that
the subgraph of G induced by the set R∩A contains at least c12n

2 edges. Here
the constants d, c11 and c12 depend only on c1 and c2.

Proof. In the sequel c7, c8, . . . will denote constants depending only on c1 and
c2. Since |E| ≥ c1n

2, there is a subset A1 ⊂ A such that in the subgraph of
G induced by A1, the degree of every point is greater than c1n/2. (Indeed,
delete one by one each point of degree at most c1n/2. In this way we cannot
remove all points of A, and the set of remaining points will have the required
property.) Then |A1| ≥ c1n/2. Applying Theorem 6 to the graph induced by
A1, we obtain a subset A′ ⊂ A1 such that |A′| ≥ c7n and |A′ + A′| ≤ c8n.
Then we apply Theorem 5 to obtain a d-dimensional arithmetical progression
R = R(z, q1, . . . , qd;X1, . . . , Xd) such that A′ ⊂ R and the size of R does not
exceed c9n.

Let c10 = c1c7/8 and let B be the set of those points of A that are
connected to at least c10n points of A′. Since there are at least (c7n ·
c1n/2)/2 = 2c10n

2 edges starting from the points of A′, we have |B| ≥ c10n.
Let R = {R + b : b ∈ B}. Since A′ ⊂ R, each set R + b (b ∈ B) contains
at least c10n elements of the form a + b, where a ∈ A′ and (a, b) ∈ E.
These elements belong to S and, by assumption, |S| ≤ c2n. This implies
that any pairwise disjoint subsystem of R contains at most c2/c10 sets. Let
{R+bi : i = 1, . . . , k} be a maximal disjoint subsystem of R. Then k ≤ c2/c10
and for every b ∈ B there is an i ≤ k such that (R + b) ∩ (R + bi) �= ∅. This
implies b ∈ (R − R) + bi, and hence B ⊂ ∪k

i=1[(R − R) + bi]. Let bk+1 = z
and H = ∪k+1

i=1 [(R−R) + bi]. Then A′ ∪B ⊂ H as A′ ⊂ R ⊂ (R−R) + bk+1.
Thus the subgraph of G induced by H ∩ A contains at least c12n

2 edges
(c12 = c210/2), since every point of B is connected to at least c10n points of
A′. Let qd+j = bj for j = 1, . . . , k + 1, and put

R′ =

{ d+k+1∑

i=1

xiqi : −Xi ≤ xi < Xi(1 ≤ i ≤ d) and 0 ≤ xi < 2(d < i ≤ d+ k + 1)

}

.

Then H ⊂ R′, and in order to complete the proof of the lemma it is enough
to note that R′ is a d+k+ 1-dimensional arithmetical progression of size not
exceeding 2k+1

∏d
i=1(2Xi) ≤ 2d+k+1c9n = c11n. �

Lemma 4. Let n, k ∈ N, c > 0, and suppose that S(n, k) > cn2. Then there
are positive constants d, c′, c′′ depending only on c, and there exists a d-
dimensional arithmetical progression R = R(z, q1, . . . , qd;X1, . . . , Xd) such
that the gcd(q1, . . . , qd) = 1, the size of R is at most c′n, and for a suitable
integer u the set

{(a, b) ∈ R×R : 2a+ k(b− a) = u} (11)

contains at least c′′n distinct pairs.
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Proof. Since S(n, k) > cn2, there is a set A ⊂ C such that |A| = n and A
contains more than cn2 subsets similar to {0, 1, 2, k}. Repeating the argument
of the proof of Lemma 2 with Q instead of Q(α), we can see that A can be
chosen to be a subset of Q. Multiplying by a suitable integer, we may assume
that A ⊂ Z.

Let E denote the set of all pairs (a, b) such that each number a, b, (a +
b)/2 and a + k

2 (b − a) belongs to A; then |E| > cn2. Let S = {a + b :
(a, b) ∈ E}, then S ⊂ 2A, and hence |S| ≤ n. Therefore, by Lemma 3, there
are positive constants d, c′, c′′ depending only on c and there exists a d-
dimensional arithmetical progression R = R(z, q1, . . . , qd; X1, . . . , Xd) of size
not exceeding c′n such that A ∩ R contains at least c′′n2 edges from E. Let
F = {(a, b) ∈ E : a, b ∈ R}. Then |F | > c′′n2 and |{2a+ k(b − a) : (a, b) ∈
F}| ≤ |2 · A| = n. Consequently, there exists an element u ∈ A such that
the set defined in (11) contains at least c′′n distinct pairs. If (q1, . . . , qd) = 1,
then the proof is complete. Otherwise let (q1, . . . , qd) = m, and replace R
by R(z, q1/m, . . . , qd/m;X1, . . . , Xd). It is clear that this modified R satisfies
the requirements. �

Lemma 5. Let R = R(z, q1, . . . , qd;X1, . . . , Xd) be a d-dimensional arith-

metical progression with (q1, . . . , qd) = 1, and denote s =
∏d

i=1Xi and
M = min1≤i≤dXi. Then for every positive integer k, the number of elements
of R in any residue class mod k is at most (s/M) + (s/k).

Proof. For i = 1, . . . , d define

ki =
(k, q1, . . . , qi−1)

(k, q1, . . . , qi)
, k1 =

k

k, q1
.

We have kl . . . kd = k. Now consider the k numbers

y1q1 + . . .+ ydqd, 0 ≤ yi ≤ ki − 1.

We show that they are all incongruent modulo k. Indeed, suppose that

y1q1 + . . .+ ydqd ≡ y′1q1 + . . .+ y′dqd (mod k).

Let j be the largest subscript for which yj �= yj. Since the first j−1 summands
are divisible by (q1, . . . , qj−1), we have

(k, q1, . . . , qj−1)
∣
∣qj(yj − y′j),

hence

kj =
(k, q1, . . . , qj−1)

(k, q1, . . . , qj)

∣
∣
∣
∣ yj − y′j,

which contradicts the assumption 0 ≤ yj , y
′
j ≤ kj − 1, yj �= y′j .

Let R∗ be the set of those elements of R that are ≡ a (mod k). The sets

R∗ + y1q1 + . . .+ ydqd, 0 ≤ yi ≤ ki − 1
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lie in different residue classes modulo k, hence they are disjoint, and they are
contained in R(z, q1, . . . , qd, X1 + k1 − 1, . . . , Xd + kd − 1), consequently

k|R∗| ≤
∏

(Xi + ki − 1)

(we recall that k =
∏
ki), or

|R∗| ≤ s

k

∏(
1 +

ki − 1

Xi

)
≤ s

k

∏(
1 +

ki − 1

M

)
.

To complete the proof we show that the inequality

d∏

i=1

(
1 +

ki − 1

M

)
≤ 1 +

(
∏
ki) − 1

M

holds for arbitrary real numbers ki ≥ 1,M ≥ 1. For d = 2 this inequality
asserts that

(
1 +

k1 − 1

M

)(
1 +

k2 − 1

M

)
≤ 1 +

k1k2 − 1

M
.

After multiplying by M and rearranging this becomes

(k1 − 1)(k2 − 1)

M
≤ (k1 − 1)(k2 − 1),

which is true if all the variables are ≥ 1. The case for d ≥ 3 now easily follows
by an induction on d. �

Now we turn to the proof of Theorem 4. Suppose that lim supn,k→∞
S(n, k)/n2 > 0. Then there is a constant c > 0 such that for every K there
are integers n, k > K with S(n, k) > cn2. Thus, by Lemma 4, there are
positive constants d, c′, c′′ such that the following statement holds:

(∗) for every K there is a d-dimensional arithmetical progression

RK = R(zK , qK1 , . . . , q
K
d ;XK

1 , . . . , X
K
d )

and there are integers n, k > K such that (qK1 , . . . , q
K
d ) = 1, the size of

RK is at most c′n, and for a suitable integer u the set

{(a, b) ∈ RK ×RK : 2a+ k(b− a) = u}
contains at least c′′n distinct pairs.

We prove that this is impossible. Let d be the smallest positive integer
such that (∗) holds for suitable positive constants c′ and c′′. If 2a+k(b−a) = u
then 2a ≡ u (mod k) and hence, if RK , n, k are as in (∗) then 2 ·RK contains
at least c′′n elements in one of the residue classes mod k. This implies that
RK contains at least c′′n/2 elements in one of the residue classes mod k. Let
MK = min1≤i≤dX

K
i . Then, by Lemma 5, we have

c′′/2 ≤ (c′/MK) + (c′/k). (12)
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Let C = 4c′/c′′. If K > C, then k > K implies c′/k < c′′/4 and thus (12)
gives MK < C. By rearranging the indices we may assume that XK

d < C
holds for every K > C. This implies d > 1. Indeed, if d = 1 then we have
|RK | = |XK

1 | < C for K > C. This gives |RK ×RK | < C2, which contradicts
(∗) for K > C2/c′′.

We complete the proof by showing that (∗) also holds for d − 1 instead
of d, if we replace c′′ by c′′/C2. Since d was minimal, this will provide the
contradiction we were looking for.

For every K we put R′
k = R(zK , qK1 , . . . , q

K
d−1;XK

1 , . . . , X
K
d−1). Also, for

every a ∈ RK we choose a representation a = zK +
∑d

i=1 xiq
K
i with 0 ≤

xi < Xi(i = 1, . . . , d) and define a′ = zK +
∑d−1

i=1 xiq
K
i . In this way we have

defined a map a %→ a′ from RK into R′
K .

Let K > C, and let RK , n, k and u be as in (∗). Obviously, a − a′ ∈
{i · qKd : 0 ≤ i ≤ xKd − 1} for every a ∈ RK and hence the set

P = {2a′ + k(b′ − a′) : (a, b) ∈ RK ×RK , 2a+ k(b− a) = u}
contains at most (XK

d )2 distinct elements. Since K > C, we have XK
d < C

and thus |P | ≤ C2. This implies that for a suitable u′ the set

{(a′, b′) ∈ R′
K ×R′

K : 2a′ + k(b′ − a′) = u′}
contains at least (c′′/C2)n distinct pairs. Therefore, replacing c′′ by c′′/C2,
the d − 1-dimensional arithmetical progression R′

K and the integers n,
k, u′ will satisfy the statement of (∗) apart from the condition that
(qK1 , . . . , q

K
d−1) = 1. But this condition can also be fulfilled if we replace

R′
K by

R(zK , qK1 /m, . . . , q
K
d−1/m;XK

1 , . . . , X
K
d−1),

where m = (qK1 , . . . , q
k
d−1). �
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On Lipschitz Mappings Onto a Square∗
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Department of Applied Mathematics, Institute of Theoretical
Computer Science (ITI), Charles University, Malostranské nám. 25,
118 00 Praha 1, Prague, Czech Republic
e-mail: matousek@kam.mff.cuni.cz

1. Introduction

The following problem was posed by Laczkovich [5]: Let E ⊆ RRd (d ≥ 2) be
a set with positive Lebesgue measure λd(E) > 0. Does there exist a Lipschitz
mapping f : Rd → Q = [0, 1]d, such that f(E) = Q? Preiss [6] answered this
question affirmatively for d = 2:

Theorem 1. Let E ⊆ R2 be a set with λ2(E) > 0. There exists a Lipschitz
mapping f of the plane onto the square Q = [0, 1]2, such that f(E) = Q.

Later it was observed by Jones that this theorem is also an easy
consequence of a much earlier result of Uy [8].

In this note we give a somewhat different proof of this theorem based on a
well-known combinatorial lemma due to Erdös and Szekerés. By an additional
trick, we also prove the following “absolute constant” version:

Theorem 2. There exists a constant c > 0 such that for any E in the plane
with Lebesgue measure λ2(E) = 1 there exists a 1-Lipschitz mapping f of the
plane onto the square Q = [0, c]2, such that f(E) = Q.

The value of c obtained from our proof is quite small. Clearly some
improvement is possible, but it seems that our method is not suitable for
obtaining the best possible value of c. It is easy to see that one cannot hope
to push c arbitrarily close to 1 (e.g., consider E being a disk of unit area; its
diameter 2/

√
π is smaller than the diagonal of the unit square, and so there

is no 1-Lipschitz mapping onto the unit square).

∗This paper was originally published in 1997. The present version is a minor revision
from 2012, which includes some references to newer developments.

∗∗ It is my pleasure to thank University College of London for enabling my visit,
during which this research was conducted. The visit was also supported by the
Humboldt Foundation.
1 Preiss in fact proves a slightly stronger statement, namely that f can be taken
such that f(R2 \E) is countably rectifiable (i.e. it can be covered by a countable set
of Lipschitz curves). In order to keep this note technically simple, we will not prove
this strengthening here, although our method also provides it with some extra care.
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Laczkovich’s question for d > 2 remains open; a combinatorial problem
related to an attempt to generalize our proof is stated at the end of Sect. 2.

2. Proof of Theorem 1

The metric in R2, implicitly considered in Theorem 1, is the usual Euclidean
metric. It appears more convenient to work with the maximum metric d∞
defined by

d∞((x1, y1), (x2, y2)) = max(|x1 − x2|, |y1 − y2|) .
This metric will be used throughout the rest of this paper. Clearly this
modification does not affect the validity of Theorem 1.

We begin the proof by a simple lemma, which is essentially contained
in [6]. Let a > 0, w > 0 be real numbers and ϕ : [0, a] → [0, a] be a 1-Lipschitz
real function. Let Q denote the square [0, a]2. We partition Q into three
regions defined as follows (see Fig. 1): L (resp. S, resp. U) is the set of points
(x, y) ∈ Q with y < ϕ(x) − w (resp. ϕ(x) − w ≤ y ≤ ϕ(x) + w, resp.
y > ϕ(x) + w). We define a mapping f = fϕ,w : Q → [0, 1] × [0, 1 − 2w]

L

U

f(U)

f(S)
f(L)

f

S
j

Fig. 1 Contraction along ϕ

(called the contraction of Q along ϕ by w) as follows:

f(x, y) =

⎧
⎨

⎩

(x,min(y, 1 − 2w)) for (x, y) ∈ L
(x,max(y − 2w, 0)) for (x, y) ∈ U
(x,max(min(ϕ(x) − w, 1 − 2w), 0)) for (x, y) ∈ S.

Lemma 3. With a, w, ϕ as above, f = fw,ϕ is a 1-Lipschitz mapping.

Proof: Let p1 = (x1, y1) and p2 = (x2, y2) be two points in Q and
q1 = (u1, v1) and q2 = (u2, v2) their f -images, resp., and suppose that
v1 ≥ v2. We must show d∞(p1, p2) ≥ d∞(q1, q2). First, if |u1−u2| ≥ |v1−v2|,
then d∞(q1, q2) = |u1 − u2| = |x1 − x2| ≤ d∞(p1, p2), as f does not alter the
x-coordinate. On the other hand, suppose that |u1−u2| < |v1−v2| = v1 − v2;
then q1 ∈ f(S)∪f(L) implies q2 ∈ f(L), as f(S) is a graph of the 1-Lipschitz
function x %→ max(0,min(1 − 2w,ϕ(x) − w)). Therefore f decreases the
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y-coordinate of p1 by at least as much as the y-coordinate of p2, and we
have d∞(q1, q2) = v1 − v2 ≤ y1 − y2 ≤ d∞(p1, p2). �

We also note that the mapping f in the above lemma does not increase
the measure of sets.

Let E ⊆ R2 be as in Theorem 1. By the Density Theorem for the Lebesgue
measure, one can choose a square Q0 with side a0 and a compact subset
K ⊆ E ∩ Q0 with λ2(K) ≥ 0.99λ2(Q0). For notational convenience, let us
assume Q0 = [0, a0]

2. Let f0 : R2 → Q0 be a 1-Lipschitz retraction of the
plane onto Q0.

We derive Theorem 1 from the following lemma.

Lemma 4. Let Q = [0, a]2 be an axis-parallel square, let K ⊆ Q be compact
with λ2(K) = λ2(Q)(1 − ε), 0 < ε ≤ 0.01. Then one can find a 1-Lipschitz
mapping g of Q onto Q′ = [0, a′]2 such that

(i) a′ ≥ a(1 − √
ε),

(ii) d∞(p, g(p)) ≤ a
√
ε for any p ∈ Q,

(iii) λ2(K ′) ≥ λ2(Q′)(1 − 0.9ε), where K ′ = g(K).

Assuming this lemma, the proof of Theorem 1 is finished by an inductive
construction as follows. Suppose that we have already constructed a square
Qi = [0, ai]

2 and a 1-Lipschitz mapping fi of R2 onto Qi in such a way that
λ2(Ki) ≥ λ2(Qi)(1−εi), where Ki = fi(K). We apply Lemma 4 with Q = Qi,
a = ai,K = Ki, and we get a 1-Lipschitz mapping gi : Qi → Qi+1 = [0, ai+1]2

with properties as in the lemma. We set fi+1 = gi ◦ fi and continue by the
next step of the construction.

From the Lemma we get εi+1 ≤ 0.9εi and ai+1 ≥ ai(1 − √
εi). We

thus have εi ≤ 0.01(0.9)i, ai ≥ a0
∏i−1

j=0(1 − 0.95j/10), and straightforward
estimates give a = limi→∞ ai ≥ 0.1a0.

For every point p ∈ R2, we set f(p) = limi→∞ fi(p). Condition
(ii) of Lemma 4 guarantees that the limit exists. The mapping f is clearly
1-Lipschitz, and its image is contained in the square Q = [0, a]2. The set
f(K) is compact and it is easily seen that it is also dense in Q, and thus
f(K) = Q. The proof of Theorem 1 is finished by rescaling f so that it maps
K onto [0, 1]2.

Proof of Lemma 4: Let G be the set of squares with side a/n from an
n × n grid covering Q. Let B0 ⊆ G be the set of squares s ∈ G with
λ2(s \K) ≥ 15

16λ
2(s). Choose n so large that the squares of B0 contain at

least 1/2 of the measure of Q \ K; this is possible by elementary measure
theoretic considerations. Then |B0| ≥ εn2/2.

The required mapping g will again be constructed inductively, this time
in a finite number t of steps. Let us explain the first step of the construction.
Let ϕ0 : [0, a] → [0, a] be a suitable 1-Lipschitz function; its choice is the
heart of the proof. The requirement on ϕ0 is that either the graph of ϕ0

(i.e. the set {(x, ϕ0(x)); x ∈ [0, a]}) or the graph of ϕ0 rotated by π/2 (i.e. the
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set {(ϕ0(y), y); y ∈ [0, a]}) contain the centers of possibly many squares of
B0, namely at least

√|B0| such centers. We will explain the construction

assuming that the first case occurs (the graph of ϕ0 contains at least
√|B0|

centers). The second case is handled symmetrically, by exchanging the role
of the coordinate axes.

Let D0 ⊆ B0 be the squares whose centers are contained in the graph
of ϕ0, |D0| ≥

√|B0|. We let ḡ0 : Q → Q be the contraction of Q along ϕ0

by a/n (see the definition above Lemma 3). We define an auxiliary mapping
h0 : [0, a] × [0, a(n − 2)/n] → [0, a(n − 2)/n]2, acting as the identity on the
first n − 2 columns of the grid and contracting the last two columns to a
vertical segment, and we set g0 = h0 ◦ ḡ0. Thus, the range of g0 is the square
Q1 = [0, a(n− 2)/n]2.

It is easily checked that the mapping g0 maps each square of the grid G
into some square of G in Q1. All squares in D0 are contracted to pieces of
Lipschitz curves.

We define B1 = {s ∈ G; ∃s′ ∈ B0 : g0(s′) ⊆ s and λ2(g0(s′)) > 0}. Thus,
we have |B1| ≤ |B0| − |D0|, so at least |D0| squares of B0 are “killed” by g0.

Similarly we define mappings g1, g2, . . .. Having defined the mapping gi−1,
we put Bi = {s ∈ G; ∃s′ ∈ Bi−1 : gi−1(s′) ⊆ s and λ2(gi−1(s′)) > 0} and
we construct an appropriate 1-Lipschitz mapping gi : Qi → Qi+1, where
Qi = [0, a(n− 2i)/n]2. The mapping gi kills at least

√|Bi| squares of Bi, in

the sense that |Bi| − |Bi+1| ≥
√|Bi|.

Let t be the first index such that |B0| − |Bt| ≥ εn2/5. For i < t, we
thus have |B0| − |Bi| < εn2/5 (and therefore |Bi| > εn2/4). In particular, we
get εn2/5 > |B0| − |Bt| ≥

∑t−2
i=0

√|Bi| ≥ (t − 1)n
√
ε/2, which implies that

t < 2
5n

√
ε+ 1 ≤ n

√
ε/2 (since we may assume that n

√
ε is large).

By composing the mappings g0, . . . , gt−1, we obtain a 1-Lipschitz mapping
g of Q onto Q′ = [0, a′]2, with a′ = a(1 − 2t/n) ≥ a(1 − √

ε). Under this
mapping, at least εn2/5 of the squares of B0 have images of measure 0, and
these squares contain at least 15

16 (a2/n2)(εn2/5) = 3
16εa

2 of the measure of
Q \ K. Hence λ2(g(Q \ K)) ≤ 13

16εa
2 and λ2(g(K)) ≥ λ2(Q′ \ g(Q \ K)) ≥

a′2 − 13
16εa

2. Using the assumption ε ≤ 0.01, we have a′ ≥ a(1 − √
ε) ≥ 0.9a,

and thus λ2(g(K)) ≥ a′2(1 − 10
9 · 13

16ε) ≥ a′2(1 − 0.9ε) as required.
It remains to show how to choose the mappings ϕi, whose graphs or

rotated graphs pass through sufficiently many center points of the squares
of Bi. Call a set D ⊆ R2 1-Lipschitz in the y-coordinate (resp. in the
x-coordinate) if |y1 − y2| ≤ |x1 − x2| (resp. |x1 − x2| ≤ |y1 − y2|) for any
two points (x1, y1), (x2, y2) ∈ D. It is easy to see that if D is a finite set
which is 1-Lipschitz in the y-coordinate, then there is a 1-Lipschitz function
whose graph contains D. Hence it suffices to establish the following

Lemma 5. Let P be an m point set in the plane, k = �√m  . Then there
exists either a k point subset of P 1-Lipschitz in the x-coordinate or a k point
subset of P 1-Lipschitz in the y-coordinate.
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Proof: Call a set C in the plane a nondecreasing chain if for any two points
(x1, y1), (x2, y2) ∈ C with x1 ≤ x2 we have y1 ≤ y2; a nonincreasing chain
is defined analogously with an opposite inequality for the y-coordinates.
A lemma due to Erdös and Szekerés [4] can be stated as follows: Any
m point set in the plane contains a k point nondecreasing chain or a
k point nonincreasing chain. To see the relevance to the above lemma, rotate
the coordinate system by π/4; then nondecreasing chains become precisely
1-Lipschitz subsets in the x-coordinate and nonincreasing chains become
1-Lipschitz subsets in the x-coordinate. �

For a direct application of the above method for Laczkovich’s problem in
dimension d, one would need the following: Given an m-point set P in R,
find a subset S of size cm1−1/d (c > 0 a constant) which is 1-Lipschitz in the
xi-coordinate for some i = 1, 2, . . . , d. Here a subset S ⊆ P is C-Lipschitz in
the xi-coordinate if for any two points a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ S
one has |ai − bi| ≤ C maxi	=j(|aj − bj|). As noted by Gábor Tardos, already
for d = 3 such a large 1-Lipschitz subset need not exist; see [7]. Indeed, let
P ⊂ R3 be the set {(i, j, i+ i); i, j = 1, 2, . . .

√
m}; it is not difficult to check

that there is no subset of size exceeding O(
√
m) which is 1-Lipschitz in one

of the coordinates. Still, it is possible that there always exists a subset of size
cm1−1/d which is C-Lipschitz in one of the coordinates, C a constant. This
problem looks interesting in its own right, although it is not completely clear
whether a positive answer would solve Laczkovich’s problem.

Update from the year 2012. Alberti, Csörnyei, and Preiss gave a negative
solution to the last stated problem (apparently still unpublished; see [1]).
However, the following variant of the problem, from [2], still remains open,
and a positive answer would also have interesting analytic consequences: Is
there a constant C such that for every nd-point set in Rd there exists a
coordinate system and a subset of at least nd−1 points that is C-Lipschitz in
one of the coordinates? Further significant progress regarding Laczkovich’s
problem and related questions was announced by Csörnyei and Jones (see [2]).

3. Proof of Theorem 2

In the above proof of Theorem 1, the only part where an arbitrarily large
part of the measure of E is wasted is the initial application of the Density
Theorem for the choice of the square Q0 with λ2(Q0 ∩ E) > 0.99λ2(Q0). In
the rest of the proof, Q0 ∩E is then mapped onto a square with side at most
10 times smaller than the side of Q0. Thus, it suffices to prove the following
lemma:

Lemma 6. For any ε0 ∈ (0, 1) and any E ⊂ R2 with λ2(E) = 1, there exists
a 1-Lipschitz mapping f : R2 → Q = [0, c]2 with λ2(f(E)) ≥ (1 − ε0)λ2(Q),
where c = c(ε0) > 0 only depends on ε0.
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Proof: The proof is probabilistic, using the so-called Second Moment
Method; see, e.g., [3].

Fix c =
√
ε0/7. For simplicity, we will construct a 2-Lipschitz mapping

onto [0, c]2; the Lemma is then obtained by taking c/2 instead of c and
rescaling. Choose an integer N large enough so that some axis-parallel square
S with side 3cN contains at least 9/10 of the measure of E. Let G be anN×N
grid consisting of 3c× 3c axis-parallel squares; the squares of G are denoted
by sij , i = 1, 2, . . .N denoting the row index and j = 1, 2, . . . , N the column

index. Let Mij denote the middle c×c square in sij , and set M =
⋃N

i,j=1Mij .
Since 9 translational copies of the set M cover the square S, it is possible to
place the grid G in such a way that λ2(M ∩E) ≥ 1/10; we assume that such
a placement has been fixed.

gz

z

sij

Mij

gz (Mij)

a b

Fig. 2 (a) The grid G and the set M ; (b) the mapping gz

Consider a grid square sij . Let z = zij ∈ [0, 2c]2 be a vector. We define a
mapping gz : sij → sij as follows. We require that gz is the identity map on
the boundary ∂sij of sij , and on Mij , gz acts as the translation by the vector
z − (c, c) (see Fig. 2). With respect to the d∞ metric, gz is a 2-Lipschitz
mapping on ∂sij ∪ Mij . We extend it to a 2-Lipschitz mapping sij → sij
(this is possible since for any metric space Y and any X ⊆ Y , a C-Lipschitz
mapping from X to the plane with the d∞ metric can be extended to a
C-Lipschitz mapping defined on Y ; see, e.g., [9]).

For later use, we observe that if z is randomly chosen from the uniform
probability distribution on [0, 2c]2, then for any fixed x ∈ Mij , we have

Prob(x ∈ gz(E ∩Mij)) ≥ λ2(E ∩Mij)

4c2
(1)

(since for each y ∈ E ∩Mij , gx−y+(c,c) sends y to x).
Consider Z = {(zij ; i, j = 1, 2, . . . , N); zij ∈ [0, 2c]2} with the product

probability measure, and let z ∈ Z be a random element. Let ḡz : G → G
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be the 2-Lipschitz mapping whose restriction on each sij is gzij . Further we
define a 1-Lipschitz mapping f1 : G → [0, 3c]2 corresponding to a “folding”
of the grid G (as if G were a piece of paper and we wanted to fold it to one
little square). Formally, if p ∈ sij is a point in G with displacement (x, y)
from the lower left corner of sij , we set

f1(p) =

⎧
⎪⎪⎨

⎪⎪⎩

(x, y) for i, j odd,
(x, 3c− y) for i odd, j even,
(3c− x, y) for i even, j odd,
(3c− x, 3c− y) for i, j even.

Finally, we let f0 be the retraction of the plane onto the grid G, and f2 :
[0, 3c]2 → Q be the mapping translating the middle c × c square of [0, 3c]2

onto Q = [0, c]2 and contracting the rest of [0, 3c]2 onto the boundary of
Q. Both f0, f2 are 1-Lipschitz. We put fz = f2 ◦ f1 ◦ ḡz ◦ f0. This is a
2-Lipschitz map.

Fix any point x ∈ [0, c]2, and let Xij be the 0/1 indicator variable for the
event x ∈ fz(E∩Mij) (this is a random variable depending on the choice of z),

and set X =
∑N

i,j=1Xij . From (1), we get for the expectation of each Xij

EXij ≥ 1

4c2
λ2(E ∩Mij) ,

and so

EX =

N∑

i,j=1

EXij ≥ 1

40c2
>

1

ε0
.

As the variables Xij are independent, we have

VarX =

N∑

i,j=1

VarXij ≤
N∑

i,j=1

EX2
ij =

∑

i,j

EXij = EX .

From Chebyshev’s Inequality we thus get

Prob(X = 0) ≤ Prob(|X − EX | ≥ EX) ≤ VarX

(EX)2
≤ 1

EX
< ε0 .

The event X �= 0 means x ∈ fz(M ∩E), where x is our fixed point of Q. Con-
sidering all x’s simultaneously and using Fubini’s Theorem, we get that there
exists a z0 ∈ Z such that λ2(fz0(E∩M)) ≥ (1−ε0)λ2(Q). This concludes the
proof of Lemma 6. �
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“What does the Hungarian parrot say?”
“Log. Log log log log . . . ”

(Riddle. Folklore.)

1. Introduction

In his classical monograph published in 1935, Dénes König [23] included one
of Paul Erdős’s first remarkable results: an infinite version of the Menger
theorem. This result (as well as the König-Hall theorem for bipartite graphs,
and many related results covered in the book) can be reformulated as a
statement about transversals of certain hypergraphs.

Let H be a hypergraph with vertex set V (H) and edge set E(H). A subset
T ⊆ V (H) is called a transversal of H if it meets every edge E ∈ E(H).
The transversal number τ(H) is defined as the minimum cardinality of a
transversal of H . Clearly, τ(H) ≥ ν(H), where ν(H) denotes the maximum
number of pairwise disjoint edges of H . In the above mentioned examples,
τ(H) = ν(H) holds for the corresponding hypergraphs. However, in general
it is impossible to bound τ from above by any function of ν, without putting
some restriction on the structure of H .

One of Erdős’s closest friends and collaborators, Tibor Gallai (who is also
quoted in König’s book) once said: “I don’t care for bounds involving logn’s
and log logn’s. I like exact answers. But Paul has always been most interested
in asymptotic results.” In fact, this quality of Erdős has contributed a great
deal to the discovery and to the development of the “probabilistic method”
(see [4, 14]).

The search for “exact answers” (e.g. to the perfect graph conjecture
of Berge [7]) has revealed some important connections between transversal
problems and linear programming that led to the deeper understanding of the
König-Hall-Menger-type theorems. It proved to be useful to introduce another
parameter, the fractional transversal number of a hypergraph, defined by

τ�(H) = min
t

∑

x∈V (H)

t(x),
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where the minimum is taken over all non-negative functions t : V (H) −→ R

with the property that
∑

x∈E

t(x) ≥ 1 for every E ∈ E(H).

Obviously, τ(H) ≥ τ�(H) ≥ ν(H), and τ�(H) can be easily calculated by
linear programming. (See [25] and [30].)

At the same time, the probabilistic (or shall we say, asymptotic) approach
has also led to many exciting discoveries about extremal problems related to
transversals (e.g. Ramsey-Turán-type theorems, property B). It was pointed
out by Vapnik and Chervonenkis [32] that in some important families of
hypergraphs a relatively small set of randomly selected vertices will, with high
probability, be a transversal. They defined the dimension of a hypergraph as
the size of the largest subset A ⊆ V (H) with the property that for every
B ⊆ A there exists an edge E ∈ E(H) such that E ∩ A = B. Adapting the
original ideas of [32] and [21], it was shown in [22] (see also [27]) that

τ(H) ≤ (1 + o(1)) dim(H)τ�(H) log τ�(H), (1)

as τ� −→ ∞, and that this bound is almost tight.
Ding, Seymour and Winkler [11] have introduced another parameter of a

hypergraph, closely related to its dimension. They defined λ(H) as the size
of the largest collection of edges {E1, . . . , Ek} ⊆ E(H) with the property
that for every pair (Ei, Ej), 1 ≤ i �= j ≤ k, there exists a vertex x such that
x ∈ Ei ∩ Ej but x �∈ Eh for any h �= i, j. Combining (1) with Ramsey’s
theorem, they showed that

τ(H) ≤ 6λ2(H)(λ(H) + ν(H))

(
λ(H) + ν(H)

λ(H)

)2

(2)

holds for every hypergraph H .
As far as we know, Haussner and Welzl [21] were the first to recognize

that (1) has a wide range of interesting geometric applications, due to the
fact that a large variety of hypergraphs defined by geometric means have low
Vapnik-Chervonenkis dimensions.

The aim of this note is to illustrate the power of this approach by
two examples. In Sect. 2 we show that (2) easily implies some far-reaching
generalizations of results of Erdős and Szekeres [15, 16]. In Sect. 3, we use (2)
to extend and to give alternative proofs for some old results of Gyárfás and
Lehel (see [19, 20, 24]) bounding the transversal numbers of box hypergraphs.

2. Covering with Boxes

Given two points p, q,∈ R
d, let Box[p, q] be defined as the smallest box

containing p and q, whose edges are parallel to the axes of the coordinate
system. The following theorem settles a conjecture of Bárány and Lehel [6],
who established the first non-trivial result of this kind.
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Theorem 1. Any finite (or compact) set P ⊆ R
d contains a subset with at

most 22
d+2

elements, {pi|1 ≤ i ≤ 22
d+2}, such that

P ⊆
22

d+2

⋃

i,j=1

Box[pi, pj ].

Proof. Let H be a hypergraph on the vertex set

V (H) = {Box[p, q]|p, q ∈ P},
defined as follows. Associate with each point r ∈ P the set

Er = {Box[p, q]|r ∈ Box[p, q]},
and let E(H) = {Er|r ∈ P}.

Clearly, Ep∩Eq �= ∅ for any p, q ∈ P , because Box[p, q] ∈ Ep∩Eq . Hence,
ν(H) = 1.

According to a well-known lemma of Erdős and Szekeres [15], any
sequence of k2 + 1 real numbers contains a monotone subsequence of length
k + 1. By repeated application of this statement, we obtain that any set of

22
d−1

+1 points in R
d has three elements pi, pj , pk with pk ∈ Box[pi, pj ]. This

immediately implies that

λ(H) ≤ 22
d−1

.

Indeed, for any family of more than 22
d−1

edges Ep1 , . . . Epλ
∈ E(H), one can

choose three distinct indices i, j, k with pk ∈ Box[pi, pj ], which yields that

Epi ∩ Epj ⊆ Epk
.

Thus, we can apply (2) to obtain

τ(H) ≤ 6λ2(H) (λ(H) + 1)3 < 22
d+2

,

and the result follows. �

As was shown in [6], the bound 22
d+2

in Theorem 1 is nearly optimal.
In fact, the above argument yields a slightly stronger result.

Theorem 2. Let P ⊆ R
d by any compact set, and let B be any family of

boxes in parallel position with the property that for any (ν+1)-element subset
P ′ ⊆ P there is a box B ∈ B which covers at least two points of P ′(d, ν ≥ 1).

Then one can choose at most
(
22

d
+ν
ν

)5
members of B such that their union

will cover P .

In [16], Erdős and Szekeres proved the following.

Lemma 1. Every set P ⊆ R
2 with at least 2k elements contains three points

p1, p2, p3 such that 
p1, p2, p3 ≥ π
(
1 − 1

k

)
.
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Our next result, which improves a theorem of Bárány [5], can be regarded
as a generalization of Lemma 1.

Theorem 3. Let d be a positive integer, ε > 0. Every finite (or compact) set

P ⊆ R
d has a subset of at most 2(c/ε)

d−1

elements, P ′ = {p1, p2, . . .}, with
the property that for any p ∈ P \ P ′ there exist pi, pj ∈ P ′ satisfying


pippj ≥ π − ε.

(Here c ≤ 8 is a constant.)

Proof. For d ≥ 2, ε > 0 fixed, let us cover the unit hemisphere centered
at O ∈ R

d with (4/ε)d−1 spherical (d − 1)-dimensional simplices S1, S2, . . .
such that the diameter of each Si is at most ε/2. Let ht1, . . . , htd denote
the hyperplanes induced by O and the ((d − 2)-dimensional) facets of St. A
parallelotope whose facets are parallel to ht1, . . . , htd, respectively, is called a
box of type t. The smallest box of type t containing p, q ∈ R

d will be denoted
by Boxt[p, q].

For any p, q ∈ R
d, choose an index t such that pq is parallel to Os for

some s ∈ St, and let Box[p, q] = Boxt[p, q]. Notice that if r ∈ Box [p, q] then

prq ≥ π − ε.

Just like in the previous proof, define a hypergraph H by

V (H) = {Box[p, q]|p, q ∈ P},
E(H) = {Er|r ∈ P},

where Er = {Box[p, q]|r ∈ Box[p, q]}, and observe that it is sufficient to
bound the transversal number of H . Clearly, ν(H) = 1.

By the definition of λ(H), one can select λ(H) = λ elements p1, . . . , pλ ∈
P with the property that any two of them is enclosed in a box of some type,
which does not cover any other pk. More precisely, for every 1 ≤ i < j ≤ λ
there exists t(i, j) ≤ (4/ε)d−1 such that

{p1, . . . , pλ} ∩ Boxt(i,j)[pi, pj ] = {pi, pj}.
Obviously, pi and pj are two antipodal vertices of Boxt(i,j)[pi, pj], and every

box has 2d−1 pairs of antipodal vertices. Let us color the segments pipj(1 ≤
i < j ≤ λ) with (4/ε)d−12d−1 colors according to the value of t(i, j) and to
the particular position of the diagonal pipj within Boxt(i,j)[pi, pj ]. It is easy
to see that the segments of the same fixed color form a bipartite subgraph
of the complete graph Kλ on the vertex set p1, . . . , pλ. Hence the chromatic
number of Kλ,

λ(H) ≤ 2(4/ε)
d−12d−1

,

and the result follows from (2). �

It is not hard to see that the bound in Theorem 3 is asymptotically tight,
apart from the exact value of c (see [5, 13]).
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Combining these observations with an analogue of Turán’s theorem for
hypergraphs, we immediately obtain the following result related to a problem
of Conway, Croft, Erdős and Guy [8].

Corollary 1. There exists a constant c > 0 such that, for any set of n
distinct points p1, . . . pn ∈ R

d, the number of triples i < j < k for which


pipjpk > π− ε, is at least n3/2(c/ε)
d−1�. Moreover, apart from the value of

c, this bound cannot be improved.

Finally, we mention another straightforward generalization of Lemma 1.

Theorem 4. Let P be any set of at least k(c/ε)
d−1

points in R
d, where c

is a suitable constant. Then one can find p0, . . . , pk ∈ P such that they are
“almost collinear”, i.e., 
pi−1pipi+1 > π − ε for every i(1 ≤ i < k).

3. Gallai-Type Theorems

Many problems in geometric transversal theory were motivated by the
following famous question of Gallai. Given a family of pairwise intersecting
disks in the plane, what is the smallest number of needles required to pierce
all of them? (The answer is three. See [9, 10, 12, 17].)

First we show that (2) implies the following result of Gyárfás and Lehel.

Theorem 5 ([20]). For any positive integers k and ν, there exists a number
f = f(k, ν) with the following property. Let H be any finite family of subsets
of R such that each of them can be obtained as the union of at most k intervals.
If H has no ν + 1 pairwise disjoint members, then all of its members can be
pierced by at most f points.

Proof. In order to apply (2), we have to bound λ(H). Let E1, . . . , Eλ be some
members (edges) of H such that, for any i < j, Ei ∩Ej has a point xij which
does not belong to any other Eh (h �= i, j). Write each Ei (1 ≤ i ≤ λ) as the
union of k intervals,

Ei = Ii1 ∪ . . . ∪ Iik.
If xij ∈ Iip ∩ Ijq for some i < j, then (Ei, Ej) is called a pair of type (p, q).
(A pair may have several different types.)

It is easy to check that there are no four edges Ei such that all
(
4
2

)
= 6

pairs determined by them are of the same type. Thus,

λ < Rk2(4),

where Rs(t) denotes the smallest number R such that any complete graph
of R vertices, whose edges are colored with s colors, has a monochromatic
complete subgraph of t vertices (cf. [18]). Hence, the theorem is true with
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f(k, ν) ≤ 6

(
Rk2(4) + ν

ν

)5

. �

Theorem 5 does not generalize to subsets of the plane that can be obtained
as the union of k axis-parallel rectangles. Indeed, let H = {Ei|1 ≤ i ≤ n},
where

Ei =
{

(x, y) ∈ R
2 | 0 ≤ x, y ≤ n and min(|x− i|, |y − i|) ≤ 1

4

}
.

Then ν(H) = 1, while λ(H) = τ(H) = n.
However, one can easily establish the following.

Theorem 6. Let F be a family of open domains in the plane such that each
of them is bounded by a closed Jordan curve, and any two of them share at
most two boundary points. Furthermore, let H be a finite set system, whose
every element can be obtained by taking the union of at most k members of
F . If H has no ν + 1 pairwise disjoint elements, then all of its elements can
be pierced by at most g(k, ν) points (where g depends only on k and ν).

Proof. Pick λ elements (edges) of H ,

Ei = Ii1 ∪ . . . ∪ Iik (Iip ∈ F, 1 ≤ i ≤ λ, 1 ≤ p ≤ k),

and suitable points

xij ∈ (Ei ∩ Ej) \ ∪h 	=i,jEh,

as in the previous proof. After defining the type of a pair (Ei, Ej), i < j
in exactly the same way as above, now one can argue that there are no
6 edges Ei such that all the

(
6
2

)
= 15 pairs determined by them have the

same type (p, q). Assume, for contradiction, that e.g. E1, . . . , E6 satisfy this
condition for some p �= q. Then any Iip (1 ≤ i ≤ 3) and any Ijq (4 ≤ j ≤
6) have a common interior point (xij) which is not covered by any other
Ek (k �= i, j). We can conclude (by tedious case analysis) that there exist
pairwise disjoint connected open subsets I ′ip ⊆ Iip (1 ≤ i ≤ 3), I ′jq ⊆ Ijq
(4 ≤ j ≤ 6) such that every I ′ip and I ′jq share a common boundary segment.
This contradicts Kuratowski’s theorem on planar maps. The case p = q can
be treated similarly.

Thus, λ < Rk2(6) and the result follows. We could also apply Theorem 1.1
of Sharir [31] to deduce λ < Rk2(c) with a much larger constant c > 6. �

Theorem 6 can be applied to the family FC of all homothetic copies of a
convex set C in the plane. The special case when C is a convex polygon with
a bounded number of sides was settled by Gyárfás [19]. (An easy compactness
argument shows that C does not need to be strictly convex.)

For any hypergraph H and for any integer t ≥ 1, let νt(H) denote the
maximum number of (not necessarily distinct) edges of H such that every
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vertex is contained in at most t of them. Furthermore, let λt(H) be the size
of the largest collection of edges {Ei|i ∈ I} ⊆ E(H) with the property that
for any t-tuple J ⊆ I there exists xJ ∈ V (H) such that

xJ ∈
(
⋂

i∈J

Ei

)

\
⎛

⎝
⋃

i	∈J

Ei

⎞

⎠ .

Clearly, ν1(H) = ν(H) and λ2(H) = λ(H).
Ding, Seymour and Winkler [11] have established an upper bound for

τ(H) in terms of νt(H) and λt+1(H), for any fixed t ≥ 1. Applying their
result with t = 2, we obtain the following generalization of Theorem 5 for the
plane.

Theorem 7. Let H be a finite family of open sets in the plane such that

(i) Every member of H is bounded by at most k closed Jordan curves;
(ii) Any two distinct members of H have at most � boundary points in

common.

Assume that among any ν + 1 members of H there are three with non–empty
intersection. Then all members of H can be pierced by at most f(k, �, ν)
points, where f does not depend on H.

In higher dimensions we obtain e.g. the following result.

Theorem 8. Let H be a finite family of not necessarily connected polyhedra
in R

d(d ≥ 2). Assume that every member of H has at most k vertices, and
that among any ν + 1 members of H there are d + 1 whose intersection is
non-empty. Then all members of H can be pierced by at most g(d, k, ν) points,
where g does not depend on H.

The special case of Theorem 8, when every member of H is the union of
a bounded number of axis-parallel boxes, was proved by Lehel [24].

4. Concluding Remarks

Alon, Brightwell, Kierstead, Kostochka, and Winkler [1] further analyzed the
hypergraph H defined in the proof of Theorem 1. Using the same corollary
of the Erdős-Szekeres theorem [15] as we did, they gave an upper bound on
τ∗(H). Using (1) rather than (2), they obtained a slight improvement on

Theorem 1: Instead of a subset of size 22
d+2

, there exists a subset of size

22
d+d+log d+log log d+O(1)

with the required property. Here log stands for the natural logarithm.
Pálvölgyi and Gyárfás [28] fine-tuned the above arguments and further

improved the bound to
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22
d−1+log d+log log d+O(1).

Many related transversal problems concerning hypergraphs defined by
geometric means and hypergraphs formed by the neighborhoods of the
vertices of a graph were studied in [1–3] and [26], respectively. In most cases, it
turns out that these hypergraphs or some others derived from them have small
λ or small VC-dimension. Therefore, one can apply the estimates (1) or (2).
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Summary. We use the Gram matrix to prove that the largest number of points
in Rd such that the distance between all pairs is an odd integer (the square root of
an odd integer) is ≤ d+ 2 and we characterize all dimensions d for which the upper
bound is attained. We also use the Gram matrix to obtain an upper bound for the
smallest angle determined by sets of n lines through the origin in Rd.

1. Introduction

An n× n symmetric matrix M is positive semi-definite if 〈Mx, x〉 ≥ 0 for all
vectors x ∈ En. Equivalently, M is positive semi-definite if it is symmetric
and its eigenvalues are nonnegative. The Gram Matrix (Grammian) of the set
of vectors {ul, . . . , un} ⊂ Ed is the n×n matrix M defined by M = (〈ui, uj〉).
This matrix is a positive semi-definite matrix and its rank is the dimension of
the subspace spanned by {u1, . . . , un}. It is well known that if N is a positive
semi-definite matrix of order n × n and rank d, then N is the Grammian
of a set of n vectors {u1, . . . , un} ⊂ Ed. In other words, N = (〈ui, uj〉).
This bi-directional relation between vectors, their inner products and the
Grammian has provided a powerful tool for solving problems in combinatorics
and combinatorial geometry, it plays a central role in the extensive work of
Seidel on equiangular lines, it was used in [4] to solve a problem of L. Lovász

where they proved that
3
√

2n2 ≥ max ‖
n∑

i=1

ui‖ ≥ c
3√
n2√
lnn

, the max taken over

all families of n almost orthogonal unit vectors in Rn, that is all n tuples of
vectors such that among any three vectors there is at least one orthogonal
pair, it was used in [9] to answer a question of P. Erdös showing that the
maximum size of a set of almost orthogonal lines in Rd is 2d and the list can
go on and on. One could fill a large volume exploring the many applications of
the Gram matrix. The work in this note was motivated by the following simple
and attractive problem that appeared in the Nov. 1993 54th W. L. Putnam
Mathematical Competition (problem B-5): Can four points in the plane have
pairwise odd integral distances? The answer is NO and the Gram matrix
provides a very short proof of that. Surprisingly, we cannot do much better if
we relax the distance requirement and permit points to have distances whose
square is an odd integer. We prove that if the square of all distances among
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pairs of n points in Rd is an odd integer then n ≤ d + 2. We show that the
upper bound is attained if and only if d = 2 mod 4. A slight modification
of this proof yields also an alternative proof to a theorem of R. L. Graham,
B. L. Rothschild and E. G. Strauss [3] that d + 2 points in Rd with odd
integral distances exist if and only if d = 14 mod 16. We conclude by using
the Gram matrix to obtain an upper bound for the smallest angle determined
by sets of n lines through the origin in Rd. Cases for which this upper bound
is attained are discussed and also some related open problems. In Sect. 2 we
discuss distances among points and related open problems and in Sect. 3 we
discuss angles among lines.

2. Odd Distances Among Points in Rd

Theorem 1. Let p1, . . . , pn be n points in Rd such that ‖pi − pj‖2 = 1
mod 2 if i �= j. Then

n ≤
{
d+ 2 ifd = 2 mod 4

d+ 1 ifd �= 2 mod 4

and this is best possible.

Proof. Let uk = pk − p1 and let M = (〈uk, uj〉) be the Gram Matrix of the
vectors {uk}. M is a positive semi-definite matrix of rank ≤ d and order
n − 1, hence if n − 1 > d det(M) = 0 and therefore det(2M) = 0. From
2〈ui, uj〉 = ‖ui‖2 + ‖ui‖2 − ‖ui − uj‖2 and ‖ui − uj‖2 = ‖pi − pj‖2 = 1
mod 2 we deduce that 2〈ui, uj〉 is an odd integer. From the above discussion
it follows that:

A = 2M mod 4 =

⎛

⎜
⎜⎜
⎜
⎝

2 a1,2 a1,3 . . . a1,n+1

a1,2 2 a2,3 . . . a2,n+1

· · · . . . ·
· · · . . . ·

an+1,1 an+1,2 · . . . 2

⎞

⎟
⎟⎟
⎟
⎠

(aij = aji = ±1).

Let Aij(x) be the matrix derived from the matrix A by replacing aij and aji
by x. Consider the quadratic p(x) = det(Aij(x)) = ax2 + bx + c. Since all
entries in A are integers clearly, a, b and c are also integers. Furthermore,
since Aji(x) is symmetric we also have b = 2k. Hence p(1) − p(−1) = 4k.
This means that by replacing any pair of symmetric −1’s by 1’s the value of
the determinant mod 4 remains unchanged or det(A) mod 4 = det(J + I)
mod 44 (the matrix J is the square matrix with Jij = 1). Clearly 1 is an
eigenvalue of J + I with multiplicity n − 2 and since the sum of the entries
in each row is n, n is the remaining eigenvalue. Therefore det(A) mod 4 =
det(J + I) mod 4 = n mod 4. As noted above, det(A) = 0 if n > d + 1
hence we must have n = 0 mod 4. If n > d+ 3 and if we had n points in Rd
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with mutually odd integral squared distances then n = 0 mod 4. But then
removing one of the points will yield a set of n − 1 such points in Rd while
n − 1 �= 0 mod 4 and n − 1 > d + 1 which is impossible. Hence n ≤ d + 2.
It remains to show that for all d = 2 mod 4 it is possible to construct d+ 2
points in Rd with mutually odd integral squared distances. The following
construction using the Gram matrix will do the job.

Let d = 4k+2 and let A be a matrix of order 4k+3 with Aii = 2k+1 and
Aij = − 1

2 i �= j. Since A − (2k + 3
2 )I = − 1

2J , (2k + 3
2 ) is an eigenvalue of A

and since J has rank 1 the multiplicity of this eigenvalue is 4k+ 2. The sum
of the entries in each row is zero, hence 0 is the remaining eigenvalue of A.
This implies that rank(A) = 4k + 2 = d that A is positive semi-definite and
can be written as: A = M ·M tr where M is a (4k+ 3)× (4k+ 2) matrix. The
rows of M will determine 4k+ 3 points {pi} in Rd such that: ‖pi‖2 = 2k+ 1
and ‖pi − pj‖2 = ‖pi‖2 + ‖pj‖ + 1 = 4k + 3. These points together with the
origin yield 4k+ 4 = d+ 2 points as claimed. Geometrically, the d+ 2 points
consist of the d + 1 points of a regular simplex with side

√
4k + 3 and its

center. To see this, recall that the length of the edge of the regular simplex

inscribed in the unit sphere in Rd is
√

2 + 2/d =
√

4k+3
2k+1 if d = 4k+ 2. Hence

if we inflate the regular unit simplex by
√

2k + 1 the distance from the center
to the vertices will be

√
2k + 1 and the distance between the other vertices

will be
√

4k + 3. �

A slight modification of the above proof yields an alternative proof to the
following theorem of Graham, Rothschild and Strauss [3].

Theorem 2. For the existence of n + 2 points in Rn so that the distance
between any two of them is an odd integer it is necessary and sufficient that
(n+ 2) = 0 mod 16.

Proof. As in the previous proof, let {p0, . . . , Pn+1} be n+2 points in Rn with
mutual distances ‖pi − pj‖ = 1 mod 2. Let ui = pi − p0, i = 1, . . . , n + 1.
The matrix M = (〈ui, uj〉) has rank ≤ d and order n+ 1. Hence if n ≥ d we
have:

det(M) = 0 (1)

det(M) = 0 ⇒ det(2M) = 0 ⇒ det(2M) mod 16 = 0. (2)

Since ‖ui, uj‖ = ‖pi, pj‖ = 1 mod 2 we have:

‖ui, uj‖2 = 1 mod 8 (3)

2〈ui, uj〉 = ‖ui‖2 + ‖uj‖2 − ‖ui − uj‖2 = 1 mod 8. (4)

Since ‖ui‖ = 1 mod 2 we have:

2〈ui, ui〉2 = 2‖ui‖2 = 2 mod 16. (5)
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From (4) and (5) we get:

2M mod 16 =

⎛

⎜
⎜
⎜
⎜
⎝

2 a1,2 a1,3 . . . a1,n+1

a2,1 2 a2,3 . . . a2,n+1

· · · . . . ·
· · · . . . ·

an+1,1 an+1,2 · . . . 2

⎞

⎟
⎟
⎟
⎟
⎠

= A (where aij = aji = 1 or 9).

Again we let Aij(X) be the matrix derived from the matrix A by replacing
aij and aji by x and consider the quadratic p(x) = det(Aij(x)) = ax2+bx+c.
As in Theorem 1, a, b and c are integers and b = 2k. Hence p(9) − p(1) =
80a+16k. This means that replacing any pair of symmetric 9’s by 1’s the value
of the determinant mod 16 is unchanged, in other words, det(A) mod 16 =
det(J + I) mod 16.

Since the eigenvalues of J + I are (n+ 2) and (1){n} we have:

det(J + I) mod 16 = (n+ 2) mod 16.

Thus det(M) can be 0 only if (n+ 2) = 0 mod 16. Again, the Gram matrix
can be used to describe a construction of d + 2 points so that the distance
between any two of them is an odd integer. As in Theorem 1, it will suffice
to construct a positive semi-definite matrix M of order d + 1, rank d, with
Mii = (2ki + 1)2 and Mii +Mjj − 2Mij = (2kij + 1)2. For d = 16k− 2 let M
be the matrix of order 16k − 1 shown below.

M =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

(4k − 1)2 (4k−1)2

2 · · · (4k−1)2

2
(4k−1)2

2 (6k − 1)2 8k2−8k+1
2 · · 8k2−8k+1

2

· 8k2−8k+1
2 · · · ·

· · · · · ·
· · · · · ·

(4k−1)2

2
8k2−8k+1

2 · · · (6k − 1)2

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

A simple but tedious computation shows that (8k − 1) times the top row is
the sum of the remaining 16k−2 rows. Hence 0 is an eigenvalue of M . Clearly,

((6k − 1)2 − 8k2−28k+1
2 ) is an eigenvalue with multiplicity 16k − 3 and using

the trace we can see that the remaining eigenvalue is also positive. Hence M
is positive semi-definite of rank 16k− 2. Since 2(6k− 1)2 − (8k2 − 8k + 1) =
(8k − 1)2 and (6k − 1)2 + (4k − 1)2 − (4k − 1)2 = (6k − 1)2M is the desired
matrix. The matrix M is the Gram matrix of the vectors determined by the
d+ 2 points constructed in [3]. �

Remark 1. Unlike the d+ 2 points constructed in Theorem 1, this set is a
3-distance set. H. Harbroth (private communication) showed that there is no
2-distance set of d+2 points in Rd so that the two distances are odd integers.
On the other extreme it might be interesting to construct d+ 2 points so that
all distances (squared distances) are distinct odd integers. Both theorems raise
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some interesting questions already in the plane. If we define a graph whose
vertices are the points in the plane and connect two vertices by an edge if their
distance (distance squared) is an odd integer then this graph does not contain
a K4 (K5). Do either of the two graphs have a finite chromatic number?
(Clearly if the odd distance-squared graph has a finite chromatic number so
does the odd distance graph). This problem is similar to Nelson’s classical
problem of coloring the plane so that points at distance 1 get distinct colors.

As noted by P. Erdős, Turàn’s theorem implies that the maximum number
of distances among n points in the plane that are odd integers is ≤ n2/3. On
the other hand, one can easily construct n points on the line with n2/4 odd
distances. Erdős asked whether it is possible to construct n points in the plane
so that more than n2/4 of the distances will be an odd integer. This question
as well as the similar question with odd squared-distances is also interesting
in higher dimensions.

3. Angles Among Lines in Rd

Let L = {L1, . . . , Ln} ⊂ Rd be a set of lines through the origin. Let α(L)
denote the smallest angle among all angles determined by pairs of distinct
lines from L. Let α(n, d) = sup{α(L)|L = {L1, . . . , Ln} ⊂ Rd}.

Theorem 3. [1] cosα(n, d) ≥
√

n−d
d(n−1) .

[2] For each n and d there is a set of lines L = {L1, . . . , Ln} ⊂ Rd such
that cosα(L) = cosα(n, d).

Proof. We assume that n > d. Let ui be a unit vector along the line Li and
let M be the Grammian of {u1, . . . , un}. Note that cos2 a(L) = max〈ui, uj〉2.
Since M is positive semi-definite of rank ≤ d it has at most d nonzero
eigenvalues {λ1, . . . , λd}, λi ≥ 0. Since the ui’s are unit vectors, Mii = 1
and therefore:

trace(M) = n =

d∑

i=1

λi (6)

trace(M2) =

n∑

i=1

n∑

j=1

〈ui, uj〉2 =

d∑

i=1

λ2i . (7)

From (6):

d∑

i=1

λ2i ≥ d
(n
d

)2

=
n2

d
.

From (7):

n∑

i=1

n∑

j=1

〈ui, uj〉2 = n+ 2

n∑

i=1

∑

j=i+1

〈ui, uj〉2 ≥ n2

d
.
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Or:

n(n− 1) max(〈ui, uj〉2) ≥ n2

d
− n =

n(n− d)

d
⇒ max(〈ui, uj〉2) ≥ n− d

d(n− 1)
.

To prove (7) note that max cos2 α(L) = max{max(〈ui, uj〉2)} where the
inner maximum is taken over the

(
n
2

)
pairs of distinct vectors and the outer

maximum is taken over all n-tuples of unit vectors in Ed (which is a closed
bounded set in End). Since this is a continuous function the maximum is
attained. �

Remark 2. Note that if equality holds in (3) then 〈ui, uj〉2 = n−d
d(n−1) or the

lines form a set of equiangular lines. It is well known that the existence of n
equiangular lines in Ed with angle θ is equivalent to the existence of a graph
with n vertices so that the smallest eigenvalue of its Seidel matrix is − 1

arccos θ
and has multiplicity n−d. Already in E3 it seems that the determination of the
exact value of α(n, 3) may be a very difficult problem. For instance, it is not
possible to construct a set L of 5 equiangular lines in E3 with cosα(L) = 1√

6

even though we can construct a set of 5 equiangular lines. Indeed the only
way to do it is by taking 5 of the 6 diagonals of the icosahedron. The angle
determined by any pair of these lines is: arccos 1√

5
. Raphael Robinson (private

communication) asked whether α(5, 3) = α(6, 3), or more generally if there
are integers n for which α(n, 3) = α(n+ 1, 3)? For spherical caps there are a
few values for which this is the case, L. Danzer [6] proved that the widest
angle for 11 spherical caps is the same as for 12 (arccos 1√

5
= 63◦26′5.8′′).

He also showed that for 10 spherical caps the widest angle is ≥ 66◦8′48.3′′

hence spherical caps cannot be used to prove that α(5, 3) = α(6, 3), for more
information see [7] and [8]. Since the maximum number of equiangular lines
in E3 is 6, the bound also will not be attained for n > 6. It will also be
interesting to know whether there are values of n ≥ 5 for which the extremal
configuration is not unique.

For n = d + 1 we get cos(α(d + 1, d)) = 1
d and this is always attained

by the d+ 1 lines connecting the center of the regular simplex to its vertices.
There are many sporadic cases where the bound is attained. For instance
α(16, 6) = 1

3 and there are 16 equiangular lines in R6 with angle arccos(13 );
α(176, 22) = α(276, 23) = 1

5 and in both these cases there are appropriate
sets of equiangular lines (see [5]). A particularly attractive case is the case

of 2d lines in Rd. In this case cosα(2d, d) =
√

2d−d
d(2d−1) =

√
1

2d−1 . This

bound is attained for d = 3, 5 but not for d = 4. Indeed, there is no Seidel
Matrix of order 8 with smallest eigenvalue −√

7. On the other hand for
d = 5 it is possible to construct 10 lines in R5 so that the angle between
any distinct pair is arccos 1

3 : to see this consider the Seidel matrix of the

Petersen graph. It’s eigenvalues are (3){5}, (−3){5} hence this matrix can be
used to construct 10 equiangular lines in R5 with angle arccos 1

3 . Recall that
a conference matrix of order n is a symmetric n×n matrix A with 0’s along
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the diagonal, ±1 elsewhere satisfying A2 = (n − 1)I ([1]). Its eigenvalues
are ±√

n− 1. Hence if a conference matrix of order 2d exists it will yield
2d equiangular lines in Rd with angle α(2d, d). A necessary condition for the
existence of a conference matrix of order n is that n = 2 mod 4 and n − 1
is a sum of two squares (J. H. van Lint and J. J. Seidel). There are exactly
4 distinct conference matrices of order 26 (Weisfeiler [10]), there are at least
18 conference matrices of order 50. In each one of these cases α(2d, d) will
be attained by distinct configurations. Conference matrices of orders 6, 14,
30, 38, 42, 46 are known to exist hence in all corresponding dimensions the
bound for the largest angle is attained.

Acknowledgements The author is indebted to Branko Grünbaum and Victor
Klee for helpful discussions during preparation of this note.
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On Mutually Avoiding Sets∗
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Summary. Two finite sets of points in the plane are called mutually avoiding if
any straight line passing through two points of any one of these two sets does not
intersect the convex hull of the other set. For any integer n, we construct a set of
n points in general position in the plane which contains no pair of mutually avoiding
sets of size more than O(

√
n) each. The given bound is tight up to a constant factor,

since Aronov et al. [1] showed a polynomial-time algorithm for finding two mutually
avoiding sets of size Ω(

√
n) each in any set of n points in general position in the

plane.

1. Introduction

Let A and B be two disjoint finite sets of points in the plane such that
their union contains no three points on a line. We say that A avoids B if no
straight line determined by a pair of points of A intersects the convex hull
of B. A and B are called mutually avoiding if A avoids B and B avoids A.
In this note we investigate the maximum size of a pair of mutually avoiding
sets in a given set of n points in the plane.

Aronov et al. [1] showed that any set of n points in general position in
the plane (i.e., no three points lie on a line) contains a pair of mutually
avoiding sets, both of size at least

√
n/12. Moreover, they gave an algorithm

for finding such a pair of sets in time O(n logn). In Sect. 2 we construct, for
any integer n, a set of n points in general position in the plane which contains
no pair of mutually avoiding sets of size more than 11

√
n each.

Mutually avoiding sets in a d-dimensional space are defined similarly. Any
set of n points in general position in R

d contains a pair of mutually avoiding

sets, both of size at least Ω(n
1

d2−d+1 ) (see [1]). On the other hand, our method
described for the planar case in Sect. 2 yields a construction of sets of n points
in Rd with no pair of mutually avoiding sets of size more than O(n1−1/d).

Now we recall some definitions from [1]. A set of line segments, each
joining a pair of the given points, is called a crossing family if any two line
segments intersect in the interior. Two line segments are called parallel if

∗This research was supported by “Deutsche Forschungsgemeinschaft”, grant We
1265/2–1 and by Charles University grant No. 351.
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they are two opposite sides of a convex quadrilateral. In other words, two
line segments are parallel if their endpoints form two mutually avoiding sets
of size 2. It is an easy observation that any pair of avoiding sets of size s
can be rebuilt into s pairwise parallel line segments or into a crossing family
of size s. Aronov et al. [1] used this observation and the above result on
mutually avoiding sets for finding a crossing family of size Ω(

√
n) and a set

of Ω(
√
n) pairwise parallel line segments.

The result on pairwise parallel line segments was strengthened and
extended to a higher dimension by Pach. Pach [8] showed that any set of
n points in general position in R

d contains at least Ω(n1/d) d-dimensional
simplices (i.e., (d+ 1)-point subsets) which are pairwise mutually avoiding.

In Sect. 3 we show a relation between mutually avoiding sets and Erdős’
well-known empty-hexagon-problem.

2. Sets with Small Mutually Avoiding Subsets

For a finite set P of points in the plane, let q(P ) denote the ratio of the
maximum distance of any pair of points of P to the minimum distance of
any pair of points of P . For example, if P is a square grid

√
n × √

n then
q(P ) =

√
2(

√
n− 1). In this section we show:

Theorem 1. Let c > 0 be a positive constant. Then any set P of n points in
the plane satisfying q(P ) ≤ c

√
n contains no pair of mutually avoiding sets

of size more than �2(
√

17 + 1)c
√
n each.

One of the basic results about covering says that for any integer n ≥ 2
there is a set P of n points in the plane with q(P ) < c0

√
n, where c0 =√

2
√

3/π ≈ 1.05 (see [5]). Such a set P can be found as the triangle grid

inside a disk of appropriate size. If we slightly perturb the points of P , we
obtain a set in general position still satisfying q(P ) < c0

√
n. According to

Theorem 1 this set contains no pair of mutually avoiding sets of size more
than 11

√
n. (It is obvious for n ≤ 100. For n > 100 we use the estimation

�2(
√

17 + 1)c0
√
n < 11

√
n.)

Proof of Theorem 1. Let P be a set of n points in the plane satisfying q(P ) ≤
c
√
n. Without loss of generality, we may and shall assume that the minimum

distance in P is 1. Let A and B be two mutually avoiding subsets of the set P .
Define Cartesian coordinates so that for some positive constant d ∈ (0, 12c

√
n〉

all points of A ∪ B lie in the closed strip between the two vertical lines
p : x = −d and q : x = d, and one of the sets A and B, say A, has a point on
the line p and a point on the line q. Moreover, let the topmost point b0 of the
set B lie on the x-axis and let the set A lie “above” the set B (i.e., the set
A lies above any straight line connecting two points of B). Since b0 lies on the
x-axis, all points of A ∪B lie between the two horizontal lines r : y = −c√n
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Fig. 1 Auxiliary lines and points

and s : y = c
√
n. Define three points u, v, w as those points in which the line

s intersects the line p, the y-axis, and the line q, respectively (see Fig. 1).
For each point b ∈ B, let f(b) be that point in which the line segment

bv intersects the x-axis. Now we show that, for any two points b, b′ ∈ B, the
distance |f(b)f(b′)| between f(b) and f(b′) is greater than d

(
√
17+1)c

√
n

.

If the line bb′ is horizontal then |f(b)f(b′)| ≥ 1
2 |bb′| ≥ 1

2 > d
(
√
17+1)c

√
n

.

If the line bb′ is not horizontal then it intersects the line s in some point g
outside the segment uw (see Fig. 2). Thus |gv| > d. Without loss of generality,
assume that b is closer to the line s than b′. Let z be that point on b′v, for
which bz is horizontal.

Now estimate

|bz| =
|bb′|
|gb′| · |gv| > |bb′| · |gv|

|gv| + |vb′| > 1 · |gv|
|gv| +

√
(2c

√
n)2 + d2

>

d

d +
√

(2c
√
n)2 + d2

≥ d

d + 1
2
c
√
n +

√
(2c

√
n)2 + ( 1

2
c
√
n)2

=
d

(
1
2

+
√

17
4
c
√
n
)

and

|f(b)f(b′)| ≥ 1

2
|bz| > d

(
√

17 + 1)c
√
n
.

Since the points f(b), b ∈ B are placed on a line segment of length 2d, the
size of B is at most �2d/ d

(
√
17+1)c

√
n
 = �2(

√
17 + 1)c

√
n . �
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Fig. 2 Auxiliary points and triangles

3. Relation Between Mutually Avoiding Sets
and the Empty-Hexagon Problem

Let A be a finite set of points in general position in the plane. A subset S of
A of size k is called convex if its elements are vertices of a convex k-gon. If
S is convex and the interior of the corresponding convex k-gon contains no
point of A, then S is called a k-hole (or an empty k-gon). The classical Erdős-
Szekeres Theorem [4] (1935) says that if the size of A is at least

(
2k−4
k−2

)
+ 1

then A contains a convex subset of size k.
Erdős [3] asked whether the following sharpening of the Erdős-Szekeres

theorem is true. Is there a least integer n(k) such that any set of n(k) points in
general position in the plane contains a k-hole? He pointed out that n(4) = 5
and Harborth [6] proved n(5) = 10. However, as Horton [7] shows, n(k) does
not exist for k ≥ 7. The question about the existence of n(6) (the empty-
hexagon-problem) is still open. After a definition we formulate a conjecture
which, if true, would imply that the number n(6) exists.

Definition 3. Let A be a finite set of points in general position in the plane.
Let k ≥ 2, l ≥ 2. A subset S of A of size k + l is called a (k, l)-set if S is
a union of two disjoint sets K and L so that the following three conditions
hold:

(i) |K| = k, |L| = l,
(ii) K and L are mutually avoiding,
(iii) the convex hull of S contains no points of A− S.
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Conjecture 1 (Bárány, Valtr). For any two integers k ≥ 2 and l ≥ 2,
there is an integer p(k, l) such that any set of at least p(k, l) points in general
position in the plane contains a (k, l)-set.

If Conjecture 1 is true for k = l = 6 then the number n(6) exists. It
follows from the fact that any (6, 6)-set contains a 6-hole (it can be shown
that either one of the corresponding sets K and L is a 6-hole or there is a
6-hole containing three points of K and three points of L).

Note that all known constructions of large sets with no 6-hole (see [7, 9])
satisfy Conjecture 1 already for rather small integers p(k, l).

We cannot even prove that the numbers p(k, 2), k ≥ 5 exist. (Note that
p(2, 2) = 5 and p(3, 2) = 7 are the minimum values of p(k, 2), k = 2, 3, for
which Conjecture 1 holds.) The existence of numbers p(k, 2), k ≥ 2 would
imply the following conjecture:

Conjecture 2 (Bárány, Valtr). For any integer k > 0, there is an integer
R(k) such that any set of at least R(k) points in general position in the
plane contains k + 2 points x, y, z1, z2, . . . , zk such that the k sets {x, y, zi},
i = 1, . . . , k are 3-holes (i.e., they form empty triangles).

Bárány [2] proved that Conjecture 2 holds for k ≤ 10.
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