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Summary. Two parties are said to “share a secret” if there is a question to which
only they know the answer. Since possession of a shared secret allows them to
communicate a bit between them over an open channel without revealing the value
of the bit, shared secrets are fundamental in cryptology.

We consider below the problem of when two parties with shared knowledge can
use that knowledge to establish, over an open channel, a shared secret. There are
no issues of complexity or probability; the parties are not assumed to be limited in
computing power, and secrecy is judged only relative to certainty, not probability.
In this context the issues become purely combinatorial and in fact lead to some
curious results in graph theory.

Applications are indicated in the game of bridge, and for a problem involving
two sheriffs, eight suspects and a lynch mob.

1. Introduction

Suppose two parties—let us call them “Alice” and “Bob”—share a secret,
that is, they have common knowledge possessed by no one else; then Alice
may use her secret to transmit a bit to Bob in such a way that no eavesdropper
can deduce the value of the bit. For example, if Alice and Bob are the only
people in the world who know whether the current US President wears a wig,
Alice may send Bob the following message (or the same message, with 0 and
1 interchanged):

My bit is 0 if the President wears a wig, 1 otherwise.

While Eve (an eavesdropper) may believe that the President probably
does not wear a wig, and therefore that Alice’s bit is more likely to be 1 than
0, her inability to determine the value of the bit with certainty is all that
concerns us here.

This method of encryption is called a “one-time pad”; Alice and Bob
share a bit of information, and they can use it (once) to pass a bit in secret.
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There are, however, situations where even though Alice and Bob appear
to possess shared information not available to the public, this information
does not take the form of a shared secret. Nonetheless, Alice and Bob may
be able to isolate a shared secret by communicating with each other, even
though their messages are public. Since this is precisely the situation where
cryptologic methods are needed (communication lines are available, but not
private), Alice and Bob are almost as well off here as if they had begun
with a shared secret; they must merely spend a few preliminary rounds of
communication in establishing the secret.

Let us give two examples of such situations, before proceeding further.

(1) The game of bridge: Here two partners wish to communicate in
private, but the rules of the game require that all communication be
done by legal bids and plays, about which there may be no prior private
understandings. Thus, there are initially no shared secrets. But there is
private information: each player knows, by virtue of looking at his own
hand, 13 cards that do not belong to his partner. Can they make use of
this information to communicate in private?

(2) The ‘two sheriffs’ problem: Two sheriffs in neighboring towns are
on the track of a killer, in a case involving eight suspects. By virtue of
independent, reliable detective work, each has narrowed the list to only
two. Now they are engaged in a telephone call; their object is to compare
information, and if their pairs overlap in just one suspect, to identify him
(the killer) and put out a.p.b.’s so as to catch him in either town.

The difficulty is that their telephone line has been tapped by the
local lynch mob, who know the original list of suspects but not which
pairs the sheriffs have arrived at. If they are able to identify the killer
with certainty as a result of the phone call, he will be lynched before he
can be arrested.

Can the sheriffs accomplish their objective without tipping off the
mob?

2. The Mathematical Model

One natural model for common knowledge is obtained by imagining that in
any situation there is an underlying finite space S of possibilities of which
any one element may be “the truth.” Alice’s knowledge concerning S at any
point consists of some subset X of S, meaning that X is precisely the set of
truths consistent with what Alice knows. As Alice communicates with Bob
she obtains more information, and her knowledge set X shrinks accordingly.

At any time the “true point” must lie both in X and in Bob’s knowledge
set Y , but if there are two or more points in X ∩ Y Alice and Bob will never
be able to choose among them by communicating with each other. Hence for
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our purposes if X is a possible knowledge set for Alice and Y for Bob, our
only concern is whether they intersect.

Consequently we choose to model common knowledge by using a mere
vertex to represent a possible knowledge set of Alice’s, and similarly for Bob;
we connect vertex x of Alice’s with vertex y of Bob’s when the corresponding
knowledge sets intersect, that is, when the two vertices are simultaneously
possible. The “truth” is thus represented by some adjacent pair of vertices,
i.e. an edge.

Alice and Bob’s knowledge at any time thus constitutes a graph, which, in
accordance with cryptographic tradition, is assumed to be known to everyone
in the world. The interpretation of this graph will, we hope, become clear to
the reader after some examples.

It is convenient to formalize our model as follows.

Definition 1. A bigraph is a finite, non-empty collection H of ordered pairs
such that if (x, y) is in H then (y, z) is not.

Elements of the set A(H) := {x : (x, y) ∈ H for some y} will be termed
“Alice’s vertices” and are perforce distinct from the symmetrically defined
“Bob’s vertices” in B(H). Thus the elements of H are edges of a bipartite
graph, but note that the vertices come equipped with a labelled left-right
(Alice-Bob) partition and that isolated vertices cannot arise.

Our model now consists of a bigraph H , known to all, the edges of which
represent possible truths. Alice knows the endpoint in A(H) of the true edge,
Bob its endpoint in B(H); in other words, if the true edge is (x, y) then Alice
knows x and Bob knows y.

We say that Alice and Bob share a secret if there is a question to which
they know the answer and Eve does not. In the wig example, the question
“Does the President wear a wig?” can be answered only by Bob and Alice,
so they indeed share a secret in this case. Here, the bigraph H consists of a
pair of disjoint edges, one corresponding to “the President wears a wig” and
the other to “the President does not wear a wig.” The disconnectivity of H
is its crucial property:

Theorem 1. Two parties share a secret if and only if their bigraph is
disconnected.

Proof. It is immediate that Alice and Bob share a secret whenever their
bigraph is disconnected, since if C is one of its connected components, only
they can answer the question “Is the true edge in C ?”. To see the converse,
let Q be the given question and let a1, a2, . . . be its possible answers (from
Eve’s point of view). Write “(u, v)#ai” if it is simultaneously possible for ai
to be the answer to Q, and (u, v) to be the true edge of H .

We now note that if (x, y)#ai and (u, v)#aj for i �= j, then (x, y) and
(u, v) can be neither identical nor adjacent; if, for example, x = u then when
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Alice’s end of the true edge is x she will be unable to decide between answers
ai and aj .

It follows that the edges consistent with the various answers ai determine
a partition of H , each part of which is a non-empty union of connected
components; since the number of possible answers must be at least two, H is
disconnected. �

If H is connected, are Alice and Bob doomed never to share a secret? Of
course, if they can arrange a private (secure) conversation, they can agree on
some string of bits and thus share as many secrets as they wish; this indeed
is often done in traditional cryptography, in the name of agreeing on or
distributing key. Unfortunately this phase is often dangerous and sometimes
impossible; else, cryptography would be unnecessary. However, Alice and Bob
may be able to use their common knowledge (reflected in the structure of H)
to isolate a common secret by means of a public conversation; and it is just
this process which we wish to investigate.

Consider, for example, the bigraph H = {(a1, b1), (a1, b2), (a2, b2),
(a2, b3), (a3, b3), (a3, b4), (a4, b4), (a4, b1)}. H is an 8-cycle, thus connected,
but Alice and Bob can disconnect it as follows: if Alice’s end of the true edge is
a1 or a3 she says so: “My end of the true edge is either a1 or a3.” Bob can tell
by looking at his end which of the two possibilities is the case, hence they now
share a secret; this is reflected in the fact that after Alice’s announcement,
their bigraph is disconnected (see Fig. 1). Of course, had Alice’s end been
a2 or a4, an announcement to that effect would also have done the job. (We
shall see later that two-sided conversations may be necessary to disconnect
some bigraphs.)

Fig. 1 Alice separates an 8-cycle.
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Fig. 2 Bigraph for dealing 2 cards from a 3-card deck.

The next example is inspired by the work of Winkler [4, 5] on cryptologic
techniques for the game of bridge, and the recent works of Fischer, Paterson,
and Rackoff [2] and Fischer and Wright [3] using random deals of cards for
cryptographic key. A card is dealt at random, face down, to each of Alice and
Bob, from a three-card deck consisting (say) of an Ace, a King, and a Queen.
The remaining card is discarded unseen. Here H is a 6-cycle (see Fig. 2). The
six edges correspond to the six possible deals; the set A(H) consists of Alice’s
three possible holdings (“A”, “K” or “Q”) and similarly for B(H). The fact
that “K” in A(H) and “K” in B(H) are not adjacent corresponds to the fact
that Alice and Bob cannot both hold the King. Clearly Alice and Bob share
some knowledge in this situation, but as we shall see it is not enough for
them to be assured of being able to isolate a shared secret.

For a third example, suppose H is a 10-cycle on vertices v0, v1, . . . , v9
with vi adjacent to vj just when |i− j| = 1 mod 10. (See Fig. 3.)

Let A(H) consist of the vertices of even index. Then the following protocol
allows Alice to disconnect the bigraph: if she holds vi, she chooses j to be
either i+ 4 or i+ 6 mod 10, then tells Bob:

I hold either vi or vj .

This protocol is said to be non-deterministic because Alice has more
than one choice of message for a given holding. Non-determinism as used
here is thus quite different from its use in complexity theory, and in fact is
more closely related in some respects to randomization (despite the absence
of probability in our model). In particular non-deterministic communication
protocols are quite practical.

Incidentally, we assume nothing is given away by the order in which
objects are named in a semantically symmetric expression such as “vi or vj .”
In a deterministic protocol we can insure this by a naming convention, such as
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Fig. 3 Non-deterministically separating a 10-cycle.

enforced alphabetical order, but our mathematical model for communication
will obviate the problem.

In order to define “communication protocol” rigorously we need to
define “conversation”, even though the latter definition needs the former for
interpretation. Accordingly, a conversation will be a finite string m1, . . . ,mt

of positive integers, communicated alternately by Alice and Bob beginning
with Alice.

Although this seems perhaps a limited vocabulary for communication, it is
in fact completely general because meanings can be assigned to the numbers
via an agreed-upon protocol. The communication protocol specifies under
precisely what circumstances a given number may be uttered. Thus, we operate
in effect in the “political” theory of communication: when someone says
something we ask not “what does that mean” but “under what circumstances
would he/she have said that.” This model is both stronger and simpler than
one in which messages are sentences. To see its effect, consider solving the
C10 bigraph above by using always vertices i and i+4. This looks reasonable
at first glance but is actually a sham. For example, Alice would not then say
“My end is 4 or 8” if she held 8. Hence an eavesdropper can eliminate 8 if she
hears this, preventing disconnection of the bigraph and ruining the protocol.

3. Deterministic Separation

Definition 1. A deterministic communication protocol for the bigraph H
is a sequence of functions f1, . . . into the positive integers, such that f1 is a
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function of x (Alice’s end of the true edge), and each subsequent fi depends
on the values of f1, . . . , fi−1 and either on x, if i is odd, or on y (Bob’s end
of the true edge) if i is even.

Thus, a deterministic communication protocol, combined with a true
edge, produces a unique conversation given by mi = fi(x;m1, . . . ,mi−1) for i
odd and mi = fi(y;m1, . . . ,mi−1) for i even. After step i of the conversation,
the situation can be again described by a bigraph Hi consisting of those
edges (u, v) such that if (u, v) had been the true edge the conversation would
have been as seen. Hi is a sub-bigraph of H which contains the actual
true edge; in fact Hi is obtained from Hi−1 by deleting all edges incident
to certain left-hand vertices (for i odd) or certain right-hand vertices (for
i even). The vertices which survive on the left (when i is odd) are just
{u : fi(u;m1, . . . ,mi−1) = mi}.

For our purposes a conversation (m1, . . . ,mt) will be deemed “successful”
if Ht is disconnected, and a communication protocol for H will be said to
“separate H” or to be a “separation protocol for H” if it always produces a
successful conversation. Finally, H itself will be termed deterministically sep-
arable if there is a deterministic communication protocol which separates H .

We can also give a recursive characterization of the deterministically
separable bigraphs. It will be useful to introduce notation for the sub-bigraph
H |A′ of a bigraph H induced by a subset A′ of A(H); namely,

H |A′ := H ∩ (A′ ×B(H)).

Thus from the standpoint of ordinary graph theory, H |A′ is obtained by
discarding isolated vertices from the subgraph of H induced by A′ ∪ B(H).
The definition of H |B′ for B′ ⊂ B(H) is similar.

Theorem 2. Let DS be the smallest symmetric class of bigraphs which
contains the disconnected bigraphs and has the following property: for any
bigraph H, if there is a partition A(H) = A1 ∪ A2 of Alice’s vertices such
that H |A1 and H |A2 are both in DS, then H is also in DS. Then DS is the
class of deterministically separable bigraphs.

Proof. Let us check first that the class of deterministically separable bigraphs
is indeed closed under the operation defined in the statement of the theorem.
It is certainly symmetrical, since a protocol which separates H can be
modified to one which separates the dual of H (i.e. the result of reversing
the ordered pairs in H) by switching the roles of Alice and Bob, and adding
a meaningless message from Alice to the beginning. If a partition is given
along with separation protocols P1 and P2 for the two sub-bigraphs of H , we
design a separation protocol P for H as follows: first Alice sends “i” if and
only if her end of the true edge lies in Ai, then Bob sends back a meaningless
“1”, then protocol Pi is followed.

It remains to show that any symmetric class C containing the dis-
connected bigraphs and closed under the stated operation contains all
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deterministically separable bigraphs. This is done by induction on the number
of edges.

Let H be connected but deterministically separable via a communication
protocol P ; then sooner or later P must call for a first meaningful message,
say from Alice. We may assume that her options at that point are to send “1”,
“2”, etc. up to “k” for some k ≥ 2, according to whether her end of the true
edge lies in E1, E2, etc; there is no dependence on previous conversation here
because by assumption said conversation has up to now been predictable. Let
us modify P slightly by having Alice send only a 1 or 2 at this point, the
former just when her end is in E1; if she sends a “2” Bob sends a meaningless
“1” back, then Alice sends the “2”, “3”,. . . or “k” that would have been sent
before and the protocol P resumes. We have thus found protocols which
separate each of H |E1 and H |(A(H)−E1). Each of these is thus in C by the
induction assumption, hence H ∈ C by the closure condition. �

4. Non-deterministic Separation

We now introduce two ways of weakening the definition of a communication
protocol. First, if the functions fi are permitted to be multi-valued, so that
at each point Alice or Bob has one or more possible messages to send, we say
that the protocol is non-deterministic. Note that during a non-deterministic
communication protocol, the bigraph shrinks as before but this time each
party, at his or her turn to speak, is provided with a (message-labelled) cover
of his or her vertices instead of a partition. It is still the case, however, that
the knowledge of Alice and Bob is expressed at each point by the state of
their bigraph.

Second, if the functions are permitted to depend for odd i on a random
number m known only to Alice, and for even i on a random number n known
only to Bob, then the protocol is randomized. Here the bigraph does not any
longer describe the situation completely, as Bob and Alice may learn things
about each other’s random number.

Whether a communication protocol is non-deterministic, randomized or
both, however, we continue to insist that the protocol always produce a
successful conversation in order to qualify for separating H .

Fortunately, the three new categories of separation protocol which arise
result in only one new category of bigraph.

Theorem 3. The following are equivalent, for any bigraph H:

(a) H is separable by a non-deterministic communication protocol;
(b) H is separable by a randomized communication protocol;
(c) H is separable by a randomized, non-deterministic communication pro-

tocol.
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Proof. We need to show (c)→(b) and (c)→(a), the reverse implications being
trivial. Of these the former is easy: by extending the range of the random
numbers, Alice and Bob can use them to decide which message to send when
there is more than one choice.

Turning random numbers into non-deterministic choices looks awkward
because a random number may be used many times in the protocol, whereas
there is no “consistency” built in to nondeterminism. However, this problem
is illusory. Suppose, at Alice’s first turn to speak, that she is supplied with a
randomized separation protocol but no random number; then she chooses a
random number and acts accordingly. She cannot “remember” that number
at her next turn and use it again, but she can compute which random numbers
are consistent with her previous action and choose one of those upon which
to base her next message. Bob behaves similarly; at each turn he determines
which values of his non-existent random number are consistent with his own
previous actions (and his end of the true edge), then picks one such value
and acts accordingly. �

A bigraph will be called, simply, separable if one (thus all) of the
conditions of Theorem 3 obtains. The following recursive characterization
is analogous to Theorem 2, although a small additional subtlety arises in the
proof.

Theorem 4. Let S be the smallest symmetric class of bigraphs which
contains the disconnected bigraphs and has the following property: for any
bigraph H, if there is a covering A(H) = A1∪A2 of Alice’s vertices such that
H |A1 and H |A2 are both in S, and both A1 and A2 are strictly contained in
A(H), then H is also in S. Then S is the class of separable bigraphs.

Proof. The proof that the class of separable bigraphs is symmetrical and
closed under the operation defined in the statement of the theorem is as in
Theorem 2, except that if Alice’s end of the true edge lies in A1∩A2 she may
send either message “1” or message “2”.

It remains to show that any symmetric class C containing the discon-
nected bigraphs and closed under the stated operation contains all separable
bigraphs; this is again done by induction on the number of edges.

Let H be connected but separable via a non-deterministic communication
protocol P , and suppose that H is the smallest separable bigraph not in C.
Let us call a vertex u in A(H) (or, dually, in B(H)) weak if there is no proper
subset A′ of A(H) containing u for which H |A′ is separable.

We claim that there is some weak vertex in A(H). For, if not, define for
each x ∈ A(H) a proper subset Ax which does yield a separable sub-bigraph
ofH . Since the Ax’s coverA(H), we can find x1, x2, . . . , xk such that the Axi ’s
cover A(H) with k minimal (but necessarily greater than 1). Set A1 := Ax1 ,
A2 := Ax2 ∪· · ·∪Axk

. Then A1 and A2 are a proper cover of A(H), and H |A1

is separable by assumption. However, H |A2 is also separable, since Alice can
reduce it to a separable bigraph by sending some i for which her end of the
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true edge lies in Axi , 2 ≤ i ≤ k. These bigraphs are thus both in C by the
induction assumption, contradicting the fact that H is not in C.

Since the class of separable bigraphs is symmetric, the dual of H is also
separable but not in C; hence the same argument produces a weak vertex
in B(H). It may seem to the reader that weak vertices cause trouble only if
found on the true edge, and thus that Alice and Bob can’t both be stymied as
long as no two weak vertices are adjacent. However, it turns out that the mere
presence of weak vertices on both sides is enough to render H inseparable.

To see this, let u be a weak vertex in A(H); there must be some message
(say m) which Alice is permitted to send when her end of the true edge is
u. Let A′ be the set of vertices in A(H) which, like u, allow the message m;
then H |A′ must be separable, since this is the bigraph which results when m
is sent. Thus A′ must not be a proper subset of A(H), that is, A′ = A(H)
and the message m is meaningless.

If m is indeed sent, the protocol turns to Bob who still has all of H
before him. By the same reasoning as above, he must also have a meaningless
message (i.e. a message he can send regardless of which vertex is his end of
the true edge) available to him.

Now we’re back to Alice with H still intact. We thus see that Alice and
Bob must be allowed by the protocol to pass meaningless messages back
and forth ad infinitum, irrespective of which edge of H is the true edge; but
then we have a contradiction, since H is required to have a communication
protocol which always separates. �

Theorem 4 is often useful in determining separability via case analysis.
For example, it is easy to check that no path with fewer than five edges is
separable, nor is the 6-cycle (Fig. 2) separable because for any proper subset
S of Alice’s or Bob’s vertices, H |S would be a path of length 2 or 4.

There is one class of bigraphs which is easily seen to be disjoint from the
class of separable bigraphs, a fact which helps in obtaining negative results.

Theorem 5. Suppose that there is an edge of H which is adjacent to all
other edges of H. Then H is not separable.

Proof. Such an edge cannot be contained in any disconnected sub-bigraph of
H ; thus, if it happens to be the true edge, no protocol can separate H . �

Note that, in particular, no separable bigraph can have a vertex which is
adjacent to all the vertices on the other side.

We are now in a position to prove that the class of separable bigraphs is
strictly larger than the class of deterministically separable bigraphs.

Let A(H) = {a1, . . . , a7} and B(H) = {b1, . . . , b7}, and put (ai, bj) ∈ H if
and only if j− i = 1, 2 or 4, where the indices are interpreted always modulo
7. Then H is the incidence graph of a Fano plane (see Fig. 4) and we have:

Theorem 6. The incidence graph of the Fano plane is separable but not
deterministically separable.
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Fig. 4 Incidence graph of the Fano plane.

Proof. We first provide a non-deterministic separation protocol. Alice begins
by sending a number k such that her end of the true edge is in the set
{ak, ak+1, ak+2}. Bob now (deterministically) sends back “1” if his end is
bk+2 or bk+6; “2” if it is bk+4 or bk+5; “3” if it is bk+3 or bk+1. (It cannot be
bk.) This separates H into a 2-edge component and a 1-edge component.

If, on the other hand, there were a deterministic separation protocol forH ,
then one of the parties would eventually have to send a meaningful message,
thus effecting a partition of his or her vertices. This may as well be Alice
since H is symmetrical. If one of the parts has fewer than 3 of Alice’s vertices
in it, or has 3 vertices whose neighborhoods intersect, then one of Bob’s
remaining points will be of full degree, contradicting Theorem 5. Otherwise
the partition must be isomorphic to {a1, a2, a3} versus {a4, a5, a6, a7}. The
former part induces a deterministically separable sub-bigraph as we have
seen from the above protocol, but the sub-bigraph induced by the latter part
contains a vertex (b1) whose neighborhood intersects the neighborhoods of
all other vertices of B(H). Thus, if Bob’s end of the true edge is b1, he cannot
separate the bigraph at this time. However, Alice is also stymied because she
has only one vertex available (a5) not adjacent to b1, thus her vertices can
never be partitioned so as to induce disconnected sub-bigraphs. �

The situation changes if we consider bigraphs which are separable in one
round, that is, by just one message from Alice. (This is not, by the way, a
symmetric class; the path on 7 vertices, for example, can be separated only
by a message from the party with 4 vertices.) Before proceeding, we need a
curious graph-theoretic result.
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Theorem 7. Let G be any graph with no vertex adjacent to all others. Then
there is a partition V1, . . . , Vk of the vertices of G such that for each i =
1, . . . , k the subgraph 〈Vi〉 induced by Vi is disconnected.

Proof. If not let G be a counterexample with smallest possible number of
vertices. For any subset U of the set of vertices V , let ω(U) be the number
of vertices in V − U which are adjacent to all other vertices in V − U .

Note first that if 〈U〉 is disconnected, then ω(U) must be non-zero; else
we may apply the induction hypothesis to get a suitable partition of V − U ,
and appending U itself to this partition yields a partition of V suitable for G.

Choices of U for which 〈U〉 is disconnected do exist, of course, since U
can be taken to be a pair of non-adjacent vertices. Hence we may choose a
U for which 〈U〉 is disconnected and ω(U) is minimal.

Now let x be any full vertex in V − U , that is, any vertex in V − U
which is adjacent to all other vertices in V − U . By assumption x has some
non-neighbor, say y, in V ; let C be the set of vertices of the component of
〈U〉 into which y falls.

Suppose first that y is not the only vertex in C, and let W = U \ {u}.
Then 〈W 〉 is still disconnected, but x is no longer full in V − W since a
non-neighbor y has “moved in.” Of course y is not full either, and any other
vertex which is full in V −W must already have been full in V − U . Hence
ω(W ) < ω(U), a contradiction.

We are reduced to the case where y is an isolated point of 〈U〉; now we
let W = U ∪ {x}. Since x and y are not adjacent y is still isolated in 〈W 〉.
Any full vertex of V −W was adjacent to x in V − U and therefore already
full in V − U ; but x itself is now gone from V − W and so we again have
ω(W ) < ω(U), and this contradiction proves the theorem. �

Note that the induction hypothesis, and thus the theorem itself, can be
strengthened to read “each 〈Vi〉 has at least two vertices and contains an
isolated point” without changing the proof. However, we will not need the
stronger statement.

Theorem 8. The following are equivalent for a bigraph H.

(a) H is separable in one round;
(b) H is deterministically separable in one round;
(c) For every vertex u of A(H) there is a vertex v of A(H) such that the

neighborhoods of u and v (in B(H)) are disjoint.

Proof. It is enough to show (a)→(c)→(b). Suppose that H is separable in
one round, let u be any vertex of A(H), and let i be a message that can
be sent by Alice when her end of the true edge is u. Since the bigraph that
results from sending “i” is disconnected, there is a vertex v on Alice’s side
of it which is in a different component from u; then u and v must originally
have had disjoint neighborhoods.
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Now suppose that (c) is satisfied and form a graph G on the vertices in
A(H) by defining {u, v} to be an edge whenever u and v have intersecting
neighborhoods. Condition (c) says precisely that G has no vertex of full
degree, hence we may apply Theorem 7 to obtain a partition V1, . . . , Vk of
the vertices of A(H) each part of which induces a disconnected subgraph of
G, hence also of H . Sending “i” when Alice’s end of the true edge lies in Vi

thus yields a deterministic separation protocol. �

We have said that a disconnected bigraph is sufficient to enable Alice and
Bob to communicate a bit in secret; we are now in a position to show that
separability is in fact necessary for such a communication, thus completing
the reduction of the original cryptologic problem to a graph-theoretical one.

Let us fix a bigraph H and suppose that Alice (say) has been supplied
with a bit ε which she must communicate in secret to Bob, over our usual
public channel. The effect of the bit is to double the vertices on Alice’s side
of H ; that is, each vertex a ∈ A(H) now becomes a pair a(0), a(1) each with
the same neighborhood that a had in B(H). The edge (a(0), b) corresponds
to the original (a, b) together with the statement “ε = 0”.

At the conclusion of a successful, non-randomized communication proto-
col the question “What is the value of ε?” must be answerable by Bob but
not by Eve, hence the bigraph must now be disconnected—and moreover
(although we shall not need this fact) the vertices from A(H) in each
component must either all correspond to ε = 0 or all to ε = 1.

Theorem 9. Alice can communicate a bit to Bob in secret, via a randomized
and/or non-deterministic communication protocol, if and only if their bigraph
is separable.

Proof. Sufficiency has already in effect been demonstrated; Bob and Alice can
cooperatively disconnect the bigraph, ignoring the bit value, then a message
of the form “My bit is 0 if the true edge lies in component C, 1 otherwise”
does the trick.

For the converse, we double the bigraph as above so that the protocol may
be regarded as a special communication protocol, which we denote by P . If P
is randomized, then we may replace the random inputs by non-determinism
as in Theorem 3; thus we may assume P is merely non-deterministic.

Now we construct from P a randomized (!) communication protocol
P ′ which operates on the original, undoubled bigraph plus a single ran-
dom bit α for Alice. P ′ operates by the rule f ′

i(x;α;m1, . . . ,mi−1) =
fi(x(α);m1, . . . ,mi−1) for i odd, and f ′

i = fi for i even.
At each stage, the bigraph associated with P ′ will be precisely the image

of the bigraph associated with P under the collapsing map Φ which sends x(0)
and x(1) to x. But the image of a disconnected bigraph under this mapping
is again disconnected, so P ′ is a separation protocol for the original bigraph,
completing the proof of the theorem. �
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Theorem 9 says, in effect, that if Alice and Bob know that they will need
to communicate a bit in secret, then they can disconnect their bigraph in
advance; when the bit comes in, it can then be communicated (in either
direction) by a single message.

5. The ‘Two Sheriffs’ Problem

Let us now look now at the two sheriffs problem, but generalized as follows:
one sheriff (whom we shall call “Lew”) has narrowed his list of suspects to p,
the other (“Ralph”) to q, and the total number of suspects is n. The edges
of the bigraph H here represent all possible pairs (L,R) of subsets of the set
N = {1, 2, . . . , n} of suspects, with |L| = p, |R| = q and |L ∩ R| �= ∅. Lew’s
side A(H) of the bigraph will thus contain

(
n
p

)
vertices and Ralph’s side

(
n
q

)

vertices, adjacency arising when the corresponding subsets intersect.
If Lew and Ralph succeed in determining the identity of the killer without

tipping off the mob, they will share a secret and thus must have disconnected
H . Conversely, suppose they manage to disconnect the bigraph; then Lew
and Ralph can reduce further to two non-adjacent edges, one of which is the
true edge. If that edge represents an overlap of one, the sheriffs will have
found the killer.

Theorem 10. If n = 2pq then there is a deterministic separation protocol
for solving the two sheriffs problem.

Proof. We make use of Baranyai’s Theorem [1], which says the following:
If k divides n then there is an array {Ki,j}, 1 ≤ i ≤ rn/k, 1 ≤ j ≤(

n
k

)
/(n/k) of subsets of N = {1, 2, . . . , n} such that each |Ki,j| = k, each

column K1,j, . . . ,Kn/k,j is a partition of N , and each subset of N of size k
appears exactly once in the array.

Such an array (known as a 1-factorization of the complete k-uniform
hypergraph on n vertices) is fixed by Lew and Ralph (publicly) for k = p,
and Lew proceeds to tell Ralph on which column his end L of the true edge
can be found.

Ralph is thus presented with a partition L1, . . . , Ln/p of N , one of whose
parts is Lew’s narrowed-down suspect set. His job will be to split the index
set I = {1, 2, . . . , n/p = 2q} into two parts, say I1 and I2, so that his suspect
set R is contained in

⋃
i∈Ij

Li. This will disconnect the bigraph.

To do this the sheriffs employ a fixed (but arbitrary) map Φ from the set
of subsets of I of size at most q to the set of subsets of I of size exactly q,
such that Φ(S) ∩ S = ∅ for every set S in the domain of Φ. Ralph forms the
set F := {i : R ∩ Li �= ∅}, then puts F ′ := Φ(F ) and F ′′ := Φ(F ′). F ′ and
F ′′ are thus complementary subsets of I of cardinality q; let I1 be the one
containing the element “1” of I, and let I2 be the other. Ralph now identifies
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I1 and I2 and announces that his set F , defined as above, is contained either
in I1 or I2.

The resulting bigraph will contain all vertices of B(H) for which the
resulting F would have been contained in I1 or I2 and would have had
cardinality q, since in those cases F ′ and F ′′ are not dependent on the choice
of Φ. Those vertices for which F is contained in Ie will form a connected
component, for e = 1, 2.

Let k be the index of Lew’s end of the true edge, that is, let Lk be Lew’s
suspect set; suppose k ∈ Ie. Let i be such that k is the ith smallest member
of Ie, and let j be the ith smallest element of I3−e. Lew now announces that
his set of suspects is in fact either Lj or Lk.

Ralph (but not the mob) will know which of the two is Lew’s suspect
set: say it is Lj. If |R ∩Lj| > 1 then Ralph announces that the killer cannot
be identified; otherwise, however, he now knows the killer (say, x). Choosing
(again by order of numbers) the corresponding element y of Lk, he announces
that the killer is one of x and y. This completes the protocol. �

Let us see how this works in the original case p = q = 2, n = 8. The
following Baranyai array can be used:

{1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {1, 7} {1, 8}
{3, 4} {2, 4} {2, 3} {2, 6} {2, 5} {2, 8} {2, 7}
{5, 6} {5, 7} {5, 8} {3, 7} {3, 8} {3, 5} {3, 6}
{7, 8} {6, 8} {6, 7} {4, 8} {4, 7} {4, 6} {4, 5}

Suppose that the true edge is either ({1, 2}, {1, 3}) or ({5, 6}, {5, 7}). Then
Lew will announce that his suspect set belongs to the first column, that is, is
one of {1, 2}, {3, 4}, {5, 6} or {7, 8}. If Ralph himself had one of these sets he
would simply announce at this point that the killer cannot be identified; as it
is, he splits the index set, telling Lew that his suspect set is either contained
in {1, 2} ∪ {3, 4} or in {5, 6} ∪ {7, 8}. Lew now says “My set is either {1, 2}
or {5, 6}” and Ralph comes back with “The killer is either 1 or 5”.

Non-deterministic versions of the above protocol are more easily de-
scribed; Lew merely picks some partition of which his suspect set is a part,
and Ralph can reduce to two possible suspect sets whose intersections with
the partition indices are complementary. Here just one more message, from
Lew to Ralph, completes the protocol. Moreover, this can be made to work
for any n > 2pq as well.

However, we can do even better when non-determinism is permitted; for
example, here is a non-deterministic separation protocol for solving the case
where n = k2, p = (k − 1)2 + 1 and q = 1, for any k ≥ 2.

Lew begins by choosing a k× k array {si,j} of all the suspects, such that
for some j′, Lew’s suspect set consists precisely of si′,1 and all si,j such that
i �= i′ and j �= 1. Ralph, who began knowing the identity of the killer, replies
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as follows: if the killer is si,j for j �= 1 and any i, he says “The killer is either
s1,j or si,j .” If the killer is some si,1 then he picks any j �= 1 and makes the
same statement.

By first partitioning the suspects into possible vertices (as in the p, q, 2pq
case) and then making a k × k array of the sort described above, but where
the array elements are members of a partition instead of single suspects, we
may combine the techniques for the following result:

Theorem 11. The two sheriffs problem is solvable non-deterministically
whenever n ≥ q(1 +

√
p− 1)2.

It is perhaps interesting to note that we have separated a very dense
bigraph here, regular on each side. In fact, related to these are the following
dense bigraphs, which are deterministically separable: fix a large k and set
H equal to

{((a, b), (c, d)) : 1≤a, b, c, d≤k and either a = c and b = d, or a �=c and b �=d}.
To separate H , Alice’s announces the first coordinate of her pair and Bob the
second coordinate of his. Then each will know whether their edge is based on
the equalities or the inequalities in the definition above.

6. Multi-Party Generalization

It is evident that many of our definitions and results can be extended to the
case where there are more than two conversants. In this case conversation
protocols, in order to remain general, allow the identity of the next speaker
to depend, at each turn, on the previous conversation.

In [3] Fischer and Wright suggest using random deals to facilitate secret
key exchange within a group of persons wishing to communicate privately in
yet-to-be-specified subgroups. Among the negative results in [3] is a theorem
(Theorem 9, p. 11) which states that no communication protocol for 3 players,
each dealt one card of a 3-card deck, can enable them to isolate a secret bit.
Fischer and Wright indicate that our methods can be used to generalize the
result to k > 3 players; we show here how that can be done.

The definition of “bigraph”’ extends easily as follows: a k-graph is a finite
collection H of k-tuples x = (x1, . . . , xk) (which we call “blocks” to avoid
confusion) such that x, y ∈ H implies that xi and yj are distinct for i �= j.
A k-graph is thus a particular special case of k-uniform hypergraph in which
the sets {xi : x ∈ H} partition the vertex set of H .

The proof of Theorem 1 goes through, as does an appropriate version of
Theorem 4; thus we are once more reduced to showing that the players, say
X1 through Xk, cannot cooperatively disconnect their k-graph Hk which in
this case consists of a block for each permutation of the cards.

Theorem 12. The “permutation k-graph” Hk is inseparable for k ≥ 3.
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Proof. H2 is of course separable, indeed disconnected to begin with. Let us
assume that P is a (non-deterministic) separation protocol for Hk, for some
k > 2, and let H0, H1, . . . , Ht be the state of the k-graph for X1, . . . , Xk at
each stage of some (successful) conversation using P . Then H0 = Hk and
H0, . . . , Ht−1 are connected k-graphs. We claim first that Ht must consist
only of two blocks, which up to permutation of the players and cards, may
as well be 1,2,3,. . . , k and 2,3,. . . , k, 1. To see this let x and y be two blocks
of Ht which lie in different components; then in particular x and y are not
adjacent so xi �= yi for i = 1, 2, . . . , k. Let G be the graph on vertices 1,2,. . . ,
k with j adjacent to j′ when {j, j′} = {xi, yi} for some i; then since x and y
are each permutations, G is regular of degree 2. If φ is an automorphism of
G such that φ(j) is adjacent to j for all j then (φ(x1), . . . , φ(xk)) is a block
of Hk which is adjacent to x if φ has any fixed points and to y if φ is not the
identity. Since no block of Ht can be adjacent to both x and y, every such φ
must fix all vertices or none; hence G consists of a single cycle. By relabelling
we may assume x = (1, 2, 3, . . . , k) and y = (2, 3, . . . , k, 1).

Now if Ht contains any other block some player, say Xk, must have
another vertex, say j �= k, 1. But then the block (1, 2, . . . , j − 2, j − 1, j +
1, j+2, . . . , k− 1, k, j) lies in Ht; and it is adjacent to both x (at player X1)
and y (at player Xk), a contradiction. This proves the claim.

We may now assume that Ht consists exactly of the above blocks x and
y, and that the last player to speak was X1; then the vertices of Ht−1 are
exactly those appearing in x and y, plus some additional vertices held by X1

which she eliminated in her last message. The fact that Ht−1 contains those
additional vertices means that if one of them had been X1’s “true” vertex,
the conversation might have gone exactly as it did until the last message.
But Ht−1 contains no pair of non-adjacent blocks other than x and y, since
in every block not equal to x or y, player X2 holds a 2 and player Xk holds a
1. Hence, the protocol P has failed in this case and this contradiction proves
the theorem. �

7. Final Comments

In this work we have only begun to study the combinatorial cryptology of
isolating a common secret. In J. Combin. Theory (B) 84 (2002) pp. 126–
129, Nicole Portmann has shown that for any n, there are bigraphs that are
deterministically separable but in no fewer than n steps; and that there are
bigraphs that are non-deterministically separable but in no fewer than three
steps. We still do not have a proof that the two sheriffs problem cannot be
solved deterministically when n < 2pq.

We hope that our “bigraphs” may prove to be a useful way of representing
common knowledge, even for applications unrelated to the problem of
isolating a common secret. Although they carry the same information as
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do other representations, they may help attract graph-theorists to knowledge
problems and thus bring some powerful theorems and sharp combinatorial
minds to bear.
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