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Summary There are two central themes to research involving applications of
probabilistic methods to partially ordered sets. The first of these can be described as
the study of random partially ordered sets. Among the specific models which have
been studied are: random labelled posets; random t-dimensional posets; and the
transitive closure of random graphs. A second theme concentrates on the adaptation
of random methods so as to be applicable to general partially ordered sets. In
this paper, we concentrate on the second theme. Among the topics we discuss are
fibers and co-fibers; the dimension of subposets of the subset lattice; the dimension
of posets of bounded degree; and fractional dimension. This last topic leads to a
discussion of Ramsey theoretic questions for probability spaces.

1. Introduction

Probabilistic methods have been used extensively throughout combinatorial
mathematics, so it no great surprise to see that researchers have applied these
techniques with great success to finite partially ordered sets. One central
theme to this research is to define appropriate definitions of a random poset,
and G. Brightwell’s excellent survey article [1] provides a summary of work
in this direction.

A second theme involves the application of random methods to more
general classes of posets. After this brief introductory section, we present four
examples of this theme. The first example is quite elementary and involves
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fibers and co-fibers, concepts which generalize the notions of chains and
antichains. The principal result here is an application of random methods
to provide a non-trivial upper bound on the minimum size of fibers.

Our second example is more substantial. It involves the dimension of
subposets of the subset lattice, an instance in which many of the classic
techniques and results pioneered by Paul Erdős play major roles. The third
example involves an application of the Lovász Local Lemma and leads
naturally to the the investigation of the dimension of a random poset of
height two.

Our last example involves fractional dimension for posets—an area
where there are many attractive open problems. This topic leads to natural
questions involving Ramsey theory for probability spaces.

The remainder of this section is a very brief condensation of key ideas and
notation necessary for the remaining five sections. In this article, we consider
a partially ordered set (or poset) P = (X,P ) as a discrete structure consisting
of a set X and a reflexive, antisymmetric and transitive binary relation P on
X . We call X the ground set of the poset P, and we refer to P as a partial
order on X . The notations x ≤ y in P , y ≥ x in P and (x, y) ∈ P are used
interchangeably, and the reference to the partial order P is often dropped
when its definition is fixed throughout the discussion. We write x < y in P
and y > x in P when x ≤ y in P and x �= y. When x, y ∈ X , (x, y) /∈ P and
(y, x) /∈ P , we say x and y are incomparable and write x ‖ y in P .

Although we are concerned almost exclusively with finite posets, i.e.,
those posets with finite ground sets, we find it convenient to use the familiar
notationR,Q, Z andN to denote respectively the reals, rationals, integers and
positive integers equipped with the usual orders. Note that these four infinite
posets are total orders; in each case, any two distinct points are comparable.
Total orders are also called linear orders, or chains. We use n to denote an
n-element chain with the points labelled as 0 < 1 < · · · < n− 1.

A subset A ⊆ X is called an antichain if no two distinct points in A are
comparable. We also use P+Q to denote the disjoint sum of P and Q.

In the remainder of this article, we will assume that the reader is familiar
with the basic concepts for partially ordered sets, including maximal and
minimal elements, chains and antichains, sums and cartesian products, com-
parability graphs and Hasse diagrams. For additional background information
on posets, the reader is referred to the author’s monograph [23], the survey
article [14] on dimension by Kelly and Trotter and the author’s survey articles
[21,22,25] and [26]. Another good source of background information on posets
is Brightwell’s general survey article [2].

2. Fibers and Co-fibers

The classic theorem of Dilworth [4] asserts that a posetP = (X,P ) of width n
can be partitioned into n chains. Also, a poset of height h can be partitioned
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into h antichains. For graph theorists, these results can be translated into
the simple statement that comparability graphs are perfect. Against this
backdrop, researchers have devoted considerable energy to generalizations of
the concepts of chains and antichains. Here is one such example.

Let P = (X,P ) be a poset. Lone and Rival [18] called a subset A ⊆ X
a co-fiber if it intersects every non-trivial maximal chain in P. Let cof(P)
denote the least m so that P has a co-fiber of cardinality m. Then let cof(n)
denote the maximum value of cof(P) taken over all n-element posets. In any
poset, the set A1 consisting of all maximal elements which are not minimal
elements and the set A2 of all minimal elements which are not maximal are
both co-fibers. As A1 ∩ A2 = ∅, it follows that cof(n) ≤ 
n/2�. On the other
hand, the fact that cof(n) ≥ 
n/2� is evidenced by a height 2 poset with 
n/2�
minimal elements each of which is less than all �n/2
 maximal elements. So
cof(n) = 
n/2� (this argument appears in [18]).

Dually, a subset B ⊆ X is called a fiber if it intersects every non-trivial
maximal antichain. Let fib(P) denote the least m so that P has a fiber of
cardinality m. Then let fib(n) denote the maximum value of fib(P) taken
over all n-element posets. Trivially, fib(n) ≥ 
n/2�, and Lone and Rival asked
whether equality holds.

In [6], Duffus, Sands, Sauer and Woodrow showed that if P = (X,P )
is an n-element poset, then there exists a set F ⊆ X which intersects every
2-element maximal antichain so that |F | ≤ 
n/2�. However, B. Sands then
constructed a 17-point poset in which the smallest fiber contains 9 points.
This construction was generalized by R. Maltby [19] who proved that for
every ε > 0, there exist a n0 so that for all n > n0 there exists an n-element
poset in which the smallest fiber has at least (8/15− ε)n points.

From above, there is no elementary way to see that there exists a constant
α > 0 so that fib(n) < (1 − α)n. However, this is an instance where random
methods provided real insights into the truth. In the remainder of this paper,
we use the notation [n] to denote the n-element set {1, 2, . . . , n}. (No order
is implied on [n], except for the natural order on positive integers.)

Theorem 1. Let P = (X,P ) be a poset with |X | = n. Then X contains a
fiber of cardinality at most 4n/5. Consequently, fib(n) ≤ 4n/5.

Proof. Let C ⊆ X be a maximum chain. Then X − C is a fiber. So we may
assume that |C| < n/5. Label the points of C as x1 < x2 < · · · < xt, where
t = |C| < n/5. Next we define two different partitions of X − C. First, for
each i ∈ [t], set Ui = {x ∈ X − C: i is the least integer for which x ‖ xi}.
Then set Di = {x ∈ X − C: i is the largest integer for which x ‖ xi}.

Then for each subset S ⊆ [t− 1], define

B(S) = C ∪ (∪{Di : i ∈ S}) ∪ (∪{Ui+1 : i /∈ S})
Note that for each i ∈ [t − 1], the maximality of C implies that

Di ∩ Ui+1 = ∅.
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Claim 1. For every subset S ⊆ [t− 1], B(S) is a fiber.

Proof. Let S ⊆ [t−1] and let A be a non-trivial maximal antichain. We show
that A ∩ B(S) �= ∅. This intersection is nonempty if A ∩ C �= ∅, so we may
assume that A∩C = ∅. Now the fact that C is a maximal chain implies that
every point of C is comparable with one or more points of A. However, no
point of C can be greater than one point of A and less than another point of
A. Also, x1 can only be less than points in A, and xt can only be greater than
points in A. It follows that t ≥ 2 and that there is an integer i ∈ [t− 1] and
points a, a′ ∈ A for which xi < a in P and xi+1 > a′ in P . Clearly, a′ ∈ Di

and a ∈ Ui+1. If i ∈ S, then Di ⊂ B(S), and if i /∈ S, then Ui+1 ⊂ B(S). In
either case, we conclude that A ∩B(S) �= ∅. �

Claim 2. The expected cardinality of B(S) with all subsets S ⊆ [t−1] equally
likely is t+ 3(n− t)/4.

Proof. Note that C ⊆ B(S), for all S. For each element x ∈ X −C, let i and
j be the unique integers for which x ∈ Di and x ∈ Uj . Then j �= i + 1. It
follows that the probability that x belongs to B(S) is exactly 3/4. �

To complete the proof of the theorem, we note that there is some S ⊆
[t− 1] for which the fiber B(S) has at most t+ 3(n− t)/4 points. However,
t < n/5 implies that t+ 3(n− t)/4 < 4n/5. �

The preceding theorem remains an interesting (although admittedly
elementary) illustration of applying random methods to general partially
ordered sets. Characteristically, it shows that an n-point poset has a
fiber containing at most 4n/5 points without actually producing the fiber.
Furthermore, this is also an instance in which the constant provided by
random methods can be improved by another approach.

The following result is due to Duffus, Kierstead and Trotter [5].

Theorem 2 (Duffus, Kierstead and Trotter). Let P = (X,P ) be a poset
and let H be the hypergraph of non-trivial maximal antichains of P. Then the
chromatic number of H is at most 3.

Theorem 2 shows that fib(n) ≤ 2n/3, since whenever X = B1 ∪B2 ∪B3

is a 3-coloring of the hypergraph H of non-trivial maximal antichains, then
the union of any two of {B1, B2, B3} is a fiber. Quite recently, Lone [17] has
obtained the following interesting result providing a better upper bound for
posets with small width.

Theorem 3 (Lonc). Let P = (X,P ) be a poset of width 3 and let |X | = n.
P has a fiber of cardinality at most 11n/18.

I am still tempted to assert that limn→∞ fib(n)/n = 2/3.
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3. Dimension Theory

When P = (X,P ) is a poset, a linear order L on X is called a linear extension
of P when x < y in L for all x, y ∈ X with x < y in P . A set R of linear
extensions of P is called a realizer of P when P = ∩R, i.e., for all x, y in
X , x < y in P if and only if x < y in L, for every L ∈ R. The minimum
cardinality of a realizer of P is called the dimension of P and is denoted
dim(P).

It is useful to have a simple test to determine whether a family of linear
extensions of P is actually a realizer. The first such test is just a reformulation
of the definition. Let inc(P) = inc(X,P ) denote the set of all incomparable
pairs in P. Then a family R of linear extensions of P is a realizer of P if and
only if for every (x, y) ∈ inc(X,P ), there exist distinct linear extensions L,
L′ ∈ R so that x > y in L and y > x in L′.

Here is a more useful test. Call a pair (x, y) ∈ X×X a critical pair if:

1. x ‖ y in P ;
2. z < x in P implies z < y in P , for all z ∈ X ; and
3. w > y in P implies w > x in P , for all w ∈ X .

The set of all critical pairs of P is denoted crit(P) or crit(X,P ). Then
it is easy to see that a family R of linear extensions of P is a realizer of P
if and only if for every critical pair (x, y), there is some L ∈ R with x > y
in L. We say that a linear order L on X reverses (x, y) if x > y in L. So
the dimension of a poset is just the minimum number of linear extensions
required to reverse all critical pairs.

For each n ≥ 3, let Sn denote the height 2 poset with n minimal elements
a1, a2, . . . , an, n maximal elements b1, b2, . . . , bn and ai < bj, for i, j ∈ [n]
and j �= i. The poset Sn is called the standard example of an n-dimensional
poset. Note that dim(Sn) is at most n, since crit(Sn) = {(ai, bi) : i ∈ [n]}
and n linear extensions suffice to reverse the n critical pairs in crit(Sn). On
the other hand, dim(Sn) ≥ n, since no linear extension can reverse more than
one critical pair.

4. The Dimension of Subposets of the Subset Lattice

For integers k, r and n with 1 ≤ k < r < n, let P(k, r;n) denote
the poset consisting all k-element and all r-element subsets of {1, 2, . . . , n}
partially ordered by inclusion. For simplicity, we use dim(k, r;n) to denote
the dimension of P(k, r;n).

Historically, most researchers have concentrated on the case k = 1. In a
classic 1950 paper in dimension theory, Dushnik [7] gave an exact formula
for dim(1, r;n), when r ≥ 2

√
n.
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Theorem 4 (Dushnik). Let n, r and j be positive integers with n ≥ 4 and
2
√
n− 2 ≤ r < n− 1. If j is the unique integer with 2 ≤ j ≤ √

n for which⌊
n− 2j + j2

j

⌋
≤ k <

⌊
n− 2(j − 1) + (j − 1)2

j − 1

⌋
,

then dim(1, r;n) = n− i+ 1.

No general formula for dim(1, r;n) is known when r is relatively small in
comparison to n, although some surprisingly tight estimates have been found.
Here is a very brief overview of this work, beginning with an elementary
reformulation of the problem. When L is a linear order on X , S ⊂ X and
x ∈ X − S, we say x > S in L when x > s in L, for every s ∈ S.

Proposition 1. dim(1, r;n) is the least t so that there exist t linear orders
L1, L2, . . . Lt of [n] so that for every r-element subset S ⊂ [n] and every
x ∈ [n]− S, there is some i ∈ [t] for which x > S in Li.

Spencer [20] used this proposition to estimate dim(1, 2;n). First, he noted

that by the Erdős-Szekeres theorem, if n > 22
t

and R is any set of t linear
orders on [n], then there exists a 3-element set {x, y, z} ⊂ [n] so that for all
L ∈ R, either x < y < z in L or x > y > z in L. Thus dim(1, 2;n) > t when

n > 22
t

. On the other hand, if n ≤ 22
t

, then there exists a family R of t linear
orders on [n] so that for every 3-element subset S ⊂ [n] and every x ∈ S,
there exists some L ∈ R so that either x < S−{x} in L or x > S−{x} in L.
Then let S be the family of 2t linear orders on X determined by adding to R
the duals of the linear orders in R. Clearly, the 2t linear orders in S satisfy
the requirements of Proposition 1 when r = 2, and we conclude:

Theorem 5 (Spencer). For all n ≥ 4,

lg lg n < dim(1, 2;n) ≤ 2 lg lg n.

Spencer [20] then proceeded to determine a more accurate upper bound
for dim(1, 2;n) using a technique applicable to larger values of r. Let t be a
positive integer, and let F be a family of subsets of [t]. Then let r be an integer
with 1 ≤ r ≤ t. We say F is r-scrambling if |F| ≥ r and for every sequence
(A1, A2, . . . , Ar) of r distinct sets from F and for every subset B ⊆ [r], there
is an element α ∈ [t] so that α ∈ Aβ if and only if β ∈ B. We let M(r, t)
denote the maximum size of a r-scrambling family of subsets of [t]. Spencer
then applied the Erdős/Ko/Rado theorem to provide a precise answer for the
size of M(2, t).

Theorem 6 (Spencer). M(2, t) =
( t−1
� t−2

2 �
)
, for all t ≥ 4.

As a consequence, Spencer observed that

lg lg n < dim(1, 2;n) ≤ lg lg n+ (12 + o(1)) lg lg lg n.
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Almost 20 years later, Füredi, Hajnal, Rödl and Trotter [13] were able to
show that the upper bound in this inequality is tight, i.e.,

dim(1, 2;n) = lg lg n+ (12 + o(1)) lg lg lg n.

For larger values of r, Spencer used random methods to produce the
following bound.

Theorem 7 (Spencer). For every r ≥ 2, there exists a constant c = cr > 1
so that M(r, t) > ct.

Proof. Let p be a positive integer and consider the set of all sequences of
length p whose elements are subsets of [t]. There are 2pt such sequences. The
number of such sequences which fail to be r-scrambling is easily seen to be
at most (

p

r

)
2r(2r − 1)t2(p−r)t.

So at least one of these sequences is a r-scrambling family of subsets of [t]
provided

(
p
r

)
2r(2r − 1)t2(p−r)t < 2pt. Clearly this inequality holds for p > ct

where c = cr ∼ e
1

r2r is a constant larger than 1. �

Here’s how the concept of scrambling families is used in provide upper
bounds for dim(q, r;n).

Theorem 8 (Spencer). If p = M(r, t) and n = 2p, then dim(1, r;n) ≤ t.

Proof. Let F be an r-scrambling family of subsets of [t], say F = {A1, A2, . . . ,
Ap} where p = M(r, t). Then set n = 2p and let Q1, Q2, . . . , Qn be the
subsets of [p]. For each α ∈ [t], define a linear order Lα on the set [n] by
the following rules. Let x and y be distinct integers from [n] and let u =
min((Qx −Qy) ∪ (Qy −Qx)). Set x > y in Lα if either

1. α ∈ Au and u ∈ Qx −Qy, or
2. α /∈ Au and u ∈ Qy −Qx.

It is not immediately clear why Lα is a linear order on [n] for each α ∈ [t],
but it is easy to check that this is so. Now let S be an r-element subset of
[n] and let x ∈ [n] − S. We must show that x > S in Lα for some α ∈ [t].
For each y ∈ S, let uy = min((Qx −Qy) ∪ (Qy ∪Qx)) and then consider the
family {Auy : y ∈ S}. Since F is a r-scrambling family of subsets of [t], there
exists some α ∈ [t] such that α ∈ Auy if and only if uy ∈ Qx. It follows from
the definition of Lα that x > S in Lα. �

By paying just a bit of attention to constants, the preceding results of
Spencer actually yield the following upper bound on dim(1, r;n).

Theorem 9 (Spencer). For all r ≥ 2, dim(1, r;n) ≤ (1+o(1)) 1
lg er2

r lg lg n.
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Of course, this bound is only meaningful if r is relatively small in
comparison to n, but in this range, it is surprisingly tight. The following
lower bound is a quite recent result due to Kierstead.

Theorem 10 (Kierstead). If 2 ≤ r ≤ lg lg n− lg lg lg n, then

(r + 2− lg lg n+ lg lg lg n)2 lg n

32 lg(r + 2− lg lg n+ lg lg lg n)
≤ dim(1, r;n).

We will return to the issue of estimating dim(1, r;n) in the next section.

5. The Dimension of Posets of Bounded Degree

Given a poset P = (X,P ) and a point x ∈ X , define the degree of x in P,
denoted degP(x), as the number of points in X which are comparable to x,
This is just the degree of the vertex x in the associated comparability graph.
Then define Δ(P) as the maximum degree of P. Finally, define Dim(k) as
the maximum dimension of a poset P with Δ(P) ≤ k. Rödl and Trotter were
the first to prove that Dim(k) is well defined. Their argument showed that
Dim(k) ≤ 2k2+2. It is now possible to present a very short argument for this
result by first developing the following idea due to Füredi and Kahn [12].

For a poset P = (X,P ) and a point x ∈ X , let U(x) = {y ∈ X : y > x in
P} and let U [x] = U(x) ∪ {x}. Dually, let D(x) = {y ∈ X : y < x in P} and
D[x] = D(x) ∪ {x}. The following proposition admits an elementary proof.
In fact, something more can be said, and we will comment on this in the next
section.

Proposition 2 (Füredi and Kahn). Let P = (X,P ) be a poset and let L be
any linear order on X. Then there exist a linear extension L′ of P so that if
(x, y) is a critical pair and x > D[y] in L, then x > y in L′, so that x > D[y]
in L′.

Theorem 11 (Rödl and Trotter). If P = (X,P ) is a poset with Δ(P) ≤ k,
then dim(P) ≤ 2k2 + 2.

Proof. Define a graph G = (X,E) as follows. The vertex set X is the ground
set of P. The edge set E contains those two element subsets {x, y} for which
U [x] ∩ U [y] �= ∅. Clearly, the maximum degree of a vertex in G is at most
k2. Therefore, the chromatic number of G is at most k2 + 1. Let t = k2 + 1
and let X = X1 ∪X2 ∪ . . . ∪ Xt be a partition of X into subsets which are
independent in G. Then for each i ∈ [t], let Li be any linear order on X
with Xi > X −Xi in Li. Finally, define Lt+i to be any linear order on X so
that:

1. Xi > X −Xi in Lt+i, and
2. The restriction of Lt+i to Xi is the dual of the restriction of Li to Xi.
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We claim that for every critical pair (x, y) ∈ crit(P), if x ∈ Xi, then
either x > D[y] in Li or x > D[y] in Lt+i. This claim follows easily from the
observation that any two points of D[y] are adjacent in G so that |D[y] ∩
Xi| ≤ 1. �

Füredi and Kahn [12] made a dramatic improvement in the upper bound
for in Dim(k) by applying the Lovász Local Lemma [9]. We sketch their
argument which begins with an application of random methods to provide
an upper bound for dim(1, r;n). In this sketch, we make no attempt to provide
the best possible constants.

Theorem 12 (Füredi and Kahn). Let r and n be integers with 1 < r < n.
If t is an integer such that

n

(
n− 1

r

)
(

r

r + 1
)t < 1, (1)

then dim(1, r;n) ≤ t. In particular, dim(1, r;n) ≤ r(r + 1) log(n/r).

Proof. Let t be an integer satisfying the inequality given in the statement of
the theorem. Then let {Li : i ∈ [t]} be a sequence of t random linear orders
on X . The expected number of pairs (x, S) where S is an r-element subset of
[n], x ∈ [n]−S and there is no i ∈ [t] for which x > S in Li is exactly what the
left hand side of this inequality is calculating. It follows that this quantity is
less than one, so the probability that there are no such pairs is positive. This
shows that dim(1, r;n) ≤ t. The estimate dim(1, r;n) ≤ r(r + 1) log(n/r)
follows easily. �

Theorem 13 (Füredi and Kahn). If P = (X,P ) is a poset for which
Δ(P) ≤ k, then dim(P) ≤ 100k log2 k, i.e., Dim(k) ≤ 100k log2 k.

Proof. The inequality dim(P) ≤ 100k log2 k follows from the preceding
theorem if k ≤ 1,000, so we may assume that k > 1,000. Set m = �k/ log k

and r = �9 log k
. Using the Lovász Local Lemma, we see that there exists
a partition X = Y1 ∪ Y2 . . .∪ Ym, with |D[x] ∩ Yi| ≤ r, for every x ∈ X . Now
fix i ∈ [m], let q = rk + 1 and let s = dim(1, r; q). We construct a family
R〉 = {L〉,| : | ∈ [∈ ∫

]} as follows.
Let G be the graph on X defined in the proof of Theorem 11. Then let

Gi be the subgraph induced by Yi. Now it is easy to see that any point of
Yi is adjacent to at most rk other points in Yi in the graph Gi. It follows
that the chromatic number of Gi is at most rk + 1. Let Yi = Yi,1 ∪ . . . ∪ Yi,q

be a partition into subsets each of which is independent in Gi. Then let
R = {M| : | ∈ [

∫
]} be a family of linear orders of [q] so that for every

r-element subset S ⊂ [q] and every x ∈ [q]−S, there is some j ∈ [s] for which
x > S in Mj .

Then for each j ∈ [s], define Li,j as any linear order for which:

1. Yi > X − Yi in Li,j and
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2. If a < b in Mj, then Yi,a < Yi,b in Li,j .

Finally, for each j ∈ [s], define Li,s+j as any linear order for which:

1. Yi > X − Yi in Li,s+j ,
2. If a < b in Mj, then Yi,a < Yi,b in Li,j and
3. If a ∈ [q], then the restriction of Li,s+j to Yi,a is the dual of the restriction

of Li,j to Yi,a.

Next we claim that if (x, y) is a critical pair and x ∈ Yi, then there is
some j ∈ [2s] so that x > D[y] in L(i, j). To see this observe that any two
points in D[y] are adjacent in G so at most r points in D[y] belong to Yi,
and all points of D[y] ∩ Yi belong to distinct subsets in the partition of Yi

into independent subsets. Let x ∈ Yi,j0. Then there exists some j ∈ [s] so
that j0 > j in Mj whenever j �= j0 and D[y]∩ Yi,j �= ∅. It follows that either
x > D[y] in L(i, j) or x > D[y] in L(i, s+ j).

Finally, we note that s = dim(1, r; q) ≤ r(r+1) log(q/r), so that dim(P) ≤
100k log2 k as claimed. �

There are two fundamentally important problems which leap out from
the preceding inequality limiting the dimension of posets of bounded degree,
beginning with the obvious question: Is the inequality Dim(k) = O(k log2 k)
best possible? However, the details of the proof also suggest that the
inequality could be improved if one could provide a better upper bound
than dim(1, log k; k) = O(log3 k). Unfortunately, the second approach will
not yield much as Kierstead [15] has recently provided the following lower
bound.

Theorem 14 (Kierstead). If lg lg n− lg lg lg n ≤ r ≤ 2lg
1/2 n, then

(r + 2− lg lg n+ lg lg lg lg n)2 lg n

32 lg(r + 2− lg lg n+ lg lg lg n)
≤ dim(1, r;n) ≤ 2k2 lg2 n

lg2 k
. (2)

As a consequence, it follows that dim(1, log k; k) = Ω(log3 k/ log log k).
So the remaining challenge is to provide better lower bounds on Dim(k).
Random methods seem to be our best hope. Here is a sketch of the technique
used by Erdős, Kierstead and Trotter [8] to show that Dim(k) = Ω(k log k).

For a fixed positive integer n, consider a random poset Pn having n
minimal elements a1, a2, . . . , an and n maximal elements b1, b2, . . . , bn. The
order relation is defined by setting ai < bj with probability p = p(n); also,
events corresponding to distinct min-max pairs are independent.

Erdős, Kierstead and Trotter then determine estimates for the expected
value of the dimension of the resulting random poset. The arguments are far
too complex to be conveniently summarized here, as they make non-trivial
use of correlation inequalities. However, the following theorem summarizes
the lower bounds obtained in [8].

Theorem 15 (Erdős, Kierstead and Trotter).
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1. For every ε > 0, there exists δ > 0 so that if

log1+ε n

n
< p ≤ 1

log n
,

then

dim(P) > δpn log pn, for almost all P.

2. For every ε > 0, there exist δ, c > 0 so that if

1

log n
≤ p < 1− n−1+ε,

then

dim(P) > max{δn, n− cn

p log n
}, for almost all P.

The following result is then an easy corollary.

Corollary 1 (Erdős, Kierstead and Trotter). For every ε > 0, there exists
δ > 0 so that if

n−1+ε < p ≤ 1

log n
,

then

dim(P) > δΔ(P) log n, for almost all P.

Summarizing, we now know that

Ω(k log k) = D(k) = O(k log2 k). (3)

It is the author’s opinion that the upper bound is more likely to be correct and
that the proof of this assertion will come from investigating the dimension
of a slightly different model of random height 2 posets. For integers n and k
with k large but much smaller than n, we consider a poset with n minimal
points and n maximal points. However, the comparabilities come from taking
k random matchings.

The techniques used by Erdős, Kierstead and Trotter in [8] break down
when p = o(log n/n). But this is just the point at which we can no longer
guarantee that the maximum degree is O(pn).

6. Fractional Dimension and Ramsey Theory
for Probability Spaces

In many instances, it is useful to consider a fractional version of an integer
valued combinatorial parameter, as in many cases, the resulting LP relaxation
sheds light on the original problem. In [3], Brightwell and Scheinerman
proposed to investigate fractional dimension for posets. This concept has
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already produced some interesting results, and many appealing questions
have been raised. Here’s a brief sketch of some questions with immediate
connections to random methods.

Let P = (X,P ) be a poset and let F = {M∞, . . . ,M	} be a multiset of
linear extensions of P . Brightwell and Scheinerman [3] call F a k-fold realizer
of P if for each incomparable pair (x, y), there are at least k linear extensions
in F which reverse the pair (x, y), i.e., |{i : 1 ≤ i ≤ t, x > y in Mi}| ≥ k, The
fractional dimension of P, denoted by fdim(P), is then defined as the least
real number q ≥ 1 for which there exists a k-fold realizer F = {M1, . . . ,Mt}
of P so that k/t ≥ 1/q (it is easily verified that the least upper bound of
such real numbers q is indeed attained and is a rational number). Using this
terminology, the dimension of P is just the least t for which there exists a
1-fold realizer of P . It follows immediately that fdim(P) ≤ dim(P), for every
poset P.

Note that the standard example of an n-dimensional poset also has
fractional dimension n. Brightwell and Scheinerman [3] proved that if P
is a poset and |D(x)| ≤ k, for all x ∈ X , then fdim(P) ≤ k + 2. They
conjectured that this inequality could be improved to fdim(P) ≤ k+ 1. This
was proved by Felsner and Trotter [10], and the argument yielded a much
stronger conclusion, a result with much the same flavor as Brooks’ theorem
for graphs.

Theorem 16 (Felsner and Trotter). Let k be a positive integer, and let P
be any poset with |D(x)| ≤ k, for all x ∈ X. Then fdim(P) ≤ k + 1.
Furthermore, if k ≥ 2, then fdim(P) < k+1 unless one of the components of
P is isomorphic to Sk+1, the standard example of a poset of dimension k+1.

We do not discuss the proof of this result here except to comment that
it requires a strengthening of Proposition 2, and to note that it implies that
the fractional dimension of the poset P(1, r;n) is r + 1. Thus a poset can
have large dimension and small fractional dimension. However, there is one
elementary bound which limits dimension in terms of fractional dimension.

Theorem 17. If P = (X,P ) is a poset with |X | = n and fdim(P) = q, then
dim(P) ≤ (2 + o(1))q log n.

Proof. Let F be a multi-realizer of P so that ProbF [x > y] ≥ 1/q, for every
critical pair (x, y) ∈ crit(P). Then take t to be any integer for which

n(n− 1)(1− 1/q)t < 1.

Then let {L1, . . . , Lt} be a sequence of length t in which the linear extensions
in F are equally likely to be chosen. Then the expected number of critical
pairs which are not reversed is less than one, so the probability that we have
a realizer of cardinality t is positive. �

Felsner and Trotter [10] derive several other inequalities for fractional
dimension, and these lead to some challenging problems as to the relative
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tightness of inequalities similar to the one given in Theorem 16. However,
the subject of fractional dimension has produced a number of challenging
problems which are certain to require random methods in their solutions.
Here is two such problems, one of which has recently been solved.

A poset P = (X,P ) is called an interval order if there exists a family
{[ax, bx] : x ∈ X} of non-empty closed intervals of R so that x < y in P if and
only if bx < ay in R. Fishburn [11] showed that a poset is an interval order
if and only if it does not contain 2 + 2 as a subposet. The interval order In
consisting of all intervals with integer endpoints from {1, 2, . . . , n} is called
the canonical interval order.

Although posets of height 2 can have arbitrarily large dimension, this is
not true for interval orders. For these posets, large height is a prerequisite for
large dimension.

Theorem 18 (Füredi, Hajnal, Rödl and Trotter). If P = (X,P ) is an
interval order of height n, then

dim(P) ≤ lg lg n+ (1/2 + o(1)) lg lg lg n. (4)

The inequality in the preceding theorem is best possible.

Theorem 19 (Füredi, Hajnal, Rödl and Trotter). The dimension of the
canonical interval order satisfies

dim(In) = lg lg n+ (1/2 + o(1)) lg lg lg n. (5)

Although interval orders may have large dimension, they have bounded
fractional dimension. Brightwell and Scheinerman [3] proved that the
dimension of any finite interval order is less than 4, and they conjectured
that for every ε > 0, there exists an interval order with dimension greater
than 4 − ε. We believe that this conjecture is correct, but confess that our
intuition is not really tested. For example, no interval order is known to have
fractional dimension greater than 3.

Motivated by the preceding inequalities and the known bounds on
the dimension and fractional dimension of interval orders and the posets
P(1, r;n), Brightwell asked whether there exists a function f : Q → R

so that if P = (X,P ) is a poset with |X | = n and fdim(P) = q, then
dim(P) ≤ f(q) lg lg n. If such a function exists, then the family P (1, r;n)
shows that we would need to have f(q) = Ω(2q).

But we will show that there is no such function. The argument requires
some additional notation and terminology. Fix integers n and k with 1 ≤ k <
n. We call an ordered pair (A,B) of k-element sets a (k, n)-shift pair if there
exists a (k + 1)-element subset C = {i1 < i2 < · · · < ik+1 ⊆ {1, 2, . . . , n} so
that A = {i1, i2, . . . , ik} and B = {i2, i3, . . . , ik+1. We then define the (k, n)-
shift graph S(k, n) as the graph whose vertex set consists of all k-element
subsets of {1, 2, . . . , n} with a k-element set A adjacent to a k-element set
B exactly when (A,B) is a (k, n)-shift pair. Note that the (1, n) shift graph
S(1, n) is just a complete graph. It is customary to call a (2, n)-shift graph
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just a shift graph; similarly, a (3, n)-shift graph is called a double shift graph.
The formula for the chromatic number of the (2, n)-shift graph S(2, n) is a
folklore result of graph theory: χ(S(2, n)) = �lg n
. Several researchers in
graph theory have told me that this result is due to Andras Hajnal, but
Andras says that it is not. In any case, it is an easy exercise.

The following construction exploits the properties of the shift graph to
provide a negative answer for Brightwell’s question.

Theorem 20. For every m ≥ 3, there exists a poset P = (X,P ) so that

1. |X | = m2;
2. dim(X,P ) ≥ lg m; and
3. fdim(X,P ) ≤ 4.

Proof. The poset P = (X,P ) is constructed as follows. Set X = {x(i, j) :
1 ≤ i, j ≤ m}, so that |X | = m2. The partial order P is defined by first
defining x(i, j1) < x(i, j2) in P , for each i ∈ [m] whenever 1 ≤ j1 < j2 ≤
m. Furthermore, for each i ∈ [m], x(i1, j1) < x(i2, j2) in P if and only if
(i2 − i1) + (j2 − j1) > m.

We now show that dim(X,P ) ≥ lg m. Note first that for each i, j with
1 ≤ i < j ≤ m, x(i, j − i) ‖ x(j,m). Let dim(X,P ) = t, and let R =
{L∞,L∈, . . . ,L	} be a realizer of P . For each i, j with 1 ≤ i < j ≤ m, choose
an integer φ({i, j}) = α ∈ {1, 2, . . . , t} so that x(i, j − i) > x(j,m) in Lα.
We claim that φ is a proper coloring of the (2,m) shift graph S(1,m) using t
colors, which requires that dim(X,P ) = t ≥ χ(S(2,m) = �lg m
. To see that
φ is a proper coloring, let i, j and k be integers with 1 ≤ i < j < k ≤ m, let
φ({i, j}) = α and let φ({j, k}) = β. If α = β, then x(i, j − i) > x(j,m) in Lα

and x(j, k − j) > x(k,m) in Lα. Also, x(j,m) > x(j, k − j) in P . However,
since (k − i) + (m− j + i) > m, it follows that x(k,m) > x(i, j − i) in P , so
that x(k,m) > x(i, j − i) in Lα. Thus,

x(i, j − i) > x(j,m) > x(j, k − j) > x(k,m) > x(i, j − i) in P (6)

The inequalities in equation 6 cannot all be true. The contradiction shows
that φ is a proper coloring of the shift graph S(2,m) as claimed. In turn, this
shows that dim(X,P ) ≥ �lg m
.

Finally, we show that fdim(X,P ) ≤ 4. For each element x ∈ X , let p1
and p2 be the natural projection maps defined by p(x) = i and p2(x) = j
when x = x(i, j). Next, we claim that for each subset A ⊂ [m], there exists a
linear extension L(A) of P so that x > y in L(A) if:

1. x ‖ y in P ;
2. p1(x) ∈ A and p1(y) /∈ A.

To show that such linear extensions exist, we use the alternating cycle test
(see Chap. 2 of [23]). Let A ⊆ [m], and let S(A) = {(x, y) ∈ X ×X : x ‖ y
in P, p1(x) ∈ A and p1(y) /∈ A}. Now suppose that {(uk, vk) : 1 ≤ k ≤
p} ⊆ S(A) is an alternating cycle of length p, i.e., uk ‖ vk and uk ≤ vk+1 in
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P , for all k ∈ [p] (subscripts are interpreted cyclically). Let k ∈ [m]. Then
p1(uk) ∈ A and p1(vk+1) /∈ A. It follows that uk < vk+1 in P , for each
k ∈ [p]. It follows that p1(vk+1 − p1(uk) + p2(vk+1) − p2(uk) > m. Also, we
know that m ≥ p1(vk)−p1(uk)+p2(vk)−p2(uk). Thus p1(vk+1)+p2(vk+1) >
p1(vk) + p2(vk). Clearly, this last inequality cannot hold for all k ∈ [p]. The
contradiction shows that S(A) cannot contain any alternating cycles. Thus
the desired linear extension L(A) exists.

Finally, we note that if we take F = {L(A) : A ⊆ [�]} and set s = |F|,
then x > y in at least s/4 of the linear extensions in F , whenever x ‖ y in P .
To see this, observe that there are exactly 2s/4 subsets of [m] which contain
p1(x) but do not contain p1(y). This shows that fdim(X,P ) ≤ 4 as claimed.
It also completes the proof of the theorem. �

Now we turn our attention to the double shift graph. If P = (X,P ) is a
poset, a subset D ⊆ X is called a down set, or an order ideal, if x ≤ y in P
and y ∈ D always imply that x ∈ P . The following result appears in [13] but
may have been known to other researchers in the area.

Theorem 21. Let n be a positive integer. Then the chromatic number of the
double shift graph S(3, n) is the least t so that there are at least n down sets
in the subset lattice 2t.

The problem of counting the number of down sets in the subset lattice 2t

is a classic problem and is traditionally called Dedekind’s problem. Although
no closed form expression is known, relatively tight asymptotic formulas
have been given. For our purposes, the estimate provided by Kleitman and
Markovsky [16] suffices. Theorem 21, coupled with the estimates from [16]
permit the following surprisingly accurate estimate on the chromatic number
χ(S(3, n)) of the double shift graph [13].

Theorem 22 (Füredi, Hajnal, Rödl and Trotter).

χ(S(3, n)) = lg lg n+ (1/2 + o(1)) lg lg lg n.

Now that we have introduced the double shift graph, the following
elementary observation can be made [13].

Proposition 3. For each n ≥ 3, dim(1, 2;n) ≥ χ(S(3, n)), and dim(In) ≥
χ(S(3, n)).

Although the original intent was to investigate questions involving the
fractional dimension of posets, Trotter and Winkler [27] began to attack a
Ramsey theoretic problem for probability spaces which seems to have broader
implications. Fix an integer k ≥ 1, and let n ≥ k + 1. Now suppose that Ω
is a probability space containing an event Es for every k-element subset S ⊂
{1, 2, . . . , n}. We abuse terminology slightly and use the notation Prob(S)
rather than Prob(ES).
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Now let f(Ω) denote the minimum value of Prob(AB), taken over all
(k, n)-shift pairs (A,B). Note that we are evaluating the probability that A
is true and B is false. Then let f(n, k) denote the maximum value of f(Ω)
and let f(k) denote the limit of f(n, k) as n tends to infinity.

Even the case k = 1 is non-trivial, as it takes some work to show that
f(1) = 1/4. However, there is a natural interpretation of this result. Given
a sufficiently long sequence of events, it is inescapable that there are two
events, A and B with A occurring before B in the sequence, so that

Prob(AB) <
1

4
+ ε.

The 1
4 term in this inequality represents coin flips. The ε is present

because, for finite n, we can always do slightly better than tossing a fair
coin.

For k = 2, Trotter and Winkler [27] show that f(2) = 1/3. Note that this
is just the fractional chromatic number of the double shift graph. This result
is also natural and comes from taking a random linear order L on {1, 2, . . . , n}
and then saying that a 2-element set {i, j} is true if i < j in L. Trotter and
Winkler conjecture that f(3) = 3/8, f(4) = 2/5, and are able to prove that
limk→∞ f(k) = 1/2. They originally conjectured that f(k) = k/(2k+2), but
they have since been able to show that f(5) ≥ 27

64 which is larger than 5
12 .

As an added bonus to this line of research, we are beginning to ask
natural (and I suspect quite important) questions about patterns appearing
in probability spaces.
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