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Ronald L. Graham • Jaroslav Nešetřil
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Preface to the Second Edition

v

In 2013 the world mathematical community is celebrating the 100th anniver-
sary of Paul Erdős’ birth. His personality is remembered by many of his
friends, former disciples, and over 500 coauthors, and his mathematics is as
alive and well as if he was still among us. In 1995/1996 we were preparing
the two volumes of The Mathematics of Paul Erdős not only as a tribute to
the achievements of one of the great mathematicians of the twentieth century
but also to display the full scope of his œuvre, the scientific activity which
transcends individual disciplines and covers a large part of mathematics as
we know it today. We did not want to produce just a “festschrift”.

In 1995/1996 this was a reasonable thing to do since most people were
aware of the (non-decreasing) Erdős activity only in their own particular area
of research. For example, we combinatorialists somehow have a tendency to
forget that the main activity of Erdős was number theory.

In the busy preparation of the volumes we did not realize that at the end,
when published, our volumes could be regarded as a tribute, as one of many
obituaries and personal recollections which flooded the scientific (and even
mass) media. It had to be so; the old master left.

Why then do we think that the second edition should be published?
Well, we believe that the quality of individual contributions in these volumes
is unique, interesting and already partly historical (and irreplaceable—
particularly in Part I of the first volume). Thus it should be updated and
made available especially in this anniversary year. This we feel as our duty
not only to our colleagues and authors but also to students and younger
scientists who did not have a chance to meet the wandering scholar personally.
We decided to prepare a second edition, asked our authors for updates and
in a few instances we solicited new contributions in exciting new areas. The
result is then a thoroughly edited volume which differs from the first edition
in many places.

On this occasion we would like to thank all our authors for their time and
work in preparing their articles and, in many cases, modifying and updating
them. We are fortunate that we could add three new contributions: one by
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Joel Spencer (in the way of personal introduction), one by Larry Guth in
Part IV of the first volume devoted to geometry, and one by Alexander
Razborov in Part I of the second volume devoted to extremal and Ramsey
problems. We also wish to acknowledge the essential contributions of Steve
Butler who assisted us during the preparation of this edition. In fact Steve’s
contributions were so decisive that we decided to add him as co-editor to
these volumes. We also thank Kaitlin Leach (Springer) for her efficiency and
support. With her presence at the SIAM Discrete Math. conference in Halifax,
the whole project became more realistic.

However, we believe that these volumes deserve a little more contem-
plative introduction in several respects. The nearly 20 years since the first
edition was prepared gives us a chance to see the mathematics of Paul
Erdős in perspective. It is easy to say that his mathematics is alive; that
may sound cliché. But this is in fact an understatement for it seems that
Erdős’ mathematics is flourishing. How much it changed since 1995 when
the first edition was being prepared. How much it changed in the wealth
of results, new directions and open problems. Many new important results
have been obtained since then. To name just a few: the distinct distances
problem, various bounds for Ramsey numbers, various extremal problems, the
empty convex 6-gon problem, packing and covering problems, sum-product
phenomena, geometric incidence problems, etc. Many of these are covered by
articles of this volumes and many of these results relate directly or indirectly
to problems, results and conjectures of Erdős. Perhaps it is not as active
a business any more to solve a particular Erdős problem. After all, the
remaining unsolved problems from his legacy tend to be the harder ones.
However, many papers quote his work and in a broader sense can be traced
to him.

There may be more than meets the eye here. More and more we see that
the Erdős problems are attacked and sometimes solved by means of tools that
are not purely combinatorial or elementary, and which originate in the other
areas of mathematics. And not only that, these connections and applications
merge to new theories which are investigated on their own and some of which
belong to very active areas of contemporary mathematics. As if the hard
problems inspire the development of new tools which then became a coherent
group of results that may be called theories. This phenomenon is known to
most professionals and was nicely described by Tim Gowers as two cultures.
[W. T. Gowers, The two cultures of mathematics, in Mathematics: Frontiers
and Perspectives (Amer. Math. Soc., Providence, RI, 2000), 65–78.] On one
side, problem solvers, on the other side, theory builders. Erdős’ mathematics
seems to be on one side. But perhaps this is misleading. As an example,
see the article in the first volume Unexpected applications of polynomials
in combinatorics by Larry Guth and the article in the second volume Flag
algebras: an interim report by Alexander Razborov for a wealth of theory
and structural richness. Perhaps, on the top level of selecting problems and
with persistent activity in solving them, the difference between the two sides
becomes less clear. (Good) mathematics presents a whole.
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Time will tell. Perhaps one day we shall see Paul Erdős not as a theory
builder but as a man whose problems inspired a wealth of theories.

People outside of mathematics might think of our field as a collection
of old tricks. The second edition of mathematics of Paul Erdős is a good
opportunity to see how wrong this popular perception of mathematics is.

La Jolla, USA R.L. Graham
Prague, Czech Republic J. Nešetřil





IN MEMORIAM

Paul Erdős

26.3.1913–20.9.1996

The week before these volumes were scheduled to go to press, we learned that
Paul Erdős died on September 20, 1996. He was 83. Paul died while attending
a conference in Warsaw, on his way to another meeting. In this respect, this
is the way he wanted to “leave”. In fact, the list of his last month’s activities
alone inspires envy in much younger people.

Paul was present when the completion of this project was celebrated
by an elegant dinner in Budapest for some of the authors, editors and
Springer representatives attending the European Mathematical Congress. He
was especially pleased to see the first copies of these volumes and was perhaps
surprised (as were the editors) by the actual size and impact of the collection
(On the opposite page is the collection of signatures from those present at
the dinner, taken from the inside cover of the mock-up for these volumes).
We hope that these volumes will provide a source of inspiration as well as a
last tribute to one of the great mathematicians of our time. And because of
the unique lifestyle of Paul Erdős, a style which did not distinguish between
life and mathematics, this is perhaps a unique document of our times as well.

R.L. Graham
J. Nešetřil

ix
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In 1992, when Paul Erdős was awarded a Doctor Honoris Causa by Charles
University in Prague, a small conference was held, bringing together a distin-
guished group of researchers with interests spanning a variety of fields related
to Erdős’ own work. At that gathering, the idea occurred to several of us
that it might be quite appropriate at this point in Erdős’ career to solicit a
collection of articles illustrating various aspects of Erdős’ mathematical life
and work. The response to our solicitation was immediate and overwhelming,
and these volumes are the result.

Regarding the organization, we found it convenient to arrange the papers
into six chapters, each mirroring Erdős’ holistic approach to mathematics.
Our goal was not merely a (random) collection of papers but rather a
thoroughly edited volume composed in large part by articles explicitly
solicited to illustrate interesting aspects of Erdős and his life and work.
Each chapter includes an introduction which often presents a sample of
related Erdős’ problems “in his own words”. All these (sometimes lengthy)
introductions were written jointly by editors.

We wish to thank the nearly 70 contributors for their outstanding efforts
(and their patience). In particular, we are grateful to Béla Bollobás for his
extensive documentation of Paul Erdős’ early years and mathematical high
points; our other authors are acknowledged in their respective chapters. We
also want to thank A. Bondy, G. Hahn, I. Ouhel, K. Marx, J. Načeradský
and Ché Graham for their help and for the use of their works. At various
stages of the project, the book was supported by AT&T Bell Laboratories,
GAČR 2167 and GAUK 351. We also are indebted to Dr. Joachim Heinze
and Springer Verlag for their encouragement and support. Finally, we would
like to record our extreme debt to Susan Pope (at AT&T Bell Laboratories)
who somehow (miraculously) managed to convert more than 50 manuscripts
of all types into the attractive form they now have.

Here then is a unique portrait of a man who has devoted his whole being
to “proving and conjecturing” and to the pursuit of mathematical knowledge
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and understanding. We hope that this will form a lasting tribute to one of
the great mathematicians of our time.

Murray Hill, USA R.L. Graham
Praha, Czech Republic J. Nešetřil
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Paul Erdős: The Master of Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Jerrold W. Grossman
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I. Combinatorics and Graph Theory
Introduction

Erdős’ work in graph theory started early and arose in connection with D.
Kőnig, his teacher in prewar Budapest. The classic paper of Erdős’ and
Szekeres from 1935 also contains a proof in “graphotheoretic terms.” The
investigation of the Ramsey function led Erdős to probabilistic methods and
seminal papers in 1947, 1958 and 1960. It is perhaps interesting to note
that three other very early contributions of Erdős’ to graph theory (before
1947) were related to infinite graphs: infinite Eulerian graphs (with Gallai
and Vászoni) and a paper with Kakutani on nondenumerable graphs (1943).
Although the contributions of Erdős to graph theory are manifold, and he
proved (and always liked) beautiful structural results such as the Friendship
Theorem (jointly with V. T. Sós and Kövári), and compactness results
(jointly with N. G. de Bruijn), his main contributions were in asymptotic
analysis, probabilistic methods, bounds and estimates. Erdős was the first
who brought to graph theory the experience and rigor of number theory
(perhaps being preceded by two papers by V. Jarńık, one of his early
coauthors). Thus he contributed in an essential way to lifting graph theory
up from the “slums of topology.”

This part contains a “special” problem paper not by Erdős but by his
frequent coauthors from Memphis: R. Faudree, C. C. Rousseau and R. Schelp
(well, there is actually an Erdős supplement there as well). We encouraged
the authors to write this paper and we are happy to include it in this
volume. This part also includes two papers coauthored by Béla Bollobás,
who is one of Erdős’ principal disciples. Bollobás contributed to much
of Erdős’ combinatorial activities and wrote important books about them
(Extremal Graph Theory, Introduction to Graph Theory, Random Graphs).
His contributions to this chapter (coauthored with his two former students G.
Brightwell and A. Thomason) deal with graphs (and thus are in this chapter)
but they by and large employ random graph methods (and thus they could be
also be at home in the other volume). The main questions there may be also
considered as extremal graph theory questions (and thus they could fit into
the following part). Other contributions to this chapter, which are related to
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some aspect of Erdős’ work or simply pay tribute to him are by N. Alon, Z.
Füredi, M. Aigner and E. Triesch, S. Bezrukov and K. Engel, A. Gyárfás,
S. Brandt, N. Sauer and H. Wang, H. Fleischner and M. Stiebitz, and D.
Beaver, S. Haber and P. Winkler.

In 1995/1996, when the contents of these volumes were already crystal-
lizing, we asked Paul Erdős to isolate a few problems, both recent and old,
for each of the eight main parts of this book. To this part on Combinatorics
and Graph Theory he contributed the following collection of problems and
comments.

Erdős in his own words

Many years ago I proved by the probability method that for every k and r
there is a graph of girth ≥ r and chromatic number ≥ k. Lovász when he was
still in high school found a fairly difficult constructive proof. My proof still
had the advantage that not only was the chromatic number of G(n) large but
the largest independent set was of size < εn for every ε > 0 if n > n0(ε, r, k).
Nešetřil and V. Rödl later found a simpler constructive proof.

There is a very great difference between a graph of chromatic number ℵ0

and a graph of chromatic number ≥ ℵ1. Hajnal and I in fact proved that if
G has chromatic number ℵ1 then G must contain a C4 and more generally
G contains the complete bipartite graph K(n,ℵ1) for every n < ℵ0. Hajnal,
Shelah and I proved that every graph G of chromatic number ℵ1 must contain
for some k0 every odd cycle of size ≥ k0 (for even cycles this was of course
contained in our result with Hajnal), but we observed that for every k and
every m there is a graph of chromatic number m which contains no odd cycle
of length < k. Walter Taylor has the following very beautiful problem: Let
G be any graph of chromatic number ℵ1. Is it true that for every m > ℵ1

there is a graph Gm of chromatic number m all finite subgraphs of which
are contained in G? Hajnal and Komjáth have some results in this direction
but the general conjecture is still open. If it would have been my problem, I
certainly would offer 1,000 dollars for a proof or a disproof. (To avoid financial
ruin I have to restrict my offers to my problems.)

Let k be fixed and n → ∞. Is it true that there is an f(k) so that if G(n)
has the property that for every m every subgraph of m vertices contains an
independent set of size m/2 − k then G(n) is the union of a bipartite graph
and a graph of ≤ f(k) vertices, i.e., the vertex set of G(n) is the union of three
disjoint sets S1, S2 and S3 where S1 and S2 are independent and |S3| ≤ f(k).
Gyárfás pointed out that even the following special case is perhaps difficult.
Let m be even and assume that every m vertices of our G(n) induces an
independent set of size at least m/2. Is it true then that G(n) is the union of
a bipartite graph and a bounded set? Perhaps this will be cleared up before
this paper appears, or am I too optimistic?

Hajnal, Szemerédi and I proved that for every ε > 0 there is a graph of
infinite chromatic number for which every subgraph of m vertices contains
an independent set of size (1 − ε)m/2 and in fact perhaps (1 − ε)m/2 can be
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replaced by m/2 − f(m) where f(m) tends to infinity arbitrarily slowly. A
result of Folkman implies that if G is such that every subgraph of m vertices
contains an independent set of size m/2− k then the chromatic number of G
is at most 2k + 2.

Many years ago Hajnal and I conjectured that if G is an infinite graph
whose chromatic number is infinite, then if a1 < a2 < . . . are the lengths of
the odd cycles of G we have

∑

i

1

ai
= ∞

and perhaps a1 < a2 < . . . has positive upper density. (The lower density can
be 0 since there are graphs of arbitrarily large chromatic number and girth.)

We never could get anywhere with this conjecture. About 10 years ago
Mihók and I conjectured that G must contain for infinitely many n cycles
of length 2n. More generally it would be of interest to characterize the
infinite sequences A = {a1 < a2 < . . .} for which every graph of infinite
chromatic number must contain infinitely many cycles whose length is in A.
In particular, assume that the ai are all odd.

All these problems are unattackable (at least for us). About 3 years ago
Gyárfás and I thought that perhaps every graph whose minimum degree is
≥ 3 must contain a cycle of length 2k for some k ≥ 2. We became convinced
that the answer almost surely will be negative but we could not find a
counterexample. We in fact thought that for every r there must be a Gr
every vertex of which has degree ≥ r and which contains no cycle of length
2k for any k ≥ 2. The problem is wide open.

Gyárfás, Komlós and Szemerédi proved that if k is large and a1 < a2 < . . .
are the lengths of the cycles of a G(n, kn), that is, an n-vertex graph with
kn edges, then

∑ 1

ai
> c logn.

The sum is probably minimal for the complete bipartite graphs.
(Erdős-Hajnal) If G has large chromatic number does it contain two (or k

if the chromatic number is large) edge-disjoint cycles having the same vertex
set? It surely holds if G(n) has chromatic number > nε but nothing seems to
be known.

Fajtlowicz, Staton and I considered the following problem (the main
idea was due to Fajtlowicz). Let F (n) be the largest integer for which
every graph of n vertices contains a regular induced subgraph of ≥ F (n)
vertices. Ramsey’s theorem states that G(n) contains a trivial subgraph, i.e.,
a complete or empty subgraph of c logn vertices. (The exact value of c is not
known but we know 1/2 ≤ c ≤ 2.) We conjectured F (n)/ logn → ∞. This is
still open. We observed F (5) = 3 (since if G(5) contains no trivial subgraph
of 3 vertices then it must be a pentagon) . Kohayakawa and I worked out
the F (7) = 4 but the proof is by an uninteresting case analysis. (We found



4 I Combinatorics and Graph Theory

that this was done earlier by Fajtlowicz, McColgan, Reid and Staton, see Ars
Combinatoria vol 39.) It would be very interesting to find the smallest integer
n for which F (n) = 5, i.e., the smallest n for which every G(n) contains a
regular induced subgraph of ≥ 5 vertices. Probably this will be much more
difficult than the proof of F (7) = 4 since in the latter we could use properties
of perfect graphs. Bollobás observed that F (n) < c

√
n for some c > 0.

Let G(10n) be a graph on 10n vertices. Is it true that if every index
subgraph of 5n vertices of our G(10n) has ≥ 2n2 + 1 edges then our G(10n)
contains a triangle? It is easy to see that 2n2 edges do not suffice. A
weaker result has been proved by Faudree, Schelp and myself at the Hakone
conference (1992, I believe) see also a paper by Fan Chung and Ron Graham
(one of the papers in a volume published by Bollobás dedicated to me).

A related forgotten conjecture of mine states that if our G(10n) has more
than 20n2 edges and every subgraph of 5n vertices has ≥ 2n2 edges then
our graph must have a triangle. Simonovits noticed that if you replace each
vertex of the Petersen graph by n vertices you get a graph of 10n vertices,
15n2 edges, no triangle and every subgraph of 5n vertices contains ≥ 2n2

edges.

*****

So much for P. Erdős in 1995. Let us add that since that time some of
these problems were solved, some are open and some seem to be dormant.
Some were subject of intensive study. The reference to the above Hakone
conference is:

P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp, A local density
condition for triangles, Discrete Math. 127, 1–2 (1994), 153–161.
(The conference was The Second Japan Conference on Graph Theory and
Combinatorics, Aug 18–22, 1990 in Hakone.)

The mentioned paper by Fan Chung et al. is the following:
F. R. K. Chung and R. L. Graham, On graphs not containing prescribed
induced subgraphs, in A Tribute to Paul Erdos, ed. by A. Baker, B. Bollobás
and A. Hajnal, Cambridge University Press (1990), 111–120.

One of these problems was quoted by Erdős much earlier. For example the
problem of Taylor was mentioned as early as 1975; (W. Taylor: Problem 42.
In: Combinatorial Structures and Their Applications, Proc. Calgary Internat.
Conf. 1969, Gordon and Breach 1969.)

For more information about Erdős problems on graphs and of their
current status see:
F. R. K. Chung, R. L. Graham, Erdős on Graphs: His Legacy of Unsolved
Problems, A K Peters, Cambridge, MA 1993, xiv+142 pp.



Reconstruction Problems for Digraphs

Martin Aigner and Eberhad Triesch
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Summary. Associate to a finite directed graph G(V,E) its out-degree resp.
in-degree sequences d+, d− and the corresponding neighborhood lists N+, N−

(when G is a labeled graph). We discuss various problems when sequences resp.
lists of sets can be realized as degree sequences resp. neighborhood lists of a directed
graph.

1. Introduction

Consider a finite graph G(V,E). Let us associate with G a finite list P (G) of
parameters, e.g. the degrees, the list of cliques, the chromatic polynomial, or
whatever we like. For any set P of invariants there arise two natural problems:

(R) Realizability. Given P , when is P = P (G) for some graph G? We
then call P graphic, and say that G realizes P .

(U) Uniqueness. Suppose P (G) = P (H). When does this imply G ∼= H?
In other words, when is P a complete set of invariants?

The best studied questions in this context are probably the reconstruction
conjecture for (U), and the degree realization problem for (R). This latter
problem was solved in a famous theorem of Erdős-Gallai [4] characterizing
graphic sequences. Their theorem reads as follows: Let d1 ≥ · · · ≥ dn ≥ 0 be
a sequence of integers. Then (d1 ≥ · · · ≥ dn) can be realized as the degree
sequence of a graph if and only if the degree sum is even and

k∑

i=1

di ≤ k(k − 1) +

n∑

j=k+1

min(dj , k) (k = 1, . . . , n). (1)

A variant of this problem concerning neighborhoods was first raised by Sós
[13] and studied by Aigner-Triesch [2]. Consider a finite labeled graphG(V,E)
and denote by N(u) the neighborhood of u ∈ V . N (G) = {N(u) : u ∈ V } is
called the neighborhood list of G. Given a list (multiset) N = (N1, . . . , Nn)
of sets. When is N = N (G) for some graph G? In contrast to the polynomial

R.L. Graham et al. (eds.), The Mathematics of Paul Erdős II,
DOI 10.1007/978-1-4614-7254-4 1,
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verification of (1), it was shown in [2] that the neighborhood list problem
NL is NP-complete for arbitrary graphs. For bipartite graphs, NL turns out
to be polynomially equivalent to the GRAPH ISOMORPHISM problem. A
general survey of these questions appears in [3].

In the present paper we consider directed graphs G(V,E) on n vertices
with or without loops and discuss the corresponding realizability problems
for the degree resp. neighborhood sequences. We assume throughout that
there is at most one directed edge (u, v) for any u, v ∈ V . To every u ∈ V
we associate its out-neighborhood N+(u) = {v ∈ V : (u, v) ∈ E} and its
in-neighborhood N−(u) = {v ∈ V : (v, u) ∈ E} with d+(u) = |N+(u)| and
d−(u) = |N−(u)| being the out-degree resp. in-degree of u.

For both the degree realization problem and the neighborhood problem
we have three versions in the directed case:

(D+) Given a sequence d+ = (d+1 , . . . , d
+
n ) of non-negative integers. When

is d+ realizable as the out-degree sequence of a directed graph?
Obviously, (D−) is the same problem.
(D+

−) Given a sequence of pairs d+− = ((d+1 , d
−
1 ), . . . , (d+n , d

−
n )). When is

there a graph G with d+(ui) = d+i , d−(ui) = d−i for all i?
(D+,D−) Given two sequences d+ = (d+1 , . . . d

+
n ), d− = (d−1 , . . . , d

−
n ).

When is there a directed graph such that d+ is the out-degree sequence (in
some order) and d− the in-degree sequence?

In an analogous way, we may consider the realization problems (N+),
(N+

− ), (N+,N−) for neighborhood lists.
In Sect. 2 we consider the degree problems and in Sect. 3 the neighborhood

problems. Section 4 is devoted to simple directed graphs when there is at most
one edge between any two vertices and no loops.

2. Degree Sequences

Depending on whether we allow loops or not there are six different reconstruc-
tion problems whose solutions are summarized in the following diagram:

Degrees (D+) (D+
−) (D+,D−)

With loops Trivial Gale-Ryser Gale-Ryser

Without loops Trivial Fulkerson Fulkerson

The problems (D+) have the following trivial solutions: (d+) is realizable
with loops if and only if d+i ≤ n for all i, and without loops if and only if
d+i ≤ n− 1 for all i.

Consider (D+
−) with loops. We represent G(V,E) as usual by its adjacency

matrix M where the rows and columns are indexed by the vertices u1, . . . , un
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with mij = 1 if (ui, uj) ∈ E and 0 otherwise. To realize a given sequence
(d+−) is therefore equivalent to constructing a 0, 1-matrix with given row-sums
d+i and column-sums d−i which is precisely the content of the Gale-Ryser
Theorem [7, 11]. In fact, the Gale-Ryser Theorem applies to the situation
(D+,D−) as well by permuting the columns. If we do not allow loops, then
the realization problem (D+

−) is settled by an analogous theorem of Fulkerson
[5, 6]. He reduces the problem of constructing a 0, 1-matrix with zero trace
and given row and column sums to a network flow problem, an approach
which can also be used in the case of the Gale-Ryser theorem thus showing
that both problems are polynomially decidable. Finally, we remark that the
case (D+,D−) can be reduced to the case (D+

−) in view of the following
proposition.

Proposition 1. Suppose two sequences d+ = (d+1 , . . . , d
+
n ), d− = (d−1 , . . . ,

d−n ) are given. Denote by d̄+ (resp. d̄−) a non-increasing (resp. non-
decreasing) rearrangement of d+ (resp. d−). If there exists a 0, 1-matrix
M = (mij) with

∑n
j=1mjj = 0,

∑n
j=1mij = d+i ,

∑n
j=1mji = d−i ,

1 ≤ i ≤ n, then there exists a 0, 1-matrix M = (mij) satisfying
∑
jmjj = 0,

∑
jmij = d

+

i ,
∑
imji = d

−
i , 1 ≤ i ≤ n.

Proof. Suppose M is given as above. By permuting the rows and columns
of M by the same permutation (which does not change the trace) we may

assume that d+ = d
+

. �

Now suppose that for some indices i < j, d−i > d−j . We will show that M

can be transformed into a matrix M̂ with zero trace, row sum vector d+ and
column sum vector d̂−, where d̂− arises from d− by exchanging d−i and d−j .
Since each Permutation is generated by transpositions, this will obviously
complete the proof. To keep notation simple, we give the argument only for
the case i = n − 1, j = n but it is immediately clear how the general case
works. Suppose

M =

⎛

⎜⎜⎝
a b

0 y
x 0

⎞

⎟⎟⎠.

(i) If x ≤ y, then we exchange (ai, bi) when ai = 1 and bi = 0 for d−n−1 − d−n
indices i ≤ n− 2.

(ii) If x = 1, y = 0, then since d+n−1 ≥ d+n there exists some � < n − 1 such
that

(
mn−1,�

mn,�

)
=

(
1

0

)
.
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Now let

M =

⎛

⎜⎜⎝
b a

0 0 1
1 0 0

⎞

⎟⎟⎠

3. Neighborhood Lists

As in the undirected case the neighborhood problems are more involved.
Again, we summarize our findings in a diagram and then discuss the proofs.

Neighbors (N+) (N+
− ) (N+,N−)

With loops Trivial ≥ GRAPH ISOM. ≈ GRAPH ISOM.

Without loops Bipartite matching NP-complete NP-complete

Let us consider (N+) first. Allowing loops, any list (N+
i ) can be realized.

In the absence of loops, (N+
i ) can be realized if and only if (N+c

1 , . . . , N+c

n )
has a transversal, where N c is the complement of N . So, this problem is
equivalent to the bipartite matching problem and, in particular, polynomially
decidable.

Let us treat next the problem (N+
− ) without loops. The special caseN+

i =
N−
i for all i clearly reduces to the (undirected) neighborhood list problem

NL which as mentioned is NP-complete. Accordingly, (N+
− ) is NP-complete

as well.
We show next that the decision problem (N+

− ) with loops is polynomially
equivalent to the matrix symmetry problem MS defined as follows:

The input is an n×n-matrix A with 0, 1-entries, with the question: Does
there exist a permutation matrix P such that (PA)T = PA holds?

Let us represent G(V,E) again by its adjacency matrix. Then, clearly,
MS is the special case of (N+

− ) where N+
i = N−

i for all i. To see the converse
denote by xi (resp. yi) the incidence vectors of N+

i (resp. N−
i ) as row vectors,

and set

X =

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ , Y =

⎛

⎜⎝
y1

...
yn

⎞

⎟⎠.

The problem (N+
− ) is thus equivalent to the following decision problem: Does

there exist a permutation matrix P such that

PX = (PY )T ?
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Note that PX = (PY )T ⇐⇒ (PX)T = PY . Now consider the 4n× 4n-
matrix

Γ =

O I X U
I O I W
Y I O Z
UT WT ZT O

where O, I are the zero-matrix and identity matrix, respectively, and U,W,Z
are matrices with identical rows each which ensure that a permutation matrix
R satisfying (RΓ)T = RΓ must be of the form

R =

R1 O O O
O R2 O O
O O R3 O
O O O R4

.

Clearly, such matrices U,W,Z exist. Now (RΓ)T = RΓ if and only if

(R1X)T = R3Y,R
T
2 = R1, R3 = RT2 = R1,

i.e. if and only if (R1X)T = R1Y , and the result follows.
It was mentioned in [2] that MS is at least as hard as GRAPH

ISOMORPHISM, but we do not know whether they are polynomially
equivalent.

Let us, finally, turn to the problems (N+, N−). We treat (N+,N−) with
loops, the other version is settled by a matrix argument as above. Using again
the notation xi, yi, X , Y , our problem is equivalent to the following matrix
problem: Do there exist permutation matrices P and Q such that

PX = Y TQ, i.e. PXQT = Y T ?

This latter problem is obviously polynomially equivalent to HYPERGRAPH
ISOMORPHISM which is known to be equivalent to GRAPH ISOMOR-
PHISM (see [2]).

4. Simple Directed Graphs and Tournaments

Let us now consider simple directed graphs and, in particular, tournaments.
In contrast to the non-simple case, where (D+) and (N+) are trivial resp.
polynomially solvable (bipartite matching), the problems now become more
involved.

As for (D+), a necessary and sufficient condition for (d+i ) to be realizable
as an out-degree sequence of a tournament was given by Landau [9]. Assume
d+1 ≥ · · · ≥ d+n , then (d+i ) is realizable if and only if
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k∑

i=1

d+i ≤ (n− 1) + . . .+ (n− k) (K = 1, . . . , n)

with equality for k = n.
Deleting the last condition yields the corresponding result for arbitrary

simple digraphs.

Theorem 1. A sequence (d+1 ≥ · · · ≥ d+n ) is realizable as out-degree sequence
of a simple directed graph if and only if

k∑

i=1

d+i ≤
k∑

i=1

(n− i) (K = 1, . . . , n). (2)

Proof. The condition is obviously necessary. For the converse we make use of
the dominance order of sequences p = (p1 ≥ · · · ≥ pn), q = (q1 ≥ · · · ≥ qn):

p ≤ q ⇐⇒
k∑

i=1

pi ≤
k∑

i=1

qi (k = 1, . . . , n). (3)

Suppose m =
∑n

i=1 d
+
i , and denote by L(m) the lattice of all sequences

p = (p1 ≥ · · · ≥ pn),
∑n
i=1 pi = m, ordered by (3), see [1] for a survey on the

uses of L(m). Let S(m) ⊆ L(m) be the set of sequences which are realizable
as out-degree sequences of a simple digraph with m edges.

Claim 1. S(m) is a down-set, i.e. p ∈ S(m), q ≤ p =⇒ q ∈ S(m).

It is well-known that the order ≤ in L(m) is transitively generated by
successive “pushing down boxes”, i.e. it suffices to prove the claim for q ≤ p
with qr = pr − 1, qs = ps + 1 for some pr ≥ ps + 2, and qi = pi for i = r, s.
Now suppose G realizes the sequence p, with d+(ui) = pi. Since d+(ur) ≥
d+(us) + 2, there must be a vertex vt with (ur, ut) ∈ E, (us, ut) /∈ E. If
(ut, us) ∈ E, replace (ur, ut), (ut, us) by (ut, ur), (us, ut), and if (ut, us) /∈ E,
replace (ur, ut) by (us, ut). In either case, we obtain a simple directed graph
G′ with q as out-degree sequence, and the claim is proved.

Claim 2. Suppose m = (n− 1) + . . .+ (n− �+ 1) + r with r ≤ n− �, then
pm = (n− 1, . . . , n− �+ 1, r) is the only maximal element of S(m) in L(m).

By the definition (3), the sequence pm clearly dominates any sequence in
S(m), and since pm can obviously be realized as an out-degree sequence of a
simple digraph, it is the unique maximum of S(m).

Taking Claims 1 and 2 together yields the characterization

d ∈ S(m) ⇐⇒ d ≤ pm

and this latter condition is plainly equivalent to (1). �
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As is to be expected the neighborhood list problem (N+) is considerably
more involved. We consider the problem NLSD (neighborhood list of a simple
digraph):

Instance: A list N+ = (N+
1 , . . . , N

+
n ).

Question: Does there exist a simple digraph G(V,E) such that N+ is the
list of its out-neighborhoods?

In terms of the adjacency matrix, the problem reads as follows: We are
given an n × n-matrix Γ (whose rows are the incidence vectors of the sets
N+
i ). Does there exist a permutation matrix R such that RΓ is the adjacency

matrix of a simple digraph, i.e. such that

RΓ + (RΓ)T ≤ J − I

where J is the all-ones matrix, and ≤ is to be understood coordinate-wise.

Theorem 2. The decision problem NLSD is NP-complete.

For the proof we need an auxiliary result. Consider the decision problem
k-Aut:

Instance: A simple undirected graph G.
Question: Does G admit an automorphism all of whose orbits have length

at least k?
The problem 2-Aut is the FIXED-POINT-FREE AUTOMORPHISM

problem which was shown to be NP-complete by Lubiw [10].

Lemma 1. 3-Aut is NP-complete.

Proof. We give a transformation from 2-Aut. Note first that the construction
given by Lubiw shows that we may assume an instance G of 2-Aut which
satisfies the following conditions:

(a) For u = v ∈ V , the sets N(u) = {w ∈ V : uw ∈ E} and N(v) are distinct.
(b) For u = v ∈ V,N(u) ∪ {u} = N(v) ∪ {v}.

For such graphs G, Sabidussi has shown in [12] that the composition G[G]
the automorphism group AutG ◦ AutG where ◦ denotes the wreath product
and V (G[G]) = V × V ,

E(G[G]) = {{u1, v1}, {u2, v2} : u1u2 ∈ E or u1 = u2, v1v2 ∈ E}.

That is, the composition arises from G by replacing each vertex by an
isomorphic copy of G and joining either all pairs in different copies or none
according to whether the original vertices are adjacent or not. The wreath
product AutG ◦ AutG is defined as follows:

AutG ◦ AutG = {(ϕ;ψ1, . . . , ψn) : ϕ, ψi ∈ AutG}

where the action on V × V is given by

(ϕ;ψ1, . . . , ψn)(u, v) = (ϕ(u), ψu(v)) with V = {1, . . . , n}.
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We claim that G has a fixed-point free automorphism if and only if G[G]
admits an automorphism with all orbit lengths at least 3. This will then prove
our Lemma.

Suppose first that there exists ϕ ∈ AutG, ϕ(u) = u for all u ∈ V , and
let O1, . . . , Ok be the orbits of ϕ on V . Suppose |O1| = . . . = |Oh| = 2 and
|Oi| ≥ 3 for h + 1 ≤ i ≤ k. Define ρ = (ϕ;ψ1, . . . , ψn) ∈ AutG ◦ AutG such
that ψu ∈ {id, ϕ} for all u and ψu = ϕ for exactly one u in each orbit Oi,
1 ≤ i ≤ h. Let (u, v) ∈ V × V and denote by O its ρ-orbit. If the orbit Oi of
u under ϕ has at least three elements, then the same obviously holds for O.
In case Oi = {u,w}, suppose ψu = ϕ. Then {(u, v), (w,ϕ(v)), (u, ϕ(v))} ⊆ O
and thus |O| ≥ 3. The case ψw = ϕ is analogous.

Now assume, conversely, that each ϕ ∈ AutG has a fixed point u = uϕ.
Then each ρ = (ϕ;ψ1, . . . , ψn) has a fixed point as well, namely the pair
(uϕ, uψuϕ

). Since the transformation G −→ G[G] is clearly polynomial, the
proof of the Lemma is complete. �

Remark 1. By iterating the construction of the Lemma, it can be shown
that k-Aut is NP-complete for every fixed k ≥ 2.

Proof of Theorem 2. We provide a transformation from 3-Aut. Suppose G is
a simple undirected graph with incidence matrix A ∈ {0, 1}n×m, where m is
the number of edges. We may assume n ≥ 4, m ≥ 3. We denote by tr×s the
r × s-matrix with all entries equal to t, and set A = 1n×m −A.

Now consider the (n+m+ 2) × (n+m+ 2)-matrix

Γ =

In A 1n×1 1n×1

A
T

0m×m 1m×1 0m×1

01×n 01×m 0 1
01×n 11×m 0 0

.

Our theorem will be proved by the following claim: There exists a
permutation matrix R with RΓ + (RΓ)T ≤ J − I if and only if G admits
an automorphism with all orbit lengths at least 3.

Note first that row n+m+1 is the only row with at least n+m zeros. Since
the (n + m + 1)-st column contains n + m ones, R must fix row n+ m + 1.
But then row n + m + 2 must also be fixed, since the entry in position
(n+m+ 2, n+m+ 1) in RΓ must be 0. Furthermore, the rows with numbers
{1, . . . , n} and {n + 1, . . . , n + m} are permuted among themselves. Hence,
R is of the form

R =

P
Q

1
1

.

where P and Q are permutation matrices of order n and m, respectively. Now
we have
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RΓ + (RΓ)T ≤ J − I ⇐⇒ P + PT ≤ J − I and

PA+ (QA
T

)T ≤ 1n×m.

It is easily seen, that P +PT ≤ J − I holds if and only if the permutation π
corresponding to P has no cycle of length two or less. For the second condition
we note

PA+AQT = PA+ (1n×m −A)QT ≤ 1n×m

if and only if PA ≤ AQT if and only if PA = AQT .
Denoting by Permn the set of permutation matrices of order n, we have

AutG = {S ∈ Permn : ∃U ∈ Permm with SA = AUT },

and the result follows. �

The corresponding decision problem (N+) for tournaments is open, but
we surmise that it is also NP-complete.
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Summary. A bipartite covering of order k of the complete graph Kn on n vertices
is a collection of complete bipartite graphs so that every edge of Kn lies in at
least 1 and at most k of them. It is shown that the minimum possible number
of subgraphs in such a collection is Θ(kn1/k). This extends a result of Graham
and Pollak, answers a question of Felzenbaum and Perles, and has some geometric
consequences. The proofs combine combinatorial techniques with some simple linear
algebraic tools.

1. Introduction

Paul Erdős taught us that various extremal problems in Combinatorial
Geometry are best studied by formulating them as problems in Graph Theory.
The celebrated Erdős-de Bruijn theorem [3] that asserts that n non-collinear
points in the plane determine at least n distinct lines is one of the early
examples of this phenomenon. An even earlier example appears in [4] and
many additional ones can be found in the surveys [5] and [12]. In the present
note we consider another example of an extremal geometric problem which
is closely related to a graph theoretic one. Following the Erdős tradition
we study the graph theoretic problem in order to deduce the geometric
consequences.

A finite family C of d-dimensional convex polytopes is called k-neighborly
if d − k ≤ dim(C ∩ C′) ≤ d − 1 for every two distinct members C and C′

of the family. In particular, a 1-neighborly family is simply called neighborly.
In this case the dimension of the intersection of each two distinct members
of the family is precisely d − 1. Neighborly families have been studied by
various researchers, see, e.g., [10, 14, 15, 16, 17]. In particular it is known
that the maximum possible cardinality of a neighborly family of d-simplices
is at least 2d [16] and at most 2d+1 [14]. The maximum possible cardinality of
a neighborly family of standard boxes in Rd, that is, a neighborly family of d-
dimensional boxes with edges parallel to the coordinate axes, is precisely
d + 1. This has been proved by Zaks [17], by reducing the problem to
a theorem of Graham and Pollak [8] about bipartite decompositions of

∗ Research supported in part by the Sloan Foundation, Grant No. 93-6-6.
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DOI 10.1007/978-1-4614-7254-4 2,
© Springer Science+Business Media New York 2013

15

mailto:nogaa@tau.ac.il


16 Noga Alon

complete graphs. In the present note we consider the more general problem
of k-neighborly families of standard boxes. The following result determines
the asymptotic behaviour of the maximum possible cardinality of such a
family.

Theorem 1. For 1 ≤ k ≤ d, let n(k, d) denote the maximum possible
cardinality of a k-neighborly family of standard boxes in Rd. Then

(i) d+ 1 = n(1, d) ≤ n(2, d) ≤ · · · ≤ n(d− 1, d) ≤ n(d, d) = 2d.

(ii)
(
d
k

)k ≤
k−1∏
i=0

(⌊
d+i
k

⌋
+ 1

)
≤ n(k, d) ≤

k∑
i=0

2i
(
d
i

)
< 2

(
2ed
k

)k
.

This answers a question of Felzenbaum and Perles [6], who asked if for
fixed k, n(k, d) is a nonlinear function of d.

As in the special case k = 1, the function n(k, d) can be formulated in
terms of bipartite coverings of complete graphs. A bipartite covering of a
graph G is a family of complete bipartite subgraphs of G so that every edge
of G belongs to at least one such subgraph. The covering is of order k if
every edge lies in at most k such subgraphs. The size of the covering is the
number of bipartite subgraphs in it. The following simple statement provides
an equivalent formulation of the function n(k, d).

Proposition 1. For 1 ≤ k ≤ d, n(k, d) is precisely the maximum number of
vertices of a complete graph that admits a bipartite covering of order k and
size d.

The rest of this note is organized as follows In Sect. 2 we present the
simple proof of Proposition 1. The main result, Theorem 1, is proved in
Sect. 3. Section 4 contains some possible extensions and open problems.

2. Neighborly Families and Bipartite Coverings

There is a simple one-to-one correspondence between k-neighborly families
of n standard boxes in Rd and bipartite coverings of order k and size d of
the complete graph Kn. To see this correspondence, consider a k-neighborly
family C = {C1, . . . , Cn} of n standard boxes in Rd. Since any two boxes
have a nonempty intersection, there is a point in the intersection of all the
boxes (by the trivial, one dimensional case of Helly’s Theorem, say). By
shifting the boxes we may assume that this point is the origin O. If n ≥ 2,
O must lie in the boundary of each box, since it belongs to all boxes, and
the dimension of the intersection of each pair of boxes is strictly smaller than
d. Put V = {1, 2, . . . , n}. For each coordinate xi, 1 ≤ i ≤ d, let Hi be the
complete bipartite graph on V whose sets of vertices are V +

i = {j : Cj is
contained in the half space xi ≥ 0}, and V −

i = {j : Cj is contained in the
half space xi ≤ 0}. It is not difficult to see that if the dimension of Cp ∩ Cq
is d− r, then the edge pq of the complete graph on V lies in exactly r of the
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subgraphs Hi. Therefore, the graphs Hi form a bipartite covering of order k
and size d.

Moreover, the above correspondence is invertible; given a bipartite
covering of the complete graph on V = {1, 2, . . . , n} by complete bipartite
subgraphs H1, . . . , Hd one can define a family of n standard boxes as follows.
Let V +

i and V −
i denote the two color classes of Hi. For each j, 1 ≤ j ≤ n,

let Cj be the box defined by the intersection of the unit cube [−1, 1]d with
the half spaces xi ≥ 0 for all i for which j ∈ V +

i and the half spaces xi ≤ 0
for all i for which j ∈ V −

i . If the given covering is of order k, the family of
standard boxes obtained is k-neighborly.

The correspondence above clearly implies the assertion of Proposition 1,
and enables us to study, in the next section, bipartite coverings, in order to
prove Theorem 1.

3. Economical Bipartite Coverings

In this section we prove Theorem 1. In view of Proposition 1 we prove it
for the function n(k, d) that denotes the maximum number of vertices of a
complete graph that admits a bipartite covering of order k and size d.

Part (i) of the theorem is essentially known. The fact that n(1, d) = d+ 1
is a Theorem of Graham and Pollak [8, 9]. See also [7, 11, 18, 13, 1] and [2]
for various simple proofs and extensions. The statement that for every fixed
d, n(k, d) is a non-decreasing function of k is obvious and the claim that
n(d, d) = 2d is very simple. Indeed, the chromatic number of any graph
that can be covered by d bipartite subgraphs is at most 2d, implying that
n(d, d) ≤ 2d. To see the lower bound, let V be a set of 2d vertices denoted by
all the binary vectors ε = (ε1, . . . , εd), and let Hi be the complete bipartite
graph whose classes of vertices are all the vertices labelled by vectors with
εi = 0 and all the vertices labelled by vectors with εi = 0. TriviallyH1, . . . , Hd

form a bipartite covering (of order d and size d) of the complete graph on V ,
showing that n(d, d) = 2d, as claimed.

The lower bound in part (ii) of the theorem is proved by a construction,
as follows. For each i, 0 ≤ i ≤ k − 1, define di = �(d + i)/k� and Di =

{1, 2, . . . , di, di + 1}. Observe that
∑k−1
r=0 dr = d. Let V denote the set of

vectors of length k defined as follows

V = { (ε0, ε1, . . . , εk−1) : εi ∈ Di }.

For each r, 0 ≤ r ≤ k − 1, and each j, 1 ≤ j ≤ dr, let Hr,j denote the
complete bipartite graph on the classes of vertices

Ar,j = { (ε0, ε1, . . . , εk−1) : εr = j }
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and

Br,j = { (ε0, ε1, . . . , εk−1) : εr ≥ j + 1 }.

Altogether there are
∑k−1

r=0 dr = d bipartite subgraphs Hr,j . It is not too
difficult to see that they form a bipartite covering of the complete graph on
V . In fact, if (ε0, . . . , εk−1) and (ε′0, . . . , ε

′
k−1) are two distinct members of V ,

and they differ in s coordinates, then the edge joining them lies in precisely
s of the bipartite graphs. Since 1 ≤ s ≤ k for each such two members, the
above covering is of order k, implying the lower bound in part (ii) of the
theorem.

The upper bound in part (ii) is proved by a simple algebraic argument.
Let H1, . . . , Hd be a bipartite covering of order k and size d of the complete
graph on the set of vertices N = {1, 2, . . . , n}. Let Ai and Bi denote
the two vertex classes of Hi. For each i ∈ N , define a polynomial Pi =
Pi(x1, . . . , xd, y1, . . . , yd) as follows:

Pi =

k∏

j=1

( ∑

p:i∈Ap

xp +
∑

q:i∈Bq

yq − j

)
.

For each i ∈ N let ei = (bi1, . . . , bid, ai1, . . . , aid) be the zero-one vector in
which aip = 1 if i ∈ Ap (and aip = 0 otherwise), and, similarly, biq = 1 if
i ∈ Bq (and biq = 0 otherwise). The crucial point is the fact that

Pi(ej) = 0 for all i = j and Pi(ei) = 0. (1)

This holds as the value of the sum
∑

p:i∈Ap

xp +
∑

q:i∈Bq

yq

for xp = bjp and yq = ajq is precisely the number of bipartite subgraphs in
our collection in which i and j lie in distinct color classes. This number is 0
for i = j and is between 1 and k for all i = j, implying the validity of (1).

Let P i = P i(x1, . . . , xd, y1, . . . , yd) be the multilinear polynomial ob-
tained from the standard representation of Pi as a sum of monomials by
replacing each monomial of the form c

∏
s∈S x

δs
s

∏
t∈T y

γt
t , where all the δs

and γt are positive, by the monomial c
∏
s∈S xs

∏
t∈T yt. Observe that when

all the variables xp, yq attain 0, 1-values, Pi(x1, . . . , yd) = P i(x1, . . . , yd) since
for any positive δ, 0δ = 0 and 1δ = 1. Therefore, by (1),

P i(ej) = 0 for all i = j and P i(ei) = 0. (2)

By the above equation, the polynomials P i (i ∈ N) are linearly independent.
To see this, suppose this is false, and let

∑

i∈N
ciPi(x1, . . . , yd) = 0,
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be a nontrivial linear dependence between them. Then there is an i′ ∈ N so
that ci′ = 0. By substituting (x1, . . . , yd) = ei′ we conclude, by (2) that ci′ =
0, contradiction. Thus these polynomials are indeed linearly independent.
Each polynomial P i is a multilinear polynomial of degree at most k. Moreover,
by their definition they do not contain any monomials that contain both xi
and yi for the same i. It thus follows that all the polynomials P i are in the
space generated by all the monomials

∏
s∈S xs

∏
t∈T yt, where S and T range

over all subsets of N satisfying |S| + |T | ≤ k and S ∩ T = ∅. Since there are

m =
∑k

i=0 2i
(
d
i

)
such pairs S, T , this is the dimension of the space considered,

and as the polynomials P i are n linearly independent members of this space
it follows that n ≤ m. This completes the proof of part (ii) and hence the
proof of Theorem 1. �

4. Concluding Remarks and Open Problems

The proof of the upper bound for the function n(k, d) described above can be
easily extended to the following more general problem. Let K be an arbitrary
subset of cardinality k of the set {1, 2, . . . , d}. A bipartite coveringH1, . . . , Hd

of size d of the complete graph Kn on n vertices is called a covering of type
K if for every edge e of Kn, the number of subgraphs Hi that contain e is a
member of K. The proof described above can be easily modified to show that
the maximum n for which Kn admits a bipartite covering of type K and size
d, where |K| = k, is at most

∑k
i=0 2i

(
d
i

)
. There are several examples of sets K

for which one can give a bigger lower bound than the one given in Theorem 1
for the special case of K = {1, . . . , k}. For example, for K = {2, 4}, there is a
bipartite covering H1, . . . , Hd of type K of a complete graph on n = 1 +

(
d
2

)

vertices. To see this, denote the vertices by all subsets of cardinality 0 or 2 of
a fixed set D of d elements and define, for each i ∈ D, a complete bipartite
graph whose classes of vertices are all subsets that contain i and all subsets
that do not contain i. Similar examples exist for types K of bigger cardinality.

One can consider bipartite coverings of prescribed type of other graphs
besides the complete graph, and the algebraic approach described above can
be used to supply lower bounds for the minimum possible number of bipartite
subgraphs in such a cover, as a function of the rank of the adjacency matrix
of the graph (and the type).

The main problem that remains open is, of course, that of determining
precisely the function n(k, d) for all k and d. Even the precise determination
of n(2, d) seems difficult.
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4. P. Erdős, On sequences of integers none of which divides the product of two
others, and related problems, Mitteilungen des Forschungsinstituts für Mat. und
Mech., Tomsk, 2 (1938), 74–82.
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Summary. Two parties are said to “share a secret” if there is a question to which
only they know the answer. Since possession of a shared secret allows them to
communicate a bit between them over an open channel without revealing the value
of the bit, shared secrets are fundamental in cryptology.

We consider below the problem of when two parties with shared knowledge can
use that knowledge to establish, over an open channel, a shared secret. There are
no issues of complexity or probability; the parties are not assumed to be limited in
computing power, and secrecy is judged only relative to certainty, not probability.
In this context the issues become purely combinatorial and in fact lead to some
curious results in graph theory.

Applications are indicated in the game of bridge, and for a problem involving
two sheriffs, eight suspects and a lynch mob.

1. Introduction

Suppose two parties—let us call them “Alice” and “Bob”—share a secret,
that is, they have common knowledge possessed by no one else; then Alice
may use her secret to transmit a bit to Bob in such a way that no eavesdropper
can deduce the value of the bit. For example, if Alice and Bob are the only
people in the world who know whether the current US President wears a wig,
Alice may send Bob the following message (or the same message, with 0 and
1 interchanged):

My bit is 0 if the President wears a wig, 1 otherwise.

While Eve (an eavesdropper) may believe that the President probably
does not wear a wig, and therefore that Alice’s bit is more likely to be 1 than
0, her inability to determine the value of the bit with certainty is all that
concerns us here.

This method of encryption is called a “one-time pad”; Alice and Bob
share a bit of information, and they can use it (once) to pass a bit in secret.
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There are, however, situations where even though Alice and Bob appear
to possess shared information not available to the public, this information
does not take the form of a shared secret. Nonetheless, Alice and Bob may
be able to isolate a shared secret by communicating with each other, even
though their messages are public. Since this is precisely the situation where
cryptologic methods are needed (communication lines are available, but not
private), Alice and Bob are almost as well off here as if they had begun
with a shared secret; they must merely spend a few preliminary rounds of
communication in establishing the secret.

Let us give two examples of such situations, before proceeding further.

(1) The game of bridge: Here two partners wish to communicate in
private, but the rules of the game require that all communication be
done by legal bids and plays, about which there may be no prior private
understandings. Thus, there are initially no shared secrets. But there is
private information: each player knows, by virtue of looking at his own
hand, 13 cards that do not belong to his partner. Can they make use of
this information to communicate in private?

(2) The ‘two sheriffs’ problem: Two sheriffs in neighboring towns are
on the track of a killer, in a case involving eight suspects. By virtue of
independent, reliable detective work, each has narrowed the list to only
two. Now they are engaged in a telephone call; their object is to compare
information, and if their pairs overlap in just one suspect, to identify him
(the killer) and put out a.p.b.’s so as to catch him in either town.

The difficulty is that their telephone line has been tapped by the
local lynch mob, who know the original list of suspects but not which
pairs the sheriffs have arrived at. If they are able to identify the killer
with certainty as a result of the phone call, he will be lynched before he
can be arrested.

Can the sheriffs accomplish their objective without tipping off the
mob?

2. The Mathematical Model

One natural model for common knowledge is obtained by imagining that in
any situation there is an underlying finite space S of possibilities of which
any one element may be “the truth.” Alice’s knowledge concerning S at any
point consists of some subset X of S, meaning that X is precisely the set of
truths consistent with what Alice knows. As Alice communicates with Bob
she obtains more information, and her knowledge set X shrinks accordingly.

At any time the “true point” must lie both in X and in Bob’s knowledge
set Y , but if there are two or more points in X ∩ Y Alice and Bob will never
be able to choose among them by communicating with each other. Hence for
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our purposes if X is a possible knowledge set for Alice and Y for Bob, our
only concern is whether they intersect.

Consequently we choose to model common knowledge by using a mere
vertex to represent a possible knowledge set of Alice’s, and similarly for Bob;
we connect vertex x of Alice’s with vertex y of Bob’s when the corresponding
knowledge sets intersect, that is, when the two vertices are simultaneously
possible. The “truth” is thus represented by some adjacent pair of vertices,
i.e. an edge.

Alice and Bob’s knowledge at any time thus constitutes a graph, which, in
accordance with cryptographic tradition, is assumed to be known to everyone
in the world. The interpretation of this graph will, we hope, become clear to
the reader after some examples.

It is convenient to formalize our model as follows.

Definition 1. A bigraph is a finite, non-empty collection H of ordered pairs
such that if (x, y) is in H then (y, z) is not.

Elements of the set A(H) := {x : (x, y) ∈ H for some y} will be termed
“Alice’s vertices” and are perforce distinct from the symmetrically defined
“Bob’s vertices” in B(H). Thus the elements of H are edges of a bipartite
graph, but note that the vertices come equipped with a labelled left-right
(Alice-Bob) partition and that isolated vertices cannot arise.

Our model now consists of a bigraph H , known to all, the edges of which
represent possible truths. Alice knows the endpoint in A(H) of the true edge,
Bob its endpoint in B(H); in other words, if the true edge is (x, y) then Alice
knows x and Bob knows y.

We say that Alice and Bob share a secret if there is a question to which
they know the answer and Eve does not. In the wig example, the question
“Does the President wear a wig?” can be answered only by Bob and Alice,
so they indeed share a secret in this case. Here, the bigraph H consists of a
pair of disjoint edges, one corresponding to “the President wears a wig” and
the other to “the President does not wear a wig.” The disconnectivity of H
is its crucial property:

Theorem 1. Two parties share a secret if and only if their bigraph is
disconnected.

Proof. It is immediate that Alice and Bob share a secret whenever their
bigraph is disconnected, since if C is one of its connected components, only
they can answer the question “Is the true edge in C ?”. To see the converse,
let Q be the given question and let a1, a2, . . . be its possible answers (from
Eve’s point of view). Write “(u, v)#ai” if it is simultaneously possible for ai
to be the answer to Q, and (u, v) to be the true edge of H .

We now note that if (x, y)#ai and (u, v)#aj for i = j, then (x, y) and
(u, v) can be neither identical nor adjacent; if, for example, x = u then when
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Alice’s end of the true edge is x she will be unable to decide between answers
ai and aj .

It follows that the edges consistent with the various answers ai determine
a partition of H , each part of which is a non-empty union of connected
components; since the number of possible answers must be at least two, H is
disconnected. �

If H is connected, are Alice and Bob doomed never to share a secret? Of
course, if they can arrange a private (secure) conversation, they can agree on
some string of bits and thus share as many secrets as they wish; this indeed
is often done in traditional cryptography, in the name of agreeing on or
distributing key. Unfortunately this phase is often dangerous and sometimes
impossible; else, cryptography would be unnecessary. However, Alice and Bob
may be able to use their common knowledge (reflected in the structure of H)
to isolate a common secret by means of a public conversation; and it is just
this process which we wish to investigate.

Consider, for example, the bigraph H = {(a1, b1), (a1, b2), (a2, b2),
(a2, b3), (a3, b3), (a3, b4), (a4, b4), (a4, b1)}. H is an 8-cycle, thus connected,
but Alice and Bob can disconnect it as follows: if Alice’s end of the true edge is
a1 or a3 she says so: “My end of the true edge is either a1 or a3.” Bob can tell
by looking at his end which of the two possibilities is the case, hence they now
share a secret; this is reflected in the fact that after Alice’s announcement,
their bigraph is disconnected (see Fig. 1). Of course, had Alice’s end been
a2 or a4, an announcement to that effect would also have done the job. (We
shall see later that two-sided conversations may be necessary to disconnect
some bigraphs.)

Fig. 1 Alice separates an 8-cycle.
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Fig. 2 Bigraph for dealing 2 cards from a 3-card deck.

The next example is inspired by the work of Winkler [4, 5] on cryptologic
techniques for the game of bridge, and the recent works of Fischer, Paterson,
and Rackoff [2] and Fischer and Wright [3] using random deals of cards for
cryptographic key. A card is dealt at random, face down, to each of Alice and
Bob, from a three-card deck consisting (say) of an Ace, a King, and a Queen.
The remaining card is discarded unseen. Here H is a 6-cycle (see Fig. 2). The
six edges correspond to the six possible deals; the set A(H) consists of Alice’s
three possible holdings (“A”, “K” or “Q”) and similarly for B(H). The fact
that “K” in A(H) and “K” in B(H) are not adjacent corresponds to the fact
that Alice and Bob cannot both hold the King. Clearly Alice and Bob share
some knowledge in this situation, but as we shall see it is not enough for
them to be assured of being able to isolate a shared secret.

For a third example, suppose H is a 10-cycle on vertices v0, v1, . . . , v9
with vi adjacent to vj just when |i− j| = 1 mod 10. (See Fig. 3.)

Let A(H) consist of the vertices of even index. Then the following protocol
allows Alice to disconnect the bigraph: if she holds vi, she chooses j to be
either i+ 4 or i+ 6 mod 10, then tells Bob:

I hold either vi or vj .

This protocol is said to be non-deterministic because Alice has more
than one choice of message for a given holding. Non-determinism as used
here is thus quite different from its use in complexity theory, and in fact is
more closely related in some respects to randomization (despite the absence
of probability in our model). In particular non-deterministic communication
protocols are quite practical.

Incidentally, we assume nothing is given away by the order in which
objects are named in a semantically symmetric expression such as “vi or vj .”
In a deterministic protocol we can insure this by a naming convention, such as
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Fig. 3 Non-deterministically separating a 10-cycle.

enforced alphabetical order, but our mathematical model for communication
will obviate the problem.

In order to define “communication protocol” rigorously we need to
define “conversation”, even though the latter definition needs the former for
interpretation. Accordingly, a conversation will be a finite string m1, . . . ,mt

of positive integers, communicated alternately by Alice and Bob beginning
with Alice.

Although this seems perhaps a limited vocabulary for communication, it is
in fact completely general because meanings can be assigned to the numbers
via an agreed-upon protocol. The communication protocol specifies under
precisely what circumstances a given number may be uttered. Thus, we operate
in effect in the “political” theory of communication: when someone says
something we ask not “what does that mean” but “under what circumstances
would he/she have said that.” This model is both stronger and simpler than
one in which messages are sentences. To see its effect, consider solving the
C10 bigraph above by using always vertices i and i+ 4. This looks reasonable
at first glance but is actually a sham. For example, Alice would not then say
“My end is 4 or 8” if she held 8. Hence an eavesdropper can eliminate 8 if she
hears this, preventing disconnection of the bigraph and ruining the protocol.

3. Deterministic Separation

Definition 1. A deterministic communication protocol for the bigraph H
is a sequence of functions f1, . . . into the positive integers, such that f1 is a
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function of x (Alice’s end of the true edge), and each subsequent fi depends
on the values of f1, . . . , fi−1 and either on x, if i is odd, or on y (Bob’s end
of the true edge) if i is even.

Thus, a deterministic communication protocol, combined with a true
edge, produces a unique conversation given by mi = fi(x;m1, . . . ,mi−1) for i
odd and mi = fi(y;m1, . . . ,mi−1) for i even. After step i of the conversation,
the situation can be again described by a bigraph Hi consisting of those
edges (u, v) such that if (u, v) had been the true edge the conversation would
have been as seen. Hi is a sub-bigraph of H which contains the actual
true edge; in fact Hi is obtained from Hi−1 by deleting all edges incident
to certain left-hand vertices (for i odd) or certain right-hand vertices (for
i even). The vertices which survive on the left (when i is odd) are just
{u : fi(u;m1, . . . ,mi−1) = mi}.

For our purposes a conversation (m1, . . . ,mt) will be deemed “successful”
if Ht is disconnected, and a communication protocol for H will be said to
“separate H” or to be a “separation protocol for H” if it always produces a
successful conversation. Finally, H itself will be termed deterministically sep-
arable if there is a deterministic communication protocol which separates H .

We can also give a recursive characterization of the deterministically
separable bigraphs. It will be useful to introduce notation for the sub-bigraph
H |A′ of a bigraph H induced by a subset A′ of A(H); namely,

H |A′ := H ∩ (A′ ×B(H)).

Thus from the standpoint of ordinary graph theory, H |A′ is obtained by
discarding isolated vertices from the subgraph of H induced by A′ ∪ B(H).
The definition of H |B′ for B′ ⊂ B(H) is similar.

Theorem 2. Let DS be the smallest symmetric class of bigraphs which
contains the disconnected bigraphs and has the following property: for any
bigraph H, if there is a partition A(H) = A1 ∪ A2 of Alice’s vertices such
that H |A1 and H |A2 are both in DS, then H is also in DS. Then DS is the
class of deterministically separable bigraphs.

Proof. Let us check first that the class of deterministically separable bigraphs
is indeed closed under the operation defined in the statement of the theorem.
It is certainly symmetrical, since a protocol which separates H can be
modified to one which separates the dual of H (i.e. the result of reversing
the ordered pairs in H) by switching the roles of Alice and Bob, and adding
a meaningless message from Alice to the beginning. If a partition is given
along with separation protocols P1 and P2 for the two sub-bigraphs of H , we
design a separation protocol P for H as follows: first Alice sends “i” if and
only if her end of the true edge lies in Ai, then Bob sends back a meaningless
“1”, then protocol Pi is followed.

It remains to show that any symmetric class C containing the dis-
connected bigraphs and closed under the stated operation contains all
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deterministically separable bigraphs. This is done by induction on the number
of edges.

Let H be connected but deterministically separable via a communication
protocol P ; then sooner or later P must call for a first meaningful message,
say from Alice. We may assume that her options at that point are to send “1”,
“2”, etc. up to “k” for some k ≥ 2, according to whether her end of the true
edge lies in E1, E2, etc; there is no dependence on previous conversation here
because by assumption said conversation has up to now been predictable. Let
us modify P slightly by having Alice send only a 1 or 2 at this point, the
former just when her end is in E1; if she sends a “2” Bob sends a meaningless
“1” back, then Alice sends the “2”, “3”,. . . or “k” that would have been sent
before and the protocol P resumes. We have thus found protocols which
separate each of H |E1 and H |(A(H)−E1). Each of these is thus in C by the
induction assumption, hence H ∈ C by the closure condition. �

4. Non-deterministic Separation

We now introduce two ways of weakening the definition of a communication
protocol. First, if the functions fi are permitted to be multi-valued, so that
at each point Alice or Bob has one or more possible messages to send, we say
that the protocol is non-deterministic. Note that during a non-deterministic
communication protocol, the bigraph shrinks as before but this time each
party, at his or her turn to speak, is provided with a (message-labelled) cover
of his or her vertices instead of a partition. It is still the case, however, that
the knowledge of Alice and Bob is expressed at each point by the state of
their bigraph.

Second, if the functions are permitted to depend for odd i on a random
number m known only to Alice, and for even i on a random number n known
only to Bob, then the protocol is randomized. Here the bigraph does not any
longer describe the situation completely, as Bob and Alice may learn things
about each other’s random number.

Whether a communication protocol is non-deterministic, randomized or
both, however, we continue to insist that the protocol always produce a
successful conversation in order to qualify for separating H .

Fortunately, the three new categories of separation protocol which arise
result in only one new category of bigraph.

Theorem 3. The following are equivalent, for any bigraph H:

(a) H is separable by a non-deterministic communication protocol;
(b) H is separable by a randomized communication protocol;
(c) H is separable by a randomized, non-deterministic communication pro-

tocol.
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Proof. We need to show (c)→(b) and (c)→(a), the reverse implications being
trivial. Of these the former is easy: by extending the range of the random
numbers, Alice and Bob can use them to decide which message to send when
there is more than one choice.

Turning random numbers into non-deterministic choices looks awkward
because a random number may be used many times in the protocol, whereas
there is no “consistency” built in to nondeterminism. However, this problem
is illusory. Suppose, at Alice’s first turn to speak, that she is supplied with a
randomized separation protocol but no random number; then she chooses a
random number and acts accordingly. She cannot “remember” that number
at her next turn and use it again, but she can compute which random numbers
are consistent with her previous action and choose one of those upon which
to base her next message. Bob behaves similarly; at each turn he determines
which values of his non-existent random number are consistent with his own
previous actions (and his end of the true edge), then picks one such value
and acts accordingly. �

A bigraph will be called, simply, separable if one (thus all) of the
conditions of Theorem 3 obtains. The following recursive characterization
is analogous to Theorem 2, although a small additional subtlety arises in the
proof.

Theorem 4. Let S be the smallest symmetric class of bigraphs which
contains the disconnected bigraphs and has the following property: for any
bigraph H, if there is a covering A(H) = A1∪A2 of Alice’s vertices such that
H |A1 and H |A2 are both in S, and both A1 and A2 are strictly contained in
A(H), then H is also in S. Then S is the class of separable bigraphs.

Proof. The proof that the class of separable bigraphs is symmetrical and
closed under the operation defined in the statement of the theorem is as in
Theorem 2, except that if Alice’s end of the true edge lies in A1∩A2 she may
send either message “1” or message “2”.

It remains to show that any symmetric class C containing the discon-
nected bigraphs and closed under the stated operation contains all separable
bigraphs; this is again done by induction on the number of edges.

Let H be connected but separable via a non-deterministic communication
protocol P , and suppose that H is the smallest separable bigraph not in C.
Let us call a vertex u in A(H) (or, dually, in B(H)) weak if there is no proper
subset A′ of A(H) containing u for which H |A′ is separable.

We claim that there is some weak vertex in A(H). For, if not, define for
each x ∈ A(H) a proper subset Ax which does yield a separable sub-bigraph
ofH . Since the Ax’s coverA(H), we can find x1, x2, . . . , xk such that the Axi ’s
cover A(H) with k minimal (but necessarily greater than 1). Set A1 := Ax1 ,
A2 := Ax2 ∪· · ·∪Axk

. Then A1 and A2 are a proper cover of A(H), and H |A1

is separable by assumption. However, H |A2 is also separable, since Alice can
reduce it to a separable bigraph by sending some i for which her end of the
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true edge lies in Axi , 2 ≤ i ≤ k. These bigraphs are thus both in C by the
induction assumption, contradicting the fact that H is not in C.

Since the class of separable bigraphs is symmetric, the dual of H is also
separable but not in C; hence the same argument produces a weak vertex
in B(H). It may seem to the reader that weak vertices cause trouble only if
found on the true edge, and thus that Alice and Bob can’t both be stymied as
long as no two weak vertices are adjacent. However, it turns out that the mere
presence of weak vertices on both sides is enough to render H inseparable.

To see this, let u be a weak vertex in A(H); there must be some message
(say m) which Alice is permitted to send when her end of the true edge is
u. Let A′ be the set of vertices in A(H) which, like u, allow the message m;
then H |A′ must be separable, since this is the bigraph which results when m
is sent. Thus A′ must not be a proper subset of A(H), that is, A′ = A(H)
and the message m is meaningless.

If m is indeed sent, the protocol turns to Bob who still has all of H
before him. By the same reasoning as above, he must also have a meaningless
message (i.e. a message he can send regardless of which vertex is his end of
the true edge) available to him.

Now we’re back to Alice with H still intact. We thus see that Alice and
Bob must be allowed by the protocol to pass meaningless messages back
and forth ad infinitum, irrespective of which edge of H is the true edge; but
then we have a contradiction, since H is required to have a communication
protocol which always separates. �

Theorem 4 is often useful in determining separability via case analysis.
For example, it is easy to check that no path with fewer than five edges is
separable, nor is the 6-cycle (Fig. 2) separable because for any proper subset
S of Alice’s or Bob’s vertices, H |S would be a path of length 2 or 4.

There is one class of bigraphs which is easily seen to be disjoint from the
class of separable bigraphs, a fact which helps in obtaining negative results.

Theorem 5. Suppose that there is an edge of H which is adjacent to all
other edges of H. Then H is not separable.

Proof. Such an edge cannot be contained in any disconnected sub-bigraph of
H ; thus, if it happens to be the true edge, no protocol can separate H . �

Note that, in particular, no separable bigraph can have a vertex which is
adjacent to all the vertices on the other side.

We are now in a position to prove that the class of separable bigraphs is
strictly larger than the class of deterministically separable bigraphs.

Let A(H) = {a1, . . . , a7} and B(H) = {b1, . . . , b7}, and put (ai, bj) ∈ H if
and only if j− i = 1, 2 or 4, where the indices are interpreted always modulo
7. Then H is the incidence graph of a Fano plane (see Fig. 4) and we have:

Theorem 6. The incidence graph of the Fano plane is separable but not
deterministically separable.
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Fig. 4 Incidence graph of the Fano plane.

Proof. We first provide a non-deterministic separation protocol. Alice begins
by sending a number k such that her end of the true edge is in the set
{ak, ak+1, ak+2}. Bob now (deterministically) sends back “1” if his end is
bk+2 or bk+6; “2” if it is bk+4 or bk+5; “3” if it is bk+3 or bk+1. (It cannot be
bk.) This separates H into a 2-edge component and a 1-edge component.

If, on the other hand, there were a deterministic separation protocol forH ,
then one of the parties would eventually have to send a meaningful message,
thus effecting a partition of his or her vertices. This may as well be Alice
since H is symmetrical. If one of the parts has fewer than 3 of Alice’s vertices
in it, or has 3 vertices whose neighborhoods intersect, then one of Bob’s
remaining points will be of full degree, contradicting Theorem 5. Otherwise
the partition must be isomorphic to {a1, a2, a3} versus {a4, a5, a6, a7}. The
former part induces a deterministically separable sub-bigraph as we have
seen from the above protocol, but the sub-bigraph induced by the latter part
contains a vertex (b1) whose neighborhood intersects the neighborhoods of
all other vertices of B(H). Thus, if Bob’s end of the true edge is b1, he cannot
separate the bigraph at this time. However, Alice is also stymied because she
has only one vertex available (a5) not adjacent to b1, thus her vertices can
never be partitioned so as to induce disconnected sub-bigraphs. �

The situation changes if we consider bigraphs which are separable in one
round, that is, by just one message from Alice. (This is not, by the way, a
symmetric class; the path on 7 vertices, for example, can be separated only
by a message from the party with 4 vertices.) Before proceeding, we need a
curious graph-theoretic result.
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Theorem 7. Let G be any graph with no vertex adjacent to all others. Then
there is a partition V1, . . . , Vk of the vertices of G such that for each i =
1, . . . , k the subgraph 〈Vi〉 induced by Vi is disconnected.

Proof. If not let G be a counterexample with smallest possible number of
vertices. For any subset U of the set of vertices V , let ω(U) be the number
of vertices in V − U which are adjacent to all other vertices in V − U .

Note first that if 〈U〉 is disconnected, then ω(U) must be non-zero; else
we may apply the induction hypothesis to get a suitable partition of V − U ,
and appending U itself to this partition yields a partition of V suitable for G.

Choices of U for which 〈U〉 is disconnected do exist, of course, since U
can be taken to be a pair of non-adjacent vertices. Hence we may choose a
U for which 〈U〉 is disconnected and ω(U) is minimal.

Now let x be any full vertex in V − U , that is, any vertex in V − U
which is adjacent to all other vertices in V − U . By assumption x has some
non-neighbor, say y, in V ; let C be the set of vertices of the component of
〈U〉 into which y falls.

Suppose first that y is not the only vertex in C, and let W = U \ {u}.
Then 〈W 〉 is still disconnected, but x is no longer full in V − W since a
non-neighbor y has “moved in.” Of course y is not full either, and any other
vertex which is full in V −W must already have been full in V − U . Hence
ω(W ) < ω(U), a contradiction.

We are reduced to the case where y is an isolated point of 〈U〉; now we
let W = U ∪ {x}. Since x and y are not adjacent y is still isolated in 〈W 〉.
Any full vertex of V −W was adjacent to x in V − U and therefore already
full in V − U ; but x itself is now gone from V −W and so we again have
ω(W ) < ω(U), and this contradiction proves the theorem. �

Note that the induction hypothesis, and thus the theorem itself, can be
strengthened to read “each 〈Vi〉 has at least two vertices and contains an
isolated point” without changing the proof. However, we will not need the
stronger statement.

Theorem 8. The following are equivalent for a bigraph H.

(a) H is separable in one round;
(b) H is deterministically separable in one round;
(c) For every vertex u of A(H) there is a vertex v of A(H) such that the

neighborhoods of u and v (in B(H)) are disjoint.

Proof. It is enough to show (a)→(c)→(b). Suppose that H is separable in
one round, let u be any vertex of A(H), and let i be a message that can
be sent by Alice when her end of the true edge is u. Since the bigraph that
results from sending “i” is disconnected, there is a vertex v on Alice’s side
of it which is in a different component from u; then u and v must originally
have had disjoint neighborhoods.
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Now suppose that (c) is satisfied and form a graph G on the vertices in
A(H) by defining {u, v} to be an edge whenever u and v have intersecting
neighborhoods. Condition (c) says precisely that G has no vertex of full
degree, hence we may apply Theorem 7 to obtain a partition V1, . . . , Vk of
the vertices of A(H) each part of which induces a disconnected subgraph of
G, hence also of H . Sending “i” when Alice’s end of the true edge lies in Vi
thus yields a deterministic separation protocol. �

We have said that a disconnected bigraph is sufficient to enable Alice and
Bob to communicate a bit in secret; we are now in a position to show that
separability is in fact necessary for such a communication, thus completing
the reduction of the original cryptologic problem to a graph-theoretical one.

Let us fix a bigraph H and suppose that Alice (say) has been supplied
with a bit ε which she must communicate in secret to Bob, over our usual
public channel. The effect of the bit is to double the vertices on Alice’s side
of H ; that is, each vertex a ∈ A(H) now becomes a pair a(0), a(1) each with
the same neighborhood that a had in B(H). The edge (a(0), b) corresponds
to the original (a, b) together with the statement “ε = 0”.

At the conclusion of a successful, non-randomized communication proto-
col the question “What is the value of ε?” must be answerable by Bob but
not by Eve, hence the bigraph must now be disconnected—and moreover
(although we shall not need this fact) the vertices from A(H) in each
component must either all correspond to ε = 0 or all to ε = 1.

Theorem 9. Alice can communicate a bit to Bob in secret, via a randomized
and/or non-deterministic communication protocol, if and only if their bigraph
is separable.

Proof. Sufficiency has already in effect been demonstrated; Bob and Alice can
cooperatively disconnect the bigraph, ignoring the bit value, then a message
of the form “My bit is 0 if the true edge lies in component C, 1 otherwise”
does the trick.

For the converse, we double the bigraph as above so that the protocol may
be regarded as a special communication protocol, which we denote by P . If P
is randomized, then we may replace the random inputs by non-determinism
as in Theorem 3; thus we may assume P is merely non-deterministic.

Now we construct from P a randomized (!) communication protocol
P ′ which operates on the original, undoubled bigraph plus a single ran-
dom bit α for Alice. P ′ operates by the rule f ′

i(x;α;m1, . . . ,mi−1) =
fi(x(α);m1, . . . ,mi−1) for i odd, and f ′

i = fi for i even.
At each stage, the bigraph associated with P ′ will be precisely the image

of the bigraph associated with P under the collapsing map Φ which sends x(0)
and x(1) to x. But the image of a disconnected bigraph under this mapping
is again disconnected, so P ′ is a separation protocol for the original bigraph,
completing the proof of the theorem. �
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Theorem 9 says, in effect, that if Alice and Bob know that they will need
to communicate a bit in secret, then they can disconnect their bigraph in
advance; when the bit comes in, it can then be communicated (in either
direction) by a single message.

5. The ‘Two Sheriffs’ Problem

Let us now look now at the two sheriffs problem, but generalized as follows:
one sheriff (whom we shall call “Lew”) has narrowed his list of suspects to p,
the other (“Ralph”) to q, and the total number of suspects is n. The edges
of the bigraph H here represent all possible pairs (L,R) of subsets of the set
N = {1, 2, . . . , n} of suspects, with |L| = p, |R| = q and |L ∩ R| = ∅. Lew’s
side A(H) of the bigraph will thus contain

(
n
p

)
vertices and Ralph’s side

(
n
q

)

vertices, adjacency arising when the corresponding subsets intersect.
If Lew and Ralph succeed in determining the identity of the killer without

tipping off the mob, they will share a secret and thus must have disconnected
H . Conversely, suppose they manage to disconnect the bigraph; then Lew
and Ralph can reduce further to two non-adjacent edges, one of which is the
true edge. If that edge represents an overlap of one, the sheriffs will have
found the killer.

Theorem 10. If n = 2pq then there is a deterministic separation protocol
for solving the two sheriffs problem.

Proof. We make use of Baranyai’s Theorem [1], which says the following:
If k divides n then there is an array {Ki,j}, 1 ≤ i ≤ rn/k, 1 ≤ j ≤(

n
k

)
/(n/k) of subsets of N = {1, 2, . . . , n} such that each |Ki,j| = k, each

column K1,j, . . . ,Kn/k,j is a partition of N , and each subset of N of size k
appears exactly once in the array.

Such an array (known as a 1-factorization of the complete k-uniform
hypergraph on n vertices) is fixed by Lew and Ralph (publicly) for k = p,
and Lew proceeds to tell Ralph on which column his end L of the true edge
can be found.

Ralph is thus presented with a partition L1, . . . , Ln/p of N , one of whose
parts is Lew’s narrowed-down suspect set. His job will be to split the index
set I = {1, 2, . . . , n/p = 2q} into two parts, say I1 and I2, so that his suspect
set R is contained in

⋃
i∈Ij Li. This will disconnect the bigraph.

To do this the sheriffs employ a fixed (but arbitrary) map Φ from the set
of subsets of I of size at most q to the set of subsets of I of size exactly q,
such that Φ(S) ∩ S = ∅ for every set S in the domain of Φ. Ralph forms the
set F := {i : R ∩ Li = ∅}, then puts F ′ := Φ(F ) and F ′′ := Φ(F ′). F ′ and
F ′′ are thus complementary subsets of I of cardinality q; let I1 be the one
containing the element “1” of I, and let I2 be the other. Ralph now identifies
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I1 and I2 and announces that his set F , defined as above, is contained either
in I1 or I2.

The resulting bigraph will contain all vertices of B(H) for which the
resulting F would have been contained in I1 or I2 and would have had
cardinality q, since in those cases F ′ and F ′′ are not dependent on the choice
of Φ. Those vertices for which F is contained in Ie will form a connected
component, for e = 1, 2.

Let k be the index of Lew’s end of the true edge, that is, let Lk be Lew’s
suspect set; suppose k ∈ Ie. Let i be such that k is the ith smallest member
of Ie, and let j be the ith smallest element of I3−e. Lew now announces that
his set of suspects is in fact either Lj or Lk.

Ralph (but not the mob) will know which of the two is Lew’s suspect
set: say it is Lj. If |R ∩Lj| > 1 then Ralph announces that the killer cannot
be identified; otherwise, however, he now knows the killer (say, x). Choosing
(again by order of numbers) the corresponding element y of Lk, he announces
that the killer is one of x and y. This completes the protocol. �

Let us see how this works in the original case p = q = 2, n = 8. The
following Baranyai array can be used:

{1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {1, 7} {1, 8}

{3, 4} {2, 4} {2, 3} {2, 6} {2, 5} {2, 8} {2, 7}

{5, 6} {5, 7} {5, 8} {3, 7} {3, 8} {3, 5} {3, 6}

{7, 8} {6, 8} {6, 7} {4, 8} {4, 7} {4, 6} {4, 5}

Suppose that the true edge is either ({1, 2}, {1, 3}) or ({5, 6}, {5, 7}). Then
Lew will announce that his suspect set belongs to the first column, that is, is
one of {1, 2}, {3, 4}, {5, 6} or {7, 8}. If Ralph himself had one of these sets he
would simply announce at this point that the killer cannot be identified; as it
is, he splits the index set, telling Lew that his suspect set is either contained
in {1, 2} ∪ {3, 4} or in {5, 6} ∪ {7, 8}. Lew now says “My set is either {1, 2}
or {5, 6}” and Ralph comes back with “The killer is either 1 or 5”.

Non-deterministic versions of the above protocol are more easily de-
scribed; Lew merely picks some partition of which his suspect set is a part,
and Ralph can reduce to two possible suspect sets whose intersections with
the partition indices are complementary. Here just one more message, from
Lew to Ralph, completes the protocol. Moreover, this can be made to work
for any n > 2pq as well.

However, we can do even better when non-determinism is permitted; for
example, here is a non-deterministic separation protocol for solving the case
where n = k2, p = (k − 1)2 + 1 and q = 1, for any k ≥ 2.

Lew begins by choosing a k× k array {si,j} of all the suspects, such that
for some j′, Lew’s suspect set consists precisely of si′,1 and all si,j such that
i = i′ and j = 1. Ralph, who began knowing the identity of the killer, replies
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as follows: if the killer is si,j for j = 1 and any i, he says “The killer is either
s1,j or si,j .” If the killer is some si,1 then he picks any j = 1 and makes the
same statement.

By first partitioning the suspects into possible vertices (as in the p, q, 2pq
case) and then making a k × k array of the sort described above, but where
the array elements are members of a partition instead of single suspects, we
may combine the techniques for the following result:

Theorem 11. The two sheriffs problem is solvable non-deterministically
whenever n ≥ q(1 +

√
p− 1)2.

It is perhaps interesting to note that we have separated a very dense
bigraph here, regular on each side. In fact, related to these are the following
dense bigraphs, which are deterministically separable: fix a large k and set
H equal to

{((a, b), (c, d)) : 1≤a, b, c, d≤k and either a = c and b = d, or a =c and b =d}.

To separate H , Alice’s announces the first coordinate of her pair and Bob the
second coordinate of his. Then each will know whether their edge is based on
the equalities or the inequalities in the definition above.

6. Multi-Party Generalization

It is evident that many of our definitions and results can be extended to the
case where there are more than two conversants. In this case conversation
protocols, in order to remain general, allow the identity of the next speaker
to depend, at each turn, on the previous conversation.

In [3] Fischer and Wright suggest using random deals to facilitate secret
key exchange within a group of persons wishing to communicate privately in
yet-to-be-specified subgroups. Among the negative results in [3] is a theorem
(Theorem 9, p. 11) which states that no communication protocol for 3 players,
each dealt one card of a 3-card deck, can enable them to isolate a secret bit.
Fischer and Wright indicate that our methods can be used to generalize the
result to k > 3 players; we show here how that can be done.

The definition of “bigraph”’ extends easily as follows: a k-graph is a finite
collection H of k-tuples x = (x1, . . . , xk) (which we call “blocks” to avoid
confusion) such that x, y ∈ H implies that xi and yj are distinct for i = j.
A k-graph is thus a particular special case of k-uniform hypergraph in which
the sets {xi : x ∈ H} partition the vertex set of H .

The proof of Theorem 1 goes through, as does an appropriate version of
Theorem 4; thus we are once more reduced to showing that the players, say
X1 through Xk, cannot cooperatively disconnect their k-graph Hk which in
this case consists of a block for each permutation of the cards.

Theorem 12. The “permutation k-graph” Hk is inseparable for k ≥ 3.
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Proof. H2 is of course separable, indeed disconnected to begin with. Let us
assume that P is a (non-deterministic) separation protocol for Hk, for some
k > 2, and let H0, H1, . . . , Ht be the state of the k-graph for X1, . . . , Xk at
each stage of some (successful) conversation using P . Then H0 = Hk and
H0, . . . , Ht−1 are connected k-graphs. We claim first that Ht must consist
only of two blocks, which up to permutation of the players and cards, may
as well be 1,2,3,. . . , k and 2,3,. . . , k, 1. To see this let x and y be two blocks
of Ht which lie in different components; then in particular x and y are not
adjacent so xi = yi for i = 1, 2, . . . , k. Let G be the graph on vertices 1,2,. . . ,
k with j adjacent to j′ when {j, j′} = {xi, yi} for some i; then since x and y
are each permutations, G is regular of degree 2. If φ is an automorphism of
G such that φ(j) is adjacent to j for all j then (φ(x1), . . . , φ(xk)) is a block
of Hk which is adjacent to x if φ has any fixed points and to y if φ is not the
identity. Since no block of Ht can be adjacent to both x and y, every such φ
must fix all vertices or none; hence G consists of a single cycle. By relabelling
we may assume x = (1, 2, 3, . . . , k) and y = (2, 3, . . . , k, 1).

Now if Ht contains any other block some player, say Xk, must have
another vertex, say j = k, 1. But then the block (1, 2, . . . , j − 2, j − 1, j +
1, j+ 2, . . . , k− 1, k, j) lies in Ht; and it is adjacent to both x (at player X1)
and y (at player Xk), a contradiction. This proves the claim.

We may now assume that Ht consists exactly of the above blocks x and
y, and that the last player to speak was X1; then the vertices of Ht−1 are
exactly those appearing in x and y, plus some additional vertices held by X1

which she eliminated in her last message. The fact that Ht−1 contains those
additional vertices means that if one of them had been X1’s “true” vertex,
the conversation might have gone exactly as it did until the last message.
But Ht−1 contains no pair of non-adjacent blocks other than x and y, since
in every block not equal to x or y, player X2 holds a 2 and player Xk holds a
1. Hence, the protocol P has failed in this case and this contradiction proves
the theorem. �

7. Final Comments

In this work we have only begun to study the combinatorial cryptology of
isolating a common secret. In J. Combin. Theory (B) 84 (2002) pp. 126–
129, Nicole Portmann has shown that for any n, there are bigraphs that are
deterministically separable but in no fewer than n steps; and that there are
bigraphs that are non-deterministically separable but in no fewer than three
steps. We still do not have a proof that the two sheriffs problem cannot be
solved deterministically when n < 2pq.

We hope that our “bigraphs” may prove to be a useful way of representing
common knowledge, even for applications unrelated to the problem of
isolating a common secret. Although they carry the same information as
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do other representations, they may help attract graph-theorists to knowledge
problems and thus bring some powerful theorems and sharp combinatorial
minds to bear.
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Summary. We answer the following question: Let P and Q be graded posets
having some property and let ◦ be some poset operation. Is it true that P ◦ Q
has also this property? The considered properties are: being Sperner, a symmetric
chain order, Peck, LYM, and rank compressed. The studied operations are: direct
product, direct sum, ordinal sum, ordinal product, rankwise direct product, and
exponentiation.

1. Introduction and Overview

Throughout we will consider finite graded partially ordered sets, i.e. finite
posets in which every maximal chain has the same length. For such posets P
there exists a unique function r : P → N (called rank function) and a number
m (called rank of P ), such that r(x) = 0 (r(x) = m) if x is a minimal (resp.,
maximal) element of P , and r(y) = r(x)+1 if y covers x in P (denoted x�y).
The set P(i) := {x ∈ P : r(x) = i} is called i-th level and its cardinality
|P(i)| the i-th Whitney number. If S is a subset of P , let r(S) :=

∑
x∈S r(x),

in particular r(P ) :=
∑
x∈P r(x). Let us emphasize, that r(P ) is here not the

rank of P .
A symmetric chain is a chain of the form C = (x0 �x1 � · · ·�xs), where

r(x0) + r(xs) = m. A subset A of P is called a k-family, if there are no k+ 1
elements of A lying on one chain in P . Further, F ⊆ P is called a filter, if
y ≥ x ∈ F implies y ∈ F , and I ⊆ P is said to be an ideal if y ≤ x ∈ I
implies y ∈ I. Let dk(P ) := max{|A| : A is a k-family} and let wk(P ) denote
the largest sum of k Whitney numbers. Obviously, wk(P ) ≤ dk(P ), for k ≥ 1.
The poset P is said to be:

(i) Sperner (S), if d1(P ) = w1(P ),
(ii) a symmetric chain order (SC), if P has a partition into symmetric chains,

(iii) Peck, if dk(P ) = wk(P ), for k ≥ 1, and |P(0)| = |P(m)| ≤ |P(1)| =
|P(m−1)| ≤ · · · ≤ |P(�m/2�)| = |P(�m/2�)|,
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Fig. 1 The property S is not preserved by direct product.

Fig. 2 The properties S, LYM and RC are not preserved by direct sum.

(iv) LYM , if
∑

x∈A
1

|P(r(x))| ≤ 1 for every antichain A of P ,

(v) rank compressed (RC), if μF := r(F )
|F | ≥ r(P )

|P | =: μP for every filter F = ∅
of P .

Since F is a filter if and only if P\F is an ideal, one can define equivalently:

(v)′ P is rank compressed, if μI := r(I)
|I| ≤ μP for every ideal I = ∅ of P .

Extensive information on these properties can be found in [5]. Further
related properties are studied in [7].

Already in 1945 Paul Erdös [6] proved that finite Boolean lattices are
Peck and thus initiated comprehensive investigations on this subject.

In the following we will study which of these properties are preserved by
usual poset operations, i.e. the question is: if P and Q have some property,
is it true that P ◦Q has this property as well? Here ◦ is some operation.

Throughout let m (resp., n) be the rank of P (resp., Q). If it is not clear
from the context whether r is the rank function of P , Q, or P ◦ Q we will
write rP , rQ, rP◦Q, respectively.

A widely studied operation is the direct product P ×Q, i.e. the poset on
the set {(x, y) : x ∈ P and y ∈ Q}, such that (x, y) ≤ (x′, y′) in P × Q if
x ≤P x′ and y ≤Q y′. It is well-known, that the direct product preserves
the properties SC (de Bruijn et al. [2] and Katona [10]), Peck (Canfield [3]),
and RC (Engel [4]), and it does not preserve the properties S and LYM (but
with additional condition it does (Harper [8] and Hsieh and Kleitman [9]),
see Fig. 1.

A simple operation is the direct sum P + Q, i.e. the poset on the union
P ∪ Q, such that x ≤ y in P + Q if either x, y ∈ P and x ≤P y, or x, y ∈ Q
and x ≤Q y. In order to obtain again a graded poset we will suppose here
m = n. Then it is easy to see, that SC and Peck properties are preserved,
but S, LYM, and RC not, see Fig. 2.
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Fig. 3 The properties SC and Peck are not preserved by ordinal sum.

Fig. 4 The properties SC and Peck are not preserved by ordinal product.

Another easy operation is the ordinal sum P ⊕ Q, i.e. the poset on the
union P ∪Q, such that x ≤ y in P ⊕Q, if x, y ∈ P and x ≤P y, or x, y ∈ Q
and x ≤Q y, or x ∈ P and y ∈ Q. To draw the Hasse diagram of P ⊕Q, put Q
above P and connect each maximal element of P with each minimal element
of Q. Then it is obvious, that properties S and LYM are preserved (note that
any antichain in P ⊕Q is either contained completely in P or completely in
Q), and also property RC is preserved (see Theorem 1), but properties SC
and Peck are not preserved, see Fig. 3.

An interesting operation is the ordinal product P ⊗ Q, i.e. the poset on
the set {(x, y) : x ∈ P and y ∈ Q}, such that (x, y) ≤ (x′, y′) in P ⊗ Q, if
x = x′ and y ≤Q y′, or x <P x

′. To draw the Hasse diagram of P ⊗Q, replace
each element x of P by a copy Qx of Q, and then connect every maximal
element of Qx with every minimal element of Qy whenever y covers x in P .
In Theorem 2 we will prove, that properties S, LYM, and RC are preserved.
Figure 4 shows that properties SC and Peck are not preserved.

Studying posets like square submatrices of a square matrix, Sali [11]
introduced the rankwise direct product P ×r Q. We will suppose here again
m = n. Then P ×r Q is the subposet of P ×Q, induced by

⋃m
i=0 P(i) ×Q(i).

Sali [11] showed, that properties SC, Peck, and LYM are preserved and gave
an example that property S is not preserved. Here we present an example,
which shows that also property RC is not preserved. Look at the poset P of
Fig. 5, which is easily seen to be rank compressed.

The indicated elements form a filter F . Now it is easy to see that the
filter F ×r F in P ×r P does not verify the filter inequality of (v).

Finally, we will consider also the exponentiation QP , i.e. the poset on
the set of all order-preserving maps f : P → Q (that is, x ≤P y implies
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Fig. 5 The property RC is not preserved by rankwise direct product.

f(x) ≤Q f(y)), such that f ≤ g if f(x) ≤Q g(x) for all x ∈ P . In Theorem 3
we will prove that none of the five properties is preserved.

2. Main Results

Theorem 1. If P and Q are rank compressed, then P ⊕ Q is also rank
compressed.

Proof. Obviously, if y has rank i in Q, then it has rank i+m+ 1 in P ⊕Q.

Hence μP⊕Q =
rP (P )+rQ(Q)+(m+1)|Q|

|P |+|Q| . Let I be an ideal in P ⊕Q and I = ∅.

Case 1. Assume I ∩ Q = ∅. Since μP ≤ μP⊕Q, and μI ≤ μP as P is rank
compressed, it follows μI ≤ μP⊕Q.

Case 2. Now let I ∩Q = ∅. Then P ⊆ I and Ĩ := Q∩ I is an ideal in Q. One
has |I| = |P |+ |Ĩ|, r(I) = rP (P ) + rQ(Ĩ) + (m+ 1)|Ĩ|. Therefore, μI ≤ μP⊕Q
is equivalent to

(
|Ĩ|rQ(Q) − |Q|rQ(Ĩ)

)
+ |Q\Ĩ|

(
(m+ 1)|P | − r(P )

)
+ |P |r(Q\Ĩ) ≥ 0.

This inequality is true, since Q is rank compressed and any element of P
has rank at most m. �

Theorem 2. If P and Q are Sperner or LYM or rank compressed, then
P ⊗Q is also resp., Sperner or LYM or rank compressed.

Proof. Let A be an antichain in P ⊗Q. Denote Ax = {y ∈ Q : (x, y) ∈ A}
and Ã = {x ∈ P : Ax = ∅}. Obviously, Ã and Ax are antichains in P and
Qx, respectively.

If P and Q are Sperner, then

|A| =
∑

x∈Ã
|Ax| ≤

∑

x∈Ã
w1(Q) = |Ã|w1(Q) ≤ w1(P )w1(Q) = w1(P ⊗Q),

hence P ⊗Q is Sperner.
Let P and Q be LYM. The level containing (x, y) has |P(r(x))||Q(r(y))|

elements. We have
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∑

(x,y)∈A

1

|(P ⊗Q)(r(x,y))|
=

∑

(x,y)∈A

1

|P(r(x))||Q(r(y))|

=
∑

x∈Ã

1

|P(r(x))|
∑

y∈Ax

1

|Q(r(y))|
≤ 1.

Finally, let P and Q be rank compressed. Let I be an ideal in P ⊗Q and
A be the set of maximal elements of I (note that A is an antichain). We use
the notation Ã from above and define further Ix := I ∩ Qx, Fx := Qx\Ix,
Ĩ := {x ∈ P : Ix = ∅}. Then Ix (Fx) is an ideal (resp., a filter) in Qx and Ĩ
is an ideal in P . It is easy to see that:

|I| = |Ĩ||Q| −
∑

x∈Ã
|Fx|,

r(I) = |Ĩ|rQ(Q) + (n+ 1)|Q|rP (Ĩ) −
∑

x∈Ã

(
rQ(Fx) + (n+ 1)|Fx|rP (x)

)
,

|P ⊗Q| = |P ||Q|,

r(P ⊗Q) = |P |rQ(Q) + (n+ 1)|Q|rP (P ).

Now r(I)
|I| ≤ r(P⊗Q)

|P⊗Q| if and only if

|P |
∑

x∈Ã

(
|Fx|rQ(Q) − |Q|rQ(Fx)

)

≤ (n+ 1)|Q|

⎛

⎝|Q|
(
|Ĩ|rP (P ) − |P |rP (Ĩ)

)
+

∑

x∈Ã

(
|P |rP (x) − rP (P )

)
|Fx|

⎞

⎠ .

The LHS is not greater than 0 since Q is rank compressed. So it is sufficient
to verify, that the term in the big parentheses on the RHS is not smaller
than 0. Denote Ã′ = {x ∈ Ã : |P |rP (x)− rP (P ) ≤ 0}. Since one can omit the
positive summands in the formula and in view of |Fx| ≤ |Qx| it is enough to
show that

|Ĩ|rP (P ) − |P |rP (Ĩ) +
(
|P |rP (Ã′) − |Ã′|rP (P )

)
≥ 0,

which is equivalent to

|Ĩ\Ã′|rP (P ) − |P |rP (Ĩ\Ã′) ≥ 0.

This inequality is true, since P is rank compressed and Ĩ\Ã′ is an ideal
in P . �

Let P l be the direct product of l copies of P . The investigation of rank
compressed posets was initiated by the following result of Alekseev [1]:

P is rank compressed iff d1(P l) ∼ w1(P l) as l → ∞. (1)
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Fig. 6 The properties S, SC, Peck, LYM and RC are not preserved by exponenti-
ation.

Moreover, from the Local Limit Theorem of Gnedenko one can easily derive

w1(P l) ∼ |P |l√
2πlσP

if P is not an antichain,

where σ2
P = 1

|P |
∑
x∈P

r2(x) − μ2
p (see [5]).

Remark 1. Straight-forward computations give us the following results:

σ2
P×Q = σ2

P + σ2
Q,

σ2
P⊗Q = σ2

Q + (n+ 1)2σ2
P ,

σ2
P⊕Q =

|P ||Q|
(|P | + |Q|)2

(
μQ + (m+ 1 − μP )

)2
+

1

|P | + |Q|
(
|P |σ2

p + |Q|σ2
Q

)
.

Theorem 3. The exponentiation does not preserve any of the properties S,
SC, Peck, LYM, or RC.

Proof. First take P and Q from Fig. 6.
Here we mean that the complete bipartite graphs Kt,t are formed on the

indicated vertices.
Obviously, P and Q have properties S, SC, Peck, LYM, and RC. Now QP

is isomorphic to the subposet of Q×Q induced by the set {(x, y) : x ≤Q y}.
Consider the ideal

I := {(x, y) ∈ QP : x ≤ i and y ≤ i for some i = 1, . . . , t}.

Easy calculations give us

μI =
9t2 + 21t

2t2 + 7t+ 1
and μQP = 4.

But μI > μQP if and only if t ≥ 8. Hence, QP is not rank compressed if
t ≥ 8, and consequently does not have properties SC, Peck, LYM, since these
properties imply property RC (see [5]).
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Finally let t ≥ 8 and denote P ′ = P + · · · + P (l times). Again, P ′ has
all of the properties above. It is known (see Stanley [12]), that QP+···+P ∼=
QP × · · ·×QP , hence QP

′ ∼= (QP )l. Since QP is not rank compressed, by (1)

d1
(
QP

′)
= d1

(
(QP )l

)
> w1

(
(QP )l

)
= w1

(
QP

′)

if l is sufficiently large. Thus, QP
′

is not Sperner. �

Concerning the exponentiation, let us mention that if Q is a distributive
lattice, then so is QP . Since distributivity implies rank compression (see [5]),
in a lot of cases the exponentiation provides a rank compressed poset. In
particular, if Q is a two-element chain, QP is isomorphic to the lattice of
ideals of P , which is consequently rank compressed for any poset P .

3. Summary

In the following table we have summarized which of the considered properties
are preserved and which not:

P +Q P ⊕Q P ×Q P ⊗Q P ×r Q QP

m = n m = n
Sperner No Yes No Yes No No
Symm. chain Yes No Yes No Yes No
Peck Yes No Yes No Yes No
LYM No Yes No Yes Yes No
Rank compr. No Yes Yes Yes No No

References

1. V.B. Alekseev. The number of monotone k-valued functions. Problemy Kiber-
net., 28:5–24, 1974.

2. N.G.de Bruijn, C.A.v.E. Tengbergen, and D. Kruyswijk. On the set of divisors
of a number. Nieuw Arch. Wiskunde, 23:191–193, 1951.

3. E.R. Canfield. A Sperner property preserved by product. Linear and Multilinear
Algebra, 9:151–157, 1980.

4. K. Engel. Optimal representations of partially ordered sets and a limit Sperner
theorem. European J. Combin., 7:287–302, 1986.

5. K. Engel. Sperner theory. Cambridge University Press, Cambridge, 1997.
6. P. Erdös. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51:

898–902, 1945.
7. J.R. Griggs. Matchings, cutsets, and chain partitions in graded posets. Discrete

Math., 144:33–46, 1995.
8. L.H. Harper. The morphology of partially ordered sets. J. Combin. Theory, Ser.

A, 17:44–58, 1974.
9. W.N. Hsieh and D.J. Kleitman. Normalized matching in direct products of

partial orders. Stud. Appl. Math., 52:285–289, 1973.



46 Sergei L. Bezrukov and Konrad Engel

10. G.O.H. Katona. A generalization of some generalizations of Sperner’s theorem.
J. Combin. Theory, Ser. B, 12:72–81, 1972.

11. A. Sali. Constructions of ranked posets. Discrete Math., 70:77–83, 1988.
12. R.P. Stanley. Enumerative combinatorics, volume 1. Wadsworth & Brooks,

Monterey, California, 1986.



The Dimension of Random Graph Orders
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Summary. The random graph order Pn,p is obtained from a random graph Gn,p

on [n] by treating an edge between vertices i and j, with i ≺ j in [n], as a relation
i < j, and taking the transitive closure. This paper forms part of a project to
investigate the structure of the random graph order Pn,p throughout the range of
p = p(n). We give bounds on the dimension of Pn,p for various ranges. We prove
that, if p log log n → ∞ and ε > 0 then, almost surely,

(1 + ε)

√
log n

log(1/q)
≤ dimPn,p ≤ (1 + ε)

√
4 log n

3 log(1/q)
.

We also prove that there are constants c1, c2 such that, if p log n → 0 and p ≥
log n/n, then

c1p
−1 ≤ dimPn,p ≤ c2p

−1.

We give some bounds for various other ranges of p(n), but several questions are left
open.

1. Introduction

The random graph order Pn,p is defined as follows. The vertex set is [n] ≡
{1, . . . , n}: we use the symbol ≺ to denote the standard linear order on this
set. We take a random graph Gn,p on [n], and interpret an edge between
vertices i and j with i ≺ j as a relation i < j of the order. (For the theory of
random graphs, founded by Erdős and Rényi [10, 11], see Bollobás [4].) The
full order < is then defined by taking the transitive closure. Put another
way, if i ≺ j, then we have i < j in Pn,p if and only if there is a ≺-
increasing sequence i = i1, i2, . . . , im = j of vertices such that each of
i1i2, i2i3, . . . , im−1im is an edge of the underlying random graph.

In general, the probability p will be a function of n. We say that Pn,p
has a property almost surely if, as n → ∞, the probability that Pn,p(n) has
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the property tends to 1. Throughout the paper, any inequalities we state are
only claimed to hold for n sufficiently large. Also throughout the paper, we
set q = 1 − p.

Random graph orders have been studied by Barak and Erdős [3], Albert
and Frieze [1], Alon, Bollobás, Brightwell and Janson [2], Newman and
Cohen [17], Newman [16] and Simon, Crippa and Collenberg [18]. The first
three of these papers deal exclusively with the case where the probability p
is constant; the next two are concerned with the height of the random order,
and the final one is essentially concerned with the number of incomparable
pairs of elements. See also the survey by Brightwell [8]. This paper is part of
a project to investigate the structure of the random graph order more fully
throughout the range of p = p(n). The authors have produced a paper [5]
dealing with the width of Pn,p throughout the range, and a further paper [6]
on the general structure of random graph orders.

This paper is concerned with the dimension of Pn,p. Recall that a realiser
of a partial order (X,<) is a set of linear orders on X whose intersection
is exactly (X,<). The dimension of (X,<) is the minimum cardinality of
a realiser. Alternatively, the dimension is the minimum d such that (X,<)
can be embedded in R

d with the co-ordinate order. Trotter’s book [21] is a
thorough treatment of dimension theory for partial orders. The dimension
has already been studied to some effect for another model of random orders
by Erdő’s, Kierstead and Trotter [9]. We discuss there result here, partly
because we shall use it later, and also because it motivates our approach to
dimension.

Define a random bipartite order Bn,p by taking a random bipartite graph
on the union of two disjoint sets V and W of vertices, with |V | = |W | = n,
and joining each pair of vertices (v, w) ∈ V ×W with probability p = p(n),
independently. Then the relations of Bn,p are exactly the relations v < w, for
a vertex v ∈ V adjacent to a vertex w ∈W .

The dimension of Bn,p is certainly at most n, since the dimension of any
partial order is bounded above by its width (see, for instance, Trotter [21]).
The result of Erdős, Kierstead and Trotter [9] implies that, even if p is fairly
small, the dimension of Bn,p is almost surely almost as large as n.

Theorem 1. For every ε > 0, there is a δ > 0 such that, if log1+ε n/n <
p < 1 − n−1+ε, then, almost surely,

dimBn,p >
δpn log pn

1 + δp log pn
.

In particular, their is a constant c such that, if 1/ logn < p < 1 − n−1/2,
then, almost surely,

dimBn,p ≥ n(1 − c/p logn).

The proof of Theorem 1 can be found in the original paper [9], or in
Trotter’s book [21, Chap. 7].
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Theorem 1 suggests a method of proving that a partial order has large
dimension; namely that one should try to find a large “random” bipartite
order within it. We shall see this idea applied in due course.

We also note here a powerful upper bound for the dimension, due to
Füredi and Kahn [12] (see also Trotter [21, Chap. 7]). The maximum degree
of a partial order (X,<) is the maximum, over all vertices x ∈ X , of the
number of vertices of X comparable with x.

Theorem 2. Let (X,<) be a partial order with maximum degree Δ. Then

dim(X,<) ≤ 50Δ log2 Δ.

A random bipartite order with p = 2c/ logn, where c is the constant of
Theorem 1, almost surely has dimension at least εΔ log Δ, for some fixed
ε > 0 where Δ is the maximum degree.

Returning now to random graph orders, the only previous result concern-
ing the dimension is due to Albert and Frieze [1], who showed the following,

Theorem 3. Let p be a fixed constant with 0 < p < 1, and set q = 1 − p.
Then, for any ε > 0, almost surely,

(1 − ε)

√
logn

log(1/pq)
≤ dimPn,p ≤

√
2 logn

log(1/q)
+

1

2
+ ε.

Thus if p = q = 1/2, the upper bound is essentially twice the lower
bound; and the ratio of upper to lower bounds increases as p becomes smaller.
The upper bound in Theorem 3 is an immediate consequence of the same
upper bound for the width of Pn,p, as proved by Barak and Erdós [3] (and
subsequently sharpened by Bollobás and Brightwell [5] w). The lower bound
is obtained by showing that a specific partial order of the given dimension
almost surely exists as a suborder of Pn,p. Albert and Frieze conjectured
that this lower bound was correct. One of our principal aims here is to
improve both the upper and lower bounds in Theorem 3, thus disproving
that conjecture. We prove the following result.

Theorem 4. Suppose p(n) is a function of n such that p log logn→ ∞ and
p ≤ 1 − 1/

√
log n. For any ε > 0 we have, almost surely,

(1 − ε)

√
logn

log(1/q)
≤ dimPn,p ≤ (1 + ε)

√
4 logn

3 log(1/q)
.

The gap between the upper and lower bounds for the dimension of Pn,p
is thus reduced to a multiplicative factor of (1 + ε)2/

√
3, for each constant

value of p, and indeed whenever p(n) tends to 0 more slowly than 1/ log logn.
We strongly suspect that the lower bound here is essentially correct, at least
for constant p, but have been unable to prove it. Section 2 is devoted to a
proof of Theorem 4: in fact, we prove slightly more general results.
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Our other main aim is to estimate the dimension for rather lower ranges
of p = p(n). In [5], we showed that there is a type of “phase transition” as
p(n) passes through the range p = c/ logn; this is investigated further, and
to some extent explained, in [6]. There is a second, equally radical, change of
behaviour near p = log n/n, the nature of which will hopefully become clear
in the course of our proofs. A third transition phase, as p decreases through
c/n, is readily understood, since the underlying random graph changes from
being almost all in one component, to being a collection of small trees. The
following result of Bollobás and Brightwell [5] gets close to pinning down
the behaviour of the width of Pn,p between the first and last of these three
transitions.

Theorem 5. If p logn → 0 and pn → ∞, then the width of Pn,p almost
surely lies between 1.455p−1 and 2.428p−1.

We thus have an upper bound for dimPn,p of 2.428p−1 in this range. It is
natural to ask whether this is roughly the right order of magnitude: we shall
prove that it is, provided we are above the second phase transition point. The
main result of Sect. 3 is as follows.

Theorem 6. There is an ε > 0 such that, if p ≥ logn/n and p logn → 0,
then, almost surely,

εp−1 ≤ dimPn,p ≤ 2.428p−1.

Below p = logn/n, the maximum degree of the random partial order is
smaller than p−1, so the Füredi-Kahn bound, Theorem 2, gives us a better
upper bound on the dimension. We show that, at least in some range below
p = logn/n, this upper bound is not too far off being correct.

Theorem 7. There are positive constants c1, c2 such that, if 4
5 logn/n ≤

p ≤ (log n− log logn)/n, then, almost surely,

c1e
pn ≤ dimPn,p ≤ c2e

pn log3 n.

In particular, there is a genuine change of behaviour near p = logn/n,
which is associated with a sudden drop in the value of the maximum degree
from εn to o(n). A later result, Lemma 1, gives some more information on
the distribution of the number of vertices above a given vertex in Pn,p.

The proofs of Theorem 6 and the lower bound in Theorem 7 are practically
identical, and will be dealt with together in Sect. 3. The constant 4/5
appearing in Theorem 7 can be improved, and indeed it appears that, with
some difficulty, it can be replaced by any ε > 0. The upper bound in
Theorem 7 remains valid for much smaller values of p, and it would be of
some interest to determine if a lower bound of the form given in Theorem 7
holds further down. The following easy result deals with very small values
of p.
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Theorem 8. (i) If pn → 0, but pn7/6 → ∞, then, almost surely,
dimPn,p = 3.

(ii) If pn7/6 → 0, then, almost surely, dimPn,p = 2.

Proof. This result is an immediate consequence of well-known structural
results for random graphs Gn,p with pn→ 0 (see, for instance, Bollobás [8]).

If pn → 0, then all the components of the underlying random graph are
trees, so the dimension of the random order is at most 3 (see, for instance,
Trotter [21, Chap. 5, (2.6)]). If pn7/6 → ∞, then some of the components are
seven-vertex trees of dimension 3, whereas if pn7/6 → 0, all components are
trees of at most six vertices, so dimPn,p = 2. �

If p = c/n with c < 1, then all components are either trees or unicyclic
graphs The following conjecture would imply that Theorem 8(i) can be
extended to this range of p(n).

Conjecture 1. If P is a partial order whose covering graph is unicyclic,
then dimP ≤ 3.

As pointed out to us by Tom Trotter, Theorem (4.4) of Chap. 4 of [21]
implies that, if P is as above, then dimP ≤ 5. What happens if p = c/n with
c > 1?

The reader will perhaps have noticed that there is one intermediate range
of p(n) that we have not yet discussed, namely the range where p logn→ ∞
but p log logn → 0. In this range, the width of Pn,p is still almost surely

about
√

2p−1 logn and indeed the upper bound for dimPn,p in Theorem 4
still holds. Our methods can be adapted to give apparently rather weak lower
bounds for the dimension, but we have been unable to answer the following
question.

Question 1. Is there an ε > 0 such that, if p ≥ logn/n, then, almost surely,

dimPn,p ≥ εWidth(Pn,p)?

Note that we have an affirmative answer if either p logn → 0 or
p log log n→ ∞. However, we suspect that the answer is “no”.

2. Large p(n)

This section is devoted to the proof of Theorem 4. In fact, we shall prove two
slightly sharper and more general results, which together imply Theorem 4.
We first consider the lower bound.

Theorem 9. There is a constant k such that, if 2/ log logn ≤ p ≤ 1 −
1/

√
logn, then, almost surely,
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dimPn,p ≥
√

logn

log(1/q)

(
1 − k

p log logn

)
.

Proof. We shall use Theorem 1, due to Erdős, Kierstead and Trotter [9]. Set

m =

⌊√
logn

log(1/q)

(
1 − 1

log log n

)⌋
,

and note that m ≤
√

logn log logn. Our aim is to find a “random Bm,p”
inside our random graph order Pn,p, and to apply Theorem 1.

We break our vertex set [n] into l = �n/2m� consecutive pieces A1, . . . , Al,
so that Aj+1 consists of the vertices between 2mj+1 and 2m(j+1) inclusive.
Each set Ai thus consists of 2m vertices; we subdivide it further into two
consecutive sets Bi and Ci of m vertices each, so that Bj+1 consists of the
vertices between 2mj + 1 and 2mj + m inclusive, and Cj+1 contains the
remainder.

Note that, if there are no edges of the underlying random graph inside
a set Bi or Ci, then that set forms an antichain of size m in Pn,p. We call
a set Ai good if both Bi and Ci form antichains. Note that, conditional on
Ai being good, the random order Pn,p restricted to Ai is distributed as a
random bipartite order Bm,p (with vertex classes Bi and Ci).

The probability that Ai is good is equal to q2(
m
2 ) ≥ qm

2

. Also, the events
that the various Ai are good are independent. Thus the probability P that
there is no good Ai is at most

(
1 − qm

2
)l
.

Substituting our chosen value for m, and using the inequality l ≥ n/3m, we
obtain:

P ≤ exp
(
− n

3m
q

log n
log(1/q)

(1−1/ log log n)2
)

≤ exp

(
− 1

3
√

logn log logn
n1/ log log n

)

= o(1).

Therefore there is almost surely some good Ai. Thus we have, almost surely,
dimPn,p ≥ dimBm,p.

Note that 1/ logm < p < 1 −m−1/2, so, by Theorem 1, we almost surely
have

dimPn,p ≥ dimBm,p ≥ m

(
1 − c

p logm

)

≥
√

logn

log(1/q)

(
1 − 2

log logn

)(
1 − 3c

p log logn

)
,
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where c is the constant of Theorem 1. The result now follows on choosing an
appropriate value of k. �

We now turn our attention to the upper bound. The main point here is
that the dimension is bounded away from the width. Informally, very large
antichains are rare, and one needs more than one large antichain to have
large dimension.

Furthermore, for p above our first transition phase around 1/ logn. it is
shown in [6] that the random graph order has the structure of many small
orders arranged one above another. Thus we shall make use of the following
two results.

Theorem 10. Let A be a maximal antichain in (X,<), with A = X. Set
U = {x ∈ X : x > a for some a ∈ A} and D = {x ∈ X : x < a for some
a ∈ A}, so that X is the disjoint union of A,U andD. LetWU andWD denote
the widths of the partial order (X,<) restricted to U and D respectively. Then

dim(X,<) ≤ 1 + WU +WD.

Trotter [19] proves Theorem 10 in the cases where (i) WD = 0 or (ii)
WD = WU , and in fact the proof of the latter result generalises immediately
to give Theorem 10. This proof can also be found in Trotter’s book [21,
Chap. 1 (11.3)].

A post in a partial order is an element comparable with all others. Posts
in Pn,p are considered in Alon, Bollobás Brightwell and Janson [2], and in
more detail in Bollobás and Brightwell [6]. Assume for the moment that Pn,p
has at least one post. If i and j are posts in Pn,p such that there are no posts
k with i ≺ k ≺ j, then the partial order restricted to the interval [i, j) of [n]
is called a factor of Pn,p. If i is the first and j the last post, then the partial
order restricted to either of [1, i) or [j, n] is also regarded as a factor. If the
factors of Pn,p are F1, . . . , Fm, with F1 ≺ . . . ≺ Fm in [n], then Pn,p is the
linear sum of F1, . . . , Fm, i.e., the partial order defined by taking the union
of the Fi, and putting in each relation of the form x < y, where x is an a
strictly lower factor than y. Note that the dimension of a linear sum is equal
to the maximum of the dimensions of its constituent factors.

Set η(p) =
∏∞
i=1(1 − qi). We note that there is a constant c such that,

for p ≤ 1/2, η(p) ≥ c exp(−π2/6 log(1/q)). This can be read out of Hall [13,
equation 4.2.11]. We quote the following result from [6].

Theorem 11. Suppose p logn → ∞. Then there is almost surely no set of
η(p)−1 log3 n consecutive vertices of [n] that does not contain a post in Pn,p.

We shall apply this p logn → ∞, so that η(p)−1 log3 n = o(nε) for every
ε > 0. The significance of Theorem 11 is then that the partial order Pn,p is
almost surely the linear sum of factors, all of which have at most η(p)−1 log3 n
elements. In view of Theorem 10, this implies that, if Pn,p does have dimension
at least d, then one of the factors must contain both an antichain A of size
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d, and a pair of disjoint antichains, also disjoint from A, of sizes summing to
at least d− 1.

Our plan is to estimate the expected number of occurrences of such
structures.

Theorem 12. Let ε > 0 be any fixed constant. Suppose p logn → ∞. Then,
almost surely,

dimPn,p ≤ (1 + ε)

√
4 logn

3 log(1/q)
.

Proof. In [5], it is proved that the expected number of antichains of size w

whose ≺-first vertex is x is at most η(p)−2q(
w
2). One can readily adapt the

argument there to show that, for any triple (x, y, z) of vertices, the expected
number of triples of antichains of size w1, w2, w3 with ≺-first vertices x, y, z
respectively is at most

η(p)−6q(
w1
2 )+(w2

2 )+(w3
2 ).

The number of triples of vertices (x, y, z) in the same factor of Pn,p is almost
surely at most n(η(p)−1 log3 n)2 from Theorem 11.

Hence, by Theorem 10, the expected number of factors of dimension at
least d, conditional on the conclusion of Theorem 11 holding, is at most

nη(p)−8(log n)6q(
d
2)
d−1∑

i=0

q(
i
2)+(d−i−1

2 ).

The largest term in the sum is the term with i = �(d − 1)/2�, so this
expectation is at most

nη(p)−8(logn)6dqd
2/2+2(d/2)2/2−2d = nη(p)−8(logn)6dq3d

2/4−2d.

Setting d = (1 + ε)
√

4 logn/3 log(1/q), for any ε > 0, we see that this is at
most

n1−(1+ε)2η(p)−8(logn)7e−3
√
p−1 logn = o(1).

Since the dimension of Pn,p is at most the maximum dimension of its
factors, this implies that, almost surely, dimPn,p ≤ d, as required. �

As mentioned earlier, we do not expect that the constant 4/3 in
Theorem 12 is correct. One possible way to decrease it would be to try
to improve on Theorem 10, under suitable extra hypotheses. Although
Trotter [20, 21] has shown that Theorem 10 is sharp, even when WD = WU ,
the example he constructs looks completely unlike anything that is likely
to arise as a suborder of Pn,p: in particular the size of the antichain A is
exponential in WD. On the other hand, one can almost surely find in Pn,p
three consecutive sets of vertices of sizes w/2, w and w/2 successively, where
w = (1−ε)

√
4 logn/3 log(1/q); however the (random) order induced by these
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sets almost surely has dimension at most w/2—see Erdős, Kierstead and
Trotter [9].

We suspect that the lower bound in Theorem 9 gives the correct constant,
at least for constant values of p, so we make the following conjecture.

Conjecture 2. Let p be a fixed constant with 0 < p < 1. For every ε > 0,
we have, almost surely,

dimPn,p ≤ (1 + ε)

√
logn

log(1/q)
.

3. Small p(n)

Our principal aim in this section is to prove Theorem 6, giving a lower bound
of εp−1 on the dimension for the major range of p(n). As mentioned earlier,
this bound is best possible up to the value of ε. We shall work in slightly
greater generality so as to prove Theorem 7 as well.

We start with an overview of the proof, assuming for simplicity that
p ≥ log n/n + ω(n) log logn/n, where ω(n) → ∞. Here and later, we treat
integer and real quantities interchangeably, for the sake of clarity: the proof
is not materially affected.

Throughout this section, we set m = p−1. We restrict attention to the
set [N ] consisting of the ≺-first N = m logm + 6m vertices of [n], so we
are dealing with a random graph order PN,p. We partition [N ] into sets
W ≺ U ≺ U ′ ≺ W ′, with |U | = |U ′| = 1

2m logm, and |W | = |W ′| = 3m. Let
A be the set of maximal elements of the partial order restricted to W , and
let A′ be the set of minimal elements in the partial order restricted to W ′.
It was noted in our earlier paper [5] that, almost surely, |A|, |A′| ≥ 9m/10.
Our aim is to prove that the random order PN,p restricted to A ∪ A′ almost
surely has dimension at least εm.

Intuitively, the size of U ∪ U ′,m logm, has been fixed so that, for each
pair (a, a′) ∈ A × A′, the probability that a < a′ in PN,p is a constant.
If these relations were independent, then the partial order we consider
would be a random bipartite order, and, by the result of Erdős, Kierstead
and Trotter [9], Theorem 1, would almost surely have dimension at least
(1 − ε)9m/10. However of course the relations are far from independent. We
overcome this, at the expense of finishing with a rather small constant, in the
following manner. We prove that, almost surely, there are at least γm2 pairs
(a, a′) ∈ A×A′ which are not related in PN,p. If we have a realiser L1, . . . , Ld
of PN,p, then, for each such unrelated pair, there must be an i ∈ {1, . . . , d}
such that a is above a′ in Li—we say Li reverses (a, a′). On the other hand,
we prove that, for any subset T of A of (small) size t, the number of elements
of A′ incomparable with all elements of T is at most (1 − δ)tm. This will
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imply that the total number of pairs (a, a′) reversed by a linear extension L
is at most 2m/δ, and so we must have dimPN,p ≥ d ≥ γδm/2.

For X a subset of [N ] and B a subset of A, let Γx(B) be the set of
vertices x ∈ X such that x is above some vertex of B in PN,p, i.e., there is
a ≺-increasing path in the underlying random graph from some vertex of B
to x. Our strategy will be to prove that, for every (small) subset B of A,
ΓU (B) is about the “right” size, namely n1/2|B|. Unfortunately, this will fail
as it stands because a few vertices a in A are likely to be below far too few
or too many vertices in U . So our first step will be to exclude such vertices,
and certain others, from consideration.

Formally, we shall begin by looking just at the set A ∪ U . We shall
prove that the partial order restricted to this set almost surely has certain
properties, and by symmetry the partial order restricted to A′ ∪ U ′ has
analogous properties. These properties will of course be independent of edges
between U and U ′. Then we prove that, conditional on these properties, the
partial order PN,p almost surely has large dimension.

For the sake of convenience, we begin by working in a slightly altered
model of random orders. Define the model P ′(s, p) by taking two disjoint
vertex sets R and S = [s], with |R| = 9p−1/10. Then we put in edges
independently, with probability p, between each pair of vertices, not both
in R. Thus the model restricted to S is just a copy of Ps,p. All vertices in R
are to be thought of as “below” S, so a vertex x ∈ R is below y ∈ S if there
is a vertex z ∈ S such that xz is an edge of the graph, and z < y in Ps,p. We
shall apply this with R = A and S = U . For the greater generality required
to prove Theorem 7, we need to consider cases where s is a little smaller than
1
2m logm where again m = p−1.

For the next few steps, we work in the model P ′(s, p) assuming that
2
5m logm ≤ s ≤ 1

2m logm. As mentioned above, we wish to show that there
is almost surely a large subset RG of R such that, for every (small) subset T
of RG, RG,ΓS(T ) is not too far from its expected size. There are essentially
two steps here, first to ensure that this holds for every single-element subset
of RG, and then to extend the argument to larger subsets.

We start with a lemma which is perhaps of independent interest. Let the
random variable X(s, p) be the number of vertices of S above a given vertex
x ∈ R in P ′(s, p). Of course, this, is distributed as the number of vertices
above vertex 1 in Ps+1,p. The lemma below gives the exact distribution of
X(s, p), and also some convenient estimates. Note that our estimates are
only good in the case where pq−s = o(1), which is when s is rather less than
m logm. The identity given in part (i) has been obtained independently by
Simon, Crippa and Collenberg [18], who study in more detail the mean and
variance of X(s, p) and the behaviour in the limit as s → ∞ with p fixed.

In the lemma below, Geom(a−1) denotes a geometric random variable
with mean a−1, i.e., with Pr(Geom(a−1) = t) = a(1−a)t for t a non-negative
integer. The total variation distance dTV(X,Y ) between two real-valued
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random variables X and Y is the supremum over x ∈ R of |Pr(X ≤
x) − Pr(Y ≤ x)|.

Lemma 1. (i) For 0 ≤ t ≤ s,

Pr(X(s, p) = t) = qs−t
s∏

i=s−t+1

(1 − qi).

(ii) Suppose p ≤ 1/2. Then

dTV(X(s, p),Geom(q−s)) ≤ 3pq−s.

(iii) For every t,

Pr(X(s, p) > t) ≤ (1 − qs)t.

(iv) If p ≤ 1/2, then, for every t,

Pr(X(s, p) ≤ t) ≤ exp(2pq−s)(1 − (1 − qs)t).

Proof. Of course, the formula in (i) can be proved by induction on s, using
the recurrence

r(t, s) = r(t, s− 1)qt+1 + r(t − 1, s− 1)(1 − qt),

where r(t, s) = Pr(X(s, p) = t): see Simon, Crippa and Collenberg [18] for
details. We prefer to give a combinatorial proof, which is hopefully slightly
more informative.

The probability that the vertices of S = [s] above x are exactly k1 +
1, k1 + k2 + 2, . . . , k1 + . . .+ kt + t is

( t∏

i=1

(1 − qi)

)( t+1∏

i=1

qiki
)
,

where kt+1 = s−
∑t

i=t ki−t. As the possible vectors (k1, . . . , kt+1) are exactly
the ordered partitions of s− t into t+ 1 parts, we have

Pr(X(s, p) = t) =

(
t∏

i=1

(1 − qi)

)
[Xs−t]

t+1∏

i=1

1

1 − qiX
.

By Theorem 349 of Hardy and Wright [14], the coefficient of Xs−t in the
product is

qs−t
s−t∏

i=1

1− qt+i

1 − qi
,

which implies our formula for Pr(X(s, p) = t).
For the estimates (ii)–(iv), we have that
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at ≡ Pr(X(s, p) = t) = qs−t
t−1∏

j=0

(1 − qs−j) (0 ≤ t ≤ s)

bt ≡ Pr(Geom(q−s) = t) = qs(1 − qs)t (0 ≤ t).

We claim that:

(1) at ≥ bt for all t at most some t0, and at < bt thereafter;
(2) If p ≤ 1/2, then at/bt ≤ exp(2pq−s) for all t.

Claim (1) will imply (iii) immediately, since the right hand side in (iii) is
the probability that Geom(q−s) is greater than t. Similarly Claim (2) implies
(iv) immediately. For (ii), the two claims together give that

dTV(X(s, p),Geom(q−s)) =

t0∑

t=0

(at − bt)

≤
t0∑

t=0

bt(exp(2pq−s) − 1)

≤ exp(2pq−s) − 1.

This final expression is at most 3pq−s whenever 3pq−s < 1. Since the total
variation distance is certainly at most 1, we thus have the result as stated.

For j = 1, . . . , s, set αj = q−1(1 − qs−j)/(1 − qs). Note that at/bt =∏t−1
j=0 αj . Observe that the sequence αj starts greater than 1 and decreases

to 0 by j = s. This establish Claim (1). (Note that the claim is certainly true
if t > s, when at = 0 < bt.)

For Claim (2), we have

logαj = − log(1 − p) + log

(
1 − qs

1 − qs
(q−j − 1)

)

≤ p+ p2 − qs(q−j − 1)

≤ p+ p2 − jpqs,

and hence

log(at/bt) ≤ p

(
t(1 + p) − qs

t−1∑

j=0

j

)
=
tp

2
(2 + 2p− qs(t− 1)). (∗)

The expression on the right hand side of (∗) is maximised for 2t − 1 =
2(1 + p)q−s when it is equal to

pq−s

2
(1 + 2p+ p2 + qs + pqs + q2s/4) ≤ 2pq−s,

as required to establish Claim (2) and complete the proof of the lemma.
(Here, we have used the weak bounds p ≤ 1/2 and qs ≤ 1.) �
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Returning to our main thread, we wish to prove that “many” vertices of
R have about the expected number, namely about q−s, of vertices of S above
them. Lemma 1 will suffice for that, and we shall simply ignore vertices of
R below too few or too many vertices. We also wish to exclude certain other
vertices a ∈ R, namely those which only have sufficiently many vertices of
S above them because of the large number of directed paths through one
particular neighbour a∗: the problem with such vertices is that if another
vertex b of R is also adjacent to a∗, the combined neighbour-set ΓS({a, b})
may be too small.

It turns out to be sufficient for our purposes to ensure that vertices of R
are below about the right number of vertices from the bottom portion of S.
Define then C to be the set of the bottom m vertices of S, and W to be the
set consisting of the next w ≡ 6m log logm, with Y = C ∪W .

We begin by choosing a large matching among those edges of the random
graph between R and C. A result in our earlier paper [5, Theorem 14], implies
that there is almost surely such a matching of size at least m/3. Given such a
matching M , let RM be the set of vertices of R incident with an edge of M .
For a ∈ RM , let a∗ be the vertex of C with aa∗ ∈ M . For a ∈ RM , let N(a)
be the set of vertices of W sending a path down to a avoiding a∗, and N(a∗)
be the set of vertices of W sending a path down to a∗; i.e., N(a∗) = ΓW (a∗).
The idea is that, if both N(a) and N(a∗) are large, then any subset of R
including a will receive its due “contribution” from a.

We shall call a vertex a ∈ RM good if it satisfies

(i) 5 log6m ≥ |ΓY (a)|,
(ii) Both |N(a)| and |N(a∗)| are at least 1

8 log6m.

Lemma 2. There are almost surely at least m/12 good vertices in RM .

Proof. Let D be the set of vertices incident with M . Note that the choice of
D depends only on the edges of the random graph between R and C. For
x ∈ D, let Z(x) be the number of vertices of W having a directed path to x
whose penultimate vertex is in W . Thus Z(x) ⊆ N(x) for x ∈ D. The random
variable Z(x) is distributed as X(w, p), so by Lemma 1 the probability that
Z(x) is at most 1

8 log6m is at most

e2pq
−w

(
1 − (1 − q6m log logm)log

6m/8
)

= 1 − e−1/8 + o(1).

For x, y ∈ D, the probabilities that Z(x) and Z(y) are too small are not
independent, so we cannot immediately deduce that, almost surely, many
vertices a ∈ R have Z(a) and Z(a∗) large enough. However, the problem is
easily overcome. For any subset V of W , and any x ∈ D, the event that
{v ∈ W : v > x} = V depends only on the set of edges of the random graph
upwards from V ∪ {x}, so is independent of the random graph restricted to
(W \V )∪{y}, for any other element y ∈ D. Thus the random variable Z(y),
conditioned on the event that Z(x) < 1

8 log6m, dominates a random variable
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distributed as X(W ′, p) where w′ = w− 1
8 log6m. The probability that such a

random variable is at most 1
8 log6m is again at most 1−e−1/8+o(1). Thus the

variance of the number of vertices of D below too few vertices in W is o(m2),
so the number of such vertices is almost surely at most 2m

3 (1 − e−1/8 + ε) <
m/12. Therefore, almost surely, the number of vertices a ∈ RM such that a
and a∗ both have sufficient neighbours in W is at least m/3− 2m/12 > m/6.

Finally, the expected number of vertices a ∈ RM below more than 5 log6m
vertices of C ∪W can also be estimated from Lemma 1 to be at most

1

3
m exp(−5 log6mqm+6m log logm) =

1

3
m exp(−5e−1 + o(1)) < m/13.

As before, the variance of this number is o(m2), so there are almost surely
at most m/12 vertices in RM with too many neighbours. Hence the number
of good vertices in R is almost surely at least m/6 −m/12, as desired. �

Let RG be a set of m/12 good vertices in RM . We have that each vertex
of RG is below about log6m vertices of W . We need a little more, namely
that each smallish set T of good vertices has about |T | log6m neighbours
in W . This follows from the principle that random graphs do not possess
small dense subgraphs.

Lemma 3. Almost surely, for every subset T of RG with |T | = t ≤ m1/4,
|T ∪ ΓY (T )| ≥ t log6m/16.

Proof. For any subset T of the whole set R, define G(T ) = T ∪ ΓY (T ) and
g(T ) = |G(T )|. Define a spanning forest F (T ) in the graph restricted to G(T )
by choosing, for each element of ΓY (T ), one edge down to an element of G(T ).

We first prove that, almost surely, for each subset T of R, either g(T ) >
g(t) ≡ t log6m/16, or the number of edges induced by the random graph on
G(T ) is at most |F (T )| + 3t/2. Indeed, the probability that a given set T of
size t fails is at most the probability that (a) g(T ) ≤ g(t) and (b) of a given

set of at most
(
g(t)
2

)
− |F (T )| pairs of vertices, at least 3t/2 of them are in

the random graph. The probability of (b) is at most

(
g(t)2

3t/2

)
p3t/2 ≤

(
2eg(t)2

3tm

)3t/2

≤
(
t log12m

m

)3t/2

≤
(

log12m

m3/4

)3t/2

,

for t ≤ m1/4. The expected number of failing t-sets is thus at most

mt

(
log12m

m3/4

)3t/2

= ((logm)18m−1/8)t ≤ (logm)−t.

Hence, almost surely, there are no over-dense sets G(T ). We assume from
now on that this is the case.

Now let T be a subset of RG of size t, with g(T ) ≤ t log6m/10. Set
T ∗ = {a∗ : a ∈ T }, and D(T ) = T ∪ T ∗. By the above, G(T ) spans at
most 3t/2 edges other than those in F (T ). For each such edge, take the lower
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endpoint, and then follow down the edges of F (T ) until a vertex of D(T ) is
reached. Thus there are at least t/2 vertices of D(T ) that are not hit. Now
consider the collection of sets N(a), for a a vertex of D(T ) that is not hit.
Each such set has size at least log6m/8, by our choice of RG. We claim that
these sets are mutually disjoint. If not, there is a minimal vertex w in some
pair of them, so w sends edges down to both sets, and one of these edges is
not in F (T ): the path thus generated hits the vertex a defining one of the
two sets, leading to a contradiction. Thus the union of these sets has size at
least t log6m/16, and this union is certainly contained in G(T ), which is a
contradiction. �

Once we have all our small sets “spreading” into the bottom 6m log logm+
m elements of S, it is not hard to show that they continue to spread at a
very steady rate through S.

Lemma 4. Almost surely, for every subset T of RG with |T | = t ≤ m1/4,

2tes/m ≥ |T ∪ ΓS(T )| ≥ tes/m/80.

Proof. We break S \ Y into consecutive sets of size m/ logm, say Ak+1 <
Ak+2 < . . . < Al, where l = s logm/m ≤ 1

2 log2m and k = 6 logm log logm+

logm. For j = k, . . . , l, set Cj = Y ∪
⋃j
i=k+1 Ai. For a set T of size t, and

k ≤ j < l, we estimate the probability that
∣∣|ΓCj+1(T )| − |ΓCj (T )|(1 + 1/ logm)

∣∣ ≥ |ΓCj (T )| log−5/2m,

given that m3/4 ≥ γ ≡ |ΓCj(T )| ≥ t log6m/16.
The number Nj(T ) of vertices of Aj+1 sending an edge to ΓCj (T ) is a

binomial random variable with parameters m/ logm and

1 − (1 − p)γ =
γ

m
(1 +O(m−1/4)).

Hence we have

Pr

(∣∣∣∣Nj(T ) − γ

logm

∣∣∣∣ ≥
γ

log5/2m

)
≤ 2e−γ/3 log

4m ≤ 2e−t log
2m/48,

where we used the Chernoff bounds on the tail of the Binomial distribution,
the lower bound on γ, and implicitly the fact that the variation we tolerate
is much greater than the error in our estimate of γ/ logm for the mean of
Nj(T ).

Hence, for each fixed t, the probability that, for some T of size t, and
some j, the set ΓCj (T ) fails to spread within the prescribed bounds is at
most

2mtle−t log
2m/48 = o(m−1/4).

Thus, almost surely, every set ΓCj (T ) spreads at the required rate.

Hence, almost surely, for every set T of size at most m1/4,
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|ΓS(T )| ≥ 1

16
t log6 m

(
1 +

1

log m
− 1

log5/2 m

)l−k

≥ t

16
exp

(
6 log log m +

(
s log m

m
− 6 log m log log m− log m

)(
1

log m
− 1

log2 m

))

≥ t

16
exp

(
s

m
− 1 − s

m log m

)

≥ t

16
es/m−3/2 ≥ t

80
es/m.

Similarly, almost surely, for every set T ,

|ΓS(T )| ≤ 5t log6m(1 + 1/ logm+ 105/ log5/2m)l−k

≤ 5t exp

(
6 log logm+

(
s logm

m
− 6 logm log logm− logm

)
1

logm

)

= 5tes/m−1 ≤ 2tes/m.

This completes the proof. �

There is one more property we want from our model P ′(s, p), namely that
no single element of S is above too many members of R. A reasonably sharp
bound follows readily from Lemma 1 (iii): the number J(x) of elements of
R∪S below any member x of S is dominated by a random variable distributed
as X(s+ r, p), so the probability that J(x) is greater than 3es/m logm is at
most

(1 − qs+r)3e
s/m logm ≤ (1 − (1 − 1/m)s+m)3e

s/m

logm

≤ exp

(
−3es/m logm

es/m+1(1 + o(1))

)
= o(m−11/10) = o(s−1),

so there is almost surely no vertex x ∈ S above more than 3es/m logm element
of R.

Collecting together our results so far, we have the following.

Lemma 5. Suppose p → 0, and s ≤ 1
2m logm. Then, almost surely, the

random order P ′(s, p) has the following properties.

(1) There is a subset RG of R of size at least m/12 such that, for every subset
T of RG of size t ≤ m1/4,

2tes/m ≥ |T ∪ ΓS(T )| ≥ tes/m/80.

(2) No element of S is above more than 3es/m logm elements of R.

Our strategy for the next few steps is as follows. We take four sets
A,A′, S, S′ with |A| = |A′| = m/12 and |S| = |S′| = s. (One should think of
R ≺ S ≺ S′ ≺ R′. with a P ′(s, p) random partial order on R∪S and another
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independent copy on the dual of R′ ∪ S′, then A = RG and A′ = R′
G.) We

then fix any partial orders < and <′ on A ∪ S and A′ ∪ S′ respectively,
satisfying the conclusions of Lemma 5. To be precise, we state the following
three properties.

(P1) Every element of A is minimal in <, and every element of A′ is maximal
in <′.

(P2) For every subset T of A of size t ≤ m1/4,

2tes/m ≥ |T ∪ ΓS(T )| ≥ tes/m/80;

and for every subset T of A′ of size t ≤ m1/4,

2tes/m ≥ |T ∪ Γ′
S′(T )| ≥ tes/m/80,

where Γ′
S(T ) is the set of elements of S′ below some element of T in

<′.
(P3) No element of S is above more than 3es/m logm elements of A in <,

and no element of S′ is below more than 3es/m logm elements of A′ in
<′.

Given orders <, <′, <B with: (i) < and <′ orders on S ∪ A and S′ ∪ A′

respectively, satisfying (P1)–(P3), (ii) <B a bipartite order, in which x <B y
implies that x ∈ A∪S and y ∈ A′∪S′, we define the order Q(<,<′, <B) to be
the transitive closure of the union of the three orders. Thus, for a ∈ A, a′ ∈
A′, a is below a′ in Q(<,<′, <B) if and only if x <B y for some x ∈ ΓS(a)
and y ∈ Γ′

S′(a′).
Given < and <′ as a bove, we define a random partial order P ′′ = P ′′

(<,<′, p) on A ∪ S ∪ S′ ∪ A′ by taking a random bipartite order <B=<B
(s, p), with edge probability p, and vertex sets A ∪ S, S′ ∪ A′, and forming
Q(<,<′, <B).

(Note that, if < and the dual of <′ were chosen as random P ′(s, p) orders,
with S immediately below S′ in ≺, and then A and A′ selected as sets of good
vertices, then the random partial order just defined is distributed as the
restriction of the random graph order to the chosen vertex set, conditional
on < and <′.)

Our aim is to prove that, almost surely, the random order P ′′ has large
dimension.

We first show that, almost surely, many pairs (a, a′) ∈ A×A′ are unrelated
in P ′′. For this, we may as well assume that s = 1

2m logm.
A pair (a, a′) ∈ A × A′ is related exactly when there is some relation of

<∗ between an element of ΓS(a) and an element of Γ′
S′(a′). These sets both

have sizes at most 2es/m = 2m1/2, by property (P2), so the probability that
the pair is unrelated is at least q4m = e−4(1 + o(1)). Therefore the expected

number of unrelated pairs is at least
(
m
12

)2
e−4(1 + o(1)) ≥ m2/8,000.

Again, we have to confront the problem that the relations between these
pairs are far from independent. We deal with this by using the following
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“isoperimetric inequality” of Bollobás and Leader [7] (see also Leader [15]).
Let Qk(p) denote the “weighted” k-dimensional cube, i.e., the set of subsets
of {1, . . . , k} with a set V given weight p|A|qk−|A|. This weight is a probability
measure, so Qk(p) is thus a probability space. Our intention here is to identify
{1, . . . , k} with the elements of (S ∪ A) × (S′ ∪ A′), when the probability
measure Prp on Qk(p) coincides with our probability measure on bipartite
orders <B. For A a subset of Qk(p), and l ∈ N, we define

A(l) = {B ∈ Qk(p) : |B�A| ≤ l for some A ∈ A}.

Finally, for r ∈ N, we define B(r) to be the set of subsets of {1, . . . , k} with
at most r elements. The inequality of Bollobás and Leader [7] is as follows.

Lemma 6. (i) Let A ⊆ Qk(p) be a down-set with Prp(A) ≥ Prp(B(r)).
Then, for every l ∈ N, we have Prp(A(l)) ≥ Prp(B(r+l).
(ii) For z ≥ 0, let A ⊆ Qk(p) be either a down-set or an up-set, such that

Prp(A) ≥ e−z. Then Prp(A(l)) ≥ 1 − e−z, where l =
√

12zpk.

Part (ii) of Lemma 6 follows immediately from part (i) on applying the
Chernoff bounds for the binomial distribution.

As indicated, we apply Lemma 6 with z = logm, k = (s + m/12)2 ≤
1
3m

2 log2m, and the set {1, . . . , k} identified with the pairs (x, y) ∈ (S ∪
A) × (S′ ∪A′). Let A be the set of those bipartite orders <B giving rise to a
partial order Q(<,<′, <B) in which at least m2/10,000 pairs (a, a′) ∈ A×A′

are unrelated. Note that A is a down-set. Since the number of unrelated
pairs has expectation at least m2/8,000 and is bounded above by m2, the set
A has probability at least 1/4,000 ≥ 1/m = e−z. Therefore, by Lemma 6,
Prp(A(l)) is at least 1− o(1), i.e., a random order <B is almost surely within

l ≤ 2m1/2 log3/2m edges of a bipartite order in A.
By property (P3) of the orders < and <′, the addition or removal of

any edge (x, y) between S ∪ A and S′ ∪ A′ can only change the number
of unrelated A − A′ pairs by at most (3es/m logm)2 ≤ 9m log2m. Thus
the number of unrelated pairs in P ′′ is almost surely at least m2/10,000 −
(2m1/2 log3/2m)(9m log2m) ≥ m2/20,000. We say that a partial order P ′′

with at least m2/20,000 unrelated A−A′ pairs satisfies property (Q1).
To complete our project, we now have to show that, almost surely, every

small subset of A has fairly many elements of A′ above it, and vice versa.
The proof of this is very similar to the previous part.

Consider any subset T of A of size t ≤ m1/4, and any element x of
A′. By property (P2), |T ∪ ΓS(T )| ≥ tes/m/80, and |Γ′

S′(x)| ≥ es/m/80.
Thus the probability that x is above some element of T in P ′′ is at least

1−(1−1/m)te
2s/m/6,400 ≥ 1−exp(−te2s/m/6,500m). Hence the number N(T )

of elements of A′ above some element of T has mean at least (m/12)(1−xt),
where x = exp(−e2s/m/6,500m). Note that 1 − x ≥ e2s/m/7,000m.

We again use the result of Bollobás and Leader [7], Lemma 6, to show
that N(T ) is almost surely never far from its mean. This time, we identify
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{1, . . . , k} with the set of pairs (x, y) ∈ (T∪ΓS(T ))×(A′∪S′), so k ≤ 3stes/m:
clearly N(T ) depends only on the relations of <B in this set.

Let A = A(T ) be the set of bipartite orders <B such that N(T ) ≥
(m/12)(1 − xt) − 1. Note that A is an up-set. Also, EN(T ) < (m/12)(1 −
xt) − 1 +mPrp(A), so Prp(A) ≥ 1/m.

We apply Lemma 6 with z = t logm, and deduce that

Pr
p

(A(l)) ≥ 1 − e−t logm = 1 − o

(
m

t

)((
m

t

)−1

m1/4

)
.

Therefore, with at least this probability, the addition of at most l =
√

12zpk
relations to <B will ensure that N(T ) ≥ (m/12)(1 − xt) − 1. Note that

l =
√

12zpk ≤
√

36t logmm−1stes/m ≤ 6tes/2m logm.

By property (P3) of <, the addition of any one relation only increases N(T )
by at most 3es/m logm.

Therefore, almost surely, every set T of size t ≤ m1/4 has

N(T ) ≥ m

12
(1 − xt) − 1 − 18te3s/2m log2m.

Hence, for each T , the number of elements of A′ not above some element of
T is almost surely at most

m

12
xt + 20te3s/2m log2m.

We say that a partial order P ′′ satisfying this condition has property (Q2).
Of course, the analogous property (Q2′) also holds almost surely for all small
subsets T ′ of A′.

Let (Q3) be the property that, for every pair of sets T ⊂ A, T ′ ⊂ A′, of
sizes

t0 ≡ 106m logme−2s/m,

we have x below y in P ′′ for some x ∈ T, y ∈ T ′. We prove that P ′′ almost
surely has property (Q3). Recall that s ≥ 2

5m logm, so that t0 ≤ m1/4 and
therefore, by property (P2), |T ∪ ΓS(T )| and |T ′ ∪ ΓS′(T ′)| are both at least
t0e

s/m/80. The probability that a particular pair (T, T ′) fails is at most

(1 − 1/m)t
2
0e

2s/m/6,400 ≤ e−10t0 logm = o

((
m

t0

)−2
)
.

Thus the expected number of failing pairs is o(1).
Now we assume that P ′′ does have properties (Q1), (Q2), (Q2′) and

(Q3). Thus there is a relation between every pair of subsets of size t0 =
106m logme−2s/m, every subset T of A of size t ≤ m1/4 has N(T ) ≥
(m/12)(1 − xt) − 20te3s/2m log2m, and the analogous inequality holds for
subsets of A′, and there are at least m2/20,000 unrelated pairs in A × A′.
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Recall here that x ≤ 1−e2s/m/7,000m. We now show that these assumptions
imply that the dimension of P ′′ is large.

We bound the number of pairs (a, a′) ∈ A × A′ reversed by a linear
extension L of P ′′. Consider the top t0 elements of A in L, say a1 >L a2 >L
· · · >L at0 , and similarly the bottom t0 elements of A′, say a′1 <L · · · <L a′t0 .
By property (Q3), there is some pair i, j(1 ≤ i, j ≤ t0) such that ai < a′j in
P ′′, so every pair reversed by L involves one of these 2t0 elements.

For 1 ≤ j ≤ t0, the number of reversed pairs involving aj is at most the
number N({a1, . . . , aj}) of elements of A′ incomparable with all of a1, . . . , aj ,
and so by (Q2) is at most m

12x
j + 20je3s/2m log2m. Hence the total number

of reversed pairs is at most

2
∑t0

j=1

(m
12
xj + 20je3s/2m log2m

)

≤ m

6

∑∞
j=0

(
1 − e2s/m

7,000m

)t
+ 20t20e

3s/2m log2m

=
7,000m2

6e2s/m
+ 2 × 1013m2e−5s/2m log4m

≤ 1,200m2e−2s/m.

Therefore, under our assumptions, the dimension of P ′′ is at least

m2

20,000

/
1,200m2

e2s/m
� 10−8e2s/m.

As we have been indicating throughout, this suffices to prove Theorem 6,
and indeed also Theorem 7. We fill in the details below.

Proof of Theorem 6. The upper bound follows immediately from the upper
bound on the width given in Theorem 5.

For the lower bound, we set m = p−1 as usual, and take s = 1
2m logm.

We are given p ≥ logn/n, so n ≥ 2s+ 6m. We define four sets as follows: B
consists of the ≺-first 3m elements of [n], U consists of the ≺-next s elements,
U ′ of the ≺-next s elements, and B′ of the ≺-next 3m. There are almost surely
at least 9m/10 maximal elements in the random order Pn,p restricted to B,
and 9m/10 minimals in the order restricted to B′, as noted in [5]. If this is
the case, then, to be definite, take A to be the set of the 9m/10 ≺-largest
maximals from B, and A′ to consist of the 9m/1O ≺-smallest minimals from
B′. Note that the choice of A and A′ depends only on the order restricted to
B and to B′.

We next consider the random order restricted to the sets A ∪ U and
A′ ∪ U ′. These are distributed as a random order P ′(s, p) and its dual, so
the conclusions of Lemma 5 hold almost surely for R = A and S = U , and
dually for R = A′ and S = U ′. In other words, the restrictions < and <′ of
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the random order Pn,p to A∩U and to A′ ∩U ′ almost surely have properties
(P1)–(P3).

Conditioned on the restrictions of Pn,p being equal to any particular
pair <, <′ satisfying (P1)–(P3), we have seen that the dimension of the
random order restricted to A ∪ A′, and hence dimPn,p, is almost surely at
least 10−8e2s/m = 10−8m.

Combining all the above, we see that the dimension of Pn,p is almost
surely at least 10−8p−1, as claimed. �

Proof of Theorem 7. Set m = p−1 and s = 1
2 (n − 3m). Note that s ≥

2
5m logm. The proof of Theorem 6 goes through without alteration, and we
deduce that

dimPn,p ≥ 10−8e2s/m ≥ 10−10en/m,

almost surely, as required.
For the upper bound, we apply Theorem 2, the upper bound of Füredi

and Kahn [12]. Thus we need an estimate on the maximum degree Δ of an
element of Pn,p. A bound on Δ follows from Lemma 1(iii), just as in the proof
of Lemma 5(2), namely, almost surely, Δ ≤ 3epn logn. Theorem 2 now tells
us that

dimPn,p ≤ 50Δ log2 Δ ≤ 150epn logn(pn+ log logn+ 2)2 ≤ 40epn log3 n,

as required. �

We have proved Theorem 6 with 10−8 for the value of ε; clearly this can be
improved substantially, but tinkering with the method is unlikely to produce
a reasonable constant. We suspect the result is true with ε = 1, at least, and
maybe it is even true that the dimension is almost surely (1−o(1)) times the
width.

On a slightly more abstract note, it is likely that there is a constant c
such that, if pn/ logn → ∞, p logn → 0 and ε > 0, then, almost surely,

(c− ε)p−1 ≤ dimPn,p ≤ (c+ ε)p−1,

but this may be rather hard to prove.
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Summary. Given a hereditary graph property P let Pn be the set of those graphs

in P on the vertex set {1, . . . , n}. Define the constant cn by |Pn| = 2cn(n2).
We show that the limit limn→∞ cn always exists and equals 1 − 1/r, where
r is a positive integer which can be described explicitly in terms of P . This
result, obtained independently by Alekseev, extends considerably one of Erdős,
Frankl and Rödl concerning principal monotone properties and one of Prömel
and Steger concerning principal hereditary properties.
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1. Introduction

A property P of graphs is an infinite class of graphs which is closed under
isomorphism. A property P is hereditary if every induced subgraph of every
member of P is also in P , and is monotone if every subgraph of every member
of P is also in P ; a monotone property is therefore also hereditary. Let Pn

be the set of graphs in P with vertex set [n] = {1, . . . , n}. In this paper we
are interested in the rate of growth of Pn with n, so it is convenient to define

the constant cn = cn(P) by |Pn| = 2cn(n
2). Note that eventually cn < 1 unless

P is the trivial property consisting of all graphs.
Scheinermann and Zito [26] asked if, for a hereditary property, limn→∞ cn

always exists, and if so what the possible values are. The limit had been
evaluated earlier for the monotone property of Kn-free graphs by Erdős,
Kleitman and Rothschild [11], by using the method of Kleitman and
Rothschild [13]. Their result was generalized by Erdős, Frankl and Rödl [10],
who considered the monotone property of graphs not containing a given
graph F as a subgraph. The structure of Kn-free graphs was investigated
by Kolaitis, Prömel and Rothschild [14].
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It is considerably more difficult to determine the asymptotic size of the
hereditary, but non-monotone, property P of not containing a given graph F
as an induced subgraph; this problem has been studied by Prömel and Steger
in a series of papers [17, 18, 19, 20, 21]. In particular in [18] they gave sharp
estimates for the property of not containing an induced quadrilateral, and in
[19] they evaluated limn→∞ cn for every given graph F .

Our purpose in this paper is to evaluate limn→∞ cn for every hereditary
property P , not only for principal properties, namely those defined by a single
forbidden subgraph (induced or otherwise). Our main result (Theorem 4)
claims that this limit equals 1 − 1/r, where r = r(P) is an integer which we
call the colouring number of P , to be defined below. Since writing this paper
we have discovered that we were anticipated in the result by Alekseev [2],
but the present proof appears to be simpler and more natural. In particular,
it is reasonable to suspect a relationship between the main theorem and the
Erdős-Stone theorem. In our proof this relationship is established and is made
transparent.

The proof of Theorem 4 contains an implicit demonstration of the exis-
tence of limn→∞ cn. In fact, Alekseev [1] already showed that the limit exists.
Moreover it was shown in [7] that the sequence (cn) is monotone decreasing
(and so the limit must therefore exist). The analogous sequence monotonicity
property was shown to pertain to uniform hypergraph properties, and so the
corresponding limits again exist. However, for hypergraphs we are unable to
say anything about the value of the limits, or even whether every real number
between zero and one is the limit for some property.

The colouring number r(P) of a property P is defined as follows. Let 0 ≤
s ≤ r be integers. An (r, s)-colouring of a graph H is a map ψ : V (H) → [r]
such that H [ψ−1(i)] is complete for 1 ≤ i ≤ s and is empty otherwise. Note
that H is (r, 0)-colourable if and only if χ(H) ≤ r, since an (r, 0)-colouring
is just an r-colouring in the usual sense. Note too that a graph is (r, r)-
colourable if and only if χ(H) ≤ r (all notation used but not defined in this
paper is described in [3]). Now let

Ck(r, s) = {H : |H | = k and H is (r, s)-colourable}.

Then the colouring number r(P) of a hereditary property P is defined by

r(P) = max{r : there exists 0 ≤ s ≤ r such that P ⊃
⋃

k≥1

Ck(r, s)},

that is, r(P) is the largest integer r such that, for some s, P contains every
(r, s)-colourable graph. Since a graph of order r is (r, s)-colourable for every
s, 0 ≤ s ≤ r, it follows that r(P) is finite if P is non-trivial. Note also that
the only (1, 0)-colourable graphs are empty, and the only (1, 1)-colourable
graphs are complete, so by Ramsey’s theorem r(P) ≥ 1.

Consideration of the property complementary to P gives us another way
to view the colouring number of P . A property P is hereditary if, and only if,
for some sequence F1, F2, . . . of graphs, P is the collection of graphs having
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no induced subgraph isomorphic to an Fi. Then

r(P) = max{r : for some 0 ≤ s ≤ r no Fi is (r, s)-colourable}.

Although monotone properties P are also hereditary, and so the above
serves to define r(P), it is worth giving the definition in a third and simpler
form for these properties. A property P is monotone if, and only if, for
some sequence F1, F2, . . . of graphs, P is the collection of graphs having
no subgraph isomorphic to an Fi. Since any (r, s)-colourable graph contains
an (r, 0)-colourable subgraph, we see that for a monotone property P the
colouring number is

r(P) = max{r : no Fi is r-colourable}.

Therefore for monotone properties our result is that limn→∞ cn = 1 − 1/r,
where r = min{χ(Fi)} − 1. This is in contrast to the case of hereditary
properties in general, for which the colouring number is not merely the
minimum of those colouring numbers of the properties defined by excluding
a single Fi.

It is immediate that lim infn→∞ cn ≥ 1 − 1/r(P) for any hereditary
property P . For let s be an integer for which P contains every (r, s)-
colourable graph. Partition the set [n] into r disjoint classes V1, . . . , Vr , where
�n/r� ≤ |Vi| ≤ �n/r . Every graph with vertex set [n] in which the subgraph
spanned by Vi is complete for 1 ≤ i ≤ s, and in which the subgraph spanned
by Vi is empty for s < i ≤ r, is (r, s)-colourable and is therefore in Pn. Hence

|Pn| ≥ 2(1−1/r+O(1/n))(n
2), which shows that lim infn→∞ cn ≥ 1 − 1/r.

Let us denote by exind(n,P) the maximal number of edges in a graph G0

of order n, for which there is an edge-disjoint graph G1 on the same vertex set,
such that every graph G with G1 ⊆ G ⊆ G0∪G1 is in the hereditary property
P . This invariant was introduced (for principal properties) by Prömel and
Steger [19]. Trivially |Pn| ≥ 2exind(n,P), and it is clear from the construction
in the paragraph above that exind(n,P) ≥ (1− 1

r(P) +o(1))
(
n
2

)
; it is, therefore,

a consequence of our result that this last inequality is, in fact, an equality.
The proof of Theorem 4 is based on three well-known results, namely those

of Ramsey [22], of Szemerédi [27] and of Erdős and Stone [12]. Ramsey’s
theorem states that for each positive integer k there exists an integer R(k),
such that if n ≥ R(k) and the edges of the complete graph Kn are coloured
with two colours then there will be a monochromatic complete subgraph of
order k. Szemerédi’s lemma will be stated and discussed in Sect. 3. The Erdős-
Stone theorem will be discussed in Sect. 2; in fact, for the present purpose we
have to prove a slight extension of that theorem.

Each of the three cited fundamental results asserts the existence of certain
constants. For the achievement of our aim, which is to describe limn→∞ cn, it
is sufficient that these constants exist. To investigate the rate of convergence
of the sequence (cn) we would need effective versions of these theorems, but
we make no attempt whatsoever to carry out this investigation.
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2. An Extension of the Erdős-Stone Theorem

Let r, t ≥ 1 and ε > 0. The well-known theorem of Erdős and Stone [12]
states that every graph of order n and size at least (1 − 1/r+ ε)

(
n
2

)
contains

Kr+1(t), the complete (r + 1)-partite graph with t vertices in each class,
provided n is large enough. Exactly how large n needs to be, as a function of
r, t and ε, was investigated by Bollobás and Erdős [5], Bollobás, Erdős and
Simonovits [6], and Chvátal and Szemerédi [9].

We shall prove here an extension of the Erdős-Stone theorem, in which a
certain number of ‘forbidden’ edges are added to the graph, and it is required
that the Kr+1(t) span no forbidden edge. To be precise, let G and F be
two graphs on the same vertex set. We say that a subgraph H of G is F -
avoiding if V (H) spans no edge of F . Our theorem shows that if G satisfies
the conditions of the Erdős-Stone theorem, and if e(F ) is sufficiently small,
then G will contain an F -avoiding Kr+1(t).

An alternative proof of the theorem has been pointed out by Rödl [23];
his proof depends on a ‘supersaturated’ version of the Erdős-Stone theorem,
stating that every graph of order n (sufficiently large) and size at least (1 −
1/r + ε)

(
n
2

)
contains not just one but cn(r+1)t copies of Kr+1(t). Given this

theorem, our theorem follows at once since if e(F ) is small it cannot meet
all of the copies of Kr+1(t). However, our purpose here is to give a short
self-contained proof. For the proof it will be convenient to have the following
weak form of Turán’s theorem [29], wherein G denotes the complement of G.

Lemma 1. If G is a graph of order m ≥ t2 and e(G) ≤ m2/2t then G ⊃ Kt.

Proof. By Turán’s theorem, if G ⊃ Kt then

e(G) ≥
t−2∑

i=0

(
�(m+ i)/(t− 1)�

2

)
≥ (t−1)

(
m/(t− 1)

2

)
=
m(m− t+ 1)

2(t− 1)
>
m2

2t
,

as claimed. �

Theorem 1. Given r ≥ 0, t ≥ 1 and ε > 0, there exist δ = δ(r, t, ε) and
n0 = n0(r, t, ε) such that the following holds. Let F and G be graphs on the
same vertex set of order n ≥ n0, with e(F ) ≤ δn2 and, if r ≥ 1, with

e(G) ≥ (1 − 1

r
+ ε)

(
n

2

)
.

Then G contains an F -avoiding Kr+1(t) subgraph.

Proof. Note first that we may assume that F and G share no edges. We
shall apply induction on r. If r = 0 then Lemma 1 applied to G shows that
δ = 1/(2t) and n0 = t2 will do.

Suppose then that r ≥ 1 and that the assertion holds for smaller values of
r. Let us first make the customary observation that for some m, (ε/2)1/2n ≤
m ≤ n,G has an induced subgraphGm of orderm and minimal degree at least
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(1−1/r+ ε/2)m. Indeed, if this were not the case then, with s = �(ε/2)1/2n�,
we could find subgraphs Gn = G ⊃ Gn−1 ⊃ . . . ⊃ Gs such that, for n > i ≥ s,
Gi is a subgraph induced by i vertices and the only vertex of Gi+1 not in Gi
has degree less than (1 − 1/r + ε/2)(i+ 1) in Gi+1. But then

e(Gs) > (1 − 1

r
+ ε)

(
n

2

)
− (1 − 1

r
+
ε

2
)

n−1∑

s

(i+ 1) ≥ εn2/4 ≥ s2/2

if n is large, which is a contradiction.
Let Fm be the subgraph of F induced by V (Gm). Note that e(Fm) ≤

δn2 ≤ (2δ/ε)m2. Let T = �4t/εr . By the induction hypothesis, if n is large
enough and δ is small enough, Gm contains an F -avoiding Kr(T ), say K.
The bound on the minimal degree of Gm implies that each vertex of K sends
at least (1 − 1/r+ ε/2)m− rT edges to Gm −K. We claim that the set U of
vertices of Gm −K sending at least (r − 1 + εr/4)T edges to K has at least
εrm/5 members. Indeed, if this were not the case then the number of edges
f between K and Gm −K would satisfy

εrm

5
rT +

(
1 − εr

5

)
m
(
r − 1 +

εr

4

)
T > f ≥

{(
1 − 1

r
+
ε

2

)
m− rT

}
rT,

which is false if n is large.
Each vertex of U is joined to a Kr(t) subgraph of K. There are only

(
T
t

)r

such subgraphs, so for some Kr(t) subgraph K ′ the set W of vertices of U

joined to every vertex of K ′ has at least εrm
5

(
T
t

)−r
members. Now W spans

at most (2δ/ε)m2 edges of F , so again by Lemma 1 if n, and hence m, is
large enough and δ is small enough, the set W contains t vertices spanning
an independent set in F , and hence forming with K ′ an F -avoiding Kr+1(t)
subgraph of G. �

3. Universal Graphs

Given a finite class G of graphs, we say that a graph G is G-universal if every
member of G is an induced subgraph of G. The classes of graphs of interest
to us are the classes Ck(r, s) of (r, s)-colourable graphs defined earlier. Our
aim in this section is to show that every suitably large collection of graphs
has a Ck(r, s)-universal member, for some s.

For the proof of our theorem we will need a lemma of Szemerédi [27]. In
order to state this lemma the notion of uniformity must be defined: a pair
of subsets U and W of the vertex set of a graph G is said to be η-uniform
if |d(U,W ) − d(U ′,W ′)| < η whenever U ′ ⊆ U , |U ′| > η|U | and W ′ ⊆
W , |W ′| > η|W |, where d(U,W ) = e(U,W )/|U ||W |. Szemerédi’s Uniformity
Lemma is (equivalent to) the statement that, given η > 0 and an integer l,
there is an integer L = L(l, η) such that the vertices of every graph of order
n can be partitioned into m classes V1, . . . , Vm, for some l ≤ m < L, so that
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�n/m� ≤ |Vi| ≤ �n/m and all but at most η
(
m
2

)
of the pairs (Vi, Vj) are

η-uniform, 1 ≤ i < j ≤ m.
The following lemma is a standard application of the notion of uniformity

(see for example [24]); once again we shall give a self-contained proof in a
form convenient for our needs.

Lemma 2. Let H be a graph with vertex set {x1, . . . , xk}. Let 0 < λ, η < 1

satisfy kη ≤ λk−1. Let G be a graph with vertex set
⋃k
i=1 Vi where the Vi are

disjoint sets each of order u ≥ 1. Suppose that each pair (Vi, Vj), 1 ≤ i < j ≤
k, is η-uniform, that d(Vi, Vj) ≤ 1− λ if xixj /∈ E(H) and that d(Vi, Vj) ≥ λ
if xixj ∈ E(H). Then there exist vertices vi ∈ Vi, 1 ≤ i ≤ k, such that the
map xi !→ vi gives an isomorphism between H and the subgraph of G spanned
by {v1, . . . , vk}.

Proof. Observe that by replacing, if necessary, the set of Vi–Vj edges of G by
the complementary set of Vi–Vj edges, we may assume that H is the complete
graph and that d(Vi, Vj) ≥ λ for all 1 ≤ i < j ≤ k. We shall select, one by
one, the vertices v1, . . . , vk so that after v1, . . . , vl have been chosen there are
sets U lj ⊂ Vj , l < j ≤ k, such that each of v1, . . . , vl is joined to every vertex

of U lj and |U lj| ≥ (λ − η)lu. Clearly we can begin (with l = 0) by taking

U0
j = Vj .

In order to find vl+1, having found v1, . . . , vl, let

Wj = {v ∈ U ll+1 : |Γ(v) ∩ U lj | < (λ− η)|U lj |}

for l + 1 < j ≤ k. Since d(Wj , U
l
j) < λ − η, the definition of η-uniformity

applied to the pairs (Wj , U
l
j) implies that either |Wj | < ηu or |U lj | < ηu.

However the latter is ruled out because l ≤ k − 1 and hence |U lj | ≥ (λ −
η)k−1u > (λk−1 − (k − 1)η)u ≥ ηu. Hence

|U ll+1 \
⋃

j>l+1

Wj | > (λ− η)lu− (k − l− 1)ηu ≥ (λl − lη− (k − l− 1)η)u > 0.

We may therefore choose a vertex v ∈ U ll+1 so that if we let U l+1
j = Γ(v)∩U lj

then |U l+1
j | ≥ (λ − η)l+1u for l + 1 < j ≤ k. In this way we may proceed to

find each of the vertices v1, . . . , vk. �

We define a coloured partition π to be an edge colouring of the complete
graph on the vertex set [m] which uses four colours, namely grey, red, green
and blue. The number m is called the order of π and is denoted by |π|. We
associate with π two graphs, Fπ and Gπ , both on the vertex set [m]; the edge
set of Fπ is {ij : ij is grey} and the edge set of Gπ is {ij : ij is green}.

Given a graph G and constants 0 < λ, η < 1, we say that G satisfies the
coloured partition π with respect to λ and η, if there is a partition of the
vertices of G into |π| classes V1, . . . , V|π|, with |V1| ≤ |V2| ≤ . . . ≤ |V|π|| ≤
|V1| + 1, such that the pair (Vi, Vj) is not η-uniform only if ij is grey, and
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otherwise 0 ≤ d(Vi, Vj) ≤ λ, λ < d(Vi, Vj) < 1 − λ or 1 − λ ≤ d(Vi, Vj) ≤ 1
according as ij is red, green or blue. Szemerédi’s Uniformity Lemma asserts
that, given λ, η and some integer l, there exists an integer L = L(l, η) such
that any graph G satisfies some coloured partitition π with respect to λ and
η, with l ≤ |π| < L and e(Fπ) ≤ η

(|π|
2

)
.

The following theorem shows that a graph satisfying π will be Ck(r, s)-
universal if the size of Gπ is large. We shall use this result only to prove
Theorem 3, but we state it because it may be useful in further investigations of
hereditary graph properties. The dependencies of some of the parameters on
other ones gives the theorem a technical appearance, but these dependencies
are likely to be crucial in applications. In this theorem and the next one, we
will use r−1 where in Theorem 4 we used r. Despite the potential confusion,
we adopt this usage because it seems more natural here.

Theorem 2. Let r, k ∈ N, r ≥ 2, ε > 0 and 0 < λ < 1 be given. Then
there exist positive constants l1 = l1(r, k, ε) and η1 = η1(r, k, ε, λ) with the
following property. Let 0 < η ≤ η1 and let π be a coloured partition with
|π| ≥ l1, e(Fπ) ≤ η

(|π|
2

)
and

e(Gπ) ≥
(

1 − 1

r − 1
+ ε

)(
|π|
2

)
.

Then there is an integer s = s(π), 0 ≤ s ≤ r, such that every graph of order
n ≥ |π| that satisfies π with respect to λ and η is Ck(r, s)-universal.

Proof. Let t be the Ramsey number R(k), let l1 = n0(r− 1, t, ε) and let η1 =
min{δ(r − 1, t, ε), k−1λk−1}, where n0 and δ are the functions appearing in
Theorem 1. We shall show that these functions have the required properties.

By Theorem 1 there is an Fπ-avoiding copy of Kr(t) in Gπ . Consider one
of the r vertex classes of this Kr(t), say T where |T | = t. The edges ij, where
{i, j} ⊂ T , are coloured either red, green or blue. Let us recolour orange the
edges coloured red or green. By the definition of t, there is a subset T ′ ⊂ T ,
|T ′| = k, such that the edges ij where {i, j} ⊂ T ′, are either all orange or all
blue. This argument can be applied to each class of the Kr(t). Therefore our
Kr(t) in Gπ contains a subgraph K = Kr(k) such that the edge ij is green if
i and j are in different classes of K, the edge ij is blue if i and j are both in
one of the first s classes of K, and the edge ij is orange if i and j are both
in one of the remaining r − s classes of K, where s = s(π) lies in the range
0 ≤ s ≤ r.

Let H ∈ Ck(r, s), so that |H | = k and H is (r, s)-colourable. Choose an
(r, s)-colouring of H and label the vertex set of H by x1, . . . , xk so that the
first k1 vertices have colour 1, the next k2 vertices have colour 2 and so on.
Now construct a subgraph K ′ of K by choosing k1 vertices from the first
class of K, k2 vertices from the second class, and so on. Thus |K ′| = k. Let
G be a graph of order n ≥ |π| that satisfies π with respect to λ and η, and let
G′ be the subgraph of G induced by

⋃
{Vi : i ∈ V (K ′)}. The definition of
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the colouring and the choice of K ′ mean that Lemma 2 can be applied to H
and G′. This shows that H is an induced subgraph of G′ and so also of G. �

We are now able to prove the main theorem of this section, which shows
that any suitably large collection of graphs will have a Ck(r, s)-universal
member.

Theorem 3. Let r, k ∈ N, r ≥ 2 and ε > 0 be given. Then there exists
n1 = n1(r, k, ε) such that if n > n1 and Pn is a collection of at least

2(1−1/(r−1)+ε)(n2) labelled graphs with vertex set [n] = {1, . . . , n}, then Pn

contains a Ck(r, s)-universal graph for some s, 0 ≤ s ≤ r.

Proof. We begin by choosing constants λ, l and η as follows. Choose 0 <
λ < 1/4 small enough so that (e/λ)λ < 2ε/10. Now choose 0 < η <
min{ε/8, η1(r, k, ε/8, λ)} and an integer l larger than max{20/ε, l1(r, k, ε/8)},
where the functions η1 and l1 are those appearing in Theorem 2.

Apply Szemerédi’s Uniformity Lemma, with the usual parameters l and
η, to each graph G in Pn, thus obtaining, for each such graph, a coloured
partition σ(G) which G satisfies with respect to λ and η, with l ≤ |σ(G)| <
L = L(l, η) and e(Fσ(G)) ≤ η

(|σ(G)|
2

)
. Since there are at most 4(L

2) coloured
partitions of order less than L and at most nL ways to split the set [n]
into fewer than L parts, there is some coloured partition π satisfied by at

least n−L4−(L
2)2(1−1/(r−1)+ε)(n2) graphs of Pn, which number being at least

2(1−1/(r−1)+ε/2)(n2) if n is large. From now on we consider only this particular
coloured partition π which is satisfied by many graphs. We shall show that
any graph in Pn satisfying π is Ck(r, s)-universal, where s = s(π), provided
n is both larger than L and is large enough to ensure the validity of the
estimates below. This assumption on the size of n will be made without
further mention throughout the remainder of the proof.

Our aim is now to show that the coloured partition π must have many
green edges. This can be done by estimating the number of graphs which can

satisfy the coloured partition π. Within such a graph there are at most 2(N
2 )

possible distributions of edges inside a vertex class Vi, where N = �n/|π| .
Between two classes Vi and Vj the possible distributions of edges of the graph

number at most 2N
2

for grey and green edges ij of π, and at most
∑λN2

i=0

(
N2

i

)

for red and blue edges. Let f be the number of grey and green edges in the
coloured partition π. Then the number of graphs which may satisfy π with
respect to λ and η is at most

2|π|(
N
2 ) ×

[ λN2∑

i=0

(
N2

i

)](|π|
2 )

× 2fN
2

.
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Each of the first two factors here is bounded above by 2
ε
10 (n

2); the first because

|π|
(
N

2

)
<

2

|π|

(
n

2

)
<

ε

10

(
n

2

)

and the second because

[ λN2∑

i=0

(
N2

i

)](|π|
2 )

<

[
2

(
N2

λN2

)](|π|
2 )

<
( e
λ

)λN2(|π|
2 )

≤
( e
λ

)λn2/2

< 2
ε
10 (n

2).

It follows that the number of graphs satisfying the coloured partition π is at

most 2
ε
5 (n

2)+fN
2

, and since we have at least 2(1−1/(r−1)+ε/2)(n2) such graphs
we see that

f ≥
(

1 − 1

r − 1
+

3ε

10

)(
n

2

)
N−2 >

(
1 − 1

r − 1
+
ε

4

)(
|π|
2

)
.

Now f = e(Fπ) + e(Gπ), and Szemerédi’s lemma asserts that e(Fπ) ≤
η
(|π|

2

)
. Since η < ε/8, we see that e(Gπ) ≥ (1−1/(r−1)+ε/8)

(|π|
2

)
. Theorem 2

now implies that any graph of order n which satisfies π is Ck(r, s(π))-universal,
as claimed. �

4. Hereditary Properties

Recall that for a non-trivial hereditary property P of graphs the colouring
number r(P) is defined by

r(P) = max{r : there exists 0 ≤ s ≤ r such that P ⊃
⋃

k≥1

Ck(r, s)}.

We can now state and prove the main result of this paper.

Theorem 4. Let P be a non-trivial hereditary property of graphs and let Pn

be the set of graphs in P with vertex set [n] = {1, . . . , n}. Set |Pn| = 2cn(n
2).

Then

lim
n→∞ cn = 1 − 1/r(P),

where r(P) is the colouring number of P.

Proof. Let r = r(P). We saw in the introduction that lim infn→∞ cn ≥
1 − 1/r. Suppose that the assertion of the theorem is false, so that
lim supn→∞ cn > 1 − 1/r, which is to say there exists ε > 0 such that

|Pn| > 2(1−1/r+ε)(n2) for infinitely many values of n. It follows from Theorem 3
that for each integer k there is an integer s, 0 ≤ s ≤ r+1, such that for some
n the set Ck(r + 1, s) is contained in Pn and therefore in P . Consequently,
for some value of s, we have Ck(r + 1, s) ⊂ P for infinitely many k, and
hence for all k. But this contradicts the definition of r(P), so our theorem is
proved. �
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As an example, let P be the property consisting of planar graphs and let
P ′ be those graphs containing no induced subgraph isomorphic to either K5

or K3,3. Clearly P ⊂ P ′. Since K5 is (2, s)-colourable for s = 1, 2 and K3,3 is

(2, 0)-colourable, it follows that r(P) = r(P ′) = 1, so |P ′| = 2o(n
2).

For a slightly less simple example, let P1 be the (monotone) property of
containing no complete graph K4, and let P2 be the property of containing no
induced subgraph isomorphic to the 7-cycle C7. Now let P be P1∩P2; that is,
let P be the property of having no induced subgraph isomorphic to either K4

or C7. Each of K4 and C7 is (4, s)-colourable for every s, 0 ≤ s ≤ 4. Now K4

is (3, s)-colourable for 1 ≤ s ≤ 3 but is not (3, 0)-colourable, so r(P1) = 3. On
the other hand, C7 is (3, 0)-colourable but has no (3, s)-colouring if s = 2, 3,
so r(P2) = 3. Finally, neither K4 nor C7 has a (2, 0)-colouring so r(P) = 2.

Consequently |Pn
1 | ≈ 2n

2/3 and |Pn
2 | ≈ 2n

2/3, whereas |Pn| ≈ 2n
2/4.

5. Additional Remarks for the Second Edition

The preceding text is (apart from one or two updated references) the same
as that in the original edition of this book. But the subject has moved on
since the paper first appeared: we give here just some pointers to further
developments.

For smaller hereditary graph properties, namely those for which r(P) = 1,
the theorem here gives little information. The sizes of such properties, as
well as the sizes of hereditary properties for numerous other structures (two
examples being oriented graphs and permutations), have been extensively
investigated by many people, including Balogh, Morris and the first author.
There is by now an enormous literature: for more, the reader is advised to
begin with the survey [4].

The size of the hereditary property P is determined by the probability
that a random graph G(n, 1/2) has property P , and the corresponding
probability in the model G(n, p) has been studied by us in [8]. In [16] Marchant
and the second author show how these probabilities can be calculated more
readily because of their relationship to extremal functions for weighted
multigraphs, as developed in [15] and surveyed in [28].

Finally, we remark that a different approach to several of these results,
avoiding the use of Szemerédi’s Lemma, was found by Saxton and the second
author [25].
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Summary. Let G be a triangle-free graph of order n and minimum degree δ >
n/3. We will determine all lengths of cycles occurring in G. In particular, the length
of a longest cycle or path in G is exactly the value admitted by the independence
number of G. This value can be computed in time O(n2.5) using the matching
algorithm of Micali and Vazirani. An easy consequence is the observation that
triangle-free non-bipartite graphs with δ ≥ 3

8
n are hamiltonian.

1. Introduction

In recent years a lot of research was performed on sufficient conditions for
cycles in graphs which do not contain certain graphs as induced subgraphs.
Mostly one of the forbidden subgraphs is the claw K1,3.

A completely different class of graphs are triangle-free graphs, i.e. graphs
containing no K3 (which is always an induced subgraph). Note that no graph
with maximum degree more than 2 is claw-free and triangle-free at the same
time. Most attention focused on a very special class of triangle-free graphs,
namely bipartite graphs. Our main objective are cycle lengths in triangle-free
non-bipartite graphs.

Häggkvist [14] proved that computing the circumference (i.e. the length
of a longest cycle) in general graphs of order n with minimum degree
δ >

(
1
2 − ε

)
n is NP-hard for every ε > 0. Note that for ε = 0 the

circumference is n by Dirac’s celebrated result [12]. It seems even difficult to
determine precisely the circumference or the length of a longest path in terms
of other invariants of the graph (whose determination might be NP-hard
themselves).

The situation changes if we consider triangle-free graphs. The main
observation in this paper is that in triangle-free graphs with minimum
degree δ > n/3 the circumference is exactly min{n, 2(n − α)} and the
length of a longest path is min{n − 1, 2(n − α)} where α denotes the
independence number of the graph, and both values can be computed in
polynomial time. A simple derivation of the circumference result is that
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triangle-free non-bipartite graphs with minimum degree δ ≥ 3n/8 are
hamiltonian.

Moreover, we obtain that triangle-free non-bipartite graphs with δ > n/3
are weakly pancyclic, i.e. they contain all cycles between their girth (length
of a shortest cycle) and circumference. This settles the triangle-free part of a
result of Brandt, Faudree and Goddard (see [7]) who prove that every graph
with minimum degree δ ≥ (n+ 2)/3 is weakly pancyclic or bipartite.

For 2-connected graphs with an odd cycle of length at most 5, Brandt,
Faudree and Goddard [8] proved that even the degree condition δ > n/4 + c
for a moderately large constant c suffices to ensure that the graph is weakly
pancyclic.

Very recently, substantial progress was obtained concerning cycles in
triangle-free non-bipartite graphs. Dingjun Lou [15] proved that triangle-free
non-bipartite graphs = C5 satisfying the famous Chvátal-Erdős condition for
hamiltonian graphs [11] are weakly pancyclic with girth 4 and circumference
n, thereby answering a conjecture of Amar et al. [3] in the affirmative.
Bauer, van den Heuvel and Schmeichel [5] proved that there are triangle-
free graphs with arbitrary large toughness which contradicts a conjecture of
Chvátal [10] saying that there is a constant t0 such that t0-tough graphs
are pancyclic. Subsequently Alon [1] determined graphs with arbitrary large
girth and toughness.

Since there are still extensive variations in the notation of standard
invariants of a graph G = (V (G), E(G)) in graph-theoretical literature we
give a brief collection of the notation used in this paper:

α(G) (vertex-)independence number of G,
κ(G) (vertex-)connectivity of G,
ν(G) edge-independence number (or matching number) of G,
ω(G) number of components of G,
δ(G) minimum degree of G,
Δ(G) maximum degree of G,
c(G) circumference of G, i.e. the length of a longest cycle,
p(G) length (i.e. number of edges) of a longest path of G,

If there are no ambiguities we frequently omit the explicit reference to the
graph, by simply writing α, κ, ν, etc. For the meaning of these parameters
we refer the reader to introductory graph theory literature, e.g. [9]. As usual
|G| denotes the order of G. Moreover, for a subset S ⊆ V (G) we denote
the induced subgraph of V (G) \ S by G − S, and for v ∈ V (G) we denote
the number of neighbors of v in S by d(v, S). If H is a fixed subgraph of G
we briefly write G − H and d(v,H) instead of G − V (H) and d(v, V (H)),
respectively.

The toughness of G = Kn is

τ(G) := min
s

|S|/ω(G− S)
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where the minimum is taken over all separating vertex sets, i.e. sets S ⊆ V (G)
with ω(G − S) > 1. A graph is called t-tough if τ ≥ t. Cycles and paths on
k vertices are denoted by Ck (Pk, resp.).

Finally, for a graphG and a fixed subgraph H we say that H is matching
compatible, if ν(G −H) ≥ ν(G) − � 1

2 |H |�. Note that for graphs G with a
perfect matching there are only even order subgraphs which are matching
compatible. Matching compatible paths and cycles in bipartite graphs and
digraphs were considered by Amar and Manoussakis in [4].

2. Main Results

Theorem 1. Let G be a triangle-free non-bipartite graph of order n and
independence number α. If the minimum degree δ > n/3 then G is weakly
pancyclic with c(G) = min{n, 2(n− α)} and girth 4 unless G = C5.

Theorem 2. Let G be a triangle-free graph of order n and independence
number α. If δ ≥ n/3 then p(G) = min{n− 1, 2(n− α)}.

Consider the graphs G1(r) and G2(r) obtained from C5 by replacing four
vertices by a set of r independent vertices and the fifth vertex by 2r (2r+ 1,
resp.) independent vertices and by joining two sets by a complete bipartite
graph whenever the original vertices in C5 were adjacent (see Fig. 1).

Fig. 1 The graphs G1(r), G2(r) and G3(r).

The graph G1(r) has minimum degree δ = n/3 and independence number
α = n/2 but no hamiltonian cycle, thus Theorem 1 is best possible. Moreover
the Petersen graph has δ = (n−1)/3 and α = 4 but it contains only cycles of
lengths 5, 6, 8, 9, so it is not weakly pancyclic. The graph G2(r) shows that
Theorem 2 is best possible, since it has δ = (n− 1)/3 and α = (n+ 1)/2 but
no hamiltonian path.

As an easy consequence of Theorem 1 we obtain a degree bound for
triangle-free non-bipartite graphs to be hamiltonian.

Theorem 3. Let G be a triangle-free non-bipartite graph of order n. If δ ≥
3n/8 then G is hamiltonian.
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Consider the graph G3(r) obtained from C5 by replacing two consecutive
vertices of C5 by r independent vertices and the remaining three vertices by
2r + 1 vertices each and by joining sets in the same way as for G1(r) and
G2(r) (see Fig. 1). This graph has δ = (3n − 1)/8 but is non-hamiltonian,
thus Theorem 3 is best possible.

There is a related result for bipartite graphs involving smaller degree
constraints, which is easily obtained by combining results from [2] and [4].
We will denote the graph consisting of two complete balanced bipartite graphs
Kr,r intersecting in one vertex by H(r).

Theorem 4. Let G be a bipartite graph of order n ≥ 3. If δ > n/4 then
c(G) = 2(n − α) and G contains all even length cycles between 4 and c(G)
unless G = C6, H(r).

Now, by combining Theorem 1 with Theorem 4 we immediately obtain
the following Corollary.

Corollary 1. Let G be a triangle-free graph of order n ≥ 3. If δ > n/3 then
c(G) = min{n, 2(n − α)} and G contains all even length cycles between 4
and c(G) unless G = C5.

As a consequence of this observation we will show that the circumference
of such graphs can be computed in polynomial time.

Theorem 5. The circumference of every triangle-free graph of order n with
δ > n/3 can be computed in time O(n2.5).

This result is based on the matching algorithm of Micali and Vazirani
[16]. H. J. Veldman [19] proved that computing the circumference in the
class of bipartite graphs with δ >

(
1
4 − ε

)
n is NP-hard for every ε > 0 by a

variation of Häggkvist’s simple construction for general graphs [14]. It would
be interesting to know whether there is a constant c < 1/3 such that the
determination of the circumference in triangle-free graphs with δ > cn is still
polynomial.

3. Matchings and Independence Number

The number of edges in a maximum matching ν(G) of any graph G of order
n is bounded by t

ν(G) ≤ min{� 1
2n�, n− α(G)}. (3.1)

Our first step will be to show that for triangle-free graphs with δ(G) ≥ n/3
equality holds in (3.1).

For the further results in this paragraph it is helpful to observe the
following sequence of inequalities for a triangle-free graph G:

α(G) ≥ Δ(G) ≥ δ(G) ≥ κ(G).
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The second and third inequality hold in arbitrary graphs. The following result
ensures that for triangle-free Paths with δ ≥ n/3 the third inequality is an
equality.

Lemma 1. Let G be a triangle-free graph. Then κ(G) ≥ min{δ(G),
4δ(G) − n}. In particular, if δ(G) ≥ n/3 then κ(G) = δ(G).

Proof. If κ(G) = δ(G) there is nothing to prove. So assume κ(G) ≤ δ(G) − 1
and let S be a disconnecting set of cardinality κ(G) andG1 andG2 component
of G−S. Let vi ∈ V (Gi), i = 1, 2. Since κ(G) < δ(G), vi has a neighbor ωi ∈
V (Gi). Since G is triangle-free vi and wi have no common neighbor. So from

4δ(G) ≤
∑

i=1,2

(d(vi) + d(wi)) ≤ |G1| + |G2| + 2|S| ≤ n+ κ(G)

we derive κ(G) ≥ 4δ(G) − n. �

In the next result it will be shown that for triangle-free graphs with
δ > n/3 which are not 1-tough the complements of maximum independent
sets determine the toughness.

Theorem 6. Let G be a triangle-free graph with δ ≥ n/3 and toughness
τ < δ/(n− 2δ + 1). Then τ = (n− α)/α.

Proof. Obviously τ ≤ (n− α)/α so it remains to prove “≥”. Suppose S is a
separating set with τ = |S|/ω(G − S) < (n − α)/α. Then G − S is not the
empty graph, so there is an edge vw in G− S. By Lemma 1 we have

|S| ≥ κ(G) = δ(G),

and since all neighbors of v and w are distinct, and lie in the same component
of G− S or in S we get

ω(G− S) ≤ n− 2δ + 1

thus τ = |S|/ω(G− S) ≥ δ/(n− 2δ + 1), a contradiction. �

Note that G1(r) is a graph with δ = n/3 and α = n/2 which is
not 1-tough, So its toughness is not determined by the complements of
maximum independent sets. While 1-toughness is a necessary condition for
being hamiltonian it is a sufficient condition for even order graphs to contain
a perfect matching. This follows from a famous result of Tutte [18] saying
that a graph contains a perfect matching if and only if for every subset S
of the vertex set o(G − S) ≤ |S| holds, where o(G − S) denotes the number
of odd order components of G − S. We will need the defect version of this
result, which was first discovered by Berge [6].

Theorem 7. The maximum number of independent edges of a graph G is

ν(G) = min
S⊆V (G)

1

2
(n− o(G− S) + |S|).
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Now the main result of this paragraph is an easy consequence of the two
previous results:

Theorem 8. If G is triangle-free with δ ≥ n/3 then

ν(G) = min{� 1
2n�, n− α}.

Proof. By (3.1) it suffices to show ν(G) ≥ min{� 1
2n�, n−α}. If the toughness

τ ≥ δ/(n− 2δ + 1) then for every S we have

ω(G− S) ≤ |S|
(
1
3n+ 1

)
/ 1
3n = |S| + 3|S|/n < |S| + 2

since |S| < 2n/3 (otherwise ω(G−S) ≤ n/3 < |S|). So o(G−S) ≤ ω(G−S) ≤
|S| + 1 and using Theorem 7 we get ν(G) ≥ (n− 1)/2, thus ν(G) = � 1

2n�.
Otherwise using Theorem 6 we have for every S

o(G− S) − |S| ≤ ω(G− S) − |S| ≤ α− (n− α) = 2α− n

implying ν(G) ≥ n− α again using Theorem 7. �

Paths

We are now going to prove Theorem 2.

Proof of Theorem 2. Clearly a longest path has at most s = 1 + min{n −
1, 2(n− α)} vertices. Moreover, by Theorem 8, ν(G) = min{� 1

2n�, (n− α)}.
First observe that G contains a path which is matching compatible, having
odd order if ν(G) < n/2. Let P = P� be a longest such path and suppose
� < s. Let v and w be the end vertices of P . Note that the subgraph induced
by P cannot be hamiltonian, since by Lemma 1 the graph G is connected,
yielding a longer matching compatible path. Thus, by Ore’s Lemma [17],
δ ≤ min{d(v, P ), d(w,P )} ≤ (� − 1)/2, implying � ≥ 2

3n+ 1. Since � < s we
have ν(G−P ) ≥ 1 so there is an edge xy of a maximum matching in G−P .
Again we calculate d(x,G − P ) + d(y,G− P ) ≤ n− � which implies

d(x, P ) + d(y, P ) ≥ 2δ − (n− �) ≥ �− n/3 > (� − 1)/2

since � > 2
3n−1. By the maximality of � neither v nor w can have a neighbor

in {x, y}. So there must be two consecutive vertices in P −v−w both having
a neighbor in {x, y}. Since G is triangle-free this contradicts the maximality
of �. Thus � = s so, indeed, p(G) = s− 1. �

4. Lassos

An �-lasso Lk,�, k ≥ � ≥ 3, consists of a path x1x2 . . . xk−1xk with the
additional edge x1x� and we refer to k as the length of Lk,�. A lasso is even
or odd according to � being even or odd. In our proofs 5-lassos Lk,5 are
very important, and we will always assume that the vertices of a 5-lasso are
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labeled as in Fig. 2. Note that in graph theoretical literature the lassos are
also called cups or lollipops.

Fig. 2 The 5-lasso.

Lassos and Cycles

The only aim of this part is to discover a surprising property of triangle-
free graphs. The existence of a subgraph Lk,5, in a triangle-free graph with
δ ≥ n/3 implies the existence of cycles of all lengths between 5 and k−1. Here
n/3 is best possible since the Petersen graph has δ = (n− 1)/3 and contains
L10,5 but does not contain C7. For the proof it is helpful to define 5-lassos
with the additional edge x3x6 which we will denote by L+

k,5 (see Fig. 3).

Fig. 3 The lasso L+
k,5.

Theorem 9. Let G be a triangle-free graph containing a lasso L = Lk,5 for
k ≥ 5. If δ ≥ n/3 then G contains C� for all �, 5 ≤ � ≤ k− 1. Moreover, if L
is a longest 5-lasso then G contains C = Ck−2 such that G − C contains an
edge.

Proof. We will show that the following two claims are true whenever G
contains Lk,5:

(1) G contains Ck−1,
(2) G contains Lk+1,5 or G contains a Ck−2 where G − Ck−2 contains an

edge.
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Since with Lk,5 all shorter 5-lassos are contained in G the claims (1)
and (2) prove our statement.

For a lasso L = Lk,5 define Xk = {i|xkxi−1 ∈ E(G)}, and Xj = {i|xjxi ∈
E(G)} for 1 ≤ j < k.

First suppose that G contains a lasso L = Lk,5 but no subgraph
isomorphic to L+

κ,5. So xk has at most one neighbor in {x1, x2, . . . , x5} and by
symmetry we may assume xkx1 /∈ E(G). Moreover, x6 is adjacent to neither
x2 nor x3. If a vertex v ∈ V (G− L) is adjacent to two vertices of x2, x3 and
xk then it is easily seen that G contains a longer 5-lasso and a Ck−1 because
G is triangle-free. So d(x2, G− L) + d(x3, G− L) + d(xk, G− L) ≤ n− k.

Consider X = X2 ∪ X3 ∪ Xk. By the above reasoning on the neighbors
of x6 and xk and by the observation that x5 is adjacent to neither x2 nor
x3 we get that either 5 /∈ X or 6 /∈ X thus |X | ≤ k − 1. On the other hand
we have

d(x2, L) + d(x3, L) + d(xk, L) ≥ 3δ − (n− k) ≥ k > |X |.

Thus there is an index i such that i ∈ Xk and i ∈ Xj for j ∈ {2, 3} since G is
triangle-free. So, again, it is easily verified that G contains Ck−1 and a Ck−2

with an edge in G− Ck−2.
Now assume L+ = L+

k,5 ⊆ G. For k = 6 the lasso L+
6,5 contains C5 and

a C4 with an edge in G − C4 so assume k ≥ 7. Consider this time x1, x2
and xk. By the same reasoning as above we are done if there is a vertex in
G − L+ adjacent to two of them. Since G is triangle-free X1 ∩ X2 = ∅ and
X1 ∪X2 ⊆ {1, 2, 3, 5, 7, 8, . . . , k}. Moreover, we are done if xk is adjacent to
one vertex of x1, x2, x3 or x5, so we may assume Xk ⊆ {5, 7, 8, . . . , k}. Thus
we have X = X1∪X2∪Xk ⊆ {1, 2, 3, 5, 7, 8, . . . , k}, in particular |X | ≤ k−2.
Again we calculate

d(x1, L
+) + d(x2, L

+) + d(xk, L
+) ≥ 3δ − (n− k) ≥ |X | + 2

so Xk and X1 ∪X2 must intersect in an index i = 5, yielding a Ck−1 and a
Ck−2 with an edge in G− Ck−2. �

Lassos and Matchings

The previous observation suggests looking for long 5-lassos in triangle-free
graphs in order to obtain many cycles at once. We will now examine how to
determine the length of a longest 5-lasso in such a graph. The starting point
will be a powerful result relating the length of a longest path to the length
of a longest cycle.

Theorem 10 (Enomoto, van den Heuvel, Kaneko, Saito [13]). Let
G be a graph of order n. If every set of three independent vertices u, v, w
satisfies d(u)+d(v)+d(w) ≥ n then c(G) ≥ p(G) or G is a spanning subgraph
of one of six exceptional families of graphs each of which has connectivity
κ < n/3.
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For our purposes it suffices to replace the degree sum condition by
δ ≥ n/3. Note that the condition c(G) ≥ p(G) for connected graphs implies
equality unless G is hamiltonian where c(G) = p(G) + 1.

Lemma 2. If G is a triangle-free non-bipartite graph of order n ≥ 6 with
δ ≥ n/3 then G contains a lasso L = Lk,5 which is matching compatible and
where k is odd if n is odd and α < n/2.

Proof. First assume α ≥ n/2. Take an independent set A, |A| = α, and a
maximum matching M , |M | = n− α, which exists by Theorem 8. Note that
M saturates every vertex of G−A. Since G is not bipartite G−A contains
an edge vw. Moreover, because 2δ > n − α the matching neighbors v′ and
w′ of v and w, respectively, must have a common neighbor u ∈ G−A. Now
the graph spanned by the set {u, u′, v, v′, w, w′} where u′ is the matching
neighbor of u contains a lasso L = L6,5 and G − L contains a matching on
ν − 3 edges.

For α < n/2 we will first show that G contains an odd lasso Lk,� where
G−Lk,� has a perfect matching. From Theorem 2 we obtain that p(G) ≥ n−1.
Since G satisfies the hypothesis of Theorem 10 and using Lemma 1 we infer
that G cannot be an exceptional graph, so c(G) ≥ n − 1. If c(G) = n then
every hamiltonian cycle has an even length chord since G is non-bipartite.
This yields a spanning odd lasso Ln,�. If c(G) = n− 1 then we have Ln,n−1

and we are done if n− 1 is odd. Otherwise recall the standard labeling of the
lasso vertices. If xn is adjacent to an odd labeled vertex x� then we obtain
Ln,�+2. If xn is adjacent only to even labeled vertices then since α < n/2
two even labeled vertices must be adjacent. So we get an even length chord
splitting the cycle into an odd cycle where xn has a neighbor and an odd
length path. So we get a perfect matching from the path and an odd lasso.

Take a smallest order odd lasso L = Lk,� where G − L has a perfect
matching. Such a lasso exists by the above reasoning. Clearly we may assume
k ≤ �+1 since otherwise we add the edge xkxk−1 to the matching. Note that
the cycle of the lasso is an induced cycle in G since every chord yields a
shorter odd lasso and a perfect matching. If � = 5 we are done so suppose
� ≥ 7. Now neither x3 nor x4 can be adjacent to x�+1 so for X = {x3, x4, x�}
we calculate

∑

x∈X
d(x,G− L) ≥ 3δ − 6 − (k − �) > n− k.

So one of the (n− k)/2 matching edges in G− L has at least 3 neighbors in
X . It is now easily checked that in all cases we obtain a shorter odd lasso L′

where G− L′ has a perfect matching. �

It should be mentioned that there is a direct way of proving Lemma 2
without using the powerful Theorem 10, at the expense of some tedious case
analysis. However this might be of interest for giving an algorithm which
actually finds cycles of given length in triangle-free graphs with δ > n/3.



90 Stephan Brandt

Proposition 1. Every triangle-free non-bipartite graph G with δ > n/3
contains a lasso Ls,5 where s = min{n, 2(n− α)}.

Proof. Clearly every 5-lasso in G can have at most s vertices since at most
half of its vertices form an independent set. Let r be the length of a longest
lasso L = Lr,5 contained in G which is matching compatible and which has
odd order if α < n/2 and n is odd. By Lemma 2 such a lasso exists and it
is easily observed that L has even order if α ≥ n/2 and order of the same
parity as the order of the graph otherwise. Consider the end vertex xr of the
lasso. If xr has a neighbor in G − L then the maximality requirement for r
is obviously violated. So from (n + 1)/3 ≤ d(xr , L) ≤ (r − 1)/2 we obtain
r ≥ (2n+ 5)/3.

Now consider a matching edge vw in G − L. First observe that v and
w have together at most 4 neighbors in {x1, . . . , x6}, since if one vertex,
say v, is adjacent to x6 the other vertex w cannot be adjacent to a vertex
with a smaller index without enlarging the length of the lasso by two. Since
d(v,G− L) + d(w,G − L) ≤ n− r we obtain

d(v, L) + d(w,L) ≥ (2n+ 2)/3 − n+ r = r − (n− 2)/3 ≥ (r + 3)/2.

Thus

d(v, {x7, . . . , xr}) + d(w, {x7, . . . , xr}) ≥ (r − 5)/2.

Since G is triangle-free, and v and w are both non-adjacent to xr they must be
adjacent to two consecutive vertices on the path x6x7 . . . xr−1, contradicting
the maximality of the lasso. So we conclude that the lasso must have at least
2v(G) vertices and one vertex more if α < n/2 and n is odd. Now Theorem 8
completes the proof. �

5. Proofs of the Main Results

Non-bipartite Graphs

In order to carry out the proofs of Theorems 1 and 3 we need a better bound
for the independence number than the obvious bound α ≤ n− δ holding for
arbitrary graphs.

Lemma 3. For any triangle-free non-bipartite graph the inequality α ≤
min{2(n− 2δ), n− δ − 1} holds.

Proof. Let A be an independent set on α vertices. Since G is non-bipartite
G − A contains an edge xy. Since no vertex from A is adjacent to both x
and y we get α+ δ < n. implying α ≤ n− δ − 1. Now assume d(x,G−A) ≥
d(y,G − A). Since every neighbor of x in A has all its neighbor in G − A
we have d(x,G − A) ≤ (n − α) − δ. Furthermore x and y have no common
neighbor in A. Thus
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2δ ≤ d(x) + d(y) ≤ 2(n− α− δ) + |A|,

implying α ≤ 2(n− 2δ). �

We are now prepared to prove the main result.

Proof of Theorem 1. First note that there is no graph of order n < 8
satisfying the hypothesis. By Proposition 1 the graph G contains a lasso
L = Lr,5 where r = min{n, 2(n−α)}. In particular G contains C5. A simple
counting argument proves that there must be a vertex in G−C5 having two
neighbors in C5, hence G contains C4.

Now consider L. Theorem 9 implies that G contains all cycles of lengths
5 ≤ � ≤ r− 1 and a cycle C = Cr−2 where G−C contains an edge vw. Using
Lemma 3 we get α ≤ (2n − 4)/3, thus r ≥ (2n + 8)/3. Since d(v,G − C) +
d(w,G − C) ≤ n− r + 2 we get

d(v, C) + d(w,C) ≥ 2δ − (n− r + 2) > |C|/2.

Thus there must be two consecutive vertices on the cycle each having a
neighbor in vw. Since G is triangle-free this provides the missing Cr. �

Proof of Theorem 3. This is immediate from Theorem 1 since by Lemma 3
we obtain α(G) ≤ n/2. �

Bipartite Graphs

The following result of Amar and Manoussakis [4, Corollary 4] settles the
circumference part of Theorem 4.

Theorem 11. Let G be bipartite with bipartition A ∪ B, |A| ≤ |B|. If δ >
|A|/2 then c(G) = 2|A| or G = H(r).

Now the following local condition of Amar [2] provides all the even length
cycles but the 4-cycle (actually Amar’s result gives more information than
we mention here).

Theorem 12. Suppose C is a hamiltonian cycle in a bipartite graph G and
x and x++ are vertices at distance 2 in C such that the neighborhoods of x
and x++ are not identical. If d(x) + d(x++) ≥ (n+ 1)/2 then G contains all
even length cycles between 6 and n.

Proof of Theorem 4. For a bipartition A ∪ B, |A| ≤ |B|, fix a cycle C of
length 2|A| which is guaranteed by Theorem 11 and consider the subgraph
of G induced by C. This graph contains every vertex of A. If |A| = 2 the
conclusion is certainly true so assume |A| ≥ 3. Thus |B ∩ C| ≥ 3 and it
is easily calculated that among any three vertices of B ∩ C there is a pair
whose neighborhoods intersect in at least two vertices (unless G = C6), so
G contains C4. If the neighborhoods of all vertices in B ∩ C, are identical
then the subgraph induced by C is complete balanced bipartite otherwise
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there are two vertices in B ∩ C at distance 2 in C satisfying the hypothesis
of Theorem 12. So in any case G contains cycles from 4 through 2|A|. Since
B is an independent set 2|A| ≥ 2(n− α). �

Computing the Circumference

Proof of Theorem 5. Determine a maximum matching M in O(n2.5) time
using the algorithm of Micali and Vazirani [16]. By Corollary 1 and Theorem 8
we have c(G) = 2ν(G) unless ν(G) = (n−1)/2 and α(G) = (n+1)/2, in which
case c(G) = n. So if ν = (n− 1)/2 select a set S′ of vertices as follows: take
the vertex outside the matching and the matching neighbors of its neighbors.
Define S as the set of vertices having no neighbor in S′. Since |S′| ≥ δ+1 and
|N(v)∪N(w)| ≥ 2δ for every edge vw, at most one vertex of every matching
edge is in S. It is easily checked that α = (n + 1)/2 if and only if S is an
independent set of cardinality (n + 1)/2. Finally observe that computing S
and checking its independence can be done in a straightforward way in O(n2)
time, once the matching is given. �
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Summary. This is a summary of problems and results coming out of the 20 year
collaboration between Paul Erdős and authors.

1. Introduction (by Paul Erdős)

Over a 20 year period, my friends at Memphis State University and I have
done a great deal of work in various branches of combinatorics and graph
theory. We have published more than 40 papers and posed many problems.
Here I only mention two examples. We wrote the first paper on the size
Ramsey number [35] and stated many problems and conjectures in this
subject. Some of our questions have been answered by Beck [3] but many
of them are still open, and the subject is very much alive. We also proved
the conjecture of Hajnal and myself concerning monochromatic domination
in edge colored complete graphs.

During my present visit, many new problems were raised. I state only one.
Let f(n, k) be the smallest integer for which there is a graph with k vertices
and f(n, k) edges in which every set of n+2 vertices induces a subgraph with
maximum degree at least n. This problem was raised in trying to settle an
old conjecture of ours: is it true that for every m ≥ 2n every graph with m
vertices and

(
2n+1

2

)
−
(
n
2

)
− 1 edges is the union of a bipartite graph and a

graph every vertex of which has degree less than n. Faudree has a very nice
proof for m = 2n+ 1. We tried to prove it for m = 2n+ 2 and this led us to
our problem.

I hope that if I live we will have many more new problems and results.
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DOI 10.1007/978-1-4614-7254-4 8,
© Springer Science+Business Media New York 2013

95

mailto:rfaudree@memphis.edu
mailto:ccrousse@memphis.edu


96 Ralph J. Faudree, Cecil C. Rousseau, and Richard H. Schelp

2. Generalized Ramsey Theory

2.1. Terminology and Notation

Let G1, G2, . . . , Gk be a sequence of graphs, each having no isolated vertices.
The Ramsey number r(G1, G2, . . . , Gk) is the smallest integer r so that in
every k-coloring of the edges of Kr, there is a monochromatic copy of Gi
in the ith color for at least one i. Most of the known results concern the
two-color case. In case k = 2 and G1 = G2 = G, we denote the Ramsey
number by r(G). Throughout this paper, the notation will generally follow
that of the well-known text by Chartrand and Lesniak [21]. In particular, the
graph theoretic functions δ(G), Δ(G), β(G) and χ(G) are used to represent
the minimum degree, maximum degree, independence number, and chromatic
number, respectively, of the graph G.

2.2. Cycle Versus Complete Graph

The cycle-complete graph Ramsey number r(Cm,Kn) was first studied by
Bondy and Erdős in [5]. They obtained the exact value in case m is large in
comparison with n.

Theorem 1 ([5]). For m ≥ n2 − 2,

r(Cm,Kn) = (m− 1)(n− 1) + 1.

Question 1 ([34]). What is the smallest value of m such that

r(Cm,Kn) = (m− 1)(n− 1) + 1?

It is possible that r(Cm,Kn) = (m− 1)(n− 1) + 1 for all m ≥ n.

Additional results concerning cycle-complete graph Ramsey numbers were
obtained in [34], among them the following upper bound.

Theorem 2 ([34]). For all m ≥ 3 and n ≥ 2,

r(Cm,Kn) ≤ {(m− 2)(n1/k + 2) + 1}(n− 1),

where k = �(m− 1)/2�.

For m fixed and n → ∞, the probabilistic method [57] yields

r(Cm,Kn) > c

(
n

logn

)(m−1)/(m−2)

(n → ∞). (1)

The case of m = 3 is well studied. By the probability result, r(C3,Kn) >
c(n/ logn)2, and in [56] Shearer improves the technique of Ajtai, Komlós and
Szemerédi [1]

r(C3,Kn) <

⌈
n2

log(n/e)

⌉
.
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The case of m = 4 is comparatively open. As above, the probability method
yields

r(C4,Kn) > c

(
n

logn

)3/2

(n → ∞).

In [34] we proved that r(C4,Kn) = o(n2), and an unpublished observation of
Szemerédi yields

r(C4,Kn) < c

(
n

logn

)2

. (2)

It is expected that

lim
n→∞

r(C4,Kn)

r(C3,Kn)
= 0,

but the known bounds [(1) with m = 3 and (2)] just fail to produce such a
result.

Conjecture 1. There exist an ε > 0 such that r(C4,Kn) < n2−ε for all
sufficiently large n.

From Theorem 2 and (1) it follows that if m is fixed,

r(Cm,Kn) > r(C2m−1,Kn) and r(Cm,Kn) > r(C2m,Kn),

for all sufficiently large n. In view of this, it may be that for n appropriately
large, r(Cm,Kn) first decreases as m increases. In view of Theorem 1, we
know that r(Cm,Kn) ultimately increases with m. It may be that there is a
unique value of m at which the minimum is attained.

Question 2 ([34]). For n fixed, where is the minimum value of r(Cm,Kn)
attained?

Notable progress has been made on some of the cycle—complete graph
problems.

Answer 1 ([51]). J. H. Kim has proved that

r(K3,Kn) = r(C3,Kn) = θ(n2/ logn), n → ∞.

Answer 2 ([53]). V. Nikiforov has proved that if m ≥ 4n+ 2 then

r(Cm,Kn) = (m− 1)(n− 1) + 1.

2.3. “Goodness” in Generalizes Ramsey Theory

Let F be a graph with chromatic number χ(F ). The chromatic surplus of
F, denoted s(F ), is the least number of vertices in a color class under any
proper χ(F )-coloring of the vertices of F . If G is any connected graph of
order n ≥ s(F ), then
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r(F,G) ≥ (χ(F ) − 1)(n− 1) + s(F ).

The example which establishes this bound is simple.

Example 1. With p = (χ(F ) − 1)(n− 1) + s(F ) − 1, two-color the edges of
Kp so that the blue graph consists of χ(F ) disjoint complete graphs, χ(F )−1
of order n − 1 and one of order s(F ) − 1. In this two-coloring, there is no
connected blue subgraph of order n and there is no red copy of F .

In case r(F,G) = (χ(F )−1)(n−1)+s(F ), we shall say that G is F -good.
Chvátal observed that for each m and each tree T of order n,

r(Km, T ) = (m− 1)(n− 1) + 1.

In other words, every tree is Km-good. In large part, the study of “goodness”
in Ramsey theory is an attempt to see how far this simple result of Chvátal
can be generalized. Known cases where G is F -good involve some restriction
on the number of edges and/or maximum degree of G [15, 16, 37].

Theorem 3 ([38]). Given k,Δ and s = p1 ≤ · · · ≤ pm, there exists a
corresponding number n0 such that every connected graph G with n ≥ n0

vertices, q ≤ n + k edges and maximum degree ≤ Δ is K(p1, p2, . . . , pm)-
good.

Corollary 1 ([38]). Let F be a fixed graph with chromatic number χ and
chromatic surplus s. Set α = 1/(2|V (F )| − 1). Then there are constants C1

and C2 such that for all sufficiently large n, every connected graph G of order
n satisfying |E(G)| ≤ n+ C1n

α and Δ(G) ≤ C2n
α is F -good.

The edge density of a graph G is defined to be max{q(H)/p(H)}, where
p(H) and q(H) denote the number of vertices and edges, respectively, of H,
and the maximum is taken over all subgraphsH ⊂ G. As usual, Δ(G) denotes
the maximum degree in G.

Conjecture 2 ([38]). Let F be an arbitrary graph and let (Gn) be a sequence
of connected graphs such that (i) Gn is of order n, (ii) Δ(Gn) = o(n) and
(iii) each graph in (Gn) has edge density at most ρ (a constant). Then Gn is
F -good for all sufficiently large n.

Conjecture 3 ([38]). If F is an arbitrary graph and (Gn) is a sequence
of connected graphs such that Δ(Gn) is bounded, then Gn is F -good for all
sufficiently large n.

If all trees are F good, it is natural to ask for the largest integer q =
f(F, n) so that every connected graph with n vertices and at most q edges is
F -good. For F = K3 we have the following result.

Theorem 4 ([10]). Let f(K3, n) be the largest integer q so that every
connected graph with n vertices and at most q edges is K3-good. Then
f(K3, n) ≥ (17n+ 1)/15 for all n ≥ 4 and f(K3, n) < (27/4 + ε)n(logn)2 for
all sufficiently large n.
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Question 3 ([10]). Does f(K3, n)/n tend to infinity with n?

Also, it is appropriate to ask for the largest integer q = g(F, n) so that
there exists a connected graph with n vertices and q edges that is F -good. The
following result is known concerning f(Km, n) and g(Km, n) where m ≥ 3.

Theorem 5 ([10]). For each m ≥ 3, there exist positive constants A,B,C,D
such that

n+An
2

m−1 < f(Km, n) < n+Bn
4

m+1 (logn)2,

and

Cn
m
m−1 < g(Km, n) < Dn

m+2
m (logn)

(m+1)(m−2)
m(m−1) ,

for all sufficiently large n.

The example that provides the lower bound for g(K3, n) is easily
described. (A similar example works in general to provide a lower bound
for g(Km, n).)

Example 2 ([10]). Choose t and s so that r(K3, tKs) ≤ n − 1. Then set
G = K1 + H where H is the graph consisting of t disjoint copies of Ks

together with n − 1 − ts isolated vertices. Then G is a connected graph with
n vertices and t

(
s
2

)
+ n− 1 edges that is K3-good.

Are there cases where this example is best possible?

Question 4. For what values of n (if any) is g(K3, n) the number of edges
in the above example where s and t have been chosen so that t

(
s
2

)
is maximized

(or possibly a generalized version in which there are t complete graphs
Ks1 ,Ks2 , . . . ,Kst , not all of the same order)?

In an influential paper [6], Burr and Erdős gave six questions, the
resolutions of which would in all likelihood require new and widely applicable
techniques. One of these six asks “is the n-dimensional cube K3-good for all
large n?” This question is still open. However, the remaining five are proven
to be true in a paper by Nikiforov and Rousseau [54]. The methods of proof
are indeed modern—a mix of the regularity lemma, embedding of sparse
graphs, Turán type stability, and other structural techniques. They define a
class of graphs “degenerate and crumbling” and prove that all sufficiently
large graphs from this class are Kp-good. This large class of “degenerate and
crumbling” graphs contains well know classes of graphs referenced in [6]. Two
examples of a specific results from this paper is the following.

Answer 3 ([54]). If each edge of Kn is subdivided by one vertex, then the
resulting graph is Kp-good for p fixed and n large?

Answer 4 ([54]). Suppose K ≥ 1, p ≥ 3 and Tn is a tree of order n where
k = (k1, . . . , kn). If 0 < ki ≤ K for all i ∈ [n] then T k

n is Kp-good for n large,
where T k

n is the graph obtained from Tn by replacing vertex i with a clique
Kki and replacing and an edge ij with a complete bipartite graph Kki,kj .
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2.4. Graph Versus Tree

If T is any tree, r(C4, T ) is determined by r(C4,K1,Δ(T )), where Δ(T ) denotes
the maximum degree in T .

Theorem 6 ([17]). Let T be any tree of order n. Then

r(C4, T ) = max{4, n+ 1, r(C4,K1,Δ(T ))}.

In view of the importance of r(C4,K1,n), it would be helpful to have more
precise information concerning this Ramsey number. It is easy to prove that

r(C4,K1,n) ≤ n+ �
√
n + 1,

and in [17] we obtain

r(C4,K1,n) > n+
√
n− 6n11/40, (3)

for all sufficiently large n. The proof of the later result uses the fact that
for any prime p there is a C4-free graph Gp of order p2 + p + 1 in which
each vertex has degree p or p+ 1. By letting p be the smallest prime greater
than

√
n and randomly deleting a suitable number of vertices from Gp, we

obtain a graph that yields (3). The bound is based on information about the
distribution of primes. Let pk denote the k-th prime. If has been conjectured
that pk+1 − pk < (log pk)α for some constant α. If this conjecture is true, the
lower bound in (3) can be improved to n+

√
n− 6

(
1
2 log n

)α
.

Question 5 ([17]). Is it true that r(C4,K1,n) < n+
√
n− c holds infinitely

often, where c is an arbitrary constant?

Paul Erdős offers $100 for a proof (one way or the other).

Question 6 ([17]). Is it true that r(C4,K1,n+1) ≤ r(C4,K1,n)+2 for all n?

In [41] it is proved that if n ≥ 3m − 3 then r(K(1, 1,m), T ) = 2n − 1
for every tree T of order n. This was shown to be the case when T is a star
(K1,n−1) by Rousseau and Sheehan [55] who also proved that the condition
n ≥ 3m − 3 cannot be weakened. This is one of many examples in Ramsey
problems involving trees where the star turns out to be the worst, i.e. largest
Ramsey number, case. How general is this phenomenon?

Conjecture 4. If G is fixed and n is sufficiently large, r(G, T ) ≤ r(G,
K1,n−1) for every tree T of order n.

What are the graphs G relative to which all sufficiently large trees are
good? An early result showed that this class of graphs includes all those in
which some χ(G)-coloring has two color classes consisting of a single vertex.

Theorem 7 ([7]). Let G be a graph with χ(G) ≥ 2 that has a vertex χ(G)-
coloring with at least two color classes consisting of a single vertex. Then

r(G, T ) = (χ(G) − 1)(n− 1) + 1

for every tree T of order n ≥ n0(G).
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A complete characterization for the case of s(G) = 1 has been obtained
by Burr and Faudree [18].

Theorem 8 ([18]). Let G be a graph with chromatic number k. Then for all
sufficiently large n, every tree T of order n satisfies r(G, T ) = (k−1)(n−1)+1
iff there is an integer m, such that G is a subgraph of both the chromatic
number k graphs K1,m,m,...,m and mK2 +Km,m,...,m.

If G ∼= Km1,m2,...,mk
with m1 = 1, the fact that G has chromatic number

k and chromatic surplus 1, gives the lower bound (k−1)(n−1)+1 and there
is an upper bound that depends only on r(K1,m2 , T ).

Theorem 9 ([42]). For all sufficiently large n, every tree T of order n
satisfies

(k − 1)(n− 1) + 1 ≤ r(K1,m2,...,mk
, T ) ≤ (k − 1)(r(K1,m2 , T ) − 1) + 1.

For m1 = 1 it is natural to suspect the following generalization.

Conjecture 5 ([42]). If m1 ≤ m2 ≤ · · · ≤ mk and T is any sufficiently
large tree,

r(Km1,m2,...,mk
, T ) ≤ (k − 1)(r(Km1,m2 , T ) − 1) +m1.

The decomposition class of a graphG, denoted B(G), is defined as follows:
a given bipartite graph B belongs to B(G) whenever there exists a χ(G)
vertex coloring such that B is the bipartite graph induced by some pair of
color classes. Let r(B(G), T ) denote the smallest integer r so that in every
two-coloring of E(Kr) there is at least one member of B(G) in the first color
or a copy of T in the second color. In [40] it is shown that if B is a fixed
bipartite graph and T1, T2, T3, . . . is any sequence of trees where Tn is of
order n, then r(B, Tn) = n+ o(n) as n → ∞. Thus r(B(G), Tn) = n+ o(n).
The result of Faudree and Burr can be written as follows: if B(G) contains
K2, then for all sufficiently large n, every tree T of order n satisfies r(G, T ) =
(χ(G)−2)(n−1)+r(B(G), T ). It would be interesting to know how generally
this formula holds.

Question 7. What graphs G satisfy

r(G, T ) = (χ(G) − 2)(n− 1) + r(B(G), T )

for every tree T of order n ≥ n0(G)?

2.5. Trees

Some very interesting open problems concern the diagonal Ramsey number
r(T ) where T is a tree. It has been conjectured by Erdős and Sós that each
graph with m vertices and at least (n − 2)m/2 edges contains every tree T
of order n; if true, this yields r(T ) ≤ 2n− 2. A general lower bound for r(T )
is given by the following example.
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Example 3. Assume a ≤ b. Construction (1): Two-color the edges of
K2a+b−2 so that the red graph is Ka−1 ∪ Ka+b−1. Construction (2): Two-
color the edges of K2b−2 so that the red graph is 2Kb−1. In each of these
two constructions, there is no monochromatic connected bipartite graph with
a vertices in one class and b vertices in the other.

In view of this example, we see that any tree T with a vertices in one
color class and b in the other satisfies

r(T ) ≥ max{2a+ b− 1, 2b− 1}.

The broom Bk,l is the tree on k + l vertices obtained by identifying an
endvertex of a path Pl on l vertices with the central vertex of a star K1,k on
k edges.

Theorem 10 ([36]).

(1) r(Bk,l) = k + �3l/2 − 1 for k ≥ 1 and l ≥ 2k,
(2) r(Bk,l) ≤ 2k + l for 5 ≤ l ≤ 2k.

From the lower bound given by Example 3,

r(Bk,l) ≥
{

2k + 2�l/2� − 1 when l < 2k − 1,

2k + 2�l/2� when l = 2k − 1.

Thus in case (2) of Theorem 10, r(Bk,l) differs from the upper bound by at
most 2.

The smallest value of max{2a + b − 1, 2b − 1} occurs when 2a = b, so
Example 3 shows that r(T ) ≥ �4n/3 for every tree of order n. Moreover,
this bound cannot be improved since equality holds for certain booms.

Question 8 ([36]). Is r(T ) = 4a for every tree with a vertices in one color
class and 2a in the other?

A special case of the previous question is when T is the tree obtained
from subdividing a− 1 edges of the star K1,2a [24].

2.6. Multicolor Results

When the list of graphs (G1, G2, . . . , Gc) is restricted to complete bipartite
graphs, odd cycles, and exactly one large cycle (even or odd), there is an
exact formula for r(G1, G2, . . . , Gc).

Theorem 11 ([33]). Let [B] and [C] denote the following fixed sequences of
graphs:

[B] = (Kb1,c1 , · · · ,Kbs,cs) bi ≤ ci (i = 1, 2, . . . , s),

[C] = (C2d1+1, . . . , C2dt+1).
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Further, let � =
∑s
i=1(bi − 1), and require that di ≥ 2t−1 for i = 1, . . . , t.

Then, if n is sufficiently large, r(Cn, [B], [C]) = 2t(n+ �− 1).

All of the results in [33] are for the case where exactly one cycle length
is large in comparison with the orders of the remaining graphs ([B], [C]). It
would be quite helpful to have corresponding results when there are two or
more large cycles.

Question 9 ([33]). What is r(Cn, Cm, [B], [C]) when both n and m are large
in comparison with the orders of the remaining graphs?

Let [Codd] = (C2d1+1, . . . , C2dt+1). Then r(≤ [Codd]) denotes the smallest
number r such that in every t-coloring of the edges of Kr, there is an odd
cycle of length at most 2di + 1 in the ith color for some i. Using the proof
technique of Theorem 11, we have the following multicolor Ramsey result for
cycles.

Corollary 2 ([33]). Let [Ceven] = (C2b1 , . . . , C2bs), [Codd] = (C2d1+1, . . . ,
C2dt+1), and let � =

∑s
i=1(bi − 1). If n is sufficiently large,

r(Cn, [Ceven], [Codd]) = (r(≤ [Codd]) − 1)(n+ �− 1) + 1.

For the case of three colors, the following results were found for r(≤
[Codd]).

Theorem 12 ([33]). Let � ≥ k ≥ m. Then

r(≤ (C2k+1, C2l+1, C2m+1)) =

{
9 k ≥ 4, l ≥ 2, m ≥ 1,

11 k ≥ 5, l = m = 1.

In the remaining cases,

r(≤ (C2k+1, C2l+1, C2m+1)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

9

10

12

17

for (respectively)

(k, l,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3, 3, 3), (3, 3, 2), (3, 3, 1), (3, 2, 2), (2, 2, 2),

(3, 2, 1), (2, 2, 1),

(4, 1, 1), (3, 1, 1), (2, 1, 1),

(1, 1, 1).

By considering a bipartite decomposition of a complete graph, it is clear
that, in general,

r(≤ (C2m1+1, · · · , C2mt+1)) ≥ 2t + 1.
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Note that r(≤ (C2k+1, C2l+1, C2m+1)) = 23 + 1 = 9 except for (k ≥ 5),
l = m = 1 and six special cases.

Question 10. When does r(≤ (C2m1+1, · · · , C2mt+1)) = 2t + 1 hold? In
particular, what is true for t = 4?

2.7. Ramsey Size Linear Graphs

A graph G is Ramsey size linear if there is a constant C such that

r(G,H) ≤ Cn

for every graph H with n edges. The following result is easily proved using
the Erdős-Lovász local lemma and the techniques of Spencer [57].

Theorem 13 ([39, 44]). Given a graph G with p vertices and q edges, there
exists a constant C such that for n sufficiently large,

r(G,Kn) >

(
n

logn

) q−1
p−2

.

Corollary 3. If G is a graph with p vertices and 2p− 2 edges, then G is not
Ramsey size linear.

In the other direction, we have the following result.

Theorem 14 ([44]). If G is any graph with p vertices and at most p + 1
edges, then G is Ramsey size linear.

There are various small graphs for which the question of Ramsey size
linearity is open.

Question 11. Are the following graphs Ramsey size linear: K3,3, H5 (the
graph obtained from C5 by adding two vertex disjoint chords), Q3

(the 3-dimensional cube)?

Question 12 ([44]). If G is a graph such that each subgraph on p vertices
has at most 2p− 3 edges, then is G Ramsey size linear?

The graph K4 is not Ramsey size linear, but the deletion of any edge
gives a Ramsey size linear graph. It would be of interest to find a specific
infinite family of graphs with this property.

2.8. Repeated Degrees and Degree Spread

If n ≥ r(G), and the edges of Kn are two-colored, there must be at least
one monochromatic copy of G. If there must be such a monochromatic copy
of G in which two vertices have the same degree in the two-colored Kn, at
least for all sufficiently large n, then we say that G has the Ramsey repeated
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degree property. In [2] it was shown that Km where m ≥ 4 does not have this
property.

Theorem 15 ([20]). For each m ≥ 1, the graphs Km,m and C2m+1 have the
Ramsey repeated degree property.

Question 13. Are there graphs other than Km for m ≥ 4 that fail to have
the Ramsey repeated degree property?

The degree spread of X ⊆ V (G) is the difference between the largest and
smallest degree (in G) over all vertices in X . Given graphs G and H and
a two-coloring of the edges of Kn with n ≥ r(G,H), the degree spread of
the coloring is the minimum degree spread over all vertex sets of copies of
G and/or H that are appropriately monochromatic. Then Φn(G,H) is the
maximum degree spread over all two-colorings of E(Kn).

Theorem 16 ([20]). If n ≥ 4(r − 1)(r − 2) where r = r(G,H), then
Φn(G,H) = r(G,H) − 2.

Question 14 ([20]). What is the smallest n for which Φn(G,H) =
r(G,H) − 2? Does this relation hold for all n ≥ r(G,H)?

3. Size Ramsey Numbers

3.1. Definitions and Notation

Write F → (G,H) to mean that in every two-coloring of the edges of F,
there is a copy of G in the first color or a copy of H in the second. The
size Ramsey number of the pair (G,H), denoted r̂(G,H), is the smallest
number q = r̂(G) for which there exists a graph F with q edges satisfying
F → (G,H). In case G = H we write F → G for the “arrow” relation and
r̂(G) for the size Ramsey number. The size Ramsey number was introduced in
[35]. Interestingly enough, the size Ramsey number of Kn is simply expressed
in terms of its ordinary Ramsey number:

r̂(Kn) =

(
r(Kn)

2

)
.

(See [35].) Questions concerning r̂(Pn) were raised in [35]. In [3] Beck proved
the rather surprising fact that r̂(Pn) ≤ Cn for some constant C

3.2. Complete Bipartite Graphs

The asymptotic behavior of the size Ramsey number ofKn,n is studied in [48].

Theorem 17 ([48]). For all n ≥ 6,

1

60
n22n < r̂(Kn,n) <

3

2
n32n.
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The upper bound comes from the fact that Ka,b with a = �n2/2� and
b = 3n2n arrows Kn,n for n ≥ 6. The lower bound comes from a simple
application of the probabilistic method using a bound for the number of
copies of Kn,n in any graph with q edges. Of course, the immediate goal is
to bring the bounds for r̂(Kn,n) to within a constant factor.

Question 15. Is there a choice of a = a(n) and b = b(n) so that ab =
O(n22n) and Ka,b → Kn,n?

3.3. Stars and Star-Forests

Theorem 18 ([8]). For positive integers k, l,m, and n,

r̂(mK1,k, nK1,�) = (m+ n− 1)(k + l − 1).

Moreover if F → (mK1,k, nK1,�) and F has (n+m−1)(k+ l−1) edges, then
F = (m + n− 1)K1,k+�−1 or k = l = 2 and F = tK3 ∪ (m + n+ t− 1)K1,3

for some 1 ≤ t ≤ m+ n− 1.

This leaves open the size Ramsey number for a pair of star forests. Assume
that

F1 =

s⋃

i=1

K1,ni (n1 ≥ n2 ≥ · · · ≥ ns) and

F2 =
t⋃

i=1

K1,mi , (m1 ≥ m2 ≥ · · · ≥ mt).

For 2 ≤ k ≤ s+ t set lk = max{ni +mj − 1 : i+ j = k}. It is not difficult to

prove that ∪s+tk=2K1,�k → (F1, F2) so r̂(F1, F2) ≤
∑s+t

k=2 �k.

Conjecture 6 ([8]). r̂(F1, F2) =

s+t∑

k=2

lk.

Note that if ni = n for all i and mj = m for all j, then the conjectured
value agrees with the number r̂(sK1,n, tK1,m) = (m+ n− 1)(s+ t− 1) given
in Theorem 18.

3.4. Star Versus Complete Graph

The following result is easily established.

Theorem 19. The arrow relation K2n+1 −Kn → (K1,n,K3) holds for each
n ≥ 2.

Possibly K2n+1 − Kn is an arrowing graph with the minimum possible
number of edges, and thus r̂(K1,n,K3) =

(
2n+1

2

)
−
(
n
2

)
= 3

(
n+1
2

)
. To verify

this, it would be sufficient to prove the following conjecture.
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Conjecture 7 ([23]). For n ≥ 3, any graph with
(
2n+1

2

)
−
(
n
2

)
− 1 edges is

the union of a bipartite graph and a graph with maximum degree less than n.

It is not difficult to verify this conjecture if the graph has at most 2n+ 1
vertices.

3.5. Graph Versus Matching

No general result is known for r̂(G, tK2), but some information about this
number can be obtained by considering

r̂∞(G) = lim
t→∞

r̂(G, tK2)

tr̂(G,K2)
= lim

t→∞
r̂(G, tK2)

t|E(G)| .

Clearly, 0 < r̂∞(G) ≤ 1. The following results were obtained in [25].

Theorem 20 ([25]). The set {r̂∞(G) : G is a connected graph} is dense
in [0, 1].

Theorem 21 ([25]). For each n ≥ 2, there is a corresponding positive
constant a such that

1

n
≤ r̂∞(Pn), r̂∞(Cn) ≤ a

n
.

Also

1

n
≤ r̂∞(Kn,n) ≤ 2 +

√
2

n
and

2

n
≤ r̂∞(Kn) ≤ 8

n
.

Thus limn→∞ r̂∞(Hn) = 0 for Hn = Pn, Cn,Kn,n or Kn. On the other
hand, we can show that limn→∞ r̂∞(K1,n) = 1. This suggests the following
question.

Question 16 ([25]). Does limn→∞ r̂∞(Gn) = 0 hold for every sequence of
graphs (Gn) such that |V (Gn)| → ∞ and Δ(Gn) is bounded as n → ∞? What
sequences (Gn) yield limn→∞ r̂∞(Gn) = 1?

4. Other Ramsey Problems

4.1. Multiple Copies

Assume F → (mG,H) where mG denotes m vertex disjoint copies of G. How
many copies of G must F contain?

Theorem 22 ([8]). If F → (mG,H), then tG ⊆ F where

t =

⌊
m|V (G)| + |V (H)| − β(H) − 1

|V (G)|

⌋
.
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Question 17 ([8]). If F → (nG), then must F contain at least
⌊
r(nG)
|V (G)|

⌋

copies of G?

We have shown that if G and ε > 0 are fixed then for all sufficiently large
n, every graph F satisfying F → (nG) contains at least r(nG)(1 − ε)/|V (G)|
copies of G.

4.2. Ramsey Minimal Problems

Let F,G,H be graphs without isolates. The graph F is (G,H)-minimal if
F → (G,H) but F − e → (G,H) for any edge e of F . The pair (G,H)
is called Ramsey-finite or Ramsey-infinite according to whether the class of
all (G,H)-minimal graphs is a finite or infinite set. It has been shown by
Nešetřil and Rödl [52] that (G,H) is Ramsey-infinite when at least one of
the following hold:

(i) G and H are both 3-connected.
(ii) χ(G) and χ(H) are both ≥ 3.

(iii) G and H are both forests, neither of which is a union of stars.

Statement (iii) of the above result has been strengthened in the following
way.

Theorem 23. (i) [14] The pair (G,H) is Ramsey-infinite when both G and
H are forests, at least one having a non-star component.

(ii) [11] If G and H are star forests with no single edge star (K2), then
(G,H) is Ramsey-finite if and only if both G and H are single stars,
each with an odd number of edges.

(iii) [12] The pair (K1,m ∪ kK2,K1,n ∪ �K2) is Ramsey-finite when both m
and n are odd.

Subsequently, Faudree characterized Ramsey-finite pairs of forests.

Theorem 24 ([49]). If G and H are forests, then (G,H) is Ramsey-finite
if and only if

G =

(
s⋃

i=1

K1,mi

)
⋃
mK2, m1 ≥ m2 ≥ · · · ≥ ms ≥ 2, m ≥ 0,

H =

(
t⋃

i=1

mK1,ni

)
⋃
nK1,1, n1 ≥ n2 ≥ · · · ≥ nt ≥ 2, s ≥ t ≥ 0,

and one of the following hold:

(1) t = 0 and n > 0,
(2) s = t = 1 and n1, n1 are odd,
(3) s ≥ 2, t = 1, m1, n1 are odd, m1 ≥ n1 +m2 − 1 and n ≥ n0 = n0(G,H).
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It should be noted that the precise value of n0(G,H) in (3) is not known.
This is the only place where the Ramsey-finiteness question for a pair of star
forests is not explicitly settled.

The above results leave a considerable gap when either G or H has
connectivity two or less. It is likely that (G,H) is Ramsey-infinite for all
pairs not identified above as Ramsey-finite.

Conjecture 8 ([13]). The pair (G,H) is Ramsey-infinite unless both G and
H are stars with an odd number of edges or at least one of G and H contains
a single edge component.

An interesting case of the above conjecture is when G is a cycle and H
is two-connected. No technique is presently known for showing such a pair is
Ramsey-infinite.

Other results concerning Ramsey finiteness were obtained in [9] and [11].

Theorem 25. (i) [9] If G is a matching and H is an arbitrary graph, then
(G,H) is Ramsey-finite.

(ii) [11] The pair (K1,k, G) is Ramsey-infinite if k ≥ 2 and G is a two-
connected graph. Also (K1,2, H) is Ramsey-infinite if H is a bridgeless
connected graph.

Conjecture 9 ([10]). The pair (K1,2, G) is Ramsey-finite only if G is a
matching.

Conjecture 10 ([10]). If (G,H) is Ramsey-finite for each graph H, then G
must be a matching.

There is no known case where adding independent edges to G (or H)
changes a Ramsey-finite pair (G,H) to a Ramsey-infinite pair.

Conjecture 11 ([13]). If (G,H) is Ramsey-finite then (G ∪ K2, H) is
Ramsey-finite.

5. Extremal Problems

5.1. Edge Density and Triangles

The classical result of Turán implies that any graph with n vertices and at
least �n2/4�+1 edges contains a triangle. A natural generalization is obtained
by fixing α between 0 and 1 and asking for the minimum number fα(n) so
that a graph of order n must contain a triangle if each set of �αn� vertices
induces a subgraph with at least fα(n) edges.

Example 4 ([45]). Let M1 = K2, M2 = C5, and let M3, be the graph
obtained from C8 by adding all of the long chords. From Mi obtain a graph
Hi of order n = k|V (Mi)| by replacing each vertex of Mi by an independent
set of k vertices, and making each pair of vertices of Hi in different expanded
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sets adjacent if and only if the replaced vertices are adjacent in Mi. Each
graph Hi is extremal triangle-free in that the addition of any edge creates a
triangle.

Note that the minimum number of edges induced by a set of n/2 vertices
in H2 is n2/50. This leads to the following conjecture of Erdős.

Conjecture 12 ([45]). If each set of �n/2� vertices in a graph G of order n
spans more than n2/50 edges, then G contains a triangle.

An analysis of the graphs H1, H2, and H3 leads to the following more
general conjecture.

Conjecture 13 ([45]). Suppose 17/30 ≤ α ≤ 1 and β > (2α − 1)/4 or
43/120 ≤ α < 17/30 and β > (5α − 2)/25. For all sufficiently large n, a
graph of order n in which each set of �αn� vertices spans at least βn2 edges
must contain a triangle.

In [45] this conjecture is proved for .648 . . . ≤ α ≤ 1; otherwise it is open.
The case of α = 1/2 is of particular interest.

One direction would be to extend these results from triangles to arbitrary
complete graphs. For α = 1/2, the following conjecture has been made by
Chung and Graham.

Conjecture 14 ([22]). Let bt(n) denote the minimum number of edges
induced by any set of n/2 vertices in the Turán graph on n vertices for Kt.
If each set of �n/2� vertices in a graph G of order n spans more than bt(n)
edges, then G contains a Kt.

5.2. Minimal Degree

The wheel Wn = K1 + Cn−1 has n vertices, 2n − 2 edges, and minimum
degree 3, but any proper subgraph of Wn has a vertex of degree less than 3.
On the other hand, it is easy to prove that any graph with n vertices and
2n− 1 edges has a proper subgraph of minimum degree at least 3 [27].

Theorem 26 ([43]). If G is a graph with n vertices and 2n− 1 edges, then
G contains a subgraph with less than n−

√
n/48 vertices that has minimum

degree at least 3.

A stronger result has been conjectured.

Conjecture 15 ([43]). There is an ε > 0 such that every graph with n
vertices and 2n − 1 edges has a subgraph with (1 − ε)n or fewer vertices
that has minimum degree at least 3.

A more general version of Theorem 26 was proved in [43] and indepen-
dently by other authors.
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Theorem 27 ([43]). For k ≥ 2, any graph with n vertices and (k − 1)(n−
k + 2) +

(
k−2
2

)
+ 1 edges contains a subgraph with at most n − �

√
n/(6k3)�

vertices that has minimum degree at least k.

The generalized wheel W (k− 2, n) = Kk−2 +Cn−k+2 shows that the number
of edges in the last result cannot be reduced. Conjecture 15 has the following
generalization for subgraphs of minimum degree at least k ≥ 2.

Conjecture 16 ([43]). For each k ≥ 2, there is a corresponding ε > 0 such
that every graph with n vertices and (k − 1)(n − k + 2) +

(
k−2
2

)
+ 1 edges

has a subgraph with (1 − ε)n or fewer vertices that has minimum degree at
least k.

5.3. Odd Cycles in Graphs of Given Minimum Degree

Example 5 ([29]). Let k ≥ 3 be an odd integer and let H be the two-
connected nonbipartite graph obtained from Ck+2 by replacing each of its
k + 2 vertices by an independent set of size s. Then H is a graph of order
n = (k+2)s that contains no odd cycles of length ≤ k and contains all possible
odd cycles of larger length. Also H is regular of degree 2s.

Theorem 28 ([29]). Let k ≥ 3 be an odd positive integer. There exists
f(k) such that if n ≥ f(k) and G is a two-connected nonbipartite graph
of order n with minimum degree ≥ 2n/(k + 2), then either G contains a Ck
or G ∼= H.

If G is a two-connected nonbipartite graph of appropriately large order n
and δ(G) ≥ 2n/(k + 2), what range of odd cycles must G contain?

Example 6 ([29]). Set a = �2n/(k+2) and b = n−a. The graph G obtained
by adding an edge to the smaller part of Ka,b contains C2t+1 for 1 ≤ t ≤ a−1,
but no odd cycle of length greater than 2a− 1.

Thus the best possible result would show that, aside from H, any two-
connected nonbipartite graph with large order n and minimum degree at
least 2n/(k + 2) contain odd cycles of all lengths in an a range up to about
4n/(k+ 2). The next result shows that such a result is true (asymptotically)
if the factor 4 in the last statement is replaced by 8/3 − o(n).

Theorem 29 ([29]). Given 0 < c < 1
3 and 0 < ε < 1, there exist h1(c, ε)

and h2(c, ε) so that for all n ≥ h2(c, ε) every two-connected nonbipartite graph
G of order n and minimum degree δ(G) ≥ cn contains C2t+1 for h1(c, ε) ≤
2t+ 1 ≤ 4(1 − ε)cn/3.

Is Example 6 really the truth?

Question 18 ([29]). If n is appropriately large and G ∼= H is a two-
connected nonbipartite graph of order n satisfying δ(G) ≥ 2n/(k + 2), must
G contain C2t+1 for k ≤ 2t+ 1 ≤ 2�2n/(k + 2) − 1?
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5.4. Vertices and Edges on Odd Cycles

Every graph with n ≥ 3 vertices and at least �n2/4� + 1 edges contains a
triangle, and in fact a cycle of length 2k + 1 for every k ≤ �(n + 1)/4�. For
such a graph, how many vertices (edges) must lie on triangles and, more
generally, on cycles of length 2k + 1?

Theorem 30 ([32]). Let G be a graph with n vertices and at least �n2/4�+1
edges. (a) At least �n/2� + 2 vertices of G are on triangles, and this result
is sharp. (b) At least 2�n/2� + 1 edges of G are on triangles, and this result
is sharp. (c) If k ≥ 2 and n ≥ max{3k(3k + 1), 216(3k − 2)}, then at least
2(n − k)/3 vertices of G are on cycles of length 2k + 1, and this result is
asymptotically best possible. (d) If k ≥ 2 is fixed, then at least 11n2/144−O(n)
edges of G are on cycles of length 2k + 1.

The example used to show that the result in (c) is asymptotically best
possible suggests what the sharp result should be in place of (d).

Example 7. Consider the graph Ks ∪ T2(n− s) where s = �2n/3 + 1 and
T2(m) denotes the complete bipartite graph with parts �m/2� and �m/2 (the
Turán graph). This graph has �2n/3 + 1 vertices on cycles of length 2k + 1
and ∼ 2n2/9 edges on cycles of length 2k + 1.

Conjecture 17. If k ≥ 2 is fixed, then as n → ∞ every graph with n vertices
and �n2/4� + 1 or more edges has at least 2n2/9 − O(n) edges on cycles of
length 2k + 1?

5.5. Extremal Paths

Let m,n and k be fixed positive integers with m > n ≥ k. We wish to find
the minimum value of l such that each m vertex graph with at least l vertices
of degree ≥ n contains a Pk+1. A plausible minimum value for l is suggested
by the following construction.

Example 8. Let m = t(n + 1) + r where 0 ≤ r < n + 1 and assume k <
2n+ 1. Let s = �(k − 1)/2�. The graph consisting of t vertex disjoint copies
of H = K̄n+1−s +Ks and r isolated vertices contains ts vertices of degree n
and no Pk+1. When k is even and r+ s ≥ n, the number of vertices of degree
≥ n in this graph can be increased by 1 to ts + 1 without forcing the graph
to contain a Pk+1. Simply take one of the vertices of degree s and make it
adjacent to each of the r isolated vertices.

Theorem 31 ([46]). Let m and n be positive integers such that n+1 ≤ m ≤
2n+ 1. If G is of order m and contains at least k vertices of degree ≥ n, then
G contains (i) a P2k−5 if k ≤ n/2 + 3, (ii) a Pn+1 if (n+ 1)/2 + 3 ≤ k ≤ n,
and (iii) a Pk if n+ 1 ≤ k.

Conjecture 18 ([46]). Let m,n and k be positive integers with m > n ≥ k
and set δ = 2 if k is even and δ = 1 if k is odd. If G is a graph of order m
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and at least l = �(k − 1)/2��m/(m+ 1)� + δ vertices of degree ≥ n, then G
contains a Pk+1.

5.6. Degree Sequence and Independence in K4-Free Graphs

For a graph G with δ(G) ≥ 1 let f(G) denote the largest number of times
any entry in the degree sequence of G is repeated. If G is Kr-free graph and
f(G) ≤ k, what is the smallest possible value of the independence number
β(G)?

Theorem 32 ([31]).

(i) If G is a K3-free graph of order n and f(G) ≤ k, then β(G) ≥ n/k.
(ii) If r ≥ 5 and k ≥ 2, then there exists a sequence (Gn) of Kr-free graphs

such that |V (Gn)| = n and f(Gn) ≤ k for each n and β(Gn) = o(n) as
n → ∞.

(iii) If G is a K4-free graph of order n and f(G) = 2, then β(G) ≥ n/12.
(iv) There exists no sequence (Gn) of K4-free graphs such that |V (Gn)| = n

and f(Gn) = 3 for each n and β(Gn) = o(n) as n → ∞.

Bollobás has shown that there exists a sequence (Gn) of K4-free graphs
such that |V (Gn)| = n and f(Gn) ≥ 5 for each n and β(Gn) = o(n) as
n → ∞ [4]. The following questions are open.

Question 19 ([31]). Does there exist a sequence (Gn) of K4-free graphs such
that |Gn)| = n and f(Gn) = 4 for each n and β(Gn) = o(n) as n → ∞?

Question 20 ([31]). If G is a K3-free graph of order n with f(G) ≤ k, is
the lower bound β(G) ≥ n/k best possible?

6. Other Problems

6.1. Monochromatic Coverings

If A and B are sets of vertices in a given graph G, we say that A dominates
or covers B if for every y ∈ B \ A there is an x ∈ A such that xy ∈ E(G).
The following result was conjectured by Erdős and Hajnal.

Theorem 33 ([28]). For any fixed t, in every two-coloring of the edges of
Kn there exists a set of t or fewer vertices that monochromatically dominates
at least n(1 − 2−t) vertices. This result is essentially sharp.

In [26] we studied monochromatic domination when more than two colors
are involved. For three colors, we have the following result.

Theorem 34 ([26]). Three-color the edges of Kn. Then in at least one color,
there is a set consisting of 22 or fewer vertices that dominates a set of at least
2n/3 vertices.
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The fact that no small set will, in general, monochromatically dominate
more than two-thirds of the vertices comes from the following example due
to Kierstead.

Example 9 (Kierstead). Three-color the edges of K3m as follows. Form
the partition V (K3m) = (A1, A2, A3) and for i ≡ 1, 2, 3 (mod 3) color the
internal edges of Ai and all the edges between Ai and Ai+1 with color i. Then
each monochromatic subgraph is isomorphic to Km +Km and there is no set
that monochromatically dominates more than 2m vertices.

It is possible that Theorem 34 holds with “22” replaced by “3.”

Question 21. Is it true that in every three-coloring of the edges of Kn there
is a set of three vertices that monochomatically dominates two-thirds or more
of all vertices?

6.2. Spectra

A nonnegative integer q belongs to the k-spectrum of a graph G if there
is some set of k vertices in G spanning q edges. Denote the k-spectrum of
G by sk(G). Then sk(G) ⊆ {0, 1, · · ·

(
k
2

)
}, but not every such subset is an

example of a k-spectrum. Let nk denote the number of distinct subsets of
{0, 1 · · · ,

(
k
2

)
} that are realizable as k-spectra. The k-spectra of all large trees

were characterized in [47].

Theorem 35 ([47]). If n ≥ max{2k−1, 3k−5}, then for each tree T of order
n there exist corresponding integers r and s with 0 ≤ �r/2 ≤ s ≤ r ≤ k − 1
such that sk(Tn) = [0, r] ∪ [s, k − 1].

The following bounds have been obtained for number of realizable
k-spectra.

Theorem 36 ([47]). For any integer k ≥ 2, the number of distict realizable

k-spectra satisfies 1
16

(
5
2

)k−1
< nk < 2(k

2)+1.

For k = 2, 3 and 4, the realizable k-spectra have been determined [50].

Question 22. For k ≥ 5, what is nk, the number of distinct realizable
k-spectra?

A similar problem was asked by Erdős and Faudree concerning the cycle
spectrum of a graph, namely the set of distinct cycle lengths of a graph. Let
cn be the number of distinct cycle spectra for graphs of order n. The following
family of graphs gives a lower bound for the cn.

Example 10. Let v be a vertex in Cn and let S ⊆ {2, 3, . . . , �n/2�}. Add to
Cn all chords extending from v whose lengths belong to S. Distinct sets S will
give distinct cycle spectra, since the cycles of length at least �n/2 + 1 will be
different.
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Using this example, we see that 2n/2 − 1 ≤ cn < 2n − 2.

Question 23. What is the number of distinct cycle spectra of a graph of
order n?

6.3. Clique Coverings and Partitions

A clique covering of a graph G is a set of cliques that together contain all of
the edges of G; if each edge is contained in precisely one of these cliques, we
have a clique partition. The clique covering number cc(G) of G is the smallest
cardinality of any clique covering, and the clique partition number cp(G) is
the smallest cardinality of any clique partition. The relationship between
cc(G) and cp(G) was investigated in [30], where the following example was
described.

Example 11. For any integer n divisible by 8, let Gn = Kn/2+4Kn/8. Then,
clearly cc(Gn) = 4, and it was shown in [30] that cp(Gn) = n2/16 + 3n/4.
Thus,

cp(Gn)

cc(Gn)
> n2/64.

Question 24. What is the largest C for which there is a sequence of graphs
(Gn) such that |V (Gn)| = n and

cp(Gn)

cc(Gn)
> Cn2?

In [19] the authors exhibit a sequence of graphs (Gn) such that
|V (Gn)| = n

cp(Gn) − cc(Gn) =
n2

4
− n3/2

2
+
n

4
+O(1), (n → ∞).

Paul Erdős has asked whether the n3/2 term is really necessary.

Question 25. Is there a sequence of graphs (Gn) such that |V (Gn)| = n and

cp(Gn) − cc(Gn) = n2/4 +O(n), (n → ∞)?
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Chvátal, J. Graph Theory 7, (1983) 39–51.
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17. S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Some
complete bipartite graph - tree Ramsey numbers, Ann. Discrete Math. 41
(1989), 79–90.

18. S. A. Burr and R. J. Faudree, On graphs G for which all large trees are G-good,
Graphs Combin. (to appear).
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1. Introduction and Main Results

All (undirected) graphs and digraphs considered are assumed to be finite (if
not otherwise stated) and loopless. Multiple edges (arcs) are permitted. For
a graph G, let V (G), E(G), and χ(G) denote the vertex set, the edge set,
and the chromatic number of G, respectively. If X ⊆ V (G) and F ⊆ E(G),
then G−X − F denotes the subgraph H of G satisfying V (H) = V (G) −X
and E(H) = {xy | xy ∈ E(G) − F and x, y ∈ X}.

A system of non-empty subgraphs {G1, . . . , Gm}, m ≥ 1, in a graph
G is called a decomposition of G if and only if E(G) =

⋃m
i=1E(Gi) and

E(Gi) ∩ E(Gj) = ∅, 1 ≤ i < j ≤ m. For an integer k ≥ 2, let Gk denote the
family of all graphs G which have a decomposition into a Hamiltonian cycle
and m ≥ 0 pairwise vertex disjoint complete subgraphs each on k vertices.
Note that every vertex of a graph G ∈ Gk, k ≥ 2, has degree either k+1 or 2.
In particular, Gk contains every cycle.

The authors proved the following result providing an affirmative solution
to a colouring problem of P. Erdős, which became known as the “cycle-plus-
triangles problem” (see e.g. [5] or [7]).

Theorem 1 ([9]). If G ∈ G3 then χ(G) ≤ 3.

Actually, Theorem 1 was proved only for 4-regular graphs. But every non-
regular graph G′ ∈ G3 can be obtained from a 4-regular graph G ∈ G3 by
subdividing some edges of the Hamiltonian cycle of G, and hence every legal
3-colouring of G can be extended to a legal 3-colouring of G′. Recently, H.
Sachs [12] found a purely elementary proof of Theorem 1.

Theorem 2. Let k ≥ 4 be an integer and let G be a graph. Assume that G
has a decomposition D into a Hamiltonian cycle and m ≥ 0 pairwise vertex
disjoint complete subgraphs each on at most k vertices. Then χ(G) ≤ k.
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Proof (by induction on k). Let X =
⋃
V (K) where the union is taken over

all complete subgraphs K ∈ D of size ≤ k − 2. Then every vertex of X has
degree ≤ k − 1 in G implying that every legal k-colouring of G −X can be
extended to a legal k-colouring of G. Therefore, we need only to show that
χ(G − X) ≤ k. Clearly, G − X is a subgraph of some graph G′ which has
a decomposition D′ into a Hamiltonian cycle and a (possibly empty) set of
pairwise vertex disjoint complete subgraphs on k − 1 or k vertices each. We
claim that χ(G′) ≤ k. Let D1 be the set of all complete subgraphs from D′

with exactly k vertices. If D1 = ∅ then from the induction hypothesis or,
in case k = 4, from Theorem 1 we conclude that χ(G′) ≤ k − 1 < k. If
D1 = ∅ then we argue as follows. First, choose from every complete subgraph
K ∈ D1 an arbitrary vertex y = y(K) and let Y be the set of all these
vertices. Then G′ − Y is a subgraph of some graph in Gk−1 and therefore,
the induction hypothesis or, in case k = 4, Theorem 1 implies that G′ − Y
has a legal colouring with k − 1 colours, say 1, 2, . . . , k − 1. Obviously, each
complete subgraph K−y(K) of G′−Y , K ∈ D1, contains precisely one vertex
coloured 1 (note that K − y(K) has k − 1 vertices). Now, let Z be the set
of all such vertices. Then Z is an independent set in G′ − Y , and hence also
in G′. By the same argument as before we conclude that G′ − Z has a legal
(k − 1)-colouring implying that G′ has a legal k-colouring, i.e. χ(G′) ≤ k.
This proves our claim, and hence the desired result. �

Theorem 2 is not true for k = 3. A counterexample is the complete graph
on 4 vertices, a further one due to H. Sachs is shown in Fig. 1.

Fig. 1

As a consequence of Theorems 1 and 2 we obtain the following proposition.

Corollary 1. If G ∈ Gk for some k ≤ 3, then χ(G) ≤ k.
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The proof of Theorem 1 given in [9] uses a recent result of N. Alon and
M. Tarsi [2] which provides a colouring criterion for a graph G based on
orientations of G. On the one hand, this yields a somewhat stronger result
than Theorem 1, namely that every graph G ∈ G3 has list chromatic number
at most 3. On the other hand, this implies that the proof of Theorem 1 is not
constructive in the sense that it does not yield any algorithm which, givenG ∈
G3, allows a legal 3-colouring of G to be constructed. For a graph G ∈ Gk, k ≥
4, a legal k-colouring of G can be easily obtained using the induction step of
Theorem 2 and the following colouring procedure for regular graphs from G4.

Let G ∈ G4 be any 5-regular graph, and let D be a decomposition of
G into a Hamiltonian cycle C and m ≥ 1 pairwise vertex disjoint complete
subgraphs K1, . . . ,Km each on 4 vertices. For E′ ⊆ E(G), let G(E′) denote
the spanning subgraph of G with vertex set V (G) and edge set E′. By a linear
factor of G we mean a set L ⊆ E(G) such that G(L) is 1-regular.

To obtain a legal 4-colouring of G, we first choose an arbitrary linear
factor L of C (note that the cycle C has length 0 mod 4) and, for each
i ∈ {1, 2, . . . ,m}, an arbitrary linear factor Li1 of Ki. Obviously, the subgraph
G(F ), where F = L∪L1

1 ∪ . . . ∪Lm1 , is the disjoint union of even cycles, and
hence we easily find a legal 2-colouring c1 of G(F ). Now it is easy to check
that we can choose a linear factor Li2 of Ki − Li1 (i = 1, . . . ,m) such that c1
remains a legal 2-colouring of G(F1), where F1 = F ∪ L1

2 ∪ . . . ∪ Lm2 . Then
F2 = E(G) − F1 consists of the linear factor L′ = E(C) − L and the linear
factors Li3 = E(Ki)−Li1−Li2 (i = 1, . . . ,m). Therefore, G(F2) is the disjoint
union of even cycles and has a legal 2-colouring c2. Eventually, because of
G = G(F1 ∪ F2), the mapping c defined by c(x) = (c1(x), c2(x)), x ∈ V (G),
is a legal 4-colouring of G.

Noga Alon [1] proposed a more general situation. Let H be a graph on
n vertices. If k divides n, then H is said to be strongly k-colourable if, for
any partition of V (H) into pairwise disjoint sets Vi each having cardinality
k, there is a legal k-colouring of H in which each colour class intersects each
Vi by exactly one vertex. Notice that H is strongly k-colourable if and only
if the chromatic number of any graph G obtained from H by adding to it a
union of vertex disjoint complete subgraphs (on the set V (H)) each having
k vertices is k. If k does not divide n, then H is said to be strongly k-
colourable if the graph obtained from H by adding to it k�n/k − n isolated
vertices is strongly k-colourable. Of course, the strong chromatic number of
a graph H , denoted by sχ(H), is the minimum k such that H is strongly
k-colourable. In this terminology, Theorem 1 says that, for every cycle C3m

on 3m vertices, sχ(C3m) ≤ 3. Moreover, Theorem 2 implies that, for every
cycle C, sχ(C) ≤ 4. For cycles on 4m vertices this statement was established
by several researchers including F. de la Vega, M. Fellows and N. Alon (see
[7]). The 4-chromatic graph depicted in Fig. 1 shows that sχ(C7) = 4.

Noga Alon [1] investigated the function sχ(d) = max(sχ(H)), where H
ranges over all graphs with maximum degree at most d. On the one hand,
using similar arguments as above he gives a short proof that sχ(H) ≤ 2χ

′(H),
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where χ′(H) denotes the chromatic index of H . Because of Vizing’s Theorem,
this yields sχ(d) ≤ 2d+1. On the other hand, using probabilistic arguments,
he proved that there is a (very large) constant c such that sχ(d) ≤ cd for
every d. This leaves the following problem. What is the minimum value k such
that every graph with maximum degree d is strongly k-colourable? Even for
d = 2, the answer is not known. Clearly, for d = 1 we have sχ(1) = 2. To
obtain a lower bound for sχ(d), we construct a graph Hd for every d ≥ 1
in the following way. Let X1, X2, X3, X4 be disjoint sets on r vertices each,
r ≥ 1. Join Xi to Xi+1 (i = 1, 2, 3) and X4 to X1 by all possible edges. The
resulting graph is H2r. The graph H2r−1 is obtained from H2r by removing
two adjacent vertices. Then the graph Hd, d ≥ 1, is regular of degree d and
it is easy to check that Hd is not strongly k-colourable for k ≤ 2d − 1, i.e.
sχ(Hd) ≥ 2d. This yields sχ(d) ≥ 2d for every d ≥ 1.

In [5] P. Erdős asked whether the statement of Theorem 1 remains true if
the Hamiltonian cycle of the decomposition is replaced by a 2-regular graph
not containing a cycle of length 4. The graph G depicted in Fig. 2 provides
a negative answer. This graph belongs to an infinite family of 4-regular
4-chromatic (in fact, 4-critical) graphs due to Gallai [6] all of which (except
one) are counterexamples with respect to Erdős’s question.

Fig. 2

We define a (not necessarily connected) graph to be Eulerian if and only
if each vertex has even degree. Analogously, a digraph is said to be Eulerian
if and only if each vertex has equal out-degree and in-degree. Let G be an
Eulerian graph. Clearly, G has an orientation D (this means, that D is a
digraph whose underlying graph is G) which is Eulerian. Such an orientation
is briefly called an Eulerian orientation of G. We denote the number of all
Eulerian orientations of G by e(G). If D is an arbitrary Eulerian orientation
of the Eulerian graph G, then (see [8]) e(G) is equal to the number of all
spanning Eulerian subdigraphs of D. Therefore, Theorem 2.1 in [9] implies
the following.

Theorem 3 ([9]). If G ∈ G3 then e(G) ≡ 2 mod 4.
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Theorem 3 may be considered as the main result of [9]. To deduce
Theorem 1 from Theorem 3, the colouring criterion of Alon and Tarsi (see
[2] or [9]) is needed. As an immediate consequence of Theorem 3 we obtain
the following result. This was first noted by Alon, Gutner and Tarsi.

Corollary 2. Let G be a graph, which has a decomposition into a Hamil-
tonian cycle C and m ≥ 1 pairwise vertex disjoint triangles T1, . . . , Tm,
i.e. G ∈ G3. Then G has an Eulerian orientation D such that no triangle
Ti(i = 1, . . . ,m) is cyclically oriented in D. Moreover, if V1(V2) is the set of
all those vertices from G which are sinks (sources) of some triangle Ti with
respect to D, then both V1 and V2 are independent sets in G each of size m.

Proof. Let O denote the set of all Eulerian orientations of G, and let Oi

(i = 1, . . . ,m) denote the set of all Eulerian orientations of G in which the
triangle Ti is cyclically oriented. To prove that a desired orientation D of G
exists, suppose the contrary. Then O =

⋃m
i=1 Oi, and hence

e(G) = |O| =
∑

I⊆{1,...,m}(−1)|I|+1o(I),

where o(I) = |
⋂
i∈I Oi|. It is easy to check that, for I = ∅, we have o(I) =

2|I|e(G′), where G′ = G−
⋃
i∈I E(Ti). Since G′ ∈ G3, from Theorem 3 it then

follows that o(I) ≡ 0 mod 4, and hence e(G) ≡ 0 mod 4, a contradiction.
Therefore, the desired orientation D of G exists. Obviously, the sets V1 and
V2 satisfying the hypothesis of Corollary 2 are both independent sets of size
m in G. This proves Corollary 2. �

In particular, from Theorem 3 we obtain immediately that every 4-regular
graph G ∈ G3 with 3m vertices has independence number m, as conjectured
by D. Z. Du and D. F. Hsu in 1986 (see [3, 7]).

In connection with the Cycle Double Cover Conjecture R. Goddyn
(private communication) suspects that there is no snark H with a chordless
dominating cycle C (this means, that V (H) −V (C) is an independent set in
H). The first author and M. Tarsi observed that the following result can be
deduced from Corollary 2.

Corollary 3. Assume that H is a 3-regular graph which has a dominating
cycle C. Then there is a matching M of H − E(C) such that H − M is
2-regular or isomorphic to a subdivision of a 3-regular bipartite graph.

Proof. Put X = V (H)−V (C), and let M1 be the set of all chords of C in H .
From the cycle C we construct a new graph in the following way. For every
vertex x ∈ X , join the three neighbours of x on C by three new edges forming
a triangle Tx. Clearly, the resulting graph G belongs to G3. From Corollary 2
it then follows that there is an Eulerian orientation D of G such that no
triangle Tx is cyclically oriented. Now, let V1 (V2) be the set of all those
vertices from G which are sinks (sources) of some triangle Tx with respect to
D. Then, for every vertex x ∈ X , there is exactly one edge in H joining x to
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some vertex of V (C) − V1 − V2. Denote the set of all such edges by M2, and
put M = M1 ∪M2. Clearly, M is a matching of H − E(C). Since both V1
and V2 are independent sets in G (see Corollary 2), it is easy to check that
H −M is 2-regular (in case of X = ∅) or isomorphic to a subdivision of a
3-regular bipartite graph (in case of X = ∅). This proves Corollary 3. �

One can easily show that if a 3-regular graph H with a dominating cycle
contains two disjoint matchings as described in Corollary 3, then H has a
nowhere-zero 5-flow.

Remark (added in 2013). Moreover, if H as above has two such disjoint
matchings, then H also has a 5-cycle double cover containing the dominating
cycle, [10]. It was therefore conjectured by the first author of this article that
if H is cyclically 4-edge-connected and has a dominating cycle C, then it
has two such disjoint matchings with respect to C. This was disproved by
his PhD student Arthur Hoffmann-Ostenhof, [11]. However, together with the
Dominating Cycle Conjecture (DCC) it would suffice to prove the existence of
two such disjoint matchings with respect to some dominating cycle, to ensure
the validity of the cycle double cover conjecture (CDCC) and the nowhere-
zero 5-flow conjecture (NZ5FC). In fact, to prove the CDCC it would suffice
to prove the DCC and the existence of two such disjoint matchings with
respect to a stable dominating cycle; however, this would not be enough to
prove the NZ5FC.

Finally, let us mention the following infinite version of Corollary 1. A set
of cardinality k is briefly called a k-set.

Theorem 4. Let k ≥ 3 be an integer. For any partition D of the integers
Z into k-sets, there is another partition {X1, . . . , Xk} of Z such that Xi

(i = 1, . . . , k) contains a member of each k-set from D but no consecutive
pair of integers.

Proof. Define G to be the infinite graph with vertex set Z, where xy ∈ E(G) if
and only if |x−y| = 1 or x, y ∈ K ∈ D. Consider an arbitrary finite subgraph
H of G. Then it is easy to check that H is a subgraph of some graph from
Gk and hence, using Corollary 1, we conclude that H is k-colourable. From
a well-known result of Erdős and de Bruijn [4] we then obtain that G is
itself k-colourable. This immediately implies that χ(G) = k. Obviously, any
legal k-colouring of G provides a partition {X1, X2, . . . , Xk} of Z having the
desired properties. �
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Summary. A p-representation of the complete graph Kn,n is a collection of sets
{S1, S2, . . . , S2n} such that |Si ∩ Sj | ≥ p if and only if i ≤ n < j. Let ϑp(Kn,n)
be the smallest cardinality of ∪Si. Using the Frankl-Rödl theorem about almost
perfect matchings in uncrowded hypergraphs we prove the following conjecture of
Chung and West. For fixed p while n → ∞ we have ϑp(Kn,n) = (1 + o(1))n2/p.
Several problems remain open.

1. The p-Intersection Number of K(n, n)

One of the important topics of graph theory is to represent graphs, or an
interesting class of graphs, using other simple structures. One approach is to
represent the vertices by sets so that vertices are adjacent if and only if the
corresponding sets intersect (line graphs). More generally, the p-intersection
number of a graph is the minimum t such that each vertex can be assigned a
subset of {1, . . . , t} in such a way that vertices are adjacent if and only if the
corresponding sets have at least p common elements. Such a system is called
a p-representation (or p-intersection representation) of the graph G, and the
minimum t is denoted by ϑp(G).

Problem 1. Given n and p determine maxϑp(G) among the n-vertex
graphs.

For any graph of v vertices Erdős, Goodman, and Pósa [10] showed that
ϑ1 ≤ �v2/4�, and here equality holds for K�v/2�,�v/2�. This settles the case
p = 1 in Problem 1. Myung S. Chung and D. B. West [5] conjectured that the
complete bipartite graph also maximizes ϑp. Their lower bound for p > 1 is

ϑp(Kn,n) ≥ (n2 − n)/p+ 2n. (1)

In this note we determine ϑp for these and a few more graphs. Especially,
we show that in (1) equality holds asymptotically (p is fixed n → ∞) with
a smaller order error term. One of our main construction (Theorem 1) along
with the lower bound (7) was independently discovered by Eaton, Gould and
Rödl [6, 9]. They also considered 2-representations of bounded degree trees.

R.L. Graham et al. (eds.), The Mathematics of Paul Erdős II,
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More interestingly, considering the the unbalanced complete bipartite graph
Eaton [7] disproved the Chung-West conjecture by showing that

max
a+b=2n

ϑp(Ka,b) ≥ (1 + o(1))
16p2 − 12p+ 1

16p2 − 16p+ 4

n2

p
. (2)

Her method was further developed in [8] when ϑp(Ka,b) was exactly deter-
mined by infinitely many values using certain designs and Steiner systems.

The complete k-partite graph, K(k)
n,...,n, has kn vertices, k disjoint indepen-

dent sets of sizes n and all the
(
k
2

)
n2 edges between different classes. K(n×k)

denotes a graph with vertex set V 1 ∪ . . . ∪ V k, V � = {v�1, . . . , v�n} and v�i is
joined to vmj if and only if i = j and � = m. So K(n × 2) is obtained from
Kn,n by deleting a one factor.

Theorem 1. For fixed p and k, the p-intersection number of the complete

k-partite graph K(k)
n,...,n is (1 + o(1))n2/p.

Note that the asymptotic is independent from the fixed value of k. In
Sect. 4 we will give a partial proof for Theorem 1 using classical design
theory and obtain a better error term. A Hadamard matrix of order n is a
square matrix M with ±1 entries such that MM t = nIn. It is conjectured
that it exists for all n ≡ 0 (mod 4). The smallest undecided case is larger
than 184. An Sλ(v, l, t) block design is a l-uniform (multi)hypergraph on v
vertices such that each t-subset is contained in exactly λ hyperedges (blocks).
Block designs with λ = 1 are called Steiner systems. All notions we use about
designs can be found, e.g., in Hall’s book [15]. Wilson [22] proved that for
any l there exists a bound v0(l) such that for all v ≥ v0 there exists a Steiner
system S(v, l, 2) if

(
v
2

)
/
(
l
2

)
and (v − 1)/(l − 1) are integers.

Theorem 2. (a) If there exists a Hadamard matrix of size 4p, and a
Steiner system S(n, 2p, 2), then ϑp(K(n× 2)) = (n2 − n)/p.

(b) If p = qd where q is a prime power, d a positive integer, k ≤ q,
and there exists a Steiner system S(n, qd+1, 2), then ϑp(K(n × k)) =
(n2 − n)/p.

Corollary 1. For all p in Theorem 2, and n > n0(p)

n2/p < ϑp(Kn,n) ≤ ϑp(K(n× 2)) + pn ≤ (n2/p) + 4pn.

This covers all cases p ≤ 46. A construction from the finite projective
space is given in Sect. 3. In Sect. 5 we list a few open problems.

2. A Random Construction

A hypergraph H with edge set E(H) and vertex set V (H) is called r-uniform
(or an r-graph) if |E| = r holds for every edgeE ∈ E(H). The degree, degH(x),
of the vertex x ∈ V is the number of edges containing it. The degree of a pair,
degH(x, y), is the number of edges containing both vertices x and y. The dual,
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H∗, of H is the hypergraph obtained by reversing the roles of vertices and
edges keeping the incidences, i.e., V (H∗) = E(H). A matching M ⊆ E(H)
is a set of mutually disjoint edges, ν(H) denotes the largest cardinality of a
matching in H.

We are going to use a theorem of Frankl and Rödl [11]. The following
slightly stronger form is due to Pippenger and Spencer [20]: For all integers
r ≥ 2 and real ε > 0 there exists a δ > 0 so that: If the r-uniform hypergraph
H on z vertices has the following two properties (i) (1 − δ)d < degH(x) <
(1 + δ)d holds for all vertices, (ii) degH(x, y) < δd for all distinct x and y,
then there is a matching in H almost as large as possible, more precisely

ν(H) ≥ (1 − ε)(z/r). (3)

Far reaching generalizations of (3) have been proved by Kahn [18].
Suppose G is a graph and F = {F1, . . . , Ft} is a family of subsets of

the vertex set V (G), repetition allowed. Such a system F is called a p-edge
clique cover if every edge of G is contained in at least p members of F and
the non-edge pairs are covered by at most p− 1 of the Fi’s. A p-edge clique
cover is the dual of a p-representation (and vice versa), so the smallest t for
which there is a p-edge clique cover is ϑp(G). This was the way Kim, McKee,
McMorris and Roberts [19] first defined and investigated ϑp(G).

Proof of Theorem 1. To construct a p-edge clique cover of the complete
k-partite graph with n-element classes V 1, . . . , V k consider the following
multigraph M. Every edge contained in a class V i has multiplicity p − 1,
and all edges joining distinct classes (crossing edges) have multiplicity p. The
total number of edges is

∣∣E(M)
∣∣ = (p− 1)k

(
n

2

)
+ p

(
k

2

)
n2 = (1 + o(1))

n2

p

(
k

(
p

2

)
+

(
k

2

)
p2
)

(4)

Let r = |E(K(k)
p,...,p)| = k

(
p
2

)
+
(
k
2

)
p2. Define the r-uniform hypergraph H with

vertex set E(M) as follows. The hyperedges of H are those r-subsets of E(M)
which form a complete k-partite subgraph with p vertices in each V i. The
number of such subgraphs is

∣∣E(H)
∣∣ =

(
n

p

)k
(p− 1)k(

p
2)p

(
k

2

)
p2.

Let e ∈ E(M) be an edge contained in a class V i. The number of K(k)
p,...,p’s,

i.e., the number of hyperedges of H containing e is exactly

degH(e) =

(
n− 2

p− 2

)(
n

p

)k−1

(p− 1)k(
p
2)−1p(

k
2)p2. (5)

For any crossing edge f ∈ E(M) connecting two distinct classes we have

degH(f) =

(
n− 1

p− 1

)2(
n

p

)k−2

(p− 1)k(
p
2)p(

k
2)p

2−1. (6)
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The ratio of the right hand sides of (5) and (6) is n/(n−1), so the hypergraph
H is nearly regular, it satisfies the first condition in the Frankl-Rödl theorem
for any δ > 0 if n is sufficiently large. For two distinct edges, e1, e2 ∈ E(M),
obviously degH(e1, e2) = O(nkp−3), so condition (ii) is fulfilled, too. Apply
(3) to H. We get a system F = {F1, . . . , Fν} of kp-element subsets of ∪V i
such that every pair e contained in a class V i is covered at most p− 1 times,
every pair f joining two distinct classes is covered at most p times. Moreover,

ν = (1 − o(1))n2/p, by (4). It follows that almost all edges of K(k)
n,...,n are

covered exactly p times, so the system F can be extended to a p-edge clique
cover by adding sufficiently many (but only o(n2)) edges. �

3. Exact Results from Finite Projective Spaces

Proposition 1. For all p ≥ 1, ϑp(K(n × 2)) ≥ (n2 − n)/p.

Proof. Let V 1 and V 2 be the two parts of the vertex set of the graph, |V 1| =
|V 2| = n, let {Ai ∪Bi : 1 ≤ i ≤ t} be a p-edge clique cover, their average size
on one side is � :=

∑
i(|Ai| + |Bi|)/(2t). Using the inequalities

(1)
∑

i

(|Ai|
2

)
≤ (p− 1)

(
n
2

)
, and

(2)
∑

i

(|Bi|
2

)
≤ (p− 1)

(
n
2

)
, and the fact that

(3) all the n2 − n crossing edges are covered at least p times we have

p(n2 − n) ≤
∑

i

|Ai||Bi| ≤
∑

i

((
|Ai|

2

)
+

(
|Bi|

2

))

+�t ≤ (p− 1)(n2 − n) + �t.

This gives (n2 − n) ≤ �t. On the other hand, (1) and (2) give 2t
(
�
2

)
≤

2(p− 1)
(
n
2

)
. Hence � ≤ p and t ≥ (n2 − n)/p follows. �

Replacing (3) by pn2 ≤
∑

i |Ai||Bi| the above proof gives

ϑp(Kn,n) ≥ (n+ p− 1)2/p, (7)

which is better than (1) for n < (p− 1)2.
Consider a K(n × k) with classes V 1, . . . , V k, V � = {v�1, . . . , v�n}. We call

the p-edge clique cover F = {F1, . . . , Ft} perfect if the sets {Fi ∩ V � : 1 ≤
i ≤ n} form an Sp−1(n, p, 2) design for all �. It follows, that |Fi| = kp for
all Fi, every edge of K(n× k) is contained in exactly p sets, every pair from
V � is covered p− 1 times, every pair of the form {v�α, vmα } is uncovered, and
t = (n2 − n)/p.

Proposition 2. If p = qd, where q is a prime power, d a positive integer
and k ≤ q, then there exists a perfect p-edge clique cover of K(qd+1 × k).
Hence, in this case, ϑp(K(qd+1 × k)) = qd+2 − q.
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Proposition 3. If p = qd + qd−1 + · · · + 1, where q is a prime power, d a

positive integer and k ≤ q+1, then ϑp(K(k)

qd+1,...,qd+1) = q2(qd+qd−1+ · · ·+1).

Proof. The lower bounds for ϑp are implied by Proposition 1 and (2),
respectively. The upper bounds are given by the following construction. Let
X be the point set of a (d + 2)-dimensional projective space of order q,
PG(d+ 2, q), let Z ⊂ X be a subspace of dimension d, and let Y 1, . . . , Y q+1

be the hyperplanes containing Z, V � = Y � \ Z. The sets V � partition X \ Z
into qd+1-element classes. Choose a point c ∈ V q+1 and label the vertices of
V � = {v�i : 1 ≤ i ≤ qd+1} in such a way that {v�i : 1 ≤ � ≤ q} ∪ {c} form a
line for all i. �

The hyperplanes not containing Z and avoiding c induce a perfect p-edge
clique cover of K(pd+1 × k) with classes V 1, . . . , V k(k ≤ q). Indeed, PG(d+
2, q) contains qd+2+qd+1+ · · ·+q+1 hyperplanes and they cover each pair of
points exactly p times. The point c is contained by exactly qd+1+ · · ·+q+1 of
the hyperplanes, Z is contained in q+ 1 of them, and Z ∪ {c} is contained in
a unique one. So the above defined cover consists of qd+2 − q sets. These sets
still cover each pair of the form {v�i , vmj }, i = j exactly p times. However, the

pairs of the form {v�α, vmα } are uncovered, because any subspace containing
these tow points must contain the line through them, so it must contain the
element c.

Similarly, considering all the hyperplanes not containing Z, we get a

p-edge clique cover of K(k)
n,...,n with classes V 1, . . . , V k where n = qd+1 and

k ≤ q + 1.
The dual (perfect) p-representation of K(qd+1 × k) can be obtained by

considering a line, L, in the affine space of dimension d+ 2, and assigning all
sets of the form Y \ {v�} to the vertices of the �th color class, where v� ∈ L,
and Y is a hyperplane with Y ∩L = {v�}. Similarly, the dual p-representation

of K(k)
n,...,n on the underlying set X \ L can be obtained by assigning the sets

Y \ {v�} to the �th color class. There might be more optimal constructions
using higher dimensional spaces.

4. Constructions from Steiner Systems

Proposition 4. If there exists a Hadamard matrix of size 4p, then there
exists a perfect p-edge clique cover of K(2p× 2), so its ϑp = 4p− 2.

Proof. We are going to give a perfect p-intersection representation with
underlying set {1, . . . , 4p − 2}. Its dual is a perfect p-edge clique cover. Let
M be a Hadamard matrix of order 4p. We may suppose that the last row
contains only +1’s. The ±1’s in any other row define a partition of {1, . . . , 4p}
into two 2p-element sets P+

i ∪ P−
i . We may also suppose that the last two

entries are Mi,4p−1 = 1, Mi,4p = −1 for 1 ≤ i ≤ 2p. Finally, assign the set
P+
i \ {4p− 1} to the vertex v1i , and P−

i \ {4p} to v2i . �
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Note that both in Proposition 2 and here we have got the perfect p-edge
clique cover from a resolvable Sλ(sp, p, 2) design, where s is an integer λ =
(p− 1)/(s− 1).

Proof of Theorem 2(b). First, we consider a perfect p-edge clique cover, F ,
in the case n = qd+1 given by Proposition 2. Consider k identical copies of a
Steiner system S(n, qd+1, 2) over the n-element sets V �. Replace each block
and its corresponding pairs by a copy of F . Then we obtain a system is a
perfect p-edge clique cover.

The proof of case (a) is similar, we put together a perfect p-edge clique
cover using a building block of size 2p supplied Proposition 4 and a Steiner
system S(n, 2p, 2). Taking the sets {v1i , v2i , . . . , vki } p times, we get that

ϑp(K
(k)
n,...,n) ≤ ϑp(K(n × k)) + pn. As ϑp(K

(k)
n,...,n) is a monotone function

of n we got Corollary 1 . �

Conjecture 1. If (n2−n)/p is an integer and n > n0(p, k), then there exists
a perfect p-edge clique cover of K(n × k), hence its p-intersection number
ϑp = (n2 − n)/p.

The case p = 1 corresponds to the fact that there are transversal designs
T (n, k) (i.e., mutually orthogonal Latin squares of sizes n) for n > n0(k)
(Chowla, Erdős, Straus [4], also see Wilson [23]).

Chung and West [5] proved the case k = p = 2. They showed ϑ2(K(n ×
2)) = (n2−n)/2 by constructing a perfect 2-edge cover (they call it a perfect
2-generator) for the cases n ≡ 1, 2, 5, 7, 10, or 11 (mod 12). This and (1)
imply that

ϑ2(Kn,n) = (n2 + 3n)/2 (8)

holds for these cases. Their conjecture about the so-called orthogonal double
covers (a conjecture equivalent to the existence of a perfect 2-edge cover of
K(n × 2)) which conjecture had appeared in [6], too, is true for all n > 8.
This was proved by Ganter and Gronau [14] and independently by Bennett
and Wu [1]. So n0(2, 2) = 8 and (8) holds for all n > 8.

There are two more values proved in [5], namely the special cases q = 2
and q = 3 of the following conjecture. K(q2 + q + 1 × 2) has a perfect q-edge
cover whenever a projective plane of order q exists. This would imply that
equality holds in (1) for (p, n) = (q + 1, q2 + q + 1).

5. Further Problems, Conjectures

The first nontrivial lower bound for ϑp(Kn,n) was proved by Jacobson [16]. He
and Kézdy and West [17] also investigated ϑ2(G) for other classes of graphs,
like paths and trees.

How large ϑp(K(n × k)) and ϑp(K(k)
n,...,n) if n is fixed and k → ∞?
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Estimate ϑp for complete bipartite graph with parts of sizes a and b when
a → ∞, p is fixed and a/b goes to a finite limit.

Another interesting graph where one can expect exact results is a
cartesian product, its vertex set is I1 × · · · × I�, and (i1, . . . , i�) is joined
to (i′1, . . . , i′�) if and only if iα = i′α for all 1 ≤ α ≤ �.

For a matching, M, of size n it easily follows that ϑp(M) = min{t :(
t
p

)
≥ n}.

One can ask the typical value of ϑp(G), i.e., the expected value of ϑp for
the random graph of n vertices. The case of p = 1 was proposed in [13], and
the best bounds are due to Frieze and Reed [12] (for an intermediate result
see Bollobás, Erdős, Spencer, and West [3]): For almost all graphs its edge
set can be covered by O(n2/(logn)2) cliques and this magnitude is the best
possible. Obviously,

ϑp(G) ≤ ϑp−1(G) + 1 ≤ ϑ1(G) + p− 1,

so the order of magnitude of E(ϑp) is at most that of E(ϑ1). Can we extend
the method of [12] to estimate for E(ϑp)?

The notion of ϑp was generalized from the study of the p-competition
graphs. Another generalization, also having several unsolved questions, is the
clique coverings by p rounds. Let G be a simple graph and let ϕp(G) be the
minimum of

∑
1≤i≤p ni such that there are families A1, . . . ,Ap with |Ai| = ni,

such that each edge e ∈ E(G) is covered by each family (i.e., there exists an
A ∈ Ai with e ⊂ A), but this does not hold for the non-edges. It is known
[13], that for all graphs on n vertices ϕ2 ≤ 3n5/3 and for almost all graphs
ϕ2 > 0.1n4/3/(logn)4/3. For further problems and questions, see [13].

Bollobás [2] generalized the Erdős-Goodman-Pósa result as follows. The
edge set of every graph on n vertices can be decomposed into t(k−1, n) parts
using only Kk’s and edges, where t(k−1, n) is the maximum number of edges
in a (k − 1)-colored graph on n vertices, e.g., t(2, n) = �n2/4�. There are
many beautiful results and problems of this type, the interested reader can
see the excellent survey by Pyber [21]. Most of the problems can be posed to
multigraphs, obtaining new, interesting, non-trivial problems.

Let ϑ∗p(G) the minimum t such that each vertex can be assigned a subset
of {1, . . . , t} in such a way that the intersection of any two of these sets is
at most p, and vertices of G are adjacent if and only if the corresponding
sets have exactly p common elements. Note that in all of the results in this
paper were proved an upper bound for ϑ∗p. If Gn is a graph on n vertices with
with 2n − 3 edges such that two vertices are connected to all others, then
one can show that limn→∞ ϑ∗p(Gn) − ϑp(Gn) = ∞ for any fixed p. What is
max(ϑ∗p(G) − ϑp(G)) and max(ϑ∗p/ϑp) for different classes of graphs?
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Summary. We consider some problems suggested by special cases of a conjecture
of Erdős and Hajnal.

1. Epsilons

The problem I am going to comment on reached me in 1987 at Memphis in a
letter of Uncle Paul. He wrote: ‘We have the following problem with Hajnal.
If G(n) has n points and does not contain induced C4, is it true that it has
either a clique or an independent set with nε points? Kind regards to your
boss + colleagues, kisses to the ε-s. E.P.’ After noting that ε has been used
in different contexts I realized soon that 1

3 is a good ε (in both senses since I
have three daughters). About a month later Paul arrived and said he meant
C5 for C4. And this minor change of subscript gave a problem still unsolved.
And this is just a special case of the general problem formulated in the next
paragraph.

2. The Erdős-Hajnal Problem (from [7])

Call a graph H-free if it does not contain induced subgraphs isomorphic
to H . Complete graphs and their complements are called homogeneous sets.
As usual, ω(G) and α(G) denotes the order of a maximum clique and the
order of a maximum independent set of G. It will be convenient to define
hom(G) as the size of the largest homogeneous set of G, i.e. hom(G) =
max{α(G), ω(G)} and

hom(n,H1, H2, . . .) = min{hom(G) : |V (G)| = n,G is Hi-free}

A well-known result of Paul Erdős [5] says that there are graphs of n
vertices with hom(G) ≤ 2 logn (log is of base 2 here). The following problem
of Erdős and Hajnal suggests that in the case of forbidden subgraphs hom(G)
is much larger: Is it true, that for every graph H there exists a positive ε and
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n0 such that every H-free graph on n ≥ n0 vertices contains a homogeneous
set of nε vertices? If such ε exists for a particular H , one can define the ‘best’
exponent, ε(H) for H as

ε(H) = sup{ε > 0 : hom(n,H) ≥ nε for n ≥ n0}.

The existence of ε(H) is proved in [7] for P4-free graphs (usually called
cographs but in [7] the term very simple graphs has been used). In fact, a
stronger statement is proved in [7]: if ε(Hi) exists for i = 1, 2 and H is a
graph formed by putting all or no edges between vertex disjoint copies of H1

and H2 then ε(H) also exists. Combining this with the well known fact that
P4-free graphs are perfect [14], it follows that ε(H) exists for those graphs
H which can be generated from the one-vertex graph and from P4, using the
above operations. In the spirit of [7], call this class SV S (still very simple).
In terms of graph replacements (see Sect. 4 below), SV S is generated by
replacements into two-vertex graphs starting from K1 and P4. As far as I
know, the existence of ε(H) is not known for any graph outside SV S.

3. Large Perfect Subgraphs

A possible approach to finding a large homogeneous set in a graph is to find
a large perfect subgraph. It was shown in [7] that any H-free graph of n

vertices has an induced cograph of at least ec(H)
√
logn vertices for sufficiently

large n. This shows that the size of the largest homogeneous set makes a huge
jump in the case of any forbidden subgraph. In a certain sense it is not so far
from nc(H). What happens if cographs are replaced by other perfect graphs?
A deep result of Prömel and Steger [13] says that almost all C5-free graphs
are perfect (generalized split graphs) This suggest the possibility to find a
large (nε) generalized split graph in a C5-free graph of n vertices and prove
the existence of ε(C5) this way.

4. Replacements

A well-known important concept in the theory of perfect graphs is the
replacement of a vertex by a graph. The replacement of vertex x of a graph
G by a graph H is the graph obtained from G by replacing x with a copy of
H and joining all vertices of this copy to all neighbors of x in G. According
to a key lemma (Replacement Lemma) of Lovász (see for example in [12]),
perfectness is preserved by replacements. The property of being H-free is
obviously preserved by replacements if (and in some sense only if) H can
not be obtained from a smaller graph by a nontrivial (at least two-vertex)
replacement. For such an H , replacements can be applied to get an upper
bound on ε(H). Analogues of the Replacement Lemma can be also useful to
find large homogeneous sets (an example is Lemma 1 below)
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5. Partitions into Homogeneous Sets

For certain graphs H , the existence of ε(H) follows from stronger properties.
An H-free graph G may satisfy χ(G) ≤ p(ω(G)) or θ(G) ≤ p(α(G)) or
more generally cc(G) ≤ p(α(G), ω(G)) where p is a polynomial of constant
degree and χ, θ, α, ω, cc denote the chromatic number, clique cover number,
independence number, clique number and cochromatic number of graphs.
Using terminology from [10], p is a polynomial binding function (for χ, θ, cc,
respectively). It is clear that if H-free graphs have a polynomial binding
function of degree k then ε(H) ≥ 1

k+1 . Binding functions for χ (for θ) in

H-free graphs may exist only if H(H) is acyclic. However, the existence of
a polynomial binding function for cc in H-free graphs is equivalent with the
existence of ε(H).

6. Small Forbidden Subgraphs

The existence of ε(H) follows if H has at most four vertices since these
graphs are all in SV S. But, as will be shown below, to find ε(H) for these
small graphs is not always that simple. . .

Since hom(n,H) = hom(n,H) from the definition, it is enough to consider
one graph from each complementary pair. For H = Km, finding hom(n,H)
is the classical Ramsey problem. In case of m = 2, 3, 4, ε(K2) = 1 (trivial),
ε(K3) = 1

2 (from Uncle Paul’s lower bound on R(3,m) in [4]), 1
3 ≤ ε(K4) ≤

0.4 (the upper bound is due to Spencer [15]). If H = P3 or H = P4 then an
H-free graph is perfect and thus ε(H) = 1

2 .
There are four more graphs with four vertices to look at. Let H1 be K1,3,

the claw, and let H2 be K3 with a pendant edge. It is not difficult to see
that ε(Hi) = 1

3 in this case. The construction is simple: let G be a graph on
m vertices with no independent set of three vertices and with no complete

subgraph of much more than
√
m vertices [4]. Take about

√
m
2 disjoint copies

of G. This graph is H1-free, has m
3
2 /2 vertices and has no homogeneous

subset with much more than m
1
2 vertices. The complement of this graph

is good for H2. On the the other hand, let G be an Hi-free graph with n
vertices (i is 1 or 2). If the degree of a vertex v is at least n

2
3 then Γ(v)

(the set of vertices adjacent to v) contains a homogeneous set of at least
n

1
3 vertices (in the case of H1 by Ramsey’s theorem, in the case of H2 by

perfectness). Otherwise G has an independent set of at least n
1
3 vertices.

This gives

Proposition 1. If H is the claw or K3 with a pendant edge then ε(H) = 1
3 .

The remaining two H-s are the C4 and K4 minus an edge (the diamond).
The following argument is clearly discovered by many of us, could be heard
from Uncle Paul too. It was used for example in [9, 16]. Let S = {v1, . . . , vα}



138 András Gyárfás

be a maximum independent set of a C4-free or diamond-free graph G. Then
V (G) is covered by the following

(
α+1
2

)
sets: A(i), B(i, j), 1 ≤ i < j ≤ α

where

A(i) = {v ∈ V (G) − S : Γ(v) ∩ S = {vi}} ∪ {vi}

and

B(i, j) = {v ∈ V (G) − S : Γ(v) ∩ S ⊇ {vi, vj}}.

The sets A(i) induce complete subgraphs by the maximality of S and the
sets B(i, j) induce homogeneous sets (complete if G is C4-free, independent
if G is diamond-free). This gives

Proposition 2. If G is C4-free or diamond-free then cc ≤
(
α+1
2

)
.

Corollary 1. If H is either C4 or the diamond then hom(n,H) ≥ (2n)
1
3 .

Therefore ε(H) ≥ 1
3 .

Vertex disjoint unions of complete graphs shows that ε(H) ≤ 1
2 for any

connected graph H . In the case of H = C4 this upper bound can be improved
as follows. Let R(C4,m) be the smallest integer k such that any graph on
k vertices either contains a C4 (not necessarily induced C4!) or contains an
independent set on m vertices. F. K. Chung gives a graph Gm in [3] which
shows that R(C4,m) ≥ m

4
3 for infinitely many m. Replacing each vertex of

Gm by a clique of size m
3 we have a graph with no induced C4 and with no

homogeneous subset larger than m. This gives

Proposition 3. ε(C4) ≤ 3
7 .

Notice that if R(C4,m) ≥ m2−ε with every ε > 0 as asked by Uncle Paul
then the replacement described above would show that ε(C4) = 1

3 .
Perhaps the next construction has a chance to improve the upper bound

on ε(H) if H is the diamond. The vertices of Gq are the points of a linear
complex [11] of a 3-dimensional projective space of order q. Two points are
adjacent if and only if they are on a line of the linear complex. The graph
Gq has q3 + q2 + q + 1 vertices, ω(Gq) = q + 1 and Gq is diamond-free.

But is it true that α(Gq) < q
3
2−ε for some positive ε and for infinitely

many q? Thanks for the conversations to T. Szőnyi who thinks this is
not known.

Problem 1. Improve the exponents in the above estimates of hom(n,H) if
H is either C4 or the diamond.

What happens if G is C4-free and diamond-free? In these graphs each
four cycle induces a K4, The sets B(i, j) collapse implying

Corollary 2. hom(n,C4,Diamond) ≥
√

2
3n− 1.

Problem 2. Is it true that hom(n,C4,Diamond) =
√
n+ o(

√
n)?
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During the years between the submission and publication of this paper,
Problem 2 had been answered affirmatively, in fact hom(n,C4,Diamond) =
�
√
n [6].
There are eight five-vertex graphs outside SV S. Keeping one from each

complementary pair reduces the eight to five: K1,3 with a subdivided edge,
the bull (the self-complementary graph different from C5), C4 with a pendant
edge, P5, and C5. The existence of ε(H) is open for all of them, perhaps
the list is about in the order of increasing difficulty. The construction in
Proposition 1 shows that ε(H) is at most 1

3 for all but C5. In the case of C5

repeated replacements of C7∪K3 into itself shows ε(C5) ≤ log 3
log 10 . (Any C5-free

graph G with hom(G) = 3 and with at least 11 vertices would improve this.)

7. Forbidden Complementary Pairs

Perhaps an interesting subproblem is to find bounds on hom(n,H,H). In the
case of four-vertex H , the structure of graphs which are both H-free and
H-free is well understood and values of hom(n,H,H) can be determined as
follows: n

1
2 if H = P4 (from perfectness); n

1
2 − 1 if H = P3 + K1 (from

structure, [10]); n−1
2 if H = C4 (from structure, [2]); n− 4 if H is a diamond

(from structure, [10]); 2n
5 if H is a claw (from structure, [10]).

The rest of this section is devoted to the case H = P5. The upper bound

hom(n, P5, P5) ≤ n
1

log 5 is shown by replacing repeatedly C5 into itself. The
lower bound n

1
3 will follow from Corollary 3 which is the consequence of the

following result.

Theorem 1. If G is P5-free and P5-free then G satisfies the following
properly SP ∗: there is an induced perfect subgraph of G whose vertices
intersect all maximal cliques of G.

Notice that property SP ∗ is a generalization of strong perfectness
introduced by Berge and Duchet in [1]. (Maximal clique is a clique which
is not properly contained in any other clique.) By Theorem 1, if G is both
P5-free and P5-free then G can be partitioned into at most ω(G) vertex
disjoint perfect subgraphs. Each of these perfect graphs has clique number
at most ω(G) thus each has chromatic number at most ω(G). This gives the
next corollary.

Corollary 3. If a graph is both P5-free and P5 free then χ ≤ ω2.

The proof of Theorem 1 is combining a result of Fouquet [8] with the
following analogue of the Lovász replacement lemma.

Lemma 1. Property SP ∗ is preserved by replacements.

Proof. The proof of the Lemma is along the same line as the replacement
Lemma of Lovász. Assume that G and H have property SP ∗ and R is the
graph obtained by replacing v ∈ V (G) by H . Let G1 and H1 be perfect
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subgraphs of G and H such that V (G1) intersects all maximal cliques of G
and V (H1) intersects all maximal cliques of H .

Case 1. v /∈ V (G1). We claim that V (G1) intersects all maximal cliques of
R. Let K be a maximal clique of R. If V (K) ∩ V (H) is empty then the
claim follows from the definition of G1. Otherwise {v} ∪ (K ∩ V (G)) is a
clique of G which can be extended in G to a maximal clique K ′ intersecting
V (G1). Since K is obtained by replacing v ∈ K ′ by K∩V (H), K intersects
V (G1).

Case 2. v ∈ V (G1). By the Lovász replacement lemma, the subgraph Z of
R induced by (V (G1) ∪ V (H1)) − {v} is perfect. If a maximal clique K
of R intersects V (H), it intersects it in a maximal clique of H which (by
the definition of H1) intersects V (H1). If K does not intersect H then it
does not contain v so it intersects V (G1) − {v} by the definition of G1.
Therefore K intersects Z. �

Theorem 2 (Fouquet [8]). Each graph from the family of P5-free and P5-
free graphs is either perfect or isomorphic to C5 or can be obtained by a
nontrivial replacement from the family.

Now Theorem 1 follows by induction from Lemma 1 and Theorem 2.

8. Berge Graphs

These are graphs which do not contain induced subgraphs isomorphic to
C2k+1 or to C2k+1 for k ≥ 2. According to the Strong Perfect Graph
Conjecture (of Berge), Berge graphs are perfect. The following weaker form
of this conjecture is attributed to Lovász in [7] (illustrating the difficulty of
proving the existence of ε(C5)).

Problem 3. There exists a positive constant ε such that Berge graphs with
n vertices contain homogeneous subsets of nε vertices.

Similar problems can be asked for subfamilies of Berge graphs for which
the validity of SPGC is not known. One of them is the following.

Problem 4. Show that C4-free Berge graphs with n vertices contain homo-
geneous subsets of n

1
2 (or at least cn

1
2 ) vertices.

9. Notes Added in 2013

Roughly 15 years went by. . . Replacements suggested in Sect. 4 have been
developed in [17], implying the existence of ε(H) for many new graphs H .
Two of them, together with the bull resolved separately in [19], leave only
two five-vertex graphs (from the five in Sect. 6) for which the Erdős-Hajnal
conjecture is open: P5 (or its complement) and C5. The theme of Sect. 7
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is recently revitalized, see [20, 21]. Finally, with the Strong Perfect Graph
Theorem [18], the problems of Sect. 8 are resolved.
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Summary. A two-packing of a graph G is a bijection σ : V (G) �→ V (G) such
that for every two adjacent vertices a, b ∈ V (G) the vertices σ(a) and σ(b) are not
adjacent. It is known [2, 6] that every forest G which is not a star has a two-packing
σ. If Fσ is the graph whose vertices are the vertices of G and in which two vertices
a, b are adjacent if and only if a, b or σ−1(a), σ−1(b) are adjacent in G then it is
easy to see that the chromatic number of Fσ is either 1, 2, 3 or 4. We characterize,
for each number n between one and four all forests F which have a two-packing σ
such that Fσ has chromatic number n.

Keywords Packing, Placement, Factorization, Tree, Forest, Chromatic num-
ber

AMS Subject Classification: 05C70

1. Introduction

We only discuss finite simple graphs and use standard terminology and
notation from [1] except as indicated. For any graph G, we use V (G) and
E(G) to denote the set of vertices and the set of edges of G, respectively.
A forest is a graph without cycles. A tree is a connected forest. The length
of a path or cycle is the number of its edges. A path of length n is denoted
by Pn and a cycle of length n is denoted by Cn. The complete graph on n
vertices is denoted by Kn. A vertex of a graph G is an isolated point if its
degree is zero and it is an endpoint of G if its degree is one. A vertex of a
forest F adjacent to an endpoint of F is called a node of F . The set of vertices
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of a forest F which are adjacent to at least one of the endpoints of a set A
of endpoints is called the set of nodes belonging to the set A of endpoints.

The distance between two vertices x and y of a graph G is the length
of the shortest path in G from x to y. The diameter of a graph G is the
largest distance between any two vertices of G. Observe that if T is a tree
and the distance between the vertices x and y of T is the diameter of T , then
the vertices x and y are endpoints of T . A vertex x of a tree T is in the center
of T , or is a central point of T , if the maximal distance from x to any other
vertex of T is minimal for the vertex x. Observe that if the diameter of T is
odd then T has exactly two central points and if the diameter of T is even,
then T has exactly one central point.

A tree of order at least two has at least two endpoints and if it has exactly
two endpoints it is a path. A tree with exactly two nodes is called a dragon.
Note that every tree of diameter three is a dragon. A tree of diameter two or
one with n ≥ 1 edges is called a star Sn. Hence an isolated point is not a star.
If A is a set of vertices of the graphG then G−A is the graph obtained from G
by removing the vertices in A together with all of the incident edges from G.
We will write G − a for G − {a}. If F is a forest and A a set of endpoints
of F then the forest F − A is called a derived forest of F . If A is the set of
all endpoints of F then F − A is the completely derived forest of F . A tree
T is a crested dragon if T has a path P = a1, a2, a3, a4 of length three as a
derived tree, the vertices a1, a4 and possibly a3 are nodes of T , every node
of T is in the set {a1, a3, a4} and the number of endpoints adjacent to a1 is
strictly larger than the number of endpoints adjacent to a3. Observe that the
crested dragon T is a dragon of diameter five if and only if a3 is not a node
of T . See Fig. 1.

Fig. 1

Let G be a graph and σ a bijection from V (G) to V (G). If σ has the
property that for every pair a and b of adjacent vertices of G the vertices
σ(a) and σ(b) are not adjacent then σ is called a two-packing of the graph
G. If σ is a two-packing of G then the graph σ(G) has the same vertices as
the graph G and two vertices a and b of σ(G) are adjacent in σ(G) if and
only if the vertices σ−1(a) and σ−1(b) are adjacent in the graph G. If E is
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the set of edges of G then σ(E) denotes the set of edges of σ(G). Note that
E ∩ σ(E) = ∅. The graph Gσ has the same vertices as the graph G and the
edges of Gσ are given by E(Gσ) = E(G) ∪ E(σ(G)). The graph Gσ can be
factorized into the graphs G and σ(G). Hence results about two-packings of
graphs can also be understood as results about factorizations of graphs.

Burns and Schuster proved that if a graph G of order n does not contain a
vertex of degree n−1 and contains no cycles of length 3 or 4 and |E(G)| = n−1
then there is a two-packing of G, [2]. Faudre, Rousseau, Schelp and Schuster
proved that if a graph G of order n does not contain a vertex of degree n− 1
and contains no cycles of length 3 or 4 and |E(G)| ≤ 6n/5 − 2, then there is
a two packing of G, [3]. St. Brandt proved that if G is a non-star graph of
girth larger than or equal to seven then there is a packing of two copies of G,
[4]. It follows from [2] that every tree which is not a star has a two-packing
and we recently [6] characterised those trees which have a “three-packing”.

The results mentioned above establish the existence of two-packings of
a graph G but are not concerned with any properties of the graph Gσ.
From the point of factorizations of graphs this would be a very interesting
question. Given the difficulties in establishing the existence of two-packings
we looked for a simple case in which we might be able to determine the
possible chromatic numbers of the two-packings of a graph. Note first that
for any two-packing σ ofG the chromatic number ofGσ satisfies the inequality
χ(G) ≤ χ(Gσ) ≤ χ(G)2. This means that if F is a forest which has at least
one edge and σ is a two-packing of F then 2 ≤ χ(Fσ) ≤ 4. If Fσ has chromatic
number less than or equal to two we will call the two-packing σ a bipartite
two-packing.

If G is a connected bipartite graph then the partition of G into the two
color classes is unique. We will call the color class of a vertex x the parity of
x and will often call the vertices in one class the vertices of even parity or
even vertices and the vertices in the other class the vertices of odd parity or
the odd vertices. We will then take care to label the even vertices with even
and the odd vertices with odd numbers. A consequence of the uniqueness of
the color-classes of a connected bipartite graph G is, that if σ is a bipartite
two-packing of G then either for every vertex x of G, σ(x) has the same
parity as x or for every vertex x of G, σ(x) has a different parity than x. In
the first case we will say that the bipartite two-packing σ is an equal parity
packing and in the second case we will say that the bipartite two-packing σ
is an unequal parity packing. If F is a forest and σ a two-packing of F then
σ is an equal parity two-packing of F if for every vertex a of F , whenever
σ(a) and a are in the same connected component of F then, in this connected
component of F , the parity of σ(a) is the same as the parity of a.

It will be often necessary to exhibit a two-packing σ for some small forest
F . We usually will do this in a figure in which the edges of F are solid lines
and the edges of σ(F ) are interrupted lines. In order to check the claim that
the exhibited map σ is indeed a two-packing one has to check that the graph
with the interrupted edges is indeed isomorphic to the graph having solid
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edges and that the graph with the solid edges is the intended graph. It is
then visually clear that the two edge-sets have no edge in common. In the
case of a bipartite two-packing σ, if in the text a vertex is described by a
labeled letter then in the figure the label alone will be used to name the
vertex. The labels of the vertices of F will be in bold times italic typeset and
the vertices of σ(F ) in gray courier oblique. All vertices of one parity will
have even and all the other vertices will have odd labels. In order to check
that σ is an equal parity two-packing it suffices to check that the parity of
the two labels of each vertex is the same.

We will, for each number n between one and four, completely characterize
all forests F which have a two-packing a such that Fσ has chromatic
number n. More exactly we will prove the following theorems:

Theorem 1. A forest has a bipartite two-packing if and only if it is either
a singleton vertex or disconnected or a tree of diameter at least five which is
not a crested dragon. Every forest which has a bipartite two-packing has an
equal parity two-packing.

Theorem 2. A forest F has a two-packing σ such that Fσ has chromatic
number three if and only if either F is a tree with diameter at least four or
F is disconnected and contains a path of length two.

Theorem 3. A forest F has a two-packing a such that Fσ has chromatic
number four if and only if F contains a path of length three and F does not
consist of exactly two connected components where one of the two components
is a path of length three and the other is a star.

2. Preliminary Results

If F is a forest, B a set of vertices of F and σ a two-packing with the property
that for all b ∈ B, σ(b) = b holds, then we say that σ splits the vertices of
B. If B consists of a single vertex b we say that the two-packing σ splits the
vertex b.

If σ is an equal parity two-packing which splits all vertices of V (F ) then
we say that σ is a perfect packing. Let A be a set of endpoints of a forest G
and B the set of nodes which belong to A. Assume that σ is a two-packing
of G−A which splits the vertices of B and λ the extension of σ from G−A
to F such that for all a ∈ A, λ(a) = a holds. Obviously λ is a two-packing of
G. We will call λ a trivial extension of σ to the forest G. The following First
Preservation Lemma holds for trivial extensions of two-packings.

Lemma 1 (First Preservation Lemma). Let σ be a two-packing of a
forest F and λ a trivial extension of σ to the forest G. If Fσ has chromatic
number four then Gλ has chromatic number four. If Fσ has chromatic number
three then Gλ has chromatic number three. If σ is an equal parity two-packing
then λ is an equal parity two-packing.
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Proof. Assume that A is the set of endpoints of G such that G − A = F
and that B is the set of nodes of G which belong to the set A of endpoints.
Then by the definition of trivial extension, the two-packing σ splits the nodes
in B. The chromatic number of Gλ is larger than or equal to the chromatic
number of Fσ, and because the chromatic number of any two-packing of a
forest is at most four, the first of the assertions follows. The endpoints in A
will have degree two in Gλ, which implies the second assertion. Let us now
assume that σ is an equal parity two-packing. Then, for every node b ∈ B
and every two coloring of Fσ, the vertices b and σ(b) will be colored with the
same color. This of course implies the third assertion. �

Corollary 1. If some derived forest of a forest F has a perfect packing then
F itself has an equal parity two-packing.

Let F be a forest, a and b two endpoints of F , a1 the node adjacent to a
and b1 the node adjacent to b. If a1 and b1, are different vertices then the pair
of endpoints a and b is called a reducing pair of endpoints of the forest F . If
the nodes a1 and b1 are in the same connected component of F and have the
same parity then clearly also the endpoints a and b have the same parity and
then a and b is an equal parity reducing pair of endpoints of the forest F .
Let a, b be a reducing pair of endpoints of the forest F , a1 and a2 the nodes
adjacent to a and b respectively and σ a two-packing of the forest F −{a, b}.
Let λ be the extension of σ from F − {a, b} to F such that if σ(a1) = a1 or
σ(b1) = b1 then λ(a) = b and λ(b) = a. In all other cases we put λ(a) = a
and λ(b) = b. Clearly λ is a two-packing of the forest F . We will call λ the
extension of σ to the reducing pair a, b of endpoints. The following Second
Preservation Lemma holds for extensions of two-packings to reducing pairs
of endpoints.

Lemma 2 (Second Preservation Lemma). Let F be a forest, a, b a
reducing pair of endpoints of F , σ a two-packing of the forest F − {a, b}
and λ an extension of σ to the reducing pair a, b of endpoints of F . If Fσ
has chromatic number four then Fλ has chromatic number four. If Fσ has
chromatic number three then Fλ has chromatic number three. If σ is an equal
parity two-packing and a1 and b1 have the same parity then λ is an equal
parity two-packing. If σ splits a set B of vertices then λ splits the set B of
vertices.

Proof. The chromatic number of Fλ is larger than or equal to the chromatic
number of Fσ, and because the chromatic number of any two-packing of a
forest is at most four, the first of the assertions follows. The endpoints a
and b will have degree two in Fλ which implies the second assertion. Let us
now assume that σ is an equal parity two-packing and that the nodes a1
and b1 have the same parity. Then, for every proper two coloring of Fσ, the
vertices a1, b1, σ(a1) and σ(b1) will be colored with the same color. This of
course implies the third assertion. Because σ and λ agree on F − {a, b} the
two-packing λ splits all vertices which are split by σ. �
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Observe the following fact:

Lemma 3. If T is a tree with diameter one or two then T does not have a
two-packing.

Lemma 4. For every two-packing σ of a tree T with diameter three the graph
Tσ has chromatic number four.

Proof. Denote the two central points of T by a and b. If σ(a) = a then σ(b)
is an endpoint not adjacent to a and hence adjacent to b. We will show that
σ(b) and b are also adjacent in σ(T ), a contradiction. Because σ is an onto
map and σ maps all vertices adjacent to a to endpoints adjacent to b there
is some endpoint x adjacent to b such that σ(x) = b. But then σ(x) = b is
adjacent to σ(b) in σ(T ). If σ(a) = b then σ(b) is an endpoint not adjacent
to b and hence adjacent to a. We will show that σ(b) and a are also adjacent
in σ(T ), a contradiction. Because σ is an onto map and σ maps all vertices
adjacent to a to endpoints adjacent to a there is some endpoint x adjacent
to b such that σ(x) = a. But then a(x) = a is adjacent to σ(b) in σ(T ). We
conclude that {σ(a), σ(b)} ∩ {a, b} = ∅.

We will now prove that T ∪ σ(T ) induces the complete graph on the set
{σ(a), σ(b), a, b} of four vertices. It follows from the result of the previous
paragraph that there are two endpoints x and y of T such that σ(a) = x
and σ(b) = y. Again because σ is onto there are two endpoints u and v
of T such that σ(u) = a and σ(v) = b. The graph T ∪ σ(T ) induces then
six different edges in the set {σ(a), σ(b), a, b} of vertices. Those are first the
two edges from a to b and σ(a) to σ(b). Then each of the four different
points x, y which are endpoints of T and σ(u), σ(v) which are endpoints
of σ(T ) is in the graph T ∪ σ(T ) adjacent to at least one of the vertices
{σ(a), σ(b), a, b}. �

Lemma 5. If T is a tree with diameter at least two and at most four then
T does not have a bipartite two-packing.

Proof. Observe that every tree T of diameter at most four contains a vertex
a which is adjacent to every vertex of T whose parity is different than the
parity of the vertex a. If T has a bipartite two-packing σ then because σ is
a bijection, there is some vertex b of T such that σ(b) = a. This means that
the parity of a is different from the parity of b, otherwise b would have to be
an isolated point (and if the diameter of a tree is larger than one it does not
contain an isolated point). Because the vertex a is adjacent to every vertex
whose parity is different from the parity of a, the vertices a and b are adjacent
in T and therefore σ(a) and σ(b) are adjacent in σ(T ). Remember that every
bipartite two-packing of T either changes the parity of all vertices or maps
each parity class into itself. Hence σ(a) is a vertex c adjacent to a. This now
leads to a contradiction. The vertices a and c are adjacent in T , and because
a = σ(b) and c = σ(a) they are adjacent in σ(T ). �
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3. Bipartite Two-Packings

Lemma 6. Every path of length at least seven has a perfect packing.

Proof. If the length r of the path is seven, eight or nine Lemma 6 follows from
Figs. 2, 3, and 4. So assume that Pr+1 = a0, a1, . . . , ar+1 is a path with r ≥ 9
and σ is a perfect packing of the path Pr = a0, a1, . . . , ar. Assume that for x

Fig. 2

Fig. 3

Fig. 4
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in Pr, σ(x) = ar. There are at least five vertices in the path Pr which have
the same parity as the vertex ar+1. This means that at least one of them, say
ai with σ(y) = ai has the following properties: ai+1 = σ(ar) = ai−l and y
is not adjacent to x. The following bijection λ from (Pr+1) to (Pr+1) is then
a perfect packing of Pr+1. First of all λ agrees with σ on (Pr−y) and then
λ(y) = ar+1 and λ(ar+1) = ai. It is easy to check that λ is a perfect packing
of Pr+1. �

Lemma 7. If a forest G has an equal parity two-packing which splits the
vertices of some set B, then the forest F which consists of G together with an
additional isolated point e has an equal parity two-packing which splits every
vertex in B and which also splits the isolated point e.

Proof. Let σ be an equal parity two-packing of G which splits every vertex in
B. Let a be any vertex of G and λ a function from V (G)∪{e} to V (G)∪{e}
which agrees with σ on all vertices of V (G) − a and for which λ(e) = σ(a)
and λ(a) = e. Clearly λ is an equal parity two-packing of G which splits the
vertices of B ∪ {e}. �

Lemma 8. Every forest F with two components where one of the compo-
nents is an isolated point e and the other component T is a dragon, a star,
or an isolated point, has an equal parity two-packing which splits the isolated
point e.

Proof. If T is an isolated point then F clearly has an equal parity two-
packing which splits e. If T is a star then a derived forest of F consists
of two isolated vertices and hence there is a derived forest of F which has
a perfect packing. Lemma 8 follows from the Corollary to Lemma 1. Let
the path Pr = a1, a2, . . . , ar be the completely derived tree of T and denote
the nonempty set of endpoints adjacent to ar by A and the nonempty set
of endpoints adjacent to a1 by B. Let a ∈ A and b ∈ B be two endpoints
of T . The path Pr together with a and b is then a path P of length r + 1.
If the forest whose connected components are Pr and e has an equal parity
two-packing in which the vertices a1, ar and e are split, then according to
the First Preservation Lemma, the forest F has an equal parity two-packing
which splits e. It follows from Lemmas 6 and 7 that the forest whose connected
components are P and e has an equal parity two-packing in which the vertices
a1, ar and e are split if r ≥ 6. If r = 3 or r = 5 then Pr is a star S2 or has
an equal parity reducing pair of endpoints a and b such that Pr − {a, b} is a
star S2. Using the Second Preservation Lemma we see that Lemma 8 holds
in this case. This leaves the cases r = 2 and r = 4. If r = 2 Fig. 5 exhibits
an equal parity two-packing of P together with an isolated point which splits
the two nodes of P and the isolated point.

Consider r = 4. Let a0 ∈ A, a5 ∈ B. See Fig. 6 in which 1, 4 and e are
split. Then by the First Preservation Lemma, Lemma 8 holds for this case as
well. �
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Lemma 9. Every forest F with two components, where one of the compo-
nents is an isolated vertex e and the other a tree T , has an equal parity
two-packing which splits e.

Proof. By the Second Preservation Lemma we may assume that T does not
contain two different nodes which have the same parity. This means that T
can not have three different nodes, hence T is a dragon, a star or an isolated
point. Lemma 9 follows then from Lemma 8. �

Fig. 5

Fig. 6

Lemma 10. Every forest F with at least two connected components has an
equal parity two-packing.

Proof. Observe first that if we obtain the forest G from F by adding an
edge which is adjacent to vertices in different connected components of F ,
and if G has an equal parity two-packing, then F has an equal parity two-
packing. We may therefore assume without loss of generality that the forest
F has exactly two components G and H . Let G1 be the forest which consists
of G together with an additional vertex e1 and H1 the forest which consists
of H together with an additional vertex e2. Let γ be an equal parity two-
packing of G1 which splits e1 and λ be an equal parity two-packing of H1

which splits e2. Identify the vertex γ(e1) with the vertex e2 and the vertex
λ(e2) with the vertex e1. It is not difficult to check that γ∪λ = σ is an equal
parity two-packing of the forest F . �

Lemma 11. A crested dragon T does not have a bipartite two-packing.

Proof. Let P = a1, a2, a3, a4 be the completely derived tree of the crested
dragon T . Assume that the nodes of T are a1, a4 and possibly a3. Let A be
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the set of endpoints adjacent to a1, B the set of endpoints adjacent to a4
and C the set of endpoints adjacent to a3. Then |A| > |C| and C might be
empty if T is a dragon of diameter five. Assume for a contradiction that σ is
a bipartite two packing of T .

Case 1. The two-packing σ is an equal parity two-packing.

Every even vertex of T is adjacent to at least one of the odd vertices a1
and a3. If the distance in T between σ(a1) and σ(a3) is two, then for some
even vertex x of T , σ(x) would be in T adjacent to both vertices σ(a1) and
σ(a3) and in σ(T ) to at least one of the vertices σ(a1) and σ(a3). This is not
possible because T and σ(T ) would then have an edge in common. Hence
the distance between σ(a1) and σ(a3) is larger than two and because this
distance must be an even number it is at least four. Also both vertices σ(a1)
and σ(a3) are odd vertices of T . Hence one of the vertices σ(a1) or σ(a3)
must be equal to a1. If σ(a1) = a1 then the |A| + 1 even vertices adjacent to
a1 must be mapped by σ to even vertices not adjacent to a1. But there are
only |C|+1 < |A|+1 even vertices not adjacent to a1. If σ(a3) = a1 then the
|C| + 2 even vertices adjacent to a3 must be mapped by σ to even vertices
not adjacent to a1. But there are only |C| + 1 < |C| + 2 even vertices not
adjacent to a1.

Case 2. The two packing σ is an unequal parity two-packing.

The vertex a4 is adjacent to all odd vertices except a1. Hence σ(a4) must
be an odd endpoint of T , that is σ(a4) is some endpoint adjacent to a4 and
σ(a1) = a4. But this implies that σ(a1) can only be adjacent to a1 in σ(T ).
Hence a1 must be an endpoint of T , a contradiction. �

Lemma 12. If T is a tree of diameter five which is not a crested dragon but
every equal parity reduction of T is a crested dragon or a tree of diameter
less than five then T has an equal parity two-packing.

Proof. We assume first that T contains two equal parity reducing endpoints x
and y such that T −{x, y} is a crested dragon D. Let m be the node adjacent
to x and n the node adjacent to y. Choose a path P = a0, a1, a2, a3, a4, a5 in
the crested dragon D such that the vertices a1, a4 and possibly a3 are nodes
of D but no other vertices are nodes of D. Note that P is a derived tree of T .
Denote by A the set of endpoints adjacent to a1, by B the set of endpoints
adjacent to a4 and by C the set of endpoints adjacent to a3. Then |A| > |C|
and C might be empty. Observe that the nodes m and n are vertices of D.
We are going to discuss several cases depending on which vertices of D are
the nodes m and n of T . Clearly {m,n}∩ (A∪B) = ∅ otherwise the diameter
of T would be larger than five.

We assume first that both nodes m and n are elements of C. Let then R
be the subtree of T which is spanned by the vertices of P together with the
vertices m, n, x and y. Clearly R is a derived tree of T . Figure 7 exhibits a
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perfect packing of R. It follows then from the First Preservation Lemma that
T has an equal parity two-packing. (The two-packing σ maps a bold labelled
vertex i to the gray labeled vertex i. The reason for using numbers and not
letters in Fig. 7 is to make it obvious that the graph Fσ is bipartite. Indexed
letters take too much space in the figure.)

Fig. 7

If only one of the nodes m and n, say m, is an element of C, then the
other node n must be equal to some vertex of even parity in D. Hence n
is equal to a2 or a4. If n = a2 let R then be the subtree of T which is
spanned by the vertices of P together with the vertices m and y. Clearly R is
a derived tree of T . Figure 8 exhibits a perfect packing ofR. It follows from the
First Preservation Lemma that T has an equal parity two-packing. If m is an
element of C and n = a4 we considerR to be the subtree of T which is spanned
by the vertices of P and the vertices m and x. Note that a2 is now not a node
of T . ClearlyR is a derived tree of T . Figure 9 exhibits a bipartite two-packing
of R in which every vertex splits except the vertex a2, which corresponds
to 2 in the figure. It follows then from the First Preservation Lemma that
T has an equal parity two-packing. We arrived now at the situation that
neither m nor n is an element of C. Because m and n have the same parity
it follows that either {m,n} = {a1, a3} or that {m,n} = {a2, a4} holds. If
{m,n} = {a1, a3} then T is a crested dragon, contrary to our assumptions on
T . (Because |A| > |C| clearly |A| + 1 > |C| + 1). If {m,n} = {a2, a4} and C
is not empty then the same graph R as used for Fig. 8 is a derived tree of T .
If C is empty then T is a crested dragon, (label the path P beginning at a5
with a0), contrary to the assumption on T .

We can now assume that whenever x and y is an equal parity reducing pair
of endpoints of T , then the diameter of the tree K = T−{x, y} is smaller than
five. Because T has diameter five it contains a path P = a0, a1, a2, a3, a4, a5
of length five such that the vertices a0 and a5 are endpoints of T and a1 and
a4 are nodes of T . Since T is not a crested dragon, the tree T has at least one
node different from a1 and a4. The tree T has at most two more nodes besides
a1 and a4, otherwise two of those nodes would have the same parity and T
could be further equal parity reduced to a tree which has diameter five. If T
has two nodes besides a1 and a4 we will denote them by n and m and if T has
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Fig. 8

Fig. 9

only one such a node we will denote it by m. Note that the two nodes m and
n have different parity otherwise T could be equal parity reduced to a tree
which has diameter five. For a vertex a in T the distance of a from P is the
length of the shortest path from a to any vertex of P . The vertex of P which
has shortest distance from a is called the point of attachment of a. Because
T has diameter five there is no vertex in T which has distance greater than
or equal to three from P . This means that the nodes m and n have distance
at most one from P .

If both nodes m and n have distance one from P the points of attachment
of m and n are in the set {a2, a3}. Otherwise T would have diameter at
least six. If the points of attachment of m and n are different we may
assume without loss of generality that the point of attachment of m is a2
and the point of attachment of n is a3. If we remove all endpoints from T
except the endpoints a0 and a5 we arrive at the subtree of T spanned by
the vertices a0, a1, a2, a3, a4, a5,m, n. We see from Fig. 8 that this tree has
a perfect packing. Hence by the First Preservation Lemma, T has an equal
parity two-packing. If m and n have the same vertex as point of attachment
then m and n would have the same parity.

Hence at most one node, say m, has distance one from P while the other
node is a vertex in P . As above the point of attachment of m is one of the
points a2 or a3 and we may assume without loss of generality that a3 is
the point of attachment of the node m. The node n can not be one of the
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Fig. 10

endpoints of T adjacent to a1 or a4 because the diameter of T is five. By
assumption n is not equal to a1 or a4. If n is equal to a2 then m and n would
have the same parity. We conclude that n = a3 holds. The nodes a3 = n and
a1 of T have the same parity. If a1 would be adjacent to more than the one
endpoint a0 then T could be further equal parity reduced while still containing
a path of length five. Hence a1 is only adjacent to the one endpoint a0. If we
remove all endpoints from T except the endpoints a0 and a5 we arrive at the
subtree of T spanned by the vertices a0, a1, a2, a3 = n, a4, a5,m. We see from
Fig. 10 that this tree has an equal parity two-packing in which every vertex,
except the vertex a1, splits. Hence by the First Preservation Lemma the tree
T has an equal parity two-packing.

The next case to investigate is the one in which both of the nodes m and
n of T are vertices of the path P . Because the diameter of T is five the nodes
m and n can not be endpoints of P and by assumption m and n are different
from a1 and a4. Also, m and n are different from each other. Hence without
loss, m = a2 and n = a3. There is then at least one endpoint of T adjacent to
a2 and at least one endpoint of T adjacent to a3. We can now use Fig. 8 and
the First Preservation Lemma to conclude that T has a bipartite packing.

We assume from now on that there is only the one node m in T which is
not equal to a1 or a4. If m has distance one from P we may assume without
loss that the point of attachment of m is a3. Because m is a node there exists
at least one endpoint a7 of T adjacent to m. If we remove all endpoints from
T except the endpoints a0, a5 and a7 we arrive at the subtree of T spanned
by the vertices a0, a1, a2, a3, a4, a5, a7,m. We see from Fig. 9 that this tree has
an equal parity bipartite packing in which every vertex splits, except for the
vertex a2 which is not a node of T . Hence by the First Preservation Lemma,
T has an equal parity two-packing.

The last case is when m is a vertex in P . As before we may assume
without loss that m = a3 holds. The node m = a3 as adjacent to at least
one endpoint, say a6. The parity of m = a3 is the same as the parity of
the node a1. Hence the node a1 is adjacent to at most one endpoint of T ,
otherwise T could be further equal parity reduced while still containing a path
of length five. If we remove all endpoints from T except the endpoints c0, a5
and a6 we arrive at the subtree of T spanned by the vertices a0, a1, a2, a3 =
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m, a4, a5, a6. We see from Fig. 10 that this tree has an equal parity bipartite
packing in which every vertex, except the vertex a2, splits. Hence by the First
Preservation Lemma, T has an equal parity two-packing. �

Lemma 13. A tree T of diameter five has an equal parity two-packing if and
only if T is not a crested dragon.

Proof. If T is a crested dragon it follows from Lemma 11 that T does not
have a bipartite two-packing. If T has an equal parity reducing pair a and b
of endpoints such that T −{a, b} is not a crested dragon and has diameter at
least five then, using the Second Preservation Lemma, we have to consider
the tree T − {a, b} instead. Because T is finite we can assume that for every
equal parity reducing pair a and b of endpoints of T , T − {a, b} is either a
crested dragon or has diameter smaller than five. By Lemma 12, the tree T
has then an equal parity two-packing. �

Lemma 14. Every tree T of diameter larger than or equal to five which is
not a crested dragon has an equal parity two-packing.

Proof. By the Second Preservation Lemma we may assume that any equal
parity reduction of T either yields a tree of diameter less than five or a crested
dragon. Because of Lemma 13 we may also assume that the diameter of T
is larger than five. If T does not contain an equal parity reducing pair of
endpoints then because the diameter of T is larger than five, T would have
to be a dragon of diameter at least seven. Because every path of length at
least seven has a perfect packing (Lemma 6), every dragon of length at least
seven has an equal parity two-packing. We may therefore further assume that
the tree T contains a pair of endpoints a, b of equal parity which are adjacent
to two different nodes.

Case 3. The tree T contains endpoints a, b of equal parity which are adjacent
to two different nodes such that the tree T − {a, b} is a crested dragon D.

We assume that the path a1, a2, a3, a4 is a derived tree of the crested
dragon D such that a1, a4 and possibly a3 are the nodes of D. Let A be the
set of endpoints of D adjacent to a1, B the set of endpoints of D adjacent
to a4, C the set of endpoints of D adjacent to a3 and assume that a0 is an
endpoint in A and that a5 is an endpoint in B. Because the diameter of T is
larger than five it follows that at least one of the endpoints a or b of the equal
parity reducing pair of endpoints of T is adjacent to one of the endpoints in
the set A ∪B.

If both vertices a and b are adjacent to vertices in the set A ∪ B then,
because a and b have the same parity, they are either both adjacent to vertices
in A or they are both adjacent to vertices in B. In either case the tree R, for
which Fig. 10 exhibits an equal parity two-packing σ, is a derived tree of T .
The two-packing σ splits all of the vertices of R except the vertex labelled 2.
Using the First Preservation Lemma we conclude that T has an equal parity
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two-packing except in the case where both endpoints a and b are adjacent
to vertices in B and the set C is not empty. In this case we use the tree for
which Fig. 11 exhibits a perfect packing and which is then a derived tree of
T . We are therefore now in the situation that exactly one of the endpoints
a and b, say a, is in the set A ∪ B. Assume first that a ∈ B. Because a and
b have the same parity the endpoint b is not adjacent to a vertex in C. The
tree T then contains the path P = a0, a1, a2, a3, a4, a5, a6 = a of length six
and every endpoint of T is adjacent to some vertex in this path. If the center
a3 of P is not a node of T we are done by the First Preservation Lemma and
the following Fig. 12 which exhibits a bipartite two-packing of P6 in which
every vertex except the center splits. If a3 is a node of T we may assume
that a3 is adjacent to a8. The vertices of the path P together with a8 span a
subtree R of T which is a derived tree of T . If the node a5 of T is adjacent to
more than one endpoint then T would have an equal parity reducing pair of
endpoints x and y such that T − {x, y} has diameter six. Hence we assume
without loss of generality that a5 is adjacent to only one endpoint. Figure 13
exhibits an equal parity two-packing of R in which all of the nodes which
belong to endpoints of T which are not in R are split. Hence T has an equal
parity two-packing.

Fig. 11

Fig. 12

Assume next that a is adjacent to some endpoint, say a0 in A. The tree T
contains then the path P = a, a0, a1, a2, a3, a4, a5 of length six. If b is adjacent
to an element of C then a2 is not a node of T . Hence we can use the tree
exhibited in Fig. 10 together with the First Preservation Lemma to construct
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Fig. 13

an equal parity two-packing of T . If b is not adjacent to a vertex in C but
to the center a2 of P we use Fig. 14 and if b is neither adjacent to a2 nor to
a vertex in C we use Fig. 13 together with the First Preservation Lemma to
construct an equal parity two-packing of T .

Case 4. For any two endpoints a, b of equal parity which are adjacent to two
different nodes, the tree T − {a, b} has diameter four.

Let P be the path a = a0, a1, a2, a3, a4, a5, a6 = b of length six which
joins the endpoints a and b in T . Observe that T does not contain a node,
say m, different from the nodes a1 and a5 which has parity 1. Otherwise some
endpoint x adjacent to m would form an equal parity reducing pair with a0
and T −{x, a0} would have diameter five. If T would contain two nodes, say
m and n, besides the nodes a1 and a5 they would both have to have even
parity. But then T could be equal parity reduced by some two endpoints
adjacent to m and n respectively and still have diameter six. If T contains
no other node besides the nodes a1 and a5 then T is a dragon of diameter six
which has an equal parity two-packing by Fig. 12 and the First Preservation
Lemma.

It follows that the tree T has exactly three nodes, namely a1, a5 and a
third one, say m which has even parity. The distance from m to either one of
a1 and a5 is smaller than four. Otherwise we could reduce T by the pair a0,
a6 of endpoints and obtain a tree of diameter at least five. Hence m is either
a vertex in P or has distance one from a3. If m is a vertex in P different from
the center a3 we are done by Fig. 12 and if m is adjacent to a3 or equal to a3
we are done by Fig. 13 and the First Preservation Lemma. �

Theorem 4. A forest has a bipartite packing if and only if it is either a
singleton vertex or disconnected or a tree of diameter at least five which is
not a crested dragon. Every forest which has a bipartite packing has an equal
parity packing.

Proof. Follows immediately from Lemmas 5, 10, 13, and 14. �
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4. Two-Packings Which Yield a Graph of Chromatic
Number Three

Lemma 15. Every tree with diameter at least four has a three chromatic
two-packing.

Proof. Using the Second Preservation Lemma we may assume that if a, b is
any reducing pair of endpoints of T then T − {a, b} does not have diameter
at least four. This implies that T has at most three different nodes.

Case 5. The tree T has exactly three nodes.

Assume that the nodes are the vertices a1, b1 and c1 and that a is an
endpoint adjacent to a1, b is an endpoint adjacent to b1 and that c is an
endpoint adjacent to c1. Assume also that the distance from a to b is the
diameter of T . The diameter of T can not be larger than or equal to five
because then the tree T −{b, c} would still have diameter at least four. Hence
there is a path P = a, a1, d, b1, b of length four from a to b. Let the point
of attachment of c1 be the vertex in the path P which has shortest distance
to c1. The point of attachment of c1 can not be a or b because a and b are
endpoints of T . If the point of attachment of c1 is a1 then c1 is not a vertex
in P , otherwise c1 = a1 contrary to the assumption that the three nodes a1,
b1 and c1 are pairwise different. But c1 has then at least distance one from
a1 and the distance from c to b would be at least five. Similarly the point
of attachment of c1 is not equal to b1. Hence the point of attachment of c1
must be the central point d of the path P . The distance from c1 to d is at
most one otherwise the distance from c to a would be at least five. Hence the
distance from c1 to d is either one or zero. In either case the tree R which
consists of the path P of length four together with one endpoint x adjacent
to the central point d will be a derived tree of the tree T . Figure 14 shows a
two-packing of the tree R of chromatic number three in which every vertex
splits. Using the First Preservation Lemma we conclude that T has a three
chromatic two-packing.

Case 6. The tree T has exactly two nodes.

Fig. 14

This means that T is a dragon. Assume that the nodes are the vertices a1
and b1 and that a is an endpoint adjacent to a1 and b is an endpoint adjacent
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to b1. Observe that either a1 or b1 is adjacent to exactly one endpoint.
Otherwise T can be further reduced to a tree which has diameter at least
four. For the same reason the dragon T has diameter four or five. In one
case a path of length four and in the other case a path of length five is a
derived tree of T . Because at least one of the two nodes is adjacent to only
one endpoint it is sufficient to find a two-packing of a path of length four and
a two-packing of a path of length five in which at least one of the nodes splits
and which has chromatic number three. Such two-packings are exhibited in
Fig. 15. �

Fig. 15

Lemma 16. A forest F which is not connected has a three chromatic two-
packing if and only if F contains a path of length two.

Proof. If F does not contain a path of length two then the degree of every
vertex of F is at most one and F consists of a partial matching (that is a set
of pairwise not adjacent edges), together with some isolated vertices. Hence
for any two-packing σ of F the maximal degree of Fσ is at most two and
the edges of Fσ can be factorized into two matchings. This means that every
connected component of Fσ is either a path or a circuit. Since an odd circuit
can not be factorized into two matchings each of the circuits has even length
which implies that the chromatic number of Fσ is at most two.

Let us now assume that F contains a path of length two. Using the Second
Preservation Lemma we may assume that F can not be reduced without
yielding a forest which has no path of length two. That implies that F has
at most two connected components which contain a path of length one or
two and all other components of F are isolated points. Otherwise F could
be further reduced. Observe that every isolated point has a bipartite two-
packing. This means that we can assume that F has at most two connected
components and that if F contains an isolated point then F has exactly two
components, one the isolated point and the other a tree of diameter two or
three. There are three more cases to be discussed. In each case, a two-packing
σ of F is exhibited such that every vertex of F is split and Fσ has chromatic
number three.

Case 7. The forest F has two connected components A and B which contain
a path of length two.
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Since the forest F can not be further reduced, each of the two connected
components A and B is a path of length two. Figure 16 exhibits a two-packing
σ such that Fσ has chromatic number three.

Fig. 16

Case 8. The forest F has only one component A which contains a path of
length two and an isolated point e.

The forest F consists then of two components, A and the isolated point e.
The diameter of A is at most three, otherwise F could be further reduced.
We conclude that A is either a star or a dragon of diameter three. If A is a
dragon of diameter three we can assume that at most one of the two nodes has
degree larger than or equal to three, otherwise F could be further reduced.
Figure 17 exhibits for both cases a two-packing σ such that Fσ has chromatic
number three.

Case 9. The forest F has only one component A which contains a path of
length two and no isolated point.

Then the other component of F contains exactly one edge. Since F can
not be reduced further, F must consist of a path of length two and a second
component of diameter one. Figure 18 exhibits a two-packing σ such that Fσ
has chromatic number three. �

Fig. 17

Fig. 18
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Theorem 5. A forest F has a two-packing σ such that Fσ has chromatic
number three if and only if F is a tree with diameter at least four or F is
disconnected and contains a path of length two.

Proof. If F is disconnected then the theorem follows from Lemma 16. If F
is connected and contains a path of length four the theorem follows from
Lemma 15. If F is connected and has diameter zero, that is F is an isolated
point, then for every two-packing σ of F , the graph Fσ has chromatic number
one. If F is connected and has diameter one or diameter two, then F does
not have a two-packing, by Lemma 3. If F is connected and has diameter
three then it follows from Lemma 4 that for every two packing σ of F , the
graph Fσ has chromatic number four. �

5. Two-Packings Which Yield a Graph of Chromatic
Number Four

For n ≥ 3, the wheel Wn is a graph which consists of a cycle with n vertices
and an additional vertex which is adjacent to all of the vertices in the cycle.
The complete graph K4 for example is the wheel W3.

Lemma 17. A graph G with at most six vertices and chromatic number four
contains the complete graph K4 or the wheel W5 as a subgraph.

Proof. We only need consider the cases that G has five vertices and that G
has six vertices. If G has six vertices and does not contain a triangle, then
because G has chromatic number four it must contain a circuit C of length
five. Because G does not contain a triangle C has no chords. If the sixth
vertex is not adjacent to all of the vertices of C, G would have chromatic
number three and if the sixth vertex is adjacent to all vertices of C then
G is the wheel W5. If G contains a triangle with vertices a, b, c then color
the vertex a with color 0 the vertex b with color 1 and the vertex c with
color 2. If G does not contain the complete graph K4, then each of the other
three vertices x, y, z is adjacent to at most two of the vertices in the triangle
spanned by a, b, c. If two of the vertices x, y and z are adjacent then they are
not adjacent to the same two vertices of the triangle spanned by a, b, c. We
color the vertices x, y and z with the colors 0, 1 and 2 in such a way that none
of the vertices x, y, z is adjacent to a vertex in the set {a, b, c} of vertices
which has the same color. This can be done because each of the vertices x,
y, z is adjacent to at most two of the vertices in the triangle spanned by
a, b, c. We also assume that the number of adjacent pairs of vertices which
received the same color is as small as possible under the coloring condition
given above. Observe that if all three colors are used to color the vertices x,
y and z then G would have a good three coloring. Hence we can assume that
at least two of the three vertices x, y and z have the same color.
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Assume first that all three vertices x, y and z have the same color, say 2.
If no two of them are adjacent then we arrived at a three coloring of the
graph G. Hence assume that the vertices x and y are adjacent. At least one
of the two vertices x and y, say y is not adjacent to one of the two vertices,
say b. We can then color y with the color 1 instead of with the color 2 and
obtain a coloring in which there are fewer adjacent pairs of vertices which
have the same color.

Assume next that the vertices x and y have the same color, say 2, and that
the vertex z has a different color, say 1. The vertices x and y are adjacent,
otherwise the given coloring would be a good three coloring of the graph G.
If one of the two vertices x and y, say y, is not adjacent to the vertex a,
then y could be colored with the color 0 to obtain a good three coloring of
G. Hence both vertices x and y are adjacent to the vertex a. This means
that one of the two vertices x and y, say y is not adjacent to the vertex b.
If the vertices z and y would not be adjacent then coloring y with the color
1 instead of 2 would give a good three coloring of G. Hence y is adjacent
to z. If the vertex z would not be adjacent to the vertex a we would obtain
a good three coloring of G by changing the color or z from 1 to 0 and the
color of y from 2 to 1. Hence z is adjacent to a. The vertices z and x are not
adjacent otherwise the vertices x, y, z and a would form a K4. This implies
that x is adjacent to b otherwise x could be colored with color 1 to give a
good three coloring of G. Also the vertices z and c are adjacent, otherwise
we could change the color of z from 1 to 2 and the color of y from 2 to 1 to
obtain a good three coloring of G. This now finally implies that G contains
the wheel W5 because x, y, z, c, b, x form a cycle of length five and the vertex
a is adjacent to the other five vertices.

If G has five vertices let G1 be the graph obtained from G by adding an
additional isolated point. We can then apply the result for six vertices to G1

and obtain the lemma in the case of five vertices as well. �

Lemma 18. If A and B is a factorization of the complete graph K4 into
two forests, then both of the factors A and B are isomorphic to the path P3

of length three.

Proof. If one of the factors A or B contains less than three edges the other
factor must contain at least four edges and hence a circuit. This means that
both of the factors A and B contain exactly three edges. Hence each of the
factors A and B is either the path P3 or the star S3. The complement of S3 in
K4 is a triangle. Hence both factors A and B are isomorphic to the path P3.�

Lemma 19. A forest F with exactly two connected components P and S,
where P is a path of length three and S is a star Sn with n ≥ 1, does not
have a two-packing σ such that Fσ has chromatic number four.

Proof. Assume for a contradiction that Fσ has chromatic number four. Let
G be the graph obtained from Fσ by removing all vertices from Fσ which
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have degree at most two. Clearly, Fσ has chromatic number four if and only
if G has chromatic number four. Because F contains at most three vertices
which have degree larger than one, the graph G contains at most six vertices.
Hence by Lemma 17, G and therefore Fσ contains the complete graph K4 or
the wheel W5. According to Lemma 18, if A, B is a two-factorization of K4

into two forests then both factors A and B are isomorphic to P3. Because
F contains only one path of length three, the two factors A and B are a
two-packing of P3. But this is not possible because the star S does not have
a two-packing.

Let us now assume that G contains the wheel W5. The wheel W5 contains
six vertices each of which has degree at least three. This means that the
vertices of this wheel consist of the three vertices of F which are not endpoints
of F together with their σ images. Notice that if y is a vertex in W5 which is
not an endpoint of F then both σ−1(y) and σ(y) is an endpoint of F . Let a
be the center of the star S. The vertex x of W5 which is adjacent to all other
vertices of W5 has degree five. We may assume without loss of generality that
three of the edges adjacent in G to x are edges of F and hence that x = a.
The two central points c, d of P are then in W5 adjacent to x = a. The two
edges of W5 from c, d to x = a must be edges of σ(F ). But then σ−1(a) could
not be an endpoint of F . �

Lemma 20. A forest F which does not contain a path of length three does
not have a two-packing σ such that Fσ has chromatic number four.

Proof. Let us direct the edges of F in such a way that every directed edge
points towards an endpoint of F . Then we direct the edges of σ(F ) such that
σ preserves the directions. This makes Fσ into a directed graph. Observe
that a vertex in Fσ has degree larger than or equal to three if and only if its
indegree is at most one. If Fσ has chromatic number four then the graphs
which we obtain from Fσ by successively removing vertices of degree at most
two will also have chromatic number four. Hence this process of removing
vertices of degree at most two ends in a graph G of chromatic number
four in which every vertex has degree at least three. This is a contradiction
because in G every vertex has indegree at most one and hence outdegree at
least two. �

Lemma 21. Every tree T of diameter at least three has a two packing σ
such that Fσ has chromatic number four.

Proof. By the Second Preservation Lemma we may assume that T is reduced,
that means that whenever a, b is a reducing pair of endpoints then T −{a, b}
has diameter smaller than three. This implies that T has diameter either three
or four and if T has diameter four then T has exactly two endpoints, that is
T is a path of length four, and if T has diameter three then T is a dragon of
diameter three because every tree of diameter three is a dragon. Observe that
in both cases the path of length three is a derived tree. Any factorization of
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the complete graph K4 into two paths of length three results in a two packing
σ of the path of length three, in which every vertex splits. �

Lemma 22. If F is a forest which contains at least one path of length three
and if F does not have exactly two components one of which is a star and
the other a path of length three then F has a two-packing a such that Fσ has
chromatic number four.

Proof. By the Second Preservation Lemma we may assume that F is reduced,
that is if a and b is a reducing pair of vertices then F −{a, b} is a forest which
either does not contain a path of length three or F − {a, b} has exactly two
components one of which is a star and the other a path of length three. If
F has more than two components A,B1, B2, . . . , Bn with n ≥ 2, where A
contains a path of length three then let σ be a two-packing of A such that Fσ
has chromatic number four, (Lemma 21), and λ a two-packing of the forest
which consists of the other components. Clearly σ ∪ λ has then the required
properties. We may therefore assume that F has exactly two components A
and B where A has diameter at least three. If B is not a star then again the
union of a four chromatic two-packing of A and a two-packing of B will be
a four chromatic two-packing of F . We assume therefore that B is a star. If
A has diameter larger than or equal to five then F could be reduced further
by a pair of endpoints, one from B and the other from A. If A has diameter
four then A has exactly two endpoints or else we could reduce F by a pair of
endpoints one fromA and the other fromB. We arrived then at the case where
A is a path of length four and B a star with at least two vertices. Figure 19
exhibits a two packing σ for this case such that Fσ has chromatic number
four. If A has diameter three then A is a dragon of diameter three. If A would
have more than three endpoints then F could be further reduced. Hence A
has exactly three endpoints, otherwise A would be a path of length three.
Figure 20 exhibits a two packing λ such that Fλ has chromatic number four.�

Fig. 19

Theorem 6. A forest F has a two-packing a such that Fσ has chromatic
number four if and only if F contains a path of length three and F does not
consist of exactly two connected components where one of the two components
is a path of length three and the other is a star.
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Fig. 20

Proof. Theorem 6 follows immediately from Lemmas 19, 20, 21, and 22. �
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II. Ramsey and Extremal Theory
Introduction

It is perhaps evident from several places of this volume that Ramsey theorem
played a decisive role in Erdős’ combinatorial activity. And perhaps no other
part of combinatorial mathematics is so dear to him as Ramsey theory
and extremal problems. He was not creating or even aiming for a theory.
However, a complex web of results and conjectures did, in fact, give rise
to several theories. They all started with modest short papers by Erdős,
Szekeres and Turán in the thirties. How striking it is to compare these initial
papers with the richness of the later development, described, e.g., by the
survey articles of Miki Simonovits (extremal graph theory) and Jeff Kahn
(extremal set theory). In addition, the editors of these volumes tried to cover
in greater detail the development of Ramsey theory mirrored and motivated
by Erdős’ papers. In a way (and this certainly is one of the leitmotivs of
Erdős’ work), there is little difference between, say, density Ramsey type
results and extremal problems.

One can only speculate on the origins of density questions. It is clear
that in the late 1930s and 1940s, the time was ripe in ideas which later
developed into extremal and density questions: we have not only the Erdős-
Turán 1941 paper but also, Erdős and Tomsk 1938 paper on number theory
which anticipated extremal theory by determining n3/2 as upper bound for
C4-free graphs, the Sperner paper and also the Erdős–Ko–Rado work (which
took several decades to get into print). All these ideas, together with Turán’s
extremal results provided a fruitful cross-interaction of ideas from various
fields which, some 30 years later, developed into density Ramsey theorems
and extremal theory. We are happy to include in this chapter papers by
Gyula Katona (which gives a rare account of Erdős method of encouraging
and educating young talented students). The article by Vojtěch Rödl and
Robin Thomas related to another aspect of Erdős’ work was the start of many
further refinements of arrangeability for special classes of sparse graphs (see J.
Nešetřil, P. Ossona de Mendez: Sparsity, Springer 2012 for a recent discussion
of the problem). We also include an important paper by Alexander Kostochka



168 II Ramsey and Extremal Theory

which gives a major breakthrough to the Erdős–Rado Δ-system problem
(for triples; meanwhile Kostochka succeeded in generalizing the result to k-
tuples).

Finally, we have the paper of Saharon Shelah, solving a model theoretic
Ramsey question of Väänänen, illustrating (once again) that Ramsey theory
is alive and well.

In 1995/1996, when the content of these volumes was already crystallising,
we asked Paul Erdös to isolate a few problems, both recent and old, for each
of the eight main parts of this book. To this part on Ramsey theory he
contributed the following collection of problems and comments.

Erdős in his own words

Hajnal, Rado and I proved

2ck
2

< r3(k, k) < 22
k

,

we believe that the upper bound is correct or at least is closer to the truth,
but Hajnal and I have a curious result: If one colors the triples of a set of
n elements by two colors, there always is a set of size (log n)1/2 where the
distribution is not just, i.e., one of the colors has more than 0.6

(
t
3

)
of the

triples for t = (log n)1/2. Nevertheless we believe that the upper bound is
correct. It would perhaps change our minds if we could replace 0.6 by 1 − ε
for some t, t > (log n)ε. We never had any method of doing this.

Let H be a fixed graph and let n be large. Hajnal and I conjectured that
if G(n) does not contain an induced copy of H then G(n) must contain a
trivial subgraph of size > nε, ε = ε(H). We proved this for many special
cases but many problems remain. We could only prove exp(c

√
logn).

Extremal Graph Theory

Denote by T (n;G) the smallest integer for which every graph of n vertices
and T (n;G) edges contains G as a subgraph. Turán determined T (n;G) if
G is K(r) for all r, T (n,C4) =

(
1
2 + o(1)

)
n3/2 was proved by V. T. Sós,

Rényi and myself. The exact formula for T (n,C4) is known if n = p2 + p+ 1
(Füredi).

I have many asymptotic and exact results for T (n,C4) and many results
and conjectures with Simonovits. I have to refer to the excellent book of
Bollobás and the excellent survey of Simonovits and a very good recent survey
article of Füredi. Here I only state two results of Simonovits and myself:
T (n,G) < cn8/5 where G is the edge graph of the three-dimensional cube.
Also we have fairly exact results for T (n,K(2, 2, 2)).

Ramsey–Turán Theorems

The first papers are joint with V. T. Sós and then there are comprehensive
papers with Hajnal, Simonovits, V. T. Sós and Szemerédi. Here I only state
a result with Bollobás, Szemerédi and myself: For every ε > 0 and n > n0(ε)
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there is a graph of n vertices n2

8 (1− ε) edges with no K(4) and having largest
independent set o(n), but such a graph does not exist if the number of edges

is n2

8 (1 + ε). We have no idea what happens if the number of edges is n2

8 .
One last Ramsey type problem: Let nk be the smallest integer (if it exists)

for which if we color the proper divisors of nk by k colors then nk will be a
monochromatic sum of distinct divisors, namely a sum of distinct divisors in
a color class. I am sure that nk exists for every k but I think it is not even
known if n2 exists. It would be of some interest to determine at least n2.
An old problem of R. L. Graham and myself states: Is it true that if mk is
sufficiently large and we color the integers 2 ≤ t ≤ mk by k colors, then

1 =
∑ 1

ti

is always solvable monochromatically? I would like to see a proof that m2

exists. (Clearly mk ≥ nk.) Perhaps this is really a Turán type problem and
not a Ramsey problem. In other words, if m is sufficiently large and 1 < a1 <
a2 < · · · < a� ≤ m is a sequence of integers for which

∑
�1 /a� > δ logm, then

1 =
∑ εi

ai
(εi = 0 or 1)

is always solvable. I offer 100 dollars for a proof or disproof. Perhaps it suffices
to assume that

∑

ai<m

1

ai
> C(log logm)2

for some large enough C. For further problems of this kind as well as for
related results see my book with R. L. Graham. I hope before the year 2000
a second edition will appear.

*****
So much for Paul Erdős. Of course progress since 1995/1996 has been very

rapid, particularly so in extremal and Ramsey theory. Most of the papers were
updated for this second edition. Note that the main result of the paper by
Shelah in this chapter was improved very recently by D. Conlon, J. Fox and
B. Sudakov (Two extensions of Ramsey theorem, to appear in Duke Math.
J.): the order of the modified Ramsey function is single exponential.

We are fortunate that Sasha Razborov contributed to our volume with a
new survey on an exciting new tool for extremal theory problems—the flag
algebra calculus. (See also the recent book L. Lovász: Graph Limits, AMS
2012.)

At this place let us comment on the last part of Erdős’ text: The problem
of Erdős and Graham has been solved by Ernie Croot (then only a student)
in
E. Croot, On a coloring conjecture about unit fractions, Ann. Math. 157
(2003), 545–556.
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On the other hand the second edition of
P. Erdős, R. L. Graham, Old and new problems and results in combinatorial
number theory, Monographie L’Enseignements Math. 28,(1980) definitively
did not appear before 2000 (in fact it has not even appeared up to now
(2013)). Well, even Paul Erdős was sometimes wrong!
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Summary. Ramsey’s theorem was not discovered by P. Erdős. But perhaps one
could say that Ramsey theory was created largely by him. This paper will attempt
to demonstrate this claim.

1. Introduction

Ramsey’s theorem was not discovered by Paul Erdős. This was barely
technically possible: Ramsey proved his theorem in 1928 (or 1930, depending
on the quoted source) and this is well before the earliest Erdős publication in
1932. He was then 19. At such an early age 4 years makes a big difference. And
also at this time Erdős was not even predominantly active in combinatorics.
The absolute majority of the earliest publications of Erdős is devoted to
number theory, as can be seen from the following table:

1932 1933 1934 1935 1936 1937 1938 1939
All papers 2 0 5 10 11 10 13 13
Number theory 2 0 5 9 10 10 12 13

The three combinatorial exceptions among his first 82 papers published
in 8 years are 2 papers on infinite Eulerian graphs and the paper [46] by
Erdős and G. Szekeres. Thus, the very young P. Erdős could not have been a
driving force for the development of Ramsey theory or Ramsey-type theorems
in the 30s. That position should be perhaps reserved for Issac Schur who not
only proved his sum theorem [114] in 1916 but, as it appears now [115],
also conjectured van der Waerden’s theorem [124], proved an important
extension, and thus put it into a context which inspired his student R. Rado
to completely settle (in 1933) the question of monochromatic solutions of
linear equations [102]. This result stands apart even after 60 years.

Yet, in retrospect, it is fair to say that P. Erdős was responsible for the
continuously growing popularity of the field. Ever since his pioneering work in
the 30s he proved, conjectured and asked seminal questions which together,
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some 40–50 years later, formed Ramsey theory. And for Erdős, Ramsey theory
was a constant source of problems which motivated some of the key pieces of
his combinatorial research.

It is the purpose of this article to partially justify these claims, using a
few examples of Erdős’ activity in Ramsey theory which we will discuss from
a contemporary point of view.

In the first section we cover paper [46] and later development in great
detail. In Sect. 2, we consider the development based on Erdős’ work related
to bounds on various Ramsey functions. Finally, in Sect. 3 we consider his
work related to structural extensions of Ramsey’s theorem.

No mention will be made of his work on infinite extensions of Ramsey’s
theorem. This is covered in this volume by the comprehensive paper of A.
Hajnal.

2. The Erdős-Szekeres Theorem

F. P. Ramsey discovered his theorem [104] in a sound mathematical context
(of the decision problem for a class of first-order formulas; at the time,
the undecidability of the problem was not known). But since the time of
Dirichlet the “Schubfach principle” and its extensions and variations played
a distinguished role in mathematics. The same holds for the other early
contributions of Hilbert [67], Schur [114] and van der Waerden [124].

Perhaps because of this context Ramsey’s theorem was never regarded as
a puzzle and/or a combinatorial curiosity only. Thanks to Erdős and Szekeres
[46] the theorem found an early application in a quite different context,
namely, plane geometry:

Theorem 1 ([46]). Let n be a positive integer. Then there exists a least
integer N(n) with the following property: If X is a set of N(n) points in the
plane in general position (i.e. no three of which are collinear) then X contains
an n-tuple which forms the vertices of a convex n-gon.

One should note that (like in Ramsey’s original application in logic) this
statement does not involve any coloring (or partition) and thus, by itself, fails
to be of “Ramsey type”. Rather it fits to a more philosophical description of
Ramsey type statements as formulated by Mirsky:

There are numerous theorems in mathematics which assert, crudely
speaking, that every system of a certain class possesses a large
subsystem with a higher degree of organization than the original
system.

It is perhaps noteworthy to list the main features of the paper. What a
wealth of ideas it contains! We can list at least 6 main aspects of this paper
(numbered I–VI):
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I. It is proved that N(4) = 5 and this is attributed to Mrs. E. Klein.
This is tied to the social and intellectual climate in Budapest in the 30s
which has been described both by Paul Erdős and Szekeres on several
occasions (see e.g. [30]), and with names like the Happy End Theorem.

II. The following two questions related to statement of Theorem 1 are
explicitly formulated:

(a) Does the number N(n) exist for every n?
(b) If so, estimate the value of N(n).

It is clear that the estimates were considered by Erdős from the very
beginning. This is evident at several places in the article.

III. The first proof proves the existence of N(n) by applying Ramsey’s
theorem for partitions of quadruples. It is proved that N(n) ≤
r(2, 4, {5, n}). This is still a textbook argument. Another proof based
on Ramsey’s theorem for partitions of triples was found by A. Tarsi (see
[63]). So far no proof has emerged which is based on the graph Ramsey
theorem only.

IV. The authors give “a new proof of Ramsey’s theorem which differs entirely
from the previous ones and gives for mi(k, �) slightly smaller limits”.
Here mi(k, �) denotes the minimal value of |X | such that every partition
of i-element subsets of X into two classes, say α and β, each k-element
contains an i-element subset of class α or each i-element subset contains
an i-element subset of class β.

Thus, mi(k, �) is the Ramsey number for 2-partitions of i-element
subsets. These numbers are denoted today by r(2, i, {k, l}) or ri(k, l).
The proof is close to the standard textbook proofs of Ramsey’s theorem.
Several times P. Erdős attributed it to G. Szekeres.

Erdős and Szekeres explicitly state that r2(k + 1, � + 1) = m2(k +
1, � + 1) ≤

(
k+�
2

)
and this value remained for 50 years essentially the

best available upper bound for graph Ramsey numbers until the recent
improvements by Rödl, Thomason [122] and finally by Conlon [17].
The current best upper bound (for k = �) is

(
2k

k

)
k−C

log k
log log k .

V. It is not as well known that [46] contains yet another proof of the graph
theoretic formulation of Ramsey’s theorem (in the above notation, i = 2)
which is stated for its particular simplicity. We reproduce its formulation
here.

Theorem 2. In an arbitrary graph let the maximum number of
independent points be k; if the number of points is N � m(k, �) then
there exists in our graph a complete graph of order �.
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Proof. For � = 1, 2, the theorem is trivial for any k, since the maximum
number of independent points is k and if the number of points is (k+1),
there must be an edge (complete graph of order 2).

Now suppose the theorem proved for (� − 1) with any k. Then at
least N−k

k edges start from one of the independent points. Hence if

N − k

k
� m(k, �− 1),

i.e.,

N � k ·m(k, �− 1) + k,

then, out of the end points of these edges we may select, in virtue of our
induction hypothesis, a complete graph whose order is at least (� − 1).
As the points of this graph are connected with the same point, they
form together a complete graph of order �. �

This indicates that Erdős and Szekeres were well aware of the novelty
of the approach to Ramsey’s theorem. Also this is the formulation of
Ramsey’s problem which motivated some of the key pieces of Erdős’
research. First an early use of the averaging argument and then the
formulation of Ramsey’s theorem in a “high off-diagonal” form: If a
graph G has a bounded clique number (for example, if it is triangle-
free) then its independence number has to be large. The study of this
phenomenon led Erdős to key papers [25, 27, 28] which will be discussed
in the next section in greater detail.

VI. The paper [46] contains a second proof of Theorem 1. This is a more
geometrical proof which yields a better bound

N(n) ≤
(

2n− 4

n− 2

)
+ 1

and it is conjectured (based on the exact values of N(n) for n = 3, 4, 5)
that N(n) = 2n−2 + 1. This is still an unsolved problem. The second
proof (which 50 years later very nicely fits to a computational geometry
context) is based on yet another Ramsey-type result.

Theorem 3 (Ordered pigeon hole principle; Monotonicity lemma).
Let m, n be positive integers. Then every set of (m − 1)(n − 1) + 1 distinct
integers contains either a monotone increasing n-set or monotone decreasing
m-set.

The authors of [46] note that the same problem was considered by R.
Rado. The stage has been set.

The ordered pigeon-hole principle has been generalized in many different
directions (see e.g., [14, 90] and more recently [10]).

All this is contained in this truly seminal paper. Viewed from a contem-
porary perspective, the Erdős-Szekeres paper did not solve any well-known
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problem at the time and did not contribute to Erdős’ instant mathematical
fame (as a number theorist). But the importance of the paper [46] for the
later development of combinatorial mathematics cannot be overestimated.
To illustrate this development is one of the aims of this paper.

Apart from the problem of a good estimation of the value of N there is a
peculiar structural problem related to [46]:

Call a set Y ⊆ X an n-hole in X if Y is the set of vertices of a convex
n-gon which does not contain other points in X . Does there always exist
N∗(n) such that if X is any set of at least N∗(n) points in the plane in
general position then X contains an n-hole?

It is easy to prove that N∗(n) exists for n ≤ 5 (see Harborth (1978) where
these numbers are determined). Horton (1983) showed that N∗(7) does not
exist. The fact that N∗(6) exists was established only very recently. The best
bounds currently available are 30 ≤ N∗(6) ≤ 463 (see [57, 96, 73, 97]).

3. Estimating Ramsey Numbers

Today it seems that the first question in this area which one might be tempted
to consider is the problem of determining the actual sizes of the sets which
are guaranteed by Ramsey’s theorem (and other Ramsey-type theorems). But
one should try to resist this temptation since it is “well-known” that Ramsey
numbers (of all sorts) are difficult to determine and even good asymptotic
estimates are difficult to find.

It seems that these difficulties were known to both Erdős and Ramsey.
But Erdős considered them very challenging and addressed this question in
several of his key articles. In many cases his estimations obtained decades ago
are still the best available. Not only that, his innovative techniques became
standard and whole theories evolved from his key papers.

Here is a side comment which may partly explain this success: Erdős
was certainly one of the first number theorists who took an interest in
combinatorics in the contemporary sense (being preceded by isolated events,
for example, by V. Jarńık’s work on the minimum spanning tree problem and
the Steiner problem see [69] and e.g. [66] and more recent [89] for the history
of the problem. Incidentally, Jarńık was one of the first coauthors of Erdős.)
Together with Turán, Erdős brought to the “slums of topology” not only his
brilliance but also his expertise and “good taste”. It is our opinion that these
facts profoundly influenced further development of the whole field. Thus it
is not perhaps surprising that if one would isolate a single feature of Erdős’
contribution to Ramsey theory then it is perhaps his continuing emphasis on
estimates of various Ramsey-related questions. From the large number of his
results and papers we decided to cover several key articles and comment on
them from a contemporary point of view.
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I. The 1947 paper [25]. In a classically clear way, Erdős proved

2k/2 ≤ r(k) < 4k (1)

for every k ≥ 3.

His proof became one of the standard textbook examples of the power
of the probabilistic method. (Another example perhaps being the strikingly
simple proof of Shannon of the existence of exponentially complex Boolean
functions.)

The paper [25] proceeds by stating (1) in an inverse form: Define A(n) as
the greatest integer such that given any graph G of n vertices, either it or its
complementary graph contains a complete subgraph of order A(n). Then for
A(n) ≥ 3,

logn

2 log 2
< A(n) <

2 logn

log 2
.

Despite considerable efforts over many years, these bounds have been
improved only slightly (see [121, 117]). We commented on the upper bound
improvements above. The best current lower bound is

r(n) ≥ (1 +O(1))

√
2n

e
2n/2

which is twice the Erdős bound (when computed from his proof).
The paper [25] was one of 23 papers which Erdős published within 3 years

in the Bull. Amer. Math. Soc. and already here it is mentioned that although
the upper bound for r(3, n) is quadratic, the present proof does not yield a
nonlinear lower bound. That had to wait for another 10 years.

II. The 1958 paper [27]—Graph theory and probability. The main
result of this paper deals with graphs, circuits, and chromatic number
and as such does not seem to have much to do with Ramsey theory. Yet
the paper starts with the review of bounds for r(k, k) and r(3, k) (all
due to Erdős and Szekeres). Ramsey numbers are denoted as in most
older Erdős papers by symbols of f(k), f(3, k), g(k). He then defines
analogously the function h(k, �) as “the least integer so that every graph
of h(k, �) vertices contains either a closed circuit of k or fewer lines or the
graph contains a set of independent points. Clearly h(3, �) = f(3, �)”.

The main result of [27] is that h(k, �) > �1+1/2k for any fixed k ≥ 3 and
� sufficiently large. The proof is one of the most striking early uses of the
probabilistic method. Erdős was probably aware of it and this may explain
(and justify) the title of the paper. It is also proved that h(2k+1, �) < c�1+1/k

and this is proved by a variant of the greedy algorithm by induction on �.
Now after this is claimed, it is remarked that the above estimation (1) leads
to the fact that there exists a graph G with n vertices which contain no closed
circuit of fewer than k edges and such that its chromatic number is > nε.
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This side remark is in fact perhaps the most well known formulation of
the main result of [27]:

Theorem 4. For every choice of positive integers k, t and � there exists a
k-graph G with the following properties:

(1) The chromatic number of G > t.
(2) The girth of G > �.

This is one of the few true combinatorial classics. It started in the 40s
with Tutte [20] and Zykov [126] for the case k = 2 and � = 2 (i.e., for triangle-
free graphs). Later, this particular case was rediscovered and also conjectured
several times [22, 70]. Kelly and Kelly [70] proved the case k = 2, � � 5, and
conjectured the general statement for graphs. This was settled by Erdős in
[27] and the same probabilistic method has been applied by Erdős and Hajnal
[35] to yield the general result for hypergraphs.

Erdős and Rado [41] proved the extension of k = 2, � = 2 to transfinite
chromatic numbers while Erdős and Hajnal [36] gave a particularly simple
construction of triangle-free graphs, so called shift graphs G = (V,E) : V =
{(i, j); 1 ≤ i < j ≤ n} and E = {(i, j), (i, j); i < j = i < j}. Gn is triangle-
free and χ(Gn) = [logn].

For many reasons it is desirable to have a constructive proof of Theorem 4.
This has been stressed by Erdős on many occasions (and already in [27]).
This appeared to be a difficult problem and a construction in full generality
was finally given by Lovász [81]. A simplified construction has been found
in the context of Ramsey theory by Nešetřil and Rödl [91]. The graphs and
hypergraphs with the above properties (i), (ii) are called highly chromatic
(locally) sparse graphs, for short. Their existence could be regarded as one of
the true paradoxes of finite set theory (see [35]) and it has always been felt
that this result is one of the central results in combinatorics.

Recently it has been realized that sparse and complex graphs may be used
in theoretical computer science for the design of fast algorithms. However,
what is needed there is not only a construction of these “paradoxical”
structures but also their reasonable size. In one of the most striking recent
developments, a program for constructing complex sparse graphs has been
successfully carried out. Using several highly ingenious constructions which
combine algebraic and topological methods it has been shown that there are
complex sparse graphs, the size of which in several instances improves the
size of random objects. See Margulis [84], Alon [2] and Lubotzky et al. [83].

Particularly, it follows from Lubotzky et al. [83] that there are examples
of graphs with girth �, chromatic number t and the size at most t3�. A bit
surprisingly, the following is still open:

Find a primitive recursive construction of highly chromatic locally sparse
k-uniform hypergraphs. Indeed, even triple systems (i.e., k = 3) present a
problem. The best construction seems to be given in [75].
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III. r(3, n) [28]. The paper [28] provides the lower bound estimate on the
Ramsey number r(3, n). Using probabilistic methods Erdős proved

r(3, n) ≥ n2

log2 n
(2)

(while the upper bound r(3, n) ≤
(
n+1
2

)
follows from [46]). The estima-

tion of Ramsey numbers r(3, n) was Erdős’ favorite problem for many
years. We find it already in his 1947 paper [25] where he mentioned
that he cannot prove the nonlinearity of r(3, n). Later he stressed this
problem (of estimating r(3, n)) on many occasions and conjectured
various forms of it. He certainly felt the importance of this special case.
How right he was is clear from the later developments, which read as a
saga of modern combinatorics. And as isolated as this may seems, the
problem of estimating r(3, n) became a cradle for many methods and
results, far exceeding the original motivation.

In 1981 Ajtai, Komlós and Szemerédi in their important paper [1] proved
by a novel method

r(3, n) ≤ c
n2

logn
. (3)

This bound and their method of proof has found many applications.
The Ajtai, Komlós and Szemerédi proof was motivated by yet another Erdős
problem from combinatorial number theory. In 1941 Erdős and Turán [48]
considered problem of dense Sidon sequences (or B2-sequences). An infinite
sequence S = {a1 < a2 < · · · } of natural numbers is called Sidon sequence if
all pairwise sums ai + aj are distinct. Define

fS(n) = max{x : ax ≤ n}

and for a given n, let f(n) denote the maximal possible value of fs(n). In [48],
Erdős and Turán prove that for finite Sidon sequences f(n) ∼ n1/2 (improving
Sidon’s bound of n1/4; Sidon’s motivation came from Fourier analysis [116]).
However for every infinite Sidon sequence S growth of fs(n) is a more difficult
problem and as noted by Erdős and Turán,

lim inffs(n)/n1/2 = 0.

By using a greedy argument it was shown by Erdős [26] that fs(n) > n1/3.
(Indeed, given k numbers x1 < . . . < xk up to n, each triple xi < xj < xk
kills at most 3 other numbers x, xi + xj = xk + x, xi + xk = xj + x and

xj + xk = xi + x and thus if k + 3
(
k
3

)
< ck2 < n we can always find a

number x < n which can be added to S.) Ajtai, Komlós and Szemerédi
proved [1] using a novel “random construction” the existence of an infinite
Sidon sequence S such that

fs(n) > c · (n logn)1/3.
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An analysis of independent sets in triangle-free graphs is the basis of their
approach and this yields as a corollary the above mentioned upper bound on
r(3, n). (The best upper bound for fs(n) is of order c · (n logn)1/2.)

It should be noted that the above Erdős-Turán paper [48] contains the
following still unsolved problem: Let a1 < a2 < · · · be an arbitrary sequence.
Denote by f(n) the number of representations of n as ai + aj . Erdős and
Turán prove that f(n) cannot be a constant for all sufficiently large n and
conjectured that if f(n) > 0 for all sufficiently large n then lim sup f(n) = ∞.
This is still open. Erdős provided a multiplicative analogue of this conjecture
(i.e., for the function g(n), the number of representation of n as aiaj); this is
noted already in [48]. One can ask what this has to do with Ramsey theory.
Well, not only was this the motivation for [1] but a simple proof of the fact
that lim sup g(n) = ∞ was given by Nešetřil and Rödl in [93] just using
Ramsey’s theorem.

We started this paper by listing the predominance of Erdős’s first works
in number theory. But in a way this is misleading since the early papers of
Erdős stressed elementary methods and often used combinatorial or graph-
theoretical methods. The Erdős-Turán paper [48] is such an example and the
paper [24] even more so.

The innovative Ajtai-Komlós-Szemerédi paper [1] was the basis for a
further development (see, e.g., [6]) and this in turn led somewhat surprisingly
to the remarkable solution of Kim [72], who proved that the Ajtai-Komlós-
Szemerédi bound is up to a constant factor, the best possible, i.e.,

r(n, 3) > c
n2

logn
.

Thus r(n, 3) is a nontrivial infinite family of (classical) Ramsey numbers with
known asymptotics. Recently, there are more such examples, see [3, 4, 5].

IV. Constructions. It was realized early by Erdős the importance of finding
explicit constructions of various combinatorial objects whose existence
he justified by probabilistic methods (e.g., by counting). In most cases
such constructions have not yet been found but even constructions
producing weaker results (or bounds) formed an important line of
research. For example, the search for an explicit graph of size (say)
2n/2 which would demonstrate this Ramsey lower bound has been so
far unsuccessful. This is not an entirely satisfactory situation since it is
believed that such graphs share many properties with random graphs
and thus they could be good candidates for various lower bounds, for
example, in theoretical computer science for lower bounds for various
measures of complexity. (See the papers [13] and [122] which discuss
properties of pseudo- and quasirandom graphs.)

The best constructive lower bound for Ramsey numbers r(n) is due to
Frankl and Wilson. This improves on an earlier construction of Frankl [51]
who found the first constructive superpolynomial lower bound.
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The construction of Frankl-Wilson graphs is simple:
Let p be a prime number, and put q = p3. Define the graph Gp = (V,E)

as follows:

V =

(
[q]

p2 − 1

)
= {F ⊆ {1, . . . , p3} : |F | = p2 − 1},

{F, F} ∈ E iff |F ∩ F | ≡ −1 (mod q).

The graph Gp has
(
p3

p2−1

)
vertices. However, the Ramsey properties of the

graph Gp are not trivial to prove: It follows only from deep extremal
set theory results due to Frankl and Wilson [53] that neither Gp nor its

complement contain Kn for n ≥
(
p3

p−1

)
. This construction itself was motivated

by several extremal problems of Erdős and in a way (again!) the Frankl-
Wilson construction was a byproduct of these efforts.

We already mentioned earlier the developments related to Erdős paper
[27]. The constructive version of bounds for r(3, n) led Erdős to geometrically
defined graphs. An early example is Erdős-Rogers paper [45] where they prove
that there exists a graph G with �1+ck vertices, which contains no complete
k-gon, but such that each subgraph with � vertices contains a complete
(k − 1)-gon.

If we denote by h(k, �) the minimum integer such that every graph of
h(k, �) vertices contains either a complete graph of k vertices or a set of �
points not containing a complete graph with k − 1 vertices, then

h(k, �) ≤ r(k, �).

However, for every k ≥ 3 we still have h(k, �) > �1+ck .
This variant of the Ramsey problem is due to A. Hajnal. The construction

of the graphG is geometrical: the vertices of G are points on an n-dimensional
sphere with unit radius, and two points are joined if their Euclidean distance
exceeds

√
2k/(k − 1).

Graphs defined by distances have been studied by many people (e.g., see
[101]). The best constructive lower bound on r(3, n) is due to Alon [3] and
gives r(3, n) ≥ cn3/2. See also a remarkable elementary construction [12]
(and also [16] which gives a weaker result).

4. Ramsey Theory

It seems that the building of a theory per se was never Erdős’s preference.
He was a life-long problem solver, problem poser, admirer of mathematical
miniatures and beauties. THE BOOK is an ideal. Instead of developing the
whole field he seemed always to prefer consideration of particular cases.
However, many of these cases turned out to be key cases and somehow
theories emerged.
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Nevertheless, one can say that Erdős and Rado systematically investi-
gated problems related to Ramsey’s theorem with a clear vision that here
was a new basis for a theory. In their early papers [42, 43] they investigated
possibilities of various extensions of Ramsey’s theorem. It is clear that these
papers are a result of a longer research and understanding of Ramsey’s
theorem. As if these two papers summarized what was known, before Erdős
and Rado went on with their partition calculus projects reflected by the
grand papers [44] and [37]. But this is beyond the scope of this paper. Erdős
and Rado [42] contains an extension of Ramsey’s theorem for colorings by
an infinite number of colors. This is the celebrated Erdős-Rado canonization
lemma:

Theorem 5 ([42]). For every choice of positive integers p and n there exists
N = N(p, n) such that for every set X, |X | ≥ N , and for every coloring
c :

(
x
p

)
→ N (i.e., a coloring by arbitrarily many colors) there exists an n-

element subset Y of X such that the coloring c restricted to the set
(
Y
p

)
is

“canonical”.

Here a coloring of
(
Y
p

)
is said to be canonical if there exists an ordering

Y = y1 < . . . < yn and a subset w ⊆ {1, . . . , p} such that two n-sets {zl <
. . . < zp} and {z′1 < · · · < z′p} get the same color if and only if zi = z′i
for exactly i ∈ w. Thus there are exactly 2p canonical colorings of p-tuples.
The case w = φ corresponds to a monochromatic set while w = {1, . . . , p}
to a coloring where each p-tuple gets a different color (such a coloring is
sometimes called a “rainbow” or totally multicoloring).

Erdős and Rado deduced Theorem 5 from Ramsey’s theorem. For exam-
ple, the bound N(p, n) ≤ r(2p, 22p, n) gives a hint as to how to prove it.
One of the most elegant forms of this argument was published by Rado [103]
in one of his last papers.

The problem of estimating N(p, n) was recently attacked by Lefman
and Rödl [80] and Shelah [113]. One can see easily that Theorem 5 implies
Ramsey’s theorem (e.g., N(p, n) ≥ r(p, n − 2, n)) and the natural question
arises as to how many exponentiations one needs. In [80] this was solved
for graphs (p = 2) and Shelah [113] solved recently this problem in full
generality: N(p, n) is the lower function of the same height r(p, 4, n) i.e.,
(p− 1) exponentiations.

The Canonization Lemma found many interesting applications (see, e.g.,
[98]) and it was extended to other structures. For example, the canonical van
der Waerden theorem was proved by Erdős and Graham [31].

Theorem 6 ([31]). For every coloring of positive integers one can find
either a monochromatic or a rainbow arithmetic progression of every length.
(Recall: a rainbow set is a set with all its elements colored differently.)

This result was extended by Lefman [79] to all regular systems of linear
equations (see also [21]) and in an extremal setting by Erdős et al. [38].
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One of the essential parts of the development of the “new Ramsey theory”
age was the stress on various structural extensions and structure analogies
of the original results. A key role was played by the Hales-Jewett theorem
(viewed as a combinatorial axiomatization of van der Waerden’s theorem),
Rota’s conjecture (the vector-space analogue of Ramsey’s theorem), Graham-
Rothschild parameter sets, all dealing with new structures. These questions
and results displayed the richness of the field and attracted so much attention
to it.

It seems that one of the significant turns appeared in the late 60s when
Erdős, Hajnal and Galvin started to ask questions such as “which graphs
contain a monochromatic triangle in any 2-coloring of its edges”. Perhaps
the essential parts of this development can be illustrated with this particular
example.

We say that a graph G = (V,E) is t-Ramsey for the triangle (i.e.,
K3) if for every coloring of E by t-colors, one of the colors contains a
triangle. Symbolically we denote this by G → (K3)2t . This is a variant of
the Erdős-Rado partition arrow. Ramsey’s theorem gives us K6 → (K3)22
(and Kr(2,t,3) → (K3)2t ). But there are other essentially different examples.
For example, a 2-Ramsey graph for K3 need not contain K6. Graham
[60] constructed the unique minimal graph with this property: The graph
K3 + C5 (triangle and pentagon completely joined) is the smallest graph
G with G → (K3)22 which does not contain a K6. Yet K3 + C5 contains
K5 and subsequently van Lint, Graham and Spencer constructed a graph
G not containing even a K5, with G → (K3)22. Until recently, the smallest
example was due to Irving [68] and had 18 vertices. Very recently, two more
constructions appeared by Erickson [49] and Bukor [11] who found examples
with 17 and 16 vertices (both of them use properties of Graham’s graph).

Of course, the next question which was asked is whether there exists a
K4-free graph G with G → (K3)22. This question proved to be considerably
harder and it is possible to say that it has not yet been solved completely
satisfactorily.

The existence of a K4-free graph G which is t-Ramsey for K3 was
settled by Folkman [50] (t = 2) and Nešetřil and Rödl [94]. The proofs
are complicated and the graphs constructed are very large. Perhaps just to
be explicit Erdős [29] asked whether there exists a K4-free graph G which
arrows triangle with fewer than 1010 vertices. This question proved to be
very motivating and it was later shown by Spencer [118] that there exists
such a graph with 3 × 109 vertices. More recently, it was shown by Lu [82]
with the help of computers that such a graph exists with 9,697 vertices, and
subsequently Dudek and Rödl reduced this number to 941. The record is
currently held by Lange, Radziszowski and Xu [76] who found such a graph
on just 786 vertices. Of course, it is possible that such a graph exists with
fewer than 100 vertices! (In fact, one of the authors offers US$100 for the
first person to find such a graph). However, for more than 2 colors the known
K4-free Ramsey graphs are still astronomical.
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Probabilistic methods were not only applied to get various bounds for
Ramsey numbers. Recently, the Ramsey properties of the Random Graph
K(n, p) were analyzed by Rödl and Ruciński and the threshold probability
for p needed to guarantee K(n, p) → (K3)2t with probability tending to 1 as
n → ∞, was determined (see [107]).

Structural properties of Ramsey’s theorem have also been investigated.
For example, the Erdős problems involving

∑
1

log i where the sum is over

homogeneous subsets of {1, 2, . . . , n} and problems concerning the relative
order of gaps of homogeneous sets were treated for graphs in [106, 18] (see also
similar problems for ordering pigeonhole [10]).

Many of these questions were answered in a much greater generality and
this seems to be a typical feature for the whole area. On the other side
these more general statements explain the unique role of the original Erdős
problem. Let us be more specific. We need a few definitions: An ordered
graph is a graph with a linearly ordered set of vertices (we speak about
“admissible” orderings). Isomorphism of ordered graphs means isomorphism
preserving admissible orderings. If A, B are ordered graphs (for now we will
find it convenient to denote graphs by A,B,C, . . .) then

(
B
A

)
will denote the

set of all induced subgraphs of B which are isomorphic to A. We say that a
class K of graphs is Ramsey if for every choice of ordered graphs A, B from
K there exists C ∈ K such that C → (B)A2 . Here, the notation C → (B)A2
means: for every coloring c :

(
C
A

)
→ {1, 2} there exists B ∈

(
C
B

)
such that the

set
(
B′
A

)
is monochromatic (see, e.g., [88].) Similarly we say that a class K of

graphs is canonical if for every choice of ordered graphs A,B from K there
exists C ∈ K with the following property: For every coloring c :

(
C
A

)
→ N

there exists B ∈
(
C
B

)
such that the set

(
B
A

)
has a canonical coloring.

Denote by Forb(Kk) the class of all Kk-free graphs. Now we have the
following

Theorem 7. For a hereditary class K of graphs the following statements are
equivalent:

1. K (with some admissible orderings) is Ramsey;
2. K (with some admissible orderings) is canonical;
3. K is a union of the following 4 types of classes: the class Forb(Kk),

the class of complements of graphs from Forb(Kk), the class of Turán
graphs (i.e., complete multipartite graphs) and the class of equivalences
(i.e., complements of Turán graphs).

(1. ⇔ 3. is proved in [87] establishing important connection of Ramsey
classes and ultra homogeneous structures. 2.⇒ 1. is easy, and one can prove
1. ⇒ 2. directly along the lines of Erdős-Rado proof of the canonization
lemma.) Thus, as often in Erdős’ case, the triangle-free graphs was not just
any case but rather the typical case.

From today’s perspective it seems to be just a natural step to consider.
Ramsey properties of geometrical graphs. This was initiated in a series of
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papers by Erdős, Graham, Montgomery, Rothschild, Spencer and Straus,
[32, 33, 34]. Let us call a finite configuration C of points in E

n Ramsey if
for every r there is an N = N(r) so that in every r-coloring of the points of
E
n, a monochromatic congruent copy of C is always formed. For example, the

vertices of a unit simplex in E
n is Ramsey (with N(r) = n(r−1)+n), and it is

not hard to show that the Cartesian product of two Ramsey configurations is
also Ramsey. More recently, Frankl and Rödl [52] showed that any simplex in
E
n is Ramsey (a simplex is a set of n+ 1 points having a positive n-volume).

In the other direction, it is known [32] that any Ramsey configuration
must lie on the surface of a sphere (i.e., be “spherical”). Hence, 3-collinear
points do not form a Ramsey configuration, and in fact, for any such set C3,
E
N can always be 16-colored so as to avoid a monochromatic congruent copy

of C3. It is not known if the value 16 can be reduced (almost certainly it
can). The major open question is to characterize the Ramsey configurations.
It is natural to conjecture that they are exactly the class of spherical sets.
Additional evidence of this was found by Kř́ıž [74] who showed for example,
that the set of vertices of any regular polygon is Ramsey (see [85] for a positive
answer to a weaker version). However, Leader, Russell and Walters [77] have
a different conjecture as to which sets are Euclidean Ramsey sets. Let us call
a finite set in Euclidean space subtransitive if it is a subset of a set which
has a transitive automorphism group. They conjecture that the Euclidean
Ramsey sets are exactly the subtransitive sets. These two conjectures are not
compatible since they also show [78] that almost all 4-points subsets of a
(unit) circle are not subtransitive. A fuller discussion of this interesting topic
can be found in [61] and [62].

5. Adventures in Arithmetic Progressions

Besides Ramsey’s theorem itself the following result provided constant
motivation for Ramsey Theory:

Theorem 8 (van der Waerden [124]). For every choice of positive
integers k and n, there exists a least N(k, n) = N such that for every partition
of the set {1, 2, . . . , N} into k classes, one of the classes always contains an
arithmetic progression with n terms.

The original proof of van der Waerden (which developed through
discussions with Artin and Schreier—see [125] for an account of the discovery)
and which is included in an enchanting and moving book of Khinchine [71]
was until recently essentially the only known proof. However, interesting
modifications of the proof were also found, the most important of which is
perhaps the combinatorial formulation of van der Waerden’s result by Hales
and Jewett [65].

The distinctive feature of van der Waerden’s proof (and also of Hales-
Jewett’s proof) is that one proves a more general statement and then uses
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double induction. Consequently, this procedure does not provide a primitive
recursive upper bound for the size of N (in van der Waerden’s theorem).
On the other hand, the best bound (for n prime) is (only!) W (n+ 1) ≥ n2n,
n prime (due to Berlekamp [9]). Thus, the question of whether such a huge
upper bound was also necessary, was and remains to be one of the main
research problems in the area. In 1988, Shelah [112] gave a new proof of both
van der Waerden’s and the Hales-Jewett’s theorem which provided a primitive
recursive upper bound for N(k, n). However the bound was still very large,
being of the order of fifth function in the Ackermann hierarchy—“tower of
tower functions”.

Even for a proof of the modest looking conjecture N(2, n) ≤ 22
22

···
where

the tower of 2’s has height n, the first author of this paper offered $1,000.
(He subsequently happily paid this reward to Tim Gowers for his striking
improvement for upper bounds on the related function rk(n) which we define
in the next section). The first author currently (foolishly?) offers $1,000 for

a proof (or disproof) that N(2, n) ≤ 2n
2

for every n.
The discrepancy between the general upper bound for van der Waerden

numbers and the known values is the best illustrated for the first nontrivial
value: while N(2, 3) = 9, Gowers’ proof gives the bound

N(2, 3) ≤ 22
22

4,096

!

These observations are not new and were considered already in the Erdős and
Turán 1936 paper [47]. For the purpose of improving the estimates for the van
der Waerden numbers, they had the idea of proving a stronger—now called a
density—statement. They considered (how typical!) the particular case of 3-
term arithmetic progressions and for a given positive integer N , defined r(N)
(their notation) to denote the maximum number elements of a sequence of
numbers ≤ N which does not contain a 3-term arithmetic progression. They
observed the subadditivity of function r(N) (which implies the existence of
a limiting value of r(N)/N) and proved r(N) ≤ (38 + ε)N for all N ≥ N(E).

After that they remarked that probably r(N) = o(N). And in the last
few lines of their paper, they define numbers rk(N) to denote the maximum
number of integers less than or equal to N such that no k of them form an
arithmetic progression. Although they do not ask explicitly whether rk(N) =
o(N) (as Erdős did many times since), this is clearly in their mind as they list
consequences of a good upper bound for rk(N): long arithmetic progressions
formed by primes (yes, already there!) and a better bound for the van der
Waerden numbers.

As with the Erdős-Szekeres paper [46], the impact of the modest Erdős-
Turán note [47] is hard to overestimate. Thanks to its originality, both in
combinatorial and number theoretic contexts, and to Paul Erdős’ persistence,
this led eventually to beautiful and difficult research, and probably beyond
Erdős’ expectations, to a rich general theory. We wish to briefly mention
some key points of this development where the progress has been remarkably
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rapid, so that van der Waerden’s theorem with it many variations and related
problems has become one of the fastest growing (and successful) areas in
mathematics. It cannot be the purpose of this article (which concentrates
narrowly on the work of Erdős) to survey this body of work (for a good
start, see [119]). In particular, this development has lead to 2 Fields Medals
(Gowers 2002, Tao 2006) and more recently, to an Abel Prize (Szemerédi
2012). In particular, Gowers [58] gave a new bound for rk(n) which as a
consequence gave the strongest current upper bound for the van der Waerden
function W (2, n) of the form

W (2, n) < 22
22

2n+9

,

thereby earning the above-mentioned $1,000 prize. (Strictly speaking, Gowers’
bound for W (2, n) is larger then required conjectured bound given by the
tower of n 2’s for the values of n = 7 and 8 but it was judged to be close
enough to deserve the full prize!) In addition, Green and Tao [64] proved
the existence of arbitrarily long arithmetic progression of primes in any set
of integers of positive upper density (thus solving a problem attributed to
Legendre). Most of these advances were motivated by and more or less
directly related to the Erdős-Turán function rk(n). Soon after [47] good lower
estimates for r(N) were obtained by Salem and Spencer [110] and Behrend [8]
which still gives the best bounds. These bounds recently found a surprising
application in a least expected area, namely in the fast multiplication of
matrices (Coppersmith and Winograd [19]).

The upper bounds and rk(N) = o(N) appeared to be much harder.
In 1953 K. Roth [109] proved r3(N) = o(N) and after several years of partial
results, E. Szemerédi in 1975 [92] proved the general case

rk(N) = o(N) for every k.

This is generally recognized as the single most important solution of an
Erdős problem, the problem for which he has paid the largest reward. By now
there are more expensive problems (see Erdős’ article in these volumes) but
they have not yet been solved. And taking inflation into account, possibly
none of them will ever have as an expensive solution. Szemerédi’s proof
changed Ramsey theory in at least two aspects. First, several of its pieces,
most notably the so-called Regularity Lemma, proved to be very useful
in many other combinatorial situations (see e.g., [15, 92, 107]). Secondly,
perhaps due to the complexity of Szemerédi’s combinatorial argument, and
the beauty of the result itself, an alternative approach was called for. Such
an approach was found by Hillel Furstenberg [54, 55] and developed further
in many aspects in his joint work with B. Weiss, Y. Katznelson and others.
Let us just mention two results which in our opinion best characterize the
power of this approach: In [56] Furstenberg and Katznelson proved the density
version of Hales-Jewett theorem, and Bergelson and Leibman [7] proved the
following striking result (conjectured by Furstenberg):
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Theorem 9 ([7]). Let p1, . . . , pk be polynomials with rational coefficients
taking integer values on integers and satisfying pi(0) = 0 for i = 1, . . . , k.
Then every set X of integers of positive density contains for every choice of
numbers v1, . . . , vk, a subset

μ+ p1(d)v1, μ+ p2(d)v2, . . . , μ+ pk(d)vk

for some μ and d > 0.

Choosing pi(x) = x and vi = i we get the van der Waerden theorem.
Already, the case pi(x) = x2 and vi = i was open for several years [111]
(this gives long arithmetic progressions in sets of positive density with their
differences being a square).

Originally, none of these results was proved by combinatorial methods.
Instead, they were all proved by a blend of topological dynamics and ergodic
theory methods, proving countable extensions of these results. For this part of
Ramsey theory this setting seems to be most appropriate. In some sense, this
is a long way from the original Erdős-Turán paper. However, this emphasis
as been changing recently with combinatorial proofs of many of the results
in the area, most notably of the density version of the Hales-Jewett theorem
(see [100]).

And even more recently, the situation reversed as Rödl’s project of a
combinatorial approach to Szemerédi’s theorem [105] using a hypergraph
generalization of the regularity lemma was successful, see e.g., [59, 108]. This
generalization in turn was related to model theory, probability and analysis,
see e.g., recent papers [119, 120]. This development probably far exceeded
even Erdős’ expectations.

Let us close this section with a very concrete and still unsolved example.
In 1983, G. Pisier [99] formulated (in a harmonic analysis context) the
following problem: A set of integers x1 < x2 < . . . is said to be independent if
all finite subsums of distinct elements are distinct. Now let X be an infinite
set and suppose for some ε > 0 that every finite subset Y ⊆ X contains a
subsubset Z of size ≥ ε|Z| which is independent. Is it then true that X is a
finite union of independent sets?

Despite much effort and partial solutions, the problem is still open. It was
again Paul Erdős who quickly realized the importance of the Pisier problem
and as a result, Erdős, Nešetřil and Rödl [39, 40] studied “Pisier type
problems”. For various notions of an independence relation, the following
question was considered: Assume that an infinite set X satisfies for some
ε > 0, some hereditary density condition (i.e., we assume that every finite set
Y contains an independent subsubset of size ≥ ε|Y |). Is it then true that X
can be partitioned into finitely many independent sets?

Positive instances (such as collinearity, and linear independence) as well
as negative instances (such as Sidon sets) were given in [39, 40]. Also various
“finitization versions” and analogues of the Pisier problem were answered in
the negative. But at present the original Pisier problem is still open. In a
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way one can consider Pisier type problems as dual to the density results in
Ramsey theory: One attempts to prove a positive Ramsey type statement
under a strong (hereditary) density condition. This is exemplified in [40] by
the following problem which is perhaps a fitting conclusion to this paper
surveying 60 years of Paul Erdős’ service to Ramsey theory.

The Anti-Szemerédi Problem [40]

Does there exist a set X of positive integers such that for some ε > 0 the
following two conditions hold simultaneously:

(1) For every finite Y ⊆ X there exists a subset Z ⊆ X , |Z| ≥ ε|Y |, which
does not contain a 3-term arithmetic progression;

(2) Every finite partition of X contains a 3-term arithmetic progression in one
of its classes.

Acknowledgements The second author was supported by ERC CZ LL1201 Cores
and CE ITI P202/12/G061.

Shadows of Memories (Ramsey Theory, 1984)

From left to right: B. L. Rothschild, W. Deuber, P. Erdős,
B. Voigt, H.-J. Promel, R. L. Graham, J. Nešetřil, V. Rödl.
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36. P. Erdős and A. Hajnal, Some remarks on set theory IX, Mich. Math. J. 11
(1964), 107–112.
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49. M. Erickson, An upper bound for the Folkman number F (3, 3, 5), J. Graph
Th. 17 (6), (1993), 679–68.

50. J. Folkman, Graphs with monochromatic complete subgraphs in every edge
coloring, SIAM J. Appl. Math. 18 (1970), 19–24.

51. P. Frankl, A constructive lower bound for Ramsey numbers, Ars Combinatorica
2 (1977), 297–302.
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I am one of the very few mathematicians who knew Paul’s aunt Irma before
I knew him. She and my grandmother were neighbors during World War II.
Aunt Irma was one of the few Jews in Budapest who survived the holocaust.
This is how I met her since I was raised from this time by my grandmother and
my aunt. Aunt Irma must have had good memories about my grandmother
since they kept a good relationship, she regularly visited my grandmother
even after her move to another place. She learned about my interest in
mathematics and suggested I meet her nephew Pali who happened to be
a mathematician. “Of course” I had never heard of him, but I was very glad
to meet an old “real mathematician”. He was a very respectful old man (46!).
I immediately understood that I was seeing an extraordinary personality.

He gave me three problems to solve. I remember one of them.

How many numbers can we choose from the set {1, 2, . . . , 2n} without
having a number and its proper divisor in the set?

He probably had in his mind that I should call him the next day with the
solutions. I took the problems very seriously. But only with my pace. It was
summer. The summer between high school and university studies. I had to
do so much. But I regularly returned to the problems, I solved all of them by
September and reported the solutions to him.

Next time when Aunt Irma visited us forwarded the following message:

He is probably very talented in other fields but not so much in
mathematics.

It did not touch me deeply. I had a lot of self-confidence. I won the
National Olympiad in mathematics for high school students and was a
member of the Hungarian team at the first International Olympiad. But
I should have taken his opinion more seriously! At least concerning my pace
and assertiveness. Is it too late?

I started my studies. Beside my regular classes, I attended several special
lectures and seminars. Turán’s seminar proved to be the most important for
me. In spite of his negative (perhaps non-positive) opinion on my abilities,
Uncle Paul (in Hungarian: Pali bácsi (=Pauli baachy)) did not forget about
me. He handed me a reprint of the famous Erdős-Ko-Rado paper [1], saying
that there are some open problems in it. I was in my second year of studies,
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I had a joint result with my friend Domokos Szász, but no one was too much
interested in it because the problem was posed by ourselves. So I started to
read the paper which was not without difficulties: I did not know English.
The influence of this paper on my mathematical life was decisive.

Let me remind the reader what the main theorem of this paper was.

If we have a family of k element subsets of an n-element set, 2k ≥ n
and any two sets meet then the size of the family is at most

(
n−1
k−1

)
.

This theorem became one of the centers of my interest. Much later, in
1971, I found an elegant proof of it [5]. The open problem I started to work
on was the following.

Determine the largest family of subsets of an n-element set if any
two of the sets meet in at least l elements.

I spent all my free time in a period of 3 or 4 months thinking on this
problem. Knowing my pace, this is not so much! Let me show you what I
observed.

For sake of simplicity consider only the case when l = 2 and n is even.
The conjectured optimal family for this case was the family of all subsets
having at least n+2

2 elements. A family satisfying the conditions cannot
contain the empty set or a one-element set. The total number of the 2-element
and n− 1-element sets is maximum when all n− 1-element ones are chosen.
The total number of the 3-element and n− 2-element sets is maximum when
all n−2-element ones are chosen. In general, it seemed that the total number
of the i-element and n− i+ 1-element sets was maximum when all n− i+ 1-
element ones are chosen. That is, if we have m sets of size i in the family
then they push out at least m sets of size n− i+ 1. A set of size i pushes out
exactly the complements of its i− 1-element subsets. So, it would be enough
to prove that the number of i − 1-element subsets of i-element members of
the family is at least m.

Let us repeat this more formally. Let A be the family satisfying the
condition of the problem and let Ai be the subfamily of its i-element members.

The shadow (this name was introduced later by someone else) of Ai is

σ(Ai) = {B : |B| = i− 1, B ⊂ A ∈ A}.

We need |Ai| ≤ |σ(Ai)|. After several months of work I managed to prove a
somewhat stronger statement:

If any two members of the family Ai meet in at least 2 elements then

(
2i−2
i−1

)
(
2i−2
i

) ≤ |σ(Ai)|
|Ai|

(1)
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The left hand side is i
i−1 , therefore (1) implies that the size of the shadow

is larger than the size of the original family. This gives the solution of the
problem. The case of general l is much the same [3].

I was extremely happy and reported the result to Uncle Paul (that time
Professor). He seemed to be satisfied and mentioned some consequences of
“my theorem”. Moreover, he invented an unusual reward for me. He invited
me for lunch in a very nice hotel. The name of the hotel was Red Star (Vörös
Csillag). It was on the top of a larger hill. Its restaurant was partially open air
and had a fantastic view on Budapest. Of course, his mother (Anyuka) was
with us. I was on one hand very proud on the other hand embarrassed. This
was the first time I ate in a restaurant. Uncle Paul probably did understand
my embarrassment and helped me to choose the food.

Equation (1) determined the minimum of the ratio of the size of the
shadow and the original family. It is easy to see that this estimate is sharp
when the size of the family is

(
2i−2
i

)
. However it is not sharp if the number of

sets is different. It was disturbing that I could not determine the minimum of
|σ(Ai)| when |Ai| was given. However I did not see any nice construction that
could be conjectured to be the optimum. Then I realized that the problem
makes sense without the intersection-property, too.

From this time (about 1962) I concentrated on this problem and after 2 or
3 years I found a complicated inductional solution. I presented my theorem in
1965 in a lecture organized by the János Bolyai Mathematical Society. This
became my best known result [4]. Let me formulate it in a special case, only.

The minimum of |σ(Ai)| under the condition that |Ai| =
(
a
i

)
for

some fixed integer a is
(
a
i−1

)
. The optimal construction is the family

of all i-element subsets of an a-element set.

Although it was not asked or conjectured by Erdős, it was an indirect
consequence of Uncle Paul giving me his reprint. Later Branko Grünbaum
called my attention to the fact that Kruskal [6] proved the same theorem
earlier. His motivation was coding, therefore the combinatorial world was
not aware of his result. Both (very different) proofs were quite lengthy. Many
authors tried to find simpler proofs. Probably the shortest one is due to
Frankl [2].

A young student from Greifswald (that time German Democratic
Republic) spent a few months in Budapest in 1990 as an exchange student.
I suggested to him to think about the following problem. What is the
minimum size of the shadow if |Ai| is fixed, like before, and the family Ai

has a system of distinct representatives, that is, one can find elements in each
member of Ai in such a way that these elements are distinct. (More precisely,
I asked a somewhat different problem and he found this nicer variant.) After
3 years of working on it he found the solution what I would formulate here
only in a special case.
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Theorem 1 (Leck [7]). Suppose that |Ai| is fixed, is of the form m(i + 1)
and Ai has a system of distinct representatives. The minimum of |σ(Ai)| is
m
(
i+1
2

)
under these conditions. The optimal construction is a disjoint union

of m(i + 1)-element sets containing all i-element subsets.

The underground stream of problems started by Uncle Paul has reached
Uwe Leck. But it is my responsibility to find a reward for him. Should I
take him to Hotel Red Star? Its name is Golf now. And Uwe Leck has since
become a “rich (West-)German”. I do not think lunch in a restaurant would
be a great experience for him. Any suggestions?
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Budapest, 1968.

5. Katona, G. O. H., A simple proof of the Erdős-Chao Ko-Rado theorem,
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Summary. P. Erdős and R. Rado defined a Δ-system as a family in which every
two members have the same intersection. Here we obtain a new upper bound of the
maximum cardinality ϕ(n) of an n-uniform family not containing any Δ-system of
cardinality 3. Namely, we prove that for any α > 1, there exists C = C(α) such
that for any n,

ϕ(n) ≤ Cn!α−n.

1. Introduction

P. Erdős and R. Rado [2] introduced the notion of a Δ-system. They called a
family H of finite sets a Δ-system if every two members of H have the same
intersection.

Let ϕ(n) (respectively, γ(n)) denote the the maximum cardinality of an
n-uniform family (respectively, intersecting n-uniform family) not containing
any Δ-system of cardinality 3.

P. Erdős and R. Rado [2] proved that

2nn! > ϕ(n) ≥ 2n

and conjectured that

ϕ(n) < cn for some absolute constant c.

The best published upper bound for ϕ(n) is due to J. Spencer [3]:

ϕ(n) < ecn
3/4

n!.

Z. Füredi and J. Kahn (see [1]) proved that
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ϕ(n) < ec
√
nn!.

The aim of the present paper is to prove

Theorem 1. For any integer α > 1, there exists C = C(α) such that for
any n,

ϕ(n) ≤ Cn!α−n.

We follow here the ideas of J. Spencer [3]. In particular, in the course of
proofs some inequalities are true if n is large in comparison with α. And we
choose C so that the statement of the theorem holds for smaller n.

Remark 1. Certainly, since the statement is true for any constant α, it is
also true for some function on n tending to infinity. In fact, along the lines
of the proof of the theorem one can prove that there exists a positive constant
C such that

ϕ(n) ≤ Cn!

(
30 log log logn

log log n

)n
.

(All the logarithms throughout the paper are taken to the base e.) It is enough
to change slightly Lemma 2 and to take k = � n

logn (log logn)3 in Sect. 3.

2. Preliminary Lemmas

Call a family F of sets a (3, n, k)-family if it is an n-uniform family not
containing any Δ-system of cardinality 3 such that the cardinality of the
intersection of each two members of F is at most n− k.

Lemma 1. For any (3, n, k)-family F ,

|F| ≤ 2n−k+1n!

k!
.

Proof. We use induction on n−k. Obviously, any (3, k, k)-family has at most
two members. Hence the lemma is true for n− k = 0.

Let the lemma be valid for n−k ≤ m− 1 and F be a (3,m+k, k)-family.
Choose in F two edges A1 and A2 with minimum cardinality of intersection
and denote Z = A1 ∪ A2. Then each A ∈ F has a non-empty intersection
with Z.

For any x ∈ Z, let F(x) = {A ∈ F|x ∈ A}, F̃(x) = {A \ {x}|A ∈ F(x)}.
Then for any x ∈ Z, F̃(x) is a (3,m+ k − 1, k)-family. Thus,

|F| ≤
∑

x∈Z
|F̃(x)| ≤ |Z|2m (m− 1 + k)!

k!
≤ 2m+1 (m+ k)!

k!
.

�

Lemma 2. If γ(k) ≤ Ck!α−ke−α for any k ≤ n, then ϕ(n) ≤ Cn!α−n.
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Proof. Let F be a (3, n, 1)-family with |F | = ϕ(n) and A ∈ F . For any
X ⊂ A, the family F(A,X) = {B \X |B ∈ F&B∩A = X} is a (3, n−|X |, 1)-
family. Moreover, if for some X ⊂ A, there exist two disjoint sets B1 \ X ,
B2 \X ∈ F(A,X) then A, B1 and B2 form a Δ-system. Hence F(A,X) is
an intersecting family and

ϕ(n)≤
∑

X⊂A
|F(A,X)| ≤

n∑

i=0

(
n

i

)
γ(n−i) ≤ Cn!α−ne−α

n∑

i=0

αi

i!
< Cn!α−n.

From now on, we suppose that for each m ≤ n− 1,

γ(m) ≤ Cm!α−me−α, (1)

ϕ(m) ≤ Cm!α−m. (2)

In view of Lemma 2 it is enough to show that (1) holds for m = n.
The following observation from [3] will be used throughout the paper.

Let B1, . . . , Bt be disjoint finite sets and F be a (3, n, 1)-family such that
|A ∩Bi| ≥ bi for each A ∈ F . Then

|F| ≤
(
|B1|
b1

)
· . . . ·

(
|Bt|
bt

)
ϕ(n− b1 − · · · − bt). (3)

Lemma 3. Let 0 < r ≤ k ≤ n/2 and for any members A1, . . . , Ar of a
(3, n, 1)-family F ,

|A1 ∪ . . . ∪ Ar| ≤ rn− kr2/2. (4)

Then

|F| ≤ C
n!

k!
.

Proof. For r = 1 the lemma is valid since (4) is impossible as r = 1. Suppose
that the lemma is true for r ≤ s − 1 and |F| > Cn!/k!. By the induction
hypothesis there exist A1, . . . , As−1 ∈ F such that for the set B = A1 ∪ . . .∪
As−1 we have |B| > (s − 1)n − k(s − 1)2/2. If the lemma does not hold for
F then for any A ∈ F ,

|A ∩B| > n+ ((s− 1)n− k(s− 1)2/2) − (sn− ks2/2) = k(s− 1/2),

and there is an i, 1 ≤ i ≤ s− 1 such that |A ∩ Ai| > k. Thus by (3),

|F| ≤ (s− 1)

(
n

k + 1

)
ϕ(n− k − 1) ≤

(s− 1)

(
n

k + 1

)
C(n− k − 1)!α−n+k+1 = Cn!α−n+k+1 s− 1

(k + 1)!
< C

n!

k!
.

�

Lemma 4. Let ξ ≥ 2, 1 ≤ t < s ≤ n and F be a (3, s, 1)-family with
|F| ≥ Cs!ξ−s. Then there exist F ′ ⊂ F and X such that
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(1) |X | = s− t;
(2) For any A ∈ F ′, A ⊃ X;
(3) |F ′| ≥ Ct!β−t, where β = (4ξ)s/t.

Proof. Case 1. For any A ∈ F , |{B ∈ F| |B ∩ A| ≥ s− t}| ≤ Ct!2sβ−t − 1.
Then a simple greedy algorithm gives us a (3, s, t+1)-subfamily of F with
cardinality at least

|F|
Ct!2sβ−t =

s!(4ξ)s

t!(2ξ)s
= 2s

s!

t!
.

But the existence of such a big (3, s, t+ 1)-family contradicts Lemma 1.
Case 2. There exists A ∈ F such that |{B ∈ F| |B ∩ A| ≥ s − t}| ≥

�Ct!2sβ−t�.
Then for some X ⊂ A with |X | = s− t we have

|{B ∈ F|B ∩ A ⊃ X}| ≥ �Ct!2sβ−1�
(

s

s− t

)−1

> Ct!β−t.

This is the family we need. �

3. Main Construction

Let F be an intersecting (3, n, 1)-family with |F| = γ(n). The idea is to find
a (not too large) family of collections of disjoint (and considerably small)
sets such that each member of F intersects each set from some collection and
then apply (3). We put

y = �n/3α�, m = 3α− 1, k =

⌈
n

log n
log logn

⌉
, r = �log logn�.

Lemma 5. For all s = 0, 1, . . . ,m and for i0 = 1 and any i1, . . . , is ∈
{1, . . . , r} there are subfamilies F(1, i1, . . . , is) of the family F and sets
X(i1, . . . , is) and Z(1, i1, . . . , is−1) such that for any s = 1, . . . ,m and for
any i1, . . . , is, i

′
s ∈ {1, . . . , r},

(1) F(1, i1, . . . , is) ⊂ F(1, i1, . . . , is−1);
(2) For all A ∈ F(1, i1, . . . , is),

A ⊃ X(i1) ∪X(i1, i2) ∪ . . . ∪X(i1, i2, . . . , is);

(3) The sets X(i1), X(i1, i2), . . . , X(i1, i2, . . . , is) are pairwise disjoint;
(4) |X(i1, i2, . . . , is)| = y;
(5) |Z(1, i1, i2, . . . , is−1)| ≤ kr(r + 1)/2;
(6) X(i1, i2, . . . , is−1, is) ∩X(i1, i2, . . . , is−1, i

′
s) ⊂ Z(1, i1, i2, . . . , is−1);

(7) |F(1, i1, . . . , is)| ≥ C(n− sy)!ξsy−ns , where

ξs =
(

(2α)
n

n−sy 8
n+(n−y)+...+(n−(s−1)y)

n−sy

)
=
(

(2α)n8ns−s(s−1)y/2
) 1

n−sy

.
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Proof. We use induction on s. Put F(1) := F , ξ0 := 2α.
Step s (0 ≤ s < m). We have at hand F(1, i1, . . . , is) for any i1, . . . , is ∈

{1, . . . , r} and if s > 0 we also have sets X(i1, . . . , is) and Z(1, i1, . . . , is−1)
as needed. Consider

F̃ = F̃(1, i1, . . . , is)

= {A \ (X(i1) ∪X(i1, i2) ∪ . . . ∪X(i1, i2, . . . , is))|A ∈ F(1, i1, . . . , is)}.

According to the statements of the lemma, F̃ is a (3, n− sy, 1)-family. Note
that

(ns− s(s− 1)y/2)/(n− sy) ≤ ns/(n− (m− 1)y) ≤ mn

n− (n− 2y)
< (3α)2.

Hence ξs ≤ (2α)3α89α
2

and due to Statement 7 of the lemma, we can use
Lemma 4. This Lemma 4 provides that there exists X1 of cardinality y and

H1 ⊂ F̃ with |H1| ≥ C(n−(s+1)y)!β(s+1)y−n (where β = (4ξs)
n−sy

n−(s+1)y ) such
that any A ∈ H1 contains X1. We put Z1 := ∅. Suppose that (3, n − sy, 1)-
families H1, . . . ,Hl and sets X1, . . . , Xl, Z1, . . . , Zl are constructed and that
for each 1 ≤ j ≤ l, 1 ≤ j′ ≤ l, j = j′,

(i) |Xj | = y;
(ii) |Zl| ≤ kl(l − 1)/2;

(iii) Xj ∩X ′
j ⊂ Zl;

(iv) For any A ∈ Hj , Xj ⊂ A;

(v) |Hj | ≥ C(n− (s+ 1)y)!ξ
(s+1)y−n
s+1 .

If l < r then we construct Hl+1, Xl+1 and Zl+1 as follows. Remark that
for each A ∈ F̃ , we have |A| = n − sy > lk and the number of A ∈ F̃ with
|A ∩ (X1 ∪ . . . ∪Xl)| ≥ lk does not exceed (by (3))

(
|X1 ∪ . . . ∪Xl|

lk

)
ϕ(n− sy − lk) ≤

(
ly

lk

)
C(n− sy − lk)!αsy+lk−n

≤
(
eln

3αlk

)lk
C(n− sy − lk)!αsy+lk−n ≤ C(n− sy)!

αn−syklk
.

But for large n we have

kk ≥
(

n

logn

)n log log n
log n

≥ e0.5n log logn > (2ξm)n.

Hence for the family H′ := {A ∈ F̃ | |A ∩ (X1 ∪ . . . ∪ Xl)| < lk} we have
|H′| ≥ |F̃ | − C(n− sy)!(2ξs)

sy−n ≥ C(n− sy)!(2ξs)
sy−n. Then by Lemma 4

there exist Hl+1 ⊂ H′ and Xl+1 with |Xl+1| = y such that each A ∈ Hl+1

contains Xl+1 and |Hl+1| ≥ C(n− (s+ 1)y)!(β)(s+1)y−n, where
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β = (4 × 2ξs)
n−sy

n−(s+1)y =

(
8 ×

(
(2α)n8ns−s(s−1)y/2

) 1
n−sy

) n−sy
n−(s+1)y

=
(
(2α)n8n(s+1)−s(s+1)y/2

) 1
n−(s+1)y = ξs+1.

By definition of H′,

|Xl+1 ∩ (X1 ∪ . . . ∪Xl)| < lk.

Putting Zl+1 := Zl ∪ (Xl+1 ∩ (X1 ∪ . . . ∪Xl)), we have |Zl+1| ≤ |Zl| + lk ≤
kl(l+ 1)/2 and conditions (i)–(v) are fulfilled for l+ 1. Thus we can proceed
till l = r.

After constructing Hr,Xr and Zr we put for j=1, . . ., r,X(i1, i2, . . ., is, j) :
=Xj , and

F(1, i1, . . . , is, j) := {A∪X(i1)∪X(i1, i2)∪ . . .∪X(i1, i2, . . . , is, j)|A ∈ Hj},

and

Z(1, i1, . . . , is) := Zr.

By construction, the statements 1–7 of the lemma will be fulfilled for
s+ 1. �

Lemma 6. For all s = 0, 1, . . . ,m + 1 and for any i1, . . . , is ∈ {1, . . . , r}
there are sets X(i1, . . . , is) and Z(1, i1, . . . , is−1) and for any i1, . . . , im+1 ∈
{1, . . . , r} there are sets A(i1, . . . , im+1) ∈ F such that

(1) The sets X(i1), X(i1, i2), . . . , X(i1, i2, . . . , im+1) are pairwise disjoint;
(2) |X(i1, i2, . . . , is)| = y if 1 ≤ s ≤ m;
(3) |X(i1, i2, . . . , im+1)| = n−my;
(4) A(i1, . . . , im+1) = X(i1) ∪ X(i1, i2) ∪ . . . ∪ X(i1, i2, . . . , im+1); for any

s = 1, . . . ,m and for any i1, . . . , is, i
′
s ∈ {1, . . . , r}

(5) X(i1, i2, . . . , is−1, is) ∩X(i1, i2, . . . , is−1, i
′
s) ⊂ Z(1, i1, i2, . . . , is−1);

(6) |Z(1, i1, i2, . . . , is−1)| ≤ kr(r + 1)/2.

Proof. For s = 0, 1, . . . ,m and for any i1, . . . , is ∈ {1, . . . , r}, consider
F(1, i1, . . . , is), X(i1, . . . , is) and Z(1, i1, . . . , is−1) from Lemma 5.

Now, for an arbitrary (m+ 1)-tuple (1, i1, . . . , im), consider

H = H(1, i1, . . . , im)

:= {A \ (X(i1) ∪X(i1, i2) ∪ . . . ∪X(i1, i2, . . . , im))|A ∈ F(1, i1, . . . , im)}.

By construction, H is a (3, n−my, 1)-family and by Lemma 5, |H| ≥ C(n−
my)!ξmy−nm .

Recall that m = 3α− 1, and n−my ≥ y ≥ n/(3α) − 1. For large n,

ξn−mym = (2α)n8nm−m(m−1)y/2 ≤ (2α)n8nm ≤ (2α83α−1)n < k! .
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Hence |H| > C(n − my)!/k! and by Lemma 3 (note that 0 < r < k <
(n/3α− 1)/2 ≤ (n−my)/2) there exist A1, . . . , Ar ∈ H such that

|A1 ∪ . . . ∪ Ar| > r(n−my) − kr2/2. (5)

Let us denote

Z(1, i1, . . . , im) :=
⋃

1≤j<h≤r
Aj ∩Ah,

and for j = 1, . . . , r,X(i1, i2, . . . , is, j) := Aj and

A(i1, . . . , im, j) = X(i1) ∪X(i1, i2) ∪ . . . ∪X(i1, i2, . . . , im) ∪ Aj .

In view of (5), |Z(1, i1, . . . , im)| ≤ kr2/2. Now, by Lemma 5 and the
construction, all the statements of the lemma are fulfilled. �

Lemma 7. For each A ∈ F , there exist s, 0 ≤ s ≤ m and i1, . . . , is ∈
{1, . . . , r} such that

A
⋂
X(i1, i2, . . . , is, j) = ∅ ∀j ∈ {1, . . . , r}. (6)

Proof. Assume that for some B ∈ F for each s, 0 ≤ s ≤ m and each
i1, . . . , is ∈ {1, . . . , r}, there exists j∗(1, . . . , is) such that

B
⋂
X(i1, i2, . . . , is, j

∗(1, . . . , is)) = ∅.

Let further q0 = 1 and for s = 1, . . . ,m+ 1,

qs = j∗(q0, . . . , qs−1).

Then B has empty intersection with every member of the sequence X(q1),
X(q1, q2), . . . , X(q1, q2, . . . , qm+1). But this means that B is disjoint from
A(q1, q2, . . . , qm+1), a contradiction to the definition of F . �

Completion of the proof of the theorem. Consider

Z :=

m+1⋃

s=1

⋃

(1,i1,...,is−1)

Z(1, i1, . . . , is−1).

Clearly, |Z| ≤ (1 + r + r2 + . . .+ rm)kr(r + 1)/2 ≤ krm+2 = kr3α+1.
Let E = {A ∈ F | A ∩ Z = ∅} and

H(1, i1, . . . , is) = {A ∈ F \ E | A
⋂
X(i1, i2, . . . , is, j) = ∅ ∀j ∈ {1, . . . , r}}.

By Lemma 6, for each s, 0 ≤ s ≤ m and i1, . . . , is ∈ {1, . . . , r} the sets
X(i1, i2, . . . , is, j) \ Z for distinct j are disjoint. Hence by Lemma 7, we can
write F in the form

F = E
⋃( m⋃

s=0

⋃

(1,i1,...,is)

H(1, i1, . . . , is)

)
.
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Let us estimate

|E| ≤ |Z|ϕ(n− 1) ≤ kr3α+1C(n− 1)!α1−n.

Note that each A ∈ H(1, i1, . . . , is) should intersect each of r disjoint sets
X(i1, i2, . . . , is, 1) \ Z,X(i1, i2, . . . , is, 2) \ Z, . . . , X(i1, i2, . . . , is, r) \ Z. The
cardinalities of these sets for s < m are at most y and for s = m are less than
2y. Consequently by (3),

|H(1, i1, . . . , is)| ≤ (2y)rϕ(n− r)

≤
(

2n

3α

)r
C(n− r)!αr−n ≤

(
2 + o(1)

3

)r
Cn!α−n.

Thus,

|F| ≤ kr3α+1C(n− 1)!α1−n +
rm+1 − 1

r − 1

(
2 + o(1)

3

)r
Cn!α−n

< Cn!α−ne−α
(

1.5(log logn)3α+2eαα

logn
+

(log logn)3αeα

(1.5 − o(1))�log logn�

)
.

But for large n the expression in big parentheses is less than one. So, the
theorem is proved.

Acknowledgements The author is very indebted to M. Axenovich and D.G. Fon-
Der-Flaass for many creative conversations.
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Summary. For the most part, this article is a survey of concrete results in extremal
combinatorics obtained with the method of flag algebras. But our survey is also
preceded, interleaved and concluded with a few general digressions about the
method itself. Also, instead of giving a plain and unannotated list of results, we
try to divide our account into several connected stories that often include historical
background, motivations and results obtained with the help of methods other than
flag algebras.

A Foreword

When I was asked by the organizers to contribute something on flag algebras,
I was a bit uncertain at first. The reasons will become clear from the text
below, but a two-sentence summary is this. In just a few recent years we have
witnessed a tremendous explosion of activity in this area, and the explosion
is still ongoing. It does not look (at least to me) quite consistent with the
inevitable stamp of finality a full-fledged survey is supposed to convey.

As a consequence, this contribution has a very clear flavor of an
accounting book. I will try my best to summarize in Sect. 3, in a categorized
and annotated form, concrete results in extremal combinatorics obtained with
the method of flag algebras so far. Or, in other words, where do we stand
now, in February of 2013.

That said, I still feel obliged to say at least a few general words about the
method itself, and this is where we begin. This introductory part is rather
loose and informal, and a disinterested reader may proceed directly to Sect. 2.
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1. The Method

The theory of flag algebras is supposed to treat in an entirely uniform way
all classes of combinatorial structures C that possess the hereditary property:
any subset of vertices of a structure from C gives rise to another (“induced”)
structure in C. A precise definition at the appropriate level of generality is
best given in logical terms [63, §2], but for the purposes of this text we
can safely assume that C is the class of either ordinary simple graphs or r-
uniform hypergraphs (r-graphs) or oriented graphs (orgraphs). In this section
the specific choice of the class C is almost never important, and for simplicity
we will use the word “graph” cumulatively.

The main quantity studied in the part of extremal combinatorics that is
amenable to the method of flag algebras is the number i(H,G) of induced
copies (up to automorphisms of H) of a graph H in a larger graph G. One
of the most basic paradigms underlying the theory of flag algebras tells us to
normalize whenever possible so we immediately replace these numbers with
the corresponding densities and let

p(H,G)
def
=

(
L

�

)−1

i(H,G) (L
def
= |V (G)|, � def

= |V (H)|).

One useful interpretation is that p(H,G) is the probability that a randomly
chosen �-subset of V (G) induces a subgraph isomorphic to H [63, §2.1].

In many contexts, notably in the theory of graph limits, researchers are
often interested in the number of all copies, not necessarily induced, and
sometimes also other variants. It turns out, however, that all these variants
are essentially equivalent; let us review some simple formulas connecting
different versions (see [50, Chap. 5.2.2]) as we will occasionally need them
below.

Let ind(H,G) be the number of induced embeddings α : V (H) −→
V (G), that is embeddings preserving both adjacency and non-adjacency.
Denoting by

tind(H,G)
def
=

ind(H,G)

L(L− 1) · · · (L− � + 1)

the corresponding density, we see that ind(H,G) = |Aut(H)| · i(H,G) and,
hence,

tind(H,G) =
|Aut(H)|

�!
p(H,G).

tinj(H,G) is defined similarly to tind(H,G) with the difference that now the
embedding α need not necessarily be induced, i.e. it must respect adjacencies
only. Clearly,
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tinj(H,G) =
∑

H′⊇H
tind(H

′, G) =
1

�!

∑

H′⊇H
|Aut(H ′)|p(H ′, G), (1)

and the inverse formula is given by the Möbius transform (see [50, (5.20)]):

tind(H,G) =
∑

H′⊇H
(−1)|E(H′)|−|E(H)|tinj(H ′, G). (2)

Two more variants, homomorphism density t(H,G) [50] and strong homo-
morphism density [40, Sect. 2.3] are obtained from tinj(H,G),
tind(H,G), respectively, by dropping the requirement that the mapping α
must be injective, followed by an obvious re-normalization. They are related
to each other via formulas completely analogous to (1), (2). There is no neat
formula, however, relating “injective” densities p(H,G), tind(H,G), tinj(H,G)
with their non-injective versions: any such formula must necessarily involve
the number of vertices L, which is grossly inconsistent with the philosophy
of flag algebras. What is important, however, is that as L → ∞, the
difference between these two classes of measures becomes negligible (see e.g.
[50, (5.21)]).

A significant part of extremal combinatorics studies arithmetic and
Boolean relations existing between the densities p(H1, G), . . . , p(Hh, G)
(or sometimes their equivalent versions tind(Hi, G), tinj(Hi, G)) where H1, . . . ,
Hh are small fixed templates, and G is an unknown graph. Sometimes
problems of interest (like the Caccetta–Häggkvist conjecture that we will
discuss in Sect. 3.3) also involve concepts like minimal/maximal degree; these
fit into our framework with very minimal changes.

And the asymptotic extremal combinatorics additionally assumes that
the size of G is very large, and thus these relations are to be satisfied only
in the limit. More precisely, in every increasing sequence G1, G2, . . .Gn, . . .
of graphs, we can by compactness choose a subsequence G′

1, . . . , G
′
n, . . .

such that all h limits limn→∞ p(Hν , G
′
n) (ν ∈ [h]) exist; denote them

by φ(H1), . . . , φ(Hh). The question is then re-phrased as follows: which
properties should the tuple (φ(H1), . . . , φ(Hh)) satisfy?

The next observation is that by going to an infinite subsequence we can

ensure that the limits φ(H)
def
= limn→∞ p(H,G′

n) exist for all (countably
many) graphs H , not only those we are actually interested in. This follows
from Tychonoff’s theorem on the compactness of products of compact
sets (that in our particular case can be replaced by a simple diagonal
argument). Such sequences are called convergent, and the function φ that
maps isomorphism classes of finite graphs1 is a paradigmical example of what
in the theory of graph limits is called a simple graph parameter [50, Chap. 4.1].

1 It is perhaps a good time to remind that in this section we use the word “graph”
in a broader sense that also includes hypergraphs, orgraphs, etc.
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Convergent sequences of graphs {Gi} and associated graph parameters φ
make the main object of study in both theories: graph limits and flag algebras.
From this point, however, they diverge significantly: a logician might have said
that the theory of graph limits is semantical in its nature while flag algebras
strongly focus on syntax. Indeed, a very substantial part of the theory of
graph limits deals with the question of what is the actual limit object for a
converging sequence of graphs and with studying its properties. This limit
object was successfully described by Lovász and B. Szegedy for ordinary
graphs (graphons, see [50, Chap. 7]), by Elek and B. Szegedy for hypergraphs
[50, Chap. 23.3], and it looks as if a sort of a description is possible even for
directed graphs [50, Chap. 23.5].

The approach taken by flag algebras is on the contrary manifestly
minimalistic, which is dictated by the utilitarian purpose of the theory.
Semantics is substantially demoted as not being very useful for proving
new concrete results; one immediate advantage of this is that the theory
can be applied to arbitrary combinatorial structures without any changes
at all. Instead, it focuses on developing syntactic tools for proving universal
statements about the quantities φ(H1), . . . , φ(Hh) using more or less formal
manipulations. Careful attention is paid to notational uniformity, simplicity
and transparency: this is particularly important since, as the experience
shows, the method begins to bring real fruit dangerously close to the
region where it becomes unfeasible for purely computational reasons, see
the discussion in [34, Sect. 4.1]. Another characteristic feature of the method
is its strong tendency to expose and exploit (usually simple) mathematical
structure in an uniform way wherever it can be found. Besides obvious
mathematical connections, this paradigm, somewhat surprisingly, has its
own non-negligible utilitarian value. For example, it adds versatility to
some existing packages for working with flag algebras that can be easily
re-programmed to work with different types of combinatorial objects.

As we indicated at the beginning, this text is not intended to be an
exposition of the method itself. Almost all necessary formalism can be found
in the original paper [63, 67, Sect. 2.1.1] adds half a page of notation and
definitions that are particularly useful when one has to work with several
different types of combinatorial structures at once. An informal account
can be found in [45, Sect. 7], and almost every paper with concrete results
surveyed below also strives to explain its own version of the formalism in its
own way. But in the next Sect. 3 we will use the distinction between “plain”
(Cauchy–Schwarz) applications and those using more advanced concepts. So
we conclude with a somewhat informal account of the fragment of the general
theory that is necessary to understand this distinction. This part is similar
to quantum graphs, graph algebras, reflection positivity, etc., studied in the
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context of graph limits [50, Part 2], but there are also important differences
dictated, as almost everything else in flag algebras, by pragmatic purposes.

Let M be the set of all finite graphs up to an isomorphism, and RM be
the set of all their finite formal linear combinations with real coefficients.
Then any graph parameter φ can be extended by linearity to a linear
mapping RM → R that we will also denote by the same letter φ. Graph
parameters φ resulting from convergent sequences of graphs turn out to
satisfy φ(f) = 0 for certain elements f ∈ RM expressing the most basic chain
rule [63, Lemma 2.2]. Factoring out by these relations, we obtain a linear
space that is denoted by A0 (the meaning of the superscript 0 will become
clear soon). It turns out that for every pair H1, H2 of graphs, φ(H1)φ(H2)
can be always expressed as φ(f) for an easily computable element f ∈ A0

not depending on φ. This allows us to endow A0 with the structure of an
associative commutative algebra [63, Lemma 2.4], and thus φ defines an
algebra homomorphism from this algebra to the reals. It clearly satisfies
φ(H) ≥ 0 for any graph H , and we let Hom+(A0,R) denote the set of all
algebra homomorphisms with the latter property.

One extremely important fact is that at this point our search for
“generic”, “logical” relations satisfied by all graph parameters resulting
from convergent sequences is over. Namely, the “completeness theorem”
[50, Theorem 11.52], [63, Theorem 3.3] states that every element φ ∈
Hom+(A0,R) can be realized as a convergent sequence of graphs, and this
allows us to focus on Hom+(A0,R) as an axiomatic description of our main
object of study. Of course, even under this view, the intended semantical
interpretation is still indispensable for intuition and is occasionally used in
arguments (see e.g. [63, Theorem 4.3]).

The backbone of the theory is made by the real cone C0
sem consisting

of all those f for which ∀φ ∈ Hom+(A0,R)(φ(f) ≥ 0), and what we
refer to as “plain” Cauchy–Schwarz applications is just a systematic way
of finding “interesting” elements in this cone by semi-definite programming.
More specifically, all notions reviewed so far readily generalize to the relative
framework in which a prescribed number of vertices k spanning a prescribed
graph σ are labeled in all objects under consideration and are always required
to be preserved [63, §2.1]. σ itself is called a type [of size k], relativized graphs
become flags [of type σ], and the relativized version Aσ is (finally!) called the
flag algebra. For every f ∈ Aσ we clearly have f2 ∈ Cσsem, and we also have a
naturally defined averaging (or label-erasing) linear operator �·�σ : Aσ −→ A0

preserving the set of positive elements: �Cσsem�σ ⊆ C0
sem [63, Theorem 3.1].

This already provides us with a supply of non-trivial elements in C0
sem of the

form �f2�σ (f ∈ Aσ), and we can also take their linear combinations with
non-negative coefficients. The resulting set is a quadratic sub-cone C0 ⊆ C0

sem

defined by positive semi-definite constraints. And when the size of all flags
involved is bounded by a constant � (in a “typical” plain application of the
method � varies between 4 and 6), the corresponding SDPs become finitely
defined, and, what is even more important can be handled by the existing
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solvers2 sufficiently well to actually solve problems. This is what we will refer
to as the “plain” method, and in what follows we will use the word “plain”
in this rather technical and exact sense.

The structure that can be extracted from the objects Hom+(A0,R)
is, however, much richer than that and includes other things like various
algebra homomorphisms allowing us to move true statements around [63,
§2.3], ensembles of random homomorphisms extending a given one [63, §3.2]
or variational principles [63, §4.3]. We can not go into details here, but in
Sect. 3 we will sometimes mention these structures by name whenever they
are used in the arguments.

What are the relations between the cone C0
sem we are interested in and

its approximation C0 corresponding to what we can prove using Cauchy–
Schwarz arguments? Topologically, C0 is dense in C0

sem, and one does not even
have to use quadratic relations for that. Namely, it is a simple consequence
of the completeness result [50, Theorem 11.52], [63, Theorem 3.3] that the
linear subcone in C0 consisting of non-negative linear combinations of flags
is already dense in C0

sem.
In terms of logical complexity, however, the difference is huge. If we,

for simplicity, focus on rational points in these cones, then the sub-cone
C0
� ⊆ C0 consisting of all inequalities provable by using only �-sized flags is

decidable and hence C0 =
⋃
� C0

� is recursively enumerable. The fundamental
result by H. Hatami and Norin [44] states that C0

sem is not r.e. already for
ordinary simple graphs. Informally, this means that every proof system that
will try to generate true statements in the asymptotic extremal combinatorics
will necessarily be incomplete. Very recently, Lovett, H. Hatami, P. Hatami
and Norin have extended this result to the theory of 2-colored graphs with
distinguishable parts.

Finally, the theory of flag algebras has not appeared overnight out of
nowhere, it had many predecessors. First of all, most constructions and
arguments are modeled after their discrete counterparts that have been used
in extremal combinatorics for many decades. Next, one should definitely
mention the method of Lagrangians [55] that was perhaps the first successful
usage of analytical methods in the area. Quasi-random graphs [16] are, in our
language, devoted to the study of one specific and, arguably, the most natural
element of Hom+(A0,R), and many central results and proofs there have a
distinct syntactic flavor. Bondy [9] used what we would now call “Cauchy–
Schwarz calculus” in the specific context of the Caccetta–Häggkvist problem.

2 In my own work, I interchangeably use CSDP [10] and SDPA http://sdpa.
sourceforge.net/, and my special thanks go to their developers.

http://sdpa.sourceforge.net/
http://sdpa.sourceforge.net/
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2. Notation

We review the main definitions for the case of simple r-uniform hypergraphs
(r-graphs in what follows), where r ≥ 2 is a fixed number. We will also be
occasionally considering oriented graphs,3 but it is very straightforward how
to adopt our definitions to that case.

2.1. Turán Densities

For two r-graphs F and G, G is F -free if it does not contain (not necessarily
induced) subgraphs isomorphic to F . Given a family F of r-graphs, G is
F-free if it is F -free for every F ∈ F . Let exH(n;F) be the maximal
possible number of induced copies of an r-graph H in an F -free r-graph
on n vertices and

πH(F)
def
= lim

n→∞
exH(n;F)(

n
|V (H)|

) .

In the language of flag algebras, πH(F) is the maximal possible value of φ(H),
where the maximum is taken over all φ ∈ Hom+(A0,R) for which φ(F̂ ) = 0
whenever F̂ contains a spanning subgraph isomorphic to some F ∈ F . We let

π(F)
def
= π{e}(F),

where e is a single (hyper)edge. For better understanding the context of
this survey, it is useful to recall that in the case of ordinary simple graphs
the quantities π(F) are completely described by the Erdős–Stone–Simonovits
theorem [26, 27]:

π(F) = 1 − 1

r − 1
, (3)

where r
def
= min {χ(G) |G ∈ F }.

In order to cover more situations of interest, we define exmin,H(n;F),
πmin,H(F) analogously to π(F), but with the following two differences:

1. We are interested in the minimal possible number of induced copies of H ;
2. r-graphs from F are forbidden only as induced subgraphs.

Again, when H is a single (hyper)edge, exmin,H(n;F), πmin,H(F) are abbrevi-
ated to exmin(n;F), πmin(F). Very recently, Norin (personal communication)
was able to give a nice and complete description of πmin(F) for the case

3 That is, directed graphs without loops, parallel or anti-parallel edges. By
analogy with the abbreviation “digraph”, in this survey oriented graphs will be
often called orgraphs.
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of ordinary graphs. More generally, given a finite set F of graphs he fully
describes the set D(F) ⊆ [0, 1] consisting of those x ∈ [0, 1] for which there
exists φ ∈ Hom+(A0,R) with φ(F ) = 0 (F ∈ F) and φ(e) = x. The situation
for 3-graphs is very different, and some related results will be thoroughly
discussed in Sect. 3.4.

When F = {F} consists of a single graph, the quantities πH(F ) and
πmin,H(F ) can be readily generalized to their relaxed versions when instead of
forbidding copies of F entirely, we are interested in minimizing their number.
For example, given x ∈ [0, 1], we let

gFH(x)
def
= lim

n→∞
exH,x(n;F)(

n
|V (F )|

) , (4)

where exH,x(n;F) is the minimal possible density of copies of F in an r-graph
on n vertices, in which the density of (induced) copies of H is at least x.
Thus, gFH is a non-decreasing function and πH(F ) is the maximal x for which
gFH(x) = 0.

2.2. Frequently Used [or] Graphs

K� is a clique on � vertices, I� is an independent set on � vertices, C� [C�]
is a non-oriented [oriented, respectively] cycle of length �, and P� [P�] is a
non-oriented [oriented] path on � vertices, i.e., of length (� − 1). K1,� is the
oriented star on (�+1) vertices in which all edges are oriented from the center.

2.3. Frequently Used Hypergraphs

Kr
� is a complete r-graph on � vertices, and Ir� is an empty r-graph on �

vertices (thus, K� = K2
� and I� = I2� ). Jk is the 3-graph on (k + 1) vertices

consisting of all
(
k
2

)
edges that contain a distinguished vertex v. G� is the

uniquely defined 3-graph on 4 vertices with � edges; thus, G4 = K3
4 , and G3

is often denoted by K−
4 . C5 is the 3-graph on 5 vertices with the edge set

{(123), (234), (345), (451), (512)}. F3,2 is the 3-graph, also on 5 vertices, with
the edge set {(123), (145), (245), (345)}.

F̄ is the edge-complement of a (hyper)graph F (on the same set of
vertices). For a (hyper)graph F , λ(F ) is its Lagrangian defined as the
maximal possible edge density of all weighted hypergraphs resulted from
placing probability distributions on the vertices of F .

3. Results

In our survey of existing results, we are trying to group them into a few
large groups centered either around a “big” problem or a reasonably broad
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topic. In all these cases the contribution made by flag algebras has been
very substantial, but seldom it was exclusive. Therefore, we feel that our
purpose will be served better if we give more coherent account by including,
whenever appropriate, historical context, motivations, results proved by other
methods, etc.

3.1. Clique Densities

In this section we consider only simple ordinary graphs, and we are interested
in the functions gKr

Kp
(see (4)). The case p = 2 has received most attention,

and we abbreviate

gr(x)
def
= gKr

Kp
(x).

In words, gr(x) is the (asymptotically) minimal possible density of Kr in
graphs with edge density ≥ x.

The first general bound on gr(x) was proved by Goodman [35]:

g3(x) ≥ x(2x− 1); (5)

in the framework of flag algebras his proof amounts to a one-line calculation
[63, Example 11]. This result was later rediscovered by Nordhaus and Stewart
[58] who also conjectured that

g3(x) ≥ 2

3
(2x− 1). (6)

Goodman’s bound (5) was extended to the case r = 4 by Moon and Moser
[52] as follows:

g4(x) ≥ x(2x− 1)(3x− 2) (x ≥ 2/3).

Following the pattern, they also stated without proof the natural generaliza-
tion

gr(x) ≥
r−1∏

i=1

(ix− (i− 1))

(
x ≥ 1 − 1

r − 1

)
(7)

for an arbitrary r; a complete proof was later provided in [48, 51].
Values of the form x = 1 − 1

t are called critical. These are precisely edge
densities of complete balanced t-partite graphs, and at critical values the
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right-hand side of (7) computes the densities of Kr in these graphs. Thus,
the bound (7) (and its partial case (5)) is tight at the critical points 1 − 1

t ;
the question is what is happening between them.

The bound (7) is convex. Let ψr(x) be the piecewise linear function

that is linear in every interval
[
1 − 1

t , 1 − 1
t+1

]
and coincides with gr at

its ends. Then, by convexity, ψr(x) ≥ gr(x) (note that in the interval
[1/2, 2/3] the bound conjectured in (6) is precisely ψ3(x)). More generally,
let ψpr (x) be the piecewise linear function that is linear in every interval[
gp

(
1 − 1

t

)
, gp

(
1 − 1

t+1

)]
and coincides with gr

(
1 − 1

t

)
, gr

(
1 − 1

t+1

)
at its

ends.
In the beautiful paper [8], Bollobás proved that ψpr (x) still provides a

lower bound on the function gKr

Kp
:

gKr

Kp
(x) ≥ ψpr (x). (8)

A brief survey of these and related early developments can be found in [7].
We are not aware of any improvements on Bollobás’s bound (8) for p > 2,

which, in our opinion, makes an interesting open problem. The follow-up
research concentrated on computing the functions gr(x).

As for upper bounds, let us consider a complete (t + 1)-partite graph
in which t parts are of the same size while the remaining part is smaller.

Given x ∈
[
1 − 1

t , 1 − 1
t+1

]
, there exists an asymptotically unique graph in

this class with the edge density x. Computing the density of Kr in it leads
to the following (somewhat ugly) upper bound on gr(x):

gr(x) ≤ (t−1)!
(t−r+1)!(t(t+1))r−1 ·

(
t− (r − 1)

√
t(t− x(t+ 1))

)

·
(
t+

√
t(t− x(t + 1))

)r−1 (
x ∈

[
1 − 1

t , 1 − 1
t+1

])
.

⎫
⎪⎪⎬

⎪⎪⎭
(9)

This bound is concave in the interval
[
1 − 1

t , 1 − 1
t+1

]
.

I was not able to trace the origin of the conjecture that the bound (9)
is actually tight, but in explicit form it appears already in the paper [51]
by Lovász and Simonovits. The same paper proved the conjecture in some
sub-intervals of the form

[
1 − 1

t , 1 − 1
t + εr,t

]
, where εr,t is a (very small)

constant. The next development occurred in 1989 when Fisher [30] proved4

that (9) is tight for r = 3, t = 2.
And this is where flag algebras entered the stage. Firstly, Razborov [63,

§5] independently re-discovered Fisher’s result. More generally, a relatively

4 Fisher’s proof was incomplete as it implicitly used a fact about clique
polynomials unknown at the time. This missing statement, however, was verified
in 2000.
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simple calculation [64, (3.6)] shows that if the bound (9) is tight for some t
and r = 4, then it is also tight for the same value of t and r = 3. Fisher’s
result follows immediately since (9) is tight when t = 2, r = 4 (both sides are
zero).

Then, using much more involved flag-algebraic constructs and calcula-
tions, Razborov [64] proved that the bound (9) is tight for r = 3 and an
arbitrary t. In the classification scheme outlined in Sect. 1, this proof is
certainly not plain, and in fact it barely uses Cauchy–Schwarz at all. Instead,
it significantly employs more elaborated parts of the theory like ensembles of
random homomorphisms or variational principles; we can not go into further
details here.

While the next two papers do not directly use the language of flag algebras
(see, however, the discussion at the conclusion of Sect. 1 in [69]), the proofs
are still highly analytical. Nikiforov [57] proved that (9) is tight for r = 4 (and
any t). And, finally, Reiher [69] established the same for arbitrary r, t thus
completing the quest for computing the function gr itself. Let me, however,
remind here again that no progress on the relative values gKr

Kp
for p > 2 has

apparently been made since Bollobás’s seminal paper [8].
As for exact bounds, infinite blow-ups in general provide a powerful tool

for converting asymptotic results into exact ones. In our context (we will
discuss one more case in Sect. 3.5) this simple idea immediately implies the
bound

exe,x(n;Kr) ≥ nr

r!
gr

(
2m

n2

)
(10)

[64, Theorem 4.1]. Nikiforov [57, Theorem 1.3] showed that it is rather close
to optimal.

Lovász and Simonovits [51] made several quite precise conjectures about
the behavior of exe,x(n;Kr) and the corresponding extremal configurations,
but these conjectures still remain unanswered. A partial progress toward them
was made by Pikhurko and Razborov in [62]. Firstly, using a genuine flag-
algebraic argument, they completely described the set Φ ⊆ Hom+(A0,R) of
all asymptotically extremal configurations, i.e., those φ for which φ(K3) =
g3(φ(K2)). Then, by standard techniques, [62] proved stability, i.e., that
actual extremal configurations are o(n2)-close to the conjectured ones in the
edit distance. These are precisely the first two steps of the program that we
will discuss in the next Sect. 3.2. The third step, however (extracting an exact
result from the stability version) is still missing. And for r > 3 nothing along
these lines seems to be known at all.

In conclusion, let me note again that since [8] and [51] all improvements
have been very analytical in their nature. Proving comparable results with
entirely combinatorial techniques remains an unanswered challenge.
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3.2. Turán’s Tetrahedron Problem

In this section we switch gears and work with 3-graphs. The value π(Kr
� ) is

unknown for any pair � > r > 2, this is the famous Turán problem. More
information on its history and state of the art can be found in the recent
comprehensive survey [45] (see also much older but still useful text [71]). In
this section we concentrate on the simplest case r = 3, � = 4, with a brief
digression to the next one, r = 3, � = 5. π(K3

4 ) = 1 − πmin(I34 ), and it will
be convenient to us (partially for historical reasons) to switch to this dual
notation. Turán [74] conjectured that πmin(I34 ) = 4/9, and this conjecture is
sometimes called Turán’s (3,4)-problem or tetrahedron problem. De Caen [14],
Giraud (unpublished) and Chung and Lu [18] proved increasingly stronger

lower bounds on πmin(I34 ), the latter being of the form πmin(I34 ) ≥ 9−√
17

12 ≥
0.406407.

A plain (remember that we use this word in a technical sense) flag-
algebraic calculation leads to the numerical bound

πmin(I34 ) ≥ 0.438334 (11)

[65] that was verified in [12] and later in [34] using the flagmatic software
(we will discuss the latter in Sect. 4.1). The scale of this improvement reflects
a general phenomenon: let me cautiously suggest that I am not aware of a
single example of a non-exact bound in asymptotic extremal combinatorics
that could not be improved by a plain application of flag algebras.

The remaining results in this section were distinctly motivated by the
structure of known extremal configurations elaborated in a series of early
papers by Turán [74], Brown [11], Kostochka [49] and Fon-der-Flaass [28], and
we review it first. Our description (borrowed from [67]) has a rather distinct
analytical flavor; for more combinatorial treatment see, e.g., [45, Sect. 7].

Let Γ be a (possibly infinite) orgraph without induced copies of C4.
Let FDF (Γ) be the 3-graph on V (Γ) in which (u, v, w) spans an edge if and
only if Γ|{u,v,w} contains either an isolated vertex (i.e., a vertex of both in-
degree and out-degree 0) or contains a vertex of out-degree 2. Then FDF (Γ)
does not contain induced copies of I34 [28].

Next, let Ω
def
= Z3 ×R, and consider the (infinite) orgraph ΓK = (Ω, EK)

given by

EK
def
= {〈(a, x), (b, y)〉 | (x+ y < 0 ∧ b = a+ 1) ∨ (x+ y > 0 ∧ b = a− 1)} .

ΓK does not have induced copies of C4 and hence FDF (Γ) does not contain
induced copies of I34 . The set of known extremal configurations when the
number of vertices is divisible by three is precisely the set of all induced
subgraphs of this 3-graph that are of the form FDF (ΓK |Z3×S), where S is
an arbitrary finite set of reals.

Turán’s original configuration [74] corresponds to the case when S ⊆ R
+.

Brown’s examples are obtained when negative entries in S are allowed, but are
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always smaller in absolute values than positive entries. Kostochka’s examples
[49] correspond to arbitrary finite S. And if we replace [the uniform measure
on] S by a non-atomic measure on the real line, we will get a full description
of all known φ ∈ Hom+(A0,R) with φ(I34 ) = 0 and φ(e) = 4/9.

Turán’s original example does not contain induced copies of G3 which
implies πmin(I34 , G3) ≤ 4

9 . Razborov [65] proved that in fact

πmin(I34 , G3) =
4

9
(12)

which also was the first application of the method in its genuinely plain form.
Baber and Talbot [13, Theorem 25] gave a list of ten 3-graphs {H1, . . . , H10}
on six vertices for which non-induced results of the same nature hold:
π(K3

4 , Hi) = 5
9 (1 ≤ i ≤ 10); their proof method is also plain.

Pikhurko [59] proved that for a sufficiently large n, Turán’s example is the
only 3-graph on which exmin(n; I34 , G3) is attained. This was also one of the
first papers to demonstrate the three-step program for converting asymptotic
flag-algebraic results into exact ones:

1. Describe the set of all extremal elements in Hom+(A0,R) (which in this
particular case consists of a single element).

2. Prove stability, that is that the convergence in the pointwise topology
described in Sect. 1 can be strengthened to convergence in the edit distance.

3. Move from stability to exact results using combinatorial techniques.

Let us now take a brief de-tour and discuss a couple results of similar
nature inspired by the next case r = 3, � = 5 in Turán’s problem.
The situation with computing πmin(I35 ) itself is very similar to πmin(I34 ):
Turán’s conjecture says that πmin(I35 ) = 1/4, and there are many non-
isomorphic configurations realizing this bound. The simplest of them given
by Turán himself is the disjoint union K3

n/2

.
∪ K3

n/2 of two cliques of the
same size. Let H1, H2 be the two non-isomorphic 3-graphs on 5 vertices with
precisely two edges. Then they are missing in Turán’s example above, and
Falgas–Ravry and Vaughan proved in [34] that

πmin(I35 , H1, H2) = 1/4

which is analogous to (12). Their proof method is plain.
To review another remarkable result, it is convenient to switch to the

dual notation. Turán’s construction from the previous paragraph implies that
π(K3

5 ) ≥ 3/4 and, more generally, π(G) ≥ 3/4 for any 3-graph G that is not
2-colorable. In particular, this applies to critical (that is, edge minimal) 3-
graphs on six vertices with chromatic number 3. There are precisely six such
graphs; one of them being K3

5 plus an isolated vertex (in other words, J̄5)
and, obviously, π(K3

5 ) = π(J̄5). Quite remarkably, using flag algebras, Baber
[1, Theorem 2.4.1] proved that π(G) = 3/4 for every one of the remaining
five graphs on the list; his proof is plain.
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We now return to the tetrahedron problem. Clearly, not all graphs without
copies of I34 can be realized in the form FDF (Γ), and Fon-der-Flaass [28]
asked whether Turán’s conjecture can at least be proved for 3-graphs of his
special form. He himself showed a lower bound of 3/7 (superseded by (11)).
While the Fon-der-Flaass conjecture is still open, Razborov [67] verified it
under either one of the two following assumptions:

1. Γ is an orientation of a complete t-partite graph (not necessarily balanced)
for some t;

2. The edge density of Γ is ≥ 2/3 − ε for some absolute constant ε.

Note that (2) settles a local version of the Fon-der-Flaass conjecture, that
is proves it in an open neighborhood of the set Φ ⊆ Hom+(A0,R) of known
extremal configurations. The proof method is a combination of plain and more
sophisticated techniques heavily based upon working with several different
kinds of combinatorial structures at once and frequently transferring auxiliary
results from one context to another. The author expresses his hope that
this kind of interaction (mostly human reasoning aided in appropriate places
by the hammer-like power of plain flag-algebraic arguments) will become
increasingly more popular in the area.

The result (12) is relevant only to the original extremal example given
by Turán as all others contain plenty of induced copies of G3. Razborov [68]
identified three 3-graphs on 5 vertices given by their set of edges as follows:

E(H1)
def
= {(123)(124)(134)(234)(125)(345)}

E(H2)
def
= {(123)(124)(134)(234)(135)(145)(235)(245)}

E(H3)
def
= {(123)(124)(134)(234)(125)(135)(145)(235)(245)}

and proved that

πmin(I34 , H1, H2, H3) = 4/9. (13)

The motivation behind this result is that, as induced subgraphs, H1, H2, H3

are missing in FDF (ΓK) and, thus, in all known extremal configurations.
Flag algebras are used in this proof only “behind the scene”, but the proof
method itself deserves a few words here. Let us call a 3-graph H singular if
its edge set is not a superset of E(FDF (Γ)) for any orgraph Γ which is an
orientation of a complete t-partite graph (cf. the first result from [67] cited
in item (1) on page 220) and does not contain induced copies of C4. Then
[68] proved that

π̂H(H1, H2, H3) = 0,

where H is an arbitrary singular 3-graph and π̂H(F) is defined similarly to
πH(F), with the difference that only induced copies of elements in F are
forbidden. The proof uses Ramsey theory, and the main result (13) follows
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almost immediately from this and the first result in [67]. We are not aware of
a similar “zero-inducibility” phenomenon that would not have held for some
trivial reasons.

In conclusion, [67, 68] provide several results that verify Turán’s conjec-
ture for several natural classes containing the set ΦTuran of all known extremal
examples. None of them, however, covers an open neighborhood of ΦTuran,
and we believe that obtaining such a local result would have been a major
step toward resolving the unrestricted version of the tetrahedron problem.

3.3. Caccetta–Häggkvist Conjecture

In this section we work with oriented graphs.
In 1970, Behzad, Chartrand and Wall [4] asked the following question:

if G is a bi-regular orgraph on n vertices of girth (� + 1) (i.e., Ck-free for
any k ≤ �), how large can be its degree? They conjectured that the answer
is �n−1

� � and presented a simple construction attaining this bound. Eight
years later, Caccetta and Häggkvist [17] proposed to lift in this conjecture
the restriction of bi-regularity and, moreover, restrict attention to minimal
outdegree only. In other words, they asked if every orgraph without oriented
cycles of length ≤ � must contain a vertex of out-degree ≤ n−1

� , and it is this
question that became known as the Caccetta–Häggkvist conjecture. Like in the
previous Sect. 3.2 we concentrate on the case � = 3 even if some prominent
work has been done for higher values of �.

Let c be the minimal x for which every C3-free orgraph on n vertices
contains a vertex of outdegree ≤ (c + o(1))n; the Caccetta–Häggkvist
conjecture then says5 that c = 1/3. Caccetta and Häggkvist themselves

proved the bound c ≤ 3−√
5

2 ≈ 0.382 [17]. In the paper [9] that, as we
acknowledged in Sect. 1, was one of the predecessors of flag algebras, Bondy

proved that c ≤ 2
√
6−3
5 ≤ 0.379. His proof is essentially what we would call

here a plain application of the method using C3-free orgraphs on 4 vertices
(there are 32 of them). However, instead of actually solving the resulting
SDP, Bondy gives a hand-manufactured (non-optimal) solution to it. Shen
[70] improved this to c ≤ 0.3543, and Hamburger, Haxell and Kostochka [39]
proved a bound of c ≤ 0.3532.

The current record of c ≤ 0.3465 was established by Hladký, Král’ and
Norin in [43] using flag algebras. After incorporating an inductive argument
previously used by Shen in [70], their proof method is mostly plain, but it
also introduces one more novel and important feature. Namely, [43] utilizes
a result by Chudnovsky, Seymour and Sullivan [19] on eliminating cycles
in triangle-free digraphs that is only somewhat related to the Caccetta–
Häggkvist conjecture, and adding that auxiliary result to the computational

5 It is well-known that its asymptotic and exact versions are equivalent.
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Twisted Circle In-Pendant Out-Pendant

Fig. 1 Forbidden orgraphs.

brew is paramount for the improvement. Again, I would like to express my
hope that in the future we will see more examples of interaction of this sort
between different problems.

As for partial but exact results, Razborov [66] proved the Caccetta–
Häggkvist conjecture under the additional assumption that the three or-
graphs on Fig. 1 are missing as induced subgraphs. Like in the previous
section, the point here is that these orgraphs are missing in all known
extremal configurations; for the description of the latter see [9, Sect. 3] and
[66, Sect. 2]. The proof is not plain and in fact does not use Cauchy–Schwarz
at all. Moreover, all concrete calculations are so simple that the proof was
presented in an entirely finite setting but using flag-algebraic notation.

3.4. Topics in Hypergraphs Motivated
by the Erdős–Stone–Simonovits Theorem

From this point on, all flag-algebraic proofs we review are plain. Therefore,
we will normally omit this qualification.

As we already noted in Sect. 2, the Erdős–Stone–Simonovits theorem
(3) completely settles the question of computing π(F) for finite families
of ordinary graphs. But it also implies several interesting structural con-
sequences pertaining to the behavior of this function. In this section we
survey a few contributions to the hypergraph theory bound together by the
general intention to understand how precisely badly this theorem fails for
hypergraphs.

To start with, (3) implies that π(F) = minF∈F π(F ) (one direction is
obvious), and by analogy with objects like principal ideals, etc. it is natural
to say that for ordinary graphs the function π(F) displays principle behavior.
It is also natural to ask if this is true for hypergraphs, and, indeed, Mubayi
and Rödl [54] conjectured that non-principal families F (i.e., those for which
π(F) < minF∈F π(F )) exist already for 3-graphs. They further conjectured
that they exist even with |F| = 2.

The first question was answered in affirmative by Balogh [2], but, in
his own words, “the cardinality of the set F is not immediately obvious”.
The second question was answered by Mubayi and Pikhurko [53] who showed
that the pair (K3

4 , J5) is not principal.
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From the discussion in [54] it is sort of clear that the authors expect
the pair (G3, C5) to be non-principal, and to that end they note the known
inequality [29]

π(G3) ≥ 2

7
, (14)

as well as prove new results π(C5) ≥ 0.464 and π(G3, C5) ≤ 10
31 .

Using flag algebras, Razborov [65] improved the latter bound to

π(G3, C5) ≤ 0.2546 <
2

7

thus proving that (G3, C5) is indeed a non-principal pair. Then Falgas–Ravry
and Vaughan [34], also using flag algebras, proved that the pairs (G3, F3,2)
and (K3

4 , J4) are non-principal. The former example is remarkable since they
were also able to compute

π(G3, F3,2) =
5

18
,

and π(F3,2) = 4
9 had been known before [31] (for a several-line flag-algebraic

proof of this result see [65, Theorem 5]). Nonetheless, π(G3) is still unknown,
and it is interesting to note in this respect that we still do not know of any
example of a non-principal family F for which we can actually compute all
involved quantities π(F) and π(F ) (F ∈ F).

Another obvious consequence of the Erdős–Stone–Simonovits theorem is
that for ordinary graphs, π(F) is always rational. The book [15] mentions
the conjecture, believed to be due to Erdős, that this will also be the case
for r-graphs. This conjecture was disproved using flag algebras by Baber and
Talbot [13] who gave a family of three 3-graphs F such that π(F) = λ(F3,2) =
189+15

√
15

961 . It was also independently disproved by Pikhurko using different
methods [61], but his family F is huge.

Yet another consequence of the Erdős–Stone–Simonovits theorem is that
in case of ordinary graphs, for any α ∈ [0, 1) the density bound π(F) ≤ α
can be forced by a finite family F such that all graphs G ∈ F have larger
density ≥ β for some fixed β > α. Moreover, the graphs G ∈ F can
be made arbitrarily large, and (this is important!) β does not depend on
minG∈F |V (G)|. For example, if α ∈ [1/2, 2/3), then this property is witnessed
by taking β = 2/3 and letting F consist of a single balanced complete tri-
partite graph. α is said to be a jump for an integer r ≥ 2 if the analogous
property holds for r-graphs.

Erdős [24] showed that for all r, every α ∈
[
0, r!rr

)
is a jump and

conjectured that, like in the case of ordinary graphs, every α ∈ [0, 1) is a jump.
And perhaps the most surprising fact about jumps is that this “jumping
constant conjecture” is not true. The first examples of non-jumps were given
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by Frankl and Rödl in [32], and a number of other examples followed. All of
them, however, live in the interval

[
5r!
2rr , 1

)
, and what happens in between

(i.e., for α ∈
[
r!
rr ,

5r!
2rr

)
) was a totally grey area.

Using flag algebras, Baber and Talbot [12] gave the first example of jumps
in this intermediate interval by showing that all α ∈ [0.2299, 0.2316) are
jumps for r = 3. Their proof also uses a previous characterization from [32]
that allows to get rid of the condition that G ∈ F must be arbitrarily large
by considering their Lagrangians instead. Given this reduction, Baber and
Talbot produced a set F consisting of five 3-graphs on 6 vertices such that
λ(F ) ≥ 0.2316 (F ∈ F) while π(F) ≤ 0.2299. It is worth noting that whether
α = 2/9 is a jump for r = 3 (which was one of the questions asked in the
original paper by Erdős) still remains open.

3.5. Induced H-Densities

So far we predominantly dealt with “normal” Turán densities π(F), πmin(F),
i.e. special cases of πH(F), πmin,H(F) when H is a (hyper)edge. In this
section, on the contrary, we review a few results proven with the help of flag
algebras in which the graph H is more complicated.

Triangle-free graphs need not be bipartite. But how exactly far from being
bipartite can they be? In 1984, Erdős [25, Questions 1 and 2] considered three
quantitative refinements of this question, and one of them was to determine
exC5(n,K3). Györi [38] had a partial result in that direction.

The asymptotic version of Erdős’s question was solved using flag algebras
by H. Hatami et al. [40] and Grzesik [37] who independently proved that

πC5(K3) =
5!

55
. (15)

The standard trick with blow-ups (cf. (10)) immediately implies that

exC5(5�,K3) = �5. (16)

Hatami et al. [40] also proved that the infinite blow-up of C5 is the
only element φ ∈ Hom+(A0,R) realizing equality in (15), and that the
finite balanced blow-up of C5 is the only graph realizing equality in (16).
Remarkably, the proof of the latter result bypasses the stability approach
outlined in Sect. 3.2. Namely, given a finite K3-free graph G, instead of
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viewing this graph as a member of a converging sequence, [40] simply
considers its infinite blow-up φG ∈ Hom+(A0,R) and directly applies to it
the asymptotic uniqueness result.

When n = 5� + a (1 ≤ a ≤ 4), [40] also proved that exC5(n,K3) =
�5−a(� + 1)a, the equality being attained at almost balanced blow-ups of
C5. But this proof already uses the traditional stability approach, and, as a
consequence, works only for sufficiently large n.

Somewhat similar in spirit is another question asked by Erdős in [23]. The
Ramsey theorem is equivalent to the statement that for any fixed k, � > 0,
for all sufficiently large n we have exmin,Ik(n,K�) > 0. Erdős asked about the
quantitative behavior of this function and conjectured that the minimum is
attained for the balanced (� − 1)-partite graph. Asymptotically, if we let

ck,�
def
= πmin,Ik(K�),

Erdős’s conjecture says that

ck,� = (�− 1)1−k. (17)

This was disproved by Nikiforov [56] who observed that the blow-up of C5 we
just discussed in a different context actually implies that c4,3 ≤ 3

25 . Moreover,
Nikiforov showed that Erdős’s conjecture (17) can be true only for finitely
many pairs (k, �).

Using flag algebras, Das et al. [20] and Pikhurko [60] independently
proved that c3,4 = 1/9 (thus confirming Erdős’s conjecture in this case)
and that c4,3 = 3/25 (thus showing that Nikiforov’s counterexample is the
worst possible). Both papers use the stability approach to get exact results
for sufficiently large n. Das et al. [20, Sect. 6] states that their unverified
calculations confirm Erdős’s conjecture in two more cases: c3,5 = 1/16 and
c3,6 = 1/25. Both these calculations were verified by Vaughan (referred to in
[60]) who also confirmed Erdős’s conjecture in one more case: c3,7 = 1/36.
Along the other axis, Pikhurko [60] calculated c5,3, c6,3 and c7,3.

Let us now discuss “pure” inducibility i(H) of a graph/orgraph/hypergraph
H that in our notation is simply equal to πH(∅).

There is one self-complementary graph on 4 vertices, P4 and five
complementary pairs, which (since πH(∅) = πH̄(∅)) give rise to six different
problems of determining πH(∅). One of them (K4/I4) is trivial, and two
problems had been solved before with other methods.

Using flag algebras, Hirst [42] solved two more cases: he showed that

πK4−K2(∅) =
72

125

and that

πK4−P3(∅) =
3

8
.
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Thus, now P4 is the only remaining graph on 4 vertices whose inducibility is
still unknown.

Sperfeld [72] studied inducibility for oriented graphs. Using flag algebras,
he showed that πC3(∅) = 1

4 and obtained a few non-exact results improving on
previous bounds: πP3(∅) ≤ 0.4446 (the conjectured value is 2/5), πC4(∅) ≤
0.1104 and πK1,2(∅) ≤ 0.4644. Then Falgas–Ravry and Vaughan [33] were
able to actually compute the latter quantity:

πK1,2
(∅) = 2

√
3 − 3.

They also computed πK1,3(∅) that turned out to be a rational function in a
root of a cubic polynomial.

In the department of 3-graphs, the same paper [33] calculated the
inducibility of G2:

πG2(∅) =
3

4
.

Slightly stretching our notation, let πm.k(∅) be the minimal induced density
of the collection of all 3-graphs on m vertices with exactly k edges (thus e.g.
πG2(∅) = π4.2(∅)). Falgas–Ravry and Vaughan also proved in [33] that

π5.1(∅) = π5.9(∅) =
5

8

and

π5.k(∅) =
20

27
(3 ≤ k ≤ 7).

3.6. Miscellaneous Results

A graph H is common if the sum of the number of its copies (not necessarily
induced) in a graph G and the number of such copies in the complement of
G is asymptotically minimized by taking G to be a random graph. Erdős [23]
conjectured that all complete graphs are common, and this conjecture was
disproved by Thomason [73] who showed that for p ≥ 4, Kp is not common.
It is now known that common graphs are very rare, and several authors
specifically asked if the wheel W5 shown on Fig. 2 is common.

This question becomes amenable to the (manifestly induced) frame-
work of flag algebras by using the transformation (1). And, indeed, H.
Hatami et al. [41] proved that W5 is common. This is the only result in
our survey where optimization takes place over a rather complicated linear
combination of “primary” induced densities rather than individual densities.
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W5

Fig. 2 The 5-wheel.

Erdős et al. asked in [22] a question that later became known as the (2/3)-
conjecture. Given a 3-coloring of the edges of Kn, what is the smallest t such
that there exists a color c and a set A of t vertices whose c-neighborhood has
density at least 2/3? The conjecture says that t = 3, the previously known
bound was t = 22, and using flag algebras, Král’ et al. proved in [46] that
one can actually take t = 4.

In [47], Král’, Mach and Sereni looked at the following geometric problem
resulted from the work by Boros and Füredi [5] and Bárány [3]. What is the
minimal constant cd such that for every set P of n points in R

d in general
position there exists a point of Rd contained in at least cd

(
n
d+1

)
d-simplices

with vertices at the points of P . As stated, it is not amenable to the approach
of flag algebras, but Gromov [36] was able to find a topological approach to
it, and its later expositions (see [47] for details) brought it rather close to that
realm. One remaining concepts that still can not be handled by flag algebras
in full generality is that of Seidel minimality as it quantifies over arbitrary
sets of vertices. Král’, Mach and Sereni, however, showed that by applying
this property only to certain sets definable in this language they can improve
known bounds on cd.

In the rest of this section we review a few more results about 3-graphs
obtained with the method of flag algebras that were not addressed in our
previous account. This activity started with the Mubayi challenge when all
exact results presented to the author by Dhruv Mubayi found their new flag-
algebraic proofs in [65, Sect. 6.2] of varying and surprisingly unpredictable
computational difficulty. Razborov [65] also gave a few non-exact results, of
which we would like to mention here only π(G3) ≤ 0.2978 later improved by
Baber and Talbot [12] to π(G3) ≤ 0.2871, which is already quite close to the
conjectured value 2/7 (see (14)).

Baber and Talbot [13] go over “critical” densities 2/9, 4/9, 5/9, 3/4 (recall
that π(F3,2) = 4/9 and 5/9, 3/4 are conjectured values for π(K3

4 ), π(K3
5 ),

respectively). For every α from this set they were able to construct one (for
α = 2/9) or more (for α ∈ {4/9, 5/9, 3/4}) 3-graphs F with π(F ) = α.
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Falgas–Ravry and Vaughan [34] proved, besides the results we already
cited above in various contexts, several more exact results:

π(G3, C5, F3,2) =
12

49
,

π(G3, F3,2) =
5

18
,

π(J4, F3,2) =
3

8
.

In the second paper [33] of the same authors they prove (again, in addition
to what we already surveyed before) several more inducibility results:

πG3(K3
4 ) =

16

27
, πG3(F3,2) =

27

64
, πK3

4
(F3,2) =

3

32

πG2(C5, F3,2) =
9

16
, πG2(G3, F3,2) =

5

9
, πG2(G3, C5, F3,2) =

4

9
.

Two forthcoming papers study codegree density π2(F ) for 3-graphs
(see [45, Sect. 13.2] for definitions). Falgas–Ravry, Marchant, Pikhurko and
Vaughan give a new flag-algebraic proof of the result π2(F3,2) = 2/3 from
Marchant’s thesis. In the second paper, Falgas–Ravry, Pikhurko and Vaughan
prove that π2(G3) = 1/4.

4. Concluding Remarks

4.1. Flagmatic Software

In the first few years since the inception of the method, researchers who
needed it for their work had to write the code on their own, the only thing
that was available from the shelf were SDP-solvers like CSDP [10] or SDPA.
It appears as if these homemade pieces of software greatly differ in the level
of their public availability, user-friendliness and, most important, versatility.
Like in many other similar scenarios, it can be expected that this period
of anarchy will eventually be over, and the separation between users and
developers (with the clear understanding that these two groups are likely
to overlap significantly) will be defined more clearly. This will also likely
imply that the many ad hoc programs around will give way to one or a few
“standard” packages, and researchers that are new to the method will largely
lose the initiative to program on their own.

One very serious bid to become such a “golden standard” has been made
by the Flagmatic software developed by Vaughan and, in fact, many results
that we surveyed above were obtained using this program. It is publicly
available from http://www.flagmatic.org, and (from everything I know) it
is user-friendly. Versatility is also improving: while this project started with

http://www.flagmatic.org
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3-graphs, the last version 2 also has support for ordinary graphs and oriented
graphs. Time will tell if Flagmatic gets a serious competitor, but at the
moment this seems to be the only option for a researcher who needs to use the
method on a reasonably recurrent basis but does not want to invest time into
writing his/her own code.

4.2. Beyond Turán Densities?

Turán densities for dense graphs is by far not the only area in discrete
mathematics and beyond where Cauchy–Schwarz and positive semi-definite
programming are used extensively. Thus, it is natural to wonder if formal
methods similar to flag algebras can be applied elsewhere. In cases we
potentially have in mind it is more or less clear how to come up with a
mathematically beautiful calculus that “works in theory”. But our question
is more pragmatic: can it be done in such a way that it will actually allow to
prove new concrete results in the area in question. See [34, Sect. 4.1] for a very
relevant discussion of the complexity barrier that (as we believe) prevents us
from getting many more, and possibly very great, results with this method
even on its home field, asymptotic extremal combinatorics.

We are aware of two moderate but concrete and successful steps in that
direction. Baber [1, Chap. 2.5] (some of these results were later independently
rediscovered by Balogh et al. in [6]) extends the method to Turán densities
for subgraphs of the hypercube Qn. The latter is a rather sparse graph,
so significant modifications are necessary. And Norin and Zwols (personal
communication) started considering applications of the flag algebra frame-
work to the study of crossing numbers, particularly of the complete bipartite
graph Kn,n. They already were able to get a numerical improvement on the
previously best known bound from [21].

One more paper that might be mentioned here is the work by Král’,
Mach and Sereni [47] on the Boros–Füredi–Bárány problem that we already
discussed in Sect. 3.6. But their approach is sort of opposite: they “massage”
the problem they are interested in until it fits nicely the framework of flag
algebras as originally defined in [63].

Acknowledgements I am grateful to Rahil Baber, Victor Falgas-Ravry, Ron
Graham, Sergey Norin and Christian Reiher for useful remarks.
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12. R. Baber and J. Talbot. Hypergraphs do jump. Combinatorics, Probability and
Computing, 20(2):161–171, 2011.

13. R. Baber and J. Talbot. New Turán densities for 3-graphs. Electronic Journal
of Combinatorics, 19(2):P22, 2012.

14. D. de Caen. The current status of Turán problem on hypergraphs. In Extremal
Problems for Finite Sets, Visegrád (Hungary), volume 3, pages 187–197. Bolyai
Society Mathematical Studies, 1991.
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32. P. Frankl and V. Rödl. Hypergraphs do not jump. Combinatorica, 4:149–159,
1984.

33. V. Falgas-Ravry and E. R. Vaughan. Turán H-densities for 3-graphs. The Elec-
tronic Journal of Combinatorics, 19(3):P40, 2012.

34. V. Falgas-Ravry and E. R. Vaughan. Applications of the semi-definite method
to the Turán density problem for 3-graphs. Combinatorics, Probability and
Computing, 22:21–54, 2013.

35. A. W. Goodman. On sets of acquaintances and strangers at any party. American
Mathematical Monthly, 66(9):778–783, 1959.

36. M. Gromov. Singularities, expanders and topology of maps. Part 2: From
combinatorics to topology via algebraic isoperimetry. Geometric and Functional
Analysis, 20:416–526, 2010.

37. A. Grzesik. On the maximum number of five-cycles in a triangle-free graph.
Journal of Combinatorial Theory, ser. B, 102:1061–1066, 2012.

38. E. Gyori. On the number of C5’s in a triangle-free graph. Combinatorica,
9(1):101–102, 1989.

39. P. Hamburger, P. Haxell, and A. Kostochka. On directed triangles in digraphs.
Electronic Journal of Combinatorics, 14(1):Note 19, 2007.

40. Hatami H, J. Hladky, D. Kral, S. Norin, and A. Razborov. On the number
of pentagons in triangle-free graphs. Technical Report 1102.1634v1 [math.CO],
arXiv, 2011.

41. Hatami H, J. Hladky, D. Kral, S. Norin, and A. Razborov. Non-three-colorable
common graphs exist. Combinatorics, Probability and Computing, 21(5):734–
742, 2012.

42. J. Hirst. The inducibility of graphs on four vertices. Technical Report 1109.1592
[math.CO], arXiv, 2011.
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Summary. Let k be an integer. A graph G is k-arrangeable (concept introduced
by Chen and Schelp) if the vertices of G can be numbered v1, v2, . . . , vn in such a
way that for every integer i with 1 ≤ i ≤ n, at most k vertices among {v1, v2, . . . , vi}
have a neighbor v ∈ {vi+1, vi+2, . . . , vn} that is adjacent to vi. We prove that for
every integer p ≥ 1, if a graph G is not 2500(p + 1)8-arrangeable, then it contains
a Kp-subdivision. By a result of Chen and Schelp this implies that graphs with
no Kp-subdivision have “linearly bounded Ramsey numbers,” and by a result of
Kierstead and Trotter it implies that such graphs have bounded “game chromatic
number.”

The Theorem

In this paper graphs are finite, may have parallel edges, but may not have
loops. We begin by defining the concept of admissibility, introduced by
Kierstead and Trotter [8].

Let G be a graph, let M ⊆ V (G), and let v ∈ M . A set A ⊆ V (G) is
called an M -blade with center v if either

(i) A = {a} and a ∈M is adjacent to v, or
(ii) A = {a, b}, a ∈ M , b ∈ V (G) −M , and b is adjacent to both v and a.

An M -fan with center v is a set of pairwise disjoint M -blades with center v.
Let k be an integer. A graph G is k-admissible if the vertices of G can be
numbered v1, v2, . . . , vn in such a way that for every i = 1, 2, . . . , n, G has no
{v1, v2, . . . , vi}-fan with center vi of size k + 1.

As pointed out in [8] the concepts of arrangeability and admissibility are
asymptotically equivalent in the sense that if a graph is k-arrangeable, then
it is 2k-admissible, and if it is k-admissible, then it is (k2−k+1)-arrangeable.
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Let p be an integer. A graph G has a Kp-subdivision if G contains p
distinct vertices v1, v2, . . . , vp and

(
p
2

)
paths Pij (i, j = 1, 2, . . . , p, i < j) such

that Pij has ends vi and vj , and if a vertex of G belongs to both Pij and Pi′j′

for (i, j) = (i′, j′), then it is an end of both. The following is our main result.

Theorem 1. Let p ≥ 1 be an integer. If a graph G is not 50p2(p2 + 1)-
admissible, then it has a Kp-subdivision.

We first prove Theorem 1, and then discuss its applications. For the proof
we need the following result, originally proved with a larger constant by
Bollobás and Thomason [3], and independently by Komlós and Szemerédi [9],
who proved it with a smaller constant, but only for sufficiently large p. Our
version follows from a result of Thomas and Wollan [11] and can be found
in [7, Theorem 7.2.1].

Theorem 2. Let p ≥ 1 be an integer. If a simple graph on n vertices has at
least 5p2n edges, then it has a Kp-subdivision.

We first prove a lemma.

Lemma 1. Let p ≥ 1 be an integer, let G be a graph, and let M be a non-
empty subset of V (G). If for every v ∈M there is an M -fan in G with center
v of size 50p2(p2 + 1), then G has a Kp-subdivision.

Proof. Let p, G, and M be as stated in the lemma, and for v ∈M let Fv be a
fan in G with center v of size 50p2(p2 +1). We may assume that G is minimal
subject to M ⊆ V (G) and the existence of all Fv(v ∈ M). Let |M | = m, let e1
be the number of edges of G with both ends in M , and let e2 be the number
of edges of G with one end in M and the other in V (G)−M . Then from the
existence of the fans Fv for v ∈M we deduce that 2e1 + e2 ≥ 50p2(p2 + 1)m.

We claim that if |V (G)−M | ≥ 10p2m−e1, then G has a Kp-subdivision.
Indeed, by our minimality assumption for every w ∈ V (G) −M there exist
vertices u, v ∈ M such that {u,w} ∈ Fv. For w ∈ V (G) −M let us denote
by e(w) some such pair of vertices. Let J be the graph obtained from G by
deleting V (G) −M and for every w ∈ V (G) −M adding an edge between
the vertices in e(w). Then |E(J)| ≥ 10p2m, and since every pair of vertices
is joined by at most two (parallel) edges, J has a simple subgraph J ′ on
the same vertex-set with at least 5p2m edges. By Theorem 2 J ′ has a Kp-
subdivision L. Every edge of L that does not belong to G joins two vertices
u, v with {u, v} = e(w) for some w ∈ V (G) − M . By replacing each such
edge by the edges uw, vw we obtain a Kp-subdivision in G. This proves our
claim, and so we may assume that |V (G) −M | ≤ 10p2m− e1.

Now |V (G)| ≤ (10p2 + 1)m− e1, and

|E(G)| ≥ e1 + e2 = 2e1 + e2 − e1 ≥ 50p2(p2 + 1)m− e1

≥ 5p2((10p2 + 1)m− e1) ≥ 5p2|V (G)|,

and hence G has a Kp-subdivision by Theorem 2, as required. �
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Proof of Theorem 1. Let p be an integer, and let G be a graph on n vertices
with no Kp-subdivision. We are going to show that G is 50p2(p2 + 1)-
admissible by exhibiting a suitable ordering of V (G). Let i ∈ {0, 1, . . . , n}
be the least integer such that there exist vertices vi+1, vi+2, . . . , vn with the
property that for all j = i, i+1, . . . , n,G has no (V (G)−{vj+1, vj+2, . . . , vn})-
fan with center vj of size 50p2(p2+1). We claim that i = 0. Indeed, otherwise
by Lemma 1 applied to M = V (G)−{vi+1, vi+2, . . . , vn} there exists a vertex
vi with no M -fan with center vi of size 50p2(p2 + 1), and so the sequence vi,
vi+1, . . . , vn contradicts the choice of i. Hence i = 0, and v1, v2, . . . , vn is the
desired enumeration of the vertices of G. �

Applications

We now mention two applications of Theorem 1. Let G be a class of graphs.
We say that G has linearly bounded Ramsey numbers if there exists a constant
c such that if G ∈ G has n vertices, then for every graph H on at least cn
vertices, either H or its complement contain a subgraph isomorphic to G.
The class of all graphs does not have linearly bounded Ramsey numbers, but
some classes do. Burr and Erdős [4] conjectured the following.

Conjecture 1. Let t be an integer, and let G be the class of all graphs
whose edge-sets can be partitioned into t forests. Then G has linearly bounded
Ramsey numbers.

Chvátal, Rödl, Szemerédi and Trotter [6] proved that for every integer
d, the class of graphs of maximum degree at most d has linearly bounded
Ramsey numbers, and Chen and Schelp [5] extended that to the class of k-
arrangeable graphs. Chen and Schelp also showed that every planar graph has
arrangeability at most 761, a bound that has been subsequently lowered to 10
by Kierstead and Trotter [8]. From Chen and Schelp’s result and Theorem 1
we deduce

Corollary 1. For every integer p ≥ 1, the class of graphs with no Kp-
subdivision has linearly bounded Ramsey numbers.

For the second application we need to introduce the following two-person
game, first considered by Bodlaender [2]. Let G be a graph, and let t be
an integer, both fixed in advance. The game is played by two players Alice
and Bob. Alice is trying to color the graph, and Bob is trying to prevent
that from happening. They alternate turns with Alice having the first move.
A move consists of selecting a previously uncolored vertex v and assigning
it a color from {1, 2, . . . , t} distinct from the colors assigned previously (by
either player) to neighbors of v. If after |V (G)| moves the graph is (properly)
colored, Alice wins, otherwise Bob wins. More precisely, Bob wins if after less
than |V (G)| steps either player cannot make his or her next move. The game
chromatic number of a graph G is the least integer t such that Alice has a
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winning strategy in the above game. Kierstead and Trotter [8] have shown
the following.

Theorem 3. Let k and t be positive integers. If a k-admissible graph has
chromatic number t, then its game chromatic number is at most kt+ 1.

They have also shown that planar graphs have admissibility at most 8, and
hence planar graphs have game chromatic number at most 33 by Theorem 3
and the Four Color Theorem [1]. From Theorems 1 to 3 we deduce

Corollary 2. Let p be a positive integer. Then every graph with no Kp-
subdivision has game chromatic number at most 500p4(p2 + 1) + 1.
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Summary. We prove that double exponentiation is an upper bound to Ramsey’s
theorem for colouring of pairs when we want to predetermine the order of the
differences of successive members of the homogeneous set.

The following problem was raised by Jouko Vaananen for model theoretic
reasons (having a natural example of the difference between two kinds of
quantifiers, actually his question was a specific case), and propagated by Joel
Spencer: Is there for any n, c an m such that

(∗) For every colouring f of the pairs from {0, 1, . . . ,m − 1} by 2 (or even
c) colours, there is a monochromatic subset {a0, . . . , an−1}, a0 < a1 < · · ·
such that the sequence 〈ai+1 − ai : i < n− 1〉 is with no repetition and is
with any pregiven order.

Noga Alon [1] and independently Janos Pach proved that for every n, c there
is such an m as in (∗); Alon used van der Waerden numbers (see [2]) (so
obtained weak bounds).

Later Alon improved it to iterated exponential (Alan Stacey and also the
author have later and independently obtained a similar improvement). We
get a double exponential bound. The proof continues [4]. Within the “realm”
of double exponential in c, n we do not try to save.

We thank Joel Spencer for telling us the problem, and Martin Goldstern
for help in proofreading.

Notation. Let �, k,m, n, c, d belong to the set N of natural numbers (which
include zero). A sequence η is 〈η(0), . . . , η(�gn− 1)〉, also ρ, ν are sequences.
η�v means that η is a proper initial subsequence of v. We consider sequences
as graphs of functions (with domain of the form n = {0, . . . , n− 1}) but η∩v
means the largest initial segment common to η and v. η�〈s〉 is the sequence
〈η(0), . . . , η(�gη − 1), s〉 (of length �g(η) + 1).
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Let �m :=
{
η : �g(η) = �, and Rang(η) ⊆ {0, . . . ,m− 1}

}
, �>m =

⋃
k<�

km.

For v ∈ �>m we write [v]�m (or [v] if � and m are clear from the context) for
the set {η ∈ �m : v � η}.

[A]n = {w ⊆ A : |w| = n}. Intervals [a, b), (a, b), [a, b) are the usual
intervals of integers. The proof is similar to [4] but sets are replaced by trees.

1. Definition

r = r(n, c) is the first number m such that:

(∗)n,cm for every f : [{0, . . . ,m− 1}]2 → {0, . . . , c− 1} and linear order <∗ on
{0, . . . , n− 2} we can find a0 < . . . < an−1 ∈ [0,m) such that:

(a) f |{ai, aj} : 0 ≤ i < j < n} is constant.
(b) The numbers b� := a�+1 − a� (for � < n− 1) are with no repetitions and

are ordered by <∗, i.e. i <∗ j ⇒ bi < bj.

We will find a double exponential bound for r = r(n, c), specifically,

r = r(n, c) ≤ 2(c(n+1)3)nc

(so our bound is double exponential in n and in c).
This is done in Sect. 6. Alon conjectures that the true order of magnitude

of r(n, c) is single exponential, and Alon and Spencer have proved this for
the case where the sequence 〈ai+1 − ai : i < n− 1〉 is monotone.

2. Definition

We say S is an (�,m∗,m, u)-tree if:

(a) u ⊆ {0, 1, . . . , �− 1} and m∗ ≥ m
(b) S ⊆�≥ (m∗)
(c) S is closed under initial segments
(d) If v ∈ S is �-maximal then �g(v) = �
(e) If v ∈ S and �g(v) ∈ u then for m numbers j < m∗ we have v�〈j〉 ∈ S

3. Claim

Suppose k, �,m, p,m∗ ∈ N satisfy

(∗)k,�,m,p,m∗ m∗ ≥ pkm�k+1,

then for every i(∗) < �, and u ⊆ [0, � − 1), and |u| ≤ p and f : [�(m∗)]2 →
{0, 1} there is T ⊆�≥ (m∗) closed under initial segments, (T, �) ∼= (�≥m, �)
satisfying
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⊕
for every η1, . . . , ηk ∈ T ∩� (m∗) with 〈η1 � i(∗), . . . , ηk � i(∗)〉 pairwise

distinct we can find a set S such that:

(a) S is an (�,m∗,m, u i(∗))-tree
(b) If j ∈ [1, k) and ν ∈ S ∩� (m∗) then f({ηj , ηk}) = f({ηj , ν})
(c) ν ∈ S ∩� (m∗) ⇒ ηk � i(∗) � ν

Remark 1. (1) With minor change we can demand in
⊕

“for any
i(∗) < �”.

(2) We could use here f with range {0, . . . , c−1}, and in claim 3 get a longer
sequence 〈ν� : � < n∗〉 such that f({v�1 , v�2}) depends just on v�1 ∩ v�2 ,
then use a partition theorem on such colouring.

Proof. For each η ∈�> (m∗) choose randomly a set Aη ⊆ [0,m∗), |Aη| =
m,Aη = {xη1 , . . . , xnm} (pairwise distinct, chosen by order) (not all are
relevant, some can be fixed).

We define T = {η : η ∈�≥ (m∗), and i < lg(η) ⇒ η(i) ∈ An�i}.
We have a natural isomorphism h from �≥m onto T :

h(ν) = η ⇔
∧

i<�gν

η(i) = x
η|i
ν(i).

Our problem is to verify
⊕

, we prove that the probability that it fails is < 1,
this suffices.

We can represent it as:

(∗)1 if ν1, . . . , νk ∈ �m and ν1 � i(∗), . . . , νk � i(∗) distinct, then for
h(ν1), . . . , h(νk) there is S as required there.

So it suffices to prove that for any given such i(∗) < � and ν1, . . . , νk the
probability of failure is < 1

(|�m|
k )

= 1

(m�

k )
as it suffices the demand in (∗), to

hold for the minimal suitable i(∗). Without loss of generality we may assume
u = u\ i(∗). For this we can assume xρj are fixed whenever ¬[h(νk) � i(∗) � ρ]
or �g(ρ) /∈ u.

Let Y = {η ∈ �(m∗) : Prob[h(νk) = η] = 0}, so |Y | = m|u|.
So h(ν1), . . . , h(νk−1) are determined. Now h(ν1), . . . , h(νk−1) and f

induces an equivalence relation E on Y :

η′Eη′′ iff
k−1∧

j=1

f({h(νj), η
′}) = f({h(νj), η

′′}).

The number of classes is ≤ 2k−1, let them be A1, . . . , A2k−1 (they are pairwise
disjoint, some may be empty).

We call Aj large if there is S as required in clauses (a) and (c) of
⊕

such

that (∀ρ)[ρ ∈ S ∩ �(m∗) ⇒ ρ ∈ Aj ].
It is enough to show that the probability of h(vk) belonging to a non-large

equivalence class is < 1

(m�

k )
, hence it is enough to prove:
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(∗)2 Aj not large ⇒ Prob(h(νk) ∈ Aj) <
1

(m�

k )×2k
.

So assume Aj is not large. Let Y ∗ := {η � i : η ∈ Y and i ≤ �}.

Let Zj :=

⎧
⎪⎪⎨

⎪⎪⎩

η ∈ Y ∗ : there is S ⊆ Y ∗ satisfying
(a)′ S is an (�,m∗,m, u \ �g(η)) − tree
(b)′ ν ∈ S ∩ �(m∗) ⇒ η � ν
(c)′ for every ν ∈ S ∩ �(m∗) we have ν ∈ Aj

⎫
⎪⎪⎬

⎪⎪⎭
.

Let Z∗
j := {η ∈ Zj : there is no η′ � η, η′ ∈ Zj}.

Clearly h(νk � i(∗)) /∈ Zj (as Aj is not large) hence h(νk � i(∗)) /∈ Z∗
j .

Clearly

(∗)3 for η ∈ Y ∗ \ Zj such that �g(η) ∈ u we have

|{i : η�〈i〉 ∈ Z∗
j (or even ∈ Zj)}| < m.

But if ν � η, ν ∈ Zj then η /∈ Z∗
j . Hence

(∗)4 for η ∈ Y ∗ such that �g(η) ∈ u we have

|{i : η�〈i〉 ∈ Z∗
j }| < m.

Now

(∗)5 if η ∈ Aj (hence η ∈ Y ; remember that Aj is not large) then, η ∈ Zj ,
hence

∨
j∈u

η � (j + 1) ∈ Z∗
j .

So

Prob(h(νk) ∈ Aj) ≤ Prob

( ∨

j∈u
[h(νk � (j + 1)) ∈ Z∗

j ]

)

≤
∑

j∈u
Prob(h(νk � (j + 1) ∈ Z∗

j ))

< |u| × m

m∗

(first inequality by (∗)5, second inequality trivial, last inequality by (∗)4
above). So it suffices to show:

|u| × m

m∗ ≤ 1
(
m�

k

)
× 2k

equivalently

m∗ ≥ |u| ×m×
(
m�

k

)
× 2k

as
(
m�

k

)
≤ m�k/k!, and |u| ≤ p by the hypothesis (∗)k,�,m,p,m∗ we finish. �
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4. Lemma

Assume

(a) ρ1, . . . , ρn ∈n−1 2 are distinct, for � ∈ {2, . . . , n}, we have r� ∈ {1, . . . , �−
1} such that �g(ρ�∩ρr�) = �−1 and r ∈ {1, . . . , �−1}\{r�} ⇒ �g(ρ�∩ρr) <
�− 1

(b) f : [�m]2 → [0, c) = {0, . . . , c− l}
(c) m = 2(n+1)(c+1)n

.

Then we can find η1, . . . , ηn,∈ �m such that:

(α) f � [{η1, . . . , ηn}]2 is a constant function
(β) 〈�g(ηi+1 ∩ ηri+1) : i = 1, . . . , n − 1}〉 is a sequence with no repetitions

ordered just like 〈�g(ρi+1 ∩ ρri+1) : i = 1, n− 1}〉; also:

ηi+1(	g(ηi+1 ∩ ηri+1)) < ηri+1(	g(ηi ∩ ηri+1))

⇔ ρi+1(	g(ρi+1 ∩ ρri+1)) < ρri+1(	g(ρg(ρi+1 ∩ ρri+1)).

Remark 1. (1) Note that if Γ ⊆n−1 2, |Γ| = n and the set {ρ1∩ρ2 : ρ1 = ρ2
are from Γ} has no two distinct members with the same length then we can
list Γ as 〈ρ1, . . . , ρn〉 as required in clause (a) of Lemma 4.
(2) So if <∗ is a linear order on {1, . . . , n − 1} then we can find distinct

ρ1, . . . , ρn ∈n−1 2 as in clause (a) of Lemma 4 and a permutation σ of
{1, . . . , n} such that: for i = j ∈ {1, . . . , n− 2} we have

i <∗ j iff �g(ρσ(i) ∩ ρσ(i+1)) > �g(ρσ(j) ∩ ρσ(j+1)).

(E.g. use induction on n.)

Proof. Let us define (mj : 2 ≤ j ≤ cn) by induction on j:

m2 = nc, mj+1 = ncmnc(n+1)+1

j .

Check that mj ≤ 2(n+1)(c+1)j

, so in particular m(cn) ≤ m. Now we claim that
for any number d ∈ [1, c] the following holds:
⊗

d Assume q ∈ [0, nc) such that q divisible by nd and q+nd ≤ cn, u = [q, q+
nd), T ∗ is an (�,m,m(q+dn), u)-tree and f is a function from [T ∗ ∩ �m]2

with range of cardinality d. Then we can find η1, . . . , ηn ∈ T ∗ ∩ (�m) such
that clauses (α) and (β) of the conclusion of Lemma 4 hold.

This suffices: use q = 0, d = c. We prove this by induction on d. If d = 1,
trivial as only one colour occurs. For d + 1 > 1, without loss of generality
Rang(f) = [0, d], let f ′ : [�m]2 → {0, 1} be f ′({η′, η′′}) = Min{f({η′, η′′)}, 1}.
Let for j < n, uj := [q+ndj, q+ndj+nd). By downward induction on j ∈ [1, n]
we try to define Tj such that:

(i) Tj is an (�,m,m(q+nd+j),
⋃
i<j

ui)-tree
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(ii) Tj ⊆ Tj+1

(iii) For every j ∈ [1, n − 1] and η1, . . . , ηj ∈ Tj ∩ �m with 〈η1 � (q +
ndj), . . . , ηj � (q+ndj)〉 pairwise distinct, we can find η′ = η′′ ∈ Tj+1∩�m
such that:

ηj � (q + ndj) � η′, η′′

�g(η′ ∩ η′′) ∈ uj
f ′({η′, η′′}) = 0

∧

t∈[1,j)

[
0 = f ′({ηt, ηj}) ⇒ 0 = f ′({ηt, η′}) = f ′({ηt, η′′})

]
.

This suffices as then we can choose by induction on j = 1, . . . , n a sequence
vi ∈ Tj ∩ (�m) such that (after reordering) the set {v1, . . . , vn} will serve
as {η1, . . . , ηn} of

⊗
d (with the constant colour being zero). Let us do it in

detail.
By induction on j = 1, . . . , n we choose vj1, . . . , v

j
j−1 such that:

(a) vj1, . . . , v
j
j are distinct members of Tj ∩ (�m)

(b) f � [{vj1, . . . , v
j
j}]2 is constantly zero

(c) For � = {2, . . . , j} we have �g(vj� ∩ vjr�) ∈ ur� − 1

For j = 1 no problem. In the induction step, i.e. for j + 1, we apply the
condition (iii) above with (vj� : � ∈ [1, j], � = qj+1〉�〈vjqj+1

〉 here standing

for η1, . . . , ηj there (we want vjqj+1
be the last), the condition 〈η� � (q +

ndj) : � = 1, . . . , j〉 with no repetition follows by clause (c), so we get η′,
η′′ ∈ Tj+1 ∩ (�m) as there. W.l.o.g. η′(�g(η′ ∩ η′′)) < η′′(�g(η′ ∩ η′′)).

We now define vj+1
� for � = 1, . . . , j + 1:

If � ∈ {1, . . . , j+ 1} \ {j+ 1, rj+1} then vj+1
� = vj� (remember Tj ⊆ Tj+1).

If ρj+1(�g(ρj+1 ∩ ρrj+1)) < ρrj+1(�g(ρj+1 ∩ ρrj+1)) then vj+1
j+1 = η′ and

vj+1
rj+1

= η′′.
If ρrj+1(�g(ρj+1 ∩ ρrj+1)) < ρj+1(�g(ρj+1 ∩ ρrj+1)) then vj+1

rj+1
= η′′ and

vj+1
rj+1

= η′′.
Now check. (Note T0, u0 could be omitted above.)

Carrying the Inductive Definition. For j = n, trivial : let Tn = T ∗

(given in
⊗

d).
For j ∈ [2, n), where Tj+1, . . . , Tn are already defined, we apply Claim 2

with

mq+nd+j+1, mq+nd+j , n
d(j + 1), j, q + ndj, [q + ndj, q + ndj + nd), ndj

here standing for

m∗, m, �, k, i(∗), u, p

there. (I.e. the tree in Claim 2 is replaced by one isomorphic to it, levels
outside

⋃
i<j ui can be ignored.)
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So we need to check mq+nd+j+1 ≥ ndj(mq+nd+j)
nd(j+1)j+1, which holds

by the definition of the mi’s (as d ≤ c−1). But we require above more than in
Claim 2 (preferring the colour 0). But if it fails for Tj then for some η1, . . . , ηj
in Tj we have S as in ⊕ of Claim 2, with no η1 = η2 ∈ S ∩ �m such that
f ′({η′, η′′}) = 0. On S we can apply our induction hypothesis on d—allowed
as the original f misses a colour (the colour zero) when restricted to S. �3

5. Fact

Let 〈ηi : i < (2m− 1)�〉 enumerate �(2m− 1) in lexicographic order. Let

A = {0, 2, . . . , 2m− 2} ⊆ [0, 2m− 1), so |A| = m,

B := {i < (2m− 1)� : ηi ∈ A}.

Let

lowm,�(k) = (2m− 1)�−k−1, and

highm,�(k) = (2m− 1)�−k − 1.

Then:

(0) If i = j are in B, |ηi ∩ ηj | = k then:

i < j iff ηi(k) < ηj(k).

(1) If i < j are in B, |ηi ∩ ηj | = k, then:

lowm,�(k) ≤ j − i ≤ highm,�(k)

(2) If i1 < j1, i2 < j2 are all in B, and |ηi1 ∩ ηj1 | = |ηi2 ∩ ηj2 |, then:

j1 − i1 < j2 − i2 iff |ηi1 ∩ ηj1 | > |ηi2 ∩ ηj2 |.

Proof. (0) Check.

(1) Let ν := ηi ∩ ηj and k := |ν|. We are looking for upper and lower bounds
of the cardinality of the set (the order is lexicographic)

C := {η ∈ �(2m− 1) : ηi ≤ η < ηj}.

Clearly each η ∈ C satisfies ν � η. Moreover, since ηj ∈ �m, each element
η ∈ C must satisfy η(k) ≤ ηj(k) < 2m− 1. Hence

C ⊆
⋃

s<2m−1

[ν�〈s〉](�(2m−1)) \ {ηj}

so we get |C| ≤ (2m− 1) · (2m− 1)�−k−1 − 1 = (2m− 1)�−k − 1.

For k = �−1 the lower bound claimed in (1) is trivial, so assume k ≤ �−2.
Let ν′ := (ηi � k)�〈ηi(k)+1〉 (note: as ηi(k) < ηj(k) are both in A, necessarily
ν′(k) < ηj(k)). Then we have
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C ⊇
⋃

s<2m−1

[ν′�〈s〉](�(2m−1)) ∪ {ηi},

so |C| ≥ (2m− 1)�−k−1 + 1.
Proof of (2): Check that highm,�(k + 1) < lowm,�(k), and use (1). �4

Remark. Also lowm,�(k) = (2m − 1)�−k−1 + 1 is O.K. but with the present
bound we can use only ηi with ηi(�− 1) < m, B = {i : ηi � (�− 1) ∈� A}. So
(2m− 1)� can be replaced by m(2m− 1)�−1.

6. Conclusion

If f : [0, (2m − 1)�)[2] → [0, c), � := nc, m := 2(n+1)(c+1)n

, then we can
find a0 < . . . < an−1 < m such that f � [{a1, . . . , an−1}]2 constant and
〈ai+1 − ai : i < n− 1〉 in any pregiven order

Proof. As in Fact 5, let 〈ηi : i < (2m − 1)�〉 enumerate �(2m − 1) in
lexicographic order, and let B̄ := {i < (2m − 1)� : ηi ∈ �m} and for i ∈ B̄
define η′i by η′i(j) = 2 · ηi(j) for j < �. So η′i is in the set B from Fact 5.
Define a function f ′ : [�m]2 → c by requiring f ′({η′i, η′j}) = f({i, j}) for all i,
j ∈ B. Now the conclusion follows from Lemma 4., Remark 1(2) and Fact 5.,
particularly clause (2). �5
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Paul Erdős’ Influence on Extremal
Graph Theory

Miklós Simonovits∗

M. Simonovits (�)
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Summary. Paul Erdős is 802 and the mathematical community is celebrating him
in various ways. Jarik Nešetřil also organized a small conference in Prague in his
honour, where we, combinatorists and number theorists attempted to describe in
a limited time the enourmous influence Paul Erdős made on the mathematics of
our surrounding (including our mathematics as well). Based on my lecture given
there, I shall survey those parts of Extremal Graph Theory that are connected most
directly with Paul Erdős’s work.

In Turán type extremal problems we usually have some sample graphs L1, . . . , Lr,
and consider a graph Gn on n vertices not containing any Li. We ask for the
maximum number of edges such a Gn can have. We may ask similar questions for
hypergraphs, multigraphs and digraphs.

We may also ask, how many copies of forbidden subgraphs Li must a graph
Gn contain with a given number of edges superseding the maximum in the
corresponding extremal graph problems. These are the problems on Supersaturated
Graphs.

We can mix these questions with Ramsey type problems, (Ramsey-Turán
Theory). This topic is the subject of a survey by Simonovits and V. T. Sós (Discrete
Math 229:293–340, 2001).

These topics are definitely among the favourite areas in Paul Erdős’s graph
theory.

Keywords Graphs, Extremal graphs, Graph theory

1. Introduction

Extremal graph theory is a wide and fast developing area of graph theory.
Having many ramifications, this area can be defined in a broader and in
a more restricted sense. In this survey we shall restrict our considerations
primarily to “Turán Type Extremal Graph Problems” and some closely
related areas.

Extremal graph theory is one of the wider theories of graph theory and
– in some sense – one of those where Paul Erdős’s profound influence can
really be seen and appreciated.

Remark [N] 2. Recently, several new schools emerged in this topic, and
also, mostly in the last 10–15 years, a completely new approach emerged,
which,

(a) On the one hand, connects discrete methods with continuous ones,
(b) On the other hand, generalizes the “classical notion” of Extremal Graph

Problems and often tries to use a “Calculus”; further the new schools
occasionally use computers in solving extremal problems.

Here the reader is refered to Lovász’ book [193] or to [295], or to Lovász’
homepage, and also to Razborov’s works [311], or [271, 272].

2 This refers to the time of the conference, not to when this volume appears.
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Actually, there are two distinct theories here: the theory of dense and the
theory of sparse graphs (see e.g. [193, 248, 249]) but we skip the sparse case.

What Is a Turán Type Extremal Problem?

We shall call the Theory of Turán type extremal problems the area which –
though being much wider – still is originated from problems of the following
type:

Given a family L of sample graphs, what is the maximum number of edges
a graph Gn can have without containing subgraphs from L.

Here “subgraph” means “not necessarily induced”. In Sect. 11 we shall
also deal with the case of “excluded induced subgraphs”, as described by
Prömel and Steger.

Below Kt, Ct and Pt will denote the complete graph, the cycle and the
path of t vertices and e(G) will be the number of edges of a graph G. Gn
will be a graph of n vertices, G(X,Y ) a bipartite graph with colour classes
X and Y .

The first result in our field may be that of Mantel [132] back in 1907,
asserting that if a graph Gn contains no K3, then

e(Gn) ≤
[
n2

4

]
.

Mantel’s result soon became forgotten. The next extremal problem was the
problem of C4 (Erdős [46]).

The C4–Theorem and Number Theory

In 1938 Erdős published a paper [46]

P. Erdős: On sequences of integers no one of which divides the product of
two others and related problems, Mitt. Forsch. Institut Mat. und Mech.
Tomsk 2 (1938) 74–82.

In this paper Erdős investigated two problems:

(A) Assume that n1 < · · · < nk are positive integers such that ni does not
divide nhn�, except if either i = h or i = 	. What is the maximum number
of such integers in [2, n]? Denote this maximum by A(n).

Let π(n) denote the number of primes in [2, n]. Clearly, the primes
in [2, n] satisfy our condition, therefore A(n) ≥ π(n). One could think
that one can find much larger sets of numbers satisfying this condition.
Surprisingly enough, the contrary is true: Erdős has proved that A(n) ≈ π(n).
More precisely,
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π(n) +
n2/3

80 log2 n
≤ A(n) ≤ π(n) +O

(
n2/3

log2 n

)
.

For us the other problem of [46] is more important:

(B) Assume that n1 < · · · < nk are positive integers such that ninj �= nhn�

unless {i, j} = {h, 	}. What is the maximum number of such integers in
[1, n]? Denote this maximum by B(n).

Again, the primes of [2, n] satify this condition. Here Erdős proved that

π(n) +
cn3/4

(log n)3/2
≤ B(n) ≤ π(n) +O

(
n3/4

)
.

Later Erdős improved the upper bound to

B(n) ≤ π(n) +O

(
n3/4

log3/2 n

)
,

see [58]. It is still open if, for some c = 0,

B(n) = π(n) + (1 + o(1))
cn3/4

(log n)3/2

or not.
Solving this unusual type of number theoretical problem, Erdős (probably

first) applied Graph Theory to Number Theory. He did the following: Let D
be the set of integers in [1, n2/3], P be the set of primes in (n2/3, n] and
B = D ∪ P.

Lemma (Erdős). Every integer a ∈ [1, n] can be written as

a = bd, where b ∈ B, d ∈ D.
Let A be a set satisfying the condition in (B). Let us represent each a ∈ A

as described in the Lemma: ai = bj(i)dh(i). We may assume that bj(i) > dh(i).
Build a bipartite graph G(B,D) by joining bj to dh if a = bjdh ∈ A. Thus we
represent each a ∈ A by an edge of a bipartite graph G(B,D). Erdős observed
that

the number theoretic condition in (B) implies that C4 �⊆ G(B,D).

Indeed, if we had a 4–cycle (b1d1b2d2) in G(B,D), then a1 = b1d1, a2 =
d1b2, a3 = b2d2 and a4 = d2b1 all would belong to A and a1a3 = a2a4 would
hold, contradicting our assumption. So the graph problem Erdős formulated
was the following:

Given a bipartite graph G(X,Y ) with m and n vertices in its colour classes.
What is the maximum number of edges such a graph can have without
containing a C4?

Erdős proved the following theorem:

Theorem 1.1. If C4 ⊆ G(X,Y ), |X | = |Y | = k, then
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e(G(X,Y )) ≤ 3k3/2.

Here the constant 3 is not sharp (see Sect. 4). Basically this theorem
implied the upper bound on B(n). To get the lower bound Erdős used finite
geometries. Erdős writes:

. . . Now we prove that the error term cannot be better than O
(

cn3/4

(log n)3/2

)
.

First I prove the following lemma communicated to me by Miss E. Klein.3

Lemma (Eszter Klein). Given p(p + 1) + 1 elements, (for some prime
p) we can construct p(p + 1) + 1 combinations, taken (p + 1) at a time4

having no two elements in common.

Clearly, this is a finite geometry, and this seems to be the first application
of Finite Geometric Constructions in proving lower bounds in Extremal
Graph Theory. Yet, Erdős does not speak here of finite geometries, neither
of lower bounds for the maximum of e(G(X,Y )) in Theorem 1.1.

In the last years5 Erdős, András Sárközy and V. T. Sós started applying
similar methods in similar number theoretic problems, which, again, led to
new extremal graph problems, [83]. I mention just one of them:

(C) Let Fk(N) be the maximum number of integers a1 < a2 < · · · < at
in [1, N ] with the property that the product of k different ones is never a
square.

Theorem 1.2 (Erdős–A. Sárközy–T. Sós [83]). There exist a positive
absolute constant c > 0 and for every ε > 0 an N0(ε) such that for N > N0(ε)
we have

(
√

2 − ε)N2/3

log4/3N
< F6(N) − π(N) − π(N/2) < cN7/9 log N. (1)

Taking all the primes of [2, N ] and all the numbers 2p where p is a prime
in [1, N/2] we get π(N)+π(N/2) such numbers (satisfying (C)) and the above
theorem suggests that this construction is almost the best.

The solution of this problem depends on extremal graph theorems
connected to excluding C6. Theorems analogous to Theorem 1.2 hold for
the even values of k, and somewhat different ones for odd values of k. The
question which was asked is:

3 Eszter Klein, later Mrs. Szekeres.
4 Meaning: p + 1-tuples. . . . The text here does not tell us if the role of Mrs.

Szekeres was important here or not, but somewhere else Erdős writes: “Mrs.
Szekeres and I proved . . . ”

5 Watch out: I wrote this many years ago!
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What is the maximum number of edges a bipartite graph G(U, V ) with
u RED and v BLUE vertices can have if G(U, V ) contains no C6 and
uv ≤ N?

In [83] the following conjecture was formulated:

Conjecture 1.3. If G(U, V ) is a bipartite graph with u = |U | RED vertices
and v = |V | BLUE ones, and G(U, V ) contains no C6, and v ≤ u ≤ v2, then
e(G(U, V )) ≤ c(uv)2/3.

De Caen and Székely [34] and Faudree and Simonovits [253] had earlier
some related estimates. The upper bound (1) (of [83]) has been improved
first by Gábor Sárközy [148]. Then E. Győri [268, 269] proved the above
conjecture, which in turn brought down the upper bound of (1) to the lower
bound, apart from some log-powers.

Theorem 1.4 (Győri). If C2k ⊆ G(m,n), then e(G(m,n)) ≤ (k − 1)n +
O(m2).

Conjecture 1.5 (Győri). There exists a c > 0 for which, if C2k ⊆ G(m,n),
then e(G(m,n)) ≤ (k − 1)n+O(m2−c).

Perhaps even e(G(m,n)) ≤ (k − 1)n+O(m3/2) could be proved for C6.

Further sources to read: Works of Lazebnik, Ustimenko, and Woldar
should be mentioned here, e.g., [124, 125]. See also Füredi [101]

There is also a similar, related but slightly different branch of combinato-
rial number theory, where the extremal numbers of C2k play important role
see e.g., Dietmann, Elsholz, Gyarmati and Simonovits [246].

“How Did Crookes Miss to Invent the X–Ray?”

Erdős feels that he “should have invented” Extremal Graph Theory, back in
1938. He has failed to notice that his theorem was the root of an important
and beautiful theory. Two to three years later Turán proved his famous
theorem and right after that he posed a few relevant questions, thus initiating
a whole new branch of graph theory. Erdős often explains his “blunder” by
telling the following story.

Crookes observed that leaving a photosensitive film near the cathod-ray-
tube causes damage to the film: it becomes exposed. He concluded that
“Nobody should leave films near the cathod-ray-tube.” Röntgen observed
the same phenomenon a few years later and concluded that this can be
used for filming the inside of various objects. His conclusion changed the
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whole Physics.6 “It is not enough to be in the right place at the right time.
You should also have an open mind at the right time,” Paul concludes his
story.

Erdős’s influence on the field is so thorough that we do not even attempt
to describe it in its full depth and width. We shall neither try to give a very
balanced description of the whole, extremely wide area. Instead, we pick a
few topics to illustrate Erdős’s role in developing this subject, and his vast
influence on others.

Also, I shall concentrate more on the new results, since the book of
Bollobás [12] (see also [183]), or the surveys of myself, [156, 158, 159], or
the surveys of Füredi [102] and Sidorenko [151] provide a lot of information
on the topic and some problem-papers of Erdős, e.g., [54, 62, 64, 65] are also
highly recommended for the reader wishing to learn about the topic. Also,
wherever it was possible, I selected newer results, or older but less known
theorems (partly to avoid unnecessary repetition compared to the earlier
surveys).

I had to leave out quite a few very interesting topics. Practically,

(a) I skipped all the hypergraph theorems, [102, 151]
(b) the covering problems connected to the Erdős–Goodman-Pósa theorem

[251],
(c) applications of finite geometrical methods in extremal graph theory, see,

e.g. [163, 158], . . . application of Lazebnik–Ustimenko type construc-
tions, [124] and many more. . . Actully, I shall return to some of them in
[188].

(d) Among others, I had to leave out that part of Ramsey Theory, which is
extremely near to Extremal Graph Theory, (see [97]) . . . and for many
other things see Bollobás [12, 15, 16] . . .

“The Complete List of Theorems”

If one watches Erdős in work, beside of his great proving power and elegance,
one surprising feature is, how he poses his conjectures. This itself would
deserve a separate note. Sometimes one does not immediately understand
the importance of his questions. Slightly mockingly, once his friend, András
Hajnal told to him: “You would like to have a Complete List of Theorems”.
I think there is some truth in this remark, still one modification should be
made.

6 When I asked Paul, why did he think that Röntgen’s discovery changed the
whole Physics, he answered that Röntgen’s findings had led to certain results of
Curie and from that point it was only a short step to the A-bomb.



252 Miklós Simonovits

Erdős does not like to state his conjectures immediately in their most
general forms. Instead, he picks very special cases and attacks first these
ones. Mostly he picks his examples “very fortunately”. Therefore, having
solved these special cases he very often discovers whole new areas, and it is
difficult for the surrounding to understand how can he be so “fortunate”. So,
the reader of Erdős and the reader of this survey should keep in mind that
Erdős’s method is always to attack important special cases.

Notation

We shall primarily consider simple graphs: graphs without loops and multiple
edges. Later there will be paragraphs where we shall also consider digraph-
and hypergraph extremal problems.

Given a family L of – so called – excluded or forbidden subgraphs, ex(n,L)
will denote the maximum number of edges a graph Gn can have without
containing forbidden subgraphs. (Containment does not assume “induced
subgraph” of the given type.) The family of graphs attaining the maximum
will be denoted by EX(n,L). If L consists of a single L, we shall use the
notation ex(n, L) and EX(n, L) instead of ex(n, {L}) and EX(n, {L}).

For a set Q, |Q| will denote its cardinality.7 Given a graph G, e(G) will
denote the number of its edges, v(G) the number of its vertices, χ(G) and
α(G) its chromatic and independence numbers, respectively. For graphs the
(first) subscript will mostly denote the number of vertices: Gn, Sn, Tn,p,
. . . denote graphs on n vertices. There will be one exception: speaking of
excluded graphs L1, . . . , Lr we use superscripts just to enumerate these
graphs. Given two disjoint vertex sets, X and Y , in a graph Gn, e(X,Y )
denotes the number of edges joining X and Y . Given a graph G and a set X
of vertices of G, the number of edges in a subgraph spanned by a set X of
vertices will be denoted by e(X), the subgraph of G spanned by X is G(X).

Special graphs. Kp will denote the complete graph on p vertices, Tn,p
is the so called Turán graph on n vertices and p classes: n vertices are
partitioned into p classes as uniformly as possible and two vertices are joined
iff they belong to different classes. This graph is the (unique) p–chromatic
graph on n vertices with the maximum number of edges among such graphs.
Kp(n1, . . . , np) (often abbreviated to K(n1, . . . , np)) denotes the complete
p–partite graph with ni vertices in its ith class, i = 1, 2, . . . , p.

We shall say that X is completely joined to Y if every vertex of X is
joined to every vertex of Y . Given two vertex-disjoint graphs, G and H , their
product G⊗H is the graph obtained by joining each vertex of G to each one
of H .

7 Our notation is mostly standard. Below some of the notations are just the
repetitions of what we wrote rarlier.
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Quoting. Below sometimes I quote some paragraphs from other papers, but
the references and occasionally the notations too are changed to comply with
mines.

2. Turán’s Theorem

Perhaps Turán was the third to arrive at this field. In 1940 he proved the
following theorem, [174] (see also [175, 173]):

Theorem 2.1 (Turán). (a) If Gn contains no Kp, then e(Gn) ≤ e(Tn,p−1).
In case of equality Gn = Tn,p−1.

Turán’s original paper contains much more than just this theorem. Still,
the main impact coming from Turán was that he asked the general question:

What happens if we replace Kp with some other forbidden graphs, e.g.,
with the graphs coming from the Platonic polyhedra, or with a path of
length 	, etc.

Turán’s theorem also could have sunk into oblivion. However, this time
Erdős was more open-minded. He started proving theorems, talked to people
about this topic and people started realizing the importance of the field.

Turán died in 1976. The first issue of Journal of Graph Theory came out
around that time. Both Paul [63] and I were asked to write about Turán’s
graph theory [156]. (In the introductory issue of the journal Turán himself
wrote a Note of Welcome, also mentioning some historical facts about his
getting involved in graph theory [177].) Let me quote here some parts of
Paul Erdős’s paper [63].

In this short note I will restrict myself to Turán’s work in graph theory,
even though his main work was in analytic number theory and various
other branches of real and complex analysis. Turán had the remarkable
ability to write perhaps only one paper in various fields distant from his
own; later others would pursue his idea and new subjects would be born.

In this way Turán initiated the field of extremal graph theory. He started
this subject in 1941,8 (see [174, 175]) He posed and completely solved the
following problem . . .

Here Erdős describes Turán Theorem and Turán’s hypergraph conjecture,
and a result of his own to which we shall return later. Then he continues:

8 To be precise, Turán proved his theorem in 1940, in a labour camp, and
published it in 1941.
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Turán also formulated several other problems on graphs, some of which
were solved by Gallai and myself [69]. I began a systematic study of
extremal graph theory in 1958 on the boat from Athens to Haifa and have
worked on it since then. The subject has a very large literature; Bollobás
has written a comprehensive book on extremal problems in graph theory
which will appear soon. (Paul meant [12].)

One final remark should be made here. As I stated in other places, Paul
Turán’s role was crucial in the development of Extremal Graph Theory. Still,
even here there is a point, where Erdős’s influence should be mentioned
again. More precisely, the influence of an Erdős–Szekeres paper [94]. As
today it is already well known, Erdős and Szekeres tried to solve a problem
in convex geometry [94] and rediscovered Ramsey’s Theorem [145]. They
informed Turán about their theorem, according to which either the graph or
the complementary graph contains a large complete graph. Turán regarded
this result as a theorem where one ensures the existence of a large complete
subgraph in Gn by assuming something about the complementary graph. So
Turán wanted to change the condition and still arrive at the same conclusion.
This is why he supposed that a lower bound is given on the number of edges
and deduced the existence of a large complete subgraph of Gn. Turán writes
in [174]:

Theorem I gives a condition to guarantee the existence of a complete
subgraph on k vertices in a graph on a finite number of vertices. The
only related theorem – as far as I know – can be found in a joint paper of
Pál Erdős and György Szekeres [94] and essentially states that if a graph
A on n vertices is such that its complement A contains only complete
subgraphs having “few” vertices, then the graph A contains a complete
subgraph on “many” vertices. Their theorem contains only bounds in the
place of the expressions “few” and “many”, in fact it gives almost only the
existence; the exact solution seems to be very interesting but difficult . . .

Some (Further) Historical Remarks

(a) Turán’s paper contains an infinite Ramsey theorem. I quote:

Theorem II. Let us suppose that for the infinite graph A containing
countably many vertices P1, P2, . . . there is an integer d > 1 such that
if we choose arbitrary d different vertices of A, there will be at least two
among these vertices joined by an edge in A. Then A has at least one
complete subgraph of infinitely many vertices.

This theorem is weaker than the one we usually teach in our
Combinatorics courses, nevertheless, historically it is interesting to see
it in Turán’s paper.
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(b) Turán’s theorem is connected to the Second World War in two ways.
On the one hand, Turán, sent to forced labour service and deprived of
paper and pencil, started working on problems that were possible to
follow without writing them down. Also he made his famous hypergraph
conjecture, thinking that would he have paper and pencil, he could have
easily proved it.

On the other hand, it is worth mentioning that Turán’s Theorem was
later rediscovered by A. A. Zykov [182, 1949] who (because of the war)
learned too late that it had already been published.

(c) As to Mantel’s result, I quote the last 4 lines of Turán [174]:

Added in proof. . . . Further on, I learned from the kind communi-
cation of Mr. József Krausz that the value of dk(n) (= ex(n,K3)) is
given on p. 438, for k = 3 was found already in 1907 by W. Mantel,
(Wiskundige Opgaven, vol. 10, p. 60–61). I know his paper only from
the reference of Fortschritte d. Math., vol 38 p. 270.

(d) During the war Turán was trying to prove that either a graph Gn or its
complementary graph contains a complete graph of order [

√
n]. He writes

in [177]:

I still have the copybook in which I wrote down various approaches
by induction, all they started promisingly, but broke down at various
points. I had no other support for the truth of this conjecture, than
the symmetry and some dim feeling of beauty: . . . In one of my first
letters to Erdős after the war I wrote of this conjecture to him. In
his answer he proved that my conjecture was utterly false . . .

Of course, all we know today, what Erdős wrote to Turán: the truth
is around c log n. This was perhaps the first application of probability
to Graph Theory, though many would deny that Erdős’s elegant answer
uses more than crude counting. Probably this is where the Theory of
Random Graphs started. (To be quite precise, one should mention, that
T. Szele had a similar proof for Rédei’s theorem on directed Hamiltonian
cycles in tournaments, [167], already in 1943, however, Erdős’s proof was
perhaps of more impact and it was the first where no other approach
could replace the counting argument. Another early breakthrough of the
Random Graph Method was when Erdős easily answered the following
problem of Schütte [52]: Is there a tournament where for every k players
there is a player which beats all of them?)

I would suggest the reader to read also the beautiful paper of Turán
[177], providing a lot of information on what I have described above
shortly.

(e) For a longer account on the birth of the Erdős–Szekeres version of Ramsey
theorem see the account of Gy. Szekeres in the introduction of the Art
of Counting, [60]. For geometric aspects see also Pach–Agarwal [139].
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3. Erdős–Stone Theorem

Setting out from a problem in topology, Erdős and A. H. Stone proved the
following theorem in 1946 [93]:

Theorem 3.1 (Erdős–Stone). For every fixed p and m

ex(n,Kp+1(m, . . . ,m)) =

(
1 − 1

p

)(
n

2

)
+ o(n2). (2)

Moreover, if p is fixed and m :=
√
�p(n) where �p(x) denotes the p times

iterated logarithm of x, (2) still holds.

Here m :=
√
�p(n) is far from being the best possible. The sharp order

of magnitude is c log n. Let m = m(n, ε) be the largest integer such that, if
e(Gn) > e(Tn,p) + εn2, then Gn contains the regular (p + 1)–partite graph
Kp+1(m,m, . . . ,m). One can ask how large is m = m(n, ε), defined above?
This was determined by Bollobás, Erdős, Simonovits [17, 19] and Chvátal
and Szemerédi [39].

The first breakthrough was that the p–times iterated log was replaced by
K log n, where K is a constant [17]. In the next two steps the dependence of
this constant on p and ε were determined.

Theorem 3.2 (Bollobás–Erdős–Simonovits [19]). There exists an ab-
solute constant c > 0 such that every Gn with

e(Gn) ≥
(

1 − 1

p
+ ε

)(
n

2

)

contains a Kp+1(m,m, . . . ,m) with

m >
c log n

p log(1/ε)
.

The next improvement, essentially settling the problem completely is the
result of Chvátal and Szemerédi, providing the exact dependence on all the
parameters, up to an absolute constant.

Theorem 3.3 (Chvátal–Szemerédi [39]).

log n

500 log(1/ε)
< m(n, ε) <

c log n

log(1/ε)
.

One could have thought that the problem is settled but here is a nice
result of Bollobás and Kohayakawa, improving Theorem 3.3.

Conjecture 3.4 (Bollobás–Kohayakawa [20]). There exists an absolute
constant α > 0 such that for all r ≥ 1 and 0 ≤ ε ≤ 1/r every Gn of sufficiently
large order satisfying

e(Gn) ≥
(

1 − 1

r
+ ε

)(
n

2

)
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contains a Kr+1(s0,m0, . . . ,m0), where

s0 = s0(n) =

⌊
α log n

log(1/ε)

⌋
and m0 = m0(n) =

⌊
α log n

log r

⌋
.

Bollobás and Kohayakawa [20] succeded in proving that under the above
conditions, if 0 < γ < 1, then Gn contains a Kr+1(s1,m1, . . . ,m1, �), where

s1 =

⌊
α(1 − γ) log n

r log(1/ε)

⌋
, m1 =

⌊
α(1 − γ) log n

log r

⌋
, and �=�αε1+γ/2nγ�.

Observe that this result is fairly close to proving Conjecture 3.4: the first
class is slightly smaller and the last class much larger than in the conjecture.

Remark [N] 3. In some sense the most important consequence of the
Chvátal–Szemerédi theorem was that this was the point where the Szemerédi
Regularity Lemma [169] was really formulated. In the earlier cases, e.g., in
[168], only weaker, more involved versions of it were used.9

The Kővári–V. T. Sós–Turán Theorem

The Kővári–T. Sós–Turán theorem [123] solves the extremal graph problem of
K2(p, q), at least, provides an upper bound, which in some cases proved to be
sharp.10 This theorem is on the one hand a generalization of the C4–theorem,
since C4 = K(2, 2), and, on the other hand, is a special case of the Erdős–
Stone theorem, apart from the fact that here we get sharper estimates.11

Theorem 3.5 (Kővári–T. Sós–Turán). Let 2 ≤ p ≤ q be fixed integers.
Then

ex(n,K(p, q)) ≤ 1

2
p
√
q − 1n2−1/p +O(n).

Conjecture 3.6. The exponent 2 − (1/p) is sharp: for every p, q ≥ 2,

ex(n,K(p, q)) > cp,qn
1−(1/p).

9 Szemerédi in [168] used what I call either bipartite or “ugly” regularity lemma.
In some places, like [120], I stated that this bipartite version was used in [170],
however, that is not quite correct: a simpler version was enough there.

10 A footnote of [123] tells us that the authors have received a letter from Erdős
in which Erdős informed them that he also had proved most of the results of [123].

11 Estimates, sharper than in the original Erdős–Stone.
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Unfortunately, this is known only for p = 2 and p = 3, (see Erdős, Rényi,
V. T. Sós [81] and independently W. G. Brown [27]). Random graph methods
[92] show that

ex(n,K(p, p)) > cpn
2− 2

p+1 .

Recently Füredi [104] improved the constant in the upper bound, showing
that

ex(n,K(2, t+ 1)) =
1

2

√
tn3/2 +O(n4/3),

and that the constant provided by Brown’s construction is sharp. While
one conjectures that ex(n,K(4, 4))/n7/4 converges to a positive limit, we
know only, by the Brown construction, that ex(n,K(4, 4)) > ex(n,K(3, 3)) >
cn5/3. It is unknown if

ex(n,K(4, 4))

n5/3
→ ∞.

Remark [N] 4 (New constructions). It was a surprising beakthrough,
when Kollár, Rónyai and Tibor Szabó – using Commutative Algebra – showed
[219] that

ex(n,K(p, q)) > cp,qn
1−(1/p), if q > p!,

proving Conjecture 3.6 for infinitely many cases. This was improved to

ex(n,K(p, q)) > cp,qn
1−(1/p), if q > (p− 1)!,

by Alon, Rónyai and Tibor Szabó, see [294]; an even lower bound is given by
Ball and Pepe, see [8].

Further sources to read: the surveys of Alon [2], Simonovits [159], Füredi
and Simonovits [188].

The Matrix Form

The problem of Zarankiewicz [181] is to determine the maximum integer kp(n)
such that if An is a matrix with n rows and n columns consisting exclusively
of 0’s and 1’s, and the number of 1’s is at least kp(n), then An contains a
minor Bp of p rows and columns so that all the entries of Bp are 1’s.

One can easily see that this problem is equivalent with determining
the maximum number of edges a bipartite graph G(n, n) can have without
containing K(p, p).

In [123] the authors remark that the problem can be generalized to the
case of general matrices: when A has m rows and n columns and B has p rows
and q columns. Denote the maximum by k(m,n, p, q). There are many results
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on estimating this function but we shall not go here into details. Rather, we
explain the notion of symmetric and asymmetric bipartite graph problems.

As Erdős pointed out,

Theorem 3.7. Every graph Gn has a bipartite subgraph H(U, V ) in which
each vertex has at least half of its original degree: dH(x) ≥ 1

2dG(x), and
therefore e(H(U, V )) ≥ 1

2e(Gn).

One important consequence of this almost trivial fact (proved later) is
that (as to the order of magnitude), it does not matter if we optimize
e(Gn) over all graphs or only over the bipartite graphs. Another important
consequence is that some matrix extremal problems are equivalent to graph
extremal problems. Conversely, many extremal graph problems with bipartite
excluded subgraphs have equivalent matrix forms as well:

As usually, having a bipartite graph, G(U, V ) we shall associate with it a
matrix A, where the rows correspond to U , the columns to V and aij = 1 if
the ith element of U is joined to the jth element of V , otherwise aij = 0.

Given a bipartite graph L = L(X,Y ) and another bipartite graph
G(U, V ), |U | = m and |V | = n, take the m × n adjacency matrix A of
G and the adjacency-matrix B of L. Assume for a second that the colour-
classes of L are symmetric (in the sense that there is an automorphism of
L exchanging the two colour-classes). Then the condition that L ⊆ G(U, V )
can be formulated by saying that the matrix A has no submatrix equivalent
to B, where equivalency means that they are the same apart from some
permutation of the rows and columns. So Turán type problems lead to
problems of the following forms:

Given an m×n 0−1 matrix, how many 1’s ensure a submatrix equivalent
to B?

If, on the other hand, the forbidden graph L = L(X,Y ) has no
automorphism exchanging X and Y , then the matrix-problem and the graph-
problem may slightly differ. Excluding the submatrices equivalent to B means
that we exclude that G(U, V ) contains an L with X ⊆ U and Y ⊆ V , but we
do not exclude L ⊆ G(U, V ) in the opposite position. Denote by ex∗(n, L) the
maximum in this asymmetric case. Clearly, ex∗(n, L) ≥ ex(n, L), and they
are equal if L has a colour-swapping automorphism.

Conjecture 3.8 (Simonovits). If L is bipartite, then ex∗(n,L)=O(ex(n,L)).

We do not know this even for K(4, 5). The difficulty in disproving such
a conjecture is partly that in all the proofs of upper bounds on degenerate
extremal graph problems, we use only “one-sided” exclusion. Therefore the
upper bounds we know are always upper bounds on ex∗(n, L).

Conjecture 3.9 (Erdős–Simonovits). For every L with a bipartite L ∈ L
there is a bipartite L∗ ∈ L for which ex(n,L) = O(ex(n, L∗)).
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Remark [N] 5. Certain unpublished result of Faudree and Simonovits [253]
indicate that perhaps this conjecture does not always hold.

We close this part with a beautiful but probably very difficult problem of
Erdős.

Conjecture 3.10. ex(n, {C3, C4}) = 1
2
√
2
n3/2 + o(n3/2).

The meaning of this conjecture is that excluding C3 beside C4 has the
same effect as if we excluded all the odd cycles. If we replace C3 by C5, then
this is true, see [87]. Erdős risks the even sharper conjecture that the exact
equality may hold:

ex(n, {C3, C4}) = ex(n, {C3, C4, C5, C7, C9, C11 . . . }).

Remark [N] 6. Some related results can be found in the paper of Keevash,
Sudakov, and Verstraete [279]: they prove the above conjecture for several
cases. (See also [209].)

Further sources to read: For some further information, see a survey paper
of Richard Guy [106] and also a paper of Guy and Znam [107] on K(p, q) and
the results of Lazebnik, Ustimenko and Woldar on cycles [124, 125].

Also, the problems, posing the problems was a very characteristic feature
of Paul’s mathematics. Here we neglect this aspect a little. The reader is
referred to the many problem-posing papers of Erdős, and also to the book
of Chung and Graham [185]. See also [188].

Applications of Kővári–T. Sós–Turán Theorem

It is interesting to observe that the C4–theorem and its immediate generaliza-
tions (e.g. the Kővári–T. Sós–Turán theorem) have quite a few applications.
Some of them are in geometry. For example, as Erdős observed, if we have n
points in the plane, and join two of them if their distance is exactly 1, then the
resulting graph contains no K(2, 3). So the number of unit distances among
n points of the plane is O(n3/2). Similarly, the unit-distance-graph of the 3-
dimensional space contains no K(3, 3), therefore the number of unit distances
in the 3-space is O(n5/3). There are deeper and sharper estimates on this
subject, see Spencer, Szemerédi and Trotter [164] or Clarkson, Edelsbrunner,
Guibas, Sharir and Welzl [40].

Conjecture 3.11 (Erdős). For every ε > 0, the number of unit distances
among n points of the plain is O(n1+ε).

We mention one further application: the chromatic number of the product
hypergraph. Claude Berge was interested in calculating the chromatic number
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of the product of two graphs, H and H′. Generally there are various ways to
define the product of r–uniform hypergraphs. This product is defined as the
r2–uniform hypergraph whose vertex-set is the Cartesian product V (H) ×
V (H′) and the edge-set is

{H ×H ′ : H ∈ E(H) and H ′ ∈ E(H′)} .

The chromatic number of the hypergraph is at most k if the vertices can be
coloured in k colours without having monochromatic r2–tuples. Berge and
I [10] estimated the chromatic number of products of graphs (hypergraphs)
using Kővári–T. Sós–Turán theorem. Also we found a matching lower bound
by using basically the Brown and Erdős–Rényi–T. Sós constructions [27, 81].
The same time a student of Berge, F. Sterboul [165, 166] have proved the
same theorem and an earlier paper of V. Chvátal [38] used the same technique
to prove some assertions roughly equivalent with this part of our paper [10].

Remark [N] 7. It is an interesting feature of the Berge-Simonovits paper
that – connected to the above topics – the paper also defines the fractional
chromatic number.

4. Graph Theory and Probability

Erdős wrote two papers with the above title, one in 1959, [48], and the other
in 1961, [49]. These papers were of great importance. In the first one Erdős
proved the following theorem.

Theorem 4.1. For fixed k and sufficiently large �, if n > �1+1/(2k), then
there exist (many) graphsGn of girth k and independence number α(Gn) < �.

Clearly, χ(Gn) ≥ v(Gn)
α(Gn)

. So, as Erdős points out, a corollary of this is

Corollary 4.2. For every integer k for n > n0(k) there exist graphs Gn of

girth ≥ k and chromatic number ≥ n
1

2k+1 .

This theorem seems to be a purely Ramsey theoretical result, fairly
surprising in those days, but, it has many important consequences in
Extremal Graph Theory as well. The same holds for the next theorem, too:

Theorem 4.3 ([49]). Assume that n > n0. Then there exist graphs Gn with
K3 ⊆ Gn and α(Gn) = O(

√
n log n).

One important corollary of Theorem 4.1, more precisely, of its proof is
that

Theorem 4.4. If L is finite and contains no trees, then ex(n,L) > c∗Ln
1+cL ,

for some constants c∗L, cL > 0.

On the other hand, it is easy to see that if L ∈ L is a tree (or a forest),
then ex(n,L) = O(n).
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These theorems use random graph methods. They and some of their
generalizations play also important role, in obtaining lower bounds in Turán–
Ramsey Theorems. (See also Füredi-Seress [105].) For general applications
of the probabilistic methods in graph theory see, e.g. Erdős–Spencer [92],
Bollobás [15], Alon–Spencer [7].

Of course, speaking of Graph Theory and Probability, one should also
mention the papers of Erdős and Rényi, perhaps above all, [80].12

Further sources to read: Janson, �Luczak, Ruciński [190], Molloy and Reed
[195].

5. The General Theory

In this section, we present the asymptotic solution to the general extremal
problem.

General Extremal Problem. Given a family L of forbidden subgraphs, find
those graphs Gn that contain no subgraph from L and have the maximum
number of edges.

The problem is considered to be “completely solved” if all the extremal
graphs have been found, at least for n > n0(L). Quite often this is too
difficult, and we must be content with finding ex(n,L), or at least good
bounds for it.

It turns out that a parameter related to the chromatic number plays a
decisive role in many extremal graph theorems. The subchromatic number
p(L) of L is defined by

p(L) = min{χ(L) : L ∈ L} − 1.

The following result is an easy consequence of the Erdős–Stone theorem
[93]:

Theorem 5.1 (The Erdős–Simonovits Theorem [84]). If L is a family
of graphs with subchromatic number p, then

ex(n,L) =

(
1 − 1

p

)(
n

2

)
+ o(n2).

The meaning of this theorem is that ex(n,L) depends only very loosely
on L; up to an error term of order o(n2), it is already determined by the
minimum chromatic number of the graphs in L.

12 They are reprinted in [60, 196]
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Classification of Extremal Graph Problems

By the above theorem,

ex(n,L) = o(n2)

if and only if p(L) = 1, i.e. there exist bipartite graphs in L. From the
Kővári-T. Sós-Turán Theorem we get that here ex(n,L) = O(n2−c) for some
c = c(L). We shall call these cases degenerate extremal graph problems and
find them among the most interesting problems in extremal graph theory.
One special case is when L contains a tree (or a forest). These cases could
be called very degenerate. Observe, that if a problem is non-degenerate, then

Tn,2 contains no excluded subgraphs. Therefore ex(n,L) ≥
[
n2

4

]
.

Structural Results

The structure of the extremal graphs is also almost determined by p(L), and
is very similar to that of Tn,p This is expressed by the following results of
Erdős and Simonovits [55, 57, 152]:

Theorem 5.2 (The Asymptotic Structure Theorem). Let L be a family of
forbidden graphs with subchromatic number p. If Sn is any graph in EX(n,L),
then it can be obtained from Tn,p by deleting and adding o(n2) edges.
Furthermore, if L is finite, then the minimum degree

dmin(Sn) =

(
1 − 1

p

)
n+ o(n).

The structure of extremal graphs is fairly stable, in the sense that the
almost-extremal graphs have almost the same structure as the extremal
graphs (for L or for Kp+1). This is expressed in our next result:

Theorem 5.3 (The First Stability Theorem). Let L be a family of forbidden
graphs with subchromatic number p ≥ 2. For every ε > 0, there exist a δ > 0
and nε such that, if Gn contains no L ∈ L, and if, for n > nε,

e(Gn) > ex(n,L) − δn2,

then Gn can be obtained from Tn,p by changing at most εn2 edges.

These theorems are interesting on their own and also widely applicable.
In the remainder of this section we formulate a sharper variant of

the stability theorem. One can ask whether further information on the
structure of forbidden subgraphs yields better bounds on ex(n,L) and further
information on the structure of extremal graphs. At this point, we need a
definition.
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Definition 5.4. Let L be a family of forbidden subgraphs, and let p = p(L)
be its subchromatic number. The decomposition M of L is the family of
graphs M with the property that, for some L ∈ L, L contains M as an
induced subgraph and L− V (M) is (p− 1)–colorable.

In other words, for r = v(L), L ⊆ M ×Kp−1(r, . . . , r), and M is minimal
with this property. In case of L = {Kp} the family M consists of one graph
K2. The following result is due to Simonovits [152], (see also [57]).

Theorem 5.5 (The Decomposition Theorem, [152]). Let L be a for-
bidden family of graphs with p(L) = p and decomposition M. Then
every extremal graph Sn ∈ EX(n,L) can be obtained from a suitable
Kp(n1, . . . , np) by changing O(ex(n,M) + n) edges. Furthermore, nj =
(n/p) +O(ex(n,M)/n) +O(1), and

dmin(Sn) =

(
1 − 1

p

)
n+O(ex(n,M)/n) +O(1).

It follows from this theorem that, with m = �n/p , ex(n,L) = e(Tn,p) +
O(ex(m,M) + n). If ex(n,M) > cn, then O(ex(m,M)) is sharp: put edges
into the first class of a Tn,p so that they form a Gm ∈ EX(m,M); the resulting
graph contains no L, and has e(Tn,p) + ex(m,M) edges.

A second stability theorem can be established using the methods of
[152]. To formulate it, we introduce some new terms. Consider a partition
U1, U2, . . . , Up of the vertex-set ofGn, and the complete p–partite graphHn =
K(u1, . . . , up) corresponding to this partition of V (Gn), where ui = |Ui|. A
pair of vertices is called an extra edge if it is in Gn but not in Hn, and is a
missing edge if it is in Hn but not in Gn. For given p and Gn, the partition
U1, U2, . . . , Up is called optimal if the number of missing edges is minimum.
Finally, for a given vertex v, let a(v) and b(v) denote the numbers of missing
and extra edges at v, respectively.

Theorem 5.6 (The Second Stability Theorem). Let L be a forbidden family
of graphs with p(L) = p and decomposition M, and let k > 0. Suppose that
Gn contains no L ∈ L,

e(Gn) ≥ ex(n,L) − k · ex(n,M),

and let U1, . . . , Up be the optimal partition of Gn, Gi := G(Ui). Then

(i) Gn can be obtained from ×Gi by deleting O(ex(n,M) + n) edges;

(ii) e(Gj) = O(ex(n,M)) +O(n), and |Uj| = (n/p) +O(
√

ex(n,M) +
√
n);

(iii) For any constant c > 0, the number of vertices v in Gi with a(v) >
cn is only O(1), and the number of vertices with b(v) > cn is only
O(ex(n,M)/n) +O(1);

(iv) Let L ∈ L, with v(L) = r, and let Ai be the set of vertices v in Ui
for which b(v) < (n/2pr); if M ×Kp−1(r1, . . . , r) ⊇ L, then the graph
G(Ai) contains no M .
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The constant k of the condition cannot be seen in (i)–(iv): it is hidden in
the constants of the O(.)’s This theorem is useful also in applications. The
deepest part is the first part of (iii). This implies (iv), which in turn implies
all the other statements. A proof is sketched in [155], where the theorem was
needed.

We conclude this section with the theorem characterizing those cases
where Tn,p is the extremal graph.

Theorem 5.7 (Simonovits [155]). The following statements are equiva-
lent:

(a) The minimum chromatic number in L is p+ 1 but there exists (at least
one) L ∈ L with an edge e such that χ(L−e) = p. (Colour critical edge.)

(b) There exists an n0 such that for n > n0(L), Tn,p is extremal.
(c) There exists an n1 such that for n > n1(L), Tn,p is the only extremal

graph.

Remark [N] 8. Here we can observe an important phenomenon, namely,
that (mostly) if we can prove some theorems for complete graphs Kp+1, then
we can also prove it for cases, where a p + 1-chromatic L ∈ L has a critical
edge.

We shall see this phenomenon in the Kolaitis–Prömel–Rothschild theo-
rem, and in many other cases.

The Product Conjecture

When I started working in extremal graph theory, I formulated (and later
slightly modified) a conjecture on the structure of extremal graphs in non-
degenerate cases (i.e., when no excluded graph L is bipartite). The meaning
of this conjecture is that all the non-degenerate extremal graph problems can
be reduced to degenerate extremal graph problems.

Conjecture 5.8 (Product structure). Let L be a family of forbidden
graphs and M be the decomposition family of L. If no trees and forests occur
in M, then all the extremal graphs Sn for L have the following structure:
V (Sn) can be partitioned into p = p(L) subsets V1, . . . , Vp so that Vi is
completely joined to Vj for every 1 ≤ i < j ≤ p.

This implies that each Sn is the product of p graphs Gi, where each
Gi is extremal for some degenerate family Li,n ⊇ M. The meaning of this
conjecture is that (almost) all the non-degenerate extremal graph problems
can be reduced to degenerate extremal graph problems.

One non-trivial illustration of this conjecture is the Octahedron theorem:

Theorem 5.9 (Erdős–Simonovits [85]). Let O6 = K3(2, 2, 2) (i.e. O6 is
the graph defined by the vertices and edges of the octahedron.) If Sn is an
extremal graph for O6 for n > n0(O6), then Sn = Hm ⊗ Hn−m for some
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m = 1
2n + o(n). Further, Hm is an extremal graph for C4 and Hn−m is

extremal for P3.

Remark 5.10. The last sentence of this theorem is an easy consequence of
that Sn is the product of two other graphs of roughly the same size.

Remark 5.11. In [85] some generalizations of the above theorem can also
be found. Thus e.g., the analogous product result holds for all the forbidden
graphs L = Kp+1(2, t2, . . . , tp) and L = Kp+1(3, t2, . . . , tp). Instead of
formulating the general result we just give an illustration. If e.g., we try to
apply this to L = K(3, a, b, c), where 3 ≤ a ≤ b ≤ c, then any Sn ∈ EX(n, L)
will be the product of three graphs, where the first one is K(3, a)-extremal,
the other two are K(1, b)-extremal (i.e. almost (b− 1)-regular).

Probably the octahedron theorem can be extended to all graphs
L = Kp+1(t1, t2, . . . , tp) and even to more general cases, see [330]. On
the other hand, in [157] counterexamples are constructed to the product-
conjecture if we allow trees or forests in the decomposition family. In this case,
when the decomposition contains trees, both cases can occur: the extremal
graphs may be non-products and also they may be products. Turán’s theorem
itself is a product-case, where the decomposition family contains K2 = P2.

Szemerédi Lemma on Regular Partitions of Graphs

There are many important tools in Extremal Graph Theory that became
quite standard to use over the last 20 years. One of them is the Szemerédi
Regularity Lemma [169].

Let G be an arbitrary graph, X,Y ⊂ V (G) be two disjoint vertex-sets
and let d(X,Y ) denote the edge-density between them:

d(X,Y ) =
e(X,Y )

|X | · |Y | .

Regularity lemma ([169]). For every ε > 0, and every integer κ there
exists a k0(ε, κ) such that for every Gn, we can partition V (Gn) into sets
V0, V1, . . . , Vk – for some κ < k < k0(ε, κ) – so that |V0| < εn, each |Vi| = m
for i > 0 and for all but at most ε ·

(
k
2

)
pairs (i, j), for every X ⊆ Vi and

Y ⊆ Vj , satisfying |X |, |Y | > εm, we have

|d(X,Y ) − d(Vi, Vj)| < ε.

The applications of Szemerédi’s Regularity Lemma are plentiful and are
explained in details in [120], so here we shall describe it only very briefly.

One feature of the Regularity Lemma is that – in some sense – it allows
us to handle a deterministic graph as if it were a (generalized) random one.
One can easily prove for random graphs the existence of various subgraphs
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and the Regularity Lemma often helps us to ensure the existence of the same
subgraphs when otherwise that would be far from trivial.

One example of this is the Erdős–Stone Theorem. Knowing Turán’s
theorem, the Szemerédi Lemma immediately implies the Erdős–Stone the-
orem. In the previous section we have mentioned a few improvements of the
original Erdős–Stone theorem. The proof of the Chvátal–Szemerédi version
[39] also uses the Regularity Lemma as its main tool. Joining to the work of
Thomason [171, 172], Fan Chung, Graham, Wilson [37, 36] and others, V.
T. Sós and I used the Regularity Lemma to give a transparent description
of the so-called quasi-random graph sequences [160], that was generalized by
Fan K. Chung to hypergraphs [35].

Remark [N] 9. Actually, the Regularity Lemma described in [35] was
a “weak hypergraph regularity lemma”. Weak, because it could not be
connected to an appropriate Counting Lemma. This lemma was obtained
slightly earlier by Frankl and Rödl [99], but published slightly after [35].
Later a Strong Hypergraph Lemma was established by Rödl and his school,
among others, Nagle [303], Skokan [323, 324], Schacht [319, 320], directly
connected to a Counting Lemma and also to the Removal Lemma. Tim
Gowers also needed and established (a) strong hypergraph lemma [263]. See
also the results of Tao on this subject [334, 335, 336, 337].

These results are much more complicated than the weak regularity lemma.
Just to formulate them takes a lot of time and energy. Here we skip the details.

The main advantage of Chung’s Hypergraph Regularity Lemma [35] was
that it helped to extend the Simonovits-Sós results of [160] to hypergraphs.

Here I mention only that it was extended to hypergraphs by Frankl and
Rödl [99], see also Chung [35]. Prömel and Steger also use a hypergraph
version of the Regularity lemma in “induced extremal graph problems” [143].

Further sources to read: Diestel’s book [187] also contains a classical
proof of the regularity lemma.

Frieze and Kannan produced a Weak Regularity Lemma [257, 258, 259],
that was very applicable in algorithms, and iterating it we got an other proof
of the Szemerédi Regularity Lemma.

Lovász and Szegedy [296] followed a similar approach, however, used
limits of graphs and analysis.

See also the Theorem and the Removal Lemma of Ruzsa and Szemerédi,
answering a question of [239], [147], Solymosi [333], Conlon and Fox [242],
G. Elek and B. Szegedy [247] and many others.

Rödl and Schacht, setting out from some results of Alon and Shapira,
extend results on the connection of Property Testing and Regularity Lemma
to hypergraphs [322].
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Back to Ordinary Graphs?

The (ordinary graph) Regularity Lemma can be generalized in various ways.
One of these generalizations states that if the edges of Gn are r–coloured
for some fixed r, then we can partition the vertices of the graph so that the
above Regularity Lemma remains true in all the colours simultaneously. This
is what we used among others in proving some Turán–Ramsey type theorems
[72, 73, 74] but it has also many other applications.

Generalized Regularity lemma. For every ε > 0, and integers r, κ there
exists a k0(ε, κ, r) such that for every graph Gn the edges of which are r–
coloured, the vertex set V (Gn) can be partitioned into sets V0, V1, . . . , Vk –
for some κ < k < k0(ε, κ, r) – so that |V0| < εn, |Vi| = m (is the same) for
every i > 0, and for all but at most ε

(
k
2

)
pairs (i, j), for every X ⊆ Vi and

Y ⊆ Vj satisfying |X |, |Y | > εm, we have

|dν(X,Y ) − dν(Vi, Vj)| < ε simultaneously for ν = 1, . . . , r,

where dν(X,Y ) is the edge-density in colour ν.

As I mentioned, we describe the various applications of Szemerédi Lemma
in more details in some other places [120, 292].

Algorithmic versions were found by Alon, Duke, Lefmann, Rödl, and
Yuster [5], and in some sense it was extended to sparse graphs by Kohayakawa
[119], and Kohayakawa–Rödl [192].

I should also mention some new variants due to Komlós, see, for
example, [120].

Remark [N] 10 (Historical remarks). Actually, most of the mathemati-
cians may think that Szemerédi invented the Regularity Lemma to prove his
famous result (the Erdős-Turán conjecture) on the existence of arithmetic
progressions in sequences of integers of positive density. The truth is that
the first applications used a less appealing version of the Regularity Lemma,
or some simpler version. The first occasion where the Szemerédi Regularity
Lemma was used is the Quantitative Erdős-Stone Theorem of Chvátal and
Szemerédi [39], (see above as Theorem 3.3).

Remark [N] 11 (Regularity Lemma, Old and New Areas). Let us
return to the field of ordinary regularity lemma. If one is interested in it,
there is a long list of papers that are reasonably easy to read and introduce
to various aspects of the Regularity Lemma.

1. Blow Up Lemmas: There are cases, when we wish to embed a spanning
subgraph into Gn, and it would be easy to embed n − o(n) vertices, but
we may have trouble with embedding the last few vertices. The Blow-
Up Lemma was “invented” for this purpose, by Komlós, Sárközy and
Szemerédi, see [289, 290], see also Rödl and Ruciński [318],

2. Algorithmic Aspects of Regularity Lemmas [5], . . .
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3. Sparse Regularity Lemmas and their applications [192, 284, 285, 286, 287,
288],

4. Regularity Lemma and Property Testing: Alon and Shapira [221, 220],
Alon, Fischer, Newman, and Shapira [216], Lovász and Szegedy [297, 298].
(An early result on this topic, slightly disguised, can be found in Bollobás–
Erdős–Simonovits–Szemerédi [234].) For a “Strong” Regularity Lemma
see Alon, Fischer, Krivelevich and M. Szegedy [4].

6. Turán–Ramsey Problems

Simonovits and V. T. Sós has a survey [331] on Turán–Ramsey type theorems
initiated by V. T. Sós, and the connection of this to other fields. These fields
belong to Extremal Graph Theory and are strongly influenced by Paul Erdős.
I will touch on these fields only very briefly.

These problems were partly motivated by applications of graph theory
to distance distribution. Turán theorem combined with some geometrical
facts can provide us with estimates on the number of short distances in
various geometrical situations. Thus they can be applied in some estimates
in analysis, probability theory, and so on. It was Erdős who first pointed out
this possibility of applying Graph Theory to distance distribution theorems
[47] and later Turán in [176] initiated investigating these problems more
systematically. This work culminated in three joint papers of Erdős, Meir,
Sós and Turán [76, 77, 78].13

The structure of the extremal graphs in Turán type theorems seems to
be too regular. So we arrive at the question: How do the upper bounds in
extremal graph theorems improve if we exclude graphs very similar to the
Turán graphs? Basically this was what motivated V. T. Sós [162] in initiating
a new field of investigation. Erdős joined her and they have proved quite a
few nice results, see e.g., [89, 90, 91].

Let αp(G) denote the maximum cardinality of vertices in G such that the
subgraph spanned by these vertices contains no Kp.

General Problem. Assume that L1, . . . , Lr are given graphs, and Gn is a

graph on n vertices the edges of which are coloured by r colours χ1, . . . , χr,

and{
for ν = 1, . . . , r the subgraph of colour χν contains no Lν

and αp(Gn) ≤ m.

What is the maximum of e(Gn) under these conditions?

Originally the general problem was investigated only for p = 2,14 and one
breakthrough was the Szemerédi–Bollobás–Erdős theorem:

13 See also Corrigendum to [76].
14 This means that in all the papers quoted but [74] we restrict ourselves to

ordinary independent sets.
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Theorem 6.1 (Szemerédi [170]). If (Gn) is a sequence of graphs not
containing K4 and the stability number α(Gn) = o(n), then

e(Gn) ≤ 1

8
n2 + o(n2). (3)

Erdős asks if the o(n2) error term is necessary: Is it true that in
Theorem 6.1 the stronger

e(Gn) ≤ n2

8

also holds?

Theorem 6.2 (Bollobás–Erdős [18]). Equation (3) is sharp.

Many estimates concerning general and various special cases of this field
are proved in [72, 73, 74]. Here we mention just one result:

Theorem 6.3 (Erdős–Hajnal–Simonovits–Sós–Szemerédi [74]).

(a) For any integers p > 1 and q > p if αp(Gn) = o(n) and Kq ⊆ Gn, then

e(Gn) ≤ 1

2

(
1 − p

q − 1

)(
n

2

)
+ o(n2).

(b) For q = pk + 1 this upper bound is sharp.

One of the most intriguing open problems of the field is (among many
other very interesting questions)

Problem 6.4. Assume that (Gn) is a sequence of graphs not containing
K(2, 2, 2). If α(Gn) = o(n), does it follow that e(Gn) = o(n2)?

I conclude this section with a slightly different result of Ajtai, Erdős,
Komlós and Szemerédi. Let t be the average degree of Gn. Turán’s theorem
guarantees an independent set of size n

t+1 .

Theorem 6.5 ([1]). There exists a contant c > 0 for which, if the number
of K3 ⊆ Gn is o(n3), then

α(Gn) > c
n

t
log t for t =

2e(Gn)

n
.

The nice feature of the above theorem is that it says: if the number of
triangles in Gn is o(n3), then the size of the maximum independent set jumps
by a log-factor. This is sharp: nt log t is achieved for random graphs.

Theorem 6.5 can also be interpreted as follows: excluding the triangles (or
assuming that there are only few triangles in our graph) leads to randomlike
behaviour. (See also [206, 207].)

Remark [N] 12 (Some newer results.). Sudakov proved that if α(Gn) is

“slightly smaller than” ec
√
log n, and K4 ⊆ Gn, then e(Gn) = o(n2) [332].
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Jacob Fox, Po-Shen Loh and Y. Zhao [254] described very precisely the

phase-transition when Gn does not contain K4 and e(Gn) is nearly
1

8
n2.

József Balogh and Lenz found very nice new constructions to obtain good
lower bounds for several cases, [227, 228]

Balogh-Ping-Simonovits [229] investigated, when does e(Gn) drastically
drops, as we decrease α(Gn) “continuously” from

(
n
2

)
to 2.

Remark [N] 13 (A minor correction). In one of the proofs of [74] we
(Erdős, Hajnal, Simonovits, Sós, and Szemerédi) used an isoperimetric
theorem from [232], which turned out to be false. The original proof could
not be saved. However, Balogh and Lenz [227] saved the essential part of our
result and extended it to several other cases. For details, see [227].

7. Cycles in Graphs

Cycles play central role in graph theory. Many results provide conditions to
ensure the existence of some cycles in graphs. Among others, the theory of
Hamiltonian cycles (and paths) constitute an important part of graph theory.
The Handbook of Combinatorics contains a chapter by A. Bondy [23] giving
a lot of information on ensuring cycles via various types of conditions. Also,
the book of Walther and Voss [179] and the book of Voss [178] contain many
relevant results. Below we shall approach the theory of degenerate extremal
graph problems (see Sect. 8) through extremal graph problems with forbidden
cycles. Of course, one of the simplest extremal graph problems is when L is
the family of all cycles. If we exclude them, the considered graphs will be all
the trees and forests; the extremal graphs are the trees.

Remark 7.1. Describing walks and cycles in graphs is perhaps one of
those parts of extremal graph theory, where algebraic methods may come in
more often than in other extremal problems. So here occasionally, and very
superficially, I will speak of Margulis graphs, Ramanujan graphs and Cayley
graphs. I feel, these topics are very important, not only because of expander
graphs but also because they provide new methods to construct nice graphs
in extremal graph theory. I warmly recommend Noga Alons’ chapter from the
Handbook of Combinatorics: Tools from Higher Algebra [2], which provides
a lot of interesting and useful information – among others – on topics I had
to describe very shortly.

Excluding Long Cycles

One problem posed by Turán was the extremal problem of cycles of length m.
If we exclude all the odd cycles, the extremal graph will be the Turán graph
Tn,2. What are the extremal graphs if the family of excluded graphs is the
family Lm of cycles of length at least m. The answer is given by the Erdős–
Gallai theorem:
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Theorem 7.2 (Erdős and Gallai [69]). Let Lm = {Ck : k ≥ m}. Then

(i) m−1
2 n− 1

2m
2 < ex(n,Lm) ≤ m−1

2 n and
(ii) The connected graphs Gn whose 2-connected blocks are Km−1’s are

extremal.

Graphs described in (ii) do not exist for all n, but we get asymptotically
extremal graphs for all n, by taking those graphs in which one 2-connected
component has size at most m − 1 and all the other blocks are complete
m− 1–graphs.

The following theorem is the twin of the previous one’s.

Theorem 7.3 (Erdős and Gallai [69]).

ex(n, Pm) ≤ m− 2

2
n.

The union of � n
m−1� vertex disjoint Km−1 (and one smaller Kq) shows that

this is sharp: ex(n, Pm) = m−2
2 n+O(m2).

This theorem has a sharper form, proved by Faudree and Schelp [95].
They needed the sharper form to prove some Ramsey theorems on paths.
(See also Kopylov [293].)

These theorems can also be used to deduce the existence of Hamilton
paths and cycles. Thus, for example, Theorem 7.2 implies Dirac’s famous
result:

Theorem 7.4 (Dirac). If the minimum degree of G2k is at least k, then
G2k is Hamiltonian.

7.1. Excluding Fixed Trees

Erdős and T. Sós observed that the same estimates hold both for the path
Pm and the star K2(1,m− 1) and these being two extremes among the trees
of m vertices, they conjectured that [54]:

Conjecture 7.5 (Erdős–T. Sós). For any tree Tm,

ex(n, Tm) ≤ m− 2

2
n.

Of course, this implies ex(n, Tm) ≤ m−2
2 n+O(1). Some asymptotical ap-

proximations of this conjecture were proved by Ajtai, Komlós and Szemerédi,
(unpublished), also, the conjecture is proved in its sharp form for some special
families of trees, like caterpillars, large girth graphs [238], graphs with many
leaves [327], graphs of small diameters [301], . . .

Remark [N] 14 (Embedding trees into graphs). The above Conjec-
ture 7.5 is now solved for all suffficiently large trees, by Ajtai, Komlós,
Simonovits and Szemerédi, though the publishing of this theorem is not yet
finished [202, 204, 203].
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Theorem 7.6 (Ajtai-Komlós-Simonovits-Szemerédi). There exists a
k0 such that for all k > k0 the Erdős-Sós conjecture holds.

There is another conjecture, strongly related to the Erdős-Sós Conjecture,
namely, the Loebl-Komlós-Sós conjecture. This question has a special form,
(Loebl) and a general form (Komlós, Sós) and the Loebl Conjecture comes
from a problem of Erdős, Füredi, Loebl and Sós [252].

Conjecture 7.7 (Komlós-Sós). If Gn has at least n/2 vertices of degree
at least k then it contains all the trees of k + 1 vertices.

The original problem of Loebl was this Conjecture for n = k.
This was obtained through a series of partial results by Ajtai-Komlós-

Szemerédi [208], Yi Zhao [341], Piguet-Stein [309], Cooley–Hladký–Piguet
[244]. . . and finally

Theorem 7.8 (Hladký-Komlós-Piguet-Simonovits-Stein-Szemerédi).
There exists a k0 such that for all k > k0 the Komlós–Sós conjecture holds.

Further sources to read:

(a) A much more detailed description of this can be found in Simonovits–
Füredi [188], see also Sidorenko [327], Brandt and Dobson [238], and
Andrew McLennan [301], Saclé and Wozniak [325, 339].

(b) As to the Komlós–Sós conjecture, see [273] for the “approximative
solution” and a longer description of the situation, or [188].

(c) We have to remark here that Yi Zhao (a Student of Szemerédi) was
the first to prove a result in this field, superseding [208], see his PhD
thesis [340], or his preprint, [341], however, this paper was very difficult
to read and finally it was superseded by Piguet and Stein [309, 308] and
Cooley [243]. (See also [274].)

Excluding C2k

Since the odd cycles are 3-chromatic colour-critical, one can apply Theo-
rem 5.7 to them to get

ex(n,C2k+1) =

[
n2

4

]
if n > n0(k).

The case of even cycles is much more fascinating. The upper bound would
become trivial if we assumed that Gn is (almost) regular and contains no
cycles of length ≤ 2k. The difficulty comes from that we exclude only C2k.

Theorem 7.9 (Erdős, Bondy–Simonovits [25]).

ex(n,C2k) < ckn1+1/k + o(n1+1/k).
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Theorem 7.10 (Bondy–Simonovits [25]). If e(Gn) > 100kn1+1/k, then

C2� ⊆ Gn for every integer � ∈ [k, kn1/k].

Erdős stated Theorem 7.9 in [54] without proof and conjectured Theo-
rem 7.10, which we proved. The upper bound on the cycle-length is sharp:
take a Gn which is the union of complete graphs.

Let us return to Theorem 7.9. Is it sharp? Finite geometrical (and other)
constructions show that for k = 2, 3, 5 YES. (Singleton [161], Benson [9],
Wenger [180] . . . .) Unfortunately, nobody knows if this is sharp for C8, or for
other C2k’s.

Faudree and I sharpened Theorem 7.9 in another direction:

Definition 7.11 (Theta-graph). Θ(k, p) is the graph consisting of p vertex-
independent paths of length k joining two vertices x and y.

Clearly, Θ(k, p) is a generalization of C2k. We have proved

Theorem 7.12 (Faudree–Simonovits [96]). ex(m,Θ(k, p)) < ck,pn
1+1/k.

The Erdős–Rényi Theorem [80] shows that Theorem 7.12 is sharp in the
sense that

ex(n,Θ(k, p)) > c∗k,pn
1+ 1

k+ 1
kp as n → ∞.

One could ask if there are other global ways to state that if a graph has
many edges then it has many cycles of different length. Erdős and Hajnal
formulated such a conjecture, which was proved by A. Gyárfás, J. Komlós
and E. Szemerédi. Among others, they proved

Theorem 7.13 (Gyárfás–Komlós–Szemerédi [108]). If dmin(G) ≥ δ
and �1, . . . , �m are the cycle-lengths of G, then

∑ 1

�i
≥ c1 log δ.

The meaning of this is as follows: If we regard all the graphs with
minimum degree δ and try to minimize the sum of the reciprocals of the
cycle-lengths, two candidates should first be checked. One is the union of
disjoint Kδ+1’s, the other is the union of disjoint complete bipartite graphs
K(δ, δ)’s. In the first case we get log δ+O(1), in the second one 1

2 log δ+O(1).
The above theorem asserts that these cases minimize

∑
1
�i
.

Some graph theorists could be surprised by measuring the density of
cycle lengths this way. Yet, whenever we want to express that something
is nearly linear, then in number theory we tend to use this measure. Thus,
e.g. the famous $3,000 problem of Erdős asks for the following sharpening of
Szemerédi’s theorem on Arithmetic Progressions [168]:

Conjecture 7.14 (Erdős). Prove that if A = {a1 < a2 < · · · } is an infinite
sequence of positive integers and
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∑ 1

ai
= ∞,

then for every k, A contains a k–term arithmetic progression.

Remark [N] 15. When Erdős posed the above conjecture, he was interested
among other if

Q: the set of primes contain arbitrary long arithmetic progressions.

In the paper of Erdős [250] that appeared in the Birthday Volume “Paul
Erdős is 80” he mentioned that the longest arithmetic progression of primes
was of length 17 those days. It was a fantastic breakthrough when Ben Green
and Terence Tao proved [266] that YES, Q is true.

Remark [N] 16 (Θ-click-in). One could weaken Erdős Conjecture by ask-
ing: Is it true at least, that for every k there is a p = pk for which, for some
ck > 0

ex(n,Θ(k, p)) > ck · n1+1/k?

One feels that similarly to the Kollar-Rónyai-Szabó construction [294] (see
also Alon-Rónyai-Szabó [219]) one should be able to find a construction
proving this. J. Verstraëte has some results into this direction [338].

Very Long Cycles

We know that a graph with minimum degree 3 contains a cycle of length at
most 2 log2 n. The other extreme is when (instead of short cycles) we wish to
ensure very long cycles. We may go much beyond the Erdős–Gallai theorem
if we increase the connectivity and put an upper bound on the maximum
degree.

Theorem 7.15 (Bondy–Entringer [24]). Let f(n, d) be the largest inte-
ger k such that every 2–connected Gn with maximum degree d contains a
cycle of length at least k. Then

4 logd−1 n− 4 logd−1 logd−1 n− 20 < f(n, d) < 4 logd−1 n+ 4.

Clearly, the connectivity is needed, otherwise – as we have seen – the
Erdős–Gallai theorem is sharp. They also considered the case of d-regular
graphs, proving that

Theorem 7.16 (Bondy–Entringer [24]). If Gn is 2–connected and d-
regular, then Gn contains a cycle of length at least

max{2d, 4 logd−1 n− 4 logd−1 logd−1 n− 20}.

Bondy and I proved that increasing the connectivity leads to a steap
jump:



276 Miklós Simonovits

Theorem 7.17 (Bondy–Simonovits [26]). If Gn is 3–connected and the
minimum degree of Gn is d, the maximum degree is D, then Gn contains a
cycle of length at least ec

√
log n for some c = c(d,D).

We conjectured that ec
√
log n can be improved to nc. Bill Jackson, Jackson

and Wormald succeded in proving this:

Theorem 7.18 (B. Jackson [112, 115]). If Gn is 3–connected and the
minimum degree of Gn is d, the maximum degree is D, then Gn contains a
cycle of length at least nc for some c = c(d,D).

Increasing the connectivity higher does not help in getting longer cycles:

Theorem 7.19 (Jackson, Parson [113]). For every d > 0 there are
infinitely many d+ 2–regular d–connected graphs without cycles longer than
nγ for some γ = γd < 1.

See also [114]. We close this topic with an open problem:

Conjecture 7.20 (J. A. Bondy). There exists a constant c > 0, such that
every cyclically 4-connected 3-regular graph Gn contains a cycle of length at
least cn.

Erdős–Pósa Theorem

The following question of Gallai is motivated partly by Menger Theorem. If
G is a graph

(∗) not containing two independent cycles,

how many vertices are needed to represent all the cycles of G?
K5 satisfies (∗) and we need at least 3 vertices to represent all its cycles.

Bollobás [11] proved that in all the graphs satisfying (∗) there exist 3 vertices
the deletion of which results in a tree (or forest). More generally,

Let RC(k) denote the minimum t such that if a graph G contains no k+ 1
independent cycles, then one can delete t vertices of G ruining all the
cycles of the graph. Determine RC(k)!

Erdős and Pósa [79] proved the existence of two positive constants, c1
and c2 such that

c1k log k ≤ RC(k) ≤ c2k log k. (4)

This theorem is strongly connected to the following extremal graph
theoretical question:

Assume that Gn is a graph in which the minimum degree is D. Find an
upper bound on the girth of the graph.

Here the usual upper bound is
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≈ 2 log n

log(D − 1)
. (5)

The proof is easy: Assume that the girth is g and let k = � g−1
2 �. Take a

vertex x and denote the set of vertices having distance t from x by Xt. Then
for t ≤ k we have |Xt| ≥ (D − 1)|Xt−1|. Therefore

n = v(Gn) ≥ 1 +D +D(D − 1) +D(D − 1)2 + · · · +D(D − 1)k.

This implies (5).
These things are connected to many other parts of Graph Theory, in some

sense even to the Robertson–Seymour theory. Below I shall try to convince
the reader that the Gallai problem is strongly connected to the girth problem.

In [153] I gave a short proof of the upper bound of (4). My proof goes as
follows (sketch!):

Let Gn be an arbitrary graph not containing k + 1 independent circuits.
Let Hm be a maximal subgraph of Gn all whose degrees are 2, 3 or 4. Then
one can immediately see that the ramification vertices of Hm, i.e. the vertices
of degree 3 or 4 represent all the cycles of Gn.15 Let μ be the number of these
vertices. Replacing the hanging chains16 by single edges, we get an Hμ each
degree of which is 3 or 4. So one can easily find a cycle C(1) of length ≤ c3 log μ
in Hμ. Applying this to Hμ − C(1) (but first cleaning up the resulting low
degrees) we get another short cycle C(2). This cleaning up is where we have
to use that the degrees are bounded from above. Iterating this (and using
that the degrees are bounded from above) one can find c4μ/ logμ vertex–
independent cycles in Gn. Since k ≤ c4μ/ logμ, therefore μ ≤ c5k log k.

The Erdős–Pósa theorem is strongly connected with the girth problem.
If, e.g. we had shorter circuits in graphs with degrees 3 and 4 then the above
proof would give better upper bound on RC(k) – but that is ruled out.

Remark [N] 17 (Directed graph version). It was Gallai [262] who first
asked for extending the Erdős–Pósa theorem to digraphs. The problem is
highly non-trivial even in its simplest case, when any pair of directed cycles
have a vertex in common. Perhaps this is why in its published form Gallai
asked only to prove this simplest case, for me it is obvious that he also meant
the general case. The general case formally was formulated only 5 years later,
by D. Younger [342].

McCuaig [300], proved that if in a digraph any two directed cycles have
a common vertex, then one can delete 3 vertices to turn the graph into
an acyclic one. Reed, Robertson, Seymour, and Thomas settled the general
question [314], proving that for every integer k ≥ 0 there exists an integer

15 The vertices of degree 4 are not really needed . . .
16 paths all whose inner vertices have degree 2
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t > 0 such that for every digraph G, either G has k vertex-disjoint directed
circuits, or G can be made acyclic by deleting at most t vertices.

The Margulis Graphs and the
Lubotzky–Phillips–Sarnak Graphs

Sometimes we insist on finding constructions in certain cases when the
probabilistic methods work easily. Often finding explicit constructions is very
difficult. A good example of this is the famous case of the Ramsey 2–colouring,
where Erdős offered a larger sum (money) for finding a construction of a graph
of n vertices not containing complete graphs or independent sets of at least
c log n vertices, for some large constant c. (See Frankl and Wilson [100].)

Another similar case is the girth problem discussed above, with one
exception. Namely, in the girth problem Margulis [133] and in constructing
Ramanujan graphs Margulis [134, 135, 136] and Lubotzky–Phillips-Sarnak
[128, 129], succeeded in constructing regular graphs Gn of (arbitrary high)
but fixed degree d and girth at least cd log n. (The original existence proof
is due to Erdős and Sachs [82] and uses induction.)

The graphs we consider here are Cayley graphs. Below (skipping many
details)

(a) First we explain, why should one try Cayley graphs of non-commutative
groups,

(b) Then we give a sketch of the description of the first, simpler Margulis
graph [133].

(c) Finally we list the main features of the Lubotzky–Phillips–Sarnak graph
[133].

(a) Often cyclic graphs are used in the constructions. Cyclic graphs are
the graphs where a set An ⊆ [1, n] is given, the vertices of our graphs
are the residue classes Zi (mod n), and Zi is joined to Zj if |i−j| ∈ An
(or |n + i − j| ∈ An). One such well known graph is Qp (the Paley
graph) obtained by joining Zi to Zj if their difference is a quadratic
non-residue. The advantage of such graphs is that they have great
deal of fuzzy (randomlike) structure. From the point of view of the
short cycles they are not the best: they have many short even cycles.

(b) Given an arbitrary group G and some elements g1, . . . , gt ∈ G, these
elements generate a Cayley graph on G: we join each a ∈ G to
the elements ag1, . . . , agt. This is a digraph. If we are interested in
ordinary graphs, we choose g1, . . . , gt so that whenever g is one of
them, then also g−1 ∈ {g1, . . . , gt}. Thus we get an undirected graph.
Still, if G is commutative, then this Cayley graph will have many even
cycles. For example, a, ag1, ag1g2, ag1g2g

−1
1 , ag1g2g

−1
1 g−1

2 is (mostly)
a C4 for commutative groups and a P5 for our non-commutative



Paul Erdős’ Influence on Extremal Graph Theory 279

groups. So, if we wanted to obtain Cayley graphs with large girth, we
have better to start with non-Abelian groups. This is what Margulis
did in [133]:

Let X denote the set of all 2×2 matrices with integer entries and
with determinant 1. Pick the following two matrices:

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
.

It is known that they are independent in the sense that there is no
non-trivial multiplicative relation between them.17 So, if we take the
4 matrices A, B, A−1 and B−1, they generate an infinite Cayley graph
which is a 4-regular tree. If we take everything mod p, then it is easy
to see that the tree collapses into a graph of n ≈ p3 vertices, in which
the shortest cycle has length at least c log p for some constant c > 0.
This yields a sequence of 4–regular graphs Xn with girth ≈ c∗ log n
for some c∗ ≈ 0.91 . . . Margulis also explains, how the above graphs
can be used in constructing certain (explicit) error-correcting codes.
Margulis has also generalized this construction (in the same paper)
to arbitrary even degrees.

Theorem 7.21 (Margulis [133]). For every ε > 0 we have in-
finitely many values of r, and for each of them an infinity of regular
graphs Xj of degree 2r with girth

g(Xj) >

(
4

9
− ε

)
log v(Xj)

log r
.

(c) The next breakthrough was due to Margulis [134] and to Lubotzky,
Phillips and Sarnak [128]. The graph of Lubotzky, Phillips and Sarnak
was obtained not for extremal graph purposes. They were interested
in the extremal spectral gap of d-regular graphs: they constructed
graphs where the difference between the first and second eigenvalues
is as large as possible. Graphs with large spectral gaps are good
expanders, and this was perhaps the primary interest in [128] or
in [134]. As the authors of [128] remarked, Noga Alon turned their
attention to the fact that their graphs can be “used” also for many
other, “classical” purposes.

Definition 7.22. Let X be a connected k–regular graph. Denote by λ(X)
the second largest eigenvalue (in absolute value) of the adjacency matrix
of X .

Definition 7.23. A k–regular graph on n vertices, X = Xn,k, will be called
a Ramanujan graph, if λ(Xn,k) ≤ 2

√
k − 1.

17 This is far from being trivial but can be proved, or found e.g. in [194].
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I do not have the place here to go into details, but the basic idea is
that random graphs have roughly the spectral gap18 required above and vice
versa: if the graph has a large spectral gap, then it may be regarded in some
sense, as if it were a random graph. So the Ramanujan graphs provide near-
extremum in some problems, where random graphs are near-extremal. (See
also Alon [3], Chung, Graham and Wilson [37], Füredi and Komlós [260], and
Alon–Boppana [214].)

Let p, q be distinct primes congruent to 1 mod 4. The Ramanujan graph
Xp,q of [128] is a p+ 1–regular Cayley graph of PSL(2,Zq) if the Legendre
symbol (pq ) = 1 and of PGL(2,Zq) if (pq ) = −1. (Here Zq is the field of

integers mod q.)

Theorem 7.24 (Alon, quoted in [128]). Let Xn,k = Xp,q be a non-
bipartite Ramanujan graph; (pq ) = 1, k = p + 1, n = q(q2 − 1)/2. Then
the independence number

α(Xp,q) ≤ 2
√
k − 1

k
n.

Corollary 7.25 ([128]). If Xn,k is a non-bipartite Ramanujan graph, then

χ(Xn,k) ≥ k

2
√
k − 1

.

Margulis, Lubotzky, Phillips and Sarnak have constructed Ramanujan
graphs which are p+ 1–regular, and

(a) bipartite with n = q(q2 − 1) vertices, satisfying

girth(Xn,p+1) ≥ 4

3

log n

log p
−O(1) and diam(Xn,p+1) ≤ 2

3

log n

log p
+ 3.

Further, they constructed non-bipartite Ramanujan graphs with n = q(q2 −
1)/2 vertices, and with the same diameter estimate and with

girth(Xn,p+1) ≥ 2

3

log n

log p
+O(1), α(Xn,p+1) ≤

2
√
p

p+ 1
n, χ(Xn,p+1) ≥ p+ 1

2
√
p
.

Putting p = const or p ≈ nc we get constructions of graphs the existence of
which were known earlier only via random graph methods. As a matter of
fact, they are better than the known “random constructions”, showing that

ex(n,C2k) > ckn
1+ 4

3k+25 .

18 = difference between the largest and second largest eigenvalues
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Further sources to read:

(a) One may be interested in expander graphs and their constructions
without really using this deep number theory. An extremely good start is
to look for results of Avi Wigderson and his surrounding. Here I mention
just a few papers: [215, 275, 316, 317].

(b) Another direction is to read about constructions connected to the
constructions above, see the book of Lubotzky, or [194, 299], Sarnak
[245, 326].

(c) There is also a fascinating area to be mentioned here, on graphs and their
eigenvalues, Cvetkovic–Doob–Sachs [186], F. Chung [184] Alon–Boppana
[214], Alon, Alon–Milman [218].

(d) One fascinating area is the use of Expanders in Theoretical Computer
Science [205, 215]. Perhaps the Ajtai-Komós-Szemerédi Sorting Network
[205] was the first example where a bounded degree expander graph was
used to derandomize the algorithm.

8. Further Degenerate Extremal Graph Problems

We have already seen the most important degenerate extremal graph
problems. Unfortunately we do not have as many results in this field as we
would like to. Here we mention just a few of them.

Topological Subgraphs

Given a graph L, we may associate with it all its topologically equivalent
forms. Slightly more generally, let T (L) be the set of graphs obtained by
replacing some edges of L by “hanging chains”, i.e., paths, all inner vertices
of which are of degree 2.

Problem 8.1. Find the maximum number of edges a graph Gn can have
without containing subgraphs from T (L).

Denote the topological complete p-graphs by < Kp >. G. Dirac [41] have
proved that every Gn of 2n − 2 edges contains a < K4 >. This is sharp:
Dirac gave a graph Gn of 2n − 3 edges and not containing < K4 >. Erdős
and Hajnal pointed out that there exist graphs Gn of cp2n edges and not
containing < Kp >. (This can be seen, e.g. by taking [n/q] vertex-disjoint

union K(q, q)’s for q =
(
p/2
2

)
.) It was a breakthrough when Mader [130] (also

see [131]) showed

Theorem 8.2. For every integer p > 0 there exists a D = D(p) such that if
the minimum degree of G is at least D(p), then G contains a < Kp >.

More precisely,
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Theorem 8.3. There exists a constant c > 0 such that if e(G) > tn, then
G contains a < Kp > for p = [c

√
log t].

Corollary 8.4. For every L, ex(n, T (L)) = O(n).

Conjecture 8.5 (Erdős–Hajnal–Mader [71, 130]). If e(Gn) > tn, then Gn
contains a < Kp > with p ≥ c

√
t.

Mader’s result was improved by Komlós and Szemerédi to almost the
best:

Theorem 8.6 ([121]). There is a positive c1 such that if e(Gn) > tn, then
Gn contains a < Kp > with

p > c1

√
t

(log t)6
.

Very recently, improving some arguments of Alon and Seymour, Bollobás
and Thomason completely settled Mader’s problem:

Theorem 8.7 (Bollobás and Thomason [22]). If e(Gn) > 256p2n, then
Gn contains a < Kp >

This means that they have got rid of the log t-power in Theorem 8.6. Their
proof-method was completely different from that of Komlós and Szemerédi.
Komlós and Szemerédi slightly later also obtained a proof of Theorem 8.7
(with some other constants) along their original lines [122].

Recursion Theorems

Recursion theorems could be defined for ordinary graphs and hypergraphs,
for ordinary degenerate extremal problems and non-degenerate extremal
graph problems, for supersaturated graph problems,. . . However, here we shall
restrict our considerations to ordinary degenerate extremal graph problems.
In this case we have a bipartite L and a procedure assigning an L′ to L.
Then we wish to deduce upper bounds on ex(n, L′), using upper bounds on
ex(n, L). To illustrate this, we start with two trivial statements.

Claim 8.8. Let L be a bipartite graph and L′ be a graph obtained from L
by attaching a rooted tree T to L at one of its vertices.19 Then

ex(n, L′) = ex(n, L) +O(n).

Claim 8.9. Let L be a bipartite graph and L′ be a graph obtained by taking
two vertex-disjoint copies of L. Then (again)

19 This means that we take vertex-disjoint copies of L and T , a vertex x ∈ V (T )
and a vertex y ∈ V (L) and identify x and y.
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ex(n, L′) = ex(n, L) +O(n).

The proofs are trivial.
One of the problems Turán asked in connection with his graph theorem

was to find the extremal numbers for the graphs of the regular (Platonic)
polytopes. For the tetrahedron the answer is given by Turán Theorem
(applied to K4). The question of the Octahedron graph is solved by
Theorem 5.9, the problems of the Icosahedron and Dodecahedron can be
found in Sect. 12, [154, 155]. On the cube-graph we have

Theorem 8.10 (Cube Theorem, Erdős–Simonovits [86]).

ex(n,Q8) = O(n8/5).

We conjecture that the exponent 8/5 is sharp. Unfortunately we do not
have any “reasonable” lower bound.

The above theorem and many others follow from a recursion theorem:

Theorem 8.11 (Recursion Theorem, [86]). Let L be a bipartite graph,
coloured in BLUE and RED and K(t, t) be also coloured in BLUE and RED.
Let L∗ be the graph obtained from these two (vertex-disjoint) graphs by
joining each vertex of L to all the vertices of K(t, t) of the other colour. If
ex(n, L) = O(n2−α) and

1

β
− 1

α
= t,

then ex(n, L∗) = O(n2−β).

Applying this recursion theorem with t = 1 and L = C6 we obtain the
Cube-theorem.20 Another type of recursion theorem was proved by Faudree
and me in [96].

Regular Subgraphs

Let Lr−reg denote the family of r–regular graphs. Erdős and Sauer posed the
following problem [64]:

What is the maximum number of edges in a graph Gn not containing any
k–regular subgraph?

Since K(3, 3) is 3-regular, one immediately sees that ex(n,L3−reg) =
O(n5/3). Using the Cube Theorem one gets a better upper bound,ex(n,L3−reg)
= O(n8/5). Erdős and Sauer conjectured that for every ε > 0 there exists an

20 This approach proved the upper bound for most of the bypartite extremal
results (at least, up to a contant) known those days. It did not cover Füredi’s
Theorem 8.13.
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n0(k, ε) such that for n > n0(k, ε) ex(n,Lk−reg) ≤ n1+ε. Pyber proved the
following stronger theorem.

Theorem 8.12 (Pyber [144]). For every k, ex(n,Lk−reg) = 50k2n log n.

The proof is based on a somewhat similar but much less general theorem of
Alon, Friedland and Kalai [6]. For further information, see e.g. Noga Alon [2]

One More Theorem

We close this section with an old problem of Erdős solved not so long ago
by Füredi. Let F (k, t) be the bipartite graph with k vertices x1, . . . , xk and(
k
2

)
t further vertices in groups Uij of size t, where all the vertices of ∪Uij are

independent and the t vertices of Uij are joined to xi and xj (1 ≤ i < j ≤ k).
Erdős asked for the determination of ex(n, F (k, t)) for t = 1. For t = 1 and
k = 2 this is just C4, so the extremal number is O(n3/2). Erdős also proved
(and it follows from [86] as well) that ex(n, F (3, 1)) = O(n3/2).

Theorem 8.13 (Füredi [103]). ex(n, F (k, t)) = O(n3/2).

Remark [N] 18. The above theorem was extendend by Alon, Krivelevich
and Sudakov. They proved a conjecture of Erdős and myself according to
which

Theorem 8.14 ([217]). If L is a bipartite graph with the colour classes A
and B and all the vertices of B have degree at most r then

ex(n, L) = O(n2−(1/r)).

Further sources to read: Füredi, Simonovits: [188], Simonovits [159].

9. Supersaturated Graphs, Rademacher Type
Theorems

Almost immediately after Turán’s result, Rademacher proved the following
nice theorem (unpublished, see [50]) :

Theorem 9.1 (Rademacher Theorem). If e(Gn) >
[
n2

4

]
then Gn con-

tains at least [n2 ] triangles.

This is sharp: adding an edge to (the smaller class of) Tn,2 we get [n2 ] K3’s.
Erdős generalized this result by proving the following two basic theorems [50]:

Theorem 9.2. There exists a positive constant c1 > 0 such that if e(Gn) >[
n2

4

]
, then Gn contains an edge e with at least c1n triangles on it.
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Theorem 9.3 (Generalized Rademacher Theorem). There exists a

positive constant c2 > 0 such that if 0 < k < c2n and e(Gn) >
[
n2

4

]
+k, then

Gn contains at least k
[
n
2

]
copies of K3.

Lovász and I proved the conjecture of Erdős that c2 = 1
2 [126]. For further

results see Moser and Moon [138], Bollobás [13, 14], and [126, 127].

Remark [N] 19. In our paper [127] we have formulated a general theorem
for the possible maximum value of triangles, or, more generally, of Kp+1’s in a
supersaturated graph Gn. Our Stability approach went slightly further than
what we published, however, was not enough to solve the general problem,
not even for K3. The first beakthrough came from Fisher [255], Fisher-Ryan
[256]. In the last two decades several important results were achieved, by
Razborov (who created his “flag algebras [312] in extremal graph theory” to
solve such problems). Recently – after several steps, – (e.g. Nikiforov [305])
Reiher [315] finally proved our conjecture.

Erdős also proved the following theorem, going into the other direction.

Theorem 9.4 (Erdős [61]). If e(Gn) =
[
n2

4

]
− � and Gn contains at least

one triangle, then it contains at least [n2 ] − �− 1 triangles.

(Of course, we may assume that 0 ≤ � ≤ [n2 ] − 3.)

The General Supersaturated Case

Working with Erdős on multigraph and digraph extremal problems, Brown
and I needed some generalizations of some theorems of Erdős [53, 59]. The
results below are direct generalizations of some theorems of Erdős. To avoid
proving the theorems in a setting narrower than what might be needed later,
Brown and I formulated our results in the “most general, still reasonable”21

form.

Definition 9.5 (Directed multi-hypergraphs [33]). A directed (r, q)–
multi-hypergraph has a set V of vertices, a set H of directed hyperedges, i.e.
ordered r–tuples, and a multiplicity function μ(H) ≤ q (the multiplicity of
the ordered hyperedge) H ∈ H.

We shall return to the multigraph and digraph problems later, here I
formulate only some simpler facts. The extremal graph problems directly gen-
eralize to directed multi-hypergraphs with bounded hyper-edge-multiplicity:

Given a family L of excluded directed (r, q)–multi-hypergraphs, we may
ask the maximum number of directed hyperedges (counted with multiplic-

21 Of course, this notion does not exist.
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ity) a directed (r, q)–multi-hypergraph Gn can have without containing
forbidden sub-multi-hypergraphs from L. The maximum is again denoted
by ex(n,L).

Let L be a directed (r, q)–multi-hypergraph and L[t] be obtained from
L by replacing each vertex vi of L by a set Xi of t independent vertices,
and forming a directed multihyperedge (y1, . . . , yr) of multiplicity μ if y1 ∈
Xi1 , . . . , yr ∈ Xir and the corresponding (vi1 , . . . , vir ) is a directed hyperedge
of multiplicity μ in L.

Theorem 9.6 (Brown–Simonovits [33]).

ex(n,L[t]) − ex(n,L) = o(nr).

Again, the influence of Erdős is very direct: the above theorem is a direct
generalization of his result in [59].

Theorem 9.7 (Brown–Simonovits [33]). Let L be an arbitrary family of

(r, q)-hypergraphs, and γ = lim ex(n,L)
nr , as n → ∞.22 There exists a constant

c2 = c2(L, ε) such that, if

e(Gn) ≥ (γ + ε)nr

and n is sufficiently large, then there exists some L ∈ L for which Gn contains
at least c2n

v(L) copies of this L.

Remark [N] 20. This part is only a very short introduction into a very fast
developing new area. Here we mention only a few results.

1. One part of this new area is when the problem is non-degenerate and we
are noticeably above the Turán threshold. Such a general result is the
above Theorem 9.7.

2. Lovász and Simonovits, “still in the ancient times”, proved a conjecture of
Erdős on the critical value of c in Theorem 9.3. On counting triangles, (or
Kp’s) in supersaturated graphs, see e.g., Fisher [255], Fisher-Ryan [256],
Razborov [313], Nikiforov [304], and Reiher [315];

3. The third type of results in this field is related to the bipartite excluded
graphs, Erdős-Simonovits conjecture [159], which has several forms and
asserts in weaker or stronger forms that among the graphs with e(Gn) >
C · ex(n, L) the random graphs have the least copies of L. Sidorenko [328,
329] reformulated these counting questions to inequlities on integrals and
formulated the “Sidorenko’s conjecture” which is one of the central topics
nowadays in the theory of graph limits. For more details, see Simonovits
[159], Erdős–Simonovits [88], Füredi and Simonovits [188], Lovász [193],
Hatami [270]. . .

22 The limit exists, basically because of [117].
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10. Typical Kp-Free Graphs:
The Erdős-Kleitman-Rothschild Theory

Erdős, Kleitman and Rothschild [75] started investigating the following
problem:

How many labelled graphs not containing L exist on n vertices?

Denote this number by M(n, L). We have a trivial lower bound on
M(n, L): take any fixed extremal graph Sn and take all the 2ex(n,L) subgraphs
of it:

M(n, L) ≥ 2ex(n,L).

In some sense it is irrelevant if we count labelled or unlabelled graphs. The
number of labelled graphs is at most n! times the number of unlabelled graphs

and ex(n, L) ≥
[
n2

4

]
for all non-degenerate cases, (and ex(n, L) ≥ cn1+α for

all the non-tree-non-forest cases). So, if we are satisfied with rough estimates,
we may say: counting only labelled graphs is not a real restriction here.

Strictly speaking, this problem is not an extremal graph problem, neither
a supersaturated graph problem. However, the answer to the question shows
that this problem is in surprisingly strong connection with the corresponding
extremal graph problem.

Theorem 10.1 (Erdős-Kleitman-Rothschild [75]). The number of Kp–
free graphs on n vertices and the number of p − 1–chromatic graphs on n
vertices are in logarithm asymptotically equal: For every ε(n) → 0 there exists
an η(n) → 0 such that if M(n,Kp, ε) denotes the number of graphs of n
vertices and with at most εnp subgraphs Kp, then

ex(n,Kp) ≤ log M(n,Kp, ε) ≤ ex(n,Kp) + ηn2.

In other word, we get “almost all of them” by simply taking all the (p−1)–
chromatic graphs.

Remark [N] 21. Counting some structures may be interesting for many
mathematicians, on its own, however there is an extra nice feature in
Theorem 10.1, namely, that one gets some feeling for the typical L-free
structures.

Graphs were not the first structures to be considered this way. Here I
mention only one result of Kleitman and Rothschild [281] which asserts that–
in some sense–the typical posets are described by a random bipartite graph.

Let us return to the typical structure of an L-free graph. Erdős conjec-
tured that most of them are very similar to the subgraphs of an extremal
graph (for L):

Conjecture 10.2 (Erdős). If χ(L) > 2, then

M(n, L) = 2ex(n,L)+o(ex(n,L)).
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This was proved by Erdős, Frankl and Rödl [68].
The corresponding question for bipartite graphs is unsolved. Even for the

simplest non trivial case, i.e. for C4 the results are not satisfactory. This
is not so surprising. All these problems are connected with random graphs,
where for low edge-density the problems often become much more difficult.
Kleitman and Winston [118] showed that

M(n,C4) ≤ 2cn
√
n,

but the best value of the constant c is unknown. Erdős conjectured that

M(n, L) = 2(1+o(1))ex(n,L).

Then the truth should be, of course

M(n,C4) = 2((1/2)+o(1))n
√
n.

Further sources to read: Kolaitis, Prömel and Rothschild extended the
sharper estimates known for complete graphs to graphs L with critical
edges [288]. Kleitman and David Wilson obtained results similar to the
Kleitman–Winston Theorem [282]. Balogh and Samotij extended these results
to general complete bipartite graphs [230], [231]. The original results of Erdős,
Kleitman, and Rothschild, or, more generally, of Erdős, Frankl, and Rödl were
sharpened (better error terms, typical structure, see e.g. Balogh, Bollobás,
and Simonovits [223, 222, 224]) and extended to other structures, e.g., to
hypergraphs, see e.g., Nagle and Rödl [302] and Person and Schacht [306].

I finish with a recent problem of Erdős.

Problem 10.3 (Erdős). Determine or estimate the number of maximal
triangle-free graphs on n vertices.

Some explanation. In the Erdős–Kleitman–Rothschild case the number of
bipartite graphs was large enough to give a logarithmically sharp estimate.
Here K(a, n−a) are the maximal bipartite graphs, their number is negligible.
This is why the situation becomes less transparent.

Remark [N] 22. Since those early results many new results were proved in
this field.

(a) Sharper estimates were proved for M(n, L) [223]; actually, in some cases
the typical structures were also described, [224]

(b) For the first difficult case, to estimate M(n, L) Kleitman and Winston
proved that

M(n,C4) < 2cn
√
n (6)



Paul Erdős’ Influence on Extremal Graph Theory 289

11. Induced Subgraphs

One could ask, why do we always speak of not necessarily induced subgraphs.
What if we try to exclude induced copies of L? If we are careless, we
immediately run into a complete nonsense. If L is not a complete graph
and we ask:

What is the maximum number of edges a Gn can have without having an
induced copy of L?

the answer is the trivial
(
n
2

)
and the only extremal graph is Kn. So let us

give up this question for a short while and try to attack the corresponding
counting problem which turned out in the previous section to be in a strong
connection with the extremal problem.

How many labelled graphs not containing induced copies of L are on n
vertices?

Denote this number by M∗(n, L). Prömel and Steger succeeded in
describing M∗(n, L). They started with the case of C4 and proved that almost
allGn not containing an induced C4 have the following very specific structure.
They are split graphs which means that they are obtained by taking a Km

and (n−m) further independent points and joining them to Km arbitrarily.
(Trivially, these graphs contain no induced C4’s.)

Theorem 11.1 (Prömel–Steger [141]). If S∗
n is the family of split graphs,

then

M∗(n,C4)

|S∗
n|

→ 1 as n → ∞.

This implies, by a result of Prömel [140], that

Corollary 11.2. There exist two constants, ceven > 0 and codd > 0, such
that

M∗(n,C4)

2n2/4+n−(1/2)n log n
→

{
ceven for even n,

codd for odd n.

Can one generalize this theorem to arbitrary excluded induced subgraphs?
To answer this question, first Prömel and Steger generalized the notion of
chromatic number.

Definition 11.3. Let τ(L) be the largest integer k for which there exists
an integer j ∈ [0, k − 1] such that no k − 1–chromatic graph in which j
colour–classes are replaced by cliques contains L as an induced subgraph.

Clearly, if σ(L) denotes the clique covering number, (= the minimum
number of complete subgraphs of L to cover all the vertices of L) then

Lemma 11.4 (Prömel–Steger). χ(L), σ(L) ≤ τ(L) ≤ χ(L) + σ(L).
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Now, taking a Tn,p for p = τ(L) − 1 and replacing j appropriate classes
of it (in the above definition) by complete graphs and then deleting arbitrary
edges of the Tn,p we get graphs not having induced L’s:

M∗(n,H) ≥ 2(1−
1

τ−1 )(
n
2)+o(n

2).

This yields the lower bound in

Theorem 11.5 (Prömel–Steger). Let H be a fixed nonempty subgraph
with τ ≥ 3. Then

M∗(n,H) = 2(1−
1

τ−1 )(
n
2)+o(n

2).

Definition 11.6. Given a sample graph L, call Gn “good” if there exists
a fixed subgraph Un ⊆ Gn (= the complementary graph of Gn) such that
whichever way we add some edges of Gn to Un, the resulting U ′ contains no
induced copies of L. ex∗(n,H) denotes the maximum number of edges such
a Gn can have.

Example 11.7. In case of C4, any bipartite graph G(A,B) is “good”, since
taking all the edges in A, no edges in B and some edges from G(A,B) we get
a Un not containing C4 as an induced subgraph.

Theorem 11.8 (Prömel–Steger [143]).

ex∗(n, L) =

(
1 − 1

τ − 1

)(
n

2

)
+ o(n2).

Thus Prömel and Steger convincingly showed that there is a possibility
to generalize ordinary extremal problems and the corresponding counting
problems to induced subgraph problems. For further information, see [142,
143, 233, 225].

Remark [N] 23. The whole theory described in the previous section which
could be called Erdős–Kleitman–Rosthschild theory (or perhaps, Erdős–
Frankl–Rödl theory) has analogs in case of the induced graphs, e.g. Theo-
rem 11.5. Several interesting results were obtained lately, we mention just a
few of them below.

This subarea started with Alekseev [210] and Bollobás, and Thomason
[235]23. (See also [236, 237].)

N. Alon, J. Balogh, B. Bollobás, and R. Morris [213] improve these results,
by describing the typical structure when excluding an induced L.

Balogh and Butterfield [226] characterized those graphs L, satisfying that

For almost all L-freee graphs Gn, V (Gn) can be partitioned into a
independent sets and b complete graphs, where a+b = τ (L) (=the coloring
number of L).

23 This volume!
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So, in some sense, they define the “weakly-edge-color-critical” graphs and
extend the “ordinary” results to this case as well.

Here I skip many further interesting results.

12. The Number of Disjoint Complete Graphs

There are many problems where instead of ensuring many Kp+1’s (see Sect. 9)
we would like to ensure many edge-disjoint or vertex-disjoint copies of Kp+1.
Let us start with the case of vertex-disjoint copies.

If Gn is a graph from which one can delete s − 1 vertices so that the
resulting graph is p-chromatic, then Gn cannot contain s vertex-disjoint
copies of Kp+1. This is sharp: let Hn,p,s := Tn−s+1,p⊗Ks−1. Then Hn,p,s has
the most edges among the graphs from which one can delete s− 1 vertices to
get a graph of chromatic number at most p. Further:

Theorem 12.1 (Moon [137]). Among all the graph not containing s
vertex-independent Kp+1’s Hn,p,s has the most edges, assumed that n >
n0(p, s).

This theorem was first proved by Erdős and Gallai for p = 1, then for K3

by Erdős [51], and then it was generalized for arbitrary p by J. W. Moon,
and finally, a more general theorem was proved by me [155]. This more
general theorem contained the answer to Turán’s two “Platonic” problem:
it guaranteed that Hn,2,6 is the only extremal graph for the dodecahedron
graph and Hn,3,3 for the icosahedron, if n is sufficiently large. For related
more general results see Simonovits [198].

We get a slightly different result, if we look for edge-independent complete
graphs. Clearly, if one puts k edges into the first class of Tn,p, then one gets k
edge-independent Kp’s as long as k < cn. One would conjecture that this is
sharp. As long as k is fixed, the general theorems of [155] provide the correct
answer. If we wish to find the maximum number of edge-independent copies
of Kp+1 for

e(Gn) =

(
1 − 1

p

)(
n

2

)
+ k,

for k = k(n) → ∞, the problem changes in character, see e.g. recent papers
of Győri [109, 111]. We mention just one theorem here:

Theorem 12.2 (Győri [110]). Let e(Gn) = e(Tn,p) + k, (p ≥ 3), where
k ≤ 3�n+1

p �−5. Then Gn contains k edge-independent Kp+1’s, assumed that

n > n0(p).

For p = 2 (for triangles) the result is different in style, see [109].
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13. Extremal Graph Problems Connected
to Pentagonlike Graphs

A lemma of Erdős asserts that each graph Gn can be turned into a bipartite
graph by deleting at most half of its edges. (Above: Theorem 3.7.) The proof
of this triviality is as follows. Take a bipartite Hn ⊆ Gn of maximum number
of edges. By the maximality, each x ∈ V (Gn) having degree d(x) in Gn
must have degree ≥ 1

2d(x) in Hn. Summing the degrees in both graphs we
get e(Hn) ≥ 1

2e(Gn). This estimate is sharp for random graphs of edge
probability p > 0, in asymptotical sense. Now, our first question is if this
estimate can be improved in cases when we know some extra information on
the structure of the graph, say, excluding triangles in Gn. The next theorem
asserts that this is not so. Let D(Gn) denote the minimum number of edges
one has to delete from Gn to turn it into a bipartite graph.

Theorem 13.1 (Erdős [56]). For every ε > 0 there exists a constant c =
cε > 0 such that for infinitely many n, there exists a Gn for which K3 ⊆ Gn,
e(Gn) > cεn

2, and

D(Gn) >

(
1

2
− ε

)
e(Gn).

Conjecture 13.2 (Erdős). If K3 ⊆ Gn, then one can delete (at most)
n2/25 edges so that the remaining graph is bipartite.

Let us call a graph Gn pentagonlike if its vertex-set V can be partitioned
into V1, . . . , V5 so that x ∈ Vi and y ∈ Vj are joined iff i−j ≡ ±1 mod 5. The
pentagonlike graphQn := C5[n/5] shows that, if true, this conjecture is sharp.
The conjecture is still open, in spite of the fact that good approximations
of its solutions were obtained by Erdős, Faudree, Pach and Spencer. This

conjecture is proven for e(Gn) ≥ n2

5 (see below) and the following (other)
weakening is also known, [67]:

Theorem 13.3. If K3 ⊆ Gn then

D(Gn) ≤ n2

18 + δ
.

for some (explicite) constant δ > 0.

In fact, Erdős, Faudree, Pach, and Spencer [67] proved that

Theorem 13.4. For every triangle-free graphG with n vertices and m edges

D(Gn) ≤ max

{
1

2
m− 2m(2m2 − n3)

n2(n2 − 2m)
, m− 4m2

n2

}
(7)

Since the second term of (13.1) decreases in [ 18n
2, 12n

2], and its value is
exactly 1

25n
2 for m = 1

5n
2, therefore (7) twice implies that if e(Gn) > 1

5n
2,

and K3 ⊆ Gn, then D(Gn) ≤ 1
25n

2. By Theorem 3.7, trivially, if e(Gn) ≤
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2
25n

2, then D(Gn) ≤ 1
25n

2. However, the general conjecture is still open: it is

unsettled in the middle interval 2n2

25 < e(Gn) < n2

5 .
The next theorem of Erdős, Győri and myself [70] states that if e(Gn) >

1
5n

2, then the pentagon-like graphs need the most edges to be deleted to
become bipartite. (This is sharper than the earlier results, since it provides
also information on the near-extremal structure.)

Theorem 13.5. If K3 ⊆ Gn and e(Gn) ≥ n2

5 , then there is a pentagonlike
graph H∗

n with at least the same number of edges: e(Gn) ≤ e(H∗
n), for which

D(Gn) ≤ D(H∗
n).

Remark [N] 24. Not so long ago a similar question of Erdős was solved. If
we consider C5[n/5], this does not contain K3 and contains ≈ (n5 )5 copies of
C5. Erdős conjectured that

Conjecture 13.6 (Erdős). If K3 ⊆ Gn, then Gn has at most ≈ (n5 )5 copies
of C5.

Andrzej Grzesik [267] and Hatami, Hladký, Král, and Razborov [271]
proved this, independently.

14. Problems on the Booksize of a Graph

We have already seen a theorem of Erdős, stating that if a graph has many
edges, then it has an edge e with cn triangles on it. Such configurations are
usually called books. The existence of such edges is one of the crucial tools
Erdős used in many of his graph theorems. Still, it was a longstanding open
problem, what is the proper value of this constant c above. Without going
into details we just mention three results:

Theorem 14.1 (Edwards [43, 44]). If e(Gn) >
[
n2

4

]
, then Gn has an edge

with [n/6] + 1 triangles containing this edge.

This is sharp. The theorem would follow if we knew that there exists a
K3 = (x, y, z) for which the sum of the degrees, d(x) + d(y) + d(z) > 3n

2 .
Indeed, at least n

6 vertices would be joined to the same pair, say, to xy. An
other paper of Edwards contains results of this type, but only for e(Gn) >
1
3n

2. Let Δr = Δr(Gn) denote the maximum of the sums of the degrees in a

Kr ⊆ Gn. (For instance, in a random graph Rn Δr(Rn) ≈ r · 2e(Rn)
n .)

Theorem 14.2 (Edwards [43]). If 1
rΔr >

(
1 − 1

r+1

)
n, n ≥ 1, then

1

r + 1
Δr+1 ≥ 2e(Gn)

n
.

This theorem says that if Gn has enough edges to ensure a Kr+1, then
it also contains a Kr+1 whose vertex-degree-sum is as large as it should be
by averaging. Erdős, Faudree and Győri have improved Theorem 14.1 if we
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replace the edge-density condition by the corresponding degree-condition.
Among others, they have shown that

Theorem 14.3 (Erdős–Faudree-Győri [66]). There exists a c > 0 such
that if the minimum degree of Gn is at least [n/2] + 1, then Gn contains an
edge with [n/6] + cn triangles containing this edge.

15. Digraph/Multigraph Extremal Graph Problems

We have already seen supersaturated extremal graph theorems on multi-
digraphs. Here we are interested in simple asymptotically extremal sequences
for digraph extremal problems.

Multigraph or digraph extremal problems are closely related and in some
sense the digraph problems are the slightly more general ones. So we shall
restrict ourselves to digraph extremal problems. A digraph extremal problem
means that some q is given and we consider the class of digraphs where loops
are excluded and any two vertices may be joined by at most q arcs in one
direction and by at most q arcs of the opposite direction. This applies to
both the excluded graphs and to the graphs on n vertices the edges of which
should be maximized. So our problem is:

Fix the multiplicity bound q described above. A family L of digraphs is
given and ex(n,L) denotes the maximum number of arcs a digraph Dn

can have under the condition that it contains no L ∈ L and satisfies the
multiplicity condition. Determine or estimate ex(n,L).

The Digraph and Multigraph Extremal graph problems first occur in a
paper of Brown and Harary [32]. They described fairly systematically all the
cases of small forbidden multigraphs or digraphs. Next Erdős and Brown
extended the investigation to the general case, finally I joined the “project”.
Our papers [28, 29, 30] and [31] describes fairly well the situation q = 1
for digraphs (which is roughly equivalent with q = 2 for multigraphs). We
thought that our results can be extended to all q but Sidorenko [149] and
then Rödl and Sidorenko [146] ruined all our hopes. One of our main results
was in a somewhat simplified form:

Theorem 15.1. Let q = 1 and L be a given family of excluded digraphs.
Then there exists a matrix A = (aij) of r rows and columns, depending
only on L, such that there exists a sequence (Sn) of asymptotically extremal
graphs for L whose vertex-set V can be partitioned into V1, . . . , Vr so that for
1 ≤ i < j ≤ r, a v ∈ Vi is joined to a v′ ∈ Vj by an arc of this direction iff the
corresponding matrix-element aij = 2; further, the subdigraphs spanned by
the Vi’s are either independent sets or tournaments, depending on whether
aii = 0 or 1.

One crucial tool in our research was a density notion for matrices. We
associated with every matrix A a quadratic form and maximized it over the
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standard simplex:

g(A) = max
{
uAuT :

∑
ui = 1, ui ≥ 0.

}

The matrices are used to characterize some generalizations of graph sequences
like (Tn,p)n>n0 of the general theory for ordinary graphs, and g(A) measures
the edge-density of these structures: replaces (1 − 1

p ) of the Erdős–Stone–
Simonovits theorem.

Definition 15.2. A matrix A is called dense if for every submatrix B′ of
symmetric position g(B′) < g(B). In other words, B is minimal for g(B) = λ.

We conjectured that – as described below – the numbers g(B) are of finite
multiplicity and well ordered if the matrices are dense:

Conjecture 15.3. If q is fixed, then for each λ there are only finitely many
dense matrices B with g(B) = λ. Further, if (Bn) is a sequence of matrices of
bounded integer entries then (g(Bn)) cannot be strictly monotone decreasing.

One could wonder how one arrives at such conjectures, but we do not
have the space to explain that here. Similar matrices (actually, multigraph
extremal problems) occur when one attacks Turán–Ramsey problems, see
[72, 73, 74].

Our conjecture was disproved by Sidorenko and Rödl [146]. As a
consequence, while we feel that the case q = 1 (i.e. the case of digraphs
where any two points can be joined only by one arc of each direction) is
sufficiently well described, for q > 1 the problem today seems to be fairly
hopeless. Multidigraphs have also been considered by Katona in [116], where
he was primarily interested in continuous versions of Turán-type extremal
problems.

Remark [N] 25. (a) Many further details of this chapter can be found in
Brown–Simonovits [240].

(b) Since the original version of this paper the theory of Graph Limits
(see e.g. [193]) emerged and many phenomena observed there have
some (much simpler) analogues in the theory of multigraph extremal
problems.

(c) Multigraph (or coloured multigraph) extremal problems – combined
with stability methods – were used in solving the Hypergraph Extremal
problem, where the Fano Plane was excluded, see de Caen-Füredi [241],
Füredi and Simonovits [261] and Keevash and Sudakov [278].

An interesting feature of these solutions was that one did not have to
assume the bounded multiplicity in the multigraph problem corresponding
to the Fano hypergraph problem: it followed from the conditions.

Also, in some sense very special multigraph extremal problems were used
in the proof of the main Ramsey–Turán theorems of Erdős, Hajnal, Sós, and
Szemerédi [72].
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16. Erdős and Nassredin

Let me finish this paper with an anecdote. Nassredin, the hero of many
middle-east jokes, stories (at least this is how we know it in Budapest), once
met his friends who were eager to listen to his speech. “Do you know what I
wish to speak about” Nassredin asked them. “No, we don’t” they answered.
“Then why should I speak about it” said Nassredin and left.24 Next time
the friends really wanted to listen to the clever and entertaining Nassredin.
So, when Nassredin asked the audience “Do you know what I want to speak
about”, they answered: “YES, we do” . “Then why should I speak about it”
said Nassredin again and went home. The third time the audience decided to
be more clever. When Nassredin asked them “Do you know what I will speak
about”, half of the people said “YES” the other half said “NO”. Nassredin
probably was lasy to speak: “Those who know what I wanted to tell you
should tell it to the others” he said and left again.25

I am in some sense in Nassredin’s shoes. How could I explain on 30 or 50
pages the influence of Erdős on Extremal Graph Theory to people who do
not know it. And why should I explain to those who know it. Yet I think,
Nassredin did not behave in the most appropriate way. So I tried – as I
promised – to illustrate on some examples this enourmous influence of Paul.
I do not think it covered half the topics and I have not tried to be too
systematic.

Long Live Paul Erdős!26
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Ramsey theorems for Kp–stability numbers, Combinatorics, Probability and
Computing, 3 (1994) 297–325. (Proc. Cambridge Conf on the occasion of 80th
birthday of P. Erdős, 1994.)
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76. P. Erdős, A. Meir, V. T. Sós and P. Turán: On some applications of graph
theory I. Discrete Math., 2 (1972) (3) 207–228.
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123. T. Kővári, V. T. Sós, P. Turán: On a problem of Zarankiewicz, Colloq. Math.,
3 (1954), 50–57.

124. F. Lazebnik and V. A. Ustimenko: New examples of graphs without small
cycles and of large size, European Journal of Combinatorics, 14(5) (1993)
445–460.

125. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar: New constructions of
bipartite graphs on m,n vertices with many edges and without small cycles,
J. Combin. Theory Ser. B 61 (1994), no. 1, 111–117.

126. L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph
I. Proc. Fifth British Combin. Conf. Aberdeen (1975) 431–442.

127. L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph
II. Studies in Pure Math (dedicated to the memory of P. Turán), Akadémiai
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148. Sárközy, Gábor N., Cycles in bipartite graphs and an application in number
theory. J. Graph Theory 19 (1995), no. 3, 323–331.

149. A. F. Sidorenko: Boundedness of optimal matrices in extremal multigraph and
digraph problems, Combinatorica, 13(1) (1993) 109–120.

150. A. F. Sidorenko: Extremal estimates of probability measures and their
combinatorial nature Math. USSR - Izv 20 (1983) N3 503–533 MR 84d: 60031.
(=Translation) Original: Izvest. Acad. Nauk SSSR. ser. matem. 46(1982) N3
535–568.

151. A. F. Sidorenko: What do we know and what we do not know about Turán
Numbers, Graphs Combin. 11 (1995), no. 2, 179–199.

152. M. Simonovits: A method for solving extremal problems in graph theory,
Theory of graphs, Proc. Coll. Tihany, (1966), (Ed. P. Erdős and G. Katona)
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238. S. Brandt, E. Dobson, The Erdős-Sós conjecture for graphs of girth 5, Discrete
Math. 150 (1996) 411–414.
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284. Kohayakawa, Y.; �Luczak, T.; Rödl, V.; On K4-free subgraphs of random
graphs. Combinatorica 17 (1997), no. 2, 173–213.
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303. B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular k-uniform
hypergraphs, Random Structures Algorithms 28 (2) (2006) 113–179.

304. V. Nikiforov, Edge distribution of graphs with few copies of a given graph,
Combin. Probab. Comput. 15 (6) (2006) 895–902.

305. Nikiforov, V., The number of cliques in graphs of given order and size. Trans.
Amer. Math. Soc. 363 (2011), no. 3, 1599–1618. available at http://arxiv.org/
abs/0710.2305v2(version2).

306. Y. Person, M. Schacht, Almost all hypergraphs without Fano planes are
bipartite, in: Claire Mathieu (Ed.), Proc. SODA 09, pp. 217–226.

307. D. Piguet, M. Stein, The Loebl-Komlós-Sós conjecture for trees of diameter
5 and other special cases, Electron. J. Combin. 15 (2008) R106. MR2438578
(2009e:05078)

308. Piguet, Diana; Stein, Maya Jakobine; The Loebl-Komlós-Sós conjecture for
trees of diameter 5 and for certain caterpillars. Electron. J. Combin. 15 (2008),
no. 1, Research Paper 106, 11 pp.

309. Piguet, Diana; Stein, Maya Jakobine; An approximate version of the Loebl-
Komlós-Sós conjecture. J. Combin. Theory Ser. B 102 (2012), no. 1, 102–125.
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335. T.C. Tao, Szemerédi’s regularity lemma revisited, preprint; http://arxiv.org/

abs/math.CO/0504472
336. T. Tao. A quantitative ergodic theory proof of Szemerédi’s theorem. Electron.
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339. M. Woźniak, On the Erdős-Sós conjecture, J. Graph Theory 21 (2) (1996)

229–234.
340. Yi Zhao, PhD Thesis
341. Y. Zhao, Proof of the (n/2,n/2,n/2) conjecture for large n, preprint. cf.

MR2776803 (2012c:05170)
342. Younger, D., Graphs with interlinked directed cycles, Proc. Midwest Sympo-

sium on Circuit Theory 2 (1973).

http://arxiv.org/abs/math.CO/0504472
http://arxiv.org/abs/math.CO/0504472


Applications of the Probabilistic Method
to Partially Ordered Sets

William T. Trotter∗

W.T. Trotter (�)
Department of Mathematics, Tempe, AZ 85287, USA

School of Mathematics, Georgia Institute of Technology, Atlanta,
GA 30332, USA
e-mail: trotter@math.gatech.edu

This paper is dedicated to Paul Erdős with
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Summary There are two central themes to research involving applications of
probabilistic methods to partially ordered sets. The first of these can be described as
the study of random partially ordered sets. Among the specific models which have
been studied are: random labelled posets; random t-dimensional posets; and the
transitive closure of random graphs. A second theme concentrates on the adaptation
of random methods so as to be applicable to general partially ordered sets. In
this paper, we concentrate on the second theme. Among the topics we discuss are
fibers and co-fibers; the dimension of subposets of the subset lattice; the dimension
of posets of bounded degree; and fractional dimension. This last topic leads to a
discussion of Ramsey theoretic questions for probability spaces.

1. Introduction

Probabilistic methods have been used extensively throughout combinatorial
mathematics, so it no great surprise to see that researchers have applied these
techniques with great success to finite partially ordered sets. One central
theme to this research is to define appropriate definitions of a random poset,
and G. Brightwell’s excellent survey article [1] provides a summary of work
in this direction.

A second theme involves the application of random methods to more
general classes of posets. After this brief introductory section, we present four
examples of this theme. The first example is quite elementary and involves
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fibers and co-fibers, concepts which generalize the notions of chains and
antichains. The principal result here is an application of random methods
to provide a non-trivial upper bound on the minimum size of fibers.

Our second example is more substantial. It involves the dimension of
subposets of the subset lattice, an instance in which many of the classic
techniques and results pioneered by Paul Erdős play major roles. The third
example involves an application of the Lovász Local Lemma and leads
naturally to the the investigation of the dimension of a random poset of
height two.

Our last example involves fractional dimension for posets—an area
where there are many attractive open problems. This topic leads to natural
questions involving Ramsey theory for probability spaces.

The remainder of this section is a very brief condensation of key ideas and
notation necessary for the remaining five sections. In this article, we consider
a partially ordered set (or poset) P = (X,P ) as a discrete structure consisting
of a set X and a reflexive, antisymmetric and transitive binary relation P on
X . We call X the ground set of the poset P, and we refer to P as a partial
order on X . The notations x ≤ y in P , y ≥ x in P and (x, y) ∈ P are used
interchangeably, and the reference to the partial order P is often dropped
when its definition is fixed throughout the discussion. We write x < y in P
and y > x in P when x ≤ y in P and x = y. When x, y ∈ X , (x, y) /∈ P and
(y, x) /∈ P , we say x and y are incomparable and write x ‖ y in P .

Although we are concerned almost exclusively with finite posets, i.e.,
those posets with finite ground sets, we find it convenient to use the familiar
notation R, Q, Z and N to denote respectively the reals, rationals, integers and
positive integers equipped with the usual orders. Note that these four infinite
posets are total orders; in each case, any two distinct points are comparable.
Total orders are also called linear orders, or chains. We use n to denote an
n-element chain with the points labelled as 0 < 1 < · · · < n− 1.

A subset A ⊆ X is called an antichain if no two distinct points in A are
comparable. We also use P + Q to denote the disjoint sum of P and Q.

In the remainder of this article, we will assume that the reader is familiar
with the basic concepts for partially ordered sets, including maximal and
minimal elements, chains and antichains, sums and cartesian products, com-
parability graphs and Hasse diagrams. For additional background information
on posets, the reader is referred to the author’s monograph [23], the survey
article [14] on dimension by Kelly and Trotter and the author’s survey articles
[21,22,25] and [26]. Another good source of background information on posets
is Brightwell’s general survey article [2].

2. Fibers and Co-fibers

The classic theorem of Dilworth [4] asserts that a poset P = (X,P ) of width n
can be partitioned into n chains. Also, a poset of height h can be partitioned
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into h antichains. For graph theorists, these results can be translated into
the simple statement that comparability graphs are perfect. Against this
backdrop, researchers have devoted considerable energy to generalizations of
the concepts of chains and antichains. Here is one such example.

Let P = (X,P ) be a poset. Lone and Rival [18] called a subset A ⊆ X
a co-fiber if it intersects every non-trivial maximal chain in P. Let cof(P)
denote the least m so that P has a co-fiber of cardinality m. Then let cof(n)
denote the maximum value of cof(P) taken over all n-element posets. In any
poset, the set A1 consisting of all maximal elements which are not minimal
elements and the set A2 of all minimal elements which are not maximal are
both co-fibers. As A1 ∩ A2 = ∅, it follows that cof(n) ≤ �n/2�. On the other
hand, the fact that cof(n) ≥ �n/2� is evidenced by a height 2 poset with �n/2�
minimal elements each of which is less than all �n/2 maximal elements. So
cof(n) = �n/2� (this argument appears in [18]).

Dually, a subset B ⊆ X is called a fiber if it intersects every non-trivial
maximal antichain. Let fib(P) denote the least m so that P has a fiber of
cardinality m. Then let fib(n) denote the maximum value of fib(P) taken
over all n-element posets. Trivially, fib(n) ≥ �n/2�, and Lone and Rival asked
whether equality holds.

In [6], Duffus, Sands, Sauer and Woodrow showed that if P = (X,P )
is an n-element poset, then there exists a set F ⊆ X which intersects every
2-element maximal antichain so that |F | ≤ �n/2�. However, B. Sands then
constructed a 17-point poset in which the smallest fiber contains 9 points.
This construction was generalized by R. Maltby [19] who proved that for
every ε > 0, there exist a n0 so that for all n > n0 there exists an n-element
poset in which the smallest fiber has at least (8/15 − ε)n points.

From above, there is no elementary way to see that there exists a constant
α > 0 so that fib(n) < (1 − α)n. However, this is an instance where random
methods provided real insights into the truth. In the remainder of this paper,
we use the notation [n] to denote the n-element set {1, 2, . . . , n}. (No order
is implied on [n], except for the natural order on positive integers.)

Theorem 1. Let P = (X,P ) be a poset with |X | = n. Then X contains a
fiber of cardinality at most 4n/5. Consequently, fib(n) ≤ 4n/5.

Proof. Let C ⊆ X be a maximum chain. Then X − C is a fiber. So we may
assume that |C| < n/5. Label the points of C as x1 < x2 < · · · < xt, where
t = |C| < n/5. Next we define two different partitions of X − C. First, for
each i ∈ [t], set Ui = {x ∈ X − C: i is the least integer for which x ‖ xi}.
Then set Di = {x ∈ X − C: i is the largest integer for which x ‖ xi}.

Then for each subset S ⊆ [t− 1], define

B(S) = C ∪ (∪{Di : i ∈ S}) ∪ (∪{Ui+1 : i /∈ S})

Note that for each i ∈ [t − 1], the maximality of C implies that
Di ∩ Ui+1 = ∅.
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Claim 1. For every subset S ⊆ [t− 1], B(S) is a fiber.

Proof. Let S ⊆ [t−1] and let A be a non-trivial maximal antichain. We show
that A ∩ B(S) = ∅. This intersection is nonempty if A ∩ C = ∅, so we may
assume that A∩C = ∅. Now the fact that C is a maximal chain implies that
every point of C is comparable with one or more points of A. However, no
point of C can be greater than one point of A and less than another point of
A. Also, x1 can only be less than points in A, and xt can only be greater than
points in A. It follows that t ≥ 2 and that there is an integer i ∈ [t− 1] and
points a, a′ ∈ A for which xi < a in P and xi+1 > a′ in P . Clearly, a′ ∈ Di

and a ∈ Ui+1. If i ∈ S, then Di ⊂ B(S), and if i /∈ S, then Ui+1 ⊂ B(S). In
either case, we conclude that A ∩B(S) = ∅. �

Claim 2. The expected cardinality of B(S) with all subsets S ⊆ [t−1] equally
likely is t+ 3(n− t)/4.

Proof. Note that C ⊆ B(S), for all S. For each element x ∈ X −C, let i and
j be the unique integers for which x ∈ Di and x ∈ Uj . Then j = i + 1. It
follows that the probability that x belongs to B(S) is exactly 3/4. �

To complete the proof of the theorem, we note that there is some S ⊆
[t− 1] for which the fiber B(S) has at most t+ 3(n− t)/4 points. However,
t < n/5 implies that t+ 3(n− t)/4 < 4n/5. �

The preceding theorem remains an interesting (although admittedly
elementary) illustration of applying random methods to general partially
ordered sets. Characteristically, it shows that an n-point poset has a
fiber containing at most 4n/5 points without actually producing the fiber.
Furthermore, this is also an instance in which the constant provided by
random methods can be improved by another approach.

The following result is due to Duffus, Kierstead and Trotter [5].

Theorem 2 (Duffus, Kierstead and Trotter). Let P = (X,P ) be a poset
and let H be the hypergraph of non-trivial maximal antichains of P. Then the
chromatic number of H is at most 3.

Theorem 2 shows that fib(n) ≤ 2n/3, since whenever X = B1 ∪B2 ∪B3

is a 3-coloring of the hypergraph H of non-trivial maximal antichains, then
the union of any two of {B1, B2, B3} is a fiber. Quite recently, Lone [17] has
obtained the following interesting result providing a better upper bound for
posets with small width.

Theorem 3 (Lonc). Let P = (X,P ) be a poset of width 3 and let |X | = n.
P has a fiber of cardinality at most 11n/18.

I am still tempted to assert that limn→∞ fib(n)/n = 2/3.
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3. Dimension Theory

When P = (X,P ) is a poset, a linear order L on X is called a linear extension
of P when x < y in L for all x, y ∈ X with x < y in P . A set R of linear
extensions of P is called a realizer of P when P = ∩R, i.e., for all x, y in
X , x < y in P if and only if x < y in L, for every L ∈ R. The minimum
cardinality of a realizer of P is called the dimension of P and is denoted
dim(P).

It is useful to have a simple test to determine whether a family of linear
extensions of P is actually a realizer. The first such test is just a reformulation
of the definition. Let inc(P) = inc(X,P ) denote the set of all incomparable
pairs in P. Then a family R of linear extensions of P is a realizer of P if and
only if for every (x, y) ∈ inc(X,P ), there exist distinct linear extensions L,
L′ ∈ R so that x > y in L and y > x in L′.

Here is a more useful test. Call a pair (x, y) ∈ X×X a critical pair if:

1. x ‖ y in P ;
2. z < x in P implies z < y in P , for all z ∈ X ; and
3. w > y in P implies w > x in P , for all w ∈ X .

The set of all critical pairs of P is denoted crit(P) or crit(X,P ). Then
it is easy to see that a family R of linear extensions of P is a realizer of P
if and only if for every critical pair (x, y), there is some L ∈ R with x > y
in L. We say that a linear order L on X reverses (x, y) if x > y in L. So
the dimension of a poset is just the minimum number of linear extensions
required to reverse all critical pairs.

For each n ≥ 3, let Sn denote the height 2 poset with n minimal elements
a1, a2, . . . , an, n maximal elements b1, b2, . . . , bn and ai < bj, for i, j ∈ [n]
and j = i. The poset Sn is called the standard example of an n-dimensional
poset. Note that dim(Sn) is at most n, since crit(Sn) = {(ai, bi) : i ∈ [n]}
and n linear extensions suffice to reverse the n critical pairs in crit(Sn). On
the other hand, dim(Sn) ≥ n, since no linear extension can reverse more than
one critical pair.

4. The Dimension of Subposets of the Subset Lattice

For integers k, r and n with 1 ≤ k < r < n, let P(k, r;n) denote
the poset consisting all k-element and all r-element subsets of {1, 2, . . . , n}
partially ordered by inclusion. For simplicity, we use dim(k, r;n) to denote
the dimension of P(k, r;n).

Historically, most researchers have concentrated on the case k = 1. In a
classic 1950 paper in dimension theory, Dushnik [7] gave an exact formula
for dim(1, r;n), when r ≥ 2

√
n.
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Theorem 4 (Dushnik). Let n, r and j be positive integers with n ≥ 4 and
2
√
n− 2 ≤ r < n− 1. If j is the unique integer with 2 ≤ j ≤

√
n for which

⌊
n− 2j + j2

j

⌋
≤ k <

⌊
n− 2(j − 1) + (j − 1)2

j − 1

⌋
,

then dim(1, r;n) = n− i+ 1.

No general formula for dim(1, r;n) is known when r is relatively small in
comparison to n, although some surprisingly tight estimates have been found.
Here is a very brief overview of this work, beginning with an elementary
reformulation of the problem. When L is a linear order on X , S ⊂ X and
x ∈ X − S, we say x > S in L when x > s in L, for every s ∈ S.

Proposition 1. dim(1, r;n) is the least t so that there exist t linear orders
L1, L2, . . . Lt of [n] so that for every r-element subset S ⊂ [n] and every
x ∈ [n] − S, there is some i ∈ [t] for which x > S in Li.

Spencer [20] used this proposition to estimate dim(1, 2;n). First, he noted

that by the Erdős-Szekeres theorem, if n > 22
t

and R is any set of t linear
orders on [n], then there exists a 3-element set {x, y, z} ⊂ [n] so that for all
L ∈ R, either x < y < z in L or x > y > z in L. Thus dim(1, 2;n) > t when

n > 22
t

. On the other hand, if n ≤ 22
t

, then there exists a family R of t linear
orders on [n] so that for every 3-element subset S ⊂ [n] and every x ∈ S,
there exists some L ∈ R so that either x < S−{x} in L or x > S−{x} in L.
Then let S be the family of 2t linear orders on X determined by adding to R
the duals of the linear orders in R. Clearly, the 2t linear orders in S satisfy
the requirements of Proposition 1 when r = 2, and we conclude:

Theorem 5 (Spencer). For all n ≥ 4,

lg lg n < dim(1, 2;n) ≤ 2 lg lg n.

Spencer [20] then proceeded to determine a more accurate upper bound
for dim(1, 2;n) using a technique applicable to larger values of r. Let t be a
positive integer, and let F be a family of subsets of [t]. Then let r be an integer
with 1 ≤ r ≤ t. We say F is r-scrambling if |F| ≥ r and for every sequence
(A1, A2, . . . , Ar) of r distinct sets from F and for every subset B ⊆ [r], there
is an element α ∈ [t] so that α ∈ Aβ if and only if β ∈ B. We let M(r, t)
denote the maximum size of a r-scrambling family of subsets of [t]. Spencer
then applied the Erdős/Ko/Rado theorem to provide a precise answer for the
size of M(2, t).

Theorem 6 (Spencer). M(2, t) =
( t−1
� t−2

2 �
)
, for all t ≥ 4.

As a consequence, Spencer observed that

lg lg n < dim(1, 2;n) ≤ lg lg n+ (12 + o(1)) lg lg lg n.
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Almost 20 years later, Füredi, Hajnal, Rödl and Trotter [13] were able to
show that the upper bound in this inequality is tight, i.e.,

dim(1, 2;n) = lg lg n+ (12 + o(1)) lg lg lg n.

For larger values of r, Spencer used random methods to produce the
following bound.

Theorem 7 (Spencer). For every r ≥ 2, there exists a constant c = cr > 1
so that M(r, t) > ct.

Proof. Let p be a positive integer and consider the set of all sequences of
length p whose elements are subsets of [t]. There are 2pt such sequences. The
number of such sequences which fail to be r-scrambling is easily seen to be
at most

(
p

r

)
2r(2r − 1)t2(p−r)t.

So at least one of these sequences is a r-scrambling family of subsets of [t]
provided

(
p
r

)
2r(2r − 1)t2(p−r)t < 2pt. Clearly this inequality holds for p > ct

where c = cr ∼ e
1

r2r is a constant larger than 1. �

Here’s how the concept of scrambling families is used in provide upper
bounds for dim(q, r;n).

Theorem 8 (Spencer). If p = M(r, t) and n = 2p, then dim(1, r;n) ≤ t.

Proof. Let F be an r-scrambling family of subsets of [t], say F = {A1, A2, . . . ,
Ap} where p = M(r, t). Then set n = 2p and let Q1, Q2, . . . , Qn be the
subsets of [p]. For each α ∈ [t], define a linear order Lα on the set [n] by
the following rules. Let x and y be distinct integers from [n] and let u =
min((Qx −Qy) ∪ (Qy −Qx)). Set x > y in Lα if either

1. α ∈ Au and u ∈ Qx −Qy, or
2. α /∈ Au and u ∈ Qy −Qx.

It is not immediately clear why Lα is a linear order on [n] for each α ∈ [t],
but it is easy to check that this is so. Now let S be an r-element subset of
[n] and let x ∈ [n] − S. We must show that x > S in Lα for some α ∈ [t].
For each y ∈ S, let uy = min((Qx −Qy) ∪ (Qy ∪Qx)) and then consider the
family {Auy : y ∈ S}. Since F is a r-scrambling family of subsets of [t], there
exists some α ∈ [t] such that α ∈ Auy if and only if uy ∈ Qx. It follows from
the definition of Lα that x > S in Lα. �

By paying just a bit of attention to constants, the preceding results of
Spencer actually yield the following upper bound on dim(1, r;n).

Theorem 9 (Spencer). For all r ≥ 2, dim(1, r;n) ≤ (1+o(1)) 1
lg er2

r lg lg n.
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Of course, this bound is only meaningful if r is relatively small in
comparison to n, but in this range, it is surprisingly tight. The following
lower bound is a quite recent result due to Kierstead.

Theorem 10 (Kierstead). If 2 ≤ r ≤ lg lg n− lg lg lg n, then

(r + 2 − lg lg n+ lg lg lg n)2 lg n

32 lg(r + 2 − lg lg n+ lg lg lg n)
≤ dim(1, r;n).

We will return to the issue of estimating dim(1, r;n) in the next section.

5. The Dimension of Posets of Bounded Degree

Given a poset P = (X,P ) and a point x ∈ X , define the degree of x in P,
denoted degP(x), as the number of points in X which are comparable to x,
This is just the degree of the vertex x in the associated comparability graph.
Then define Δ(P) as the maximum degree of P. Finally, define Dim(k) as
the maximum dimension of a poset P with Δ(P) ≤ k. Rödl and Trotter were
the first to prove that Dim(k) is well defined. Their argument showed that
Dim(k) ≤ 2k2+2. It is now possible to present a very short argument for this
result by first developing the following idea due to Füredi and Kahn [12].

For a poset P = (X,P ) and a point x ∈ X , let U(x) = {y ∈ X : y > x in
P} and let U [x] = U(x) ∪ {x}. Dually, let D(x) = {y ∈ X : y < x in P} and
D[x] = D(x) ∪ {x}. The following proposition admits an elementary proof.
In fact, something more can be said, and we will comment on this in the next
section.

Proposition 2 (Füredi and Kahn). Let P = (X,P ) be a poset and let L be
any linear order on X. Then there exist a linear extension L′ of P so that if
(x, y) is a critical pair and x > D[y] in L, then x > y in L′, so that x > D[y]
in L′.

Theorem 11 (Rödl and Trotter). If P = (X,P ) is a poset with Δ(P) ≤ k,
then dim(P) ≤ 2k2 + 2.

Proof. Define a graph G = (X,E) as follows. The vertex set X is the ground
set of P. The edge set E contains those two element subsets {x, y} for which
U [x] ∩ U [y] = ∅. Clearly, the maximum degree of a vertex in G is at most
k2. Therefore, the chromatic number of G is at most k2 + 1. Let t = k2 + 1
and let X = X1 ∪X2 ∪ . . . ∪ Xt be a partition of X into subsets which are
independent in G. Then for each i ∈ [t], let Li be any linear order on X
with Xi > X −Xi in Li. Finally, define Lt+i to be any linear order on X so
that:

1. Xi > X −Xi in Lt+i, and
2. The restriction of Lt+i to Xi is the dual of the restriction of Li to Xi.
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We claim that for every critical pair (x, y) ∈ crit(P), if x ∈ Xi, then
either x > D[y] in Li or x > D[y] in Lt+i. This claim follows easily from the
observation that any two points of D[y] are adjacent in G so that |D[y] ∩
Xi| ≤ 1. �

Füredi and Kahn [12] made a dramatic improvement in the upper bound
for in Dim(k) by applying the Lovász Local Lemma [9]. We sketch their
argument which begins with an application of random methods to provide
an upper bound for dim(1, r;n). In this sketch, we make no attempt to provide
the best possible constants.

Theorem 12 (Füredi and Kahn). Let r and n be integers with 1 < r < n.
If t is an integer such that

n

(
n− 1

r

)
(

r

r + 1
)t < 1, (1)

then dim(1, r;n) ≤ t. In particular, dim(1, r;n) ≤ r(r + 1) log(n/r).

Proof. Let t be an integer satisfying the inequality given in the statement of
the theorem. Then let {Li : i ∈ [t]} be a sequence of t random linear orders
on X . The expected number of pairs (x, S) where S is an r-element subset of
[n], x ∈ [n]−S and there is no i ∈ [t] for which x > S in Li is exactly what the
left hand side of this inequality is calculating. It follows that this quantity is
less than one, so the probability that there are no such pairs is positive. This
shows that dim(1, r;n) ≤ t. The estimate dim(1, r;n) ≤ r(r + 1) log(n/r)
follows easily. �

Theorem 13 (Füredi and Kahn). If P = (X,P ) is a poset for which
Δ(P) ≤ k, then dim(P) ≤ 100k log2 k, i.e., Dim(k) ≤ 100k log2 k.

Proof. The inequality dim(P) ≤ 100k log2 k follows from the preceding
theorem if k ≤ 1,000, so we may assume that k > 1,000. Set m = �k/ log k 
and r = �9 log k . Using the Lovász Local Lemma, we see that there exists
a partition X = Y1 ∪ Y2 . . .∪ Ym, with |D[x] ∩ Yi| ≤ r, for every x ∈ X . Now
fix i ∈ [m], let q = rk + 1 and let s = dim(1, r; q). We construct a family
R〉 = {L〉,| : | ∈ [∈

∫
]} as follows.

Let G be the graph on X defined in the proof of Theorem 11. Then let
Gi be the subgraph induced by Yi. Now it is easy to see that any point of
Yi is adjacent to at most rk other points in Yi in the graph Gi. It follows
that the chromatic number of Gi is at most rk + 1. Let Yi = Yi,1 ∪ . . . ∪ Yi,q
be a partition into subsets each of which is independent in Gi. Then let
R = {M| : | ∈ [

∫
]} be a family of linear orders of [q] so that for every

r-element subset S ⊂ [q] and every x ∈ [q]−S, there is some j ∈ [s] for which
x > S in Mj .

Then for each j ∈ [s], define Li,j as any linear order for which:

1. Yi > X − Yi in Li,j and
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2. If a < b in Mj, then Yi,a < Yi,b in Li,j .

Finally, for each j ∈ [s], define Li,s+j as any linear order for which:

1. Yi > X − Yi in Li,s+j ,
2. If a < b in Mj, then Yi,a < Yi,b in Li,j and
3. If a ∈ [q], then the restriction of Li,s+j to Yi,a is the dual of the restriction

of Li,j to Yi,a.

Next we claim that if (x, y) is a critical pair and x ∈ Yi, then there is
some j ∈ [2s] so that x > D[y] in L(i, j). To see this observe that any two
points in D[y] are adjacent in G so at most r points in D[y] belong to Yi,
and all points of D[y] ∩ Yi belong to distinct subsets in the partition of Yi
into independent subsets. Let x ∈ Yi,j0. Then there exists some j ∈ [s] so
that j0 > j in Mj whenever j = j0 and D[y] ∩ Yi,j = ∅. It follows that either
x > D[y] in L(i, j) or x > D[y] in L(i, s+ j).

Finally, we note that s = dim(1, r; q) ≤ r(r+1) log(q/r), so that dim(P) ≤
100k log2 k as claimed. �

There are two fundamentally important problems which leap out from
the preceding inequality limiting the dimension of posets of bounded degree,
beginning with the obvious question: Is the inequality Dim(k) = O(k log2 k)
best possible? However, the details of the proof also suggest that the
inequality could be improved if one could provide a better upper bound
than dim(1, log k; k) = O(log3 k). Unfortunately, the second approach will
not yield much as Kierstead [15] has recently provided the following lower
bound.

Theorem 14 (Kierstead). If lg lg n− lg lg lg n ≤ r ≤ 2lg
1/2 n, then

(r + 2 − lg lg n+ lg lg lg lg n)2 lg n

32 lg(r + 2 − lg lg n+ lg lg lg n)
≤ dim(1, r;n) ≤ 2k2 lg2 n

lg2 k
. (2)

As a consequence, it follows that dim(1, log k; k) = Ω(log3 k/ log log k).
So the remaining challenge is to provide better lower bounds on Dim(k).
Random methods seem to be our best hope. Here is a sketch of the technique
used by Erdős, Kierstead and Trotter [8] to show that Dim(k) = Ω(k log k).

For a fixed positive integer n, consider a random poset Pn having n
minimal elements a1, a2, . . . , an and n maximal elements b1, b2, . . . , bn. The
order relation is defined by setting ai < bj with probability p = p(n); also,
events corresponding to distinct min-max pairs are independent.

Erdős, Kierstead and Trotter then determine estimates for the expected
value of the dimension of the resulting random poset. The arguments are far
too complex to be conveniently summarized here, as they make non-trivial
use of correlation inequalities. However, the following theorem summarizes
the lower bounds obtained in [8].

Theorem 15 (Erdős, Kierstead and Trotter).
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1. For every ε > 0, there exists δ > 0 so that if

log1+ε n

n
< p ≤ 1

log n
,

then

dim(P) > δpn log pn, for almost all P.

2. For every ε > 0, there exist δ, c > 0 so that if

1

log n
≤ p < 1 − n−1+ε,

then

dim(P) > max{δn, n− cn

p log n
}, for almost all P.

The following result is then an easy corollary.

Corollary 1 (Erdős, Kierstead and Trotter). For every ε > 0, there exists
δ > 0 so that if

n−1+ε < p ≤ 1

log n
,

then

dim(P) > δΔ(P) log n, for almost all P.

Summarizing, we now know that

Ω(k log k) = D(k) = O(k log2 k). (3)

It is the author’s opinion that the upper bound is more likely to be correct and
that the proof of this assertion will come from investigating the dimension
of a slightly different model of random height 2 posets. For integers n and k
with k large but much smaller than n, we consider a poset with n minimal
points and n maximal points. However, the comparabilities come from taking
k random matchings.

The techniques used by Erdős, Kierstead and Trotter in [8] break down
when p = o(log n/n). But this is just the point at which we can no longer
guarantee that the maximum degree is O(pn).

6. Fractional Dimension and Ramsey Theory
for Probability Spaces

In many instances, it is useful to consider a fractional version of an integer
valued combinatorial parameter, as in many cases, the resulting LP relaxation
sheds light on the original problem. In [3], Brightwell and Scheinerman
proposed to investigate fractional dimension for posets. This concept has
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already produced some interesting results, and many appealing questions
have been raised. Here’s a brief sketch of some questions with immediate
connections to random methods.

Let P = (X,P ) be a poset and let F = {M∞, . . . ,M�} be a multiset of
linear extensions of P . Brightwell and Scheinerman [3] call F a k-fold realizer
of P if for each incomparable pair (x, y), there are at least k linear extensions
in F which reverse the pair (x, y), i.e., |{i : 1 ≤ i ≤ t, x > y in Mi}| ≥ k, The
fractional dimension of P, denoted by fdim(P), is then defined as the least
real number q ≥ 1 for which there exists a k-fold realizer F = {M1, . . . ,Mt}
of P so that k/t ≥ 1/q (it is easily verified that the least upper bound of
such real numbers q is indeed attained and is a rational number). Using this
terminology, the dimension of P is just the least t for which there exists a
1-fold realizer of P . It follows immediately that fdim(P) ≤ dim(P), for every
poset P.

Note that the standard example of an n-dimensional poset also has
fractional dimension n. Brightwell and Scheinerman [3] proved that if P
is a poset and |D(x)| ≤ k, for all x ∈ X , then fdim(P) ≤ k + 2. They
conjectured that this inequality could be improved to fdim(P) ≤ k+ 1. This
was proved by Felsner and Trotter [10], and the argument yielded a much
stronger conclusion, a result with much the same flavor as Brooks’ theorem
for graphs.

Theorem 16 (Felsner and Trotter). Let k be a positive integer, and let P
be any poset with |D(x)| ≤ k, for all x ∈ X. Then fdim(P) ≤ k + 1.
Furthermore, if k ≥ 2, then fdim(P) < k+ 1 unless one of the components of
P is isomorphic to Sk+1, the standard example of a poset of dimension k+1.

We do not discuss the proof of this result here except to comment that
it requires a strengthening of Proposition 2, and to note that it implies that
the fractional dimension of the poset P(1, r;n) is r + 1. Thus a poset can
have large dimension and small fractional dimension. However, there is one
elementary bound which limits dimension in terms of fractional dimension.

Theorem 17. If P = (X,P ) is a poset with |X | = n and fdim(P) = q, then
dim(P) ≤ (2 + o(1))q log n.

Proof. Let F be a multi-realizer of P so that ProbF [x > y] ≥ 1/q, for every
critical pair (x, y) ∈ crit(P). Then take t to be any integer for which

n(n− 1)(1 − 1/q)t < 1.

Then let {L1, . . . , Lt} be a sequence of length t in which the linear extensions
in F are equally likely to be chosen. Then the expected number of critical
pairs which are not reversed is less than one, so the probability that we have
a realizer of cardinality t is positive. �

Felsner and Trotter [10] derive several other inequalities for fractional
dimension, and these lead to some challenging problems as to the relative
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tightness of inequalities similar to the one given in Theorem 16. However,
the subject of fractional dimension has produced a number of challenging
problems which are certain to require random methods in their solutions.
Here is two such problems, one of which has recently been solved.

A poset P = (X,P ) is called an interval order if there exists a family
{[ax, bx] : x ∈ X} of non-empty closed intervals of R so that x < y in P if and
only if bx < ay in R. Fishburn [11] showed that a poset is an interval order
if and only if it does not contain 2 + 2 as a subposet. The interval order In
consisting of all intervals with integer endpoints from {1, 2, . . . , n} is called
the canonical interval order.

Although posets of height 2 can have arbitrarily large dimension, this is
not true for interval orders. For these posets, large height is a prerequisite for
large dimension.

Theorem 18 (Füredi, Hajnal, Rödl and Trotter). If P = (X,P ) is an
interval order of height n, then

dim(P) ≤ lg lg n+ (1/2 + o(1)) lg lg lg n. (4)

The inequality in the preceding theorem is best possible.

Theorem 19 (Füredi, Hajnal, Rödl and Trotter). The dimension of the
canonical interval order satisfies

dim(In) = lg lg n+ (1/2 + o(1)) lg lg lg n. (5)

Although interval orders may have large dimension, they have bounded
fractional dimension. Brightwell and Scheinerman [3] proved that the
dimension of any finite interval order is less than 4, and they conjectured
that for every ε > 0, there exists an interval order with dimension greater
than 4 − ε. We believe that this conjecture is correct, but confess that our
intuition is not really tested. For example, no interval order is known to have
fractional dimension greater than 3.

Motivated by the preceding inequalities and the known bounds on
the dimension and fractional dimension of interval orders and the posets
P(1, r;n), Brightwell asked whether there exists a function f : Q → R

so that if P = (X,P ) is a poset with |X | = n and fdim(P) = q, then
dim(P) ≤ f(q) lg lg n. If such a function exists, then the family P (1, r;n)
shows that we would need to have f(q) = Ω(2q).

But we will show that there is no such function. The argument requires
some additional notation and terminology. Fix integers n and k with 1 ≤ k <
n. We call an ordered pair (A,B) of k-element sets a (k, n)-shift pair if there
exists a (k + 1)-element subset C = {i1 < i2 < · · · < ik+1 ⊆ {1, 2, . . . , n} so
that A = {i1, i2, . . . , ik} and B = {i2, i3, . . . , ik+1. We then define the (k, n)-
shift graph S(k, n) as the graph whose vertex set consists of all k-element
subsets of {1, 2, . . . , n} with a k-element set A adjacent to a k-element set
B exactly when (A,B) is a (k, n)-shift pair. Note that the (1, n) shift graph
S(1, n) is just a complete graph. It is customary to call a (2, n)-shift graph
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just a shift graph; similarly, a (3, n)-shift graph is called a double shift graph.
The formula for the chromatic number of the (2, n)-shift graph S(2, n) is a
folklore result of graph theory: χ(S(2, n)) = �lg n . Several researchers in
graph theory have told me that this result is due to Andras Hajnal, but
Andras says that it is not. In any case, it is an easy exercise.

The following construction exploits the properties of the shift graph to
provide a negative answer for Brightwell’s question.

Theorem 20. For every m ≥ 3, there exists a poset P = (X,P ) so that

1. |X | = m2;
2. dim(X,P ) ≥ lg m; and
3. fdim(X,P ) ≤ 4.

Proof. The poset P = (X,P ) is constructed as follows. Set X = {x(i, j) :
1 ≤ i, j ≤ m}, so that |X | = m2. The partial order P is defined by first
defining x(i, j1) < x(i, j2) in P , for each i ∈ [m] whenever 1 ≤ j1 < j2 ≤
m. Furthermore, for each i ∈ [m], x(i1, j1) < x(i2, j2) in P if and only if
(i2 − i1) + (j2 − j1) > m.

We now show that dim(X,P ) ≥ lg m. Note first that for each i, j with
1 ≤ i < j ≤ m, x(i, j − i) ‖ x(j,m). Let dim(X,P ) = t, and let R =
{L∞,L∈, . . . ,L�} be a realizer of P . For each i, j with 1 ≤ i < j ≤ m, choose
an integer φ({i, j}) = α ∈ {1, 2, . . . , t} so that x(i, j − i) > x(j,m) in Lα.
We claim that φ is a proper coloring of the (2,m) shift graph S(1,m) using t
colors, which requires that dim(X,P ) = t ≥ χ(S(2,m) = �lg m . To see that
φ is a proper coloring, let i, j and k be integers with 1 ≤ i < j < k ≤ m, let
φ({i, j}) = α and let φ({j, k}) = β. If α = β, then x(i, j − i) > x(j,m) in Lα
and x(j, k − j) > x(k,m) in Lα. Also, x(j,m) > x(j, k − j) in P . However,
since (k − i) + (m− j + i) > m, it follows that x(k,m) > x(i, j − i) in P , so
that x(k,m) > x(i, j − i) in Lα. Thus,

x(i, j − i) > x(j,m) > x(j, k − j) > x(k,m) > x(i, j − i) in P (6)

The inequalities in equation 6 cannot all be true. The contradiction shows
that φ is a proper coloring of the shift graph S(2,m) as claimed. In turn, this
shows that dim(X,P ) ≥ �lg m .

Finally, we show that fdim(X,P ) ≤ 4. For each element x ∈ X , let p1
and p2 be the natural projection maps defined by p(x) = i and p2(x) = j
when x = x(i, j). Next, we claim that for each subset A ⊂ [m], there exists a
linear extension L(A) of P so that x > y in L(A) if:

1. x ‖ y in P ;
2. p1(x) ∈ A and p1(y) /∈ A.

To show that such linear extensions exist, we use the alternating cycle test
(see Chap. 2 of [23]). Let A ⊆ [m], and let S(A) = {(x, y) ∈ X ×X : x ‖ y
in P, p1(x) ∈ A and p1(y) /∈ A}. Now suppose that {(uk, vk) : 1 ≤ k ≤
p} ⊆ S(A) is an alternating cycle of length p, i.e., uk ‖ vk and uk ≤ vk+1 in
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P , for all k ∈ [p] (subscripts are interpreted cyclically). Let k ∈ [m]. Then
p1(uk) ∈ A and p1(vk+1) /∈ A. It follows that uk < vk+1 in P , for each
k ∈ [p]. It follows that p1(vk+1 − p1(uk) + p2(vk+1) − p2(uk) > m. Also, we
know that m ≥ p1(vk)−p1(uk)+p2(vk)−p2(uk). Thus p1(vk+1)+p2(vk+1) >
p1(vk) + p2(vk). Clearly, this last inequality cannot hold for all k ∈ [p]. The
contradiction shows that S(A) cannot contain any alternating cycles. Thus
the desired linear extension L(A) exists.

Finally, we note that if we take F = {L(A) : A ⊆ [*]} and set s = |F|,
then x > y in at least s/4 of the linear extensions in F , whenever x ‖ y in P .
To see this, observe that there are exactly 2s/4 subsets of [m] which contain
p1(x) but do not contain p1(y). This shows that fdim(X,P ) ≤ 4 as claimed.
It also completes the proof of the theorem. �

Now we turn our attention to the double shift graph. If P = (X,P ) is a
poset, a subset D ⊆ X is called a down set, or an order ideal, if x ≤ y in P
and y ∈ D always imply that x ∈ P . The following result appears in [13] but
may have been known to other researchers in the area.

Theorem 21. Let n be a positive integer. Then the chromatic number of the
double shift graph S(3, n) is the least t so that there are at least n down sets
in the subset lattice 2t.

The problem of counting the number of down sets in the subset lattice 2t

is a classic problem and is traditionally called Dedekind’s problem. Although
no closed form expression is known, relatively tight asymptotic formulas
have been given. For our purposes, the estimate provided by Kleitman and
Markovsky [16] suffices. Theorem 21, coupled with the estimates from [16]
permit the following surprisingly accurate estimate on the chromatic number
χ(S(3, n)) of the double shift graph [13].

Theorem 22 (Füredi, Hajnal, Rödl and Trotter).

χ(S(3, n)) = lg lg n+ (1/2 + o(1)) lg lg lg n.

Now that we have introduced the double shift graph, the following
elementary observation can be made [13].

Proposition 3. For each n ≥ 3, dim(1, 2;n) ≥ χ(S(3, n)), and dim(In) ≥
χ(S(3, n)).

Although the original intent was to investigate questions involving the
fractional dimension of posets, Trotter and Winkler [27] began to attack a
Ramsey theoretic problem for probability spaces which seems to have broader
implications. Fix an integer k ≥ 1, and let n ≥ k + 1. Now suppose that Ω
is a probability space containing an event Es for every k-element subset S ⊂
{1, 2, . . . , n}. We abuse terminology slightly and use the notation Prob(S)
rather than Prob(ES).
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Now let f(Ω) denote the minimum value of Prob(AB), taken over all
(k, n)-shift pairs (A,B). Note that we are evaluating the probability that A
is true and B is false. Then let f(n, k) denote the maximum value of f(Ω)
and let f(k) denote the limit of f(n, k) as n tends to infinity.

Even the case k = 1 is non-trivial, as it takes some work to show that
f(1) = 1/4. However, there is a natural interpretation of this result. Given
a sufficiently long sequence of events, it is inescapable that there are two
events, A and B with A occurring before B in the sequence, so that

Prob(AB) <
1

4
+ ε.

The 1
4 term in this inequality represents coin flips. The ε is present

because, for finite n, we can always do slightly better than tossing a fair
coin.

For k = 2, Trotter and Winkler [27] show that f(2) = 1/3. Note that this
is just the fractional chromatic number of the double shift graph. This result
is also natural and comes from taking a random linear order L on {1, 2, . . . , n}
and then saying that a 2-element set {i, j} is true if i < j in L. Trotter and
Winkler conjecture that f(3) = 3/8, f(4) = 2/5, and are able to prove that
limk→∞ f(k) = 1/2. They originally conjectured that f(k) = k/(2k+ 2), but
they have since been able to show that f(5) ≥ 27

64 which is larger than 5
12 .

As an added bonus to this line of research, we are beginning to ask
natural (and I suspect quite important) questions about patterns appearing
in probability spaces.
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III. Infinity

Introduction

Paul Erdős was always interested in infinity. One of his earliest results is
an infinite analogue of (the then very recent) Menger’s theorem (which was
included in a classical book of his teacher Denes Kőnig). Two out of his
earliest three combinatorial papers are devoted to infinite graphs. According
to his personal recollections, Erdős always had an interest in “large cardinals”
and his earliest work on this subject are joint papers with A. Tarski from
the end of 1930s. These interests evolved over the years into the Giant Triple
Paper, with the Partition Calculus forming a field rightly called here Erdősian
Set Theory.

We wish to thank András Hajnal for a beautiful paper which perhaps
best captures the special style and spirit of Erdős’ mathematics. We solicited
another two survey papers as well. An extensive survey was written by Peter
Cameron on the seemingly simple subject of the infinite random graph, which
describes the surprising discovery of Rado and Erdős-Rényi finding many new
fascinating connections and applications. The paper by Peter Komjáth deals
with another (this time more geometrical) aspect of Erdősian set theory. In
addition, the research articles by Shelah and Kř́ıž complement the broad
scope of today’s set theory research, while the paper of Aharoni looks at
another pre-war Erdős conjecture. It is only with pleasure that we can remark
that the Erdős–Menger problem has ben solved:

R. Aharoni, E. Berger, “Menger’s Theorem for infinite graphs”. Inven-
tiones Mathematicae 176 (2009), 1–62.

In 1995/1996, when the contents of these volumes was already crystallis-
ing, we asked Paul Erdős to isolate a few problems, both recent and old,
for each of the eight main parts of this book. To this part on infinity he
contributed the following collection of problems and comments.
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Erdős in his own words

I have nearly 50 joint papers with Hajnal on set theory and many with
Rado and Fodor and many triple papers and I only state a few samples of
our results. The first was my result with Dushnik and Miller.

Let m ≥ ℵ0. Then

m → (m,ℵ0)22.

I use the arrow notation invented by R. Rado—in human language: If one
colors the pairs of a set of power m ≥ ℵ0 by two colors either in color 1 there
is a complete graph of power m or in color 2 an infinite complete graph.
Hajnal, Rado and I nearly completely settled m → (n, q)22 but the results are
very technical and can be found in our joint triple paper and in our book.
In one of our joint papers, Hajnal and I proved that a graph G of chromatic
number ℵ1 contains all finite bipartite graphs and with Shelah and Hajnal we
proved that it contains all sufficiently large odd cycles (Hajnal and Komjáth
have sharper results).

Hajnal and I have quite a few results on property B. A family of sets
{Aα} has property B if there is a set C which meets each of the sets Aα
and contains none of them. This definition is due to Miller. It is now more
customary to call the family two chromatic. Here is a sample of our many
results: Let {Aα} be a family of ℵk countable sets with |Aα ∩Aβ | ≤ n. Then
there is a set S which meets each Aα in a set of size (k+ 1)n+ 1. The result
is best possible. If k ≥ ω then there is a set for which |S∩Aα| < ℵ0. We have
to assume the generalized hypothesis of the continuum.

Todorčevič proved with c = ℵ1 that one can color the edges of the
complete graph on |S| = ℵ1 with ℵ1 colors so that every S1 ⊂ S, |S1| = ℵ1,
contains all colors.

We wrote two papers on solved and unsolved problems in set theory. Most
of them have been superseded in many cases because undecidability raised
its ugly head (according to many: its pretty head). Here is a problem where,
as far as we know, no progress has been made. One can divide the triples of a

set of power 22
ℵ0

into t classes so that every set of power ℵ1 contains a triple
of both classes. On the other hand if we divide the triples of a set of power

(22
ℵ0

)+ into two classes there is always a set of size ℵ1 all whose triples are

in the same class. If S = 22
ℵ0

, can we divide the triples into two classes so
that every subset of size ℵl should contain a K(4) of both classes (or more
generally a homogeneous subset of size ℵ0)? I offer 500 dollars for clearing
up this problem.
Erdős–Galvin–Hajnal problem. Let G have chromatic number ℵ1. Can one
color the edges by 2 (or ℵ0, or ℵ1) colors so that if we divide the vertices into
ℵ0 classes there always is a class which contains all the colors? Todorčevič
proved this if G is the complete graph of ℵ1 vertices—in the general case
Hajnal and Komjáth have some results.

*****
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So much P. Erdős. The paper with Hajnal and Shelah is:
P. Erdős, A. Hajnal, S. Shelah, Topics in topology (Proc. Colloq.

Keszthely, 1972), Colloq. Math. J. Bolyai Soc. 8, North Holland, 1974,
243–245.

A. Hajnal is of course one of the most frequent collaborators of P. Erdős.
His more recent survey is:

A. Hajnal, On the chromatic number of graphs and set systems. PIMS
Distinguished Chair Lectures, University of Calgary, 2004.

The Rado graph (in today’s terminology, the universal ultra homogeneous
graph) is also the countable random graph considered by Erdős and Rényi.
The recent development here was motivated by the connection of ultra
homogeneous structures and Ramsey classes (see the preceding part on
Ramsey theory) and on the other side by the connections to model theory and
mathematical logic. This is described briefly in the update of Peter Cameron’s
paper.



A Few Remarks on a Conjecture of Erdős
on the Infinite Version of Menger’s Theorem

Ron Aharoni
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Department of Mathematics, Technion, Haifa, 32000, Israel
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Summary. We discuss a few issues concerning Erdős’ conjecture on the extension
of Menger’s theorem to infinite graphs. A key role is given to a lemma to which
the conjecture can probably be reduced. The paper is intended to be expository, so
rather than claim completeness of proofs, we chose to prove the reduction only for
graphs of size ℵ1. We prove the lemma (and hence the ℵ1 case of the conjecture) in
two special cases: graphs with countable out-degrees, and graphs with no unending
paths. We also present new versions of the proofs of the (already known) cases
of countable graphs and graphs with no infinite paths. A main tool used is a
transformation converting the graph into a bipartite graph.

1. Introduction

1.1. The Problem

Kőnig’s classical book [7] contains a proof of an infinite version of Menger’s
theorem:

Theorem 1. Given any two disjoint sets, A and B, of vertices in any graph,
the minimal cardinality of an A-B separating set of vertices is equal to the
maximal number of vertex-disjoint A-B paths.

The proof was by a very young mathematician, Paul Erdős. In fact, it is
not very hard: Let F be a maximal set (with respect to inclusion) of vertex
disjoint paths, and let S be the set of all vertices participating in paths from
F . Clearly, then, S is A-B-separating. If F is infinite, then |S| = |F| and
the theorem is proved. If F is finite then so is S, and then techniques from
the finite case can be applied. But this proof shows that Theorem 1 is not
really the right extension to the infinite case: the separating set is of the right
cardinality, but still it is obviously too large. It is not clear when did Erdős
form the “right” conjecture, which is:

Conjecture 1. For any two vertex sets A and B in a graph, there exists a
set F of disjoint A-B paths and an A-B separating set of vertices S, such
that S consists of the choice of precisely one vertex from each path in F .

Definition 1. A pair (F , S) as in the conjecture is called orthogonal.
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As is well known, one can restrict the considerations to digraphs. The
undirected case follows by the customary device of replacing each edge by a
pair of oppositely directed edges.

The main developments so far have been a proof of the countable bipartite
case [8] (where, of course, it is assumed that A and B are the two sides of
the graph); the case of countable graphs containing no infinite paths [9]; the
general bipartite case [2]; the case of general graphs containing no infinite
paths [1], and the countable case [3].

In [1] it was realized that in the absence of infinite paths, the conjecture
can be reduced to the bipartite case. The simple transformation leading to
the reduction is one of the main themes of the present paper. We shall follow
it a bit further, and see how it can be used in other cases.

In fact, already in [9] it was realized that the main difference between
the bipartite case and the general one stems from the possible existence of
infinite paths. The reason is that in the construction of F , while trying to
reach B from A you may end up with infinite paths instead of A-B paths.
This obstacle was overcome in [3] in the countable case, but the proof there
relies very heavily on countability.

1.2. Warps, Waves and Hindrances

A triple Γ = (G,A,B), where G = G(Γ) is a digraph, and A = A(Γ), B =
B(Γ) are subsets of V (G), is called a web. A warp is a set of disjoint paths
(the term is taken from weaving). If the initial points of the warp are all in
A then it is called A-starting.

The initial vertex of a path P (if such a vertex exists) is denoted by in(P ),
and its terminal vertex by ter(P ). The vertex set of P is denoted by V (P )
and its edge set by E(P ). For a family P of paths, we write V [P ], E[P ], in[P ],
ter[P ] for the vertex set, edge set, initial points set, and terminal points set
of P , respectively. A linkage is a warp L such that in[L] = A and ter[L] ⊆ B.
A web is called linkable if it contains a linkage.

Given a graph G and a subset R of its vertices, we write G[R] for the
subgraph of G induced by R. For any set T we write G − T = G[V (G) \ T ].
By Γ − T we denote the web (G− T,A \ T,B \ T ). Given a path P (possibly
in a super-web of Γ) we write Γ−P for Γ−V (P ). For an A-starting warp W ,
we write Γ/W for the web (G − (V [W ] \ ter[W ]), (A \ in[W ]) ∪ ter[W ], B).
(So, it is the web obtained by moving the points of in[W ] along the paths of
W , to serve as new source points.) For a warp consisting of a single path P
we shall write Γ/P for Γ/{P}.

If a warp W is A-starting and ter[W ] is A-B separating then W is called a
wave. The trivial wave is the set of all singleton paths of the form (a), a ∈ A.
A hindrance is a wave W such that in[W ] = A. Obviously, a hindrance is
a non-trivial wave. A web is called hindered if it contains a hindrance. It is
called loose if it contains no non-trivial wave (and then, of course, it is also
unhindered).
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For a wave W we write Γ∠W for the web (G−(V [W ]\ter[W ]), ter[W ], B)
(the difference between this and Γ/W is that points in A\in[W ] are not taken
here as source points).

Let W be a wave, and let T be the set of vertices in V which are separated
by ter[W ] from B. We write Γ[W ] for the web (G[T ], A, ter[W ]).

If P1, P2, . . . , Pk are paths and xi, 1 ≤ i < k are vertices such that
xi ∈ V (Pi) ∩ V (Pi+1) then P1x1P2x2 . . . xk−1Pk denotes the path (if indeed
it is a path) obtained by going along P1 until reaching x1, then switching
to P2, then switching at x2 to P3, and so forth. If the sequence ends with
a vertex, rather than a path, the path intended is the one ending at that
vertex. So, for example, Px means the part of P up to and including x. The
same goes for sequences starting with a vertex. If x = ter(P ) = in(Q) then
PQ denotes the path PxQ.

A useful operation between waves is the following: let U , W be waves. We
write U ↑ W for the warp {PxQ : P ∈ U , Q ∈ W , x = ter(P ) ∈ V (Q) and
V (xQ) ∩ V [U ] = {x}}. It was proved in [3] that U ↑ W is a wave.

There are two natural orders defined between waves: write W ≤ U if U is
an extension of W , i.e., every path P ∈ U is a continuation of some path Q
from W such that V (P ) \ V (Q) ∪ V [W ] = ∅. As usual, “<” means “≤ and
not equal”. Note that if U is obtained from W by the deletion of some paths
then W < U .

Let W , U if ter[W ] is separated from B by ter[U ]. It is straightforward
to see that both relations are indeed partial orders, and that W ≤ U implies
W , U . In [3] the following was proved:

Lemma 1. In any web Γ there exists a maximal wave in the order ≤. If W
is such a maximal wave then Γ∠W is loose.

We shall often use this lemma without explicit mention.
Also the following is easy:

Lemma 2. If W � U then U ↑ W - U .

In [3] it was shown that Conjecture 1 is equivalent to the following
conjecture:

Conjecture 2. An unhindered web is linkable.

The proof of the equivalence is not hard. One direction is even trivial:
assuming Conjecture 1, if F is not a linkage then the warp {Ps : P ∈ F , s ∈ S
and s ∈ V (P )} is a hindrance.

For the proof of the other direction, let W be a <-maximal wave in Γ. By
Lemma 1 the web Γ∠W is loose. Assuming Conjecture 2 there exists then a
linkage L in Γ∠W . Taking the concatenation of W and L as F and ter[W ]
as S in Conjecture 1 yields then the conjecture.

It is Conjecture 2 which we shall try to solve. As already mentioned, the
countable case of the conjecture is known [3]. The key lemma there is:
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Lemma 3. If Γ is an unhindered countable web then for every a ∈ A there
exists an a−B path P such that Γ − P is unhindered.

(The countable case of Conjecture 2 follows immediately: if Γ is unhin-
dered, then by the lemma one can link the vertices ai of A into B by paths
Pi one by one, while keeping the web Γ −

⋃
{V (Pj) : j < i} unhindered.)

In [4] a slight generalization of the countable case was proved:

Lemma 4. Conjecture 2 is true for webs Γ in which there exists an A-B
warp W such that in[A] \ in[W ] is countable.

Note that the condition in Lemma 4 is not hereditary, that is, it is
not passed on to sub-webs. Hence the proof that Conjecture 2 implies
Conjecture 1 does not show immediately that Conjecture 1 is true for webs
as in the above lemma. But this was proved in [5]:

Lemma 5. Conjecture 1 is true for webs satisfying the condition of Lemma 4.

We believe that Lemma 3 is true in all webs:

Conjecture 3. Lemma 3 is true in any web.

The main purpose of this paper is to prove a reduction of Conjecture 1
to Conjecture 3. But in order not go into too technical details we shall do it
only for webs of size ℵ1.

We shall prove Conjecture 3 (for graphs of size ℵ1) in two special cases:
webs with countable out-degrees, and webs with no unending paths. We shall
therefore be able to prove Conjectures 1 and 2 for these two classes. In both
proofs we shall use extensively the bipartite conversion, both technically
and for inspiration. While not absolutely necessary, this will prove to be
economical. The countable outdegrees case includes, of course, the case of
countable webs, and the proof presented here is therefore also a new proof
for this case (although the main ideas are similar to those of the old one, that
in [3]). The new proof is more natural when considered in the language of
the bipartite conversion.

1.3. The Bipartite Conversion

With any web Γ we associate a bipartite web b(Γ) = (b(G), b(A), b(B)) in the
following way. Every vertex v in V \ A is assigned a vertex v′′ in V (b(G)),
and every vertex v ∈ V \B is assigned a vertex v′. (So, vertices in V \ (A∪B)
are assigned two vertices each.) The edge set E(b(G)) is defined as {(x′, y′′) :
(x, y) ∈ E(Γ)} ∪ {(x′, x′′) : x ∈ V \ (A∪B)}. The “source set” of b(Γ), which
will be denoted by b(A), is just {v′ : v ∈ V \B}. The “destination set”, b(B),
is {v′′ : v ∈ V \A}.

A linkage F in Γ corresponds in a natural way to a linkage b(F) =
{(x′, y′′) : (x, y) ∈ E[F ]} ∪ {(x′, x′′) : x ∈ V [F ]} in b(Γ). Conversely, to
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a linkage J in b(Γ) (linkages in bipartite webs are just matchings, hence they
are denoted by capital letters, rather than script letters), there corresponds
a warp w(J) in Γ, defined by E[w(J)] = {(x, y) : (x′, y′′) ∈ J, x = y}. (In
general, backwards transformations from b(Γ) to Γ will be denoted by w.)
We write w̃(J) for the set of those paths in w(J) which begin at A.

The following lemma is very easy to verify:

Lemma 6. Let J be a linkage in b(Γ). Then in[w(J)] = in[w̃(J)] = A. If a
path in w(J) has an endpoint then this point belongs to B. Hence, if w̃(J)
contains no undendinq paths, it is a linkage.

Let now W be a wave in Γ. Define b(W) = {(x′, y′′) : (x, y) ∈ E[W ]} ∪
{(x′) : x ∈ ter[W ]} ∪ {(x′, x′′) : x /∈ V [W ]}. It is not hard to see that b(W) is
a wave in b(Γ). Conversely, a wave I in b(Γ) corresponds to a warp w(I) in
Γ, defined by E[w(I)] = {(x, y) : (x′, y′′) ∈ E[I]}, and the singleton paths in
w(I) are the singletons (a), where a ∈ A and (a′) ∈ I.

Lemma 7. ter[w(I)] is A-B-separating. Every path in w(I) either starts in
A or is non-starting. Hence, if w(I) contains no non-starting paths, it is a
wave in Γ. In the latter case, if I is a hindrance, so is w(I).

Proof. Let P = x1x2 . . . xn be an A-B path in Γ. If P is not met by ter[w(I)]
then (x′1) /∈ I. Since the edge (x′1, x′′2 ) is covered by ter[I], it follows that x′′2 ∈
ter[I]. Let k be the last index for which x′′k ∈ ter[I]. If xk /∈ ter[w(I)] then
there exists y such that (x′k, y

′′) ∈ I. Then the edge (x′k, x
′′
k+1) necessarily

meets ter[I] at x′′k+1, contradicting the choice of k. This shows that ter[w(I)]
is A-B-separating.

Let now Q ∈ w(I). If Q is a singleton x, then by the definition of w(I) we
have x ∈ A, so Q starts at A. If not, choose a vertex v = v0 ∈ V (Q) \ ter(Q).
Then v′0 /∈ ter[I], and hence the edge (v′0, v′′0 ) is covered at v′′0 . Hence there
exists an edge (v′′0 , v′1) ∈ I, and then (v1, v0) ∈ E(Q). Repeating the same
argument for v1, we obtain an edge (v2, v1) ∈ E(Q). This process is either
infinite, in which case Q is non-starting, or terminates when some vk is in A
(and then the edge (v′′k , v

′
k) just does not exist.) This proves the second part

of the lemma.
The fact that if I is a hindrance then so is w(I) is obvious. �

From the above it follows that if Γ does not contain unending paths then
it is linkable if and only if b(Γ) is, and if it contains no non-starting path then
it is hindered if and only if b(Γ) is. Since Conjecture 2 is true for bipartite
graphs [2], this proves:

Theorem 2. Conjecture 2, and hence also Conjecture 1, are true for graphs
with no infinite paths.

This was proved in [1] in a different way.
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2. Safely Linking One Point

For x ∈ V \ A we write Γ . x for the web w(b(Γ) − x′′). In the language
of webs, rather than that of bipartite graphs, it is the web obtained upon
adding x to A, and deleting all edges going into x. For a subset X of V \ A
we denote by Γ . X the web w(b(Γ) − {x′′ : x ∈ X}).

A key fact in the discussion to follow is:

Lemma 8. If Γ is unhindered, v ∈ V \A and Γ . v is hindered, then there
exists in Γ a wave U such that v is separated by ter[U ] from B (possibly
v ∈ ter[U ]).

Proof. Let H be a hindrance in Γ . v. If v is hindered in H (i.e., v /∈ in[H]),
then H is a hindrance also in Γ. If not, then let u be the terminal point of
the path R in H which starts at v, and let h be a point in A hindered by
H. Let H′ = H \ {R}. If there is no H′-alternating path in Γ starting at h
and ending at u then the set of edges in E[H′] participating in H′-alternating
paths starting at h forms a hindrance in Γ (see [3] for a detailed proof of
this fact). Hence, we may assume that there exists an H′-alternating path Q
starting at h and ending at u. Applying Q to H (that is, taking the warp
whose edge set is E[H]ΔE(Q)) yields then the desired wave U . �

Corollary 1. If Γ is loose and x is a vertex in V \ A from which B is
reachable then Γ . x is unhindered.

Lemma 9. If Γ is hindered then so is Γ . v.

Proof. Let H be a hindrance in Γ. If v /∈ V [H] then H∪ {(v)} is a hindrance
in Γ . v. If v lies on some path H ∈ H then H \ {H} ∪ {vH} is a hindrance
in Γ . v. �

Lemma 10. If Γ is unhindered and W is a wave in Γ then for every path
P ∈ W the web Γ/P is unhindered.

Proof. Suppose that there exists a hindrance H in Γ/P . Let J = W \ {P},
p = ter(P ), let Q be the path in H starting at p, if such exists, and let K =
H \ {Q} (K = H if p /∈ in[H]). Let L = K ↑ J . Assume first that p /∈ in[H].
We claim that then L is a hindrance in Γ, contrary to the assumption that
Γ is unhindered. To see this, it is enough to show that L is a wave, since
obviously in[L] = A. But this, in turn, is obvious, since in this case L is just
H ↑ W , which is a wave.

Assume next that p ∈ in[H]. Let H′ = H \ {Q} ∪ PQ and N = H′ ↑ W .
We claim that N is a wave (and then, obviously, a hindrance.) To see this,
take an A-B path R. Let t be the last point on R which lies on a path from
V [W ]. Then, since W is a wave, t ∈ ter[W ]. Hence t /∈ V (P − ter(P )). But
N ′ = H ↑ J is a wave in Γ − (P − ter(P )), and hence the path tR contains
a vertex from ter[N ′] and hence also from ter[N ]. �
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Lemma 11. If Γ is unhindered and a ∈ A then there exists a non-trivial
finite path P starting at a such that Γ/P is unhindered.

Proof. Let W be a maximal wave in Γ. If W contains a non-trivial path P
starting at a then, by Lemma 10, P is the desired path. If not, then, since Γ
is unhindered, there exists a vertex v which is connected to a in Γ∠W and
from which B is reachable. We claim that P = av is the desired path. This
will clearly follow if we show that Γ . v is unhindered. If this is not the case,
then by Lemma 8 there exists a wave U in Γ which separates v from B. Since
W does not separate v from B, W ⊀ U . But, by Lemma 2, this contradicts
the maximality of W . �

Let S be an A-B-separating set of vertices in Γ. We shall denote by
A− part(S) the set of all vertices which are separated by S from B, and by
B − part(S) the set of all vertices which are separated by S from A (Note
that S is contained in both, and so are possibly other vertices.) We write ΓS
for the web (G[A−part(S)], A, S) and ΓS for the web (G[B−part(S)], S, B).
If W is a wave we write ΓW for Γter[W ] and ΓW for Γter[W ].

Lemma 12. If S is A-B-separating and Γ is hindered then at least one of
ΓS or ΓS is hindered.

Proof. Let H be a hindrance in Γ. Let X be the set of all maximal initial
parts of paths in H which are contained in ΓS , and let Y be the set of all
paths of the form sH , where s ∈ S, H ∈ H and s is the last vertex on H
belonging to S.

Suppose that X is not a hindrance in ΓS . Then there exists a vertex
s ∈ S which is not separated from A by ter[X ]. Then the warp Y ∪ {(t) : t ∈
S \ {s} \ in[Y]} is a hindrance in ΓS (since a path from s to B in ΓS which
avoids S\{s}∪ter[Y] could be combined with a path in ΓS from A to s which
avoids ter[X ] to yield a contradiction to the fact that H is a hindrance.) �

Lemma 13. If Γ has no unending paths, and if it is unhindered, then for
any a ∈ A there exists an a-B path P such that Γ − P is unhindered.

Proof. By Lemma 11 there exists a non-trivial path P1 = Q1 starting at a
such that Γ/Q1 is unhindered. Apply the lemma again, to Γ/Q1, to obtain
a path P2 = Q1Q2 in Γ such that Γ/P2 is unhindered. Since Γ does not
contain unending paths, this process must halt at a certain point, and this
can happen only when Pk reaches B, for some k. Then Pk is the desired
path. �

The following theorem was (essentially) proved in [3]. But we would like
to present here a somewhat different proof. The advantage of the new proof is
that it makes better use of the bipartite conversion. It differs from the proof
in [3] in that it .-s vertices, rather than deletes them. Since it is the .-ing
operation, and not deleting, which is used in the discussion of the uncountable
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case in the following sections, this may indicate that there is a better chance
of extending the proof to the uncountable case.

Theorem 3. Let Γ be an unhindered web, and let a ∈ A be such that there
are only countably many a−B paths. Then there exists an a−B path P such
that Γ − P is unhindered.

Proof. Enumerate the a − B paths as (P1, P2, . . .). We shall choose
inductively webs Γi, waves Wi in Γi, vertices vi warps Ui and sub-warps
Ũi of Ui(i < ω), as follows. Let Γ0 = Γ, W0 and U0 the trivial wave in Γ, and
v0 = a.

Let W1 be a maximal wave in Γ0, and let Δ1 = Γ0∠W1. By Lemma 1
Δ1 is loose. Let U1 = W and let Ũ1 be the set of those paths in U1 which do
not start at a. Now let i1 be first such that Pi1 does not meet V [Ũ1], and let
v1 be the first vertex on Pi1 which does not belong to V [U1]. Let (u1, v1) be
the edge of Pi1 preceding v1. Then u1 ∈ ter[W1], and since Δ1 is loose, by

Corollary 1 Γ1
def
= Δ1 . v1 is unhindered.

Let W2 be a maximal wave in Γ1, and define Δ2 = Γ1∠W2. Let U2 be
the concatenation of W1 and W2. Clearly, then, U2 is a wave in Γ2. Let Ũ2

be the set of those paths in U2 which do not start at v0 or v1. Let i2 be first
such that Pi2 does not meet V [Ũ2], and let v2 be the first vertex on Pi2 which
does not belong to V [U2]. Let (u2, v2) be the edge on Pi2 which precedes v2.

Since U2 is a wave in Γ2, u2 ∈ ter[U2]. Hence, by Lemma 8 Γ2
def
= Δ2 . v2 is

unhindered.
Continuing in this way, we obtain after ω steps a wave U in the web

Γω
def
= Γ . {v0, v1, . . .}, which is the concatenation of all warps Ui. It is divided

into two parts: Z, which consists of those paths in U which begin at some vi,
and Ũ = U \ Z, which is the “limit” of all Ũi (i.e its edge set is the union of
the edge sets of all Ũi,) and whose starting points are all in A \ {a}.

Assertion 1. If some path in Z ends in B (in particular if some vi is in
B,) then the theorem holds.

Proof. Suppose that some path Q0 ∈ Z ends in B. Let k0 be such that
Q0 ∈ Wk0 and let vk1 = in(Q0) (possibly Q0 = (vk1)). Let uk1 be as in
the construction above. Then uk1 = ter(Q1) for some path Q1 ∈ Wk1 and
in(Q1) = vk2 for some k2 < k1. Let uk2 be as in the construction above, and
take a path Q2 ∈ Wk2 which terminates at uk2 and starts at vk3 for some
k3 < k2. Continuing this way we get a sequence of triples (vki , uki , Qi), where
the ki are descending. Eventually, kj = 0 for some j.

Let P = QjQj−1 . . .Q1Q0. We claim that P is the desired path in the
theorem. Assume, to the contrary, that Γ − P is hindered.

Write Π = Γ . {v0, v1, . . . , vki}. Let Ξ0 = ΠUk0
, and for each i ≤ j

let Ξi = (Ξi−1)Uki
and Ψi = (Ξi−1)Uki . By Lemma 9 the web Π − P is

hindered. Since Q0 is a path in the wave Wk0 in Γk1 , by Lemma 10 Γk1/Q0



A Few Remarks on a Conjecture of Erdős on the Infinite Version . . . 343

is unhindered. Hence also Ψ1 − P , which is equal to Γk1 −Q, is unhindered.
It thus follows that Ξ1 − P is hindered.

Again, by Lemma 12 this implies that either Ξ2−P is hindered or Ψ2−P
is hindered. By the same argument as above, the second of these possibilities
would imply that Γk2/Q1 id hindered, in contradiction to Lemma 10. Hence
Ξ2 − P is hindered. Continuing this way we obtain that Ξj − P , which is
just the trivial web ΓA (i.e., the web having A as both its source set and its
target set, and no edges,) is hindered, which is obviously false. This proves
the assertion. �

We shall show that Ũ is a wave. Since a /∈ in[Ũ ], this will mean that it is
actually a hindrance, contradicting the assumption that Γ is unhindered. In
order to show that Ũ is a wave, consider an A-B path T . Since W1 is a wave
in Γ, T meets ter[W1]. Let x be the last vertex on T which belongs to ter[Wi]
for some i. If x /∈ ter[U ] then there exists j > i such that x ∈ in[Wj]. But
since Wj is a wave in Γi, the path xT contains a vertex in ter[Wj ], contrary
to the choice of i. Thus x ∈ ter[U ]. It remains to show the impossibility of
x ∈ ter[Z]. Suppose that x = ter(Q) for some Q ∈ Z. Let in(Q) = vm,
and suppose that vm lies on the path Pj . Then the path PjvmQxT is one
of the paths Pk. But, by the choice of x, the part xT of this path does not
contain a vertex from any V [Wn], and hence when the turn of Pk arrived, we
would have chosen from it all vertices of xT , one by one, as vp-s. But then
ter(T ) = vp for some p, contradicting Assertion 1. �

One case in which the conditions of Theorem 3 hold is that in which the
outdegrees of all vertices are countable, so for webs with this property the
theorem is known for all vertices a. Also, clearly, Lemma 3 is an immediate
corollary. As already mentioned, the countable case of Conjecture 1 follows
from this lemma directly. So the theorem yields a new proof of the countable
case of Conjecture 1.

3. ℵ1-Hindrances

The key to the solution of the uncountable bipartite case of Erdős’ conjecture
was in the definition of higher order hindrances, i.e., κ-hindrances for regular
uncountable cardinalities κ. The course of the proof there was proving first
that a bipartite web is linkable if it does not contain a hindrance or a κ-
hindrance for some regular uncountable cardinal κ [6], and then proving that
the existence of a κ-hindrance implies the existence of a hindrance (in the
old sense [2]).

The notion of higher order hindrances can be carried over to general
webs. Since the aim of this paper is to present general techniques rather than
complete proofs, we shall be satisfied with presenting the notion of an ℵ1-
hindrance, which means that the proofs will apply only to webs of size ℵ1.
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The reader may take on faith the fact that the notion and proofs can be
extended to general cardinalities, and he is referred to [6,2] for details in the
bipartite case.

For an ordinal η ≤ ℵ1 an η-ladder is a sequence L = (Rα : α < η), where
each “rung” Rα of the ladder is of one of three possible types (the webs Γα

mentioned in them are to be defined below)

(1) A vertex vα ∈ V (Γα) \A(Γα)
(2) A hindrance Rα, in Γα.
(3) An infinite path Rα, which is the concatenation of paths in hindrances

Rβ , β < α appearing in rungs of type (2), and has not appeared as yet
as a rung of type (3) (i.e it is not Rγ for any γ < α, γ of type (3).)

The ordinal η is called the height of the ladder. (If special mention of the
ladder L is necessary, we shall write η(L), a remark applying to all notation
referring to ladders.) The set of α-s of type (i) is denoted by Φi. The webs
Γα are defined inductively:

If α ∈ Φ1 then Γα+1 is defined as Γα . υα.
If α ∈ Φ2 then Γα+1 = Γα∠Rα.
If α ∈ Φ3 then Γα+1 is obtained from Γα by deleting in(Rα) from its ′A-
set (for the motivation of this definition see below, after the definition of
Γα.)

For limit α, Γα is defined as the “limit” of the webs Γβ , β < α, in an
obvious way: its ′A′ set is the set of all those vertices which belong to A(Γβ)
for cofinally many β-s in α, and similarly for the definition of its vertex and
edge sets. Its ′B′ set is just B.

Alongside with the the webs Γα we define warps Yα = Yα(L) for each
α < η. Loosely speaking, Yα is the concatenation of all hindrances Rβ , β < α.
More precisely, we let

E[Yα] =
⋃

{E[Rβ ] : β < α, β ∈ Φ2} \
⋃

{E[Rβ ] : β < α, β ∈ Φ3}.

The warp Yα is not defined solely by its edge set, because it may contain
also singleton paths. It will be defined, however, once the set of its initial
points is defined. We let in[Yα] be the set of all vertices in A ∪ {vβ : β < α}
which are not hindered in any hindrance Rβ , β ∈ Φ2, β < α and are not
in(Rβ) for any β ∈ Φ3, β < α. Also write Yη = Y(= Y(L)).

The following is easily proved by induction:

Lemma 14. ter[Yα] separates A from B.

From the inductive definition of the webs Γα it is easy to see that Γα

is essentially Γter[Yα], the difference being that the vertex set of the latter
may be larger—there may be vertices separated by ter[Yα] from A, which
are therefore in the vertex set of Γter[Yα], but are deleted in the process of
forming Γα. But for our purposes we may regard these two webs as being the
same.
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Let Γα = Γter[Yα].
For v ∈ V \A let ρ(v) = ρL(v) be the first ordinal ρ for which v ∈ V (Γρ).
Rungs of type (3) appear in ladders since the initial point of an infinite

path in Y has lost hope of being linked to B by Y, while it is separated from
B by B(Γα) (Lemma 14). So, it is a “problematic” vertex, which has to be
specially taken care of. This complication does not arise, of course, in the
case of webs with no unending paths, and as we shall see in Theorem 6 also
not in the other main case discussed in this paper, namely that of webs with
countable outdegrees.

Notation 1. Let F (L) = ∪{Rα : α ∈ Φ1}. For each α ∈ Φ2 let HDα be the
set of points in A(Γα) which are hindered by Rα. We also write HDAα for
the set of points in A which are the initial points of paths in Yα terminating
at HDα.

For a limit ordinal α let NFα be the set of all infinite paths in Yα starting
at A.

Also let NFα = in[NFα].

Definition 2. If L is of height ℵ1 and Φ2 or Φ3 are stationary in ℵ1 then
L is called an ℵ1-hindrance.

One of the two main ingredients of the proof of Conjecture 1 goes over
to general webs:

Theorem 4. If Γ contains an ℵ1-hindrance then it is hindered.

Proof. In [2] the theorem was proved for bipartite webs. We shall use this
case of the theorem, but not directly. One has to go a bit into the proof in
order to make it applicable to general webs.

Let L = (Rα : α < ℵ1) be an ℵ1-hindrance. Assume, first, that Φ2(L) is
stationary. Then L corresponds to an ℵ1-hindrance N = (Tα : α < ℵ1) in
b(Γ). By the main theorem of [2], N gives rise to a hindrance H in b(Γ). We
would like to show that H can be chosen so that w(H) is a hindrance in Γ,
i.e., so that it does not contain non-starting paths.

Let M = b(E[Y(L)]), i.e., the set of edges in b(Γ) corresponding to the
edges in paths in the warp Y. Then M = E[Y(N)], and it is a matching in
b(Γ). We write F = F (L) and BF = F (N). Obviously BF = b(F )

The basic concept in the proof in [2] is that of popularity.
Given a set of vertices U in any graph, a set P of paths in the graph is

called U -joined if every two members of P meet only within U . A subset U
of B(b(Γ)) is called popular if there exists a U -joined set {Zβ : β ∈ Ψ} of
paths, where each Zβ is an M -alternating path from some vertex u′′ of U to
some vertex v′ ∈ HDβ(N) and Ψ ⊆ Φ2 is stationary.

By the usual abuse of notation we shall say that a vertex u′′ ∈ B(b(Γ))
is popular if {u′′} is popular.

We shall now follow a construction given in [2].
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Let U0 be the set of all unpopular vertices in BF (that is, the set of
all unpopular vertices u′′α, α ∈ Φ1.) Let K1 be the set of all vertices x′

connected to them, U1 the set of all unpopular vertices in M [K1], K2 the set
of all unpopular vertices connected to vertices in U1, U2 the set of unpopular
vertices in M [K2], and so forth. Let, eventually, U =

⋃
{Ui : i < ω},K =⋃

{Ki : i < ω}, and Δ = b(Γ) − U −K.

Assertion 2. All points in A(Δ) are connected in b(Γ) only to points from
B(Δ).

Proof. This is clear, since by definition K is the set of points connected in
b(Γ) to U . �

Let M ′ = M|B(Δ) and FR = B(Δ) \
⋃
M (“FR” stands for “free”).

Clearly, FR = BF \ U .
The points in FR were popular in Γ. The main idea of the proof in [2] is

that they still remain so in Δ, although Δ is formed from Γ by the removal
of vertices. In a somewhat informal manner, this can be put in:

Assertion 3. Every point p in FR is still popular in Δ, namely it has a
p-joined set of M ′-alternating paths to “stationarily many” hindered points
belonging to A(Δ) (i.e., points in A(Δ) \

⋃
M ′.)

A little more formal, and stronger, is the following:

Assertion 4. Let p ∈ FR and let {Xα : α ∈ Ψ} be a p-joined set of M -
alternating paths, where Ψ is stationary and each path Xα goes from p to
HDα. Then {β : K meets Xβ} is non-stationary.

In [2] Assertion 4 was derived from an even stronger one, which we shall
also use here:

Assertion 5. The entire set U is unpopular.

To see how Assertion 4 follows from Assertion 5, assume that the set Θ of
β-s for which K meets Xβ (say, at a point zβ) is stationary. For each β ∈ Θ
choose a point uβ ∈ U connected to zβ . Then the set of paths {uβzβXβ : β ∈
Θ} would show that U is popular.

Another immediate corollary of Assertion 5 is:

Assertion 6. The set of α-s for which HDα ∩ A(Δ) = ∅ is stationary.

This would clearly follow also from Assertion 3 if we knew that FR = ∅.
But this is not guaranteed.

In the bipartite case, Assertion 3 is sufficient for the proof of Theorem 4.
In fact, all that is used is that every point p ∈ FR has a p-joined set of
size ℵ1 of M ′-alternating paths to points in A(Δ) \

⋃
M ′. Since |FR| ≤ ℵ1,

these alternating paths can be used to match all points of B(Δ) one by one
into A(Δ). One then uses Fodor’s Lemma and Assertion 6 to prove that this
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matching is strictly into. By Assertion 2 this matching provides the desired
hindrance in b(Γ).

An observation which will be used below is that Y-alternating paths in
Γ are in one to one correspondence with M -alternating paths in b(Γ), with
the natural correspondence: an M -alternating path Q corresponds to a Y-
alternating path w(Q) whose edge set is w(E(Q)). In fact, this can be used
as a definition of a Y-alternating path. (A detail worth noting is that when
a Y-alternating path Q lingers for more than one edge on a path from Y,
its corresponding path alternates between edges of M and edges of the form
(x′, x′′), which are not in M .)

Write S = w(FR) and Y ′ = w(M ′). Then Y ′ consists of fragments of
paths from Y. Let Z be the set of paths in Y ′ which start at A. Each s ∈ S
has ℵ1 many Y ′-alternating paths meeting only at s. Listing the points of S
in a sequence of length at most ω1, we can link them one by one using their
Y ′-alternating paths, and sticking to the rule that a path in Y is never used
in alternating paths pertaining to more than one point from S.

The trouble is that if we are not careful in the application of the
alternating paths, the warp which results may contain non-starting paths.
To overcome this difficulty we prove:

Assertion 7. Let s ∈ S and let {Xβ : β ∈ Ψ} be an s-joined set of Y ′-
alternating paths, each Xβ leading to HDβ, and Ψ being stationary. Then
there exists a stationary subset Ψ′ of Ψ such that for each β ∈ Ψ′ the paths
from Y ′ which Xβ meets are all in Z.

Proof. We shall prove something even stronger, namely that the set of those
β-s for which Xβ meets a path not in Z is non-stationary. This set consists of
two (possibly overlapping) parts. The first, Ξ1, consists of β-s for which Xβ

meets a path Qβ ∈ Y which does not start at A. The second, Ξ2, consists of
β-s for which Xβ meets a path, say Yβ , at a point yβ such that there exists
a point kβ ∈ K preceding yβ on Yβ .

For each β ∈ Ξ1 the initial point of Qβ is a vertex v = Rα for some α < β.
Hence, if Ξ1 were stationary, by Fodor’s Lemma ℵ1 many Xβ-s would share
the same Qβ. This is impossible, since the paths Xβ are disjoint and each Qβ
is finite.

Assume next that Ξ2 is stationary. For each β ∈ Ξ2 choose a vertex
u′′β ∈ U connected to k′β and witnessing the fact that k′ ∈ K. Consider then
the paths Jβ = uβkβYβyβXβ . The paths b(Jβ) in b(Γ) then show that U is
popular, contradicting Assertion 5. �

Let (sδ : δ < ν ≺ ℵ1) be a listing of all element of S. Choose inductively
for each sδ a Z-alternating path Pδ from sδ to some HDα(δ)(L) which meets
only paths in Z which were not met by any Pζ , ζ < δ, does not contain edges
from E[Y]\E[Z], and such that α(δ) = α(ζ) for ζ < δ. Such choice is possible,
by Assertion 7. Let H be the warp resulting from the application of all Pδ-s to
Y. Since the paths Pδ correspond (by the correspondence b) to M ′-alternating
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paths in Δ, ter[H] = w(B(Δ)) and in[H] ⊆ w(A(Δ)). By Assertion 2 this
means that H = b(E[H]) is a wave in b(Γ). By Fodor’s Lemma there exists at
least one α ∈ Φ2 such that no path Pδ reaches HDα(N). (In fact, there is no
need to invoke Fodor’s Lemma for this, just choose the paths Pδ so that this
condition is fulfilled.) Hence H is, in fact, a hindrance. Since the paths Pδ
only use paths from Z to alternate on, and distinct ones at that, the paths
in H all start at A. Hence, by Lemma 7, H. is the hindrance desired in the
theorem.

The case that Φ3 is stationary is similar, but for simplicity of presentation
it is better to work directly in Γ. For each α ∈ Φ3 let Pα be the infinite
path which constitutes the rung Rα. A vertex w ∈ F is called popular if
for a stationary subset Ψ of Φ3 there exist Y-alternating paths Qψ, ψ ∈ Ψ
from w to Pψ. (We demand that such a path ends when it reaches some
vertex in Pψ). The proof then goes along the same lines as in the case of Φ2

stationary. �

We conjecture that also the other main ingredient of the proof in the
bipartite case goes over to general webs, namely:

Conjecture 4. If |V (Γ)| ≤ ℵ1 and Γ contains no hindrance and no ℵ1-
hindrance then Γ is linkable.

We are able to prove the conjecture only in the cases in which Conjecture 3
is known. So, we have:

Theorem 5. Conjecture 2 (and hence also Conjecture 1) is true for webs of
size ℵ1 with no unending paths or with countable outdeqrees.

Proof. By Lemma 5 the theorem holds for webs in which A or B are
countable. Hence we may assume that |A| = |B| = ℵ1. Enumerate V \ A
as (v0 : θ < ℵ1). Define inductively the rungs Rα of a ladder L as follows.
Let Γ0 = Γ. Suppose that Rδ have been defined for all δ < α. Let Γα be
defined as in the definition of ladders made above. First priority in the choice
of rungs is given to type (3). That is, if there exists an infinite path in NFα

which is not equal to Rβ for any β < α, then choose such a path to be Rα.
Second priority is given to type (2). So, if there does not exist an infinite

path as above, but there exists a hindrance in Γα, choose Rα to be such a
hindrance.

If no path or hindrance as above exist, choose Rα to be the first v0 in
V \ V (Γα).

We proceed in this definition until all vertices in V have been covered.
This, obviously, happens for some η ≤ ℵ1 For each v ∈ V \ A write α(v) for
the first α for which v ∈ V (Γα).

Assume first that η(L) < ℵ1. Then the warp W consisting of all paths
in Y(L) starting at A satisfies the condition that A \ in[W ] is countable.
Moreover, since all points of V (Γ)\A appear in the ladder L, ter[Y(L)] must
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cover all but countably many vertices in B. It follows that Γ satisfies the
condition of Lemma 4, and hence also Conjecture 2.

Thus we may assume that η(L) < ℵ1. By the assumption that Γ is ℵ1-
unhindered, there exists a club set Π such that Π ∩ (Φ2 ∪ Φ3) = ∅.

The idea is to use Π to link Γ. Informally, this is done as follows: we link
one point from A to B by a path P , using Lemma 13 and Theorem 3. Let π1
be the first element of Π for which all vertices in P are contained in Γπ1 . We
wish to take care of the points in A which are not linked by Yπ1 into B(Γπ1),
There are only countably many of those, and we link them one by one to
B. At each step we take a possibly larger πi ∈ Π so that Γπi contains the
new paths. We add to the set of problematic points (those which have to be
taken care of) all points in A which are hindered in some Rα, πi > α ∈ Π2,
and also NFα, if α is a limit ordinal. After ω steps we have taken care of all
problematic points in Γπ, where π is the limit of all πi. Since π ∈ Π, the web
Γπ is unhindered. Also, NFπ = ∅. Hence we can turn over a new leaf—try to
link points in Γπ. By the club-ness of Π we can join all the partial linkages
obtained in this procedure to obtain a linkage of A.

Formally all this is a bit more cumbersome:
Clearly, NFα is countable for every α < ℵ1. For otherwise the rungs of

L are of type (3) for all α < β < ℵ1, making L an ℵ1-hindrance. Similarly,
HDα is countable, or else we could choose the rungs Rβ to be of type (2)
from α onwards.

List the points of A as aθ, θ < ℵ1.
For a subset Z of V \A let π(Z) be the minimal ordinal π ∈ Π such that

π > ρ(z) for every z ∈ Z.
By Lemma 13 and Theorem 3 there exists an a0 − B path P0 such that

Δ1 = Γ − P0 is unhindered. Let π1
1 = π(V (P0)), Let K1 be the set of all

vertices in A \ {a0} which are initial vertices of paths from V [Y(L)] which
are met by P0, and let

D1 = K1 ∪HDAπ1
1
(L) ∪NFπ1

1
∪ {a1}

(For the definition of HDA see Notation 2.) Clearly, D1 is countable, so we
can order it in an ω-sequence d1. Let v1 be the first vertex in this list. There
exists then a v1 − B path P1 such that Δ2 = Δ1 − P1 is unhindered. Let
π2
1 = π(V [{P0, P1}]). Let K2 be the set of vertices from A \ {v0, v1} (where
v0 = a0) which are initial vertices of paths from Y which are met by P0, P1,
and let

D2 = K2 ∪HDAπ2
1
∪ (NFπ2

1
\NFπ2

1
) ∪ {a2}

Intersperse D2 in the even numbered places of d1, to obtain a list d2. Let v2
be the first element in d2 which does not belong to {v0, v1}. Choose a v2 −B
path P2 such that Γ3 = Γ2 − P1 is unhindered. We continue in this way,
and obtain sequences (vi), (πi1), (Pi) of length ω. Let π1 = sup{πi1 : i < ω}.
The interspersing of the sets Di, in the sequence of points to be linked to
B is done so as to guarantee that each point is reached at some stage (so,
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for example, D3 is interspersed in every third place, say, in d2). Then, after
ω steps, when the dust has settled, the warp N0 consisting of {Pi : i < ω}
together with all paths in Yπ1 which connect A to B(Γπ1) and which do not
meet any Pi, links A into B(Γπ1).

Now repeat the procedure with Γπ1 replacing Γ. This is possible, since
π1 ∈ Π, and hence Γπ1 is unhindered. This produces a linkage N2 of B(Γπ1)
into B(Γπ2) for some π1 < π2 ∈ Π.

Continuing this way, we obtain an ℵ1-sequence of ordinals πζ ∈ Π, and
linkages Nζ of A(Γπζ

) into B(Γπζ+1
). For limit ζ we just define πζ = sup{πβ :

β < ζ}. Since Π is closed, πζ ∈ Π.
At each step ζ, the first aθ in the list of elements of A which have not

been linked as yet to B is not hindered in Γπζ
, since this web is not hindered.

So, it is the starting point of a path Q ∈ Yπζ
. This path is not infinite, since

if it is then, since Π ∩ Φ3 = ∅, Q ∈ NFα for some α < πζ . But then, by
our construction, aθ has been linked already to B at a previous stage. Let
a′θ = ter(Q). Then a′θ ∈ A(Γπζ

). We put it first in the first list of vertices to
be linked, so that after the ζ-th stage aθ is linked to B. This guarantees that
after ℵ1 steps all vertices of A are linked to B. �

Remark 1. The true content of the theorem, and what is actually proved,
is that Conjecture 4 can be reduced to Conjecture 3 for webs of size ℵ1. We
chose the above presentation since it states absolute results, rather than a
result about implication. In fact, both cases mentioned in the theorem have
simpler proofs. For webs with no unending path one can construct a ladder
as in the proof of the theorem, and then link its ‘slices’ (defined by the club
set Π), and these linkages join up to form a linkage of Γ, since no unending
path has been generated. In the case of countable outdegrees one can make do
with a simpler kind of ℵ1-hindrances, as follows:

Call a hindrance degenerate if all of its paths are singletons. A point in A
hindered by a degenerate hindrance is just one from which B is unreachable.
An ℵ1-hindrance is called degenerate if all of it rungs Rα, α ∈ Φ2, are
degenerate. Note that in such an ℵ1-hindrance Y = ∅, and hence there are no
rungs of type (3). Similar arguments to those above (only simpler) show the
following.

Theorem 6. If |V (Γ)| ≤ ℵ1, the outdegrees of all vertices in Γ are countable,
and Γ does not contain a hindrance or a degenerate ℵ1-hindrance, then it is
linkable.

Of course, this follows from the previous theorems, since not being
hindered suffices. What it really means is that the above proof can be
simplified in this case. A version which does add new information, however,
is this:

Theorem 7. A web of size ℵ1 with countable outdegrees is linkable if and
only if every countable subset of A is linkable, and it does not contain a
degenerate ℵ1-hindrance.
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4. A Remark on Necessary Conditions for Linkability

Conjecture 2 will yield (if true) a sufficient condition for linkability in webs.
The proof of the bipartite case of the conjecture gave, in fact, more than just
a sufficient condition—a necessary and sufficient condition is known in this
case.

Podewski and Steffens [8] defined (in somewhat different terms) a special
type of waves. A wave W is called tight if there is no warp U such that
in[U ] = in[W ], ter[U ] ⊂ ter[W ] and ter[U ] = ter[W ]. An obstruction is
a tight hindrance. In [8] it was proved that a countable bipartite graph is
linkable if and only if it is unobstructed. ℵ1-obstructions are defined by taking
the rungs Rα, α ∈ Φ2 to be obstructions, rather than hindrances. Again, it
was proved [6] that a bipartite graph of size ℵ1 is linkable if and only if it
does not contain an obstruction or an ℵ1-obstruction.

It is not even completely clear what should be the formulation of the
necessary and sufficient condition for linkability in webs. Transferring the
notions of tight waves and obstructions verbatim does not work, as the
following example shows:

Let A1 = {a1i : i < ω}A2 = {a2i : i < ω}, B = {bi : i < ω} and
C = {ci : i < ω}. Also let A = A1 ∪ A2 and V (G) = A ∪ B ∪ C. Let
E(G) = A2×C∪C×B∪{(a1i , ci) : i < ω}∪{(a2i , bi) : i < ω}. Then the web
Δ = (G,A,B) does not contain an obstruction in the above sense, and yet it
is not linkable. What does exist in Δ is a tight wave T with a proper subwave
T ′, which means to say that a proper subset of ter[T ] is A-B-separating (take
T = {(a2i , bi) : i < ω} ∪ {(a1i , ci) : i < ω}). It is possible that this is the
right notion for an “obstruction” in the case of webs. It will be interesting
(and possibly of value for the proof of the general conjecture) to show that
the non-existence of obstructions in this sense is sufficient for linkability in
countable webs.

Podewski and Steffens [8] noted that in a bipartite web Γ there exists
a maximal linkable subset of A(Γ) (the set of initial points of a maximal
tight wave is such a set). The web Δ above provides a counterexample to
this statement in the case of countable webs: it is not hard to show that a
subset N of A is linkable if and only if A \N is infinite, and clearly there is
no maximal subset N of A satisfying this condition.

Author’s Note, 2013 Edition

Since the publication of this paper, the Erdős-Menger conjecture was solved:
Aharoni, Ron and Berger, Eli (2009). “Menger’s Theorem for infinite

graphs”, Inventiones Mathematicae 176: 162. doi:10.1007/s00222-008-0157-3.
As foreseen in the present paper, the key was the proof of Lemma 3 for

general (namely, uncountable) graphs. But the way from the lemma to the
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theorem proved to be more intricate for cardinalities of size larger than ℵ1

than for the ℵ1 case (which is done in this paper).
As in the present paper, another key role was played by the bipartite

conversion, that provides good insight into Menger’s theorem in the infinite
case, as it does in the finite case.
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Summary. Erdős and Rényi showed the paradoxical result that there is a unique
(and highly symmetric) countably infinite random graph. This graph, and its
automorphism group, form the subject of the present survey.

1. Introduction

In 1963, Erdős and Rényi [27] showed:

Theorem 1. There exists a graph R with the following property. If a
countable graph is chosen at random, by selecting edges independently with
probability 1

2 from the set of 2-element subsets of the vertex set, then almost
surely (i.e., with probability 1), the resulting graph is isomorphic to R.

This theorem, on first acquaintance, seems to defy common sense—a
random process whose outcome is predictable. Nevertheless, the argument
which establishes it is quite short. (It is given below.) Indeed, it formed a
tailpiece to the paper of Erdős and Rényi, which mainly concerned the much
less predictable world of finite random graphs. (In their book Probabilistic
Methods in Combinatorics, Erdős and Spencer [28] remark that this result
“demolishes the theory of infinite random graphs.”)

I will give the proof in detail, since it underlies much that follows. The
key is to consider the following property, which a graph may or may not have:

(∗) Given finitely many distinct vertices u1, . . . , um, v1, . . . , vn, there exists
a vertex z which is adjacent to u1, . . . , um and nonadjacent to v1, . . . , vn.

Often I will say, for brevity, “z is correctly joined”. Obviously, a graph
satisfying (∗) is infinite, since z is distinct from all of u1, . . . , um, v1, . . . , vn.
It is not obvious that any graph has this property. The theorem follows from
two facts:

Fact 1. With probability 1, a countable random graph satisfies (∗).

Fact 2. Any two countable graphs satisfying (∗) are isomorphic.

Proof (of Fact 1). We have to show that the event that (∗) fails has
probability 0, i.e., the set of graphs not satisfying (∗) is a null set. For
this, it is enough to show that the set of graphs for which (∗) fails for
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some given vertices u1, . . . , um, v1, . . . , vn is null. (For this deduction, we
use an elementary lemma from measure theory: the union of countably
many null sets is null. There are only countably many values of m and
n, and for each pair of values, only countably many choices of the vertices
u1, . . . , um, v1, . . . , vn.) Now we can calculate the probability of this set. Let
z1, . . . , zN be vertices distinct from u1, . . . , um, v1, . . . , vn. The probability
that any zi is not correctly joined is 1 − 1

2m+n ; since these events are
independent (for different zi), the probability that none of z1, . . . , zN is
correctly joined is (1 − 1

2m+n )N . This tends to 0 as N → ∞; so the event
that no vertex is correctly joined does have probability 0. �

Note that, at this stage, we know that graphs satisfying (∗) exist, though
we have not constructed one—a typical “probabilistic existence proof”. Note
also that “probability 1

2” is not essential to the proof; the same result holds
if edges are chosen with fixed probability p, where 0 < p < 1. Some variation
in the edge probability can also be permitted.

Proof (of Fact 2). Let Γ1 and Γ2 be two countable graphs satisfying (∗).
Suppose that f is a map from a finite set {x1, . . . , xn} of vertices of Γ1 to Γ2,
which is an isomorphism of induced subgraphs, and xn+1 is another vertex of
Γ1. We show that f can be extended to xn+1. Let U be the set of neighbours
of xn+1 within {x1, . . . , xn}, and V = {x1, . . . , xn} \U . A potential image of
xn+1 must be a vertex of Γ2 adjacent to every vertex in f(U) and nonadjacent
to every vertex in f(V ). Now property (∗) (for the graph Γ2) guarantees that
such a vertex exists.

Now we use a model-theoretic device called “back-and-forth”. (This is
often attributed to Cantor [20], in his characterization of the rationals as
countable dense ordered set without endpoints. However, as Plotkin [58] has
shown, it was not used by Cantor; it was discovered by Huntington [44] and
popularized by Hausdorff [35].)

Enumerate the vertices of Γ1 and Γ2, as {x1, x2, . . .} and {y1, y2, . . .}
respectively. We build finite isomorphisms fn as follows. Start with f0 = ∅.
Suppose that fn has been constructed. If n is even, let m be the smallest
index of a vertex of Γ1 not in the domain of fn; then extend fn (as above)
to a map fn+1 with xm in its domain. (To avoid the use of the Axiom of
Choice, select the correctly-joined vertex of Γ2 with smallest index to be the
image of xm.) If n is odd, we work backwards. Let m be the smallest index
of a vertex of Γ2 which is not in the range of fn; extend fn to a map fn+1

with ym in its range (using property (∗) for Γ1).
Take f to be the union of all these partial maps. By going alternately

back and forth, we guaranteed that every vertex of Γ1 is in the domain, and
every vertex of Γ2 is in the range, of f . So f is the required isomorphism. �

The graph R holds as central a position in graph theory as Q does in
the theory of ordered sets. It is surprising that it was not discovered long
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before the 1960s! Since then, its importance has grown rapidly, both in its
own right, and as a prototype for other theories.

Remark 1. Results of Shelah and Spencer [65] and Hrushovski [42] suggest
that there are interesting countable graphs which “control” the first-order
theory of finite random graphs whose edge-probabilities tend to zero in
specified ways. See Wagner [76], Winkler [77] for surveys of this.

2. Some Constructions

Erdős and Rényi did not feel it necessary to give an explicit construction of
R; the fact that almost all countable graphs are isomorphic to R guarantees
its existence. Nevertheless, such constructions may tell us more about R. Of
course, to show that we have constructed R, it is necessary and sufficient to
verify condition (∗).

I begin with an example from set theory. The downward Löwenheim-
Skolem theorem says that a consistent first-order theory over a countable
language has a countable model. In particular, there is a countable model of
set theory (the Skolem paradox ).

Theorem 2. Let M be a countable model of set theory. Define a graph M∗

by the rule that x ∼ y if and only if either x ∈ y or y ∈ x. Then M∗ is
isomorphic to R.

Proof. Let u1, . . . , um, v1, . . . , vn be distinct elements of M . Let x = {v1, . . . ,
vn} and z = {u1, . . . , um, x}. We claim that z is a witness to condition (∗).
Clearly ui ∼ z for all i. Suppose that vj ∼ z. If vj ∈ z, then either vj =
ui (contrary to assumption), or vj = x (whence x ∈ x, contradicting the
Axiom of Foundation). If z ∈ vj , then x ∈ z ∈ vj ∈ x, again contradicting
Foundation. �

Note how little set theory was actually used: only our ability to gather
finitely many elements into a set (a consequence of the Empty Set, Pairing
and Union Axioms) and the Axiom of Foundation. In particular, the Axiom
of Infinity is not required. Now there is a familiar way to encode finite subsets
of N as natural numbers: the set {a1, . . . , an} of distinct elements is encoded
as 2a1 + · · ·+ 2an . This leads to an explicit description of R: the vertex set is
N; x and y are adjacent if the xth digit in the base 2 expansion of y is a 1 or
vice versa. This description was given by Rado [59, 60].

The next construction is more number-theoretic. Take as vertices the set
P of primes congruent to 1 (mod 4). By quadratic reciprocity, if p, q ∈ P,
then

(
p
q

)
= 1 if and only if

(
q
p

)
= 1. (Here “

(
p
q

)
= 1” means that p is a

quadratic residue (mod q).) We declare p and q adjacent if
(
p
q

)
= 1.

Let u1, . . . , um, v1, . . . , vn ∈ P. Choose a fixed quadratic residue ai
(mod ui) (for example, ai = 1), and a fixed non-residue bj (mod vj). By
the Chinese Remainder Theorem, the congruences
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x ≡ 1 (mod 4), x ≡ ai (mod ui), x ≡ bj (mod vj),

have a unique solution x ≡ x0 (mod 4u1 . . . umv1 . . . vn). By Dirichlet’s
Theorem, there is a prime z satisfying this congruence. So property (∗) holds.

A set S of positive integers is called universal if, given k ∈ N and T ⊆
{1, . . . , k}, there is an integer N such that, for i = 1, . . . , k,

N + i ∈ S if and only if i ∈ T.

(It is often convenient to consider binary sequences instead of sets. There is
an obvious bijection, under which the sequence σ and the set S correspond
when (σi = 1) ⇔ (i ∈ S)—thus σ is the characteristic function of S. Now
a binary sequence σ is universal if and only if it contains every finite binary
sequence as a consecutive subsequence.)

Let S be a universal set. Define a graph with vertex set Z, in which x
and y are adjacent if and only if |x− y| ∈ S. This graph is isomorphic to R.
For let u1, . . . , um, v1, . . . , vn be distinct integers; let l and L be the least and
greatest of these integers. Let k = L−l+1 and T = {ui−l+1 : i = 1, . . . ,m}.
Choose N as in the definition of universality. Then z = l − 1 − N has the
required adjacencies.

The simplest construction of a universal sequence is to enumerate all
finite binary sequences and concatenate them. But there are many others. It
is straightforward to show that a random subset of N (obtained by choosing
positive integers independently with probability 1

2 ) is almost surely universal.
(Said otherwise, the base 2 expansion of almost every real number in [0, 1] is
a universal sequence.)

Of course, it is possible to construct a graph satisfying (∗) directly. For
example, let Γ0 be the empty graph; if Γk has been constructed, let Γk+1

be obtained by adding, for each subset U of the vertex set of Γk, a vertex
z(U) whose neighbour set is precisely U . Clearly, the union of this sequence
of graphs satisfies (∗).

3. Indestructibility

The graph R is remarkably stable: if small changes are made to it, the
resulting graph is still isomorphic to R. Some of these results depend on
the following analogue of property (∗), which appears stronger but is an
immediate consequence of (∗) itself.

Proposition 1. Let u1, . . . , um, v1, . . . , vn be distinct vertices of R. Then
the set

Z = {z : z ∼ ui for i = 1, . . . ,m; z � vj for j = 1, . . . n}

is infinite; and the induced subgraph on this set is isomorphic to R.
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Proof. It is enough to verify property (∗) for Z. So let u′1, . . . , u
′
k, v

′
1, . . . , v

′
l

be distinct vertices of Z. Now the vertex z adjacent to u1, . . . , un, u
′
1, . . . , u

′
k

and not to v1, . . . , vn, v
′
1, . . . , v

′
l, belongs to Z and witnesses the truth of this

instance of (∗) there. �

The operation of switching a graph with respect to a set X of vertices
is defined as follows. Replace each edge between a vertex of X and a vertex
of its complement by a non-edge, and each such non-edge by an edge; leave
the adjacencies within X or outside X unaltered. See Seidel [64] for more
properties of this operation.

Proposition 2. The result of any of the following operations on R is
isomorphic to R:

(a) Deleting a finite number of vertices;
(b) Changing a finite number of edges into non-edges or vice versa;
(c) Switching with respect to a finite set of vertices.

Proof. In cases (a) and (b), to verify an instance of property (∗), we use
Proposition 1 to avoid the vertices which have been tampered with. For (c), if
U = {u1, . . . , um} and V = {v1, . . . , vn}, we choose a vertex outside X which
is adjacent (in R) to the vertices of U \X and V ∩X , and non-adjacent to
those of U ∩X and V \X . �

Not every graph obtained from R by switching is isomorphic to R. For
example, if we switch with respect to the neighbours of a vertex x, then x is
an isolated vertex in the resulting graph. However, if x is deleted, we obtain
R once again! Moreover, if we switch with respect to a random set of vertices,
the result is almost certainly isomorphic to R.

R satisfies the pigeonhole principle:

Proposition 3. If the vertex set of R is partitioned into a finite number of
parts, then the induced subgraph on one of these parts is isomorphic to R.

Proof. Suppose that the conclusion is false for the partition X1 ∪ . . . ∪ Xk

of the vertex set. Then, for each i, property (∗) fails in Xi, so there are
finite disjoint subsets Ui, Vi of Xi such that no vertex of Xi is “correctly
joined” to all vertices of Ui, and to none of Vi. Setting U = U1 ∪ . . .∪Uk and
V = V1 ∪ . . .∪ Vk, we find that condition (∗) fails in R for the sets U and V ,
a contradiction. �

Indeed, this property is characteristic:

Proposition 4. The only countable graphs Γ which have the property that,
if the vertex set is partitioned into two parts, then one of those parts induces
a subgraph isomorphic to Γ, are the complete and null graphs and R.

Proof. Suppose that Γ has this property but is not complete or null. Since
any graph can be partitioned into a null graph and a graph with no isolated
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vertices, we see that Γ has no isolated vertices. Similarly, it has no vertices
joined to all others.

Now suppose that Γ is not isomorphic to R. Then we can find u1, . . . , um
and v1, . . . , vn such that (∗) fails, with m+n minimal subject to this. By the
preceding paragraph, m + n > 1. So the set {u1, . . . , vn} can be partitioned
into two non-empty subsets A and B. Now let X consist of A together with
all vertices (not in B) which are not “correctly joined” to the vertices in
A; and let Y consist of B together with all vertices (not in X) which are
not “correctly joined” to the vertices in B. By assumption, X and Y form
a partition of the vertex set. Moreover, the induced subgraphs on X and Y
fail instances of condition (∗) with fewer than m+ n vertices; by minimality,
neither is isomorphic to Γ, a contradiction. �

Finally:

Proposition 5. R is isomorphic to its complement.

For property (∗) is clearly self-complementary.

4. Graph-Theoretic Properties

The most important property of R (and the reason for Rado’s interest) is
that it is universal :

Proposition 6. Every finite or countable graph can be embedded as an
induced subgraph of R.

Proof. We apply the proof technique of Fact 2; but, instead of back-and-
forth, we just “go forth”. Let Γ have vertex set {x1, x2, . . .}, and suppose
that we have a map fn : {x1, . . . , xn} → R which is an isomorphism of
induced subgraphs. Let U and V be the sets of neighbours and non-neighbours
respectively of xn+1 in {x1, . . . , xn}. Choose z ∈ R adjacent to the vertices
of f(U) and nonadjacent to those of f(V ), and extend fn to map xn+1 to z.
The resulting map fn+1 is still an isomorphism of induced subgraphs. Then
f =

⋃
fn is the required embedding. (The point is that, going forth, we only

require that property (∗) holds in the target graph.) �

In particular, R contains infinite cliques and cocliques. Clearly no finite
clique or coclique can be maximal. There do exist infinite maximal cliques
and cocliques. For example, if we enumerate the vertices of R as {x1, x2, . . .},
and build a set S by S0 = ∅, Sn+1 = Sn ∪ {xm} where m is the least index
of a vertex joined to every vertex in Sn, and S =

⋃
Sn, then S is a maximal

clique.
Dual to the concept of induced subgraph is that of spanning subgraph,

using all the vertices and some of the edges. Not every countable graph is a
spanning subgraph of R (for example, the complete graph is not). We have
the following characterization:
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Proposition 7. A countable graph Γ is isomorphic to a spanning subgraph
of R if and only if, given any finite set {v1, . . . , vn} of vertices of Γ, there is
a vertex z joined to none of v1, . . . , vn.

Proof. We use back-and-forth to construct a bijection between the vertex
sets of Γ and R, but when going back from R to Γ, we only require that
nonadjacencies should be preserved. �

This shows, in particular, that every infinite locally finite graph is
a spanning subgraph (so R contains 1-factors, one- and two-way infinite
Hamiltonian paths, etc.). But more can be said.

The argument can be modified to show that, given any non-null locally
finite graph Γ, any edge of R lies in a spanning subgraph isomorphic to Γ.
Moreover, as in the last section, if the edges of a locally finite graph are
deleted from R, the result is still isomorphic to R. Now let Γ1,Γ2, . . . be
given non-null locally finite countable graphs. Enumerate the edges of R, as
{e1, e2, . . .}. Suppose that we have found edge-disjoint spanning subgraphs
of R isomorphic to Γ1, . . . ,Γn. Let m be the smallest index of an edge of R
lying in none of these subgraphs. Then we can find a spanning subgraph of
R− (Γ1 ∪ · · · ∪ Γn) containing em and isomorphic to Γn+1. We conclude:

Proposition 8. The edge set of R can be partitioned into spanning subgraphs
isomorphic to any given countable sequence of non-null countable locally finite
graphs.

In particular, R has a 1-factorization, and a partition into Hamiltonian
paths.

5. Homogeneity and Categoricity

We come now to two model-theoretic properties of R. These illustrate
two important general theorems, the Engeler–Ryll-Nardzewski–Svenonius
theorem and Fräıssé’s theorem. The context is first-order logic; so a structure
is a set equipped with a collection of relations, functions and constants whose
names are specified in the language. If there are no functions or constants, we
have a relational structure. The significance is that any subset of a relational
structure carries an induced substructure. (In general, a substructure must
contain the constants and be closed with respect to the functions.)

Let M be a relational structure. We say that M is homogeneous if every
isomorphism between finite induced substructures of M can be extended to
an automorphism of M .

Proposition 9. R is homogeneous.

Proof. In the proof of Fact 2, the back-and-forth machine can be started with
any given isomorphism between finite substructures of the graphs Γ1 and Γ2,
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and extends it to an isomorphism between the two structures. Now, taking
Γ1 and Γ2 to be R gives the conclusion. �

Fräıssé [30] observed that Q (as an ordered set) is homogeneous, and
used this as a prototype: he gave a necessary and sufficient condition for the
existence of a homogeneous structure with prescribed finite substructures.
Following his terminology, the age of a structure M is the class of all
finite structures embeddable in M . A class C of finite structures has the
amalgamation property if, given A, B1, B2 ∈ C and embeddings f1 : A → B1

and f2 : A → B2, there exists C ∈ C and embeddings g1 : B1 → C and
g2 : B2 → C such that f1g1 = f2g2. (Less formally, if the two structures
B1, B2 have isomorphic substructures A, they can be “glued together” so
that the copies of A coincide, the resulting structure C also belonging to the
class C.) We allow A = ∅ here.

Theorem 3. (a) A class C of finite structures (over a fixed relational
language)is the age of a countable homogeneous structure M if and
only if C is closed under isomorphism, closed under taking induced
substructures, contains only countably many non-isomorphic structures,
and has the amalgamation property.

(b) If the conditions of (a) are satisfied, then the structure M is unique up
to isomorphism.

A class C having the properties of this theorem is called a Fräıssé class,
and the countable homogeneous structure M whose age is C is its Fräıssé
limit. The class of all finite graphs is Fräıssé class; its Fräıssé limit is R. The
Fräıssé limit of a class C is characterized by a condition generalizing property
(∗): If A and B are members of the age of M with A ⊆ B and |B| = |A| + 1,
then every embedding of A into M can be extended to an embedding of B
into M .

In the statement of the amalgamation property, when the two structures
B1, B2 are “glued together”, the overlap may be larger than A. We say
that the class C has the strong amalgamation property if this doesn’t occur;
formally, if the embeddings g1, g2 can be chosen so that, if b1g1 = b2g2,
then there exists a ∈ A such that b1 = af1 and b2 = af2. This property is
equivalent to others we have met.

Proposition 10. Let M be the Fräıssé limit of the class C, and G =
Aut(M). Then the following are equivalent:

(a) C has the strong amalgamation property;
(b) M \A ∼= M for any finite subset A of M ;
(c) The orbits of GA on M \ A are infinite for any finite subset A of M ,

where GA is the setwise stabiliser of A.

See Cameron [10], El-Zahar and Sauer [24].
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A structureM is called ℵ0-categorical if any countable structure satisfying
the same first-order sentences as M is isomorphic to M . (We must specify
countability here: the upward Löwenheim–Skolem theorem shows that, if M
is infinite, then there are structures of arbitrarily large cardinality which
satisfy the same first-order sentences as M .)

Proposition 11. R is ℵ0-categorical.

Proof. Property (∗) is not first-order as it stands, but it can be translated
into a countable set of first-order sentences σm,n (for m,n ∈ N), where σm,n
is the sentence

(∀u1..umv1..vn)

((
(u1 = v1)& . . .&

(um = vn)

)
→(∃z)

(
(z ∼ u1)& . . .&(z ∼ um)&

¬(z ∼ v1)& . . .&¬(z ∼ vn)

))
.�

Once again this is an instance of a more general result. An n-type in
a structure M is an equivalence class of n-tuples, where two tuples are
equivalent if they satisfy the same (n-variable) first-order formulae. Now
the following theorem was proved by Engeler [25], Ryll-Nardzewski [61] and
Svenonius [68]:

Theorem 4. For a countable first-order structure M , the following condi-
tions are equivalent:

(a) M is ℵ0-categorical;
(b) M has only finitely many n-types, for every n;
(c) The automorphism group of M has only finitely many orbits on Mn, for

every n.

Note that the equivalence of conditions (a) (axiomatizability) and (c)
(symmetry) is in the spirit of Klein’s Erlanger Programm. The fact that
R satisfies (c) is a consequence of its homogeneity, since (x1, . . . , xn) and
(y1, . . . , yn) lie in the same orbit of Aut(R) if and only if the map (xi → yi)
(i = 1, . . . , n) is an isomorphism of induced subgraphs, and there are only
finitely many n-vertex graphs.

Remark 2. The general definition of an n-type in first-order logic is more
complicated than the one given here: roughly, it is a maximal set of n-variable
formulae consistent with a given theory. I have used the fact that, in an ℵ0-
categorical structure, any n-type is realized (i.e., satisfied by some tuple)—
this is a consequence of the Gödel–Henkin completeness theorem and the
downward Löwenheim–Skolem theorem. See Hodges [39] for more details.

Some properties of R can be deduced from either its homogeneity or
its ℵ0-categoricity. For example, Proposition 6 generalizes. We say that a
countable relational structure M is universal (or rich for its age, in Fräıssé’s
terminology [31]) if every countable structure N whose age is contained in
that of M (i.e., which is younger than M) is embeddable in M .

Theorem 5. If M is either ℵ0-categorical or homogeneous, then it is
universal.
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The proof for homogeneous structures follows that of Proposition 6,
using the analogue of property (∗) described above. The argument for ℵ0-
categorical structures is a bit more subtle, using Theorem 5.4 and König’s
Infinity Lemma: see Cameron [11].

6. First-Order Theory of Random Graphs

The graph R controls the first-order theory of finite random graphs, in a
manner I now describe. This theory is due to Glebskii et al. [34], Fagin [29],
and Blass and Harary [4]. A property P holds in almost all finite random
graphs if the proportion of N -vertex graphs which satisfy P tends to 1 as
N → ∞. Recall the sentences σm,n which axiomatize R.

Theorem 6. Let θ be a first-order sentence in the language of graph theory.
Then the following are equivalent:

(a) θ holds in almost all finite random graphs;
(b) θ holds in the graph R;
(c) θ is a logical consequence of {σm,n : m,n ∈ N}.

Proof. The equivalence of (b) and (c) is immediate from the Gödel–Henkin
completeness theorem for first-order logic and the fact that the sentences
σm,n axiomatize R.

We show that (c) implies (a). First we show that σm,n holds in almost all
finite random graphs. The probability that it fails in an N -vertex graph is not
greater than Nm+n(1− 1

2m+n )N−m−n, since there are at most Nm+n ways of
choosing m+n distinct points, and (1− 1

2m+n )N−m−n is the probability that
no further point is correctly joined. This probability tends to 0 as N → ∞.

Now let θ be an arbitrary sentence satisfying (c). Since proofs in first-order
logic are finite, the deduction of θ involves only a finite set Σ of sentences
σm,n. It follows from the last paragraph that almost all finite graphs satisfy
the sentences in Σ; so almost all satisfy θ too.

Finally, we show that not (c) implies not (a). If (c) fails, then θ doesn’t
hold in R, so (¬θ) holds in R, so (¬θ) is a logical consequence of the
sentences σm,n. By the preceding paragraph, (¬θ) holds in almost all random
graphs. �

The last part of the argument shows that there is a zero-one law:

Corollary 1. Let θ be a sentence in the language of graph theory. Then
either θ holds in almost all finite random graphs, or it holds in almost none.

It should be stressed that, striking though this result is, most interesting
graph properties (connectedness, hamiltonicity, etc.) are not first-order, and
most interesting results on finite random graphs are obtained by letting the
probability of an edge tend to zero in a specified manner as N → ∞, rather
than keeping it constant (see Bollobás [5]). Nevertheless, we will see a recent
application of Theorem 6 later.
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7. Measure and Category

When the existence of an infinite object can be proved by a probabilistic
argument (as we did with R in Sect. 1), it is often the case that an alternative
argument using the concept of Baire category can be found. In this section, I
will sketch the tools briefly. See Oxtoby [55] for a discussion of measure and
Baire category.

In a topological space, a set is dense if it meets every nonempty open set;
a set is residual if it contains a countable intersection of open dense sets. The
Baire category theorem states:

Theorem 7. In a complete metric space, any residual set is non-empty.

(The analogous statement for probability is that a set which contains a
countable intersection of sets of measure 1 is non-empty. We used this to
prove Fact 1.)

The simplest situation concerns the space 2N of all infinite sequences of
zeros and ones. This is a probability space, with the “coin-tossing measure”—
this was the basis of our earlier discussion—and also a complete metric space,
where we define d(x, y) = 1

2n if the sequences x and y agree in positions
0, 1, . . . , n − 1 and disagree in position n. Now the topological concepts
translate into combinatorial ones as follows. A set S of sequences is open
if and only if it is finitely determined, i.e., any x ∈ S has a finite initial
segment such that all sequences with this initial segment are in S. A set S
is dense if and only if it is always reachable, i.e., any finite sequence has a
continuation lying in S. Now it is a simple exercise to prove the Baire category
theorem for this space, and indeed to show that a residual set is dense and
has cardinality 2ℵ0 . We will say that “almost all sequences have property P
(in the sense of Baire category)” if the set of sequences which have property
P is residual.

We can describe countable graphs by binary sequences: take a fixed
enumeration of the 2-element sets of vertices, and regard the sequence as
the characteristic function of the edge set of the graph. This gives meaning
to the phrase “almost all graphs (in the sense of Baire category)”. Now, by
analogy with Fact 1, we have:

Fact 3. Almost all countable graphs (in the sense of either measure or Baire
category) have property (∗).

The proof is an easy exercise. In fact, it is simpler for Baire category than
for measure—no limit is required!

In the same way, almost all binary sequences (in either sense) are universal
(as defined in Sect. 2).

A binary sequence defines a path in the binary tree of countable height,
if we start at the root and interpret 0 and 1 as instructions to take the left or
right branch at any node. More generally, given any countable tree, the set of
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paths is a complete metric space, where we define the distance between two
paths to be 1

2n if they first split apart at level n in the tree. So the concept
of Baire category is applicable. The combinatorial interpretation of open and
dense sets is similar to that given for the binary case.

For example, the age of a countable relational structure M can be
described by a tree: nodes at level n are structures in the age which have point
set {0, 1, . . . , n− 1}, and nodes Xn, Xn+1 at levels n and n+ 1 are declared
to be adjacent if the induced structure of Xn+1 on the set {0, 1, . . . , n − 1}
is Xn. A path in this tree uniquely describes a structure N on the natural
numbers which is younger than M , and conversely. Now Fact 3 generalizes
as follows:

Proposition 12. IfM is a countable homogeneous relational structure, then
almost all countable structures younger than M are isomorphic to M .

It is possible to formulate analogous concepts in the measure-theoretic
framework, though with more difficulty. But the results are not so straight-
forward. For example, almost all finite triangle-free graphs are bipartite (a
result of Erdős, Kleitman and Rothschild [26]); so the “random countable
triangle-free graph” is almost surely bipartite. (In fact, it is almost surely
isomorphic to the “random countable bipartite graph”, obtained by taking
two disjoint countable sets and selecting edges between them at random.)

A structure which satisfies the conclusion of Proposition 12 is called
ubiquitous (or sometimes ubiquitous in category, if we want to distinguish
measure-theoretic or other forms of ubiquity). Thus the random graph is
ubiquitous in both measure and category. See Bankston and Ruitenberg [2]
for further discussion.

8. The Automorphism Group

8.1. General Properties

From the homogeneity of R (Proposition 9), we see that it has a large
and rich group of automorphisms: the automorphism group G = Aut(R)
acts transitively on the vertices, edges, non-edges, etc.—indeed, on finite
configurations of any given isomorphism type. In the language of permutation
groups, it is a rank 3 permutation group on the vertex set, since it has three
orbits on ordered pairs of vertices, viz., equal, adjacent and non-adjacent
pairs. Much more is known about G; this section will be the longest so far.

First, the cardinality:

Proposition 13. |Aut(R)| = 2ℵ0 .

This is a special case of a more general fact. The automorphism group of
any countable first-order structure is either at most countable or of cardinality
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2ℵ0 , the first alternative holding if and only if the stabilizer of some finite
tuple of points is the identity.

The normal subgroup structure was settled by Truss [71]:

Theorem 8. Aut(R) is simple.

Truss proved a stronger result: if g and h are two non-identity elements
of Aut(R), then h can be expressed as a product of five conjugates of g
or g−1. (This clearly implies simplicity.) Recently Macpherson and Tent
[49] gave a different proof of simplicity which applies in more general
situations.

Truss also described the cycle structures of all elements of Aut(R).
A countable structure M is said to have the small index property if any

subgroup of Aut(M) with index less than 2ℵ0 contains the pointwise stabilizer
of a finite set of points of M ; it has the strong small index property if any
such subgroup lies between the pointwise and setwise stabilizer of a finite set
(see Truss [72]). Hodges et al. [40] and Cameron [13] showed:

Theorem 9. R has the strong small index property.

The significance of this appears in the next subsection. It is also related
to the question of the reconstruction of a structure from its automorphism
group. For example, Theorem 9 has the following consequence:

Corollary 2. Let Γ be a graph with fewer than 2ℵ0 vertices, on which Aut(R)
acts transitively on vertices, edges and non-edges. Then Γ is isomorphic to
R (and the isomorphism respects the action of Aut(R)).

8.2. Topology

The symmetric group Sym(X) on an infinite set X has a natural topology,
in which a neighbourhood basis of the identity is given by the pointwise
stabilizers of finite tuples. In the case where X is countable, this topology is
derived from a complete metric, as follows. Take X = N.

Let m(g) be the smallest point moved by the permutation g. Take the

distance between the identity and g to be max{2−m(g), 2−m(g−1)}. Finally,
the metric is translation-invariant, so that d(f, g) = d(fg−1, 1).

Proposition 14. Let G be a subgroup of the symmetric group on a countable
set X. Then the following are equivalent:

(a) G is closed in Sym(X);
(b) G is the automorphism group of a first-order structure on X;
(c) G is the automorphism group of a homogeneous relational structure on X.

So automorphism groups of homogeneous relational structures such as R
are themselves topological groups whose topology is derived from a complete
metric.
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In particular, the Baire category theorem applies to groups like Aut(R).
So we can ask: is there a “typical” automorphism? Truss [73] showed the
following result.

Theorem 10. There is a conjugacy class which is residual in Aut(R). Its
members have infinitely many cycles of each finite length, and no infinite
cycles.

Members of the residual conjugacy class (which is, of course, unique)
are called generic automorphisms of R. I outline the argument. Each of the
following sets of automorphisms is residual:

(a) Those with no infinite cycles;
(b) Those automorphisms g with the property that, if Γ is any finite graph

and f any isomorphism between subgraphs of Γ, then there is an
embedding of Γ into R in such a way that g extends f .

(Here (a) holds because the set of automorphisms for which the first n points
lie in finite cycles is open and dense.) In fact, (b) can be strengthened; we
can require that, if the pair (Γ, f) extends the pair (Γ0, f0) (in the obvious
sense), then any embedding of Γ0 into R such that g extends f0 can be
extended to an embedding of Γ such that g extends f . Then a residual set of
automorphisms satisfy both (a) and the strengthened (b); this is the required
conjugacy class.

Another way of expressing this result is to consider the class C of finite
structures each of which is a graph Γ with an isomorphism f between
two induced subgraphs (regarded as a binary relation). This class satisfies
Fräıssé’s hypotheses, and so has a Fräıssé limit M . It is not hard to show
that, as a graph, M is the random graph R; arguing as above, the map f can
be shown to be a (generic) automorphism of R.

More generally, Hodges et al. [40] showed that there exist “generic n-
tuples” of automorphisms of R, and used this to prove the small index
property for R; see also Hrushovski [41]. The group generated by a generic
n-tuple of automorphisms is, not surprisingly, a free group; all its orbits are
finite. In the next subsection, we turn to some very different subgroups.

To conclude this section, we revisit the strong small index property. Recall
that a neighbourhood basis for the identity consists of the pointwise stabilisers
of finite sets. If the strong small index property holds, then every subgroup
of small index (less than 2ℵ0) contains one of these, and so is open. So we can
take the subgroups of small index as a neighbourhood basis of the identity.
So we have the following reconstruction result:

Proposition 15. If M is a countable structure with the strong small index
property (for example, R), then the structure of Aut(M) as topological group
is determined by its abstract group structure.
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8.3. Subgroups

Another field of study concerns small subgroups. To introduce this, we
reinterpret the last construction of R in Sect. 2. Recall that we took a
universal set S ⊆ N, and showed that the graph Γ(S) with vertex set Z,
in which x and y are adjacent whenever |x− y| ∈ S, is isomorphic to R. Now
this graph admits the “shift” automorphism x !→ x+ 1, which permutes the
vertices in a single cycle. Conversely, let g be a cyclic automorphism of R.
We can index the vertices of R by integers so that g is the map x !→ x + 1.
Then, if S = {n ∈ N : n ∼ 0}, we see that x ∼ y if and only if |x−y| ∈ S, and
that S is universal. A short calculation shows that two cyclic automorphisms
are conjugate in Aut(R) if and only if they give rise to the same set S. Since
there are 2ℵ0 universal sets, we conclude:

Proposition 16. R has 2ℵ0 non-conjugate cyclic automorphisms.

(Note that this gives another proof of Proposition 13.)
Almost all subsets of N are universal—this is true in either sense discussed

in Sect. 7. The construction preceding Proposition 16 shows that graphs
admitting a given cyclic automorphism correspond to subsets of N; so almost
all “cyclic graphs” are isomorphic to R. What if the cyclic permutation is
replaced by an arbitrary permutation or permutation group? The general
answer is unknown:

Conjecture 1. Given a permutation group G on a countable set, the
following are equivalent:

(a) Some G-invariant graph is isomorphic to R;
(b) A random G-invariant graph is isomorphic to R with positive probability.

A random G-invariant graph is obtained by listing the orbits of G on
the 2-subsets of the vertex set, and deciding randomly whether the pairs
in each orbit are edges or not. We cannot replace “positive probability” by
“probability 1” here. For example, consider a permutation with one fixed
point x and two infinite cycles. With probability 1

2 , x is joined to all or none
of the other vertices; if this occurs, the graph is not isomorphic to R. However,
almost all graphs for which this event does not occur are isomorphic to R.
It can be shown that the conjecture is true for the group generated by a
single permutation; and Truss’ list of cycle structures of automorphisms can
be re-derived in this way.

Another interesting class consists of the regular permutation groups.
A group is regular if it is transitive and the stabilizer of a point is the identity.
Such a group G can be considered to act on itself by right multiplication.
Then any G-invariant graph is a Cayley graph for G; in other words, there is
a subset S of G, closed under inverses and not containing the identity, so that
x and y are adjacent if and only if xy−1 ∈ S. Now we can choose a random
Cayley graph for G by putting inverse pairs into S with probability 1

2 . It is
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not true that, for every countable group G, a random Cayley graph for G
is almost surely isomorphic to R. Necessary and sufficient conditions can be
given; they are somewhat untidy. I will state here a fairly general sufficient
condition.

A square-root set in G is a set
√
a = {x ∈ G : x2 = a};

it is principal if a = 1, and non-principal otherwise.

Proposition 17. Suppose that the countable group G cannot be expressed as
the union of finitely many translates of non-principal square-root sets and a
finite set. Then almost all Cayley graphs for G are isomorphic to R.

This proposition is true in the sense of Baire category as well. In the
infinite cyclic group, a square-root set has cardinality at most 1; so the earlier
result about cyclic automorphisms follows. See Cameron and Johnson [15] for
further details.

8.4. Overgroups

There are a number of interesting overgroups of Aut(R) in the symmetric
group on the vertex set X of R.

Pride of place goes to the reducts, the overgroups which are closed in the
topology on Sym(X) (that is, which are automorphism groups of relational
structures which can be defined from R without parameters). These were
classified by Simon Thomas [69].

An anti-automorphism of R is an isomorphism from R to its complement;
a switching automorphism maps R to a graph equivalent to R by switching.
The concept of a switching anti-automorphism should be clear.

Theorem 11. There are exactly five reducts of R, viz.: A = Aut(R); the
group D of automorphisms and anti-automorphisms of R; the group S of
switching automorphisms of R; the group B of switching automorphisms and
anti-automorphisms of R; and the symmetric group.

Remark 3. The set of all graphs on a given vertex set is a Z2-vector space,
where the sum of two graphs is obtained by taking the symmetric difference
of their edge sets. Now complementation corresponds to adding the complete
graph, and switching to adding a complete bipartite graph. Thus, it follows
from Theorem 11 that, if G is a closed supergroup of Aut(R), then the set of
all images of R under G is contained in a coset of a subspace W (G) of this
vector space. (For example, W (B) consists of all complete bipartite graphs
and all unions of at most two complete graphs.) Moreover, these subspaces are
invariant under the symmetric group. It is remarkable that the combinatorial
proof leads to this algebraic conclusion.
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Here is an application due to Cameron and Martins [18], which draws
together several threads from earlier sections. Though it is a result about
finite random graphs, the graph R is inextricably involved in the proof.

Let F be a finite collection of finite graphs. For any graph Γ, let F(Γ)
be the hypergraph whose vertices are those of Γ, and whose edges are the
subsets which induce graphs in F . To what extent does F(Γ) determine Γ?

Theorem 12. Given F , one of the following possibilities holds for almost
all finite random graphs Γ:

(a) F(Γ) determines Γ uniquely;
(b) F(Γ) determines Γ up to complementation;
(c) F(Γ) determines Γ up to switching;
(d) F(Γ) determines Γ up to switching and/or complementation;
(e) F(Γ) determines only the number of vertices of Γ.

I sketch the proof in the first case, that in which F is not closed
under either complementation or switching. We distinguish two first-order
languages, that of graphs and that of hypergraphs (with relations of the
arities appropriate for the graphs in F). Any sentence in the hypergraph
language can be “translated” into the graph language, by replacing “E is an
edge” by “the induced subgraph on E is one of the graphs in F”.

By the case assumption and Theorem 11, we have Aut(F(R)) = Aut(R).
Now by Theorem 4, the edges and non-edges in R are 2-types in F(R), so
there is a formula φ(x, y) (in the hypergraph language) such that x ∼ y in R
if and only if φ(x, y) holds in F(R). If φ∗ is the “translation” of φ, then R
satisfies the sentence

(∀x, y)((x ∼ y) ↔ φ∗(x, y)).

By Theorem 6, this sentence holds in almost all finite graphs. Thus, in almost
all finite graphs, Γ, vertices x and y are joined if and only if φ(x, y) holds in
F(Γ). So F(Γ) determines Γ uniquely.

By Theorem 11, Aut(F(R)) must be one of the five possibilities listed;
in each case, an argument like the one just given shows that the appropriate
conclusion holds.

There are many interesting overgroups of Aut(R) which are not closed,
some of which are surveyed (and their inclusions determined) in a forthcoming
paper of Cameron et al. [16]. These arise in one of two ways.

First, we can take automorphism groups of non-relational structures, such
as hypergraphs with infinite hyperedges (for example, take the hyperedges to
be the subsets of the vertex set which induce subgraphs isomorphic to R), or
topologies or filters (discussed in the next section). Second, we may weaken
the notion of automorphism. For example, we have a chain of subgroups

Aut(R) < Aut1(R) < Aut2(R) < Aut3(R) < Sym(V (R))

with all inclusions proper, where
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• Aut1(R) is the set of permutations which change only finitely many
adjacencies (such permutations are called almost automorphisms of R);

• Aut2(R) is the set of permutations which change only finitely many
adjacencies at any vertex of R;

• Aut3(R) is the set of permutations which change only finitely many
adjacencies at all but finitely many vertices of R.

All these groups are highly transitive, that is, given any two n-tuples
(v1, . . . , vn) and (w1, . . . , wn) of distinct vertices, there is an element of
the relevant group carrying the first tuple to the second. This follows from
Aut1(R) by the indestructibility of R. If R1 and R2 are the graphs obtained
by deleting all edges within {v1, . . . , vn} and within {w1, . . . , wn} respectively,
then R1 and R2 are both isomorphic to R. By homogeneity of R, there is
an isomorphism from R1 to R2 mapping (v1, . . . , vn) to (w1, . . . , wn); clearly
this map is an almost-automorphism of R.

Indeed, any overgroup of R which is not a reduct preserves no non-trivial
relational structure, and so must be highly transitive.

9. Topological Aspects

There is a natural way to define a topology on the vertex set of R: we
take as a basis for the open sets the set of all finite intersections of vertex
neighbourhoods. It can be shown that this topology is homeomorphic to Q

(using the characterization of Q as the unique countable, totally disconnected,
topological space without isolated points, due to Sierpińiski [66], see also
Neumann [54]). Thus:

Proposition 18. Aut(R) is a subgroup of the homeomorphism group of Q.

This is related to a theorem of Mekler [50]:

Theorem 13. A countable permutation group G is embeddable in the
homeomorphism group of Q if and only if the intersection of the supports
of any finite number of elements of G is empty or infinite.

Here, the support of a permutation is the set of points it doesn’t fix. Now
of course Aut(R) is not countable; yet it does satisfy Mekler’s condition.
(If x is moved by each of the automorphisms g1, . . . , gn, then the infinitely
many vertices joined to x but to none of xg1, . . . , xgn are also moved by these
permutations.)

The embedding in Proposition 18 can be realised constructively: the
topology can be defined directly from the graph. Take a basis for the open
sets to be the sets of witnesses for our defining property (∗); that is, sets of
the form

Z(U, V ) = {z ∈ V (R) : (∀u ∈ U)(z ∼ u) ∧ (∀v ∈ V )(z ∼ v)}
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for finite disjoint sets U and V . Now given u = v, there is a point
z ∈ Z({u}, {v}); so the open neighbourhood of z is open and closed in the
topology and contains u but not v. So the topology is totally disconnected. It
has no isolated points, so it is homeomorphic to Q, by Sierpiński’s Theoreom.

There is another interesting topology on the vertex set of R, which can be
defined in three different ways. Let B be the “random bipartite graph”, the
graph with vertex set X∪Y where X and Y are countable and disjoint, where
edges between X and Y are chosen randomly. (A simple modification of the
Erdős–Rényi argument shows that there is a unique graph which occurs with
probability 1.) Now consider the following topologies on a countable set X :

T : point set V (R), sub-basic open sets are open vertex neighbourhoods.
T ∗: points set V (R), sub-basic open sets are closed vertex neighbourhoods.
T †: points are one bipartite block in B, sub-basic open sets are neighbour-
hoods of vertices in the other bipartite block.

Proposition 19. (a) The three topologies defined above are all homeomor-
phic.

(b) The homeomorphism groups of these topologies are highly transitive.

Note that the topologies are homeomorphic but not identical. For
example, the identity map is a continuous bijection from T ∗ to T , but is
not a homeomorphism.

10. Some Other Structures

10.1. General Results

As we have seen, R has several properties of a general kind: for example,
homogeneity, ℵ0-categoricity, universality, ubiquity. Much effort has gone into
studying, and if possible characterizing, structures of other kinds with these
properties. (For example, they are all shared by the ordered set Q.)

Note that, of the four properties listed, the first two each imply the third,
and the first implies the fourth. Moreover, a homogeneous structure over a
finite relational language is ℵ0-categorical, since there are only finitely many
isomorphism types of n-element structure for each n. Thus, homogeneity is
in practice the strongest condition, most likely to lead to characterizations.

A major result of Lachlan and Woodrow [48] determines the countable
homogeneous graphs. The graphs Hn in this theorem are so-called because
they were first constructed by Henson [36].

Theorem 14. A countable homogeneous graph is isomorphic to one of the
following:

(a) The disjoining union of m complete graphs of size n, where m,n ≤ ℵ0

and at least one of m and n is ℵ0;
(b) Complements of (a);
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(c) The Fräıssé limit Hn of the class of Kn-free graphs, for fixed n ≥ 3;
(d) Complements of (c);
(e) The random graph R.

The result of Macpherson and Tent [49] shows that the automorphism
groups of the Henson graphs are simple. It follows from Proposition 15
that Aut(R) is not isomorphic to Aut(Hn). Herwig [38] showed that these
automorphism groups are all pairwise non-isomorphic; see also Barbina and
Macpherson [3].

Other classes in which the homogeneous structures have been deter-
mined include finite graphs (Gardiner [32]), tournaments (Lachlan [47]—
surprisingly, there are just three), digraphs (Cherlin [21] (there are un-
countably many, see Henson [37]), posets (Schmerl [62]) and permutations
(Cameron[12]). In the case of posets, Droste [23] has characterizations under
weaker assumptions.

For a number of structures, properties of the automorphism group,
such as normal subgroups, small index property, or existence of generic
automorphisms, have been established.

A theorem of Cameron [8] determines the reducts of Aut(Q):

Theorem 15. There are just five closed permutation groups containing the
group Aut(Q) of order-preserving permutations of Q, viz.: Aut(Q); the group
of order preserving or reversing permutations; the group of permutations
preserving a cyclic order; the group of permutations preserving or reversing
a cyclic order; and Sym(Q).

However, there is no analogue of Theorem 12 in this case, since there is
no Glebskii–Blass–Fagin–Harary theory for ordered sets. (Q is dense; this is
a first-order property, but no finite ordered set is dense.)

Simon Thomas [70] has determined the reducts of the random k-uniform
hypergraph for all k.

Since my paper with Paul Erdős concerns sum-free sets (Cameron and
Erdős [14]), it is appropriate to discuss their relevance here. Let Hn be the
Fräıssé limit of the class of Kn-free graphs, for n ≥ 3 (see Theorem 14). These
graphs were first constructed by Henson [36], who also showed that H3 admits
cyclic automorphisms but Hn does not for n > 3. We have seen how a subset
S of N gives rise to a graph Γ(S) admitting a cyclic automorphism: the vertex
set is Z, and x ∼ y if and only if |x− y| ∈ S. Now Γ(S) is triangle-free if and
only if S is sum-free (i.e., x, y ∈ S ⇒ x + y /∈ S). It can be shown that, for
almost all sum-free sets S (in the sense of Baire category), the graph Γ(S)
is isomorphic to H3; so H3 has 2ℵ0 non-conjugate cyclic automorphisms.
However, the analogue of this statement for measure is false; and, indeed,
random sum-free sets have a rich and surprising structure which is not well
understood (Cameron [9]). For example, the probability that Γ(S) is bipartite
is approximately 0.218. It is conjectured that a random sum-free set S almost
never satisfies Γ(S) ∼= H3. In this direction, Schoen [63] has shown that, if
Γ(S) ∼= H3, then S has density zero.
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The Henson Kn-free graphs Hn, being homogeneous, are ubiquitous in
the sense of Baire category: for example, the set of graphs isomorphic to H3

is residual in the set of triangle-free graphs on a given countable vertex set
(so H3 is ubiquitous, in the sense defined earlier). However, until recently,
no measure-theoretic analogue was known. We saw after Proposition 12
that a random triangle-free graph is almost surely bipartite! However,
Petrov and Vershik [57] recently managed to construct an exchangeable
measure on graphs on a given countable vertex set which is concentrated on
Henson’s graph. More recently, Ackerman, Freer and Patel [1] showed that
the construction works much more generally: the necessary and sufficient
condition turns out to be the strong amalgamation property, which we
discussed in Sect. 5.

Universality of a structure M was defined in a somewhat introverted way
in Sect. 5: M is universal if every structure younger than M is embeddable
in M . A more general definition would start with a class C of structures,
and say that M ∈ C is universal for C if every member of C embeds into
M . For a survey on this sort of universality, for various classes of graphs, see
Komjath and Pach [46]. Two early negative results, for the classes of locally
finite graphs and of planar graphs, are due to De Bruijn (see Rado [59]) and
Pach [56] respectively.

10.2. The Urysohn Space

A remarkable example of a homogeneous structure is the celebrated Urysohn
space, whose construction predates Fräıssé’s work by more than two decades.
Urysohn’s paper [74] was published posthumously, following his drowning in
the Bay of Biscay at the age of 26 on his first visit to western Europe (one
of the most romantic stories in mathematics). An exposition of the Urysohn
space is given by Vershik [75].

The Urysohn space is a complete separable metric space U which is
universal (every finite metric space is isometrically embeddable in U) and
homogeneous (any isometry between finite subsets can be extended to an
isometry of the whole space). Since U is uncountable, it is not strictly covered
by the Fräıssé theory, but one can proceed as follows. The set of finite
rational metric spaces (those with all distances rational) is a Fräıssé class; the
restriction to countable distances ensures that there are only countably many
non-isomorphic members. Its Fräıssé limit is the so-called rational Urysohn
space UQ. Now the Urysohn space is the completion of UQ.

Other interesting homogeneous metric spaces can be constructed simi-
larly, by restricting the values of the metric in the finite spaces. For example,
we can take integral distances, and obtain the integral Urysohn space UZ . We
can also take distances from the set {0, 1, 2, . . . , k} and obtain a countable
homogeneous metric space with these distances. For k = 2, we obtain
precisely the path metric of the random graph R. (Property (∗) guarantees
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that, given two points at distance 2, there is a point at distance 1 from both;
so, defining two points to be adjacent if they are at distance 1, we obtain a
graph whose path metric is the given metric. It is easily seen that this graph
is isomorphic to R.)

Note that R occurs in many different ways as a reduct of UQ. Split the
positive rationals into two dense subsets A and B, and let two points v, w be
adjacent if d(v, w) ∈ A; the graph we obtain is R.

A study of the isometry group of the Urysohn space, similar to that done
for R, was given by Cameron and Vershik [19]. The automorphism group
is not simple, since the isometries which move every point by a bounded
distance form a non-trivial normal subgroup.

10.3. KPT Theory

I conclude with a brief discussion of a dramatic development at the interface
of homogeneous structures, Ramsey theory, and topological dynamics.

The first intimation of such a connection was pointed out by Nešetřil [51];
in [52] he suggested using this connection to characterize Ramsey classes,
see also [43]. We use the notation

(
A
B

)
for the set of all substructures of A

isomorphic to B. A class C of finite structures is a Ramsey class if, given a
natural number r and a pair A,B of structures in C, there exists a structure
C ∈ C such that, if

(
C
A

)
is partitioned into r classes, then there is an element

B′ ∈
(
C
B

)
for which

(
B′
A

)
is contained in a single class. In other words, if we

colour the A-substructures of C with r colours, then there is a B-substructure
of C, all of whoseA-substructures belong to the same class. Ramsey’s classical
theorem asserts that the class of finite sets is a Ramsey class.

Theorem 16. A hereditary isomorphism-closed Ramsey class is a Fräıssé
class.

There are simple examples which show that a good theory of Ramsey
classes can only be obtained by making the objects rigid. The simplest way
to do this is to require that a total order is part of the structure. Note that,
if a Fräıssé class has the strong amalgamation property, than we may adjoin
to it a total order (independent of the rest of the structure) to obtain a new
Fräıssé class. We refer to ordered structures in this situation. Now the theorem
above suggests a procedure for finding Ramsey classes: take a Fräıssé class
of ordered structures and test the Ramsey property. A number of Ramsey
classes, old and new, arise in this way: ordered graphs, Kn-free graphs, metric
spaces, etc. Indeed, if we take an ordered set and “order” it as above to obtain
a set with two orderings, we obtain the class of permutation patterns, which
is also a Ramsey class: see Cameron [7], Böttcher and Foniok [13], Sokić [67]
and, for a more general result, Bodirsky [6].

The third vertex of the triangle was quite unexpected.
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A flow is a continuous action of a topological group G on a topological
space X , usually assumed to be a compact Hausdorff space. A topological
group G admits a unique minimal flow, or universal minimal continuous
action on a compact space X . (Here minimal means that X has no non-
empty proper closed G-invariant subspace, and universal means that it can
be mapped onto any minimal G-flow.)

The group G is said to be extremely amenable if its minimal flow consists
of a single point.

The theorem of Kechris, Pestov and Todorcevic [45] asserts:

Theorem 17. Let X be a countable set, and G a closed subgroup of Sym(X).
Then G is extremely amenable if and only if it is the automorphism group of
a homogeneous structure whose age is a Ramsey class of ordered structures.

As a simple example, the theorem shows that Aut(Q) (the group of order-
preserving permutations of Q is extremely amenable (a result of Pestov).

The fact that the two conditions are equivalent allows information to
be transferred in both directions between combinatorics and topological
dynamics. In particular, known Ramsey classes such as ordered graphs,
ordered Kn-free graphs, ordered metric spaces, and permutation patterns
give examples of extremely amenable groups.

The theorem can also be used in determining the minimal flows for various
closed subgroups of Sym(X). For example, the minimal flow for Sym(X) is
the set of all total orderings of X (a result of Glasner and Weiss [33]).

Acknowledgements I am grateful to J. Schmerl and the editors for helpful
comments.
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43. J. Hubička and J. Nešetřil (2005), Finite presentation of homogeneous graphs,
posets and Ramsey classes. Probability in mathematics. Israel J. Math. 149,
21–44.

44. E. V. Huntington (1904), The continuum as a type of order: an exposition of
the model theory, Ann. Math. 6, 178–179.

45. A. S. Kechris, V. G. Pestov and S. Todorcevic (2005), Fräıssé limits, Ramsey
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Alfréd Rényi Institute of Mathematics, 1364, Budapest, Hungary
e-mail: ahajnal@renyi.hu

1. An Apology

Paul Erdős has published more than one hundred research papers in set
theory. It is my rough estimate that these contain more than one thousand
theorems, many having an interest in their own right. Although most of his
problems and results have a combinatorial flavour, and the subject now known
as “combinatorial set theory” is one he helped to create, it is also true to say
that his work has had a very important impact upon the direction of research
in many parts of present day set theory. Whole theories have developed out
of basic questions which he formulated.

This (relatively) short note does not, and is not intended to, give a
methodical survey of set theory or combinatorial set theory or even of Erdős’
work in set theory. I shall simply write about some of the ideas as I learned
them during our cooperation over many years, some of the highlights, and
some of the outstanding results. In many cases it will not be possible to give
a detailed discussion of the present day status of some of the problems I shall
mention. If the reader considers that my own name occurs too frequently in
this note, I can only offer the excuse that we have published more than 50
joint papers, mostly in set theory, and I probably know these papers better
than the rest of his work.

2. Early Days and Some Philosophy

Paul was a child mathematical prodigy, and he started to discover outstand-
ing original results in number theory as a first year undergraduate. We are
familiar with the names of mathematicians who influenced his early work in
number theory and analysis, Pál Veress, Fejér, Davenport, Mordell to mention
just a few. But this is not true for set theory. Paul told me that he learned the
basics of set theory from his father, a well educated high-school teacher, and
he soon became fascinated with “Cantor’s paradise”. However, he discovered
set theory as a subject for research by himself.
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Paul, who has always refrained from seriously formulating any kind of
philosophy, was (and still is) the ultimate Platonist. ℵωω+1+1 existed for him
just as surely as 3, the smallest odd prime. He was driven by the same
compulsive search for “truth” whether he was thinking about inaccessible
cardinals or twin primes. Moreover, he could switch from one subject to the
other in an instant. All questions which admit a relevant answer in finite
combinatorics should also be asked and answered in set theory, and vice-
versa. A large part of his greatness lies in the fact that he really did find the
relevant questions. It was this attitude which led him to his first encounter
with (actual) infinity.

In 1931, as a first year undergraduate student attending the graph theory
course of Dénes König, he proved a generalization of Menger’s theorem for
infinite graphs. This only appeared in 1936 at the end of König’s book
on graph theory. In 1936 he wrote a paper jointly with Tibor Gallai and
Endre Vázsonyi having a similar character; they gave necessary and sufficient
conditions for an infinite graph to have an Euler line [1, 2].

The next paper I have to mention [ESz], about finite combinatorics, was
written with George Szekeres in 1935. They rediscovered the finite version
of Ramsey’s theorem and proved a fundamental Ramsey-type result of finite
character: If G is a graph having

(
k+�−2
k−1

)
vertices (k, � ≥ 3), then either

G contains a complete graph on k vertices or there is an independent set
of � vertices. From then on he always had in mind possible generalizations
of Ramsey’s theorem, and so became the creator of both finite and infinite
Ramsey theory.

3. Infinite Ramsey Theory: Early Papers

The Ramsey theorem is about partitions of (finite) k-element subsets of ω (the
set of non-negative integers), and in the mid-1930s Erdős began to speculate
about partitioning the countable sets. He corresponded with Richard Rado in
Cambridge, England about this problem and Rado proved the first theorem
saying that “nothing can be said in this case”. The result appeared only much
later, in the early 1950s, in a sequence of joint papers by them [9, 12, 13, 18].
I will return to this later.

Erdős’ first real set-theoretic result appeared in a paper of Dushnik and
Miller [DM]. The theorem, now known as the Erdős; Dushnik, Miller theorem,
says that for an infinite cardinal κ, if a graph on κ vertices does not contain an
infinite complete subgraph, then there is an independent set of vertices of size κ.
This was the first “unbalanced” generalization of Ramsey’s theorem. Once the
result is formulated, the verification for regular κ is a fairly easy exercise. Erdős
proved it for singularκ, andhisproof,whichrequiredagoodtechnicalknowledge
of the set theory of those days, is included in the Dushnik-Miller paper.

Soon after, in 1942, he proved in [3] the basic theorems of infinite Ramsey
theory. Let [X ]r denote the set of r-element subsets of X , and let f : [X ]r → γ
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be an r-partition of γ colours on X . A set H ⊆ X is homogeneous for f in
the colour ν < γ if f(Y ) = ν for all Y ∈ [H ]r. More than 10 years later in
joint work with Paul, [12], Richard Rado introduced the partition symbol

κ → (λν)rν<γ

to denote the following assertion: for any r-partition f : [κ]r → γ there are
ν < γ and H ⊆ κ such that |H | = λν and H is homogeneous for colour ν.
The negation of this is denoted by replacing the arrow by a crossed arrow,
�. If λν = λ for all ν < γ, the notation κ → (λ)rγ is used; this is called the
“balanced” partition symbol.

Using this notation, Ramsey’s theorem states

ω → (ω)rk for 1 ≤ r, k < w.

The Erdős; Dushnik, Miller theorem says, for any infinite cardinal κ,

κ → (κ,ℵ0)2.

The result of Rado I did not state says, for every κ,

κ� (ℵ0)ℵ0
2 .

Using these notations, the results proved by Erdős in the 1942 paper are the
following:

(i) (2λ)+ → (λ+)2λ.
(ii) 2λ � (3)2λ.

(iii) Assuming the generalized continuum hypothesis (GCH in what follows)
ℵα+2 → (ℵα+2, ℵα+1)2.

(iv) 2λ � (λ+)22.

He attributes (iv) to Sierpiński, who proved it for λ = ℵ0. He also mentions
that the obvious � relation (ii) was pointed out to him by Gödel in
conversation.

Of course, the partition symbol was not used in that early paper. In fact
Erdős was always slightly resistant to its use. Later, when forced, he did
sometimes write the symbol, but I have never seen him read it. When we
were discussing such relations he frequently asked me in a complaining voice
to “state it in human language”.

The observant reader would already have noted that (iii) was an attempt
to find the right generalization of the Erdős; Dushnik, Miller theorem. We
will return to this topic later.

4. His “Remarks”

As yet we are still in 1943, and in that year two more significant papers
appeared. First I want to say a few words about [5], “Some remarks on Set
Theory”. I quote the first sentence: “This paper contains a few disconnected
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results on the theory of sets.” The “Remarks” became a series. Eleven
of them appeared in all. The fifth and sixth were written jointly with
Géza Fodor, the seventh to ninth and eleventh with me, and the tenth
with Michael Makkai. Several of these papers contain set-theoretical results
about Euclidean spaces, Hamel bases and other objects that are familiar
to analysts and combinatorialists. The editors and I have decided that this
typical Erdős genre deserves a separate treatment, and this will be given by
Péter Komjáth in this volume. However, I cannot resist mentioning the first
theorem in the first of these papers, the Erdős-Sierpiński duality principle.
This generalization of an earlier result of Sierpiński states: Assuming the
continuum hypothesis (CH) there is a surjective map f : R → R which
interchanges sets of Lebesgue measure zero and sets of first category.

Stating this theorem allows me an opportunity to say something about
his attitude towards the generalized continuum hypothesis (GCH) and
mathematical logic in general. It should be remembered that in 1943 Gödal’s
proof of the consistency of GCH was quite new. Erdős always knew and
appreciated and applied these results. He was happy to have them as a more-
or-less justified tool to prove new theorems, and if he could not solve a set
theory problem he always tried to solve it assuming GCH. On the other
hand, later on he was always uneasy and disappointed if one of his favourite
problems turned out to be independent, and he would remark “independence
has raised its ugly head”.

5. Large Cardinals: The Erdős-Tarski Paper

The cardinal κ, has the property P (κ) if there is a field of sets which
contains a family of λ pairwise disjoint sets for every λ < κ, but which
does not contain such a family of size κ. Much to their surprise, Erdős
and Tarski [4] proved that for limit cardinals κ, P (κ) holds if and only if
κ, is an uncountable inaccessible. First of all it was surprising that such a
seemingly harmless problem should involve inaccessible cardinals which, in
those days, had “hardly been born”. The second surprise was, and this is
explicitly mentioned in the paper, that the negation of P (2ℵ0) could not
be proved in ZFC since it was generally believed that it would be proved
consistent that 2ℵ0 is inaccessible. (Indeed, this was one of the first corollaries
of Cohen’s method.)

In their paper, they formulated several properties of inaccessible cardinals
and they mentioned quite a few connections between these properties in
footnotes (without proofs). For example, they knew that if κ is measurable
then it has the tree property and that this implies that κ → (κ)rλ holds for
all λ < κ and r < ω. Of course, they also knew that the simplest Ramsey-
type theorem κ → (κ)22 is false if κ is not strongly inaccessible. Later, in
1960 when Tarski, using a result of Hanf, proved that “small” inaccessibles
are not measurable, and the theory of large cardinals was created, it became
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necessary to publish these classical proofs. A new Erdős-Tarski paper (written
by Donald Monk) appeared in 1961.

It is of interest to note that Erdős and Tarski made a historical
mistake in [4]. It was vaguely speculated that it may turn out to be at
least consistent that all strongly inaccessible cardinals are measurable. This
probably postponed the discovery of the true situation for almost 20 years.
I cannot say how seriously Tarski believed this (I did try to ask him), but
Erdős quite happily accepted this hypothesis in the spirit I described in §2.
In our joint work from 1956 to 1960 we investigated every combinatorial
property of strongly inaccessible cardinals under the assumption that they
are measurable, although we did always mention that this was an assumption.
However, as was so often the case for Paul, in the end this turned out to be
quite fortunate. I will come back to this in §9 and §10.

6. Set Mappings and Compactness

Erdős visited Hungary in 1948 for the first time after the Second World War.
Very likely it was during this visit that he recalled an old problem of Paul
Turán. Let f be a set mapping on a set X , i.e. f : X → P(X) (the power
set of X) such that x /∈ f(x). We say that f is of order λ if |f(x)| < λ for
x ∈ X . A subset S ⊂ X is independent for f if for all x, y ∈ S, y /∈ f(x). For
combinatorialists, a set mapping of type λ is just a loop-free digraph having
out degrees < λ. Turán was interested in the case when X = R and f(x) is
finite, i.e., f is of order ω, and he asked if there is a free set of power 2ℵ0 .
A young Hungarian, Dezső Lázár who was killed during the war, proved this
and he also proved that if f is of order λ < κ ≥ ω then there is a free set
of size κ provided κ is a regular cardinal. Ruziewicz conjectured that this is
true for any κ ≥ ω.

Erdős proved this conjecture assuming GCH in the second of his
“Remarks” in 1950 [10]. It remained an open question for ten more years
if GCH is really needed. In 1960, I proved the result in ZFC in [H 1] where
more history of the problem can be found.

Typically, even before proving the result he conjectured that if λ is an
infinite cardinal and f is a set mapping of order λ on any set X , then X is the
union of λ independent sets, i.e. the digraph has chromatic number at most λ.
This was proved by Géza Fodor [F]. Erdős investigated the problem for finite
λ in a paper with N.G. de Bruijn [11]. A little reflection will convince the
reader that if the underlying set is finite then it is the union 2λ−1 independent
sets (and this is best possible). To show that this is true for arbitrary X they
proved that for any k < ω if every finite subgraph of a graph G has chromatic
number of at most k then G also has chromatic number at most k.

The reader may say that this is a consequence of either Tychonov’s
theorem on the product of compact spaces or Gödel’ s compactness theorem,
but this is how compactness was introduced to infinite combinatorics. Let me
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point out that it would be quite difficult to find a proof of the set mapping
theorem not using compactness. I do not know of any.

Erdős continued the investigation of set mappings with Géza Fodor in
[19] and [21]. I want to mention one of their theorems, which later proved to
be useful in applications.

Assume f is a set mapping of order λ < κ ≥ ω on κ. Let τ < κ and let
Xα(α < τ) be a sequence of subsets of κ each of size κ. There is a set S free
for f which meets each Xα in a set of size κ. For singular κ their proof used
GCH, but my method yields this in ZFC as well.

7. A Partition Calculus in Set Theory

The partition calculus was developed by Erdős and Rado in the early 1950s.
The long paper [18] contains all the results they had proved up until then.
Their first discovery was that the partition relation κ → (λν)rν<γ made sense
for order types as well as cardinals, or even a mixture of these. This led
them to a great variety of new problems, some simple and some difficult,
but requiring different methods. Let me mention just a few of these. For
what countable ordinals α does α → (α, 3)2 hold? For what α < ω1 does
λ → (α)2k hold, where k is finite and λ is the order type of the reals? They
proved the pleasing result that η → (ℵ0, η)2, where η is the order type of
the rationals, but for what other countable types is this true? They also
noticed that the proof of the Erdős; Dushnik, Miller theorem in the special
case κ = ω1 actually gives the slightly stronger fact that ω1 → (ω1, ω + 1)2,
and then a natural question is, what about ω1 → (ω1, ω + 2)2?

They proved a great many partial results and isolated the most important
problems. We cannot collect all their results and problems here, instead I shall
discuss some of the important new discoveries. One of these is the positive
stepping up lemma which can be stated as follows: If κ is a cardinal and
κ → (λν)rν<γ holds, then (2<κ)+ → (λν+1)r+1

ν<γ . Here μ+ denotes the smallest
cardinal greater than μ, and 2<κ =

∑
{2μ : μ < κ a cardinal}. Let expn(κ)

denote the n-times iterated exponentiation (i.e. exp0(κ) = κ and expn+1(κ) =

2expn(κ).) Since 2<κ
+

= 2κ, and κ+ → (κ+)1κ just expresses the fact that κ+

is a regular cardinal, we obtain by induction the

Erdős-Rado Theorem:

(expn(κ))+ → (κ+)n+1
κ .

In particular, we have (2κ)+ → (κ+)2κ, (2
2κ)+ → (κ+)3κ etc. Quite often

in the literature only the first of these (case n = 2) is referred to as the
Erdős-Rado theorem, but we have seen that this was already proved in 1943.
There can be very few theorems in set theory which have received so many
“simplified” proofs as the Erdős-Rado theorem. But in the early 1950s there
was no pressing-down lemma, and elementary substructures and chains had
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not been introduced into set theory. Erdős and Rado used the so-called
ramification method. Let me outline this in a simple case. Let f : [X ]2 → γ
be a 2-partition of X with γ colours. Pick an x0 ∈ X . The rest of the points
can be split into γ parts according to the colour of f({x0, y}). Repeat this
in each part and continue transfinitely. We get a tree or ramification system
as they called it. At the α stage we will have |γ||α| parts. If X has large
enough cardinality, the tree we get will have large height. The points picked
along a branch of this tree will form a prehomogeneous set, i.e., the colour of
a pair {xα, xβ} will depend only upon the point, say xα, which was chosen
first. This method is fairly hard to write down formally, but it is really quite
intuitive. It was elaborated in great detail in the Erdős-Rado papers and was
used for several years to obtain positive partition relations for the case when
the underlying set has regular cardinality. Although most of the important
proofs have been streamlined to “linear” ones, there is really no algorithm
for this translation , and the intuition behind ramification serves as a good
tool to obtain new results.

They also discovered polarized partition relations. The symbol
(
κ

λ

)
→

(
κν
λν

)1,1

ν<γ

means the following: whenever f : κ × λ → ν is a colouring with γ colours,
then there are ν < γ,K ∈ [κ]κν and L ∈ [λ]λν such thatK×L is homogeneous
for f in the colour ν. For combinatorialists, this is just Ramsey for complete
bipartite graphs, and the reader can easily formulate the generalization to
s-partite graphs.

However, this is not just formalism. It turned out that quite a few
problems about polarized partitions are basic questions in set theory. As
an illustration, they proved

(
ℵ1

ℵ0

)
→

(
ℵ1

ℵ0
,
ℵ0

ℵ0

)1,1

.

In “human language” this says: if Aα (α < ω1) are arbitrary subsets of ω,
then either the intersection of ℵ1 of them is infinite, or the union of ℵ0 of
them has an infinite complement. They attributed the negative relation

CH ⇒
(
ℵ1

ℵ0

)
→

(
ℵ1

ℵ1
,
ℵ0

ℵ0

)1,1

.

to Sierpiński who, of course, proved this in a different context.
There is one more important partition relation I should mention, and this

realized Paul’s old wish to have a Ramsey theorem for something more than
just k-element sets. They introduced the symbol κ → (λ)<ωγ to denote the
following statement: for every sequence fn : [κ]n → γ of n-partitions of κ with
γ colours, there is a subset H ⊂ κ of cardinality λ which is simultaneously
homogeneous for each fn. They only proved that 2ℵ0 � (ℵ0)<ω2 with a clever
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ad-hoc construction, and they asked if κ → (ℵ0)<ω2 can be true for any
cardinal κ? We turn back to the discussion of this important symbol in §9
and §10.

There is one more type of partition theorem which I should have
mentioned earlier. In [9] they proved the first canonical Ramsey theorem,
and this also led to a long sequence of investigations, improvements and
generalizations. Just to give the flavour of what this is all about, I will state
just one special case. Let f : [ω]2 → γ be a 2-partition of ω with any number
of colours. Then there is an infinite subset H ⊆ ω such that either H is
homogeneous for some colour, or all pairs in H have different colours, or H
is prehomogeneous (the colour of a pair depends only on the least element),
or H is endhomogeneous (the colour of a pair depends only on the largest
element).

8. My First Encounter with Paul

Erdős visited Hungary in 1955 for the first time since the country had become
a member of the Eastern block. He was an Hungarian citizen traveling on an
Hungarian passport, and he could not have returned earlier if he wanted to
leave again. But in the “liberalized” atmosphere of 1956 the Academy was
allowed to elect him as a member and the government granted him a special
diplomatic type of passport which allowed him to come and go whenever he
wished. This was a great opportunity for young Hungarian mathematicians
who had heard of him only by name (of course, it was impossible for us to
travel to the West before 1956).

At that time I was a graduate student of László Kalmár in Szeged (a
small town on the south-eastern border of Hungary). Paul travelled around
the country in 1956 and came to visit the mathematics department at the
University of Szeged. He had already corresponded with Géza Fodor who was
then a young assistant professor in the department. I was introduced to him
as “a promising young man” studying set theory, and soon we were left alone
in Professor Kalmár’s office sitting in two enormous armchairs facing each
other over a coffee table. I thought he was very old—he was 43 years old and
I was 25. I felt very honoured, and a little embarrassed, to be left alone with
this famous man. I did not know then that he had met most of his young
collaborators in a similar way. He first asked me what were my interests in
set theory. I was then writing my thesis on a subject which later was called
relative constructibility, and I was quite proud of it. So I started to explain my
results with some enthusiasm. He listened to me very politely, and when I had
finished he asked “and are you interested in normal set theory as well?” Of
course, we were not on first-name terms then and so the question was phrased
in a very polite form of Hungarian that is used for addressing a stranger. But
it was clear that it was a genuine inquiry and he meant no harm.
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Earlier I had thought of a problem when I heard about all the set-mapping
results from Géza, What if we investigate set-mappings of more variables, and
I asked if there would be large free subsets in this case too? To tell the truth,
as a student of Kalmár, I was trained to think like a logician. So what I had
in mind was this: if X is a large set and to every finite subset V ⊆ X we
associate a countable F (V ) ⊂ X such that F (V ) ∩ V = ∅, is there a large
independent set? I even had the vague idea that if F (V ) is the Skolem hull
of V in some structure, then an “independent set” would really deserve its
name.

Luckily, Paul liked that one! It started a furious activity and the
conversation became more fluent and colloquial. The first thing I learned
from him (and this took quite a while) was that he would not start to
think about the general case. He first wanted to know what happened for
set mappings defined on pairs. He proved several lemmas and some partial
results and stated a few conjectures. He then suddenly remembered that
there was something else he had to do and he called Géza. Quite close to
the mathematics building in Szeged stands a rather ugly cathedral built in
the 1930s with two high towers. It turned out that he “must” climb the 300
odd stairs to the top! Géza had earlier agreed to accompany him, and he
then gently began to persuade me to come along too. I had by then lived for
2 years in Szeged, and I had never had the slightest difficulty in resisting any
pressure to visit the tower, especially since the surrounding countryside is
absolutely flat and so there was not very much to see. However, much to my
own surprise, I could not resist this invitation. Climbing those stairs more
results and conjectures were formulated by him while, at the same time, he
was complaining that he felt a little dizzy.

That day ended with dinner at Kalmár’s house where the conversation
continued mainly about set mappings, but sometimes interrupted with some
of his comments on “Sam and Joe”. When we parted, it was almost as from
an old friend—there was a joint-paper half ready, which could be completed
by correspondence.

9. Our First Joint Paper

The notation used for discussing set-mapping problems is not standardized
as in the case of partition relations. A set-mapping of order λ and type μ on
κ is a function f : [κ]μ → [κ]<λ such that f(x) ∩ x = ∅ for all x ∈ dom(f),
and a set S ⊆ κ is free if f(x) ∩ S = ∅ for all x ∈ [S]μ. I shall denote by
Free(κ, λ, μ, ν) the following assertion: For every set-mapping of order λ and
type μ on κ there is a free set of cardinality ν. Likewise, Free(κ, λ,< μ, ν)
denotes the corresponding assertion when f : [κ]<μ → [κ]<λ.

Our very first result was to prove that Free(expn−l(λ)+, λ, n, λ+) holds
for every infinite λ. The proof of this uses the Erdős-Rado theorem which I
had learned during my first conversation with Paul. I also learned that it was
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not known if the Erdős-Rado theorem is best possible, for example it was not
known then if

22
ℵ0

� (ℵ0)32

holds. Assuming GCH we could prove ¬Free(ℵ1, 2, 2,ℵ1) so that our theorem
is best possible for n = 2, but for n > 2 any progress seemed to lie far in the
future. I will return to this in the section on the negative stepping-up method
we developed with Rado, but let me say now that there are only consistency
results to show that the theorem is best possible.

I was therefore surprised when shortly afterwards I received a letter from
Paul (who was visiting Israel) claiming that Free(κ, λ, n, κ) holds for n < ω
and any uncountable limit cardinal κ > λ. The proof used GCH and I realized
that it only worked for singular κ (the real theorem is for κ a singular strong
limit cardinal, i.e. 2τ < κ for τ < κ.) We now know that this is a special
case of a general “canonization” theorem proved later with Rado, but which
Paul discovered in at least two other interesting contexts before the general
theorem was formulated. I wrote to tell him that I could not see how the
proof works for regular limit κ. He replied by return of post that I was right,
but the theorem was true since we may use the “measure hypothesis” from
Erdős-Tarski, and he wrote down a proof that Free(κ, λ, n, κ) holds for finite n
and λ < κ, an uncountable measurable cardinal. I have to say that during my
studies I had read the Erdős-Tarski paper, but either I skipped the footnotes
or I did not recognize the significance of the remarks. However, after reading
the letter, I did understand the strength of the hypothesis, and the same day
proved that it implies Free(κ, λ,< ω, κ). Later, when the paper was actually
written, we realized that the proof actually gave the stronger result that

κ → (κ)<ωλ

holds for λ < κ if κ > ω is a measurable. This is perhaps one of our best-
known joint theorems, and I will say more about this in the next section.

This brings me to our first joint oversight. Although our joint paper with
Rado did not appear until 1965, I already had a weak form of the negative
stepping-up lemma in 1957 (in fact it was because of this that we decided
to write the triple paper on partition relations even though Erdős and Rado
had already obtained a great many new unpublished results.)

I told Paul that the negative stepping-up gives us that

κ� (ω)<ω2 ⇒ 2κ � (ω)<ω2 .

He immediately pointed out that it is easy “to go through” singular
cardinals, and we put into the paper the remark that κ � (ω)<ω2 holds
for all κ, less than the first strongly inaccessible cardinal κ0 > ω. We only
realized later [35], after we learned the Hanf-Tarski results, that this almost
trivially implies that

κ0 � (ω + 1)<ω2 ,
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and therefore, by our theorem, it follows that κ0 is not measurable.
Unfortunately, this argument is not very strong, we could never make it
work beyond the first fixed point in the sequence of inaccessibles.

10. Erdős Cardinals and the Strength of κ → (λ)<ω
2

The real strength of the statement κ → (λ)<ω2 was discovered by the Berkeley
school in the early 1960s. Dana Scott first proved that the existence of a
measurable cardinal contradicts Gödel’s axiom of constructibility (V = L).
Soon afterwards Gaiffman and Rowbottom proved that it also implies that ω
has only countably many constructible sets, and more generally Rowbottom
proved that κ → (ω1)<ω2 implies that ω1 is inaccessible in L.

Rowbottom also generalized our theorem with Paul. According to the
Kiesler-Tarski paper [KT] it was Dana Scott who introduced the notion of a
normal measure (a κ-complete 0-1 measure on κ satisfying the pressing down
lemma, i.e. if f is regressive on a subset of measure one, then it is constant
on a set of measure one.) It was known that if κ is measurable then it carries
a normal measure, and Rowbottom proved that, if there is a normal measure
on κ and f : [κ]n → λ(n < w, λ < κ), then there is a homogeneous set of
measure one. Of course, this immediately yields our theorem, and the proof
actually becomes easier.

I happened to spend 1964 at Berkeley with Tarski’s group and gave
a course of lectures on Erdős-Rado set theory. I could not have been too
successful as a lecturer, more than 20 people attended the first lecture, and
in the end I was left with an audience of three—two students, Reinhardt
and Silver, and a young assistant professor Donald Monk. I told them
everything I knew about ordinary partition theorems and the little I knew
about κ → (λ)<ω2 . Silver apparently got interested and his thesis [Si], which
appeared in 1966, contained some fantastic discoveries.

First he realized that the real strength of κ → (λ)<ω2 is that it yields, for
any given structure on κ, a set of indiscernibles having order type λ (i.e. a
set of ordinals such that any two similarly ordered n-tuples satisfy the same
formulas.) Using this he proved that the smallest κ satisfying κ → (ω)<ω2 must
be very large, for example there must be many weakly compact cardinals less
than κ. He showed that, for α < ω1, if κ → (α)<ω2 holds, then it is true in L,
and finally he proved that if κ→ (ω1)<ω2 holds, then O# exists, which means
that L is very small, and this expresses the real strength of κ → (ω1)<ω2 . I am
not willing to write down the technicalities of this here.

Let me remind the reader that one of the few consequences of the axiom
of constructibility which Gödel himself had noticed was that there is an
uncountable analytic complement (the complement of a continuous image
of a Borel set) which has no perfect subset. It was Solovay who proved that
if κ → (ω1)<ω2 holds for some κ then such a set cannot exist. This was
the first application in descriptive set theory. It is stated in Descriptive Set
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Theory, the 1978 book of Moschovakis, that all applications of the existence
of measurable cardinals in descriptive set theory come from a κ satisfying
κ → (ω1)<ω2 . All this shows that such cardinals deserve a special name, and
the story I have written down shows that they are quite rightly called Erdős
cardinals.

11. The Early Sixties. A Long Chapter

After 1956, Paul came home to visit his mother every year. He usually spent
some months in Budapest where I also lived at that time. When he was at
home I went to work with him at their apartment two or three times a week.
Mrs. Erdős was not only a devoted mother to Paul, but she was also an
efficient secretary and would keep a record of his publications and look after
his papers. When I visited them she would make us coffee and then leave
us alone to “work”. Our meetings had no prepared agenda, sometimes we
went through earlier proofs, sometimes we had to read a manuscript or proof
sheets, but the main point of our conversations was always the discovery of
new problems and to start thinking about them. Paul was fantastically fast
in both making and understanding proofs and finding the new questions.
Though I usually made some notes, they were never quite satisfactory. We
both needed to rely on our memories. This was quite a good fit, he always
remembered the theorems and then I could scrape together the old proofs.
I think now that these visits were real highlights in my life.

Now I have to change strategy. I cannot continue telling the results paper
by paper, and in any case they were not proved in the order of publication.
Starting around 1957 or 1958, we agreed to write a triple paper with Rado
on the partition calculus and the three of us set aside everything which we
thought belonged there. Already in 1960 I visited Rado in Reading to work
on the triple paper, carrying with me an almost completed manuscript. So,
in this long section I will open subsections about the results of these years
with an indication of where they appeared.

11.1. Canonization

Let f : [X ]r → γ be an r partition of length γ of X . Let 〈Yα : α < ϕ〉 be
a sequence of disjoint subsets of X , Y =

⋃
α<ϕ Yα For a subset υ ∈ [Y ]r

there is a number s(υ) ≤ r an increasing sequence α(υ) = 〈αi(υ) : i < s(υ)〉
of ordinals and a sequence r(υ) = 〈ri(υ) : i < s(υ)〉 of integers, defining the
position of υ in the partition Y =

⋃
α<ϕ Yα, so that

∑
i<s(υ) ri(υ) = r and

|υ ∩ Yαi(υ)| = ri(υ) for i < s(υ). Two r-element sets υ, υ′ ∈ [Y ]r have the
same position if α(υ) = α(υ′) and r(υ) = r(υ′). f is canonical with respect to
the sequence (Yα : α < ϕ) if for any two υ, υ′ having the same position

f(υ) = f(υ′)
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The “canonization” theorem of [43] tells us that: there is an integer kr such
that whenever 〈Xα : α < ϕ〉 is a sequence of subsets of X with fast enough
increasing cardinalities,

|Xα| > expkr (|
⋃

β<α

Xβ |),

then there is a disjointed sequence Yα ⊂ Xα(α < ϕ) also with fast increasing
cardinalities, |Yα| > |

⋃
β<αXβ|, such that f : [x]r → γ is canonical with

respect to the sequence 〈Yα : α < ϕ〉, provided γ, ϕ < |X0|.
One corollary of this is the following. Assume κ is a singular strong limit

cardinal then κ → (κ, λν)2ν<γ if and only if cf(κ) → (cf(κ), λν)2ν<γ . The
‘only if’ part comes easily using a canonical partition, and the ‘if’ part uses
the canonization theorem. The reader should remember the Erdős; Dushnik,
Miller theorem κ → (κ,ℵ0)2. Now the above result tells us, at least with
GCH, for which singular cardinals κ the relation κ,→ (κ,ℵ1)2 holds. For
example, ℵω1 � (ℵω1 ,ℵ1)2 but ℵω2 → (ℵω2 ,ℵ1)2. By now I do not really
have to tell the reader that this is the form discovered by Paul.

It would be nice to have a necessary and sufficient condition for the case of
arbitrary singular κ. We knew that for a singular κ, say with cf(κ) = (2ℵ0)+,
to have κ,→ (κ,ℵ1)2 it is necessary to have λℵ0 < κ for λ < κ We repeatedly
asked if this is sufficient. It was proved by Shelah and Stanley in the 1980s
that this is consistently false [SS1].

When preparing the material of our book with Attila Máté and Richard
Rado [100] where we tried to discuss the ordinary partition relation is ZFC,
we isolated the following problem. Assume there is an increasing sequence of
integers nk : k < ω such that

ℵω < 2ℵn0 < . . . < 2ℵnk < . . .

Does it follow that 2<ℵω → (ℵω)22 holds? Clearly our canonization does
not work in this case. Shelah proved this with a new type of canonization
theorem [S1], and parts of his results are given in the book. Further uses of
“canonization” will be mentioned later.

One last remark. It is interesting to see how combinatorial ideas do pop
up in different topics. When Shelah obtained with such miraculous speed his
celebrated result on the bound in van der Waerden’s theorem, he was already
the best expert on canonization, and one of the main lemmas in his proof is
indeed a (finite) canonization theorem.

11.2. Square Brackets

Sierpiński proved 2ℵ0 � (ℵ1)22 by well ordering the continuum and defining
a partition of the pairs into two classes, so that a pair ordered in the same
way in both the natural ordering and the well-ordering belongs to the first
class.
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Paul told me that he formulated a generalization of this in 1956 with the
following question. Can one split the pairs of reals into three classes so that
every subset of size ℵ1 (or 2ℵ0) contains a pair from each class?

He soon proved this assuming CH. We discovered that whenever a
partition relation fails, one can ask for a corresponding weaker property,
and in [43] we introduced the following square bracket relation

κ → [λν ]rν<γ .

This means that for every f : [κ]r → γ there is a ν < γ and a subset H ⊂ κ,
|H | = λν so that f does not take the value ν on the r-tuples of H .

It is worthwhile to formulate separately the negation of the “balanced”
form of this (when all the λν are equal). Thus κ � [λ]rγ means that there is
an f : [κ]r → γ such that all subsets of size λ are completely inhomogeneous
i.e. f takes all possible values on the r-tuples of any set of size λ.

Clearly we needed some test cases. We proved that 2κ = κ+ mplies
κ+ � [κ+]2κ+ , and only later did we realize that this was also known to
Sierpińiski in a different context. But probably the nicest result was the
following:

If κ is a strong limit cardinal of cofinality ω, then κ → [κ]23.
(Note that κ � (κ, (cf(κ))+)2 and κ � [κ]22 is a trivial corollary.) This

follows from the “canonization” theorem of the previous section. Indeed it
gives a stronger result. Under the above conditions on κ, for every f : [κ]2 →
γ, γ < κ, there is a set H ∈ [κ]κ such that f takes at most two different
values on the pairs of H .

So we introduced a third symbol, the strong square bracket. Let γ, δ be
cardinals. κ → [λ]rγ,δ(κ → [λ]rγ,<δ) means that for every r-partition f : [κ]r →
γ with γ-colors, there is a subset H ⊂ κ of size λ such that f takes at most
δ (fewer than δ) values on the r-tuples of H .

So the above theorem says that κ → [κ]2γ,2 for singular strong limit κ of
cofinality ω and γ < κ. We used this symbol to ask if ℵ2 → [ℵ1]2ℵ1,ℵ0

? Paul
thought this was an old question of Ulam, but later we discovered that it is
equivalent to a well-known model theoretical conjecture of C.C. Chang.

In §12, I will discuss the effect of our 1967 problem paper [67], but this is
a good place to write down the present status of some of the square bracket
problems stated in that paper. Let me begin with an innocent but very nice
result of Fred Galvin

η → [η]23.

Many generalizations of this were published later. Galvin and Shelah proved
2ℵ0 � [2ℵ0 ]2ℵ0

and cf(2ℵ0) � [cf(2ℵ0)]2ℵ0
in 1968 [GS], they also proved some

weak results like ℵ1 � [ℵ1]24 and ℵ1 � [ℵ1]3ℵ1
for the case when the underlying

set has cardinality ℵ1.
Again we had a false feeling. Although we did not state it explicitly, we

clearly believed that ℵ1 � [ℵ1]2ℵ1
could not be proved in ZFC. But in 1987

Stevo Todorčević proved us wrong [T1]. He proved in ZFC that
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κ+ � [κ+]2κ+

holds for every regular κ. This was extended by Todorčević and Shelah
for more successors, and inaccessibles. This was certainly one of the most
significant discoveries in set theory in the 1980s requiring entirely new
methods. I will come back to this for a moment in the next section. However,
this still leaves open the question whether

2ℵ0 � [ℵ]23

holds? Shelah [S2] proved that 2ℵ0 → [ℵ1]23 is really consistent with ZFC. In
his model 2ℵ0 is quite large so it is still possible, but quite unlikely, that

2ℵ0 = ℵ2 ⇒ ℵ2 � [ℵ1]23.

11.3. Jónsson Algebras-Negative Relations with Infinite
Exponents

A Jónsson algebra is an infinite algebra A with countably many finitary
operations such that all proper subalgebras have cardinality strictly less than
IAI. The question is, for what infinite cardinals κ is there a Jónsson algebra
of cardinality κ? I mention this here because of a connection with the square
brackets. As pointed out by Shelah much later in the game, there is a Jónsson
algebra on κ if and only if κ� [κ]<ωκ holds.

I heard the problem from Tarski in 1964 and when I returned to Hungary
and met Paul, we immediately had some remarks about this which we
published in [45]. First we proved that if there is a Jónsson algebra on κ,
then there is also one on κ+, and hence there is one on ℵn for n < ω. We also
proved that 2κ = κ+ implies that there is a Jónsson algebra on κ+ since we
knew that 2κ = κ+ ⇒ κ+ � [κ+]2κ+ .

I must also mention that it was already proved by Kiesler and Rowbottom
that there is a Jónsson algebra on every κ if V = L [KR].

It was a metatheorem for the two of us because of Rado’s theorem that
“nothing is true for infinite exponents”. So we proved already in [24] that
Free(κ, 2,ℵ0,ℵ0) fails for every κ and in [43] we strengthened Rado’s result
to κ � [ℵ0]ℵ0

2ℵ0
. In this spirit we also proved in the Jónsson algebra paper

that there is an infinitary Jónsson algebra on every κ in other words

κ� [κ]ℵ0
κ

This became one of our best used theorems. Kunen used it for a simple proof
of his famous theorem that there is no nontrivial elementary embedding of the
universe into itself (disproving the hoped for existence of Reinhardt cardinals)
and Solovay used it in his proof that GCH holds at every singular strong limit
cardinal above a strongly compact cardinal.

Our “metatheorem” is not quite true since Foreman and Magidor [FM]
recently proved that it is consistent that ℵ3 → [ℵ2]ℵ0

ℵ2
. It goes without
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saying that Erdős always assumed the axiom of choice, and I would not even
mention this except that it happens that partition relations with infinite
exponents may be true if we do not assume the axiom of choice, and
indeed they became an important tool of set theory e.g. in investigations
concern ing the Axiom of Determinacy and its consequences to descriptive
set theory.

Back to the previous section, Shelah [S5] recently published quite a few
theorems extending the class of cardinals κ for which there is a Jónsson
algebra and then later proving the stronger result κ � [κ]2κ. I presently
do not know of any instance of the result where κ+ � [κ+]<ωκ+ is true but
κ+ � [κ+]2κ+ is not known.

11.4. Negative Stepping-Up

This result published in [43] says that, if r ≥ 2, κ ≥ ω and κ � (λν)rν<γ ,
then

2κ � (λν + 1)r+1
ν<γ

provided the sequence λν satisfies certain simple conditions. The simplest of
these is that two of them are infinite and one of them is regular. There are
about six more conditions to cover relevant cases. These conditions become
less restrictive as r grows, and there is no condition at all for r ≥ 5.

But even the one just stated tells us that the Erdős-Rado theorem of §7
is best possible, i.e.

expn−1(κ) � (κ+)n2

for n ≥ 2, since the result 2κ � (κ+)22 can be lifted by induction on n.
Let me state another example. We know that if κ � (κ+)22 then κ �

(κ, 4)3. This should imply 2κ � (κ, 5)4, but to get this, a special argument
is needed say if κ is singular.

Maybe the negative stepping up is true without any conditions at all on
the λν , but to the best of my knowledge this is still wide open. There are cases
where we do not know what happens without GCH for n = 2. Let me explain
this with an example. It is very easy to see that ℵℵ0

ω � (ℵω+1, (ℵ0)ℵ0)2, but
this should still be true if the ℵ0 entries are replaced by 3’s, and indeed we
did prove this with GCH

ℵω+1 � (ℵω+1, (3)ℵ0)2.

To stick my neck out again, it seems inconceivable to prove this in ZFC, but
no consistency proofs are known in the other direction.

Now a trivial canonization lifts this say to the first singular cardinal with
cofinality ℵω+1 i.e. to ℵωω+1 � (ℵωω+1 , (3)2ℵ0

) and this should be stepped up
to

ℵωω+1+1 � (ℵωω+1 , (4)ℵ0)3.
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Unfortunately in this case, for r = 2, only one of the entries is infinite and
even that is singular. So we had nothing to cover this case and it was stated
as one of our open problems for a long time. I thought Shelah and Stanley
had a proof of this � from GCH, but I understand that it is still open.

A more significant problem is that our result suggests a negative stepping-
up, for square brackets and set mappings as well.

It was recognized early in the game that for square brackets this is
consistently false even assuming GCH. For example, 2ℵ0 = ℵ1 ⇒ ℵ1 � [ℵ1]2ℵ1

,
but it is very easy to see that ℵ2 � [ℵ1]3ℵ1

implies ℵ2 � [ℵ1]2ℵ1,ℵ0
, the negation

of Chang’s conjecture, which was proved to be consistent in an early paper
of Silver.

Stevo Todorčević worked out stepping-up methods from combinatorial
principles known to hold in L, which do give the stepping-up for square
brackets and for set mappings in most cases. See [T2] and also [HK1] for
more history.

Let me conclude this section with two more interesting recent results
of Todorčević which show the present direction of research in this area. He
proved that ℵ2 → [ℵ1]3ℵ1

is equivalent to Chang’s conjecture in ZFC (without
assuming CH), and ℵ2 � [ℵ1]3ℵ0

is true in ZFC [T3]. See also [57]. This is a
very deep result, but Erdős had a hand in initiating of this type of theorem
as well, in [81] we remarked that the stepping-up method yields 2ℵ1 � [ℵ1]34
in ZFC.

11.5. Polarized Partition Relations

While working on the triple paper [43], we had to draw the line somewhere,
and we decided that we will only include results for polarized partitions of
the form

(
κ

λ

)
→

(
κ0
λ0
,
κ1
λ1

)1,1

and we gave a number of results assuming GCH. Some of the results inherent
in the methods were only stated in the second problem paper [81]. But the
simplest problem we isolated was if

2ℵ0 = ℵ1 ⇒
(
ℵ2

ℵ1

)
→

(
μ

ℵ1
,
ν

ℵ1

)1,1

holds for ℵ0 ≤ μ, ν ≤ ℵ1.
One of the first results proved after our problem list became public was

due to Karel Prikry [P]. I state a special case:
(
ℵ2

ℵ0

)
�

(
ℵ0

ℵ1

)1,1

or even

(
ℵ2

ℵ0

)
�

[
ℵ0

ℵ1

]1,1

ℵ1

is consistent with ZFC and GCH.
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Later, Richard Laver [L] proved that relative to a very large cardinal it is
consistent with GCH that there is an ω1 complete ideal I on ω1 having the
following strong saturation property: Given F ⊂ I+, the complement of I,
|F | = ℵ2 (i.e. ℵ2 large subsets of ℵ1 there is an F 1 ⊂ F , |F 1| = ℵ2, such that
the intersection of any countably many sets in F 1 is in I+. This easily yields

(
ℵ2

ℵ1

)
→

(
ℵ1

ℵ1

)1,1

2

even

(
ℵ2

ℵ1

)
→

(
ℵ1

ℵ1

)1,1

ℵ0

,

and it was one of the first corollaries of Jensen’s morasses, that Prikry’s result
holds in L.

For lack of space and time, we did not include polarized partitions in the
book [100] so there isnocomprehensiveaccount in the literatureabout the recent

results. Let me state one problem of the form
(ℵα+1

ℵα

)
→

(
·
)1,1

which is unsolved
and for which there are no consistency results either. Does GCH imply

(
ℵω1+1

ℵω1

)
→

(
ℵω1

ℵω1

)1,1

2

?

A small hope here is an unpublished remark of Shelah from 1989. Assume
〈κα : α < ω1〉 is an increasing sequence of measurable cardinals, κ = supα κα
and 2κ = κ+ then

(
κ+

κ

)
→

(
κ

κ

)1,1

τ

holds.

Added in proof (March 1995). In September 1994, Shelah proved the
following striking result. Assume κ > cf(κ), κ is strong limit and 2κ > κ+.
Then

(
κ+

κ

)
→

(
κ

κ

)1,1

τ

holds for τ < κ.

Writing up the second problem paper [81], I realized that our theorem in [43]

yielding
(ℵ2

ℵ2

)
→

(ℵ1

ℵ1

)1,1
2

from CH can be generalized to give

2ℵ0 = ℵ1 ⇒
(
ℵ2

ℵ2

)
→

(
ℵ1

ℵ1

)1,1

3

but it is consistent with CH that
(
ℵ2

ℵ2

)
�

(
ℵ1

ℵ1

)1,1

4

holds. A recent still unpublished result of J. Baumgartner using a new kind
of argument, says that assuming CH (but no more of GCH)

(
ℵ3

ℵ2

)
→

(
ℵ1

ℵ1

)1,1

ℵ0

holds.
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11.6. Property B and Incompactness

Our second major joint paper [33] is about the following property of families of
sets, F : There is a set B which meets every element of F but does not contain
any member of F as a subset. This means, in a terminology introduced later,
that the chromatic number of F is two. Before stating some results I want to
tell how we came across property B. Property B was actually discovered by
Felix Bernstein in 1908. He proved that for every κ ≥ ω, if F is a family of
size κ of sets of size κ then F has this property. (He used it to get a subset
B ⊂ R, |B| = |R \ B| = 2ℵ0 and such that neither B nor R \ B contains a
perfect subset of R.

In those years I often visited Erdős at the summer house of the Academy
in Mátraháza (a summer resort in the mountains), where he used to spend
part of the summer with his mother. The place was reserved for members of
the Academy and I was still young, so I had to find a place in the village
for a couple of days. But I did get decently fed in the summer house during
the day time. Usually there were other visitors or regular inhabitants to also
work with Paul, and he would do this simultaneously. He led his usual life
there, alternately proving, conjecturing, playing chess, ping pong, bridge, or
walking to mountain tops. It was his habit to stop playing abruptly, when
the rest of us were warming up to the game, and to return to work. In those
days he went to bed around ten o-clock, but he woke up early, between four
or five in the morning, so it was actually safer for me not to be living too
close.

There was a vague plan to write a book on set theory and I arrived with
a number of old journals. One of them was the 1937 volume of the Comptes
Rendus Varsowie containing a long paper of Tarski, “Ideale in Vollständigen
Mengenkörper”, in which we wanted to find something for the planned book.
Erdős volunteered to look it up. I had something else to do and I left him
alone for a while. When I returned, he was excitedly reading. But not Tarski’s
paper, it was a forgotten paper [Mil] of an American set theorist E.W. Miller,
which was next to Tarski’s paper in the same volume. (Yes, the same as in
Dushnik-Miller.) Miller proved that, for n finite, if F is a family of infinite
sets and any two members of F intersect in at most n elements, then F has
property B. “Reading” meant reading the statements and trying to figure out
the proofs. After a while, I gave up and started reading the paper in detail.

The proof was by a cardinal induction on κ = |F |, the size of the family,
and for a given κ, the underlying set was split into the increasing continuous
union of κ smaller sets {Aα : α < κ}, each Aα, being closed with respect to
certain operations. In this case, for each n + 1 element set, there is at most
one set containing it, and the elements of this (possibly non-existent) set were
the values of these operations. Then the induction hypothesis was applied to
the families F |Aα. This is called nowadays, the method of elementary chains.
Miller actually proved that F has the stronger property B(< ℵ0), i.e. there
is a set B which meets each element A of F in a finite set.
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Paul’s only comment was: “You see there are still things we do not know,”
and before we actually read all the details, he started to ask questions. What
if the sets are only almost disjoint (have finite intersections)? There is a
counter-example on the second page of Miller’s paper, and I tried to return
to the details. “Yes” he said, “but we should then assume that the sets are
bigger.” So, instead of collecting data for the book, we wrote a long paper.

Let me state a special case of one of the main results: Assume GCH. If F
is a family of very strongly almost disjoint sets of size ℵ2, i.e. |A∩B| < ℵ0 for
A = B ∈ F , then F has property B(< ℵ2). More importantly, if F consists
of sets of size ℵ1 just strongly almost disjoint, i.e. |A ∩ B| < ℵ0 for A = B
in F , then F still has property B(< ℵ2) provided |F | ≤ ℵω.

The reason why the proof broke down for ℵω+1 was quite clear. In the
generalization of Miller’s proof we had to use infinitary operations, and alas
ℵℵ0
ω is greater than ℵω no matter what we assume.

We both felt that this is a real hard-core problem and we tried to find
other methods. In doing so we formulated the following statement (∗): For
α < ℵω+1 there is a partition of α = ∪n<ωSα,n into countably many pieces
such that |Sα,n| ≤ ℵn and for any α < ℵω+1 with cf(α) = ω1 there is an
increasing sequence (αν : ν < ω1) of ordinals αν → α such that for each
n < ω the sequences {Sαν,n : ν < ω1} are increasing as well.

Of course, we could not prove this, but we could deduce from it the
theorem for |F | = ℵω+1.

Later a young German set theorist W. Donder pointed out that our
statement is an easy corollary of Jensen’s �ℵω and as a corollary of this
statement and some obvious generalizations, the theorem for families of sets
of size ℵ1 is true in L.

In 1986, in a paper with Juhász and Shelah [HJS], we proved that it is
consistent, relative to a super compact cardinal, that there is a family of size
ℵω+1 of strongly almost disjoint sets of size ℵ1 not having property B and
also GCH holds in the model.

Paul was of course immediately asking if in Miller’s theorem B(< ℵ0)
can be replaced by B(k) with some k < ω. Let us consider families F
of countably infinite sets, such that for any two A = B ∈ F , |A ∩
B| ≤ n < ω. First we proved that for countable families F , F has
property B(n + 1) but not necessarily B(n). Then much to our surprise,
we proved using GCH that, if |F | = ℵk, k < ω then F must have
property B((k + 1)n + 1) but not necessarily B((k + 1)n). The reason
for the surprise was, that these were strong incompactness results saying
that there is a family of size ℵk+1 of countable sets not having property
B((k + 1)n + 1) but every subfamily of size ℵk has this property and such
incompactness results were not then in the literature (but we already knew
of the Hanf-Tarski result by the time we finished the paper). At the end
of the paper we gave a long list of incompactness problems for ℵ2 which
were later solved by different authors. Eventually, Paul’s persistent interest
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in these problems led to Shelah’s celebrated compactness theorem for singular
cardinals [S3].

I just state here one of the problems, the fate of which I will describe in
§10.9. Does there exist a graph on ℵ2 vertices having uncountable chromatic
number, such that all subgraphs of size ℵ1 are at most ℵ0 chromatic?

Finally, let me mention that due to the interest of Paul, property B had
an even bigger career in finite combinatorics. But fortunately, this is not the
subject of this note.

11.7. Chromatic Number

In our paper [42] we discovered r-shift graphs. Reference [42] is “Some
remarks on set theory IX”. Its subject is a general problem involving reals,
so I hope it fits into Komjáth’s paper. But I must mention that a few years
ago, Fremlin and Talagrand obtained some very interesting results solving
most of the problems stated there [FT].

The vertices of the κ, r-shift graph G(κ, r), 2 ≤ r < ω are the r-tuples of
κ or rather the increasing sequences {α0, . . . , αr−1}, α0 < . . . < αr−1 < κ and
we join {α0, α1, . . . , αr−1} and {α1, α2, . . . , αr}. We proved, as a corollary of
Ramsey’s theorem or the Erdős-Rado theorem, that these graphs have large
chromatic number and that they do not contain odd circuits of length less
than r + 2.

It was an early result of finite graph theory that there exist graphs having
large chromatic number and not containing a K3 (see [46] for historical
references). I think G(n, 2) is the simplest example of this and we were both
surprised that this was not known earlier. Paul was always interested in this
problem. He proved in 1959 using his probability method that for all k < ω
and r < ω there are graphs of chromatic number ≥ k and of girth ≥ r
(not containing circuits of length < r). He was always interested in infinitary
generalizations and in [22] he proved with Rado that, for κ ≥ ω there is a
K3-free graph on κ of chromatic number κ.

These results again suggested the wrong generalization, but this time
we were not defeated. In [46] we proved that a graph not containing C4 (a
circuit of length 4) has chromatic number at most ℵ0. In fact, we proved
a much stronger result. We defined col(G) the coloring number of G as the
smallest cardinal κ such that the vertex set of G has a well ordering such
that for each vertex x the number of edges having x as the larger element
is smaller that κ. This concept was later introduced in finite combinatorics
under a different name as well (G is k-degenerate if col(G) ≤ k + 1) [Bo].
Obviously, chr(G) ≤ col(G) and we proved that if G does not contain a
complete bipartite graph Kk,ℵ1 , for every k < ω then col(G) ≤ ℵ0. We used
the cardinal induction method described in the previous section. Again, the
problem arose, what can be said if only larger complete bipartite graphs are
excluded? Let me again state a special case of our result. Assume GCH. If G
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does not contain a Kℵ0,ℵ3 then chr(G) ≤ ℵ2 and if G does not contain a
Kℵ0,ℵ2 then chr(G) ≤ ℵ1 provided |G| ≤ ℵω.

The situation is analogous to the one described in the previous section.
It is consistent that the second clause of the theorem is true for every G e.g.
if V = L, and it is consistent (relative to a super compact cardinal) that the
result strongly fails for ℵω+1 i.e. there exists a graph G on ℵω+1 of chromatic
number ℵ2 not containing a Kℵ0,ℵ0 . This was shown in our paper with Juhász
and Shelah mentioned in 10.6. The construction of this example from the one
described there is a combinatorial argument, which uses that in the model
we have many instances of ♦ (the diamond principle).

I have to mention that we also introduced generalized Specker graphs to
show that for κ ≥ ω there are graphs of size κ, with chromatic number κ
having large odd girth.

There are quite a few generalizations of our theorem for col(G) > ℵ0 but
I do not state these here, instead I offer the references [K 1, HK3] and [101].
Let me mention one typical Erdős question: Does chr(G) > ℵ0 imply that G
contains all large odd circuits, say of length 2k + 1 for k ≥ k0 for some k0.
Note that this is a typical problem where it is the chromatic number that has
to be large as col(Kℵ0,ℵ1) = ℵ1. Later we proved this with Shelah in [79].

Rado asked if the de Bruijn-Erdős compactness theorem for finite
chromatic number extends to finite coloring numbers. As the definition of
the coloring number involves a well-ordering this can not be expected. Indeed
we disproved it, but a surprising result of [46] is that still there is a uniform
bound. We proved: If col(G′) ≤ k(2 ≤ k < ω) for every finite subgraph G′ of
G then col(G) ≤ 2k − 2, and there is a countable graph to show that this is
best possible for each k.

There is an important finite theorem hidden at the end of [46]. We proved
there, using the probabilistic method, that for every r, s, k, there are r-
uniform hypergraphs of chromatic number greater than k and girth greater
than s. In fact, defined on some n-element set, they do not contain an
independent set of size n1−d for some d > 0. This fit logically into the line of
thought of [46] and it did not occur to us that no finite combinatorialist will
look at, much less read, a 40 page paper full of alephs, to find an interesting
probabilistic argument on the 35th page.

11.8. Another Miss

We first met Eric Milner in 1958 at the IMC meeting in Edinburgh. He was a
former student of Rado and was working in Singapore. Rado interested him
in partition problems and he settled one of their problems about countable
ordinals [M1]. That was enough to induce Paul to visit and work with him in
Singapore in 1960. He returned from there to Budapest with a new interesting
problem which I solved and this began a long collaboration between the
three of us. The Milners’ returned to England in 1961 and Eric joined Rado
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at Reading. On my way back from Berkeley to Budapest in 1965, I stayed in
Reading for a month with them discussing a long half-finished manuscript.
Although our long joint papers only appeared a few years later, in 1965
we were already deeply involved in our joint work and we thought it would
probably help if all three of us could be together at the same place and at the
same time. So it was arranged that Eric should visit us during the summer of
1965 to spend a week at the summer house of the Writer’s Union in Szigliget
on Lake Balaton. Eric arrived with an interesting question about transversals,
and as a consequence, instead of regularly working on manuscripts, we wrote
another shorter paper [56] which became our first joint work to appear. As
a side issue in that paper we proved the following theorem: Let λ > cf(λ) =
κ > ω, and let λα(α < κ) be an increasing continuous sequence of cardinals
cofinal in λ, and assume that τκ < λ for τ < λ. If S is a stationary subset
of κ and F ⊂ Πα∈Sλα is an almost disjoint set of transversals (i.e. |{α ∈ S :
f(α) = g(α)}| < κforf = g ∈ F), then |F| ≤ λ.

Eric made notes of our results and wrote it up and the pap er appeared in
1968. We forgot the whole thing, and the paper seems to have gone unnoticed.
Even in 1967 when we wrote the first problems paper with Paul, where our
intention was to write down all our interesting problems, we omitted any
mention of this. However, it seems we were not the only blind ones. During
the summer of 1971 Adrian Matthias organized a large conference on set
theory in Cambridge, England. Karel Prikry was one of the invited speakers
and he gave a talk on a generalization of Jensen’s work on Kurepa families.
He discovered the following result: Under the assumptions of our theorem, if
H ⊆ P(λ) is a Kurepa family in the sense that |H|λα| ≤ λα for α ∈ S (S a
stationary subset of κ), then |H ≤ λ. (H|λα = {H ∩ λα : H ∈ H}.)

He told me this result the day before his lecture and it sounded vaguely
familiar. But it took me the whole day to realize that this was just our earlier
theorem applied to the sets H|λα in place of λα. I managed to get a copy
of our paper to give to Prikry before the lecture. Now there were about
one hundred set-theorists in attendance, including all the leading ones, when
Karel stated our result in a totally digestible form. But nobody asked, what
happens if we replaced λα by λ+α ? I suppose the psychological barrier was too
strong. In 1974, just before the ICM in Vancouver, I was visiting Eric again
in Calgary (he moved there in 1967), when I received a preprint of Silver ’s
ingenious discovery that: if λ > cf(λ) > ω and if 2τ = τ+ on a stationary
set of cardinals τ < λ, then 2λ = λ+. At the same time I received a preprint
from Prikry giving a combinatorial proof of Silver ’s result. Prikry told me
that the instant he saw Silver ’s manuscript it dawned on him that the only
thing needed was to lift our old result with λ+α in place of λα. Of course
this requires a non-trivial argument. Baumgartner and Jensen also found
elementary proofs of Silver ’s result without remembering our theorem. But
the real miss, and so uncharacteristic of Paul, was not to have asked the
question!
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11.9. Incompactness for the Chromatic Number

In 1966, assuming CH, we solved the problem on chromatic numbers stated
in §10.6. We proved in [54] that there is a graph of chromatic number at
least ℵ1 on (2ℵ0)+ vertices all of whose subgraphs of cardinality at most
2ℵ0 have chromatic number at most ℵ0. This also comes with a story and
some advice. During a working session at Paul’s apartment, we were talking
about something totally unrelated to chromatic number and compactness. In
the middle of an attempted proof, we found that the pairs of R are colored
with countably many colors and our proof would be finished if there was a
monochromatic increasing path of length 2, IP2, i.e. a triple x1 < x2 < x3
with {x1, x2} and {x2, x3} having the same color. Unfortunately there was
not, and I tried to get another proof. But Paul started to insist that we should
know for what order types θ,

θ → (IP2)2ω

holds. We parted unsuccessful in both attempts. But on the way home, I
could not help thinking about his question. I remembered an old idea of
Sierpiński which easily implied that there is a � for every θ of cardinality
|θ| ≤ 2ℵ0 . Then I saw in a flash that this just says that all subgraphs of size
2ℵ0 of our shift graph G((2ℵ0)+, 2) have chromatic number ≤ ℵ0. As this was
a 100 dollar problem, I immediately called Paul when I arrived home. (I think
eventually I got only $50 for it, but with some reason). The advice is this:
just answer his questions, you have time later to ponder if it is important or
not.

This was the status of the problem when we published it in [67]. Let me
tell some later developments. First Jim Baumgartner proved with a forcing
argument that it is consistent that GCH holds and there is an ℵ2-chromatic
graph on ℵ2 vertices, such that the chromatic number of every subgraph of
size ℵ1 is at most ℵ0 [B1].

M. Foreman and R. Laver proved that: it is consistent with GCH relative
to a large cardinal that every graph on ℵ2, all of whose ℵ1 subgraphs are
ℵ0-chromatic is at most ℵ1-chromatic [FL].

Finally, Shelah proved, after improving his own results several times, that
it is consistent (true in L) that: for every regular non-weakly compact κ, there
is a κ-chromatic graph on κ all of whose subgraphs of size less that κ are ℵ0-
chromatic [S4].

We also invented an interesting graph in [54]. Let C(ω2, ω) be a graph
whose vertices are the elements of ω2ω, i.e., ω2-sequence of integers and
we join two sequences if they are eventually different. We proved, and
these are obvious facts, that every subgraph of size ℵ1 of C(ω2, ω) has
chromatic number ≤ ℵ0, and moreover, that every graph of size ℵ2 having this
property embeds into C(ω2, ω). However, the chromatic number of C(ω2, ω)
in ZFC is a mystery. Our result implies that CH⇒ chr(C(ω2, ω)) ≤ ℵ1

and Péter Komjáth proved this from the weaker assumption 2ℵ0 ≤ ℵ2, and



Paul Erdős’ Set Theory 403

he proved it consistent with GCH that chr(C(ω2, ω)) = ℵ3 [K 2]. On the
other hand Foreman proved it is consistent relative to a large cardinal that
chr(C(ω2, ω)) ≤ ℵ1 [Fo]. It seems to be out of the question with the present
methods to prove that our graph is consistently ℵ0-chromatic.

11.10. Decomposition of Graphs

I just want to mention our paper [53] which appeared in 1967 but was
written about 2 years earlier. In this paper we raised problems of the following
type. Does there exist graphs G not containing a Kλ, for some cardinal λ,
such that for every vertex partition or edge partition with few colors say a
monochromatic Kτ appears. In present notation: For what λ, τ , γ is there a
Kλ-free graph G such that

G → (Kτ )1γ or G → (Kτ )2γ

holds? We had some results but I just want to restate two edge partition
problems from the paper, one of them finite.

Does there exist a finite K4-free G with G → (K3)22? This was solved
by Folkmann [Fol] affirmatively, but the question became one of the starting
points of structural Ramsey theory (see §15).

The infinitary problem is the following. Does there exist a K4-free graph
G of cardinality (2ℵ0)+ such that G → (K3)2ω holds? As far as I remember,
this was the last set theory problem Paul offered a prize for (it was worth
$250.) Shelah later proved this to be consistent, but I will speak about the
status of this kind of problem in a more general context in §15.

12. Δ-Systems and More Set Mappings

Δ-Systems were introduced in a paper of Erdős and Rado which appeared
in 1960 [26]. A family F of sets is a Δ-system if there is a set D, the kernel
of F , such that A ∩ B = D for all A = B ∈ F . The paper set the task to
determine Δ(κ, λ) = δ the smallest cardinal for which every family F , of sets
of size κ and cardinality δ contains a Δ-system of size λ ≥ 3. As it is well
known, for finite κ, the problem is still unsolved. A $1,000 reward is offered
by Paul for the proof or disproof of the conjecture that for some c > 0

Δ(κ, 3) < cκ for κ < ω

However, for κ ≥ ω, Erdős and Rado settled the problem completely.
Although some of the details were only cleared up in their second paper
[60] on the subject, the main upper bounds were already obtained in [26].
One of the main results says that if κ < δ = cf(δ), |F | = δ ≥ ω and δ is
inaccessible from κ, i.e. σκ < δ for σ < δ then F contains a Δ-system of size
δ. This is probably the most frequently used theorem of set theory, since it is
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the simplest tool to prove that certain partially ordered sets satisfy certain
chain conditions. If 〈P,,〉 is a partially ordered set p, q ∈ P are incompatible
if there is no r ∈ P with r , p, q and P satisfies the κ-chain condition if every
subset of pairwise incompatible elements has cardinality ≤ κ. It was already
an important element of Cohen’s proof of the independence of the continuum
hypothesis, that finite 0, 1 sequences from any index set, ordered by reverse
inclusion satisfy the ℵ0-chain condition. Cohen and his early followers did not
know the Erdős-Rado theorem and they proved it for the special cases they
needed. But soon it was discovered by logicians, and it is invoked almost any
time forcing is used.

There is another theorem of Erdős and Specker [30], I should have
mentioned in §5, which is used almost as often in forcing arguments to
establish chain conditions as the Δ-system theorem. Assume f : κ → P(κ)
is an ordinary set mapping. In §5 we saw that, if If |f(x)| < τ < κ for some
cardinal τ < κ then there is a free set of size κ and κ is the union of τ free
sets. Now if κ is a successor cardinal λ+ then the assumption that the type
tp(f(x)) < ξ < κ+ for some fixed ξ < λ+ is weaker than the assumption that
|f(x)| < τ for some cardinal τ < κ but by the Erdős-Specker theorem, this
still implies the existence of a free set of size κ; however, Fodor’s theorem
does not apply since the graph induced by f can be λ+-chromatic. Most of
the time that we want to construct or force an object on λ+ such that each
subset of size λ+ contains a subset of size λ+ of certain kind, but the whole
set is not the union of λ sets of this kind, then the Erdős-Specker result is
the first thing to remember.

13. The Unsolved Problems in Set Theory [67]

In 1967 the first major post Cohen conference was held at UCLA. By that
time, Cohen’s method was generally known and developed, and the aim of
the conference was to bring together all experts of set theory and to collect
and make public all the fantastic new results available. We were both invited,
Paul was there, but I could not make it. (It was the only time I did not get
a passport from the Hungarian authorities.) The organizers convinced Paul
that instead of mentioning a few interesting problems as the spirit moves him,
he should write up all the difficult problems he came across during his work
in combinatorial style set theory. He immediately promised that we will do it
in a joint paper. This time we worked hard and fast. A mimeographed version
of the manuscript containing 82 problems (or groups of problems really) was
ready in the same year and we sent a copy to everyone we knew and who
we thought would be interested. It included all the problems I mentioned in
the previous sections and quite a few more. A large number of (then) young
mathematicians started to work on these, and produced solutions either by
applying the newly developed methods of independence proofs or simply
divising new combinatorial methods. The paper only appeared 4 years later
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in 1971, and by that time the status of most of the problems had changed.
We tried to keep the manuscript up to date by adding remarks, but in 1971
we decided to write a second problem paper [81] which contained the status
of the problems up until that time.

It would clearly be impossible to write a similar survey today. In the
previous sections, I tried to show on selected topics how the Erdős problems
generated new questions and results and how they became integral parts of
modern set theory, and how many of them are still alive. In this section I can
only mention the status of a few more which I omitted earlier.

I did not finish the story of set mappings of type < ω. Shortly after our
problem paper was distributed Jim Baumgartner proved in his thesis [B2]
that if V = L then Free(κ, 2, < ω,ℵ0) is equivalent to κ → (ℵ0)<ω2 but on the
other hand, it is still open if it is consistent relative to a large cardinal that
Free(ℵω, 2, < ω,ℵ0) holds, or more strongly, there is no Jónsson algebra on
ℵω. As I already mentioned, Free(ℵω, 2, < ω,ℵ0) was our first joint problem.
We already suspected at Kalmár’s supper that it will be hard, but probably
not quite as hard as it turned out to be.

I am afraid I have mentioned too many problems which led to indepen-
dence results, so here is a difficult theorem of Shelah and Stanley solving one
of our problems in ZFC:

(2ℵ0)+.ω → ((2ℵ0)+ω, n)2

for n < ω [SS2]. It is another matter that they also proved ω3.ω1 →
(ω3.ω1, 3)2 to be independent of ZFC and GCH.

Erdős proved with Alaoglu in 1950 in [5] that if κ is smaller than the
first weakly inaccessible cardinal greater than ℵ0, then one can not have
ℵ0 σ-additive 0, 1 measures so that every subset of S is measurable with
respect to one of them. Erdős attributes the question to Stanislaw Ulam but
he got the first result. We asked if ℵ0 can be replaced by ℵ1 here? Prikry
proved it to be consistent, but this question became the forerunner of so
many questions in the theory of large cardinals that I do not dare to write
about later developments in detail.

Instead, here are some evergreen problems from the theory of ordinary
partition relations for ordinals.

1. ωω → (ωω, 3)2 was proved by C.C. Chang [C] and ωω → (ωω, n)2n < ω
was proved by E.C. Milner [M2] and independently by Jean Larson [Lar].

But ωω
2 → (ωω

2

, 3)2 or ωω
α → (ωω

α

, 3)2 seem to be as hard as ever. Here
of course αβ means ordinal exponentiation.

2. Does there exist an α with α → (α, 3)2 such that α � (α, 4)2?
3. I proved with Jim Baumgartner in 1970 [BH] that Φ → (ω)1ω ⇒ ∀α <
ω1∀k < ωΦ → (α)2k. But for exponents >2 very little is known. For
example, ω1 → (α, 4)3 is still open for α < ω1. The world record is
presently held by Milner and Prikry; they proved this for α ≤ ω.2+1. See
[MP].
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4. Is ω2 → (α)22 for α < ω2 consistent with GCH? I proved the consistency of
ω2 � (ω1+ω)22 and it follows from the existence of Laver’s ideal mentioned
in §10.5 that ω2 → (ω1.2)22.

5. It follows from a recent result of Baumgartner, myself and Todorčević
[BHT] that GCH⇒ ω3 → (ω2 + ξ)2k for ξ < ω1 and k < ω but ω3 →
(ω2 +2)2ω is still open. See [BHT] for many new problems arising from our
results.

14. Paradoxical Decompositions

Erdős has 12 major joint papers with Eric Milner, nine of those were written
by the three of us. These are from a later period so the results and problems
are more technical than the ones I described earlier, it is out of question to
give a list of them. I want to speak about one idea which features in quite a
few of them.

It was always clear that Ramsey’s theorem is a generalization of the
pigeonhole principle of Dedekind. When partition relations κ → (λν)rν<γ
were formally introduced, it became apparent that the pigeonhole principle
is just a partition relation for cardinals with exponent r = 1. For example,
nk + 1 → (n + 1)1k for the finite case with k boxes, and ℵ0 → (ℵ0)1k for
k < ω, and more generally, κ → (κ)1λ for λ < cf(κ), κ ≥ ω. It was discovered
by Milner and Rado in [MR] which appeared in 1965 that the pigeonhole
principle does not work the same way for ordinals. They proved that for any
κ ≥ ω

(i) ξ � (κn)1n<ω if ξ < κ+ and as a corollary of this ξ � (κω)1ω for ξ < κ+.

Here again αβ denotes ordinal exponentiation. This phenomena, often called
the Milner-Rado paradox, has to be kept in mind, just because it is so
contrary to one’s first intuition. When partition relations proliferated it
was discovered that this (as almost anything) can be written as a polarized
partition relation:

(ii)

(
ω

ξ

)
�

(
1

κω
,
ω

1

)1,1

for ξ < κ+

and also as a square bracket relation:

(iii) ξ � [κω]1ℵ0,<ℵ0
for ξ < κ+. In [63] we have investigated the polarized

partition relation(
κ

ξ

)
�

(
1

σ
,
δ

τ

)1,1

for κ = ω and κ = ω1, ξ < ω2.

We gave a complete discussion, relying heavily on the form (iii) of the
paradox in the case κ = ω1, i.e.

(iv) ξ � [ωω1 ]1ℵ0,<ℵ0
for ξ < ω2.
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When we tried to lift our results to higher cardinals we realized that we
would need to generalize (iv) to

(v) ξ � [κω1
2 ]1ℵ1,ℵ0

for ξ < ω3.

We already discovered in 1967, that this will not be possible in ZFC,
but we only wrote down the results which we called the ℵ2-phenomenon in
our 1978 paper [93] relying heavily on other people’s results. See [93] for
references.

Since this is not so well known, I will write down the ℵ2-phenomenon as
it relates to (v).

A.1 ξ � [κω1
2 ]1ℵ0,ℵ0

holds for ξ < ωω2
2

A.2 If 2ℵ1 = ℵ2 then for some ξ0 < ω3, ξ0 → [ωω1
2 ]1ℵ1,ℵ0

A.3 It is consistent with 2ℵ1 = ℵ3 that ξ → [ωω1

2 ]1ℵ1,ℵ0
holds for ξ < ω3

A.4 ωω2
2 → [ωω2 ]1ℵ1,ℵ0

and ωω2
2 � [ωω2 ]1ℵ1,ℵ0

are both consistent with ZFC
and GCH. (The � holds e.g. in L while the → follows from Chang’s
conjecture.)

All this happens because a counterexample establishing the � is really
a sequence {Aξα : α < ω1} ⊂ ξ such that the order type tp(

⋃
β<α, Aβ) <

ω
fξ(α)+1
2 for a function fξ : ω1 → ω1 and, for ζ < ξ, fζ must be smaller than
fξ in some well known ordering of these functions. In fact, this was the reason
why we asked all the problems 19A–19E in the unsolved problems paper,
about the relation of the transversal hypothesis and the Kurepa hypothesis.

Problem 19D was slightly out of the line there. Typically, Paul asked
something that was quite new: are there 2ℵ1 almost disjoint, stationary
subsets of ω1? It is easy to see the consistency of a ‘yes’ answer, it is true
e.g. in L, however the consistency of a ‘no’ answer with CH is not completely
proved. Foreman, Magidor and Shelah proved in [FMS] that ‘no’ follows from
a consistent set-theoretical principle called Martin’s Maximum (MM), but
MM implies that 2ℵ0 = ℵ2. They also proved it consistent with CH that
there is a stationary subset of ω1 on which the nonstationary ideal is ℵ2-
saturated. All these very difficult consistency proofs of course are relative to
the existence of some large cardinals.

15. A Mistake and Its Consequences

In §12 of our paper [46] about chromatic numbers, we claimed a false theorem.
I just state a special case. Let H = (h,H) be a 3-uniform hypergraph (i.e.
H ⊂ [h]3) such that every pair e ∈ [h]2 is in at most countably many elements
of H . Then we claimed that the chromatic number of H is at most ℵ0.

As we know now, this is true if |h| ≤ ℵ1 and false for a triple system
of cardinality (2ℵ0)+. Now I have to disclose a not so surprising secret. Paul
actually wrote up some of our joint papers, but these were the short ones. For
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the long ones it was my job to prepare the manuscript, but we always read the
manuscript and even the proof sheets together. The trouble was that he often
got bored with mechanical work like this, and he made up new conjectures
and theorems and insisted that we should include them by adding remarks—
even to the galley proofs. Taking the responsibility, I think I was the one who
overlooked that the cardinal induction method breaks down from ℵ1 to ℵ2

in this case. Anyway, if the theorem was really true, the whole structure of
the paper should have been changed but fortunately we did not have time
for that.

As usual, I forgot the theorem, but Paul did not. I got a phone call from
him from abroad about 4 years after the paper had appeared. He was trying to
tell the proof of it to Bruce Rothschild, and got stuck. They soon discovered
a counter-example. Let (2ℵ0)+ = κ, h = [κ]2, H = {{{α, β}, {β, γ}, {α, γ}} :
α < β < γ < κ}, Clearly, any two elements of H have at most one element
in common, and the chromatic number is at least ℵ1 by the Erdős-Rado
theorem. We wrote a triple paper [76] about it. However, Paul got interested
in this question: what kind of finite triple systems must appear in an ℵ1-
chromatic triple system? I think the first question was the 6/3, i.e., are there
three triples with empty intersection such that each pair has exactly one
point in common? (This question for triple systems made quite a splash in
finite combinatorics as well.) Fred Galvin came up with a negative answer.
Later Fred spent the academic year 1972–1973 in Budapest, and the three of
us started to work on this problem and we asked the same question for triple
systems not containing large independent sets. Unfortunately, we did not
find a general answer, maybe there isn’t one, every time that we constructed
a large chromatic system avoiding concrete finite systems, Paul ingeniously
invented new ones for which the construction did not work. The motivation
behind this was the following. Clearly there is a cardinal κ with the following
property. If for a finite triple system H there is a (> ℵ0)-chromatic triple
system K not containing H, then there is one of cardinality at most κ.
Cardinals which satisfy a condition like this are quite often impossible to
determine, and such was the case with this problem. For two triples with a
common edge the number we found is (2ℵ0)+. With GCH all our examples had
cardinality ℵ2 associated with them. We ended up with a concisely written
paper almost 90 pages long [85] containing some really good theorems, but
which remained relatively unknown. Again, it is not possible to give a list
of the results, but I do want to mention one concept and problem from the
paper that I really like.

We constructed large chromatic r-uniform hypergraphs by induction on
r, and to support the induction from r to r+1, we needed the r-tuple system
H, to have a stronger property than chr(H) > ℵ0.

Let Hν = 〈h, Hν〉(ν < ϕ), be a system of r-uniform hypergraphs on the
same vertex set h. The system has simultaneous chromatic number > ℵ0 if,
for every partition of the vertex set h =

⋃
n<ω hn into ℵ0 parts, there is an

n < ω such that hn contains “edges” from each Hν for ν < ϕ.
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We say that a (> ℵ0)-chromatic H = 〈h,H〉 splits to δ parts, if there is
a disjoint partition H =

⋃
ν<δ Hν so that the system Hν = 〈h,Hν〉(ν < δ)

has simultaneous chromatic number > ℵ0. We proved that quite a few known
(> ℵ0)-chromatic graphs split to ℵ1 parts and these served as a basis of our
induction process.

In those days, before Todorčević’s result, we only knew with CH that Kℵ1

splits to ℵ1-parts. Still, as we did not find anything that does not split, we
asked the question: Is it true that every (> ℵ0)-chromatic graph splits to two
(or ℵ1) parts?

This problem as it stands is still unsolved. With Péter Komjáth I have
some unpublished partial results. Here are two of them.

(1) It is consistent that every ℵ1-chromatic graph splits into ℵ1

parts.
(2) It is consistent relative to a measurable cardinal, that there is a (> ℵ0)-

chromatic graph which does not split into ℵ1 parts. (We do not know this
for two parts.)

16. Structural Ramsey Theory

As I already mentioned in §10.10, we asked the first questions of the following
type: Does there exist a K4-free graph G such that G → (K3)22.

The following type of generalization appeared first in Deuber’s paper
[D]. Let G, H be graphs; H embeds into G if G has an induced subgraph
isomorphic to H . With present day partition calculus notation, we say G

(H)2κ,λ if for arbitrary colorings k : G → κ, � : [g]2 \ G → λ of the edges of
G with κ colors and non-edges with λ-colors, there is an induced subgraph
H ′ ⊂ G isomorphic to H such that k and � are constant on the edges and on
the non-edges of H ′ respectively.

Deuber proved that for all finite H and k < ω, there is a finite G with
G >
 (H)2k,k and the combination of the two types of questions Paul
raised became the starting points of the Nešetřil-Rödl type structural Ramsey
theory.

With Erdős and Pósa we proved the first infinitary result of this kind [88].
The paper appeared in the volume of the Keszthely conference held for Paul’s
60th birthday in 1973, and this volume contains the first Něsetřil Rödl paper
on the subject. The finitary theory developed very fast. The problem was
generalized for coloring of substructures of a fixed kind instead of coloring
pairs, but fortunately I do not have to give an account of this. I just want
to say that this was not done in the infinitary case because here some basic
problems are still open.

In the paper with Erdős and Pósa we proved that for every countable H
and k < ω there is a G (|G| = 2ℵ0) such that G 
 (H)2k,k and asked if this
holds true for countably many colors, or for larger H .
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We discovered a decade later with Péter Komjáth that it is consistent to
have |H | = ω1 and G 
 (H)22,1 for every G [HK2] and Shelah proved that it
is consistent that for all H and γ there is a G with G
 (H)2γ,γ [S6].

In 1989, [H 2] I proved in ZFC that for all finite H and arbitrary γ there
is a G with G
 (H)2γ,γ but the problem of countable H and countable γ is
open (though the 
 is consistent by Shelah’s result). The answer may turn
out to be to Paul’s liking (a theorem in ZFC) but I am sure it will be very
difficult.

Shelah generalized his consistency results for Kr-free H as well, but at
this point I feel I have to stop and refer the reader to a recent survey paper
of mine on this subject [H 3].

17. Applications of Partition Relations in Set
Theoretical Topology

In the last 30 years, set theoretical topology became a major area of research
as shown e.g. in the Handbook of Set Theoretical Topology. The reason for
this is that the new methods of set theory (forcing, large cardinals) made it
possible to study topological spaces for what they are, namely set theoretical
objects. The point I want to make is that, although Erdős did not take an
active part in most of this, combinatorial set theory which he created is one
of the major tools in this development.

This happens not just through the applications of positive theorems.
There are of course some famous ones. Being closest to the fire, with István

Juhász we showed, for example, as a consequence of (22ℵ0
)+ → (ℵ1)24 that,

every Hausdorff space of cardinality (22
ℵ0

)+ has discrete subspaces of size ℵ1.
Also, as a consequence of the canonization theorem of §10 that, the spread
(the supremum of the sizes of discrete subspaces) is attained in a Hausdorff
space if this supremum is a singular strong limit cardinal.

More importantly, there are literally dozens and dozens of examples
obtained as strengthenings of negative partition relations which would never
have turned up in their present form without a detailed analysis of these
relations. Let me try to make this clear with an example. I already mentioned
Prikry ’s consistency proof of

(
ℵ2

ℵ1

)
�

(
ℵ0

ℵ1

)1,1

2

.

To state it in “human language” (but already a little twisted for my purposes),
it means that there is a sequence {fα : α < ω2} ⊂ω1 2 such that for all
countable I ∈ [ω2]ℵ0 there is a ν(I) < ω1 such that for ν(I) < ν < ω1 there
are α0, α1 ∈ I with fα0(ν) = 0 and fα1(ν) = 1.

When in [HJ] with Juhász we discovered HFD’s (hereditarily finally dense
sets) and proved the consistency of the existence of a hereditarily separable
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space of power ℵ2 (assuming 2ℵ0 = ℵ1) we only had to change the last clause
of the above statement: there is a ν(I) < ω1 such that for every finite set F
with ν(I) < F < ω1 and every 0, I-function ε defined on F there is an α ∈ I
such that for all ν ∈ F , fα(ν) = ε(ν). And now {fα : α < ω2} is a hereditarily
separable subspace of cardinality ℵ2 of D(2)ω1 .

18. A Final Apology

I feel that I should stop at this point. One reason is that this is the 100th
page of my handwritten manuscript, but there are other reasons. Paul has
continued to work on set theory, stating new and old problems in the
numerous problem papers he published. Our last major set theory paper
with Jean Larson [109] appeared in 1993. It would not really be appropriate
for me to speculate on the reactions that these latest problems may provoke,
for we lack the perspective. It is also true, that his interest in set theory is
slightly diminished, he does not like the technical problems which already in
the assumptions involve consistency results. But he triumphantly continues
to carry the flag of Georg Cantor.

I also have some doubts about my manuscript. It is as if I have been
trying to sketch a rain forest, but with only enough time and ability to draw
the trunks of what I thought to be the largest trees. Paul’s real strength is
in the great variety of those hundreds of small questions which he has asked
that have given some real insights into so many different topics. I can only
admire his inventiveness and thank him for everything he has given us.

Finally, I also wish to thank our old friend Eric Milner for helping me to
prepare this paper.
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day),Vol I, Colloq. Math. Soc. J. Bolyai, Vol 10, North Holland, Amsterdam
(1975) 597–604. (with S.H. Hechler)

85. On set-systems having large chromatic number and not containing prescribed
subsystems, in: Infinite and finite sets (Colloq. Keszthely 1973; dedicated to P.
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1. Introduction

In this Chapter we consider P. Erdős’ research on what can be called as
the borderlines of set theory with some of the more classical branches of
mathematics as geometry and real analysis. His continuing interest in these
topics arose from the world view in which the prime examples of sets are
those which are subsets of some Euclidean spaces. ‘Abstract’ sets of arbitrary
cardinality are of course equally existing. Paul only uses his favorite game
for inventing new problems; having solved some problems find new ones by
adding and/or deleting some structure on the sets currently under research.
A good example is the one about set mappings. This topic was initiated by
P. Turán who asked if a finite set f(x) is associated to every point x of the
real line does there necessarily exist an infinite free set, i.e., when x /∈ f(y)
holds for any two distinct elements. Clearly the underlying structure has
nothing to do with the question and eventually a nice theory emerged which
culminated in the results of Erdős, G. Fodor, and A. Hajnal. But Paul and
his collaborators kept returning to the original setup when the condition is
e.g. changed to: let f(x) be nowhere dense, etc. Several nice and hard results
have recently been proved. (See Sect. 8 in this Chapter.)

But this is not Paul’s secret yet. He has the gift to ask the right questions
and-always-ask the right person.

2. Sierpińiski’s Decomposition

One direction of theorems and problems originated from W. Sierpińiski’s
famous decomposition theorem [34]. This paradoxical statement says that
CH (the continuum hypothesis) holds if and only if R2 can be decomposed
as A∪B where A, B have countable intersection with every horizontal, resp.
vertical line. (See [14] for a lucid description of Paul Erdős’ astonishment
when first hearing on this result.) This shows that the generalization of
Fubini’s theorem

∫ ∫
f(x, y) dx dy =

∫ ∫
f(x, y) dy dx may be false if we only
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assume the existence of the two double integrals and not the measurability of
f (take the characteristic function of A). H. Friedman showed that it can also
be true (if one adds ℵ2 random reals) (see [21]). Later, C. Freiling [20] proved
that if there is a counter-example to this statement then necessarily there is
one of the Sierpińiski type, i.e., then R2 = A ∪B such that the intersection
of A (or B) with every horizontal (vertical) line is a measure zero set. See
[36] which is a very thorough survey paper on this result and several variants.
Erdős [11] generalizes this as follows. Suppose the lines of R2 are decomposed
into two classes (and CH holds, of course). Then a decomposition as above
exists with A ∩ � countable if � is in the first class, and B ∩ � is countable if
� is in the second class.

3. Linear Equations

An old result of R. Rado states that every Rn in fact every vector space
over Q, the rationals, is the union of countably many pieces none containing a
3-element arithmetic progression. This observation initiated several different
research areas. In [18] Erdős and Kakutani showed that every vector space of
cardinal at most ℵ1 is the union of countably many bases and this is sharp.
Various other results hold if one want to cover a linear space with countably
many sets omitting the solutions of some linear equations (and not all as in
the above case) [27].

One way of proving the above mentioned Erdős-Kakutani result is via
a combinatorial lemma of Erdős and Hajnal which also gives that if the
continuum hypothesis fails and R is decomposed into countably many pieces
then one of them contains a, a+x, b, b+ x for some a, b, x, x = 0. Erdős then
asked if the following complementary result holds. If CH holds then Rn can
be written as the union of countably many sets none containing the same
distance twice. For n = 1 this is a very special case of the quoted Erdős-
Kakutani result. For n = 2 this was established by R. O. Davies [7] and
finally for the general case by K. Kunen [29].

4. Euclidean Ramsey Theory

Perhaps the central topic in our discussion is the one that may be called
Euclidean Ramsey theory. This deals with decompositions of Rn where a
configuration similar to a given one is excluded. Though in the finite version,
i.e., when the number of classes is finite, there are several positive results
(given by P. Erdős, R.L. Graham, P. Frankl, V. Rödl, and others), the infinite
case abounds in counterexamples.

To begin with, if the excluded configuration is infinite then there is always
a decomposition of Rn into two classes with no copy of the configuration in
one class. This nice observation which uses an earlier result of P. Erdős and
A. Hajnal is well hidden in [15]. As for the case of of finite configurations
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J. Ceder already in 1969 proved that R2 can be colored with countably
many colors without a monocolored equilateral triangle [4]. The tricky proof
uses that C, the complex plane is a vector space over the countable field
Q(

√
−3). In this vector space any node of an equilateral triangle is a convex

linear combination of the other two. The proof now goes like R. Rado’s
quoted proof. It “defines” the coloring of a vector from its coordinates over a
Hamel-basis.

P. Erdős asked if Ceder’s result holds for Rn, as well. Obviously, the above
proof won’t generalize. The more classic inductive argument, in the spirit of
Davies’ results, makes possible to show that a similar statement holds for
regular tetrahedra in R3, see [23]. For regular simplices in Rn this was shown
by J. Schmerl [31]. Then he extended his result to equilateral triangles [32].
Finally, adding some really nice and deep arguments from higher dimensional
calculus and logic J. Schmerl was able to show that P. Erdős’s conjecture
is true, there is a countable decomposition of every Rn with no isosceles
triangles in one part [33].

One might think that excluding right triangles is similar to the case of the
isosceles triangles. In fact, it was shown in [19] that CH is actually equivalent
to the existence of a countable decomposition of R2 not containing the three
nodes of of a right triangle in one piece. Interestingly enough the ‘only if’
part is an easy corollary of an above quoted Erdős-Hajnal result, the ‘if’ part
is rather complicated.

Another variant, also raised by P. Erdős, if one can exclude those triangles
with rational, nonzero areas. Clearly, we cannot multicolor triangles with zero
area, and the statement is obvious for one given value of area. In unpublished
work K. Kunen showed that if CH holds then there is a decomposition of R2

omitting rational areas as asked. In [28] we extended this to a broad class of
configurations namely we showed that there is, under CH, a count able decom-
position of Rn with no different points a1, . . . at, satisfying any p(a1, . . . at) =
0 where p is a polynomial with rational coefficients such that p(a1, . . . at) = 0
holds for every a ∈ Rn. (Again, this is trivial for one such polynomial.) This
has recently been extended to ZFC proofs in [33] by J. Schmerl.

Paul Erdős asked if the following asymmetric variant of the above quoted
result of [15] is true. R can be decomposed into two pieces, A and B such
that A omits 3-element while B omits infinite arithmetic progressions. This
was proved (for arbitrary vector spaces) by J. E. Baumgartner [3] using ideas
somewhat similar to the proofs of the results of Rado, Ceder, and Schmerl.

5. The Hilbert Space

The situation changes radically if we replace Rn with the Hilbert space
�∞ of infinite real vectors (x0, x + 1, . . .) with

∑
x2i finite. An observation

due to Erdős, Kakutani, Oxtoby, L.M. Kelly, Nordhaus, and possibly many
others is that in this case there are continuum many points with pairwise
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rational distance. As it is easy not to find a proof I sketch one. Work in the
Hilbert space where an orthonormal basis is {bs} where s can be any finite 0-1
sequence. To every infinite 0-1 sequence z associate a(z) =

∑
λbbz|n where z|n

denotes the string of the first n terms of z and λn =
√

3·2−(n+l). If z = z′ first
differ at the (n+ 1)-st position then (a(z) − a(z′))2 =

∑
{λ2i : i > n = 4−n}

so the distance between a(z) and a(z′) is 2−n. It is easy to see that every
triangle in this construction is isosceles. I don’t know if there is a similar
(or any) construction of continuum many points such that all three-element
subsets form a triangle with nonzero rational area. (See some problems and
several remarks on this topic in [12].)

6. Games

Yet another variant of these problems is to decompose the spaces by games.
Let V be the κ-dimensional space over the rationals and let two players
alternatively choose previously unchosen vectors in a transfinite series of
steps. At limit stages the first player chooses and he has to cover an arithmetic
progress ion as long as possible. Erdős and Hajnal proved that the second
player can always prevent her opponent from selecting an infinite arithmetic
progression. If the second player is allowed to select ℵ0 vectors she can prevent
the first player from selecting a 3-element (4-element) AP if κ ≤ ℵ1(κ ≤ ℵ2)
but the first player can always cover a 3-element arithmetic progression if
κ ≥ ℵ2. This was generalized by Fred Galvin and Zsiga Nagy who showed
that the first player can cover an (n + 2)-element AP for κ = ℵn but his
opponent can prevent him from selecting longer.

7. Large Subsets

Another type of problems asked repeatedly by P. Erdős is the following. LetX
be a subset of the n-dimensional Euclidean space with some infinite (usually
uncountable) cardinal κ Given a property P can one always find a subset
Y ⊆ X of cardinal κ with property P. Already in [9] (see also [13, 5]) Erdős
proves this if P is the property that no distance occurs twice. Notice that
this is a property depending on finite sets. In [9] it is also proved that if κ is
regular then there is a Y such that all r ≤ n-dimensional simplices formed
by r + 1 elements of Y are of different area (but this fails for e.g., ℵω).

8. Set Mappings

As I already sketched in the introduction the theory of set mappings
originated from a question of P. Turán concerning a problem in approximation
theory. As usual, a set mapping is any function f on a set X such that f(x)
is a subset of X excluding x. A subset Y ⊆ X is free if x /∈ f(y) for x, y ∈ Y .
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Turán inquired about free sets if X = R and f(x) is always finite. If one
allows f(x) to be countable then there may be no 2-element free subset if
|X | ≤ ℵ1, a moment’s reflection shows that this is just a reformulation of
Sierpińiski’s statement about the paradoxical decomposition of R2. P. Erdős
proved [10] that if f(x) is nowhere dense for x ∈ R then there is always
an infinite free set. Bagemihl extended this to finding a dense free set [2].
Hechler proved [22] that under CH there is a set mapping f for which an
uncountable free set does not exist and f(x) is an ω-sequence converging to
x! Uri Abraham observed that this may not occur if MAω1 holds and the
existence of an uncountable free set if f(x) is assumed to be nowhere dense
is consistent with and independent of MAω1 (see [1]).

C. Freiling investigated what happens if a set mapping is defined on a
set of size ℵ2. One of his results can be formulated as follows. If A ⊆ R
has cardinal ≤ ℵ2 and f is a set mapping on A with no free subsets of
size 2 such that f(x) is always of first category then either A is the union
of ℵ1 first category sets or every subset of A of cardinal < |A| is of first
category. It is easy to see that in either case there is a well order ≺ of A
in which every proper initial segment is first category. In recent work the
author (of this paper) proved that it is consistent that there is a set A ⊆ R
with |A| = ℵ3 with a set mapping as above but with no well order with first
category segments [28].

In [16] Erdős and Hajnal proved that if f is a set mapping on R such
that f(x) is always of measure zero and not everywhere dense then there is
a free pair but not necessarily a free triplet. They also proved that if f(x) is
bounded and of outer measure at most 1 then for every k < ω there is a free
set of size k and asked if an infinite free set exists. This was finally proved
in [30].
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16. P. Erdős, A. Hajnal: Some remarks on set theory, VIII, Michigan Mathematical
Journal 7 (1960), 187–191.
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Department of Mathematics, The University of Michigan, Ann Arbor,
MI 48109, USA
e-mail: ikriz@umich.edu

Summary. We investigate the property of certain well-founded orderings to have
a chain of maximal ordinal length. We show that Heyting algebras and countable
modular lattices have this property, but we also present an example of a “well-
behaved” lattice which does not have it. We prove a general necessary and sufficient
condition for modular lattices to have the property in a hereditary form. This
hereditary form is called order-perfectness, being analogous to perfectness of finite
graphs. Certain well-known theorems of D.H.J. de Jongh, R. Parikh, D. Schmidt,
E.C. Milner, N. Sauer, and N. Zaguia turn out to be order-perfectness results.

1. Introduction

In every ordering of a set, there are maximal chains with respect to inclusion.
In well-founded orderings, chains have ordinal type. However, different
maximal chains may have different ordinal types and a question arises as to
whether or not there is a chain of maximal order type. This need not be true
in general. It turns out to be interesting to investigate well-founded orderings
A such that A itself and also all the sets of the form {x ∈ A | x < a} for
an a ∈ A have a chain of maximal order type. We call such orderings order-
perfect. A motivation for this terminology arises in Sect. 2. Of course, each
finite ordering is order-perfect. In fact, each AWPO is order-perfect. This is a
special case of Theorem 1.2 from Milner and Sauer [3]. Also, the special case
of it for countable orderings is equivalent to a Theorem by D. Schmidt [5].

The aim of this paper is to prove order-perfectness for different kinds of
orderings, namely for certain classes of lattices. To indicate the motivation,
let us take an example. For a WPO A, the set ↓ A of all downward closed
subsets is well-founded (the converse is also true). Maximal chains in ↓ A are
in 1-1-correspondence with linear extensions of A. As is well known (see [2]),
for each WPO A there exists a linear extension of maximal ordinal type, and
so ↓ A is order-perfect. This is a special case of our result saying that each
well-founded completely distributive lattice is order-perfect.
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More generally, we present a necessary and sufficient condition for a well-
founded modular lattice to be order-perfect. This condition is true for Heyting
algebras (cf. [1]) as well as for countable modular lattices. We do not know
if there is a natural common generalization of these two facts. In Sect. 4
we show that one fairly natural candidate fails (the counter-example is a
complete sublattice of Vect(Rω)).

Problem 1. Is there a class C of lattices which can be characterized
by equations, includes both Heyting algebras and countable modular lat-
tices and has the property that each well-founded lattice from C is order-
perfect?

To conclude this section, let us remark that we call our main concept
order-perfectness to avoid confusion with the work of Milner and Pouzet [4]
who consider perfectness of infinite comparability graphs in the usual graph-
theoretical sense.

2. Preliminaries: Orderings

Definition 1. In this paper, ⊕ resp. + denotes the natural (resp. ordinal)
sum of ordinal numbers. For a well-ordered set K (isomorphic to an ordinal)
a subset S ⊆ K is called closed if

(T ⊆ S and T has a supremum in K) → supT ∈ S.

Now let A be an ordering. The symbol A designates the ordering obtained
from A by adding a new greatest element. A chain (resp. strict, decreasing,
strictly decreasing chain) in A is a sequence (aα)α∈λ (λ ∈ Ord) such that
α < β implies aα ≤ aβ (resp. aα < aβ, aα ≥ aβ, aα > aβ). The length |c| of
a chain c = (aα)α∈λ is the ordinal type of the set {a ∈ λ | β < α → aβ < aα}.
A chain (aα)α∈λ is continuous, if asup I = sup{ai | i ∈ I} for any I such that
I ∪ {sup I} ⊆ λ; in particular, the right hand supremum (the unique least
upper bound) is required to exist. An antichain in A is a set of pairwise
incomparable elements.

The ordering A is well-founded (abb. WF) if it has no infinite strictly
decreasing chain. A mapping ϕ : A → B, where A, B are orderings, is called
monotone resp. strictly monotone if it satisfies a ≤ b → ϕ(a) ≤ ϕ(b) (resp.
a < b → ϕ(a) < ϕ(b)). For well-founded A we define

μ(A) = min{γ | ∃ϕ : A → γ strictly monotone}

λ(A) = sup{γ | ∃ϕ : γ → A strictly monotone}.

Observe that λ(A) ≤ μ(A). We write λ(A) instead of λ(A) if this supremum
as attained (i.e., if there is a maximum).

Put ↓ A = {B ⊆ A | a ∈ B&b ≤ a → b ∈ B}. Then ↓ A is ordered by
inclusion. For a ∈ A we denote by ⇓ a (resp.↓ a) the induced ordering on
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{b ∈ A | b < a} (resp.{b ∈ A | b ≤ a}) . An ordering A is called order-perfect
if we have

λ(⇓ a) = μ(⇓ a) for any a ∈ A.

(In particular, the left hand sides are required to exist). We call A stratified,
if for each a ∈ A all maximal chains in ⇓ A have the same ordinal length. For
a poset A we say that a ∈ A covers b ∈ A if we have a > b and if there is no
c ∈ A such that b < c < a.

Let A be a partial ordering. A (finite or infinite) sequence (ai) in A is
called bad if we have

i < j → ai � aj.

The ordering A is called a well-partial-ordering (abb. WPO) if it contains no
infinite bad sequence. We denote by A<ω the set of all finite sequences in A
and put

BadA = {(a0, . . . , an) ∈ A<ω | i < j → ai � aj}.

Thus, the empty sequence belongs to BadA. A mapping ϕ : BadA → γ +
1(γ ∈ Ord) is called a character of A if we have

ϕ(λx) < ϕ(λ) whenever λx ∈ BadA.

Put

c(A) = min{γ | ∃ a character ϕ : BadA → γ + 1}

d(A) = max{γ | γ is isomorphic to a linear extension of A}.

(Let us recall that an extension means a stronger ordering on the same set.)
An extension of a WPO is always WPO (such a statement is not true for WF
orderings). Thus, a linear extension of the WPO A is a well-ordering. The
existence of a number d(A) was proved in [2].

Now let A be WF, a ∈ A. Define the height h(a) of an element a ∈ A
by h(a) = λ(⇓ a). (The reader should be warned that the terminology in
the literature differs and some authors use the word “height” in a different
meaning.) We call A almost well-partial ordering (AWPO) if for any sequence
(ai)i∈ω in A there exist i < j with

ai ≤ aj or h(ai) ≥ h(aj).

For an ordering A and a set M ⊆ A put

AM = {x ∈ A | (∀y ∈ M)y � x}.

For a subset B ⊂ Ord put

M(B) = sup{x+ 1 | x ∈ B}.

Thus, M(B) is the least ordinal greater than all members of B.

Proposition 1. Let A be WF. Then A is order-perfect if and only if all the
numbers λ(A), λ(⇓ a) (a ∈ A) exist.



430 Igor Kř́ıž

Proof. If the numbers λ(A), λ(⇓ a) exist, then we have

λ(⇓ a) = M({λ(⇓ b) | b < a})

λ(A) = M({λ(⇓ a) | a ∈ A}).

We can easily check, however, that analogous recurrent relations hold
for u. �

Remark 1. Of course, not all WF orderings have to be order-perfect. Put,
e.g., Aα = Badα with

a ≤ b ≡ (∃c)a = bc.

Then we have

λ(Aα) = ω, μ(Aα) = α.

Proposition 2. For each WPO A we have

c(A) + 1 = μ(↓ A) = λ(↓ A) = d(A) + 1.

In particular, c(A) = d(A).

Proof. Once we know that d(A) always exists (see [2] or Sect. 3 below), the
last two equalities are trivial. We present a proof of the first one: ≤: If χ :↓
A → μ(↓ A) is strictly monotone then the mapping ψ : BadA → μ(↓ A)
given by ψ(a1 . . . an) = ϕ(A{a1...an}) is a character. ≥: If

ψ : BadA → γ + 1

is a character, then define ϕ :↓ A → γ + 1 by

ϕ(B) = min{ψ(T ) | T is a bad sequence in A \B}.

To see that ϕ is strictly monotone, let B, C ∈↓ A, B ⊂ C. There is an
element

c ∈ C \B.

let T be a bad sequence in A \ C with

ϕ(C) = ψ(T ).

The concatenation Tc is a bad sequence, since C ∈↓ A. Thus,

ϕ(B) ≤ ψ(Tc) < ψ(T ) = ϕ(C).

�

Theorem 1 (Milner and Sauer [3]). Each AWPO A is order-perfect.

Lemma 1. Let I, J , K be well-ordered sets, K = I ∪ J . Then

(a) c(K) ≤ c(I) ⊕ c(J)
(b) If minK ∈ J , |I| ≥ ω and I, J are closed in K then c(K) < c(I)⊕ c(J).
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Proof. (a) Is a special case of a theorem proved in [2].
(b) Suppose the contrary. Without loss of generality, K = κ is an ordinal.

Let λ be the largest limit ordinal with

λ ≤ κ

By our assumptions,

I ∩ λ = ∅ & J ∩ λ = ∅. (∗)

There exist α < λ, β ≤ λ such that β is sum-closed and

α+ β = λ.

Put

β′ = {α+ i | i ∈ β}.

We will show that

One of the sets I ∩ λ, J ∩ λ has a maximum. (∗∗)

Indeed, suppose (∗∗) false. Since both I and J are closed in K, the sets

I ∩ β′, J ∩ β′

are cofinal in β′. We conclude that

c(I) ⊕ c(J) ≥ α+ 2β′ > K.

Thus, (∗∗) is proved.
Now let, say, ε = max(I ∩ λ). Define a mapping ϕ : κ→ κ+ 1 by

ϕ(β) = β for β < ε

ϕ(ε) = λ

ϕ(β) = β − 1 for ε < β < ε + ω

ϕ(β) = β for ε+ ω ≤ β < λ

ϕ(β) = β + 1 for λ ≤ β.

Observe that we have

κ+ 1 = ϕ(I) ∩ ϕ(J)

c(ϕ(I)) = c(I) and c(ϕ(J)) = c(J).

We conclude that

c(I) ⊕ c(J) ≥ c(ϕ(I)) ⊕ c(ϕ(J)) ≥ c(ϕ(I) ∪ ϕ(J)) ≥ κ+ 1.

�



432 Igor Kř́ıž

3. Lattices: Positive Results

Observation 1. Let A be a WF lattice. Then A is a complete lattice.

Proof. Since A has finite meets and is well-founded, it has no empty meets.�

Conditions 1. We say that a WF ordering A satisfies CC (continuity
condition), if there exists a chain (aκ)i∈cfλ(A) such that

sup
i
h(ai) = λ(A).

A WF-ordering A is said to satisfy HCC if for each interval 〈b, a), b, a ∈ A),
such that λ(〈b, a)) is sum-closed and of cofinality > ω, satisfies CC.

We say that a lattice A satisfies the condition WHA (weak Heyting
algebra) if for any set I, |I| < |A|, and elements (bi)i∈I , a of A we have

( ∨
i∈I

bi) ∧ a = ∨
i∈I

(bi ∧ a). (+)

In particular, the joins in question are required to exist.

Theorem 2. A modular WF lattice is order-perfect if and only if it satisfies
HCC.

Proof will be given below. Until the end of the proof, A is always a well
founded modular lattice.

Lemma 2. Let (ci)i<λ be a chain in A, a ∈ A, M = {i < λ/ci � a}. Then
we have

|(ci)i<λ| ≤ |(ci ∧ a)i<λ| ⊕ |(ci ∨ a)i∈M |. (+)

Moreover, we have

|(ci)i<λ| < |(ci ∧ a)i<λ| ⊕ |(ci ∨ a)i∈M | (++)

whenever

|M | ≥ ω. (+++)

Remark 2. The condition (+++) for (++) cannot be weakened. Indeed,
consider A = ω + 2, λ = ω + 2, ci = i (i ∈ A), a = ω, I = {w + I},
|(ci)i<λ| = ω + 2, |(ci ∧ a)i∈λ| = ω + 1, |(ci ∨ a)i<λ = 1 and equality occurs
in (+).

Proof. Let b = (bi)i<κ be a chain in A. Put

I(b) = {i < κ|(∀j < i)bj < bi}.

Obviously,

|b| = c(I(b)).
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By modularity of A,

I((ci)i<λ) = I((ci ∧ a)i<λ) ∪ I((ci ∨ a)i∈M ).

Moreover, obviously, the right-hand sets are closed in the left-hand one and

0 ∈ I((ci ∧ a)i<λ).

The statement of our lemma now directly follows from Lemma 1. �

Lemma 3. If we have b < a and there is a chain (ci) of length α in ⇓ a then
there are chains of lengths β, γ in ⇓ b, 〈b, a), respectively, such that

β ⊕ γ ≥ α.

Proof. Assume the chain (ci) in ⇓ a is maximal hence continuous. We
distinguish two possibilities:

(a) |(ci ∨ b | ci � b)| ≥ ω. Then take the chains (ci ∧ b | ci � b), (ci ∧ b|ci � b)
and use Lemma 2(++).

(b) |(ci ∨ b | ci � b)| < ω. Then take the chain (ci ∧ b | ci � b) and the
concatenation of b and (ci ∧ b | ci � b) and use Lemma 2(+) together
with the commutativity of addition of finite ordinals. �

Remark 3. Trying out a few examples, one can see that the cases (a), (b)
in the proof of Lemma 3 are really governed by different principles. A less
careful analysis, however, would cause only a discrepancy by 1, which is still
sufficient for the proof of Theorem 2.

Lemma 4. For b < a ∈ A we have

λ(⇓ a) ≤ λ(⇓ b) ⊕ λ(〈b, a)). (+)

Moreover, if λ(⇓ b) exists we have

λ(⇓ b) + λ(〈b, a)) ≤ λ(⇓ a). (++)

Proof. (++) is trivial, (+) follows from Lemma 3. �

Theorem 3. If A (a modular WF lattice) is order-perfect then any interval
〈b, a), a, b ∈ A, is order-perfect.

Proof. First let λ(〈b, a)) be sum-closed. We have a chain (ai) in ⇓ a of length
λ(⇓ a). Thus, there are chains in ⇓ b, 〈b, a) of lengths β, γ, respectively,
β ⊕ γ ≥ λ(⇓ a). By Lemma 4(++),

λ(⇓ b) + λ(〈b, a)) ≤ λ(⇓ a).

Since β ≤ λ(⇓ b), we have

λ(⇓ b) ⊕ γ ≤ λ(⇓ a).

Since λ(〈b, a)) is sum-closed, we have λ(〈b, a)) ≤ γ and hence
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λ(〈b, a)) = γ.

Now let α = λ(〈b, a)) not be sum-closed. We proceed by induction on a.
First realize that b < c < a → λ(〈b, c)) < λ(〈b, a)). In fact λ(〈b, c)) exists
by the inductional hypothesis; use Lemma 4(++). Now let β be the last
summand of α (in the same sense as in the proof of Lemma 1). Let (ai) be
a chain in 〈b, a) of length > α − β (the least number κ s.t. κ + β ≥ α). Put
c = aα−β . We have λ(〈c, a)) = β: ≤ is obvious and ≥ follows from the fact
that λ(〈b, c)) < λ(〈b, a)) and

λ(〈b, c)) ⊕ λ(〈c, a)) ≥ λ(〈b, a)) (+)

(by Lemma 4(+)). Now λ(〈b, c)) exists by the inductional hypothesis and
λ(〈c, a)) exists by the first part of the proof. By (+), we have

λ(〈b, c)) + λ(〈c, a)) ≥ λ(〈b, a))

(since λ(〈c, a)) = β). �

Lemma 5. Let a, b ∈ A. Then we have

h(a) ⊕ h(b) ≥ h(a ∨ b).

Proof. Let (ci) be a chain in ⇓ a ∨ b of length α. By Lemma 3, there are
chains in ⇓ a〈a, a ∨ b) of lengths β, γ, respectively, such that

β ⊕ γ ≥ α.

As is well known, 〈a, a∨b) is isomorphic to 〈a, a∧b) via “∧b”. Thus, γ ≤ h(b).�

Remark 4. The discrepancy between natural and ordinal sum prevents us
to obtain an exact result as in the finite case.

Lemma 6. Let λ(〈a, b)) be sum-closed and of cofinality ω, a, b ∈ A. Then
〈a, b) satisfies CC.

Proof. Choose ai ∈ 〈a, b) with λ(〈a, bi)) ↗ λ(〈a, b)) and put ai = b0∨ . . .∨bi.
We have ai < b by Lemma 5 and the sum-closedness. �

Proof of Theorem 2. Necessity follows from Theorem 3. In order to prove
sufficiency, we introduce the following statement

S: If A is modular and satisfies HCC and a ∈ A then λ(⇓ a) exists.

This implies our result by Proposition 1, since neither modularity nor
HCC is violated by adding a new greatest element.

We shall prove S by induction on h(a).

Case 1. h(a) is not sum-closed. Then let α+ β = h(a), α, β < h(a), β the
last summand of h(a). Then there exists a b < a with

h(b) ≥ α.
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We may assume h(b) < h(a) (otherwise we replace a by b), hence λ(⇓ b)
exists. By Lemma 4,

λ(〈b, a)) = β. (+)

The inductional hypothesis applied to a ∈ 〈b, a) (a modular lattice satisfying
HCC) yields

λ(〈b, a)) = β. (++)

Now by (+),(++), there exist strict chains

(ci)i∈α in ⇓ b

(di)i∈β in 〈b, a).

The desired chain is obtained by concatenation.

Case 2. λ = λ(⇓ a) is sum-closed. Then either by HCC or by Lemma 6 we
have a strict chain (ci)i∈cfλ in ⇓ a with

λ(⇓ ci) ↗ λ.

By Lemma 4(+) and the sum-closedness of λ we have

lim
j:j≥ij∈cfλ

λ(〈ci, cj)) = λ

and thus

lim
j:j≥ij∈cfλ

λ(〈ci, cj)) = λ

by the inductional hypothesis. Now take an increasing sequence iα(α ∈ cfλ)
such that

lim
α∈cfλ

λ(〈ciα , ciα+1)) = λ.

Now if (cαi )i∈λ(〈ciα , eiα+1
)) is a strict chain, we obtain a chain of length λ in

⇓ a by concatenation. �

Theorem 4. If A satisfies WHA and is WF then A satisfies CC (and hence,
by hereditarity, also HCC).

Proof. Let A = 〈0, 1), λ = λ(A). If there is a sequence (ci)i∈cfλ such that for
β < cfλ

∨

i∈β
ci < 1,

the statement is proved. So assume the contrary. We will prove that following
fact:

T : For any c < 1 we have sup{h(b)|c � b} < λ.

Really, since A is WF, we can write
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c =
∨

i∈β
ci

where β < cfλ and ci are irreducible to sums of size < cfλ. Now for any
i ∈ β the set

Mi = {h(b)ci � b}

has supremum < λ : Otherwise there are an aα � ci, α ∈ cfλ, such that
h(aα) ↗ λ. Thus, there is a γ < cfλ such that

∨

α∈λ
aα = 1.

Thus, by WHA,
∨

α∈γ
(ci ∧ aα) = ci.

contradicting the assumed irreducibility of ci. Now

sup
ı∈β

supMi < λ.

However, T clearly enables us to choose a sequence (ci) with (+), contradict-
ing the original assumption. �

Remark 5. We have shown that each WF WHA is order-perfect. On the
other hand, each countable modular WF lattice is order-perfect, since it
satisfies HCC by default.

On might look for weakenings of these conditions. It is fairly easy to
find an example of a distributive complete well-founded lattice which is not
order-perfect: Take, for instance, the set

A = {ϕ : ω1 \ {0} → ω1||ω1 \ ϕ−1(0)| < ω&(∀α ∈ ω1 \ {0})ϕ(α) < α}.

and put

ϕ ≤ ψ iff (∀α ∈ ω1 \ {0})ϕ(α) ≤ ψ(α).

This makes A a well-founded distributive lattice. A is a well-founded complete
distributive lattice. Obviously,

λ(A) = ω1

while there is no uncountable chain. An observation of this kind has been
first made in Zaguia [6].

This example teaches us that the infinite joins (at least of cardinality
< |A|) indeed have to be “tightened up” in some way. On the other hand,
the (finite) distributivity is obviously not needed.

Note that WHA is equivalent to distributivity plus Lemma 2(+) for chains
(bi). One might suggest modularity and Lemma 2(+) for chains (bi). In the
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next section we shall show, however, that this condition is not sufficient for
order-perfectness. In fact, we shall find a complete well-founded sublattice
of Vect(R(ω)) which is not perfect. This example, because of the strong
condition on infinite joins is much more interesting than the one mentioned
above.

4. Lattices: A Negative Result

Theorem 5. There exists a complete sublattice P of Vect(R(ω)) which is
WF but not order-perfect.

(In this paper, (R(A)) means the free R-modul over A. Vect(X) stands
for the lattice of all submodules of X .)

Lemma 7. For any α < w1 there exists a WPO Bα such that λ(Bα) = ω,
c(Bα) ≥ α, Bα is stratified and

|{x ∈ Bα|h(x) = n}| = n+ 1. (+)

Proof. Let ϕ : α → ω be a bijection. Put Bα = {(α, k)|ϕ(α) ≤ k}. Now
let α, k < (β,m) if and only if α ≤ β and k < m. Clearly λ(Bα) = ω and
Bα is stratified (since h(α, k) = k). For the same reason Bα, satisfies (+)
(since ϕ is a bijection). Now Bα is WPO, since it is the intersection of three
(linear) well-orderings: The lexicographical one prefering first coordinate,
the lexicographical one prefering second coordinate and the ordering ≺
given by

(α, k) ≺ (β,m) iff k < m or (k = m and β < α).

�

Construction 1. In the sequel, we will assume that we are given disjoint
sets Bα|α ∈ ω1 satisfying the conditions of Lemma 7. Let

R
(ω) = ⊕

i∈ω
Vi, dimVi = 2i+1(i + 1)!

Let {υ(α, )̧|α ∈ ω1, c ∈ Bα, h(c) = i} be vectors of Vi in general position.
(Each subset of cardinality ≤ dimVi is linearly independent.) For a vector
υ ∈ Vi define a subspace ∂υ ⊆ Vi−1 as follows:

If there exists a (in the sequel minimal with res pect to inclusion) set

{υ(α1, c1), . . . , υ(αn, cn)}

such that υ ∈ 〈υ(α1, c1), . . . , υ(αn, cn)〉 (the linear hull) and

n ≤ 2i(i+ 1)!

then put

∂υ = 〈υ(αi, d)|i ≤ n and ci covers d〉.
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Otherwise put

∂υ = Vi−1.

Because of the general position of υ(α, c), ∂ is defined correctly. Put for a
subspace V ⊆ Vi

∂V = 〈∂υ|υ ∈ V 〉.

Now let

P ⊆ ⊕
i∈ω

VectVi

be the set of all subspaces W satisfying

∂(W ∩ Vi) ⊆W.

We will show that P is the desired lattice.

Lemma 8. P is a meet-closed subset of Vect(R(ω)).

Proof. It suffices to realize that a space W belongs to P if and only if it
satisfies a set of conditions of the form

a ∈ W → b ∈ W.

Such conditions are preserved by intersection. �

Lemma 9. Let υ ∈ Vi, 〈υ(β1, d1), . . . , υ(βm, dm)〉 4 υ. Then we have

∂υ ⊆ 〈υ(βi, d)|i ≤ m, di covers d〉.

Proof. First realize that if m ≥ 2i(i + 1)! then at least 2ii! of the numbers
βi are different (by Lemma 7(+) and the Dirichlet principle). Thus, the
vectors υ(βj , d) such that dj covers d are distinct and hence they generate
Vi−1. If, on the other hand, n < 2i(1 + i)! then (by the general position)
{υ(β1, d1), . . . , υ(βm, dm)} contains the set {υ(α1, c1), . . . , υ(αn, cn)} from
the definition of ∂υ. �

Lemma 10. P is a complete sublattice of Vect(R(ω)).

Proof. Now it suffices to show that P is closed under joins. This, however
follows from the relation

∂(
∨
Vi) =

∨
∂Vi

which is an easy consequence of Lemma 7. �

Observation 2. Let B ∈↓ Bα. Then

VB = ({υ(α, c)|c ∈ B}) ∈ P.

Thus, P contains a chain of arbitrary countable length. On the other hand,
it does not contain an uncountable one, since Vect(R(ω)) does not.
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Lemma 11. Let V ∈ P and let an i ≤ k exist such that V 	 Vi. Then there
exist only finitely many different a with

υ(α, c) ∈ V

for some c ∈ Bα, h(c) ≥ k.

Proof. Because of the stratifiedness of Bα, V contains for each such α a vector
υ(α, d) with h(d) = i, If there were infinitely many such ones then Vi ⊆ V by
the general position. �

Lemma 12. P is WF.

Proof. Let (Wj)j∈ω be a strictly decreasing chain in P . Let, without loss of
generality, W0 	 Vk. Now let

{α1, . . . , αn} = {α|(∃υ(α, c))h(c) ≥ k&υ(α, c) ∈W0}.

Put Bij = {c | υ(αi, c) ∈ Wj}, i ≤ n, j ∈ w. By the definition of P clearly

Bij ∈↓ Bαi . Moreover, we have

Bi0 ⊇ Bi1 ⊇ . . . .

Since Bαi , is WPO, it holds without loss of generality that

Bi0 = Bi1 = . . . .

Since we have j = j′ with

Wj ∩ ⊕
i∈k

Vi = W ′
j ∩ ⊕i∈kVi,

we have Wj = W ′
j . A contradiction. �
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Summary The pcf theorem (of the possible cofinability theory) was proved for
reduced products

∏
i<κ λi/I, where κ < mini<κ λi. Here we prove this theorem under

weaker assumptions such as wsat(I) < mini<κ λi, where wsat(I) is the minimal θ
such that κ cannot be divided to θ sets /∈ I (or even slightly weaker condition). We
also look at the existence of exact upper bounds relative to <I (<I-eub) as well as
cardinalities of reduced products and the cardinals TD(λ). Finally we apply this to
the problem of the depth of ultraproducts (and reduced products) of Boolean algebras.

1. Introduction

An aim of the pcf theory is to answer the question, what are the possible
cofinalities (pcf) of the partial orders

∏
i<κ λi/I, where cf(λi) = λi, for

different ideals I on κ. For a quick introduction to the pcf theory see [11], and
for a detailed exposition, see [8] and more history. In §1 and §2 we generalize
the basic theorem of this theory by weakening the assumption κ < mini<κ λi
to the assumption that I extends a fixed ideal I∗ with wsat(I∗) < mini<κ λi,
where wsat(I∗) is the minimal θ such that κ cannot be divided to θ sets /∈ I∗

(not just that the Boolean algebra P(κ)/I∗ has no θ pairwise disjoint non
zero elements). So §1, §2 follow closely [8, Ch. I = [10]], [8, II 3.1], [8, VIII
§1]. It is interesting to note that some of (as presented in courses and see
a forthcoming survey of Kojman) those proofs which look to be superseded
when by [13, §1] we know that for regular θ < λ, θ+ < λ ⇒ ∃ stationary
S ∈ I[λ], S ⊆ {δ < λ : cf(δ) = θ}, give rise to proofs here which seem
necessary. Note wsat(I∗) ≤ |Dom(I∗)|+ (and reg∗(I∗) ≤ |Dom(I∗)|+) so [8,
I §1, §2, II §1, VII 2.1, 2.2, 2.6] are really a special case of the proofs here.

During the 1960s the cardinalities of ultraproducts and reduced products
were much investigated (see Chang and Keisler [1]). For this the notion
“regular filter” (and (λ, μ)-regular filter) were introduced, as: if λi ≥ ℵ0,
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1. Publication no. 506.
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D a regular ultrafilter (or filter) on κ then
∏
i<κ λi/D = (lim supD λi)

κ.
We reconsider these problems in §3 (again continuing [8]). We also draw a
conclusion on the depth of the reduced product of Boolean algebras partially
answering a problem of Monk; and make it clear that the truth of the full
expected result is translated to a problem on pcf. On those problems on
Boolean algebras see Monk [6]. In this section we include known proofs for
completeness.

Let us review the paper in more details. In 1.1, 1.2 we give basic definition
of cofinality, true cofinality, pcf(λ̄) and J<λ[λ̄] where usually λ̄ = 〈λi : i < κ〉
a sequence of regular cardinals, I∗ a fixed ideal on κ such that we consider
only ideals extending it (and filter disjoint to it). Let wsat(I∗) be the
first θ such that we cannot partition κ to θ I∗-positive set (so they are
pairwise disjoint, not just disjoint modulo I∗). In 1.3, 1.4 we give the basic
properties. In Lemma 1 we phrase the basic property enabling us to do
anything: (1.5(∗)) : lim infI∗(λ̄) ≥ θ ≥ wsat(I∗),

∏
λ̄/I∗ is θ+-directed; we

prove that
∏
λ̄/J<λ[λ̄] is λ-directed. In 1.6, 1.8 we deduce more properties

of 〈J<λ[λ̄] : λ ∈ pcf(λ̄)〉 and in 1.7 deal with <J<λ[λ̄]-increasing sequence

〈fα : α < λ〉 with no <J<λ[λ̄]-bound in
∏
λ̄. In 1.9 we prove pcf(λ̄) has a last

element and in 1.10, 1.11 deal with the connection between the true cofinality
of

∏
i<κ λi/D

∗ and
∏
i<σ μi/E when μi =: tcf(

∏
i<κ λi/Di) and D∗ is the

E-limit of the Di’s.
In 2.1 we define normality of λ for λ̄ : J≤λ[λ̄] = J<λ[λ̄] + Bλ and we

define semi-normality: J≤[λ̄] = J<λ[λ̄] + {Bα : α < λ} where Bα/J<λ[λ̄] is
increasing. We then (in 2.2) characterize semi normality (there is a <J<λ[λ̄]-

increasing f̄ = 〈fα : α < λ〉 cofinal in
∏
λ̄/D for every ultrafilter D (disjoint

to I∗ of course) such that tcf(
∏
λ̄/D) = λ) and when semi normality implies

normality (if some such f̄ has a <J<λ[λ̄]-eub).
We then deal with continuity system ā and <J<λ[λ̄]-increasing sequence

obeying ā, in a way adapted to the basic assumption (∗) of 1.5.
Here as elsewhere if min(λ̄) ≥ θ+ our life is easier than when we just

assume limsupI∗(λ̄) ≥ θ,
∏
λ̄/I∗ is θ+-directed (where θ ≥ wsat(I∗) of

course). In 2.3 we give the definitions, in 2.4 we quote existence theorem,
show existence of obedient sequences (in 2.5), essential uniqueness (in 2.7)
and better consequence to 1.7 (in the direction to normality). We define
(2.9) generating sequence and draw a conclusion (2.10(1)). Now we get some
desirable properties: in 2.8 we prove semi normality, in 2.10(2) we compute
cf(

∏
λ̄/I∗) as max pcf(λ̄). Next we relook at the whole thing: define several

variants of the pcf-th (Definition 6). Then (in 2.12) we show that e.g. if
min(λ̄) > θ+, we get the strongest version (including normality using 2.6,
i.e. obedience). Lastly we try to map the implications between the various
properties when we do not use the basic assumption 1.5 (∗) (in fact there are
considerable dependence, see 2.13, 2.14).

In 3.1, 3.3 we present measures of regularity of filters, in 3.2 we present
measures of hereditary cofinality of

∏
λ̄/D: allowing to decrease λ̄ and/or
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increase the filter. In 3.4–3.8 we try to estimate reduced products of
cardinalities

∏
i<κ λi/D and in 3.9 we give a reasonable upper bound by

hereditary cofinality (≤ (θκ/D + hcfD,θ(
∏
i<κ λI))

<θ when θ ≥ reg⊗(D)).
In 3.10–3.11 we return to existence of eub’s and obedience and in 3.12

draw conclusion on “downward closure”. On TD(f), starting with Galvin and
Hajnal [2] see [8].

In 3.13–3.14 we estimate TD(λ̄) and in 3.15 try to translate it more fully
to pcf problem (countable cofinality is somewhat problematic (so we restrict
ourselves to TD(λ̄) > μ = μℵ0). We also mention ℵ1-complete filters; (3.16,
3.17) and see what can be done without relaying on pcf (3.20)).

Now we deal with depth: define it (3.18, see 3.19), give lower bound (3.22),
compute it for ultraproducts of interval Boolean algebras of ordinals (3.24).
Lastly we connect the problem “does λi < Depth+(Bi) for i < κ implies
μ < Depth+(

∏
i<κBi/D)” at least when μ > 2κ and (∀α < μ)[|α|ℵ0 < μ], to

a pcf problem (in 3.26). This is continued in [16].
In the last section we phrase a reason why 1.5(∗) works (see 4.1), analyze

the case we weaken 1.5(∗) to lim infI∗(λ̄) ≥ θ ≥ wsat(I∗) proving the pseudo
pcf-th (4.3).

2. Basic pcf

2.1. Notation

I, J denote ideals on a set Dom(I), Dom(J) resp., called its domain (possibly⋃
A∈I A ⊂ Dom I). If not said otherwise the domain is an infinite cardinal

denoted by κ and also the ideal is proper i.e. Dom(I) /∈ I. Similarly D denotes
a filter on a set DomD; we do not always distinguish strictly between an ideal
on κ and the dual filter on κ. Let λ̄ denote a sequence of the form 〈λi : i < κ〉.
We say λ̄ is regular if every λi is regular, min λ̄ = min{λi : i < κ} (of course
also in λ̄ we can replace κ by another set), and let

∏
λ̄ =

∏
i<κ λi; usually we

are assuming λ̄ is regular. Let I∗ denote a fixed ideal on κ. Let I+ = P(κ)\ I
(similarly D+ = {A ⊆ κ : κ \A /∈ D}), let

lim inf
I
λ̄ = min{μ : {i < κ : λi ≤ μ} ∈ I+} and

lim sup
I
λ̄ = min{μ : {i < κ : λi > μ} ∈ I} and

atomI λ̄ = {μ : {i : λi = μ} ∈ I+}.

For a set A of ordinals with no last element, Jbd
A = {B ⊆ A : sup(B) <

sup(A)}, i.e. the ideal of bounded subsets. Generally, if inv(X) = sup{|y| :|=
ϕ[X, y]} then inv+(X) = sup{|y|+ :|= ϕ[X, y]}, and any y such that |= ϕ[X, y]
is a witness for |y| ≤ inv(X) (and |y| < inv+(X)), and it exemplifies this. Let
Ā∗
θ[λ̄] = 〈A∗

α : α < θ〉 = 〈A∗
θ ,α [λ̄] : α < θ〉 be defined by: A∗

α = {i < κ : λi >
α}. Let Ord be the class of ordinals.
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Definition 1. (1) For a partial order∗ P :

(a) P is λ-directed if: for every A ⊆ P, |A| < λ there is q ∈ P such that∧
p∈A p ≤ q, and we say: q is an upper bound of A;

(b) P has true cofinality λ if there is 〈pα : α < λ〉 cofinal in P , i.e.:∧
α<β pα < pβ and ∀q ∈ P [

∨
α<λ q ≤ pα] [and one writes tcf(P ) = λ

for the minimal such λ] (note: if P is linearly ordered it always has a
true cofinality but e.g. (ω,<) × (ω1, <) does not).

(c) P is called endless if ∀p ∈ P∃q ∈ P [q > p] (so if P is endless, in clauses
(a), (b), (d) above we can replace ≤ by <).

(d) A ⊆ P is a cover if: ∀p ∈ P∃q ∈ A[p ≤ q]; we also say “A is cofinal in
P”.

(e) cf(P ) = min{|A| : A ⊆ P is a cover}.
(f) We say that, in P, p is a lub (least upper bound) of A ⊆ P if:

(α) p is an upper bound of A (see (a))
(β) If p′ is an upper bound of A then p ≤ p′.

(2) If D is a filter on S, αs (for s ∈ S) are ordinals, f, g ∈
∏
s∈S αs, then:

f/D < g/D, f <D g and f < g mod D all mean {s ∈ S : f(s) <
g(s)} ∈ D. Also if f, g are partial functions from S to ordinals, D a
filter on S then f < g mod D means {i ∈ Dom(D) : i /∈ Dom(f)
or f(i) < g(i) (so both are defined)} belongs to D. We write X = A
mod D if Dom(D) \ [(X \A) ∪ (A \X)] belongs to D. Similarly for ≤,
and we do not distinguish between a filter and the dual ideal in such
notions. So if J is an ideal on κ and f, g ∈

∏
λ̄, then f < g mod J iff

{i < κ : ¬f(i) < g(i)} ∈ J . Similarly if we replace the αs’s by partial
orders.

(3) For f, g : S → Ordinals, f < g means
∧
s∈S f(s) < g(s); similarly

f ≤ g. So (
∏
λ̄,≤) is a partial order, we denote it usually by

∏
λ̄;

similarly
∏
f or

∏
i<κ f(i).

(4) If I is an ideal on κ, F ⊆ κOrd, we call g ∈ κOrd an ≤I-eub (exact
upper bound) of F if:

(α) g is an ≤I-upper bound of F (in κOrd)
(β) If h ∈ κOrd, h <I Max{g, 1} then for some f ∈ F, h < max{f, 1}

mod I.
(γ) If A ⊆ κ, A = ∅ mod I and [f ∈ F ⇒ f � A =I 0A, i.e. {i ∈ A :

f(i) = 0} ∈ I] then g � A =J 0A.

(5)(a) We say the ideal I (on κ) is θ-weakly saturated if κ cannot be divided
to θ pairwise disjoint sets from I+ (which is P(κ) \ I)

(b) wsat(I) = min{θ : I is θ − weakly saturated}

∗actually we do not require p ≤ q ≤ p ⇒ p = q so we should say quasi partial
order
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Remark 1.1A.

(1) Concerning 1.1(4), note: g′ = Max{g, 1} means g′(i) = Max{g(i), 1} for
each i < κ; if there is f ∈ F , {i < κ : f(i) = 0} ∈ I we can replace
Max{g, 1}, Max{f, 1} by g, f respectively in clause (β) and omit clause
(γ).

(2) Considering
∏
i<κ f(i), <I formally if (∃i)f(i) = 0 then

∏
i<κ f(i) = ∅;

but we usually ignore this, particularly when {i : f(i) = 0} ∈ I.

Definition 2. Below if Γ is “a filter disjoint to I”, we write I instead Γ.

(1) For a property Γ of ultrafilters:

pcfΓ(λ̄) = pcf(λ̄,Γ) = {tcf(
∏

λ̄/D) : D is an ultrafilter on κ satisfying

Γ}

(so λ̄ is a sequence of ordinals, usually of regular cardinals, note: as D
is an ultrafilter,

∏
λ̄/D is linearly ordered hence has true cofinality).

(1A) More generally, for a property Γ of ideals on κ we let pcfΓ(λ̄) =
{tcf(

∏
λ̄/J) : J is an ideal on κ satisfying Γ such that

∏
λ̄/Jhas true

cofinality}. Similarly below.
(2) J<λ[λ̄,Γ] = {B ⊆ κ: for no ultrafilter D on κ satisfying Γ to which B

belongs, is tcf(
∏
λ̄/D) ≥ λ}.

(3) J≤λ[λ̄,Γ] = J<λ+ [λ̄,Γ].
(4) pcfΓ(λ̄, I) = {tcf(

∏
λ̄/D) :D a filter on κ disjoint to I satisfying Γ}.

(5) If B ∈ I+, pcfI(λ̄ � B) = pcfI+(κ\B)(λ̄) (so if B ∈ I it is ∅), also

J<λ(λ̄ � B, I) ⊆ P(B) is defined similarly.
(6) If I = I∗ we may omit it, similarly in (2), (4).

If Γ = ΓI∗ = {D : D a filter on κ disjoint to I∗} we may omit it.

Remark. We mostly use pcf(λ̄), J<λ[λ̄].

Claim 1.3.

(0) (
∏
λ̄, <J) and (

∏
λ̄,≤J) are endless (even when each λi is just a limit

ordinal);
(1) min(pcfI(λ̄)) ≥ lim infI(λ̄) for λ̄ regular;
(2)(i) If B1 ⊆ B2 are from I+ then pcfI(λ̄ � B1) ⊆ pcfI(λ̄ � B2);

(ii) If I ⊆ J then pcfJ(λ̄) ⊆ pcfI(λ̄); and
(iii) For B1, B2 ⊆ κ we have pcfI(λ̄ � (B1 ∪B2)) = pcfI(λ̄ � B1)

⋃
pcfI(λ̄ �

B2). Also
(iv) A ∈ J<λ[λ̄ � (B1∪B2)] ⇔ A∩B1 ∈ J<λ[λ̄ � B1] & A∩B2 ∈ J<λ[λ̄ � B2]
(v) If A1, A2 ∈ I+, A1∩A2 = ∅, A1∪A2 = κ, and tcf(

∏
λ̄ � A�, <I) = λ for

� = 1, 2 then tcf(
∏
λ̄, <I) = λ; and if the sequence f̄ = 〈fα : α < λ〉

witness both assumptions then it witness the conclusion.
(3)(i) If B1 ⊆ B2 ⊆ κ, B1 finite and λ̄ regular then

pcfI(λ̄ � B2) \ Rang(λ̄ � B1) ⊆ pcfI(λ̄ � (B2 \B1)) ⊆ pcfI(λ̄ � B2)
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(ii) If in addition i ∈ B1 ⇒ λi < min(Rang[λ̄ � (B2 \B1)]),
then pcfI(λ̄ � B2)\Rang(λ̄ � B1) = pcfI(λ̄ � (B2\B1)).

(4) Let λ̄ be regular (i.e. each λi is regular);

(i) If θ = lim infI λ̄ then
∏
λ̄/I is θ-directed

(ii) If θ = lim infI λ̄ is singular then
∏
λ̄/I is θ+-directed

(iii) If θ = lim infI λ̄ is inaccessible (i.e. a limit regular cardinal), the
set {i < κ : λi = θ} is in the ideal I and for some club E of θ,
{i < κ : λi ∈ E} ∈ I then

∏
λ̄/I is θ+-directed. We can weaken the

assumption to “I is not weakly normal for λ̄” (defined in the next
sentence). Let “I is not medium normal for (θ, λ̄)” mean: for some
h ∈

∏
λ̄, for no j < θ is {i < κ : λi ≤ θ ⇒ h(i) < j} = κ mod I;

and let “I is not weakly normal for (θ, λ)” mean: for some h ∈
∏
λ̄,

for no ζ < lim infI(λ̄) = θ, is {i < κ : λi ≤ θ ⇒ h(i) < ζ} ∈ I+.
(iv) If {i : λi = θ} = κ mod I and I is medium normal for λ̄ then

(
∏
λ̄, <I) has true cofinality θ.

(v) If
∏
λ̄/I is θ-directed then cf(

∏
λ̄/I) ≥ θ and min pcfI(

∏
λ̄) ≥ θ.

(vi) pcfI(λ̄) is non empty set of regular cardinals. [see part (7)]

(5) Assume λ̄ is regular and: if θ′ =: lim supI(λ̄) is regular then I is not
medium normal for (θ′, λ̄). Then pcfI(λ̄) 
 (lim supI(λ̄))+; in fact for
some ideal J extending I,

∏
λ̄/J is (lim supI(λ̄))+-directed.

(6) If D is a filter on a set S and for s ∈ S, αs is a limit ordinal then:

(i) cf(
∏
s∈S αs, <D) = cf(

∏
s∈S cf(αs), <D) = cf(

∏
s∈S(αs, <)/D), and

(ii) tcf(
∏
s∈S αs, <D) = tcf(

∏
s∈S(cf(αs), <D)) = tcf(

∏
s∈S(αs, <)/D).

In particular, if one of them is well defined, then so are the others. This
is true even if we replace αs by linear orders or even partial orders with
true cofinality.

(7) If D is an ultrafilter on a set S, λs a regular cardinal, then θ =:
tcf(

∏
s∈S λs, <D) is well defined and θ ∈ pcf({λs : s ∈ S}).

(8) If D is a filter on a set S, for s ∈ S, λs is a regular cardinal, S∗ = {λs :
s ∈ S} and

E =: {B : B ⊆ S∗ and {s : λs ∈ B} ∈ D}

and λs > |S| or at least λs > |{t : λt = λs}| for any s ∈ S then:

(i) E is a filter on S∗, and if D is an ultrafilter on S then E is an
ultrafilter on S∗.

(ii) S∗ is a set of regular cardinals and
if s ∈ S ⇒ λs > |S| then (∀λ ∈ S∗)λ > |S∗|,

(iii) F = {f ∈
∏
s∈S λs : s = t ⇒ f(s) = f(t)} is a cover of

∏
s∈S λs,

(iv) cf(
∏
s∈S λs/D) = cf(

∏
S∗/E) and tcf(

∏
s∈S λs/D) = tcf(

∏
S∗/E).

(9) Assume I is an ideal on κ, F ⊆ κOrd and g ∈ κOrd. If g is a ≤I -eub of
F then g is a ≤I -lub of F .
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(10) sup pcfI(λ̄) ≤ |
∏
λ̄/I|

(11) If I is an ideal on S and (
∏
s∈S αs, <I) has true cofinality λ as exemplified

by f̄ = 〈fα : α < λ〉 then the function 〈αs : s ∈ S〉 is a <I -eub (hence
<I -lub) of f̄ .

(12) The inverse of (11) holds: if I is an ideal on S and fα ∈ SOrd for α < λ =
cf(λ), 〈fα : α < λ〉 is <I -increasing with <I – eub f then tcf(

∏
i f(i), <I

) = tcf(
∏

cf[f(i)], <I) = λ.
(13) If I ⊆ J are ideals on κ then

(a) wsat(I) ≥ wsat(J)
(b) lim infI(λ̄) ≤ lim infJ(λ̄)
(c) If λ = tcf(

∏
i<κ λi, <I) then λ = tcf(

∏
i<κ λi, <J)

(14) If f1, f2 are <I -lub of F then f1 =I f2.

Proof. They are all very easy, e.g.

(0) We shall show (
∏
λ̄, <J) is endless (assuming, of course, that J is a proper

ideal on κ). Let f ∈
∏
λ̄, then g =: f + 1 (defined (f + 1)(γ) = f(γ) + 1)

is in
∏
λ̄ too as each λα being an infinite cardinal is a limit ordinal and

f < g mod J .
(5) Let θ′ =: lim supI(λ̄) and define

J =: {A ⊆ κ : for some θ < θ′, {i < κ : λi > θ and i ∈ A} belongs to I}.

Clearly J is an ideal on κ extending I (and κ /∈ J) and lim supJ(λ̄) =
lim infJ(λ̄) = θ′.

Case 1: θ′ is singular
By part (4) clause (ii),

∏
λ̄/J is (θ′)+-directed and we get the desired

conclusion.
Case 2: θ′ is regular.
Let h ∈

∏
λ witness that “I is not medium normal for (θ′, λ̄)” and let

J∗ = {A ⊆ κ : for some j < θ′ we have {i ∈ A : h(i) < j} = A mod I}.

Note that if A ∈ J then for some θ < θ′, A′ =: {i ∈ A : θi > θ} ∈ I
hence the choice j =: θ witness A ∈ J∗. So J ⊆ J∗. Also J∗ ⊆ P(κ) by its
definition. J∗ is closed under subsets (trivial) and under union [why? assume
A0, A1 ∈ J∗, A = A0∪A1; choose j0, j1 < θ′ such that A′

� =: {i ∈ A� : h(i) <
j�} = A� mod I, so j =: max{j0, j1} < θ and A′ = {i ∈ A : h(i) < j} = A
mod I; so A ∈ J∗]. Also κ /∈ J∗ [why? as h witness that I is not medium
normal for (θ′, λ̄)]. So together J∗ is an ideal on κ extending I. Now J∗ is not
weakly normal for (θ, λ̄), as witnessed by h. Lastly

∏
λ̄/J∗ is (θ′)+-directed

(by part (4) clause (iii)), and so pcfJ (λ̄) is disjoint to (θ′)+.
(9) Let us prove g is a ≤I -lub of F in (κOrd,≤I). As we can deal separately

with I +A, I + (κ\A) where A =: {i : g(i) = 0}, and the later case is trivial
we can assume A = ∅. So assume g is not a ≤I -lub, so there is an upper
bound g′ of F , but not g ≤I g

′. Define g′′ ∈ κOrd:
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g′′(i) =

{
0 if g(i) ≤ g′(i)
g′(i) if g′(i) < g(i)

.

Clearly g′′ <I g. So, as g in an ≤I - eub of F for I, there is f ∈ F such that
g′′ <I max{f, 1}, but B =: {i : g′(i) < g(i)} = ∅ mod I (as not g ≤I g′)
so g′ � B = g′′ � B <I max{f, 1} � B. But we know that f ≤I g′ (as g′ is
an upper bound of F ) hence f � B ≤I g

′ � B, so by the previous sentence
necessarily f � B =I 0B hence g′ � B =I 0B; as g′ is a ≤I-upper bound of F
we know [f ′ ∈ F ⇒ f ′ � B =I 0B], hence by (γ) of Definition 1(4) we have
g � B =I 0B, a contradiction to B /∈ I (see above). �1.3

Remark 1.3A. In 1.3 we can also have the straight monotonicity properties of

pcfI(
∏

λ̄,Γ) in Γ and in I.

Claim 1.4:

(1) J<λ[λ̄] is an ideal (of P(κ) i.e. on κ, but the ideal may not be proper).
(2) If λ ≤ μ, then J<λ[λ̄] ⊆ J<μ[λ̄]
(3) If λ is singular, J<λ[λ̄] = J<λ+ [λ̄] = J≤λ[λ̄]
(4) If λ /∈ pcf(λ̄), then we have J<λ[λ̄] = J≤λ[λ̄].
(5) If A ⊆ κ, A /∈ J<λ[λ̄], and fα ∈

∏
λ̄ � A, 〈fα : α < λ〉 is <J<λ[λ̄]-

increasing cofinal in (
∏
λ̄ � A)/J<λ[λ̄] then A ∈ J≤λ[λ̄]. Also this holds

when we replace J<λ[λ̄] by any ideal J on κ, I∗ ⊆ J ⊆ J≤λ[λ̄].
(6) The earlier parts hold for J<λ[λ̄,Γ] too.

Proof. Straight.

Lemma 1. Assume

(∗) λ̄ is regular and

(α) min λ̄ > θ ≥ wsat(I∗) (see 1.1(5)(b)) or at least
(β) lim infI∗(λ̄) ≥ θ ≥ wsat(I∗), and

∏
λ̄/I∗ is θ+-directed.∗∗

If λ is a cardinal ≥ θ, and κ /∈ J<λ[λ̄] then (
∏
λ̄, <J<λ[λ̄]) is λ-directed

(remember: J<λ[λ̄] = J<λ[λ̄, I∗]).

Proof. Note: if f ∈
∏
λ̄ then f < f + 1 ∈

∏
λ̄, (i.e. (

∏
λ̄, <Jλ[λ̄]) is endless)

where f + 1 is defined by (f + 1)(i) = f(i) + 1. Let F ⊆
∏
λ̄, |F | < λ, and we

shall prove that for some g ∈
∏
λ̄ we have (∀f ∈ F )(f ≤ g mod J<λ[λ̄]), this

suffices. The proof is by induction on |F |. If |F | is finite, this is trivial. Also
if |F | ≤ θ, when (α) of (∗) holds it is easy: let g ∈

∏
λ̄ be g(i) = sup{f(i) :

f ∈ F} < λi; when (β) of (∗) holds use second clause of (β). So assume

∗∗note if cf(θ) < θ then “θ+-directed” follows from “θ-directed” which follows
from “lim infI∗(λ̄) ≥ θ, i.e. first part of clause (β) implies clause (β). Note also that
if clause (α) holds then

∏
λ̄/I∗ is θ+-directed (even (

∏
λ̄, <) is θ+-directed), so

clause (α) implies clause (β).
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|F | = μ, θ < μ < λ so let F = {f0
α : α < μ}. By the induction hypothesis we

can choose by induction on α < μ, f1
α ∈

∏
λ̄ such that:

(a) f0
α ≤ f1

α mod J<λ[λ̄]
(b) For β < α we have f1

β < f1
α mod J<λ[λ̄].

If μ is singular, there is C ⊆ μ unbounded, |C| = cf(μ) < μ, and by
the induction hypothesis there is g ∈

∏
λ̄ such that for α ∈ C, f1

α ≤ g
mod J<λ[λ̄]. Now g is as required: f0

α ≤ f1
α ≤ f1

min(C\α) ≤ g mod J<λ[λ̄]. So

without loss of generality μ is regular. Let us define A∗
ε =: {i < κ : λi > |ε|}

for ε < θ, so ε < ζ < θ ⇒ A∗
ζ ⊆ A∗

ε and ε < θ ⇒ A∗
ε = κ mod I∗. Now we

try to define by induction on ε < θ, gε, αε = α(ε) < μ and 〈Bεα : α < μ〉 such
that:

(i) gε ∈
∏
λ̄

(ii) For ε < ζ we have gε � A∗
ζ ≤ gζ � A∗

ζ

(iii) For α < μ let Bεα =: {i < κ : f1
α(i) > gε(i)}

(iv) For each ε < θ, for every α ∈ [αε+1, μ), Bεα = Bε+1
α mod J<λ[λ̄].

We cannot carry this definition: as letting α(∗) = sup{αε : ε < θ}, then
α(∗) < μ, since μ = cf(μ) > θ. We know that Bεα(∗) ∩ A∗

ε+1 = Bε+1
α(∗) ∩ A∗

ε+1

for α < θ (by (iv) and as A∗
ε+1 = κ mod I∗ and I∗ ⊆ J<λ[λ̄]) and Bεα(∗) ⊆ κ

(by (iii)) and [ε < ζ ⇒ Bζα(∗) ∩ A∗
ζ ⊆ Bεα(∗)] (by (ii)), together 〈A∗

ε+1 ∩
(Bεα(∗)\B

ε+1
α(∗)) : ε < θ〉 is a sequence of θ pairwise disjoint members of (I∗)+,

a contradiction∗∗∗ to the definition of θ = wsat(I∗).
Now for ε = 0 let gi be f1

0 and αε = 0.
For ε limit let gε(i) =

⋃
ζ<ε gζ(i) for i ∈ A∗

ε and zero otherwise (note:

gε ∈
∏
λ̄ as ε < θ, λi > ε for i ∈ A∗

ε and λ̄ is a sequence of regular cardinals)
and let αε = 0. For ε = ζ+1, suppose that gζ hence 〈Bζα : α < μ〉 are defined.
If Bζα ∈ J<λ[λ̄] for unboundedly many α < μ (hence for every α < μ) then gζ
is an upper bound for F mod J<λ[λ̄] and the proof is complete. So assume

this fails, then there is a minimal α(ε) < μ such that Bζα(ε) /∈ J<λ[λ̄]. As

Bζα(ε) /∈ J<λ[λ̄], by Definition 2(2) for some ultrafilter D on κ disjoint to

J<λ[λ̄] we have Bζα(ε) ∈ D and cf(
∏
λ̄/D) ≥ λ. Hence {f1

α/D : α < μ} has

an upper bound hε/D where hε ∈
∏
λ̄. Let us define gε ∈

∏
λ̄:

gε(i) = Max{gζ(i), hε(i)}.

Now (i), (ii) hold trivially and Bεα is defined by (iii). Why does (iv) hold
(for ζ) with αζ+1 = αε =: α(ε)? Suppose α(ε) ≤ α < μ. As f1

α(ε) ≤ f1
α

∗∗∗in fact note that for no Bε ⊆ κ(ε < θ) do we have: Bε �= Bε+1 mod I∗ and
ε < ζ < θ ⇒ Bε ∩ Aζ ⊆ Bζ where Aζ = κ mod I∗ (e.g. Aζ = A∗

ζ)



450 Saharan Shelah

mod J<λ[λ̄] clearly Bζα(ε) ⊆ Bζα mod J<λ[λ̄]. Moreover J<λ[λ̄] is disjoint to

D (by its choice) so Bζα(ε) ∈ D implies Bζα ∈ D.

On the other hand Bεα is {i < κ : f1
α(i) > gε(i)} which is equal to

{i ∈ λ̄ : f1
α(i) > gζ(i), hε(i)} which does not belong to D (hε was chosen such

that f1
α ≤ hε mod D). We can conclude Bεα /∈ D, whereas Bζα ∈ D; so they

are distinct mod J<λ[λ̄] as required in clause (iv).
Now we have said that we cannot carry the definition for all ε < θ, so we

are stuck at some ε; by the above ε is successor, say ε = ζ + 1, and gζ is as
required: an upper bound for F modulo J<λ[λ̄]. �1.5

Lemma 2. : If (∗) of 1.5, D is an ultrafilter on κ disjoint to I∗ and λ =
tcf(

∏
λ̄, <D), then for some B ∈ D, (

∏
λ̄ � B,<J<λ[λ̄]) has true cofinality λ.

(So B ∈ J≤λ[λ̄]\J<λ[λ̄] by 1.4(5).)

Proof. By the definition of J<λ[λ̄] clearly we have D ∩ J<λ[λ̄] = ∅.
Let 〈fα/D : α < λ〉 be increasing unbounded in

∏
λ̄/D (so fα ∈

∏
λ̄).

By 1.5 without loss of generality (∀β < α)(fβ < fα mod J<λ[λ̄]).
Now 1.6 follows from 1.7 below: its hypothesis clearly holds. If

∧
α<λBα =

∅ mod D, (see (A) of 1.7) then (see (D) of 1.7) J ∩D = ∅ hence (see (D) of
1.7) g/D contradicts the choice of 〈fα/D : α < λ〉. So for some α < λ,Bα ∈
D; by (C) of 1.7 and 1.4(5) we get the desired conclusion. �1.6

Lemma 3. : Suppose (∗) of 1.5, cf(λ) > θ, fα ∈
∏
λ̄, fα < fβ mod J<λ[λ̄]

for α < β < λ, and there is no g ∈
∏
λ̄ such that for every α < λ, fα < g

mod J<λ[λ̄]. Then there are Bα (for α < λ) such that:

(A) Bα ⊆ κ and for some α(∗) < λ : α(∗) ≤ α < λ ⇒ Bα /∈ J<λ[λ̄]
(B) α < β ⇒ Bα ⊆ Bβ mod J<λ[λ̄] (i.e. Bα\Bβ ∈ J<λ[λ̄])
(C) For each α, 〈fβ � Bα : β < λ〉 is cofinal in (

∏
λ̄ � Bα, <J<λ[λ̄])

(better restrict yourselves to α ≥ α(∗) (see (A)) so that necessarily
Bα /∈ J<λ[λ̄]);.

(D) For some g ∈
∏
λ̄,
∧
α<λ fα ≤ g mod J where J = J<λ[λ̄] + {Bα :

α < λ}; in fact
(D)+ For some g ∈

∏
λ̄ for every α < λ, we have † fα ≤ g mod (J<λ[λ̄] +

Bα), in fact Bα = {i < κ : fα(i) > g(i)}
(E) If g ≤ g′ ∈

∏
λ̄, then for arbitrarily large α < λ:

{i < κ : [g(i) ≥ fα(i) ⇔ g′(i) ≥ fα(i)]} = κ mod J<λ[λ̄]

(hence for every large enough α < λ this holds)
(F) If δ is a limit ordinal < λ, fδ is a ≤J<λ[λ̄]-lub of {fα : α < δ} then

Bδ is a lub of {Bα : α < δ} in P(κ)/J<λ[λ̄].

†Of course, Bα = κ mod J<λ(λ̄), this becomes trivial.
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Proof of 1.7. Remember that for ε < θ, A∗
ε = {i < κ : λi > |ε|} so A∗

ε = κ
mod I∗ and ε < ζ ⇒ A∗

ζ ⊆ A∗
ε. We now define by induction on ε < θ,

gε, α(ε) < λ, 〈Bεα : α < λ〉 such that:

(i) gε ∈
∏
λ̄

(ii) For ζ < ε, gζ � A∗
ε ≤ gε � A∗

ε

(iii) Bεα =: {i ∈ κ : fα(i) > gε(i)}
(iv) If α(ε) ≤ α < λ then Bεα = Bε+1

α mod J<λ[λ̄]

For ε = 0 let gε = f0, and α(ε) = 0.

For ε limit let gε(i) =
⋃
ζ<ε gζ(i) if i ∈ A∗

ε and zero otherwise; now

[ζ < ε ⇒ gζ � A∗
ε ≤ gε � A∗

ε]

holds trivially and gε ∈
∏
λ̄ as each λi is regular and [i ∈ A∗

ε ⇔ λi > ε]),
and let α(ε) = 0.

For ε = ζ + 1, if {α < λ : Bζα ∈ J<λ[λ̄]} is unbounded in λ, then gζ is a
bound for 〈fα : α < λ〉 mod J<λ[λ̄], contradicting an assumption. Clearly

α < β < λ⇒ Bζα ⊆ Bζβ mod J<λ[λ̄]

hence {α < λ : Bζα ∈ J<λ[λ̄]} is an initial segment of λ. So by the previous
sentence there is α(ε) < λ such that for every α ∈ [α(ε), λ), we have Bζα /∈
J<λ[λ̄] (of course, we may increase α(ε) later). If 〈Bζα : α < λ〉 satisfies the
desired conclusion, with α(ε) for α(∗) in (A) and gζ for g in (D), (D)+ and
(E), we are done. Now among the conditions in the conclusion of 1.7, (A)
holds by the definition of Bζα and of α(ε), (B) holds by Bζα’s definition as
α < β ⇒ fα < fβ mod J<λ[λ̄], (D)+ holds with g = gζ by the choice of Bζα
hence also clause (D) follows. Lastly if (E) fails, say for g′, then it can serve
as gε. Now condition (F) follows immediately from (iii) (if (F) fails for δ, then

there is B ⊆ Bζδ such that
∧
α<δ B

ζ
α ⊆ B mod J<λ[λ̄] and Bζδ \B /∈ J<λ[λ̄]);

now the function g∗ =: (gζ � (κ\B)) ∪ (fδ � B) contradicts “fδ is a ≤J<λ[λ̄]-

lub of {fα : α < δ}”, because: g∗ ∈
∏
λ̄ (obvious), ¬(fδ ≤ g∗ mod J<λ[λ̄])

[why? as Bζδ\B /∈ J<λ[λ̄] and g∗ � (Bζδ\B) = gζ � (Bζδ \B) < fδ � (Bζδ \B) by

the choice of Bζδ ], and for α < δ we have:

fα � B ≤J<λ[λ̄] fδ � B = g∗ � B and

fα � (κ\B) ≤J<λ[λ̄]
gζ � (κ\B) = g∗ � (κ\B)

(the ≤J<λ[λ̄] holds as (κ\B) ∩ Bζα ∈ J<λ[λ̄] and the definition of Bζα). So
only clause (C) (of 1.7) may fail, without loss of generality for α = α(ε). I.e.

〈fβ � Bζα(ε) : β < λ〉 is not cofinal in (
∏
λ̄ � Bζα(ε), <J<λ[λ̄]). As this sequence

of functions is increasing w.r.t. <J<λ[λ̄]
, there is hα ∈

∏
(λ̄ � Bζα(ε)) such that

for no β < λ do we have hα ≤ fβ � Bjα(ε) mod J<λ[λ̄]. Let h′ε = hε∪0(κ\Bζ
α(ε)

)
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and gε ∈
∏
λ̄ be defined by gε(i) = Max{gζ(i), h′ε(i)}. Now define Bεα by (iii)

so (i), (ii), (iii) hold trivially, and we can check (iv).
So we can define gε, α(ε) for ε < θ, satisfying (i)–(iv). As in the proof of

1.5, this is impossible: because (remembering cf(λ) = λ > θ) letting α(∗) =:⋃
ε<θ α(ε) < λ we have: 〈Bεα(∗) ∩ A∗

ζ : ε < ζ〉 is ⊆-decreasing, for each ζ < θ,

and A∗
ε = κ mod I∗ and Bε+1

α(∗) = Bεα(∗) mod J<λ[λ̄] so 〈Bεα(∗)∩A∗
ε+1\Bε+1

α(∗) :

ε < θ〉 is a sequence of θ pairwise disjoint members of (J<λ[λ̄])+ hence of
(I∗)+ which give the contradiction to (∗) of 1.5; so the lemma cannot fail.
�1.7

Lemma 4. : Suppose (∗) of 1.5.

(1) For every B ∈ J≤λ[λ̄]\J<λ[λ̄], we have:

(
∏

λ̄ � B,<J<λ[λ̄]) has true cofinality λ(hence λ is regular).

(2) If D is an ultrafilter on κ, disjoint to I∗, then cf(
∏
λ̄/D) is min{λ :

D ∩ J≤λ[λ̄] = ∅}.
(3) (i) For λ limit J<λ[λ̄] =

⋃
μ<λ J<μ[λ̄] hence

(ii) For every λ, J<λ[λ̄] =
⋃
μ<λ J≤μ[λ̄].

(4) J≤λ[λ̄] = J<λ[λ̄] iff J≤λ[λ̄]\J<λ[λ̄] = ∅ iff λ ∈ pcf(λ̄).

(5) J≤λ[λ̄]/J<λ[λ̄] is λ-directed (i.e. if Bγ ∈ J≤λ[λ̄] for γ < γ∗, γ∗ < λ then
for some B ∈ J≤λ[λ̄] we have Bγ ⊆ B mod J<λ[λ̄] for every γ < γ∗.)

Proof. (1) Let

J = {B ⊆ κ : B ∈ J<λ[λ̄] or B ∈ J≤λ[λ̄]\J<λ[λ̄] and

(
∏

λ̄ � B,<J<λ[λ̄]) has true cofinality λ}.

By its definition clearly J ⊆ J≤λ[λ̄]; it is quite easy to check it
is an ideal (use 1.3(2)(v)). Assume J = J≤λ[λ̄] and we shall get
a contradiction. Choose B ∈ J≤λ[λ̄]\J ; as J is an ideal, there is
an ultrafilter D on κ such that: D ∩ J = ∅ and B ∈ D. Now if
tcf(

∏
λ̄/D) ≥ λ+, then B /∈ J≤λ[λ̄] (by the definition of J≤λ[λ̄]);

contradiction. On the other hand if F ⊆
∏
λ̄, |F | < λ then there

is g ∈
∏
λ̄ such that (∀f ∈ F )(f < g mod J<λ[λ̄]) (by 1.5), so

(∀f ∈ F )[f < g mod D] (as J<λ[λ̄] ⊆ J , D∩J = ∅), and this implies
cf(

∏
λ̄/D) ≥ λ. By the last two sentences we know that tcf(

∏
λ̄/D) is

λ. Now by 1.6 for some C ∈ D, (
∏

(λ̄ � C), <J<λ[λ̄]) has true cofinality

λ, of course C∩B ⊆ C and C∩B ∈ D hence C∩B /∈ J<λ[λ̄]. Clearly if
C′ ⊆ C,C′ /∈ J<λ[λ̄] then also (

∏
λ̄ � C′, <J<λ[λ̄]) has true cofinality

λ, hence by the last sentence without loss of generality C ⊆ B; hence
by 1.4(5) we know that C ∈ J≤λ[λ̄] hence by the definition of J we
have C ∈ J . But this contradicts the choice of D as disjoint from J .

We have to conclude that J = J≤λ[λ̄] so we have proved 1.8(1).



The PCF Theorem Revisited 453

(2) Let λ be minimal such that D ∩ J≤λ[λ̄] = ∅ (it exists as by 1.3(10)
J<(

∏
λ̄)+ [λ̄] = P(κ)) and choose B ∈ D ∩ J≤λ[λ̄]. So [μ < λ ⇒ B /∈

J≤μ[λ̄]] (by the choice of λ) hence by 1.8(3)(ii) below, we have B /∈
J<λ[λ̄]. It similarly follows thatD∩J<λ[λ̄] = ∅. Now (

∏
λ̄ � B,<J<λ[λ̄]

) has true cofinality λ by 1.8(1). As we know that B ∈ D ∩ J≤λ[λ̄],
and J<λ[λ̄] ∩D = ∅; clearly we have finished the proof.

(3)(i) Let J =:
⋃
μ<λ J<μ[λ̄]. Now J is an ideal by 1.4(1)+(2) and (

∏
λ̄, <J)

is λ-directed; i.e. if α∗ < λ and {fα : α < α∗} ⊆
∏
λ̄, then there exists

f ∈
∏
λ̄ such that

(∀α < α∗)(fα < f mod J).

[Why? if α∗ < θ+ as (∗) of 1.5 holds, this is obvious, suppose not; λ
is a limit cardinal, hence there is μ∗ such that α∗ < μ∗ < λ. Without
loss of generality |α∗|+ < μ∗. By 1.5, there is f ∈

∏
λ̄ such that

(∀α < α∗)(fα < f mod J<μ∗ [λ̄]). Since J<μ∗ [λ̄] ⊆ J , it is immediate
that

(∀α < α∗)(fα < f mod J).]

Clearly
⋃
μ<λ J<μ[λ̄] ⊆ J<λ[λ̄] by 1.4(2). On the other hand, let

us suppose that there is B ∈ (J<λ[λ̄]\
⋃
μ<λ J<μ[λ̄]). Choose an

ultrafilter D on κ such that B ∈ D and D ∩ J = ∅. Since (
∏
λ̄, <J)

is λ-directed and D ∩ J = ∅, one has tcf(
∏
λ̄/D) ≥ λ, but B ∈

D ∩ J<λ[λ̄], in contradiction to Definition 2(2).
(3)(ii) If λ limit—by part (i) and 1.4(2); if λ successor—by 1.4(2) and

Definition 2(3).
(4) Easy.
(5) Let 〈fγα : α < λ〉 be <J<λ[λ̄]+(κ\Bγ)-increasing and cofinal in

∏
λ̄ (for

γ < γ∗). Let us choose by induction on α < λ a function fα ∈
∏
λ̄,

as a <J<λ[λ̄]-bound to {fβ : β < α} ∪ {fγα : γ < γ∗}, such fα exists
by 1.5 and apply 1.7 to 〈fα : α < λ〉, getting 〈B′

α : α < λ〉, now B′
α

for α large enough is as required. �1.8

2.2. Conclusion

If (∗) of 1.5, then pcf(λ̄) has a last element.

Proof. This is the minimal λ such that κ ∈ J≤λ[λ̄]. λ exists, since λ∗ =:
|
∏
λ̄| ∈ {λ : κ ∈ J≤λ[λ̄]} = ∅ and by 1.4(2); and λ ∈ pcf(λ̄) by 1.8(4) and

λ = max pcf(λ̄) by 1.4(7)+ 1.8(4). �1.9

Claim 1.10: Suppose (∗) of 1.5 holds. Assume for j < σ, Dj is a filter on
κ extending {κ\A : A ∈ I∗}, E a filter on σ and D∗ = {B ⊆ κ : {j < σ : B ∈
Dj} ∈ E} (a filter on κ). Let μj =: tcf(

∏
λ̄, <Dj ) be well defined for j < σ,

and assume further μj > σ + θ (where θ is from (∗) of 1.5).
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Let

λ = tcf(
∏

λ̄, <D∗), μ = tcf(
∏

j<σ

μj , <E).

Then λ = μ (in particular, if one is well defined, than so is the other).

Proof. Wlog σ ≥ θ (otherwise we can add μj =: μ0, Dj =: Do for j ∈ θ \ σ,
and replace σ by θ and E by E′ = {A ⊆ θ : A ∩ σ ∈ E}). Let 〈f jα : α < μj〉
be an <Dj -increasing cofinal sequence in (

∏
λ,<Dj ).

Now � = 0, 1, for each f ∈
∏
λ, define G�(f) ∈

∏
j<σ μj by G�(f)(j) =

min{α < μj : if � = 1 then f ≤ f jα mod Dj and if � = 0 then: not f jα < f
mod Dj} (it is well defined for f ∈

∏
λ by the choice of 〈f jα : α < μj〉).

Note that for f1, f2 ∈
∏
λ and � < 2 we have:

f1 ≤ f2 mod D∗ ⇔ B(f1, f2) =: {i < κ : f1(i) ≤ f2(i)} ∈ D∗

⇔ A(f1, f2) =: {j < σ : B(f1, f2) ∈ Dj} ∈ E

⇔ for some A ∈ E, for every i ∈ A we have f1 ≤Di f
2

⇒ for some A ∈ E for every i ∈ A we have

G�(f
1)(i) ≤ G�(f

2)(i)

⇔ G�(f
1) ≤ G�(f

2) mod E.

So

⊗1 G� is a mapping from (
∏
λ,≤ D∗) into (

∏
j<σ μj ,≤E) preserving order.

Next we prove that
⊗2 For every g ∈

∏
j<σ μj for some f ∈

∏
λ, we have g ≤ G0(f) mod E.

[Why? Note that min{μj : j < σ} ≥ σ+ ≥ θ+ and J≤θ[λ] ⊆ J≤σ[λ]. By 1.5
we know (

∏
λ,<J≤σ [λ]) is σ+-directed, hence for some function f ∈

∏
λ:

(∗)1 For j < σ we have f jg(j) < f mod J≤σ[λ].

We here assumed σ < μj , hence J≤σ[λ] ⊆ J<μj
[λ] (by 1.4(2)) but J<μj

[λ]

is disjoint to Dj by the definition of J<μj
[λ] (by 1.8(2)+1.3(13)(c)) so together

with (∗)1:

(∗)2 For j < σ, f jg(j) < f mod Dj.

So by the definition of G0 for every j < σ we have g(j) < G0(f)(j)
hence clearly g < G0(f).]

⊗3 For f ∈
∏
λ we have G0(f) ≤ G1(f) [Why? read the definitions]

⊗4 If f1, f2 ∈
∏
λ and G1(f1) <E G0(f2) then f1 <D∗ f2

[Why? as G1(f1) <E G0(f2) there is B ∈ E such that: j ∈ B ⇒
G1(f1)(j) < G0(f2)(j) so for each j ∈ B we have f1,≤Dj f jG1(f1)(j)

(by
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the definition of G1(f1)) and f jG1(f1)(j)
<Dj f2 (as G1(f1)(j) < G0(f2)(j)

and the definition of G0(f2)(j)) so together f1 <Dj f2. So A(f1, f2) = {i <
κ : f1(i) < f2(i)} satisfies: A(f1, f2) ∈ Dj for every j ∈ B but B was chosen
in E, hence A(f1, f2) ∈ D∗ (by the definition of D∗) hence f1 <D∗ f2 as
required]

Now first assume λ = tcf(
∏
λ,<D∗) is well defined, so there is a sequence

f = 〈fα : α < λ〉 of members of
∏
λ,<D∗ -increasing and cofinal. So 〈G0(fα) :

α < λ〉 is ≤E-increasing in
∏
j<σ μj (by ⊗1), for every g ∈

∏
j<σ μj for some

f ∈
∏
λ we have g ≤E G0(f) (why? by ⊗2), but by the choice of f̄ for some

β < λ we have f <D∗ fβ hence by ⊗1 we have g ≤E G0(f) ≤E G0(fβ), so
〈G0(fα) : α < λ〉 is cofinal in (

∏
j<σ μj , <E). Also for every α < λ, applying

the previous sentence to G(fα) + 1(∈
∏
j<σ μj) we can find β < λ such

that G(fα) + 1 ≤E G(fβ), so G(fα) ≤E G(fα) so for some club C of λ,
〈G0(fα) : α ∈ C〉 is <E-increasing cofinal in (

∏
j<σ μj , <E). So if λ is well

defined then μ = tcf(
∏
j<σ μj , <E) is well defined and equal to λ.

Lastly assume that μ is well defined i.e.
∏
j<σ μj/E has true cofinality μ,

let g = (gα : α < μ) exemplifies it. Choose by induction on α < μ, a function
fα and ordinals βα, γα such that

(i) fα ∈
∏
λ and βα < μ and γα < μ

(ii) gβα <E G0(fα) ≤ EG1(fα) <E gγα (so βα < γα)
(iii) α1 < α2 < μ ⇒ γα1 < βα2 (so βα ≥ α)

In stage α, first choose βα =
⋃
{γα1 +1 : α1 < α}, then choose fα ∈

∏
λ such

that gβα +1 <E G0(fα) (possible by ⊗2) then choose γα such that G1(fα) <E
gγα . Now G0(fα) ≤E G1(fα) by ⊗3. By ⊗4 we have α1 < α2 ⇒ fα1 <D∗ fα2 .
Also if f ∈

∏
λ then G1(f) ∈

∏
j<σ μj hence by the choice of ḡ, for some

α < μ we have G1(f) <E gα but α ≤ βα so G1(f) <E gα ≤E G0(fα) hence
by ⊗4, f <D∗ fα. Altogether, 〈fα : α < μ〉 exemplifies that (

∏
λ,<D∗) has

true cofinality μ, so λ is well defined and equal to μ. �1.11

2.3. Conclusion

If (∗) of 1.5 holds, and σ, μ̄ = 〈μj : j < σ〉, 〈Dj : j < σ〉 are as in 1.10
and σ + θ < min(μ̄), and J is an ideal on σ and I an ideal on κ such that
I∗ ⊆ I ⊆ {A ⊆ κ : for some B ∈ J for every j ∈ σ \A we have B /∈ Dj} (e.g.
I = I∗) then pcfJ({μj : j < σ}) ⊆ pcfI(λ).

Proof. Let E be an ultrafilter on σ disjoint to J then we can define an
ultrafilter D∗ on κ as in 1.10, so clearly D∗ is disjoint to I and we apply
1.10. �1.11
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3. Normality of λ ∈ pcf(λ̄) for λ̄

Having found those ideals J<λ[λ], we would like to know more. As J<λ[λ] is
increasing continuous in λ, the question is how J<[λ], J < [λ] are related.

The simplest relation is J<λ + [λ] = J<λ[λ] + B for some B ⊆ κ, and
then we call λ normal (for λ) and denote B = Bλ[λ] though it is unique
only modulo J<λ[λ]. We give a sufficient condition for existence of such B,
using this in 2.8; giving the necessary definition in 2.3 and needed information
in 2.4, 2.5, 2.6; lastly 2.7 is the essential uniqueness of cofinal sequences in
appropriate

∏
λ/I.

Definition 3. (1) We say λ ∈ pcf(λ) is normal (for λ) if for some B ⊆ κ,
J≤λ[λ] = J<λ[λ] +B.

(2) We say λ ∈ pcf(λ̄) is semi-normal (for λ̄) if there are Bα for α < λ such
that:

(i) α < β ⇒ Bα ⊆ Bβ mod J<λ[λ] and
(ii) J≤λ[λ] = J<λ[λ] + {Bα : α < λ}.

(3) We say λ is normal if every λ ∈ pcf(λ̄) is normal for λ. Similarly for
semi normal.

(4) In (1), (2), (3) instead λ we can say (λ, I) or
∏
λ/I or (

∏
λ,<I) if we

replace I∗ by I (an ideal on Dom(λ)).

3.1. Fact

Suppose (∗) of 1.5 and λ ∈ pcf(λ). Now:

(1) λ is semi-normal for λ iff for some F = {fα : α < λ} ⊆
∏
λ we have:

[α < β ⇒ fα < fβ mod J<λ[λ]] and for every ultrafilterD over κ disjoint
to J<λ[λ], F is unbounded in (

∏
λ,<D) whenever tcf(

∏
λ,<D) = λ.

(2) In 2.1(2), without loss of generality, we may assume that
either: Bα = B0 mod J<λ[λ] (so λ is normal)
or: Bα = Bβ mod J≤λ[λ] for α < β < λ so λ is not normal.

(3) Assume λ is semi normal for λ. Then λ is normal for λ iff for some F as
in part (1) (of 2.2), F has a <J<λ[λ]

-exact upper bound g ∈
∏
i<κ(λi+ 1)

and then B =: {i < κ : g(i) = λi} generates J≤λ[λ] over J<λ[λ].
(4) If λ is semi normal for λ then for some f̄ = 〈fα : α < λ〉, B̄ = 〈Bα : α <

λ〉 we have: B̄ is increasing modulo J<λ[λ], J≤λ
[λ] = J<λ[λ] + {Bα : α <

λ}, and the sequences 〈fα : α < λ〉 is <J<λ[λ]
-increasing and f̄ , B̄ are as

in 1.7.

Proof. (1) For the direction ⇒, given 〈Bα : α < λ〉 as in Definition 3(2), for
each α < λ, by 1.8(1) we have (

∏
λ � Bα, <J<λ[λ]

) has true cofinality

λ, and let it be exemplified by 〈fαβ : β < λ〉. By 1.5 we can choose by
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induction on γ < λ a function fγ ∈
∏
λ such that: β, γ ≤ α ⇒ fαβ ≤J<λ[λ]

fγ and β < γ ⇒ fβ <J<λ[λ]
fγ .

Now F =: {fα : α < λ} is as required. [Why? First, obviously α <
β ⇒ fα < fβ mod J<λ[λ]. Second, if D is an ultrafilter on κ disjoint
to I∗ and (

∏
λ,<D) has true cofinality λ, then by 1.6 for some B ∈

J≤λ
[λ] \ J<λ[λ] we have B ∈ D, so for some α < λ,B ⊆ Bα mod J<λ[λ]

hence Bα ∈ D. As fαβ ≤J<λ[λ]
fβ for β ∈ [α, λ) clearly F is cofinal in

(
∏
λ,<D).]
The other direction, ⇐ follows from 1.7 applied to F = {fα : α < λ}.

[Why? we get there 〈Bα : α < λ〉, Bα ∈ J≤λ
[λ] increasing modulo J<λ[λ]

so J =: J<λ[λ] + {Bα : α < λ} ⊆ J<λ[λ].
If equality does not hold then for some ultrafilter D over κ, D∩J = ∅

but D ∩ J<λ[λ] = ∅ so by clause (D) of 1.7, F is bounded in
∏
λ/D

whereas by 1.8(1),(2), tcf(
∏
λ,<D) = λ contradicting the assumption

on F .]
(2) Because we can replace 〈Bα : α < λ〉 by 〈Bαi : i < λ〉 whenever 〈αi : i <

λ〉 is non decreasing, non eventually constant.
(3) If λ is normal for λ, let B ⊆ κ be such that J≤λ

[λ] = J<λ[λ] + B. By
1.8(1) we know that (

∏
(λ � B), <J<λ[λ]

) has true cofinality λ, so let it

be exemplified by 〈f0
α : α < λ〉. Let fα = f0

α ∪ 0(κ\B) for α < λ and let
g ∈ κOrd be defined by g(i) = λi if i ∈ B and g(i) = 0 if i ∈ κ \B. Now
〈fα : α < λ〉, g are as required by 1.3(11).

Now suppose 〈fα : α < λ〉 is as in part (1) of 2.2 and g is a <J<λ[λ]
-

eub of F , g ∈
∏
j<κ(λi + 1) and B = {i : g(i) = λi}. Let D be an

ultrafilter on κ disjoint to J<λ[λ]. If B ∈ D then for every f ∈
∏
λ, let

f ′ = (f � B) ∪ 0(κ \ B), now necessarily f ′ < max{g, 1} (as [i ∈ B ⇒
f ′(i) < λi = g(i)] and [i ∈ κ \ B ⇒ f ′(i) = 0 ≤ g < 1]), hence (see
Definition 2(4)) for some α < λ we have f ′ < max{fα, 1} mod J<λ[λ]
hence for some α < λ, f ′ ≤ fα mod J<λ[λ] hence f ≤ f ′ ≤ fα mod D;
also α < β ⇒ fα < fβ mod D, hence together 〈fα : α < λ〉 exemplifies
tcf(

∏
λ,<D) = λ. If B /∈ D then κ \B ∈ D so g′ = g � (κ \B) ∪ 0B = g

mod D and α < λ ⇒ fα <D fα+1 ≤D g =D g′, so g′ ∈
∏
λ exemplifies

F is bounded in (
∏
λ,<D) so as F is as in 2.2(1), tcf(

∏
λ,<D) = λ is

impossible. As D is disjoint to J<λ[λ], necessarily tcf(
∏
λ,<D) > λ. The

last two arguments together give, by 1.8(2) that J≤λ
[λ] = J<λ[λ] +B as

required in the definition of normality.
(4) Should be clear. �2.2

We shall give some sufficient conditions for normality.

Remark. In the following definitions we slightly deviate from [8, Ch. I =
[10]]. The ones here are perhaps somewhat artificial but enable us to deal
also with case (β) of 1.5(∗). I.e. in Definition 4 below we concentrate on the
first θ elements of an aα and for “obey” we also have Ā∗ = 〈Aα : α < θ〉 and
we want to cover also the case θ is singular.
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Definition 4. Let there be given regular λ, θ < μ < λ, μ possibly an ordinal,
S ⊆ λ, sup(S) = λ and for simplicity S is a set of limit ordinals or at least
have no two successive members.

(1) We call ā = 〈aα : α < λ〉 a continuity condition for (S, μ, θ) (or is an
(S, μ, θ)-continuity condition) if: S is an unbounded subset of λ, aα ⊆
α, otp(aα) < μ, and [β ∈ aα ⇒ aβ = aα ∩ β] and, for every club E
of λ, for some‡ δ ∈ S we have θ = otp{α ∈ aδ : otp(aα) < θ and for
no β ∈ aδ ∩ α is (β, α) ∩ E = ∅}. We say ā is continuous in S∗ if
α ∈ S∗ ⇒ α = sup(aα).

(2) Assume fα ∈ κOrd for α < λ and Ā∗ = 〈A∗
α : α < θ〉 be a decreasing

sequence of subsets of κ such that κ\A∗
α ∈ I∗. We say f̄ = 〈fα : α < λ〉

obeys ā = 〈aα : α < λ〉 for Ā∗ if:

(i) For β ∈ aα, if ε =: otp(aα) < θ then we have fβ � A∗
ε ≤ fα � A∗

ε

(note: Ā∗ determine θ).

(2A) Let κ, λ, I∗ be as usual. We say f obeys ā for Ā∗ continuously on S∗ if:
ā is continuous in S∗ and f̄ obeys ā for Ā∗ and in addition S∗ ⊆ S and
for α ∈ S∗ (a limit ordinal) we have fα = faα from (2B), i.e. for every
i < κ we have fα(i) = sup{fβ(i) : β ∈ aα} when |aα| < λi.

(2B) For given λ̄ = 〈λi : i < κ〉, f̄ = 〈fα : α < λ〉 where fα ∈
∏
λ̄ and

a ⊆ λ, and θ let fa ∈
∏
λ be defined by: fa(i) is 0 if |a| ≥ λi and

∪{fα(i) : α ∈ a} if |a| < λi.
(3) Let (S, θ) stands for (S, θ+ 1, θ); (λ, μ, θ) stands for “(S, μ, θ) for some

unbounded subset S of λ” and (λ, θ) stands for (λ, θ + 1, θ).
If each A∗

α is κ, then we omit “for Ā∗” (but θ should be fixed or
said).

(4) We add to “continuity condition” (in part (1)) the adjective “weak” [“θ-
weak”] if “β ∈ aα ⇒ aβ = aα ∩ β” is replaced by “α ∈ S&β ∈ aα ⇒
(∃γ < α)[aα∩β ⊆ aγ&γ < min(aα \(β+1))&[|aα∩β| < θ ⇒ |aγ | < θ]]”
[but we demand that γ exists only if otp(aα ∩ β) < θ]. (Of course a
continuity condition is a weak continuity condition which is a θ-weak
continuity condition.)

Remark 2.3A. There are some obvious monotonicity implications, we state
below only 2.4(3).

3.2. Fact

(1) Let θr =

{
θ cf(θ) = θ
θ+ cf(θ) < θ

and assume λ = cf(λ) > θ+r . Then for some

stationary S ⊆ {δ < λ : cf(δ) = θr}, there is a continuity condition ā for

‡Note: if otp(aδ) = θ and δ = sup(aδ) (holds if δ ∈ S, μ = θ+1 and ā continuous
in S (see below)) and δ ∈ acc(E) then δ is as required.
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(S, θr); moreover, it is continuous in S and δ ∈ S ⇒ otp(aδ) = θr; so for
every club E of λ for some δ ∈ S, ∀α, β[α < β & α ∈ αδ & β ∈ aδ →
(α, β) ∩ E = ∅].

(2) Assume λ = θ++, then for some stationary S ⊆ {δ < λ : cf(δ) = cf(θ)}
there is a continuity condition for (S, θ + 1, θ). (In fact continuous in S
and [δ ∈ S ⇒ aδ closed in δ] and [α ∈ aδ and δ ∈ S ⇒ aα = aδ ∩ α].)

(3) If ā is a (λ, μ, θ1)-continuity condition and θ1 ≥ θ then there is a (λ, θ +
1, θ)-continuity condition.

Proof. (1) By [13, §1].
(2) By [Sh351, 4.4(2)] and§ [8, III 2.14(2), clause (c), pp. 135–7].
(3) Check. �2.4

Remark 2.4A. Of course also if λ = θ+ the conclusion of 2.4(2) may well
hold. We suspect but do not know that the negation is consistent with ZFC.

3.3. Fact

Suppose (∗) of 1.5, fα <∈
∏
λ̄ for α < λ, λ = cf(λ) > θ (of course κ =

Dom(λ̄)) and Ā∗ = Ā∗[λ̄] is as in the proof of 1.5, i.e., A∗
α = {i < κ : λi > α}.

Then

(1) Assume ā is a θ-weak continuity condition for (S, θ), λ = sup(S), then
we can find f̄ ′ = 〈f ′

α : α < λ〉 such that:

(i) f ′
α ∈

∏
λ̄,

(ii) For α < λ we have fα ≤ f ′
α

(iii) For α < β < λ we have f ′
α <J<λ[λ]

f ′
β

(iv) f̄ ′ obeys ā for Ā∗

(2) If in addition min(λ) ≥ μ, S∗ ⊆ S are stationary subsets of λ but ā is a
continuity condition for (S, μ, θ) and ā is continuous on S∗ then we can
find f̄ ′ = 〈f ′

α : α < λ〉 such that

(i) f ′
α ∈

∏
λ̄

(ii) For α ∈ λ \ S∗ we have fα ≤ f ′
α and α = β + 1 ∈ λ \ S∗ & β ∈ S∗ ⇒

fβ ≤ f ′
α

(iii) For α < β < λ we have f ′
α <J<λ[λ]

f ′
β

(iv) f̄ ′ obeys ā for Ā∗ continuously on S∗; moreover 2.3(2)(i) can be
strengthened to β ∈ aα ⇒ fβ < fα.

§the definition of Bα
i in the proof of [8, III 2.14(2)] should be changed as in

[Sh351, 4.4(2)]
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(3) Suppose 〈f ′
α : α < λ〉 obeys ā continuously on S∗ and satisfies 2.5(2)(ii)

(and 2.5(2)’s assumption holds). If gα ∈
∏
λ̄ and 〈gα : α < λ〉 obeys ā

continuously on S∗ and [α ∈ λ \ S∗ ⇒ gα ≤ fα] then
∧
α gα ≤ f ′

α.
(4) If ζ < θ, for ε < ζ we have f̄ ε = 〈f εα : α < λ〉, where fεα ∈

∏
λ, then in

2.5(1) (and 2.5(2)) we can find f̄ ′ as there for all f̄ ε simultaneously. Only
in clause (ii) we replace fα ≤ f ′

α by fα � A∗
ζ ≤ f ′

α � A∗
ζ (and fβ ≤ f ′

α by
fβ � A∗

ζ ≤ f ′
α � A∗

ζ).

Proof. Easy (using 1.5 of course).
Claim 2.5A: In 2.5 we can replace “(∗) from 1.5” by “

∏
λ̄/J<λ[λ] is

λ-directed and lim infI∗(λ̄) ≥ θ”.
Claim 2.6: Assume (∗) of 1.5 and let Ā∗ be as there,

(1) In 1.7, if 〈fα : α < λ〉 obeys some (S, θ)-continuity condition or just a
θ-weak one for Ā∗ (where S ⊆ λ is unbounded) then we can deduce also:
(G) the sequence 〈Bα/J<λ[λ] : α < λ〉 is eventually constant.

(2) If θ+ < λ then J≤λ[λ]/J<λ[λ] is λ+-directed (hence if λ is semi normal
for λ̄ then it is normal to λ).

Proof. (1) Assume not, so for some club E of λ we have
(∗) α < δ < λ&δ ∈ E ⇒ Bα = Bδ mod J<λ[λ].
As ā is a θ-weak (S, θ)-continuity condition, there is δ ∈ S such that

b =: {α ∈ aδ : otp(aδ ∩ α) < θ and for no β ∈ aδ ∩ α is (β, α) ∩ E = ∅
and for some γ < α, aα ∩ β ⊆ aγ and γ < min(aα \ (β + 1)) and
|aγ | < θ} has order type θ. Let {αε : ε < θ} list b (increasing with
ε). So for every ε < θ there is γε ∈ (αε, αε+1) ∩ E, and let βε < αε+1

be such that aδ ∩ αε ⊆ aβε and otp(aβε ∩ αε) < θ; by shrinking b and
renaming wlog βε < γε and αε ∈ aβε . Let ξ(ε) =: otp(aβε). Lastly let
B0
ε =: {i < κ : fαε(i) < fβε(i) < fγε(i) < fαε+1(i)}, clearly it is = κ

mod I∗ and let (remember (∗) above) B∗
ε =: A∗

ξ(ε)+1 ∩ (Bγε \Bβε)∩B0
ε ,

now Bαε ⊆ Bβε ⊆ Bγε mod J<λ[λ] by clause (B) of 1.7, and Bγε = Bβε

mod J<λ[λ] by (∗) above hence Bγε \ Bβε = ∅ mod J<λ[λ]. Now
B0
ε , A

∗
ξ(ε)+1 = κ mod I∗ by the previous sentence and by 1.5(∗) which

we are assuming respectively and I∗ ⊆ J<λ[λ] by the later’s definition;
so we have gotten B∗

ε = ∅ mod J<λ[λ]. But for ε < ζ < θ we have
B∗
ε ∩ B∗

ζ = ∅, for suppose i ∈ B∗
ε ∩ B∗

ζ , so i ∈ A∗
ξ(ε)+1 and also

fγε(i) < fαε+1(i) ≤ fβζ
(i) (as i ∈ B0

ε and as αε+1 ∈ aβζ
& i ∈ A∗

ξ(ζ)+1

respectively); now i ∈ B∗
ε hence i ∈ Bγε i.e., (where g is from 1.7 clause

(D)+)fγε(i) > g(i) hence (by the above) fβζ
(i) > g(i) hence i ∈ Bβζ

hence i /∈ B∗
ζ , contradiction. So 〈B∗

ε : ε < θ〉 is a sequence of θ pairwise

disjoint members of (J<λ[λ])+, contradiction.
(2) The proof is similar to the proof of 1.8(5), using 2.6(1) instead 1.7 (and

ā from 2.4(1) if λ > θ+r or 2.4(2) if λ = θ++). �2.6

We note also (but shall not use):
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Claim 2.7: Suppose (∗) of 1.5 and

(a) fα ∈
∏
λ̄ for α < λ, λ ∈ pcf(λ̄) and f̄ = 〈fα : α < λ〉 is <J<λ[λ]

-
increasing

(b) f̄ obeys ā continuously on S∗, where ā is a continuity condition for (S, θ)
and λ = sup(S) (hence λ > θ by the last phrase of 2.3(1))

(c) J is an ideal on κ extending J<λ[λ], and 〈fα/J : α < λ〉 is cofinal in
(
∏
λ̄, <J) (e.g. J = J<λ[λ] + (κ \B), B ∈ J≤λ[λ] \ J<λ[λ]).

(d) 〈f ′
α : α < λ〉 satisfies (a), (b) above.

(e) fα ≤ f ′
α for α ∈ λ \ S∗ (alternatively: 〈f ′

α : α < λ〉 satisfies (c)).
(f) If δ ∈ S′ then J is cf(δ)-indecomposable (i.e. if 〈Aε : ε < cf(δ)〉 is a

⊆-increasing sequence of members, of J then
⋃
ε<cf(δ) Aε ∈ J).

Then:

(A) The set

{δ < λ : if δ ∈ S∗ and otp(aδ) = θ then f ′
δ = fδ mod J}

contains a club of λ.
(B) The set

{δ < λ : if α ∈ S and δ = sup(δ ∩ aα) and otp(α ∩ aδ) = θ

then f ′
α∩aδ = fα∩aδ mod J}

contains a club of λ.

Proof. We concentrate on proving (A). Suppose δ ∈ S∗, and fδ = f ′
δ mod J .

Let

A1,δ = {i < κ : fδ(i) < f ′
δ(i)}

A2,δ = {i < κ : fδ(i) > f ′
δ(i)},

So A1,δ ∪ A2,δ ∈ J+, suppose first A1,δ ∈ J+. By Definition 4(2A), for every
i ∈ A1,δ for every large enough α ∈ aδ, fδ(i) < f ′

α(i), say for α ∈ aδ \ βi. As
J is cf(δ)-indecomposable for some β < α we have {i < κ : βi < β} ∈ J+

so fδ � A1,δ < f ′
β � A1,δ (and β < δ). Now by clause (c), E =: {δ < λ :

for every β < δ we have f ′
β < fδ mod J} is a club of λ, and so we have

proved

δ ∈ E ⇒ A1,δ ∈ J.

If
∧
α<λ fα ≤ f ′

α (first possibility in clause (e) implies it) also A2,δ ∈ J
hence for no δ ∈ S∗ ∩E do we have fδ = f ′

δ mod J . If the second possibility
of clause (e) holds, we can interchange f̄ , f̄ ′ hence [δ ∈ E ⇒ A2,δ ∈ J ] and
we are done. �2.7

We now return to investigating the J<λ[λ], first without using continuity
conditions.
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Lemma 5. Suppose (∗) of 1.5 and λ = cf(λ) ∈ pcf(λ). Then λ is semi
normal for λ.

Proof. We assume λ is not semi normal for λ and eventually get a
contradiction. Note that by our assumption (

∏
λ,<I) is θ+-directed hence

min pcfI(λ) ≥ θ+ (by 1.3(4)(v)) hence let us define by induction on ξ ≤
θ, f̄ ξ = 〈f ξα : α < λ〉, Bξ and Dξ such that:

(I) (i) f ξα ∈
∏
λ

(ii) α < β < λ⇒ f ξα ≤ f ξβ mod J<λ[λ]

(iii) α < λ&ξ < θ ⇒ f ξα ≤ fθα mod J<λ[λ]
(iv) For ζ < ξ < θ and α < λ : f ζα � A∗

ξ ≤ f ξα � A∗
ξ

(II) (i) Dξ is an ultrafilter on κ such that: cf(
∏
λ/Dξ) = λ

(ii) 〈f ξα/Dξ : α < λ〉 is not cofinal in
∏
λ/Dξ

(iii) 〈f ξ+1
α /Dξ : α < λ〉 is increasing and cofinal in

∏
λ/Dξ; moreover

(iii)+ Bξ ∈ Dξ and 〈f ξ+1
α /Dξ : α < λ〉 is increasing and cofinal in∏

λ/(J<λ[λ] + (κ \Bξ))
(iv) f ξ+1

0 /Dξ is above {f ξα/Dξ : α < λ}.

For ξ = 0. No problem. [Use 1.8(1) + (4)].
For ξ limit < θ. Let gξα ∈

∏
λ be defined by gξα(i) = sup{f ζα(i) : ζ < ξ}

for i ∈ A∗
ξ and f ξα(i) = 0 else, (remember that κ \ A∗

ξ ∈ I∗). Then choose

by induction on α < λ, f ξα ∈
∏
λ such that gξα ≤ f ξα and β < α ⇒ fβ < fα

mod J<λ
[λ]. This is possible by 1.5 and clearly the requirements (I)(i),(ii),(iv)

are satisfied. Use 2.2(1) to find an appropriate Dξ (i.e. satisfying II (i)+(ii)).
Now 〈f ξα : α < λ〉 and Dξ are as required. (The other clauses are irrelevant.)

For ξ = θ. Choose fθα by induction of α satisfying I(i), (ii),(iii) (possible
by 1.5).

For ξ = ζ+1. Use 1.6 to chooseBζ ∈ Dζ∩J≤λ[λ]\J<λ[λ]. Let 〈gξα : α < λ〉
be cofinal in (

∏
λ,<Dξ

) and even in (
∏
λ,<J<λ[λ]+(κ\Bξ)

) and without loss

of generality
∧
α<λ f

ζ
α/Dζ < gξ0/Dζ and

∧
α<λ f

ζ
α � A∗

ξ ≤ gξα � A∗
ξ . We get

〈f ξα : α < λ〉 increasing and cofinal mod (J<λ[λ] + (κ \ Bξ)) such that
gξα ≤ f ξα by 1.5 from 〈gξα : α < λ〉. Then get Dξ as in the case “ξ limit”.

So we have defined the f ξα’s and Dξ’s. Now for each ξ < θ we apply (II)
(iii)+ for 〈f ξ+1

α : α < λ〉, 〈fθα : α < λ〉. We get a club Cξ of λ such that:

α < β ∈ Cξ ⇒ fθα � Bξ < f ξ+1
β � Bξ mod J<λ[λ] (∗)

So C =:
⋂
ξ<θ Cξ is a club of λ. By 2.2(1) applied to 〈fθα : α < λ〉 (and the

assumption “λ is not semi-normal for λ”) there is g ∈
∏
λ such that

¬g ≤ fθα mod J<λ[λ] for α < λ (∗)1

(not used) and by 1.5 wlog

f ξ0 < g mod J<λ[λ] for ξ < θ (∗)2
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For each ξ < θ, by II (iii), (iii)+ for some αξ < λ we have

g � Bξ < f ξ+1
αξ

� Bξ mod J<λ[λ] (∗)3

Let α(∗) = supξ<θ αξ, so α(∗) < λ and so

g � Bξ < f ξ+1
α(∗) � Bξ mod J<λ[λ] (∗)4

For ζ < θ let B∗
ζ = {i ∈ A∗

ζ : g(i) < f ζα(∗)(i)}. By (∗)4, B∗
ξ+1 ∈ Dξ; by

(II)(iv)+(∗)2 we know B∗
ξ /∈ Dξ, hence B∗

ξ = B∗
ξ+1 mod Dξ hence B∗

ξ =
B∗
ξ+1 mod J<λ[λ].

On the other hand by (I)(iv) for each ζ < θ we have 〈B∗
ξ ∩A∗

ζ : ξ ≤ ζ〉 is

⊆-increasing and (as A∗
ζ = κ mod J<λ[λ] for each ζ < θ) hence by I(iv) we

have 〈B∗
ξ/I

∗ : ξ < θ〉 is ⊆-increasing, and by the previous sentence B∗
ξ = B∗

ξ+1

mod J<λ[λ] hence 〈B∗
ξ /I

∗ : ξ < θ〉 is strictly ⊆-increasing. Together clearly
〈B∗

ξ+1 ∩ A∗
ξ+1 \ B∗

ξ : ξ < θ〉 is a sequence of θ pairwise disjoint members of

(J<λ[λ])+, hence of (I∗)+; contradiction to θ ≥ wsat(I∗). �2.8

Definition 5. (1) We say 〈Bλ : λ ∈ c〉 is a generating sequence for λ̄
if:

(i) Bλ ⊆ κ and c ⊆ pcf(λ̄)
(ii) J≤λ[λ] = J<λ[λ] +Bλ for each λ ∈ c

(2) We call B̄ = 〈Bλ : λ ∈ c〉 smooth if:

i ∈ Bλ&λi ∈ c ⇒ Bλi ⊆ Bλ.

(3) We call B̄ = 〈Bλ : λ ∈ Rang(λ)〉 closed if for each λ

Bλ ⊇ {i < κ : λi ∈ pcf(λ � Bλ)}

3.4. Fact

Assume (∗) of 1.5.

(1) Suppose c ⊆ pcf(λ), B̄ = (Bλ : λ ∈ c〉 is a generating sequence for λ,
and B ⊆ κ, pcf(λ � B) ⊆ c then for some finite d ⊆ c, B ⊆

⋃
μ∈dBμ

mod I∗.
(2) cf(

∏
λ/I∗) = max pcf(λ)

Remark 2.10A. For another proof of 2.10(2) see 2.12(2) + 2.12(4) and for
another use of the proof of 2.10(2) see 2.14(1).

Proof. (1) If not, then I = I∗ + {B ∩
⋃
μ∈dBμ : d ⊆ c, d finite} is a family

of subsets of κ, closed under union, B /∈ I, hence there is an ultrafilter
D on κ. disjoint from I to which B belongs. Let μ =: cf(

∏
i<κ λi/D);

necessarily μ ∈ pcf(λ � B), hence by the last assumption of 2.10(1) we
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have μ ∈ c. By 1.8(2) we know Bμ ∈ D hence B∩Bμ ∈ D, contradicting
the choice of D.

(2) The case θ = ℵ0 is trivial (as wsat(I∗) ≤ ℵ0 implies P(κ)/I∗ is a
Boolean algebra satisfying the ℵ0-c.c. (as here we can subtract) hence
this Boolean algebra is finite hence also pcf(λ) is finite) so we assume
θ > ℵ0. For B ∈ (I∗)+ let λ(B) = max pcfI∗�B (λ � B).

We prove by induction on λ that for every B ∈ (I∗)+, cf(
∏
λ,<I∗+(κ\B))

= λ(B) when λ(B) ≤ λ; this will suffice (use B = κ and λ = |
∏
i<κ λi|+).

Given B let λ = λ(B), by notational change wlog B = κ. By 1.9, pcf(
∏
λ)

has a last element, necessarily it is λ =: λ(B). Let 〈fα : α < λ〉 be
<J<λ[λ]

increasing cofinal in
∏
λ/J<λ[λ], it clearly exemplifies max pcf(λ) ≤

cf(
∏
λ/I∗). Let us prove the other inequality. For A ∈ J<λ[λ] \ I∗ choose

FA ⊆
∏
λ which is cofinal in

∏
λ/(I∗ + (κ \ A)), |FA| = λ(A) < λ (exists

by the induction hypothesis). Let χ be a large enough regular, and we now
choose by induction on ε < θ,Nε, gε such that:

(A) (i) Nε ≺ (H(χ),∈, <∗
χ)

(ii) ||Nε|| = λ
(iii) 〈Nε : ξ ≤ ε〉 ∈ Nε+1

(iv) 〈Nε : ε < θ〉 is increasing continuous
(v) {ε : ε ≤ λ + 1} ⊆ N0, {λ, I∗} ∈ N0, 〈fα : α < λ〉 ∈ N0 and the

function A !→ FA belongs to N0.
(B) (i) gε ∈

∏
λ and gε ∈ Nε+1

(ii) For no f ∈ Nε ∩
∏
λ does gε <I∗ f

(iii) ζ < ε&λi > |ε| ⇒ gζ(i) < gε(i).

There is no problem to define Nε, and if we cannot choose gε this means
that Nε∩

∏
λ exemplifies cf(

∏
λ,<) ≤ λ as required. So assume 〈Nε, gε : ε <

θ〉 is defined. For each ε < θ for some α(ε) < λ, gε < fα(ε) mod J<λ[λ] hence
α(ε) ≤ α < λ ⇒ gε <J<λ[λ]

fα. As λ = cf(λ) > θ, we can choose α < λ such

that α >
⋃
ε<θ α(ε). Let Bε = {i < κ : gε(i) ≥ fα(i)}; so for each ξ < θ we

have 〈Bε∩A∗
ξ : ε ≤ ξ〉 is increasing with ε, (by clause (B)(iii)), hence as usual

as θ ≥ wsat(I∗) (and θ > ℵ0) we can find ε(∗) < θ such that
∧
nBε(∗)+n =

Bε(∗) mod I∗ [why do we not demand ε ∈ (ε(∗), θ) ⇒ Bε = Bε(∗) mod I∗?
as θ may be singular]. Now as gε(∗) ∈ Nε(∗)+1 and fα ∈ N0 ≺ Nε(∗)+1 clearly,
by its definition, Bε(∗) ∈ Nε(∗)+1 hence FBε(∗) ∈ Nε(∗)+1 Now:

gε(∗)+1 � (κ \Bε(∗)) =I∗ gε(∗)+1 � (κ \Bε(∗)+1) < fα � (κ \Bε(∗)+1)

=I∗ fα � (κ \Bε(∗))

[why first equality and last equality? as Bε(∗)+1 = Bε(∗) mod I∗, why the <
in the middle? by the definition of Bε(∗)+1].

But gε(∗)+1 � Bε(∗) ∈
∏
i∈Bε(∗) λi, and Bε(∗) ∈ J<λ[λ] as gε < fα(ε) ≤ fα

mod J<λ[λ] so for some f ∈ FBε(∗) ⊆
∏
λ we have gε(∗)+1 � Bε(∗) < f � Bε(∗)

mod I∗. By the last two sentences
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gε(∗)+1 < max{f, fα} mod I∗ (∗)

Now fα ∈ Nε(∗)+1 and f ∈ Nε(∗)+1 (as f ∈ FBε(∗) , |FBε(∗) | ≤ λ, λ + 1 ⊆
Nε(∗)+1 the function B !→ FB belongs to N0 ≺ Nε(∗)+1 and Bε(∗) ∈ Nε(∗)+1

as {gε(∗), fα} ∈ Nε(∗)+1) so together

max{f, fα} ∈ Nε(∗)+1; (∗∗)

But (∗), (∗∗) together contradict the choice of gε(∗)+1 (i.e. clause (B)(ii)).
�2.10

Definition 6. (1) We say that I∗ satisfies the pcf-th for (the regular)
(λ, θ) if

∏
λ/I∗ is θ-directed and (

∏
λ,<J<λ[λ]

) is λ-directed for each

λ and we can find 〈Bλ : λ ∈ pcfI∗(λ)〉, such that:
Bλ ⊆ κ, J<λ[λ, I∗] = I∗+{Bμ : μ ∈ λ∩pcfI∗(λ)}, Bλ /∈ J<λ[λ, I∗]

and
∏

(λ � Bλ)/J<λ[λ, I∗] has true cofinality λ (so Bλ ∈ J≤λ[λ] \
J<λ[λ] and J≤λ[λ] = J<λ[λ] +Bλ).

(1A) We say that I∗ satisfies the weak pcf-th for (λ, θ) if (
∏
λ,<I∗) is

θ-directed
each (

∏
λ,<J<λ[λ]

) is λ-directed and

there are Bλ,α ⊆ κ for α < λ ∈ pcfI∗(λ) such that

α < β < μ ∈ pcfI∗(λ̄) ⇒ Bμ,α ⊆ Bμ,β mod J<μ[λ̄, I∗]

J<λ[λ] = I∗ + {Bμ,α : a < μ < λ, μ ∈ pcfI∗(λ̄)}

and

(
∏

(λ � Bμ,α), <J<λ[λ]
) has true cofinality λ

(1B) We say that I∗ satisfies the weaker pcf-th for (λ̄, θ) if (
∏
λ̄, <I∗) is θ-

directed and each (
∏
λ,<J<λ[λ]

), is λ-directed and for any ultrafilter

D on κ disjoint to J<θ[λ] letting λ = tcf(
∏
λ,<D) we have: λ ≥ θ and

for some B ∈ D∩J≤λ[λ]\J<λ[λ], the partial order (
∏

(λ � B), <J<λ[λ]
)

has true cofinality λ.
(1C) We say that I∗ satisfies the weakest pcf-th for (λ̄, θ) if (

∏
λ,<I∗) is

θ-directed and (
∏
λ,<J<λ[λ]

) is λ-directed for any λ ≥ θ

(1D) Above we write λ̄ instead (λ̄, θ) when we mean

θ = sup{θ : (
∏

λ̄, <I∗) is θ+ − directed}.

(2) We say that I∗ satisfies the pcf-th for θ if for any regular λ̄ such that
lim infI∗(λ̄) ≥ θ, we have: I∗ satisfies the pcf-th for λ̄. We say that
I∗ satisfies the pcf-th above μ (above μ−) if it satisfies the pcf-th for
λ̄ with lim infI∗(λ̄) > μ (with {i : λi ≥ μ} = κ mod I∗). Similarly
(in both cases) for the weak pcf-th and the weaker pcf-th.
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(3) Given I∗, θ let Jpcf
θ = {A ⊆ κ : A ∈ I∗ or A /∈ I∗ and I∗ + (κ \

A) satisfies the pcf-theorem for θ}.

Jwsat
θ =: {A ⊆ κ : wsat(I∗ � A) ≤ θ or A ∈ I∗};

similarly Jwpcf
θ ; we may write, Jxθ [I∗].

(4) We say that I∗ satisfies the pseudo pcf-th for λ̄ if for every ideal I on

κ extending I∗, for some A ∈ I+ we have (
∏

(λ̄ � A), <I) has a true
cofinality.

Claim 2.12:

(1) If (∗) of 1.5 then I∗ satisfies the weak pcf-th for (λ̄, θ+).
(2) If (∗) of 1.5 holds, and

∏
λ̄/I∗ is θ++-directed (i.e. θ+ < min λ̄) or just

there is a continuity condition for (θ+, θ) then I∗ satisfies the pcf-th for
(λ̄, θ+).

(3) If I∗ satisfy the pcf-th for (λ̄, θ) then I∗ satisfy the weak pcf-th for (λ̄, θ)
which implies that I∗ satisfies the weaker pcf-th for (λ̄, θ), which implies
that I∗ satisfies the weakest pcf-th for (λ̄, θ).

Proof. (1) Let appropriate λ̄ be given. By 1.5, 1.8 most demands holds,
but we are left with seminormality. By 2.8, if λ ∈ pcf(λ̄), then λ̄ is
semi normal for λ. This finishing the proof of (1).

(2) Let λ ∈ pcf(λ̄) and let f̄ , B̄ be as in 2.2(4). By 2.4(1) + (2) there is ā,
a (λ, θ)-continuity condition; by 2.5(1) wlog f̄ obeys ā, by 2.6(1) the
relevant Bα/I

∗ are eventually constant which suffices by 2.2(2).
(3) Should be clear. �2.12

Claim 2.13: Assume (
∏
λ̄, <I∗) is given (but possibly (∗) of 1.5 fails).

(1) If I∗, λ̄ satisfies (the conclusion of) 1.6, then I∗, λ̄ satisfy (the
conclusions of) 1.8(1), 1.8(2), 1.8(3), 1.8(4), 1.9.

(lA) If I∗ satisfies the weaker pcf-th for λ̄ then they satisfy the conclusions
of 1.6 and 1.5.

(2) If I∗, λ̄ satisfies (the conclusion of) 1.5 then I∗, λ̄ satisfies (the
conclusion of) 1.10.

(2A) If I∗ satisfies the weakest pcf-th for λ̄ then I∗, λ̄ satisfy the conclusion
of 1.5.

(3) If I∗, λ̄ satisfies 1.5, 1.6 then I∗, λ̄ satisfies 2.2(1) (for 2.2(2) – no
assumptions).

(4) If I∗, λ̄ satisfies 1.8(1), 1.8(2) then I∗, λ̄ satisfies 2.2(3) when we
interpret “seminormal” by the second phrase of 2.2(1)

(5) If I∗, λ̄ satisfies 1.8(2) then I∗, λ̄ satisfies 2.10(1).
(6) If I∗λ̄ satisfy 1.8(1) + 1.8(3)(i) then I∗, λ̄ satisfies 1.8(2)
(7) If I∗, λ̄ satisfies 1.8(1) + 1.8(2) and is semi normal then 2.10(2) holds

i.e.

cf(
∏

λ̄, <I∗) ≤ sup pcfI∗(λ).
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(8) If I∗, λ̄ satisfies 1.5 + 1.6 then they satisfy 2.10(2).

Proof. (1) We prove by parts.

Proof of 1.8(2). Let λ = tcf(
∏
λ̄/D); by the definition of J<λ[λ̄], clearly

D ∩ J<λ[λ̄] = ∅. Also by 1.6 for some B ∈ D we have λ = tcf(
∏

(λ̄ �
B), <J<λ[λ̄]

), so by the previous sentence B /∈ J<λ[λ̄], and by 1.4(5) we have

B ∈ J≤λ[λ̄], together we finish.

Proof of 1.8(1). Rep eat the proof of 1.8(1) replacing the use of 1.5 by 1.8(2).

Proof of 1.8(3)(i). Let J =:
⋃
μ<λ J<μ[λ̄], so J ⊆ J<λ[λ̄] is an ideal because

〈J<μ[λ̄] : μ < λ〉 is ⊆-increasing (by 1.4(2)), if equality fail choose B ∈
J<λ[λ̄]\J and choose D an ultrafilter on κ, disjoint to J to which B belongs.
Now if μ = cf(μ) < λ then μ+ < λ (as λ is a limit cardinal) and μ =
cf(μ) & μ+ < λ ⇒ D ∩ J≤μ[λ̄] = D ∩ J<μ+ [λ̄] = ∅ hence by 1.8(2) we have
μ = cf(

∏
λ̄/D). Also if μ = cf(μ) ≥ λ then D ∩ J<μ[λ̄] ⊆ D ∩ J<λ[λ̄] = ∅

hence by 1.8(2) we have μ = cf(
∏
λ̄/D). Together contradict ion by 1.3(7).

Proof of 1.8(3)(ii). Follows.

Proof of 1.8(4). Follows.

Proof of 1.9. As in 1.9.

(lA) Check.
(2) Read the proof of 1.10.

(2A) Check.
(3) The direction ⇒ is proved directly as in the proof of 2.2(1) (where

the use of 1.8(1) is justified by 2.13(1)).

So let us deal with the direction ⇐. So assume f̄ = 〈fα : α < λ〉 is a
sequence of members of

∏
λ̄ which is <J<λ[λ̄]-increasing such that for every

ultrafilter D on κ disjoint to J<λ[λ̄] we have: λ = tcf(
∏
λ̄, < D) iff f̄ is

unbounded (equivalently cofinal) in (
∏
λ̄, <D). By (the conclusion of) 1.5

wlog f̄ is <J<λ[λ̄]-increasing.

By 1.5 there is g ∈
∏
λ̄ such that fα < g mod J≤λ[λ̄] for each α < λ,

and let Bα =: {i < κ : g(i) ≤ fα(i)}. Hence Bα ∈ J≤λ[λ̄] (by the previous
sentence) and 〈Bα/J<λ[λ̄] : α < λ〉 is ⊆-increasing (as 〈fα : α < λ〉 is <J<λ[λ̄]-

increasing). Lastly if B ∈ J≤λ[λ̄], but B\Bα /∈ J<λ[λ̄] for each α < λ, let D be
an ultrafilter on κ, disjoint to J<λ[λ̄]+{Bα : α < λ} but to which B belongs,
so tcf(

∏
λ̄, <D) = λ (by 1.8(2) which holds by 2.13(1)) but {fα/D : α < λ}

is bounded by g/D (as fα/D ≤ g/D by the definition of Bα), contradiction.
So the sequence 〈Bα : α < λ〉 is as required.

(4)–(6) Left to the reader.
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(7) Let for λ ∈ pcf(λ̄), 〈Bλi : i < λ〉 be such that J≤λ[λ̄] = J<λ[λ] +
{Bλi : i < λ} (exists by seminormality; we use only this equality).
Let 〈fλ,iα : α < λ〉 be cofinal in (

∏
(λ � Bλi ), <J,λ[λ]), it exists by

1.8(1). Let F be the closure of {fλ,iα : α < λ, i < λ, λ ∈ pcf(λ̄)},
under the operation max{g, h}. Clearly |F | ≤ sup pcf(λ), so it
suffice to prove that F is a cover of (

∏
λ,<I∗). Let g ∈

∏
λ, if

(∃f ∈ F )(g ≤ f) we are done, if not

I = {A ∪ {i < κ : f(i) > g(i)} : f ∈ F,A ∈ I∗}

is ℵ0-directed, κ /∈ I, so there is an ultrafilter D on κ disjoint to
I, (so f ∈ F ⇒ f <D g) and let λ = tcf(

∏
λ̄/D), so by 1.8(2) we

have D ∩ J≤λ[λ] \ J<λ[λ] = ∅, hence for some i < λ,Bλi ∈ D, and
we get contradiction to the choice of the {fλ,αα : α < λ}(⊆ F ).

(8) Repeat the proof of 2.10(2) (only using J = {A ⊆ κ : if A /∈
J<λ[λ] then cf(

∏
λ/I∗) ≤ λ}; if κ /∈ J let D be an ultrafilter on κ

disjoint to J , and use 1.6). �2.14

Claim 2.14: If I∗ satisfies pseudo pcf-th then

(1) We can find 〈(Jζ , θζ) : ζ < ζ∗〉, ζ∗ a successor ordinal such that J0 =
I∗, Jζ+1 = {A ⊆ κ : if A ⊂ Jζ then tcf(

∏
(λ̄ � A), <Jζ

) = θζ} and for

no A ∈ (Jζ)
+ does (

∏
(λ � A), <Jζ

) has true cofinality which is < θζ .

(2) If I∗ satisfies the weaker pcf-th for λ then I∗ satisfies the pseudo pcf-th
for λ.

Proof. (1) Check (we can also present those ideals in other ways).
(2) Check. �2.14

4. Reduced Products of Cardinals

We characterize here the cardinalities
∏
i<κ λi/D and TD(〈λi : i < κ〉) using

pcf’s and the amount of regularity of D (in 3.1–3.4). Later we give sufficient
conditions for the existence of<D-eub or <D-eub. Remember the old result of
Kanamori [3] and Ketonen [5]: for D an ultrafilter the sequence 〈α/D : α < κ〉
(i.e. the constant functions) has a <D-eub if reg(D) < κ; and see [8, III 3.3]
(for filters). Then we turn to depth of ultraproducts of Boolean algebras.

The questions we would like to answer are (restricting ourselves to “λi ≥
2κ” or “λi ≥ 22

κ

” and D an ultrafilter on κ will be good enough).
Question A: What can be CarD =: {

∏
i<κ λi/D : λi a cardinal for i < κ}

i.e. characterize it by properties of D; (or at least CarD \ 2κ) (for D a filter
also TD(

∏
λi) is natural).

Question B: What can be DEPTH+
D = {Depth+(

∏
i<κ λi/D) : λia

regular cardinal} (at least DEPTH+
D \ 2κ, see Definition 10).
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If D is an ℵ1-complete ultrafilter, the answer is clear. For D a regular
ultrafilter on κ, λi ≥ ℵ0 the answer to question A is known [1] in fact it
was the reason for defining “regularity of filters” (for λi < ℵ0 see [9, Sh-a,
VI §3 Th. 3.12 and pp. 357–370] better [Sh-c, VI §3] and Koppleberg [4].)
For D a regular ultrafilter on κ, the answer to the question is essentially
completed in 3.22(1), the remaining problem can be answered by pp (see [8])
except the restriction (∀α < λ)(|α|ℵ0 < λ), which can be removed if the
cov = pp problem is completed (see [8], [AG]). So the problem is for the
other ultrafilters D, on which we give a reasonable amount on information
translating to a pcf problem, some times depending on the pcf theorem.

Definition 7. (1) For a filter D let reg(D) = min{θ : D is not θ−regular}
(see below).

(2) A filter D is θ-regular if there are Aε ∈ D for ε < θ such that the
intersection of any infinitely many Aε-s’ is empty.

(3) For a filter D let

reg∗(D) = min{θ : there are no Aε ∈ D+ for ε < θ such that

no i < κ belongs to infinitely many Aε
′s}

and

reg⊗(D) = : {θ : there are no Aε ∈ D+ for ε < θ such that :

ε < ζ ⇒ Aζ ⊆ Aε mod D and no i < κ

belongs to infinitely many Aε
′s}.

(4) regσ(D) = min{θ : D is not (θ, σ)−regular} where “D is (θ, σ)-regular”
means that there are Aε ∈ D for α < θ such that the intersection of
any σ of them is empty. Lastly regσ∗ (D), regσ⊗(D) are defined similarly
using Aε ∈ D+. Of course reg(I) etc. means reg(D) where D is the dual
filter.

Definition 8. (1) Let

htcfD,μ(
∏

γi) = sup{tcf(
∏

i<κ
λi/D) : μ ≤ λi = cfλi ≤ γi for i < κ and

tcf(
∏

λi/D) is well defined} and

hcfD,μ(
∏

i<κ
γi) = sup{cf(

∏
i<κ

λi/D) : μ ≤ λi = cfλi ≤ γi};

if μ = ℵ0 we may omit it.
(2) For E a family of filters on κ let htcfE,μ(

∏
i<κ < αi) be

sup{tcf(
∏

i<κ
λi/D) : D ∈ E and μ ≤ λi = cfλi ≤ αi for i < κ and

tcf(
∏

i<κ
λi/D) is well defined}.
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Similarly for hcfE,μ (using cf instead tcf).
(3) hcf∗D,μ(

∏
i<κ αi) is hcfE,μ(

∏
i<κ αi) for E = {D′ : D′ a filter on κ

extend ing D}. Similarly for htcf∗D,μ.
(4) When we write I e.g. in hcfI,μ we mean hcfD,μ where D is the dual

filter.

claim 3.3:

(1) reg(D) is always regular
(2) If θ < reg∗(D) then some filter extending D is θ-regular.
(3) wsat(D) ≤ reg∗(D)
(4) reg(D) ≤ reg⊗(D) ≤ reg∗(D)
(5) reg∗(D) = min{θ : no ultrafilter D1 on κ extending D is θ − regular}
(6) If D ⊆ E are filters on κ then:

(a) reg(D) ≤ reg(E)
(b) reg∗(D) ≥ reg∗(E)

Proof. Should be clear. E.g. (2) let 〈uε : ε < θ〉 list the finite subsets of θ,
and let {Aε : ε < θ} ⊆ D+ exemplify “θ < reg∗(D)”. Now let D∗ =: {A ⊆ κ :
for some finite u ⊆ θ, for every ε < θ we have:u ⊆ uε ⇒ Aε ⊆ A mod D},

and let A∗
ε =

⋃
{Aζ : ε ∈ uζ}. Now D∗ is a filter on κ extending D and for

ε < θ we have A∗
ε ∈ D. Finally the intersection of A∗

ε0 ∩A∗
ε1 ∩ . . . for distinct

εn < θ is empty, because for any member j of it we can find ζn < θ such
that j ∈ Aζn and εn ∈ uζn . Now if {ζn : n < ω} is infinite then there is no
such j by the choice of 〈Aε : ε < θ〉, and if {ζn : n < ω} is finite then wlog∧
n,ω ζn = ζ0 contradicting “uζ0 is finite” as

∧
n<ω εn ∈ uζn . Lastly ∅ /∈ D∗

because A∗
ε = ∅ mod D. �3.3

4.1. Observation

|
∏
i<κ λi/I| ≥ |ℵκ0/I| holds when

∧
1<κ λi ≥ ℵ0.

4.2. Observation

(1) |
∏
i<κ λi/I| ≥ htcf∗I(

∏
i<κ λi).

(2) If I∗ satisfies the pcf-th for λ or even the weaker pcf-th for λ (see
Definition 6) then: cf(

∏
λ/I∗) = max pcfI∗(λ).

(3) If I∗ satisfies the pcf-th for μ for and min(λ) ≥ μ then

hcfD,μ(
∏

λ) = hcf∗D,μ(
∏

λ) = htcf∗D,μ(
∏

λ)

whenever D is disjoint to I∗.
(4) hcfE,μ(

∏
i<κ λi) = hcf∗E,μ(

∏
i<κ λi).

(5)
∏
i<κ λi/I ≥ hcfI,μ(

∏
i<κ λi) = hcf∗I,μ(

∏
i<κ λi) ≥ htcf∗I,μ(

∏
i<κ λi)

and hcfI,μ(
∏
i<κ λi) ≥ htcfI,μ(

∏
i<κ λi).
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Remark 3.5A. In 3.5(3) concerning htcfD,μ see 3.10.

Proof. (1) By the definition of htcf∗I it suffices to show |
∏
i<κ λi/I| ≥

tcf(
∏
λ′i/I

′), when I ′ is an ideal on κ extending I, λ′i = cfλ′i ≤ λi
for i < κ and tcf(

∏
i<κ λ

′
i/I

′) is well defined. Now |
∏
i<κ λi/I| ≥

|
∏
i<κ λ

′
i/I| ≥ |

∏
i<κ λ

′
i/I

′| ≥ cf(
∏
i<κ λ

′
i/I

′), so we have finished.
(2) By 2.13(IA)clearly I∗, λ̄ satisfies 1.5, 1.6 hence by 2.13(1), (2)

also 1.8(1), (2), (3), (4) and 1.9 and 1.10. Now by 2.13(8) also (the
conclusion of) 2.10(2) holds which is what we need.

(3) Left to the reader (see Definition 6(2) and part (2)).
(4), (5) Check. �3.5

claim 3.6: If λ = |
∏
i<κ λi/I| (and λi ≥ ℵ0 and, of course, I an ideal on

κ) and θ < reg(I) then λ = λθ.

Proof. For each i < κ, let 〈ηiα : α < λi〉 list the finite sequences from λi. Let
Mi = (λi, Fi, Gi) where Fi(α) = �g(ηiα), Gi(α, β) is ηiα(β) if β < �g(ηiα)(=
Fi(α)), and F (α, β) = 0 otherwise; let M =

∏
i<κMi/I so ‖M‖ = |

∏
λi/I|

and let M = (
∏
λi/I, F,G). Let 〈Ai : i < θ〉 exemplifies I is θ-regular. Now

(∗)1 We can find f ∈ κω and fε ∈
∏
i<κ f(i) for ε < θ such that: ε < ζ <

θ ⇒ fε <I fζ [just for i < κ let wi = {ε < θ : i ∈ Aε}, it is finite and let
f(i) = |wi| + 1 and fε(i) = |ε∩wi| ≤ f(i), and note ε < ζ&i ∈ Aε ∩Aζ ⇒
fε(i) < fζ(i)].

(∗)2 For every sequence ḡ = 〈gε : ε < θ〉 of members of
∏
i<κ λi, there is

h ∈
∏
i<κ λi such that ε < θ ⇒ M |= F (h/I, fε/I) = gε/I [why? let,

in the notation of (∗)1, h(i) be such that ηih(i) = 〈gε(i) : ε ∈ wi〉 (in the

natural order)].

So in M , every θ-sequence of members is coded using f/I, fε/I (for ε < θ)
by at least one member so ‖M‖θ = ‖M‖, but ‖M‖ = |

∏
i<κ λi/I| hence we

have proved 3.6. �3.6

4.3. Fact

(1) For D a filter on κ, 〈Ai, A2〉 a partition of κ and (non zero) cardinals
λi for i < κ we have

|
∏

i<κ
λi/D| = |

∏
i<κ

λi/(D +A1)| × |
∏

i<κ
λi/(D +A2)|

(note: |
∏
i<κ λi/P(κ)| = 1).

(2) D[μ] =: {A ⊆ κ : |
∏
i<κ λi/(D + (κ \ A))| < μ} is a filter on κ (μ an

infinite cardinal of course) and if ℵ0 ≤ μ ≤
∏
i<κ λi/D then D[μ] is a

proper filter.
(3) If λ ≤ |

∏
i<κ λi/I|, (λi infinite, of course, I an ideal on κ) and A ∈

I+ ⇒ |
∏
i∈A λi/I| ≥ λ and σ < reg∗(I) then |

∏
λi/I| ≥ λσ
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Proof. Check (part (3): by the proof of 3.3(2) we can find Aε ∈ I+ for ε < σ
such that for finite u ⊆ σ, ∩ε∈uAε ∈ I+ and continue as in the proof of 3.6).

Claim 3.8: If D ⊆ E are filters on κ then

|
∏

i<κ
λi/D| ≤ |

∏
i<κ

λi/E|+ sup
A∈E\D

|
∏

i<κ
λi/(D+(κ\A))|+(2κ/D)+ℵ0.

We can replace 2κ/D by |P| if P is a maximal subset of E such that
A = B ∈ P ⇒ (A \B) ∪ (B \A) = ∅ mod D.

Proof. Think.

Lemma 6. |
∏
i<κ λi/D| ≤ (θκ/D+hcfD,θ(

∏
i<κ λi))

<θ (see Definition 8(1))
provided that:

θ ≥ reg⊗(D) (∗)

Remark 3.9A. (1) If θ = θ+1 , we can replace θκ/D by θκ1 /D. In general we
can replace θκ/D by sup{

∏
i<κ f(i)/D : f ∈ θκ}.

(2) If D satisfies the pcf-th above θ (see 2.11(1A), 2.12(2) then by 3.5(3)
we can use htcf∗ (sometime even htcf, see 3.10). But by 3.7(1) we can
ignore the λi ≤ θ, and when i < κ ⇒ λi > θ we know that 1.5(∗)(α)
holds by 3.3(3).

Proof. Let λ = θκ/D + hcfD,θ(
∏
i<κ λi). Let for ζ < θ, μζ =: λ|ζ| i.e. μζ =:

(θκ/D + hcfD,θ
∏
i<κ λi)

|ζ|, clearly μζ = μ
|ζ|
ζ . Let χ =�8 (supi<κ λi)

+ and

Nζ ≺ (H(χ),∈, <∗
χ) be such that ‖Nζ‖ = μζ , N

≤|ζ| ⊆ Nζ , λ + 1 ⊆ Nζ and
{D, 〈λi : i < κ〉} ∈ Nζ and [ε < ζ ⇒ Nε ≺ Nζ ]. Let N = ∪{Nζ : ζ < θ}.
Let g∗ ∈

∏
i<κ λi and we shall find f ∈ N such that g∗ = f mod D, this

will suffice. We shall choose by induction on ζ < θ, feζ (e < 3) and Āζ such
that:

(a) feζ ∈
∏
i<κ(λi + 1)

(b) f1
ζ ∈ Nζ and f2

ζ ∈ Nζ.

(c) Āζ = 〈Aζi : i < κ〉 ∈ Nζ .

(d) λi ∈ Aζi ⊆ λi + 1, |Aζi | ≤ |ζ| + 1, and 〈Aζi : ζ < θ〉 is increasing
continuous (in ζ).

(e) f0
ζ (i) = min(Aζi \ g∗(i)); note: it is well defined as g∗(i) < λi ∈ Aζi

(f) f1
ζ = f0

ζ mod D

(g) g∗ < f2
ζ < f1

ζ mod (D + {i < κ : g∗(i) = f1
ζ (i)}).

(h) f2
ζ (i) ∈ Aζ+1

i

So assume everything is defined for every ε < ζ. If ζ = 0, let Aζi = {λi}, if ζ

limit Aζi =
⋃
ε<ζ A

ε
i , for ζ = ε + 1, Aζi will be defined in stage ε. So arriving

to ζ, Āζ is well defined and it belongs to Nζ : for ζ = 0 check, for ζ = ε+ 1,

done in stage ε, for ζ limit it belongs to Nζ as we have N
≤|ζ|
ζ ⊆ Nζ and:
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ξ < ζ ⇒ Nξ ≺ Nζ and Āξ ∈ Nξ. Now use clause (e) to define f0
ζ /D. As

〈Aζi : i < κ〉 ∈ Nζ , |Aζi | ≤ |ζ| + 1 < θ and θκ/D ≤ λ < λ + 1 ⊆ Nη, clearly

|
∏
i<κ |A

ζ
i |/D| ≤ λ hence {f/D : f ∈

∏
i<κA

ζ
i } ⊆ Nζ hence f0

ζ /D ∈ Nζ
hence there is f1

ζ ∈ Nζ such that f1
ζ ∈ f0

ζ /D i.e. clause (f) holds. As g∗ ≤ f0
ζ

clearly g∗ ≤ f1
ζ mod D, let yζ0 =: {i < κ : g∗(i) ≥ f1

ζ (i)}, yζ1 =: {i < κ : i /∈
yζ0 andcf(f1

ζ (i)) < θ} yζ2 =: κ \ yζ0 \ yζ1 . So 〈yζe : e < 3〉 is a partition of κ and

g∗ < f1
ζ mod (D + yζe) for e = 1, 2.

Let yζ4 = {i < κ : cf(f1
ζ (i)) ≥ θ} so f1

ζ ∈ Nζ , and θ = Nζ hence yζ4 ∈ Nζ ,

so (
∏
i<κ f

1
ζ (i), <D+yζ4

) ∈ Nζ . Clearly yζ2 ⊆ yζ4 ⊆ yζ0 ∪ yζ2 . Now

cf(
∏

i<κ
f1
ζ (i), <D+yζ4

) ≤ hcfD+yζ4 ,θ
(
∏

i<κ
λi)

≤ hcfD,θ(
∏

i<κ
λi) ⊆ λ < λ+ 1 ⊆ Nζ

hence there is F ∈ Nζ , |F | ≤ λ, F ⊆
∏
i∈yζ4 f

1
ζ (i) such that:

(∀g)[g ∈
∏

i∈yζ4

f1
ζ (i) ⇒ (∃f ∈ F )(g < f mod (D + yζ4))]

As λ + 1 ⊆ N necessarily F ⊆ Nζ . Apply the property of F to (g∗ � yζ2) ∪
0(κ\yζ2) and get f ζ4 ∈ F ⊆ Nζ such that g∗ < f ζ4 mod (D + yζ2). Now use

similarly
∏
i<κ cf(f1

ζ (i))/(D + (κ \ yζ4)) ≤ |θκ/D| ≤ λ; by the proof of 3.7(1)

there is a function f2
ζ ∈ Nζ ∩

∏
i<κ f

1
ζ (i) such that g∗ � (yζ1 + yζ2) < f2

ζ

mod D. Let Aζ+1
i be: Aζ+1

i ∪ {f2
ζ (i)}.

It is easy to check clauses (g), (h). So we have carried the definition. Let

Xζ =: {i < κ : f0
ζ+1(i) < f0

ζ (i)}.

Note that by the choice of f1
ζ , f1

ζ+1 we know Xζ = yζ1 ∪ yζ2 mod D, if this

last set is not D-positive then g∗ ≥ f1
ζ mod D, hence g∗/D = f1

ζ /D ∈ Nζ ,

contradiction, so yζ1 ∪ yζ2 = ∅ mod D hence Xζ ∈ D+. Also 〈(yζ1 ∪ yζ2)/D :
ζ < θ〉 is ⊆-decreasing hence 〈Xζ/D : ζ < θ〉 is ⊆-decreasing.

Also if i ∈ Xζ1 ∩ Xζ2 and ζ1 < ζ2 then f0
ζ2

(i) ≤ f0
ζ1+1(i) < f0

ζ1
(i) (first

inequality: as Aζ1+1
i ⊆ Aζ2i and clause (e) above, second inequality by the

definition of Xζ1 , hence for each ordinal i the set {ζ < θ : i ∈ Xζ} is finite).
So θ < reg⊗(D), contradiction to the assumption (∗). �3.9

Note we can conclude
Claim 3.9B:∏
i<κ λi/D = sup{(

∏
i<κ f(i))<reg⊗(D1) + hcfD1(

∏
i<κ λi)

<reg⊗(D1) : D1

is a filter on κ extending D such that
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A ∈ D+
1 ⇒

∏

i<κ

λi/(D1 +A) =
∏

i<κ

λi/D1

and f ∈ θκ, f(i) ≤ λi}

Proof. The inequality ≥ should be clear by 3.7(3). For the other direction
let μ be the right side cardinality and let D0 = {κ \ A : A ⊆ κ and if A ∈
D+ then

∏
i<κ λi/(D+A) ≤ μ}, so we know by 3.7(2) that D0 is a filter on

κ extending D. If ∅ ∈ D0 we are done so assume not. Now μ ≥ 2κ/D (by the
term (

∏
i f(i)/D0)<reg⊗(D1)) so by 3.8 we have

∏
i<κ λi/D0 > μ (use 3.8 with

D, D0 here corresponding to D, E there). Now the same holds for D0 + A
for every A ∈ D+

0 . Also A ⊆ B ⊆ κ and A ∈ D+
0 ⇒

∏
i<κ λi/(D0 + A) ≤∏

i<κ λi/(D1+B) so for someB ∈ D+
0 , D1 =: D0+B satisfies the requirement

inside the definition of μ, so μ ≥ hcfD1(
∏
i<κ λ1)<reg⊗(D1).

By 3.9 (see 3.9A(1)) we get a contradiction. �3.9B

Next we deal with existence of <D-eub.
Claim 3.10:

(1) Assume D a filter on κ, g∗α ∈ κOrd for α < δ, ḡ∗ = 〈g∗α : α < δ〉 is
≤D-increasing, and

cf(δ) ≥ θ ≥ reg∗(D). (∗)

Then at least one of the following holds:

(A) 〈g∗α : α < δ〉 has a <D-eub g ∈ κOrd; moreover θ ≤ lim infD〈cf[g(i)] :
i < κ〉

(B) cf(δ) = reg∗(D)
(C) For some club C of δ and some θ1 < θ and γi < θ+1 and wi ⊆ Ord

of order type γi for i < κ, there are fα ∈
∏
i<κ wi (for α ∈ C) such

that fα(i) = min(wi \ g∗α(i)) and α ∈ C&β ∈ C&α < β ⇒ fα ≤D

fβ&¬fα =D fβ&¬fα ≤D g∗β&g∗α ≤ fα.

(2) In (C) above if for simplicity D is an ultrafilter we can find wi ⊆ Ord,
otp(wi) = γi, 〈αξ : ξ < cf(δ)〉 increasing continuous with limit δ, and
hε ∈

∏
i<κ wi such that fαε <D hε <D fαε+1 moreover,

∧
i<κ γi < ω.

Proof. (1) Let σ = reg∗(D). We try to choose by induction on ζ < σ, gζ , fα,ζ
(for α < δ), Āζ , αζ such that

(a) Āζ = 〈Aζi : i < κ〉.
(b) Aζi = {fαε,ε(i), gε(i) : ε < ζ} ∪ {[supα<δ g

∗
α(i)] + 1}.

(c) fα,ζ(i) = min(Aζi \ g∗α(i)) (and fα,ζ ∈ κOrd, of course).
(d) αζ is the first α,

⋃
ε<ζ , αε < α < δ such that [β ∈ [α, δ) ⇒ fβ,ζ = fα,ζ

mod D] if there is one.
(e) gζ ≤ fαζ ,ζ moreover gζ < max{fαζ ,ζ , 1κ} but for no α < δ do we have

gζ < max{g∗α, 1} mod D.
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Let ζ∗ be the first for which they are not defined (so ζ∗ ≤ σ). Note

ε < ξ < ζ∗&αξ ≤ α < δ ⇒ fαε,ε =D fα,ε&fα,ξ ≤ fα,ε&fα,ξ =D fα,ε. (∗)

[Why last phrase? applying clause (e) above, second phrase with α, ε here
standing for α, ζ there we get A0 =: {i < κ : max{g∗α(i), 1} ≤ gε(i)} ∈ D+

and applying clause (e) above first phrase with ε here standing for ζ there
we get A1 = {i < κ : gε(i) < fα,ε(i) or gε(i) = 0 = fα,ε(i)} ∈ D, hence
A0∩A1 ∈ D+, and gε(i) > 0 for i ∈ A0∩A1 (even for i ∈ A0). Also by clause
(c) above g∗α(i) ≤ gε(i) ⇒ fα,ξ(i) ≤ gε(i). Now by the last two sentences
i ∈ A0 ∩ A1 ⇒ g∗α(i) ≤ gε(i) < fα,ε(i) ⇒ fα,ξ(i) < gε(i) < fα,ε(i), together
fα,ξ =D fα,ε as required]

Case A. ζ∗ = σ and
⋃
ζ<σ αζ < δ. Let α(∗) =

⋃
ζ<σ αζ , for ζ < σ let

yζ = {i < κ : fα(∗),ζ(i) = fα(∗),ζ+1(i)} = ∅ mod D. Now for
i < κ, 〈fα(∗),ζ(i) : ζ < σ〉 is non increasing so i belongs to finitely
many yζ ’s only, so 〈yζ : ζ < σ〉 contradict σ ≥ reg∗(D).

Case B. ζ∗ = σ and
⋃
ζ<σ αζ = δ. So possibility (B) of Claim 3.10 holds.

Case C. ζ∗ < σ.

Still Aζ
∗
i (i < κ), fα,ζ∗(α < δ) are well defined.

Subcase C1. αζ∗ cannot be defined.

Then possibility C of 3.10 holds (use wi =: Aζ
∗
i , fβ = fαζ∗+β,ζ∗ ).

Subcase C2. αζ∗ can be defined.
Then fαζ∗ ,ζ∗ is a <D-eub of 〈g∗α : α < δ〉 as otherwise there is gζ∗ as
required in clause (e). Now fα∗

ζ ,ζ
∗ is almost as required in possibility (A)

of Claim 3.10 only the second phrase is missing. If for no θ1 < θ, {i < κ :
cf[fαζ∗ ,ζ∗(i)] ≤ θ1} ∈ D+, then possibility (A) holds.

So assume θ1 < θ and B =: {i < κ : ℵ0 ≤ cf[fαζ∗ ,ζ∗(i)] ≤ θ1} belongs to
D+, we shall try to prove that possibility (C) holds, thus finishing. Now we
choose wi for i < κ: for i ∈ κ we let w0

i =: {fαζ∗ ,ζ∗(i), [supα<δ g
∗
α(i)] + 1}, for

i ∈ B let w1
i be an unbounded subset of fαζ∗ ,ζ∗(i) of order type cf[fαζ∗ ,ζ∗(i)]

and for i ∈ κ \B let w1
i = ∅, lastly let wi = w0

i ∪w1
i , so |wi| ≤ θ1 as required

in possibility (C). Define fα ∈ κOrd by fα(i) = min(wi\g∗α(i)) (by the choice
of w0

i it is well defined). So 〈fα : α < δ〉 is ≤D-increasing; if for some α∗ < δ,
for every α ∈ [α∗, δ) we have fα/D = fα∗/D, we could define gζ∗ ∈ κOrd
by:

gζ∗ � B = fα∗ (which is < fαζ∗ ,ζ∗),
gζ∗ � (κ \B) = 0κ\B
Now gζ∗ is as required in clause (e) so we get contradiction to the choice

of ζ∗. So there is no α∗ < δ as above so for some club C of δ we have
α < β ∈ C ⇒ fα =D fβ, so we have actually proved possibility (C).

(2) Easy (for
∧
i γi < ω, wlog θ = reg∗(D) but reg∗(D) = reg(D) so θ1 =

reg(D)). �3.10

Claim 3.11:
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(1) In 3.10(1), if λ = δ = cf(λ), ḡ∗ obeys ā (ā as in 2.1), ā a θ-weak
(S, θ)-continuity condition, S ⊆ λ unbounded, then clause (C) of 3.10
implies: (C)′ there are θ1 < reg∗(D) and Aε ∈ D+ for ε < θ such
that the intersection of any θ+1 of the sets Aε is empty (equivalently
i < κ ⇒ (∃≤θ1ε)[i ∈ Aε] (reminds (σ, θ+1 )-regularity of ultrafilters).

(2) We can in 3.10(1) weaken the assumption (∗) to (∗)′ below if in the
conclusion we weaken clause (A) to (A)′ where

(∗)′ cf(δ) ≥ θ ≥ reg(D)
(A)′ There is a ≤D-upper bound f of {g∗α : α < δ} such that no f ′ <D f

(of course f ′ ∈ κOrd) is a ≤D-upper bound of {g∗α : α < δ} and
θ ≤ lim infD〈cf[f(i)] : i < κ〉

(3) If g∗α ∈ κOrd, 〈g∗α : α < δ〉 is <D-increasing and f ∈ κOrd satisfies (A)′

above and

(∗)′′ cf(δ) ≥ wsat(D) and for some A ∈ D for every i < κ, cf(f(i)) ≥
wsat(D) then for some B ∈ D+ we have

∏
i<κ cf[f(i)]/(D + B) has

true cofinality cf(δ).

Remark. Compare with 2.6.

Proof. (1) By the choice of ā = 〈aα : α < λ〉 as C (in clause (c) of 3.11(1))
is a club of λ, we can find β < λ such that letting 〈αε : ε < θ〉 list {α ∈
aβ : otp(α∩aβ) < θ} (or just a subset of it) we have (αε, αε+1)∩C = ∅.

Let γε ∈ (αε, αε+1) ∩ C, and ξε ∈ (αε, αε+1) be such that {αζ :
ζ ≤ ε} ⊆ aξε , and as we can use (α2ε : ε < θ), wlog ξε < γε. For
ζ < θ let Bζ = {i < κ : fαζ

(i) < fβζ
(i) < fγζ (i) < fαζ+1(i) and

sup{fαξ
(i) + 1 : ξ < ζ} < sup{fαξ

(i) + 1 : ξ < ζ + 1}.
(2) In the proof of 3.10 we replace clause (e) by

(e′) gζ ≤ fαζ ,ζ and for α < δ we have fα ≤ gζ mod D
(3) By 1.8(1) �3.11

Claim 3.12:

(1) Assume λ = tcf(
∏
λ̄/D) and μ = cf(μ) < λ then there is λ̄′ <D λ̄, λ̄′ a

sequence of regular cardinals and μ = tcf(
∏
λ̄′/D) provided that

μ > reg∗(D),min(λ̄) > regσ
+

∗ (D) whenever σ < reg∗(D) (∗)

(2) Let I∗ be the ideal dual to D, and assume (∗) above. If (∗)(α) of 1.5
holds and μ is semi-normal (for (λ̄, I∗)) then it is normal.

Proof. Part (2) follows from part (1) by 2.2(3). Let us prove (1).

Case 1. μ < lim infD(λ̄)
We let

λ′ =

{
μ if μ < λi

1 if μ ≥ λi
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and we are done.
Case 2. lim inf +D(λ̄) ≥ θ ≥ reg∗(D), μ > θ, and (∀σ < reg∗(D))[regσ∗ (D)
< θ].
Let θ =: reg∗(D). There is an unbounded S ⊆ μ and an (S, θ)-continuity
system ā (see 2.4). As

∏
λ̄/D has true cofinality λ, λ > μ clearly there are

g∗α ∈
∏
λ̄ for α < μ such that ḡ∗α = 〈g∗α : α < μ〉 obeys ā for Ā∗[λ̄] (exists

as θ ≤ lim infD(λ̄)).
Now if in claim 3.10(1) for ḡ∗ possibility (A) holds, we are done. By 3.11(1)
we get that for some σ < reg∗(D) we have regσ∗ (I) ≥ μ, contradiction.
Case 3. lim infD(λ̄) ≥ θ ≥ reg∗(D), μ ≥ θ, and (∀σ < reg∗(D))[regσ∗ (D)
< θ].
Like the proof of [8, Ch. II 1.5B] using the silly square. �3.12

∗ ∗ ∗

We turn to other measures of
∏
λ̄/D.

Definition 9. (a) T 0
D(λ̄) = sup{|F | : F ⊆

∏
λ̄ and f1 = f2 ∈ F ⇒ f1 =D

f2}.
(b) T 1

D(λ̄) = min{|F | :

(i) F ⊆
∏
λ̄

(ii) f1 = f2 ∈ F ⇒ f1 =D f2
(iii) F maximal under (i)+(ii)}

(c) T 2
D(λ̄) = min{|F | : F ⊆

∏
λ̄ and for every f1 ∈

∏
λ̄, for some f2 ∈ F

we have ¬f1 =D f2}.
(d) If T 0

D(λ̄) = T 1
D(λ̄) = T 2

D(λ̄) then let TD(λ̄) = T lD(λ̄) for l < 3.
(e) For f ∈ κOrd and � < 3 let T lD(f) means T lD(〈f(α) : α < κ〉).

Theorem 1. (0) If D0 ⊆ D1 are filters on κ then T �D0
(λ̄) ≤ T �D1

(λ̄) for

� = 0,2. Also if κ = A0 ∪ A1, A0 ∈ D+, and A1 ∈ D+ then T �D(λ̄) =
min{T �D+A0

(λ̄), T �D+A1
(λ̄)} for � = 0,2.

(1) htcfD(
∏
λ̄) ≤ T 2

D(λ̄) ≤ T 1
D(λ̄) ≤ T 0

D(λ̄)
(2) If T 0

D(λ̄) > |P(κ)/D| or just T 0
D(λ̄) > μ, and P(κ)/D satisfies the

μ+-c.c. then T 0
D(λ̄) = T 1

D(λ̄) = T 2
D(λ̄) so the supremum in 3.13(a) is

obtained (so e.g. T 0
D(λ̄) > 2κ suffice)

(3) T 0
D(λ̄)<regD = T 0

D(λ̄) (each λi infinite of course).
(4) [htcfD

∏
i<κ f(i)] ≤ T 2

D(f) ≤ [htcfD
∏
i<κ f(i)]<θ + reg(D)κ/D where

θ = reg∗(D) in fact θ = reg(D) + wsat(D) suffice
(5) If D is an ultrafilter |

∏
λ̄/D| = T eD(λ̄) for e ≤ 2.

(6) In (4), if
∧
i<κ f(i) ≥ 2κ (or just (reg(D) + 2)κ/D ≤ mini<κ f(i)), then

[htcfD
∏
i<κ f(i)]<regD ≤ T 0

D(f)
(7) If the sup in the definition of T 0

D(λ̄) is not obtained then it has cofinality
≥ reg(D) and even is regular.

Proof. (0) Check.
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(1) First assume μ =: T 2
D(λ̄) < htcfD(

∏
λ̄); then we can find μ∗ = cf(μ∗) ∈

(μ, htcfD(
∏
λ̄)] and μ̄ = 〈μi : i < κ〉, a sequence of regular cardinals,∧

i<κ μi ≤ λi such that μ∗ = tcf(
∏
μ̄/D) and let 〈fα : α < μ∗) exemplify

this. Now let F exemplify μ = T 2
D(λ̄), for each g ∈ F let

g′ ∈
∏

i<κ

μi be : g′(i) =

{
g(i) if g(i) < μi

0 otherwise.

So there is α(g) < μ∗ such that g′ <D fα(g). Let α∗ = sup{α(g) : g ∈ F},
now α∗ < μ∗ (as μ∗ = cf μ∗ > μ = |F |). So g ∈ F ⇒ g =D fα∗ ,
contradiction. So really T 2

D(λ̄) ≤ htcfD(
∏
λ̄) as required.

If F exemplifies the value of T 1
D(λ̄), it also exemplifies T 2

D(λ̄) ≤ |F |
hence T 2

D(λ̄) ≤ T 1
D(λ̄).

Lastly if F exemplifies the value of T 1
D(f) it also exemplifies T 0

D(λ̄) ≥
|F |, so T 1

D(λ̄) ≤ T 0
D(λ̄).

(2) Let μ be |P(κ)/D| or at least μ is such that the Boolean algebra P(κ)/D
satisfies the μ+-c.c. Assume that the desired conclusion fails so T 2

D(λ̄) ≤
T 0
D(λ̄), so there is F0 ⊆

∏
λ̄, such that [f1 = f2 ∈ F0 ⇒ f1 =D f2], and

|F0| > T 2
D(λ̄) + μ (by the definition of T 0

D(λ̄)). Also there is F2 ⊆
∏
λ̄

exemplifying the value of T 2
D(λ̄). For every f ∈ F0 there is gf ∈ F2 such

that ¬f =D gf (by the choice of F2). As |F0| > T 2
D(λ̄) + μ for some

g ∈ F2, F
∗ =: {f ∈ F0 : gf = g} has cardinality > T 2

D(f) + μ. Now for
each f ∈ F ∗ let Af = {i < κ : f(i) = g(i)}, clearly Af ∈ D+. Now
f !→ Af/D is a function from F ∗ into P(κ)/D, hence, if μ = |P(κ)/D|,
it is not one to one (by cardinality consideration) so for some f ′ = f ′′

from F ∗ (hence form F0) we have Af ′/D = Af ′′/D; but so

{i < κ : f ′(i) = f ′′(i)} ⊇ {i < κ : f ′(i) = g(i)} ∩ {i < κ : f ′′(i) = g(i)}

= Af ′/D

hence is = ∅ mod D, so ¬f ′ =D f ′′, contradiction the choice of F0. If
μ = |P(κ)/D| (as F ∗ ⊆ F0 by the choice of F0) we have :

f1 = f2 ∈ F ∗ ⇒ Af1 ∩ Af2 = ∅ mod D

so {Af : f ∈ F ∗} contradicts “the Boolean algebra P(κ)/D satisfies the
μ+-c.c.”.

(3) Assume that θ < reg(D) and¶ μ ≤+ T 0
D(λ̄). As μ ≤+ T 0

D(λ̄) we can
find fα ∈

∏
λ̄ for α < μ such that [α < β ⇒ fα =D fβ]. Also (as

θ < reg(D)) we can find {Aε : ε < θ} ⊆ D such that for every i < κ the
set wi =: {ε < θ : i ∈ Aε} is finite. Now for every function h : θ → μ we
define gh, a function with domain κ:

¶≤+ means here that the right side is a supremum, right bigger than the left or
equal but the supremum is obtained
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gh(i) = {(ε, fh(ε)(i)) : ε ∈ wi}

So |{gh(i) : h ∈ θμ}| ≤ (λi)
|wi| = λi, and if h1 = h2 are from θμ then for

some ε < θ, h1(ε) = h2(ε) so Bh1,h2 = {i : fh1(ε)(i) = fh2(ε)(in)} ∈ D
that is Bh1,h2 ∩ Aε ∈ D so

⊗1 If i ∈ Bh1,h2 ∩ Aε then ε ∈ wi, so gh1(i) = gh2(i).
⊗2 Bh1,h2 ∩ Aε ∈ D

So 〈gh : h ∈ θμ〉 exemplifies T 0
D(λ̄) ≥ μθ. If the supremum in the

definition of T 0
D(λ̄) is obtained we are done. If not then T 0

D(λ̄) is a limit
cardinal, and by the proof above:

[μ < T 0
D(λ̄) & θ < reg(D) ⇒ μθ < T 0

D(λ̄)].

So if T 0
D(λ̄) has cofinality ≥ reg(D) we are done; otherwise let it be∑

ε<θ με with με < T 0
D(λ̄) and θ < regD. Note that by the previous

sentence T 0
D(λ̄)θ = T 0

D(λ̄)<reg(D) =
∏
ε<θ με, and let {fεθ : α < με} ⊆∏

λ̄ be such that [α < β ⇒ fεα =D f εD] and repeat the previous proof
with f εh(ε) replacing fh(ε).

(4) For the first inequality. Assume it fails so μ =: T 2
D(f) < htcfD(

∏
i<κ f(i))

hence for some g ∈
∏
i<f(i)(f(i) + 1), tcf(

∏
i<κ g(i), <D) is λ with

λ = cf(λ) > μ. Let 〈fα : α < λ〉 exemplifies this. Let F be as in
the definition of T 2

D(f), now for each h ∈ F , there is α(h) < λ such that

{i < κ : if h(i) < g(i) then h(i) < fα(g)(i)} ∈ D.

Let α∗ = sup{α(h) + 1 : h ∈ F}, now fα∗ ∈
∏
i<κ f(i) and h ∈ F ⇒

h =D fα∗ contradicting the choice of F .

For the second inequality. Repeat the proof of 3.9 except that here we
prove F =:

⋃
ζ<θ(Nζ ∩

∏
i<κ f(i)) exemplifies T 2

D(f) ≤ λ. So let g∗ ∈∏
i<κ λi, and we should find f ∈ N such that (g∗ =D f); we replace

clause (g) in the proof by (g)′g∗ < f2
ζ+1 < f1

ζ mod D
the construction is for ζ < reg(D) and if we are stuck in ζ then

¬f1
ζ =D g∗ and so we are done.

(5) Straightforward.
(6) Note that all those cardinals are ≥ 2κ and 2κ ≥ reg(D)κ/D. Now write

successively inequalities from (2), (4), (1) and (3):

T 0
D(f) = T 2

D(f) ≤ [htcfD
∏

i<κ

f(i)]<reg(D) ≤ [T 0
D(f)]<reg(D) = T 0

D(f).

(7) See proof of part (3). Moreover, let μ =
∑

ε<τ με, τ < T 0
D(λ̄), με < T 0

D(λ̄)
as exemplified by {fε : ε < τ}, {f εα : α < με} respectively. Let gα be: if∑
ε<ζ με < α <

∑
ε≤ζ με then gα(i) = (fε(i), f

ε
α(i)). So {gα : α < μ}

show: if T 0
D(λ̄) is singular then the supremum is obtained. �3.14
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Claim 1. Assume D is a filter on κ, f ∈ κOrd, μℵ0 = μ and 2κ < μ, TD(f),
(see Definition 9(d) and Theorem 1(2)) and reg∗(D) = reg(D). If μ < TD(f)
then for some sequence λ̄ ≤ f of regulars, μ+ = tcf(

∏
λ̄/D), or at least

(∗) There are 〈〈λi,n : n < ni〉 : i < κ〉, λi,n = cf(λi,n) < f(i) and a filter D∗

on
⋃
i<κ{i} × ni such that: μ+ = tcf(

∏
(i,n) λi,n/D

∗) and D = {A ⊆ κ :⋃
i∈A{i} × ni ∈ D∗}.
Also the inverse is true.

Remark 3.15A.

(1) It is not clear whether the first possibility may fail. We have explained
earlier the doubtful role of μℵ0 = μ.

(2) We can replace μ+ by any regular μ such that
∧
α<μ |α|ℵ0 < μ and then

we use 3.14(4) to get μ ≤+ TD(f).
(3) The assumption 2κ < μ can be omitted.

Proof. The inverse should be clear (as in the proof of 3.6, by 3.14(3)).
Wlog f(i) > 2κ for i < κ, and trivially (reg(D))κ/D ≤ 2κ, so by 3.14(4)

TD(f) ≤ [htcfD(
∏

i<κ

f(i)]<reg∗(D).

If μ < htcfD(
∏
i<κ f(i)) we are done (by 3.12(1)), so assume htcfD(

∏
i<κ f(i))

≤ μ, but we have assumed μ < TD(f) so by 3.14(4) as reg∗(D) = reg(D) we
have μ<reg(D) ≥ μ+. Let χ ≤ μ be minimal such that

∨
θ<reg(D) χ

θ ≥ μ, and

let θ =: cf(χ) so, as μ > 2κ we know χcfχ = χ<reg(D) = μ<reg(D) ≥ μ+, χ >
2κ,

∧
α<χ |α|<reg(D) < χ. By the assumption μ = μℵ0 we know θ > ℵ0 (of

course θ is regular). By [8, VIII 1.6(2), IX 3.5] and [Sh513, 6.12] there is a
strictly increasing sequence 〈με : ε < θ〉 of regular cardinals with limit χ such
that μ+ = tcf(

∏
ε<θ με/J

bd
θ ).

As clearly χ ≤ htcfD(
∏
i<κ f(i)), by 2.12(1) there is for each ε < θ,

a sequence λ̄ε = 〈λεi : i < κ〉 such that λεi = cf(λεi ) ≤ f(i), and
tcf(

∏
i<κ λ

ε
i /D) = με, also wlog λεi > 2κ. Let 〈Aε : ε < θ〉 exemplify

θ < reg(D) and ni = |{ε < θ : i ∈ Aε}| and {λi,n : n < ω} enumerate
{λεi : ε satisfies i ∈ Aε}, so we have gotten (∗). �3.15

4.4. Conclusion

Suppose D is an ℵ1-complete filter on κ and reg∗(D) = reg(D). If λi ≥ 2κ

for i < κ and supA∈D+ TD+A(λ̄) > μℵ0 then for some λ′i = cf(λ′i) ≤ λi we
have

sup
A∈D+

htcfD+A(
∏

i<κ

λ′i) > μ.
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4.5. Conclusion

Let D be an ℵ1-complete filter on κ and reg∗(D) = reg(D). If for i < κ,Bi
is a Boolean algebra and λi < Depth+(Bi) (see below) and

2κ < μℵ0 < sup
A∈D+

TD+A(λ̄)

then μ+ < Depth+(
∏
i<κ Bi/D)

Proof. Use 3.25 below and 3.16 above.

Definition 10. For a partial order P (e.g. a Boolean algebra) let Depth+(P )
= min{λ : we cannot find aα ∈ P for α < λ such that α < β ⇒ aα <P aβ}.

4.6. Discussion

(1) We conjecture that in 3.16 (and 3.17) the assumption “D is ℵ0-complete”
can be omitted. See [16].

(2) Note that our results are for μ = μℵ0 only; to remove this we need
first to improve the theorem on pp = cov (i.e. to prove cf(λ) = ℵ0 <
λ ⇒ pp(λ) = cov(λ, λ,ℵ1, 2) (or sup{pp(μ) : cfμ = ℵ0 < μ < λ} =
cf(S≤ℵ0(λ),⊆) (see [8], [14], §1]), which seems to me a very serious open
problem (see [8, Analitic guide, 14]).

(3) In 3.17, if we can find fα ∈
∏
i<κ λi for α < λ : [α < β < λ ⇒ fα ≤ fβ

mod D] and ¬fα =D fα+1 then λ < Depth+(
∏
i<κBi/D). But this do

es not help for λ regular > 2κ.
(4) We can approach 3.15 differently, by 3.20–3.23 below.

Claim 3.20: If 22
κ ≤ μ < TD(λ), (or at least 2|D|+κ ≤ μ < TD(λ)) and

μ<θ = μ, then for some θ-complete filter E ⊆ D we have TE(λ) > μ.

Proof. Wlog θ is regular (as μ<θ = μ &, cf(θ) < θ ⇒ μ<θ
+

= μ). Let
{fα : α < μ+} ⊆

∏
λ̄, be such that [α < β ⇒ fα =D fα]. We choose by

induction on ζ, αζ < μ+ as follows: αζ is the minimal ordinal α < μ+ such
that Eζ,α ⊆ D where Eζ,α = the θ-complete filter generated by

{{i < κ : fαε(i) = fα(i)} : ε < ζ}

(note: each generator of Eζ,α is in D but not necessarily Eζ,α ⊆ D!).
Let αζ be well defined if ζ < ζ∗, clearly ε < ζ ⇒ αε < αζ . Now if ζ∗ < μ+,

then clearly α∗ =
⋃
ζ<ζ∗ αζ < μ+ and for every α ∈ (a∗, μ+), Eζ∗,α 
 D,

so for every such a there are Aα ∈ D+ and aα ∈ [ζ∗]<θ such that Aα =⋃
ε∈aα{i < κ : fαε(i) = fα(i)}. But for every A ∈ D+, a ∈ [ζ∗]<θ we have

{α : α ∈ (α∗, μ+), Aα = A, aα = a} ⊆ {a : fα � A ∈
∏

i<κ
{fαε(i) : ε ∈ aα}},

hence has cardinality ≤ θκ ≤ 2κ < μ. Also |[ζ∗]<0| ≤ μ<0 < μ+, |D+| ≤ 2κ <
μκ so we get easy contradiction.
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So ζ∗ = μ+, but the number of possible E’s is ≤ 22
κ

, hence for some E we
have |{ε < μ+ : Eε,αε = E}| = μ+. Necessarily E ⊆ D and E is θ-complete,
and {fαε : ε < μ+, and Eαε = E} exemplifies TE(λ̄) > μ, so E is as required.
�3.20

4.7. Fact

1. In 3.20 we can replace μ+ by μ∗ if 22
κ

< cf(μ∗) ≤ μ∗ ≤ T 0
D(λ) and∧

α<μ∗ |α|<θ < μ∗.

Proof. The same proof as 3.20.
Claim 3.22:

(1) If 2κ < |
∏
λ/D|, D an ultrafilter on κ, μ = cf(μ) ≤ |

∏
λ̄/D|,

∧
i<κ |i|ℵ0

< μ, and D is regular then μ < Depth+(
∏
i<κ λi/D)

(2) Similarly for D just a filter but A ∈ D+ ⇒
∏
λ/(D +A) =

∏
λ̄/D.

Proof.

(1) Wlog λ =: limD λ = sup(λ) , so |
∏
λ̄/D| = λκ (see 3.6, by [1]). If

μ ≤ λ we are done; otherwise let χ = min{χ : χκ = λκ}, so χcf(χ) =
λκ, cf(χ) ≤ κ but λ < μ ≤ λκ hence λℵ0 < μ hence cf(χ) > ℵ0, also by
χ’s minimality

∧
i<χ |i|cfχ ≤ |i|κ < χ, and remember χ < μ = cf μ ≤

χcfχ so by [8,. VIII 1.6(2)] there is 〈με : ε < cf(χ)〉 strictly increasing
sequence of regular cardinals with limit χ,

∏
ε<cf(χ) με/J

bd
cfχ has true

cofinality μ. Let χε = sup{μζ : ζ < ε} + 2κ, let i : κ ⇒ cf(χ) be
i(i) = sup{ε + 1 : λi ≥ χε}. If there is a function h ∈

∏
i<κ i(i) such

that
∧
j<cf(χ){i < κ : h(i) < j} = ∅ mod D then

∏
i<κ μh(i)/D has

true cofinality μ as required; if not (D, i) is weakly normal (i.e. there
is no such h- see [13]). But for D regular, D is cf(χ)-regular, some
〈Aε : ε < cf(κ)〉 exemplifies it and h(i) = max{ε : ε < i(i) and i ∈ Aε}
(maximum over a finite set) is as required.

(2) Similarly using λ =: lim infD(λ̄). �3.22

4.8. Discussion

1. In 3.20 (or 3.21) we can apply [12, §6] so μ = tcf(
∏⋃

i<μ ai/D
∗), where

D = {A ⊆ κ :
⋃
i∈A ai ∈ D∗} and each ai, is finite.

See also in 3.15.
Claim 3.24: If D is a filter on κ, Bi is the interval Boolean algebra on

the ordinal αi, and |
∏
i<κ αi/D| > 2κ then for regular μ we have: μ <

Depth+(
∏
i<κ Bi/D) iff for some μi ≤ αi (for i < κ) and A ∈ D+, the true

cofinality of
∏
i<κ μi/(D +A) is well defined and equal to μ.
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Proof. The ⇐ (i.e. if direction) is clear. For the ⇒ direction assume μ
is regular < Depth+(

∏
i<κ Bi/D) so there are fα ∈

∏
i<κBi, such that∏

i<κBi/D |= fα/D < fβ/D for α < β.
Wlog μ > 2κ. Let fα(i) =

⋃
[jα,i,2�, jα,i.2�+1) where jα,i,� < jα,i,�+1 < αi

for � < 2n(α, i). As μ = cf(μ) > 2κ wlog nα,i = ni. By [14], 6.60] (see
more [Sh513, 6.1]) we can find A ⊆ A∗ =: {(i, �) : i < κ, � < 2nα} and
〈γ∗i,� : i < κ, � < 2ni〉 such that (i, �) ∈ A ⇒ γ∗i,� is a limit ordinal and

(∗) For every f ∈
∏

(i,�)∈A γ
∗
i,� and α < μ there is β ∈ (α, μ) such that

(i, �) ∈ A∗ A ⇒ jα,i,� = γ∗i,�

(i, �) ∈ A ⇒ f(i, �) < jβ,i,� < γ∗i,�

(i, �) ∈ A ⇒ cf(γ∗i,�) > 2κ

Let �(i) = max{� < 2n(i) : (i, �) ∈ A} and let B = {i : �(i) well defined}.
Clearly B ∈ D+ (otherwise we can find α < β < μ such that fα/D = fβ/D,
contradiction). For (i, �) ∈ A define β∗

i,� by β∗
i,� = sup{γ∗j,m + 1 : (j,m) ∈ A∗

and γ∗j,m < γ∗i,�}. Now β∗
i,� < γ∗i,� as cf(γ∗i,�) > 2κ. Let

Y = {α < μ : if (i, �) ∈ A∗ \A thenjα,i,� = γ∗i,�

and if (i, �) ∈ A then β∗
i,� < jα,�,i < γ∗i,�}

Let B1 = {i ∈ B : �(i) is odd}. Clearly B1 ⊆ B and B \ B1 = ∅ mod D
(otherwise as in (∗)1, (∗)2 below get contradiction) hence B1 ∈ D+. Now
(∗)1 for α < β from Y we have

〈jα,i,�(i) : i ∈ B1〉 ≤ 〈jβ,i,�(i) : i ∈ B1〉 mod (D � B1)

[Why? as fα/D was non decreasing in
∏
i<κBi/D]

(∗)2 for every α ∈ Y for some β, α < β ∈ Y we have

〈jα,i,�(i) : i ∈ B1〉 < 〈jβ,i,�(i) : i ∈ B1〉 mod (D � B1)

[Why? by (∗) above]
Together for some unbounded Z ⊆ Y , 〈〈jα,i,�,�(i) : i ∈ B1〉/(D � B1) :

α ∈ Z〉 is <D�B1-increasing, so it has a <(D�B1)-eub (as μ > 2κ see 3.10,
and more in [8, II §1]), say 〈j∗i : i ∈ B1〉 hence

∏
i∈B1

j∗i /(D � B1) has true
cofinality μ by 1.3(12) and clearly j∗i ≤ γ∗i,�(i) ≤ αi, so we have finished. �3.24

Claim 3.25 If D is a filter on κ,Bi a Boolean algebra, λi < Depth+(Bi)
then

(a) Depth(
∏
i<κB/D) ≥: supA∈D+ tcf(

∏
i<κ λi(D + A)) (i.e. on the cases

tcf is well defined).
(b) Depth+(

∏
i<κ B/D) is ≥: Depth+(P(κ)/D) and is at least

sup{[tcf(
∏

i<κ

λ′i/(D +A))]+ : λ′i < Depth+(Bi), A ∈ D+}.
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Proof. Check.
claim 3.26: Let D be a filter on κ, 〈λi : i < κ〉 a sequence of cardinals

and 2κ < μ = cf(μ). Then (α) ⇔ (β) ⇒ (γ) ⇒ (δ), and if (∀σ < μ)(σℵ0 < μ)
and reg∗(D) = reg(D) we also have (γ) ⇔ (δ) where

(α) If Bi is a Boolean algebra, λi < Depth+(Bi) then μ < Depth+(
∏
i<κ

Bi/D)
(β) There are μi = cf(μi) ≤ λi for i < κ and A ∈ D+ such that μ =

tcf(
∏
μi/(D +A))

(γ) There are 〈〈λi,n : n < ni〉 : i < κ〉, λi,n = cf(λi,n) < λi, A
∗ ∈ D+ and a

filter D∗ on
⋃
i<κ{i} × ni such that:

μ = tcf(
∏

(i,n)

λi,n/D
∗) and D +A∗ = {A ⊆ κ : the set

⋃

i∈A
{i} × ni

belongs to D∗}.

(δ) For some A ∈ D+ , μ ≤ TD+A(〈λi : i < κ〉)

Remark. So the question whether (α) ⇔ (δ) assuming (∀σ < μ)(σℵ0 < μ) is
equivalent to (β) ↔ (δ) which is a “pure” pcf problem.

Proof. Note (γ) ⇒ (δ) is easy (as in 3.15, i.e. as in the proof of 3.6, only
easier). Now (β) ⇒ (γ) is trivial and (β) ⇒ (α) by 3.25. Next (α) ⇒ (β)
holds as we can use (α) for Bi =: the interval Boolean algebra of the order
λi and use 3.24. Lastly assume (∀σ < μ)(σℵ0 < μ) and reg∗(D) = reg(D),
now (γ) ⇔ (δ) by 3.15. �3.26

Discussion. We would like to have (letting Bi denote Boolean algebra)

Depth(+)(
∏

i<κ

Bi/D) ≥
∏

i<κ

Depth(+)(Bi)/D

if D is just filter we should use TD and so by the problem of attainment
(serious by Magidor and Shelah [15]), we ask

⊗ For D an ultrafilter on κ, does λi < Depth+(Bi) for i < κ implies
∏

i<κ

λi/D < Depth+(
∏

i<κ

Bi/D)

at least when λi > 2κ ;
⊗′ For D a filter on κ, does λi < Depth+(Bi) for i < κ implies, assuming
λi > 2κ for simplicity,

TD(〈λi : i < κ〉) < Depth+(
∏

i<κ

Bi/D)

As explained in 3.26 this is a pcf problem.



The PCF Theorem Revisited 485

In [16] we deal with this under reasonable assumption (e.g. μ = χ+ and
χ = χℵ0). We also deal with a variant, changing the invariant (closing under
homomorphisms, see [6]).

5. Remarks on the Conditions for the pcf Analysis

We consider a generalization whose interest is not so clear.
Claim 4.1: Suppose λ = 〈λi : i < κ〉 is a sequence of regular cardinals,

and θ is a cardinal and I∗ is an ideal on κ; and H is a function with domain
κ. We consider the following statements:

(∗∗)H lim infI∗(λ) ≥ θ ≥ wsat(I∗) and H is a function from κ to P(θ)
such that:

(a) For every ε < θ we have {i < κ : ε ∈ H(i)} = κ mod I∗

(b) For i < κ we have otp(H(i)) ≤ λi or at least {i < κ : |H(i)| ≥
λi} ∈ I∗

(∗∗)+ Similarly but

(b)+ For i < κ we have otp(H(i)) < λi

(1) In 1.5 we can replace the assumption (∗) by (∗∗)H above.
(2) Also in 1.6, 1.7, 1.8, 1.9, 1.10, 1.11 we can replace 1.5(∗) by (∗∗)H .
(3) Suppose in Definition 4(2) we say f̄ obeys ā for H (instead of for Ā∗)

if

(i) For β ∈ aα, such that ε =: otp(aα) < θ we have

otp(aβ), otp(aβ) ∈ H(i) ⇒ fβ(i) ≤ fα(i)

and in 2.3(2A), fα(i) = sup{fβ(i) : β ∈ aα and otp(aβ), otp(aα) ∈
H(i)}.

Then we can replace 1.5(∗) by (∗∗)H in 2.5, 2.5A , 2.6; and replace 1.5(∗)
by

(∗∗)+H In 2.7 (with the natural changes).

Proof. (1) Like the proof of 1.5, but defining the gε’s by induction on ε we
change requirement (ii) to

(ii)′ If ζε, and {ζ, ε} ⊆ H(i) then gζ(i) < gε(i).

We can not succeed as

〈(Bεα(∗) \Bε+1
α(∗)) ∩ {i < κ : ε, ε+ 1 ∈ H(i)} : ε < θ〉

is a sequence of θ pairwise disjoint member of (I∗)+.
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In the induction, for ε limit let gε(i) < ∪{gζ(i) : ζ ∈ H(i) and
ε ∈ H(i)} (so this is a union at most otp(H(i) ∩ ε) but only when
ε ∈ H(i) hence is < otp(H(i)) ≤ λi).

(2) The proof of 1.6 is the same, in the proof of 1.7 we again replace (ii) by
(ii)′. Also the proof of the rest is the same.

(3) Left to the reader. �4.1

We want to see how much weakening (∗) of 1.5 10 “lim infI∗(λ̄) ≥ θ ≥
wsat(I∗) suffices. If θ singular or lim infI∗(λ̄) > θ or just (

∏
(λ̄), <I∗) is θ+-

directed then case (β) of 1.5 applies. This explains (∗) of 4.2 below.
Claim 4.2: Suppose λ = 〈λi : i < κ〉, λi = cf(λi), I

∗ an ideal on κ and

lim infI(λ) = θ ≥ wsat(I∗), θ regular (∗)

Then we can define a sequence J̄ = 〈Jζ : ζ < ζ(∗)〉 and an ordinal
ζ(∗) ≤ θ+ such that

(a) J̄ is an increasing continuous sequence of ideals on κ.
(b) J0 = I∗, Jζ+1 =: {A : A ⊆ κ, and : A ∈ Jζ or we can find h : A → θ

such that λi > h(i) and ε < θ ⇒ {i : h(i) < ε} ∈ Jζ}
(c) For ζ < ζ(∗) and A ∈ Jζ+1 \Jζ , the pair (

∏
λ̄, Jζ +(κ\A)) (equivalently

(
∏
λ̄ � A, Jζ � A)) satisfies condition 1.5(∗) (case (β) hence its

consequences, (in particular it satisfies the weak pcf-th for θ).
(d) If κ /∈ ∪ζ<ζ∗)Jζ then (

∏
λ,∪ζ<ζ∗)Jζ) has true cofinality θ.

Proof. Straight. (We define Jζ for ζ ≤ θ+ by clause (b) for ζ = 0, ζ successor
and as

⋃
ε<ζ Jε for ζ limit. Clause (c) holds by claim 4.4 below. It should be

clear that Jθ++1 = Jθ+ , and let ζ(∗) = min{ζ : Jζ+1 =
⋃
ε<ζ Jε} so we are

left with checking clause (d). If A ∈ J+
ζ(∗), h ∈

∏
i∈A λi, choose by induction

on ζ < θ, ε(ζ) < θ increasing with ζ such that {i < κ : h(i) ∈ (ε(ζ), ε(ζ+1)) ∈
J+
ζ(∗)). If we succeed we contradict θ ≥ wsat(I∗) as θ is regular. So for some

ζ < θ, ε(ζ) is well defined but not ε(ζ + 1). As Jζ(∗) = Jζ(∗)+1, clearly

{i < κ : h(i) ≤ ε(ζ)} = κ mod Jζ(∗). So gε(i) =

{
ε if ε < λi

0 if ε ≥ λi
exemplifies

tcf(
∏
λ̄/Jζ(∗)) = θ. �4.2

Now:

5.1. Conclusion

Under the assumptions of 4.2, I∗ satisfies the pseudo pcf-th (see Defini-
tion 6(4)).

Claim 4.4: Under the assumption of 4.2, if J is an ideal on κ extending
I∗ the following conditions are equivalent

(a) For some h ∈
∏
λ̄, for every ε < θ we have {i ∈ A : h(i) < ε} ∈ J
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(b) (
∏
λ̄, <J+(κ\A)) is θ+-directed.

Proof. (a) ⇒ (b)

Let fζ ∈
∏
λ̄ for ζ < θ, we define f∗ ∈

∏
λ̄ by

f∗(i) = sup{fζ(i) + 1 : ζ < h(i)}.

Now f∗(i) < λi as h(i) < λi = cf(λi) and fζ � A <J f
∗ � A as {i ∈ A :

h(i) < ζ} ∈ J .
(b) ⇒ (a)
Let fζ be the following function with domain κ:

fζ(i) =

{
ζ if ζ < λi

0 if ζ ≥ λi

As lim infI∗ ≥ θ, clearly ε < ζ ⇒ fε <I∗ fζ and of course fζ ∈
∏
λ̄. By

our assumption (b) there is h ∈
∏
λ̄ such that ζ < θ ⇒ fζ � A < h � A

mod J . Clearly h is as required. �4.4
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Paul Erdős: The Master of Collaboration
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Over a span of more than 60 years, Paul Erdős took the art of collaborative
research in mathematics to heights never before achieved. In this brief look
at his collaborative efforts, we will explore the breadth of Paul’s interests, the
company he kept, and the influence of his collaboration in the mathematical
community. Rather than focusing on the mathematical content of his work
or the man himself, we will see what conclusions can be drawn by looking
mainly at publication lists. Thus our approach will be mostly bibliographical,
rather than either mathematical or biographical. The data come mainly from
the bibliography in this present volume and records kept by Mathematical
Reviews (MR) [15]. Additional useful sources of information include The
DBLP Computer Science Bibliography (a database of articles in computer
science) [3], Zentralblatt [19], the Jahrbuch [14], various necrological articles
too numerous to list, and personal communications. Other articles on these
topics can be found in [4, 5, 7, 8, 9, 10, 11, 16].

Paul became a legend during his long and productive life, and his
fame (as well as his genius and eccentricity) spread beyond the circles of
research mathematicians. We find a popular documentary film about him [2],
articles in general circulation magazines [13, 18] (as well as in mathematical
publications—see [1] for a wonderful example), two popular biographies
[12, 17], and graffiti (e.g., his quotation that a mathematician is a device for
turning coffee into theorems). But even within the academic (and corporate
research) community, his style and output have created a lot of folklore.

The reader is probably familiar with the concept of Erdős number, defined
inductively as follows. Paul has Erdős number 0. For each n ≥ 0, a person not
yet assigned an Erdős number who has written a joint mathematical paper
with a person having Erdős number n has Erdős number n + 1. Anyone
who is not assigned an Erdős number by this process is said to have Erdős
number ∞. Thus a person’s Erdős number is just the distance from that
person to Paul Erdős in the collaboration graph C, in which two authors are
joined by an edge if they have published joint research. For example, Albert
Einstein has Erdős number 2, because he did not collaborate with Paul Erdős,
but he did publish joint research with Ernst Straus, who was one of Paul’s
major collaborators. Purists can argue over how to count papers with more
than two authors, but here we will adopt the liberal attitude that each of
the

(
k
2

)
pairs of authors in a k-author paper are adjacent in C. Of course one

R.L. Graham et al. (eds.), The Mathematics of Paul Erdős II,
DOI 10.1007/978-1-4614-7254-4 27,
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need not restrict the collaboration graph to the field to mathematics (more
about this below).

A common variant is to give a person who has written p > 0 papers
with Paul the Erdős number 1/p. András Sárközy, with 1

62 and András
Hajnal, with 1

56 have the smallest positive Erdős numbers under this
definition, followed in order by Faudree, Schelp, Sós, Rousseau, Rényi, Turán,
Szemerédi, Graham, Burr, Spencer, Pomerance, Simonovits, Pach, Straus,
Nicolas, Nathanson, Rado, Bollobás, Milner, Gyárfás, Selfridge, Piranian,
Hall, Chung, Joó, Rödl, and Reddy, who all have a value under 0.1. (This list
is based on data from 2010, but most of the other statistics in this paper are
based on data from 1995.)

The author maintains lists of coauthors of Paul Erdős and coauthors of
these coauthors (i.e., all people with Erdős number not exceeding 2) and
updates these lists periodically. They are available as part of the Erdős
Number Project website [6]. (Difficulties in author identification, among other
problems, surely make these lists and other data discussed in this article less
than 100 % accurate, but we believe that the number of errors is not large.)

As was pointed out in [10], the average number of authors per research
article in the mathematical sciences increased dramatically over Paul Erdős’s
lifetime. (One can speculate whether his existence is part of the reason for
this.) Specifically, the fraction of all authored items reviewed in MR having
two or more authors has increased, as a function of time. While over 90 % of all
papers in 1940 (when MR began) were the work of just one mathematician,
today only about half of them are solo works. In the same period, the fraction
of two-author papers has risen from under 10 % to about one third. Also, in
1940 there were virtually no papers with three authors, let alone four or more;
now about 10 % of all papers in the mathematical sciences have three or more
authors, including about 2 % with four or more.

Fig. 1 The number of authors on Paul Erdős’s papers over the years.
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The same trend can be seen in Paul’s work, but with an even greater
amount of collaboration. The graph in Fig. 1 shows the fraction of 1-, 2-, 3-,
and ≥ 4-author items in Paul’s publication list, year by year through 1995.
(Almost all of these are research papers. The rest are books, articles about
people, or other writings.) For reference, Fig. 2 shows the absolute sizes we
are talking about—the number of publications year by year. (The last two
counts—for 1994 and 1995—are probably too low, because of incomplete
publication data at the time the figures were constructed.) Cumulatively
(Fig. 3), fewer than one third of Paul’s 1,400 works completed by 1995 were
solo ventures. In fact, the mean number of authors (including Erdős) is almost
exactly two.

Fig. 2 The number of papers by Paul Erdős over the years.

Fig. 3 The fraction of Paul Erdős’s papers with different numbers of authors.

Paul’s mode of operation (dating from his departure from a permanent
position at Notre Dame around 1954) was unique among mathematicians.
Rather than staying at a home institution (research institute or academic
department), he was constantly on the move, visiting mathematicians at
conferences and research centers around the world. He often spent some
summer months in Budapest, where he was a member of the Hungarian
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Academy of Sciences and where he could work with several of his most prolific
collaborators. Some of his favorite haunts included Memphis, Tennessee,
the New York City area, and other places too numerous to list. He was
a permanent fixture at the annual Southeastern Combinatorics Conference
(in Boca Raton, Florida, or Baton Rouge, Louisiana) and other regular
meetings in his various fields. For example, in the few months around the
time this article was originally being written, Paul reported having been (or
planning to go) at least to Atlanta, Memphis, three cities in Texas, New
Jersey, New Haven, Baton Rouge, Colorado, France, Germany, Kalamazoo,
and Pennsylvania, in that order.

As he met and worked with ever-increasing numbers of people on his
travels, it is not surprising that Paul added new coauthors every year since
1936. (Only two—George Szekeres and Pál Turán—published with him before
that, in 1934.) Figure 4 shows how the cumulative number of coauthors
increased, while Fig. 5 shows the discrete time derivative of this function.
Paul usually left the actual writing up of the papers to his collaborators—
partly, he said, because he did not type.

Fig. 4 The cumulative number of Paul Erdős’s coauthors as a function of time.

As the present collection shows, Paul Erdős’s papers span many branches
of mathematics and exploit relationships among them. (One fine example of
the latter is his application of probability to combinatorics.) Mathematical
Reviews currently has about 60 broad subject classifications, ranging from
“Mathematical Logic and Foundations” through “Information and Commu-
nication, Circuits” (plus a section on history and biography), one of which it
assigns to every item it records as its primary subject area. This list has varied
slightly over time, with some categories being added or discarded as MR tries
to keep up with current trends. Paul’s works, although often spanning two
or more subject areas and therefore difficult to pinpoint into one category,
have been given primary classification in about 40 % of these subject areas
or their equivalent predecessors. They include not only the two main areas of
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Fig. 5 The number of new coauthors added each year.

number theory and combinatorics, and substantial work in approximation
theory, geometry, set theory, and probability theory, but also papers in
mathematical logic and foundations, lattices and ordered algebraic structures,
linear algebra, group theory, topological groups, polynomials, measure and
integration, functions of a complex variable, finite differences and functional
equations, sequences and series, Fourier analysis, functional analysis, general
and algebraic topology, statistics, numerical analysis, computer science, and
information theory.

Fig. 6 Paul Erdős’s papers since 1979 by broad category.

The chart in Fig. 6 shows the fractions of Paul’s publications reviewed
in MR from 1980 to 1995 in the various categories. Such a tabulation was
easy to do, because the old-style MR review number included the category
code as the first two digits following the colon. Figure 7 is a less accurate pie
chart covering all years. Taken together, these graphics suggest a slight trend
toward increased work in combinatorics (including graph theory) in the later
years, with a comparable decline in the output in number theory. Indeed,
nearly all Paul’s early papers were in number theory (61 of the first 64, by
one count, covering the period 1932–1939).
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Fig. 7 Paul Erdős’s papers by broad category (approximate).

Since Erdős’s coauthors work in such varied fields, one would expect
the set of people with Erdős number 2, 3, or a little higher to range over
essentially all of mathematics. Indeed, this is the case. All Fields Medalists
(through 2010) are in the Erdős component of the collaboration graph, with
Erdős number at most 5. (The Erdős component of C is just the connected
component that contains Erdős.) This group includes people working in
theoretical physics; for instance, there is the path Edward Witten–Sidney
Coleman–Daniel J. Kleitman–Paul Erdős. Thus one can conjecture that many
(if not most) physicists are also in the Erdős component, as are, therefore,
many (or most) scientists in general. The large number of applications of
graph theory and statistics to the social sciences might also lead one to
suspect that many researchers in other academic areas are included as well.

It is interesting to explore the publication lists (or at least the coauthor
lists) of Erdős’s coauthors, to see how much collaboration went on after
Paul left town. Let E1 be the subgraph of C induced by people with Erdős
number 1. According to data collected through 1995, E1 contains 458 vertices
and 1,218 edges; thus an average Erdős coauthor collaborated with over 5
other Erdős coauthors. (The median, as opposed to the mean, of this statistic
is only 3, however. Its standard deviation is about 6, and it takes values
over 30 in four cases—Ron Graham, Frank Harary, Vojtěch Rödl, and Joel
Spencer.) There are only 40 isolated vertices in E1 (less than 9 %), and three
components with two vertices each. The remaining 412 vertices in E1 induce
a connected subgraph. Paul’s style seemed to rub off.

Looking at it more broadly, we find that people with Erdős number 1
have a mean of 20 other collaborators (median 15, standard deviation 22),
and only six of them collaborated with no one except Erdős. As of 1995,
five of them had over 100 coauthors (Frank Harary, Saharon Shelah, Ron
Graham, Noga Alon, and Dan Kleitman).

Another 4,546 people as of 1995 felt Paul’s influence second-hand—by
doing joint research with one of the honored 458. (These numbers increased
to 9,267 and 511, respectively, as of 2010.) Three quarters of the people with
Erdős number 2 have only one coauthor with Erdős number 1 (i.e., each such
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person has a unique path of length 2 to Erdős in C). However, their mean
number of Erdős number 1 coauthors is 1.5 (standard deviation 1.2), and the
count ranges as high as 13 (for Dwight Duffus and Linda Lesniak).

The bibliography in the original edition of this volume listed about 1,400
papers, but it was incomplete, especially with regard to works that appeared
near the end of Paul’s life (and posthumously—a paper with Florian Luca
and Carl Pomerance was published in 2008). An addendum is available on the
Erdős Number Project website; the total as of 2010 stood at 1,525. Most of the
papers published since 1939 appear in the Mathematical Reviews database.
Reviews of Paul Erdős’s papers appeared in every volume that MR published
during his lifetime, including a review of a joint paper with Tibor Gallai on
page 1 of volume 1, written by George Pólya. It is interesting to note that
the second most prolific writer in the MR database (as of 1995) is Leonard
Carlitz, with about 735 items. Carlitz had Erdős number 2 (via seven different
coauthors) and wrote the MR review of several of Paul’s papers. In all, nearly
500 different people reviewed Erdős’s papers for MR. Paul wrote for MR as
well and had over 700 reviews to his credit.

Readers with additions or corrections to any of the information in this
article, the accompanying bibliography, or the Erdős Number Project website
are urged to communicate with the author (grossman@oakland.edu).
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Reviews), and Jaroslav Nešetřil (Charles University, Prague) for additional
advice and data, Zentralblatt für Mathematik und Ihre Grenzgebiete for
providing the Zbl numbers and making other additions and corrections,
Springer-Verlag for the preparation of this list in its final form, and Paul
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This list as it existed in early 1996 was included in The Mathematics
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1937.02 Note on the number of prime divisors of integers, J. London Math.
Soc. 12 (1937), 308–314; Zbl. 17,246.

1937.03 Note on the transfinite diameter, J. London Math. Soc. 12 (1937),
185–192 (J. Gillis); Zbl. 17,115.

1937.04 On interpolation, I. Quadrature and mean convergence in the
Lagrange interpolation, Ann. of Math. (2) 38 (1937), 142–155
(P. Turán); Zbl. 16,106.

1937.05 On the density of some sequences of numbers, II., J. London Math.
Soc. 12 (1937), 7–11; Zbl. 16,12.

1937.06 On the easier Waring problem for powers of primes, I., Proc.
Cambridge Philos. Soc. 33 (1937), 6–12; Zbl. 16,102.

1937.07 On the sum and difference of squares of primes, J. London Math.
Soc. 12 (1937), 133–136; Zbl. 16,201.

1937.08 On the sum and difference of squares of primes, II., J. London
Math. Soc. 12 (1937), 168–171; Zbl. 17,103.
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two problems of the Matematikai Lapok, in Hungarian, Russian
and English summaries), Mat. Lapok 7 (1956), 10–17;MR 20#4534;
Zbl. 75,31.
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Zbl. 107,270.

1958.08 On sequences of integers generated by a sieving process, I., Nederl.
Akad. Wetensch. Proc. Ser. A. 61 = Indag. Math. 20 (1958),
115–123 (E. Jabotinsky); MR 21#2628; Zbl. 80,263.

1958.09 On sequences of integers generated by a sieving process, II., Nederl.
Akad. Wetensch. Proc. Ser. A. 61 = Indag. Math. 20 (1958),
124–128 (E. Jabotinsky); MR 21#2628; Zbl. 80,263.

1958.10 On sets which are measured by multiples of irrational numbers,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958),
743–748 (K. Urbanik); Zbl. 84,45.

1958.11 On singular radii of power series, Magyar Tud. Akad. Mat. Kutató
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(A. Rényi); MR 21#6019; Zbl. 86,340.

1959.14 On the distribution of primitive lattice points in the plane, Canad.
Math. Bull. 2 (1959), 91–96 (J. H. H. Chalk); MR 21#4145; Zbl.
88,257.

1959.15 On the Lipschitz’s condition for Brownian motion, J. Math. Soc.
Japan 11 (1959), 263–274 (K.-L. Chung; T. Sirao); MR 22#12602;
Zbl. 91,133.



List of Publications of Paul Erdős, January 2013 515
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1960.07 On analytic iteration, J. Analyse Math. 8 (1960/1961), 361–376
(E. Jabotinsky); MR 23#A3240; Zbl. 126,88.

1960.08 On sets of distances of n points in Euclidean space, Magyar Tud.
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Sci. Budapest. Eötvös Sect. Math. 3–4 (1960/1961), 53–62 (G. Szek-
eres); MR 24#A3560; Zbl. 103,155.

1960.10 On the evolution of random graphs, Magyar Tud. Akad. Mat.
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California, 1962 (A. Rényi); MR 26#2586; Zbl. 171,316.
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267–273 (A. Rényi); MR 31#2528; Zbl. 121,296.

1963.18 Sums of distinct unit fractions, Proc. Amer. Math. Soc. 14 (1963),
126–131 (S. Stein); MR 26#71; Zbl. 115,265.

1963.19 The Hausdorff measure of the intersection of sets of positive
Lebesgue measure, Mathematika 10 (1963), 1–9 (S. J. Taylor); MR
27#3765; Zbl. 141,55.

1963.20 The minimal regular graph containing a given graph, Amer. Math.
Monthly 70 (1963), 1074–1075 (P. Kelly).

1964.01 A problem concerning the zeros of a certain kind of holomorphic
function in the unit disk, J. Reine Angew. Math. 214/215 (1964),
340–344 (F. Bagemihl); MR 31#3580; Zbl. 131,75.

1964.02 A problem in graph theory, Amer. Math. Monthly 71 (1964),
1107–1110 (A. Hajnal; J. W. Moon); MR 30#577; Zbl. 126,394.

1964.03 A problem on tournaments, Canad. Math. Bull. 7 (1964), 351–356
(L. Moser); MR 29#4046; Zbl. 129,347.

1964.04 An interpolation problem associated with the continuum hypoth-
esis, Michigan Math. J. 11 (1964), 9–10; MR 29#5744; Zbl.
121,258.

1964.05 Arithmetical Tauberian theorems, Acta Arith. 9 (1964), 341–356
(A. E. Ingham); MR 31#1228; Zbl. 127,271.

1964.06 Extremal problems in graph theory, Theory of Graphs and its
Applications (Proc. Sympos. Smolenice, 1963), pp. 29–36, Publ.
House Czech. Acad. Sci., Prague, 1964; MR 31#4735; Zbl.
161,205.

1964.07 Laconicity and redundancy of Toeplitz matrices, Math. Z. 83
(1964), 381–394 (G. Piranian); MR 29#1471; Zbl. 129,42.

1964.08 On a combinatorial problem, II., Acta Math. Acad. Sci. Hungar.
15 (1964), 445–447; MR 29#4700; Zbl. 201,337.

1964.09 On a combinatorial problem in Latin squares, Magyar Tud. Akad.
Mat. Kutató Int. Közl. 8 (1963), 407–411, 1964 (A. Ginzburg); MR
29#2197; Zbl. 125,282.

1964.10 On a problem in elementary number theory and a combinatorial
problem, Math. Comp. 18 (1964), 644–646; MR 30#1087; Zbl.
127,22.

1964.11 On an extremal problem in graph theory, Colloq. Math. 13
(1964/1965), 251–254; MR 31#3353; Zbl. 137,181.



522 List of Publications of Paul Erdős, January 2013
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127–138 (A. Rényi); MR 34#2690; Zbl. 247.20045.

1965.16 Remarks on a theorem of Zygmund, Proc. London Math. Soc. (3)
14a (1965), 81–85; MR 31#5031; Zbl. 148,54.



524 List of Publications of Paul Erdős, January 2013
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37#2717; Zbl. 186,80.

1967.18 On the partial sums of power series, Proc. Roy. Irish Acad. Sect.
A 65 (1967), 113–123 (J. Clunie); MR 36#5314.

1967.19 Partition relations and transitivity domains of binary relations,
J. London Math. Soc. 42 (1967), 624–633 (R. Rado); MR 36#1335;
Zbl. 204,9.

1967.20 Problems and results on the convergence and divergence properties
of the Lagrange interpolation polynomials and some extremal prob-
lems, Mathematica (Cluj) 10 (33) (1967), 65–73; MR 38#1437;
Zbl. 159,356.

1967.21 Some problems on the prime factors of consecutive integers, Illinois
J. Math. 11 (1967), 428–430 (J. L. Selfridge); MR 37#5144; Zbl.
149,289.

1967.22 Some recent results on extremal problems in graph theory. Results,
Theory of Graphs (Internat. Sympos., Rome, 1966), pp. 117–123
(English), pp. 124–130 (French), Gordon and Breach, New York;
Dunod, Paris, 1967; MR 37#2634; Zbl. 187,210.



List of Publications of Paul Erdős, January 2013 527
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(I. Kátai); MR 40#5559; Zbl. 188,81.

1969.09 On the irrationality of certain series, Math. Student 36 (1968),
222–226, 1969; MR 41#6787; Zbl. 198,67.

1969.10 On the number of complete subgraphs and circuits contained in
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1972.04 Erdős és Hajnal egy problémájáról (On a certain problem of Erdős
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1974.28 Remarks on some problems in number theory, Papers presented at
the Fifth Balkan Mathematical Congress (Belgrade, 1974), Math.
Balkanica 4 (1974), 197–202; MR 55#2715; Zbl. 313.10045.

1974.29 Some distribution problems concerning the divisors of integers,
Acta Arith. 26 (1974/75), 175–188 (R. R. Hall); MR 50#7070;
Zbl. 292.10027 and 272.10021.

1974.30 Some matching theorems (in Russian), Teor. Graf. Pokryt. Ukladki
Turniry, pp. 7–11, 1974; Zbl. 289.05124.

1974.31 Some new applications of probability methods to combinatorial
analysis and graph theory, Proceedings of the Fifth Southeast-
ern Conference on Combinatorics, Graph Theory and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1974), pp. 39–51,
Congress. Numer. X, Utilitas Math., Winnipeg, Man., 1974; MR
51#275; Zbl. 312.05126.

1974.32 Some problems in graph theory, Hypergraph Seminar (Proc. First
Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated
to Arnold Ross), Lecture Notes in Math., 411, pp. 187–190,
Springer, Berlin, 1974; MR 52#193; Zbl. 297.05133.

1974.33 Some problems on random intervals and annihilating particles,
Ann. Probability 2 (1974), 828–839 (P. Ney); MR 51#9270; Zbl.
297.60052.

1974.34 Some remarks on set theory, XI., Collection of articles dedicated
to Andrzej Mostowski on the occasion of his sixtieth birthday, III.,
Fund. Math. 81 (1974), 261–265 (A. Hajnal); MR 50#114; Zbl.
285.04002.

1974.35 The arithmetic function
∑
d|n log d/d, Collection of articles dedi-

cated to Stanislaw Golab on his 70th birthday, II., Demonstratio
Math. 6 (1973), 575–579, 1974 (S. K. Zaremba); MR 50#4513;
Zbl. 287.10005.

1974.36 The chromatic index of an infinite complete hypergraph: a partition
theorem, Hypergraph Seminar (Proc. First Working Sem., Ohio
State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross),
Lecture Notes in Math., 411, pp. 54–60, Springer, Berlin, 1974 (R.
Bonnet); MR 51#10145; Zbl. 311.05113.

1974.37 Unsolved and solved problems in set theory, Proceedings of the
Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ.
California, Berkeley, Calif., 1971), pp. 269–287, Amer. Math. Soc.,
Providence, R.I., 1974 (A. Hajnal); MR 50#9590; Zbl. 334.04003.

1974.38 Very slowly varying functions, Aequationes Math. 10 (1974), 1–9
(J. M. Ash; L. A. Rubel); MR 48#8698; Zbl. 273.26001.

1975.01 A non-normal box product, Infinite and finite sets (Colloq., Keszthely,
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day), Vol. I; Colloq. Math. Soc. János Bolyai, Vol. 10, pp. 515–527,
North-Holland, Amsterdam, 1975 (R. L. Graham); MR 51#10159;
Zbl. 324.05124.

1975.24 On set-systems having large chromatic number and not containing
prescribed subsystems, Infinite and finite sets (Colloq., Keszthely,
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1976.17 Müntz’s theorem and rational approximation, J. Approximation
Theory 17 (1976) no. 4, 393–394 (A. R. Reddy); MR 54#13399;
Zbl. 352.41013.

1976.18 On a problem of Graham, Publ. Math. Debrecen 23 (1976) no. 1–2,
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és part́ıció- elmélet (Mathematical works of Paul Turán, I. Statisti-
cal group theory and theory of partitio numerorum, in Hungarian),
Mat. Lapok 25 (1974), 229–238, 1977 (M. Szalay); Zbl. 383.10031.

1978.01 A class of Hamiltonian regular graphs, J. Graph Theory 2 (1978)
no. 2, 129–135 (A. M. Hobbs); MR 58#5366; Zbl. 416.05055.

1978.02 A class of Ramsey-finite graphs, Proceedings of the Ninth Southeast-
ern Conference on Combinatorics, Graph Theory, and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Nu-
mer. XXI, pp. 171–180, Utilitas Math., Winnipeg, Man., 1978
(S. A. Burr; R. J. Faudree; R. H. Schelp); MR 80m:05081; Zbl.
432.05038.



550 List of Publications of Paul Erdős, January 2013
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(V. Chvátal); MR 81a:05017; Zbl. 374.90086.

1978.07 Combinatorial problems on subsets and their intersections, Stud-
ies in foundations and combinatorics, Advances in Math. Suppl.
Stud., 1, pp. 259–265, Academic Press, New York-London, 1978,
(M. Deza; N. M. Singhi); MR 80e:05006; Zbl. 434.05001.

1978.08 Combinatorial properties of systems of sets, J. Combinatorial
Theory Ser. A 24 (1978) no. 3, 308–313 (E. Szemerédi); MR
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Math., 60, pp. 299–309, Birkhäuser, Basel-Boston, Mass., 1981 (P.
Vértesi); MR 83k:41002; Zbl. 499.41004.

1981.19 On Turán’s theorem for sparse graphs, Combinatorica 1 (1981)
no. 4, 313–317 (M. Ajtai; J. Komlós; E. Szemerédi); MR 83d:05052;
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Paris, Sér. I Math. 292 (1981) no. 17, 765–768; MR 82g:10052;
Zbl. 466.10028.

1981.37 The arithmetic mean of the divisors of an integer, Analytic number
theory (Proc. Conf., Temple Univ., Phila., 1980), Lecture Notes in
Math., 899, pp. 197–220, Springer, Berlin-New York, 1981 (P. T.
Bateman; C. Pomerance; E. G. Straus); MR 84b:10066; Zbl.
478.10027.

1982.01 Another property of 239 and some related questions, Proceedings
of the Eleventh Manitoba Conference on Numerical Mathemat-
ics and Computing (Winnipeg, Man., 1981), Congr. Numer. 34
(1982), 243–257 (R. K. Guy; J. L. Selfridge); MR 84f:10023; Zbl.
536.10007.



562 List of Publications of Paul Erdős, January 2013
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II., Logic and algorithmic (Zürich, 1980), Monograph. Enseign.
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T. Sós); MR 88i:11011a; Zbl. 588.10056.

1985.26 Problems and results on chromatic numbers in finite and infinite
graphs, Graph theory with applications to algorithms and computer
science (Kalamazoo, Mich., 1984), pp. 201–213, Wiley-Intersci.
Publ., Wiley, New York, 1985; MR 87f:05068; Zbl. 573.05021.



List of Publications of Paul Erdős, January 2013 571
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Sárközy); MR 88c:11008; Zbl. 609.10034.

1987.15 On locally repeated values of certain arithmetic functions, III.,
Proc. Amer. Math. Soc. 101 (1987) no. 1, 1–7 (C. Pomerance; A.
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R. H. Schelp); MR 94h:05042; Zbl. 685.05025.

1988.09 Extremal theory and bipartite graph–tree Ramsey numbers, Pro-
ceedings of the First Japan Conference on Graph Theory and
Applications (Hakone, 1986), Discrete Math. 72 (1988) no. 1–
3, 103–112 (R. J. Faudree; C. C. Rousseau; R. H. Schelp); MR
90e:05043; Zbl. 659.05066.

1988.10 Graphs with unavoidable subgraphs with large degrees, J. Graph
Theory 12 (1988) no. 1, 17–27 (L. Caccetta; K. Vijayan); MR
89d:05105; Zbl. 659.05075.

1988.11 Has every Latin square of order n a partial Latin transversal of
size n − 1?, Amer. Math. Monthly 95 (1988) no. 5, 428–430 (D.
Hickerson; D. A. Norton; S. Stein); Zbl. 655.05018.

1988.12 How to define an irregular graph, College Math. J. 19 (1988) no. 1,
36–42 (G. Chartrand; O. R. Oellermann); CMP 931 654.

1988.13 How to make a graph bipartite, J. Combin. Theory Ser. B 45
(1988) no. 1, 86–98 (R. J. Faudree; J. Pach; J. H. Spencer); MR
89f:05134; Zbl. 729.05025.

1988.14 Intersection graphs for families of balls in Rn, European J. Combin.
9 (1988) no. 5, 501–505 (C. D. Godsil; S. G. Krantz; T. Parsons);
MR 89i:05225; Zbl. 659.05079.

1988.15 Isomorphic subgraphs in a graph, Combinatorics (Eger, 1987),
Colloq. Math. Soc. János Bolyai, 52, pp. 553–556, North-Holland,
Amsterdam, 1988 (J. Pach; L. Pyber); CMP 1 221 596; Zbl.
703.05044.

1988.16 k-path irregular graphs, Nineteenth Southeastern Conference on
Combinatorics, Graph Theory, and Computing (Baton Rouge, LA,
1988), Congr. Numer. 65 (1988), 201–210 (Y. Alavi; A. J. Boals;
G. Chartrand; O. R. Oellermann); MR 90c:05120; Zbl. 669.05046.



List of Publications of Paul Erdős, January 2013 577
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1988.29 Random walks on Zn2 , J. Multivariate Anal. 25 (1988) no. 1,
111–118 (R. W. Chen); MR 89d:60124; Zbl. 651.60072.
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pp. 467–478, Cambridge Univ. Press, Cambridge, 1990; MR
92f:11003; Zbl. 709.11003.

1990.30 Some of my old and new combinatorial problems, Paths, flows,
and VLSI-layout (Bonn, 1988), Algorithms Combin., 9, pp. 35–45,
Springer, Berlin, 1990; MR 91j:05001; Zbl. 734.05002.

1990.31 Subgraphs of minimal degree k, Discrete Math. 85 (1990) no. 1,
53–58 (R. J. Faudree; C. C. Rousseau; R. H. Schelp); MR
91i:05065; Zbl. 714.05033.



584 List of Publications of Paul Erdős, January 2013
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1992 (E. Győri; M. Simonovits); MR 94b:05104; Zbl. 785.05052.

1992.14 In memory of Tibor Gallai, Combinatorica 12 (1992) no. 4, 373–
374; MR 93m:01054b; Zbl. 760.01009.

1992.15 Obituary of my friend and coauthor Tibor Gallai, Geombinatorics
2 (1992) no. 1, 5–6 [corrections: 2 (1992) no. 2, 37]; CMP 1 208
443; Zbl. 842.01021 [corrections Zbl. 842.01022].

1992.16 On a problem of Tamás Varga, Bull. Soc. Math. France 120 (1992)
no. 4, 507–521 (M. Joó; I. Joó); MR 93m:11076; Zbl. 787.11002.

1992.17 On prime-additive numbers, Studia Sci. Math. Hungar. 27 (1992)
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Gunderson); MR 96e:05080; Zbl. 822.05036.

1995.07 Extremal problems in combinatorial geometry, Handbook of Com-
binatorics, Vol. 1, 2, pp. 809–874, Elsevier, Amsterdam, 1995 (G.
B. Purdy); MR 96m:52025; Zbl. 852.52009.

1995.08 Independence of solution sets and minimal asymptotic bases, Acta
Arith. 69 (1995) no. 3, 243–258 (M. B. Nathanson; P. Tetali); MR
96e:11014; Zbl. 828.11006.

1995.09 Intervertex distances in convex polygons, ARIDAM VI and VII
(New Brunswick, NJ, 1991/1992), Discrete Appl. Math. 60 (1995)
no. 1–3, 149–158 (P. C. Fishburn); MR 96f:52025; Zbl. 831.52009.

1995.10 Monochromatic and zero-sum sets of nondecreasing diameter,
Discrete Math. 137 (1995) no. 1–3, 19–34 (A. Bialostocki; H.
Lefmann); MR 96e:05172; Zbl. 822.05046.

1995.11 Multiplicities of interpoint distances in finite planar sets, ARIDAM
VI and VII (New Brunswick, NJ, 1991/1992), Discrete Appl. Math.
60 (1995) no. 1–3, 141–147 (P. C. Fishburn); MR 96f:52024; Zbl.
831.52008.

1995.12 On practical partitions, Collect. Math. 46 (1995) no. 1–2, 57–76
(J.-L. Nicolas); MR 97b:11122; Zbl. 842.11035.

1995.13 On product representations of powers, I., European J. Combin. 16
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no. 1–3, 263–268 (A. Gyárfás; T. �Luczak); MR 97a:05121; Zbl.
854.05061.

1996.10 Hypercube subgraphs with minimal detours, J. Graph Theory
23 (1996) no. 2, 119–128 (P. Hamburger; R. E. Pippert; W. D.
Weakley); MR 98g:05052; Zbl. 857.05027.

1996.11 Large subgraphs of minimal density or degree, J. Combin. Math.
Combin. Comput. 22 (1996), 87–96 (R. J. Faudree; A. Jagota;
T. �Luczak); MR 97f:05093; Zbl. 865.05052.

1996.12 Maximum planar sets that determine k distances, Discrete Math.
160 (1996) no. 1–3, 115–125 (P. C. Fishburn); MR 97m:05016;
Zbl. 868.52007.

1996.13 On a class of aperiodic sum-free sets, Math. Proc. Cambridge
Philos. Soc. 120 (1996) no. 1, 1–5 (N. J. Calkin); MR 97b:11030;
Zbl. 866.11019.

1996.14 On k-saturated graphs with restrictions on the degrees, J. Graph
Theory 23 (1996) no. 1, 1–20 (N. Alon; R. Holzman; M. Krivele-
vich); MR 97e:05104; Zbl. 857.05051.

1996.15 On Pisot numbers, Ann. Univ. Sci. Budapest. Eötvös Sect. Math.
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MR 98g:60146; Zbl. 909.60069.



List of Publications of Paul Erdős, January 2013 599
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and A. Thomason, ets., pp. 1–10, Cambridge Univ. Press, Cam-
bridge, 1997; CMP 1 476 428; Zbl. 874.11003.

1997.25 The factor-difference set of integers, Acta Arith. 79 (1997) no. 4,
353–359 (M. Rosenfeld); MR 98e:11025; Zbl. 896.11008.

1997.26 The size of the largest bipartite subgraphs, Discrete Math. 177
(1997) no. 1–3, 267–271 (A. Gyárfás; Y. Kohayakawa); MR
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factors, Paul Erdős memorial collection, Discrete Math. 200 (1999)
no. 1–3, 149–164 (C. Mauduit; A. Sárközy); MR 2000d:11103;Zbl.
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memorial collection, Discrete Math. 200 (1999) no. 1–3, 165–179
(P. P. Pálfy); MR 2000e:20037; Zbl. 939.11004.

1999.16 Popular distances in 3-space, Paul Erdős memorial collection,
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Postscript

It is fitting that Paul Erdős himself should have the last word. As is
amply illustrated in this collection, Paul’s profound influence on so many
mathematicians and fields of mathematics through his prolific research and
incessant traveling is destined to leave a legacy that may never be equalled.
Here then are some very special lines written by Paul for the Postscript of
these volumes:

“Determine or estimate as well as you can the number of solutions in
positive integers of

1

x1
+

1

x2
+ · · · +

1

xk
= 1, x1 < x2 < · · ·xk.

Can the squares be decomposed as the finite union of sum-free sets (or Sidon)
sequences? Apologies if this is trivial or trivially false. Let x1, . . . , xn, be n
points in the plane with at most t on a line (t fixed, n large). f(n; t) is defined
to be size of the largest subset with no three on a line. We can only prove

c2

√
n

t
< f(n; t) <

c1n

t
.

The lower bound is easy by the greedy algorithm. Füredi showed

f(n; t) > g(n)

√
n

t

where g(n) → ∞ slowly. What is the truth here?

(Erdős–Turán.) Let pn+1 − pn = dn. Prove that for infinitely many n,

dn > dn+1 > dn+2 or dn < dn+1 < dn+2.

This surely holds since if not, then there is an n for which

dn ≥ dn+1, dn+1 ≤ dn+2, dn+2 ≥ dn+3, . . . , etc.
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I offer $100 for a proof and $25,000 for a counterexample. This of course
is a joke since the conjecture surely holds.

If I live I hope to have some more conjectures and even proofs. Will there
be a celebration for my 90th birthday or only a meeting for my memory. May
my theorems and problems live forever.

My mother was very glad to read the many eulogies written for my 50th
birthday. I am only sorry that my mother and father are not reading this
volume (if you believe in survival after death then you can believe that
perhaps they are reading it). Let me add another problem: In 1934 Turán and
I proved (Amer. Math, Monthly 1934): Let a1 < a2 < . . . < an be any set of
n integers. Then the number of distinct prime factors of

∏
1≤i<j≤n

(ai + aj) is
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greater than c logn. It does not have to be greater than cn
logn (trivially). Try

to improve both the upper and lower bounds. I offer 500 dollars for this.”
*****

The preceding lines are some of the last lines written by Paul Erdős. They
not only represent a fitting conclusion to these volumes but they capture
Paul’s style and his vision of life as a scholar, a style which influenced us all
from around the world, a world which will not be the same without him.
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