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Foreword

The combination of mathematical theory, numerical simulation and applications is the core mission of the
Wolfgang Pauli Institute. As a private institution run by tenured university professors the WPI renders a
service to the community by implementing and co-funding “thematic programmes”: the goal is that several
international leading experts in a field of research with “interdisciplinary” aspects join forces and organize
workshops and conferences around a theme. “Financial mathematics” is one of these fields and when Peter
Laurence, my former colleague at Courant Institute, came up with the idea of a programme together with
Valery Kholodnyi and Fred Benth, the approval of the proposal by the WPI general assembly (consisting
of ERC grant holders, START and Wittgenstein awardees, etc.) and the “ok” of the WPI International
Scientific Board (consisting of scientists like Pierre-Louis Lions) were immediate. Due to its tremendous
success this programme is continuously prolonged and I am happy and grateful that Fred, Peter and Valery
keep on going.

Vienna, Austria Norbert Mauser
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Preface

Energy is of fundamental importance in the modern society. From 2010 the Wolfgang Pauli Institute (WPI)
in Vienna has organized a special thematic program called “Financial engineering for energy asset manage-
ment and hedging in commodity markets (ENERGY-10)”, which has had its focus on risk management in
the energy sector. This volume collects contributions from some of the active participants in this thematic
program, showing the research frontiers of this exciting branch of financial mathematics and stochastics.

To give some perspective, the “thematic programs” were launched by Norbert Mauser, the Director of
WPI. Norbert invited one of us (Peter) to submit a proposal for such a thematic program in 2009. Peter
invited Fred and Valery to join him as co-organizers of the special program, which kicked-off in January
2010. The program has since then organized two conferences on energy finance (one in 2011 and one in
2012) as well as several mini-workshops held by leading experts in their respective specialized fields.

The thematic programs are special in that registration is free, participants thereby obtaining access to
talks from leading experts who also give presentations in expensive executive conferences, with triple-digit
registration fees. The atmosphere is very friendly and congenial. Many new collaborations and friendships
are born in such an atmosphere, and this was indeed very much the spirit in which the thematic programs
were launched by Norbert, whom we thank for giving us the opportunity to organize this highly successful
initiative.

In this volume we have collected contributions from researchers who have given mini-courses or have
presented talks at the first conference organized in the program taking place at the WPI in July 2011.
Some chapters serve as lecture notes to mini-workshops, while other chapters reflect presentations from
the conference. The conference was co-sponsored by the Centre of Mathematics for Applications at the
University of Oslo and by VERBUND Trading, along with the generous support of WPI.

We would like to mention that a new thematic program called “Mathematical finance: Applications
to energy markets, risk management and pricing of derivatives (FINANCE-12)” started in 2012 and is
organized by us together with Almut Veraart at Imperial College.

We wish to thank Hannah Bracken, Catriona Byrne, Brian Foster and Nicholas Philipson for giving us
the opportunity to publish this volume at Springer Verlag. Furthermore, we are grateful for all the technical
support and assistance from the Springer group in New York. Fred Espen Benth greatly acknowledges the
financial support from the project “EMMOS” (Energy Markets: Modelling, Optimization and Simulation)
funded by the Norwegian Research Council under the Evita program. He also thanks his wife Jūratė and
daughter Julia for all the love and fun. Valery A. Kholodnyi thanks his wife Larisa and his sons Nikita and
Ilya for their love, patience and care. Peter Laurence thanks his wife Magdalena for her sweet companion-
ship and support.

We have separated the proceedings into three main parts: surveys, energy spot modelling and pricing of
derivatives. Part I consists of four chapters:
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viii Preface

• René Aı̈d presents an in-depth and extensive survey on optimal investments in electricity generation.
The chapter provides the reader with an overview on the existing literature on investment decisions in
the context of power production. This chapter serves as lecture notes from the two-day mini-workshop
given by René Aı̈d at the WPI in January 2012.

• The very first mini-workshop in this thematic program was given at WPI by René Carmona in January
2010. In the chapter written together with Michael Coulon, structural models in energy markets are
presented. The authors provide a well-written and entertaining survey on commodity markets and the
challenges in modelling prices in these. Structural stochastic models are introduced and analysed, and
details on analytic forward pricing are presented.

• In energy markets the price dynamics is typically of a non-Gaussian nature, and valuation of derivatives
calls for methods going beyond the Black and Scholes formula. In January 2012 Ernst Eberlein presented
a mini-course on Fourier-based methods for pricing options in markets where the price dynamics is
driven by jump processes. This theory is extensively developed in traditional financial markets as fixed
income and credit. The chapter by Ernst Eberlein serves as the lecture notes from his mini-workshop on
the topic and provides the reader with an extensive introduction and analysis of these methods, full of
details and examples written in an engaging way. This theory is highly applicable for energy markets.

• A typical feature of energy markets is the abundance of exotic derivatives much more sophisticated
in their specifications than more traditional derivatives found in other markets. Many of these energy
derivatives go under the umbrella of so-called swing options. Jukka Lempa presents a survey on the
various mathematical approaches to study the problem of pricing and optimal execution of such options.
It involves various techniques collected from stochastic control theory, presented in a highly accessible
way by the author.

The second part of this volume consists of three chapters on the basic but challenging problem of energy
spot price modelling:

• Joanna Janczura and Rafal Weron present a general class of Markov-regime-switching model for elec-
tricity prices and discuss the problem of inference. An extensive empirical study is presented for spot
prices collected at two electricity exchanges.

• Almut and Luitgard Veraart propose a new class of models for the dynamics of hourly spot prices of
electricity. The so-called Lévy semistationary models are extended to a multivariate setting, and an
extensive empirical study is performed.

• Valery A. Kholodnyi presents and further extends the class of his non-Markovian spot price processes
to allow for both positive and negative prices, as well as spikes in both the upward and downward
directions. The forward price dynamics is analysed within this class of models as well. This chapter
serves also as lecture notes for parts of the two-day mini-workshop given by the author at the WPI in
October 2011.

The last part of this volume contains four chapters on problems related to energy derivatives.

• Álvaro Cartea and Pablo Villaplana provide a detailed analysis on the main determinants of the risk
premium and the forward price evolution in electricity markets. As the classical spot-forward relation-
ship breaks down in electricity markets due to non-storability, these are fundamental issues in derivative
pricing in power markets. The authors base their analysis on data from European power markets.

• Thilo Meyer-Brandis and Michael Morgan propose a bivariate spot model for electricity and gas using
dynamic Lévy copulas to capture the dependency structure. They have spark spread option pricing in
mind and derive analytic pricing expressions based on Fourier transform methods, as described by Ernst
Eberlein in Chap. 3. Data from the UK is used in an empirical case study.

• Peter Laurence, Ricardo Pignol and Esteban Tabak present a novel approach to density estimation taking
constraints into account. The method is generally applicable to a huge variety of problems in science,
but here examples from recovering the density from spread option prices are considered.



Preface ix

• Fred Espen Benth, Richard Biegler-König and Rüdiger Kiesel analyse the influence of forward-looking
information in electricity markets on call and put options on forward contracts. The mathematical anal-
ysis is based on the theory for enlargement of filtrations, and stylized examples are given to illustrate
the findings.

We hope that the reader will enjoy the various chapters as much as we have enjoyed listening to, dis-
cussing with and reading the contributions from the authors.

Oslo, Norway Fred Espen Benth
Vienna, Austria Valery A. Kholodnyi
Rome, Italy Peter Laurence
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René Carmona and Michael Coulon
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Generalities on the Commodity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Trading Commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Spot and Forward Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 Convenience Yield Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.4 Dynamic Model for the Forward Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.5 Rationale for PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.6 New Commodity Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



xii Contents

2.3 What Is So Special About Electricity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 More Data Peculiarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.2 Modelling the Demand: The Load/Temperature Relationship . . . . . . . . . . . . . . . . 57
2.3.3 Reduced-Form Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 A First Structural Model for Spot Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Building Blocks of Structural Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.1 Price Relationship with Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.2 Price Relationship with Capacity or Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.3 Price Relationship with a Single Marginal Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4.4 Price Relationship with Multiple Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Forward Pricing in a Structural Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5.1 Single Fuel Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.5.2 Multi-Fuel Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.3 Parameter Estimation and Forward Curve Calibration . . . . . . . . . . . . . . . . . . . . . . 77

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Fourier-Based Valuation Methods in Mathematical Finance . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Ernst Eberlein
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 The Driving Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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Chapter 1
A Review of Optimal Investment Rules in Electricity
Generation

René Aı̈d

Abstract This paper provides an introduction to optimal investment rules in electricity generation. It
attempts to bring together methods commonly used in practice to assess electricity generation investments
as well as the sophisticated tools developed by mathematical economists in the last 30 years. It begins with
a description of the fundamentals of the problem (economic context of the energy and electricity sectors,
the technical constraints and cost structures of generation technologies). In a second part it recalls the in-
vestment rule based on the positivity of the net present value (NPV) together with the standard tools of
corporate finance needed to perform this evaluation (CAPM, WACC). This list is completed with the more
specific tool of levelised cost of electricity (LCOE) used by electrical utilities and policymakers. The third
part of the paper shows how the advances made in the last quarter century by economic theory mainly
under the real options trademark challenged the standard investment rule. Using intensively stochastic con-
trol theory and its connection with partial differential equations, real options theory was able to assess the
effects of key drivers of investment decision: uncertainty, time to build, competitive pressure and strategic
interactions. The paper presents models that provided a breakthrough in the analysis of the impact of each
of these drivers on investment decision rules. Despite this interest, the conclusion points out remaining
obstacles for the adoption of these methods by financial divisions, mainly but not only their high level of
technicity. Research guidelines that could help fill this gap are suggested.

During their monopoly period, electric utilities developed computational economic models to assess
their investments in generation. Those models relied on operations research methods (stochastic dynamic
programming, linear programming, mixed-integer programming) together with an important effort in time-
series analysis for long-term demand forecasting. The key words were “optimisation” and “planning”.
A perfect example of this approach can be found in the International Atomic Energy Agency expansion
planning course (see [77]). In the early 1980s with Chile setting the first example, the idea that markets can
do a better job for electricity generation than monopolies began to spread around the world. Now 30 years
later, competition for market shares, trading, risk management, electricity price modelling and even initial
public offering (IPO) have become common in the power business. But the economic context is far from
what was expected from liberalisation. Electricity prices are at their highest peak ever driven by expensive
and volatile oil prices. Long-run resource adequacy is a concern for each European state and last but not
least, global financial crises made the future more uncertain than ever. All those factors cast some doubt on
the ability of former expansion planning methods to offer a suitable answer to cope with this new context
of uncertainty and competition. Moreover, from a regulation point of view, many concerns were raised that
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4 René Aı̈d

the electricity market may not be able to provide the right signals at the right time to foster investment
in electricity generation to ensure the desired level of reliability (see [85] for an introduction and some
answers to the question). The increasingly complex situation of electricity markets led to a new interest in
asset valuation methods and optimal investment rules.

Indeed, with electricity market liberalisation and trading activities development, it was no time before
financial mathematics methods were applied to electricity generation asset valuation (see [112]) and real
options methods were promoted (see Sect. 1.2.3 for a definition). But two observations led us to undertake
this paper. First, at the recent exception known to the author of [54], all applications to real options for
electricity generation assets valued the flexibility of the power plant and not the flexibility of the investment
decision itself. The former corresponds to standard—but complex—net present value (NPV) computation.
The latter corresponds to the core of real options investment theory. Second, despite more than 30 years
of development, real options investment still stands at the doorstep of financial divisions in general and in
electrical firms in particular [19]. One reason that could explain why electricity generation assets are still
evaluated using simple spreadsheets (see [144] for examples) is due to the difficulties of embracing both
the complexity of power market microstructure, plant characteristics, constraints and cost structure and the
sophisticated valuation methods developed in the last decades based on financial mathematics.

This paper is an attempt to fill this gap and to provide a bridge between these two worlds to help both
engineering economists and academic researchers to get the basics. It presents the main elements needed
to enter in the field of optimal investment rules for electricity generation assets. A large body of textbooks
on this subject already exists. But they focus on the power system aspects of the problem (see [88, 144] for
example) and use standard economic and financial theory for evaluation purposes [NPV rule and weighted
average cost of capital (WACC)]. The economic difficulties raised by competition, market imperfection,
risk management issues and strategic interactions do not benefit from the important research performed in
the last decades. This work gives special attention to the progress made by the theory of investment under
uncertainty. It covers the results developed under the real options trademark and its related fields. They are
based on the application of the various forms of stochastic control theory to toy models representing a large
variety of market situations. This approach led to a deep understanding of optimal investment dynamics.

This work is divided in the following way. Section 1.1 covers the economic context of the energy sector
(Sect. 1.1.1), the technological aspects of electricity generation (Sect. 1.1.2), electricity market fundamen-
tals (Sect. 1.1.3) and the investment problems faced by decision-makers (Sect. 1.1.4). The decision-maker’s
investment toolbox is then addressed in Sect. 1.2. It presents the NPV rule (Sect. 1.2.1) and the real options
rule (Sect. 1.2.3). It also explains what levelised cost of electricity (LCOE) means and how it is used
by electric utilities and regulators (Sect. 1.2.2). Since all these tools require long-term prices to perform
their valuation, Sect. 1.2.4 presents the main market modelling methodology used to provide long-term
insight into electricity prices. Sect. 1.3 presents the main economic models based on stochastic control
methods that allowed the analysis of key drivers of investment in production assets. It covers the effects
of uncertainty (Sect. 1.3.1), time to build (Sect. 1.3.2), competition (Sect. 1.3.3) and strategic interactions
(Sect. 1.3.4). In most of those examples, the use of continuous-time stochastic economic models makes
it possible for each of these drivers to deduce an explicit form for the optimal investment rule, allowing
in-depth comparative statics. They show that the NPV rule as well as the real options rule are not system-
atically the right rules to apply. Section 1.4 uses this remark to draw conclusions on what investment rules
should be applied to electricity generation and to propose some research prospects to help filling the gap
between investment theory and practices.

1.1 The Underpinnings of the Problem

Investing in electricity generation has always been a challenge. It combines a substantial set of difficulties.
The non-storability of electricity compels production to be adjusted on a real-time basis to consumption.
This would be easy without the high level of uncertainties involved in both production (outages and inflows)
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and consumption (demand has a short-term weather dependency and a medium-term economic growth
dependency). Moreover it is necessary to anticipate demand on a long-term basis to be able to satisfy the
demand at all times, due to the long time it takes to build power plants. Electricity producers must choose
amongst a wide range of very different technologies. They know that some plants are to be used nearly
every hour of the year while others would be used only to produce during a small number of peak hours per
year, making their return on investment very uncertain. Electricity market liberalisation has added com-
petitive pressure to this already complex situation. Power producers are now competing for production
and retail market shares. This section is devoted to these underlying aspects of the problem of investing
in electricity generation. Since there is a growing dependency between the electricity sector, the energy
sector and the global economy, Sect. 1.1.1 presents the main drivers that are shaping electricity generation
investments. Sections 1.1.2 and 1.1.3 provide a description of the main available technologies (cost struc-
ture and operational constraints) and of the microstructure of electricity markets. Then Sect. 1.1.4 gives a
non-exhaustive list of decisions a utility must take when investing in electricity generation. Some historical
and literature comments are given in Sect. 1.1.5.

1.1.1 Economic Environment

Five drivers are shaping energy’s future: rising demand, the growing scarcity of fossil energy sources, the
global warming risk, environmental and energy regulations and the financial crisis.

According to the [82] New Policies Scenario,1 world electricity demand is expected to grow on average
by 2 % per year between 2008 and 2035, from 16,819 to 30,300 TWh. This growth is mainly driven by non-
OECD countries and in particular by China, India and Brazil. To meet global demand, production capacity
should be increased by 5.9 TW; it is now 3.6 TW. In monetary terms, the needed investments correspond
to 16.6 trillion USD2009. For the same period in time, if we focus on Europe,2 the numbers are still
impressive. Electricity demand should increase by 0.6 % on average per year from 3,339 to 3,938 TWh.
Because of old plant retirements, 800 GW of new installed capacity should be added. This corresponds
to a financial investment of 1,712 billion USD2009. Those numbers correspond to a huge industrial and
financial effort. But that is not all. According to World Energy Outlook 2010 scenarios for the same period
of time, European Union electricity demand could reach 3,938 TWh (New Policies Scenario), but it could
also be 3,771 TWh (450 Scenario) or even 4,094 TWh (Current Policies Scenario). In the 450 Scenario,
900 GW of new production capacity should be added. This huge difference with the level forecasted in the
New Policies Scenario illustrates the importance of demand uncertainty faced by the electricity sector. And
since power producers are no longer a monopoly now, they cannot hope to transfer any over-investment
cost to the consumer. Mistakes can now lead to bankruptcies.

IEA scenarios represent the various efforts nations should make in order to reach the carbon emission
level that would help avoid the possible dramatic outcomes of global warming. According to the [76] report,
if nations were to confine the Earth’s temperature increase to below 2◦C, greenhouse gas concentration
should be kept under 450 parts per million of CO2 equivalent. Sir Nicholas Stern assessed global warming
economic consequences in the Stern Review [138]. The risks inherent to global warming are one important
driver of the development of renewable and non-emissive energy sources.

The growing demand for fossil energies (oil, gas and coal) has already propelled oil and coal prices and
volatilities to unseen levels. From 2003 to 2007, crude prices rose fourfold ($35–$120 /bbl) and coal prices

1 New Policies Scenario is defined as the expected energy demand and capacity growth when current environmental policies
and announced regulations are taken into account. See [82, p. 46].
2 European Union: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovak Re-
public, Slovenia, Spain, Sweden and United Kingdom.
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(CIF ARA API2) sevenfold ($30–$200 /Mt). Figure 1.1 illustrates this extreme volatility in the period from
March 2006 to March 2011 showing the new price rise after the 2008 crunch sent oil and coal prices and
volatilities to unprecedented heights. This inflation finds its roots both in the belief that oil production
will reach its global peak in the very near future3 and in the current saturation of installed oil production
capacities by emerging countries growing needs. An analysis by [32, Fig. 10] shows that when crude oil
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Fig. 1.1 Oil WTI and Coal API 2 CIF ARA prices from March 2006 to March 2011

prices were reaching levels of $100 /bbl and above, non-OPEC less South Arabia spare production capacity
was close to zero.

Governments are taking action to mitigate their dependencies on fossil energy and the effects of global
warming. Their policies take the form of an increasing environmental and energy regulation pressure. But
the general trend is to avoid outdated expansion planning methods and to prefer market mechanisms. In the
case of Europe, during the period from 1992 (European electricity market creation) to 2010, every year has
seen a new regulation policy that had a direct impact on electricity firms, making regulation an uncertainty
factor for electric utilities.

Finally, the financial crisis started in mid-2008 and continues to this day with the sovereign debt crisis
had a direct impact on the electricity industry through an important decrease in industrial consumption.
According to the [81, Chap. 3, p. 156] World Energy Outlook, electricity consumption of OECD countries
fell by 2.6 % in the last quarter of 2008 on a year-to-year basis. To give a more striking image of the impact
of the crisis, one should have in mind that Germany’s consumption fell by 6.5 % in Q2-2009. Moreover, the
possibility of an impending recession in Europe casts doubt on expected increases in electric consumption,
in particular in the industrial sector.

3 Or even has already passed it. According to World Energy Outlook 2010 (p. 48), world oil production is to stay at 68 mb/d
for the next 25 years.



1 A Review of Optimal Investment Rules in Electricity Generation 7

1.1.2 Electricity Generation Technologies

A wide range of available technologies to produce power exists. They can be sorted into two broad families:
thermal and non-thermal technologies. Thermal technologies burn a fuel to heat a fluid that spins a turbine,
producing electricity. They cover:

– Nuclear: boiling water reactor (BWR), advanced boiling water reactor (ABWR), pressurised water
reactor (PWR), European pressurised reactor (EPR)

– Gas: standard or combined cycles
– Coal: conventional, advanced, gasification, with or without carbon capture storage
– Diesel: oil
– Biomass-fired plants

Non-thermal plants refer to technologies using a natural mechanical source of energy:

– Wind: on and offshore farms
– Solar: photovoltaic or concentrated solar power
– Gravitational energy from flooding water, tides, etc

Table 1.1 Power generation technologies cost structure

Investment O&M TTB Lifetime Load factor Efficiency
(USD09/kW) (USD09/kW/year) (years) (years) (%) (%)

Gas 400–800 20–40 1–2 20–30 – 0.5
Coal 1,000–1,500 30–60 4–6 40 – 0.3
Nuclear 1,000–2,500 45–100 5–9 40–60 85 0.3
Wind onshore 1,000–2,000 15–30 1 20–40 15–35 0.3
Wind offshore 1,500–2,500 40–60 1–2 20–40 35–45 –
Solar PV 2,700–10,000 10–50 1–3 20–40 9–25 –

Source: International Energy Agency [79, 83]
Investment: overnight cost
O&M operation and maintenance, TTB time to build

When it comes to investment, a decision-maker faces a particular power plant choice with all its detailed
specifications. But, for economic modelling purposes, it is not necessary. It is more useful to have in mind
an order of magnitude for the cost structures of those different technologies and a broad idea of their
technical characteristics. As hydrogeneration project cost highly depends on the topology of the region
where it is to be built, we limit our scope to thermal power plants, wind farms and photovoltaic. Table 1.1
provides their cost structure. The investment cost is only the upfront cash flow a utility has to pay to
get the power plant built. It is sometimes referred to as overnight costs, since it is what one would have
to pay if the power plant could be built in one night. Operation and maintenance costs (O&M) refer to
employees’ salaries and expenses required to maintain the plant in reliable production conditions. Lifetime
is the given expected lifetime of the power plant provided by the builder. The load factor corresponds to
the fact that a power plant is rarely expected to produce at its maximum installed capacity all the time.
It is the ratio that should be applied to the installed capacity to get its expected production capacity.4 For
instance, even though onshore wind farms have a relatively low investment cost compared to standard coal-
fired plants, their load factor is much lower. Efficiency corresponds to the power plant’s thermodynamic

4 Not to be mistaken for capacity factor.
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efficiency. Given one unit of energy in heat form, efficiency tells us how much electric energy will be
obtained. Gas-fired plants are the most efficient. Their efficiency is even expected to increase to 60 % in the
near future.

As it appears, investment costs exhibit a great variance both inside each family and from one family to
another. At the extremes, the investment costs of a photovoltaic farm can be ten times greater than that of
a simple gas turbine. Finally, attention should be paid to the lifetime expectancies of electricity generation
plants. Coal and nuclear plants and even wind farms are expected to last for 40 years up and running.
For nuclear plants, a life expectancy of 60 years has already been admitted in the USA. From an economic
point of view, this long lifetime implies a non-negligible risk of experiencing a downturn period where
fixed costs are no longer recovered. The British Energy bankruptcy in 2002 provides a concrete example of
this situation.

Power production technologies highly differ in cost structure as well as in the service they can provide
for load-following purposes and CO2 emissions. Due to the increase in non-controllable and highly variable
wind and solar electricity production, flexibility is presently a major concern when assessing production
technologies. Table 1.2 gives a few characteristics of thermal production plants. The start-up time represents
the time needed to get the power plant from the cold to the hot state. Then, to reach its full available
capacity, one has to deal with the ramp-up rate. For instance, gas turbines can increase their output at a rate
of 20 % of their maximum capacity per minute. When a power plant is shut down, it cannot start up again
immediately. It has to be cooled down and maintained a certain time still before it can be used again. Lastly,
emission rates highly differ between the most emissive technology (coal-fired plants without sequestration,
1 t/MWh) and no-emission thermal technology (nuclear). Regarding flexibility, it should be noticed that
combined cycle gas turbines can rapidly increase their production but the warm-up time is much longer
than for standard gas turbines.

Table 1.2 Power generation technologies characteristics

Start-up time Ramp rate Min stopping time CO2 emission
(min) (%/min) (h) (t/MWh)

Gas turbine 5–10 20 3–8 0.6
Gas combined cycle 30–60 5–10 3–8 0.35
Coal – 4–8 1
Diesel 1–5 40 2–6
Nuclear 1–5 24 0

Source: International Energy Agency [79, 83] and Vuorinen [144]

1.1.3 Electricity Markets

Investors in electricity production can hope to get cash flows from four markets: the spot market, the
forward market, the balancing market and the retail market. The spot market corresponds in general to
the day-ahead hourly market. It is commonly the main market on which power plants are being evaluated.
In almost all countries where it has reached its full development, it presents the same characteristics: strong
patterns of daily, weekly seasonal and yearly use driven by weather conditions and the overall economic
activity, spikes and sometimes negative prices. For a deeper description of electricity markets, the reader
can refer to classic textbooks such as [35, 61] or to [62].

The forward market is to be considered a hedging tool. But due to the non-storability of electricity, it
presents a particular structure exhibiting sparseness and delivery periods. To avoid dilution of liquidity,
only a few forward (or futures) contracts are generally available on the market. For instance at EEX, the
German power exchange, the calendars for the next 6 years, the next eleven quarters, the next 9 months and
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the next 4 weeks, at 1 day in time are opened. Each contract is quoted in two forms: baseload (delivery each
hour of the given delivery period of the contract) or peak-load (delivery from Monday to Friday from 8
a.m. to 8 p.m.). But only the next three calendars, the next eight quarters and the next 5 months are being
exchanged. For a description of the electricity futures market, the reader is referred to [17].

The balancing market is specific to electricity (and gas) markets due to the need for the system operator
to adjust production to consumption on a real-time basis. This market microstructure highly depends on
the country and on the regulation. But its general idea is to allow the system operator to buy the lacking
production from load-serving entities (possibly producers but also consumers) or to sell the excess output.
Balancing markets produce two kinds of prices: prices to increase production and prices to decrease pro-
duction. They serve a second purpose: they provide indexes used to assess imbalanced energy bills for each
load-serving entity.

The retail market encompasses both the industrial and domestic consumer markets. Prices follow a much
smoother pattern even when they are not subject to government regulation. For an overview of the relation-
ship between retail and wholesale market prices, the reader can refer to the description of the Scandinavian
market provided in [143].

1.1.4 Decision-Maker’s Problem

Power companies have different investment opportunities depending on their size. There is little compari-
son between the possibilities offered to a small entrant in the retail market and a historical player owning a
large portion of the installed production capacities. Due to more difficult access to capital markets, a small
entrant is confined to a set of production investment possibilities involving wind farms, gas turbines and
small hydrogeneration. In the opposite case, the set of opportunities for a large player includes all avail-
able technologies. Nevertheless, decision-makers in both kinds of companies try to answer the following
questions:

– Should I invest in electricity production or should I supply my client with the wholesale markets?
– In what kind of production asset should I invest?
– How much of each kind should I own?
– Should I do it now or should I wait?

These questions boil down to a single one “How should I choose between the different available investment
projects?”

In a large electric utility, each year brings an important set of new investment opportunities. One may
naturally think of building of new production capacities. But this also concerns existing power plants for
which important investment decisions can be taken. Replacing parts of the turbine or of any main parts
that could have a direct impact on production efficiency can still involve substantial upfront costs. In the
event of a recession or economic downturn, decision-makers may have to consider closing a power plant
before the end of its lifetime. Intermediate decisions can involve mothballing the plant, i.e. closing but not
dismantling it, so it can be used again in several years when times are better.

And beyond choosing amongst a set of mutually exclusive possibilities, decision-makers also face the
problem of deciding which portfolio would be the best. Would a combination of a little hydrogeneration,
coal plants, wind generation and solar photovoltaic be a better option than investing everything in just
one technology? Is it possible to consider that there is a portfolio effect in mixing the different available
technologies? Or should they consider buying or selling the production shortfall or surplus from or to the
market?

The answer to these questions heavily relies on the objective the company is assigned. Since most
electric utilities are now quoted, their goal is no longer to maximise social surplus as they used to do during
their monopoly period but to maximise the value of the firm. Investment valuation in electricity generation
should be done with this background in mind.
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1.1.5 Commented References

A global assessment of 30 years of worldwide liberalisation of the electricity industry can be found in
[132]. This assessment does not provide economic evaluation of benefits and costs of deregulation but
gives qualitative issues involved in the different countries where deregulation has been implemented. Bunn
[30] conducted an evaluation of electricity market reforms in England and Wales. A more recent one for the
electricity market reform process can be found in [131]. A reader interested in the evolution of the invest-
ment problem for electric utilities can look at the author’s paper [4]. Those interested in global warming
and its economic implications can spend a little time reading the Stern’s Review [138] or Houghton’s [72]
beautiful monograph with a large set of photographs illustrating the dramatic effects of natural disasters.
Information on power plants’ costs and technical performances is hard to come by. But one can rely on re-
ports provided by the International Energy Agency [78–80, 82, 83] and the Nuclear Energy Agency [110]
for a broad overview of the relative costs of production technologies. Kaplan [87] special study made upon
the US Congress’s request also provides detailed information on power plant cost structures. The Danish
Energy Agency has compiled and made public a comprehensive, up-to-date, detailed report on financial
and technical power plants data [38]. Finding detailed power plant characteristics for a whole country is
a rare event enough to mention that the Commission for Energy Regulation together with the Northern
Ireland Authority for Utility Regulation has published a detailed database of all the power plant character-
istics in Ireland for a project named All Island. Data can be found at the www.allislandproject.org. Books
on electricity markets are legion now. But few deal with electricity prices modelling. For an introduction
to energy finance, the reader can consult the main monographs which are [17, 35, 49, 113]. Lastly, since
this is presently a major concern of power system regulation, a reader looking for a quantitative definition
of flexibility as well as an introduction to this problem can read [94] and the reports provided by the [108].

1.2 The Decision-Maker’s Toolbox

The purpose of the preceding section was to emphasise the complexity of the problem of making investment
decisions in electricity generation, so that the baseline methodology companies use to evaluate their choices
would appear in contrast a simple rule of thumb. Indeed the core of the decision-maker’s method is to
compare the present costs with the expected future net benefits of any investment project. If the expected
future benefits exceed the present costs, then do it! This rule is known as the NPV rule and is presented in
Sect. 1.2.1 in detail to show that it is not as simple as it looks. We stress in particular the difficulties linked
with the fact that future benefits have to be discounted to take into account the time value of money and
that discounting is also used in practice to take risk into account. Section. 1.2.2 focuses on an economic
indicator specific to the electricity sector, the LCOE, which is derived from the NPV. It gives the constant
price above which the NPV of a given investment project is positive. This indicator is a great concern in
regulation and energy policy discussions as well as long-term contract negotiations. There had been no
alternatives to the NPV rule until the mid-1980s, when the real options rule was proposed. It is described
and commented in Sect. 1.2.3. In both cases, long-term expected prices for electricity are needed to compute
the NPV of a given project or to apply real options methodology. Section 1.2.4 presents the most common
long-term price models used by electric utilities. They are mainly static long-term equilibrium models.
We leave aside alternative approaches relying only on simulation principles such as agent-based models
or dynamical system models. Even though this approach has been developed to offer an alternative to the
growing complexity of the electric system, they are beyond the scope of this review. We refer to [55, 56]
for an introduction and a review of these alternatives. Lastly, Sect. 1.2.5 gathers remarks on the history of
and the literature on the subject.

www.allislandproject.org
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1.2.1 Net Present Value

Every business school or corporate finance master’s degree student is now being taught that an investment
should be undertaken if its costs do not exceed the expected discounted total revenue. Consider a project
with an overnight cost of I that is expected to yield the net revenue (income minus operating cost) ft for the
year t during its lifetime T . The investment cost is supposed to be certain and the net revenues are supposed
to be uncertain. The project is assumed to have no terminal value and no decommissioning costs. The NPV
rule states that the project should be undertaken if and only if the present value of the project is greater that
the investment cost:

V = E

[
T

∑
t=1

ft
(1+ρ)t

]
− I ≥ 0. (1.1)

Albeit apparently simple, this rule involves three major difficulties: the determination of net revenue
ft , the determination of the probability measure to compute the expectation and the determination of the
discount rate ρ . Net revenues depend on the project and on the decision-maker’s knowledge. There is no
general theory about them. This is not the case for the probability measure. If the net revenues ft were to
depend only on traded assets, the asset value theorem would apply and one could use both the risk-neutral
probability and the risk-free rate [46]. But corporate investment deals with non-financial investments for
which in general some risks have no market price. This is the case for the main risks involved with electric-
ity generation: inflows for hydrogeneration, wind for wind farms and unplanned outages for any generation
plant. Hence, in this case, the market is incomplete and it is not possible to define a unique risk-neutral
probability to perform an evaluation that would be independent of market participants’ preferences towards
risk. There are different ways to take those preferences into account. The on corporate finance divisions use
is not necessarily the one that would have received economists’ preference. In practice, risk is taken into
account through the discount rate, which becomes a risk-adjusted discount rate. The most commonly used
corporate finance textbooks, such as [67, Chap. 11] and [26, Chap. 9], support this method, which is based
on a standard arbitrage argument. If it is possible to find a financial portfolio perfectly correlated with the
project’s cash flows, then one should use the expected return of this replication portfolio to discount the
project’s cash flows. The criticism of this method is that it uses the same parameter to express two different
things: time preferences and risk preferences. The theoretically correct way of dealing with the risk of a
project would be to use utility functions and to compute the certainty equivalent of the risky cash flows.
Even though these methods are deemed equivalent in standard corporate finance textbooks (see again [67,
Chap. 11] and [26, Chap. 9]), the certainty equivalent method is never cited as a method of choice by Chief
Financial Officers, who always prefer to use the discount factor to take risks into account (see Graham and
Harvey’s [63] survey).

Thus decision-makers try to find the risk-adjusted discount rate that reflects the risk of the project. But
it is very unlikely to find a portfolio of financial assets that would perfectly replicate the cash flows of the
project. In fact, if such a portfolio were to exist, it would mean that the market considered is complete. Thus,
decision-makers are pushed to a less ambitious method. They are reduced to using the discount rate that
will allow the firm to pay back its financial resources, both debt and equity. This leads to the identification
of the right discount rate with the WACC:

ρ =
D

D+E
rd +

E
D+E

re, (1.2)

where D is the firm’s level of debt, E the level of equity, rd the expected return of the debt and re the
expected return of the equity. In this relationship, the only variable that presents a difficulty is the expected
return of the equity. It is not directly observable by the decision-maker. Its estimation relies on the idea
that financial markets should be in equilibrium: investors should expect a return that would compensate the
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risk of the project. The main financial market equilibrium model used is the capital asset pricing model
(CAPM) first developed by [130]. It states that the expected return ri for the financial asset i satisfies at the
equilibrium:

ri = r f +βi(rm− r f ), (1.3)

where r f is the expected return from a risk-free financial asset, rm is the expected return from the market
portfolio and

βi =
cov(ri,rm)

σ2
m

(1.4)

σ2
m is the variance of the return of the market portfolio. Bold letters are used here to designate random

variables. The CAPM states that an investor is expecting an excess return over the risk-free rate that is
proportional to the market risk premium. The more the financial asset return ri is correlated with the market
returns rm, the higher the expected return. The investor is only expecting to be rewarded for the systematic
risk of the project, i.e. the risk that cannot be cancelled out by a well-diversified portfolio. The simplicity of
the CAPM makes it a preferred tool by corporate finance divisions despite its known limited performance
in predicting expected returns. The fact that the CAPM fails to explain the expected returns of common
stocks was statistically established in the 1990s by Fama and French [50, 51].

Due to its overall importance in project selection (it acts like a threshold that a project has to cross to be
undertaken), the WACC focuses decision-markers’ attention and is subject to two main controversies.

The first concerns the way risk is taken into account in the evaluation process. We have already said
a few words above on that point. We will not develop this point again here, but it will naturally come
back in the section on the optimal investment rule (Sect. 1.3). The other point that raises many issues is the
problem of the granularity of the discount rate inside the firm. Despite the prescription of the theory that the
discount rate should reflect the risks of the project, most companies tend to use a firm-level discount rate.
Sometimes, if the firm is divided into very separate divisions on well-separated markets, it will probably use
a discount factor for each business unit. But there is evidence that even in that case, firms are still reluctant to
apply differentiated discount factors. Graham and Harvey’s [63] survey shows that Chief Financial Officers
widely use discount rates determined at the corporate level despite known evidence of bias resulting from
this practice, as recently evaluated [90]. The rationality behind this apparently suboptimal behaviour can
be explained by what economists call influence costs. As discussed in [99], these costs reflect the time
and effort managers supporting the project devote to justifying a lower discount rate and the time and
effort managers performing the evaluation devote to estimating this bias. Managers supporting a project
get personal benefits from seeing it realised. Benefits can be linked to project realisation or the manager
can experience personal satisfaction in developing large projects. Introducing different discount rates for
different business units may open the door for a premium for more persuasive managers, spending time
and effort in increasing their political influence in the firm to obtain a lower discount rate. Using a single
discount factor may on the contrary show that managers should not focus their effort on their projects’s
financial aspects.

Lastly, one could ask whether an investment procedure based on the NPV rule together with an esti-
mation of the risk-adjusted discount rate based on the CAPM leads to its desired outcome, bringing back
an expected return equal to the discount factor. Economic and finance literature exists that studies the re-
liability of an investment process based on NPV and expected rate of return. For public investments, the
World Bank has published different studies showing that there is a negative bias between ex ante expected
rate of return and ex post realised rate of return [119]. The authors’ analysis showed that the mean average
expected rate of return of a sample of more than 1,000 projects between 1974 and 1987 was 22 % when the
realised rate of return after completion was only 16 %. This negative bias is also confirmed in private sector



1 A Review of Optimal Investment Rules in Electricity Generation 13

investments (see [137] and the references therein for specific studies of various private sectors). As an
example concerning electricity generation, [6] report an underestimation of 45 % of R&D projects but with
a strong positive skewness that can lead to an 800 % overrun. Quirk and Terasawa [121] report nuclear
power plant construction cost overruns in the late 1960s that could reach four times the estimated costs.
Nevertheless, one should be aware that even if the forecasts for expected cost and profit of a sample of
projects are not biased, realised projects can exhibit a negative bias. The reason for this is that only projects
with positive NPV were selected and those are mainly projects for which costs were underestimated and
profits overestimated. This result has been known since [29, 103].

We conclude this section by showing how the NPV rule translates into the case of the evaluation of
an electricity generation project. Armed with these three tools (NPV, WACC and CAPM), our decision-
maker is ready to analyse the economic benefits from different electricity generation projects. Let us see
the computational difficulties involved in performing the economic evaluation of a generation asset. For a
power plant whose production is entirely sold on the spot market, its NPV takes the form:

Vg = E

[
−

Tc−1

∑
t=0

It
(1+ρ)t

]
+ sup

q
E

[
Tc+Tl−1

∑
t=Tc

g(qt)−κt

(1+ρ)t

]
, (1.5)

where Tc is the random construction time, Tl the power plant lifetime, κt the Operation and Maintenance
cost, g the short-term cost function of the power plant and qt its production level at time t. The produc-
tion level qt belongs to a non-convex time varying random set of constraints. Non-convexities arise from
dynamic constraints and minimal production levels (see Sect. 1.1.2). Randomness comes from unplanned
outages and technical problems that may reduce the available power. One should note that the present
value of the power plant in relation 1.5 is obtained by solving a stochastic control problem. If dynamic con-
straints, minimal production levels and start-up costs are neglected, the stochastic control problem takes a
much simpler form since the optimal control is a bang-bang solution, i.e. the power plant produces at its
maximum level each time its marginal production cost is lower than the electricity spot price. Nevertheless,
even with this outrageous simplification of the problem, there are still many difficulties left. In this case,
the present value of a power plant of one megawatt takes the form:

Pg = E

[
Tl

∑
t=1

ut(Se
t − h f

t S f
t − hc

t Sc
t )

+−κt

(1+ρ)t

]
(1.6)

where ut ∈ {0,1} is a random process indicating if the plant is available and Se
t is the electricity spot

price, S f
t is the fuel cost and Sc

t is the CO2 emission price. The coefficients h f and hc are respectively
the heat rate and the emission factor. When dynamic constraints are neglected, a power plant appears as a
strip of call options on the clean fuel spread (gas, coal or oil). Its evaluation requires the three-dimensional
joint modelling of electricity, fuel and CO2 prices. Alos et al. [7] recently provided an asymptotic analytical
formula for this three-asset derivative when all prices are assumed to follow correlated geometric Brownian
motions. Regarding the joint price model to use, one difficulty stems from the long-time horizon involved
in the NPV. It considerably exceeds market horizon. Market horizon is 3 years for electricity futures, 3 years
for CO2 emission prices and 5 years for fuel prices, whereas we have seen that the expected lifetime of a
coal-fired plant, for instance, is 40 years. Section 1.2.4 will present the main method electric utilities use
to obtain long-term electricity prices. Thus even with crude simplifications of its operating constraints, the
economic evaluation of a power plant still presents major difficulties. But neglecting dynamic constraints
can be a concern. All other things being equal, dynamic constraints can have a large impact on a power
plant’s valuation. For an example, using mathematical methods that are beyond this review, [120] show that
in an economic situation where flexibility matters (i.e. electricity prices are close to the proportional cost),
the value of the plant over 1 year can be as much as 25 % lower when considering dynamic constraints.
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1.2.2 Levelised Cost of Electricity

It is certainly to avoid the complexity of mathematical methods involved in power plant valuation that
decision- and policymakers rely on a much simpler economic indicator to assess the relative costs of differ-
ent electricity generation technologies. The LCOE is the minimum constant price of electricity leading to
a null NPV. With one more step of simplification compared to Eqs. (1.5) and (1.6), the NPV can be written
as a function of the constant price of production p as

V(p) =−I+
T

∑
k=1

N · (p− h ·S− e ·Sc)−κ
(1+ρ)k

,

where the investment cost I is supposed to occur only in one period of time, N is the number of hours
per year the plant is expected to be running, h is its heat rate, S is the supposedly constant fuel cost, e the
emission rate, Sc the price of CO2 and κ the fixed cost. The LCOE p∗ is then given by V(p∗) = 0. With the
expression above of the NPV, one has

p = h ·S+ e ·Sc+
κ
N
+

1−β
β · (1−β T )

I
N
,

with β = 1/(1+ρ).

Example. First consider a coal-fired plant with an investment cost of 1,500 kUSD/MW, O&M 60 kUSD/
MW/year, a lifetime of 40 years, running 3,000 h/year (semi-baseload) with a 40 % efficiency rate and a
1 MT/MWh emission rate, coal price 90 USD/MT,5 CO2 price e15 /MT, nominal discount rate of 10 %
and euro dollar parity. One gets a LCOE of 113 USD/MWh. For an onshore wind farm with an investment
cost of 1,500 kUSD/MW, O&M 20 kUSD/MW, 40 years of lifetime, a load factor of 20 % and the same
discount rate of 10 %, one gets a levelised cost of 100 USD/MWh.

Considering our toy examples of a coal plant and a wind farm, and assuming that spot prices are observed
to be on average above 100 USD/MWh, should coal-fired plants be replaced by wind farms? LCOEs make
the hypothesis that a generation asset is always able to produce at that price level. If wind farm production
were to be financed by selling its output to the spot market only, it would be necessary to take into account
the fact that its production is not controllable and it may not be able to produce when prices are high.
LCOE highly depends on the hypothesis made even on the restricted number of variables used above.
The International Energy Agency [82] (Fig. ES.2, p. 19) reports for instance that for Europe, coal-fired plant
LCOEs can vary from 80 to 140 USD/MWh at a 10 % discount rate. This variability would be harmless if
technologies were clearly ranked. But for the three main technologies that can currently provide baseload
or semi-baseload power (nuclear, coal and gas), the ranges of LCOE do intersect substantially, ranging
from 80 to 135 for nuclear, 80 to 140 for coal and 85 to 120 for gas.

Moreover, despite the sensitivity of the LCOE to the different variables and in particular to the discount
rate, it provides important information for environmental regulation. Indeed, LCOEs give a direct estima-
tion of the level of subsidies needed for technologies not yet profitable. According to the same IEA study,
at a 10 % discount rate, onshore wind farms are expected to be profitable between 120 and 230 USD/MWh.
This provides an idea of the level of subsidies required for wind farms if the market price is under its
LCOE. Lastly , LCOE of a given power plant building project is the basis for negotiation of long-term con-
tracts. If production is sold at that constant price level, the investors can have a certain confidence that their
costs will be recovered. More details on that subject can be found in [86]. For a recent update of nuclear
plant levelised cost performed by an academic institution, one can refer to [45] which also provides the
spreadsheet used to perform the estimates.

5 1 MT of coal contains broadly 8.2 MWh of heat.
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1.2.3 Real Options

The NPV rule states that an investment is to be made as soon as its present value exceeds its costs. The
real options rule challenges this point. It states that if the decision-maker can wait and if the investment is
irreversible, then the investment should not be undertaken according to the NPV rule. It should be evaluated
according to a rule that values this option to wait. If there is an opportunity to wait, then the decision-maker
should use this freedom as a control variable to increase the firm’s value to its maximum. A classic example
to illustrate the difference between the NPV rule and the real options rule is a two time-steps model that
can be found in [116] or [43, Chap. 2]. Consider investing in a widget factory that will produce one widget
per year forever at no cost. The investment is irreversible and the decision-maker has time to take her
decision. No one is expected to pre-empt this opportunity from the decision-maker. The investment cost
is $800. Prices for widgets are expected to be $150 with probability 1/2 and $50 with probability 1/2 and
then to stay constant forever. The discount rate is supposed to be 10 %. Should an investment in that factory
be made?

Following the NPV rule, one has

−800+
∞

∑
k=0

1/2× 150+ 1/2×50
1.1k

= $300 > 0

and the investment should be made. But, is it the maximum value that the decision-maker can extract from
this project? No, because she has not taken into account the fact that her investment decision can be post-
poned. In fact she is in a situation where she should compare mutually exclusive investment alternatives:
investing today or in 1 year. If she waits 1 year, she will invest only if the price of widgets is going to be
150 (in the other case, the NPV is negative). The factory’s present value is then:

1
2

[
−800/1.1+

∞

∑
k=1

150
1.1k

]
= $386 > 0.

The project value is higher in the case when the opportunity to wait is explicitly used as a decision variable.
Thus the conclusion here is that the decision-maker should wait 1 year.

In this intensively cited example, the fact that the investment criterion has been changed does not appear
completely clearly. It is more striking in McDonald and Siegel’s [101] seminal paper that started the
real options literature and is developed in detail in Sect. 1.3.1. But let us already examine this point now.
Consider an irreversible investment with a cost of I that brings access to a present value V . The value V
is the expected discounted sum of all the future cash flows produced by the investment. It is assumed that
both investment I and value V vary over time so that I = It and V =Vt . The NPV rule states: invest as soon
as Vt − It ≥ 0. The real options rule states: invest at the first time τ such that

sup
τ≥0

E
[
e−μτ(Vτ − Iτ)

]
. (1.7)

The intuition behind this criterion is less obvious than for the NPV rule. What does it say? First, it states
that the firm’s objective is not to create but to maximise value. Thus if there is a possibility to postpone a
project, this decision variable should be used to extract all the value. Moreover, it says that there is a trade-
off to be found between waiting for the difference Vτ − Iτ to become as great as possible and seeing this
difference being crushed down by the discount factor. Lastly, it is not easy to understand how to apply the
relationship (1.7). The stopping time τ is a random process and one may have the feeling that the law or
the strategy defining this stopping time is complex. The surprising and beautiful result is that the problem
leads to a simple mechanical rule. For instance, in the case when Vt follows a geometric Brownian motion
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with parameters α and σ and It ≡ I is assumed constant, [101] analytically describe the solution of the
optimization problem (1.7). One should invest whenever Vt is above the value V ∗ defined by

V ∗ =
n

n− 1
I, (1.8)

where

n =
1
2
− α
σ2 +

√(
1
2
− α
σ2

)2

+
2μ
σ2 . (1.9)

In this case, applying the real options rule is simple: Compute the threshold V ∗, compute the present value
Vt every day and once it reaches or exceeds the threshold V ∗, undertake the project. Taking for instance
standard parameters for the present value process, μ = 10 %, α = 4 %, σ = 15 %, one has n/(n−1)= 1.96.
The real options rule provides a threshold that is nearly twice the investment cost I. Hence, moving from the
NPV rule to the real options one may substantially change the investment behaviour of power producers.

Real options methodology has met a huge success in the academic community since McDonald and
Siegel’s [101] seminal paper. Some statistics may help appraise the extent of this success. The exact query
“real options” in title returns more than 1,300 papers in the EconLite full text economic database. In Marco
Dias’s website devoted to real options,6 a bibliography of papers and monographs on real options contains
2,600 references. Real options methodology has been applied to every possible industrial or managerial
context, from natural resources exploitation to R&D project evaluation.

But this success has not been followed by its counterpart in the industry. The financial literature regularly
provides inquiries on CFOs investment decision processes. Some were done before the rise of the real
options principle [59, 60, 105, 136], some after [12, 18, 20, 48, 52, 63, 118, 126, 129, 141]. Recent surveys
still report CFOs overwhelming preferences for the NPV rule (more than 75 % in [63]) against the real
options method, which received a 25 % score in the same survey where CFOs were asked what capital
budgeting techniques they were using. The real options rule appears in both [12, 63] at the bottom of
capital budgeting techniques’ rankings whereas NPV stands at the top.

This impressive gap between the academic taste for real options and its low level of implementation in
the industry raises the question why. There are already so many papers applying real options methods to
different industrial sectors, like [19, 22, 28, 31, 37, 105, 124, 142], that the argument that it cannot apply
to a given investment problem does not stand. In [12] CFOs were asked why they used one technique more
than another and why they did not use real options. The reason that emerges was the complexity of real
options methodology. Indeed, we will see in Sect. 1.3 that the required mathematical background to perform
a real option analysis of an investment valuation is of an order of magnitude compared to NPV or LCOE.
Moreover, depending on the situation and the model, one can obtain different decision rules. The clear-cut
real options decision rule stating that for an irreversible investment one should take into account the option
value to wait becomes hollow when the modelling of the uncertainties is changed, or when time-to-build,
competition or strategic behaviour is introduced.

Also, it may be argued that capital budgeting methods implemented in practice by CFOs may be sub-
optimal, but simple rules that translate the difficult optimal control problem induced by the real options
criterion. Indeed, as [63] stated, the NPV rule is often completed by constraints on the internal rate of re-
turn, the ratio between the NPV and the investment (profitability index) or the payback time. These added
constraints are shown to mimic the real options rules in simple cases [25, 42, 100].

To conclude this section on real options, let us stress that the right question one should ask is if the
currently few firms that use real options are more successful than firms using standard NPV. This question
raises some methodological issues on defining what is a firm using real options and measuring the rela-
tionship between its implementation of real options and its performance level. To the best of the author’s

6 http://www.puc-rio.br/marco.ind.

http://www.puc-rio.br/marco.ind
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knowledge, [44] is the only paper that tries to answer this question. Its analysis is based on the idea that a
firm’s use of the real options method by can be estimated by using public data to construct an index showing
firm’s awareness. The authors test the hypothesis that real options awareness procures a competitive benefit
on a sample of 101 multinational corporations. Indeed multinationality provides a natural hedge for cor-
porations against country’s potential economic slowdown. In this context, a real options awareness could
provide an excess of efficiency in using multinational investment opportunities. The authors find an excess
negative relationship between multinational corporations’ level of awareness of real options methods and
their downside risk: the more multinational firms are aware of the real options value of investments, the less
they are prone to downside risk. As the authors themselves point out, repeated studies have yet to confirm
this finding since it is based on a small unique sample.

1.2.4 Long-Term Electricity Price Models

In Sect. 1.2.1, we have seen that whichever valuation method is applied (NPV or real options), a long-
term price model is needed to provide electricity and fuel prices. Although very popular in economics and
finance literature on asset valuation, exogenous price models based on time-series analysis or stochastic
processes are seldom used by utilities. Given the time-scale entailed by the lifetime of power plants, electric
utilities mainly rely on electricity market equilibrium models. The equilibrium is defined by the least total
cost needed to meet demand over a certain time horizon and with a certain reliability requirement. The total
cost is composed of the exploitation cost and the investment cost. Reliability requirement refers to a loss
of load probability being lower than a certain threshold. Since probability constraints are difficult to treat
directly in an optimisation problem, they are often treated in a second step and a variable is introduced to
take into account and to value the non-served energy. An example of the optimisation problem to be solved
can be given in the following form:

J(D) = min
Q,L,I

E

[
T

∑
t=1

β t

[
∑

i

ciξi,t + g(Xt ,Dt)

]]

Lt +∑
i

qi,t = Dt , ∑
i

xi,t − qi,t ≥ Rt , xi,t+hi = xi,t + ξi,t , Qt ∈ At(X),

where Xt = (x1,t , . . . ,xn,t) is the vector of installed capacity, Qt = (q1,t , . . . ,qn,t) the vector of production
level satisfying qi,t ≤ xi,t and belonging to a non-convex set At(X), Dt the demand forecast, Rt the reserve
requirement, Lt the Energy Not-Served, It = (ξ1,t , . . . ,ξn,t) the investments in production capacity, ci the
investment cost for production technology i, hi the construction time for the technology i and β the discount
factor. In this formulation, the function g represents the operating cost at time t for the installed capacity
vector Xt . The operating cost’s dependency on fuel prices, emission prices and cost of non-served energy
is hidden in the short-term cost function g. The decision-maker gets the investment policy It as an output.
This policy is used to assess the total capacity requirement of a given electric system. The long-term
electricity prices needed to perform an economic valuation of generation projects are given by the short-
term marginal cost of the optimisation problem, the derivative of g with respect to D.

Electric utilities still intensively used this approach to assess long-term electricity prices. In the past
30 years it has been used in the context of expansion planning studies. For interested reader, [77] provides
a guide covering all the aspects of this methodology. It has led to the development of a series of software
programs based on numerical optimisation for generation expansion planning. A detailed and exhaustive
survey of those techniques, models and softwares can be found in [55].
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With the liberalisation process of the electricity system occurring in almost all countries, questions
were raised about the soundness of continuing to use an approach that is so disconnected now from market
reality. As we have seen in Sect. 1.1, the first disconnect is the high level of uncertainty on fuel and emission
prices. Power plant valuations greatly depend on the spread between spot price and fuel cost plus emission
cost. With a high level of volatility together with great uncertainty about the long-term level of fossil
energy prices, firms are generally doomed to perform prospective analysis, which consists of extracting
a set of a few scenarios that are seen as a possible global economic equilibrium. They are defined by a
small number of economic parameters, including economic growth, inflation rate, average crude oil price,
average coal price, average emission price and energy and environmental regulation trends. . . Once these
scenarios have been defined, an optimisation problem as above can be formulated and solved to provide
long-term electricity price trajectories for each one.

Even though they present challenging modelling problems, the increasing volatility of fuel prices and the
introduction of emission permits are not the main drivers casting doubt on the pertinence of the approach
above. A first difficulty that was already present during electric systems’ monopolistic period is that the
preceding approach, when formulated as a stochastic optimisation problem only provides a policy, i.e. an
investment program that is not adapted to the realisation of demand. In Sect. 1.3.2, we will see an example
of a formulation of a long-term investment model that provides the full investment strategy adapted to
the realisation of demand. One faces a second set of difficulties when trying to introduce competition and
financial risk in the expansion planning method. The introduction of competition in electricity generation
capacity expansion has led some authors to Nash equilibrium models [106]. The tractability of such models
is an issue when a realistic situation is under consideration. In Sect. 1.3.3, we will see how dynamic Nash
equilibrium models can be formulated and solved. Risk was first introduced using utility functions or risk
measures such as mean-variance criteria [123]. It was only recently that attempts were made to introduce
discount factors differentiated by technologies [47].

1.2.5 Historical and Literature Comments

The modern theory of investment decision goes back to Irving Fisher’s treatise on interest rates [53]. In
this work, Fisher clearly stated the NPV rule but also the real options rule. Since his book is 600 pages
long, we can specify that this is done in Chap. VII entitled The Investment Opportunity Principles. Firms
ignored this work until the development of business schools and the establishment of a standard corpus of
corporate finance textbooks such as [26, 67]. But a significant improvement in its mathematical formulation
had been made in between. When reading Fisher’s treatise, one is confounded by the fact that the ideas are
there but lack the suitable mathematical tools to provide their full insight. It was ignored by firms but
not by economists. Real options methodology was clearly described with a more modern mathematical
formulation by [97, 98]. In this paper, the fact that the option should be privately owned to keep its value
was explicitly stated.

The idea that real options in the economy exist is clearly developed in [9, 70, 71]. These works first
stressed the existence of an option value for irreversible investments, mainly in the context of environmen-
tal economics. Strangely enough, the term “real options” was first coined by [107] in a problem of valuation
of growth opportunities, nearly 10 years before McDonald and Siegel’s [101] seminal paper on the option
to invest. But the authors who certainly recognised the power of McDonald and Siegel’s approach to in-
vestment valuation were Avinash Dixit and Robert Pindyck. Their book, which reproduced most of their
contribution to the field, has done a very important job in making the complex mathematical tools needed
to perform real options analyses accessible to a large public. It contains the basic concepts and examples of
real options but also presents more sophisticated models involving market equilibrium and even strategic
behaviour.
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1.3 Optimal Investment Rules

The point of view adopted here takes an alternative approach to expansion planning methods. Instead of
developing large complex optimisation problems taking all the possible generation technology alterna-
tives as well as all the uncertainties into account, it presents some optimal decision rules established in
simplified situations using continuous-time finance methods and stochastic control theory. This approach,
mainly developed under the real options flag, is at the origin of the progress on investment theory during
the last quarter century. Historically speaking, the introduction of these two pillars in modern financial
economic theory goes back before real options literature took off. The breakthrough by Black and Scholes
in their 1973 paper on warrant pricing can be seen as one of the most striking results showing the power
of continuous-time finance to formalise and solve dynamic economic models. Indeed, Paul Samuelson and
Robert Merton can be considered the main promoters of continuous-time finance and stochastic control
methods to obtain quantitative results in economic and financial modelling [102, 125]. The models and
results presented in this section can merely be considered the offspring of their vision and of this first
breakthrough.

1.3.1 Uncertainty

Apparently the question of the effect of uncertainty on the intensity of investment seems worthy of no
discussion. Indeed, from a firm’s perspective, it looks obvious that decision-makers would be better off
performing their investment in a less uncertain economy. Firms would tend to reduce their investment in
times of great uncertainty to avoid suffering big losses from an inappropriate level of investment. If they
invest less than what could they could have, they may regret missed profit. But if they invest too much,
they may experience financial distress or even bankruptcy. In this line of thought, one would assert that
uncertainty reduces the value of an investment.

When confronted with the economic literature, the intuition is no longer that clear. The question was
addressed under so many different forms and contexts that it is not possible to present all the aspects of
the controversy in this limited section. Indeed, the reader interested in this particular subject may find it
useful to read [34]. The authors made an entire survey entitled “What do we know about investment under
uncertainty?” summarising more than 15 years of work on the subject and showing that the centre of gravity
falls with the supporters of the intuition above. Here we will restrict our review to two models showing
extremely divergent results. The first is Abel’s [1] continuous-time model showing a positive relationship
between uncertainty and investment and the second is McDonald and Siegel’s [101] model showing an
opposite relationship. Alternative models and empirical studies that provide insights on these theoretical
results are also briefly reviewed.

Abel [1] considers a risk-neutral, price-taking, profit maximising firm with a homogeneous production
function given by the Cobb-Douglas’ production function LαK1−α where L is the labour factor with a
constant wage of w, K is the capital stock and α ∈ (0,1). The firm can invest I incurring an adjustment cost
γIβ with β > 1. Its cash flow at time t is then

Πt = ptL
α
t K1−α

t −wLt − γIβt ,

where pt is the uncertain price of the output. The value of the firm is the expected present value of cash
flows:

V (Kt , pt) = max
Is,Ls

Et

[∫ ∞

t
e−(s−t)Πsds

]
.
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The capital stock and the price follow the dynamics:

dKt = (It − δKt)dt d pt = σ ptdWt ,

where δ is the depreciation rate of the capital.
This problem is a standard stochastic control problem (see [111, Chap. 3]). The value function is the

solution of the HJB equation:

0 = rV − sup
I,L

[
(I− δK)Vk +

1
2

p2σ2Vpp + pLαK1−α −wL− γIβ
]
. (1.10)

Solving for the supremum in I and L, one gets that the value function should satisfy the following PDE:

rV =−δKVk +
1
2

p2σ2Vpp + hp1/(1−α)K +(β − 1)γIβ ,

where h = (1−α)(α/w)α/(1−α). It turns out that the adjustment cost function was sufficiently well chosen
to allow an analytical solution.

The proposed explicit solution is

V (K, p) = qK +
(β − 1)γ( q

βγ )
β

β−1

r− β (1−α+αβ )σ2

2(1−α)2(β − 1)2

, I = (
q
βγ

)
1

β−1 ,

q =
hp

1
1−α

r+ δ − ασ2

2(1−α)2

.

The question of interest is whether or not an increase in uncertainty increases investment. In this model,
the question boils down to a simple comparative statics problem of the variation of I with respect to the
volatility of the price σ . As one can check on the solution, an increase in σ leads to an increase in I. The
reason invoked for this counter-intuitive result is that as long as the marginal product of capital7 is a convex
function of the output price, the expected return of a marginal unit of capital rises with the price’s volatility,
making it more attractive to invest.

Abel’s [1] result raised in-depth research on its robustness. In this model, the adjustment cost is sym-
metrical, making investments fully reversible: it is as costly to reduce the level of capital as to increase
it. Moreover the firm is in perfect competition and risk-neutral. Issues regarding the adjustment cost func-
tion were first assessed. For instance, [2] showed that serial correlation of output prices can reverse his
preceding result within the same framework. Pindyck [115] showed that if the reversibility condition is
suppressed, then uncertainty defers investment. Caballero [33] showed that Abel’s [1] result relies more
on the convexity of the adjustment cost function than on its symmetry. Caballero’s result was somewhat
mitigated by [117], who pointed out a difference between firm-specific uncertainty and industry-wide un-
certainty, showing that industry-wide uncertainty can have a negative effect on investment. Lastly, [3] in a
more general model show that uncertainty has an ambiguous effect on investment.

All the papers cited above deal with variations of [114] and Abel’s [1] models involving production
function and incremental investment. The model developed by [101] is based on a local approach and
leads to an opposite conclusion. This model plays a particular place in the investment literature for several

7 The short-term revenue is π(K,L) = pt LαK1−α −wLt , we have maxL π(K,L) = hp1/(1−α)
t Kt hence hp1/(1−α)

t is the short-
term marginal revenue of capital which expected value can be shown to be equal to q.
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reasons. It precisely argues why the NPV rule is wrong in the case of irreversible investments and it shows
that the NPV rule greatly differs from the real options rule. This result is important for the electric industry
since it corresponds to its situation of irreversible capital-intensive investment. The authors’ model (a per-
petual American call option) makes it possible to clearly see the impact of an increase in uncertainty for an
industrial investor, even for a risk-averse investor.

McDonald and Siegel [101] consider a firm having the privately owned opportunity to invest at a cost It
in an irreversible production asset whose present value is Vt . Their first argument is that since the investment
is irreversible and that the decision to defer investment is reversible, a rational investor should pick up the
best opportunity amongst all possible dates of investment. This rule is not new to capital budgeting theory:
it is the decision rule for mutually exclusive projects. But here the exclusive alternatives apply to the same
object (the production asset) at different times. Hence, as we have seen in Sect. 1.2.3, the decision-maker’s
problem is:

L(V, I) = sup
τ≥0

E
[
e−μτ(Vτ − Iτ)

]
, (1.11)

where V and I are the initial values of Vt and It .
The present value Vt and the investment cost It are supposed to follow geometric Brownian motion

dI = αiIdt +σiIdWi, dV = αvVdt +σvVdWv. The stochastic control problem is here an optimal stopping-
time problem. The value function satisfies the variational inequality [111, Chap. 5]:

min [μL−L L,L− g] = 0

with g(V, I) =V − I and

L L = αvVLv +αiILi +
1
2
σ2

i I2Lii +
1
2
σ2

v V 2Lvv +σvσiρVILvi

and where ρ is the correlation between the two Brownians. Noting that the problem is homogeneous in
V and I and using smooth-paste conditions for the value function L, one is able to solve the preceding
problem. The value function L is given by

L(V, I) =

⎧⎨
⎩(c− 1)I

[
V/I

c

]b
V ≤V �

V − I V ≥V �

with

V � =
b

b− 1
I, c =

b
b− 1

,

b =
1
2
− αv−αi

σ2 +

√(
αv−αi

σ2 − 1
2

)2

+
2(μ−αi)

σ2 .

The solution exhibits a behaviour that can be easily described. In the region of (V, I) where V is lower than
V �, nothing is done (continuation region) whereas in the other part of the plane, investment is made in-
stantaneously (exercise region). When (V, I) touches the exercise frontier, investment is made. For standard
parameter values (constant I, αv = 2 %, σv = 20 %, μ = 4 %), Fig. 1.2 (left) shows the exercise frontier
as a function of V and I. The red dotted line represents the V = I line. Note that the present value should
exceed the investment cost by a factor greater than 2 for the investment to be undertaken. Moreover, it is
easy to show that an increase in variance of V/I leads to an increase in the threshold value b/(b− 1), thus
deferring investment.



22 René Aı̈d
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Fig. 1.2 Exercise region and frontier for McDonald and Siegel’s [101] investment model (left). Estimation of the repartition
function of the first hitting time for Vt =V �, with μ = 4 %, σv = 20 %, αv = 2 % with 5,000 trajectories (right)

This result is established here in the case of a risk-neutral agent or in a complete market setting. In this
case, there is no ambiguity over the nature of the discount rate μ used in the problem (1.11). It is the risk-
free rate. However, for investments in industrial projects, it is quite a strong hypothesis to consider that a
project that is not even undertaken can be perfectly replicated by a portfolio of financial assets. For this
more realistic situation, the discount rate μ is itself taken as function of the project’s riskiness. Moreover,
since financial assets cannot perfectly replicate the project, its value depends on the decision-maker’s risk
preferences. McDonald and Siegel [101] handle this case by determining the right risky discount rate that
should be used in relation (1.11). They show that the structure of the solution is preserved when changing
αi and α f by δi = α̂i −αi and δ f = α̂ f −α f where α̂i (resp. α̂ f ) is the expected return of a financial
asset with a volatility equal to σi (resp. σ f ). The parameter δi behaves as an opportunity cost for deferring
the investment in the asset: the greater it is, the costlier it is to hold the option and to defer investment.
But the option to wait has still a positive value in this setting where market incompleteness is taken into
account only by changing the discount rate. It is only recently that a treatment of the incomplete market
case has been performed by taking the decision-maker’s risk preferences the into account. Such an analysis
has been developed successively in [69, 74] and more recently by [64]. In a utility-based framework, the
authors show that the time value of the investment opportunity is still positive for an investment project
that cannot be hedged by financial assets. Compared to the complete market case, the investment threshold
is lower but as pointed out by [64], time flexibility still provides added value to an investment project even
if it cannot be replicated.

Based on [101], many real option variants were developed amongst which the most popular are the
option to abandon a project and the option to increase production capacity [68]. As shown in Sect. 1.2.3
the list of applications and variations is so abundant now that it makes no sense to systematically review
them. But if many develop alternative stochastic control models that exhibit explicit solutions allowing
comparative statics, few deal with empirical studies to test whether or not investors behave the way the real
options rule recommends. As pointed out in [116], empirically testing the real options investment rule on
aggregate data is quite an issue due to the very nonlinear behaviour of investment in this framework. Moel
and Tufano [104] avoid this difficulty by testing investors’ real options forecast behaviour of in the case
of gold mine management. The authors find that openings and closings of gold mines in the USA during
the 1988–1997 period followed patterns forecast by real options methodology (closing the mine when the
gold price is well below the short-term production cost and opening the mine when it is well above the
short-term production cost).

We would like to conclude this section on the effect of uncertainty on investment decision timing by
shedding some light on a natural concern of decision-makers. If there is an option to wait for investment,
a natural question to ask is: how long can the decision-maker expect to wait before investing using the
real options criterion? The law of the first hitting time of a barrier above or below the initial condition of
a geometric Brownian motion is perfectly known (see [84, Sect. 3.3]). Starting with a value V0 below the
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threshold V �, it is known that Vt has a strictly positive probability to hit the threshold in finite time. In our
particular case, and considering a constant investment cost I to simplify the discussion, if we denote the
first hitting time of V � by T �

V� , its expectation is

E [T �
V� ] =

⎧⎨
⎩

1

αv− 1
2σ2

v

ln(V �/V0) αv >
1
2σ

2
v ,

+∞ αv ≤ 1
2σ

2
v .

When the expected first hitting time is finite, one recovers the effect of uncertainty on investment decision:
an increase in σv leads to an increase in E [T �

V� ], deferring investment. When it is infinite, comparative
statics have no more meaning. But in the case when the expected first hitting time is finite, one should
note that the waiting period may be (very) long. For the realistic parameters V0 = I, μ = 4 %, σv = 15 %,
αv = 2 %, the average time to wait before investing would be more than 80 years! Figure 1.2 (right) shows
the results of the numerical simulation of the first hitting time of V � by Vt truncated to 50 years with the
same numerical parameters and I = 1. In this case V � = 2.01. Figure 1.2 (right) shows that in 90 % of cases,
the decision-maker can wait more than 7 years (of 250 days) before investing. In over 50 % of cases, one
could wait more than 30 years. During such a long time period, the decision-maker can be stuck in a very
awkward situation. The NPV of the project can be very positive and nevertheless she should still refuse to
reap the value of the project because it could be even higher in the future.

1.3.2 Time to Build

McDonald and Siegel’s [101] result put forward the hypothesis that the asset could be built instantaneously.
In Sect. 1.1.2, we saw that this is not the case for power plants where construction delays can reach 10 years
for a nuclear power plant or a dam. This is also the case in many industries. However, Koeva’s [89] study
shows that the electricity sector exhibits both the longest construction delays and the greatest variance.
Construction delays in electricity generation range from 12 to 225 months, whereas other sectors’ con-
struction delays range from 6 to 70 months. But does it really matter for an investment whose lifetime is
expected to be more than 40 years? Are construction delays not small and negligible compared to lifetime
expectancies? It seems it does matter at least at an aggregate level. Kydland and Prescott [92] showed that
the time to build is an essential feature of an equilibrium model to explain both the level of investment
and its cycles. This result was confirmed by a second econometric study [8] and the relationship between
investment cycles and time to build finds a nice mathematical foundation in [10]. The authors show that in
the context of deterministic growth models of an economy with a single good, it is necessary to introduce
time to build to get cycles.

Now, at a microeconomic level, what should be expected? Intuition suggests that investors should try
to hurry to benefit from a favourable situation and to reduce the lost revenue of the building phase. But
knowing that there are lost revenues during the building phase, decision-makers should wait for a higher
price level or project value to compensate for these lost revenues. Thus, intuition provides the idea that the
effect of time to build can be ambiguous or difficult to assess. The result obtained by [96] with an investment
decision model in continuous-time with time to build follows the line of the intuition above. Taking an
investment opportunity project whose value follows a geometric Brownian motion, they consider that the
investment rate is bounded. Thus it takes several years to finish the project. Moreover, in their context the
construction delay is both random and controlled: it depends on the evolution of the value of the completed
project. The authors find that the time to build amplifies the negative relationship between uncertainty and
timing. It induces a higher critical value triggering the investment (see Fig. 1.2), thus deferring investment
even more.

This result is based on a modelling of the construction delay where investors still have some flexibility.
However, this is not the most common situation. Indeed, firms try to finish their building projects on time
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since not sticking to the schedule is perceived as bad project management. But modelling time to build as
inflexible delays in stochastic control problems generally leads to infinite dimension problems (see [16]).
Nevertheless, for the special dynamics of investment in production assets, it is often possible to reduce the
problem to a finite dimension. This is exactly the case for the two models we are going to present here.
Bar-Ilan and Strange [14] and Bar-Ilan et al. [15] are the main models that allow in-depth understanding of
the effect of time to build on optimal investment rules. Bar-Ilan and Strange [14] explicitly introduce a fixed
time to build in Dixit’s [41] investment problem for the optimal entry and exit of a project. The authors
succeed in giving a quasi-explicit solution of the optimal decision rule. Bar-Ilan et al. [15] extended this
result to the case of an infinitely lived representative agent maximising the social surplus. Their result is
based on the solution of inventory problems in the early the 1960s in discrete time [127] and extended to
the case of continuous-time by the end of the 1970s [36, 139]. In their setting, the optimal investment rule
is completely described although the threshold can only be computed numerically.

In [14], a firm pays k to get an infinitely lived production facility of one unit of good per unit of time
at a constant marginal cost of production w. It takes h units of time to build the facility. The investment
cost k is paid at the end of the building phase and will be paid whatever happens during the building
phase (irreversible decision). The firm can abandon its investment during the building phase at a cost l but
reentry requires repaying the full cost k. The output price of production P is supposed to follow a GBM
dP = μPdt +σPdW and cash flows are discounted at a rate ρ > μ . The firm faces two questions: when
to initiate the project and when to abandon it? This problem can be formulated as an optimal switching
problem. It leads to three variational inequalities instead of one as in problem (1.11). The exercise regions
can be defined by two trigger prices PH and PL. When price P is higher than PH , the firm switches from
inactive to active (it initiates the project). When price P is lower than PL, the firm switches from active to
inactive (abandonment of the project). An important remark is that since the investment cost k cannot be
recovered even if the project is abandoned, and because the abandonment cost l can be reduced by delaying,
there is no economic advantage in abandoning during the building phase. Hence, abandonment will occur
only at the end of the building phase.
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Fig. 1.3 Bar-Ilan and Strange [14] trigger prices PL(h, l) and PL(h, l) for ρ = 2.5 %, μ = 0, w = 1 and k = 1 without aban-
donment cost (left), with an abandonment cost of l = 1 (right)

Denote as V0(P) the value of the firm when it is inactive, V1(P), the value of the firm when it is active and
the project is completed and V2(P,θ ) the value of the firm when it is active but the project is not completed
yet, with 0 ≤ θ ≤ h the remaining time before completion. The PDEs satisfied by the value functions V0

and V1 are standard application of stochastic control framework:

ρV0− μPV
′
0−

1
2
σ2P2V

′′
0 = 0, (1.12)

ρV1− μPV
′
1−

1
2
σ2P2V

′′
1 −P+w = 0. (1.13)
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However, to establish the PDEs satisfied by V2, one should notice that the discounted value of the firm
should not change during the building phase because it is always better to pay the abandonment cost later
and because the investment cost is sunk and paid only at the end of the building phase. Thus:

E

[
e−ρdtV2(P(t + dt),θ − dt)

]
=V2(P(t),θ )).

And using Itō’s lemma, one finds:

ρV2− μP
∂V2

∂P
− 1

2
σ2P2 ∂V2

∂P2 +
∂V2

∂θ
= 0 (1.14)

Moreover, the connection between the different parts of the project value is made noting that near comple-
tion, the firm should either abandon or keep the project. Hence,

V2(P,0) =

{
V1(P), P≥ PL,

V0(P)− l P≤ PL.

It is not possible to provide an analytical solution for this system of ODEs and PDEs. The analysis is re-
duced to special limiting cases and numerical illustrations. We provide here the main result of this model.
Figure 1.3 (left) shows the effect of an increase in price volatility for two cases of time to build (no time
to build and a six-year delay) when there is no abandonment cost. Although the abandonment threshold
clearly decreases as volatility increases irrespective of the construction delay, this is not the case for the
investment threshold. Figure 1.3 (left) shows a very nonlinear behaviour of the investment threshold. One
notices that there is a range of volatility where the investment threshold can decrease with an increase
of volatility. For this range of volatility, the investment threshold reaches a local minimum that is even
lower than the certainty trigger. In this case, the certainty trigger is w+ ρk = 1.025. The explanation of
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these counter-intuitive results lies in the effect of the abandonment cost. Figure 1.3 (right) shows that the
introduction of an abandonment cost drastically reduces the former behaviour. When there is an abandon-
ment cost, must substantially increase volatility to be able to observe a slight decrease in the investment
threshold. The comparison of the investment threshold with and without abandonment cost reveals the
cause of the uncertainty-investment positive relationship in the case of long delays. The ability to abandon
the project at no cost makes it possible to truncate the eventuality of low profit. Since the investment cost is
paid at the end of the building phase, the decision-maker can benefit from situations where the bad news of
future low profit is learned during that period. The decision to abandon the project will be taken immedi-
ately but the decision-maker will earn the time value of the investment cost. In some situations, this benefit
can outweigh the opportunity cost of waiting.

Even though this result is striking, it should be noted that it also has a limited impact on the standard
result on the relationship between uncertainty and investment. The result is obtained for a certain range
of parameters, meaning that situations where long delays hasten investment irrespective of uncertainty
can occur, but that is not the general case in this model. It also heavily relies upon the hypothesis that
the investment cost is paid at the end of the building phase. In [15], the authors study the joint effect of
uncertainty and time to build in an equilibrium model which provides a more robust setting. The problem of
interest here is to meet the demand for electricity at a minimal cost. There is only one available technology
and it takes h years to build. Linear penalisation is incurred in both situations of excess or lack of capacity.
Formally, the problem is written as an impulse control problem.

The firm cannot adjust demand to production by pricing signal (no demand-response management).
Building a new production capacity takes time h. The installation cost is

C(ξ ) =

{
0, ξ = 0,

k+ cξ , ξ > 0.

Once installed, a capacity lasts forever. Excess capacity is the difference between existing production ca-
pacity and current demand and is noted y. Holding an excess or a lack of capacity makes the firm incur a
cost f (y) such that:

f (y) =

{
−py, y≤ 0

qy, y > 0.

There is no possibility to remove capacity. With h = 0, the system is well described at time t = 0 by the
excess capacity x. With h > 0 the description of the system requires to remember all investment decisions
ξi and their corresponding time τi for i = 1, . . . ,n. The state of the system is given by the vector (x,Ψ ) with
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Ψ = {(τi,ξi)i} and −h < τ1 < .. . < τn < 0. The variable y(x,Ψ ) denotes the excess capacity at time t ≥ 0
when the state was (x,Ψ ) at time t = 0. The dynamics of y is given by

dy(x,Ψ ) =−gdt +σdWt + ∑
(τi,ξi)∈Ψ

ξi1It−τi−h +∑
i≥1

ηi1It−θi−h

with the initial condition y(x,Ψ )(0) = x and where (θi,ηi) denote the investments done after t = 0. Note
that the electricity demand is modelled as an arithmetic Brownian motion. Lastly, U(x,Ψ ) denotes the
minimum expected cost reached by the optimal investment strategy when the firm was in the state (x,Ψ )
at time zero:

U(x,Ψ ) = inf
θi,ηi

E

[∫ ∞

0
e−αt f (y(x,Ψ )(t))dt +∑

i≥1

e−αθiC(ηi)

]
.

The first important point to note is that the optimal control (θi,ηi) is a function of only the committed
capacity x+∑1≤i≤n ξi. The optimal solution does not depend on the timing of past investment decisions
but only on their total amount. It is only necessary to remember their sum to take decisions. This point is
linked to the linear dynamic of investment. This remark is extensively used by other studies [5, 65, 66].
Using this remark and previous results on inventory management [36, 127, 139], the authors prove that the
optimal solution satisfies a trigger/target form. When the committed excess capacity (difference between
the committed capacity and the demand) reaches a level s, it is optimal to invest exactly to reach the new
level S of committed excess capacity. The trigger s and target S are explicitly given by a nonlinear system
that is solved numerically.

The main result of [15] relies on the numerical illustration of the behaviour of the trigger and target
values when time to build and uncertainty are increased. A reference situation is provided with parameter
values p = 250 $/kW/year, q = 100 $/kW/year, k = $100 million, c = 1,000 $/kW, g = 350 MW/year, σ =
250 MW/year, α = 5 %.

Figure 1.4 plots the variations of the investment triggers and targets as a function of demand uncertainty
σ for two different construction delays, 1 and 8 years. First, one notices that variations are reversed for
long delays. The trigger increases with the uncertainty for an eight-year delay whereas it decreases for a
one-year delay. The same holds for the investment target. Hence in the case of a long construction delay,
the investor will invest sooner. Bar-Ilan et al. [15] can be completed by pointing out that this effect is
nevertheless very small. Indeed, in the case of an eight-year delay the curves are rather flat. In fact, with
a long construction delay, the investment triggers and targets become insensitive to uncertainty. Figure 1.5
illustrates this point. On the left, we see the monotonic relation between investment timing, uncertainty and
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the time to build measured by the investment trigger. The longer the delay, the sooner the investment will
be made since the excess committed capacity increases monotonically with h. But triggers for small delays
exhibit a non-negligible sensitivity to uncertainty, whereas this is no longer the case for long delays. This
result is even more striking on the invested quantity as measured by S−s. The one-year delay curve presents
a high sensitivity to uncertainty that disappears for the four and eight-year delay cases. In a one-year delay
case, for high levels of uncertainty, the invested quantity will be even greater than in the eight-year delay
case. Hence, with small delay and high uncertainty, one invests less often than with long delays but with a
greater intensity.

This insensitivity of investment to uncertainty in the case of long time to build does not mean that
uncertainty has no effect on the investment dynamics in this case. In fact, the main effect of a longer
time to build is to compel the system to live with a high amount of committed excess capacity. Figure 1.4
(below, left) shows that for a short construction delay, the system can allow itself to spend some time with
a negative committed excess capacity and it can handle the equilibrium with no more than a committed
excess capacity of 850 MW. With a longer construction delay, this is no longer possible. The decision-
maker will be compelled to invest as soon as the committed excess capacity falls under a very positive
value of 2,200 MW. It means that the system is constrained to maintain a large amount of installed capacity
over the actual demand. This point is illustrated in Fig. 1.6, where the reader can compare the investment
dynamics in the case of a one-year and a eight-year delay. In a way, Bar-Ilan et al.’s [15] model shows that
a long construction delay makes uncertainty a second-order problem, since the optimal response in that
situation is to maintain a wide capacity margin. Indeed, this fact is a basis of power system reliability.

1.3.3 Competition

Although very intuitive, the idea that competitive pressure would erode and make the time value of the
investment option disappear leads to difficult mathematical modelling problems. It may appear for some as
the simple application of competitive equilibrium principles to investment timing and therefore should not
deserve more than a simple footnote in an economic paper as [97] did. Competition drives prices to marginal
costs and profits to zero. But developing a continuous-time stochastic model to recover this intuition and
quantify the speed of this erosion raises considerable difficulties. The first mathematical models used to
quantitatively assess this question were either stochastic but in discrete-time model or deterministic but in
continuous-time. Moreover, their findings were surprisingly not necessarily a confirmation of the intuition.
In a deterministic continuous-time framework, [57] show that the possibility of pre-emption leads to rent
equalisation in the case of duopoly but not in oligopoly with more than three firms. In a continuous-time
stochastic control model context, [95] showed a very surprising result. The optimal timing of investment is
independent of the competition pressure. Leahy [95] considers a continuous-time investment model where
irreversible investments can be continuously incremented by a set of identical firms. One would expect
that firm’s optimal timing would depend on the level of investment and on the strategy of competitors.
The author shows that it is enough for a firm to assume that the investment level will remain constant
as if competitors were not investing. A pure myopic behaviour provides the correct timing. This result
goes against the idea that competition hastens investment. Here the investment timing is not impacted by
competition. Only the invested quantities are. The intuition behind this phenomenon is that in both cases,
the investment threshold is the same. It corresponds to a price level making the investment cost and the
expected profit equal. These counter-intuitive results obtained in continuous-time contrast with the [135]
discrete-time stochastic model, where the intuitive result is obtained. As the number of rivals increases, the
investment rule tends to the NPV rule.

The development of an equilibrium model taking investment and competition into account requires
being able to define and compute a Cournot-Nash equilibrium in a stochastic control context. To our knowl-
edge, Grenadier’s [66] work which is presented here is the first paper to provide an analytical solution of
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a complete equilibrium model of investment under uncertainty allowing an in-depth quantification of the
competitive pressure on the investment option. Grenadier’s [66] model and resolution method are based
on several previous breakthroughs. It uses Leahy’s [95] prior result to reduce the difficulty of computing
the Nash equilibrium. Moreover it takes many of the different lines of [13, 91, 145] who developed similar
models.

Grenadier [66] considers an oligopolistic industry composed of n identical firms producing the same
homogeneous good. The variable qi(t) represents the production of firm i at time t. Production of each firm
is supposed to equal its capacity. There is no possibility to decrease capacity. Define the total production
Q(t) = ∑i qi(t) and the total production of firms other than j Q− j(t) = ∑i	= j qi(t). The endogenous price
process is given by

P(t) = D(X(t),Q(t))

with D the inverse demand function and X an exogenous shock process affecting the demand. The demand
function D is supposed to be regular enough, increasing in X and decreasing in Q. The demand shock X is
supposed to follow a diffusion process

dX = μ(X)dt +σ(X)dW.

There is no variable cost of production. The instantaneous profit function reads

πi(X ,qi,Q−i) = qiD(X ,Q−i + qi)

for firm i when producing qi. At each time t each firm can invest continuously with a linear cost K per unit.
Firms are assumed to be risk-neutral with r denoting the risk-free rate.

The production processes (q∗i ) form a Nash equilibrium if q∗i is an optimal strategy for firm i when it
takes the strategies of its competitors Q∗−i as given. Denote by V i(X ,qi,Q−i;qi(t),Q−i(t)) the value of firm
i for strategies qi(t),Q−i(t) with (X ,qi,Q−i) as an initial condition. One has

V i(X ,qi,Q−i;qi(t),Q−i(t)) = E

[∫ ∞

0
e−rtπi(X(t),qi(t),Q−i(t))dt−

∫ ∞

0
e−rtKdqi(t)

]

And the controls (q∗i ) form a Nash equilibrium, meaning that for all i,

V i(X ,qi,Q−i;q∗i (t),Q
∗
−i(t)) = sup

qi(t)
V i(X ,qi,Q−i;qi(t),Q

∗
−i(t)).

At this point, it is necessary to make a comment on the definition of a Nash equilibrium in this context. Back
and Paulsen [11] raised the issue that this definition is only suitable for open-loop strategies as opposed
to a more general possible set of strategies which are closed-loop strategies. In the above definition of
equilibrium, strategies are defined as commitments. Along the optimal trajectories, firm i’s response is well
defined but if any player deviates from the equilibrium, firm i will still keep on investing as if it was an
optimal response. In this particular setting, [11] exhibit an open-loop strategy allowing a better payoff than
the closed-loop equilibrium strategy, showing that Grenadier’s set of equilibrium strategies is somehow
too small. Nevertheless, since [11] admit that defining a closed-loop equilibrium in this context is still
an issue, we will stick to Grenadier’s model, keeping in mind that it is limited to commitment strategies.
We will see below that this restriction on the possible strategies of the firms has an impact on the investment
option value.

The author focuses on a symmetrical Nash equilibrium. All firms have access to the same rights, tech-
nology and information, so that q∗i = q∗j for all i, j and q∗i = Q∗/n. This hypothesis greatly simplifies the
equilibrium equations, bringing the dimension of the problem from an n+ 1 to 2. Moreover, it is assumed
that the optimal strategy of firm i is given as a threshold Xi(qi,Q−i). Using the fact that all firms are identi-
cal and that only symmetrical equilibrium is sought, all firms have the same exercise threshold X(qi,Q−i).
Moreover, applying Leahy’s [95] method in this context helps to show that this threshold is equal to
Xm(qi,Q−i), the investment threshold of a myopic firm, i.e. making the assumptions that Q−i(t) ≡ Q−i.
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Fig. 1.7 Grenadier [66]—investment trajectory for n = 1,5,10 and 20 firms for a given demand shock trajectory (left). Price
trajectories for the same demand shock trajectory and the same number of firms (right)

Thus the investment threshold boils down to a function of only the aggregate output Q, that is denoted
X∗(Q). Let Mi(X ,qi,Q−i) denote the value of the myopic firm i that considers that the current level of
supply by competitors Q−i will remain constant, and its marginal value

m(X ,Q) =
∂Mi

∂qi
(X ,

1
n

Q,
n− 1

n
Q).

The functions m and Xm are determined by the following PDE:

rm− μ(X)mX − 1
2
σ2(X)mXX −D(X ,Q)− Q

n
DQ(X ,Q) = 0,

with the boundary conditions:

m(X∗(Q),Q) = K, mX(X
∗(Q),Q) = 0.

Here it should be stressed that the initial system of PDEs satisfied by the value of each firm is amazingly
reduced to a single PDE with a one-dimensional exercise frontier. This result allows the computation of the
explicit solution in special cases of inverse demand function and demand shock. The main case considered
is an inverse demand function given by P(t) = X(t)Q(t)−1/γ with γ > 1 and a geometric Brownian motion
dX = μXdt +σXdW for the demand shock. In this case, the marginal value of a myopic firm is

m(X ,Q) =−nγ− 1
nγ

v1−β
n

β (r− μ)Q−
β
γ Xβ +

nγ− 1
nγ

Q−1/γ

r− μ X ,

the investment threshold is

X∗(Q) = vnQ1/γ

and the optimal aggregated investment policy:

Q(t) = max

[
Q(0),(

Y (t)
vn

)γ
]
,

with

vn =
β

β − 1
nγ

nγ− 1
(r− μ)K, Y (t) = sup

s≤t
X(s),

β =
−μ+σ2/2+

√
(μ−σ2/2)2 + 2rσ2

σ2 .
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From these relationships, the behaviour of the investment threshold when the number of firms increases
is straightforward since it is expressed directly in the parameter vn. It is a decreasing function of n. The
more competitors, the sooner investment is made. The intuitive effect of competition on the timing of
investment is recovered here. With fierce competition, an investment opportunity is seized sooner. This
result is illustrated in Fig. 1.7 (left), where optimal investment trajectories are plotted for the same demand
shock trajectory of X . The monopoly (red curve at the bottom of the curve) does not invest at all, whereas
it is enough to have five firms (black curve) to see an increasing investment following the demand shock.
Competition not only pushes firms to invest sooner, but they also invest more as shown by the situations
with 20, 10 and 5 firms. Thus the downward effect of competition on the price is not surprising. Figure 1.7
(right) displays a nice ordering of the price trajectories where the monopoly situation lies on top and the 20
firms case at the bottom.

Now let us analyse the option value of an investment. Let G(X ,Q) denote the value of the Qth
unit of investment in production providing the perpetual cash flow P(t) = D(X(t),Q(t)). The difference
G(X∗(Q),Q)−K represents the NPV of the incremental unit of investment done in an optimal way. The
ratio Λ(n) = (G(X∗(Q),Q)−K)/K represents the option premium of this incremental investment. It is
shown that Λ(n) takes the following simple form

Λ(n) =
1

nγ− 1
.

As the number of competitors tends towards infinity (perfect competition), the investment option value
tends to zero and the NPV rule is recovered. It seems that the correct intuition that competitive pressure
erodes the time value of an investment option is recovered. But the result above is not fully what would
have been expected. For a small number of identical firms, there is still a non-null value over the NPV.
It would have been expected that even with two equivalent firms, pre-emption would lead to a complete
erosion of the investment option value since investment can be done continuously in time. We will see in
the next section that even in a symmetrical duopoly facing a single investment opportunity, it is not easy
to recover this intuitive result. But here the problem lies in the difficulties of properly defining continuous-
time stochastic games with continuous and unbounded decision variables. Recent remarks by [11] point to
precisely this problem. Equilibrium in Grenadier’s [66] model refers to a set of strategies that excludes the
full possible range of competitors’ responses. Nevertheless, the difficulties involved with continuous-time
stochastic games did not prevent further developments along Grenadier’s [66] lines (see [5] for a variant
with flexible production and [109] for an impulse control variant).

1.3.4 Strategic Interactions

The main driver of the competitive situation studied in the preceding section was the fear that other firms
would make the investment first. Nevertheless, not all competitive investment situations take the form of
a fear of being pre-empted. There are cases where it is better to be the second one to invest. This is the
case for instance of R&D investment. The first one may spend many resources on finding an innovation
that competitors can duplicate at low cost by using reverse engineering once it is in the market. This is
also the case for offshore exploration leases. Oil companies buy some leases to make offshore exploration
for a limited period of time (less than 10 years). The tracts where explorations are to be made are close to
one another. Thus a company’s drilling whether successful or not informs the competitor on the probability
of success. Here both have an interest to wait and be the second so as to benefit from this information
spillover. These situations are referred to as war of attrition and the example is taken from [39].

Fudenberg and Tirole [57, 58] did provide important material to assess strategic interactions of
investment decisions in a deterministic game theory context. Soon after the first papers on real options,
economists realised that continuous-time finance methods could also help to give insights into strategic
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competitive situations under uncertainty. This led to the development of a field of its own under the label of
option games. It is a very active field from both applied mathematics and economics viewpoints. The eco-
nomic analysis of all kinds of oligopolistic situations is being currently investigated. Interested readers can
refer to an increasing number of monographs amongst which [134] hold a leading role, while [75] was the
first book published on the subject and [140] is contemporary. For a shorter introduction, one can read Dias
and Teixeira’s [40] review of the subject, which covers the historical development of the field, the main
economic results obtained in the literature on option games and the tracks for potential future mathematical
methods that would help to allow the same level of computational flexibility in multi-actor situations as
well as in a single-actor situation.

Here we will limit ourselves to Smets’s [133] seminal work on irreversible investment in duopoly.
Although never formally published in academic journals, it has led to many developments [13, 91, 93]
and is reproduced in [43, Chap. 9].

Consider a one-shot investment situation where two firms each have the potential to introduce one unit
of production capacity at the same investment cost I. Both firms know they are the only two firms that can
perform this investment. This corresponds to capitalistic industries where a limited number of firms have the
financial and technical resources to perform the investment. Once installed, the new capacity is supposed
to be used at its maximum level. The inverse demand function for the produced good is P = Y D(Q) where
Q is the production level. It can take three values (0, 1 or 2) leading to three different demand values D(0),
D(1) and D(2), ranked in decreasing order. The initial demand is D(0). The variable Y is the demand
shock supposed to follow a geometric Brownian motion dY = αY dt +σYdW . Thus if one firm invests,
the demand will decrease to D(1) and the price will be negatively impacted. And if both firms invest,
this effect will be amplified and the demand will drop to D(2). So the question is what is the optimal
investment rule for both players. The response will also help to answer the question of whether or not the
fear of pre-emption will destroy the time value of the investment option.

The problem is a continuous-time option game with a finite set of possible actions. This point substan-
tially simplifies its resolution. To focus only on the effect of competitive pressure, both firms are supposed
to be risk-neutral and the risk-free rate will be denoted r. The problem is solved backwards. We suppose
that one firm has already invested and we look at the optimal response of the second firm. Knowing the op-
timal response of the second firm to invest, we look at the optimal decision of the first firm. Two possible
situations can be studied: symmetrical situation or pre-assigned leadership. In the first situation, both firms
can invest first. In the second, one firm is designated to invest first (the leader) and the second one to invest
after (the follower).

Consider first the symmetrical situation. The follower’s profit will be YD(2). As we have learned from
previous examples, the follower invests when the demand shock Y will reach a certain threshold Y2 to be
determined. Following the same method as in Sect. 1.3.1, it can be found that

Y2D(2) =
β1

β1− 1
(r−α)I

with

β1 = 1/2−α/σ2+
√
(1/2−α/σ2)2 + 2r/σ2.

If Y2 ≤ Y , the follower invests immediately and gets

Y2D(2)
r−α − I.

If Y ≤ Y2, the follower waits until the first time Y reaches Y2 and then gets Y2D(2)
r−α − I. Its expected present

value is then

E
[
e−rτ](Y2D(2)

r−α − I

)



1 A Review of Optimal Investment Rules in Electricity Generation 33

with
τ = inf{t | Yt = Y2} .

This computation can be done explicitly and the value of the follower is obtained as

V2(Y ) =

⎧⎪⎨
⎪⎩

Y D(2)/(r−α)− I if Y2 ≤ Y,

(Y/Y2)
β1 [YD(2)/(r−α)− I] if Y ≤ Y2.

Now that the value of being a follower is known, let us determine the optimal investment strategy and the
value of the leader. The leader knows that if Y is below Y2, the follower will wait until Y hits Y2. Thus as
long as Y < Y2, if the leader invests, it will collect the profit YD(1). Hence, its expected present value is

E

[∫ τ

0
e−rtYD(1)dt

]
− I+E

[
e−rτ] Y2D(2)

r−α ,

with τ representing the same hitting time as above. It is composed of two parts: the profit from investing at
time zero and being alone until τ and the profit from being two in the market since τ . This expectation can
be explicitly computed and the leader’s value function can be deduced:

V1(Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V2(Y ) if Y2 ≤ Y,

YD(1)
r−α

[
1− (Y/Y2)

β1−1
]

+(Y/Y2)
β1 Y D(2)

r−α − I if Y ≤ Y2.

The value functions of both the leader (V1) and the follower (V2) are represented in Fig. 1.8 (left). Two
remarks can be made here. First, even in a symmetrical situation, it is not always better to be the leader, i.e.
to invest first. There is a threshold Y1 under which the cost incurred by investing first is not covered by the
flow of profit. Thus, if the situation starts with Y below Y1, neither firm will invest since it is better to be the
follower. But as soon as Y exceeds Y1, it is better to be the leader. In the symmetrical case, both firms will
invest and then neither receives the excess flow of profit of being alone in the market. They both receive
only (Y1D(2))/(r−α)− I, which is less than the follower’s value. Second, suppose now that the leader is
randomly chosen or that one firm reacts quicker than the other and becomes the leader. At the threshold
Y1, one can check that the flow of profit exceeds the investment cost I ≤ Y1D(1)/(r−α). Knowing that
the follower’s future investment will reduce the flow of profit, the leader’s intention is to invest only at the
threshold that compensates for this future loss. The first investment is made with a positive NPV and not a
null NPV. Thus competition does urge firms to invest since both of them would like to invest at the same
time. But it does not lead to a null NPV investment threshold.

The fact that there is no procedure to determine a leader and a follower leads to some kind of paradox-
ical situation. What occurs does not correspond to what was computed by both rational agents. The first
investment is expected to have an excess return over the investment cost but this is not likely to happen
since the system is going to jump immediately from D(0) to D(2) instead of D(1) as expected. Indeed, one
needs a way to determine in advance who is the leader and who is the follower so that both players can use
this information in their computation.

We are going to see that things are quite different if the roles have been pre-assigned. Now, the leader
has the ability to wait because there is no more pre-emption threat. The leader faces the following problem
to solve:

sup
τ1

E

[∫ τ

τ1

e−rtY D(1)dt

]
+E
[
e−rτ]Y2D(2)/(r−α)− I
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where τ is still the first hitting time when Y = Y2. We skip here the details of the resolution of this new
problem to focus on the qualitative results of this model. The new value functions are represented in
Fig. 1.8 (right). Now, the investment region of the leader is no longer connected. The leader invests ei-
ther if Y ∈ [Y ′1,Y

′
2] or if Y ≥ Y ′3. The first interval corresponds to an investment situation where the price

is high enough to justify the investment (Y ≥ Y ′1) but low enough to enjoy enough time being alone in the
market since the leader knows that his competitor is waiting for the price to reach the threshold Y2D(2) to

YY2

V

−I

Y1

V1 V2

YY2

V

−I

Y1

V1 V2

Y’1 Y’2 Y’3

Fig. 1.8 Value functions for a leader-follower one-shot investment game in a symmetrical case (left) and in a pre-assigned
case (right). Leader’s value function V1, follower’s value function V2

make his move. The second part of the investment region corresponds to an unusual situation. The leader’s
investment threshold is above the follower’s, meaning that the follower would invest if he were not com-
pelled to wait for the leader’s move. But knowing that as soon as the leader invested, the follower would
do the same, the leader is waiting for the price to reach an excess value to compensate from the immediate
loss that the leader would incur due to the follower’s move.

By this last example, we hope to have shown the very non-intuitive results that can occur when invest-
ment involves a strategic dimension.

1.4 Conclusions

We have tried to show that continuous-time finance methods and stochastic control theory can provide
in-depth quantitative analysis of optimal investment strategies. We have seen that they provide tractable
models to assess the effects of both uncertainty and construction delays. They also make it possible to offer
quantitative measures of the effect of competitive pressure as well as a nice setting to analyse strategic
investment in the case of duopolies. But it is not possible to conceal that the progress made by the theory
of investment under uncertainty during this last quarter century barely translated into firms’ operational
capital budgeting processes. So one should ask first if firms have to change their investment methods and
what work should be done to help fill the gap between theoretical recommendations and methods used in
practice.

1.4.1 What Investment Rule Should Be Applied?

Does all this methodological progress translate into new investment rules for decision-makers in the
electricity sector? Power producers are facing competitive pressure on investment for production assets
with common access, and thus the simple NPV rule with all its known shortcomings should be enough



1 A Review of Optimal Investment Rules in Electricity Generation 35

for them. But there are situations where power utilities could get some insights by using the approaches
presented in this review. For instance, many power utilities have a monopoly on the network (transport or
distribution). Thus, they are in a situation where their investment decision should be made without neglect-
ing their time value. Moreover, power utilities are facing wars of attrition on their retail markets. The first
to increase its price because of an increase in gross market price generally incurs a higher market share loss
than the followers. So there is a trade-off to be found between a sure money loss because of an increasing
supply cost and an uncertain future loss caused by a decreasing market share.

But the methods presented here are still complex and require highly skilled mathematicians to be
applied. They have not led to simple recipes that can be mechanically applied. One cannot expect a
decision-maker to embrace altogether the complexity of industrial projects, the principles of the financial
process and the subtleties of singular control theory or impulse control theory. Now even the real options
trademark is being counterproductive in companies as it may appear to managers as a sophisticated tool
that provides non-intuitive results based on unrealistic assumptions.

1.4.2 Research Prospects

These observations prompt us to propose some guidelines for further research to help fill the gap between
theoretical methods and their applied counterparts.

First, although very interesting from an economic perspective, the comparative statics studies on the
effect of uncertainty modelled as a Gaussian noise on investment timing is of less interest than developing
analyses with more realistic price modelling. It is possible to do it. Research papers already exist presenting
an application of real options theory with an attempt to capture the main properties of the underlying asset
prices [27, 128]. In the case of an electricity generation asset, this is very rarely addressed as an optimal
stopping-time problem in dimension three (electricity, fuel and carbon prices). Nevertheless, some work in
this direction is being undertaken [54].

Second, more realistic risk representations should now be investigated. The methods based on the
computation of the right discount factor as in [101] could be considered a first way to take risk into account
and still preserve a tractable problem. But this is neither the way discount factors are used in practice nor
the way economic theory deals with risk preferences. The alternative method that consists of using a utility
function provides a more rigorous approach to assess the effect of risk on investment timing. It has been
developed more recently by [64, 69]. But if this approach is successful in dealing rationally with risks, it is
too theoretical to succeed in convincing an investment board to take its decision based on a parametric util-
ity function. The real risk of irreversible investment is to be stuck with a flow of profits that does not cover
the fixed costs. However, few research papers deal with the valuation of an investment with a bankruptcy
threshold, whereas it is a common modelling framework in quantitative corporate finance [122]. Moreover,
for the electricity system in itself, the risk takes the form of a reliability threshold. The system should be
designed in such a way that the probability that demand exceeds available production capacity should not
exceed a certain small probability. These kinds of constraints lead to stochastic target problems for which
PDEs’ characterisations are now available [23, 24].

Third, if the first two points are to be developed, then there is little chance to be able to find analytical
solutions and more results will have to rely on numerical methods. Generally the proposed numerical
schemes for variational inequalities begin with the hypothesis that the user has given boundary conditions in
the form of relationships between the value function and its derivatives at some points (see [43, Appendix to
Chap. 10]). The alternative would be to develop more efficient forms of Howard’s algorithm [73] as in [21].

Fourth, one cannot expect to convert financial division managers into masters of optimal control theory.
One important economic research objective would be to find reduced investment rules that would mimic
optimal investment rules. According to [100], this is what corporate finance divisions using profitability
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index and payback time already do. But this is in an intuitive way that does not provide any knowledge of
the ex ante error committed by using these approximative rules. More could be done along this line.

Fifth and last, all this research would be of no interest if the sophisticated methods presented here were
to provide only a negligible benefit. In a sense, the only thing that matters is if a firm’s decision rule
outperforms that of competitors’. Thus more a posteriori performance analysis as done by [44] could be
developed.
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38 René Aı̈d

57. D. Fudenberg and J. Tirole. Understanding rent dissipation: On the use of Game Theory in Industrial Organization.
American Economic Review, 77(2), 176–183, (1985).

58. D. Fudenberg and J. Tirole. Preemption and rent equalization in the adoption of new technology. Review of Economic
Studies, 52, 383–401, (1985).

59. L. Gitman and J. Forrester Jr. A survey of capital budgeting techniques used by major U.S. firms. Financial Management,
6, 66–71, (1977).

60. L. Gitman and V. Mercurio. Cost of capital techniques used by major U.S. firms: Survey and analysis of Fortune’s 1000.
Financial Management, 14, 21–29, (1982).

61. H. Gman. Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy.
Wiley, (2007).

62. H. Gman and A. Roncoroni. Understanding the fine structure of electricity prices. Journal of Business, 79(3), 1225–
1262, (2006).

63. J. R. Graham and C. R. Harvey. The theory and practice of corporate finance: Evidence from the field. Journal of
Financial Economics, 60, 187–243, (2001).

64. M. R. Grasselli. Getting real with real options: A utility-based approach for finite-time investment in incomplete markets.
Journal of Business Finance and Accounting, 38(5), 740–764, (2011).

65. S. R. Grenadier. Equilibrium with time-to-build: A real options approach. Project Flexibility, Agency and Competition.
M. Brennan and L. Trigeorgis (eds), Oxford University Press edition, (2000).

66. S. R. Grenadier. Option exercise games: An application to the equilibrium investment strategies of firms. Review of
Financial Studies, 15(3), 691–721, (2002).

67. M. Grinblatt and S. Titman. Financial Markets and Corporate Strategy. McGraw Hill Higher Education, (2002). 2nd
edition.

68. H. He and R. S. Pindyck. Investment in flexible production capacity. Journal of Economic Dynamics and Control, 16,
575–599, (1992).

69. V. Henderson. Valuing the option to invest in incomplete market. Mathematics and Financial Economics, 1(2), 103–128,
(2007).

70. C. Henry. Option values in the economics of irreplaceable assets. Review of Economic Studies, 41, 89–104, (1974).
71. C. Henry. Investment decisions under uncertainty: The “irreversibility effect”. American Economic Review, 646), 1006–

1012, (1974).
72. J. Houghton. Global Warming: The Complete Briefing. Cambridge University Press, (2009). 4th edition.
73. R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, (1960).
74. J. Hugonnier and E. Morellec. Corporate control and real investment in incomplete markets. Journal of Economic

Dynamics and Control, 31(5), 1781–1800, (2007).
75. K. J. M. Huisman. Technology Investment: A Game Theoretic Real Options Approach. Kluwer Academic Publishers,

(2001).
76. Intergovernmental Panel on Climate Change. Climate change 2007: Synthesis report. Technical report, (2007).
77. International Atomic Energy Agency. Expansion planning for electrical generating systems: A guidebook. Technical

Reports Series 241, Vienna, (1984).
78. International Energy Agency. Projected Costs of Generating Electricity. (1998).
79. International Energy Agency. Projected Costs of Generating Electricity. (2005).
80. International Energy Agency. Energy Technology Perspectives. (2008).
81. International Energy Agency. World Energy Outlook. (2009).
82. International Energy Agency. World Energy Outlook. (2010).
83. International Energy Agency. Projected Costs of Generating Electricity. (2010).
84. M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Markets. Springer, (2009).
85. P. Joskow and J. Tirole. Reliability and competitive electricity markets. RAND Journal of Economics, 38(1), 60–84,

(2007).
86. P. J. Joskow. Vertical integration and long-term contracts: The case of coal-burning electric generating plants. Journal

of Law, Economics, & Organization, 1(1), 33–80, (1985).
87. S. Kaplan. Power plants: Characteristics and costs. Congressional Research Services Report for Congress RL34746, US

Congress, (2008).
88. H. Khatib. Economic Evaluation of Projects in the Electricity Supply Industry. Power and Energy Series. The Institution

of Electrical Engineer, (2003).
89. P. Koeva. The facts about time-to-build. IMF Working Paper WP/00/138, IMF, August (2000).
90. P. Krueger, A. Landier, and D. Thesmar. The WACC fallacy: The real effects of using unique discount rate. 2011. AFA

2012 Chicago Meetings Paper. Available at SSRN: http://ssrn.com/abstract=1764024.
91. N. Kulatilaka and E. C. Perotti. Strategic growth options. Management Science, 44(8), 1021–1031, (1998).
92. F. Kydland and E. Prescott. Time-to-build and aggregate fluctuations. Econometrica, 50(6), 1345–1369, (1982).
93. B. M. Lambrecht and W. Perraudin. Real options and preemption under incomplete information. Journal of Economic

Dynamics and Control, 27, 619–643, (2003).

http://ssrn.com/abstract=1764024


1 A Review of Optimal Investment Rules in Electricity Generation 39

94. E. Lannoye, M. Milligan, J. Adams, A. Tuohy, H. Chandler, D. Flynn, and M. O’Malley. Integration of variable gener-
ation: Capacity value and evaluation of flexibility. IEEE Power and Energy Society General Meeting, (2010).

95. J. Leahy. Investment in competitive equilibrium: The optimality of myopic behavior. Quarterly Journal of Economics,
108, 1105–1133, (1993).

96. S. Madj and R. Pindyck. Time-to-build, option value and investment decisions. Journal of Financial Economics, 18,
7–27, (1986).

97. S. Marglin. Approaches to Dynamic Investment Planning. Amsterdam North-Holland, (1967).
98. S. A. Marglin. Investment and interest: A reformulation and extension of Keynesian theory. The Economic Journal,

80(320), 910–931, (1970).
99. J. Martin and S. Titman. Single vs. multiple discount rates: How to limit “influence costs” in the capital allocation

process? Journal of Applied Corporate Finance, 20(2), 79–83, (2008).
100. R. McDonald. Real options and rules of thumb in capital budgeting. Innovation, Infrastructure, and Strategic Options.

Brennan, M.J. and Trigeorgis, L., Oxford University Press edition, (1998).
101. R. McDonald and D. Siegel. The value of waiting to invest. Quarterly Journal of Economics, 101, 707–727, (1986).
102. R. C. Merton. Continuous-time finance. Wiley-Blackwell, (1992).
103. E. M. Miller. Uncertainty induced bias in capital budgeting. Financial Management, Autumn: 12–18, (1978).
104. A. Moel and P. Tufano. When are real options exercised? An empirical study of mine closings. Review of Financial

Studies, 15(1), 35–64, (2002).
105. J. S. Moore and A. K. Reichert. An analysis of the financial management techniques currently employed by large U.S

corporations. Journal of Business Finance and Accounting, 10(4), 623–645, (1983).
106. F. S. Murphy and Y. Smeers. Generation capacity expansion in imperfectly competitive restructured electricity markets.

Operations Research, 53(4), 646–661, (2005).
107. S. C. Myers. Determinants of corporate borrowing. Journal of Financial Economics, 5, 147–175, (1977).
108. North American Electric Reliability Corporation. Flexibility requirements and metrics for variable generation: Implica-

tions of system planning studies. Technical report, NERC, (2010).
109. R. Novy-Marx. An equilibrium model of investment under uncertainty. Review of Financial Studies,20(7), 1461–1502,

(2007).
110. Nuclear Energy Agency. Reduction of Capital Costs of Nuclear Power Plants. Nuclear Energy Agency, (2000).
111. H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications. Springer, (2011).
112. D. Pilipovic. Energy Risk: Valuing and Managing Energy Derivatives. McGraw-Hill, (1997).
113. D. Pilipovic. Energy Risk: Valuing and Managing Energy Derivatives. McGraw Hill, (2007). 2nd edition.
114. R. S. Pindyck. Adjustment costs, uncertainty, and the behavior of the firm. American Economic Review, 72(3), 415–427,

(1982).
115. R. S. Pindyck. Irreversible investment, capacity choice, and the value of the firm. American Economic Review,78(5),

969–985, (1988).
116. R. S. Pindyck. Irreversibility, uncertainty, and investment. Journal of Economic Literature, 29, 1110–1148, (1991).
117. R. S. Pindyck. A note on competitive investment under uncertainty. American Economic Review, 83(1), 273–277,

(1993).
118. J. Pinegar and L. Wilbricht. What managers think of capital structure theory: A survey. Financial Management, 18,

82–91, (1989).
119. G. Pohl and D. Mihaljek. Project evaluation and uncertainty in practice: A statistical analysis of rate-of-return diver-

gences of 1,015 World Bank projects. World Bank Economic Review, 6(2), 255–277, (1992).
120. A. Porchet, N. Touzi, and X. Warin. Valuation of power plants by utility indifference and numerical computation.

Mathematical Methods for Operations Research, 70(1), 47–75, (2007).
121. J. Quirk and K. Terasawa. Sample selection and cost underestimation bias in pioneer projects. Land Economics, 62(2),

192–200, (1986).
122. J.-C. Rochet and S. Villeneuve. Corporate portofolio management. Annals of Finance, 1, 225–243, (2005).
123. F. A. Roques, D. M. Newbery, and W. J. Nuttall. Fuel mix diversification incentives in liberalized electricity markets: A

mean-variance portfolio theory approach. Energy Economics, 30, 1831–1849, (2008).
124. P. A. Ryan and G. P. Ryan. Capital budgeting tools for Fortune 1000: How have things changed? Journal of Business

and Management, 8(4), 355–364, (2002).
125. P. A. Samuelson. Rational theory of warrant pricing. Industrial Management Review, 6(2), 13–32, (1965).
126. A. Sangster. Capital investment appraisal techniques: A survey of current usage. Journal of Business Finance and Ac-

counting, 20, 307–332, (1993).
127. H. Scarf. The optimality of (S, s) policies in the dynamic inventory problem. In K. J. Arrow, S. Karlin, and S. Suppes,

editors, Mathematical Methods in Social Sciences, pages 196–202. Stanford University Press, (1959).
128. E. Schwartz. Valuing long-term commodity assets. Journal of Energy Finance and Development, 3(2), 85–99, (1998).
129. L. Shao and A. Shao. Risk analysis and capital budgeting techniques of U. S. multinational enterprises. Managerial

Finance, 22, 41–47, (1996).



40 René Aı̈d
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Chapter 2
A Survey of Commodity Markets and Structural Models
for Electricity Prices

René Carmona and Michael Coulon∗

Abstract The goal of this survey is to review the major idiosyncrasies of the commodity markets and the
methods which have been proposed to handle them in spot and forward price models. We devote special
attention to the most idiosyncratic of all: electricity markets. Following a discussion of traded instruments,
market features, historical perspectives, recent developments and various modelling approaches, we focus
on the important role of other energy prices and fundamental factors in setting the power price. In doing
so, we present a detailed analysis of the structural approach for electricity, arguing for its merits over
traditional reduced-form models. Building on several recent articles, we advocate a broad and flexible
structural framework for spot prices, incorporating demand, capacity and fuel prices in several ways, while
calculating closed-form forward prices throughout.

2.1 Introduction

The non-storability of electricity and the wide availability of supply and demand data allow us to understand
and analyse the relationship between prices and underlying drivers more easily than in most other markets.
These characteristics naturally led to the development of a branch of literature which we refer to as struc-
tural models of electricity prices. Making use of similar mathematical tools to the reduced-form models,
structural models dig one level deeper, by identifying at least some of the fundamental sources of random-
ness which appear simply as unobservable diffusion or jump processes in a typical reduced-form approach.
In many cases, including such fundamental variables leads to new challenges, due to the very complicated
nature of the price-setting mechanism in power markets, and difficulty in piecing together the key compo-
nents of the puzzle. Nonetheless, the extra insight on the causes of power price movements brings signif-
icant benefits, both in terms of adapting to changing market environments and different locations, as well
as in capturing cross-commodity correlations and demand dependence which is crucial for accurate pricing
of many common derivatives products and physical assets. Structural models stop short of fully replicating
the intricacies of the price-setting mechanism (as described by optimization-based stack models) in order
to retain tractability and emphasize dominant relationships. Thus, a balance is typically struck between
mathematical convenience and model realism. As such, a broad range of structural models exist, which
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differ both in the number of fundamental relationships they choose to capture and in the techniques used to
capture them.

Electricity is a commodity and as a result, the electricity markets are most often introduced and studied
within the broader framework of the commodity markets. Even though a significant amount of electricity
is generated from renewable sources (e.g. wind and solar) or hydro or nuclear sources, the main production
process remains the conversion of fossil fuels like coal, gas and oil. Since electricity is often traded on
exchanges just a few hours before it is needed, the overall cost of production is essentially the cost of the
fuels used in the production, even in markets with a substantial amount of hydro and nuclear production as
these plants are hardly ever setting the price. In other words, since electricity is essentially not storable, it
must be consumed as it is produced and the costs of production are an important part of the computation
of the supply curve. For this reason, electricity price formation cannot be dissociated from the prices of the
fuels used in its production.

In this context, it is clear that valuation should be done by equilibrium arguments matching supply
and demand. This paper reviews some of the mathematical models used by academics and practitioners
alike and provides an introduction to the class of structural models which build on this idea. The present
introduction gives a series of anecdotes illustrating the recurrent themes developed in the paper.

Electricity burst onto the financial scene with deregulation and the transition from a system where pro-
duction, transportation and distribution of electricity were vertically integrated under the monopoly of util-
ities, to a set of open competitive markets for production and retail, while the grid remained under control.
This unbundling happened over a few years in several parts of the world, but was not equally successful.
Nord Pool (Northern Europe), ERCOT (Texas) and PJM (North-East of the USA) are generally regarded
as successes, but the California experience of the early 2000s was controversial and most of its original
initiatives ended up being reversed in the long run. In any case, deregulation opened up new markets and
a new price formation mechanism emerged based on constant supply—demand balance. While electricity
shares equilibrium pricing with most other commodities, it stands out by the construction of the supply
curve where the different modes of production (hydro, nuclear, solar, wind, coal, oil, gas, etc.) are ordered
(the resulting order being called merit order) in increasing order of costs of production, resulting in what is
known as the production stack. Matching supply with demand leads to the concept of plant on the margin
(or technology on the margin) which is fundamental in the understanding of price formation for electricity
and which is at the heart of the approach taken in this presentation.

The business of producing, delivering and retailing electricity is very complex. It requires capital
intensive investments and long-term financing. Financial mathematics and financial engineering have an
important role to play, far beyond the traditional support of portfolio management. The first challenge has
to do with a very different breed of data analysis: costs and prices are not always available, and when they
are, the amount and the complexity of the data can be overwhelming, including a multitude of locations
(e.g. nodal pricing), the diverse nature of the electricity contracted (spot, day-ahead, on-peak, off-peak,
firm, non-firm, forward etc.), and the fact that, contrary to other commodities and financial products, elec-
tricity prices can be negative. And as if the challenges of the analysis of electricity price data was not
enough, quants have to deal with a slew of derivative products with embedded features rarely seen on
the traditional financial markets. They include features known as swings, recall/take-or-pay options, etc.,
and new derivatives intended to help market participants hedge some of the risks associated with physical
factors impacting the bottom line (weather and emissions, tolling agreements, shipping and freight, gas
storage, cross-commodity derivatives, etc.) While being a constant nightmare for regulators and managers,
the complexity and the diversity of these derivatives became a bonanza for financial engineers and finan-
cial mathematicians who discovered a brand new source of challenging modelling and pricing problems.
See for example [23, 32, 57] and the more recent articles [14, 75, 80] for a sample of mathematical and
numerical developments prompted by the analysis of swing options.

Finally, the need to quantify the creditworthiness of counter-parties and integrate this information in
the valuation algorithms became painfully obvious after the collapse of Enron and the ensuing rash of
defaults in the industry. Ironically, Enron was one of the very first companies advocating the need to take
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counterparty creditworthiness into account in any valuation exercise. The avalanche of bankruptcies and
credit downgrades following Enron’s collapse highlighted the need for a deep understanding of the statistics
of credit migration, appropriate ways to include counterparty risk in the valuation of transactions and
possibly the enhancement of credit protection with specific derivative instruments. Unfortunately, many
of these derivatives depend upon industry indexes based on actual movements in the markets and these
indexes have been proven to be easy targets of manipulation. Systematic reliance on clearing houses has
been proposed as the ultimate solution to these uncertainties, and living with collateral requirements and
margin calls is part of the everyday life of an energy trader. However, most transactions rely on tailor-made
deals and it seems difficult to imagine that a minimal set of instruments could be designed in order to span
all the energy contracts and make clearing a standard solution. We will not discuss these problems in this
survey any further.

Under the influence of Enron, quants and academics alike embraced the real option approach to physical
asset valuation, providing systematic ways to include the physical assets of a company (power plants,
pipelines, barges, tankers, etc.) together with the financial instruments held at a given time, into a single
portfolio. This innovative way to put together apples and oranges on the same book opened the door to
new forms of hedging the risks of financial positions using physical assets, or vice versa. Undoubtedly,
one of the most exciting challenges of the energy markets is the new breed of hedging imposed by the
physical nature of the commodities underlying the financial contracts, and risk management of production
and transportation facilities. Indeed, hedging the risks associated with mixtures of physical and financial
assets is not part of the typical financial mathematics curriculum. While a necessity for electricity producers
and retailers, it was perfected and developed into an art form by investment banks like Goldman Sachs,
Morgan Stanley, and JP Morgan which, in order to optimize returns, have sited and leased power plants,
and taken control of storage facilities and the transportation of goods via leasing of pipelines, tankers, etc.
More than a decade later, these problems are still important drivers in academic research in commodity and
energy market modelling, and the constant flow of academic publications on power plant and gas storage
facility valuations is a case in point. While no obvious benchmark emerged, some of these methods are
widely accepted and their use for marking to market purposes has become a common practice accepted by
regulators. However, the physical nature of some of the assets in the portfolios of energy companies renders
the computation of correlations and risk measures like Value at Risk (VaR) very much a challenge.

The simplest form of real option valuation of a power plant is to equate its value to a string of spread
options, each option capturing the potential profit from the operation of the plant on a given day. In a
nutshell this approach says that on any given day, if the difference between the price at which the electricity
can be sold and the cost of the input fuels needed to produce it (plus the fixed costs of operation and
maintenance of the plant) is positive, the plant should be run and this difference collected as a profit.
While commonly relying on simple lognormal models for the prices of electricity and the input fuels
(see for example [25, 49]), any pricing model with a new approach to capturing the dependence between
electricity prices and the prices of the input fuels is likely to produce new plant valuation results. In this
spirit, [31] suggests models integrating information about correlation contained in the prices of spread
options traded on the market in the form of implied correlations. In this survey, we will review how the
structural approach developed in [21] can provide valuations depending on future demand expectations
and information contained in the forward curves of the input fuels. Viewing a power plant as a string
of spread options is certainly not the only way to value power plants. More sophisticated methods use
stochastic control techniques to take full advantage of the optionality of the plant. See for example [3, 30].
Moreover, some of these methods have been extended to value gas storage and we refer the interested
reader to [27, 28, 50, 77] and the references therein. However, as demonstrated in [21], the structural
approach focuses more on energy price correlations and offers the flexibility of adapting to future scenarios
for demand, capacity and input fuel forward prices.

The versatility and the adaptability of the structural approach is the main reason for our shameless
attempt to promote it. As discussed further in Sect. 2.2, the commodity and energy markets have seen
dramatic changes in the last few years. The impact of some of these changes on electricity prices is rather
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subtle and cannot be easily captured by traditional reduced-form models: the introduction of incentive
programs favouring the use of renewable energy such as wind in Germany or solar in the USA, the impact
of mandatory regulations such as the European Union (EU) emissions trading scheme (ETS) in Europe, the
recent physical coupling of markets (e.g. France and Germany), the increase in correlation between stock
and commodity prices due to index trading, the tightening of correlations between commodities included
in these indexes, the dramatic drop in US natural gas prices following recent shale gas discoveries and
large-scale development of fracking, etc. All of these changes are screaming for the use of flexible models
which can accommodate these new relationships between the fundamental factors driving electricity prices.
Historical prices may not be as relevant as forward-looking information and market knowledge: this gives
structural approaches a big advantage over reduced-form models.

Excellent textbooks on mathematical models for the electricity (and other commodity) markets do exist,
and we strongly recommend the reader to consult [11, 19, 38, 49, 52, 53, 67, 78] for the many aspects of
the markets which we will not be able to cover in this survey.

We close this introduction with an outline of the contents of the paper. Section 2.2 gives a crash course
on the commodity markets. The focus is mostly on energy and trading of the fuels entering the production
of electricity. A discussion of the impact of index trading is included to emphasize, for better or worse,
the growing socio-economic role played by commodity trading. The specific nature of the data needed
to understand these markets is discussed and the importance of the forward markets is reflected in the
construction of price models. The goal of Sect. 2.3 is to highlight how different electricity is from the other
energy commodities. Its non-storability forces a difficult balancing act where supply and demand need to
be matched in real time since electricity needs to be consumed as it is produced. Section 2.4 expands on
the earlier discussions to introduce the building blocks of the structural models which we advocate in this
survey. Section 2.5 then uses these ingredients to propose general classes of structural models for which
closed-form prices of forward contracts can be found. We also discuss various issues related to model fitting
and calibration, before concluding in Sect. 2.6.

2.2 Generalities on the Commodity Markets

As explained in the introduction, in order to understand the fundamentals of electricity prices and especially
the rationale for the structural models which we advocate, it is important to understand how electricity is
produced and the costs associated to the various fuels used in the process. This is the main reason for the
need to understand the crude oil, coal and natural gas markets (before returning to electricity in the next
section). Despite the fact that these represent only a small part of the commodity world, we discuss their
main features as they pertain to commodity markets in general.

2.2.1 Trading Commodities

Commodities are considered as a separate asset class. Because of the physical nature of the interest
underlying the contracts, their prices are determined by equilibrium arguments which involve matching
supply and demand for the physical commodity itself. On the supply side, estimating and predicting inven-
tories and quantifying the costs of storage and delivery are important factors which need to be taken into
account. This is not always easy in the context of standard valuation methods which are mostly based on
traditional finance theory (think for example of NPV which attempts to compute the present value of the
flow of future dividends).

Whether they were called spot markets (when they involved the immediate delivery of the physical
commodity) or forward markets (when delivery was scheduled at a later date), commodity markets started
as physical markets. Trading volume exploded with the appearance of financially settled contracts. While
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forward contracts are settled over the counter (OTC) and, as such, carry the risk that the counterparty may
default and not meet the terms of the contract, most of the financially settled contracts are exchange-traded
futures for which the exchange acts as clearing house controlling default risk by a system of margin calls
and attracting speculators to provide liquidity to the markets. While trading in physically and financially
settled contracts were traditionally the two ways an investor could gain exposure to commodities, the cre-
ation of indexes and the increasing popularity of index tracking exchange-traded funds (ETFs) have offered
a new way to gain exposure to commodities. Investing in commodities was promoted as the perfect port-
folio diversification tool as they were believed to be negatively correlated with stocks. The exponential
growth of this new form of investment in commodities which took place over the last decade may have
been a self-defeating prophecy as recent econometric studies have shown that this form of index trading
has created new correlations between commodities and stocks and between the commodities included in
the same index. Furthermore, Bouchouev [17] argues that the influence of investors has overturned Keynes’
well-known ‘theory of normal backwardation’, causing a recent predominance of forward curves in con-
tango, thus further weakening the attractiveness of investing in these markets.

One of the many convenient features of commodity trading is the specialization of the exchanges, lead-
ing to a simple correspondence between commodities and locations where they are traded. In other words,
a given commodity is traded on one or a small number of specialized exchanges. The following table gives
a few examples of some of these exchanges in the USA and in Europe.

Exchange Location Contracts

Chicago Board of Trade (CBOT) Chicago Grains, ethanol, metals
Chicago Mercantile Exchange (CME) Chicago, USA Meats, currencies, Eurodollars
Intercontinental Exchange (ICE) Atlanta, USA Energy, emissions, Agricultural
Kansas City Board of Trade (KCBT) Kansas City, USA Agricultural
New York Mercantile Exchange New York, USA Energy, precious metals,
(NYMEX) Industrial metals
Climex (CLIMEX) Amsterdam, NL Emissions
NYSE Liffe Europe Agricultural
European Climate Exchange (ECX) Europe Emissions
London Metal Exchange (LME) London, UK Industrial metals, Plastics

There are several ways in which investors gain exposure to commodities:

1. The old fashion way to invest in commodities is to actually purchase the physical commodity itself.
However most investors are not ready or equipped to deal with issues of transportation, delivery, storage
and perishability. This form of involvement in commodities was created for and is essentially limited to
the naturals, namely the hedgers who mitigate the financial risks associated with uncertainties in their
production and delivery of these commodities.

2. Another way to gain exposure to commodities is to invest in stocks in commodity intensive businesses:
for example buying shares of Exxon or Shell as a way to invest in oil. However, this type of investment
offers at best an indirect exposure as shares of natural resource companies are not perfectly correlated
with commodity prices.

3. A more direct form is straight investment in commodity futures and options. The exchanges offer trans-
parency and integrity through clearing and relatively small initial investments are needed to take large
positions through leverage. However, this convenience comes at a serious price as discovered by many
rookies who ended up choking, unable to face the margin calls triggered by adverse moves of the values
of the interests underlying the futures contracts. Also, purely speculative investments of this type may
need to be structured with a careful rolling forward of the contracts approaching maturity in order to
avoid having to take physical delivery of the commodity: trading wheat futures can be done from the
comfort of an office set up in a basement, but taking physical delivery of one lot (i.e. 5,000 bushels) of
wheat requires a large backyard!
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4. The final way to gain exposure to commodity which we discuss is investing directly in Commodity
Indexes or in ETFs tracking these commodity indexes. Many ETFs simply invest in the nearest forward
contract and automatically ‘roll’ the investment into the next month’s contract near maturity. This form
of passive investment (after all there is no need for a commodity trading advisor (CTA) for that) has
become very popular as a way to diversify an investment portfolio with an exposure to commodities
without having to deal with the gory details of all the convoluted idiosyncrasies of the relevant markets.
Nevertheless, an understanding of forward curve dynamics and the effect of monthly rolls is still vital,
as a recent investor in the natural gas ETF would undoubtedly agree: between June 2008 and March
2012 this ETF (called UNG) lost a shocking 96 % of its value, with roughly half attributable to the spot
price drop and half to the steep contango witnessed throughout this period.

According to Barclays’ internal reports, in 2006–2007, index fund investment increased from 90 billion
to 200 billion USD. Simultaneously, commodity prices increased 71 % as measured by the CRB index.
However, when prices declined dramatically from June 2008 through early 2009, many pointed to the large-
scale speculative buying by index funds, arguing that this created a bubble as futures prices far exceeded
fundamental values. Some economists (including Nobel Prize winner P. Krugman, Pirrong, Sanders, Irwin,
Hamilton and Kilian) remained sceptical about the ‘bubble theory’ arguing that prices of commodities are
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set by supply and demand and that rapid growth in emerging economies (e.g. China) increased demand
and caused the 2008 surge in price. This did not stop commodity index investing from being under attack.
Increased participation in futures markets by non-traditional investors was deemed disruptive and blamed
for the 2007–2008 ‘Food Crisis’ that is at the origin of the famous Casino of Hunger: How Wall Street
Speculators Fueled the Global Food Crisis. A report from the U.S. Senate Permanent Subcommittee on
Investigation

. . .finds that there is significant and persuasive evidence to conclude that these commodity index traders, in the aggre-
gate, were one of the major causes of unwarranted increases in the price of wheat futures contracts relative to the price
of wheat in the cash market. . .

To add insult to injury, a group of 48 agriculture ministers meeting in Berlin said they were

. . .concerned that excessive price volatility and speculation on international agricultural markets might constitute a
threat to food security. . .,
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according to a joint statement handed out to reporters on January 22, 2011. It is an empirical fact that return
correlations are no longer what they used to be and now commonly accepted that commodity index trading
tightened correlations between commodities [73]. However, many argue that this is a scale-dependent
phenomenon and it seems that high-frequency traders do not see (and hence ignore) these correlation
increases. Broadly speaking, the financialization of commodities should refer to the increased leverage and
the exponential growth of financially settled contracts dwarfing their physically settled counterparts. More
recently, this term has been used to refer to the significant impact of index trading on commodity prices
and, even more narrowly speaking, to the increased correlations between the commodities included in the
same index and also between equity returns and commodity index returns. This last fact is illustrated in
Fig. 2.1 which shows the time evolution as given by a Kalman filter, of the time-dependent ‘beta’ of the
least squares linear regression of the Goldman Sachs Commodity Index Total Return against the returns of
the S&P 500 index.

In this paper, our interest in commodities is mostly focused on the commodities used in the production
of electricity and in particular to crude oil and natural gas which are heavily represented in most commodity
indexes. What we learn from the above discussion is that recent changes may affect their correlation and the
correlation they have with the broader financial markets. Figure 2.2 shows weekly average spot (or nearest
forward) prices for electricity, natural gas and crude oil, and illustrates the strong correlations between
these energy commodities over a ten-year period. While the 2008 ‘bubble’ is most dramatic for crude oil,
natural gas and power prices also rose sharply. In our search for electricity pricing models, it is important
to bear in mind the diverse and changing factors affecting commodity markets in general.
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2.2.2 Spot and Forward Prices

As we explained in the introduction, commodities are mostly traded through forward contracts and the first
challenge of a quantitative analysis is the computation of the term structure of forward prices. Figures 2.3
and 2.4 give the time evolution of the price of the nearest forward contract of crude oil and natural gas,
respectively, as used as a proxy for the spot price. In each case, we chose a few dates and superimpose
the entire forward curve on these dates. We shall come back to these figures later in this section when
we discuss the forward prices as expectations of future values of the spot price. In the case of crude oil
or natural gas for which data are readily available, standard principal component analysis (PCA) gives
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satisfactory results and shows that three factors are typically enough to explain over 95% of the variation
in the daily changes in the forward curve. Like in the original analysis of the yield curve by Litterman and
Scheinkman [63], the three factors are identified as parallel shift, tilt and convexity. These account for the
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Fig. 2.4 Natural gas: time series of nearest forward prices and of a few forward curves

backwardation/contango duality illustrated in Fig. 2.5 for the case of crude oil. However, the strong season-
ality of natural gas (NG) forward curves makes an analysis in principal components more problematic and
quite a significant ‘massaging’ of the data is required for PCA to be used with any kind of success. Later in
the section, we discuss a standard model for the time evolution of commodity forward curves. We use this
theoretical model to give the fundamental rationale for PCA, and we explain within this framework how
seasonality can be identified and accounted for. This leads to a procedure suggested first in [38] to perform
PCA in the case of commodities with a strong seasonal component.

The analysis of electricity data can be more challenging as extreme complexity involving location,
grade, peak/off-peak, firm/non-firm, interruptible, swings and other contract specifics can muddy the water
for the data analyst. Inconsistencies between different sources of information, illiquidity, wide bid-ask
spreads, and delivery periods cascading from annual to quarterly to monthly as maturity approaches, etc.,
all require specific data manipulations which affect the outcome of the analysis. Nevertheless, Koekebakker
and Ollmar [62] used PCA to show that 75 % of the forward price variation can be explained by two factors,
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Fig. 2.5 Four different crude oil forward curves. Two are rather flat, one is in contango, the last one in backwardation

while this number is closer to 95 % in other markets such as interest rates. Evidence from the Nord pool
market indicates that long-term forwards appear to be driven by different factors from short-term forwards.
Based on a similar PCA, Audet et al. [5] propose a forward price structure with decreasing correlation as
difference between maturity increases.

Throughout the paper, we shall use the notation F(t,T ) for the value at time t of a forward contract with
maturity T and S(t) (or St) for the spot price at time t. We use the term maturity by analogy with the fixed
income markets, although delivery date is a term better suited to commodities. Forward contracts include
the exact grade of the commodity to be delivered, and the terms of the delivery. For some commodities
(for example natural gas and electricity), the date of delivery is not really a date, but a period over which
the delivery is taking place. So a more appropriate notation would be F(t,T1,T2) if the delivery is spread
uniformly over the time interval between T1 and T2. In the case of electricity prices, we refer the interested
reader to [11] for a lucid mathematical treatment of this issue, explanations of how to relate F(t,T ) to
F(t,T1,T2), and modelling approaches geared towards handling delivery periods.

For commodities, the term spot price means the price of the commodity for immediate delivery. Mathe-
matically, this would mean that S(t) = limT↘t F(t,T ). In practice, immediate delivery is highly unrealistic,
and different time lags before delivery exist for different markets. In many cases, we use the price of the
nearest contract as a proxy for the spot price. This is in analogy with the use of the three month T-bill
as a proxy for the instantaneous (short) interest rate in many studies. However, it is important to keep in
mind the differences between commodities. Using the price F(t,T ) of the nearest contract (i.e. the maturity
date T closest to t) gives a time-to-maturity lag T − t which varies from a few days to almost 1 month as t
varies. So when we use such a proxy for the spot price of crude oil or natural gas, the resulting approxima-
tion evolves over time as an accordion. However, when treating the price for next day delivery as the spot
price of electricity, this phenomenon is not present since T − t remains constant and equal to 1 day!

One of the most useful concepts for the analysis of instruments traded on a forward basis is the spot–
forward relationship which was proven to be a powerful tool in the analysis of financial markets where
one can hold positions at no cost and easily take short positions. In that case, a simple arbitrage argument
shows that

F(t,T ) = S(t)er(T−t),

where r denotes the short interest rate. Since we are using a deterministic interest rate, forward and futures
prices coincide in our mathematical treatment. Furthermore

F(t,T ) = Et [S(T )],
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where the above expectation is a risk-neutral expectation conditioned by all the information available at
time t. However, when bought with the intent to be sold later, a physical commodity needs to be transported
and stored, adding to the cost of the financing of the purchase. On the other hand, holding the physical
commodity can be advantageous, particularly in times of market stress or during supply shocks. The theory
of storage was developed with the intention of explaining normal backwardation arguing that F(t,T ) is
a downward-biased estimate of S(T ), namely the spot price exceeds the forward prices. (See Figs. 2.3
and 2.4 for example.) In order to translate this into a reduced-form expression and explain the different
relationships between spot and forward prices, the notion of convenience yield was introduced. Next we
review some of the quirks of this theory, even though we should keep in mind that while it can be applied
to crude oil, natural gas, coal (fuels used in electricity production), it does not apply to electricity prices
since for all practical purposes, electricity is not a storable commodity.

2.2.2.1 The Case of Storable Commodities

The argument above leads to the formula

F(t,T ) = S(t)e(r−δ )(T−t)

for some quantity δ ≥ 0 which is called the convenience yield. If we decompose this quantity in the form
δ = δ1− c with δ1 modelling the benefit from owning the physical commodity and c the costs of stor-
age, then

F(t,T ) = er(T−t)e−δ1(T−t)e−c(T−t),

where er(T−t) represents the cost of financing the purchase, ec(T−t) the cost of storage, and e−δ1(T−t) the
sheer benefit from owning the physical commodity. The advantage of this representation, as artificial as it
may be, is to explain the backwardation/contango duality within the proposed framework. Indeed, backwar-
dation which occurs when the curve T ↪→ F(t,T ) = S(t)e(r+c−δ1)(T−t) is decreasing holds when r+c < δ1,
namely when benefits of holding the commodity outweigh interest rates and storage costs. On the other
hand, the forward curve is in contango, namely the curve T ↪→ F(t,T ) = S(t)e(r+c−δ1)(T−t) is increasing,
when r+ c≥ δ1. Empirical evidence shows that the convenience yield changes over time, and that it is re-
lated to several economic indicators and, in particular, inversely related to inventory levels. So it is natural,
as we do next, to include it as a stochastic factor in a pricing model.

2.2.3 Convenience Yield Models

For quite a long time, the standard model has been the Gibson–Schwartz [55] two-factor model with factors
given by the commodity spot price St and the convenience yield δt . It posits risk-neutral dynamics of
the form {

dSt = (rt − δt)St dt +σSt dW 1
t ,

dδt = κ(θ − δt)dt +σδ dW 2
t .

(2.1)

One of the major attraction of the model is that, being a particular case of the so-called exponential affine
models, explicit formulas are available for many derivatives. In particular the prices of the forward contracts
are given by
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F(t,T ) = Ste
∫ T
t rsdseB(t,T )δt+A(t,T ),

where

B(t,T ) =
e−κ(T−t)− 1

κ
,

A(t,T ) =
κθ +ρσsγ

κ2 (1− e−κ(T−t)−κ(T − t))+

+
γ2

κ3 (2κ(T − t)− 3+ 4e−κ(T−t)− e−2κ(T−t)).

However, as demonstrated in [29], this strength of the model comes at a price. For any given maturity T , one
can follow the time evolution of the forward price F(t,T ) from market quotes, and from the above formulas,
one can infer for each day t the value of the convenience yield δt . Internal consistency of the model requires
that this implied convenience yield is independent of the choice of the particular contract maturity T .
However, Fig. 2.6 borrowed from [29] shows that this is not the case. Instabilities and inconsistencies in
the implied δt demonstrate that the two-factor model ignores significant maturity specific effects.

As suggested in [29], one possible way out of this quandary is to model directly the historical dynamics,
for each fixed maturity T0, of the forward price Ft = F(t,T0) instead of the spot St , assuming that

dFt = (μt − δt)Ft dt +σFt dW 1
t ,

dδt = κ(θ − δt)dt +σδ dW 2
t

or more generally

dδt = b(δt ,Ft)dt +σδ (δt ,Ft)dW 2
t .
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Fig. 2.6 Crude oil convenience yield implied by a 3 month futures contract (left). Difference in implied convenience yields
between 3 and 12 month contracts (right)

One can still compute the values of the convenience yield implied by the model. Indeed the assumption
that Ft is tradable and observable while the forward convenience yield δt is not sets up a standard filtering
problem which can be solved to construct a convenience yield for each maturity. See [29] for details.
There are other approaches to modelling the term structure of convenience yield, and the reader may want
to consult [15] for a risk-neutral approach à la Heath–Jarrow–Morton (HJM) which bares to the Gibson–
Schwartz model (2.1) the same relationship as the classical HJM models to the standard short-rate models.
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2.2.4 Dynamic Model for the Forward Curves

In this subsection, we follow [38] to describe a standard HJM-like n-factor forward curve model which we
use to derive the dynamics of the spot commodity model, and prepare for the explanations given in the next
subsection on how to calibrate the model to price data using PCA, even when strong seasonal effects spoil
a direct and naive application of the method. We start with a model under the historical measure

dF(t,T )
F(t,T )

= μ(t,T )dt +
n

∑
k=1

σk(t,T )dWk(t) t ≤ T, (2.2)

where W = (W1, . . . ,Wn) is an n-dimensional standard Brownian motion and the drift μ and the volatilities
σk are deterministic functions of t and the time-of-maturity T . Notice that μ(t,T ) will be set to zero for
pricing purposes. In general, μ(t,T ) is calibrated to historical data for risk management applications. By
the simplicity of this lognormal model, explicit solutions exist for the forward prices:

F(t,T ) = F(0,T )exp

[∫ t

0

[
μ(s,T )− 1

2

n

∑
k=1

σk(s,T )2

]
ds+

n

∑
k=1

∫ t

0
σk(s,T )dWk(s)

]

and the forward prices are lognormal random variables of the form

F(t,T ) = αeβX−β 2/2

with X ∼ N(0,1) and

α = F(0,T )exp

[∫ t

0
μ(s,T )ds

]
, and β =

√
n

∑
k=1

∫ t

0
σk(s,T )2ds.

From these, we can derive an expression for the spot price S(t) = F(t, t) defined as the left-hand point of
the forward curve:

S(t) = F(0, t)exp

[∫ t

0
[μ(s, t)− 1

2

n

∑
k=1

σk(s, t)
2]ds+

n

∑
k=1

∫ t

0
σk(s, t)dWk(s)

]
,

and differentiating both sides we get an equation for its dynamics:

dS(t) = S(t)

[(
1

F(0, t)
∂F(0, t)
∂ t

+ μ(t, t)+
∫ t

0

∂μ(s, t)
∂ t

ds− 1
2
σS(t)

2

−
n

∑
k=1

∫ t

0
σk(s, t)

∂σk(s, t)
∂ t

ds+
n

∑
k=1

∫ t

0

∂σk(s, t)
∂ t

dWk(s)

)
dt +

n

∑
k=1

σk(t, t)dWk(t)

]

from which we can identify the spot volatility

σS(t)
2 =

n

∑
k=1

σk(t, t)
2. (2.3)

Hence, if we define the Wiener process W̃t by W̃t = σS(t)−1∑n
k=1σk(t, t)dWk(t), then the dynamics of the

spot can be rewritten in the form:

dS(t)
S(t)

=

[
∂ logF(0, t)

∂ t
+ d(t)

]
dt +σS(t)dW̃t
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provided we define the drift component d(t) by

d(t) = μ(t, t)− 1
2
σS(t)

2 +
∫ t

0

∂μ(s, t)
∂ t

ds−
n

∑
k=1

∫ t

0
σk(s, t)

∂σk(s, t)
∂ t

ds

+
n

∑
k=1

∫ t

0

∂σk(s, t)
∂ t

dWk(s).

Looking more closely at the expression giving the drift we notice that, in a risk-neutral setting, the loga-
rithmic derivative of the forward can be interpreted as a discount rate, while d(t) can be interpreted as a
convenience yield. We also notice that the drift is generally not Markovian. However, in the particular case
of a single factor, when μ(t,T ) ≡ 0, and σS(t) = σ1(t,T ) = σe−λ (T−t) which is consistent with what is
known as the Samuelson’s effect, we have

d(t) = λ [logF(0, t)− logS(t)]+
σ2

4λ
(1− e−2λ t),

and the dynamics of the spot become

dS(t)
S(t)

= [μ(t)−λ logS(t)]dt +σdW(t),

which shows that in this case, the spot price is an exponential Ornstein–Uhlenbeck process, an instance of
the formal equivalence between mean reversion and the exponential decay of the forward volatility away
from maturity.

2.2.5 Rationale for PCA

For data analysis and computational purposes, it is convenient to change variable from the time-of-maturity
T to the time-to-maturity τ . This changes the dependence upon t in several formulas. To be specific, if
we set

t ↪→ F(t,T ) = F(t, t + τ) = F̃(t,τ)

for pricing purposes, it is important to keep in mind that for T fixed, {F(t,T )}0≤t≤T is a martingale while
for τ fixed, {F̃(t,τ)}0≤t is NOT! The dynamics of the forward prices in this parameterization (known as
Musiela parameterization) become

dF̃(t,τ) = F̃(t,τ)

[(
μ̃(t,τ)+

∂
∂τ

log F̃(t,τ)
)

dt +
n

∑
k=1

σ̃k(t,τ)dWk(t)

]
, τ ≥ 0

if we set

μ̃(t,τ) = μ(t, t + τ) and σ̃k(t,τ) = σk(t, t + τ).

We use the above model for the evolution of the forward curves to justify PCA, and in so doing, we explain
how to handle seasonal effects (as seen in the case of natural gas). Our fundamental assumption is that the
volatilities appearing in (2.2) are of the form

σk(t,T ) = σ(t)σk(T − t) = σ(t)σk(τ)
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for some function t ↪→ σ(t). Then, the spot volatility σS(t) defined in (2.3) becomes

σS(t) = σ̃(0)σ(t)

provided we set

σ̃(τ) =

√
n

∑
k=1

σk(τ)2,

and as a consequence, t ↪→ σ(t) is (up to a constant) the instantaneous spot volatility. This simple remark
provides us with a rationale for a new form of PCA which we now describe. First we fix times-to-maturity
τ1, τ2, . . ., τN and we assume that on each day t, quotes for the forward prices with times-of-maturity
T1 = t + τ1, T2 = t + τ2, . . ., TN = t + τN are available (some smoothing is required beforehand as these
exact maturity dates are typically not available). From the model we know that

dF̃(t,τi)

F̃(t,τi)
=

(
μ̃(t,τi)+

∂
∂τ

log F̃(t,τi)

)
dt +σ(t)

n

∑
k=1

σk(τi)dWk(t) i = 1, . . . ,N.

So if we define the matrix F by F = [σk(τi)]i=1,...,N, k=1,...,n, the instantaneous variance/covariance matrix
{M(t); t ≥ 0} defined by

Mi, j(t)dt = d[log F̃( · ,τi), log F̃( · ,τ j)]t

and satisfies

M(t) = σ(t)2

(
n

∑
k=1

σk(τi)σk(τ j)

)
= σ(t)2FF∗.

We summarize the successive steps of the procedure in the following way:

• Estimate the instantaneous volatility σ(t) (e.g. in a rolling window).
• Estimate FF∗ from historical data as the empirical auto-covariance of ln(F(t, ·))− ln(F(t− 1, ·)) after

normalization by σ(t).
• Perform a singular value decomposition (SVD) of the auto-covariance matrix and extract the eigenvec-

tors τ ↪→ σk(τ).
• Choose the order n of the model according to the rate of decay of the corresponding eigenvalues.

2.2.6 New Commodity Markets

While several new markets were introduced in the recent past, including for example freight trading, we
limit this review to a short discussion of the two markets with relevance to electricity.

2.2.6.1 The Weather Markets

As will be emphasized once more in the next section, temperature is typically the dominant variable deter-
mining demand for electricity. This is certainly true in countries like the USA, where air-conditioning is the
major source of demand in the summer and heating is often a significant factor during the winter. In order
to mitigate some of the risks associated with unpredictable fluctuations in demand, electricity producers
and merchants have been the major driving force behind the design and the development of the weather
markets. US Commerce Secretary, William Daley, said in 1998,
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Weather is not just an environmental issue; it is a major economic factor. At least 1 trillion USD of our economy is
weather-sensitive.

It is estimated that 20 % of the world economy is directly affected by weather, with the energy sector being
concerned the most, followed by the entertainment and tourism industries. While we are not discussing
these markets further for fear of distracting the reader from the main thrust of this review article, we refer
the interested reader to a sample of papers addressing valuation issues [20, 69], risk transfer mechanism
[10], the comprehensive book [6], and to the website of the weather risk management association (WRMA)
for more information about these markets. While temperature is the deepest and most liquid of the weather
markets, other meteorological variables such as humidity and precipitation have also been shown to have
significant correlations with electricity demand, while rainfall, cloud cover and wind speed clearly also
affect electricity supply from hydro, solar and wind energy. Coupled with the impact of these variables
on the revenues of businesses such as amusement parks or road construction, separate instruments were
introduced, though not with the appeal and the success of temperature options. See for instance [24] for an
example of rainfall option pricing.

2.2.6.2 The Emissions Markets

As equilibrium pricing of commodities is based on matching demand with supply, the latter being directly
affected by the costs of production of electricity, any regulation changing these costs will have a significant
impact on the price of electricity. Modelled after the successful cap-and-trade schemes used in the US acid
rain program to control SOx and NOx emissions, the mandatory emissions trading scheme (ETS) created by
the European Union (EU) for the purpose of meeting its CO2 emissions commitments within the framework
of the Kyoto protocol has demonstrated that for pricing purposes, the cost of emissions must be included
in the costs of production. So for all practical purposes, CO2 emissions can be considered as an additional
fuel and carbon allowance price as an additional factor driving electricity price. While early incarnations of
allowance redemption for the purpose of emission offsetting were mostly done on a voluntary basis in the
USA, RGGI (Regional Green House Gas Initiative) covering ten states in the North-East of the country and
the recently adopted California legislation have prompted electricity producers and merchants to include,
like their European counterparts, the price of CO2 emissions in the price of electricity. We shall not dwell
on this issue in this survey paper, but the reader may wish to consult [26, 56] for more on the link between
power markets and equilibrium emissions allowance prices, as well as [22], where the structural approach
in this paper is extended to include the cost of CO2 emissions when pricing spreads for the purpose of
power plant valuation.

2.3 What Is So Special About Electricity?

Given the material reviewed earlier, the obvious answer which first comes to mind is the fact that one
cannot store the physical commodity (economically, in any meaningful quantity). But there are many other
features which distinguish electricity from other commodities and this section is attempting to review how
they impact electricity price formation.

The services provided by power traders include physical delivery of electricity as well as financial
obligations. The delivery may be firm or non-firm, short or long term, one-time or stretching over time.
In order for mathematical models for electricity prices to be tractable, they often ignore the diversity of
these conditions and concentrate on easier to capture features. Like with other commodities, trading is
mostly done on a forward basis, but the nature of the delivery as well as the spectrum of delivery dates
common in the electricity markets is quite peculiar. Typically what we mean by spot market is in fact a
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day-ahead market, so what we shall mean by forward market is a market on which contracts with deliveries
beyond 1 day are traded. For longer term contracts, the delivery of the power as specified in the indenture
of the contract has to take place over a period [T1,T2] as opposed to a fixed date as assumed by most
mathematical models. Delivery periods are often monthly, but restricted to certain times of the day or
week (e.g. on-peak or off-peak), and these should be treated differently because of significant differences
in price levels and volatilities. Here, for the sake of simplicity, we shall only deal with contracts with
fixed maturity dates and also avoid differentiating between deliveries at different times of the day or any
other contract variations. While voluminous, electricity forward data are still sparse because of the large
number of locations and flavours of deliveries, and despite the encouragements of the Committee of Chief
Risk Officers of energy companies and their upbeat white papers, prices still lack transparency and poor
reporting (or lack thereof) still hinders the development of healthy electricity markets.

Given the complexities of forward curve data, it is perhaps not surprising that the spot price often serves
as the preferred starting point for modellers. Figure 2.7a gives a time series plot of the daily average spot
price of electricity on the PJM exchange between 2000 and 2010. What we call the spot price is the market
clearing price set for each hour in the day-ahead auction. The system operator needs advanced notice to
make sure that the schedule is feasible and transmission constraints are met. Hence a ‘day-ahead’ price
is determined via a large optimization problem, but as rebalancing of supply and demand is required up
until actual delivery, a ‘real-time’ price also exists (and is sometimes referred to as the spot price). In any
case, the type of time evolution shown in Fig. 2.7a has nothing in common with equity prices or even other
commodity prices. The most obvious difference is the high frequency of sudden spikes when the price
jumps up very quickly before dropping down to near its previous level in a very short amount of time. As
a result, the volatility of the ‘returns’ (a questionable term for a non-storable commodity!) is excessively
high, say in a range from 50% up to 200% which is very different from the volatility of other financial
products.

In line with the structural approach described in the next section, we made a definite choice to answer
the question ‘Which spot price should one use?’. But mathematical models could also be developed for the
real-time price, the price on the balancing market, the balance-of-the-week price, the balance-of-the-month
price, etc. For all these mathematical models to be consistent, the diversity of candidates begs the question:
can a complete forward curve be constructed (for all T ) and does the forward price then converge to spot as
the time to maturity goes to zero? If this is indeed the case, it would make sense to define the ‘mathematical
spot price’ as

S(t) = lim
T↓t

F(t,T )

as we did in Sect. 2.2.4 and expect that its statistical properties will coincide with those of the day-ahead
price chosen as a proxy.

2.3.1 More Data Peculiarities

Beyond the issues already mentioned (e.g. integrity, sparsity), one of the most surprising features of elec-
tricity prices is the fact that some of them are frequently negative. If we consider for example the case
of the PJM (Pennsylvania, New Jersey, Maryland) region in the North-East of the USA, every single day,
real-time and day-ahead prices as well as hour by hour load prediction for the following day are published
for over 3,000 nodes in the transmission network, and many negative prices can be found. For example,
in 2003 over 100,000 such hourly instances occurred across the grid. They come in geographic clusters,
at special times of the year (shoulder months) and times of the day (night and early morning). The first
suspects are obviously errors in predictions of the load and high temperature volatilities. More sophisticated
explanations involve network transmission and congestion, causing an oversupply in one location and an



2 A Survey of Commodity Markets and Structural Models for Electricity Prices 57

undersupply in another. While we do not want to dwell on the issue of negative prices, it is a useful example
to highlight the fact that electricity pricing cannot be done by mere application of techniques and results
developed for the financial markets and that the physical nature of the commodity, its demand patterns and
the idiosyncrasies of its production and transmission need to be taken into account.
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Fig. 2.7 (a) Historical daily average prices and (b) sample bid stacks from the PJM market in the North-East USA

2.3.2 Modelling the Demand: The Load/Temperature Relationship

As explained earlier, demand for electricity in the USA is in great part driven by weather conditions and
especially temperature. Figure 2.8 illustrates this fact by showing that a simple regression can be used to
predict the demand for electricity as a function of the temperature. As a result, weather dynamics need to
be included in pricing and this adds another source of incompleteness to the mathematical models.

2.3.3 Reduced-Form Models

By nature, reduced-form models try to identify stylized properties of electricity prices and capture them in
simple relationships from which derivative prices can be obtained, preferably through analytic formulas.
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So instead of modelling the fundamentals of supply and demand and having prices appear as the result of
equilibrium considerations, reduced-form models strive for tractability, and for this reason, they usually
involve a small number of factors and parameters. The source of their popularity is the fact that their fairly
simple formulation often leads to theoretical developments which can be tested against empirical evidence.
In this spirit, the term structure of forward prices is most often derived from simple reduced-form models
for the spot price via the spot–forward relationship discussed earlier.

An early spot price model by Lucia and Schwartz [64] proposed a two-factor diffusion model to capture
the different short- and long-term dynamics of power prices. Building on ideas in [71], this model was
based on an ansatz of the form St = exp( f (t)+Xt +Yt) where f (t) is a seasonality function and the two
factors Xt and Yt satisfy {

dXt =−κXtdt +σXdWt

dYt = μdt +σY dW̃t
(2.4)

and the two Brownian Motions Wt and W̃t can be correlated. The initial success of the model can be at-
tributed to the fact that spot and forward prices are lognormal in this model and Black–Scholes-like formu-
las can be derived for option prices. However, the importance of electricity spikes prompted many authors
to add jumps to the mix, leading to the popularity of jump-diffusion processes (cf. [34, 61]). As noticed
in the analysis of credit models, including jumps does not necessarily mean giving up on closed-form for-
mulas for forwards and options. Indeed working in the affine jump-diffusion framework promoted in [46]
by Duffie, Pan and Singleton still leads to convenient formulas for derivative prices. Indeed, if we assume
that Xt ∈ R

n is a vector of state variables, Wt a standard n-dimensional Wiener process and Zt a pure jump
process, the times of jump forming a point process on [0,∞) with intensity λ (Xt), the jumps sizes being
independent and identically distributed in R

n with common distribution ν , and if they satisfy

dXt = μ(Xt)dt +σ(Xt)dWt + dZt (2.5)

with

μ(Xt) = A1 +A2Xt , σ(Xt)σ(Xt)
† = A3 +A4Xt , and λ (Xt) = A5 +A6Xt ,

where A1 ∈ R
n, A2,A3 ∈ R

n×n, A4 ∈ R
n×n×n, A5 ∈ R

m and A6 ∈ R
m×n and we use the notation † to

denote the transpose of a vector or a matrix, then the conditional characteristic function of Xt has the form

ψ(u) = Et [e
u†XT ] = eα(t)+β (t)

†Xt for t ≤ T

for any u ∈ C, where α(t) ∈ R and β (t) ∈ R
n satisfy the Riccati ordinary differential equations

d
dt
α(t) = −A†

1β (t)−
1
2
β (t)†A3β (t)−A†

5[ζ (β (t))− 1]

d
dt
β (t) = −A†

2β (t)−
1
2
β (t)†A4β (t)−A†

6[ζ (β (t))− 1]

with α(t) = 0 and β (t) = u, and where ζ (c) =
∫
Rn ec†zdv(z).

Deng [45] considers three cases of two-factor affine jump diffusions, including deterministic volatility,
stochastic volatility and regime-switching jumps. Exploiting the results above, derivative prices are calcu-
lated throughout, including cross-commodity spread options and locational spread options. Although Deng
incorporates fuel prices in his models, correlation with power is achieved only through the matrix σ(Xt),
as opposed to the power price actually being a function of fuel prices (as we shall see later).
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As another example, Culot et al. [41] apply affine jump-diffusion models to the Amsterdam Power
Exchange. The authors propose a three-factor mean-reverting component Xt , (different reversion speeds),
combined with an independent three-factor jump component X̃t . With spot price St = exp(γ†Xt + γ̃†X̃t),
this approach allows log forward prices to be affine functions of the state variables, and hence the Kalman
filter can easily be implemented for calibration. Derivative prices are calculated using a Fourier transform
technique based on the work of Carr and Madan [33]. The jump (or spike) component involves regime-
switching ideas, as γ̃†X̃t can only equal zero or one of three possible spike levels, so jump sizes are fixed
and a Markov chain transition matrix governs the intensities of all the possible jumps.

Benth et al. [11, 12] have suggested several alternative jump-based models, using Ornstein–Uhlenbeck
processes driven by Levy processes instead of Brownian Motions. In particular, they suggest approaches of
the form

St =
n

∑
i=1

wiY
i

t , where dY i
t =−λiY

i
t dt +σ i

t dLi
t ,

where Li
t are increasing pure jump processes, used to capture both small variations in the price (for certain i)

and the spikes (for other i). By avoiding diffusion processes while maintaining an additive structure (instead
of the more common exponential structure), the authors are able to find explicit formulas for forward
prices without ignoring or approximating delivery periods. We recommend the book [11] for an exposition
of various related approaches and extensions of this framework, including capturing cross-commodity
correlation. More recently, Barndorff-Nielsen et al. [8, 9] propose a new approach for both spot and forward
prices using ambit fields and in particular Levy semi-stationary processes.

In a reduced-form model, at least partial separation of jumps (or spikes) from more ‘normal’ diffusion
factors is needed due to the large difference in spike recovery speed relative to other mean-reverting
behaviour. Possible approaches include the use of multiple factors with many speeds of mean reversion,
regime-switching jumps (which lead to downward jumps to recover from spikes) or pure regime-switching
models. The last of these has been studied for example by De Jong and Huisman [43] and Weron et al.
[79], where independent dynamics are given for the ‘spike’ and ‘non-spike’ regime. Kholodnyi [60] retains
a closer connection between the two regimes in his model, instead suggesting that the price jumps from Xt

to λXt for some constant λ when there is a regime switch. Regime-switching models benefit from the fact
that high prices can last for several time periods (typically just a few hours, so one should not interpret the
terminology ‘regime’ to mean a lasting paradigm shift), reflecting for example periods of generator outages.
The recovery from an outage can be as sudden as the outage itself, a characteristic difficult to mimic with
mean-reverting jump diffusions. A variation proposed by Geman and Roncoroni [54] is a jump-diffusion
model which forces jumps to be downwards when prices are above a certain threshold.

While many of the models discussed above produce useful results and realistic price dynamics, they
often face calibration challenges due to the need for multiple unobservable factors, an inability to adapt to
changing market conditions, or to the complication of identifying historical spikes (or regimes). In addition,
and perhaps more importantly from an industry perspective when managing complex portfolios of assets,
they typically fail to capture the important correlations between power prices, other energy prices and
power demand.

2.3.4 A First Structural Model for Spot Prices

For electricity as for all other commodities, the balancing act between supply and demand in the price
formation leads to mean reversion of prices towards costs of production. Furthermore, the relationships
between underlying supply and demand factors in electricity markets are more observable and better
understood than in other markets. This has naturally led to the development of so-called structural models.
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Fig. 2.8 Daily load versus daily temperature (PJM)

In this category, the first real proposal for a tractable spot pricing model based on a supply/demand
argument is due to Martin Barlow [7] and we review briefly the main components of his pricing model.
Motivated by observed auction data, Barlow proposed to use a vertical demand curve (reminiscent of the
inelasticity of the demand for electricity) and a supply curve given by a nonlinear function of a simple
diffusion process:

S(t) =

{
fα (Xt) 1+αXt > ε0

ε1/α
0 1+αXt ≤ ε0

for the nonlinear function

fα (x) =

{
(1+αx)1/α , α 	= 0

ex α = 0.

of an Ornstein–Uhlenbeck diffusion (representing demand)

dXt =−λ (Xt − x)dt +σdWt

By varying the choice of α , one can clearly vary the steepness of the supply stack. In particular, any
α < 0 corresponds to a function steeper than the exponential, while the special cases of α = 0 and α = 1 are
linear and exponential, respectively. Given the ‘spiky’ price data used to calibrate the model, Barlow finds
negative values of α for both Canadian and US markets. Barlow’s simple model is a natural starting point
for understanding the structural approach, as demand is the one random factor and the transformation is de-
scribed by a simple one-parameter function. An Ornstein–Uhlenbeck process is a common choice to capture
the mean-reverting behaviour of demand, driven by temperature fluctuations. While most demand models
include a deterministic seasonal function, Barlow omits this for simplicity as his data shows relatively lit-
tle seasonality. Power demand typically includes deterministic components for both annual and intra-day
periodicities, as well as weekly patterns to capture weekend and holiday effects.
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Fig. 2.9 Monte Carlo sample from Barlow’s spot model (left) ‘cheap’ alternative from the exponential of an Ornstein–
Uhlenbeck squared (right)

Even in such a simple model, we can begin to see benefits of the structural approach. With an appro-
priate parameter α , Barlow’s model can capture extreme spikes with a one-factor pure diffusion process,
and without excessively large parameters κ or σ (see Fig. 2.9 for a simulated price path). In contrast, a
reduced-form one-factor jump-diffusion price process might still capture the extreme spikes, but at the
expense of a very high κ , dampening the volatility of prices at other times. On the other hand, Barlow’s
approach also highlights an important challenge for structural models, namely capturing accurately the top
of the bid stack function, which determines the range of spike levels attained in the market. In order to
avoid unreasonably high values, Barlow suggests to cap the price at a maximum level, corresponding to the
event that demand reaches maximum capacity. This is a reasonable assumption, especially as maximum bid
levels exist in most markets (eg. $3,000 in ERCOT, e3,000 in EEX, $1,000 in PJM). However, one should
be mindful of possible limitations. If the tail of the demand distribution and the shape of the stack combine
to create a very thin tail for the price distribution, model simulations may reveal a rather high proportion of
spikes ending up at the price cap, instead of more evenly spread below the cap.

2.4 Building Blocks of Structural Modelling

A broad range of structural models exists, ranging from Barlow’s simple approach above to complicated
multi-fuel approaches, which attempt to get ever closer to the true price-setting mechanism of the power
market auction, all the while retaining a certain level of mathematical elegance and tractability. In this
section, we discuss the key relationships between spot prices and factors, while reviewing existing appr-
oaches in this branch of the literature and piecing together the important components of a successful struc-
tural model for electricity.

2.4.1 Price Relationship with Demand

The most striking characteristic of wholesale electricity demand is arguably its degree of price-inelasticity,
perhaps unmatched among all commodity markets. As end-users typically do not feel the impact of short-
term price fluctuations (paying instead slow-moving retail prices), and black-outs are understandably rather
frowned upon, utilities are often faced with buying last-minute power in the spot market to satisfy their
obligations, no matter what the cost! Coupled with the lack of any inventories to help guard against supply
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or demand shocks, this extreme inelasticity of demand to price is directly responsible for the well-known
and dramatic spikes in power prices. Moreover, historical price and load data provides compelling evidence
for the important role of demand in driving prices both during spikes and in quieter times (as shown in
Fig. 2.10a). In most markets, detailed historical load (demand) data is readily available, and thanks to
the inelasticity described above, no rough estimation is needed to produce a reasonable inverse demand
curve—it’s hard to go wrong with a vertical line! It is therefore not surprising that all structural models
(including Barlow’s described above) are built first and foremost on a process for demand, and a function
to capture the link with price. This function can be described in traditional economic terms as the inverse
supply curve or, in terms more specific to power markets, the bid stack.

The bid stack is a concept closely linked to the production stack discussed earlier, as both are driven
by the merit order of fuels. The bid stack is constructed by the market administrator using daily auction
data, whereby generators submit price and quantity pairs describing how much power they are willing to
sell at a certain price. Thus, if the market is competitive and generators bid at or near cost, then the bid
stack and production stack are very similar and move in close tandem. (See [49] for more discussion on
the relationship between the two.) Figure 2.7b shows sample bids from PJM for two dates in February and
March 2003, between which the price of natural gas increased rapidly. Note that in reality both supply and
demand side bids (sometimes called offers and bids) are submitted, but in many markets the demand side
bids are predominantly made at the maximum price level (price cap) due to the inelasticity discussed above.
Notable exceptions are markets (such as EEX in Europe) where only a fraction of actual load is traded on
the market, implying that if market prices are low, companies may choose to buy from the market in order
to satisfy off-market commitments, while switching off their regular generators. Such behaviour leads to
significant demand side elasticity in bids, even if overall demand is still inelastic, due to the interplay
between market and off-market dynamics. Nonetheless, the relationship between price and load can still be
approximated by a bid stack approach, even if the bidding behaviour itself is more complicated.

2.4.2 Price Relationship with Capacity or Margin

Barlow’s key contribution was the basic idea of a parametric relationship between St and an underlying
demand process Dt , which can be adapted to local market conditions, for example, the ‘spikiness’ of a
given market. Another similar approach by Kanamura and Ohashi [59] proposes an alternative parametric
form, with price piecewise quadratic in demand. However, while it is clear that demand is a key driver
of spot prices, it is also clear that they are not perfectly correlated, as illustrated by Fig. 2.10. The first
plot shows the price to load relationship in the Texas market (ERCOT) over the year 2011, for the price
interval [$0,$200]. This plot does not show the very high spikes, but more clearly shows the price to load
dependence in the normal price region. Note that ERCOT is a particularly ‘spiky’ market and that such
extreme values can be observed even for low values of load, although the probability of a spike certainly
increases with demand. This is illustrated in Fig. 2.10b, which also compares with EEX, a market with
some but fewer spikes than ERCOT.

Many authors have built on Barlow’s seminal contribution, extending the tight link between price and
demand to a more sophisticated model, capable of replicating the typical price-load scatter plots shown
in Fig. 2.10a. A common remedy is the inclusion of a stochastic process for the availability of generation
capacity. Indeed, generator outages can be common occurrences in some markets, while seasonal mainte-
nance patterns also serve to shift supply.

In a detailed stack model, the removal of a generating unit due to an outage can be simulated by explicitly
removing a particular section of the stack function and shifting the remainder to the left (see chapter on
hybrid models in [49] for further discussion of this style of model). However, calibration requires detailed
market data, and it is difficult to adopt this approach while retaining a convenient mathematical function
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for the stack at all times. Instead, several authors (cf. [36, 65, 72]) have proposed writing prices directly as
a function of both demand Dt and total market capacity Ct using an exponential form such as

St = exp(aDt + bCt) , where a > 0,b < 0. (2.6)

Fig. 2.10 (a) illustrates the price to load relationship in ERCOT (all hours included) in the year 2011. Price axis is cut at
$200 but values up to $3,000 occurred. (b) illustrates the relative frequency of a ‘spike’ in both ERCOT (2005–2011 data) and
EEX (2007–2009 data). Here a spike is crudely defined as an hourly price greater than 3 times the average monthly value for
the period

Skantze et al. [72] proposed an early model of this form, with both demand Dt and ‘supply’ Ct driven by
two-factor Ornstein–Uhlenbeck plus arithmetic Brownian motion models, with additional outage effects
for Ct . In their model, the supply factor Ct is not assumed to be observed but instead calibrated as a residual
of the model’s fit to price and load. Cartea and Villaplana [36] also suggest the form (2.6), but instead
estimate ‘generation capacity’ Ct directly either from hydro reservoir levels for the Nord pool market, or
available/installed capacity data for England and Wales, and for PJM. They model Dt and Ct as correlated
Ornstein–Uhlenbeck process with seasonality and seasonal volatility. As power prices are then lognormal,
forward prices are easy to calculate, and the authors investigate the model’s implications for risk premia in
the forward curve. Option prices can also be found in this lognormal special case, as discussed for example
by Lyle and Elliot [65].



64 René Carmona and Michael Coulon

While the simplicity of (2.6) is attractive, it raises several questions:

• Firstly, is Ct really an observable variable or simply a noise term which approximates the shifts in the
stack which distort the price-load relationship? If capacity data is available, will it be enough to explain
the price variations as suggested by the model? In practice, prices may spike not because of a lack of
total capacity in the market, but because of difficulty in matching the capacity with the demand, due to
either transmission constraints through the grid or operational constraints such as ramp-up times.

• Secondly, should decreases in Ct lead to parallel shifts in the bid stack, as suggested by (2.6)? If all
generating units are equally likely to be removed from the stack, then the effect should be multiplicative,
not additive, making power price a function of Dt/Ct , not Dt−Ct . Parallel shifts suggest that capacity is
being primarily removed from the far left of the stack and therefore not steepening the relationship with
demand.

• Thirdly, should the event Dt ≤ Ct be guaranteed by the model, implying that demand never exceeds
available capacity? If so, how should this be achieved mathematically, as all processes for Dt mentioned
above have unbounded support?

A large variety of models exist which take various approaches to the three interrelated issues raised
above. Broadly speaking we can categorize structural models into two groups depending on their treatment
of the supply-driven process Ct . If Ct is modelled strictly as the available capacity in the market, then the
treatment of the second and third issues above is more important, as there is a clear benefit to using the ratio
Dt/Ct and ensuring that it always remains between 0 and 1, either through direct capping or something more
sophisticated. We shall call this interpretation of Ct Version A. However, in practice it may be beneficial to
treat Ct as an unobserved residual noise process, backed out from prices and implicitly capturing a range of
other ‘capacity-related’ effects, including outages, reserves, maintenance, market constraints and imports
or exports. In this case, which we shall call Version B, both the ordering of Dt and Ct and the distinction
between parallel and non-parallel shifts in the stack are less important, suggesting that the form of (2.6) can
suffice. Some authors have proposed models which straddle both of these categories, as in [18]. Here the
authors introduce a non-parametric ‘price-load curve’ f (t,Dt/c(t)) to represent the inverse supply curve,
where c(t) tracks the seasonal level of capacity available, driven by weather and maintenance patterns.
However, they also add additional noise terms Xt and Yt and define

St = exp

{
f

(
t,

Dt

c(t)

)
+Xt +Yt

}
, t = 0,1, . . . ,

where Xt and Yt are unobservable short-term and long-term factors both attributed primarily to ‘psycholog-
ical aspects of the behaviour of speculators and other influences’. Using Ct as a noise term or adding other
unobservable factors to capture all residual effects is an effective way of ensuring that the model reflects
the high volatility witnessed in power markets, without worrying about the exact source.

On the other hand, evidence suggests that the level of demand relative to available capacity is crucial. If
Ct truly tracks total capacity, then times when Dt approaches Ct should intuitively be those which lead to
price spikes. Some authors have given special attention to such effects by directly modelling the behaviour
of the ‘reserve margin’ Ct −Dt (or the percentage reserve margin 1−Dt/Ct), emphasizing the advantage
of capturing both demand and capacity movements in a single variable. Boogert and Dupont [16] analyse
the relationship between margin and spot price as well as margin and spike probability and suggest a non-
parametric approach. Cartea et al. [35] advocate using forward-looking margin information as an indicator
of when a spike is likely to occur and defining a separate price regime when a threshold level of margin is
reached. Similarly, Mount et al. [66] and Anderson and Davison [4] propose regime-switching frameworks
whereby either mean price levels or transition probabilities between regimes are allowed to depend on the
margin level. In [40], Coulon et al. make use of the exponential form in (2.6), but with a second exponential
for a spike regime, whose probability is linear in the quantile of demand. Note that while these models can
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still be thought of as structural in spirit, some do not necessarily rely on the notion of a supply curve
mapping demand to price, since demand (or margin) may instead be used to determine which of two or
more spot price processes is most likely to apply at a given time.

2.4.3 Price Relationship with a Single Marginal Fuel

Figure 2.10 confirms that while demand and capacity are very important drivers of power prices over short
time horizons, Figs. 2.2 (and 2.7a) shows that the long-term levels of prices tend to match closely with costs
of production. This is particularly striking during the period of record highs in almost all commodity prices
in 2008, as discussed in detail in Sect. 2.2. Hence, any structural model to be used for medium to long-term
purposes must incorporate the risk of movements in the fuel prices appropriate for that market and prefer-
ably also the information contained in fuel forward curves. One could argue that these factors essentially
inherit the role of the longer term (nonstationary) factor in the classical reduced-form model of Schwartz
and Smith presented in [71]. The challenge is how to incorporate fuel price movements into supply curve
movements, particularly in markets with multiple production technologies and complicated merit orders.
Hydropower, renewables and nuclear all require slightly different considerations as well, since the quan-
tity of power generated from these sources is driven not by fuel price movements but instead by resource
availability (in the case of hydro and renewables) and the need to avoid shutdown costs (for nuclear).

Pirrong and Jermakyan [67, 68] stress the importance of writing power as a function of marginal fuel
and propose a useful model for a heavily gas-based market. They assume that power prices are driven by
two factors, both observable: fuel prices (natural gas specifically) and demand. Demand Dt is assumed to
be driven by an exponential Ornstein–Uhlenbeck process with seasonality, while gas prices Gt follow a
geometric Brownian motion (GBM). The authors assume that the inverse supply curve is multiplicative in
fuel price, meaning that St = Gtφ(lnDt), or more generally St = Gγ

t φ(lnDt), for γ ≥ 0. They then suggest
several methods for determining the function φ(x) (and possibly γ too, noting γ = 1 is a natural choice, for
which φ can be thought of as a ‘heat rate’ curve). One option is to use specific data on marginal costs of
power production to construct the ‘generation stack’, a second option is assuming a parametric form for φ ,
and a third (which they favour) is to directly use historical bid data from one year earlier, rescaled by the
change in gas price. Various other authors discuss the need to include marginal fuel prices when modeling
power. Eydeland and Geman [48] suggest multiplying an exponential function of demand by the marginal
fuel price in the market, while Coulon et al. [40] multiply two exponential functions (for two regimes) by
natural gas price in the gas-dominated ERCOT market.

2.4.4 Price Relationship with Multiple Fuels

In some electricity markets (particularly those dominated by natural gas generators), a single fuel factor
combined with demand and/or capacity effects is sufficient to describe very well the dynamics of power
prices. However, in other cases, one fuel is simply not enough, leading various authors to propose models
which incorporate two or more different fuel prices. In the reduced-form world, some authors have sug-
gested modelling power and fuels as cointegrated processes (cf. [19, 44, 47, 74]), while others have sug-
gested multi-commodity Lévy-based models with various ways of capturing correlations between jumps
and/or diffusion components (cf. [45, 51, 58]). However, these approaches fail to capture the intricate
dependencies between fuel prices, demand and capacity, which lead to state-dependent correlations. For
example, at times of low demand, power prices are correlated more closely with fuel prices of cheaper
technologies, while at times of high demand, more expensive fuels tend to set the power price and produce
a stronger correlation. This can perhaps be most easily illustrated by looking at actual bid data from PJM,
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as shown in Fig. 2.11. Here we see that over more than 10 years of historical data, the overall pattern of
bid movements lower in the stack (at 40 % of total capacity) tends to follow trends in coal prices, while
the higher portion of the PJM stack (at 70 % of total capacity) has a remarkably strong link with natural
gas. However, it is important to note that the relatively stable historical PJM merit order is particularly
susceptible to merit order changes today, as US natural gas prices have fallen to record lows of under $2
in 2012. An increasing number of gas generators are displacing coal generators in the stack and impacting
electricity price correlations in the process.

In the context of structural models, key modelling questions include whether to impose a strict ordering
of fuel types by demand, whether to allow regions of overlap between fuels and how to reconcile the fuel
price dependence with other features such as spikes. Coulon and Howison [39] proposed an innovative ap-
proach to handling such merit order changes, constructing the stack by approximating the distribution
of the clusters of bids from each technology. Hence they write the bid stack as the inverse cumula-

0

40

80

120

160

0

10

20

30

40

a

b

1-
Ju

n-
00

1-
Ju

n-
01

1-
Ju

n-
02

1-
Ju

n-
03

1-
Ju

n-
04

1-
Ju

n-
05

1-
Ju

n-
06

1-
Ju

n-
07

1-
Ju

n-
08

1-
Ju

n-
09

1-
Ju

n-
10

1-
Ju

n-
11

1-
Ju

n-
00

1-
Ju

n-
01

1-
Ju

n-
02

1-
Ju

n-
03

1-
Ju

n-
04

1-
Ju

n-
05

1-
Ju

n-
06

1-
Ju

n-
07

1-
Ju

n-
08

1-
Ju

n-
09

1-
Ju

n-
10

1-
Ju

n-
11

70% on strack

coal price

0

4

8

12

16

20

0

40

80

120

160
70% on strack

gas price

Fig. 2.11 Illustration of correlation between bid stack dynamics and fuel prices (with left axes used for stack level, and right
axes used for fuel prices, all in $) (a) Coal vs. 40 % point on PJM stack (b) Gas vs. 70 % point on PJM stack

tive distribution function of a mixture distribution for bids and model demand and margin as correlated
exponential Ornstein–Uhlenbeck processes, with jumps in margin added. In this approach, all regions of
the bid stack are technically driven by all fuels (since the bid clusters have unbounded support), but to very
different degrees at times when the cluster means are far apart. In the work of Aı̈d et al. [1], the authors



2 A Survey of Commodity Markets and Structural Models for Electricity Prices 67

simplify the stack construction by assuming only one bid price per fuel type, corresponding to a constant
heat rate per technology. Hence there is no region of overlap between fuels, and the marginal fuel type
changes at a series of demand thresholds corresponding to capacity per technology. This provides much
more convenient formulas for pricing derivatives, but at the expense of a major oversimplification of spot
price dynamics. In an extension of the earlier model, Aı̈d et al. [2] extended this approach to improve spot
price dynamics and capture spikes, by multiplying a ‘scarcity function’ (of margin) by the heat rate and fuel
price of the marginal fuel. They choose this function to be a power law of the reserve margin (with a cap),
arguing this to be more effective than the common choice of exponential. While the choice of marginal fuel
is still determined by demand, they sacrifice the possibility of merit order changes, by assuming the order-
ing of fuels is fixed initially, arguing that this is reasonable over short horizons. Carmona et al. [21] propose
instead a framework based on different exponential bid curves for each fuel (corresponding intuitively to
the range of heat rates per technology), and combine these precisely as the merit order dictates to produce a
piecewise exponential function for the market as a whole. Hence demand thresholds exist where marginal
fuel type(s) changes, but these are highly dynamic, with overlap regions appearing and disappearing in
the stack, and the merit order changing as fuel prices move. The model is particularly convenient for the
two-fuel case as closed-form expressions exist for forwards and spread options. However, it is fair to say
that for three or more fuels the calculations become unmanageable. In the following section, we will present
a broad multi-fuel structural framework which builds perhaps most closely on the last of these models, but
draws on ideas from all existing work discussed here. Note that for simplicity we do not include carbon
emissions prices into our structural framework here, and instead refer the interested reader to [22, 42, 56]
for stack-based models which include carbon emissions prices as additional production costs, typically in
conjunction with multiple fuel types with different emissions rates.

2.5 Forward Pricing in a Structural Approach

While reduced-form models are often designed specifically to facilitate derivative pricing (including those
mentioned in Sect. 2.3.3), structural models often face a choice between staying true to the market’s struc-
ture and cutting some corners to price forwards or options efficiently. Ideally, a model should capture the
structural relationships accurately while retaining convenient expressions for derivatives, but in some mar-
kets this may be very challenging indeed. As forward contracts are by far the most widely and liquidly
traded contracts, allowing for rapid calibration to the observed forward curve is typically a top priority for
any model, while convenient option pricing results are a welcome bonus but secondary concern. In this
section, we discuss the challenges of derivative pricing in structural models and suggest general frame-
works which allow for the explicit calculation of at least forward prices. (In some special cases, options
and other derivatives can be priced, as discussed for power plant valuation in [21], but we do not investigate
this here.)

As several authors have discussed (cf. [1, 21, 39]), one advantage of using structural price models for
pricing forwards is to capture the dependence of electricity forwards on fuel forwards in a manner which is
consistent with their stack-based relationship in the spot market. Another advantage is to capture forward-
looking information about upcoming market changes, such as a changing generation mix (e.g. increased
renewables, technological developments, the nuclear moratorium in Germany), or the introduction of new
regulation (e.g. emissions markets, market coupling). Finally, one might wish to include a view on load
growth or upcoming maintenance schedules. No matter the motivation, the core goal here is to choose a
flexible and realistic functional relationship between price and its underlying drivers, such that expectations
of future spot prices can be explicitly calculated and hence forward prices found.

Let F p(t,T ) denote the forward price of electricity at time t for delivery at time T . Recall that F p(t,T ) =
Et [ST ] where Et [·] denotes the conditional expectation given time t information with respect to a risk-
neutral probability measure. (We assume this measure is given and relegate a discussion of risk premia to
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Sect. 2.5.3.) The same equation holds for fuel prices, so for example we write Fg(t,T ) = Et [S
g
T ] for the

forward price of gas.
Our aim is to build a general framework that draws on techniques introduced in a number of different

papers, highlighting the assumptions needed to provide closed-form expressions for forward prices. We
will make use of the following ingredients:

• Lognormal Fuel Spot Prices—This assumption is a very common and natural choice for modelling
energy (non-power) prices. GBM with constant convenience yield, the classical exponential Ornstein–
Uhlenbeck model of Schwartz [70] and its two-factor extensions [55, 71] all satisfy the lognormality
assumption, as does the general forward curve model given in (2.2).

• Power Price Multiplicative in Marginal Fuel—This assumption is made by many authors (cf. [2, 21, 48,
68] among others) and reflects the fact that fuel costs are the dominant drivers of power bids and large
compared to other operational costs. The power price can be thought of as a product of the marginal
fuel cost and a ‘heat rate function’, describing the heat rate of the marginal generator at the appropriate
demand level. The more possible marginal fuels in a market, the greater the challenge in building a
structural model!

• Gaussian Demand (and Possibly ‘Capacity’)—Power demand is often assumed to be Gaussian and
modelled as an Ornstein–Uhlenbeck process (cf. [7, 36, 59, 65] among others). This is consistent with
the (piecewise) linear dependence we highlighted in the discussion surrounding Fig. 2.8 and the fact
that temperature is reasonably well modelled by a Gaussian autoregressive model with strong seasonal
components. Depending on the role and treatment of capacity, the process may need to be strictly capped
at the top and bottom of the stack, or alternatively an additional Gaussian noise term may be added to
represent capacity changes.

• Exponential Heat Rate Functions—The relationship between price and load is typically convex and of-
ten modelled with an exponential function, as discussed in Sect. 2.4.1. Coupled with Gaussian demand,
this set-up can provide convenient flexibility to produce specialized results.

• Multiple Spot Price Regimes—The assumptions listed above are typically not sufficient to capture the
heavy-tailed nature of spot prices, with both positive and negative spikes possible. Various authors have
proposed regime-switching models (cf. [4, 43, 66, 79] among others) to handle this primary feature of
power prices. While some of these are pure reduced-form approaches, others merge regime-switching
with a structural framework.

2.5.1 Single Fuel Markets

We begin with a single fuel model, suitable for markets in which the marginal generator is almost always of
the same fuel type. Note that generators which always bid at very low price levels (or simply at zero) can be
incorporated into this framework most easily by replacing the demand process Dt by the residual demand
process after subtracting their capacity. This is particularly relevant for generation types such as nuclear
and renewables. Note that this does not mean that these generators are simply ignored, as the adjustment
to model residual demand may require some care, as discussed for wind and solar power in Germany in
[76]. For example, the volatility of wind availability may mean that the residual demand distribution has
a significantly higher volatility than the original demand distribution. Hence, while it is assumed these
units don’t set the power price, they may well influence the power price. For simplicity, we shall call the
unique marginal fuel natural gas, with spot price denoted Sg

t . We now divide our framework into two types
of models, which differ in their treatment of capacity Ct . Version A will treat Ct as strictly the available
generation capacity in the market, while Version B will treat Ct more loosely as a stochastic perturbation
driven by capacity changes.
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Throughout, we consider one particular maturity of interest, T , and specify the conditional distributions
(given time t information) of gas price as lognormal and both demand and capacity as normal and possibly
correlated. We assume the fuel price to be independent of demand and capacity. This is a reasonable as-
sumption as power demand is typically driven predominantly by temperature, which fluctuates at a faster
time scale and depends more on local or regional conditions than fuel prices. In summary, the random
factors determining ST are

[
DT | Dt

CT | Ct

]
∼ N

([
μd

μc

]
,

[
σ2

d ρσdσc

ρσdσc σ2
c

])
, logSg

T | Sg
t ∼ N(μg,σ2

g ). (2.7)

Indeed, we stress that we are interested in making minimal assumptions on the behaviour of these factors,
as different markets may have different characteristics, and different authors may favour different Gaussian
processes, seasonal patterns and other variations. Our emphasis is instead primarily on the stack-based
mapping to power prices.

Useful Notation and Results The calculation of forward prices throughout this section relies on the com-
putation of various integrals over the multivariate Gaussian density and thus repeatedly makes use of the
following standard result:

∫ h

−∞
ecxΦ

(
a+ bx

d

)
e−

1
2 x2

√
2π

dx = e
1
2 c2
Φ2

(
h− c,

a+ bc√
b2 + d2

;
−b√

b2 + d2

)
, (2.8)

where a,b,c,d,h are constants (with h = ∞ in some cases), and Φ(·) and Φ2(·, ·;ρ) the cumulative distri-
bution functions of the univariate and bivariate (correlation ρ) standard (i.e. mean zero and variance one)
Gaussian distributions, respectively. Note that the constant d is redundant in the expression above, but in
practice it is convenient to use this form.

In addition, in some multi-fuel cases, we may require integrating over a bivariate Gaussian distribution
function, in which case the following related result is used:

∫ h

−∞
ecxΦ2

(
a1 + b1x

d1
,

a2 + b2x
d2

;λ
)

1√
2π

e−
1
2 x2

dx

= e
1
2 c2
Φ3

⎛
⎝h− c,

a1 + b1c√
b2

1 + d2
1

,
a2 + b2c√

b2
2 + d2

2

;

⎡
⎣ 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎤
⎦
⎞
⎠ , (2.9)

where a1,a2,b1,b2,c,d1,d2,h,λ are constants (with h = ∞ in some cases), Φ3(·, ·, ·;Σ) is the standard
trivariate Gaussian cumulative distribution function with correlation matrix Σ and

ρ12 =
−b1√
b2

1 + d2
1

, ρ13 =
−b2√
b2

2 + d2
2

, ρ23 =
b1b2 +λd1d2√

(b2
1 + d2

1)(b
2
2 + d2

2)
.

Finally, given the frequency of integrating between two finite limits and obtaining a difference between
Gaussian cumulative distribution functions, we introduce the following useful shorthand notation:

Φ2

([
x1

x2

]
,y;ρ

)
:=Φ2(x1,y;ρ)−Φ2(x2,y;ρ) and Φ

([
x1

x2

])
:=Φ(x1)−Φ(x2).
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2.5.1.1 Version A

In a model for which Ct is strictly the maximum capacity in the market, we require 0≤Dt ≤Ct and define
a functional form for the bid stack over this range. However, allowing for the possibility of multiple, say
N, price regimes (e.g. a normal regime, spike regime, negative price regime), we define multiple functional
forms and attach probabilities pi (for i = 1, . . . ,N) to being in each regime. As evidence suggests that the
likelihood of a spike is load-dependent but spikes do occasionally occur even for low load (see Fig. 2.10),
we allow also for load-dependent probabilities pi(Dt ) as suggested in [40]. Since electricity spot prices
are discrete time processes (typically taking 24 values per day, one for each hour, and with relatively
weak links between neighbouring hours due to non-storability), we do not necessarily need to define a
continuous time Markov chain to drive transitions between regimes. However, for modelling purposes,
one can choose to interpret electricity prices as the discrete time observation of a hidden continuous time
process (see [11] for more discussion) in which case the probabilities here could be the result of a rapidly
moving continuous time Markov chain, which approximately reaches its stationary distribution in less than
an hour. More generally, we could also allow for pi to depend on the current regime (e.g. for spikes which
last several hours), but we do not consider this complication here, as capturing the timing of clusters of
spike values is not our priority. In our current model, the spot power price St at any t is given by

St = (−1)δ̃i(Sg
t )
δi exp

(
αi +βiD̂t

)
with probability pi(Dt), (2.10)

where D̂t = max(0,min(Ct ,Dt )) is capped demand. The parameters δi, δ̃i ∈ {0,1} allow for switching on
and off fuel price dependence and negative prices, respectively, and

pi(Dt) = pi + p̄iΦ
(

Dt − μd

σd
(−1)δ̃i

)
for i = 1, . . . ,N− 1, (2.11)

and pN(Dt) = 1−
N−1

∑
i=1

pi(Dt).

For the N-th regime (which is most intuitively thought of as the ‘normal’ regime when no extreme events
occur), we can write its probability in the same form as all other regimes:

pN(Dt) = pN + p̄NΦ
(

Dt − μd

σd
(−1)δ̃N

)
, (2.12)

where, defining the sets I = {i : δ̃i = 0} and J = {1, . . . ,N− 1} \ I, we have

pN = 1−
N−1

∑
i=1

pi−∑
i∈J

p̄i,

p̄N = ∑
i∈J

p̄i−∑
i∈I

p̄i,

and δ̃N = 0.

We require pi(Dt) ∈ (0,1) for all Dt and all i = 1, . . . ,N, which is guaranteed if ∑N−1
i=1 (pi+ p̄i)< 1. Note

that the probabilities pi(Dt) are chosen to be linear functions of the quantile of the demand at time t (or of
the quantile of−Dt if δ̃i = 1). Intuitively, for a ‘spike’ regime with δ̃i = 0 (and relatively high αi and/or βi),
the likelihood of being in such a regime increases gradually with load, from pi up to a maximum of pi + p̄i.
On the other hand, for a negative price regime with δ̃i = 1, the likelihood decreases steadily with load. The
use of the quantile of load is both convenient mathematically and supported by empirical evidence (see
Fig. 2.10b), although for some markets a piecewise linear function of the quantile seems more appropriate
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(and still leads to closed-form formulas, just a little messier!). Finally, note that we expect δi = 1 for the
‘normal’ regime(s) where the price is most typically set, but may prefer to set δi = 0 for other regimes such
as the negative price regime since the size of a downward spike is unlikely to depend on the current gas
price.

Consider first the case that generation capacity CT = ξ̄ is constant (or known in advance), so that σc = 0.
Using F p

t = F p(t,T ) and Fg
t = Fg(t,T ) to shorten notation, the forward power price for time T delivery in

this case is given by

F p
t = Et [ST ]

= Et [Et [ST |DT ]]

= Et

[
N

∑
i=1

(−1)δ̃iEt [(S
g
T )

δi ]exp
(
αi +βi max

(
0,min(ξ̄ ,DT )

))
pi(DT )

]

=
N

∑
i=1

(−1)δ̃i(Fg
t )

δiEt

[
pi(DT )

(
eαiI{Dt≤0}+ eαi+βiDt I{0≤Dt≤ξ̄}+ eαi+βiξ̄ I{Dt≥ξ̄}

)]
.

Given the form of pi(DT ) in (2.11) the approach of first conditioning on DT allows us to use (2.8) for each
term above. We obtain

F p
t =

N

∑
i=1

(−1)δ̃i(Fg
t )

δi f (μd ,σd , ξ̄ ,pi, p̄i,αi,βi, δ̃i), (2.13)

where the function f (μd ,σd , ξ̄ ,pi, p̄i,αi,βi, δ̃i) is given by

f (μd ,σd , ξ̄ ,pi, p̄i,αi,βi, δ̃i) = eαi

(
piΦ
(−μd

σd

)
+ p̄iΦ2

(
−μd

σd
,0;− (−1)δ̃i

√
2

))

+ eαi+βiμd+
1
2β

2
i σ

2
d

{
piΦ
([

(ξ̄ − μd−βiσ2
d )/σd

(−μd−βiσ2
d )/σd

])

+ p̄iΦ2

([
(ξ̄ − μd−βiσ2

d )/σd

(−μd−βiσ2
d )/σd

]
,
βiσd(−1)δ̃i√

2
;− (−1)δ̃i√

2

)}

+ eαi+βiξ̄

(
piΦ

(
− ξ̄ − μd

σd

)
+ p̄iΦ2

(
− ξ̄ − μd

σd
,0;

(−1)δ̃i

√
2

))
. (2.14)

While the expression above may appear involved, this is only because of the truncation of demand.
The terms are readily identifiable, as the first line corresponds to the event of hitting the bottom of the
stack (Dt ≤ 0) for each regime, second and third lines the middle of the stack (Dt ∈ (0, ξ̄ )) and fourth line
the top (Dt ≥ ξ̄ ). Typically we would expect parameters μd ,σd to be such that the first and third lines play
very little role, but are of course still necessary.

Treatment of Capacity For fixed capacity CT = ξ̄ , the version of the model presented above captures
several of the key structural relationships discussed in Sect. 2.3 and allows for load-dependent spikes, both
upwards and downwards. However, without any randomness in CT , it may not be able to reproduce the
high intra-day price volatility often observed in electricity markets, as both DT and GT are relatively slow
moving from hour to hour. Moreover, maintenance schedules often lead to seasonal patterns in available
capacity. Adding time dependence and randomness to CT is a natural remedy, but unfortunately not nec-
essarily an easy one. In particular, in (2.10) in its current form, a decrease in capacity can only lower the
spot price St , since the price will be capped at a lower level when Dt =Ct . In other words, all the capacity
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is removed from the top of the bid stack, causing it to end at a lower level. Several alternative formulations
are possible:

• Deterministic Capacity: Firstly, if we are interested primarily in capturing deterministic changes in
capacity (e.g. maintenance schedules), then we choose a deterministic function c(t) representing the
percentage of installed capacity ξ̄ available at time t. Next, we assume that capacity is removed evenly
throughout the stack. In other words, the range of market heat rates implied by the model should remain
fixed. Hence set βi(t) = ξ̄/c(t), such that the time dependence in βi(t) exactly offsets c(t), ensuring that
(in regime i) the highest price set is Sg

t exp(αi +βiξ̄ ), for any value of c(t).

• Demand Over Capacity: The approach above is equivalent to writing the stack as a function of Dt/C(t)
directly (as suggested for example in [18, 39]). Extending this idea, one could think of modelling Dt/Ct

directly as a Gaussian process, without disentangling the role of demand and capacity changes. We then
still have only two random variables (including gas), but are likely to have a more volatile demand
process, as it incorporates additional supply-related uncertainty. It may be convenient to treat Dt and
Ct jointly if we want the dynamics of the process to be specified to match observed forward or option
prices, as we shall discuss briefly in Sect. 2.5.3.

• Stochastic Capacity: Finally, we note that the full version of the model with Gaussian CT , correlated
with DT [as in (2.7)], is also possible. We suggest in this case a slight modification to the expression
(2.10), replacing capped demand D̂t = max(0,min(Ct ,Dt)) with capped margin M̂t = Ct − D̂t . In this
case exp(αi) needs to be interpreted as the highest, not lowest, heat rate and βi < 0. Effectively, an outage
(a decrease in Ct ) then removes capacity from the bottom of the stack instead of the top. However, the
resulting expression for forward prices F p(t,T ) is significantly more complicated, both because of the
additional random variable and because of the need for additional caps or floors on this variable (e.g. at
Ct = 0), producing additional terms.

2.5.1.2 Version B

If we choose instead to treat Ct as an additional noise term which moves the bid stack left or right in
parallel shifts, but is not interpreted strictly as the maximum capacity available, then we avoid many of
the complications discussed above. In particular, we do not impose the restriction that Dt = 0 and Dt =Ct

correspond to the lowest and highest power prices possible (for a given fuel price), and hence we do not
introduce a capped demand process D̂t . In all other respects, the model retains the features of Version A.
We define the power spot price by

St = (−1)δ̃i(Sg
t )
δi exp(αi +βiDt − γiCt) with probability pi(Dt ,Ct), (2.15)

where

pi(Dt ,Ct) = pi + p̄iΦ (ζi +ηiDT +θiCt) for i = 1, . . . ,N− 1, (2.16)

and pN(Dt ,Ct) = 1−
N−1

∑
i=1

pi(Dt ,Ct).

Notice that this time we let the regime probabilities be more general than in (2.11), allowing dependence
on both Dt and Ct . However, in practice, we might prefer to return to the earlier special case where pi is
linear in the quantile of demand (as in [40]) by simply setting

ζi =−μd

σd
(−1)δ̃i , ηi =

1
σd

(−1)δ̃i , θi = 0. (2.17)
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On the other hand, if we prefer a linear function of the quantile of capacity (with pi decreasing in Ct for the
typical case that δ̃i = 0), then we could set

ζi =
μc

σc
(−1)δ̃i , ηi = 0, θi =− 1

σc
(−1)δ̃i .

Assuming the stack model in (2.15) and (2.16), along with distributions given by (2.7) and pi by (2.17),
the forward power price for time T delivery can be found [again by conditioning on demand and then using
(2.8)] to be

F p(t,T ) =
N

∑
i=1

(−1)δ̃i(Fg(t,T ))δi eli+miμd+
1
2 m2

i σ
2
d

(
pi + p̄iΦ

(
(−1)δ̃imiσd√

2

))
, (2.18)

where the constants li and mi for i ∈ {1, . . . ,N} are given by

li = αi− γi

(
μc− σcρμd

σd
− 1

2
γiσ2

c (1−ρ2)

)
,

mi = βi− γi
σcρ
σd

.

The general framework introduced above essentially models the electricity price as a mixture of lognor-
mal random variables (and/or the negative of a lognormal when δ̃i = 1), with mixing probabilities which
can be state dependent. Given the distributions in (2.7), this characterization is accurate for Version B of
the framework and approximate for Version A where demand is truncated at the top and bottom of the
stack. Recall that in practice we are likely to have only two or three regimes at most, corresponding to
‘normal prices’, unusually high prices and possibly unusually low or negative prices. However, the very
general framework above allows for the possible subdivision of spikes into low, medium or high spikes, as
is sometimes suggested (cf. [41]). If we were instead in the case N = 1, (e.g. in a spike-free market), then in
Version B the spot price St becomes lognormal and we return to the special case of some early models dis-
cussed in Sect. 2.4, as in (2.6). Although the multiple regimes depart somewhat from the strictest definition
of a bid stack model, it is well known that during times of extreme market stress, the price can be set at
levels which depart wildly from the typical stack prediction, and hence we argue that allowing for multiple
exponential curves is well justified as a form of hybrid structural approach.

2.5.2 Multi-Fuel Markets

In many electricity markets, two or more fuel types may be present and set the power price at different
times, depending both on demand and the relative prices of the fuels. In particular, the ‘merit order’
determines the sequence in which different fuels become marginal as demand increases. While an easy
concept to explain and understand, this provides a big challenge for structural models, particularly in mar-
kets driven by several correlated fuels which can overlap and also swap places in the bid stack. As discussed
in Sect. 2.3, only a few existing papers fully address the multi-fuel case via a structural approach.

In this section, we build on the framework introduced for a single fuel market above and again price
power forwards for a given maturity T , where the distributions of the underlying factors are lognormal or
normal. We now include n correlated fuel spot prices S1

t ,S
2
t , . . . ,S

n
t :

[
DT | Dt

CT |Ct

]
∼ N

([
μd

μc

]
,

[
σ2

d ρσdσc

ρσdσc σ2
c

])
,

⎡
⎢⎣

logS1
T | S1

t
...

logSn
T | Sn

t

⎤
⎥⎦∼ N

⎛
⎜⎝
⎡
⎢⎣
μ1
...
μn

⎤
⎥⎦ ,Σ (S)

⎞
⎟⎠ , (2.19)
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where Σ (S) is the covariance matrix with j,k entry Σ (S)
j,k = ρ jkσ jσk corresponding to covariance between

fuels j and k. As before, we split our approach into Version A and Version B depending on the treatment
of capacity and the capping of demand.

2.5.2.1 Version A

In the single fuel case, Version A provided us with relatively few advantages over Version B, except perhaps
a clearer intuition regarding the meaning of Ct , and possible avoidance of unrealistic prices thanks to
bounded demand. In contrast, in the multi-fuel setting, treating capacity truly in terms of installed or avail-
able quantity gives us a natural way to capture the relative chance of each technology being marginal.
Hence let ξ 1, . . . ,ξ n represent available capacity from fuel types 1, . . . ,n and ξ̄ = ∑n

j=1 ξ i. We assume

these are known with certainty and hence set CT = ξ̄ (so σc = 0). As discussed in the single fuel case,
stochastic capacity greatly increases the complexity of the computation of forward prices in Version A,
and thus alternatives such as deterministic capacity trends and the treatment of Dt/Ct directly as a single
random factor are advisable. The priority in the multi-fuel case is typically the relationship between the
various energy prices.

We aim to build on the model developed by Carmona et al. [21], by including multiple regimes with
demand-dependent probabilities. Note that in [21], spikes and negative prices are incorporated as well, but
only at the top and bottom of the stack, thus triggered by the events Dt ≤ 0 and Dt ≥ ξ̄ . Instead, here
we allow for the possibility of spikes even for lower levels of demand, as can sometimes occur in practice.
Furthermore, via the regime-switching set-up, we obtain closed-form forward prices for a market with more
than two fuels, by considering the interaction of bids from only two fuel types within each regime. First,
for each fuel type j = 1, . . . ,n, we define a fuel bid curve as a function of Dt and S j

t with the usual form:

bi(Dt ,S
j
t ) := S j

t exp(α j +β jDt), for Dt ∈ [0,ξ j]. (2.20)

Note that parameters α1,α2, . . . and β1,β2, . . . now correspond to fuels, not regimes. These will be used in
the N1 ‘normal’ spot price regime(s), where the usual merit order rules will apply to combine the fuel bid
curves, producing a piecewise exponential function as in [21]. For each regime i ∈ {1, . . . ,N1}, the spot
price is driven by two fuels (say i+, i− ∈ {1, . . . ,n}). Let D̃i

t represent capped demand renormalized to the
capacities of regime i fuels. Hence, for i ∈ {1, . . . ,N1}, set

D̃i
t =

(
ξi+ + ξi−

ξ̄

)
D̂t and μ̃ i

d =

(
ξi+ + ξi−

ξ̄

)
μd , σ̃ i

d =

(
ξi+ + ξi−

ξ̄

)
σd .

Then we define the spot price (for regime i ∈ {1, . . . ,N1}) by

St =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Si+
t exp
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αi+ +βi+D̃i
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)
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i
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t )

Si−
t exp
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αi− +βi−D̃i

t

)
if bi−(D̃

i
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t )≤ bi+(0,S
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t )

Si+
t exp
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i
t − ξ i−)

)
if bi+(D̃

i
t − ξ i− ,Si+

t )> bi−(ξ i− ,Si−
t )

Si−
t exp
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)
if bi−(D̃

i
t − ξ i+ ,Si−

t )> bi+(ξ i+ ,Si+
t )

bJi(D̃
i
t ,S

Ji
t ) otherwise,

where Ji = {i+, i−} represents the set of regime i fuels (with prices SJi
t = (Si+

t ,Si−
t ))

bJi(D̃
i
t ,S

Ji
t ) =∏

j∈Ji

(S j
t )
γ i

j exp
(
ψ i +ϕ iD̃i

t

)
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and

ψ i =
αi+βi−+αi−βi+

βi+ +βi−
, ϕ i =

βi+βi−
βi+ +βi−

, γ i
j =

β j

βi+ +βi−
, for j ∈ Ji

and with probability pi(Dt) (for regime i ∈ {1, . . . ,N1}) as given in (2.11). Note that the five cases above
have a straightforward interpretation as follows: only one fuel is marginal and the other unused since Dt is
low (cases 1–2), only one fuel is marginal and the other is used to capacity since Dt is high (cases 3–4) or
both fuels are jointly marginal (case 5).

In addition, we define N2 ‘spike’ regimes (including negative spikes), where the price will be set by a
single exponential function of demand, with the choice of fuel price dependence (all or none) and negative
prices similarly to earlier. For regimes i = N1 + 1, . . . ,N1 +N2,

St = (−1)δ̃i
n

∏
j=1

(
S j

t exp(α j)
)δi

exp
(
αi +βiD̂t

)

again with probability pi(Dt) as given in (2.11).
For each ‘normal regime’ i ∈ {1, . . . ,N1}, without loss of generality we assign fuels i+ and i− such

that ξ i+ ≥ ξ i− . Finally, as all terms in the following calculation have approximately the same form, we
introduce one more piece of useful notation:

Φ pi
3

([
x1

x2

]
,y,z;ρ

)
:= piΦ2

([
x1

x2

]
,y;ρ

)
+ p̄i

(
Φ3(x1,y,z;Σ)−Φ3(x2,y,z;Σ)

)
,

where

Σ =

⎛
⎝ 1 ρ −1/

√
2

ρ 1 −ρ/√2
−1/

√
2 −ρ/√2 1

⎞
⎠ .

Then [using (2.9)] the forward power price F p
t for time T delivery can be written as follows in terms of the

forward fuel prices F1
t , . . . ,F

n
t (shortened notation again):

F p
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Although the formula above appears remarkably involved, note that for a two fuel market (e.g. gas and
coal) we are likely to only have one ‘normal’ regime (N1 = 1) and one or two other regimes, reducing the
complexity of the formula. If N2 = 0, we return to the result of [21]. However, the additional generality
allows extra flexibility. For example, in a market with three fuels but very little chance of overlap between
the highest and lowest, we might set N1 = 2, prescribing one regime where the highest fuel mixes with the
middle fuel and one where the middle fuel mixes with the lowest.

2.5.2.2 Version B

In the second version of the multi-fuel framework, we do not define capacities ξ 1, . . . ,ξ n. Hence it is
less clear how to capture changes in the merit order, because there is no concept of a threshold capacity
level where the marginal fuel type changes when demand crosses that threshold. Instead, the only way
to approximate the subtle interplay between demand and marginal fuel type is to use the idea of regimes
instead. For example, for an n fuel market, one might define n+ 1 regimes, one driven by each underlying
fuel and one for spikes. Although this does not incorporate an overlap regime, the simplification to a single
marginal fuel is intuitively appealing and similar in spirit to the work of Aı̈d et al. [1, 2]. Instead of their
strict capacity-driven thresholds, we then use our demand-dependent regime probabilities to ensure that
fuels higher in the merit order are more likely to be used when demand is high. A big obstacle to either
approach is that the merit order may change, particularly over medium to long time horizons. Indeed, in
[2], to retain mathematical tractability in the n fuel case, the authors assume that the initial merit order is
fixed and enforce this by modelling the spreads between neighbouring fuels as GBMs, a departure from
commonly used models for fuel prices. In this section, we present another variation in order to retain the
chance of future merit order changes, following more closely the original setup of [1].

Similarly to (2.20), we define an exponential curve for each fuel type, but now treating Ct as an additional
stochastic factor

bi(Dt ,Ct ,S
i
t) := Si

t exp(αi +βiDt − γiCt), for i = 1, . . . ,n.

Regimes 1, . . . ,n (the ‘normal’ regimes) will be driven by fuels 1, . . . ,n only. Note that it is certainly
possible to incorporate ‘overlap’ regimes in this framework, for example, by choosing the function
(S1

t )
ε(S2

t )
1−ε exp(α1,2+β1,2Dt−γ1,2Ct) for a regime driven jointly by fuels 1 and 2. While explicit forward

curves can still be found, this adds unnecessary complications for our illustrative purposes here. Regimes
n+ 1, . . . ,N (the ‘spike’ regimes) will be driven by either no fuels or all fuels jointly. Thus,
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bi(Dt ,Ct ,S
i
t) := (−1)δ̃i

n

∏
j=1

(
S j

t exp(α j)
)δi

exp(αi +βiDt − γiCt) for i = n+ 1, . . . ,N.

Next, before defining the power price St , we define a permutation {πt(1), . . . ,πt(n)} over the set {1, . . . ,n}
of fuels, such that

Sπt(1)
t exp(απt (1) +βπt(1)μd)≤ . . .≤ Sπt(n)

t exp(απt (n) +βπt(n)μd).

This is similar to the approach followed in [1], but without the restriction of a single heat rate per fuel type
(i.e. a step function bid stack). We then define the spot price as

St = bπt(i)(Dt ,Ct ,S
πt (i)
t ) with probability pi(Dt ,Ct ), (2.21)

where again (in the most general form)

pi(Dt ,Ct) = pi + p̄iΦ ((ζi +ηiDt +θiCt)) for i = 1, . . . ,N− 1

and pN(Dt ,Ct) = 1−
N−1

∑
i=1

pi(Dt ,Ct).

In other words, the idea is that πt approximately captures the ordering of fuel types (the merit order), using
the average demand level in the market. Then the regime probabilities pi (increasing in Dt for lower values
of i, decreasing in Dt for higher values of i) can do the work of linking the more expensive fuel types to
higher demand states and the cheaper ones to lower demand states. Unlike in Version A, determining which
fuel price sets the power prices does not depend on a function of both Dt and S1

t , . . . ,S
n
t jointly, thus easing

the computation of forward prices. While the connection between demand and price is looser than in a
strict stack model, this is not necessarily unrealistic for a market with significant noise from Ct .

Assuming the model in (2.21), distributions in (2.19) and pi given by (2.17) for simplicity, in the case
of two fuels (n = 2) the forward power price F p

t for time T delivery is given by
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,

where k = {1,2}\ j, constants li and mi (for i = 1, . . . ,N) were given earlier below (2.18) and R jk is also as
defined earlier.

At the expense of a weaker link to the merit order, this result is clearly much simpler than the Version
A forward price, due to the lack of any indicator functions involving demand. Nonetheless the complexity
increases rapidly for more than two fuels. The three fuel case (n = 3) is still realistic to write out on
paper (using the trivariate relationship in (2.9) and some determination!), but for n > 3 the increasing
dimensionality of the multivariate Gaussian and the increasing number of permutations of fuels render a
closed-form solution nearly infeasible, although numerical implementation is still straightforward.

2.5.3 Parameter Estimation and Forward Curve Calibration

The choice of structural model clearly depends on both the electricity market in question and the goals of
the model. The framework above and its many versions were intended to emphasize the variety of tools
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available for modelling the many features we observe in price dynamics, while retaining a common core to
the model and a reasonable level of mathematical tractability. No matter which specific model is ultimately
chosen, an important next step is a reliable and robust method for parameter estimation and forward curve
calibration. These two issues are most often tackled in stages, first estimating some parameters from history
and then selecting others to match forward-looking market quotes. In all cases, the explicit formulas above
for F p(t,T ) (and their explicit dependence on fuel forwards) provide a valuable computational benefit, as
an optimal fit to observed forward curves in a high-dimensional model quickly becomes unmanageable if
limited to Monte Carlo simulation. In this subsection we discuss briefly the main challenges involved in
fitting a structural model to data.

• Observable vs. Unobservable Factors: As discussed throughout this paper, many of the underlying
factors (e.g. demand, fuel prices) in electricity markets are easily observable and exogenously mod-
elled, meaning that their parameters can be estimated independently of the power price model itself, by
standard techniques such as maximum likelihood. However, the sheer complexity of the market typically
means that some factors are either truly unobservable or their treatment in the model approximates sev-
eral effects, making them effectively unobservable for modelling purposes. In our framework, ‘capacity’
Ct typically falls in this category, particularly when treated as a catch-all noise process (i.e. Version B).
In such cases the model-implied history of the process can be backed out from spot price histories as a
model residual (as suggested in [39, 68, 72] among others), typically producing a closer fit to histori-
cal price dynamics. However, this benefit must be weighed against the risk that structural or regulatory
changes can make market price histories unreliable, a weakness not suffered by models driven only by
observed factors.

• Stack Parameters: As discussed by [49, 68] among others, the estimation of stack parameters (α’s and
β ’s in our expressions) can be achieved in several ways: in summary, (i) from costs, (ii) from bids or (iii)
from prices. The first of these relies somewhat on the assumption of competitive markets and limited
strategy bidding (i.e. generators bidding their production costs), but has the significant advantage of
avoiding messy estimation and fixing some key parameters to well-understood market variables. For
example, in the multi-fuel case (Version A), we may be able to easily approximate the range of heat
rates (efficiencies) in the market for each technology j ∈ {1, . . . ,n}, which can then be equated to the
range [exp(α j),exp(α j +β jξ j)] for the ‘normal’ regimes. On the other hand, if historical auction data
is available, then parameters α and β can be fitted directly to the bid stack (as in [39]), though this is
less suitable if there are multiple ‘normal’ regimes. Finally, the use of only prices to fit the exponential
bid curves is disadvantageous since we only observe one point on the curve each hour. Hence regions
of the curves which only rarely set the price may be harder to accurately estimate than when using the
historical stack data. However, as the occurrence of ‘spike’ regimes in history is unobservable, price data
may be particularly useful for filtering out these extreme points and fitting their parameters separately.
In practice, good judgement is needed from market to market when deciding how best to tackle stack
calibration, and a combination of the above options may be preferable.

• History vs. Market Quotes: The choice between using history and using current market quotes revolves
around several key questions, including the availability and reliability of data, the treatment of risk
premia and the desired model inputs. Variables such as temperature (which can be mapped to demand,
as discussed in Sect. 2.3.2) have long and reliable histories and are hence one of the arguments in favor of
structural models over reduced form. However, fitting all parameters to history and assuming a constant
market price of risk when needed will of course fail to reproduce the market forward prices, a typical
first step in any modelling problem. Therefore, a balance must be struck between parameters matched to
history and parameters matched to future risk-neutral dynamics (i.e. to observed prices). The simplest
approach in the structural framework described above is to first fit everything to history, before allowing
the mean level of demand μd (or capacity μc) to be time-dependent, chosen precisely to reproduce
each market forward price F p(t,T ) (see [37] for a similar approach in reduced form). Solving for μd
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numerically is straightforward given the expressions above, giving an exact calibration to the forward
curve. In other cases, we may be interested in allowing more parameters to be free, in order to match
other input prices from the market, such as at-the-money options if they are sufficiently liquid.

• Risk Premia: A key advantage of the expressions above is that power forwards F p(t,T ) are written
directly in terms of fuel forwards (say Fg(t,T )), which can be treated as observed market prices. Hence,
for the fuel component of our model, no assumption regarding risk premia is needed, as the risk-neutral
drift is implicitly specified by observed forwards. Moreover, no calibration technique is needed for the
fuel forward curves. On the other hand, the dynamics of other factors such as demand and capacity can
only be estimated under the physical measure via history (unless the careful use of weather derivatives
can provide information for demand via temperature). Hence, rather arbitrary assumptions about the
form of the market price(s) of risk may be required. However, as discussed in the previous paragraph,
we typically desire exact calibration to the observed power forward curve, through which the market
price of risk can be absorbed into the mean level μd (or μc) needed to match forwards. While this may
simply sweep the issue under the carpet, for many practical applications it should suffice as a reasonable
assumption and claims of incompleteness can be politely ignored by pointing to a liquid forward curve
for all maturities.

• Delivery Periods: As we gently sweep one issue under the carpet, another crops up around the corner!
While it may be true that liquid forward prices exist covering several years from the current time, they
certainly do not exist for every specific maturity T , simply because of delivery periods. As mentioned
in Sect. 2.2, the convention in all electricity markets is that forward contracts specify electricity delivery
over a period of time, often one month, but sometimes even a quarter or a year for longer contracts.
Hence the price should be written F(t,T1,T2) and correspond to an average of the expected spot price
for all hours in the month (or delivery period). While some authors have approximated this in continuous
time as an integral over the delivery period and designed models for which the integral simplifies (cf.
[11, 12]), in reality a sum is arguably more appropriate, since St is indeed a discrete time process. Adding
an outer summation to our expressions above is a simple adjustment, but in this case we should note that
fuel forward prices then also require single hour maturities, which is unfortunately not the case, as these
are typically also monthly. Various remedies are possible, including the smoothing of observed forward
curves to obtain prices for all T (cf. [13, 61] for smoothing electricity forward quotes), the assumption
of piecewise constant fuel forwards or the choice of a representative single date per delivery period
(reasonable for longer maturities). Unfortunately, there is no clear answer, and such implementation
challenges exist no matter what price model we use!

• Hour of Day Considerations: Finally, we note that observed power forward curves often exist for
delivery over different hours of the day (day vs. night) and days of the week (weekday vs. weekend),
categorized as peak, off-peak or base-load contracts. Hence, the calibration to observed forward quotes
may require multiple calibrations per delivery month. In the simplest case, one might simply adjust the
mean demand μd (or μc) by a different amount for peak and off-peak hours. A well-fitted model for
load should first capture the well-known hourly patterns across the day, as well as seasonal periodicities
which may vary significantly for different hours of the day. While some authors have chosen to treat
each hour of the day as a separate (but correlated) stochastic process, others treat only the determinis-
tic component of demand differently by hour. Having 24 separate processes may introduce too many
parameters, particularly as the historical sample size drops significantly, making it hard for example to
stably model the tail of the price distribution.

In conclusion, the fitting procedure for structural models is typically a fine art, combining different
approaches for different components of the overall framework. As with all models for electricity, approxi-
mations must be made. Structural models in particular may have very many parameters to estimate, but in
exchange can have much data available to help.
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2.6 Conclusion

In this survey, we have attempted to give the reader a flavour of many of the interesting and unique
characteristics of energy (and commodity) markets and in particular the most unusual of all, electricity.
While many different price modelling approaches now exist, the topic still provides many avenues for
important new research, both building on current work and addressing new questions as they arise. For ex-
ample, how will electricity grids manage the rapid growth of renewable energy with large supply variability,
and how will prices be affected? Will the emissions markets grow in importance globally and produce more
dramatic changes in the merit order? Will the smart grid and growth of electric vehicles cause a structural
change, with both the demand inelasticity and non-storability assumptions under threat? Will new storage
technology bring electricity price dynamics closer in line with other commodities? What about the ‘finan-
cialization’ of electricity, if power forwards someday begin to appear in commodity indices? How global
can electricity markets become (e.g. with solar panels in the Sahara powering much of Europe and Africa)?
Some of these thoughts may be a long way off, but others could be just around the corner! We do not
promote the structural approach discussed in detail here as an answer to such intriguing speculative ques-
tions, but we do recommend thinking beyond the historical price series, especially at times of fundamental
market change. We have presented and discussed structural models which meet these criteria by directly
incorporating demand, capacity and fuel prices and without necessarily sacrificing the mathematical ben-
efits traditionally reserved for reduced-form approaches. We hope that the flexible, intuitive and practical
framework we advocate can play a useful role in understanding and tackling the many risks ahead in the
fascinating next chapter of the global energy markets.
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82 René Carmona and Michael Coulon

43. C. De Jong and R. Huisman. Option Pricing for Power Prices with Spikes. Energy Power Risk Management, 7, 12–16,
(2003).

44. C. De Jong and S. Schneider. Cointegration between gas and power spot prices. Journal of Energy Markets, 2(3), 27–46,
(2009).

45. S. Deng. Stochastic Models of Energy Commodity Prices and Their Applications: Mean-reversion with Jumps and Spikes.
Technical Report, University of California Energy Institute, (1999)

46. D. Duffie, and J. Pan, and K. Singleton. Transform Analysis and Asset Pricing for affine jump-diffusions. Econometrica,
68(6), 1343–1376, (2000).

47. G. W. Emery and Q. Liu. An Analysis of the Relationship between Electricity and Natural-Gas Futures Prices. The
Journal of Futures Markets, 22(2), 95–122, (2002).

48. A. Eydeland and H. Geman. Pricing Power Derivatives. Risk Magazine, 10, 71–73, (1998).
49. A. Eydeland, and K. Wolyniec. Energy and Power Risk Management: New Developments in Modeling, Pricing and

Hedging. Wiley, Finance, (2003).
50. P. Forsythe. A Semi-Lagrangian Approach for Natural Gas Valuation and Optimal Operation. SIAM Journal on Scientific

Computing. 30, 339–368, (2007).
51. N. Frikha and V. Lemaire. Joint Modelling of Gas and Electricity spot prices, Applied Mathematical Finance, 20(1),

69–93, (2013).
52. H. Geman. Commodities and commodity derivatives: Modeling and Pricing of Agriculturals, Metals and Energy. Wiley,

Finance, (2005).
53. H. Geman. Risk Management in Commodity Markets: From Shipping to Agriculturals and Energy. Wiley, Finance,

(2008).
54. H. Geman, and A. Roncoroni. Understanding the Fine Structure of Electricity Prices. Journal of Business, 79(3), 1225–

1261, (2006).
55. R. Gibson and E. S. Schwartz. Stochastic Convenience Yield and the Pricing of Oil Contingent Claims. Journal of Fi-

nance, XLV(3), 959–976, (1990).
56. S. Howison and D. Schwarz. Risk-Neutral Pricing of Financial Instruments in Emissions Markets: A Structural Approach.

SIAM Journal of Financial Mathematics, 3(1), 709–739, (2012).
57. P. Jaillet, E. Ronn, and S. Tompaidis. Valuation of Commodity-Based Swing Options. Management Science, 50(7), 909–

921, (2004).
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Chapter 3
Fourier-Based Valuation Methods in Mathematical Finance

Ernst Eberlein

Abstract In this survey the current state of Fourier-based methods to compute prices in advanced financial
models is discussed. The key point of the Fourier-based approach is the separation of the payoff function
from the distribution of the underlying process. These two ingredients enter into the integral representation
of the pricing formula in the form of its Fourier transform and its characteristic function or equivalently
its moment-generating function, respectively. To price derivatives which have a financial asset such as a
stock, an index or an FX rate as underlying, exponential Lévy models are considered . The approach is
able to handle path-dependent options as well. For this purpose the characteristic functions of the running
supremum and the running infimum of the driving Lévy process are investigated in detail. Pricing of interest
rate derivatives is considered in the second part. In this context it is natural to use time-inhomogeneous Lévy
processes, also called processes with independent increments and absolutely continuous characteristics
(PIIAC), as drivers. We discuss various possibilities to model the basic quantities in interest rate theory,
which are instantaneous forward rates, bond prices, Libor rates, and forward processes. Valuation formulas
for caps, floors, and swaptions are derived.

3.1 Introduction

A fundamental problem of mathematical finance is the explicit computation of expectations which arise as
prices of derivatives. What leads to simple formulas in the classical setting when the underlying random
quantity is modeled by a geometric Brownian motion turns out to be rather nontrivial in more sophisticated
modeling approaches. There is overwhelming statistical evidence that Brownian motion as the driver of
models in equity, fixed income, credit, and foreign exchange markets produces distributions which are far
from reality and can be considered as first approximations at best. Lévy processes are a much more flex-
ible class of drivers. They can be parametrized with a low-dimensional set and at the same time generate
distributions which are more realistic from a statistical point of view. However in Lévy models simple
closed-form valuation formulas are typically not available even in the case of plain vanilla European op-
tions. The situation is worse for more complicated exotic options.

Efficient methods to compute prices of derivatives are crucial in particular for calibration purposes.
During a calibration procedure in each iteration step typically a large number of model prices have to
be computed and compared to market prices. Models which cannot be calibrated within reasonable time
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limits are useless for most applications. A method which almost always works to get expectations is Monte
Carlo simulation. Its disadvantage is that it is computer intensive and therefore too slow for many purposes.
Another classical approach is to represent prices as solutions of partial differential equations (PDEs) which
in the case of Lévy processes with jumps become partial integro-differential equations (PIDEs). This ap-
proach applies to a wide range of valuation problems, in particular it allows to compute prices of American
options as well. Nevertheless the numerical solution of PIDEs rests on sophisticated discretization methods
and corresponding programs. It is the purpose of this article to discuss the state of the art of a third approach
which is based on Fourier methods and which is relatively simple.

The initial references for Fourier-based methods to compute option prices are [6, 36]. Whereas the first
mentioned authors consider Fourier transforms of appropriately modified call prices and then invert these,
the second author starts with representing the option price as a convolution of the modified payoff and the
log return density, then derives the bilateral Laplace transform and finally inverts the resulting product. In
both cases the result is an integral which can be evaluated numerically fast. Let us mention that the ap-
proach is closely related to Parseval’s formula in harmonic analysis although this classical formula does
not apply directly in this context. From a number of subsequent papers we mention just [3] who consider
pricing formulas for certain exotic options and [28] where hedging formulas were derived. Another remark-
able reference if [29]. These authors develop an algorithm to price spread options which is a notoriously
difficult task.

The following presentation of Fourier-based methods for pricing equity derivatives is based on [11,
12]. In these two closely connected papers we asked the question: What are the precise mathematical
assumptions such that the Fourier approach works? It turned out that convolutions are not an essential
ingredient. Instead it is just sufficient integrability of an appropriately dampened payoff function as well as
of the relevant distribution and then Fubini’s theorem is applied. The key point which makes the method
computationally efficient is the separation of the payoff function and the distribution of the underlying
process. These two ingredients enter into the integral representation formula as Fourier transform and as
characteristic function or equivalently as moment-generating function. The Fourier transform of the payoff
is a trivial object. The characteristic function is also easily available if the option depends only on the
distribution of the driving Lévy process at a fixed time point. For options which depend on the running
supremum or the running infimum we show in Sect. 3.5 that there exist reasonable representations for the
characteristic functions of the corresponding distributions. The computational effort is much higher for
those cases.

The development of a Lévy interest rate theory started with [26] and was pushed further in a number of
subsequent papers. The rates in those interest rate models are typically driven by stochastic integrals with
respect to Lévy processes and not just by the processes themselves. Consequently the need for efficient
numerical procedures to compute prices of interest rate derivatives such as caps, floors, and swaptions is
evidently higher and the power of the Fourier-based method becomes even more visible. Since the under-
lying distribution enters only in the form of its moment-generating or characteristic function, the result
in Theorem 3.4 is crucial which shows that these quantities are easily available for the type of stochastic
integrals which is used here.

In Sect. 3.6 we introduce first the Lévy forward rate model. It is the proper generalization of the Heath–
Jarrow–Morton (HJM) framework. It is natural to use in interest rate theory immediately a more general
class of driving processes, namely time-inhomogeneous Lévy processes also called processes with inde-
pendent increments and absolutely continuous characteristics (PIIAC) in [30]. Fourier-based integral rep-
resentations for prices of options on zero coupon bonds [see (3.95)] have the same form as the formulas
for equity options. We show here that the results can be obtained under the same integrability assumptions
which were introduced in [11] for equity models. Initially we had derived these formulas (see [16, 17])
by using convolution representations in the spirit of [36]. The payoffs of caps and floors, the basic interest
rate derivatives, can be interpreted as payoffs of put and call options on zero coupon bonds. Therefore
for model calibration the formulas for the latter options are the right tool. The more flexible class of
time-inhomogeneous Lévy processes is important for the accurate calibration of interest models across
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different strikes and maturities. The shape of the volatility surface produced by cap and floor prices is too
sophisticated along the maturity axis to be matched by a model which is driven by a (time-homogeneous)
Lévy process.

The second important interest rate modeling approach is the Libor or market model where the forward
Libor rates are taken as basic quantities. The Lévy Libor model was introduced in [22]. We sketch the
backward construction of the Libor rates in Sect. 3.7 and derive the integral formulas for the standard
derivatives. In some sense it is more natural to take instead of the numerically small Libor rates the closely
connected forward processes as basic quantity to be modeled. The Libor rates vary in the range of 0.01–0.1,
whereas the forward processes have values close to 1. Since the random quantity is always described via
exp(x) and the variation of the exponential function is much higher near the origin than in the range where
the argument is between 0.01 and 0.1, one can expect better results by modeling the forward processes.
As an alternative approach this has been done in [22] (see also [18]). Another advantage of the forward
process approach is that there is no approximation necessary since up to a constant the forward process is
itself the density process which is used for the measure change. The substantially simplified expressions,
which one gets from the backward induction in this case, speed up the numerical procedures and avoid any
approximation error. Nevertheless it should be mentioned that the forward process model—similar to the
HJM approach—produces negative rates as well. They occur with such a small probability that practitioners
do not care about it. For the sake of brevity we do not reproduce here the Lévy forward process model. Note
that it can be embedded in the forward rate model (see [18]). Fourier-based pricing formulas for derivatives
can again be derived without any consideration of convolutions.

For completeness we mention some further results. Pricing formulas for digital as well as fixed and
floating strike range options have been developed in [17]. An extension to a credit risk model and pricing
of credit derivatives such as credit default swaptions is the topic of [19]. A model extension to price cross-
currency derivatives, such as foreign forward caps and floors, cross-currency swaps, and quanto caplets,
was achieved in [20]. Fourier-based pricing formulas for derivatives in energy markets are discussed in
[2]. In Chap. 9 of their book these authors analyze pricing and hedging of call and put options on forward
contracts and swaps. They consider also exotic options which are frequently encountered in the energy
markets. Explicit formulas are derived for spread options (e.g. spark spreads) as well as Asian options on
an energy spot price.

Comparing Fourier-based methods to the use of PIDEs for option pricing, one should be aware that
although the two approaches come from totally different mathematical fields they nevertheless have a lot
in common as well. This becomes clear if one looks for an explicit solution of the PIDE as given in [10,
Theorem 6.1]. The PIDE for a European option can be interpreted as a pseudo differential equation. Its
Fourier transform is an ordinary differential equation. The explicit solution of this equation is an integral
which coincides with the integral representations which are discussed in this paper.

3.2 The Driving Process

Although Fourier-based valuation methods can be applied in the general framework of models which are
driven by semimartingales (see [11]) we will present the approach in the following within a more restric-
tive setting. The main reason not to consider semimartingales in full generality in this context is that they
cannot be parametrized in a low-dimensional space and therefore the implementation and calibration of a
general semimartingale model is not really practicable in finance. Nevertheless our treatment of stochastic
processes is in the spirit of semimartingale theory with the only difference that some semimartingale com-
ponents simplify considerably. Lévy processes and the larger class of time-inhomogeneous Lévy processes
constitute suitable subclasses which offer on one side enough distributional flexibility and on the other side
they are tractable from an analytic and from a statistical point of view.
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We denote by (Ω,F ,F,P) a complete stochastic basis, where the filtration F= (Ft)t∈[0,T ∗] is assumed
to satisfy the usual conditions. The later means that F is complete with respect to P and every Ft contains
all P-null sets of F . T ∗ > 0 is a finite time horizon and we assume that F = FT ∗ . A Lévy process L =
(Lt )t≥0 is a process with stationary and independent increments defined on (Ω,F ,F,P). Implicitly this
means that L is adapted to (Ft)t≥0. We will assume that the process has càdlàg paths, i.e. the paths of L are
right-continuous functions with left limits. It can be shown that there exists always a version with càdlàg
paths. A Lévy process can be decomposed in the following way:

Lt = bt +
√

cWt +Zt +∑
s≤t
ΔLs1{|ΔLs|>1}. (3.1)

Here b and c≥ 0 are real numbers, (Wt)t≥0 in a standard Brownian motion, (Zt)t≥0 is a purely discontin-
uous martingale which is independent of (Wt)t≥0, and ΔLs = Ls−Ls− denotes the jump of L at time s > 0 if
there is a jump at this time point. Equation (3.1) is called the canonical representation of the Lévy process
and it is also known as the Lévy–Itô decomposition. The last term in (3.1) represents the sum of the jumps
of the process up to time t with absolute jump size bigger than 1. As a consequence of the assumption about
càdlàg paths one gets that for any ε > 0 along any finite time interval there can be only a finite number of
jumps which are bigger than ε in absolute value. Thus the last term in (3.1) is a finite sum.

In order to explain (Zt)t≥0 let us introduce some semimartingale notation. A semimartingale is a process
X = (Xt)t≥0 which admits a decomposition X = X0 +M +V where M is a local martingale starting at 0
and V is an adapted process of finite variation. For simplicity we shall assume X0 = 0. If one takes the big
jumps of X away the remaining process

Xt −∑
s≤t
ΔXs1{|ΔXs|>1} (3.2)

has bounded jumps and therefore is a special semimartingale (see [30, I.4.24]). A special semimartingale
by definition admits a unique decomposition into a local martingale M and a predictable process with finite
variation V . For Lévy processes the finite variation component V turns out to be the (deterministic) linear
function bt. Any local martingale M with M0 = 0 can be decomposed in a unique way M = Mc +Md

where Mc is a local martingale with continuous paths and Md is a purely discontinuous local martingale
which is the process denoted by Z = (Zt)t≥0 in (3.1). For Lévy processes the continuous process Mc is
nothing but a standard Brownian motion W = (Wt)t≥0 which is scaled with a constant

√
c. There are many

Lévy processes which are important for applications in finance where c= 0. These are purely discontinuous
processes. Examples are hyperbolic [15], normal inverse Gaussian (NIG) [1], variance gamma [33], CGMY
[7], and generalized hyperbolic Lévy motions [25].

As we mentioned above the sum of the big jumps converges since there are only finitely many such
jumps in any finite time interval. This is not true for the sum of the small jumps

∑
s≤t
ΔXs1{|ΔXs|≤1}. (3.3)

Nevertheless by compensating one can force this sum to converge too. Compensating means to subtract
the average increase by the small jumps along the time interval [0, t]. This average is given by the intensity
measure F(dx) with which the jumps arrive. In order to introduce the intensity measure let us first introduce
the random measure of jumps of X which is denoted by μX . If a path of the process given by ω has a jump
of size ΔXs(ω) = x at time point s, the random measure μX(ω ; ·, ·) places a unit mass ε(s,x) at the point
(s,x) in R+×R. In other words

μX(ω ;dt,dx) = ∑
s>0

1{ΔXs 	=0}ε(s,ΔXs(ω))(dt,dx). (3.4)



3 Fourier Based Valuation Methods in Mathematical Finance 89

For a time span [0, t] and a Borel set A⊂ R

μX(ω ; [0, t]×A) = |{(s,x) ∈ [0, t]×A | ΔXs(ω) = x}| (3.5)

counts the number of jumps with jump size within A which occur for the path given by ω from time 0 to t.
Because of the stationarity and the independence of the increments of a Lévy process L the expectation of
this random quantity is linear in t

E[μL(·; [0, t]×A] = tF(A). (3.6)

F(A) is the intensity measure F applied to A. One can show that the following limit exists in the sense of
convergence in probability:

lim
ε→0

(
∑
s≤t
ΔLs1{ε≤|ΔLs|≤1} − t

∫
x1{ε≤|x|≤1}F(dx)

)
. (3.7)

The sum represents the increase by jumps of absolute jump size between ε and 1 within time 0 and t.
The integral is the average increase by jumps of size within the same range which happen along an interval
of length 1. In general none of the two expressions has a finite limit as ε → 0. Consequently the difference
cannot be separated. Making use of the random measure of jumps μL we can write this limit in the form

∫ t

0

∫
R

x1{|x|≤1}(μL(ds,dx)− dsF(dx)). (3.8)

This is the more explicit form of the purely discontinuous martingale Z = (Zt)t≥0 in the canonical
representation of a Lévy process given by (3.1). Z describes the compensated jumps of absolute size less
than 1. Of course one could use any other threshold than 1 to separate the jumps according to their size.
Note that the sum of the big jumps in (3.1) can now equivalently be expressed in the form

∑
s≤t
ΔLs1{|ΔLs|>1} =

∫ t

0

∫
R

x1{|x|>1}μL(ds,dx). (3.9)

To summarize this brief introduction of the components of a Lévy process we note that from the distri-
butional point of view a Lévy process is characterized by the three quantities (b,c,F), the so-called triplet
of local characteristics, which appear in the representation

Lt = bt +
√

cWt +
∫ t

0

∫
R

x1{|x|≤1}
(
μL(ds,dx)− dsF(dx)

)
+
∫ t

0

∫
R

x1{|x|>1}μL(ds,dx).
(3.10)

It is the same triplet which determines the Fourier transform of the distribution of L1 in its Lévy–
Khintchine form

E[exp(iuL1)] = exp

[
iub− 1

2
u2c+

∫
R

(eiux− 1− iux1{|x|≤1})F(dx)

]
= exp(ψ(u)). (3.11)

The intensity measure F is also called the Lévy measure and satisfies∫
R

min(1,x2)F(dx)< ∞. (3.12)
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ψ as defined in (3.11) is called the characteristic exponent. A property which follows again from the
independence and the stationarity of the increments of the process is that the distribution of L1 [see (3.11)]
determines the distribution of LT for any T > 0 via

E[exp(iuLT )] = exp(Tψ(u)). (3.13)

This is an important fact which will be used later when we have to compute option prices which are
given as expectations E[ f (LT )] for some function f which is derived from the payoff. The parameters of
the Lévy process which is used to drive the model are typically the parameters of the distribution of L1. For
LT to possess an easy connection with L1 as in (3.13) is crucial for the computation.

The Lévy measure F contains information on the finiteness of the moments of the process as well as
on certain path properties. Finiteness of moments can be seen from the tails of F . Sato [38, Theorem 25.3]
shows that for a Lévy process L, Lt has finite absolute pth moment for p ∈ R+ if and only if∫

{|x|>1}
|x|pF(dx)< ∞ (3.14)

and Lt has finite exponential moment of order p for p ∈R if and only if∫
{|x|>1}

exp(px)F(dx)< ∞. (3.15)

The equivalence expressed in (3.14) has an immediate consequence. If the expectation of L1 is finite,
then

∫
{|x|>1} xF(dx) is finite as well. Therefore we can add

∫
iux1{|x|>1}F(dx) to the integral in (3.11) and

end up with the simpler representation

E[exp(iuL1)] = exp

[
iub− 1

2
u2c+

∫
R

(eiux− 1− iux)F(dx)

]
, (3.16)

where of course the parameter b is now different from (3.11). The same argument allows to simplify (3.10).
If L1 has finite expectation then

∫ t
0

∫
R

x1{|x|>1}dsF(dx) is finite. We add this to the second integral in (3.10),
merge the two resulting integrals, and get the following simpler representation where again the b differs
from the one in (3.10)

Lt = bt +
√

cWt +
∫ t

0

∫
R

x(μL(ds,dx)− dsF(dx)). (3.17)

From this representation one also sees that L is a martingale iff b = E[L1] = 0. Since the expectation of
the generating variable L1 of all Lévy processes which we actually use in finance is finite, we will work
with the more convenient forms (3.16) resp. (3.17) instead of (3.11) resp. (3.10).

Whereas the information on the existence of the moments E[|Lt |p] of the process sits in the tails of F ,
the path properties depend on the distribution of the mass of F around the origin. Sato [38, Theorem 21.9]
shows that almost all paths of L have finite variation if c = 0 and∫

{|x|≤1}
|x|F(dx)< ∞. (3.18)

Almost all paths have infinite variation if c 	= 0 or if the integral in (3.18) is not finite.
If the integral in (3.18) is finite, this has consequences for the representation given in (3.17). In this case

the sum of the small jumps converges and can be given in the form

∑
s≤t
ΔLs1{|ΔLs|≤1} =

∫ t

0

∫
R

x1{|x≤1}μL(ds,dx) (3.19)
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and one can separate the integral in (3.17)

∫ t

0

∫
R

x(μL(ds,dx)− dsF(dx)) =
∫ t

0

∫
R

xμL(ds,dx)− t
∫
R

xF(dx). (3.20)

Let us illustrate the decomposition of a Lévy process into drift, Gaussian component, and compensated
jumps as given by (3.17) by looking at the simplest process with jumps, the standard Poisson process. The
jumps of size 1 occur with a rate λ per unit time. The Lévy measure is F = λε1, the point mass in 1 scaled
by the intensity parameter λ . There is no Gaussian part; therefore c = 0. The canonical representation is

Lt = λ t +(Lt −λ t) = λ t +

(
∑
n≥1

1{Tn≤t} −λ t

)
, (3.21)

where (Tn)n≥1 denotes the successive random times where the jumps occur.
The Poisson process is the simplest example of a process L with finite activity. Finite activity means that

almost all paths of L have only a finite number of jumps along every compact interval. This is the case if
F(R) < ∞. If F(R) = ∞ then almost all paths of L have an infinite number of jumps along every compact
interval. In this case the process has infinite activity. The infinite mass of F sits around the origin. In both
tails F has finite mass [see (3.12)]. Most of the non-Gaussian Lévy processes which are used in modelling
in finance are purely discontinuous, infinite activity processes. Prominent examples are hyperbolic, NIG,
variance gamma, and CGMY (for Y > 0) Lévy motions.

3.3 Exponential Lévy Models

In order to price derivatives depending on a financial asset such as a stock, an index, or an FX rate we
model the underlying price process by

St = S0 exp(Lt), (3.22)

where L = (Lt )t≥0 is a Lévy process which is generated by the distribution L (L1) = ν . Equation (3.22)
is called an exponential Lévy model. The main reason to start with an ordinary exponential instead of a
stochastic exponential or equivalently a stochastic differential equation is the statistical aspect. Taking log
returns, logSt+1 − logSt , along a time grid with span 1, from the price process in (3.22), one gets the
generating distribution ν of the Lévy process. Therefore plugging in the Lévy process generated by an
(infinitely divisible) distribution which one got out of analyzing a time series of price date, one can be sure
that the model has the right distribution at least for that time horizon. Equation (3.22) can be described
alternatively by the following stochastic differential equation:

dSt = St−
(

dLt +
c
2

dt +
∫
R

(ex− 1− x)μL(dt,dx)

)
, (3.23)

where St− denotes the left limit at time point t. If one writes (3.23) for short in the form

dSt = St−dL̃t (3.24)

then (L̃t )t≥0 is a Lévy process with jumps bigger than −1, i.e. not a general Lévy process from any of the
classes which we want to consider.

For pricing derivatives which depend on the underlying price process given by (3.22), we want (St)t≥0

to be a martingale. For simplicity we assume here that the interest rate r is 0. If one wants to make the
discount factor exp(−rt) explicit, one can just use the drift parameter b+ r instead of b in (3.17).
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A necessary assumption for a martingale is that each variable has a finite expectation E[St ] = S0

×E[exp(Lt )] < ∞. Due to the equivalence (3.15) the finiteness of exponential moments of order 1 of the
Lévy process can be achieved by
Assumption (EM): There exists a constant M > 1 such that∫

{|x|>1}
exp(ux)F(dx)< ∞ for all u ∈ [−M,M]. (3.25)

In the following we will always assume that the driving Lévy process satisfies Assumption (EM).
Note that this excludes a priori the class of stable Lévy processes in general. The lack of martingality of
exponential Lévy models driven by stable processes seems to be the main reason why stable distributions
did not become more popular in pricing models. On the contrary all the processes mentioned above like
hyperbolic, NIG, generalized hyperbolic, variance gamma, and CGMY Lévy processes satisfy (EM). Since
E[exp(Lt)]< ∞ implies in particular that E[Lt ]< ∞, we can and will use the simpler decomposition (3.17)
for L. From the stochastic differential equation (3.23) one can derive that (St)≥0 is a martingale if the drift
parameter b coincides with the exponential compensator of the Gaussian and the pure jump part of L, i.e.

b =− c
2
−
∫
R

(ex− 1− x)F(dx). (3.26)

We note here that if we would start with a historical measure P, because of the rich structure of Lévy
processes, the set of equivalent martingale measures (EMMs) would in general be very large. It is shown in
[13] that under slight regularity assumptions for purely discontinuous exponential Lévy models the prices
of call options under all EMMs span the whole no-arbitrage interval. In this survey we do not enter in a
discussion on the choice of EMMs but consider a priori a martingale model which is determined by (3.26).

A number of payoff functions of options do not only depend on the value of the underlying at maturity
T but on the whole price path from 0 to T . Typical examples are lookback or barrier options. In this case it
is the running supremum St = sup0≤u≤t Su or the running infimum St = inf0≤u≤t Su which is compared to a
strike price K or a barrier B. Since the exponential function is monotone and increasing we get

ST = sup
0≤t≤T

(S0eLt ) = S0eLT (3.27)

and similarly ST = S0eLT . Therefore it is the distribution of the running supremum and the running infimum
of the driving process L which enters into the valuation formulas. There are also other functionals of the
whole price path which have to be considered. For example in the case of Asian options a discrete or
continuous average value is compared to the strike.

3.4 The Fourier Approach to Derivative Pricing

The computational efficiency of the Fourier- or Laplace-based approach to valuation formulas in exponen-
tial Lévy models is essentially due to the separation of the payoff function and the underlying process. Let
us illustrate the first step of this separation by looking at a fixed strike lookback option with maturity T .
The payoff in this case is (ST −K)+ where (St)t≥0 is assumed to be an exponential Lévy process. We write
this as

(ST −K)+ = (S0eLT −K)+ =
(

eLT +logS0−K
)+

. (3.28)

Now we can identify the function f : R→R+ given by f (x) = (ex−K)+ into which the supremum of the
log-asset price process plus a constant is inserted.
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In general we have to consider a functional φ of the whole price path which we write in the form

φ(S0eLt ,0≤ t ≤ T ) = f (XT − s), (3.29)

where s =− logS0 and the driving process X can be L, L, L, or other functions of the path of the underlying
Lévy process. Assuming the interest rate r to be 0 we get the time-0-price of this option as a function of
the process X and the value s in the form

V f (X ;s) = E[φ(St ,0≤ t ≤ T )] = E[ f (XT − s)]. (3.30)

Expectation is taken with respect to the martingale measure which was discussed in the previous section.
The functions f as in the example above are typically not bounded. To enforce some degree of integra-

bility or boundedness one has to dampen f . Define

g(x) = e−Rx f (x) (3.31)

for some suitably chosen real value R. We denote by MXT the moment-generating function, by ϕXT the
characteristic function, and by PXT the distribution of the random variable XT . Thus

MXT (u) = E[euXT ] = ϕXT (−iu) (3.32)

for u ∈ C. Note that both, MXT and ϕXT , are extended to the complex plane where this is possible. Fur-
thermore we denote by L1

bc(R) the space of bounded, continuous function in L1(R) and by ĝ the Fourier
transform of a function g.

The following Fourier-based valuation formula can be derived under two alternative sets of assumptions.

Assumptions (C): (C1) g ∈ L1
bc(R)

(C2) MXT (R) is finite
(C3) ĝ ∈ L1(R)

Assumptions (C′): (C1′) g ∈ L1(R)

(C3′) (eRxPXT )
∧ ∈ L1(R)

We will present the formula and the proof under (C′) since the analogous result under Assumptions (C)
has been given in detail in [11].

Theorem 3.1. Assume (C) or alternatively (C′), where the asset price is modeled by an exponential Lévy
model S = (St)t≥0 as given in (3.22) which satisfies (EM). Then the time-0-price of an option on S with
payoff f (XT − s) at maturity can be represented as

V f (X ;s) =
e−Rs

2π

∫
R

e−iusϕXT (u− iR) f̂ (−u+ iR)du. (3.33)

Proof. First observe that

V f (X ;s) =
∫
Ω

f (XT − s)dP = e−Rs
∫
R

eRxg(x− s)PXT (dx). (3.34)

Now we merge eRx in (3.34) as a density with PXT . Then (C3′) implies that the distribution eRxPXT has a
continuous, bounded Lebesgue density, say ρ(x). By Fourier inversion

ρ(x) =
1

2π

∫
R

e−ixu(eR·PXT )
∧
(u)du. (3.35)



94 Ernst Eberlein

Now we get from (3.34)

V f (X ;s) = e−Rs
∫
R

g(x− s)ρ(x)dx

=
e−Rs

2π

∫
R

g(x− s)

(∫
R

e−ixu(eR·PXT )
∧
(u)du

)
dx

=
e−Rs

2π

∫
R

(∫
R

g(x− s)e−ixudx

)
(eR·PXT )

∧
(u)du

=
e−Rs

2π

∫
R

e−ius
(∫

R

g(x− s)ei(x−s)(−u)dx

)
(eR·PXT )

∧
(u)du

=
e−Rs

2π

∫
R

e−iusĝ(−u)ϕXT (u− iR)du

=
e−Rs

2π

∫
R

e−iusϕXT (u− iR) f̂ (iR− u)du.

The use of Fubini’s theorem is justified here since by (C1′) and (C3′)∫
R

∫
R

g(x− s)|e−ixu|
∣∣∣(eR·PXT )

∧
(u)
∣∣∣dudx

≤
∫
R

g(x− s)

(∫
R

∣∣∣(eR·PXT )
∧
(u)
∣∣∣du

)
dx≤ K

∫
R

g(x)dx < ∞. ��

Assumptions (C) are appropriate if the payoff function is continuous as is the case for example for call
and put options. This continuity is not required under Assumptions (C′), but note that (C3′) implies absolute
continuity of the distribution of eRxPXT with respect to Lebesgue measure. Consequently one can say that
the representation of the price in Theorem 3.1 can be achieved under some continuity assumption. This can
be the continuity of the payoff function or the absolute continuity of the distribution. The representation
(3.33) can still be achieved if none of the two is guaranteed, but in this case one has to check the variation
and the continuity of V f (X ;s) as a function of x. For details see Theorem 2.7 in [11].

As far as the verification of the Assumptions (C) or (C′) is concerned, the nontrivial one is (C3) resp.
(C3′). As a side result an elegant sufficient condition for (C3) was obtained in [11, Lemma 2.5]. (C3) holds
true if g is in the Sobolev space H1(R).

The two ingredients which are necessary for the integral representation (3.33) are f̂ and ϕXT . f̂ is
obtained via an elementary integration. Let us consider some examples. For a call option with f (x) =
(ex−K)+ one gets

f̂ (u+ iR) =
K1+iu−R

(iu−R)(1+ iu−R)
where R ∈ I1 = (1,∞). (3.36)

The put with f (x) = (K−ex)+ has exactly the same transform f̂ , but R has to be chosen differently, namely
R ∈ I1 = (−∞,0). For a digital call with payoff f (x) = 1{ex>B} for some B > 0 one gets

f̂ (u+ iR) =−Biu−R 1
iu−R

where R ∈ I1 = (0,∞). (3.37)

If the payoff is f (x) = 1{ex<B}, the minus sign in front of the right side of (3.37) becomes a plus sign
and R has to be chosen from I1 = (−∞,0).

For a double digital call option with f (x) = 1{B<ex<B} one gets

f̂ (u+ iR) =
1

iu−R

(
B

iu−R−Biu−R
)

where R ∈ I1 = R\ {0}. (3.38)
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Another example is an asset-or-nothing digital call with f (x) = ex1{ex>B}. The corresponding Fourier
transform is

f̂ (u+ iR) =− B1+iu−R

1+ iu−R
for R ∈ I1 = (1,∞). (3.39)

Finally we mention self-quanto calls with f (x) = ex(ex−K)+. Here we get

f̂ (u+ iR) =
K2+iu−R

(1+ iu−R)(2+ iu−R)
where R ∈ I1 = (2,∞). (3.40)

Now let us turn to the second ingredient, the characteristic function ϕXT . For non-path-dependent Euro-
pean options with underlying price process St = S0 exp(Lt), (Xt)t≥0 is just the driving process (Lt)t≥0.
Furthermore as mentioned earlier in (3.13)

ϕLT (u) = (ϕL1(u))
T . (3.41)

Consequently we need only ϕL1 in explicit form whatever the maturity T of the option is. For the general-
ized hyperbolic Lévy motion (see e.g. [25]) with five parameters 0 ≤ |β | < α , μ ∈ R, δ > 0, and λ ∈ R

one can easily derive

ϕL1(u) = eiuμ
(

α2−β 2

α2− (β + iu)2

)λ
2 Kλ (δ

√
α2− (β + iu)2)

Kλ (δ
√
α2−β 2)

, (3.42)

where Kλ denotes the modified Bessel function of the third kind with index λ . In order to demonstrate how
easy one gets these characteristic functions in most cases let us consider a gamma process (Lt)t≥0. The
moment-generating function is

E[euL1 ] =
∫

eux cγ

Γ (γ)
xγ−1e−cxdx

=

∫
cγ

Γ (γ)
xγ−1e−(c−u)xdx

=
cγ

(c− u)γ

∫
(c− u)γ

Γ (γ)
xγ−1e−(c−u)xdx

=

(
c

c− u

)γ
for u < c (3.43)

since the last integral is just 1. The corresponding characteristic function is then

ϕL1(u) = E[exp(iuL1)] =

(
c

c− iu

)γ
. (3.44)

The same argument can be used for all distributions whose density has a linear term of the form cx in the
exponent.

Stochastic volatility models can be handled in this context as well. Let us briefly discuss the stochastic
volatility Lévy model introduced by [8]. First a stochastic clock Yt =

∫ t
0 ysds is defined where the integrand

is given by a CIR process which satisfies the stochastic differential equation

dyt = κ(η− yt)dt +λy
1
2
t dWt (3.45)

for parameters κ , η , and λ . The characteristic function for Yt is known from the work of [9]. Now consider
a pure jump Lévy process X = (Xt)t≥0 which is independent of Y = (Yt)t≥0. The stochastic volatility Lévy
process is then defined by

Ht = XYt . (3.46)
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Its characteristic function depends on the characteristic functions of X and Y in the following way:

ϕHt (u) =
ϕYt (−iϕXt (u))

(ϕYt (−iuϕXt (−i)))iu . (3.47)

Before we turn to the more sophisticated situation where the driving process depends on the whole path
in the next section, let us mention that options on multiple assets can be treated along the same lines. Typical
examples are basket options such as options on the minimum of assets with price processes S1, . . . ,Sd . The
payoff is given by the functional (S1

T ∧·· · ∧Sd
T −K)+. Other examples where several processes have to be

considered are multiple functionals of one asset such as barrier options of the type (ST −K)+1{ST>B} or

slide-in or corridor options with payoff (ST −K)+∑N
i=11{L<STi<H}. In all multiple asset cases one models

the price processes by Si
t = Si

0 exp(Li
t ) (1 ≤ i≤ d) as before and the function f is now a function f : Rd →

R+ with a dampened payoff g(x) = e−〈R,x〉 f (x) (x∈R
d), where 〈·, ·〉 denotes the usual inner product on R

d .
There is a d-dimensional version of assumptions [see (C) resp. (C′)] which allow an integral representation
analogous to (3.33). For details see [11].

Another issue which is discussed in [11] are the sensitivities or Greeks. Given the integral formula
(3.33)—where it is preferable to write it as a function of S0 = e−s instead of s—one can easily take the first
and the second derivative with respect to S0 in order to get an explicit form for the delta and the gamma
of the option. Whenever integration with respect to u and taking the derivative with respect to S0 can be
interchanged, one gets a formula similar to (3.33) for the delta and the gamma.

3.5 Path-Dependent Options

For a fixed strike lookback call with payoff (ST −K)+ the function f in the general valuation formula
(3.33) is the same as for a standard call and thus f̂ is given by (3.36). The quantity which is nontrivial
in this case is ϕXT since (Xt)t≥0 is the running supremum (Lt)t≥0 of the Lévy process L. This section is
devoted to the study of the characteristic function of the running supremum L and the running infimum
L of a Lévy process L. Remember that we always assume (EM) [see (3.25)] in order to secure enough
integrability for the process. From Sato’s result [see (3.14) and (3.15)] it follows that Assumption (EM)
implies E[exp(uLt)] < ∞ for all u ∈ [−M,M]. It has been shown in [12, Lemma 8.4] that (EM) implies
even more, namely that for u≤M also

E[exp(uLt)]< ∞ and E[exp(−uLt)]< ∞. (3.48)

The key result which we need in order to get the characteristic functions of Lt and Lt is the Wiener–Hopf
factorization. Let θ denote an exponentially distributed random variable with parameter q > 0 which is
independent of L. Then for all u ∈ R

E[exp(iuLθ )] = E[exp(iuLθ )]E[exp(iuLθ )]. (3.49)

As sophisticated as this celebrated factorization looks, the basic idea behind its proof is simple. Write
Lt = (Lt − Lt)+ Lt . From the fluctuation theory for Lévy processes it is well known that Lt − Lt has the
same distribution as −Lt (see e.g. [32, Lemma 3.5]). Using in addition independence in the distributional

equality Lt
L
= Lt +Lt one can derive (3.49).

Since the characteristic function on the left side of (3.49) can be easily evaluated as q(q−ψ(u))−1

where ψ(u) is the characteristic exponents of L [see (3.11)], we can express (3.49) equivalently in the form
which appears in many books under the name Wiener–Hopf factorization

q
q−ψ(u) = ϕ+

q (u)ϕ−q (u) (u ∈ R). (3.50)
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Here ϕ+
q resp. ϕ−q denotes the characteristic function of Lθ resp. Lθ . These so-called Wiener–Hopf factors

have the following integral representation:

ϕ+
q (u) =

∫ ∞

0
E[eiuLt ]qe−qtdt, (3.51)

ϕ−q (u) =
∫ ∞

0
E[eiuLt ]qe−qtdt. (3.52)

Another representation (see [38, Theorems 45.2, 45.7, and Corollary 45.8]) is

ϕ+
q (u) = exp

[∫ ∞

0
t−1e−qt

∫ ∞

0
(eiux− 1)PLt(dx)dt

]
, (3.53)

ϕ−q (u) = exp

[∫ ∞

0
t−1e−qt

∫ 0

−∞
(eiux− 1)PLt (dx)dt

]
. (3.54)

Since the characteristic function ϕXT appears in formula (3.33) with a complex argument, it is necessary
to extend the representations for ϕ+

q and ϕ−q to the complex plane as far as possible. For this purpose let
us first define a constant α∗(M). Recall the triplet of local characteristics (b,c,F) as given in (3.10) and
(3.11). Define

α(M) = M|b|+ 1
2

cM2 +

∫
R

|eMx− 1−Mx|F(dx), (3.55)

α(M) = M|b|+ 1
2

cM2 +

∫
R

|e−Mx− 1+Mx|F(dx), (3.56)

and

α∗(M) = max{α(M),α(M),ψ(−iM)}. (3.57)

Now let L be a Lévy process which is not a compound Poisson process. Suppose the parameter q of the
exponentially distributed random variable θ satisfies q > α∗(M). Then the Wiener–Hopf factors ϕ+

q resp.
ϕ−q can be extended analytically to the half planes {z ∈C | −M < Im(z)<∞} resp. {z∈C | −∞< Im(z)<
M} (see [12, Lemma 8.7]). Formulas (3.51) and (3.52) continue to hold in this domain. Furthermore for
ξ ∈ {z ∈C | −M < Im(z)<∞} also the maps q→ ϕ+

q (ξ ) and q→ ϕ−q (−ξ ) have an analytic extension to
the half plane {z ∈C | α∗(M)< Re(z)<∞}. Now we are ready to invert the Wiener–Hopf factors in order
to get the characteristic function of Lt resp. Lt , i.e. of L and L considered at a fixed time point t.

Theorem 3.2. Let L be a Lévy process that satisfies Assumption (EM) and is not a compound Poisson
process. Then the analytically extended characteristic functions of Lt and Lt are given by

ϕLt
(ξ ) = lim

A→∞

1
2π

∫ A

−A

et(Y+iv)

Y + iv
ϕ+

Y+iv(ξ )dv (3.58)

resp.

ϕLt
(−ξ ) = lim

A→∞

1
2π

∫ A

−A

et(Ỹ+iv)

Ỹ + iv
ϕ−

Ỹ+iv
(−ξ )dv (3.59)

for ξ ∈ {z ∈ C | −M < Im(z)< ∞} and Y , Ỹ > α∗(M).

The proof is given in [12, Theorem 8.13].
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At this point we can also explain why the constant M in Assumption (EM) has to have a minimum size
M > 1. In the valuation formula (3.33) ϕLt

appears with the argument u− iR. According to Theorem 3.2
ϕLt

is available on the half plane {z ∈ C | −M < Im(z) < ∞}. This requires R < M. On the other side not
only the assumptions on the distribution of Lt but also the assumptions on f [(C1) and (C3)] restrict the
domain from which R can be chosen. According to (3.36) R has to be larger than 1. Consequently only for
M > 1 there is a nonempty intersection of these two domains namely the interval (1,M).

As the theory which we exposed in this section shows, there are at least four integrations necessary in
order to compute the price of an option whose payoff depends on the running supremum or the running
infimum of a Lévy process. This is the integration in the valuation formula (3.33) itself, then there is an
integration to get the characteristic function of the underlying process [see (3.58) and (3.59)] and finally
the Wiener–Hopf factors ϕ+ and ϕ− are represented as double integrals [see (3.51)–(3.54)]. From the
numerical point of view four integrations take too much time for practical purposes.

Fortunately under slight additional regularity assumptions the double integral in the representation of
the Wiener–Hopf factors can be reduced to a single integration. The following discussion is motivated by a
similar result in [4], but the assumptions as well as the proofs are different. Almost all of the Lévy processes
which we use in financial models are within the class to be defined now.

Definition 3.1. Let λ− < 0 < λ+ and ν ∈ (0,2]. A Lévy process L is called a regular Lévy process of
exponential type [−M,M] and order ν > 0 (RLPE) if the following holds:

1. There exist constants c > 0 and ν1 ∈ [0,ν] as well as a function φ : C→ C such that

(a) φ is analytic on the strip S = {z ∈ C | −M < Im(z)< M}
(b) φ is continuous on S = {z ∈ C | −M ≤ Im(z)≤M}
(c) −φ(ξ ) =−c|ξ |ν +O(|ξ |ν1) for |ξ | → ∞ where ξ ∈ S and c > 0
(d) for ξ ∈ S the characteristic exponent is given in the form

ψ(ξ ) = iμξ −φ(ξ ).

2. There exist constants C̃ > 0 and ν2 ∈ [0,ν) such that the derivative of φ satisfies for ξ ∈ S

|φ ′(ξ )| ≤ C̃(1+ |ξ |)ν2.

Brownian motion is an RLPE of order 2; generalized hyperbolic (GH) Lévy motions are RLPE [−M,M]
of order 1 provided [−M,M] ⊂ (−α +β ,α +β ) where α resp. β denotes the shape resp. the skewness
parameter of the generating GH distribution. Only variance gamma processes pose a problem in this context
since they are of order 0. Now we are ready to state a significantly simplified formula for the Wiener–Hopf
factors.

Theorem 3.3. Suppose q > α∗(M) and L is an RLPE of order ν > 0 which satisfies (EM). Furthermore
choose ω+, ω−, and d > 0 such that

q−Re(ψ(ξ ))≥ d(1+ |ξ |)ν > 0

holds for ξ ∈ {z ∈C | ω− ≤ Im(z)≤ ω+}. Then

ϕ+
q (ξ ) = exp

[
− 1

2π i

∫ ∞+iω−

−∞+iω−

ψ ′(η)
q−ψ(η) ln

(
η− ξ
η

)
dη
]

= exp

[
1

2π i

∫ ∞+iω−

−∞+iω−

ξ ln(q−ψ(η))
(ξ −η)η dη

]
(3.60)
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for ξ ∈ {z ∈ C | ω− < Im(z)< ∞} and

ϕ−q (ξ ) = exp

[
1

2π i

∫ ∞+iω+

−∞+iω+

ψ ′(η)
q−ψ(η) ln

(
η− ξ
η

)
dη
]

= exp

[
− 1

2π i

∫ ∞+iω+

−∞+iω+

ξ ln(q−ψ(η))
(ξ −η)η dη

]
(3.61)

for ξ ∈ {z ∈ C | −∞< Im(z)< ω+}.
These integral representations have been achieved and proved in [34, Sect. 4].
The speed of the numerical evaluation of formulas (3.60) and (3.61) can be further increased by making

use of the following symmetry properties of the Wiener–Hopf factors. Suppose Y > α∗(M) and a, v ∈ R,
then

Re(ϕ±Y+iv(a+ ib)) = Re(ϕ±Y−iv(−a+ ib)) (3.62)

and

Im(ϕ±Y+iv(a+ ib)) =− Im(ϕ±Y−iv(−a+ ib)), (3.63)

where for ϕ+
Y+iv the value of b has to be chosen from (ω−,∞) and for ϕ−Y+iv from (−∞,ω+). Some numerical

results for NIG processes based on these symmetries which have been obtained in [34] will be presented.
For a NIG process the characteristic exponent is given by

ψ(u) = iuμ+ δ
(√

α2−β 2−
√
α2− (β + iu)2

)
(u ∈ R), (3.64)

where 0≤ |β |< α , μ ∈ R, and δ > 0.
NIG Lévy processes are the subclass of generalized hyperbolic Lévy processes with class parameter

λ = −0.5. We choose parameter values which were estimated from daily DAX returns for the period
June 1, 1997–1999 (see [36]). They are α = 85.312, β = −27.566, and δ = 0.0234. μ is determined by
the martingale condition (3.26) and has the value 0.00783. We show graphs for the real and the imaginary
part of ϕ+

100+iv(a+ 25i) where a varies between −900 and +900 and v between −1000 and +1000. The
step size for both variables is 1 (Fig. 3.1).

Fig. 3.1 Real and imaginary part of ϕ+
q (ξ ). Source: [34]

The next two graphs show the real and the imaginary part of ϕ−100−iv(a− 20i) with a and v varying in
the same intervals (Fig. 3.2).



100 Ernst Eberlein

Once one has ϕLt
in the form as given in (3.58) one gets for a fixed strike lookback call with payoff

(ST −K)+ taking (3.36) into account the explicit time-0-pricing formula

CT (S;K) =
1

2π

∫
R

SR+iu
0 ϕLT

(u− iR)
K1−iu−R

(−iu−R)(1− iu−R)
du, (3.65)

Fig. 3.2 Real and imaginary part of ϕ−q (ξ ). Source: [34]

where R∈ (1,M). There is an analogous formula for the fixed strike lookback put option. Prices for floating
strike lookback options with payoff (ST −ST )

+ can be derived via a duality formula. For details of duality
theory see [23, 24].

An option which is of particular interest in this context is the one-touch call with payoff given by
1{ST>B}. Since one takes the expectation of an indicator function [see (3.37)], the formula for the call price

CT (S;B) = lim
A→∞

1
2π

∫ A

−A
SR+iu

0 ϕLT
(u− iR)

B−R−iu

R+ iu
du (3.66)

for R ∈ (0,M) provides at the same time an explicit formula for the distribution function of the running
supremum of the Lévy process L. One has just to realize that

CT (S;B) = P[LT > log(B/S0)]. (3.67)

One touch call options represent the case with discontinuous payoff function and not necessarily abso-
lute continuous distribution of LT . Therefore besides of the standard assumption (EM) for (3.66) to hold
one has to assume that the Lévy process has infinite variation or has infinite activity and is regular upwards.

3.6 Interest Rate Term Structure Modeling

Contrary to the situation in equity markets where it is a priori clear which quantity is basic and has to be
modeled as a stochastic process, in fixed income markets one has some freedom to choose which quantity
is considered to be basic and is modeled and consequently which quantities are derived from the basic one.
The quantities one has to consider are zero coupon bond prices B(t,T ), instantaneous forward rates f (t,T ),
forward Libor rates L(t,T ), forward price processes FB(t,T,U), and short rates r(t). To be more precise,
by B(t,T ) we denote the price at time t ∈ [0,T ] of a default-free zero coupon bond which matures at time
T . One refers to B(t,T ) also as a discount factor. The instantaneous forward rate f (t,T ) is closely related
to it by the equation
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B(t,T ) = exp

(
−
∫ T

t
f (t,u)du

)
. (3.68)

Therefore if one starts by modeling f (t,T ) as is done in the classical Heath–Jarrow–Morton (HJM)
approach [27], one immediately gets the dynamics of B(t,T ) as well. The short rate r(t) is given implicitly
by modeling f (t,T ) since r(t) = f (t, t). Another quantity which can be taken as the starting point is the
forward price process defined for two maturities T and U as the quotient of the corresponding discount
factors

FB(t,T,U) =
B(t,T )
B(t,U)

. (3.69)

The default-free forward Libor rate L(t,T ) is the discretely compounded annualized interest rate which
can be earned for a future interval starting at T and ending at T + δ considered at the time point t < T

L(t,T ) =
1
δ

(
B(t,T )

B(t,T + δ )
− 1

)
. (3.70)

Note that the following master equation clarifies the relations between these quantities

1+ δL(t,T ) =
B(t,T )

B(t,T + δ )
= FB(t,T,T + δ ). (3.71)

The basic difference between models for stock markets and fixed income markets is that in the former
one considers one single security or a finite collection of them whereas in the latter typically a continuum of
financial securities is modeled, one for each maturity T ∈ [0,T ∗]. This fact and in particular the stochastic
dependence structure between these instruments make interest rate models a priori more demanding from
the mathematical point of view. Although in the case of the Libor model only a finite number of successive
discrete rates along a certain tenor structure is considered, the mathematical challenge comes from the
fact that each single rate has to be modeled as a martingale. To illustrate the continuum of quantities to
be considered in the fixed income world we show in the following graph (Fig. 3.3) the term structure of
interest rates for four currencies for the maturity time span from 3 months to 10 years. The curves were
fitted on data observed on February 17, 2004, by using the Svensson parametrization. This six parameter
family is used nowadays by most of the national reserve banks. The highest line represents euro interest
rates, below is the US dollar term structure, then the Swiss franc follows, and the lowest curve represents
interest rates for default-free investments in Japanese yen.

An interest rate model should be able to reproduce the observable term structure of interest rates as well
as the market prices of interest rate derivatives such as caps, floors, swaptions, and more exotic instruments.
The model should also be analytically tractable. There is a substantial collection of short-rate models, which
are driven by Brownian motions, starting with the models by Merton and Vasiček in the 1970s. Because
of their relative analytic simplicity short-rate models of this type are still used in the industry although in
these models all rates depend on a single one in a deterministic way. As a consequence short-rate models
cannot describe the sophisticated movements of continuous time curves such as twists and changes in
curvature. Nevertheless the sophistication of a problem at hand can force one to use a short-rate model. As
an example we mention a recent paper [21] where interest rates and correlated equity prices are modeled
jointly in order to be able to price hybrid products. Since joint laws in such a case are not easily derived,
the fixed income side is modeled in this reference by a short-rate process driven by a Lévy motion. For the
models which we will discuss in the following it is natural to use a wider class of driving processes, namely
time-inhomogeneous Lévy processes. One of the reasons for using a larger class is that due to the measure
changes which are typical for modeling interest rates, one drops out of the class of Lévy processes anyhow.
The wider class does not harm the analytical tractability. At the same time one gains considerable statistical
flexibility. In the implementations one considers usually a mild form of time-inhomogeneity, namely Lévy
processes where the Lévy parameters are kept constant for a while. See the next graph (Fig. 3.4).
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A d-dimensional time-inhomogeneous Lévy process is a process L = (L1, . . . ,Ld) which has independent
increments and the law of Lt is given by the characteristic function

E[exp(i〈u,Lt〉)] = exp

(∫ t

0
θs(iu)ds

)
(3.72)

with cumulant function

θs(z) = 〈z,bs〉+ 1
2
〈z,csz〉+

∫
Rd

(
e〈z,x〉 − 1−〈z,x〉

)
Fs(dx). (3.73)
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Fig. 3.3 Interest rate term structures, February 17, 2004

Here bt ∈ R
d , ct is a symmetric nonnegative-definite d× d-matrix, and Ft is a Lévy measure. Implicitly

we make two integrability assumptions, namely that for some time horizon T ∗ > 0 which includes all
maturities T to be considered in the model, we have∫ T ∗

0

(
|bs|+ ‖cs‖+

∫
Rd
(|x|2∧1)Fs(dx)

)
ds < ∞ (3.74)

and for some M > 1 ∫ T ∗

0

∫
{|x|>1}

exp(〈u,x〉)Fs(dx)ds < ∞ for |u| ≤M. (3.75)

The triplet (b,c,F) = (bs,cs,Fs)0≤s≤T∗ is again called the triplet of local characteristics of the process
L. Let us mention that such a process is called a process with independent increments and absolutely con-
tinuous characteristics (PIIAC) in [30]. Note that we do not need a truncation function of the type 1{|x|≤1}
in (3.73) because of the moment assumption (3.75). We do not repeat the arguments from Sect. 3.2 for
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this simplification [see formulas (3.11)–(3.17)]. For the same reason one can immediately use the simpler
canonical representation of the special semimartingale L = (Lt)t≥0 given by

Lt =

∫ t

0
bsds+

∫ t

0
c1/2

s dWs +

∫ t

0

∫
Rd

x(μL−ν)(ds,dx) (3.76)

with characteristics

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(ds,dx) = Fs(dx)ds. (3.77)

Here W = (Wt)t≥0 is a d-dimensional standard Brownian motion, μL the random measure of jumps of L,
and ν is the compensator of μL.

t
0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Fig. 3.4 Simulation of a Lévy process with generating distributions, NIG(10,0,0.100,0) on [0,1], NIG(10,0,0.025,0) on [1,3]

Now we are ready to introduce the Lévy forward rate approach which was developed in a series of
papers [14, 16, 22, 26] starting in 1999. It generalizes the HJM framework by using more powerful driving
processes. Assume that for every fixed maturity T ∈ [0,T ∗] the dynamics of the instantaneous forward rates
is given by

d f (t,T ) = α(t,T )dt−σ(t,T )dLt (0 ≤ t ≤ T ). (3.78)

The initial values f (0,T ) are deterministic, bounded, and measurable in T . The drift and volatility coef-
ficients α(t,T ) and σ(t,T ) satisfy the usual measurability assumptions which are necessary for integration.
For t > T we set α(t,T ) = σ(t,T ) = 0 and we assume supt,T≤T ∗(|α(ω , t,T )+ |σ(ω , t,T )|) < ∞. In the
implementations one takes usually deterministic (one-dimensional) volatilities σ(t,T ), where the popular
ones are

(a) σ(t,T ) = σ̂ (Ho–Lee)

(b) σ(t,T ) = σ̂ exp(−a(T − t)) (Vasiček) (3.79)

(c) σ(t,T ) = σ̂ 1+γT
1+γt exp(−a(T − t)) (Moraleda–Vorst)
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Using equation (3.68) and Fubini’s theorem one can easily derive an equation for the corresponding zero
coupon prices

B(t,T ) = B(0,T )exp

(∫ t

0
(r(s)−A(s,T ))ds+

∫ t

0
Σ(s,T )dLs

)
, (3.80)

where A(s,T ) =
∫ T

s∧T α(s,u)du and Σ(s,T ) =
∫ T

s∧T σ(s,u)du.
Remember that the short rate r(t) is given by f (t, t). Therefore the money market or savings account

given by Bt = exp
(∫ t

0 f (u,u)du
)

can be represented in the form

Bt =
1

B(0, t)
exp

(∫ t

0
A(s, t)ds−

∫ t

0
Σ(s, t)dLs

)
. (3.81)

In the following we shall always assume that the volatility coefficient is deterministic and bounded in
the following sense:

Assumption (DET): The volatility structure σ(t,T ) is a deterministic and bounded function such that for
all 0≤ s, T ≤ T ∗

0≤ Σ i(s,T )≤M (i ∈ {1, . . . ,d}),
where M is the constant from Assumption (EM).

The following theorem is a key tool in developing the Lévy interest rate theory. It was proved in [26]
and then generalized in [16].

Theorem 3.4. Suppose f : R+ → Cd is a continuous function such that |Re( f i(x))| ≤ M for all i ∈
{1, . . . ,d} and x ∈ R+, then

E

[
exp

(∫ T

t
f (s)dLs

)]
= exp

(∫ T

t
θs( f (s))ds

)
.

Taking f (s) = Σ(s,T ) for some T ∈ [0,T ∗] one gets from this theorem

E

[
exp

(∫ t

0
Σ(s,T )dLs

)]
= exp

(∫ t

0
θs(Σ(s,T ))ds

)
. (3.82)

Now we can see how we have to choose the drift coefficient α(t,T ) such that the discounted zero coupon
bond price processes are martingales. It is easy to show that for processes (Xt)t≥0 with independent
increments—this is the case for

∫ t
0 Σ(s,T )dLs—the process

(
exp(Xt)

/
E[exp(Xt)]

)
t≥0 is a martingale. Of

course E[exp(Xt)] has to be finite. The first part of the exponential in (3.80), exp
(∫ t

0 r(s)ds
)
, is nothing but

the discount factor Bt , the money market account. Therefore if we choose exp
(∫ t

0 A(s,T )ds
)

such that it
equals E

[
exp
(∫ t

0 Σ(s,T )dLs
)]

, then we have martingality of the discounted bond prices (B−1
t B(t,T ))t≥0.

By (3.82) this is the case if the drift is chosen as

A(s,T ) = θs(Σ(s,T )). (3.83)

This relation is the proper generalization of the famous HJM drift condition. Note that with (3.83) the
coefficients α(t,T ) and A(t,T ) are eliminated from our analysis. We assume from now on that forward
rates are always given by (3.78) such that the drift condition (3.83) is satisfied. This means that the derived
bond prices are given in the more specific form

B(t,T ) = B(0,T )Bt exp

(
−
∫ t

0
θs(Σ(s,T ))ds+

∫ t

0
Σ(s,T )dLs

)
. (3.84)
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The first integral in the exponent is also called the exponential compensator of the second integral. In
[14] it has been shown that the underlying martingale measure is unique in this one-dimensional setting.
Thus for the Lévy forward rate model we are in a Black–Scholes situation with a unique pricing operator. A
priori one could have expected a whole set of competing EMMs as in exponential Lévy models for equity
(see [13]). The deeper reason for the uniqueness of the martingale measure in this model is that the number
of instruments in the market—the continuum of bonds with maturities T ∈ [0,T ∗]—matches the number
of degrees of freedom given by the jump sizes of the driving Lévy process. The two degrees of infinity
coincide in this case. In order to apply directly the valuation formula derived in Theorem 3.1 we will write
the bond price (3.84) in a different form. Replace first A(s,T ) in (3.81) by the drift condition (3.83), then
(3.84) takes the form

B(t,T ) =
B(0,T )
B(0, t)

exp

(∫ t

0
(θs(Σ(s, t))−θs(Σ(s,T )))ds

+

∫ t

0
(Σ(s,T )−Σ(s, t))dLs

)
. (3.85)

If we write the deterministic part as

D(t,T ) =
B(0,T )
B(0, t)

exp

(∫ t

0
(θs(Σ(s, t))−θs(Σ(s,T )))ds

)
(3.86)

and the stochastic part as

Xt =
∫ t

0
(Σ(s,T )−Σ(s, t))dLs, (3.87)

we can write bond prices in the simple form

B(t,T ) = D(t,T )exp(Xt). (3.88)

Thus bond prices turn out to have the form of an exponential model of the type as studied in Sect. 3.4
where the driving process is (Xt)t≥0 as given in (3.87). For any European option with maturity t on a
zero coupon bond with maturity T we can express its time-0 value formally as a function of Xt and s =
− lnD(t,T ), namely

V0(t,T ) = E[B−1
t f (Xt − s)], (3.89)

where f is a function of the payoff of the option. In order to calculate this expectation one needs the joint
distribution of Bt and Xt or of Bt and B(t,T ). In principle one can proceed this way, but from the numerical
point of view such a straightforward approach is very inefficient and time consuming. Fortunately there is
an elegant way to avoid joint distributions by making a measure change which is also called a change of
numeraire. One switches from the spot martingale measure used so far to the forward martingale measure
for the settlement date t denoted by Pt . We define

dPt

dP
=

1
BtB(0, t)

. (3.90)

From (3.81) and (3.83) one derives the explicit form of this density process as

dPt

dP
= exp

(∫ t

0
Σ(s, t)dLs−

∫ t

0
θs(Σ(s, t))ds

)
. (3.91)

By using Girsanov’s theorem, under Pt the compensator of the random measure of jumps μL becomes

νt(ds,dx) = exp(〈Σ(s, t),x〉)ν(ds,dx) (3.92)
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and

Wt
s =Ws−

∫ s

0
c1/2

u Σ(u, t)du (3.93)

is a standard Brownian motion. Since the change of the characteristics is done by deterministic functions
in these equations, one can conclude that under Pt , L is still a process with independent increments. Thus,
with respect to the forward martingale measure, L is still a time-inhomogeneous Lévy process. Using the
forward martingale measure Pt , the option value formula (3.89) simplifies to

V0(t,T ) = B(0, t)EPt [ f (Xt − s)] (3.94)

since
∫
Ω B−1

t f (Xt − s)dP =
∫
Ω B−1

t f (Xt − s)BtB(0, t)dPt .
Joint distributions are no longer needed to evaluate (3.94). Assume now Assumptions (C) hold for f

and X , then we get as in Theorem 3.1 the integral representation

V0(t,T ) = B(0, t)
e−Rs

2π

∫
R

e−iusϕXt (u− iR) f̂ (−u+ iR)du. (3.95)

The main difference to the original results which were proved in [16] is in the assumptions. The resulting
formulas are the same and differ only in the notation. In [16] the integral formulas were derived from a
convolution representation. Above we use instead in the spirit of [11] Fubini’s theorem which is possible
by assumptions (C1)–(C3).

The standard assumption in [16] about the existence of a Lebesgue density for the distribution of Xt

can actually be weakened. Instead of convoluting two functions (see the proof of Theorem 12 in [16]) one
could as well convolute a function and a distribution.

An explicit expression for the term ϕXt in (3.95) or equivalently MXt (both under Pt ) is available by
using Theorem 3.4. More precisely one gets the following result [16, Lemma 13]. Suppose that for all
s,T ∈ [0,T ∗], Σ(s,T ) < M′ for some M′ < M where M is from Assumption (EM), then MXt (R) < ∞ for
every R ∈ (1,1+ M−M′

M′ ]. Then the following explicit expression holds for z ∈C with Re(z) = R,

MXt (z) = exp

(∫ t

0
(θs(zΣ(s,T )+ (1− z)Σ(s, t))−θs(Σ(s, t)))ds

)
. (3.96)

Note that this equation provides the moment-generating function at the right argument z = R+ iu for (3.95)
since ϕXt (u− iR) = MXt (R+ iu).

Contrary to equity derivatives interest rate derivatives typically generate cash flows along a discrete tenor
structure T0 < T1 < · · · < Tn−1 < Tn. According to the day count convention in the contract specification
the time intervals δi = Ti−Ti−1 (1≤ i≤ n) can depend on i. For simplicity we assume a constant δ which
usually is 3 or 6 months. The most important interest rate derivatives are caps, floors, and swaptions. A
(forward start) cap is a sequence of call options on the Libor rate. Each option in this sequence with time-
Tj-payoff Nδ (L(Tj−1,Tj−1)−K)+ is called a caplet. N is the notional amount, which we set N = 1. K is
the strike rate. A (forward start) floor is a sequence of put options on the Libor rate—each one called a
floorlet—with time-Tj-payoff Nδ (K−L(Tj−1,Tj−1))

+.
A payoff δ (L(T,T ) − K)+ which is made at time T + δ is equivalent to a discounted payoff

B(T,T + δ )δ (L(T,T )−K)+ at time T . Since

B(T,T + δ )δ (L(T,T )−K)+ = (1+ δK)
(
(1+ δK)−1−B(T,T + δ )

)+
(3.97)

one can interpret a caplet as a put option with strike (1+ δK)−1 and notional amount (1+ δK) on a zero
coupon bond with maturity T + δ . Analogously a floorlet is a call option on a zero coupon bond. There
is also a put–call-parity relation between caps and floors. Caps and floors are used as an insurance against
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rising or falling interest rates in contracts with variable interest rates. Given the interpretation in (3.97) in
order to price caps and floors we have to price put and call options on zero coupon bonds as underlying
quantity. More specifically, the price of a call with maturity t and strike K on a zero coupon bond with
maturity T where t < T is given by (3.95) where f (x) = (ex−K)+. In the case of a put one has to choose
f (x) = (K− ex)+. Since f̂ for these functions f has been computed in (3.36), we get the following explicit
form for the time-0-price of calls and puts on zero coupon bonds. Suppose R∈ (1,∞) such that MXt (R)<∞.
Then the call price has the representation

C0(t,T,K) = B(0, t)
e−Rs

2π

∫
R

e−ius K1−iu−R

(R+ iu)(R− 1+ iu)
MXt (R+ iu)du. (3.98)

The formula for the put price P0(t,T,K) is exactly the same, only the assumptions differ. One has
to choose R ∈ (−∞,0) such that MXt (R) < ∞ [see (3.36)]. In order to price a caplet with strike rate K,
according to (3.97) one has to choose K in (3.98) as (1+ δK)−1 and furthermore one has to multiply the
notional amount with the factor (1+ δK). The sum over all the caplets along the tenor structure gives the
price of the cap.

Pricing swaptions is equivalent to pricing call respectively put options on a coupon bearing bond (see
[35, Sect. 16.2.3]). The general representation (3.95) applies here as well with f chosen appropriately. For
details see Sect. 5 in [16]. Again the assumption on the existence of a Lebesgue density for the distribution
of X is not necessary. Instead one can assume (C1)–(C3). These assumptions are easy to verify in the case
of swaption as well as of cap and floor valuation. In particular (C3) follows always as an application of
Lemma 2.5 in [11]. Let us demonstrate this for the case of a call, i.e. f (x) = (ex−K)+. Then g is bounded
since g(x) = e−Rx(ex−K)≤ K1−R for x ≥ lnK and g(x) = 0 for x < lnK. Note that 1−R < 0 for the call
function. Furthermore ∫

R

|g(x)|dx =−
(

1
1−R

+
1
R

)
K1−R < ∞

implies g ∈ L1
bc(R). To verify (C3) according to [11, Lemma 2.5] it is sufficient to prove g ∈ H1(R). First

we show g ∈ L2(R) since

∫
R

|g(x)|2dx =

(
2

1− 2R
+

1
2R
− 1

2(1−R)

)
K2(1−R) < ∞.

The weak derivative of g is

∂g(x) =

{
0 x < lnK

e−Rx(ex−Rex+RK) x > lnK

and ∫
R

|∂g(x)|2dx =−
(

1−R
2

+
2(1−R)R

1− 2R
− R

2

)
K2(1−R) < ∞,

which implies ∂g ∈H1(R).

3.7 Valuation in the Lévy Libor Model

Instantaneous forward rates which represent the basic quantity in the modeling approach in the previous
section are an infinitesimal quantity since [see (3.68)]
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f (t,T ) =− ∂
∂T

lnB(t,T ).

These rates are not observable in the market. What is observable instead are forward Libor rates L(t,T )
as defined in (3.70). Therefore Brace et al. [5] chose these rates as the basic quantities and introduced the
Libor or market model. The Lévy Libor model as a generalization was introduced in [22]. We sketch the
model briefly in the following—for the detailed construction see [22]—and show then how Fourier-based
valuation formulas can be derived.

The model is constructed by backward induction and driven by a time-inhomogeneous Lévy process LT ∗

as given in (3.76). T ∗ denotes here the end point of a tenor structure 0 = T0 < T1 < · · ·< Tn−1 < Tn = T ∗.
Write again δ = Tk+1−Tk. Since because of measure changes the indices Tk become important now, we
repeat (3.76) in the form

LT ∗
t =

∫ t

0
bT ∗

s ds+
∫ t

0
c1/2

s dW T ∗
s +

∫ t

0

∫
Rd

x(μT ∗−νT ∗)(ds,dx).

The meaning of the quantities with upper T ∗ is the same as in (3.76). LT ∗ is defined on a complete
stochastic basis (Ω ,F = FT ∗ ,F,PT ∗) where PT∗ should be regarded as the forward martingale measure
for the settlement date T ∗. A spot martingale measure P is not needed in this approach. LT ∗ is required to
satisfy Assumption (EM). Two ingredients are needed:

Assumption (LR.1): For any maturity Tk there is a deterministic function λ (·,Tk) : [0,T ∗]→ R
d which

represents the volatility of the forward Libor rate process L(·,Tk). This function satisfies

n−1

∑
k=1

|λ i(s,Tk)| ≤M′ for all s ∈ [0,T ∗] and i ∈ {1, . . . ,d}

for some M′ < M
2 , where M is the constant from Assumption (EM). For s > Tk we assume λ (s,Tk) = 0.

Assumption (LR.2): The initial term structure B(0,Tk) (1 ≤ k ≤ n) is strictly positive and strictly de-
creasing in k.

The backward induction starts by setting the most distant Libor rate L(t,Tn−1) under PT ∗ as

L(t,Tn−1) = L(0,Tn−1)exp

(∫ t

0
λ (s,Tn−1)dLT ∗

s

)
. (3.99)

Now one forces this to become a PT∗-martingale by choosing bT∗ such that

∫ t

0
〈λ (s,Tn−1),b

T ∗
s 〉ds = −1

2

∫ t

0
〈λ (s,Tn−1),csλ (s,Tn−1)〉ds

−
∫ t

0

∫
Rd

(
e〈λ (s,Tn−1),x〉− 1−〈λ (s,Tn−1),x〉

)
νT ∗(ds,dx).

This at the same time eliminates the drift coefficient bT ∗ . Define—where L(t−, ·) denotes left limits—

�(t−,Tn−1) =
δL(t−,Tn−1)

1+ δL(t−,Tn−1)
,

α(t,Tn−1) = �(t−,Tn−1)λ (t,Tn−1),

and

β (t,x,Tn−1) = �(t−,Tn−1)
(

e〈λ (t,Tn−1),x〉 − 1
)
+ 1
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then the forward process F(·,Tn−1,T ∗) is given as a stochastic exponential

F(t,Tn−1,T
∗) = F(0,Tn−1,T

∗)Et(M
1)

with

M1
t =

∫ t

0
c1/2

s α(s,Tn−1)dW T ∗
s +

∫ t

0

∫
Rd
(β (s,x,Tn−1)− 1)(μT∗−νT∗)(ds,dx)

and is consequently a PT ∗-martingale. We use this forward process as a density process and define the
forward measure PTn−1 via

dPTn−1

dPT∗
=

F(Tn−1,Tn−1,T ∗)
F(0,Tn−1,T ∗)

= ETn−1(M
1).

By the semimartingale version of Girsanov’s theorem (see [30])

W Tn−1
t :=W T ∗

t −
∫ t

0
c1/2

s α(s,Tn−1)ds

is a PTn−1 -standard Brownian motion and

νTn−1(dt,dx) := β (t,x,Tn−1)νT ∗(dt,dx)

is the PTn−1-compensator of μT ∗ . Now one defines the forward Libor rate L(·,Tn−2) under PTn−1 as

L(t,Tn−2) = L(0,Tn−2)exp

(∫ t

0
λ (s,Tn−2)dLTn−1

s

)
,

where

LTn−1
t =

∫ t

0
bTn−1

s ds+
∫ t

0
c1/2

s dW Tn−1
s +

∫ t

0

∫
Rd

x
(
μTn−1−νTn−1

)
(ds,dx).

bTn−1 is again eliminated in such a way that L(t,Tn−2) becomes a PTn−1 -martingale. Continuing this way
one gets forward Libor rates L(t,Tk) and forward measures PTk+1 such that for k ∈ {1, . . . ,n− 1}

L(t,Tk) = L(0,Tk)exp

(∫ t

0
λ (s,Tk)dL

Tk+1
s

)
(3.100)

is a PTk+1 -martingale. The driving process has the form

L
Tk+1
t =

∫ t

0
b

Tk+1
s ds+

∫ t

0
c1/2

s dW
Tk+1
s +

∫ t

0

∫
Rd

x
(
μTk+1−νTk+1

)
(ds,dx),

where νTk+1(ds,dx) = F
Tk+1
s (dx)ds is the PTk+1 -compensator of μTk+1 and the drift coefficient bTk+1 is cho-

sen analogously to the first induction step replacing Tn−1 by Tk. The other quantities are

�(s−,Tk) =
δL(s−,Tk)

1+ δL(s−,Tk)
,

α(s,Tk) = �(s−,Tk)λ (s,Tk), and

β (s,x,Tk) = �(s−,Tk)
(

e〈λ (s,Tk),x〉 − 1
)
+ 1
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and we have the recursive relations

W Tk
t =W Tk+1

t −
∫ t

0
c1/2

s α(s,Tk)ds

and
FTk

s (dx) = β (s,x,Tk)F
Tk+1
s (dx).

Furthermore the successive densities can be written as

dPTk

dPTk+1

=
1+ δL(Tk,Tk)

1+ δL(0,Tk)
. (3.101)

Since L(t,Tk) is a PTk+1 -martingale, so is

B(t,Tk)

B(t,Tk+1)
= 1+ δL(t,Tk), (3.102)

which is up to the constant (1+ δL(0,Tk))
−1 the density process

dPTk

dPTk+1

∣∣∣
Ft

=
1+ δL(t,Tk)

1+ δL(0,Tk)
. (3.103)

By iterating this we get

dPTk+1

dPTn

=
n−1

∏
�=k+1

1+ δL(Tk+1,T�)
1+ δL(0,T�)

=
B(0,Tn)

B(0,Tk+1)

n−1

∏
�=k+1

(1+ δL(Tk+1,T�)).

Applying Proposition III.3.8 of [30]—which is a fundamental result for interest rate modeling—we see
that its restriction to Ft

dPTk+1

dPTn

∣∣∣
Ft

=
B(0,Tn)

B(0,Tk+1)

n−1

∏
�=k+1

(1+ δL(t,T�)) (t ∈ [0,Tk+1]) (3.104)

is a PTn-martingale.
As a consequence of representations of the type (3.104) of arbitrary quotients B(t,Tj)/B(t,Tk) as prod-

ucts of quotients with successive maturities Tk and Tk+1, Proposition III.3.8 of [30] guarantees also that
properly discounted zero coupon bond prices B(t,Tj)/B(t,Tk) are PTk -martingales. This means that the
Libor approach as developed above creates an arbitrage-free model.

With respect to numerical aspects it is important to note that already with the first measure change
one looses the property that the driving processes LTk+1 are time-inhomogeneous Lévy processes. This is
because the coefficients α(s,Tk) and β (s,x,Tk) contain the random quantity L(s−,Tk) via �(s−,Tk). The
simplest approach to preserve this property for numerical purposes is to replace �(s−,Tk) by its determin-

istic starting value �(0,Tk) =
δL(0,Tk)

1+δL(0,Tk)
. This is called the frozen drift approximation. A number of more

sophisticated approximations has been studied in recent years.
The approach which we present here is exposed in [16] and is based on the following approximation for

exponential terms:

(A): For small values |x| and ε > 0 we have
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1+ ε exp(x)≈ (1+ ε)exp

(
ε

1+ ε
x

)
.

We want to price standard interest rate derivatives such as caps, floors, and swaptions in the Lévy Libor
model by numerically efficient methods. Since floor prices can be derived from the corresponding put–call-
parity relation we concentrate on caps. The payoff of a caplet with strike rate K and maturity Tk is

δ (L(Tk,Tk)−K)+,

where the payment is made at time point Tk+1. Consequently its time-0-price is given by

C0(Tk,K) = δB(0,Tk+1)EPTk+1
[(L(Tk,Tk)−K)+]. (3.105)

For a convenient representation of this expectation we introduce for 0≤ t ≤ Tk+1 two processes which
turn out to be PTn-martingales [see (3.104)]

M1
t :=

n−1

∏
�=k+1

(1+ δL(t,T�))
L(Tk,Tk)

K
(3.106)

and

M2
t :=

n−1

∏
�=k+1

(1+ δL(t,T�)). (3.107)

Then

K
(

M1
Tk+1

−M2
Tk+1

)+
= (L(Tk,Tk)−K)+

n−1

∏
�=k+1

(1+ δL(Tk+1,T�)),

which implies by (3.104)

C0(Tk,K) = δB(0,Tn)KEPTn

[(
M1

Tk+1
−M2

Tk+1

)+]
. (3.108)

Substituting L(t,T�) in (3.106) and (3.107) by its explicit form (3.100) and using the fact that LTk+1 and
LTn differ only by a drift term, we get the representation

M1
t =

n−1

∏
�=k+1

[
1+ δL(0,T�)exp

(∫ t

0
λ (s,T�)dLTn

s + drift

)]

× L(0,Tk)

K
exp

(∫ Tk

0
λ (s,Tk)dLTn

s + drift

)

and similarly for M2
t without the factor in the second line. Now we approximate each factor in the product

above using (A), i.e. we replace

1+ δL(0,T�)exp

(∫ t

0
λ (s,T�)dLTn

s + drift

)

by

(1+ δL(0,T�))exp

(∫ t

0
�(0,T�)λ (s,T�)dLTn

s + new drift

)
.
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The results are approximations M̃1
t and M̃2

t of M1
t and M2

t which can be written in the form

M̃1
t =

L(0,Tk)

K
B(0,Tk+1)

B(0,Tn)
exp

(∫ t

0
f k(s)dLTn

s +
∫ Tk

0
λ (s,Tk)dLTn

s +D1
t

)

and

M̃2
t =

B(0,Tk+1)

B(0,Tn)
exp

(∫ t

0
f k(s)dLTn

s +D2
t

)
,

where

f k(s) =
n−1

∑
�=k+1

�(0,T�)λ (s,T�),

D1
t = ln

⎛
⎝ EPTn

[
exp
(∫ Tk

0 λ (s,Tk)dLTn
s

)]
EPTn

[
exp
(∫ t

0 f k(s)dLTn
s +

∫ Tk
0 λ (s,Tk)dLTn

s

)]
⎞
⎠ ,

and

D2
t = ln

(
EPTn

[
exp

(∫ t

0
f k(s)dLTn

s

)]−1
)
.

We can replace now (3.108) by the approximative formula

C0(Tk,K)≈ δB(0,Tn)KEPTn

[(
M̃1

Tk+1
− M̃2

Tk+1

)+]
. (3.109)

Implicitly it is assumed that M̃1 and M̃2 are PTn-martingales. This allows to introduce a P̃Tk+1 -forward
measure by setting

dP̃Tk+1

dPTn

=
M̃2

Tk+1

M̃2
0

= exp

(∫ Tk+1

0
f k(s)dLTn

s +D2
Tk+1

)
.

Expressing (3.109) in terms of the new measure we get

C0(Tk,K)≈ δB(0,Tk+1)KEP̃Tk+1

((
exp(XTk+1)− 1

)+]
,

where X is defined as the process

Xt = ln
M̃1

t

M̃2
t
= ln

(
L(0,Tk)

K

)
+

∫ Tk

0
λ (s,Tk)dLTn

s +D1
t −D2

t .

We finally reached the form

C0(Tk,K)≈ δB(0,Tk+1)KEP̃Tk+1
[ f (XTk+1)] (3.110)

for f (x) = (ex− 1)+. This means Theorem 3.1 can be applied with the payoff of a call option with strike
1. The corresponding Fourier transform f̂ is given in (3.36) and s equals 0. Therefore we get the following
explicit integral representation for the formula (3.110). Suppose R ∈ (1,1 + ε) such that the moment-
generating function of XTk+1 with respect to P̃Tk+1 is finite at R, i.e. M̃XTk+1

(R)< ∞, then

C0(Tk,K)≈ δB(0,Tk+1)
K
2π

∫
R

M̃XTk+1
(R+ iu)

1
(−iu−R)(1− iu−R)

du. (3.111)
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An explicit form for the moment-generating function M̃XTk+1
can be obtained again using Theorem 3.4.

Suppose R ∈ (1,1+ ε) such that M̃XTk+1
(R)< ∞. Then for all z ∈C with Re(z) = R

M̃XTk+1
(z) =

(
L(0,Tk)

K

)z

(3.112)

× exp

(∫ Tk

0

[
θs( f k(s)+ zλ (s,Tk))− zθs( f k(s)+λ (s,Tk))

+(z− 1)θs( f k(s))+ zθs(λ (s,Tk))
]

ds

)
.

A detailed proof of this formula is given in [37, Satz 4.2.5].
As mentioned earlier pricing swaptions is equivalent to pricing calls and puts on a coupon bearing bond.

Therefore by choosing the appropriate payoff function f swaptions can be priced in the Lévy Libor model
as well. The corresponding numerically efficient Fourier-based integral representation formula has been
derived in [31, Sect. 3.2.2].
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Chapter 4
Mathematics of Swing Options: A Survey

Jukka Lempa

Abstract This paper is a survey article on mathematical theories and techniques used in the study of swing
options. In financial terms, swing options can be regarded as multiple-strike American or Bermudan options
with specific constraints on the exerciseability. We focus on two categories of approaches: martingale and
Markovian methods. Martingale methods build on purely probabilistic properties of the models whereas
Markovian methods draw on the interplay between stochastic control and partial differential equations.
We also review other techniques available in the literature.

4.1 Introduction

Swing options are derivative securities traded on various commodity markets. These contracts are American
or Bermudan-type contingent claims written on the spot price of the commodity. In financial terms, a swing
option can be understood as a strip of call or put options, that is, a cap or a floor, subject to additional
restrictions on the admissible exercise policies; see [9]. To elaborate, consider a simple version of a swing
option with a binary decision variable u : [0,T ]→ {0,1}, where T is the maturity of the contract. Here,
the value 0 (1) means that the holder does not exercise (exercises) at time t. In this case, the payoff of the
option at time t is ut(St −K), where S is the spot price of the commodity and K is the strike price. First of
the aforementioned restrictions (a global constraint) is that the sum of ut ’s over the time horizon [0,T ], that
is, the total number of swings, must be in between the bounds umin ≥ 0 and umax < T ; here, we assume that
the numbers are unitless. The second restriction (a local constraint) is implicitly given in the specification
of the decision variable u. Namely, the binary range of u indicates that the swing option can be exercised
only once at each time t. More generally, we can allow that the option can be exercised many, say N, times
on a given instant. Additional constraints, like recovery times between the swings, appear in the literature
depending on the particular application.

The purpose of this paper is to serve as a survey on the mathematical theories and techniques used
in the study of swing options. In general mathematical terms, the pricing of a swing option under price
uncertainty is a maximization problem of the expected present value of future cash flows. These cash flows
consist of the future payoffs generated by the exercises of the swing rights. The future payoffs are formally
denoted with a stochastic process Z defined on a complete filtered probability space (Ω ,F ,P;{Ft}t≥0).

J. Lempa (�)
Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N–0316 Oslo, Norway
e-mail: jlempa@cma.uio.no

F.E. Benth (eds.), Quantitative Energy Finance: Modeling, Pricing, and Hedging in Energy and Commodity Markets,
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In what follows, we refer to {Ft}-stopping times simply as stopping times. Define the expected discounted
cumulative exercise payoff as

Ju
t = E

{
Z̃u

t,T

∣∣∣Ft

}
, (4.1)

where the process t �→ Z̃u
t,T is the discounted total payoff accumulating during the time interval [t,T ] by

using an admissible exercise policy u and E is the expectation under an appropriate pricing measure.1

A typical form of the process Z̃u
·,T is call-option-type payoff

t �→ Z̃u
t,T := ∑

t≤s≤T
e−r(s−t)(Ss−K)+us, (4.2)

where

• S is the spot price of the commodity
• K is the strike price
• u is the decision variable
• r is the discount rate

The maximization problem is written as

Vt = sup
u

E
{

Z̃u
t,T

∣∣∣Ft

}
, (4.3)

where u varies over admissible exercise policies. The aforementioned global constraint on the total number
of exercises can now be written as

umin ≤ ∑
0≤t≤T

ut ≤ umax, (4.4)

for all t. Furthermore, the local constraint on the range of the decision variable can be written as

ut ∈ [0, ū], (4.5)

for all t.
In this survey, we make a loose division of the methodology into two main categories. As martingale

methods we refer to the approaches emphasizing the purely probabilistic properties of the maximization
problem. Here, the basic modeling framework is an optimal multiple stopping problem and fundamental
building blocks are the concepts of Snell envelope and Doob-Meyer decomposition. The basic tool of trade
in the practical implementation is the Monte Carlo methodology. As Markovian methods we refer to the
approaches stemming from stochastic control theory and emphasizing the Markovian structure of the prob-
lem. In this case, the starting point of the analysis is the Bellman (i.e., dynamic programming) principle and
the practical implementation usually boils down to solving the associated Hamilton-Jacobi-Bellman equa-
tion. This is a nonlinear partial (integro-)differential equation. In addition to these, we review a number of
other techniques.

The remainder of the paper is organized as follows. In Sect. 4.2 we review martingale approaches ap-
pearing in the literature. The Monte Carlo techniques are discussed in Sect. 4.3. Section 4.4 is dedicated
to the Markovian theory of swing options, whereas some associated numerical techniques are discussed in
Sect. 4.5. In Sect. 4.6, we review other approaches to the study of swing options. For reasons of notational

1 Commodity markets are incomplete in general so the pricing measure is not unique; see, e.g., [7]. We omit the discussion
on the choice of the pricing measure.
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consistency, the discussion in Sects. 4.2 and 4.3 is presented with discrete time models even though some of
the references study continuous-time models. Sections 4.4 and 4.5 consider modeling in continuous time.

We remark that the results presented in this paper are not necessarily in the most general form that would
be granted by the original references. The simplifications are done for reasons of presentation and without
explicit indication.

4.2 Martingale Methods: Snell Envelope and Doob-Meyer Decomposition

To simplify the notation, we assume throughout this and the next section that the risk-free rate is zero.
Furthermore, we assume that the time variable is discrete.

As mentioned already in the introduction, a swing option is in principle a path-dependent American or
Bermudan contingent claim subject to additional restrictions on the admissible exercise policies. A cor-
nerstone of the mathematical theory of American contingent claims is the notion of a Snell envelope.
Originally this concept has been developed in the context of single-strike American contingent claims, we
review the definition here. The future payoff process of a single-strike American option reads as Zu

t,T = Zτ ,
where τ is a stopping time taking values in [t,T ]. Then the Snell envelope is, loosely speaking, the smallest
non-negative supermartingale V dominating the process t �→ Zt . Formally, it is defined as

Y ∗t = esssupt≤τ≤T E
{

Zτ
∣∣∣Ft

}
, (4.6)

where τ varies over stopping times—for properties of V , see, e.g., [17]. Even though the single-strike case
of a continuous-time Snell envelope was treated thoroughly already in [17], the multistrike case was not
treated until quite recently in [11]; see also [10]. In these papers, the theory of Snell envelope was developed
for payoff processes with continuous paths. These results were subsequently generalized to Lévy-driven
payoff processes in [44]. We also refer to [5], where the results of [11, 44] were generalized even further in
the continuous-time setting.

In [11] (see also [5]), the authors break the multistrike American contingent claim down into a
sequence of single-strike claims with different payoff processes which are defined iteratively. To explain
this, consider a double-strike claim with a refraction period δ—the result extends naturally to arbitrary
number of strikes. Now the space of exercise policies is the collection of all pairs of stopping times
τ̄ = (τ1,τ2) such that

τ1 ≤ T a.s. and τ2− τ1 ≥ δ on {τ2 ≤ T} a.s.

The cumulative payoff process reads as Zu
t,T = Zτ̄ := Zτ1 + Zτ2 and, consequently, the optimal multiple

stopping problem can be written as

Vt = esssupτ̄E
{

Zτ̄
∣∣∣Ft

}
. (4.7)

To introduce the associated single-strike claims, define the Snell envelopes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y 2
t = esssupτE

{
Zτ +E

{
Y 1
τ+δ

∣∣∣Fτ

}∣∣∣Ft

}
,

Y (1)
t = esssupτE

{
Zτ
∣∣∣Ft

}
,

Y (0) = 0,

(4.8)

for all t ≤ T . Then, under some technical conditions, the Snell envelope Y 2 is the solution to the multiple
optimal stopping problem, i.e., Y 2 = V ; see [11], Theorem 2.1. The iterative construction of the payoff
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processes is very natural. Indeed, if we look at the first line in (4.8), the payoff process breaks down
into the discounted single-strike payoff Z and the expected present value of the remaining exercise right.
A recursion similar to (4.8) is used also in [32], where the authors develop Monte Carlo methodology for
the valuation of multistrike options. Indeed, they write the Snell envelopeY n for n remaining exercise rights
as the solution to the variational principle

Y n
t = max

{
Zt +E

{
Y n−1

t+1

∣∣∣Ft

}
, E
{

Y n
t+1

∣∣∣Ft

}}
, (4.9)

for all t ≤ T .
For practical modeling purposes, an optimal multiple stopping problem is somewhat limited as it does

not allow multiple swings to be exercised on a single stopping time. For example, if we consider a swing
option on the spot price of electricity, the previous formulation of the pricing problem allows the holder to
purchase only a single unit of electricity at a time. However, in practice these contracts usually convey the
right to purchase multiple units of the commodity at a given time. This issue is addressed in [1, 6], where
the optimal multiple stopping problem is generalized such that the holder of the contract can exercise many
swing rights simultaneously. The number of swing rights that can be exercised simultaneously is subject to
a constraint which can be constant over time or a deterministic or even an adapted stochastic process.

To explain this generalization, consider a swing option with three swing rights and assume that two
rights can be exercised simultaneously at any given time. When describing admissible exercise policies,
the basic building blocks are triples of stopping times τ̄ = (τ1,τ2,τ3). Define the quantity

Nt(τ̄) = #( j : τ j = t). (4.10)

This quantity labels each time point with the number of swing rights exercised that time. The cumulative
payoff process reads as Zu

t,T = Zτ̄ := Zτ1 +Zτ2 +Zτ3 , where the triple τ̄ satisfies the condition Nt(τ̄)≤ 2 for
all t. Moreover, the value process is defined as

V 3
t = esssupτ̄E

{
Zτ̄
∣∣∣Ft

}
, (4.11)

for all t.
Similarly to the ordinary optimal multiple stopping problem (4.7), the problem (4.11) can also be solved

recursively via a sequence of ordinary optimal stopping problems with modified payoff processes. This is
done in [6] as follows. Assume that the instantaneous payoff process Z is nonnegative and fix a pair of
stopping times (τ1,τ2) such that Nt(τ1,τ2)≤ 2 for all t. Define the modified instantaneous payoff process

Z[τ1,τ2]
t =

{
Zt , Nt(τ1,τ2)< 2,

0, Nt(τ1,τ2) = 2.
(4.12)

Since it is clearly suboptimal to exercise if the payoff is zero, this modified instantaneous payoff process is
never exercised if the local constraint, in this case 2, is already exhausted by the pair (τ1,τ2). Now, define
the Snell envelope for the modified instantaneous payoff process as follows

Y ∗t
(

Z[τ1,τ2]
)
= esssupτE

{
Z[τ1,τ2]
τ

∣∣∣Ft

}
. (4.13)

Assume now that the pair (τ1,τ2) = (τ∗1 ,τ∗2 ) is such that the first two swing rights are used optimally. Then
one of the key results in [6] is that the marginal value ΔV 3 =V 3−V 2 reads as

ΔV 3
t = Y ∗t

(
Z[τ∗1 ,τ∗2 ]

)
.
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In other words, the marginal value ΔV 3 can be identified as the Snell envelope of the modified payoff
(4.12) given that the first two swing rights have been used optimally. Furthermore, [6] gives also a recursive
identification of optimal exercise times τ∗n (t), for n = 1,2,3 and t ≤ T :

τ∗n (t) = inf
{

t ′ ≥ t : Z
[τ∗1 (t),...,τ∗n−1(t)]
t′ ≥ Y ∗t′

(
Z
[τ∗1 (t),...,τ∗n−1(t)]
t

)}
. (4.14)

Put differently, given the holder has used the first n−1 exercise rights optimally, it is optimal to use the nth
exercise right at the first time when modified payoff process Z[τ∗1 (n),...,τ

∗
n−1(t)] dominates the corresponding

Snell envelope. Consequently, the value process V 3 can be expressed as

V 3
t = E

{
Zτ∗1 (t) +Zτ∗2 (t) +Zτ∗3 (t)

∣∣∣Ft

}
,

for all t ≥ 0.
The problem (4.11) of optimal multiple stopping with multiple simultaneous strikes is studied also in

[1]. To describe the approach, consider again the same example where, at a given time t, the holder has
three swing rights left of which up to two can be exercised simultaneously. Furthermore, assume that the
instantaneous payoff process Z is nonnegative. Then the value process V 3 can be expressed via the dynamic
programming formulation

⎧⎨
⎩

V 3
T = 2ZT ,

V 3
t = max

{
2Zt +E

{
V 1

t+1

∣∣∣Ft

}
, Zt +E

{
V 2

t+1

∣∣∣Ft

}
, E
{

V 3
t+1

∣∣∣Ft

}}
.

(4.15)

In other words, the holder compares the outcome of each possible action and chooses the one with the
highest sum of instantaneous payoff and remaining option value. In the same vein, the value process V 3

can be written in terms of an optimal stopping problem:

V 3
t = sup

τ
E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Zτ+E
{

V 1
τ+1

∣∣∣Ft

}
,

Zτ+E
{

V 2
τ+1

∣∣∣Ft

}
,

E
{

V 3
τ+1

∣∣∣Ft

}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣
Ft

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (4.16)

These two papers use different tools to study the optimal multiple stopping problem. Indeed, the approach
of [6] is built on the Snell envelopes of the modified instantaneous payoff processes (4.12) whereas in [1]
the starting point is the Doob decomposition of the value and the marginal value processes V and ΔV ,
respectively. In particular, both of these lead into a dual formulation of the pricing problem which can be
used in Monte Carlo valuation of the swing option. The dual formulations are reviewed in more detail in the
next section. It is worth pointing out that the analysis of [1] is more general than [6] in terms of the exercise
payoffs. Indeed, in [6], it is assumed that payoff of every swing is given by the instantaneous payoff process
Z, whereas in [1] the payoff depends functionally on the payoff process with potentially different function
for each swing.

The approaches presented in this section solve the problem of optimal multiple stopping backwards

in time in terms of the continuation values, i.e., the quantities t �→ E
{

Y n
t+1

∣∣∣Ft

}
. For the time be-

ing, write the continuation value in Markovian form t �→ E
{

V n(Xt+1)
∣∣∣Xt = x

}
. A popular method for

estimating the continuation values is the so-called basis expansion method á-la [29, 37]—for consis-
tency results, see [12]. Here, if we assume that V n(Xt+1) is square integrable, the regression function

x → E
{

V n(Xt+1)
∣∣∣Xt = x

}
can be identified as an element in an appropriate L2-space; see [11, p. 261].
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Therefore it can be approximated by the partial sums of its decomposition with respect to any orthonormal
basis in this Hilbert space. Another popular regression method is a so-called kernel method, where the
conditional continuation value is expressed as

E
{

V n(Xt+1)
∣∣∣Xt = x

}
=

E{V n(Xt+1)δx(Xt)}
E{δx(Xt)} , (4.17)

where δx is the Dirac mass at point x. Here, the Dirac mass is approximated with an approximate identity,
i.e., a sequence of smooth functions κhn , where hn → 0 and convergence is understood in an appropriate
sense. This leads to the approximation

E
{

V n(Xt+1)
∣∣∣Xt = x

}
≈ E{V n(Xt+1)κhn(Xt)}

E{κhn(Xt)} ;

for more information, see [11, p. 260]. In [11], the authors develop another approach to study (4.17) based
on Malliavin calculus. They use Malliavin integration-by-parts formula to get rid of the Dirac masses in
(4.17); see [11, Sect. 6].

4.3 Towards Monte Carlo: Dual Representation

In the previous section we reviewed some martingale approaches to the pricing of swing contracts via
optimal multiple stopping problems. In this section, we discuss these approaches in more detail, in partic-
ular in relation to Monte Carlo valuation techniques. In these techniques, the first task is to derive lower
and upper biased estimators for the value process and then simulate a sufficient number of realizations
in order to compute lower and upper bounds for the prices. So, inherently, Monte Carlo techniques give
approximate prices, or better, confidence intervals for the option prices.

To explain these concepts in more detail, we start again with the pricing problem of a single-strike
American option formulated as the optimal stopping problem (4.6)—we call this a primal problem. Here,
obviously, the process t �→ E{Zτ |Ft}, where τ ∈ [t,T ] is an arbitrary stopping time, gives a lower bound
to value process. Depending on the choice of the stopping time τ , this process can give a very good or very
bad approximation for the option prices.

It is trivial to obtain a lower bound for the price, as every admissible exercise rule yields a suboptimal
solution and, hence, a lower bound for the price. A method to find upper bounds is to write down a dual
formulation of the problem. For single-strike option, this was done in [33] (see also [22]) based on an idea
dating back to [15]. To explain the result, we remark that under an appropriate Lp condition on the payoff
process, the Snell envelope Y ∗ has a Doob-Meyer decomposition

Y ∗t = Y ∗0 +M∗
t −A∗t ,

where M∗ is a martingale and A∗ is a previsible integrable increasing process, both vanishing at zero,
see [33, p. 272]. By exploiting this, it is proved in Theorem 2.1 in [33] that the Snell envelope can be
expressed as

Y ∗t = inf
M∈H1

0

E
{

sup
t≤s≤T

(Zs− (Ms−Mt))
∣∣∣Ft

}
, (4.18)

where H1
0 is an appropriate space of integrable martingales. To discuss how to interpret this financially

following [33], fix a martingale M ∈ H1
0 and let

η := sup
t≤u≤T

(Zu− (Mu−Mt)) ∈FT .
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Furthermore, denote as ηs := E{η |Fs} the martingale with the final value η . Then, by definition, we
find that

Zu ≤ η+(Mu−Mt),

for all u ∈ (t,T ]. By conditioning at time u, we find that

Zu ≤ E
{
ηT −ηt

∣∣∣Fu

}
+(ηt +(Mu−Mt)). (4.19)

We can think of the martingale M =Mθ as the discounted gains process of some portfolio θ . If we start with
wealth ηt =E{η |Ft} at time t and use portfolio θ , the present value of our wealth would be ηt +(Mu−Mt)
for all u ∈ (t,T ]. Thus we can give the inequality (4.19) a hedging interpretation. Indeed, if the contingent
claim is exercised at time u, the payoff is Zu. If the issuer uses the martingale M as the hedge, it is desirable
to have the quantity E{|ηT −ηt |}, which bounds the mean of the shortfall, small. Then the martingale M
would be a good hedge.

The expression (4.18) gives immediate upper bounds for the price of the single-strike option. Indeed,
by choosing any admissible martingale M in (4.18), we obtain a (potentially very coarse) upper bound for
the price—see [33] for a method to find “good” martingales. The result given by (4.18) was generalized
to multistrike options in [32] where an analogous dual expression was derived in the case when multiple
simultaneous strikes are not allowed. To explain this generalization, we need the notion of marginal value.
Denote as V m the value process in the case the holder has m swing rights left. Then the marginal value ΔV m

is defined, as usual, as the value of a single swing right, i.e.,

ΔV m
t =V m

t −V m−1
t ,

for all t ≥ 0. As we discussed in the previous section, the marginal values can be obtained as solutions of
optimal single stopping problems with modified payoffs. In this light, it is not surprising that the marginal
values admit a dual representation similar to (4.18). For reasons of simplicity, consider a claim with two
strikes—again, the obvious generalization to arbitrary number of strikes applies. In [32, Theorem 3.1], the
following representation is obtained:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ΔV 2

t = inf
τ1

inf
M∈H1

0

E

{
sup

s∈{t,...,T}\{τ1}
(Zs− (Ms−Mt))

∣∣∣Ft

}
,

ΔV 1
t = inf

M∈H1
0

E
{

sup
t≤s≤T

(Zs− (Ms−Mt))
∣∣∣Ft

}
.

(4.20)

Unfortunately, here a hedging interpretation á-la [33] does not appear to be so obvious.
Dual formulation of optimal multiple stopping is studied also in [35]. As opposed to [32], the dual

problem is now written directly to the value function instead of the marginal value. Furthermore, it is
a “pure martingale” dual as it is solely expressed in terms of an infimum over martingales rather than
infimum over martingales and stopping times. Assume now that the holder has L exercises left and denote
as t ≤ s1 < · · ·< sL ≤ T an L-tuple of intermediate times. Then the main result of [35] states that the value
of the optimal multiple stopping problem can be expressed as

V L
t = inf

M1,...,ML∈H1
0

E

{
max

t≤s1<···<sL

L

∑
k=1

(
Zsk +(Mk

jk−1
−Mk

jk)
) ∣∣∣∣∣ Ft

}
. (4.21)

A dual formulation similar to (4.21) is developed in [5] for continuous-time framework. When passing
from discrete to continuous time, the conceptually new feature of the dual formulation is that it depends
not only on the martingale part but also on the bounded variation part of the Doob-Meyer decomposition
of the option price process; see [5, Theorem 2.3], for details.
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The dual representation (4.20) was generalized for claims with multiple simultaneous strikes in [1, 6].
To present the result of [6], consider again swing option with three swing rights and assume that at most
two rights can be exercised simultaneously. Furthermore, assume that the instantaneous payoff process Z
is nonnegative and fix a pair of stopping times (τ1,τ2) such that Nt (τ1,τ2)≤ 2 for all t—for the definition
of Nt ; see (4.10). Then the marginal values can be expressed as follows in a formally neat way

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔV 3
t = inf

(τ1,τ2)
inf

M∈H1
0

E
{

max
s∈{t,...,T}

(
Z[τ1,τ2]

s − (Ms−Mt)
) ∣∣∣Ft

}
,

ΔV 2
t = inf

τ1
inf

M∈H1
0

E
{

max
s∈{t,...,T}

(
Z[τ1]

s − (Ms−Mt)
) ∣∣∣Ft

}
,

ΔV 1
t = inf

M∈H1
0

E
{

max
s∈{t,...,T}

(Zs− (Ms−Mt))
∣∣∣Ft

}
.

(4.22)

Furthermore, the optimal martingale M∗ = M∗,n is identified in [6] as the martingale part of the Doob
decomposition of the Snell envelope Y ∗t (Z̃[τ∗1 ,τ

∗
2 ]).

The formula (4.22) looks very much like the dual formulation in the single-strike case. Here, the infor-
mation on multiple, potentially simultaneous, strikes is contained in the modified payoff process (4.12).
In [1], an analogous result is derived where the contribution of multiple strikes is more explicit. Again,
consider for the time being swing option with three swing rights and assume that at most two rights can
be exercised simultaneously. Moreover, assume that the instantaneous payoff process for a single strike is
Z1 and, given that two rights are exercised simultaneously, the instantaneous payoff process for the second
strike is Z2. Then, according to [1, Theorem 1], the marginal value can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔV 3
t = inf

(τ1,τ2)
inf

M∈H1
0

E

{
max

s∈{t,...,T}

(
max

{
Z1

s − (Ms−Mt),

Z2
s − (Ms−Mt)

}) ∣∣∣∣∣ Ft

}
,

ΔV 2
t = inf

τ1
inf

M∈H1
0

E

{
max

s∈{t,...,T}

(
max

{
Z1

s − (Ms−Mt),

Z2
s − (Ms−Mt)

}) ∣∣∣∣∣ Ft

}
,

ΔV 1
t = inf

M∈H1
0

E
{

max
s∈{t,...,T}

(
Z1

s − (Ms−Mt)
) ∣∣∣Ft

}
.

(4.23)

We point out that if Z1 = Z2, then this result coincides with (4.22).

4.4 Markovian Methods: Variational Inequalities and HJB Equations

For notational convenience, we assume throughout this and the next section that the risk-free rate is a
constant r > 0. Furthermore, we assume that the time variable is continuous.

In the previous section we reviewed some of the theory of swing options which approaches the pricing
problem from purely probabilistic point of view. Another popular approach to the swing options builds
directly on a Markovian formulation of the pricing problem. In this section, we review these Markovian
methods. In this approach, the pricing problem is written as a dynamic programming problem and is ana-
lyzed via the Bellman principle. In the end, the pricing problem boils down to solving a nonlinear partial
(integro-)differential equation.

In some applications, for example, in oil contracts (see [26]), recovery times between swings need to
be taken into account. The recovery time might be a constant or depend on the size of the swing. As we
mentioned already in Sect. 4.2, optimal multiple stopping in continuous time in the presence of a constant
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recovery time was studied in [11]. A size-dependent recovery time is studied in [13] (see also [14]), where
the swing u, that is, the number of units of commodity acquired or delivered, is assumed to take values in
0, . . . ,L. Then the recovery time τR : N → [0,∞) is a non-decreasing function such that τR(u) = 0 if and
only if u = 0. The set of admissible exercise policies is a (finite) set of pairs τ̄ = {(τi,ui)}i≥1 such that

• τi ≤ T is a stopping time
• τi + τR(ui)≤ τi+1

• ui ∈ {0, . . . ,L} and ui ∈Fτi

The pricing problem is written as

V (t,x,ν) = sup
τ̄

Ex

{
∑
i≥1

e−r(τi−t)g(Xτi)ui

∣∣∣∣∣ Ft

}
, (4.24)

where the payoff g is a capped strangle option, the argument ν denotes the time when the next exercise is
possible, and the underlying log-price dynamics follow the solution of an Itô equation

dXt = μ(t,Xt)dt +σ(t,Xt)dWt , X0 = x;

see [13, pp. 32–33] for details. Denote the differential operator associated to X as

L =
1
2
σ2(t,x)

∂ 2

∂x2 + μ(t,x)
∂
∂x

. (4.25)

Then the author defines an L-tuple of functions {ĥu}L
u=1, ĥu : [0,T ]×R→ R (more precisely, candidates

for the value function for each possible swing size u), via the quasi-variational inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ t ĥu +L ĥu− rĥu ∈ L2(Q̃),
∂
∂ t ĥu(t,x)+L ĥu(t,x)− rĥu(t,x)≤ 0 for (t,x) ∈ Q̃,

ĥu(t,x)≥ g(x)u+ψt
u(t,x) for (t,x) ∈ Q̃,

ĥu(t,x) = max

{
g(x)u+ψt

u(t,x),

V (t,x, t+k )

}
for (t,x) ∈ ([0,T ]×R)\ Q̃,

max

⎧⎨
⎩

g(x)u+ψt
u(t,x)− ĥu(t,x),

∂
∂ t

ĥu +L ĥu− rĥu

⎫⎬
⎭= 0 for (t,x) ∈ Q̃

ĥu(x,T ) = g(x)u for x ∈ R,

(4.26)

where Q̃ is an appropriate subset of [0,T ]×R—see [13, pp. 35–36] for the definition of times tk and the
set Q̃. For a reader familiar with stochastic control theory, these conditions are natural. The main result of
[13] guarantees that there exists an L-tuple {ĥu}L

u=1 solving (4.26) such that

V (t,x, t) = max
1≤u≤L

ĥu(t,x). (4.27)

In other words, if it is possible to exercise immediately, then the value is obtained by first solving the system
(4.26) for each u = 1, . . . ,L and then maximizing over the variable u.

In the previous paper, the underlying price dynamics are assumed to follow a diffusion driven by a
single Brownian factor. In practice, drivers with jumps and multifactor models are more desirable. Pricing
of swing option in the presence of jumps in prices is studied in [28]. In this paper, the log-spot price of
electricity follows the dynamics

lnSt = f (t)+Xt ,
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where f is a deterministic seasonal component and X follows an Ornstein-Uhlenbeck process given as the
solution of an Itô equation

dXt =−αXt−dt +σdWt + dŨt . (4.28)

Here, α > 0 is the constant rate of mean reversion, W is a Wiener process, and Ũ is a compensated Poisson
process. Moreover, the swing contract considered in [28] is more general than in, say, [13]. In fact, the
author considers a Bermudan specification, where swing decisions are made in times 0≤ T1 < · · ·< TN < T .
Each of these periods (Tn,Tn+1] is split into subintervals (T d

n ,T
d+1

n ], 1 ≤ d ≤ D. At each Tn, the holder
decides on the amount of energy purchased at a fixed price over each of the D periods (T d

n ,T
d+1

n ]. As a
consequence, the exercise payoff of the swing option is written in terms of associated forward contract
prices—see [28, pp. 489–490] for details. Here, for the sake of compatibility, we assume that D = 1 and,
consequently, that the payoff depends only on the spot price. More precisely, the exercise payoff for buying
un units of energy over the time interval (Tn,Tn+1] is simply g(Tn,s,un) = un(s−K). Finally, define the
cumulative amount of energy bought up to time t ∈ (Ti,Ti+1] as Zt = ∑i

n=1 un. Under this specification, the
main result of [28], see Theorem 7.2, guarantees that the value of the swing option can be written as

V (t,s,z) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

supτ̄ E

⎧⎨
⎩

N

∑
n=i

e−r(Tn−Ti)

× g(Tn,STn ,un)

∣∣∣∣∣∣ FTi

⎫⎬
⎭ , t = Ti,

E
{

e−r(Ti−t)V (Ti,STi ,z)
∣∣∣ FTi

}
, Ti−1 < t < Ti, i > 1 or t < T1,

(4.29)

where τ̄ varies over admissible exercise policies—here, the admissibility is defined entirely analogously to
[28]. Furthermore, Theorem 7.2 in [28] guarantees that a value maximizing exercise policy exists.

Prices spikes are also addressed in [21], where the authors study swing option pricing when the under-
lying log-spot price dynamics are given by

lnSt = f (t)+Xt +Yt ,

where f is again a deterministic seasonal component and processes X and Y are solutions of Itô equations

dXt =−αXtdt +σdWt ,

dYt =−βYt−dt + dUt .

Here, α > 0 and β > 0 are constant levels of mean reversion, W is a Wiener process, and U is a compound
Poisson process. Form this starting point, the authors study properties of the price model and pricing of
various options, including path-dependent options, options on forwards with and without delivery periods,
and swing options. Their approach to swing options is built on the tree method of [25]—we explain this
method briefly in Sect. 4.6. More precisely, the continuous-time price process is first discretized using a
grid length Δ t and then the option price is written using the Bellman principle as

V (t,s,n) = max

⎧⎪⎨
⎪⎩

E
{

e−rΔ tV (t +Δ t,St+Δ t ,n)
∣∣∣ Ft

}
,

(s−K)++E
{

e−rΔ tV (t +Δ t,St+Δ t ,n− 1)
∣∣∣ Ft

}
⎫⎪⎬
⎪⎭ , (4.30)

where n denotes the number of swing rights left at time t. Finally, the pricing algorithm is obtained by
approximating the conditional expectations via a tree approximation of the price process S.

A different variation of swing option is studied in [8, 18, 30, 41]. In these papers, the swing option
can be exercised in continuous time, which is in contrast to the papers discussed earlier. More precisely,



4 Mathematics of Swing Options: A Survey 125

the holder can exercise the option in continuous time with a rate ut , which is now the decision variable.
The exercise rate u satisfies the local constraint ut ∈ [umin,umax] at all times t ∈ [0,T ]. Moreover, it satisfies
final value constraint

0≤M ≤
∫ T

0
utdt ≤M.

The exercise rules satisfying these constraints are called admissible. Denote the cumulative decision vari-
able as Zt =

∫ t
0 usds. Under this specification, the pricing problem is formulated as

V (t,s,z) = sup
u

E
{∫ T

t
e−r(v−t)(Sv−K)uvdv

∣∣∣∣ St = s,Zt = z

}
, (4.31)

where S is the spot price of the commodity and u varies over all admissible exercise rates. In [8, 30], the
spot price dynamics follow a Brownian-driven single-factor diffusion whereas in [18, 41] the problem is
studied for more general multifactor Lévy-driven diffusion dynamics. The starting point of the analysis is,
again, the Bellman principle of optimality, which in this case can be expressed as

V (t,s,z) = sup
u

E

⎧⎨
⎩
∫ w

t
e−r(v−t)(Sv−K)uvdv

+ e−r(w−t)V (w,Sw,Zw)

∣∣∣∣∣∣ St = s, Zt = z

⎫⎬
⎭ , (4.32)

for all t ≤ w≤ T . This leads to the associated Hamilton-Jacobi-Bellman equation, which can be written in
the case of single-factor Brownian diffusion dynamics (see (4.25)) as

Vt(t,s,z)+
1
2
σ2(t,s)Vss(t,s,z)+ μ(t,s)Vs(t,s,z)− rV (t,s,z)

+ sup
u
{u(t)(s−K+Vz(t,s,z))} = 0;

(4.33)

see, e.g., [8]. Depending on the degree of generality of the underlying price dynamics, one might have
to resort to the concept of viscosity solution when solving the HJB equation; see [19]. To this particular
problem setting, the theory of viscosity solutions is studied in [41].

4.5 Numerical Techniques for P(I)DEs: Finite Differences and Elements

In order to use the techniques discussed in the previous section to compute option values, one needs tech-
niques to solve partial (integro-)differential equations numerically. To this end, the first tool of trade is the
finite difference method. This method is based on the idea of approximating the derivatives of the value
function by finite differences. There are three different ways of computing finite differences, forward (or
explicit) method, backward (or implicit) method, and Crank-Nicolson method—see, e.g., [43]. These meth-
ods are used in [8, 13, 14, 18, 26, 28, 30] to compute numerical solutions for value of the swing option. For
example, the backward method is used in [8]. In this paper, the approximations read as

Vt(tn,s j,zi)≈
V n+1

i, j −V n
i, j

Δ t
,

Vz(tn,s j,zi)≈
V n+1

i+1, j−V n+1
i, j

Δz
,
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Vs(tn,s j,zi)≈
Δ s j+1
Δ s j

V n
i, j−1 +

(
Δ s j+1
Δ s j

− Δ s j
Δ s j+1

)
V n

i, j +
Δ s j
Δ s j+1

V n
i, j+1

Δs j+1 +Δs j
,

Vss(tn,s j,zi)≈
2
(

1
Δ s j

V n
i, j−1 +

(
− 1
Δ s j+1

− 1
Δ s j

)
V n

i, j +
1

Δ s j+1
V n

i, j+1

)
Δs j+1 +Δs j

,

where the points tn,s j ,zi refer to the discretized coordinate points and V n
i, j =V (tn,s j,zi). In [28], the author

solves an HJB equation involving an integral term using a combination of Crank-Nicolson and forward
method. More precisely, integro-differential operator associated to the underlying price dynamics consists
of the differential part

Dxu(t,x) =
1
2
σ2 ∂ 2u

∂x2 (t,x)+ (−σλ −αx)
∂u
∂x

(t,x)

and the integral part

Ixu(t,x) =
∫ ∞

−∞

(
u(t,x+ y)− u(t,x)− y

∂u
∂x

)
fJ(y)dy.

Here, fJ is the jump density of the underlying compound Poisson process. For the differential operator, the
author uses Crank-Nicolson discretization á-la [43], whereas the integral term is discretized with forward
scheme. Indeed, if we define

νn =

∫ Δx[n+ 1
2 ]

Δx[n− 1
2 ]

fJ(y)dy,

then Ix may be approximated as

IxV (tk+1,xl ,z) = λJ

∫ ∞

−∞

(
V (tk+1,xl + y,z)−V(tk+1,xl ,z)− y

∂V
∂x

)
fJ(y)dy

≈ λJ

N

∑
n=−N

(
vl+n

k+1− vl
k+1−

n
2

(
vl+1

k+1− vl−1
k+1

))
νn,

where vl
k =V (tk,xl ,z) and λJ is the jump rate of the underlying compound Poisson process.

A more advanced approach to the numerical solution of partial differential equations is the so-called
finite element method. In the context of swing option pricing, this approach was studied recently in [42].
In this paper, the pricing of swing option is set up as the optimal multiple stopping problem á-la [11] in
continuous time and in the presence of a recovery period δ between the swings. First, similarly to [11], the
optimal multiple stopping problem is reduced to a strip of optimal single stopping problems with modified
payoffs. For simplicity, assume that the underlying price process follows a geometric Brownian motion.
Furthermore, assume that the holder has L exercise rights left and denote as V p(η ,x) the value of the
optimal multiple stopping problem for time to maturity η and log-price x. Denote the exercise payoff as
ψ(η ,x). Using ψ , define iteratively the auxiliary functions ψL as

ψL(η ,x) :=

{
ψ(η ,x)+ e−rδψL−1(η ,x+ rδ ), η ≥ (L− 1)δ ,
ψL−1(η ,x), η ∈ [0,(L− 1)δ ),

(4.34)

with ψ0 = 0. We remark that this is not the Lth payoff function

ΨL(η ,x) :=

{
ψ(η ,x)+V L−1(δ ,x), η ∈ [δ ,T ),
ψ(η ,x), η ∈ [0,δ ),

(4.35)
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but these functions have the same spatial asymptotics. Therefore it can be used to solve the problem under
right boundary conditions; see [42, p. 119], for details. Using the auxiliary functions ψL, define the excess
to the payoff as

UL(η ,x) :=V L(η ,x)−ψL(η ,x). (4.36)

Then the main result of [42] states that the excess to the payoff UL truncated to the domain ΩR = [−R,R]
(denote this function as UL

R ) can be expressed in variational form as(
∂UL

R

∂η
,v−UL

R

)
+ aBS(U

L
R ,v−UL

R)≥ 〈 f L,v−UL
R〉,

UL
R (0, ·) = 0,

(4.37)

for all v ∈ KL
0 (η), where the cones

KL
0 (η) =

{
v ∈H1

0 (ΩR) : v≥
{

UL
η (δ , ·) η ≥ δ

0 η ∈ [0,δ )

}
a.e.

}

K1
0 (η) = {v ∈ H1

0 (ΩR) : v≥ 0 a.e.},
(4.38)

with the functions UL
η (t, ·) satisfying

(
∂UL

η

∂ t
,w

)
+ aBS(U

L
η ,w) = 〈gL

η ,w〉, for all w ∈ H1
0 (ΩR),

UL
η (t, ·) =UL−1

R (τ − δ , ·), in ΩR,

(4.39)

for all t ∈ (0,δ ). Here, the space H1
0 (ΩR) is an appropriate Sobolev space, the bracket 〈·, ·〉 is the bilinear

pairing in H1∗(ΩR)×H1(ΩR), the operator

aBS(ϕ ,γ) :=
1
2
σ2
(
∂ϕ
∂x

,
∂γ
∂x

)
+

(
1
2
σ2− r

)(
∂ϕ
∂x

,γ
)
+ r(ϕ ,γ), (4.40)

for ϕ ,γ ∈H1(ΩR) and the functions f L and gL
η are defined as

f L(η ,x) =−∂ (ψ
L(η ,x))
∂η

− (LBSψL)(η ,x), f 0 = 0,

for (η ,x) ∈ (−δ ,T )×R,

gL
η(η ,x) =−

∂ (e−rtψL(η− δ ,x+ rt))
∂ t

− (LBSe−rtψL)(η− δ ,x+ rt),

g0 = 0, for (t,x) ∈ (0,δ )×R, τ ∈ [δ ,T ), where

LBS =−1
2
σ2 ∂ 2

∂x2 +

(
1
2
σ2− r

)
∂
∂x

+ r.

(4.41)

To solve the variational form (4.37), the truncated domain ΩR is partitioned into an equidistant mesh for
which an approximating finite-dimensional subspace is defined. This subspace consists of elements in
C0(ΩR) which coincide piecewise in between the grid points with a polynomial of degree p and vanish on
the boundary of ΩR. Now, the function UL

R is approximated using Galerkin method over the Lagrange basis
of the approximating finite-dimensional subspace. This approximation is plugged back to the variational
form (4.37) which, after partitioning the time interval, boils down to a linear system of equations; see [42,
pp. 115–116], for details.
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4.6 Other Approaches

In the previous sections we have reviewed a number of mathematical techniques to price swing options.
These techniques were split into two loose categories; first of them approaching the pricing problem from a
purely probabilistic point of view whereas the second focusing on the interplay between stochastic control
problems and partial differential equations. In addition to these, there is a selection of other techniques
available in the literature. We review some of these techniques in this section.

The tree methods are a popular technique for option pricing—for an early study on multistrike
path-dependent contingent claims, see [36]. In [25], the authors develop a trinomial-tree approach to swing
option pricing. They use a well-known technique called backward induction to solve pricing problem.
The induction starts on from the option’s expiration date and is done backwards in time in three dimen-
sions: price, number of exercise rights left, and usage level. Assume that the holder has k exercise rights
left. At each date, she chooses between exercising or waiting. Waiting corresponds to staying on the current
tree associated with k remaining exercise rights whereas exercise corresponds to jumping down to the tree
with k− 1 remaining exercise rights. So in fact, the solution is found not only on one but a forest of trees.
Using this approach, the authors develop a numerical method for swing option pricing stemming from the
trinomial tree building procedure of [23]. The approximating tree is built on the spot price process given as
an Ornstein-Uhlenbeck process

dSt =−κ(St− ξ )dt +σdWt ,

where W is a standard Wiener process. The forest-of-trees approach is developed further in [39, 40] to cover
multinomial trees to study swing option pricing for regime-switching price dynamics. In [40], the price
dynamics follow an n-regime geometric Brownian motion modulated by a latent Markov chain triggering
the switches. Here, the approximating trees are pentanomial. In [39], a three-regime model is studied,
where the regimes correspond to the state where the price evolution is normal, the state where the price
increases (or decreases) rapidly indicating the presence of a spike, and the state where the price reverts
back to normal. In first of these, the log-price is assumed to follow an Ornstein-Uhlenbeck process and in
the other two, a drifting Brownian motion. In [39], the approximating trees are heptanomial. We also refer
to the recent study [16] which also builds on the tree-building approach of the underlying continuous-time
state variable.

A modification of the tree approach is developed in [31], where the approximating trees are re-
placed by stochastic meshes. This method produces a so-called mesh estimator for continuation values
t → E{V n(Xt+1) | Xt = x} (assuming that r = 0), where V n is the value function for n remaining swing
rights. The mesh approach was originally designed to work better in higher dimensions than the tree meth-
ods.

The approximation and simulation approaches discussed so far are all concerned with the estimation
of the continuation value. In [24], a different focus is adopted. Indeed, in this paper the goal is to find
the optimal trigger threshold at which the option should be exercised. To this end, the author studies a
market with underlying state variable S (for simplicity, we assume here that the discount rate is zero). The
contingent claim investigated in [24] is a multistrike put option which has to be exercised for a certain
number of times over its lifetime in order to avoid a penalty. The value of the contract is V (t,St ,Nt ,Lt)
at time t when the state of the price process is St , the number of remaining exercise rights is Nt , and
the remaining number of obligations is Lt ; here, all variables are assumed to be discretized. If LT > 0 at
maturity, there is a penalty −αLT K. Define the auxiliary function

ΔV (t,s,n, l) =V (t,s,n)−V(t,s,n− 1, l− 1). (4.42)

Then the main result of [24] states that for m∈N, the function (t,s,n, l,m) �→V (t,s,n+m, l+m) is bounded
from below, strictly convex in s, and concave in m and that for each three-tuple (t,n, l) there exists an
optimal trigger price S∗t+1(n, l) such that
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max{K− St+1,ΔV (t + 1,St+1,n, l)} = (K− St+1)1{St+1≤S∗t+1(n,l)}
+ΔV(t + 1,St+1,n− 1, l− 1)

× 1{St+1>S∗t+1(n,l)}.
(4.43)

Using this result, the author sets up a tree approximation scheme to compute the optimal exercise bound-
aries when the underlying log-price dynamics follow a geometric Brownian motion—see [24, Sect. 4.1.1].
The optimal exercise boundary estimation is also studied in [38], where a Monte Carlo algorithm is devel-
oped under the assumption of market completeness and only one source of noise. In this paper, the authors
prove, under some additional regularity assumptions on the underlying price process, representations of the
optimal trigger price for a single-strike put option in terms of an expectation functional depending on the
auxiliary function ΔV defined in (4.42). Furthermore, they develop a Monte Carlo algorithm to compute
these expectations.

A multistate stochastic programming approach to swing option valuation is developed in [20]. This
paper starts with setting up a model for the forward prices

F(t, T̂ ) = F(0, T̂ )
E
{

eξ
1
T

∣∣∣ Ft

}
E
{

eξ
1
T

} , (4.44)

where Ξt = (ξ 1
t ,ξ 2

t ) follows the solution of a Brownian-driven Ornstein-Uhlenbeck process dΞt = AΞtdt+
ΣdWt . Here, W is a two-dimensional Wiener process and the coefficients read as

A =

(−α1 α1

0 −α2

)
, Σ =

(
σ1 0
0 σ2

)
.

The actual pricing problem is written in terms of the implied spot price S. Furthermore, the pricing prob-
lem takes into account various constraints appearing in practical applications. First, even though the price
evolves in continuous time, the rebalancing of the exercise policy is allowed only on discrete time grid. The
model also includes the local bounds on the consumption over a single rebalancing interval and ramping
constraints which bound the differences in the load pattern between consecutive intervals. The stochastic
programming problem is written as

maxE

{
∑

i
(Si−K)ui

}
(4.45)

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M ≤Mi ≤M

Mi−Mi−1 = ui

umin ≤ ui ≤ umax

|ui− ui−1| ≤ ρi

a.s., (4.46)

where the quantities satisfy appropriate measurability conditions. In order to solve this problem, the authors
carry out various reduction and discretization procedures and estimate the error made along the way; see
[20, pp. 893–896], for details.

To proceed, recall the pricing problem (4.31). Earlier we considered this pricing problem from the PDE
point of view. This problem is studied in [27] from another perspective. In this paper, the author studies
pricing and hedging of the swing option in a general semimartingale setting. The market is assumed to
be complete with liquidly traded forward contracts and European call options. These contracts serve as
the hedging instruments in the analysis, where two different replicating investment strategies are derived.
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The replicating portfolios are expressed in a semi-explicit form in terms of the forward martingale measures
corresponding to the electricity forward prices f (t, T̂ ) and the martingale measures with respect to call
option prices C(t, T̂ ,K). Here, T̂ denotes the maturity of the contract and K is the strike price of the call
option. To present the replicating strategy with forwards, we first decompose an admissible exercise rate
u as

ut = umin + uS
t + uC

t 1{St≥K},

where ⎧⎨
⎩
∫ T

0
uS

t dt = M−Tumin

0≤ uS
t ≤ umax− umin

⎫⎬
⎭ ,

⎧⎨
⎩0≤

∫ T

0
uC

t 1{St≥K}dt ≤M−M

0≤ uC
t 1{St≥K} ≤ umax− umin− uS

t

⎫⎬
⎭

for all t ∈ [0,T ], see [27, Lemma 1]. Using this notation, Proposition 1 in [27] states that price of the swing
option can be written as

Vt = umin

∫ T

t
e−r(s−t)( f (t,s)−K)ds+

+(umax− umin)

∫ T

t
e−r(s−t)| f (t,s)−K|

× (Q f (t,s){E1
s }−Q f (t,s){E2

s }+Q f (t,s){E3
s }
)

ds,

(4.47)

where the sets

E1
s = {uS

s
∗
> 0,Ss ≥ K}, E2

s = {uS
s
∗
> 0,Ss < K}, E3

s = {uC
s
∗
> 0,uS

s
∗
> 0},

and the optimal decomposition u∗ = umin + uS∗+ uC∗ satisfies

(umax− umin)
∫ T

t
1{uS

s
∗
>0}ds = eS(t) := M−Tumin−

∫ t

0
uS

s ds,

(umax− umin)

∫ T

t
1{uC

s
∗
>0}1{uS

s
∗
=0}ds≤ eC(t) := M−M−

∫ t

0
uC

s ds.

(4.48)

Here, Q f (t,s) is the forward martingale measure corresponding to f (t,s) =E{Ss|Ft}. A similar result holds
also for replication with forwards and European call options; see [27, Corollary 1].

The pricing problem of [27] is studied in [34] in discrete time. In this paper, the swing contract can be
exercised over some future time grids 0 = t0 < t1 < · · · < tn < T and the buyer will buy a total amount
of the commodity that is between m and m+ v. Here, m is called the obligatory amount and v is called
the bonus amount. The contract also specifies a single purchase limit umax. The spot price is assumed to
follow a single-factor Markov process S and let Hi(m,v,s) be the maximal expected total remaining net
gain (discounted to ti) when the state at time ti is (m,v,s). Then, at contract maturity, we have

Hn(m,v,s) = m(s−K)1{s≤K}+[(m+ v)∧umax]1{s>K}.

As usual, the continuation value at time ti is denoted as

Vi(m,v,s) = E
{

e−r(ti+1−ti)Hi+1(u,v,Sti+1)
∣∣∣ Sti = s

}
.

Then the contract value at time ti can be expressed using Bellman principle as

Hi(m,v,s) = max
u

{
ui(s−K)+Vi((m− u)+,v− (m− u)−,s)

}
.
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Using the theory of sub- and supermodular functions, the authors prove various useful monotonicity
properties of the pricing model and describe the structure of the optimal exercise policy depending on

the monotonicity and limiting properties of the function s �→ E
{

e−r(ti+1−ti)Sti+1

∣∣∣ Sti = s
}
− s.

Numerical swing option pricing based on a so-called quantization procedure is studied in [2, 3]. In these
papers the pricing problem is formulated in its “usual” stochastic control form in discrete time:

V (tk,Stk ,Ztk ) = esssupuE

{
∑

i

(Sti −K)uti

∣∣∣∣∣ Ftk

}
. (4.49)

Here, the notation follows the pricing problem (4.31) and we have assumed that the discount rate is zero.
The quantization procedure is a method that can be applied to approximate the continuation value tk �→
E{V (tk+1,Stk+1 ,Ztk+1)|Stk = s,Ztk = z}. To give a short description of this procedure, let X be a random
variable taking values in, say, Rd and x = (x1, . . . ,xN) ∈ (Rd)N . Define the operation Projx as the nearest-
neighbor projection on x induced by the Voronoi partition of Rd generated by x. Then the quantization X̂
of X is defined via this projection, i.e.,

X̂x = Projx(X).

The quantization can be optimized in the sense that the element x can be chosen such that the quadratic
error

‖X− X̂x‖L2

is minimized, see [2]. The application of these ideas to the approximation of the continuation value of a
swing option via optimal quantization is studied in [2, 3]. We end the survey by referring to [4] where
different aspects of numerical pricing of swing options via the formulation (4.49) are addressed. For
example, the authors extend the Longstaff–Schwartz methodology to cover also this setup. Furthermore,
they develop further the forest-of-trees approach and propose two efficient parametrizations of the exercise
policy processes.

Acknowledgments

Financial support from the project “Energy markets: modelling, optimization and simulation (EMMOS),”
funded by the Norwegian Research Council under grant 205328 is gratefully acknowledged.

References

1. Alexandrov, N. and Hambly, B. M.: A dual approach to multiple exercise option problems under constraints. Mathemat-
ical Methods of Operations Research, 71(3), 503–533 (2010).

2. Bardou, O., Bouthemy, S., and Pagès G.: Optimal quantization for the pricing of swing options. Applied Mathematical
Finance, 16(2), 183–217 (2009).

3. Bardou, O., Bouthemy, S., and Pagès G.: When are swing options bang-bang? International Journal of Theoretical and
Applied Finance, 13(6), 867–899 (2010).

4. Barrera-Esteve, C., Bergeret, F., Dossal, C., Gobet, E., Meziou, A., Munos, R., and Reboul-Salze, D.: Numerical methods
for the pricing of swing options: a stochastic control approach. Methodology and Computing in Applied Probability, 8
517–540 (2006).

5. Bender, C.: Primal and dual pricing of multiple exercise options in continuous time. SIAM Journal on Financial Mathe-
matics, 2(1) 562–586 (2011).

6. Bender, C.: Dual pricing of multi-exercise options under volume constraints. Finance and Stochastics, 15(1) 1–26 (2011).



132 Jukka Lempa
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Part II
Energy Spot Modelling



Chapter 5
Inference for Markov Regime-Switching Models
of Electricity Spot Prices

Joanna Janczura and Rafał Weron

Abstract In the last decade Markov regime-switching (MRS) models have been extensively used for
modeling the unique behavior of spot prices in wholesale electricity markets. This popularity stems from
the models’ relative parsimony and the ability to capture the stylized facts, in particular the mean-reverting
character of electricity spot prices, the regime changes implied by fundamentals, and the resulting extreme
price spikes. Due to the unobservable switching mechanism, the estimation of MRS models requires infer-
ring model parameters and state process values at the same time. The situation becomes more complicated
when the individual regimes are independent from each other and at least one of them is mean-reverting.
Statistical validation of such models is also nontrivial. In this paper we review the available techniques and
suggest efficient tools for statistical inference of MRS models.

5.1 Introduction

The basic idea that underlies Markov regime-switching (MRS) is that of representing the behavior of an
observed time series by separate states or regimes, which can be driven by different stochastic processes.
Unlike threshold-type regime-switching models (e.g., Threshold AutoRegressive (TAR), Self-Excited TAR
(SETAR), Smooth Transition AR (STAR); see [53]), in MRS models, the regimes are only latent and,
hence, these models do not require an upfront specification of the threshold variable and level. This flex-
ible specification has led to their popularity not only in econometrics [14, 27] but also in other fields of
science including traffic modeling [11], population dynamics [46], river flow analysis [55], and pattern
recognition [21].

In energy economics MRS models have seen extensive use due to their ability to capture the unique
behavior of spot prices in wholesale electricity markets [5, 6, 17, 19, 28, 31, 34, 36, 37, 39, 40, 42, 48,
49, 58]. Interestingly, the spot electricity market is actually a very short-term forward market, as trading
typically terminates on the working day preceding delivery. This is different from financial and most com-
modity markets where the term “spot” defines a market for immediate delivery and financial settlement
up to two business days later. Such a classical spot market would not be possible for electricity, since the
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Fig. 5.1 Deseasonalized mean daily (i.e., baseload) electricity spot price from the New England power market (NEPOOL,
U.S.) in the period August 1–December 26, 2010. The prices classified as spikes are denoted by dots (see Sect. 5.5 for
deseasonalization and model details). The regime switches and spike clustering are clearly visible

transmission system operator (TSO) needs advanced notice to verify that the schedule is feasible and lies
within transmission constraints. Recall that electricity is non-storable on a wholesale scale and requires
immediate delivery, while end-user demand is weather and business cycle dependent. For very short time
horizons before delivery the TSO operates the so-called balancing (or real-time) market, to cancel or call
in extra production if required to keep the system in balance. Note that in the USA, the spot and balancing
markets are often referred to as “forward” and “spot”, respectively. In Europe the term “forward market” is
rather reserved for transactions with delivery exceeding that of the day-ahead market [56].

In a power exchange the spot price is typically set a result of a two-sided uniform-price auction for
hourly time intervals. It is determined from the various bids—including bids for individual hours and block
bids, like “peakload” (the same price and volume from 8 a.m. to 8 p.m.) and “baseload” (the same price and
volume for all 24 h)—presented to the market operator up to the time when the auction is closed. On the
other hand, a power pool is a one-sided market with generators as the only bidders. The market clearing
price (MCP) or spot price is established as the intersection of the nonlinear supply curve constructed from
aggregated supply bids of the generators (possibly using different technologies and fuels, hence, subject to
significantly different marginal costs) and the demand curve constructed from aggregated demand bids (in a
power exchange) or TSO estimated demand (in a power pool). The resulting spot electricity price exhibits
significant seasonality on the annual, weekly, and daily level, as well as mean reversion, very high volatility,
and generally short-lived extreme price spikes and/or drops; see the empirical analysis in Sect. 5.5. These
extreme price movements tend to cluster (see also Fig. 5.1 [6, 12, 36]), which makes the very popular
class of jump-diffusion models impractical, as they cannot exhibit consecutive spikes with the frequency
observed in power market data [59]. On the other hand, MRS models allow for consecutive spikes in a very
natural way. Also the return of prices after a spike to the “normal” regime is straightforward, as the regime-
switching mechanism admits temporal changes of model dynamics. MRS models are also more versatile
than the popular class of hidden Markov models (HMM; in the strict sense, see [8]), since they allow for
temporary dependence within the regimes, in particular, for mean reversion. As the latter is a characteristic
feature of electricity prices it is important to have a model that captures this phenomenon. Indeed, in the
energy economics literature, the base regime is typically modeled by a mean-reverting diffusion [2, 31, 56],
sometimes heteroskedastic [35], while for the spike (or drop) regime(s) a number of specifications have
been suggested, ranging from mean-reverting diffusions to heavy tailed random variables (for a review see
[36]).

After selecting the model class (i.e., MRS), the type of dependence between the regimes has to be de-
fined. Dependent regimes with the same stochastic process in all regimes (but different parameters-hence
the alternative name “parameter-switching”; an approach dating back to [24]) lead to computationally sim-
pler models. On the other hand, independent regimes allow for a greater flexibility and admit qualitatively
different dynamics in each regime. They seem to be a better choice for electricity spot price processes,
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which can exhibit a moderately volatile and symmetric (in terms of the marginal distribution) behavior in
the base regime and a very volatile and an asymmetric one in the spike regime; see Fig. 5.1. We will look
more closely at these independent regime models in Sect. 5.2.

Once the electricity spot price model is specified we are left with the problem of calibrating it to market
data. Due to the unobservable switching mechanism, the estimation of MRS models requires inferring
model parameters and state process values at the same time. The situation becomes more complicated
when the individual regimes are independent from each other and at least one of them is mean-reverting.
Then the temporal latency of the dynamics in the regimes has to be taken into account. We have recently
proposed a method that greatly reduces the computational burden in such a case [37]. As we will see in
Sect. 5.3, the method allows for a 100 to over 1,000 times faster calibration than a competing approach
utilizing probabilities of the last ten observations. Instead of storing conditional probabilities for each of
the possible state process paths, it requires conditional probabilities for only one time-step. Since MRS
models can be considered as generalizations of HMM [8], this result can have far-reaching implications
also for many problems where HMM have been applied [see, e.g., 47]. In Sect. 5.3 we will also show
that the fit can be further improved by optimizing the cutoff(s) used for separating the regimes, instead of
arbitrarily setting them to the median [36] or the 1st and 3rd quartiles [37] of the deseasonalized dataset.

While the existence of distinct regimes in electricity prices is generally unquestionable (being a con-
sequence of the nonlinear, heterogeneous supply stack structure in the power markets, see, e.g., [20, 56]),
the actual goodness of fit of the models requires statistical validation. However, recent work concerning
the statistical fit of regime-switching models has been mainly devoted to testing parameter stability versus
the regime-switching hypothesis. Several tests have been constructed for the verification of the number of
regimes. Most of them exploit the likelihood ratio technique [13, 22], but there are also approaches related
to the recurrence times [52], the likelihood criteria [10], or the information matrix [29]. Specification tests,
like the tests for omitted autocorrelation or omitted explanatory variables based on the score function tech-
nique, were proposed by [26]. On the other hand, procedures for the goodness-of-fit testing of the marginal
distribution of regime-switching models have been derived only recently. [38] have proposed two empirical
distribution function (edf)-based testing techniques built on the Kolmogorov–Smirnov test. As we will see
in Sect. 5.4, the procedure is readily applicable to regime-switching models of electricity spot prices.

We conclude this paper with applications of the presented techniques to the wholesale electricity prices
from two major power markets—the European Energy Exchange (EEX, Germany) and the New England
Power Pool (NEPOOL, U.S.); see Sect. 5.5. Finally, in the Conclusions, we summarize the presented results
and provide suggestions for future work in this interesting area.

5.2 Regime-Switching Models

Assume that the observed process Xt may be in one of L states (regimes) at time t, dependent on the state
process Rt :

Xt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xt,1 if Rt = 1,
Xt,2 if Rt = 2,

...
...

...
Xt,L if Rt = L.

(5.1)

Possible specifications of the process Rt may be divided into two classes: those where the current state of
the process is observable (like threshold models, e.g., TAR, SETAR) and those where it is latent. Probably
the most prominent representatives of the second group are the HMM (for a review see, e.g., [8]) and
their generalizations allowing for temporal dependence within the regimes—MRS models. Like in HMM,
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in MRS models, Rt is assumed to be a Markov chain governed by the transition matrix P containing the
probabilities pi j of switching from regime i at time t to regime j at time t + 1, for i, j = {1,2, . . . ,L}:

P = (pi j) =

⎛
⎜⎜⎜⎝

p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL

⎞
⎟⎟⎟⎠ , with pii = 1−∑

j 	=i

pi j. (5.2)
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Fig. 5.2 A sample trajectory of a MRS model with three independent regimes (black solid line) superimposed on the observ-
able and latent values of the processes in the regimes. Observe that the values Xt ,1 of the mean-reverting regime become latent
when the process is in another state. The simulation was performed for a 3-regime model defined by Eqs. (5.24)–(5.27) (see
Sect. 5.5), with the following parameters: P = (pi j) = [0.90,0.05,0.05; 0.25,0.70,0.05; 0.25,0.05,0.70], α1 = 10, β1 = 0.3,
σ 2

1 = 20, γ1 = 0, α2 = 2.5, σ 2
2 = 0.5, α3 = 2.5, σ 2

3 = 0.5, q2 = q3 = 30

The current state Rt at time t depends on the past only through the most recent value Rt−1. Consequently,
the probability of being in regime j at time t +m starting from regime i at time t is given by

P(Rt+m = j | Rt = i) = (P′)m · ei, (5.3)

where P′ denotes the transpose of P and ei is the ith column of the identity matrix.
The definitions of the individual regimes can be arbitrarily chosen depending on the modeling needs. In

this paper we focus on the independent regime (spike) model [5, 17, 33, 36], as it seems to be a reasonable
choice for electricity spot price processes which can exhibit qualitatively different dynamics in each regime.
At the same time, however, it is more computationally challenging than the popular parameter-switching
model (for a detailed description of the latter we refer to [37]).

In the independent regime (spike) model, Xt is defined by (5.1) with at least one regime given by

Xt,i = αi +(1−βi)Xt−1,i +σi|Xt−1,i|γiεt,i, (5.4)

where αi,βi,σi, and γi are constants and εt,i’s are independent and identically distributed (i.i.d.) Gaussian
random variables. The absolute value in the above formula is needed if negative data is analyzed. Note that
formula (5.4) is a discrete-time version of the mean-reverting, possibly heteroskedastic process given by
the following Ornstein–Uhlenbeck-type stochastic differential equation:

dXt = (α−βXt)dt +σ |Xt |γdWt , (5.5)

where Wt is the Wiener process. The remaining regimes constitute i.i.d. samples from continuous and
strictly monotone distributions Fi:

Xt,i ∼ Fi(x). (5.6)
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An example of such a specification is the 3-regime model with a mean-reverting, heteroskedastic base
regime (i.e., “normal” prices) dynamics and independent spikes and drops, as proposed by [36]. In Sect. 5.5
we apply it to electricity spot prices from the EEX and NEPOOL power markets. Note that in such a model
the values of the mean-reverting regime become latent when the process is in another state; see Fig. 5.2 for
an illustration.

5.3 Calibration

Calibration of MRS models is not straightforward since the regimes are not directly observable. [25] in-
troduced an application of the expectation-maximization (EM) algorithm of [18], where the whole set of
parameters θ is estimated by an iterative two-step procedure. The algorithm was later refined by [44]. In
Sect. 5.3.1 we briefly describe the general estimation procedure. Next, in Sect. 5.3.2, we discuss the com-
putational problems induced by the introduction of independent regimes and present an efficient remedy.
Finally, in Sect. 5.3.4, we show that the fit can be further improved by optimizing the cutoff(s) used for
separating the regimes.

5.3.1 Expectation-Maximization Algorithm

The algorithm starts with an arbitrarily chosen vector of initial parameters θ (0) = (η(0),P(0),ρ (0)
i ), for

i = 1,2, . . . ,L, where ρ (0)
i ≡ P(R1 = i) and η(0) is a vector of parameters defined by equations (5.4) and

(5.6). In the first step of the iterative procedure (the E-step) inferences about the state process are derived.
Since Rt is latent and not directly observable, only the expected values of the state process, given the
observation vector E(IRt=i|x1,x2 . . . ,xT ;θ ), can be calculated. These expectations result in the so-called
smoothed inferences, i.e., the conditional probabilities P(Rt = j|x1, . . . ,xT ;θ ) for the process being in
regime j at time t. Next, in the second step (the M-step), new maximum likelihood (ML) estimates of the
parameter vector θ , based on the smoothed inferences obtained in the E-step, are calculated. Both steps
are repeated until the (local) maximum of the likelihood function is reached. A detailed description of the
algorithm is given below.

5.3.1.1 The E-Step

Assume that θ (n) is the parameter vector calculated in the M-step during the previous iteration. Let xt =
(x1,x2, . . .xt). The E-part consists of the following steps [44]:

1. Filtering: based on the Bayes rule for t = 1,2, . . . ,T iterate on equations:

P(Rt = i|xt ;θ (n)) =
P(Rt = i|xt−1;θ (n)) f (xt |Rt = i;xt−1;θ (n))

L
∑

i=1
P(Rt = i|xt−1;θ (n)) f (xt |Rt = i;xt−1;θ (n))

,

where f (xt |Rt = i;xt−1;θ (n)) is the probability density function (pdf) of the underlying process at time
t conditional that the process was in regime i, i ∈ {1,2, . . . ,L}, and

P(Rt+1 = i|xt ;θ (n)) =
L

∑
j=1

p(n)ji P(Rt = j|xt ;θ (n)),

until P(RT = i|xT ;θ (n)) is calculated. The starting point for the iteration is chosen as P(R1 = i|x0;

θ (n)) = ρ (n)
i .
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2. Smoothing: for t = T − 1,T − 2, . . . ,1 iterate on

P(Rt = i|xT ;θ (n)) =
L

∑
j=1

P(Rt = i|xt ;θ (n))P(Rt+1 = j|xT ;θ (n))p(n)i j

P(Rt+1 = j|xt ;θ (n))
.

5.3.1.2 The M-Step

In the second step of the EM algorithm, new and more exact maximum likelihood (ML) estimates η(n+1)

for all model parameters are calculated. Compared to the standard ML estimation, where for a given pdf f
the log-likelihood function ∑T

t=1 log f (xt ,η(n+1)) is maximized, here each component of this sum has to be
weighted with the corresponding smoothed inference, since each observation xt belongs to the ith regime
with probability P(Rt = i|xT ;θ (n)). Namely, the ML estimates are derived maximizing the log-likelihood
function of the following form:

log
[
L(η(n+1))

]
=

L

∑
i=1

T

∑
t=1

P(Rt = i|xT;θ (n)) log
[

f (xt |Rt = i,xt−1;η(n+1))
]
. (5.7)

Finally, as in [25], we have ρ (n+1)
i = P(R1 = i|xT;θ (n)) and the transition probabilities are estimated

according to the following formula [44]:

p(n+1)
i j =

T
∑

t=2
P(Rt = j,Rt−1 = i|xT ;θ (n))

T
∑

t=2
P(Rt−1 = i|xT ;θ (n))

= (5.8)

=

T
∑

t=2
P(Rt = j|xT ;θ (n))

p
(n)
i j P(Rt−1=i|xt−1;θ (n))

P(Rt= j|xt−1;θ (n))

T
∑

t=2
P(Rt−1 = i|xT ;θ (n))

,

where p(n)i j is the transition probability from the previous iteration. All values obtained in the M-step are

then used as a new parameter vector θ (n+1) = (η(n+1), P(n+1),ρ (n+1)
i ), i = 1,2, . . . ,L, in the next iteration

of the E-step.

5.3.2 Independent Regimes

Both steps of the EM algorithm require derivation of the conditional probability density functions f (xt |Rt =
i;xt−1;θ (n)). For the regime(s) described by i.i.d. random variables [see Eq. (5.6)], this is just the model
specified pdf. However, for the mean-reverting regime(s) [see Eq. (5.4], the situation is more complicated
due to the dependence structure of the driving process. If the regimes are independent from each other, the
values of the mean-reverting regime become latent when the process is in the other states; see Fig. 5.2.
This makes the distribution of Xt dependent on the whole history (x1,x2, . . . ,xt−1) of the process. As a
consequence, all possible paths of the state process (R1,R2, . . . ,Rt) should be considered in the derivation
of the pdf, implying that f (xt |Rt = i,Rt−1 	= i, . . . ,Rt− j 	= i,Rt− j−1 = i;xt−1;θ (n)) and the whole set of
probabilities P(Rt = it ,Rt−1 = it−1, . . . ,Rt− j = it− j|xt−1;θ (n)) should be used in the EM algorithm.
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Obviously, this leads to a high computational complexity, as the number of possible state process re-
alizations is equal to 2T and increases rapidly with the sample size. To be more precise, the total number
of probabilities required by the EM algorithm to be stored in computer memory is equal to 2(2T+1− 1).
Assuming that each probability is stored as a double precision floating-point number (8 bytes), estimating
parameters from a sample of T = 30 observations would require 32 gigabytes of memory! For samples
of typical size (a few hundred to a few thousand observations) this is clearly impossible with today’s
computers.

As a feasible solution to this problem [32] suggested to use probabilities of the last ten observa-
tions. Apart from the fact that such an approximation still is computationally intensive (requires storing
2{210(T − 9)− 1} probabilities in computer memory), it can be used only if the probability of more than
ten consecutive observations from the other regimes is negligible.

Instead, following [37], we suggest to approximate the latent variables xt−1,i from the mean-reverting
regimes by their expectations x̃t−1,i = E(Xt−1,i|xt−1;θ (n)) based on the whole information available at time
t− 1. A similar approach was used by [23] in the context of regime-switching GARCH models to avoid
the problem of the conditional standard deviation path dependence. Note that if xt−1,i was observable,

then Xt given Rt = i and xt−1,i would be Gaussian distributed with mean (1−β (n)
i )xt−1,i +α(n)

i and vari-

ance (σ (n)
i )2|xt−1,i|2γi

(n)
. Hence, the estimation procedure described in Sect. 5.3.1 can be applied with the

following approximation of the mean-reverting regime pdf:

f
(

xt |Rt = i;xt−1;θ (n)
)
=

1
√

2πσ (n)
i |x̃t−1,i|γ

(n)
i

·

·exp

⎧⎪⎨
⎪⎩−

(
xt −

(
1−β (n)

i

)
x̃t−1,i−α(n)

i

)2

2
(
σ (n)

i

)2 |x̃t−1,i|2γi
(n)

⎫⎪⎬
⎪⎭ . (5.9)

The expected values x̃t,i = E(Xt,i|xt ;θ (n)) can be computed using the following recursive formula [for the
derivation see 37]:

E
(

Xt,i|xt ;θ (n)
)
= P

(
Rt = i|xt ;θ (n)

)
xt +P

(
Rt 	= i|xt ;θ (n)

)
· (5.10)

·
{
α(n)

i +
(

1−β (n)
i

)
E
(

Xt−1,i|xt−1;θ (n)
)}

.

Moreover, these expected values are linear combinations of the observed vector xt and the probabilities
P(R j = i|x j;θ (n)) calculated during the estimation procedure (see the filtering part of the E-step):

E
(

Xt,i|xt ;θ (n)
)
=

t−1

∑
k=0

xt−k

(
1−β (n)

i

)k
P
(

Rt−k = i|xt−k;θ (n)
)
·

·
k

∏
j=1

P
(

Rt− j+1 	= i|xt− j+1;θ (n)
)
+

+ α(n)
i

t−1

∑
k=0

(
1−β (n)

i

)k k

∏
j=0

P
(

Rt− j+1 	= i|xt− j+1;θ (n)
)
.

Hence, by using x̃t−1,i = E(Xt−1,i|xt−1;θ (n)) in formula (5.9), instead of xt−1, the computational complexity
of the E-step is greatly reduced. In fact, the total number of probabilities stored in computer memory is now
only 4T . This means that for a sample of T = 30 observations only 1 kB of memory is required, compared
to 335 kilobytes in the approach utilizing probabilities of the last ten observations and 32 gigabytes in the
standard EM algorithm.
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5.3.3 Time-Varying Transition Probabilities

The independent regime models discussed above can provide adequate fits to electricity spot prices in terms
of the marginal distributions, but not in terms of the temporal behavior. As [9, 49] have shown, the timing
of spikes could be improved by incorporating forward looking information on capacity constraints. Unfor-
tunately, the availability (to every market participant) of the reserve margin data is limited. If temperature
is used as a proxy for the reserve margin (as in [30]), the results are not as good.

A relatively simple, yet potentially rewarding alternative is to admit a transition matrix with time-varying
probabilities of a one year period: pi j(t) = pi j(t+1year). Following [36] the probabilities can be calibrated
in a two-step procedure in the last part of the E-step of the EM algorithm. First, the probabilities are
estimated independently for each of the four seasons: winter (months XII–II), spring (III–V), summer (VI–
VIII), and autumn (IX–XI). Then they are smoothed using a kernel density estimator with a Gaussian
kernel. More complex annual structures and smoothing techniques can be used as well. Here, however, for
simplicity we will limit the analysis to the original approach.

5.3.4 Optimizing the Cutoffs

To eliminate spike misclassification in some early MRS models—including the unwanted feature of nega-
tive “expected spike sizes,” i.e., E(Xt,spike)< E(Xt,base)—[35] proposed to use median-shifted spike regime
distributions. This was motivated by a common-sense assumption that small fluctuations should be driven
by the base regime dynamics and only the large deviations by the spike (or drop) regime dynamics. For the
EEX market data from the period 2001–2009 they found that the models with shifted spike regime distri-
butions (which assign zero probability to prices below a given cutoff) led to more realistic descriptions of
electricity spot prices.

Originally, [35] introduced median-shifted log-normal:

log(Xt,i−X(qi))∼ N(αi,σ2
i ), Xt,i > X(qi), (5.11)

and Pareto:
Xt,i ∼ FPareto(σi,αi) = 1−

(αi

x

)σi
, x > αi ≥ X(qi), (5.12)

spike regime distributions, but the latter was found to be too heavy-tailed for the analyzed datasets [36].
In the above formulas X(qi) denotes the qi-quantile, qi ∈ (0,1), of the dataset. Generally the choice of
qi is arbitrary; however, for simplicity it can be set to the median (which can be interpreted as a value
representing the average capacity margin in a power market; when the price exceeds this value the spikes
occur) or a quartile (e.g., 1st for the drop and 3rd for the spike regime, as in [37]) of the deseasonalized
dataset.

Nothing, however, prevents us from optimizing these cutoff levels, both for the spike and drop regimes.
For the 3-regime model studied in Sect. 5.5, this can be achieved by running a 2-dimensional optimization
(e.g., using the Nelder–Mead simplex routine in Matlab) with the objective of maximizing the likelihood.
Precisely, for given cutoff levels, the MRS model is calibrated and the log-likelihood function is evaluated.
Next, the log-likelihood is treated as a function of the cutoffs and the optimization procedure is performed.

The computational cost is not overwhelming—typically under 100 calibrations of the MRS model have
to be performed before a (local) maximum is reached, using the default parameters of the simplex routine
in Matlab. Increasing the termination tolerance can naturally greatly speed up the process, even without a
significant loss of precision. In Sect. 5.5 we will check how well this optimization works and how different
form the median or the quartiles are the obtained optimal cutoff levels.
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5.4 Goodness-of-Fit Testing

The adequacy of the models can be evaluated on the base of descriptive statistics, as well as goodness-
of-fit hypothesis tests. The former include the inter-quartile and the inter-decile range, i.e., the difference
between the third and the first quartiles (IQR) or ninth and first deciles (IDR). The quantile-based measures
rather than the less robust to outliers moment-related statistics are preferred [36]. A more sound decision
can be made based on a goodness-of-fit test, tailored to evaluate the fit of regime-switching models. Here
we briefly summarize the methods proposed by [38]; for derivations and performance evaluation we refer
to the original paper. The methods are based on the Kolmogorov–Smirnov (K–S) goodness-of-fit test and
verify whether the null hypothesis H0 that observations come from the distribution implied by the model
specification cannot be rejected. The procedure can be easily adapted to other empirical distribution func-
tion (edf)-type tests, like the Anderson–Darling test (see, e.g. [16]). For clarity of exposition we limit the
discussion in this section to 2-regime models only with the first regime driven by a mean-reverting process
and the second by an i.i.d. F2-distributed sample. However, all presented results are also valid for L > 2.

Recall that the Kolmogorov–Smirnov test statistic is given by

Dn =
√

nsup
x∈R
|Fn(x)−F(x)|, (5.13)

where n is the sample size, Fn is the empirical distribution function (edf), and F is the corresponding
theoretical cumulative distribution function (cdf). Hence, having an i.i.d. sample (y1,y2, . . . ,yn), the test
statistic can be calculated as

dn =
√

n max
1≤t≤n

∣∣∣∣∣
n

∑
k=1

1
n
I{yk≤yt} −F(yt)

∣∣∣∣∣ , (5.14)

where I is the indicator function. If hypothesis H0 is true, then the statistic Dn asymptotically has the
Kolmogorov–Smirnov distribution (KS). Therefore, if n is large enough, the following approximation
holds:

P(Dn ≥ c|H0)≈ P(κ ≥ c), (5.15)

where κ ∼ KS and c is the critical value. Hence, the p-value for an i.i.d. sample (y1,y2, . . . ,yn) can be
approximated by P(κ ≥ dn).

5.4.1 The ewedf Approach

The described above testing scheme is valid for i.i.d. samples. In order to apply it in the framework of MRS
models, we have to overcome two problems. First, the regimes are only latent, so we cannot unambiguously
distinguish observations from different regimes (and consequently from different distributions). Second,
there is a dependence structure within the mean-reverting regime.

The first issue can be resolved by performing an identification of the state process. Recall that, as a
result of the estimation procedure described in Sect. 5.3, the so-called smoothed inferences about the state
process are derived. The smoothed inferences are the probabilities that the tth observation comes from a
certain regime given the whole available information P(Rt = i|x1,x2, . . . ,xT ). Hence, a natural choice is to
relate each observation with the most probable regime by letting Rt = i if P(Rt = i|x1,x2, . . . ,xT ) > 0.5.
However, we have to mention that the hypothesis H0 now states that (x1,x2, . . . ,xT ) is driven by a regime-
switching model with known state process values. We call this approach “ewedf,” which stands for “equally
weighted empirical distribution function” [35, 38].

Now, we focus on the problem of dependence between mean-reverting regime observations. Provided
that the values of the state process Rt are known, observations can be split into separate subsamples related
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to each of the regimes. Namely, subsample i consists of all values Xt satisfying Rt = i. The regimes are
independent from each other, but the i.i.d. condition must be satisfied within the subsamples themselves.
Therefore the mean-reverting regime observations are substituted by their respective residuals. Using the
Euler scheme and rearranging terms of formula (5.5), we get that

εt,1 =
Xt − (1−β1Δ t)Xt−Δ t −α1Δ t√

Δ tσ1|Xt−Δ t |γ1
(5.16)

has the standard Gaussian distribution, where Δ t is the time interval between consecutive mean-reverting
regime observations. However, since the Euler scheme is an approximation of a continuous process, for-
mula (5.16) is valid only for small Δ t (for details on errors of the Euler scheme, see [1]). In contrast, if
the mean-reverting regime dynamics is given by the AR(1) process, i.e., the process defined by (5.4) with
γ = 0, exact residuals can be derived. Precisely, the residuals are derived from all pairs of consecutive
AR(1) observations as

εt,1 =
xt − (1−β1)

kxt−1−α1
1−(1−β1)

k

β1

σ1

√
1−(1−β1)2k

1−(1−β1)2

, (5.17)

where (k− 1) is the number of latent observations from the mean-reverting regime (or equivalently the
number of observations from the second regime that occurred between two consecutive AR(1) observa-
tions) and α1, β1, and σ1 are the model parameters; see (5.4).

Transformation (5.16), or (5.17) in the AR(1) case, ensures that the subsample containing observa-
tions from the mean-reverting regime is i.i.d. Since the second regime is i.i.d. by definition, the standard
Kolmogorov–Smirnov test can be applied to each of the subsamples.

The goodness of fit of the marginal distribution of the individual regimes can be formally tested, using
the test statistic (5.14). For the mean-reverting regime, F is the standard Gaussian cdf and (y1,y2, . . . ,yn1)
is the subsample of the standardized residuals obtained by applying transformation (5.17), while for the
other regimes, F is the model specified cdf (i.e., F2) and (y1,y2, . . . ,yn2) is the subsample of respective
observations. Observe that the “whole model” goodness of fit can be also verified, using the fact that for
X ∼ F2 we have that Y = (F)−1[F2(X)] is F-distributed. Indeed, a sample (y1

1,y
1
2, . . . ,y

1
n1
,y2

1,y
2
2, . . . ,y

2
n2
),

where y1
t ’s are the standardized residuals of the mean-reverting regime, while y2

t ’s are the transformed
variables corresponding to the second regime, i.e., y2

t = (F)−1[F2(xt,2)] with F being the standard Gaussian
cdf, is i.i.d. N(0,1)-distributed and, hence, the testing procedure is applicable.

5.4.2 The wedf Approach

Now, we briefly mention another potentially useful testing approach dealing with the latency of the state
process. Observe that in the standard goodness-of-fit testing approach based on the edf each observation
is taken into account with weight 1

n (i.e., inversely proportional to the size of the sample). However, in
MRS models, the state process is latent. The estimation procedure (the EM algorithm) only yields the
probabilities that a certain observation comes from a given regime. Moreover, in the resulting marginal
distribution of the MRS model each observation is, in fact, weighted with the corresponding probability.
Therefore, a similar approach could be used in the testing procedure. As [38] have shown, this is possible
for independent regime models with homoskedastic mean-reverting dynamics, i.e., with γ = 0 in formula
(5.4). The approach uses the concept of the weighted empirical distribution function (wedf):

Fw
n (x) =

n

∑
t=1

wtI{yt<x}
∑n

t=1 wt
, (5.18)
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where (y1,y2, . . . ,yn) is a sample of observations and (w1, . . . ,wn) are the corresponding weights, such
that 0 ≤ wt ≤ M, ∀t=1,...,n. A natural choice of weights seems to be wt = P(Rt = i|x1,x2, . . . ,xT ) =
E(I{Rt=i}|x1,x2, . . . ,xT ) for the ith regime observations. Indeed, it can be shown that, if the H0 hypoth-
esis is true, the test statistic

Dw
n =

√
nsup

x∈R
|Fw

n (x)−F(x)| (5.19)

converges weakly to the Kolmogorov–Smirnov distribution, with Fw
n derived for the sample (y1

1,y
1
2, . . . ,

y1
T−1,y

2
1,y

2
2, . . . ,y

2
T ), where (y1

1,y
1
2, . . . ,y

1
T−1) are the transformed variables of the mean-reverting regime

and (y2
1,y

2
2, . . . ,y

2
T ) are the variables corresponding to the second regime, i.e., y2

t = (F)−1[F2(xt)] with F
being the standard Gaussian cdf. The transformation of the mean-reverting regime observations is, similarly
as in the ewedf approach, based on deriving the process residuals. We have

εt,1 =
Xt,1−α− (1−β )E(Xt−1,1|xt−1)√
(1−β )2Var(Xt−1,1|xt−1)+σ2

, (5.20)

where E(Xt−1,1|xt−1) and Var(Xt−1,1|xt−1) can be calculated using the following formulas:

E(Xt,1|xt) = P(Rt = 1|xt)xt +

+P(Rt 	= 1|xt) [α+(1−β )E(xt−1,1|xt−1)] , (5.21)

E(X2
t,1|xt) = P(Rt = 1|xt)x

2
t +

+P(Rt 	= 1|xt)
[
α2 + 2α(1−β )E(Xt−1,1|xt−1)+

+(1−β )2E(X2
t−1,1|xt−1)+σ2]. (5.22)

Finally, the p-value for the sample (y1
1,y

1
2, . . . ,y

1
T−1,y

2
1,y

2
2, . . . ,y

2
T ) can be approximated by P(κ ≥ dn),

where
dn =

√
n max

1≤t≤n
max
i=1,2

∣∣Fw
n (yi

t)−F(yi
t)
∣∣ (5.23)

is the test statistic. Note that for a given value of dn, P(κ > dn) is the standard Kolmogorov–Smirnov test
p-value, so that the K–S test tables can be applied in the wedf approach.

5.4.3 Critical Values

Note that the described above testing procedure is valid only if the parameters of the hypothesized distri-
bution are known. Unfortunately in typical applications the parameters have to be estimated beforehand. If
this is the case, then the critical values for the test must be reduced [15]. In other words, if the value of the
test statistics dn is d, then the p-value is overestimated by P(dn ≥ d). Hence, if this probability is small,
then the p-value will be even smaller and the hypothesis will be rejected. However, if it is large, then we
have to obtain a more accurate estimate of the p-value.

To cope with this problem, [51] recommends to use Monte Carlo simulations. In our case the procedure
reduces to the following steps. First, the parameter vector θ̂ is estimated from the dataset and the test
statistic dn is calculated according to formula (5.14). Next, θ̂ is used as a parameter vector for N simulated
samples from the assumed model. For each sample the new parameter vector θ̂i is estimated and the new
test statistic di

n is calculated using formula (5.14). Finally, the p-value is obtained as the proportion of
simulated samples with the test statistic values higher or equal to dn, i.e., p-value = 1

N ∑
N
i=1 I{di

n≥dn}, where
I is the indicator function.
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5.5 Application to Electricity Spot Prices

In this study we present how the techniques introduced in Sect. 5.3 can be used to efficiently calibrate
MRS models to electricity spot prices and test their goodness of fit using the ewedf approach described in
Sect. 5.4. We use mean daily (baseload) spot prices from two major power markets: the European Energy
Exchange (EEX, Germany) and the North American New England power market (NEPOOL, U.S.). Using
baseload data is quite common in the energy economics literature, partly due to the fact that baseload is the
most common underlying instrument for energy derivatives. Both samples total 1,820 daily observations
(or 260 full weeks) and cover the roughly 5-year period January 2, 2006–December 26, 2010; see Fig. 5.3.

When modeling electricity spot prices we have to remember about the unique characteristics of the
underlying commodity. Both electricity demand and (to some extent) supply exhibit seasonal fluctuations,
arising due to changing climate conditions, like temperature and the number of daylight hours, and business
activity. These seasonal fluctuations can be then observed in electricity spot prices. In the mid- and long-
term also the fuel price levels (of natural gas, oil, coal) influence electricity prices.

Not wanting to focus the paper on modeling the fundamental drivers of electricity prices, a single non-
parametric long-term seasonal component (LTSC) is used here to represent the long-term non-periodic
fuel price levels, the changing climate/consumption conditions throughout the years, and strategic bidding
practices. As shown by [36], a wavelet-estimated LTSC pretty well reflects the “average” fuel price level,
understood as a combination of natural gas, crude oil, and coal prices; see also [20, 41] for a treatment of
fundamental and behavioral drivers of electricity prices. On the other hand, as discussed recently in [37],
the use of the wavelet-based LTSC is somewhat controversial. Predicting it beyond the next few weeks
is a difficult task, because individual wavelet functions are quite localized in time or (more generally) in
space. However, as shown by [50] the wavelet-based LTSC can be extrapolated into the future yielding a

200 400 600 800 1000 1200 1400 1600 1800

0

50

100

150

200

250

300

P
ric

e 
[E

U
R

/M
W

h]

Days [Jan 2, 2006 − Dec 26, 2010]

EEX price
LTSC

200 400 600 800 1000 1200 1400 1600 1800
20

40

60

80

100

120

140

160

P
ric

e 
[U

S
D

/M
W

h]

Days [Jan 2, 2006 − Dec 26, 2010]

NEPOOL price
LTSC

Fig. 5.3 Mean daily (baseload) spot prices from two major power markets: the European Energy Exchange (EEX, Germany;
top) and the North American New England power market (NEPOOL, U.S.; bottom). The estimated long-term seasonal com-
ponents (LTSC) are plotted as thick blue lines. The price spikes (and drops) and the weekly seasonal patterns are clearly
visible, especially for EEX data
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better on-average prediction of the level of future spot prices than an extrapolation of monthly dummies
or a sinusoidal LTSC. As mentioned by [36], a potentially promising, alternative approach would be to
use forward-looking information, like smoothed forward curves [4, 7]. The information carried by forward
prices provides insights as to the future evolution of spot prices. However, forward prices also include the
risk premium [3, 57], which should somehow be separated from the spot price forecast for it to be useful.

In this empirical study we assume that the electricity spot price, Pt , can be represented by a sum of two
independent parts: a predictable (seasonal) component ft and a stochastic component Xt , i.e., Pt = ft +Xt .
Further, we let ft be composed of a weekly periodic part, st , and a LTSC, Tt . The deseasonalization is then
conducted in three steps. First, the long-term trend Tt is estimated from daily spot prices Pt using a wavelet
filtering-smoothing technique (for details see [54, 56]). This procedure, also known as low-pass filtering,
yields a traditional linear smoother. Here we use the S6 approximation, which roughly corresponds to bi-
monthly (26 = 64 days) smoothing. The estimated long-term seasonal components are plotted in Fig. 5.3.

The price series without the LTSC is obtained by subtracting the S6 approximation from Pt . Next, the
weekly periodicity st is removed by subtracting the “average week” calculated as the mean of prices cor-
responding to each day of the week (the German and US national holidays are treated as the eight day of
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Fig. 5.4 Calibration results of a MRS model with three independent regimes fitted to the deseasonalized EEX prices depicted
in the top panel of Fig. 5.3. This is the “optimal” calibration scenario with the cutoffs q2 and q3 obtained as a result of an
optimization procedure. The lower panels display the conditional probabilities P(S) = P(Rt = 2|x1,x2, . . .,xT ) and P(D) =
P(Rt = 3|x1,x2, . . . ,xT ) of being in the spike or drop regime, respectively, and the time-varying unconditional probabilities
P(Rt = s) of being in the spike regime. The prices classified as spikes or drops, i.e., with P(S) > 0.5 or P(D) > 0.5, are
denoted by dots or “x” in the upper panel

the week). Finally, the deseasonalized prices, i.e., Xt = Pt −Tt− st , are shifted so that the mean of the new
process Xt is the same as the mean of Pt . The resulting deseasonalized time series Xt = Pt −Tt − st can be
seen in Figs. 5.4 and 5.5.

The second well-known feature of electricity prices are the sudden, unexpected price changes, known as
spikes or jumps. The “spiky” nature of spot prices is the effect of non-storability of electricity. Electricity to
be delivered at a specific hour cannot be substituted for electricity available shortly after or before. Extreme
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load fluctuations—caused by severe weather conditions often in combination with generation outages or
transmission failures—can lead to price spikes. On the other hand, an oversupply—due to a sudden drop
in demand and technical limitations of an instant shutdown of a generator—can cause price drops. Further,
electricity spot prices are in general regarded to be mean-reverting and exhibit the so-called inverse leverage
effect, meaning that the positive shocks increase volatility more than the negative shocks. [45] attributed
this phenomenon to the fact that a positive shock to electricity prices can be treated as an unexpected
positive demand shock. Therefore, as a result of convex marginal costs, positive demand shocks have a
larger impact on price changes relative to negative shocks.

Motivated by these features of electricity spot prices we let the stochastic component Xt be driven by a
Markov regime-switching model with three independent states:

Xt =

⎧⎨
⎩

Xt,1 if Rt = 1,
Xt,2 if Rt = 2,
Xt,3 if Rt = 3.

(5.24)
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Fig. 5.5 Calibration results of a MRS model with three independent regimes fitted to the deseasonalized NEPOOL prices
depicted in the bottom panel of Fig. 5.3. This is the “optimal” calibration scenario with the cutoffs q2 and q3 obtained as a
result of an optimization procedure. The lower panels display the conditional probabilities P(S) = P(Rt = 2|x1,x2, . . .,xT )
and P(D) = P(Rt = 3|x1,x2, . . .,xT ) of being in the spike or drop regime, respectively, and the time-varying unconditional
probabilities P(Rt = s) of being in the spike regime. Like in Fig. 5.4, the prices classified as spikes or drops, i.e., with
P(S) > 0.5 or P(D) > 0.5, are denoted by dots or “x” in the upper panel

The first (base) regime describes the “normal” price behavior and is given by the mean-reverting,
heteroskedastic process of the form

Xt,1 = α1 +(1−β1)Xt−1,1 +σ1|Xt−1,1|γ1εt , (5.25)
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where εt is the standard Gaussian noise. The second regime represents the sudden price jumps (spikes)
caused by unexpected supply shortages and is given by i.i.d. random variables from the shifted log-normal
distribution:

log(Xt,2−X(q2))∼ N(α2,σ2
2 ), Xt,2 > X(q2). (5.26)

Finally, the third regime (responsible for the sudden price drops) is governed by the shifted “inverse log-
normal” law:

log(−Xt,3 +X(q3))∼ N(α3,σ2
3 ), Xt,3 < X(q3). (5.27)

In the above formulas X(qi) denotes the qi-quantile, qi ∈ (0,1), of the dataset.
The deseasonalized prices Xt , the conditional probabilities of being in the spike P(Rt = 2|x1,x2, . . . ,xT )

or drop P(Rt = 3|x1,x2, . . . ,xT ) regime for the analyzed datasets, and the time-varying unconditional prob-
abilities P(Rt = s) of being in the spike regime are displayed in Figs. 5.4 and 5.5. The prices classified
as spikes or drops, i.e., with P(Rt = 2|x1,x2, . . . ,xT ) > 0.5 or P(Rt = 3|x1,x2, . . . ,xT ) > 0.5, are addition-
ally denoted by dots or “x.” The estimated model parameters and the numbers of observations classified
as spikes or drops are given in Table 5.1. The calibration results are reported for three different scenarios
called “optimal” (with the cutoffs q2 and q3 obtained as a result of an optimization procedure), “quartiles”

Table 5.1 Calibration results under three different scenarios for the MRS model with three
independent regimes (5.25)–(5.27) fitted to the deseasonalized EEX and NEPOOL prices

Calibration Parameters Probabilities
scenario α1 β1 σ 2

1 γ1 α2 σ 2
2 α3 σ 2

3 p11 p22 p33 #S #D

EEX
Optimal (0.25, 0.69) 18.82 0.40 0.40 0.51 2.21 0.86 2.37 0.39 0.90 0.68 0.60 238 193
Quartiles (0.25, 0.75) 18.95 0.40 0.64 0.45 2.23 0.91 2.38 0.38 0.91 0.64 0.61 192 189
Median (0.5, 0.5) 18.47 0.39 0.28 0.55 2.62 0.51 2.59 0.29 0.90 0.68 0.66 200 240

NEPOOL
Optimal (0.24, 0.65) 14.68 0.25 0.86 0.35 2.61 0.50 2.04 0.26 0.95 0.75 0.87 239 145
Quartiles (0.25, 0.75) 15.12 0.26 3.28 0.19 2.45 0.66 2.07 0.25 0.95 0.74 0.87 229 140
Median (0.5, 0.5) 14.84 0.25 0.33 0.47 2.84 0.33 2.55 0.10 0.95 0.76 0.87 234 161

For scenario definitions see text. The numbers of observations classified as spikes (#S), i.e.,
with P(Rt = 2|x1,x2, . . .,xT )> 0.5, or drops (#D), i.e., with P(Rt = 3|x1,x2, . . .,xT )> 0.5,
are additionally provided in the last two columns

Table 5.2 Goodness-of-fit statistics for the MRS model with
three independent regimes (5.25)–(5.27) fitted to the deseason-
alized EEX and NEPOOL prices

Calibration K–S test p-values LogL
scenario Base Spike Drop Model

EEX
Optimal (0.25, 0.69) 0.8433 0.3106 0.9323 0.5887 -5432.17
Quartiles (0.25, 0.75) 0.8912 0.1940 0.7898 0.4370 -5459.58
Median (0.5, 0.5) 0.8857 0.0156 0.2767 0.1355 -5492.59

NEPOOL
Optimal (0.24, 0.65) 0.1480 0.4556 0.9529 0.3690 -5222.08
Quartiles (0.25, 0.75) 0.1159 0.3233 0.9655 0.2339 -5233.92
Median (0.5, 0.5) 0.1925 0.7821 0.9195 0.2988 -5232.62

For parameter estimates see Table 5.1
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(with the cutoffs being arbitrarily set to the 1st and 3rd quartiles of the deseasonalized dataset: q2 = 0.75,
q3 = 0.25), and “median” (with the cutoffs being arbitrarily set to the median of the deseasonalized dataset:
q2 = q3 = 0.5).

Although the estimated parameters, probabilities, and the numbers of identified spikes and drops differ
between the scenarios, the obtained base regime parameters are consistent with the well-known properties
of electricity prices. In particular, β1 ∈ [0.25,0.40] indicates a relatively high speed of mean reversion,
while positive values of γ ∈ [0.19,0.55] are responsible for the “inverse leverage effect.” Considering prob-
abilities pii of staying in the same regime we obtain quite high values for each of the regimes, ranging
from 0.60 for the drop regime in the EEX market up to 0.95 for the base regime in the NEPOOL market.
As a consequence, on average, there are many consecutive observations from the same regime. Finally,
since both analysed markets are characterized by relatively similar climate conditions the patterns of spike
intensity, as measured by the periodic unconditional probabilities P(Rt = s), are similar (see the bottom
panels in Figs. 5.4 and 5.5). The spike intensity is the highest in winter and the lowest in spring.

In order to check the statistical adequacy of the fitted MRS models we perform a Kolmogorov–Smirnov
(K-S) goodness-of-fit-type test for each of the individual regimes, as well as for the whole model (for the
test details see Sect. 5.4 and [38]). The goodness-of-fit results are reported in Table 5.2, together with
the log-likelihood values. All but one (EEX prices, spike regime, “median” scenario) K-S test p-values are
higher than the commonly used 5 % significance level; hence we cannot generally reject the hypotheses
that the datasets follow the fitted MRS models. Looking at the optimal cutoffs—q2 = 0.69 and q3 = 0.25
for the EEX dataset and q2 = 0.65 and q3 = 0.24 for the NEPOOL dataset—we can observe that in both
cases high values for the spike cutoff and low for the drop cutoff are preferred; see also Fig. 5.6. What is
interesting, these values are relatively close to the 3rd and 1st quartiles, yet the “quartiles” scenario is not
always better than the “median” scenario. It seems that by arbitrarily setting the cutoffs to the quartiles
too many spikes in the NEPOOL dataset were excluded from being classified into the spike regime. This
resulted in a relatively low log-likelihood value. Overall, we suggest to use the “optimal” scenario as it
yields significantly higher log-likelihood values and higher p-values of the K-S type test for the whole
model; see Table 5.2.

5.6 Conclusions

In this paper we have reviewed the calibration and statistical validation techniques for MRS models of
electricity spot prices. In particular, in Sect. 5.3, we have presented an efficient parameter estimation al-
gorithm for independent regime MRS models. Instead of storing conditional probabilities for each of the
possible state process paths, it requires conditional probabilities for only one time-step. This allows for a
100 to over 1,000 times faster calibration than in the case of a competing approach utilizing probabilities
of the last ten observations. We have further shown how to improve the temporal fit of the models to elec-
tricity spot price data by introducing time-varying (periodic) transition probabilities and how to modify the
calibration scheme by optimizing the cutoffs defining the spike and drop regimes. The latter improvement
results in significantly higher log-likelihood values and higher p-values of the goodness-of-fit test for the
whole model.

While most of the electricity spot price models proposed in the literature are elegant, their fit to em-
pirical data has either been not examined thoroughly or the signs of a bad fit ignored. This can have
far-reaching consequences if such misspecified models are used for forecasting or risk management appli-
cations. The goodness-of-fit tests discussed in Sect. 5.4 provide an efficient tool for accepting or rejecting
a given MRS model for a particular dataset.

Finally, in Sect. 5.5, we have put the theoretical tools to use and built models of deseasonalized whole-
sale spot prices from the EEX and NEPOOL markets. The studied independent regime model fits market
data well and also replicates the major stylized facts of electricity spot price dynamics. In particular, the
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Fig. 5.6 Log-likelihoods of the best fitted models for each of the possible spike and drop regime cutoffs (0, 0.01, . . . , 1) for
EEX (left panels) and NEPOOL (right panels) deseasonalized daily prices. Bottom panels display contour plots of the upper
panels. Note that for both datasets high values for the spike cutoff and low for the drop cutoff are preferred. The optimal cutoffs
for the EEX dataset are q2 = 0.69 and q3 = 0.25, while for the NEPOOL dataset q2 = 0.65 and q3 = 0.24; see Table 5.2

parameter γ can be treated as a parameter representing the “degree of inverse leverage.” Its positive value
indicates “inverse leverage”, which reflects the observation that positive electricity price shocks increase
volatility more than negative shocks.

This paper does not resolve; however, all problems encountered when modeling wholesale electricity
spot prices. In particular, we have not checked whether the studied MRS model recovers the market ob-
served term structure of volatility. As [37] have reported, the electricity forward prices implied by the
considered spot price models exhibit the so-called Samuelson effect (i.e., a decrease in volatility with
increasing time to maturity; for the considered models the volatility scales as e−β (T−t)), but the rate of
decrease is completely determined by the speed of mean-reversion β . Empirical evidence shows, however,
that the rate of decrease should be large only for maturities up to a year [43]. Perhaps, incorporating another
stochastic factor would lead to a more realistic forward price curve.
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Chapter 6
Modelling Electricity Day-Ahead Prices by Multivariate
Lévy Semistationary Processes

Almut E. D. Veraart and Luitgard A. M. Veraart

Abstract This paper presents a new modelling framework for day-ahead electricity prices based on
multivariate Lévy semistationary (ML S S ) processes. Day-ahead prices specify the prices for elec-
tricity delivered over certain time windows on the next day and are determined in a daily auction. Since
there are several delivery periods per day, we use a multivariate model to describe the different day-ahead
prices for the different delivery periods on the next day. We extend the work by [4] on univariate Lévy
semistationary processes to a multivariate setting and discuss the probabilistic properties of the new class
of stochastic processes. Furthermore, we provide a detailed empirical study using data from the European
energy exchange (EEX) and give new insights into the intra-daily correlation structure of electricity day-
ahead prices in the EEX market. The flexible structure of ML S S processes is able to reproduce the
stylized facts of such data rather well. Furthermore, these processes can be used to model negative prices
in electricity markets which started to occur recently and cannot be described by many classical models.

6.1 Introduction

Energy markets have been liberalized worldwide in the last two decades and have gained efficiency and
increasing importance throughout the world. A variety of commodities related to energy are traded at
these markets, such as electricity, coal, gas and oil. Also related markets like the weather, emission or
carbon market play a key role in modern societies which have pledged themselves to foster renewable and
sustainable forms of energy. In this paper, we focus on one particular commodity, which we all need in
our everyday life: electricity. Electricity has very distinct features compared to other commodities, which
is due to the fact that it is (at least up to now) essentially not storable. Hence, as soon as electricity has
been produced, it has to be delivered to an end consumer. This leads to very atypical price patterns, such as
large price spikes, strong short-term volatility and can even result in electricity prices becoming negative
for short periods of time if the supply considerably exceeds the demand.

Obviously, there is not the model for electricity which will be suitable for all electricity markets. Empir-
ical research has shown that national electricity markets can have very different price patterns depending
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on which sources electricity is generated from. However, there is a trend to building more and more
multinational power markets and we can observe increasing market integration throughout the European
power markets.

The typical products traded on energy markets are spot prices, forward and futures contracts and options.
In this paper, we will solely focus on electricity spot prices. More precisely, since electricity is not storable
there is no actual spot price, but rather a day-ahead price.

Let us briefly recall how such day-ahead prices are determined. Since we will work with data from
the European energy exchange (EEX) in the empirical study, we review the main features of the EEX
market based on the documentation available on the EEX website; detailed information is available at http://
www.epexspot.com/en/. The spot market of EEX, also called EPEX spot market, trades contracts for the
physical delivery of electricity in Austria, Germany, France or Switzerland. There are two types of trading
activities which take place on the EEX spot market: auctions and continuous trading. The focus of this paper
will be entirely on the prices determined in auctions, and we will not analyse the price structure coming
from continuous trading but relegate this aspect to future research. The day-ahead prices are determined
by a daily auction which takes place at 12:00 pm, 7 days a week all year (including statutory holidays).
The underlying quantity to be traded is the electricity for delivery the following day in 24 h intervals.
As soon as the auction results are available, they will be published (typically around 12:40 pm). There
are two types of orders which can be submitted in the auction: orders for individual hours and block
orders. Orders for individual hours can comprise up to 256 price/quantity combinations for each hour of
the following day. The range of the prices is fixed to the interval between±3000 EUR/MWH and the (up to)
256 prices are not necessarily the same for each hour. Also, all orders have to be accompanied by a volume
(which can be positive, negative or nil) at the price limits. If the order is supposed to be fully price-inelastic,
then the volume information can be given at the price limits. Of lower priority than the single-hour orders
are the so-called block orders. Here several hours can be linked together and they work on an all-or-none
basis, meaning that the bid is matched for all hours or rejected. For block orders the maximum volume is
restricted to a block bid of 300 MWH and also, each market participant can only submit a maximum of 45
block bids.

How can we model the hourly electricity prices determined by such daily auctions? The aim of this
paper is to propose a new modelling framework for day-ahead electricity prices. While many articles on
intra-day spot price modelling follow the classical approach of viewing intra-day prices as observations
from an underlying instantaneous spot price process, see Sect. 6.2 for a detailed review, we will proceed
differently here. Since all 24 hourly prices are determined at once, there is actually the same amount of
information available for all hourly prices in the day-ahead market. Hence we suggest to model the hourly
day-ahead prices as a panel/vector of 24 hourly prices. Then for each hour we have daily observations.
Through the panel approach, we allow for cross-correlations between the prices for different hours rather
than for autocorrelations of an instantaneous spot price. In addition to the cross-correlations, we will also
allow for autocorrelations between the prices for each individual hour. The panel approach to modelling
day-ahead electricity prices has been proposed by [28] in a discrete-time set-up. Our paper extends this
approach of thinking in various ways: First, we propose a model in a continuous-time framework. Second,
while [28] assumed an AR(1) structure for each individual hours, we allow for more general autocorrelation
structures. Moreover, our model allows for stochastic volatility and we allow for cross-correlations being
generated by both a diffusion and/or a jump process. Hence, we believe that our new modelling framework
is very suitable for describing the rather involved evolution of day-ahead electricity markets. Also note
that while many traditional models, including the model by [28], are of geometric type, meaning that they
actually model logarithmic electricity prices, we do not follow this route. We rather focus on arithmetic
models that can allow for negative electricity prices. These have recently appeared in the EEX market after
a change of the bidding rules has been introduced in autumn 2008.

The contribution of this paper is threefold. First, we establish the class of multivariate Lévy semista-
tionary (ML S S ) processes which is new to the literature and extends the work by [4], where univariate
L S S processes have been used for modelling daily average spot prices. Further, we present the proba-
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bilistic properties of the new class of stochastic processes, which are relevant for our empirical study. Sec-
ond we formulate an arithmetic model based on the new class of ML S S processes. Our new model can
also describe negative prices. Third, we carry out a detailed empirical study of day-ahead electricity prices
from the EEX market and analyse in particular the cross-correlation structure between the hourly prices.
This gives us an important insight into the fine price structure of a modern day-ahead electricity market.

The remaining part of the paper is structured as follows. In Sect. 6.2 related literature will be pre-
sented. Section 6.3 introduces the new class of stochastic processes called multivariate Lévy semistationary
processes, which we use as the building block for modelling electricity day-ahead markets. The precise
model will then be introduced in Sect. 6.4. Section 6.5 presents the estimation theory for our new mod-
elling framework. A detailed empirical study is then carried out in Sect. 6.6, and Sect. 6.7 concludes the
paper.

6.2 Literature Review

Models for electricity spot prices have been studied extensively in the last decade. In this section, we will
give a short review on the main findings in the existing literature. When it comes to modelling electricity
spot prices, most researchers focus on modelling daily spot prices, which are computed as the averages of
the intra-daily day-ahead prices. Such average prices are of interest since these are the quantities typically
used when settling forward and futures contracts. However, our modelling approach here is more direct
since we focus on modelling the intra-day observations rather than spot averages. It should be noted that
the literature on modelling intra-daily spot electricity prices is still at a development stage.

Modelling electricity spot prices is either done by modelling the supply and the demand side and
then computing market-clearing prices, as suggested by [11]; see also [2]. Alternatively, one can model
the spot price as an exogenous process, which we do in the following. The research on electricity spot
price modelling is divided into a discrete-time and a continuous-time literature. Since our paper follows the
continuous-time approach, we will focus in particular on that side of the literature, but we will also point
the reader to relevant research on spot prices formulated in discrete time.

The classical continuous-time model for energy spot prices is the so-called Schwartz model, see [38],
where the spot price is modelled as the exponential of a Gaussian Ornstein–Uhlenbeck (OU) process. Such
a model allows for mean-reversion in the prices, which is typically found in empirical studies. Various ex-
tensions of the Schwartz model have been proposed which allow for additional stochastic volatility, jumps,
multifactor models or arithmetic rather than geometric model specifications based on OU processes; see,
e.g. [7] and [30]. Also, the OU process as the base process has been extended to allow for a more gen-
eral autocorrelation structure. In this context, the class of continuous-time autoregressive moving average
(CARMA) processes, see [14], has turned out to be empirically convincing; see, e.g. [10, 24] and [4]. See
also [8, 9] and the references therein for a review on other relevant papers in the context of modelling
electricity spot price dynamics. It should be noted that the general feature of that stream of the literature is
that either the daily average spot price is modelled as a continuous-time stochastic process or that there is
the assumption of a continuous-time, unobserved instantaneous spot price process which approximates the
hourly observed spot price. We are not aware of any article which models electricity day-ahead markets in
a panel framework in continuous time and our paper aims at closing this gap in the literature.

Before we turn to our new modelling framework let us briefly mention some of the relevant contributions
in the discrete-time literature for modelling electricity day-ahead markets. Similarly to the continuous-time
literature, there are rather advanced models for daily electricity spot prices; see, e.g. the recent work by
[32] and the references therein. Also, electricity markets are prone to capacity congestions which have
an impact on electricity prices in different regions. Hence [27] propose a regime-switching multiplicative
seasonal ARFIMA model (based on hourly data), where the regimes represent the presence or absence of
a capacity congestions. When it comes to modelling the day-ahead market rather than daily prices or times



160 Almut E. D. Veraart and Luitgard A. M. Veraart

series of hourly data, we find some exploratory work by [31]. Later, empirical studies by [25] and [26]
on data from the New Zealand electricity market (NZEM) suggest to use periodic autoregression models.
Moreover, these papers indicate already that various intra-daily prices should be regarded as different com-
modities rather than intra-daily observations from one spot price. This approach has later been formalized
by [28] who suggest to model day-ahead markets by a panel structure. Following this idea, [1] showed
how statistical methods such as multivariate analysis of variance and functional analysis of variance can be
used within such a panel structure. In particular, the functional data approach stresses the smoothness in
the intra-day prices and was put forward as a good tool for dealing with day-ahead markets.

Note that some electricity markets allow for negative prices and there are already some recent articles
addressing this issue. Negative spot prices have been permitted as outcomes from, e.g., the daily EEX spot
auctions in September 2008. Other energy exchanges, such as NordPool in Scandinavia, ERCOT in West
Texas or the AEMO in South Australia also allow negative prices. Negative prices are typically triggered by
large quantities of electricity being produced by wind farms during particularly windy periods. Traditional
spot models are of geometric type, meaning that the logarithmic data are modelled (e.g. by an OU process).
Clearly, in the presence of negative prices, a logarithmic transformation cannot be applied to the data.
Hence, a natural approach might be to think of an alternative data transformation. [37] suggests the use
of the area hyperbolic sine (rather than the logarithmic) transformation. Alternatively, one can consider
arithmetic models without positivity assumptions. Note that while [7] proposed to focus on arithmetic
models driven by Lévy subordinators to ensure price positivity, one can relax this assumption to allow for
negative prices. The positivity assumption of [7] was imposed at a time when negative prices were neither
permitted at the NordPool nor at the EEX spot market, and hence it makes sense to modify this assumption
to account for the new market regulations. An alternative approach is to shift the data upwards by a quantity
determined by the observed minimum price or some other lower bound; see, e.g. [39]. Note that, depending
on the application, using the observed minimum price might not be the best choice for shifting the data (in
particular if one is interesting in price forecasting). It is however better to use the minimum bound for the
bid price (e.g. the floor price in the EEX market is −3000 EUR/MWH) to re-level the data. Such a choice
will ensure that the data are always positive.

6.3 Multivariate Lévy Semistationary Processes

This section gives an introduction into the class of multivariate Lévy semistationary (ML S S ) pro-
cesses, which will be the building block of our new spot price model. Note that the univariate case of Lévy
semistationary processes has been introduced in [4]. Throughout the paper, we work on a probability space
(Ω ,F ,P) with a filtration F= {Ft}t∈R satisfying the “usual conditions”; see [29, p. 10].

6.3.1 The Driving Multivariate Lévy Process

We define a d-dimensional Lévy process L = (L1, . . . ,Ld)
� = (L(t))t≥0, where d ∈ IN. Throughout this

paper we consider a càdlàg modification of L. The characteristic triplet of that Lévy process is given by
(γ ,c,ν), where γ = (γ1, . . . ,γd)

� denotes the drift, and c = (ci j)1≤i, j≤d denotes a symmetric nonnegative-
definite d× d matrix with decomposition c = c c�. Further, ν denotes the Lévy measure on R

d satisfying

ν({0}) = 0,
∫
Rd
(‖x‖2∧1)ν(dx)< ∞,
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where ‖ · ‖ denotes the Euclidean norm. Hence, L has the following Lévy–Khintchine representation:

E(exp(iθ�L(t))) = exp

[
t

(
iγ�θ − 1

2
θ�cθ +

∫
Rd

(
eiθ�x− 1− iθ�xI{‖x‖≤1}

)
ν(dx)

)]
, for θ ∈R

d .

Also, its Lévy–Itô representation is given by

L(t) = γt + cB(t)+
∫ t

0

∫
{‖x‖≤1}

x(N(dx,ds)−ν(dx)ds)+
∫ t

0

∫
{‖x‖≥1}

xN(dx,ds),

where B denotes a d-dimensional standard Brownian motion and N denotes the Poisson random measure
associated with L.

In the following we will study stochastic processes not just on R+ but on R. For this, we consider
another Lévy process L′ that is independent of L and identically distributed as L and define a new process
L∗ by setting

L∗(t) :=

{
L(t), t ≥ 0
−L′(−(t−)), t < 0.

(6.1)

This construction has been frequently considered in the literature; see, e.g. [15]. The process L∗ is of-
ten referred to as two-sided Lévy process. Note that we consider a càdlàg modification of L′. Now we
take the left limit, then (L′(t−))t>0 is càglàd. Finally, we consider −(L′(−(t−))t<0 which is the process
(L′(t−))t>0 reflected at 0. Hence, we obtain a càdlàg two-sided Lévy process (L∗(t))t∈R. To simplify
notation, however, we will always write L rather than L∗ in the following.

In the following we will assume that the filtration F is such that L is a Lévy process with respect to F;
see [6, Sect. 4] for details.

6.3.2 Definition of the Multivariate Lévy Semistationary Process

A multivariate Lévy semistationary (ML S S ) process Y = {Y(t)}t∈R on R
m, m ∈ IN, is defined as

Y(t) :=
∫ t

−∞
g(t− s)σ(s−)dL(s), (6.2)

where L denotes the d-dimensional two-sided Lévy process defined in (6.1). Further, let δ ∈ IN. Then g =
(gi j)1≤i≤m,1≤ j≤δ : R→R

m×δ denotes a deterministic, nonnegative continuous function satisfying g(s) = 0
whenever s < 0, and σ = (σi j)1≤i≤δ ,1≤ j≤d denotes a δ ×d-dimensional (matrix-valued) stochastic process
whose components are càdlàg, adapted, and positive; typically we refer to σ as the stochastic volatility
matrix. Moreover, throughout the paper we will assume that all components of σ are independent of all
components of L. Note that we refer to Y as a semistationary process since it becomes covariance stationary
as soon as σ is a stationary process. We need to impose some further restrictions to ensure that the integral
in (6.2) is well defined. Note that the m× d-dimensional process (φ (t)(s))s∈R with

φ (t)(s) := g(t− s)σ(s−), with φ (t)(s) = (φ (t)
i j (s))1≤i≤m,1≤ j≤d ,

is predictable and φ (t)(s) = 0 for s > t. Note that the ith component of (6.2) is given by

Yi(t) =
d

∑
j=1

∫ t

−∞
φ (t)

i j (s)dLj(s), i ∈ {1, . . . ,m}.
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Now we define the vector φ (t)
i (s) = (φ (t)

i1 (s), . . . ,φ (t)
id (s))� ∈ R

d . Then, according to [6, Corollary 4.1],
the integral in (6.2) is well defined if and only if the following conditions hold almost surely for all i ∈
{1, . . . ,m}: ∫ t

−∞
(φ (t)

i (s))�cφ (t)
i (s)ds < ∞,

∫ t

−∞

∫
Rd

(
1∧
∣∣∣(φ (t)

i (s))�z
∣∣∣2) ν(dz)ds < ∞,

∫ t

−∞

∣∣∣∣γ�φ (t)
i (s)+

∫
Rd

(
h1(z�φ

(t)
i (s))− (φ (t)

i (s))�hd(z)
)
ν(dz)

∣∣∣∣ds < ∞,
(6.3)

where hd(x) = I{x∈Rd :‖x‖≤1}. Note that the above integrability conditions do not guarantee square-
integrability of Y yet.

Clearly, ML S S processes are in general not semimartingales. However, we can derive sufficient
conditions which ensure that ML S S processes are semimartingales. Generalizing the corresponding
results by [3, 5] and [4], we can deduce that the ML S S process (Yt)t≥0 is a semimartingale if the
following sufficient conditions hold: (i) E|L1|< ∞; (ii) the function value g(0) exists and is finite; (iii) the
function g is absolutely continuous with respect to the Lebesgue measure with square integrable derivative
g′ (which is to be understood componentwise); (iv) the components of the matrix-valued process (g′(t−
s)σ (s−))s∈R are square integrable for each t ∈ R. Then, we can represent Y as

Y(t) = Y(0)+ g(0)
∫ t

0
σ (s−)dL(s)+

∫ t

0
A(s)ds, t ≥ 0, (6.4)

where L(s) = L(s)−E(L(s)) for s ∈ R and

A(s) = g(0)σ(s−)E(L(1))+
∫ s

−∞
g′(s− u)σ(u−)dL(u).

Note that ML S S processes can be defined for kernel functions g(x) which are only defined for x > 0
and not for x = 0. In this case, we would require that g(0+) exists and is finite in order to obtain the
corresponding semimartingale representation.

Moreover, the corresponding quadratic variation process is given by

[Y]t = g(0)
∫ t

0
σ(s−)dL(s)dL�(s)σ�(s−)g�(0), for t ≥ 0.

Note that the quadratic variation is a key object of interest in finance since it quantifies the accumulated
stochastic volatility over a certain period of time.

6.3.3 First- and Second-Order Structure

Let us now derive the mean and (auto)covariance of ML S S processes within the semimartingale frame-
work. Note that we will need these results in Sect. 6.5 when we estimate the model. In the following, we
will assume that the first and second moments of L, σ exist, then the first two cumulants of the two-sided
Lévy process are given by

E(L(1)) = γ+
∫
{x∈Rd :‖x‖≥1}

xν(dx), Var(L(1)) = c+
∫
Rd

xx�ν(dx).

In addition, we assume that Y has finite first and second conditional and unconditional moments. The
conditional mean and (auto)covariance are given by
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E(Y(t)|σ) =
∫ ∞

0
g(u)σ(t− u)du E(L(1)),

Cov(Y(t),Y(t + h)|σ) =
∫ ∞

0
g(u)σ(t− u)Var(L(1))σ�(t− u)g�(u+ h)du, h≥ 0.

Using the rules for the law of the total variance and covariance and Fubini’s theorem, we can directly
deduce the results for the unconditional mean, covariance and autocovariance.

E(Y(t)) =
∫ ∞

0
g(u)E(σ(t− u))duE(L(1)),

Cov(Y(t),Y(t + h)) =
∫ ∞

0
g(u)E

[
σ(t− u)Var(L(1))σ�(t− u)

]
g�(u+ h)du

+

∫ ∞

0

∫ ∞

0
g(u)Σσ ,L(1)(t− u, t− v)g�(v+ h)dvdu, h≥ 0,

(6.5)

where

Σσ ,L(1)(t− u, t− v) = E(σ (t− u)E(L(1))E(L�(1))σ�(t− v))

−E(σ(t− u))E(L(1))E(L�(1))E(σ�(t− v)).

If σ is stationary, then the results simplify to

E(Y(t)) =
∫ ∞

0
g(u)duE(σ(0))E(L(1)),

Cov(Y(t),Y(t + h)) =
∫ ∞

0
g(u)E

[
σ(0)Var(L(1))σ�(0)

]
g�(u+ h)du

+

∫ ∞

0

∫ ∞

0
g(u)Σσ ,L(1)(0, |u− v|)g�(v+ h)dvdu, h≥ 0.

The key to understanding the cross-correlation structure is formula (6.5) for h = 0, where the covariance
(i.e., the cross-covariation) for general ML S S processes is given. We see that various factors can con-
tribute to the correlation structure: the mean and covariance of L(1), the function g and the cross-correlation
of σ denoted by Σσ ,L(1).

Note that in a concrete application, one needs to formulate further parameter restrictions to ensure the
identifiability of the model parameters.

6.3.4 Important Subclasses of ML S S Processes

The class of ML S S processes is a very wide and flexible class of stochastic processes. It also contains
some well-known stochastic processes as special cases, which we mention briefly in the following. First
of all, there are the multivariate Ornstein–Uhlenbeck (OU) processes and, more generally, CARMA pro-
cesses; see, e.g. [13, 14] and [34] for more details. We will consider these subclasses in more detail in our
empirical study. Also, since our new class of processes allows for stochastic volatility, we can have volatil-
ity modulated OU and CARMA processes, which are new to the literature in the multivariate framework.
In addition to such linear models, we can think of multivariate fractionally integrated processes, such as
fractionally integrated CARMA processes, see [33], which are included in our modelling framework. Such
processes would allow for long memory, which is sometimes found in electricity prices; see, e.g. [27, 32].
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6.4 The New Modelling Framework

After having introduced the basic traits of ML S S processes, we can now proceed by introducing the
new spot price model. As already mentioned in the Introduction, electricity spot prices in the EEX market
are determined by daily auctions. Here buyers and sellers submit their orders for a certain amount of
electricity to be delivered on a particular hour during the next day. By matching the bid- and ask-prices, 24
market-clearing prices are computed by the auctioneer. These day-ahead prices are referred to as electricity
spot prices.

In the following, we denote by m ∈ IN the number of intra-daily prices, which is m = 24 in the EEX
market. Since the prices for the 24 hours of the next day are determined simultaneously based on the same
information available up to the time of the auction rather than consecutively in time, we cannot view the
hourly electricity prices as hourly observations from a one-dimensional stochastic process, but we view
them as a panel of daily observations from a vector valued stochastic process. This is in line with the
approach advocated in [28].

It is well known that electricity spot prices exhibit strong seasonal patterns, both at short- and at long-
time horizon. Hence, any spot price model has to account for seasonality in a suitable way. Also, we often
find that electricity prices exhibit a trend in addition to seasonal behaviour.

6.4.1 Model Specification

In order to account for trend and seasonality, we include a deterministic component in our model. Let
D : R→ R

m denote a deterministic seasonality and trend function. Typically, this function will be non-
negative. Suppose that Y is an ML S S process. We model the daily observations of the hourly electricity
prices in the EEX market by an arithmetic model. We denote by S =(S1, . . . ,Sm)

� the arithmetic spot price,
which is defined as

S(t) := D(t)+Y(t), t ≥ 0.

Remark 6.1. Recent research suggests that arithmetic models tend to mimic the price evolution of empirical
electricity data rather well; see, e.g. [7, 24] and [4].

Since parameter estimation in high-dimensional models can become a cumbersome task in practice, we
target a rather simple model specification which is given as follows. We model each hourly component as
the sum of a base component, denoted by Zi, and a spike component, denoted by ξi,

Y(t) := Z(t)+ ξ(t), i.e., Yi(t) = Zi(t)+ ξi(t), for i = 1,2, . . . ,m, t ≥ 0. (6.6)

6.4.1.1 The Spike Component

The spike component is modelled as a sum of two stochastic processes:

ξi(t) := ξ up
i (t)+ ξ down

i (t), t ≥ 0, (6.7)

where ξ up is a stochastic process that can only jump upwards and then decreases exponentially until it
jumps up again, whereas ξ down is a stochastic process jumping only downwards and then increases expo-
nentially until it jumps down again. More precisely, we assume that for t ≥ 0
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ξ up
i (t) :=

∫ t

−∞
e−η

up
i (t−s)dLup

i (s),

ξ down
i (t) :=

∫ t

−∞
e−η

down
i (t−s)(−1)dLdown

i (s),
(6.8)

which can be rewritten as

ξ up
i (t) = e−η

up
i tξ up

i (0)+
∫ t

0
e−η

up
i (t−s)dLup

i (s), ξ up
i (0) =

∫ 0

−∞
eη

up
i sdLup

i (s),

ξ down
i (t) = e−η

down
i tξ down

i (0)+
∫ t

0
e−η

down
i (t−s)(−1)dLdown

i (s), ξ down
i (0) =

∫ 0

−∞
eη

down
i s(−1)dLdown

i (s),

where ηup
i ,ηdown

i ≥ 0 and Lup = (Lup
1 , . . . ,Lup

m ) and Ldown = (Ldown
1 , . . . ,Ldown

m ) are independent pure jump
Lévy subordinators, which can be identical to 0 in the absence of spikes.

6.4.1.2 The Base Component

Motivated by the work of [24] and [4], we assume that each base component Zi is given by a univariate
CARMA process of the form

Zi(t) :=
∫ t

−∞
g̃i(t− s)dL̃i(s), (6.9)

where g̃i is a univariate CARMA kernel, i ∈ {1, . . . ,m}, and L̃ = (L̃1, . . . , L̃m) is a two-sided Lévy process.
Note that we do not allow for stochastic volatility for now. CARMA processes have been studied in detail
by [13, 14], and we briefly recall their specification. Suppose that pi > qi denote non-negative integers,
more precisely the corresponding AR and MA order of the CARMA(pi,qi) process. Then we write

PAR(pi)(z) = zpi + a(1)i zpi−1 + · · ·+ a(pi)
i ,

for coefficients a( j)
i ∈ R, for j ∈ {1, . . . , pi}. Similarly, the moving average polynomial of order qi is

given by

PMA(qi)(z) = b(0)i + b(1)i z+ · · ·+ b(pi−1)
i zpi−1,

where the coefficients satisfy b(qi)
i = 1 and b( j)

i = 0, for qi < j < pi. Suppose also that the two polynomials
do not have common factors. Then we can write formally

PAR(pi)(D)Zi(t) = PMA(qi)(D)DL̃i(t),

where D = d
dt . This representation stresses the relation to discrete-time ARMA processes. However, it

has to be understood as a formal representation since clearly our driving two-sided Lévy process is not
differentiable. We hence interpret the above equation in terms of a state space representation given by

Zi(t) = b�i Vi(t) ,

where Vi(t) is a pi-dimensional Ornstein–Uhlenbeck process of the form

dVi(t) = AiVi(t)dt + ζdL̃i(t), (6.10)
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where the pi× pi–matrix Ai and the pi-dimensional vectors bi and ζ are given by

Ai :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1

−a(pi)
i −a(pi−1)

i · · · · · · −a(1)i

⎞
⎟⎟⎟⎟⎟⎟⎠

, ζ :=

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠ , bi :=

⎛
⎜⎜⎜⎜⎝

b(0)i

b(1)i
...

b(pi−1)
i

⎞
⎟⎟⎟⎟⎠ .

Then we know, see, e.g. [16, Proposition 1], that if all the eigenvalues of Ai have negative real parts, then
Vi(t) defined as

Vi(t) =
∫ t

−∞
eAi(t−s)ζ dL̃i(s) ,

is the (strictly) stationary solution of (6.10). Moreover,

Zi(t) = b�i Vi(t) =
∫ t

−∞
b�i eAi(t−s)ζ dL̃i(s) , (6.11)

is a CARMA(pi, qi) process. Now, we can clearly see that a CARMA process can be derived from a L S S
process by choosing g̃i(t− s) = b�i eAi(t−s)ζ in (6.9).

Note that we assume that L :=(Lup,Ldown, L̃)� is a two-sided Lévy process, where the three components

L̃ = (L̃1, . . . , L̃m)
�, Lup = (Lup

1 , . . . ,Lup
m )�, Ldown = (−Ldown

1 , . . . ,−Ldown
m )�,

are mutually independent, but within each of the three m-dimensional two-sided Lévy processes we allow
for dependence.

Remark 6.2. 1. The model we have just specified in (6.6), (6.7), (6.8) and (6.11) is indeed an ML S S
model. We define m = 24, δ = 72,d = 72, and

L := (Lup
1 , . . . ,Lup

24,−Ldown
1 , . . . ,−Ldown

24 , L̃1, . . . , L̃24)
�,

gii(u) :=

⎧⎪⎨
⎪⎩

e−η
up
i u, if 1≤ i≤ 24,

e−η
down
i−24 u, if 25≤ i≤ 48,

b�i−48eAi−48uζ , if 49≤ i≤ 72,

gi j(u) := 0 for i 	= j,

σ(u) := I,

where I is the 72×72 identity matrix and L is assumed to be a 72-dimensional two-sided Lévy process.
Hence, we obtain a representation as in (6.2).

2. The rather simple model specification above does not allow for stochastic volatility or stochastic cross-
correlation. In the empirical study, we will investigate whether this is indeed a suitable assumption.

6.5 Model Estimation

Let us now describe how we can estimate the model defined in Sect. 6.4.1.
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6.5.1 Estimating the Spike Component

As defined in (6.6), we consider a model which splits the price into a spike component and a base compo-
nent. Further, the spike component is split into upward and downward spikes as described in (6.7). We apply
extreme value theory as in [30] to disentangle our detrended and deseasonalized data into a component con-
sisting of spikes and a remainder. In contrast to [30] we allow for both upward and downward spikes. The
detailed splitting algorithm is described in the following subsection.

6.5.1.1 Method for Splitting the Data into Upward Spikes, Downward Spikes
and a Base Component

In the following, we briefly summarize how we use the methodology proposed by [30] to split our data
in spike and base components for all i ∈ {1, . . . ,m}. Recall that Yi(nh) denotes the nth observation over
periods of length h of a price for hour i after trend and seasonalities have been removed. Here, n = 1, . . . ,N,
where N = 2372. Also, we have h = 1 corresponding to daily observations:

1. We consider an autoregressive transformation for known ηup
i , see [30, p. 969],

Y AR
i (h) := Yi(h),

Y AR
i (nh) := Yi(nh)− e−η

up
i hYi((n− 1)h), n = 2, . . . ,N.

2. We then consider the exceedances (Y AR
i (nh)− ui)I{Y AR

i (nh)>ui} and determine the threshold ui > 0 such
that a (shifted) generalized pareto distribution can be used to model the exceedances; see [30, p.966] for
details.

3. Let Ji := {n ∈ {1, . . . ,N}∣∣Yi(nh) > ui}. Then we estimate ηup
i by an estimator of Davis–McCormick

type; see [20]:

η̂up
i =

1
h

ln

(
max

n−1∈Ji

Yi((n− 1)h)
Yi(nh)

)
.

4. The spike jumps are estimated as in [30, p. 969] by

ε̂i(nh) =

(
Y AR

i (nh)− (1− e−η̂
up
i hSi)

)
I{Y AR

i (nh)>ui},

where Si depends on the estimate η̂up
i . In our data, we obtain estimates which suggest that the spike

impact either vanishes essentially within one day, in which case we use

Si =
1

|{n ∈ {1, . . . ,N}∣∣Y AR
i (nh)≤ ui}|

N

∑
n=1

Yi(nh)I{Y AR
i (nh)≤ui},

otherwise the spike impact in our data vanishes after essentially 2 days, and then we use

Si =
1

|{n ∈ {1, . . . ,N}∣∣Y AR
i (nh)≤ ui and Y AR

i ((n− 1)h)≤ ui}|

·
N

∑
n=2

Yi(nh)I{Y AR
i (nh)≤ui and Y AR

i ((n−1)h)≤ui}.
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5. Then the upward spikes are recovered by setting

ξ up
i (h) = ε̂i(h),

ξ up
i (nh) = e−η̂

up
i hξ up

i ((n− 1)h)+ ε̂i(nh), n ∈ {2, . . . ,N},

and the remainder is

Y REM
i (nh) := Yi(nh)− ξ up

i (nh), n ∈ {1, . . . ,N}.

6. We then set Yi(nh) := −Y REM
i (nh) for all n ∈ {1, . . . ,N} and go back to 1.) and repeat the analysis.

Then, the downward spikes are just (−1) times the new upward spikes computed in 5.) and the base
component Zi is equal to (−1) times the remainder computed in 5.).

6.5.2 Estimating the Base Component

After both the positive and negative spikes have been removed, we focus on the base component Z.

6.5.2.1 Estimating the Kernel Functions

First of all, we estimate the CARMA parameters of the base component for each hour i = 1, . . . ,m,
where m = 24. [16] have shown that the discretely sampled CARMA(pi,qi) process, which we denote

by (Z(n)
i )n∈IN = (Zi(nh))n∈IN for an h > 0 has a weak ARMA(pi, pi − 1) representation (where weak

refers to the fact that the white noise sequence in the representation is not necessarily i.i.d.). Let us in-

troduce the mean-corrected sampled process Z(n)�
i = Z(n)

i −E(Z(n)
i ) and the mean-corrected state vector

V(n)�
i = Vi(nh)−E(Vi(nh)). Then, according to [16, p. 253], we get the following state space representa-

tion for the sampled process:

Z(n)�
i = b�i V(n)�

i , V(n)�
i = eAihV(n−1)�

i +Ui(nh),

where (Ui(nh))n∈IN is a sequence of random vectors with mean zero and covariance matrix

Var(Ui(nh)) =
∫ h

0
eAiuζζ�eA�i udu.

In order to estimate the parameter vector β 0
i =
(

a(1)i , . . . ,a(pi)
i ,b(0)i , . . . ,b(qi−1)

i

)�
, we proceed as follows.

We work with a quasi-maximum likelihood approached based on the Gaussian density. The likelihood
function is computed by exploiting the state space representation given above and by using the Kalman
filter to compute the corresponding variances. We know that the quasi-maximum likelihood estimator is
(strongly) consistent and achieves asymptotic normality under suitable regularity conditions; see, e.g. [23].

6.5.2.2 Recovering the Lévy Increments

After we have estimated the parameters of the kernel functions, we proceed by recovering the increments
of the driving Lévy process as described in [16, Sect. 5] and [17]. Here we focus on the CARMA(2,1) case

only, which provided a good model fit in our empirical study. First of all, we define a process V (0)
i by
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V (0)
i (t) :=V (0)

i (0)e−b
(0)
i t +

∫ t

0
e−b

(0)
i (t−s)Zi(s)ds. (6.12)

Then, we define a process V (1)
i by

V (1)
i (t) :=−b(0)i V (0)

i (t)+Zi(t). (6.13)

Next, we introduce two CAR(1) processes Z̆(1)
i , Z̆(2)

i that can be represented in terms of the processes

V (0)
i ,V (1)

i . More precisely, we have

(
Z̆(1)

i (t)

Z̆(2)
i (t)

)
:=

1

λ (2)
i −λ (1)

i

⎛
⎝ λ (2)

i

(
b(0)i +λ (1)

i

)
−
(

b(0)i +λ (1)
i

)
−λ (1)

i

(
b(0)i +λ (2)

i

)
b(0)i +λ (2)

i

⎞
⎠(V (0)

i (t)

V (1)
i (t)

)
, (6.14)

where {λ (1)
i ,λ (2)

i } are the roots of the AR polynomial, i.e., PAR(2)(z) = z2 + a(1)i z+ a(2)i = (z−λ (1)
i )(z−

λ (2)
i ), and in fact also the eigenvalues of Ai. Then the driving Lévy process can be recovered using one of

the following two equations

L̃i(t) =
1

α( j)
i

[
Z̆( j)

i (t)− Z̆( j)
i (0)−λ ( j)

i

∫ t

0
Z̆( j)

i (s)ds

]
, (6.15)

for j = 1,2, where α(1)
i =

b
(0)
i +λ (1)

i

λ (1)
i −λ (2)

i

, and α(2)
i =

b
(0)
i +λ (2)

i

λ (2)
i −λ (1)

i

.

Let us now describe how the increments of the Lévy process can be recovered using the discrete-time

observations Zi(nh). In order to compute the values V (0)
i we need to find an initial value. Here we work

with the mean of the stationary version of V (0)
i , i.e.,

V (0)
i (0)≈ b(0)i E(Zi)≈ b̂(0)i

1
N

N

∑
n=1

Zi(nh).

We see that (6.12) contains an integral which we approximate by using the trapezoidal rule. For n =
1, . . . ,N, we have

V (0)
i (nh) =V (0)

i ((n− 1)h)e−b
(0)
i h + I(0)i (nh),

where

I(0)i (nh) :=
∫ nh

(n−1)h
e−b

(0)
i (nh−s)Zi(s)ds≈ h

2

(
Zi(nh)+ e−b

(0)
i hZi((n− 1)h)

)
.

Then we can directly compute

V (1)
i (nh) =−b(0)i V (0)

i (nh)+Zi(nh).

The corresponding formulae for Z̆(1)
i (nh) and Z̆(2)

i (nh) are obtained by replacing t by nh in (6.14). The
discrete Lévy increments are then obtained for n = 1, . . . ,N, from

L̃i(nh)− L̃i((n− 1)h) =
1

α( j)
i

[
Z̆( j)

i (nh)− Z̆( j)
i ((n− 1)h)−λ ( j)

i I(1)i (nh)
]
, (6.16)

where
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I(1)i (nh) :=
∫ nh

(n−1)h
Z̆( j)

i (s)ds≈ h
2

(
Z̆( j)

i (nh)+ Z̆( j)
i ((n− 1)h)

)
,

for j = 1,2. Note that we can recover the Lévy increments either for j = 1 or for j = 2. In the empirical
study, we will chose the j corresponding to the smaller |λ j| to minimize the impact of the approximation
of the integral in (6.16), which was suggested by [16].

6.6 Empirical Study

6.6.1 The Data

For our empirical study we consider daily data from the EEX between 01/01/2005 and 30/06/2011
(2,372 days). Note that we observe a 24-dimensional vector of the hourly prices at all these days.
We refer to the prices of electricity delivered during the period of [i−1, i] as prices for hour i, i∈{1, . . . ,24}.
Our aim is to analyse the whole data set that does include weekends. As we have discussed earlier, there
were changes in the market regulations within the 2005–2011 period. The most remarkable change from
a modelling point of view was probably the fact that negative prices became possible. One could argue,
that we should therefore adapt our estimation procedure to account for this. In fact, our model can already
cope with this change rather well, since we incorporate a spike component only for the negative spikes and
this component is zero before those were allowed. The estimation results for the base component, however,
might be slightly affected by the fact that before negative prices were allowed, prices tended to get close to
zero instead of becoming negative and this behaviour will be captured by the base component in our esti-
mation procedure. Nevertheless, we find that we can fit the data well with our model and therefore decided
not to consider a shorter estimation window or splitting up the estimation into different time periods. Such
considerations are relegated to future research.

As mentioned before, electricity data do contain seasonalities. Those are particularly obvious if obser-
vations occurred at weekends are not removed from the data set. We do observe strong weekly patterns in
the autocorrelation function of the data. It has frequently been pointed out in the literature, that removing
observations at weekends helps when it comes to deseasonalizing the data; see, e.g. [30]. Since in more
recent data, however, we do observe interesting behaviour, e.g. negative spikes, at weekends as well, we
decided to study the full data set including weekends.

We first look at the original data and plot the daily prices for each hour in Fig. 6.1. We observe a very
different behaviour for the different hours. Particularly, we observe large upward spikes only for hours 8–
21, and negative spikes occur mainly during nighttime. Note that before negative spikes were allowed, we
observe many values close to 0 in the nighttime hours, which after the change of the bidding rules exhibit
negative prices. Furthermore, it is very obvious that there is a similar trend in the prices for all 24 h.

Note that in electricity markets we typically distinguish between baseload and peakload hours. In the
EEX market, we refer to the time period between 08:00am and 08:00pm (from Monday to Friday) as
peakload hours. Baseload covers all 24 h each day from Monday to Sunday. In particular, the daily baseload
price is the daily average over all 24 h prices.

6.6.2 Dealing with Trend and Seasonality

Since the data show a very similar trend for all 24 hours we consider the mean over all 24 hours i.e., the
baseload average, and derive the overall trend from this mean time series using loess regression. The result-
ing trend is shown in Fig. 6.2, and we denote it by f (·). This trend is then subtracted from all 24 time series.
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The trend shows a clear and strong price increase three times over the observation window with a price de-
crease in between. In 2007/2008 there was a particularly strong increase in electricity prices.

Note that loess stands for “locally weighted scatterplot smoothing”and is based on the idea of robust
locally weighted polynomial regression, which has been introduced by [19]. For the purpose of this paper,
the loess method is a powerful non-parametric technique for removing the trend from the data. However,
if one would like to predict spot prices, then this approach is not suitable, and one should model the trend
explicitly. For example, one could work with a higher order polynomial which one could fit by (robust)
regression methods.

Next, we account for weekly seasonal effects. Seasonal effects are widely present in electricity prices.
As many early empirical studies have shown, particularly weekly and sometimes yearly effects need to be
accounted for; see, e.g. [28] and [30]. We find that the yearly effects in our data are negligible and therefore
only account for weekly seasonal effects. In order to do this, we proceed similarly to the approach presented
by [28]. We compute trimmed means (removing 5% of data, i.e., 2.5% on each side) of the detrended data,
i.e., we consider the deterministic function

D(t)i− f (t) =
7

∑
weekday=1

bweekday
i Iweekday(t), (6.17)

where i ∈ {1, . . . ,24} corresponds to the observed hourly prices and weekday = 1 corresponds to Monday,
weekday = 2 corresponds to Tuesday, etc. The constant bweekday

i is the trimmed mean corresponding to a
particular day of the week and can be found in Table 6.1. In general, we find that prices at weekends and on
Mondays tend to be lower than prices in the middle of the week. Note that we treat the 24 hours completely
separately, by fitting a seasonal function for each hour.

6.6.3 Results for the Spike Component

After having removed the trend and seasonalities from the data (using robust methods), we filter out the
spikes using the method described in Sect. 6.5.1.1. After having examined the mean excess plot for all
hours, it turned out that the thresholds u = ±70 for the positive and negative spikes, respectively, could
be chosen for all hours. The estimation results are given in Table 6.2. We find that positive spikes occur
only between hour 8 and hour 21, but not at night, which is not surprising. The spike intensities for hour
8 until hour 20 vary between 2.406 and 6.131, which means that between 91% and almost 100% of the
spike influence vanishes within one day. For the smaller intensity for hour 21 of ηup

21 = 1.245, we find

that 1− e−η
up
21 ≈ 0.71 and 1− e−η

up
21∗2 ≈ 0.92. Hence, the spike influence is essentially gone after 2 days.

We observe that negative spikes occur only in hours 1–11 and in hour 24. Again, we see from the spike
intensities that the influence of the spike has essentially vanished after one day with the exception of hour
24, where one has to wait 2 days. We need to be careful, however, with these interpretations for the negative
spikes. As we can clearly see from the number of spikes, the estimates cannot be precise, since we never
have more than five observations. We therefore only use these results to remove the spikes from our data,
but do not attempt to fit a distribution for the jump size. For the positive jumps this would be possible and
could be done along the lines of [30, p. 966].

Figure 6.3 visualizes the split into downward jumps (red), upward jumps (blue) and a base component
(black).
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Fig. 6.1 Plot of daily prices for each hour. Note that positive spikes exceeding 300 and negative spikes exceeding −100 are
cut off at 300 and −100, respectively, in the pictures (but not in the data analysis). This allows us to compare the regular
behaviour of the prices for each hour on the same scale
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Time

2005 2006 2007 2008 2009 2010 2011

0
50

10
0

15
0

20
0

25
0

30
0 Baseload

Trend

Fig. 6.2 Baseload average price and its trend f

Table 6.1 Trimmed means for the data after having removed the trend

Hour Mon Tue Wed Thu Fri Sat Sun

1 −13.881 −9.135 −8.495 −7.194 −8.119 −5.567 −12.44
2 −17.95 −12.804 −11.912 −11.175 −12.032 −10.079 −18.147
3 −20.872 −15.548 −15.136 −14.212 −15 −13.012 −21.677
4 −23.412 −18.165 −17.606 −16.979 −17.689 −15.715 −24.611
5 −21.61 −17.359 −16.752 −15.986 −16.817 −17.409 −25.749
6 −14.757 −10.587 −10.395 −10.031 −10.731 −16.93 −26.193
7 −3.92 −1.554 −1.869 −1.617 −2.262 −18.33 −31.463
8 12.131 14.877 13.287 13.423 12.286 −11.393 −27.006
9 15.472 18.461 17.129 16.474 15.522 −5.189 −18.894
10 17.202 20.279 19.796 18.087 17.626 1.373 −12.531
11 19.294 22.109 21.953 19.954 19.428 4.176 −7.998
12 25.392 26.746 26.407 24.08 22.065 5.82 −3.325
13 19.633 19.95 20.461 18.432 16.614 3.753 −4.799
14 18.355 18.552 19.24 16.619 11.743 −1.224 −10.263
15 14.873 15.929 16.732 13.97 7.73 −4.762 −14.092
16 11.743 12.603 13.102 11.117 4.344 −6.636 −16.557
17 10.276 11.266 11.514 9.643 4.032 −6.093 −15.969
18 14.361 15.075 14.591 13.089 8.186 −0.582 −8.657
19 17.836 17.724 17.306 17.044 10.586 4.266 −1.527
20 14.66 14.595 14.543 13.668 8.449 3.485 0.817
21 10.245 11.024 10.847 10.438 5.743 −1.369 −1.445
22 3.596 4.104 4.514 3.206 0.437 −4.96 −3.417
23 0.75 1.397 1.502 1.027 0.212 −3.281 −1.12
24 −6.65 −6.108 −5.776 −6.085 −6.203 −9.89 −8.829

The trimmed mean in this application excludes 5% of data, i.e., 2.5% on each side

6.6.4 Results for the Base Component

6.6.4.1 Time-Series Properties

We focus now on the base component Z. This component is of particular interest since it reflects the
regular price behaviour. As described in Sect. 6.5.2.1, we estimate the CARMA parameters for each hour
first. Here we present the results for the CARMA(2,1) process, which resulted in a good model fit. The
parameter estimates are given in Table 6.3. The parameter estimates for the different hours of the day vary
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Table 6.2 Estimates for the spike component ξ

Estimates for ξ up Estimates for ξ down

Hour i η̂up
i

# Upward
jumps Intensity Hour i ̂ηdown

i

# Downward
jumps Intensity

1 – 0 0 1 3.591 1 1/2372
2 – 0 0 2 5.486 3 0.001
3 – 0 0 3 4.942 4 0.002
4 – 0 0 4 2.579 4 0.002
5 – 0 0 5 2.62 4 0.002
6 – 0 0 6 2.364 1 1/2372
7 – 0 0 7 2.787 5 0.002
8 2.641 12 0.005 8 4.224 2 0.001
9 3.236 27 0.011 9 5.537 1 1/2372
10 5.748 38 0.016 10 3.752 2 0.001
11 2.857 45 0.019 11 8.643 1 1/2372
12 3.522 69 0.029 12 – 0 0
13 2.257 29 0.012 13 – 0 0
14 2.546 21 0.009 14 – 0 0
15 6.131 24 0.01 15 – 0 0
16 2.419 15 0.006 16 – 0 0
17 3.235 17 0.007 17 – 0 0
18 4.004 45 0.019 18 – 0 0
19 5.458 51 0.022 19 – 0 0
20 2.406 24 0.01 20 – 0 0
21 1.245 2 0.001 21 – 0 0
22 – 0 0 22 – 0 0
23 – 0 0 23 – 0 0
24 – 0 0 24 1.355 1 1/2372

considerably. As a diagnostic tool we provide Fig. 6.4. It shows the empirical and the fitted autocorrelation
functions, which are generally matched acceptably.

Next, we recover the Lévy increments using the method described above. We carry out diagnostic checks
to investigate whether the driving process of the CARMA process is indeed a Lévy process. Note that we
restrict ourselves to univariate analyses, where we investigate whether the Lévy increments are indeed
stationary and independent.

In order to check the stationarity, we analyse the time-series plots of the recovered increments for each
hour; see Fig. 6.5 for four representative hours. In addition, we run the augmented Dicky–Fuller test and
the Phillips–Perron test, which test the null hypothesis of the existence of a unit root against the alternative
of stationarity. Both tests reject the null hypothesis of a unit root for all hours with significance level clearly
below one percent.

In addition, we would like to find out whether the recovered increments are independent. We first check
whether the increments and squared increments are uncorrelated. Note that the absence of correlation is a
necessary condition for independence. While there is hardly any correlation left between the increments,
there is noticeable correlation between the squared returns for a period of around 60 days for all peak-time
hours and also for some hours just before and just after the peak-time hours; see Fig. 6.5 for some selected
hours. In particular, during the evening (hours 17–23), the autocorrelations between the squared returns
seem to reach an intra-daily peak. These findings do not support the hypothesis that the increments are
indeed independent.
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Fig. 6.3 Plot of detrended and deseasonalized data, where downward spikes are red, upward spikes are blue and the base
component is black

How do we interpret these results? One interpretation would be to attribute these correlations to possibly
correlated estimation errors. However, we clearly see that in the nighttime hours, there is almost no auto-
correlation in the squared returns, whereas this is clearly the case during daytime. Another interpretation,
which we believe is more realistic, is that these findings suggest the existence of a stochastic volatility
component. We will come back to this issue in Sect. 6.6.4.4.
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Table 6.3 Estimated parameters of the CARMA(2,1)-kernel function for each hour

Hour i â(1)i â(2)i b̂(0)i Hour i â(1)i â(2)i b̂(0)i

1 1.8091 0.1204 0.36 13 1.4195 0.0384 0.2243
2 1.3845 0.098 0.3119 14 1.2423 0.0285 0.1765
3 1.8084 0.1354 0.3832 15 1.1056 0.0262 0.1644
4 1.802 0.1299 0.4037 16 1.0439 0.0225 0.1446
5 1.6276 0.1103 0.3585 17 1.1165 0.0195 0.1451
6 1.5023 0.0914 0.2869 18 1.3086 0.0204 0.1853
7 1.5855 0.0757 0.2399 19 1.5308 0.0204 0.1953
8 1.3818 0.049 0.2101 20 1.4061 0.0267 0.2534
9 1.3583 0.0626 0.2495 21 1.0804 0.0213 0.1951
10 1.5998 0.0609 0.2604 22 1.1865 0.0334 0.2185
11 1.9442 0.0699 0.3013 23 1.7439 0.0713 0.3488
12 1.5354 0.0442 0.2201 24 1.8485 0.0961 0.3639

6.6.4.2 Cross-Correlation Structure

In addition to time-series properties of the recovered increments of the driving process of the CARMA pro-
cess, we study their cross-correlation structure. This can best be done graphically; see Fig. 6.6. Here, each
square corresponds to an element in the sample cross-correlation matrix, where increasing shading inten-
sity reflects stronger correlation. Note that all observed correlations are non-negative; hence, black squares
correspond to correlation of 1 whereas white squares correspond to correlation of 0. We find that the cross-
correlation exhibits an overall block structure consisting of three blocks: early–morning hours, extended
peak-time hours and late–night hours. Also the various yearly cross-correlation plots do not differ much
from the overall cross-correlation and look rather stable over time. Note that the block dependence structure
is further supported by alternative dependency measures: the rank correlation measures Kendall’s tau and
Spearman’s rho, which are measures of dependence which are not affected by the marginal distributions of
the random variables under investigation; see [35, Chap. 5] for more details. The rank correlation matrices
are depicted in Fig. 6.7. This finding raises the question whether the dimensionality of our model could
be reduced by using a suitable factor structure. We have addressed this point by carrying out a principal
component analysis. Figure 6.8 shows the individual variances explained by each component (a so-called
screeplot) and also the cumulative explained variance depending on the number of components. We find
that one would need 14 components to ensure that the cumulative proportion of the variance is greater than
95%. This is a strikingly high number which suggests that even within one day there is a lot of idiosyncratic
risk. However, we do not pursue the idea of dimension reduction further in this paper, but postpone it to
future research and rather stick to the full model in the following.

6.6.4.3 Distributional Properties of the Recovered Lévy Increments

Next, we focus on the distribution of the recovered Lévy increments. Recent work by [4] suggests that
the univariate generalized hyperbolic (GH) distribution is highly suitable for describing the marginal
distribution of each hour. Hence a natural choice is to work with the class of multivariate generalized
hyperbolic distributions. Recall that a random vector X has m-dimensional GH distribution, i.e., X ∼
GHm(λ ,χ ,ψ ,μ ,Σ ,γ), if it is a mean-variance mixture of the form

X d
= μ+Ξγ+

√
ΞCΨ ,
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Fig. 6.4 Plot of the empirical and the fitted CARMA(2,1) autocorrelation functions for the base component Z for each hour

whereΨ ∼Nk(0,Ik) for k∈ IN, C∈R
m×k, μ ,γ ∈R

m, and
√
Ξ is a one-dimensional random variable, which

is independent ofΨ and has generalized inverse Gaussian distribution, denoted by GIG(λ ,χ ,ψ). Note that
we use the notation according to [35] and [12]. Here μ is the location parameter, the dispersion matrix is
given by Σ = CC�, and γ denotes the skewness parameter (meaning that if γ = 0, then the distribution is
symmetric around μ).

The class of GH distribution contains many popular distributions as special cases such as the Student
t-distribution, the normal inverse Gaussian distribution (NIG), the hyperbolic distribution (HYP), and the
variance gamma (VG) distribution. Also, the Gaussian distribution can be obtained as a limiting case.
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Fig. 6.5 Plot of the recovered increments of the Lévy process driving the CARMA(2,1) process. For four representative hours
(hours 6, 12, 18, 24), the plot depicts the increments, their autocorrelation function and the autocorrelation function of the
squared increments

We estimate the multivariate GH model and the various subclasses of the GH distribution using the
R package ghyp. Here, the parameters are estimated using a modified expectation-maximization (EM)
scheme, more precisely a multi-cycle, expectation, conditional estimation (MCECM) algorithm; see [12]
for more details.

We compare 11 different models within the GH class based on the Akaike information criterion (AIC);
see Table 6.4 for detailed results. According to AIC, the multivariate asymmetric Student t (MASt)-
distribution is the best choice. This result is further supported by likelihood ratio tests carried out for each
of the 10 subclasses compared to the GH model: The MASt case is the only case where we do not reject
the null hypothesis of the likelihood ratio test. We provide the parameter estimates of the MASt model
in Tables 6.5 and 6.6 using the (λ ,α,μ ,Σ ,γ) parametrization, which ensures parameter identifiability;
see [12].
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Fig. 6.6 Cross-correlation plots of recovered multivariate Lévy increments. Here increasing shading intensity reflects stronger
correlation

Next, let us study the goodness of fit of the MASt distribution. Note that goodness-of-fit investigations
are a delicate issue in a high-dimensional multivariate framework. We have already seen that our testing
procedure has favoured the asymmetric Student t-distribution out of 11 classes of distributions within the
GH framework. As a partial check of goodness of fit we investigate whether we obtain an acceptable fit
for the marginal distributions, which are implied by the multivariate model. Hence we study the quantile–
quantile plots for the individual components of the fitted multivariate asymmetric Student t-distribution;
see Fig. 6.9. Recall that the GH class is closed under linear transformations. In particular, the random
vector X∼GHm(λ ,χ ,ψ ,μ ,Σ ,γ) has margins with Xi ∼GH1(λ ,χ ,ψ ,μ i,Σ ii,γ i). Hence, we know that the
marginal components should follow a univariate asymmetric Student t-distribution, and we observe that
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Table 6.4 Model selection within the class of GH distributions using the Akaike information criterion

Model Symmetric λ̂ α̂ AIC Log-Likelihood Converged # Iterations

Student-t false −1.381 0 378150.712 −188726.356 true 291
GH false −1.334 0.121 378151.520 −188725.760 true 180
Student-t true −1.380 0 378173.594 −188761.797 true 292
GH true −1.338 0.112 378174.655 −188761.327 true 187
NIG false −0.5 0.465 378352.788 −188827.394 true 90
NIG true −0.5 0.459 378383.696 −188866.848 true 92
VG true 0.913 0 378853.575 −189101.787 true 43
VG false 0.913 0 378899.689 −189100.844 true 43
HYP false 12.5 0.000 390089.630 −194695.815 true 11
HYP true 12.5 0.000 390197.786 −194773.893 true 10
Gaussian true NA Inf 408684.766 −204018.383 true 0
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Table 6.5 Parameter estimates for the multivari-
ate asymmetric Student t-distribution using the
(λ ,α,μ,Σ ,γ) parametrization

Hour μ̂ γ̂ α λ̂

1 0.2681 −0.2892 0 −1.382
2 0.9007 −0.9346
3 1.4718 −1.5216
4 1.5765 −1.6081
5 1.4833 −1.5019
6 1.0563 −1.0974
7 0.7875 −0.815
8 −0.6632 0.5789
9 −1.2337 1.0778
10 −1.8726 1.6435
11 −2.4558 2.1687
12 −2.4636 2.0351
13 −1.8308 1.7114
14 −1.4991 1.4126
15 −0.9714 0.8785
16 −0.8231 0.7712
17 −0.8368 0.78
18 −1.2209 1.0767
19 −1.5272 1.3468
20 −1.1946 1.1266
21 −0.9223 0.9158
22 −0.5583 0.5724
23 −0.7868 0.8088
24 0.0188 −0.0143

Part I: estimates of λ ,μ,γ. Recall that α = 0 for
the MASt distribution; hence this parameter does
not need to be estimated

the goodness of fit for the univariate marginals is unfortunately not really convincing. Note that the base
component does not exhibit extreme spikes, and we do not expect to find very heavy tails after the spikes
have been removed. Hence, a distribution with lighter tails might be more appropriate. Hence, we have
examined the goodness of fit for the univariate marginals from all 11 models (including the ones with
lighter tails than the Student t-distribution). We got a rather good marginal fit for the asymmetric NIG
distribution (which was 5th best according to AIC). The corresponding quantile–quantile plots are depicted
in Fig. 6.10, and the corresponding parameter estimates are given in Tables 6.7 and 6.8.

As already mentioned, model selection and goodness-of-fit investigations in a 24-dimensional modelling
framework are rather involved. This is due to the fact that ideally we would like to get an optimal fit both
in terms of the marginal univariate distributions and in terms of the dependence structure implied by the
corresponding model. The Akaike information criterion suggests that the asymmetric Student t-distribution
is the best choice within the GH framework. However, in terms of the marginal fit, we got better results for
the asymmetric NIG distribution.

6.6.4.4 Comments on the Results for the Base Component

We have estimated a model for the base component Z, which is given by a vector of univariate CARMA
(2,1)–processes. We have seen that such a model describes the empirical autocorrelation structure well.
The corresponding univariate driving Lévy processes were assumed to be the components of a multivariate
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Table 6.7 Parameter estimates for the multivariate asymmetric NIG
distribution using the (λ ,α,μ,Σ ,γ) parametrization

Hour μ̂ γ̂ α̂ λ

1 0.2879 −0.3159 0.465 −0.5
2 0.9527 −1.0093
3 1.5542 −1.6408
4 1.6742 −1.7447
5 1.5727 −1.6276
6 1.119 −1.1866
7 0.8343 −0.8814
8 −0.6542 0.5842
9 −1.2444 1.1149
10 −1.904 1.7151
11 −2.4957 2.2617
12 −2.5195 2.1408
13 −1.8434 1.766
14 −1.4933 1.4415
15 −0.9598 0.8886
16 −0.8074 0.7745
17 −0.8197 0.7821
18 −1.2252 1.1075
19 −1.5494 1.4019
20 −1.2001 1.1598
21 −0.9219 0.9378
22 −0.5538 0.582
23 −0.7979 0.8397

Part I: estimates of α,μ,γ. Recall that λ =−0.5 for the NIG distribu-
tion; hence this parameter does not need to be estimated

Lévy process. For the multivariate distribution of the driving Lévy process we got highly encouraging
results from using the class of multivariate generalized hyperbolic distributions. In particular, the implied
univariate GH distribution (and here in particular the NIG distribution) seems to describe the marginal
distribution for each hour very accurately. Note that the good marginal fit alone does not imply that the
multivariate GH also produces the “correct” dependence structure between the various hours. In future
research, we plan to address this point in more detail and study alternative methods for constructing a
multivariate distribution with marginal GH distributions. For example, one could employ copula methods
to model the dependence structure separately from the marginal distributions.

An alternative model class in the context of GH distributions has recently been introduced by [36], see
also [22], who suggest to use multivariate affine generalized hyperbolic (MAGH) distributions, which are
obtained by an affine–linear transformation of a vector of independent univariate GH distributed random
variables. Such a model is analytically tractable and implies linear dependence between the different com-
ponents. The advantages and disadvantages of the MAGH framework compared to the multivariate GH
framework are discussed in much detail in [36] and [22]. We only wish to stress here that such a framework
does in general not imply that the marginal distributions implied by the MAGH are within the GH class;
see [21] and also [18, Chap. 1.4] for more distributional properties of the GH class. We implemented the
MAGH model as well, but since we obtained better results for the multivariate GH model, we do not report
our findings for the MAGH model here.

Finally, let us come back to an important issue we already touched upon in Sect. 6.6.4.1. So far, we
have worked with a Lévy-driven CARMA process for the base component. However, the only finding
which cannot be explained by such a model specification is the fact that the recovered squared “Lévy”
increments seemed to exhibit a significant autocorrelation for the extended peak-time hours (in particular
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Fig. 6.9 Quantile–quantile plots for each component of the fitted multivariate asymmetric Student t-distribution

for the evening hours). This suggests that rather than having univariate components driven by a pure jump
Lévy process with GH marginal distribution, we could have in fact a volatility modulated Brownian motion
(or a volatility modulated Lévy process) as the driving process. That is, the recovered “Lévy” increments
are in fact increments of a stochastic integral, i.e.,

∫ nh
(n−1)hσi(s)dBi(s), where B = (B1, . . . ,Bm) is a multi-

variate (correlated) Brownian motion and σi are mutually independent stochastic volatility processes for
i = 1, . . . ,m with for instance GIG marginal distribution. Recall in particular that the asymmetric Student
t-distribution is in fact a mean-variance mixture with the inverse Gamma distribution, and the NIG distribu-
tion is a mean-variance mixture with the inverse Gaussian distribution. Hence it will be interesting to study
stochastic volatility processes with such a marginal distribution. We plan to study this model specification
in more detail in future research.
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Fig. 6.10 Quantile–quantile plots for each component of the fitted multivariate asymmetric NIG distribution

6.7 Conclusion

This paper contributes to the literature on modelling electricity prices both theoretically and empirically.
We propose to model electricity day-ahead prices by a panel framework in continuous time. Such a panel
framework reflects the fact that day-ahead prices are determined in daily auctions, and prices for hours later
in the day are in fact based on the same information set as prices earlier during the day. Hence intra-daily
prices should be modelled as a panel and inter-daily prices as a time series. We suggest to use multivariate
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Lévy semistationary (ML S S ) processes to model such a panel in continuous time. Our empirical study
reveals that ML S S processes are able to cope with spikes, stochastic volatility, (semi-)heavy tails, and
complex cross-dependencies rather well.

Our empirical study gives new insights into the intra- and inter-day structure of the EEX market. It
contains a systematic study of both positive and negative spikes in the EEX market. While positive spikes
were rather common in the peak-time hours until around 2009, the last couple of years did not feature high
positive spikes. We rather observe that negative spikes, which typically take place in the early morning
hours, are the new phenomenon that needs to be addressed in a modelling framework. Also we find that
day-ahead prices for extended peak-time hours (not necessarily for the nighttime hours) should contain a
stochastic volatility component to reflect the volatility clustering found in the data. We plan to study this
aspect in more detail in future research.
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Chapter 7
Modelling Power Forward Prices for Positive and Negative
Power Spot Prices with Upward and Downward Spikes
in the Framework of the Non-Markovian Approach

Valery A. Kholodnyi

Abstract As power markets are becoming deregulated worldwide, the modelling of power forward prices
is becoming a key problem in energy trading, risk management, and physical assets valuation.

In this paper we present and further develop the non-Markovian approach to modelling power spot
prices with spikes proposed earlier by the author. In contrast to other approaches, we model power spot
prices with spikes as a non-Markovian stochastic process that allows for a unified modelling of positive
and negative power spot prices as well as upward and downward spikes directly as self-reversing jumps.

We show how this approach can be used for a unified modelling of positive and negative power forward
prices in the case of positive and negative power spot prices with upward and downward spikes.

7.1 Introduction

As power markets are becoming deregulated worldwide, the modelling of power forward prices is
becoming a key problem in energy trading, risk management, and physical assets valuation (see, for
example, [25]).

In this paper we present and further develop the non-Markovian approach to modelling power spot prices
with spikes proposed earlier by the author in [8–11, 14–23].

The main motivation for our approach is that, in our opinion, different mechanisms should be responsible
for the reversion of power spot prices to their long-term mean between spikes and for the reversion of power
spot prices to their long-term mean during spikes, that is, for the decay of spikes.

For example, in view of the lack of storability of power, the power spot prices in the United States
Midwest in June 1998 rose to $7,500/MWh compared with typical prices of around $30/MWh as a result
of a relatively high demand versus supply due to unseasonably hot weather, planned and unplanned outages,
and transmission constrains [3].

Moreover, in view of the lack of free disposal of power, the power spot prices in Germany in October
2009 fell to −500.02e/MWh compared with typical prices of around 50 e/MWh as a result of a relatively
high supply versus demand due to the increased share of the installed intermittent renewable generation
capacity [24, 27].

In contrast to other approaches [1, 3, 5, 6], we model power spot prices with spikes as a non-Markovian
stochastic process that allows for a unified modelling of positive and negative spot prices as well as up-
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ward and downward spikes directly as self-reversing jumps. In this way, different mechanisms are, in fact,
responsible for the reversion of power spot prices to their long-term mean between spikes and during spikes.

Moreover, we suggest [8, 9, 14] that employing a Markov process to model power spot prices with
spikes is ultimately making the same mechanism responsible for the reversion of power spot prices to their
long-term mean both between spikes and during spikes. Indeed, although a Markov process can produce
a sharp upward/downward price movement as a suitable jump, it cannot remember the magnitude of this
sharp upward/downward price movement to separately produce a shortly followed sharp downward/upward
price movement of approximately the same magnitude so that an upward/downward spike can form.

We show how this approach can be used for a unified modelling of positive and negative power forward
prices in the case of positive and negative power spot prices with upward and downward spikes. We also
show how in this approach power forward prices for long maturity power forward contracts do not exhibit
spikes while the power spot prices do.

7.2 The Non-Markovian Process for Power Spot Prices with Spikes

In this section we will define the non-Markovian process that allows for a unified modelling of positive and
negative power spot prices as well as upward and downward spikes directly as self-reversing jumps.

7.2.1 The Two-State Markov Process

We will construct the spike process with the help of a two-state Markov process in continuous time. This
two-state Markov process will determine whether power spot prices are in the spike state, that is, during a
spike or in the inter-spike state, that is, between spikes.

Denote this two-state Markov process by Mt , t ≥ 0. Let

P(T, t) =

(
Pss(T, t) Psr(T, t)
Prs(T, t) Prr(T, t)

)
, t ≤ T,

be its 2× 2 transition matrix, where Pss(T, t) and Prs(T, t) are the transition probabilities from the spike
state at time t to the spike and inter-spike states at time T and where Psr(T, t) and Prr(T, t) are the transition
probabilities from the inter-spike state at time t to the spike and inter-spike states at time T .

We comment that the subscripts s and r stand for the spike state and inter-spike, or regular, state. We also
comment that the Kolmogorov-Chapman equation for the Markov process Mt can be represented as follows:

P(T, t) = P(T,τ)P(τ, t), t ≤ τ ≤ T, (7.1)

where P(T, t) is the 2× 2 identity matrix whenever t = T .
The Markov process Mt can also be characterized in terms of its generators, that is, 2× 2 matrices

defined as the rate of change of the transition matrix P(T, t) at times t ≥ 0. More precisely, a one-parameter
family {L(t) : t ≥ 0} of 2× 2 real matrices defined by

L(t) =
d

dT
P(T, t)|T=t (7.2)

is said to generate the Markov process Mt and the matrix

L(t) =

(
Lss(t) Lsr(t)
Lrs(t) Lrr(t)

)
, t ≥ 0,
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is called a generator. It can be shown that

Lss(t)+Lrs(t) = 0 and Lss(t)≤ 0, Lrs(t)≥ 0,

Lrr(t)+Lsr(t) = 0 and Lrr(t)≤ 0, Lsr(t)≥ 0,

for each t ≥ 0. Therefore, each generator L(t) can be characterized by two non-negative real numbers:

a(t) =−Lss(t) = Lrs(t) and b(t) =−Lrr(t) = Lsr(t). (7.3)

In terms of the generators of the Markov process Mt , each transition matrix P(T, t) is given by the following
exponential of a matrix:

P(T, t) = e
∫ T

t L(τ)dτ . (7.4)

We comment that in the case when the generators L(t) do not commute for different times t ≥ 0, the
exponential of the matrix in (7.4) has to be replaced by the product integral. (For the definition of a product
integral see, for example, [2].)

In the special case of a time-homogeneous Markov process Mt , the transition matrix P(T, t) is, in fact, a
function of the difference T − t:

P(T − t) =

(
Pss(T − t) Psr(T − t)
Prs(T − t) Prr(T − t)

)
, t ≤ T,

and, due to relationship (7.2), the generators L(t) are, in fact, time-independent:

L =

(
Lss Lsr

Lrs Lrr

)
, t ≥ 0,

so that relationship (7.4) takes the following form:

P(T − t) = e(T−t)L, t ≤ T.

Therefore, in the case of a time-homogeneous Markov process Mt with the generator L, the transition matrix
P(T − t) is given by

P(T − t) =

(
b+ae−(T−t)(a+b)

a+b
b−be−(T−t)(a+b)

a+b
a−ae−(T−t)(a+b)

a+b
a+be−(T−t)(a+b)

a+b

)
, t ≤ T, (7.5)

where, according to relationship (7.3), a ≥ 0 and b ≥ 0 are given by a = −Lss = Lrs and b = −Lrr = Lsr

and where the case of a+ b = 0 is understood as the corresponding limit.
In another special case when the Markov process Mt is time-homogeneous on time subintervals, its

generators L(t) are time-independent on these time subintervals and hence the transition matrix P(T, t)
can also be found analytically with the help of relationships (7.1) and (7.5). In practice, a general two-
state Markov process Mt can be approximated with any desired degree of accuracy by a two-state Markov
process that is time-homogeneous on time subintervals.

Later in the paper we will need the following decompositions of the transition probabilities of the
Markov process Mt (see, for example, [9, 11]):

Pss(T, t) = e
∫ T

t Lss(τ)dτ +

∫ T

t
Prs(τ, t)Lsr(τ)e

∫ T
τ Lss(τ ′)dτ ′dτ,

Psr(T, t) =
∫ T

t
Prr(τ, t)Lsr(τ)e

∫ T
τ Lss(τ ′)dτ ′dτ,

(7.6)
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where the first relationship in (7.6) can also be written as follows:

Pss(T, t) = Ps
ss(T, t)+Pr

ss(T, t), (7.7)

with

Ps
ss(T, t) = e

∫ T
t Lss(τ)dτ , Pr

ss(T, t) =
∫ T

t
Prs(τ, t)Lsr(τ)e

∫ T
τ Lss(τ ′)dτ ′dτ.

We comment that Ps
ss(T, t) is the probability that the Markov process Mt is in the spike state at time T given

that it was in the spike state at time t and remained in the spike state during the entire time interval [t,T ],
and Pr

ss(T, t) is the probability that the Markov process Mt is in the spike state at time T given that it was in
the spike state at time t and has visited the inter-spike state during the time interval [t,T ] at least once.

For example, in the special case of a time-homogeneous Markov process Mt with the transition matrix
P(t,T ) = P(T − t) in (7.5) the probabilities Ps

ss(T, t) and Pr
ss(T, t) are, in fact, functions of the difference

T − t:

Ps
ss(T − t) = e−a(T−t), Pr

ss(T − t) =
b+ ae−(T−t)(a+b)

a+ b
− e−a(T−t). (7.8)

7.2.2 The Spike Process

We will define the spike process that will be responsible for modelling spikes in power spot prices.
Let ξt >0 with t ≥ 0 be independent random variables with the probability density functions Ξ(t,ξ ).

We define the spike process λt > 0 with t ≥ 0 as follows. If the Markov process Mt is in the inter-spike
state then the spike process λt is equal to unity. If the Markov process Mt transits into the spike state at
time τ then an independent time-inhomogeneous Poisson process Nt with time-dependent arrival rate κ(t)
is triggered and the spike process λt is equal to the random variable ξτn during the entire time interval
[τn,τn+1) where τn, n = 0,1, . . . , are the arrival times of Nt with τ0 = τ while the Markov process Mt

remains in the spike state. Finally, if the Markov process is in the spike state at time t = 0 then the spike
process λt is initiated at some positive λ0 	= 1.

In this regard, ξt can be interpreted as the multiplicative magnitude of spikes and Ξ(t,ξ ) as the condi-
tional probability density function for the multiplicative magnitude of spikes that either start or renew their
magnitude at time t of the spike process λt .

It can be shown [8, 22] with the help of relationships (7.6) and (7.7) that the spike process λt is, in fact,
a Markov process and that its transition probability density functionΛ(t,T,λt ,λT ) is given by

Λ(t,T,λt ,λT ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ps
ss(T, t)

(
δ (λt −λT )e

−∫ T
t κ(τ)dτ +

∫ T

t
e−
∫ T
τ κ(τ ′)dτ ′κ(τ)Ξ(τ,λT )dτ

)
+

∫ T

t
Prs(τ, t)Lsr(τ)Ps

ss(T,τ)
(
e−
∫ T
τ κ(τ ′)dτ ′Ξ(τ,λT )

+

∫ T

τ
e−
∫ T
τ ′ κ(τ

′′)dτ ′′κ(τ ′)Ξ(τ ′,λT )dτ ′
)
dτ+Prs(T, t)δ (1−λT )

if λt 	= 1

∫ T

t
Prr(τ, t)Lsr(τ)Ps

ss(T,τ)
(
e−
∫ T
τ κ(τ ′)dτ ′Ξ(τ,λT )

+

∫ T

τ
e−
∫ T
τ ′ κ(τ

′′)dτ ′′κ(τ ′)Ξ(τ ′,λT )dτ ′
)
dτ+Prr(T, t)δ (1−λT )

if λt = 1,

(7.9)

where δ (x) is the Dirac delta function. Moreover, it can be shown [8, 22] that the generator Λ(t) of the
spike process λt is a linear integral operator with the kernel:



7 Modelling Power Forward Prices for Power Spot Prices with Spikes 193

Λ(t,λt ,λ ′t ) ={(
Lss(t)−κ(t)

)
δ (λt −λ ′t )+κ(t)Ξ(t,λ ′t )+Lrs(t)δ (1−λ ′t ) if λt 	= 1

Lsr(t)Ξ(t,λ ′t )+Lrr(t)δ (1−λ ′t ) if λt = 1,

We will say that the spike process λt is in the spike state or inter-spike state if the Markov process Mt is
in the spike state or inter-spike state.

Finally, we point out [8, 14] that, in general, the spike process can be an arbitrary suitable Markov
process such as a spike process with a multistate generalization of the two-state Markov process Mt or
even an arbitrary suitable non-Markovian process such as a finite product of independent copies of the
processes λt .

7.2.3 The Inter-Spike Process

We will define the inter-spike process that will be responsible for modelling inter-spike power spot prices,
that is, power spot prices between spikes.

Denote by Ψ̂t > 0 the inter-spike spot price (for example, in dollars) of a unit of power (for example, in
MWh) at time t ≥ 0.

Let ŝt be a single-factor geometric mean-reverting process defined by the following stochastic differen-
tial equation:

d ln ŝt = η(t)(μ̂(t)− ln ŝt)dt +σ(t)dWt , (7.10)

where η(t)> 0 is the mean-reversion rate, μ̂(t) is the log long-term mean, σ(t)> 0 is the volatility, and Wt

is the Wiener process. (For further mathematical properties of the preceding stochastic differential equation
and the functions η(t), μ̂(t), and σ(t) see, for example, [4].) It can be shown [7, 12] that the transition
probability density function Pσ ,η,μ̂(t,T, ŝt , ŝT ) for the geometric mean-reverting process ŝt is given by

Pσ ,η,μ̂(t,T, ŝt , ŝT ) =
1

σ̂(t,T )
√

2π(T − t)
e
− 1

2
(a(t,T ) ln ŝt+b(t,T )−ln ŝT )2

σ̂2(t,T )(T−t)
1
ŝT

, (7.11)

where

σ̂(t,T ) =

√
1

T − t

∫ T

t
σ2(τ)e−2

∫ T
τ η(τ ′)dτ ′dτ,

a(t,T ) = e−
∫ T
t η(τ)dτ ,

b(t,T ) =
∫ T

t
η(τ)μ̂(τ)e−

∫ T
τ η(τ ′)dτ ′dτ.

(7.12)

For example [7, 8, 19, 20], consider the special case of a geometric mean-reverting process ŝt in (7.10)
with time-independent mean-reversion rate η and log-linear trends in the volatility σ(t) and long-term
mean ŝeq(t) = eμ̂(t):

σ(t) = σeσT Rt ,

ŝeq(t) = ŝeqeμ̂T Rt ,
(7.13)

so that
μ̂(t) = μ̂+ μ̂TRt, (7.14)

where ŝeq = eμ̂ and where σ > 0 and σT R , μ̂ , and μ̂T R are real numbers.
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It can be shown [7, 8, 19, 20] that in the case under consideration the relationships in (7.12) take the
following form:

σ̂(t,T ) = σeσT R T

√
1

T − t
1− e−2(σTR+η)(T−t)

2(σT R +η)
,

a(t,T ) = e−η(T−t),

b(t,T ) = μ̂(1− e−η(T−t))+ μ̂TR

(
(T − te−η(T−t))− 1

η
(1− e−η(T−t))

)
,

where the case of σT R +η = 0 is understood as the corresponding limit.
Moreover [7, 8, 17, 19], in order to model various cyclical patterns such as daily, weekly, and an-

nual cyclical patterns consider the special case of a geometric mean-reverting process ŝt in (7.10) with
time-independent mean-reversion rate η and time-dependent volatility σ(t) and log long-term mean μ̂(t)
formally given by

σ2(t) = σ2e2σTRt + e2σTRt
∞

∑
m=1

(σ2,c
m cos(ωσ ,mt)+σ2,s

m sin(ωσ ,mt)), (7.15)

and

μ̂(t) = μ̂+ μ̂TRt +
∞

∑
m=1

(μ̂c
m cos(ωμ̂,mt)+ μ̂ s

m sin(ωμ̂,mt)), (7.16)

where σ2,c
m , σ2,s

m , ωσ ,m and μ̂c
m, μ̂ s

m, ωμ̂,m are admissible real numbers with ωσ ,m 	= 0 and ωμ̂,m 	= 0.
We comment that the geometric mean-reverting processes ŝt in (7.10) with time-independent mean-

reversion rate η and time-dependent volatility σ(t) and log long-term mean μ̂(t) in (7.13) and (7.14) is a
special case of the geometric mean-reverting processes ŝt in (7.10) with time-independent mean-reversion
rate η and time-dependent volatility σ(t) and log long-term mean μ̂(t) in (7.15) and (7.16) when σ2,c

m =

σ2,s
m = 0 and μ̂c

m = μ̂ s
m = 0, that is, in the absence of the cyclical patterns. (For further practically important

special cases of geometric mean-reverting processes ŝt in (7.10) with time-dependent mean-reversion rate
η(t), log long-term mean μ̂(t), and volatility σ(t) that result in analytical expressions for σ̂(t,T ), a(t,T ),
and b(t,T ) in (7.12) see [7, 8, 19].)

It can be shown [7, 8, 17, 19] that in the case under consideration the relationships in (7.12) for σ̂(t,T )
or, equivalently, σ̂2(t,T )(T − t) and b(t,T ) take the following form:

σ̂2(t,T )(T − t) = σ2e2σT R T 1− e−2(σTR+η)(T−t)

2(σTR +η)

+ e2σTR T
∞

∑
m=1

(
σ2,c

m

(
(2(σT R +η)cos(ωσ ,mT )+ωσ ,m sin(ωσ ,mT ))

− (2(σTR +η)cos(ωσ ,mt)+ωσ ,m sin(ωσ ,mt))e−2(σTR+η)(T−t))
× ((2(σT R +η))2 +ω2

σ ,m
)−1

+σ2,s
m

(
(2(σT R +η)sin(ωσ ,mT )−ωσ ,m cos(ωσ ,mT ))

− (2(σTR +η)sin(ωσ ,mt)−ωσ ,m cos(ωσ ,mt))e−2(σTR+η)(T−t))
× ((2(σT R +η))2 +ω2

σ ,m
)−1
)
, (7.17)
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and

b(t,T ) = μ̂(1− e−η(T−t))+ μ̂TR

(
(T − te−η(T−t))− 1

η
(1− e−η(T−t))

)
+η

∞

∑
m=1

(
μ̂c

m

(
(η cos(ωμ̂,mT )+ωμ̂,m sin(ωμ̂,mT ))

− (η cos(ωμ̂,mt)+ωμ̂,m sin(ωμ̂,mt))e−η(T−t))(η2 +ω2
μ̂,m
)−1

+ μ̂ s
m

(
(η sin(ωμ̂,mT )−ωμ̂,m cos(ωμ̂,mT ))

− (η sin(ωμ̂,mt)−ωμ̂,m cos(ωμ̂,mt))e−η(T−t))(η2 +ω2
μ̂,m
)−1
)
, (7.18)

where the case of σT R +η = 0 is understood as the corresponding limit.
For example, in the special case when the cyclical patterns in the volatility σ(t) and log long-term mean

μ̂(t) are periodical with the periods Tσ > 0 and Tμ̂ > 0, ωσ ,m and ωμ̂,m in relationships (7.15), (7.17) and
(7.16), (7.18) are given by ωσ ,m = 2π

Tσ
m and ωμ̂,m = 2π

Tμ̂
m.

Assume [8, 22] that the inter-spike power spot prices Ψ̂t are modelled as follows:

Ψ̂t = ρt(ŝt ), (7.19)

where ρt : R++→R is strictly monotonic and continuous for each t ≥ 0 with R++ being the set of positive
real numbers. (For further mathematical properties of the function ρt(ŝ) see [8].)

We call [8, 22] the function ρt(ŝ) a spot representation function or, simply, representation function as-
sociated with the geometric mean-reverting process ŝt and the process in (7.19) a ρt-represented geometric
mean-reverting process or ρ−1

t geometric mean-reverting process.
Since x̂t = ln ŝt is the single-factor mean-reverting process defined by the following stochastic differen-

tial equation:

dx̂t = η(t)(μ̂(t)− x̂t)dt +σ(t)dWt ,

the inter-spike power spot prices Ψ̂t can be equivalently modelled [8, 22] as follows:

Ψ̂t = ρ̂t(x̂t), (7.20)

where ρ̂t : R→R is strictly monotonic and continuous for each t ≥ 0. (For further mathematical properties
of the function ρ̂t(x̂) see [8].)

We call [8, 22] the function ρ̂t(x̂) a spot representation function or, simply, representation function
associated with the mean-reverting process x̂t and the process in (7.20) a ρ̂t -represented mean-reverting
process or ρ̂−1

t mean-reverting process.
We comment [8] that the representation functions ρt(ŝ) and ρ̂t(x̂) as well as the inverse representation

functions ρ−1
t (Ψ̂ ) and ρ̂−1

t (Ψ̂ ) are related as follows:

ρt(ŝ) = ρ̂t(ln ŝ), ρ̂t(x̂) = ρt(e
x̂),

and

ρ−1
t (Ψ̂) = exp(ρ̂−1

t (Ψ̂)), ρ̂−1
t (Ψ̂ ) = ln(ρ−1

t (Ψ̂ )).

For example [8, 22], a practically important special case of the representation function ρt(ŝ) is given by

ρt(ŝ) = ρ
A,B,α,β (ŝ), (7.21)
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where

ρ
A,B,α,β (ŝ) = Aŝα −Bŝ−β ,

with A,α,β > 0 and B≥ 0.
Similarly [8, 22], a practically important special case of the representation function ρ̂t(x̂) is given by

ρ̂t(x̂) = ρ̂
A,B,α,β (x̂), (7.22)

where

ρ̂
A,B,α,β (x̂) = Aeα x̂−Be−β x̂,

with A,α,β > 0 and B≥ 0.
We comment [8] that the representation functions ρ

A,B,α,β (ŝ) and ρ̂
A,B,α,β (x̂) are related as follows:

ρ
A,B,α,β (ŝ) = ρ̂

A,B,α,β (ln ŝ), ρ̂
A,B,α,β (x̂) = ρ

A,B,α,β (e
x̂), (7.23)

and they will result, among other things, in analytical expressions for the power forward prices.
Moreover [8], the preceding relationships in (7.23) can be generalized as follows:

(ŝ
∂
∂ ŝ

)nρ
A,B,α,β (ŝ) = (

∂
∂ x̂

)nρ̂
A,B,α,β (ln ŝ), (

∂
∂ x̂

)nρ̂
A,B,α,β (x̂) = (ŝ

∂
∂ ŝ

)nρ
A,B,α,β (e

x̂), (7.24)

where

(ŝ
∂
∂ ŝ

)nρ
A,B,α,β (ŝ) = αnAŝα − (−β )nBŝ−β (7.25)

and

(
∂
∂ x̂

)nρ̂
A,B,α,β (x̂) = αnAeαx− (−β )nBe−β x̂, (7.26)

with n = 0,1, . . . .
We also comment [8, 22] that the representation function ρ

A,B,α,β (ŝ) for B > 0 can be negative and hence

the inter-spike power spot prices Ψ̂t defined in (7.19) with the help of ρ
A,B,α,β (ŝ) for B > 0 can also be

negative with the unique solution ŝ∗ of the equation ρ
A,B,α,β (ŝ

∗) = 0 given by

ŝ∗ = (B/A)
1

α+β .

Similarly [8, 22], the representation function ρ̂
A,B,α,β (x̂) for B > 0 can be negative and hence the inter-

spike power spot prices Ψ̂t defined in (7.20) with the help of ρ̂
A,B,α,β (x̂) for B > 0 can also be negative with

the unique solution x̂∗ of the equation ρ̂
A,B,α,β (x̂

∗) = 0 given by

x̂∗ = ln(B/A)
1

α+β .

In this regard [8], ŝ∗ and x̂∗ are related as follows:

ln ŝ∗ = x̂∗, ŝ∗ = ex̂∗ ,

which is consistent with the relationships in (7.23).
In view of relationship (7.25), ŝ ∂

∂ ŝρA,B,α,β (ŝ) > 0 for each ŝ in R++ and hence [8] the representation
function ρ

A,B,α,β :R++→R for B> 0 and ρ
A,B,α,β : R++→R++ for B= 0 is one-to-one and onto. Therefore

[8], the inverse representation function ρ−1
A,B,α,β

: R→ R++ for B > 0 and ρ−1
A,B,α,β

: R++ → R++ for B = 0
is also one-to-one and onto.
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For example [8, 22], in the special case of α = β the inverse representation function ρ−1
A,B,α,α (Ψ̂) is

given by

ρ−1
A,B,α,α (Ψ̂ ) =

(Ψ̂ +
√
Ψ̂ 2 + 4AB
2A

) 1
α . (7.27)

Similarly, in view of relationship (7.26), ∂
∂ x̂ ρ̂A,B,α,β (x̂)> 0 for each x̂ inR and hence [8] the representation

function ρ̂
A,B,α,β : R→R for B > 0 and ρ̂

A,B,α,β : R→R++ for B = 0 is one-to-one and onto. Therefore [8],

the inverse representation function ρ̂−1
A,B,α,β

: R→ R for B > 0 and ρ̂−1
A,B,α,β

: R++ → R for B = 0 is also
one-to-one and onto.

For example [8], in the special case of α = β the inverse representation function ρ̂−1
A,B,α,α

(Ψ̂ ) is given by

ρ̂−1
A,B,α,α

(Ψ̂ ) =
1
α

ln
(Ψ̂ +

√
Ψ̂ 2 + 4AB
2A

)
.

In this regard [8], in view of the relationships in (7.23) the inverse representation functions ρ−1
A,B,α,β

(Ψ̂)

and ρ̂−1
A,B,α,β

(Ψ̂ ) are related as follows:

ρ−1
A,B,α,β

(Ψ̂) = exp(ρ̂−1
A,B,α,β

(Ψ̂)), ρ̂−1
A,B,α,β

(Ψ̂ ) = ln(ρ−1
A,B,α,β

(Ψ̂ )).

We comment [8] that in view of relationship (7.25), the equation (ŝ ∂
∂ ŝ )

2ρ
A,B,α,β (ŝ

�) = 0 for B > 0 has a
unique solution ŝ� given by

ŝ� =
(
(β 2B)/(α2A)

) 1
α+β . (7.28)

Similarly [8], in view of relationship (7.26), the equation ( ∂∂ x̂ )
2ρ̂

A(t),B(t),α(t),β(t) (x̂
�) = 0 for B > 0 has a

unique solution x̂� given by

x̂� = ln
(
(β 2B)/(α2A)

) 1
α+β , (7.29)

which is, in fact, an inflection point.
In this regard [8], ŝ� and x̂� are related as follows:

ln ŝ� = x̂�, ŝ� = ex̂� ,

which is consistent with the relationships in (7.24) for n = 2.
It can be shown [8] that the geometric mean-reverting process ŝt and the mean-reverting process x̂t = ln ŝt

are special cases of the inter-spike process Ψ̂t = ρ
A,B,α,β (ŝt).

Indeed, for A = 1, α = 1, arbitrary β > 0, and B = 0, ρ
A,B,α,β (ŝ) = ŝ and hence the inter-spike process Ψ̂t

is, in fact, equal to the geometric mean-reverting process ŝt itself.
At the same time, for A = B and α = β the representation function ρ

A,B,α,β (ŝ) takes the following form:

ρA,A,α,α (ŝ) = 2Asinh(α ln ŝ), (7.30)

where sinh(x) is the hyperbolic sine.
In addition, if A = B and α = β are such that A = (2α)−1, relationship (7.30) takes the following form:

ρ
(2α)−1,(2α)−1 ,α,α

(ŝ) = α−1 sinh(α ln ŝ),

and hence

lim
α→0

ρ
(2α)−1,(2α)−1 ,α,α

(ŝ) = ln ŝ,

for each ŝ in R++.
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Therefore, in the limit when α goes to zero the inter-spike process Ψ̂t = ρ
(2α)−1 ,(2α)−1,α,α

(ŝt) is, in fact,

equal to the mean-reverting process x̂t = ln ŝt .
Similarly [8], the geometric mean-reverting process ŝt and the mean-reverting process x̂t = ln ŝt are

special cases of the inter-spike process Ψ̂t = ρ̂
A,B,α,β (x̂t).

Indeed, for A = 1, α = 1, arbitrary β > 0, and B = 0, ρ̂
A,B,α,β (x̂) = ex̂ and hence the inter-spike process

Ψ̂t is equal to the geometric mean-reverting process ŝt = ex̂t .
At the same time, for A = B and α = β the representation function ρ̂

A,B,α,β (x̂) takes the following form:

ρ̂A,A,α,α (x̂) = 2Asinh(α x̂). (7.31)

In addition, if A = B and α = β are such that A = (2α)−1 relationship (7.31) takes the following form:

ρ̂
(2α)−1,(2α)−1 ,α,α

(x̂) = α−1 sinh(α x̂),

and hence
lim
α→0

ρ̂
(2α)−1,(2α)−1 ,α,α

(x̂) = x̂,

for each x̂ in R.
Therefore, in the limit when α goes to zero the inter-spike process Ψ̂t = ρ̂

(2α)−1,(2α)−1 ,α,α
(x̂t) is, in fact,

equal to the mean-reverting process x̂t .
Moreover [8], the inter-spike process Ψ̂t = ρ

A,B,α,β (ŝt) with B > 0 exhibits both “arithmetic” and “geo-
metric” behaviour as follows.

Since the equation (ŝ ∂
∂ ŝ )

2ρ
A,B,α,β (ŝ

�) = 0 for B > 0 has a unique solution ŝ� given by (7.28) the rep-
resentation function ρ

A,B,α,β (ŝ) with B > 0 can be written with the help of the relationships in (7.25) as
follows:

ρ
A,B,α,β (ŝ) =

(
A
(
(β 2B)/(α2A)

) α
α+β −B

(
(β 2B)/(α2A)

)− β
α+β
)

+ ln(ŝ/ŝ�)
(
αA
(
(β 2B)/(α2A)

) α
α+β +βB

(
(β 2B)/(α2A)

)− β
α+β
)
+O(ln3(ŝ/ŝ�)),

where O(ln3(ŝ/ŝ�)) is the term of the order ln3(ŝ/ŝ�) or higher as ŝ/ŝ� goes to unity.
Therefore, for the values of ŝt that are relatively close to ŝ� the inter-spike process Ψ̂t = ρ

A,B,α,β (ŝt ) with
B > 0 is, in fact, approximately equal to the mean-reverting process:

(
A
(
(β 2B)/(α2A)

) α
α+β −B

(
(β 2B)/(α2A)

)− β
α+β
)

+ ln(ŝt/ŝ�)
(
αA
(
(β 2B)/(α2A)

) α
α+β +βB

(
(β 2B)/(α2A)

)− β
α+β
)

up to the term O(ln3(ŝt/ŝ�)).
At the same time, since

lim
ŝ→∞

ρ
A,B,α,β (ŝ)

Aŝα
= 1, lim

ŝ→0

ρ
A,B,α,β (ŝ)

Bŝ−β
=−1,

the inter-spike process Ψ̂t = ρ
A,B,α,β (ŝt) with B > 0 is, in fact, approximately equal to the geometric mean-

reverting process Aŝαt for relatively large values of ŝt , while −Ψ̂t = −ρA,B,α,β (ŝt ) with B > 0 is, in fact,

approximately equal to the geometric mean-reverting process Bŝ−βt for relatively small values of ŝt .
Similarly [8], the inter-spike process Ψ̂t = ρ̂

A,B,α,β (x̂t) with B > 0 exhibits both “arithmetic” and “geo-
metric” behaviour as follows.
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Since the equation ( ∂∂ x̂ )
2ρ̂

A,B,α,β (x̂
�) = 0 for B > 0 has a unique solution x̂� given by (7.29) the rep-

resentation function ρ̂
A,B,α,β (x̂) with B > 0 can be written with the help of the relationships in (7.26) as

follows:

ρ̂
A,B,α,β (x̂) =

(
A
(
(β 2B)/(α2A)

) α
α+β −B

(
(β 2B)/(α2A)

)− β
α+β
)

+(x̂− x̂�)
(
αA
(
(β 2B)/(α2A)

) α
α+β +βB

(
(β 2B)/(α2A)

)− β
α+β
)
+O((x̂− x̂�)3),

where O((x̂− x̂�)3) is the term of the order (x̂− x̂�)3 or higher as x̂− x̂� goes to zero.
Therefore, for the values of x̂t that are relatively close to x̂� the inter-spike process Ψ̂t = ρ̂

A,B,α,β (x̂t) with
B > 0 is, in fact, approximately equal to the mean-reverting process:

(
A
(
(β 2B)/(α2A)

) α
α+β −B

(
(β 2B)/(α2A)

)− β
α+β
)

+(x̂t − x̂�)
(
αA
(
(β 2B)/(α2A)

) α
α+β +βB

(
(β 2B)/(α2A)

)− β
α+β
)

up to the term O((x̂t − x̂�)3).
At the same time, since

lim
x̂→∞

ρ̂
A,B,α,β (x̂)

Aeα x̂ = 1, lim
x̂→−∞

ρ̂
A,B,α,β (x̂)

Be−β x̂
=−1,

the inter-spike process Ψ̂t = ρ̂
A,B,α,β (x̂t) with B > 0 is, in fact, approximately equal to the geometric mean-

reverting processes Aeα x̂t for relatively large values of |x̂t | and x̂t > 0, while−Ψ̂t =−ρ̂A,B,α,β (x̂t) with B > 0

is, in fact, approximately equal to the geometric mean-reverting processes Be−β x̂t for relatively large values
of |x̂t | and x̂t < 0.

We comment [8] that, in general, the parameters A, B, α , and β of the representation function ρ
A,B,α,β (ŝ)

in (7.21) can be time-dependent:

ρt(ŝ) = ρ
A(t),B(t),α(t),β(t) (ŝ), (7.32)

where

ρ
A(t),B(t),α(t),β(t) (ŝ) = A(t)ŝα(t)−B(t)ŝ−β (t),

with A(t),α(t),β (t) > 0 and B(t) ≥ 0. In this case, the dynamics of the inter-spike power spot prices Ψ̂t

are given by (7.19) with the help of the representation function ρ
A(t),B(t),α(t),β(t) (ŝ) in (7.32), that is, Ψ̂t =

ρ
A(t),B(t),α(t),β(t) (ŝt ).

Similarly [8], in general, the parameters A, B, α , and β of the representation function ρ̂
A,B,α,β (x̂) in (7.22)

can be time-dependent:

ρ̂t(x̂) = ρ̂
A(t),B(t),α(t),β(t) (x̂), (7.33)

where

ρ̂
A(t),B(t),α(t),β(t) (x̂) = A(t)eα(t)x̂−B(t)e−β (t)x̂,

with A(t),α(t),β (t) > 0 and B(t) ≥ 0. In this case, the dynamics of the inter-spike power spot prices Ψ̂t

are given by (7.20) with the help of the representation function ρ̂
A(t),B(t),α(t),β(t) (x̂) in (7.33), that is, Ψ̂t =

ρ̂
A(t),B(t),α(t),β(t) (x̂t).

Finally, we point out [8] that, in general, ŝt and x̂t can be arbitrary suitable Markov processes or even
arbitrary suitable non-Markovian processes such as multifactor diffusion processes in [7, 26].
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7.2.4 The Non-Markovian Process for Power Spot Prices with Spikes

Now we are ready to define the non-Markovian process for power spot prices with spikes.
Denote byΨt > 0 the price (for example, in dollars) of a unit of power (for example, in MWh) at time

t ≥ 0 for power spot prices with spikes.
Assume that the spike process λt and the geometric mean-reverting process ŝt are independent.
Let f : I → R where I = I1× ·· · × In with each Ii being an open interval, either finite or infinite, of

real numbers. Denote by fx̂i : Ii → R the function f (x1, . . . ,xi−1, ·,xi+1, . . . ,xn) of xi in Ii for fixed x̂i =
(x1, . . . ,xi−1,xi+1, . . . ,xn) in Îi = I1×·· ·× Ii−1× Ii+1×·· ·× In.

We say [8] that f is consistently monotonic if for each i= 1, . . . ,n the function fx̂i is either nondecreasing
for each x̂i in Îi or nonincreasing for each x̂i in Îi. Moreover, we say [8] that f is consistently strictly
monotonic if for each i = 1, . . . ,n the function fx̂i is either strictly increasing for each x̂i in Îi or strictly
decreasing for each x̂i in Îi.

Define [8] the processΨt with t ≥ 0 as follows:

Ψt = ρt(ŝt ,λt), (7.34)

where ρt : R++×R++→R is consistently strictly monotonic, continuous, and

ρt(ŝ,λ )|λ=1 = ρt(ŝ), (7.35)

for each t ≥ 0 with ρt(ŝ) defined in (7.19). (For further mathematical properties of the function ρt(ŝ,λ )
see [8].)

We comment that the relationship in (7.35) is a consistency condition to ensure that, since the spike
process λt is equal to unity between spikes, the process Ψt in (7.34) for power spot prices with spikes
coincides between spikes with the inter-spike power spot price process Ψ̂t in (7.19).

We call [8] the function ρt(ŝ,λ ) a spot representation function or, simply, representation function as-
sociated with the geometric mean-reverting process ŝt and the spike process λt and the process in (7.34) a
ρt -represented non-Markovian process for power spot prices with spikes.

For example [8], a practically important special case of the representation function ρt(ŝ,λ ) that will
result, among other things, in analytical expressions for the power forward prices is given by

ρt(ŝ,λ ) = ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ), (7.36)

where
ρ

A(t),αr (t),αs(t),B(t),βr (t),βs(t)
(ŝ,λ ) = A(t)ŝαr(t)λαs(t)−B(t)ŝ−βr(t)λ−βs(t),

with A(t)> 0, B(t)≥ 0, αr(t),βr(t)> 0, and αs(t),βs(t)> 0.
In this case, the dynamics of the power spot prices with spikes are described by the ρ

A(t),αr(t),αs(t),B(t),βr (t),βs(t)
-

represented non-Markovian processΨt :

Ψt = ρ
A(t),αr(t),αs(t),B(t),βr (t),βs(t)

(ŝt ,λt). (7.37)

Moreover, since
ρ

A(t),αr (t),αs(t),B(t),βr (t),βs(t)
(ŝ,λ )

∣∣
λ=1 = ρ

A(t),B(t),αr (t),βr(t)
(ŝ),

the inter-spike power spot price processΨ̂t for the ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

-represented non-Markovian power
spot price processΨt in (7.37) is given by

Ψ̂t = ρ
A(t),B(t),αr (t),βr (t)

(ŝt), (7.38)

where the representation function ρ
A(t),B(t),α(t),β(t) (ŝ) is given by (7.32).
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We comment [8] that in the special case of α(t) = αr(t) = αs(t) and β (t) = βr(t) = βs(t) the represen-
tation function ρ

A(t),αr(t),αs(t),B(t),βr (t),βs(t)
(ŝ,λ ) in (7.36) takes the following form:

ρ
A(t),α(t),α(t),B(t),β(t),β(t) (ŝ,λ ) = ρ

A(t),B(t),α(t),β(t) (ŝλ ),

where the representation function ρ
A(t),B(t),α(t),β(t) (ŝ) is given by (7.32).

In this regard, the representation function ρ
A(t),B(t),α(t),β(t) (ŝλ ) is a special case of the representation func-

tion ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ) when α(t) = αr(t) = αs(t) and β (t) = βr(t) = βs(t).
We also comment [8] that the representation function ρ

A(t),αr(t),αs(t),B(t),βr (t),βs(t)
(ŝ,λ ) for B(t) > 0 can be

negative and hence the power spot pricesΨt defined in (7.37) with the help of ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ )
for B(t)> 0 can also be negative.

It is easy to see [8] that Ψt is a non-Markovian process. Indeed, in order to characterize the future
behaviour of the process Ψt we need to know the current values of the spike and inter-spike processes
λt and Ψ̂t or, equivalently, λt and ŝt at time t. In other words, the state of the power market at any time
t ≥ 0 can be fully characterized by the pair of the values of the spike and inter-spike processes λt and Ψ̂t

or, equivalently, λt and ŝt at time t. Moreover, it can be shown [8] that although the process Ψt is non-
Markovian it can be, in fact, represented as a Markov process with the extended state space that at any time
t ≥ 0 consists of all possible pairs (λt , ŝt) with λt > 0 and ŝt > 0.

We will say that the processΨt for power spot prices with spikes is in the spike state or inter-spike state
if the spike process λt is in the spike state or inter-spike state or, equivalently, if the Markov process Mt is
in the spike state or inter-spike state.

Now we will show [8] that the spike state of the process Ψt can model upward/downward spikes in
power spot prices, that is, exhibit sharp upward/downward power spot price movements shortly followed
by equally sharp downward/upward power spot price movements of approximately the same magnitude.

Since the expected times t̄s and t̄r for the processΨt to be in the spike and inter-spike states starting at
time t coincide with those of the Markov process Mt we have

t̄s =
∫ ∞

t
(τ− t)e−

∫ τ
t a(τ ′)dτ ′a(τ)dτ, t̄r =

∫ ∞

t
(τ− t)e−

∫ τ
t b(τ ′)dτ ′b(τ)dτ, (7.39)

where a(t) and b(t) are defined by relationship (7.3).
In the special case of a time-homogeneous Markov process Mt relationships in (7.39) take the following

form:

t̄s =
∫ ∞

t
(τ− t)e−a(τ−t)adτ =

1
a
, t̄r =

∫ ∞

t
(τ− t)e−b(τ−t)bdτ =

1
b
, (7.40)

so that the expected times t̄s and t̄r for the processΨt to be in the spike and inter-spike states starting at time
t do not depend on t.

If for each time t ≥ 0 the expected time t̄s for the processΨt to be in the spike state is small relative to
the characteristic time of change of the process Ψ̂t , then the spike state of the processΨt can be interpreted
as a spike in power spot prices, either upward if λt > 1 (0 < λt < 1) or downward if 0 < λt < 1 (λt > 1)
where ρt(ŝt , ·) is strictly increasing (decreasing).

Under this interpretation, t̄s is the expected lifetime of a spike that starts at time t, and t̄r is the expected
time between two consecutive spikes when the first spike ends at time t. In this way, a(t) and b(t) control
the duration and frequency of spikes by means of the relationships in (7.39). For example, it is easy to see
with the help of the relationships in (7.39) that for short-lived spikes a(t) has to be relatively large, while
for rare spikes b(t) has to be relatively small.
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7.3 Modelling Power Forward Prices for Power Spot Prices with Spikes

In this section we present analytical expressions for power forward prices in the case when the dynamics
of power spot prices with spikes are described by the non-Markovian processΨt .

7.3.1 Power Forward Prices for Power Spot Prices Without Spikes

In order to obtain power forward prices in the case when the dynamics of the power spot prices with spikes
are described by the non-Markovian processΨt , we need to obtain power forward prices in the case when
the dynamics of power spot prices are described by the inter-spike power spot price process Ψ̂t , that is, in
the case of the power spot prices without spikes.

Assume now that Ψ̂t in (7.19) is the risk-neutral inter-spike power spot price process or, equivalently,
that the geometric mean-reverting process ŝt is risk-neutral.

Then [8] the power forward price F̂(t,T ) = F̂(t,T )(Ψ̂t) at time t for the power forward contract with
maturity time T can be found as the risk-neutral expected value of the inter-spike power spot prices Ψ̂T =
ρT (ŝT ) at time T :

F̂(t,T )(Ψ̂t) = F̂�(t,T )(ρ−1
t (Ψ̂t)), (7.41)

where
F̂�(t,T )(ŝt ) =

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )ρT (ŝT )dŝT , (7.42)

with Pσ ,η,μ̂(t,T, ŝt , ŝT ) being the transition probability density function given by (7.11) for the risk-neutral
geometric mean-reverting process ŝt .

In the special case of the representation function ρ
A(t),B(t),α(t),β(t) (ŝ) given by (7.32) relationship (7.41)

takes [8] the following form:

F̂(t,T )(Ψ̂t) = F̂�(t,T )(ρ−1
A(t),B(t),α(t),β(t)

(Ψ̂t)), (7.43)

where, in view of relationship (7.42), F̂�(t,T )(ŝt ) is given by

F̂�(t,T )(ŝt) =

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )ρA(T ),B(T ),α(T ),β(T )

(ŝT )dŝT

=

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )

(
A(T )ŝα(T )T −B(T)ŝ−β (T )T

)
dŝT

= A(T )
∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT ) ŝα(T )T dŝT −B(T )

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT ) ŝ−β (T )T dŝT

= A(T )F̂α(T)(t,T )(ŝt)−B(T )F̂−β (T)(t,T )(ŝt), (7.44)

with F̂ω(t,T )(ŝt ) being the ω th moment of the geometric mean-reverting process ŝt given by [7, 12, 13]

F̂ω(t,T )(ŝt) =

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT ) ŝωT dŝT

= e
1
2 σ̂

2(t,T )(T−t)ω2
eωb(t,T )ŝωa(t,T )

t ,

(7.45)

and ω being a real number.
It can be shown [8] that in the special case of α(t) = β (t) relationship (7.43) with the help of relation-

ships (7.44) and (7.27) takes the following form:
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F̂(t,T )(Ψ̂t) = F̂�(t,T )((
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
α(t) )

= A(T )F̂α(T)(t,T )((
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
α(t) )

−B(T )F̂−α(T)(t,T )((
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
α(t) )

= A(T )e
1
2 σ̂

2(t,T )(T−t)α2(T )eα(T)b(t,T )

× (
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)(α(T)/α(t))a(t,T )

−B(T )e
1
2 σ̂

2(t,T )(T−t)α2(T )e−α(T)b(t,T )

× (
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)−(α(T )/α(t))a(t,T ). (7.46)

We comment [8] that since the representation function ρ
A(t),B(t),α(t),β(t) (ŝ) in (7.32) for B(t) > 0 can be

negative, the power forward prices F̂(t,T )(Ψ̂t) and F̂�(t,T )(ŝt) defined in (7.43), (7.46), and (7.44) for
the inter-spike power spot price process Ψ̂t given by (7.19) with the help of the representation function
ρ

A(t),B(t),α(t),β(t) (ŝ) for B(t)> 0 can also be negative as functions of Ψ̂t and ŝt .
Finally, we point out [7, 8, 17, 18, 20] that due to the no-arbitrage argument the expressions for the

positive and negative power forward prices for power forward contracts with delivery periods in the case
of positive and negative power spot prices without spikes are completely analogous to the expressions for
the positive power forward prices for power forward contracts with delivery periods in the case of positive
power spot prices without spikes.

7.3.2 Power Forward Prices for Power Spot Prices with Spikes

We will obtain power forward prices in the case when the dynamics of power spot prices with spikes are
described by the ρt -represented non-Markovian processΨt given by (7.34).

As we discussed earlier in the paper the state of the power market at any time t ≥ 0 can be fully charac-
terized by the pair of the values of the spike and inter-spike processes λt and Ψ̂t or, equivalently, λt and ŝt at
time t. In this regard, the power forward price F(t,T ) at time t for the power forward contract with maturity
time T can be represented as a function of the pair of the values of the spike and inter-spike processes λt

and Ψ̂t or, equivalently, λt and ŝt at time t.
Assume now thatΨt is a risk-neutral process for power spot prices with spikes or, equivalently, that the

spike process λt and the geometric mean-reverting process ŝt are risk-neutral so thatΨt can be represented
as a risk-neutral Markov process with the state space that at any time t ≥ 0 consists of all possible pairs
(λt , ŝt) with λt > 0 and ŝt > 0.

Then [8] the power forward price F(t,T ) = Fλt (t,T )(Ψ̂t) at time t for the power forward contract with
maturity time T can be found with the help of relationships (7.19) and (7.35) as the risk-neutral expected
value of the power spot pricesΨT = ρT (ŝT ,λT ) at time T :

Fλt (t,T )(Ψ̂t) = F�
λt
(t,T )(ρ−1

t (Ψ̂t)), (7.47)
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where

F�
λt
(t,T )(ŝt ) =

∫ ∞

0

∫ ∞

0
P(t,T, ŝt , ŝT ,λt ,λT )ρT (ŝT ,λT )dŝT dλT , (7.48)

with
P(t,T, ŝt , ŝT ,λt ,λT ) = Pσ ,η,μ̂(t,T, ŝt , ŝT )Λ(t,T,λt ,λT ) (7.49)

being the joint transition probability density function for the independent risk-neutral geometric mean-
reverting process ŝt and the risk-neutral spike process λt whose transition probability density functions
Pσ ,η,μ̂(t,T, ŝt , ŝT ) and Λ(t,T,λt ,λT ) are given by (7.11) and (7.9). (For the general case of not necessarily
independent ŝt and λt with a general P(t,T, ŝt , ŝT ,λt ,λT ) see [8].)

In the special case of the representation function ρ
A(t),αr(t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ) given by (7.36) relationship
(7.47) with the help of relationship (7.38) takes [8] the following form:

Fλt (t,T )(Ψ̂t) = F�
λt
(t,T )(ρ−1

A(t),B(t),αr (t),βr(t)
(Ψ̂t)), (7.50)

where, in view of relationships (7.48) and (7.49), F�
λt
(t,T )(ŝt ) is given by

F�
λt
(t,T )(ŝt ) =

∫ ∞

0

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )Λ(t,T,λt ,λT )

×ρ
A(T ),αr(T ),αs(T ),B(T ),βr(T ),βs(T )

(ŝT ,λT )dŝT dλT

=

∫ ∞

0

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )Λ(t,T,λt ,λT )

× (A(T )ŝαr(T )
T λαs(T )

T −B(T )ŝ−βr(T )
T λ−βs(T )

T

)
dŝT dλT

= A(T )
∫ ∞

0

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )Λ(t,T,λt ,λT )ŝ

αr(T )
T λαs(T )

T dŝT dλT

−B(T )
∫ ∞

0

∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )Λ(t,T,λt ,λT )ŝ

−βr(T )
T λ−βs(T)

T dŝT dλT

= A(T )
(∫ ∞

0
Λ(t,T,λt ,λT )λ

αs(T )
T dλT

)(∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )ŝ

αr(T )
T dŝT

)
−B(T )

(∫ ∞

0
Λ(t,T,λt ,λT )λ

−βs(T )
T dλT

)(∫ ∞

0
Pσ ,η,μ̂(t,T, ŝt , ŝT )ŝ

−βr(T)
T dŝT

)
= A(T )λαs(T )λt (t,T )F̂αr(T)(t,T )(ŝt )−B(T)λ−βs(T )λt (t,T )F̂−βr(T )(t,T )(ŝt ),

(7.51)

with λωλt (t,T ) being the ω th moment of the spike process λt :

λωλt (t,T ) =
∫ ∞

0
Λ(t,T,λt ,λT )λωT dλT , (7.52)

ω being an admissible real number and F̂ω(t,T )(ŝt ) given by (7.45).
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With the help of relationship (7.9) relationship (7.52) can be rewritten [8, 22] as follows:

λωλt (t,T ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ps
ss(T, t)

(
e−
∫ T

t κ(τ)dτλωt
+
∫ ∞

0

[∫ T

t
e−
∫ T
τ κ(τ ′)dτ ′κ(τ)Ξ(τ,λT )dτ

]
λωT dλT

)
+

∫ ∞

0

[∫ T

t
Prs(τ, t)Lsr(τ)Ps

ss(T,τ)
(
e−
∫ T
τ κ(τ ′)dτ ′Ξ(τ,λT )

+

∫ T

τ
e−
∫ T
τ ′ κ(τ

′′)dτ ′′κ(τ ′)Ξ(τ ′,λT )dτ ′
)
dτ
]
λωT dλT +Prs(T, t)

if λt 	= 1

∫ ∞

0

[∫ T

t
Prr(τ, t)Lsr(τ)Ps

ss(T,τ)
(
e−
∫ T
τ κ(τ ′)dτ ′Ξ(τ,λT )

+

∫ T

τ
e−
∫ T
τ ′ κ(τ

′′)dτ ′′κ(τ ′)Ξ(τ ′,λT )dτ ′
)
dτ
]
λωT dλT +Prr(T, t)

if λt = 1.

(7.53)

In the special case when Ξ(t,λ ) is time-independent and equal to Ξ(λ ) relationship (7.53) takes the
following form:

λωλt (t,T ) =

⎧⎪⎨
⎪⎩

Ps
ss(T, t)

(
e−
∫ T

t κ(τ)dτλωt +(1− e−
∫T
t κ(τ)dτ)λω

)
+Pr

ss(T, t)λω +Prs(T, t)
if λt 	= 1

Psr(T, t)λω +Prr(T, t) if λt = 1,

(7.54)

where λω is the ω th moment of the probability distribution with the probability density function Ξ(λ ):

λω =
∫ ∞

0
Ξ(λ )λωdλ , (7.55)

with ω being an admissible real number.
Moreover, in the special case of a time-homogeneous Poisson process Nt with time-independent κ(t)

equal to κ relationship (7.54) takes the following form:

λωλt (t,T ) =

⎧⎪⎨
⎪⎩

Ps
ss(T, t)

(
e−κ(T−t)λωt +(1− e−κ(T−t))λω

)
+Pr

ss(T, t)λω +Prs(T, t)
if λt 	= 1

Psr(T, t)λω +Prr(T, t) if λt = 1.

(7.56)

Finally, in the special case of a time-homogeneous Markov process Mt , the ω th moment λωλt (t,T ) in
(7.56) of the spike process λt is, in fact, a function of the difference T − t:

λωλt (T − t) =

⎧⎪⎨
⎪⎩

Ps
ss(T − t)

(
e−κ(T−t)λωt +(1− e−κ(T−t))λω

)
+Pr

ss(T − t)λω +Prs(T − t)
if λt 	= 1

Psr(T − t)λω +Prr(T − t) if λt = 1,

(7.57)

where the transition matrix P(t,T ) = P(T − t) of the Markov process Mt is given by (7.5) so that Ps
ss(t,T ) =

Ps
ss(T − t) and Pr

ss(t,T ) = Pr
ss(T − t) are given by (7.8).

For example [8], consider the special case when Ξ(λ ) is equal to the probability density function

Pp,λu,λd
(λ ) = pPλu(λ )+ qPλd

(λ )

of the mixture with the probabilities p and q, 0 ≤ p,q ≤ 1 and p + q = 1, of the discrete probability
distributions for the upward and downward spikes with the magnitudes λu and λd with the probability
density functions Pλu(λ ) and Pλd

(λ ) defined by

Pλu(λ ) = δ (λ −λu), Pλd
(λ ) = δ (λ −λd),
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where λu > 1 and 0 < λd < 1 and where δ (x) is the Dirac delta function.
It can be shown [8] that in the case under consideration λω is given by

λω =
∫ ∞

0
Pp,λu,λd

(λ )λωdλ

= pλωu + qλωd ,

where ω is a real number.
Another example [8, 22], consider the special case when Ξ(λ ) is equal to the probability density func-

tion
Pp,γ+,λmin,γ− ,λmax(λ ) = pP+

γ+,λmin
(λ )+ qP−γ−,λmax

(λ )

of the mixture with the probabilities p and q, 0 ≤ p,q ≤ 1 and p+ q = 1, of the upward and downward
Pareto distributions on (0,∞) with the probability density functions P+

γ+,λmin
(λ ) and P−γ−,λmax

(λ ) defined by

P+
γ+,λmin

(λ ) =

{
γ+λγ

+

minλ
−γ+−1 if λ > λmin

0 if 0 < λ ≤ λmin

and

P−γ−,λmax
(λ ) =

{
γ−λ−γ

−
max λγ

−−1 if 0 < λ < λmax

0 if λmax ≤ λ ,

where λmin ≥ 1, γ+ > 0 and 0 < λmax ≤ 1, γ− > 0.
It can be shown [8, 22] that in the case under consideration λω is given by

λω =
∫ ∞

0
Pp,γ+,λmin,γ−,λmax

(λ )λωdλ

= p
γ+

γ+−ω λ
ω
min + q

γ−

γ−+ω
λωmax,

(7.58)

where −γ− < ω < γ+.
Moreover [8], in the special case of αr(t) = βr(t) relationship (7.50) with the help of relationship (7.27)

takes the following form:

Fλt (t,T )(Ψ̂t) = F�
λt
(t,T )((

Ψ̂t +
√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

= A(T )λαs(T )λt (t,T )F̂αr(T)(t,T )((
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

−B(T )λ−βs(T )λt (t,T )F̂−αr(T )(t,T )((
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

= A(T )λαs(T )λt (t,T )e
1
2 σ̂

2(t,T )(T−t)α2
r (T)eαr(T)b(t,T )

× (
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)(αr(T)/αr(t))a(t,T )

−B(T )λ−βs(T )λt (t,T )e
1
2 σ̂

2(t,T )(T−t)α2
r (T)e−αr(T )b(t,T )

× (
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)−(αr(T)/αr(t))a(t,T ).

(7.59)
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We comment [8] that since the representation function ρ
A(t),αr(t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ) in (7.36) for B(t)> 0

can be negative, the power forward prices Fλt (t,T )(Ψ̂t) and F�
λt
(t,T )(ŝt) defined in (7.50), (7.59), and

(7.51) with the help of ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ) for B(t) > 0 can also be negative as functions of

Ψ̂t , λt and ŝt , λt .
We also comment [8] that analytical expressions for the positive and negative power forward prices for

positive and negative power spot prices with upward and downward spikes can also be obtained in the case
when the time-independent probability density function Ξ(λ ) is equal to the probability density function
of an arbitrary mixture of the upward and downward Pareto distributions as well as discrete probability
distributions.

Finally, we point out [8, 17, 18, 20] that due to the no-arbitrage argument the expressions for the pos-
itive and negative power forward prices for power forward contracts with delivery periods in the case of
positive and negative power spot prices with upward and downward spikes are completely analogous to the
expressions for the positive power forward prices for power forward contracts with delivery periods in the
case of positive power spot prices with upward and downward spikes.

7.3.3 Why Power Forward Prices for Long Maturity Power Forward Contracts
Do Not Exhibit Spikes While Power Spot Prices Do

We will show [8–10] that when the time to maturity of a power forward contract is relatively large with
respect to the duration of spikes the power forward prices do not exhibit spikes while the power spot
prices do.

For simplicity, we consider the special case when the Markov process Mt and the Poisson process Nt are
time-homogeneous and the probability density function Ξ(t,λ ) is time-independent and equal to Ξ(λ ).

In this case, the power forward prices Fλt (t,T )(Ψ̂t) and F�
λt
(t,T )(ŝt ) at time t for the power forward con-

tract with maturity time T are determined by relationships (7.50) and (7.51) with λωλt (t,T )=λωλt (T−t)
given by (7.57). Moreover, the transition matrix P(t,T ) = P(T − t) of the Markov process Mt is given by
(7.5) so that Ps

ss(t,T ) = Ps
ss(T − t) and Pr

ss(t,T ) = Pr
ss(T − t) are given by (7.8).

In view of relationship (7.5) the transition probabilities of the Markov process Mt can be represented as
follows:

Pss(T − t) = πs +O(e−a(T−t)), Psr(T − t) = πs +O(e−a(T−t)),

Prs(T − t) = πr +O(e−a(T−t)), Prr(T − t) = πr +O(e−a(T−t)),

where

πs =
b

a+ b
, πr =

a
a+ b

are the ergodic or stationary probabilities of the Markov process Mt to be in the spike and inter-spike state
and where O(e−a(T−t)) stands for a term of the order e−a(T−t) or higher as T − t goes to infinity. Moreover,
in view of relationship (7.8), Pr

ss(T − t) can be represented as follows:

Pr
ss(T − t) = πs +O(e−a(T−t)).

Therefore, λωλt (T − t) given by (7.57) can be represented as follows:

λωλt (T − t) = λω erg +O(ea(T−t)), (7.60)
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where λω erg is the ergodic ω th moment of the spike process λt given by

λω erg = πsλω +πr,

with λω given by (7.55)
In turn [8], in the special case of the representation function

ρ
A(t),αr (t),αs(t),B(t),βr (t),βs(t)

(ŝ,λ ) given by (7.36), the power forward prices Fλt (t,T )(Ψ̂t) and F�
λt
(t,T )(ŝt) in

(7.50) and (7.51) can be represented with the help of relationship (7.60) as follows:

Fλt (t,T )(Ψ̂t) = F�
erg(t,T )(ρ

−1
A(t),B(t),αr (t),βr (t)

(Ψ̂t))+O(e−a(T−t))

= Ferg(t,T )(Ψ̂t)+O(e−a(T−t)),
(7.61)

and
F�
λt
(t,T )(ŝt ) = F�

erg(t,T )(ŝt )+O(e−a(T−t)),

where
Ferg(t,T )(Ψ̂t) = F�

erg(t,T )(ρ
−1
A(t),B(t),αr (t),βr (t)

(Ψ̂t)) (7.62)

and

F�
erg(t,T )(ŝt ) = A(T )λαs(T )erg F̂αr(T )(t,T )(ŝt )−B(T)λ−βs(T)erg F̂−βr(T )(t,T )(ŝt ) (7.63)

and where O(e−a(T−t)) stands for a term of the order e−a(T−t) or higher as T − t goes to infinity.
Moreover [8], in the special case of αr(t) = βr(t), relationships (7.59) and (7.61) with the help of

relationship (7.27) take the following form:

Fλt (t,T )(Ψ̂t) = F�
erg(t,T )((

Ψ̂t +
√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )+O(e−a(T−t))

= Ferg(t,T )(Ψ̂t)+O(e−a(T−t)),

where

Ferg(t,T )(Ψ̂t) = F�
erg(t,T )((

Ψ̂t +
√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

= A(T )λαs(T )erg F̂αr(T )(t,T )((
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

−B(T )λ−βs(T )erg F̂−αr(T)(t,T )((
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) )

= A(T )λαs(T )erg e
1
2 σ̂

2(t,T )(T−t)α2
r (T )eαr(T )b(t,T )

× (
Ψ̂t +

√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)(αr(T )/αr(t))a(t,T )

−B(T )λ−βs(T )erg e
1
2 σ̂

2(t,T )(T−t)α2
r (T )e−αr(T)b(t,T )

× (
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)−(αr(T )/αr(t))a(t,T )

(7.64)

and where O(e−a(T−t)) stands for a term of the order e−a(T−t) or higher as T − t goes to infinity.
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In this regard, if the time to maturity T − t of the power forward contract is relatively large with respect
to the expected lifetime of a spike t̄s = 1/a in (7.40) then the power forward prices Fλt 	=1(t,T )(Ψ̂t) and
Fλt=1(t,T )(Ψ̂t) as well as F�

λt 	=1(t,T )(ŝt ) and F�
λt=1(t,T )(ŝt ) during a spike and between spikes differ only

by an exponentially small term of the order O(ea(T−t)). As a result, the power forward prices for a long
maturity power forward contract do not exhibit spikes, while the power spot prices do. In turn, the power
forward prices can start exhibiting spikes and resembling the power spot prices when the forward contract
nears its maturity, with the time to maturity T − t approaching the expected lifetime of a spike t̄s = 1/a.

Now for the non-Markovian power spot price processΨt in (7.37) with the inter-spike power spot price
process Ψ̂t in (7.38) define the ergodic inter-spike power spot price process Ψ̂ erg

t = ρ
Aerg(t),Berg (t),αr(t),βr (t)

(ŝt)

where

Aerg(t) = A(t)λαs(t)erg, Berg(t) = B(t)λ−βs(t)erg,

and where ρ
A(t),B(t),α(t),β(t) (ŝ) is given by (7.32).

Since

ρ−1
A(t),B(t),αr (t),βr (t)

(Ψ̂t) = ρ−1
Aerg(t),Berg(t),αr (t),βr(t)

(Ψ̂ erg
t ), (7.65)

the inter-spike power spot price process Ψ̂t and the ergodic inter-spike power spot price process Ψ̂ erg
t are

related as follows:

Ψ̂t = ρ
A(t),B(t),αr (t),βr(t)

(ρ−1
Aerg(t),Berg (t),αr (t),βr(t)

(Ψ̂ erg
t )), (7.66)

and

Ψ̂ erg
t = ρ

Aerg(t),Berg (t),αr (t),βr(t)
(ρ−1

A(t),B(t),αr (t),βr(t)
(Ψ̂t)). (7.67)

Moreover, in the special case of αr(t) = βr(t), relationship (7.65) with the help of relationship (7.27)
takes the following form:

(
Ψ̂t +

√
Ψ̂ 2

t + 4A(t)B(t)

2A(t)
)

1
αr(t) = (

Ψ̂ erg
t +

√
(Ψ̂ erg

t )2 + 4Aerg(t)Berg(t)

2Aerg(t)
)

1
αr(t) ,

and, in turn, relationships (7.67) and (7.66) with the help of relationship (7.32) take the following form:

Ψ̂t = A(t)(
Ψ̂ erg

t +
√
(Ψ̂ erg

t )2 + 4Aerg(t)Berg(t)

2Aerg(t)
)

−B(t)(
Ψ̂erg

t +
√
(Ψ̂ erg

t )2 + 4Aerg(t)Berg(t)

2Aerg(t)
)−1,

and

Ψ̂ erg
t = Aerg(t)(

Ψ̂t +
√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)−Berg(t)(

Ψ̂t +
√
Ψ̂2

t + 4A(t)B(t)

2A(t)
)−1.

In this regard [8], the power forward prices F̂(t,T )(Ψ̂ erg
t ) and F̂�(t,T )(ŝt ) defined in (7.43), (7.46), and

(7.44) for the ergodic inter-spike power spot price process Ψ̂ erg
t are, in fact, equal to the power forward

prices Ferg(t,T )(Ψ̂t) and F�
erg(t,T )(ŝt) defined in (7.62), (7.64), and (7.63).

Finally, we point out that the non-Markovian approach to modelling power markets presented and further
developed in this paper is also applicable to modelling other commodity markets, in general, and energy
commodity markets, in particular, including but not limited to oil, gas, coal, and emission markets.
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Chapter 8
An Analysis of the Main Determinants of Electricity Forward
Prices and Forward Risk Premia

Álvaro Cartea and Pablo Villaplana

Abstract The liberalisation of energy markets entails the appearance of market risks which must be borne
by market participants: producers, retailers and final consumers. Some of these risks can be managed by
participating in the forward markets and transferring it to other agents who are willing to bear it and
command a compensation for it. Thus, forward prices are made up of two components: the expected spot
price at a future date and the forward risk premium. In this chapter we analyse the factors influencing the
evolution of electricity forward prices in Spain. These factors include the forward prices for natural gas and
CO2 emission rights, as well as the electricity forward prices in Germany and in France and spot prices in
Spain. We also analyse the behaviour of the ex-post electricity forward risk premia in Germany, France and
Spain, and in particular we find a positive correlation between ex-post electricity risk premia in these three
countries as well as between risk premia for electricity and natural gas futures prices.

8.1 Introduction

The electricity sector is organised around four separate main activities: generation, transmission, distribu-
tion and retail supply. While the activities of transmission and distribution (and the way the system oper-
ates) are a natural monopoly, and therefore have to operate within a highly regulated framework, electricity
generation and retail supply can be open to the competitive wholesale market.

The standard process of liberalisation of the electricity sector, which began in some countries in the
early 1990s, was meant to restructure the wholesale and retail activities within the framework of a compet-
itive market where prices are determined by the interaction between supply and demand. The remaining
activities of transmission and distribution, as well as the system operations, continue to be regulated; see
[12, 13].

Within this framework, we distinguish between a wholesale market in which the electricity generators
compete to sell their product to retailers or directly to large industrial consumers and a market where
retailers compete to sell electricity to the final consumers who do not actively participate in the main
wholesale market (for instance, domestic consumers, small and medium size firms, public bodies).
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The main wholesale market can be interpreted as a group of sequential markets in time where electricity
is traded ahead of its production/consumption. At one end there is the electricity forward market where
electricity is traded years before it is produced/consumed. At the other extreme we have the day-ahead
market (which is also referred to as the spot market) and the intra-day market which allows the agents to
adjust their positions up to a few hours before delivery.

Thus, as a consequence of the liberalisation process, those firms that run services of power generation
and/or retail supply can find themselves exposed to market prices, which are determined and fluctuate
according to changes in the levels of supply and demand.

On the one hand, demand shows very marked seasonal patterns both in the very short term (each hour
of the day and night) and during the different months of the year, when consumption can be on average
higher or lower. It also exhibits unexpected changes (for instance, due to variations in weather) that affect
the price of electricity in the wholesale markets.

On the other hand, the supply of electricity also shows predictable patterns plus random events which
affect it in the medium as well as the very short term. For example, at each moment of the day, the supply
of electricity depends on the effective capacity of power generation of the market at that specific time;
on the available technologies at every minute (which in the case of wind power, photovoltaic, and run-
of-river hydro production depend on the weather conditions); and, finally, on the price fluctuations of the
commodities used as inputs to produce electricity (natural gas, coal, oil and its by-products, as well as on
some markets, such as the European Union, on CO2 emission rights); see [5].

It is also worth remembering that electricity cannot be stored. For this reason, market participants cannot
hold inventories to smooth abrupt changes in prices which are due to unexpected variations in those factors
that affect the demand and the power generation capacity.

Therefore, in an environment in which spot prices are determined by the interaction between supply
and demand, market participants are highly exposed to price and volume risk because they are not able to
smooth both expected and unexpected changes in the key factors that affect generation costs and electricity
demand.1 For instance, a generator that is able to pass on the fluctuations in the prices of fuel to electricity
tariffs (i.e. paid by households, small firms) is much less exposed to swings in fuel prices than those who
cannot transfer cost changes to final consumers. If the uncertainty around fuel prices were the main concern,
generators could hedge this risk by purchasing oil, gas and/or coal in the forward markets which, relative
to the electricity market, are highly developed and liquid, but the generators will still be exposed to volume
risk. However, in general there are many other factors that affect the volatility of wholesale electricity
prices and to manage these risks market participants prefer to participate in the electricity forward markets
(trading futures, forwards or more complex derivatives such as options) and/or make operational decisions
that allow them to set the desired level of exposure to price and volume risk. In particular, an energy
company can cover its exposure to the spot price risk (risk of falling prices in the spot market) through the
forward sale of its expected output (selling futures or forwards). It can also consider a vertical integration,
for instance, becoming a retailer, thus selling directly all or part of its expected output to the final consumer.

Forward markets play an important role both as a mechanism for transferring risk between agents and in
the process of gathering information that leads to price discovery. In other words, by determining the price
for electricity delivered at a future date, they also contribute to determining price expectations at this future
date or period—below we discuss that forward prices can be decomposed in an expectation component and
a risk premium component. Also, the information about forward prices on the main market has significant
repercussions on the prices that the final consumers pay. In fact, for large electricity consumers, the direct
participation in the forward markets can be an alternative to negotiating with electricity retailers.

In the past few years, trading volumes of futures and forwards in Europe have increased in a sustained
way. Total trading volumes, both in exchanges and in the over-the-counter (OTC) markets, have grown
by 25 % over the period 2006–2010. In fact, if we look further back, volumes have increased every year

1 Volume risk refers to the risk that generators (retailers) face because they do not know the quantity of electricity that they
will be required to produce (supply to final consumers) in the future.
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since the late 1990s, with 2004 being the only exception. The growth in trading volumes (German, France,
Scandinavia) is at least partially explained by the progress of the liberalisation process; see [17].

An example of the influence of liberalisation is that observed in Spain, where volumes traded in the
forward electricity market have experienced a remarkable increase. In 2007, volume traded in OTC forward
markets was 38.5 TWh while in 2011 OTC volume rose to 284 TWh. This increase was driven, among other
factors, by the development of new forward trading mechanisms (mainly based on auction mechanisms);
the creation of the MIBEL derivatives market known as OMIP; a higher number of participants in the
forward market; and the progressive disappearance of regulated electricity tariffs for bigger consumers as
well as, in July 2009, the creation of “last resort” tariffs, which are mainly fixed according to a forward
trading mechanism. Initially, energy prices were set by the government without using a cost-reflective
mechanism, whereas nowadays 3-month forward contracts are auctioned and the auction price is used as
reference to set tariffs for final consumers.

The objective of this chapter is to carry out a first analysis of the main determinants of electricity forward
prices and forward risk premium in the Spanish market, where we also draw comparisons with the French
and German electricity wholesale market. In Sect. 8.2, we present a brief overview of how forward markets
work and the types of agents who participate in these markets. In Sect. 8.3, we summarise the academic
literature that studies the determining factors of forward prices and the forward premium. With the aim
of discussing the current situation of the electricity forward market in Spain, in Sect. 8.4, we examine the
main factors that determine the Spanish electricity forward prices. We also study the relationship between
forward prices in Spain, Germany and France and take into account the relationship between the forward
prices in Spain and the forward prices of natural gas in the European markets, as well as the price of CO2

emission rights. At the end of this chapter, we employ a regression analysis to determine and quantify
the links and factors that affect these markets. Section 8.5 examines the evolution of the Spanish ex-post
electricity forward premium. To do so, we briefly analyse the evolution of the forward premium calculated
with the equilibrium prices of the CESUR call auctions and the futures prices quoted in OMIP. We also
analyse the relationship between electricity forward premia in Germany, France and Spain, as well as
the relationship between these forward premia and natural gas forward premia in the European markets.
Finally, Sect. 8.6 concludes.

8.2 Forward Markets: Brief Summary of Their Functions and Operations
and Types of Market Participants

Forward markets play two basic economic functions: price determination and transfer of risk among agents.
Forward markets allow agents to agree today on a fixed price for delivery of the underlying at a future period
which reflects the information and expectations of different market participants. Clearly, the existence of
prices associated with the future delivery of a commodity affects the investment decisions that the economic
agents have to make today. For instance, if a farmer sees the price at which she can secure the sale of her
harvest in the future (after harvesting), she can take into account this information when deciding whether
she should or should not sow a crop (invest). Forward markets, or derivatives market in general, thus play
a function of “price discovery”.

Forward markets also allow agents to hedge risk and to reach the desired level of risk exposure. Those
agents who wish to reduce their exposure to spot price fluctuations can do so by transferring such risk to
the ones who are willing to accept it for different reasons. For instance, if two agents who are exposed to
the same risk but hold opposite positions (i.e. the producer of a commodity and a consumer of that same
commodity) wish to reduce their exposure to future spot price fluctuations, they will be interested in doing
a forward transaction. There are also agents who are more tolerant to risk than others and who are willing to
buy the risk of the less tolerant participants, provided the price is attractive (risk premium). In this instance,
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those who are less tolerant to risk (i.e. with a higher degree of risk aversion) may be willing to pay a
premium to reduce their risk exposure. And those who are more tolerant to risk are willing to increase their
risk exposure in exchange for compensation (risk premium).

8.2.1 Exchange Traded and Over-the-Counter Markets

The trade of forward energy commodities, just like the trade of financial products, can take place in ex-
change traded markets (futures markets) or in OTC markets. The main difference between exchange traded
(for instance, futures contracts) and OTC (for instance, forward contracts) markets is that the former re-
quires a competent body to grant them administrative authority as well as approve its regulations.

The OTC market is a bilateral market, which is self-regulated as the agents agree the terms of the
transaction, including the nature of the products that are exchanged, and the generic terms of the contracts.
These terms include eligible contract participants and modes of settlement; credit guarantees required from
the counterparties; events that might cause the termination of the contract between the counterparties;
quantity and quality of the underlying.

In order for the agents to be able to participate in the OTC market, the first step is to open lines of
credit between the negotiating parties. Therefore, the higher the number of firms with which the agents
have operational agreements, the better price they will obtain in the OTC market (as the number of coun-
terparties will be higher). In all cases, even though the counterparty credit risk management in the OTC
markets is bilateral, the OTC transactions can also be registered for clearing and settlement via the Central
Counterparties Clearing Houses (CCH).

To reduce counterparty search costs and increase liquidity, the OTC markets can be organised around
brokers who facilitate the search of price information—performing an important role in the “price discov-
ery” process. They also identify counterparties in the market and execute transactions on behalf of other
market participants. Brokers do not hold positions of their own; i.e. they do not hold inventories of forward
contracts.

Futures markets are regulated and require previous administrative authorisation on the part of the respec-
tive country’s financial regulator in order to perform their activities. The market regulations, transaction
costs, settlement structure and liquidity requirements will have to be approved by the financial regulator.
Finally, market agents must become members to be able to trade with other members.

The futures market negotiation platform allows its members to submit orders to buy and sell contracts.
The matching of these orders is anonymous which is due to the fact that the CCH intervenes in every futures
transaction between a buyer and a seller. The CCH bears the counterparty risk: becomes the seller to every
buyer and the buyer to every seller and if one of the party defaults the CCH honours the contract. Moreover,
one of the advantages of standardising the contracts that trade in the exchange is that market participants
are easily able to unwind their positions. Finally, it is worth noting that the CCH can also register OTC
transactions for settlement.

In order to have enough capital to bear the market participants’ credit risk, the CCH establishes a set
of minimum credit requirements for membership and market participation. Once a transaction has taken
place, the CCH also demands a minimum margin requirement from a buyer and a seller. Later, and on a
daily basis, the Clearing House calculates the market value of the participant’s open position on that day
(mark to market). If the position generates a loss higher than the collateral, the CCH can demand additional
guarantees (margin call). If the margin call is not covered by the clearing member, the CCH can close the
agent’s position. Finally, in the case of a participant defaulting, the CCH can make extraordinary margin
calls to the rest of market participants in order to guarantee that the CCH has enough funds.
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8.2.2 Types of Agents

In general terms, there exist three types of market participants in the futures and the OTC markets: hedgers,
speculators, and arbitrageurs.

Hedgers mainly participate in the forward market with the objective of reducing the natural exposure
to price risk of a certain commodity. An example is a producer who wishes to reduce her exposure to the
future price volatility of her produce. In this case, the agent is exposed to the cash price fluctuations when
she sells her product. She participates in the forward market to hedge or reduce her exposure to price risk,
by forward selling a percentage of his expected production.

Speculators are agents who take positions according to their expectations about the future price of the
underlying. In this sense, speculators participate in the market by taking price risk and expecting to profit
from advantageous price fluctuations or earning (on average) the risk premium. Also, speculators may be
willing to participate in the forward market to diversify their own portfolio.

For instance, an investment bank with a certain investment portfolio might be interested in becoming
an energy forward market participant. The bank’s positions in the forward market consists of a hedging
component and a speculative component. In the hedging component the bank takes advantage of the corre-
lation between the variations in the energy forward market and his own portfolio. His participation in the
energy forward market allows to reduce the aggregated risk values of his portfolio (diversification effect).
Thus, this explains the increased interest on the part of some financial institutions to participate in the en-
ergy forward market (such as oil). Their participation in these markets allows them to hedge, among other
risks, inflation risk, which affects negatively the profitability of their purely financial portfolio. Therefore,
speculators can be interested in becoming energy forward market participants, in order to diversify their
portfolios, and hedge the global risk value of their investments. Finally, the bank’s speculative component
is designed to profit from the risk premium in the forward market.

Arbitrageurs are agents who analyse the price differential between two assets and profit from possible
inconsistencies between their prices or of other financial products linked to them. For example, arbitrageurs
operate in two different markets where the underlying is very similar (or where there is a strong correlation
between the assets).

In order to guarantee the liquidity of a forward market, it is necessary that these three agents coexist.
In a market solely made of hedgers, there will be less liquidity since the volume of exchanges is reduced
because most transactions will only take place between two hedgers with opposite positions (for instance,
a producer and a consumer). With the presence of agents who operate with a diverse scope, the number of
potential transactions increases and the hedging possibilities multiply. Therefore, hedgers benefit from a
high number of heterogeneous market participants, among whom there are speculators.

Finally, we note two additional types of agents who play an important role in developing market liquid-
ity: the aforementioned brokers and the “market makers”. Both agents contribute to reduce the counterparty
search costs and therefore the cost of the transaction.

The brokers’ basic function is to facilitate trading between two agents with opposite positions. They
also facilitate access to the market to those clients who operate in it occasionally or are not big enough
to participate in it. The OTC market normally operates through brokers, who centralise the counterparty
search, which should otherwise be bilateral, in exchange for a search fee. Brokers channel and centralise
the information about those agents who wish to carry out transactions (type of contracts, volumes and
target price). In this type of operations, the broker who is a market member searches for counterparties for
the agent willing to trade. During the first phase prior to buying and selling, negotiations are anonymous.
Once the transaction has taken place, the broker discloses the identity of the counterparties. Recall that in
the futures market all transactions are anonymous. In the bilateral OTC market, on the other hand, each
counterparty’s identity is disclosed, once the transaction has taken place.

The main difference between brokers and “market makers” is that the former do not hold positions
of their own and only bring together buyers and sellers. Market makers, on the other hand, are liquidity
providers who are constantly ready to buy and sell contracts whilst holding positions and therefore are
exposed to inventory risk.
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8.3 The Relationship Between Forward and Spot Prices:
A Theoretical Framework

Here we review two theories that explain how equilibrium prices of forward contracts written on com-
modities are obtained. In particular, we look at price formation under the “cost-of-carry” and “hedging
pressures” theories. The former was developed by [15] and the latter was developed by [16] which is usu-
ally employed to analyse prices of forward contracts when the underlying commodity is non-storable as in
the case of electricity. Subsequently, we revise the main empirical results about the determinants of forward
prices and risk premium.

8.3.1 Valuation of Forward Contracts Where the Underlying Is a Storable
Commodity: Cost-of-Carry Formula

One of the most used and liquid financial instruments in the commodity markets is the futures contract (and
forward contracts). If we assume that

1. The costs of storing the underlying commodity are zero
2. The underlying commodity does not pay dividends or the owner of the underlying commodity does not

receive any additional profit from its storage

the market price of a future contract at time t will only depend on three variables: the value of the underlying
asset S(t), the risk-free rate r and the contract maturity T . In this case, it is easy to show that the price of
the future contract at time t (t < T ) is given by

F(t,T ) = S(t)er(T−t). (8.1)

Storage costs are important and affect the price of the forward contract. Let us assume that storage costs
are q per unit of time and per unit of the commodity. Then, the price of the forward contract becomes

F(t,T ) = S(t)e(r+q)(T−t) . (8.2)

Moreover, it could also be the case that the owner of the commodity derives certain value or yield from
keeping the commodity in her possession. For example, from a strategic point of view, an owner of stored
natural gas can impute some value to the fact that he can access the natural gas should the need arise and
is convenient for him. The value derived from owning the commodity or from receiving a yield from the
commodity is known as “convenience yield”. If we assume that the owner of the commodity receives a
yield of c per unit of time, then we can show that the arbitrage-free price of the forward contract is

F(t,T ) = S(t)e(r+q−c)(T−t) . (8.3)

In this section we analysed the determinants of forward prices based on the theory of storage originating
with [15]; below we examine [16] theory about the role of futures contracts as instruments to hedge price
risk. Although in the past these were considered alternative theories to value forward contracts, nowadays
they may be regarded as complementary.
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8.3.2 The Theory of Hedging Pressure to Value Futures Contracts

The theory of hedging pressure to value forwards is complementary to the theory of storage. The hedging
pressure hypothesis applies to commodities in general—storable or non-storable. Since electricity cannot
be stored, the theory that we shortly expose is the main line of analysis in the academic literature to value
forward prices in the electricity market.

According to the theory of hedging pressure originating with [16], the futures contract is an instrument to
hedge away price risk, as it allows the agent to secure the price at which an underlying asset can be bought
or sold at a future date. From this perspective, the futures contract plays a similar role to an insurance
policy, in that it eliminates the price risk. Consequently, the price of a futures contract is the sum of the
expected price of the underlying at a future date and the anticipated risk premium (“price of the insurance
policy”). The risk premium is the price that the hedger is willing to pay to hedge away her exposure to
price volatility. In other words, the risk premium is the compensation required by the agent who is willing
to take the price risk. The expected risk premium is therefore the price associated with the transfer of risk
between agents involved in the exchange of a futures/forward contract.

Generally, the prices of futures contracts differ from the expected price of the underlying at the future
date of expiration, due to the existence of a risk premium that certain agents are willing to pay to hedge
away the price risk. Similarly, it amounts to the risk that other agents are willing to take on.

The sign of the risk premium will depend on whether the hedgers are mainly producers or consumers,
as well as on the number and type of agents who are willing to take on the risk (hedgers and speculators).
Keynes, in his original work, assumed that the hedgers were mainly producers, which resulted in a negative
risk premium. The producers were willing to sell their expected output at a fixed price (hedging away the
spot price risk), which was lower than the expected future spot price. The lower price, associated with the
risk premium, results in the lower profit they are willing to make to hedge away the price risk. Subsequent
analyses by [9, 10] generalise the hedging pressure hypothesis, relating the risk premium to the net positions
of hedgers (which can vary in time); see [6, 7] for a discussion in gas and electricity markets.

Indeed, the sign of the risk premium of a same commodity varies in time, since the risks which producers
and consumers are facing can be seasonal. During periods of high demand, spot prices can reach high
levels and be very volatile, due to the convexity of the offer curve and the possibility of positive spikes in
prices (positive asymmetry in the underlying price distribution). In these periods, consumers desire to be
less exposed to the spot price fluctuation and are more willing to pay a positive risk premium or to accept
a forward price higher than the expected spot price. During these same periods, producers can prefer to be
exposed to (potential) positive price shocks (positive asymmetry in the underlying price distribution) and
be less inclined to offer cover, i.e. sell forwards or futures contracts. The risk premium to secure a price
during these periods and to hedge away possible losses from the exposure to the spot price (with a positive
asymmetric price distribution) can be high.

In this context, it is expected that the entry of speculators in the market, as agents who are willing to
offer cover (to buy or sell futures contracts to producers or consumers), can reduce the risk premium, as
the market becomes more competitive.

The risk premium is therefore the price associated with the transfer of risk between speculators and
hedgers. Like any other prices, a high-risk premium discourages certain agents to hedge. For a determined
level of risk premium, they might prefer to be more exposed to the spot price fluctuations. Therefore, at
a higher level of (expected) risk premium, demand for cover is lower. Similarly, a high-risk premium will
incentivise speculators to participate in the market, if there are no major costs or barriers to their entry.
For a high level of expected risk premium, they will be willing to offer cover, in exchange of taking on the
price risk.

Therefore, like in any other markets, speculators will participate with the hope to obtain a gain. In their
case, the incentives to enter the market come from the expectation of gaining a profit from taking on the
risk premium from the hedgers. They are also incentivised to participate due to the diversification effect
that futures contracts have on their portfolio (for instance, electricity futures).
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The risk premium is an important concept that affects the costs and the benefits of hedging. At the
same time, decisions about production, storage and consumption are made taking into account the role that
futures prices play as indicators of future spot prices. Therefore, it is important to understand the difference
between futures prices and spot prices in the future (risk premium).

8.3.3 The Forward Risk Premium: Ex-ante vs Ex-post

According to the theory of hedging pressure, the price of a forward contract can be decomposed into the
sum of two terms: the expected price of the underlying and a risk premium. This risk premium could
either be positive or negative. Thus, if the price of the forward contract is above the expected value of the
underlying, i.e. the risk premium is positive, the consumers (buyers of the forward contract) are willing to
pay over and above the expected value of the commodity to avoid exposure to fluctuations in the price of
the commodity. Similarly, if the price of the forward contract is below the expected value of the commodity,
the producers are willing to offer a discount so that they can avoid exposure to changes in the value of the
commodity they would otherwise have to sell in the spot market.

There are two ways in which one can define the forward risk premium: ex-ante and ex-post. The ex-
ante forward premium is defined as the difference between the forward price and the expected price of the
underlying commodity. Thus, the ex-ante forward premium is not directly observable from market data and
requires to model the dynamics of the underlying commodity to be able to calculate the expected value of
the commodity at a later date. Therefore, the main disadvantage of this approach is that different models
for the stochastic dynamics of the commodity will generally result in different values for the expected price
of the commodity.

The ex-post forward premium (or realised forward premium) is defined as the difference between the
forward and the realised spot price on the day (or days) that the forward contract expires.

Therefore

Ex-ante forward premium: FPex−ante(t,T ) = F(t,T )−Et [S(T )] , (8.4)

Ex-post forward premium: FPex−post(t,T ) = F(t,T )− S(T) , (8.5)

where we recall that F(t,T ) refers to the forward’s price at time t for delivery of the underlying at the future
date T , and here S(T ) is the mean of the (realised) spot price during the delivery period T (if the delivery
period is one day then it is the spot price on that day).

For example, the delivery period T could be from the 1st of January until 31st of January of the same
year, and in this case S(T ) is the mean of the electricity price during all the days in January. Finally, Et is
the expectations operator conditioned on the information up until time t.

Note that the ex-post risk premium can be decomposed in the following way:

FPex−post(t,T ) = F(t,T )− S(T) = F(t,T )−Et [S(T )]+ {Et [S(T )]− S(T)} . (8.6)

In other words, the ex-post forward premium can be interpreted as the sum of (a) the ex-ante forward
premium, and (b) the difference between the expected value of the price of the commodity during the
delivery period and the realised price during the delivery period, i.e. the forecast error.

8.3.4 Forward Premium: Empirical Studies

A number of studies have measured the forward premia in the most important electricity markets in the
USA and Europe; see [1–4, 6, 8, 11, 14, 18, 19].
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[6] study the forward premia dynamics of England and Wales during the period 1999–2006 NordPool
during 2000–2006 and PJM during 1999–2006. The authors find that in all markets the ex-ante forward
premia (using monthly forwards) are highest when the volatility of demand is also highest. For example,
in the PJM market, the forward premium is between 30 $/MWh and 75 $/MWh during the months of May,
June and July during 1999 and 2000. These results are similar to those of [2] for the same period.

[6] also find that in all markets the forward premium is seasonal and there are months where it is positive
and others when it is negative. For instance, in the PJM there are months during the 1999–2000 period when
the premia are negative. Similarly, in the England and Wales market they find that the forward premia are
negative between February and July during 2002 to 2005, and in NordPool the forward premia are also neg-
ative during February, April, May, June and July between 2003 and 2006. The intuition is that when sellers
of forwards are keen to lock in revenues, they are willing to offer forward contracts at a discount below the
expected value of the commodity, thus the forward premia become negative because F(t,T ) < Et [S(T )].
Similarly, when consumers are pushing forward prices above the expected value of the commodity, the
forward premia are positive, F(t,T )> Et [S(T )]; this is the case in England and Wales during August and
January due to high demand and high volatility of demand as well as increased probability of observing
spikes in prices.

Moreover, [18] analyse forward prices in the PJM market during the period 1999–2005. The authors
find that for some days during July in 1999–2001 the forward premia reached values of around 50 $/MWh.
After this period, the premium decreases and in 2005 it is around 19 $/MWh. Their study shows that periods
of high forward premia coincide with those when the probability of observing spikes is also highest which
is normally around the summer months.

[8] analyse the forward premia in the Spanish market during the period 2003–2008. They find that the
ex-post premium using monthly contracts is not statistically significant different from zero although there
is considerable variation from month to month. Moreover, [14] analyse the forward premia in the NordPool
market during 1997–2007 and find that, on average, the forward premia are positive and seasonal: during
the winter months it is high and during the summer it is zero. [1, 4] also look at the dynamics of the forward
premia in England and Wales and Germany, respectively.

The recent work of [19] studies different factors that affect the dynamics of the electricity forward
premia in the European Energy Exchange (EEX) using monthly contracts. The authors find that the forward
premia in gas contracts have an effect on the forward premia of electricity contracts, particularly the premia
in the peak electricity contracts. We note that the findings we present in this chapter (see Sect. 8.5) show that
the (ex-post) quarterly forward premia in wholesale electricity markets is related to the quarterly forward
premia of neighbouring markets (France and Germany) and the (ex-post) forward premia found in the gas
forward markets. Therefore, our results lend support to those of [19].

In the next Sect. 8.4, we analyse the dynamics of forward prices as well as their key determinants, before
analysing, in Sect. 8.5, the dynamics of the forward premia.

8.4 An Analysis of the Key Determinants of Electricity Forward Prices in Spain

In this section we examine a few of the key determinants of electricity forward prices in Spain. Firstly,
we present a brief review of the electricity generation mix in Spain. Secondly, given the marginal role of
combined cycle gas turbine (CCGT) in the Spanish electricity market, we study the relationship between
electricity forward prices and an indicator of forward variable costs of a CCGT plant that takes into account
forward prices for natural gas on the European reference markets2 and prices of CO2 emission rights.
Thirdly, we analyse the correlation between electricity forward prices in Spain, France, and Germany.

2 It has to be taken into account that in Spain, a developed gas market with liquid and transparent spot and forward gas prices
does not exist.
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Finally, we present the results of a preliminary econometric analysis where we show that there are relevant
factors which are specific to the Spanish spot market and contribute to determining the yearly forward
prices. Among them, we include the international prices for natural gas, coal and CO2 emission rights, and
the electricity futures prices in neighbouring countries.

8.4.1 Energy Balance and Installed Power Capacity by Energy Technologies
in Spain

Up to 31st December 2010, the installed power capacity in Spain amounted to 97,447 MWh, of which
63,833 MWh was generated by conventional units and 33,614 MWh by renewable producers; see Table 8.1.
The installed capacity of CCGT plants is the highest in the Spanish generation park, amounts to 25,220,
MWh, and it is followed by wind power turbines (19,813 MWh); hydro power stations run by conventional
operators (16,657 MWh); and coal-fired thermal power plants (11,380 MWh).

Table 8.1 Installed capacity as of Dec 2010

Installed Capacity (31 Dec. 2010)
Spain (mainland) System MWh % 10/09

Hydro 16.657 0.0
Nuclear 7.716 0.0

Coal 11.380 0.2
Fuel/Gas 2.860 -4.9

Combined Cycle 25.220 9.3
Conventional Total 63.833 3.3

Wind 19.813 5.8
Solar 4.018 15.5

Other renewables 9.783 0.6
Renewables Total 33.614 5.3

TOTAL 97.447 4.0

Source: REE

In terms of generated power, the CCGT plants produced almost 65 TWh in 2010, which represents 25 %
of the electricity demand in mainland Spain . This was 17 % lower than in the previous year, due to the
combined effect of lower electricity demand and a higher output from renewables. In 2010, hydro power
generation amounted to 38 TWh (a 59 % increase compared to 2009), whilst wind technology generated
42,6 TWh (an increase of 18,5 % compared to the previous year); see Table 8.2.

From Tables 8.1 and 8.2 it can be seen that CCGT plants play a very important role in the energy
mix in Spain (marginal technology), irrespective of the annual variations between electricity-generating
technologies in the energy balance. For this reason, it is not surprising that natural gas prices and CO2

emission rights also play an important role in the evolution of the wholesale electricity spot and forward
prices in Spain. In the next subsection, we analyse the relationship between natural gas and CO2 forward
prices and Spanish electricity forward prices.
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Table 8.2 Electricity production per technology in
Spain mainland in 2010

Electricity Balance, Year 2010
Spain (mainland) System GWh % 10/09

Hydro 38,001 59.3
Nuclear 61,944 17.4

Coal 22,372 -33.9
Fuel/Gas 1,847 -11.3

Combined Cycle 64,913 -17.1
Total Conventional generation 189,077 -0.9

Consumption for power generation -6,670 -6.3
Wind 42,656 18.5
Solar 6,910 19.6

Other renewables 40,896 6.7
Renewables Total 90,462 13.0

Net generation 272,869 3.4
Pumped storage consumption -4.439 18.8

International exchanges -8.490 4.8
Demand 259,940 3.2

Source: REE

8.4.2 Electricity Forward Prices in Spain, Natural Gas Forward Prices
and CO2 Emission Rights

Given the marginal role of CCGT technology in the Spanish electricity market, it seems reasonable to
assume that natural gas prices and CO2 emission rights play an important role in determining electricity
forward prices. Even though renewable power plants are important in the energy mix, calculating the impact
of energy production from these technologies (especially from wind turbines) a few months ahead is very
difficult. For this reason, it is reasonable to think that fluctuations in natural gas forward prices have a
larger impact on electricity forward prices than daily or weekly variation in wind power production. In other
words, information about the wind turbine production during a specific month does not provide agents with
relevant information regarding wind production (and hence expected prices) a few months in the future.

In this sense, Fig. 8.1 shows the evolution of the calendar-year electricity futures contract with delivery
in 2011 (OMIP contract FTB YR-11), and the evolution of an indicator of forward variable energy cost
of a CCGT, that takes into account the price of the natural gas futures contract with delivery in 2011 and
the price of CO2 emission rights (EUA-11), through the corresponding efficiency and emissions rate. The
figure shows the high correlation between the price of the calendar-year electricity futures contract and the
calendar-year natural gas futures contract (and the price of the EUA-11 contract). With the exception of
the period between February and April 2010, when the indicator was below 40 euro/MWh, the price of the
calendar-year electricity contract was (+/−)10 % within the range of the variable forward cost indicator.

Figures 8.2 and 8.3, respectively, show the evolution of the price of three-month electricity futures price
with delivery in Q4 2010 (FTB Q4-10) and Q1 2011 (FTB Q1-11) and the variable forward energy cost
indicator.

From Figs. 8.1–8.3 we can conclude that the price trend of electricity futures contracts in Spain can be
at least partly explained by the evolution of natural gas forward prices on the European markets and those
of CO2 emission rights.
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Fig. 8.1 Evolution of the price of the calendar-year futures contract with delivery in 2011 (FTB YR-11) and the variable
forward cost indicator of a combined-cycle gas power plant (CCGT). Source: OMIP, EEX and authors’ calculations

8.4.3 Electricity Forward Prices in Spain, France, and Germany

It is a known fact that the electricity interconnection capacity between Spain and France, and thus with
the rest of Europe, is very limited. Indeed, Spain is an “energy island”. However, as Figs. 8.4 and 8.5
show, the prices of electricity forward contracts in Spain and those in France and Germany are correlated.
Specifically, Fig. 8.4 shows the daily evolution of the price of three-month base-load futures with delivery in
Q4 2010 in France, Germany and Spain during the period between January and September 2010. Figure 8.5,
instead, shows the daily evolution of the price of calendar-year base-load futures with delivery in 2010,
between January 2008 and December 2009. In both figures, we observe that the trend that Spanish forward
prices follow is similar to the one followed by forward contracts in France and in Germany. However, the
difference between the French and the German contracts is lower than the difference between each one of
these and the Spanish contract. Likewise, the difference between electricity forward prices in France and
Germany is smaller and less volatile than the spread between the electricity forward prices in either one of
these countries and the Spanish contract.

The correlation between electricity forward prices in these three countries is at least partly explained
by the fact that the fuel forward markets—such as the natural gas and the coal markets—and the contracts
for CO2 emission rights are European. Therefore, although Spain can be considered an energy island, the
dependence of electricity forward prices on international natural gas, coal and CO2 prices is a channel for
the interdependence between electricity forward prices in Spain and forward electricity prices in Germany
or France.

Finally, Fig. 8.6 shows the average price of three-month futures contracts in Germany, France and Spain.
The figure also includes the equilibrium price at the CESUR (supplier of last resort) call auctions in the
Spanish market, where the contract auctioned is a three-month (base-load) forward contract (equivalent to
the quarterly contract traded at the Iberian futures market, OMIP). In general terms, we observe that there
is a positive correlation between the average prices of the contracts taken into account.
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Fig. 8.2 Evolution of the price of three-month futures contracts with delivery in Q4 2010 (FTB Q4-10) and the variable
forward cost indicator of a CCGT—1st March 2010–27th September 2010. Source: OMIP, EEX and authors’ calculations

8.4.4 Regression Model: Summary of the Key Determinants of Futures Prices

Natural gas and coal forward prices (with delivery during the same period) and the prices of CO2 emission
rights are among the potential explanatory factors of the evolution of electricity forward prices in Spain.
Other explanatory factors include the electricity forward prices of equivalent contracts (base-load contracts
with delivery during the same period) in neighbouring countries (France and Germany), as well as factors
which are intrinsic to the Spanish electricity market (for instance, the level of hydro reserves).

It is worth considering that the influence and relevance of each possible explanatory variable might
change according to the forward contract taken into account. Intuitively, it would seem reasonable to think
that the evolution of daily prices on the spot market or the level of hydro resources might have more
influence on those forwards with a delivery nearer in time (i.e. contracts close to the delivery period), for
instance, monthly contracts with delivery in one month. Comparatively, it is reasonable to assume that
forward prices of fuels or electricity forward prices in France and Germany might have more influence
on those contracts with a longer delivery. Although a complete analysis of the factors that affect Spanish
electricity forwards for different time-to-delivery contracts is beyond the scope of this chapter, we present a
preliminary model to analyse the factors influencing the Spanish calendar-year futures prices with delivery
in 2011. A future interesting line of research would be to compare the different sensitivities of electricity
forward prices in different countries to the same common factors (i.e. international natural gas, coal and
CO2 prices).

Table 8.3 shows the results of a regression analysis using the calendar-year futures contract with delivery
in 2011 traded in the Iberian electricity futures market OMIP. In this case, the explanatory factors are the:
French electricity futures contract covering one year ahead (Cal-11 elec. FR); natural gas contract with
delivery in 2011 quoted on the European Energy Exchange (Cal-11 gas nat. EEX); European calendar-year
coal contract with delivery in 2011 (ARA Coal Year Futures Cal-11); and CO2 emission rights in 2011
(EUA-11). Likewise, we include the level of hydro reserves compared to the average during the same week
in the past 5 years “Diff. Hydro Reserv” and the fluctuating average during the past 30 days of the spot
market price (“spot price moving average”).
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Fig. 8.3 Evolution of the price of three-month futures contracts with delivery in Q1 2011 (FTB Q1-11) and the variable
forward cost indicator of a CCGT—1st March 2010–27th September 2010. Source: OMIP, EEX and authors’ calculations

The results of the regression analysis show that the model obtains a high R2 = 0.83 coefficient. The signs
of the estimated variables are as expected. This means that the higher (lower) the price for natural gas, coal,
emission rights and moving average of the electricity spot, the higher (lower) the price of the calendar-year
electricity futures. Likewise, higher levels of hydro reserves (compared to the historical average) should
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exercise a downward price pressure on forward prices—this is borne out by the results of the regression
model. Finally, we observe that the price of natural gas and the EUA-11 also have a significant influence
on the equivalent contract (calendar-year contract with expiry in 2011) in France. Whilst statistically sig-
nificant, the correlation coefficient linked to the coal forward contract, instead, is less influential. Hydro
reserves play an important role (the correlation coefficient is significant). However, the moving spot price
average, though statistically significant, is associated to a very small coefficient. Therefore, its effect on the
forward price with expiry in 2011 is negligible.

Table 8.3 Results of the regression model for the calendar-year
forward contract with expiry in 2011

Variable Coefficient Standard Error T-statistic
constant 12.776 1.223 10.44

Call-11 Elec France 0.088 0.037 2.37
Cal-11 nat gas EEX 0.0728 0.046 15.81

Cal-11 coal 0.056 0.009 5.94
EUA-11 0.461 0.059 7.79

Hydro reserve (diff) -0.000157 0.000029 -5.50
Spot price moving average 0.023 0.011 2.05

R2 0.838
Error Correction Model 1.125

Daily data. Period: 2/1/2009 to 27/12/2010. Source: EEX, OMEL,
MMA. Authors’ calculations

According to the results of the regression model, some of the factors that partially explain the evolution
of the electricity futures prices in Spain include the evolution of forward prices for natural gas in Europe;
the CO2 emission rights; and, finally, the electricity forward prices in France.
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In the next section, we analyse the evolution of the ex-post forward premium in Spain. We also examine
the correlation that can potentially exist between risk premia in European futures and risk premia in natural
gas futures.

8.5 An Analysis of the Ex-post Risk Premium

In this section we examine the evolution of the ex-post electricity forward risk premium calculated from the
futures prices (and ex-post spot prices) of France, Germany and Spain. For the Spanish case, we take into
account the ex-post forward risk premium obtained from the difference between futures prices traded at the
Iberian electricity futures market OMIP and (ex-post) spot prices, and also the one obtained from the differ-
ence between the equilibrium prices of CESUR (supplier of last resort) call auction and the corresponding
(ex-post) spot prices.

In particular, we firstly analyse the evolution of ex-post electricity forward risk premium in Spain. Sec-
ondly, we compare the evolution of the forward risk premium in each of the three markets we analyse:
France, Germany and Spain. The results show a high correlation between the electricity forward risk pre-
mia in these three countries. Thirdly, we perform a comparative analysis of the forward premium in the
electricity and the natural gas markets. The goal of this last analysis is to provide some empirical evidence
on the relationship between the electricity forward risk premium and the natural gas forward risk premium.
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8.5.1 An Analysis of Electricity Ex-post Forward Risk Premia in Spain

In this section the evolution of the ex-post forward risk premium in Spain is analysed. We calculate the
ex-post risk premium calculated from the quarterly forward prices and from CESUR call auctions. Firstly,
we show the evolution of ex-post risk premium computed as the difference between equilibrium prices
of the CESUR call auctions offering three-month base-load products and the ex-post spot (day-ahead)
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prices. In the quarterly CESUR auction, suppliers of last resort purchase three-month base-load forward
contracts with delivery in the next quarter. The equilibrium price of the auction is the main determinant
of energy cost component of electricity tariffs of last resort in Spain. Therefore, both the evolution of
the equilibrium prices in the CESUR auction and the evolution of the ex-post forward risk premium have
important implications for policy makers in Spain.

Figure 8.7 shows, for the period between July 2007 and March 2012, the evolution of the OMEL day-
ahead average spot price and the equilibrium price of the CESUR call auctions (three-month base-load
products) over the delivery period (three months after the date the call auction was held). From Fig. 8.7
we see that for the period July 2007 to June 2009 spot prices during certain quarters are higher than the
price resulting from the CESUR call auctions, resulting in a negative ex-post forward risk premium. Thus,
there are alternating quarterly periods with positive and negative ex-post forward risk premia (see also
Fig. 8.8 below). However, during the second semester of 2009 and the first semester of 2010, we observe
how the difference between the price resulting from the CESUR call auctions and the day-ahead spot prices
is clearly positive. The differences are very high, especially during the first semester of 2010, although it
must be stressed that spot prices during this period were abnormally low (compared to historical levels),
due to the very high levels of wind and hydro production in Spain during that period. From the last part
of the figure, second semester of 2010 and year 2011, it can be seen that differences between CESUR call
auctions and ex-post spot prices returned to a lower level, although on average the ex-post forward premium
has been positive (i.e. CESUR call auction equilibrium prices are above ex-post spot prices).
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Fig. 8.7 Evolution of the OMEL day-ahead spot price and the equilibrium price of the CESUR call auctions (three-month
base-load products). Period: July 2007–March 2012. Source: Call auction administrator and OMEL. Authors’ calculations

Figure 8.8 shows the ex-post forward risk premium for three-month base-load contracts, calculated using
OMIP traded futures prices and the prices of the CESUR call auctions. In this figure, we observe how the
forward risk premium calculated using OMIP traded futures prices or the CESUR prices alternates in sign
during the first eight quarter intervals (from Q3 of 2007 to Q2 of 2009). Nevertheless, from Q3 of 2009 to
the last quarter interval we analyse (Q4-10), the differential has been generally positive. It is worth noting
that the only quarter, when the risk premium calculated using OMIP traded futures prices and the prices
resulting from the CESUR call auctions differ in sign, is the second quarter of 2010. The main reason for
this difference is that the CESUR call auction that obtained this quarterly price was held in December 2009,
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i.e. this was one of the two auctions held six months in advance of the delivery period. At the time, the
price of the three-month contract with expiry during the second quarter of 2010 was higher than the one
obtained during the month of March 2010. Therefore, a factor that also affects the risk premium which is
obtained starting from the prices resulting from the CESUR call auctions is the timing of the auctions and
in particular the time between the auction is held and the start of the delivery period. In other words, the
hedging or procurement strategy employed by any hedger is an important factor behind the ex-post forward
risk premium that a particular hedger may obtain.

8.5.2 A Comparative Analysis of the Forward Premium in Spain,
France and Germany

In previous sections, we observed that there is a positive correlation between electricity forward prices in
Germany, France and Spain. In this section, we analyse the ex-post forward risk premia obtained from
quarterly forward prices in these three countries. As in the previous section, in the case of the Spanish
market, the forward risk premia is calculated both from futures prices traded at the Iberian derivatives
market OMIP as well as from the prices resulting from the CESUR call auctions (where contracts traded
are quarterly base-load forward contracts).

In Fig. 8.9 we show that the evolution of quarterly ex-post forward risk premia in different markets
maintains a certain correlation. During the quarters in which the risk premium is positive (negative) in
Germany and in France, it is also positive (negative) in the Spanish market.

It is worth noting the evolution of the ex-post risk premium from the CESUR call auctions during the
second semester of 2009 and the first semester of 2010. In Q4 of 2009 and Q1 of 2010, the ex-post risk
premium obtained from the CESUR call auctions in Spain is much higher than the one in Germany and in
France. This also includes the risk premium that is calculated using futures prices obtained during the last
trading days on the OMIP market. Likewise, the risk premium obtained from the CESUR call auctions is
positive during Q2 of 2010. During the same quarter, instead, the risk premium obtained from the OMIP
traded futures price, as well as the risk premia in Germany and in France, is negative. As explained above,
the fact that the sign of the risk premium obtained from CESUR call auction prices and the one obtained
from OMIP futures prices is different is due to the fact that for that quarter the corresponding CESUR
call auction was celebrated in October (rather than in December). As a result, the difference in the sign of
the risk premium provides evidence on the effect of the procurement or hedging strategy in the resulting
ex-post forward premium.

Among the possible factors that affected with greater or lesser intensity the risk premium during these
quarters, we include the low prices obtained on the spot market, with a high number of hours in which the
spot price was zero; the interval between call auctions employed at the time; the relatively high volumes
that were acquired during the ninth and the tenth CESUR call auctions; and, finally, the more relevant
contribution of the CESUR call auctions in the formation of last resort tariffs. In any case, we stress the
fact that the size and sign of the ex-post forward risk premia in France, Germany and Spain has positive
correlation. This positive correlation means that there is some kind of integration among the electricity
markets we analyse, and we hypothesise that there may exist a common factor that drives the ex-post
electricity forward risk premium. In the next section, we analyse the relationship between the electricity
forward premium and the natural gas forward premium.
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8.5.3 A Comparative Analysis of the Forward Premium in the Electricity
and the Natural Gas Markets

In previous section, we argued that natural gas forward contracts in Europe are one of the determinants of
the evolution of electricity forward prices. In particular, we showed in Sect. 8.4.4 above the role of natural
gas forward prices in the Spanish forward electricity prices. Given the correlation we observe between
electricity forward prices in Spain, France and Germany, it is worth considering the evolution of the forward
risk premia for electricity and natural gas. In fact, in the previous section, we showed that the evolution of
the forward risk premia in France, Spain and Germany follows a similar trend which suggests the existence
of a “common factor” that affects the forward prices and, thus, the risk premia in the three markets (perhaps
with different degrees of intensity). Figure 8.10 shows the electricity forward risk premia in Germany,
France and Spain (see also Fig. 8.9) and the forward risk premia for natural gas (with settlement in the
NBP and TTF gas markets). All the ex-post forward risk premia are calculated using the three-month
contracts with expiry during the following quarter.

As it can be seen from Fig. 8.10, the ex-post risk premia for the three-month contracts calculated using
the natural gas forwards and the electricity forwards, respectively, follow similar trends. Even though the
magnitudes of the risk premia differ, we observe that there is a high correlation between natural gas risk pre-
mia and electricity forward risk premia. Specifically, the average natural gas risk premia (1.26 EUR/MWh
in NBP and 1.02 EUR/MWh in TTF) are lower than the average risk premia for three-month electricity
contracts (4.56 EUR/MWh in Germany; 4.75 EUR/MWh in France; and 3.53 EUR/MWh in Spain), at
least for the contracts and the period we analyse.

The correlations between the natural gas and the electricity risk premia are always positive, as Fig. 8.10
depicts. The correlation matrix shows that the correlation between the electricity forward contracts is,
in the three cases, somewhat higher with the TTF contract than with the NBP contract. Moreover, the
correlation between electricity risk premia and natural gas risk premia is higher in France and Germany
than in Spain (if we analyse both TTF and NBP data). Specifically, the correlation between the French and
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German electricity risk premia and the natural gas risk premia fluctuates between 0.69 and 0.76 (TTF and
NBP data). The correlation between the Spanish electricity risk premium and the natural gas risk premium
fluctuates between 0.35 and 0.41 in the NBP and TTP gas markets, respectively.

Although it is beyond the scope of this chapter, some promising lines of research would be to analyse if
the correlation between natural gas forward risk premia and electricity forward risk premium behaves in the
same way when futures contracts with different maturities (monthly or annual contracts) are considered.
On the other hand, by enlarging the period of analysis, it would be interesting if the correlation between
natural gas and forward premia is time varying, and if this is the case, it would be also worth interesting to
analyse possible determinants of this hypothetical time-varying correlation.

8.6 Conclusions and Future Work

The liberalisation of energy markets entails the appearance of market risks which must be borne by market
participants: producers, retailers and final consumers. Some of these risks can be managed by participating
in the forward markets. These markets are instrumental to fix in advance the prices at which the agents buy
and sell power at a future date. Therefore the liquidity of forward markets and in particular the liquidity of
forward contracts with different maturities will affect the possibilities that agents have to obtain the desired
levels of exposure to spot price risk.

Achieving the desired level of risk implies transferring part of the risk to other agents who are willing
to bear it and command a compensation for it. This compensation is the forward risk premium which is
implicit in the forward price. Thus, forward prices are made up of two components: the expected spot price
at a future date and the forward risk premium.

In this article we show that there are various factors that influence the evolution of electricity for-
ward prices in Spain. These factors include among others the forward prices for natural gas and CO2

emission rights, as well as the electricity forward prices in Germany and in France and spot prices in Spain.



8 Forward Risk Premia 235

30 Ex post risk premium - NBP
Ex post risk premium - TTF
Ex post risk premium - Germany
Ex post risk premium - France

50

40

30

20

10

0

-10

-20

-30

20
G

as
 c

on
tr

ac
ts

/M
W

h 10

0

-10

Q
1-

07

Q
2-

07

Q
3-

07

Q
4-

07

Q
1-

08

Q
2-

08

Q
3-

08

Q
4-

08

Q
1-

09

Q
2-

09

Q
3-

09

Q
4-

09

Q
1-

10

Q
2-

10

Q
3-

10

Q
4-

10

-20

E
le

ct
ric

ity
 c

on
tr

ac
ts

/M
W

h

Fig. 8.10 Ex-post risk premia for the three-month forward contracts for electricity in Germany, France and Spain, and the
ex-post forward risk premia for the three-month contracts for natural gas (NBP and TTF data). Source: Platt’s, EEX, OMIP,
OMEL. Authors’ calculations

An interesting line of future research would be to analyse if the influence of these factors in the evolution
of electricity forward prices depends on the maturity of the forward contracts, i.e. if the sensitivities of
forward prices to those factors is time-to-maturity dependent.

We also analyse the behaviour of the ex-post electricity forward risk premia in Germany, France and
Spain. In particular, the ex-post risk premium analysis has highlighted a positive correlation between ex-
post electricity risk premia in Germany, France and Spain, as well as between risk premia for electricity and
natural gas futures prices. Another possible line of research would be to analyse if the correlation between
natural gas and forward premia is time varying and in particular to study the factors that may influence
the correlation between natural gas and electricity forward premia and how they affect the electricity risk
premia in different European countries.

The supervision of the forward price formation process for short, medium and long-term contracts
should be of particular interest to the supervisory authority, both in terms of market fundamentals and
microstructure. Although energy regulators may face some asymmetries in the capacity of supervision of
regulated futures markets and OTC forward markets, it is crucial that energy regulators, possibly in coor-
dination with financial regulators, do have access to futures and forward trading data. In this regard, the
recent publication of European Union (EU) Regulation 1227/2011 on wholesale energy market integrity
and transparency (REMIT) will help regulators to prevent use of insider information and other forms of
market abuse which distort wholesale energy prices. Since liquidity and price formation in wholesale for-
ward markets have an important influence on hedging ability of industrial consumers and generators and
may have an important influence on retail prices, regulators should be interested on understanding price
formation in electricity and natural gas forward markets and their possible interactions.
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Chapter 9
A Dynamic Lévy Copula Model for the Spark Spread

Thilo Meyer-Brandis and Michael Morgan

Abstract We present a model for the spark spread on energy markets which is implied by a two-dimensional
model for the electricity and gas spot prices. The marginal price processes are supposed to follow sums of
(not necessarily Gaussian) Ornstein-Uhlenbeck components and the main focus of this paper is on the two-
dimensional dependence modeling via Lévy copulas. We will introduce a specific class of skewed Lévy
copulas and estimate the complete model on data from UK markets. Further, due to the arithmetic structure
of the model, we are able to employ Fourier transform techniques to derive semi-analytic expressions for
option prices.

9.1 Introduction

The global economic growth highly depends on a sustainable supply of energy which has caused a strong
worldwide increase in demand of energy-related assets over the last decades. At the same time, in many
parts of the world, electricity markets have been or are in the process of being deregulated in order to
establish a free float of prices in a competitive environment. This deregulation of electricity markets has
led to the creation of a network of energy exchanges, where electricity is quoted almost as any other
commodity. This new and highly complex environment has introduced a lot of price uncertainty that energy
market participants have to cope with. Hence, the development of reliable and sustainable quantitative tools
for valuation and management of energy risk should be a key consideration of decision makers from politics
and industry.

In this paper we consider the specific problem to develop and estimate a dynamic model for the so-called
spark spread. The spark spread represents the difference between the price of electricity and the price of the
gas required to generate this electricity. In other words, the spread is a proxy for the cost of igniting fuel and
turning it into electricity, which indicates where the name “spark” comes from. Expressed mathematically
that is

S(t) := Ẽ(t)− cG̃(t) ,
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where Ẽ(t) is the spot price of electricity and G̃(t) the spot price of gas, both quoted in customary units.
The factor c is the (assumably) constant heat rate, which includes factors for matching the unit of G̃ to the
unit of Ẽ and moreover takes into account that gas is less efficient for most applications than electricity
and cannot be transformed into the latter without incurring losses. However, natural gas is a primary source
of energy and environmental awareness is drawing more attention to gas-fired power plants since they run
with very little pollution. The spark spread represents one of the primary cross-commodity products in
electricity markets.

When looking at the literature, one basically finds two different approaches to modelling the spark
spread:

1. Model the spark spread directly.
2. Specify a two-dimensional model for the underlying commodities and to infer the spark spread as the

difference of the margins.

The first approach, which is a so-called reduced form model of the spark spread, fully ignores the character
of the marginal processes of electricity and gas. A model from this class is proposed in [4] where the spread
price S(t) is assumed to follow a non-Gaussian OU process. The stress remains on tractability, since one
can derive pricing formulas quite simply. However, the major disadvantage lies in losing connection to the
marginal processes, which results in less robustness, especially when the market conditions change for one
marginal it is not transparent in which way parameters are affected.

Contrary to the reduced form approach, models from the second class keep track of the dynamics and,
in particular, the dependence of the marginal processes of the underlying commodities electricity and gas.
Examples of models from this class can be found in [3, 5, 14]. In [5] the marginal prices are assumed to
follow exponentials of Gaussian Ornstein-Uhlenbeck (for short OU) processes. In order to gain analytic
tractability the authors approximate the induced spark spread model as difference between two log-normal
random variables with a normal distribution. However, one of the most prominent features of electricity
prices (and also of gas prices on a smaller scale) are violent spikes, which are big upward jumps followed
by a rapid decline to normal levels. Obviously, a Gaussian setting is not flexible enough to capture neither
path nor distributional properties of this spiky behavior. An idea to improve this model was proposed in
[14], where the approximation by a normal distribution for the difference in exponential OUs is critiqued
and replaced by a normal inverse Gaussian (for short NIG) distribution, so as to capture the observed heavy-
tailedness. In [3] both electricity and gas price dynamics are modeled by discrete-time AR(1) processes
with NIG-distributed noise terms. In this setting, a more thorough analysis of the dependence structure
between the marginal processes is required to obtain the model of the spark spread in (9.1). The main
reason to choose a time-discrete model is to facilitate the dependence modeling, and the authors propose
to model the dependence structure by a copula

Ch(v,z) := vz+ h(1−|2v− 1|)(1− (2z−1)2)

that connects the NIG distributions of the random innovations between the discrete points of time.
In this paper we will pick up the trail of [3] by following their explicit call for further development

of continuous time modeling of the spark spread. We propose a two-dimensional dynamic model for the
vector of electricity and gas prices where the marginals follow sums of, not necessarily Gaussian, OU
processes (see (9.2) in Sect. 9.2). In the one-dimensional case, this model was successfully proposed and
estimated for electricity spot prices in [1, 12, 15]. In the present two-dimensional case the additional dif-
ficulty of modeling the multivariate dependence risk between electricity and gas prices arises. While the
specification of an appropriate covariance matrix is sufficient to connect the Gaussian OU components, we
propose to employ Lévy copulas to model the dependence of the non-Gaussian OU components. For this
purpose we introduce a new class of Lévy copulas that meet the requirement revealed by empirical spark
spread data. Besides being able to capture both path and distributional properties of the marginal price
processes as well as the multivariate dependence structure given by empirical data, the model exhibits
great analytic tractability. In particular, due to its arithmetic structure, we are able to develop semi-analytic
pricing formulas for options written on the spark spread by employing Fourier transform techniques.
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The remaining parts of the paper are structured as follows. In Sect. 9.2 we introduce our two-dimensional
dynamic model for the underlying electricity and gas prices. In particular we present a class of Lévy copu-
las that we use to specify the dependence structure in our multivariate setting. In Sect. 9.3 we demonstrate
how to fit the model to empirical data from the UK market. Finally, in Sect. 9.4 we employ Fourier trans-
form techniques to develop call option prices written on the spark spread. Further we demonstrate how to
numerically compute these option prices in the model fitted to UK data.

9.2 The Model

The objective is to build a two-dimensional model for the process (Ẽ(t), G̃(t)) which implies a flexible and
analytically tractable model for the spark spread

S(t) := Ẽ(t)− cG̃(t) (9.1)

that in particular provides an appropriate modeling of the dependence risk between electricity and gas
prices. We start by specifying the dynamic model for the marginal electricity spot price process where we
adopt the model proposed in [15] (see also [1, 12]) which has been shown to be analytically very tractable
and to successfully reproduce stylized features of electricity spot prices such as

• Seasonality on different time scales
• Stationarity of deseasonalized price series
• Multiscale autocorrelation structure
• Spike occurrence
• Non-Gaussianity, mainly caused by low-probability large-amplitude spikes

According to this model we set

Ẽ(t) =Λ e(t)
(

Y e
1 (t)+Ye

2 (t)
)
, (9.2)

where Y e
1 (t) and Y e

2 (t) are OU processes of the form

dY e
1 (t) = −λ e

1 (μ
e−Y e

1 (t))dt +σ edBe(t) , (9.3)

dY e
2 (t) = −λ e

2Y e
2 (t)dt + dLe(t) . (9.4)

The OU component Y e
1 (t) is driven by a Brownian motion Be(t) and is responsible for modeling the base

signal of the electricity spot price. The OU component Y e
2 (t) models the spike behavior of the spot price

and is driven by a compound Poisson process

Le(t) =
∫ t

0

∫
R

zNe(dt,dz) ,

where the associated Poisson jump measure Ne(dt,dz) is characterized by its Lévy measure νe(dz) =
ρe De(dz) with jump intensity ρe > 0 and jump distribution De(dz). Note that since Y e

2 is supposed to
model spikes caused by upward jumps the jump distribution De(dz) has positive support, i.e., Le(t) is a
subordinator. Further, Λ e(t) is a deterministic seasonality function, λ e

1 ,λ
e
2 > 0 are constants determining

the respective mean reversion rates of the OU components, while μe > 0 notates the mean reversion level
and σ e > 0 the volatility of Y e

1 (t) .
Next, we come to the marginal gas spot price process G̃(t). Since gas prices exhibit similar qualitative

behavior as electricity prices (the main difference being the smaller scale of spikes due to better storability
of gas compared to electricity) we adopt the same model as in (9.2) for gas prices, differentiating all objects
by a superscript g:
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G̃(t) =Λg(t)
(

Y g
1 (t)+Y g

2 (t)
)
, (9.5)

where Y g
1 (t) and Y g

2 (t) are OU processes of the form

dY g
1 (t) =−λ g

1 (μ
g−Y g

1 (t))dt +σgdBg(t) , (9.6)

dY g
2 (t) =−λ g

2 Y g
2 (t)dt + dLg(t) , (9.7)

where (Be(t),Bg(t)) is a two-dimensional (correlated) Brownian motion and the process (Le(t),Lg(t)) is a
two-dimensional compound Poisson process.

In order to complete the specification of the two-dimensional model (Ẽ(t), G̃(t)) needed for the spark
spread process (9.1), the remaining core problem is the specification of the dependence structure between
the margins Ẽ(t) and G̃(t), i.e., the specification of the multivariate distributions of (Be(t),Bg(t)) and
(Le(t),Lg(t)). As for the Gaussian distribution of (Be(t),Bg(t)), it is sufficient to determine the correlation
parameter δ between Be(1) and Bg(1). The main focus of this paper, however, lies on the modeling of
the multivariate Lévy process (Le(t),Lg(t)), i.e., on the modeling of the dependence risk of electricity and
gas spikes. This will be done by employing the concept ok Lévy copulas which offers an elegant way
to describe the dependence structure between the marginal pure-jump Lévy processes. Analogously to
how ordinary copulas link marginal distribution functions to determine the dependence structure between
random variables, Lévy copulas link the so-called marginal “tail integrals”, functions that tell us about how
many jumps above a certain size limit we will expect per unit time, to determine the dependence structure
in a dynamic system of pure-jump Lévy processes. In particular, the application of any Lévy copula on
marginal Lévy processes guarantees a multidimensional Lévy process [7]. This most convenient feature
allows for example the specification of the Lévy-Khinchin formula for the multidimensional Lévy process
in terms of the Lévy copula, which is a very useful fact when it comes to option pricing in multidimensional
Lévy models (see Sect. 9.4 below). In Appendix 9.4 we shortly recall the concept of tail integrals and Lévy
copulas.

Remark 9.1. We remark that in the case of compound Poisson processes we could also model the depen-
dence structure by usual copulas applied to marginal jump distributions. However, this would require a
cumbersome separation of the modeling and estimation procedure into dependent and independent com-
ponents. The Lévy copula approach, on the other hand, conveniently integrates the complete dependence
modeling and estimation into one concept. Also we remark that as soon as the compound Poisson processes
are replaced by general Lévy processes with possibly infinite activity the concept of Lévy copulas becomes
inevitable.

9.2.1 A Class of Lévy Copulas for the Spark Spread

Since in our model spikes are driven by positive jumps, we restrict ourselves to the concept of Lévy copulas
for two-dimensional Lévy measures with positive support for the dependence modeling of spike risk, i.e.,
for the specification of the dependence structure of the two-dimensional Lévy process (Le(t),Lg(t)). We
refer to Appendix 9.4 for a short review of the characterization of such Lévy measures with Lévy copulas.

A parametric class of Lévy copulas called Archimedean Lévy copulas which is the analogue of the
popular class of Archimedean copulas is given by

F(x,y) = φ−1(φ(x)+φ(y)) , (9.8)

where φ : [0,∞]→ [0,∞] is a strictly decreasing convex function such that φ(0) = ∞ and φ(∞) = 0 (see
Example 9.1 for some specific examples). This class, as all other classes we have found in literature, has
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the symmetry property F(x,y) = F(y,x), for all x,y ∈ [0,∞]. Our empirical spark spread data from the UK
market, however, does not confirm this symmetry property (see Fig. 9.5 in Sect. 9.3). We will therefore
introduce the more flexible class of what we call skewed archimedean Lévy copulas which is better suited
to generate the dependency structure found in empirical spark spread data:

Proposition 9.1 (Skewed archimedean Lévy copulas). Let φ be as in (9.8) above. Further, for i = 1,2 let
ψi : [0,∞]→ [1,∞] be decreasing functions satisfying ψi(∞) = 1; then if

F(x,y) = φ−1 (ψ1(y)φ(x)+ψ2(x)φ(y))

is 2-increasing, it defines a two-dimensional Lévy copula.

Proof. According to Definition 9.6 it suffices to show that F is grounded and has uniform margins, which
in the setting of Proposition 9.1 is obviously fulfilled. ��
We will refer to the two functions ψ1 and ψ2 as skew factors. It would be interesting to specify some
conditions on the ψi, independent from φ at best, or at least in a simple way depending on φ , that would
guarantee the 2-increasingness of F . In this paper, however, we will leave this problem for future research
and focus on a specific class of skewed Archimedean Lévy copulas where φ(x) = x−θ is the Clayton-
Lévy generator (see Example 9.1(1) in Appendix 9.4) and ψ2 ≡ 1 and ψ1(x) = (αv−β + 1) introduce a
single-sided skew:

Corollary 9.1 (One-sided skewed Clayton-Lévy copula). The function F : [0,∞]2 → [0,∞] given by

F(u,v) =
(
(αv−β + 1)u−θ + v−θ

)− 1
θ
,

for α > 0, θ > 0 and 0 < β ≤ θ + 1, is a Lévy copula.

Fig. 9.1 Introducing the skewed Archimedean Lévy copulas: a more flexible class

Proof. By Proposition 9.1 we need to show that F is 2-increasing. By Lemma 9.1 it suffices to show
∂ 2F
∂u∂v ≥ 0:

∂
∂u

F(u,v) =(αv−β + 1)

(
(αv−β + 1)+

uθ

vθ

)−(1+ 1
θ )

= : (αv−β + 1)h
−(1+ 1

θ )
u,v ,
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and therefore

∂ 2

∂u∂v
F(u,v) =−βαv−(β+1)h

−(1+ 1
θ )

u,v

+(αv−β + 1)

[
−θ + 1

θ

(
−βαv−(β+1)−θ uθ

vθ+1

)
h
−(2+ 1

θ )
u,v

]

=−βαv−(β+1)
[

hu,v− (αy−β + 1)
θ + 1
θ

]
h
−(2+ 1

θ )
u,v

+(θ + 1)(αv−β + 1)
uθ

vθ+1 h
−(2+ 1

θ )
u,v

≥h
−(2+ 1

θ )
u,v (θ + 1)

uθ

vθ+1

≥0

��
In Fig. 9.1 a one-sided skewed Clayton-Lévy copula is compared to a symmetric Clayton-Lévy copula.
This concludes the entire specification of our model for the spark spread. In the next section we will

pick a specific, well-suited one-sided skewed Clayton-Lévy copula and provide a complete estimation of
our model on data from the UK energy market.

9.3 A Case Study on UK Data

In this section we will exemplarily fit the model presented in the preceding chapter to the data of a UK
power and gas price series (see Fig. 9.2). The data we use is quoted from February 6, 2001 to December 31,
2007, and was kindly provided by Icis Heren. In order to estimate and simulate the model we will proceed
in six steps:

1. Fitting and removing seasonality
2. Spike filtering
3. Base signal fitting
4. Spike signal fitting
5. Dependence of spike signals
6. Simulation of the model

The first four steps apply mainly to the fitting of the marginal models (9.2) and (9.5) of the electricity and
gas spot price series. We here follow the procedure given in [15] and thus do not give all the details. The
main contribution of this paper lies in the modeling and estimation of the dependence risk performed in
step five.

(1) Fitting and Removing Seasonality. For each of the marginal models (9.2) and (9.5) we are assuming
the seasonal component to be Λ(t) = e f (t) with f being a deterministic function of the form

f (t) = a+ bt+ c1 sin
(

2π
252

t
)
+ c2 cos

(
2π
252

t
)
+ d1 sin

(
4π
252

t
)
+ d2 cos

(
4π
252

t
)
, (9.9)

The six parameters as shown in Table 9.1 are estimated by the method of least squares, fitting f to
the logarithms of each data series. Figure 9.3 illustrates the regression for the electricity margin.

(2) Spike Filtering. For separating the deseasonalized series into base signals corresponding to Y1(t), and
spike signals, corresponding to Y2(t), we use the adapted Potts filter presented in [15], which compared



9 A Dynamic Lévy Copula Model for the Spark Spread 243

0 500 1000 1500

0
50

10
0

20
0

£/
M

W
h

hist. electricity spot 

0 500 1000 1500

0
50

10
0

20
0

t

p/
th

hist. gas spot 

Fig. 9.2 Daily quotes of UK power and gas spot prices spanning across 1,736 workdays (based on data by )
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Fig. 9.3 Top: The electricity spot prices and the seasonality function (fitted to the logarithms). Bottom: The residuals from

dividing by the seasonality function (based on data by )

to the other candidate in [15] (hard-thresholding) performs better for clustered spikes as is the case for
UK power and gas. The filter procedures are fed by the following parameters:

• λ e
2 = 1.00 and λ g

2 = 0.84, the mean reversion parameters describing the spikes: As proposed in [12],
these are estimated directly from the largest relative decreases between two consecutive days. The
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Table 9.1 Fitted parameters of the seasonality function

a b c1 c2 d1 d2

UK power 2.73 6.96×10−4 −0.147 0.0580 −0.0876 −0.0446
UK gas 2.79 4.85×10−4 −0.138 0.1918 −0.0561 −0.0124

largest decreases appear after a spike that is not followed by another spike and especially, where the
spike is large enough to consider the current base signal negligible. For each margin we take the
second largest (avoiding an exceptionally extreme case) relative decrease φ :=Y (t)/Y (t−1) and we
estimate λ2 :=− logφ .

• λ e
1 = 0.17 and λ g

1 = 0.23 as first estimates for the mean reversion rates of the Gaussian Ornstein-
Uhlenbeck processes: We remark that in step three they will be reestimated with more accuracy and
also the choices here play a minor role for the performance of the filter, i.e., any λ1 between 0.3 and
0.05 would perform comparably. However, here they are found by examination of the autocorrelation
functions.
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Fig. 9.4 Performance of the adapted Potts filter on UK electricity. Top: Filtered spike signal. Middle: The deseasonalized
series and the residual base signal after filtering. Bottom: the combination of both, at a higher resolution (based on data

by )

• The penalties for placing a spike are found by decreasing the values in small steps, until the filter-
ing procedures reach the desired closeness to a Gaussian base signal. See [15] for details on this
procedure.
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The adapted Potts filter finally places M = 169 spikes for UK power. Its performance is illustrated in
Fig. 9.4. For UK gas it places M = 74 spikes. We remark that there seems to be evidence of clusters in
spike occurrence. To capture cluster behavior one would have to extend the model to stochastic jump
intensities, which, however, is beyond the scope of the paper.

(3) Base Signal Fitting and Base Signal Dependence. In our model the base signals Y e
1 and Y g

2 which
correspond to the residuals after the respective spike removals are represented by one-factor Gaussian
Ornstein-Uhlenbeck processes. These fail to capture the stochastic long-term movement of a trend line
that the residual base signal exhibits; see Fig. 9.4 (middle). A third Gaussian OU component as in
[12] with a very slow mean reversion rate could be considered to more appropriately model the base
signal. But since this paper focusses on the dependence modeling of spike risk, we restrict ourselves
to one-factor models for the base signals for simplicity of the exposition.

We estimate the mean level parameters μe,μg; the volatility parameters σ e,σg; the mean reversion
parameters λ e

1 ,λ
g
1 ; and the correlation δ of the two dimensional Brownian motion by fitting the cor-

responding two dimensional AR(1) process with a maximum likelihood method to the historical base
signals. The estimates are shown in Table 9.2.

Table 9.2 Estimates for the base signal

Set μ σ λ1

UK power 0.95 0.11 0.066
UK gas 1.00 0.09 0.078

Correlation δ : 0.23

(4) Spike Signal Fitting. We estimate the jump intensities ρe,ρg of the two compound Poisson processes
driving the spike signals by dividing the number of filtered spikes by the entire number of days under
observation. For the jump size distributions De,Dg we have found good fit in both cases with the heavy
tailed shifted inverse Gaussian distributions (a random variable X is said to follow a shifted inverse
Gaussian distribution with shift s, mean μ > 0 and shape parameter λ > 0 if X− s∼ IG(μ ,λ )).

For estimating the parameters, the method of maximum-likelihood is applied and the results are
reproduced in Table 9.3.

Table 9.3 Maximum-likelihood estimates
for shifted inverse Gaussian distributions
and the intensity of the respective compound
Poisson process

Set s∗ μ∗ λ ∗ ρ
UK power (pos) 0.15 0.60 0.56 0.10
UK gas (pos) 0.24 0.54 0.32 0.04

(5) Dependence of Spike Signals. As announced in Sect. 9.2 a Lévy copula shall link the two marginal
processes Le and Lg. Our estimation procedure makes use of the fact that the dependence modeling via
Lévy copulas is fully separated from the marginal processes, which means that the procedure does not
rely on any choice we have made for the distributions of the spikes in step (4).

According to Definition 9.5, let U1, U2, and U , respectively be the two marginal tail integrals and
the joint tail integral of (Le,Lg). Their empirical equivalences shall be Ū1(x),Ū2(y),Ū(x,y), returning
the observed average number of jumps per day, which exceeded x in their electricity component, re-
spectively y in their gas component, or respectively both. Denote the Lévy copula by F that satisfies
F(U1(x),U2(y)) = U(x,y), x,y ∈ [0,∞]. In order to estimate a Lévy copula on our data we introduce
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the notion of the empirical Lévy copula F̄(u1,u2) as the function defined on the range of Ū1 and Ū2

satisfying F̄(Ū1(x),Ū2(y)) = Ū(x,y).
In our case the empirical Lévy copula consists of 1,632 points and a 3D plot revealing its shape can

be seen in Fig. 9.5. We give a brief interpretation to a few features of the figure:

• All points of F̄ are plotted, so the maximum value of Ū2 is smaller than the maximum value of Ū1,
which simply reflects that historically (at least according to our filtering) there were more jumps in
electricity.

• For fixed u1, F̄(u1,u2) shows a concave behavior in u2, growing rapidly for small values. The high
values for small u2 ensure that a large jump in gas is very likely accompanied by a jump in electricity.

• On the contrary, the behavior of F̄ for fixed u2 shows a slow growth. A large jump in electricity is
not necessarily accompanied by a jump in the gas margin.

The last two items in the list represent the skewness of the Lévy copula and show that we cannot use
Lévy copulas where F(x,y) = F(y,x) (Fig. 9.6).

For choosing the best Lévy copula we tested 24 two-dimensional functions as candidates for skewed
Archimedean Lévy copulas, temporarily assuming they are all 2-increasing. Precisely, we are us-
ing the four one-parameter Archimedean generators presented among the examples in Sect. 9.4 (i.e.,
φC,φG,φḠ,φexp) and six skew factors, the neutral and five more with one parameter, as follows:

ψ1(x) = 1, ψ4(x) =
π
2 (arctan(αx))−1,

ψ2(x) =
α
x + 1, ψ5(x) = tan

(π
2 (x

α + 1)−1
)
+ 1,

ψ3(x) =
α√

x + 1, ψ6(x) =
(
log(αx+ 1)−1

)
+ 1.

For each combination of generator and skew factor we construct the function

Fφ ,ψ(x,y) = φ−1 (ψ(y)φ(x)+φ(y))

and fit its parameters to the empirical Lévy copula by least squares. Then we compare the sums of
squared distances between the fitted and the empirical Lévy copula:

Σφ ,ψ = ∑
(u1,u2,z)∈ELC

(
Fφ ,ψ(u1,u2)− z

)2
,

where ELC denotes the graph of the empirical Lévy copula. All the values for Σφ ,ψ are given in
Table 9.4. The result of the measurement holds three clear statements:

• The two generators φexp and φḠ cannot compete with φC and φḠ, except in the non-skewed case.
• The skew is essential and provides significantly better fit in all cases.
• Within the Clayton and the Gumbel generators there are only very small differences between the

success of the different skew factors.

Table 9.4 The residual sum-of-squares after fitting the pa-
rameters for each combination, given as Σφ ,ψ ·104

φ\ψ 1 α
x +1 α√

x +1 ψ4 ψ5 ψ6

φC 67.6 5.59 4.79 5.71 5.22 5.52
φG 69.2 5.35 4.92 5.45 5.18 5.30
φḠ 103 42.1 48.4 41.4 44.2 42.5
φexp 61.3 30.0 16.6 37.7 9.00 20.0

According to Table 9.4 ψ3 combined with the Clayton-Lévy generator (where 2-increasingness is
already verified by Proposition 9.1) is our best option. The final Lévy copula F chosen for the model
in this paper takes the form
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F(u,v) =

((
α√

v
+ 1

)
u−θ + v−θ

)− 1
θ
.

where the two fitted Parameters are θ = 3.39 and d = 2.56 (Fig. 9.7).
In Fig. 9.8 one can see how it mimics the empirical Lévy copula quite well and in particular the skew-
ness mirrors the smaller slope in u1.

(6) Simulation of the Model. We conclude this section with a short simulation study. A simulated path of
the spark spread with the estimated parameters is presented in Fig. 9.9. The seemingly higher volatility
in the simulated path is due to the fact that we restricted ourselves to one OU component for the
base signal for simplicity of the exposition (a more realistic modeling of the base signal with two OU
components can be found in [12]). The focus of this paper is on the dependence modeling of the spike
risk in electricity and gas prices. A detailed view on the spike dependence can be seen in Fig. 9.10.
In both cases, the historical and the simulated, we can see, how some spikes in the electricity spot are
totally explained by a spike in the gas price, while others are not even noticed in the gas. Some are
only partially accompanied. A large spike in the gas price which is not accompanied by a spike in the
electricity is not found on any series.
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Fig. 9.5 Empirical Lévy copula (based on data by )
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Fig. 9.6 Empirical Lévy copula: profile views (based on data by )

Fig. 9.7 The estimated Lévy copula (based on data by )
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Fig. 9.8 The estimated Lévy copula and its fit to the empirical Lévy copula (based on data by )
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Fig. 9.9 The original UK spark spread compared to a simulated path of the model (based on data by )
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Fig. 9.10 Detailed views on the isolated spike signals and the spike dependence in the historical and in a simulated setup

(based on data by )

9.4 Pricing of Options Written on the Spark Spread

In this section we demonstrate the applicability of our model in pricing options on the spark spread. We
will focus on computing arbitrage-free prices of call options written on the spark spread with maturity T
and strike K:

CT,K = E
Q

[
e−
∫ T

0 r(s)ds(S(T )−K)+
]
,

where (x)+ := max(x,0), r(s) is the risk-free rate and Q is a risk-neutral pricing measure. In the following
we assume for the sake of simplicity that r = 0 and that Q is model structure preserving, i.e., without loss
of generality, we set Q= P. Then the call option price reads

CT,K = E
[
(S(T )−K)+

]
. (9.10)

To compute the price in (9.10) we will employ Fourier transform pricing techniques as presented in [6,
Sect. 3.1]). Define the dampened payoff function f : R→ [0,∞) by

f (x) := e−αx(x−K)+, α > 0,x ∈ R,

which is needed in the sequel, since (· −K)+ is not integrable on the right. Note that f is an integrable
function for any α > 0. It is easy to show that the Fourier transform of f , denoted by f̂ , is also integrable
and given by
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f̂ (u) =
∫
R

eixu f (x)dx =
1

(iu−α)2 e(iu−α)K . (9.11)

So the Fourier inversion theorem (see for example [13, Sect. 8.2]) says that

f (x) =
1

2π

∫
R

e−ixu f̂ (u)du.

We can thus derive the following semi-analytic expression for the call price

CT,K = E [(S(T )−K)+] = E

[
eαS(T ) f (S(T ))

]
= 1

2πE

[
eαS(T) ∫

R

e−iuS(T) f̂ (u)du

]

= 1
2π
∫
R

E

[
e(α−iu)S(T)

]
f̂ (u)du , (9.12)

provided the extended Laplace transform E

[
e(α−iu)S(T)

]
exists for the chosen α > 0. Now, due to the

arithmetic structure of the marginal price models, the resulting model for the spark spread S(t) is also of
arithmetic form and analytically very tractable. In particular, we can analytically compute the extended
Laplace transform. Indeed, by explicitly solving for the involved OU components, we can write

S(T ) = φ0 +

T∫
0

φ1
s dBs +

T∫
0

φ2
s dLs, (9.13)

where the two-dimensional Brownian motion B = (Be,Bg) has correlation parameter δ and the two-
dimensional compound Poisson process L = (Le,Lg) is characterized by its Lévy measure ν(dx) (with
support on R+×R+) and where we define

φ0 :=
[
Λ e(T )

(
μe + e−λ e

1 T (Y e
1 (0)− μe)

)
− cΛg(T )

(
μg + e−λ

g
1 T (Y g

1 (0)− μg)
)]

,

φ1
s :=

( Λ e(T )σ ee−λ e
1 (T−s)

−cΛg(T )σge−λ
g
1 (T−s)

)
,

φ2
s :=

( Λ e(T )e−λ e
2 (T−s)

−cΛg(T )e−λ
g
2 (T−s)

)
.

By employing the Lévy-Khinchin representation for Lévy processes we can use this explicit representation
to derive as in [11, Proposition 1.9] the extended Laplace transform of S(T ) if it exists:

E

[
e(α−iu)S(T)

]
(9.14)

= exp
(
(α− iu)φ0)

E

⎡
⎣exp

⎛
⎝ T∫

0

(α− iu)φ1
s dBs

⎞
⎠
⎤
⎦E
⎡
⎣exp

⎛
⎝ T∫

0

(α− iu)φ2
s dLs

⎞
⎠
⎤
⎦
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= exp
(
(α− iu)φ0)

· exp

⎛
⎝ T∫

0

1
2
(α− iu)2〈φ1

s ,Aφ1
s 〉ds

⎞
⎠

· exp

⎛
⎝ T∫

0

∫
R2

(
e〈(α−iu)φ2

s ,x〉 − 1
)
ν(dx)ds

⎞
⎠ ,

where α,u ∈ R and

A =

(
1 δ
δ 1

)

is the correlation matrix of the Brownian motion. In order to specify for which values of α > 0 the extended
Laplace transform exists, we only need to consider the Poisson process Le, since Lg points into the negative
direction and therefore can be ignored, while the Brownian and deterministic components clearly have
finite expectation. Further, the nondecreasing paths of the compound Poisson process allow us to ignore
the mean reversion:

E

⎡
⎣exp

⎛
⎝α T∫

0

Λ e(T )e−λ
e
2 (T−s)dLe(s)

⎞
⎠
⎤
⎦ ≤ E [exp(αΛ e(T )Le(T ))] .

The exponential moments of Lévy processes E
[
euLt
]

are finite if and only if their Lévy measure satisfies∫
|x|≥1 euxν(dx) < ∞ (see [16, Theorem 25.17]). So expressed by the jump size distribution De, in our case

shifted inverse Gaussian with parameters (μ ,λ ), we are looking for an α > 0 such that∫
R+

e(αΛ
e(T ))xDe(dx)< ∞ .

For the regular inverse Gaussian as a special case of the generalized inverse Gaussian distribution,
according to [8] this holds as long as αΛ e(T ) < λ

2μ2 . The shift, however, does not change the asymptotic
behavior and therefore the same applies here. Therefore α must be chosen in dependence on T as

0 < α < λ
(
2μ2Λ e(T )

)−1
.

By plugging (9.14) into (9.12), we thus obtain

Proposition 9.2. Let the electricity jump distribution De(dx) be shifted inverse Gaussian with parameters

μ and λ , and let 0 < α < λ
(
2μ2Λ e(T )

)−1
be a given constant. Then the price of a call option written on

the spark spread with maturity T and strike K is given by

CT,K =
1

2π

∫
R

e(α−iu)φ0
exp

⎛
⎝ T∫

0

1
2
(α− iu)2〈φ1

s ,Aφ
1
s 〉ds

⎞
⎠ (9.15)

· exp

⎛
⎝ T∫

0

∫
R2

(
e〈(α−iu)φ2

s ,x〉 − 1
)
ν(dx)ds

⎞
⎠ f̂ (u)du.
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To compute prices given in (9.15), we observe that the integral in the first parentheses can be calculated
analytically as

T∫
0

1
2
(α− iu)2 〈φ1

s ,Aφ
1
s 〉ds =

=
1
2
(α− iu)2

[
1

2λ e
1

a11(Λ e(T ))2
(

1− e−2λ e
1T
)

− 2

λ e
1 +λ g

1

a21cΛ e(T )Λg(T )
(

1− e−((λ
e
1+λ

g
1 ))T
)

+
1

2λ g
1

a22c2(Λg(T ))2
(

1− e−2λ g
1 T
)]

.

The double integral in the second parentheses will require numerical evaluation, where we shortly sketch
how to compute the inner integral in terms of the Lévy copula and the tail integrals of the marginal com-
pound Poisson processes. We denote the integrand by

gu,s(x1,x2) := e〈(α−iu)φ2(s),x〉 − 1

and fix a grid R×R with R = {r0, . . . ,rk} ⊂ R, 0 = r0 < r1 < · · ·< rk. Then

∫
[0,∞[2 gu,s(x1,x2)ν(dx1× dx2)

≈
k−1
∑

i=0

k−1
∑
j=0

gu,s(ri,r j)ν
(
[ri,ri+1[×[r j,r j+1[

)

=
k−1
∑

i=0

k−1
∑
j=0

gu,s(ri,r j) ·
[
U(ri,r j)−U(ri,r j+1)−U(ri+1,r j)+U(ri+1,r j+1)

]

=
k−1
∑

i=0

k−1
∑
j=0

gu,s(ri,r j) ·
[
F(U1(ri),U2(r j))−F(U1(ri),U2(r j+1))

−F(U1(ri+1),U2(r j))+F(U1(ri+1),U2(r j+1))
]
,

where the tail integrals are given by

U1(x) = ρe(1−De(x)) ,

U2(x) = ρg(1−Dg(x)) .

We conclude this section by computing some call prices for our estimated model according to the formula
given in Proposition 9.2. Parallel to [2], in Table 9.5, we consider call prices with a maturity of T = 20
days for five strike prices K ∈ {0,5,10,15,20} and four periods of time equally spaced around the yearly
cycle beginning on the same day the sample begins: t0 ∈ {0,63,126,189}. Those periods are referred to as
Periods 1, 2, 3, and 4. We also applied the same routine for two non-skewed Clayton-Lévy copulas with
θ1 = 0.1 and θ2 = 10, representing continuous approximations for, respectively, the independence and the
complete dependence Lévy copula (more extreme values for θ1,θ2 do not change the prices noticeably).
Additionally we fitted an alternative skewed Clayton-Lévy copula with skew factor ψ(x) = α

x + 1 in order
to study the model’s robustness across different choices for the Lévy copula.
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Table 9.5 The prices of call options of maturity T = 20 derived from the model
with complete dependence, fitted dependence, and independence of spikes

Strike Period 1 Period 2 Period 3 Period 4 Levy copula

−10 6.0887 10.4511 10.3304 8.6884 Complete dependence
−10 5.8444 10.1682 10.0413 8.2714 Alternative LC
−10 5.8392 10.1629 10.0359 8.2632 Skew LC
−10 5.7914 10.0144 9.8876 8.0804 Independence

−5 1.1094 5.4637 5.3315 3.6909 Complete dependence
−5 0.9024 5.1821 5.0432 3.2851 Alternative LC
−5 0.8913 5.1764 5.0374 3.2747 Skew LC
−5 0.8158 5.0229 4.8869 3.0837 Independence

0 0.0350 0.6360 0.5745 0.3793 Complete dependence
0 0.0272 0.3856 0.3250 0.1332 Alternative LC
0 0.0184 0.3773 0.3162 0.1164 Skew LC
0 0.0002 0.2320 0.1744 0.0043 Independence

5 0.0031 0.0884 0.0883 0.1193 Complete dependence
5 0.0112 0.0389 0.0393 0.0561 Alternative LC
5 0.0070 0.0299 0.0299 0.0415 Skew LC
5 0.0002 0.0004 0.0003 0.0005 Independence

10 0.0003 0.0208 0.0210 0.0389 Complete dependence
10 0.0056 0.0183 0.0187 0.0322 Alternative LC
10 0.0035 0.0128 0.0130 0.0220 Skew LC
10 0.0001 0.0010 0.0007 0.0003 Independence

The first finding is that the seasonal effect and trend plays the major role for the option prices. This is
a common and natural observation in energy markets. Another conspicuous observation is that the relative
effect of the assumed dependence becomes stronger when moving towards out-of-the-money options. This
results in a rather absolute effect on the prices for in-the-money options.

Choosing any of the skew Lévy copulas keeps the prices nicely between those of an independent and
fully dependent assumption, except for the two cases of K ∈ {5,10} in Period 1, where the fitted skew
copulas leave a higher value for the option. The choice of the skew factor only has a very small effect.
This is the ideal case in terms of robustness. However, in general we find that the stronger the dependence
assumption, the higher the value of the call option. It would be more intuitive to think that a strong depen-
dence reduced the value of the spark spread options, i.e., by cancelling out situations where the electricity
spot jumps without the gas spot, thus producing less situations where the option is worthless, but as one
can see here the opposite is true. This phenomenon was also found in the studies of [3].
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Appendix

Lévy Copulas

We will shortly review the main definitions and results needed for the concept of two-dimensional Lévy
copulas for Lévy measures with positive support. For further informations on Lévy copulas we refer to
[7, 9]. We first need a multidimensional extension of the notion of increasing functions.
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Definition 9.1 (F-volume). Let F : S → R̄ for some subset S ⊂ R̄
d . Then for u1 = (u1

1, . . . ,u
1
d), u2 =

(u2
1, . . . ,u

2
d) ∈ S with u1 ≤ u2 and [u1,u2]⊂ S, the F-volume is defined by

VF([u
1,u2]) :=

2

∑
j1=1

. . .
2

∑
jd=1

(−1) j1+···+ jd F(u j1
1 , . . . ,u jd

d )

Definition 9.2 (d-increasing). A function F : S → R̄ for some subset S ⊂ R̄
d is called d-increasing if

VF([u,v])≥ 0 for all u,v ∈ S with u≤ v and [u,v]⊂ S.

Definition 9.3 (Grounded functions). A function F : [0,∞]d → [0,∞] is grounded if F(x) = 0, x =
(x1, . . . ,xd) as soon as any of x1, . . . ,xd equals 0.

Note that in general the notion of d-increasing functions does not coincide with functions that increase
in each margin. However, in the following lemma some connection is made in the two-dimensional and
positive case.

Lemma 9.1. Let F : [0,∞]2 → [0,∞] be grounded and in C1,1 then F is 2-increasing, if ∂ 2

∂u∂v F(u,v) >
0,∀(u,v) ∈ [0,∞]2

Next, we need the definition of the tail integral of a positive Lévy measure.

Definition 9.4 (Tail integral). A d-dimensional tail integral is a function U : [0,∞]d → [0,∞] such that

1. (−1)dU is a d-increasing function.
2. U is equal to zero if one of its arguments is equal to ∞.
3. U is finite everywhere except at zero and U(0, . . . ,0) = ∞.

The margins Uk, k = 1, . . . ,d of a tail integral U are defined by

Uk(x) =U(0, . . . ,0, x
↑

k-th position

,0, . . . ,0).

The name “tail integral” makes more sense, as soon as the following link between Lévy measures and tail
integrals is made:

Definition 9.5 (Tail integral of a positive Lévy measure). The tail integral U of a Lévy measure ν on
[0,∞)d for x = (x1, . . . ,xd) is defined by

• U(x) = 0, if xk = ∞ for any k = 1, . . . ,d
• U(x) = ν([x1,∞)×·· ·× [xd,∞)) for x ∈ [0,∞)d\{0}
• U(0, . . . ,0) =∞

We are now ready to introduce Lévy copulas for two-dimensional Lévy measures with positive support.
We remark that the general framework would need some small modification.

Definition 9.6 (Lévy copula). A two-dimensional Lévy copula for Lévy processes with positive Lévy
jumps is a function F : [0,∞]2 → [0,∞], which

• Is grounded
• Two-increasing
• Has uniform margins, that is, F(x,∞) = F(∞,x) = x, ∀x ∈ [0,∞]

In analogy to Sklar’s Theorem for copulas, the following theorem forms the main result in the theory of
Lévy copulas.
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Theorem 9.1 (Sklar’s theorem for Lévy copulas). Let (Xt ,Yt) be a two-dimensional Lévy process with
positive jumps having tail integral U and marginal tail integrals U1 and U2. There exists a positive Lévy
copula F such that

U(x1,x2) = F(U1(x1),U2(x2)), ∀x1, x2 ∈ [0,∞]. (9.16)

It is unique on Ran U1×Ran U2, the product of the ranges of one-dimensional tail integrals.
Conversely, if F is a positive Lévy copula and (Xt), (Yt) are two one-dimensional Lévy processes with

tail integrals U1,U2, then there exists a two-dimensional Lévy process such that its tail integral is given by
(9.16).

Finally, we recall the major representatives of Lévy copulas applied in practice.

Proposition 9.3 (Archimedean Lévy copula). Let φ : [0,∞]→ [0,∞] be a strictly decreasing convex func-
tion such that φ(0) = ∞ and φ(∞) = 0. Then

F(x,y) = φ−1(φ(x)+φ(y))

defines a two-dimensional Lévy copula.

In analogy to ordinary copulas, the Lévy copulas constructed this way are called Archimedean Lévy copu-
las and φ is called the generator.

Example 9.1. A few examples of Archimedean Lévy copulas, each with respect to a parameter θ > 0,
following the naming in [10] wherever given, are:

1. The Clayton-Lévy copula generated by φC(u) = u−θ :

Fθ (x,y) =
(

x−θ + y−θ
)−1/θ

In this case a greater parameter θ means higher dependence of jumps. This includes F⊥ for θ → 0 and
F↑↑ for θ → ∞.

2. The Gumbel-Lévy copula generated by φG(u) = [log(u+ 1)]−θ

Fθ (x,y) = exp

{[
(log(x+ 1))−θ +(log(y+ 1))−θ

]−1/θ
}
− 1.

3. The complementary Gumbel-Lévy copula generated by the inverted generator: φḠ(u) = exp(u−θ )− 1

Fθ (x,y) =
{

log
[
exp(x−θ )+ exp(y−θ )− 1

]}−1/θ
.

4. Generated by φexp(u) = 1
eθu−1

Fθ (x,y) =
1
θ

log

[(
1

eθx− 1
+

1
eθy− 1

)−1

+ 1

]
.

Remark 9.2. Even though unnamed in literature, the last example should be included in any relevant list.
It could play an important role as an alternative to the Clayton-Lévy, since, in the above list, these are the
only two cases where the inverse of the partial derivative can be given in closed form. The relevance of this
feature comes with the simulation algorithm of Lévy copulas.
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10. Kettler, P.C. : Lévy-copula-driven financial processes. Preprint #23,Pure Mathematics, Dept. of Math., Univ. of Oslo.

(2006)
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Chapter 10
Constrained Density Estimation

Peter Laurence, Ricardo J. Pignol, and Esteban G. Tabak

Abstract A methodology is proposed for nonparametric density estimation, constrained by the known
expected values of one or more functions. In particular, prescribing the first moment—the mean of the
distribution—is a requirement for the density estimation associated to martingales. The problem is ad-
dressed through the introduction of a family of maps that transform the unknown density into an isotropic
Gaussian while adjusting the prescribed moments of the estimated density.

10.1 Introduction

Density estimation, a general problem arising in many applications, consists of inferring the probability
distribution ρ(x) underlying a set of independent observations x j ∈ R

n, j = 1, . . . ,N. Extra information on
the distribution ρ(x) is often available, in addition to the N observations x j, in the form of the expected
values f̄i of q functions fi(x), i = 1, . . . ,q. The availability of these expected values may be due to a variety
of reasons:

• They may be independently observed. In the natural sciences, for instance, a number of devices and
experimental procedures are designed to measure the mean value of a quantity over a large population, an
extended area, or a fluctuating field. In the financial markets, the pricing of options provides information
on the expected values of future prices of the underlying assets under the risk-neutral measure.

• Due to storage or technological limitations, or to the specific interests of the parties involved, historical
records or records from individual laboratories or polling agents may have only kept the mean values of
certain functions of interest.

• They may arise from theoretical considerations. Economic theory, for instance, requires the conditional
probability of the risk-neutral measure underlying a time series xt of prices to be a martingale, which
imposes a condition on its mean:
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E(Xt |Xt−1,Xt−2, . . .) = Xt−1.

Another example is the requirement that the support of the distribution sought should not contain certain
scenarios, a constraint that can be phrased in terms of expectations:

E(IU(X)) = 0, (10.1)

where IU is the indicator function of the set U of excluded events.

Then the following constrained density-estimation problem arises: given a set of observations x j ∈ R
n,

j = 1, . . . ,N, estimate its probability density ρ(x), subject to the constraints that the expected value of q
functions fi is prescribed:

E( fi(X)) = f̄i, i = 1, . . . ,q. (10.2)

Here fi are real-valued functions defined on a domain in R
n. In the terminology of financial engineering,

this may be referred to as calibration of the pricing distributions for consistency with available market data.
For instance in energy markets, a common hedging instrument is a spread option, with payoff S2−S1−K,
where S1,2 are the prices of two assets, such as crude and refined oil for the crack spread option, and K is
the option’s strike price. The price of such an option depends on the joint distribution of the assets under
the risk-neutral measure. Typically the market provides a lot of information on the marginal distributions of
the two assets, via liquidly traded options with many strikes and maturities on each asset S1 and S2. On the
other hand a much more limited number of strikes trade on the spread S2− S1, so that the market provides
only limited information of the joint distribution of the two assets. We will return to this example in the
numerical section.

More generally, the estimated density may also need to satisfy inequality constraints, of the form

E( fi(X))≤ ḡi, i = 1, . . . , p. (10.3)

This is the case, for instance, when at least a certain fraction of the probability is required to lie in the tail
of the distribution, and when the density ρ(x) itself is known to be bounded above by a function h(x), a
condition that admits the weak formulation

E(φ(X))≤
∫
φ(x) h(x) dx

for all smooth positive functions φ(x), thus involving infinitely many inequality constraints of the form
(10.3).

The methodology developed in this paper builds, for a given set of observations of a random variable
x in R

n, a sequence of parametric maps that take the unknown probability distribution function ρ(x) to an
isotropic Gaussian μ(y). A procedure along these lines was developed in [1, 2] for unconstrained density
estimation, using the composition of simple maps that increase the log-likelihood of the data at each step.
By keeping track point-wise of the compounded map and its Jacobian, one can reconstruct the unknown
probability density function underlying the observations, evaluating it on the observed values themselves
and on any other predetermined set of values of x, that the algorithm carries passively through the maps.

The estimated density takes the form

ρ(x) = Jy(x) μ(y(x)), (10.4)

where Jy(x) is the Jacobian determinant of the map y(x). The constraints on the density ρ(x) in (10.2) and
(10.3) become, in view of (10.4), constraints on the allowed maps y(x). The transformation y(x) is built
gradually, through the composition of near-identity maps. Thus we build a sequence yk(x), where

yk+1(x) = zk (yk(x)) , (10.5)
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with
zk(y) = y+ϕk(y), ‖ϕk(y)‖ � 1. (10.6)

Correspondingly, there is a sequence of Jacobian determinants Jk(x), with

Jk+1(x) = jk(yk(x))Jk(x), (10.7)

where jk(y) is the Jacobian of zk(y).
The algorithm alternates between two kinds of steps: in the first, the functions (maps) ϕk(y) are chosen

so as to move the distribution ρ(x) toward satisfying the constraints in (10.2), (10.3). In the second, the
maps are chosen so as to improve the log-likelihood of ρ(x) on the data points x j, while not deteriorating
the current level of accommodation of the constraints.

10.2 The Two Objective Functions

The procedure is based on two objective functions: the log-likelihood of the data

L =∑
j

log(ρ (x j)) (10.8)

that one attempts to maximize and a cost associated with the non-satisfaction of the constraints,

C =
1
2∑i

wi C2
i , wi > 0, (10.9)

that one seeks to minimize. Here Ci is a Monte Carlo estimate to be detailed below of the difference between
the current estimation for the expected value of fi(x),

E( fi(x)) =
∫

fi(x) ρ(x) dx, (10.10)

and its prescribed value f̄i. The weights wi have a dual purpose: to normalize the range or variability around
each f̄i and to qualify the level of significance attached to each constraint. In addition, the weights are set
to zero locally in the algorithm for those inequality constraints that are currently inactive, i.e., those that, at
the current estimation, satisfy the strict inequality version of (10.3).

These two objective functions do not carry equal weight, since our problem can be formulated as the
maximization of L subject to the constraint C = 0. Thus we proceed through the iteration of two steps: one
that decreases the value of the cost C and another that increases the likelihood L while not increasing C, at
least to leading order in the step-size.

10.2.1 Simulation of Expected Values and Their Evolution

At each stage of the map y(x), one needs to evaluate expected values of the form

Ei = E( fi;y(x)) =
∫

fi(x)ρ(x) dx =
∫

fi(x(y))μ(y) dy, (10.11)
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where we have denoted by x(y) the inverse of the map y(x). It would appear natural to estimate these
through Monte Carlo simulation:

E( fi;y(x))≈ 1
s

s

∑
l=1

fi(x(yl)),

where the yl are s independent samples of the target μ , typically a normal distribution, easy to sample. Yet
the problem with this prescription is the calculation of x(yl): these can be computed only if one has stored
all the elementary maps zk up to the current iteration and, moreover, these maps have a closed-form inverse.
Even under this ideal scenario, the cost of the calculation would grow linearly with the iteration k, making
it impractical. Instead, we propose to change measure to a yet unspecified distribution ηk(y) and write

E( fi;y(x)) =
∫

fi(x(y))
μ(y)
ηk(y)

ηk(y) dy≈ 1
s

s

∑
l=1

fi(x(yl))
μ(yl)

ηk(yl)
, (10.12)

where the yl are now samples of ηk(y). To avoid the problem described above of evaluating x(yl), we
propose distributions ηk(y) that evolve with the algorithm in such a way that the samples xl = x(yl) are
kept fixed. To this end, it is enough to propose an initial distribution η0(y) and sample it at the onset of the
algorithm, when y = x, and then let the corresponding points yl be carried passively by the maps. Then the
corresponding x(yl) remain fixed at their original values, and the density ηk(y) is updated at each step by
division by the Jacobian of the map:

ηk+1(zk(y)) =
ηk(y)
jk(y)

. (10.13)

In addition to evaluating the current expected values E( fi;y(x)) at each step, we also need to estimate
how they would evolve under a candidate map

z(y) = y+ϕ(y) (10.14)

with Jacobian j(y). The function ϕ(y) is required to be small, yielding a map close to the identity. This
justifies the linearization procedure described below.

Let us denote by
ρ−(x) = Jy(x) μ(y(x)) (10.15)

the current estimate of ρ , given the cumulative effect of the maps up to step k, and by

ρ+(x) = κ(y(x))ρ−(x) (10.16)

the estimate after the candidate step, where

κ(y) = j(y)
μ(y+ϕ(y))

μ(y)
≈ 1+

∇ · [μ(y)ϕ(y)]
μ(y)

, (10.17)

where ∇· denotes the divergence operator, expanded up to linear terms in ϕ . Then

ΔEi(ϕ) = E( fi;z(y(x)))−E( fi;y(x))

=

∫
fi(x)

(
ρ+(x)−ρ−(x)) dx =

∫
fi(x)(κ(y(x))− 1)ρ−(x) dx

≈
∫

fi(x(y))∇ · [μ(y)ϕ(y)] dy = dEi(ϕ). (10.18)

This can be estimated through the introduction of an auxiliary distribution ηk(y) as above.
Next we describe the algorithm’s two steps.
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10.2.2 Reduction of the Cost: The C-Step

In order to reduce the cost C from (10.9), we propose a map of the form

z(y) = y+ϕ(y) , ϕ(y) =
nh

∑
h=1

γhϕh(y), (10.19)

where the ϕh(y) are nh suitably picked functions (more on this below), and compute the gradient and
Hessian of C with respect to the γh:

Gh =
δC
δγh

∣∣∣∣
γ=0

=∑
i

wi (Ei− f̄i) dEi(ϕh) (10.20)

and

Hm
k =

δ 2C
δγkδγm

∣∣∣∣
γ=0

≈∑
i

wi dEi(ϕk) dEi(ϕm). (10.21)

In terms of the matrix A and vector b with entries

A j
i =

√
wi dEi(φ j), bi =

√
wi (Ei− f̄i), (10.22)

we have that
G = A′b and H = A′A, (10.23)

so Newton’s method yields a vector γ satisfying the normal equations

A′Aγ =−A′b. (10.24)

Notice that, by invoking the linear approximation to κ(y) in (10.17), our version of Newton’s method
uses a surrogate for the Hessian H, whose exact determination would require an expansion for κ(y) involv-
ing quadratic terms in ϕ , namely,

κ(y) = j(y)
μ(y+ϕ(y))

μ(y)
≈ 1+

∇ · [μ(y)ϕ(y)]
μ(y)

+∑
j>i

[
δϕi

δyi

δϕ j

δy j
− δϕi

δy j

δϕ j

δyi

]

+
1

μ(y)

[
1
2
(ϕ ·∇)2μ(y)+ (∇ ·ϕ)(ϕ ·μ(y))

]
. (10.25)

The justification for using a surrogate H = A′A instead of the true Hessian, a common practice in least
square problems [3], is the following:

1. The surrogate is positive definite, while the true Hessian need not be.
2. Less and simpler calculations are required to evaluate the surrogate.
3. At the minimum C = 0, the two Hessians agree: the true Hessian is given by

Hm
k =∑

i

wi
δCi

δγk

δCi

δγm
+∑

i

wi Ci
δ 2Ci

δγkδγm
, (10.26)

while the surrogate includes only the first of the two sums. But C = 0 implies that all the Ci’s are zero,
so the second sum vanishes.

Regarding the number nh of parameters γh to use in this step, one is enough. We have carried the
calculation for an arbitrary number nh because some of the results above will be also used in the L-step
described below, where two free parameters are required.
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10.2.3 Increase of the Likelihood Function: The L-Step

In this section we show how to carry out the second step in our program: increasing the log likelihood of the
density ρ in (10.4) while not undoing the gains in cost of the previous step. From a geometric viewpoint,
this amounts to seeking directions in the infinite dimensional space of maps ϕ such that the likelihood L
increases while the cost C does not increase: if the gradients of L and C project positively on each other,
the chosen direction must be tangent to the level sets of the cost functional C given by (10.9).

We seek a map ϕ in the form

ϕ = β (γ1ϕ1 + γ2ϕ2) ,

where β is a free parameter available to ascend the log-likelihood, and the coefficients γh,h = 1,2 of the ϕh

are chosen from considerations involving also the cost C. We first set β to one and compute the derivatives
of C—as in (10.20)—and of L with respect to the gammas:

∇γC =

(
∂C
∂γ1
∂C
∂γ2

)∣∣∣∣∣
γ=0

, ∇γL =

(
∂L
∂γ1
∂L
∂γ2

)∣∣∣∣∣
γ=0

.

If ∇γL ·∇γC < 0, we can adopt for the ascent of L its direction of maximal growth,(
γ1

γ2

)
=

∇γL
‖∇γL‖2

,

while simultaneously reducing C. Otherwise, we set γ ⊥ ∇γC:

γ1
∂C
∂γ1

∣∣∣∣
γ=0

+ γ2
∂C
∂γ1

∣∣∣∣
γ=0

= 0, ‖γ‖2 = 1.

These two alternative determinations of γ are illustrated in Fig. 10.1. With γ thus fixed, we select β through
second order descent:

β =− Lβ
Lββ

,

possibly capped to prevent unreasonably large steps.

10.2.4 Duality

The algorithm seeks a transformation
x→ y(x)

such that the y’s are distributed following an isotropic Gaussian:

μ(y) =
1

(2π)n/2
e−

1
2 |y|2 .

At each stage k of the algorithm, this provides an explicit formula for the estimated distribution in x-space:

ρk(x) = Jyk(x)μ(yk(x)),
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∇L

−∇C

−∇C

Fig. 10.1 Q plot exemplifying the two possible situations for the L-step: if the inner product of ∇γL and −∇γC is positive,
then γ = ∇γL is a permitted—and optimal—direction of ascent for L. Otherwise, the algorithm is constrained to ascend L
along the line orthogonal to ∇γC, not to deteriorate the current value of the cost C

where Jy(x) is the Jacobian of y(x) evaluated at x. Then, at the next step, with yk+1 = z(yk) with Jaco-
bian j(yk),

ρk+1(x) = j(yk(x))Jyk (x)μ (z(yk(x))) ,

so the log-likelihood L satisfies

Lk+1 =∑
j

log(ρk+1(x j)) =∑
j

log(Jyk(x j))+∑
j

log( j(y j)μ (z(y j))) , (10.27)

where y j = yk(x j), the current location of the transformed observations. Since the first summation on the
right-hand side of (10.27) does not depend on the map z(y), maximizing Lk+1 over the candidate maps is
equivalent to maximizing

L̃k+1 =∑
j

log( j(y j)μ (z(y j))) . (10.28)

This maximization is indistinguishable from the first step (k = 1) of the algorithm, with the current y j

playing the role of the initial data x j. Thus the algorithm can be formulated as a memoryless ascent of
the log-likelihood, which, for the purpose of increasing L, forgets at every step the original values of
the observations x j. Alternatively, we can phrase this as a duality of the flow: as the random variable
y(x) acquires a normal distribution, the estimated density ρk(x) converges to the real distribution ρ(x)
underlying the observations. One can introduce, in addition to the estimated density ρk(x), the unknown
density ρ̃k(y) evolving with the flow:

ρ̃k(y) =
ρ(xk(y))

Jyk (x)
, (10.29)

where xk(y) denotes the inverse of the map yk(x). It follows that

ρ̃k(y)→ μ(y)⇐⇒ ρk(x)→ ρ(x) (10.30)

blindly moving the points y j toward normality improves the density estimation for the x j. Thus the maxi-
mization of L̃k in (10.28) can be thought of as a step toward normalizing the points y j.
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10.3 Fine-Tuning of the Algorithm

10.3.1 Choice of the Distribution η(y)

The distribution η is only used as a tool for computing the integrals in (10.12) and (10.18) through Monte
Carlo via a change of sampling measure. It follows that one could choose different distributions ηi tailored
to the individual functions fi(x) in the constraints. As described above, η(y) is sampled only at the begin-
ning of the algorithm, when y(x) = x, and then updated by the flow, through the expression in (10.13). In
order that the change of sampling measure accurately reflects the original constraints in (10.2), the sup-
port of ηi(x) must include the support of fi(x)ρ(x). One can move further in the direction of importance
sampling, adopting an ηi for which the sampling frequency is high/low according to high/low values of
| fi(x)|ρ(x).

One possible strategy for choosing ηi(x) satisfying the requirements above is the following:

1. Compute the empirical mean μ and covariance matrix Σ of the data points x j.
2. Define η0(x) = N (μ ,αΣ), where α > 1 is a safety factor intended to guarantee that η0 has significant

sampling frequency over the full support of the density ρ(x) underlying the samples x j.
3. Define ηi(x) = 1

Z f (x)η0(x), where Z =
∫

f (x)η0(x) dx. This is a useful distribution for our purposes
if it is easily sampled, as is the case for many financial instruments. Otherwise, if f has a well-defined
maximum, we can rewrite it as f (x) = eS(x) and replace S by its quadratic approximation around its
maximum, for which the resulting distribution is explicitly sampleable. Finally, in situations that cannot
be handled in this or similar ways, one can simply adopt a uniform distribution ηi = η0.

10.3.2 Choice of the Functions ϕh

The building blocks of the algorithm are the functions ϕh(y), the elementary maps of each step. There
is much flexibility in the choice of a form for these maps, which must be guided by their effectiveness
to generate general maps by composition without over-resolving and by their computational expense in
evaluating the objective functions L and C and their derivatives.

A general strategy that we have found useful is to associate to each map ϕh a center yh and a length scale
or bandwidth αh, writing

ϕh(y) = g

(
y− yh

αh

)
. (10.31)

The scaling parameter αh must depend on the selected node yh, not to over-fit or under-resolve the data:
in areas scarcely populated, αh must be larger than in areas with high density, so that the transformation
affects the likelihood of a similar number of observations. More precisely, given a number np of points that
one would like to lie within a ball or radius αh around yh, αh is given to leading order by

αh =

(
np ρ̃k (yh)

m Ωn

) 1
n

. (10.32)

Here Ωn is the volume of the unit ball in Rn. Since ρ̃k(yh) is not known, however, we may replace it by its
target normal distribution, which yields

αh = (2π)
1
2

(
Ω−1

n
np

m

) 1
n

e
‖yh‖2

2n . (10.33)
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If deemed necessary, one can still use (10.32) in a second pass of the algorithm, estimating ρ̃k(yh) through
ρ̄(xh)
Jk(xh)

, where xh is defined by the condition that yh = yk(xh) and ρ̄(xh) is its estimated density from the
first pass.

Regarding the selection of the nodes yh, we alternate between two methodologies: to pick them at ran-
dom among the current normalized observations y j and to sample them from the target distribution μ(y)
(see [2] for the rationale behind this alternating procedure). In the second pass of the algorithm as described
above, only the first methodology can be used, since otherwise to find xh one would need to invert all the
maps zk performed so far.

The functional form of the maps, g(y), is almost completely unconstrained in one dimension; in the
one-dimensional examples in Sect. 10.4.1, we have used

g(y) = tan−1(y). (10.34)

In higher dimensions, a practical choice is given by radial expansions of the form

g(y) = f (|y|)y, (10.35)

with a scalar function f (r) that localizes the action of the map to a neighborhood of yh. This can range
from a slowly decaying function, such as

f (r) =
erf(r)

r
, (10.36)

to one with compact support, such as

f (r) = (1− r)2 for r < 1, f (r) = 0 otherwise. (10.37)

Yet a practical constraint arises in multidimensional scenarios when the number nh of elementary maps
in one step is larger than one, as needs be in the L-step of the algorithm, that has nh = 2: the Jacobian
determinant j(y) of the map ϕ(y) in (10.19) is a nonlinear function that couples all the γh, which makes
the procedure more computational intensive. To avoid this, one may choose functions f (r) with compact
support—the one proposed in (10.37) in the examples below—and pick the nodes yh and bandwidths αh so
that the support of the various ϕh does not overlap, thus making the Jacobian of the map and its derivatives
as easy to compute as when nh = 1. Notice though that the nonlinearity of the Jacobian does not manifest
itself at the time of computing Lβ

∣∣
β=0, since here straightforward superposition applies. As for Lββ

∣∣
β=0,

a surrogate can be used as with the Hessian of the cost, involving the Jacobian of each map φh separately.
Hence it is only at the time of updating the map that the nonlinearity of the Jacobian comes into play,
so the added computational cost from using overlapping maps φh is not so big, at least in comparatively
low-dimensional settings.

One further required property of the maps is that they should “see” the constraints, at least for the C-step
of the algorithm, else they cannot decrease the cost. One easy way to satisfy this requirement is to choose
the centers yh of the spheres in such a way that fi(x(yh)) 	= 0 at least for one value of i.

10.3.3 Choice of the Weights wi

The cost function C in (10.9) depends on the weights wi assigned to each individual constraint. These have
two roles: balancing the generally different intrinsic variability of the various constraints and enforcing
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the level of significance that the user attaches to each. A simple recipe appropriate to the first role is to
make the weights wi inversely proportional to the empirical variance of the corresponding fi(x):

wi ∝

[
∑

j

(
fi(x j)− f̄i

)2

]−1

, (10.38)

with the proportionality constant fixed so that ∑i wi = 1. For certain particular functions fi, such as the
indicator functions of (10.1), the empirical variance above can yield a zero value and corresponding infinite
weight. This might be addressed by weighting in also the empirical variance of fi over the sample points of
ηi used for Monte Carlo simulation. As for the more subjective second role, it is up to the user to multiply
each of the weights above by an individual factor that quantifies the relative importance of enforcing the
corresponding constraint.

10.3.4 Inequality Constraints

The procedure described so far applies almost without change to handle inequality constraints of the form
(10.3). The only extra ingredient is the determination, at the onset of each step, of whether each inequality
constraint is or not already satisfied. If it is not, the corresponding constraint can be treated as an equality,
since the local goal is to reduce it toward zero. Otherwise, the constraint is deemed currently inactive and
removed from the cost C (for instance, simply but not soundly from the computational viewpoint, by setting
its weight wi to zero).

10.4 Examples

This section illustrates through a number of numerical examples the effect of imposing various kinds of
constraints on density estimation. All the examples presented are synthetic, though motivated by real appli-
cations. Though the procedure developed in this paper applies to arbitrarily large dimensions, the examples
are low-dimensional, to facilitate visualization. In a similar tone, the densities proposed all have simple
structure and analytical forms, so that one can concentrate on the new features brought about by the impo-
sition of constraints.

Besides showing the algorithm at work, the main message that these examples intend to convey is the
versatility of constrained density estimation. This goes far beyond the applications that initially motivated
its development, such as enforcing the compatibility of a pricing measure with the option prices available.
In the modeler’s hand, it can be used for tasks as diverse as enforcing symmetries, reducing oscillations,
and excluding forbidden areas of phase space.

In this first paper on constrained density estimation, we have not attempted to fully optimize the algo-
rithm’s implementation. In particular, the choice of the distribution ηi for the Monte Carlo simulation of
the constraints in all examples but the last, is the simplest ηi = η0, where η0 is the Gaussian introduced in
Sect. 10.3.1, with safety factor α = 4.

10.4.1 One-Dimensional Examples

We start with some simple one-dimensional examples: the exponential distribution and the uniform distri-
bution in the interval [0,1]. We contrast the results of unconstrained density estimation with the refinements
obtained by the imposition of a variety of constraints.
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In all the one-dimensional examples presented here, we have used elementary maps as in (10.31), with
g(y) = tan−1(y) .

10.4.1.1 An Exponential Distribution

The exponential distribution

ρ(x) = e−x for x≥ 0, ρ(x) = 0 otherwise (10.39)

represents a severe test for the algorithm, since mapping it into a Gaussian requires a singular transfor-
mation, which maps x = 0 to y = −∞. We take a random sample of 1,000 observations x j from (10.39)
and use it to estimate ρ(x). Figures 10.2 and 10.3 display the results of applying the procedure to the data
without imposing any constraint. The plots in Fig. 10.2 represent various densities: the true exponential
underlying the data, the initial Gaussian estimation, with the empirical mean and variance of the data, and
the estimated density after the first and second pass of the algorithm, the latter using the estimation from
the former to refine the calculation of the bandwidths at each step through (10.32). The plots in Fig. 10.3
are histograms of the data points, before and after the normalization performed by the algorithm.

Generally, the results in Fig. 10.2 exemplify the power of the density-estimation component of the al-
gorithm, whose nonparametric nature allows it to accurately represent distributions that are very far from
the initial Gaussian guess. The main discrepancy between the true and estimated density lies in the molli-
fication in the latter of the discontinuity at x = 0. The dual manifestation of this mollification is reflected
in the histogram on the right of Fig. 10.3, where the normalization process is clearly incomplete: a thor-
ough normalization would need to smear the discontinuity on the left into the whole negative semi-axis.
One can decrease this mollification by a reduction of the algorithm’s bandwidth, but this would lead to
over-resolution elsewhere.

The mollification of the discontinuity at x = 0 results is assigning nonzero probability density to values
of x smaller than zero. Even though our exponential distribution here is a synthetic construct, it seems fair
to assume that, in real applications, it would be associated with a variable x that cannot adopt negative
values, such as a waiting time. If this constraint x≥ 0 were known a priori, we could use the procedure of
this paper to impose it through the expected value of the indicator function of the negative axis:

∫ 0

−∞
ρ(x) dx = 0. (10.40)

The results of imposing this constraint are displayed in Figs. 10.4–10.6. One can see a much sharper dis-
continuity at x = 0, with almost no mass in the negative semi-axis, and a correspondingly more thorough
normalization of the data.

10.4.1.2 A Uniform Distribution

As a second one-dimensional example, we consider the uniform distribution

ρ(x) = 1 for 0≤ x≤ 1, ρ(x) = 0 elsewhere. (10.41)

We draw again a sample of 1,000 observations and perform first an unconstrained density estimation.
The results are displayed in Fig. 10.7. As before, the first pass yields reasonable results, yet greatly mollifies
the discontinuities at x = 0 and x = 1. The second pass reduces this mollification, but at the expense of
overshooting at x = 0+ and x = 1−, in a pattern reminiscent of Gibb’s phenomenon.
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Fig. 10.2 Unconstrained density estimation of an exponential distribution. On the upper-left panel, the exact exponential
density underlying the data. The other three panels display the density estimated at various stages of the algorithm. On
the lower-left, the result of a linear preconditioning step, which maps the empirical mean to zero and rescales x so that
the empirical variance is one. The resulting estimate is a Gaussian distribution with the mean and variance of the data. On the
upper-right panel, the density estimated after the first pass of the algorithm, which computes the bandwidth α at each step
using (10.33). On the lower-right, the result of the second pass, with α from (10.32) with the density estimated from the first
pass

To remedy these deficiencies using external information, we consider the scenario of a financial appli-
cation, with x representing the logarithm of the return of an asset at some future time. We assume that, by
regulation, this return has strict upper and lower bounds, yielding the constraints

0≤ x≤ 1. (10.42)

Moreover, we know the prices of 50 call and put options:

Ei =

∫ 1

0
max(ex− ki,0) dx or

∫ 1

0
max(ki− ex,0)) dx,

for strike prices ki = eΔx . . .e1−Δx, with Δx = 1/51, arbitrarily assigned to call and put options for i odd and
even, respectively. We compute the Ei explicitly and provide it to the programs as constraints, additional to
the bounds in (10.42). The results are displayed in Figs. 10.8 and 10.9.

The estimated distribution after the second pass is now much more accurate. The remaining wiggles are
in fact a reflection of fluctuations in the actual data, as seen on the histogram on the left of Fig. 10.9. One
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Fig. 10.3 Unconstrained density estimation of an exponential distribution. Histograms of the data points: on the left, the
original sample; on the right, the sample after normalization. The incomplete normalization on the left of the histogram is the
dual manifestation of the mollification of the discontinuity at x = 0 in the estimated density of Fig. 10.2

can reduce them further by adopting a coarser resolution, i.e., a larger bandwidth, but at the expense of
mollifying the two discontinuities at x = 0 and x = 1.

10.4.2 Multidimensional Examples

Though the procedure is general, we display here only two-dimensional examples of constrained mul-
tidimensional density estimation: a Gaussian mixture required to satisfy a simple symmetry and a two-
dimensional Student t constrained by the prices of some liquid options.

In both cases, we have adopted as elementary maps the radial expansions in (10.35), with f (r) given
by (10.36).

10.4.2.1 A Gaussian Mixture

As a first example, we consider the two-dimensional, two-component Gaussian mixture

ρ(x) =
2

∑
k=1

γkN(x,μk,Σk), (10.43)

with weights

γ1 = γ2 =
1
2
,
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Fig. 10.4 Same as Fig. 10.2, but with the imposed constraint x≥ 0

centers

μ1 =

(−1
0

)
, μ2 =

(
1
0

)
,

and isotropic covariance matrices

Σ1 = Σ2 =

(
0.2 0
0 0.2

)
.

The results of the corresponding unconstrained density estimation are displayed in Fig. 10.10.
The estimated density is fine qualitatively, again displaying the versatility of the nonparametric approach

through iterated maps, which can capture quite arbitrary distributions without external input other than
sample points. Yet one feature missed is the symmetry of the distribution with respect to the y-axis: due
to a random sampling fluctuation, the Gaussian component on the left had a larger number of observations
than the one on the right; as a consequence, the corresponding density has a higher peak. If we had known
of the right-left symmetry from first principles of the problem in hand, we could have imposed it at various
levels of sophistication and detail, the simplest being the balancing constraint.

E(x1) = 0. (10.44)

Figures 10.11–10.14 display the results of imposing this single constraint: the estimated density is far more
symmetric than in the unconstrained estimation.



10 Constrained Density Estimation 273

10.4.2.2 A Spread Option

In our last example, we consider the problem of estimating the risk-neutral joint density of two assets at a
single maturity, assuming that options are liquidly traded on each of the assets but illiquidly traded on the
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Fig. 10.5 Diagnostics for the estimation of an exponential distribution from a sample and the imposed constraint that x > 0.
In blue the first pass, in red the second. On the top panel, the evolution of the Kullback–Leibler divergence between the exact
density and the estimated one. On the lower panel, the evolution of the cost C associated with the non-satisfaction of the
constraint

spread. The example thereof mentioned in the introduction is a crack spread option. Here, for the purpose
of illustration, we assume the following:

• Each asset S1,2 has for the maturity considered options trading with 11 different strikes.
• The spread option has options trading with 6 different strikes.
• We generate option prices for each underlying by simulation, assuming that the true joint distribution and

marginals come from a multivariate Student t-distributions with 5 degrees of freedom and correlation

matrix C =

(
1 0.6

0.6 1

)
.

Not surprisingly, since the Student t-distributions have heavy tails, the call prices exhibit a distinct smile,
as illustrated in Fig. 10.15.

We assume the spot prices are S1 = 10,S2 = 12. To determine the option prices, we simulate from this
known distribution with high accuracy, using 100,000 samples from a bivariate Student t with 5 degrees of
freedom. We then extract an independent sample from the same distribution containing only 1,000 pairs of
data points. These, together with the precise option prices mentioned above, are the data provided to our
algorithm to generate an estimate of the probability distribution. Figure 10.15 shows the true density of
the data points in the North-West corner and the estimated density in the South-East corner. By observing
the distribution of the points in our sample, it is clear that the Monte Carlo points used to evaluate the
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Fig. 10.6 Same as Fig. 10.3, but with the imposed constraint x≥ 0. Notice the more complete normalization on the left of the
histogram

cost associated with the constraints should be drawn from a distribution with fatter tails than the normal
distribution used in our previous examples. Thus, in this example, we generate Monte Carlo points, using
a distribution that is not far from normal, but has fatter tails, namely, a bivariate Student t-distribution with
15 degrees of freedom (Figs. 10.16 and 10.17).

Figure 10.18 shows the evolution of the Kullback–Leibler divergence and the evolution of the cost with
the number of steps in the algorithm, wile Fig. 10.19 shows the initial and final Monte Carlo points.

In addition we have performed the following test to see how well the algorithm can use the informa-
tion inherent in the 1,000 observations and in the option prices to estimate an additional option price not
provided as a constraint. In the experiment, we provide the algorithm with all of the call option prices for
S1 and for S2 as well as the spread option prices, in the second column of Table 10.1, with the exception
of the spread option with strike 3.3, which it is asked to estimate. The at-the-money value of the spread
corresponds to K = 2 and the spread option prices decrease rapidly for larger strikes.

Table 10.1 compares the performance of the algorithm, subject to different prescriptions of the weights
attached to each constraint in the global cost C. In column 4, the weights are chosen according to the
prescription (3.8) from Sect. 3.3. In column 5 (moderate weights), we evenly weight the 6 spread options
that are used as constraints in the program (in addition to the 11 constraints on each marginal), in such
a way that the total weight assigned to the spreads equals 1

2 . In column 6, we heavily weight the spread
option constraints by assigning a weight 3

4 to the spread option constraints and only 1
4 to the rest. In this

example, moderate weighting performs better on the extra option with strike 3.3, giving an almost perfect
match.
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Fig. 10.7 Same as Fig. 10.2, but for a uniform distribution

10.5 Conclusions

This paper introduces a new methodology for density estimation with constraints on the expected value of
a given set of functionals. The methodology is based on normalizing the data through the composition of
simple near-identity maps, driven by the ascent of the likelihood of the estimated density and the descent
of a cost associated with the non-satisfaction of the constraints. The constraints are simulated through an
important-sampling Monte Carlo technique with sample points that follow the flow defined by the maps of
the algorithm.

The power and versatility of the methodology is illustrated through a few synthetic low-dimensional
examples. Many further refinements are possible; some are hinted at in the text. The applicability of the
methodology is wide, including many financial and biomedical applications.
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Fig. 10.8 Density estimation of a uniform distribution, constrained by lower and upper bounds and by 50 call and put option
prices. On the upper-left panel, the exact uniform density underlying the data. The other three panels display the density
estimated at various stages of the algorithm. On the lower-left, the Gaussian resulting from the linear preconditioning step. On
the upper-right panel, the density estimated after the first pass of the algorithm, with the bandwidth α at each step computed
from (10.33). On the lower-right, the result of the second pass, with α from (10.32) with the density estimated from the
first pass
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Fig. 10.9 Density estimation of a uniform distribution constrained by bounds and option prices. Histograms of the data points:
on the left, the original sample; on the right, the sample after normalization. An effect of the finite size of the sample is the
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more evident in the estimated density
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Fig. 10.12 Diagnostics for the estimation of the Gaussian mixture in (10.43) subject to the constraint in (10.44). Blue stands
for the first pass, red for the second. On the top panel, the evolution of the Kullback–Leibler divergence between the exact
density and the estimated one. On the lower panel, the evolution of the cost C associated with the non-satisfaction of the
constraint
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Fig. 10.13 Two plots illustrating details of the estimation of the Gaussian mixture in (10.43) subject to the constraint in
(10.44). On the left, the initial sample of η(x), used for the Monte Carlo simulation of the constraint. In this case, we have
adopted the simplest choice of a Gaussian η(x) with the empirical mean of the data points and four times its empirical
covariance matrix. On the right, the observations on the upper-right panel of Fig. 10.14, after the normalization performed by
the procedure
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Fig. 10.14 Same as Fig. 10.10, but imposing the constraint (10.44). Now, the left-right symmetry of the distribution is much
more evident in the estimated density
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Fig. 10.18 The evolution of the Kullback-Leibler divergence and of the cost as a function of the number of iterations
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Fig. 10.19 The initial and final Monte Carlo points chosen from a Student-t distribution with 15 degrees of freedom
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Table 10.1 Option prices for the strikes in column 1

Strike Prices:
True Emp. Est. with weights

K1 (38) Moder Extreme
8 2.0469 2.0312 2.0379 2.0507 2.024

8.4 1.6734 1.6567 1.6599 1.6735 1.6544
8.8 1.318 1.3021 1.2962 1.3114 1.2938
9.2 0.9909 0.9742 0.9578 0.9825 0.9568
9.6 0.7058 0.694 0.6611 0.7005 0.6607
10 0.4756 0.4702 0.4306 0.4754 0.4295

10.4 0.3051 0.3016 0.2725 0.3122 0.2698
10.8 0.1898 0.1865 0.171 0.1954 0.1648
11.2 0.1165 0.1174 0.1016 0.1166 0.1016
11.6 0.0718 0.0753 0.0563 0.066 0.0608
12 0.045 0.0489 0.0284 0.0373 0.0383
K2
10 2.009 2.0886 2.0055 2.0219 2.0139

10.4 1.6241 1.7139 1.6307 1.6456 1.6466
10.8 1.2572 1.3557 1.2734 1.2816 1.2922
11.2 0.9214 1.0237 0.944 0.943 0.9603
11.6 0.6316 0.7366 0.6545 0.6443 0.6672
12 0.4001 0.4974 0.4214 0.4073 0.4344

12.4 0.2321 0.3198 0.2526 0.2429 0.2649
12.8 0.122 0.201 0.1453 0.1401 0.1497
13.2 0.0578 0.1252 0.081 0.0784 0.0804
13.6 0.0245 0.0805 0.0406 0.0437 0.0438
14 0.0092 0.0554 0.0206 0.0242 0.0232
Ks
0 2.0253 2.0748 0.0206 1.9511 1.9422
1 1.1093 1.1439 2.0196 1.1143 1.0979
2 0.4199 0.4337 1.1607 0.4662 0.4573
3 0.1123 0.1116 0.4913 0.1253 0.1384

3.3 0.0744 0.072 0.1647 0.0748 0.9
3.7 0.0438 0.0399 0.0821 0.0345 0.046
4 0.0301 0.0245 0.0613 0.0169 0.0265

The true prices based in column 2, the empirical ones for the sample of 1,000 points
in column 3, and three estimated prices in the last three columns, corresponding
to three different ways to choose the weights in the cost functional, which place
an increasing amount of emphasis on enforcing the spread option constraints. The
spread option with strike Ks = 3.3 was not supplied to the algorithm as a constraint
to enforce but was instead calculated from the estimated densities



Chapter 11
Electricity Options and Additional Information

Fred E. Benth, Richard Biegler-König, and Rüdiger Kiesel

Abstract Electricity markets feature a non-storable underlying, which implies the break down of traditional
cash-and-carry arguments as well as the well-known spot-forward relationship. We introduce the notion
of information premium to describe the influence of future information—such as planned power plant
maintenance—on the relationship between forward contracts and the spot market. In a recent paper we
designed a statistical test to show the existence of the premia. Here, we examine how the presence of an
information premium alters the prices of options on forwards. Also, we apply the technique of enlargement
of filtrations to show how to calculate the premium specifically for certain types of information and delivery
periods. Furthermore, we illustrate the results in various stylised examples.

11.1 Introduction

Since deregulation in the 1990s, electricity has been traded on exchanges in various regions such as Europe
and the USA. As an underlying, electricity is special in many ways, with market design having to take
different technical and regulatory constraints into consideration. The most fundamental of the intrinsic
properties of electricity is its non-storability. This has a huge impact on price behaviour, especially when
it comes to the relation between spot and forward prices. Traditional theory utilises no-arbitrage and cash-
and-carry arguments to derive the well-known spot-forward relationship:

F(t,T ) = e(r−y)(T−t)St (11.1)

where F(t,T ) is the forward price in t with maturity in T , St is the spot price, r is the interest rate and
y reflects storage costs and convenience yield. In probabilistic terms this corresponds to the risk-neutral
valuation formula
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F(t,T ) = E
Q[ST |Ft ] (11.2)

Here, Q is a pricing measure and Ft denotes the historical filtration, i.e. the filtration as generated by
the past and present of the spot price process. This definition motivates the introduction of the so-called
risk premium, i.e. the difference between the expectations under a pricing measure and the real-world
measure. The risk premium is subject of intense research, discussed for example in Longstaff and Wang
[28], Bessembinder and Lemmon [9], Lucia and Torró [34], Furiò and Meneu [18], Diko et al. [16] and
Benth et al. [6].

Still, with electricity being non-storable, this classical relationship collapses. As a stylised example we
consider the announcement of planned maintenance of some utility in the future. This is very likely to
induce higher forward prices around that time, whereas spot prices today will remain unchanged. In other
words, we experience a situation in which movements in forward prices are not anticipated by spot prices.
Mathematically, this means that a non-storable underlying results in an asymmetry between the historical
filtration and what we will call the market filtration (Gt).

This asymmetry leads to two different models in terms of a process and a filtration, namely (St ,Ft)
and (St ,Gt). Looking at the spot isolated from the forward market we have the non-validity of the Efficient
Market Hypothesis (i.e. not all available information is reflected) and thus (St ,Ft) is the actual spot model
with knowledge only of the evolution of the spot thus far. The forward market, on the other hand, is efficient
(at least theoretically) and future information is taken into account. Hence, forward contracts are priced
according to (St ,Gt) in our framework.

In a first paper, Benth and Meyer-Brandis [7] described the inadequacy of the historical filtration when
relating spot and forward prices on electricity markets. They propose to complement the filtration by spe-
cific pieces of future information and introduce a new pricing relationship. Referring to the risk premium
they introduce the notion of the information premium. This is defined as the difference between the for-
ward price under an enlarged market filtration and that under the historical filtration. For an arithmetic spot
model they apply the theory of enlargement of filtrations (French: grossissement de filtration) to calculate
the information premium in some cases. This theory was initiated by Itō [23] and developed by French
mathematicians in the 1980s and mainly provides the decomposition of semimartingales under an initially
enlarged filtration.

Benth, Biegler-König and Kiesel present a thorough empirical investigation of the information premium
in [5]. They prove its existence by a specially designed test and analyse in detail two market situations, one
being the Moratorium discussed as a motivating example below and the other being the beginning of the
second phase of the EU ETS in 2008 when additional costs for CO2 were priced into the forwards while
the spot remained unchanged. They find significant information premia for both scenarios, which match
expectations in terms of size and shape.

To illustrate further, as mentioned above, we will consider a market situation that occurred on the Ger-
man EEX in March 2011. On 11 March 2011 the Tōhoku earthquake and the consequent tsunami heavily
damaged several nuclear power plants in Japan, in particular the one in Fukushima. Only 3 days later, on
14 March 2011, the German government re-evaluated their nuclear policy and issued the so-called Atom
Moratorium, by which the seven oldest plants (eight reactors with a capacity of more than 8 GW) in Ger-
many were to be shut down for 3 months. This measure was to allow for a new evaluation of the usage of
nuclear power in Germany. Consequently, the market exhibited a sharp increase in forward prices while
spot prices remained at their pre-Moratorium level. Considering the merit-order, this might, at first, sound
surprising. Still, of the eight reactors, Brunsbüttel and Krümel (both in Schleswig-Holstein) had been of-
fline for some time due to constant maintenance problems. Also, Biblis B (in Hessen) had gone into regular
revision earlier. Hence, in effect, only around 4,000 MW were switched off. At the same time, not only
was more solar and wind electricity produced (rather accidently) but also Germany started importing cheap
nuclear power from France (Germany actually exported 4 GW before and imported around 2 GW after the
Moratorium). Summarising, there was no change of the price-setting technology. Obviously, on the de-
mand side, this was also due to the mild season. We refer to the report written by the Bundesnetzagentur
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to the federal ministry of economics and technology [1] for more details. Although the official end of the
Moratorium was 15 June 2011, it was widely expected that the seven plants would stay offline even after
that date, and indeed their permanent shutdown was decided on 31 May 2011.

The effect of the Moratorium and this future outlook was a sharp increase in forward prices, not only of
those whose delivery fell into the 3 months of the Moratorium but also of those with a later delivery period.

As an example, when considering the evolution of the price of the forward with maturity in May 2011,
we find that the Moratorium is the most striking date, exhibiting a huge increase in prices (i.e. a positive
information premium). This forward had a mean price of 46.93 Euro before the Moratorium and a 57.83
Euro post-Moratorium mean. This corresponds to an increase of more than 10 Euro, i.e. almost 25 %. Prices
remained at a high level until the end of the delivery period.

On the other hand, the forward with delivery in July 2011 behaved differently. Again, there was a huge
and sudden price increase following the Moratorium resulting in a higher price level all through April and
May. Then, with the beginning of June, the price returned to its pre-Moratorium level, i.e. the (positive)
information premium was neutralised by other effects: another four reactors had gone offline in May and
were only coming back online in the beginning of June (again, we refer to [1]). Furthermore, demand
was low because of the season. Still, with the final decision to shut down the seven old plants, political
uncertainty was also removed and market participants began to better understand the new situation for
summer 2012. This shows that the impact of future information can indeed change over time, i.e. the
information premium is a function in time. For more details on the Moratorium we also refer to the recent
paper [33] in which forward prices as well as fuel prices are examined empirically. The author can explain
price paths of forwards and concludes that the market reacted efficiently to the new legislative framework.

Thus, summarising, one finds that forward prices reacted to some future information (or market senti-
ment) which was publicly available, but the spot did not.

In this paper though, we want to extend the theoretical results of Benth and Meyer-Brandis [7]. In partic-
ular, we will examine how the information premium interacts with option prices. The necessary definitions
and basic concepts will be introduced in Sect. 11.2. In Sect. 11.3 we will use a very simple Brownian spot
model to examine the behaviour of option prices under additional information. This will be closely related
to the literature on modelling insider trading, which will be discussed in Sect. 11.3.1. As a tool for pricing
options, we will then provide formulae for the information premium. Here, we will consider more complex
and more realistic situations than in [7]. In Sect. 11.5 we will illustrate our findings by presenting a number
of stylised examples. Finally, Sect. 11.6 will conclude the paper.

We remark that the approach taken in this paper (and also in [7] or [5]) is that of modelling the spot
using a reduced-form model. Our goal is to explore the relationship between spot and forward on electricity
markets in general. Another branch of the literature introduces so-called fundamental or structural models.
These take into consideration driving factors of electricity markets and deduce their prices from those
factors. As an example, let us mention the paper by Aı̈d et al. [2]. Here, the authors model prices of fuels,
demand and capacity and then deduce spot prices as the marginal production costs using the most expensive
needed production technology. Coulon and Howison [14] and Burger et al. [12] follow a similar approach.
Furthermore, it is worth mentioning the paper by Cartea et al. [13]. Here, the authors set up a spot price
model in the usual (reduced-form) way but they also include a regime-switching part. Their switching
parameter is deterministic and derived by comparing forecasted demand and forecasted available capacity.
Thus, they incorporate specific future information into their spot model.

11.2 Preliminaries

In this section we will provide important definitions and first results about the information premium.
We will consider forwards with a single delivery point rather than the more realistic delivery period. This
is to ease notation. Once we start calculations (Sects. 11.3 and 11.4) everything can easily by adapted to
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delivery periods. In the second part we will introduce the theory of enlargement of filtrations, including the
theorems and auxiliary results which will be used later.

11.2.1 The Information Premium

The classical spot-forward relationship has already been mentioned in the introduction. We define it for-
mally again:

Definition 11.1 (Classical spot-forward relationship). With Q a pricing (risk-neutral) measure,1 we have

F(t,T ) = E
Q[ST |Ft ] (11.3)

where F(t,T ) denotes the time t-price of a forward maturing at T , T ≥ t ≥ 0, St is the spot price and
E
Q[·|Ft ] is the conditional expectation under the historical filtration Ft = σ(Su : u≤ t).

We can now compare the conditional expectation under the real-world measure with the conditional
expectation under the pricing measure and use the difference as an indicator for market sentiment.

Definition 11.2 (Risk premium). The risk premium is defined as

RQ(t,T ) = E
Q[ST |Ft ]−E

P[ST |Ft ] (11.4)

Note that observed forward prices are often used for the expression E
Q[ST |Ft ] [by assuming the cor-

rectness of Eq. (11.3)]. After calculating expectations under P one then analyses the difference.
Since we want to study the impact of different information sets on forward prices, we introduce further

filtrations finer than the historical filtration. We need a filtration which contains specified information on
future spot prices and a slightly coarser filtration which contains some unspecified additional information.
To be precise:

Definition 11.3 (Filtrations). Let Ht be a filtration which includes the historical filtration as well as precise
knowledge of the future value of the underlying at some time point Tϒ , i.e.

Ht = Ft ∨σ(STϒ ) (11.5)

Also, let Gt be a filtration that includes some information on the level of the future value of the underlying at
time Tϒ . We will call this filtration the market filtration and we will assume that it represents the information
available to market traders. This yields the relationship Ft ⊆ Gt ⊆Ht .

As an example of possible future information available to the market we might consider Gt = Ft ∨
σ(�{STϒ ≥K}). For this threshold information we know the value of the underlying at time Tϒ will be larger
than some constant K, but we do not know the precise value.

Having in mind our main examples (the Moratorium and the introduction of the CO2 certificates) a more
realistic approach than information given only in Tϒ would be additional information about the spot at a
number of future time points. We remark that the calculations of Sect. 11.4 can also be conducted for this
multiple information case. Still, in this report we will concentrate on the single information case to keep
things as simple as possible.

1 We remark that the spot price of electricity is not a traded asset and thus its discounted value needs not be a martingale under
the risk-neutral measure. Hence, all measures Q equivalent to the real-world measure P are possible candidates.
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Now we can define the information premium properly:

Definition 11.4 (Information premium). Let Gt be the market filtration with extra information at Tϒ . Then
the information premium is defined as

IQG (t,T ;Tϒ ) = FQ

G (t,T )−FQ

F (t,T ), (11.6)

i.e. the difference between the forward prices under the market and the historical filtration.

In the following we will assume that all market participants work with the filtration G . This implies that
instead of assuming observed forward prices equal EQ[ST |Ft ] forward prices are calculated by market par-
ticipants as EQ[ST |Gt ]. In other words, we assume that under additional information traders price electricity
forwards according to

FQ

G (t,T ) = FQ

F (t,T )+ IQG (t,T ;Tϒ ) (11.7)

i.e. the traditional forward price adjusted by the information premium.
Lemma 11.1 provides the most important property of the information premium.

Lemma 11.1 (Orthogonality of the information premium). The information premium is the residual
when projecting the forward price under Gt onto the space L2(Ft ;Q). In other words,

E
Q[IQG (t,T )|Ft ] = 0 (11.8)

Proof. From Definition 11.4, the fact that Ft ⊆ Gt and the tower property the result follows
straightforwardly. ��

The consequence of this lemma is that the information premium cannot be attained by a measure
change (the general approach in Financial Mathematics and the method used frequently to deduce the risk
premium). For the difficulties this causes, particularly in empirical investigations, the reader is referred
to [5].

11.2.2 Enlargement of Filtration

Itō [23] initiated the theory of enlargement of filtration and provided a first theorem. Most results have
since been proposed by French mathematicians, especially in the 1970s and 1980s, for example, Jeulin
[26], Jeulin and Yor [27] or Jacod [24]. A comprehensive introduction is provided in Protter’s book [32,
Chap. VI] but also in Amendinger’s thesis [3]. The most important application of the theory in finance is
modelling stock markets with insider traders. We will discuss the corresponding literature in Sect. 11.3.1.
Another application is default risk, discussed for example by Jeanblanc, Yor and Chesney in their recent
book [25, Chap. 7].

Generally, using the notation from Definition 11.3, we want to know whether a F -semimartingale
remains a semimartingale under G . If yes, we want to identify its martingale decomposition under G .

The answer to the first question is yes if some conditions are satisfied (we refer to [32] for details). For
the second question we are searching for a G -measurable process μG

t such that for an F -martingale W and
a G -martingale ξ we have

ξt =Wt −
∫ t

0
μG

s ds (11.9)
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In the context of the information premium we will call μG
t the information drift. Note that μG

t is Gt -adapted,
so that we can attain it by changing measure under G . Under F this is not possible (this is Lemma 11.1
stated differently). There are various ways to calculate the information drift: one can adapt Itō’s first theo-
rem to provide μG

t for enlarging a Lévy process Lt by incomplete knowledge of its future value LTϒ , t < Tϒ
(amongst others, this result is provided in [5, 32]). Enlarging a Brownian motion by a more general random
variable (usually called G) can be done using Yor’s method and Jacod’s criterion. This includes the impor-
tant cases of enlargement by functionals of the Brownian motion (such as a spot price process). Finally,
Imkeller uses Malliavin calculus and introduces another method for this case (as discussed in [20, 21]). We
will show how to calculate the information drift in Sect. 11.4. Still, for Sect. 11.3, we will work with the
general form μG

t .

11.3 Electricity Options

In this section we will examine the problems and modifications that arise when pricing options (on for-
wards) under the historical filtration F and the (enlarged) market filtration G .

In order to find closed-form solutions we will consider a standard Gaussian Ornstein-Uhlenbeck process
Xt as our spot price model, in other words St = Xt . This is the base signal only of the arithmetic spot price
model used in [5, 7]. Additional information about this part of the spot model is suitable to analyse the
two main examples mentioned in the introduction (especially when considering medium time horizons
(i.e. less than 6 months) as in [5]). For the Moratorium G would include extra information from 14 March
2011 onwards. Furthermore, we remark that the following analysis would not change for St =Λt +Xt with
Λt being a seasonality function and indeed we will consider the (stylised) case Λt = μ (μ a constant) in
Sect. 11.5.

Before we begin calculations, though, we will try to relate the existing results from the literature on
insider trading to our electricity markets. In particular, we need to identify carefully traded assets as well
as non-traded objects.

11.3.1 Assets and Insider Trading

In the context of modelling insider trading on stock exchanges, the technique of enlargement of filtrations
has been applied in a variety of research papers: Examples are Karatzas and Pikovsky [30], Imkeller in [20–
22], Ankirchner [4], Amendinger [3], Biagini and Øksendal [10], Hu and Øksendal [19], Elliot et al. [17].
The general idea in all these publications is that the normal market trader’s flow of information is modelled
by the historical filtration whereas an insider’s flow of information is given by an enlarged filtration. Most
papers above also consider the utility of both types of investors rather than calculating specifically prices
of contingent claims. The reason for this is a result (proven very generally in [3] for example) stating
that for FT -measurable payoffs both investors assign the same value to options. Basically, enlarging the
filtration changes drift terms and not volatilities. Thus, due to the G -measurability of these drifts, they will
be removed by the insider’s pricing measure. The resulting risk-free dynamics of the underlying will then be
the same as those of the normal trader—which in consequence will give equal option prices. Apart from this
mathematical reasoning this can also be justified economically. Stocks are conventional (and, in particular,
storable) assets. It is well known from classical Financial Mathematics that (in a complete market setup,
cf. [11]) normal derivatives can be perfectly replicated by the uninformed trader using only basic assets
(for example using a delta-hedge). Thus, prices assigned by both types of investors must coincide as their
hedge-portfolios do.

We are facing a different situation when the underlying is electricity. The spot is non-storable and thus
not an asset in the classical sense as it is not tradeable. This poses a number of questions when trying to
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price forwards and options on forwards. For example, one might ask, whether the results from the literature
can be translated, i.e. that options have identical prices under both filtrations. In the end, as the spot is not
tradeable, one cannot follow the traditional argument and compare hedges. However, forwards are traded
assets but then we now have two versions of the forward price, one under the historical and one under
the market filtration. Hence, it is difficult to assign to each filtration one type of investor (as in the insider
literature) and to consider both investors coexisting on the market. If the underlying is electricity we should
think of the different objects as prices under different models rather than traded assets.

Summarising, our way to interpret the objects discussed previously is as follows: the informed and the
uninformed traders calculate two sets of prices for themselves, depending on their best knowledge. Our
analysis consequently ignores the question of how observed market forward prices are then amalgamated
from these two individual sets of prices.

11.3.2 Vanilla Options on Forwards with Delivery Period

We want to price a plain vanilla call on a forward on electricity. The option expires in T and the forward
has delivery period between T1 and T2. Furthermore, there is relevant additional future information in Tϒ .
This setup is further illustrated in Fig. 11.1 (note that Tϒ could be any time after T , though).

0 T TT1 T2

Fig. 11.1 The setup of the time axis. T is the maturity of the option, [T1,T2] the forward delivery period and Tϒ the time of
additional information

As mentioned above, we will assume that the spot follows a standard Gaussian Ornstein-Uhlenbeck
process with constant parameters. Hence, St = Xt , where, for t < T ,

XT = e−α(T−t)Xt +σ
∫ T

t
e−α(T−u)dWu (11.10)

Here, Wt is a Brownian motion, and α and σ are constant parameters. If we assume forward prices are
settled financially at the end of the delivery period we can show (as for example in [8, p. 29]) that the
(F ,P)-forward price is given by

FP

F (t,T1,T2) =
1

T2−T1
E
P

[∫ T2

T1

Sudu|Ft

]
(11.11)

For the spot as in Eq. (11.10) this can be calculated to be equal to

FP

F (t,T1,T2) =
1

T2−T1
ᾱ(t,T1,T2)X(t) (11.12)

where

ᾱ(t,T1,T2) =

{− 1
α (e−α(T2−t)− e−α(T1−t)) t ≤ T1

− 1
α (e−α(T2−t)− 1) t > T1

Now, we can calculate the forward dynamics:

dFP

F (t,T1,T2) =
1

T2−T1
(dᾱ(t,T1,T2)Xt + ᾱ(t,T1,T2)dXt)
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The function ᾱ(t,T1,T2) is deterministic and we have t < T1. Thus

dᾱ(t,T1,T2) = d(− 1
α (e

−α(T2−t)− e−α(T1−t))) = αᾱ(t,T1,T2)dt

Hence,

dFP

F (t,T1,T2) =
1

T2−T1
(ᾱ(t,T1,T2)(−αXtdt +σdWt)+αᾱ(t,T1,T2)Xtdt)

= 1
T2−T1

σᾱ(t,T1,T2)dWt (11.13)

Now Wt is a (F ,P) Brownian motion and thus the forward price is already a martingale. We can integrate
and get

FP

F (T,T1,T2) = FP

F (t,T1,T2)+
1

T2−T1
σ
∫ T

t
ᾱ(s,T1,T2)dWs (11.14)

The electricity market is incomplete and we can choose our risk-neutral pricing measure; for simplicity we
will use Q= P.

Starting with formula (11.13), we rewrite the forward dynamics under the enlarged market filtration G
in terms of the information drift μG

t as given by Eq. (11.9):

dFP

G (t,T1,T2) =
1

T2−T1
σᾱ(t,T1,T2) d(ξt +

∫ t

0
μG

s ds)

= 1
T2−T1

(
σᾱ(t,T1,T2)dξt +σᾱ(t,T1,T2)μG

t dt
)

(11.15)

So,

FP

G (T,T1,T2)

= FP

G (t,T1,T2)+
σ

T2−T1

(∫ T

t
ᾱ(s,T1,T2)dξt +

∫ T

t
ᾱ(s,T1,T2)μG

s ds

)
(11.16)

This is, again, a (G ,P) semimartingale. The dt terms are Gt-measurable; thus we can change measure to
obtain martingale dynamics under G and a new measure P̃. This connection was discovered by Protter in
his note [31] and notation in the following will be similar to that used there. We define new processes

Mt =

∫ t

0
(−μG

s )dξs

Nt = 1+
∫ t

0
NsdMs

Thus, process Nt is an exponential martingale, and one has the well-known solution

Nt = Ns exp

(
−
∫ t

s

1
2 (μ

G
u )2du−

∫ t

s
μG

u dξu

)

As Nt has expectation one (i.e. is in L1(G ,P)), we can now apply the Girsanov-Meyer theorem (see [32]
or [15]) with dP̃

dP |Gt = Nt or dP
dP̃
|Gt = N−1

t , respectively. The theorem states that the P̃-decomposition of the
Brownian motion ξt is

ξt =

(
ξt −

∫ t

0

1
Ns

d < N,ξ >s

)
+
∫ t

0

1
Ns

d < N,ξ >s
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Calculating the integral yields

∫ t

0

1
Ns

d < N,ξ >s =
∫ t

0

1
Ns

d <
∫ .

0
(−NuμG

u )dξu,
∫ .

0
dξu >s

=

∫ t

0

1
Ns

d

(∫ s

0
(−NuμG

u )du

)

=
∫ t

0

1
Ns

(−NsμG
s )ds

=

∫ t

0
−μG

s ds

so that under (G , P̃) we have

ξt =

(
ξt +

∫ t

0
μG

s ds

)
−
∫ t

0
μG

s ds =Wt −
∫ t

0
μG

s ds

This means that the original (F ,P)-Brownian motion Wt is also a Brownian motion under (G , P̃), and
consequently, rewriting Eq. (11.15), the forward dynamics under (G , P̃) are

dF P̃

G (t,T1,T2) =
1

T2−T1
σᾱ(t,T1,T2)d

(
Wt −

∫ t

0
μG

s ds

)
+ 1

T2−T1
σᾱ(t,T1,T2)μG

t dt

= 1
T2−T1

σᾱ(t,T1,T2)dWG ,P̃
t (11.17)

Hence, the forward price is a martingale. Integrating,

F P̃

G (T,T1,T2) = F P̃

G (t,T1,T2)+
1

T2−T1
σ
∫ T

t
ᾱ(t,T1,T2)dWG ,P̃

s (11.18)

In order to price options we need the distribution of the forward price. For both filtrations, it is condi-
tionally normally distributed. We calculate the first two moments under (F ,P):

E[FP

F (T,T1,T2)|Ft ] = FP

F (t,T1,T2) (11.19)

and using Itō’s isometry for the variance,

Var(FP

F (T,T1,T2)|Ft) =
1

(T2−T1)2 σ
2
∫ T

t
ᾱ2(t,T1,T2)ds

=
σ2

(T2−T1)2

1
α2

∫ T

t
(e−2α(T2−s)− e−α(T2−s)e−α(T1−s) + e−2α(T1−s))ds

=
σ2

(T2−T1)2

1
α2

(
1

2α

(
e−2α(T2−T )− e−2α(T2−t) + e−2α(T1−T)− e−2α(T1−t)

)
−2 1

2α

(
e−α(T2+T1−2T )− e−α(T2+T1−2t)

))
=

σ2

(T2−T1)2

1
α3

(
1
2

(
e−2α(T2−T )− e−2α(T2−t) + e−2α(T1−T )− e−2α(T1−t)

)
−
(

e−α(T2+T1−2T)− e−α(T2+T1−2t)
))

= Σ2(t,T,T1,T2)
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Under G and corresponding pricing measure P̃ the first moments are given by

E[F P̃

G (T,T1,T2)|Gt ] = F P̃

G (t,T1,T2) (11.20)

Var(F P̃

G (T,T1,T2)|Gt) = Σ2(t,T,T1,T2)

so that only start values are modified and variances remain unchanged. Now we have the ingredients to
calculate options on futures under the two filtrations. The crucial difference between the insider literature
and our analysis is that although we replicate the result that the underlying has the same dynamics under
both filtrations we have different starting values in t. The trader using the historical filtration will price his
or her option using the traditional forward price in t whereas the informed trader will include his or her
future knowledge. Of course, this will have a huge impact on the risk valuation of these options.

11.3.2.1 Vanilla Call Under F on an F -Forward

This is the standard case known from the literature. Our starting point is the risk-neutral valuation formula,
and we will assume r = 0 in the following:

CF (t,T,FF (T,T1,T2,K)) = E
Q[(FF (T,T1,T2)−K)+|Ft ]

Note that Q= P because the forward is already a martingale under P. Introducing an auxiliary function

dF
1 =

FP

F (t,T1,T2)−K

Σ(t,T,T1,T2)
(11.21)

as well as a standard normal random variable Z, we rearrange Eq. (11.14):

E[(FP

F (T,T1,T2)−K)+|Ft ] = E[(FP

F (t,T1,T2)−K+Σ(t,T,T1,T2)Z)
+|Ft ]

Hence, we are in the classical Bachelier setup.

Theorem 11.1 (Option price under the historical filtration). The price at t of a Vanilla call option with
maturity T and strike K under filtration F on an electricity forward priced under F with delivery period
in [T1,T2] is given by

CF (t,T,FF (T,T1,T2,K)) = (FP

F (t,T1,T2)−K)Φ(dF
1 )+Σφ(dF

1 ) (11.22)

where φ(·),Φ(·) denote the standard-normal density and distribution and dF
1 is defined as in Eq. (11.21).

Proof. Straightforward calculations. ��
Next, we will consider option prices as calculated by a trader taking additional future information into

consideration.

11.3.2.2 Vanilla Call Under G on a G -Forward

The risk-neutral valuation formula in this setting is

CG (t,T,FG (T,T1,T2),K) = E
Q[(FG (T,T1,T2)−K)+|Gt ]
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We found that the G -forward was a martingale under the measure P̃, so this is our pricing measure. Again,
the forward is conditionally normal with first moment given by Eq. (11.20) and second momentΣ as before.
As in Eq. (11.21), we define

dG
1 =

F P̃

G (t,T1,T2)−K

Σ(t,T,T1,T2)

We can then state

Theorem 11.2 (Option price under the market filtration). The price at t of a Vanilla call option with
maturity T and strike K under filtration G on an electricity forward priced under G with delivery period
in [T1,T2] is given by

CG (t,T,FF (T,T1,T2,K)) = (F P̃

G (t,T1,T2)−K)Φ(dG
1 )+Σφ(dG

1 ) (11.23)

where φ(·),Φ(·) denote the standard-normal density and distribution and dG
2 is defined as in Eq. (11.23).

Proof. As in Theorem 11.1. ��
We remark that the pricing formulae of Theorems 11.1 and 11.2 are identical except for the forward

prices.

11.4 Calculating the Information Premium

In this section we will show how to calculate the information premium for our simple spot model in different
situations. The additional information we consider first will be some knowledge about the value of the spot
at some future time point Tϒ , i.e.

Gt ⊆Ht = Ft ∨σ(STϒ ) = Ft ∨σ(XTϒ )

We have trivially that

Ft ∨σ(XTϒ ) = Ft ∨σ
(∫ Tϒ

t
e−α(Tϒ−s)dWs

)

so we are enlarging by a normally distributed random variable. We will call

G =
∫ Tϒ

0
e−α(Tϒ−s)dWs

Let further

mt =

∫ t

0
e−α(Tϒ−s)dWs

st =Var(mt) =
1

2α (e
−2α(Tϒ−t)− e−2αTϒ )

and

PG(dl) = P(G ∈ dl) = 1√
2πs2

Tϒ

exp(− 1
2

l2

s2
Tϒ
)dl

PG
t (dl) = P(G ∈ dl|Ft) =

1√
2π(s2

Tϒ
−s2

t )
exp(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
)dl
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Simplified, Jacod’s criterion (see [24]) says that if PG
t (dl) = pt(l)PG(dl) for some pt(l) then the G -

decomposition of the G -Brownian motion ξt is

ξt =Wt −
∫ t

0

d < p.(l),W >s

ps(l)

in other words

μG
t =

d < p.(l),W >t

pt(l)

Calculating pt in this case is cumbersome (it involves a lengthy application of Itō’s theorem). Hence, we
will use Imkeller’s method. Imkeller proves that (under certain conditions, see [21])

μG
t =

dDtPG
t (·,dl)

dPG
t (·,dl)

(l)

where D denotes the Malliavin derivative. For more details on Malliavin calculus we refer to [29]. We can
return to our example and calculate

DtP
G
t = Dt(

1√
2π(s2

Tϒ
−s2

t )
exp(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
))

= PG
t Dt(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
)

= PG
t

l−mt
s2
Tϒ
−s2

t
Dt(mt)

= PG
t

l−mt
s2
Tϒ
−s2

t
e−α(Tϒ−t)

Here, we used the Malliavin chain rule and the fact that mt is a simple Wiener polynomial. Dividing by PG
t

allows to write down the decomposition

Wt = ξt +

∫ t

0

l−ms

s2
Tϒ
− s2

s
e−α(Tϒ−s)ds = ξt +

∫ t

0

∫ Tϒ
s e−α(Tϒ−u)dWu

1
2α (1− e−2α(Tϒ−s))

e−α(Tϒ−s)ds

= ξt +
∫ t

0

(∫ Tϒ

s
eαudWu

)
2αeαs

e2αTϒ − e2αs︸ ︷︷ ︸
=a(s)

ds (11.24)

Also, this can be written in terms of the process Xt :

Wt = ξt +

∫ t

0

1
σ eαTϒ (XTϒ − e−α(Tϒ−s)Xs)

2αeαs

e2αTϒ − e2αs ds (11.25)

Using this decomposition we can then calculate the information premium by substituting into the definition.

Theorem 11.3 (The information premium). Let 0 ≤ t ≤ T1 < T2 ≤ Tϒ . Then the information premium
with delivery period is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1

1
α

(
e2αT2 + e2αt

eαT2
− e2αT1 + e2αt

eαT1

)
eαTϒE[XTϒ |Gt ]− eαtXt

e2αTϒ − e2αt (11.26)

Proof. The information premium with delivery period is defined as
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IG (t,T1,T2;Tϒ ) = FG (t,T1,T2)−FF (t,T1,T2)

Looking at formulae (11.10) and (11.11) we realise that terms including Xt cancel. The F -expectation of
the Itō integral is zero. Hence, we only have the G -expectation of the Itō integral, and we substitute the
decomposition as in Eq. (11.24) as follows:

IG (t,T1,T2;Tϒ ) =
1

T2−T1
E

[∫ T2

T1

∫ u

t
σe−α(u−s)dWsdu|Gt

]

=
σ

T2−T1
E

[∫ T2

T1

∫ u

t
e−α(u−s)

(
a(s)

∫ Tϒ

s
eαvdWv

)
ds du|Gt

]

=
σ

T2−T1

∫ T2

T1

∫ u

t
e−α(u−s)a(s)E

[∫ Tϒ

s
eαvdWv|Gt

]
ds du

Now we apply Theorem A.1 with f (u) = eαu and g(s) = a(s). Solving the resulting integral equation yields

IG (t,T1,T2;Tϒ )

=
σ

T2−T1

∫ T2

T1

∫ u

t
e−α(u−s)a(s)

e2αTϒ − e2αs

e2αTϒ − e2αt E

[∫ Tϒ

t
eαvdWv|Gt

]
ds du

=
σ

T2−T1

E

[∫ Tϒ
t eαvdWv|Gt

]
e2αTϒ − e2αt

∫ T2

T1

∫ u

t
2αe−αue2αsds du

=
1

T2−T1

eαTϒE[XTϒ |Gt ]− eαtXt

e2αTϒ − e2αt

∫ T2

T1

eαu− e2αte−αudu

and evaluating the last integral yields the result. ��
Using this formula, we can now find numerical values for the information premium and thus for option

prices on the corresponding forwards.
So far, we have, for technical reasons, assumed that Tϒ was larger than T2. Under the forward-pricing

model (St ,Gt) the whole evolution of the spot is changed and all forward prices are adjusted, without
regard to whether the future information is located on the time axis before, during or after the maturity of
the contract. Thus, it is perfectly sound to take into consideration estimated future information in terms of
timing. Still, we now face a problem from a modelling perspective: for the CO2 scenario mentioned in the
introduction our model will result in a positive information premium for 7 December although the second
phase of the EU ETS began on 1 January . We remark, though, that this effect is negligible, in particular
due to the mean-reversion rates observable on the market (we refer to [5] for a discussion) and even more
so when considering longer delivery periods.

Technically, it is relatively easy to adapt the result of Theorem 11.3 to other orderings of time points.

Lemma 11.2 (The information premium (information before delivery period)). For 0≤ t < Tϒ ≤ T1 <
T2, i.e. extra information before the delivery period, the information premium is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1
ᾱ(Tϒ ,T1,T2)

(
E[XTϒ |Gt ]− e−α(Tϒ−t)Xt

)
(11.27)

Proof. One uses the definition and decomposes

IG (t,T1,T2;Tϒ ) =
1

T2−T1

(
E

[∫ T2

T1

Xudu|Gt

]
−E

[∫ T2

T1

Xudu|Ft

])

=
1

T2−T1

(
E

[∫ T2

T1

(
e−β (u−Tϒ )XTϒ +

∫ u

Tϒ
e−α(u−s)dWs

)
du|Gt

]
− ᾱ(t,T1,T2)Xt

)
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Now, the filtrations satisfy Gt ⊆FTϒ so

IG (t,T1,T2;Tϒ )

=
1

T2−T1

(
E

[∫ T2

T1

(
e−β (u−Tϒ )XTϒ +E

[∫ u

Tϒ
e−α(u−s)dWs|FTϒ

])
du|Gt

]

− ᾱ(t,T1,T2)Xt

)

=
1

T2−T1

(
ᾱ(Tϒ ,T1,T2)E[XTϒ |Gt ]− ᾱ(t,T1,T2)Xt

)
=

1
T2−T1

ᾱ(Tϒ ,T1,T2)
(
E[XTϒ |Gt ]− e−α(Tϒ−t)Xt

)
which is exactly the claim. ��

The case for which the extra information is in between T1 and T2 is a mixed case of Theorem 11.3 and
Lemma 11.2.

Lemma 11.3 (The information premium (information during delivery period)). For 0≤ t ≤ T1 < Tϒ <
T2, i.e. extra information during the delivery period, the information premium is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1

(
(Tϒ −T1) IG (t,T1,Tϒ ;Tϒ )︸ ︷︷ ︸

Theorem 11.3

+(T2−Tϒ ) IG (t,Tϒ ,T2;Tϒ )︸ ︷︷ ︸
Lemma 11.2

)
(11.28)

Proof. One uses the definition of the information premium and separates the two cases by splitting the
integrals in the expectations. ��

We can recover the information premium without delivery period (denoted by IG (t,T1;Tϒ ), calculated
in [7]) by taking limits:

Lemma 11.4. In the situation of Theorem 11.3 we have

lim
T2→T1

IG (t,T1,T2;Tϒ ) = IG (t,T1;Tϒ )

Proof. We need to evaluate

lim
T2→T1

IG (t,T1,T2;Tϒ )

= lim
T2→T1

1
T2−T1

1
α

(
e2αT2 + e2αt

eαT2
− e2αT1 + e2αt

eαT1

)
eαTϒE[XTϒ |Gt ]− eαtXt

e2αTϒ − e2αt

We use L’Hospital’s rule

. . .=
eαTϒE[XTϒ |Gt ]− eαtXt

e2αTϒ − e2αt lim
T2→T1

1
∂
∂T2

(T2−T1)

1
α

∂
∂T2

e2αT2 + e2αt

eαT2

=
eαTϒE[XTϒ |Gt ]− eαtXt

e2αTϒ − e2αt e−αTϒ
(
e2αT1 + e2αt)

= IG (t,T1;Tϒ )

and this is the expression calculated in [7]. ��
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11.5 Discussion and Stylised Examples

In this section we will present various stylised examples to illustrate the theory discussed so far. Firstly, we
will assume that the spot satisfies St = μ+Xt (for some constant μ) and use the results of Sect. 11.4 to anal-
yse properties of the information premium. We will assume that market agents are given non-precise future
spot information about XTϒ , i.e. we know the value of E[XTϒ |Gt ]. Furthermore, we choose toy-parameters
for α and σ which are similar to those fitted to market data. Also, for the time axis, we follow the daily
convention, meaning that for example T1 = 10,T2 = 20 denotes a delivery period of 20 days, starting from
day 10.

Figure 11.2 illustrates the information premium for different values of this expectation and for moving
Tϒ . Further parameters were set to t = 0,T1 = 20,T2 = 30,X0 = 0,α = 0.2 and σ = 3.0. Remembering for
example formula (11.26) we see that with these values the sign of the premium depends only on E[XTϒ |Gt ],
as expected. We observe a vanishing information premium for a Tϒ that is either far before the delivery or
far after. If the extra information is a zero expectation of XTϒ then this does not constitute genuinely new
information and the information premium becomes zero (green line). Generally, the value of the premium
takes its maximum/minimum in the middle of the delivery period. This makes sense economically: depend-
ing on σ and α knowing the expected value at Tϒ gives a vague idea of spot values in the vicinity. Hence,
the further away the beginning and the end of the delivery period are from Tϒ , the more of the interval
around Tϒ will lie in the period. We can, for example, use the half-life of the Ornstein-Uhlenbeck process
(defined as ln2

α ) as an estimate of how many days are influenced by the additional information. For example,
in the case of Fig. 11.2, the half-life is ln2

0.2 ≈ 3.5. The value of the information premium with knowledge
about Tϒ = 25 is around 3 (solid red line). We can calculate the area under the first two half-lives by solving
30 = 1.5 ·3.5 ·E[X25|G0]. This gives E[X25|G0]≈ 5.7, the true value being 5.0.
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Fig. 11.2 The information premium over Tϒ for different values of E[XTϒ |Gt ]. Other parameters are: t = 0,T1 = 20,T2 =
30,X0 = 0,α = 0.2 and σ = 3.0

The interaction between the values at Xt and XTϒ is illustrated in Fig. 11.3. Here, the value of the infor-
mation premium for different Tϒ and different α is plotted. We used the same parameters as above, except
for t = 10,Xt = 10 and E[XTϒ |Gt ] = 5. The two dotted lines are similar to the graphs in Fig. 11.2. The ab-
solute value of the premium in this case is small because a higher mean reversion implies a lesser value of
information. We also see that the value of X10 = 10 does not play a role, again, due to large α . For medium
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values of α and small Tϒ ignorant (i.e. F -) traders calculate a large forward price because they observe a
large spot price today. The G -traders, though, know that in Tϒ (being slightly larger than t) the value will
be smaller. Thus, the information premium is negative at first. Moving Tϒ further right we exhibit a change
in sign of the premium. For very small α (for example the solid blue line) we also see that the impact of
information lying outside of the delivery period is much bigger.

For different values of the volatility and the speed of mean reversion Fig. 11.4 illustrates the value of
an at-the-money European call option under filtration F on the forward under F , calculated as in Theo-
rem 11.1. Here, we assume μ = 30. With most combinations of parameter values this option practically
has zero value, the reason being the averaging effect of the delivery period (which has a length of 10 days
in this example). For a very low mean reversion and large volatility we find a positive value for this option.

Figure 11.5 shows the corresponding picture for the at-the-money option on the forward, both under
the market filtration G . The additional information is given at Tϒ = 25 and gives the expected value of
the Ornstein-Uhlenbeck process as E[X25|G10] = 5. Not surprisingly, the value of the option has a non-zero
positive value for all combinations of α and σ . We observe the same effect as above, i.e. larger option prices
for large volatility and small speed of mean reversion. Still, the increase in the option price is smoother than
in the case of the historical filtration.

An example of an in-the-money option is given in Fig. 11.6, where we assume again μ = 30 and a strike
of K = 25. This results in an almost flat price at level 5 as expected. Only for very small speeds of mean
reversion and large volatility does the price increase. Figure 11.7 illustrates the in-the-money call under the
market filtration with additional information that the Ornstein-Uhlenbeck process will be−5 in the middle
of the delivery period. The price of the option is generally lower and decreasing with decreasing speed of
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Fig. 11.3 The information premium over Tϒ for different values of α . Other parameters are: t = 10,T1 = 20,T2 = 30,X10 =
10,E[XTϒ |G10] = 5 and σ = 3.0

mean reversion. This is due to the lesser significance of the future information for a higher degree of mean
reversion. But the most striking feature is the fact that the option price increases again for very small α
and large σ . In that case, the volatility of the spot price is no longer significantly dampened by the mean
reversion of Xt and higher volatility causes higher option prices. Hence, there are two forces effecting the
option price for small α .
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30,X10 = 0,μ = 30 and K = 30

3

3,5

4

4,5

5

5,5

6

0,25
1,25

2,25
3,25

4,25

0

0,5

1

1,5

2

2,5

0,025 0,125 0,225 0,325 0,425 0,525 0,625 0,725 0,825 0,925

Si
gm

a

GG
-C
al
l

Alpha

Fig. 11.5 Vanilla call price under G on a G -forward for different α and σ . Other parameters are: t = 10,T1 = 20,T2 =
30,X10 = 0,E[X25|G10] = 5,μ = 30 and K = 30

11.6 Conclusion

The special properties of electricity markets, especially that of the non-storability of the underlying com-
modity, lead to non-validity of the classical spot-forward relationship. This is the motivation for introducing
the notion of the information premium as presented in [7]. This premium is defined as the difference be-
tween forward prices calculated under an enlarged market filtration and the traditional forward price under
the historical filtration. Its very existence has recently been shown by means of a newly developed statistical
test in [5].

In this report we discussed the issue of how options can be priced in the presence of additional future
information. Our starting point was the existing literature on modelling insider trading on stock markets. In
a number of papers various authors have used the mathematical technique of the enlargement of filtrations
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3

4

5

6

7
Va

ni
lla

 C
al

l

1,25
2,25

3,25
4,25

0

1

2

0,25

0,15

0,275

0,4
0,525

0,65
0,775

0,9

Sigma

Alpha
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Fig. 11.7 Vanilla call price under G on a G -forward for different α and σ . Other parameters are: t = 10,T1 = 20,T2 =
30,X10 = 0,E[X25|G10] =−5,μ = 30 and K = 25

to represent the extra knowledge an insider possesses. With a traditional underlying such as stocks they find
that both—insider and “normal” traders—assign the same value to contingent claims, the intuitive reason
for this result being that both types of traders have access to a self-financing replicating portfolio. This is
not the case for electricity markets. The underlying spot price is not a traded asset and thus, unlike the well-
established result, traders who take into consideration future information will come up with a different set
of prices for the available financial products. In Sect. 11.3 we established formulae for vanilla call options
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on electricity forwards for both types of traders. To this end we utilised a very simple (Gaussian) spot
model. In this case, we found that the price of an option under the market filtration is given by a Bachelier
type of pricing formula, requiring only previously calculating the information premium.

Thus, in Sect. 11.4, we found explicit expressions for the information premium for forwards with deliv-
ery period and additional future information of a simple kind. We also provided the necessary established
results from the enlargement of filtration. In particular we used Imkeller’s method of applying Malliavin
calculus.

Section 11.5 provided a number of stylised examples of the size and shape of the information premium
and of options on futures. These matched our economic intuition.

In sum, we advocate taking relevant future information into consideration when examining energy mar-
kets. We also propose using the information premium as well as the traditional risk premium when describ-
ing the spot-forward relationship.
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Appendix

The following theorem will help us to calculate the information premium. In [7] it is proposition A.3.

Theorem A.1. Let L(t) be a Lévy process and Ft the historical filtration. Also, let Gt ⊆ Ht = Ft ∨
σ(L(Tϒ )) be the enlarged filtration. Further, one assumes that the information drift is of the form

μG
s = g(s)E

[∫ Tϒ

s
f (u)dL(u) | Gs

]

where g and f are continuous function on [0,Tϒ ]. Then one has the identity

E

[∫ Tϒ

s
f (u)dL(u) | Gt

]
= E

[∫ Tϒ

t
f (u)dL(u) | Gt

]
e−
∫ s

t f (u)g(u)du

for time points t ≤ s≤ Tϒ . This result is in particular true for L(t) being a simple Brownian motion.

Proof. Defining the auxiliary process Ys as

Y (s) = E

[∫ Tϒ

s
f (u)dL(u) | Gt

]

gives rise to (by making use of the tower property)
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Y (s) = Y (t)−E

[∫ s

t
f (u)dL(u) | Gt

]

= Y (t)−E

[∫ s

t
f (u)

(
g(u)E

[∫ Tϒ

u
f (v)dL(v) | Gu

])
du | Gt

]

= Y (t)−
∫ s

t
f (u)g(u)E

[∫ Tϒ

u
f (v)dL(v) | Gt

]
du

= Y (t)−
∫ s

t
f (u)g(u)Y (u)du

and the solution to this integral equation is

Y (s) = Y (t)e−
∫ s

t f (u)g(u)du

E

[∫ Tϒ

s
f (u)dL(u) | Gt

]
= E

[∫ Tϒ

t
f (u)dL(u) | Gt

]
e−
∫ s

t f (u)g(u)du

and this completes the proof. ��
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