
Chapter 6

Liver Volumetry in MRI by Using Fast

Marching Algorithm Coupled with 3D

Geodesic Active Contour Segmentation

Hieu Trung Huynh, Ibrahim Karademir, Aytekin Oto, and Kenji Suzuki

Abstract In this chapter, we present an accurate automated 3D liver segmentation

scheme for measuring liver volumes in MR images. Our scheme consisted of five

steps. First, an anisotropic diffusion smoothing filter was applied to T1-weighted

MR images of the liver in the portal-venous phase to reduce noise while preserving

the liver boundaries. An edge enhancer and a nonlinear gray-scale converter were

applied to enhance the liver boundary. This boundary-enhanced image was used as

a speed function for a 3D fast marching algorithm to generate an initial surface that

roughly approximated the liver shape. A 3D geodesic active contour segmentation

algorithm refined the initial surface so as to more precisely determine the liver

boundary. The liver volume was calculated based on the refined liver surface. The

MR liver volumetry based on our automated scheme agreed excellently with “gold-

standard” manual volumetry (intra-class correlation coefficient was 0.98) and

required substantially less completion time (our processing time of 1 vs. 24min/case

in manual segmentation).

Introduction

Medical and surgical advancements have brought the global success of liver

transplantation with the increasing survival rates after transplantation in the past

decades [1–3]. One of the important assessments contributing to the success of a
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transplantation procedure is the estimation for total and segmental liver volumes. It

is a major factor to predict the safe outcome for both donor and recipient.

A minimum of 40 % of the standard liver mass is required by recipient while

30–40 % of the original volume is remained for donor to survive [4]. Hence, an

accurate estimation of liver volumes is necessary for planning liver transplantation

[5, 6]. Noninvasive measurement methods have been revealed by the advanced

imaging technologies such as CT and MRI. Manual tracing of the liver on CT

images is a current gold-standard method. Although the manual tracing method

can obtain accurate results, it is subjective, tedious, and time-consuming. It takes

20–48 min to obtain the liver volume for one patient [7, 8]. In addition, the relatively

large intraobserver and interobserver variations still occur in the manual method. To

address this issue, the automated liver segmentation has been developed with image

analysis techniques, and it has become an important research topic.

Several approaches to computerized liver segmentation on CT images have been

published, including image-processing techniques such as thresholding, histogram

analysis, morphological operations, and their combinations [9, 10]. A comparison

between the semiautomatic liver volumetry and manual method in the living liver

donors was presented by Hermoye et al. [11]. An automated scheme based on the

combination of thresholding, feature analysis, and region growing was proposed by

Nakayama et al. [8]. In comparison with manual tracing, it achieved a correlation

coefficient of 0.883. Okada et al. [12] developed an automated scheme based on a

probabilistic atlas and a statistical shape model, its performance was evaluated with

eight cases. Selver et al. [13] developed a three-stage automated liver segmentation

scheme consisting of preprocessing for excluding neighboring structures, k-means

clustering, multilayer perceptron for classification, and postprocessing for

removing mis-segmented objects and smoothing liver contours. The scheme was

evaluated on 20 cases. An iterative graph-cut active shape model was developed by

Chen and Bagci [14]. Their scheme combined the statistical shape information

embodied in the active shape model with the globally optimal delineation capacity

of the graph-cut method. Suzuki et al. [7, 15] developed a computer-aided liver

volumetry scheme by means of geodesic active contour segmentation coupled with

level set algorithms. They compared their automated scheme with manual segmen-

tation and commercially available interactive software. Their scheme achieved the

performance comparable to manual segmentation, while reducing the time required

for volumetry by a factor of approximately 70.

In comparison with CT-based schemes, there are fewer publications for an

automated liver segmentation scheme on MR images in spite of no risk for ionizing

radiation, probably because it is believed that MR liver volumetry has more

variations and more difficult than CT. Karlo et al. [16] compared the CT- and

MRI-based volumetry of the resected liver specimens with intraoperative volume

and weight measurements to calculate conversion factors. A semiautomated dual-

space clustering segmentation method was proposed by Farraher et al. [17]. Their

semiautomated method required manual drawing of a small region-of-interest

(ROI) on the liver first; and then it iteratively evaluated temporal liver segmenta-

tions with the repeated adjustment of parameters to obtain the final liver
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segmentation result. Rusko and Bekes [18] proposed a partitioned probabilistic

model to represent the liver. In this model, the liver was partitioned into multiple

regions, and the different intensity statistical models were applied to these regions.

The scheme was tested on eight cases. Gloger et al. [19] developed a three-step

segmentation method based on a region-growing approach, linear discriminant

analysis, and probability maps. Their method was evaluated with 20 normal cases

and 10 fat cases. It achieved a true-positive volume error (TPVE) of 8.3 % with an

average execution time of 11.2 min for each normal case, and a TPVE of 11.8 %

with an average execution time of 15.4 min for each fat case.

Although the above studies showed a promise, there is still room for developing

the computerized liver segmentation in MRI to make it a routine clinical use. In this

chapter, we present an automated liver segmentation scheme in MRI based on

geodesic active contour model and fast marching algorithm. The performance of

our scheme was evaluated on 23 cases, and the comparison between the comput-

erized volumetry and gold-standard manual volumetry was performed.

Materials and Methods

Liver MRI Datasets

In this study, 23 patients were scanned in the supine position with a 1.5T MRI

scanners (Signa HDx/HDxt, GE Medical Systems, Milwaukee, WI; and Achieva,

Philips Medical Systems, Cleveland, OH) at the University of Chicago Medical

Center. Intravenous gadolinium contrast agent (8–20 mL; mean: 15.3 � 4.2) was

administrated. The post-contrast MRIs were obtained by using the T1-weighted

liver acquisition with volume acceleration (LAVA) or T1-weighted high-resolution

isotropic volume examination (THRIVE) sequence. The flip angle of 10� was used
in context with TR and TE ranged from 3.48 to 3.92 ms and from 1.64 to 1.84 ms,

respectively. The scanning parameters included collimation of 5 mm (for the GE

system) or 4 mm (for the Philips system) and reconstruction intervals of 2.5 mm (for

the GE system) or 2 mm (for the Philips system). Each MR slice had the matrix size

of 256 � 256 pixels with an in-plane pixel size ranged from 1.17 to 1.72 mm. The

23 cases in our database had liver diseases.

The manual contours were traced carefully by a broad-certificated abdominal

radiologist on each slice containing the liver. The number of slices in each case

ranged from 88 to 120 (average: 97.9). The liver volume was calculated by

multiplying the areas of the manually traced regions in each slice by the recon-

struction interval. Note that the collimation was different from the reconstruction

interval and that consecutive slices overlapped. The total liver volume of each case

was obtained from the summation of volumes in all slices. We also recorded the

time required for the completion of the manual contour tracing. The performance of

our computerized liver extraction scheme was evaluated by using manual liver

volumes as the “gold standard.”
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Computer-Based Measurement Scheme for MR Liver Volumes

A computerized scheme employing level set algorithms coupled with geodesic

active contour segmentation was proposed by our group for CT liver extraction.

In this chapter, we present a scheme for the automated liver segmentation on MR

images based on the knowledge and techniques acquired in the development of

our CT liver extraction scheme. Our MR liver extraction scheme applied to the

portal-venous-phase images in T1-weighted (T1w) sequences consists of five

steps, as shown in Fig. 6.1. First, a 3D MR volume I(x,y,z) consisting of portal-

venous-phase images must be processed to reduce noise and enhance liver

structures. This was accomplished by using an anisotropic diffusion algorithm

(which is also called nonuniform or variable conductance diffusion proposed by

Perona and Malik [20]). The algorithm based on the modified curvature diffusion

equation is given by

IN ¼ ∂I
∂t

¼ ∇Ij j∇ � c ∇Ij jð Þ ∇I

∇Ij j , (6.1)

where c(∙) is a fuzzy cutoff function that reduces conductance at areas of large j∇Ij.
It can be any of a number of functions. The literature suggested

3D liver MR image

Preprocessing:
• Removing noise by an anisotropic diffusion filter
• Enhancing the liver boundary by a scale-specific gradient 

magnitude filter
• Producing the edge potential image by a nonlinear gray-

scale converter

Estimating the rough shape of the liver by a fast-marching 
algorithm

Refining the liver boundary by geodesic active contour 
segmentation with a level-set algorithm

Estimating liver volume

Fig. 6.1 Overview of our

computerized MR liver

volumetry scheme
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c ∇Ið Þ ¼ e
� ∇Ij j2

2κ2 (6.2)

to be effective. Note that this term introduces a free parameter κ, the diffusion

coefficient, which controls the sensitivity of edge contrast. The anisotropic diffu-

sion algorithm smoothes noise in the image while preserving the major liver

structures such as major vessels and the liver boundaries. The noise-reduced

image was then passed through a Gaussian gradient magnitude filter to enhance

the boundaries. This filter is given by

IG ¼ IN∗
1

2πð Þ1=2σ
exp � x2 þ y2 þ z2

2σ2

� �
, (6.3)

and

IM ¼ IGj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂IG
∂x

� �2
þ ∂IG

∂y

� �2
þ ∂IG

∂z

� �2s
, (6.4)

where * denotes a convolution operator, σ is the standard deviation of the Gaussian

filter controlling the scale of the edges to be enhanced. It was set to 0.5 in our

scheme. The enhanced image was used to produce the edge potential image from

the gradient magnitude image by using a sigmoid function defined by

f xð Þ ¼ 1

1þ e� x�βð Þ=α , (6.5)

where α and β are parameters specifying the range and center, respectively, of

intensity to be enhanced. They were set to �2.5 and 8.0 in our scheme. The

normalized output image of the sigmoid gray-scale converter was used as a speed

function for level set segmentation and fast marching algorithms.

In the following step, the shape of the liver was estimated roughly by a fast

marching algorithm [21, 22]. This algorithm was initially proposed as a

fast numerical solution of the Eikonal equation:

∇Tj jF ¼ 1, (6.6)

where F is a speed function and T is an arrival time function. The algorithm requires

five to eight initial seed points. From the initial location (T ¼ 0), the algorithm

propagates the information in one way from the smaller values of T to larger values

based on the first order scheme. This algorithm consists of two main processes.

First, all grid points generated from the entire region were categorized into three

categories: seed points corresponding to the initial location were categorized into

Known; the neighbors of Known points were categorized into Trial with the

computed arrival time; and all other points were categorized into Far that the
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arrival time was set to infinity. An iterative process served points in the Trial and
Far list. The Trial point p with the smallest T value was chosen and moved to the

Known. The arrival time of neighbors of p was recomputed based on the first order

scheme, and the Far points that are neighbors of p were moved to the Trial. This
iterative process was terminated when the maximum number of iterations was

reached. The salient point of this algorithm is to use a heap data structure that can

locate points with the smallest T value rapidly. The output of the fast marching

algorithm is a time-crossing map indicating the time traveling to each point. It

forms a rough shape of the liver in MR images.

A 3D geodesic active contour algorithm [23] was employed to refine the initial

surface determined by the time-crossing map in order to determine the liver

boundaries more precisely. This algorithm is based on the relation between active

contours and the computation of geodesic or minimal distance curves, which allows

boundary detection with large variations of gradients, including gaps. Let ψ(p, t) be
a level set function with the initial surface corresponding to ψ(p, t) ¼ 0 (Fig. 6.2).

This level set function is then evolved to fit the form of liver following the partial

differential equation:

dψ

dt
¼ �αA pð Þ �∇ψ � βF pð Þ ∇ψj j þ γZ pð Þκ ∇ψj j, (6.7)

where A(∙) is an advection vector function, F(∙) is a propagation (or expansion)

function, and Z(∙) is a spatial modifier function for the mean curvature κ. The scalar
constants α, β, and γ allow trading off among three terms: advection, propagation,

and curvature. The algorithm requires an initial zero level set containing an initial

surface that roughly approximates the liver boundaries. The initial surface was

propagated with speed and direction (outwards, inwards) controlled by the propa-

gation function. The spatial modifier term controls the smoothness of the surface

where regions of high curvature are smoothed out. The level set evolution was

terminated when the convergence criterion or the maximum number of iterations

Zero level set ψ(p, t)=0

Interior, ψ(p, t)>0

Exterior, ψ(p, t)<0

Fig. 6.2 Concept of level set method
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was reached. The convergence criterion was defined in terms of the root mean

squared (RMS) change in the level set function. The evolution was considered to be

converged if the RMS change is below a predefined threshold. The liver regions

extracted by the geodesic active contour algorithm were used to calculate the liver

volume. The intermediate results of our scheme for an example case are illustrated

in Fig. 6.3. The original MR image in Fig. 6.3a was passed into the anisotropic

diffusion filter to reduce noise while preserving the major liver structures such as

the portal vein and liver boundary, as shown in Fig. 6.3b. The noise-reduced image

was then passed through a Gaussian gradient magnitude filter to enhance the

boundaries, as shown in Fig. 6.3c. The edge potential image generated from the

enhanced image using the sigmoid gray-scale converter was applied to the fast

Fig. 6.3 Examples of the resulting images at each step in our automated volumetry scheme. (a)

Original axial MR image of the liver. (b) 3D anisotropic diffusion noise reduction. (c) 3D gradient

magnitude filter. (d) 3D fast marching algorithm. Time-crossing map indicates the traveling time

to each voxel. The majority of vessels inside the liver are excluded at this stage. (e) 3D geodesic

active contour segmentation. (f) Corresponding computer-based liver segmentation (red contour)
and “gold-standard” manual liver segmentation (blue contour)
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marching algorithm to generate the initial contour, as shown in Fig. 6.3d. The liver

was extracted more precisely by using the geodesic active contour algorithm, as

shown in Fig. 6.3e. Corresponding between computer-based liver segmentation (red

contour) and “gold-standard” manual liver segmentation (blue contour) is shown in

Fig. 6.3f. Liver volume was computed using the extracted regions.

Evaluation Criteria

The liver volumes obtained by using our computerized schemewere compared to the

“gold-standard”manual volumes determined by the radiologist. The definitions used

in evaluation of a computerized liver segmentation compared to the gold-standard

manual liver segmentation are shown in Fig. 6.4. True-positive (TP) segmentation

was defined as an overlapping region (gray color) between the computerized

liver segmentation (indicated by a red contour), C, and a gold-standard manual

segmentation (indicated by a blue contour), G; i.e., TP ¼ G \ C. False-positive
(FP) segmentation (red region) was defined by FP ¼ C � TP. False-negative (FN)
segmentation (blue region) was defined by FN ¼ G � TP. True-negative (TN)
segmentation was defined by TN ¼ I � G [ C, where I is the entire image. We

define accuracy, specificity, and sensitivity of the segmentation as

Accuracy ¼ TPj j þ TNj j
Ij j , (6.8)

Specificity ¼ TNj j= TNj j þ FPj jð Þ, (6.9)

Sensitivity ¼ TPj j= TPj j þ FNj jð Þ: (6.10)

The Dice measurement representing the fraction of the overlapping volume and

the volume of two segmentation methods is given by

Fig. 6.4 Definitions of

true-positive (TP) (gray
region), false-positive
(FP) (red region), and false-
negative (FN) segmentation

(blue region) in evaluation

of computerized liver

segmentation (red contour)
compared to “gold-

standard” manual

segmentation (blue contour)
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Dice ¼ 2 TPj j
2 TPj j þ FPj j þ FNj j : (6.11)

We also determine the percentage volume error (E) for each computerized

volume (Vc) and the gold-standard manual volume (Vm) as

E ¼ Vc � Vmð Þ=Vmj j: (6.12)

The association between the computerized volumetry and the manual volumetry

was measured by the Pearson product–moment correlation coefficient (r). The
significance of correlation coefficient was evaluated by using the Student t test.
An agreement between two measurements was assessed by using the intraclass

correlation coefficient (ICC) [24, 25]. The two-way random single measure model,

ICC(2,1), was used because we assumed that the cases were chosen randomly from

population and each case was measured by two volumetric methods. The ICC(2,1)
was defined by the following equation:

ICC 2; 1ð Þ ¼ BMS� EMS

BMSþ k � 1ð Þ þ k RMS� EMSð Þ=n , (6.13)

where n is the number of cases, k is the number of raters (i.e., volumetric

methods), BMS is the between-cases mean square, EMS is the error mean square,

and RMS is the between-raters mean square. The statistical significance was

obtained by the analysis of variance. The post-hoc power analysis using the

Walter–Eliasziw–Donner model [26] for ICC-based reliability studies was

performed to determine the statistical power in this study. As done in [7], we

assumed the type I error (α) of 0.05 and type II error (β) of 0.20 in this analysis.

An additional agreement analysis for two measurements was performed by the

Bland–Altman method [27] based on the mean difference (bias) and the standard

deviation of difference (SD). The limits of agreement, which are given by bias
� 1.96 � SD, were used to consider the degree of agreement.

Results

The comparison on the liver volume between the two measurements is shown in

Tables 6.1 and 6.2. The mean gold-standard manual volume was 1,710 cc with a

standard deviation of 401 cc (range: 1,013–2,529 cc), while the mean volume of our

computerized scheme was 1,697 cc with a standard deviation of 400 cc (range:

1,120–2,418 cc). The mean absolute difference and the percentage volume error (E)
were 56 cc and 3.6 %, respectively.

The overall mean of the Dice coefficients was calculated as 93.6 � 1.7 %, the

accuracy was 99.4 � 0.14 %, the sensitivity was 93.4 � 3.3 %, and the specificity

was 99.7 � 0.12 %. The relationship between the computerized volumetry and the
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manual volumetry is shown in Fig. 6.5. The Pearson correlation coefficient was

0.98 at a level that was not statistically significant ( p ¼ 23.65). Table 6.3 presents

the results from the ICC analysis. Two volumetric methods achieved an excellent

agreement with an ICC of 0.98 and no statistically significant difference

( p ¼ 0.42). The statistical power in the study was evaluated by using the

Table 6.1 Comparison between computerized volumetry and “gold-standard” manual volumetry

Average Standard deviation

Computer volume (cc) 1,697 400

Manual volume (cc) 1,710 401

Table 6.2 Summary of

quantitative evaluation of

computerized liver extraction

compared to “gold-standard”

manual liver extraction

Average Standard deviation

Accuracy (%) 99.4 0.14

Sensitivity (%) 93.4 3.3

Specificity (%) 99.7 0.12

Percent volume error (%) 3.6 3.6

Dice coefficient (%) 93.6 1.7
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Fig. 6.5 Relationship

between computer-based

volumes and “gold-

standard” manual volumes.

Two volumetrics reached an

excellent agreement (the

intraclass correlation

coefficient was 0.98)

Table 6.3 Analysis of

variance table from intraclass

correlation coefficient

analysis

Df Sum of squares Mean squares F

Between raters 1 2,008 2,008 0.69

Between cases 22 6,999,296 318,150 108.5

Within cases 23 66,496 2,891

Residual 22 64,488 2,931

Total 45 7,065,792
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post-hoc power analysis based on the Walter–Eliasziw–Donner model [26]. The

lowest ICC between the computer-based volumetry and the manual volumetry that

we should have been able to detect with 23 cases was 0.95, and this study had the

power to detect a bias of 0.03 in ICC. The Bland–Altman plot for assessing

agreement is also presented in Fig. 6.6. Here the mean difference was �13.2. The

limits of agreement with the 95 % confidence interval were �163 to 137 cc which

were small enough to show a good agreement between two volumetric methods.

Figure 6.7 illustrates the computerized liver segmentation and manual liver

segmentation for a case with a high accuracy (99.7 %). The computerized segmen-

tation agreed almost perfectly with the gold-standard manual segmentation for

slices through the superior portion of the liver, as shown in Fig. 6.7b, d. Two

other cases with more typical results which have the accuracies close to the average

accuracy are presented in Fig. 6.8. Overall, the computerized method was able to

extract the livers very accurately. However, there were occasionally over- and

under-extractions in the extracted livers. Major FP and FN extraction sources are

illustrated in Fig. 6.9. The major FN sources included a lesion attaching to the liver

boundary, a low-contrast liver boundary, and inhomogeneous density due to focal

fatty and noise. The major FP sources included the heart, kidney, vena cava, and

stomach, which abut the liver. They were also from artifact due to the partial

volume effect. Other under- and over-extraction sources were convex and concave

boundary parts with high curvatures.

The average processing time of our scheme for liver segmentation was

1.03 � 0.13 min/case (range: 0.9–1.5 min/case) on a PC (CPU: Intel, Xeon,

2.66 GHz), whereas that for manual method was 24.0 � 4.4 min/case (range:

18–30 min/case). The difference was statistically significant (p < 0.001).
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Fig. 6.6 Bland–Altman

plot for agreement between

computer and manual

volumetry. The bias was

13.2 cc; 95 % limits of

agreement were�163.7 and

136.9 cc
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Fig. 6.7 Comparisons of computerized liver extraction with “gold-standard” manual liver extrac-

tion for the case with a high accuracy (99.7 %). (a) Original axial MR image from the case. (b)

Computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour). (c) Original axial MR image (different slice) from the same case. (d) Computerized liver

extraction (red contour) and “gold-standard” manual liver extraction (blue contour)

Fig. 6.8 Comparisons of the computerized liver extraction with “gold-standard” manual liver

extraction for two cases with accuracies (99.5 % for the upper case; 99.2 % for lower case) close to

the average accuracy (99.4 %). (a) Original axial MR image from one of the cases. (b)

Corresponding computerized liver extraction (red contour) and “gold-standard” manual liver

extraction (blue contour). (c) Original axial MR image from the other case. (d) Corresponding

computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour)



Discussions

Liver volumetry is performed for hepatectomy to treat patients with liver tumors.

Because the liver volume is reduced after hepatectomy, it must be ensured that the

remaining liver volume is sufficient to maintain the liver function. In the case of

complicated treatment such as chronic liver disease, a larger remaining liver

volume is required [28]. Many researchers have tried to estimate the liver volume

accurately based on CT images, such as the one using virtual hepatectomy [29].

However, fewer researchers have reported liver volumetry on MRI, probably

because it is believed that MR liver volumetry has more variations, and manual

MR liver volumetry is more difficult than CT. Furthermore, manual liver volumetry

is very time-consuming and not cost-effective. Therefore, it is crucial to investigate

the potential of a computerized volumetry for liver MR images. We believe that

computerized MR liver volumetry is potentially very useful.

Although our computerized liver volumetry had an excellent agreement with

the gold-standard manual liver volumetry (the ICC was 0.98), there were still

occasional FNs and FPs which were mainly caused by the similar density of other

organs abutting to the liver. The liver segmentation accuracy was also interfered by

the partial volume effects and the liver intensity variation among different studies/

patients, as the intensity depends on acquisition timing and contrast material

characteristics.

Fig. 6.9 Illustrations of major FP and FN sources. (a, c), Original axial MR images. (b, d)

computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour). (b) There is an FP due to the heart (a), an FN due to vein (b), and an FN due to a lesion on

the liver boundary (c). (d) There is an FP due to the duodenum (d ), and an FN due to a

low-intensity region (e)
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Although the volumes obtained by using our computerized method had a strong

correlation with those by the gold-standard manual tracing method (Pearson’s

product–moment correlation coefficient was 0.98), it does not still reach the

minimal variation in CT volumetry between expert radiologists that was reported

as 0.997 [30] (Although we could not find a study reporting the variation in MR

volumetry, we expect it would be larger than the one in CT). One can increase

the overall accuracy by correcting FP and FN extractions manually. This can

be accomplished rapidly with routine manipulations. The substantial amount of

time saved by using the computerized method may justify the small error rate

(average percentage volume error of 3.6 %) compared to the manual tracing

method, which the average processing time was 24 min/case.

Direct comparisons of our method with existing methods in literature are not

easy because different databases and quality measurements were used. Freiman

et al. [31] achieved volume errors of 5.36 and 2.36 % in CT volumetry of their

database and a publicly available database (i.e., SLIVER07), respectively. Florin

et al. [32] obtained a volume error of 10.72 % in CT volumetry. For evaluation of

liver MRI segmentation, Gloger et al. [19] obtained volume errors of 8.3 % for

normal livers and 11.8 % for fat livers with runtime of 11.2 and 15.4 min,

respectively. Besides volume errors, some researchers used the shape alignment

measurement to evaluate the segmentation performance. A robust measurement

based on the shape alignment is the modified Hausdorff distance (MHD) which

overcomes the noise and outlier sensitivity of the original Hausdorff distance,

defined by

MHD ¼ max dH X; Yð Þ, dH Y;Xð Þf g, (6.14)

dH X; Yð Þ ¼ 1

card Xð Þ
X
x∈X

min
y∈Y

x� yk k, (6.15)

where X and Y are two sets of boundary positions of the liver extracted by a manual

method and a computerized method, respectively. Our scheme achieved an average

MHD of 12.8 � 2.24 mm for livers with diseases, whereas an average original

Hausdorff distance reported in [19] was 20.35 � 8.66 mm for fat livers. Note that

an MHD was not provided in [19].

The 95 % limits of agreement between our computerized volumes and the

gold-standard manual volumes were �163.3 and 136.9 cc. These limits are smaller

than the results reported by Nakayama et al. [8]: the limits between automated

and manual volumes were �230.3 and 327.9 cc; and those between automated and

measured liver volumes were �309.3 and 412 cc. In addition, these 95 % limits of

agreement are smaller than those in our previous work on CT images [7] which were

�211 and 278 cc for agreement between the automated and manual CT volumes.

Note that the above comparisons were not direct comparisons due to different

databases.

One of the limitations in this study is that the evaluation is performed with the

gold-standard manual volumes determined by a single expert radiologist. Ideally,
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the gold-standard volumes are determined by multiple radiologists who are experts

in liver diagnosis. However, this ideal evaluation would not be available at all

institutions because not many institutions have a number of such radiologists who

are sufficiently experienced in the liver diagnosis. Many publications reported the

evaluation using the gold-standard manual volumes. However, none of them used

the gold-standard volumes estimated from multiple radiologists. This may result

from the above reason. Furthermore, it was shown that the correlation between two

radiologists’s manual volumes was 0.997 [30], which may infer that the

interobserver variation is small and the difference among manual volumes deter-

mined bymultiple radiologists and a single radiologist is not significant.We used the

manual volumes determined from an experienced radiologist as the gold standard.

We thought that the manual volumes from multiple inexperienced radiologists or

mixture of inexperienced radiologists and experienced radiologists may be less

reliable, compared to volumes determined by an experienced radiologist who traces

liver boundaries very carefully.

Conclusions

In this chapter, we developed an automatic scheme for the liver volumetry in MR

images by employing the fast marching algorithm combined with the geodesic

active contour segmentation. MRI liver volumes obtained by using our scheme

agreed excellently with those determined by the current “gold-standard” manual

tracing method. With our computerized volumetry, the time required for volumetry

was reduced significantly from 24 min per case to a min per case. Therefore, our

computerized scheme would be useful for radiologists in liver volumetric analysis

on MR images.
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