
Chapter 10

Image Segmentation for Connectomics

Using Machine Learning

T. Tasdizen, M. Seyedhosseini, T. Liu, C. Jones, and E. Jurrus

Abstract Reconstruction of neural circuits at the microscopic scale of individual

neurons and synapses, also known as connectomics, is an important challenge for

neuroscience. While an important motivation of connectomics is providing ana-

tomical ground truth for neural circuit models, the ability to decipher neural wiring

maps at the individual cell level is also important in studies of many neurodegen-

erative diseases. Reconstruction of a neural circuit at the individual neuron level

requires the use of electron microscopy images due to their extremely high resolu-

tion. Computational challenges include pixel-by-pixel annotation of these images

into classes such as cell membrane, mitochondria and synaptic vesicles and the

segmentation of individual neurons. State-of-the-art image analysis solutions are

still far from the accuracy and robustness of human vision and biologists are still

limited to studying small neural circuits using mostly manual analysis. In this

chapter, we describe our image analysis pipeline that makes use of novel supervised

machine learning techniques to tackle this problem.

Introduction

Supervised machine learning techniques have shown great potential and have

become important tools of choice in many problems. This is particularly true for

image analysis [1, 2]. Image analysis approaches with hand designed, deterministic

filters are being replaced with approaches that use filters and operations learned
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from human generated ground truth. This supervised learning strategy has been

shown to outperform traditional methods in many image analysis applications. In

this chapter, we will focus on one such application: neural circuit reconstruction

from electron microscopy (EM) images at the scale of individual neurons and

synapses. We will refer to this problem as connectomics [3–10].

An important motivation for connectomics is providing anatomical ground

truth for neural circuit models. Connectomics is also important in studies of many

neurodegenerative diseases. For instance, a loss of photoreceptors in the retina

can cause neurons to rewire [11, 12] and neural circuits undergo remodeling in

response to seizures in epilepsy [13, 14]. Serial section EM, where a block of

tissue is cut into sections and imaged, has sufficient detail for identification of

individual neurons and their synaptic connections in a three-dimensional

(3D) volume; however, this is a difficult and time-consuming image analysis

task for humans. Furthermore, state-of-the-art automated image analysis solu-

tions are still far from the accuracy and robustness of human vision. Therefore,

biologists are still limited to studying small neural circuits using mostly manual

analysis. Reconstruction of a neural circuit from an electron microscopy volume

requires segmentation of individual neurons in three dimensions and the detec-

tion of synapses between them. Supervised learning approaches to this problem

typically involve pixel-by-pixel annotation of these images into classes such as

cell membrane, mitochondria, and synaptic vesicles with a classifier learned from

training data. We will refer to this step as the pixel classifier. This is generally

followed by another step which segments individual neurons based on the cell

membrane pixels detected by the classifier in the initial step. This second step can

be as simple as a flood fill operation on the thresholded output of the pixel

classifier from the first step or as complex as a second classifier which learns to

merge/split regions obtained from the pixel classifier’s output as in our approach.

This two-step strategy is taken because cell membranes are similar in local

appearance to many other intracellular structures (see Fig. 10.1) which makes

their detection with deterministic filter banks or segmentation with techniques

such as active contours very difficult.

The supervised learning strategy for connectomics has its own challenges that

need to be addressed. First, generating training data from electron microscopy

images can be a cumbersome task for humans. On the other hand, no training data

is needed for deterministic approaches. Second, the training set can be extremely

large since each pixel in the training image becomes a training example. This

requires a lengthy training stage. In comparison, no training time is spent in

deterministic approaches. Third, overfitting is a possibility as in any machine

learning application. Finally, the cell membrane classification step demands

extremely high accuracy. Even with high pixel accuracy rates such as 95 %,

which is acceptable in many other applications, it is virtually certain that almost

every neuron in a volume will be incorrectly segmented due to their global, tree-

like structure, and correspondingly large surface area. The lack of reliable auto-

mated solutions to these problems is the current bottleneck in the field of

connectomics. In this chapter, we will describe our approach to deal with each of

these problems.
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Background

Connectomics from Electron Microscopy

Compared with other imaging techniques, such as MRI [15] and scanning confocal

light microscopy [16–20], electron microscopy provides much higher resolution

and remains the primary tool for connectomics. The only complete reconstruction

of a nervous system to date has been performed for the nematode Caenorhabditis
elegans (C. elegans) which has 302 neurons and just over 6,000 synap-

ses [21–23]. This reconstruction, performed manually, is reported to have taken

more than a decade [4]. Recently, high throughput serial section transmission

electron microscopy (ssTEM) [5, 6, 9, 24–26] and serial block-face scanning

electron microscopy (SBFSEM) [4, 10, 27] have emerged as automated acquisition

strategies for connectomics. Automatic Tape-Collecting Lathe Ultramicrotome

(ATLUM) [28] is another promising technology for speeding up data collection

for connectomics.

Fig. 10.1 Left: Two ssTEM sections from the Drosophila first instar larva VNC [8]. Right:
Corresponding ground truth maps for cell membranes (black). Data: Cardona Lab, ETH
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In the ssTEM technique, sections are cut from a specimen block and suspended

so that an electron beam can pass through it, creating a projection which can be

captured digitally or on film with 2 nm in-plane resolution. This extremely high

resolution is sufficient for identifying synapses visually. An important trade-off

occurs with respect to the section thickness: thinner sections, e.g. 30 nm, are easier

to analyze because structures are crisper due to less averaging whereas thicker

sections, e.g. 90 nm, are easier to handle physically without loss. Through mosaick-

ing of many individual images [29, 30], ssTEM offers a relatively wide field of view

to identify large sets of cells as they progress through the sections. Image registra-

tion techniques are necessary to align the sections into a 3D volume [6, 31].

In the SBFSEM technique, sections are cut away, and the electron beam is

scanned over the remaining block face to produce electron backscatter images.

Since the dimensions of the solid block remain relatively stable after sectioning,

there is no need for image registration between sections. However, the in-plane

resolution is closer to 10 nm which is a disadvantage compared to ssTEM. Typical

section thicknesses for SBFSEM are 30–50 nm.

New projects using the techniques described above capture very large volumes

containing several orders of magnitude more neurons than the C. elegans. As an
example, Fig. 10.2 shows two mosaic sections from a 16 TB ssTEM retina vol-

ume [32] that was assembled with our algorithms [6, 31]. It is not feasible to

reconstruct complete neural circuits in these datasets with manual methods. More-

over, population or screening studies are unfeasible since fully manual segmenta-

tion and analysis would require years of manual effort per specimen. As a result,

automation of the computational reconstruction process is critical for the study of

these systems.

Finally, as an alternative to SBFSEM and ssTEM, fully 3D approaches such as

focused ion-beam scanning electron microscopy (FIBSEM) [33] and electron

tomography [34–36] produce nearly isotropic datasets. Both techniques are limited

Fig. 10.2 Two sections from the retinal connectome [32] which comprises 341 sections. Each

section is � 32 GB and comprises 1,000 image tiles, each 4, 096�4, 096 pixels. The circular area

with data is approximately 132, 000 pixels in diameter. The complete dataset is � 16 TB. Data:
Marc Lab, University of Utah
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to studying small volumes which is a disadvantage for their use for connectomics.

FIBSEM uses a focused-ion beam to mill away sections instead of cutting sections

with a knife. While it is clear that these datasets are easier to analyze accurately, the

amount of data and the time it would take to acquire and analyze them is prohibitive

for large-scale circuit reconstruction applications for the time being.

Neuron Segmentation

Figure 10.2b shows the complexity of the problem. This image which is 132, 000

pixels in diameter contains thousands of neuronal processes. The larger structures

seen in Fig. 10.2a are the cell bodies of these processes. Reconstructing neural

circuits from EM datasets involves segmenting individual neurons in 3D and

finding the synapses between them. Neuron segmentation is the immediate chal-

lenge and thus has gathered significantly more attention than synapse detection. The

only successful automatic synapse detection approaches so far have been limited to

FIBSEM data which offers almost isotropic resolution [37]. In this chapter, we limit

our attention to neuron segmentation. There are two general strategies for neuron

segmentation. One strategy is to directly segment neurons in 3D [38, 39]. However,

this can be difficult in many datasets due to the anisotropic nature of the data. The

large section thickness often causes features to shift significantly between sequen-

tial images both in ssTEM and SBFSEM, decreasing the potential advantages of a

direct 3D approach. The other strategy first segments neurons in two-dimensional

(2D) images followed by linking them across sections to form a complete neu-

ron [40–43]. Our approach fits in this second category. In this chapter, we focus on

the 2D neuron segmentation problem. For linking 2D neuron regions across sec-

tions we refer the reader to [41, 44–46].

Image Processing Methods

Neuron segmentation has been studiedmostly using semi-automatedmethods [8, 24,

40, 43, 47]. Fully automatic segmentation is complicated by two main challenges:

complex intracellular structures such as vesicles and mitochondria that are present

in the ssTEM images and the extremely anisotropic resolution of the data, e.g. 2 nm

in-plane vs. 40 nm out-of-plane. Previous automatic EM segmentation methods

include active contours which rely on an gradient term to drive the segmenta-

tion [42, 48–53]. This gradient/edge term can be ambiguous because of the locally

similar appearance of neuron and intracellular membranes. Figure 10.1 shows two

ssTEM sections from the Drosophila first instar larva ventral nerve cord (VNC) [8]

and their corresponding cell membrane ground truth maps drawn by a human

expert. Notice that the intensity profile of cell membranes completely overlaps

with many other intracellular structures such as mitochondria (large, dark round

structures) and synapses (elongated, dark structures). Furthermore, notice that when
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the cell membranes are parallel to the cutting plane in 3D they appear fuzzy and of

lighter intensity. In our earlier work, we used directional diffusion to attempt to

remove intracellular structures from similar images [54]. Other researchers have

used Radon-like features [55] to try to isolate cell membranes without using

supervised learning. These deterministic methods have had limited success.

Furthermore, due to the very anisotropic resolution, a typical approach is to

segment neurons in 2D sections followed by a separate stage to link the segments in

3D as mentioned earlier. Active contours can be propagated through the sections

with the help of Kalman filtering [50]; however, this propagation can be inaccurate

because of the large changes in shape and position of neurons from one section to

the next. The large shape change stems from the anisotropy of the volume while the

position change problem stems from the anisotropy as well as the fact that each

section is cut and imaged independently resulting in nonrigid deformations. While

our and other registration methods [31, 56, 57] can be used to fix the position

change problem to a large extent, the shape change problem remains. Consequently,

due to this poor initialization, active contours can get stuck on edges of intracellular

structures and fail to segment neurons properly. Hence, active contours have been

most successful in earlier SBFSEM images which only highlight extracellular

spaces removing almost all contrast from intracellular structures. While this sim-

plifies segmentation, it also removes important information such as synapses that

are critical to identifying functional properties of neurons [7]. The other drawback

is that active contours typically segment one neuron at a time whereas a typical

volume has tens of thousands of neurons. While graph-cut methods [58–60] can

simultaneously segment a large number of neurons, they still have the intracellular

membrane problem. Combined with machine learning methods [61], they have an

improved detection accuracy and can be used more reliably.

Machine Learning Methods

As discussed, intracellular structures are present in images which can be a source of

confusion for neuron segmentation. Supervised lassifiers have been applied to the

problem of neuron membrane detection as a precursor to segmentation and have

proven more successful [5, 38, 39, 62, 63]. Membrane detection results can be with

a method as simple as flood-filling for segmentation or as an edge term in active

contour or graph-cut methods to overcome the problem due to intracellular struc-

tures. Jain et al. [39] use a convolutional network for restoring membranes in

SBFSEM images. Similar to Markov random field (MRF) [64, 65] and conditional

random fields (CRF) [66, 67] models, convolutional networks impose a spatial

coherency on the membrane detection results. However, convolutional nets define a

less rigid framework where the spatial structure is learned and they can make use of

context from larger regions, but typically need many hidden layers. The large

number of hidden layers can become problematic in training with backpropagation

and simplifications such as layer-by-layer training are often needed [68]. The series
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neural network architecture [63] used here also takes advantage of context and

samples image pixels directly to learn membrane boundaries.

While supervised learning for cell membrane detection has met moderate suc-

cess, all methods require substantial user interaction for initialization and correcting

errors in the subsequent segmentation step [40]. As discussed in section “Introduc-

tion”, the cell membrane classification step demands extremely high accuracy.

Neurons have a global tree-like geometry with a correspondingly large surface

area between neighboring neurons (cell membranes). A single local area of false

negatives on this cell membrane leads to under-segmentation. Therefore, even with

high pixel accuracy rates such as 95 % it is virtually certain that almost every

neuron in a volume will be incorrectly under-segmented. Furthermore, neurons

have very narrow cross-sections in many places which create many possibilities for

over-segmentation when intracellular structures with similar local appearance to

cell membranes are co-located with these constrictions. Researchers have investi-

gated approaches to improve the accuracy of such classifiers. A 2-step classification

where a membrane detection classifier is followed by a higher-level classifier that

learns to remove spurious boundary segments causing over-segmentation was

proposed [38]. Funke et al. [46] proposed a tree structure for simultaneous intra-

section and inter-section segmentation. However, their model can only segment a

3D volume of consecutive sections and cannot segment a single section. Moreover,

the final optimization problem in their model can be complicated given a set of

complete trees of an image stack. Another promising direction is to optimize

segmentation error rather than pixel-wise classification error, focusing learning

on critical pixels where a mistake in classification results in a segmentation

error [69, 70]. Topological constraints have also been proposed as an alternative

to the pixel-wise classification error metric [71]. A recent study proposed to

combine tomographic reconstruction with ssTEM to achieve a virtual resolution

of 5 nm out-of-plane [72]. Finally, perceptual grouping applied to membrane

detection classifier results was used in [61].

Another approach to improving the accuracy of cell membrane detection is to

use multi-scale methods. In early computer vision work, the neocognitron [73],

which is a network composed of alternating layers of simple cells for filtering and

complex cells for pooling and downsampling inspired by Hubel and Wiesel [74],

was proposed for object recognition. Learning in the neocognitron is unsupervised.

Convolutional nets in their original form are similar to the neocognitron in terms of

their architecture; however, learning is supervised [75]. Convolutional nets have

been applied to face detection [76, 77], face recognition [78], and general object

recognition [79, 80]. However, the convolutional nets applied to connectomics [39,

69–71] have not taken advantage of the multi-scale nature of the neocognitron. In a

different microscopy imaging application, Ning et al. have applied multi-scale

convolutional nets to the problem of segmentation of subcellular structures in

Differential Interference Contrast microscopy [81]. We proposed a multi-scale

version of our series neural network architecture [82] that we also employ here.

Recently, deep convolutional nets have been proposed for learning hierarchical

image features [83, 84]. While these deep convolutional nets are trained in an
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unsupervised manner by presenting a set of training images containing the object of

interest [85], their outputs can also be used as features in an object recognition

application. This approach was recently used in the winning entry of the ISBI EM

image segmentation challenge [86].

Methods

In this section, we will describe our algorithms for segmenting EM images.

Section “Convolutional Networks and Auto-context Overview” discusses

convolutional networks and auto-context methods which motivate our method.

Section “Series of Artificial Neural Networks Pixel Classifier” introduced our series

of artificial neural networks (ANN) framework. Section “Multi-scale Series of

ANN Pixel Classifier” generalizes this framework to a multi-scale model. Sec-

tion “Partial Differential Equation Based Post Processing” discusses a partial

differential processing-based post-processing step to close gaps in the membrane

detection results from the multi-scale series of artificial neural networks. This step

typically results in a slight over-segmentation of the images. Therefore, sec-

tion “Watershed Merge Tree Classifier” describes a watershed transform and

supervised learning-based method for merging regions in the segmentation as

necessary.

Convolutional Networks and Auto-Context Overview

As discussed in section “Machine Learning Methods”, supervised machine learning

methods have proven useful for detecting membranes in EM images. To address the

challenges presented, we developed a machine learning method that combines two

bodies of related work. The first by Jain et al. use a multilayer convolutional ANN

to classify pixels as membrane or nonmembrane in specimens prepared with an

extracellular stain [39]. The convolutional ANN has two important characteristics:

it learns the filters for classification directly from data, and the multiple sequential

convolutions throughout the layers of the network account for an increasing (indi-

rect) filter support region. This method will work well for different types of image

data, since it uses, as input, raw pixel data. In addition, the multiple convolutions

enable the classifier to learn nonlocal structures that extend across the image

without using large areas of the image as input. However, this method requires

learning a very large number of parameters using backpropagation through many

layers. Therefore, it is computationally intensive and requires very large training

sets. Also of particular relevance is Tu’s auto-context framework [87] from the

computer vision literature, which uses a series of classifiers with contextual inputs

to classify pixels in images. In Tu’s method, the “continuous” output of a classifier,

considered as a probability map, and the original set of features, are used as inputs
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to the next classifier. The probability map values from the previous classifiers

provide context for the current classifier, by using a feature set that consists of

samples of the probability map at a large neighborhood around each pixel. Theo-

retically, the series of classifiers improves an approximation of an a posteriori

distribution [87]. Hence, each subsequent classifier extends the support of the

probability map, improving the decision boundary in feature space, and thus the

system can learn the context, or shapes, associated with a pixel classification

problem. Similar to the convolutional network, this means that a classifier can

make use of information relayed by previous classifiers from pixel values beyond

the scope of its neighborhood. However, the particular implementation demon-

strated by Tu uses 8,000 nonspecific, spatially dispersed, image features, and a

sampling of probability maps in very large neighborhoods. This is appropriate for

smaller scale problems. On the other hand, for large connectomics datasets, it can

be impractical to calculate thousands of features in order to train the classifier.

Similar to Jain et al. we choose to learn the image features directly from the data

and use the image intensities as input to our architecture, rather than preprocessing

the data and computing thousands of image features. This provides us with a much

smaller set of features and allows for flexibility and training of large datasets. Also,

the use of the series ANNs and increasing context allows us to focus on small sets of

image features to detect membranes, while also eliminating pixels that represent

vesicles or other internal structures.

Series of Artificial Neural Networks Pixel Classifier

Problem Formulation

Let X ¼ (x(i, j)) be a 2D input image that comes with a ground truth Y ¼ (y(i, j))
where y(i, j) ∈ {� 1, 1} is the class label for pixel (i, j). The training set is T ¼
fðXk; YkÞ; k ¼ 1; . . . ;MgwhereM denotes the number of training images. Given an

input image X, the maximum a posteriori (MAP) estimation of Y for each pixel is

given by

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXÞ: (10.1)

It is not practical to solve (10.1) for large real-world problems. Instead of the

exact equation an approximation can be obtained by using the Markov assumption

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞÞ; (10.2)

where N(i, j) denotes all the pixels in the neighborhood of pixel (i, j). In practice,

instead of using the entire input image, the classifier has access to a limited number

of neighborhood pixels at each input pixel (i, j). This approximation decreases the

computational complexity and makes the training tractable on large datasets.
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Lets call the output image of this classifier C ¼ (c(i, j)). In our series ANN, the

next classifier is trained both on the neighborhood features of X and on the

neighborhood features of C. The MAP estimation equation for this classifier can

be written as

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;CN0ði;jÞÞ; (10.3)

where N
0
(i, j) denotes the neighborhood lattice of pixel (i, j) in the context image.

Note that N and N0 can represent different neighborhoods. The same procedure is

repeated through the different stages of the series classifier until convergence. It is

worth noting that (10.3) is closely related to the CRF model [66]; however, multiple

models in series are learned which is an important difference from standard CRF

approaches. It has been shown that this approach outperforms iterations with the

same model [88].

Artificial Neural Network

Given the success of ANNs for membrane detection [5, 39], a multilayer perceptron

(MLP) ANN is implemented as the classifier. An MLP is a feed-forward neural

network which approximates a classification boundary with the use of nonlinearly

weighted inputs. The architecture of the network is depicted schematically in

Fig. 10.3. The output of each processing element (PE) (each node of the ANN) is

given as [89, 90]

y ¼ f ðwTxþ bÞ; (10.4)

where f is, in this case, the tanh nonlinearity, w is the weight vector, and b is the

bias. The input vector x to PEs in the hidden layer is the input feature vector

discussed in more detail in section “Image Stencil Neighborhood”. For the output

PEs, x contains the outputs of the PEs in the hidden layer.

Input
Layer

Hidden
Layer

Output

Intensity

Output
Layer

Stencil Input   1

Stencil Input   2

Stencil Input   3

Stencil Input   n

Fig. 10.3 Artificial neural

network diagram with one

hidden layer. Inputs to the

network, in this framework,

include the image intensity

and the values of the image

at stencil locations
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ANNs are a method for learning general functions from examples. They are well

suited for problems without prior knowledge of the function to be approximated.

They have been successfully applied to robotics [91, 92] and face and speech

recognition [93, 94] and are robust to noise. Training uses gradient descent to

solve for a solution which is guaranteed to find a local minimum. However, several

trade-offs occur in training ANNs regarding the size of the network and the number

of inputs. An ANN with too many hidden nodes can lead to overfitting of the

network [89], resulting in a set of weights that fits well to the training data, but may

not generalize well to test data. At the other extreme, if the number of hidden nodes

is insufficient, the ANN does not have enough degrees of freedom to accurately

approximate the decision boundary. The number of features should also be kept

small to mitigate the problem of high dimensional spaces. Generally speaking, as

the dimensionality of the input space increases, the number of observations

becomes increasingly sparse which makes it difficult to accurately learn a decision

boundary. Additionally, the training time tends to scale with the amount of training

data and size of the network, and therefore training smaller networks with fewer

features is generally preferable. Hence, the number of inputs to each ANN should

be large enough to describe the data, but small enough for manageable training

times.

Image Stencil Neighborhood

Good feature selection in any classification problem is critical. In this application,

one possible approach uses large sets of statistical features as the input to a learning

algorithm. These features can include simple local and nonlocal properties, includ-

ing the pixel values, mean, gradient magnitude, standard deviation, and Hessian

eigenvalues [38, 87, 95]. These attempt to present the learning algorithm with a

large variety of mathematical descriptors to train on and are designed to work on a

variety of data types. To achieve this generality, however, large numbers of these

features are required to train a classifier. Another approach is to design a set of

matched filters and apply them to an image to approximate a pixel’s similarity to a

membrane. This works well if the membranes in the image are uniform and respond

well using cross correlation [96, 97]. Moreover, the design of the filter bank

requires significant a priori knowledge of the problem. Yet, the fixed design may

not be optimal for the dataset. Most importantly, the match filters have to be

redesigned for datasets with different characteristics. On the other hand, learning

these filters from training data, as in the case of convolutional networks [39], has the

advantage that no a priori knowledge is required. A similar idea has been used in

texture classification where it was shown that direct sampling of the image with a

patch is actually a simpler and more universal approach for training a classifier

compared to the use of filter banks [98]. Image patches have also been used

successfully for texture segmentation [99] and image filtering [100–102]. Similarly,

using image neighborhoods as in (10.2) allows the ANNs to learn directly on the

input intensity data, giving the classifier more flexibility in finding the correct
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decision boundary. A square image neighborhood can be defined as an image patch,

shown in Fig. 10.4a, centered at pixel k, l,

Nði; jÞ ¼ Ikþi;lþj : k; l ¼ �R� 1

2
; . . . ;

R� 1

2

� �
: (10.5)

R is the width of the square image patch. Unfortunately, the size of the image

patches required to capture sufficient context can be quite large. For this reason, we

propose using as input to the ANNs the values from the image and probability map

of the previous classifier sampled through a stencil neighborhood, shown in

Fig. 10.4b. A stencil is also centered at pixel k, l and defined as,

Nði; jÞ ¼ [n
a¼1Bði; j; aÞ (10.6)

where

Bði; j; aÞ ¼ Iiþak;jþal : k; l ¼ �1; 0; 1
� �

; (10.7)

and n is the number of rows the stencil spans in the image. The stencil in Figs. 10.4

and 10.5 cover large areas representing the desired feature space, but samples it in a

spatially adaptive resolution strategy. For large image features, stencils such as the

one in Fig. 10.5 are required. In this way, an ANN can be trained using a

low-dimensional feature vector from image data, without having to use the whole

image patch. Since the number of weights to be computed in an ANN is dominated

by the connection between the input and the hidden layers, reducing the number of

inputs reduces the number of weights and helps regularize the learned network.

Moreover, using fewer inputs generally allows for faster training. With this, one

aims to provide the classifier with sparse, but sufficient context information and

achieve faster training, while obtaining a larger context which can lead to improve-

ments in membrane detection. This strategy combined with the serial use of ANNs

grows the region of interest for classification within a smaller number of stages and

without long training times.

a

b

Fig. 10.4 Two image neighborhood sampling techniques: image pixels sampled using (a) a patch

and (b) a stencil. For this example, the stencil contains the same number of samples, yet covers a

larger area of the data. This is a more efficient representation for sampling the image space.

248 T. Tasdizen et al.



Series Artificial Neural Networks

From the principles from auto-context, we architect a series of classifiers that

leverage the output from previous networks to gain knowledge of a large neigh-

borhood. The input to the first classifier is the image intensities around a pixel

sampled using a stencil as described in section “Image Stencil Neighborhood”. For

the ANNs in the remaining series, the input vector contains the samples from the

original image, used as input to the first ANN, appended with the values from the

output of the previous classifier which was also sampled through the stencil

neighborhood, yielding a larger feature vector. This second classifier is described

mathematically with (10.3). While the desired output labels remain the same, each

ANN is dependent on the information from the previous network and therefore

must be trained sequentially, rather than in parallel. Figure 10.6 demonstrates this

flow of data between classifiers. The lattice of squares represent the sampling

stencil (shown more precisely in Fig. 10.5).

In summary, the series structure allows the classifiers to gather, with each step,

context information from a progressively larger image neighborhood to the pixel

being classified, as occurs with a convolutional ANN. The pixel values are sampled

with a stencil neighborhood over each pixel, containing the pixels within the stencil

(Fig. 10.5). The probability map feature vector is also obtained with a stencil

Fig. 10.5 Example of a

larger image neighborhood

sampling technique,

covering a 31 �31 patch

of image pixels

Fig. 10.6 Series neural network diagram demonstrating the flow of data between ANNs. The blue
and yellow squares symbolize the center pixel and its neighborhood pixels in the stencil structure,

respectively
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neighborhood placed over each pixel containing information about the classes, as

determined by the previous classifier. Indirectly, the classification from the previ-

ous ANN contains information about features in surrounding pixels, that is not

represented in the original feature set. This allows the subsequent networks in the

series (Fig. 10.6) to make decisions about the membrane classification utilizing

nonlocal information. Put differently, each stage in the series accounts for larger

structures in the data, taking advantage of results from all the previous networks.

This results in membrane detection that improves after each network in the series.

Figure 10.7 visually demonstrates the classification improving between ANNs in

the series as gaps in weak membranes are closed and intracellular structures are

removed with each iteration in the series. The receiver operating characteristic

(ROC) curves in Fig. 10.8 also demonstrate the increase in detection accuracy after

each ANN in the series. Notice that the results converge after a few stages.

Combining the original image features with features sampled from the output of

the previous classifier is important because, in this way, the membrane structure

relevant for detection is enforced locally and then again at a higher level with each

step in the series of classifiers. One of the advantages of this approach is that it

Fig. 10.7 Example output using the same image, first as part of a training set (top two rows), and
then separately, as part of a testing set (bottom two rows), at each stage (1–5) of the network series.
The output from each network is shown in rows 1 and 3. Rows 2 and 4 demonstrate the actual

membrane detection when that output is thresholded. The network quickly learns which pixels

belong to the membranes within the first 2–3 stages and then closes gaps in the last couple of stages
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provides better control of the training, allowing the network to learn in steps,

refining the classification at each step as the context information it needs to

correctly segment the image increases. Again, note that the membrane structure is

learned directly from the data. Compared to a single large network with many

hidden layers and nodes, such as the convolutional ANN of Jain et al. [39], the

proposed classifier is easier to train. This is mainly because each of the ANNs has a

relatively small number of parameters. For example, for a single ANN, the number

of parameters needed is approximately 500 for the first ANN and 1,100 for the

remaining ANNs in the series. The number of weights in an ANN with a single-

hidden layer is given by ðnþ 1Þhþ ðhþ 1Þ, where n is the number of inputs and h is
the number of nodes in the hidden layer. For the first ANN in the series, n ¼ s,
where s is the number of points in the stencil. For the remaining ANNs in the series,

n ¼ 2s, since the original image and the output from the previous classifier are each

sampled once. The total number of parameters across the whole series totals to

approximately 5,000. In contrast, a convolutional ANN needs (n + 1)h for the first

layer, and (n h + 1)h for the remaining layers, an h2 dependence [39]. Hence, much

less training data is needed in this approach, which is hard to obtain, since the

ground truth must be hand labeled.1 Furthermore, the training is simpler since

backpropagation is less likely to get stuck on local minima of the performance

surface [89, 90], and the network will train much faster. Moreover, this accounts for

a smaller and simpler network which can be trained from smaller numbers of

features in the input vector. The series of ANNs is much more attractive to train,

as opposed to using a single large network with many hidden layers and nodes. A

single large network would be time consuming and difficult to train due to the many

local minima in the performance surface.
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Fig. 10.8 ROC curves for the (a) training data and (b) testing data for each stage of the network

on the C. elegans dataset

1 According to the “rule-of-thumb” in [90], one needs at least 10 �training samples of the total

number of parameters. Thus, compared to Jain et al. [39] convolutional ANN, the approach

presented here needs about 27 �less training samples, for the values given.
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Multi-scale Series of ANN Pixel Classifier

In this section, we discuss how more information can be obtained by using a scale-

space representation of the context and allowing the classifier access to samples of

context at different scales. It can be seen from (10.3) that context image provides

prior information to solve the MAP problem. Although the Markov assumption is

reasonable and makes the problem tractable, it still results in a significant loss of

information from global context because it only uses local information obtained

from the neighborhood area. However, it is not practical to sample every pixel in a

very large neighborhood area of the context due to computational complexity

problem and overfitting. The series classifiers exploit a sparse sampling approach

to cover large context areas as shown in Fig. 10.5. However, single pixel contextual

information in the finest scale conveys only partial information about its neighbor-

hood pixels in a sparse sampling strategy while each pixel in the coarser scales

contains more information about its neighborhood area due to the use of averaging

filters. Furthermore, single pixel context can be noisy whereas context at coarser

scales is more robust against noise due to the averaging effect. In other words, while

it is reasonable to sample context at the finest level a few pixels away, sampling

context at the finest scale tens to hundreds of pixels away is error prone and results

in a non-optimal summary of its local area. We will show how more information

can be obtained by creating a scale space representation of the context and allowing

the classifier access to samples of small patches at each scale. Conceptually,

sampling from the scale space representation increases the effective size of the

neighborhood while keeping the number of samples small.

Multi-scale Contextual Model

The multi-scale contextual model is shown in Fig. 10.9. In the conventional series

structure, the classifiers simply take sparsely sampled context together with input

image as input. In the multi-scale contextual model, each context image is treated as

an image and a scale-space representation of context image is created by applying a

Fig. 10.9 Illustration of the multi-scale contextual model. Each context image is sampled at

different scales (green squares). The blue squares represent the center pixel and the yellow squares
show the selected input/context image locations at original scale

252 T. Tasdizen et al.



set of averaging filters. This results in a feature map with lower resolution that is

robust against the small variations in the location of features as well as noise.

Figure 10.10 shows the multi-scale sampling strategy versus the single-scale

sampling strategy. In Fig. 10.10b the classifier can have as an input the center

3�3 patch at the original scale and a summary of eight surrounding 3�3 patches at

a coarser scale (The green circles denote the summaries of dashed circles). The

green circles in Fig. 10.10b are more informative and less noisy compared to their

equivalent red circles in Fig. 10.10a. The summaries become more informative as

the number of scales increases. For example, in the first scale the summary is

computed over 9 pixels (3 �3 neighborhood) while it is computed over 25 pixels

(5 �5 neighborhood) in the second scale. Different methods such as Gaussian

filtering, maximum pooling, etc. can be used to create the summary (green dots in

Fig. 10.9) . From a mathematical point of view, (10.3) can be rewritten as:

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;CN0
0
ði;jÞð0Þ;CN0

1
ði;jÞð1Þ; . . . ;CN0

l
ði;jÞðlÞÞ (10.8)

whereCð0Þ;Cð1Þ; . . . ;CðlÞ denote the scale space representation of the context and
N0
0ði; jÞ;N0

1ði; jÞ; . . . ;N0
lði; jÞ are corresponding neighborhood structures. Unlike

(10.3) that uses the context in a single-scale architecture, (10.8) takes advantage

of multi-scale contextual information. Even though the Markov assumption is still

used in (10.8), the size of the neighborhood is larger and thus less information is lost

compared to (10.3).

The series multi-scale contextual model updates the (10.8) iteratively:

ŷkþ1
MAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;Ck

N0
0
ði;jÞð0Þ;Ck

N0
1
ði;jÞð1Þ; . . . ;Ck

N0
l
ði;jÞðlÞÞ (10.9)

Fig. 10.10 Sampling strategy of context: (a) Sampling at a single scale (b) sampling at multi-

scale. Green circles illustrate the summary of pixels in dashed circles. We use linear averaging to

create the summary
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where Ckð0Þ;Ckð1Þ; . . . ;CkðlÞ are the scale space representation of the output of

classifier at stage k, k ¼ 1; . . . ;K � 1 and ŷkþ1
MAPði; jÞ denotes the output of the stage

k + 1. In turn, the k + 1’th classifier output as defined in (10.9) creates the context

for the k + 2’th classifier. The model repeats (10.9) until the performance improve-

ment between two consecutive stages becomes small. Because context is being used

more effectively, the performance improvement through the stages is larger com-

pared to the conventional series-ANN algorithm.

The overall performance of the multi-scale contextual model can be improved

by extracting powerful features from the input image in addition to pixel intensities.

It has been shown empirically that trying to segment the structures in connectome

images using only geometric or textural features is not very effective [55]. Radon-

like features (RLF) were proposed as a remedy to this problem as they are designed

to leverage both the texture and the geometric information present in the

connectome images to segment structures of interest. We refer the reader to [55]

for further details of the RLF method. RLF method is an unsupervised method by

itself but it can be integrated into supervised models as a feature extraction step.

Furthermore, more powerful features can be obtained by computing RLF at mul-

tiple scales and for different edge threshold settings [82]. This richer set of features

allow for correct detection of cell boundaries in the regions that cannot be detected

by the original RLF as proposed in [55] and avoids the need for extensive parameter

tuning.

Partial Differential Equation-Based Post-Processing

The partial differential equation (PDE) post-processing step is an entirely

unsupervised process that improves the probability map by closing small to

medium sized gaps in the membrane detection results. Typically the PDE post

processing will generate an over-segmented image. Our motivation is that we can

learn to fix over-segmentation errors with the watershed merge tree classifier as will

be discussed in section “Watershed Merge Tree Classifier” whereas this is not

possible for under-segmentation errors. In this section, we discuss how the proba-

bility map is updated at each iteration and the influence each term in the update

equation has on the result.

Let f be an probability map where 1 represents locations with a low probability

of being cell membrane and 0 represents locations with a high probability of being

cell membrane. F is updated according to the rule fkþ1 ¼ fk þ ΔtðΔf Þ, where

Δf ¼ αΔAþ βΔBþ ηΔC (10.10)

and each term ΔA, ΔB, and ΔC represents a different characteristic of the probability

map or underlying image that is to be optimized. The Δ t term is a parameter that

can be adjusted to improve the stability of the update rule and the α, β, and η terms

254 T. Tasdizen et al.



are parameters that can be used to control how much weight each different term in

the PDE has relative to the other terms.

The first term in (10.10), Δ A, is defined as:

ΔA ¼ jrf jr � rf

jrf j (10.11)

where ∇ is the gradient operator and ∇ �is the divergence operator. The r � rf
jrf j

term in (10.11) computes the mean curvature at each pixel location in f and

multiplying by j∇f j ensures the stability. The effect of using the curvature is to

force some smoothness along the boundaries between the membrane and

non-membrane regions. Because the cells are generally large rounded structures

with few sharp corners, high curvature areas are uncommon resulting in the

curvature minimization term having the effect of favoring objects shaped like the

interior of a typical cell. Without any other terms however, this would eventually

reduce the areas with values close to 1 to shrink down to a small circle and

eventually a single point. The other terms will counteract this behavior to give

the desired result. In the discrete implementation of this curvature term, finite

central difference is used to compute ∇f.
The second term in (10.10), Δ B, is defined as:

ΔB ¼ rf � rG (10.12)

where rG ¼ expð�jrIj
σ

2Þ and I is a version of the original image filtered with the

nonlocal means algorithm [101] to reduce the effects of noise. We chose the

nonlocal means algorithm due to its success with textured images. The intent of

this term is to push the edges of the probability map f to be along the edges of the

original image. We assume that there is a strong edge between membrane and

non-membrane regions. By itself this would produce a very jagged edge because of

the noisy nature of the image. Combined with the curvature term, the edges of the

probability map f will produce a clean edge that closely follows the edges in the

original image. In the discrete implementation of this gradient term, an upwind

scheme is used to compute ∇f and finite central difference is used to compute

the ∇G and ∇I.
The final term in (10.10), ΔC, is defined as:

ΔC ¼ �:5λ1 þ :5λ2 (10.13)

where λ1, λ2 are the eigenvalues of the Hessian matrix of f, and λ1 > λ2. The larger
eigenvalue of the Hessian of f represents the change across the gradient of f. By
subtracting this term, it has the effect of inverse diffusion which tends to sharpen

image features. This will effectively bring together areas of wide gray into a narrow

dark region. Without the curvature term and gradient term this will cause some

spurious detail to form, so a balance between this term and the other two terms is
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necessary to ensure stability. The smaller eigenvalue of the Hessian of f represents
the change in the direction perpendicular to the direction of the maximum gradient.

Adding this term in allows growth extending the membranes at terminal points and

connecting across regions that were missed in the initial probability map. In the

discrete implementation of the Hessian, central differences are used to compute

each of the 2nd derivatives. The number of iterations for the PDE is determined

empirically according to the number of iterations that give the minimum rand error

on the training data used in previous stages.

The result of running this algorithm is that the threshold giving the best result

is at 1 resulting in everything less than 1 being considered non-membrane and

everything equal to 1 being considered as membrane as seen in Fig. 10.11c. On

some datasets this still offers significant improvement over just using the multi-

scale series ANN; however, on other datasets the improvement is minimal. To be

able to improve the thresholding and to be able to run the watershedding method

described in the next section, we threshold the results of this PDE at the optimal

Fig. 10.11 Example of (a) original EM image, (b) multi-scale contextual membrane detection,

(c) initial PDE result prior to thresholding , and (d) PDE result with replacement
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threshold as determined on the training data and replace the areas classified as

membrane with the intensity values from the original image. The result is an

image where everything considered to be non-membrane has a value of 0 and

everything considered to be membrane has the values from the original image as

seen in Fig. 10.11d. Using the ISBI dataset, this algorithm improved both the

training and the testing rand error as compared to the multi-scale series ANN by

over 7 %.

Watershed Merge Tree Classifier

With the membrane detection and the PDE-based post-processing, we have a

probability map for each image section indicating how probable every pixel can

be membrane, as shown in Fig. 10.11. By simply applying thresholding on this map,

we are able to get a segmentation. With this method, however, small mispredictions

in pixels about membrane could lead to undesirable region merging and thus

significant under-segmentation errors. With the watershed algorithm, we can also

obtain a set of different segmentations by varying the water level. Yet a fixed global

water level that works well through the entire image is difficult or even impossible

to find due to various local terrains. On the contrary, we expect better results if we

make specific local decisions according to different local situations, which moti-

vates our watershed merge tree-based method.

Watershed Merge Tree

Consider a probability map as a three-dimensional terrain map with pixel proba-

bility as ridge height. Water rains into catchment basins, and regions with lower

heights are flooded. An initial water level forms an initial segmentation as shown in

Fig. 10.12a. With more water falling in and the water level rising over ridges, small

regions merge into larger ones, and finally into one large region once the water level

rises above the highest ridge in the map. Figure 10.12b gives a one-dimensional

case for illustration: with initial water level l0, we have regions 1, 2, and 3; when the

Fig. 10.12 Example of (a) initial watershed segmentation and (b) region merging with water level

rising
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water level rises to l1, regions 1 and 2 merge to 4; region 3 merges with 4 and 5 at

water level l2. This technique produces a hierarchy of region merging that can be

represented by a tree structure, which we call a watershed merge tree.

Here we give a formal definition of a watershed merge tree. A watershed tree

T ¼ ({N}, {E}), derived from the concept of a tree in the graph theory, consists of a

set of nodes and edges between them. At depth d, a node Ni
d corresponds to an

image region Ri
d; an edge from a parent node Ni

d to its child node Ni 0d+1 indicates

region Ri 0d+1 is a subregion of region Ri
d; a local tree structure ðNd

i ;N
dþ1
i0
1

;Ndþ1
i0
2

; . . .Þ
represents region Ri

d can be the merging result of all of its subregion fRdþ1
i0
1

;Rdþ1
i0
2

;

. . .g. For simplicity, we here consider the merge tree as a binary tree, which means

only two regions merge each time. If several regions merge at the same water level,

we merge two regions at a time and the merging order can be arbitrary.

As we use nonlocal features for the boundary classifier, which will be described

in detail in the next section, it is difficult to extract some meaningful features from

regions that are too small. Therefore, we use an initial water level l0 to merge some

very small regions beforehand in the initial segmentation, and further conduct a

preprocessing step to get rid of regions smaller than nr pixels by merging them with

their neighbor regions with the lowest probability barrier.

Boundary Classifier

In order to decide which regions we should preserve as the final segmentation in the

merge tree, we need information about how probable each potential merge could

happen. Thus, we learn a boundary classifier from training data. For a pair of

regions, we consider the set of pixels that are adjacent to the other region as a

boundary. The output of the classifier is a probability that the boundary between the

two regions is false, or in other words, the two regions should merge. The input of

the classifier is a set of 141 features extracted from the two merging regions,

including geometric features (region area, boundary lengths, region contour

lengths, etc.), intensity statistics features of boundary pixels from both original

EM images and membrane detection probability maps, and regional features

(texton histogram difference and watershed region merging saliency). Here the

watershed region merging saliency is defined as the difference between the mini-

mum water level to merge the two regions and the minimum value in the membrane

detection probability map.

We obtain the label that indicates whether a region pair (Ri
d, Rj

d) should merge

or not by measuring the Rand error over the ground truth segmentation, which is

defined as

Ek ¼ 1

jRd
i j � jRd

j j
X

xp;xq2Rd
i [Rd

j

σpq � βkpq

��� ���; (10.14)
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where (xp, xq) represents any pixel pair from the union of the two merging regions,

and

σpq ¼
1 if xp and xq are in the same truth region

0 otherwise

(

β1pq ¼
1 always

0 never

(

β2pq ¼
1 if xp and xq are in the same merging region

0 otherwise:

(
(10.15)

Here the Rand error E1 measures the portion of pixel pairs that are misclassified

against the ground truth segmentation if the two regions merge, and E2 is that

portion if the two regions keep split. Thus, we can decide the label by simply

comparing the Rand errors as

ldij ¼
þ 1ðmergeÞ if E1

R < E2
R

� 1ðsplitÞ otherwise.

(
(10.16)

To balance the contributions of positive and negative examples, different

weights are assigned to each type of examples. A random forest classifier [103] is

trained with the weighted training examples and applied to make predictions about

how likely a pair of regions should merge for the testing data.

Resolving the Merge Tree

The boundary classifier predicts the probability for every potential merge in a

merge tree. We seek to take advantage of this information and obtain a consistent

segmentation of the whole image in a sense of optimization. We define the

consistency as that in the final segmentation any pixel should be labeled exactly

once. In the context of our tree structure, if a node is selected, all of its ancestor and

descendants cannot be selected, and its immediate sibling or a set of the descen-

dants of its immediate sibling must be selected; if a node is not selected, one of its

ancestors or a set of its descendants must be selected. In other words, exactly one

node should be picked on each path from any leaf to the root. Figure 10.13 shows an

artificial example. We have an initial over-segmentation shown in Fig. 10.13a, from

which a merge tree is built as shown in Fig. 10.13c. Nodes 3, 6, 9, and 12 are picked

for a consistent final segmentation shown in Fig. 10.13b. Consequently, the other

nodes cannot be selected. Because we cannot have both purple region (node 9) and

region 1 (or 2) exist, otherwise region 1 (or 2) would be labeled more than once as

1 (or 2) and 9, which is inconsistent by our definition. Meanwhile, if we select node

3, node 9 or nodes 1 and 2 together then must be picked in this case, otherwise
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region 1 or region 2 is not labeled in the final segmentation, which is also

inconsistent.

In order to resolve the merge tree, we transform the probabilities of region pair

merging into the form of potentials for each node in the tree. A region exists in the

final segmentation because it neither splits into smaller regions nor merges with

others into a larger region. Since each prediction that the classifier makes depends

only on the two merging regions, we compute the potential that a node Ni
d is picked

as the probability that its two child nodes Ndþ1
i0
1

and Ndþ1
i0
2

merge and at the same

time Ni
d does not merge with its immediate sibling node Nj

d at the next higher water

level to their parent node Nk
d�1. Thus, we define the potential for Ni

d as

Pd
i ¼ pdþ1

i0
1
;i0
2
� ð1� pdi;jÞ; (10.17)

where pdþ1
i0
1
;i0
2

is the predicted probability that the two child nodes Ndþ1
i0
1

and Ndþ1
i0
2

merge, and pi, j
d is the probability that node Ni

d merge with its immediate sibling

node Nj
d. In the example shown in Fig. 10.13c, the potential of node 9 is P9 ¼

p1;2ð1� p3;9Þ. Since leaf nodes have no children, their potentials are defined as the

Fig. 10.13 Example of (a) initial over-segmentation, (b) consistent final segmentation, and (c)

corresponding merge tree
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probability that they do not merge penalized into half. Similarly, the root node has

no parent, so its potential is half of the probability that its children merge.

Given the potentials of each node, we seek to locally optimize the node selection

to form a complete consistent final segmentation. Here we apply a greedy approach.

The node with the highest potential in the merge tree is picked. Then all of its

ancestors and descendants are regarded as inconsistent options and removed from

the tree. This procedure is repeated until there are no nodes left in the tree. All the

picked nodes together make up a complete consistent final segmentation.

Results

In this section, we will demonstrate the results of our algorithms on two ssTEM and

one SBFSEM dataset. In addition to visual results, quantitative results are provided

using the pixel error and rand error metrics on the training and testing datasets.

C. elegans Ventral Nerve Cord ssTEM

Dataset

The nematode C. elegans is an important dataset for neural circuit reconstruction.

Despite being a well-studied organism [21], there are still numerous open questions

such as how genes regulate wiring [104] or how connectivity is altered to mediate

different behaviors, for example between males and females [105]. Reconstructions

of the full nervous system reveal topological characteristics important for

researchers studying neuron wiring. The particular ssTEM dataset used here is

from the VNC of the C. elegans and is important for studying the topological

structure resulting from neurons making connections to local targets.

Series-ANN Pixel Classifier

In this experiment, a series classifier with 5 stages was trained. Additional networks

could be included; however, for these datasets, the performance converges to a limit

(Fig. 10.8) and improvement in membrane detection is minimal. Each ANN used in

the experiments contained one hidden layer with 20 nodes. We experimented with

more layers and different numbers of nodes but did not find significant advantages.

It is important that the number of nodes be large enough to approximate a nonlinear

boundary and small enough that the ANN does not overfit to the training

data [106, 107]. Results using 10, 20, and 30 nodes turned out to be somewhat

similar. Given the time versus performance trade-off, we chose 20 nodes. The

networks were trained using backpropagation with a step size of 0. 0001 and
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momentum term of 0.5.We used early stopping as the criterion to determine when to

terminate training [89, 90]. Thismeans that a small portion of the training data (20 %

in our case), called the validation set, is used only to test the classifier generalization

performance. The training terminates when the lowest error on the validation set is

attained. To mitigate problems with local minima, each network is trained for

5 Monte Carlo simulations using randomly initialized weights.

Post-processing and Segmentation

For this dataset the parameters were optimized empirically on the 15 images used as

training images. The PDE ran for 288 iterations with δ t equal to 0. 1875, α equal to

0. 1, β equal to 0. 6, and η equal to 1. This places the most weight on the inverse

diffusion-based growth term, significant weight on the gradient term, and minimal

weight on the curvature term. Following 288 iterations of the pde, the result was

thresholded with a threshold of 0. 4 and all of the membrane areas were replaced

with their values from a denoised version of the original image. The denoising was

done using a nonlocal means denoising algorithm. Following this replacement the

watershed process was started using the resultant image. For the watershed merge

tree classification, the initial water level was 5 % of the maximum value in each

probability map. Due to large section size, we merged regions smaller than

nr ¼ 300 pixels with their neighbors in the preprocessing step; 7�7 texture patches

were extracted from the original EM images for generating the texton dictionary

and building texton histograms as boundary classifier features. A random forest

with 500 trees was trained for boundary classification. Figure 10.14 shows the

results of the ANN series and post-processing methods for four different test

images. Table 10.1 shows the pixel and Rand error of the series ANN model

alone and ANN series model followed by PDE post-processing and watershed

merge tree segmentation. Notice that while the post-processing worsens the pixel

accuracy slightly, it significantly improves the Rand error. Since Rand error is a

measure of segmentation errors, this particular trade-off between the pixel accuracy

and Rand error is desirable.

Drosophila Ventral Nerve Cord ssTEM

Dataset

The second dataset we experimented with is a stack of 60 images from an ssTEM

dataset of the Drosophila first instar larva VNC [8, 108]. It has a resolution of 4 �4

�50 nm/pixel and each 2D section is 512 �512 pixels. The corresponding binary

labels were annotated by an expert neuroanatomist. During the International Sym-

posium on Biomedical Imaging (ISBI) Electron Microscopy Image Segmentation

Challenge 30 images were used for training and the remaining images were used for

testing.
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Fig. 10.14 Test results for membrane detection for four different input images from

C. elegans VNC. The first row shows the input images, row 2 shows the conventional ANN series

results, row 3 shows the PDE post-processing results (applied on the results in row 2), and row

4 shows the watershed merge tree results (applied on the results in row 3), and the last row shows

the corresponding groundtruth images. All the images in this figure are zoomed in for the sake of

better visualization of the details
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Multi-scale Series-ANN Pixel Classifier

In this experiment, a series classifier with five stages was trained using multi-scale

contextual method. Each MLP-ANN in the series had one hidden layer with ten

nodes. To optimize the network performance, five million samples were randomly

selected from the training images such that the training set contained twice the

number of negative samples, i.e., the non-membrane samples, than positive sam-

ples, i.e., membrane samples. To compute the feature vector for the input image

pixels, an 11 by 11 stencil was used to sample the input image and the RLF maps for

cell boundaries (at two scales) and mitochondria. The first classifier was trained

using this feature vector of size 164. The context features were computed using 5 by

5 patches at four scales (one at original resolution and three at coarser scales) that

made the context feature vector of length 100. The remaining classifiers in the

series had feature vector of size 264, which included both the input image features

and the context features. The evolution of the results through the stages of multi-

scale contextual model is shown in Fig. 10.16. It can be seen that the classifier is

able to remove some undesired parts such as mitochondria from the interior of

the cells.

Post-processing and Segmentation

For this dataset the number of iterations for the PDE post-processing was again

optimized empirically using the 30 training images. The optimal number of itera-

tions for this dataset was found to be 425. The remaining parameters were found to

be the same because of the similarity in structure between the datasets. Following

425 iterations of the PDE, the result was thresholded with a threshold of 0 and all of

the membrane areas were replaced with their values from a nonlocal means [101]

denoised version of the original image. Following this replacement the watershed

process was started using the resultant image. As for the watershed merge tree

method, the initial water level was set as 1 % of the maximum value in each

corresponding probability map. Regions smaller than nr ¼ 50 pixels were removed

in the initial segmentation; 7 �7 texture patches were used for generating texton

features. A random forest with 500 trees was again used.

Table 10.2 illustrates the pixel accuracy and Rand error of the multi-scale

contextual model alone and multi-scale contextual model followed by PDE

Table 10.1 Testing performance of the ANN series model and post-processing methods (pde +

watershed merge tree) for the C. elegans ssTEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Series ANN 0.2113 0.0327 0.2285 0.0324

Post-processing 0.0986 0.0431 0.1498 0.0432
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post-processing and watershed merge tree segmentation. Similar to sec-

tion “C. elegans Ventral Nerve Cord ssTEM”, post-processing worsens the pixel

accuracy, it significantly improves the Rand error. Figure 10.17 illustrates the

results of the various steps visually.

Figure 10.15 shows the improvement in Rand error provided by the post-

processing step against the Rand error of the multi-scale contextual model at

different thresholds.

Mouse Neuropil SBFSEM

Dataset

This dataset is a stack of 400 images from the mouse neuropil acquired using

SBFSEM. It has a pixel resolution of 10 �10 �10 nm and each 2D section is

4, 096 by 4, 096 pixels. To train and test the segmentation framework, a subset of

this data (700 �700 �70) was manually annotated by an expert electron micros-

copist. From those 70 images, 14 images were used for training and the

56 remaining images were used for testing. The training set contains 4. 5 million

samples, which one third of them are positive samples and the remaining of them

are negative samples.

Multi-scale Series-ANN Pixel Classifier

The same series classifier as the previous section was trained on this dataset.

Figure 10.18 shows four examples of test images and their corresponding

Fig. 10.15 F-value of Rand

Index for the testing set in

C. elegans VNC dataset
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Fig. 10.16 Test results for membrane detection for four different input images from Drosophila

VNC. The first row shows the input images, rows 2–5 show the series output at different stages of

the multi-scale contextual model
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Fig. 10.17 Test results for membrane detection for four different input images from Drosophila

VNC. The first row shows the input images, row 2 shows the multi-scale contextual model results,

row 3 shows the PDE post-processing results (applied on the results in row 2), and row 4 shows

the watershed merge tree results (applied on the results in row 3). The testing ground truth images

for the ISBI challenge were not distributed to the contestants; therefore, we are unable to show

them here

Table 10.2 Testing performance of the multi-scale contextual model and post-processing

methods (pde + watershed merge tree) for the Drosophila VNC ssTEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Multi-scale contextual model 0.2084 0.0527 0.1312 0.0752

Post-processing 0.0378 0.0599 0.0770 0.1026
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Fig. 10.18 Test results for membrane detection for four different input images from mouse

neuropil. The first row shows the input images, rows 2–6 show the series output at different

stages, and the last row shows the manually marked image
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segmentation results at different stages of the multi-scale contextual model. The

accuracy of the results is improved through the stages and cleaner images are

obtained at later stages of the series (see Fig. 10.18). Four test images and

corresponding membrane detection results for conventional ANN series and

multi-scale contextual model are shown in Fig. 10.19. In comparison, multi-scale

contextual model is more successful in removing undesired parts and generating

cleaner results.

Post-processing and Segmentation

For this dataset the number of iterations was again optimized empirically using the

14 images from bin 1. The optimal number of iterations for this dataset was again

found to be 288 while the remaining parameters remained the same. For this

dataset, histogram equalization was performed prior to using the image for gradient

calculation. The threshold used prior to replacement with the original image

intensities in the membrane areas was again 0. Following this replacement the

watershedding process was started using the resultant image. The parameters

selection of the watershed merge tree classifier was identical to that of the drosoph-

ila VNC ssTEM dataset: the initial water level was 1 % of the maximum values

correspondingly; regions smaller than nr ¼ 50 pixels were removed; 7 �7 texton

patches were used; and the random forest utilized 500 trees.

Figure 10.19 illustrates the results of the various steps visually. Table 10.3 shows

the pixel accuracy and Rand error of the multi-scale contextual model alone and

multi-scale contextual model followed by PDE post-processing and watershed

merge tree segmentation. Again, notice that while the post-processing worsens

the pixel accuracy slightly, it significantly improves the Rand error. Since Rand

error is a measure of segmentation errors, this particular trade-off between the pixel

accuracy and Rand error is desirable. Finally, Fig. 10.20 shows the Rand error of the

multi-scale contextual model as a function of the final threshold applied to the

classifier output. It also shows the Rand error of the post-processing step.

Discussion

In this chapter, we demonstrated a pipeline that utilizes several machine learning

strategies to provide a reasonable solution to the problem of segmenting neurons in

electron microscopy images. Both supervised and unsupervised techniques were

used. The first step of the pipeline is a pixel-level classifier that attempts to mark

each pixel in an image either as membrane or non-membrane. This supervised

learning approach has clear advantages over traditional image processing methods

that involve no learning: the learning approach can adapt to the data, requires no

hand designed features, and outperforms the traditional methods. In our pixel-level

classifier, we employed a series of ANNs. The ANNs directly use pixel intensities
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Fig. 10.19 Test results for membrane detection for four different input images from mouse

neuropil. The first row shows the input images, the second row shows the conventional ANN

series results, row 3 shows the multi-scale contextual model results, row 4 shows the PDE post-

processing results (applied on the results in row 3), row 5 shows the watershed merge tree results

(applied on the results in row 4), and the last row shows the corresponding grountruth images
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in neighborhoods as features. Each ANN in the series learns to improve upon the

previous ANNs’s results by sampling neighborhoods from both the input image and

the previous ANN’s output (probability map). Intracellular structures such as

mitochondria and synaptic vesicles are mostly removed from the membrane detec-

tion results and some small gaps in the membranes are filled. These improvements

are observed both in training and in testing datasets. A multi-scale version of the

series-ANN which can more effectively sample the images was shown to provide

further improvement in accuracy. However, the main problem with the pixel-level

classifiers is two-fold: (i) it optimizes pixel accuracy instead of segmentation

accuracy and (ii) it cannot use region-based features. The first point is problematic

because even a single pixel gap in the membrane map, which is negligible in view

of pixel error, can create a large segmentation error. The next two steps of our

pipeline aim to fix these problems. The second step is an unsupervised PDE which

aims to fill small gaps in the membrane map hence favoring over-segmentation over

under-segmentation. This is achieved mainly by using an inverse diffusion term

Fig. 10.20 F-value of Rand Index for different thresholds for the mouse neuropil SBFSEM

dataset

Table 10.3 Performance of the multi-scale contextual model and post-processing methods (pde +

watershed merge tree) for the mouse neuropil SBFSEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Multi-scale contextual model 0.2551 0.0512 0.2413 0.0510

Post-processing 0.1274 0.0716 0.1538 0.0745
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directed along the eigenvector of the Hessian of the probability map associated with

its larger eigenvalue, i.e. the direction perpendicular to the cell membrane. The

over-segmentation created by the PDE step is finally fixed using the watershed

merge tree. Similar to the pixel classifier step, this is also a supervised learning-

based step. Incrementally raising the water level in the watershed algorithm creates

a hierarchy of regions. Each time two regions merge in the tree due to rising water

level, we have to ask the question: Is this merge salient or not? We train a classifier

that we call the boundary classifier to answer this question. The advantage of

the boundary classifier over the pixel-level classifier is that it can make use of

potentially more powerful region-based features. Furthermore, the boundary clas-

sifier is trained to optimize segmentation accuracy as measure by the rand error.

The saliency of each region is then defined as the probability that its children merge

times 1 minus the probability that it doesn’t merge with its sibling. Finally, we pick

the salient regions from the watershed tree by using a greedy approach in search of

the most salient regions. As expected the outcome of these post-processing steps

significantly improves segmentation error over the pixel-level classifier. The pixel

accuracy is slightly worsened over the pixel-level classifier; however, this is not

considered important since the main goal is to improve better segmentations. One

reason for the worsening of pixel accuracy is errors in the membrane width that

might be introduced by the post-processing which optimizes segmentation error

since such errors don’t impact the segmentation error.

The pipeline introduced in this chapter can be used to automatically segment

neurons in electron microscopy images. However, if perfect accuracy is required as

is the case for most connectomics problems, manual proof-reading of the results by

an expert will be necessary. To minimize the time that experts need to spend proof-

reading results, future methods will focus on further improving the accuracy. Our

pipeline also is a new example for how machine learning methods can benefit

automatic image analysis.
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