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Preface

Medical decision-making is a crucial element in medicine and in patients’
healthcare; yet, it is a complex task that is often difficult even for experienced
physicians. Biomedical imaging offers useful information on patients’ medical
conditions and clues to causes of their symptoms and diseases. Thus, biomedical
imaging is indispensable for accurate decision-making in medicine. However,
physicians must interpret a large number of images. This could lead to “information
overload” for physicians, and it could further complicate medical decision-making.
Therefore, computer aids are needed and have become indispensable in physicians’
decision-making such as detection, diagnosis, and treatment of diseases.
Computational intelligence plays an essential role in computer aids for medical
decision-making, including computer-aided detection and diagnosis, computer-
aided surgery and therapy, medical image analysis, automated organ/lesion seg-
mentation, automated image fusion, and automated image annotation and image
retrieval.

As medical imaging has been advancing with the introduction of new imaging
modalities and methodologies such as cone-beam/multi-slice computed tomogra-
phy (CT), positron-emission tomography (PET)-CT, tomosynthesis, diffusion-
weighted magnetic resonance imaging (MRI), electrical-impedance tomography,
and diffuse optical tomography, new computational intelligence algorithms and
applications are needed in the field of biomedical imaging. Because of its essential
needs, computational intelligence in biomedical imaging is one of the most prom-
ising, growing fields. A large number of researchers studied in the field and
developed a number of computational intelligence methods in biomedical imaging.
However, there has been no book that covered the state-of-the-art technologies and
recent advances in the field.

This book provides the first comprehensive overview of state-of-the-art compu-
tational intelligence research and technologies in medical decision-making based
on biomedical images. This book covers the major technical advances and research
findings in the field of computational intelligence in biomedical imaging. Leading
researchers in the field contributed chapters to this book in which they describe their
cutting-edge studies on computational intelligence in biomedical imaging.
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This book consists of three parts organized by research area in computational
intelligence in biomedical imaging: Part I deals with decision support, Part II
with computational anatomy, and Part III with image processing and analysis.
As mentioned earlier, computer aids have become indispensable in physicians’
decision-making. This books starts with the research on decision support systems.
In these systems, accurate segmentation and a precise understanding of anatomy are
crucial for improvement of the performance of decision support systems. Part II
covers this important topic, called “computational anatomy.” Image processing and
analysis are fundamental components in decision support systems as well as in
biomedical imaging. Part III deals with this indispensable topic.

Part I contains four chapters provided by leading researchers in the research area
of decision support.

In Chap. 1 in the decision support part (Part I), Drs. Cheng, Wee, Liu, Zhang, and
Shen describe a computerized brain disease classification and progression in MRI,
PET, and cerebrospinal fluid by using machine-learning classification and regres-
sion techniques. Their study represents state-of-the-art brain research by use of
machine-learning techniques.

Chapter 2 is on content-based image retrieval (CBIR) systems based on percep-
tual similarity for decision support in breast cancer diagnosis in mammography
using machine-learning algorithms by Drs. El Naqa and Yang. The authors are ones
of the pioneers who introduced and developed perceptual similarity in CBIR
systems for mammography. They also describe case-adaptive classification in
computer-aided diagnosis (CADx) for breast cancer. Their case-adaptive classifi-
cation is useful for improving the performance of a classifier in CADx.

In Chap. 3, Drs. Firjani, Khalifa, Elnakib, Gimel farb, El-Ghar, Elmaghraby, and
El-Baz introduce computer-aided detection and diagnosis (CADe and CADX) of
prostate cancer in dynamic contrast enhanced MRI (DCE-MRI) by using image
analysis and classification techniques. The authors tackled this challenging problem
with their cutting-edge techniques.

In Chap. 4, Drs. Arimura, Magome, Kakiuchi, Kuwazuru, and Mizoguchi
describe a system for treatment planning in radiation therapy by use of image
analysis techniques, including automated beam arrangement based on similar
cases, segmentation of lung tumors using a support vector machine classifier, and
a method for determining robust beam directions against patient setup errors in
hadron particle therapy. This is one of the leading studies in the area of radiation
therapy planning.

Part II contains four cutting-edge studies in the field of computational anatomy.
Computational anatomy is a relatively new, yet promising, rapidly growing area
in biomedical imaging because of its essential needs. Four leading groups working
in this area contributed chapters to this part.

In the first chapter (Chap. 5) in the computational anatomy part (Part II),
Drs. Linguraru and Summers describe automated multi-organ analysis in the
abdomen in CT by using a graph cut technique. The authors are among the leading
researches in this area. They also describe CADe of tumors from the segmented
liver.
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Chapter 6 describes computerized segmentation of the liver in MRI by use of
a 3D geodesic active contour model with a level-set algorithm, as provided by
Drs. Huynh, Karademir, Oto, and Suzuki. Their study tackled this challenging topic
with cutting-edge techniques, and they accomplished highly accurate liver segmen-
tation in MRIL.

In Chap. 7, Drs. Hayashi, Chen, Miyamoto, Zhou, Hara, and Fujita present a
quantitative analysis of the vertebral anatomy in CT by using image analysis tech-
niques, including a population-based statistical analysis on volumetric bone mineral
density. Quantitative analysis of anatomy and its use as a diagnostic aid are becoming
more and more important, as diagnosis in radiology becomes quantitative.

Chapter 8 is on segmentation of the lungs in CT by use of multi-stage learning
and level-set optimization, provided by Drs. Birkbeck, Sofka, Kohlberger, Zhang,
Wetzl, Kaftan, and Zhou. The authors especially focused on lung segmentation in
difficult cases of lung pathologies by using advanced machine-learning, in partic-
ular discriminative modeling, and pattern recognition approaches.

Part III contains six studies in the area of image processing and analysis in
biomedical imaging. Image processing and analysis are fundamental, indispensable
components of biomedical imaging, including decision support systems and com-
putational anatomy. The studies presented may be used as a very important,
necessary pre-processing, processing itself, or post-processing. Six leading groups
working in this area contributed chapters to this part.

In the first chapter (Chap. 9) in the image-processing and analysis part (Part III),
Drs. Chen and Suzuki describe a method for separating bones from soft tissue in
chest radiography by means of a pixel/patch-based machine-learning technique
called anatomically specific multiple massive-training artificial neural networks
(MTANN:Ss). The author group is a pioneer in this area. This technique solves the
fundamental problem of overlapping structures with projection X-ray images.
Separation of bones from soft tissue improves the diagnostic accuracy of radiolo-
gists as well as a computer. This technique is indispensable for image analysis of
projection X-ray images.

In Chap. 10, Drs. Tasdizen, Seyedhosseini, Liu, Jones, and Jurrus describe a
method for reconstruction of circuits of individual neurons and synapses in
electron-microscopy images by using machine-learning techniques. This topic is
highly challenging, because the purpose was to reconstruct individual neural
circuits on a microscopic scale for individual neurons and synapses. The chapter
contains the pioneering work of the authors in this area.

Chapter 11 is on the quantification of brain tumors in MRI by use of image
analysis techniques, including pre-processing of images, segmentation of tumors,
and feature extraction, provided by Drs. Verma, Cowperthwaite, Burnett, and
Markey. The authors describe the quantitative analysis of brain tumors on MR
images. Their results can quickly be translated into construction of CADe and
CADx systems.

In Chap. 12, Drs. Tanaka and Sanada present a computerized analysis method
for respiratory and cardiac functions in dynamic chest radiography by use of image
analysis techniques. The authors are pioneers in developing a new modality,


http://dx.doi.org/10.1007/978-1-4614-7245-2_6
http://dx.doi.org/10.1007/978-1-4614-7245-2_7
http://dx.doi.org/10.1007/978-1-4614-7245-2_8
http://dx.doi.org/10.1007/978-1-4614-7245-2_9
http://dx.doi.org/10.1007/978-1-4614-7245-2_10
http://dx.doi.org/10.1007/978-1-4614-7245-2_11
http://dx.doi.org/10.1007/978-1-4614-7245-2_12

X Preface

a dynamic chest radiography system, and its image analysis. Unlike ordinary chest
radiography, dynamic chest radiography can acquire dynamic information on
the lungs and heart. The authors successfully extracted respiratory and cardiac
functions from the images.

Chapter 13 describes a novel method for adaptive noise reduction and edge
enhancement in MRI and PET by use of independent component analysis, provided
by Drs. Han and Chen. Noise reduction and edge enhancement are very important
fundamental problems in biomedical imaging. The authors tackled these problems
by using a novel approach, independent component analysis.

In Chap. 14, Drs. Ishida, Yamamoto, and Okura describe advanced subtraction
techniques for CT and digital subtraction angiography (DSA) and CADe of lung
nodules in CT. The authors used subtraction in useful ways to improve the accuracy
and efficiency in reading CT and DSA images. They also describe a CADe system
for detection of lung nodules in CT which they developed.

In summary, this book provides the first comprehensive overview of state-of-the-
art computational intelligence research and technologies in medical decision-
making based on biomedical images. It covers major technical advancements and
research findings in the field. Leading researchers contributed chapters in which
they describe recent developments and findings in their cutting-edge studies.
In these studies, they developed new computational intelligence technologies to
solve specific problems in biomedical imaging. Thus, readers can learn and gain
knowledge from the book on recent computational intelligence in biomedical
imaging. Readers will learn that the most advanced computational intelligence
technologies and studies have reached a practical level, and that they are becoming
available in clinical practice in hospitals. The target audience of this book includes
graduate and college students in engineering and applied-science schools, medical
students, engineers in medical companies, professors in engineering and medical
schools, researchers in industry, academia, and health science, medical doctors such
as radiologists, cardiologists, and surgeons, and healthcare professionals such as
radiologic technologists and medical physicists. Professors may find this book
useful for their classes. Students can use this book for learning about state-of-the-
art research in the field of computational intelligence in biomedical imaging.
Engineers can refer to the book during their development of new products.
Researchers can use the book for their work and cite it in their publications. Medical
doctors, medical physicists, and other healthcare professionals can use the book to
learn about state-of-the-art studies on computational intelligence in biomedical
imaging. Therefore, it is expected that researchers, professors, students, and other
professionals will gain valuable knowledge from the book, use it as a reference, and
expand the current state-of-the art technologies. I hope that this book will inspire
readers and help to advance the field of computational intelligence in biomedical
imaging.

Chicago, IL, USA Kenji Suzuki
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Chapter 1
Brain Disease Classification and Progression
Using Machine Learning Techniques

Bo Cheng, Chong-Yaw Wee, Manhua Liu, Daogiang Zhang,
and Dinggang Shen

Abstract In the past two decades, many machine learning techniques have been
applied to the detection of neurologic or neuropsychiatric disorders such as
Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment
(MCI), based on different modalities of biomarkers including structural magnetic
resonance imaging (MRI), fluorodeoxyglucose positron emission tomography
(FDG-PET), and cerebrospinal fluid (CSF), etc. This chapter presents some latest
developments in application of machine learning tools to AD and MCI diagnosis
and progression. We divide our discussions into two parts, pattern classification and
pattern regression. We will discuss how the cortical morphological change patterns
and the ensemble sparse classifiers can be used for pattern classification and then
discuss how the multi-modal multi-task learning (M3T) and the semi-supervised
multi-modal relevance vector regression can be applied to pattern regression.
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Background

Alzheimer’s disease (AD) is the most common form of dementia diagnosed in
people over 65 years of age. It is reported that there are 26.6 million AD sufferers
worldwide, and 1 in 85 people will be affected by 2050 [1]. This becomes worse as
life expectancy increases. With the aging of the world population, AD has become a
serious problem and a huge burden to the healthcare system, especially in the
developed countries. Recognizing this urgent need for slowing down or completely
preventing the occurrence of a worldwide healthcare crisis, effort has been under
way to administer and to develop effective pharmacological and behavioral inter-
ventions for delaying the onset and progression of the disease. Thus, accurate
diagnosis of AD and progression of its early stage, i.e., mild cognitive impairment
(MCD), is critical for timely therapy and possible delay of the disease.

A significant body of literature [2—4] suggests that pathological manifestation of
AD begin many years before it can be diagnosed using cognitive tests. At the stage
where symptoms can be observed, significant neurodegeneration has already
occurred. Studies suggest that individuals with MCI tend to progress to probable
AD at an annual rate of 10—15 % [5], compared with healthy controls who develop
dementia at a rate of 1-2 % [6]. Compared with AD, MCI is more difficult to
diagnose due to the subtlety of cognitive impairment, especially in high functioning
individuals who are able to maintain a positive public or professional profile
without showing obvious cognitive impairment.

Over the past decade, many machine learning and pattern classification methods
have been used for early diagnosis of AD and MCI based on different modalities of
biomarkers, e.g., the structural brain atrophy measured by magnetic resonance
imaging (MRI) [7-10], metabolic alterations in the brain measured by fluorodeox-
yglucose positron emission tomography (FDG-PET) [11, 12], and pathological
amyloid depositions measured through cerebrospinal fluid (CSF) [8, 13-15], etc.
Many existing methods use the structural MRI brain images for classification
between AD/MCI patients and normal controls [16—18]. Neuroimaging measure-
ments that are used include: regional brain volumes [19, 20], cortical thickness
[21-23], and hippocampal volume and shape [24, 25]. Another important imaging
modality for AD/MCI detection is FDG-PET [19]. With FDG-PET, some recent
studies have reported reduction of glucose metabolism in the parietal, posterior
cingulate, and temporal brain regions of AD patients [26]. Besides neuroimaging
techniques, biological or genetic biomarkers are effective alternatives for
AD/MACIT diagnosis. Researchers have found that (1) the increase of CSF total
tau (z-tau) and tau hyperphosphorylated at threonine 181 (p-tau) are related to
neurofibrillary tangle, (2) the decrease of amyloid f (Apf4,) indicates amyloid
plaque deposit, and (3) the presence of the apolipoprotein E (APOE) €4 allele can
predict cognitive decline or conversion to AD [8].

In addition to classification, several recent works begin to estimate continuous
clinical variables from brain images by using pattern regression methods
[27-31]. In all these methods, the classification or regression models are learned
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from the training subjects to predict the disease categories or stages on the test
subjects. In the following, we will discuss AD or MCI diagnosis and progression
from two aspects, i.e., pattern classification and pattern regression.

AD/MCI Diagnosis Using Pattern Classification Approaches

Advanced statistical pattern classification techniques have been actively applied to
map neurodegenerative patterns during the early stage of the disease where only
very mild symptoms are evident [17, 32-34]. In addition to determining group
differences, pattern classification methods can be trained to identify individuals
who are at risk for AD [17, 33, 35-38]. A recent study demonstrated that classifi-
cation methods are capable of identifying AD patients via their MRI scans with
accuracy comparable to experienced neuroradiologists [35].

Machine learning techniques are often used to design an optimal classifier to
classify the test samples. So far, various classification models have been used for
classification of different patterns between AD and normal controls. Among them,
support vector machine (SVM) may be the most-widely used classifier, because of
its high performance for classification of high-dimensional data [35, 39-42]. SVM
is a supervised learning method that searches for the optimal margin hyperplane to
maximally separate different groups. On the other hand, to enhance the robustness
of classification to noise, sparse representation technique, which can be regarded as
one of the recent major achievements in pattern classification, has been proposed
and successfully applied to various classification problems, e.g., face recognition
[43-45]. In sparse representation-based classification, the input test sample is coded
as a sparse linear combination of the training samples across all classes via L;-norm
minimization, and then it evaluates which class of training samples could produce
the minimum reconstruction error of the input test sample with the sparse coding
coefficients. However, the discriminative features from neuroimaging data could lie
in multiple low-dimensional subspaces of a high-dimensional feature space, which
makes it difficult to build a single global classifier with high classification accuracy
and robustness to noise. To this end, the ensemble learning methods are generally
used to further improve the classification performance.

AD/MCI Progression Using Pattern Regression Approaches

Rather than predicting categorical variables as in classification, some recent studies
begin to estimate the continuous clinical variables based on the cognitive tests from
brain images [27-31]. Efforts have also been undertaken to develop regression
techniques for relating clinical scores to imaging data [28, 46, 47], facilitating
continuous monitoring of AD progression. This kind of research is important
because it can help evaluate the stage of AD pathology and predict future
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progression. Different from classification that classifies a subject into binary or
multiple categories, regression needs to estimate continuous values and are thus
more challenging. In the literature, a number of regression methods have been used
for estimating clinical variables based on neuroimaging data. For example, linear
regression models were used to estimate the 1-year mini-mental state examination
(MMSE) changes from structural MR brain images [28, 29]. High-dimensional
kernel-based regression method, i.e., relevance vector machine (RVM), was also
used to estimate clinical variables, including MMSE and Alzheimer’s disease
assessment scale-cognitive subscale (ADAS-Cog), from structural MR brain
images [27, 30, 31]. Besides clinical variables, regression methods have also been
used for estimating age of individual subject from MR brain images [48, 49].

In the practical diagnosis of AD, multiple clinical variables are generally
acquired, e.g., MMSE and ADAS-Cog. Specifically, MMSE is used to examine
the orientation to time and place, the immediate and delayed recall of three words,
the attention and calculations, language, and visuoconstructional functions [50],
while ADAS-Cog is a global measure encompassing the core symptoms of AD
[51]. It is known that there exist inherent correlations among multiple clinical
variables of a subject, since the underlying pathology is the same [30, 31]. However,
most existing regression methods model different clinical variables separately and
using supervised learning techniques, without considering their inherent correla-
tions and using the unlabeled subject information that may be helpful for robust and
accurate estimation of clinical variables from brain images. On the other hand,
although multi-modal data are often acquired for AD diagnosis, e.g., MRI, PET,
and CSF biomarkers, nearly all existing regression methods developed for estima-
tion of clinical variables were based only on one imaging modality, i.e., mostly on
the structural MRI.

The rest of this chapter is organized as follows. In section “Pattern Classifica-
tion,” we first study pattern classification methods for AD/MCI diagnosis and
prognosis. Specifically, we will employ gray matter cortical thickness as morpho-
logical data and further use sparse representation to construct ensemble classifier
for AD/MCI classification. Then, in section “Pattern Regression,” we study pattern
regression methods for AD/MCI progression, which includes multi-modal multi-
task learning (M3T) and semi-supervised multi-modal relevance vector regression
(SMRVR). In section “Results,” we present experimental results on the
ADNI dataset to validate the efficacy of all proposed methods. Finally, in section
“Summary,” we conclude this chapter.

Pattern Classification

In this section, we will discuss the pattern classification techniques for AD/MCI
diagnosis and prognosis using the cortical morphological change patterns and also
the ensemble sparse classification methods.
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Medial View Lateral View

Fig. 1.1 Desikan—Killiany cortical atlas used for brain space parcellation. The medial and lateral
views of the atlas are obtained from http://web.mit.edu/mwaskom/pyroi/freesurfer_ref.html

Classification Using Cortical Morphological Change Patterns

Cortical thickness estimation performed in vivo via MR imaging is an important
technique for the diagnosis and understanding of the progression of neurodegener-
ative diseases, such as AD. Gray matter cortical thickness can be utilized as
morphological data to address the AD/MCI classification problem via a less
explored paradigm: Is the morphological changes in different cortical areas corre-
lated, especially in relation to pathological attacks, such as AD? Correlative
morphological information can be extracted from structural MRI to provide a
new type of features for AD and MCI classification. ROI-based morphological
information, i.e., gray matter (GM) and white matter (WM) volumes, and regional
mean cortical thickness, is also utilized to provide extra information for better
characterization of anatomical changes associated with AD. The correlative and
ROI-based morphological features are integrated via a multi-kernel SVM to further
improve classification capability.

Two types of features are extracted from the MR volume of every subject based
on the Desikan—Killiany cortical atlas [52], which contains 68 gyral-based ROIs,
34 for each hemisphere. The first feature type is the ROI-based morphological
features which contain the regional mean cortical thickness, cerebral cortical GM,
and cortical associated WM volumes, while the second feature type is the correl-
ative features which are obtained by constructing a similarity map signifying the
relative mean cortical thickness between pairs of ROIs. The Desikan—Killiany
cortical atlas is provided in Fig. 1.1.

The ROI-based morphological features, i.e., regional mean cortical thickness,
cerebral cortical GM, and cortical associated WM volumes, are extracted in an
automated manner using atlas-based FreeSurfer software suite (http://surfer.nmr.
mgh.harvard.edu/Version 4.5.0). Then, the regional mean cortical thickness fea-
tures, after normalized by their respective standard deviation, are combined with
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the regional cortical volumetric information to better describe morphological pat-
tern of the brain. We utilize the same ROIs defined in Desikan—Killiany cortical
atlas to extract the cerebral cortical GM and cortical associated WM volumes. We
normalize the regional volumes of each subject by their respective intracranium
volume (ICV) value to provide a more appropriate volumetric representation.

It is well known that AD/MCI and similar dementias exhibit subtle, spatially and
temporally diffuse pathology, where the brain is damaged in a large-scale, highly
connected network, rather than in one single isolated region [53, 54]. In view of
this, we design an interregional description, which might be more sensitive in
conveying the pathological information for accurate diagnosis of neurological
diseases. Hence, we propose to use correlative derived from cortical thickness
information between pairs of ROIs for AD/MCI classification. By using the
Desikan—Killiany cortical atlas, a 68 x 68 matrix map is constructed with every
element representing the similarity of regional mean cortical thicknesses between a
pair of ROIs. The similarity map is symmetric with ones along its diagonal.

Specifically, for the i-th and j-th ROIs, the dissimilarity of the cortical
thicknesses is defined as [76]

d(i,j) = [t(i) — ()]’ (1.1)

where #(i) and #(j) denote the regional mean cortical thickness of the i-th and
Jj-th ROIs, respectively. Then, the similarity between the i-th and j-th ROIs is
computed as

s(i,j) = exp (— d(i’j)> (1.2)
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where ¢ = \/o; + 0; with ¢; and o; denoting the standard deviation of regional
cortical thickness of the i-th and j-th ROIs. This new feature type provides the
relative morphological changes across different encephalic regions, instead of
morphological changes in the isolated regions as used in the conventional methods.
It is worth noting that the dissimilarity measure (1.1) and the similarity measure
(1.2) can be replaced by other functions for similarity map construction. Due to
symmetry, only the upper (or lower) triangular of the similarity map is used. For
each subject, all similarity values of the upper triangular part of the similarity map
are concatenated to form a long feature vector with 2,278 elements (N x (N — 1)/2,
with N = 68).

Due to high dimensionality of the correlative morphological features, we utilize
a hybrid feature selection method, a combination of filter-based and wrapper-based
approaches, to select the most relevant features for AD/MCI classification. Two
filter-based approaches are initially used to reduce the number of features. In the
first filter-based approach, only those features with their p-values smaller than the
predefined threshold, measured via between-group #-test, will be retained for
subsequent feature selection. Despite the reduction in dimensionality, the features
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retained by this simple approach may still inevitably be inter-correlated. Therefore,
another filter-based approach, called minimum redundancy and maximum rele-
vance (mRMR) [55, 56], is employed to further reduce the feature dimensionality.
The mRMR model provides a balance between two aspects of feature selection,
i.e., efficiency and broadness. Efficiency ensures that characteristics can be
represented with a minimal number of features without significant reduction in
prediction performance. Broadness ensures that the selected feature subset can be
the maximally representative of original space covered by the entire dataset.

SVM recursive feature elimination (SVM-RFE) [57, 58] is finally utilized to
further reduce the number of selected features by selecting a subset of features that
are most favorable to AD/MCI classification. The goal of SVM-RFE is to find a
subset of features that optimizes the performance of the SVM classifier. The basic
principle of SVM-RFE is to ensure that the removal of a particular feature will
make the classification error smallest. SVM with linear kernel is utilized to evaluate
the discriminative power of the selected features. It is noteworthy that the hybrid
feature selection is performed separately on each feature type (i.e., correlative and
ROI-based features) to obtain an individual optimal subset for each feature type.

To classify a new test subject, the ROI-based features are firstly extracted from
the subject’s MR volumes. Then, the correlative features are constructed from the
regional mean cortical thickness. Individual kernel matrices are constructed for
each feature type based on the optimal features selected in the training process.
These individual kernel matrices are then integrated to form a mixed-kernel matrix
that will act as the input to the previously trained SVM classifier to determine the
class where the new test subject belongs to. Specifically, in every experiment, the
data is randomly divided into two sets, one for training set and one for testing set,
with similar number of subjects for each class in each set. The experiment was
repeated for 20 times to evaluate the performance of all compared methods by
determining their mean classification accuracy, area under receiver operating
characteristic (ROC) curve, sensitivity, and specificity. The average classification
performance estimated using this approach tends to be more conservative than the
traditional leave-one-out approach. It also ensures that the trained SVM models are
validated with independent test sets for more precise estimation on how accurately
they will perform in practice.

Ensemble Sparse Classification of Structural MR Images

Sparse representation has been successfully used in various applications where the
original signal needs to be reconstructed as accurately as possible, such as
denoising [59], image inpainting [60], and coding [61]. Recently, a sparse
representation-based classifier (SRC) was proposed to harness the sparsity for
discrimination [43]. The basic idea of SRC is that the test data is considered as a
linear composition of the training data belonging to the same category if sufficient
training samples are available for each class. In our previous work [62], a random
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Fig. 1.2 The framework of the random patch-based subspace ensemble classification method

patch-based subspace ensemble classification framework was proposed to combine
multiple weak classifiers built with the sparse representation-based classification
method (denoted as RPSE_SRC). The proposed ensemble sparse classification
framework is shown graphically in Fig. 1.2. It consists of three main steps:
(1) patch extraction and random patch sampling; (2) design of individual weak
classifier using SRC; (3) ensemble of multiple weak classifiers. We will detail each
step in the rest of this section.

Although the proposed classification framework makes no assumption on a
specific neuroimaging modality, for demonstrating its performance, the
T1-weighted MR Imaging data are used in this work. Specifically, the MR brain
images are skull-stripped and cerebellum-removed after correction of intensity
inhomogeneity using nonparametric nonuniform intensity normalization
(N3) algorithm [63]. Then, each brain image is segmented into three kinds of tissue
volumes, e.g., GM, WM, and CSF volumes. All three tissue volumes will be
spatially normalized onto a standard space by a mass-preserving deformable
warping algorithm proposed in [64]. The warped mass-preserving tissue volumes
are also called as the tissue density maps below. These spatially normalized tissue
density maps are used as the imaging features for classification.

Patch Extraction

For simplicity, we uniformly divide the tissue density maps into patches of fixed
size without overlapping. For accurate classification, the noisy voxels should be
first excluded from the feature subspaces. On the other hand, the sampled subspaces
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for the individual classifiers should be as diverse as possible to give complementary
information for effective ensemble. To balance the trade-off between accuracy and
diversity, we perform the simple #-test on each voxel of the whole brain and select
the relevant voxels with the p-value smaller than 0.05. The patch extraction is
carried out based on these preselected relevant voxels. The patch pool for random
sampling is composed of the patches in each of which more than 50 % voxels are
the preselected relevant voxels. We randomly select a subset of patches from the
patch pool and all the preselected relevant voxels contained in the sampled patches
are concatenated into a feature vector for classification. Each random sampling
defines a feature subspace for one weak classifier.

Sparse Representation-Based Classifier

After patch extraction, we construct an independent weak classifier for each
randomly sampled subspace, using SRC method. SRC first encodes the test sample
as a sparse linear combination of the training samples by L;-norm minimization and
then performs classification by evaluating which class produces the minimum
reconstruction error with the sparse coefficients. Unless specially noted, all feature
vectors are the column vectors and || - ||, represents the standard Euclidean norm,
while || - ||; represents the standard L; norm. Suppose that there are N training

samples represented by X = [Xl X ,XC} € R™*N belonging to C classes,

where N =N, + - N;+ --- Ncand X' = [xi...,x’ ...,xf\,,}e RN consists

of N, training samples of the /-th class with the i-th feature vector x}. In this study
C = 2, but the proposed framework allows to include more classes such as MCI
subjects. The SRC model can be summarized as [43]

1. Input: A matrix of training data X = [Xl LLX XC] e RYN for C classes
with each column being a feature vector, a test sample represented by a column
vector y € R, and an optional error tolerance & > 0.

2. Normalize each column of X and the test sample y to have unit L, norm.

3. Compute the decomposition coefficient vector & by solving the L;-norm
minimization problem by sparse coding

a = arg ming||a||,, subjectto | Xa—y|,<e (1.3)

4. For each test sample y, compute the residual (i.e., the sparse reconstruction error)
with the sparse coefficients &' associated with each class /

r(y) = || X'a' - y| fori=1,....C (1.4)

5. Output: The class label for the test sample y is assigned as the class with the
minimum residual over all classes
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Label (y) = arg min; r(p) (L.5)

The L;-norm minimization in Eq. (1.3) can be efficiently solved by using some
L,-regularized sparse coding methods such as those proposed in [65-68].
We can see that the classification of the test sample y depends on the residuals.
There are two important terms in the above classification model. One is to
characterize the signal sparsity by the L;-norm constraint ||a||;. Another one is
to characterize the signal fidelity by the L,-norm term || Xa — y||» < ¢ especially
when the test sample y is noisy. Ideally, the sparse coefficients of |||, are
associated with the training samples from a single class so that the test sample
can be easily assigned to that class. However, noise and modeling error may also
lead to small nonzero sparse coefficients associated with multiple classes. Instead
of classifying test sample based on the sparse coefficients, the classification made
by Eq. (1.5) is based on how well the sparse coefficients associated with the
training data in each class can reconstruct the test sample, which can better
harness the subspace structure of each class. For each randomly sampled sub-
space, we construct a dictionary composed of all training samples to build an SRC.
Finally, we get multiple SRCs based on different feature subspaces.

Ensemble of Weak Classifiers

The classifier ensemble is usually considered to be more accurate and robust than
single classifier. Majority voting is one of the widely used methods for fusion of
multiple classifiers. However, this method puts equal weight on the outputs of all
weak classifiers for ensemble. In fact, the classifiers might have different confi-
dences for a test sample. From Eq. (1.5), we know the classification of a test
sample is performed in terms of the residuals with respective to the C classes,
which also measures the similarity between the test sample and the training
samples of each class. Smaller residual also indicates that the test sample is better
approximated by the sparse representation of the training samples belonging to
the corresponding class. We combine multiple weak classifiers by using the
residuals instead of the class label output. In this way, if the residuals of a
classifier corresponding to the C classes are close to each other, the classifier
will have low contribution to the final ensemble, and vice versa. Suppose that
we have K weak classifiers for final ensemble. Defining rf(y) as the residual of
the test sample y obtained from the k-th weak classifier for the /-th class, the
empirical average of the /-th residuals over the K classifiers can be calculated as
follows
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S )

Efy) = &= (1.6)

Finally, the class label of test sample y can be assigned to the class with the
minimum average residual

Label(y) = arg min; E;(p) (1.7
Pattern Regression

In this section, we will discuss the pattern regression techniques for AD/MCI
diagnosis and prognosis using M3T and SMRVR methods.

Multi-Modal Multi-Task Learning

A new learning method, namely M3T learning [69], is presented here to simulta-
neously learn multiple tasks from multi-modal data. It is worth noting that M3T is a
general learning framework, and here we implement it through two successive
major steps, i.e., (1) multi-task feature selection (MTFS) and (2) multi-modal SVM
(for both regression and classification).

Multi-Task Feature Selection

For imaging modalities such as MRI and PET, even after feature extraction, the
number of features (extracted from brain regions) may be still large. Besides, not all
features are relevant to the disease under study. So, feature selection is commonly
used for dimensionality reduction, as well as for removal of irrelevant features.
Different from the conventional single-task feature selection, the MTFS simulta-
neously selects a common feature subset relevant to all tasks. This point is espe-
cially important for diagnosis of neurological diseases, since multiple regression/
classification variables are essentially determined by the same underlying pathol-
ogy, i.e., the diseased brain regions. Also, simultaneously performing feature
selection for multiple regression/classification variables is very helpful to suppress
noises in the individual variables.

Denote X™ = [X(lm>, .. .,Xgm), .. .,xl(\;")]T as the training data matrix on the m-th
) — 40 0 ()T
=1, A

sl ey

modality from N training samples, and y as the response
vector on the j-th task from the same N training samples. Following the method
proposed in [70], linear models are used to model the MTES as below
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. T
70 (x<’”>,v(.’">) - (x<'”>) v =1, Tim=1,....M (1.8)

where V;m) is the weight vector for the j-th task on the m-th modality, and x is the

m-th modal data of a certain subject. The weight vectors for all T tasks form a

weight matrix V™ = [V(1m>, ...,V;"T), ...,V(Tm>], which can be optimized by the

following objective function

LGS 0 () )\, e
min 533 (7 =1 (") )+ AV,
j=1 i=1 ]

o (1.9)

I, - .,
=52l = X YV
j=1 d=1

where V<’")\d denotes the d-th row of VY, D is the dimension of the m-th modal
data, and 4 is the regularization coefficient controlling the relative contributions of
the two terms. Note that 4 also controls the “sparsity” of the linear models, with the
high value corresponding to more sparse models (i.e., more values in V' are zero).
It is easy to know that the above equation reduces to the standard /;-norm regular-
ized optimization problem in Lasso [71] when there is only one task. In our case,
this is a multi-task learning for the given m-th modal data.

The key point of the above objective function of MTFS is the use of /,-norm for
V('”)|d, which forces the weights corresponding to the d-th feature (of the m-th
modal data) across multiple tasks to be grouped together and tends to select features
based on the strength of T tasks jointly. Note that because of the characteristic of
“group sparsity,” the solution of MTES results in a weight matrix V" whose
elements in some rows are all zeros. For feature selection, we just keep those
features with nonzero weights. At present, there are many algorithms developed
to solve MTES; here, we adopt the SLEP toolbox [72], which has been shown very
effective on many datasets.

Multi-Modal SVM

In our previous work [42], the multi-modal support vector classification (SVC) has
been developed for multi-modal classification of AD and MCI. Following [41], in
this paper, we derive the corresponding multi-modal support vector regression
(SVR) algorithm as below. Assume that we have N training subjects with the
corresponding target output {z;€R, i = 1, ..., N} and each subject has M modalities
of data with the features selected by the above proposed method and denoted as

x; = {x’gl), - x’ﬁ’”), e X/EM)}

problem

. Multi-modal SVR solves the following primal
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e Y2 NS o vy

m=1

s.t. (1) Zmzl B ((w<m>) e (X/,-m ) + b) —z<e+&; (1.10)
@ 2= (w) 6 () 40) <evi

(3) &.&>0,i=1,...,N.

where w, ™, and f3,, > 0 denote the normal vector of hyperplane, the kernel-
induced mapping function, and the combining weight on the m-th modality, respec-
tively. Here, we constrain ) ,, f,, = 1. The parameter b is the offset. Note that
e-insensitive loss function is used in the above objective function, and £ and &* are
the two sets of slack variables.

Similar to the conventional SVR, the dual form of the multi-modal SVR can be
represented as below

1 X * * il m m m
pax 32 ) (0~ ) Dk (7))
N N
—ey (@ ta) + ) (o —a)z (L.11)
i=1 i=1
N

s.t.Z(a,-—a;‘) =0 and O0<a,a <C,i=1,...,N.
i=1

where K"™(x’ Em), X’;m>) = [¢p" (X Em))]T(p(m)(x’;m)) is the kernel function for the two
training samples on the m-th modality.

For a test sample with the selected features x = {x
denote K"™(x’ fm), x) = [¢p™(x' fm))]T(ﬁ(’")(x(’”)) as the kernel between each train-
ing sample x’; and the test sample on the m-th modality. Then, the regression
function takes the following form

:ﬁ: (af — Zﬁm K ( o x '">) +b (1.12)

i=1

O XM XM we

Similar to the multi-modal SVC, the multi-modal SVR can also be solved with
the conventional SVR, e.g., through the LIBSVM toolbox, if we define the mixed

kernel k(x';, X';) =3 =14 ﬂmk(m)(x’fm), X/ ,(»m)) between multi-modal training sam-
ples x’; and X';, and k(x';, X) =Y wm=1Mp k(x! l(m), x") between multi-modal
training sample x’; and test sample x. Here, f,s are the nonnegative weight
parameters used to balance the contributions of different modalities, and their
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values are optimized through a coarse-grid search by cross validation on the
training samples.

After obtaining the common feature subset for all different tasks by MTES as
described above, we use multi-modal SVM, including multi-modal SVC and multi-
modal SVR, to train the final SVC and regression models, respectively. Here, we
train a model for each corresponding variable (task). Specifically, we train SVR
models corresponding to the regression variables, and SVC models corresponding
to the classification variable, respectively. It is worth noting that since we use the
common subset of features (learned by MTFES during the feature selection stage) to
train both regression and classification models, our models are actually performing
the M3T.

Semi-Supervised Multi-modal Relevance Vector Regression

In this section, we will first extend the standard relevance vector regression (RVR)
method to the multi-modal RVR (MRVR) and then introduce our proposed
SMRVR method.

The main idea of RVR is summarized as follows. Specifically, RVR is a sparse
kernel method formulated in a Bayesian framework [73]. Given a training set with
its corresponding target values, such as {xn,tn}i)’: ;» RVR aims to find out the
relationship between the input feature vector x and its corresponding target value ¢

t=f(x,w)+e¢ (1.13)

where ¢ is the measurement noise (assumed independent and following a zero-mean
Gaussian distribution, & ~ N(O,zrz), and f(x,w) is a linear combination of basic
functions k(x,x,) with the following form

N
£l w) = wak(x, x,) + wo (1.14)

n=1
where w = (wo,wy, ...,wy)  isa weight vector. According to [73], we can obtain a

sparse kernel regression model based on the weight vector w. Now we can extend
RVR to MRVR for multi-modal regression by defining a new integrated kernel
function for comparison of two multi-modal data x and x,, as below

k() = > ek (x(’">,x£,"’)) (1.15)

where k" denotes the kernel matrix over the m-th modality, similar to the defini-
tion given above for the single modality case. This new integrated multiple-kernel
can be expediently embedded into the conventional single-kernel RVR, and thus
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Fig. 1.3 The flowchart of selecting the most informative MCI subject

solved by the programs developed for the conventional single-kernel RVR. For c,,,
we constrain ¥ ¥_ ¢, = 1 and adopt a coarse-grid search through cross-validation
on the training samples to find their optimal values.

The algorithmic procedure of SMRVR is detailed as below:

Step I: Initialization of parameters (RVR kernel functions type, the nearest
neighbors k used in KNN regression method, and the maximum number of
iterations T);

Step 2: For each modality data use k-nearest neighbor (KNN) regression method
and current training set L of labeled sample [AD, Health controls (HC)] to
estimate clinical scores of unlabeled MCI subjects U; then average all estimated
clinical scores (using all modality data) as the final clinical scores of unlabeled
MCT subjects.

Step 3: For unlabeled MCI sample set U, {(u;,t), j = 1, ..., u} denote an unlabeled
sample set with its corresponding target values. As shown in Fig. 1.3, we seek
the most informative MCI subject and join it into L. Specifically, for each
sample {(u;t),j =1, ..., u} in unlabeled MCI samples set U, respectively,
plus current training set L, and train the MRVR with L as testing set. After
that we compute the value of square root of mean square error (RMSE) for each
sample u;. Finally, a sample with the top informative (i.e., minimum RMSE
value) in U was selected and added into L, and further deleted from U.

Step 4: Go to Step 2 for running the next iteration;

Step 5: After reaching the maximum iterations T, we can obtain the final MCI
subsample set U’, and use L U U’ as training set for training new MRVR.
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Results

In this section, we will evaluate both machine learning-based classification and
regression techniques (discussed above) for AD/MCI diagnosis and progression
using single modality or multi-modality data.

Pattern Classification

Classification Using Cortical Morphological Change Patterns

Data used in the study were obtained from the Alzheimer’s disease neuroimaging
initiative (ADNI) database (http://adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and nonprofit organizations, as a $60 million,
S5-year public—private partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials. Readers are
referred to www.adni-info.org for more information.

Five hundred and ninety-eight subjects who belong to one of the AD, MCI, or
HC groups were analyzed in this study. These subjects were selected randomly for a
ratio of AD vs. MCI vs. HC roughly as 1:1:1. All subjects received the baseline
clinical/cognitive examinations including 1.5T structural MRI scan and were
reevaluated at specified intervals (6 or 12 months). The baseline scans were used
as the input data in our experiments. Table 1.1 shows the demographic information
of the participants used in this study.

Table 1.1 Demographic information of the participants used in this study

Diagnosis group

Variables HC MCI AD
Number of subjects (N) 200 200 198
Gender (M/F) 103/97 143/57 103/95
Age (mean + SD) 75.8 £5.0 75.1 £ 7.1 75.7 £ 7.7
Education years (mean £ SD) 15.7 £ 3.6 155 +£ 39 13.8 £ 4.8
Cognitive scores

ADAS-Cog (mean + SD) 6.1 £ 3.0 113+ 4.4 173 £ 8.0
MMSE (mean + SD) 28.6 + 3.8 263 + 4.1 21.8 £ 6.1
CDR (mean + SD) 0+ 0.1 04 +0.2 0.6 +£ 0.5

HC health controls, sMCI stable MCI, pMCI progressive MCI, AD Alzheimer’s disease
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Tabl.e 1.2. Mean AD vs. HC
classification performance

between integrated, Features ACC p SEN SPE AUC

correlative, and ROI-based Thickness 0.845 <0.0001 0.828 0.865 0.918

features over 20 repetitions Volume 0.870 0.0002 0852 0.897 0.936
Correlative  0.885 0.0002 0.846 0917  0.954
Integrated 0.925 — 0.904 0.943 0.974
MCI vs. HC
Feature ACC p SEN SPE AUC
Thickness 0.749 <0.0001 0.733 0.764 0.830
Volume 0.770  <0.0001  0.746  0.793  0.853

Correlative 0.790 0.0001 0.757 0.823 0.886
Integrated 0.838 - 0.836 0.840 0.923
Thickness regional mean cortical thickness, Volume regional cor-
tical volumes, Correlative correlative features, Integrated inte-
gration of the correlative and ROI-based features, ACC accuracy,
SEN sensitivity, SPE specificity, AUC area under the ROC curve

The discriminative powers of the integrated and correlative morphological
features were compared with three ROI-based features, i.e., regional mean cortical
thickness and regional cortical volumes. The performance of the multi-kernel SVM
using the integrated features was compared with the single-kernel SVMs using
other feature types. For each comparison, performance of every compared method
was validated through two different classification tasks: AD vs. HC and MCI
vs. HC. The classification performance is summarized in Table 1.2.

It is clear that the regional mean cortical thickness performed the worst among
all compared feature types in AD classification. However, when the correlative
features were used, classification performance improved significantly. The pro-
posed integrated morphological approach shows significantly better performance
than all other feature types in all compared statistical measures. Promising classi-
fication results were achieved using the integrated features: 92.4 % (AUC = 0.974)
and 83.8 % (AUC = 0.923) for AD and MCI classifications, respectively. High
AUC value achieved indicates excellent diagnostic power and generalizability of
the proposed framework to unseen dataset. In addition, our framework substantially
improves the classification performance, particularly the sensitivity rate, compared
to the ROI-based morphological feature-based classifiers. These results indicate
that the proposed framework can be used to provide additional diagnostic informa-
tion for early treatment of the disease. The provided p-values indicate how signif-
icant the integrated morphological features performed better than the other feature
types in terms of classification accuracy for 20 repetitions.
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Table 1.3 Demographic characteristics of the studied subjects from ADNI database (denoted as
mean =+ standard deviation)

Diagnosis Number Age Gender (M/F) MMSE
AD 198 757 £ 7.7 103/95 233 +£20
HC 229 76.0 £ 5.0 119/110 29.1 £ 1.0

AD Alzheimer’s disease, HC healthy control, MMSE mini-mental state examination

Ensemble Sparse Classification of Structural MR Images

We performed the experiments on the T1-weighted MR images of the baseline visit
obtained from the ADNI database. MRI acquisition was done according to the
ADNI acquisition protocol in [74]. The MR images from 427 ADNI subjects
including 198 AD and 229 HC are used for evaluation. Table 1.3 presents a
summary of the demographic characteristics of the studied population from the
ADNI database. The processing of MR images was performed as described above,
which included the correction of intensity inhomogeneity, skull-stripping, and
cerebellum-removing. Furthermore, each MR image was segmented into three
tissue types: GM, WM, and CSF, and was further spatially normalized into a
template space by a mass-preserving registration framework [64]. After spatial
normalization, the tissue density maps were smoothed using a Gaussian kernel to
improve signal-to-noise ratio. Since GM density maps were more related to AD
than white matter and CSF, we only used the GM density maps for classification in
the experiments. For computational efficiency, we down-sampled the GM density
maps as the classification features.

In the experiments, ten fold cross-validation is performed to evaluate the clas-
sification performance. For each time, one fold dataset is used for testing while the
other folds are used for training. The training set can be split further into training
part and validation part for parameter tuning. The final classification accuracy is the
average of the classification accuracies across all ten cross-validation folds.
In addition, we also compare the results with the SVM classifier that has been
widely used for AD classification. In the experiments, the SVM classifier is
implemented using LIBSVM toolbox [75], with a linear kernel and a default
value set for the parameter C (i.e., C = 1).

Before we evaluate the ensemble classification performance, we test the perfor-
mance using a single SRC in comparison with the SVM classifier. Both the SRC
and SVM classifiers are tested on the selected voxel-wise features. To test the
classification performances on varying number of relevant features, we perform the
t-test on each voxel of the GM density maps. Then all voxels are ranked in
ascending order according to their p-values of the z-test. Smaller p-value indicates
larger group difference for the voxel-wise feature. We select different numbers of
top ranked voxels in terms of p-values to construct feature vector as the inputs to
SRC and SVM classifiers. The number of top ranked features varies from 200
to 24,000. Figure 1.4 shows the classification accuracies with respect to different
numbers of top ranked features.
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Fig. 1.4 Classification Comparison of SVM and SRC methods for AD vs. NC classification
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As can be seen from Fig. 1.4, SVM classifier performs better than the SRC
method when the number of features is smaller than 1,500, but its performance
degrades gradually and is inferior to SRC when the number of features is further
increased beyond a certain number. In contrast, SRC can achieve better classifica-
tion performance than SVM when more features are used. Since SVM classifier
aims to maximize the discriminative power on the training data, the features with
larger p-values will provide more irrelevant or noisy information which will reduce
the discrimination capability. This explains why SVM achieves better performance
with a relatively small number of top ranked features. On the other hand, SRC is
based on combining the sparsity and reconstruction via sparse representation and
thus can achieve high robustness to noisy features due to its reconstruction property.
In general, to make the L;-norm sparse coding computationally feasible, the feature
dimensionality should be reduced to a subset of features. However, our experimen-
tal results show that SRC method continues to perform well when the feature
dimensionality increases.

Next, we tested the random patch-based subspace ensemble classification frame-
work with both SRC and SVM classifiers to construct the weak classifier.
In general, there are three important parameters that are required to determine
and affect the ensemble performance, which are, respectively, the patch size, the
sampling rate (i.e., the ratio of sampled patches to the cardinality of patch pool), and
the ensemble size (i.e., the number of weak classifiers for the final ensemble). In
practice, these three parameters (i.e., patch size, sampling rate, and ensemble size)
can be optimized in each fold with the training dataset to run the random patch-
based subspace ensemble classification algorithm. Based on our experimental
analysis, the effect of ensemble performance by the ensemble size is small if the
number of weak classifiers is larger than 15. For simplicity, the ensemble size is
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Table 1.4 Comparison of N aihods ACC SEN SPE AUC

AD classification by five

different classification COMPARE 0.811 0.788 0.829 0.877

methods SVM 0.846 0.728 0.948 0.914
SRC 0.878 0.808 0.939 0.938
RPSE_SVM 0.855 0.755 0.942 0.924
RPSE_SRC 0.908 0.863 0.948 0.949

ACC ACCuracy, SEN SENGitivity, SPE SPEcificity, AUC Area
Under the ROC curve

Fig. 1.5 ROC curves ROC for AD Classification
of five different methods ' ' :
for AD classification
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fixed to 17 in our experiments. The other two parameters are optimized with the
training dataset. Since the ensemble of different weak classifiers may produce
different classification results, the ensemble classification accuracy is computed
by averaging the accuracies of multiple independent runs (20 in our experiments).
We also run the COMPARE algorithm [39] on the same dataset for comparison, by
using its suggested parameters. Table 1.4 gives the comparison of AD classification
in five different classification methods, which are COMPARE, single SVM classi-
fier (SVM), single SRC classifier (SRC), random patch-based SVM ensemble
(RPSE_SVM), and random patch-based SRC ensemble (RPSE_SRC), respectively.
For single SVM and SRC classifiers, we report their best classification results in
Table 1.4 among those on the different numbers of features selected by z-test as
shown in Fig. 1.4. The ROC curves of these methods are shown in Fig. 1.5. We can
see that single SRC method performs better than COMPARE and both single
and ensemble SVM methods. Our method, RPSE_SRC, can further improve the
classification accuracy by ensemble of multiple weak classifiers.
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Table 1.5 Demographics of all used subjects

AD (N =45) HC (N =50) MCI-C (N =43) MCI-NC (N = 48)

Female/male 16/29 18/32 15/28 16/32

Age 754 £ 7.1 753 £5.2 75.8 6.8 747 £ 7.7
Education 149 + 34 15.6 + 3.2 16.1 £2.6 16.1 £ 3.0
MMSE (baseline) 238 + 1.9 29.0 + 1.2 26.6 £1.7 275+ 1.6
MMSE (2 years) 19.3 £ 5.6 29.0 £ 1.3 23.8 +£3.3 26.9 £ 2.6
ADAS-Cog (baseline) 18.3 £ 6.1 73 £33 129 £3.9 9.7 £4.0
ADAS-Cog (2 years) 273 +11.7 6.3 +£3.5 16.1 +6.4 112 £ 5.7

AD Alzheimer’s disease, HC healthy control, MCI mild cognitive impairment, MCI-C MCI
converter, MCI-NC MCI non-converter, MMSE mini-mental state examination, ADAS-Cog
Alzheimer’s disease assessment scale-cognitive subscale

Table 1.6 Comparison of performances of five different methods on experiment 1

Correlation coefficient Classification accuracy

Methods MMSE ADAS-Cog AD vs. HC MCI vs. HC

MRI-based 0.504 + 0.038 0.609 + 0.014 0.848 + 0.026 0.739 + 0.028
PET-based 0.658 + 0.027 0.670 + 0.018 0.845 + 0.035 0.797 + 0.023
CSF-based 0.465 + 0.019 0.474 + 0.013 0.805 + 0.022 0.536 + 0.044
CONCAT 0.658 + 0.023 0.695 £ 0.011 0.920 + 0.033 0.800 + 0.024
Proposed M3T 0.697 + 0.022 0.739 + 0.012 0.933 + 0.022 0.832 + 0.015

The reported values are the correlation coefficient (for MMSE and ADAS-Cog regression) and
accuracy (for AD vs. HC and MCI vs. HC classification), averaged on tenfold tests (with standard
deviation also reported)

Pattern Regression

Multi-Modal Multi-Task Learning

In the following experiments, 186 ADNI subjects with all corresponding
baseline MRI, PET, and CSF data are included. In particular, it contains 45 AD
patients, 91 MCI patients [including 43 MCI converters (MCI-C) and 48 MCI
non-converters (MCI-NC)], and 50 healthy controls. Table 1.5 lists the demo-
graphics of all these subjects.

Experiment 1: Estimating Clinical Stages (MMSE, ADAS-Cog,
and Class Label)

We first estimate the clinical stages, including two regression variables (MMSE and
ADAS-Cog) and one classification variable (i.e., class label with a value of “AD,”
“MCL” or “HC”), from the baseline MRI, PET, and CSF data. It is worth noting
that the original multi-class classification problem is formulated as two binary
classification problems, i.e., AD vs. HC and MCI vs. HC, as mentioned above.
Table 1.6 shows the performances of the proposed M3T method, compared with
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three methods each using individual modality, as well as the CONCAT method
(as detailed below). Specifically, in Table 1.6, MRI-, PET-, and CSF-based methods
denote the classification results using only the respective individual modality of
data. For MRI-based and PET-based methods, similarly as our M3T method, they
contain two successive steps, i.e., (1) the single-task feature selection method using
Lasso [71] and (2) the standard SVM for both regression and classification. For
CSF-based method, it uses the original three features without any further feature
selection and performs the standard SVM for both regression and classification.
For comparison, we also implement a simple concatenation method (denoted as
CONCAT) for using multi-modal data. In the CONCAT method, we first concat-
enate 93 features from MRI, 93 features from PET, and 3 features from CSF into a
189-dimensional vector, and then perform the same two steps (i.e., Lasso feature
selection and SVM regression/classification) as in MRI-, PET-, and CSF-based
methods. It is worth noting that the same experimental settings are used in all five
methods as compared in Table 1.6.

As can be seen from Table 1.6, our proposed M3T method consistently achieves
better performance than other four methods. Specifically, for estimating MMSE and
ADAS-Cog scores, our method achieves the correlation coefficients of 0.697 and
0.739, respectively, while the best performance using individual modality is only
0.658 and 0.670 (when using PET), respectively. On the other hand, for AD vs. HC
and MCI vs. HC classification, our method achieves the accuracies of 0.933 and
0.832, respectively, while the best performance using individual modality is only
0.848 (when using MRI) and 0.797 (when using PET), respectively. Table 1.6 also
indicates that our proposed M3T method consistently outperforms the CONCAT
method on each performance measure, although the latter also achieves better
performance than three MRI-, PET-, or CSF-based methods in most cases, because
of using multi-modal imaging data. However, CSF-based method always achieves
the worst performances in all tasks and is significantly inferior to MRI- and
PET-based methods in this experiment. Finally, for each group (i.e., AD, MCI or
HC), we compute its average estimated clinical scores using M3T, with respective
values of 24.8 (AD), 25.5 (MCI), and 28.1 (HC) for MMSE, and 14.9 (AD), 13.3
(MCI), and 8.3 (HC) for ADAS-Cog. These results show certain consistency with
the actual clinical scores as shown in Table 1.5.

Experiment 2: Predicting 2-Year MMSE and ADAS-Cog Changes

In this experiment, we predict the 2-year changes of MMSE and ADAS-Cog scores
and the conversion of MCI to AD, from the baseline MRI, PET, and CSF data.
Here, we have two regression tasks corresponding to the prediction of the regres-
sion variables of MMSE and ADAS-Cog changes from baseline to 2-year
follow-up, respectively, and one classification task corresponding to prediction of
the classification variable of MCI conversion to AD, i.e., MCI-C vs. MCI-NC. It is
worth noting that as in Experiment 1, only the baseline MRI, PET, and CSF data are
used for all prediction tasks. We use the same subjects as in Experiment 1, except
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Table 1.7 Comparison of performances of five different methods on experiment 2

(a) Correlation coefficient (b) MCI-C vs. MCI-NC
MMSE ADAS-Cog
Methods change change Accuracy Sensitivity Specificity

MRI-based 0.419 &+ 0.019 0.455 £+ 0.037 0.620 & 0.058 0.566 & 0.069 0.602 £ 0.056
PET-based 0.434 £ 0.027 0.401 £ 0.046 0.639 £ 0.046 0.570 £ 0.067 0.623 % 0.069
CSF-based 0.327 4+ 0.018 0.425 £+ 0.028 0.518 & 0.086 0.454 £ 0.094 0.493 £ 0.089
CONCAT 0.484 4+ 0.009 0.475 £ 0.045 0.654 &+ 0.050 0.573 &+ 0.062 0.651 & 0.064
Proposed M3T 0.511 £ 0.021 0.531 4+ 0.032 0.739 £ 0.038 0.686 £ 0.051 0.736 + 0.045
The reported values are the correlation coefficient [for regressions of MMSE and ADAS-Cog
change (a)] and accuracy, sensitivity and specificity [for MCI-C vs. MCI-NC classification (b)],
averaged on tenfold tests (with standard deviation also reported)

for 19 subjects without 2-year MMSE or ADAS-Cog scores, thus reducing to totally
167 subjects with 40 AD, 80 MCI (38 MCI-C and 42 MCI-NC), and 47 HC that are
finally used in Experiment 2. Table 1.7 shows the performance of the proposed
M3T method compared with three individual-modality based methods and also the
CONCAT method, which are the same methods as those used in Experiment 1.
Here, for MCI-C vs. MCI-NC classification, besides reporting the classification
accuracy, we also give other performance measures including sensitivity (i.e., the
proportion of MCI-C subjects correctly classified) and the specificity (i.e., the
proportion of MCI-NC subjects correctly classified).

Table 1.7 shows that, as in Experiment 1, M3T also consistently outperforms the
individual-modality based methods and the CONCAT method, on both regression
and classification tasks. Specifically, our method achieves the correlation coeffi-
cients of 0.511 and 0.531 and the accuracy of 0.739, for predicting the 2-year
changes of MMSE and ADAS-Cog scores and the MCI conversion, respectively,
while the best performance of individual-modality based methods are 0.434 (when
using PET), 0.455 (when using MRI), and 0.639 (when using PET), respectively.
In addition, the area under the ROC curve (AUC) is 0.797 for MCI-C vs. MCI-NC
classification with our M3T method, while the best AUC using the individual-
modality based method is 0.70 (when using PET) and the AUC of the CONCAT
method is 0.729. On the other hand, if comparing Table 1.7 with Table 1.6, we can
see that there is a significant decline in the corresponding performances. It implies
that predicting future MMSE and ADAS-Cog changes and the MCI conversion is
much more difficult and challenging than estimating the MMSE and ADAS scores
and the class labels.

Semi-Supervised Multi-modality Regression

The ADNI dataset is used to test our semi-supervised regression method. Only the
baseline ADNI subjects with all corresponding MRI, PET, and CSF data are
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Table 1.8 Subject AD MCI HC
information (mean =+ std) -
Number of subjects 51 99 52
Age 752 +£74 753+£70 753+52
Education 147+36 159+£29 158 +£32
MMSE 238+19 271 +17 29.0+12
ADAS-Cog 183 £60 114+44 74+£32

AD Alzheimer’s disease, HC healthy control, MCI mild cognitive
impairment, MMSE mini-mental state examination, ADAS-Cog
Alzheimer’s disease assessment scale-cognitive subscale

included, thus leading to a total of 202 subjects (including 51 AD patients, 99 MCI
patients, and 52 HC). Table 1.8 lists the demographics of these subjects. Image
pre-processing is same as literature [41].

To evaluate the performance of regression methods, we use both a square RMSE
and correlation coefficient (CORR) as performance measures. We use a tenfold
cross-validation strategy to compute the average RMSE and CORR measures. The
RVM regression learning machine is implemented using Sparse Bayesian toolbox,"
with Gauss kernel and default kernel-width. Iterations T (1 < T < 99) and the
number of nearest neighbor k (1 < k < 20) are learned based on the training
samples by leave-10-out cross validation. The weights in the MRVR are learned
based on the training samples, through a grid search using the range fromOto 1 ata
step size of 0.1. For each feature f; in the training samples, a common feature
normalization scheme was adopted, i.e., f; = (f, —]T,) /o, where f, and o; are,
respectively, the mean and standard deviation of the i-th feature across all training
samples. The estimated f; and o; will be used to normalize the corresponding
feature of each test sample.

Table 1.9 shows the performance measures (including RMSE and CORR) of our
SMRVR method, using different combinations of MRI, PET, and CSF modalities.
As we can see from Table 1.9, the combination of MRI, PET, and CSF can
consistently achieve better results than any other methods. Specifically, SM-RVR
using all three modalities can achieve an RMSE of 1.919 and a CORR of 0.801 for
MMSE scores, and an RMSE of 4.448 and a CORR of 0.782 for ADAS-Cog scores,
as shown in Fig. 1.6 which give the scatterplots of actual clinical scores vs. predicted
scores. On the other hand, Table 1.9 also indicates that the use of two modalities can
improve the regression performance, although they are inferior to the use of all
three modalities together. These results validate the advantage of multi-modal
regression over the conventional single-modal regression in estimation of clinical
scores.

Table 1.10 shows the comparison of SMRVR with supervised multi-modal rele-
vance vector regression (MRVR). It is worth noting that, for fair comparison, we
implement two versions of MRVR, i.e., one using only AD and HC subjects as

! http://www.miketipping.com/index.php?page=rvm
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Table 1.9 Regression MMSE ADAS-Cog
performance of SMRVR

with respect to different Modality RMSE CORR RMSE CORR

combination of MRI, PET MRI 2.171 0.731 5.157 0.700

and CSF modalities PET 2.461 0.618 5.041 0.706
CSF 2.449 0.600 5.617 0.641
MRI + PET 2.095 0.755 4.732 0.762
MRI + CSF 2.032 0.771 4.982 0.738
PET + CSF 2.383 0.663 4.891 0.734

MRI + PET + CSF 1.919 0.801 4.448 0.782
MMSE mini-mental state examination, ADAS-Cog Alzheimer’s
disease assessment scale-cognitive subscale, RMSE root mean
square error, CORR correlation coefficient

SMRVR (RMSE: 1.919, CORR: 0.801) " SMRVR (RMSE: 4.448, CORR: 0.782)
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Fig. 1.6 Scatterplots of actual clinical scores vs. predicted scores for MMSE (/eft) and ADAS-
Cog (right) (MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment
scale-cognitive subscale, RMSE root mean square error, CORR correlation coefficient)

Table 1.10 Comparison of regression performance of SMRVR and MRVR

MMSE ADAS-Cog
Methods RMSE CORR RMSE CORR
MRVR (51 AD + 52HC) 2.216 0.729 4.917 0.733
MRVR (51 AD + 52HC + 99MCI) 2.170 0.526 4.691 0.640
SMRVR(51 AD + 52HC + 99MCI) 1.919 0.801 4.448 0.782

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-
cognitive subscale, RMSE root mean square error, CORR correlation coefficient

training sample and another using all (AD, HC and MCI) subjects as training samples.
As can be seen from Table 1.10, SMRVR consistently outperforms MRVR (including
both versions) on each performance measure, which validates the efficacy of our
SMRVR method that uses MCI subjects only as unlabeled samples in a semi-
supervised regression framework. Also, from Table 1.10, it is interesting to note
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that MRVR using all subjects achieves slightly better performance in terms of RMSE,
but much worse performance in terms of CORR, compared with MRVR using only
AD and HC subjects. This implies that the clinical scores of MCI subjects may
contain more noise than those of AD or HC subjects.

Summary

In the past two decades, machine learning techniques have been proven to be
important for effective neurodegenerative disorders diagnosis and progression,
particularly for AD and MCI. Essentially, machine learning techniques that have
been applied for AD and MCI diagnosis and prognosis can be categorized into
classification and regression-based approaches. Some recent developments in this
area have been discussed in this chapter. Specifically, in pattern classification
approaches, we first extracted the ROI-based features (i.e., GM and WM volumes,
and regional mean cortical thickness) from the subject’s MR volumes and then
constructed the correlative features from the regional mean cortical thickness.
These ROI-based features and correlative morphological features are finally inte-
grated via a multi-kernel SVM for AD and MCI prediction. Then, a random patch-
based subspace ensemble classification method is proposed for AD and MCI
prediction. For pattern regression approaches, M3T learning can effectively esti-
mate the MMSE and ADAS-Cog scores and also the classification label in both AD
vs. HC and MCI vs. HC classifications, and it can further predict the 2-year MMSE
and ADAS-Cog changes and the classification label in MCI-C vs. MCI-NC classi-
fication. On the other hand, SMRVR is used to predict clinical scores of subjects
(including AD, HC or MCI) from both imaging and biological biomarkers,
i.e., MRI, PET, and CSF. The experimental results on the ADNI dataset show the
efficacy of all these proposed methods.
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Chapter 2
The Role of Content-Based Image Retrieval
in Mammography CAD

Issam El Naqa and Yongyi Yang

Abstract There has been a tremendous increase in the amount of stored medical
images, making manual search infeasible for a busy radiology clinic. Content-based
image retrieval (CBIR) offers a computerized solution that aims to query images for
diagnostic information based on the content or extracted features of the images
rather than their textual annotation. Potentially, this approach would provide the
radiologist with archived examples that are relevant to the case being evaluated.
In this chapter, we review recent advances in CBIR technology and discuss its
expanding role in medical imaging and its particular application to mammography.
We provide two examples based on our experience using CBIR in mammography;
one example is to model perceptual similarity in CBIR and the other example is to
apply CBIR to achieve case-adaptive classification in computer-aided diagnosis
(CAD). We also highlight the potential opportunities in this field for CAD research
and clinical decision-making.

Introduction

Breast cancer is the most frequently diagnosed cancer in women after skin cancer.
According to the American Cancer Society, an estimated 226,870 new cases of
invasive breast cancer are expected to occur among women in the USA during
2012; about 2,190 new cases are expected in men. Approximately 39,510 women
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Fig. 2.1 A mammogram image with suspected areas highlighted, and a magnified view of a
region with clustered microcalcifications

and 410 men are anticipated to die from breast cancer in the same year [1]. Research
has shown that the key to successfully treating breast cancer is early detection.
The combination of early detection and improvements in treatment options has led
to 2-3.3 % decline in the mortality rate among women in recent years [1].

Breast lesions can manifest as masses or clustered microcalcifications (MCs).
As an example, Fig. 2.1 shows a mammogram image with clustered MCs.

Mammography currently provides the most effective strategy for early detection
of breast cancer. The sensitivity of mammography could be up to approximately
90 % for patients without symptoms [2]. However, this sensitivity is highly
dependent on the patient’s age, the size and conspicuity of the lesion, the hormonal
status of the tumor, the density of a woman’s breasts, the overall image quality, and
the interpretative skills of the radiologist [3]. Therefore, the overall sensitivity of
mammography could range between from 90 to 70 % only [4]. Furthermore, it is
very difficult to distinguish mammographically benign lesions from malignant
ones. It has been estimated that one third of regularly screened women experience
at least one false-positive (benign lesions being biopsied) screening mammogram
over a period of 10 years [5]. A population-based study that included about 27,394
screening mammograms, which were interpreted by 1,067 radiologists showed that
the radiologists had substantial variations in the false-positive rates ranging from
1.5 to 24.1 % [6]. Unnecessary biopsy is often cited as one of the risks of screening
mammography. Surgical, needle-core, and fine-needle aspiration biopsies are
expensive, invasive, and traumatic for the patient.

The last two decades have witnessed a great deal of research for developing
computer-aided detection (CADe)/diagnosis (CADX) tools for detection and diag-
nosis of breast cancer [7—10]. This intensive research has resulted in several FDA
approved commercial systems since the late 1990s, which aim to play the role of a
virtual “second reader” by highlighting suspicious areas for further review by the
radiologist in association with their own reading. Improvement in cancer detection
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and diagnosis has been reported in retrospective and prospective studies [11-13].
However, this was not without controversies [14]. A multi-institutional study of
43 facilities showed that the current CAD systems were associated with reduced
accuracy of interpretation for screening mammograms [14]. In any case, these
negative results may strongly urge the need for utilizing more improved techniques
for analyzing mammogram images.

Content-based image retrieval (CBIR) may potentially provide new and exciting
opportunities for the analysis and the interpretation of mammogram images. The
underlying principle in CBIR is analogous to textual search engines (e.g., Google),
in which a search engine aims to retrieve information that is relevant (or similar) to
the user’s query. Instead of textual description, however, in CBIR the information is
embedded in the form of an image or its extracted features. CBIR could serve as a
diagnostic tool for aiding radiologists by comparing current cases with previously
diagnosed ones in a medical archive.

In this chapter, we provide an overview of CBIR in recent years in the medical
imaging literature and specifically for mammography. We discuss its expanding
role and provide examples based on our experience using CBIR in mammography
and highlight its strong potential as a valuable tool for computerized detection and
diagnosis in mammography.

Background

Content-Based Image Retrieval

Image retrieval has been one of the most exciting and fastest growing research areas
in image processing over the past decade [15]. There have been several general-
purpose image retrieval systems developed. For instance, Guo et al. [16] developed
a supervised approach for learning similarity measures for natural images, while
Chen et al. [17] investigated unsupervised clustering-based image retrieval. Inter-
ested readers are referred to [15] for further examples on general-purpose CBIR
systems. However, an evolving application of CBIR in recent years has been in the
area of medical imaging [18]. CBIR has been developed as a visual-based approach
to overcome some of the difficulties and problems associated with human percep-
tion subjectivity and annotation impreciseness in text-based retrieval systems.
However, despite the significant developments over the past decade with respect
to similarity measures, objective image interpretations, feature extraction, and
semantic descriptors [18, 19], some fundamental difficulties still remain pertaining
to CBIR applications. First, it is understood that similarity measures can vary with
the different aspects of perceptual similarity between images; the selection of an
appropriate similarity measure thus becomes problem-dependent. Second, the
relation between the low-level visual features and the high-level human interpre-
tation of similarity is not well defined when comparing two images; it is thus not
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exactly clear what features or combination of them are relevant for such judgment
[20, 21]. Finally, while the user may understand more about the query, the database
system can only guess (possibly through interactive learning) what the user is
looking for during the retrieval process. This is an indispensable challenge in
information retrieval, where the correct answer may not always be clearly identified.
In Fig. 2.2, we show a diagram to illustrate a typical scenario of image retrieval from
mammography databases, where an archive is organized into mammogram images,
which in turn is organized into indices (i.e., a data structure of selected image
features) for rapid lookup. The user formulates his/her retrieval problem as an
expression in the query language (e.g., by presenting the images of the current
case as query). The query is then translated into the language of indices and matched
against those in the database, and those images with matching indices are retrieved.

CBIR as a CAD Tool

Historically, the concept of image retrieval in medical images was first introduced
by Swett et al. [22], who developed a rudimentary, rule-based expert system to
display radiographs from a library of images as illustrative examples for helping
radiologists’ diagnosis. However, application of CBIR for medical images is a quite
challenging task due to the complexity of image content in relation to the disease
conditions. As a consequence, many of the useful image features in traditional CBIR
are no longer adequate in medical imaging. For example, global image features
(such as grayscale histogram) would not be salient for describing the characteristics
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of pathological regions or lesions which are typically localized in the images [18].
In such a case, it is important to derive quantitative features that correlate well with
the anatomical or functional information perceived as important for diagnostic
purposes by the physicians. Therefore, present medical CBIR systems mostly focus
on a specific topic, thus offering support only for a restricted variety of image types
and feature sets, such as high-resolution computed tomography (HRCT) scans of the
lung [23]. This system was referred to as the ASSERT system, where a rich set of
texture features was derived from the disease bearing regions. In [24], a new
hierarchical approach to CBIR called “customized-queries” approach is applied to
lung images. In [25], a system called CBIR2 was developed for retrieval of spine
X-ray images. Three-dimensional MR image retrieval was studied in [26] based on
anatomical structure matching. An online pathological neuroimage retrieval system
was investigated in [27] under the framework of classification-driven feature selec-
tion. Cai et al. [28] presented a prototype design for content-based functional image
retrieval for dynamic PET images. Tobin et al. [29] developed a CBIR system for
retrieving diabetic retinopathy cases using a k-nearest neighbors (KNN)-based
approach. Application to different medical databases such as dermatological images
[30], cervicographic images [31], and microscopic pathology databases [32] was
explored in the literature. More recently, there has also been growing interest in
retrieving reference images from PACS, and CBIR has now become an important
research direction in radiological sciences [18, 33, 34].

Despite the extensive research efforts in CBIR, current imaging standards such
as DICOM v3.0 still rely on textual attributes of images (e.g., study, patient, and
other parameters), which are still to date the only information used to select relevant
images within PACS [35]. However, in recent years several research-oriented
image retrieval projects and prototypes have been developed for management of
medical images for research and teaching purposes. Examples of such systems
include: the ASSERT mentioned above; Caslmage [36], which retrieves a variety of
images ranging from CT, MR, and radiographs to color photos based on color
and textural features; IRMA (image retrieval in medical applications) [37], a
development platform of components intended for CBIR in medical applications;
NHANES 1II (the second national health and nutrition examination survey) [38] for
retrieval of cervical and lumbar spine X-ray images based on the shape of the
vertebra. In the rest of this chapter, we will focus on CBIR application to mam-
mography due to its important role in breast cancer management.

Mammography

Mammograms are low-energy X-ray images of the breast of patients. Typically, they
are in the order of 0.7 mSv. A mammogram can detect a cancerous or precancerous
tumor in the breast even before the tumor is large enough to be palpable. The results
are interpreted according to an American College of Radiology (ACR) score known
as the Breast Imaging Reporting and Data System (BI-RADS™) with values ranging
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from O (incomplete) to 6 (known biopsy—proven malignancy) [39]. To date mam-
mography remains the modality of choice for early screening of breast cancer. As
mentioned earlier, there has been intensive development of CAD systems for
computerized lesion detection; however, this was not without controversies about
the value of such systems compared to human readers [14]. It is expected that human
decision-making is much more complex than what a detection algorithm can
provide. We share the belief that the potential value for application of CAD systems
to mammography could be facilitated through the development of information
systems based on CBIR.

CBIR for Mammography

Review of Existing Methods

Since the pioneering work by Swett et al. [22], there have been extensive efforts to
apply CBIR to medical imaging in general and mammography in particular. Sklansky
et al. [40] developed a technique that produces a two-dimensional (2D) map based
on the decision space of a neural network classifier, in which images that are close to
each other are selected for purposes of visualization; the neural network was trained
for separating “biopsy recommended” and “biopsy not recommended” classes.
Qi and Snyder [41] demonstrated the potential use of CBIR in PACS using a digital
mammogram database based on the shape and size information of mass lesions.
At about the same time, we started developing our perceptual similarity approach for
retrieval of MC lesions in mammograms [42—44]. Giger et al. [45] developed an
intelligent workstation interface that displays known malignant and benign cases
similar to lesions in question (based on one or more selected features or computer
estimated likelihood of malignancy), and demonstrated that radiologists’ perfor-
mance, especially specificity, increases with the use of such aid tool. Tourassi
etal. [46—48] developed an approach for retrieval and detection of masses in mammo-
grams based on the use of information-theoretic measures (such as mutual informa-
tion), where a decision index is calculated based on the query’s best matches. Zheng
etal. [49] applied a KNN algorithm and further used observer-rated spiculation levels
to improve the similarity of breast masses and subsequently investigated the use of
mutual information [50] to improve the similarity measure. An unsupervised learning
approach based on Kohonen self-organizing map (SOM) was proposed in [51]. The
SOM was trained using a set of 88 features for each mammogram, which included
common shape factors, texture, and moment features as well as angular projections
and morphological features derived from segmented fibroglandular tissues.

As noted above, CBIR has been studied recently by researchers as a useful tool
for exploring known cases from a reference library that can assist radiologists in
diagnosis. The idea is to provide evidence for case-based reasoning with informa-
tion from the retrieved cases [52]. As an indication of the predictive value of
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retrieved cases, the correlation in disease condition between the query and the
retrieved cases was examined in previous work [21, 53]. The ratio of malignant
cases among all retrieved cases was used as a useful predictor for the query [54, 55];
conceptually, this can be viewed as a KNN classifier using only the retrieved cases.
The similarity level between a retrieved case and the query was used by Zheng
et al. [49] as a weighting factor in the prediction. A genetic algorithm was used by
Mazurowski et al. [56] to adjust the weighting factors of the retrieved cases. An
observer study was used by Nakayama et al. [57] to investigate the potential
diagnostic value of similar cases. These studies provide evidence on the positive
predictive value of similar cases in CADx.

Evaluation Metrics

Retrieval systems are typically evaluated using the so-called precision-recall curves
[58]. The retrieval precision is defined as the proportion of the images among all the
retrieved that are truly relevant to a given query; the term recall is measured by the
proportion of the images that are actually retrieved among all the relevant images to
a query. Mathematically, they are given by:

.. The number of relevant images that are retrieved
Precision =

The total number of retrieved images
(2.1)

Recall The number of relevant images that are retrieved
ecall = - .
The total number of relevant images

The precision-recall curve is a plot of the retrieval precision versus the recall
over a continuum of the operating threshold. An example of precision-recall curves
is given later in Fig. 2.4 in section “Case-Study Example.”

Other metrics to quantify the accuracy of a retrieval system could be defined on the
similarity measure used, such as the mean-squared error (MSE) of the model score
compared to the observer score. In addition, to evaluate the merit of the similarity
measure for cancer diagnosis, criteria such as cumulative neighbor matching rate
could be used [59]. In this case, for each query image, the ratio of top k images that
actually match the disease condition of the query is computed and averaged over all
the queries.

For statistical validation of the retrieval performance, resampling techniques
such as cross-validation and bootstrap are typically used. In cross-validation, the
data samples are divided into a number of subsets which are permuted for training
and testing in a round-robin fashion, whereas in bootstrap, the data samples are
randomly selected for training and testing for many times. Bootstrap could be
regarded as a smoothed version of cross-validation. It is thought to be more realistic
in modeling real life scenarios [60].
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Finally, we add that besides these rather generic measures used in information
retrieval, it is also necessary to evaluate the retrieval efficiency based on specific
clinical tasks.

Example 1: Similarity Learning for CBIR

In this section, we present a CBIR application to mimic radiologists’ perceptual
similarity using machine learning methods. As an example, we will consider in
particular lesions with clustered MCs, which can be an important early sign of
breast cancer in women. Their clustering patterns play an important role in deter-
mining malignancy risk following the BI-RADS criteria as mentioned in section
“Mammography.”

Similarity as Nonlinear Regression Functional

In this approach, the notion of similarity is modeled as a nonlinear function of the
image features in a pair of mammogram images containing lesions of interest, e.g.,
microcalcification clusters (MCCs). If we let vectors u and v denote the features of
two MCCs at issue, the following regression model could be used to determine their
similarity coefficient (SC):

SC(u,v) =f(u,v) +¢, (2.2)

where f(u,v) is a function determined using a machine learning approach, which we
choose to be support vector machine (SVM) learning [61], and { is the modeling
error. The similarity function f(u,v) in Eq. (2.2) is trained using data samples
collected in an observer study. For convenience, we denote f(u,v) by f(x) with
X = [uT, VT]T.

Assume that we have a set of N training samples, denoted by Z = { (x,»,yi)}ﬁ-\’: I3
where y; denotes the user similarity score for the MCC pair denoted by x;,
i =1, 2,..., N. The regression function f(x) is written in the following form:

f(x) = w®(x) + b, (2.3)

where ®(x) is a mapping implicitly defined by a so-called kernel function which we
introduce below. The parameters w and b in Eq. (2.3) are determined through
minimization of the following structured risk:

N
R(w,b) = %wTw +CY Le(xi), (2.4)

i=1
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where L.(*) is the so-called e-insensitive loss function, which has the property that it
does not penalize errors below the parameter €. The constant C in Eq. (2.4)
determines the trade-off between the model complexity and the training error. In
this study the Gaussian radial basis function is used for the SVM kernel function
K(-,"), where K(-,-) = ®'(x)®(x). The regression function f(x) in Eq. (2.2) is
characterized by a set of so-called support vectors:

Ns
fx) =" 7K(x;,x) +b, (2.5)
Jj=1

where x; are the support vectors and N, is the number of the support vectors.

To model the similarity between two feature vectors, we want to learn a
symmetric function satisfying f(u,v) = f(v,u), i.e., the notion of similarity is com-
mutative. This can be achieved by duplicating the training image pairs, i.e., first
with (u, v) and then with (v, u). We can explicitly enforce this property in the SVM
cost function as:

N N
R(w,b) = %WTW + CZLS(X,') + CZLg (x}). (2.6)
P P

Here y(x;) = y(x}), x; = (!, v))", x{ = v/, ul)".
With this formulation the SVM training algorithm yields the global optimum of
a symmetric Lagrangian. The resulting regression function can be written as:

F(x) = i v, [K(x,, x) + K(x_;., x)] +b. 2.7)
=1

That is, if a training sample X; is a support vector, i.e., [y; — fix;)| > ¢, then its
symmetric sample x; is also a support vector and y; = y;. This will ensure that the
solution is symmetric: f(x) = f(x*). A detailed proof of this is given in [59].

Case-Study Example

A database of mammogram images provided by the Department of Radiology at the
University of Chicago is used for demonstration purposes. The database consists of
a total of 200 different mammogram images of dimension 1,024 x 1,024 (a few are
512 x 512) from 104 patients with known pathology (46 malignant, 58 benign),
digitized with a spatial resolution of 0.1 mm/pixel and 10-bit grayscale. All these
images contain MCCs. The MCCs in each image had been identified by expert
radiologists and a total of 600 image pairs were scored by a group of six mammo-
gram readers. Following intraobserver and interobserver consistency analyses,
scores from four observers with the highest consistency were selected and their
scores were averaged for each of the 600 image pairs.
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To characterize the similarity data by the experts, we considered image features
derived from MCCs which were demonstrated to have high discriminating power
for cancer diagnosis [62, 63]. We applied a sequential feature selection procedure to
obtain 12 features for characterizing an MC cluster, namely: (1) compactness of the
cluster; (2) eccentricity of the smallest ellipse fitting the region; (3) the number
of MCs per unit area; (4) the average of the inter-distances between neighboring
MCs; (5) the standard deviation of the inter-distances between neighboring MCs;
(6) solidity of the cluster region defined as the ratio between cross-sectional area
and the area of the convex hull formed by the MCs; (7) the moment signature of the
cluster region computed based on the distance deviation of a boundary point from
the center of the region; (8) the number of MCs in the cluster; (9) the mean effective
volume (area times effective thickness) of individual MCs; (10) the relative stan-
dard deviation of the effective thickness; (11) the relative standard deviation of
the effective volume; and (12) the second highest MC-shape-irregularity measure.
In our experiments, all the feature components were normalized to have the same
dynamic range (0, 1).

The SVM similarity model was trained using the observer data. Besides the
human scores for the 600 image pairs, we also added the following pairs for
training:

1. SC(u, u) = 10, and
2. SC(u, v) = 10 if u and v are different views from the same case.

With a leave-one-out procedure, the SVM model achieved an MSE of 0.0334 per
image pair compared to the observer scores. The trained SVM similarity model was
tested with the 200 images in the database, where each of the 200 images in the
dataset was used in turn as a query image. A retrieval example is shown in Fig. 2.3.
The average matching rate between SVM prediction and disease pathology reached
72 % for the top retrieved images. The precision-recall analysis achieved by the
SVM model is shown in Fig. 2.4. Note that the performance can be further refined
by incorporating user’s response through an adaptive process called relevance
feedback (RFB) [64, 65]. Figure 2.4 also shows the resulting precision-recall curves
obtained by RFB with different number of feedback samples.

Example 2: Adaptive CADx with CBIR

In recent years, we have been investigating a case-adaptive approach to boost the
performance of a CADx classifier based on retrieval of cases with similar image
features from a reference library. In traditional CADx, a classifier f(x) is first
optimized on a set of training samples, which is often limited in size; subsequently,
this classifier is applied to classify a new case x under consideration (called query).
In our approach, we will first obtain from a reference database (e.g., a PACS system)
a set of known cases with similar features to the query case x, and use these retrieved
cases to adapt the classifier f(x) so as to improve its classification accuracy on the
query case.
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Fig. 2.3 A retrieval example of similar cases using SVM similarity learning [73]. Reprinted by
permission of the publisher
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Recall

The problem of classifying clustered MCs into malignant or benign is treated as
a two-class classification problem. Let f(-) denote a classifier that has been trained
on a set of training samples {(X;y,), i =1, ..., N}, where x; € R" denotes the
feature vector of each sample and y; € {—1, + 1} denotes its corresponding class
label. Now, consider a new lesion with feature vector x. Our goal is to make use of a
set of retrieved cases to improve the accuracy of the classifier f(-) on x. Below we
first describe our approach using a linear classifier, based on logistic regression,
which is attractive in practice owing to its numerical simplicity. This approach can
be readily extended to a nonlinear classifier using the technique of kernel principal
component analysis (KPCA) [66].
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Case-Adaptive Linear Classifier

Mathematically, a linear classifier is of the form
f(x) =w'x+b, (2.8)

where X is a vector denoting an input pattern (i.e., lesion), and f(x) is the classifier
output, which is typically compared against an operating threshold for decision on
X. In practice, the discriminant vector w and bias parameter b are both determined
from training.

We consider the approach of logistic regression for determining the unknown
w and b from the training set {(x;,y;), i = 1, ..., N} [67], which is to maximize the
following log-likelihood function:

N
L(w,b) = logp(y;[xi;w, b), 2.9)
i=1

where each probability term is given by

1

L= 1 is ,b - ) 2'10
and p(y; = — 1|x5 w, b) = 1 — p(y; = l|x;; w, b).
Now consider a query lesion x to be classified. Let {(xf'l) ,y,m), i=1,...,N,}be

a set of N, cases obtained from a reference library, which are similar to x. In our
case-adaptive approach, we modify the objective function in Eq. (2.9) by these
retrieved cases as

N N,
L(w,b) =) logp(yi|xi;w,b) + Z/J’ilogp<y§'>
i=1 i=1

X w, b) , 2.11)

where the weighting coefficients f; > 1 are used to put more emphasis on the
retrieved samples, particularly those more similar to the query, the goal being to
refine the decision boundary of the classifier in the neighborhood of the query x.
Indeed, the first term in Eq. (2.11) simply corresponds to the log-likelihood function
in Eq. (2.9), while the second term can be viewed as a weighted likelihood of those
retrieved similar samples. Intuitively, the retrieved samples are used to steer the
pre-trained classifier from Eq. (2.9) to achieve more emphasis in the neighborhood
of the query x.

Note that the objective function in Eq. (2.11) has the same mathematical form as
that in the original optimization problem in Eq. (2.9), which can be solved effi-
ciently by the method of iteratively reweighted least square (IRLS).
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Database of MC Cases for CBIR

To demonstrate the proposed CBIR approach, we used a dataset of digitized,
standard-view, screen-film mammographic images collected from two sources:
one is from the Department of Radiology, The University of Chicago (UC), and
the other from the DDSM dataset maintained at The University of South Florida
[68]. The DDSM dataset consists of images collected from three different institu-
tions: The Massachusetts General Hospital (MGH), Wake Forest University School
of Medicine, and Sacred Heart Hospital and ISMD, Incorporated. It has 14 benign
volumes, 15 cancer volumes, 12 normal volumes and 2 benign without callback
volumes. The normal and benign without callback volumes are not used in this
work since they contain no lesions with verified pathology. To maximize the yield,
we extracted all those cases with only MC lesions from all the benign and cancer
volumes in DDSM.

The mammogram images from the different institutions were digitized with five
different scanners with different resolutions. To reduce their differences, the mam-
mogram images were first converted to a common resolution (100 pm) using cubic
interpolation and calibrated such that their gray levels correspond to the same
optical density. Altogether, there were a total of 1,006 cases (646 benign, 360 malig-
nant) collected in the dataset.

To characterize clustered MCs in these images, we applied a sequential forward
procedure [69] with a linear classifier using logistic regression on a set of training
images. In the end, a total of nine features were selected for characterizing MC
lesions. These features are: (1) number of MCs in the cluster; (2) density of the
cluster, measured by the number of MCs in a unit area; (3) mean of the MC size in the
cluster; (4) eccentricity of the cluster; (5) standard deviation of the distance from
individual MCs to the geometric center of the cluster; (6) maximum of the mean
intensity of MCs; (7) mean of the average intensity in each MC window; (8) standard
deviation of the contrast of MCs; and (9) standard deviation of the fourth order
central moment of MCs.

With all the cases in the library characterized by their feature vectors, for a given
query case X, the similar cases to x can then be obtained by comparing its feature
vector against that of library cases according to a similarity measure. These
retrieved cases are then incorporated into the case-adaptive classifier in Eq. (2.11)
via the weighting coefficients f;. In this study, we implemented the following
strategy for adjusting f; according to the similarity level of a retrieved sample

xfr)

to the query x:
Bi=1thk— i 1,... N, 2.12)
~ max {a,}
J=1,...sN, ’

where a; denotes the similarity measure between xlm and x, and £ > 0O is used to

control the degree of emphasis on the retrieved samples relative to other training
samples. The choice of the form in Eq. (2.12) is such that the weighting factor
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increases linearly with the similarity level of a retrieved case to x, with the most
similar case among the retrieved receiving maximum weight 1 + &, which corre-
sponds to k times more influence than the existing training samples in the objective
function in Eq. (2.11).

As a similarity measure for retrieved cases, we used the Gaussian RBF kernel

function
a; = exp <—’

where y is a scaling factor controlling the sensitivity of @; with respect to the
distance between the query and a retrieved case. In our experiments, the parameter
y was set to the tenth percentile of the distance between every possible image pairs
in the training set. Such a choice is out of the consideration that most of the cases in
a database are typically not similar to each other. Those cases with a large distance
away from query x will receive a low similarity measure consequently.

) 2
e _XH /yz) i=1,... N, 2.13)

Performance Evaluation

To demonstrate the case-adaptive classification approach, we used the following
setting in this study. We first partitioned the dataset of all 1,006 cases randomly into
two subsets, denoted by A and B, respectively, such that subset A consisted of
175 cases (100 benign, 75 malignant), and subset B had the remaining 831 cases
(546 benign, 285 malignant). The cases in A were used to train and optimize a baseline
CADx classifier, while the cases in B were set aside as a library of known cases for
retrieval, which was used to boost the baseline CADx classifier (trained on subset A).

For efficient use of subset B, the cases in B were also used to test the CADx
classifier. To remove the effect of case distributions, we applied a bootstrapping
methodology for testing the performance of the classifiers [70, 71]. A total of
10,000 bootstrap sample sets were used, of which each was obtained by sampling
with replacement from the cases in B; subset A was fixed during this process. The
classifier performance was subsequently obtained over each bootstrap sample set.

To avoid any potential bias, we applied a leave-one-out (LOO) procedure when
testing the adaptive classifier as follows: for each case used for testing, we excluded
this case from B and retrieved known cases only from the rest of the data set to
boost the CADx classifier. The resulting classifier was then applied to classify the
test case. This was to ensure that the test case itself would not be used in any way for
boosting the adaptive classifier.

To evaluate the classification performance, we conducted a receiver operating
characteristic (ROC) analysis, which is now routinely used for performance eval-
uation in classification tasks. As a summary measure of overall diagnostic perfor-
mance, the area under an ROC curve (denoted by AUC) is often used. A larger AUC
means better classification performance. In our experiments the ROCKIT program
[72] was used to calculate the AUC values for the different classifiers.
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We summarize in Fig. 2.5 the performance results achieved by the case-adaptive
linear classifier (ada-LR). To demonstrate the impact of retrieved cases, in the
experiments we also varied the number of retrieved cases N, for a query case. In
Fig. 2.5, the area under the ROC curve, AUC, is shown for different values of N,;
for comparison, the performance result by the baseline classifier (LR) (i.e., prior to
boosting) is also shown.

From Fig. 2.5 it can be seen that the AUC value of the adaptive classifier is
notably higher than that of the baseline classifier. In particular, with N, = 10 the
adaptive classifier achieved AUC = 0.7663; with N, = 50, the AUC value of the
adaptive classifier was further increased to 0.7807 compared to AUC = 0.7415
for the baseline classifier (p-value = 0.0001). No additional improvement was
observed when N, was further increased. We believe that this is because the number
of similar cases for a given query case is limited in the reference library and the
benefit of retrieving additional cases diminishes.

Current Challenges and Recommendations

Despite the increasing number of research systems developed in recent years, the
application of CBIR for medical applications is very much still at its infancy [73].
For content-based mammogram retrieval, there remain several technical issues that
would require further investigation, which may include the following seven differ-
ent aspects:

1. How to incrementally improve the retrieval performance through accumulating
experts’ query log remains a challenge. Our proposed approach of using percep-
tual similarity could be used to improve precision in image retrieval. This concept
has been studied by other researchers [74—76]. For instance, the results in [75]
demonstrate good concordance consistency even among three different types of
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readers (13 breast radiologists, 10 general radiologists, and 10 non-radiologists),
which indicates the reliability of the similarity ratings obtained from observer
studies.

. Inclusion of semantics-based similarity features such as patient history, age, and
view besides the low-level image features to improve retrieval accuracy.

. Investigation of advanced RFB techniques to refine the retrieval process. Adap-
tive learning algorithms can be incorporated into the learning approach as in our
previous study [64].

. System integration into PACS or other medical image databases. This is an
essential step for the clinical use of retrieval systems [18]. PACS systems are
now widely used in the hospitals to manage the storage and distribution of images.
Thus, CBIR is expected to have a great impact on PACS and health database
management [77]. An important issue in medical practice is to keep patient’s
private information from any unauthorized access in accordance with the Health
Insurance Portability and Accountability Act (HIPAA). Security requirements
need to be embedded into the design of a database system, so that users would
have access to data that they only have privilege over. This may add additional
burdens to achieve high efficiency for CBIR within the mandated security con-
straints. Experiences from textual relational database management systems
(RDBMS) could be helpful in this regard.

. Human—computer interaction and usability. This would involve the development
of efficient search methods in a high-dimensional feature space. Search in the
presence of user-dependent similarity measures is largely unsolved [15]. Possible
solutions may involve the need to develop faster methods for extracting relevant
features from the given query image and to pre-store the image features using
efficient data structures (e.g., linked-list tree structures) for rapid retrieval. To
further speed up the retrieval process for an online environment, one can also
employ a two-stage approach in which a computationally efficient linear-
classifier is used to quickly discard any non-similar entries from further consid-
eration [21, 42, 44, 59, 62, 63, 78].

. Performance evaluation framework and standard. The problem of how to eval-
uate the retrieval quality is an important topic as well. Retrieval systems need to
be compared in order to sort out the different techniques [18]. Due to the
complexity of medical images, how to construct a common test bed for medical
CBIR is an interesting research issue [79]. To construct a test bed for medical
CBIR, a number of factors such as imaging modalities, regions of interest, and
orientations of images should be taken into account.

. Validation of many of the proposed methods for clinical use on large databases.
To fully evaluate the benefit of a retrieval system, it is desirable to establish a
benchmark database, which is large enough so that it would maximize the yield of
truly relevant images. In practice, this can be an expensive process. It is noted that
there exist several public domain mammogram databases such as DDSM (Digital
Database for Screening Mammography) maintained by the University of South
Florida and MIAS (Mammographic Image Analysis Society maintained by the
University of Manchester). These databases are mainly used for comparing
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different CAD systems. It would be beneficial to augment these databases with
additional image similarity information so that they could be used as a benchmark
for comparing different CBIR systems.

Conclusions

CBIR for mammography is a promising field for improving automated detection and
diagnosis of breast cancer lesions. In this chapter, we provided an overview of recent
advances in CBIR technology and its application to mammographic databases. In
addition, we presented examples from our experience in building CBIR systems for
mammography. In our approach, we investigated the use of a supervised learning
methodology in content-based mammogram retrieval based on perceptual similarity
from expert observers. This approach was demonstrated using a set of clinical
mammograms to achieve significant improvement in retrieval performance over
competing unsupervised learning methods. Moreover, we also demonstrated that
the use of CBIR could further improve the performance in a CADx classifier. We
also discussed some of the current problems in the field and highlighted the potential
opportunities for future research and clinical implementation. These areas could
benefit from existing expertise in the computer vision community. If successful,
CBIR approaches could realize their potential to improve current clinical decision-
making processes for patients with breast cancer.
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Chapter 3

A Novel Image-Based Approach for Early
Detection of Prostate Cancer Using
DCE-MRI

Ahmad Firjani, Fahmi Khalifa, Ahmad Elnakib, Georgy Gimel’farb,
Mohammed Abou El-Ghar, Adel Elmaghraby, and Ayman El-Baz

Abstract A novel noninvasive approach for early diagnosis of prostate cancer
from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is pro-
posed. The proposed approach consists of four main steps. The first step is to isolate
the prostate from the surrounding anatomical structures based on a maximum a
posteriori (MAP) estimate of a log-likelihood function that accounts for the shape
priori, the spatial interaction, and the current appearance of the prostate tissues and
its background (surrounding anatomical structures). In the second step, a nonrigid
registration algorithm is employed to account for any local deformation that could
occur in the prostate during the scanning process due to patient breathing and local
motion. In the third step, the perfusion curves that show propagation of the contrast
agent into the tissue are obtained from the segmented prostate of the whole image
sequence of the patient. In the final step, we collect two features from these curves
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and use a k-nearest neighbor (KNN) classifier to distinguish between malignant and
benign detected tumors. Moreover, in this chapter we introduce a new approach to
generate color maps that illustrate the propagation of the contrast agent in the
prostate tissues based on the analysis of the 3D spatial interaction of the change
of the gray-level values of prostate voxel using a generalized Gauss—Markov
random field (GGMRF) image model. Finally, the tumor boundaries are determined
using a level set deformable model controlled by the perfusion information and the
spatial interactions between the prostate voxels. Experimental results on 30 clinical
DCE-MRI data sets yield promising results.

Introduction

Prostate cancer is the most frequently diagnosed malignancy in the American male
population and the second leading cause of cancer death. Recent prostate cancer
studies reported an estimated 217,730 new cases and a mortality rate of close to
32,000 in 2010 [1]. The growth of the population is a major cause of the high number
of prostate cancer cases and will contribute to an increase in the global burden.
Fortunately, the survival rate is very high for patients with an early diagnosis.

The techniques currently used for diagnosing prostate cancer are unsatisfactory.
For example, prostate specific antigen (PSA) screening doesn’t offer accurate
information about the location and extent of the lesion(s). In addition, PSA is
associated with a high-risk of over diagnosis of prostate cancer [2-5].

Medical imaging tools [e.g., transrectal ultrasound (TRUS), MR spectroscopy
(MRS), dynamic contrast-enhanced MRI (DCE-MRI)], are favorable since they
provide reliable information about the size and shape of prostate gland and can
localize the cancer foci, which would improve the accuracy of diagnosis and enable
more efficient treatment. One of the most common modalities is the TRUS imaging
[6-9]. It is widely used for guided needle biopsy due to the real time nature of the
imaging system, ease of use, and portability. However, TRUS images have low
signal-to-noise ratio (SNR) and detection of malignant tissues is difficult. Another
traditional imaging modality is computed tomography (CT). It is widely used for
diagnosis and follow-up of prostate cancer, but it has poor soft-tissue contrast
resolution which does not allow precise distinction of the internal or external anatomy
of the prostate. Magnetic resonance (MR) imaging has recently been suggested for
improved visualization and localization of the prostate. It provides valuable patho-
logical and anatomical information [10]. Recently, new MR modalities, such as
MRS, DCE-MRI, and diffusion MRI, have gained considerable attention as impor-
tant tools for the early detection of prostate cancer.

In this chapter, we will focus on DCE-MRI based computer-aided diagnostic
(CAD) systems since they have shown more capabilities in determining the size and
the shape of the prostate gland and localizing the cancer foci. The principles of
DCE-MRI lie in the analysis of signal-time or kinetic curves at a specific location in
MR images. A sequential set of MR images is acquired before and during an
intravenous bolus injection of paramagnetic gadolinium chelate, preferably by
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using a power injector. The contrast agent will induce an increased signal intensity
on an MR image at vessel lumen and interstitial space. Such intensity curves
obtained from the prostate are called wash-in and wash-out perfusion curves and
can be used to distinguish between malignant and benign detected tumors [11]. Gen-
erally, any early diagnosis of prostate cancer using DCE-MRI requires intermediate
image processing steps, such as prostate segmentation and classification. Therefore,
in the following sections we will introduce the related work on both prostate
segmentation and CAD systems.

Related Work in Prostate Segmentation

The prostate segmentation is an essential step in developing any noninvasive
CAD system for detecting prostate cancer and calculating the prostate gland
volume during biopsy. However, the segmentation of the prostate in MR images
is a challenge due to large variations of prostate shape within a specific time series
as well as across subjects, lack of strong edges and diffused prostate boundaries,
and the similar intensity profile of the prostate and surrounding tissues. Although
manual outlining of the prostate border enables the prostate volume to be deter-
mined, it is time consuming. Moreover, traditional edge detection methods (e.g.,
[10]) are unable to extract the correct boundaries of the prostate since the
gray-level distributions of the prostate and the surrounding organs are hardly
distinguishable.

The most successful known approaches (e.g., [§—12]) have addressed the seg-
mentation challenges of the prostate by modeling object appearance and shape. In
particular, Zhu et al. [12] used a combination of an active shape model (ASM) and
3D statistical shape modeling to segment the prostate. Toth et al. [13] presented an
algorithm for the automatic segmentation of the prostate in multi-modal MRI. Their
algorithm starts by isolating the region of interest (ROI) from MRS data. Then, an
ASM within the ROI is used to obtain the final segmentation. Klein et al. [14]
presented an atlas-based segmentation approach to extract the prostate from MR
images. The segmentation of the prostate is obtained as the average of the best-
matched registered atlas set to the test image (image to be segmented). Recently,
Vikal et al. [15] used a priori knowledge of prostate shape to detect the contour in
each slice and then refined them to form a 3D prostate surface. Martin et al. [16]
developed an atlas-based approach for segmenting the prostate from 3D MR images
by mapping probabilistic anatomical atlas to the test image. The resulting map is
used to constrain a deformable model-based segmentation framework.

However, in most of these methods the segmentation reliability is not very high
due to many reasons. First, parametric shape models fail in the presence of large
gray-level variability across subjects and time. Second, edge detection methods are
not suitable for discontinued objects. Moreover, deformable models tend to fail in
the case of excessive noise, poor image resolution, diffused boundaries or occluded
objects if they do not incorporate a priori models (e.g., shape and appearance).
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To overcome the aforementioned limitations, in this chapter we present a general
prostate segmentation framework, based on a maximum a posteriori (MAP) esti-
mate of a new likelihood function. To handle the object inhomogeneities and
variability and overcome image noise, the proposed likelihood function accounts
for the visual appearances of the prostate and background, 3D spatial interaction
between the prostate voxels, and a 3D prior prostate shape. The prostate shape is
adaptively learned from the co-aligned segmented 3D prostate DCE-MRI. The
visual appearances of the object and background are described with marginal
gray-level distributions of the prostate and its background. The spatial interactions
between the prostate voxels is modeled by a second-order rotation-variant
Markov—-Gibbs random field (MGRF) of object/background labels with analytically
estimated potentials.

Related Work in Computer-Aided Detection and Diagnosis
Systems for Prostate Cancer

When prostate cancer is suspected, a systematic biopsy guided by TRUS is usually
used to confirm the diagnosis [17]. Twenty-three percent of all prostate cancers
detected by TRUS-guided biopsy are missed in the first screening [18]. Even when
biopsy results are true negatives some patients have to repeat biopsy before their
cancers are detected. In 66-71 % of patients undergoing TRUS-biopsy for the first
time, the results are negative [18, 19].

Initial results suggest that T2-weighted MRI and DCE-MRI holds promise for
improving cancer detection, thereby reducing the need for prostate biopsy [20-30].
To the best of our knowledge, the first computerized prostate image analysis using
MRI was developed by Chan et al. [20]. In this study, they present an in vivo
computer-aided diagnosis system that uses multi-modal MRI to estimate malig-
nancy likelihood in the peripheral zone. They constructed summary statistical maps
from T2-weighted MRI images, diffusion-weighted images, PD maps, and T2
maps. Then they combined the statistic maps with textural and anatomical features
in prostate cancer areas. However, this study doesn’t include benign regions.
A similar procedure with some extensions was used by Madabhushi et al. [21].
This study is based on T2-weighted MRI and showed the additional value of
combining numerous features. Unfortunately, no discrimination performance was
calculated and the method is limited to 2D ex vivo MRIL.

Ocak et al. [22] developed a predictor by using a generalized estimating equation
and logistic regression model, which comprehensively analyzed the T2-weighted
MRI scans. Futterer et al. [23] developed a system to compare the accuracies of
T2-weighted MRI and DCE-MRI imaging for prostate cancer localization in
14 ROIs. The results showed higher accuracy in DCE-MRI than they achieved
with T2-weighted MRI.
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Rouviére et al. [24] compared T2-weighted MRI and DCE-MRI in the detection
of post-radiotherapy recurrence in 22 patients, using biopsy results as the reference
standard. The results showed higher accuracy in DCE-MRI than they achieved with
T2-weighted MRI.

Kim et al. [25] demonstrated that parametric imaging of the wash-in rate was
more accurate for the detection of prostate cancer in the peripheral zone than was
T2-weighted imaging alone. However, they also observed significant overlap
between the wash-in rate for cancer and that for normal tissue in the transitional zone.

Puech et al. [26] developed a CAD system for prostate cancer detection using
perfusion DCE-MRI data. The operator draws a polygon around the lesion within
an enhanced image of the prostate. Semiautomatic lesion segmentation is initiated
by a user-selected seed point. Region growing occurs from the seed point and the
growing process stops when a different tissue (based on the contrast-enhanced time
sequence) is encountered. Lesions are classified as benign, malignant, or indeter-
minate based on the analysis of the median wash-in and wash-out values. Although
the results looked promising, manual interaction was still required.

Engelbrecht et al. [27] showed the usefulness of measurements of relative peak
enhancement and wash-out rates for prostate cancer detection and localization.
From their analysis of receiver operating characteristic curves, they concluded that
the relative peak enhancement was the most accurate perfusion parameter for
cancer detection in the peripheral zone and central region of the gland.

Vos et al. [28] developed a semiautomatic CAD system for prostate lesion
classification using quantitative pharmacokinetic (PK) maps and T1 estimates.
Pharmacokinetic features are extracted from a user defined ROI around the prostate
and a support vector machine is used to estimate the likelihood of malignancy.
Results show that the system has an accuracy of 92 % in classification of all ROIs
from within the peripheral region and an accuracy of 83 % in classification of the
ROIs with abnormal enhancement patterns. However, this study focused on the
peripheral zone of the prostate gland and excluded central and transitional zones in
which up to 35 % of prostate cancers can occur. Viswanath et al. [29] proposed a
CAD system for DCE-MRI data. In this system, the authors rely on a nonrigid
(elastic) registration scheme and unsupervised classification (k-means) procedure.
The CAD system improves the objective annotation of prostate cancer, but the
corresponding slices still need to be selected.

Most prostate CAD researchers have focused on the initial voxel classification
stage. They obtained likelihood maps by combining information from MR images
using mathematical descriptors. These studies showed on a voxel basis that the
discrimination between benign and malignant tissue is feasible with good perfor-
mances. However, these studies require user interaction to select an ROI around the
prostate. In addition to the localization of the ROI of the tumor, the final diagnosis
and patient management is left to the radiologist.

However, the majority of these studies were performed by radiologists who
selected an ROI (a small window) around the prostate and followed signal change
within this ROI. Unfortunately, such approaches not only require manual interac-
tion of the operators, but also ROI selection biases the final decision and brings up
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the same issue of over or underestimating the problem in the entire graft, just as
with biopsy. Moreover, manual window selection and generating a function curve
from this window over a time-sequence of images assumes that the prostates
(prostate contours) remain exactly the same from scan to scan. However, prostate
contours may not always exactly match due to patient movement or breathing
effects; therefore, image registration schemes should be applied first before ROI
selection. Also, to automate the algorithm and to cancel ROI dependency, segmen-
tation algorithms that can separate the prostate from the surrounding structures are
needed. To overcome these limitations, we propose an automatic framework for the
early diagnosis of prostate cancer using DCE-MRI. The proposed framework
segments the prostate from the surrounding anatomical structures based on a
learned shape model and an identifiable joint MGRF model of DCE-MRI and
“object—background” region maps. Following segmentation, a nonrigid registration
algorithm is employed to account for any local deformation that could occur in the
prostate during the scanning process. Once all the images are aligned, the perfusion
curves that show propagation of the contrast agent into the tissue are obtained, and
then used to collect two features to distinguish between malignant and benign
detected tumors.

The rest of this chapter is organized as follows. Section “Methods” discusses in
detail the steps of the proposed framework, the experimental results are presented in
section “Experimental Results,” and the study is concluded in section “Conclusion”
with speculation about future work.

Methods

In this chapter we introduce a new, automated, and noninvasive framework for
early diagnosis of prostate cancer from DCE-MRI. Figure 3.1 demonstrates the
steps of the proposed CAD system.

Segmentation of the Prostate Using a Joint MGRF Model

The segmentation of the prostate is a challenge, since the gray-level distribution of
the prostate and surrounding organs is not highly distinguishable and because of the
anatomical complexity of prostate. This stage proposes a powerful framework for
prostate segmentation based on a learned shape model and an identifiable joint
MGRF model of DCE-MRI and “object-background” region maps.

The joint-MGRF model is fundamentally a model that relates the joint proba-
bility of an image and its object—background region map to geometric structure and
to the energy of repeated patterns within the image [31]. The basic theory behind
such models is that they assume that the signals associated with each pixel depend
on the signals of the neighboring pixels, and thus explicitly take into account their
spatial interactions, and other features, such as shape.
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DCE-MRI [}
Time Series

Diagnosis, Color Map Generation, and
Tumor Boundary Determination

Fig. 3.1 The proposed CAD system for automatic detection of cancer

LetQ=1{0,1,...,0 — 1}, L = {ob,bg}, and U = [0,1] be a set of Q integer
gray-level, a set of object (“ob”) and background (“bg”) labels, and a unit interval,
respectively. Let a 3D arithmetic grid R = {(x,y,z2) : x =0,1, .., X — 1,y =0,
1,...,Y—1;z=0,1, ... Z — 1} support a grayscale DCE-MRI g : R — Q and
their binary region maps m : R — L, and probabilistic shape models : R — U. The
shape model allows for registering (aligning) 3D prostate DCE-MRI. The DCE-MR
data g and their region maps m are described with a joint probability model:

P(g,m) = P(g|m)P,(m) 3.1)

where P,(m) is a second-order MGRF of region maps and P(g/m) is a conditionally
independent random field of image intensities given the map. The map model
P,(m) = P(m) P(m) has two parts: a shape prior probability being a spatially
variant independent random field of region labels Py (m), for a set of co-aligned
training DCE-MR data, and a second-order MGRF model P(m) of a spatially
homogeneous evolving map.

The Bayesian MAP estimate of the map, given the DCE-MR data g, m" =
arg mnelle(g7 m) maximize the log-likelihood function:

L(g,m) = log(P(g|m)) + log(P;(m))
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Fig. 3.2 Joint Markov—Gibbs random field model of DCE-MRI

In this work we focus on accurate identification of the spatial interaction between
the prostate voxels P(m), and the intensity distribution for the prostate tissues,
P(g|m), and the prior distribution P(m) of the prostate shape, as shown in Fig. 3.2.

To perform the initial prostate segmentation, a given 3D DCE-MRI is aligned to
one of the training 3D DCE-MRI. The shape model provides the voxel-wise object
and background probabilities being used, together with the conditional image
intensity model P(g|m), to build an initial region map. The final Bayesian segmen-
tation is performed using the identified joint MGRF model of the DCE-MRI and
region maps.

Conditional Intensity Model

The specific visual appearance of the prostate in each data set to be segmented
is taken into account by modeling a marginal gray-level distribution with a
linear combination of discrete Gaussians (LCDG) [32, 33]. Close approximation
with LCDG separates each factor of the joint empirical gray-level distribution,
P(g) = ] (xy)=r Pmir(&x,), into two (object and background) components, ( p(q|d);
q € Q, and A € L). The LCDG modeling restores transitions between these com-
ponents more accurately than conventional mixtures of only positive Gaussians,
thus yielding a better initial region map formed by voxel-wise classification of the
image gray values. The similar intensity profile of the prostate and surrounding
tissues.
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Fig. 3.3 Three-
dimensional second-order
MREF neighborhood system.
The reference voxel is
shown in red

AZ

Spatial Voxel Interaction Model

To overcome noise effect and to ensure the homogeneity of the segmentation,
spatially voxel interactions between the region labels are also taken into account.

A generic MGRF of region maps [34] accounts only for pairwise interaction
between each region label and its characteristic neighbors. Generally, the interac-
tion structure and the Gibbs potentials can be arbitrary and are identified from the
training data. For simplicity, we restrict the interaction structure to the nearest voxel
26-neighborhood only as shown in Fig. 3.3. By symmetry considerations, we
assume that the potentials are independent of relative orientation of each voxel
pair and depend only on intra- or inter-region position (i.e., whether the labels are
equal or not). Under these restrictions, it is the 3D extension of the conventional
auto-binomial, or Potts model differing only in that the potentials are estimated
analytically.

The 26-neighborhood has three types of symmetric pairwise interactions spec-
ified by the absolute distance a between two voxels in the same and adjacent MRI
slices (a =1, V2,and /3, respectively): (1) the closest pairs with the inter-voxel
N; = {(1,0,0),(0,1,0),(0,0,1)} coordinate offsets; (2) the diagonal pairs with the
offsets N 5 = {(0,1, £ 1), (1,0, £ 1), (1, £ 1,0)}; and (3) the farthest diagonal
pairs with the offsets N 5 = {(1, & 1, £ 1)}. The Gibbs potentials of each type are
bi-valued because only label coincidence is accounted for: V, = {V, .;iVane)
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where V., = V(L) if I = I'and V.. = V,(L.I) if | # I'; a€A = {1,v2,V/3}.
Then the MGRF model of region maps is as follows:

P(m) = %exp Z Z Z Va (mx,y,zvmx+§,y+}1,z+x) (3.2)

(xy,2)ER a€A (&n,K)EN,

where Z is the normalizing factor (partition function).
To identify the MGRF in Eq. (3.1), approximate analytical maximum likelihood
estimate of the 3D Gibbs potentials, V, ., and V, . are derived in line with [34]:

1
ww=—wm=20wwm—9 (3.3)

where f, .,(m) denotes the relative frequency of the equal labels in the equivalent
voxel pairs {((x,y,2),x + & y+n,z+K): (xy20) ER (x+ & y+1,z+kx) ER;
(&n.x) € N, } of aregion map m of a given DCE-MRI aligned in accord with the prior
shape model.

Probabilistic Shape Model

To enhance the segmentation accuracy, additional constraints based on the

expected shape of the prostate are introduced by co-aligning each given DCE-MR

data to a training database and using a soft probabilistic 3D prostate shape model

Py(m) = H Smx,y,z 3 where S, - is the empirical probability that the voxel
(x,y,2)ER

(x,y,2) belongs to the prostate (L = 'ob’) or the background (L = 'bg’) given the

map (see Figs. 3.4 and 3.5).

Prostate Shape Model Algorithm
Initialization:

e Co-align the 3D DCE-MRI training sets collected from different subjects using a
rigid 3D registration maximizing their mutual information (MI) [35].

¢ Manually segment the prostate from the aligned sets.

« Estimate the voxel-wise probabilities by counting how many times each voxel
(x,y,z) was segmented as the prostate.

Updating Prior Shape Model:

¢ To enhance the segmentation of the current prostate volume, the prior probabi-
listic shape model is updated by adding the previous segmented 3D prostate data
to the prior calculated shape model.
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Fig. 3.4 Forming prostate shape prior projected onto 2D:0020 top row-training samples; middle
row—manually segmented prostate regions, and bottom row—their affine MI-based alignment

Fig. 3.5 Two-dimensional
axial projection of gray-
coded prostate region shape
prior

Segmentation Algorithm

In total, the proposed prostate segmentation process involves the following steps:

1. Perform an affine alignment of a given 3D MRI to an arbitrary prototype prostate
from the training set using mutual information [35] as a similarity measure to
obtain the learned probabilistic shape model P(s|m).

2. Estimate the conditional intensity model P(g|m) by identifying the bimodal LCDG.

3. Use the intensity model found and the learned probabilistic shape model to
perform an initial segmentation of the prostate, i.e., to form an initial region map.

4. Use the initial region map to estimate the potential for the Potts model using
(3) and to identify the MGRF model P(m) of region maps.
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Fig. 3.6 Two-dimensional
schematic illustration of
measuring segmentation
errors

5. Improve the region map using voxel-wise stochastic relaxation (iterative condi-
tional mode—ICM [36]) through successive iterations to maximize the
log-likelihood function of Eq. (3.1) until the log-likelihood remains almost the
same for two successive iterations.

6. Output: The 3D prostate segmentation is the final estimate region map, m.

Performance Evaluation of the Proposed Segmentation Algorithm

To evaluate the performance of the proposed segmentation algorithm, we measured
true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) segmentation (Fig. 3.6) Let C and G denote the segmented region, its “ground
truth” counterpart, and the whole image lattice, respectively. Let |z| denote the
volume (in the number of voxels) of a region z. Then TP = |C N G| is the overlap
between C and G the false positive FP = |C — C N G| is the difference between
the segmented object and the TP; the false negative FN = |G — C N G| is the
difference between the ground truth and the TP; and TN = |R — C U G| The
positive predictive value (PPV), Sensitivity (Sens), and dice similarity coefficient
(DSC) are defined as:

TP
PPV =5 P (34)
TP
Sens = o on 3-5)
2x TP
DSC = X (3.6)

2xTP+FP+FN

Nonrigid Registration

Due to patient breathing and local movement, accurate registration is a main issue
in DCE-MRI sequences. A tremendous number of nonrigid image registration
techniques have been developed, e.g., [37, 38]. However, more robust, efficient,
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Fig. 3.7 Two-dimensional Equipotential
schematic illustration of Surfaces B =[ B..B B ]
correspondences by a al>“az>: - >am
potential field :

Streamlines

and sophisticated registration techniques are required. In this chapter, the nonrigid
registration of the DCE-MR data is performed by solving the second-order linear
partial differential Laplace equation:

52)/ 52}/

Vi =t L
4 ax2+ay2

0 (3.7)

for a scalar function y(x,y) between the target and the reference prostate objects. This
PDE arises in various scientific and engineering applications including fluid mechan-
ics, electromagnetic theory, potential theory, solid mechanics, heat conduction,
geometry, probability theory, etc. The solution of a planar Laplace equation between
two boundaries results in intermediate equipotential surfaces (dashed lines in
Fig. 3.7) and streamlines that connect both boundaries and are everywhere orthogonal
to all the equipotential surfaces (see, e.g., the line connecting the points B,,; and By in
Fig. 3.7).

The streamlines establish natural point-to-point correspondences between
the boundaries. Based on solving the Laplace equation, we perform the nonrigid
registration as follows:

1. Generate the distance maps inside the prostate regions as shown in Fig. 3.8a, b.

2. Use these distance maps to generate equispaced iso-contours (Fig. 3.8c, d).

3. Solve the Laplace equation between respective reference and target iso-contours
to find the point-to-point correspondence.

Wash-In and Wash-Out Perfusion Curves

After the nonrigid alignment, the wash-in and wash-out curves are constructed by
calculating the average intensities of prostate regions for each time sequence. These
curves show the response of the prostate tissues as the contrast agent perfuses for
each image section (see Fig. 3.9).
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Fig. 3.8 The distance maps (a, b) and the iso-contours (¢, d) of the two prostates

Color Map Generation and Tumor Boundary Determination

To characterize the physiological data, color-coded maps that illustrate the propa-
gation of the contrast agent in the prostate tissues are constructed. To construct the
initial color maps, we have to estimate the changes in image signals J. , . due to the
contrast agent. These changes are estimated from the constructed perfusion curves
as the difference between the signals of image sequences at 1, and £, (see Fig. 3.9).
To preserve continuity (remove inconsistencies), the initial estimated 6, . values
are considered as samples from a generalized Gauss—Markov random field
(GGMRF) image model [39] of measurements with the 26-voxel neighborhood
(Fig. 3.3). Continuity of the constructed 3-D volume (Fig. 3.10) is amplified by
using their MAP estimates as shown in [28]:

3,‘(,}‘,2 =arg min (Sx,y,z o st,y,z |a +p0’/1ﬂ Z n(x,y,Z)A( 'y r) 5’\-’)53 — 5){/7 y/7 S/

XyVsZ A
”’ («\’7%2 )EI«.\.»;)
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Fig. 3.9 Estimating & from 55 T T T T T -
the perfusion curve as the
difference between the peak
and initial signal of image
sequences
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40}
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Fig. 3.10 Enhanced perfusion estimation and continuity analysis using the 3-D GGMRF image
model
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where 6., . and 5x, y,z denote the original values and their expected estimates, v, -
is the 26-neighborhood voxel set (Fig. 3.3), #(xy.-)v,y,~) 1S the GGMREF potential,
and p and A are scaling factors. The parameter § < [1.01, 2.0] controls the level of
smoothing (e.g., smooth, f = 2, vs. relatively abrupt edges, f = 1.01). The param-
eter a € {1; 2} determines the Gaussian, @ = 2, or Laplace, @ = 1, prior distribu-
tion of the estimator. Then, the color maps are generated based on the final
estimated & (see Fig. 3.10).

Finally, to allocate the boundary of the detected tumors, which is important to
determine the cancer stage in case of malignancy, we used a level set-based
deformable model controlled by a stochastic speed function [40]. The Ilatter
accounts for the perfusion information and spatial interactions between the prostate
voxels.

Experimental Results

Data Acquisition

During development of this study, we observed that good selection of a DCE-MR
imaging protocol is as important as the image analysis, if not more important. The
key point in the protocol is to take the images as quickly as possible while trying to
conserve the quality. A compromise on image quality results in too much noise and
partial volume effects; on the other hand, a compromise on speed results in fewer
data points, which prevents us from being able to classify signals. Therefore, with
collaborative efforts, the protocol was modified a number of times to acquire
standard and better quality imaging. The protocol described below has been
found to be optimal with the current MRI hardware (Signa Horizon GE 1.5 tesla
MR scanner using an additional pelvic coil).

In our protocol, gradient-echo T2 imaging was employed by a Signa Horizon GE
1.5 tesla MR scanner using an additional pelvic coil. Images were taken at a 7 mm
thickness with an interslice gap of 0.5 mm. The repetition time (TR) was 50 ms, the
TE was minimum with flip angle at 60°, the band width was 31.25 kHz, the field of
view (FOV) was 28 cm, and the number of slices was seven. The DCE-MRI process
started with a series of MRI scans which were used to establish a baseline in image
intensity. These scans were performed without the administration of contrast
enhancing agents so that the tissue’s nonenhanced image intensity could be
established. In the next stage, 10 cc of gadoteric acid (Dotarem 0.5 mmol/mL;
Guerbet, France) was administered intravenously at a rate of 3 mL/s. At this point, a
series of MRI scans was performed every 10 s for 3 min, and every series contained
seven slices. Note all the subjects were diagnosed using a biopsy (ground truth). A
sample of what a DCE-MRI looks like with this protocol is shown in Fig. 3.11.
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Fig. 3.11 Example of a DCE-MRI slices images from one patient. For each patient, 128 images
are taken

Segmentation Results

The proposed segmentation approach has been tested on DCE-MRI sequences for
30 independent subjects. Figure 3.12 demonstrates some segmentation results of the
prostate region at selected image sections for different subjects and their associated
false positive (FP) and false negative (FN) errors. For comparison, our segmenta-
tion results are compared to the radiologist’s tracing based on the PPV, Sensitivity
(Sens), and DSC [41]. Table 3.1 represents the PPV, Sens, and DSC statistics
obtained for the test subjects involved in this study.

For comparison, all time series images have been segmented using the shape-
based approach proposed in Tsai et al. [42]. The comparative results for a few of
them are shown in Fig. 3.13. Table 3.2 compares the segmentation results over all
test data sets with the known ground truth (manual tracing by an imaging expert)
and the differences are shown to be statistically significant by the unpaired t-test
(the two-tailed value P is less than 0.0001).
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Fig. 3.12 Segmentation results: the segmentation results with error referenced to the ground truth
G is outlined in yellow [false negative (FN): pixels segmented as the prostate in G but not
segmented as the prostate with our approach] and red [false positive (FP): pixels segmented as
the prostate with our approach but not segmented as the prostate in the G]

Table 3.1 Error statistics over all test data sets

Performance measures

PPV Sens DSC
Minimum 0.972 0.837 0.909
Maximum 0.989 0.851 0.930
Mean 0.982 0.846 0.923

Standard deviation 0.004 0.004 0.004
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Fig. 3.13 Accuracy of our segmentation in comparison with [42]. Our segmentation is outlined in
blue and [42] in red with reference to the ground truth G in white

Table 3.2 Comparative segmentation accuracies over all test data sets

Algorithm

Our [42]
Minimum error (%) 0 2.51
Maximum error (%) 1.50 11.92
Average error (%) 0.53 591
Standard deviation (%) 0.33 4.44

Two-tailed P-value 0.0001
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Diagnostic Results

The ultimate goal of the proposed framework is to successfully distinguish
between malignant and benign detected tumors by constructing the perfusion
curves from the DCE-MRI sequences. The curves show the response of the prostate
tissues as the contrast agent perfuses. The malignant subjects show an abrupt
increase to the higher perfusion values and the benign subjects show a delay in
reaching their peak perfusion (see Fig. 3.14). From these curves, we have been able
to conclude that the peak perfusion value and the wash-in slope are the two major
extracted features for classification. To distinguish between benign and malignant
cases, we used a k-nearest neighbor (KNN) classifier to learn the statistical char-
acteristics of both benign and malignant subjects from the perfusion curves of the
training sets. In our approach, we used nine data sets for the training (see Fig. 3.14)
and the other 21 for testing. The KNN-based classification classifies both training
and testing data correctly, so the overall accuracy of the proposed approach is
100 %. Following the classification, a visual assessment is made. Figure 3.15
presents the color-coded maps over all image sections before and after applying
the 3-D GGMREF smoothing for three subjects involved in our study. Figures 3.16
and 3.17 show two examples of the tumor contours determination for benign
subjects, and Figs. 3.18 and 3.19 show two examples of the tumor contours
determination for malignant subjects.

Conclusion

In this chapter, we present a framework for detecting prostate cancer using
DCE-MRI. The framework includes prostate segmentation, nonrigid registration,
and KNN-based classification. For prostate segmentation, we introduced a new 3D
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Fig. 3.15 Color-coded maps for three of the test subjects before and after the 3-D GGMRF
smoothing with p =1, A =5, f = 1:01, a = 2, and r](.\.v.z),( ) = /2 and their respective

XLy .z
color-coded maps. The red and blue ends of the color scale relate to the maximum and minimum
changes, respectively

approach that is based on a MAP estimate of a new log-likelihood function that
accounts for the shape priori, the spatial interaction, and the current appearance of
the prostate tissues and its background. Following segmentation, we introduced a
nonrigid registration approach that deforms the prostate object on iso-contours
instead of a square lattice, which provides more degrees of freedom to obtain
accurate deformation. The perfusion curves of the segmented prostate region are
calculated and the features extracted from these curves undergo KNN-based
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Slice 3

Slice 5

Fig. 3.16 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of
the first benign subject. Tumor’s contour determination (green)

classification. Applications of the proposed approach yield promising results that
would, in the near future, replace the use of current technologies to determine the
type of prostate cancer.

Our future work will include testing more patients. In addition, we will try to
implement a fusion between DCE-MRI and Diffusion MRI to get better diagnosis
results.
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Slice 3 Slice 4

Slice 5 Slice 6

Fig. 3.17 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of
second benign subject. Tumor’s contour determination (green)
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Fig. 3.18 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of
the first malignant subject. Tumor’s contour determination (green)
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Slice 3 Slice 4

Slice 5 Slice 6

Fig. 3.19 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of
first malignant subject
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Chapter 4

Computational Intelligent Image Analysis
for Assisting Radiation Oncologists’ Decision
Making in Radiation Treatment Planning

Hidetaka Arimura, Taiki Magome, Genyu Kakiuchi, Jumpei Kuwazuru,
and Asumi Mizoguchi

Abstract This chapter describes the computational image analysis for assisting
radiation oncologists’ decision making in radiation treatment planning for high
precision radiation therapy. The radiation therapy consists of five steps, i.e., diag-
nosis, treatment planning, patient setup, treatment, and follow-up, in which com-
putational intelligent image analysis and pattern recognition methods play
important roles in improving the accuracy of radiation therapy and assisting
radiation oncologists’ or medical physicists’ decision making. In particular, the
treatment planning step is substantially important and indispensable, because the
subsequent steps must be performed according to the treatment plan. This chapter
introduces a number of studies on computational intelligent image analysis used for
the computer-aided decision making in radiation treatment planning. Moreover, the
authors also explore computer-aided treatment planning methods including auto-
mated beam arrangement based on similar cases, computerized contouring of lung
tumor regions using a support vector machine (SVM) classifier, and a computerized
method for determination of robust beam directions against patient setup errors in
particle therapy.

Introduction

Malignant neoplasms, cardiac disease, and cerebrovascular disease are the top three
major causes of death in Japan. Malignant neoplasms have been the top cause of
death since 1981, and their mortality rate has consistently increased in Japan. The
mortality due to malignant neoplasm was 30 % of all-cause mortality in 2009 [1].
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The three major treatment strategies for malignant neoplasms are surgical
intervention, chemotherapy, and radiation therapy, but usually patients are treated
using the combination of two or more modalities instead of a single approach,
which is called combined modality therapy.

Radiation therapy, which of course does not require physical incision of the
patient’s body like surgical intervention, has attracted considerable attention,
because it can preserve organ function and reduce the physical burden of patients,
particularly elderly patients. This treatment modality is especially important for
developed countries such as the USA and Japan, which have been moving toward
an aging society. In Japan, the percentage of elderly people is currently estimated to
be more than 20 %, and the average lifespan was 86 years for females and 79 for
males in 2008. Therefore, radiotherapy would provide great benefits for many
patients, including elderly patients, and thereby enhance their quality of life.

The primary aim of radiation therapy is to deliver as high a dose as possible to
the tumor, while causing as little damage as possible to normal tissues and organs at
risks (OARs) and thus avoiding adverse effects [2, 3]. The OARs are the normal
tissues whose radiation sensitivity may significantly influence radiation treatment
planning (RTP) and/or the prescribed dose [4]. In order to protect these tissues,
several techniques using high precision radiation therapy have been developed,
such as stereotactic body radiation therapy (SBRT), intensity modulated radiation
therapy (IMRT), adaptive radiotherapy (ART), real-time tracking radiotherapy
(RTRT), and image-guided radiation therapy (IGRT), and these advances have
led to impressive progress in radiation precision in recent years. As a result, high
precision radiation therapy has been reported to provide outcomes comparable to
surgery for some cancers [5]. In these high precision radiation therapies, computa-
tional intelligent image analysis and pattern recognition methods play important
roles in improving the accuracy of radiation therapy and assisting radiation oncol-
ogists’ or medical physicists’ decision making.

The radiation therapy consists of four steps, i.e., diagnosis, treatment planning,
treatment, and follow-up. The computational intelligent image processing and pat-
tern recognition techniques are employed to assist radiation oncology staff members
in the decision making at each step of the radiation therapy. Figure 4.1 shows the five
steps of radiation therapy and examples of image processing techniques at each step.

The first step is the diagnosis of the patient. In this step, a radiation oncologist
determines the treatment policy, e.g., curative treatment or palliative treatment, but
computer-aided diagnosis techniques may also be useful if the oncologist decides to
use multiple modalities.

The second step is the treatment planning. In this step, the treatment planner
should extract the gross tumor volume (GTV) and the OAR, and should formulate
an “optimum’” plan by arranging beams to maximize the tumor dose and minimize
the OAR dose. Various automated segmentation methods have been developed and
are still being researched for the extraction of tumor and OAR regions. Image
registration techniques are very useful for segmenting tumors using fused images
that combine morphological and functional images such as planning CT images and
positron emission tomography (PET) images. In particle therapy, treatment
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Fig. 4.1 Five steps of radiation therapy and examples of image processing techniques in each step

planners should take into account patient setup error when the beam directions are
determined; otherwise, the actual dose distribution in the patient during treatment
may be strongly degraded compared with the planned dose distribution.

The third step is the patient setup. In this step, the radiation therapists position a
patient on the treatment couch. Image registration techniques, which register a
moving image to a reference image using corresponding feature points between the
two images, are employed for correction of a patient’s setup errors. Previous studies
have demonstrated that these techniques are indeed effective for reducing the setup
errors [6, 7]. In general, digitally reconstructed radiograph (DRR) images and
planning CT images are used as the reference images, and electronic portal imaging
device (EPID) and cone-beam CT (CBCT) images produced using kilovoltage or
megavoltage X-rays at the treatment time are employed as the moving images.

The fourth step is the treatment itself. An X-ray or particle beam is delivered to
the patient according to the treatment plan. One of the major issues is the radiation
delivery for moving tumors such as lung or liver cancers. Pattern recognition
techniques, such as the detection of tumors and fiducial markers (e.g., gold marker),
are essential for minimizing the treatment time in these cases. For instance, a real-
time tumor tracking radiography (RTRT) system has been developed, which
employs pattern recognition techniques by following a gold marker within the
tumor in order to track the tumor and switch the X-ray beam on and off [8].

Finally, the fifth step is the follow-up. In this step, the radiation oncologist
evaluates the treatment outcomes using multimodality imaging devices. Pattern
recognition techniques have also been applied during the follow-up to predict the
radiation therapy outcomes and normal tissue complications [9—13].

In this chapter, we will consider computational and intelligent approaches in
the radiation treatment planning, because the treatment planning step is indispens-
able, and largely dictates the subsequent steps. Therefore, a number of studies on
computational intelligent image analysis used for computer-aided decision making
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in the radiation treatment planning have been introduced, including automated
beam arrangement based on similar cases, computerized contouring of lung
tumor regions using a support vector machine (SVM) classifier, and a computerized
method for determination of robust beam directions against patient setup errors in
hadron particle therapy.

Computer-Aided Decision Making for the Determination
of Beam Arrangements

Background

Stereotactic body radiotherapy (SBRT) has been widely used for the treatment of
early stage lung cancers in recent decades [14]. The survival rate for SBRT has been
encouraging and potentially comparable to that for surgery [5]. Daily doses in
conventional external beam radiotherapy are typically delivered in the range of
1.8-2.0 Gy (total doses: 60—70 Gy), whereas stereotactic body radiotherapy (SBRT)
is generally administered at five or fewer fractions of high doses of 10-20 Gy per
fraction. The shortened treatment time with fewer fractions would result in signif-
icant benefits to both patients and hospitals, which have limited inpatient capabili-
ties. However, high doses per treatment have been considered dangerous in the past
due to limitations in the treatment delivery technology, such as incomplete immo-
bilization, that raised concerns about potential toxicity if large volumes of normal
tissues or OAR were exposed to high dose radiation during each treatment. With the
recent advances in treatment techniques, it has become possible to concentrate very
large doses of radiation to tumors and to minimize the doses to surrounding normal
tissues by using multiple beams directed in coplanar and non-coplanar directions
[15]. However, the determination of beam arrangement is a substantially demanding
task for inexperienced treatment planners and affects the critical dose distribution
with steep dose gradients.

Treatment planning skills are developed by repeated planning in clinical practice,
often under the guidance of experienced planners or appropriate textbooks. In this
way, treatment planners should memorize many planning patterns and construct an
evolving “database” in their memory, which can then be searched for previous cases
similar to the case under consideration. However, although a number of automated
methods for determination of beam arrangements have been developed [16, 17],
there are currently no such methods for determining beam arrangements based on
similar previous cases. On the other hand, in the field of diagnostic radiology, the
presentation of similar cases as a diagnostic assist has been suggested for diagnosis
of chest images [18], lung computed tomography (CT) images [19, 20], and mam-
mography images [20-23]. These researches have indicated the feasibility of using
similar cases as a diagnostic assist. However, to the best of our knowledge, there are
no studies on the feasibility of using similar planning cases for the determination of
beam arrangements in the field of radiation therapy.
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Computer-Aided Beam Arrangement Based on Similar Cases
in Radiation Treatment Planning Databases

The authors developed a computer-aided decision making method for determina-
tion of beam arrangements based on similar cases in a radiotherapy treatment
planning (RTP) database of the results from experienced treatment planners. Sim-
ilar-case-based beam arrangements were automatically determined based on the
following two steps. First, the five plans showing the greatest similarity to an
objective case were automatically selected in the RTP database by considering
the weighted Euclidean distance of geometrical feature vectors, i.e., related to the
location, size, and shape of the planning target volume (PTV), lung, and spinal cord,
between the objective case and each plan in the RTP database. Second, the five
beam arrangements of an objective case were automatically determined by regis-
tering five cases similar to the objective case with respect to lung regions by means
of an affine transformation.

Selection of Similar Treatment Plans Based on Geometrical Features

In the first step, the five plans most similar to an objective case were automatically
selected in the RTP database by considering the weighted Euclidean distance of
geometrical feature vectors between the objective case and each plan in the RTP
database. The weighted Euclidean distance was considered a similarity measure.
The weights of geometrical features were needed to give the geometrical features
the appropriate degree of importance from the treatment planning point of view.
Therefore, when applying the proposed method to their own databases, each
institute should determine the appropriate weights of the geometrical features
based on their own philosophy or policy of treatment planning. The weighted
Euclidian distance dj;,qq. Was calculated by the following equation:

4.1)

d image —

where G is the number of geometrical features, w; is the weight of the i-th
geometrical feature, a; is the i-th geometrical feature for the objective case, and
Pi is the i-th geometrical feature for each case in the RTP database. Note that each
geometrical feature was divided by the standard deviation of all cases in the RTP
database to normalize the range of each feature value. In this study, we defined ten
geometrical features, i.e., the x, y, z coordinates of a PTV centroid, the effective
diameter of the PTV, the sphericity of the PTV, the lung length in the left-right
(LR), anterior—posterior (AP), and superior—inferior (SI) directions, the distance in
the centroid between the PTV and spinal cord in the isocenter plane, and the angle
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from the spinal cord to the PTV in the isocenter plane. Weights for geometrical
features were empirically determined by using the five training cases so that cases
more similar to the objective case could be selected.

Determination of Beam Arrangements Based on Similar Treatment
Plans Using the Linear Registration Technique

In the second step, five beam angles of an objective case were automatically
determined by registration of five similar treatment plans with the objective case
with respect to lung regions using a linear registration technique, i.e., affine trans-
formation [24]. First, the affine transformation matrix to register the lung regions of
each similar plan with that of the objective case was calculated by using a least
squares method based on eight feature points, which were automatically selected for
the registration in vertices of the circumscribed parallelepiped of lung regions.
Second, a beam direction, i.e., beam position vector, based on a gantry angle € and
couch angle ¢ was transformed from a spherical polar coordinate system to a
Cartesian coordinate system as a unit position vector. Third, each beam position
vector of similar cases was modified in the Cartesian coordinate system by using the
same affine transformation matrix as a registration in terms of lung regions. Finally,
the resulting position vector was converted from the Cartesian coordinate system to
the spherical polar coordinate system as gantry angle ' and couch angle ¢'.

Evaluation of Beam Arrangements Determined Based on Similar
Treatment Plans Using Planning Evaluation Indices

The most usable plan was selected by sorting the five plans based on an RTP
evaluation measure with 11 planning evaluation indices, which was the Euclidean
distance in a feature space between each plan and an ideal plan. In this study, the
ideal plan was assumed to produce a perfect uniform irradiation with a prescription
dose in the PTV and no irradiation in the surrounding organs and tissues. The
usefulness of each plan was estimated by the following Euclidean distance d,,,, of
the planning evaluation vector between the ideal plan and each plan determined by
a similar plan, and the Euclidean distance was considered the RTP evaluation
measure:

4.2)

where J is the number of planning evaluation indices, X; is the j-th planning
evaluation index for the ideal plan, and Y; is the j-th planning evaluation index
for the plan based on the five most similar plans. Each planning evaluation index
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Fig. 4.2 An objective case with a tumor on the lung wall (a) and the first to third most similar
cases (b—d) to the objective case

was normalized in the same manner as the geometrical features. The eight evalu-
ation indices consisted of the D95, homogeneity index (HI), conformity index
(CI) for the PTV, V5, V10, V20, mean dose for the lung, and maximum dose for
the spinal cord, and their values for the ideal plan were set to 48 Gy (prescription
dose), 1.0, 1.0, 0 %, 0 %, 0 %, 0 Gy, and 0 Gy, respectively.

Evaluation of Computer-Aided Beam Arrangement
Based on Similar Cases

We applied the proposed method to ten test cases by using an RTP database of
81 cases with lung cancer and compared the eight planning evaluation indices
between the original plan and the corresponding most usable similar-case-based
plan. Figure 4.2 shows an objective case with a tumor on the lung wall (Fig. 4.2a)
and the first to third most similar cases (Fig. 4.2b—d) to the objective case. The similar
cases geometrically resemble the objective case (Fig. 4.2a), especially in terms of the
geometrical relationship between the tumor and the spinal cord. Figure 4.3 shows a
plan obtained by the original beam arrangement (Fig. 4.3a), and three plans deter-
mined by similar-case-based beam arrangements (Fig. 4.3b—d), which were sorted in
descending order based on the RTP evaluation measure. The plans of Fig. 4.3b—d
were derived from similar cases as shown in Fig. 4.2b—d, respectively. In this case, the
beam arrangements consisted of seven to eight beams with three to four coplanar
beams and three to four non-coplanar beams. The objective case (Fig. 4.3a) received
an oblique lateral beam, which passed close to the spinal cord in order to increase
the conformity of the PTV. On the other hand, the most usable similar-case-based
beam arrangement (Fig. 4.3b) had no lateral beams for avoiding the spinal cord,
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Fig. 4.3 A plan obtained by the original beam arrangement (a), and three plans determined by
similar-case-based beam arrangements (b—d), which were sorted in descending order based on the
RTP evaluation measure

but the second to third usable cases (Fig. 4.3c, d) had lateral beams due to prioritizing
the PTV conformity rather than sparing the spinal cord. As a result, there were no
statistically significant differences between the original beam arrangements and the
most usable similar-case-based beam arrangements (P > 0.05) in terms of the eight
planning evaluation indices including the D95, mean lung dose, and spinal cord
maximum dose. In conclusion, the proposed method suggested usable beam arrange-
ments with little difference from cases in the RTP database, and thus it could be
employed as an educational tool for less experienced treatment planners.

Computer-Assisted Contouring of Tumor Regions
in Radiation Treatment Planning

Background

To improve the outcomes of radiotherapy, stereotactic radiotherapy has been
developed for the treatment of stable tumors such as brain tumors by delivering
very higher doses in small irradiation fields. Moreover, SBRT has been applied to
moving tumors such as lung tumors while immobilizing the body and monitoring
tumor locations. In the SBRT technique, tumor dose is maximized while the normal
tissue dose is minimized. However, it would be assumed that the tumor and OAR
contours should be determined as accurately as possible. In fact, the accuracy of
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contouring or segmentation of tumors affects the precision of radiotherapy, because
the prescribed dose distribution in RTP is determined based on the tumor regions,
which are manually determined on planning CT images on a slice-by-slice basis by
a treatment planner. However, the subjective manual contouring is tedious and its
reproducibility would be relatively low, resulting in inter-observer variability and
intra-observer variability of tumor regions [4, 25-28]. The tumor region is called
the GTV, which is defined as the visible tumor volume in images. A number of
automated contouring methods for the GTVs have been proposed for reducing the
inter-observer variability and intra-observer variability, planning time, and increas-
ing segmentation accuracy of the GTVs. The conventional methods are based on
thresholding of the standardized uptake value (SUV) [29, 30], or on the region
growing method [28], Gaussian mixture model [31], fuzzy c-means algorithm [32],
fuzzy locally adaptive Bayesian approach [33, 34], gradient-based segmentation
method [35], model-based method [36], and atlas-based method [37]. However,
there have been a few studies on segmentation methods for tumor regions based on
biological information as well as physical information, such as PET and CT images.
18F-FDG PET directly shows biological information of higher metabolic rates
compared with normal tissues for the radiolabeled glucose, which is associated
with malignant neoplasms. El Naqa et al. [38] developed a multimodality segmen-
tation method using a multivalued level set method, which can provide a feasible
and accurate framework for combining imaging data from different modalities
(PET/CT), and is a potentially useful tool for the delineation of biophysical structure
volumes in radiotherapy treatment planning. On the other hand, in this study, we
tried to incorporate the tumor contours determined by radiation oncologists based
on the PET biological information and CT morphological information into the
proposed contouring method by using a machine learning method. Therefore, the
aim of this study was to develop an automated method for contouring the GTVs of
lung tumors with an SVM, which learned various contours determined on planning
CT images by radiation oncologists while taking into account the PET/CT images.

Automated Method for Contouring the GTVs of Lung Tumors
Using an SVM Classifier with Knowledge from Radiation
Oncologists’ Contours on Data Sets of Planning CT

and FDG-PET/CT Images

The proposed method was composed of four steps. First, the planning CT, the
PET/CT images, and GTV data were converted into isotropic images by using
interpolation methods. Second, the PET images were registered with the planning
CT images through the diagnostic CT images of PET/CT. Third, six voxel-based
features including voxel values and magnitudes of image gradient vectors were
derived from each voxel in the planning CT and PET /CT image data sets. Finally,
lung tumors were extracted by using an SVM, which learned six voxel-based
features inside and outside each true tumor region.
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Fig. 4.4 An illustration for registration of a PET image to a planning CT image

Registration of the PET Image to the Planning CT Image

Prior to the registration, a diagnostic CT image of the PET/CT data set was
registered with the PET image using an image position in a digital imaging and
communications in medicine (DICOM) header information and a rigid registration
based on normalized mutual information [39]. Figure 4.4 shows an illustration for
registration of a PET image to a planning CT image. First, the diagnostic CT image
of the PET/CT data set was registered with a planning CT image by using an affine
transformation. Then, the PET image was registered with the planning CT image
and a GTV region (radiation therapy structure data) in DICOM-RT (DICOM for
radiation therapy) by using the same affine transformation matrix, because the PET
image was scanned as the same coordinate system as the diagnostic CT image of the
PET/CT data set.

Determination of Voxel-Based Image Features

Six voxel-based features were derived for the SVM from each voxel in the planning
CT and PET/CT image data sets. All image data, including planning CT images,
GTYV regions, and PET/CT data sets were placed in the same coordinate system
after the registration in the previous step. Therefore, each voxel value and its
magnitude of image gradient vector were obtained as image features from each
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voxel in the planning CT image, diagnostic CT and PET images of a PET/CT
data set. The image gradient was derived from the following one-order polynomial
withina 5 x 5 x 5 voxel region, which was obtained by a least-square method:

f,y,z) =ax+ by +cz+d, 4.3)

where x, y, and z are coordinates in a three-dimensional image, f(x, y, z) is the
one-order polynomial, and a, b, ¢, and d are constants. The gradient magnitude was
defined by the following equation:

2 2 2
G= \/(af> + <g> + <ﬁ> =Va +b*+ 2 (4.4)

Ox Oy 0z

Segmentation of the GTV Region Using an SVM

The GTVs were extracted by using an SVM, which learned three or six voxel-based
features inside and outside each true tumor region (gold standard). The teacher
signal was plus one if the voxel was inside the GTV region, whereas the teacher
signal was minus one if the voxel was outside the GTV. The outside region of the
GTV was defined as the region dilated six times by a circle kernel with a radius of
1 mm. The training voxels were selected at various sampling intervals depending on
the ratio between the numbers of inside and outside voxels so that the number of the
inside voxels could be the same as that of outside voxels. We constructed an SVM
classifier with a Gaussian kernel, i.e., exp(—y||x—y||2), by using the open source
software package SVM light [40]. In this study, the value vy, the parameter C, and
the threshold value were set as 0.0001, 12.5, and 0.50, respectively.

Performance of the Automated Method for Contouring GTVs of Lung
Tumors Using SVM

Figure 4.5 shows a pair plot matrix between any two of the six image features, i.e.,
the voxel values of the planning CT image and diagnostic CT, and the SUV of PET
images, and three gradients for the three kinds of images. In this pair plot matrix,
each graph in the intersection shows the relationship between any two of the six
image features. The gold standard of GTV voxels is indicated by red circles and the
outside volume of GTV voxels is indicated by blue crosses. The aim of this feature
analysis is to characterize a voxel (tumor or normal tissue) to be recognized by
measurements based on a voxel whose feature value is very similar to those for
objects in the same category, but as different or distinguishable as possible from
those for objects in different categories. According to Fig. 4.5, the relationships
related to the SUV obtained from the PET images seem to be relatively distinguish-
able between the tumor and normal tissue. The GTVs extracted by using the SVM,
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Fig. 4.5 Pair plot matrix between any two of the six image features. The gold standard of GTV
voxels is indicated by red circles and the outside volume of GTV voxels is indicated by blue
crosses. CTp value: CT value of the planning CT; CTx value: diagnosCc CT value of PET/CT;
SUV: standardized uptake value obtained by PET of PET/CT; | VICTp|: magnitude of the gradient
of the planning CT; | VICTx|: magnitude of the gradient of the diagnosCc CT of PET/CT; | VIpgr|:
magnitude of the gradient of PET of PET/CT

which learned three or six voxel-based features inside and outside each true tumor
region, are shown in Fig. 4.6 with the Dice similarity coefficient (DSC) between the
gold standard and regions segmented by the proposed method. The three features
were the voxel values of the planning CT image and diagnostic CT, and the SUV of
PET images. Estimated GTV regions are shown in green, and the borders of the GTV
contoured by radiation oncologists are indicated with red lines. In addition, overlap
lines between the GTV outline and the estimated GTV are shown in yellow. The
results showed that the average DSCs for three and six features were 0.744 and
0.899, and thus the SVM may need six features to learn the distinguishable charac-
teristics. In addition, it might be a little more difficult for the SVM to learn the mixed
grad glass opacity (GGO) tumor compared with the solid tumors.
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Fig. 4.6 GTVs extracted by using the support vector machine, which learned three or six voxel-
based features inside and outside each true tumor region. Estimated GTV regions are shown in
green, and the borders of GTV contoured by radiation oncologists are indicated by red lines.
In addition, overlapping lines between the GTV outline and the estimated GTV are indicated in
yellow

DSC: 0.937

Computerized Method for Determination of Beam
Directions in Hadron Particle Therapy

Background

Particle therapies such as proton therapy or heavy ion therapy (carbon ion) have the
physical ability to better define and control the dose distribution produced with the
particles, which have the Bragg peak, and to increase the high dose delivered to
tumors while achieving a very low dose to normal tissue [41, 42]. Furthermore, the
highly ionizing property of the heavy ion charged particles, i.e., higher linear
energy transfer (LET), results in greater potential for killing tumor cells than
conventional radiotherapy of X-rays or electrons from the biological point of view.
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In the particle therapy, the shape of dose distribution is modulated by the
following three steps in general, so that the three-dimensional (3D) dose distribution
conforms to a target volume. First, mono-energetic particle beams were modulated
to the target thickness range along each beam path (Spread-out of Bragg peak;
SOBP) with a ridge filter. Second, the distal end of the SOBP can be conformed to
each tumor by use of a range shifter and a patient-specific compensator in a depth
dose shaping system, which is made based on lateral distributions in the beam’s eye
view (BEV) of a 3D electron density (ED) map of a computed tomography
(CT) image for each patient. Third, the lateral radiation field edge was formed to
the lateral outline of the target from the BEV by using a multi-leaf collimator. This
method is called a passive beam shaping method. Another beam shaping method is
called the active beam shaping method or the pencil beam scanning method, e.g., the
spot scanning method and raster scanning method. In this method, the target volume
is accurately painted by the pencil beam with modulating particle energy.

However, the accurate dose distributions produced by the hadron particles may
be very sensitive to patient setup errors [43—49] occurring in a lateral direction
orthogonal to the beam direction. In the conclusion of our previous study [50], we
discussed the need to develop a method for finding robust beam directions for
patient setup error in hadron particle therapy when there are abrupt lateral fluctu-
ations of the electron density projection within the irradiation field.

Decision Making Method for Suggestion of Robust Beam
Directions Against the Patient Setup Error Based on Power
Spectra of Electron Density Images

If the patient setup errors are not taken into account during the treatment planning,
the actual dose distribution that would occur in the patient during treatment could
be strongly degraded compared with the planned dose distribution. In other words,
due to patient setup errors, the distal end of the dose distribution in a beam direction
could not be fitted with that of a tumor shape if the ED-based BEV in the beam
direction changed more abruptly (high frequency fluctuation) with large amplitude
fluctuation. This incident could lead to significant tumor underdose, but fatal
overdose in OAR. Therefore, our goal in this study was to develop a computerized
method for determination of robust beam directions against the patient setup error
based on the ED-based BEV in the beam direction in the hadron therapy. The
proposed method mainly consisted of the following two steps.

1. Production of a BEV image by projecting a 3D electron density image from a
particle source to a planning target volume (PTV) distal end.

2. Determination of robust beam directions against patient setup errors by using the
slope of the power spectrum.
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Production of a BEV Image by Projecting a 3D Electron Density Image

A BEV image was produced by projecting a 3D electron density image in a beam
direction from a particle source to the distal end of a planning target volume (PTV).

First, isotropic CT images were derived from original CT images by using a
cubic interpolation.

Second, a 3D electron density image was obtained from a patient’s CT image by
using a conversion table from the CT value (Hounsfield unit) to the electron density
relative to water using an experimental method [51]. The relationship between the
CT values and the electron density relative to water was experimentally measured
using a tissue characterization phantom.

Third, each patient body region was extracted in the isotropic CT image by the
following method. The original CT image was binarized by using an automated
thresholding technique [52] to obtain a patient body, but including other regions
such as the couch or immobilizing devices. The patient body region was obtained
from the binarized image by applying an opening filter followed by extraction of the
largest region, and a closing filter, which was used for removing the other regions.

Fourth, the PTV region was defined by adding a 5 mm margin for the contour data
of the CTV, which were delineated by a radiation oncologist and obtained from
digital imaging and communications in medicine for radiation therapy (DICOM-RT)
files. The isotropic PTV region was produced by use of a shape-based interpolation
[53] for matching the voxel size of the PTV data with the isotropic electron density
image.

The ED-based BEV was produced by projection of the 3D electron density
image from a particle source to the distal end of a planning target volume (PTV).
The vertical beam port of the heavy ion medical accelerator in Chiba (HIMAC) was
virtually built as a particle source in this study. The SAD and SID were virtually set
as 990 and 1,040 cm, respectively. The isocenter in the planning CT image obtained
in a DICOM-RT file was placed at an SAD of 990 cm in the world coordinate
system. For production of the ED-based BEV image, a divergent primary beam
with a number of rays produced from a particle source was virtually delivered to a
3D ED image. Then, the ED values on each ray in the divergent beam in the 3D ED
image were sampled at a certain interval, and accumulated for each pixel in a virtual
imaging plane, which was the same pixel size of 0.59 mm as the planning CT, but a
512 x 512 matrix size. The ED values on the ray were interpolated by using a
linear interpolation technique. The simulated irradiation field was considered as the
irradiation field if the particle therapy was performed for the patient.

Determination of Robust Beam Directions Against Patient Setup Errors
by Using the Slope of the Power Spectrum

The basic idea of our proposed method was to find the robust beam directions
whose ED-based BEV images had spatial fluctuations with low special frequency
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and small amplitude. Power spectra of the ED-based BEV images in all directions,
i.e., 0-355°, with an interval of 5° were calculated for evaluation of the spatial
fluctuations in the ED-based BEV images in a beam direction. We assumed that as
the average spatial frequency and amplitude of the fluctuation in the ED-based BEV
images in a beam direction become lower and smaller, respectively, the absolute
value of the slope of the power spectrum becomes larger. Therefore, the slope of
one-order polynomial of the power spectrum was calculated for determination of
the robust beam directions.

Prior to calculation of the power spectral images, the ED-based BEV images
were preprocessed as follows. First, the pixel values outside the irradiation field
were assigned the average pixel value of the ED-based BEV inside the simulated
irradiation field for decreasing the difference in the pixel value between inside and
outside of the irradiation field. Second, a Gaussian filter was applied to inner and
outer narrow bands (ten pixels) apart from the edge of the ED-based BEV for
reducing the higher frequency components in the power spectrum, which were not
related to the ED-based BEV. Third, a mean value in the ED-based BEV image was
subtracted from the image to remove the influence of the mean value of the power
spectral image.

Fourth, a power spectral image was calculated by using two-dimensional Fourier
transformation from the preprocessed image. The two-dimensional Fourier trans-
formation and the power spectrum were calculated by the following equations:

Fu,v) = Jw Jm Fx,y)e ) dxay, 4.5)
P(u,v) = |F(u,v)[, (4.6)

where f (x, y) is the preprocessed ED-based BEV image, F (i, v) is the Fourier
transformed image, P (u, v) is the power spectral image, x and y are the coordinates
in the real space, and u and v are the coordinates in the spatial frequency space.

The power spectral image in the Cartesian coordinate system was converted to
the polar coordinate system, which has the horizontal axis of the angle and the
vertical axis of the spatial frequency. The power spectral image was integrated over
a range of angles from 0° to 360° to calculate the slope of an average power
spectrum by using the following equation:

360

G(f) = J InP(f,0)do, 4.7)

0

where f is the spatial frequency (mm™"') and @ is the angle (degree) in the power
spectral image. The slope of the average power spectrum was evaluated as the slope of
a one-order polynomial of the power spectrum from 0.0195 mm ™' to a Nyquist
frequency, which was calculated by a least-square method. The slopes were calculated
in all directions (0-355°) with an interval of 5°. Finally, the robust beam directions
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against patient setup errors were determined by selecting the directions corresponding
to the several largest gradients of average power spectra for all beam directions.
Figure 4.7 shows the resulting images in the major steps of the proposed method.

Performance of the Decision Making Method for the Suggestion
of Robust Beam Directions Against the Patient Setup Error

We applied the proposed method to four head and neck cancer cases and detected
the beam directions. Figure 4.8 shows the slope of the average power spectra as a
function of beam direction, and the detected beam directions of 0-355° are indi-
cated by blue lines. The blue lines show the three most robust beam directions.
Figure 4.9 shows the robust beam directions determined by the proposed method on
three CT slices for a case. Each red region shows a PTV region, and each light blue
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Slice number: 167/435 Slice number: 196/435 Slice number: 222/435

Fig. 4.9 Robust beam directions determined by the proposed method on three CT slices for a case
by selecting the directions corresponding to the three largest slopes of average power spectra for
all beam directions

region shows the beam path. In this case, 80°, 85°, and 275° were considered as the
robust beam directions. In a discussion of the results with radiological oncologists,
all the oncologists agreed with most of the beam directions determined by the
proposed method, which seems to indicate that the method is robust against patient
setup errors.
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Chapter 5

Computational Anatomy in the Abdomen:
Automated Multi-Organ and Tumor Analysis
from Computed Tomography

Marius George Linguraru and Ronald M. Summers

Abstract The interpretation of medical images benefits from anatomical and
physiological priors to optimize computer-aided diagnosis (CAD) applications.
Diagnosis also relies on the comprehensive analysis of multiple organs and quan-
titative measures of tissue. This chapter highlights our recent contributions to
abdominal multi-organ analysis employing constraints typical to medical images
and adapted to patient data. A new formulation for graph-based methods to segment
abdominal organs from multi-phase CT data is first presented. The method extends
basic graph cuts by using: multi-phases enhancement modeling, shape priors and
location constraints. The multi-organ localization is also addressed using maximum
a posteriori (MAP) probability estimations of organs’ location, orientation, and
scale. The probabilistic framework models the inter-organ spatial relations using a
minimum volume overlap constraint. The liver, spleen, left kidney, right kidney and
pancreas are concomitantly analyzed in the multi-organ analysis framework.
Finally, the automated detection and segmentation of abdominal tumors (i.e.,
hepatic tumors) from abdominal CT images is presented using once again shape
and enhancement constraints. Features are computed for the tumor candidates and
machine learning is used to select the optimal features to separate true and false
detections. The methods illustrate multi-scale analyses of the abdomen, from multi-
organ to organ and tumors and promise to support the processing of large medical
data in the clinically oriented integrated analysis of the abdomen.
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Introduction

In CT-based clinical abdominal diagnosis, radiologists rely on analyzing multi-phase
computed tomography (CT) data, as soft tissue enhancement can be an indicator of
abnormality. Contrast-enhanced CT has proven exceptionally useful to improving
diagnosis due to the ability to differentiate tumors from healthy tissue. For instance,
the level of enhancement in the tumor is an important indication of malignancy and
can be used to better classify abdominal abnormalities [1, 2]. This routine clinical
acquisition protocol makes multi-phase data (with/without contrast) readily available.

Organ size and shape are additional image-based markers of disease that are
commonly used in the radiological interpretation of the abdomen. Unusually sized
organs flag infections, necrosis, or fatty infiltrations [3]. Although shape is locally
variable in abdominal organs, global shape constraints remain valid. Similarly,
tumor size and shape indicate cancer evolution, response to treatment, and the
necessity of surgery. The enhancement of lesions is the primary biomarker used to
classify them [1, 4, 5].

In traditional clinical practice, three-dimensional (3D) organ analysis is performed
via time-consuming manual measurements or, as an alternative, the evaluation is
incompletely based on two-dimensional (2D) projection images. Tumors are evalu-
ated in a similar fashion. While size is approximated by a 2D measurement of the
longest axis in a CT projection (typically the axial view), the intensity is estimated
from 2D circular regions in the center of a tumor. These manual measurements show
high intra- and inter-operator variability. In this context, computer-assisted radiology
can improve the diagnosis of tumors by 3D quantifications of size, enhancement, and
morphology from image analysis.

There are several advantages that automated methods have over manual or
interactive techniques. An important aspect is the reproducibility of results, which
in automated algorithms are not subjected to user interaction. Moreover, automated
techniques may be faster, readily available, and can run in the background without
interrupting the clinical workflow (do not require human presence).

Diagnosis also relies on the comprehensive analysis of groups of organs and
quantitative measures of soft tissue. When presented with 3D patient data, such as
CT, radiologists typically analyze them organ-by-organ and slice-by-slice until the
entire image data are covered. This allows detecting multiple diseases from multi-
ple organs.

Computer-aided diagnosis (CAD) and medical image analysis traditionally focus
on organ- or disease-based applications. However there has been recent work toward
the automated simultaneous segmentation and analysis of multiple organs for
comprehensive diagnosis or pre-operative planning and guidance. Additionally,
the interpretation of medical images should integrate anatomical and physiological
priors, such as shape and appearance; synergistic combinations of priors were
seldom incorporated in the optimization of CAD. The implementation of robust
and automated 3D analysis techniques for multi-organs and tumors would allow
radiologists and surgeons to have easy and convenient access to organ measurements
and 3D visualization.
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CT-Based Abdominal Organ Segmentation

A variety of methods have been proposed for the segmentation of individual
abdominal organs from CT images, in particular CT with contrast enhancement.
The liver enjoyed special attention in recent literature [6—12], kidneys were ana-
lyzed sporadically [13—-15], while the spleen [8, 16, 17] and pancreas [18] were
segmented less frequently. Model-driven approaches have been both popular and
successful [10, 11], including active and statistical shape models [9, 12, 15] and
atlas-based segmentation [8, 9, 18]. Level sets and geodesic active contours were
frequently involved in these techniques [7, 8, 12]. Occasionally, graph cuts were
employed [13, 14].

Recently, the simultaneous segmentation of multiple abdominal organs has been
addressed in publications [18-23]. Most of these methods rely on some form of
prior knowledge of the organs, for example probabilistic atlases [21, 23-25] and
statistical models [20]. For instance, the relation between organs and manual
landmarks was used in [21]. Also, an efficient optimization of level set techniques
for general multi-class segmentation was proposed in [26], paving the way for the
discrete optimization of graph cuts with nonsubmodular functions in [27].

Notably, a hierarchical multi-organ statistical atlas was developed by Okada
et al. [20]. Also recently, Seifert et al. [22] proposed a semantic navigation for fast
multi-organ segmentation from CT data. Decision forests were additionally pro-
posed in [28] to classify multiple organs from CT volumes. Another interesting
concept was presented in [29] for the scheduling problem of multi-organ segmen-
tation to maximize the performance of CAD systems designed to analyze the whole
human body. In addition, multi-phase contrast-enhanced CT data were employed in
abdominal multi-organ analysis [19, 30, 31]. In [30], the segmentation was based on
independent component analysis in a variational Bayesian mixture, while in [32],
expectation-maximization and principal component analysis were combined. A 4D
convolution was proposed in [ 19] constrained by a training model of abdominal soft
tissue enhancement.

CT-Based Abdominal Organ Localization

Abdominal multi-organ segmentation remains a challenging task because the sizes,
shapes, and locations of the organs vary significantly in different subjects. More-
over, these organs have similar appearance in CT images, especially non-contrast
data, and are in close proximity to each other. Thus the successful segmentation
requires a good initial identification and localization of individual organs, generally
performed interactively [20, 21, 23]. Correct organ localization can also benefit
other image processing tasks, including registration and computer-aided detection.

Among the most notable automated localization techniques for abdominal
organs, Okada et al. [9] initialized the liver segmentation by estimating the
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abdominal cavity. In [33] a statistical location model was used, but the method was
limited to estimating only the organ locations without considering the orientations
and sizes. Yao et al. [34] simultaneously detected multi-organ locations by finding
bounding boxes using principal component analysis and a probabilistic atlas. In
[22] the organ location, orientation, and size were estimated using automatically
detected anatomical landmarks, semantics, and machine learning techniques. Alter-
natively, regression techniques were used in [35] to detect multiple organs through
the human body from MR data. Most recently, mouse abdominal organs were
localized in CT using statistical atlases in [36].

Segmentation Competitions in the Abdomen

As already mentioned, the analysis of the liver has benefited from particular
popularity in CAD research and has been at the forefront of validation techniques
for medical image analysis. But importantly, according to the American Cancer
Society, approximately 26,190 new cases of liver cancer are expected to occur in
the USA in 2011 [37]. The incidence of liver cancer has been increasing by more
than 3 % yearly. The liver is also a prime candidate for metastases from cancers in
the breast, colon, prostate, lung, pancreas, stomach, esophagus, adrenal glands, or
skin (melanoma) [38].

For a straightforward comparison of liver analysis techniques, a liver segmenta-
tion competition from mainly pathological CT data was held in conjunction with the
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCALI), in 2007 [7]. A variety of techniques were presented and
their performance evaluated through a combination of metrics, including volume
overlap and error, root-mean square error, and average surface distance. Among
the ten automatic and six interactive methods for liver segmentation that were
presented, the interactive methods achieved the best segmentation results [39, 40].
Statistical shape models were the best fully automated liver segmentation methods
and performed competitively with the semiautomatic techniques [41]. Other notable
participations in the competition employed region growing [42] and a semantic
formulation of knowledge and context [43].

In 2008, another segmentation competition followed in conjunction with
MICCALI this time addressing the segmentation of liver tumors from CT data
[44]. CT images covered a range of pathologies and were acquired with contrast
enhancement to allow the differentiation of tumors from healthy liver parenchyma.
As in the case of the liver segmentation, the highest scoring technique was inter-
active, using classic graph cuts and the watershed algorithm to accurately segment
tumors [45]. The most successful semiautomatic approaches scored similarly and
employed adaptive thresholding and morphological processing [46], voxel classi-
fication and propagational learning [47], and a level set with fuzzy pixel classifi-
cation [48]. Automatically, tumors were best segmented via machine learning and
classification techniques [49, 50].
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In addition to the fully automated 3D segmentation of both the organs and tumors,
CAD and surgical planning would benefit from the analysis of other types of
abnormalities (i.e., fatty tissue), as well as the organ’s vasculature [51-53]. Methods
for the concurrent segmentations of liver structures remain mainly interactive [54].

Graph Cuts for Biomedical Data

Graph cuts [55] have become popular for image segmentation due to their ability to
handle highly textured data via a numerically robust global optimization. As the
segmentation techniques employed in this chapter rely on graph cuts, several other
medical image analysis applications proposed in literature are using graph cuts are
presented below.

To segment abdominal organs, in [13, 56-58] model-based information was
included for the segmentation of the heart, spleen, and kidneys. The models were
aligned using markers in [13, 58], manual placements in axial slices in [57], and
intra-model constraints given in the first frame of the cardiac cycle in [56]. Shape
priors were employed in [59, 60] to reconstruct the liver vasculature and lung
airways; the cuts in the graph were constrained by a tubular filter. Probabilistic
shape-based energies for graph cuts were combined with image intensity in a
non-parametric iterative model in [61] for the segmentation of the kidneys. Also,
in [62], shape priors and neighboring constraints were incorporated using signed
distances from boundaries to segment the liver.

Graph-cut techniques were also used in brain segmentation and registration
[15, 63—66], breast tumor analysis [67], and orthopedics [68]. Using an acquisition
protocol for plaque reconstruction, carotid plaques were segmented semiautomat-
ically from ultrasound images in [69]. In other types of biomedical applications, a
multi-level automated graph-cut algorithm was used in [70] to segment cell nuclei.
A graph-cut optimization was presented in [71] for the parcellation of the brain
from functional MRI. In [72], a data-driven graph approach was implemented to
estimate the variability of neural responses on magnetoencephalography or elec-
troencephalography data. Finally, a study of the effect of weights and topology on
the construction of graphs can be found in [73].

Contributions

Abdominal multi-organ segmentation remains a challenging task because the sizes,
shapes, and locations of organs vary significantly between subjects. Moreover,
organs have similar appearance in CT images, even in contrast-enhanced data,
and are in close proximity to each other. The remainder of this chapter synthesizes
our recent contributions to the automated multi-organ analysis from CT data
developed at the National Institutes of Health Clinical Center. Besides the
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simultaneous detection, segmentation, and quantification of multiple abdominal
organs, we also present contributions to the integrated analysis of single organs,
exemplified through the liver, which can be seen as a multi-scale or hierarchical
analysis from the abdomen to organ and tumor.

Methodologically, an integrated statistical model for medical data is described in
this chapter and incorporated into a graph-based approach. An advantage in the
handling of medical data is the available prior information regarding organ loca-
tion, shape, and appearance. Although highly variable between patients and in the
presence of disease, abdominal organs satisfy basic rules of anatomy and physiol-
ogy. Hence, the incorporation of statistical models into algorithms for medical data
analysis greatly benefits the segmentation of abdominal images.

In order, we first propose a new formulation of a 4D directional graph to
automatically segment abdominal organs, at this stage the liver, spleen, and left
and right kidneys, using graph cuts [74, 75]. The statistical priors comprise location
probabilities that are intrinsic to medical data, an enhancement constraint charac-
teristic to the clinical protocols using abdominal CT and an unbiased shape mea-
sure. We further present a maximum a posteriori (MAP) framework for automated
abdominal multi-organ localization [76, 77]. Our method finds the poses of multiple
abdominal organs, which include not only the locations but also the orientations and
scales. The method was applied to five organs: liver, spleen, pancreas, and left and
right kidneys. Finally, graph cuts are employed once more to detect and segment
hepatic tumors using shape and enhancement constraints [78, 79]. The chapter ends
with a short discussion of some of the current research directions designed to
integrate multi-organ interaction and anatomical abnormality towards an integrated
analysis of the entire abdomen.

Abdominal Multi-Organ Segmentation

This section describes the technique for abdominal multi-organ segmentation using
graph cuts with embedded statistical anatomical and physiological information [75].

Data

Twenty-eight random abdominal CT studies with or without contrast enhancement
from healthy subjects were used to create statistical models. Data were collected at
high resolution (1 mm slice thickness). For testing the algorithm, 20 random
abdominal CT studies (normal and abnormal) were obtained with two temporal
acquisitions (40 CT scans). The first image was obtained at non-contrast phase
(NCP) and a second at portal venous phase (PVP) using fixed delays. An example of
multi-phase CT data is shown in Fig. 5.1. Ten images were of low resolution (5 mm
slice thickness) and were used for training and testing the algorithm using a leave-
one-out strategy. Ten images were of high resolutions (1 mm slice thickness) and



5 Computational Anatomy in the Abdomen: Automated Multi-Organ and Tumor. . . 113

Fig. 5.1 An example of contrast-enhanced CT of the abdomen. The left image shows the
non-contrast phase acquisition and the right picture shows the image of the same patient after
contrast enhancement (portal venous phase)

used only for testing. The liver, spleen, and left and right kidneys were manually
segmented (by two research fellows supervised by a board-certified radiologist) in
all CT cases [75].

Model Initialization

The statistical models of location and appearance were built from the 28 CT cases
described in the previous section. The 28 CT data were further used to build shape
constraints via a Parzen window distribution, as explained later in the construction
of the 4D graph.

For location models, a probabilistic atlas (PA) was constructed for each organ:
liver, spleen, left kidney, and right kidney [8]. Organ locations were normalized to
an anatomical landmark (xiphoid process) to preserve spatial relationships and
model organs in the anatomical space. A random image set was used as reference
and the other images registered to it. The registration was performed for each organ
separately. Structural variability, including the size of organs, was conserved by a
size-preserving affine registration adapted from [80]. The PA was constructed
independently from the segmentation algorithm and it is shown in Fig. 5.2.

Appearance statistics were computed from the training data (the 28 cases used in
the model). Histograms of the segmented organs (objects) and background at NCP
and PVP were computed and modeled as sums of Gaussians, as in Fig. 5.3.

Preprocessing

Although multi-phase CT images were acquired during the same session and
intrapatient, there was small, but noticeable abdominal inter-phase motion, espe-
cially associated with breathing. The preprocessing follows our work in [19].
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Fig. 5.2 The probabilistic atlas of the abdomen showing the liver (blue), spleen (green), left
kidney (yellow), and right kidney (orange), the organs analyzed by our technique [24]. In addition,
the pictures show the aorta (red), stomach (green), gallbladder (purple), pancreas (light blue), right
adrenal gland (magenta), and left adrenal gland (brown)
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Fig. 5.3 Fitted sums of Gaussians to training data of organs/objects (a and b) and background
(¢ and d) [75]. NCP intensity models are shown in (a and ¢) and PVP data in (b and d). Here,
training data refers to the training cases in the leave-one-out strategy. The histogram peaks related
to the liver/spleen and kidneys are marked
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First, data were smoothed using anisotropic diffusion [81]. NCP data were
registered to the PVP images. Then, the demons nonlinear registration algorithm
was employed [82] to align NCP and PVP images, as the limited range of motion
between acquisitions ensures partial overlaps between organs over multiple phases.

4D Convolution

From smoothed training data of multi-phase CT, the min and max intensities of
organs were estimated: min;, = y; , — 30; ,and max; ,= u; ,+ 30, ,, wherei=1...3
for liver, spleen, and kidneys, u,, , and 6,, , represent the mean and standard deviation,
and ¢ = 1, 2 for NCP and PVP. As in [19], a 4D array K(x,y,z,t) = I,(x,y,z) was
created from multi-phase data. A convolution with a 4D filter f labeled only regions
for which all voxels in the convolution kernel satisfied the intensity constraints

L, ifn (minj, <K(x,y,z,1) < maxj,)
t

5.1
0, otherwise. . SR

L(x,y,2) = (Kof)(x,y,2,1) = {

L represents the labeled image and /; the labels (j = 1...4 for liver, spleen, left
kidney, and right kidney). Note that the labeled organs in L appear eroded as a result
of the 4D convolution. In our method, L provided seeds for objects (/) in the 4D
graph, as shown below, and was used to estimate the patient-specific histograms.
The eroded inverted L provided the background (/) seeds and the related histo-
grams. To report the segmentation results by 4D convolution, L was dilated to
compensate for the undersegmentation of organs.

4D Graph

Graph cuts (GC) were chosen for the inherent capability to provide a globally optimal
solution for segmentation [55]. Let A = (A;, A, ..., A,, ...) be a vector that defines
the segmentation. The component A,, associated with the voxel p in an image can be
assigned a label of either object of interest/organ O; (withi = 1.. .4, for liver, spleen,
left kidney, and right kidney) or background B, where BN O = @and O, N 0, = @
for i # j. In the classical graph-cut algorithm, A, takes binary values for O and B. In
our application, A, can have a value from O to 4, where 0 denotes the background,
1 the liver, 2 the spleen, 3 the right kidney, and 4 the left kidney.

The inputs to our problem are two sets of registered abdominal CT scans per
patient: the NCP and PVP sequences. Hence every voxel p in the graph has two
intensity values: I, and I . A simplified schematic representation of the 4D graph
is shown in Fig. 5.4. Every voxel is connected to both O; (sources) and B (sink) via
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Background

Fig. 5.4 A simplified schematic of the multi-object multi-phase graph [75]. Four-dimensional
information is input from the NCP and PVP data. T-links are connected to the objects (O; to O,,)
and background (B) terminals. Directional n-links connect neighboring nodes (the image shows
only two neighbors for each voxel). The width of a line in the graph reflects the strength of the
connection

t-links and to its neighbors via n-links (which can be directional). Source and sink
are terminologies used in [55]. The costs of the connections determine the segmen-
tation and weak links are good candidates for the cut.

We first extend the classical GC formulation to analyze 4D data and then
incorporate penalties from the contrast enhancement of CT soft tissue, Parzen
shape windows, and location from a priori probabilities. The energy E to minimize
can be written generically as

4

E(A) = Edata (A) + Eenhance (A) + Elacation (A) + Zi:l (Ebounda)y (A) + Eshape (A)) 5
5.2)

with i = 1.. .4 for liver, spleen, left kidney, and right kidney. The subparts of this

cost function are described below.

T-Links

In our application, E,,, is a regional term that computes penalties based on 4D
histograms of O and B. The probabilities P of a voxel to belong to O or B are
computed from patient-specific histograms of NCP and PVP data.

Edaaa(A) = 1Y _Ry(0)+(1 = 1) R,(B); (5.3)

pPEO pPEB
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\/Pml’ (IZLp{Oi)PP"P (Iva}Ol)
w w0 (120100) P (12,10:) P (12, 18) o (1, 8)

(5.4)

Ry (0i) =

)

\/ nep mp|B pvp (11;‘,[,‘3)
Z\/ mP ncp|0) ( pvp ) +\/Pn0[’ (1ch|B)PPVP( p\p’B)

(5.5)

R,(B) =

E.nnance penalizes regions that do not enhance rapidly during the acquisition
of NCP-PVP CT data (i.e., muscles, ligaments, and marrow). Liver, spleen, and
kidneys are expected to enhance faster. E,,;4,c Can be seen as a gradient in the
fourth dimension of the multi-phase data and o, and o6,,, are the standard
deviations of noise associated with the NCP and PVP images.

(11;‘,,, B Ilritp)
Eenhance(4) = 3 1 /(1 +E§) with E,=~20 "7/ (56)

=P 206 1cp0pup

Due to the different enhancement patterns of abdominal organs, the peaks in the
organs’ histograms in Fig. 5.3 are distinguishable between liver/spleen (high peaks
in Fig. 5.3a, b) and kidneys (low peaks in Fig. 5.3a, b). However, the probabilistic
atlas used in E;, .., allows separating the liver and spleen and the two kidneys.
Location constraints from the normalized probabilistic atlas (PA) can be seen as

Eiocaion(A) = =Y _ In(PA, (p|0)). (5.7)

PEP

PA,, represents the probability of p to belong to O. PA,, was obtained by registering
PA to the test images by a sequence of coarse-to-fine affine registrations.

N-Links

Eboundary assigns penalties for 4D heterogeneity between two voxels p and ¢ with
q € N, a small neighborhood of p, and dist(p, q) the Euclidean distance between
p and gq.
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Epoundary(A) =1 > Wipmgy + (1=) D wig_p)- (5.8)
{p.4}EN, {P,q}EN,

The directional penalties in Ej,,qq-, are initialized symmetrically as

Wip—q} = W{g—p}

0, ifAp, =4y
= IZ(:p - IZL'p ’ ’]va - Igvp 1 . 5.9)
exp| — - , Otherwise.
26ncp Opvp dlSt( p, q)

Then the condition in (5.10) penalizes transitions from dark (less enhanced) to
bright (more enhanced) regions to correct the edges of O, considering image noise.
This is an intrinsic attribute of medical data (e.g., the visceral fluids and fat are
darker than O).

[F(([gvp — [va) > Opyp OR (Iﬁ(p - IZ(-[,) > an(rp)
THEN “-n=", (5.10)
ELSE Yr-a=1,

Additionally, shape constraints were introduced in the n-links using Parzen
shape (PS) windows [83] estimated from the reference organ shapes from the
28 CT data used for training/modeling. First, shape references were aligned to
the result of the 4D convolution (L) using scaling, rotation, and the location of the
centroids. An asymmetric normalized dissimilarity measure D (5.13) between two
shapes (s; and s;) was used in the shape model to avoid the bias introduced by L,
which is an approximation of the shape of the object/organ s. H is the Heaviside step
function, s refers to the binary segmentation of an organ, and x to the integration
over the image domain.

PS(s) = exp(=D(s.s:)/26°) /n (5.11)

with
=2 min D (s;,si) /n (5.12)

and

D) = [ () - Ho) Hs)as [ [Hs)as. 513
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The penalties v used in Eg,,, are initialized symmetrically from PS.

. 0, ifA, =A1
Vip—a) = Vig=ry = { max(PS(s)”, PS(s)?)/dist(p,q), otherwise (5.14)
and
IF(PS(s)? > PS(s)?)
THEN Vie==1, (5.15)

ELSE"v-0=",

The directionality of the n-link in (5.15) penalizes transitions from lower to
higher shape probabilities to encourage cuts where there is a strong prior shape
resemblance. The shape energy becomes

Egape(A) =6 Y vipogyH(1=8) D vy (5.16)
{p.a}EN, {p.a}=N,

Results

We compared results obtained after the 4D convolution to those achieved using
intensity-based 4D GC (without shape and location constraints) and after including
shape and location correction. We computed the Dice coefficient (symmetric vol-
ume overlap), volume error (absolute volume difference over the volume of the
reference), root mean square error, and average surface distance from comparison
with the manual segmentations. The influence of patient specific (from the patient
CT) versus population (training data) statistics on the accuracy of organ segmenta-
tion was also analyzed. Non-parametric statistical tests (Mann—Whitney U test) were
performed to assess the significance of segmentation improvement at different steps
of the algorithm using the overlap measure at 95 % confidence interval.

Quantitative results from applying our method to the segmentation of liver,
spleen, and kidneys are shown in Table 5.1 at different stages of the algorithm.
The use of 4D intensity-based graph cuts improved the results significantly over
those of the 4D convolution for all organs (p < 0.05 for all). Employing shape and
location information brought a further significant improvement for the segmentation
of the spleen and liver (p < 0.05 for both). Significantly better segmentations by
using patient-specific data over training data were noted for both kidneys (p < 0.03
for both).

Figure 5.5 presents a typical example of liver, spleen, and kidneys segmentation
from axial projections of the 3D CT. A 3D rendering is shown in Fig. 5.6 along with
the errors between manual and automated segmentations.
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Table 5.1 Statistics (mean =+ std) for the liver, spleen, left kidney, and right kidney segmentation
results from data of 5 mm slice thickness

Organ DC (%) VER (%) RMS (mm) ASD (mm)
1. 4D C (Training data) LKidney 88.7 £3.7 109 +£89 23+04 1.1 £0.3
RKidney 89.6 £34 13.6+6.8 2.1+0.5 1.1 £0.3
Spleen 799 £10.1 149+169 45+19 27+17
Liver 89.1 + 3.7 73+46 67+15 34410

2. 4D GCI (Patient data) LKidney 92.6 2.4 54+£69 18+12 08x0.6
RKidney 92.8 +1.9 56+£58 18+08 08+04
Spleen 89.6 £27 114+£69 30x14 15+£09
Liver 940 £ 1.2 62+28 44+20 1807

3. 4D GCSL (Patient data) ~ LKidney 91.9 + 3.0 67+£52 18+08 08+03
RKidney 932 £ 1.5 55+45 18+£08 08+04
Spleen 91.8 £ 1.5 6.6 £57 21£09 1.0 £0.5
Liver 95.6 £ 0.6 24+£1.1 3.0=£13 1.1 £04

4.4D GCSL (Training data) LKidney 90.8 £2.7 128 £7.1 2.6+ 1.1 1.2+ 0.6
RKidney 92.6 + 1.6 924+43 20+£07 09+03
Spleen 919 £ 1.5 64+£50 194+06 09+04
Liver 95.5 + 0.7 21+16 3.0+13 1.2+0.5

4D C represents the convolution, GCI is GC based solely on image intensity (including 4D
appearance and enhancement) and 4D GCSL includes additional shape and location constraints
Italicized cells mark the organs where a significant improvement (p < 0.05) was obtained between
consecutive steps of the segmentation algorithm, as indicated by numbers from 1 to 4 in the table.
The metric used to test the significance of results was DC

Columns present the DC Dice coefficient, VER volume estimation error, RMSE root mean square
error, ASD average surface distance

Abdominal Multi-Organ Localization

The automated segmentation of abdominal organs, as shown above, often benefits
from a robust initialization, such as the localization of anatomical landmarks. In this
section, we focus on the localization of five abdominal organs: liver, spleen, left and
right kidneys, and pancreas, as means to initialize segmentation algorithms for
abdominal multi-organs [77]. In particular, this method can help to initialize the
segmentation of certain organs, such as the pancreas, which is less reliably handled
by intensity-based methods.

Our multi-organ localization technique first computes statistical information
from a set of N training images {In}nNzl. The organs were manually segmented in
each training image and statistically modeled by building an organ pose distribution
model (OPDM), a probabilistic atlas (PA—see section “Model Initialization™), and
a probabilistic intensity profile (IP). The statistical knowledge was then used to
organ poses in a subject image using a MAP framework [76]. Additionally, we
introduce a minimum volume overlap condition into the MAP formulation, which
models the spatial inter-organ relationship and makes the method more robust to
organ pose variations [77]. The technique is detailed as follows.



5 Computational Anatomy in the Abdomen: Automated Multi-Organ and Tumor. . . 121

Fig. 5.5 A typical example of liver (blue), spleen (green), right kidney (yellow), and left kidney
(red) automated segmentation on 2D axial views of the 3D CT data [75]. Images are shown in
cranial to caudal order from top left to bottom right

Fig. 5.6 3D images of the automatically segmented abdominal organs [75]; (a) is a posterior view
and (b) an anterior view. The ground truth for the liver is blue, spleen is green, right kidney is
yellow, left kidney is red. Segmentation errors are overlaid in white on each organ
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The A Posteriori Probability

For a given organ O, its pose ®'/ is defined using nine parameters, which include
the location ¢ = [c,, ¢y, c.], orientation v = [v,, vy, v.] (Euler angles), and scale
s = [sy, Sy, 5;]. For a given abdominal subject CT image / in which the organs are to
be localized, the a posteriori probability of the pose of O is

p <@)(/’)

1, 0(.i)) xp ([‘@(/)’ 0(.f))p (@)(1) |O(./)) , (5.17)

where the prior p(©0"’) and the conditional probability p(/l©0, 0 are
computed using the statistical knowledge from training data sets after abdomen
normalization based on anatomical landmarks extracted from bone segmentation
[76]. For this, the vertebrae and the ribs are automatically segmented and identified
from the CT scans using the method in [33]. A bounding box is then defined around
the abdominal cavity. One standard image J, was chosen from the training images,
and all the other images are then normalized to J, by aligning the abdominal
bounding boxes [76].

The prior p(®”’10/’)or OPDM models the organ pose distribution in the normal-
ized abdomen. In our application, the OPDM of each organ was built independently.
The pose of organ O/ in the standard image J, was defined as the reference pose
G)g ) = [cg >,Vg ) ,s(()’)] with cg) being the center of gravity, Vg ) = [0,0,0] representing

the orientations in the three dimensions, and sg ) — [1,1,1]being the three scales. The
poses of 0" in every other training image are computed by registering the manual

segmentation of O of the image to that of J, using a nine-parameter linear

transformation. The pose of 0" in the n” image is denoted as G),(f) = [c,(f),v,(,"),

s,({)]. The nine pose parameters are assumed independently distributed and the
OPDM can be estimated using Parzen windows [83]

._
—
s

&
s
IS
N—
~

9 N— EANGICLY
Dol — D) _ TT L 1 R
P(@’ 0 )— p<9k 0 )— v —e (5.18)
kHl I<1:[1 N Z: V2rh)
where 9,@ for k =1, ..., 9 are the nine pose parameters, 9,&’),, is the pose parameter

value of organ 0"/’ computed from the n"” training image, h,(! ) is the bandwidth and
)

n forn=20,...,

is estimated using the standard deviation of the sample data 6}
N —1.

The conditional probability p(/I®‘, 0/) for the given subject image I uses PA
and IP, which are computed for each organ from the training data as shown in the
previous section. The transformed PA, denoted as p(xI®‘, 0/’), models the organ

location and represents the probability that a point x belongs to the organ O’ for a
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given pose parameter 0. The IP, denoted as p(u|0'"), describes the probability
that any voxel in 0"’ takes an intensity value of u. It can be shown that

p(116,0;) = exp (zM: (14|09, 01 Y 10gp (u,,,\0<f>> : (5.19)

m=1

with h(um|®(j ), 0 being the conditional histogram

h(um|®<f>,o<f>) =" Flum,xi)p <X,~|®<j>,0(j)),
X,€EV
’ 5.20
with (1, %) = { By -
™S 0, otherwise

The exponent in (5.19) is the negative cross entropy between the two probability
functions h(ul®'’, 0’y and p(ul0), and is denoted as H. Thus, the logarithm of
the a posteriori probability can be written as:

Cip (0<j>> — _H(h(u,@m,0</>>,p(u’@u>,0</‘>))

9
+> " togp (6} j01) (5.21)
k=1

The Minimum Volume Overlap Condition

Experiments on non-contrast CT images [76] showed that the maximization C4p
failed to localize the kidneys in some cases. The reason is that the kidneys are
located close to neighboring organs (liver and spleen), and they have similar
intensity profiles in the non-contrast images. Therefore the second term in (5.21),
which comes from OPDM, was not sufficient to guarantee that the MAP converges
to the correct pose in some cases. As a result, the localized kidneys overlapped with
the liver and spleen.

To prevent the localized organs from overlapping with each other, we explore the
inter-organ spatial relationships. For the given pose parameters ©'/’ of all organs,
the normalized volume overlap of organ O with all other organs is defined as

x|00,00)p(x|0@, 0l
T3 (0.0 (o0
ZP(XW‘D)

xEV

=

, (5.22)

The denominator in (5.22) is the total volume of O and is computed by adding
up the PA at points x across the image volume V. By incorporating inter-organ
relations in our method, the localization of abdominal organs is performed
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dependently instead of independently. Thus, we define a new cost function by
combining the minimum volume overlap term in (5.22) with the logarithm of the
a posteriori probability function in (5.21),

c=3 cl) - Yy cll, (5.23)
J J

where 1 is a nonnegative weighting parameter.

For each organ, the maximization of (5.23) is performed using the steepest
descent method [84] in an iterative fashion. A multi-resolution strategy is adopted
for efficient computation. At each iteration, the poses of the five organs are com-
puted in sequential order: liver, spleen, left kidney, right kidney, and pancreas. This
order is adopted because it was found from experiments that liver and spleen are
more likely to be successfully localized because they have relatively larger sizes, so
that their intermediate localization can be used to better constrain the localization of
kidneys and pancreas through the minimum volume overlap term. After the estima-
tion of organ poses, the probabilistic atlas of each organ is transformed based on the
computed pose and placed in the image volume to localize the organ.

Data and Analysis

We applied the method to 17 patients’ contrast-enhanced CT data. The images were
collected on four types of CT scanners from three manufacturers with 1 mm slice
thickness. The five organs of interest were manually segmented from all images by
a medical student supervised by a radiologist to create the ground truth. The
symmetric volume overlap between the estimated organs and manual segmenta-
tions was measured using the Dice coefficient. In all the experiments, the weighting
parameter A was set to 2.

To validate the method to localize five abdominal organs, the liver, spleen, left
and right kidneys, and pancreas, 17 experiments were performed using a leave-one-
out strategy. In each experiment, one dataset was picked as the subject image, and
the remaining 16 datasets served as the training data. After localization, the
estimated organ was then compared with the ground truth.

Results

An example of pose distribution is shown in Fig. 5.7 for the liver. Figure 5.8 shows
the localization results on a typical data set using the minimum overlap (MO)
method. For comparison, we repeated the experiments using the independent
localization (IL) approach in [76] in which all the organs were independently
localized without considering the inter-organ relations. The results of both
approaches are presented in Table 5.2. The two methods produced similar results
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Fig. 5.7 The pose distribution functions of liver [76]. From top to bottom are the centroid,
orientation, and scaling, respectively; the x, y, and z components are shown from left to right

Fig. 5.8 The organ localization results, from /eft to right, on coronal, axial, and sagittal views of a
contrast-enhanced data set [77]. The liver is shown in blue, the spleen in green, the left kidney in
purple, the right kidney in orange, and the pancreas in yellow

Table 5.2 The average Dice coefficients between the organ localization results and manual
segmentation

Method Liver Spleen Left kidney Right kidney Pancreas
MO Mean 0.80 0.65 0.75 0.79 0.42

Std 0.03 0.06 0.05 0.03 0.15
IL Mean 0.80 0.55 0.74 0.75 0.38

Std 0.03 0.05 0.06 0.13 0.17
p-value 0.06 0.63 0.03 0.02 0.33

The p-values of the Wilcoxon sign rank test comparing the results of the minimum overlap
(MO) and independent localization (IL) methods are presented
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Fig. 5.9 Illustration of the localization results of the right kidney on one dataset in which the
minimum overlap (MO) method succeeded and the independent localization (IL) method failed
[77]. The results are shown on several slices from the 3D image volume. The results of the MO
method are shown in purple, those of the IL method in orange, while the overlapping results from
the two methods are presented in yellow

on the liver, and the MO method performed quantitatively better on all the other
four organs. The non-parametric Wilcoxon sign rank test showed significant
improvements for the localization of kidneys (p < 0.05). Qualitatively, all the
five organs in all 17 experiments were successfully localized using the MO method.
Using the IL approach, the right kidney was incorrectly localized on one data set
where a large part of the right kidney was localized inside the liver, which resulted
in a Dice coefficient of 0.24, as shown in Fig. 5.9. Note that these results do not
reflect the segmentation of organs, but the enhanced localization using statistical
models of data and inter-organ relationships.

Table 5.3 shows the localization error for the five abdominal organs using the
MO method. The technique performed best on the left and right kidneys, which had
an average location error less than 3 mm. The location error of the liver, a much
larger organ with variable shape, was less than 5 mm. The pancreas, a thin and long
organ with very large shape variability across subjects, had the largest localization
error, especially in the y-axis.
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Table 5.3 The errors (mean and standard deviation) of organ location using the minimum overlap
(MO) method

Centroid (mm) Liver Spleen Left kidney Right kidney Pancreas

X Mean 4.77 5.30 0.83 1.22 8.72
Std 4.96 8.72 0.61 0.98 7.66

y Mean 3.96 5.32 1.02 1.75 7.86
Std 3.37 3.56 0.63 1.56 14.3

z Mean 3.17 4.22 2.69 2.36 6.62
Std 2.18 3.04 1.60 1.77 6.47

Liver Tumor Segmentation

The purpose of this section is to change the scale of the analysis from multi-organ to
organ and at even finer scale, inside the organ for the detection and segmentation of
tumors. From organ detection and localization to organ segmentation and analysis
and tumor detection, the combination of the techniques presented in this chapter
illustrates the path toward the integrated and comprehensive analysis of abdominal
radiological data via CAD. Our exemplification is done through the analysis of the
liver, arguably the abdominal organ that received the highest level of interest from
the medical image analysis community.

Data

Fourteen abdominal CT scans were collected from patients with prostate cancer at
single/multiple time points on five different scanners with 5 mm slice thickness.
Images were acquired with contrast at varying enhancement times, from early-
arterial to late portal venous. Additional to the inconsistent enhancement, cases
with imaging and movement artifacts were present in the database, as in the typical
clinical scenario. Seventy-nine tumors larger than 10.0 mm in diameter were
manually segmented in the 14 cases with liver cancer. Tumor size varied from
10.0 to 206.4 mm in the largest diameter [79].

Liver masks were obtained automatically using a method such as the one
described in section “Abdominal Multi-Organ Segmentation” and [75]. Because
the cases in the data exhibited artifacts and large abnormalities, a liver segmenta-
tion refinement was subsequently performed [78, 85]. The refinement was based on
the robust parameterization of 3D shapes combined with an invariant shape feature
to allow identifying organs (or parts of organs) from a training database that are
similar to a given patient’s data. This approach corrected the otherwise incomplete
liver segmentations.
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Graph Cuts for Tumor Segmentation

Once the liver was segmented, a graph-cut approach was applied to find the hepatic
tumors. In the basic form, graph cuts [86] suffer from the shrinking bias problem,
particularly for segmenting small structures, such as certain types of tumors. Graph
cuts were shown to improve the segmentation of abdominal organs using training
shapes [79], but tumors vary in size and shape between cases. However, liver
tumors are generally round; hence, instead of using training tumor shapes, we
define a roundness constraint.

Seed points for tumors were generated automatically by finding adaptive thresh-
olds in the data. Additionally, the object seed points were also constrained to have
nonzero Hessian-based shape response, as described below. Given a binary vector
A where each element is associated with a voxel in the input image and each
element’s value is a binary label representing the object to be segmented or the
background, the cost function of the graph E in our application can be written as

E(A) = Edata <A> + Eenhamre (A) + Exhape (A) + Ebuundary (A ) 5 (524)

More details on E 4414, Epoundarys a0d E¢ppance can be found in section “Abdominal
Multi-Organ Segmentation” of this chapter. The new term in the formulation is
Epape- Esnape 1 a Hessian-based shape condition to emphasize rounder tumors at
multiple scales o [87]. The eigenvalues of the Hessian (4; > 4, > A3) at point p can
be used to define unique shape constraints to optimize the segmentation of tumors.
The following energy term was incorporated in the graph-cut definition:

Egpape = —Inmax (w); 55
with A3 > 0;and w = ¢~ (W/B-1) (5.25)

To account for the slight undersegmentation of tumors, a classic geodesic active
contour [88] was employed to refine the segmentation.

Feature Selection and Classification

For each tumor candidate, 157 features were automatically computed to character-
ize the detection. They include the linear and volumetric size, roundness and
elongation measures, intensity, the eigenvalues of the Hessian matrix, energy,
entropy, inertia, correlation, cluster shade, cluster prominence, Haralick’s correla-
tion, inverse difference moment and statistics of these measures (see Table 5.4).
Due to the large number of features used for classification, feature selection was
used to retain the optimal combination of features for the separation of TP from FP
detections.
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Table 5.4 One hundred and fifty-seven automated tumor features were computed for the tumor
candidates

3D Features Descriptor Explanation

Tumor volume Size Volumetric size

Tumor diameter Size Linear size

Tumor size region ratio Shape Ratio of the size of the object bounding
box and the real size of the object

Tumor binary elongation Shape Ratio of the largest principal moment
by the smallest principal moment

Tumor roundness Shape Sphericity

Tumor Hessian eigenvalues Shape Local extrema and stationary points

Tumor blobness measures Shape Roundness from the Hessian eigenvalues

Tumor intensity® Enhancement  Enhancement of tumor

Edge intensity® Enhancement = Enhancement of healthy parenchyma

Tumor cluster prominence® Texture Skewness/asymmetry

Edge cluster prominence® Texture Skewness/asymmetry

Tumor cluster shade® Texture Skewness/asymmetry

Edge cluster shade® Texture Skewness/asymmetry

Tumor correlation® Texture Correlation/complexity

Edge correlation® Texture Correlation/complexity

Tumor energy® Texture Uniformity

Edge energy® Texture Uniformity

Tumor entropy” Texture Randomness

Edge entropy® Texture Randomness

Tumor Haralick correlation® Texture Linear dependence between the voxels
relative to each other

Edge Haralick correlation® Texture Linear dependence between the voxels
relative to each other

Tumor inertia® Texture Local heterogeneity

Edge inertia® Texture Local heterogeneity

Tumor inverse difference moment®  Texture Local homogeneity

Edge inverse difference moment* Texture Local homogeneity

Edge refers to the two pixel-wide band of liver tissue surrounding the tumor

For definitions of the texture features computed from the co-occurrence matrix, please refer to [89]
“The min, max, mean, standard deviation, variance, median, kurtosis and skewness were computed
for the feature

By employing dimensionality reduction algorithms, we can extract useful
information and build compact representations from the original data. We
adopted the minimal-redundancy-maximal-relevance feature selection method
[90]. In minimal-redundancy-maximal-relevance feature selection, the optimiza-
tion criteria are affected by two factors: one is relevance between features and
target classes and one is redundancy between features. Peng et al. [90] proposed a
heuristic framework to minimize redundancy and maximize relevance at the
same time.
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Table 5.5 True Positives (TP) fraction and false positives (FP)/case are reported for the detection
of hepatic tumors

Data TP (%) FP/case DC (%) JI (%) VER (%) ASD (mm)
79 tumors (n = 14) 100.0 2.3 74.1 £ 169 709 £17.7 124+ 120 16+ 15

Automated and manual segmentations of tumors were compared and we present DC Dice
Coefficient, JI Jaccard index, VER volume errors, ASD average surface distances

Receiver operating characteristic curves for the hepatic tumor detection were
generated with and without feature selection to record the effects of classification
and feature selection on the reduction of false detections. The performances of the
two classifiers (with and without feature selection) were compared using ROCKIT
[91] to assess the statistical significance of differences between receiver operating
characteristic curves and the areas under the curve (AUC).

The classification of detection into true and false positives is completed by
support vector machines (SVM). SVM are a set of kernel-based supervised learning
methods used for classification and regression [92] that minimize the empirical
classification error and maximize the geometric margin simultaneously on a train-
ing set, which leads to a high generalization ability on the test samples. For training
and testing purposes, a leave-one-patient-out strategy was employed.

Results

All the hepatic tumors were correctly identified (100 % TP) with 2.3 FP/case. FP
occurred generally near the porta hepatis and coronary ligaments, where there is
lack of enhancement (opacity) and high curvatures (roundness). The overlap
between the manually and automatically segmented tumors was 74.1 % with a
volume estimation error of 12.4 % and average surface distance of 1.6 mm. The
results of the detection and segmentation of hepatic tumors are presented in
Table 5.5. Figure 5.10 shows examples of tumor detection and segmentation from
two patients, each with two time points.

The SVM classifier was employed after extracting 157 features for each true and
false tumor candidate. Without feature selection, the AUC of the classifier was 0.62.
The maximum AUC of 0.85 was achieved for a combination of eight tumor
candidate features. Figure 5.11 shows the free-response receiver operating charac-
teristic curves for tumor detection with and without feature selection. The eight
selected features were a combination of statistics and texture inside and outside the
tumor candidates. Namely, the selected tumor features were: the median intensity,
roundness, mean 4;, mean A3, and minimum value of the Haralick correlation.
Additionally, the following features computed around the edge of the tumor were
retained for classification: the median of the energy, kurtosis, and variance of the
inverse difference moment.
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Fig. 5.10 Examples of hepatic tumor segmentation [75]: manual (blue), automated (yellow), and
their overlaps in green overlaid on axial views of 3D CT of two patients (a and b), each at two time
points (left and right). False positives from the automated segmentation are displayed in red. The

two cases also illustrate the difference in the

enhancement protocols: in (a) well-enhanced hepatic

veins are visible at both time points; in (b) only the arteries are enhanced in the liver
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Fig. 5.11 Comparative free-response receiver operating characteristic curves using eight (SVM
8) and all 157 (SVM 157) features for classification [79]. The difference between the two

classifiers was significant (p < 0.001)
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The SVM classifier with eight features achieved a sensitivity of 100 % TP at 2.3
FP/case (or 94 % TP at 1.6 FP/case). There was a significant difference (p < 0.001)
between the performances of the SVM classifiers with and without feature
selection. Feature selection resulted in 32 % TP increase at 1.6 FP/case, as shown
in Fig. 5.11.

Discussion

Medical image analysis benefits from models of anatomy and physiology. In
CT-based clinical abdominal diagnosis, the concomitant analysis of multiple organs
and information from contrast enhancement offer additional information to clini-
cians. In this chapter, we discussed our recent methods that incorporate anatomical
and physiological priors into multi-organ CAD. From the localization, detection
and segmentation of multiple organs in the abdomen, we also presented a technique
for the detection and segmentation of tumors inside the organs (i.e., the liver) for a
multi-scale comprehensive abdominal diagnosis.

Livers, spleens, and kidneys were segmented from multi-phase clinical data
following the typical acquisition protocol of abdominal CT images. The cuts in
the proposed 4D graph were based on globally minimizing an energy that included
enhancement, location, and shape constraints. The method avoided the inclusion of
heart segments in the segmentation of liver, but had the tendency to underestimate
organ volumes, in particular that of the spleen. Parts of the inferior vena cava may
be erroneously segmented in the mid-cephalocaudal liver region, especially when
contrast enhancement is low, and represented one of the sources of error in the liver
segmentation. Partial volume effects, small inter-phase registration errors and the
estimation of object and background distributions may have also contributed to the
undersegmentation.

For the robust initialization of segmentation and modeling techniques, we
additionally presented a method for automated multi-organ localization from
abdominal contrast-enhanced CT images. The algorithm found the locations, ori-
entations, and scales of five abdominal organs (liver, spleen, pancreas, and left and
right kidneys) by maximizing the a posteriori probabilities of organ poses. Addi-
tionally, the technique used a minimum volume overlap constraint to model inter-
organ relations.

Once the organs were segmented (i.e., the liver) we applied a technique for
tumor detection and segmentation based on graphs constrained by shape and
enhancement models. This allowed to segment tumors of variable sizes with a
reduced number of false positives. Additionally, we employed an extensive set of
features computed for each tumor candidate (inside and outside the tumor) and
demonstrated that through feature selection and classification using machine learn-
ing the number of false detections was significantly reduced. A clinical application
of liver segmentation was proposed via the definition of normative values for
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detection hepatomegaly [93]. For examples of clinical studies of kidney tumors,
please refer to [94, 95].

For a flavor of future developments, a number of notable recent advances in the
field of computational anatomy in the abdomen and analysis of multi-organs should
be mentioned. In [24, 96], a method for the automated analysis of organ shape
variability in the abdomen was presented, based on a combination of statistical
atlases, principal factor analysis, and a vector field clustering technique. The evalu-
ation of deformation fields in [96] showed strong correlations with anatomical
landmarks and known mechanical deformations in the abdomen. The automated
hierarchical partitioning of organs identified relevant anatomical components that
represent potentially important constraints for abdominal diagnosis and modeling
and that may be used as a complement to multi-level statistical shape models. Also
using hierarchical analysis, to explicitly incorporate the spatial inter-relations among
abdominal organs, the method in [97] represented these inter-relations based on
canonical correlation analysis in conjunction with the construction and utilization
of a statistical atlas. Finally, in [98] a method for modeling abdominal organ shifts
due to surgical procedures was introduced. This technique that accounts for pathol-
ogy also detects the occurrence of missing organs. The resulting missing organ
detection can be integrated within the multi-organ segmentation scheme to improve
its accuracy for targeted diseased populations.

As the trend in multi-organ analysis shows, future work will include more organs
for a holistic segmentation of radiological data. Additionally, the inclusion of data
with a variety of pathologies in the abdomen and outside will allow developing
segmentation techniques robust to physiological and clinical variability.

Conclusion

With the evolution of medical image analysis, more complex models of anatomy
and physiology are explored to enhance the quality of CAD. Location, orientation,
size, shape, and enhancement are only some of the clinical descriptors used in
diagnosis and interventions. Their translation into computerized models of the
human body has been beneficial for the accuracy of image analysis techniques
and the intuitive clinical translation of machine-based methods. To enhance the
clinical utility of CAD, multi-organ models of anatomy are particularly useful, as
clinicians analyze concomitantly all the organs shown in a particular type of
radiological image. Multi-organ analysis promises to support more investigative
diagnosis tools for complex multi-focal multi-disease clinical scenarios.
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