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Preface

Medical decision-making is a crucial element in medicine and in patients’

healthcare; yet, it is a complex task that is often difficult even for experienced

physicians. Biomedical imaging offers useful information on patients’ medical

conditions and clues to causes of their symptoms and diseases. Thus, biomedical

imaging is indispensable for accurate decision-making in medicine. However,

physicians must interpret a large number of images. This could lead to “information

overload” for physicians, and it could further complicate medical decision-making.

Therefore, computer aids are needed and have become indispensable in physicians’

decision-making such as detection, diagnosis, and treatment of diseases.

Computational intelligence plays an essential role in computer aids for medical

decision-making, including computer-aided detection and diagnosis, computer-

aided surgery and therapy, medical image analysis, automated organ/lesion seg-

mentation, automated image fusion, and automated image annotation and image

retrieval.

As medical imaging has been advancing with the introduction of new imaging

modalities and methodologies such as cone-beam/multi-slice computed tomogra-

phy (CT), positron-emission tomography (PET)-CT, tomosynthesis, diffusion-

weighted magnetic resonance imaging (MRI), electrical-impedance tomography,

and diffuse optical tomography, new computational intelligence algorithms and

applications are needed in the field of biomedical imaging. Because of its essential

needs, computational intelligence in biomedical imaging is one of the most prom-

ising, growing fields. A large number of researchers studied in the field and

developed a number of computational intelligence methods in biomedical imaging.

However, there has been no book that covered the state-of-the-art technologies and

recent advances in the field.

This book provides the first comprehensive overview of state-of-the-art compu-

tational intelligence research and technologies in medical decision-making based

on biomedical images. This book covers the major technical advances and research

findings in the field of computational intelligence in biomedical imaging. Leading

researchers in the field contributed chapters to this book in which they describe their

cutting-edge studies on computational intelligence in biomedical imaging.
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This book consists of three parts organized by research area in computational

intelligence in biomedical imaging: Part I deals with decision support, Part II

with computational anatomy, and Part III with image processing and analysis.

As mentioned earlier, computer aids have become indispensable in physicians’

decision-making. This books starts with the research on decision support systems.

In these systems, accurate segmentation and a precise understanding of anatomy are

crucial for improvement of the performance of decision support systems. Part II

covers this important topic, called “computational anatomy.” Image processing and

analysis are fundamental components in decision support systems as well as in

biomedical imaging. Part III deals with this indispensable topic.

Part I contains four chapters provided by leading researchers in the research area

of decision support.

In Chap. 1 in the decision support part (Part I), Drs. Cheng, Wee, Liu, Zhang, and

Shen describe a computerized brain disease classification and progression in MRI,

PET, and cerebrospinal fluid by using machine-learning classification and regres-

sion techniques. Their study represents state-of-the-art brain research by use of

machine-learning techniques.

Chapter 2 is on content-based image retrieval (CBIR) systems based on percep-

tual similarity for decision support in breast cancer diagnosis in mammography

using machine-learning algorithms by Drs. El Naqa and Yang. The authors are ones

of the pioneers who introduced and developed perceptual similarity in CBIR

systems for mammography. They also describe case-adaptive classification in

computer-aided diagnosis (CADx) for breast cancer. Their case-adaptive classifi-

cation is useful for improving the performance of a classifier in CADx.

In Chap. 3, Drs. Firjani, Khalifa, Elnakib, Gimel’farb, El-Ghar, Elmaghraby, and

El-Baz introduce computer-aided detection and diagnosis (CADe and CADx) of

prostate cancer in dynamic contrast enhanced MRI (DCE-MRI) by using image

analysis and classification techniques. The authors tackled this challenging problem

with their cutting-edge techniques.

In Chap. 4, Drs. Arimura, Magome, Kakiuchi, Kuwazuru, and Mizoguchi

describe a system for treatment planning in radiation therapy by use of image

analysis techniques, including automated beam arrangement based on similar

cases, segmentation of lung tumors using a support vector machine classifier, and

a method for determining robust beam directions against patient setup errors in

hadron particle therapy. This is one of the leading studies in the area of radiation

therapy planning.

Part II contains four cutting-edge studies in the field of computational anatomy.

Computational anatomy is a relatively new, yet promising, rapidly growing area

in biomedical imaging because of its essential needs. Four leading groups working

in this area contributed chapters to this part.

In the first chapter (Chap. 5) in the computational anatomy part (Part II),

Drs. Linguraru and Summers describe automated multi-organ analysis in the

abdomen in CT by using a graph cut technique. The authors are among the leading

researches in this area. They also describe CADe of tumors from the segmented

liver.
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Chapter 6 describes computerized segmentation of the liver in MRI by use of

a 3D geodesic active contour model with a level-set algorithm, as provided by

Drs. Huynh, Karademir, Oto, and Suzuki. Their study tackled this challenging topic

with cutting-edge techniques, and they accomplished highly accurate liver segmen-

tation in MRI.

In Chap. 7, Drs. Hayashi, Chen, Miyamoto, Zhou, Hara, and Fujita present a

quantitative analysis of the vertebral anatomy in CT by using image analysis tech-

niques, including a population-based statistical analysis on volumetric bone mineral

density.Quantitative analysis of anatomy and its use as a diagnostic aid are becoming

more and more important, as diagnosis in radiology becomes quantitative.

Chapter 8 is on segmentation of the lungs in CT by use of multi-stage learning

and level-set optimization, provided by Drs. Birkbeck, Sofka, Kohlberger, Zhang,

Wetzl, Kaftan, and Zhou. The authors especially focused on lung segmentation in

difficult cases of lung pathologies by using advanced machine-learning, in partic-

ular discriminative modeling, and pattern recognition approaches.

Part III contains six studies in the area of image processing and analysis in

biomedical imaging. Image processing and analysis are fundamental, indispensable

components of biomedical imaging, including decision support systems and com-

putational anatomy. The studies presented may be used as a very important,

necessary pre-processing, processing itself, or post-processing. Six leading groups

working in this area contributed chapters to this part.

In the first chapter (Chap. 9) in the image-processing and analysis part (Part III),

Drs. Chen and Suzuki describe a method for separating bones from soft tissue in

chest radiography by means of a pixel/patch-based machine-learning technique

called anatomically specific multiple massive-training artificial neural networks

(MTANNs). The author group is a pioneer in this area. This technique solves the

fundamental problem of overlapping structures with projection X-ray images.

Separation of bones from soft tissue improves the diagnostic accuracy of radiolo-

gists as well as a computer. This technique is indispensable for image analysis of

projection X-ray images.

In Chap. 10, Drs. Tasdizen, Seyedhosseini, Liu, Jones, and Jurrus describe a

method for reconstruction of circuits of individual neurons and synapses in

electron-microscopy images by using machine-learning techniques. This topic is

highly challenging, because the purpose was to reconstruct individual neural

circuits on a microscopic scale for individual neurons and synapses. The chapter

contains the pioneering work of the authors in this area.

Chapter 11 is on the quantification of brain tumors in MRI by use of image

analysis techniques, including pre-processing of images, segmentation of tumors,

and feature extraction, provided by Drs. Verma, Cowperthwaite, Burnett, and

Markey. The authors describe the quantitative analysis of brain tumors on MR

images. Their results can quickly be translated into construction of CADe and

CADx systems.

In Chap. 12, Drs. Tanaka and Sanada present a computerized analysis method

for respiratory and cardiac functions in dynamic chest radiography by use of image

analysis techniques. The authors are pioneers in developing a new modality,
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a dynamic chest radiography system, and its image analysis. Unlike ordinary chest

radiography, dynamic chest radiography can acquire dynamic information on

the lungs and heart. The authors successfully extracted respiratory and cardiac

functions from the images.

Chapter 13 describes a novel method for adaptive noise reduction and edge

enhancement in MRI and PET by use of independent component analysis, provided

by Drs. Han and Chen. Noise reduction and edge enhancement are very important

fundamental problems in biomedical imaging. The authors tackled these problems

by using a novel approach, independent component analysis.

In Chap. 14, Drs. Ishida, Yamamoto, and Okura describe advanced subtraction

techniques for CT and digital subtraction angiography (DSA) and CADe of lung

nodules in CT. The authors used subtraction in useful ways to improve the accuracy

and efficiency in reading CT and DSA images. They also describe a CADe system

for detection of lung nodules in CT which they developed.

In summary, this book provides the first comprehensive overview of state-of-the-

art computational intelligence research and technologies in medical decision-

making based on biomedical images. It covers major technical advancements and

research findings in the field. Leading researchers contributed chapters in which

they describe recent developments and findings in their cutting-edge studies.

In these studies, they developed new computational intelligence technologies to

solve specific problems in biomedical imaging. Thus, readers can learn and gain

knowledge from the book on recent computational intelligence in biomedical

imaging. Readers will learn that the most advanced computational intelligence

technologies and studies have reached a practical level, and that they are becoming

available in clinical practice in hospitals. The target audience of this book includes

graduate and college students in engineering and applied-science schools, medical

students, engineers in medical companies, professors in engineering and medical

schools, researchers in industry, academia, and health science, medical doctors such

as radiologists, cardiologists, and surgeons, and healthcare professionals such as

radiologic technologists and medical physicists. Professors may find this book

useful for their classes. Students can use this book for learning about state-of-the-

art research in the field of computational intelligence in biomedical imaging.

Engineers can refer to the book during their development of new products.

Researchers can use the book for their work and cite it in their publications. Medical

doctors, medical physicists, and other healthcare professionals can use the book to

learn about state-of-the-art studies on computational intelligence in biomedical

imaging. Therefore, it is expected that researchers, professors, students, and other

professionals will gain valuable knowledge from the book, use it as a reference, and

expand the current state-of-the art technologies. I hope that this book will inspire

readers and help to advance the field of computational intelligence in biomedical

imaging.

Chicago, IL, USA Kenji Suzuki
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Decision Support



Chapter 1

Brain Disease Classification and Progression

Using Machine Learning Techniques

Bo Cheng, Chong-Yaw Wee, Manhua Liu, Daoqiang Zhang,

and Dinggang Shen

Abstract In the past two decades, many machine learning techniques have been

applied to the detection of neurologic or neuropsychiatric disorders such as

Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment

(MCI), based on different modalities of biomarkers including structural magnetic

resonance imaging (MRI), fluorodeoxyglucose positron emission tomography

(FDG-PET), and cerebrospinal fluid (CSF), etc. This chapter presents some latest

developments in application of machine learning tools to AD and MCI diagnosis

and progression. We divide our discussions into two parts, pattern classification and

pattern regression. We will discuss how the cortical morphological change patterns

and the ensemble sparse classifiers can be used for pattern classification and then

discuss how the multi-modal multi-task learning (M3T) and the semi-supervised

multi-modal relevance vector regression can be applied to pattern regression.
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Background

Alzheimer’s disease (AD) is the most common form of dementia diagnosed in

people over 65 years of age. It is reported that there are 26.6 million AD sufferers

worldwide, and 1 in 85 people will be affected by 2050 [1]. This becomes worse as

life expectancy increases. With the aging of the world population, AD has become a

serious problem and a huge burden to the healthcare system, especially in the

developed countries. Recognizing this urgent need for slowing down or completely

preventing the occurrence of a worldwide healthcare crisis, effort has been under

way to administer and to develop effective pharmacological and behavioral inter-

ventions for delaying the onset and progression of the disease. Thus, accurate

diagnosis of AD and progression of its early stage, i.e., mild cognitive impairment

(MCI), is critical for timely therapy and possible delay of the disease.

A significant body of literature [2–4] suggests that pathological manifestation of

AD begin many years before it can be diagnosed using cognitive tests. At the stage

where symptoms can be observed, significant neurodegeneration has already

occurred. Studies suggest that individuals with MCI tend to progress to probable

AD at an annual rate of 10–15 % [5], compared with healthy controls who develop

dementia at a rate of 1–2 % [6]. Compared with AD, MCI is more difficult to

diagnose due to the subtlety of cognitive impairment, especially in high functioning

individuals who are able to maintain a positive public or professional profile

without showing obvious cognitive impairment.

Over the past decade, many machine learning and pattern classification methods

have been used for early diagnosis of AD and MCI based on different modalities of

biomarkers, e.g., the structural brain atrophy measured by magnetic resonance

imaging (MRI) [7–10], metabolic alterations in the brain measured by fluorodeox-

yglucose positron emission tomography (FDG-PET) [11, 12], and pathological

amyloid depositions measured through cerebrospinal fluid (CSF) [8, 13–15], etc.

Many existing methods use the structural MRI brain images for classification

between AD/MCI patients and normal controls [16–18]. Neuroimaging measure-

ments that are used include: regional brain volumes [19, 20], cortical thickness

[21–23], and hippocampal volume and shape [24, 25]. Another important imaging

modality for AD/MCI detection is FDG-PET [19]. With FDG-PET, some recent

studies have reported reduction of glucose metabolism in the parietal, posterior

cingulate, and temporal brain regions of AD patients [26]. Besides neuroimaging

techniques, biological or genetic biomarkers are effective alternatives for

AD/MACI diagnosis. Researchers have found that (1) the increase of CSF total

tau (t-tau) and tau hyperphosphorylated at threonine 181 ( p-tau) are related to

neurofibrillary tangle, (2) the decrease of amyloid β (Aβ42) indicates amyloid

plaque deposit, and (3) the presence of the apolipoprotein E (APOE) ε4 allele can

predict cognitive decline or conversion to AD [8].

In addition to classification, several recent works begin to estimate continuous

clinical variables from brain images by using pattern regression methods

[27–31]. In all these methods, the classification or regression models are learned
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from the training subjects to predict the disease categories or stages on the test

subjects. In the following, we will discuss AD or MCI diagnosis and progression

from two aspects, i.e., pattern classification and pattern regression.

AD/MCI Diagnosis Using Pattern Classification Approaches

Advanced statistical pattern classification techniques have been actively applied to

map neurodegenerative patterns during the early stage of the disease where only

very mild symptoms are evident [17, 32–34]. In addition to determining group

differences, pattern classification methods can be trained to identify individuals

who are at risk for AD [17, 33, 35–38]. A recent study demonstrated that classifi-

cation methods are capable of identifying AD patients via their MRI scans with

accuracy comparable to experienced neuroradiologists [35].

Machine learning techniques are often used to design an optimal classifier to

classify the test samples. So far, various classification models have been used for

classification of different patterns between AD and normal controls. Among them,

support vector machine (SVM) may be the most-widely used classifier, because of

its high performance for classification of high-dimensional data [35, 39–42]. SVM

is a supervised learning method that searches for the optimal margin hyperplane to

maximally separate different groups. On the other hand, to enhance the robustness

of classification to noise, sparse representation technique, which can be regarded as

one of the recent major achievements in pattern classification, has been proposed

and successfully applied to various classification problems, e.g., face recognition

[43–45]. In sparse representation-based classification, the input test sample is coded

as a sparse linear combination of the training samples across all classes via L1-norm

minimization, and then it evaluates which class of training samples could produce

the minimum reconstruction error of the input test sample with the sparse coding

coefficients. However, the discriminative features from neuroimaging data could lie

in multiple low-dimensional subspaces of a high-dimensional feature space, which

makes it difficult to build a single global classifier with high classification accuracy

and robustness to noise. To this end, the ensemble learning methods are generally

used to further improve the classification performance.

AD/MCI Progression Using Pattern Regression Approaches

Rather than predicting categorical variables as in classification, some recent studies

begin to estimate the continuous clinical variables based on the cognitive tests from

brain images [27–31]. Efforts have also been undertaken to develop regression

techniques for relating clinical scores to imaging data [28, 46, 47], facilitating

continuous monitoring of AD progression. This kind of research is important

because it can help evaluate the stage of AD pathology and predict future
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progression. Different from classification that classifies a subject into binary or

multiple categories, regression needs to estimate continuous values and are thus

more challenging. In the literature, a number of regression methods have been used

for estimating clinical variables based on neuroimaging data. For example, linear

regression models were used to estimate the 1-year mini-mental state examination

(MMSE) changes from structural MR brain images [28, 29]. High-dimensional

kernel-based regression method, i.e., relevance vector machine (RVM), was also

used to estimate clinical variables, including MMSE and Alzheimer’s disease

assessment scale-cognitive subscale (ADAS-Cog), from structural MR brain

images [27, 30, 31]. Besides clinical variables, regression methods have also been

used for estimating age of individual subject from MR brain images [48, 49].

In the practical diagnosis of AD, multiple clinical variables are generally

acquired, e.g., MMSE and ADAS-Cog. Specifically, MMSE is used to examine

the orientation to time and place, the immediate and delayed recall of three words,

the attention and calculations, language, and visuoconstructional functions [50],

while ADAS-Cog is a global measure encompassing the core symptoms of AD

[51]. It is known that there exist inherent correlations among multiple clinical

variables of a subject, since the underlying pathology is the same [30, 31]. However,

most existing regression methods model different clinical variables separately and

using supervised learning techniques, without considering their inherent correla-

tions and using the unlabeled subject information that may be helpful for robust and

accurate estimation of clinical variables from brain images. On the other hand,

although multi-modal data are often acquired for AD diagnosis, e.g., MRI, PET,

and CSF biomarkers, nearly all existing regression methods developed for estima-

tion of clinical variables were based only on one imaging modality, i.e., mostly on

the structural MRI.

The rest of this chapter is organized as follows. In section “Pattern Classifica-

tion,” we first study pattern classification methods for AD/MCI diagnosis and

prognosis. Specifically, we will employ gray matter cortical thickness as morpho-

logical data and further use sparse representation to construct ensemble classifier

for AD/MCI classification. Then, in section “Pattern Regression,” we study pattern

regression methods for AD/MCI progression, which includes multi-modal multi-

task learning (M3T) and semi-supervised multi-modal relevance vector regression

(SMRVR). In section “Results,” we present experimental results on the

ADNI dataset to validate the efficacy of all proposed methods. Finally, in section

“Summary,” we conclude this chapter.

Pattern Classification

In this section, we will discuss the pattern classification techniques for AD/MCI

diagnosis and prognosis using the cortical morphological change patterns and also

the ensemble sparse classification methods.
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Classification Using Cortical Morphological Change Patterns

Cortical thickness estimation performed in vivo via MR imaging is an important

technique for the diagnosis and understanding of the progression of neurodegener-

ative diseases, such as AD. Gray matter cortical thickness can be utilized as

morphological data to address the AD/MCI classification problem via a less

explored paradigm: Is the morphological changes in different cortical areas corre-

lated, especially in relation to pathological attacks, such as AD? Correlative

morphological information can be extracted from structural MRI to provide a

new type of features for AD and MCI classification. ROI-based morphological

information, i.e., gray matter (GM) and white matter (WM) volumes, and regional

mean cortical thickness, is also utilized to provide extra information for better

characterization of anatomical changes associated with AD. The correlative and

ROI-based morphological features are integrated via a multi-kernel SVM to further

improve classification capability.

Two types of features are extracted from the MR volume of every subject based

on the Desikan–Killiany cortical atlas [52], which contains 68 gyral-based ROIs,

34 for each hemisphere. The first feature type is the ROI-based morphological

features which contain the regional mean cortical thickness, cerebral cortical GM,

and cortical associated WM volumes, while the second feature type is the correl-

ative features which are obtained by constructing a similarity map signifying the

relative mean cortical thickness between pairs of ROIs. The Desikan–Killiany

cortical atlas is provided in Fig. 1.1.

The ROI-based morphological features, i.e., regional mean cortical thickness,

cerebral cortical GM, and cortical associated WM volumes, are extracted in an

automated manner using atlas-based FreeSurfer software suite (http://surfer.nmr.

mgh.harvard.edu/Version 4.5.0). Then, the regional mean cortical thickness fea-

tures, after normalized by their respective standard deviation, are combined with

Fig. 1.1 Desikan–Killiany cortical atlas used for brain space parcellation. The medial and lateral

views of the atlas are obtained from http://web.mit.edu/mwaskom/pyroi/freesurfer_ref.html
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the regional cortical volumetric information to better describe morphological pat-

tern of the brain. We utilize the same ROIs defined in Desikan–Killiany cortical

atlas to extract the cerebral cortical GM and cortical associated WM volumes. We

normalize the regional volumes of each subject by their respective intracranium

volume (ICV) value to provide a more appropriate volumetric representation.

It is well known that AD/MCI and similar dementias exhibit subtle, spatially and

temporally diffuse pathology, where the brain is damaged in a large-scale, highly

connected network, rather than in one single isolated region [53, 54]. In view of

this, we design an interregional description, which might be more sensitive in

conveying the pathological information for accurate diagnosis of neurological

diseases. Hence, we propose to use correlative derived from cortical thickness

information between pairs of ROIs for AD/MCI classification. By using the

Desikan–Killiany cortical atlas, a 68 � 68 matrix map is constructed with every

element representing the similarity of regional mean cortical thicknesses between a

pair of ROIs. The similarity map is symmetric with ones along its diagonal.

Specifically, for the i-th and j-th ROIs, the dissimilarity of the cortical

thicknesses is defined as [76]

d i; jð Þ ¼ t ið Þ � t jð Þ½ �2 (1.1)

where t(i) and t( j) denote the regional mean cortical thickness of the i-th and

j-th ROIs, respectively. Then, the similarity between the i-th and j-th ROIs is

computed as

s i; jð Þ ¼ exp � d i; jð Þ
2σ2

� �
(1.2)

where σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σi þ σj

p
with σi and σj denoting the standard deviation of regional

cortical thickness of the i-th and j-th ROIs. This new feature type provides the

relative morphological changes across different encephalic regions, instead of

morphological changes in the isolated regions as used in the conventional methods.

It is worth noting that the dissimilarity measure (1.1) and the similarity measure

(1.2) can be replaced by other functions for similarity map construction. Due to

symmetry, only the upper (or lower) triangular of the similarity map is used. For

each subject, all similarity values of the upper triangular part of the similarity map

are concatenated to form a long feature vector with 2,278 elements (N � (N � 1)/2,

with N ¼ 68).

Due to high dimensionality of the correlative morphological features, we utilize

a hybrid feature selection method, a combination of filter-based and wrapper-based

approaches, to select the most relevant features for AD/MCI classification. Two

filter-based approaches are initially used to reduce the number of features. In the

first filter-based approach, only those features with their p-values smaller than the

predefined threshold, measured via between-group t-test, will be retained for

subsequent feature selection. Despite the reduction in dimensionality, the features
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retained by this simple approach may still inevitably be inter-correlated. Therefore,

another filter-based approach, called minimum redundancy and maximum rele-

vance (mRMR) [55, 56], is employed to further reduce the feature dimensionality.

The mRMR model provides a balance between two aspects of feature selection,

i.e., efficiency and broadness. Efficiency ensures that characteristics can be

represented with a minimal number of features without significant reduction in

prediction performance. Broadness ensures that the selected feature subset can be

the maximally representative of original space covered by the entire dataset.

SVM recursive feature elimination (SVM-RFE) [57, 58] is finally utilized to

further reduce the number of selected features by selecting a subset of features that

are most favorable to AD/MCI classification. The goal of SVM-RFE is to find a

subset of features that optimizes the performance of the SVM classifier. The basic

principle of SVM-RFE is to ensure that the removal of a particular feature will

make the classification error smallest. SVM with linear kernel is utilized to evaluate

the discriminative power of the selected features. It is noteworthy that the hybrid

feature selection is performed separately on each feature type (i.e., correlative and

ROI-based features) to obtain an individual optimal subset for each feature type.

To classify a new test subject, the ROI-based features are firstly extracted from

the subject’s MR volumes. Then, the correlative features are constructed from the

regional mean cortical thickness. Individual kernel matrices are constructed for

each feature type based on the optimal features selected in the training process.

These individual kernel matrices are then integrated to form a mixed-kernel matrix

that will act as the input to the previously trained SVM classifier to determine the

class where the new test subject belongs to. Specifically, in every experiment, the

data is randomly divided into two sets, one for training set and one for testing set,

with similar number of subjects for each class in each set. The experiment was

repeated for 20 times to evaluate the performance of all compared methods by

determining their mean classification accuracy, area under receiver operating

characteristic (ROC) curve, sensitivity, and specificity. The average classification

performance estimated using this approach tends to be more conservative than the

traditional leave-one-out approach. It also ensures that the trained SVM models are

validated with independent test sets for more precise estimation on how accurately

they will perform in practice.

Ensemble Sparse Classification of Structural MR Images

Sparse representation has been successfully used in various applications where the

original signal needs to be reconstructed as accurately as possible, such as

denoising [59], image inpainting [60], and coding [61]. Recently, a sparse

representation-based classifier (SRC) was proposed to harness the sparsity for

discrimination [43]. The basic idea of SRC is that the test data is considered as a

linear composition of the training data belonging to the same category if sufficient

training samples are available for each class. In our previous work [62], a random
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patch-based subspace ensemble classification framework was proposed to combine

multiple weak classifiers built with the sparse representation-based classification

method (denoted as RPSE_SRC). The proposed ensemble sparse classification

framework is shown graphically in Fig. 1.2. It consists of three main steps:

(1) patch extraction and random patch sampling; (2) design of individual weak

classifier using SRC; (3) ensemble of multiple weak classifiers. We will detail each

step in the rest of this section.

Although the proposed classification framework makes no assumption on a

specific neuroimaging modality, for demonstrating its performance, the

T1-weighted MR Imaging data are used in this work. Specifically, the MR brain

images are skull-stripped and cerebellum-removed after correction of intensity

inhomogeneity using nonparametric nonuniform intensity normalization

(N3) algorithm [63]. Then, each brain image is segmented into three kinds of tissue

volumes, e.g., GM, WM, and CSF volumes. All three tissue volumes will be

spatially normalized onto a standard space by a mass-preserving deformable

warping algorithm proposed in [64]. The warped mass-preserving tissue volumes

are also called as the tissue density maps below. These spatially normalized tissue

density maps are used as the imaging features for classification.

Patch Extraction

For simplicity, we uniformly divide the tissue density maps into patches of fixed

size without overlapping. For accurate classification, the noisy voxels should be

first excluded from the feature subspaces. On the other hand, the sampled subspaces

Fig. 1.2 The framework of the random patch-based subspace ensemble classification method
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for the individual classifiers should be as diverse as possible to give complementary

information for effective ensemble. To balance the trade-off between accuracy and

diversity, we perform the simple t-test on each voxel of the whole brain and select

the relevant voxels with the p-value smaller than 0.05. The patch extraction is

carried out based on these preselected relevant voxels. The patch pool for random

sampling is composed of the patches in each of which more than 50 % voxels are

the preselected relevant voxels. We randomly select a subset of patches from the

patch pool and all the preselected relevant voxels contained in the sampled patches

are concatenated into a feature vector for classification. Each random sampling

defines a feature subspace for one weak classifier.

Sparse Representation-Based Classifier

After patch extraction, we construct an independent weak classifier for each

randomly sampled subspace, using SRC method. SRC first encodes the test sample

as a sparse linear combination of the training samples by L1-normminimization and

then performs classification by evaluating which class produces the minimum

reconstruction error with the sparse coefficients. Unless specially noted, all feature

vectors are the column vectors and k � k2 represents the standard Euclidean norm,

while k � k1 represents the standard L1 norm. Suppose that there are N training

samples represented by X ¼ X1 . . . ,Xl . . . ,XC
� �

∈ RM�N belonging to C classes,

where N ¼ N1 + � � � Nl + � � � NC and Xl ¼ xl1 . . . ,x
l
i, . . . ,x

l
Nl

h i
∈ RM�Nl consists

of Nl training samples of the l-th class with the i-th feature vector xli. In this study

C ¼ 2, but the proposed framework allows to include more classes such as MCI

subjects. The SRC model can be summarized as [43]

1. Input: A matrix of training dataX ¼ X1 . . . ,Xl, . . . ,XC
� �

∈ RM�N for C classes

with each column being a feature vector, a test sample represented by a column

vector y ∈ RM, and an optional error tolerance ε > 0.

2. Normalize each column of X and the test sample y to have unit L2 norm.

3. Compute the decomposition coefficient vector α̂ by solving the L1-norm

minimization problem by sparse coding

α̂ ¼ arg minα αk k1, subject to Xα� yk k2 � ε (1.3)

4. For each test sample y, compute the residual (i.e., the sparse reconstruction error)

with the sparse coefficients α̂ l associated with each class l

rl yð Þ ¼ Xlα̂ l � y
�� ��

2
for l ¼ 1, . . . ,C (1.4)

5. Output: The class label for the test sample y is assigned as the class with the

minimum residual over all classes
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Label yð Þ ¼ arg minl rl yð Þ (1.5)

The L1-norm minimization in Eq. (1.3) can be efficiently solved by using some

L1-regularized sparse coding methods such as those proposed in [65–68].

We can see that the classification of the test sample y depends on the residuals.

There are two important terms in the above classification model. One is to

characterize the signal sparsity by the L1-norm constraint kαk1. Another one is

to characterize the signal fidelity by the L2-norm term kXα � yk2 � ε especially
when the test sample y is noisy. Ideally, the sparse coefficients of kαk1 are

associated with the training samples from a single class so that the test sample

can be easily assigned to that class. However, noise and modeling error may also

lead to small nonzero sparse coefficients associated with multiple classes. Instead

of classifying test sample based on the sparse coefficients, the classification made

by Eq. (1.5) is based on how well the sparse coefficients associated with the

training data in each class can reconstruct the test sample, which can better

harness the subspace structure of each class. For each randomly sampled sub-

space, we construct a dictionary composed of all training samples to build an SRC.

Finally, we get multiple SRCs based on different feature subspaces.

Ensemble of Weak Classifiers

The classifier ensemble is usually considered to be more accurate and robust than

single classifier. Majority voting is one of the widely used methods for fusion of

multiple classifiers. However, this method puts equal weight on the outputs of all

weak classifiers for ensemble. In fact, the classifiers might have different confi-

dences for a test sample. From Eq. (1.5), we know the classification of a test

sample is performed in terms of the residuals with respective to the C classes,

which also measures the similarity between the test sample and the training

samples of each class. Smaller residual also indicates that the test sample is better

approximated by the sparse representation of the training samples belonging to

the corresponding class. We combine multiple weak classifiers by using the

residuals instead of the class label output. In this way, if the residuals of a

classifier corresponding to the C classes are close to each other, the classifier

will have low contribution to the final ensemble, and vice versa. Suppose that

we have K weak classifiers for final ensemble. Defining rkl (y) as the residual of

the test sample y obtained from the k-th weak classifier for the l-th class, the

empirical average of the l-th residuals over the K classifiers can be calculated as

follows
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El yð Þ ¼
XK

k¼1
rkl yð Þ

K
: (1.6)

Finally, the class label of test sample y can be assigned to the class with the

minimum average residual

Label yð Þ ¼ arg minl El yð Þ (1.7)

Pattern Regression

In this section, we will discuss the pattern regression techniques for AD/MCI

diagnosis and prognosis using M3T and SMRVR methods.

Multi-Modal Multi-Task Learning

A new learning method, namely M3T learning [69], is presented here to simulta-

neously learn multiple tasks from multi-modal data. It is worth noting that M3T is a

general learning framework, and here we implement it through two successive

major steps, i.e., (1) multi-task feature selection (MTFS) and (2) multi-modal SVM

(for both regression and classification).

Multi-Task Feature Selection

For imaging modalities such as MRI and PET, even after feature extraction, the

number of features (extracted from brain regions) may be still large. Besides, not all

features are relevant to the disease under study. So, feature selection is commonly

used for dimensionality reduction, as well as for removal of irrelevant features.

Different from the conventional single-task feature selection, the MTFS simulta-

neously selects a common feature subset relevant to all tasks. This point is espe-

cially important for diagnosis of neurological diseases, since multiple regression/

classification variables are essentially determined by the same underlying pathol-

ogy, i.e., the diseased brain regions. Also, simultaneously performing feature

selection for multiple regression/classification variables is very helpful to suppress

noises in the individual variables.

Denote X(m) ¼ [x
ðmÞ
1 , . . .,x

ðmÞ
i , . . .,x

ðmÞ
N ]T as the training data matrix on the m-th

modality from N training samples, and y( j) ¼ [t
ðjÞ
1 , . . .,t

ðjÞ
i , . . .,t

ðjÞ
N ]T as the response

vector on the j-th task from the same N training samples. Following the method

proposed in [70], linear models are used to model the MTFS as below
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t̂
jð Þ

x mð Þ; v mð Þ
j

� 	
¼ x mð Þ

� 	T
v

mð Þ
j , j ¼ 1, . . . , T;m ¼ 1, . . . ,M (1.8)

where v
ðmÞ
j is the weight vector for the j-th task on the m-th modality, and x(m) is the

m-th modal data of a certain subject. The weight vectors for all T tasks form a

weight matrix V(m) ¼ [v
ðmÞ
1 , . . .,v

ðmÞ
j , . . .,v

ðmÞ
T ], which can be optimized by the

following objective function

min
V mð Þ

1

2

XT
j¼1

XN
i¼1

t
jð Þ

i � t̂
jð Þ

x
mð Þ
i ; v

mð Þ
j

� 	� 	2

þ λ
XD mð Þ

d¼1

V mð Þ�� jd
��
2

¼ 1

2

XT
j¼1

ky jð Þ � X mð Þv mð Þ
j

2
2

�� þ λ
XD mð Þ

d¼1

V mð Þ�� jd
��
2

(1.9)

where V(m)jd denotes the d-th row of V(m), D(m) is the dimension of the m-th modal

data, and λ is the regularization coefficient controlling the relative contributions of

the two terms. Note that λ also controls the “sparsity” of the linear models, with the

high value corresponding to more sparse models (i.e., more values inV(m) are zero).

It is easy to know that the above equation reduces to the standard l1-norm regular-

ized optimization problem in Lasso [71] when there is only one task. In our case,

this is a multi-task learning for the given m-th modal data.

The key point of the above objective function of MTFS is the use of l2-norm for

V
(m)jd, which forces the weights corresponding to the d-th feature (of the m-th

modal data) across multiple tasks to be grouped together and tends to select features

based on the strength of T tasks jointly. Note that because of the characteristic of

“group sparsity,” the solution of MTFS results in a weight matrix V(m) whose

elements in some rows are all zeros. For feature selection, we just keep those

features with nonzero weights. At present, there are many algorithms developed

to solve MTFS; here, we adopt the SLEP toolbox [72], which has been shown very

effective on many datasets.

Multi-Modal SVM

In our previous work [42], the multi-modal support vector classification (SVC) has

been developed for multi-modal classification of AD and MCI. Following [41], in

this paper, we derive the corresponding multi-modal support vector regression

(SVR) algorithm as below. Assume that we have N training subjects with the

corresponding target output zi∈, i ¼ 1, . . . ,Nf gand each subject hasMmodalities

of data with the features selected by the above proposed method and denoted as

x0i ¼ {x0ð1Þi , . . ., x0ðmÞi , . . ., x0ðMÞ
i }. Multi-modal SVR solves the following primal

problem
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min
w mð Þ, b, ξ, ξ�

1

2

XM
m¼1

βm w mð Þ�� ��2 þ C
XN
i¼1

ξi þ C
XN
i¼1

ξ�i

s:t: 1ð Þ
XM

m¼1
βm w mð Þ

� 	T
ϕ mð Þ x0 mð Þ

i

� 	
þ b

� �
� zi � εþ ξi;

2ð Þ zi �
XM

m¼1
βm w mð Þ

� 	T
ϕ mð Þ x0 mð Þ

i

� 	
þ b

� �
� εþ ξ�i ;

3ð Þ ξi, ξ
�
i � 0, i ¼ 1, . . . ,N:

(1.10)

where w(m), ϕ(m), and βm � 0 denote the normal vector of hyperplane, the kernel-

induced mapping function, and the combining weight on the m-th modality, respec-

tively. Here, we constrain ∑ m βm ¼ 1. The parameter b is the offset. Note that

ε-insensitive loss function is used in the above objective function, and ξ and ξ* are

the two sets of slack variables.

Similar to the conventional SVR, the dual form of the multi-modal SVR can be

represented as below

max
α,α� � 1

2

XN
i, j¼1

α�i � αi

 �

α�j � αj
� 	XM

m¼1

βmk
mð Þ x0 mð Þ

i , x0 mð Þ
j

� 	

� ε
XN
i¼1

α�i þ αi

 �þXN

i¼1

α�i � αi

 �

zi

s:t:
XN
i¼1

αi � α�i

 � ¼ 0 and 0 � αi, α�i � C, i ¼ 1, . . . ,N:

(1.11)

where k(m)(x0ðmÞi , x0ðmÞj ) ¼ [ϕ(m)(x0ðmÞi )]Tϕ(m)(x0ðmÞj ) is the kernel function for the two

training samples on the m-th modality.

For a test sample with the selected features x ¼ {x(1), . . .,x(m), . . .,x(M )}, we

denote k(m)(x0ðmÞi , x(m)) ¼ [ϕ(m)(x0ðmÞi )]Tϕ(m)(x(m)) as the kernel between each train-

ing sample x0i and the test sample on the m-th modality. Then, the regression

function takes the following form

f xð Þ ¼
XN
i¼1

α�i � αi

 �XM

m¼1

βmk
mð Þ x0 mð Þ

i , x mð Þ
� 	

þ b (1.12)

Similar to the multi-modal SVC, the multi-modal SVR can also be solved with

the conventional SVR, e.g., through the LIBSVM toolbox, if we define the mixed

kernel k(x0i, x0j) ¼ ∑ m=1
Mβmk

(m)(x0ðmÞi , x0ðmÞj ) between multi-modal training sam-

ples x0i and x0j, and k(x0i, x) ¼ ∑ m=1
Mβmk

(m)(x0ðmÞi , x(m)) between multi-modal

training sample x0i and test sample x. Here, βms are the nonnegative weight

parameters used to balance the contributions of different modalities, and their
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values are optimized through a coarse-grid search by cross validation on the

training samples.

After obtaining the common feature subset for all different tasks by MTFS as

described above, we use multi-modal SVM, including multi-modal SVC and multi-

modal SVR, to train the final SVC and regression models, respectively. Here, we

train a model for each corresponding variable (task). Specifically, we train SVR

models corresponding to the regression variables, and SVC models corresponding

to the classification variable, respectively. It is worth noting that since we use the

common subset of features (learned by MTFS during the feature selection stage) to

train both regression and classification models, our models are actually performing

the M3T.

Semi-Supervised Multi-modal Relevance Vector Regression

In this section, we will first extend the standard relevance vector regression (RVR)

method to the multi-modal RVR (MRVR) and then introduce our proposed

SMRVR method.

The main idea of RVR is summarized as follows. Specifically, RVR is a sparse

kernel method formulated in a Bayesian framework [73]. Given a training set with

its corresponding target values, such as {xn,tn}
N
n¼1, RVR aims to find out the

relationship between the input feature vector x and its corresponding target value t

t ¼ f x;wð Þ þ ε (1.13)

where ε is the measurement noise (assumed independent and following a zero-mean

Gaussian distribution, ε ~ N(0,σ2), and f(x,w) is a linear combination of basic

functions k(x,xn) with the following form

f x;wð Þ ¼
XN
n¼1

wnk x; xnð Þ þ w0 (1.14)

where w ¼ (w0,w1, . . .,wN)
T is a weight vector. According to [73], we can obtain a

sparse kernel regression model based on the weight vector w. Now we can extend

RVR to MRVR for multi-modal regression by defining a new integrated kernel

function for comparison of two multi-modal data x and xn as below

k x; xnð Þ ¼
XM
m¼1

cmk
mð Þ x mð Þ; x mð Þ

n

� 	
(1.15)

where k(m) denotes the kernel matrix over the m-th modality, similar to the defini-

tion given above for the single modality case. This new integrated multiple-kernel

can be expediently embedded into the conventional single-kernel RVR, and thus

16 B. Cheng et al.



solved by the programs developed for the conventional single-kernel RVR. For cm,

we constrain ∑ M
m¼1cm ¼ 1 and adopt a coarse-grid search through cross-validation

on the training samples to find their optimal values.

The algorithmic procedure of SMRVR is detailed as below:

Step 1: Initialization of parameters (RVR kernel functions type, the nearest

neighbors k used in KNN regression method, and the maximum number of

iterations T);
Step 2: For each modality data use k-nearest neighbor (KNN) regression method

and current training set L of labeled sample [AD, Health controls (HC)] to

estimate clinical scores of unlabeled MCI subjects U; then average all estimated

clinical scores (using all modality data) as the final clinical scores of unlabeled

MCI subjects.

Step 3: For unlabeled MCI sample setU, {(uj,tj), j ¼ 1, . . ., u} denote an unlabeled
sample set with its corresponding target values. As shown in Fig. 1.3, we seek

the most informative MCI subject and join it into L. Specifically, for each

sample {(uj,tj), j ¼ 1, . . ., u} in unlabeled MCI samples set U, respectively,
plus current training set L, and train the MRVR with L as testing set. After

that we compute the value of square root of mean square error (RMSE) for each

sample uj. Finally, a sample with the top informative (i.e., minimum RMSE

value) in U was selected and added into L, and further deleted from U.
Step 4: Go to Step 2 for running the next iteration;

Step 5: After reaching the maximum iterations T, we can obtain the final MCI

subsample set U0, and use L [ U0 as training set for training new MRVR.

Fig. 1.3 The flowchart of selecting the most informative MCI subject
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Results

In this section, we will evaluate both machine learning-based classification and

regression techniques (discussed above) for AD/MCI diagnosis and progression

using single modality or multi-modality data.

Pattern Classification

Classification Using Cortical Morphological Change Patterns

Data used in the study were obtained from the Alzheimer’s disease neuroimaging

initiative (ADNI) database (http://adni.loni.ucla.edu). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA),

private pharmaceutical companies and nonprofit organizations, as a $60 million,

5-year public–private partnership. The primary goal of ADNI has been to test

whether serial MRI, PET, other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the progression of MCI and early

AD. Determination of sensitive and specific markers of very early AD progression

is intended to aid researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical trials. Readers are

referred to www.adni-info.org for more information.

Five hundred and ninety-eight subjects who belong to one of the AD, MCI, or

HC groups were analyzed in this study. These subjects were selected randomly for a

ratio of AD vs. MCI vs. HC roughly as 1:1:1. All subjects received the baseline

clinical/cognitive examinations including 1.5T structural MRI scan and were

reevaluated at specified intervals (6 or 12 months). The baseline scans were used

as the input data in our experiments. Table 1.1 shows the demographic information

of the participants used in this study.

Table 1.1 Demographic information of the participants used in this study

Variables

Diagnosis group

HC MCI AD

Number of subjects (N ) 200 200 198

Gender (M/F) 103/97 143/57 103/95

Age (mean 	 SD) 75.8 	 5.0 75.1 	 7.1 75.7 	 7.7

Education years (mean 	 SD) 15.7 	 3.6 15.5 	 3.9 13.8 	 4.8

Cognitive scores

ADAS-Cog (mean 	 SD) 6.1 	 3.0 11.3 	 4.4 17.3 	 8.0

MMSE (mean 	 SD) 28.6 	 3.8 26.3 	 4.1 21.8 	 6.1

CDR (mean 	 SD) 0 	 0.1 0.4 	 0.2 0.6 	 0.5

HC health controls, sMCI stable MCI, pMCI progressive MCI, AD Alzheimer’s disease
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The discriminative powers of the integrated and correlative morphological

features were compared with three ROI-based features, i.e., regional mean cortical

thickness and regional cortical volumes. The performance of the multi-kernel SVM

using the integrated features was compared with the single-kernel SVMs using

other feature types. For each comparison, performance of every compared method

was validated through two different classification tasks: AD vs. HC and MCI

vs. HC. The classification performance is summarized in Table 1.2.

It is clear that the regional mean cortical thickness performed the worst among

all compared feature types in AD classification. However, when the correlative

features were used, classification performance improved significantly. The pro-

posed integrated morphological approach shows significantly better performance

than all other feature types in all compared statistical measures. Promising classi-

fication results were achieved using the integrated features: 92.4 % (AUC ¼ 0.974)

and 83.8 % (AUC ¼ 0.923) for AD and MCI classifications, respectively. High

AUC value achieved indicates excellent diagnostic power and generalizability of

the proposed framework to unseen dataset. In addition, our framework substantially

improves the classification performance, particularly the sensitivity rate, compared

to the ROI-based morphological feature-based classifiers. These results indicate

that the proposed framework can be used to provide additional diagnostic informa-

tion for early treatment of the disease. The provided p-values indicate how signif-

icant the integrated morphological features performed better than the other feature

types in terms of classification accuracy for 20 repetitions.

Table 1.2 Mean

classification performance

between integrated,

correlative, and ROI-based

features over 20 repetitions

AD vs. HC

Features ACC p SEN SPE AUC

Thickness 0.845 <0.0001 0.828 0.865 0.918

Volume 0.870 0.0002 0.852 0.897 0.936

Correlative 0.885 0.0002 0.846 0.917 0.954

Integrated 0.925 – 0.904 0.943 0.974

MCI vs. HC

Feature ACC p SEN SPE AUC

Thickness 0.749 <0.0001 0.733 0.764 0.830

Volume 0.770 <0.0001 0.746 0.793 0.853

Correlative 0.790 0.0001 0.757 0.823 0.886

Integrated 0.838 – 0.836 0.840 0.923

Thickness regional mean cortical thickness, Volume regional cor-
tical volumes, Correlative correlative features, Integrated inte-

gration of the correlative and ROI-based features, ACC accuracy,

SEN sensitivity, SPE specificity, AUC area under the ROC curve
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Ensemble Sparse Classification of Structural MR Images

We performed the experiments on the T1-weighted MR images of the baseline visit

obtained from the ADNI database. MRI acquisition was done according to the

ADNI acquisition protocol in [74]. The MR images from 427 ADNI subjects

including 198 AD and 229 HC are used for evaluation. Table 1.3 presents a

summary of the demographic characteristics of the studied population from the

ADNI database. The processing of MR images was performed as described above,

which included the correction of intensity inhomogeneity, skull-stripping, and

cerebellum-removing. Furthermore, each MR image was segmented into three

tissue types: GM, WM, and CSF, and was further spatially normalized into a

template space by a mass-preserving registration framework [64]. After spatial

normalization, the tissue density maps were smoothed using a Gaussian kernel to

improve signal-to-noise ratio. Since GM density maps were more related to AD

than white matter and CSF, we only used the GM density maps for classification in

the experiments. For computational efficiency, we down-sampled the GM density

maps as the classification features.

In the experiments, ten fold cross-validation is performed to evaluate the clas-

sification performance. For each time, one fold dataset is used for testing while the

other folds are used for training. The training set can be split further into training

part and validation part for parameter tuning. The final classification accuracy is the

average of the classification accuracies across all ten cross-validation folds.

In addition, we also compare the results with the SVM classifier that has been

widely used for AD classification. In the experiments, the SVM classifier is

implemented using LIBSVM toolbox [75], with a linear kernel and a default

value set for the parameter C (i.e., C ¼ 1).

Before we evaluate the ensemble classification performance, we test the perfor-

mance using a single SRC in comparison with the SVM classifier. Both the SRC

and SVM classifiers are tested on the selected voxel-wise features. To test the

classification performances on varying number of relevant features, we perform the

t-test on each voxel of the GM density maps. Then all voxels are ranked in

ascending order according to their p-values of the t-test. Smaller p-value indicates
larger group difference for the voxel-wise feature. We select different numbers of

top ranked voxels in terms of p-values to construct feature vector as the inputs to

SRC and SVM classifiers. The number of top ranked features varies from 200

to 24,000. Figure 1.4 shows the classification accuracies with respect to different

numbers of top ranked features.

Table 1.3 Demographic characteristics of the studied subjects from ADNI database (denoted as

mean 	 standard deviation)

Diagnosis Number Age Gender (M/F) MMSE

AD 198 75.7 	 7.7 103/95 23.3 	 2.0

HC 229 76.0 	 5.0 119/110 29.1 	 1.0

AD Alzheimer’s disease, HC healthy control, MMSE mini-mental state examination
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As can be seen from Fig. 1.4, SVM classifier performs better than the SRC

method when the number of features is smaller than 1,500, but its performance

degrades gradually and is inferior to SRC when the number of features is further

increased beyond a certain number. In contrast, SRC can achieve better classifica-

tion performance than SVM when more features are used. Since SVM classifier

aims to maximize the discriminative power on the training data, the features with

larger p-values will provide more irrelevant or noisy information which will reduce

the discrimination capability. This explains why SVM achieves better performance

with a relatively small number of top ranked features. On the other hand, SRC is

based on combining the sparsity and reconstruction via sparse representation and

thus can achieve high robustness to noisy features due to its reconstruction property.

In general, to make the L1-norm sparse coding computationally feasible, the feature

dimensionality should be reduced to a subset of features. However, our experimen-

tal results show that SRC method continues to perform well when the feature

dimensionality increases.

Next, we tested the random patch-based subspace ensemble classification frame-

work with both SRC and SVM classifiers to construct the weak classifier.

In general, there are three important parameters that are required to determine

and affect the ensemble performance, which are, respectively, the patch size, the

sampling rate (i.e., the ratio of sampled patches to the cardinality of patch pool), and

the ensemble size (i.e., the number of weak classifiers for the final ensemble). In

practice, these three parameters (i.e., patch size, sampling rate, and ensemble size)

can be optimized in each fold with the training dataset to run the random patch-

based subspace ensemble classification algorithm. Based on our experimental

analysis, the effect of ensemble performance by the ensemble size is small if the

number of weak classifiers is larger than 15. For simplicity, the ensemble size is

Fig. 1.4 Classification

accuracies of SVM and

SRC with respect to

different numbers of top

ranked features selected for

AD classification
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fixed to 17 in our experiments. The other two parameters are optimized with the

training dataset. Since the ensemble of different weak classifiers may produce

different classification results, the ensemble classification accuracy is computed

by averaging the accuracies of multiple independent runs (20 in our experiments).

We also run the COMPARE algorithm [39] on the same dataset for comparison, by

using its suggested parameters. Table 1.4 gives the comparison of AD classification

in five different classification methods, which are COMPARE, single SVM classi-

fier (SVM), single SRC classifier (SRC), random patch-based SVM ensemble

(RPSE_SVM), and random patch-based SRC ensemble (RPSE_SRC), respectively.

For single SVM and SRC classifiers, we report their best classification results in

Table 1.4 among those on the different numbers of features selected by t-test as
shown in Fig. 1.4. The ROC curves of these methods are shown in Fig. 1.5. We can

see that single SRC method performs better than COMPARE and both single

and ensemble SVM methods. Our method, RPSE_SRC, can further improve the

classification accuracy by ensemble of multiple weak classifiers.

Table 1.4 Comparison of

AD classification by five

different classification

methods

Methods ACC SEN SPE AUC

COMPARE 0.811 0.788 0.829 0.877

SVM 0.846 0.728 0.948 0.914

SRC 0.878 0.808 0.939 0.938

RPSE_SVM 0.855 0.755 0.942 0.924

RPSE_SRC 0.908 0.863 0.948 0.949

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity, AUC Area

Under the ROC curve

Fig. 1.5 ROC curves

of five different methods

for AD classification
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Pattern Regression

Multi-Modal Multi-Task Learning

In the following experiments, 186 ADNI subjects with all corresponding

baseline MRI, PET, and CSF data are included. In particular, it contains 45 AD

patients, 91 MCI patients [including 43 MCI converters (MCI-C) and 48 MCI

non-converters (MCI-NC)], and 50 healthy controls. Table 1.5 lists the demo-

graphics of all these subjects.

Experiment 1: Estimating Clinical Stages (MMSE, ADAS-Cog,

and Class Label)

We first estimate the clinical stages, including two regression variables (MMSE and

ADAS-Cog) and one classification variable (i.e., class label with a value of “AD,”

“MCI,” or “HC”), from the baseline MRI, PET, and CSF data. It is worth noting

that the original multi-class classification problem is formulated as two binary

classification problems, i.e., AD vs. HC and MCI vs. HC, as mentioned above.

Table 1.6 shows the performances of the proposed M3T method, compared with

Table 1.5 Demographics of all used subjects

AD (N ¼ 45) HC (N ¼ 50) MCI-C (N ¼ 43) MCI-NC (N ¼ 48)

Female/male 16/29 18/32 15/28 16/32

Age 75.4 	 7.1 75.3 	 5.2 75.8 	6.8 74.7 	 7.7

Education 14.9 	 3.4 15.6 	 3.2 16.1 	2.6 16.1 	 3.0

MMSE (baseline) 23.8 	 1.9 29.0 	 1.2 26.6 	1.7 27.5 	 1.6

MMSE (2 years) 19.3 	 5.6 29.0 	 1.3 23.8 	3.3 26.9 	 2.6

ADAS-Cog (baseline) 18.3 	 6.1 7.3 	 3.3 12.9 	3.9 9.7 	 4.0

ADAS-Cog (2 years) 27.3 	 11.7 6.3 	 3.5 16.1 	6.4 11.2 	 5.7

AD Alzheimer’s disease, HC healthy control, MCI mild cognitive impairment, MCI-C MCI

converter, MCI-NC MCI non-converter, MMSE mini-mental state examination, ADAS-Cog
Alzheimer’s disease assessment scale-cognitive subscale

Table 1.6 Comparison of performances of five different methods on experiment 1

Methods

Correlation coefficient Classification accuracy

MMSE ADAS-Cog AD vs. HC MCI vs. HC

MRI-based 0.504 	 0.038 0.609 	 0.014 0.848 	 0.026 0.739 	 0.028

PET-based 0.658 	 0.027 0.670 	 0.018 0.845 	 0.035 0.797 	 0.023

CSF-based 0.465 	 0.019 0.474 	 0.013 0.805 	 0.022 0.536 	 0.044

CONCAT 0.658 	 0.023 0.695 	 0.011 0.920 	 0.033 0.800 	 0.024

Proposed M3T 0.697 	 0.022 0.739 	 0.012 0.933 	 0.022 0.832 	 0.015

The reported values are the correlation coefficient (for MMSE and ADAS-Cog regression) and

accuracy (for AD vs. HC and MCI vs. HC classification), averaged on tenfold tests (with standard

deviation also reported)
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three methods each using individual modality, as well as the CONCAT method

(as detailed below). Specifically, in Table 1.6, MRI-, PET-, and CSF-based methods

denote the classification results using only the respective individual modality of

data. For MRI-based and PET-based methods, similarly as our M3T method, they

contain two successive steps, i.e., (1) the single-task feature selection method using

Lasso [71] and (2) the standard SVM for both regression and classification. For

CSF-based method, it uses the original three features without any further feature

selection and performs the standard SVM for both regression and classification.

For comparison, we also implement a simple concatenation method (denoted as

CONCAT) for using multi-modal data. In the CONCAT method, we first concat-

enate 93 features from MRI, 93 features from PET, and 3 features from CSF into a

189-dimensional vector, and then perform the same two steps (i.e., Lasso feature

selection and SVM regression/classification) as in MRI-, PET-, and CSF-based

methods. It is worth noting that the same experimental settings are used in all five

methods as compared in Table 1.6.

As can be seen from Table 1.6, our proposed M3T method consistently achieves

better performance than other four methods. Specifically, for estimating MMSE and

ADAS-Cog scores, our method achieves the correlation coefficients of 0.697 and

0.739, respectively, while the best performance using individual modality is only

0.658 and 0.670 (when using PET), respectively. On the other hand, for AD vs. HC

and MCI vs. HC classification, our method achieves the accuracies of 0.933 and

0.832, respectively, while the best performance using individual modality is only

0.848 (when using MRI) and 0.797 (when using PET), respectively. Table 1.6 also

indicates that our proposed M3T method consistently outperforms the CONCAT

method on each performance measure, although the latter also achieves better

performance than three MRI-, PET-, or CSF-based methods in most cases, because

of using multi-modal imaging data. However, CSF-based method always achieves

the worst performances in all tasks and is significantly inferior to MRI- and

PET-based methods in this experiment. Finally, for each group (i.e., AD, MCI or

HC), we compute its average estimated clinical scores using M3T, with respective

values of 24.8 (AD), 25.5 (MCI), and 28.1 (HC) for MMSE, and 14.9 (AD), 13.3

(MCI), and 8.3 (HC) for ADAS-Cog. These results show certain consistency with

the actual clinical scores as shown in Table 1.5.

Experiment 2: Predicting 2-Year MMSE and ADAS-Cog Changes

In this experiment, we predict the 2-year changes of MMSE and ADAS-Cog scores

and the conversion of MCI to AD, from the baseline MRI, PET, and CSF data.

Here, we have two regression tasks corresponding to the prediction of the regres-

sion variables of MMSE and ADAS-Cog changes from baseline to 2-year

follow-up, respectively, and one classification task corresponding to prediction of

the classification variable of MCI conversion to AD, i.e., MCI-C vs. MCI-NC. It is

worth noting that as in Experiment 1, only the baseline MRI, PET, and CSF data are

used for all prediction tasks. We use the same subjects as in Experiment 1, except
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for 19 subjects without 2-year MMSE or ADAS-Cog scores, thus reducing to totally

167 subjects with 40 AD, 80 MCI (38 MCI-C and 42 MCI-NC), and 47 HC that are

finally used in Experiment 2. Table 1.7 shows the performance of the proposed

M3T method compared with three individual-modality based methods and also the

CONCAT method, which are the same methods as those used in Experiment 1.

Here, for MCI-C vs. MCI-NC classification, besides reporting the classification

accuracy, we also give other performance measures including sensitivity (i.e., the

proportion of MCI-C subjects correctly classified) and the specificity (i.e., the

proportion of MCI-NC subjects correctly classified).

Table 1.7 shows that, as in Experiment 1, M3T also consistently outperforms the

individual-modality based methods and the CONCAT method, on both regression

and classification tasks. Specifically, our method achieves the correlation coeffi-

cients of 0.511 and 0.531 and the accuracy of 0.739, for predicting the 2-year

changes of MMSE and ADAS-Cog scores and the MCI conversion, respectively,

while the best performance of individual-modality based methods are 0.434 (when

using PET), 0.455 (when using MRI), and 0.639 (when using PET), respectively.

In addition, the area under the ROC curve (AUC) is 0.797 for MCI-C vs. MCI-NC

classification with our M3T method, while the best AUC using the individual-

modality based method is 0.70 (when using PET) and the AUC of the CONCAT

method is 0.729. On the other hand, if comparing Table 1.7 with Table 1.6, we can

see that there is a significant decline in the corresponding performances. It implies

that predicting future MMSE and ADAS-Cog changes and the MCI conversion is

much more difficult and challenging than estimating the MMSE and ADAS scores

and the class labels.

Semi-Supervised Multi-modality Regression

The ADNI dataset is used to test our semi-supervised regression method. Only the

baseline ADNI subjects with all corresponding MRI, PET, and CSF data are

Table 1.7 Comparison of performances of five different methods on experiment 2

Methods

(a) Correlation coefficient (b) MCI-C vs. MCI-NC

MMSE

change

ADAS-Cog

change Accuracy Sensitivity Specificity

MRI-based 0.419 	 0.019 0.455 	 0.037 0.620 	 0.058 0.566 	 0.069 0.602 	 0.056

PET-based 0.434 	 0.027 0.401 	 0.046 0.639 	 0.046 0.570 	 0.067 0.623 	 0.069

CSF-based 0.327 	 0.018 0.425 	 0.028 0.518 	 0.086 0.454 	 0.094 0.493 	 0.089

CONCAT 0.484 	 0.009 0.475 	 0.045 0.654 	 0.050 0.573 	 0.062 0.651 	 0.064

Proposed M3T 0.511 	 0.021 0.531 	 0.032 0.739 	 0.038 0.686 	 0.051 0.736 	 0.045

The reported values are the correlation coefficient [for regressions of MMSE and ADAS-Cog

change (a)] and accuracy, sensitivity and specificity [for MCI-C vs. MCI-NC classification (b)],

averaged on tenfold tests (with standard deviation also reported)
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included, thus leading to a total of 202 subjects (including 51 AD patients, 99 MCI

patients, and 52 HC). Table 1.8 lists the demographics of these subjects. Image

pre-processing is same as literature [41].

To evaluate the performance of regression methods, we use both a square RMSE

and correlation coefficient (CORR) as performance measures. We use a tenfold

cross-validation strategy to compute the average RMSE and CORR measures. The

RVM regression learning machine is implemented using Sparse Bayesian toolbox,1

with Gauss kernel and default kernel-width. Iterations T (1 � T � 99) and the

number of nearest neighbor k (1 � k � 20) are learned based on the training

samples by leave-10-out cross validation. The weights in the MRVR are learned

based on the training samples, through a grid search using the range from 0 to 1 at a

step size of 0.1. For each feature fi in the training samples, a common feature

normalization scheme was adopted, i.e., fi ¼ fi � fi

 �

=σi , where f i and σi are,
respectively, the mean and standard deviation of the i-th feature across all training

samples. The estimated fi and σi will be used to normalize the corresponding

feature of each test sample.

Table 1.9 shows the performance measures (including RMSE and CORR) of our

SMRVR method, using different combinations of MRI, PET, and CSF modalities.

As we can see from Table 1.9, the combination of MRI, PET, and CSF can

consistently achieve better results than any other methods. Specifically, SM-RVR

using all three modalities can achieve an RMSE of 1.919 and a CORR of 0.801 for

MMSE scores, and an RMSE of 4.448 and a CORR of 0.782 for ADAS-Cog scores,

as shown in Fig. 1.6 which give the scatterplots of actual clinical scores vs. predicted

scores. On the other hand, Table 1.9 also indicates that the use of two modalities can

improve the regression performance, although they are inferior to the use of all

three modalities together. These results validate the advantage of multi-modal

regression over the conventional single-modal regression in estimation of clinical

scores.

Table 1.10 shows the comparison of SMRVR with supervised multi-modal rele-

vance vector regression (MRVR). It is worth noting that, for fair comparison, we

implement two versions of MRVR, i.e., one using only AD and HC subjects as

Table 1.8 Subject

information (mean 	 std)
AD MCI HC

Number of subjects 51 99 52

Age 75.2 	 7.4 75.3 	 7.0 75.3 	 5.2

Education 14.7 	 3.6 15.9 	 2.9 15.8 	 3.2

MMSE 23.8 	 1.9 27.1 	 1.7 29.0 	 1.2

ADAS-Cog 18.3 	 6.0 11.4 	 4.4 7.4 	 3.2

AD Alzheimer’s disease, HC healthy control, MCI mild cognitive

impairment, MMSE mini-mental state examination, ADAS-Cog
Alzheimer’s disease assessment scale-cognitive subscale

1 http://www.miketipping.com/index.php?page¼rvm
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training sample and another using all (AD, HC andMCI) subjects as training samples.

As can be seen fromTable 1.10, SMRVR consistently outperformsMRVR (including

both versions) on each performance measure, which validates the efficacy of our

SMRVR method that uses MCI subjects only as unlabeled samples in a semi-

supervised regression framework. Also, from Table 1.10, it is interesting to note

Table 1.9 Regression

performance of SMRVR

with respect to different

combination of MRI, PET

and CSF modalities

Modality

MMSE ADAS-Cog

RMSE CORR RMSE CORR

MRI 2.171 0.731 5.157 0.700

PET 2.461 0.618 5.041 0.706

CSF 2.449 0.600 5.617 0.641

MRI + PET 2.095 0.755 4.732 0.762

MRI + CSF 2.032 0.771 4.982 0.738

PET + CSF 2.383 0.663 4.891 0.734

MRI + PET + CSF 1.919 0.801 4.448 0.782

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s

disease assessment scale-cognitive subscale, RMSE root mean

square error, CORR correlation coefficient

Fig. 1.6 Scatterplots of actual clinical scores vs. predicted scores for MMSE (left) and ADAS-

Cog (right) (MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment

scale-cognitive subscale, RMSE root mean square error, CORR correlation coefficient)

Table 1.10 Comparison of regression performance of SMRVR and MRVR

Methods

MMSE ADAS-Cog

RMSE CORR RMSE CORR

MRVR (51 AD + 52HC) 2.216 0.729 4.917 0.733

MRVR (51 AD + 52HC + 99MCI) 2.170 0.526 4.691 0.640

SMRVR(51 AD + 52HC + 99MCI) 1.919 0.801 4.448 0.782

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-

cognitive subscale, RMSE root mean square error, CORR correlation coefficient
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thatMRVR using all subjects achieves slightly better performance in terms of RMSE,

but much worse performance in terms of CORR, compared with MRVR using only

AD and HC subjects. This implies that the clinical scores of MCI subjects may

contain more noise than those of AD or HC subjects.

Summary

In the past two decades, machine learning techniques have been proven to be

important for effective neurodegenerative disorders diagnosis and progression,

particularly for AD and MCI. Essentially, machine learning techniques that have

been applied for AD and MCI diagnosis and prognosis can be categorized into

classification and regression-based approaches. Some recent developments in this

area have been discussed in this chapter. Specifically, in pattern classification

approaches, we first extracted the ROI-based features (i.e., GM and WM volumes,

and regional mean cortical thickness) from the subject’s MR volumes and then

constructed the correlative features from the regional mean cortical thickness.

These ROI-based features and correlative morphological features are finally inte-

grated via a multi-kernel SVM for AD and MCI prediction. Then, a random patch-

based subspace ensemble classification method is proposed for AD and MCI

prediction. For pattern regression approaches, M3T learning can effectively esti-

mate the MMSE and ADAS-Cog scores and also the classification label in both AD

vs. HC and MCI vs. HC classifications, and it can further predict the 2-year MMSE

and ADAS-Cog changes and the classification label in MCI-C vs. MCI-NC classi-

fication. On the other hand, SMRVR is used to predict clinical scores of subjects

(including AD, HC or MCI) from both imaging and biological biomarkers,

i.e., MRI, PET, and CSF. The experimental results on the ADNI dataset show the

efficacy of all these proposed methods.
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Chapter 2

The Role of Content-Based Image Retrieval

in Mammography CAD

Issam El Naqa and Yongyi Yang

Abstract There has been a tremendous increase in the amount of stored medical

images, making manual search infeasible for a busy radiology clinic. Content-based

image retrieval (CBIR) offers a computerized solution that aims to query images for

diagnostic information based on the content or extracted features of the images

rather than their textual annotation. Potentially, this approach would provide the

radiologist with archived examples that are relevant to the case being evaluated.

In this chapter, we review recent advances in CBIR technology and discuss its

expanding role in medical imaging and its particular application to mammography.

We provide two examples based on our experience using CBIR in mammography;

one example is to model perceptual similarity in CBIR and the other example is to

apply CBIR to achieve case-adaptive classification in computer-aided diagnosis

(CAD). We also highlight the potential opportunities in this field for CAD research

and clinical decision-making.

Introduction

Breast cancer is the most frequently diagnosed cancer in women after skin cancer.

According to the American Cancer Society, an estimated 226,870 new cases of

invasive breast cancer are expected to occur among women in the USA during

2012; about 2,190 new cases are expected in men. Approximately 39,510 women
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and 410 men are anticipated to die from breast cancer in the same year [1]. Research

has shown that the key to successfully treating breast cancer is early detection.

The combination of early detection and improvements in treatment options has led

to 2–3.3 % decline in the mortality rate among women in recent years [1].

Breast lesions can manifest as masses or clustered microcalcifications (MCs).

As an example, Fig. 2.1 shows a mammogram image with clustered MCs.

Mammography currently provides the most effective strategy for early detection

of breast cancer. The sensitivity of mammography could be up to approximately

90 % for patients without symptoms [2]. However, this sensitivity is highly

dependent on the patient’s age, the size and conspicuity of the lesion, the hormonal

status of the tumor, the density of a woman’s breasts, the overall image quality, and

the interpretative skills of the radiologist [3]. Therefore, the overall sensitivity of

mammography could range between from 90 to 70 % only [4]. Furthermore, it is

very difficult to distinguish mammographically benign lesions from malignant

ones. It has been estimated that one third of regularly screened women experience

at least one false-positive (benign lesions being biopsied) screening mammogram

over a period of 10 years [5]. A population-based study that included about 27,394

screening mammograms, which were interpreted by 1,067 radiologists showed that

the radiologists had substantial variations in the false-positive rates ranging from

1.5 to 24.1 % [6]. Unnecessary biopsy is often cited as one of the risks of screening

mammography. Surgical, needle-core, and fine-needle aspiration biopsies are

expensive, invasive, and traumatic for the patient.

The last two decades have witnessed a great deal of research for developing

computer-aided detection (CADe)/diagnosis (CADx) tools for detection and diag-

nosis of breast cancer [7–10]. This intensive research has resulted in several FDA

approved commercial systems since the late 1990s, which aim to play the role of a

virtual “second reader” by highlighting suspicious areas for further review by the

radiologist in association with their own reading. Improvement in cancer detection

Fig. 2.1 A mammogram image with suspected areas highlighted, and a magnified view of a

region with clustered microcalcifications
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and diagnosis has been reported in retrospective and prospective studies [11–13].

However, this was not without controversies [14]. A multi-institutional study of

43 facilities showed that the current CAD systems were associated with reduced

accuracy of interpretation for screening mammograms [14]. In any case, these

negative results may strongly urge the need for utilizing more improved techniques

for analyzing mammogram images.

Content-based image retrieval (CBIR) may potentially provide new and exciting

opportunities for the analysis and the interpretation of mammogram images. The

underlying principle in CBIR is analogous to textual search engines (e.g., Google),

in which a search engine aims to retrieve information that is relevant (or similar) to

the user’s query. Instead of textual description, however, in CBIR the information is

embedded in the form of an image or its extracted features. CBIR could serve as a

diagnostic tool for aiding radiologists by comparing current cases with previously

diagnosed ones in a medical archive.

In this chapter, we provide an overview of CBIR in recent years in the medical

imaging literature and specifically for mammography. We discuss its expanding

role and provide examples based on our experience using CBIR in mammography

and highlight its strong potential as a valuable tool for computerized detection and

diagnosis in mammography.

Background

Content-Based Image Retrieval

Image retrieval has been one of the most exciting and fastest growing research areas

in image processing over the past decade [15]. There have been several general-

purpose image retrieval systems developed. For instance, Guo et al. [16] developed

a supervised approach for learning similarity measures for natural images, while

Chen et al. [17] investigated unsupervised clustering-based image retrieval. Inter-

ested readers are referred to [15] for further examples on general-purpose CBIR

systems. However, an evolving application of CBIR in recent years has been in the

area of medical imaging [18]. CBIR has been developed as a visual-based approach

to overcome some of the difficulties and problems associated with human percep-

tion subjectivity and annotation impreciseness in text-based retrieval systems.

However, despite the significant developments over the past decade with respect

to similarity measures, objective image interpretations, feature extraction, and

semantic descriptors [18, 19], some fundamental difficulties still remain pertaining

to CBIR applications. First, it is understood that similarity measures can vary with

the different aspects of perceptual similarity between images; the selection of an

appropriate similarity measure thus becomes problem-dependent. Second, the

relation between the low-level visual features and the high-level human interpre-

tation of similarity is not well defined when comparing two images; it is thus not
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exactly clear what features or combination of them are relevant for such judgment

[20, 21]. Finally, while the user may understand more about the query, the database

system can only guess (possibly through interactive learning) what the user is

looking for during the retrieval process. This is an indispensable challenge in

information retrieval, where the correct answer may not always be clearly identified.

In Fig. 2.2, we show a diagram to illustrate a typical scenario of image retrieval from

mammography databases, where an archive is organized into mammogram images,

which in turn is organized into indices (i.e., a data structure of selected image

features) for rapid lookup. The user formulates his/her retrieval problem as an

expression in the query language (e.g., by presenting the images of the current

case as query). The query is then translated into the language of indices and matched

against those in the database, and those images with matching indices are retrieved.

CBIR as a CAD Tool

Historically, the concept of image retrieval in medical images was first introduced

by Swett et al. [22], who developed a rudimentary, rule-based expert system to

display radiographs from a library of images as illustrative examples for helping

radiologists’ diagnosis. However, application of CBIR for medical images is a quite

challenging task due to the complexity of image content in relation to the disease

conditions. As a consequence, many of the useful image features in traditional CBIR

are no longer adequate in medical imaging. For example, global image features

(such as grayscale histogram) would not be salient for describing the characteristics

Fig. 2.2 Image retrieval framework for mammography [73]. Reprinted by permission of the

publisher
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of pathological regions or lesions which are typically localized in the images [18].

In such a case, it is important to derive quantitative features that correlate well with

the anatomical or functional information perceived as important for diagnostic

purposes by the physicians. Therefore, present medical CBIR systems mostly focus

on a specific topic, thus offering support only for a restricted variety of image types

and feature sets, such as high-resolution computed tomography (HRCT) scans of the

lung [23]. This system was referred to as the ASSERT system, where a rich set of

texture features was derived from the disease bearing regions. In [24], a new

hierarchical approach to CBIR called “customized-queries” approach is applied to

lung images. In [25], a system called CBIR2 was developed for retrieval of spine

X-ray images. Three-dimensional MR image retrieval was studied in [26] based on

anatomical structure matching. An online pathological neuroimage retrieval system

was investigated in [27] under the framework of classification-driven feature selec-

tion. Cai et al. [28] presented a prototype design for content-based functional image

retrieval for dynamic PET images. Tobin et al. [29] developed a CBIR system for

retrieving diabetic retinopathy cases using a k-nearest neighbors (KNN)-based

approach. Application to different medical databases such as dermatological images

[30], cervicographic images [31], and microscopic pathology databases [32] was

explored in the literature. More recently, there has also been growing interest in

retrieving reference images from PACS, and CBIR has now become an important

research direction in radiological sciences [18, 33, 34].

Despite the extensive research efforts in CBIR, current imaging standards such

as DICOM v3.0 still rely on textual attributes of images (e.g., study, patient, and

other parameters), which are still to date the only information used to select relevant

images within PACS [35]. However, in recent years several research-oriented

image retrieval projects and prototypes have been developed for management of

medical images for research and teaching purposes. Examples of such systems

include: the ASSERT mentioned above; CasImage [36], which retrieves a variety of

images ranging from CT, MR, and radiographs to color photos based on color

and textural features; IRMA (image retrieval in medical applications) [37], a

development platform of components intended for CBIR in medical applications;

NHANES II (the second national health and nutrition examination survey) [38] for

retrieval of cervical and lumbar spine X-ray images based on the shape of the

vertebra. In the rest of this chapter, we will focus on CBIR application to mam-

mography due to its important role in breast cancer management.

Mammography

Mammograms are low-energy X-ray images of the breast of patients. Typically, they

are in the order of 0.7 mSv. A mammogram can detect a cancerous or precancerous

tumor in the breast even before the tumor is large enough to be palpable. The results

are interpreted according to an American College of Radiology (ACR) score known

as the Breast Imaging Reporting and Data System (BI-RADS™) with values ranging
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from 0 (incomplete) to 6 (known biopsy—proven malignancy) [39]. To date mam-

mography remains the modality of choice for early screening of breast cancer. As

mentioned earlier, there has been intensive development of CAD systems for

computerized lesion detection; however, this was not without controversies about

the value of such systems compared to human readers [14]. It is expected that human

decision-making is much more complex than what a detection algorithm can

provide.We share the belief that the potential value for application of CAD systems
to mammography could be facilitated through the development of information
systems based on CBIR.

CBIR for Mammography

Review of Existing Methods

Since the pioneering work by Swett et al. [22], there have been extensive efforts to

apply CBIR tomedical imaging in general andmammography in particular. Sklansky

et al. [40] developed a technique that produces a two-dimensional (2D) map based

on the decision space of a neural network classifier, in which images that are close to

each other are selected for purposes of visualization; the neural network was trained

for separating “biopsy recommended” and “biopsy not recommended” classes.

Qi and Snyder [41] demonstrated the potential use of CBIR in PACS using a digital

mammogram database based on the shape and size information of mass lesions.

At about the same time, we started developing our perceptual similarity approach for

retrieval of MC lesions in mammograms [42–44]. Giger et al. [45] developed an

intelligent workstation interface that displays known malignant and benign cases

similar to lesions in question (based on one or more selected features or computer

estimated likelihood of malignancy), and demonstrated that radiologists’ perfor-

mance, especially specificity, increases with the use of such aid tool. Tourassi

et al. [46–48] developed an approach for retrieval and detection ofmasses inmammo-

grams based on the use of information-theoretic measures (such as mutual informa-

tion), where a decision index is calculated based on the query’s best matches. Zheng

et al. [49] applied a KNN algorithm and further used observer-rated spiculation levels

to improve the similarity of breast masses and subsequently investigated the use of

mutual information [50] to improve the similaritymeasure. An unsupervised learning

approach based on Kohonen self-organizing map (SOM) was proposed in [51]. The

SOM was trained using a set of 88 features for each mammogram, which included

common shape factors, texture, and moment features as well as angular projections

and morphological features derived from segmented fibroglandular tissues.

As noted above, CBIR has been studied recently by researchers as a useful tool

for exploring known cases from a reference library that can assist radiologists in

diagnosis. The idea is to provide evidence for case-based reasoning with informa-

tion from the retrieved cases [52]. As an indication of the predictive value of

38 I. El Naqa and Y. Yang



retrieved cases, the correlation in disease condition between the query and the

retrieved cases was examined in previous work [21, 53]. The ratio of malignant

cases among all retrieved cases was used as a useful predictor for the query [54, 55];

conceptually, this can be viewed as a KNN classifier using only the retrieved cases.

The similarity level between a retrieved case and the query was used by Zheng

et al. [49] as a weighting factor in the prediction. A genetic algorithm was used by

Mazurowski et al. [56] to adjust the weighting factors of the retrieved cases. An

observer study was used by Nakayama et al. [57] to investigate the potential

diagnostic value of similar cases. These studies provide evidence on the positive

predictive value of similar cases in CADx.

Evaluation Metrics

Retrieval systems are typically evaluated using the so-called precision-recall curves

[58]. The retrieval precision is defined as the proportion of the images among all the

retrieved that are truly relevant to a given query; the term recall is measured by the

proportion of the images that are actually retrieved among all the relevant images to

a query. Mathematically, they are given by:

Precision ¼ The number of relevant images that are retrieved

The total number of retrieved images

Recall ¼ The number of relevant images that are retrieved

The total number of relevant images
:

(2.1)

The precision-recall curve is a plot of the retrieval precision versus the recall

over a continuum of the operating threshold. An example of precision-recall curves

is given later in Fig. 2.4 in section “Case-Study Example.”

Othermetrics to quantify the accuracy of a retrieval system could be defined on the

similarity measure used, such as the mean-squared error (MSE) of the model score

compared to the observer score. In addition, to evaluate the merit of the similarity

measure for cancer diagnosis, criteria such as cumulative neighbor matching rate

could be used [59]. In this case, for each query image, the ratio of top k images that

actually match the disease condition of the query is computed and averaged over all

the queries.

For statistical validation of the retrieval performance, resampling techniques

such as cross-validation and bootstrap are typically used. In cross-validation, the

data samples are divided into a number of subsets which are permuted for training

and testing in a round-robin fashion, whereas in bootstrap, the data samples are

randomly selected for training and testing for many times. Bootstrap could be

regarded as a smoothed version of cross-validation. It is thought to be more realistic

in modeling real life scenarios [60].
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Finally, we add that besides these rather generic measures used in information

retrieval, it is also necessary to evaluate the retrieval efficiency based on specific

clinical tasks.

Example 1: Similarity Learning for CBIR

In this section, we present a CBIR application to mimic radiologists’ perceptual

similarity using machine learning methods. As an example, we will consider in

particular lesions with clustered MCs, which can be an important early sign of

breast cancer in women. Their clustering patterns play an important role in deter-

mining malignancy risk following the BI-RADS criteria as mentioned in section

“Mammography.”

Similarity as Nonlinear Regression Functional

In this approach, the notion of similarity is modeled as a nonlinear function of the

image features in a pair of mammogram images containing lesions of interest, e.g.,

microcalcification clusters (MCCs). If we let vectors u and v denote the features of

two MCCs at issue, the following regression model could be used to determine their

similarity coefficient (SC):

SC u; vð Þ ¼ f u; vð Þ þ ζ, (2.2)

where f(u,v) is a function determined using a machine learning approach, which we

choose to be support vector machine (SVM) learning [61], and ζ is the modeling

error. The similarity function f(u,v) in Eq. (2.2) is trained using data samples

collected in an observer study. For convenience, we denote f(u,v) by f(x) with

x ¼ [uT, vT]T.

Assume that we have a set of N training samples, denoted by Z ¼ {(xi,yi)}
N
i¼1,

where yi denotes the user similarity score for the MCC pair denoted by xi,

i ¼ 1, 2,..., N. The regression function f(x) is written in the following form:

f xð Þ ¼ wTΦ xð Þ þ b, (2.3)

whereΦ(x) is a mapping implicitly defined by a so-called kernel function which we

introduce below. The parameters w and b in Eq. (2.3) are determined through

minimization of the following structured risk:

R w; bð Þ ¼ 1

2
wTwþ C

XN
i¼1

Lε xið Þ, (2.4)
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where Lε(•) is the so-called ε-insensitive loss function, which has the property that it
does not penalize errors below the parameter ε. The constant C in Eq. (2.4)

determines the trade-off between the model complexity and the training error. In

this study the Gaussian radial basis function is used for the SVM kernel function

K(�,�), where K(�,�) ¼ ΦT(x)Φ(x). The regression function f(x) in Eq. (2.2) is

characterized by a set of so-called support vectors:

f xð Þ ¼
XNs
j¼1

γjK xj; x
� �þ b, (2.5)

where xj are the support vectors and Ns is the number of the support vectors.

To model the similarity between two feature vectors, we want to learn a

symmetric function satisfying f(u,v) ¼ f(v,u), i.e., the notion of similarity is com-

mutative. This can be achieved by duplicating the training image pairs, i.e., first

with (u, v) and then with (v, u). We can explicitly enforce this property in the SVM

cost function as:

R w; bð Þ ¼ 1

2
wTwþ C

XN
i¼1

Lε xið Þ þ C
XN
i¼1

Lε xsi
� �

: (2.6)

Here y(xi) ¼ y(xsi ), xi ¼ (uTi , v
T
i )

T, xsi ¼ (vTi , u
T
i )

T.

With this formulation the SVM training algorithm yields the global optimum of

a symmetric Lagrangian. The resulting regression function can be written as:

f xð Þ ¼
XNs
j¼1

γj K xj; x
� �þ K xsj ; x

� �h i
þ b: (2.7)

That is, if a training sample xj is a support vector, i.e., jyj � f(xj)j � ε, then its

symmetric sample xsj is also a support vector and γj ¼ γsj . This will ensure that the

solution is symmetric: f(x) ¼ f(xs). A detailed proof of this is given in [59].

Case-Study Example

A database of mammogram images provided by the Department of Radiology at the

University of Chicago is used for demonstration purposes. The database consists of

a total of 200 different mammogram images of dimension 1,024 � 1,024 (a few are

512 � 512) from 104 patients with known pathology (46 malignant, 58 benign),

digitized with a spatial resolution of 0.1 mm/pixel and 10-bit grayscale. All these

images contain MCCs. The MCCs in each image had been identified by expert

radiologists and a total of 600 image pairs were scored by a group of six mammo-

gram readers. Following intraobserver and interobserver consistency analyses,

scores from four observers with the highest consistency were selected and their

scores were averaged for each of the 600 image pairs.
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To characterize the similarity data by the experts, we considered image features

derived from MCCs which were demonstrated to have high discriminating power

for cancer diagnosis [62, 63]. We applied a sequential feature selection procedure to

obtain 12 features for characterizing an MC cluster, namely: (1) compactness of the

cluster; (2) eccentricity of the smallest ellipse fitting the region; (3) the number

of MCs per unit area; (4) the average of the inter-distances between neighboring

MCs; (5) the standard deviation of the inter-distances between neighboring MCs;

(6) solidity of the cluster region defined as the ratio between cross-sectional area

and the area of the convex hull formed by the MCs; (7) the moment signature of the

cluster region computed based on the distance deviation of a boundary point from

the center of the region; (8) the number of MCs in the cluster; (9) the mean effective

volume (area times effective thickness) of individual MCs; (10) the relative stan-

dard deviation of the effective thickness; (11) the relative standard deviation of

the effective volume; and (12) the second highest MC-shape-irregularity measure.

In our experiments, all the feature components were normalized to have the same

dynamic range (0, 1).

The SVM similarity model was trained using the observer data. Besides the

human scores for the 600 image pairs, we also added the following pairs for

training:

1. SC(u, u) ¼ 10, and

2. SC(u, v) ¼ 10 if u and v are different views from the same case.

With a leave-one-out procedure, the SVMmodel achieved an MSE of 0.0334 per

image pair compared to the observer scores. The trained SVM similarity model was

tested with the 200 images in the database, where each of the 200 images in the

dataset was used in turn as a query image. A retrieval example is shown in Fig. 2.3.

The average matching rate between SVM prediction and disease pathology reached

72 % for the top retrieved images. The precision-recall analysis achieved by the

SVM model is shown in Fig. 2.4. Note that the performance can be further refined

by incorporating user’s response through an adaptive process called relevance

feedback (RFB) [64, 65]. Figure 2.4 also shows the resulting precision-recall curves

obtained by RFB with different number of feedback samples.

Example 2: Adaptive CADx with CBIR

In recent years, we have been investigating a case-adaptive approach to boost the

performance of a CADx classifier based on retrieval of cases with similar image

features from a reference library. In traditional CADx, a classifier f(x) is first

optimized on a set of training samples, which is often limited in size; subsequently,

this classifier is applied to classify a new case x under consideration (called query).

In our approach, we will first obtain from a reference database (e.g., a PACS system)

a set of known cases with similar features to the query case x, and use these retrieved

cases to adapt the classifier f(x) so as to improve its classification accuracy on the

query case.
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The problem of classifying clustered MCs into malignant or benign is treated as

a two-class classification problem. Let f (�) denote a classifier that has been trained

on a set of training samples {(xi,yi), i ¼ 1, . . ., N}, where xi ∈ Rn denotes the

feature vector of each sample and yi ∈ {�1, + 1} denotes its corresponding class

label. Now, consider a new lesion with feature vector x. Our goal is to make use of a

set of retrieved cases to improve the accuracy of the classifier f (�) on x. Below we

first describe our approach using a linear classifier, based on logistic regression,

which is attractive in practice owing to its numerical simplicity. This approach can

be readily extended to a nonlinear classifier using the technique of kernel principal

component analysis (KPCA) [66].

Fig. 2.3 A retrieval example of similar cases using SVM similarity learning [73]. Reprinted by

permission of the publisher

Fig. 2.4 Precision-recall

curve of MC retrieval using

SVM machine learning

methods and refinement of

precision-recall accuracy

using relevance feedback

(RFB) with different

number of image samples

[65]. Reprinted by

permission of the publisher
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Case-Adaptive Linear Classifier

Mathematically, a linear classifier is of the form

f xð Þ ¼ wTxþ b, (2.8)

where x is a vector denoting an input pattern (i.e., lesion), and f(x) is the classifier
output, which is typically compared against an operating threshold for decision on

x. In practice, the discriminant vector w and bias parameter b are both determined

from training.

We consider the approach of logistic regression for determining the unknown

w and b from the training set {(xi,yi), i ¼ 1, . . ., N} [67], which is to maximize the

following log-likelihood function:

L w; bð Þ ¼
XN
i¼1

log p yijxi;w, bð Þ, (2.9)

where each probability term is given by

p yi ¼ 1jxi;w, bð Þ ¼ 1

1þ exp �wTxi � bð Þ , (2.10)

and p(yi ¼ � 1jxi; w, b) ¼ 1 � p(yi ¼ 1jxi; w, b).
Now consider a query lesion x to be classified. Let {(x

ðrÞ
i ,y

ðrÞ
i ), i ¼ 1, . . ., Nr} be

a set of Nr cases obtained from a reference library, which are similar to x. In our

case-adaptive approach, we modify the objective function in Eq. (2.9) by these

retrieved cases as

eL w; bð Þ ¼
XN
i¼1

log p yijxi;w, bð Þ þ
XNr

i¼1

βilog p y
rð Þ
i

���x rð Þ
i ;w, b

� �
, (2.11)

where the weighting coefficients βi > 1 are used to put more emphasis on the

retrieved samples, particularly those more similar to the query, the goal being to

refine the decision boundary of the classifier in the neighborhood of the query x.

Indeed, the first term in Eq. (2.11) simply corresponds to the log-likelihood function

in Eq. (2.9), while the second term can be viewed as a weighted likelihood of those

retrieved similar samples. Intuitively, the retrieved samples are used to steer the

pre-trained classifier from Eq. (2.9) to achieve more emphasis in the neighborhood

of the query x.

Note that the objective function in Eq. (2.11) has the same mathematical form as

that in the original optimization problem in Eq. (2.9), which can be solved effi-

ciently by the method of iteratively reweighted least square (IRLS).
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Database of MC Cases for CBIR

To demonstrate the proposed CBIR approach, we used a dataset of digitized,

standard-view, screen-film mammographic images collected from two sources:

one is from the Department of Radiology, The University of Chicago (UC), and

the other from the DDSM dataset maintained at The University of South Florida

[68]. The DDSM dataset consists of images collected from three different institu-

tions: The Massachusetts General Hospital (MGH), Wake Forest University School

of Medicine, and Sacred Heart Hospital and ISMD, Incorporated. It has 14 benign

volumes, 15 cancer volumes, 12 normal volumes and 2 benign without callback

volumes. The normal and benign without callback volumes are not used in this

work since they contain no lesions with verified pathology. To maximize the yield,

we extracted all those cases with only MC lesions from all the benign and cancer

volumes in DDSM.

The mammogram images from the different institutions were digitized with five

different scanners with different resolutions. To reduce their differences, the mam-

mogram images were first converted to a common resolution (100 μm) using cubic

interpolation and calibrated such that their gray levels correspond to the same

optical density. Altogether, there were a total of 1,006 cases (646 benign, 360 malig-

nant) collected in the dataset.

To characterize clustered MCs in these images, we applied a sequential forward

procedure [69] with a linear classifier using logistic regression on a set of training

images. In the end, a total of nine features were selected for characterizing MC

lesions. These features are: (1) number of MCs in the cluster; (2) density of the

cluster, measured by the number ofMCs in a unit area; (3) mean of theMC size in the

cluster; (4) eccentricity of the cluster; (5) standard deviation of the distance from

individual MCs to the geometric center of the cluster; (6) maximum of the mean

intensity ofMCs; (7) mean of the average intensity in eachMCwindow; (8) standard

deviation of the contrast of MCs; and (9) standard deviation of the fourth order

central moment of MCs.

With all the cases in the library characterized by their feature vectors, for a given

query case x, the similar cases to x can then be obtained by comparing its feature

vector against that of library cases according to a similarity measure. These

retrieved cases are then incorporated into the case-adaptive classifier in Eq. (2.11)

via the weighting coefficients βi. In this study, we implemented the following

strategy for adjusting βi according to the similarity level of a retrieved sample

x
ðrÞ
i to the query x:

βi ¼ 1þ k
αi

max
j¼1, ...,Nr

αj
� � , i ¼ 1, . . . ,Nr, (2.12)

where αi denotes the similarity measure between x
ðrÞ
i and x, and k > 0 is used to

control the degree of emphasis on the retrieved samples relative to other training

samples. The choice of the form in Eq. (2.12) is such that the weighting factor
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increases linearly with the similarity level of a retrieved case to x, with the most

similar case among the retrieved receiving maximum weight 1 + k, which corre-

sponds to k times more influence than the existing training samples in the objective

function in Eq. (2.11).

As a similarity measure for retrieved cases, we used the Gaussian RBF kernel

function

αi ¼ exp � x
rð Þ
i � x

			 			2=γ2

 �

, i ¼ 1, . . . ,Nr, (2.13)

where γ is a scaling factor controlling the sensitivity of αi with respect to the

distance between the query and a retrieved case. In our experiments, the parameter

γ was set to the tenth percentile of the distance between every possible image pairs

in the training set. Such a choice is out of the consideration that most of the cases in

a database are typically not similar to each other. Those cases with a large distance

away from query x will receive a low similarity measure consequently.

Performance Evaluation

To demonstrate the case-adaptive classification approach, we used the following

setting in this study. We first partitioned the dataset of all 1,006 cases randomly into

two subsets, denoted by A and B, respectively, such that subset A consisted of

175 cases (100 benign, 75 malignant), and subset B had the remaining 831 cases

(546 benign, 285malignant). The cases inAwere used to train and optimize a baseline

CADx classifier, while the cases in B were set aside as a library of known cases for

retrieval, which was used to boost the baseline CADx classifier (trained on subset A).

For efficient use of subset B, the cases in B were also used to test the CADx

classifier. To remove the effect of case distributions, we applied a bootstrapping

methodology for testing the performance of the classifiers [70, 71]. A total of

10,000 bootstrap sample sets were used, of which each was obtained by sampling

with replacement from the cases in B; subset A was fixed during this process. The

classifier performance was subsequently obtained over each bootstrap sample set.

To avoid any potential bias, we applied a leave-one-out (LOO) procedure when

testing the adaptive classifier as follows: for each case used for testing, we excluded

this case from B and retrieved known cases only from the rest of the data set to

boost the CADx classifier. The resulting classifier was then applied to classify the

test case. This was to ensure that the test case itself would not be used in any way for

boosting the adaptive classifier.

To evaluate the classification performance, we conducted a receiver operating

characteristic (ROC) analysis, which is now routinely used for performance eval-

uation in classification tasks. As a summary measure of overall diagnostic perfor-

mance, the area under an ROC curve (denoted by AUC) is often used. A larger AUC

means better classification performance. In our experiments the ROCKIT program

[72] was used to calculate the AUC values for the different classifiers.
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We summarize in Fig. 2.5 the performance results achieved by the case-adaptive

linear classifier (ada-LR). To demonstrate the impact of retrieved cases, in the

experiments we also varied the number of retrieved cases Nr for a query case. In

Fig. 2.5, the area under the ROC curve, AUC, is shown for different values of Nr;

for comparison, the performance result by the baseline classifier (LR) (i.e., prior to

boosting) is also shown.

From Fig. 2.5 it can be seen that the AUC value of the adaptive classifier is

notably higher than that of the baseline classifier. In particular, with Nr ¼ 10 the

adaptive classifier achieved AUC ¼ 0.7663; with Nr ¼ 50, the AUC value of the

adaptive classifier was further increased to 0.7807 compared to AUC ¼ 0.7415

for the baseline classifier ( p-value ¼ 0.0001). No additional improvement was

observed when Nr was further increased. We believe that this is because the number

of similar cases for a given query case is limited in the reference library and the

benefit of retrieving additional cases diminishes.

Current Challenges and Recommendations

Despite the increasing number of research systems developed in recent years, the

application of CBIR for medical applications is very much still at its infancy [73].

For content-based mammogram retrieval, there remain several technical issues that

would require further investigation, which may include the following seven differ-

ent aspects:

1. How to incrementally improve the retrieval performance through accumulating

experts’ query log remains a challenge. Our proposed approach of using percep-

tual similarity could be used to improve precision in image retrieval. This concept

has been studied by other researchers [74–76]. For instance, the results in [75]

demonstrate good concordance consistency even among three different types of
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Fig. 2.5 Classification

performance (AUC)

achieved by the case-

adaptive linear classifier

(ada-LR). The number of

retrieved cases Nr was

varied from 6 to 200. For

comparison, results are also

shown for the baseline

classifier (LR)
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readers (13 breast radiologists, 10 general radiologists, and 10 non-radiologists),

which indicates the reliability of the similarity ratings obtained from observer

studies.

2. Inclusion of semantics-based similarity features such as patient history, age, and

view besides the low-level image features to improve retrieval accuracy.

3. Investigation of advanced RFB techniques to refine the retrieval process. Adap-

tive learning algorithms can be incorporated into the learning approach as in our

previous study [64].

4. System integration into PACS or other medical image databases. This is an

essential step for the clinical use of retrieval systems [18]. PACS systems are

nowwidely used in the hospitals to manage the storage and distribution of images.

Thus, CBIR is expected to have a great impact on PACS and health database

management [77]. An important issue in medical practice is to keep patient’s

private information from any unauthorized access in accordance with the Health

Insurance Portability and Accountability Act (HIPAA). Security requirements

need to be embedded into the design of a database system, so that users would

have access to data that they only have privilege over. This may add additional

burdens to achieve high efficiency for CBIR within the mandated security con-

straints. Experiences from textual relational database management systems

(RDBMS) could be helpful in this regard.

5. Human–computer interaction and usability. This would involve the development

of efficient search methods in a high-dimensional feature space. Search in the

presence of user-dependent similarity measures is largely unsolved [15]. Possible

solutions may involve the need to develop faster methods for extracting relevant

features from the given query image and to pre-store the image features using

efficient data structures (e.g., linked-list tree structures) for rapid retrieval. To

further speed up the retrieval process for an online environment, one can also

employ a two-stage approach in which a computationally efficient linear-

classifier is used to quickly discard any non-similar entries from further consid-

eration [21, 42, 44, 59, 62, 63, 78].

6. Performance evaluation framework and standard. The problem of how to eval-

uate the retrieval quality is an important topic as well. Retrieval systems need to

be compared in order to sort out the different techniques [18]. Due to the

complexity of medical images, how to construct a common test bed for medical

CBIR is an interesting research issue [79]. To construct a test bed for medical

CBIR, a number of factors such as imaging modalities, regions of interest, and

orientations of images should be taken into account.

7. Validation of many of the proposed methods for clinical use on large databases.

To fully evaluate the benefit of a retrieval system, it is desirable to establish a

benchmark database, which is large enough so that it would maximize the yield of

truly relevant images. In practice, this can be an expensive process. It is noted that

there exist several public domain mammogram databases such as DDSM (Digital

Database for Screening Mammography) maintained by the University of South

Florida and MIAS (Mammographic Image Analysis Society maintained by the

University of Manchester). These databases are mainly used for comparing
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different CAD systems. It would be beneficial to augment these databases with

additional image similarity information so that they could be used as a benchmark

for comparing different CBIR systems.

Conclusions

CBIR for mammography is a promising field for improving automated detection and

diagnosis of breast cancer lesions. In this chapter, we provided an overview of recent

advances in CBIR technology and its application to mammographic databases. In

addition, we presented examples from our experience in building CBIR systems for

mammography. In our approach, we investigated the use of a supervised learning

methodology in content-based mammogram retrieval based on perceptual similarity

from expert observers. This approach was demonstrated using a set of clinical

mammograms to achieve significant improvement in retrieval performance over

competing unsupervised learning methods. Moreover, we also demonstrated that

the use of CBIR could further improve the performance in a CADx classifier. We

also discussed some of the current problems in the field and highlighted the potential

opportunities for future research and clinical implementation. These areas could

benefit from existing expertise in the computer vision community. If successful,

CBIR approaches could realize their potential to improve current clinical decision-

making processes for patients with breast cancer.
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Chapter 3

A Novel Image-Based Approach for Early

Detection of Prostate Cancer Using

DCE-MRI

Ahmad Firjani, Fahmi Khalifa, Ahmad Elnakib, Georgy Gimel’farb,

Mohammed Abou El-Ghar, Adel Elmaghraby, and Ayman El-Baz

Abstract A novel noninvasive approach for early diagnosis of prostate cancer

from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is pro-

posed. The proposed approach consists of four main steps. The first step is to isolate

the prostate from the surrounding anatomical structures based on a maximum a

posteriori (MAP) estimate of a log-likelihood function that accounts for the shape

priori, the spatial interaction, and the current appearance of the prostate tissues and

its background (surrounding anatomical structures). In the second step, a nonrigid

registration algorithm is employed to account for any local deformation that could

occur in the prostate during the scanning process due to patient breathing and local

motion. In the third step, the perfusion curves that show propagation of the contrast

agent into the tissue are obtained from the segmented prostate of the whole image

sequence of the patient. In the final step, we collect two features from these curves
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and use a k-nearest neighbor (KNN) classifier to distinguish between malignant and

benign detected tumors. Moreover, in this chapter we introduce a new approach to

generate color maps that illustrate the propagation of the contrast agent in the

prostate tissues based on the analysis of the 3D spatial interaction of the change

of the gray-level values of prostate voxel using a generalized Gauss–Markov

random field (GGMRF) image model. Finally, the tumor boundaries are determined

using a level set deformable model controlled by the perfusion information and the

spatial interactions between the prostate voxels. Experimental results on 30 clinical

DCE-MRI data sets yield promising results.

Introduction

Prostate cancer is the most frequently diagnosed malignancy in the American male

population and the second leading cause of cancer death. Recent prostate cancer

studies reported an estimated 217,730 new cases and a mortality rate of close to

32,000 in 2010 [1]. The growth of the population is a major cause of the high number

of prostate cancer cases and will contribute to an increase in the global burden.

Fortunately, the survival rate is very high for patients with an early diagnosis.

The techniques currently used for diagnosing prostate cancer are unsatisfactory.

For example, prostate specific antigen (PSA) screening doesn’t offer accurate

information about the location and extent of the lesion(s). In addition, PSA is

associated with a high-risk of over diagnosis of prostate cancer [2–5].

Medical imaging tools [e.g., transrectal ultrasound (TRUS), MR spectroscopy

(MRS), dynamic contrast-enhanced MRI (DCE-MRI)], are favorable since they

provide reliable information about the size and shape of prostate gland and can

localize the cancer foci, which would improve the accuracy of diagnosis and enable

more efficient treatment. One of the most common modalities is the TRUS imaging

[6–9]. It is widely used for guided needle biopsy due to the real time nature of the

imaging system, ease of use, and portability. However, TRUS images have low

signal-to-noise ratio (SNR) and detection of malignant tissues is difficult. Another

traditional imaging modality is computed tomography (CT). It is widely used for

diagnosis and follow-up of prostate cancer, but it has poor soft-tissue contrast

resolutionwhich does not allow precise distinction of the internal or external anatomy

of the prostate. Magnetic resonance (MR) imaging has recently been suggested for

improved visualization and localization of the prostate. It provides valuable patho-

logical and anatomical information [10]. Recently, new MR modalities, such as

MRS, DCE-MRI, and diffusion MRI, have gained considerable attention as impor-

tant tools for the early detection of prostate cancer.

In this chapter, we will focus on DCE-MRI based computer-aided diagnostic

(CAD) systems since they have shown more capabilities in determining the size and

the shape of the prostate gland and localizing the cancer foci. The principles of

DCE-MRI lie in the analysis of signal-time or kinetic curves at a specific location in

MR images. A sequential set of MR images is acquired before and during an

intravenous bolus injection of paramagnetic gadolinium chelate, preferably by
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using a power injector. The contrast agent will induce an increased signal intensity

on an MR image at vessel lumen and interstitial space. Such intensity curves

obtained from the prostate are called wash-in and wash-out perfusion curves and

can be used to distinguish betweenmalignant and benign detected tumors [11]. Gen-

erally, any early diagnosis of prostate cancer using DCE-MRI requires intermediate

image processing steps, such as prostate segmentation and classification. Therefore,

in the following sections we will introduce the related work on both prostate

segmentation and CAD systems.

Related Work in Prostate Segmentation

The prostate segmentation is an essential step in developing any noninvasive

CAD system for detecting prostate cancer and calculating the prostate gland

volume during biopsy. However, the segmentation of the prostate in MR images

is a challenge due to large variations of prostate shape within a specific time series

as well as across subjects, lack of strong edges and diffused prostate boundaries,

and the similar intensity profile of the prostate and surrounding tissues. Although

manual outlining of the prostate border enables the prostate volume to be deter-

mined, it is time consuming. Moreover, traditional edge detection methods (e.g.,

[10]) are unable to extract the correct boundaries of the prostate since the

gray-level distributions of the prostate and the surrounding organs are hardly

distinguishable.

The most successful known approaches (e.g., [8–12]) have addressed the seg-

mentation challenges of the prostate by modeling object appearance and shape. In

particular, Zhu et al. [12] used a combination of an active shape model (ASM) and

3D statistical shape modeling to segment the prostate. Toth et al. [13] presented an

algorithm for the automatic segmentation of the prostate in multi-modal MRI. Their

algorithm starts by isolating the region of interest (ROI) from MRS data. Then, an

ASM within the ROI is used to obtain the final segmentation. Klein et al. [14]

presented an atlas-based segmentation approach to extract the prostate from MR

images. The segmentation of the prostate is obtained as the average of the best-

matched registered atlas set to the test image (image to be segmented). Recently,

Vikal et al. [15] used a priori knowledge of prostate shape to detect the contour in

each slice and then refined them to form a 3D prostate surface. Martin et al. [16]

developed an atlas-based approach for segmenting the prostate from 3DMR images

by mapping probabilistic anatomical atlas to the test image. The resulting map is

used to constrain a deformable model-based segmentation framework.

However, in most of these methods the segmentation reliability is not very high

due to many reasons. First, parametric shape models fail in the presence of large

gray-level variability across subjects and time. Second, edge detection methods are

not suitable for discontinued objects. Moreover, deformable models tend to fail in

the case of excessive noise, poor image resolution, diffused boundaries or occluded

objects if they do not incorporate a priori models (e.g., shape and appearance).

3 A Novel Image-Based Approach for Early Detection of Prostate Cancer. . . 57



To overcome the aforementioned limitations, in this chapter we present a general

prostate segmentation framework, based on a maximum a posteriori (MAP) esti-

mate of a new likelihood function. To handle the object inhomogeneities and

variability and overcome image noise, the proposed likelihood function accounts

for the visual appearances of the prostate and background, 3D spatial interaction

between the prostate voxels, and a 3D prior prostate shape. The prostate shape is

adaptively learned from the co-aligned segmented 3D prostate DCE-MRI. The

visual appearances of the object and background are described with marginal

gray-level distributions of the prostate and its background. The spatial interactions

between the prostate voxels is modeled by a second-order rotation-variant

Markov–Gibbs random field (MGRF) of object/background labels with analytically

estimated potentials.

Related Work in Computer-Aided Detection and Diagnosis
Systems for Prostate Cancer

When prostate cancer is suspected, a systematic biopsy guided by TRUS is usually

used to confirm the diagnosis [17]. Twenty-three percent of all prostate cancers

detected by TRUS-guided biopsy are missed in the first screening [18]. Even when

biopsy results are true negatives some patients have to repeat biopsy before their

cancers are detected. In 66–71 % of patients undergoing TRUS-biopsy for the first

time, the results are negative [18, 19].

Initial results suggest that T2-weighted MRI and DCE-MRI holds promise for

improving cancer detection, thereby reducing the need for prostate biopsy [20–30].

To the best of our knowledge, the first computerized prostate image analysis using

MRI was developed by Chan et al. [20]. In this study, they present an in vivo

computer-aided diagnosis system that uses multi-modal MRI to estimate malig-

nancy likelihood in the peripheral zone. They constructed summary statistical maps

from T2-weighted MRI images, diffusion-weighted images, PD maps, and T2

maps. Then they combined the statistic maps with textural and anatomical features

in prostate cancer areas. However, this study doesn’t include benign regions.

A similar procedure with some extensions was used by Madabhushi et al. [21].

This study is based on T2-weighted MRI and showed the additional value of

combining numerous features. Unfortunately, no discrimination performance was

calculated and the method is limited to 2D ex vivo MRI.

Ocak et al. [22] developed a predictor by using a generalized estimating equation

and logistic regression model, which comprehensively analyzed the T2-weighted

MRI scans. Futterer et al. [23] developed a system to compare the accuracies of

T2-weighted MRI and DCE-MRI imaging for prostate cancer localization in

14 ROIs. The results showed higher accuracy in DCE-MRI than they achieved

with T2-weighted MRI.
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Rouvière et al. [24] compared T2-weighted MRI and DCE-MRI in the detection

of post-radiotherapy recurrence in 22 patients, using biopsy results as the reference

standard. The results showed higher accuracy in DCE-MRI than they achieved with

T2-weighted MRI.

Kim et al. [25] demonstrated that parametric imaging of the wash-in rate was

more accurate for the detection of prostate cancer in the peripheral zone than was

T2-weighted imaging alone. However, they also observed significant overlap

between the wash-in rate for cancer and that for normal tissue in the transitional zone.

Puech et al. [26] developed a CAD system for prostate cancer detection using

perfusion DCE-MRI data. The operator draws a polygon around the lesion within

an enhanced image of the prostate. Semiautomatic lesion segmentation is initiated

by a user-selected seed point. Region growing occurs from the seed point and the

growing process stops when a different tissue (based on the contrast-enhanced time

sequence) is encountered. Lesions are classified as benign, malignant, or indeter-

minate based on the analysis of the median wash-in and wash-out values. Although

the results looked promising, manual interaction was still required.

Engelbrecht et al. [27] showed the usefulness of measurements of relative peak

enhancement and wash-out rates for prostate cancer detection and localization.

From their analysis of receiver operating characteristic curves, they concluded that

the relative peak enhancement was the most accurate perfusion parameter for

cancer detection in the peripheral zone and central region of the gland.

Vos et al. [28] developed a semiautomatic CAD system for prostate lesion

classification using quantitative pharmacokinetic (PK) maps and T1 estimates.

Pharmacokinetic features are extracted from a user defined ROI around the prostate

and a support vector machine is used to estimate the likelihood of malignancy.

Results show that the system has an accuracy of 92 % in classification of all ROIs

from within the peripheral region and an accuracy of 83 % in classification of the

ROIs with abnormal enhancement patterns. However, this study focused on the

peripheral zone of the prostate gland and excluded central and transitional zones in

which up to 35 % of prostate cancers can occur. Viswanath et al. [29] proposed a

CAD system for DCE-MRI data. In this system, the authors rely on a nonrigid

(elastic) registration scheme and unsupervised classification (k-means) procedure.

The CAD system improves the objective annotation of prostate cancer, but the

corresponding slices still need to be selected.

Most prostate CAD researchers have focused on the initial voxel classification

stage. They obtained likelihood maps by combining information from MR images

using mathematical descriptors. These studies showed on a voxel basis that the

discrimination between benign and malignant tissue is feasible with good perfor-

mances. However, these studies require user interaction to select an ROI around the

prostate. In addition to the localization of the ROI of the tumor, the final diagnosis

and patient management is left to the radiologist.

However, the majority of these studies were performed by radiologists who

selected an ROI (a small window) around the prostate and followed signal change

within this ROI. Unfortunately, such approaches not only require manual interac-

tion of the operators, but also ROI selection biases the final decision and brings up
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the same issue of over or underestimating the problem in the entire graft, just as

with biopsy. Moreover, manual window selection and generating a function curve

from this window over a time-sequence of images assumes that the prostates

(prostate contours) remain exactly the same from scan to scan. However, prostate

contours may not always exactly match due to patient movement or breathing

effects; therefore, image registration schemes should be applied first before ROI

selection. Also, to automate the algorithm and to cancel ROI dependency, segmen-

tation algorithms that can separate the prostate from the surrounding structures are

needed. To overcome these limitations, we propose an automatic framework for the

early diagnosis of prostate cancer using DCE-MRI. The proposed framework

segments the prostate from the surrounding anatomical structures based on a

learned shape model and an identifiable joint MGRF model of DCE-MRI and

“object–background” region maps. Following segmentation, a nonrigid registration

algorithm is employed to account for any local deformation that could occur in the

prostate during the scanning process. Once all the images are aligned, the perfusion

curves that show propagation of the contrast agent into the tissue are obtained, and

then used to collect two features to distinguish between malignant and benign

detected tumors.

The rest of this chapter is organized as follows. Section “Methods” discusses in

detail the steps of the proposed framework, the experimental results are presented in

section “Experimental Results,” and the study is concluded in section “Conclusion”

with speculation about future work.

Methods

In this chapter we introduce a new, automated, and noninvasive framework for

early diagnosis of prostate cancer from DCE-MRI. Figure 3.1 demonstrates the

steps of the proposed CAD system.

Segmentation of the Prostate Using a Joint MGRF Model

The segmentation of the prostate is a challenge, since the gray-level distribution of

the prostate and surrounding organs is not highly distinguishable and because of the

anatomical complexity of prostate. This stage proposes a powerful framework for

prostate segmentation based on a learned shape model and an identifiable joint

MGRF model of DCE-MRI and “object–background” region maps.

The joint-MGRF model is fundamentally a model that relates the joint proba-

bility of an image and its object–background region map to geometric structure and

to the energy of repeated patterns within the image [31]. The basic theory behind

such models is that they assume that the signals associated with each pixel depend

on the signals of the neighboring pixels, and thus explicitly take into account their

spatial interactions, and other features, such as shape.
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Let Q ¼ {0, 1, . . ., Q � 1}, L ¼ {ob,bg}, and U ¼ [0,1] be a set of Q integer

gray-level, a set of object (“ob”) and background (“bg”) labels, and a unit interval,

respectively. Let a 3D arithmetic grid R ¼ {(x,y,z) : x ¼ 0, 1, . . ., X � 1; y ¼ 0,

1, . . ., Y � 1; z ¼ 0, 1, . . . Z � 1} support a grayscale DCE-MRI g : R ! Q and

their binary regionmapsm : R ! L, and probabilistic shapemodel s : R ! U. The

shape model allows for registering (aligning) 3D prostate DCE-MRI. The DCE-MR

data g and their region mapsm are described with a joint probability model:

P g;mð Þ ¼ P g
��m� �

Ph mð Þ (3.1)

where Ph(m) is a second-order MGRF of region maps and P(g|m) is a conditionally

independent random field of image intensities given the map. The map model

Ph(m) ¼ Ps(m) P(m) has two parts: a shape prior probability being a spatially

variant independent random field of region labels Ps(m), for a set of co-aligned

training DCE-MR data, and a second-order MGRF model P(m) of a spatially

homogeneous evolving map.

The Bayesian MAP estimate of the map, given the DCE-MR data g, m* ¼
arg max

m
L g;mð Þ maximize the log-likelihood function:

L g;mð Þ ¼ log P g
��m� �� �þ log Ph mð Þð Þ

Fig. 3.1 The proposed CAD system for automatic detection of cancer
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In this work we focus on accurate identification of the spatial interaction between

the prostate voxels P(m), and the intensity distribution for the prostate tissues,

P(gjm), and the prior distribution Ps(m) of the prostate shape, as shown in Fig. 3.2.

To perform the initial prostate segmentation, a given 3D DCE-MRI is aligned to

one of the training 3D DCE-MRI. The shape model provides the voxel-wise object

and background probabilities being used, together with the conditional image

intensity model P(gjm), to build an initial region map. The final Bayesian segmen-

tation is performed using the identified joint MGRF model of the DCE-MRI and

region maps.

Conditional Intensity Model

The specific visual appearance of the prostate in each data set to be segmented

is taken into account by modeling a marginal gray-level distribution with a

linear combination of discrete Gaussians (LCDG) [32, 33]. Close approximation

with LCDG separates each factor of the joint empirical gray-level distribution,

P(g) ¼ ∏ (x,y)∈R pmix(gx,y), into two (object and background) components, ( p(qjλ);
q ∈ Q, and λ ∈ L). The LCDG modeling restores transitions between these com-

ponents more accurately than conventional mixtures of only positive Gaussians,

thus yielding a better initial region map formed by voxel-wise classification of the

image gray values. The similar intensity profile of the prostate and surrounding

tissues.

Fig. 3.2 Joint Markov–Gibbs random field model of DCE-MRI
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Spatial Voxel Interaction Model

To overcome noise effect and to ensure the homogeneity of the segmentation,

spatially voxel interactions between the region labels are also taken into account.

A generic MGRF of region maps [34] accounts only for pairwise interaction

between each region label and its characteristic neighbors. Generally, the interac-

tion structure and the Gibbs potentials can be arbitrary and are identified from the

training data. For simplicity, we restrict the interaction structure to the nearest voxel

26-neighborhood only as shown in Fig. 3.3. By symmetry considerations, we

assume that the potentials are independent of relative orientation of each voxel

pair and depend only on intra- or inter-region position (i.e., whether the labels are

equal or not). Under these restrictions, it is the 3D extension of the conventional

auto-binomial, or Potts model differing only in that the potentials are estimated

analytically.

The 26-neighborhood has three types of symmetric pairwise interactions spec-

ified by the absolute distance a between two voxels in the same and adjacent MRI

slices (a ¼ 1,
ffiffiffi
2

p
, and

ffiffiffi
3

p
, respectively): (1) the closest pairs with the inter-voxel

N1 ¼ {(1,0,0),(0,1,0),(0,0,1)} coordinate offsets; (2) the diagonal pairs with the

offsets N ffiffi
2

p ¼ 0, 1, � 1ð Þ; 1, 0, � 1ð Þ; 1, � 1, 0ð Þf g; and (3) the farthest diagonal

pairs with the offsetsN ffiffi
3

p ¼ 1, � 1, � 1ð Þf g. The Gibbs potentials of each type are
bi-valued because only label coincidence is accounted for: Va ¼ {Va,eq;Va,ne}

Fig. 3.3 Three-

dimensional second-order

MRF neighborhood system.

The reference voxel is

shown in red
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where Va,eq � Va(l,l
0) if l ¼ l0 and Va,ne � Va(l,l

0) if l 6¼ l0; a∈A ¼ 1;
ffiffiffi
2

p
;

ffiffiffi
3

p� �
.

Then the MGRF model of region maps is as follows:

P mð Þ ¼ 1

Z
exp

X
x;y;zð Þ∈R

X
a∈A

X
ξ;η;κð Þ∈Na

Va mx,y, z;mxþξ,yþη, zþκ

� �
(3.2)

where Z is the normalizing factor (partition function).

To identify the MGRF in Eq. (3.1), approximate analytical maximum likelihood

estimate of the 3D Gibbs potentials, Va,eq and Va,ne are derived in line with [34]:

Va,eq ¼ �Va,ne ¼ 2 f a,eq mð Þ � 1

2

� 	
(3.3)

where fa,eq(m) denotes the relative frequency of the equal labels in the equivalent

voxel pairs {((x,y,z),(x + ξ, y + η, z + κ)) : (x,y,z) ∈ R; (x + ξ, y + η, z + κ) ∈ R;

(ξ,η,κ) ∈ Na} of a regionmapm of a givenDCE-MRI aligned in accordwith the prior

shape model.

Probabilistic Shape Model

To enhance the segmentation accuracy, additional constraints based on the

expected shape of the prostate are introduced by co-aligning each given DCE-MR

data to a training database and using a soft probabilistic 3D prostate shape model

Ps mð Þ ¼
Y

x;y;zð Þ∈R

Smx,y, z ; where Smx,y,z is the empirical probability that the voxel

(x,y,z) belongs to the prostate (L ¼ 0ob0) or the background (L ¼ 0bg0) given the

map (see Figs. 3.4 and 3.5).

Prostate Shape Model Algorithm

Initialization:

• Co-align the 3D DCE-MRI training sets collected from different subjects using a

rigid 3D registration maximizing their mutual information (MI) [35].

• Manually segment the prostate from the aligned sets.

• Estimate the voxel-wise probabilities by counting how many times each voxel

(x,y,z) was segmented as the prostate.

Updating Prior Shape Model:

• To enhance the segmentation of the current prostate volume, the prior probabi-

listic shape model is updated by adding the previous segmented 3D prostate data

to the prior calculated shape model.
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Segmentation Algorithm

In total, the proposed prostate segmentation process involves the following steps:

1. Perform an affine alignment of a given 3DMRI to an arbitrary prototype prostate

from the training set using mutual information [35] as a similarity measure to

obtain the learned probabilistic shape model P(sjm).

2. Estimate the conditional intensitymodelP(gjm) by identifying the bimodal LCDG.

3. Use the intensity model found and the learned probabilistic shape model to

perform an initial segmentation of the prostate, i.e., to form an initial region map.

4. Use the initial region map to estimate the potential for the Potts model using

(3) and to identify the MGRF model P(m) of region maps.

Fig. 3.4 Forming prostate shape prior projected onto 2D:0020 top row-training samples; middle
row—manually segmented prostate regions, and bottom row—their affine MI-based alignment

Fig. 3.5 Two-dimensional

axial projection of gray-

coded prostate region shape

prior
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5. Improve the region map using voxel-wise stochastic relaxation (iterative condi-

tional mode—ICM [36]) through successive iterations to maximize the

log-likelihood function of Eq. (3.1) until the log-likelihood remains almost the

same for two successive iterations.

6. Output: The 3D prostate segmentation is the final estimate region map, m.

Performance Evaluation of the Proposed Segmentation Algorithm

To evaluate the performance of the proposed segmentation algorithm, we measured

true positive (TP), true negative (TN), false positive (FP), and false negative

(FN) segmentation (Fig. 3.6) Let C and G denote the segmented region, its “ground

truth” counterpart, and the whole image lattice, respectively. Let jzj denote the

volume (in the number of voxels) of a region z. Then TP ¼ jC \ Gj is the overlap
between C and G the false positive FP ¼ jC � C \ Gj is the difference between

the segmented object and the TP; the false negative FN ¼ jG � C \ Gj is the

difference between the ground truth and the TP; and TN ¼ jR � C [ Gj The

positive predictive value (PPV), Sensitivity (Sens), and dice similarity coefficient

(DSC) are defined as:

PPV ¼ TP

TPþ FP
(3.4)

Sens ¼ TP

TPþ FN
(3.5)

DSC ¼ 2� TP

2� TPþ FPþ FN
(3.6)

Nonrigid Registration

Due to patient breathing and local movement, accurate registration is a main issue

in DCE-MRI sequences. A tremendous number of nonrigid image registration

techniques have been developed, e.g., [37, 38]. However, more robust, efficient,

Fig. 3.6 Two-dimensional

schematic illustration of

measuring segmentation

errors

66 A. Firjani et al.



and sophisticated registration techniques are required. In this chapter, the nonrigid

registration of the DCE-MR data is performed by solving the second-order linear

partial differential Laplace equation:

∇2γ ¼ ∂2γ

∂x2
þ ∂2γ

∂y2
¼ 0 (3.7)

for a scalar function γ(x,y) between the target and the reference prostate objects. This
PDE arises in various scientific and engineering applications including fluid mechan-

ics, electromagnetic theory, potential theory, solid mechanics, heat conduction,

geometry, probability theory, etc. The solution of a planar Laplace equation between

two boundaries results in intermediate equipotential surfaces (dashed lines in

Fig. 3.7) and streamlines that connect both boundaries and are everywhere orthogonal

to all the equipotential surfaces (see, e.g., the line connecting the points Bai and Bbj in

Fig. 3.7).

The streamlines establish natural point-to-point correspondences between

the boundaries. Based on solving the Laplace equation, we perform the nonrigid

registration as follows:

1. Generate the distance maps inside the prostate regions as shown in Fig. 3.8a, b.

2. Use these distance maps to generate equispaced iso-contours (Fig. 3.8c, d).

3. Solve the Laplace equation between respective reference and target iso-contours

to find the point-to-point correspondence.

Wash-In and Wash-Out Perfusion Curves

After the nonrigid alignment, the wash-in and wash-out curves are constructed by

calculating the average intensities of prostate regions for each time sequence. These

curves show the response of the prostate tissues as the contrast agent perfuses for

each image section (see Fig. 3.9).

Fig. 3.7 Two-dimensional

schematic illustration of

correspondences by a

potential field
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Color Map Generation and Tumor Boundary Determination

To characterize the physiological data, color-coded maps that illustrate the propa-

gation of the contrast agent in the prostate tissues are constructed. To construct the

initial color maps, we have to estimate the changes in image signals δx,y,z due to the
contrast agent. These changes are estimated from the constructed perfusion curves

as the difference between the signals of image sequences at tp and t0 (see Fig. 3.9).
To preserve continuity (remove inconsistencies), the initial estimated δx,y,z values
are considered as samples from a generalized Gauss–Markov random field

(GGMRF) image model [39] of measurements with the 26-voxel neighborhood

(Fig. 3.3). Continuity of the constructed 3-D volume (Fig. 3.10) is amplified by

using their MAP estimates as shown in [28]:

δ̂ x,y,z¼ argmin
~δ x,y,z

δx,y,z�~δ x,y,z

�� ��αþραλβ
X

x0; y0;z0ð Þ∈ν x;y;zð Þ

η x;y;zð Þ; x0; y0;z0ð Þ ~δ x,y,z�δx0; y0; z0
��� ���β

8><
>:

9>=
>;

Fig. 3.8 The distance maps (a, b) and the iso-contours (c, d) of the two prostates
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Fig. 3.9 Estimating δ from

the perfusion curve as the

difference between the peak

and initial signal of image

sequences

Fig. 3.10 Enhanced perfusion estimation and continuity analysis using the 3-D GGMRF image

model
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where δx,y,z and eδx,y, z denote the original values and their expected estimates, v(x,y,z)
is the 26-neighborhood voxel set (Fig. 3.3), η(x,y,z),(x0, y0, z0) is the GGMRF potential,

and ρ and λ are scaling factors. The parameter β ∈ [1.01, 2.0] controls the level of

smoothing (e.g., smooth, β ¼ 2, vs. relatively abrupt edges, β ¼ 1.01). The param-

eter α ∈ {1; 2} determines the Gaussian, α ¼ 2, or Laplace, α ¼ 1, prior distribu-

tion of the estimator. Then, the color maps are generated based on the final

estimated eδ (see Fig. 3.10).

Finally, to allocate the boundary of the detected tumors, which is important to

determine the cancer stage in case of malignancy, we used a level set-based

deformable model controlled by a stochastic speed function [40]. The latter

accounts for the perfusion information and spatial interactions between the prostate

voxels.

Experimental Results

Data Acquisition

During development of this study, we observed that good selection of a DCE-MR

imaging protocol is as important as the image analysis, if not more important. The

key point in the protocol is to take the images as quickly as possible while trying to

conserve the quality. A compromise on image quality results in too much noise and

partial volume effects; on the other hand, a compromise on speed results in fewer

data points, which prevents us from being able to classify signals. Therefore, with

collaborative efforts, the protocol was modified a number of times to acquire

standard and better quality imaging. The protocol described below has been

found to be optimal with the current MRI hardware (Signa Horizon GE 1.5 tesla

MR scanner using an additional pelvic coil).

In our protocol, gradient-echo T2 imaging was employed by a Signa Horizon GE

1.5 tesla MR scanner using an additional pelvic coil. Images were taken at a 7 mm

thickness with an interslice gap of 0.5 mm. The repetition time (TR) was 50 ms, the

TE was minimum with flip angle at 60�, the band width was 31.25 kHz, the field of
view (FOV) was 28 cm, and the number of slices was seven. The DCE-MRI process

started with a series of MRI scans which were used to establish a baseline in image

intensity. These scans were performed without the administration of contrast

enhancing agents so that the tissue’s nonenhanced image intensity could be

established. In the next stage, 10 cc of gadoteric acid (Dotarem 0.5 mmol/mL;

Guerbet, France) was administered intravenously at a rate of 3 mL/s. At this point, a

series of MRI scans was performed every 10 s for 3 min, and every series contained

seven slices. Note all the subjects were diagnosed using a biopsy (ground truth). A

sample of what a DCE-MRI looks like with this protocol is shown in Fig. 3.11.
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Segmentation Results

The proposed segmentation approach has been tested on DCE-MRI sequences for

30 independent subjects. Figure 3.12 demonstrates some segmentation results of the

prostate region at selected image sections for different subjects and their associated

false positive (FP) and false negative (FN) errors. For comparison, our segmenta-

tion results are compared to the radiologist’s tracing based on the PPV, Sensitivity

(Sens), and DSC [41]. Table 3.1 represents the PPV, Sens, and DSC statistics

obtained for the test subjects involved in this study.

For comparison, all time series images have been segmented using the shape-

based approach proposed in Tsai et al. [42]. The comparative results for a few of

them are shown in Fig. 3.13. Table 3.2 compares the segmentation results over all

test data sets with the known ground truth (manual tracing by an imaging expert)

and the differences are shown to be statistically significant by the unpaired t-test

(the two-tailed value P is less than 0.0001).

Fig. 3.11 Example of a DCE-MRI slices images from one patient. For each patient, 128 images

are taken
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Fig. 3.12 Segmentation results: the segmentation results with error referenced to the ground truth

G is outlined in yellow [false negative (FN): pixels segmented as the prostate in G but not

segmented as the prostate with our approach] and red [false positive (FP): pixels segmented as

the prostate with our approach but not segmented as the prostate in the G]

Table 3.1 Error statistics over all test data sets

Performance measures

PPV Sens DSC

Minimum 0.972 0.837 0.909

Maximum 0.989 0.851 0.930

Mean 0.982 0.846 0.923

Standard deviation 0.004 0.004 0.004
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Fig. 3.13 Accuracy of our segmentation in comparison with [42]. Our segmentation is outlined in

blue and [42] in red with reference to the ground truth G in white

Table 3.2 Comparative segmentation accuracies over all test data sets

Algorithm

Our [42]

Minimum error (%) 0 2.51

Maximum error (%) 1.50 11.92

Average error (%) 0.53 5.91

Standard deviation (%) 0.33 4.44

Two-tailed P-value 0.0001
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Diagnostic Results

The ultimate goal of the proposed framework is to successfully distinguish

between malignant and benign detected tumors by constructing the perfusion

curves from the DCE-MRI sequences. The curves show the response of the prostate

tissues as the contrast agent perfuses. The malignant subjects show an abrupt

increase to the higher perfusion values and the benign subjects show a delay in

reaching their peak perfusion (see Fig. 3.14). From these curves, we have been able

to conclude that the peak perfusion value and the wash-in slope are the two major

extracted features for classification. To distinguish between benign and malignant

cases, we used a k-nearest neighbor (KNN) classifier to learn the statistical char-

acteristics of both benign and malignant subjects from the perfusion curves of the

training sets. In our approach, we used nine data sets for the training (see Fig. 3.14)

and the other 21 for testing. The KNN-based classification classifies both training

and testing data correctly, so the overall accuracy of the proposed approach is

100 %. Following the classification, a visual assessment is made. Figure 3.15

presents the color-coded maps over all image sections before and after applying

the 3-D GGMRF smoothing for three subjects involved in our study. Figures 3.16

and 3.17 show two examples of the tumor contours determination for benign

subjects, and Figs. 3.18 and 3.19 show two examples of the tumor contours

determination for malignant subjects.

Conclusion

In this chapter, we present a framework for detecting prostate cancer using

DCE-MRI. The framework includes prostate segmentation, nonrigid registration,

and KNN-based classification. For prostate segmentation, we introduced a new 3D

Fig. 3.14 Perfusion curves

from nine subjects with

respect to scan number.

Subjects in red are

malignant, and subjects

in blue are benign
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approach that is based on a MAP estimate of a new log-likelihood function that

accounts for the shape priori, the spatial interaction, and the current appearance of

the prostate tissues and its background. Following segmentation, we introduced a

nonrigid registration approach that deforms the prostate object on iso-contours

instead of a square lattice, which provides more degrees of freedom to obtain

accurate deformation. The perfusion curves of the segmented prostate region are

calculated and the features extracted from these curves undergo KNN-based

Fig. 3.15 Color-coded maps for three of the test subjects before and after the 3-D GGMRF

smoothing with ρ ¼ 1, λ ¼ 5, β ¼ 1:01, α ¼ 2, and η x;y;zð Þ, x0 ;y0 ;z0ð Þ ¼
ffiffiffi
2

p
and their respective

color-coded maps. The red and blue ends of the color scale relate to the maximum and minimum

changes, respectively
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classification. Applications of the proposed approach yield promising results that

would, in the near future, replace the use of current technologies to determine the

type of prostate cancer.

Our future work will include testing more patients. In addition, we will try to

implement a fusion between DCE-MRI and Diffusion MRI to get better diagnosis

results.

Fig. 3.16 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of

the first benign subject. Tumor’s contour determination (green)
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Fig. 3.17 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of

second benign subject. Tumor’s contour determination (green)
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Fig. 3.18 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of

the first malignant subject. Tumor’s contour determination (green)
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Fig. 3.19 Dynamic contrast-enhanced MRI images of the pelvis with local tumor progression of

first malignant subject
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Chapter 4

Computational Intelligent Image Analysis

for Assisting Radiation Oncologists’ Decision

Making in Radiation Treatment Planning

Hidetaka Arimura, Taiki Magome, Genyu Kakiuchi, Jumpei Kuwazuru,

and Asumi Mizoguchi

Abstract This chapter describes the computational image analysis for assisting

radiation oncologists’ decision making in radiation treatment planning for high

precision radiation therapy. The radiation therapy consists of five steps, i.e., diag-

nosis, treatment planning, patient setup, treatment, and follow-up, in which com-

putational intelligent image analysis and pattern recognition methods play

important roles in improving the accuracy of radiation therapy and assisting

radiation oncologists’ or medical physicists’ decision making. In particular, the

treatment planning step is substantially important and indispensable, because the

subsequent steps must be performed according to the treatment plan. This chapter

introduces a number of studies on computational intelligent image analysis used for

the computer-aided decision making in radiation treatment planning. Moreover, the

authors also explore computer-aided treatment planning methods including auto-

mated beam arrangement based on similar cases, computerized contouring of lung

tumor regions using a support vector machine (SVM) classifier, and a computerized

method for determination of robust beam directions against patient setup errors in

particle therapy.

Introduction

Malignant neoplasms, cardiac disease, and cerebrovascular disease are the top three

major causes of death in Japan. Malignant neoplasms have been the top cause of

death since 1981, and their mortality rate has consistently increased in Japan. The

mortality due to malignant neoplasm was 30 % of all-cause mortality in 2009 [1].
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The three major treatment strategies for malignant neoplasms are surgical

intervention, chemotherapy, and radiation therapy, but usually patients are treated

using the combination of two or more modalities instead of a single approach,

which is called combined modality therapy.

Radiation therapy, which of course does not require physical incision of the

patient’s body like surgical intervention, has attracted considerable attention,

because it can preserve organ function and reduce the physical burden of patients,

particularly elderly patients. This treatment modality is especially important for

developed countries such as the USA and Japan, which have been moving toward

an aging society. In Japan, the percentage of elderly people is currently estimated to

be more than 20 %, and the average lifespan was 86 years for females and 79 for

males in 2008. Therefore, radiotherapy would provide great benefits for many

patients, including elderly patients, and thereby enhance their quality of life.

The primary aim of radiation therapy is to deliver as high a dose as possible to

the tumor, while causing as little damage as possible to normal tissues and organs at

risks (OARs) and thus avoiding adverse effects [2, 3]. The OARs are the normal

tissues whose radiation sensitivity may significantly influence radiation treatment

planning (RTP) and/or the prescribed dose [4]. In order to protect these tissues,

several techniques using high precision radiation therapy have been developed,

such as stereotactic body radiation therapy (SBRT), intensity modulated radiation

therapy (IMRT), adaptive radiotherapy (ART), real-time tracking radiotherapy

(RTRT), and image-guided radiation therapy (IGRT), and these advances have

led to impressive progress in radiation precision in recent years. As a result, high

precision radiation therapy has been reported to provide outcomes comparable to

surgery for some cancers [5]. In these high precision radiation therapies, computa-

tional intelligent image analysis and pattern recognition methods play important

roles in improving the accuracy of radiation therapy and assisting radiation oncol-

ogists’ or medical physicists’ decision making.

The radiation therapy consists of four steps, i.e., diagnosis, treatment planning,

treatment, and follow-up. The computational intelligent image processing and pat-

tern recognition techniques are employed to assist radiation oncology staff members

in the decision making at each step of the radiation therapy. Figure 4.1 shows the five

steps of radiation therapy and examples of image processing techniques at each step.

The first step is the diagnosis of the patient. In this step, a radiation oncologist

determines the treatment policy, e.g., curative treatment or palliative treatment, but

computer-aided diagnosis techniques may also be useful if the oncologist decides to

use multiple modalities.

The second step is the treatment planning. In this step, the treatment planner

should extract the gross tumor volume (GTV) and the OAR, and should formulate

an “optimum” plan by arranging beams to maximize the tumor dose and minimize

the OAR dose. Various automated segmentation methods have been developed and

are still being researched for the extraction of tumor and OAR regions. Image

registration techniques are very useful for segmenting tumors using fused images

that combine morphological and functional images such as planning CT images and

positron emission tomography (PET) images. In particle therapy, treatment
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planners should take into account patient setup error when the beam directions are

determined; otherwise, the actual dose distribution in the patient during treatment

may be strongly degraded compared with the planned dose distribution.

The third step is the patient setup. In this step, the radiation therapists position a

patient on the treatment couch. Image registration techniques, which register a

moving image to a reference image using corresponding feature points between the

two images, are employed for correction of a patient’s setup errors. Previous studies

have demonstrated that these techniques are indeed effective for reducing the setup

errors [6, 7]. In general, digitally reconstructed radiograph (DRR) images and

planning CT images are used as the reference images, and electronic portal imaging

device (EPID) and cone-beam CT (CBCT) images produced using kilovoltage or

megavoltage X-rays at the treatment time are employed as the moving images.

The fourth step is the treatment itself. An X-ray or particle beam is delivered to

the patient according to the treatment plan. One of the major issues is the radiation

delivery for moving tumors such as lung or liver cancers. Pattern recognition

techniques, such as the detection of tumors and fiducial markers (e.g., gold marker),

are essential for minimizing the treatment time in these cases. For instance, a real-

time tumor tracking radiography (RTRT) system has been developed, which

employs pattern recognition techniques by following a gold marker within the

tumor in order to track the tumor and switch the X-ray beam on and off [8].

Finally, the fifth step is the follow-up. In this step, the radiation oncologist

evaluates the treatment outcomes using multimodality imaging devices. Pattern

recognition techniques have also been applied during the follow-up to predict the

radiation therapy outcomes and normal tissue complications [9–13].

In this chapter, we will consider computational and intelligent approaches in

the radiation treatment planning, because the treatment planning step is indispens-

able, and largely dictates the subsequent steps. Therefore, a number of studies on

computational intelligent image analysis used for computer-aided decision making

Diagnosis

Treatment planning

Patient setup

Treatment

Follow up

Computer-aided diagnosis  
based on multimodality 

Extraction of GTV, CTV, OAR regions 
Fusion between multimodality 

Determination of beam arrangement 

Image registration for patient setup

Real-time tumor tracking 
Estimation of dose distribution in vivo 

Prediction of treatment outcomes

Fig. 4.1 Five steps of radiation therapy and examples of image processing techniques in each step
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in the radiation treatment planning have been introduced, including automated

beam arrangement based on similar cases, computerized contouring of lung

tumor regions using a support vector machine (SVM) classifier, and a computerized

method for determination of robust beam directions against patient setup errors in

hadron particle therapy.

Computer-Aided Decision Making for the Determination

of Beam Arrangements

Background

Stereotactic body radiotherapy (SBRT) has been widely used for the treatment of

early stage lung cancers in recent decades [14]. The survival rate for SBRT has been

encouraging and potentially comparable to that for surgery [5]. Daily doses in

conventional external beam radiotherapy are typically delivered in the range of

1.8–2.0 Gy (total doses: 60–70 Gy), whereas stereotactic body radiotherapy (SBRT)

is generally administered at five or fewer fractions of high doses of 10–20 Gy per

fraction. The shortened treatment time with fewer fractions would result in signif-

icant benefits to both patients and hospitals, which have limited inpatient capabili-

ties. However, high doses per treatment have been considered dangerous in the past

due to limitations in the treatment delivery technology, such as incomplete immo-

bilization, that raised concerns about potential toxicity if large volumes of normal

tissues or OAR were exposed to high dose radiation during each treatment. With the

recent advances in treatment techniques, it has become possible to concentrate very

large doses of radiation to tumors and to minimize the doses to surrounding normal

tissues by using multiple beams directed in coplanar and non-coplanar directions

[15]. However, the determination of beam arrangement is a substantially demanding

task for inexperienced treatment planners and affects the critical dose distribution

with steep dose gradients.

Treatment planning skills are developed by repeated planning in clinical practice,

often under the guidance of experienced planners or appropriate textbooks. In this

way, treatment planners should memorize many planning patterns and construct an

evolving “database” in their memory, which can then be searched for previous cases

similar to the case under consideration. However, although a number of automated

methods for determination of beam arrangements have been developed [16, 17],

there are currently no such methods for determining beam arrangements based on

similar previous cases. On the other hand, in the field of diagnostic radiology, the

presentation of similar cases as a diagnostic assist has been suggested for diagnosis

of chest images [18], lung computed tomography (CT) images [19, 20], and mam-

mography images [20–23]. These researches have indicated the feasibility of using

similar cases as a diagnostic assist. However, to the best of our knowledge, there are

no studies on the feasibility of using similar planning cases for the determination of

beam arrangements in the field of radiation therapy.
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Computer-Aided Beam Arrangement Based on Similar Cases
in Radiation Treatment Planning Databases

The authors developed a computer-aided decision making method for determina-

tion of beam arrangements based on similar cases in a radiotherapy treatment

planning (RTP) database of the results from experienced treatment planners. Sim-

ilar-case-based beam arrangements were automatically determined based on the

following two steps. First, the five plans showing the greatest similarity to an

objective case were automatically selected in the RTP database by considering

the weighted Euclidean distance of geometrical feature vectors, i.e., related to the

location, size, and shape of the planning target volume (PTV), lung, and spinal cord,

between the objective case and each plan in the RTP database. Second, the five

beam arrangements of an objective case were automatically determined by regis-

tering five cases similar to the objective case with respect to lung regions by means

of an affine transformation.

Selection of Similar Treatment Plans Based on Geometrical Features

In the first step, the five plans most similar to an objective case were automatically

selected in the RTP database by considering the weighted Euclidean distance of

geometrical feature vectors between the objective case and each plan in the RTP

database. The weighted Euclidean distance was considered a similarity measure.

The weights of geometrical features were needed to give the geometrical features

the appropriate degree of importance from the treatment planning point of view.

Therefore, when applying the proposed method to their own databases, each

institute should determine the appropriate weights of the geometrical features

based on their own philosophy or policy of treatment planning. The weighted

Euclidian distance dimage was calculated by the following equation:

dimage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXG
i¼1

wi αi � βið Þ2
vuut , (4.1)

where G is the number of geometrical features, wi is the weight of the i-th
geometrical feature, αi is the i-th geometrical feature for the objective case, and

βi is the i-th geometrical feature for each case in the RTP database. Note that each

geometrical feature was divided by the standard deviation of all cases in the RTP

database to normalize the range of each feature value. In this study, we defined ten

geometrical features, i.e., the x, y, z coordinates of a PTV centroid, the effective

diameter of the PTV, the sphericity of the PTV, the lung length in the left–right

(LR), anterior–posterior (AP), and superior–inferior (SI) directions, the distance in

the centroid between the PTV and spinal cord in the isocenter plane, and the angle

4 Computational Intelligent Image Analysis for Assisting Radiation. . . 87



from the spinal cord to the PTV in the isocenter plane. Weights for geometrical

features were empirically determined by using the five training cases so that cases

more similar to the objective case could be selected.

Determination of Beam Arrangements Based on Similar Treatment

Plans Using the Linear Registration Technique

In the second step, five beam angles of an objective case were automatically

determined by registration of five similar treatment plans with the objective case

with respect to lung regions using a linear registration technique, i.e., affine trans-

formation [24]. First, the affine transformation matrix to register the lung regions of

each similar plan with that of the objective case was calculated by using a least

squares method based on eight feature points, which were automatically selected for

the registration in vertices of the circumscribed parallelepiped of lung regions.

Second, a beam direction, i.e., beam position vector, based on a gantry angle θ and

couch angle φ was transformed from a spherical polar coordinate system to a

Cartesian coordinate system as a unit position vector. Third, each beam position

vector of similar cases was modified in the Cartesian coordinate system by using the

same affine transformation matrix as a registration in terms of lung regions. Finally,

the resulting position vector was converted from the Cartesian coordinate system to

the spherical polar coordinate system as gantry angle θ0 and couch angle φ0.

Evaluation of Beam Arrangements Determined Based on Similar

Treatment Plans Using Planning Evaluation Indices

The most usable plan was selected by sorting the five plans based on an RTP

evaluation measure with 11 planning evaluation indices, which was the Euclidean

distance in a feature space between each plan and an ideal plan. In this study, the

ideal plan was assumed to produce a perfect uniform irradiation with a prescription

dose in the PTV and no irradiation in the surrounding organs and tissues. The

usefulness of each plan was estimated by the following Euclidean distance dplan of
the planning evaluation vector between the ideal plan and each plan determined by

a similar plan, and the Euclidean distance was considered the RTP evaluation

measure:

dplan ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

Xj � Yj

� �2
vuut , (4.2)

where J is the number of planning evaluation indices, Xj is the j-th planning

evaluation index for the ideal plan, and Yj is the j-th planning evaluation index

for the plan based on the five most similar plans. Each planning evaluation index
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was normalized in the same manner as the geometrical features. The eight evalu-

ation indices consisted of the D95, homogeneity index (HI), conformity index

(CI) for the PTV, V5, V10, V20, mean dose for the lung, and maximum dose for

the spinal cord, and their values for the ideal plan were set to 48 Gy (prescription

dose), 1.0, 1.0, 0 %, 0 %, 0 %, 0 Gy, and 0 Gy, respectively.

Evaluation of Computer-Aided Beam Arrangement

Based on Similar Cases

We applied the proposed method to ten test cases by using an RTP database of

81 cases with lung cancer and compared the eight planning evaluation indices

between the original plan and the corresponding most usable similar-case-based

plan. Figure 4.2 shows an objective case with a tumor on the lung wall (Fig. 4.2a)

and the first to thirdmost similar cases (Fig. 4.2b–d) to the objective case. The similar

cases geometrically resemble the objective case (Fig. 4.2a), especially in terms of the

geometrical relationship between the tumor and the spinal cord. Figure 4.3 shows a

plan obtained by the original beam arrangement (Fig. 4.3a), and three plans deter-

mined by similar-case-based beam arrangements (Fig. 4.3b–d), which were sorted in

descending order based on the RTP evaluation measure. The plans of Fig. 4.3b–d

were derived from similar cases as shown in Fig. 4.2b–d, respectively. In this case, the

beam arrangements consisted of seven to eight beams with three to four coplanar

beams and three to four non-coplanar beams. The objective case (Fig. 4.3a) received

an oblique lateral beam, which passed close to the spinal cord in order to increase

the conformity of the PTV. On the other hand, the most usable similar-case-based

beam arrangement (Fig. 4.3b) had no lateral beams for avoiding the spinal cord,

Fig. 4.2 An objective case with a tumor on the lung wall (a) and the first to third most similar

cases (b–d) to the objective case
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but the second to third usable cases (Fig. 4.3c, d) had lateral beams due to prioritizing

the PTV conformity rather than sparing the spinal cord. As a result, there were no

statistically significant differences between the original beam arrangements and the

most usable similar-case-based beam arrangements (P > 0.05) in terms of the eight

planning evaluation indices including the D95, mean lung dose, and spinal cord

maximum dose. In conclusion, the proposed method suggested usable beam arrange-

ments with little difference from cases in the RTP database, and thus it could be

employed as an educational tool for less experienced treatment planners.

Computer-Assisted Contouring of Tumor Regions

in Radiation Treatment Planning

Background

To improve the outcomes of radiotherapy, stereotactic radiotherapy has been

developed for the treatment of stable tumors such as brain tumors by delivering

very higher doses in small irradiation fields. Moreover, SBRT has been applied to

moving tumors such as lung tumors while immobilizing the body and monitoring

tumor locations. In the SBRT technique, tumor dose is maximized while the normal

tissue dose is minimized. However, it would be assumed that the tumor and OAR

contours should be determined as accurately as possible. In fact, the accuracy of

Fig. 4.3 A plan obtained by the original beam arrangement (a), and three plans determined by

similar-case-based beam arrangements (b–d), which were sorted in descending order based on the

RTP evaluation measure
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contouring or segmentation of tumors affects the precision of radiotherapy, because

the prescribed dose distribution in RTP is determined based on the tumor regions,

which are manually determined on planning CT images on a slice-by-slice basis by

a treatment planner. However, the subjective manual contouring is tedious and its

reproducibility would be relatively low, resulting in inter-observer variability and

intra-observer variability of tumor regions [4, 25–28]. The tumor region is called

the GTV, which is defined as the visible tumor volume in images. A number of

automated contouring methods for the GTVs have been proposed for reducing the

inter-observer variability and intra-observer variability, planning time, and increas-

ing segmentation accuracy of the GTVs. The conventional methods are based on

thresholding of the standardized uptake value (SUV) [29, 30], or on the region

growing method [28], Gaussian mixture model [31], fuzzy c-means algorithm [32],

fuzzy locally adaptive Bayesian approach [33, 34], gradient-based segmentation

method [35], model-based method [36], and atlas-based method [37]. However,

there have been a few studies on segmentation methods for tumor regions based on

biological information as well as physical information, such as PET and CT images.

18F-FDG PET directly shows biological information of higher metabolic rates

compared with normal tissues for the radiolabeled glucose, which is associated

with malignant neoplasms. El Naqa et al. [38] developed a multimodality segmen-

tation method using a multivalued level set method, which can provide a feasible

and accurate framework for combining imaging data from different modalities

(PET/CT), and is a potentially useful tool for the delineation of biophysical structure

volumes in radiotherapy treatment planning. On the other hand, in this study, we

tried to incorporate the tumor contours determined by radiation oncologists based

on the PET biological information and CT morphological information into the

proposed contouring method by using a machine learning method. Therefore, the

aim of this study was to develop an automated method for contouring the GTVs of

lung tumors with an SVM, which learned various contours determined on planning

CT images by radiation oncologists while taking into account the PET/CT images.

Automated Method for Contouring the GTVs of Lung Tumors
Using an SVM Classifier with Knowledge from Radiation
Oncologists’ Contours on Data Sets of Planning CT
and FDG-PET/CT Images

The proposed method was composed of four steps. First, the planning CT, the

PET/CT images, and GTV data were converted into isotropic images by using

interpolation methods. Second, the PET images were registered with the planning

CT images through the diagnostic CT images of PET/CT. Third, six voxel-based

features including voxel values and magnitudes of image gradient vectors were

derived from each voxel in the planning CT and PET /CT image data sets. Finally,

lung tumors were extracted by using an SVM, which learned six voxel-based

features inside and outside each true tumor region.
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Registration of the PET Image to the Planning CT Image

Prior to the registration, a diagnostic CT image of the PET/CT data set was

registered with the PET image using an image position in a digital imaging and

communications in medicine (DICOM) header information and a rigid registration

based on normalized mutual information [39]. Figure 4.4 shows an illustration for

registration of a PET image to a planning CT image. First, the diagnostic CT image

of the PET/CT data set was registered with a planning CT image by using an affine

transformation. Then, the PET image was registered with the planning CT image

and a GTV region (radiation therapy structure data) in DICOM-RT (DICOM for

radiation therapy) by using the same affine transformation matrix, because the PET

image was scanned as the same coordinate system as the diagnostic CT image of the

PET/CT data set.

Determination of Voxel-Based Image Features

Six voxel-based features were derived for the SVM from each voxel in the planning

CT and PET/CT image data sets. All image data, including planning CT images,

GTV regions, and PET/CT data sets were placed in the same coordinate system

after the registration in the previous step. Therefore, each voxel value and its

magnitude of image gradient vector were obtained as image features from each

Fig. 4.4 An illustration for registration of a PET image to a planning CT image

92 H. Arimura et al.



voxel in the planning CT image, diagnostic CT and PET images of a PET/CT

data set. The image gradient was derived from the following one-order polynomial

within a 5 � 5 � 5 voxel region, which was obtained by a least-square method:

f x; y; zð Þ ¼ axþ byþ czþ d, (4.3)

where x, y, and z are coordinates in a three-dimensional image, f(x, y, z) is the

one-order polynomial, and a, b, c, and d are constants. The gradient magnitude was

defined by the following equation:

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂f
∂x

� �2

þ ∂f
∂y

� �2

þ ∂f
∂z

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
: (4.4)

Segmentation of the GTV Region Using an SVM

The GTVs were extracted by using an SVM, which learned three or six voxel-based

features inside and outside each true tumor region (gold standard). The teacher

signal was plus one if the voxel was inside the GTV region, whereas the teacher

signal was minus one if the voxel was outside the GTV. The outside region of the

GTV was defined as the region dilated six times by a circle kernel with a radius of

1 mm. The training voxels were selected at various sampling intervals depending on

the ratio between the numbers of inside and outside voxels so that the number of the

inside voxels could be the same as that of outside voxels. We constructed an SVM

classifier with a Gaussian kernel, i.e., exp(-γjjx-yjj2), by using the open source

software package SVM light [40]. In this study, the value γ, the parameter C, and

the threshold value were set as 0.0001, 12.5, and 0.50, respectively.

Performance of the Automated Method for Contouring GTVs of Lung

Tumors Using SVM

Figure 4.5 shows a pair plot matrix between any two of the six image features, i.e.,

the voxel values of the planning CT image and diagnostic CT, and the SUV of PET

images, and three gradients for the three kinds of images. In this pair plot matrix,

each graph in the intersection shows the relationship between any two of the six

image features. The gold standard of GTV voxels is indicated by red circles and the

outside volume of GTV voxels is indicated by blue crosses. The aim of this feature

analysis is to characterize a voxel (tumor or normal tissue) to be recognized by

measurements based on a voxel whose feature value is very similar to those for

objects in the same category, but as different or distinguishable as possible from

those for objects in different categories. According to Fig. 4.5, the relationships

related to the SUV obtained from the PET images seem to be relatively distinguish-

able between the tumor and normal tissue. The GTVs extracted by using the SVM,
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which learned three or six voxel-based features inside and outside each true tumor

region, are shown in Fig. 4.6 with the Dice similarity coefficient (DSC) between the

gold standard and regions segmented by the proposed method. The three features

were the voxel values of the planning CT image and diagnostic CT, and the SUV of

PET images. Estimated GTV regions are shown in green, and the borders of the GTV

contoured by radiation oncologists are indicated with red lines. In addition, overlap

lines between the GTV outline and the estimated GTV are shown in yellow. The

results showed that the average DSCs for three and six features were 0.744 and

0.899, and thus the SVM may need six features to learn the distinguishable charac-

teristics. In addition, it might be a little more difficult for the SVM to learn the mixed

grad glass opacity (GGO) tumor compared with the solid tumors.
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Fig. 4.5 Pair plot matrix between any two of the six image features. The gold standard of GTV

voxels is indicated by red circles and the outside volume of GTV voxels is indicated by blue
crosses. CTp value: CT value of the planning CT; CTx value: diagnosCc CT value of PET/CT;

SUV: standardized uptake value obtained by PET of PET/CT; j∇ICTpj: magnitude of the gradient

of the planning CT; j∇ICTxj: magnitude of the gradient of the diagnosCc CT of PET/CT; j∇IPETj:
magnitude of the gradient of PET of PET/CT
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Computerized Method for Determination of Beam

Directions in Hadron Particle Therapy

Background

Particle therapies such as proton therapy or heavy ion therapy (carbon ion) have the

physical ability to better define and control the dose distribution produced with the

particles, which have the Bragg peak, and to increase the high dose delivered to

tumors while achieving a very low dose to normal tissue [41, 42]. Furthermore, the

highly ionizing property of the heavy ion charged particles, i.e., higher linear

energy transfer (LET), results in greater potential for killing tumor cells than

conventional radiotherapy of X-rays or electrons from the biological point of view.

Fig. 4.6 GTVs extracted by using the support vector machine, which learned three or six voxel-

based features inside and outside each true tumor region. Estimated GTV regions are shown in

green, and the borders of GTV contoured by radiation oncologists are indicated by red lines.
In addition, overlapping lines between the GTV outline and the estimated GTV are indicated in

yellow
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In the particle therapy, the shape of dose distribution is modulated by the

following three steps in general, so that the three-dimensional (3D) dose distribution

conforms to a target volume. First, mono-energetic particle beams were modulated

to the target thickness range along each beam path (Spread-out of Bragg peak;

SOBP) with a ridge filter. Second, the distal end of the SOBP can be conformed to

each tumor by use of a range shifter and a patient-specific compensator in a depth

dose shaping system, which is made based on lateral distributions in the beam’s eye

view (BEV) of a 3D electron density (ED) map of a computed tomography

(CT) image for each patient. Third, the lateral radiation field edge was formed to

the lateral outline of the target from the BEV by using a multi-leaf collimator. This

method is called a passive beam shaping method. Another beam shaping method is

called the active beam shaping method or the pencil beam scanning method, e.g., the

spot scanning method and raster scanning method. In this method, the target volume

is accurately painted by the pencil beam with modulating particle energy.

However, the accurate dose distributions produced by the hadron particles may

be very sensitive to patient setup errors [43–49] occurring in a lateral direction

orthogonal to the beam direction. In the conclusion of our previous study [50], we

discussed the need to develop a method for finding robust beam directions for

patient setup error in hadron particle therapy when there are abrupt lateral fluctu-

ations of the electron density projection within the irradiation field.

Decision Making Method for Suggestion of Robust Beam
Directions Against the Patient Setup Error Based on Power
Spectra of Electron Density Images

If the patient setup errors are not taken into account during the treatment planning,

the actual dose distribution that would occur in the patient during treatment could

be strongly degraded compared with the planned dose distribution. In other words,

due to patient setup errors, the distal end of the dose distribution in a beam direction

could not be fitted with that of a tumor shape if the ED-based BEV in the beam

direction changed more abruptly (high frequency fluctuation) with large amplitude

fluctuation. This incident could lead to significant tumor underdose, but fatal

overdose in OAR. Therefore, our goal in this study was to develop a computerized

method for determination of robust beam directions against the patient setup error

based on the ED-based BEV in the beam direction in the hadron therapy. The

proposed method mainly consisted of the following two steps.

1. Production of a BEV image by projecting a 3D electron density image from a

particle source to a planning target volume (PTV) distal end.

2. Determination of robust beam directions against patient setup errors by using the

slope of the power spectrum.
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Production of a BEV Image by Projecting a 3D Electron Density Image

A BEV image was produced by projecting a 3D electron density image in a beam

direction from a particle source to the distal end of a planning target volume (PTV).

First, isotropic CT images were derived from original CT images by using a

cubic interpolation.

Second, a 3D electron density image was obtained from a patient’s CT image by

using a conversion table from the CT value (Hounsfield unit) to the electron density

relative to water using an experimental method [51]. The relationship between the

CT values and the electron density relative to water was experimentally measured

using a tissue characterization phantom.

Third, each patient body region was extracted in the isotropic CT image by the

following method. The original CT image was binarized by using an automated

thresholding technique [52] to obtain a patient body, but including other regions

such as the couch or immobilizing devices. The patient body region was obtained

from the binarized image by applying an opening filter followed by extraction of the

largest region, and a closing filter, which was used for removing the other regions.

Fourth, the PTV region was defined by adding a 5 mmmargin for the contour data

of the CTV, which were delineated by a radiation oncologist and obtained from

digital imaging and communications in medicine for radiation therapy (DICOM-RT)

files. The isotropic PTV region was produced by use of a shape-based interpolation

[53] for matching the voxel size of the PTV data with the isotropic electron density

image.

The ED-based BEV was produced by projection of the 3D electron density

image from a particle source to the distal end of a planning target volume (PTV).

The vertical beam port of the heavy ion medical accelerator in Chiba (HIMAC) was

virtually built as a particle source in this study. The SAD and SID were virtually set

as 990 and 1,040 cm, respectively. The isocenter in the planning CT image obtained

in a DICOM-RT file was placed at an SAD of 990 cm in the world coordinate

system. For production of the ED-based BEV image, a divergent primary beam

with a number of rays produced from a particle source was virtually delivered to a

3D ED image. Then, the ED values on each ray in the divergent beam in the 3D ED

image were sampled at a certain interval, and accumulated for each pixel in a virtual

imaging plane, which was the same pixel size of 0.59 mm as the planning CT, but a

512 � 512 matrix size. The ED values on the ray were interpolated by using a

linear interpolation technique. The simulated irradiation field was considered as the

irradiation field if the particle therapy was performed for the patient.

Determination of Robust Beam Directions Against Patient Setup Errors

by Using the Slope of the Power Spectrum

The basic idea of our proposed method was to find the robust beam directions

whose ED-based BEV images had spatial fluctuations with low special frequency
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and small amplitude. Power spectra of the ED-based BEV images in all directions,

i.e., 0–355�, with an interval of 5� were calculated for evaluation of the spatial

fluctuations in the ED-based BEV images in a beam direction. We assumed that as

the average spatial frequency and amplitude of the fluctuation in the ED-based BEV

images in a beam direction become lower and smaller, respectively, the absolute

value of the slope of the power spectrum becomes larger. Therefore, the slope of

one-order polynomial of the power spectrum was calculated for determination of

the robust beam directions.

Prior to calculation of the power spectral images, the ED-based BEV images

were preprocessed as follows. First, the pixel values outside the irradiation field

were assigned the average pixel value of the ED-based BEV inside the simulated

irradiation field for decreasing the difference in the pixel value between inside and

outside of the irradiation field. Second, a Gaussian filter was applied to inner and

outer narrow bands (ten pixels) apart from the edge of the ED-based BEV for

reducing the higher frequency components in the power spectrum, which were not

related to the ED-based BEV. Third, a mean value in the ED-based BEV image was

subtracted from the image to remove the influence of the mean value of the power

spectral image.

Fourth, a power spectral image was calculated by using two-dimensional Fourier

transformation from the preprocessed image. The two-dimensional Fourier trans-

formation and the power spectrum were calculated by the following equations:

F u; vð Þ ¼
ð1
�1

ð1
�1

f x; yð Þe�j 2π uxþvyð Þdxdy, (4.5)

P u; vð Þ ¼ F u; vð Þj j2, (4.6)

where f (x, y) is the preprocessed ED-based BEV image, F (u, v) is the Fourier

transformed image, P (u, v) is the power spectral image, x and y are the coordinates
in the real space, and u and v are the coordinates in the spatial frequency space.

The power spectral image in the Cartesian coordinate system was converted to

the polar coordinate system, which has the horizontal axis of the angle and the

vertical axis of the spatial frequency. The power spectral image was integrated over

a range of angles from 0� to 360� to calculate the slope of an average power

spectrum by using the following equation:

G fð Þ ¼
ð360
0

lnP f ; θð Þ dθ, (4.7)

where f is the spatial frequency (mm�1) and θ is the angle (degree) in the power

spectral image. The slope of the average power spectrumwas evaluated as the slope of

a one-order polynomial of the power spectrum from 0.0195 mm�1 to a Nyquist

frequency,whichwas calculated by a least-squaremethod. The slopeswere calculated

in all directions (0–355�) with an interval of 5�. Finally, the robust beam directions
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against patient setup errors were determined by selecting the directions corresponding

to the several largest gradients of average power spectra for all beam directions.

Figure 4.7 shows the resulting images in the major steps of the proposed method.

Performance of the Decision Making Method for the Suggestion

of Robust Beam Directions Against the Patient Setup Error

We applied the proposed method to four head and neck cancer cases and detected

the beam directions. Figure 4.8 shows the slope of the average power spectra as a

function of beam direction, and the detected beam directions of 0–355� are indi-

cated by blue lines. The blue lines show the three most robust beam directions.

Figure 4.9 shows the robust beam directions determined by the proposed method on

three CT slices for a case. Each red region shows a PTV region, and each light blue

Fig. 4.7 Resulting images in the major steps of the proposed method

Fig. 4.8 Slope of average

power spectral value as a

function of the beam

direction (0–355�). The blue
lines show the three most

robust beam directions, i.e.,

80�, 85�, and 275�
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region shows the beam path. In this case, 80�, 85�, and 275� were considered as the
robust beam directions. In a discussion of the results with radiological oncologists,

all the oncologists agreed with most of the beam directions determined by the

proposed method, which seems to indicate that the method is robust against patient

setup errors.
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Chapter 5

Computational Anatomy in the Abdomen:

AutomatedMulti-Organ and Tumor Analysis

from Computed Tomography

Marius George Linguraru and Ronald M. Summers

Abstract The interpretation of medical images benefits from anatomical and

physiological priors to optimize computer-aided diagnosis (CAD) applications.

Diagnosis also relies on the comprehensive analysis of multiple organs and quan-

titative measures of tissue. This chapter highlights our recent contributions to

abdominal multi-organ analysis employing constraints typical to medical images

and adapted to patient data. A new formulation for graph-based methods to segment

abdominal organs from multi-phase CT data is first presented. The method extends

basic graph cuts by using: multi-phases enhancement modeling, shape priors and

location constraints. The multi-organ localization is also addressed using maximum

a posteriori (MAP) probability estimations of organs’ location, orientation, and

scale. The probabilistic framework models the inter-organ spatial relations using a

minimum volume overlap constraint. The liver, spleen, left kidney, right kidney and

pancreas are concomitantly analyzed in the multi-organ analysis framework.

Finally, the automated detection and segmentation of abdominal tumors (i.e.,

hepatic tumors) from abdominal CT images is presented using once again shape

and enhancement constraints. Features are computed for the tumor candidates and

machine learning is used to select the optimal features to separate true and false

detections. The methods illustrate multi-scale analyses of the abdomen, from multi-

organ to organ and tumors and promise to support the processing of large medical

data in the clinically oriented integrated analysis of the abdomen.
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Introduction

In CT-based clinical abdominal diagnosis, radiologists rely on analyzing multi-phase

computed tomography (CT) data, as soft tissue enhancement can be an indicator of

abnormality. Contrast-enhanced CT has proven exceptionally useful to improving

diagnosis due to the ability to differentiate tumors from healthy tissue. For instance,

the level of enhancement in the tumor is an important indication of malignancy and

can be used to better classify abdominal abnormalities [1, 2]. This routine clinical

acquisition protocolmakesmulti-phase data (with/without contrast) readily available.

Organ size and shape are additional image-based markers of disease that are

commonly used in the radiological interpretation of the abdomen. Unusually sized

organs flag infections, necrosis, or fatty infiltrations [3]. Although shape is locally

variable in abdominal organs, global shape constraints remain valid. Similarly,

tumor size and shape indicate cancer evolution, response to treatment, and the

necessity of surgery. The enhancement of lesions is the primary biomarker used to

classify them [1, 4, 5].

In traditional clinical practice, three-dimensional (3D) organ analysis is performed

via time-consuming manual measurements or, as an alternative, the evaluation is

incompletely based on two-dimensional (2D) projection images. Tumors are evalu-

ated in a similar fashion. While size is approximated by a 2D measurement of the

longest axis in a CT projection (typically the axial view), the intensity is estimated

from 2D circular regions in the center of a tumor. These manual measurements show

high intra- and inter-operator variability. In this context, computer-assisted radiology

can improve the diagnosis of tumors by 3D quantifications of size, enhancement, and

morphology from image analysis.

There are several advantages that automated methods have over manual or

interactive techniques. An important aspect is the reproducibility of results, which

in automated algorithms are not subjected to user interaction. Moreover, automated

techniques may be faster, readily available, and can run in the background without

interrupting the clinical workflow (do not require human presence).

Diagnosis also relies on the comprehensive analysis of groups of organs and

quantitative measures of soft tissue. When presented with 3D patient data, such as

CT, radiologists typically analyze them organ-by-organ and slice-by-slice until the

entire image data are covered. This allows detecting multiple diseases from multi-

ple organs.

Computer-aided diagnosis (CAD) and medical image analysis traditionally focus

on organ- or disease-based applications. However there has been recent work toward

the automated simultaneous segmentation and analysis of multiple organs for

comprehensive diagnosis or pre-operative planning and guidance. Additionally,

the interpretation of medical images should integrate anatomical and physiological

priors, such as shape and appearance; synergistic combinations of priors were

seldom incorporated in the optimization of CAD. The implementation of robust

and automated 3D analysis techniques for multi-organs and tumors would allow

radiologists and surgeons to have easy and convenient access to organmeasurements

and 3D visualization.
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CT-Based Abdominal Organ Segmentation

A variety of methods have been proposed for the segmentation of individual

abdominal organs from CT images, in particular CT with contrast enhancement.

The liver enjoyed special attention in recent literature [6–12], kidneys were ana-

lyzed sporadically [13–15], while the spleen [8, 16, 17] and pancreas [18] were

segmented less frequently. Model-driven approaches have been both popular and

successful [10, 11], including active and statistical shape models [9, 12, 15] and

atlas-based segmentation [8, 9, 18]. Level sets and geodesic active contours were

frequently involved in these techniques [7, 8, 12]. Occasionally, graph cuts were

employed [13, 14].

Recently, the simultaneous segmentation of multiple abdominal organs has been

addressed in publications [18–23]. Most of these methods rely on some form of

prior knowledge of the organs, for example probabilistic atlases [21, 23–25] and

statistical models [20]. For instance, the relation between organs and manual

landmarks was used in [21]. Also, an efficient optimization of level set techniques

for general multi-class segmentation was proposed in [26], paving the way for the

discrete optimization of graph cuts with nonsubmodular functions in [27].

Notably, a hierarchical multi-organ statistical atlas was developed by Okada

et al. [20]. Also recently, Seifert et al. [22] proposed a semantic navigation for fast

multi-organ segmentation from CT data. Decision forests were additionally pro-

posed in [28] to classify multiple organs from CT volumes. Another interesting

concept was presented in [29] for the scheduling problem of multi-organ segmen-

tation to maximize the performance of CAD systems designed to analyze the whole

human body. In addition, multi-phase contrast-enhanced CT data were employed in

abdominal multi-organ analysis [19, 30, 31]. In [30], the segmentation was based on

independent component analysis in a variational Bayesian mixture, while in [32],

expectation-maximization and principal component analysis were combined. A 4D

convolution was proposed in [19] constrained by a training model of abdominal soft

tissue enhancement.

CT-Based Abdominal Organ Localization

Abdominal multi-organ segmentation remains a challenging task because the sizes,

shapes, and locations of the organs vary significantly in different subjects. More-

over, these organs have similar appearance in CT images, especially non-contrast

data, and are in close proximity to each other. Thus the successful segmentation

requires a good initial identification and localization of individual organs, generally

performed interactively [20, 21, 23]. Correct organ localization can also benefit

other image processing tasks, including registration and computer-aided detection.

Among the most notable automated localization techniques for abdominal

organs, Okada et al. [9] initialized the liver segmentation by estimating the
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abdominal cavity. In [33] a statistical location model was used, but the method was

limited to estimating only the organ locations without considering the orientations

and sizes. Yao et al. [34] simultaneously detected multi-organ locations by finding

bounding boxes using principal component analysis and a probabilistic atlas. In

[22] the organ location, orientation, and size were estimated using automatically

detected anatomical landmarks, semantics, and machine learning techniques. Alter-

natively, regression techniques were used in [35] to detect multiple organs through

the human body from MR data. Most recently, mouse abdominal organs were

localized in CT using statistical atlases in [36].

Segmentation Competitions in the Abdomen

As already mentioned, the analysis of the liver has benefited from particular

popularity in CAD research and has been at the forefront of validation techniques

for medical image analysis. But importantly, according to the American Cancer

Society, approximately 26,190 new cases of liver cancer are expected to occur in

the USA in 2011 [37]. The incidence of liver cancer has been increasing by more

than 3 % yearly. The liver is also a prime candidate for metastases from cancers in

the breast, colon, prostate, lung, pancreas, stomach, esophagus, adrenal glands, or

skin (melanoma) [38].

For a straightforward comparison of liver analysis techniques, a liver segmenta-

tion competition frommainly pathological CT data was held in conjunction with the

International Conference on Medical Image Computing and Computer Assisted

Intervention (MICCAI), in 2007 [7]. A variety of techniques were presented and

their performance evaluated through a combination of metrics, including volume

overlap and error, root-mean square error, and average surface distance. Among

the ten automatic and six interactive methods for liver segmentation that were

presented, the interactive methods achieved the best segmentation results [39, 40].

Statistical shape models were the best fully automated liver segmentation methods

and performed competitively with the semiautomatic techniques [41]. Other notable

participations in the competition employed region growing [42] and a semantic

formulation of knowledge and context [43].

In 2008, another segmentation competition followed in conjunction with

MICCAI, this time addressing the segmentation of liver tumors from CT data

[44]. CT images covered a range of pathologies and were acquired with contrast

enhancement to allow the differentiation of tumors from healthy liver parenchyma.

As in the case of the liver segmentation, the highest scoring technique was inter-

active, using classic graph cuts and the watershed algorithm to accurately segment

tumors [45]. The most successful semiautomatic approaches scored similarly and

employed adaptive thresholding and morphological processing [46], voxel classi-

fication and propagational learning [47], and a level set with fuzzy pixel classifi-

cation [48]. Automatically, tumors were best segmented via machine learning and

classification techniques [49, 50].
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In addition to the fully automated 3D segmentation of both the organs and tumors,

CAD and surgical planning would benefit from the analysis of other types of

abnormalities (i.e., fatty tissue), as well as the organ’s vasculature [51–53]. Methods

for the concurrent segmentations of liver structures remain mainly interactive [54].

Graph Cuts for Biomedical Data

Graph cuts [55] have become popular for image segmentation due to their ability to

handle highly textured data via a numerically robust global optimization. As the

segmentation techniques employed in this chapter rely on graph cuts, several other

medical image analysis applications proposed in literature are using graph cuts are

presented below.

To segment abdominal organs, in [13, 56–58] model-based information was

included for the segmentation of the heart, spleen, and kidneys. The models were

aligned using markers in [13, 58], manual placements in axial slices in [57], and

intra-model constraints given in the first frame of the cardiac cycle in [56]. Shape

priors were employed in [59, 60] to reconstruct the liver vasculature and lung

airways; the cuts in the graph were constrained by a tubular filter. Probabilistic

shape-based energies for graph cuts were combined with image intensity in a

non-parametric iterative model in [61] for the segmentation of the kidneys. Also,

in [62], shape priors and neighboring constraints were incorporated using signed

distances from boundaries to segment the liver.

Graph-cut techniques were also used in brain segmentation and registration

[15, 63–66], breast tumor analysis [67], and orthopedics [68]. Using an acquisition

protocol for plaque reconstruction, carotid plaques were segmented semiautomat-

ically from ultrasound images in [69]. In other types of biomedical applications, a

multi-level automated graph-cut algorithm was used in [70] to segment cell nuclei.

A graph-cut optimization was presented in [71] for the parcellation of the brain

from functional MRI. In [72], a data-driven graph approach was implemented to

estimate the variability of neural responses on magnetoencephalography or elec-

troencephalography data. Finally, a study of the effect of weights and topology on

the construction of graphs can be found in [73].

Contributions

Abdominal multi-organ segmentation remains a challenging task because the sizes,

shapes, and locations of organs vary significantly between subjects. Moreover,

organs have similar appearance in CT images, even in contrast-enhanced data,

and are in close proximity to each other. The remainder of this chapter synthesizes

our recent contributions to the automated multi-organ analysis from CT data

developed at the National Institutes of Health Clinical Center. Besides the
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simultaneous detection, segmentation, and quantification of multiple abdominal

organs, we also present contributions to the integrated analysis of single organs,

exemplified through the liver, which can be seen as a multi-scale or hierarchical

analysis from the abdomen to organ and tumor.

Methodologically, an integrated statistical model for medical data is described in

this chapter and incorporated into a graph-based approach. An advantage in the

handling of medical data is the available prior information regarding organ loca-

tion, shape, and appearance. Although highly variable between patients and in the

presence of disease, abdominal organs satisfy basic rules of anatomy and physiol-

ogy. Hence, the incorporation of statistical models into algorithms for medical data

analysis greatly benefits the segmentation of abdominal images.

In order, we first propose a new formulation of a 4D directional graph to

automatically segment abdominal organs, at this stage the liver, spleen, and left

and right kidneys, using graph cuts [74, 75]. The statistical priors comprise location

probabilities that are intrinsic to medical data, an enhancement constraint charac-

teristic to the clinical protocols using abdominal CT and an unbiased shape mea-

sure. We further present a maximum a posteriori (MAP) framework for automated

abdominal multi-organ localization [76, 77]. Our method finds the poses of multiple

abdominal organs, which include not only the locations but also the orientations and

scales. The method was applied to five organs: liver, spleen, pancreas, and left and

right kidneys. Finally, graph cuts are employed once more to detect and segment

hepatic tumors using shape and enhancement constraints [78, 79]. The chapter ends

with a short discussion of some of the current research directions designed to

integrate multi-organ interaction and anatomical abnormality towards an integrated

analysis of the entire abdomen.

Abdominal Multi-Organ Segmentation

This section describes the technique for abdominal multi-organ segmentation using

graph cuts with embedded statistical anatomical and physiological information [75].

Data

Twenty-eight random abdominal CT studies with or without contrast enhancement

from healthy subjects were used to create statistical models. Data were collected at

high resolution (1 mm slice thickness). For testing the algorithm, 20 random

abdominal CT studies (normal and abnormal) were obtained with two temporal

acquisitions (40 CT scans). The first image was obtained at non-contrast phase

(NCP) and a second at portal venous phase (PVP) using fixed delays. An example of

multi-phase CT data is shown in Fig. 5.1. Ten images were of low resolution (5 mm

slice thickness) and were used for training and testing the algorithm using a leave-

one-out strategy. Ten images were of high resolutions (1 mm slice thickness) and
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used only for testing. The liver, spleen, and left and right kidneys were manually

segmented (by two research fellows supervised by a board-certified radiologist) in

all CT cases [75].

Model Initialization

The statistical models of location and appearance were built from the 28 CT cases

described in the previous section. The 28 CT data were further used to build shape

constraints via a Parzen window distribution, as explained later in the construction

of the 4D graph.

For location models, a probabilistic atlas (PA) was constructed for each organ:

liver, spleen, left kidney, and right kidney [8]. Organ locations were normalized to

an anatomical landmark (xiphoid process) to preserve spatial relationships and

model organs in the anatomical space. A random image set was used as reference

and the other images registered to it. The registration was performed for each organ

separately. Structural variability, including the size of organs, was conserved by a

size-preserving affine registration adapted from [80]. The PA was constructed

independently from the segmentation algorithm and it is shown in Fig. 5.2.

Appearance statistics were computed from the training data (the 28 cases used in

the model). Histograms of the segmented organs (objects) and background at NCP

and PVP were computed and modeled as sums of Gaussians, as in Fig. 5.3.

Preprocessing

Although multi-phase CT images were acquired during the same session and

intrapatient, there was small, but noticeable abdominal inter-phase motion, espe-

cially associated with breathing. The preprocessing follows our work in [19].

Fig. 5.1 An example of contrast-enhanced CT of the abdomen. The left image shows the

non-contrast phase acquisition and the right picture shows the image of the same patient after

contrast enhancement (portal venous phase)
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Fig. 5.2 The probabilistic atlas of the abdomen showing the liver (blue), spleen (green), left
kidney (yellow), and right kidney (orange), the organs analyzed by our technique [24]. In addition,
the pictures show the aorta (red), stomach (green), gallbladder (purple), pancreas (light blue), right
adrenal gland (magenta), and left adrenal gland (brown)
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Fig. 5.3 Fitted sums of Gaussians to training data of organs/objects (a and b) and background

(c and d) [75]. NCP intensity models are shown in (a and c) and PVP data in (b and d). Here,

training data refers to the training cases in the leave-one-out strategy. The histogram peaks related

to the liver/spleen and kidneys are marked
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First, data were smoothed using anisotropic diffusion [81]. NCP data were

registered to the PVP images. Then, the demons nonlinear registration algorithm

was employed [82] to align NCP and PVP images, as the limited range of motion

between acquisitions ensures partial overlaps between organs over multiple phases.

4D Convolution

From smoothed training data of multi-phase CT, the min and max intensities of

organs were estimated:mini,t ¼ μi, t � 3σi, t andmaxi, t¼ μi,t + 3σi, t, where i¼ 1. . .3
for liver, spleen, and kidneys, μp,t and σp,t represent the mean and standard deviation,

and t ¼ 1, 2 for NCP and PVP. As in [19], a 4D array K(x,y,z,t) ¼ It(x,y,z) was
created from multi-phase data. A convolution with a 4D filter f labeled only regions
for which all voxels in the convolution kernel satisfied the intensity constraints

L x; y; zð Þ ¼ K∘ fð Þ x; y; z; tð Þ ¼ lj, if\
t

minjt � K x; y; z; tð Þ � maxjt
� �

0, otherwise: :

(
(5.1)

L represents the labeled image and lj the labels (j ¼ 1. . .4 for liver, spleen, left

kidney, and right kidney). Note that the labeled organs in L appear eroded as a result

of the 4D convolution. In our method, L provided seeds for objects (Io) in the 4D

graph, as shown below, and was used to estimate the patient-specific histograms.

The eroded inverted L provided the background (Ib) seeds and the related histo-

grams. To report the segmentation results by 4D convolution, L was dilated to

compensate for the undersegmentation of organs.

4D Graph

Graph cuts (GC) were chosen for the inherent capability to provide a globally optimal

solution for segmentation [55]. Let A ¼ (A1, A2, . . ., Ap, . . .) be a vector that defines
the segmentation. The component Ap associated with the voxel p in an image can be

assigned a label of either object of interest/organOi (with i ¼ 1. . .4, for liver, spleen,
left kidney, and right kidney) or background B, where B \ O ¼ Ø andOi \ Oj ¼ Ø

for i 6¼ j. In the classical graph-cut algorithm, Ap takes binary values for O and B. In
our application, Ap can have a value from 0 to 4, where 0 denotes the background,

1 the liver, 2 the spleen, 3 the right kidney, and 4 the left kidney.

The inputs to our problem are two sets of registered abdominal CT scans per

patient: the NCP and PVP sequences. Hence every voxel p in the graph has two

intensity values: Ipncp and I
p
pcp. A simplified schematic representation of the 4D graph

is shown in Fig. 5.4. Every voxel is connected to both Oi (sources) and B (sink) via
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t-links and to its neighbors via n-links (which can be directional). Source and sink

are terminologies used in [55]. The costs of the connections determine the segmen-

tation and weak links are good candidates for the cut.

We first extend the classical GC formulation to analyze 4D data and then

incorporate penalties from the contrast enhancement of CT soft tissue, Parzen

shape windows, and location from a priori probabilities. The energy E to minimize

can be written generically as

E Að Þ ¼ Edata Að Þ þ Eenhance Að Þ þ Elocation Að Þ þ
X4

i¼1
Eboundary Að Þ þ Eshape Að Þ� �

,

(5.2)

with i ¼ 1. . .4 for liver, spleen, left kidney, and right kidney. The subparts of this

cost function are described below.

T-Links

In our application, Edata is a regional term that computes penalties based on 4D

histograms of O and B. The probabilities P of a voxel to belong to O or B are

computed from patient-specific histograms of NCP and PVP data.

Edata Að Þ ¼ λ
X
p∈O

Rp Oð Þþ 1� λð Þ
X
p∈B

Rp Bð Þ; (5.3)

Fig. 5.4 A simplified schematic of the multi-object multi-phase graph [75]. Four-dimensional

information is input from the NCP and PVP data. T-links are connected to the objects (O1 to On)

and background (B) terminals. Directional n-links connect neighboring nodes (the image shows

only two neighbors for each voxel). The width of a line in the graph reflects the strength of the

connection
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Rp Oið Þ¼�ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��Oi

� �
Ppvp Ippvp

��Oi

� �r

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��Oi

� �
Ppvp Ippvp

��Oi

� �r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��B� �
Ppvp Ippvp

��B� �r

0
BBBB@

1
CCCCA;

(5.4)

Rp Bð Þ¼�ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��B� �
Ppvp Ippvp

��B� �r

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��Oi

� �
Ppvp Ippvp

��Oi

� �r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pncp Ipncp

��B� �
Ppvp Ippvp

��B� �r

0
BBBB@

1
CCCCA:

(5.5)

Eenhance penalizes regions that do not enhance rapidly during the acquisition

of NCP–PVP CT data (i.e., muscles, ligaments, and marrow). Liver, spleen, and

kidneys are expected to enhance faster. Eenhance can be seen as a gradient in the

fourth dimension of the multi-phase data and σncp and σpvp are the standard

deviations of noise associated with the NCP and PVP images.

Eenhance Að Þ ¼
X
p∈P

1= 1þ E2
p

� �
with Ep ¼

Ippvp � Ipncp

� �2
2σncpσpvp

: (5.6)

Due to the different enhancement patterns of abdominal organs, the peaks in the

organs’ histograms in Fig. 5.3 are distinguishable between liver/spleen (high peaks

in Fig. 5.3a, b) and kidneys (low peaks in Fig. 5.3a, b). However, the probabilistic

atlas used in Elocation allows separating the liver and spleen and the two kidneys.

Location constraints from the normalized probabilistic atlas (PA) can be seen as

Elocation Að Þ ¼ �
X
p∈P

ln PAp p
��O� �� �

: (5.7)

PAp represents the probability of p to belong to O. PAp was obtained by registering

PA to the test images by a sequence of coarse-to-fine affine registrations.

N-Links

Eboundary assigns penalties for 4D heterogeneity between two voxels p and q with

q ∈ Np a small neighborhood of p, and dist( p, q) the Euclidean distance between

p and q.
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Eboundary Að Þ ¼ μ
X

p;qf g∈Np

w p!qf g þ 1� μð Þ
X

p; qf g∈Np

w q!pf g: (5.8)

The directional penalties in Eboundary are initialized symmetrically as

w p!qf g ¼ w q!pf g

¼
0, if Ap ¼ Aq

exp �
Ipncp � Iqncp

��� ��� � Ippvp � Iqpvp

��� ���
2σncpσpvp

0
@

1
A 1

dist p; qð Þ , otherwise:

8>><
>>:

(5.9)

Then the condition in (5.10) penalizes transitions from dark (less enhanced) to

bright (more enhanced) regions to correct the edges of O, considering image noise.
This is an intrinsic attribute of medical data (e.g., the visceral fluids and fat are

darker than O).

IF Ippvp � Iqpvp

� �
> σpvp OR Ipncp � Iqncp

� �
> σncp

� �

THEN w q!pf g¼1,

ELSE w p!qf g¼1:

(5.10)

Additionally, shape constraints were introduced in the n-links using Parzen

shape (PS) windows [83] estimated from the reference organ shapes from the

28 CT data used for training/modeling. First, shape references were aligned to

the result of the 4D convolution (L ) using scaling, rotation, and the location of the

centroids. An asymmetric normalized dissimilarity measure D (5.13) between two

shapes (si and sj) was used in the shape model to avoid the bias introduced by L,
which is an approximation of the shape of the object/organ s.H is the Heaviside step

function, s refers to the binary segmentation of an organ, and x to the integration

over the image domain.

PS sð Þ ¼
Xn

i¼1
exp �D s; sið Þ=2σ2� �

=n (5.11)

with

σ2 ¼
Xn

i¼1
min
j 6¼i

D sj; si
� �

=n (5.12)

and

D sj; si
� � ¼

ð
H sj
� �� H sið Þ� �2

H sj
� �

dx

�ð
H sj
� �

dx: (5.13)
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The penalties v used in Eshape are initialized symmetrically from PS.

v p!qf g ¼ v q!pf g ¼ 0, if Ap ¼ Aq
q

max PS sð Þp,PS sð Þqð Þ=dist p; qð Þ, otherwise

	
: (5.14)

and

IF PS sð Þ p > PS sð Þqð Þ
THEN v q!pf g¼1,

ELSE v p!qf g¼1:
(5.15)

The directionality of the n-link in (5.15) penalizes transitions from lower to

higher shape probabilities to encourage cuts where there is a strong prior shape

resemblance. The shape energy becomes

Eshape Að Þ ¼ δ
X

p;qf g∈Np

v p!qf gþ 1� δð Þ
X

p;qf g∈Np

v q!pf g: (5.16)

Results

We compared results obtained after the 4D convolution to those achieved using

intensity-based 4D GC (without shape and location constraints) and after including

shape and location correction. We computed the Dice coefficient (symmetric vol-

ume overlap), volume error (absolute volume difference over the volume of the

reference), root mean square error, and average surface distance from comparison

with the manual segmentations. The influence of patient specific (from the patient

CT) versus population (training data) statistics on the accuracy of organ segmenta-

tionwas also analyzed. Non-parametric statistical tests (Mann–Whitney U test) were

performed to assess the significance of segmentation improvement at different steps

of the algorithm using the overlap measure at 95 % confidence interval.

Quantitative results from applying our method to the segmentation of liver,

spleen, and kidneys are shown in Table 5.1 at different stages of the algorithm.

The use of 4D intensity-based graph cuts improved the results significantly over

those of the 4D convolution for all organs (p < 0.05 for all). Employing shape and

location information brought a further significant improvement for the segmentation

of the spleen and liver (p < 0.05 for both). Significantly better segmentations by

using patient-specific data over training data were noted for both kidneys (p < 0.03

for both).

Figure 5.5 presents a typical example of liver, spleen, and kidneys segmentation

from axial projections of the 3D CT. A 3D rendering is shown in Fig. 5.6 along with

the errors between manual and automated segmentations.
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Abdominal Multi-Organ Localization

The automated segmentation of abdominal organs, as shown above, often benefits

from a robust initialization, such as the localization of anatomical landmarks. In this

section, we focus on the localization of five abdominal organs: liver, spleen, left and

right kidneys, and pancreas, as means to initialize segmentation algorithms for

abdominal multi-organs [77]. In particular, this method can help to initialize the

segmentation of certain organs, such as the pancreas, which is less reliably handled

by intensity-based methods.

Our multi-organ localization technique first computes statistical information

from a set of N training images {In}n¼1
N . The organs were manually segmented in

each training image and statistically modeled by building an organ pose distribution

model (OPDM), a probabilistic atlas (PA—see section “Model Initialization”), and

a probabilistic intensity profile (IP). The statistical knowledge was then used to

organ poses in a subject image using a MAP framework [76]. Additionally, we

introduce a minimum volume overlap condition into the MAP formulation, which

models the spatial inter-organ relationship and makes the method more robust to

organ pose variations [77]. The technique is detailed as follows.

Table 5.1 Statistics (mean � std) for the liver, spleen, left kidney, and right kidney segmentation

results from data of 5 mm slice thickness

Organ DC (%) VER (%) RMS (mm) ASD (mm)

1. 4D C (Training data) LKidney 88.7 � 3.7 10.9 � 8.9 2.3 � 0.4 1.1 � 0.3

RKidney 89.6 � 3.4 13.6 � 6.8 2.1 � 0.5 1.1 � 0.3

Spleen 79.9 � 10.1 14.9 � 16.9 4.5 � 1.9 2.7 � 1.7

Liver 89.1 � 3.7 7.3 � 4.6 6.7 � 1.5 3.4 � 1.0

2. 4D GCI (Patient data) LKidney 92.6 � 2.4 5.4 � 6.9 1.8 � 1.2 0.8 � 0.6

RKidney 92.8 � 1.9 5.6 � 5.8 1.8 � 0.8 0.8 � 0.4

Spleen 89.6 � 2.7 11.4 � 6.9 3.0 � 1.4 1.5 � 0.9

Liver 94.0 � 1.2 6.2 � 2.8 4.4 � 2.0 1.8 � 0.7

3. 4D GCSL (Patient data) LKidney 91.9 � 3.0 6.7 � 5.2 1.8 � 0.8 0.8 � 0.3

RKidney 93.2 � 1.5 5.5 � 4.5 1.8 � 0.8 0.8 � 0.4

Spleen 91.8 � 1.5 6.6 � 5.7 2.1 � 0.9 1.0 � 0.5

Liver 95.6 � 0.6 2.4 � 1.1 3.0 � 1.3 1.1 � 0.4

4. 4D GCSL (Training data) LKidney 90.8 � 2.7 12.8 � 7.1 2.6 � 1.1 1.2 � 0.6

RKidney 92.6 � 1.6 9.2 � 4.3 2.0 � 0.7 0.9 � 0.3

Spleen 91.9 � 1.5 6.4 � 5.0 1.9 � 0.6 0.9 � 0.4

Liver 95.5 � 0.7 2.1 � 1.6 3.0 � 1.3 1.2 � 0.5

4D C represents the convolution, GCI is GC based solely on image intensity (including 4D

appearance and enhancement) and 4D GCSL includes additional shape and location constraints

Italicized cells mark the organs where a significant improvement (p < 0.05) was obtained between

consecutive steps of the segmentation algorithm, as indicated by numbers from 1 to 4 in the table.

The metric used to test the significance of results was DC

Columns present the DC Dice coefficient, VER volume estimation error, RMSE root mean square

error, ASD average surface distance
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Fig. 5.5 A typical example of liver (blue), spleen (green), right kidney (yellow), and left kidney

(red) automated segmentation on 2D axial views of the 3D CT data [75]. Images are shown in

cranial to caudal order from top left to bottom right

Fig. 5.6 3D images of the automatically segmented abdominal organs [75]; (a) is a posterior view

and (b) an anterior view. The ground truth for the liver is blue, spleen is green, right kidney is

yellow, left kidney is red. Segmentation errors are overlaid in white on each organ
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The A Posteriori Probability

For a given organO( j), its poseΘ( j ) is defined using nine parameters, which include

the location c ¼ [cx, cy, cz], orientation v ¼ [vx, vy, vz] (Euler angles), and scale

s ¼ [sx, sy, sz]. For a given abdominal subject CT image I in which the organs are to
be localized, the a posteriori probability of the pose of O( j) is

p Θ jð Þ��I,O jð Þ
� �

/ p I
��Θ jð Þ,O jð Þ

� �
p Θ jð Þ��O jð Þ
� �

, (5.17)

where the prior p(Θ( j)|O( j)) and the conditional probability p(I|Θ( j), O( j)) are

computed using the statistical knowledge from training data sets after abdomen

normalization based on anatomical landmarks extracted from bone segmentation

[76]. For this, the vertebrae and the ribs are automatically segmented and identified

from the CT scans using the method in [33]. A bounding box is then defined around

the abdominal cavity. One standard image J0 was chosen from the training images,

and all the other images are then normalized to J0 by aligning the abdominal

bounding boxes [76].

The prior p(Θ( j)|O( j))or OPDMmodels the organ pose distribution in the normal-

ized abdomen. In our application, the OPDM of each organ was built independently.

The pose of organ O( j) in the standard image J0 was defined as the reference pose

ΘðjÞ
0 ¼ [c

ðjÞ
0 ,v

ðjÞ
0 ,s

ðjÞ
0 ] with c

ðjÞ
0 being the center of gravity, v

ðjÞ
0 ¼ [0,0,0] representing

the orientations in the three dimensions, and s
ðjÞ
0 ¼ [1,1,1]being the three scales. The

poses of O( j) in every other training image are computed by registering the manual

segmentation of O( j) of the image to that of J0 using a nine-parameter linear

transformation. The pose of O( j) in the nth image is denoted as ΘðjÞ
n ¼ [c

ðjÞ
n ,v

ðjÞ
n ,

s
ðjÞ
n ]. The nine pose parameters are assumed independently distributed and the

OPDM can be estimated using Parzen windows [83]

p Θ jð Þ��O jð Þ
� �

¼
Y9
k¼1

p θ jð Þ
k

��O jð Þ
� �

¼
Y9
k¼1

1

N

XN�1

n¼0

1ffiffiffiffiffi
2π

p
h

jð Þ
k

e
�

θ Jð Þ
k

�θ
jð Þ

k,n

� �2

2h
jð Þ

k
2

(5.18)

where θðjÞk for k ¼ 1, . . ., 9 are the nine pose parameters, θðjÞk;n is the pose parameter

value of organ O( j) computed from the nth training image, h
ðjÞ
k is the bandwidth and

is estimated using the standard deviation of the sample data θðjÞk;n for n ¼ 0, . . . ,

N � 1.
The conditional probability p(I|Θ( j), O( j)) for the given subject image I uses PA

and IP, which are computed for each organ from the training data as shown in the

previous section. The transformed PA, denoted as p(x|Θ( j), O( j)), models the organ

location and represents the probability that a point x belongs to the organ O( j ) for a
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given pose parameter Θ( j). The IP, denoted as p(ujO( j )), describes the probability

that any voxel in O( j) takes an intensity value of u. It can be shown that

p I
��Θ jð Þ,Oj

� �
¼ exp

XM
m¼1

h um
��Θ jð Þ,O jð Þ

� �
logp

�
um
��O jð Þ

 !
: (5.19)

with h(umjΘ( j ), O( j )) being the conditional histogram

h um
��Θ jð Þ,O jð Þ

� �
¼
X
xi∈V

f um; xið Þp xi
��Θ jð Þ,O jð Þ

� �
,

with f um; xið Þ ¼ 1, if u xið Þ ¼ um
0, otherwise

	
:

(5.20)

The exponent in (5.19) is the negative cross entropy between the two probability
functions h(u|Θ( j), O( j )) and p(u|O( j)), and is denoted as H. Thus, the logarithm of

the a posteriori probability can be written as:

CAP O jð Þ
� �

¼ �H h u
��Θ jð Þ,O jð Þ

� �
, p u

��Θ jð Þ,O jð Þ
� �� �

þ
X9
k¼1

logp θ jð Þ
k

��O jð Þ
� �

(5.21)

The Minimum Volume Overlap Condition

Experiments on non-contrast CT images [76] showed that the maximization CAP

failed to localize the kidneys in some cases. The reason is that the kidneys are

located close to neighboring organs (liver and spleen), and they have similar

intensity profiles in the non-contrast images. Therefore the second term in (5.21),

which comes from OPDM, was not sufficient to guarantee that the MAP converges

to the correct pose in some cases. As a result, the localized kidneys overlapped with

the liver and spleen.

To prevent the localized organs from overlapping with each other, we explore the

inter-organ spatial relationships. For the given pose parameters Θ( j) of all organs,

the normalized volume overlap of organ O( j) with all other organs is defined as

C
jð Þ

VO ¼

X
i6¼j

X
x∈V

p x
��Θ ið Þ,O ið Þ

� �
p x

��Θ jð Þ,O jð Þ
� �h i

X
x∈V

p x
��O jð Þ

� � , (5.22)

The denominator in (5.22) is the total volume of O( j) and is computed by adding

up the PA at points x across the image volume V. By incorporating inter-organ

relations in our method, the localization of abdominal organs is performed
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dependently instead of independently. Thus, we define a new cost function by

combining the minimum volume overlap term in (5.22) with the logarithm of the

a posteriori probability function in (5.21),

C ¼
X
j

C
jð Þ

AP � λ
X
j

C
jð Þ

VO, (5.23)

where λ is a nonnegative weighting parameter.

For each organ, the maximization of (5.23) is performed using the steepest

descent method [84] in an iterative fashion. A multi-resolution strategy is adopted

for efficient computation. At each iteration, the poses of the five organs are com-

puted in sequential order: liver, spleen, left kidney, right kidney, and pancreas. This

order is adopted because it was found from experiments that liver and spleen are

more likely to be successfully localized because they have relatively larger sizes, so

that their intermediate localization can be used to better constrain the localization of

kidneys and pancreas through the minimum volume overlap term. After the estima-

tion of organ poses, the probabilistic atlas of each organ is transformed based on the

computed pose and placed in the image volume to localize the organ.

Data and Analysis

We applied the method to 17 patients’ contrast-enhanced CT data. The images were

collected on four types of CT scanners from three manufacturers with 1 mm slice

thickness. The five organs of interest were manually segmented from all images by

a medical student supervised by a radiologist to create the ground truth. The

symmetric volume overlap between the estimated organs and manual segmenta-

tions was measured using the Dice coefficient. In all the experiments, the weighting

parameter λ was set to 2.

To validate the method to localize five abdominal organs, the liver, spleen, left

and right kidneys, and pancreas, 17 experiments were performed using a leave-one-

out strategy. In each experiment, one dataset was picked as the subject image, and

the remaining 16 datasets served as the training data. After localization, the

estimated organ was then compared with the ground truth.

Results

An example of pose distribution is shown in Fig. 5.7 for the liver. Figure 5.8 shows

the localization results on a typical data set using the minimum overlap (MO)

method. For comparison, we repeated the experiments using the independent

localization (IL) approach in [76] in which all the organs were independently

localized without considering the inter-organ relations. The results of both

approaches are presented in Table 5.2. The two methods produced similar results
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Fig. 5.7 The pose distribution functions of liver [76]. From top to bottom are the centroid,

orientation, and scaling, respectively; the x, y, and z components are shown from left to right

Fig. 5.8 The organ localization results, from left to right, on coronal, axial, and sagittal views of a
contrast-enhanced data set [77]. The liver is shown in blue, the spleen in green, the left kidney in

purple, the right kidney in orange, and the pancreas in yellow

Table 5.2 The average Dice coefficients between the organ localization results and manual

segmentation

Method Liver Spleen Left kidney Right kidney Pancreas

MO Mean 0.80 0.65 0.75 0.79 0.42

Std 0.03 0.06 0.05 0.03 0.15

IL Mean 0.80 0.55 0.74 0.75 0.38

Std 0.03 0.05 0.06 0.13 0.17

p-value 0.06 0.63 0.03 0.02 0.33

The p-values of the Wilcoxon sign rank test comparing the results of the minimum overlap

(MO) and independent localization (IL) methods are presented
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on the liver, and the MO method performed quantitatively better on all the other

four organs. The non-parametric Wilcoxon sign rank test showed significant

improvements for the localization of kidneys (p < 0.05). Qualitatively, all the

five organs in all 17 experiments were successfully localized using the MO method.

Using the IL approach, the right kidney was incorrectly localized on one data set

where a large part of the right kidney was localized inside the liver, which resulted

in a Dice coefficient of 0.24, as shown in Fig. 5.9. Note that these results do not

reflect the segmentation of organs, but the enhanced localization using statistical

models of data and inter-organ relationships.

Table 5.3 shows the localization error for the five abdominal organs using the

MO method. The technique performed best on the left and right kidneys, which had

an average location error less than 3 mm. The location error of the liver, a much

larger organ with variable shape, was less than 5 mm. The pancreas, a thin and long

organ with very large shape variability across subjects, had the largest localization

error, especially in the y-axis.

Fig. 5.9 Illustration of the localization results of the right kidney on one dataset in which the

minimum overlap (MO) method succeeded and the independent localization (IL) method failed

[77]. The results are shown on several slices from the 3D image volume. The results of the MO

method are shown in purple, those of the IL method in orange, while the overlapping results from
the two methods are presented in yellow

126 M.G. Linguraru and R.M. Summers



Liver Tumor Segmentation

The purpose of this section is to change the scale of the analysis from multi-organ to

organ and at even finer scale, inside the organ for the detection and segmentation of

tumors. From organ detection and localization to organ segmentation and analysis

and tumor detection, the combination of the techniques presented in this chapter

illustrates the path toward the integrated and comprehensive analysis of abdominal

radiological data via CAD. Our exemplification is done through the analysis of the

liver, arguably the abdominal organ that received the highest level of interest from

the medical image analysis community.

Data

Fourteen abdominal CT scans were collected from patients with prostate cancer at

single/multiple time points on five different scanners with 5 mm slice thickness.

Images were acquired with contrast at varying enhancement times, from early-

arterial to late portal venous. Additional to the inconsistent enhancement, cases

with imaging and movement artifacts were present in the database, as in the typical

clinical scenario. Seventy-nine tumors larger than 10.0 mm in diameter were

manually segmented in the 14 cases with liver cancer. Tumor size varied from

10.0 to 206.4 mm in the largest diameter [79].

Liver masks were obtained automatically using a method such as the one

described in section “Abdominal Multi-Organ Segmentation” and [75]. Because

the cases in the data exhibited artifacts and large abnormalities, a liver segmenta-

tion refinement was subsequently performed [78, 85]. The refinement was based on

the robust parameterization of 3D shapes combined with an invariant shape feature

to allow identifying organs (or parts of organs) from a training database that are

similar to a given patient’s data. This approach corrected the otherwise incomplete

liver segmentations.

Table 5.3 The errors (mean and standard deviation) of organ location using the minimum overlap

(MO) method

Centroid (mm) Liver Spleen Left kidney Right kidney Pancreas

x Mean 4.77 5.30 0.83 1.22 8.72

Std 4.96 8.72 0.61 0.98 7.66

y Mean 3.96 5.32 1.02 1.75 7.86

Std 3.37 3.56 0.63 1.56 14.3

z Mean 3.17 4.22 2.69 2.36 6.62

Std 2.18 3.04 1.60 1.77 6.47
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Graph Cuts for Tumor Segmentation

Once the liver was segmented, a graph-cut approach was applied to find the hepatic

tumors. In the basic form, graph cuts [86] suffer from the shrinking bias problem,

particularly for segmenting small structures, such as certain types of tumors. Graph

cuts were shown to improve the segmentation of abdominal organs using training

shapes [79], but tumors vary in size and shape between cases. However, liver

tumors are generally round; hence, instead of using training tumor shapes, we

define a roundness constraint.

Seed points for tumors were generated automatically by finding adaptive thresh-

olds in the data. Additionally, the object seed points were also constrained to have

nonzero Hessian-based shape response, as described below. Given a binary vector

A where each element is associated with a voxel in the input image and each

element’s value is a binary label representing the object to be segmented or the

background, the cost function of the graph E in our application can be written as

E Að Þ ¼ Edata Að Þ þ Eenhance Að Þ þ Eshape Að Þ þ Eboundary Að Þ, (5.24)

More details on Edata, Eboundary, and Eenhance can be found in section “Abdominal

Multi-Organ Segmentation” of this chapter. The new term in the formulation is

Eshape. Eshape is a Hessian-based shape condition to emphasize rounder tumors at

multiple scales σ [87]. The eigenvalues of the Hessian (λ1 > λ2 > λ3) at point p can
be used to define unique shape constraints to optimize the segmentation of tumors.

The following energy term was incorporated in the graph-cut definition:

Eshape ¼ �lnmax
σ

wð Þ;
with λ3 > 0; and w ¼ e� λ1=λ3�1ð Þ (5.25)

To account for the slight undersegmentation of tumors, a classic geodesic active

contour [88] was employed to refine the segmentation.

Feature Selection and Classification

For each tumor candidate, 157 features were automatically computed to character-

ize the detection. They include the linear and volumetric size, roundness and

elongation measures, intensity, the eigenvalues of the Hessian matrix, energy,

entropy, inertia, correlation, cluster shade, cluster prominence, Haralick’s correla-

tion, inverse difference moment and statistics of these measures (see Table 5.4).

Due to the large number of features used for classification, feature selection was

used to retain the optimal combination of features for the separation of TP from FP

detections.
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By employing dimensionality reduction algorithms, we can extract useful

information and build compact representations from the original data. We

adopted the minimal-redundancy-maximal-relevance feature selection method

[90]. In minimal-redundancy-maximal-relevance feature selection, the optimiza-

tion criteria are affected by two factors: one is relevance between features and

target classes and one is redundancy between features. Peng et al. [90] proposed a

heuristic framework to minimize redundancy and maximize relevance at the

same time.

Table 5.4 One hundred and fifty-seven automated tumor features were computed for the tumor

candidates

3D Features Descriptor Explanation

Tumor volume Size Volumetric size

Tumor diameter Size Linear size

Tumor size region ratio Shape Ratio of the size of the object bounding

box and the real size of the object

Tumor binary elongation Shape Ratio of the largest principal moment

by the smallest principal moment

Tumor roundness Shape Sphericity

Tumor Hessian eigenvalues Shape Local extrema and stationary points

Tumor blobness measures Shape Roundness from the Hessian eigenvalues

Tumor intensitya Enhancement Enhancement of tumor

Edge intensitya Enhancement Enhancement of healthy parenchyma

Tumor cluster prominencea Texture Skewness/asymmetry

Edge cluster prominencea Texture Skewness/asymmetry

Tumor cluster shadea Texture Skewness/asymmetry

Edge cluster shadea Texture Skewness/asymmetry

Tumor correlationa Texture Correlation/complexity

Edge correlationa Texture Correlation/complexity

Tumor energya Texture Uniformity

Edge energya Texture Uniformity

Tumor entropya Texture Randomness

Edge entropya Texture Randomness

Tumor Haralick correlationa Texture Linear dependence between the voxels

relative to each other

Edge Haralick correlationa Texture Linear dependence between the voxels

relative to each other

Tumor inertiaa Texture Local heterogeneity

Edge inertiaa Texture Local heterogeneity

Tumor inverse difference momenta Texture Local homogeneity

Edge inverse difference momenta Texture Local homogeneity

Edge refers to the two pixel-wide band of liver tissue surrounding the tumor

For definitions of the texture features computed from the co-occurrence matrix, please refer to [89]
aThe min, max, mean, standard deviation, variance, median, kurtosis and skewness were computed

for the feature
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Receiver operating characteristic curves for the hepatic tumor detection were

generated with and without feature selection to record the effects of classification

and feature selection on the reduction of false detections. The performances of the

two classifiers (with and without feature selection) were compared using ROCKIT

[91] to assess the statistical significance of differences between receiver operating

characteristic curves and the areas under the curve (AUC).

The classification of detection into true and false positives is completed by

support vector machines (SVM). SVM are a set of kernel-based supervised learning

methods used for classification and regression [92] that minimize the empirical

classification error and maximize the geometric margin simultaneously on a train-

ing set, which leads to a high generalization ability on the test samples. For training

and testing purposes, a leave-one-patient-out strategy was employed.

Results

All the hepatic tumors were correctly identified (100 % TP) with 2.3 FP/case. FP

occurred generally near the porta hepatis and coronary ligaments, where there is

lack of enhancement (opacity) and high curvatures (roundness). The overlap

between the manually and automatically segmented tumors was 74.1 % with a

volume estimation error of 12.4 % and average surface distance of 1.6 mm. The

results of the detection and segmentation of hepatic tumors are presented in

Table 5.5. Figure 5.10 shows examples of tumor detection and segmentation from

two patients, each with two time points.

The SVM classifier was employed after extracting 157 features for each true and

false tumor candidate. Without feature selection, the AUC of the classifier was 0.62.

The maximum AUC of 0.85 was achieved for a combination of eight tumor

candidate features. Figure 5.11 shows the free-response receiver operating charac-

teristic curves for tumor detection with and without feature selection. The eight

selected features were a combination of statistics and texture inside and outside the

tumor candidates. Namely, the selected tumor features were: the median intensity,

roundness, mean λ1, mean λ3, and minimum value of the Haralick correlation.

Additionally, the following features computed around the edge of the tumor were

retained for classification: the median of the energy, kurtosis, and variance of the

inverse difference moment.

Table 5.5 True Positives (TP) fraction and false positives (FP)/case are reported for the detection

of hepatic tumors

Data TP (%) FP/case DC (%) JI (%) VER (%) ASD (mm)

79 tumors (n ¼ 14) 100.0 2.3 74.1 � 16.9 70.9 � 17.7 12.4 � 12.0 1.6 � 1.5

Automated and manual segmentations of tumors were compared and we present DC Dice

Coefficient, JI Jaccard index, VER volume errors, ASD average surface distances
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Fig. 5.10 Examples of hepatic tumor segmentation [75]: manual (blue), automated (yellow), and
their overlaps in green overlaid on axial views of 3D CT of two patients (a and b), each at two time

points (left and right). False positives from the automated segmentation are displayed in red. The
two cases also illustrate the difference in the enhancement protocols: in (a) well-enhanced hepatic

veins are visible at both time points; in (b) only the arteries are enhanced in the liver

Fig. 5.11 Comparative free-response receiver operating characteristic curves using eight (SVM

8) and all 157 (SVM 157) features for classification [79]. The difference between the two

classifiers was significant (p < 0.001)
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The SVM classifier with eight features achieved a sensitivity of 100 % TP at 2.3

FP/case (or 94 % TP at 1.6 FP/case). There was a significant difference (p < 0.001)

between the performances of the SVM classifiers with and without feature

selection. Feature selection resulted in 32 % TP increase at 1.6 FP/case, as shown

in Fig. 5.11.

Discussion

Medical image analysis benefits from models of anatomy and physiology. In

CT-based clinical abdominal diagnosis, the concomitant analysis of multiple organs

and information from contrast enhancement offer additional information to clini-

cians. In this chapter, we discussed our recent methods that incorporate anatomical

and physiological priors into multi-organ CAD. From the localization, detection

and segmentation of multiple organs in the abdomen, we also presented a technique

for the detection and segmentation of tumors inside the organs (i.e., the liver) for a

multi-scale comprehensive abdominal diagnosis.

Livers, spleens, and kidneys were segmented from multi-phase clinical data

following the typical acquisition protocol of abdominal CT images. The cuts in

the proposed 4D graph were based on globally minimizing an energy that included

enhancement, location, and shape constraints. The method avoided the inclusion of

heart segments in the segmentation of liver, but had the tendency to underestimate

organ volumes, in particular that of the spleen. Parts of the inferior vena cava may

be erroneously segmented in the mid-cephalocaudal liver region, especially when

contrast enhancement is low, and represented one of the sources of error in the liver

segmentation. Partial volume effects, small inter-phase registration errors and the

estimation of object and background distributions may have also contributed to the

undersegmentation.

For the robust initialization of segmentation and modeling techniques, we

additionally presented a method for automated multi-organ localization from

abdominal contrast-enhanced CT images. The algorithm found the locations, ori-

entations, and scales of five abdominal organs (liver, spleen, pancreas, and left and

right kidneys) by maximizing the a posteriori probabilities of organ poses. Addi-

tionally, the technique used a minimum volume overlap constraint to model inter-

organ relations.

Once the organs were segmented (i.e., the liver) we applied a technique for

tumor detection and segmentation based on graphs constrained by shape and

enhancement models. This allowed to segment tumors of variable sizes with a

reduced number of false positives. Additionally, we employed an extensive set of

features computed for each tumor candidate (inside and outside the tumor) and

demonstrated that through feature selection and classification using machine learn-

ing the number of false detections was significantly reduced. A clinical application

of liver segmentation was proposed via the definition of normative values for
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detection hepatomegaly [93]. For examples of clinical studies of kidney tumors,

please refer to [94, 95].

For a flavor of future developments, a number of notable recent advances in the

field of computational anatomy in the abdomen and analysis of multi-organs should

be mentioned. In [24, 96], a method for the automated analysis of organ shape

variability in the abdomen was presented, based on a combination of statistical

atlases, principal factor analysis, and a vector field clustering technique. The evalu-

ation of deformation fields in [96] showed strong correlations with anatomical

landmarks and known mechanical deformations in the abdomen. The automated

hierarchical partitioning of organs identified relevant anatomical components that

represent potentially important constraints for abdominal diagnosis and modeling

and that may be used as a complement to multi-level statistical shape models. Also

using hierarchical analysis, to explicitly incorporate the spatial inter-relations among

abdominal organs, the method in [97] represented these inter-relations based on

canonical correlation analysis in conjunction with the construction and utilization

of a statistical atlas. Finally, in [98] a method for modeling abdominal organ shifts

due to surgical procedures was introduced. This technique that accounts for pathol-

ogy also detects the occurrence of missing organs. The resulting missing organ

detection can be integrated within the multi-organ segmentation scheme to improve

its accuracy for targeted diseased populations.

As the trend in multi-organ analysis shows, future work will include more organs

for a holistic segmentation of radiological data. Additionally, the inclusion of data

with a variety of pathologies in the abdomen and outside will allow developing

segmentation techniques robust to physiological and clinical variability.

Conclusion

With the evolution of medical image analysis, more complex models of anatomy

and physiology are explored to enhance the quality of CAD. Location, orientation,

size, shape, and enhancement are only some of the clinical descriptors used in

diagnosis and interventions. Their translation into computerized models of the

human body has been beneficial for the accuracy of image analysis techniques

and the intuitive clinical translation of machine-based methods. To enhance the

clinical utility of CAD, multi-organ models of anatomy are particularly useful, as

clinicians analyze concomitantly all the organs shown in a particular type of

radiological image. Multi-organ analysis promises to support more investigative

diagnosis tools for complex multi-focal multi-disease clinical scenarios.
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Chapter 6

Liver Volumetry in MRI by Using Fast

Marching Algorithm Coupled with 3D

Geodesic Active Contour Segmentation

Hieu Trung Huynh, Ibrahim Karademir, Aytekin Oto, and Kenji Suzuki

Abstract In this chapter, we present an accurate automated 3D liver segmentation

scheme for measuring liver volumes in MR images. Our scheme consisted of five

steps. First, an anisotropic diffusion smoothing filter was applied to T1-weighted

MR images of the liver in the portal-venous phase to reduce noise while preserving

the liver boundaries. An edge enhancer and a nonlinear gray-scale converter were

applied to enhance the liver boundary. This boundary-enhanced image was used as

a speed function for a 3D fast marching algorithm to generate an initial surface that

roughly approximated the liver shape. A 3D geodesic active contour segmentation

algorithm refined the initial surface so as to more precisely determine the liver

boundary. The liver volume was calculated based on the refined liver surface. The

MR liver volumetry based on our automated scheme agreed excellently with “gold-

standard” manual volumetry (intra-class correlation coefficient was 0.98) and

required substantially less completion time (our processing time of 1 vs. 24min/case

in manual segmentation).

Introduction

Medical and surgical advancements have brought the global success of liver

transplantation with the increasing survival rates after transplantation in the past

decades [1–3]. One of the important assessments contributing to the success of a
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transplantation procedure is the estimation for total and segmental liver volumes. It

is a major factor to predict the safe outcome for both donor and recipient.

A minimum of 40 % of the standard liver mass is required by recipient while

30–40 % of the original volume is remained for donor to survive [4]. Hence, an

accurate estimation of liver volumes is necessary for planning liver transplantation

[5, 6]. Noninvasive measurement methods have been revealed by the advanced

imaging technologies such as CT and MRI. Manual tracing of the liver on CT

images is a current gold-standard method. Although the manual tracing method

can obtain accurate results, it is subjective, tedious, and time-consuming. It takes

20–48 min to obtain the liver volume for one patient [7, 8]. In addition, the relatively

large intraobserver and interobserver variations still occur in the manual method. To

address this issue, the automated liver segmentation has been developed with image

analysis techniques, and it has become an important research topic.

Several approaches to computerized liver segmentation on CT images have been

published, including image-processing techniques such as thresholding, histogram

analysis, morphological operations, and their combinations [9, 10]. A comparison

between the semiautomatic liver volumetry and manual method in the living liver

donors was presented by Hermoye et al. [11]. An automated scheme based on the

combination of thresholding, feature analysis, and region growing was proposed by

Nakayama et al. [8]. In comparison with manual tracing, it achieved a correlation

coefficient of 0.883. Okada et al. [12] developed an automated scheme based on a

probabilistic atlas and a statistical shape model, its performance was evaluated with

eight cases. Selver et al. [13] developed a three-stage automated liver segmentation

scheme consisting of preprocessing for excluding neighboring structures, k-means

clustering, multilayer perceptron for classification, and postprocessing for

removing mis-segmented objects and smoothing liver contours. The scheme was

evaluated on 20 cases. An iterative graph-cut active shape model was developed by

Chen and Bagci [14]. Their scheme combined the statistical shape information

embodied in the active shape model with the globally optimal delineation capacity

of the graph-cut method. Suzuki et al. [7, 15] developed a computer-aided liver

volumetry scheme by means of geodesic active contour segmentation coupled with

level set algorithms. They compared their automated scheme with manual segmen-

tation and commercially available interactive software. Their scheme achieved the

performance comparable to manual segmentation, while reducing the time required

for volumetry by a factor of approximately 70.

In comparison with CT-based schemes, there are fewer publications for an

automated liver segmentation scheme on MR images in spite of no risk for ionizing

radiation, probably because it is believed that MR liver volumetry has more

variations and more difficult than CT. Karlo et al. [16] compared the CT- and

MRI-based volumetry of the resected liver specimens with intraoperative volume

and weight measurements to calculate conversion factors. A semiautomated dual-

space clustering segmentation method was proposed by Farraher et al. [17]. Their

semiautomated method required manual drawing of a small region-of-interest

(ROI) on the liver first; and then it iteratively evaluated temporal liver segmenta-

tions with the repeated adjustment of parameters to obtain the final liver
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segmentation result. Rusko and Bekes [18] proposed a partitioned probabilistic

model to represent the liver. In this model, the liver was partitioned into multiple

regions, and the different intensity statistical models were applied to these regions.

The scheme was tested on eight cases. Gloger et al. [19] developed a three-step

segmentation method based on a region-growing approach, linear discriminant

analysis, and probability maps. Their method was evaluated with 20 normal cases

and 10 fat cases. It achieved a true-positive volume error (TPVE) of 8.3 % with an

average execution time of 11.2 min for each normal case, and a TPVE of 11.8 %

with an average execution time of 15.4 min for each fat case.

Although the above studies showed a promise, there is still room for developing

the computerized liver segmentation in MRI to make it a routine clinical use. In this

chapter, we present an automated liver segmentation scheme in MRI based on

geodesic active contour model and fast marching algorithm. The performance of

our scheme was evaluated on 23 cases, and the comparison between the comput-

erized volumetry and gold-standard manual volumetry was performed.

Materials and Methods

Liver MRI Datasets

In this study, 23 patients were scanned in the supine position with a 1.5T MRI

scanners (Signa HDx/HDxt, GE Medical Systems, Milwaukee, WI; and Achieva,

Philips Medical Systems, Cleveland, OH) at the University of Chicago Medical

Center. Intravenous gadolinium contrast agent (8–20 mL; mean: 15.3 � 4.2) was

administrated. The post-contrast MRIs were obtained by using the T1-weighted

liver acquisition with volume acceleration (LAVA) or T1-weighted high-resolution

isotropic volume examination (THRIVE) sequence. The flip angle of 10� was used
in context with TR and TE ranged from 3.48 to 3.92 ms and from 1.64 to 1.84 ms,

respectively. The scanning parameters included collimation of 5 mm (for the GE

system) or 4 mm (for the Philips system) and reconstruction intervals of 2.5 mm (for

the GE system) or 2 mm (for the Philips system). Each MR slice had the matrix size

of 256 � 256 pixels with an in-plane pixel size ranged from 1.17 to 1.72 mm. The

23 cases in our database had liver diseases.

The manual contours were traced carefully by a broad-certificated abdominal

radiologist on each slice containing the liver. The number of slices in each case

ranged from 88 to 120 (average: 97.9). The liver volume was calculated by

multiplying the areas of the manually traced regions in each slice by the recon-

struction interval. Note that the collimation was different from the reconstruction

interval and that consecutive slices overlapped. The total liver volume of each case

was obtained from the summation of volumes in all slices. We also recorded the

time required for the completion of the manual contour tracing. The performance of

our computerized liver extraction scheme was evaluated by using manual liver

volumes as the “gold standard.”
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Computer-Based Measurement Scheme for MR Liver Volumes

A computerized scheme employing level set algorithms coupled with geodesic

active contour segmentation was proposed by our group for CT liver extraction.

In this chapter, we present a scheme for the automated liver segmentation on MR

images based on the knowledge and techniques acquired in the development of

our CT liver extraction scheme. Our MR liver extraction scheme applied to the

portal-venous-phase images in T1-weighted (T1w) sequences consists of five

steps, as shown in Fig. 6.1. First, a 3D MR volume I(x,y,z) consisting of portal-

venous-phase images must be processed to reduce noise and enhance liver

structures. This was accomplished by using an anisotropic diffusion algorithm

(which is also called nonuniform or variable conductance diffusion proposed by

Perona and Malik [20]). The algorithm based on the modified curvature diffusion

equation is given by

IN ¼ ∂I
∂t

¼ ∇Ij j∇ � c ∇Ij jð Þ ∇I

∇Ij j , (6.1)

where c(∙) is a fuzzy cutoff function that reduces conductance at areas of large j∇Ij.
It can be any of a number of functions. The literature suggested

3D liver MR image

Preprocessing:
• Removing noise by an anisotropic diffusion filter
• Enhancing the liver boundary by a scale-specific gradient 

magnitude filter
• Producing the edge potential image by a nonlinear gray-

scale converter

Estimating the rough shape of the liver by a fast-marching 
algorithm

Refining the liver boundary by geodesic active contour 
segmentation with a level-set algorithm

Estimating liver volume

Fig. 6.1 Overview of our

computerized MR liver

volumetry scheme
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c ∇Ið Þ ¼ e
� ∇Ij j2

2κ2 (6.2)

to be effective. Note that this term introduces a free parameter κ, the diffusion

coefficient, which controls the sensitivity of edge contrast. The anisotropic diffu-

sion algorithm smoothes noise in the image while preserving the major liver

structures such as major vessels and the liver boundaries. The noise-reduced

image was then passed through a Gaussian gradient magnitude filter to enhance

the boundaries. This filter is given by

IG ¼ IN∗
1

2πð Þ1=2σ
exp � x2 þ y2 þ z2

2σ2

� �
, (6.3)

and

IM ¼ IGj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂IG
∂x

� �2
þ ∂IG

∂y

� �2
þ ∂IG

∂z

� �2s
, (6.4)

where * denotes a convolution operator, σ is the standard deviation of the Gaussian

filter controlling the scale of the edges to be enhanced. It was set to 0.5 in our

scheme. The enhanced image was used to produce the edge potential image from

the gradient magnitude image by using a sigmoid function defined by

f xð Þ ¼ 1

1þ e� x�βð Þ=α , (6.5)

where α and β are parameters specifying the range and center, respectively, of

intensity to be enhanced. They were set to �2.5 and 8.0 in our scheme. The

normalized output image of the sigmoid gray-scale converter was used as a speed

function for level set segmentation and fast marching algorithms.

In the following step, the shape of the liver was estimated roughly by a fast

marching algorithm [21, 22]. This algorithm was initially proposed as a

fast numerical solution of the Eikonal equation:

∇Tj jF ¼ 1, (6.6)

where F is a speed function and T is an arrival time function. The algorithm requires

five to eight initial seed points. From the initial location (T ¼ 0), the algorithm

propagates the information in one way from the smaller values of T to larger values

based on the first order scheme. This algorithm consists of two main processes.

First, all grid points generated from the entire region were categorized into three

categories: seed points corresponding to the initial location were categorized into

Known; the neighbors of Known points were categorized into Trial with the

computed arrival time; and all other points were categorized into Far that the
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arrival time was set to infinity. An iterative process served points in the Trial and
Far list. The Trial point p with the smallest T value was chosen and moved to the

Known. The arrival time of neighbors of p was recomputed based on the first order

scheme, and the Far points that are neighbors of p were moved to the Trial. This
iterative process was terminated when the maximum number of iterations was

reached. The salient point of this algorithm is to use a heap data structure that can

locate points with the smallest T value rapidly. The output of the fast marching

algorithm is a time-crossing map indicating the time traveling to each point. It

forms a rough shape of the liver in MR images.

A 3D geodesic active contour algorithm [23] was employed to refine the initial

surface determined by the time-crossing map in order to determine the liver

boundaries more precisely. This algorithm is based on the relation between active

contours and the computation of geodesic or minimal distance curves, which allows

boundary detection with large variations of gradients, including gaps. Let ψ(p, t) be
a level set function with the initial surface corresponding to ψ(p, t) ¼ 0 (Fig. 6.2).

This level set function is then evolved to fit the form of liver following the partial

differential equation:

dψ

dt
¼ �αA pð Þ �∇ψ � βF pð Þ ∇ψj j þ γZ pð Þκ ∇ψj j, (6.7)

where A(∙) is an advection vector function, F(∙) is a propagation (or expansion)

function, and Z(∙) is a spatial modifier function for the mean curvature κ. The scalar
constants α, β, and γ allow trading off among three terms: advection, propagation,

and curvature. The algorithm requires an initial zero level set containing an initial

surface that roughly approximates the liver boundaries. The initial surface was

propagated with speed and direction (outwards, inwards) controlled by the propa-

gation function. The spatial modifier term controls the smoothness of the surface

where regions of high curvature are smoothed out. The level set evolution was

terminated when the convergence criterion or the maximum number of iterations

Zero level set ψ(p, t)=0

Interior, ψ(p, t)>0

Exterior, ψ(p, t)<0

Fig. 6.2 Concept of level set method

146 H.T. Huynh et al.



was reached. The convergence criterion was defined in terms of the root mean

squared (RMS) change in the level set function. The evolution was considered to be

converged if the RMS change is below a predefined threshold. The liver regions

extracted by the geodesic active contour algorithm were used to calculate the liver

volume. The intermediate results of our scheme for an example case are illustrated

in Fig. 6.3. The original MR image in Fig. 6.3a was passed into the anisotropic

diffusion filter to reduce noise while preserving the major liver structures such as

the portal vein and liver boundary, as shown in Fig. 6.3b. The noise-reduced image

was then passed through a Gaussian gradient magnitude filter to enhance the

boundaries, as shown in Fig. 6.3c. The edge potential image generated from the

enhanced image using the sigmoid gray-scale converter was applied to the fast

Fig. 6.3 Examples of the resulting images at each step in our automated volumetry scheme. (a)

Original axial MR image of the liver. (b) 3D anisotropic diffusion noise reduction. (c) 3D gradient

magnitude filter. (d) 3D fast marching algorithm. Time-crossing map indicates the traveling time

to each voxel. The majority of vessels inside the liver are excluded at this stage. (e) 3D geodesic

active contour segmentation. (f) Corresponding computer-based liver segmentation (red contour)
and “gold-standard” manual liver segmentation (blue contour)
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marching algorithm to generate the initial contour, as shown in Fig. 6.3d. The liver

was extracted more precisely by using the geodesic active contour algorithm, as

shown in Fig. 6.3e. Corresponding between computer-based liver segmentation (red

contour) and “gold-standard” manual liver segmentation (blue contour) is shown in

Fig. 6.3f. Liver volume was computed using the extracted regions.

Evaluation Criteria

The liver volumes obtained by using our computerized schemewere compared to the

“gold-standard”manual volumes determined by the radiologist. The definitions used

in evaluation of a computerized liver segmentation compared to the gold-standard

manual liver segmentation are shown in Fig. 6.4. True-positive (TP) segmentation

was defined as an overlapping region (gray color) between the computerized

liver segmentation (indicated by a red contour), C, and a gold-standard manual

segmentation (indicated by a blue contour), G; i.e., TP ¼ G \ C. False-positive
(FP) segmentation (red region) was defined by FP ¼ C � TP. False-negative (FN)
segmentation (blue region) was defined by FN ¼ G � TP. True-negative (TN)
segmentation was defined by TN ¼ I � G [ C, where I is the entire image. We

define accuracy, specificity, and sensitivity of the segmentation as

Accuracy ¼ TPj j þ TNj j
Ij j , (6.8)

Specificity ¼ TNj j= TNj j þ FPj jð Þ, (6.9)

Sensitivity ¼ TPj j= TPj j þ FNj jð Þ: (6.10)

The Dice measurement representing the fraction of the overlapping volume and

the volume of two segmentation methods is given by

Fig. 6.4 Definitions of

true-positive (TP) (gray
region), false-positive
(FP) (red region), and false-
negative (FN) segmentation

(blue region) in evaluation

of computerized liver

segmentation (red contour)
compared to “gold-

standard” manual

segmentation (blue contour)
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Dice ¼ 2 TPj j
2 TPj j þ FPj j þ FNj j : (6.11)

We also determine the percentage volume error (E) for each computerized

volume (Vc) and the gold-standard manual volume (Vm) as

E ¼ Vc � Vmð Þ=Vmj j: (6.12)

The association between the computerized volumetry and the manual volumetry

was measured by the Pearson product–moment correlation coefficient (r). The
significance of correlation coefficient was evaluated by using the Student t test.
An agreement between two measurements was assessed by using the intraclass

correlation coefficient (ICC) [24, 25]. The two-way random single measure model,

ICC(2,1), was used because we assumed that the cases were chosen randomly from

population and each case was measured by two volumetric methods. The ICC(2,1)
was defined by the following equation:

ICC 2; 1ð Þ ¼ BMS� EMS

BMSþ k � 1ð Þ þ k RMS� EMSð Þ=n , (6.13)

where n is the number of cases, k is the number of raters (i.e., volumetric

methods), BMS is the between-cases mean square, EMS is the error mean square,

and RMS is the between-raters mean square. The statistical significance was

obtained by the analysis of variance. The post-hoc power analysis using the

Walter–Eliasziw–Donner model [26] for ICC-based reliability studies was

performed to determine the statistical power in this study. As done in [7], we

assumed the type I error (α) of 0.05 and type II error (β) of 0.20 in this analysis.

An additional agreement analysis for two measurements was performed by the

Bland–Altman method [27] based on the mean difference (bias) and the standard

deviation of difference (SD). The limits of agreement, which are given by bias
� 1.96 � SD, were used to consider the degree of agreement.

Results

The comparison on the liver volume between the two measurements is shown in

Tables 6.1 and 6.2. The mean gold-standard manual volume was 1,710 cc with a

standard deviation of 401 cc (range: 1,013–2,529 cc), while the mean volume of our

computerized scheme was 1,697 cc with a standard deviation of 400 cc (range:

1,120–2,418 cc). The mean absolute difference and the percentage volume error (E)
were 56 cc and 3.6 %, respectively.

The overall mean of the Dice coefficients was calculated as 93.6 � 1.7 %, the

accuracy was 99.4 � 0.14 %, the sensitivity was 93.4 � 3.3 %, and the specificity

was 99.7 � 0.12 %. The relationship between the computerized volumetry and the

6 Liver Volumetry in MRI by Using Fast Marching Algorithm Coupled with 3D. . . 149



manual volumetry is shown in Fig. 6.5. The Pearson correlation coefficient was

0.98 at a level that was not statistically significant ( p ¼ 23.65). Table 6.3 presents

the results from the ICC analysis. Two volumetric methods achieved an excellent

agreement with an ICC of 0.98 and no statistically significant difference

( p ¼ 0.42). The statistical power in the study was evaluated by using the

Table 6.1 Comparison between computerized volumetry and “gold-standard” manual volumetry

Average Standard deviation

Computer volume (cc) 1,697 400

Manual volume (cc) 1,710 401

Table 6.2 Summary of

quantitative evaluation of

computerized liver extraction

compared to “gold-standard”

manual liver extraction

Average Standard deviation

Accuracy (%) 99.4 0.14

Sensitivity (%) 93.4 3.3

Specificity (%) 99.7 0.12

Percent volume error (%) 3.6 3.6

Dice coefficient (%) 93.6 1.7
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Fig. 6.5 Relationship

between computer-based

volumes and “gold-

standard” manual volumes.

Two volumetrics reached an

excellent agreement (the

intraclass correlation

coefficient was 0.98)

Table 6.3 Analysis of

variance table from intraclass

correlation coefficient

analysis

Df Sum of squares Mean squares F

Between raters 1 2,008 2,008 0.69

Between cases 22 6,999,296 318,150 108.5

Within cases 23 66,496 2,891

Residual 22 64,488 2,931

Total 45 7,065,792
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post-hoc power analysis based on the Walter–Eliasziw–Donner model [26]. The

lowest ICC between the computer-based volumetry and the manual volumetry that

we should have been able to detect with 23 cases was 0.95, and this study had the

power to detect a bias of 0.03 in ICC. The Bland–Altman plot for assessing

agreement is also presented in Fig. 6.6. Here the mean difference was �13.2. The

limits of agreement with the 95 % confidence interval were �163 to 137 cc which

were small enough to show a good agreement between two volumetric methods.

Figure 6.7 illustrates the computerized liver segmentation and manual liver

segmentation for a case with a high accuracy (99.7 %). The computerized segmen-

tation agreed almost perfectly with the gold-standard manual segmentation for

slices through the superior portion of the liver, as shown in Fig. 6.7b, d. Two

other cases with more typical results which have the accuracies close to the average

accuracy are presented in Fig. 6.8. Overall, the computerized method was able to

extract the livers very accurately. However, there were occasionally over- and

under-extractions in the extracted livers. Major FP and FN extraction sources are

illustrated in Fig. 6.9. The major FN sources included a lesion attaching to the liver

boundary, a low-contrast liver boundary, and inhomogeneous density due to focal

fatty and noise. The major FP sources included the heart, kidney, vena cava, and

stomach, which abut the liver. They were also from artifact due to the partial

volume effect. Other under- and over-extraction sources were convex and concave

boundary parts with high curvatures.

The average processing time of our scheme for liver segmentation was

1.03 � 0.13 min/case (range: 0.9–1.5 min/case) on a PC (CPU: Intel, Xeon,

2.66 GHz), whereas that for manual method was 24.0 � 4.4 min/case (range:

18–30 min/case). The difference was statistically significant (p < 0.001).

-300

-200

-100

0

100

200

300

800 1200 1600 2000 2400

D
iff

er
en

ce
 in

 C
om

pu
te

r a
nd

 M
an

ua
l V

ol
um

e 
(c

c)

Average Computer and Manual Volume (cc)

Fig. 6.6 Bland–Altman

plot for agreement between

computer and manual

volumetry. The bias was

13.2 cc; 95 % limits of

agreement were�163.7 and

136.9 cc
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Fig. 6.7 Comparisons of computerized liver extraction with “gold-standard” manual liver extrac-

tion for the case with a high accuracy (99.7 %). (a) Original axial MR image from the case. (b)

Computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour). (c) Original axial MR image (different slice) from the same case. (d) Computerized liver

extraction (red contour) and “gold-standard” manual liver extraction (blue contour)

Fig. 6.8 Comparisons of the computerized liver extraction with “gold-standard” manual liver

extraction for two cases with accuracies (99.5 % for the upper case; 99.2 % for lower case) close to

the average accuracy (99.4 %). (a) Original axial MR image from one of the cases. (b)

Corresponding computerized liver extraction (red contour) and “gold-standard” manual liver

extraction (blue contour). (c) Original axial MR image from the other case. (d) Corresponding

computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour)



Discussions

Liver volumetry is performed for hepatectomy to treat patients with liver tumors.

Because the liver volume is reduced after hepatectomy, it must be ensured that the

remaining liver volume is sufficient to maintain the liver function. In the case of

complicated treatment such as chronic liver disease, a larger remaining liver

volume is required [28]. Many researchers have tried to estimate the liver volume

accurately based on CT images, such as the one using virtual hepatectomy [29].

However, fewer researchers have reported liver volumetry on MRI, probably

because it is believed that MR liver volumetry has more variations, and manual

MR liver volumetry is more difficult than CT. Furthermore, manual liver volumetry

is very time-consuming and not cost-effective. Therefore, it is crucial to investigate

the potential of a computerized volumetry for liver MR images. We believe that

computerized MR liver volumetry is potentially very useful.

Although our computerized liver volumetry had an excellent agreement with

the gold-standard manual liver volumetry (the ICC was 0.98), there were still

occasional FNs and FPs which were mainly caused by the similar density of other

organs abutting to the liver. The liver segmentation accuracy was also interfered by

the partial volume effects and the liver intensity variation among different studies/

patients, as the intensity depends on acquisition timing and contrast material

characteristics.

Fig. 6.9 Illustrations of major FP and FN sources. (a, c), Original axial MR images. (b, d)

computerized liver extraction (red contour) and “gold-standard” manual liver extraction (blue
contour). (b) There is an FP due to the heart (a), an FN due to vein (b), and an FN due to a lesion on

the liver boundary (c). (d) There is an FP due to the duodenum (d ), and an FN due to a

low-intensity region (e)
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Although the volumes obtained by using our computerized method had a strong

correlation with those by the gold-standard manual tracing method (Pearson’s

product–moment correlation coefficient was 0.98), it does not still reach the

minimal variation in CT volumetry between expert radiologists that was reported

as 0.997 [30] (Although we could not find a study reporting the variation in MR

volumetry, we expect it would be larger than the one in CT). One can increase

the overall accuracy by correcting FP and FN extractions manually. This can

be accomplished rapidly with routine manipulations. The substantial amount of

time saved by using the computerized method may justify the small error rate

(average percentage volume error of 3.6 %) compared to the manual tracing

method, which the average processing time was 24 min/case.

Direct comparisons of our method with existing methods in literature are not

easy because different databases and quality measurements were used. Freiman

et al. [31] achieved volume errors of 5.36 and 2.36 % in CT volumetry of their

database and a publicly available database (i.e., SLIVER07), respectively. Florin

et al. [32] obtained a volume error of 10.72 % in CT volumetry. For evaluation of

liver MRI segmentation, Gloger et al. [19] obtained volume errors of 8.3 % for

normal livers and 11.8 % for fat livers with runtime of 11.2 and 15.4 min,

respectively. Besides volume errors, some researchers used the shape alignment

measurement to evaluate the segmentation performance. A robust measurement

based on the shape alignment is the modified Hausdorff distance (MHD) which

overcomes the noise and outlier sensitivity of the original Hausdorff distance,

defined by

MHD ¼ max dH X; Yð Þ, dH Y;Xð Þf g, (6.14)

dH X; Yð Þ ¼ 1

card Xð Þ
X
x∈X

min
y∈Y

x� yk k, (6.15)

where X and Y are two sets of boundary positions of the liver extracted by a manual

method and a computerized method, respectively. Our scheme achieved an average

MHD of 12.8 � 2.24 mm for livers with diseases, whereas an average original

Hausdorff distance reported in [19] was 20.35 � 8.66 mm for fat livers. Note that

an MHD was not provided in [19].

The 95 % limits of agreement between our computerized volumes and the

gold-standard manual volumes were �163.3 and 136.9 cc. These limits are smaller

than the results reported by Nakayama et al. [8]: the limits between automated

and manual volumes were �230.3 and 327.9 cc; and those between automated and

measured liver volumes were �309.3 and 412 cc. In addition, these 95 % limits of

agreement are smaller than those in our previous work on CT images [7] which were

�211 and 278 cc for agreement between the automated and manual CT volumes.

Note that the above comparisons were not direct comparisons due to different

databases.

One of the limitations in this study is that the evaluation is performed with the

gold-standard manual volumes determined by a single expert radiologist. Ideally,
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the gold-standard volumes are determined by multiple radiologists who are experts

in liver diagnosis. However, this ideal evaluation would not be available at all

institutions because not many institutions have a number of such radiologists who

are sufficiently experienced in the liver diagnosis. Many publications reported the

evaluation using the gold-standard manual volumes. However, none of them used

the gold-standard volumes estimated from multiple radiologists. This may result

from the above reason. Furthermore, it was shown that the correlation between two

radiologists’s manual volumes was 0.997 [30], which may infer that the

interobserver variation is small and the difference among manual volumes deter-

mined bymultiple radiologists and a single radiologist is not significant.We used the

manual volumes determined from an experienced radiologist as the gold standard.

We thought that the manual volumes from multiple inexperienced radiologists or

mixture of inexperienced radiologists and experienced radiologists may be less

reliable, compared to volumes determined by an experienced radiologist who traces

liver boundaries very carefully.

Conclusions

In this chapter, we developed an automatic scheme for the liver volumetry in MR

images by employing the fast marching algorithm combined with the geodesic

active contour segmentation. MRI liver volumes obtained by using our scheme

agreed excellently with those determined by the current “gold-standard” manual

tracing method. With our computerized volumetry, the time required for volumetry

was reduced significantly from 24 min per case to a min per case. Therefore, our

computerized scheme would be useful for radiologists in liver volumetric analysis

on MR images.
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Chapter 7

Computer-Aided Image Analysis

for Vertebral Anatomy on X-Ray CT Images

T. Hayashi, H. Chen, K. Miyamoto, X. Zhou, T. Hara, and H. Fujita

Abstract Osteoporosis has become an increasingly important public health problem

because of the rapidly aging populations. To obtain the sophisticated knowledge on

normal vertebral anatomy is essential to understand the vertebral fracture risk. Multi-

detector row computed tomography (MDCT) method can be used for quantitative

analysis of vertebral anatomy such as volumetric bone mineral density (vBMD),

geometry, and alignment with high accuracy and precision from the same dataset.

This chapter described our latest two findings on statistical analysis and image

analysis for vertebral anatomy by use of the image processing technique on the

MDCT scanning. One was the population-based statistical analysis on vBMD at

vertebrae. It showed the trabecular vBMD distribution at healthy thoracic and

lumbar vertebrae in Japanese subjects and specific differences in age and gender.

The other presented a computerized scheme to quantify the vertebral geometry.
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The scheme provided appropriate values on the vertebral geometry with numerous

CT cases. It is likely that such computer-based attempts will help us to achieve the

sophisticated vertebral anatomy.

Introduction

Osteoporosis has become an increasingly important public health problem because of

the rapidly aging populations. Early detection of bone loss is important for the

prevention of vertebral fractures because therapeutic drug treatments are the most

effective before the decrease of bone mineral density (BMD) affects bone

fractures [1].

Dual X-ray absorptiometry (DXA) is the most widely used bone densitometry

technique. Quantitative computed tomography (QCT) allows the selective assess-

ment of skeletal status of trabecular bone of the vertebral bodies. Peripheral quanti-

tative computed tomography (pQCT) measurements are typically obtained at the

radius or the tibia. Also, there are quantitative ultrasound (QUS) approaches, which

show substantial differences in performance [2]. In spite of having such technologies

that estimate the magnitude of osteoporosis, its screening rates remain low [3, 4].

It is because osteoporosis is a silent disease with few symptoms in its early stage.

Panoramic radiography widely used in clinical dentistry may be useful to

overcome its problem. Klemetti et al. [5] revealed that a decrease in the mandibular

cortical thickness on the panoramic images was one of the radiographic signs of

osteoporosis. This finding indicated that the panoramic images had a new potential

to be used as a supplemental screening tool for early detection of osteoporosis. To

verify its possibility, two clinical trials were conducted in Japan [6, 7]. These trials

suggested that the screening by trained dentists was useful for identifying osteopo-

rotic patients. Recently, triage screening for osteoporosis in dental clinics was

advocated by Taguchi [8].

The question which we must consider here is whether general dental practitioners

can play the new role. There are some specialized fields in dentistry such as dental

radiologist, dental surgeon, endodontist, exodontist, and so on. Namely, not all dental

practitioners are familiar with image interpretation. To facilitate the new role of

identifying osteoporotic patients by the dental practitioners, the following computer-

aided image analysis schemes (or systems) were presented: Taguchi et al. [9] have

developed a diagnosis support device based on the evaluation of the morphology of

the mandibular cortex; Asano et al. [10] have developed a diagnosis support device

based on the measurement of the mandibular cortical thickness; Kavitha et al. [11]

proposed a new approach on the basis of continuous measurements; Devlin et al. [12]

presented an automated method for risk assessment of osteoporosis; Allen et al. [13]

proposed a computerized scheme by use of statistical shape models; and Roberts

et al. [14] proposed a computerized scheme by use of active appearance models.

We also presented a new screening pathway by cooperation of dental practi-

tioners and computer-aided detection (CAD) system (see Fig. 7.1) [15–17].

Overview of the new screening pathway is as follows. In the routine work,
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panoramic radiographs are used to examine dental diseases in dental clinics. At this

time, the dental practitioners send the images to CAD system as an extra task. Once

upon receiving the images, our CAD system automatically runs the image analysis

and the resulted images and reports are sent to the dental practitioners. If pathologic

signs are detected, CAD alerts the dental practitioners. And then, refer to the CAD

results, supplemental screening of osteoporosis is done by the dental practitioners.

Finally, the dental practitioners inform patients of the risk for osteoporosis. If the

patients desire, the dental practitioners will refer to the medical clinics. “The

preliminary diagnosis by the dental practitioners” has a potential to afford some

new perspectives on the osteoporosis treatment. Further technical innovations to

drive such farsighted approach are encouraged.

Turning now to the topic of vertebral fracture, its risk is currently estimated on

the basis of lumbar vertebral BMD in clinical practice. However, vertebral fractures

can occur even when the BMD does not reach the osteoporotic threshold. There are

some research findings on the vertebral fractures. For example, the compressive

strength of vertebrae is determined not only by their bone density but also by their

dimensions [18]. Reduced spinal sagittal curvature is an independent risk factor

[19]. In spite of such discoveries, little is known about the role of vertebrae in

fracture risk to date. It is likely that the sophisticated knowledge on normal

vertebral anatomy is essential to understand the vertebral fracture risk.

Multi-detector row computed tomography (MDCT) scanning is widely used in

clinical practice. It permits the acquisition of thin sections with isotropic voxel

sizes. An example of body X-ray CT image is shown in Fig. 7.2. We see from

Fig. 7.2 that human bone structures are radiologically visualized under high

resolution. Namely, we can achieve the quantitative analysis of the vertebral

anatomy such as volumetric BMD (vBMD), geometry, and alignment with high

accuracy and precision from the same dataset by using the MDCT scanning.

The problem is that such analysis takes a lot of time and effort. It is likely that

computer-based image analysis is a key technology to overcome the above problem.

Fig. 7.1 New screening pathway via dental clinics with CAD system (adapted from [17])
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Here we present our latest studies of the computer-aided image analysis for

vertebral anatomy by using the MDCT scanning. The second section describes a

“Computer-Aided Analysis of vBMD at Trabecular Bones in Thoracic and Lumbar

Vertebrae.” Computer-based quantification of vertebral body geometry is described

in the third section. The findings of our studies and follow-up prospects are

summarized in the section “Summary.”

Computer-Aided Analysis of vBMD at Trabecular Bones

in Thoracic and Lumbar Vertebrae

The aims of this section were to investigate segmental variations in vBMD of

thoracic and lumbar vertebral bodies and to show specific differences according to

age and gender. First, a computer-assisted scheme to determine the volume of

interest (VOI) at vertebrae was designed. And then, a large number of CT data

set was employed to estimate the vBMD. On the basis of those results, we attempted

to answer two key questions to improve our understanding of bone fragility: (1) Is

there any vertebral level-dependent vBMD change? (2) Does the vBMD differ

according to gender? This section summarized the publications in [20, 21] and it

was beyond the scope of this section to discuss the clinical aspects.

Materials and Methods

Study Subjects

The study sample consisted of the first 1,750 enrolled Japanese men and women

with CT images from 2002 to 2006, scanned for the purpose of examinations of

various organs and tissues. The CT images included all thoracic and lumbar

vertebrae [LightSpeed Ultra, GE Yokogawa Medical Systems Ltd, Tokyo, Japan]

and were scanned for each subject using standard settings (120 kV, Auto mAs,

Fig. 7.2 An example of the

body X-ray CT image
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1.25 mm-thick slice, pitch ¼ 0.49–0.88 mm) routinely used clinically. Slice inter-

vals were modified to the same value as the pitch using sinc interpolation to keep

each voxel in an isotropic size in 3-D.

Of the 1,750 individuals with CT data available, 719 were excluded because of

normal variants, bone pathology, vertebral fractures, or reasons other than mild

degenerative changes at vertebrae, as confirmed by radiologists or anatomic

experts. The study subjects consisted, therefore, of 1,031 individuals: 490 men

and 541 women. The study subjects were then subdivided into five age categories

(≦40, 41–50, 51–60, 61–70, ≧71) in order to observe age differences. Low vBMD

was measured in the front and central regions at the lumbar vertebrae in [22]. For

this reason, the vBMD of trabecular bones at the central region of the vertebral body

was decided as the typical site.

Computer-Assisted VOI Decision

Each VOI from the first thoracic vertebra (T1) to the first sacral vertebra (S1) was

determined as follows (Fig. 7.3).

1. The spinal canal regions were segmented based on the CT number and skeletal

structures [23].

2. The central locations of the right and left sides of the spinal canal in each axial

section were calculated, and a sagittal sectional image based on the center line of

the spinal canal was generated. We defined the generated image as a sagittal

median plane image of the spine. Figure 7.3b, c indicate the segmented spinal

canal in one slice of axial sections of T11 and the third lumbar vertebra (L3),

respectively (white circle denotes the segmented spinal canal). Figure 7.3d

Fig. 7.3 Computer-assisted VOI decision. (a) One slice of sagittal section on CT images. (b, c)

One slice of axial-sections of T11 and L3 on CT images, respectively (White circle denotes a

segmented spinal canal). (d) Sagittal median plane image of the spine. (e) The VOI inputting on

the sagittal median plane image of spine. (f, g) Input examples of the range of the right and left at

T11 and L3 (White dash lines show the border of the VOI). (h, i) 3-D view of the inputted VOIs

from the lateral and anterior sides, respectively (modified from [21])
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shows an example of the sagittal median plane image of the spine. Although

there is no guarantee that the vertebral bodies of T1–S1 can be seen in only one

slice of the sagittal sections of the original CT image (see Fig. 7.3a), T1–S1 can

always be seen in the sagittal median plane image of the spine (see Fig. 7.3d).

3. The VOIs of T1–S1 were manually inputted on the sagittal median plane image

of the spine. Inputted VOIs are shown by the white regions in Fig. 7.3e.

4. Axial sectional images of the original CT image corresponding to the center of

each vertebra were referenced, and then we determined the right and left range of

the VOIs. Input examples of the range of the right and left at T11 and L3 are

shown in Fig. 7.3f, g.

5. Each VOI inputted at the process 3 was extended to the range inputted at the

process 4. Examples of the VOIs obtained by the above method are shown in

Fig. 7.3h, i. They show a 3-D view of the inputted VOI from the lateral and

anterior sides, respectively. The 3-D volumetric VOI can be checked from their

figures.

Estimation of vBMD

It is impossible to measure BMD using the established method proposed by Cann

and Genant [24] (e.g., QCT) because the purpose of our CT data was not the

diagnosis of osteoporosis. Instead of using “traditional” QCT, we fixed the standard

phantom (B-MAS 200, Kyoto Kagaku, Kyoto, Japan) under the human body

phantom, and took exposed it to the same radiation dose as that used in diagnosis

in order to calibrate the CT Hounsfield units to equivalent bone mineral concen-

trations. The standard phantom contained calibration cells of 0, 50, 100, 150, and

200 mg/cm3 with equivalent concentrations of calcium hydroxyapatite. As a result,

we estimated the vBMD as follows:

vBMD mg=cm3
� � ¼ CT number HU½ � � 3:55ð Þ=1:13: (7.1)

Therefore, the mean CT number of the VOI determined in “Computer-Assisted

VOI Decision” was computed. And then, the vBMD was estimated by using the

calibration curve (i.e., Eq. 7.1).

Our New Findings on the Vertebral Trabecular vBMD

Vertebral Level-Dependent vBMD Change

The graph in Fig. 7.4 illustrates the vertebral level-dependent vBMD change in

women between the ages of 51 and 60. We see from Fig. 7.4 that the vertebral level-

dependent vBMD change is found and L3 has the lowest vBMD. Regardless of age

and gender, similar level-dependent change was found in this study.
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Gender-Dependent vBMD Change

The graphs in Fig. 7.5 illustrate the gender-dependent vBMD change in the ages of

40 and 61–70. We see from Fig. 7.5 that gender-dependent vBMD change is found.

Regardless of vertebral level, women in the ages of 40 had the highest vBMD.

However, the women’s vBMDs rapidly deteriorated with aging.

Deterioration of vBMD with Aging

Tukey multiple comparison test was used to understand the deterioration of vBMD

with aging. Significant difference was defined as p < 0.05. Correlation value of the

vBMDs between 41–50 years and other age categories is represented in Fig. 7.6. As

for comparison with 51–60 years, a glance at Fig. 7.6a will reveal that the signif-

icant differences are found in all vertebral levels in women. In contrast, the

significant differences are not found in all vertebral levels in men (see Fig. 7.6b).

As for comparison with 61–70 years in men, the significant differences are found in

the vertebral levels from T10 to L5 (see Fig. 7.6c). As for comparison with 71 years

Fig. 7.4 Vertebral level-

dependent vBMD change

(modified from [21])

Fig. 7.5 Gender-dependent vBMD change (modified from [21])
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in men, the significant differences are found in all vertebral levels. Therefore, it is

suggested that the deterioration of the vBMDs is similar in all vertebral levels in

women, whereas it is faster at T11–L5 levels than at T1–T10 levels in men. It

should be noted that its cause is not clear and further studies are required.

Computer-Based Quantification of Vertebral

Body Geometry

We described in this section the computer-based quantification of the vertebral

body geometry. For gaining a better understanding of bone quality, a great deal of

attention has been paid to vertebral geometry in anatomy [18]. In order to accelerate

such basic investigation, it may be helpful to develop a computer-assisted scheme

for analyzing the vertebral geometry on body CT images.

It is thought that to design a sophisticated scheme for the localization of

individual vertebral bodies would be helpful first to design a computer-assisted

scheme to analyze the vertebral geometry. Although extraction of intervertebral

discs (or end plates) is one of the effective approaches, missing an intervertebral

disc leads to failure in the localization of vertebral bodies. Pattern matching or a

registration-based approach can localize the vertebral bodies without extracting

intervertebral discs. However, variations in the individual’s posture during CT

scans or individual differences in spinal curvature may contribute to the perfor-

mance deterioration of such an approach. In terms of implicit anatomic knowledge,

ribs and thoracic vertebrae are contiguous bones. For this reason, we assume that

the detection of individual ribs contributes to the scheme’s improved performance

for the localization of individual vertebral bodies.

Our new scheme was designed to have the following key steps: (1) re-forming

CT images on the basis of the center line of the spinal canal to visually remove the

Fig. 7.6 Correlation value of the vBMDs between 41 and 50 years and other age categories by

using Tukey multiple comparison test. Significant difference was defined as under 0.05 (as shown

in filled circle) (a) Comparison with 51–60 years. (b) Comparison with 61–70 years. (c) Compar-

ison with ≧71 years (modified from [21])
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spinal curvature, (2) using the information on the relative position between ribs and

vertebral bodies, (3) the construction of a simple model (reference pattern) on the

basis of the contour of the vertebral bodies on CT sections, (4) the localization of

individual vertebral bodies by using a template matching technique, and (5) quan-

tification of the vertebral body width, depth, cross-sectional area (CSA), and

trabecular vBMD. This section summarized the publications in [25–27].

Computerized Scheme to Quantify the Vertebral Geometry

Overview of the Scheme

The proposed scheme is outlined in Fig. 7.7. It consists of the learning and test

phases. The image re-formation technique, which is done on the basis of the

detection/extraction of bone parts, is applied in both phases. The localization of

vertebral bodies is carried out using a template matching technique. Afterward, the

localization results are used to quantify the vertebral geometry. Each process is

described below.

Image Re-Formation

At the beginning of the image re-formation technique, bone extraction and detec-

tion of the center line of the spinal canal, the tips of the spinous processes, and the

ribs (boundary with vertebrae) are attempted. Examples of these extractions and

detections are shown in Fig. 7.8.

Fig. 7.7 Process flow of our scheme that quantifies the vertebral geometry (spinal canal: SC,

spinous processes: SP) (modified from [25, 26])
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CT numbers with bone voxels are higher than those of other internal organs. CT

number thresholding or the region-growing method is used to extract bone voxels

[28]. Figure 7.8a shows an example of extraction of bone voxels.

We can observe the spinal canal as a cave inside the spine. For that reason, the

centroid of the cave on the Jacoby line (an upper boundary slice with a false pelvis)

is determined. After that, it is tracked in the craniocaudal direction [29].

Spinous processes can be observed as tips of bone behind the spinal canal.

Therefore, these tips of bone are detected on axial sections excluding the tail

sections from the Jacoby line. Detection of the center line of the spinal canal and

tips of spinous processes in three axial sections (from top to bottom: T6, T11, and

L3) are shown in Fig. 7.8b. In these sections, yellow and red circles denote

centroids of the spinal canal and tips of spinous processes, respectively.

Fig. 7.8 Examples of bone parts detection/extraction in one case. (a) Surface view of bone voxels.

(b) Three axial section views of bone voxels (top to bottom: T6, T11, and L3). Yellow and red
circles denote centroids of the spinal canal and tips of spinous processes, respectively, and

standard voxels and other bone voxels are indicated in green and blue, respectively. (c) The

histogram of the distance map. d1 and d2 denote distance thresholds for dividing bone labels. (d)

Surface view of bone voxels divided into three labels (spine_label, boundary_label, and

the_others_label are indicated in yellow, blue, and green, respectively). (e) Surface view of

bone voxels identified right and left ribs in each level (spine and ribs in each level are shown in

yellow and the other colors, respectively) (adapted from [25])
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Ribs are contiguous bones with the spine. In our scheme, ribs are detected on the

basis of their distance from the spinal canal. The detailed process is as follows:

1. Bone voxels within r mm of the center line of the spinal canal are extracted as

standard voxels. Extraction examples in three axial sections are illustrated in

Fig. 7.8b. In these sections, standard voxels and other bone voxels are indicated

with green and blue, respectively.

2. The distance map from standard voxels is generated. The distance is calculated

by the shortest path through the bone voxels.

3. The histogram of the distance map is generated, and its mode and a standard

deviation are computed.While frequency values increase with increasing distance

within the spine, they decrease with increasing distance at the ribs because they are

thinner than the spine. Therefore, the following equations are defined for dividing

three bone labels (spine_label, boundary_label, and the_others_label) using the

distance map:

0 < spine label � d1, (7.2)

d1 < boundary label � d2, (7.3)

d2 < the others label, (7.4)

d1 ¼ move valueþ standard deviation � b1, (7.5)

and

d2 ¼ move valueþ standard deviation � b2, (7.6)

where d1 and d2 denote distance thresholds and b1 and b2 denote arbitrary

variables. The histogram of the distance map and an example of the division

into three bone labels are illustrated in Fig. 7.8c, d, respectively. In Fig. 7.8d,

spine_label, boundary_label, and the_others_label are indicated in yellow, blue,
and green, respectively. We can see the relation between distance map and bone

labels in these figures.

4. Of the boundary labels, labels contiguous to both the spine_label and

the_others_label are detected as rib_candidate_labels.
5. Of the rib_candidate_labels, 12 labels from the head are identified as the

1st–12th ribs. This identification is performed independently on the right and

left sides. An example of 1st–12th ribs identification is demonstrated in

Fig. 7.8e, in which the spine and the right and left ribs in each level are shown

in yellow and the other colors, respectively.

To simplify the localization of vertebral bodies, CT images are re-formed on the

basis of the spinal canal and spinous processes. The following three rules are

applied to image re-formation.

7 Computer-Aided Image Analysis for Vertebral Anatomy on X-Ray CT Images 169



1. Axial rotation is adjusted in each slice so that the line via the center line of the

spinal canal and tips of the spinous processes (that is, the black dashed line

shown in Fig. 7.9a) becomes the center in the sagittal direction.

2. Sagittal rotation is adjusted in each slice. Sagittal curvature at a target slice

(an axial section) is defined as the angle between the centroids of the spinal canal

on two axial sections (that is, SCa and SCb shown in Fig. 7.9b). Two axial

sections are determined as those that are far from the d slices of the target.

3. Translation is carried out in each slice so that the center line of the spinal canal

moves onto a straight line (Fig. 7.9c).

Examples of CT images and re-formed CT images are demonstrated in Fig. 7.9d, e,

respectively. We can see the spine in the reformed images without its rotation and

curvature, as shown in Fig. 7.9e.

Learning Phase

CT images are re-formed to the beginning of a learning phase using the above-

mentioned process. After that, the contour models of each vertebral body are built

on the re-formed images as follows.

1. Contours of vertebral bodies (T1–L5) are tracked on the sagittal central section

(Fig. 7.10a).

2. Contours of the vertebral bodies are tracked on axial and coronal sections

through the center of the vertebral bodies that were tracked by the preceding

Fig. 7.9 CT images re-formation based on the spinal canal and spinous processes. (a) An axial

section view of the spine. Yellow and red circles denote centroid of the spinal canal and the tip of

spinous processes, respectively, and an axial rotation of this section is defined as the angle between

the black dashed line via centroid of the spinal canal and the tip of spinous processes and red
dashed line that indicates vertical line. (b) A sagittal section view of the spine. SCa and SCb denote

centroid of the spinal canal on two axial sections. Sagittal rotation at a target slice is defined as the

angle between the red dashed line via SCa and SCb and the white dashed line that indicates vertical
line. (c) A sagittal section view of the spine. The translation is performed so that the center line of

the spinal canal moves onto the straight line (red dashed line). (d) Section view of CT images. We

can see the spinal curvature. (e) Section view of re-formed images. We can see the spine without

its rotation and curvature (adapted from [25])
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process (that is, the axial section at cz and the coronal section at cy, as shown in

Fig. 7.10a). Examples of tracked contours on the axial and coronal sections are

illustrated in Fig. 7.10b, c, respectively.

3. Tracked contours are registered as relative coordinates from the center point

(one from the center line,Ms) of the spinal canal.Ms, which is the centroid of the

spinal canal on the axial section at cz, is defined as the standard coordinate of the
model. Examples of tracked contours on three sections are shown in Fig. 7.10d.

Test Phase (Localization)

CT images are re-formed to the beginning of a test phase using the above-

mentioned process. After that, the vertebral bodies are localized as follows.

1. The morphological top-hat operation is applied to the target (re-formed) images,

and voxels with >5 values are extracted as contour candidates of vertebral

bodies. The target images, images after top-hat operation, and images after

binarized operation are shown in Fig. 7.11a–c (left side), respectively.

2. Ribs are utilized for the localization of thoracic vertebrae. First, the shortest

paths that connect the ribs on both sides via bone voxels for the k-th ribs

(k ¼ 1, 2, � � �, 12) are computed. After that, axial sections of one point,

Skz (k ¼ 1, 2, � � �, 12), nearest to the center line of the spinal canal for each

path are detected. As for lumbar vertebrae, axial sections are predicted on the

basis of the upper ribs:

Skz ¼ Sk�1
z þ Sk�1

z � Sk�2
z

� �
k ¼ 13, 14, � � �, 18ð Þ: (7.7)

3. A template matching between the output of process 1 and models of vertebral

bodies is performed to determine the precision between them. In the template

matching, a rigid transformation is applied to the models, and the model whose

Fig. 7.10 Model building based on the contour tracking (tracked contours are indicated in blue).
(a) An example of the tracked contour on the sagittal section. cy and cz denote the center position in
the tracked contour on this section. (b) An example of the tracked contour on the axial section at cz.
(c) An example of the tracked contour on the coronal section at cy. (d) Examples of tracked

contours on three sections (adapted from [25])
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precision indicates the highest value is determined to be the target vertebral

body. The rigid transformation is applied according to the following restrictions.

(a) Scaling, s(0.9 � s � 1.1), is applied to the models.

(b) Rotation, γ(�3.0� � γ � 3.0�), is applied to the models.

(c) Translation along the center line of the spinal canal is applied to the models.

Ranges of translation are set for each vertebral body. For the k-th thoracic

vertebral bodies, the standard coordinate of models should meet the following

requirement:

Skz � Ms
z � Skþ1

z k ¼ 1, 2, � � �, 12ð Þ, (7.8)

and for the k-th lumbar vertebral bodies, the standard coordinate of models

should meet the following requirement:

Skþ12
z � Ms

z � Skþ13
z k ¼ 1, 2, � � �, 5ð Þ: (7.9)

Translation of the model is illustrated in Fig. 7.11c. The percent of precision

P of the template matching is calculated by the following equation:

P ¼ PA\PB

PA
, (7.10)

where PA denotes voxels making up the model and PB denotes voxels extracted

by the process 1.

Sz
k-1

Sz
k+1

Sz
k+2

Sz
k

One of contour models

d

cba

Fig. 7.11 Localizations of vertebral bodies by using a template matching technique. (a) Sagittal

central section on the re-formed images. (b) Images after top-hat operation. (c) Left: Images after

binarized operation. Right: One of the contour models indicates in blue. Blue voxels denote

contours of the model (adapted from [25])
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Test Phase (Quantification)

The computerized scheme for quantifying width, depth, CSA, and trabecular

vBMD of vertebral bodies is described as follows.

1. Vertebral body height (h) is identified as the distance between the uppermost and

lowermost slice, including the points produced using the localization scheme,

and its central section is detected as the midaxial section of the target vertebral

body. The h and the midaxial section of the target vertebra are detected, and then

the axial sections of h/3 that belong to middle sections are selected as the VOI

(Fig. 7.12a).

2. The morphological top-hat operation is applied to the VOI. After that, a ray

summation image of the VOI is generated (Fig. 7.12b) and voxels with >20

values are extracted as contour candidates of vertebra (Fig. 7.12c).

3. The vertebral contour is determined by a template matching technique with

contour models of the vertebral bodies built by manual tracking of the vertebral

contour on the midaxial section (Fig. 7.12d). In the template matching tech-

nique, rigid transformation is applied according to the following restrictions:

(a) Scaling, s(0.9 � s � 1.1), is applied to the models.

(b) Rotation, r(�3.0� � r � 3.0�), is applied to the models.

Fig. 7.12 The proposed scheme for vertebral body geometry. (a) Volume of interest (VOI)

determination on the midsagittal section (the located vertebra is shown in aqua, and the VOI is

shown in green). (b) A ray summation axial view of the VOI after applying the morphological

top-hat operation. (c) Binarization. (d) Contour models of the target vertebra on a midaxial section

with 100 cases. (e) Model fitting on a midaxial section (the fitted contour model is shown in

orange, and inside of the vertebra is shown in green). (f) Geometric definition for vertebral body

geometry on a midaxial section (SC denotes the spinal canal centroid). (g) One CSA example on a

midaxial section (CSA is indicated in green). (h) One BMD measurement example on the ray

summation axial view of the VOI without using morphological operation (the measurement region

is indicated in green) (adapted from [26])
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Then, the precisions of the output of the process 2 and the transformed contour

models are computed, and the transformed model with the highest indicated

precision is selected as the target vertebral contour. The percent of precision P of

the template matching is calculated by the following equation:

P ¼ PA\PB

PA
, (7.11)

where PA denotes voxels that make up the model and PB denotes voxels

extracted by process 2. After that, voxels inside the vertebral contour are filled

(Fig. 7.12e).

4. Line l, which divides equally the filled region that passes through the spinal

canal centroid, is drawn. Next, two points, d1 and d2, are detected at the

boundary of the line l with the filled region, and the distance between d1 and

d2 is defined as “depth” (Fig. 7.12f).

5. Line m perpendicular to the line l that passes through point d3, which is in the

middle between d1 and d2, is drawn. Next, two points, d4 and d5, are detected at

the boundary of the linem with the filled region, and the distance between d4 and
d5 is defined as “width” (Fig. 7.12f).

6. Line n parallel to the linem that passes through point d2 is drawn. Next, a cortical
bone adjacent to the filled region is added as a part of the filled region. After that,

the number of voxels that belongs to the filled region that is located anterior to

the line n is defined as “CSA” (Fig. 7.12g).

7. To remove a cortical bone, voxels extracted by the process 2 are removed. After

that, the morphological closing operation is applied to fill the voxels of the

vertebral contour. To ensure that a cortical bone is not included, the morpho-

logical erosion operation is also applied to the extracted region.

8. A ray summation image of the VOI without using the morphological operation is

generated, and the mean CT number of voxels overlapping with the extracted

region from the process 7 is computed. Finally, “trabecular vBMD” is estimated

on the basis of the mean CT number in a manner similar to the section

“Estimation of vBMD” (Fig. 7.12h).

Performance Evaluation

Assessments

The Hausdorff distance [30], which is used to measure the boundary-based

distance, was used to demonstrate the effect of the localization scheme. Given

two finite point sets A ¼ {a1,a2, � � �,ap} and B ¼ {b1,b2, � � �,bp}, the Hausdorff

distance is defined as

H A;Bð Þ ¼ max h A;Bð Þ, h B;Að Þð Þ, (7.12)
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where

h A;Bð Þ ¼ maxa∈Aminb∈B a� bk k, (7.13)

and k � k is some underlying norm on the points of A and B. In the experiment, the

points of the contour of vertebral bodies tracked on re-formed images (ground truth)

and points produced using the localization scheme were input as A and B, respec-
tively, and the Euclidean norm was used as the underlying norm. One example of

the measurement of the Hausdorff distance is illustrated in Fig. 7.13.

The performance of the quantification scheme was assessed by comparing it with

the manual tracking done by an anatomic expert. For vertebral body width, depth,

and CSA, manual tracking was carried out three times at the midaxial sections of L1

on “original” CT scans (not re-formed images), and mean values were determined

to be the grand truth. Each tracking was set at a time interval of at least 1 week, and

the position of the midaxial section of L1 was selected independently. For trabec-

ular BMD, vBMD at the central site of the vertebral body measured in [20] was

used as the grand truth. Pearson’s product–moment correlation coefficient (r) and
Bland–Altman analysis [31] were used to show relative and absolute reliability.

Vertebrae Localization

To assess the performance of the vertebrae localization scheme, it was applied to

104 body CT cases. Learning models were built with 103 samples except for the

target case, and parameters were set as r ¼ 16 mm, d ¼ 20 slices, b1 ¼ 3.0, and

b2 ¼ 4.5 for this experiment. These parameters were decided by trial and error. The

localization performance from T2 to L5 was assessed in this study because T1 was

outside of the CT scans with some cases. Experimental results from two cases are

illustrated in Fig. 7.14.

The assessment result of the localization scheme is shown in Fig. 7.15, in which

we can see the Hausdorff distance (mean and standard deviation) with 104 cases in

Fig. 7.13 Examples of the measurement by using the Hausdorff distance. (a) Points of contours of

vertebral bodies by manual (blue). (b) Points produced using the localization scheme (yellow). (c)
Overlaid image of two point sets. Hausdorff distance between two point sets is determined as the

performance assessment (adapted from [25])
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each vertebral level. The mean and standard deviations of the Hausdorff distance

for the localization of vertebral bodies were 3.6–5.5 and 1.0–1.9 mm, respectively.

In addition, the following experiment was carried out to verify the effect of the

learning models:

1. Samples were selected at random from 103 cases (except the target case).

2. Samples selected by the process 1 were used to build the learning models.

3. Localizations of vertebral bodies were carried out using models built by the

process 2. After that, the Hausdorff distance between the localization result and

the ground truth was measured.

4. The processes 1–3 were attempted 10 times, and the mean Hausdorff distance of

their results was calculated.

Fig. 7.14 Vertebrae localization results from two cases. Left: Section view of CT images.Middle:
Section view of the re-formed images. Right: Section view of the overlaid images between the

re-formed images and points produced using the localization scheme. Localization results of

individual vertebral bodies are indicated in different colors (adapted from [25])
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The change in the mean Hausdorff distance according to the number of learning

samples for the localization of vertebral bodies is shown in Fig. 7.16, which shows

the mean Hausdorff distance at T3, T10, L1, L5, and the average of T2–L5. The

average Hausdorff distance of T2–L5 from the learning models with 100 samples

was 4.3 mm. On the other hand, the average Hausdorff distance with ten samples

was 5.1 mm. In terms of vertebral level, the Hausdorff distance with L3–L5 was

larger than that of other vertebrae.

Vertebral Geometry Quantification

To assess the performance of the quantification scheme, it was applied to ten body

CT cases. Vertebral contour models were built with 100 samples except for the

target case. Figure 7.17 illustrates the quantification scheme as well as measure-

ment examples of vertebral body width, depth, and CSA taken by an anatomic

expert. These measurements were done on the midaxial sections of L1. Figure 7.17

also enables us to understand intra-observer variability and to compare manual

tracking with computerized tracking. Manual tracking done by an anatomic expert

showed vertebral body width ¼ 37.1 � 1.07 mm, depth ¼ 27.6 � 0.38 mm, and

CSA ¼ 920.4 � 60.7 mm2. In contrast, computerized measurements using the

quantification scheme showed vertebral body width ¼ 33.5 mm, depth ¼ 26.7 mm,

and CSA ¼ 818.2 mm2. A measurement example of the vertebral trabecular BMD

Fig. 7.15 Performance

assessment by the

Hausdorff distance. The

mean and standard

deviation of the Hausdorff

distance for individual

vertebral bodies by

104 cases are shown in

circle and error bar,
respectively (adapted from

[25])

Fig. 7.16 The change in

the mean Hausdorff

distance according to the

number of learning samples

for the localization of

vertebral bodies. The mean

Hausdorff distances at T3,

T10, L1, L5, and the

average of T2–L5 are

shown (adapted from [25])
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at L1 is illustrated in Fig. 7.18, which also shows the process flow of the

proposed scheme in measuring vertebral trabecular BMD. The vertebral trabecular

BMD measured by [20] was 68.9 mg/cm3, while that measured by the proposed

scheme was 67.8 mg/cm3.

The correlations of the vertebral geometries between the proposed scheme and

manual tracking are shown in Fig. 7.19. As can be seen, moderate correlation was

found in measuring depth [r ¼ 0.72, P ¼ 0.02, 95 % confidence interval (95 % CI)

of the population correlation coefficient: 0.16–0.93], and high correlations were

Fig. 7.17 Measurement examples of the vertebral body width (a–d), depth (e–h), and CSA (i–l)

by an anatomy expert and the quantification scheme. These are the midaxial sections of L1 and

measurement results of vertebral body width, depth, and CSA are shown in red. Manual tracking of

first (a, e, i), second (b, f, j), third (c, g, k) and the points produced using the quantification scheme

(d, h, l) are shown from left to right (adapted from [26])

Fig. 7.18 Measurement example of the vertebral trabecular BMD at L1. (a) Midsagittal section

on the re-formed CT images. (b) Volume of interest (VOI) determination on the midsagittal

section (the located vertebra is shown in aqua, and the VOI is shown in green), (c) A ray

summation axial view of VOI on the re-formed CT images, (d) BMD measurement on the

ray summation axial view of the VOI (the measurement region is indicated in red) (adapted

from [26])
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found in measuring width (r ¼ 0.90, P < 0.01, 95 % CI: 0.63–0.98), CSA

(r ¼ 0.87, P < 0.01, 95 % CI: 0.54–0.97), and trabecular BMD (r ¼ 0.98,

P < 0.01, 95 % CI: 0.92–1.00), respectively.

Bland–Altman plots of vertebral geometries from the quantification scheme and

the manual tracking are indicated in Fig. 7.20, which shows mean differences of

width, depth, CSA, and trabecular BMD of 3.1 mm, 1.4 mm, 88.7 mm2, and

7.3 mg/cm3, respectively. No proportional biases were found for all four vertebral

geometries between the proposed scheme and manual tracking when testing for no

correlation. However, the 95 % CI of mean associated with width, depth, CSA, and

BMD did not contain zero, as seen in Fig. 7.20. Namely, fixed biases in measuring

these vertebral geometries between two methods were found. Therefore, it should

be noted that careful checks by examiners will be required to use the measurement

results of our scheme.

Fig. 7.19 The correlations of vertebral geometries between the quantification scheme and manual

tracking by using Pearson’s product–moment correlation coefficient (adapted from [26])
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Summary

This chapter described our latest findings on image analysis and statistical analysis

for vertebral anatomy by use of the image processing technique on MDCT scanning

(Fig. 7.21). The population-based statistical analysis for vertebral trabecular vBMD

was shown in the section “Computer-Aided Analysis of vBMD at Trabecular Bones

in Thoracic and Lumbar Vertebrae.” To the best of our knowledge, our retrospec-

tive analysis was the largest single-institutional study to investigate the vertebral

trabecular vBMD. The section “Computer-Based Quantification of Vertebral Body

Geometry” presented a computerized scheme to quantify the vertebral geometry.

The scheme provided appropriate values on the vertebral geometry with numerous

CT cases. Therefore, such successful CT cases were used to the preliminary study

for statistical analysis on the vertebral geometry in [32].

Fig. 7.20 Bland–Altman analysis of vertebral geometries between the quantification scheme and

manual tracking. Three lines: mean, mean + 2 standard deviation (SD), and mean � 2 SD ¼
limits of agreement (adapted from [26])
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It is known that spinal sagittal curvature contributes to maintaining spinal

balance and protecting impact. Alterations in the spinal sagittal curvature are

deemed to be implicated in the development of various spinal disorders [33].

Furthermore, Sinaki et al. [34] state that stronger back muscles reduce the incidence

of vertebral fractures. Namely, it is suggested that muscles are the important factor

in determining the vertebral fracture as well as the vertebrae. Measurements of the

vBMD, geometry, “zero load” alignment, and muscle mass from the same dataset

are allowed by use of the MDCT scanning. It seems reasonable to suppose that a

computer-based image analysis technology becomes increasingly important to

obtain such a sophisticated vertebral anatomy.

In the field of medical imaging technology, numerous computer-based schemes

have been proposed every year. For example, the computerized schemes to quantify

the spinal curvature on the MDCT scanning were presented in [29, 35]. Muscle

segmentation schemes by usingMDCT scanning were also shown in [36, 37]. These

technologies may be useful to improve our knowledge of vertebral anatomy.

However, it is likely that the demand for the medical imaging technology will

continue to grow. To achieve a further innovation of the medical imaging technol-

ogy, the state-of-the-art project entitled “Computational anatomy for computer-

aided diagnosis and therapy: Frontiers of medical image sciences” is currently in

progress in Japan [38].
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Fig. 7.21 Image analysis for obtaining sophisticated vertebral anatomy by use of the MDCT

scanning (psoas major muscle: PMM, recuts abdominis muscle: RAM) (modified from [26, 27, 29,

32, 36, 37])
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5. Klemetti E, Kolmakov S, Kröger H (1994) Pantomography in assessment of the osteoporosis

risk group. Scand J Dent Res 102:68–72. doi:10.1111/j.1600-0722.1994.tb01156.x

6. Taguchi A, Ohtsuka M, Nakamoto T, Naito K, Tsuda M, Kudo Y, Motoyama E, Suei Y,

Tanimoto K (2007) Identification of post-menopausal women at risk of osteoporosis by trained

general dental practitioners using panoramic radiographs. Dentomaxillofac Radiol

36:149–154. doi:10.1259/dmfr/31116116

7. Hashimoto M, Ito A, Yoneyama M, Takizawa H, Miyamura K (2007) Construction of

osteoporosis identification system by panoramic radiographs. J Jpn Dent Assoc 60:626–633

(in Japanese)

8. Taguchi A (2010) Triage screening for osteoporosis in dental clinics using panoramic radio-

graphs. Oral Dis 16:316–327. doi:10.1111/j.1601-0825.2009.01615.x

9. Taguchi A, Nakamoto T, Asano A (2011) Osteoporosis diagnosis support device using

panorama X-ray image. US Patent 2006/0239532 A1, 24 Aug 2006

10. Asano A, Taguchi A, Nakamoto T, Tanimoto K, Arifin AZ (2011) Osteoporosis diagnosis

support device. US Patent 7,916,921 B2, 29 Mar 2011

11. Kavitha MS, Samopa F, Asano A, Taguchi A, Sanada M (2012) Computer-aided measurement

of mandibular cortical width on dental panoramic radiographs for identifying osteoporosis.

J Investig Clin Dent 3:36–44. doi:10.1111/j.2041-1626.2011.00095.x

12. Devlin H, Allen PD, Graham J, Jacobs R, Karayianni K, Lindh C, van der Stelt PF, Harrison E,

Adams JE, Pavitt S, Horner K (2007) Automated osteoporosis risk assessment by dentists: a

new pathway to diagnosis. Bone 40:835–842. doi:10.1016/j.bone.2006.10.024

13. Allen PD, Graham J, Farnell DJ, Harrison EJ, Jacobs R, Nicopolou-Karayianni K, Lindh C,

van der Stelt PF, Horner K, Devlin H (2007) Detecting reduced bone mineral density from

dental radiographs using statistical shape models. IEEE Trans Inf Technol Biomed

11:601–610. doi:10.1109/TITB.2006.888704

14. Roberts MG, Graham J, Devlin H (2010) Improving the detection of osteoporosis from dental

radiographs using active appearance models. In: IEEE international symposium on trans-

actions on biomedical engineering: from nano to macro, pp 440–443. doi:10.1109/ISBI.

2010.5490314

15. Matsumoto T, Hayashi T, Hara T, Katsumata A, Muramatsu C, Zhou X, Iida Y, Matsuoka M,

Katagi K, Fujita H (2012) Automated scheme for measuring mandibular cortical thickness on

dental panoramic radiographs for osteoporosis screening. In: van Ginneken B, Novak CL (eds)

Proceedings of SPIE medical imaging 2012: computer-aided diagnosis, vol 8315, Bellingham,

pp 83152L. doi:10.1117/12.912309

16. Hayashi T, Matsumoto T, Hara T, Katsumata A, Muramatsu C, Zhou X, Iida Y, Matsuoka M,

Fujita H (2012) A computerized system for identifying osteoporotic patients on dental

panoramic radiographs. ECR 2012, Vienna. doi:10.1594/ecr2012/C-1110

17. Hayashi T, Matsumoto T, Sawagashira T, Tagami M, Katsumata A, Hayashi Y, Muramatsu C,

Zhou X, Iida Y, Matsuoka M, Katagi K, Fujita H (2012) A new screening pathway for

identifying asymptomatic patients using dental panoramic radiographs. In: van Ginneken B,

Novak CL (eds) Proceedings of SPIE medical imaging 2012: computer-aided diagnosis, vol

8315, Bellingham, p 83152K. doi:10.1117/12.911791

182 T. Hayashi et al.

http://dx.doi.org/10.1007/s10439-006-9239-9
http://dx.doi.org/10.2105/AJPH.92.2.271
http://dx.doi.org/10.1111/j.1600-0722.1994.tb01156.x
http://dx.doi.org/10.1259/dmfr/31116116
http://dx.doi.org/10.1111/j.1601-0825.2009.01615.x
http://dx.doi.org/10.1111/j.2041-1626.2011.00095.x
http://dx.doi.org/10.1016/j.bone.2006.10.024
http://dx.doi.org/10.1109/TITB.2006.888704
http://dx.doi.org/10.1109/ISBI.2010.5490314
http://dx.doi.org/10.1109/ISBI.2010.5490314
http://dx.doi.org/10.1117/12.912309
http://dx.doi.org/10.1594/ecr2012/C-1110
http://dx.doi.org/10.1117/12.911791


18. Ruyssen-Witrand A, Gossec L, Kolta S, Dougados M, Roux C (2007) Vertebral dimensions as

risk factor of vertebral fracture in osteoporotic patients: a systematic literature review.

Osteoporos Int 18:1271–1278. doi:10.1007/s00198-007-0356-6

19. Kobayashi T, Takeda N, Atsuta Y, Matsuno T (2008) Flattening of sagittal spinal curvature as

a predictor of vertebral fracture. Osteoporos Int 19:65–69. doi:10.1007/s00198-007-0432-y

20. Hayashi T, Chen H, Miyamoto K, Zhou X, Hara T, Yokoyama R, Kanematsu M, Hoshi H,

Fujita H (2011) Analysis of bone mineral density distribution at trabecular bones in thoracic

and lumbar vertebrae using X-ray CT images. J Bone Miner Metab 29:174–185. doi:10.1007/

s00774-010-0204-1

21. Hayashi T, Chen H, Miyamoto K, Zhou X, Hara T, Yokoyama R, Kanematsu M, Hoshi H,

Fujita H (2011) Investigation of the new fracture risk prediction on the basis of the vertebral

morphometry on X-ray CT images: interim report. Osteoporos Jpn 19:97–102 (in Japanese)

22. Hayashi T, Zhou Z, Chen H, Hara T, Fujita H, Yokoyama R, Kanematsu M, Hoshi H (2008)

Investigation on the distribution of low bone-mineral-density locations at human vertebral

trabecular bone from X-ray CT images. Trans Jpn Soc Med Biol Eng 46:451–457 (in Japanese)

23. Hayashi T, Zhou X, Hara T, Fujita H, Yokoyama R, Kiryu T, Hoshi H (2006) Automated

segmentation of the skeleton in torso X-ray volumetric CT images. Int J Comput Assist Radiol

Surg 1(Suppl 1):522–523. doi:10.1007/s11548-006-0030-z

24. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using com-

puted tomography. J Comput Assist Tomogr 4:493–500

25. Hayashi T, Chen H, Miyamoto K, Zhou X, Hara T, Yokoyama R, Kanematsu M, Hoshi H,

Fujita H (2011) A computerized scheme for localization of vertebral bodies on body CT scans.

In: Dawant BM, Haynor DR (eds) Proceedings of SPIE medical imaging 2011: image

processing, vol 7962, p 796238. doi:10.1117/12.877511

26. Hayashi T, Chen H, Miyamoto K, Zhou X, Hara T, Yokoyama R, Kanematsu M, Hoshi H,

Fujita H (2011) A decision support scheme for vertebral geometry on body CT scans. In:

Dawant BM, Haynor DR (eds) Proceedings of SPIE medical imaging 2011: image processing,

vol 7962, p 796245. doi:10.1117/12.877516

27. Fujita H, Hara T, Zhou X, Hayashi T, Kamiya N, Zhang X, Chen H, Hoshi H (2011) Model

construction for computational anatomy. Med Imag Technol 29:116–121 (in Japanese)

28. Zhou X, Hayashi T, Han M, Chen H, Hara T, Fujita H, Yokoyama R, Kanematsu M, Hoshi H

(2009) Automated segmentation and recognition of the bone structure in non-contrast torso CT

images using implicit anatomical knowledge. In: Pluim JPW, Dawant BM (eds) Proceedings

of SPIE medical imaging 2009: image processing, vol 7259, p 72593S. doi:10.1117/12.812945

29. Hayashi T, Zhou X, Chen H, Hara T, Miyamoto K, Kobayashi T, Yokoyama R, Kanematsu M,

Hoshi H, Fujita H (2010) Automated extraction method for the center line of spinal canal and

its application to the spinal curvature quantification in torso X-ray CT images. In: Dawant BM,

Haynor DR (eds) Proceedings of SPIE medical imaging 2010: image processing, vol 7623,

p 76233F. doi:10.1117/12.843956

30. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the

Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15:850–863. doi:10.1109/34.232073

31. Bland JM, Altman DG (2003) Statistical methods for assessing agreement between two

methods of clinical measurement. Lancet 1:307–310. doi:10.1016/S0140-6736(86)90837-8

32. Hayashi T, Fujita H, Chen H, Tajima Y, Miyamoto K, Zhou X, Hara T, Yokoyama R,

Kanematsu M, Hoshi H (2011) Correlation between vertebral body geometry and trabecular

volumetric bone mineral density (vBMD) using X-ray CT images. Osteoporos Int 22(Suppl 1):

S181. doi:10.1007/s00198-011-1567-4

33. Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ (2005) Influence of spine

morphology on intervertebral disc loads and stresses in asymptomatic adults: implications

for the ideal spine. Spine J 5:297–309. doi:10.1016/j.spinee.2004.10.050

34. Sinaki M, Itoi E, Wahner HW, Wollan P, Gelzcer R, Mullan BP, Collins DA, Hodgson SF

(2002) Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year

follow-up of postmenopausal women. Bone 30:836–841. doi:10.1016/S8756-3282(02)00739-1

7 Computer-Aided Image Analysis for Vertebral Anatomy on X-Ray CT Images 183

http://dx.doi.org/10.1007/s00198-007-0356-6
http://dx.doi.org/10.1007/s00198-007-0432-y
http://dx.doi.org/10.1007/s00774-010-0204-1
http://dx.doi.org/10.1007/s00774-010-0204-1
http://dx.doi.org/10.1007/s11548-006-0030-z
http://dx.doi.org/10.1117/12.877511
http://dx.doi.org/10.1117/12.877516
http://dx.doi.org/10.1117/12.812945
http://dx.doi.org/10.1117/12.843956
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.1007/s00198-011-1567-4
http://dx.doi.org/10.1016/j.spinee.2004.10.050
http://dx.doi.org/10.1016/S8756-3282(02)00739-1
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Chapter 8

Robust Segmentation of Challenging Lungs

in CT Using Multi-stage Learning and Level

Set Optimization

Neil Birkbeck, Michal Sofka, Timo Kohlberger, Jingdan Zhang,

Jens Wetzl, Jens Kaftan, and S. Kevin Zhou

Abstract Automatic segmentation of lung tissue in thoracic CT scans is useful for

diagnosis and treatment planning of pulmonary diseases. Unlike healthy lung tissue

that is easily identifiable in CT scans, diseased lung parenchyma is hard to segment

automatically due to its higher attenuation, inhomogeneous appearance, and incon-

sistent texture. We overcome these challenges through a multi-layer machine

learning approach that exploits geometric structures both within and outside the

lung (e.g., ribs, spine). In the coarsest layer, a set of stable landmarks on the surface

of the lung are detected through a hierarchical detection network (HDN) that is

trained on hundreds of annotated CT volumes. These landmarks are used to robustly

initialize a coarse statistical model of the lung shape. Subsequently, a region-

dependent boundary refinement uses a discriminative appearance classifier to refine

the surface, and finally a region-driven level set refinement is used to extract the

fine-scale detail. Through this approach we demonstrate robustness to a variety of

lung pathologies.

Introduction

Thoracic CT images are clinically used for screening, diagnosis, and treatment

planning of lung diseases [13, 14, 16]. Computer aided diagnosis (CAD) tools

built for CT imaging rely on a segmentation of the lung as the first step [24].
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For example, algorithms for detection of malignant nodules [1, 15] and classifica-

tion of lung tissue into various diseases [34, 37, 38, 40] restrict processing to within

the lung regions only.

Further semantic decomposition of the lung tissue into lobes, e.g., [35, 41], and

methods to visualize dynamic motion of lung function through respiratory cycles

[8] also rely on a segmentation of the lung. As lung segmentation is an important

prerequisite for these applications, it is important for it to be robust to abnormal-

ities. Failures in the segmentation algorithm propagate to failures in further

processing. In CAD applications, these failures mean a clinician may not be warned

about a potential cancerous tumor [1].

Automatically segmenting healthy lung in CT is relatively easy due to low

attenuation of lungs compared to surrounding tissue. Pathologies, such as intersti-

tial lung disease (ILD), pleural effusion, and tumors, on the other hand, significantly

change the shape, appearance, or texture of lung parenchyma (Fig. 8.1). In a clinical

setting, pathologies are often no longer an exception but rather the norm, and

methods robust to these variations are necessary.

In this article, we address the automatic segmentation of challenging cases

described above and illustrated in Fig. 8.1. We first review the basic algorithms

for segmenting healthy lung parenchyma and demonstrate the limitations of

these algorithms in the presence of pathologies (Section “Segmenting Healthy

Lungs”). We then discuss how texture cues, anatomical information, and statis-

tical shape models, have been leveraged to improve robustness in the presence

of disease. This is followed by the presentation of a method that utilizes

machine learning with both texture cues and anatomical information from

outside the lung to obtain a robust lung segmentation that is further improved

with level set refinement (Section “Multi-Stage Learning for Lung Segmenta-

tion”). These algorithms are implemented in a modular software framework that

promotes reuse and experimentation (Section “A Software Architecture for

Detection and Segmentation”).

Fig. 8.1 Examples of how diseases, such as tumors or interstitial lung disease, affect the

appearance of lung in CT
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Segmenting Healthy Lungs

As healthy lung parenchyma has lower attenuation than the surrounding tissue,

simple image processing techniques often achieve good results. The attenuation of

healthy lung tissue in CT varies across the lung, depends on the phase of respiratory

cycle [25] and image acquisition settings [2], with mean values being around

� 860 to � 700 HU [25]. However, as illustrated in Fig. 8.2, the intensity distri-

bution within the lung region is often completely disjoint from that of the higher

density body tissue. Thus simple image processing operations, such as region

growing, edge tracking [10], or simple thresholding [4, 11, 23], can be used to

separate lung from body tissue.

For example, thresholding methods first separate body tissue from surrounding

background tissue by removing large connected components touching the edges of

the images. Lung tissue can then be separated from the body tissue with a threshold.

Hu et al. propose to use a dynamic threshold, τ, that is iteratively updated to be the

mean of the average intensities between the lung and body, τt ¼ ðμt�1lung þ μt�1bodyÞ=2,
where μlung

t and μbody
t are the mean HU values of the lying below and above τt,

respectively [11]. The initial threshold, τ0, is estimated with μ0lung ¼ �1; 000 and

μbody
0 is the average intensity of all HU values greater than 0.

Depending on the application, the final step is to separate the segmented lung

tissue into left and right lungs. The thresholded lung regions are connected by the

trachea and large airways and can be separated by region growing a trachea

segmentation from the top of the segment [11, 39]. Further, the lungs often touch

at the anterior and posterior junctions and need to be separated using another post-

process that uses a maximum cut path to split the single lung component into the

individual lungs [4, 11, 26].

The simple thresholding scheme gives a good gross estimate to the lung volume

but often excludes small airways and vessels that a clinician would include with the

lung annotation. These small regions can be filled through the use of morphological

operations [11, 36], or by performing connected component analysis on the image

slices [39] (see Fig. 8.3).
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Fig. 8.2 Healthy lung tissue is easily separable from body tissue with a single threshold
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Another subtle problem comes with nodules that lie on the boundary of the lung

[27]. A complete segmentation of the lung is essential for cancer screening appli-

cations [3], and studies on computer aided diagnosis have found the exclusion of

such nodules to be a limitation of automated segmentation and nodule detection

methods [1]. These nodules can be included in the segmentation through the use of

special post-processing steps, such as the adaptive border marching algorithm [23],

which tries to include small concave regions on the lung slices. However, such

algorithmic approaches are bound to fail for larger tumors whose size and shape are

unconstrained (Fig. 8.4).

Even more problematic is interstitial lung disease, which causes a dramatic

change in the attenuation and local texture pattern of lung parenchyma. Unlike

the clearly separated histograms of healthy lung (Fig. 8.3), such diseased tissue will

often have attenuation values that overlap with the surrounding body tissue

(Fig. 8.5). Although higher thresholds, such as � 300 HU [39], can be used to

include more lung tissue, simple thresholding methods are incapable of robustly

segmenting these challenging pathologies.

Fig. 8.3 Segmentation by simple thresholding often excludes airways and vessels (left). These
vessels are easily removed by morphological operations or by removing small connected compo-

nents on 2D slices (right)

Fig. 8.4 Small juxtapleural nodules like those in the left figure can be included in the final

segmentation through the use of morphological operations, but finding a set of parameters to

include all possible tumors, such as those in the cases on the right, is challenging
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Cues for Segmenting Pathological Lung

Intensity alone is the single strongest cue for segmenting healthy lung tissue, but in

order to address the high density lung tissue associated with interstitial lung disease,

and the different shapes associated with varying tumors, cues based on texture,

anatomy, or shape priors must be exploited.

Texture Cues

Diseased parenchyma has a different texture pattern which can often be extracted

through the use of texture features [20, 37, 39]. Texture, the local structural pattern

of intensities, is commonly characterized by measurements obtained from a

co-occurrence matrix [9], which records the joint frequency of intensity values

between two pixels separated by a fixed offset computed over small volumes of

interest around each image voxel. Quantities derived from this co-occurrence

matrix, such as entropy, can be used to directly identify diseased tissue [39], or

statistical classifiers can be trained to distinguish healthy from pathological tissue

using features derived from this matrix [37].

Anatomical Cues

As the appearance of the pathological lung parenchyma can vary dramatically,

texture and intensity cues are incapable of capturing all pathologies. These quan-

tities, which are internal to the lung, can be combined with neighboring anatomical

context, such as distance and curvature of the ribs. For example, Prasad et al. use the

curvature of the ribs in order to adaptively choose a threshold for the lung segmen-

tation [22]. As the lung border should also lie close to the ribcage and spine,

distance to these anatomical structures can be combined with intensity features in

classification of the lung border [12].
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Fig. 8.5 Lungs with diffuse pulmonary disease has higher density tissue and is difficult to separate

with a simple thresholding
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Shape Modeling

In order to avoid segmentations with unlikely shapes, such as the one in Fig. 8.5, a

shape prior can be used as an additional cue for segmenting challenging cases.

Although some inconsistencies in the shape can be removed, for example, by post-

processing operations [11] or through ensuring smoothness in the resulting seg-

mentations [12], the result should be constrained to be lung-like. Explicit statistical

models of shape variability, such as a point distribution model that models the shape

variability with a low-dimensional linear subspace can be used to constrain the

resulting segmentation [6]. These models have been effectively used to overcome

pathologies [30, 32].

Segmentation-by-registration are another class of methods that enforce a prior

constraint on the resulting segmentations. In such approaches, a reference image

complete with annotations is aligned to the target image through the process of

image alignment. The target segmentation is then derived from the aligned refer-

ence image. To increase generality, multiple reference images can be aligned to the

target image and the final segmentation can be taken as the fused result. Depending

on the matching score used in the registration, such methods have shown to be

effective for pathological lungs [28].

Multi-stage Learning for Lung Segmentation

To ensure robustness, a complete solution to the segmentation of pathological lung

in CT has to include components that address shape and appearance variability

caused by both tumors and diffuse lung disease. In this section we introduce a

robust machine learning method for segmenting challenging lung cases that uses

external anatomical information to position a statistical mesh model on the image.

A large database of annotated images is used to train discriminative classifiers to

detect initial poses of the mesh models and to identify stable boundary landmarks

[30]. The boundary of this initialization is then guided by texture and appearance

patterns to identify the boundary of the lung. Finally, as pathologies often only

occupy a small portion of the lung, a fine-scale level set surface refinement is used

to ensure the final segmentation includes all healthy regions as well as preserving

the segmentation in the pathological regions [18]. The elements of the system are

illustrated in Fig. 8.6.

Learning-Based Robust Initialization

For the initialization phase, the carina of the trachea is detected in the input volume.

Given the carina location, a Hierachical Detection Network (HDN) [31] is used to

detect an initial set of pose parameters of statistical shape models of each lung
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(Sections “Hierarchical Detection Network” and “Pose Detection”). In the next

level of the hierarchy, stable landmark points on the mesh surface are refined to get

an improved lung segmentation that is less sensitive to appearance changes within

pathologies (Section “Refinement Using Stable Landmarks”). As we will see, these

landmark points tend to use nearby anatomical context, e.g., ribs, to improve the

segmentation. A further refinement comes by displacing the mesh surface so as to

maximize the score of an appearance-based classifier (Section “Freeform

Refinement”).

Input Annotation Database

A set of CT images complete with manual annotation of the lungs is used as input to

the algorithm. In an offline training step, statistical shape models of the shape

variation within the database annotations are learned.

The input annotation meshes are first brought into correspondence and remeshed

so that each annotation mesh has the same number of points and a consistent

triangulation. Each annotation mesh,mk ¼ ðpk;tÞ, then consists of a set of points,
pk ¼ fvki 2 R3gNi¼1, and a single set of triangle indices, t ¼ f4j 2 Z3gNtri

j¼1.
The variability in the point coordinates is modeled through a low-dimensional

linear basis giving a statistical shape model,

s ¼ ðfv̂gNi¼1; fUjgMj¼1Þ; (8.1)

that consists of a mean shape,fv̂gNi¼1, and the linear basis shapes,Uj ¼ fuijgNi¼1. The
linear basis is empirically estimated by performing PCA on the aligned input

annotation meshes. The alignment uses procrustes analysis to remove translation,

orientation, and scale variation of the corresponding meshes.

A mesh in the span of the basis can be approximated by modulating the basis

shape vectors and applying a similarity transform
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Fig. 8.6 A hierarchical detection network is used to initialize the lung segmentations from a set of

stable landmarks. These segmentations are further refined by trained boundary detectors and

finally by a fine-scale level set refinement

8 Segmentation of Challenging Lungs Using Multi-stage Learning and Level Sets 191



gðvi; fλjg; p; r; sÞ ¼ pþMðs; rÞ
X
j

v̂i þ uijλj
� �

; (8.2)

where M(s, r) is the rotation and scale matrix parameterized by rotation angles, r,

and anisotropic scale, s. p is a translation vector, and {λj} are the shape coefficients.
Figure 8.7 illustrates the variability encoded by the first three basis vectors for a

model of the right lung.

Each training shape can be approximated in the same manner, meaning each

training shape has an associated pose and shape coefficient vector. In the following

description of the image-based detection procedure, the relationship between these

pose and shape coefficients and the image features is modeled with machine

learning so that the parameters of the shape model can be inferred on unseen data.

Hierarchical Detection Network

The Hierarchical Detection Network (HDN) uses an efficient sequential decision

process to estimate the unknown states (e.g., object poses or landmark positions) of

a sequence of objects that depend on each other [31]. In the case of lung segmen-

tation, the unknown states are the poses and shape coefficients that align a statistical

model of the lung to the image, which depend on the detected trachea landmark

point. The location of stable lung boundary points are dependent on the pose

parameters of the lungs.

The HDN infers multiple dependent object states sequentially using a model of

the prior relationship between these objects. Let θt denote the unknown state of an

object (e.g., the 9 parameters of a similarity transform or the 3D coordinates of a

landmark), and let the complete state for t + 1 objects, θ0, θ1, . . ., θt, be denoted as
θ0:t. Given a d-dimensional input volume, V : ℝ d � ℝ, the estimation for each

object, t, uses an observation region V t � V . The complete state is inferred from

the input volume by maximizing the posterior density, f(θ0:tjV0:t), which is recur-

sively decomposed into a product of individual likelihoods, f(Vtjθt), and the tran-

sition probability between the objects, f(θtjθ0:t�1).

Fig. 8.7 The variability of right lung shape model by using one of the first three basis vectors to

represent the shape
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The recursive decomposition of the posterior is derived by applying a sequence

of prediction and update steps. For object t, the prediction step ignores the

observation region, Vt, and approximates the posterior, f(θ0:tjV0:t�1), using a prod-

uct of the transition probability, f(θtjθ0:t�1), and the posterior of the preceding

objects:

f ðθ0:tjV0:t�1Þ ¼ f ðθtjθ0:t�1;V0:t�1Þf ðθ0:t�1jV0:t�1Þ; (8.3)

¼ f ðθtjθ0:t�1Þf ðθ0:t�1jV0:t�1Þ; (8.4)

as θt and V0: t � 1 are assumed to be conditionally independent given θ0:t � 1.

The observation region, Vt, is then combined with the prediction in the update
step,

f ðθ0:tjV0:tÞ ¼ f ðV0:tjθ0:tÞf ðθ0:tÞ
f ðV0:tÞ ¼ f ðVtjV0:t�1; θ0:tÞf ðV0:t�1jθ0:tÞf ðθ0:tÞ

f ðVtjV0:t�1Þf ðV0:t�1Þ (8.5)

¼ f ðVtjθtÞf ðθ0:tjV0:t�1Þ
f ðVtjV0:t�1Þ ; (8.6)

where the denominator is a normalizing term, and the derivation assumes Vt and

ðV0:t�1; θ0:t�1Þ are conditionally independent given θt. The likelihood term, f(Vtjθt),
is modeled with a discriminative classifier,

f ðVtjθtÞ ¼ f ðy ¼ þ1jVt; θtÞ; (8.7)

where the random variable y∈{ � 1, 1} denotes the occurrence of the tth object at
pose θt. The posterior, f ðy ¼ þ1jVt; θtÞ , is modeled with a powerful tree-based

classifier, the Probabilistic Boosting Tree (PBT) [33], which is trained to predict the

label, y, given the observation region, Vt and a state, θt.
The prediction step models the dependence between the objects with the transi-

tion prior. In the case of lung segmentation, each object is dependent on one of the

previous objects, meaning

f ðθtjθ0:t�1Þ ¼ f ðθtjθjÞ; 9j 2 f0; 1; 2; . . . ; t� 1g: (8.8)

The relation between the objects, f(θt j θj), is modeled using a Gaussian distribution

whose parameters are learned from training data. In our application, the poses of

each lung are dependent on the initial carina landmark point (Fig. 8.6). The stable

landmarks, which are distributed on the boundary of the lungs, are then dependent

on the pose of the lung.

The full posterior, f(θ0:t j V 0:t), is approximated through sequential importance

sampling, where a set of weighted particles (or samples), {θt
j, wt

j}Pj¼1, is used to

approximate the posterior at state t, and these particles are propagated, in sequence,
to the next object (see [31] for more details).
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Pose Detection

Thepose of each lung is representedwith a 9-dimensional state vector,θt ¼ {pt, rt, st},

containing a translation vector p ∈ ℝ3, Euler angles for orientation r, and an

anisotropic scale, s. The 9 pose parameters are decomposed into three sequential

estimates of the respective 3-dimensional quantities [21, 42],

f ðθtjVtÞ ¼ f ðptjVtÞf ðrtjpt;VtÞf ðstjpt; rt;VtÞ; (8.9)

allowing for efficient estimation by using fewer particles during inference. For

position, the classifier in (8.7) is trained using 3D Haar features, whereas orientation

and scale are estimated using steerable features [42].

The pose detection aligns the mean shape to the image, giving an initial

segmentation. Additional detail is incorporated into the segmentation by then

detecting the first three shape coefficients, θt ¼ {λ1, λ2, λ3} from (8.2), using

the HDN.

A uniform sampling of shape coefficients, λk
min � λk � λk

max, is used during

detection. The bounds, [λk
min, λk

max], are estimated from the shape coefficients of

the training data. These uniformly sampled coefficients are augmented with the

results of the pose estimation to get a candidate set of particles. Steerable features

extracted from the image volume at vertices of the mesh are used to train the

classifier in (8.7).

Refinement Using Stable Landmarks

The alignment of the shape models to the input volume through the above described

detection process is still sensitive to the appearance and shape changes of pathol-

ogies. For this reason, we utilize a robust improvement of the shape alignment that

detects a set of stable landmark points on the surface of the lung [30]. This subset of

landmark points are chosen as a stable subset of mesh vertices by using the

reliability of their corresponding detectors.

Training and Identifying Stable Landmarks. During training, all the input

annotations are brought into correspondence using registration in order to build

the statistical shape model (Section “Input Annotation Database”). Each one of the

mesh vertices is then a potential landmark. Let pi j denote the location of landmark,

i, in training volume j. A position detector is trained for each landmark indepen-

dently, and the detected result for each detector gives a predicted landmark loca-

tion: di j. The covariance of the error for each detector is then computed as

Ci ¼
P

j ðdij � pijÞðdij � pijÞ>.
Landmarks that are stable should have low uncertainty, meaning that the score

si ¼ traceðCiÞ; (8.10)
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should be low. Further, the selected landmarks should be spatially distributed along

the surface of the object. In order to select a subset of stable and well-distributed

landmarks, a greedy selection scheme with a spatial filtering of radius r is used.
First, the landmark with the lowest si is greedily chosen. Then the mesh vertices

within radius r of this vertex on the mean mesh are no longer considered. The

process then continues by iteratively choosing the next best landmark and removing

nearby vertices from consideration (see Fig. 8.8). Let L � { 1, 2, . . ., N} denote the
mesh indices of the selected landmarks.

The parameter r gives a trade-off between the spatial distribution of the vertices
and the stability of the chosen landmarks. In our experiments we found that a radius

of r ¼ 20 mm gives a good balance.

Alignment of Shape to Landmarks. During detection, in the HDN framework, the

stable landmark positions are first predicted from the pose detection in section “Pose

Detection”. The resulting detected position of the landmark gives a constraint on

where the corresponding vertex should move. As not all vertices have

corresponding stable landmarks, the entire statistical mesh model must then be

deformed to fit the detected landmark positions. This is accomplished by finding a

smoothly varying nonrigid transformation using a thin-plate spline that transforms

the input landmark vertices from their pose estimate di
0 (Section “Pose Detection”)

to their detected positions, di. The transform takes on the following form

f ðxÞ ¼
X
i2L

air
2
i logðriÞ þ Ax; (8.11)

where ri ¼ jx� d0i j is the distance between a point x ∈ R3 and the pre-image of

the landmark point. A is a 3�4 affine transformation matrix, and ai are 3�1 vector
weights for each landmark point. The unknowns, A and ai, are obtained by

solving the linear system that arises when constraining the transformation such

that f(di
0) ¼ di.

Fig. 8.8 An illustration showing the spatial filtering process used when selecting stable land-

marks. The landmark with lowest error is selected on the bottom left of the lung, then a region

within that landmark is ignored for future selection (triangles marked white). The process

continues until no more vertices can be selected. Here we used a large filter parameter of

r ¼ 100 mm for illustration purposes
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Freeform Refinement

The estimation of the stable landmarks in the previous section provides a robust

initial estimate of the lung surfaces. Although the landmarks provide a more

detailed initialization than the first three shape coefficients from the preceding

stage, a more detailed estimate is obtained through the use of a freeform surface

deformation approach [21] that is similar to the methods used in the active shape

model [6].

Given the input volume, V , the freeform surface deformation finds the most

likely mesh, m, within the linear span of the statistical shape model:

max f ðmjVÞ s:t: m 2 spanðsÞ: (8.12)

The above posterior is computed as an average on the surface of the mesh, and at

each surface point, the posterior evaluates a discriminitive classifier:

f ðmjVÞ ¼ 1

N

X
vi

f ðvijVÞ ¼ 1

N

X
vi

f ðyi ¼ 1jvi; ni;VÞ; (8.13)

where the random variable yi ¼ f�1;þ1g takes a value of + 1 if the surface

boundary exists at point vi with normal ni in the input volume.

The statistical classifier for the boundary, f(yi ¼ 1jvi, ni, V ), can take into

account such things as raw image intensity, spatial texture, or distance to anatom-

ical structures in order to discriminate between surface points either on or off the

lung boundary. We use a classifier that automatically selects the best set of features

[33]. If only healthy cases exist, the classifier will pick features like image gradient

or raw intensity. However, robustness to pathological cases can be obtained by

ensuring pathological cases exist in training.

Instead of maximizing (8.12) directly using the shape coefficients and pose of

the shape model, the freeform refinement performs a sequence of local per-vertex

optimizations followed by a projection of the shape back into the span of the shape

space. The local optimization for a vertex, vi, searches for the best displacement,

di ∈ [� τ, τ], along the normal, ni by maximizing the score of the classifier:

di ¼ argmax
�τ�d�τ

f ðvi þ dnijVÞ; (8.14)

where τ defines a local search range around the point. The vertex position is then

updated with the best displacement, vi  vi + dini. As this process is done inde-

pendently for each vertex, the resulting surface may be irregular. The projection of

the displaced shape into the shape space regularizes the result and ensures a valid

shape.

Several iterations of the above local optimization and regularization steps are

performed, with the search range, τ, being reduced at each iteration. In the final

iterations, when the search range is small, the projection of the mesh into the shape
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space is replaced with mesh smoothing [21]. This form of regularization gives a

more detailed shape by allowing the surface to deviate from spanðsÞ.

Fine-Scale Refinement

The detection results from the previous section ensure the lung surface encom-

passes tumors and pathological regions, but the explicit mesh representation is

ineffective to represent fine-scale detail. In the final phase, we use an energy-based

level set refinement. In addition to the common data and regularization terms, our

energy includes a term to remove overlap between lungs (e.g., at the anterior/

posterior junctions), and another term to keep the refined solution close to the

detection meshes that are output from the previous phase (Section “Freeform

Refinement”). This energy framework can easily incorporate constraints from

other adjacent structures such as the heart or liver to further improve the segmen-

tation accuracy [18].

The detected lung surfaces, ci, are first converted to signed distance functions,

Φi(x) : Ω � R3 � R where j∇Φi(x) j ¼ 1 and ci ¼ fxjΦiðxÞ ¼ 0g. Further,
Φi(x) > 0 if x is inside ci, and Φi(x) < 0 outside ci (see [5] and references within

for more details). Then for each organ we minimize the energy proposed by

Kohlberger et al. [18]:

EðΦi; fΦjgj6¼iÞ :¼ EdðΦiÞ|fflfflffl{zfflfflffl}
data

þEsðΦiÞ|fflfflffl{zfflfflffl}
smooth

þ
X
j2No

j

EoðΦi;ΦjÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

overlap

þEpðΦi;Φ
0
i Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

prior

: (8.15)

The standard region-based data energy, Ed, measures deviation of the appear-

ance of the inside and outside regions from their respective distributions [5],

EdðΦiÞ :¼�α
ð
Ω
HðΦiÞ logðpini ðIðxÞjΦiÞÞ þ ð1� HðΦiÞÞ logðpouti ðIðxÞjΦiÞÞdx; (8.16)

where H denotes the Heaviside function. Here, the probability of intensities

belonging to the inside or outside of the object, pi
in ∕ out, are modeled with

non-parametric Parzen densities (see [7]). This data energy will push the segmen-

tation surface to occupy regions that look similar to its intensity distribution. On the

other hand, when the intensity distributions between foreground (lung) and back-

ground (body) overlap, this term will have less influence. This happens for diseased

cases with large tumors or diffuse lung disease cause pi
in to contain high density

tissue.

The smoothness term in (8.15) penalizes surface area of the desired

segmentation,
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EsðΦiÞ :¼ γ

ð
Ω
jrHðΦiÞjdx; (8.17)

and is balanced with the weight coefficient γ.
The overlap term, Eo(Φi, Φj), penalizes overlap between organ i and a set of

neighboring organs, Ni
o:

EoðΦi;ΦjÞ :¼ β

ð
Ω
HðΦiÞHðΦjÞΦjdx: (8.18)

As intended, this term only affects regions that lie within the intersection of both

surfaces, and the constraint is proportional to the depth of penetration into the

surface Φj.

Finally, the prior shape term prefers the surface to be close to the detected shape,

Φi
0:

EpðΦi;Φ
0
i Þ :¼

ð
Ω
ωin
lðxÞHðΦ0

i ðxÞ �ΦiðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inside deviations

þωout
lðxÞHðΦiðxÞ �Φ0

i ðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Outside deviations

dx: (8.19)

The prior term utilizes a set of positive valued spatially varying surface weights

ωl(x)
in and ωl(x)

out to control the penalization of the surface deviations occurring either

inside or outside the detected shape. These surface weights are specified on the

surface of the detected mesh, {pj}, which is pre-annotated with corresponding

weights, {ωj
∗}:

ω�lðxÞ ¼ ω�j where j ¼ argminjkx� pjk2: (8.20)

To maintain a consistent weighting over the energy minimization, the points, pj,

are also evolved during the minimization [19].

In practice, since our detection result is typically undersegmented, we use a large

uniform penalization for the interior deviations, ωl(x)
in ¼ 10. In order to allow the

fine-scale refinement to fill in small details, we use a smaller weight for the exterior

surface deviations and constrain the solution to not deviate much from the detection

in the region of the airways. Figure 8.9 illustrates the spatially varying exterior

weights, ωl(x)
out .

The contribution of the other terms are balanced by qualitative tuning on a few

cases. Here we used a weight of α ¼ 2 for the data term, a smoothness weight of

γ ¼ 15, to keep the lung surface smooth, and a large weight on the overlap term,

β ¼ 1, 000.
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Optimization

Each of the lungs (and possibly other adjacent organs) has a corresponding energy

in the form of (8.15), and the minimizers of these energies are coupled by the

overlap penalization term (8.19). In practice, interleaving gradient descents for each

of the organs is sufficient to get a desired solution [18].

Specifically, each lung is refined along the negative gradient of the energy term,

@Φi

@t

ðΦtþ1
i � Φt

iÞ
δt

¼ � @EðΦi; fΦt
jgj 6¼iÞ

@Φi
; (8.21)

where the gradient for the coupled overlap term uses the solution from the previous

time, Φj
t. Each organ is then evolved along (8.21) in lockstep using a discrete time

step δt.
The gradient descent is terminated when either a fixed number of iterations is

reached or if the movement of the surface in a given iteration falls below a

predefined threshold. For an efficient solution, the level set surfaces are represented

with a narrow-band scheme within � 2 voxels of the zero crossing.

A Software Architecture for Detection and Segmentation

In order to implement our lung segmentation algorithm, we use an Integrated

Detection Network (IDN) [29], which is a modular design that specifically caters

to such detection networks. IDN promotes modularity and reusability through a

basic abstraction that decomposes algorithms into the operations, which are called

Modules, and the Data that these modules consume and produce. In contrast to a

blackboard model, where information is globally shared through a blackboard, e.g.,

as done by Brown et al. for lung segmentation [4], the connections between

modules illustrate the data flow of the entire algorithm. Data is only shared with a

module if it is necessary.

Fig. 8.9 An illustration of the spatially varying exterior surface constraint weights for the left and

right lung on the surface of the detected points, {pj}. The dark regions map to ωout ¼ 0. 1 and the

white regions map to ωout ¼ 5. Larger weights are given in a region near the main bronchi
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Each Module provides a set of input slots for incoming Data and owns a

(possibly empty) set of output Data objects. Different Module operations may be

connected as long as their connecting Data object type agrees with the respective

input/output types of the Module. The connections between these Modules through
their Data forms an acyclic graph.

Modules and Data carry all the necessary information to allow both training and

detection. In this way, the spatial dependencies between objects in the HDN can be

directly encoded with an IDN network, and this same network of Modules can be

used to train the classifiers as well as to perform the detection and segmentation.

Pose Detection Modules

Pose detectionModules parallel their respective HDN detections and take as input a

set of candidate poses and produce an augmented set of candidates, where, for

example, the output of the orientation detector contains both position and orienta-

tion. Estimation of the object pose and the first few PCA coefficients is achieved by

connecting the individual detectors, as illustrated in Fig. 8.10.

Segmentation Modules

The main components of the segmentation are also decomposed into independent

modules. The stable landmark detector uses an input mesh to predict the locations

of the stable landmarks and outputs a mesh deformed to fit these landmark posi-

tions. The learning-based boundary refinement refines a mesh, as does the level set

refinement (Fig. 8.11). All of these elements can be interchanged provided the

input/output types agree. Notice that the final IDN graph parallels the original

flowchart of the algorithm in Fig. 8.6.

Fig. 8.10 Modules making up the pose estimation are connected by a set of pose candidates, with

each detector augmenting more information to its output candidates. AllModules consume the CT

volume as input

Fig. 8.11 The full pipeline uses the pose estimation, with the later modules performing consec-

utive refinements of the mesh
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Experiments

In this section, we perform a qualitative and quantitative analysis at several stages

of our algorithm.1 We use a data set of 260 diagnostic CT scans, which has images

of varying contrast and slice thickness (ranging from 0.5 to 5 mm). The lung

surfaces have been manually annotated in each of these scans by an expert. This

data was randomly partitioned into two sets: 192 volumes that were used to train our

detectors, and another 68 volumes that were used for testing. The shape models

(Section “Input Annotation Database”) computed from the input annotations have a

total of 614 vertices for each the left and right lung.

As the stable landmarks are selected by their error rates, we first illustrate the

error rates for all the candidate landmarks by computing the accuracy on the

training data. We then show how the automatic greedy selection of spatially varying

landmarks tends to choose a set of well-distributed landmarks that are close to

anatomical structures. We then demonstrate on testing data how this landmark-

based initialization helps improve the results over the pose+PCA detector on

challenging cases. Finally, we illustrate how the fine-scale refinement further

improves the accuracy, even in the presence of pathologies.

Landmark Errors

Figure 8.12 illustrates the landmark scores (computed as the average distance

between detected and ground truth) for all 614 landmarks computed on the training

set for the right lung (as in section “Refinement Using Stable Landmarks”).
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Fig. 8.12 Sorted mean errors of the 614 landmarks computed from all training volumes for the

right lungs, and the 143 selected landmarks obtained using the spatial filtering with parameter of

r ¼ 20 mm visualized on the mesh

1 The initial analysis and comparison of the performance of the boundary landmarks also appears

in our earlier conference publication [30].
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The larger errors on the right of the plot show that some of the landmarks are less

reliable; these landmarks are less likely to be selected. For the landmarks with

lower scores, some of the error is attributed to slight misalignments that occur

during the correspondence establishment phase used to generate the ground truth

landmark positions. When using a spatial radius of r ¼ 20 mm, a total of 143 land-

marks were chosen for the right lung and 133 for the left lung.

For illustration purposes, by increasing the spatial filtering radius to r ¼ 70 mm,

we show that the greedy selection is effective in choosing a distributed set of

12 stable landmarks (Fig. 8.13). The resulting landmarks are often chosen close

to anatomical structures, such as ribs and vertebrae. The spatial filtering also

ensures that some landmarks are also selected near the top and bottom of the lungs.

Fig. 8.13 Using a larger spatial filter radius (70 mm), the 12 strongest landmarks selected of the

614 mesh vertices are shown. These landmarks are selected near distinctive anatomical structures

such as ribs (3, 4, 5, 12), vertebrae (1, 2) and top (5) and bottom of the lung (9, 10, 11). Reprinted

from [30] with kind permission from Springer Science and Business Media
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Segmentation Accuracy and Quality

In this next experiment, we analyze the improvement that is attained at several

stages of the algorithm on our testing set. First, we ran the algorithm up to the

freeform refinement without the use of the stable landmarks (i.e., skipping sec-

tion “Refinement Using Stable Landmarks”). We then included the stable landmark

stage of the algorithm. And finally, we then ran the full algorithm including the

level set refinement. For comparison, the symmetric surface-to-surface distance

was computed between the detected and ground truth segmentation.

The results in Table 8.1 show that the inclusion of the stable landmarks gave a

significant ( p < 0. 05) decrease in the surface-to-surface distance for both the left

and right lung [30]. In the case of the left lung, notice the decrease in the maximum

error. This is caused by the stable landmarks correcting a failure case. Finally,

notice that the fine-scale level set refinement further reduced this error by filling in

the small scale details.

The main advantage of the stable landmarks is the ability to overcome a poor

initialization that can occur due to appearance variability in pathologies. Figure 8.14

illustrates several qualitative examples of pathologies where the robust landmarks

lead to an improved result of the free-form refinement.

As the fine-scale surface refinement is constrained by the initial surface estimate,

a good initialization is important for final accuracy. Figure 8.15 illustrates that the

final level set refinement fills in the small regions and that the segmentation still

includes the large pathological regions due to the surface prior constraint.

In Fig. 8.16, we demonstrate that all the terms of the level set energy are

necessary. When the prior and overlap terms are not used (only the data and

regularization terms in (8.15)), the resulting segmentation excludes the pathological

region even though the initialization includes this region. Further, without the prior
term, the level set leaks into the airways and results in a non-smooth surface near

the hilum. Enabling the prior term fixes these problems, but the segmentation still

has overlap near the anterior junction (middle of Fig. 8.16). Only when both the

prior and overlap terms are enabled is the desired segmentation achieved.

Table 8.1 Testing results of symmetrical point-to-mesh comparisons (in mm’s) between the

detected results and annotations for both lungs, with and without stable landmark detection [30],

and also with the final level set refinement presented in section “Fine-scale Refinement”

Lung Landmark Level set Mean (std.) Med. Min Max 80 %

Right No No 2.35 � 0.86 2.16 1.40 6.43 2.57

Right Yes No 1.98 � 0.62 1.82 1.37 4.87 2.18

Right Yes Yes 1.30 � 0.64 1.12 0.91 4.60 1.38

Left No No 2.31 � 2.42 1.96 1.28 21.11 2.22

Left Yes No 1.92 � 0.73 1.80 1.19 6.54 2.15

Left Yes Yes 1.34 � 0.77 1.13 0.93 6.78 1.39
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Fig. 8.15 Comparison of the basic boundary detection (top) and fine-scale level set refinement

(bottom) on three example cases. The basic boundary detection gives a good coarse estimate that

includes the high density tissue, and the fine-scale refinement not only remains close in these

regions but also includes the fine-scale voxel-level details

Fig. 8.14 Comparison of freeform boundary results without using the stable landmarks (left
column of every set) and with stable landmark detection (right column of every set). Reprinted

from [30] with kind permission from Springer Science and Business Media
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Conclusion

In this article we presented a multi-stage learning method for segmenting challeng-

ing lung cases in thoracic CT. The algorithm overcomes the diversity of lung

appearance in the presence of pathologies through the use of a statistical shape

model and by detecting robust landmarks that use anatomical context outside

the lung.

As pathologies may only affect a portion of the lung, it is important to also use a

fine-scale refinement to obtain highly accurate segmentations in the healthy

regions. Graph-based methods can be used for this refinement [12], but we propose

to use a level set approach that uses adaptive region intensity constraints and

enforces that the refined surface cannot deviate too far from the robustly initialized

detected surfaces. We have illustrated that the resulting segmentation is robust to a

variety of pathologies, including high density tissue associated with diffuse lung

disease as well as tumors.

Intelligent editing may still be necessary to fix up failures in extreme cases

[17]. However, the same principles used in our automatic algorithm, such as the use

of machine learning to integrate shape, texture, and anatomical cues, can be used to

guide the development of such interactive techniques.

Fig. 8.16 In this example, the same data from the right of Fig. 8.15 is used to demonstrate that

both the overlap and prior terms are necessary to obtain good segmentations in the level set

refinement. Without the prior term, the segmentation doesn’t include the tumor (left), and without
the overlap term, the resulting segmentations may have overlap (left and middle). With both terms

enabled, the desired segmentation, which includes the pathological region and removes overlap, is

obtained (right)

8 Segmentation of Challenging Lungs Using Multi-stage Learning and Level Sets 205



References

1. Abe Y, Hanai K, Nakano M, Ohkubo Y, Hasizume T, Kakizaki T, Nakamura M, Niki N,

Eguchi K, Fujino T, Moriyama N (2005) A computer-aided diagnosis (CAD) system in lung

cancer screening with computed tomography. Anticancer Res 25:483–488

2. Adams H, Bernard M, McConnochie K (1991) An appraisal of CT pulmonary density mapping

in normal subjects. Clin Radiol 43(4):238–42

3. Armato III S, Sensakovic W (2004) Automated lung segmentation for thoracic CT: Impact on

computer-aided diagnosis. Acad Radiol 11(9):1011–1021

4. Brown MS, McNitt-Gray MF, Mankovich NJ, Goldin JG, Hiller J, Wilson LS, Aberle DR

(1997) Method for segmenting chest CT image data using an anatomical model: preliminary

results. IEEE Trans Med Imag 16(6):828–839

5. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10

(2):266–277

6. Cootes T, Hill A, Taylor C, Haslam J (1994) Use of active shape models for locating structures

in medical images. Image Vis Comput 12(6):355–365

7. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set

segmentation: Integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215

8. Haider C, Bartholmai B, Holmes D, Camp J, Robb R (2005) Quantitative characterization of

lung disease. Comput Med Imag Graph 29(7):555–563

9. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification.

IEEE Trans Syst Man Cybern 3(6):610–621

10. Hedlund L, Anderson R, Goulding P, Beck J, Effmann E, Putman C (1982) Two methods for

isolating the lung area of a CT scan for density information. Radiology 144(2):353–357

11. Hu S, Hoffman E, Reinhardt J (2002) Automatic lung segmentation for accurate quantitation

of volumetric X-ray CT images. IEEE Trans Med Imag 20(6):490–498

12. Hua P, Song Q, Sonka M, Hoffman E, Reinhardt J (2011) Segmentation of pathological and

diseased lung tissue in CT images using a graph-search algorithm. International Symposium on

Biomedical Imaging, Chicago, IL, March 2011

13. International Consensus Statement (2000) Idiopathic pulmonary fibrosis: diagnosis and treat-

ment. American Thoracic Society (ATS) and the European Respiratory Society (ERS), vol

161, pp 646–664

14. International Consensus Statement (2002) American thoracic society/European respiratory

society international multidisciplinary consensus classification of the idiopathic interstitial

pneumonias. Am J Respir Crit Care Med 165:277–304

15. Kanazawa K, Kawata Y, Niki N, Satoh H, Ohmatsu H, Kakinuma R, Kaneko M, Moriyama N,

Eguchi K (1998) Computer-aided diagnosis for pulmonary nodules based on helical CT

images. Comput Med Imag Graph 22(2):157–167

16. King TE (2005) Clinical advances in the diagnosis and therapy of the interstitial lung diseases.

Am J Respir Crit Care Med 172(3):268–279 (2005)

17. Kockelkorn T, van Rikxoort E, Grutters J, van Ginneken B (2010) Interactive lung segmen-

tation in CT scans with severe abnormalities. In: International Symposium on Biomedical

Imaging, Rotterdam, Netherlands, pp 564–567, 14–17 April 2010

18. Kohlberger T, Sofka M, Zhang J, Birkbeck N, Wetzl J, Kaftan J, Declerck J, Zhou S (2011)

Automatic multi-organ segmentation using learning-based segmentation and level set optimi-

zation. In: Mediacl Image Computing and Computer-assisted Iintervention 2011
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Part III

Image Processing and Analysis



Chapter 9

Bone Suppression in Chest Radiographs

by Means of Anatomically Specific Multiple

Massive-Training ANNs Combined with

Total Variation Minimization Smoothing

and Consistency Processing

Sheng Chen and Kenji Suzuki

Abstract Most lung nodules that aremissed by radiologists aswell as computer-aided

detection (CADe) schemes overlap with ribs or clavicles in chest radiographs (CXRs).

The purpose of this study was to separate bony structures such as ribs and clavicles

from soft tissue in CXRs. To achieve this, we developed anatomically (location-)

specific multiple massive-training artificial neural networks (MTANNs) which is a

class of pixel-based machine learning combined with total variation (TV) minimiza-

tion smoothing and a histogram-matching-based consistency processing technique.

Multi-resolutionMTANNs have previously been developed for rib suppression by use

of input CXRs and the corresponding “teaching” images for training. Although they

were able to suppress ribs, they did not suppress rib edges, ribs close to the lung wall,

and the clavicles very well because the orientation, width, contrast, and density of

bones are different from location to location and the capability of a single set of multi-

resolution MTANNs is limited. To address this issue, the anatomically specific

multiple MTANNs developed in this work were designed to separate bones from

soft tissue in different anatomic segments of the lungs. Each of multiple anatomically

specific MTANNs was trained with the corresponding anatomic segment in the

teaching bone images. The output segmental images from the multiple MTANNs

were merged to produce a whole bone image. Total variationminimization smoothing

was applied to the bone image for reduction of noise while edges were preserved.
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This bone image was then subtracted from the original CXR to produce a soft-tissue

image where the bones were separated out. In order to ensure the contrast and density

in different segments were consistent, a histogram-matching technique was applied to

the input segmental images. This new method was compared with the conventional

MTANNs by using a database of 110 CXRs with pulmonary nodules. Our new

anatomically (location-) specific MTANNs separated rib edges, ribs close to the

lung wall, and the clavicles from soft tissue in CXRs to a substantially higher level

than the conventional MTANNs did, while the visibility of lung nodules and vessels

wasmaintained. Thus, our image-processing technique for bone-soft-tissue separation

by means of our new anatomically specific multiple MTANNs would be potentially

useful for radiologists as well as for CAD schemes in detection of lung nodules

on CXRs.

Introduction

The prevalence of chest diseases has been increasing over a long period of time.

Every year, more than nine million people worldwide die from chest diseases [1].

Chest radiography (chest X-ray: CXR) is by far the most commonly used diagnostic

imaging technique for identifying chest diseases such as lung cancer, tuberculosis,

pneumonia, pneumoconioses, and pulmonary emphysema. This is because CXR is

the most cost-effective, routinely available, and dose-effective diagnostic tool and

has the ability to reveal certain unsuspected pathologic alterations [2]. Among

different chest diseases, lung cancer is responsible for more than 900,000 deaths

each year, making it the leading cause of cancer-related deaths in the world. CXRs

are regularly used for detecting lung cancer [3–5] as there is evidence that early

detection of the tumor can result in a more favorable prognosis [6–8].

Although CXR is widely used for the detection of pulmonary nodules, the

occurrence of false-negatives for nodules on CXRs is relatively high, and CXR is

inferior to CT with respect to the detection of small nodules. This failure to detect

nodules has been attributed to their size and density and to obscuring by structures

such as ribs, clavicles, mediastinum, and pulmonary blood vessels. It has been well

demonstrated that the detection of lung cancer at an early stage using CXRs is a very

difficult task for radiologists. Studies have shown that up to 30% of nodules in CXRs

could be missed by radiologists, and that 82–95 % of the missed nodules were partly

obscured by overlying bones such as ribs and clavicles [9, 10]. However they would

be relatively obvious on soft-tissue images if the dual-energy subtraction technique

was used [11]. Therefore, a computer-aided detection (CADe) scheme [12, 13] for

nodule detection on CXRs has been investigated because the computer prompts

indicating nodules could improve radiologists’ detection accuracy [14–16]. A major

challenge for current CADe schemes is the detection of nodules overlapping with

ribs, rib crossings, and clavicles, because the majority of false positives (FPs) are

caused by these structures [17, 18]. This leads to a lower sensitivity as well

as specificity of a CADe scheme. In order to overcome these challenges, Kido

et al. [19, 20] developed a CADe scheme based on single-exposure dual-energy
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computed radiography. A dual-energy subtraction technique [21, 22] was used for

separating soft tissue from bones in CXRs by use of two X-ray exposures at two

different energy levels. The technique produces soft-tissue images from which

bones are extracted. By using these images, the performance of their CADe scheme

was improved. In spite of its great advantages, a limited number of hospitals use the

dual-energy radiography system because specialized equipment is required. In

addition, the radiation dose can, in theory, be double compared to that for

standard CXR.

Suzuki et al. first developed a supervised image-processing technique for sepa-

rating ribs from soft tissue in CXRs by means of a multi-resolution massive-training

artificial neural network (MTANN) [23, 24] which is a class of pixel-based machine

learning [25] and is considered a supervised highly nonlinear filter based on

artificial neural network regression. Real dual-energy images were used as teaching

images for training of the multi-resolution MTANN. Once the multi-resolution

MTANN was trained, real dual-energy images were no longer necessary. An

observer performance study with 12 radiologists demonstrated that the suppression

of bony structures in CXRs improved the diagnostic performance of radiologists in

their detection of lung nodules substantially [26]. Ahmed and Rasheed [27]

presented a technique based on independent component analysis for the suppression

of posterior ribs and clavicles in order to enhance the visibility of nodules and to aid

radiologists during the diagnosis process. Loog et al. [28] proposed a supervised

filter learning technique for the suppression of ribs. The procedure is based on

K-nearest neighbor regression, which incorporates knowledge obtained from a

training set of dual-energy radiographs with their corresponding subtraction images

for the construction of a soft-tissue image from a previously unseen single standard

chest image. The MTANN [23, 24] was able to separate ribs from soft tissue in

CXRs; however, rib edges, ribs close to the lung wall, and clavicles were not

completely suppressed (Fig. 9.1). The reason for this is that the orientation,

width, contrast, and density of bones are different from location to location in the

CXR, and the capability of a single set of multi-resolution MTANNs is limited.

Fig. 9.1 Illustration of (a) an original standard chest radiograph and (b) the corresponding VDE

soft-tissue image by use of our original MTANN method
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The purpose of this study was to separate rib edges, ribs close to the lung wall,

and clavicles from soft tissue in CXRs. To achieve this goal, we newly developed

anatomically (location-) specific multiple MTANNs, each of which was designed to

process the corresponding anatomic segment in the lungs. A composite VDE bone

image was formed from multiple output images of the anatomically specific

multiple MTANNs by using anatomic segment masks, which were automatically

segmented. In order to make the contrast and density of the output image of each set

of MTANNs consistent, histogram matching was applied to process the training

images. Before a VDE bone image was subtracted from the corresponding CXR to

produce a VDE soft image, a total variation (TV) minimization smoothing method

was applied to maintain rib edges. Our newly developed MTANNs were compared

with our conventional MTANNs.

Methods

Database

The database used in this study consisted of 119 posterior–anterior CXRs

acquired with a computed radiography (CR) system with a dual-energy subtrac-

tion unit (FCR 9501 ES; Fujifilm Medical Systems, Stamford, CT) at The

University of Chicago Medical Center. The dual-energy subtraction unit

employed a single-shot dual-energy subtraction technique, where image acquisi-

tion is performed with a single exposure that is detected by two receptor plates

separated by a filter for obtaining images at two different energy levels

[29–31]. The CXRs included 118 abnormal cases with pulmonary nodules and a

“normal” case (i.e., a nodule-free case). Among them, eight nodule cases and the

normal case were used as a training set, and the rest were used as a test set. The

matrix size of the chest images was 1,760 � 1,760 pixels (pixel size, 0.2 mm;

grayscale, 10 bits). The absence and presence of nodules in the CXRs were

confirmed through CT examinations. Most nodules overlapped with ribs and/or

clavicles in CXRs.

Multi-Resolution MTANNs for Bone Suppression

For bone suppression, the MTANN [32] consisted of a machine-learning regression

model such as a linear-output multilayer ANN regression model [33], which is

capable of operating directly on pixel data. This model employs a linear function

instead of a sigmoid function as the activation function of the unit in the output

layer. This was used because the characteristics of an ANN have been shown to be

significantly improved with a linear function when applied to the continuous

mapping of values in image processing [33, 34]. Other machine-learning regression
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models can be used in the MTANN framework (a.k.a., pixel-based machine

learning [25]) such as support vector regression and nonlinear Gaussian process

regression models [35]. The output is a continuous value.

The MTANN involves training with massive subregion-pixel pairs which we

call a massive-subregions training scheme. For bone suppression, CXRs are divided

pixel by pixel into a large number of overlapping subregions (or image patches).

Single pixels corresponding to the input subregions are extracted from the teaching

images as teaching values. The MTANN is massively trained by using each of a

large number of the input subregions (or patches) together with each of the

corresponding teaching single pixels. The inputs to the MTANN are pixel values

in a subregion (or an image patch), R, extracted from an input image. The output of

the MTANN is a continuous scalar value, which is associated with the center pixel

in the subregion, represented by

O x; yð Þ ¼ ML I x� i, y� jð Þ�� i; jð Þ ∈ R
� �

, (9.1)

where ML(·) is the output of the machine-learning regression model, and I(x,y) is a
pixel value of the input image. The error to be minimized by training of the

MTANN is represented by

E ¼ 1

P

X
c

X
x;yð Þ∈RT

Tc x; yð Þ � Oc x; yð Þf g2, (9.2)

where c is the training case number,Oc is the output of the MTANN for the cth case,
Tc is the teaching value for the MTANN for the cth case, and P is the number of

total training pixels in the training region for the MTANN, RT.

Bones such as ribs and clavicles in CXRs include various spatial-frequency

components. For a single MTANN, suppression of ribs containing such variations

is difficult, because the capability of a single MTANN is limited, i.e., the capability

depends on the size of the subregion of the MTANN. In order to overcome this

issue, multi-resolution decomposition/composition techniques were applied.

First, input CXRs and the corresponding teaching bone images were decomposed

into sets of images of different resolution and these were then used for training three

MTANNs in the multi-resolution MTANN. Each MTANN is an expert for a certain

resolution, i.e., a low-resolution MTANN is responsible for low-frequency compo-

nents of ribs, a medium-resolution MTANN is for medium-frequency components,

and a high-resolution MTANN for high-frequency components. Each resolution

MTANN is trained independently with the corresponding resolution images. After

training, theMTANNs produce images of different resolution, and then these images

are combined to provide a complete high-resolution image by use of the multi-

resolution composition technique. The complete high-resolution image is expected

to be similar to the teaching bone image; therefore, the multi-resolution MTANN

would provide a VDE bone image in which ribs are separated from soft tissues.
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Anatomically (Location-) Specific Multiple MTANNs

Although an MTANN was able to suppress ribs in CXRs [23], the single MTANN

did not efficiently suppress rib edges, ribs close to the lung wall, and the clavicles,

because the orientation, width, contrast, and density of bones are different from

location to location, and because the capability of a single MTANN is limited. To

improve the suppression of bones at different locations, we extended the capability

of a single MTANN and developed an anatomically specific multiple-MTANN

scheme that consisted of eight MTANNs arranged in parallel, as shown in Fig. 9.2a.

Each anatomically specific MTANN was trained independently by use of normal

cases and nodule cases in which nodules were located in the corresponding

anatomic segment. The lung field was divided into eight anatomic segments: a

left-upper segment for suppression of left clavicles and ribs, a left hilar segment for

suppression of bone in the hilar area, a left middle segment for suppression of ribs in

the middle of the lung field, a left lower segment for suppression of ribs in the left

lower lobe, a right upper segment, a right hilar segment, a right middle segment,

and a right lower segment. For each anatomically specific MTANN, the training

samples were extracted specifically from the corresponding anatomic segment

mask (the training region in Eq. 9.2).

After training, each of the segments in a non-training CXR was inputted into the

corresponding trained anatomically specific MTANN for processing of the ana-

tomic segment in the lung field, e.g., MTANNs No. 1 was trained to process the left-

upper segment in the lung field in which the clavicle lies; MTANNs No. 2 was

trained to process the left hilar segment, etc., as illustrated in Fig. 9.2b. The eight

segmental output sub-images from the anatomically specific multiple MTANNs

were then composited to an entire VDE bone image by use of the eight anatomic

segment masks. To blend the sub-images smoothly near their boundaries, anatomic

segmentation masks smoothed by a Gaussian filter were used to composite the

output sub-images, represented by

f b x; yð Þ ¼
X8
i¼1

Oi x; yð Þ � f G Mi x; yð Þ½ �, (9.3)

where fb(x,y) is the composite bone image,Oi is the ith trained anatomically specific

MTANN, fG(·) is a Gaussian filtering operator, and Mi is the ith anatomic

segmentation mask.

Training Method

In order to make the output image of each set of anatomical segment MTANNs

consistent in density and contrast, it is preferable to use similar CXRs to train each

anatomical segment. A normal case was therefore selected for training the eight
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Fig. 9.2 Architecture and training of our new anatomically specific MTANNs. (a) Training phase.

(b) Execution phase
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MTANNs with different segments of the lung field. In order to maintain nodule

contrast while suppressing bone structures, nodule cases were used to train the

anatomical segment-specific multiple MTANNs as well. As it is impossible to find

an abnormal case where each of eight typical nodules is located in each of the eight

anatomical segments in the lung field, eight different nodule cases were required for

training eight anatomical MTANNs. For each nodule case, a nodule was located in

the anatomical segment that was used to train the corresponding MTANN. As a

result, nine CXRs were used, i.e., one normal case and eight nodule cases, along

with the corresponding dual-energy bone images for training the eight sets of multi-

resolution MTANNs.

For training of overall features in each anatomic segment in the lung field,

10,000 pairs of training samples were extracted randomly from the anatomic

segment for each anatomically specific MTANN: 5,000 samples from the normal

case; and 5,000 samples from the corresponding nodule case. A three-layered

MTANN was used, where the numbers of input, hidden, and output units were

81, 20, and 1, respectively. Once the MTANNs are trained, the dual-energy imaging

system is no longer necessary. The trained MTANNs can be applied to standard

CXRs for suppression of bones; thus, the term “virtual dual-energy” (VDE) tech-

nology. The advantages of this technology over real dual-energy imaging are that

there is no need for special equipment to produce dual-energy images, or no

additional radiation dose to patients.

Because of differences in acquisition conditions and patients among different

CXRs, the density and contrast vary within the different training images. This

makes the training of the eight anatomically specific MTANNs inconsistent. To

address this issue, a histogram-matching technique was applied to training images

to equalize the density and contrast. Histogram matching is a technique for

matching the histogram of a given image with that of a reference images. We

used a normal case as the reference image to adjust the nodule cases. First the

cumulative histogram F1 of the given image and that F2 of the reference image were

calculated. Then, the histogram transfer function M(G1) ¼ G2 was calculated so

that F1(G1) ¼ F2(G2). Finally, the histogram transfer function M was applied to

each pixel in the given image.

The proportion of background also varies among different CXRs. The histogram

matching of an image with a larger proportion of the background to another with a

small proportion may cause the density of the lung field in the matched image to

appear darker than the target image. For this reason, only the histogram of the body

without the background was matched in the target image. The background was first

segmented, which typically corresponds to the highest signal levels in the image

where the unobstructed radiation hits the imaging plate. Several factors make the

detection of these regions a challenging task. First, the radiation field across

the image may be nonuniform due to the orientation of the X-ray source relative

to the imaging plate, and the effect of scatter in thicker anatomical regions

compounds this problem. Further, for some examinations, multiple exposures

may be carried out on a single plate, resulting in multiple background levels. The

noise attributes of the imaging system were used to determine if the variation

218 S. Chen and K. Suzuki



around a candidate background pixel is a typical range of direct exposure pixel

values. The corresponding values of candidate background pixels were accumu-

lated in a histogram, and the resulting distribution of background pixel values

invariably contained well-defined peaks, which served as markers for selecting

the background threshold. After analyzing the histogram, the intensity values to the

left of the background peak clearly represented the background, while those to the

right represented, to a progressively greater extent, the intensity values of image

information. The portion of the histogram to the right of the background peak was

processed to find the point at which the histogram first exhibited a change in its

curvature from negative to positive. For an increase in intensity, a negative curva-

ture corresponds to a decreasing rate of occurrence of background pixels, while a

positive curvature corresponds to an increasing rate of occurrence. In this manner, it

was possible to create a difference histogram to obtain a positive slope at the

intensity position to the right of the background peak. At this position, we could

determine the counts for the least intense pixels, whose intensities are mostly due to

the signal. After finding the intensity level representative of the minimum signal

intensity level, this level was applied as a signal threshold for segmenting the

background. This approach successfully dealt with the problems of non-uniform

backgrounds. Figure 9.3 illustrates our background segmentation. A background

peak is seen in the histogram illustrated in Fig. 9.3a. Figure 9.3c illustrates a

segmentation threshold determined by finding the right bin to the background

peak in the difference histogram. Figure 9.3d shows the background segmentation

result by using the threshold value.

Automated Anatomic Segmentation

To train and process anatomically specific MTANNs, a given CXR was divided into

anatomic segments. Each segment was inputted into each of anatomically specific

MTANNs simultaneously. Each MTANN provided the corresponding segment of a

VDE bone image where bones were extracted. Because each MTANN is an expert

for a specific anatomic segment, the signal-to-noise ratio is highest in the

corresponding anatomic segment among all segments, as illustrated in Fig. 9.4.

Merging all anatomic segments provided a complete single VDE bone image where

the signal-to-noise ratio is high in all segments.

To determine eight anatomic segments, an automated anatomic segmentation

method was developed based on active shape models (ASMs) [36]. First, the lung

fields were segmented automatically by using a multi-segment ASM (M-ASM)

scheme [37], which can be adapted to each of the segments of the lung boundaries

(which we call a multi-segment adaptation approach), as illustrated in Fig. 9.5. As

the nodes in the conventional ASM are equally spaced along the entire lung shape,

they do not fit parts with high curvatures. In our developed method, the model was

improved by the fixation of selected nodes at specific structural boundaries that we

call transitional landmarks. Transitional landmarks identified the change from one

boundary type (e.g., a boundary between the lung field and the heart) to another
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Fig. 9.3 Background segmentation. (a) Histogram of pixel values in CXR (b). (b) Original CXR.

(c) Differences between two neighboring bins in histogram (a). (d) Background segmentation result

Fig. 9.4 Eight output bone images of the trained anatomically specific multiple MTANNs. (a)

Output from the segment MTANNs trained for the hilar region, (b) Output from the MTANNs

trained for the lower region of the lung, (c) Output from the MTANNs trained for the middle

region of the lung, (d) Output from the MTANNs trained for the upper region of the lung
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(e.g., a boundary between the lung field and the diaphragm). This resulted in

multiple segmented lung field boundaries where each segment is correlated with

a specific boundary type (heart, aorta, rib cage, diaphragm, etc.). The node-specific

ASM was built by using a fixed set of equally spaced nodes for each boundary

segment. Our lung M-ASM consisted of a total of 50 nodes for each lung boundary

that were not equally spaced along the entire contour. A fixed number of nodes were

assigned to each boundary segment, and they were equally spaced along each

boundary (as shown in Fig. 9.5). For example, the boundary between the left lung

field and the heart consisted of 11 points in every image, regardless of the actual

extent of this boundary in the image (see Fig. 9.5). This allowed the local features of

nodes to fit a specific boundary segment rather than the whole lung, resulting in a

marked improvement in the accuracy of boundary segmentation. From the training

images, the relative spatial relationships among the nodes in each boundary

segment were learned in order to form the shape model. The nodes were arranged

into a vector x and projected into the principal component shape space, represented

by the following equation:

b ¼ VT x� xð Þ, (9.4)

where V ¼ (V1V2. . .VM) is the matrix of the first M eigenvectors for the shape

covariance matrix, and b ¼ (b1b2. . .bM)
T is a vector of shape coefficients for the

primary axes. The shape coefficients were constrained to lie in a range �m
ffiffiffiffi
λi

p
to generate only a plausible shape and projected back to node coordinates,

represented by:

x ¼ x þ Vb, (9.5)

where m usually has a value between 2 and 3 [38], and was 2.5 in our experiment.

Fig. 9.5 Lung

segmentation using our

M-ASM. Blue points
represent the transitional

landmarks of two boundary

types
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After the lungs were segmented, they were automatically divided into eight

anatomic segments by using the boundary types and the transitional landmarks. By

using the landmark points, we obtained the upper region, lower region, and hilar

region in each lung, as illustrated in Fig. 9.6. The eight output segmental images

from the multiple MTANNs were merged into a single VDE bone image:

f b x; yð Þ ¼
X8
i¼1

f ib x; yð Þ�mi
b x; yð Þ, (9.6)

where f ib(x,y) is the output image from the i-th MTANN and mi
b(x,y) is the

anatomic segment mask for the i-th MTANN. The anatomic segment masks were

smoothed by a Gaussian filter so that an unnatural discontinuity between anatom-

ical segments in the merged image was eliminated.

Creation of Soft-Tissue Images

After the VDE bone image was obtained, the VDE soft image could be acquired by

use of the subtraction technique. In this study, we focused on the suppression of ribs

and clavicles in the lung regions, because this is where most nodules overlap with

bony structures. For processing only in the lungs, lung segmentation was used, and

suppression was done only in the segmented lungs in the subtraction technique.

After the segmentation, a Gaussian filter was applied for smoothing the edges of the

segmented lung regions to create an imagem(x,y) for masking the outside of the lung

regions. The masking image was normalized to have values from 0 to 1. For

suppression of ribs in an original CXR, the VDE bone image fb(x,y) produced by

Fig. 9.6 Result of

automated anatomic

segmentation based on our

M-ASM
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the anatomically specific multiple MTANN was subtracted from the original CXR

g(x,y) with the masking image m(x,y) as follows:

f S x; yð Þ ¼ g x; yð Þ � wC � f b x; yð Þ � m x; yð Þ, (9.7)

where wC is a weighting parameter for determining the contrast of ribs. By changing

the weighting parameter wC, one can obtain processed CXR with different contrast

of ribs and clavicles.

As mentioned above, owing to noise in a VDE bone image, the Gaussian

smoothing method was applied. Although it smooths the noise in the VDE bone

image, it can also smooth bone edges. As a result, the bone edges remain in the

VDE soft-tissue image when subtracting the VDE bone image from the

corresponding original CXR. In this paper, we propose a TV minimization noise

smoothing method which can smooth the noise in the VDE bone image while

preserving the edge information of bones (Fig. 9.7). TV minimization problems

were first introduced in the context of image smoothing by Rudin et al. [39]. The

main advantage of the TV formulation is the ability to preserve edges in the images.

This is because of the piecewise smooth regularization property of the TV norm.

We assume the noise in the VDE bone image is white Gaussian noise:

z x; yð Þ ¼ u x; yð Þ þ η x; yð Þ, (9.8)

where u(x,y) is an unknown piecewise constant two-dimensional function

representing the noise-free original image, z(x,y) is the noisy observation of

u(x,y), and η(x,y) is white Gaussian noise. A conventional additive noise suppres-

sion technique such as Wiener filtering is applied in order to find u(x,y) which
minimizes the functional:

Noise-reduced VDE 
Bone Image

Total 
Variation 
Minimization 
Smoothing

Original Chest 
Image

VDE Soft-tissue Image

VDE Bone Image

Fig. 9.7 Method for obtaining a soft-tissue image from a bone image
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T uð Þ ¼ 1

2
u� zk k2 þ αJ uð Þ, (9.9)

Common choices for J are

J uð Þ ¼
ð
u2dx, (9.10)

Equation (9.9) often induces blur in images and spurious oscillations when u is

discontinuous.

Therefore, we consider the nonlinear TV functional:

JTV uð Þ ¼
ð
Ω
∇uj jdx, (9.11)

where ∇u denotes the gradient of u:

∇u ¼ ∂u
∂x

;
∂u
∂y

� �

Here, u is not required to be continuous.

However, the Euclidean norm is not differentiable at zero. To avoid difficulties

associated with the non-differentiability, the modification

Jβ uð Þ ¼
ð
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇uj j2 þ β2

q
dx

is utilized here. The functional to be minimized is

T uð Þ ¼ 1

2
u� zk k2 þ α

ð
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇uj j2 þ β2

q
dx, (9.12)

The Eular–Lagrange equation associated with Eq. (9.12) is

uþ αL uð Þu ¼ z, x ∈ Ω
∂u
∂n

¼ 0, x ∈ ∂ Ω , (9.13)

where L(u) is a differential operator whose action on u is given by

L uð Þu ¼ �∇ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇uj j2 þ β2

q ∇u

0
B@

1
CA, (9.14)
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It is an elliptic nonlinear partial differential equation (PDE). From Eq. (9.14), we

can see that the smoothing decreases as the gradient strength increases; and thus, the

smoothing stops across edges.

There are many standard numerical optimization techniques such as conjugate

gradient method. However, these standard methods tend to perform poorly on TV

minimization problems. In this paper we adopt the nonlinear multi-grid method to

deal with this problem. Unlike the conventional methods, the multi-grid algorithm

can solve nonlinear elliptic PDE with non-constant coefficients with hardly any loss

in efficiency. In addition, no nonlinear equations need to be solved, except on the

coarsest grid.

Suppose we discrete the nonlinear elliptic PDE of Eq. (9.13) on a uniform grid

with mesh size h:

Th uhð Þ ¼ zh, (9.15)

where: Th(uh) denote uh + αLh(uh)uh.
Let euh denote some approximate solution and uh denote the exact solution to

Eq. (9.15). Then the correction is:

vh ¼ uh � euh,
The residual is:

Th euh þ vhð Þ � Th euhð Þ ¼ f h � Th euhð Þ ¼ �dh, (9.16)

Now, we form the appropriate approximation TH of Th on a coarser grid with

mesh size H (we will always take H ¼ 2 h). The residual equation is now approx-

imated by:

TH uHð Þ � TH euHð Þ ¼ �dH, (9.17)

Since TH has a smaller dimension, this equation will be easier to be solved. To

defineeuH and dH on the coarse grid, we need a restriction operator R that restricts euh
and dh to the coarse grid. That is, we solve:

TH uHð Þ ¼ TH R euhð Þ � Rdh, (9.18)

on the coarse gird. Then the coarse-grid correction is:

evH ¼ uH � R euh ,
Once we have a solution evH on the coarse gird, we need a prolongation operator

P that interpolates the correction to the fine gird:
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evh ¼ PevH,
So we have:

euhnew ¼ euh þ PevH, (9.19)

It is the two-grid algorithm and can be easily extended to a multi-grid.

The symbol of P is found by considering vH to be 1 at some mesh point (x, y),
zero elsewhere, and then asking for the values of PvH. The most popular prolonga-

tion operator is simple bilinear interpolation. It gives nonzero values at the nine

points (x,y), (x + h, y), . . ., (x � h, y � h) and its symbol is:

1=4 1=2 1=4
1=2 1 1=2
1=4 1=2 1=4

2
4

3
5, (9.20)

The symbol of R is defined by considering vh to be defined everywhere on the

fine grid, and then asking what is Rvh at (x,y) as a linear combination of these

values. The choice for R is the adjoint operator to P. So that the symbol of R is:

1=16 1=8 1=16
1=8 1=4 1=8
1=16 1=8 1=16

2
4

3
5, (9.21)

At the coarsest-grid, we have one remaining task before implementing our

nonlinear multi-grid algorithm: choosing a nonlinear relaxation scheme. Our first

choice is the nonlinear Gauss–Seidel scheme. If the discretized Eq. (9.15) is written

with some choice of ordering as:

Ti u1; . . . ; uNð Þ ¼ zi, i ¼ 1, . . . ,N, (9.22)

Then the nonlinear Gauss–Seidel scheme solves:

Ti u1; . . . ; ui�1; u
new
i ; uiþ1; . . . ; uN

� 	 ¼ zi, (9.23)

Often equation is linear in unewi , since the nonlinear terms are discretized by

means of its neighbors. If this is not the case, we replace Eq. (9.19) by one step of a

Newton iteration:

ui
new ¼ ui

old � Ti ui
old

� 	� zi

∂Ti uioldð Þ=∂ui , (9.24)
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Results

Lung Field and Anatomic Segment

Lung segmentation plays an important role in the bone suppression in this study.

Inaccurate segmentation means that the anatomical segment mask will not corre-

spond to the region mask trained in the anatomically specific multiple MTANNs.

As a result, the bone structures will not be suppressed in the VDE soft image very

well. Figure 9.8 shows a failed case due to inaccurate segmentation of the lung field.

Although some bones are suppressed, the clavicles are not suppressed. When the

lung field was manually segmented into the eight anatomical segments, the clavi-

cles were suppressed much more successfully.

In this study, 93 normal images from the public Japanese Society of Radiological

Technology (JSRT) database were used for training of the M-ASM. The segmen-

tation accuracy was computed by use of the overlap measure Ω:

Ω ¼ TPseg

TPseg þ FPseg þ FNseg
, (9.25)

where TPseg is the area correctly classified as a lung field, FPseg is the area

incorrectly classified as a lung field, and FNseg is the area incorrectly classified as

the background. The mean and standard deviation of the overlap measure for all the

154 nodule images in the JSRT database were 0.913 and 0.023, respectively. For the

118 testing cases in the U of C database, because we did not have the lung field truth

with which we compare our M-ASM segmentation results, we only evaluated

segmentation results visually. Based on our visual evaluation, segmentation failed

in ten cases. This may be because the M-ASM was trained with JSRT normal cases

that were digitized from files, whereas the U of C database consists of digital

radiographs with nodules from a CR system. We would like to leave the improve-

ment in the performance of lung segmentation as our future work.

Fig. 9.8 Illustration of incomplete suppression caused by a lung segmentation failure. (a) an

original image, (b) lung field segmentation, and (c) bone suppression within the segmented lung

fields. The right clavicles in (c) are not suppressed

9 Bone Suppression in Chest Radiographs by Means of Anatomically Specific MTANNs 227



In these experiments, 50 points were used for each M-ASM for each lung, and

the relative position of each point in the segmentation results is known. As shown in

Fig. 9.5, the seventh point in the segment boundary between the lung field and the

lung wall begins from the apex of the lung (the translating blue point), and the aortic

arch blue point was used to achieve the upper lung segment. The sixth point begins

from costophrenic angle (blue point in the lowest position) and the blue point in the

ventricle border was used to segment the lower lung region. Finally, the apex point

and the blue point in the hemidiaphragm were used to segment the middle region to

obtain the hilar region.

As a result, we can automatically obtain anatomic segments based on the lung

field segmentation results (Fig. 9.6).

Smoothing VDE Bone Images

In order to prove the effectiveness of the TV minimization smoothing method, we

compared with the Gaussian smoothing method. As illustrated in Fig. 9.9, the edges

of ribs remain in the soft-tissue image obtained by using the Gaussian smoothing

method, whereas they disappear in the soft-tissue image obtained by using the TV

minimization smoothing method.

In our experiment, the smoothing parameter used for the original VDE bone

image was usually larger than that of the improved VDE bone image. The reason is

that in our improved bone suppression method, each set of anatomic specific

MTANNs only process patterns with less variation in a small, relatively uniform

anatomic segment. The signal-to-noise ratio in the small anatomic segment is

higher than that in the entire lung field.

The processing time for the Gaussian smoothing method was 0.2 s per case,

whereas that for the TVminimization was only 1 s per case because of the efficiency

of the multi-grid algorithm that was implemented in the TV minimization.

Evaluation

The newly developed anatomically specific multiple MTANNs were subjected to a

validation test that included 110 nodule cases. The bone suppression performance

was quantitatively evaluated by using the absolute error [4], defined as:

EN ¼
X

x, y∈RL

b x; yð Þ � f b x; yð Þj j=NL bmax � bminð Þ, (9.26)

where fb(x,y) is the VDE bone image, b(x,y) is the corresponding “gold-standard”

dual-energy bone image, RL indicates lung regions, NL is the number of pixels in RL,

and bmax and bmin are the maximum value and the minimum value in RL in the dual-

energy bone image, respectively. The result for the 110 CXRs was an average EN of
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0.072 with a standard deviation of 0.012, which were lower than the result (EN of

0.082 with a standard deviation of 0.014) for our previous method [4] at a statis-

tically significant level (P < 0.05).

Figure 9.10 illustrates the results of bone suppression for a normal case. Com-

pare to the old VDE soft-tissue images obtained by use of our previous technique,

rib edges, the clavicles, and ribs close to the lung wall are suppressed better, while

the visibility of soft tissue such as vessels is maintained. The quality of the VDE

soft-tissue images is comparable to that of the “gold-standard” dual-energy soft-

tissue images.

Figure 9.11 illustrates the results for a case where a nodule that not only overlaps

with ribs but also is close to the lung wall. In our previous method, the ribs close to

the lung wall were not successfully suppressed, and the contrast of the nodule in this

area was similar to the original CXR. In the present improved method, the nodule

was maintained while the surrounding ribs were suppressed, and the boundary of

the nodule was clearer than that in the original CXR. Figure 9.12 illustrates a case

Fig. 9.9 Illustration of (a) a VDE bone image with Gaussian smoothing, (b) a VDE bone image

with TV-minimization-based smoothing, (c) a VDE soft-tissue image corresponding to (a), and (d)

a VDE soft-tissue image corresponding to (b), all by use of the anatomically specific multiple

MTANNs
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where the nodule that partly overlaps with bone. In our original results, the

boundaries of the nodule were smoothed, and the contrast of the nodule was partly

suppressed, whereas in the improved result, there were clear nodule boundaries and

the contrast of the nodule was close to that of the soft-tissue image. Figure 9.13

illustrates a case of good preservation of nodules found in the left lung. Figure 9.14

Fig. 9.10 Result for a non-training normal chest radiograph. (a) An original normal chest

radiograph, (b) a VDE soft-tissue image obtained by use of our original MTANN technique, (c)

a VDE soft-tissue image obtained by use of our newMTANN technique, and (d) the corresponding

“gold-standard” dual-energy soft-tissue image

Fig. 9.11 Result for an abnormal chest radiograph with a nodule that overlaps with both anterior

and posterior ribs. (a) An original abnormal chest radiograph with a nodule (indicated by a red
arrow), (b) a VDE soft-tissue image obtained by use of our original MTANN technique, (c) a VDE

soft-tissue image obtained by use of our newMTANN technique, and (d) the corresponding “gold-

standard” dual-energy soft-tissue image
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illustrates a case where the nodules were located in the hilar region. Both the

contrast and shapes of the nodules were maintained very well in the images

obtained with the present improved method, whereas in the images obtained with

the original method, the nodules appeared diffused with smoothed boundaries.

Fig. 9.12 Results for abnormal chest radiographs with a nodule that is mostly overlap with a rib.

(a) An original abnormal chest radiograph with a nodule (indicated by a red arrow), (b) a VDE

soft-tissue image obtained by use of our original MTANN technique, (c) a VDE soft-tissue image

obtained by use of our new MTANN technique, and (d) the corresponding “gold-standard” dual-

energy soft-tissue image

Fig. 9.13 Results for abnormal chest radiographs with a tiny nodule in the left lung. (a) An

original abnormal chest radiograph with a nodule (indicated by a red arrow), (b) a VDE soft-tissue

image obtained by use of our original MTANN technique, (c) a VDE soft-tissue image obtained by

use of our new MTANN technique, and (d) the corresponding “gold-standard” dual-energy soft-

tissue image
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Discussion

In CXR, nodules generally overlap with ribs, which are often close to the lung wall.

This causes a large number of FPs in the CADe scheme. In previously described

method, the posterior ribs were suppressed well, but the anterior ribs were not

suppressed sufficiently. In the VDE bone images, nodules still overlap with anterior

ribs, which usually have a similar density to the nodules.

All the results in this paper were achieved by using a single set of same

parameters. However, in order to obtain the best results, we can optimize the

bone suppression amount for different CXRs acquired in different exposure

settings.

Although the gray-level normalization for consistency improvement was used

for training images to make the output images of each of the anatomically specific

MTANNs in the bone suppression phase consistent, in some cases, there were still

some differences between different anatomic segments in terms of the bone contrast

and density. As a result, bones in some anatomical segments were not suppressed as

much as were in other segments. This may be because variations in bone contrast

and density in testing images were larger than those in the training images.

One of the advantages of the M-ASM segmentation method used in this work is

that it is possible to know which point belongs to which type of anatomic boundary,

and that which point is the transition point in the contour of the segmentation. Based

on these points, the lung field can be automatically divided into segments based on

the anatomy. It is helpful to suppress bones in different anatomical segments

automatically.

Fig. 9.14 Results for abnormal chest radiographs with a nodule in the hilar region of the lung. (a)

An original abnormal chest radiograph with a nodule (indicated by a red arrow), (b) a VDE soft-

tissue image obtained by use of our original MTANN technique, (c) a VDE soft-tissue image

obtained by use of our new MTANN technique, and (d) the corresponding “gold-standard” dual-

energy soft-tissue image
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In this study, we assume that the noise model in VDE bone images is Gaussian,

and the TV-based models can answer fundamental questions arising in image

restoration better than other models.

In our original method, only the posterior ribs were present in the VDE bone

images. Owing to the anatomically specific multiple MTANNs used in this work,

the anterior ribs were also present in the new VDE bone images. As the anterior ribs

in a CXR are usually close to the lung wall, their suppression using this novel

method was seen to be significantly better than that using the original method.

Although nine cases were used (one normal and eight abnormal cases) for

training the anatomically specific multiple MTANNs, only one normal case and

one nodule case were used for each anatomic segment. In spite of the small number

of cases used, the MTANNs produced reliable results for non-training cases.

However, the MTANN would be more robust against variations among cases if a

larger number of cases were used for training.

As the use of the MTANN requires only software, this technique can be utilized

on an existing viewing workstation. Although we applied a TV minimization-based

smoothing method, the processing time for creating a VDE soft-tissue image and a

VDE bone image from a CXR is very short, i.e., 1.63 s on a PC-based workstation

(CPU: Intel Pentium IV, 3.2 GHz) because the efficient multi-grid solving method

was used. Thus, the software can be applied prior to interpretation in every case

without incurring any delay.

As the fine structures of soft tissues such as small vessels are mostly maintained

in the VDE soft-tissue images, these images could potentially be used for quanti-

tative assessment of interstitial lung diseases that are characterized by fine patterns.

In addition, this technique can easily be applied to anatomic regions other than the

lungs by training with dual-energy images of specific anatomic segments.

Conclusion

We have developed an anatomically (location-) specific multiple MTANN scheme

to suppress bony structures in CXRs. With our new technique, rib edges, ribs close

to the lung wall, and the clavicles were suppressed substantially better than was

possible with our conventional technique, while soft tissue such as lung nodules and

vessels was maintained. Thus, our technique would be useful for radiologists as

well as for CADe schemes in the detection of lung nodules in CXRs.
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Chapter 10

Image Segmentation for Connectomics

Using Machine Learning

T. Tasdizen, M. Seyedhosseini, T. Liu, C. Jones, and E. Jurrus

Abstract Reconstruction of neural circuits at the microscopic scale of individual

neurons and synapses, also known as connectomics, is an important challenge for

neuroscience. While an important motivation of connectomics is providing ana-

tomical ground truth for neural circuit models, the ability to decipher neural wiring

maps at the individual cell level is also important in studies of many neurodegen-

erative diseases. Reconstruction of a neural circuit at the individual neuron level

requires the use of electron microscopy images due to their extremely high resolu-

tion. Computational challenges include pixel-by-pixel annotation of these images

into classes such as cell membrane, mitochondria and synaptic vesicles and the

segmentation of individual neurons. State-of-the-art image analysis solutions are

still far from the accuracy and robustness of human vision and biologists are still

limited to studying small neural circuits using mostly manual analysis. In this

chapter, we describe our image analysis pipeline that makes use of novel supervised

machine learning techniques to tackle this problem.

Introduction

Supervised machine learning techniques have shown great potential and have

become important tools of choice in many problems. This is particularly true for

image analysis [1, 2]. Image analysis approaches with hand designed, deterministic

filters are being replaced with approaches that use filters and operations learned
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from human generated ground truth. This supervised learning strategy has been

shown to outperform traditional methods in many image analysis applications. In

this chapter, we will focus on one such application: neural circuit reconstruction

from electron microscopy (EM) images at the scale of individual neurons and

synapses. We will refer to this problem as connectomics [3–10].

An important motivation for connectomics is providing anatomical ground

truth for neural circuit models. Connectomics is also important in studies of many

neurodegenerative diseases. For instance, a loss of photoreceptors in the retina

can cause neurons to rewire [11, 12] and neural circuits undergo remodeling in

response to seizures in epilepsy [13, 14]. Serial section EM, where a block of

tissue is cut into sections and imaged, has sufficient detail for identification of

individual neurons and their synaptic connections in a three-dimensional

(3D) volume; however, this is a difficult and time-consuming image analysis

task for humans. Furthermore, state-of-the-art automated image analysis solu-

tions are still far from the accuracy and robustness of human vision. Therefore,

biologists are still limited to studying small neural circuits using mostly manual

analysis. Reconstruction of a neural circuit from an electron microscopy volume

requires segmentation of individual neurons in three dimensions and the detec-

tion of synapses between them. Supervised learning approaches to this problem

typically involve pixel-by-pixel annotation of these images into classes such as

cell membrane, mitochondria, and synaptic vesicles with a classifier learned from

training data. We will refer to this step as the pixel classifier. This is generally

followed by another step which segments individual neurons based on the cell

membrane pixels detected by the classifier in the initial step. This second step can

be as simple as a flood fill operation on the thresholded output of the pixel

classifier from the first step or as complex as a second classifier which learns to

merge/split regions obtained from the pixel classifier’s output as in our approach.

This two-step strategy is taken because cell membranes are similar in local

appearance to many other intracellular structures (see Fig. 10.1) which makes

their detection with deterministic filter banks or segmentation with techniques

such as active contours very difficult.

The supervised learning strategy for connectomics has its own challenges that

need to be addressed. First, generating training data from electron microscopy

images can be a cumbersome task for humans. On the other hand, no training data

is needed for deterministic approaches. Second, the training set can be extremely

large since each pixel in the training image becomes a training example. This

requires a lengthy training stage. In comparison, no training time is spent in

deterministic approaches. Third, overfitting is a possibility as in any machine

learning application. Finally, the cell membrane classification step demands

extremely high accuracy. Even with high pixel accuracy rates such as 95 %,

which is acceptable in many other applications, it is virtually certain that almost

every neuron in a volume will be incorrectly segmented due to their global, tree-

like structure, and correspondingly large surface area. The lack of reliable auto-

mated solutions to these problems is the current bottleneck in the field of

connectomics. In this chapter, we will describe our approach to deal with each of

these problems.
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Background

Connectomics from Electron Microscopy

Compared with other imaging techniques, such as MRI [15] and scanning confocal

light microscopy [16–20], electron microscopy provides much higher resolution

and remains the primary tool for connectomics. The only complete reconstruction

of a nervous system to date has been performed for the nematode Caenorhabditis
elegans (C. elegans) which has 302 neurons and just over 6,000 synap-

ses [21–23]. This reconstruction, performed manually, is reported to have taken

more than a decade [4]. Recently, high throughput serial section transmission

electron microscopy (ssTEM) [5, 6, 9, 24–26] and serial block-face scanning

electron microscopy (SBFSEM) [4, 10, 27] have emerged as automated acquisition

strategies for connectomics. Automatic Tape-Collecting Lathe Ultramicrotome

(ATLUM) [28] is another promising technology for speeding up data collection

for connectomics.

Fig. 10.1 Left: Two ssTEM sections from the Drosophila first instar larva VNC [8]. Right:
Corresponding ground truth maps for cell membranes (black). Data: Cardona Lab, ETH
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In the ssTEM technique, sections are cut from a specimen block and suspended

so that an electron beam can pass through it, creating a projection which can be

captured digitally or on film with 2 nm in-plane resolution. This extremely high

resolution is sufficient for identifying synapses visually. An important trade-off

occurs with respect to the section thickness: thinner sections, e.g. 30 nm, are easier

to analyze because structures are crisper due to less averaging whereas thicker

sections, e.g. 90 nm, are easier to handle physically without loss. Through mosaick-

ing of many individual images [29, 30], ssTEM offers a relatively wide field of view

to identify large sets of cells as they progress through the sections. Image registra-

tion techniques are necessary to align the sections into a 3D volume [6, 31].

In the SBFSEM technique, sections are cut away, and the electron beam is

scanned over the remaining block face to produce electron backscatter images.

Since the dimensions of the solid block remain relatively stable after sectioning,

there is no need for image registration between sections. However, the in-plane

resolution is closer to 10 nm which is a disadvantage compared to ssTEM. Typical

section thicknesses for SBFSEM are 30–50 nm.

New projects using the techniques described above capture very large volumes

containing several orders of magnitude more neurons than the C. elegans. As an
example, Fig. 10.2 shows two mosaic sections from a 16 TB ssTEM retina vol-

ume [32] that was assembled with our algorithms [6, 31]. It is not feasible to

reconstruct complete neural circuits in these datasets with manual methods. More-

over, population or screening studies are unfeasible since fully manual segmenta-

tion and analysis would require years of manual effort per specimen. As a result,

automation of the computational reconstruction process is critical for the study of

these systems.

Finally, as an alternative to SBFSEM and ssTEM, fully 3D approaches such as

focused ion-beam scanning electron microscopy (FIBSEM) [33] and electron

tomography [34–36] produce nearly isotropic datasets. Both techniques are limited

Fig. 10.2 Two sections from the retinal connectome [32] which comprises 341 sections. Each

section is � 32 GB and comprises 1,000 image tiles, each 4, 096�4, 096 pixels. The circular area

with data is approximately 132, 000 pixels in diameter. The complete dataset is � 16 TB. Data:
Marc Lab, University of Utah
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to studying small volumes which is a disadvantage for their use for connectomics.

FIBSEM uses a focused-ion beam to mill away sections instead of cutting sections

with a knife. While it is clear that these datasets are easier to analyze accurately, the

amount of data and the time it would take to acquire and analyze them is prohibitive

for large-scale circuit reconstruction applications for the time being.

Neuron Segmentation

Figure 10.2b shows the complexity of the problem. This image which is 132, 000

pixels in diameter contains thousands of neuronal processes. The larger structures

seen in Fig. 10.2a are the cell bodies of these processes. Reconstructing neural

circuits from EM datasets involves segmenting individual neurons in 3D and

finding the synapses between them. Neuron segmentation is the immediate chal-

lenge and thus has gathered significantly more attention than synapse detection. The

only successful automatic synapse detection approaches so far have been limited to

FIBSEM data which offers almost isotropic resolution [37]. In this chapter, we limit

our attention to neuron segmentation. There are two general strategies for neuron

segmentation. One strategy is to directly segment neurons in 3D [38, 39]. However,

this can be difficult in many datasets due to the anisotropic nature of the data. The

large section thickness often causes features to shift significantly between sequen-

tial images both in ssTEM and SBFSEM, decreasing the potential advantages of a

direct 3D approach. The other strategy first segments neurons in two-dimensional

(2D) images followed by linking them across sections to form a complete neu-

ron [40–43]. Our approach fits in this second category. In this chapter, we focus on

the 2D neuron segmentation problem. For linking 2D neuron regions across sec-

tions we refer the reader to [41, 44–46].

Image Processing Methods

Neuron segmentation has been studiedmostly using semi-automatedmethods [8, 24,

40, 43, 47]. Fully automatic segmentation is complicated by two main challenges:

complex intracellular structures such as vesicles and mitochondria that are present

in the ssTEM images and the extremely anisotropic resolution of the data, e.g. 2 nm

in-plane vs. 40 nm out-of-plane. Previous automatic EM segmentation methods

include active contours which rely on an gradient term to drive the segmenta-

tion [42, 48–53]. This gradient/edge term can be ambiguous because of the locally

similar appearance of neuron and intracellular membranes. Figure 10.1 shows two

ssTEM sections from the Drosophila first instar larva ventral nerve cord (VNC) [8]

and their corresponding cell membrane ground truth maps drawn by a human

expert. Notice that the intensity profile of cell membranes completely overlaps

with many other intracellular structures such as mitochondria (large, dark round

structures) and synapses (elongated, dark structures). Furthermore, notice that when
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the cell membranes are parallel to the cutting plane in 3D they appear fuzzy and of

lighter intensity. In our earlier work, we used directional diffusion to attempt to

remove intracellular structures from similar images [54]. Other researchers have

used Radon-like features [55] to try to isolate cell membranes without using

supervised learning. These deterministic methods have had limited success.

Furthermore, due to the very anisotropic resolution, a typical approach is to

segment neurons in 2D sections followed by a separate stage to link the segments in

3D as mentioned earlier. Active contours can be propagated through the sections

with the help of Kalman filtering [50]; however, this propagation can be inaccurate

because of the large changes in shape and position of neurons from one section to

the next. The large shape change stems from the anisotropy of the volume while the

position change problem stems from the anisotropy as well as the fact that each

section is cut and imaged independently resulting in nonrigid deformations. While

our and other registration methods [31, 56, 57] can be used to fix the position

change problem to a large extent, the shape change problem remains. Consequently,

due to this poor initialization, active contours can get stuck on edges of intracellular

structures and fail to segment neurons properly. Hence, active contours have been

most successful in earlier SBFSEM images which only highlight extracellular

spaces removing almost all contrast from intracellular structures. While this sim-

plifies segmentation, it also removes important information such as synapses that

are critical to identifying functional properties of neurons [7]. The other drawback

is that active contours typically segment one neuron at a time whereas a typical

volume has tens of thousands of neurons. While graph-cut methods [58–60] can

simultaneously segment a large number of neurons, they still have the intracellular

membrane problem. Combined with machine learning methods [61], they have an

improved detection accuracy and can be used more reliably.

Machine Learning Methods

As discussed, intracellular structures are present in images which can be a source of

confusion for neuron segmentation. Supervised lassifiers have been applied to the

problem of neuron membrane detection as a precursor to segmentation and have

proven more successful [5, 38, 39, 62, 63]. Membrane detection results can be with

a method as simple as flood-filling for segmentation or as an edge term in active

contour or graph-cut methods to overcome the problem due to intracellular struc-

tures. Jain et al. [39] use a convolutional network for restoring membranes in

SBFSEM images. Similar to Markov random field (MRF) [64, 65] and conditional

random fields (CRF) [66, 67] models, convolutional networks impose a spatial

coherency on the membrane detection results. However, convolutional nets define a

less rigid framework where the spatial structure is learned and they can make use of

context from larger regions, but typically need many hidden layers. The large

number of hidden layers can become problematic in training with backpropagation

and simplifications such as layer-by-layer training are often needed [68]. The series
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neural network architecture [63] used here also takes advantage of context and

samples image pixels directly to learn membrane boundaries.

While supervised learning for cell membrane detection has met moderate suc-

cess, all methods require substantial user interaction for initialization and correcting

errors in the subsequent segmentation step [40]. As discussed in section “Introduc-

tion”, the cell membrane classification step demands extremely high accuracy.

Neurons have a global tree-like geometry with a correspondingly large surface

area between neighboring neurons (cell membranes). A single local area of false

negatives on this cell membrane leads to under-segmentation. Therefore, even with

high pixel accuracy rates such as 95 % it is virtually certain that almost every

neuron in a volume will be incorrectly under-segmented. Furthermore, neurons

have very narrow cross-sections in many places which create many possibilities for

over-segmentation when intracellular structures with similar local appearance to

cell membranes are co-located with these constrictions. Researchers have investi-

gated approaches to improve the accuracy of such classifiers. A 2-step classification

where a membrane detection classifier is followed by a higher-level classifier that

learns to remove spurious boundary segments causing over-segmentation was

proposed [38]. Funke et al. [46] proposed a tree structure for simultaneous intra-

section and inter-section segmentation. However, their model can only segment a

3D volume of consecutive sections and cannot segment a single section. Moreover,

the final optimization problem in their model can be complicated given a set of

complete trees of an image stack. Another promising direction is to optimize

segmentation error rather than pixel-wise classification error, focusing learning

on critical pixels where a mistake in classification results in a segmentation

error [69, 70]. Topological constraints have also been proposed as an alternative

to the pixel-wise classification error metric [71]. A recent study proposed to

combine tomographic reconstruction with ssTEM to achieve a virtual resolution

of 5 nm out-of-plane [72]. Finally, perceptual grouping applied to membrane

detection classifier results was used in [61].

Another approach to improving the accuracy of cell membrane detection is to

use multi-scale methods. In early computer vision work, the neocognitron [73],

which is a network composed of alternating layers of simple cells for filtering and

complex cells for pooling and downsampling inspired by Hubel and Wiesel [74],

was proposed for object recognition. Learning in the neocognitron is unsupervised.

Convolutional nets in their original form are similar to the neocognitron in terms of

their architecture; however, learning is supervised [75]. Convolutional nets have

been applied to face detection [76, 77], face recognition [78], and general object

recognition [79, 80]. However, the convolutional nets applied to connectomics [39,

69–71] have not taken advantage of the multi-scale nature of the neocognitron. In a

different microscopy imaging application, Ning et al. have applied multi-scale

convolutional nets to the problem of segmentation of subcellular structures in

Differential Interference Contrast microscopy [81]. We proposed a multi-scale

version of our series neural network architecture [82] that we also employ here.

Recently, deep convolutional nets have been proposed for learning hierarchical

image features [83, 84]. While these deep convolutional nets are trained in an
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unsupervised manner by presenting a set of training images containing the object of

interest [85], their outputs can also be used as features in an object recognition

application. This approach was recently used in the winning entry of the ISBI EM

image segmentation challenge [86].

Methods

In this section, we will describe our algorithms for segmenting EM images.

Section “Convolutional Networks and Auto-context Overview” discusses

convolutional networks and auto-context methods which motivate our method.

Section “Series of Artificial Neural Networks Pixel Classifier” introduced our series

of artificial neural networks (ANN) framework. Section “Multi-scale Series of

ANN Pixel Classifier” generalizes this framework to a multi-scale model. Sec-

tion “Partial Differential Equation Based Post Processing” discusses a partial

differential processing-based post-processing step to close gaps in the membrane

detection results from the multi-scale series of artificial neural networks. This step

typically results in a slight over-segmentation of the images. Therefore, sec-

tion “Watershed Merge Tree Classifier” describes a watershed transform and

supervised learning-based method for merging regions in the segmentation as

necessary.

Convolutional Networks and Auto-Context Overview

As discussed in section “Machine Learning Methods”, supervised machine learning

methods have proven useful for detecting membranes in EM images. To address the

challenges presented, we developed a machine learning method that combines two

bodies of related work. The first by Jain et al. use a multilayer convolutional ANN

to classify pixels as membrane or nonmembrane in specimens prepared with an

extracellular stain [39]. The convolutional ANN has two important characteristics:

it learns the filters for classification directly from data, and the multiple sequential

convolutions throughout the layers of the network account for an increasing (indi-

rect) filter support region. This method will work well for different types of image

data, since it uses, as input, raw pixel data. In addition, the multiple convolutions

enable the classifier to learn nonlocal structures that extend across the image

without using large areas of the image as input. However, this method requires

learning a very large number of parameters using backpropagation through many

layers. Therefore, it is computationally intensive and requires very large training

sets. Also of particular relevance is Tu’s auto-context framework [87] from the

computer vision literature, which uses a series of classifiers with contextual inputs

to classify pixels in images. In Tu’s method, the “continuous” output of a classifier,

considered as a probability map, and the original set of features, are used as inputs
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to the next classifier. The probability map values from the previous classifiers

provide context for the current classifier, by using a feature set that consists of

samples of the probability map at a large neighborhood around each pixel. Theo-

retically, the series of classifiers improves an approximation of an a posteriori

distribution [87]. Hence, each subsequent classifier extends the support of the

probability map, improving the decision boundary in feature space, and thus the

system can learn the context, or shapes, associated with a pixel classification

problem. Similar to the convolutional network, this means that a classifier can

make use of information relayed by previous classifiers from pixel values beyond

the scope of its neighborhood. However, the particular implementation demon-

strated by Tu uses 8,000 nonspecific, spatially dispersed, image features, and a

sampling of probability maps in very large neighborhoods. This is appropriate for

smaller scale problems. On the other hand, for large connectomics datasets, it can

be impractical to calculate thousands of features in order to train the classifier.

Similar to Jain et al. we choose to learn the image features directly from the data

and use the image intensities as input to our architecture, rather than preprocessing

the data and computing thousands of image features. This provides us with a much

smaller set of features and allows for flexibility and training of large datasets. Also,

the use of the series ANNs and increasing context allows us to focus on small sets of

image features to detect membranes, while also eliminating pixels that represent

vesicles or other internal structures.

Series of Artificial Neural Networks Pixel Classifier

Problem Formulation

Let X ¼ (x(i, j)) be a 2D input image that comes with a ground truth Y ¼ (y(i, j))
where y(i, j) ∈ {� 1, 1} is the class label for pixel (i, j). The training set is T ¼
fðXk; YkÞ; k ¼ 1; . . . ;MgwhereM denotes the number of training images. Given an

input image X, the maximum a posteriori (MAP) estimation of Y for each pixel is

given by

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXÞ: (10.1)

It is not practical to solve (10.1) for large real-world problems. Instead of the

exact equation an approximation can be obtained by using the Markov assumption

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞÞ; (10.2)

where N(i, j) denotes all the pixels in the neighborhood of pixel (i, j). In practice,

instead of using the entire input image, the classifier has access to a limited number

of neighborhood pixels at each input pixel (i, j). This approximation decreases the

computational complexity and makes the training tractable on large datasets.
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Lets call the output image of this classifier C ¼ (c(i, j)). In our series ANN, the

next classifier is trained both on the neighborhood features of X and on the

neighborhood features of C. The MAP estimation equation for this classifier can

be written as

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;CN0ði;jÞÞ; (10.3)

where N
0
(i, j) denotes the neighborhood lattice of pixel (i, j) in the context image.

Note that N and N0 can represent different neighborhoods. The same procedure is

repeated through the different stages of the series classifier until convergence. It is

worth noting that (10.3) is closely related to the CRF model [66]; however, multiple

models in series are learned which is an important difference from standard CRF

approaches. It has been shown that this approach outperforms iterations with the

same model [88].

Artificial Neural Network

Given the success of ANNs for membrane detection [5, 39], a multilayer perceptron

(MLP) ANN is implemented as the classifier. An MLP is a feed-forward neural

network which approximates a classification boundary with the use of nonlinearly

weighted inputs. The architecture of the network is depicted schematically in

Fig. 10.3. The output of each processing element (PE) (each node of the ANN) is

given as [89, 90]

y ¼ f ðwTxþ bÞ; (10.4)

where f is, in this case, the tanh nonlinearity, w is the weight vector, and b is the

bias. The input vector x to PEs in the hidden layer is the input feature vector

discussed in more detail in section “Image Stencil Neighborhood”. For the output

PEs, x contains the outputs of the PEs in the hidden layer.

Input
Layer

Hidden
Layer

Output

Intensity

Output
Layer

Stencil Input   1

Stencil Input   2

Stencil Input   3

Stencil Input   n

Fig. 10.3 Artificial neural

network diagram with one

hidden layer. Inputs to the

network, in this framework,

include the image intensity

and the values of the image

at stencil locations
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ANNs are a method for learning general functions from examples. They are well

suited for problems without prior knowledge of the function to be approximated.

They have been successfully applied to robotics [91, 92] and face and speech

recognition [93, 94] and are robust to noise. Training uses gradient descent to

solve for a solution which is guaranteed to find a local minimum. However, several

trade-offs occur in training ANNs regarding the size of the network and the number

of inputs. An ANN with too many hidden nodes can lead to overfitting of the

network [89], resulting in a set of weights that fits well to the training data, but may

not generalize well to test data. At the other extreme, if the number of hidden nodes

is insufficient, the ANN does not have enough degrees of freedom to accurately

approximate the decision boundary. The number of features should also be kept

small to mitigate the problem of high dimensional spaces. Generally speaking, as

the dimensionality of the input space increases, the number of observations

becomes increasingly sparse which makes it difficult to accurately learn a decision

boundary. Additionally, the training time tends to scale with the amount of training

data and size of the network, and therefore training smaller networks with fewer

features is generally preferable. Hence, the number of inputs to each ANN should

be large enough to describe the data, but small enough for manageable training

times.

Image Stencil Neighborhood

Good feature selection in any classification problem is critical. In this application,

one possible approach uses large sets of statistical features as the input to a learning

algorithm. These features can include simple local and nonlocal properties, includ-

ing the pixel values, mean, gradient magnitude, standard deviation, and Hessian

eigenvalues [38, 87, 95]. These attempt to present the learning algorithm with a

large variety of mathematical descriptors to train on and are designed to work on a

variety of data types. To achieve this generality, however, large numbers of these

features are required to train a classifier. Another approach is to design a set of

matched filters and apply them to an image to approximate a pixel’s similarity to a

membrane. This works well if the membranes in the image are uniform and respond

well using cross correlation [96, 97]. Moreover, the design of the filter bank

requires significant a priori knowledge of the problem. Yet, the fixed design may

not be optimal for the dataset. Most importantly, the match filters have to be

redesigned for datasets with different characteristics. On the other hand, learning

these filters from training data, as in the case of convolutional networks [39], has the

advantage that no a priori knowledge is required. A similar idea has been used in

texture classification where it was shown that direct sampling of the image with a

patch is actually a simpler and more universal approach for training a classifier

compared to the use of filter banks [98]. Image patches have also been used

successfully for texture segmentation [99] and image filtering [100–102]. Similarly,

using image neighborhoods as in (10.2) allows the ANNs to learn directly on the

input intensity data, giving the classifier more flexibility in finding the correct
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decision boundary. A square image neighborhood can be defined as an image patch,

shown in Fig. 10.4a, centered at pixel k, l,

Nði; jÞ ¼ Ikþi;lþj : k; l ¼ �R� 1

2
; . . . ;

R� 1

2

� �
: (10.5)

R is the width of the square image patch. Unfortunately, the size of the image

patches required to capture sufficient context can be quite large. For this reason, we

propose using as input to the ANNs the values from the image and probability map

of the previous classifier sampled through a stencil neighborhood, shown in

Fig. 10.4b. A stencil is also centered at pixel k, l and defined as,

Nði; jÞ ¼ [n
a¼1Bði; j; aÞ (10.6)

where

Bði; j; aÞ ¼ Iiþak;jþal : k; l ¼ �1; 0; 1
� �

; (10.7)

and n is the number of rows the stencil spans in the image. The stencil in Figs. 10.4

and 10.5 cover large areas representing the desired feature space, but samples it in a

spatially adaptive resolution strategy. For large image features, stencils such as the

one in Fig. 10.5 are required. In this way, an ANN can be trained using a

low-dimensional feature vector from image data, without having to use the whole

image patch. Since the number of weights to be computed in an ANN is dominated

by the connection between the input and the hidden layers, reducing the number of

inputs reduces the number of weights and helps regularize the learned network.

Moreover, using fewer inputs generally allows for faster training. With this, one

aims to provide the classifier with sparse, but sufficient context information and

achieve faster training, while obtaining a larger context which can lead to improve-

ments in membrane detection. This strategy combined with the serial use of ANNs

grows the region of interest for classification within a smaller number of stages and

without long training times.

a

b

Fig. 10.4 Two image neighborhood sampling techniques: image pixels sampled using (a) a patch

and (b) a stencil. For this example, the stencil contains the same number of samples, yet covers a

larger area of the data. This is a more efficient representation for sampling the image space.
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Series Artificial Neural Networks

From the principles from auto-context, we architect a series of classifiers that

leverage the output from previous networks to gain knowledge of a large neigh-

borhood. The input to the first classifier is the image intensities around a pixel

sampled using a stencil as described in section “Image Stencil Neighborhood”. For

the ANNs in the remaining series, the input vector contains the samples from the

original image, used as input to the first ANN, appended with the values from the

output of the previous classifier which was also sampled through the stencil

neighborhood, yielding a larger feature vector. This second classifier is described

mathematically with (10.3). While the desired output labels remain the same, each

ANN is dependent on the information from the previous network and therefore

must be trained sequentially, rather than in parallel. Figure 10.6 demonstrates this

flow of data between classifiers. The lattice of squares represent the sampling

stencil (shown more precisely in Fig. 10.5).

In summary, the series structure allows the classifiers to gather, with each step,

context information from a progressively larger image neighborhood to the pixel

being classified, as occurs with a convolutional ANN. The pixel values are sampled

with a stencil neighborhood over each pixel, containing the pixels within the stencil

(Fig. 10.5). The probability map feature vector is also obtained with a stencil

Fig. 10.5 Example of a

larger image neighborhood

sampling technique,

covering a 31 �31 patch

of image pixels

Fig. 10.6 Series neural network diagram demonstrating the flow of data between ANNs. The blue
and yellow squares symbolize the center pixel and its neighborhood pixels in the stencil structure,

respectively
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neighborhood placed over each pixel containing information about the classes, as

determined by the previous classifier. Indirectly, the classification from the previ-

ous ANN contains information about features in surrounding pixels, that is not

represented in the original feature set. This allows the subsequent networks in the

series (Fig. 10.6) to make decisions about the membrane classification utilizing

nonlocal information. Put differently, each stage in the series accounts for larger

structures in the data, taking advantage of results from all the previous networks.

This results in membrane detection that improves after each network in the series.

Figure 10.7 visually demonstrates the classification improving between ANNs in

the series as gaps in weak membranes are closed and intracellular structures are

removed with each iteration in the series. The receiver operating characteristic

(ROC) curves in Fig. 10.8 also demonstrate the increase in detection accuracy after

each ANN in the series. Notice that the results converge after a few stages.

Combining the original image features with features sampled from the output of

the previous classifier is important because, in this way, the membrane structure

relevant for detection is enforced locally and then again at a higher level with each

step in the series of classifiers. One of the advantages of this approach is that it

Fig. 10.7 Example output using the same image, first as part of a training set (top two rows), and
then separately, as part of a testing set (bottom two rows), at each stage (1–5) of the network series.
The output from each network is shown in rows 1 and 3. Rows 2 and 4 demonstrate the actual

membrane detection when that output is thresholded. The network quickly learns which pixels

belong to the membranes within the first 2–3 stages and then closes gaps in the last couple of stages
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provides better control of the training, allowing the network to learn in steps,

refining the classification at each step as the context information it needs to

correctly segment the image increases. Again, note that the membrane structure is

learned directly from the data. Compared to a single large network with many

hidden layers and nodes, such as the convolutional ANN of Jain et al. [39], the

proposed classifier is easier to train. This is mainly because each of the ANNs has a

relatively small number of parameters. For example, for a single ANN, the number

of parameters needed is approximately 500 for the first ANN and 1,100 for the

remaining ANNs in the series. The number of weights in an ANN with a single-

hidden layer is given by ðnþ 1Þhþ ðhþ 1Þ, where n is the number of inputs and h is
the number of nodes in the hidden layer. For the first ANN in the series, n ¼ s,
where s is the number of points in the stencil. For the remaining ANNs in the series,

n ¼ 2s, since the original image and the output from the previous classifier are each

sampled once. The total number of parameters across the whole series totals to

approximately 5,000. In contrast, a convolutional ANN needs (n + 1)h for the first

layer, and (n h + 1)h for the remaining layers, an h2 dependence [39]. Hence, much

less training data is needed in this approach, which is hard to obtain, since the

ground truth must be hand labeled.1 Furthermore, the training is simpler since

backpropagation is less likely to get stuck on local minima of the performance

surface [89, 90], and the network will train much faster. Moreover, this accounts for

a smaller and simpler network which can be trained from smaller numbers of

features in the input vector. The series of ANNs is much more attractive to train,

as opposed to using a single large network with many hidden layers and nodes. A

single large network would be time consuming and difficult to train due to the many

local minima in the performance surface.
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Fig. 10.8 ROC curves for the (a) training data and (b) testing data for each stage of the network

on the C. elegans dataset

1 According to the “rule-of-thumb” in [90], one needs at least 10 �training samples of the total

number of parameters. Thus, compared to Jain et al. [39] convolutional ANN, the approach

presented here needs about 27 �less training samples, for the values given.
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Multi-scale Series of ANN Pixel Classifier

In this section, we discuss how more information can be obtained by using a scale-

space representation of the context and allowing the classifier access to samples of

context at different scales. It can be seen from (10.3) that context image provides

prior information to solve the MAP problem. Although the Markov assumption is

reasonable and makes the problem tractable, it still results in a significant loss of

information from global context because it only uses local information obtained

from the neighborhood area. However, it is not practical to sample every pixel in a

very large neighborhood area of the context due to computational complexity

problem and overfitting. The series classifiers exploit a sparse sampling approach

to cover large context areas as shown in Fig. 10.5. However, single pixel contextual

information in the finest scale conveys only partial information about its neighbor-

hood pixels in a sparse sampling strategy while each pixel in the coarser scales

contains more information about its neighborhood area due to the use of averaging

filters. Furthermore, single pixel context can be noisy whereas context at coarser

scales is more robust against noise due to the averaging effect. In other words, while

it is reasonable to sample context at the finest level a few pixels away, sampling

context at the finest scale tens to hundreds of pixels away is error prone and results

in a non-optimal summary of its local area. We will show how more information

can be obtained by creating a scale space representation of the context and allowing

the classifier access to samples of small patches at each scale. Conceptually,

sampling from the scale space representation increases the effective size of the

neighborhood while keeping the number of samples small.

Multi-scale Contextual Model

The multi-scale contextual model is shown in Fig. 10.9. In the conventional series

structure, the classifiers simply take sparsely sampled context together with input

image as input. In the multi-scale contextual model, each context image is treated as

an image and a scale-space representation of context image is created by applying a

Fig. 10.9 Illustration of the multi-scale contextual model. Each context image is sampled at

different scales (green squares). The blue squares represent the center pixel and the yellow squares
show the selected input/context image locations at original scale
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set of averaging filters. This results in a feature map with lower resolution that is

robust against the small variations in the location of features as well as noise.

Figure 10.10 shows the multi-scale sampling strategy versus the single-scale

sampling strategy. In Fig. 10.10b the classifier can have as an input the center

3�3 patch at the original scale and a summary of eight surrounding 3�3 patches at

a coarser scale (The green circles denote the summaries of dashed circles). The

green circles in Fig. 10.10b are more informative and less noisy compared to their

equivalent red circles in Fig. 10.10a. The summaries become more informative as

the number of scales increases. For example, in the first scale the summary is

computed over 9 pixels (3 �3 neighborhood) while it is computed over 25 pixels

(5 �5 neighborhood) in the second scale. Different methods such as Gaussian

filtering, maximum pooling, etc. can be used to create the summary (green dots in

Fig. 10.9) . From a mathematical point of view, (10.3) can be rewritten as:

ŷMAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;CN0
0
ði;jÞð0Þ;CN0

1
ði;jÞð1Þ; . . . ;CN0

l
ði;jÞðlÞÞ (10.8)

whereCð0Þ;Cð1Þ; . . . ;CðlÞ denote the scale space representation of the context and
N0
0ði; jÞ;N0

1ði; jÞ; . . . ;N0
lði; jÞ are corresponding neighborhood structures. Unlike

(10.3) that uses the context in a single-scale architecture, (10.8) takes advantage

of multi-scale contextual information. Even though the Markov assumption is still

used in (10.8), the size of the neighborhood is larger and thus less information is lost

compared to (10.3).

The series multi-scale contextual model updates the (10.8) iteratively:

ŷkþ1
MAPði; jÞ ¼ argmax pðyði; jÞjXNði;jÞ;Ck

N0
0
ði;jÞð0Þ;Ck

N0
1
ði;jÞð1Þ; . . . ;Ck

N0
l
ði;jÞðlÞÞ (10.9)

Fig. 10.10 Sampling strategy of context: (a) Sampling at a single scale (b) sampling at multi-

scale. Green circles illustrate the summary of pixels in dashed circles. We use linear averaging to

create the summary
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where Ckð0Þ;Ckð1Þ; . . . ;CkðlÞ are the scale space representation of the output of

classifier at stage k, k ¼ 1; . . . ;K � 1 and ŷkþ1
MAPði; jÞ denotes the output of the stage

k + 1. In turn, the k + 1’th classifier output as defined in (10.9) creates the context

for the k + 2’th classifier. The model repeats (10.9) until the performance improve-

ment between two consecutive stages becomes small. Because context is being used

more effectively, the performance improvement through the stages is larger com-

pared to the conventional series-ANN algorithm.

The overall performance of the multi-scale contextual model can be improved

by extracting powerful features from the input image in addition to pixel intensities.

It has been shown empirically that trying to segment the structures in connectome

images using only geometric or textural features is not very effective [55]. Radon-

like features (RLF) were proposed as a remedy to this problem as they are designed

to leverage both the texture and the geometric information present in the

connectome images to segment structures of interest. We refer the reader to [55]

for further details of the RLF method. RLF method is an unsupervised method by

itself but it can be integrated into supervised models as a feature extraction step.

Furthermore, more powerful features can be obtained by computing RLF at mul-

tiple scales and for different edge threshold settings [82]. This richer set of features

allow for correct detection of cell boundaries in the regions that cannot be detected

by the original RLF as proposed in [55] and avoids the need for extensive parameter

tuning.

Partial Differential Equation-Based Post-Processing

The partial differential equation (PDE) post-processing step is an entirely

unsupervised process that improves the probability map by closing small to

medium sized gaps in the membrane detection results. Typically the PDE post

processing will generate an over-segmented image. Our motivation is that we can

learn to fix over-segmentation errors with the watershed merge tree classifier as will

be discussed in section “Watershed Merge Tree Classifier” whereas this is not

possible for under-segmentation errors. In this section, we discuss how the proba-

bility map is updated at each iteration and the influence each term in the update

equation has on the result.

Let f be an probability map where 1 represents locations with a low probability

of being cell membrane and 0 represents locations with a high probability of being

cell membrane. F is updated according to the rule fkþ1 ¼ fk þ ΔtðΔf Þ, where

Δf ¼ αΔAþ βΔBþ ηΔC (10.10)

and each term ΔA, ΔB, and ΔC represents a different characteristic of the probability

map or underlying image that is to be optimized. The Δ t term is a parameter that

can be adjusted to improve the stability of the update rule and the α, β, and η terms
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are parameters that can be used to control how much weight each different term in

the PDE has relative to the other terms.

The first term in (10.10), Δ A, is defined as:

ΔA ¼ jrf jr � rf

jrf j (10.11)

where ∇ is the gradient operator and ∇ �is the divergence operator. The r � rf
jrf j

term in (10.11) computes the mean curvature at each pixel location in f and

multiplying by j∇f j ensures the stability. The effect of using the curvature is to

force some smoothness along the boundaries between the membrane and

non-membrane regions. Because the cells are generally large rounded structures

with few sharp corners, high curvature areas are uncommon resulting in the

curvature minimization term having the effect of favoring objects shaped like the

interior of a typical cell. Without any other terms however, this would eventually

reduce the areas with values close to 1 to shrink down to a small circle and

eventually a single point. The other terms will counteract this behavior to give

the desired result. In the discrete implementation of this curvature term, finite

central difference is used to compute ∇f.
The second term in (10.10), Δ B, is defined as:

ΔB ¼ rf � rG (10.12)

where rG ¼ expð�jrIj
σ

2Þ and I is a version of the original image filtered with the

nonlocal means algorithm [101] to reduce the effects of noise. We chose the

nonlocal means algorithm due to its success with textured images. The intent of

this term is to push the edges of the probability map f to be along the edges of the

original image. We assume that there is a strong edge between membrane and

non-membrane regions. By itself this would produce a very jagged edge because of

the noisy nature of the image. Combined with the curvature term, the edges of the

probability map f will produce a clean edge that closely follows the edges in the

original image. In the discrete implementation of this gradient term, an upwind

scheme is used to compute ∇f and finite central difference is used to compute

the ∇G and ∇I.
The final term in (10.10), ΔC, is defined as:

ΔC ¼ �:5λ1 þ :5λ2 (10.13)

where λ1, λ2 are the eigenvalues of the Hessian matrix of f, and λ1 > λ2. The larger
eigenvalue of the Hessian of f represents the change across the gradient of f. By
subtracting this term, it has the effect of inverse diffusion which tends to sharpen

image features. This will effectively bring together areas of wide gray into a narrow

dark region. Without the curvature term and gradient term this will cause some

spurious detail to form, so a balance between this term and the other two terms is
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necessary to ensure stability. The smaller eigenvalue of the Hessian of f represents
the change in the direction perpendicular to the direction of the maximum gradient.

Adding this term in allows growth extending the membranes at terminal points and

connecting across regions that were missed in the initial probability map. In the

discrete implementation of the Hessian, central differences are used to compute

each of the 2nd derivatives. The number of iterations for the PDE is determined

empirically according to the number of iterations that give the minimum rand error

on the training data used in previous stages.

The result of running this algorithm is that the threshold giving the best result

is at 1 resulting in everything less than 1 being considered non-membrane and

everything equal to 1 being considered as membrane as seen in Fig. 10.11c. On

some datasets this still offers significant improvement over just using the multi-

scale series ANN; however, on other datasets the improvement is minimal. To be

able to improve the thresholding and to be able to run the watershedding method

described in the next section, we threshold the results of this PDE at the optimal

Fig. 10.11 Example of (a) original EM image, (b) multi-scale contextual membrane detection,

(c) initial PDE result prior to thresholding , and (d) PDE result with replacement
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threshold as determined on the training data and replace the areas classified as

membrane with the intensity values from the original image. The result is an

image where everything considered to be non-membrane has a value of 0 and

everything considered to be membrane has the values from the original image as

seen in Fig. 10.11d. Using the ISBI dataset, this algorithm improved both the

training and the testing rand error as compared to the multi-scale series ANN by

over 7 %.

Watershed Merge Tree Classifier

With the membrane detection and the PDE-based post-processing, we have a

probability map for each image section indicating how probable every pixel can

be membrane, as shown in Fig. 10.11. By simply applying thresholding on this map,

we are able to get a segmentation. With this method, however, small mispredictions

in pixels about membrane could lead to undesirable region merging and thus

significant under-segmentation errors. With the watershed algorithm, we can also

obtain a set of different segmentations by varying the water level. Yet a fixed global

water level that works well through the entire image is difficult or even impossible

to find due to various local terrains. On the contrary, we expect better results if we

make specific local decisions according to different local situations, which moti-

vates our watershed merge tree-based method.

Watershed Merge Tree

Consider a probability map as a three-dimensional terrain map with pixel proba-

bility as ridge height. Water rains into catchment basins, and regions with lower

heights are flooded. An initial water level forms an initial segmentation as shown in

Fig. 10.12a. With more water falling in and the water level rising over ridges, small

regions merge into larger ones, and finally into one large region once the water level

rises above the highest ridge in the map. Figure 10.12b gives a one-dimensional

case for illustration: with initial water level l0, we have regions 1, 2, and 3; when the

Fig. 10.12 Example of (a) initial watershed segmentation and (b) region merging with water level

rising
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water level rises to l1, regions 1 and 2 merge to 4; region 3 merges with 4 and 5 at

water level l2. This technique produces a hierarchy of region merging that can be

represented by a tree structure, which we call a watershed merge tree.

Here we give a formal definition of a watershed merge tree. A watershed tree

T ¼ ({N}, {E}), derived from the concept of a tree in the graph theory, consists of a

set of nodes and edges between them. At depth d, a node Ni
d corresponds to an

image region Ri
d; an edge from a parent node Ni

d to its child node Ni 0d+1 indicates

region Ri 0d+1 is a subregion of region Ri
d; a local tree structure ðNd

i ;N
dþ1
i0
1

;Ndþ1
i0
2

; . . .Þ
represents region Ri

d can be the merging result of all of its subregion fRdþ1
i0
1

;Rdþ1
i0
2

;

. . .g. For simplicity, we here consider the merge tree as a binary tree, which means

only two regions merge each time. If several regions merge at the same water level,

we merge two regions at a time and the merging order can be arbitrary.

As we use nonlocal features for the boundary classifier, which will be described

in detail in the next section, it is difficult to extract some meaningful features from

regions that are too small. Therefore, we use an initial water level l0 to merge some

very small regions beforehand in the initial segmentation, and further conduct a

preprocessing step to get rid of regions smaller than nr pixels by merging them with

their neighbor regions with the lowest probability barrier.

Boundary Classifier

In order to decide which regions we should preserve as the final segmentation in the

merge tree, we need information about how probable each potential merge could

happen. Thus, we learn a boundary classifier from training data. For a pair of

regions, we consider the set of pixels that are adjacent to the other region as a

boundary. The output of the classifier is a probability that the boundary between the

two regions is false, or in other words, the two regions should merge. The input of

the classifier is a set of 141 features extracted from the two merging regions,

including geometric features (region area, boundary lengths, region contour

lengths, etc.), intensity statistics features of boundary pixels from both original

EM images and membrane detection probability maps, and regional features

(texton histogram difference and watershed region merging saliency). Here the

watershed region merging saliency is defined as the difference between the mini-

mum water level to merge the two regions and the minimum value in the membrane

detection probability map.

We obtain the label that indicates whether a region pair (Ri
d, Rj

d) should merge

or not by measuring the Rand error over the ground truth segmentation, which is

defined as

Ek ¼ 1

jRd
i j � jRd

j j
X

xp;xq2Rd
i [Rd

j

σpq � βkpq

��� ���; (10.14)
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where (xp, xq) represents any pixel pair from the union of the two merging regions,

and

σpq ¼
1 if xp and xq are in the same truth region

0 otherwise

(

β1pq ¼
1 always

0 never

(

β2pq ¼
1 if xp and xq are in the same merging region

0 otherwise:

(
(10.15)

Here the Rand error E1 measures the portion of pixel pairs that are misclassified

against the ground truth segmentation if the two regions merge, and E2 is that

portion if the two regions keep split. Thus, we can decide the label by simply

comparing the Rand errors as

ldij ¼
þ 1ðmergeÞ if E1

R < E2
R

� 1ðsplitÞ otherwise.

(
(10.16)

To balance the contributions of positive and negative examples, different

weights are assigned to each type of examples. A random forest classifier [103] is

trained with the weighted training examples and applied to make predictions about

how likely a pair of regions should merge for the testing data.

Resolving the Merge Tree

The boundary classifier predicts the probability for every potential merge in a

merge tree. We seek to take advantage of this information and obtain a consistent

segmentation of the whole image in a sense of optimization. We define the

consistency as that in the final segmentation any pixel should be labeled exactly

once. In the context of our tree structure, if a node is selected, all of its ancestor and

descendants cannot be selected, and its immediate sibling or a set of the descen-

dants of its immediate sibling must be selected; if a node is not selected, one of its

ancestors or a set of its descendants must be selected. In other words, exactly one

node should be picked on each path from any leaf to the root. Figure 10.13 shows an

artificial example. We have an initial over-segmentation shown in Fig. 10.13a, from

which a merge tree is built as shown in Fig. 10.13c. Nodes 3, 6, 9, and 12 are picked

for a consistent final segmentation shown in Fig. 10.13b. Consequently, the other

nodes cannot be selected. Because we cannot have both purple region (node 9) and

region 1 (or 2) exist, otherwise region 1 (or 2) would be labeled more than once as

1 (or 2) and 9, which is inconsistent by our definition. Meanwhile, if we select node

3, node 9 or nodes 1 and 2 together then must be picked in this case, otherwise
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region 1 or region 2 is not labeled in the final segmentation, which is also

inconsistent.

In order to resolve the merge tree, we transform the probabilities of region pair

merging into the form of potentials for each node in the tree. A region exists in the

final segmentation because it neither splits into smaller regions nor merges with

others into a larger region. Since each prediction that the classifier makes depends

only on the two merging regions, we compute the potential that a node Ni
d is picked

as the probability that its two child nodes Ndþ1
i0
1

and Ndþ1
i0
2

merge and at the same

time Ni
d does not merge with its immediate sibling node Nj

d at the next higher water

level to their parent node Nk
d�1. Thus, we define the potential for Ni

d as

Pd
i ¼ pdþ1

i0
1
;i0
2
� ð1� pdi;jÞ; (10.17)

where pdþ1
i0
1
;i0
2

is the predicted probability that the two child nodes Ndþ1
i0
1

and Ndþ1
i0
2

merge, and pi, j
d is the probability that node Ni

d merge with its immediate sibling

node Nj
d. In the example shown in Fig. 10.13c, the potential of node 9 is P9 ¼

p1;2ð1� p3;9Þ. Since leaf nodes have no children, their potentials are defined as the

Fig. 10.13 Example of (a) initial over-segmentation, (b) consistent final segmentation, and (c)

corresponding merge tree
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probability that they do not merge penalized into half. Similarly, the root node has

no parent, so its potential is half of the probability that its children merge.

Given the potentials of each node, we seek to locally optimize the node selection

to form a complete consistent final segmentation. Here we apply a greedy approach.

The node with the highest potential in the merge tree is picked. Then all of its

ancestors and descendants are regarded as inconsistent options and removed from

the tree. This procedure is repeated until there are no nodes left in the tree. All the

picked nodes together make up a complete consistent final segmentation.

Results

In this section, we will demonstrate the results of our algorithms on two ssTEM and

one SBFSEM dataset. In addition to visual results, quantitative results are provided

using the pixel error and rand error metrics on the training and testing datasets.

C. elegans Ventral Nerve Cord ssTEM

Dataset

The nematode C. elegans is an important dataset for neural circuit reconstruction.

Despite being a well-studied organism [21], there are still numerous open questions

such as how genes regulate wiring [104] or how connectivity is altered to mediate

different behaviors, for example between males and females [105]. Reconstructions

of the full nervous system reveal topological characteristics important for

researchers studying neuron wiring. The particular ssTEM dataset used here is

from the VNC of the C. elegans and is important for studying the topological

structure resulting from neurons making connections to local targets.

Series-ANN Pixel Classifier

In this experiment, a series classifier with 5 stages was trained. Additional networks

could be included; however, for these datasets, the performance converges to a limit

(Fig. 10.8) and improvement in membrane detection is minimal. Each ANN used in

the experiments contained one hidden layer with 20 nodes. We experimented with

more layers and different numbers of nodes but did not find significant advantages.

It is important that the number of nodes be large enough to approximate a nonlinear

boundary and small enough that the ANN does not overfit to the training

data [106, 107]. Results using 10, 20, and 30 nodes turned out to be somewhat

similar. Given the time versus performance trade-off, we chose 20 nodes. The

networks were trained using backpropagation with a step size of 0. 0001 and
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momentum term of 0.5.We used early stopping as the criterion to determine when to

terminate training [89, 90]. Thismeans that a small portion of the training data (20 %

in our case), called the validation set, is used only to test the classifier generalization

performance. The training terminates when the lowest error on the validation set is

attained. To mitigate problems with local minima, each network is trained for

5 Monte Carlo simulations using randomly initialized weights.

Post-processing and Segmentation

For this dataset the parameters were optimized empirically on the 15 images used as

training images. The PDE ran for 288 iterations with δ t equal to 0. 1875, α equal to

0. 1, β equal to 0. 6, and η equal to 1. This places the most weight on the inverse

diffusion-based growth term, significant weight on the gradient term, and minimal

weight on the curvature term. Following 288 iterations of the pde, the result was

thresholded with a threshold of 0. 4 and all of the membrane areas were replaced

with their values from a denoised version of the original image. The denoising was

done using a nonlocal means denoising algorithm. Following this replacement the

watershed process was started using the resultant image. For the watershed merge

tree classification, the initial water level was 5 % of the maximum value in each

probability map. Due to large section size, we merged regions smaller than

nr ¼ 300 pixels with their neighbors in the preprocessing step; 7�7 texture patches

were extracted from the original EM images for generating the texton dictionary

and building texton histograms as boundary classifier features. A random forest

with 500 trees was trained for boundary classification. Figure 10.14 shows the

results of the ANN series and post-processing methods for four different test

images. Table 10.1 shows the pixel and Rand error of the series ANN model

alone and ANN series model followed by PDE post-processing and watershed

merge tree segmentation. Notice that while the post-processing worsens the pixel

accuracy slightly, it significantly improves the Rand error. Since Rand error is a

measure of segmentation errors, this particular trade-off between the pixel accuracy

and Rand error is desirable.

Drosophila Ventral Nerve Cord ssTEM

Dataset

The second dataset we experimented with is a stack of 60 images from an ssTEM

dataset of the Drosophila first instar larva VNC [8, 108]. It has a resolution of 4 �4

�50 nm/pixel and each 2D section is 512 �512 pixels. The corresponding binary

labels were annotated by an expert neuroanatomist. During the International Sym-

posium on Biomedical Imaging (ISBI) Electron Microscopy Image Segmentation

Challenge 30 images were used for training and the remaining images were used for

testing.
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Fig. 10.14 Test results for membrane detection for four different input images from

C. elegans VNC. The first row shows the input images, row 2 shows the conventional ANN series

results, row 3 shows the PDE post-processing results (applied on the results in row 2), and row

4 shows the watershed merge tree results (applied on the results in row 3), and the last row shows

the corresponding groundtruth images. All the images in this figure are zoomed in for the sake of

better visualization of the details
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Multi-scale Series-ANN Pixel Classifier

In this experiment, a series classifier with five stages was trained using multi-scale

contextual method. Each MLP-ANN in the series had one hidden layer with ten

nodes. To optimize the network performance, five million samples were randomly

selected from the training images such that the training set contained twice the

number of negative samples, i.e., the non-membrane samples, than positive sam-

ples, i.e., membrane samples. To compute the feature vector for the input image

pixels, an 11 by 11 stencil was used to sample the input image and the RLF maps for

cell boundaries (at two scales) and mitochondria. The first classifier was trained

using this feature vector of size 164. The context features were computed using 5 by

5 patches at four scales (one at original resolution and three at coarser scales) that

made the context feature vector of length 100. The remaining classifiers in the

series had feature vector of size 264, which included both the input image features

and the context features. The evolution of the results through the stages of multi-

scale contextual model is shown in Fig. 10.16. It can be seen that the classifier is

able to remove some undesired parts such as mitochondria from the interior of

the cells.

Post-processing and Segmentation

For this dataset the number of iterations for the PDE post-processing was again

optimized empirically using the 30 training images. The optimal number of itera-

tions for this dataset was found to be 425. The remaining parameters were found to

be the same because of the similarity in structure between the datasets. Following

425 iterations of the PDE, the result was thresholded with a threshold of 0 and all of

the membrane areas were replaced with their values from a nonlocal means [101]

denoised version of the original image. Following this replacement the watershed

process was started using the resultant image. As for the watershed merge tree

method, the initial water level was set as 1 % of the maximum value in each

corresponding probability map. Regions smaller than nr ¼ 50 pixels were removed

in the initial segmentation; 7 �7 texture patches were used for generating texton

features. A random forest with 500 trees was again used.

Table 10.2 illustrates the pixel accuracy and Rand error of the multi-scale

contextual model alone and multi-scale contextual model followed by PDE

Table 10.1 Testing performance of the ANN series model and post-processing methods (pde +

watershed merge tree) for the C. elegans ssTEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Series ANN 0.2113 0.0327 0.2285 0.0324

Post-processing 0.0986 0.0431 0.1498 0.0432

264 T. Tasdizen et al.



post-processing and watershed merge tree segmentation. Similar to sec-

tion “C. elegans Ventral Nerve Cord ssTEM”, post-processing worsens the pixel

accuracy, it significantly improves the Rand error. Figure 10.17 illustrates the

results of the various steps visually.

Figure 10.15 shows the improvement in Rand error provided by the post-

processing step against the Rand error of the multi-scale contextual model at

different thresholds.

Mouse Neuropil SBFSEM

Dataset

This dataset is a stack of 400 images from the mouse neuropil acquired using

SBFSEM. It has a pixel resolution of 10 �10 �10 nm and each 2D section is

4, 096 by 4, 096 pixels. To train and test the segmentation framework, a subset of

this data (700 �700 �70) was manually annotated by an expert electron micros-

copist. From those 70 images, 14 images were used for training and the

56 remaining images were used for testing. The training set contains 4. 5 million

samples, which one third of them are positive samples and the remaining of them

are negative samples.

Multi-scale Series-ANN Pixel Classifier

The same series classifier as the previous section was trained on this dataset.

Figure 10.18 shows four examples of test images and their corresponding

Fig. 10.15 F-value of Rand

Index for the testing set in

C. elegans VNC dataset
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Fig. 10.16 Test results for membrane detection for four different input images from Drosophila

VNC. The first row shows the input images, rows 2–5 show the series output at different stages of

the multi-scale contextual model
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Fig. 10.17 Test results for membrane detection for four different input images from Drosophila

VNC. The first row shows the input images, row 2 shows the multi-scale contextual model results,

row 3 shows the PDE post-processing results (applied on the results in row 2), and row 4 shows

the watershed merge tree results (applied on the results in row 3). The testing ground truth images

for the ISBI challenge were not distributed to the contestants; therefore, we are unable to show

them here

Table 10.2 Testing performance of the multi-scale contextual model and post-processing

methods (pde + watershed merge tree) for the Drosophila VNC ssTEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Multi-scale contextual model 0.2084 0.0527 0.1312 0.0752

Post-processing 0.0378 0.0599 0.0770 0.1026
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Fig. 10.18 Test results for membrane detection for four different input images from mouse

neuropil. The first row shows the input images, rows 2–6 show the series output at different

stages, and the last row shows the manually marked image
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segmentation results at different stages of the multi-scale contextual model. The

accuracy of the results is improved through the stages and cleaner images are

obtained at later stages of the series (see Fig. 10.18). Four test images and

corresponding membrane detection results for conventional ANN series and

multi-scale contextual model are shown in Fig. 10.19. In comparison, multi-scale

contextual model is more successful in removing undesired parts and generating

cleaner results.

Post-processing and Segmentation

For this dataset the number of iterations was again optimized empirically using the

14 images from bin 1. The optimal number of iterations for this dataset was again

found to be 288 while the remaining parameters remained the same. For this

dataset, histogram equalization was performed prior to using the image for gradient

calculation. The threshold used prior to replacement with the original image

intensities in the membrane areas was again 0. Following this replacement the

watershedding process was started using the resultant image. The parameters

selection of the watershed merge tree classifier was identical to that of the drosoph-

ila VNC ssTEM dataset: the initial water level was 1 % of the maximum values

correspondingly; regions smaller than nr ¼ 50 pixels were removed; 7 �7 texton

patches were used; and the random forest utilized 500 trees.

Figure 10.19 illustrates the results of the various steps visually. Table 10.3 shows

the pixel accuracy and Rand error of the multi-scale contextual model alone and

multi-scale contextual model followed by PDE post-processing and watershed

merge tree segmentation. Again, notice that while the post-processing worsens

the pixel accuracy slightly, it significantly improves the Rand error. Since Rand

error is a measure of segmentation errors, this particular trade-off between the pixel

accuracy and Rand error is desirable. Finally, Fig. 10.20 shows the Rand error of the

multi-scale contextual model as a function of the final threshold applied to the

classifier output. It also shows the Rand error of the post-processing step.

Discussion

In this chapter, we demonstrated a pipeline that utilizes several machine learning

strategies to provide a reasonable solution to the problem of segmenting neurons in

electron microscopy images. Both supervised and unsupervised techniques were

used. The first step of the pipeline is a pixel-level classifier that attempts to mark

each pixel in an image either as membrane or non-membrane. This supervised

learning approach has clear advantages over traditional image processing methods

that involve no learning: the learning approach can adapt to the data, requires no

hand designed features, and outperforms the traditional methods. In our pixel-level

classifier, we employed a series of ANNs. The ANNs directly use pixel intensities
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Fig. 10.19 Test results for membrane detection for four different input images from mouse

neuropil. The first row shows the input images, the second row shows the conventional ANN

series results, row 3 shows the multi-scale contextual model results, row 4 shows the PDE post-

processing results (applied on the results in row 3), row 5 shows the watershed merge tree results

(applied on the results in row 4), and the last row shows the corresponding grountruth images
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in neighborhoods as features. Each ANN in the series learns to improve upon the

previous ANNs’s results by sampling neighborhoods from both the input image and

the previous ANN’s output (probability map). Intracellular structures such as

mitochondria and synaptic vesicles are mostly removed from the membrane detec-

tion results and some small gaps in the membranes are filled. These improvements

are observed both in training and in testing datasets. A multi-scale version of the

series-ANN which can more effectively sample the images was shown to provide

further improvement in accuracy. However, the main problem with the pixel-level

classifiers is two-fold: (i) it optimizes pixel accuracy instead of segmentation

accuracy and (ii) it cannot use region-based features. The first point is problematic

because even a single pixel gap in the membrane map, which is negligible in view

of pixel error, can create a large segmentation error. The next two steps of our

pipeline aim to fix these problems. The second step is an unsupervised PDE which

aims to fill small gaps in the membrane map hence favoring over-segmentation over

under-segmentation. This is achieved mainly by using an inverse diffusion term

Fig. 10.20 F-value of Rand Index for different thresholds for the mouse neuropil SBFSEM

dataset

Table 10.3 Performance of the multi-scale contextual model and post-processing methods (pde +

watershed merge tree) for the mouse neuropil SBFSEM dataset

Training Testing

Method Rand error Pixel error Rand error Pixel error

Multi-scale contextual model 0.2551 0.0512 0.2413 0.0510

Post-processing 0.1274 0.0716 0.1538 0.0745
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directed along the eigenvector of the Hessian of the probability map associated with

its larger eigenvalue, i.e. the direction perpendicular to the cell membrane. The

over-segmentation created by the PDE step is finally fixed using the watershed

merge tree. Similar to the pixel classifier step, this is also a supervised learning-

based step. Incrementally raising the water level in the watershed algorithm creates

a hierarchy of regions. Each time two regions merge in the tree due to rising water

level, we have to ask the question: Is this merge salient or not? We train a classifier

that we call the boundary classifier to answer this question. The advantage of

the boundary classifier over the pixel-level classifier is that it can make use of

potentially more powerful region-based features. Furthermore, the boundary clas-

sifier is trained to optimize segmentation accuracy as measure by the rand error.

The saliency of each region is then defined as the probability that its children merge

times 1 minus the probability that it doesn’t merge with its sibling. Finally, we pick

the salient regions from the watershed tree by using a greedy approach in search of

the most salient regions. As expected the outcome of these post-processing steps

significantly improves segmentation error over the pixel-level classifier. The pixel

accuracy is slightly worsened over the pixel-level classifier; however, this is not

considered important since the main goal is to improve better segmentations. One

reason for the worsening of pixel accuracy is errors in the membrane width that

might be introduced by the post-processing which optimizes segmentation error

since such errors don’t impact the segmentation error.

The pipeline introduced in this chapter can be used to automatically segment

neurons in electron microscopy images. However, if perfect accuracy is required as

is the case for most connectomics problems, manual proof-reading of the results by

an expert will be necessary. To minimize the time that experts need to spend proof-

reading results, future methods will focus on further improving the accuracy. Our

pipeline also is a new example for how machine learning methods can benefit

automatic image analysis.
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Chapter 11

Image Analysis Techniques

for the Quantification of Brain

Tumors on MR Images

Nishant Verma, Matthew C. Cowperthwaite, Mark G. Burnett,

and Mia K. Markey

Abstract Advances in neuro-imaging methods over the last few decades have

enabled collection of detailed anatomical and functional information about the

brain. Although functional imaging provides rich information for diagnosis and

treatment planning, practical considerations such as cost and availability currently

limit its clinical utility. As a result, structural imaging methods that provide detailed

information about the anatomical structures of the brain are routinely used to manage

brain tumors in the clinical setting. Typically, radiological images are visually

inspected and interpreted by trained health professionals to detect gross anatomical

abnormalities, which are associated with various types of brain tumors. This

approach entails generally qualitative interpretations that do not fully realize the

potential of modern imaging technologies. Furthermore, several types of brain

tumors manifest with gross anatomical changes that are visually similar, which limits

the use of MRI in differentiating between them. Computer-aided image analysis

enables a quantitative description of brain anatomy and detection of subtle, but

N. Verma (*)

Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean

Keeton Street Stop, 1 University Station, C0800, Austin, TX 78712, USA

NeuroTexas Institute, St. David’s HealthCare, 1015 East 32nd Street Suite 404,

Austin, TX 78705, USA

e-mail: vnishant@utexas.edu

M.C. Cowperthwaite • M.G. Burnett

NeuroTexas Institute, St. David’s HealthCare, 1015 East 32nd Street Suite 404,

Austin, TX 78705, USA

e-mail: Matthew.Cowperthwaite@stdavids.com; mburnett@neurotexas.net

M.K. Markey

Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean

Keeton Street Stop, 1 University Station, C0800, Austin, TX 78712, USA

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA

e-mail: Mia.Markey@austin.utexas.edu

K. Suzuki (ed.), Computational Intelligence in Biomedical Imaging,
DOI 10.1007/978-1-4614-7245-2_11, © Springer Science+Business Media New York 2014

279

mailto:vnishant@utexas.edu
mailto:Matthew.Cowperthwaite@stdavids.com
mailto:mburnett@neurotexas.net
mailto:Mia.Markey@austin.utexas.edu


important, anatomical changes that may be difficult to detect by visual inspection.

Therefore, it’s imperative to develop sophisticated image analysis tools that can

handle the highly complex and varied organization of the brain across individuals.

Such tools will form the foundation for decision support systems (DSSs) to aid health

professionals in more precise and personalized management of brain tumors.

Introduction

Medical imaging plays a key role in the clinical management of brain tumors for

diagnosis, treatment planning, and follow-up assessment. Magnetic resonance

imaging (MRI) is the current standard of neuro-oncologic imaging and has become

more widely used than computed tomography (CT) due to its advantages such as

higher contrast resolution among soft tissues and absence of exposure to ionizing

radiation. Typically, MR images are visually inspected and interpreted by trained

radiologists. The information gathered through visual inspection generally consists

of qualitative assessments of any gross anatomical abnormalities observed on the

images and often does not include finer differences that may be difficult to detect by

visual inspection. Visual inspection therefore limits the utility of MRI for diagnos-

ing brain tumors that often manifest with similar gross anatomical characteristics.

A final diagnosis is typically made by histological examination of tissue specimens

by a pathologist following biopsy, which is time consuming, expensive and the

risks involved may often outweigh the benefits.

A decision support system (DSS) is a sophisticated tool that helps a person

consider multiple criteria in order to make a choice from among alternatives. In the

medical context, a DSS provides clinicians, staff, patients, and other individuals

with patient-specific information, intelligently filtered and presented at appropriate

times, to enhance health and healthcare [1]. A radiological DSS can potentially help

in the detection and quantification of the more subtle characteristics of radiologic

images that are difficult to detect via visual inspection. DSS can assist radiologists

with interpreting medical images in a variety of ways, such as through better

presentation of important information or by providing a “second opinion” based

on an objective and quantitative evaluation of tumor morphology. A radiological

DSS could help reduce reading errors resulting from subtle but important anatom-

ical changes, decrease radiologist variability, and increase the efficiency of

reviewing and interpreting MR images.

Basic Overview of DSS for brain MRI

Noninvasive medical imaging is crucial for managing brain tumors. It is used not

only for diagnosis of brain tumors but also for treatment planning and following

patients to assess the effectiveness of their treatment and the status of their disease.

Whereas most DSSs for cancer imaging have focused on earlier detection of cancer

(such as detecting spiculated masses in mammograms [2] or solid lung nodules in
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lung CT images [3]), those developed for brain tumors have addressed all phases of

care from diagnosis to post-treatment monitoring. There are generally three stages

of care for brain tumor patients: diagnosis, treatment, and monitoring. These stages

serve as a useful framework to broadly classify DSSs for brain tumors:

1. Diagnostic DSS: Accurate diagnosis is important both for treatment planning

and for providing vital prognostic information to patients. Physicians often

incorporate the morphological features observed on medical images to identify

brain tumor type and grade. By extracting relevant features from radiologic

images that may distinguish between brain tumor types, diagnostic DSSs can

help physicians better diagnose patients with brain tumors. One possibility is a

two-class categorization system may provide additional information to the

radiologist about whether a candidate lesion is a brain tumor or not; for example,

identifying whether a contrast-enhancing lesion observed on patient follow-up is

due to tumor recurrence or side effect of radiation therapy. Another type of DSS

could be a multi-class categorization system that could, for example, be used to

classify lesions into brain tumor type and grade.

2. Treatment DSS: Accurately characterizing the extent of tumor invasion in the

surrounding brain tissue is critical to successful planning of aggressive treatments

such as surgery and radiation therapy. It enables more localized and efficient

treatment not only to minimize radiation exposure but also reduce the risk of

treatment side effects in brain tumor patients. DSSs may help physicians with

treatment planning by more accurately delineating the extent of brain tumors and

other surrounding structures (such as edema and necrosis) than is possible by

visual inspection. Other DSSs that play important roles during the treatment stage

are those that help with image-guided surgery and radiation therapy.

3. Follow-up DSS: An essential part of brain cancer management is the assessment

of outcomes following treatment. Advances in neuro-imaging have enabled

noninvasive methods for assessing patient outcomes based on serial imaging

examinations. In the clinical setting, this is typically performed by comparing

imaging data acquired at different time points while following the patient.

However, this is a challenging task due to the amount of imaging data, variabil-

ity in image-acquisition parameters (e.g., modality type, number of slices, and

slice thickness), variability in patient orientation inside scanner, and the limita-

tions of human vision to detect subtle changes in an image. The third category of

DSSs, therefore, deals with computer-based detection of changes in images and

better presenting this information to physicians by directing their attention to the

potentially most informative regions of the imaging data. The characterization of

the change can be performed using the classification DSS as discussed earlier.

The earliest stages of recurrence are difficult to detect due to the small size of

the growing tumor and may be missed on visual inspection of patient imaging

data. Thus, another important role of DSS is follow-up monitoring of brain

tumor patients. More accurate assessment of follow-up imaging would enable

earlier detection of tumor recurrence at an asymptomatic stage, potentially

improving patient prognosis and quality of life.
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Despite the different stages of brain tumor care during which a DSS can be utilized,

they share several common aspects in their design (Fig. 11.1). Thus, the remainder of

this chapter is organized by analysis techniques rather than application domain.

Sections “MRIPreprocessing:Adjusting for SystemFactors” and “MRIPreprocessing:

Adjusting for Patient Factors” describe preprocessing techniques such as methods for

image normalization and artifact removal. For clarity, we separate preprocessing pro-

cedures necessitated by image corruptions that are solely due to issues concerning the

imaging system itself (section “MRI Preprocessing: Adjusting for System Factors”)

from those that are also dependent on the patient anatomy (section “MRI Prepro-

cessing: Adjusting for Patient Factors”). The flowchart in Fig. 11.2 indicates the ways

in which these methods operate in sequence to facilitate subsequent analyses.

Section “MRI Feature Extraction” reviews algorithms for feature extraction. Section

“Statistical Modeling and Selection of Image Features” highlights the primary consid-

erations in developing statistical models for feature selection and classification. We

conclude the chapter (section “Conclusion”)with a brief discussionof future directions.

MRI Preprocessing: Adjusting for System Factors

MRI preprocessing is an essential first step of any sophisticated image analysis.

Acquiring MR images on different platforms results in different pixel intensity

ranges, image resolutions, contrast-to-noise ratios, slice thicknesses, background

Fig. 11.1 Flowchart illustrating main image analyses steps involved in a typical DSS

Fig. 11.2 Flowchart illustrating the sequence of important preprocessing steps required before

any MR image analyses
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details, and subject orientations that makes serial and inter-subject analysis prob-

lematic. These variations may confound comparisons of image features between

brain tumor types and complicate a classification task. Therefore, preprocessing of

MR images is essential to ensure that any information obtained from the images is

standardized, comparable, and reproducible.

Intensity Normalization Methods

Intensity normalization is the most important preprocessing step when preparing to

analyze a set of MR images because many of the morphological features used in

classification or serial image comparisons are directly dependent on the image

intensities. Several methods have been proposed for intensity normalization of

MR images with varying success. In this section, we discuss some of the most

popular and widely used normalization methods.

Kullback–Leibler Divergence-Based Intensity Normalization

Wiesenfeld et al. [4] proposed a Kullback–Leibler (KL) divergence-based tech-

nique to simultaneously estimate the intensity inhomogeneity and normalize the

intensities in MR images. The method assumes a multiplicative model of intensity

inhomogeneity,

O x; yð Þ ¼ F x; yð Þ � I x; yð Þ þ n x; yð Þ

where O(x, y) is the observed image, F(x, y) is the multiplicative intensity inhomo-

geneity, I(x, y) is the corrected image, and n(x, y) is the acquisition noise. The method

assumes that the noise has very little influence on the intensity normalization. The KL

divergence between the intensity inhomogeneity corrected image I � F� 1O and a

target intensity histogram is iteratively minimized to estimate F(x, y),

argmin
F�1

X
k

pklog2
pk
qk

� �

Simultaneous perturbation stochastic approximation (SPSA) is used to generate

gradient estimates of the KL-divergence. Although this method works well, pixel-

wise estimation of the intensity inhomogeneity F(x, y) reduces the performance of

this normalization method such that it is much slower than the other methods

presented in the following sections.
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Consistent Intensity Correction

Consistent intensity correction operates by matching the observed intensity histo-

gram to a target intensity histogram [5]. The two histograms are approximated

using Gaussian mixture models (GMMs) and the expectation maximization

(EM) method is used to estimate the model parameters. The intensities within

specific anatomical regions are aligned and interpolated using a smooth polynomial

function f p(x) of order p,

f p xð Þ ¼
Xp
i¼0

θixi

The coefficients of the polynomial function θi are estimated by minimizing the

following energy function,

E ¼
Xn
l¼1

f p μlð Þ � vlð Þ2

where l ¼ 1, . . ., n represents the anatomical regions, and μl and vl are the mean

intensity of the anatomical regions in the histogram of the image to be normalized

and the target histogram, respectively. The advantage of this method is that it does

not require a spatial alignment for the image(s) to be corrected. However, this

method suffers from low generalizability and only average accuracy relative to

other methods discussed in this section.

Intensity Normalization by Joint Histogram Registration

Jager et al. [6] proposed an intensity normalization method that minimizes a

distance measure between the joint probability density functions (PDFs) of the

tissue types from a set of MR images to be normalized and a set of reference

images. The distance minimization is posed as a nonrigid registration problem with

the images considered to be the joint PDFs. The minimization problem can be

formulated as,

τ pR; pU; fð Þ ¼ D pR; pU; fð Þ þ αS fð Þ

where f is the deformation field mapping the PDF of the uncorrected images pU to

the PDF of the reference images pR; D( pR,pU; f ) is a sum of squared differences

(SSD) based distance measure; and S( f ) is a smoothness measure. The distance

measure is defined as,
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DSSD pR; pU; fð Þ ¼ 1

2

ð
Ω

pUφ
ið Þ � pR ið Þ

� �2
di

where pUφ
ið Þ ¼ pU∘ i� f ið Þð Þ , and Ω represents the joint PDF image domain. A

regularization measure based on curvature smoothness is defined as,

Scurv fð Þ ¼ 1

2

Xn
l¼1

ð
Ω
Δf lð Þ2dx

with Δ(.) being the Laplacian operator, and n as the dimensionality of joint PDF.

The objective function τ( pR,pU; f ) is minimized using a variational approach. The

histogram registration method is applicable for multi-modality images, but requires

at least two imaging sequences (e.g., T1 and T2 weighted images). The method has

been reported to perform well and is fairly generalizable [7]. However, nonrigid

registration makes this method considerably slower than approaches that normalize

an image without using additional preprocessing steps.

Decile Normalization Method

Decile normalization (DN) [8, 9] is a widely used method for intensity normaliza-

tion of brain MR images. This method works by setting percentile-based ten

intensity landmarks (deciles) CL,

CL ¼ plow;m10;m20;m30;m40;m50;m60;m70;m80;m90; phigh

n o

where each mi, i ¼ {10,20,....,90} denotes pixel intensities of the ith percentile of

the histogram corresponding to the foreground in the MR image. Since image

artifacts and outliers typically have extreme image intensities, plow and, phigh are
used as the end percentiles instead of m0, and m100 to reduce sensitivity to such

image corruptions. The foreground extraction is performed through a thresholding

approach that uses the mean intensity of the image (for intensities between plow and

phigh) as the intensity threshold. The landmarks of the template MR image CTemp
L to

be normalized are then transformed to landmarks calculated on a reference histo-

gram CRef
L using a piecewise linear mapping. Piece-wise linear mapping (Fig. 11.3)

helps reduce the sensitivity of normalization method to the presence of anatomical

abnormalities such as lesions and treatment scars.

This method is very fast, easy to implement, and applicable to images from

multiple modalities [8–10]. Gasser et al. [10] evaluated the effectiveness of DN on

MR images containing pathology, obtained from multiple acquisition sites, scan-

ners, and MR modalities. They quantitatively evaluated the effect of DN on tissue

separation, and reported significantly improved accuracy when intensity normali-

zation is performed.
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Spatial Normalization

The spatial location of brain tissue often does not correlate well across images and

varies among different MR acquisitions. The variations in spatial location of brain

tissue are due to differences in acquisition parameters, patient placement in the

scanner, and patient motion. Therefore, spatial normalization is an important

preprocessing step required before any comparison studies can be done. These

can be both interpatient comparisons (between different patients) and intra-patient

comparisons (change detection during follow-up to evaluate treatment outcomes).

The spatial normalization involves alignment of MR imaging data to a standard

reference dataset of images using image registration. The reference set of images

used in existing normalization methods is often chosen as corresponding to tissue

probability maps (Fig. 11.4). The alignment of imaging data to tissue probability

maps has the additional benefit in brain tissue segmentation of introducing tissue-

specific priors into probability-based models often used for voxel classification.

Spatial normalization using image registration is a difficult task since MR

images may have been captured through multiple modalities and is further compli-

cated by the presence of anatomical deviations in the brain such as pathology,

resection scars, and treatment side effects. In this section, we discuss some of the

most commonly used spatial normalization methods for brain MR images.

Unified Segmentation

Image registration is affected by changes in image intensities due to corruptions

such as noise, intensity inhomogeneity, and partial volume effects. Unified

segmentation combines the three interdependent tasks of segmentation, intensity
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inhomogeneity correction, and spatial normalization under the same iterative for-

mulation [11]. As a rough fit, a tissue probability map is first aligned to the patient

data using affine registration. The initial alignment is further refined using nonlinear

deformations, which are modeled as linear combinations of discrete cosine trans-

form basis functions. This spatial normalization is combined with the task of image

segmentation using a principled Bayesian probabilistic formulation that utilizes

tissue probability maps as priors. The intensity inhomogeneity correction is

included within the segmentation model to account for smoothly varying intensities

across the image domain. Once the method converges, the inverse of the transfor-

mation that aligns the tissue probability maps to the patient data can be used to

normalize the patient MR images.

Diffeomorphic Anatomical Registration Through Exponentiated

Lie Algebra

Diffeomorphic anatomical registration through exponentiated lie algebra

(DARTEL) is another such normalization method that depends on image segmen-

tation [12]. The reference imaging data is deformed to align them to the patient MR

imaging data. However, unlike unified segmentation, DARTEL includes a much

higher number of parameters in registration, which enables the modeling of more

detailed and finer deformations. In DARTEL, the deformations are modeled using a

flow field that is assumed to be constant in time. This enables a one-to-one inverse

mapping of the deformation field from the reference imaging data that can be used

for normalization of patient MR imaging data. DARTEL has been reported to be

superior to unified segmentation for spatial normalization of MR images, including

those with anatomical deviations such as tumors and resection scars [13, 14].

Automatic Registration Toolbox

Automatic registration toolbox (ART) [15] is based on a multi-scale neighborhood

search to find the most similar image voxel between the patient MR images {IP(v),
v ∈ Ωp} and the reference images {IR(v), v ∈ ΩR}, where v corresponds to the

Fig. 11.4 Figure showing (a) template image, and probabilistic atlas maps of (b) white matter, (c)

gray matter, and (d) cerebrospinal fluid obtained from International Consortium for Brain Map-

ping (ICBM)
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image voxels belonging to image domainsΩp andΩR, respectively. The patient MR

images are resized and interpolated to match the dimensions of the reference

MR data, followed by a neighborhood-based voxel search in the reference image.

A similarity metric S(w1, w1) between two vectors w1 and w1 is defined as,

S w1;w2ð Þ ¼ wT
1Hw2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT
2Hw2

p

where H is an idempotent symmetric centering matrix that removes the mean of the

vector it pre-multiplies. For every voxel vi in patient MR data, vector w1 is defined

as a vector of voxel intensities that are in a neighborhood Nvi around vi, f Pvi ¼
IP vð Þ, v∈Nvif g. The corresponding voxel in the reference MR data IR can be found

by searching in a finite neighborhood ψ i around and including voxel location vi.
Let voxel vj ∈ ψ i be the voxel in this neighborhood when the similarity measure

S f Pvi ; f
R
vj

� �
is maximum,

S f Pvi ; f
R
vj

� �
¼ max

v∈ψ i

S f Pvi ; f
R
v

� �

The initial estimate of the displacement field for voxel vi is w(i) ¼ j � i. The
estimation is further refined by computing the displacement field at multiple

resolution levels using the scale-space theory. In comparison studies performed

on normal subjects, ART has been reported superior to other methods for reducing

inter-subject anatomical variability [13, 15].

MRI Preprocessing: Adjusting for Patient Factors

The presence of noise and other image artifacts is often prominent in MRI and

adversely affects any attempts at quantitative image analysis. The correction of

such image corruptions is also an essential part of the image preprocessing required

before any quantitative feature extraction can be performed. In this chapter, we

divide preprocessing steps into two categories based on the source of the problem.

While the methods discussed in section “MRI Preprocessing: Adjusting for System

Factors” dealt specifically with problems that arise solely from system factors, this

section deals with image corruptions that result from the combined effect of system

and patient factors.

This raises the question of the sequence in which these two categories of

preprocessing methods should be carried out. Both image normalization and

removal of image corruptions utilize image intensity information and therefore

are interdependent tasks. Madabhushi and Udupa [16] in an analysis of nearly 4,000

cases suggested that noise and artifact removal should precede image
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normalization. They also demonstrated that iterative adjustment of system and

patient factors, as is often done, does not considerably improve the image quality

(Fig. 11.2).

Image De-Noising

As with other medical imaging modalities, MR images contain significant amounts

of noise that compromise the performance of the image analyses incorporated into

any DSS. The main causes of noise in MRI are due to thermally driven Brownian

motion of electrons within patient’s conducting tissue (patient factor) and within

reception coil (system factor). There is a trade-off between spatial resolution,

signal-to-noise ratio (SNR), and acquisition time in MRI. While SNR can, in

principle, be improved by increasing the acquisition time it is not a practical

solution to implement in the clinic. Therefore, there is a need for de-noising

algorithms that can improve image quality and reduce image noise after image

acquisition.

Several de-noising algorithms have been proposed in the literature that are based

on methods adapted from either general image processing or developed specifically

for MRI specific noise. The distribution of noise in MR images is known to follow a

Rician distribution, which, unlike Gaussian noise, is signal dependent and therefore

much harder to remove. The noise in MR images is introduced during the calcula-

tion of the magnitude image from the complex Fourier domain data collected

during an MRI scan. In this section, we discuss some of the most widely used

de-noising methods in MRI.

Anisotropic Diffusion

Anisotropic diffusion is a widely used adaptive de-noising method that only locally

smoothes the continuous regions of an image, while preserving the edges/bound-

aries between the image regions. The anisotropic diffusion model is defined by,

∂tu x; y; tð Þ ¼ div
�
g
���∇u

�
x, y, t

	��2	∇u
�
x, y, t

	
¼ g
���∇u x; y; tð Þ��2	Δu�x, y, t	

þ∇
�
g
���∇u x; y; tð Þ��2		:∇u

�
x, y, t

	

where u(x,y,t) represents an image parameterized with the spatial coordinates (x, y)
and an artificial time t that represents the number of smoothing iterations; div(.),
Δ(.) and ∇(.) are the divergence, the Laplacian, and the gradient operators,

respectively; g(j∇u(x,y,t)j2) is a diffusivity term that controls the strength of

smoothing. The following diffusivities g(j∇u(x,y,t)j2) were proposed by Perona

and Malik [17],
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g s2
� 	 ¼ 1

1þ s2

λ2

, and, g s2
� 	 ¼ exp � s2=λ2

� 	� 	

where λ > 0 is a scaling parameter that controls the edge enhancement threshold.

Anisotropic diffusion works well for natural images with well-defined boundaries;

however, their use in MR images is limited due to the presence of partial volume

effects that result in smooth region boundaries.

Wavelet Analysis

In wavelet analysis, an image u(x,y) is decomposed into discrete wavelets at

different scales and translations defined as,

u x; yð Þ ¼
X1
j¼�1

X1
k¼�1

dj,kΨ j,k x; yð Þ

where Ψ j,k(x,y) are the wavelet basis functions, and j and k are the scale and

translation parameters, respectively, and dj,k are the wavelet mixing coefficients

estimated by,

dj,k ¼
ðð1

�1
u x; yð ÞΨ j,k x; yð Þdxdy

De-noising an image with wavelet analysis involves thresholding wavelet coef-

ficients dj,k to discard coefficients that do not have significant energy. Although

successful in removing noise, wavelet-based methods do not preserve the finer

details in MR images and thus further exacerbating any partial volume effects.

Rician-Adapted Non-Local Means Filter

The non-local (NL) means filter [18] removes noise by computing a weighted

average of surrounding pixels. The weights are determined using a similarity

measure between local neighborhoods around the pixels being compared. The

NL-corrected version of an image u(x) can be represented as,

NL u xið Þð Þ ¼
X
xj∈Si

w xi; xj
� 	

u xj
� 	

where Si represents the size of the neighborhood around any pixel xi to be used to

compute the weighted average. w(xi, xj) are the assigned weights to pixels xj
belonging to space Si defined as,
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w xi; xj
� 	 ¼ 1

Zi
exp �

����u Nið Þ � u Nj

� 	����2
h2

 !
, w xi; xj

� 	
∈ 0; 1½ �

where Zi is a normalization constant such that
X

xj∈Si
w xi; xj
� 	 ¼ 1, h is a decay

parameter determining the rate of decay in weighting, and Ni is the neighborhood

image patch centered around pixel xi of radius r.
Wiest-Daessle [19] proposed a Rician-adapted version of this NL-means filter

using the properties of the second-order moment of a Rice law,

NLR u xið Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

��X
xj∈Si

w xi; xj
� 	

u xj
� 	2	� 2σ2, 0

	s

where σ is the variance of the Gaussian noise in the complex Fourier domain of MR

data and is estimated using pseudo-residual technique proposed by Gasser

et al. [10].

Rician-adapted NL-means filter has been reported to outperform wavelet anal-

ysis, Gaussian smoothing, and anisotropic diffusion for de-noising MR images with

Rician noise distribution [20–22] (Fig. 11.5).

Removal of MRI Artifacts

MR images suffer from several image artifacts such as partial volume effects,

Gibbs’s artifacts, chemical shifting, motion artifacts, and intensity inhomogenei-

ties. These artifacts often produce an abnormal distribution of intensities in the

image, thereby compromising the accuracy of automatic image analysis methods.

Though some artifacts can be corrected during the image reconstruction phase,

other artifacts must be corrected through post-acquisition image processing. In this

section, we will discuss some of the post-processing methods to deal with partial

Fig. 11.5 Figure showing (a) sample MR image with Rician noise, (b) denoised image with

anisotropic diffusion, and (c) denoised image obtained from Rician-adapted NLM filter
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volume effects and intensity inhomogeneities, two of the most prominent and

widely studied artifacts that require post-processing.

Intensity inhomogeneity, also known as intensity nonuniformity (INU), the bias

field, or shading, is one of the most prominently occurring artifacts in MR images.

This adverse phenomenon appears as smooth intensity variations across the image

domain (Fig. 11.6), which results in the intensity of voxels belonging to the same

class varying with location within the image. INU artifacts in MR images are

mostly due to acquisition imperfections such as nonuniform RF excitation,

nonuniform coil receptor sensitivity, and standing wave effects [23]. Other minor

factors that may also produce INU effects include eddy currents due to rapid

switching of magnetic field gradients; patient-induced electromagnetic interactions,

and geometric distortions. The INU artifacts become much more significant when

scanners are operating at higher strength magnetic field strengths. Although INU

artifacts have little effect on visual interpretation of an MR image by a radiologist,

they significantly degrade the performance of automatic image analysis methods.

For this reason, INU correction has been an active field of research and a number of

methods have been proposed in the literature.

The correction of intensity inhomogeneities can be broadly classified into:

prospective and retrospective methods. Prospective correction requires special

imaging sequences with physical phantoms and multiple reception coils and

involves recalibrating the scanner based on an assessment of the excitation field

strength and the nonuniformity in reception coils. Although prospective methods

can potentially correct for static INU artifacts resulting from scanner imperfections,

they are unable to account for patient-induced intensity inhomogeneities. Further-

more, the longer scanning routines typically involved in prospective correction

methods make them impractical in clinical settings. Retrospective correction, on

the other hand, uses the intensity information contained within an acquired image to

estimate INU artifacts and is therefore a more general solution than prospective

correction. This makes them much more useful for clinical use; however, they

are unable to distinguish between scanner and patient-induced intensity

inhomogeneities.

Fig. 11.6 Figure showing real MR image (a) corrupted from intensity inhomogeneity, (b)

estimated intensity inhomogeneity, and (c) recovered image
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Spectrum Filtering Methods

Due to their slowly varying nature across image domain, correction methods

generally assume that INU artifacts are low-frequency signals that can be removed

from the higher frequency spectrum of anatomical structures. The two main filter-

ing approaches are homomorphic filtering and homomorphic unsharp masking.
Homomorphic filtering takes the difference between the log transformed image

log(I(x,y)) and a low-pass filtered (LPF) version of the logarithmic image, with a

mean-preserving normalization constant (C) [24]. The corrected image eI x; yð Þ can
be obtained by taking the exponential of the difference image,

eI x; yð Þ ¼ exp log I x; yð Þð Þ � LPF log I x; yð Þð Þð Þ þ Cð Þ

Homomorphic unsharp masking corrects an image by dividing the acquired

image I(x, y) with the LPF version of the image, scaled by a mean-preserving

normalization constant [25].

eI x; yð Þ ¼ I x; yð Þ
LPF I x; yð Þð Þ=c

Although widely used, low-pass filtering methods are thought to have rather

limited ability to correct for INU artifacts in brain MR images. The limited

effectiveness of these methods is due to the significant overlap of the frequency

spectrums of INU artifacts and brain structures, which does not fit the assumption

underlying these techniques.

Intensity Histogram-Based Methods

Histogram-based methods operate on the principle that the information content in

an image is changed by artifacts such as intensity inhomogeneities. Sled et al. [26]

proposed a non-parametric nonuniformity normalization (N3) method that itera-

tively corrects for INU artifacts by maximizing the frequency content of the

intensity distributions in the corrected image. N3 is a fully automated method,

does not include any assumptions about the anatomical structures present, and has

been reported to be one of the most successful methods for INU correction.

Histogram-based methods have also been developed that propose the informa-

tion content of an image increases when corrupted by INU artifacts. These methods

assume that INU artifacts can be corrected by minimizing the entropy (information

content) of the image, subject to some constraints. Several researchers have

explored this concept by minimizing energy functions that combine image entropy,

INU smoothness constraints and mean-preserving regularization terms to correct

for INU artifacts [27–30]. An advantage is that these information minimization

methods are highly generalizable and thus can be used on any MR image.
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Spline Fitting Methods

The smooth varying nature of INU artifacts has motivated the use of polynomial

and spline surfaces on a set of extracted image features to estimate INU artifacts. In

these methods, a spline function is least squares fitted to a set of image pixels

belonging to a major tissue type and distributed throughout the image. Both manual

and automatic candidate image feature selection methods have been investigated,

and manual selection was reported to be more accurate than automatic selection

[31]. A major limitation of this approach is the extrapolation of INU computed from

a single tissue class to estimate the INU artifacts across the entire image. This

framework may be sufficient to correct INU artifacts due to scanner imperfections,

but patient-induced INU artifacts that may vary between tissue types are not

handled appropriately. The time-consuming manual selection of points in every

image slice is another limitation, and also potentially introduces user subjectivity.

INU Correction Combined with Brain Tissue Segmentation

Combining INU correction with image segmentation is commonly used for retro-

spective correction of intensity inhomogeneities in MR images. INU correction and

image segmentation depend on one another, and, therefore, better segmentation and

INU correction can be achieved by simultaneously utilizing information from these

tasks. Furthermore, one result of these approaches is brain tissue segmentation,

which is often essential for subsequent quantitative MR image analysis. A common

theme of these methods is the minimization/maximization of an objective function

that contains a data fitting term that is regularized with an INU artifact

smoothness term.

Several probabilistic approaches using maximum likelihood (ML) and maxi-

mum a posteriori (MAP) have been proposed to define data fitting terms for image

voxel classification. The intensity distributions inside each image region are

modeled using assumed parametric models that incorporate effects from intensity

corruptions due to INU. A common choice of parametric models has been the finite

Gaussian mixture (FMM) models over the image domain with the model parame-

ters estimated using popular expectation maximization (EM) algorithm. FMM are

often defined with every tissue class described using a single Gaussian component

[32, 33], or as a combination of multiple components [34–36]. The class priors are

often included to improve the segmentation and INU artifact estimation using either

probabilistic atlases or hidden Markov random field (HMRF) defined priors. Other

approaches have also been proposed including non-parametric segmentation based

on max-shift and mean-shift clustering for INU estimation [37, 38], and fuzzy

C-means (FCM)-based methods that assume each voxel can belong to multiple

tissue classes. Since there is significant overlap in the algorithms used for segmen-

tation and INU estimation, we refer readers to see “Brain Tissue Segmentation”

section of this chapter.
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The data fitting term is regularized with a smoothness term that ensures that the

estimate INU artifact is smoothly varying across the image domain. The smooth-

ness term is often defined in terms of the first and second order derivatives of the

intensity inhomogeneity field. The minimization of the smoothness term accounts

for the smoothly varying nature of INU artifacts in MR images. For numerical

convenience, polynomial and spline surfaces have been widely used for modeling

intensity inhomogeneity. When combined with the tissue segmentation process,

selection of candidate points can be performed automatically. This addresses the

major limitation suffered by spline fitting methods as discussed in earlier sections.

Brain Tissue Segmentation

Segmentation of brain MR images into tissue types is often an important and

essential task in the study of many brain tumors. It enables quantification of

neuroanatomical changes in different brain tissues, which may be informative for

diagnosis and treatment follow-up of brain tumor patients. Besides brain tumors,

brain tissue segmentation is useful in management of neurodegenerative and

psychiatric disorders such as schizophrenia, and epilepsy. Multiple sclerosis

(MS), for instance, requires accurate quantification of lesions in the white matter

part of the brain for assessment of drug treatment. Even though MRI produces high

quality volumetric images, the presence of image corruptions (noise, intensity

inhomogeneities, and partial-volume effects) makes the segmentation of brain

MR images complicated and challenging. Due to these reasons, brain MR segmen-

tation has been an active field of research with a variety of methods proposed in

literature. Traditional methods such as image thresholding and region growing

usually fail due to the complex distribution of intensities in medical images.

Furthermore, the presence of intensity inhomogeneity and noise significantly

impact these intensity-based methods. In this section, we discuss some of the

most widely explored methods for medical image segmentation.

Fuzzy C-Means-Based Segmentation Methods

FCM is based on calculating fuzzy membership of image voxels to each of multiple

classes. The following objective function is iteratively minimized,

E ¼
XN
i¼1

XC
j¼1

wk
i, jd xi; μj
� 	

, 0 < wk
i, j < 1

where wk
i;j is the fuzzy membership of observation xi in cluster cj satisfying ∑C

j ¼ 1

wi,j ¼ 1, k represents the fuzziness degree in clustering, d(xi, μj) is the distance

between observation xi and center μj of cluster cj, N and C represent the number of
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observations and clusters, respectively. Conceptually, FCM seems suitable for

modeling partial volume effects in MR images. However, FCM is extremely

sensitive to noise and intensity inhomogeneities. Several studies have proposed

variants of FCM that are less sensitive to noise and artifacts, but they still do not

perform well in comparison with parametric methods [39–43].

Mixture Modeling and MAP/ML Estimation

Mixture models have been widely used for modeling intensity distributions in MR

images. In GMMs, the likelihood of a D-dimensional observation x belonging to

class C is defined as,

p x
��C� 	 ¼XN

i¼1

wig x
��μi,Σi

� 	

where N is the number of mixture components to model class C, wi are the prior

probabilities of mixture components, g(x|μi, Σi) is the likelihood of observation

x belonging to ith mixture component,

g x
��μi,Σj

� 	 ¼ 1

2πð ÞD=2��Σ��1=2 exp � 1

2
x� μið Þ0Σ�1

i x� μið Þ
� �

The parameters of the mixture model are: (μi,Σi), i ¼ 1,.., n, where μi and Σi

represent the mean and covariance matrices of mixture components, respectively.

The parameters are estimated using the expectation-maximization (EM) algorithm

that maximizes the joint likelihood of the observed data with the mixture model.

EM requires prior information on the number of mixture components to estimate

the model parameters. Several studies have used a single Gaussian component for

each of four classes: white matter (WM), gray matter (GM), cerebrospinal fluid

(CSF), and background (BG) [32, 33]. In the presence of intensity inhomogeneities

and partial volume effects, some studies have proposed using multiple Gaussian

components for modeling each tissue type [34–36]. Several variants of ML and EM

algorithm have also been proposed that additionally account for image corruptions

[44–46]. Some researchers have also proposed estimation of parameters based on

MAP instead of ML by introducing class priors in the probabilistic model

[36]. Prior probabilities can be introduced by using probabilistic atlas maps;

however, this requires complex medical image registration that is time consuming

and an active area of research in itself. Another type of class priors often used for

image segmentation is based on HMRF that introduces spatial contextual informa-

tion in the classification model [47, 48]. HMRF priors help reduce the sensitivity of

segmentation model to noise by incorporating neighborhood information in the

segmentation process (neighboring pixels tend to belong to the same tissue class).
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Edge-Based Active Contour Models

In active contour models (also commonly known as “snakes”), a parametric curve C
(s) ¼ [x(s), y(s)] evolves on the image domain Ω under the influence of an energy

function of the form,

E ¼
ð
1

2
α X

0
sð Þ�� ��2 þ β X

00
sð Þ�� ��2� �

þ Eext X sð Þð Þds

where s ∈ [0,1] is the arc length, the first two terms α|X0(s)|2 and β|X00(s)|2 represent
regularizations on the evolving curve, and Eext(X(s)) represents an external force

driving the evolution of the curve C(s).
A Gaussian-smoothed gradient force is often used for the external force term and

thus this method is relatively insensitive to the contour initialization parameters and

boundary concavities,

Eext X sð Þð Þ ¼ � Gσ �∇Ij j2

Region-Based Active Contour Models and Level Set Formulation

Region-based active contours define an energy functional based on the region

statistics rather than local image gradient,

E Cð Þ ¼ μ:Length Cð Þ þ v:Area Cinð Þ þ λ:Fext

where μ, v, λ � 0 are fixed parameters, the first two regularization terms in the energy

functional enforce local constraints on the curve C, while Fext denotes the external

force that drives the evolution of the curve. The image domain Ω is partitioned by the

curve C into two image regions: Cin and Cout corresponding to the image regions

within and outside of curve C. Chan and Vese [49] proposed a piecewise-constant

model for image segmentation, defining the external force term as,

Fext ¼
ð
Cin

��I x; yð Þ � c1
��2dxdyþ

ð
Cout

��I x; yð Þ � c2
��2dxdy

where c1 and c2 are the average intensities of pixels inside image regions Cin and

Cout, respectively. Minimizing the energy functional is difficult in terms of image

regions Cin and Cout. Level set formulations [50] enable representing image regions

Cin, Cout and the evolving curve C in terms of a higher dimensional Lipchitz

function Φ : Ω ! R such that,

Φ x; yð Þ ¼
¼ 0 at C
> 0 inside C Cinð Þ,
< 0 outside C Coutð Þ

x; yð Þ∈Ω

8<
:
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Using the Heaviside function H and Dirac measure δ defined as,

H zð Þ ¼ 1 if z � 0

0 if z < 0



, δ zð Þ ¼ ∂

∂z
H zð Þ

The region-based formulation proposed by Chan and Vese [49] can therefore be

rewritten as,

E Φ; c1; c2ð Þ ¼ μ

ð
Ω
δ Φð Þ ∇Φj jdxdy

þ v

ð
Ω
H Φð Þdxdyþ λ

ð
Ω
I x; yð Þ � c1j j2H Φð Þdxdy

þ λ

ð
Ω
I x; yð Þ � c2j j2 1� H Φð Þð Þdxdy

E Φ; c1; c2ð Þ ¼
ð
Ω
F Φ;Φx;Φy

� 	
dxdy

Minimizing the energy functional E(Φ,c1,c2) with respect to Φ(x,y) gives the

associated Euler–Lagrange equation,

∂E Φ; c1; c2ð Þ
∂Φ

¼ FΦ � ∂
∂x

FΦx
� ∂
∂y

FΦy

Parameterization by an artificial time t � 0 gives the update equation ofΦ(x,y,t)
in the steepest gradient descent direction,

∂Φ x; y; tð Þ
∂t

¼ �∂E Φ; c1; c2ð Þ
∂Φ

The regularization terms that impose local constraints on the curve C make this

segmentation method relatively insensitive to noise and the curve initialization

parameters. The active contour framework in a level set formulation is a powerful

tool that can be used to solve complex objective functions using an iterative

scheme. Herein we give an example of such an approach.

In [51], we proposed a probabilistic region-based active contour model for

automatic segmentation of brain MR images. A decision theory-based approach

that assigns a particular penalty/loss value to every decision/classification on an

image voxel is used to drive the voxel classification. A loss matrix L can therefore

be defined in which each element Lij corresponds to the loss incurred if a voxel

belong to the ith class is misclassified into jth class. For a two-class classification

problem, the loss matrix can therefore be defined as L ¼ L11 L12
L21 L22

� �
. The external

force Fext that drives the evolution of the curve is defined via a Bayesian approach

of minimizing the expected loss incurred due to voxel misclassification over the

entire image,
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Fext ¼ E L½ � ¼
X
k

X
j

ðð
x;yð Þ∈Rj

Lkj � P x; yð Þ;Ckð Þdxdy

where Rj denotes image region j and, P((x, y), Ck) represents the joint likelihood of

voxel (x, y) belonging to class Ck. Therefore, for a two-class classification problem,

Fext ¼
ðð
Cin

L21P x; yð Þ;Coutð Þdxdyþ
ðð
Cout

L12P x; yð Þ;Cinð Þdxdy

Most existing segmentation methods assume a Gaussian distribution of intensi-

ties and utilize piecewise-constant approximation inside each image region.

Although such an assumption is valid for natural images, its not appropriate for

MR images due to significant amount of noise and image artifacts such as intensity

inhomogeneity and partial volume effects. The presence of such image corruptions

produces arbitrary intensity distributions within image regions that are difficult to

model with a single Gaussian distribution. Instead of making implicit assumptions

regarding the underlying intensity distribution, the arbitrary intensity distributions

are modeled using mixture models. The joint likelihoods P((x, y), Ck) can therefore

be represented as,

P x; yð Þ;Cj

� 	 ¼ P
�
x, y
��Cj

� 	� P Cj

� 	 ¼XM
i¼1

wig x; yð Þ��μi,Σi

� 	� P Cj

� 	

where g((x,y)jμi, Σi) is a multi-variate Gaussian mixture component with μi and Σi

as the mean and the covariance matrices, respectively, and wi are the mixture priors

or weights of each Gaussian component. The prior probabilities for the different

brain tissue types P(Cj) are obtained using probability atlas maps (Fig. 11.4). The

energy functional driving evolution of the active contour can therefore be

represented as,

F C; λ1; λ2ð Þ ¼ μ:Length Cð Þ þ v:Area Cinð Þ
þ

ðð
x;yð Þ∈Cin

L21
XM2

j¼1

wjg x; yð Þ��μj,Σj

� 	
P Coutð Þdxdy

þ
ðð

x;yð Þ∈Cout

L12
XM1

i¼1

wig x; yð Þ��μi,Σi

� 	
P Cinð Þdxdy

This energy functional is converted into a level set formulation by using the

Heaviside H and Dirac measure δ functions,
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F ϕ; λ1; λ2ð Þ ¼ μ

ð
Ω
δ ϕð Þ ∇Φj jdxdy

þ v

ð
Ω
H Φð Þdxdy

þ
ðð
Ω

L21
XM2

j¼1

wjg x; yð Þ��μj,Σj

� 	
P Coutð Þ H ϕð Þð Þdxdy

þ
ðð
Ω

L12
XM1

i¼1

wig x; yð Þ��μi,Σi

� 	
P Cinð Þ 1� H ϕð Þð Þdxdy

Minimizing the energy functional with respect to ϕ(x, y) and parametrization by

t > 0 gives the following update equations for ϕ(x, y, t) (Fig. 11.7),

∂ϕ x; y; tð Þ
∂t

¼ δ ϕð Þ[μ:div ∇ϕ

∇ϕj j

0
@

1
A� v

þL12
XM1

i¼1

wig x; yð Þ��μi,Σi

� 	
P Cinð Þ

�L21
XM2

j¼1

wjg x; yð Þ��μj,Σj

� 	
P Coutð Þ�

Fig. 11.7 Figure showing real MR images ( first row) and corresponding soft tissue segmentations

(second row) into white matter, gray matter, and cerebrospinal fluid using method proposed in [51]
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MRI Feature Extraction

Radiological DSSs typically use image-derived features along with relevant clinical

variables to generate predictions and classifications. Shape, texture, and intensity

are the most informative visual cues in medical images and are often used by

physicians in a qualitative manner for image interpretation. The visual cues

observed on medical images can be quantified using automated techniques, which

address some of the limitations associated with conventional methods for medical

image interpretation. However, quantifying image features using automatic tech-

niques requires careful selection of objective definitions to represent image fea-

tures. While some image features (such as tumor volume) require absolute

quantification to be physically meaningful, relative definitions may be required

for other features (such as extent of contrast enhancement). One desirable property

for many image-derived features is invariance to transformations such as transla-

tion, rotation, and scaling (TRS). In this section, we discuss some of the well-

established techniques for the quantification of shape, texture, and intensity features

in medical images.

Shape Features

The shapes of the anatomical changes observed on brain MR images (such as

lesion, necrosis inside lesion, and associated edema) provide important information

about the growth patterns of tumors in different brain tissues and are often used

qualitatively by physicians to identify the type and grade of a brain tumor. For

example, while meningiomas are often characterized by more regular shapes with

sharp boundaries delimiting them from the surrounding normal brain tissue, glio-

blastoma multiforme (GBM) tumors frequently exhibit more convoluted shapes

with diffuse boundaries.

The shape of brain tumors and the surrounding structures can be quantified using

established shape descriptors. Although these shape descriptors may not be able to

entirely reconstruct the shape, they are sufficiently specific to discriminate between

different shape types. Shape description techniques are typically classified into two

major categories—region-based and contour-based methods, depending on

whether the shape features are extracted from the entire region or only from the

shape boundary. We discuss shape descriptors that have been used in many studies

to describe lesion shapes in medical images.

Simple Shape Features

Several simple shape features have been put forth in the literature to describe the

shape of an object in a global sense. However, these simplistic features have
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relatively limited power and can only discriminate between shapes that are sub-

stantially different. Therefore, simple shape features are typically used in combi-

nation with other more sophisticated descriptors to classify shapes. Some

commonly used simple shape features are circularity, eccentricity, rectangularity,
principal axis orientation, bending energy, and convexity.

1. Circularity: Circularity or compactness is a common measure used to define the

shape of objects and quantify the similarity of the object to the most compact

shape, i.e., a circle in 2D and a sphere in 3D. In two-dimensional case,

Circularity Cð Þ ¼ 4π � Area

Perimeterð Þ2 ,C∈ 0; 1½ �

where a value of C ¼ 1 corresponds to the circle. C decreases with decreasing

similarity to a circle in symmetry (Fig. 11.8). In three dimensions, compactness

can be represented as,

Circularity Cð Þ ¼ 36π � Volumeð Þ2
Surface Areað Þ3 ,C∈ 0; 1½ �

Although circularity is straightforward to calculate for the two-dimensional

case, calculating the surface area of an object in three dimensions is compli-

cated and requires defining a neighborhood connectedness system. A numer-

ically efficient method for calculating the surface area in 3D is to use the

Fig. 11.8 Examples

illustrating compactness

measures for real 2D MR

image slices
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spatial moments μp,q,r as defined in the next section “Geometric Moment

Invariants.”

C ¼ 35=3

5 4πð Þ2=3
� μ0,0,0

5=3

μ2,0,0 þ μ0,2,0 þ μ0,0,2

Although C represents similarity to the most symmetric shape, it does not

accurately represent the irregularity of shape boundaries.

Other simple shape descriptors commonly used to define global shapes are:

2. Eccentricity: The ratio of the distance between the two foci to the length of the

semi-major axis.

3. Rectangularity: The degree of similarity to a rectangle, calculated as the ratio of

the object area to the area of the smallest rectangular bounding box.

4. Principal Axis Orientation: The orientation along which the object is most

elongated.

5. Bending Energy: The integration of the squared curvature along the entire

contour of the object shape.

6. Convexity: The ratio of the area enclosed inside the shape contour to the area of

convex hull.

Other types of simple shape descriptors often used to characterize brain tumors

are relative volumes of tissue necrosis, edema, and enhancing region [52, 53]. These

are calculated as the ratio of the absolute structure volume to the total tumor volume.

Geometric Moment Invariants

Geometric moment invariants are region-based shape descriptors that are defined

using nonlinear combinations of image moments and can be used to characterize

the roughness or irregularity of a shape’s boundary. The image moment mp,q of

order ( p + q) for an image I(x,y) of size M � N is defined as,

mp,q ¼
XM
x¼1

XN
y¼1

xpyqI x; yð Þdxdy

The image moments can be defined both for binary and gray-scale images. For

binary images, the moments strictly quantify the shape of the object, whereas in

gray-scale images moments include additional information describing the intensity

distributions. The following TRS invariant descriptors can be defined using these

image moments [54],

ϕ1 ¼ η2,0 þ η0,2
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ϕ2 ¼ η2,0 � η0,2
� 	2 þ 4η21,1

ϕ3 ¼ η3,0 � 3η1,2
� 	2 þ 3η2,1 � η0,3

� 	2
ϕ4 ¼ η3,0 þ η1,2

� 	2 þ η2,1 þ η0,3
� 	2

ϕ5 ¼ η3,0 � 3η1,2
� 	

η1,2 þ η3,0
� 	

η1,2 þ η3,0
� 	2 � 3 η2,1 þ η0,3

� 	2h i

þ 3 η2,1 � η0,3
� 	

η2,1 þ η0,3
� 	

3 η1,2 þ η3,0
� 	2 � η2,1 þ η0,3

� 	2h i

ϕ6 ¼ η2,0 � η0,2
� 	

η1,2 þ η3,0
� 	2 � η2,1 þ η0,3

� 	2h i

þ4η1,1
�
η1,2 þ η3,0

	�
η2,1 þ η0,3

	
ϕ7 ¼ 3η2,1 � η0,3

� 	
η1,2 þ η3,0
� 	

η1,2 þ η3,0
� 	2 � 3 η2,1 þ η0,3

� 	2h i

þ�3η1,2 � η3,0
	
η2,1 þ η0,3
� 	

3 η1,2 þ η3,0
� 	2 � η2,1 þ η0,3

� 	2	h

where ηp,q ¼ μp,q

μ0,0ð Þ pþqþ2ð Þ=2 are the normalized central moments, and

μp,q ¼
XM
x¼1

XN
y¼1

x� xcð Þp y� ycð ÞqI x; yð Þdxdy

xc ¼ m1,0

m0,0
, and yc ¼

m0,1

m0,0

The shape features of an object can then be defined as a vector of geometric

moment invariants {ϕ1, . . .,ϕ7}. Image moments contain important information

about the spatial distribution of intensities in an image and can be used to calculate

other simple shape descriptors such as eccentricity and principal axis orientations.

Eccentricity εð Þ ¼ μ2,0 � μ0,2
� 	2 þ 4μ21,1

μ2,0 þ μ0,2
� 	2

Principal axis orientation θð Þ ¼ 1

2
tan�1 2μ1,1

μ2,0 � μ0,2

Higher irregularity or roughness of a lesion shape corresponds to higher values

of invariant descriptors. Geometric moments provide important information about

the irregularity or roughness of a lesion’s boundary in 2D images. However, some

applications require quantifying a lesion’s shape in 3D using volumetric neuro-

imaging data, which is difficult using shape descriptors from multiple 2D image

slices. Therefore, 3D geometric moments are defined for volumetric images as well

[55–57].
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mp,q, r ¼
XM
x¼1

XN
y¼1

XL
z¼1

xpyqzr � ρ x; y; zð Þ

where ρ(x,y,z) is volumetric image of sizeM � N � L. TRS shape descriptors using

geometric moments mp,q,r can be defined as

J1 ¼ η2,0,0 þ η0,2,0 þ η0,0, 2

J2 ¼ η2,0, 0η0,2, 0 þ η2,0,0η0,0,2 þ η0,2,0η0,0,2 � η21,1,0 � η21,0, 1 � η20,1, 1

J3 ¼ η2,0,0η0,2,0η0,0,2 þ 2η1,1, 0η1,0, 1η0,1, 1 � η0,0,2η
2
1,1,0 � η0,2,0η

2
1,0,1 � η2,0,0η

2
0,1,1

J4 ¼ η3,0,0 þ η0,3, 0 þ η0,0, 3 þ 3η2,1,0 þ 3η2,0,1 þ 3η1,2,0 þ 6η1,1, 1 þ 3η1,0, 2
þ 3η0,2,1 þ 3η0,1,2

where ηp,q, r ¼ μp,q, r

μ pþqþrþ3ð Þ=3
0,0,0

are the normalized central moments with,

μp,q, r ¼
XM
x¼1

XN
y¼1

XL
z¼1

x� xcð Þp y� ycð Þq z� zcð Þr � ρ x; y; zð Þ

xc ¼ m1,0,0

m0,0,0
, yc ¼

m0,1,0

m0,0,0
, and, zc ¼ m0,0,1

m0,0,0

Similar to the 2D case, shape features for a lesion’s shape in 3D can be defined as

vector of moment invariants, {J1,J2,J3,J4}.

Shape Signatures and Boundary Moments

Shape signatures represent the shape of an object by a one-dimensional function

derived from the boundary points. A common signature is based on the measure-

ment of Euclidean radial distance d(n) of each pixel (x(n), y(n)) on the boundary

from the centroid of the shape (xc, yc) (Fig. 11.9). Other shape signatures that are

common in practice include complex coordinates, tangent angle, curvature, chain

codes, and chord-length.

The shape signatures are typically normalized with respect to their magnitude to

make them scale and translation invariant. The boundary statistical moments can

then be used to reduce the dimensions of the boundary representation.

mr ¼ 1

N

XN
n¼1

z nð Þ½ �r, and, μr ¼
1

N

XN
n¼1

z nð Þ � m1½ �r

where μr is the central moment of order r, N is the number of boundary points, and

z(n) represents the normalized shape signature. Contour-based TRS invariant

descriptors can be obtained for shape representations,
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mr ¼ mr

μ2ð Þr=2
, and, μr ¼ μr

μ2ð Þr=2

Moments of order higher than 4 are highly sensitive to noise and therefore the

use of m1 , μ3 and μ4 has been recommended for low noise-sensitive shape

descriptors. Another shape descriptor that has been reported to have good invari-

ance properties and accurately capture shape complexity is [58],

F1 ¼ μ1=44

m1

� μ1=22

m1

Boundary moments increase with increasing roughness or irregularity of the

shape boundary.

Fourier Descriptors

Fourier descriptors are another type of contour-based method for describing the

shapes of objects. Every pixel on the object boundary is represented as a complex

number P(n), with the real part as the x-coordinate and the imaginary part as the

y-coordinate.

P nð Þ ¼ x nð Þ þ iy nð Þ, n ¼ 1, ::,N

where N is the number of pixels on the object boundary. The object boundary can

therefore be represented as a one-dimensional sequence of complex numbers by

selecting some pixel as the starting point. The essential shape information of the

object boundary is contained in the lower order coefficients of DFT of this

sequence,

Fig. 11.9 Schematic diagram illustrating the object contour by a one-dimensional function
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F tð Þ ¼ 1

N

XN
n¼1

P nð Þexp �i2πnt=Nð Þ

However, the coefficients of F(t) depend on the pixel selection for the starting

point on the object boundary to create the complex number sequence. The starting

point, translation, scale, and rotation invariant descriptors are obtained as,

Finv tð Þ ¼ F 1þ tð ÞF 1� tð Þ
F2 1ð Þ

The lower order coefficients can be used as shape descriptors for the object.

Another descriptor that has been reported to have low noise sensitivity and invari-

ance to translation, rotation, scale, and starting point is [59],

FF ¼ 1�
XN=2

t¼�N
2
þ1

F tð Þj jj j=�� tj j��
XN=2

t¼�N
2
þ1

F tð Þk k

The value of FF is limited to (0, 1) and increases with the complexity of the

object’s shape and the roughness or irregularity of the boundary.

Angular Radial Transform

Angular radial transform (ART) decomposes an image into a set of orthogonal

complex basis functions. The ART coefficients of order p and q, Fp,q of an image I
(ρ,θ) are defined as,

Fp,q ¼
ð2π

0

ð1

0

B�
p,q ρ; θð Þ � I ρ; θð Þρdρdθ

where Bp,q(ρ,θ) represents the ART basis functions, which are separable along the

angular and radial directions as,

Bp,q ρ; θð Þ ¼ Rp ρð Þ � Aq θð Þ

For rotationally invariant features, a complex exponential function can be used

as an angular basis function, and a cosine function as the radial basis function.

Rp ρð Þ ¼ 1 p ¼ 0

2 cos πpρð Þ p 6¼ 0



, and, Aq θð Þ ¼ 1

2π
exp iqθð Þ

A vector of ART coefficients Fp,q normalized with F0,0 can then be used as shape

feature for the object.
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Textural Features

Examining the appearance of brain tissues, lesions, and surrounding structures is

often an important part of medical image interpretation. The appearance is visually

understood through local intensity variations and can therefore be quantified using

texture metrics.

Spatial Co-occurrence Matrix Features

Co-occurrence matrices enable calculation of textural features based on the relative

spatial co-occurrence information of image pixels. A co-occurrence matrix Hd,θ

(i, j), i, j ¼ {1,. . .,K} is generated by tabulating the pairwise spatial co-occurrence

of image pixels separated by a particular orientation θ and separation distance

d over the K gray levels in the image I(x, y)under consideration.
Therefore, a co-occurrence matrix is a K � K matrix in which each element Hd,θ

(i,j) represents the number of times that pixels with intensity i and j are located in

the image at a relative position defined by d,θ (Fig. 11.10). A common choice for

relative position is d ¼ 1, and θ ¼0, 45, 90, and 135�, respectively. The

co-occurrence matrix Hd,θ is often normalized with Σi,j Hd,θ (i,j) to obtain measures

of the probability of having pixel pairs at that relative position,

Cd,θ i; jð Þ ¼ Hd,θ i; jð ÞX
i, j
Hd,θ i; jð Þ

The probability co-occurrence matrix Cd,θ (i,j) can then be used to derive several
textural measures:

• Energy: The energy, or angular second moment, quantifies the extent of hetero-

geneity inside the region and decreases with higher heterogeneity of the region.

Energy ¼
XK
i¼1

XK
j¼1

Cd,θ i; jð Þ½ �2

Fig. 11.10 Example showing calculation of H ffiffiffiffiffiffiffiffi
2,45�

p from a 6 � 6 image
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• Inertia: The inertia is a texture measure that weights each element Cd,θ (i,j) with
gray level difference (i � j)and quantifies texture contrast. Inertia increases with

higher heterogeneity of the region and accounts for the contrast between pixel pairs.

Inertia ¼
XK
i¼1

XK
j¼1

i� jð Þ2Cd,θ i; jð Þ

• Inverse Different Moment (IDM): IDM is a texture measure that can distinguish

between near-constant intensity patches from regions with high contrasts in

intensity.

IDM ¼
XK
i¼1

XK
j¼1

Cd,θ i; jð Þ
1þ i� jð Þ2

• Entropy: The entropy quantifies the level of randomness in a region and can be

used to distinguish a structurally textured region from region with less

organization.

Entropy ¼ �
XK
i¼1

XK
j¼1

Cd,θ i; jð Þ � log Cd,θ i; jð Þð Þ

• Correlation: The correlation of intensities in an image region can be computed

using marginal distributions derived from the co-occurrence matrices.

Correlation ¼
XK

i¼1

XK

j¼1
ijð ÞCd,θ i; jð Þ � μi0μj0

σi0 σj0

μi0 ¼
XK
i¼1

XK
j¼1

iCd,θ i; jð Þ, and, μj0 ¼
XK
i¼1

XK
j¼1

jCd,θ i; jð Þ

σi0
2 ¼

XK
i¼1

XK
j¼1

i� μi0
� 	2

Cd,θ i; jð Þ, and, σj0
2 ¼

XK
i¼1

XK
j¼1

j� μj0
� �2

Cd,θ i; jð Þ

A vector of texture features obtained at different relative positions can be used as

a descriptor of texture for the entire image.

Fractal Dimension

Objects in Euclidean geometry are defined in integer dimensions that may not

adequately describe the morphology of complex objects. Fractal dimensions can

be used to characterize more complex characteristics of objects. In this approach,

objects are described in non-integer dimensions,
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N ¼ ar�D

where N is the number of self-similar pieces, r represents the dimension of piece

(diameter for spheres and side for cubes), a is a scaling factor, and D is the fractal

dimension of the object. The fractal dimensions characterize complex objects with

a fractional dimensionality higher than its Euclidean dimensionality.

If an image is considered as a surface with intensity value representing the height

of the surface, the area of the surface can be represented as,

Area rð Þ ¼ N � r2 ¼ ar2�D,

or, log
�
Area rð Þ	 ¼ �2� D

	
log
�
r
	þ log

�
a
	

Box counting [60] can be used to estimate values of Area(r) at different values of
r, followed by estimation of fractal dimensions D using linear regression. Another

method of estimating Area(r) is triangular–prism–surface area (TPSA) proposed by

Clarke [61]. TPSA averages gray-scale values at four corners of a box to find the

center elevation value, dividing the box into four triangles that can be used to find

surface area. This procedure is repeated for different box sizes followed by linear

regression to estimate fractal dimension.

Fractional-Brownian motion model is another such method proposed by Man-

delbrot and Ness [62] that regards rough image surface as the result of random

walks such that,

E ΔId½ � ¼ bd3�D

where E(.) is the expectation operator, b is a proportionality constant, d is the

Euclidean distance between two pixels (x1,y1) and (x2,y2), and ΔI is the absolute

difference between the intensity values I(x1,y1) and I(x2,y2). The value of fractal

dimension D can be estimated using linear regression,

log E ΔId½ �ð Þ ¼ log bð Þ þ 3� Dð Þlog dð Þ

Higher values for fractal dimension D are obtained for rougher textures in an

image. Fractal dimensions have been used to characterize the vital parts of tumors

by considering difference between fractal dimensions of inner and outer

contours [63].

Intensity Histogram Features

Intensity features derived from brain tumors and surrounding structures are often

correlated with physiological processes in the brain. Analysis of intensity features

becomes even more important in contrast-enhanced imaging studies as the dynam-

ics of intensity changes provide important information regarding physiology at the
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site of brain tumor. Intensity features have been widely used for classification of

brain tumors [52, 53].

A common preprocessing step that prepares intensity data from the image to

calculate intensity features is construction of the intensity histogram. Several

intensity features can be calculated using statistical moments of the image histo-

gram. The statistical moment of order n for an image I(x,y) is defined as,

mn ¼ 1

K

XK
t¼1

tnh tð Þ

where h(t), t ¼ 1, . . ., K is the histogram of image I(x,y) with K gray levels. First

order statistical moment m1 is the mean μ of image intensities. We can also define

central statistical moments that provide important information about intensity

variations inside image regions,

Mn ¼ 1

K

XK
t¼1

t� μð Þnh tð Þ

The second moment M2 describes the variance of intensities inside the image

region. The third and fourth central moments M2 and M3, skewness and kurtosis,

represent asymmetry and uniformity of the histogram.

Statistical Modeling and Selection of Image Features

Morphological features extracted from MR images along with relevant clinical

covariates are combined as independent variables X ¼ {x1,x2, . . .,xn} in a statisti-

cal model to obtain a prediction Y,

Y ¼ f Xð Þ þ ε, εeN 0, σ2V
� 	

where f(.) is a function combining the independent variables X ¼ {x1, . . .,xn}, ε is
noise in the observed data Y with zero offset, and σ2V as the covariance. The

objective of model training is to determine the appropriate form of f(.) by fitting

available data such that it generalizes well to future data. Once we obtain the model

f(.), further analysis such as the significance of each independent variable in the

prediction variable Y can be evaluated. While the relationship between Y and some

of the independent variables may be known a priori, it is often unknown for most of

the independent variables under consideration. Previous studies have employed a

variety of models ranging from simple linear models to complicated models such as

artificial neural networks (ANNs) and support vector machines (SVMs) to combine

morphological features and other relevant covariates for prediction and classifica-

tion tasks. Although complex models may show a good fit on the training data, they
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may not be generalizable to the unseen test data. Such cases of data over-fitting are

often observed in the literature and, therefore bring into attention the significance of

appropriate model selection. Typically, model selection is performed using cross-

validation experiments by dividing the available data into training and validation

sets. However, the sample size available for imaging studies is often small and

therefore limits the use of such cross-validation methods for model selection. The

use of analytical model selection methods such as Akaike information criterion

(AIC), Schwarz Bayesian information criterion (BIC), and minimum description

length (MDL) that regularize data fitting with penalty terms is beneficial in such

scenarios. While the type of model being fit is dependent on the task at hand, the

significance of model complexity selection is highly important for performing any

further analysis on correlation and significance of independent variables under

consideration.

The selection of an appropriate statistical model also plays an important role in

the performance of a medical imaging task. A wide variety of statistical models

have been considered in literature, with varying complexities. Each model has its

strengths and weaknesses and therefore there is no single statistical model that

works best for all supervised learning problems (“no free lunch theorem” [64]). The

choice of appropriate statistical model is mainly dependent on the specific task at

hand (classification or prediction) and nature of data (such as type of independent

variables, data heterogeneity, redundancy, outliers, and co-linearity). The charac-

teristics of independent variables play an important role in the selection of the

statistical model. The independent variables are typically either categorical (nom-

inal or ordinal) or continuous in nature. While some statistical models perform well

for continuous data (such as SVM, linear regression, logistic regression, and ANN),

other models (such as decision trees) handle categorical data better. Typically, DSS

for medical imaging tasks include a mixture of continuous (morphological image

features) and categorical (such as clinical variables and survey) independent vari-

ables. This makes heterogeneity in the type of independent variables an important

consideration for selection of the statistical model. Statistical models that employ

distance cost functions (such as SVM, ANN, linear regression, and logistic regres-

sion) are particularly sensitive to heterogeneity in data and may require the inde-

pendent variables to be numerically scaled. Prior information regarding redundancy

in data, presence of outliers, and co-linearity between independent variables are

also important factors that affect the selection of statistical model. In fields where

extensive amounts of data are available, the selection of appropriate model type can

be performed using cross-validation experiments. However, the evaluation of DSS

often suffers from limited sample sizes that makes careful selection of appropriate

model even more important for medical imaging tasks.

Feature selection is an important part of any DSS that helps reduce the effects of

curse of dimensionality and co-linearity between the independent variables.

Although essential for DSS, important considerations should be given to the

associated physical significance of transformed model features obtained after

feature selection. Dimensionality reduction techniques such as principal component

analysis (PCA) or equivalently singular value decomposition (SVD) result in
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transformed model features that are linear combinations of original independent

variables. Although the reduced feature space captures the most variation in data,

the transformed variables may not be of any physical significance. This makes

physicians hesitant towards using such tools and therefore user-understandability of

the statistical model should be kept in mind while designing of DSS.

Conclusion

Current methods for interpretation of brain MR images are qualitative in nature and

therefore suffer from several limitations. The use of DSSs enables quantification of

anatomical changes observed on radiologic images and therefore can help physi-

cians better manage brain tumor patients. In this chapter, we have discussed state-

of-the-art image analysis methods and statistical modeling methods necessary to

develop individual components that are generally part of any DSS. The use of

image analysis methods has also been investigated in the management of other

neurodegenerative and psychiatric disorders such as schizophrenia and epilepsy.

Although in this chapter we deal specifically with brain tumors, the translation of

methods used for other brain diseases may benefit the advancement of quantitative

image analysis of brain tumors.
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Chapter 12

Respiratory and Cardiac Function Analysis

on the Basis of Dynamic Chest Radiography

Rie Tanaka and Shigeru Sanada

Abstract Dynamic chest radiography with computer analysis is expected to be a

new type of functional imaging system. This chapter presents computerized

methods for quantifying and visualizing cardiopulmonary function on dynamic

chest radiographs. The measurement parameters are diaphragm motion, heart

wall motion, pulmonary ventilation, and blood circulation. We will first introduce

evaluation items, physiology, and diagnostic findings and then describe image

analysis methods for each evaluation item. We pay particular attention to

interframe subtraction and mapping technique, which play a critical role in the

evaluation of pulmonary ventilation and blood circulation. We also discuss fea-

tures, future perspectives, and issues related to dynamic chest radiography on the

basis of preliminary clinical study.

Background

Functional information is of assistance in the diagnosis of diseases and determina-

tion of treatment strategy, along with anatomical information. In the diagnosis of

pulmonary diseases, the pulmonary functional test (PFT) with a spirometer evalu-

ates total function in both lungs, such as vital capacity, functional residual capacity,

and diffusion capacity. To evaluate local cardiopulmonary function, we have a

choice of functional imaging methods, e.g., nuclear scanning [1, 2], dynamic

computed tomography (CT) [3, 4], and dynamic magnetic resonance imaging

(MRI) [5–8]. Recent advancements in technology facilitated pulmonary functional

imaging without the use of contrast agents. Dynamic CT allows cross-sectional
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analysis of pulmonary ventilation based on respiratory-induced changes in CT

values. On the other hand, dynamic MRI provides observations of diaphragmatic

and lung motion in all sections. Although these examinations provide a definitive

diagnosis based on anatomical and functional findings, they have certain disadvan-

tages; in the CT approach, the patients are exposed to a large dose of radiation,

while the MRI and nuclear scanning approaches are costly and time-consuming.

If cardiopulmonary functional information becomes more readily available, it will

be very helpful for determining an appropriate examination procedure and for

patient follow-up.

Therefore, we focused on cardiopulmonary functional evaluation with dynamic

chest radiography. There have been many reports demonstrating the feasibility of

pulmonary densitometry [9–13]. These methods have not been adopted in clinical

use because of technical limitations, such as poor image quality and small field of

view (FOV) [14]. Dynamic flat-panel detectors (FPDs) allow acquisition of sequen-

tial chest radiographs with a large FOV and high image quality. Whereas image-

intensifier (I.I.) systems are now being replaced with FPD systems, they are also

expected to be useful as a new type of functional imaging system. Dynamic chest

radiography using a dynamic FPD combined with computer analysis may overcome

the difficulties encountered in the above-mentioned studies and provide quantita-

tive functional information. In the following, we will introduce dynamic chest

radiography using an FPD system and describe computerized methods for the

evaluation of cardiopulmonary function along with the results of the preliminary

clinical study.

Evaluation Items, Physiology, and Diagnostic Finding

Diaphragm Shape, Position, and Motion

Pulmonary function is estimated on the basis of the shape and position of the

diaphragm on conventional chest radiographs [15, 16]. For example, in a patient

with chronic obstructive pulmonary disease (COPD), the diaphragm position is

lower and flatter than that in normal subjects because of pulmonary hyperinflation.

Impaired function is also observed as limited diaphragm motion. In general,

additional imaging at the expiration level is performed to assess diaphragm motion,

in addition to conventional imaging at the inspiratory level. Dynamic chest radiog-

raphy provides information regarding the motion process so that radiologists and

surgeons can develop a more appropriate treatment strategy. Furthermore, large

FOV of FPD permits simultaneous right-and-left evaluation of the diaphragm.

Information regarding diaphragm motion is useful for the diagnosis of pulmonary

impairments such as phrenic nerve stroke, foreign bodies in the bronchus, and

COPD as well as patient selection for lung reduction surgery [17].
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Cardiac Function

The cardiothoracic ratio (CTR) is the ratio of the transverse diameter of the heart to

the internal diameter of the chest at its widest point just above the dome of the

diaphragm as measured on a posteroanterior (PA) chest radiograph. The heart size

is considered too large when the CTR is >50 % on a PA chest radiograph and an

increased cardiac silhouette is almost always the result of cardiomegaly [18]. Heart

wall motion is observed on dynamic chest radiographs. Amplitude and cycle length

are directly measured so that cardiac function can be evaluated more precisely.

Pulmonary Ventilation

The pulmonary condition is evaluated on the basis of X-ray translucency in the lung

area. An increase in X-ray translucency indicates localized air space that may

represent anomalies like lung cyst, emphysema, and pneumothorax. In contrast, a

decrease in X-ray translucency indicates decreased pulmonary air or enhanced

tissues, suggestive of conditions like pulmonary inflammation, fibrosis, edema, or

sclerosis [16]. Temporal changes in X-ray translucency during respiration depend

on relative increases and decreases in air and lung vessel volume per unit volume,

as shown in Fig. 12.1a [19, 20]. Figure 12.2 depicts measured pixel value and

electrocardiogram (ECG) findings in a normal control. The pixel value decreases

(X-ray translucency") according to increase in air volume in the lung during

inspiratory phase; in contrast, the pixel value increases (X-ray translucency#)
according to decrease in air volume in the lung during expiratory phase. The slight

change in synchrony with ECG findings is the results of changes caused by cardiac

pumping and pulmonary blood circulation. The impact of cardiac motion is iden-

tified to be less than 10 % against the respiratory changes in pixel value [21]. It is

possible to evaluate relative ventilation quantitatively from respiratory changes in

X-ray translucency on dynamic chest radiographs. For example, COPD patients

take time to expire, and also ventilate insufficiently due to trapped air. Therefore, it

is possible to detect abnormalities such as delayed and decreased changes in pixel

values. However, the present method does not directly measure the gas exchanges

in lung alveoli; rather, it provides relative functional information related to pulmo-

nary ventilation.

It is also well known that there are regional differences in ventilation in respira-

tory physiology [19]. Ventilation per unit volume is greatest near the bottom of the

lung and becomes progressively smaller toward the top with symmetrical right-and-

left distribution. Therefore, ventilatory impairment can be detected based on devi-

ation from the normal pattern of ventilation distribution. In the case of dynamic chest

radiography, ventilatory impairment could be detected by comparing respiratory-

induced changes in pixel value in symmetrical positions in both lungs [22].
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Inspiration

Expiration

Inflow

Outflow

a

b

Fig. 12.1 Relationship between X-ray translucency and (a) air and lung vessel volume and (b)

pulmonary blood volume per unit volume

Fig. 12.2 Measured pixel value and electrocardiogram in a normal control
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Other measurements showed that, at the end of expiration, the lower airway

closes earlier than the upper airway due to the differences in air pressure of the

thoracic cavity, i.e., airway closure, and the ventilation in the upper area becomes

greater than that in the lower area. The lung volume when airway closure occurs is

defined as the “closing volume,” which is a very effective index for diagnosing

pulmonary diseases. For example, in subjects with COPD and restrictive pulmonary

disease, airway closure appears in early expiratory phase, and as a result closing

volume becomes large. Therefore, abnormalities can be detected by evaluating the

timing of “airway closure” [23].

Pulmonary Blood Circulation

Circulation dynamics is reflected on chest radiographs and abnormalities appear as

shape changes or shifts in the distribution of pulmonary vessels [20, 24, 25]. These

are effective indices for diagnosing specific cardiac diseases and determining an

appropriate examination procedure: redistribution or cephalization of pulmonary

blood flow indicating the presence of pulmonary venous hypertension [26];

a centralized pulmonary blood flow pattern, indicating pulmonary arterial hyper-

tension [27]; or widening of the vascular pedicle indicating an increase in circulat-

ing blood volume [28]. Circulation dynamics is also reflected on fluoroscopic

images as changes in X-ray translucency [10, 11, 29] (Fig. 12.1b), which provide

functional information. This is because the lungs contain a constant volume of

about 500 mL of blood, with 75 mL distributed variably across the vasculature due

to cardiac pumping [18].

Figure 12.3 shows changes in pixel value measured in a normal subject, in ROIs

as shown in Fig. 12.4. There is a strong correlation between the cardiac cycle and

changes in pixel value, which are measured in the ventricles, atria, aortic arch, and

pulmonary arteries. The changes in pixel values measured in each ROI can be

explained by normal circulation dynamics as indicated below: (1) at the end of the

diastole phase, the ventricles are at the maximum volume, as shown by large pixel

values in the ventricles. (2) In the early ventricular systole phase, from closure of the

atrioventricular (AV) valves to opening of the aortic valve, the ventricular volume

remained constant, shown as the absence of a significant change in pixel values

during this period. (3) After opening of the aortic arch, blood is pumped from the

ventricles into the aortic arch and pulmonary arteries. This was shown as a decrease

in pixel values in the ventricles and an increase in pixel values in the aortic arch and

pulmonary arteries. (4) In the late ventricular systole phase, ventricular volume and

aortic blood flow decrease, shown as a continuous decrease in pixel values. (5) In the

early ventricular diastole phase, from closure of the aortic valve to opening of the

AV valves, the ventricular volume remains constant. Thus, there is no significant

change in the pixel value. (6) Blood rapidly moves from the atria to the ventricles in

response to opening of the AV valves; this is why the pixel values in the ventricles

increase while, in contrast, those in the atria and pulmonary veins decrease.
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Figure 12.5 shows the average rate of change in pixel value for all subjects. The

results measured in each ROI decrease in the following order: left ventricle > left

atrium > aortic arch > right atrium > right ventricle > left pulmonary artery.

These findings indicate that pulmonary blood circulation is reflected on dynamic

chest radiographs and that the present method has the potential to evaluate local

blood circulation.

Dynamic Chest Radiography

Sequential chest radiographs during respiration are obtained using a dynamic FPD

system. Imaging is performed in the standing position and PA direction. For

accurate evaluation of cardiopulmonary function, it is crucial to include the entire

Fig. 12.4 Measurement location. Small squares show ROIs for measuring average pixel value,

and the horizontal line shows a profile for measuring left-ventricle motion [a, left ventricle (LV);
b, right ventricle (RV); c, aortic arch (AA); d, left atrium (LA); e, right atrium (RA); f, left
pulmonary artery (LPA); g, right pulmonary artery (RPA); h, left pulmonary veins (LPV); i, right
pulmonary veins (RPV); other ROIs, peripheral vessel; ref. 1, shoulder; ref. 2, air]

Fig. 12.5 Average changes

in pixel values measured in

each ROI. Error bars show
�SD (n ¼ 7) (SD: standard

deviation, N.S.: not

significant)
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series of motions within a limited amount of time with good reproducibility.

Therefore, it is recommended to use an automatic voice system and conduct

pre-training for patients. The total patient dose can be less than the dose limit for

lateral chest radiography recommended by the International Atomic Energy

Agency (IAEA) (1.5 mGy) [30], and it can be set by adjusting the imaging time,

imaging rate, and source to image distance (SID) [21, 29, 31–37]. Cardiopulmonary

function is evaluated separately in each respiratory phase, inspiratory, expiratory,

and breath-holding phase. The imaging rate should be greater than 7.5 frames per

seconds (FPS) to permit accurate evaluation of cardiac function. If the focus is on

the evaluation of respiratory function, a lower imaging rate is acceptable by taking

into account the patient dose. However, an imaging time of greater than 10 s is

required to induce maximum voluntary respiration.

Quantification of Cardiopulmonary Function

Analysis of dynamic chest radiographs comprises quantification, visualization, and

detection of abnormal findings. Such processing permits the quantitative evaluation

of diaphragm motion, cardiac function, pulmonary ventilation, and blood circula-

tion. Figure 12.6 depicts the overall image analysis. The process in detail is outlined

in the following sections. Low pixel values were related to dark areas in the images,

and these in turn were related to high X-ray translucency in this chapter.

Measurement of Diaphragm Motion

Lung area was determined by edge detection using the first derivative technique and

iterative contour-smoothing algorithm [38, 39]. Figure 12.7 depicts the measure-

ment points for assessing diaphragm motion. The lung apex and diaphragm are

determined in the first frame and traced by the template-matching technique

after the second frame. The distance between the lung apex to the diaphragm

is measured, and excursion of the diaphragm is then calculated by subtracting

the distance at the maximum inspiratory level from that at the expiratory level

[36, 37]. Abnormalities are detected by comparison with normal excursion or side-

by-side comparison in each individual.

Measurement of Cardiac Wall Motion

Temporal–spatial cross-section images interpolated linearly are created from

dynamic chest radiographs (Fig. 12.8) [34, 37]. These images could be obtained
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at any position of chest image and provide a visual observation of heart wall and

diaphragm motion. Cardiac wall motion is also assessed by the profile curve

analysis as shown in Figs. 12.3 and 12.4.

Fig. 12.7 Measurement

points for evaluating

diaphragm motion

Fig. 12.6 Overall scheme of image analysis
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Determination of the Respiratory Phase

Respiratory phase is determined based on the distance from the lung apex to

diaphragm (Fig. 12.7). The frames in the maximum and minimum distance are

determined as the maximum inspiratory and expiratory frames, respectively [35].

Determination of Cardiac Phase

The cardiac phase can be estimated on the basis of the change in pixel values

measured near the left heart wall. Average pixel value is measured in an ROI

located just outside of the left ventricular wall throughout all frames [31]. Increase

in pixel values is determined as the diastole phase and decrease in pixel values as

the systole phase. The frames composing a whole cardiac phase are determined and

the first complete cycle is selected for evaluation of cardiac function. The cardiac

phase is also determined using the results of profile curve analysis as shown in

Fig. 12.3.

Measurement of Change in Pixel Value

Pulmonary function is assessed in images during respiration, whereas cardiac

function is assessed in images during breath-holding. Pulmonary ventilation and

blood circulation are indicated as changes in pixel values on the dynamic chest

radiographs. However, it is difficult to evaluate the slight changes by observing

images. Furthermore, accurate interpretation requires a great deal of knowledge

regarding respiratory and cardiac physiology. Interframe subtraction is useful to

Fig. 12.8 Temporal cross-section images created from dynamic chest radiographs. (a) sagittal and

(b) axial section images, respectively
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identify slight changes in pixel value. There are two main approaches for the

evaluation and visualization of pulmonary ventilation and blood circulation: a

velocity-based approach by interframe subtraction and a distribution-based

approach that accumulate differences in pixel values. The analysis algorithm is

presented as follows.

Analysis of Pulmonary Air Flow

The velocity-based approach consists of an interframe subtraction and mapping

technique [21, 32, 33]. First, smoothing of pixel values is performed in the time

axis direction to reduce the change due to the heartbeat and artifacts due to rib

movement (Fig. 12.9a, b). To evaluate respiratory changes in pixel values in each

lung unit, average pixel value is calculated in each lung, the interframe differ-

ences of the average pixel value are calculated, then superimposed on dynamic

chest radiographs in the form of color display as shown in Fig. 12.9c. The color

display uses a color table in which negative changes (X-ray translucency ") are
shown in warm colors and positive changes (X-ray translucency #) are shown in

cold colors.

Analysis of Ventilation Distribution

Chest radiographs are divided into blocks to measure average pixel value in each

local area (Fig. 12.10). The measurement in block units is to reduce the influence of

slight movement, dilation, and contraction of lung structures, and also to facilitate

comparison of local changes and statistical analysis. In Fig. 12.10, the block size is

set to be slightly smaller than the intercostal space, so that each block is deformed

in response to the changes in texture resulting from dilation and contraction of
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Fig. 12.9 Noise rejection and color table. (a) Measured pixel value and electrocardiogram (ECG).

(b) Smoothed pixel value in the time axis direction. (c) Interframe difference of smoothed pixel

value and color bar used to create functional images
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the pulmonary blood vessels and bronchi. The displacement of lung structures at

the imaging rate of 7.5 fps is quite small, 0–3 pixels per frame, mainly in the

craniocaudal direction. Thus, each block can be deformed geometrically using the

affine transformation algorithm based on magnification percentages calculated

from differences in displacement between adjacent blocks, as described elsewhere

in detail [32, 40].

Average pixel values are measured in each block, tracking and deforming the

region of interest (ROI). Interframe differences are then calculated, and the absolute

values are summed in each block through all the frames. Interframe subtraction and

summation of the absolute values are performed instead of subtraction between the

maximum inspiration and expiration frames to reduce the influence of errors in

image tracking and deformation.

The percentage of interframe differences of the pixel values to the summation of

the results in all blocks is then calculated as below:

P% m; nð Þ ¼ Ptotal m; nð Þ
XN�1

n¼0

XM�1

m¼0

Ptotal m; nð Þ
� 100 (12.1)

where M and N are the number of blocks in the horizontal and vertical directions,

respectively. In addition, m and n represent the coordinates of the blocks in

the horizontal and vertical directions, respectively. Ptotal (m, n) is the summation

of the absolute interframe differences in each block. To facilitate visual evaluation,

P% (m, n) is mapped on the original image using a grayscale (hereafter called

“Distribution map”).

Fig. 12.10 One frame of sequential chest radiographs divided into 32 � 32 blocks that were

slightly smaller than the intercostal space in size. (a) The black lines show the lung area

determined for measurement of pixel values. The hilar regions are excluded from the lung area

manually. (b) The bold vertical line shows the center of symmetry. “Symmetric positions” are

pairs of blocks the same distance from the center of symmetry. The small black and white squares
show the blocks with and without a pair for comparison, respectively
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Analysis of Pulmonary Blood Flow

Velocity maps of blood circulation are created by interframe differences in pixel

values due to cardiac pumping. Thus, these images can provide information on

blood flow velocities during each cardiac phase. Figure 12.11 shows the overall

scheme of the computer algorithm for quantifying changes in pixel value due to

pulmonary blood circulation. After determination of the lung area, the interframe

difference is determined throughout all frames. Velocity maps of blood circulation

are then created by superimposing of difference values on dynamic chest radio-

graphs in the form of a color display, by use of a color table in which positive

changes (lower X-ray translucency) are shown in warm colors and negative changes

(higher X-ray translucency) are shown in cool colors.

Fig. 12.11 Computer scheme for creating velocity and distribution maps of blood circulation.

(a) ECG and pulse-wave, (b) processing process
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Analysis of Circulation Distribution

Distribution maps of blood circulation are created by differences in pixel values

between a frame in the minimum blood volume during one cardiac cycle and a

frame at the end of the systole phase. Thus, the image can provide information on

relative blood volumes during one cardiac cycle. Dilation and contraction of vessels

would not be considered to affect the measurement of pixel values in projected

images with a relatively large size because the rate of change is reported to be

approximately �10 % [18]. In addition, a minimum-intensity projection (MINIP)

image is created in one cardiac cycle, which is composed of pixel values showing

the least blood during one cardiac cycle. Temporal subtraction is performed

between a MINIP image and a frame at the end of the systole phase. The blood

distribution in one cardiac cycle is also created by superimposing of the difference

values on dynamic chest radiographs in the form of a color display.

To reduce the influence of movement, dilation, contraction of vessels as well as

the influence of image noise, analysis in block units is recommended. A velocity-

based approach in block units was reported by Tanaka et al. [32]. First, the images

are divided into block units, and the average pixel value in each block Pk (m, n) is
calculated, as shown in Fig. 12.12. Here, m and n are the coordinates of blocks in

the horizontal and vertical directions, respectively, and k is the frame number. The

block size is the smallest determined experimentally in which defects in the blood

flow could be detected by the present method under ideal conditions without the

influence of the ribs [29]. When fluctuation is noted in adjacent frames in Pk (m, n)
due to X-ray output and image noise, it can be eliminated by smoothing pixel

values, averaging adjacent values, in the time axis direction, as shown in Fig. 12.12.

Pave (m, n), the average pixel value of Pk (m, n) in one cardiac cycle, is then

calculated, and the differences between Pk (m, n) and Pave (m, n) are determined

throughout one cardiac cycle in each block, representing the difference from the

average state in blood volume. The sum of the absolute differences is finally output

as Ptotal(m, n), representing the total changes in pixel values in each block in one

cardiac cycle. Pave (m, n) and Ptotal (m, n) are defined as follows:

Pave m; nð Þ ¼ P0 m; nð Þ þ P1 m; nð Þ þ ::::þ Pk m; nð Þ½ �=K 0 < k < Kð Þ (12.2)

Ptotal m; nð Þ ¼
X

Pk m; nð Þ � Pave m; nð Þj j 0 < k < Kð Þ, (12.3)

where K is the number of frames in one cardiac cycle. The percentage of the results

in each block to the summation of the results in all the blocks in lung areas is then

calculated as,

P% m; nð Þ ¼ Ptotal m; nð Þ
XN�1

n¼0

XM�1

m¼0

Ptotal m; nð Þ
� 100, (12.4)

where M and N are the number of blocks in the horizontal and vertical directions,

respectively, and the computation is limited to lung areas.
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To facilitate visual evaluation, P%(m, n) is mapped on the original image by use

of a grayscale in which small changes are shown in white and large changes are

shown in black (hereafter called the “Distribution map”).

Fig. 12.12 Process for quantifying changes in pixel value. (a) One frame divided into 64 � 64

blocks and enlarged view of a block. (b) Average pixel value measured during one cardiac cycle in

a block. The broken and solid lines are unprocessed and smoothed Pn (m, n), respectively. The
horizontal broken line and bar graphs are Pave (m, n) and the differences between Pave (m, n) and
Pn (m, n), respectively. The dotted line is the final output, Ptotal (m, n)
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V/Q Study

Ventilation-perfusion (V/Q) ratio is very important diagnostic information to

develop a treatment strategy in a patient with pulmonary diseases. V/Q ratio is

usually calculated from radioactive count in lung scintigraphy. Functional imaging

with a dynamic FPD has a potential for evaluating V/Q ratio [41]. A V/Q map based

on changes in pixel value is provided using the resulting images of (b) analysis of

ventilation distribution and (d) analysis of circulation distribution, as shown in

Fig. 12.13. V/Q is calculated as a ratio of ventilation to perfusion as below;

V=QPV m; nð Þ ¼ P%ventilation m; nð Þ
P%perfusion m; nð Þ (12.5)

V/Qpv(m, n) is calculated using the results of P%ventilation(m, n) measured in

images during respiration and P% perfusion(m, n) measured in breath-holding frames.

Results of the Preliminary Clinical Study

All patient data in this chapter were obtained at Kanazawa University Hospital in

Japan. Approval for the study was obtained from our institutional review board, and

the subjects gave their written informed consent to participation.

Analysis of Pulmonary Air Flow [21]

Figure 12.14 shows the results in a normal control (22-year-old man). The right and

left diaphragms showed synchronous movement as shown in Fig. 12.14b. Average

right and left diaphragm excursions in the normal controls (n ¼ 58) were 4.2 � 1.3

and 4.6 � 1.2 cm, respectively. There were no significant differences between the

left and right diaphragm. Figure 12.14c shows respiratory changes of the average

pixel value in each lung. In the expiratory phase, interframe differences in pixel

values were positive resulting from the decrease in X-ray translucency and were

seen as cold colors on velocity maps, whereas in the inspiratory phase, interframe

differences in pixel values were negative resulting from the increase in X-ray

translucency and were shown as warm colors on velocity maps. On the velocity

maps, the interframe differences were seen to be distributed symmetrically in

both lungs throughout all respiratory phases and larger interframe differences

were distributed in the lower area in some parts of the respiratory phase

(Fig. 12.14d, e). The distribution of interframe differences in pixel value was

consistent with well-known properties in respiratory physiology, such as regional

differences in ventilation [19, 20].
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Figure 12.15 shows the results in a patient with bilateral air trapping (31-year-

old man, emphysema). PFT indicated low FEV1.0 % and %VC, which indicates

mixed ventilatory impairment. It was expected that pulmonary airflow would be

decreased in the areas with air trapping. Our method showed that the flat diaphragm

pressured by air trapping moved dynamically and synchronously (Fig. 12.15d).

Fig. 12.13 The process of

creating the V/Q map on the

basis of changes in pixel

value
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Excursion of the right diaphragm was 4.3 cm and that of the left diaphragm was

4.9 cm, which were the same or better than the average values of the normal

controls. However, there were some areas with interframe differences near zero,

i.e., showing little or no respiratory changes in pixel value, indicated as colorless

areas on the velocity maps corresponding to the areas with air trapping on CT

images (Fig. 12.15b, c, f, g).

Figure 12.16 shows the results in a patient with asthma (56-year-old man).

Although there were no abnormal findings in CT images, as shown in

Fig. 12.16b, c, PFT indicated obstructive abnormality. Thus, it was expected that

the reduced regional pulmonary airflow would be seen as a colorless area on

velocity maps resulting from interframe differences near zero. Our results showed

that the excursions of the diaphragm were relatively small (2.4 cm on the right and

2.7 cm on the left) (Fig. 12.16d). However, some areas continuously showed

interframe differences near zero in the upper lung, which appear as areas defective

in color on the velocity maps as expected (Fig. 12.16f, g).

These results indicated that our method was useful for evaluating local pulmo-

nary airflow in COPD and asthma, diseases associated with abnormalities in

regional ventilation. However, some issues remain to be resolved. The velocity

maps sometimes contained artifacts that could have been caused by misalignment

of lung structures. Thus, it is necessary to develop a computer algorithm to reduce

artifacts.

Fig. 12.14 Results in a normal control (22-year-old man). (a) Dynamic chest radiograph in the

maximum inspiratory frame. (b) Distance from the lung apex to the diaphragm. (c) Average pixel

values measured in each lung. (d) Velocity maps in the expiratory phase. (e) Velocity maps in the

inspiratory phase
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Analysis of Ventilation Distribution [32]

Figure 12.17 shows the distribution map in a normal control (22-year-old man). The

results showed the symmetrical distribution of P% throughout the whole lung

(Fig. 12.17b) and consistent with normal ventilation distribution, which decreases

gradually and symmetrically from the upper region to the basal regions [19, 40]. In

addition, a strong correlation was observed between right and left P% (r ¼ 0.70)

(Fig. 12.17c). In normal controls (n ¼ 6), P% decreased from the lung apex to the

Fig. 12.15 Results in a patient with emphysema (31-year-old man). (a) Dynamic chest radiograph

in the maximum inspiratory frame. (b) CT (coronal section). (c) CT (axial section). (d) Distance

from the lung apex to the diaphragm. (e) Average pixel values measured in each lung. (f) Velocity

maps in the expiratory phase. (g) Velocity maps in the inspiratory phase
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basal area with a symmetrical distribution. In contrast, many abnormal cases

showed nonuniform distributions of P%, which were different from the normal

pattern. Figure 12.18 shows the results in a patient with pleural adhesions in the left

lung, resulting in middle restricted ventilatory abnormality (72-year-old woman).

There were several findings of pleural adhesions in CT images (Fig. 12.18b, c).

Lung scintigraphy showed marked reduction of ventilation in the left lung in

comparison with the right lung (Fig. 12.18d). The distribution map of P% also

showed reduced changes in pixel value over the left lung (Fig. 12.18e), and

there was no relationship between right and left P% (r ¼ 0.01) (Fig. 12.18f).

Fig. 12.16 Results in a patient with asthma (56-year-old man). (a) Dynamic chest radiograph in

the maximum inspiratory frame. (b) CT (coronal section). (c) CT (axial section). (d) Distance from

the lung apex to the diaphragm. (e) Average pixel values measured in each lung. (f) Velocity maps

in the expiratory phase. (g) Velocity maps in the inspiratory phase
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Fig. 12.18 Results in a subject with no correlation between right and left P% (pleural adhesions,

72-year-old woman). (a) One frame of dynamic chest radiograph. Computed tomography in

(b) coronal and (c) axial sections. There were no morphological anomalies associated with

ventilation impairment in the lung scintigram. (d) Lung scintigram. Ventilation in the left whole

lung showed marked reduction. (e) Distribution map. The left whole lung and right upper lung area

had small P%. (f) Scatter chart of right and left P% (r ¼ 0.01). There was no relationship between

right and left P% at symmetrical positions
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Fig. 12.17 Results in a normal control (22-year-old man). (a) One frame of dynamic chest

radiograph. (b) Distribution map (c) Scatter chart of right and left P% (r ¼ 0.7). This symmetrical

distribution of P% was commonly observed in all normal controls
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Figure 12.19 shows the results in a patient with upper-predominant pulmonary

fibrosis, resulting in middle restricted ventilatory abnormality (56-year-old

woman). In CT images, there were several areas with advanced pulmonary fibrosis

for ventilatory impairment (Fig. 12.19b, c). Lung scintigraphy also showed that

there were areas of no ventilation in the upper right lung and of reduced ventilation

in the left upper and right middle lung (Fig. 12.19d). These areas showed reduced

changes in pixel value in the distribution map of P% (Fig. 12.19e), and there was a

low correlation coefficient between right and left P% (r ¼ 0.29) (Fig. 12.19f).

These results indicated that pulmonary ventilatory impairment could be detected

as a deviation from the symmetry of respiratory-induced changes in pixel value.

However, there were several limitations of the present method. They were classified

into two groups, i.e., bilateral ventilation abnormalities or differences in lung size.

If a lung is recognized in a smaller size for some reason, e.g., heart enlargement

and atelectasis, some blocks in another lung had no pair for comparison, even

though there are abnormalities. To detect bilateral abnormalities, multistratified

analysis of the P% distribution pattern should be performed by combining several

methods, such as comparison with the normal distribution pattern of P%, time series

Fig. 12.19 Results in a subject with poor correlation between right and left P% (pulmonary

fibrosis, 56-year-old woman). (a) One frame of dynamic chest radiograph. There were areas of

no or reduced ventilation in the right upper and middle lung, and the left upper lung. Computed

tomography in (b) coronal and (c) axial sections. (d) Lung scintigram. There were several areas

with advanced pulmonary fibrosis for ventilation impairment. (e) Distribution map. The right

upper and middle, and left upper regions are indicated as small P%. (f) Scatter chart of right and left

P% (r ¼ 0.29). There is a weak relationship between right and left P% at symmetrical positions
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analysis, examination of craniocaudal variation, and pattern analysis considering

lung structures. Furthermore, it is also necessary to evaluate the detection method in

larger numbers of patients along with investigation of analysis parameters, such as

block size and shape.

Analysis of Pulmonary Blood Flow [29]

Figure 12.11 shows the results in a normal control. Slight changes in pixel value

were visualized as velocity and distribution maps without contrast media

(Fig. 12.11). The resulting images showed a normal pattern determined by the

physiology of pulmonary blood circulation, which diffuses from around the pul-

monary arteries to the peripheral area, with no perfusion defects throughout the

entire lung region. In contrast, the results in an abnormal case showed that abnor-

malities, such as a decrease or defect in blood circulation, would be shown as

defects in color. Figure 12.20 shows results in a patient with lung fibrosis (56 years

old, female). The chest radiograph and CT (coronal section) showed advanced

fibrosis of the lung in the upper area (Fig. 12.20a, b). The results of perfusion

scintigraphy of the lung showed some areas of decreased blood flow, as seen

in Fig. 12.21c. The distribution map showed some areas with decreased changes

in pixel value (Fig. 12.20d), which were coincident with the abnormal area in

perfusion scintigraphy of the lung.

Fig. 12.20 Results of our

method and the other

clinical examinations in a

subject with pulmonary

fibrosis (56 years old,

female). (a) Chest

radiograph, (b) computed

tomography (coronal

section), (c) lung perfusion

scintigraphy, and (d)

distribution map. In the

blood distribution map,

there were some reductions

of changes in pixel value

(solid-line circles), which
were consistent with defect

in blood flow as indicated

by scintigraphic test

[broken-line circles in (c)]
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These findings indicated that dynamic chest radiography with a dynamic FPD

has potential for functional imaging. The present method is expected to be a rapid

and simple method for evaluation of blood circulation in general chest radiography,

because dynamic FPDs are now widely available. However, there is not enough

clinical evidence supporting the usefulness of the present method. Further studies in

larger numbers of subjects with abnormalities in blood flow, such as pulmonary

embolism, pulmonary hypertension, pulmonary edema, and general heart diseases,

are required along with investigations into the ability of this method to detect

abnormalities. The errors due to vessel misalignment and the reproducibility of

the present method should also be addressed.

Analysis of Circulation Distribution

Figure 12.21 shows the results for a patient with pulmonary fibrosis (82-year-old

man) [32]. The area surrounded by broken lines in the perfusion scan shows the

area with reduced blood flow determined by a radiologist specializing in nuclear

medicine. The perfusion scan showed a marked reduction of blood flow in the left

lung in comparison with the right lung (Fig. 12.21c). The distribution map also

showed reduced total changes in pixel value over the left lung (Fig. 12.21b).

There was a strong correlation between distribution map and lung perfusion

(r ¼ 0.70) (Fig. 12.21d).

Figure 12.22 shows the results for a patient with obstructive pulmonary disease

(62-year-old man) [32]. The perfusion scan showed that there were areas of no

blood flow in the upper right lung and of reduced blood flow in the left upper and

middle lung (Fig. 12.22c). These areas showed reduced changes in pixel value in

the distribution map (Fig. 12.22b). There was an intermediate correlation between

distribution map and lung perfusion (r ¼ 0.63) (Fig. 12.22d).

Fig. 12.21 Results in restrictive lung disease (pulmonary fibrosis, 82-year-old man). (a) One

frame of dynamic chest radiograph. (b) Distribution map. (c) Lung perfusion scan (99mTc-MAA).

The area surrounded by broken lines shows reduced blood flow. (d) Scatter diagram of P% �
RIcnt% (r ¼ 0.70). The regression line is shown. RIcnt% was calculated on the basis of RI count

using Eq. (12.4)
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There was a good correlation between the findings in the distribution map and

those in the perfusion scan in ten of the subjects. The results indicated that the

distribution map could provide relative measures related to pulmonary blood flow.

Although the changes in pixel value do not indicate the absolute blood flow volume,

the present method could be utilized for relative or temporal comparison in each

patient rather than for inter-subject comparison. The diagnostic criteria and diseases

for which the present method is applicable should be determined in further studies

in patients with the same diseases.

V/Q Study [41]

Figures 12.13 show the results in a patient with ventilation-perfusion mismatch

(hypoxemia, 74-year-old man). The patient had several findings of pleural adhe-

sions in CT images (Fig. 12.23d–g). PFT indicated low vital capacity (VC) and low

forced expiratory volume in 1 s (FEV1.0), which meant obstructive abnormality.

Figure 12.13 shows resulting V/Q map created from changes in pixel value.

Abnormalities were appeared as a reduction of changes in pixel values. For

example, the lacks of ventilation and blood flow in the upper and lower left lung

were indicated as reduced changes in pixel values. In addition, the area of defective

ventilation over the right lung was indicated as remarkably reduced changes in

pixel value in the ventilation mapping image. In contrast, the area of reduced blood

flow over the right lung was indicated as reduced changes in pixel values. V/Q ratio

calculated from the changes in pixel value was consistent with those calculated

from RI counts. The results indicated the possibility of V/Q study based on changes

in pixel value on dynamic chest radiographs. It is very useful to obtain V/Q ratio as

additional information in general chest radiography.

Fig. 12.22 Results in obstructive pulmonary disease (bronchiolitis obliterans with upper-lobe

fibrosis and pneumothorax in the right lower lung, 62-year-old man). (a) One frame of dynamic

chest radiograph. (b) Distribution map. (c) Lung perfusion scan (99mTc-MAA). The areas

surrounded by solid and broken lines show reduced blood flow. (d) Scatter diagram of P% �
RIcnt% (r ¼ 0.63). The regression line is shown. RIcnt% was calculated on the basis of RI count

using Eq. (12.4)
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Computer-Aided Diagnosis for Dynamic Chest Radiographs

Computer-aided diagnosis (CAD) for dynamic chest radiographs was only recently

introduced; however, two trials have been reported. Tsuchiya et al. developed a

CAD system to detect lung nodules using dynamic chest radiographs taken during

respiration [42]. Their technique could quantitatively evaluate the kinetic range of

nodules and was effective in detecting a nodule on a breathing chest radiograph.

Another approach is to detect functional impairments in ventilation and blood

circulation in the lungs, as shown in section “Analysis of Ventilation Distribution”

in this chapter. In the paper [42], we tested a hypothesis that ventilatory impairment

could be detected by comparing respiratory-induced changes in pixel value in

symmetrical positions in both lungs. Here, “symmetrical positions” means a pair

of locations in the same distance from the axis of thorax on the same level. In the

results, abnormalities could not be detected in 50 % of the patients with bilateral

abnormalities. However, in many patients, abnormalities could be detected as a

deviation from the right and left symmetry of respiratory-induced changes in pixel

value. These results indicated that the present method would be useful for detecting

unilateral abnormalities. To detect bilateral abnormalities, further studies are

required to develop a multilevel detection method combined with several methods

Fig. 12.23 Image findings

of the patient evaluated in

this study (74-year-old

man). (a) Chest radiograph,

(b–c) ventilation and

perfusion scintigrams. The

area surrounded by solid
and broken lines show
defective and reduced blood

flow, respectively. (d–g) CT

images. There were several

findings of pleural

adhesions
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of pattern analysis. One of the most potential solutions is machine learning/pattern

recognition methods. Abnormalities could be effectively detected based on

machine learning/pattern recognition methods using the normal distribution of

ventilation and perfusion well-known in pulmonary physiology [19, 40].

Summary

Dynamic FPD allow acquisition of sequential chest radiographs with a large FOV,

high image quality, and low patient dose. Dynamic chest radiography with com-

puter analysis is expected to be a new type of functional imaging system that

provides measures of cardiopulmonary function, such as diaphragm and heart

wall motion, pulmonary ventilation, and blood flow. In the past decade, such

functional information has provided additional information for the diagnosis of

cardiopulmonary disease. However, it is not easy for a radiologist to interpret

cardiopulmonary function on dynamic chest radiographs. Therefore, computerized

methods for quantifying cardiopulmonary function are essential for the implemen-

tation of dynamic chest radiography. Some recent developments have been

discussed in this chapter. Specifically, we used an interframe subtraction technique

for the evaluation of pulmonary ventilation and blood flow. Interframe subtraction

was useful to quantify and visualize slight changes in pixel value caused by

respiration and blood circulation. Functional impairments were indicated as

decreased changes in pixel value in the preliminary clinical study. The next step

is to develop a CAD system for dynamic chest radiography. It would be more

effective for the diagnosis of cardiopulmonary diseases to compare the results in

both lungs or evaluate the distribution. Although the present method lacks 3D

anatomic information, this method can be used as a rapid substitute for lung

perfusion scintigraphy, perfusion CT, and MRI and could be applied to cone

beam CT and 4D CT, as an optional means of evaluating cardiopulmonary function.
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Chapter 13

Adaptive Noise Reduction and Edge

Enhancement in Medical Images

by Using ICA

Xian-Hua Han and Yen-Wei Chen

Abstract This chapter focuses on the development of novel image enhancement

and robust edge detection methods for practical medical image processing. It is

known that the popular transformation-domain shrinkage approach for image

enhancement applies a fixed mathematical basis to transform all images to be

processed for noise or artifact reduction. However it is not adaptable to processed

images, and then easily leads to blurring in the enhanced images. On the other hand,

the techniques that are commonly used for edge detection are known as gradient

and Laplacian operators (or mask), and smoothed gradient masks are typically used

for edge detection in noisy images. However, these methods share a common major

drawback wherein the associated masks are always fixed irrespective of the noise

level in the images. In this study, we propose a novel learning-based method to

adaptively deduce the transforming basis or masks from the processing data for

medical image enhancement and robust edge detection. By using independent

component analysis (ICA), the proposed learning-based method can extract suitable

basis functions or masks for image transformation for processing data, which are

adaptable to both the processed image and related noise in the image. The efficiency

of the proposed learning-based method for medical image enhancement and edge

detection is demonstrated experimentally using positron emission tomography

(PET) and magnetic resonance imaging (MRI) medical images.

Introduction

Medical imaging techniques such as positron emission tomography (PET), mag-

netic resonance imaging (MRI), and computed tomography (CT) provide detailed

3D images of internal organs. The desired information such as the internal organ
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structure and shape can be extracted from these images for supporting several

medical procedures such as disease diagnosis and surgical planning [1–3]. However,

it is difficult to identify different tissues and anatomical structures from the

obtained 3D computer-aided diagnosis (CAD) data because of low signal-to-noise

or contrast-to-noise ratios [4–6]. In order to accurately extract useful information,

image enhancement, which is normally implemented using low-pass filters and

transformation-domain shrinkage approaches with fixed basis functions such as a

Fourier and wavelet basis, is usually applied to improve the quality of the degraded

medical image. In addition, various segmentation techniques, where the extraction

or tracking of medical image edges plays a key role, are used to identify the

anatomical structure. Recent studies [7–10] have proposed a supervised filter

using a neural network to enhance specific structures in medical images, which

can realize acceptable performance in emphasizing specific lesions or structures.

However, the neural-network-based filter has to first prepare a large amount of

training data, which will greatly affect the performance of experimental results, and

thus its generalization to real applications. Therefore, this chapter focuses on the

development of novel image enhancement and robust edge detection methods for

practical medical image processing by using an unsupervised strategy.

As mentioned above, the popular transformation-domain shrinkage approach for

image enhancement applies a fixed mathematical basis to transform all processing

images for noise or artifact reduction. However, it is not adaptable to the processed

images, and then easily leads to blurring in the enhanced images. On the other hand,

the techniques that are commonly used for edge detection are known as gradient

and Laplacian operators (or mask), and smoothed gradient masks such as Prewitt,

Sobel, or Canny are typically used to detect edges in noisy images [11–13].

However, these methods share a common major drawback wherein the associated

masks are always fixed irrespective of the noise level in the images. Therefore, in

this chapter, we propose a novel learning-based method to adaptively deduce the

transforming basis or masks by using a statistical analysis method called indepen-

dent component analysis (ICA) from the processing data for medical image

enhancement and robust edge detection.

ICA [14–17] is a method to find a linear nonorthogonal coordinate system in any

multivariate data. The directions of the axes in this ICA coordinate system are

determined by not only the second but also higher order statistics of the original

data, unlike the principle component analysis (PCA), which considers only the

second order statistics and can only deal with the variables that have Gaussian

distributions. In computer vision, it is more preferable to extract the source signals

produced by independent causes or obtained from different sensors; such signals are

easily solved using ICA. This study attempts to decompose a local structure (local

patch) of images into a linear combination of an independent basis set, which can be

adaptively learned from processing images using ICA. By performing a statistical

analysis of ICA, the suitable basis functions or masks for image transformation can

be achieved from the processing data, which are adaptable to both the processed

image and related noise in the image. Most of the learned basis functions that are

obtained by ICA from the images are sparse and similar to localized and oriented
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receptive fields [18–20]. Similar to transformation-domain shrinkage method, the

intensities (components or noisy components) in the transformed domain obtained

using the learned ICA basis are either shrunk or removed to enhance image quality;

this is called an ICA-domain shrinkage filter [21, 22]. Furthermore, in order to

determine the corresponding basis for edge representation, the L p norm is used

to estimate the sparseness of the ICA basis functions, and the sparser basis functions

were then selected to represent the edge information of an image [23, 24]. In the

proposed edge detection method, a test image is first transformed using ICA basis

functions, and the high-frequency information can then be extracted with the

components of the selected sparse basis functions. In addition, by applying

the proposed ICA-domain shrinkage algorithm to filter out the noisy components

of ICA, we can readily obtain the sparse components of the noise-free image, thus

resulting in a type of robust edge detection, even for a noisy image with a very low

signal-to-noise ratio (SNR). The efficiency of the proposed learning-based method

for medical image enhancement and edge detection is demonstrated experimentally

using PET-CT medical images.

The chapter is organized as follows. In section “Independent Component

Analysis and the Image Model”, we introduce the basic algorithm of ICA and the

image representation model using ICA. Section “Adaptive Noise Reduction for

PET Images” explores the shrinkage method for adaptive noise reductions in PET

images, and section “Robust Edge Enhancement for Medical Images” discusses a

robust edge detection strategy in noisy medical images. The conclusions are

summarized in section “Conclusions”.

Independent Component Analysis and the Image Model

Basic Concept of Independent Component Analysis

ICA generalizes the technique of PCA and has been shown to be an effective tool for

feature extraction [18, 19]. The aim is to express a set of random variables as linear

combinations of statistically independent component variables. In the simplest

model of ICA, we observe n scalar random variables x1, x2, � � � , xn, which are linear
combinations of k(k � n) unknown independent sources s1, s2, � � � , sk. We arrange

the random variables into a vector x¼ (x1, x2, � � � , xn) and the sources into a vector
s ¼ (s1, s2, � � � , sk); then, the linear relationship is given by

x ¼ As (13.1)

where A is an unknown mixing matrix. In the application of ICA to feature

extraction, the columns of A represent the basis functions and si represent the i-th
feature in the observed data x. The aim of ICA is to find a matrix W, such that the

resulting vector
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y ¼ Wx (13.2)

recovers the independent sources s, with its probability permuted and rescaled.

Each row of W is taken as a filter. To obtain a more unique solution, si is usually
assumed to have unit variance.

Contrary to PCA, the basis functions of ICA cannot be analytically calculated.

The adopted method involves minimizing or maximizing some relevant criterion

functions. Several ICA algorithms have been proposed, one of which and its detail

implementation will be introduced in section “Basis Functions Learned by ICA”.

Before performing ICA, the problem associated with estimating the matrix

A can be simplified by a prewhitening of the data x. The observed vector x is first

linearly transformed into a vector

z ¼ Mx (13.3)

whose correlation matrix equals unity: E{zzT} ¼ I. This can be accomplished by

PCA with

M ¼ D�1=2V (13.4)

where the matrix V is the eigenvector matrix and D is the corresponding eigenvalue

matrix. At the same time, the dimensionality of the data is reduced. After this

transformation, we have

z ¼ Mx ¼ MAs ¼ Bs (13.5)

where the matrix B is the mixing matrix. ICA is performed on the sphered data

z and the estimated mixing matrix B is an orthogonal matrix because EfzzTg ¼
BEfssTgBT ¼ BBT ¼ I. The basis function matrix A of the original data x is

A ¼ VTD1=2B (13.6)

Figure 13.1 presents an example of two non-Gaussian (super-Gaussian) distributed

sources (Fig. 13.1a) and the scatter (Fig. 13.1b) of their mixed variables. The basis

functions obtained by PCA and ICA are also plotted in Fig. 13.1b, which confirms

that PCA transformation cannot capture the main structure of non-Gaussian data.

However, ICA can precisely determine the directions of the inherent data structure by

maximizing independence.

Image Model

An image patch x from an image I can be represented by a linear combination of

basis functions as in (13.7), where Ai (size: N’ by 1, N’ is the dimension of x) is the
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ith basis function and yi are the coefficients, which can be used as image features or

image coding. Unlike the Fourier transform or wavelet-based methods, in our

proposed ICA-based method, the basis functions are learned by ICA from similar

structure images with processing images. The advantage of ICA-based method is

that we can obtain a set of adaptive basis functions based on images alone.

x ¼ Ay ¼
XN�1

i¼0

Aiyi ¼ A0y0 þ A1y1 þ A2y2 þ � � � þ AN�1yN�1 (13.7)

Basis Functions Learned by ICA

In (13.7), we attempt to obtain A using ICA (size: N’ by N, N is the number of ICA

basis functions. In our experiments, we retained N’ basis functions in ICA learning:

i.e., N’¼N) ) from sample image x only, which can also be viewed as a Blind

Source Separation (BSS) problem, and can be solved by ICA [10]. The aim of BSS

is to find a matrix W, called a separator, that results in the estimates of the

coefficients of y to be as statistically independent as possible for a set of data (x),

as shown in (13.2)

y ¼ Wx (13.8)

Source1 Source 2

a

b

ICA basis–1

PCA basis–1

PCA basis–2

ICA basis–2

Fig. 13.1 PCA and ICA

transformations. (a) two

components of super-

Gaussian data, (b) the

scatter of the data, and

the obtained ICA and PCA

basis functions of (a)
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The estimates or independent components y may be permuted and rescaled. The

ICA transformation matrix W (size: N by N) can be calculated as: W¼A�1. For

the reasons given in [18], we orthogonalize W by W ¼ WðWTWÞ�1=2
, and A and

W then become square unitary matrices with each row corresponding to a basis

function (amounting to a column of mixed matrix A under the condition of

orthogonalized W. In our method, we need to reconstruct images, hence the basis

that is used should be orthogonalized and integrated as with the Fourier and wavelet

basis).

Bell and Sejnowski proposed a neural learning algorithm for ICA [14, 15]. This

approach employs the maximization of the joint entropy by using a stochastic

gradient ascent. The updating formula for W is

ΔW ¼ ðIþ gðyÞyTÞW; (13.9)

where y ¼W x and gðyÞ ¼ 1� 2=ð1þ e�yÞ is calculated for each component of y.

Before the learning procedure, x is sphered by subtracting the mean and multiplying

by a whitening filter W0 ¼ ½ðx� EðxÞÞðx� EðxÞÞT ��1=2
:

x0 ¼ W0ðx� EðxÞÞ; (13.10)

where x0 the whitening data. The aim of the whitening (standardization) by using

W0 is to make the mixture and separator unitary. Therefore, the complete transform

is calculated as the product of the whitening matrix and learned matrix:

WI ¼ WW0: (13.11)

To extract the adaptive basis functions by using ICA for image representation,

we have to prepare training samples using images that are similar to processed data.

In our experiment, more than 10,000 image patches are usually randomly selected

as training data samples, which from our experience will be sufficient to obtain

reliable basis functions of training images. At the same time, it will not be sufficient

for learning over a long time period. The learned ICA basis functions by using

natural images are shown in Fig. 13.2. The patch size of each image sample is set as

8 �8 and an example regarding the formation of the observation vectors from

images is shown in Fig. 13.3.

Adaptive Noise Reduction for PET Images

PET is one of the most important tools for medical diagnostics that has been

recently developed. Projection data in PET are acquired as the number of photon

counts from different observation angles [13, 25]. Positron decay is a random

phenomenon that causes undesirable high variations in measured sinograms,

which appear as quantum noise [26]. The reduction of quantum noise or Poisson
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Fig. 13.2 The ICA basis functions obtained using natural images as training samples

Fig. 13.3 The ICA input observation vector obtained from one sample patch
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noise in medical images is an important issue because the quantum noise usually

obeys a Poisson law; therefore, it is highly dependent on the underlying intensity

pattern being imaged. The contaminated image can therefore be decomposed as

the true mean intensity and Poisson noise, and the noise represents the variability of

the pixel amplitude about the true mean intensity [27]. It is well known that the

variance of a Poisson random variable is equal to the mean: σ2 ¼ u. Then, the SNR
for an image with a Poisson image is given by

SNR ¼ u

σ
¼ uffiffiffiffiffi

σ2
p ¼ uffiffiffi

u
p ¼ ffiffiffi

u
p

(13.12)

Thus, the variability of the noise is proportional to the intensity of the image and

is therefore signal dependent [23]. This signal dependence makes it much more

difficult to separate the signal from noise. The current methods for Poisson noise

reduction include mainly two types of strategies. One would be to work with the

square root of a noisy image because the square root operation is a variance

stabilizing transformation. However, after preprocessing, Poisson noise will not

tend to be a white noise if there are only a few photons present. Thus, it is not

entirely suitable to adopt the Gaussian noise reduction algorithm. The other strategy

is the method of wavelet shrinkage. However, the basic functions of wavelet

transformation are fixed and cannot adapt to different types of sets. In this chapter,

we explain the development of an adaptive noise reduction strategy called the

ICA-based filter, in the sinogram domain for PET. The shrinkage scheme (filter)

adapts to both signal and noise and balances the trade-off between noise removal

and excessive smoothing of image details. The filtering procedure has a simple

interpretation as a joint edge detection/estimation process. Our method is closely

related to the method of wavelet shrinkage; however, compared with other wavelet

methods, it has an important benefit that the representation is solely determined by

the statistical properties of the data sets. Therefore, ICA-based methods will

perform better than the wavelet-based Poisson noise reduction method in denoising

applications. At the same time, we also compared the denoising results of different

ICA basis functions that are trained from different data sets.

ICA-Based Shrinkage Algorithm

Shrinkage is an increasingly popular method in the wavelet domain for curve and

surface estimation. The wavelet shrinkage procedure for statistical applications was

developed by Donoho [28]. This shrinkage method relies on the basic idea that the

energy of a signal (that is partially smoothed) will often be concentrated within a

few coefficients in the wavelet domain, whereas the noise energy is spread among

all coefficients. Therefore, the shrinkage function in the wavelet domain will tend to

retain a few larger coefficients that represent the signal, whereas the noise coeffi-

cients will tend to reduce to zero.
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In image decomposition by using ICA, the extracted basis functions represent

different properties of training images and those representing clear image informa-

tion will be almost sparse [21]. Thus, the energy of clear image information will be

concentrated in a few coefficients of the ICA components. However, if noise is

projected to the ICA basis functions, the energy will uniformly spread in the ICA

domain. Hence using the shrinkage method in the ICA domain, we can remove

noise in a similar manner as in the wavelet shrinkage procedure.

We assume that an observe an n-dimensional vector is contaminated by noise.

We denote the observed noisy vector as x, the original non-Gaussian vector as P,

and the noise signal as v. We then have

x ¼ Pþ v (13.13)

The goal of signal denoising is to find P
0 ¼ g

0
(x) such that P

0
is close to P in some

well-defined sense. The following gives the ICA-based shrinkage procedure:

Step 1 Estimate an orthogonal ICA transformation matrix W by using the

training data (the observed data x or a set of representative data z).

Step 2 For the observed data x (corrupted by noise), use the ICA transformation

matrix W to transform into ICA-domain components:

y ¼ Wx (13.14)

where y can be considered to be a sparse variable, which is also corrupted

by noise.

Step 3 Use the ICA-based shrinkage method to estimate noise-free components

y
0
for the noisy variable y:

y
0
i ¼ giðyiÞ (13.15)

Step 4 Invert the denoised variable y
0
and get an estimation of original data P:

P
0 ¼ Ay

0
(13.16)

where A ¼ ½A0;A1; � � � ;AN�1� ¼ ½WT
0 ;W

T
1 ; � � � ;WT

N�1�
T

are the ICA

basis functions.

In step (3), g(y) is the operator or function of the shrinkage and is used to reduce

the noise. In PET images, the noise is signal-dependent Poisson noise; hence, we

mainly aim to reduce Poisson noise in the images. In the next subsection, based on

Poisson noise’s special property, we present an efficient shrinkage scheme with the

adaptive ICA basis functions, which can be obtained directly from noisy data, as

shown in Fig. 13.4 for PET images. In addition, we select some clean natural

images and processed data (observed data) as the training data to estimate the

ICA basis functions, and then apply two sets of the ICA basis functions (as shown in
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Fig. 13.2) to the denoising procedure for comparison purposes. The flowchart of the

ICA-based filter for actual PET sinograms is shown in Fig. 13.5.

ICA Based Filter for Poisson Noise

In our previous work [17, 18], we proposed a shrinkage function based on the

cross-validation algorithm [14] for Poisson noise. The shrinkage function g(y) is
given by [17]

gðyÞ ¼ y
0 ¼ y

y2�σ2

y2
(13.17)

where σ2 is the power of Poisson noise. The noise power of the ith component with

ICA basis functions trained from clean natural images can be estimated by [20]

σi
2 ¼ ðWi:�WiÞx (13.18)

Fig. 13.4 The ICA basis functions obtained using actual PET images as training samples
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where the symbol of “.*” represents the multiplication of each entry in vector 1 with

its corresponding entry in vector 2, Wi is the ith row of the ICA transformation

matrix W(the ith ICA basis function), and σi
2 represents the ith noisy power

component in the ICA domain(a row of samples). For clean natural images as the

training set, the obtained ICA transform matrix W can be considered as a local

Fig. 13.5 Flowchart of the ICA-based noise reduction strategy using two sets of learned basis

functions from natural and PET images, respectively
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directional filters. The components obtained by ICA transformation would then

be the inner product of the image patch and local filters Wi(which is needed to

reshape the row vector Wi into an l ∗ l patch), which is a localized edge or

“details.” The noise power estimate σi
2 equals the projection on the square of the

local filtersWi(the ith row of the ICA transformation matrix vector, as in the case of

the wavelet basis function [20]), which effectively computes a weighted average of

the local intensity in the image. This value will be an approximation of the noise

power according to the property of Poisson noise. It is clear that the noise power

estimate can adapt to local variations in the signal or noise. However, for the

processed PET sinograms that are as training data, only a subset of the estimated

ICA basis functions are localized and oriented, whereas the other basis functions

appear to be noisy. The noise power estimation mentioned above is not suitable for

this set of basis functions. For this type of basis functions, we therefore select a

patch of flat ranges in the observed image to estimate their variance as the noise

power. This is similar to the estimation of the noise power for small size images.

Figure 13.5 shows the process of the ICA-domain shrinkage method.

The above shrinkage function simply weights each noisy ICA coefficient y(i, j)
by a factor that is equal to the estimated signal power divided by the estimated

signal-plus-noise power. If the ratio of the estimated signal power to the signal-plus-

noise power is negative, the shrinkage function just thresholds the ICA-domain

coefficients to zero. Hence, this optimal shrinkage function has a very simple

interpretation as a data-adaptive ICA-domain Wiener filter.

Experiment Results for Noise Reduction

In this subsection, we apply two sets of the ICA basis functions (the training data

are clean natural images and actual PET sinograms, respectively) to the ICA-based

filter for actual PET sinograms. The actual PET sinograms were supplied by

Shimatsu Corporation of Japan and include 1269 128*128 sinograms scanned

from the waist to the head for three persons. For actual PET sinograms, the training

data sets include 251 sinograms from all (1269) PET sinograms. We then randomly

select 50,000 samples from different sinograms as the ICA input variables.

In our experiments, we used Tony Bell and T.J. Sejnowski’s infomax algorithm

to learn the ICA transformation matrix W [14], and 8*8 subwindows were

randomly sampled from the training data sets. These subwindows were presented

as 64-dimensional vectors. The DC value was removed from each vector as a

processing step. The infomax algorithm was performed on these vectors to obtain

the transformation matrix W. For the reason given in [18], we orthogonalize W by

W ¼ WðWTWÞ�1=2
(13.19)

After ICA transformation, the denoising algorithm was applied on each

subwindow in the image and 64 constructions were obtained for each pixel. The
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final result was the mean of these reconstructions. The experimental results are

shown in Figs. 13.6 and 13.7. Figure 13.6a represents three actual PET sinograms,

Fig. 13.6b shows the denoised images from the Gaussian filter, Fig. 13.6c shows

the denoised images from wavelet-domain shrinkage, and Fig. 13.6d, e show the

denoised images from the ICA filter with two sets of the ICA basis functions. From

Fig. 13.6, it can be seen that the denoised images obtained using our proposed

method with the adaptive ICA basis functions (with actual PET sinograms as the

training data) can remove all background noise and retain clean information. The

original noisy PET images in Fig. 13.6a not only include the random noise (without

any structure) but also include the structural noise such as the netlike one which is

usually led by the imaging device. Our goal is to reduce not only the random noise

but also the structural noise for showing some detail information in reconstructed

body images. From Fig. 13.6b, c, the conventional Gaussian and Wavelet-domain

filter can reduce most of the random noise but with some blurring in edge regions.

However, the netlike noise almost is left. In the other hand, the ICA-based method

with the natural basis functions, which is extracted from generic natural images and

possibly not adaptive to the processed PET data, can remove not only the random

noise without blurring edge region but also a part of netlike noise as shown in

Fig. 13.6d. Furthermore, the proposed method with the adaptive ICA basis func-

tions can remove all types of noise with very clean contrast especially for the

high-noise level images as shown in Fig. 13.6e. From the experimental results in

Fig. 13.6, we can conclude that the ICA-based denoising method usually can

Fig. 13.6 (a) The actual PET sinograms, (b) denoised images using Gaussian filter, (c) denoised

images using wavelet shrinkage, (d) denoised images using ICA-based filter with natural basis

functions, (e) denoised images using ICA-based filter with PET basis functions
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achieve much cleaner and sharper denoised images than the conventional Gaussian

and Wavelet-domain filters, and utility of adaptive ICA basis function in the

proposed method, which is prospect to learn the specific noise structure in the

processed data, can achieve better performance than the learned ones from other

data set. Therefore, it can be suggested the suitable basis function is best to be

learned from the processed data, which is prospected to learn the detail structure

and specific noise structure in the data. In addition, to validate the efficiency of

the proposed ICA-based filter, we use the Filtered back-projection (FBP) algorithm

to reconstruct body images from sinogram images. The reconstructed results are

shown in Fig. 13.7, where we observe that the reconstructed denoised images

obtained using the proposed ICA filter remove most of the noise and have a better

contrast compared with that of noisy PET images.

Fig. 13.7 Reconstructed images, (a) and (c) by using noisy PET images; (b) and (d) by using

denoised PET images with our proposed method. (The displayed body of (a) and (b) are at the

same position; (c) and (d) are at the same position)
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Robust Edge Enhancement for Medical Images

Edge detection methods are fundamental to computer vision because they often

exist at the first stage of a lengthy image interpretation process. The aim of edge

detection is to locate the pixels in the image that correspond with the edges of the

objects seen in the image. In medical images, image segmentation is an important

issue and the accurate extraction or tracking of medical image edges plays a key

role in the active area of medical image segmentation [29, 30]. However, in medical

images, distinct boundaries may not exist between the structures to enable the edge

detection of organ boundaries because of the similarities between these structures

and the presence of noise. Furthermore, the boundaries may be blurred and ambig-

uous due to partial volume effects, which are caused by the finite resolution of

imaging devices. These problems increase the complexity for the segmentation

of neighboring structures. In a related research field, gradient masks (or smoothed

gradient masks) [11, 12], such as Prewitt, Sobel, or Canny, are typically used for

edge detection in noisy images. These methods share a major drawback wherein

the associated masks are always fixed irrespective of the noise levels in the images.

As a result, the performance of these operators considerably degrades as the noise

level increases. This study proposes a robust algorithm for edge detection in noisy

medical images by using ICA.

In the proposed robust edge detection strategy, we first need to learn the adaptive

ICA basis functions by using images that are similar to processing data. In this

subsection, we mainly extract the edge information for the simulated MRI volumes

of the brain, which is obtained from the web site (http://www.bic.mni.mcgill.ca/

brainweb/selection-normal.html). The parameters describing the database set are

Modality¼T1, Protocol¼ICBM, Phantom�name ¼normal, Slice�thickness ¼
3 mm, Noise ¼ 0 %, INU ¼ 20 % (please refer to the BrainWeb homepage for

detailed information). Twenty slices of the simulated MRI volumes are selected for

composition of the training data, and 11,880 sample patches are then picked up as

the input ICA data. The size of patches of each image sample in both training data

sets is also set as 8 �8. With the prepared training patches, the ICA basis functions

can be obtained using the algorithm introduced in the above section, as shown in

Fig. 13.8.

In image decomposition using ICA, most independent components have a super-

Gaussian distribution and the corresponding basis functions are very sparse and

similar to localized and oriented-like receptive fields in the mammalian visual

cortex [14, 31]. It is interesting to note that local oriented receptive fields that

are similar to the Gaussian derivatives as well as receptive fields that are similar to

the Laplacian are found in the human visual cortex. In the proposed ICA-based edge

detection method, the target image is first transformed by the ICA basis functions

and the edges are then detected or reconstructed with only the sparse basis.

However, as shown in Fig. 13.8, not all basis functions are localized and oriented,

and some of them clearly show average and low-pass properties. By using all basis

functions, we can perfectly reconstruct the original image if we can obtain the
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corresponding weighting of the basis functions. Therefore, these basis functions are

certain to include the low-frequency region of the image. To represent the edge part

of the image with the basis functions, it is necessary to select a subset of them. In the

next subsection, we introduce a selection strategy for the sparse basis functions used

for edge representation.

Basis Function Selection for Edge Representation

As shown in section “Adaptive Noise Reduction for PET Images”, an image patch

can be formed by a linear transformation of N basis functions. Because the edges

correspond to the sparse components, edge detection can be conducted by carefully

choosing the sparse components by excluding the nonsparse basis. Here we use the

lp norm [32] of a basis function as a measure of its sparseness [33], that is

jjAijj ¼
XN�1

j¼0

ðjAjijÞp
 !1=p

; with p < 1 (13.20)

Fig. 13.8 The ICA basis functions obtained from the simulated MRI brain volume
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where Ai ( i¼ 0,1,2,3,� � � , N � 1 ) is the ith basis function, and Aji is the jth
coefficient of the ith basis function (each basis function has N coefficients). For

smaller magnitudes jjAijj, the basis function becomes sparser. If jjAijj¼0, the

vector Ai is completely sparse.

To simplify the selection of the sparse components, we rearrange the basis

functions according to their sparseness (13.20). Figure 13.9a, b show the rearranged

natural and medical basis functions in increasing order of sparseness from Figs. 13.2

and 13.8. As shown in Fig. 13.9, the first few basis functions (at the top left side)

appear to be nonsparse, which may represent flat or low-frequency regions of the

image. Figure 13.10 shows the sparseness measure magnitude of all 64 basis func-

tions ordered from left to right and top to bottom (here p ¼ 0. 1, p is the power of

the Lp norm). Subjectively observing the two sets of the basis functions in Fig. 13.9,

and excluding the first few nonsparse components, we can easily detect or recon-

struct the edge image using the sparse components. Figure 13.11 shows three

examples of the basis functions and their corresponding images. Figure 13.11a

represents the original test image; Fig. 13.11b shows nonsparse basis functions

and their reconstructed image only with the basis functions; and Fig. 13.11c, d

show two sparse basis functions with different locations and orientations, and

their reconstructed images and binary images with simple threshold method.

Figure 13.12a, b show the amplitude spatial diagram and 2D contour plot of the

ICA natural basis functions (in the same sequence as Fig. 13.9a), respectively. It is

observed in Fig. 13.12a that only the value of all elements in the first basis function is

positive and have similar intensities (corresponding with the parent wavelet in the

wavelet transform). However, the value of other basis elements are varied and may

be larger or smaller than zero in a local range; the value of the other place is nearly

zero (corresponding to band-pass or high-pass wavelet). They will therefore repre-

sent the edge information in images. Based on the integrality and orthogonalization

of the basis functions, we can perfectly reconstruct the original image by using all

basis functions. In order to represent the edge part of the image with the basis

functions, it is necessary to select a subset of them.

The edge image can be reconstructed as

Edgem ¼
XN�1

i¼m

AβðiÞyβðiÞ ¼ AβðmÞyβðmÞ þ � � � þ AβðN�1ÞyβðN�1Þ; m � 1; (13.21)

where N � 1� mþ 1 basis functions are considered to be sufficiently sparse; βi) is
a permutation of (0, 1, 2, � � �, N � 1). Aβ(1) is the least sparse basis function and

Aβ(N � 1) is the most sparse basis function, i.e., the basis functions were sorted in

terms of their sparseness. It should be noted that if m ¼ 0, all components are used

for image representation resulting in a perfect image reconstruction.

Next, we validate the proposition by a natural image using natural basis func-

tions. Figure 13.13 shows an image representation of all basis functions (x ¼PN�1
i¼0

yiAi ) and edge representations of selected sparse basis functions ( edgem ¼PN�1
i¼m yiAi;m > 1) for a natural sample image. As shown in Fig. 13.13a, we were
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Fig. 13.9 (a) Natural basis functions arranged according to sparseness, (b) Medical basis func-

tions arranged according to sparseness
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able to perfectly reconstruct or represent the original image by using all basis

functions; however, we can also easily obtain edges by excluding the first few

nonsparse components (Fig. 13.13b, c). Here the corresponding weighting coeffi-

cients of the selected basis functions are required and are given by solving the BSS

problem.

In addition, from Fig. 13.9, it is observed that the first basis function of both sets

of the basis functions are nonsparse; moreover, the larger the number of basis

functions in Fig. 13.9, the sparser the basis functions (see the sparseness measure

in Fig. 13.10). We therefore need to determine the smallest number that mainly

represents high-frequency information (such as an edge, because an edge appears at

the local variation positions and the local variation at the spatial domain will appear

at the high-frequency position in the frequency domain). Subsequently, all basis

functions after the basis function of the smallest number will mainly represent edge

information. It can be shown from Fig. 13.9 that the few selected basis functions

from the second basis function for both sets are not very sparse. To determine the

suitability of the basis functions for reconstructing the image edges, we conducted

experiments by using a single natural basis function to represent a natural image.

Here we used the 2nd to 5th basis functions to reconstruct the image. The experi-

mental results are shown in Fig. 13.13d–g. It is apparent that the image resulting

from the 2nd basis function has long horizontal edges, the one from the 3rd basis

function has long vertical edges, and the images from the 4th and 5th basis functions

have the diagonal edges. The resultant images consist of rich edges. To provide

numerical and theoretical selection criteria, we calculated the integral area of the

amplitude frequency diagram of the ICA basis functions in different regions

(low-frequency and high-frequency position). The partition of different frequency

regions in the frequency domain is shown in Fig. 13.14a. We denote the frequency

amplitude of an ICA basis functions (8�8) as F(i,j) (i, j¼0,1,. . .,7). Then the integral
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magnitude of the low-frequency region is given as Fl ¼
P4

i¼0

P4�i
j¼0 Fði; jÞ and that

of the high-frequency region as Fh ¼
P7

i¼0

P7
j¼maxð0;5�iÞ Fði; jÞ. Next, we compare

Fl and Fh, if Fl < Fh. The basis function mainly represents high-frequencies (edge

information); otherwise, it will represent low-frequency information. Figure 13.14b

shows the integral amplitude of different frequency regions for the ICA natural

basis functions. At the same time, we used the same approach to select the ICA

medical basis functions that represent edge information. Finally, we can choose

m¼1 to preserve all information for the two sets of basis functions. It is also evident

in Fig. 13.13 that when m ¼6, the reconstructed edge image has lost some informa-

tion on the edges. Figure 13.15 shows examples of medical images and the

represented images by using a single medical basis function. It also confirmed

the validity of the proposed edge representation approach by using sparse basis

function.

Fig. 13.11 Three samples of the basis functions and their reconstructed images, (a) Original

image, (b) a nonsparse basis function, (c) and (d) two sparse basis functions with different

locations and orientations
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Fig. 13.12 (a) The amplitude spatial diagram of the ICA natural basis functions, (b) 2D contour

plots of natural basis functions
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Edge Enhancement by Using Shrinkage ICA Coefficients

For an image patch x0 from an image I0 that is corrupted with noise u, the noisy

image patch x from the noisy image I can be represented as: x ¼ x0 þ u. Subse-

quently, its ICA components will also be composed of both signal and noise

components [15]. Thus, it is important to remove the noise components in the ICA

domain [14, 15]. In this study, we use a soft thresholding technique, which is known

as shrinkage, to reduce the noise. The basic idea is that only a few components

are simultaneously active (nonzero) simultaneously in the ICA domain, whereas

the components with small absolute values can be considered as noise and can be set

to be zero. The basic process for edge detection in noisy images is shown below:

(1) ICA transform y ¼ W x

(2) Nonlinear shrinkage y
0 ¼ g(y)

(3) Rearrange basis functions Ai(i ¼ 1, 2, � � � , 64) according to their sparseness

(4) Reconstruction of edge images by using the sparse components and shrunken or

filtered coefficients y
0
(Inverse ICA): edge

0 ¼ Asparsey
0

In step (2), g(y) is the operator or the function of the shrinkage, which is used to

reduce the noise as designed in section “Adaptive Noise Reduction for PET

Images”.

Fig. 13.13 Natural image representation of natural basis functions (Fig. 13.3a). The representa-

tion of (a) all basis functions, (b) the last 63 basis functions, (c) the last 58 basis functions (m¼ 6),

(d) only the 2nd basis function, (e) the 3rd basis function, (f) the 4th basis function, and (g) the 5th

basis function
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Experimental Results

The test medical data in our experiments are utilized from noisy simulated MRI

volumes for a normal brain, which were obtained from the BrainWeb. The param-

eters describing the database set are: Modality¼T1, Protocol¼ICBM, Phantom

�name¼normal, Slice�thickness ¼ 3 mm, Noise ¼ 9 %, INU ¼ 20 % (Please
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Fig. 13.14 (a) Partition of low-frequency and high-frequency regions of the ICA basis function,

and (b) the integral amplitude of different frequency regions for the ICA natural basis functions
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refer to the BrainWeb homepage for detailed information). In other words, the test

MRI images are somewhat degraded images of the training MRI groups, from

which 20 slices of simulated MRI volumes are selected for the composition of the

second set of training data.

To validate the effectiveness of our proposed method compared with the well-

known conventional famous Canny method [3], we present one test image with

known edge images and their edge detection results in Fig. 13.16. Figure 13.16a

shows the original test images, Fig. 13.16b shows the true edge of Fig. 13.16a, c

shows the edge extracted by using the Canny method, and Fig. 13.16d shows the

edge extracted by our proposed method. In order to give an objective evaluation of

the edge detection method, in Fig. 13.16e, we show the pixel numbers (positive) of

the true and detected edges obtained using Canny and our method along with the

true positive and false positive edges (which indicate the accuracy of detected edge

positions) of different methods. At the same time, the effectiveness of our proposed

ICA shrinkage filter can be validated using test images with a known reference

ground true. Reference [22] shows that the ICA shrinkage method can realize much

better results with objective evaluations of PSNR andMSR. For actual applications,

Fig. 13.15 Medical image representation of only one basis function (in Fig. 13.2b). (a) The

original MRI images. The representation of the (b) first basis function, (c) 2nd one, (d) 3rd one, (e)

16th one, (f) 18th one
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Fig. 13.16 An example of edge detection. (a) The test image, (b) true edge of the image in (a), (c)

edge detected by Canny, (d) edge detected by the ICA-based method, and (e) an objective

evaluation of the extracted edge by using different methods
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typical examples are shown in Fig. 13.17. Figure 13.17a shows the noisy test MRI

image, and Fig. 13.17b shows the detected edge obtained using the conventional

Canny algorithm. The test medical image has the same statistical properties

compared with the second set of training data. Therefore, we select the second set

of the basis functions to detect edges for the test image. In the training procedure,

the infomax algorithm was applied to obtain the transformation matrix W or basis

functionsA. Thus, the sparser part, which was selected according to sparseness, can

be used to represent the image edges.

Figure 13.17c shows the edge image obtained using the proposed method with

shrinkage. After preprocessing with histogram-based contrast enhancement [34],

the binarized edge after the simple gradient is given in Fig. 13.17d. It is evident

that most of the edges with the ICA-based method are connected, and at the same

Fig. 13.17 Edge detection. (a) The MRI image, (b) edge by Canny algorithm, (c) preprocessed

edge information by ICA, and (d) edges extracted by the ICA-based method

372 X.-H. Han and Y.-W. Chen



time, the edges in the blurred part of the test image can also be detected. In order to

validate the practicability of our proposed method, we present two additional test

images in Fig. 13.18. The validity and connection of the extracted edges obtained

using by our method is much better than those obtained using the Canny algorithm.

Conclusions

This chapter proposed an adaptive noise reduction and robust edge enhancement

algorithm by using the ICA-domain shrinkage strategy. The proposed method was

applied for the reduction of Poisson noise in PET sinograms, and the effectiveness

with the adaptive ICA basis functions was demonstrated. Furthermore, we analyzed

image edge representation by using the ICA transformed basis functions and

demonstrated the selection of the basis functions for image edges. With edge

basis functions, we obtained the ICA-domain sparse components of edge informa-

tion and then explored the robust edge enhancement by the estimation of the

ICA-domain edge components that were corrupted by noise using nonlinear shrink-

age functions. The experiments proved that the proposed edge enhancement

Fig. 13.18 Edge detection of the two test MRI images: (a) and (a’) The MRI images; (b) and (b’)

edges by Canny algorithm; and (c) and (c’) edges extracted by the ICA-based method
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method is very effective for applications involving high noise level medical images,

and the performance of the proposed method is much better than the conventional

edge detection method, especially for high noise level images.

In the future work, we are going to quantify the adaptive degree of the learned

basis function to represent the local structures of processed data and explore the

suitability of different basis functions for noise reduction, which can prospect more

feasible processing for removing noise. Furthermore, in order to reconstruct

more detail structure in the processed images, we also attempt to learn larger

number of basis functions using over-complete ICA or the recently popular sparse

coding method, which are also proven to be a very effective strategy for noise

reduction in natural images.
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Chapter 14

Subtraction Techniques for CT and DSA

and Automated Detection of Lung Nodules

in 3D CT

Takayuki Ishida, Megumi Yamamoto, and Yasuhiko Okura

Abstract The interpretation of a large number of CT images is time consuming

and hard work for radiologists. Therefore, we have developed two subtraction

techniques based on a 3D morphological filtering technique and a temporal sub-

traction technique to remove normal structures such as pulmonary vessels and

bones.

Digital subtraction angiography (DSA) is inadequate for coronary artery due to

the existence of severe motion artifacts. In view of this, we have developed a new

DSA technique with an artifact reduction technique based on the time-series image

processing. The results indicated a considerable improvement in DSA quality; thus,

the coronary arteries, carotid artery, and vein were clearly enhanced.

We have also developed an automated computerized method for the detection of

lung nodules in 3D computed tomography (CT) images obtained by helical CT. To

enhance lung nodules, we employed 3D cross-correlation method by use of a 3D

Gaussian template with zero-surrounding as a template. The average number of

false positives was 5.2 per case at the sensitivity of 95.8 %.
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Background

Subtraction CT Technique

Lung cancer is the leading cause of cancer mortality. Therefore, the detection of

small lung nodules is an important task for radiologists. To increase the detection

rate of early lung cancer, low-dose helical computed tomography (LDCT) has been

employed in screening programs [1, 2]. However, the interpretation of a large

number of CT images is time-consuming for radiologists. Thus, we have developed

a new subtraction CT technique to remove most of the pulmonary vessels and assist

radiologists for the detection of lung nodules on LDCT images.

Temporal Subtraction CT Technique

Lung CT images are commonly interpreted by comparing with previous CT images

of the same patient to detect interval changes, such as new lesions or changes in

lung nodules, pleural effusions, and interstitial infiltrates. However, it is a difficult

task for radiologists to identify very subtle lesions and/or lesions overlapped with

vessels. Previously, we have developed the temporal subtraction technique for chest

radiographs. Subtle changes and/or newly developed abnormalities on chest radio-

graphs were enhanced and thus the detection accuracy of interval changes in chest

radiographs was improved significantly by use of temporal subtraction [3]. In cases

with previous CT, subtraction of previous CT image from current CT image can be

useful to enhance changes in local opacity. Therefore, we have developed a

temporal subtraction CT technique based on a nonlinear geometric warping tech-

nique [4, 5].

DSA for Coronary Arteriography

Digital subtraction angiography (DSA) is one of the most important examinations

for the diagnosis and treatment of the blood vessels. The radiation dose can be

reduced using this examination because the vessels are visualized clearly; however,

it is very difficult to apply the DSA technique to the coronary arteries because of the

severe motion artifacts caused by cardiac motion and respiration. For the treatment

of coronary stenosis, it is important to locate the position of the stenosis and

evaluate the effect of interventional radiology (IVR) in real time.

Many methods have been proposed to reduce motion artifacts in DSA based on

post-image-processing techniques [6–28]. However, it would be difficult to apply

these techniques clinically because most of these image processing methods disable

real time.

378 T. Ishida et al.



Therefore, we have developed a real time DSA technique by using a time-series

image processing. This method could obtain a high quality DSA image without

severe motion artifacts [29].

CAD for the Detection of Lung Nodules in 3D CT

In recent years, the helical CT and multi-detector CT have become popular [30,

31]. The number of slices per examination is increasing from tens to hundreds, and

the work load for radiologists is steadily increasing. We have developed a method

for the automatic detection of lung nodules in the three-dimensional (3D) computed

tomography (CT) images of the lung. For the automated detection of lung nodules

in CT images, there are several useful methods [32–45]. A template matching

technique employs cross-correlation technique with a ball model obtained from

the suspicious cancer and a cylinder model acquired from blood vessels in different

directions and sizes [32]. Another cross-correlation technique, the optimal template

is selected from the 3D Gaussian distributions of various sizes and lung nodules by

using the genetic algorithm [33, 34]. However, these methods require a special

technique for the detection of nodules at the area close to chest wall. The rolling ball

method facilitates finding of nodules [35]. The selective enhancement based on

Hessian matrix is performed for the enhancement of nodule, blood vessels, and

airway [36]. Also the nodule enhancement technique by use of difference image

technique is effective for the detection of lung nodules based on thresholding

technique [37]. In our method, we employed a background trend correction tech-

nique based on morphological filtering that can eliminate low spatial frequency

components on lung CT. Overall performance could improve the sensitivity and

specificity for the detection of the lung nodule in CT [46].

Image Databases

For the development of the subtraction techniques, we used 87 cases with lung

nodules due to primary lung cancer from our database of LDCT images, which were

obtained from a CT screening program for lung cancer. A total of 17,892 exami-

nations on 7,847 individuals were performed as part of an annual lung cancer

screening in Nagano, Japan [1, 2].

An image database for the development of the new DSA technique was used,

which consists of 20 cases of intra-arterial coronary angiograms. Each angiogram

was acquired at Hiroshima City Hospital using a digital angiography system

(Philips Medical Systems, Best, and Netherlands) with a matrix size of

512 � 512, 8 bits gray-level, and 30 frames/s.
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For the development of the nodule detection technique in 3D CT, we used 69 CT

cases (73 nodules). The diameters of nodules in this database were in the range of

4.5–15.5 mm. Table 14.1 shows the CT systems and data acquisition parameters.

Methods and Results

Subtraction CT Technique

Overall Scheme

Figure 14.1 shows the overall scheme for the subtraction CT technique.

In this scheme, “mask image” for the subtraction CT is obtained from three CT

section images based on a 3D morphological filter applied to two sections, which

include the target section image and the upper or lower section image.

The line components of the target section image are detected by using a line

enhancement filter. The line components are added to the mask image to reduce

artifacts on subtraction CT image.

The subtraction CT image is then obtained by subtracting the warped mask

image from the target section image by using the iterative image warping technique

[3, 4].

3D Morphological Filtering

We have developed a new method to create a mask image based on morphological

filtering with 3D cylindrical and a 2D circular shape kernel. Dilation or erosion

corresponds to the replacement of the pixel value with the maximum or minimum

value within the kernel, respectively. The 3D opening and the 3D closing operation

are illustrated in Fig. 14.2a, b, respectively [47].

Figure 14.3d, e show upper and lower intermediate images obtained by the 3D

opening operation on the target section image and two section images immediately

Table 14.1 Imaging

system and parameters

for CT examination

1. Hi Speed CT/i(GE MEDICAL SYSTEM)

HISPEED-RP, Light Speed16(GEMEDICAL SYSTEM)

Light Speed QX/i(GE MEDICAL SYSTEM)

GENESIS_FOREIGN(GE MEDICAL SYSTEM)

2. Reconstruction function: STANDARD, BONE, DETAIL

3. Matrix size: 512 � 512

4. Pixel size: 0.570–0.769 mm

5. Slice thickness: 5–10 mm

6. Reconstruction interval: 5–14 mm

7. Contrast enhancement (CE): 8 out of 69
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above and below the target section image (Fig. 14.3a–c), respectively. Figure 14.3f

shows the mask image obtained by the 3D closing operation for the two interme-

diate images.

It should be noted that the mask image, as shown in Fig. 14.3f, can retain vessels,

which is basically the same as that on the target section, while removing a small

Fig. 14.1 Overall scheme of subtraction CT technique

a

b

Fig. 14.2 Three-dimensional morphological filtering. (a) 3D opening operation, (b) 3D closing

operation
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nodule. Therefore, the subtraction of the mask image from the target section can

reveal only nodular opacity without the vessels.

Detection of Line Components on Target Image

We extracted line components by using a line enhancement filter on the target

image for reduction of misregistration artifacts on subtraction CT image. The line

enhancement filter includes eight sets of three templates in eight different direc-

tions, as shown in Fig. 14.4 [48, 49]. The output value of the line enhancement filter

is defined as follows:

Ei ¼ 2Bi� Ai� Ci when Bi > Ai and Bi > Ci,

0 otherwise

�

E ¼ max Ei, 1≦i≦8,

where Ai, Bi, and Ci are the summation for all pixel values in each template of a set.

The maximum value E, obtained from the outputs of the sets is the final output

value.

To detect various diameters of vessels, parameters for the line enhancement filter

(i.e., length and width of the templates) and the interval between the templates were

varied depending on the distance between the center of the template and the center

on the section image.

a

c

d

e

f

b

Fig. 14.3 Creation of a mask image with a 3D morphological filter. (a) Upper image, (b) target

image, (c) lower image, (d) upper intermediate image, (e) lower intermediate image, (f) mask

image
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An enhanced line image and the extracted line components are shown in

Figs. 14.5 and 14.6, respectively. Both vessels at the hilar area and the peripheral

area are well enhanced. The line components are added to the mask image obtained

by 3D morphological filtering.

Subtraction CT Image by Using 3D Morphological Filtering

Figure 14.7a shows a target image with early lung cancer (arrow). The mask image

is obtained by the 3D morphological filtering with the target section image and the

sections immediately above and below the target image, as shown in Fig. 14.7b.

The mask image can include pulmonary vessels on the target image and thus most

vessels can be removed by the subtraction. A nonlinear geometric image warping

technique, which is described in the section “Temporal Subtraction CT Technique,”

Fig. 14.4 Line enhancement filter

Fig. 14.5 Enhanced

line image
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is then performed to the mask image for further reduction of misregistration

artifacts on subtraction CT image. The subtraction CT image is obtained by

subtracting the warped mask image from the target CT image, as shown in

Fig. 14.7c. Subtle nodule is clearly enhanced in the subtraction CT image, although

some misregistration artifacts are observed.

Improved Subtraction CT Images by Using Line Enhancement Filter

For further reduction of misregistration artifacts on the subtraction CT image, the

pixel values of the target image over the areas of the detected line components are

applied to replace the pixel values over the same areas in the mask image, which is

obtained by the morphological filtering technique. The mask images with line

components are shown in Figs. 14.8b and 14.9b. The subtraction CT images are

shown in Figs. 14.8c and 14.9c. It should be noted that the small nodule remains as

dark shadows, and the misregistration artifacts in Figs. 14.8c and 14.9c were

considerably reduced compared to the subtraction CT image, as shown in Fig. 14.7c.

Image rotation caused by variation in patient positioning between the current

and the previous CT images is then corrected by an image rotation technique.

Fig. 14.6 Detected line

components

Fig. 14.7 Subtraction CT image by using 3D morphological filtering (case 1). (a) Target CT

image, (b) mask image without line components, (c) subtraction CT image
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The rotation angles between the current and the previous CT images are determined

by use of the template matching technique.

Finally, the temporal subtraction CT image is obtained by subtracting the

warped previous CT section image from the current CT section image by using

the iterative image warping technique [4, 5].

Temporal Subtraction CT Technique

Figure 14.10 shows the overall scheme for the temporal subtraction CT technique.

In this scheme, the corresponding previous section image for each current section

image is selected automatically from previous CT images by using a template

matching technique.

Automated Selection of Corresponding Section Images

The selection of the corresponding section in the two sets of CT images is

performed by a template matching technique. In this method, the current and

Fig. 14.8 Subtraction CT image by using 3D morphological filtering and line enhancement

filtering (case 1). (a) Target CT image, (b) mask image with line components, (c) subtraction

CT image

Fig. 14.9 Subtraction CT image by using 3D morphological filtering and line enhancement

filtering (case 2). (a) Target CT image, (b) mask image with line components, (c) subtraction

CT image
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previous CT images are blurred by a Gaussian filter and then subsampled to

low-resolution image (128 � 128 matrix size). A circumscribed rectangular region

of interest (ROI) of segmented lung image is selected automatically from each

current image. The corresponding image and its best matched location are deter-

mined when the cross-correlation value between the current image and previous

image becomes the maximum, as shown in Fig. 14.11.

In addition, the image rotation between the current and previous image is

corrected based on template matching technique. Thus, the corresponding pairs of

the current and previous section images are obtained.

Temporal Subtraction CT

To achieve accurate registration between the current and previous section images,

an iterative image warping is applied to the previous CT image. In this method, a

Fig. 14.10 Overall scheme

of temporal subtraction CT

technique

Fig. 14.11 Selection of the best matched previous image. (a) Current CT images, (b) previous CT

images
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number of template ROIs and the corresponding search area ROIs were selected

from the previous and the current CT images, respectively. We determined the shift

values for all pairs of selected ROIs by using a template matching technique to find

the best matched areas in the search area ROI. A two-dimensional surface fitting

using a polynomial function was then applied to each set of mapped shift values for

conversion of the coordinates of the previous CT image, i.e., for warping of the

image. The warped previous CT image is then subtracted from the current CT

image.

Figures 14.12a, b and 14.13a, b show the previous CT images and the current CT

images with lung cancer (arrow). The temporal subtraction CT images using global

matching but not using iterative image warping technique are shown in Figs. 14.12c

and 14.13c. Lung cancers were enhanced as dark shadows on subtraction images;

yet, some misregistration artifacts exist. The temporal subtraction CT images with

both global matching and the iterative image warping technique, as shown in

Figs. 14.12d and 14.13d enhanced clearly the lung cancers. Misregistration artifacts

were reduced remarkably compared to the temporal subtraction CT image without

iterative image warping technique.

Fig. 14.12 Temporal subtraction CT images (case 1). (a) Previous image, (b) current images, (c)

without image warping, (d) with image warping

Fig. 14.13 Temporal subtraction CT images (case 2). (a) Previous image, (b) current images, (c)

without image warping, (d) with image warping
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Development of DSA for Coronary Arteriography

Method

In this method, “conventional DSA” was obtained as follows. First, we chose a

plain image as a mask image. Second, we subtracted the mask image from contrast

enhanced images. Then DSA images were obtained and viewed in display.

Figure 14.14 shows the overall scheme of our method. The dynamic range

compression technique [26] based on the highest and an average pixel value was

applied as a preprocessing to improve the DSA image visibility. To make the mask

images, we employed a maximum pixel value selection technique within

1 � 1 � 14 previous frames, as shown in Fig. 14.15. When the pixel is in place

of a relatively large vessel without motion, the highest pixel value in the previous

14 frames is employed as pixel value of the mask image. In this mask making

method, vessels remain in the obtained mask image occasionally. Therefore, vessel

partially disappeared on the DSA image. To avoid this problem, we used a wide

search area in selecting the maximum pixel value for the mask image. Because the

diameter of large vessel used in this study was around 14 pixels, we applied 7 � 7

pixels � 7 frames to a search area (Fig. 14.16).

For the determination of the pixel value of mask image, the standard deviation

(SD) of 1 � 1 pixel � 14 flames was calculated. The search area is selected

according to the following criteria. If the SD was less than or equal to 1.0, the

search area was 1 � 1 pixel � 14 frames; otherwise, the search area would be

7 � 7 pixels � 7 frames. Each pixel value in the mask image was calculated from

one of these two search areas. Our method can generate a mask image that excludes

vessels. Finally, DSA images were obtained by subtracting the mask images from

the live images.

The maximum pixel value from the 
previous 14 frame images within 7 x 7

S.D. > Threshold

YES

NO

Coronary angiography

DSA

Calculate S.D. value of the previous 
14 frame images pixel-by-pixel

Make mask image

The maximum pixel value from the 
previous 14 frame images pixel-by-pixel

Fig. 14.14 Overall scheme of DSA for coronary artery
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Results of the conventional DSA and our new DSA are shown in Fig. 14.17a, b,

respectively. Motion artifacts were reduced remarkably and thus the image quality

of the new DSA was improved. For these cases, the calculation time was approx-

imately 0.03 s per frame.

time

1 x 1

Determine SD value on 1 x 1 pixel x 14 
frames

x

y

Current Image

Target frame for DSA

Fig. 14.15 Method for determination of pixel containing vessel

time

x

y

The maximum pixel value
in the 7x7 local area from

the previous 7 frames.

Current Image

Fig. 14.16 Method for determination of pixel containing vessel
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Subjective Evaluation

Three radiological technologists with 9, 10, and 10 years of clinical experience

independently classified the DSA images into five categories using a subjective

rating scale ranged from +2 to �2, as listed below. Image quality of our new

method compared to conventional DSA method was rated as Table 14.2.

Figure 14.18 shows the results of subjective evaluation: motion artifacts were

reduced 65 % in the cases obtained by use of our new method compared to

conventional DSA.

Fig. 14.17 DSA image obtained by conventional DSA and new DSA. (a) Conventional DSA,

(b) new DSA

Table 14.2 Five categories

used for subjective study
+2: Greatly improved

+1: Slightly improved

0: Unchanged

�1: Slightly declined

�2: Greatly declined

0

2

4

6

8

10

greatly
declined

slightly 
declined

slightly 
improved

greatly
improved

N
um

be
r o

f c
as

es

unchanged

65%

–2 –1 0 +1 +2

Fig. 14.18 Result of

subjective evaluation of

motion artifacts in new

DSA images
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The average standard deviation of the pixel values calculated by our method was

6.64, in comparison with 10.0 by conventional DSA.

Objective Evaluation

The objective evaluation was performed by the degree of motion artifacts. Three

ROIs that included vessels were manually selected for the conventional DSA and

the new DSA images. Matrix size of the ROI was 150 � 150 pixels. We calculated

the average and standard deviation of the pixel values of selected ROIs in 30 cases.

If there are severe motion artifacts in the DSA images, standard deviation will be a

large value.

CAD for the Detection of Lung Nodules

Elimination of Background

Figure 14.19 shows the CAD scheme for the detection of lung nodule in 3D CT. To

eliminate the background structures due to the effects of gravity, the original CT

image is processed by an opening processing [50] with a circular kernel of the

average size of nodule. The opening processing can leave structures larger than the

kernel size such as heart, thorax, and low frequency trend components. We

subtracted the open processed image from the original lung CT image for the

removal of background (Fig. 14.20).

Creation of Template for Simulated Nodule

Since the shape of lung nodule is often spherical, we used the template matching

technique with a 3D Gaussian distribution. In order to enhance more effectively the

isolated nodules, we used the template including the zero-surrounding as the

simulated nodule. The Eq. (14.1) was used for creation of the 3D Gaussian

template.

G x; y; zð Þ ¼ 1ffiffiffiffiffi
2π

p� �3
σxσyσz

exp �
x� xð Þ2 y� yð Þ2 z� zð Þ2

n o
2σ2xσ

2
yσ

2
z

0
@

1
A (14.1)

where G(x, y, z) is 3D Gaussian distribution at the coordinates x, y , z , is the gravity

center position of 3D Gaussian distribution, and σx, σy, σz are standard deviation

(SD) at each axis. Figure 14.21 shows the template image used in this method.
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Detection of Nodules Candidate

First, lung segmentation based on a thresholding technique was performed to the 3D

CT image. The background suppressed image on the segmented lung area will be

lung nodule search area. We then calculated the correlation value by use of the 3D

zero-surrounding Gaussian template. Thus, the nodule could be enhanced selec-

tively. The cross-correlation value is obtained by the following Eq. (14.2).

Fig. 14.19 Overall scheme of lung nodule detection

Fig. 14.20 Background correction based on morphological opening filter. (a) Original CT image,

(b) opened image, (c) background corrected image

Fig. 14.21 Three-dimensional

zero-surrounded Gaussian

template as a template

of lung nodule
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XX�1

x¼0

XY�1

y�0

XZ�1

z¼0

f x; y; zð Þ � f
��
g x; y; zð Þ � g

� �
σf σg

(14.2)

where C is the correlation value and X, Y, Z is the matrix size in x, y, z axis,

respectively. σf, σg is the standard deviation of voxel values of the image and the

template image, respectively. f is average voxel value of the image, and g is the

average voxel value of the template image.

For the detection of the initial lung nodule candidates, the threshold technique is

applied for the lung nodule enhanced image by use of the template matching

technique. Since the sensitivity of the lung nodules was 100 % at the initial

detection, there are a huge number of false positives. Therefore, we have to

eliminate the false positives without a large loss of sensitivity.

FROC Analysis for the Detection of Lung Nodules

In order to decrease further false positives, we calculated 16 kinds of features as

shown in Table 14.3.

Figure 14.22 shows the free response receiver operating characteristic (FROC)

curve of final detection of lung nodules after linear discriminant analysis (LDA).

We analyzed the 69 clinical cases 10 times by using the jackknife method, which is

the common way to estimate classification performance. It is analyzed by splitting

the data set at random into training data and validation data each with half the

number of cases. The performance of this technique was as follows. When the

detection sensitivity was 95.8 %, the number of average false positives was 5.2 in

average on the validation test. LDA values were calculated according to the order

shown in Table 14.3.

Table 14.3 Features used for the false-positive reduction

1: Volume

2: Sphericity

3: Average of voxel value

4: Standard deviation of voxel value

5: Second-moment of voxel value

6: Third-moment of voxel value

7: Fourth-moment of voxel value

8: Maximum of voxel value

9: Minimum of voxel value

10: Coefficient of variation of voxel value

11: Contrast between maximum value in nodule and average value on circumference of nodule

12: Contrast between average value in nodule and average value on circumference of nodule

13: Overlap ratio on line component

14: Circularity of edge image

15: Average and variance which is average of each angle

16: Vessels reduction to use calculation average and variance each angle
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Conclusions

The subtraction CT and the temporal subtraction CT techniques can remove the

majority of normal background structures extended over multiple slices such as

ribs, vessels, and heart. Thus, isolated structures such as small nodules, interval

changes due to lung lesions were clearly enhanced as dark shadows on subtraction

images.

Subtraction CT and temporal subtraction CT images will be useful for the

finding of lung cancers on CT images, and so it is able to support radiologists in

the early detection of lung cancer.

Our development of new DSA method was for coronary angiography. The

motion artifacts in the DSA images were effectively reduced using proposed

method. The DSA images could be obtained in almost real time.

We developed the CAD for the detection of the lung nodules in 3D CT. This

technique will be useful for the detection of lung nodules on 3D CT image, and thus

could assist radiologists in the early detection of lung nodule.
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