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Preface

Socio-economic sciences are undergoing a great conceptual change. Little by
little economists and sociologists have started to understand the need to introduce
new and more sophisticated mathematical models in their fields of study. New
quantitative approaches are required: models that merge mathematics and physics
on the one hand, and economics and sociology on the other hand, have proven to be
useful in explaining phenomena of the complex world we live in.

This monograph goes in such a direction: it aims at developing a mathematical
approach toward the modeling of socio-economic systems, composed of a large
number of interacting agents, both in the case of spatial homogeneity and on
networks. The contents focus on living complex systems, for which the derivation of
mathematical tools requires tackling several difficulties arising along the following
conceptual path:

• Identification of the main complexity features that characterize the systems under
consideration. The first consequent step is developing a strategy for representing
the state of the system, with the aim of reducing the global complexity while
keeping, however, the distinctive features.

• Derivation of mathematical structures suitable for describing, via properly
specified mathematical models, the evolution in time of the variables selected
for representing the state of the system.

• Modeling of specific socio-economic systems on the basis of a phenomenological
interpretation of the microscopic interactions among the composing entities. This
step may involve multiscale issues.

• Validation of models by investigating their ability to depict emerging behaviors
observed in real systems. In some cases, models may even describe trends not yet
revealed by empirical data, thereby suggesting new perspectives for interpreting
the genesis of emerging behaviors.

This project calls for the development of new mathematical tools. In this
monograph we specifically refer to the approach by the kinetic theory for active
particles, KTAP for short, which has already been applied to various fields of life
sciences and social sciences. It has been proven that the mathematical structures that
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vi Preface

formalize this theory include, as particular cases, some well known models of the
kinetic theory for classical particles. The main difference here is that interactions
among particles are described as stochastic games rather than by deterministic
causality principles (analogous to the laws of classical mechanics).

This monograph has three parts. The first part, encompassing Chaps. 1 and 2, is
devoted to methodological insights into the complexity features of socio-economic
systems and to the derivation of mathematical modeling tools. The second part,
encompassing Chaps. 3 and 4, focuses on applications. The third part, consisting of
Chap. 5, offers a critical analysis and looks forward at to research perspectives,
including the application of the proposed methods to a large variety of social
systems. In more detail, chapter contents are as follows:

Chapter 1 presents the aims of the monograph and provides an assessment of
relevant complexity features of living systems in general, and social systems in
particular. One of the main features is the ability of interacting entities to express
behavioral strategies, which are modified according to the state and strategy of other
entities. Next, the chapter offers a concise literature survey of modeling approaches,
particularly those that are close to the cultural context of this monograph.

Chapter 2 deals with the derivation of mathematical structures, which can act
as a background paradigm for the subsequent construction of models. It shows
how complex systems can be properly represented by suitable variables, some of
them directly related to the aforementioned expression of a behavioral strategy,
and thereby described in a probabilistic/statistical way by means of distribution
functions over such variables.

Chapter 3 applies the mathematical tools derived in Chap. 2 to the dynamics
of social competition in nations. Social interactions can modify the distribution
of wealth among the individuals according to both cooperative and competitive
strategies. Such interactions can be partly controlled by welfare policies, so a goal
of mathematical modeling is predicting the large-scale consequences of the latter.
A hallmark of the proposed model is that microscopic dynamics are modeled by
nonlinearly additive interactions.

Chapter 4 develops various simulations, which explore prototypical scenarios of
welfare policy. Simulations aim at both a parameter sensitivity analysis and assess-
ing the effect of different actions of a hypothetical government on the dynamics of
wealth redistribution. This detailed analysis contributes to the necessary background
for the developments proposed in the last chapter.

Chapter 5 is devoted to research perspectives concerning both modeling and an-
alytical issues. More precisely, it discusses possible generalizations of the modeling
approach presented in the preceding chapters to a variety of different social contexts;
for instance, opinion formation related to political competition for leadership, which
can be fostered by both communication among individuals and external actions,
including some aspects of interactions on networks. Finally, it critically analyzes
the contribution of mathematics to social sciences, having in mind the ambitious
goal of constructing a mathematical theory of social systems. We hope this forms a
useful prelude to the future development of the monograph into an exhaustive book.
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All chapters are concluded by a critical analysis, proposed with a twofold
goal: focusing on developments needed for improving the efficacy of the proposed
methods, as well as envisaging further applications, possibly in fields different from
those treated in this monograph.

Paris, France Giulia Ajmone Marsan
Torino, Italy Nicola Bellomo
Rome, Italy Andrea Tosin
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Chapter 1
The Role of Individual Behaviors
in Socio-Economic Sciences

Abstract This chapter provides an assessment of the relevant complexity features
of social systems, focusing on the ability of individuals to express strategic
behaviors that determine their interactions with other individuals. It also offers a
concise survey of various modeling methods, which pertain to the cultural context
of this monograph. Finally, this chapter critically assesses the effectiveness of the
different mathematical approaches in capturing the complexity features of social
systems.

1.1 Introduction

The dynamics of social and economic systems are primarily influenced by individual
behaviors, by which living entities express, rationally or irrationally, a certain
strategy for achieving their own well-being. These systems are often complex:
the dynamics of a few entities do not directly lead to those of the entire system,
because the latter manifest themselves only upon scaling up the effects of individual
interactions at a collective level. At large scales, collective behaviors appear,
which are apparently coordinated but are actually self-organized. That is, collective
behaviors emerge spontaneously without the action of any external organizing
principle. Individuals are typically not even aware of the group behavior to which
they are contributing with their autonomous strategies.

Self-organized trends can be extremely difficult to control. Individual behaviors
can be partly modified by external actions, but the resulting collective effects can be
hard to predict heuristically. Sudden deviations from the usual standards may occur,
leading to even highly unpredictable events with dramatic collective consequences,
as is well-demonstrated nowadays by recent events in our societies. An occurrence
of this type, which is of paramount interest in social sciences in general, and in
economics in particular, is a so-called black swan, which is an extreme and largely
unpredictable event at a collective level, originating from apparently rational and
controlled individual behaviors [149, 150].

G. Ajmone Marsan et al., Complex Systems and Society: Modeling and Simulation,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-7242-1 1,
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2 1 The Role of Individual Behaviors in Socio-Economic Sciences

It is very difficult to describe social dynamics using mathematics. Nevertheless,
the scientific community agrees that this is an important goal, of modern applied
mathematics, albeit not yet achieved. In this respect, the interplay between math-
ematics and social sciences is essential to the understanding of these kinds of
phenomena.

Mathematics has developed rather sophisticated qualitative and quantitative tools
for studying inert matter, where causality principles can be generally applied. On the
other hand, the modeling of living matter cannot rely on direct cause–effect links,
because the active ability of individuals to develop behavioral strategies, and to
adapt them to various contexts, leads to observable effects resulting from causes that
are often not evident. The lack of invariance principles has been well highlighted
in biology [93, 119] (for example, in the theory of evolution [120]), and in many
other fields. Similar arguments can be proposed as far as the interplay between
mathematics and socio-economic sciences is concerned.

The importance of developing quantitative methods for studying social sys-
tems, and possibly controlling their complexity, is well documented in various
essays [54, 102], and also in consideration of the impact that mathematical and
physical sciences can have on society.

This monograph pursues this goal by proposing advanced mathematical tools,
along with related models, which aim at describing real behaviors in groups or
societies of interacting individuals. The lack of invariance principles, the hetero-
geneous behavior of individuals, and the ability of the latter to actively develop
specific strategies are issues that the proposed modeling approach is able to cope
with.

Numerous recent events have contributed to raise awareness of the need for
better mathematical models able to take into account the hallmarks of socio-
economic phenomena. In particular, events like the global financial crisis (beginning
in 2007) and the Arab Spring revolts in the Middle East and Northern Africa
(beginning in 2010) have demonstrated how collective behaviors can result in
unexpected outcomes. Econometric and statistical methods traditionally used in
economics and social sciences are simply not sufficient to capture the complex
interactions underlying these kinds of phenomena. Therefore, better understanding
and modeling of such phenomena is definitely a crucial challenge for applied
mathematical sciences [9, 147].

After this introduction, Sect. 1.2 presents an overview of the complexity features
of living systems in general, and of social systems in particular, which should
somehow be retained in a modeling approach that aims to be realistic. Section 1.3
provides a brief survey of some mathematical tools that have been developed for
dealing with the class of systems under consideration. It also introduces, though
not yet at a formal level, the mathematical ideas of the approach proposed in
this monograph. Finally, Sect. 1.4 critically analyzes the potential of mathematical
approaches in light of the complexity features discussed in the preceding sections.

In order to unify the terminology, throughout this chapter we will refer to
individuals, or, more generally, to socio-economic actors, as active particles, or
simply particles. Technical aspects and definitions of these terms will be given in
more detail in Chap. 2.
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1.2 Complexity Aspects of Social and Economic Systems

As already mentioned, the leading idea of the modeling approach to social systems
proposed in this monograph is that they have to be regarded as complex systems. For
this reason, it is important as a starting point to extract the main phenomenological
features that can be ascribed to the complexity of the kind of systems under
consideration.

As reported in [37] and in the bibliography cited therein, the scientific com-
munity agrees that the ability of active particles to express a strategy through
nonlinearly additive interactions is one of the main complexity issues. Although
formal definitions will be given in following chapters, it is worth anticipating that
the expression nonlinearly additive refers to the fact that, while such interactions
finally add with one another to produce their global effect (hence the additivity),
pairwise interaction rules may nevertheless be correlated to the local collective state
of the system, thereby also involving particles other than the interacting ones (hence
the nonlinearity).

The behavioral strategy inspiring the interactions can be rational or irrational
and focused on a well-defined goal. Furthermore, when the strategy is rational, it
may not be the best possible one; in particular it can be influenced by contingencies
possibly leading to a behavior in contrast with the primary goal. In economic theory,
it is indeed well known that practical conditions may constrain the best optimal
solution, leading to a second-best option different from the theoretically optimal
one, which is often not realizable. For further details, we refer interested readers
to the literature about “the second best theory” [115]. In addition, human beings
are not perfectly rational. They exhibit “bounded rational” behaviors, which can
give rise to emergent collective irrational behaviors [15, 104, 105]. In some extreme
cases, mostly ruled by irrational behaviors, interactions may generate outcomes
rather distant from any best solution, as in the case of panic. Another example is the
so-called “information asymmetry” extensively studied in economics and contract
theory. In socio-economic transactions, different parties often do not possess the
same information, as supposed in traditional economic models. This may imply
imperfect solutions and unexpected outcomes even in simple economic models.

Bearing in mind that the concepts of individual strategy and interactions are
at the core of the complexity of the systems we are concerned with, we proceed
now to the identification of a few phenomenological and methodological aspects
which, according to our perspective, should act as guidelines for the derivation
of mathematical models. The proposed selection does not claim to be exhaustive.
On the contrary, it is limited to ten specific items so as to avoid an excess of
concepts, considering also that the reductionism of the mathematical approach
imposes the retention of only elements that are absolutely essential to understanding
the system.

1. Strategy. Active particles develop and update their behavioral strategies on the
basis of the transient state of the system in which they operate. This includes,
in particular, the assessment of the strategy expressed by other active particles.
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Generally, such a strategy is inspired by rational principles. However, irrational
behaviors cannot be excluded, also because of the possible unpredictable emer-
gence of interaction-driven behaviors.

2. Heterogeneity. Strategic ability is heterogeneously distributed among the active
particles. This distribution, however, may be modified by the reciprocal interac-
tions among the particles, as well as by those between active particles and the
outer environment. For instance, the learning ability of living agents plays an
important role in such modifications.

3. Equilibria. Living systems typically operate not in equilibrium. Social and
economic systems, in particular, are driven to states of “ever-changing-equilibria”
by the unending search for personal benefits.

4. Nonlinear and nonlocal interactions. Interactions involving active particles
are generally nonlinear because, as already mentioned, one-to-one interaction
rules can be modified by the milieu in which particles operate. Furthermore,
interactions do not necessarily require the interacting particles to be physically
in contact, because living systems can develop inner communication procedures.
In some cases, interactions are metric; that is, they involve all particles within
a properly defined interaction neighborhood. It is worth stressing that the
notion of distance implied by such a neighborhood need not be the physical
spatial one. Depending on the characterization of the state of the particles with
respect to the main dynamics of the system, it can also be a social-cognitive
distance [1, 5, 91, 159]. In other cases interactions are defined topologically;
that is, they are based on the number of neighbors that each particle chooses to
interact with simultaneously, no matter how far away they are. Such a selection
can be determined, for instance, by the ability of active particles to process
information and communicate with other particles [64, 107].

5. Stochastic games. Interacting particles play a game at each interaction according
to the behavioral strategy they express. As a payoff of such a game, they update
their strategy, which can influence future interactions. Interactions are regarded
as stochastic games, in the sense that only the probabilities of payoffs are known.
This is convenient in view of the intrinsic uncertainty of their output, especially
in the presence of irrational behaviors.

6. Learning and evolution. Active particles are able to learn from past experience.
Consequently, their behavioral strategies evolve in time, which in turn produces
qualitative changes in the dynamics of interactions. Out of such an evolution,
a Darwinian-like selection of the particles most suited to the socio-economic
context can occur. Learning, adaptation, and selection are often related to
interaction with the outer environment, which evolves in time due to both its
natural trend and the interplay with the hosted systems.

7. Space and networks. Active particles may either move freely in space or occupy
fixed positions, thereby communicating over networks. In the latter case, the
frequency of the interactions depends on the network topology and on a distance
in state among the particles rather than on the spatial metric distance. We will
come back to this concept in Chap. 2, in connection with the derivation of
mathematical structures.
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8. Multiscale issues. The concept of active particle is related to the observation and
representation scale. For instance, in socio-economic systems an active particle
may be identified with either a single individual, or a group of interest, or a
social class depending on the kind of interactions being studied. In all cases,
active particles are the minimal (viz., atomic) entities of the system; hence they
define the microscopic scale. Often the latter is not observable individually,
whereas collective behaviors are observable at a larger macroscopic scale.

9. Emerging behaviors. Interactions involving active particles produce collective
behaviors, which are usually so different from those of the single active particles
that they may appear as autonomous expressions of the behavior of the system
as a whole. As a matter of fact, they are the visible collective complex effect of
much simpler causes taking place at smaller scales. In order to really contribute
to the understanding of these phenomena, mathematical models must address
these causes in a multiscale perspective.

10. Need for complexity reduction. Complex systems often contain a large number
of components, so that modeling and computational methods have to face an
excessive number of equations. Therefore, a reduction of complexity by means
of proper mathematical approaches is needed to deal with them at a practical
level.

The considerations reported above are, of course, still quite general. As such, they
have to be made more precise when referred to specific socio-economic systems
along with their own interaction dynamics. A deeper investigation will be initiated
in the next chapter, in connection with the development of mathematical tools.

1.3 The Contribution of Mathematics to Social Sciences

In recent years, a radical philosophical change has been taking place in economic
disciplines leading to a reconciliation among economics, sociology, and psychology,
thanks to new cognitive approaches toward economics in general [20, 21, 82, 110].
New branches of economics are emerging, and they are much more linked to
sociology and psychology than economics was in the past. Starting from the concept
of bounded rationality [145], critiques of the traditional assumption of rational
collective behavior [87, 103, 151] led to the idea of economics as a discipline
highly affected by either rational or irrational individual trends, reactions, and
interactions. This innovative point of view promoted the image of an economy as
an evolving complex system [20], where heterogeneous individuals [109] interact
to produce emerging unpredictable outcomes. In this context, the development of
new mathematical descriptions, able to capture the complex evolving features of
socio-economic systems, is a challenging, though difficult, perspective, which calls
for an evolved interplay between mathematics and social sciences. Such a goal is
increasingly acknowledged by the community of social scientists. As stated at the
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beginning of this chapter, recent events such as the financial crisis and political
transitions in the developing world have contributed to establishing a general
consensus about the need for new mathematical models; see [108], among others.

An important milestone for this program is the assessment of theoretical
paradigms, and related models, which can act as conceptual background for a
unified mathematical approach to a variety of social systems characterized by
common complex features. More generally, it is worth remarking that a unified list
of common features of complex systems would enable mathematical tools currently
used in different fields of life sciences to be synergistically evolved and transferred,
with proper adaptations, from one field to the other.

Before deriving mathematical tools of the Kinetic Theory for Active Particles
(KTAP methods), which constitute the central subject of this monograph, let
us briefly survey some of the already existing attempts to combine social sciences
and mathematical modeling, namely: agent-based models, game theory, population
dynamics, and social networks. At the end of this concise overview, we will also
anticipate some aspects of the approach in order to outline the mathematical context
of this monograph with respect to other parallel approaches.

Agent-based models are computational models in which interactions among
individuals (agents) are simulated with the final aim of finding equilibria or
emerging phenomena. This approach combines elements of game theory, multi-
agent systems, and Monte Carlo methods for introducing randomness. Models are
structured into sets of behavioral rules (which appeal to concepts such as bounded
rationality, personal benefit, and social status, among other specific sociological
assumptions) that describe the simultaneous behavior of several agents in order
to recreate and predict the global trends of the system. These models have been
recently used to describe a great variety of network-structured phenomena, such as
the Internet, terrorism, traffic jams, financial crises, consumer behaviors, the spread
of epidemics, and social segregation. Some key references can be found in [21, 82].
Computational methods are treated in [75].

Game theory is a branch of applied mathematics that is largely used nowadays in
social sciences and economics. It describes the behavior of individuals (players),
who design specific strategies for determining the best response to other play-
ers’ choices. The final aim is usually to find equilibria in the set of all possible
strategies. Different kinds of equilibria have been defined, among which the most
popular one is perhaps the Nash equilibrium. It is defined as a set of individual
strategies such that it is not advantageous for any player to make a unilateral
change in strategy. It is worth stressing that game theory is heavily grounded on
the assumption of rational players. One of the first fields of application of this
theory was the analysis of economic competition [122]. Afterwards, it was applied
to the modeling of biological, social, and even telecommunication interactions. The
most notable references can be found in [88, 132]. More recent contributions have
involved the development of evolutionary games [123, 126]; see also [138, 139]
and the bibliography cited therein. These new theories study how player strategies
evolve in time due to selective processes, which can lead to clustering of the players
into different groups depending on their fitness for the outer environment. The time
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evolution of game dynamics can be modeled in terms of differential games [57–59],
where players apply a control action over basic dynamics modeled by ordinary
differential equations in order to increase their payoffs.

Population dynamics studies how the number of individuals in one or several
interacting populations changes under the action of biological and environmental
processes. The point of view is super-macroscopic: the elementary entities are the
populations themselves as a whole, whose rise and decline over time are inves-
tigated. Models are classically stated in terms of systems of ordinary differential
equations, whose unknowns are the sizes of the various populations. The main
aspects considered in the modeling of population evolution are: birth rate, growth
rate, and mortality rate, possibly triggered by cooperative or competitive interactions
among the populations. Population dynamics has been a dominant branch of
mathematical applications to biology for more than 200 years. In particular, in the
early nineteenth century it was widely applied to demographic investigations. For a
complete survey, we refer interested readers to [156].

Population dynamics with internal structure introduces an additional variable
(besides the number of individuals) describing an inner characteristic of the
population, which is supposed to play a role in the emergence of collective behaviors
(for instance, the ages of the individuals, their fitness for the outer environment, their
social status); see e.g., [80, 133, 161]. These models are formalized using systems
of partial differential equations; hence classical models without internal structure
can be generally recovered via a formal integration over the internal variable.
The mathematical formalization of this approach is arguably due to Webb [161].

Social networks are an extremely helpful tool for studying the role of connections
in determining and constraining social behaviors and their evolution. Starting from
Milgram’s experiment [121] and from the celebrated papers developing the concept
of small-world phenomena [160] and scale-free networks [29], it is possible to
find, in the recent literature, many socio-economic phenomena addressed by this
approach [67, 81, 89, 90]. Indeed, networks seem to be an ideal tool for modeling
contagion, percolation, and diffusion; see [27, 32, 142], among others.

Methods of statistical mechanics, together with kinetic and game theory, have
been placed in the framework of a unified approach by Helbing [94], who has
the great merit of having understood that individual microscopic interactions need to
be modeled by a game-theoretical approach. Further recent developments have been
proposed in [97, 101, 164], and also in [102], which looks ahead at the fascinating
perspective of modeling the global dynamics of modern societies. These ideas
constitute the conceptual basis of the approach promoted in this monograph and
briefly introduced in the following paragraph.

Generalized kinetic theory and game theoretical tools are at the basis of a
recently developed modeling approach to socio-economic complex systems [7, 8],
which rests on KTAP methods [34]. The cited papers offer various hints for
revisiting the theory by introducing the concepts of stochastic games and network
structure from a multiscale viewpoint. According to these methods, social systems
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are described in terms of interacting particles (such as consumers, firms, and insti-
tutions) described by a specific socio-economic state (for instance, their individual
wealth).The latter is mathematically accounted for by a dedicated variable, generi-
cally named activity, which characterizes the microscopic state of the system. The
global state is instead described by a distribution function over the microscopic
state, whose statistical moments recover macroscopic observable quantities (such
as, for example, the total number of individuals, the average wealth, and similar
quantities). The evolution of the system is mainly determined by interactions among
the particles, which modify the distribution of the activity. Interactions are regarded
as stochastic games, in the sense that their outputs, which depend on the states
of the interacting pairs, are specified by probabilities. These methods borrow and
extend mathematical tools from the various approaches described above. As in
the agent-based framework, models derived from this approach are characterized
by multi-agent interactions defined by appealing to phenomenological sociological
features. On the other hand, KTAP mathematical tools are more refined, in that
they are generally formalized in terms of systems of integro-differential equations
amenable to mathematical and computational analysis. Furthermore, as in game-
theoretical models, the evolution of the system depends upon a game strategy,
which determines the particle response to interactive encounters. However, it is
worth pointing out that, unlike the game-theoretical approach, the KTAP approach
does not primarily aim at assessing any best strategy among a certain number of
predefined ones. Instead, it studies the evolution in time of the strategies expressed
by active particles, taking into account their heterogeneous distribution and the
possible influence of behaviors that are not strictly rational, with the final aim of
depicting the large-scale distribution of behavioral trends. Compared to population
dynamics, it can be noticed that in the KTAP approach the distribution of the
internal variable, i.e., the activity, evolves according to mainly stochastic principles
implied in the aforesaid game-theoretically-inspired interaction dynamics. This
seems indeed to be an essential ingredient for modeling social systems in the
framework of behavioral economics. Finally, interactions can give rise to a network
structure among the particles. In this respect, it is worth mentioning that KTAP
methods can be extended to account for a decomposition of the system into parts,
called functional subsystems, which can be regarded as micro-systems structuring
the overall system as a network of subsystems [7, 8]. As we will discuss in the next
chapter, the approach can include specific features of social networks via a proper
modeling of the interactions among different subsystems.

The mathematical approaches summarized above provide useful complementary
ways of modeling living systems in different fields of life sciences and social
sciences. The borders among these disciplines display, in practical applications,
various flexibilities: methods and tools of each of them can be applied together
for a better development of mathematical models and more general mathematical
approaches.
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1.4 Critical Analysis

Looking ahead at the contents of the next chapter, we outline some guidelines that
can be followed to design the mathematical tools suitable for the challenging goal
of describing socio-economic systems by mathematical equations from a complex-
system perspective.

• Identification of the main complexity features that characterize the system under
consideration.

• Development of a procedure for representing the state of the system by reducing
the overall complexity, while keeping its essential features.

• Derivation of mathematical structures suitable for modeling the evolution in time
of the variables charged to describe the state of the system.

• Modeling of specific socio-economic phenomena through the characterization
of some objects of the aforesaid mathematical structures (such as, for example,
parameters and functions) on the basis of a phenomenological (and in some cases
multiscale) interpretation of the microscopic interaction dynamics.

• Validation of models; in particular, assessment of their ability to depict emerging
behaviors observed in the real system. In some cases, models may even describe
behaviors not yet revealed by empirical data, thereby suggesting phenomenolog-
ical conjectures to be tested and possibly confirmed or rejected.

The first issue has already been treated in this chapter, fostering the idea that
new mathematical tools stemming from the approach under consideration can be
developed consistently with the discussed complexity features of socio-economic
systems. Additional observations are inspired by the very recent monograph [24]:

• The title and the introduction explain why society is a complex matter. This
statement is based on some considerations about what complexity is and how
(or if) our society is predictable. Subsequently the author explains his point of
view concerning the substantial differences between modeling either classical or
complex systems and anticipates the important concept that different types of
societies, from cells to ants and humans, exhibit analogous complexity features.

• The various contributions that follow focus on specific applications to an
extremely broad range of social systems. Among others: vehicular traffic, human
crowds, economic and financial systems, mobility and spread of epidemics. Next,
it is shown how each specific system has a relevant impact on society as a whole.
For example, to stay with the main topic of our present monograph, the reaction
of societies to financial crises, and to what extent cooperation can contribute to
minimize consequent damage.

• Particularly important is the final contribution by Helbing [96], who suggests that
a prospective overview of future societies can be obtained from the joint effort of
a large organization of scientists devoted to tackling the various interconnected
systems under consideration by formalized approaches based on “hard” sciences:
mathematics, physics, and computer science in a virtuous interplay.
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The main idea conveyed by Ball [24] is that our societies need to be regarded as
complex systems, and thus traditional tools used in the study of classical systems
of inert matter cannot be directly applied. Actually, it is not simply a matter of
technically improving, or updating, such tools. A new science needs to be developed
in order to capture the complexity features of living matter [162]. In this respect, the
present monograph is perfectly aligned with this cultural movement. In particular,
the methodological approach promoted here is potentially able to account for the
complexity features presented in the preceding sections, and so it can be viewed
as a new way of approaching social sciences by means of mathematical modeling.
Clearly such an ability cannot simply be claimed but needs to be properly supported
by qualitative and quantitative analytical investigations. We stress that they are not
primarily pursued in this monograph, because here the main goal is to introduce
the new ideas discussed above at a prospective (though already formally sound)
level, consistent with the spirit of a Springer-Briefs monograph. Still, it is worth
mentioning that connections of KTAP methods with the classical kinetic theory have
been analyzed in [17], where it has been shown that structures of the approach under
consideration include, as particular cases, known models of the kinetic theory for
classical particles. The main difference is that interactions are modeled by stochastic
games rather than by laws of classical mechanics. This aspect has stimulated a deep
investigation of the links with Markov processes [112]. Further speculations are
offered in [106].



Chapter 2
Mathematical Tools for Modeling Social
Complex Systems

Abstract This chapter deals with the derivation of mathematical structures suitable
for constructing models of phenomena of interest in social sciences. The reference
framework is the approach of the Kinetic Theory for Active Particles (KTAP), which
uses distribution functions over the microscopic states of the individuals composing
the system under consideration. Modeling includes: the strategic behavior of active
particles from a stochastic game perspective; a Darwinian-like evolution of the
particles, which learn from past experience and evolve their strategy in time; and
hints about small-network dynamics, in particular particle interactions within and
among the nodes of the network. A critical analysis is finally proposed in order
to assess the consistency of the mathematical tools with the main features of
complexity.

2.1 Introduction

This chapter presents the concepts underlying the KTAP approach, which has been
selected as the mathematical tool for deriving specific models of socio-economic
phenomena. The contents of the chapter focus, in particular, on the assumptions
needed for interpreting complexity and deriving consistent mathematical structures,
with the aim of reducing both the actual complexity of the real world systems and
the technical ones of its mathematical description.

The KTAP approach was originally proposed to model biological systems, in
particular competition between immune systems and pathogens [44]. Next it was
revisited in the framework of social cooperation and competition dynamics [48,49],
and afterward extended to include more advanced modeling structures [6–8]. How-
ever, the approach requires further improvements in order to match the complexity
features discussed in Chap. 1. In particular, we recall nonlinear interactions and
network topology, the latter also implying communication and possibly transitions
from node to node of the network. The literature on this topic is constantly growing,
as documented in [10, 13, 28, 74, 148, 158], among other sources.

G. Ajmone Marsan et al., Complex Systems and Society: Modeling and Simulation,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-7242-1 2,
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Additionally, it is worth mentioning that the assumption of a constant total
number of individuals, which usually is tacitly made in the modeling of socio-
economic systems, may be valid only for short time periods. In the long run, birth
and death processes, as well as inlets from the outer environment, have to be taken
into account, which requires a further evolution of modeling structures.

Before tackling technical issues it is worth discussing in some detail the proper
role played by mathematical structures in the derivation of particular models. It is
known [119] that the modeling of living systems cannot take advantage of field
theories, as in the case of inert matter. This concept was well presented in the
celebrated book by Schrödinger [141]. Therefore heuristic approaches are generally
adopted, relying mainly on personal intuitions of the modelers. A more rigorous
approach can be developed by grounding models on the preliminary derivation of
abstract mathematical structures consistent with the complexity features presented
in Chap. 1, which, as a matter of fact, can serve as mathematical/theoretical
guidelines.

The advantage of such an approach over the various heuristic strategies discussed
in the literature is that if, at some point, a sound field theory becomes available
then it can be implemented, at the proper level, in the mathematical structures,
thereby guiding the deduction of more targeted models. In other words, the
mathematical structures provide modelers with a rigorous conceptual framework
virtually independent of (overly) specific heuristic intuitions. As such, they act as
a mathematical theory for the construction of models, which can receive (with due
control) external phenomenological insights while not being forced to pursue them.

In general, a modeling approach aiming at identifying proper background math-
ematical structures for complex systems (such as those treated in this monograph)
should cope with the following issues:

• Understanding the links between system dynamics and their complexity features.
• Deriving a general mathematical structure that offers a conceptual framework for

the derivation of specific models.
• Designing specific models, corresponding to specific classes of systems, by

complementing the mathematical structure with suitable models of individual-
based interactions according to a detailed interpretation of the dynamics at the
microscale.

• Validating models by comparison of their predictions with empirical data.

Apparently, these are standard issues in all fields of applied mathematics.
Nevertheless, it is worth pointing out that in the case of inert matter a background
field theory is available. For instance, Newtonian mechanics establishes balance
equations for mass, momentum, and energy. When physical conditions reveal an
inadequacy of classical mechanical laws, more refined theories, such as relativistic
and quantum mechanics, can improve the aforesaid field theories thereby contribut-
ing to more targeted mathematical models.

More substantial differences arise when dealing with living matter, for no back-
ground theory that generally supports the derivation of models exists yet. Moreover,
the great heterogeneity that characterizes living systems induces stochastic features



2.1 Introduction 13

that cannot be neglected, nor simply replaced by noise. Rather, they should be
inserted in the mathematical structures as hallmarks of the modeling approach.

In this context, the so-called Kinetic Theory for Active Particles (KTAP) has been
developed in the last decade to model large systems of interacting entities. Generally
they are living entities; hence they are termed active particles. The conceptual
guidelines that inspire the KTAP approach can be listed in detail as follows:

• The system is separated into functional subsystems constituted by active particles
featuring a microstate called activity, which is collectively expressed in each
subsystem. It may represent a behavioral characteristic of the particles to be
selected according to the specific microscopic dynamics considered in the
system, and particularly within that subsystem.

• The state of each functional subsystem is expressed by a time-dependent
distribution function over the microscopic states of the active particles.

• The time evolution of the distribution function is triggered by microscopic
interactions of active particles within and among subsystems. Interactions are
modeled by stochastic games whose payoffs are probabilistic.

• An equation for the time evolution of the distribution function is obtained by
a balance of particles within elementary volumes of the space of microstates,
inflow and outflow dynamics of particles being related to interactions at the
microscopic scale.

Readers who are more interested in applications should be patient with the cold
language of equations characterizing this chapter. Applications will appear soon,
starting with the next chapter. On the other hand, as the discussion above should
have highlighted, this preliminary path through mathematical tools is a necessary
step toward a more rigorous approach to the interplay between mathematical
sciences and living systems [40].

The ideas just outlined are organized in the chapter’s following sections. In detail,
Sect. 2.2 deals with introductory issues concerning the representation of socio-
economic systems, which possibly also apply to the inner structure of each node of a
small social network. Section 2.3 then yields the mathematical structures at the core
of the KTAP approach, focusing on closed systems; i.e., systems that do not interact
with the outer environment. Subsequently, the structures are extended in Sect. 2.4 to
open systems, confining attention to the modeling of known external actions. Sec-
tion 2.5 concerns a technical modification of the mathematical structures, however
relevant for modeling purposes, oriented to systems with discrete microscopic states
(viz., activity). Section 2.6 proposes a general analysis and various hints toward
the modeling of interactions at the microscale. The contents also include detailed
insight into different sources of nonlinearity that might characterize the interaction
dynamics. Section 2.7 outlines some general ideas about the search for solutions to
the mathematical models previously derived, also from an approximate numerical
point of view, and shows how numerical solutions can provide useful feedback for a
deeper understanding of the phenomenology of complex systems. Finally, Sect. 2.8
presents a critical analysis centered around both the ability of the mathematical tools
to capture the complexity features presented in Chap. 1 and the general problem of
reducing and handling the real world complexity via mathematical approaches.
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2.2 Complexity Reduction and Mathematical Representation

As already mentioned, socio-economic systems are understood as ensembles of
interacting active particles, which can be either individuals or aggregates clustered
by common organization and aims and are, in any case, the atomic (viz., minimal)
entities of the system. Their microscopic state (the activity) which also identifies
the behavioral strategy to be used in game-type interactions, will be denoted by a
variable u belonging to a domain Du.

Let us consider, at first, particles at a specific node of a social network. That is,
we focus on the inner representation of a single node, without explicitly considering
links with other nodes. Therefore, in the following discussion, expressions such
as “the (global) system” will refer to the node as the universe. In general, it is
reasonable to assume that the system is composed of different types of active
particles, which express different activities. Aiming at a complexity reduction, it
is then convenient to decompose the system into functional subsystems composed
of active particles that collectively express the same activity.

In principle, the activity therefore identifies a different microscopic feature of
active particles in each subsystem, although it is always denoted by the same letter u.
Nevertheless, the above decomposition can also be applied if the activity is the same
but each subsystem has a different way to express it.

As we will see in the following chapters, u can usually be considered to be a
scalar variable. As an example, it may be (an indicator of) the wealth of the active
particles. For this reason, it is convenient to think of its domain as a subset of the
real line; Du ⊆ R. More precisely, if we agree to use the letter p to label the various
functional subsystems, then in view of the above discussion, we need to distinguish
among different domains Dp

u ⊆ R, where p runs from 1 to the total number of
functional subsystems, say m ≥ 1.

The expression of the activity is, in general, heterogeneously distributed within
the functional subsystems. Accordingly, the large scale (viz., collective) representa-
tion of each of the latter is provided by a distribution function:

f p = f p(t, u) : [0, Tmax]×Dp
u → [0,+∞), p = 1, . . . , m,

Tmax > 0 being a certain final time, possibly +∞. The meaning of the distribution
function is that f p(t, u)du is the (infinitesimal) number of active particles of the p-
th subsystem which, at time t, are expressing an activity located in the infinitesimal
volume du centered at u. Under suitable integrability assumptions, the number of
active particles of the p-th subsystem at time t is therefore given by:

N p[ f p](t) :=
∫

Dp
u

f p(t, u)du,

where square brackets are used, henceforth throughout the monograph, when it is
necessary to stress that there is a functional dependence of some quantities on the
distribution function f p (here, for instance, N p is a linear operator over f p).
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If the N p’s are constant in time then each f p can be normalized with respect to
the corresponding N p at t = 0 and understood as a probability density:

∫
Dp

u

f p(t, u)du = 1, ∀ p = 1, . . . , m, ∀ t ∈ [0, Tmax].

In this case, �-th order moments of the probability distribution f p can be defined as
follows:

E
p
� [ f

p](t) :=
∫

Dp
u

u� f p(t, u)du, �= 0, 1, 2, . . . ;

notice in particular that N p(t) = E
p
0(t).

The variance of the distribution is:

Varp[ f p](t) :=
∫

Dp
u

|u−E
p
1 [ f

p](t)|2 f p(t, u)du,

which provides a measure of the local microscopic oscillations of the system with
respect to an average macroscopic description.

Alternatively, if particle transitions among functional subsystems occur, then
each f p is no longer a probability distribution. Nonetheless, due to the hypothesis
that the system is closed, which entails that birth/death processes are disregarded,
we have:

m

∑
p=1

∫
Dp

u

f p(t, u)du = constant in t,

hence the normalization can be performed with respect to the total number of active
particles of the system. The expression for the moments of each distribution function
is technically modified as follows:

E
p
� [ f

p](t) :=
1

N p[ f p](t)

∫
Dp

u

u� f p(t, u)du,

which also applies when N p varies in time because of birth/death events within the
p-th subsystem.

It is worth mentioning that this representation does not include any variable
related to space among those charged to describe the microscopic state of the active
particles. This is because we consider either spatially homogeneous systems or
systems in which active particles communicate independently of their localization;
e.g., via media. However, when a node is embedded in a social network structure of,
say, M ≥ 2 nodes, additional notation is needed for representing the global system,
which now coincides with the network. For instance, the distribution functions of
each node can be labeled with two indices:

f pq = f pq(t, u) : [0, Tmax]×Dpq
u → [0,+∞),
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where q = 1, . . . , M identifies the node. In principle, the number of functional
subsystems may vary from node to node: m = m(q). Also notice that the domain
of the activity has been doubly labeled, in order to account for the fact that the
variable u may identify different microscopic characteristics of the active particles
in each node and each subsystem of a node.

At this point, it is useful to consider a few examples which show how the above
representation works in practice. The same examples will be used later on to show
the application of the approach at a more practical level.

Example 2.1 (Secessionist trends rising up on a regional basis in a given coun-
try [7, 8] ). Proceeding from the outermost to the innermost level of description:

• the country can be viewed as a network of M regions;
• each region can be understood as a node q of the network;
• within each region, two functional subsystems p = 1, 2 can be identified,

corresponding to individuals (viz., active particles) in favor of secession, or
against secession, respectively;

• the activity u of the former individuals can represent their inclination for seces-
sion, and can be conventionally assumed to be positive. Hence D1q

u = [0,+∞) for
all q = 1, . . . , M;

• the activity, still denoted by u, of the latter individuals can represent instead their
aversion to secession, and can be conventionally assumed to be negative. Hence
D2q

u = (−∞, 0] for all q = 1, . . . , M.

It can be questioned whether partitioning each node into two functional subsys-
tems is really useful. In fact, a single distribution function, defined over Du = R,
may be sufficient to capture the population opinion in each region, by agreeing
that the more positive (respectively, negative) the value of u, the more in favor
of (respectively, against) secession the population is. However, this simplification
cannot be adopted as a general rule, because the detail of representation needed also
depends on the specific interaction rules that are established within and among the
nodes.

Example 2.2 (Process of democratization of a dictatorship in a given country [3,11,
146]). In this case, a possible representation of the system is as follows:

• the country itself can be viewed as a network of M = 4 components of the society;
• the components of the society, namely the dictator (q = 1), the ministers (q = 2),

the parliament (q = 3), and the citizens (q = 4), are the nodes of the network;
• each node is not further subdivided into functional subsystems; thus, for each of

them, a single distribution function defined over Du = R is sufficient to describe
the trends of the corresponding component of the society. In particular, it can be
decided that u > 0 corresponds to support for the dictatorship, whereas u < 0
corresponds to dissent.
Different representations are possible, some of which are actually equivalent

to the proposed one. For instance, the country can also be viewed as an isolated
node and the various social components as its functional subsystems, thereby not
emphasizing the network structure.
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Fig. 2.1 Wealth distribution functions corresponding to various possible social profiles. (a)
Society with a balanced welfare where middle classes (about u = 0) dominate. (b) Society strongly
radicalized into poor (about u = −1) and wealthy (about u = 1) classes. (c) Asymmetric social
profile indicating that most of the population is distributed in the poor classes (−1 ≤ u < 0) with
however a non-negligible presence of very wealthy ones (about u = 1)

It is worth stressing that the use of a distribution function over the activity
variable improves the representation of the global state of the system with respect to
a purely deterministic average representation. In fact, the use of random dependent
variables not only allows one to compute moments, but also to detail more
precisely how active particles are distributed over the possible microscopic states.
For instance, in problems in which the activity represents the wealth status of the
particles, such a representation can provide both mean and variance, as deterministic
representations might also do, and also additional descriptions such as clustering on
certain social states.

Let us be more precise about this issue. Looking ahead at the contents of
the next chapter, let us consider dynamics of wealth redistribution assuming that
u ∈ Du = [−1, 1] is the wealth variable. Negative values close to −1 correspond
to poor social classes, and positive values close to 1 correspond to wealthy social
classes. Middle classes are located about u = 0. Moreover, let us suppose that
a certain mathematical model can provide the asymptotic distribution function
f∞ = f∞(u) representing the stationary wealth distribution reached for large times
(ideally, t → +∞). Several configurations are possible, such as those shown in
Fig. 2.1a, b. Both distributions are symmetric with respect to u = 0, and thus they
have the same zero mean. However, the former depicts a society with a significant
presence of the middle class whereas the latter depicts a society radicalized into
poor and wealthy classes, with a very limited presence of middle classes. Such a
detail would not be caught by purely average deterministic representations.

The symmetry of these asymptotic distributions can be broken, for instance, by
either political choices (to be regarded as external actions on the system) or by
asymmetric initial conditions; see Fig. 2.1c.
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2.3 Mathematical Structures Toward Modeling

In this section we consider the derivation of the evolution equations for the
distribution functions introduced in Sect. 2.2. From this section on, to fix the ideas,
we disregard a possible network structure of the system; i.e., we concentrate on the
equations valid for each isolated node. The extension to networks is worth being
developed with reference to specific applications, which can allow the cumbersome
notation required in the general case to be conveniently reduced. We feel confident
that readers will be able to draw inspiration from the contents of the following
sections to also model interactions among active particles belonging to different
interconnected nodes.

As already stressed, the approach is based on the assumption that the evolution
of the activity distribution depends on interactions among the active particles taking
place at the microscopic scale, the effects of which are specified probabilistically
(stochastic games). The evolution equation for the distribution function of the p-
th functional subsystem is obtained by a balance of particles playing games in the
space of microscopic states. It can be expressed in the following general form:

∂ f p

∂ t
= J p[f], (2.1)

where f = ( f 1, . . . , f m) and J p is the p-th interaction operator, which depends in
principle on all distribution functions because interactions can involve particles of
both the same and of different functional subsystems.

The operator J p will include, in general, both conservative and non-conservative
interactions. The former do not change the total number of particles of the system,
whereas the latter account for possible birth/death of particles in the various
subsystems. Accordingly:

J p[f](t, u) =Cp[f](t, u)+Pp[f](t, u), (2.2)

C standing for conservative and P for proliferative (agreeing that one may also have
negative proliferation). Let us now detail the two types of interactions.

2.3.1 Conservative Interactions

Roughly speaking, Eq. (2.1) describes the evolution in time of the distribution of the
microscopic state u. Reasoning microscopically, imagine freezing u and asking for
the net number of active particles per unit time that reach state u. Such a number is
determined by two concomitant facts:

• It is increased whenever an active particle, approaching a game-type interaction
with a strategy different from u, changes the latter to u in consequence of the
interaction.
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• It is decreased whenever an active particle, approaching a game-type interaction
with strategy u, obtains as a payoff a new strategy different from u.

Summarizing, the conservative operator Cp includes both a gain and a loss
contribution of active particles with state u. For this reason, it is technically
written as:

Cp[f](t, u) =
m

∑
p∗, p∗=1

∫
Dp∗

u ×Dp∗
u

η p∗p∗(u∗, u∗)C p∗p∗(u∗ → u; p|u∗, u∗)

× f p∗(t, u∗) f p∗(t, u∗)du∗ du∗

− f p(t, u)
m

∑
p∗=1

∫
Dp∗

u

η pp∗(u, u∗) f p∗(t, u∗)du∗, (2.3)

where:

• η p∗p∗(u∗, u∗) is the interaction rate, namely the frequency of the interactions
(or encounters) among particles of the p∗-th subsystem with state u∗ ∈ Dp∗

u and
particles of the p∗-th subsystem with state u∗ ∈ Dp∗

u .
• C p∗p∗(u∗ → u; p|u∗, u∗) is the probability density that a particle of the p∗-

th subsystem, playing a game with strategy u∗ ∈ Dp∗
u against a particle of

the p∗-th subsystem with strategy u∗, shifts to the p-th subsystem getting
simultaneously the new strategy u ∈ Dp

u . The collection {C p∗p∗} of all such
transition probabilities is called the table of games.

• The following probability density property holds true:

m

∑
p=1

∫
Dp

u

C p∗p∗(u∗ → u; p|u∗, u∗)du = 1, ∀u∗ ∈ Dp∗
u , u∗ ∈ Dp∗

u

∀ p∗, p∗ = 1, . . . , m,
(2.4)

which basically means that every game event produces a payoff within the set Dp
u

of admissible strategies for the subsystem p.

The structure (2.3) of the conservative interaction operator takes into account
possible transitions of particles across the subsystems. In the particular case that
they are not allowed, the same expression of the operator is still formally valid with:

C p∗p∗(u∗ → u; p|u∗, u∗) = C pp∗(u∗ → u|u∗, u∗)δp∗p,

where: C pp∗(u∗ → u|u∗, u∗) is now the probability that a particle already belonging
to the target subsystem p, with pre-interaction strategy u∗ ∈ Dp

u , changes its state to
u ∈ Dp

u because of an interaction with a particle of the p∗-th subsystem playing with
strategy u∗ ∈ Dp∗

u ; and δp∗p = 1 if p∗ = p, δp∗p = 0 otherwise is the Kronecker’s
delta.

A straightforward calculation shows that property (2.4) is the one ensuring the
conservation of the total number of particles of the system under the interactions
described by the operators Cp. Indeed, it follows from Eq. (2.3) that:
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m

∑
p=1

∫
Dp

u

Cp[f](t, u)du = 0, ∀t ∈ [0, Tmax],

whence Eq. (2.1), in the absence of the operator Pp in J p, yields:

d
dt

m

∑
p=1

∫
Dp

u

f p(t, u)du =
d
dt

m

∑
p=1

N p(t) = 0.

If, moreover, particle transitions among subsystems are not possible, then a
similar calculation shows that the operators Cp keep the number of particles within
each subsystem constant.

Before concluding the discussion about conservative interactions, it is worth
recalling the following terminology, which is very customary in the KTAP approach:

• A particle possessing the target state u is called a test particle, and is taken to be
representative of a generic entity of the system.

• A particle with pre-interaction strategy u∗, which may obtain the target state after
a game event, is called a candidate particle.

• A particle with strategy u∗, which triggers the interaction, is called a field particle.

Hence the structure of conservative interactions can be rephrased by saying that a
candidate particle can obtain, with a certain probability, the state of a test particle,
whereas the latter can lose it with a certain probability, because of stochastic games
with field particles.

2.3.2 Non-conservative Interactions

The non-conservative operator Pp of the p-th subsystem is written following
reasoning formally similar to that which led to the gain term of the conservative
operator:

Pp[f](t, u) =
m

∑
p∗, p∗=1

∫
Dp∗

u ×Dp∗
u

η p∗p∗(u∗, u∗)P p∗p∗(u∗, u∗; u, p)

× f p∗(t, u∗) f p∗(t, u∗)du∗ du∗, (2.5)

where:

• P p∗p∗(u∗, u∗; u, p) is the net birth/death rate of a test particle in the p-
th subsystem due to an interaction between a candidate particle in the p∗-
th subsystem and a field particle in the p∗-th subsystem. In particular, a
birth event occurs when P p∗p∗(u∗, u∗; u, p)> 0 while a death event occurs when
P p∗p∗(u∗, u∗; u, p)< 0
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The birth/death rate is required to satisfy

P p∗p∗(u∗, u∗; u, p)≥ 0 ∀ p∗ 	= p, ∀u∗ 	= u,

so that death events can at most take place in the same functional subsystem and
state of the candidate particle.

The framework depicted by Eqs. (2.1)–(2.3), and (2.5) offers the mathematical
environment for the derivation of models of socio-economic systems. Specific
ones are obtained by particularization of the terms η , C , and P , which describe
particle dynamics at the microscopic scale. This is indeed the purpose of the
following chapters, which will further clarify the concepts just introduced by
referring specifically to the modeling of welfare distribution dynamics.

Before concluding this section, we further discuss the table of games C .
It is worth stressing that this term of the equations models the game that active
particles play at each interaction. As observed in [66], the table of games can be
inspired by classical game theory applied to socio-economic systems [122] but
it can also include more recent developments addressing evolutionary features of
games [79, 88, 100, 123, 126, 138]. In addition, it can account for qualitative and
quantitative differences of game rules in different functional subsystems.

A final definition, heuristically anticipated in Chap. 1, which can now be made
more precise, is that of linearly vs. nonlinearly additive interactions concerning
the terms η , C , and P . As Eqs. (2.3), (2.5) clearly show, pairwise interaction
events among candidate and field particles add up to give rise to a variation of the
distribution of active particles over the values of the activity. This is indeed the
meaning of the integrations over Dp∗

u ×Dp∗
u in the previous equations. However, if

the interaction rate, the table of games, and the birth/death rates depend only on the
pre-interaction states of the particles, so that each interaction event is not affected by
the presence of field particles other than the one the candidate particle is interacting
with, then the final output is the linear superposition of the actions individually
applied by the field particles. In this case, hence, interactions are said to be linearly
additive.

If, on the contrary, each interaction event also depends on field particles other
than the one the candidate is interacting with, possibly in an aggregate manner,
then the final output is not the linear superposition of the individual actions applied
by the field particles. Interactions are therefore said to be nonlinearly additive.
In practice, in the nonlinearly additive case the terms η , C , and P do not only
depend on the state of the interacting pairs but also on the distribution functions.
Recent papers [39] suggest, for instance, using low order moments. This amounts
to assuming that each individual does not only feel the state of the interacting
companion but also an aggregate effect induced by suitable moments of the particle
distribution. This topic will be further discussed in Sect. 2.6.
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2.4 Open Systems

We now generalize the mathematical structures presented in Sect. 2.3 to the
case of open systems; that is, systems whose particles interact also with the
outer environment. More specifically, the latter are understood as members of an
additional category of active particles, called field agents, that express an activity
w ∈ Dw ⊆ R by which they can affect the expression of the activity u in the inner
system. For the sake of generality, it is convenient to assume that field agents are
also organized in a certain number A ≥ 1 of functional subsystems labeled by
α = 1, . . . , A. The activity distribution of the field agents in the α-th functional
subsystem is given by the distribution function:

gα = gα(t, w) : [0, Tmax]×Dα
w → [0,+∞), (2.6)

which can be thought of as normalized to a probability density if the number of field
agents does not change in time. In the following we assume that the gα’s are known
functions, which means that the state of the outer system is prescribed a priori.

When applying their action on the inner system, field agents are assumed to
trigger conservative interactions with active particles. Consequently, the evolution
equation (2.1) for the f p’s can be rewritten as follows:

∂ f p

∂ t
= J p[f]+Qp[f, g], (2.7)

where g = (g1, . . . , gA) and Qp is the p-th inner–outer conservative operator. The
formal expression of the latter recalls that of the conservative component Cp of J p:

Qp[f, g](t, u) =
A

∑
α=1

m

∑
p∗=1

∫
Dp∗

u ×Dα
w

η̂ p∗α(u∗, w)Qp∗α(u∗ → u; p|u∗, w)

× f p∗(t, u∗)gα(t, w)du∗ dw

− f p(t, u)
A

∑
α=1

∫
Dα

w

η̂ pα(u, w)gα(t, w)dw, (2.8)

where:

• η̂ p∗α(u∗, w) is the inner–outer interaction rate; that is, the frequency at which
candidate particles of the inner system interact with field agents of the outer
environment.

• Qp∗α(u∗ → u; p|u∗, w) is the probability that candidate particles get the test state,
shifting simultaneously to the p-th test functional subsystem, upon playing games
with field agents. The collection {Qp∗α} of all such transition probabilities is the
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inner–outer table of games, which is required to satisfy the probability density
property:

m

∑
p=1

∫
Dp

u

Qp∗α(u∗ → u; p|u∗, w)du = 1,
∀u∗ ∈ Dp∗

u , w ∈ Dα
w

∀ p∗ = 1, . . . , m,

∀α = 1, . . . A,

whence:

m

∑
p=1

∫
Dp

u

Qp[f, g](t, u)du = 0, ∀ t ∈ [0, Tmax],

which expresses conservation of inner–outer interactions. Generalizing to the
non-conservative case is straightforward, based on properties of the operator Pp

discussed earlier; hence this is left as an exercise for the reader.

The mathematical framework (2.7) and (2.8) is derived under the assumption that
the action of the outer environment on the inner system is applied through stochastic
games. However, deterministic actions applied directly to the test particle can also
be considered, which produce a stream effect in the space of the microscopic states.
The mathematical translation of this idea is a conservative advection term in the
evolution equation for f p:

∂ f p

∂ t
+

∂
∂u

(K p[g] f p) = J p[f], (2.9)

where K p[g] is the global microscopic action applied by field agents on the test
particle. Usually, it takes the form of a mean field action:

K p[g](t, u) =
A

∑
α=1

∫
Dα

w

K pα(u, w)gα(t, w)dw, (2.10)

K pα : Dp
u ×Dα

w → R being the interaction kernel for pairs of test particles and
field agents belonging to the p-th and α-th inner and outer functional subsystem,
respectively. Notice that, in this case, individuals do not adopt any stochastic game
strategy for deciding the output of their interaction. The latter is indeed given
deterministically by the interaction kernel, once the states of the interacting subjects
are known.

In principle, both stochastic and deterministic inner–outer interactions can be
taken into account. The corresponding mathematical structure is then:

∂ f p

∂ t
+

∂
∂u

(K p[g] f p) = J p[f]+Qp[f, g]. (2.11)
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2.5 Systems with Discrete States

In applications to living complex systems, it is not always practical, or even possible,
to identify a continuous distribution of microscopic states of the active particles.
Indeed, the activity variable often refers to originally non-numerical and qualitative
characteristics, such as e.g., individual opinions, political preferences, wealth status,
which need to be transformed to quantitative information in the mathematical
approach. In these cases, it might be convenient to reason in terms of activity
classes roughly representative of the social structure of the system. Technically,
this amounts to assuming that u is, in each functional subsystem, a discrete variable
with only a finite number of possible values in a lattice:

I p
u = {up

1 , up
2 , . . . , up

n} ⊂ Dp
u , p = 1, . . . , m.

Each up
i is called an activity class of the p-th functional subsystem. As in the

continuous case set forth in the preceding sections, it identifies a possible strategy
by which active particles can approach game-type interaction events. The difference
is that now the number of admissible strategies is finite, as is usually the case in
classical game theory.

The corresponding formal expression of the distribution function is

f p(t, u) =
n

∑
i=1

f p
i (t)δup

i
(u), (2.12)

where δup
i

is the Dirac distribution centered at up
i and f p

i (t) = f p(t, up
i ) in the sense

of distributions. The function f p
i : [0, Tmax] → [0,+∞), for i = 1, . . . , n and p =

1, . . . , m, is the distribution function of the i-th activity class in the p-th functional
subsystem.

Using the representation (2.12), the formulas given in Sect. 2.2 for the moments
of the distribution can be straightforwardly restated in the discrete activity case. For
instance, the number of particles of the p-th subsystem (zeroth-order moment) is
given by:

N p[fp](t) =
n

∑
i=1

f p
i (t),

whereas �-th order moments, �≥ 1, are computed as:

E
p
� [f

p](t) =
n

∑
i=1

(
up

i

)�
f p
i (t).

Analogously, the evolution equations for the f p
i ’s are technically deduced by

substituting the representation (2.12) into Eqs. (2.2), (2.3), (2.5), (2.7), (2.8), after
reinterpreting the latter in the sense of distributions. This yields:
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d f p
i

dt
= J p

i [F]+Qp
i [F, G] =Cp

i [F]+Pp
i [F]+Qp

i [F, G], (2.13)

where now

F = { f p
i } i=1, ...,n

p=1, ...,m
, and G = {gα

i } i=1, ...,ν
α=1, ...,A

,

and the operators on the right side of Eq. 2.13 are:

Cp
i [F] =

m

∑
p∗, p∗=1

n

∑
h,k=1

η p∗p∗
hk C p∗p∗

hk (i, p) f p∗
h f p∗

k − f p
i

m

∑
p∗=1

n

∑
k=1

η pp∗
ik f p∗

k

Pp
i [F] =

m

∑
p∗, p∗=1

n

∑
h,k=1

η p∗p∗
hk P p∗p∗

hk (i, p) f p∗
h f p∗

k

Qp
i [F, G] =

A

∑
α=1

m

∑
p∗=1

n

∑
h=1

ν

∑
j=1

η̂ p∗α
h j Qp∗α

h j (i, p) f p∗
h gα

j − f p
i

A

∑
α=1

ν

∑
j=1

η̂ pα
i j gα

j ,

The symbols above have an intuitive meaning, that we explicitly detail, however, for
the sake of clarity:

• η p∗p∗
hk is the interaction rate between a candidate particle in the h-th activity class

of the p∗-th subsystem and a field particle in the k-th activity class of the p∗-th
subsystem. An analogous interpretation holds for η̂ pα

i j , which refers to inner-
outer interactions among candidate particles and field agents.

• C p∗p∗
hk (i, p) is the probability that a candidate particle in the h-th activity class

of the p∗-th subsystem shifts to the test activity class i of the test subsystem p
after playing a game with a field particle in the k-th activity class of the p∗-th
subsystem. The set of all such transition probabilities forms the table of games
{C p∗p∗

hk (i, p)}, which models the game played by active particles. It satisfies the
probability density property:

m

∑
p=1

n

∑
i=1

C p∗p∗
hk (i, p) = 1, ∀h, k = 1, . . . , n, ∀ p∗, p∗ = 1, . . . , m,

which guarantees the conservation of inner interactions described by the operator
Cp

i .

• P p∗p∗
hk (i, p) is the net birth/death rate of active particles for proliferative inner

interactions. In order for deaths to occur only in the functional subsystem and
activity class of candidate particles, the following assumption is made:

P p∗p∗
hk (i, p)≥ 0 ∀h 	= i, ∀ p∗ 	= p.
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• Qp∗α
h j (i, p) is the probability that a candidate particle in the h-th activity class

of the p∗-th functional subsystem shifts to the test activity class i of the test
subsystem p when playing a game with a field agent in the j-th activity class
of the α-th outer functional subsystem. It is also assumed that field agents are
grouped into a finite number ν ≥ 1 of activity classes over the lattice

Iα
w = {wα

1 , wα
2 , . . . , wα

ν } ⊂ Dα
w

and represented by a set of A × ν known distribution functions gα
j = gα

j (t) :
[0, Tmax]→ [0,+∞) such that the distribution function (2.6) is recovered, for each
α = 1, . . . , A, as:

gα(t, w) =
ν

∑
j=1

gα
j (t)δwα

j
(w),

with gα
j (t) = gα(t, wα

j ) in the sense of distributions. The set of all of the above
inner-outer transition probabilities constitutes the inner-outer table of games
{Qp∗α

h j (i, p)}, which is required to satisfy the probability density property:

m

∑
p=1

n

∑
i=1

Qp∗α
h j (i, p) = 1,

∀h = 1, . . . , n, ∀ j = 1, . . . , ν

∀ p∗ = 1, . . . , m, ∀α = 1, . . . , A
(2.14)

in order for the interactions described by the operator Qp
i to be conservative.

2.6 Microscopic Interactions and Sources of Nonlinearity

Mathematical models can be derived from the mathematical structures presented
in Sects. 2.3–2.5 by devising descriptions of the interactions at the microscale, for
instance at the levels of the interaction rate and of the table of games.

As already mentioned, theoretical tools from game theory can be used. However,
the literature does not yet offer a unified systematic approach. Hence, heuristic
methods are generally applied for each specific case. Actually, recent contribu-
tions [38, 43] give some hints that will be revisited in this section.

An important issue is nonlinear interactions, when particles are not simply
subject to the superposition of binary actions but are also affected by the aggregate
state of neighboring individuals. In this case, the interaction terms have to be
viewed as operators over the distribution function, whereby further nonlinearities
are introduced in the right-hand sides of the relevant equations.

For instance, the interaction rate may be assumed to decay with the distance
between the states of the interacting particles as well as with the distance between
the distribution functions of the subsystems they belong to. Such an assumption
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would imply a higher interaction frequency for similar particles belonging to
similarly distributed subsystems. In other cases, dissimilar particles carrying out
different functions may be more likely to interact with high frequency, as happens,
for example, in hiding-learning processes [72] such as chasing and/or escaping
dynamics involving criminals and detectives [143].

Another source of nonlinearity in the interaction dynamics can be the actual
activity subdomain where interactions are effective, which may not coincide with
the whole Dp

u . In other words, candidate particles may interact only with some field
particles selected on a distribution-dependent basis (one then speaks of topological
interactions). This idea originates from conjectures made by physicists about the
dynamics of swarms [25], which can be interestingly transferred to social sciences
for addressing swarming behaviors such as those treated in [142, 143, 165].

Finally, a great source of nonlinearities in the evolution equations is definitely
the table of games. Indeed, as already pointed out, candidate particles can also
modify their interaction strategy depending on some (local) aggregate state of the
field particles they interact with, which is duly described by suitable moments of the
distribution function.

Some technical arguments about these topics are presented in the following
paragraphs, without claiming to be exhaustive. For expository purposes the focus
will be on closed systems. Technical generalizations to open systems are left to
interested readers.

2.6.1 Interaction Rate

The frequency of the interactions among candidate and field particles belonging
to the p∗-th and p∗-th functional subsystems, respectively, is modeled by the term
η p∗p∗ . Following [38], the latter can be assumed to decay with the distance between
the interacting particles. In the linear case, such a distance depends only on the
microstates of the interacting pairs, hence it is given by |u∗ − u∗|. Conversely, in
the nonlinear case it can also depend on the distribution functions f p∗ and f p∗ ,
particularly on ‖ f p∗ − f p∗‖. Here, ‖ · ‖ is a suitable norm such as, for example,
the uniform L∞-norm or the mean L1-norm, also depending on the physics of the
system under consideration (which might suggest appropriate ways of measuring
the distance between different configurations of the system). This concept is based
on the idea that two systems with close distributions are affine, hence they tend to
interact with higher frequency.

The interaction rate can also include a dependence on the actual interaction
domain. If particles interact only within a certain distance or with a predefined
number of other particles then η p∗p∗ is zero outside the respective bounds. In turn,
the latter can be linked to the distribution functions f p∗ , f p∗ themselves.
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2.6.2 Table of Games

The table of games C p∗p∗ can be modeled by relating the payoffs of the interac-
tions to:

• Cooperative/competitive games, in which candidate particles try to profit from
the state of field particles in order to consolidate their well-being or to fairly
redistribute wealth.

• Hiding-learning dynamics, in which attempts by candidate particles to improve
their state are balanced by a tendency to reduce social distances thus produced
(learning process).

In general, it may be argued that the occurrence of either type of game depends,
once again, on a microstate-based distance between the interacting particles.
Moreover, if the distance between the configurations of the subsystems that
particles belong to is involved, further nonlinearities are brought into the problem.

2.6.3 Inner Reorganization of Functional Subsystems

Some social systems, for instance political parties, are characterized by a (small)
critical size for survival. That is, if the size N p[ f p] of a certain functional subsystem
falls below a critical threshold then particles may prefer to migrate to other
functional subsystem or to aggregate in brand new ones. Similarly, a (large) critical
size can exist such that, when it is overcome, particles are again induced to migrate
to other subsystems for avoiding a kind of depersonalization due to “overcrowding”
of their original subsystem.

In both cases, the two sizes are generally not constant but depend on the global
state of the system. Therefore disappearance, splitting, or creation of functional
subsystems can be additional sources of nonlinearity in the equations.

The previous arguments drop a hint that interactions at the microscale can be
strongly characterized by various types of nonlinearities. Consequently, in most
cases the evolution equations feature further nonlinearities besides the standard
quadratic one due to the product of the distribution functions in the terms Cp and Pp.

The mathematical structures proposed in the preceding sections are still valid but
the following notations are worth being introduced for stressing such constitutive
nonlinearities:

η p∗p∗ [f](u∗, u∗), C p∗p∗ [f](u∗ → u; p|u∗, u∗), and P p∗p∗ [f](u∗, u∗; u, p).

This notation should also be extended to the domain of interaction, when it depends
on the distribution functions: Du = Du[f]. See [43] for a detailed analysis of the
related convolution problems.
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According to our perspective as advanced in this monograph, the modeling
approach cannot be oversimplified by neglecting nonlinearly additive interactions
with the only aim of pursuing analytical results. On the contrary, no matter how
difficult the analytical treatment of the resulting equations may appear, most of the
existing literature should probably be revisited under this new perspective.

2.7 On the Solution of Mathematical Problems

The application of the mathematical structures presented in the previous sections
to real social phenomena generates mathematical problems. The latter can be of
essentially two types:

• Initial-value problems, namely those generated by Eqs. (2.1), (2.7), and (2.13)
linked to initial conditions:

f p(0, u) = f p
0 (u), u ∈ Dp

u , p = 1, . . . , m for Eqs. (2.1), (2.7)

or

f p
i (0) = f p

0i, i = 1, . . . , n, p = 1, . . . , m for Eq. (2.13),

where f p
0 : Dp

u → [0,+∞), f p
0i ∈ [0,+∞) are, respectively, known functions and

numerical values prescribed for describing the distribution of the active particles
over the activity u or the activity classes up

i at the initial time t = 0.
• Initial/boundary-value problems, namely those generated by Eqs. (2.9) and (2.11)

linked to initial conditions analogous to those discussed above and, in addition,
to conditions at the boundary of Dp

u due to the flux term ∂u(K p[g] f p). These are
of the form:

f p(t, u ∈ ∂Dp
u) = ϕ p(t), p = 1, . . . , m,

ϕ p : [0, Tmax] → [0,+∞) being known functions. These conditions provide the
values of the distribution functions f p on the boundary of Dp

u at all times. They do
not necessarily have to be prescribed on the whole boundary of Dp

u but possibly
only on subsets of ∂Dp

u , depending on the structure of the advection speed K p[g].
If Dp

u is unbounded then boundary conditions are replaced by suitable properties
of decay to zero of the corresponding p-th distribution function at infinity for
ensuring its integrability with respect to u.

In all cases, the mathematical problem consists of computing the solution, being
either

{ f p(t, u)}m
p=1, ∀ u ∈ Dp

u , ∀ t ∈ [0, Tmax],
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or

{ f p
i (t)} i=1, ...,n

p=1, ...,m
, ∀ t ∈ [0, Tmax],

starting from the input data required by the model.
The numerical solution of such problems is generally not a difficult task,

at least in the absence of mean-field fluxes K p. In fact, collocation methods
can be used to transform activity-continuous integro-differential equations into
ordinary differential equations in time, which can then be discretized by the most
appropriate computational schemes, with consideration of stability and accuracy.
The technique is described in [41], where it is also shown how boundary conditions
can be implemented directly into the system of ODEs. If the activity variable is
discrete, models immediately take the structure of a system of ordinary differential
equations.

Simulations should be supported by a qualitative analysis of the mathematical
problems. Existence and uniqueness of solutions to initial-value problems in the
absence of non-conservative interactions have been studied in [19] by extending
a previous study about linearly additive interactions [16] to nonlinearly additive
interactions. Proliferative terms require additional studies, as they may even induce
bifurcation phenomena. This issue has been carefully addressed in [44] referring
specifically to models of competition between the immune system and pathogens.
Analogous investigations in the case of social systems are not yet available; see
Chap. 5 for a critical analysis of this issue.

The use of models for simulating real systems also motivates further challenging
analytical investigations not necessarily limited to a qualitative analysis of the
solutions to mathematical problems. Other challenging issues are, for instance,
understanding the links between the KTAP approach and Markov processes [112]
or classical kinetic theories [26]. These aspects are quite well mastered in the case
of models with linearly additive interactions [17], whereas they are still an open
problem in the case of nonlinearly additive interactions.

2.8 Critical Analysis

In this section we analyze how far the mathematical structures proposed in this
chapter are able to capture the complexity features of social systems discussed
in Chap. 1. Readers should be aware that, for the moment, only preliminary
considerations can be made. A more exhaustive analysis has to be deferred to the
next chapters, after seeing specific models in action on well defined applications.
In the following, we proceed by keywords reminiscent of crucial complexity aspects
dealt with so far.

• Emerging behaviors and validation. Mathematical models provide the time
evolution of the distribution function, which in some cases is a probability
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density (when the number of active particles is constant in time), over the activity
variable. This output potentially depicts both microscopic details and average
macroscopic quantities. Validation of models should be based on their ability to
describe actually observed emerging behaviors. A successful model may also be
expected to predict, under special circumstances, events which have never been
observed before.

• Strategy, organization ability, and heterogeneity. All of these features are
variously linked to the activity variable u, which expresses the (non-mechanical)
state of the active particles, namely the behavioral strategy they apply when
interacting in a game-type fashion with other particles or with external agents.
The heterogeneous distribution of such a variable among the active particles is
expressed, within each functional subsystem, by the distribution function f p,
which evolves in time. The activity can be though of, at the microscopic scale,
as a random variable attached to each active particle. The KTAP approach
then studies the evolution in time of its distribution at the mesoscopic scale.
Reference to random variables is necessary in order to model the partly irrational
(viz., stochastic) as opposed to rational (viz., deterministic) behavior of the
active particles, which may not react in the same way even if placed in similar
conditions.

• Interactions by stochastic games. Microscopic interactions among active parti-
cles are modeled by the terms η , C , and P , namely the interaction rate, the table
of games, and the net birth/death rate, respectively. Particularly important is the
table of games, which describes interactions as stochastic games. In more detail,
it encodes, in probabilistic terms, the (conservative) interaction rules, hence the
game played by active particles. The distribution function then changes as a
result of a change in the activity of the particles after the game they play when
interacting.

• Reducing the complexity generated by a large variety of components. Splitting
the whole system into functional subsystems is a way to reduce the technical
complexity induced by a large number of variables. Such a decomposition
can possibly also be viewed as associated with a secondary activity variable,
say v, which takes only m discrete values v1, v2, . . . , vm. According to this
interpretation, the p-th functional subsystem would thus group all active par-
ticles which collectively express the value vp of the activity v. This point of
view is conceptually convenient when the primary activity variable u has the
same meaning in all subsystems but the rules at the basis of the microscopic
interactions depend on the specific function v carried out by different groups of
active particles. Alternatively, the decomposition in functional subsystems can
be thought of as a way to have a scalar activity variable u in each of them rather
than a vector-valued one u = (u1, u2, . . . , um) when the various components up,
p = 1, . . . , m, have different meanings in each subsystem.

• Mutations and selections. These events are respectively related to transitions
across functional subsystems, accounted for by the table of games, and to
proliferative interactions, modeled by the operators Pp. Their modeling requires,
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in general, that the influence of the outer environment on the conservative
interactions be carefully analyzed.

• Multiscale essence. The modeling of aforementioned terms η , C , and P is
generally obtained by a mainly phenomenological approach at the microscopic
scale. Due to the behavioral individuality of the active particles composing
the system, this approach is probably better than trying to directly model the
collective behavior of groups of particles at the macroscopic scale by means of
constitutive relationships. Next, ensemble dynamics are predicted by the model
and can be studied a posteriori, once the evolution of the distribution function
is available at the mesoscopic scale. Phenomenological guidelines for modeling
the terms η , C , and P cannot however be given in full generality. Specific
applications can instead indicate, each time, some reasonable ones, thereby also
suggesting possible technical developments of the mathematical structures.



Chapter 3
Modeling Cooperation and Competition
in Socio-Economic Systems

Abstract This chapter shows how the mathematical tools derived in Chap. 2 can be
profitably exploited for modeling social interaction dynamics. The focus is on
cooperative and competitive games among the members of a social population,
which result in a modification of the well-being of the individuals due to a
redistribution of their global wealth. External actions related to welfare policies are
also considered in the modeling approach.

3.1 Introduction

Starting from this chapter, we consider the practical implementation of the math-
ematical structures set forth in Chap. 2 toward the modeling of specific social
scenarios. In particular, we select as a case study the cooperation and competition
dynamics at the basis of the redistribution of wealth among the members of a social
community, which can affect the well-being and social cohesion of populations.
This is a widely studied topic in socio-economic sciences [31, 128]; see also the
bibliographical references reported in Chap. 1, the mathematical treatment of which
by the KTAP approach was initiated in [48]. Next, in [8] the guidelines for more
refined models, taking advantage of a decomposition in functional subsystems, have
been introduced, in this way promoting a systemic approach to social sciences,
that one may call system sociology. A few applications are developed in [7, 49].
In addition, it is worth recalling that, as already mentioned in Chap. 2, other
conceivable topics that might be addressed by analogous approaches are criminal
behaviors [143], migration phenomena [23], and opinion formation [78, 152].

As a matter of fact, the application of the KTAP methods to social systems has
been so far limited to linearly additive interactions. On the other hand, several
papers have pointed out the necessity of taking the next step toward nonlinearly
additive interactions when dealing with living complex systems; for example, see
[37]. Two recent mathematical letters [35, 72] have suggested prospective ideas in
this direction, and a recent paper [39] has put them into practice in the context
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of rare social events, the so-called black swans [149]. By resting on the contents
of [39], the present chapter derives exploratory models aimed at understanding how
different socio-economic policies can affect the wealth redistribution among the
members of a social community. The focus is on modeling issues, specifically on
the specialization of the general mathematical structures to well-defined contexts.
The assessment, through numerical simulations, of the predictive ability of models
is the subject of the next chapter.

Motivations for studyng this type of social dynamics also come from the recent
literature [135], where the authors argue that there exists an interplay between
increases in wealth and unethical behaviors. In particular, they present various
empirical data referred to significant case studies. Actually, we do not aim at
thoroughly addressing the issues proposed in [135], which would require knowledge
of psychology and social sciences far beyond ours. Rather, we aim at showing
that mathematical sciences can provide useful exploratory, and in some cases also
predictive, tools for a deeper interpretation of social phenomena. The reasonings
developed here and in the next chapter also take advantage of recent studies focused
on the role of selfishness and cooperation in managing the social dynamics of
society [144].

A detailed account of the contents of this chapter is as follows. Section 3.2 offers
a qualitative discussion about cooperative and competitive stochastic games related
to altruistic and selfish social attitudes, respectively, with the idea that they can
serve as a paradigm for the modeling of social interaction dynamics. Section 3.3
brings such a discussion to a quantitative level by designing the main model
elements accordingly, such as the interaction rate and especially the table of games.
In doing so, specific sources of nonlinearly additive interactions are considered in
view of their significance for modeling. Section 3.4 then suggests a few technical
developments of the model, with a forward look at additional improvements that will
be discussed later in Chap. 5. Finally, Sect. 3.5 proposes a critical analysis of the
contents of the chapter, partly preparatory to the numerical simulations developed
in Chap. 4.

3.2 Cooperative and Competitive Stochastic Games

As we have seen in Chap. 2, the derivation of mathematical models according to the
KTAP approach requires a detailed characterization of the microscopic interaction
dynamics, which can be assimilated to nonlinearly additive stochastic games. The
game rules depend, in general, on the specific system under consideration; however,
some broad guidelines can be extracted from, for example, references [88, 95, 123].

The approach we propose in this chapter is based on game dynamics that can
be classified as either cooperative or competitive. In particular, active particles are
assumed to play a game at each interaction by choosing one of these two game
regimes according to the strategy (viz., activity) they individually express.
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particle 1 particle 2

wealth status u

wealth status u

a

b

Fig. 3.1 Pictorial illustration
of (a) cooperative and (b)
competitive game dynamics
between two active particles.
Black and white bullets
denote the pre-interaction and
post-interaction states,
respectively, of the particles

It is worth anticipating that, in the socio-economic application of wealth redis-
tribution we are concerned with, the activity of the particles coincides with their
wealth status. As usual, the payoff of the game is a new wealth status (the test one),
that a candidate particle gains, with a certain probability, after an interaction with a
field particle depending on the kind of game they played. Bearing this in mind, let
us describe in more detail what cooperation and competition rules consist of.

Cooperation: The candidate particle either increases its wealth status, by benefit-
ing from a field particle with higher status, or decreases it, by supporting a field
particle with lower status. After the interaction, the states of the particles become
closer together than before the interaction (see Fig. 3.1a).

Competition: The candidate particle either further decreases its wealth status, by
yielding to a field particle with higher status, or further increases it, by getting
the better of a field particle with lower status. After the interaction, the states of
the particles become farther apart than before the interaction (see Fig. 3.1b).

These interaction models are somehow classical in game theory; see, for
example, [33, 101, 138]. They have been transposed to the KTAP approach in the
previously cited paper [48], where the authors have also proposed a criterion for
active particles to switch between cooperative and competitive dynamics based on
their relative activity state. Specifically, a distance between the activities of the
interacting pairs is defined, whose low and high values, with respect to a certain
critical threshold, trigger cooperation and competition, respectively, in such a way
that individuals with similar wealth status tend to compete, whereas those with
significantly different wealth status tend to cooperate. The critical threshold is a key
element of the model. It can either be constant in time, as in [48], or depend on the
time evolution of the wealth distribution itself, as in [39]. The second option seems
to be more realistic, for individuals can adapt their game dynamics to the evolving
circumstances in which they operate, possibly also learning from past experiences.

It is worth pointing out that a non-constant critical threshold typically induces
nonlinearly additive interactions, especially when the threshold variability is linked
to inner characteristics of the systems, such as, for example, the gap between
wealthy and poor individuals or social classes; cf. [39].

In general, game dynamics have to ensure the conservation of some global
quantities of the system. A basic requirement is that they preserve the total number
of active particles. Moreover, we observe that the cooperative and competitive rules
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particle 1 particle 2

wealth status u

wealth status u

a

b

Fig. 3.2 Game dynamics
which do not preserve, in
general, the average wealth of
the society. (a)
Wealth-productive dynamics.
(b) Wealth-dissipative
dynamics

described above are consistent with the preservation of the average wealth of the
society, if the impoverishment of a particle and the simultaneous enrichment of
its interacting companion are of the same extent. Other dynamics can instead be
markedly wealth-productive (see Fig. 3.2a) or wealth-dissipative (see Fig. 3.2b).
For instance, the average wealth is often increased by social agreement and reduced
by social conflicts because such situations can enhance or worsen, respectively, the
productive ability of a society. In this case, game dynamics follow mixed rules.
Often they are linked to interactions with the outer environment, possibly in a
network context, as in the case of competition among countries at an international
level.

3.3 Modeling Socio-Economic Interactions

From the interaction paradigm discussed in Sect. 3.2, we now derive a specific
model of socio-economic dynamics grounded on the mathematical frameworks
introduced in Chap. 2. In particular, we focus on discrete activity models, con-
sidering that in the real world it is more customary to deal with social classes
when the discriminant is individual wealth. Additionally, we assume that the whole
society coincides with a single functional subsystem grouping all individuals of
a certain country or regional area, and that the system is closed. Therefore, no
action is applied on the active particles by field agents. Consequently, the reference
mathematical structure for this specific scenario is:

d fi

dt
=

n

∑
h,k=1

ηhk[f]Chk[f](i) fh fk − fi

n

∑
k=1

ηik[f] fk, (3.1)

where we have omitted the index of the functional subsystem in order to simplify the
notation. We have instead indicated explicitly the dependence of the interaction rate
and the table of games on the collection of distribution functions f := ( f1, . . . , fn)
according to the notation introduced in Sect. 2.6 of Chap. 2. Indeed, the model
presented in the following includes certain nonlinearly additive interactions.
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In practice, Eq. (3.1) is what Eq. (2.13) reduces to in the presence of conservative
interactions only within a unique functional subsystem. The conservation of the total
number of active particles, obtained from the probability density property (2.14):

n

∑
i=1

Chk[f](i) = 1, ∀ h, k = 1, . . . , n, ∀ f, (3.2)

implies:

n

∑
i=1

fi(t) = constant, ∀ t ∈ [0, Tmax],

hence, up to normalization with respect to the total number of active particles of the
system, the distribution function fi = fi(t) : [0, Tmax]→ [0, 1] can be understood as
the probability that the test particle be in wealth class i at time t.

In the following, we consider the detailed modeling of the terms of Eq. (3.1)
devoted to the mathematical description of the interactions among active particles.

3.3.1 Activity Lattice

As already stated, the activity u of the particles is, in this context, an indicator of
their wealth status; more precisely, from a discrete-state point of view, of their social
wealth class. Assuming conventionally that poor social classes are identified by a
negative activity and wealthy ones by a positive activity, the following uniformly
spaced activity lattice can be introduced:

Iu = {u1 =−1, . . . , u n+1
2

= 0, . . . , un = 1},

ui =
2

n− 1
i− n+ 1

n− 1
, i = 1, . . . , n

(3.3)

with odd n, so that a middle “neutral” class u n+1
2

= 0 exists.

3.3.2 Interaction Rate

Following [39], we consider two different rates of interaction corresponding to
cooperative and competitive dynamics:

ηhk[f] =

⎧⎨
⎩

η0 if |k− h| ≤ γ[f] (competition)

μη0 if |k− h|> γ[f] (cooperation),
(3.4)
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where μ ∈ (0, 1) is a parameter and η0 > 0 allows one to scale the time variable in
Eq. (3.1). Model (3.4) basically assumes that in a cooperative regime interactions are
less frequent (i.e., individuals are less reactive) than in a competitive one. The value
γ ≥ 0 is the previously mentioned critical threshold, which triggers either type of
dynamics according to the distance between the activities of the interacting particles.
We will henceforth denote it by γ[f] in order to stress the possible functional
dependence on the probability distribution f in the case of nonlinearly additive
interactions. We will discuss it in detail at the end of this section.

Remark 3.1. The distance between the activities of the interacting particles is
evaluated, in Eq. (3.4) as well as in forthcoming ones, in terms of the distance
between the indices h and k of the respective activity classes. This is possible, and
indeed customary, because the lattice (3.3) is uniformly spaced, so that, denoting
the lattice’s constant step by Δu = 2

n−1 , one obtains:

|h− k|= 1
Δu

|uk − uh|.

In other words, the index distance is directly proportional to the actual activity
distance, and the constant factor can be duly rescaled. In general, if the activity
lattice has a variable step then the correct way of evaluating the activity distance is
via |uk−uh| and the threshold γ[f] has to be thought of as being rescaled accordingly.

A more general model for the interaction rate is obtained by assuming that, within
the same game regime, ηhk decreases with the distance between the activity classes
of the interacting particles. For instance:

ηhk[f] =

⎧⎨
⎩

η0 e−a|k−h| if |k− h| ≤ γ[f] (competition)

μ η0 e−a|k−h| if |k− h|> γ[f] (cooperation),

where a ≥ 0 is a parameter (for a = 0 one recovers Eq. (3.4) as a special case).

3.3.3 Table of Games

As mentioned in Sect. 3.2, in the absence of production and dissipation of wealth,
cooperative and competitive stochastic games preserve the average wealth of the
society; that is, the first order moment of the probability distribution is constant in
time:

E1[f](t) =
n

∑
i=1

ui fi(t) = constant in t,

so that E1[f](t) = E1[f](0) for all t ∈ (0, Tmax]. In order for the solutions of Eq. (3.1)
to satisfy this property, further conditions, besides (3.2), must be imposed on the
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table of games. Computations with Eq. (3.1) verify that the following conditions are
sufficient:

• Symmetric interaction rate: ηhk = ηkh for all h, k = 1, . . . , n (notice that the
interaction rates previously examined do indeed satisfy this condition).

• Quasi-fair stochastic games:

n

∑
i=1

uiChk[f](i) = uh +σhk, ∀h, k = 1, . . . , n, (3.5)

where {σhk}h,k=1, ...,n is an antisymmetric tensor; i.e., σhk =−σkh for all h, k.

Condition (3.5) has an inspiring interpretation in the context of game theory. The
expected payoff of the candidate particle (that is, the wealth class it shifts to in
average after the game (cf. the left-hand side)) is required not to differ substantially
from the pre-interaction wealth class uh (cf. the right-hand side). In detail, if
Eq. (3.5) holds with σhk = 0 for all h and k, then the game described by the table
{Chk(i)} is perfectly fair, since active particles are not expected either to gain or
lose, on average, from the interactions. If instead σhk 	= 0 then single games between
specific candidate and field particles can be biased but the overall bias vanishes
because

n

∑
h,k=1

σhk = 0.

Condition (3.5) can either be relaxed, in case of wealth-dissipative or wealth-
productive interactions, or reinforced by also requiring the conservation of higher-
order moments. An empirical rule may be that conservation has to be guaranteed for
average quantities playing a role in the table of games.

After the above preliminary considerations, we now enter into the details of a
possible modeling of the transition probabilities Chk[f](i) for the specific application
at hand. A general guideline is that the main features of the interactions should be
captured by limiting as much as possible the number of model parameters. One
parameter is welcome for simulating different interaction regimes. More parameters
need to be carefully related to well-defined and (one hopes) empirically quantifiable
aspects of the interactions. Accordingly, we sketch a minimal table of games (taken
from [39] with minor modifications) in which the number n of wealth classes is
the only parameter. Next we discuss how a second parameter can be conveniently
introduced.

Competitive Interactions

We begin by examining the case in which a candidate particle, with strategy uh, and
a field particle, with strategy uk, play a competitive game. The condition for this to
happen is:

|k− h| ≤ γ[f],
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which means that the wealth classes they belong to are sufficiently close for their
individual interests to conflict. We need to distinguish a few sub-cases.

1. Particles with the same state: h = k

Chh[f](i) =

{
1 if i = h

0 otherwise.

This type of interaction does not modify the activity of the candidate particle,
which, with unit probability, maintains the state uh. The corresponding game is
the trivial one in which players simply ignore each other.

2. Particles with different states: h 	= k , in particular:

2.1 Candidate particle at the boundary of the activity lattice: h = 1, n

C1k[f](i) =

{
1 if i = 1

0 otherwise,
Cnk[f](i) =

{
1 if i = n

0 otherwise.

In this case the candidate particle also maintains, with unit probability, its
pre-interaction state due to the lack of further lower or higher wealth classes
that it can possibly access. Consider, for example, the case h = 1. The
competitive dynamics would imply that the candidate particle yields to a
necessarily wealthier (k > 1) field particle, which is impossible because no
lower class than u1 exists in the lattice Iu. An analogous argument holds in
the case h = n, when the candidate particle should in principle get the better
of a definitely poorer (k < n) field particle.

2.2 Candidate particle inside the activity lattice: 1 < h < n , in particular:

2.2.1 Candidate particle poorer than the field particle: h < k

k < n , Chk[f](i) =

⎧⎪⎪⎨
⎪⎪⎩

αhk if i = h− 1

1−αhk if i = h

0 otherwise

k = n , Chn[f](i) =

{
1 if i = h

0 otherwise.

In this case, competitive dynamics are such that the candidate particle
can lose one wealth class with probability αhk ∈ (0, 1) or, at best, stay
in the same pre-interaction class with the complementary probability
1−αhk. Nevertheless, if the field particle is in the highest class un then
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no competition takes place and the candidate particle simply remains,
with unit probability, in its pre-interaction class. This is necessary in
order for the average wealth to be conserved. Indeed, exchanging h
with k, we see that the field particle would not have the possibility of
a corresponding increase in its wealth class when playing the game
from the candidate side.

The probability αhk can be related in turn to the distance between
the wealth classes of the interacting particles, in such a way that the
larger the distance the stronger the competition. For instance:

αhk =
|k− h|
n− 1

, (3.6)

which depends only on the parameter n.
2.2.2 Candidate particle wealthier than the field particle: h > k

k = 1 , Ch1[f](i) =

{
1 if i = h

0 otherwise

k > 1 , Chk[f](i) =

⎧⎪⎪⎨
⎪⎪⎩

1−αhk if i = h

αhk if i = h+ 1

0 otherwise.

Game dynamics in this case are conceptually analogous to those of
the previous case except for the fact that now competition can cause
the candidate particle to gain a wealth class, still with probability
αhk. If, however, the field particle is in the lowest class u1 then the
candidate particle remains in its pre-interaction wealth class to ensure
average wealth conservation (to show this, exchange h with k and
repeat the same reasoning as before).

Cooperative Interactions

Candidate and field particles play a cooperative game if:

|k− h|> γ[f];

that is, if their respective wealth classes are so far apart that their individual interests
do not conflict. In this case, h and k are necessarily distinct; in addition, the extreme
classes u1 and un need not be treated separately, since game dynamics are such that
the poorest and wealthiest particles can only enhance and worsen, respectively, their
states. Therefore, only two sub-cases need to be distinguished.
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3. Candidate particle poorer than the field particle: h < k

Chk[f](i) =

⎧⎪⎪⎨
⎪⎪⎩

1−αhk if i = h

αhk if i = h+ 1

0 otherwise.

In this case, the candidate particle can gain a wealth class with probability
αhk increasing with the distance |k − h| (cf. Eq. (3.6)), thus implying stronger
cooperation between distant particles. The other possible output of the game is
that the candidate particle stays in its pre-interaction class with complementary
probability 1−αhk.

4. Candidate particle wealthier than the field particle: h > k

Chk[f](i) =

⎧⎪⎪⎨
⎪⎪⎩

αhk if i = h− 1

1−αhk if i = h

0 otherwise.

In this case, the candidate particle can lose a wealth class with the same
probability αhk as that by which it can gain one in the case above. This balance
is consistent with the conservation of average wealth.

We conclude this part by recording a possible generalization of the probability
αhk (cf. Eq. (3.6)):

αhk = ε
|k− h|
n− 1

, (3.7)

where ε ∈ (0, 1) is a constant playing the role of a genuine parameter featured by
the table of games. Different game scenarios can then be simulated by duly tuning
the parameter ε .

3.3.4 Critical Threshold

The expression of both the interaction rate and the transition probabilities calls
for the definition of the critical threshold γ[f], which discriminates between the
cooperative and competitive game regimes. Probably the simplest option is to take
γ[f] constant with respect to f; cf. [48]. In this case, the resulting model features
linearly additive interactions. A more refined alternative is to allow for a non-
constant γ[f] linked to the evolution of the socio-economic conditions of the society
under consideration; cf. [39]. As we will see in a moment, this implies dealing with
nonlinearly additive interactions.



3.3 Modeling Socio-Economic Interactions 43

Let us introduce the (normalized) numbers N−, N+ of poor and wealthy particles
at a given time t:

N−[f](t) :=

n−1
2

∑
i=1

fi(t), N+[f](t) :=
n

∑
i= n+3

2

fi(t),

which we use to define the following measure of the social gap:

S[f] := N−[f]−N+[f]. (3.8)

This quantity can be understood as a macroscopic thermometer of the social tension
due to economic issues: the higher S[f] the larger the number of poor active particles,
which can result in a stronger social conflict because poor individuals tend to be
involved in a “battle of the have-nots”. Conversely, the lower S[f] the larger the
number of wealthy active particles, which typically induces low levels of social
conflict because wealthy individuals tend preferentially to preserve their common
benefits. The critical threshold γ[f] can therefore depend on S[f] according to the idea
that the larger the social gap, namely the social tension, the stronger the competitive
behavior of the individuals (large γ[f]) and vice versa.

Technically, since S[f] is bounded between −1 and 1 due to 0 ≤ N±[f] ≤ 1 and
N−[f]+N+[f]≤ 1 for all f, the following model for γ[f] is proposed; cf. [39]:

γ[f] =
⌊

2γ0(S[f]2 − 1)− n(S0+ 1)(S[f]2− S0)

2(S2
0 − 1)

+
n
2

S[f]
⌋
, (3.9)

where �· denotes the integer part (floor). It stems from the following analytical
assumptions inspired by the previous qualitative discussion.

• The dependence of γ[f] on S[f] is polynomial of second order except for the
integer part, which is taken a posteriori considering that only integer values of
γ[f] are meaningful since the wealth class distance |k−h| is an integer. A second
order polynomial is chosen as its three degrees of freedom allow for the three
conditions below to be satisfied.

• γ[f] = n for S[f] = 1, in such a way that when the society consists only of non-
wealthy individuals (N−[f] = 1, N+[f] = 0) the interaction dynamics are of full
competition (in fact |k− h| ≤ n all h, k).

• γ[f] = 0 for S[f] = −1, so that, conversely, when the society consists only of
wealthy individuals (N−[f] = 0, N+[f] = 1) the interaction dynamics are of full
cooperation.

• γ[f] = γ0 for S[f] = S0 ∈ (−1, 1), the latter being the initial value of S fixed by the
initial distribution f(t = 0) of active particles over the various wealth classes and
γ0 ∈ {1, 2, . . . , n−1} the corresponding critical threshold which fixes a reference
value for γ[f].
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Model (3.9) is, of course, not the only conceivable one for the critical threshold.
The evolution of γ[f] can be linked to average quantities different from S[f], which
provide additional or complementary information about the society’s economic bias.
For instance:

S�[f] :=

n−1
2

∑
i=1

(−ui)
� fi(t)−

n

∑
i= n+3

2

u�i fi(t),

which for �= 0 coincides with S[f] whereas for � > 0 is a measure of the distortion
of the actual wealth distribution with respect to a balanced symmetric one.

We finally observe that a constant critical threshold, say coinciding with the
reference value γ0, can be interpreted as the action of a government aimed at impos-
ing a certain welfare policy with controlled levels of cooperation and competition.
Within such a perspective, a variable critical threshold means instead that there is
no control by the government on the socio-economic dynamics, which can allow
the wealthiest social classes to impose selfish market rules. We will come back to
these two scenarios in Chap. 4 by investigating, through numerical simulations, their
respective effects on the socio-economic profile of the simulated society.

Remark 3.2. The critical threshold can also be understood as a measure of how
fair (or unfair) the behavior of wealthy classes is. This delicate issue is the subject
of recent speculations [135], which aim at understanding to what extent unethical
behaviors can be sources of wealth.

3.4 Technical Improvements

The model presented in the previous sections can be further developed and
improved in view of its applications to different social dynamics, such as, for
example, competition for a secession [7], learning processes [72], and opinion
formation [152], possibly over networks. Some of them were already mentioned
in Chap. 2.

In this section we discuss, in particular, the following issues:

• Additional sources of nonlinearity, besides the non-constant critical threshold, in
the interaction dynamics.

• Models with several interacting functional subsystems.
• Models with continuous activity of the particles.

The reference framework is still a spatially homogeneous closed system, mean-
ing that the microscopic state of the individuals is fully characterized by the variable
u alone and cannot be perturbed by any action of external field agents.
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3.4.1 Additional Sources of Nonlinearity in the Interactions

The table of games illustrated in Sect. 3.3 features nonlinearly additive interactions
due to the dependence of γ on the probability distribution f through S[f]. An
additional nonlinearity is produced by assuming that active particles do not only
play binary games with one another but are also involved in a game with the stream,
namely a certain mean trend of the system. Such dynamics imply a bias of the
transition probabilities by some average quantities, for instance the mean value
of the wealth, which can give rise to different game outputs, or even to different
game regimes, depending on the states of the interacting pairs with respect to
the collective mean trend. As an example, still remaining in the context of socio-
economic systems, the effect of competition between two active particles within
threshold (i.e., such that |k−h| ≤ γ[f]) may be attenuated or enhanced if the particles
are both wealthier or both poorer, respectively, than the average population.

Instead, in problems of opinion formation the stream effect may consist of a trend
of the individuals toward the average collective opinion, which modifies the output
of their one-to-one interactions.

It is worth mentioning that the stream effect can also be introduced into the
equations as a mean field action applied directly on the test particle by a certain
number of (possibly all) other field particles. The corresponding mathematical
structure is similar to Eqs. (2.9)–(2.10) except for the fact that the term K is
computed using the distribution function of the active particles themselves rather
than that of field agents. Nevertheless, this approach is analytically feasible only in
the case of a continuous activity variable, because the derivative with respect to u
produced by the mean field flux is not directly compatible with nontrivial (weak)
solutions containing Dirac distributions in u.

Other nonlinearities can be induced by the assumption that active particles
do not interact with all other particles of the system but only with a subset of
them, corresponding to the idea that individuals can retain and process only a
finite maximum amount of information at a time. Each test particle thus has an
interaction neighborhood, say a ball BR(ui)= {uk ∈ Iu : |uk−ui| ≤R} centered in its
activity class ui and with variable radius R = R[f](t, ui)> 0, which encompasses the
(possibly normalized) maximum number, say Nmax, of other particles it can interact
with simultaneously:

R[f](t, ui) = min

{
r > 0 : ∑

k : |uk−ui|≤r

fk(t)≥ Nmax

}
.

In this case one speaks of topological interactions, i.e., interactions with a
fixed number of group mates independent of the group density and of the distance
between the interacting states. As the formula above demonstrates, this implies a
dependence of the interaction neighborhood BR(ui) on the distribution functions of
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the active particles. The prototype of such peculiar dynamics, which has already
received some attention from the mathematical modeling side [43], is the flock
behavior observed in swarms of starlings [25].

3.4.2 Models with Several Interacting Functional Subsystems

Various social groups can interact in the same population under the same social
rules imposed by a common government. However, they can develop different
ways to react to such rules. This suggests that the population can be conveniently
partitioned into functional subsystems in which the activity variable is possibly the
same but interactions produce different effects according to specific factors of each
subsystem. The partition can be inspired by various elements, such as, among others,
ethnic or religious differences or the various work expertise of the active particles
(e.g., farmers, workers, employees, intellectuals).

The corresponding mathematical structure, still in the framework of conservative
interactions considered in this chapter, is a special case of Eq. (2.13), that we report
here for completeness:

d f p
i

dt
=

m

∑
p∗, p∗=1

n

∑
h,k=1

η p∗p∗
hk [f]C p∗p∗

hk [f](i, p) f p∗
h f p∗

k − f p
i

m

∑
p∗=1

n

∑
k=1

η pp∗
ik [f] f p∗

k

for p = 1, . . . , m.
Now both the interaction rate and the transition probabilities also depend in

principle on the pair of interacting subsystems. For instance, the former can depend
on the distance (in norm) of the respective distribution functions, which says how
similar or dissimilar the social profiles are in the two subsystems. Conversely, the
latter can account for the fact that cooperation and competition may prevail in
certain functional subsystems simply because of a more or less aggressive way
of their members to express their behavioral strategy. As an example, one may
consider that some categories of workers are defended in a more or less aggressive
way by their representative labor unions.

The modeling approach can provide a description of the trends shown by
each subsystem and, consequently, indications for correcting governing policies
when necessary. Collective dynamics can also identify interesting emerging trends,
such as the predominance of some functional subsystems over others or the
emergence/disappearance of groups of interest.

3.4.3 Models with Continuous Activity Variable

The generalization of the model presented in this chapter to the case of continuous
activity variable can take advantage of Eq. (2.1), with the interaction operator on
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the right side containing conservative contributions only; cf. Eq. (2.2). With one
functional subsystem, the model equation can be written as:

∂ f
∂ t

(t, u) =
∫ 1

−1

∫ 1

−1
η [f](u∗, u∗)C [f](u∗ → u|u∗, u∗) f (t, u∗) f (t, u∗)du∗ du∗

− f (t, u)
∫ 1

−1
η [f](u, u∗) f (t, u∗)du∗.

The social gap S is computed as:

S[f](t) =
∫ 0

−1
f (t, u)du−

∫ 1

0
f (t, u)du

and, similarly, higher order social distortion measures can be written as:

S�[f](t) =
∫ 0

−1
(−u)� f (t, u)du−

∫ 1

0
u� f (t, u)du.

The derivation of models consists in looking for appropriate expressions of the
terms η and C , for which conceptual lines analogous to those of Sect. 3.3 can
be followed. In particular, the continuous-activity counterparts of conditions (3.2)
and (3.5) are, respectively:

∫ 1

−1
C [f](u∗ → u|u∗, u∗)du = 1

and

∫ 1

−1
uC [f](u∗ → u|u∗, u∗)du = u∗+σ(u∗, u∗)

with antisymmetric σ ; i.e., σ(u∗, u∗) =−σ(u∗, u∗), for all u∗, u∗ ∈ [−1, 1].

3.5 Critical Analysis

The mathematical model presented in this chapter has been derived, according to the
guidelines of Chap. 2, by inserting models of the microscopic interaction dynamics
into the general mathematical structure designed as a conceptual basis.

It can be rapidly shown, with tutorial aims, that the model can describe different
asymptotic trends of the wealth distribution as a consequence of different critical
thresholds γ . For instance, Fig. 3.3 shows the asymptotic configurations reached
with n = 9 social classes interacting with a constant critical threshold that is either
small (γ = 2) or relatively large (γ = 6). The starting configuration is the uniform
one over the wealth classes; i.e., f0i = fi(t = 0) = 1

9 for all i = 1, . . . , 9. In the first
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a b

Fig. 3.3 Asymptotic configurations of the wealth distribution predicted by the model in the cases
of: (a) strong social cooperation, and (b) strong social competition

case the model predicts that the society evolves toward a middle-class-dominated
configuration, due to cooperation. In the second case the model predicts instead
that it evolves toward a radicalization of the competition, a hallmark of which is
the almost complete absence of any middle class. Figure 3.4 additionally shows the
influence of initial conditions on asymptotic behavior (for a fixed constant critical
threshold γ = 3). Of course, these simulations have to be considered only as a
preliminary illustrative step, which will be followed by a deeper investigation in
the next chapter.

In particular, looking ahead at the numerical simulations that will be developed
in Chap. 4, we feel confident in claiming that a careful interpretation of the results of
targeted simulations can contribute to additional refinements of models, especially
as far as the description of the interactions at the microscopic scale is concerned.

The basic idea is that the predictive ability of models can be improved by further
detailing and/or enriching the mathematical description of the game dynamics of
the active particles. On the contrary, it cannot be naively enhanced by increasing the
number of phenomenological parameters of the equations, for this procedure simply
leads to what could be called a “fitting ability” of the models. On the contrary, in
the specific field considered in this monograph, the validity of a model should be
assessed in terms of its ability to predict emerging collective trends, qualitatively
observed in real conditions, from the characterization of individual behaviors. This
is, in our opinion, the conceptually correct way to capture the complexity of a
system by a mathematical model. Such a consideration does not only apply to
“stable” trends, namely those that recur under similar circumstances, but also to
trends susceptible of large deviations in consequence of even small changes in the
causes that generate them, up to extremely rare events hardly predictable until they
arise for the first time.
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Fig. 3.4 Effect of initial conditions on the asymptotic distributions predicted by the model

Probably the most complex collective trends are those emerging in panic
conditions. The reason is that panic appears suddenly and spontaneously, often as
a consequence of barely conceivable events. In addition, once widespread panic
occurs it usually entails dramatic changes in the microscopic interaction rules
followed by active particles, which typically are no longer inspired by fully rational
principles. In order to construct models of these phenomena, stochastic game theory
can be a valuable alternative (however still in need of systematic development) to
classical game theory, which is essentially grounded on the assumption of rational
players.

Panic conditions can also be the basis for the onset of rare events known by the
evocative name of black swans [149]. A challenging goal of mathematical models
is to predict, at least qualitatively, the conditions for their emergence, as well as
to identify suitable early-identification signals (also called tips in the specialized
literature) preceding their full development. Nevertheless, as shown in [39], such
kinds of predictions are mostly possible if the modeled microscopic games are
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sufficiently rich to allow for self-enhanced effects on an individual behavioral basis.
This implies considering multi-strategy games with related interplays among the
various strategies expressed by active particles (such as, for example, their wealth
status and their support/opposition to government welfare policy). We defer to
Chap. 5 a more in-depth discussion of this topic.



Chapter 4
Welfare Policy: Applications and Simulations

Abstract This chapter is devoted to the investigation, through targeted numerical
experiments, of various social scenarios predicted by the model presented in Chap. 3
in consequence of different simulated welfare policies. Qualitative simulations are
developed with a mainly exploratory purpose, especially in order to test the ability
of the model to account for the emergence of nontrivial collective average trends out
of the probabilistic description of microscopic individual interactions. To this aim,
a parameter sensitivity analysis is performed, which guides the organization of the
simulations and the critical assessment of their results.

4.1 Introduction

Numerical simulations can serve either quantitative or qualitative purposes. An
example of their use in the first case is as tools to support engineering design in
industrial practice, often with reference to consolidated models of well-understood
physical phenomena (such as, for example, fluid dynamics or solid mechanics).
In the second case they directly support the theoretical development of new
mathematical models, by enabling one to test the predictive ability of the latter
with respect to their reference applications. Comparisons with experimental data,
when available, can also be made; however, this is typically done mainly for
contributing to the validation of models rather than for pursuing immediate practical
implications. In particular, when dealing with complex systems the qualitative
exploratory role is often the major one in numerical simulations, especially as far as
their ability to simulate emerging collective behaviors is concerned. Indeed, this is
an important indication of the validity of the models.

Emerging behaviors in living complex systems are the macroscopic outcome
of often quite simple behavioral rules applied individually by group members
when interacting with one another and with the outer environment. The effects
of such rules are then amplified by the superposition of numerous interaction
events taking place simultaneously all over the group, which lead to characteristic
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patterns (in the space of the microscopic states of the individuals) clearly visible by
adopting an aggregate (viz., collective) point of view. Heuristic interpretations of
such outcomes do not generally provide a satisfactory explanation for the way the
studied system behaves. Indeed, as should be clear by now, the real causes pertain to
the microscopic scale of single individuals: as such, they are neither directly visible
nor often immediately recognizable at large scales, since collective behaviors can
be qualitatively much different from the causes that generated them.

In addition, the aforesaid amplification effect produced by interactions results,
in some cases, in large deviations in observable effects even starting from nearly
the same causes. Mathematical models, duly supported by exploratory numerical
simulations, can therefore be valuable tools for unraveling the tangled network of
interactions and testing the real cause-effect links, thereby shedding light on the
essential dynamics of the system.

As a matter of fact, emerging behaviors can rarely be predicted by purely
analytical methods. One such case concerns collective clusterings; i.e., when the
states of all individuals shrink in number to a unique one or to a small set of limit
states. Examples are, among others, the chemotactic aggregation of cell populations,
the rendez-vous of agents such as robots in coordinated movement, the consensus
of individuals in opinion formation problems, and the flocking of swarms.

When emerging behaviors give rise to more complicated self-organized patterns,
precise analytic characterizations of the latter may no longer be feasible. In this
case, targeted qualitative simulations play a major role in assessing the validity
and the potential of mathematical models. Actually, most emerging behaviors in
living complex systems are of this second type. We recall, for instance, the evolving
shapes of swarms of birds during collective migrations or during the attack of
predators [25, 62]; lane formation and the oscillatory patterns at a bottleneck in
pedestrian counter-flows [98]; and the alternate passage of clusters of vehicles
at unregulated crossroads [99]. For such applications, mathematical approaches
grounded on the concept of complex systems, and particularly focused on the
relationship between small and large scale effects [42, 69, 70, 134], have already
proved to be successful in explaining the spontaneous emergence of typical self-
organized patterns.

Numerical simulations can also serve speculative purposes. For instance, they can
indicate new pathways of experimental investigation when they result in evidence
of emerging behaviors not yet empirically observed. New experiments can then be
designed to confirm or reject the speculative assumptions of mathematical models.
Such a bidirectional feedback between experimenting and simulating can profitably
contribute to compose the big picture, particularly in the case of incomplete, or even
missing, empirical knowledge. A useful reference for the empirical interpretation of
the results of numerical simulations is [128].

In the spirit of the considerations above, this chapter is devoted to numerical
simulations of the model of welfare policy introduced in Chap. 3, with special
emphasis on a parameter sensitivity analysis. The core of the chapter comprises the
next two sections. In more detail, Sect. 4.2 discusses the specific type of sensitivity
analysis to be developed for each of the main ingredients of the model, and Sect. 4.3
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accordingly offers a variety of targeted simulations followed by their interpretation.
Finally, Sect. 4.4 briefly sketches possible ideas for improving the model in light of
the findings of the preceding sections.

4.2 Brainstorming Toward Parameter Sensitivity Analysis

The model of welfare dynamics presented in Chap. 3 is characterized by a few
phenomenological parameters concerning the initial wealth status of the population,
the critical threshold discriminating between cooperative and competitive behaviors,
and the interaction rate and transition probabilities contained in the table of games.
All of them have, in principle, a relevant impact on the qualitative behavior of the
solutions of the model. It is worth stressing again that, in designing the model,
constant attention has been devoted to keeping the total number of parameters
as small as possible (one parameter only for each effect accounted for by the
equations), which now turns out to be advantageous for performing a parameter
sensitivity analysis.

In the following, we examine in detail the parameters featured by the afore-
mentioned terms of the equations as a preliminary step toward the organization of
targeted numerical simulations. In particular, we focus on the role played by the
initial wealth status and the critical threshold, which, as we will see, are amenable to
a more direct interpretation in terms of social status of the population and welfare
policy of the government.

4.2.1 Initial Wealth Status

The initial wealth status of the population is described by the set of distribution
functions f = { fi}n

i=1 at time t = 0, which has to be prescribed as an initial condition
for Eq. (3.1). An important parameter characterizing such a distribution is the
average wealth, hereafter denoted by U0:

U0 := E1[f](0) =
n

∑
i=1

ui fi(0).

Notice that −1 ≤ U0 ≤ 1. Owing to condition (3.5), this quantity is conserved in
time, i.e.,

n

∑
i=1

ui fi(t) =U0, ∀t ∈ (0, Tmax].

The asymptotic scenarios predicted by the model are expected to be sensitive to
the value of U0, because societies that are poor or wealthy (on average) have differ-
ent interpretations of cooperation and competition among individuals, especially in
the absence of an externally imposed strong welfare policy. Nevertheless, it can be
observed that U0 does not completely characterize the initial distribution. Indeed,
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a b c

Fig. 4.1 Three possible profiles of wealth distribution featuring the same value of average wealth
U0 = 0 but decreasing variance. (a) Predominance of extreme wealth classes, Var[f](t = 0) ∼
0.54. (b) Uniform distribution, Var[f](t = 0) ∼ 0.42. (c) Predominance of middle wealth classes,
Var[f](t = 0)∼ 0.3

the same initial average wealth can be obtained with different distribution profiles
as Fig. 4.1 demonstrates. In order to also take into account the bias of the initial
distribution, higher order statistical quantities might be used, such as the variance:

Var[f](t = 0) := E2[f](0)− (E1[f](0))
2 =

n

∑
i=1

u2
i fi(0)−U2

0

or even the third order moment, which gives information about the distortion of
the distribution with respect to a symmetric balanced one. However, higher order
moments different from U0 are, in general, not conserved in time, which makes
them questionable as synthetic indicators for classifying different case studies.
Their conservation could be enforced by further constraints on the table of games,
which however would make the modeling of the latter perhaps too artificial and
difficult to link to clear empirical facts. Therefore, we will essentially rely on U0

for synthetically characterizing the initial wealth status and the evolution at future
times it gives rise to.

4.2.2 Controlled vs. Free Social Competition

The evolution of the system for prescribed initial conditions depends on the
alternation of cooperative and competitive games played by active particles.

�
Fig. 4.2 (continued) (U0 = −0.1) about 40% of active particles end up in the two lowest wealth
classes (u1 = −1, u2 = −0.75) and the social gap tends to the asymptotic value S∞ = 0.098 > 0
(predominance of poor individuals). Conversely, in a society that is wealthy on average (U0 = 0.1)
the symmetric scenario arises, with about 40% of active particles ending up in the two highest
wealth classes (u8 = 0.75, u9 = 1) and the social gap tending invariably to the asymptotic value
S∞ =−0.098 < 0 (predominance of wealthy individuals)
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Fig. 4.2 Asymptotic profiles of the wealth distribution with a fixed critical threshold γ ≡ γ0 = 5.
In all of the considered cases, the shape of the final distribution is independent of the initial bias (as
determined by the sign of the initial social gap S0), being only affected by the average wealth U0.
In general, due to the moderately competitive welfare policy imposed by γ0 = 5, active particles
tend to concentrate in the extreme classes (u1 =−1, u2 =−0.75, u3 =−0.5 on the one hand, and
u7 = 0.5, u8 = 0.75, u9 = 1 on the other hand). In particular, in a society that is poor on average
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Fig. 4.3 Wealth distributions at the initial time t = 0 used for the various simulations presented
in this chapter. Two cases are considered: that of a society that is poor on average (U0 = −0.1)
and that of a society that is wealthy on average (U0 = 0.1), respectively. For each of them,
three representative scenarios are studied, corresponding to different initial biases of the wealth
distribution: predominance of wealthy individuals (negative initial social gap S0 =−0.1), balance
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The discriminating parameter for such game regimes is the critical threshold γ ,
which can either be constant or evolve with the system according to a properly
designed model such as the one given by Eq. (3.9).

A constant threshold γ can be interpreted as a control (operated, for example, by
the government) on the level of admissible social competition according to a precise
welfare policy. For instance, it can be argued that a poor society needs a mainly
cooperative welfare policy in order to avoid an increase of poor individuals, whereas
a wealthier society can sustain higher levels of competition, thereby allowing
individuals to take more care of their individual interests. Conversely, a non-constant
threshold γ = γ[f], which varies on the basis of the instantaneous distribution of
the system, can correspond to a regime of mainly free (viz. self-determined) social
competition, due, for example, to weak action by the central government.

Numerical simulations are expected to provide perspectives on the different
possible evolutions in the two cases. In particular, with reference to Eq. (3.9),
interesting observations can be made by fixing an initial condition, which features
a certain average wealth U0 and a social gap S0, and then comparing the asymptotic
configurations (if any) reached for a fixed threshold γ ≡ γ0 (namely, the reference
value corresponding to the given social gap S0), and for a non-constant γ[f] starting
from γ0.

It is worth noticing that weak government control is not the only interpretation
for a non-constant critical threshold. In fact, different concomitant causes, such
as for instance ethical implications, can break or promote social cooperation even
in a basically controlled welfare regime; see, for example, [101, 135]. Of course,
model (3.9) for γ does not pretend to be as accurate as realistic modeling of such
phenomena would require. Nonetheless, in the present simplified context it can give
useful preliminary hints to be properly developed within targeted research programs
or specific applied studies.

4.3 Numerical Simulations of Selected Case Studies

Simulations are obtained by numerically solving the system of equations (3.1) duly
supplemented by initial conditions:

fi(0) = f0i, i = 1, . . . , n,

�
Fig. 4.3 (continued) between wealthy and poor individuals (zero initial social gap S0 = 0), and
predominance of poor individuals (positive initial social gap S0 = 0.1). Notice that the initial
distributions corresponding to the pairs (U0 , S0) = (−0.1, 0.1) and (U0, S0) = (0.1,−0.1) have
quite a smooth profile, whereas the others feature sharp transitions across the middle class u5 = 0.
This qualitative difference can be understood by considering that the opposite signs of U0 and S0
imply either a poor society with predominance of poor individuals (U0 < 0, S0 > 0) or a wealthy
society with predominance of wealthy individuals (U0 > 0, S0 < 0). Hence, in these cases the social
gap is not a contrast to the average wealth status, whereas it is in all other cases
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where the f0i’s have to be chosen subject to the conditions:

0 ≤ f0i ≤ 1, ∀ i = 1, . . . , n

n

∑
i=1

f0i = 1.

Each f0i represents the initial percentage of active particles in the i-th wealth class.
Alternatively, one can think of f0i as the probability that the test particle is initially
in the i-th class. The resulting initial-value problem is well-posed, and is also well-
posed in the case of nonlinearly additive interactions; that is, the solution { fi(t)}n

i=1
exists and is unique for all t ∈ (0,+∞), and moreover it depends continuously on
the initial data. The proof of these claims relies on fixed point arguments in suitable
Banach spaces. In particular, the proof makes use of the conservation of the zeroth
and first-order moments implied by properties (3.2), (3.5). The interested reader is
referred to [19] for technical details.

Equation (3.1) can be easily discretized by any of the standard computational
schemes for ordinary differential equations, such as Runge-Kutta schemes or even
the simpler explicit Euler scheme:

f j+1
i = f ji +Δ t

(
n

∑
h,k=1

ηhk[f
j]Chk[f

j](i) f jh f jk − f ji
n

∑
k=1

ηik[f
j] f jk

)
, j= 0, 1, 2, . . . ,

which imposes tighter constraints on the time step Δ t for reaching comparable
accuracy but whose practical implementation is definitely more immediate.

In the following simulations, a few parameters, which will not be the subject of
the sensitivity analysis, are fixed once and for all. They are:

• The number of wealth classes (cf. Eq. (3.3)), which is set to n= 9 (thus the middle
neutral class is u5 = 0).

• The coefficients of the interaction rate as in Eq. (3.4). In particular, μ = 0.3 is
chosen whereas η0 is hidden in the time scale by a proper rescaling of the variable
t (technically, η0 can be tuned so as to speed up the convergence of the solution
to possible steady states).

• The fundamental transition probability αhk appearing in the table of games,
which is taken as in Eq. (3.6), thereby being fully defined by the aforementioned
parameters.

4.3.1 Influence of the Initial Condition

This set of simulations aims at testing the influence of different initial profiles of the
distribution of active particles on the collective trend exhibited by the system. For
such a purpose, the critical threshold γ is fixed to the following value:

γ ≡ γ0 = 5
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and will not be varied, considering that the interplay between initial conditions and
γ , either constant or non-constant, will be specifically analyzed later.

The simulated scenarios, which will also serve as a reference for the following
case studies, are classified in terms of the average wealth U0 and the initial social
gap S0. Specifically, the following cases are considered:

(I) Poor society with U0 < 0.
(II) Wealthy society with U0 > 0.

and for each of them the following sub-cases are investigated:

(i) Initial prevalence of wealthy individuals, S0 < 0 (recall the definition of S given
by Eq. (3.8)).

(ii) Initial balance between wealthy and poor individuals, S0 = 0.
(iii) Initial prevalence of poor individuals, S0 > 0,

The sub-cases allow one to test the effect of different initial profiles for the same
initial average wealth.

Figure 4.2 shows the configurations of the distribution of active particles over the
wealth classes reached asymptotically in time, starting from the initial conditions
depicted in Fig. 4.3. Essential remarks about the observed trends are reported in the
caption, whereas general comparative comments are deferred to the last part of this
section.

4.3.2 Influence of a Constant Critical Threshold

As already stated, a constant critical threshold γ can be regarded as an expression of
government policy, which regulates social welfare dynamics by means of targeted
actions such as passing specific laws. Although the parameter γ provides only a very
limited representation of such issues, the analysis of its influence on the asymptotic
trend of the wealth distribution is useful for assessing the descriptive/predictive
ability of the model.

Simulations are therefore now developed by choosing the following two constant
values of the critical threshold:

γ ≡ γ0 = 2, γ ≡ γ0 = 7,

which are smaller and greater than the value used in the previous case study
to allow for further comparisons. Notice that γ0 = 2 corresponds to a largely
cooperative welfare policy, whereas γ0 = 7 corresponds to a strongly competitive
one, considering that the minimum and maximum class distances with n = 9 wealth
classes are 1 and 8, respectively. For both values of γ0, simulations are organized
as before; cf. Figs. 4.4 and 4.5. In particular, the same set of initial conditions (cf.
Fig. 4.3), with corresponding average wealth U0 and initial social gap S0, is used.
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Fig. 4.4 Asymptotic profiles of the wealth distribution for a fixed critical threshold γ ≡ γ0 = 2.
As in the cases illustrated in Fig. 4.2, the final shape of the distribution is independent of its initial
bias estimated using S0. In addition, the markedly cooperative welfare policy imposed by γ0 = 2
gives rise to a high concentration of active particles in the middle wealth classes: about 75% of
particles are in the classes from u3 = −0.5 to u7 = 0.5 in both cases U0 = ±0.1. Consequently,
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4.3.3 Influence of a Variable Critical Threshold

We stress again that a variable critical threshold γ can be understood as due to weak
action by the central government, which mainly leaves rules of cooperation and
competition among various social classes to the market. In some respects, particles
are then free to set, either consciously or unconsciously, the regime of game rules for
chasing their own well-being. In the present context, such a choice is modeled by the
function γ[f] = γ[f](S) (cf. Eq. (3.9)) according to the inspiring principles discussed
in the last part of Sect. 3.3. The latter can be roughly summarized by saying
that wealthy social classes tend to profit from their wealth against poor ones by
increasing γ[f] (i.e., strengthening social competition) as the social gap S increases.
Of course this is not the only possible model for γ[f]; different, possibly more
refined, dynamics of spontaneous social competition can certainly be envisaged. The
present one is however sufficient to serve exploratory purposes, particularly to assess
the descriptive ability of the mathematical structures presented in this monograph.

Parallel to the previous case studies, simulations (cf. Figs. 4.6 and 4.7) are
performed for the same initial conditions and values of U0, S0, γ0, simply letting
γ[f] evolve in time according to the already cited Eq. (3.9).

4.3.4 Overview of the Whole Set of Simulations

Simulations have shown that the wealth distribution has a trend to an asymptotic
profile in both cases of constant and non-constant critical threshold γ . In particular,
this implies that the critical threshold ultimately settles on an equilibrium value;
this is also true for free social competition rules. In addition, the asymptotic social
gap S∞ invariably has the opposite sign with respect to the average wealth U0. This
can be understood as an emergent self-organized collective trend of the system,
which spontaneously tends to a coherent “social polarization” (predominance of
poor individuals in a society that is poor on average and of wealthy ones in a society
that is wealthy on average) even for incoherent initial conditions.

Tables 4.1 and 4.2 summarize the results of the proposed case studies, focusing
especially on the attenuation or sharp increase of possible initial bias in the
wealth distribution. These events are indeed of some interest, as they can be
related to successful or disastrous, respectively, welfare policies. In the worst case,
they can even foreshadow extreme unpredictable consequences well-studied in

�
Fig. 4.4 (continued) the asymptotic distributions are always concave. In addition, in a society that
is poor on average (U0 = −0.1) about 17% of active particles end up in the two lowest wealth
classes (u1 = −1, u2 = −0.75) and the remaining 8% in the two highest ones, with a social gap
tending asymptotically to S∞ = 0.137> 0. On the other hand, in a society that is wealthy on average
(U0 = 0.1) the long-time scenario is symmetric with a social gap tending to S∞ =−0.137 < 0
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Fig. 4.5 Asymptotic profiles of the wealth distribution for a fixed critical threshold γ ≡ γ0 = 7. As
in the cases illustrated in Figs. 4.2 and 4.4, the qualitative asymptotic profile of the distribution is
again independent of the initial social gap S0. In this case, the strongly competitive welfare policy
imposed by γ0 = 7 makes middle wealth classes (from u3 =−0.5 to u7 = 0.5) disappear for both
U0 = ±0.1, which produces a sharp clustering of active particles in the lowest classes (u1 = −1,
u2 = −0.75) and highest classes (u8 = 0.75, u9 = 1). In particular, in a society that is poor on
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the specialized literature [2, 3, 149], which recently have been tackled from the
mathematical side in a preliminary study [39] by means of suitable elaborations
of the ideas and models presented in this monograph.

4.4 Critical Analysis

This chapter has demonstrated that numerical simulations are an integral part of the
process of mathematical modeling. On the one hand, they can confirm the solidity
of models, and hence of the hypotheses and of the mathematical structures that the
latter rely upon, if they are successful in reproducing the hallmarks of real world
phenomena. On the other hand, they can also provide evidence for limitations of
models, thereby contributing to assessing the ranges of validity of the underlying
mathematical approaches and motivating further research for improvements.

The simulations presented in this chapter have shown that stochastic game
theories, in the framework of the KTAP approach, can be a valuable tool for
representing some aspects of human behavior by mathematical equations. They
provide a mathematically sound and empirically coherent framework for dealing
with situations in which deterministic causality principles do not strictly apply, as
in the case of classical physical laws of inert matter. More generally, we observe
that game-theory inspired approaches [14, 77, 101, 118, 130, 155] are permeating
various fields distinct from the one treated in this monograph. A remarkable example
is evolutionary dynamics, where several contributions of this type are already
available [83, 123, 125, 138, 153, 154].

At the same time, the simulations of this chapter have not been able to depict a
large class of interesting phenomena having to do with the bounded rationality and
general unpredictability of human behaviors: the emergence of extreme events not
easily conceivable from the very beginning, the so-called black swans [149], which
we already mentioned in previous chapters. As a matter of fact, all of the quali-
tative asymptotic scenarios obtained from the simulations were somehow roughly
predictable beforehand from the given initial conditions and parameters. Therefore,
simulations were useful to confirm, or explain in more detail, the expected influence
of qualitative differences in such conditions on the final outcomes. In order to

�
Fig. 4.5 (continued) average (U0 = −0.1) about 55% of active particles end up in the lowest
classes, with a social gap tending asymptotically to S∞ ∼ 0.09 > 0. On the other hand, in a society
that is wealthy on average the asymptotic scenario is symmetric, with a social gap tending, in the
long run, to S∞ ∼ −0.09 < 0. It is worth noticing, also in view of the following simulations with
non-constant critical threshold γ , that, here as in the previous simulations (cf. the aforementioned
Figs. 4.2 and 4.4), the asymptotic social gap S∞ and the average wealth U0 invariably have opposite
signs. This can be understood as an emergent self-organized collective trend of the system, which
tends to spontaneously restore a kind of coherent “social polarization” (predominance of poor
individuals, S∞ > 0, in a society that is poor on average, U0 < 0, and vice versa), possibly inverting
it with respect to the initial condition
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Fig. 4.6 Asymptotic profiles of the wealth distribution under a non-constant critical threshold
starting from γ0 = 2 and then evolving according to Eq. (3.9). The basically cooperative social
behavior induced by such a small γ0 produces, in the long run, mostly concave distribution profiles,
which, in a society that is poor on average (U0 = −0.1), are quite similar to those obtained in
the corresponding case of fixed critical threshold (cf. the left column in Fig. 4.4). In particular,
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chase the black swan, a more elaborate modeling of stochastic games is probably
needed. For instance, active particles can be assumed to play games with multiple
complementary strategies, whose complex interplay can generate, under specific
circumstances, unpredictable events. Interested readers are referred to [39] for a
preliminary attempt to place these ideas into a mathematical form.

An additional issue to be properly analyzed is the role of external actions (cf.
Sect. 2.4). The present simulations only account for the influence of the threshold
γ[f], which can be understood as the effect of the presence of external actors (such
as the government) not explicitly modeled. A further development should consider
specific actions from the outer environment, possibly including active interactions
between the inner and the outer systems. Further prospective hints will be given in
the next chapter.

�
Fig. 4.6 (continued) for an initially incoherent social gap (S0 = −0.1 < 0) a mild increase of
competition (from γ0 = 2 to the asymptotic value γ∞ = 3) is sufficient for self-organization to
restore a coherent gap (S∞ = 0.120 > 0) with minor effects on the asymptotic distribution profile.
On the other hand, major differences are observed in a society that is wealthy on average (U0 =
0.1, cf. also the right column in Fig. 4.4). Under game rules freely left to social dynamics, if the
initial social gap is unbiased (S0 = 0) then self-organization restores a coherent social gap (S∞ =
−0.206 < 0) via a mild increase of cooperation (from γ0 = 2 to γ∞ = 1). Instead, for a social gap
initially already negative (S0 =−0.1), the mild increase of cooperation here is due to the tendency
of wealthy individuals to cooperate to preserve their common benefits (as modeled by Eq. (3.9)).
Finally, if the initial gap is incoherent (i.e., positive, S0 = 0.1) these two effects overlap, giving rise
to an asymptotic distribution strongly clustered in the middle and to a vanishing asymptotic critical
threshold, which implies no competition at all among active particles
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Fig. 4.7 Asymptotic profiles of the wealth distribution under a non-constant critical threshold
starting from γ0 = 7 and then evolving according to Eq. (3.9). The basically competitive social
behavior induced by such a large γ0 produces, in the long run, convex distribution profiles, which,
in a society that is poor on average (U0 = −0.1), are quite similar to those obtained in the
corresponding case of fixed critical threshold (cf. the left column in Fig. 4.5). In particular, for
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Table 4.1 Summary of the results of simulations in the case of constant
critical threshold; cf. Figs. 4.2–4.5

U0 =−0.1 U0 = 0.1

S0 =−0.1

γ0 = 2
Concave Concave
All classes present All classes present
Initial bias reversed Initial bias unchanged

γ0 = 5
Convex Convex
All classes present All classes present
Initial bias reversed Initial bias unchanged

γ0 = 7
Strongly convex Strongly convex
No middle classes No middle classes
Initial bias reversed Initial bias unchanged

S0 = 0

γ0 = 2
Concave Concave
All classes present All classes present
Emerging bias > 0 Emerging bias < 0

γ0 = 5
Convex Convex
All classes present All classes present
Emerging bias > 0 Emerging bias < 0

γ0 = 7
Strongly convex Strongly convex
No middle classes No middle classes
Emerging bias > 0 Emerging bias < 0

S0 = 0.1

γ0 = 2
Concave Concave
All classes present All classes present
Initial bias unchanged Initial bias reversed

γ0 = 5
Convex Convex
All classes present All classes present
Initial bias unchanged Initial bias reversed

γ0 = 7
Strongly convex Strongly convex
No middle classes No middle classes
Initial bias unchanged Initial bias reversed

For each of the triples (U0, S0, γ0) examined, the table reports a concise
qualitative overview of the most striking features of the asymptotic
distribution, such as: convexity/concavity (denoting tendency to cluster in
the extreme and middle classes, respectively), possible absence of some
wealth classes in the long-run distribution, and trend in the asymptotic
social gap S∞ with respect to the initial one S0.

�
Fig. 4.7 (continued) both an initially incoherent and an initially unbiased social gap (S0 =−0.1 <
0, S0 = 0, respectively) the basic competition level fixed by γ0 is sufficient by itself for self-
organization to restore a coherent social polarization (S∞ > 0 with unchanged asymptotic critical
threshold γ∞ = 7). Conversely, in a society that is wealthy on average (U0 = 0.1; cf. also the right
column in Fig. 4.5) self-organization restores a coherent social gap (when needed, i.e., for S0 = 0
and S0 = 0.1) by slightly lowering the level of social competition (from γ0 = 7 to γ∞ = 6), which
induces a less clustered asymptotic distribution in which all wealth classes are present, although
most active particles still concentrate in the extreme ones



68 4 Welfare Policy: Applications and Simulations

Table 4.2 Summary of the results of simulations in the case of variable critical threshold; cf.
Figs. 4.6 and 4.7

U0 =−0.1 U0 = 0.1

S0 =−0.1

γ0 = 2

Almost concave Concave
All classes present Extreme classes almost absent
Initial bias reversed Initial bias stressed
More competition More cooperation

γ0 = 7

Strongly convex Strongly convex
No middle classes No middle classes
Initial bias reversed Initial bias unchanged
Initial threshold unchanged Initial threshold unchanged

S0 = 0

γ0 = 2

Concave Concave
All classes present Extreme classes almost absent
Emerging bias > 0 Emerging bias < 0
Initial threshold unchanged More cooperation

γ0 = 7

Strongly convex Convex
No middle classes All classes present
Emerging bias > 0 Emerging bias < 0
Initial threshold unchanged More cooperation

S0 = 0.1

γ0 = 2

Concave Strongly concave
All classes present Only non-negative middle classes present
Initial bias unchanged Initial bias strongly reversed
Initial threshold unchanged Much more cooperation

γ0 = 7

Convex Convex
All classes present All classes present
Initial bias unchanged Initial bias reversed
More cooperation More cooperation

For each of the triples (U0, S0, γ0) examined, the table reports a concise qualitative overview
of the most striking features of the asymptotic distribution, in the same spirit as Table 4.1. In
this case, an indication about the asymptotic critical threshold is also given in terms of more or
less cooperative/competitive behaviors of active particles with respect to the initial level of social
competition fixed by γ0.



Chapter 5
Forward Look at Research Perspectives

Abstract This chapter presents some on research perspectives. Various topics are
treated focusing on the following issues: further analysis of the modeling of welfare
policy in the case of interactions in a network and in open systems; generalization
of the modeling approach to various systems of social sciences, for instance opinion
formation; modeling the interplay of different types of dynamics also viewed as a
tool for predicting rare events; and analytic problems posed by the application of
models to the study of social phenomena.

5.1 Introduction

The mathematical tools presented in Chap. 2 have been applied to modeling the
dynamics related to social and economic policies that a government can develop
to affect the trend of wealth distribution toward a planned direction. The specific
case study, presented in Chaps. 3 and 4, has shown that models can predict
various aspects of the dynamics and analyze the influence of the parameters
of the model on the aforesaid trend. This case study should be regarded as a
preliminary attempt, to be further generalized to enlarge the variety of phenomena
described. This exercise can possibly improve the predictive ability of models.
In addition, applications generate interesting analytic problems that offer applied
mathematicians challenging goals to be properly achieved within a program of
research.

This chapter refers to the identification of research perspectives related to the
aforementioned topics. The style will be somewhat different from that of preceding
chapters. In fact, rather than dealing exhaustively with the issues presented, it
focuses on new models and mathematical problems generated by the study of real
socio-economic problems. Some hints toward research directions follow. Moreover,
additional bibliography is reported to offer interested readers a sufficiently broad
list of references. In particular, we wish to mention the following web pages, which

G. Ajmone Marsan et al., Complex Systems and Society: Modeling and Simulation,
SpringerBriefs in Mathematics, DOI 10.1007/978-1-4614-7242-1 5,
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offer profitable suggestions for developing mathematical approaches to studying
socio-economic systems:

http://www.oecd.org/about/secretarygeneral

http://ineteconomics.org/research note

In this chapter we also revisit the fact that one of the goals, perhaps the most
important one, is the design of models that have the ability to predict rare, seemingly
unpredictable, events such as so-called black swans [149,150]. The idea of pursuing
this challenging goal is given in a recent paper [39], which has shown that extreme
events can be generated by an interplay of different types of dynamics; in the specific
case studied, the interplay is between welfare policies and support or opposition to
a certain political regime.

Reader may be somewhat disappointed by the very introductory stage at which
the contents of this chapter are presented. Nevertheless, it is useful to recall that
this monograph is presented according to the spirit of “Springer Briefs”, hence as
an introduction, by no means exhaustive, to possible research lines currently not yet
thoroughly developed, which might stimulate specific research programs.

Bearing all of the above in mind, the following topics have been selected,
according to the authors’ preferences, for looking ahead at research perspectives:

• Further analysis on the modeling of welfare dynamics involving interactions over
networks and within open systems.

• Generalizations of the modeling approach to a variety of new studies, including
opinion formation, democratic transitions, and political instability.

• Modeling the interplay of different types of dynamics, also viewed as a source
that can generate rare events.

• Analytic problems related to the applications of models.

These topics are treated in the following sections, and the last section concludes the
monograph.

5.2 Welfare and Well-being Policies

As already mentioned, the contents of Chaps. 3 and 4 cannot be considered
exhaustive; indeed various specific problems and generalizations are omitted. A few
of these are presented in this section, followed by some hints for pursuing them.

5.2.1 Interactions Over Networks

Active particles interact, in most cases, over networks [27, 29, 32, 160]. In general,
the identification of the functional subsystems playing the game depends on the

http://www.oecd.org/about/secretarygeneral
http://ineteconomics.org/research_note
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localization of the nodes. The simplest case is when each functional subsystem
corresponds to a node.

Interactions over networks can induce substantial modifications to the dynamics
studied in Chaps. 3 and 4. For instance, the prevalence of selfishness or altruism, as
well as the overall wealth distribution, may be affected by the network topology of
interaction. In addition, the modeling of the interaction rate depends entirely on the
structure of the network. In the case of welfare dynamics, the analysis of Chap. 4
provides evidence that the trend of the system depends on the overall wealth of a
society. Therefore it may happen that the same rules cannot be applied with the same
advantage to every society—for example, every country of a given continent. As an
example, imposing the rules of the wealthiest country to other countries can have a
negative effect. Rules and laws must account for individual characteristics of each
place, and therefore must be adapted accordingly [68, 129].

An interesting research perspective consists of the development of models in
which functional subsystems localized in a node interact over networks of living
systems having a self-organizing ability; see e.g., [99]. Moreover, the study of
networks can involve the modeling of other interesting types of dynamics such as
migration phenomena from less developed countries to wealthier ones [111].

The mathematical tools proposed in Chap. 2 can be technically generalized, while
still maintaining a low computational complexity at least for small networks. The
advantage is that nonlinearly additive interactions can be taken into account, thereby
improving mean field descriptions when necessary. On the other hand, the need for
reducing computational complexity arises in the case of large networks. Perhaps
the clustering of nodes that exhibit the same features can contribute to tackling this
delicate problem.

5.2.2 Modeling Open Systems

All models mentioned so far refer to closed systems, such as countries and networks
of countries closed to any external action. However, it can be argued that economic
and political phenomena can be subject to important modifications induced by exter-
nal actions, which modify the interaction rules at the microscopic scale. Particularly
interesting is the case of external actions causing quantitative modifications of time-
asymptotic configurations and qualitative dynamical behaviors.

The mathematical structures presented in Sect. 2.4 provide the tools to deal with
this problem. Specific applications are known [51] in the case of binary interactions.
However, the modeling approach should be complemented with a deep analysis
of the generation of internal forces. The book by Helbing [95] offers a valuable
contribution to this issue. The modeling approach should take into account the
action of the outer environment on the whole system, both at the macroscopic and
at the particle scales. Some relevant studies, for instance in the field of opinion
formation [52], can be found in the literature. However, a systematic study able
to model the influence of real external actions on the dynamics of the system is
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still missing. Transferring the mathematical tools of Chap. 2 to these new concepts
appears to be a challenging research problem.

5.2.3 Understanding Ethical and Unethical Behaviors

A recent paper [135] has analyzed to what extent unethical behaviors can be sources
of richness. This interesting topic can be approached using the model presented
in Chap. 3, with the expectation of further and deeper analysis of the interplay
between the critical threshold γ and the average wealth of the society. In fact, the
various simulations produced in Chaps. 3 and 4 have clearly shown that the resulting
asymptotic configurations are sensitive to both of them. Again, this suggests that the
rules valid for a rich country cannot be applied to countries with less wealth.

5.3 Toward Additional Applications

The mathematical approach under consideration has been developed, since the
pioneer paper [48], in various fields of social sciences. Applications have been made
not only to the dynamics of wealth redistribution but also in other contexts, such as
opinion formation [50], taxation systems [46,53], competition for secession [7], and
behavioral economics [6]. Additional studies make use of methods of mathematical
kinetic theory, specifically mean field equations. We note, among other applications,
decision making [65], market dynamics [55,116], opinion formation [12], and more
recently migration phenomena [23, 111].

Therefore, we can state that there exists a quite extensive literature in the field
applying similar, though technically different, approaches. In general, understanding
a certain system contributes to generalizing the approach to other systems. This line
of thought suggests also examining systems in other fields of life sciences, such as
mathematical biology [44] or epidemics with virus mutations [73].

As we have seen, the modeling approach first requires assessment of the
functional subsystems and the types of active particles that play the game, along
with the specific activities they express. Subsequently, the developed strategy has to
be identified, in such a way that interactions at the microscopic scale can be properly
modeled. In most cases, it is also useful to speculate about the lower and higher
scales, when they can be identified, as well as on conceivable networks related to
the specific system under consideration. This process can be analyzed in the case of
some specific applications briefly reported in the following paragraphs.

However, before dealing with technical issues it is worth stressing that the various
fields of application reported in the following paragraphs have been selected among
several conceivable ones according to the authors’ preferences. The aforementioned
screening can be viewed as a very preliminary step toward modeling. Obviously, the
derivation of models should constantly face the complexity features of the system



5.3 Toward Additional Applications 73

under consideration. The remarks concluding each specific presentation are possibly
valid for all of them.

5.3.1 Voting Dynamics

Voting dynamics have been widely studied in the literature by political scientists and
economists [30,76,117], with a wide range of techniques borrowed from qualitative
analysis, statistics, game theory, and mathematical modeling. Understanding the
way in which different groups of individuals interact in making decisions about
whom to vote for in national or local elections is crucial in democratic regimes.
A wide range of voting mechanisms exist, strongly dependent on various countries
and political systems. In addition, different voting systems (such as, for example,
electronic voting and mail-in voting) [45] and news and information media [86] may
affect election outcomes, making voting dynamics a complex phenomenon, whose
aggregate outcomes, namely the results of elections, depends on the sub-dynamics
of several concurrent factors.

Consistent with the approach of Chap. 2, we now identify some basic modeling
features for this kind of system.

• Microscopic entities: individuals in a nation.
• Microscopic state: inclination to vote for a certain party in an election.
• Lower scale: individual political opinions.
• Higher scale: aggregates of opinions in a nation.
• Networks of interaction: spatial interactions among voters in cities, districts, and

regional areas.
• External actions for open systems: actions of parties by means of various types

of media.

Remark 5.1. Voting dynamics are generally studied in the framework of closed
systems. However, international networks can play a role in the game by driving
public opinion toward the trend of economically stronger countries. In some cases
these interactions can generate a domino effect.

5.3.2 Diffusion of Technological Innovations

Knowledge transfer has largely been studied in the economics literature related to
innovation adoption and diffusion [107]. Knowledge spill-overs and the diffusion
of new ideas are clearly linked to interactions of individuals in firms and other
institutions, over time and space [4,22,91]. The diffusion of innovations may also be
induced by networks of firms located in different geographical areas, as well as by
market structures and dynamics, and external actions related to the kinds of policies
implemented by governments either domestically or internationally.
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• Microscopic entities: firms.
• Microscopic state: technological stage in firms.
• Lower scale: staff desires to improve the quality of their activity.
• Higher scale: population of firms in a given area.
• Networks of interaction: networks of firms at a regional or national level.
• External actions for open systems: innovation policy.

Remark 5.2. The diffusion of technology has a relevant interplay with other social
dynamics, starting with economic growth or decay. Therefore, it is important that
the modeling approach takes into account the hints of the following section.

5.3.3 Migration Phenomena

Migration flows have great socio-economic impacts on countries and regions from
which and to which they occur. Migrations have been extensively studied in the
literature by sociologists and economists [56, 63, 71]. They occur as a consequence
of several phenomena: level of wealth and safety of the country of origin of
migrants, wars and discrimination, and natural and environmental disasters, to
mention but a few examples. Migrants may modify the socio-economic and cultural
context of cities, regions, and countries, and therefore a better understanding of the
dynamics generating and generated by migrations would help us understand how
this phenomenon contributes to shape socio-economic development.

• Microscopic entities: individuals and/or families.
• Microscopic state: tendency to migrate.
• Lower scale: level of wealth of individuals and families.
• Higher scale: level of development of a country.
• Networks of interaction: networks of displacements.
• External actions for open systems: social policies fostering and/or preventing

migration.

Remark 5.3. The modeling approach of [111] is based on the mathematical ap-
proach presented in this monograph, whereas a different technique is used in [23],
where suitable developments of Hamiltonian mechanics are applied.

5.3.4 Democratic Transitions

The dynamics of the transition from a dictatorship to a democracy are still not
clear as they can be influenced by a very complex interplay of factors. Political
transitions have often occurred in the past century especially in political regimes
outside the Western World, which have been studied from several points of view
by scholars in political science and economics. The latter studied, in particular,
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which economic variables and factors could either foster or prevent the occurrence
of political transitions.

These complex dynamics can lead to unpredictable events that cause sudden
shocks in political regimes (as in the recent case of the “Arab Spring”), and whose
origins still need to be understood clearly. For a comprehensive overview of these
topics, one can refer to [2, 3, 131].

• Microscopic entities: supporters or opponents of a dictatorship.
• Microscopic state: political attitude.
• Lower scale: level of support or dissent toward a dictatorship.
• Higher scale: average collective behaviors.
• Networks of interaction: small areas of a town or a region.
• External actions for open systems: international support for or dissent toward a

regime, media impact.

Remark 5.4. The modeling approach can be developed by either using one func-
tional system only or partitioning the whole system into different subsystems
characterized by different styles in pursuing their strategies. When the strategy
is different, possibly even antagonistic, the identification of several functional
subsystems is often mandatory, as happens for instance for the system briefly
described in the following paragraph.

5.3.5 Spread and Evolution of Criminality

Criminality may originate because of multiple factors related to social, economic,
and political conditions and it clearly has a great impact on people’s well-being.
Social segregation can affect criminality rates and their patterns. The problem of
criminality in urban agglomerations has been studied by sociologists interested in
understanding the dynamics of crime and insecurity [60, 137, 157]. More recently,
some mathematical models on this topic have emerged [85]. Criminality and
social segregation are interconnected complex phenomena, which could be better
understood by means of sophisticated mathematical modeling intended to capture
their patterns of evolution.

• Microscopic entities: individuals subdivided into different functional subsystems;
for example, criminals and police officers.

• Microscopic state: criminal ability in the first subsystem and ability to apprehend
criminals in the second one.

• Lower scale: psychological attitude to criminality.
• Higher scale: average collective behaviors.
• Networks of interaction: small areas of a town or of a region.
• External actions for open systems: international crime legislation.
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Remark 5.5. The modeling approach might divide the whole system into several
functional subsystems characterized by different levels of criminal and detective
ability. Possible transitions across the levels should be included in the model.

5.4 On the Interplay Among Different Dynamics

The modeling approach proposed in previous chapters is based on the idea that
the activity variable is a scalar or, when it is a vector, that the whole system can
be decomposed into subsystems such that each of them is characterized by a scalar
activity variable only. However, this type of decomposition is not always technically
feasible. Moreover, systems where the interplay involves different activity variables
appears to be an interesting topic worthy of investigation.

It has been shown [39] how welfare dynamics based on a selfish attitude of
specific social classes can lead, for certain parameter values, to the clustering of
the population in the extreme wings of support/opposition to a regime. Moreover, in
these extreme situations, even subgroups of the wealthy population become doubtful
about the regime, though they were initially in favor of it.

The interplay between different factors appears to be crucial in several types
of dynamics. For instance, in [3] the interplay between dictatorial and democratic
trends linked to economic issues is analyzed; in [33] the evolution of biodiversity
related to mutualistic networks is modeled (also see [136]). Similarly, it is possible
to look at the influence of social policies, including welfare policies, on the growth
of criminal behaviors [143].

More generally, an overview of social sciences shows that the interplay of
different dynamics can have an important influence on the collective behaviors of
social systems and, more specifically, on their asymptotic trends. Indeed, this is what
has been shown in [39]. Therefore, a natural question arises: how can this interesting
topic be further studied and understood? A straightforward application of the
methods presented in Chap. 2 suggests that the use of vector activity variables gives,
at a technical level, the desired result. On the other hand, this approach significantly
increases the difficulty of modeling individual interactions. A useful alternative
is offered in [39]. It consists of assuming the sequentiality of the dynamics; for
instance first welfare policy and then political dynamics. In this way the output of
the first-level dynamics becomes an input for the second-level dynamics. Future
activity in the field may clarify which is the most appropriate strategy.

Developing these perspectives requires deeper insight into game theory and
evolution. A fundamental reference in this context is [124], which proposes
qualitative analogies between biological and social systems. The role of Darwinian
selection is deeply analyzed in [113]; also see [125, 130].

The case studies addressed in the previous section indicate, specifically, some
conceivable interplays. For instance, the study of opinion formation has an im-
portant interplay with the expression of political preferences in voting dynamics,
whereas diffusion of technology may have an immediate influence on the dynamics
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of wealth distribution and life conditions. Heterogeneity needs to be carefully
taken into account, also considering that small groups of individuals (representing
a minority of the whole population) can have an important impact on the global
dynamics of social systems, as documented in [84].

In general, it can be stated that the selection of interplays that effectively have a
role in the game depends on the specific goal of the modeling approach. Different
choices correspond to different goals. Interplays should provide early-warning
signals, which indicate changes in the trend of the collective behaviors exhibited
by the systems under consideration [127, 140]. A quantitative example is offered
in [39] for the interplay between welfare policy and support/opposition to a certain
political regime. Specifically, it is shown that when welfare policies tend to be
oriented against the well-being of citizens, and when this trend is not controlled by
the government but is simply left to spontaneous competition within the population,
early signals can be detected which anticipate a radicalization of opposition to the
regime.

5.5 Analytical Problems

The application of models to real social phenomena generates interesting analytical
problems, which can stimulate further challenging investigations for applied math-
ematicians.

As we have seen, mathematical problems are stated, in the case of discrete
activity variables, as initial-value problems for a nonlinear system of ordinary
differential equations. If the activity variable is continuous, initial-value problems
refer to systems of integro-differential equations. The qualitative analysis can focus
on the following issues:

• Well-posedness of initial-value problems.
• Existence and uniqueness of equilibrium configurations and their stability prop-

erties.
• Dependence of the qualitative behaviors of solutions on the parameters of the

model, in particular on the initial conditions.
• Analytical problems for open systems.
• Multiscale issues.
• Models with spatial structure.
• Further developments of game theory.

Some results are already known in the literature, generally for models featuring
linearly additive interactions. Their extension to the case of nonlinearly additive
interactions may not be immediate but is necessary due to the much greater interest
of this class of models.

Bearing this in mind, let us briefly sketch some aspects of the issues mentioned
above.
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5.5.1 Existence of Solutions

This problem was first addressed in [16] for systems of integro-differential equations
with linear interactions and in the absence of external actions. It is not a difficult
problem, considering that the interaction operator is locally Lipschitz continuous
and that, due to the conservation of mass, the L1 norm of the distribution function
is preserved in time. More recent works involve generalization to open systems [18]
and qualitative analysis in the case of nonlinear interactions [19].

The generalization of these results to the case of systems of ordinary differential
equations generated by discrete activity variables is immediate as documented
in [48]. Additional difficulties have to be tackled if the model includes proliferative
events, which however have not been treated in this monograph.

5.5.2 Equilibrium Configurations and Their Dependence on
the Model Parameters

Existence, but not uniqueness, of equilibrium solutions has already been studied
in [16] and further generalized in [19]. On the other hand proof of uniqueness seems
to be a difficult problem, although simulations presented in Chap. 3 suggest that
the equations, at least in the case of closed systems, show a trend toward a unique
asymptotic configuration, which appears to be numerically stable. If the activity
variable is discrete then the proof of uniqueness and stability has been obtained for
models with a relatively small number of activity classes [49]; however, the proof
has not yet been extended to the general case.

Moreover, as shown by the specific examples treated in Chaps. 3 and 4, although
the equations always show a trend to an asymptotic equilibrium configuration, the
shape of such a configuration depends on initial conditions. More precisely, it
depends, in the specific model dealt with in this monograph, on the initial mean
value of the wealth but apparently not on the shape of the initial distribution. This
amazing result is not well understood and analytical proofs are not available to
support such a numerical insight. Partial results are known for models of opinion
formation with discrete states [47]; on the other hand, further analysis is welcome
for understanding the role played by various parameters on the aforementioned
equilibrium configurations.

5.5.3 Open Systems

Most of the literature concerned with analytical problems, such as those briefly
sketched above, is limited to closed systems. On the other hand, the role of
external actions can be of paramount importance if it refers either to actions at the
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macroscopic scale or to the influence of agents acting at the microscopic scale. The
formal structure to be used in this type of modeling approach was given in Chap. 2.

Since very limited activity has been developed in this field, we simply bring
this topic to the attention of readers and stress its importance for applications. The
main difficulty consists in modeling external actions in terms of agents and of the
games they play with active particles. In some cases interactions can modify the
outer environment. This issue is well documented in earth sciences [163] and should
probably also be accounted for in the case of social dynamics.

5.5.4 Multiscale Problems

The modeling approach has shown that the analysis of dynamics at the microscopic
scale can be transferred to a statistical description of collective behaviors. The
conceivable applications summarized in the previous section have shown that for
each system it is possible to look at a lower submicroscopic scale and at a higher
macroscopic scale. The interplay between different scales generates modeling and
analytical problems of great interest for applications. The link between submicro-
scopic and microscopic scales implies the necessity to model the interplay between
the games at the level of individuals and the inner dynamics of the latter. On
the other hand, looking for collective dynamics at the macroscopic scale means
obtaining an aggregate characterization of the system behavior, for instance via
suitable asymptotic approaches or averaging techniques, stemming from, but not
necessarily focused on, individualities.

5.5.5 Models with Spatial Structure

The mathematical models studied in this monograph have been derived by assuming
that the dynamics in space were limited to interactions involving different nodes
of a network, whereas spatial dynamics within each node were neglected. This
assumption is not always valid. In fact, social interactions produce, in some cases,
aggregation and fragmentation phenomena that are localized in space.

An example is offered by the study of criminal behaviors: the knowledge of
the localizations of aggregation spots can contribute to organizing the fight against
criminals [143]. Furthermore, as observed in [111], in the case of migrations the
spatial distribution of communities of migrants can also be a useful detail for the
study of the system.

The modeling of spatial dynamics can take advantage of kinetic-type descrip-
tions, where the localization of active particles is included in the distribution
function as a further microstate. The derivation of models at higher scales then
needs to be obtained from the underlying description delivered by such kinetic
models. It is possible that the approach reviewed in [36] can be properly developed



80 5 Forward Look at Research Perspectives

in this direction for addressing the study of social systems. The conceptual difficulty
consists in modeling spatial dynamics related to nonlocal games [113]. Some hints
toward this specific goal might be extracted from the study of swarms [25].

5.5.6 Further Developments of Game Theory

The modeling approach proposed in this monograph has been constantly referred
to game-theoretical ideas, which have been used to model nonlinear interactions
within a general framework of generalized kinetic equations. Recent literature
reflects different approaches according to different ways of treating individual-based
interactions and of inserting them in different classes of evolution equations. Among
others, we mention here evolutionary games in the framework of statistical me-
chanics [95], differential games [57, 58] in the framework of controlled differential
equations, and mean field games [92, 114]; see also the recent special issue [61].

5.6 Conclusions

This monograph has shown how suitable generalizations of the kinetic theory for
active particles can be applied to model a variety of social and economic systems.
The first part of the monograph has focused on the derivation of mathematical tools,
and the second part on applications and research perspectives. We feel confident
in stating that the indications given as possible research perspectives will generate
interesting results from the point of view of both modeling and analytical problems.

The application of the mathematical tools discussed in this monograph to a
broader set of socio-economic systems appears to be quite a natural perspective,
whereas analysis of the interplay involving different activity variables is more
challenging. The indication that the latter can lead to extreme radicalization suggests
continuing along the research line outlined in [39] in other fields of life sciences
as well. Concerning this, it is worth stressing again that interest in new analytical
problems generated by such a modeling approach, some of which are definitely
challenging to tackle, is not only due to their intrinsic technical difficulty but, first
and foremost, to their immediate applicability.

Some concluding arguments can address the big problem of looking for a
mathematical theory of social systems. The first step toward this challenging goal
should be the development of mathematical tools suitable for capturing the most
relevant general complexity features of such systems. Addressing such an issue
in a satisfactory way is, by itself, an extremely challenging task. We certainly do
not claim that the search for mathematical tools is completed with the contents of
Chap. 2. We simply claim that a preliminary approach has been proposed, which is
waiting for further refinements and improvements.
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The main positive aspect of the proposed approach is that it has introduced,
within a unified framework, a class of equations that includes the following specific
features:

• Heterogeneous distribution of the ability of individuals to pursue specific goals.
Heterogeneity can have an important influence in determining the output of
interactions and hence the overall dynamics.

• Nonlinearly additive interactions, along with related learning processes, treated
in terms of stochastic games. This opens up the possibility of going beyond the
limitations of rational players and classical game theory.

• The ability to describe social behaviors within a multiscale perspective, which
includes, in particular, interaction rules at the microscale and collective trends at
a more aggregate statistical level.

The various arguments presented in Chap. 1 motivate the search for a unified
mathematical structure, to be regarded as a first step toward the derivation of a
mathematical theory of social systems. Such a structure is required to include all
paradigms of the complexity of the class of systems under consideration, so that it
can compensate, at least partially, for the lack of fundamental background theories
that is currently typical of living systems.

These structures can be technically improved by including the ability to describe
additional phenomena. Nevertheless, the validity of a model is related to its success
in modeling interactions at the microscopic scale by an appropriate phenomenolog-
ical interpretation of social reality. It is possible that mathematical methods such
as those reviewed in [36] can derive macroscopic averaged behaviors from the
underlying description delivered by the kinetic theory for active particles.

However, the most significant step toward a mathematical theory of social
systems might be a deeper understanding of the dynamics at the submicroscopic
scale, which are responsible for the games played by individuals at the microscopic
scale. This implies in turn a deeper understanding of the psychological mechanisms
that generate individual strategies.

Even if this is an extremely difficult goal to be achieved, intermediate results
are interesting and the analytical problems generated by this attempt are definitely
challenging, and hence worth tackling.
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