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Abstract Sensitivity analysis (SA) is a procedure for studying how sensitive are
the output results of large-scale mathematical models to some uncertainties of the
input data. The models are described as a system of partial differential equations.
Often such systems contain a large number of input parameters. Obviously, it is
important to know how sensitive is the solution to some uncontrolled variations or
uncertainties in the input parameters of the model. Algorithms based on analysis
of variances technique for calculating numerical indicators of sensitivity and
computationally efficient Monte Carlo integration techniques have recently been
developed by the authors. They have been successfully applied to sensitivity studies
of air pollution levels calculated by the Unified Danish Eulerian Model with respect
to several important input parameters. In this paper a comprehensive theoretical and
experimental study of the Monte Carlo algorithm based on symmetrised shaking of
Sobol sequences has been done. It has been proven that this algorithm has an optimal
rate of convergence for functions with continuous and bounded second derivatives in
terms of probability and mean square error. Extensive numerical experiments with
Monte Carlo, quasi-Monte Carlo (QMC) and scrambled QMC algorithms based on
Sobol sequences are performed to support the theoretical studies and to analyze
applicability of the algorithms to various classes of problems. The numerical tests
show that the Monte Carlo algorithm based on symmetrised shaking of Sobol
sequences gives reliable results for multidimensional integration problems under
consideration.
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1 Introduction

Most existing methods for providing SA rely on special assumptions connected to
the behavior of the model (such as linearity, monotonicity and additivity of the
relationship between model input and model output) [22]. Such assumptions are
often applicable to a large range of mathematical models. At the same time there
are models that include significant nonlinearities and/or stiffness. For such models
assumptions about linearity and additivity are not applicable. This is especially
true when one deals with nonlinear systems of partial differential equations. The
numerical study and results reported in this paper have been done by using a
large-scale mathematical model called Unified Danish Eulerian Model (UNI-DEM)
[33, 34]. The model enables us to study the transport of air pollutants and other
species over a large geographical region. The system of partial differential equations
describes the main physical processes, such as advection, diffusion, deposition as
well as chemical and photochemical processes between the studied species. The
emissions and the quickly changing meteorological conditions are also described.
The nonlinearity of the equations is mainly introduced when modeling chemical
reactions [33]. If the model results are sensitive to a given process, one can describe
it mathematically in a more adequate way or more precisely. Thus, the goal of
our study is to increase the reliability of the results produced by the model and
to identify processes that must be studied more carefully, as well as to find input
parameters that need to be measured with a higher precision. A careful sensitivity
analysis is needed in order to decide where and how simplifications of the model
can be made. That is why it is important to develop and study more adequate and
reliable methods for sensitivity analysis. A good candidate for reliable sensitivity
analysis of models containing nonlinearity is the variance-based method [22]. The
idea of this approach is to estimate how the variation of an input parameter or a
group of inputs contributes into the variance of the model output. As a measure
of this analysis we use the total sensitivity indices (TSI) (see, Sect. 2) described as
multidimensional integrals:

I =
ˆ

Ω
g(x)p(x)dx, Ω ⊂ Rd , (1)

where g(x) is a square integrable function in Ω and p(x)≥ 0 is a probability density
f unction (p.d.f.), such that

´
Ω p(x)dx = 1.

Clearly, the progress in the area of sensitivity analysis is closely related to the
progress in reliable algorithms for multidimensional integration.
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2 Problem Setting

2.1 Modeling and Sensitivity

Assume that the mathematical model can be presented as a function

u = f (x), where x = (x1,x2, . . . ,xd) ∈Ud ≡ [0;1]d (2)

is the vector of input parameters with a joint p.d.f. p(x) = p(x1, . . . ,xd). Assume
also that the input variables are independent (noncorrelated) and the density function
p(x) is known, even if xi are not actually random variables (r.v.). The TSI of an input
parameter xi, i∈{1, . . . ,d} is defined in the following way [9, 26]:

Stot
i = Si + ∑

l1 �=i

Sil1 + ∑
l1,l2 �=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1 , (3)

where Si is called the main effect (first-order sensitivity index) of xi and Sil1...l j−1

is the j-th order sensitivity index. The higher-order terms describe the interaction
effects between the unknown input parameters xi1 , . . . ,xiν ,ν ∈ {2, . . . ,d} on the
output variance.

The method of global SA used in this work is based on a decomposition of
an integrable model function f in the d-dimensional factor space into terms of
increasing dimensionality [26]:

f (x) = f0 +
d

∑
ν=1

∑
l1<...<lν

fl1...lν (xl1 ,xl2 , . . . ,xlν ), (4)

where f0 is a constant. The representation (4) is referred to as the ANOVA
representation of the model function f (x) if each term is chosen to satisfy the
following condition [26]:

ˆ 1

0
fl1...lν (xl1 ,xl2 , . . . ,xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . ,d.

Let us mention the fact that if the whole presentation (4) of the right-hand side is
used, this does not make the problem simpler. The hope is that a truncated sequence
f0 +∑dtr

ν=1 ∑l1<...<lν fl1...lν (xl1 ,xl2 , . . . ,xlν ), where dtr < d (or even dtr � d), can be
considered as a good approximation to the model function f .

The quantities

D =

ˆ
Ud

f 2(x)dx− f 2
0 , Dl1 ... lν =

ˆ
f 2
l1 ... lν dxl1 . . .dxlν (5)
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are the so-called total and partial variances, respectively, and are obtained after
squaring and integrating over Ud the equality (4) on the assumption that f (x)
is a square integrable function (thus, all terms in (4) are also square integrable
functions). Therefore, the total variance of the model output is split into partial
variances in the analogous way as the model function, that is, the unique ANOVA-
decomposition: D=∑d

ν=1 ∑l1<...<lν Dl1...lν . The use of probability theory concepts is
based on the assumption that the input parameters are random variables distributed
in Ud that defines fl1 ... lν (xl1 ,xl2 , . . . ,xlν ) also as random variables with variances
(5). For example, fl1 is presented by a conditional expectation: fl1(xl1) = E(u|xl1)−
f0 and, respectively, Dl1 = D[ fl1(xl1)] = D[E(u|xl1)]. Based on these assumptions
about the model function and the output variance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . ,d} (6)

are referred to as the global sensitivity indices [26]. Based on the formulas
(5)–(6), it is clear that the mathematical treatment of the problem of providing
global sensitivity analysis consists in evaluating total sensitivity indices (3) of
corresponding order that, in turn, leads to computing multidimensional integrals
of the form (1). It means that to obtain Stot

i in general, one needs to compute 2d (or
2dtr , with dtr � d) integrals of type (5).

The procedure for computing global sensitivity indices (see [26]) is based on the
following representation of the variance:

Dy : Dy =

ˆ
f (x) f (y,z′)dxdz′ − f 2

0 , (7)

where y = (xk1 , . . . ,xkm), 1 ≤ k1 < .. . < km ≤ d, is an arbitrary set of m variables
(1 ≤ m ≤ d − 1) and z is the set of d −m complementary variables, i.e. x = (y,z).
The equality (7) enables the construction of a Monte Carlo algorithm for evaluating
f0,D and Dy:

1
n

n

∑
j=1

f (ξ j)
P−→ f0,

1
n

n

∑
j=1

f (ξ j) f (η j,ζ ′
j)

P−→ Dy + f 2
0 ,

1
n

n

∑
j=1

f 2(ξ j)
P−→ D+ f 2

0 ,
1
n

n

∑
j=1

f (ξ j) f (η ′
j,ζ j)

P−→ Dz + f 2
0 ,

where ξ = (η ,ζ ) is a random sample and η corresponds to the input subset denoted
by y.

Instead of randomized (Monte Carlo) algorithms for computing the above sensi-
tivity parameters, one can use deterministic quasi-Monte Carlo (QMC) algorithms
or randomized QMC [13, 14]. Randomized (Monte Carlo) algorithms have proven
to be very efficient in solving multidimensional integrals in composite domains
[3, 23]. At the same time the QMC based on well-distributed Sobol sequences
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can be considered as a good alternative to Monte Carlo algorithms, especially for
smooth integrands and not very high effective dimensions (up to d = 15) [12].
Sobol ΛΠτ are good candidates for efficient QMC algorithms. Algorithms based
on ΛΠτ sequences while being deterministic mimic the pseudorandom sequences
used in Monte Carlo integration. One of the problems with ΛΠτ sequences is
that they may have bad two-dimensional projection. In this context bad means
that the distribution of the points is far from being a uniform distribution. If such
projections are used in a certain computational problem, then the lack of uniformity
may provoke a substantial lost of accuracy. To overcome this problem randomized
QMC can be used. There are several ways of randomization and scrambling is
one of them. The original motivation of scrambling [10, 19] aims toward obtaining
more uniformity for quasi-random sequences in high dimensions, which can be
checked via two-dimensional projections. Another way of randomisation is to shake
the quasi-random points according to some procedure. Actually, the scrambled
algorithms obtained by shaking the quasi-random points can be considered as Monte
Carlo algorithms with a special choice of the density function. It is a matter of
definition. Thus, there is a reason to be able to compare two classes of algorithms:
deterministic and randomized.

3 Complexity in Classes of Algorithms

One may pose the task to consider and compare two classes of algorithms:
deterministic algorithms and randomized (Monte Carlo) algorithms. Let I be the
desired value of the integral. Assume for a given r.v. θ one can prove that the
mathematical expectation satisfies Eθ = I. Suppose that the mean value of n values
of θ : θ (i), i = 1, . . . ,n is considered as a Monte Carlo approximation to the solution:
θ̄n = 1/n∑n

i=1 θ (i) ≈ I, where θ (i)(i = 1,2, . . . ,n) correspond to values (realizations)
of a r.v. θ . In general, a certain randomized algorithm can produce the result
with a given probability error. So, dealing with randomized algorithms one has to
accept that the result of the computation can be true only with a certain (although
high) probability. In most practical computations it is reasonable to accept an error
estimate with a probability smaller than 1.

Consider the following integration problem:

S( f ) := I =
ˆ

Ud
f (x)dx, (8)

where x ≡ (x1, . . . ,xd) ∈ Ud ⊂ Rd and f ∈ C(Ud) is an integrable function on
Ud . The computational problem can be considered as a mapping of function f :
{[0,1]d → R} to R: S( f ) : f → R, where S( f ) =

´
Ud f (x)dx and f ∈ F0 ⊂ C(Ud).

We refer to S as the solution operator. The elements of F0 are the data, for which the
problem has to be solved, and for f ∈ F0, S( f ) is the exact solution. For a given f ,
we want to compute exactly or approximately S( f ). One may be interested in cases
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when the integrand f has a higher regularity. It is because in many cases of practical
computations f is smooth and has high-order bounded derivatives. If this is the case,
then is it reasonable to try to exploit such a smoothness. To be able to do that we
need to define the functional class F0 ≡ Wk(‖ f‖;Ud) in the following way:

Definition 3.1. Let d and k be integers, d,k≥ 1. We consider the class Wk(‖ f‖;Ud)
(sometimes abbreviated to Wk) of real functions f defined over the unit cube Ud =

[0,1)d , possessing all the partial derivatives
∂ r f (x)

∂xα1
1 . . .∂xαd

d

, α1 + · · ·+αd = r ≤ k,

which are continuous when r < k and bounded in sup norm when r = k. The
seminorm ‖·‖ on Wk is defined as

‖ f‖ = sup

{∣∣∣∣∣ ∂ k f (x)

∂xα1
1 . . .∂xαd

d

∣∣∣∣∣ , α1 + · · ·+αd = k, x ≡ (x1, . . . ,xd) ∈Ud

}
.

We keep the seminorm ‖ f‖ into the notation for the functional class Wk(‖ f‖;Ud)
since it is important for our further consideration. We call a quadrature formula any
expression of the form

AD( f ,n) =
n

∑
i=1

ci f (x(i)),

which approximates the value of the integral S( f ). The real numbers ci ∈ R are
called weights and the d-dimensional points x(i) ∈ Ud are called nodes. It is clear
that for fixed weights ci and nodes x(i) ≡ (xi,1, . . . ,xi,d), the quadrature formula
AD( f ,n) may be used to define an algorithm with an integration error err( f ,AD)≡´

Ud f (x)dx−AD( f ,n). We call a randomized quadrature formula any formula of
the following kind: AR( f ,n) =∑n

i=1 σi f (ξ (i)), where σi and ξ (i) are random weights
and nodes, respectively. The algorithm AR( f ,n) belongs to the class of randomized
(Monte Carlo) denoted by A R.

Definition 3.2. Given a randomized (Monte Carlo) integration formula for the
functions from the space Wk, we define the integration error

err( f ,AR)≡
ˆ

Ud
f (x)dx−AR( f ,n)

by the probability error εP( f ) in the sense that εP( f ) is the least possible real
number, such that

Pr
(∣∣err( f ,AR)

∣∣< εP( f )
)≥ P,

and the mean square error

r( f ) =
{

E
[
err2( f ,AR)

]}1/2
.

We assume that it suffices to obtain an εP( f )-approximation to the solution with
a probability 0 < P < 1. If we allow equality, i.e. 0 < P ≤ 1 in Definition 3.2, then
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εP( f ) can be used as an accuracy measure for both randomized and deterministic
algorithms. In such a way it is consistent to consider a wider class A of algorithms
that contains both classes: randomized and deterministic algorithms.

Definition 3.3. Consider the set A of algorithms A:

A = {A : Pr(|err( f ,A)| ≤ ε)≥ c}, A ∈ {AD,AR}, 0 < c < 1

that solve a given problem with an integration error err( f ,A).

In such a setting it is correct to compare randomized algorithms with algorithms
based on low-discrepancy sequences like Sobol ΛΠτ sequences.

4 The Algorithms

The algorithms we study are based on Sobol ΛΠτ sequences.

4.1 ΛΠτ Sobol Sequences

ΛΠτ sequences are uniformly distributed sequences (u.d.s.) The term u.d.s. was
introduced by Hermann Weyl in 1916 [30]. For practical purposes a u.d.s. should
satisfy the following three requirements [23, 25]: (i) the best asymptote as n → ∞,
(ii) well-distributed points for small n and (iii) a computationally inexpensive
algorithm.

All ΛΠτ sequences given in [25] satisfy the first requirement. Suitable distri-
butions such as ΛΠτ sequences are also called (t,m,s)-nets and (t,s)-sequences in
base b ≥ 2. To introduce them, define first an elementary s-interval in base b as a

subset of Us of the form E = ∏s
j=1

[
a j

bd j
,

a j+1

bd j

]
, where a j,d j ≥ 0 are integers and

a j < bd j for all j ∈ {1, . . . ,s}. Given two integers 0 ≤ t ≤ m, a (t,m,s)-net in base b
is a sequence x(i) of bm points of Us such that Card E∩{x(1), . . . ,x(b

m)}= bt for any
elementary interval E in base b of hypervolume λ (E) = bt−m. Given a non-negative
integer t, a (t,s)-sequence in base b is an infinite sequence of points x(i) such that
for all integers k ≥ 0,m ≥ t, the sequence {x(kbm), . . . ,x((k+1)bm−1)} is a (t,m,s)-net
in base b.

Sobol [23] defines his Πτ -meshes and ΛΠτ sequences, which are (t,m,s)-nets
and (t,s)-sequences in base 2, respectively. The terms (t,m,s)-nets and (t,s)-
sequences in base b (also called Niederreiter sequences) were introduced in 1988
by Niederreiter [18].

To generate the j-th component of the points in a Sobol sequence, we need
to choose a primitive polynomial of some degree s j over the Galois field of
two elements GF(2) Pj = xs j + a1, jxs j−1 + a2, jxs j−2 + . . .+ as j−1, jx + 1, where
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the coefficients a1, j, . . . ,as j−1, j are either 0 or 1. A sequence of positive integers
{m1, j,m2, j, . . .} are defined by the recurrence relation

mk, j = 2a1, jmk−1, j ⊕ 22a2, jmk−2, j ⊕ . . .⊕ 2s jmk−s j , j ⊕mk−s j , j,

where ⊕ is the bit-by-bit exclusive-or operator. The values m1, j, . . . ,ms j , j can be
chosen freely provided that each mk, j,1 ≤ k ≤ s j , is odd and less than 2k. Therefore,
it is possible to construct different Sobol sequences for the fixed dimension s. In
practice, these numbers must be chosen very carefully to obtain really efficient
Sobol sequence generators [27]. The so-called direction numbers {v1, j,v2, j, . . .}
are defined by vk, j =

mk, j

2k
. Then the j-th component of the i-th point in a Sobol

sequence is given by xi, j = i1v1, j ⊕ i2v2, j ⊕ . . . , where ik is the k-th binary digit of
i = (. . . i3i2i1)2. Subroutines to compute these points can be found in [2, 24]. The
work [15] contains more details.

4.2 The Monte Carlo Algorithms Based on Modified Sobol
Sequences: MCA-MSS

One of the algorithms based on a procedure of shaking was proposed recently in
[6]. The idea is that we take a Sobol ΛΠτ point (vector) x of dimension d. Then x
is considered as a centrum of a sphere with a radius ρ < 1. A random point ξ ∈Ud

uniformly distributed on the sphere is taken. Consider a random variable θ defined
as a value of the integrand at that random point, i.e. θ = f (ξ ). Consider random
points ξ (i)(ρ) ∈ Ud, i = 1, . . . ,n. Assume ξ (i)(ρ) = x(i) + ρω(i), where ω(i) is a
unique uniformly distributed vector in Ud . The radius ρ is relatively small ρ � 1

2d j
,

such that ξ (i)(ρ) is still in the same elementary i-th interval Ed
i =∏d

j=1

[
a(i)j

2d j
,

a(i)j +1

2d j

]
,

where the pattern ΛΠτ point x(i) is. We use a subscript i in Ed
i to indicate that the

i-th ΛΠτ point x(i) is in it. So, we assume that if x(i) ∈ Ed
i , then ξ (i)(ρ) ∈ Ed

i too.
It was proven in [6] that the mathematical expectation of the random variable

θ = f (ξ ) is equal to the value of the integral (8), that is, Eθ = S( f ) =
´

Ud f (x)dx.
This result allows for defining a randomized algorithm. One can take the Sobol ΛΠτ
point x(i) and shake it somewhat. Shaking means to define random points ξ (i)(ρ) =
x(i)+ρω(i) according to the procedure described above. For simplicity the algorithm
described above is abbreviated as MCA-MSS-1.

The probability error of the algorithm MCA-MSS-1 was analysed in [7]. It was
proved that for integrands with continuous and bounded first derivatives, i.e. f ∈
W1(L;Ud), where L = ‖ f‖, it holds

err( f ,d) ≤ c
′
d ‖ f‖n

− 1
2 − 1

d and r( f ,d) ≤ c
′′
d ‖ f‖n

− 1
2 − 1

d
,

where the constants c
′
d and c

′′
d do not depend on n.
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In this work a modification of algorithm MCA-MSS-1 is proposed and analysed.
The new algorithm will be called MCA-MSS-2.

It is assumed that n = md , m ≥ 1. The unit cube Ud is divided into md disjoint
subdomains, such that they coincide with the elementary d-dimensional subintervals

defined in Sect. 4.1 Ud =
⋃md

j=1 Kj, where Kj =∏d
i=1[a

( j)
i ,b( j)

i ), with b( j)
i −a( j)

i =
1
m

for all i = 1, . . . ,d.
In such a way in each d-dimensional subdomain Kj, there is exactly one ΛΠτ

point x( j). Assuming that after shaking, the random point stays inside Kj, i.e.
ξ ( j)(ρ) = x( j) +ρω( j) ∈ Kj, one may try to exploit the smoothness of the integrand
in case if the integrand f belongs to W2(L;Ud).

Then, if p(x) is a p.d.f., such that
´

Ud p(x)dx = 1, then

ˆ
Kj

p(x)dx = p j ≤ c( j)
1

n
,

where c( j)
1 are constants. If d j is the diameter of Kj, then

d j = sup
x1,x2∈Kj

|x1 − x2| ≤ c( j)
2

n1/d
,

where c( j)
2 are another constants.

In the particular case when the subintervals are with edge 1/m for all constants,

we have c( j)
1 = 1 and c( j)

2 =
√

d. In each subdomain Kj the central point is denoted

by s( j), where s( j) = (s( j)
1 ,s( j)

2 , . . . ,s( j)
d ).

Suppose two random points ξ ( j) and ξ ( j)′ are chosen, such that ξ ( j) is selected
during our procedure used in MCA-MSS-1. The second point ξ ( j)′ is chosen to be
symmetric to ξ ( j) according to the central point s( j) in each cube Kj. In such a
way the number of random points is 2md . One may calculate all function values
f (ξ ( j)) and f (ξ ( j)′), for j = 1, . . . ,md , and approximate the value of the integral in
the following way:

I( f )≈ 1
2md

2n

∑
j=1

[
f (ξ ( j))+ f (ξ ( j)′)

]
. (9)

This estimate corresponds to MCA-MSS-2. We prove later on that this algorithm
has an optimal rate of convergence for functions with bounded second derivatives,
i.e. for functions f ∈ W2(L;Ud), while the algorithm MCA-MSS-1 has an optimal
rate of convergence for functions with bounded first derivatives: f ∈ W1(L;Ud).
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One can prove the following:

Theorem 1. The quadrature formula (9) constructed above for integrands f from
W2(L;Ud) satisfies

err( f ,d) ≤ c̃ ′
d ‖ f‖n

− 1
2 − 2

d

and

r( f ,d) ≤ c̃ ′′
d ‖ f‖n

− 1
2 − 2

d
,

where the constants c̃ ′
d and c̃ ′′

d do not depend on n.

Proof. One can see that

E

{
1

2md

2n

∑
j=1

[
f (ξ ( j))+ f (ξ ( j)′)

]}
=

ˆ
Ud

f (x)dx.

For the fixed ΛΠτ point x( j) ∈ Kj one can use the d-dimensional Taylor formula
to present the function f (x( j)) in Kj around the central point s( j). Since f ∈
W2(L;Ud), there exists a d-dimensional point η( j) ∈ Kj lying between x( j) and
s( j) such that

f (x( j)) = f (s( j)) + ∇ f (s( j)) (x( j)− s( j))

+
1
2
(x( j)− s( j))T [D2 f (η( j))](x( j)− s( j)), (10)

where ∇ f (x)=

[
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xd

]
and [D2 f (x)] =

[
∂ 2 f (x)
∂xi∂xk

]d

i,k=1
. For simplicity

the superscript of the argument ( j) in the last two formulas is omitted assuming that
the formulas are written for the j-th cube Kj. Now, we can write formula (10) at
previously defined random points ξ and ξ ′ both belonging to Kj. In such a way we
have

f (ξ ) = f (s)+∇ f (s) (ξ − s)+
1
2!
(ξ − s)T [D2 f (η)](ξ − s), (11)

f (ξ ′) = f (s)+∇ f (s) (ξ ′ − s)+
1
2!
(ξ ′ − s)T [D2 f (η ′)](ξ ′ − s), (12)

where η ′ is another d-dimensional point lying between ξ ′ and s. Adding (11) and
(12), we get

f (ξ )+ f (ξ ′) = 2 f (s) +
1
2

{
(ξ − s)T [D2 f (η)](ξ − s) +

+ (ξ ′ − s)T [D2 f (η ′)] (ξ ′ − s)
}
.
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Because of the symmetry there is no term depending on the gradient D f (s) in the
previous formula. If we consider the variance D[ f (ξ )+ f (ξ ′)] taking into account
that the variance of the constant 2 f (s) is zero, then we get

D[ f (ξ ) + f (ξ ′)] =

= D
{

1
2

[
(ξ − s)T [D2 f (η)](ξ − s)+ (ξ ′ − s)T [D2 f (η ′)](ξ ′ − s)

]}

≤ E
{

1
2

[
(ξ − s)T [D2 f (η)](ξ − s)+ (ξ ′ − s)T [D2 f (η ′)](ξ ′ − s)

]}2
.

Since f ∈ W2(L;Ud), we can strengthen the last inequality if the terms [D2 f (η)]
and [D2 f (η ′)] are substituted by the seminorm L (and removing front bracket) and
the products (ξ − s)T (ξ − s) and (ξ ′ − s)T (ξ ′ − s) by the squared diameter of the
subdomain Kj . Now we return back to the notation with superscript, taking into
account that the above consideration is just for an arbitrary subdomain Kj. The
variance can be estimated from above in the following way:

D[ f (ξ )+ f (ξ ′)] ≤ L2 sup
x
( j)
1 ,x

( j)
2

∣∣∣x( j)
1 − x( j)

2

∣∣∣4 ≤ L2(c( j)
2 )4n−4/d.

Now the variance of θn = ∑n
j=1 θ ( j) can be estimated:

Dθn =
n

∑
j=1

p2
jD[ f (ξ )+ f (ξ ′)] ≤

n

∑
j=1

(c( j)
1 )2n−2L2(c( j)

2 )4n−4/d

≤
(

Lc( j)
1 c( j)2

2

)2
n−1−4/d. (13)

Therefore, r( f ,d) ≤ c̃ ′′
d ‖ f‖n

− 1
2 − 2

d . The application of Tchebycheff’s inequality to
the variance (13) yields

ε( f ,d) ≤ c̃ ′
d ‖ f‖n

− 1
2 − 2

d

for the probable error ε , where c̃ ′
d =

√
2d, which concludes the proof.

One can see that the Monte Carlo algorithm MCA-MSS-2 has an optimal rate of
convergence for functions with continuous and bounded second derivative [3]. This

means that the rate of convergence (n−
1
2− 2

d ) cannot be improved for the functional
class W2 in the class of the randomized algorithms A R.

Note that both MCA-MSS-1 and MCA-MSS-2 have one control parameter, that
is, the radius ρ of the sphere of shaking. At the same time, to be able to efficiently
use this control parameter, one should increase the computational complexity. The
problem is that after shaking the random point may leave the multidimensional
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subdomain. That is why after each such a procedure, one should be checking if
the random point is still in the same subdomain. It is clear that the procedure
of checking if a random point is inside the given domain is a computationally
expensive procedure when one has a large number of points. A small modification
of MCA-MSS-2 algorithm allows to overcome this difficulty. If we just generate
a random point ξ ( j) ∈ Kj uniformly distributed inside Kj and after that take the
symmetric point ξ ( j)′ according to the central point s( j), then this procedure will
simulate the algorithm MCA-MSS-2. Such a completely randomized approach
simulates algorithm MCA-MSS-2, but the shaking is with different radiuses ρ in
each subdomain. We call this algorithm MCA-MSS-2-S, because this approach
looks like the stratified symmetrised Monte Carlo. Obviously, MCA-MSS-2-S is
less expensive than MCA-MSS-2, but there is not such a control parameter like
the radius ρ , which can be considered as a parameter randomly chosen in each
subdomain Kj.

It is important to notice that all three algorithms MCA-MSS-1, MCA-MSS-2
and MCA-MSS-2-S have optimal (unimprovable) rate of convergence for the
corresponding functional classes, that is, MCA-MSS-1 is optimal in W1(L;Ud) and
both MCA-MSS-2 and MCA-MSS-2-S are optimal in W2(L;Ud).

We also consider the known Owen nested scrambling algorithm [19] for which it
is proved that the rate of convergence is n−3/2(log n)(d−1)/2, which is very good
but still not optimal even for integrands in W1(L;Ud). One can see that if the
logarithmic function from the estimate can be omitted, then the rate will become
optimal. Let us mention that it is still not proven that the above estimate is exact,
that is, we do not know if the logarithm can be omitted. It should be mentioned that
the proved convergence rate for the Owen nested scrambling algorithm improves
significantly the rate for the unscrambled nets, which is n−1(log n)d−1. That is why
it is important to compare numerically our algorithms MCA-MSS with the Owen
nested scrambling. The idea of Owen nested scrambling is based on randomization
of a single digit at each iteration. Let x(i) = (xi,1,xi,2, . . . ,xi,s), i = 1, . . . ,n be
quasi-random numbers in [0,1)s, and let z(i) = (zi,1,zi,2, . . . ,zi,s) be the scrambled
version of the point x(i). Suppose that each xi, j can be represented in base b as
xi, j = (0.xi1, j xi2, j . . .xiK, j . . .)b with K being the number of digits to be scrambled.
Then nested scrambling proposed by Owen [19, 20] can be defined as follows:
zi1, j = π•(xi1, j), and zil, j = π•xi1, jxi2, j ...xil−1, j (xil, j), with independent permutations
π•xi1, jxi2, j ...xil−1, j for l ≥ 2. Of course, (t,m,s)-net remains (t,m,s)-net under nested

scrambling. However, nested scrambling requires bl−1 permutations to scramble the
l-th digit. Owen scrambling (nested scrambling), which can be applied to all (t,s)-
sequences, is powerful; however, from the implementation point of view, nested
scrambling or so-called path-dependent permutations require a considerable amount
of bookkeeping and lead to more problematic implementation. There are various
versions of scrambling methods based on digital permutation, and the differences
among those methods are based on the definitions of the πl’s. These include
Owen nested scrambling [19, 20], Tezuka’s generalized Faure sequences [29] and
Matousek’s linear scrambling [17].
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5 Case Study: Variance-Based Sensitivity Analysis
of the Unified Danish Eulerian Model

The input data for the sensitivity analysis performed in this paper has been
obtained during runs of a large-scale mathematical model for remote transport
of air pollutants (UNI-DEM, [33]). The model enables us to study concentration
variations in time of a high number of air pollutants and other species over a
large geographical region (4,800 × 4,800 km), covering the whole of Europe,
the Mediterranean and some parts of Asia and Africa. Such studies are important
for environmental protection, agriculture and health care. The model presented
as a system of partial differential equations describes the main processes in the
atmosphere including photochemical processes between the studied species, the
emissions and the quickly changing meteorological conditions. Both nonlinearity
and stiffness of the equations are mainly introduced when modeling chemical
reactions [33]. The chemical scheme used in the model is the well-known condensed
CBM-IV (Carbon Bond Mechanism). Thus, the motivation to choose UNI-DEM is
that it is one of the models of atmospheric chemistry, where the chemical processes
are taken into account in a very accurate way.

This large and complex task is not suitable for direct numerical treatment. For
the purpose of numerical solution, it is split into submodels, which represent the
main physical and chemical processes. The sequential splitting [16] is used in
the production version of the model, although other splitting methods have also
been considered and implemented in some experimental versions [4,5]. Spatial and
time discretization makes each of the above submodels a huge computational task,
challenging for the most powerful supercomputers available nowadays. That is why
parallelization has always been a key point in the computer implementation of DEM
since its very early stages.

Our main aim here is to study the sensitivity of the ozone concentration according
to the rate variation of some chemical reactions. We consider the chemical rates
to be the input parameters and the concentrations of pollutants to be the output
parameters.

6 Numerical Results and Discussion

Some numerical experiments are performed to study experimentally various proper-
ties of the algorithms. We are interested in both smooth and non-smooth integrands.
The reason to consider both cases is that we deal with many different output
functions using the UNI-DEM model. Formally the output functions should have
enough smoothness, because the solution has bounded second derivatives by defini-
tion. Nevertheless, some functions of concentrations that depend on photochemical
reactions in the air have computational irregularities. It means that the derivative of
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Table 1 Relative error and computational time for numerical integration of a smooth function
(S( f2)≈ 0.10897)

SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time
n error (s) error (s) error (s) ×103 error (s)

102 0.0562 0.002 0.0365 < 0.001 0.0280 0.001 3.9 0.0363 0.001
13 0.0036 0.001

103 0.0244 0.004 0.0023 0.001 0.0016 0.001 1.9 0.0038 0.010
6.4 0.0019 0.010

104 0.0097 0.019 0.0009 0.002 0.0003 0.003 0.8 0.0007 0.070
2.8 0.0006 0.065

the function is very high by modulo and it causes computational difficulties—the
function behaves as a non-smooth function.

The expectations based on theoretical results are that for non-smooth functions
MCA-MSS algorithms based on the shaking procedures outperform the QMC even
for relatively low dimensions. It is also interesting to observe how behave the
randomized QMC based on scrambled Sobol sequences.

For our numerical tests we use the following non-smooth integrand:

f1(x1,x2,x3,x4) =
4

∑
i=1

|(xi − 0.8)−1/3|, (14)

for which even the first derivative does not exist. Such kinds of applications appear
also in some important problems in financial mathematics. The referent value of the
integral S( f1) is approximately equal to 7.22261. To make a comparison we also
consider an integral with a smooth integrand:

f2(x1,x2,x3,x4) = x1 x2
2 ex1x2 sinx3 cosx4. (15)

The second integrand (15) is a function f2 ∈ C∞(Ud) with a referent value of the
integral S( f2) approximately equal to 0.10897. The integration domain in both cases
is U4 = [0,1]4.

Some results from the numerical integration tests with a smooth (15) and a non-
smooth (14) integrand are presented in Tables 1 and 2, respectively. As a measure of
the efficiency of the algorithms, both the relative error (defined as the absolute error
divided by the referent value) and computational time are shown. For generating
Sobol quasi-random sequences, the algorithm with Gray code implementation [1]
and sets of direction numbers proposed by Joe and Kuo [11] are used. The MCA-
MSS-1 algorithm [6] involves generating random points uniformly distributed on a
sphere with radius ρ . One of the best available random number generators, SIMD-
oriented Fast Mersenne Twister (SFMT) [21, 32] 128-bit pseudorandom number
generator of period 219937 − 1 has been used to generate the required random
points. SFMT algorithm is a very efficient implementation of the plain Monte
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Table 2 Relative error and computational time for numerical integration of a non-smooth function
(S( f1)≈ 7.22261)

n

SFMT Sobol QMCA Owen scrambling MCA-MSS-1

Rel. Time Rel. Time Rel. Time ρ Rel. Time
error (s) error (s) error (s) ×103 error (s)

103 0.0010 0.011 0.0027 0.001 0.0021 0.002 1.9 0.0024 0.020
6.4 0.0004 0.025

7.103 0.0009 0.072 0.0013 0.009 0.0003 0.011 1.0 0.0004 0.110
3.4 0.0005 0.114

3.104 0.0005 0.304 0.0003 0.032 0.0003 0.041 0.6 0.0001 0.440
1.9 0.0002 0.480

5.104 0.0007 0.513 0.0002 0.053 2e-05 0.066 0.4 7e-05 0.775
1.4 0.0001 0.788

Carlo method [23]. The radius ρ depends on the integration domain, number of
samples and minimal distance between Sobol deterministic points δ . We observed
experimentally that the behavior of the relative error of numerical integration is
significantly influenced by the fixed radius of spheres. That is why the values
of the radius ρ are presented according to the number of samples n used in our
experiments, as well as to a fixed coefficient, radius coefficient κ = ρ/δ . The latter
parameter gives the ratio of the radius to the minimal distance between Sobol points.
The code of scrambled quasi-random sequences used in our studies is taken from the
collection of NAG C Library [31]. This implementation of scrambled quasi-random
sequences is based on TOMS Algorithm 823 [10]. In the implementation of the
scrambling, there is a possibility to make a choice of three methods of scrambling:
the first is a restricted form of Owen scrambling [19], the second is based on the
method of Faure and Tezuka [8] and the last method combines the first two (it is
referred to as a combined approach).

Random points for the MCA-MSS-1 algorithm have been generated using the
original Sobol sequences and modeling a random direction in d-dimensional space.
The computational time of the calculations with pseudorandom numbers generated
by SFMT (see columns labeled as SFMT and MCA-MSS in Tables 1 and 2) has been
estimated for all 10 algorithm runs.

Comparing the results in Tables 1 and 2 one observes that:

• All algorithms under consideration are efficient and converge with the expected
rate of convergence.

• In the case of smooth functions, the Sobol algorithm is better than SFMT (the
relative error is up to 10 times smaller than for SFMT).

• The scrambled QMC and MCA-MSS-1 are much better than the classical Sobol
algorithm; in many cases even the simplest shaking algorithm MCA-MSS-1 gives
a higher accuracy than the scrambled algorithm.

• In the case of non-smooth functions, SFMT algorithm implementing the plain
Monte Carlo method is better than the Sobol algorithm for relatively small
samples (n).
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Table 3 Relative error and computational time for numerical integration of a smooth function
(S( f )≈ 0.10897)

No. of points n Sobol QMCA MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

(No. of double Rel. Time ρ Rel. Time Rel. Time Rel. Time
points 2n) error (s) ×103 error (s) error (s) error (s)

29 0.0059 < 0.001 2.1 0.0064 0.009 0.0033 0.010 0.0016 0.005
(2×29) 6.4 0.0061 0.010 0.0032 0.010
210 0.0035 0.002 1.9 0.0037 0.010 9e-05 0.020 0.0002 0.007
(2×210) 6.4 0.0048 0.010 0.0002 0.020
216 2e-05 0.027 0.4 3e-05 1.580 7 e-06 1.340 9e-06 0.494
(2×216) 1.2 0.0001 1.630 5e-06 1.380

• In the case of non-smooth functions, our Monte Carlo shaking algorithm MCA-
MSS-1 gives similar results as the scrambled QMC; for several values of n, we
observe advantages for MCA-MSS-1 in terms of accuracy.

• Both MCA-MSS-1 and scrambled QMC are better than SFMT and Sobol quasi
MC algorithm in the case of non-smooth functions.

Another observation is that for the chosen integrands the scrambling algorithm
does not outperform the algorithm with the original Sobol points, but the scrambled
algorithm and Monte Carlo algorithm MCA-MSS-1 are more stable with respect to
relative errors for relatively small values of n.

In Table 3 we compare Sobol QMCA with MCA-MSS-2 and MCA-MSS-2-S,
as well as with simplest shaking algorithm MCA-MSS-1. The results show that the
simplest shaking algorithm MCA-MSS-1 gives relative errors similar to errors of
the Sobol QMCA, which is expected since the ΛΠτ Sobol sequences are already
quite well distributed. That is why one should not expect improvement for a very
smooth integrand. But the symmetrised shaking algorithm MCA-MSS-2 improves
the relative error. The effect of this improvement is based on the fact that the second
derivatives of the integrand exists, they are bounded and the construction of the
MCA-MSS-2 algorithm gives a better convergence rate of order O(n−1/2−2/d). The
same convergence rate has the algorithm MCA-MSS-2-S, but the latter one does
not allow to control the value of the radius of shaking. As expected MCA-MSS-2-S
gives better results than MCA-MSS-1. The relative error obtained by MCA-MSS-
2 and MCA-MSS-2-S are of the same magnitude (see Table 3). The advantage of
MCA-MSS-2-S is that its computational complexity is much smaller. A comparison
of the relative error and computational complexity for different values of n is
presented in Table 4. To have a fair comparison we have to consider again a smooth
function (15). The observation is that MCA-MSS-2-S algorithm outperforms the
simplest shaking algorithm MCA-MSS-1 in terms of relative error and complexity.

After testing the algorithms under consideration on the smooth and non-smooth
functions, we studied the efficiency of the algorithms on real-life functions obtained
after running UNI-DEM. Polynomials of 4th degree with 35 unknown coefficients
are used to approximate the mesh functions containing the model outputs.
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Table 4 Relative error and computational time for numerical integration of a smooth function
(S( f )≈ 0.10897) (comparison between MCA-MSS-1 and MCA-MSS-2-S algorithms)

n

Sobol QMCA MCA-MSS-1 MCA-MSS-2-S

Rel. Time ρ Rel. Time Rel. Time
×103 error (s) error (s) error (s)

2×44 0.0076 < 0.001 2.1 0.0079 < 0.001 0.0016 0.005
(512) 6.4 0.0048 < 0.001
2×64 0.0028 0.001 1.2 0.0046 0.030 0.0004 0.009
(2,592) 4.1 0.0046 0.030
2×84 0.0004 0.004 0.9 0.0008 0.090 0.0002 0.025
(8,192) 2.9 0.0024 0.090
2×104 0.0002 0.008 0.6 0.0001 0.220 5e-05 0.070
(20,000) 2.0 0.0013 0.230
2×134 0.0001 0.022 0.4 0.0001 0.630 4e-06 0.178
(57,122) 1.2 0.0007 0.640
2×144 5e-06 0.029 0.4 1e-05 0.860 1e-05 0.237
(76,832) 1.2 0.0005 0.880
2×154 8e-06 0.036 0.4 0.0001 1.220 9e-07 0.313
(101,250) 1.2 0.0005 1.250

We use various values of the number of points that corresponds to situations
when one needs to compute the sensitivity measures with different accuracy. We
have computed results for g0 (g0 is the integral over the integrand g(x) = f (x)− c,
f (x) is the approximate model function of UNI-DEM and c is a constant obtained as
a Monte Carlo estimate of f0, [28]), the total variance D as well as total sensitivity
indices Stot

i , i = 1,2,3. The above-mentioned parameters are presented in Table 5.
Table 5 presents the results obtained for a relatively low sample size n = 6,600.

One can notice that for most of the sensitivity parameters, the simplest shaking
algorithm MCA-MSS-1 outperforms the scrambled Sobol sequences, as well as the
algorithm based on the ΛΠτ Sobol sequences in terms of accuracy. For higher values
of sample sizes this effect is even stronger.

One can clearly observe that the simplest shaking algorithm MCA-MSS-1
based on modified Sobol sequences improves the error estimates for non-smooth
integrands. For smooth functions modified algorithms MCA-MSS-2 and MCA-
MSS-2-S give better results than MCA-MSS-1. Even for relatively large radiuses
ρ the results are good in terms of accuracy. The reason is that centers of spheres
are very well uniformly distributed by definition. So that even for large values of
radiuses of shaking the generated random points continue to be well distributed.
We should stress on the fact that for relatively low number of points (< 1,000) the
algorithm based on modified Sobol sequences gives results with a high accuracy.
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Table 5 Relative error (in absolute value) and computational time for estimation of
sensitivity indices of input parameters using various Monte Carlo and quasi-Monte
Carlo approaches (n = 6,600,c ≈ 0.51365,δ ≈ 0.08)

MCA-MSS-1Estimated
quantity Sobol QMCA Owen scrambling ρ Rel. error

g0 1e-05 0.0001 0.0007 0.0001
0.007 6e-05

D 0.0007 0.0013 0.0007 0.0003
0.007 0.0140

Stot
1 0.0036 0.0006 0.0007 0.0009

0.007 0.0013
Stot

2 0.0049 6e-05 0.0007 2e-05
0.007 0.0034

Stot
3 0.0259 0.0102 0.0007 0.0099

0.007 0.0211

7 Conclusions

A comprehensive theoretical and experimental study of the Monte Carlo algorithm
MCA-MSS-2 based on symmetrised shaking of Sobol sequences has been done.
The algorithm combines properties of two of the best available approaches—Sobol
QMC integration and a high-quality SFMT pseudorandom number generator. It has
been proven that this algorithm has an optimal rate of convergence for functions
with continuous and bounded second derivatives in terms of probability and mean
square error.

A comparison with the scrambling approach, as well as with the Sobol QMC
algorithm and the algorithm using SFMT generator, has been provided for numerical
integration of smooth and non-smooth integrands. The algorithms mentioned above
are tested numerically also for computing sensitivity measures for UNI-DEM model
to study sensitivity of ozone concentration according to variation of chemical rates.
All algorithms under consideration are efficient and converge with the expected rate
of convergence. It is important to notice that the Monte Carlo algorithm MCA-
MSS-2 based on modified Sobol sequences when symmetrised shaking is used has
a unimprovable rate of convergence and gives reliable numerical results.
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