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Abstract We study a finite volume element discretization of a nonlinear parabolic
equation in a convex polygonal domain. We show the existence of the discrete
solution and derive error estimates in L2- and H1-norms. We also consider a
linearized method and provide numerical results to illustrate our theoretical findings.
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1 Introduction

We consider the nonlinear parabolic problem for t ∈ [0,T ], T > 0,

ut −∇ · (A(u)∇u) = f , in Ω , u = 0, on ∂Ω , with u(0) = u0, in Ω , (1)

where Ω is a bounded convex polygonal domain in R
2 and A(v)= diag(a1(v),a2(v)),

a strictly positive definite and bounded real-valued matrix function, such that there
exists β > 0.
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|x�A′(y)x| ≤ β x�x, ∀y ∈ R, ∀x ∈R
2. (2)

Further, we assume that A′ is Lipschitz continuous, i.e., ∃L > 0

|a′i(y)− a′i(ỹ)| ≤ L|y− ỹ|, ∀y, ỹ ∈ R, i = 1,2, (3)

and that there exists a sufficiently smooth unique solution u of (1).
Questions about the existence and regularity of solutions for (1) have been

intensively investigated, for example, in [7, Chap. 5]. Nonlinear parabolic problems
such as (1) occur in many applied fields. To name a few, in the chemotaxis model,
see Keller and Segel [6]; in groundwater hydrology, see L.A. Richards [10]; and
in modeling and simulation of oil recovery techniques in the presence of capillary
pressure, see [3].

We shall study fully discrete approximations of (1) by the finite volume element
method (FVEM). The FVEM, which is also called finite volume method or
covolume method in some literatures, is a class of important numerical methods
for solving differential equations, especially those arising from conservation laws
including mass, momentum, and energy, because this method possesses local
conservation property, which is crucial in many applications. It is popular in compu-
tational fluid mechanics, groundwater hydrology, reservoir simulations, and others.
Many researchers have studied this method for linear and nonlinear problems. We
refer to the monographs [5, 9] for the general presentation of this method and
references therein for details.

The approximate solution will be sought in the space of piecewise linear
functions

Xh = {χ ∈ C : χ |K linear, ∀K ∈ Th; χ |∂Ω = 0},

where Th is a family of quasiuniform triangulations Th = {K} of Ω , with h denoting
the maximum diameter of the triangles K ∈Th and C= C(Ω) the space of continuous
functions on Ω̄ .

The FVEM is based on a local conservation property associated with the
differential equation. Namely, integrating (1) over any region V ⊂ Ω and using
Green’s formula we obtain for t ∈ [0,T ]

ˆ
V

ut dx−
ˆ

∂V
(A(u)∇u) ·ndσ =

ˆ
V

f dx, (4)

where n denotes the unit exterior normal vector to ∂V . The semidiscrete FVEM
approximation uh(t) ∈ Xh will satisfy (4) for V in a finite collection of subregions
of Ω called control volumes, the number of which will be equal to the dimension
of the finite element space Xh. These control volumes are constructed in the
following way. Let zK be the barycenter of K ∈ Th. We connect zK with line
segments to the midpoints of the edges of K, thus partitioning K into three
quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with each
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Fig. 1 Left: a union of triangles that have a common vertex z; the dotted line shows the boundary
of the corresponding control volume Vz . Right: a triangle K partitioned into the three subregions Kz

vertex z ∈ Zh = ∪K∈ThZh(K) we associate a control volume Vz, which consists of
the union of the subregions Kz, sharing the vertex z (see Fig. 1). We denote the
set of interior vertices of Zh by Z0

h . The semidiscrete FVEM for (1) is then to find
uh(t) ∈ Xh, for t ∈ [0,T ], such that

ˆ
Vz

uh,t dx−
ˆ

∂Vz

(A(uh)∇uh) ·nds =
ˆ

Vz

f dx, ∀z ∈ Z0
h , (5)

with uh(0) = u0
h, where u0

h ∈ Xh is a given approximation of u0. Note that different
choices for zK , e.g., the circumcenter of K, lead to other methods than the one
considered here; see [8, 12].

In our analysis of the FVEM we use existing results associated with the finite
element method approximation ũh(t) ∈ Xh of u(t), defined by

(ũh,t ,χ)+ a(ũh; ũh,χ) = ( f ,χ), ∀χ ∈ Xh, for t > 0, (6)

with ( f ,g) =
´

Ω f gdx, a(w;v,g) = (A(w)∇v,∇g) and ‖w‖ = (w,w)1/2 the norm
in L2 = L2(Ω). Further let H1

0 = H1
0 (Ω) be the standard Sobolev space with zero

boundary conditions. Thus, in order to rewrite (5) in a weak formulation, we
introduce the finite dimensional space of piecewise constant functions

Yh = {η ∈ L2 : η |Vz = constant, ∀z ∈ Z0
h ; η |Vz = 0, ∀z ∈ Zh \Z0

h}.

We now multiply (5) by η(z) for an arbitrary η ∈ Yh and sum over all z ∈ Z0
h to

obtain the Petrov–Galerkin formulation for t ∈ [0,T ]

(uh,t ,η)+ ah(uh;uh,η) = ( f ,η), ∀η ∈ Yh, with uh(0) = u0
h, (7)
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where ah(·; ·, ·) : Xh ×Xh ×Yh →R is defined by

ah(w;v,η) =− ∑
z∈Z0

h

η(z)
ˆ

∂Vz

(A(w)∇v) ·ndσ , ∀v,w ∈ Xh, η ∈ Yh. (8)

We shall now rewrite the Petrov–Galerkin method (7) as a Galerkin method in Xh.
For this purpose, we introduce the interpolation operator Jh : C �→ Yh by

Jhw = ∑
z∈Z0

h

w(z)Ψz,

whereΨz is the characteristic function of the control volume Vz. It is known that Jh is
self-adjoint and positive definite (see [4]), and hence the following defines an inner
product 〈·, ·〉 on Xh:

〈χ ,ψ〉= (χ ,Jhψ), ∀χ ,ψ ∈ Xh. (9)

Further, in [4] it is shown that the corresponding norm is equivalent to the L2norm,
uniformly in h, i.e., with C ≥ c > 0,

c‖χ‖ ≤ |||χ ||| ≤C‖χ‖, ∀χ ∈ Xh, where |||χ ||| ≡ 〈χ ,χ〉1/2.

With this notation, (7) may equivalently be written in Galerkin form as

〈uh,t ,χ〉+ ah(uh;uh,Jhχ) = ( f ,Jhχ), ∀χ ∈ Xh, for t ≥ 0. (10)

Then let N ∈ N, N ≥ 1, k = T/N, and tn = nk, n = 0, . . . ,N. Discretizing in time
(10), with the backward Euler method, we approximate u(tn) by Un ∈ Xh, for
n = 1, . . . ,N, such that

〈∂̄Un,χ〉+ ah(U
n;Un,Jhχ) = ( f n,Jhχ), ∀χ ∈ Xh, with U0 = u0

h, (11)

where ∂̄Un = (Un −Un−1)/k and f n = f (tn).
To show the existence of the semidiscrete solution ũh of the finite element method

(6), one can employ Brouwer’s fixed point theorem and the coercivity property of
a(·; ·, ·):

a(w; χ ,χ)≥ α‖∇χ‖2, ∀χ ∈ Xh, ∀w ∈ L2 (12)

(see [11]). However, the corresponding coercivity property for ah(·; ·, ·),

ah(w; χ ,Jhχ)≥ α̃‖∇χ‖2, ∀χ ∈ Xh, (13)

holds for ‖∇w‖L∞ in a bounded ball, where ‖w‖L∞ = supx∈Ω |w(x)|. For this reason,
we will employ a different argument than the one in [11] to show the existence
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of Un. It is known that for fixed w, in general, the bilinear form ah(w;ψ ,Jhχ)
is nonsymmetric on Sh, but (for a linear problem) it is not far from being
symmetric, or |ah(χ ,Jhψ)− ah(ψ ,Jhχ)| ≤ Ch‖∇χ‖‖∇ψ‖, cf. [4]. Note that if zK

is the circumcenter of K, it is shown in [8] that (13) is satisfied for w ∈ L2, and thus,
one may show the existence of the solution of the finite volume method analogously
to the one for the finite element method. We show the existence and uniqueness
of the solution Un of (11) and derive error estimates in L2- and H1-norms; see
Theorems 3.1 and 4.1. Recently in [12], a two-grid FVEM was considered, for
circumcenter-based control volumes, with suboptimal estimates in L2- and H1-
norms.

Our analysis follows the corresponding one for the FVEM nonlinear elliptic and
linear parabolic problems in [1, 2]. This is based in bounds for the error functionals
εh(·, ·) defined by

εh( f ,χ) = ( f ,Jhχ)− ( f ,χ), ∀ f ∈ L2, χ ∈ Xh, (14)

and εa(·; ·, ·) defined by

εa(w;vh,χ) = ah(w;vh,Jhχ)− a(w;vh,χ) ∀vh,χ ∈ Xh, w ∈ L2. (15)

Following [11], we introduce the projection Rh : H1
0 →Xh defined by

a(v;Rhv,χ) = a(v;v,χ), ∀χ ∈ Xh. (16)

In [11] optimal order error estimates in L2- and H1-norms were established for
the difference Rhu(t)−u(t). Here we combine these error estimates with bounds for
the difference ϑ n =Un −Rhun, which satisfies

〈∂̄ϑ n,χ〉+ ah(U
n;ϑ n,Jhχ) = δ (tn;Un,χ), for χ ∈ Xh, (17)

with
δ (tn;v,χ)≡−(ωn,Jhχ)− εh( f n − un

t ,χ)+ εa(v;Rhun,χ)

+ ((A(un)−A(v))∇Rhun,∇χ)≡
4

∑
j=1

I j,
(18)

and ωn = (Rh − I)∂̄un +(∂̄un − un
t ). Further we analyze a linearized fully discrete

scheme and provide numerical examples to illustrate our results.
The rest of the paper is organized as follows. In Sect. 2 we recall known results

and derive error bounds for the error functional δ . In Sect. 3 we derive error
estimates and in Sect. 4 existence of the nonlinear fully discrete method. In Sect. 5
we consider a linearized version of the backward Euler scheme, and finally in Sect. 6
we present our numerical examples.
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2 Preliminaries

In this section we recall known results about the projection Rh defined by (16) and
the error functionals εh and εa introduced in (14) and (15). We also derive bounds
for the error functional δ defined in (18).

We consider quasiuniform triangulations Th for which the following inverse
inequalities hold (see, e.g., [11]):

‖∇χ‖ ≤Ch−1‖χ‖, and ‖∇χ‖L∞ ≤Ch−1‖∇χ‖, for χ ∈ Xh. (19)

In such meshes, it is shown in [11, Lemma 13.2] that there exists M0 > 0,
independent of h, such that

‖∇u(t)‖L∞ + ‖∇Rhu(t)‖L∞ ≤ M0, for t ≤ T, (20)

and the following error estimates for Rhu− u.

Lemma 2.1. With Rh defined by (16) and ρ = Rhu − u, we have under the
appropriate regularity assumptions on u, with Cu > 0 independent of t,

‖∇sD�
t ρ(t)‖ ≤Cuh2−s, 0 < t ≤ T, and s, � = 0,1, where Dt = ∂/∂ t.

Our analysis is based on error estimates for the difference ϑ n =Un−Rhun. Thus,
in view of the error equation (17) for ϑ n, we recall necessary bounds for the error
functionals εh and εa derived in [1, 2].

Lemma 2.2. For the error functional εh, defined by (14), we have

|εh( f ,χ)| ≤Ch2‖∇ f‖‖∇χ‖, ∀ f ∈ H1, χ ∈ Xh.

To this end, for M = max(2M0,1), we consider

BM = {χ ∈ Xh : ‖∇χ‖L∞ ≤ M}.

Lemma 2.3. For the error functional εa, defined in (15), we have

|εa(wh;vh,χ)| ≤Ch‖∇wh ·∇vh‖‖∇χ‖, ∀wh,vh,χ ∈ Xh. (21)

Further, if u is the solution of (1), then for v ∈ BM,

|εa(v;Rhu(t),χ)| ≤Ch2‖∇χ‖. (22)

Proof. The first bound is shown in [1, Lemma 2.3]. The second bound is a direct
result of Lemma 2.1, [1, Lemma 2.4], and the fact that v ∈ BM . ��
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Then, in view of Lemma 2.3 there exists a constant c > 0 such that for h sufficiently
small, the coercivity property (13) for ah holds for w ∈ BM. Further, in [1] we
showed the following “Lipschitz”-type estimation for εa.

Lemma 2.4. For the error functional εa, defined in (15), there exists a constant C,
independent of h, such that for χ ,ψ ∈ Xh

|εa(v;ψ ,χ)− εa(w;ψ ,χ)| ≤Ch‖∇ψ‖L∞
(1+ ‖∇w‖L∞

)‖∇(v−w)‖‖∇χ‖.

Finally, we show appropriate bounds for the functional δ , defined by (18).

Lemma 2.5. For δ defined by (18), we have for χ ∈ Xh and v ∈ BM

|δ (tn;v,χ)| ≤C(k+ h2)‖χ‖+Ch2‖∇χ‖+
{

C‖v−Rhun‖‖∇χ‖
C‖∇(v−Rhun)‖‖χ‖.

Proof. Using the splitting in (18) we bound each of the terms I j, j = 1, . . . ,4. Recall
that ωn = (Rh − I)∂̄un +(∂̄un − un

t ); then in view of Lemma 2.1, we have

‖ωn‖ ≤Ck−1
ˆ tn

tn−1
‖ρt‖ds+C

ˆ tn

tn−1
‖utt‖ds ≤C(k+ h2), (23)

and hence

|I1| ≤C(k+ h2)‖χ‖. (24)

To bound I2 + I3, we use Lemma 2.2 and (22) to get

|I2 + I3| ≤Ch2‖∇χ‖. (25)

Finally, employing (2) and (20) and adding and subtracting Rhun and using
Lemma 2.1, we get

|I4|= |((A(un)−A(v))∇Rhun,∇χ)| ≤C‖v− un‖‖∇χ‖

≤Ch2‖∇χ‖+C‖v−Rhun‖‖∇χ‖.
(26)

Combining now (24)–(26) we get the first one of the desired bounds. To show the
second estimate of this lemma, we bound I4 differently. Using integration by parts,
we rewrite I4 as

I4 = ((A(un)−A(Rhun))∇Rhun,∇χ)+ ((A(Rhun)−A(v))∇Rhun,∇χ)

= ((A(un)−A(Rhun))∇Rhun,∇χ)+ (div [(A(Rhun)−A(v))∇Rhun],χ)

= Ii
4 + Iii

4 .
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Then, in view of (2), Lemma 2.1, and (20), we have

|Ii
4| ≤Ch2‖∇χ‖. (27)

Further, employing (2), (3), and (20), we obtain

|Iii
4 | ≤C(‖(A′(Rhun)−A′(v))∇Rhun‖+ ‖A′(v)∇(Rhun − v)‖)‖χ‖

≤C(‖v−Rhun‖+ ‖∇(v−Rhun)‖)‖χ‖.
(28)

Therefore combining (27) and (28), we have

|I4| ≤C‖∇(v−Rhun)‖‖χ‖+Ch2‖∇χ‖. (29)

Thus, combining (24), (25), (29), and (26), we obtain the second of the desired
estimates of the lemma. ��

3 Error Estimates for the Backward Euler Method

In this section we derive error estimates for the FVEM (11) in L2- and H1-norms,
under the assumption that U j ∈ BM, for j = 0, . . . ,n. In Sect. 4 we will show the
existence of Un ∈ BM.

Theorem 3.1. Let Un and u be the solutions of (11) and (1), with U0 = Rhu0. If
U j ∈ BM, for j = 0, . . . ,n, n ≥ 1, and k, h be sufficiently small, then there exist
C > 0, independent of k and h, such that

‖∇s(Un − un)‖ ≤C(k+ k−s/2h2−s), for s = 0,1. (30)

Proof. Using the error splitting Un − un = (Un −Rhun)+ (Rhun − un) = ϑ n + ρn

and Lemma 2.1, it suffices to show

‖∇sϑ n‖ ≤Cs(k+ k−s/2h2−s), for s = 0,1. (31)

We start with the estimation of ‖ϑ n‖. Due to the symmetry of 〈χ ,ψ〉, we have
the following identity:

〈∂̄ ϑ n,ϑ n〉= 1
2k

(|||ϑ n|||2 −|||ϑ n−1|||2)+ 1
2k

|||ϑ n −ϑ n−1|||2. (32)

Choosing χ = ϑ n in (17) and using the fact that Un ∈ BM, (13), and (32), we get
after eliminating |||ϑ n −ϑ n−1|||

1
2k

(|||ϑ n|||2 −|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤ δ (tn;Un,ϑ n). (33)
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Employing now the first estimate of Lemma 2.5, with v =Un and χ = ϑ n, to bound
the right-hand side of (33), we obtain

1
2k

(|||ϑ n|||2 −|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤C(k+ h2)‖ϑ n‖+C(k‖ϑ n‖+ h2)‖∇ϑ n‖.

Then, after eliminating ‖∇ϑ n‖2 and moving |||ϑ n|||2 to the left, we have for k
sufficiently small

|||ϑ n|||2 ≤ (1+Ck)|||ϑ n−1|||2 +CkE, with E = O(k2 + h4).

Hence, using the fact that ϑ 0 = 0, we obtain

|||ϑ n|||2 ≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + h4).

Thus, there exists C0 > 0, such that |||ϑ n||| ≤ C0(k+ h2). Since ||| · ||| and ‖ · ‖ are
equivalent norms, the first part of the proof is complete.

Next we turn to the estimation of ‖∇ϑ n‖. Choosing this time χ = ∂̄ ϑ n in (17),
we obtain

|||∂̄ϑ n|||2 + a(Un;ϑ n, ∂̄ ϑ n) = δ (tn;Un, ∂̄ ϑ n)+ εa(U
n;ϑ n, ∂̄ ϑ n). (34)

Note now that since a(·; ·, ·) is symmetric, we have the identity

2ka(Un;ϑ n, ∂̄ ϑ n) = a(Un;ϑ n,ϑ n)− a(Un;ϑ n−1,ϑ n−1)+ k2a(Un; ∂̄ ϑ n, ∂̄ϑ n).

Using now this and (12) in (34), we get, after subtracting a(Un−1;ϑ n−1,ϑ n−1) from
both parts of (34),

2k|||∂̄ϑ n|||2 + a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n−1,ϑ n−1)+αk2‖∇∂̄ϑ n‖2

≤ 2kδ (tn;Un, ∂̄ ϑ n)+ 2kεa(U
n;ϑ n, ∂̄ ϑ n)

+ {a(Un;ϑ n−1,ϑ n−1)− a(Un−1;ϑ n−1,ϑ n−1)}= I+ II+ III.

(35)

Employing the second bound of Lemma 2.5, with v =Un and χ = ∂̄ϑ n, we have

|I| ≤Ck(k+ h2)‖∂̄ϑ n‖+Ckh2‖∇∂̄ϑ n‖+Ck‖∇ϑ n‖‖∂̄ϑ n‖

≤ k|||∂̄ϑ n|||2 +Ck‖∇ϑ n‖2 +
αk2

2
‖∇∂̄ϑ n‖2 +CkE,

(36)
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with E = O(k2 + k−1h4). Next, using Lemma 2.3 and the fact that Un ∈ BM , we
obtain

|II| ≤Ckh‖∇Un‖L∞ ‖∇ϑ n‖‖∇∂̄ϑ n‖ ≤Ch2‖∇ϑ n‖2 +
αk2

2
‖∇∂̄ϑ n‖2. (37)

Finally, using again (2), the fact that ϑ n−1 ∈ B2M, and (23), we have

|III| ≤Ck‖|∇ϑ n−1| |∂̄Un|‖‖∇ϑ n−1‖

≤Ck(‖|∇ϑ n−1| |∂̄ ϑ n|‖ + ‖|∇ϑ n−1| |Rh∂̄un|‖)‖∇ϑ n−1‖

≤ k|||∂̄ ϑ n|||2 +Ck‖∇ϑ n−1‖2.

(38)

Therefore applying (36)–(38), in (35), eliminating |||∂̄ϑ n||| and ‖∇∂̄ϑ n‖ and using
(12), we obtain for k and h sufficiently small,

a(Un;ϑ n,ϑ n)≤ (1+Ck)a(Un−1;ϑ n−1,ϑ n−1)+CkE.

Thus, using the fact that ϑ 0 = 0 and A is strictly positive definite, we get

c‖∇ϑ n‖2 ≤ a(Un;ϑ n,ϑ n)≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + k−1h4).

Thus, there exists C1 > 0, such that

‖∇ϑ n‖ ≤C1(k+ k−1/2h2), (39)

which completes the second part of the proof. ��

4 Existence of the Backward Euler Approximation

Here we show the existence of the solution of the nonlinear fully discrete scheme
(11), if U0 = Rhu0 and the discretization parameters k and h are sufficiently small
and satisfy k = O(h1+ε), with 0 < ε < 1.

Let Gn : Xh →Xh, be defined by

〈Gnv−Un−1,χ〉+ kah(v;Gnv,Jhχ) = k( f n,Jhχ), ∀χ ∈ Xh. (40)

Obviously, if Gn has a fixed point v, then Un = v is the solution of (11).
In view of (39), recall that if Un−1 ∈ BM, then

‖∇(Un−1 −Rhun−1)‖ ≤C1(k+ k−1/2h2). (41)
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Then the following two lemmas hold:

Lemma 4.6. Let Un−1 ∈ BM such that (41) holds. Then for k = O(h1+ε) with
0 < ε < 1, there exists a constant C2 > 0, independent of h, sufficiently large such
that Un−1 ∈ B̃, where

B̃n = {w ∈ Xh : ‖∇(w−Rhun)‖ ≤C2h1+ε̃}, with ε̃ = min(ε,
1− ε

2
). (42)

Proof. Using the stability property of Rh and the fact that k = O(h1+ε), we have

‖∇(Un−1 −Rhun)‖ ≤ ‖∇(Un−1 −Rhun−1)‖+ k‖∇Rh∂̄un‖

≤C1(k+ k−1/2h2)+ k‖∇∂̄un‖ ≤C2h1+ε̃ . ��

Lemma 4.7. Let Un−1,v ∈ BM such that (41) holds and v ∈ B̃n, with B̃n defined by
(42). Then for k =O(h1+ε), with 0 < ε < 1, Gnv ∈ B̃n.

Proof. Let us now denote by ξ n = Gnv−Rhun and ξ n−1 = Un−1 −Rhun−1. Then,
using (40), (1), and (16), ξ n satisfies a similar equation to (17), with ξ n and v instead
of ϑ n and Un; hence,

〈∂̄ ξ n,χ〉+ ah(v;ξ n,Jhχ) = δ (tn;v,χ), for χ ∈ Xh. (43)

Choosing χ = ∂̄ ξ n in (43) and following the proof of Theorem 3.1, we obtain
the corresponding inequality to (35), without the last term III, with ξ n and v in the
place of ϑ n and Un:

2k|||∂̄ ξ n|||2 + a(v;ξ n,ξ n)− a(v;ξ n−1,ξ n−1)+αk2‖∇∂̄ξ n‖2

≤ 2kδ (tn;v, ∂̄ ξ n)+ 2kεa(v;ξ n, ∂̄ ξ n) = I+ II.
(44)

Similarly as before we obtain the corresponding estimates to (36) and (37), with ξ n

and v in the place of ϑ n and Un. Thus,

|I| ≤ 2k|||∂̄ ξ n|||2 + αk2

2
‖∇∂̄ξ n‖2 +Ck‖∇(v−Rhun)‖2 +CkE, (45)

with E = O(k2 + k−1h4) and

|II| ≤Ch2a(v;ξ n,ξ n)+
αk2

2
‖∇∂̄ξ n‖2. (46)

Then using (45) and (46) in (44) and eliminating |||∂̄ ξ n|||2 and ‖∇∂̄ξ n‖2, we get for
h sufficiently small

a(v;ξ n,ξ n)≤ (1+Ck)a(v;ξ n−1,ξ n−1)+Ck‖∇(v−Rhun)‖2 +CkE.
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Finally, using in this inequality, (41), the facts that v ∈ B̃n and ε < 1 and (13), we
obtain the desired bound for k sufficiently small. ��

Theorem 4.1. Let Th satisfy the inverse assumption (19) and Un−1,v ∈ BM such
that (41) holds. Then for h sufficiently small and k =O(h1+ε), with 0 < ε < 1, there
exists Un ∈ BM satisfying (11).

Proof. Obviously, in view of Lemmas 4.6 and 4.7, starting with v0 =Un−1, through
Gn, we obtain a sequence of elements v j+1 =Gnv j ∈ B̃n, j ≥ 0. Thus, combining this
with (20) and the facts that M > M0 and ε̃ > 0, we get Gnv j ∈ BM for h sufficiently
small, i.e.,

‖∇Gnv j‖L∞ ≤ ‖∇Rhun‖L∞ +Ch−1‖∇(Gnv j −Rhun)‖ ≤ M, j ≥ 0.

To show now the existence of Un ∈ BM, it suffices that

|||Gnv−Gnw|||< L|||v−w|||, ∀v,w ∈ BM, with 0 < L < 1.

Employing (40) for v,w ∈ BM and χ ∈ Xh, we obtain

〈Gnv−Gnw,χ〉+ kah(v;Gnv,Jhχ)− kah(w;Gnw,Jhχ) = 0.

Hence, for χ = Gnv−Gnw, this gives

|||χ |||2 + kah(w; χ ,Jhχ) = k(ah(w;Gnv,Jhχ)− ah(v;Gnv,Jhχ))

= k(a(w;Gnv,χ)− a(v;Gnv,χ))

+ k(εa(v;Gnv,χ)− εa(w;Gnv,χ)) = I+ II.

(47)

To bound I we use (2) and the fact that Gnv ∈ BM to get

|I| ≤Ck‖∇Gnv‖L∞ ‖v−w‖‖∇χ‖≤Ck‖v−w‖‖∇χ‖. (48)

For II, we use Lemma 2.4, the inverse inequality (19), and the fact that v,Gnv ∈ BM

to obtain

|II| ≤Ckh‖∇(v−w)‖‖∇χ‖ ≤Ck‖v−w‖‖∇χ‖. (49)

Employing now (13), (48), and (49) into (47), we have

|||χ |||2 + kα̃ ‖∇χ‖2 ≤Ck‖v−w‖‖∇χ‖≤Ck‖v−w‖2 + kα̃ ‖∇χ‖2,

which in view of the fact that ‖ · ‖ and ||| · ||| are equivalent norms gives for
sufficiently small k the desired bound. ��
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5 A Linearized Fully Discrete Scheme

In this section we analyze a linearized backward Euler (LBE) scheme for the
approximation of (1). This time for U0 = Rhu0, we define the nodal approximations
Un ∈ Xh to un, n = 1, . . . ,N, by

〈∂̄Un,χ〉+ ah(U
n−1;Un,Jhχ) = ( f n,Jhχ), ∀χ ∈ Xh, n ≥ 1. (50)

Theorem 5.2. Let Un and u be the solutions of (50) and (1), with U0 = Rhu0.
Then, for Un−1 ∈ BM, h sufficiently small and k = O(h1+ε), with 0 < ε < 1, we have
Un ∈ BM and

‖∇s(Un − u(tn))‖ ≤C(k+ k−s/2h2−s), with s = 0,1.

Proof. Since the discrete scheme (50) is linear, the existence of Un ∈Xh is obvious.
The proof is analogous to that for Theorem 3.1; thus, it suffices to bound ‖∇sϑ n‖,
s = 0,1. This time ϑ n satisfies a similar equation to (17) with Un−1 in the place
of Un:

〈∂̄ϑ n,χ〉+ ah(U
n−1;ϑ n,Jhχ) = δ (tn;Un−1,χ), ∀χ ∈ Xh.

We start with the estimation for ‖ϑ n‖. In an analogous way to (33), we obtain the
following inequality:

1
2k

(|||ϑ n|||2 −|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2 ≤ δ (tn;Un−1,ϑ n).

To bound now the right-hand side of this inequality we employ the first estimate of
Lemma 2.5, with v =Un−1 and χ = ϑ n, using the fact that Un−1 −Rhun = ϑ n−1 −
kRh∂̄un and the stability of Rh, to get

1
2k

(|||ϑ n|||2 −|||ϑ n−1|||2)+ α̃‖∇ϑ n‖2

≤C(k+ h2)‖ϑ n‖+C(k‖Un−1−Rhun‖+ h2)‖∇ϑ n‖

≤C|||ϑ n|||2 + α̃‖∇ϑ n‖2 +Ck|||ϑ n−1|||2 +CE, with E = O(k2 + h4).

Next, after eliminating ‖∇ϑ n‖, we get for k sufficiently small

|||ϑ n|||2 ≤ (1+Ck)|||ϑ n−1|||2 +CkE.

Hence, since ϑ 0 = 0, we have by repeated application |||ϑ n||| ≤ C(k+ h2), which,
in view of the fact that ||| · ||| and ‖ · ‖ are equivalent norms, completes the first part
of the proof. Next we turn to the bound for ‖∇ϑ n‖. In an analogous way to (34), we
get

|||∂̄ϑ n|||2 + a(Un−1;ϑ n, ∂̄ ϑ n) = δ (tn;Un−1, ∂̄ ϑ n)+ εa(U
n−1;ϑ n, ∂̄ϑ n).
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Hence, similarly as in (35), we have

2k|||∂̄ϑ n|||2 + a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n−1,ϑ n−1)+αk2‖∇∂̄ϑ n‖2

≤ 2kδ (tn;Un−1, ∂̄ϑ n)+ 2kεa(U
n−1;ϑ n, ∂̄ ϑ n)

+ {a(Un;ϑ n,ϑ n)− a(Un−1;ϑ n,ϑ n)} = I.

(51)

Thus, in a similar way that we obtained (36)–(38), we have

|I| ≤ 2k|||∂̄ϑ n|||2 +Ck‖∇(Un−1 −Rhun)‖2 +C(k+ h2)‖∇ϑ n‖2

+αk2‖∇∂̄ϑ n‖2 +CkE,

with E =O(k2+k−1h4). Combining these in (51), using the fact that Un−1−Rhun =
ϑ n−1 − kRh∂̄un and the stability of Rh, we obtain for k sufficiently small

a(Un;ϑ n,ϑ n)≤ (1+Ck)a(Un−1;ϑ n−1,ϑ n−1)+CkE.

Therefore, since ϑ 0 = 0, we obtain

α‖∇ϑ n‖2 ≤ a(Un;ϑ n,ϑ n)≤CkE
n

∑
�=0

(1+Ck)n−�+1 ≤C(k2 + k−1h4),

which gives the desired bound. Finally, this estimate, the inverse inequality (19),
and the fact that k = O(h1+ε) give, for sufficiently small h, that Un ∈ BM, which
completes the proof. ��

6 Numerical Examples

In this section we give numerical examples to illustrate the error estimates pre-
sented in the previous sections. Let {φi}d

i=1 be the standard piecewise linear basis
functions of Xh and for χ ∈ Xh, let χ̃ = (χ̃1, . . . , χ̃d) ∈ R

d be the vector such that
χ = ∑d

i=1 χ̃iφi. Then the backward Euler method (11) can be written as

(D+ kS(Ũn))Ũn = DŨn−1 + kQn,

where D is the mass matrix with elements Di j =
´

Vi
φ j dx, Q the vector with entries

Qi =
´

Vi
f dx, and S(χ̃) the resulting stiffness matrix for χ ∈ Xh, i.e.,

Si j(χ̃) =−
ˆ

∂Vi

A(χ)∇φ j ·nds, for χ ∈ Xh.



A Finite Volume Element Method for a Nonlinear Parabolic Problem 135

Table 1 Comparison of errors of backward Euler (BE) and LBE methods for various h
withk = h1.01

BE LBE

h ‖u−uh‖ Rate |u−uh|1 Rate ‖u−uh‖ Rate |u−uh|1 Rate

0.125 3.6569e−03 – 8.8974e−02 – 4.9954e−03 – 8.8928e−02 –
0.0625 9.0420e−04 2.02 4.4710e−02 0.99 1.6205e−03 1.62 4.4763e−02 0.99
0.03125 2.0321e−04 2.15 2.2382e−02 1.00 6.4270e−04 1.33 2.2460e−02 1.00
0.015625 4.1362e−05 2.20 1.1194e−02 1.00 2.7213e−04 1.24 1.12480e−02 1.00
0.0078125 8.3814e−06 2.30 5.5974e−03 1.00 1.2512e−04 1.12 5.6268e−03 1.00

Since, this is a nonlinear problem, we employ the following iteration: Set ξ̃ 0 = Ũn−1

and for m = 1,2, . . . , we solve

(D+ kS(ξ̃ m−1))ξ̃ m = DŨn−1 + kQn,

until some specified convergence. We note that if the iteration is stopped at m = 1,
we recover the LBE method. For all examples below, we use as a stopping criteria

‖(D+ kS(ξ̃ m−1))ξ̃ m −DŨn−1− kQn‖l∞ ≤ ε,

for some preassigned small number ε , with ‖χ̃‖l∞ = maxi |χ̃i|.
We consider Ω = [0,1]× [0,1] and partition [0,1] into N equidistant intervals;

thus, N2 squares are formed and divide each one into two triangles, which results in
a mesh with size h=

√
2/N. Once the spatial mesh size is determined, the time step k

is computed in such a way that k = h1.01. Note that our numerical examples indicate
that we could choose k = h; however, we do not know at this point how to proceed
with the analysis under this assumption. We consider u(x,y, t) = 8e−t(x−x2)(y−y2)
and use the nonlinear coefficient A(u) = 1/(1−0.8sin2(4u)), with forcing function
f such that u satisfies the parabolic equation (1). We compute the error at final
time T = 1 and the results are shown in Table 1. In both methods, the error
convergence rate does follow the a priori estimates. We also see that in the LBE, that
as we decrease h, the error contribution from k starts to dominate. This is indicated
by the decrease of the convergence order in the L2-norm.
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