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Abstract Matrices of two-by-two block form with matrix blocks of equal order
arise in various important applications, such as when solving complex-valued
systems in real arithmetics, in linearized forms of the Cahn–Hilliard diffusive phase-
field differential equation model and in constrained partial differential equations
with distributed control. It is shown how an efficient preconditioner can be con-
structed which, under certain conditions, has a resulting spectral condition number
of about 2. The preconditioner avoids the use of Schur complement matrices and
needs only solutions with matrices that are linear combinations of the matrices
appearing in each block row of the given matrix and for which often efficient
preconditioners are already available.
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1 Introduction

To motivate the study, we give first some examples of two-by-two block matrices
where blocks of equal order, i.e. square blocks, appear. Although the matrices are
of special type, as we shall see there are several important applications where
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they arise. One such example is related to the solution of systems with complex-
valued matrices. Complex-valued systems arise, for instance, when solving certain
partial differential equations (PDE) appearing in electromagnetics and wave propa-
gation; see [1]. Complex arithmetics requires more memory storage and may require
more involved implementation. Therefore it is desirable to rewrite a complex-valued
matrix system in a form that can be handled using real arithmetics.

Using straightforward derivations, for a complex-valued matrix A+ iB, where A
and B are real and A is nonsingular, it holds

(A+ iB)(I− iA−1B) = A+BA−1B

so
(A+ iB)−1 = (I − iA−1B)(A+BA−1B)−1.

It follows that a complex-valued system

(A+ iB)(x+ iy) = f+ ig,

where x,y, f,g are real vectors, can be solved by solving two real-valued systems
with matrix A+BA−1B with right-hand sides f and g respectively, in addition to a
matrix vector multiplication with B and two solutions of systems with the matrix A.

In many applications, A+BA−1B can be ill conditioned and costly to construct
and solve systems with, in particular as it involves solutions with inner systems with
the matrix A. Therefore, this approach is normally less efficient.

As has been shown in [2] (see also [1,3]), it may be better to rewrite the equation
in real-valued form [

A −B
B A

][
x
y

]
=

[
f
g

]
. (1)

A matrix factorization shows that

[
A 0
B A+BA−1B

][
I −A−1B
0 I

][
x
y

]
=

[
f
g

]
,

where I is the identity matrix. It is seen that here it suffices with one solution
with matrix A+BA−1B, in addition to two solves with A. However, we will show
that the form (1) allows for an alternative solution method based on iteration and
the construction of an efficient preconditioner that involves only two systems with
matrices that are linear combinations of matrices A and B and that a corresponding
iterative solution of (1) can substantially lower the computational expense. We shall
show that such a preconditioner can be constructed for a matrix in the more general
form

A=

[
A −BT

β 2B α2A

]
, (2)

where α,β are positive numbers. By the introduction of a new, scaled second
variable vector y := 1

α2 y, the systems transform into the alternative form
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A=

[
A −aBT

bB A

]
, (3)

where a = 1
α2 ,b = β 2. This form arises in the two-phase version of the Cahn–

Hilliard equation used to track interfaces between two fluids with different densities
using a stationary grid; see [4, 5].

As we shall see in the sequel, a matrix in the form (2), with β = 1 arises also in
optimization problems for PDE, with a distributed control function, that is, a control
function defined in the whole domain of definition of the PDE. For an introduction
to such problems, see [6, 7].

Problems of this kind appear in various applications in engineering and geo-
sciences but also in medicine [8] and finance [9]. As a preamble to this topic, we
recall that the standard form of a constrained optimization problem with a quadratic
function takes the form

min
u

{
1
2

uT Au−uT f
}

subject to the constraint Bu = g. Here, u, f ∈ ℜn,g ∈ ℜm, and A is a symmetric and
positive definite (spd) matrix of order n× n and B has order m× n, m ≤ n. For the
existence of a solution, if m = n we must assume that dimℜ(B) < m, where ℜ(B)
denotes the range of B. The corresponding Lagrangian function with multiplier p
and regularization term −αpTCp, where α is a small positive number and C is spd,
takes the form

L(u,p) =
1
2

uT Au−uT f+pT (Bu− g)− 1
2

αpTCp.

By the addition of the regularization term, the Lagrange multiplier vector p becomes
unique.

The necessary first-order conditions for an optimal, saddle point solution lead to

[
A BT

B −αC

] [
u
p

]
=

[
f
g

]
. (4)

Here, we can extend the matrix B with n−m zero rows and the vector g with n−m
zero components, to make B of the same order as A. Similarly, C is extended. It
is possible to let C = A. (Then the n−m correspondingly added components of
p become zero.) As we shall see, in optimal control problems with a distributed
control, we get such a form with no need to add zero rows to B.

If we change the sign of p, the corresponding matrix takes the form

[
A −BT

B A

]
, i.e.

the same form as in (1). The matrix in (4) is indefinite. It can be preconditioned with
a block-diagonal matrix, but it leads to eigenvalues on both sides of the origin, which
slows down the convergence of the corresponding iterative acceleration method,
typically of a conjugate gradient type, such as MINRES in [10]. In this paper we



48 O. Axelsson

show that much faster convergence can be achieved if instead we precondition A
with a matrix that is a particular perturbation of it, since this leads to positive
eigenvalues and no Schur complements need to be handled. We consider then
preconditioning of matrices of the form (2) or (3). Thereby we assume that A
is symmetric and positive definite, or at least positive semidefinite and ker(A)∩
ker(B) = { /0}, which will be shown to guarantee that A is nonsingular.

In Sect. 2 we present a preconditioner to this matrix, but given in the still more
general form

A=

[
A −aB2

bB1 A

]
, (5)

where it is assumed that Hi = A +
√

abBi, i = 1,2 are regular. It involves only
solutions with the matrices H1 and H2. Hence, no Schur complements needed to
be handled arise here.

In Sect. 3 we perform an eigenvalue analysis of the preconditioning method.
This result extends the applicability of the previous results, e.g. in [2] and [4].
Furthermore, the present proofs are sharper and more condensed.

In Sect. 4 we show that certain constrained optimal control problems for PDE
with a distributed control can be written in the above two-by-two block form. The
results in that section extend related presentations in [7].

Further development of the methods and numerical tests will be devoted to part II
of this paper.

The notation A ≤ B for symmetric matrices A,B means that A−B is positive
semidefinite.

2 The Preconditioner and Its Implementation

Given a matrix in the form (2), we consider first a preconditioner to A in the form

B =

[
A 0

β 2B α̃A+β B

][
A−1 0

0 A−1

][
A −BT

0 α̃A+β BT

]
(6)

where α̃ is a positive preconditioning method parameter to be chosen. A computa-
tion shows that

B =A+

[
0 0
0 (α̃2 −α2)A+ α̃β (B+BT )

]

We show now that an action of its inverse requires little computational work.

Proposition 1. An action of the inverse of the form of the matrix B in (6) requires
one solution of each of the matrices A, α̃A+β B and A, α̃A+β BT , in this order.
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Proof. To solve a system

B
[

x
y

]
=

[
f
g

]
,

solve first [
A 0

β 2B α̃A+β B

][
x̃
ỹ

]
=

[
f
g

]
,

which requires a solution with A and α̃A+β B. Solve then

[
A −BT

0 α̃A+β BT

][
x
y

]
=

[
Ax̃
Aỹ

]
=

[
f

Aỹ

]

by solving

(α̃A+β B)y = Aỹ,

z := A−1BT y as

z =
1
β
(ỹ− α̃y)

to finally obtain
x = x̃+ z. �

In applications, often A is a mass matrix and B is a stiffness matrix. When
A depends on heterogeneous material coefficients, the matrices α̃A + β B and
α̃A+β BT can be better conditioned than A. We show now that by applying the
explicit expression for B−1, the separate solution with A in (6) can be avoided.

We find it convenient to show this first for preconditionersB applied to the matrix
A in the form (3). Here,

B =

[
A −aBT

bB A+
√

ab(B+BT )

]
. (7)

For its inverse the following proposition holds. For its proof, we assume first that
A is spd.

Proposition 2. Let A be spd. Then

B−1 =

[
A −aBT

bB A+
√

ab(B+BT )

]−1

=

[
H−1 +H−T −H−T AH−1

√ a
b(I −H−T A)H−1

−
√

b
a H−T (I −AH−1) H−T AH−1

]
,

where H = A+
√

abB, which is assumed to be nonsingular.
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Proof. For the derivation of the expression for the inverse we use the form of the
inverse of a general matrix in two-by-two block form. (However, clearly we can
verify the correctness of the expression directly by computation of the matrix times
its inverse. An alternative derivation can be based on the Schur–Banachiewicz form
of the inverse.) Assume that Aii, i = 1,2 are nonsingular. Then

[
A11 A12

A21 A22

]−1

=

[
S−1

1 −A−1
11 A12S−1

2
−S−1

2 A21A−1
11 S−1

2

]
.

Here, the Schur complements Si, i = 1,2 equal

Si = Aii −Ai jA
−1
j j A ji, i, j = 1,2, i �= j.

Further, S−1
2 A21A−1

11 = A−1
22 A21S−1

1 .
For the given matrix it holds

S2 = A+
√

ab(B+BT )+ abBA−1BT

= (A+
√

abB)A−1 (A+
√

abBT ).

Further,

− A−1
11 A12S−1

2 = aA−1BT (A+
√

abBT )−1A(A+
√

abB)−1

=

√
a
b

A−1((
√

abBT +A)−A)(A+
√

abBT )−1A(A+
√

abB)−1

=

√
a
b
(H−1 −HT AH−1) =

√
a
b
(I−H−T A)H−1.

Similarly,

−A−1
22 A21S−1

1 =−
√

b
a

H−T (I−AH−1).

Finally, since the pivot block in the inverse matrix equals the inverse of the Schur
complement, the corresponding equality holds for the pivot block in the matrix itself,
that is,

A11 = (S−1
1 −A−1

11 A12S−1
2 A21A−1

11 )
−1. (8)

Therefore,

S−1
1 = A−1

11 +A−1
11 A12S−1

2 A21A−1
11

= A−1[A− (I−AH−T )A(I −H−1A)]A−1

= H−1 +H−T −H−T AH−1 �
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Remark 1. Incidently, relation (8) can be seen as a proof of the familiar Sherman–
Morrison–Woodbury formula.

We show now that Proposition 2 implies that an action of the matrix B−1 needs
only a solution with each of the matrices H and HT . This result has appeared
previously in [4], but the present proof is more condensed and more generally
applicable. We will then show it for a matrix in the general form (5).

Guided by the result in Proposition 2, we give now the expression for the inverse
of the preconditioner to a matrix in the form (5).

Proposition 3. Let

B =

[
A −aB2

bB1 A+
√

ab(B1 +B2)

]

then

B−1 =

[
H−1

1 +H−1
2 −H−1

2 AH−1
1

√ a
b (I−H−1

2 A)H−1
1

−
√

b
a H−1

2 (I −AH−1
1 ) H−1

2 AH−1
1

]

where Hi = A+
√

abBi, i = 1,2, which are assumed to be nonsingular.

Proof. We show first that B is nonsingular. If

B
[

x
y

]
=

[
0
0

]
. (9)

then Ax = aB2y and

Ay+ bB1x+
√

ab(B1 +B2)y = 0.

Then

(A+
√

abB1)y+

√
b
a
(
√

abB1x+ aB2y) = 0

or

(A+
√

abB1)(

√
b
a

x+ y) = 0.

Hence, x = −√a
b y, so

√ a
b (A+

√
abB2)y = 0 or y = 0, so (9) has only the trivial

solution. The expression for B−1 follows by direct inspection. �
Proposition 4. Assume that A+

√
abBi, i = 1,2 are nonsingular. Then B is nonsin-

gular and a linear system with the preconditioner B,
[

A −aB2

bB1 A+
√

ab(B1 +B2)

][
x
y

]
=

[
f1

f2

]

can be solved with only one solution with A+
√

abB1 and one with A+
√

abB2.
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Proof. It follows form Proposition 3 that an action of the inverse of B can be written
in the form

[
A −aB2

bB1 A+
√

ab(B1 +B2)

]−1 [
f1

f2

]
=

=

⎡
⎣H−1

1 f1 +H−1
2 f1 −H−1

2 AH−1
1 f1 +

√a
b (I−H−1

2 A)H−1
1 f2

−
√

b
a H−1

2 (I −AH−1
1 )f1 +H−1

2 AH−1
1 f2

⎤
⎦

=

⎡
⎣ H−1

2 f1 + g−H−1
2 Ag

−
√

b
a H−1

2 f1 +
√

b
a H−1

2 Ag

⎤
⎦

=

⎡
⎣ g+H−1

2 (f1 −Ag)

−
√

b
a H−1

2 (f1 −Ag)

⎤
⎦=

⎡
⎣ g+h

−
√

b
a h

⎤
⎦

where

g = H−1
1 (f1 +

√
a
b

f2), h = H−1
2 (f1 −Ag).

The computation can take place in the following order:

(i) Solve H1g = f1 +
√a

b f2.
(ii) Compute Ag and f1 −Ag.

(iii) Solve H2h = f1 −Ag.

(iv) Compute x = g+h and y =−
√

b
a h. �

Remark 2. In some applications H1 = A +
√

abB1, and H2 = A +
√

abB2 may
be better conditioned than A itself. Even if it is not, often software for these
combinations exists.

3 Condition Number Bounds

To derive condition number bounds for the preconditioned matrix B−1A, we
consider two cases:

(i) B1 = B, B2 = BT , A is symmetric, A and B+BT are positive semidefinite, and

ker(A)∩ ker(Bi) = { /0} , i = 1,2

(ii) A is symmetric and positive definite and certain conditions, to be specified later,
hold for B1 and B2.
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3.1 A Is Symmetric and Positive Semidefinite

Assume that conditions (i) hold. Then it follows that A+
√

abB and A+
√

abBT ,
and hence also B, are nonsingular. We show first that then A is also nonsingular.

Proposition 5. Let condition (i) hold. Then A is nonsingular.

Proof. If [
A −aBT

bB A

][
x
y

]
=

[
0
0

]

then
x∗Ax− ax∗BT y = 0,
by∗Bx+ y∗Ay = 0

so 1
a x∗Ax+ 1

b y∗Ay = 0, where x∗, y∗ denote the complex conjugate vector.
Since A is positive semidefinite, it follows that x,y ∈ kerA. But then BT y = 0 and

Bx = 0, implying that x,y ∈ kerB, so A
[

x
y

]
=

[
0
0

]
has only the trivial solution. �

Proposition 6. Let A =

[
A aBT

−bB A

]
, where a,b are nonzero and have the

same sign and let B =

[
A aBT

−bB A+
√

ab(B+BT )

]
. If conditions (i) hold, then the

eigenvalues of B−1A, are contained in the interval [ 1
2 ,1].

Proof. For the generalized eigenvalue problem

λB
[

x
y

]
=A

[
x
y

]

it follows from Proposition 5 that λ �= 0. It holds

(
1
λ
− 1

)
A
[

x
y

]
=

[
0√

ab(B+BT )y

]

Here, λ = 1 if y ∈ ker(B+BT ). If λ �= 1, then

Ax =−aBT y

and (
1
λ
− 1

)
(y∗Ay− by∗Bx) =

√
aby∗(B+BT )y

or (
1
λ
− 1

)
(y∗Ay+

b
a

x∗Ax) =
√

aby∗(B+BT )y.
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Since both A and B+BT are positive semidefinite, it follows that λ ≤ 1.
Further it holds,

−y∗Ax = ay∗BT y

so (
1
λ
− 1

)
(ay∗BT y+ bx∗Bx) =−

√
abx∗(B+BT )y

or (
1
λ
− 1

)
(ay∗(B+BT )y+ bx∗(B+BT )x) =−2

√
abx∗(B+BT )y.

Since B+BT is positive semidefinite, | x | + | y |�= 0, and a and b have the same
sign, it follows that

1
λ
− 1 ≤ 2

√
ab | x∗(B+BT )y |

| a | y∗(B+BT )y+ | b | x∗(B+BT )x
≤ 1,

that is, λ ≥ 1
2 . �

3.2 A Is Symmetric and Positive Definite

Assume now that A is symmetric and positive definite. Let A be defined in (5) and
let B̃i =

√
abA−1/2BiA−1/2, i = 1,2. Assume that the eigenvalues of the generalized

eigenvalue problem,

μ(I+ B̃1B̃2)z = (B̃1 + B̃2)z, z �= 0 (10)

are real and μmax ≥ μ ≥ μmin >−1.

Proposition 7. Let A be defined in (5), let B̃i =
√

abA−1/2BiA−1/2, i = 1,2, and
assume that B̃1 + B̃2 is spd and (10) holds. Then the eigenvalues of B−1A are

contained in the interval
[

1
1+μmax

, 1
1+μmin

]
.

Proof. λB
[

x
y

]
=A

[
x
y

]
implies

(λ − 1)

[
Ax − aB2y
Ay+ bB1x+

√
ab(B1 +B2)y

]
=

[
0√

ab(B1 +B2)y

]
.

Hence, a block-diagonal transformation with

[
A−1/2 0

0 A−1/2

]
shows that
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(λ − 1)

[
x̃−√a

b B̃2ỹ

ỹ+
√

b
a B̃1x̃+(B̃1 + B̃2)ỹ

]
=

[
0

−(B̃1 + B̃2)ỹ

]
,

where x̃ = A1/2x, ỹ = A1/2y.
If λ �= 1, then

(1−λ )
[
I+ B̃1B̃2

]
ỹ = λ (B̃1 + B̃2)ỹ,

Hence, by (10),

1
λ
− 1 = μ orλ =

1
1+ μ

,

which implies the stated eigenvalue bounds. �
Corollary 1. If B1 = B, B2 = BT , and I + B̃ is nonsingular, then

1
2
≤ λ ≤ 1

1+ μmin
,

where μmin >−1. If the symmetric part of B is positive semidefinite, then

1
2
≤ λ ≤ 1.

Proof. Since

(I− B̃)(I − B̃T )≥ 0

it follows that

I+ B̃B̃T ≥ B̃+ B̃T

which implies μ ≤ 1 in (10). Similarly,

(I + B̃)(I + B̃T )≥ 0,

that is,

I + B̃B̃T ≥−(B̃+ B̃T )

implies μmin ≥ −1. But μmin > −1 since I + B̃, and hence I + B̃T , are nonsingular.
If B+BT ≥ 0, then μmin = 0. �
Corollary 2. If B1 = B, B2 = B−δ/

√
abA for some real number δ , where B is spd

and 2B > δ/
√

abA, that is, B1 +B2 = 2B− δ/
√

abA is spd, then

√
4− δ 2

2+
√

4− δ 2
≤ λ ≤ 1.
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Proof. Here, (10) takes the form

μ(I + B̃2 − δ B̃)z̃ = (2B̃− δ I)z̃,

where B̃ =
√

abA−1/2BA−1/2. Let β be an eigenvalue of B̃.
Then

μ =
2β − δ

1+β 2−β δ
.

Since δ < 2β , it follows that μ > 0, that is, λ ≤ 1. Further, a computation shows
that μ takes its largest value when

(2β − δ )2 = 2(1+β 2−β δ )

or

(2β − δ )2 = 2+
1
2
(2β − δ )2 − δ 2

2
,

that is when

2β − δ =
√

4− δ 2.

Then μ = 2/
√

4− δ 2 and the statement follows from λ = 1/(1+ μ). �
Remark 3. Matrices in the form as given in Corollary 2 appear in phase-field
models; see, e.g. [4, 5]. For complex-valued systems, normally the coefficients are
a = b = 1. In other applications, such as those in Sects. 4.1 and 4.2, a form such as
in Proposition 1 arises. One can readily transform from one form into the other.

Propositions 6 and 7 show that if A is spd and B+BT is positive semidefinite,
then the condition number of the preconditioned matrix satisfies

K(B−1A)≤ 1+ μmax ≤ 2.

Using a preconditioning parameter, as in (6), we derive now a further-improved
condition number bound under the assumption that matrix B is symmetric. We
consider then the form (2) of matrix A.

Proposition 8. Let A =

[
A −BT

β 2B α2A

]
, where α > 0, β > 0, and let B be defined

in (6). Assume that A and B are symmetric and that A is positive definite.
Let B̃ = β A−1/2BA−1/2 and assume that B̃ has eigenvalues μ in the interval

[μmin,μmax], where 0 ≤| μmin |< μmax, and that α̃
α = |μ̃min|+

√
1+ μ̃2

min where

μ̃min = μmin/α, μ̃max = μmax/α . Then the eigenvalues of B−1A satisfy

λ (B−1A) =
α2 + μ2

(α̃ + μ)2 .
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For its condition number it holds

min
α̃

κ(B−1A) =

(
1− δ
1+ γ

)2

+(1+ μ̃2
max)

(
γ + δ
1+ δ

)2

,

where δ =| μmin | /μmax and γ =
√
(1+ μ̃2

min)/(1+ μ̃2
max). Here it holds

α̃
α

=
α̃opt

α
=

| μ̃min |+γ μ̃2
max

1− γ
.

If B is positive semidefinite, then

κ(B−1A)≤ 1+ 1/

(
1+

1√
1+ μ̃2

max

)2

,

where the upper bound is taken for

α̃
α

=
1

μ̃max
+

√
1+

1
μ̃2

max
.

Proof. Since both A and B are nonsingular, the eigenvalues λ of the generalized
eigenvalue problem,

λB
[

x
y

]
=A

[
x
y

]

are nonzero. Using (2) and (6), we find

(
1
λ
− 1

)
A
[

x
y

]
=

[
0[

(α̃2 −α2)A+ α̃β (B+BT )
]

y

]
.

If y = 0, then for all x �= 0 it follows that λ = 1. For λ �= 1, it follows that Ax = BT y
and, since A is spd,

(
1
λ
− 1

)(
β 2BA−1BT +α2A

)
y =

[
(α̃2 −α2)A+ α̃β (B+BT )

]
y,

or
1
λ
(
B̃B̃T +α2I

)
ỹ =

(
α̃2I + B̃B̃T + α̃(B̃+ B̃T )

)
ỹ,

where B̃ = β A−1/2BA−1/2 and ỹ = A1/2y. Since B̃ is symmetric, if B̃ỹ = μ ỹ, ỹ �= 0,
i.e. μ is an eigenvalue of B̃, it follows that μ is real and



58 O. Axelsson

Fig. 1 λ (μ) = (α2 +μ2)/(α̃ +μ)2

λ = λ (μ) =
α2 + μ2

α̃2 + μ2 + 2α̃μ
=

α2 + μ2

(α̃ + μ)2 .

The eigenvalues vary as indicated in Fig. 1.
Consider first the case where there exists negative eigenvalues. To get λ < 1 for

negative values of μ , we must choose (α̃ +μ)2 > α2 +μ2, i.e. α̃2 +2α̃μ −α2 > 0,
that is,

α̃ > | μ |+
√

μ2 +α2 or

α̃
α

> | μ̃min |+
√

1+ μ̃2
min.

The minimum value of λ (μ) can be found from

λ ′(μ) =
2

(α̃ + μ)3

(
α̃μ −α2)= 0,

that is,

minλ (μ) = λmin = λ (α2/α̃) =
α2 +α4/α̃2

(α̃ +α2/α̃)2 =
1

1+(α̃/α)2

To minimize the condition number, it can be seen (cf. Fig. 1) that we must choose α̃
such that

λ (μmin) = λ (μmax),

that is,

λmax =
α2 + μ2

min

(α̃ −|μmin|)2 =
α2 + μ2

max

(α̃ + μmax)2 ,
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or
α̃/α − μ̃min

α̃/α + μ̃max
= γ :=

(
1+ μ̃2

min

1+ μ̃2
max

)1/2

.

Here γ < 1, since by assumption μmax >| μmin |. Hence,

α̃
α

=
α̃opt

α
=

| μ̃min |+γ μ̃max

1− γ

Then

κ(B−1A) =
λmax

λmin
=

1+ μ̃2
max( |μ̃min|+γ μ̃max

1−γ + μ̃max

)2 [1+

( | μ̃min |+γ μ̃max

1− γ

)2

]

=
1+ μ̃2

max

(| μ̃min |+μ̃max)2

[
(1− γ)2 +(| (μ̃min |+γ μ̃max)

2] .
It holds

(1− γ)2 =

(
1− γ2

1+ γ

)2

=
(μ̃2

max − μ̃2
min)

2

(1+ μ̃2
max)(1+ γ)2 =

(μ̃max+ | μ̃min |)2(μ̃max + μ̃min |)2

(1+ μ̃2
max)(1+ γ)2 .

Hence,

κ(B−1A) =

(
1− δ
1+ γ

)2

+(1+ μ̃2
max)

(
γ + δ
1+ δ

)2

.

If B is positive semidefinite, then we let μmin = 0 so δ = 0,γ = 1/
√

1+ μ̃2
max and

κ(B−1A)≤ 1+
1

(1+ 1√
1+μ̃2

max
)2

which is taken for
α̃
α

=
1

μ̃max
+

√
1+

1
μ̃2

max
�

Remark 4. If μmin = 0 then κ(B−1A) < 2 and if μmax → ∞ then α̃ → α and
κ(B−1A)→ 2. If μ̃max = 1 then α̃/α = 1+

√
2 and

κ(B−1A)≤ 1+
1

(1+ 1√
2
)2

≈ 1.34.

Remark 5. As is well known, when eigenvalue bounds of a preconditioned matrix,
as in the case with B−1A, are known, then one can replace the conjugate gradient
(CG) with a Chebyshev acceleration method. This can be important, for instance, if
one uses some domain decomposition method for massively parallel computations,
as it avoids the global communication of inner products used in CG methods.
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4 Distributed Optimal Control of Elliptic
and Oseen Equations

Let Ω be a bounded domain in ℜd , d = 1,2 or 3, and let ∂Ω be its boundary which
is assumed to be sufficiently smooth. Let L2(Ω),H1(Ω) and H1

0 (Ω) denote the
standard Lebesgue and Sobolev spaces of functions in Ω , where H1

0 (Ω) denotes
functions with homogeneous Dirichlet boundary values at Γ0 ⊂ ∂Ω where Γ0 has
a nonzero measure. Further, let (·, ·) and ‖ · ‖ denote the inner product and norm,
respectively, in L2(Ω), both for scalar and vector functions. Extending, but follow-
ing [7], and based on [6], we consider now two optimal control problems. In [7]
a block-diagonal preconditioner is used. Here we apply instead the preconditioner
presented in Sect. 2.

4.1 An Elliptic State Equation

The problem is to find the state u ∈ H1
0 (Ω) and the control function y ∈ L2(Ω) that

minimizes the cost function

J(u,y) =
1
2
‖ u− ud ‖2 +

α
2
‖ y ‖2

subject to the state equation

⎧⎨
⎩

−Δu+(b ·∇)u= y in Ω
with boundary conditions
u = 0 on Γ0 ; ∇u ·n = 0 on Γ1 = ∂Ω \Γ0.

(11)

Here b is a given, smooth vector. For simplicity, assume that b ·n |Γ1= 0. Further,
ud denotes a given, desired state (possibly obtained by measurements at some
discrete points and then interpolated to the whole of Ω ). The forcing term y acts
as a control of the solution to the state equation. By including the control in the
cost functional, the problem becomes well posed. The regularization parameter α ,
chosen a priori, is a positive parameter chosen sufficiently small to obtain a solution
close to the desired state, but not too small and also not too large as this leads to ill
conditioning. This is similar to the familiar Tikhonov regularization. The variational
(weak) formulation of (11) reads

(∇u,∇v)+ (b ·∇u,v) = (y,v) ∀v ∈ H1
0 (Ω). (12)

The Lagrangian formulation associated with the optimization problem takes the
form

L(u,y, p) = J(u,y)+ (∇u,∇p)+ (b ·∇u, p)− (y, p),
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where p ∈ H1
0 (Ω) is the Lagrange multiplier corresponding to the constraint (12).

The weak formulation of the corresponding first-order necessary conditions,

(
∂L
∂u

,v

)
= 0 ∀v ∈ H1

0 (Ω)

(
∂L
∂y

,z

)
= 0 ∀z ∈ L2(Ω)

(
∂L
∂ p

,q

)
= 0 ∀q ∈ H1

0 (Ω)

gives now the system of optimality equations:

⎧⎨
⎩

(u,v)+ (∇v,∇p)+ (b ·∇v, p) = (ud ,v) ∀v ∈ H1
0 (Ω)

α(y,z)− (z, p) = 0 ∀z ∈ L2(Ω)

(∇u, ∇q)+ (b ·∇u, q)− (y,q) = 0 ∀q ∈ H1
0 (Ω)

,

which defines the solution (u,y) ∈ H1
0 (Ω)×L2(Ω) of the optimal control problem

with Lagrange multiplier p ∈ H1
0 (Ω). From the second equation, it follows that the

control function y is related to the Lagrange multiplier as y = 1
α p. Eliminating y and

applying the divergence theorem, this leads to the reduced system

(u,v)+ (∇v,∇p)− (b ·∇p,v) = (ud ,v) ∀v ∈ H1
0 (Ω)

(∇u,∇q)+ (b ·∇u,q)− 1
α (p,q) = 0 ∀q ∈ H1

0 (Ω).

Since the problem is regularized, we may here use equal-order finite element
approximations, for instance, piecewise linear basis functions on a triangular mesh
(in 2D), for both the state variable u and the co-state variable p. This leads to a
system of the form

[
M KT

K −α−1M

][
uh

ph

]
=

[
fh

0

]
,

where index h denotes the corresponding mesh parameter. Here M corresponds to
a mass matrix and K, which has the same order as M, to the second-order elliptic
operator with a first-order advection term.

By a change of sign of ph, it can be put in the form

[
M −KT

K α−1M

][
uh

−ph

]
=

[
fh

0

]

and we can directly apply the preconditioner from Sects. 2 and 3, and the derived
spectral condition number bounds. If
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ˆ

Ω

(
|∇u|2 − 1

2
(∇ ·b)u2

)
≥ 0,

i.e. if the operator is semi-coercive, then K + KT is positive semidefinite and it
follows from Proposition 6 that the corresponding spectral condition number is
bounded by 2, with eigenvalues in the interval 1/2 ≤ λ ≤ 1.

Remark 6. In [7], a block-diagonal preconditioner,

D =

[
A+α1/2B 0

0 α−1A+α−1/2B

]
,

is used for the saddle point matrix

A=

[
A B
B −α−1A

]
,

where B = BT and A is symmetric and positive semidefinite, and ker(A)∩ker(B) =
{0}, so A+α1/2B is symmetric and positive definite.

By assumptions made, from the generalized eigenvalue problem

Az = μ(A+α1/2B)z,

it follows that here μ ∈ [0,1] and it follows further readily that the preconditioned
matrix D−1A has eigenvalues that satisfy

| λ |=
√

μ2
i +(1− μi)2 for some μi ∈ [0,1],

that is, 1/
√

2 ≤| λ |≤ 1. Hence, the eigenvalues are located in the double interval:

I = [−1,−1/
√

2]∪ [1/
√

2,1].

For such eigenvalues in intervals on both sides of the origin, an iterative method
of conjugate gradient type, such as MINRES, needs typically the double number
of iterations, as for eigenvalues in a single interval on one (positive) side of the
origin, to reach convergence; see e.g. [11]. This can be seen from the polynomial
approximation problem

min
x∈I, Pk∈π0

k

| Pk(x) |≤ ε

where π0
k denotes the set of polynomials of degree k, normalized at the origin, i.e.

Pk(0) = 1.
Since the number of iterations increases as O(

√
κ), where κ =| λmax | / | λmin | is

the condition number, it follows that an indefinite interval condition number κ =
√

2
typically corresponds to a one-sided condition number of 4

√
2.
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The method proposed in the present paper has a condition number bounded by

2 and needs therefore a number of iterations about �
√

2

25/4
=

21/4

2
� 0.6 times

those for a corresponding block diagonal preconditioner. However, even if the
block-diagonal preconditioning method requires more iterations, each iteration may
be cheaper than in the method proposed in this paper. An actual comparison of the
methods will appear.

4.2 Distributed Optimal Control of the Oseen Problem

In [7], Stokes equation is considered. Here, we extend the method to the Oseen
equation and consider the velocity tracking problem for the stationary case, which
reads as follows:

Find the velocity u ∈ H1
0 (Ω)d ; the pressure p ∈ L2

0(Ω), where L2
0(Ω) = {q ∈

L2(Ω),
´

Ω qdx = 1}; and the control function f, which minimize the cost function

J (u, f) =
1
2
‖u−ud‖2 +

1
2

α‖f‖2,

subject to state equation for an incompressible fluid velocity u, such that

{−Δu+(b ·∇)u+∇p = f in Ω
∇ ·u = 0 in Ω

and boundary conditions u = 0 on ∂Ω1, u · n = 0 on ∂Ω2 = ∂Ω\∂Ω1, where n
denotes the outward normal vector to the boundary ∂Ω .

Here ud is the desired solution and α > 0 is a regularization parameter, used to
penalize too large values of the control function. Further, b is a given, smooth vector.
For simplicity we assume that b = 0 on ∂Ω1 and b ·n = 0 on ∂Ω2.

In a Navier–Stokes problem, solved by a Picard iteration using the frozen
coefficient framework, b equals the previous iterative approximation of u, in which
case normally ∇ ·u = 0 in Ω . For simplicity, we assume that this holds here also,
that is, ∇ ·b = 0.

The variational form of the state equation reads as follows:

{
(∇u,∇ũ)+ (b ·∇u, ũ)− (∇ũ, p) = (f, ũ) ∀ũ ∈ H1

0 (Ω)

(∇ ·u, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

The Lagrangian functional, corresponding to the optimization problem, is given by

L(u, p,v,q, f) = J (u, f)+ (∇u,∇v)+ (b ·∇u,v)− (∇ ·v, p)− (∇ ·u,q)− (f,v)
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where v is the Lagrange multiplier function for the state equation and q for its
divergence constraint. Applying the divergence theorem, the divergence condition
∇ ·b = 0 and the boundary conditions, we can write

ˆ

Ω

b ·∇ũ ·vdΩ =−
ˆ

Ω

(b ·∇v) · ũdΩ .

The five first-order necessary conditions for an optimal solution take then the
form

(u, ũ)+ (∇v,∇ũ)− (b ·∇v, ũ)− (∇ · ũ,q) = (ud , ũ) ∀ũ ∈ H1
0 (Ω)d

(∇ ·v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇u,∇ṽ)+ (b ·∇u, ṽ)− (∇ · ṽ, p)− (f, ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)d

(∇ ·u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

α(f, f̃)− (f̃,v) = 0 ∀f̃ ∈ L2(Ω)

(13)

Here u, p, f are the solutions of the optimal control problem with v,q as Lagrange
multipliers for the state equation, and ũ, ṽ, p̃, q̃, f̃ denote corresponding test
functions.

As in the elliptic control problem, the control function f can be eliminated,
f = α−1v, resulting in the reduced system,

(u, ũ)+ (∇v,∇ũ)− (b ·∇v, ũ)− (∇ · ũ,q) = (ud , ũ) ∀ũ ∈ H1
0 (Ω)d

(∇u,∇ṽ)+ (b ·∇u, ṽ)− (∇ · ṽ, p)−α−1(v, ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)d

(∇ ·v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇ ·u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

, (14)

To discretize (14) we use an LBB-stable pair of finite element spaces for the pair
(u,v) and (p,q). In [7] the Taylor–Hood pair with {Q2,Q2,Q1,Q1} is used, namely,
piecewise quadratic basis functions for u,v and piecewise bilinear basis functions
for p,q for a triangular mesh. The corresponding discrete system takes the form

⎡
⎢⎢⎣

M −L+C 0 DT

L+C α−1M DT 0
0 D 0 0
D 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
−v
p
q

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Mud

0
0
0

⎤
⎥⎥⎦ , (15)

where we have changed the sign of v. Here D comes from the divergence terms.
Further, M is the mass matrix and L+C is the discrete operator, corresponding to
the convection–diffusion term −Δu+b ·∇u and −L+C to Δv+b ·∇v, respectively.
Due to the use of an inf–sup (LBB)-stable pairs of finite element spaces, the
divergence matrix D has full rank.

As for saddle point problems of similar type, one can use either a grad–
div stabilization or a div–grad stabilization. In the first case we add the matrix
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DTW−1D to M and α−1DTW−1D to α−1M, respectively, possibly multiplied with
some constant factor, where W is a weight matrix. If W is taken as the discrete
Laplacian matrix, then DTW−1D becomes a projection operator onto the orthogonal
complement of the solenoidal vectors.

The other type of stabilization consists of perturbing the zero block matrix in

(15) by ε
[

Δ 0
0 Δ

]
, where ε is a small parameter, typically ε = O(h2) with h being

the space discretization parameter. In that case there is no need to use LBB-stable
elements; see, e.g. [12] for more details. In the present paper, however, we use
LBB-stable elements and there is no need to use any additional regularization at all
but consider instead the solution of the system with the Schur complement matrix
system:

[
0 D
D 0

][
M −L+C

L+C α−1M

]−1([
0 DT

DT 0

][
p
q

]
−
[

Mud

0

])
=

[
0
0

]
(16)

This system can be solved by inner–outer iterations. To compute the residuals,

we must then solve inner systems with the matrix

[
M −L+C

L+C α−1M

]
, which takes

place in the way discussed earlier in Sect. 2. To recall, only systems with M +√
α(L+C) and M+

√
α(L−C) have to be solved. Further, as is seen from (16), the

corresponding systems which actually arise have the form D[M+
√

α(L+C)]−1DT

and D[M+
√

α(L−C)]−1DT . At least for not too large convection terms, related to
the diffusion term, these systems are well conditioned and can be preconditioned
with a mass matrix or a mass matrix minus a small multiple times the Laplacian.

To avoid the need to solve inner systems and for stronger convections, it may be
better to use a block-triangular factorization of the matrix in (15). For the arising
inner systems with M +

√
α(L+C) and M +

√
α(L−C), it can be efficient to use

some off-the-shelf software, such as some algebraic multigrid (AMG) method; see
[13, 14]. In [15] and [13] numerical tests are reported, showing that AGMG [13],
as one choice of an AMG method, performs much better than some other possible
methods.

The perturbations due to the use of inner iterations with stopping criteria lead
in general to complex eigenvalues. A generalized conjugate gradient method of
GMRES [16] type can be used. Such methods go under different names and have
been referred to as nonlinear conjugate gradient, variable preconditioned conjugate
gradient [17] and flexible GMRES [18]. Since, due to the accurate preconditioning,
there are few iterations, the additional cost for having a full length Krylov subspace,
involving all previous search directions, is not much heavier than if a conjugate
gradient method with vectors, orthogonal with respect to a proper inner product
and, hence, short recursions, is used.

We remark, however, that such a method has been constructed for indefinite
matrices in [19], based on inner products, defined by the matrix
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D =

[
M̂− M̂0 0

0 S0

]
,

where M̂0 is an approximation of M̂, such that M̂0 < M̂ and S0 < B̂M̂−1B̂T is an spd
approximation of the Schur complement matrix for the two-by-two block system[

M̂ B̂T

B̂ 0

]
. This makes the matrix

[
M̂0 0
B̂ −S0

]−1 [
M̂ B̂T

B̂ 0

]
self-adjoint with respect to

that inner product. The drawback of the method is the need to properly scale the
approximation M̂0 to satisfy M̂0 < M̂, and furthermore, M̂0 must be fixed, i.e. cannot
be implicitly defined via variable inner iterations.

In our case, the corresponding preconditioning matrix defined in Sect. 2 satisfies
M̂0 > M̂, but there is no need to scale it. Furthermore, we may apply inner
iterations for this preconditioner and also for the Schur complement matrix, hence
the corresponding matrix M̂0 is in general not fixed so the above inner product
method is not applicable.

The presentation of block-triangular factorization preconditioner and approxima-
tions of the arising Schur complement preconditioners with numerical tests will be
devoted.
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