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Abstract A survey of recently proposed approaches for the construction of spectral
coarse spaces is provided. These coarse spaces are in particular used in two-level
preconditioners. At the core of their construction are local generalized eigenvalue
problems. It is shown that by means of employing these spectral coarse spaces
in two-level additive Schwarz preconditioners one obtains preconditioned systems
whose condition numbers are independent of the problem sizes and problem
parameters such as (highly) varying coefficients. A unifying analysis of the recently
presented approaches is given, pointing out similarities and differences. Some
numerical experiments confirm the analytically obtained robustness results.
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1 Introduction

The robust preconditioning of linear systems of equations resulting from the dis-
cretization of partial differential equations is an important objective in the numerical
analysis community. The importance arises due to an abundance of applications in
the natural and engineering sciences, including, e.g., porous media flows in natural
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reservoirs or man-made materials and computational solid mechanics. In many
practical situations the obtained discrete systems are too large to be solved by direct
solvers in acceptable computational time. This leaves the class of iterative solvers
as viable alternative. Nevertheless, since the convergence rates of iterative solvers
generally depend on the condition numbers of the systems to be solved, suitable
preconditioners are necessary to speed up convergence.

More precisely, one is typically faced with a situation where the condition
number of the discrete system increases with the size of the problem (or equivalently
with decreasing the mesh parameter) and may additionally deteriorate with specific
problem parameters. Instances of such problem parameters are, e.g., (highly)
varying coefficients or otherwise degenerate parameters. The latter may for instance
be observed in linear elasticity in the almost incompressible case, i.e., when the
Poisson ratio is close to 1/2. In view of these two aspects one is therefore interested
in the design of preconditioners that yield condition numbers of the preconditioned
systems that are independent of mesh and problem parameters. In the following
we refer to these preconditioners as robust with respect to mesh and problem
parameters.

In the absence of degenerate problem parameters obtaining robust precondition-
ers with respect to the problem size has been successfully addressed for a variety
of settings. Here we in particular mention various multilevel and multigrid methods
(see e.g. [3, 18, 24, 26] and references therein) and domain decomposition methods
(see e.g. [21, 23] and references therein). For problems with varying coefficients
these methods remain to work robustly provided the coefficient variations are
resolved by the coarsest grid.

However, even for two-level methods the situation is more complicated if the
coarse mesh does not resolve the coefficient discontinuities. For certain classes of
coefficients robustness of two-level preconditioners could be established by using
a coarse space spanned by specially designed multiscale finite element functions
(see e.g. [10, 17, 19]) or energy minimizing functions (see e.g. [25, 29]). The
dimensions of these “exotic” coarse spaces are essentially given by the dimensions
of corresponding standard coarse spaces. While this is desirable from the point
of view of computational complexity, it can be shown that for general coefficient
configurations the obtained coarse spaces cannot be rich enough to maintain
robustness in all situations.

A two-level preconditioner for the scalar elliptic equation with highly varying
coefficients that is robust for general coefficient configurations was presented in
[15]. Here the authors use local generalized eigenvalue problems in the coarse space
construction. More precisely, they consider a family of overlapping subdomains. On
each of the subdomains a generalized eigenvalue problem is posed. The eigenfunc-
tions corresponding to eigenvalues below a predefined threshold are then used for
constructing the coarse space in the two-level preconditioner. The analysis of this
preconditioner then shows that the condition number of the preconditioned system
only depends on this predefined threshold, and is thus in particular independent of
problem and mesh parameters. The approach of [15] is furthermore refined in [16]
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where multiscale partition of unity functions are used to reduce the dimension of
the coarse space while preserving the robustness of the preconditioner.

Here it should be noted that the idea of using local eigenvalue problems
for the coarse space construction has previously been used in [6–8] leading to
spectral element-based algebraic multigrid (ρAMGe) methods. More recently, in the
framework of ρAMGe and focussing on the robustness with respect to coefficient
variations, local generalized eigenvalue problems have been used to construct a
tentative coarse space (see [5]). The actual coarse space used in [5] is then obtained
from this tentative coarse space after a smoothed aggregation construction (see
also [6]). A two-grid method similar to that of [5] is discussed in [20], where
additionally advanced polynomial smoothers based on the best uniform polynomial
approximation to x−1 are considered.

The concept of using local generalized eigenvalue problems in the coarse space
construction of robust two-level preconditioners for the scalar elliptic equation with
highly varying coefficients is put into a more general framework in [22]. Here the
local generalized eigenfunctions corresponding to eigenvalues below a predefined
threshold are employed to define functionals. These functionals are in turn used to
specify constraints for minimization problems whose solutions are taken as coarse
space basis functions. The framework of [22] is a generalization, since it allows for
functional constraints not only originating from local generalized eigenproblems. In
fact, it is shown that an alternative way for choosing the functional constraints is by
specifying averages over suitably chosen, i.e., coefficient dependent, subdomains.

Another generalization of [15, 16] is the use of local generalized eigenvalue
problems for the construction of robust preconditioners for abstract symmetric
positive definite bilinear forms, which was considered in [12] and later on in [9]. The
idea is to formulate the generalized eigenvalue problems only in terms of the abstract
bilinear form. This generality makes the theory applicable to a variety of problems
such as the scalar elliptic equation with isotropic or anisotropic coefficients, the
stream function formulations of Stokes’ and Brinkman’s problem, the equations of
linear elasticity, as well as equations arising in the solution of Maxwell’s equations.

The main objective of the chapter at hand is to put the derivations of [12] and
[9] in a common perspective, to emphasize their similarities and differences, and
to relate them to the original works in [15, 16]. For this we restrict to analyzing
the scalar elliptic equation with highly varying isotropic coefficients to keep the
argument as simple as possible.

We remark that rather recently the approaches of [15, 16] and [12] have been
generalized to multiple levels in [13] and [27], respectively. We note that due to the
high computational cost involved in solving generalized eigenvalue problems the
generalization to multiple levels provides an important step for keeping the sizes of
these eigenvalue problems manageable for overall problem sizes that could hardly
be coped with in a two-level framework. Nevertheless, for the sake of simplicity
we refrain from including the analysis of these multilevel methods in our present
exposition. Finally, for the sake of completeness, we note that these concepts of
robust preconditioners have been applied to multiscale anisotropic problems (see
[11] for a two-level and [28] for a multilevel method).



306 J. Willems

The remainder of this chapter is organized as follows. In Sect. 2 we outline the
problem setting and formulate the abstract overlapping Schwarz preconditioner.
Section 3 is devoted to different related approaches for constructing suitable coarse
spaces resulting in robust preconditioners. In Sect. 4 we analyze the coarse space
dimension and clarify differences and similarities between the various methods.
In Sect. 5 we present some numerical results exemplifying the robustness of the
obtained preconditioners before ending with some conclusions.

2 Problem Setting

In order to make our presentation as accessible as possible, we restrict to the
following model problem posed in a bounded polyhedral domain Ω⊂R

d , d = 2, 3:

−∇ · (κ(xxx)∇u) = f in Ω, u = 0 on ∂Ω, (1)

where 0 < κmin ≤ κ ≤ κmax < ∞ and f ∈ L2(Ω), with L2(Ω) denoting the space of
square integrable functions on Ω. It is well-known that the variational formulation
of (1) is given by

Find u ∈ H1
0 (Ω) such that aΩ(u, v) = ( f , v), ∀v ∈ H1

0 (Ω), (2)

where aω(u, v) :=
ˆ

ω
κ(xxx)∇u ·∇vdxxx for any ω ⊂Ω, ( f , v) :=

ˆ
Ω

f udxxx, and H1
0 (Ω)

denotes the subspace of L2(Ω) of functions with square integrable derivatives and
zero trace on ∂Ω.

Let Th be a quasi-uniform triangulation of Ω with mesh parameter h. Correspond-
ing to Th let V ⊂H1

0 (Ω) be a (possibly higher order) Lagrange finite element space.
The finite dimensional problem corresponding to (2) is then given by

Find u ∈ V such that aΩ(u, v) = ( f , v), ∀v ∈ V . (3a)

An equivalent operator notation reads

Find u ∈ V satisfying Au = F, (3b)

where, with V ′ denoting the dual space of V , A : V → V ′ is given by < Au, v >:=
aΩ(u, v), and F ∈ V ′ is defined by < F, v >:= ( f , v). Here < ·, · > denotes the
duality pairing of V ′ and V .

Our main objective in this chapter is to discuss robust two-level additive Schwarz
preconditioners for solving (3). The term “robust” refers to the condition number of
the preconditioned system being independent of the mesh parameter h and variations
in κ .
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Algorithm 1: Additive Schwarz preconditioner M : V ′ → V corresponding to

{V0(Ω
(1)
j )}n

(1)
Ω

j=1 and VH .

Let F ∈ V ′.
Set v≡ 0 ∈ V .
for j = 1, . . . ,n(1)Ω do

Compute ψ ∈ V0(Ω
(1)
j ) such that

aΩ j(ψ, w) = F(w), ∀w ∈ V0(Ω
(1)
j ).

v← v+ψ
end for
Compute ψ ∈ VH such that

a(ψ, w) = F(w), ∀w ∈ VH .

v← v+ψ
return MF := v

To make this more precise let {Ω(1)
j }

n
(1)
Ω

j=1 be a family of overlapping subdomains
of Ω. For any ω ⊂Ω we define

V (ω) := {v|ω |v ∈ V } and V0(ω) := {v ∈ V |supp(v)⊂ ω}.

Also, we identify functions in V0(ω) with their restrictions to ω , and we thus
in particular have that V0(ω) ⊂ V (ω). Let VH ⊂ V be a coarse space whose
construction is discussed in Sect. 3. The action of the two-level additive Schwarz
preconditioner corresponding to V0(Ω

(1)
j ), j = 1, . . . ,n(1)Ω and VH is given by

Algorithm 1.
Applying M to (3b) yields the following preconditioned system

M Au = M F. (4)

For j = 1, . . . ,n(1)Ω let I
(1)
j := {i = 1, . . . ,n(1)Ω |Ω

(1)
i ∩Ω(1)

j �= /0}. Also, we set

n(1)I := max
j=1,...,n(1)Ω

#I
(1)
j . Using this notation it follows from [21, Lemma 2.51]

that

λmax(M A)≤ n(1)I + 1, (5)

where λmax(·) denotes the largest eigenvalue. For establishing the robustness of
our preconditioner it, therefore, suffices to derive a lower bound for λmin(M A)
independent of h and variations in κ . Here λmin(·) denotes the smallest eigenvalue.
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Provided that there exists a constant K > 0 such that for any v ∈ V there exist

vH ∈ VH and v j ∈ V0(Ω
(1)
j ), j = 1, . . . ,n(1)Ω satisfying

v = vH +

n
(1)
Ω

∑
j=1

v j and aΩ(vH , vH)+

n
(1)
Ω

∑
j=1

aΩ(v j, v j)≤ K aΩ(v, v) (6)

a standard result for abstract alternating Schwarz methods yields that

λmin(M A)≥ K−1, (7)

which together with (5) in particular implies the following result (see e.g. [21,
Theorem 2.52]).

Theorem 2.1. The condition number of the additive Schwarz preconditioned sys-

tem (4) is bounded by K(n(1)I + 1).

In view of Theorem 2.1 it is, therefore, sufficient to establish a stable decom-
position (6) with a constant K independent of h and variations in κ . The crucial
ingredient for obtaining such a robust bound is the careful design of the coarse
space VH , which is described in the next section.

3 Spectral Coarse Space Construction

First, we need to introduce some further notation. Let {Ω(2)
j }

n
(2)
Ω

j=1 be another over-

lapping decomposition of Ω, which may coincide with {Ω(1)
j }

n(1)Ω
j=1. Let {ξ (1)

j }
n(1)Ω
j=1

and {ξ (2)
j }

n(2)Ω
j=1 be partition of unities subordinate to {Ω(1)

j }
n(1)Ω
j=1 and {Ω(2)

j }
n(2)Ω
j=1,

respectively, such that supp(ξ (i)
j ) = Ω(i)

j for j = 1, . . . ,n(i)Ω . As a starting point of

our derivations, we observe that for any v(i)H, j ∈ V (Ω(i)
j ), j = 1, . . . ,n(i)Ω we have the

following two variants of a decomposition of v:

v =
n(1)Ω

∑
j=1

ξ (1)
j v(1)H, j

︸ ︷︷ ︸

=:v(1)H

+

n(1)Ω

∑
j=1

ξ (1)
j (v− v(1)H, j)

︸ ︷︷ ︸

=:v(1)j

, (8a)

v =
n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j

︸ ︷︷ ︸

=:v(2)H

+

n(1)Ω

∑
j=1

ξ (1)
j (v− v(2)H )

︸ ︷︷ ︸

=:v(2)j

. (8b)
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(8b) is the choice considered in [12], whereas (8a) is essentially the variant
considered in [9]. Note that in the first variant there appears only one partition of
unity, whereas in the second variant one has the freedom to choose two distinct

partition of unities (see Remark 3.4). We now aim at choosing v(i)H, j in such a way
that the decompositions (8) are also stable, i.e., have a robust constant K in estimate
(6). This approach eventually leads to the definition of a suitable coarse space VH .

Before proceeding with the actual derivations we note that v(i)H = v−∑
n(1)Ω
j=1 v(i)j .

Thus, by the definition of n(1)I and a strengthened Cauchy–Schwarz inequality we
observe that

aΩ

(

v(i)H , v(i)H

)

≤ 2aΩ(v, v)+ 2aΩ

⎛

⎝

n(1)Ω

∑
j=1

v(i)j ,

n(1)Ω

∑
j=1

v(i)j

⎞

⎠

≤ 2aΩ(v, v)+ 2n(1)I

n(1)Ω

∑
j=1

aΩ

(

v(i)j , v(i)j

)

.

(9)

Thus, for establishing the estimate in (6) with a robust constant K, it suffices to
derive the following estimate

n
(1)
Ω

∑
j=1

aΩ

(

v(i)j , v(i)j

)

≤C aΩ(v, v) , (10)

where C is a generic constant independent of h and variations in κ , i.e., we may
disregard the term aΩ(vH , vH) in the estimate of (6).

Considering the definition of v(i)j in (8) we aim at choosing v(i)H, j in such a way
that (10) holds.

Remark 3.1. We would like to point out here that generally, due to the multiplica-

tion by partition of unity functions, we have that v(i)H , v(i)j /∈ V . This problem can be

overcome by considering Ihv(i)H and Ihv(i)j instead, where Ih denotes the usual nodal
interpolation associated with V .

Another possibility which is proposed in [9] is the use of partition of identity
operators in (8) instead of partition of unity functions. At the current place
this modification indeed makes the argument more elegant. Nevertheless, this
modification shifts the difficulty to the analysis relating the dimension of VH to
the geometry underlying the variations of κ . This issue will be further addressed in
Sect. 4.2.

First we consider the case i = 1, i.e., (8a). We observe that

n
(1)
Ω

∑
j=1

aΩ

(

v(1)j , v(1)j

)

=

n
(1)
Ω

∑
j=1

aΩ

(

ξ (1)
j (v− v(1)H, j), ξ (1)

j (v− v(1)H, j)
)

︸ ︷︷ ︸

=:m(1)

Ω(1)
j

(

v−v
(1)
H, j ,v−v

(1)
H, j

)

. (11)
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Similarly, but slightly more complicated, we obtain for the case i = 2, i.e., (8b),

n(1)Ω

∑
k=1

aΩ

(

v(2)k , v(2)k

)

=

n(1)Ω

∑
k=1

aΩ

(

ξ (1)
k (v− v(2)H ), ξ (1)

k (v− v(2)H )
)

=

n(1)Ω

∑
k=1

aΩ

⎛

⎝ξ (1)
k (v−

n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j), ξ (1)

k (v−
n(2)Ω

∑
j=1

ξ (2)
j v(2)H, j)

⎞

⎠

≤ n(2)I

n
(1)
Ω

∑
k=1

n
(2)
Ω

∑
j=1

aΩ

(

ξ (1)
k ξ (2)

j (v− v(2)H, j), ξ (1)
k ξ (2)

j (v− v(2)H, j)
)

= n(2)I

n
(2)
Ω

∑
j=1

∑
k:Ω(1)

k ∩Ω(2)
j �= /0

a
Ω(2)

j

(

ξ (2)
j ξ (1)

k (v−v(2)H, j), ξ (2)
j ξ (1)

k (v−v(2)H, j)
)

︸ ︷︷ ︸

=:m(2)

Ω(2)
j

(

v−v
(2)
H, j ,v−v

(2)
H, j

)

,

(12)
where n(2)I is defined analogously to n(1)I corresponding to the decomposition

{Ω(2)
j }

n(2)Ω
j=1.

In view of (11) and (12) it is therefore sufficient for satisfying (10) to choose v(i)H, j
in such a way that

m(i)

Ω(i)
j

(

v− v(i)H, j, v− v(i)H, j

)

≤C a
Ω(i)

j
(v, v) . (13)

The following proposition (see e.g. [15, Sect. 3.3.1] or [12, Sect. 2]) is crucial for
establishing (13) with a robust constant C.

Proposition 3.2. Consider the following local generalized eigenvalue problem:

Find (ϕ(i)
j,λ , λ )∈ V (Ω(i)

j )×R
+
0 s.t. a

Ω(i)
j

(

w, ϕ(i)
j,λ

)

= λ m(i)

Ω(i)
j

(

w, ϕ(i)
j,λ

)

∀w∈V (Ω(i)
j ).

(14)
For v ∈ V let v(i)H, j := Π(i)

j v ∈ V (Ω j) be the a
Ω(i)

j
(·, ·)-orthogonal projection of

v|
Ω(i)

j
onto those eigenfunctions corresponding to eigenvalues below a predefined

“threshold” τ−1
λ > 0, i.e., Π(i)

j v ∈ span{ϕ(i)
j,λ |λ < τ−1

λ } satisfies

a
Ω(i)

j

(

v−Π(i)
j v, ϕ(i)

j,λ

)

= 0 for all λ < τ−1
λ .

Then we have that

m(i)

Ω(i)
j

(

v− v(i)H, j, v− v(i)H, j

)

≤ τλ a
Ω(i)

j

(

v− v(i)H, j, v− v(i)H, j

)

≤ τλ a
Ω(i)

j
(v, v) . (15)
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Proof. The second inequality in (15) is obvious, since Π(i)
j v is the a

Ω(i)
j
(·, ·)-

orthogonal projection of v|
Ω(i)

j
.

Next, we note that v|
Ω(i)

j
−Π(i)

j v = ∑
λ≥τ−1

λ

a
Ω(i)

j

(

v, ϕ(i)
j,λ

)

ϕ(i)
j,λ . Thus,

m(i)

Ω(i)
j

(

v−Π(i)
j v, v−Π(i)

j v
)

= ∑
λ≥τ−1

λ

a
Ω(i)

j

(

v, ϕ(i)
j,λ

)

m(i)

Ω(i)
j

(

v−Π(i)
j v, ϕ(i)

j,λ

)

= ∑
λ≥τ−1

λ

λ−1 a
Ω(i)

j

(

v, ϕ(i)
j,λ

)

a
Ω(i)

j

(

v−Π(i)
j v, ϕ(i)

j,λ

)

≤ τλ a
Ω(i)

j

⎛

⎝v−Π(i)
j v, ∑

λ≥τ−1
λ

a
Ω(i)

j

(

v, ϕ(i)
j,λ

)

ϕ(i)
j,λ

⎞

⎠

= τλ a
Ω(i)

j

(

v−Π(i)
j v, v−Π(i)

j v
)

. �

Note that by choosing the threshold τλ we can essentially fix the constant C

in estimate (13). Thus, C and therefore also K in (6) only depend on τλ and n(i)I ,
i = 1, 2, but are in particular independent of h and variations in κ .

For the solvability of (14) it is also important to note that m(i)

Ω(i)
j

(·, ·) is positive

definite on V (Ω(i)
j ), since supp(ξ (i)

j ) = Ω(i)
j by assumption.

The considerations above suggest choosing the coarse space V
(i)

H as

span{ξ (i)
j ϕ(i)

j,λ |λ < τ−1
λ , j = 1, . . . ,n(i)Ω }. However, as indicated in Remark 3.1, this

choice in general does not yield a subspace of V . The following proposition resolves
this issue by means of applying a nodal interpolation.

Proposition 3.3. For i = 1, 2 let

V
(i)

H := span{Ih(ξ
(i)
j ϕ(i)

j,λ ) |λ < τ−1
λ , j = 1, . . . ,n(i)Ω }, (16)

where as above Ih denotes the nodal interpolation corresponding to V . With v(i)H, j as
defined in Proposition 3.2 we have that

v =
n(1)Ω

∑
j=1

Ih(ξ
(1)
j v(1)H, j)

︸ ︷︷ ︸

=:v(1)H,I

+

n(1)Ω

∑
j=1

Ih(ξ
(1)
j (v− v(1)H, j))

︸ ︷︷ ︸

=:v(1)j,I

(17a)
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and

v =
n
(2)
Ω

∑
j=1

Ih(ξ
(2)
j v(2)H, j)

︸ ︷︷ ︸

=:v(2)H,I

+

n
(1)
Ω

∑
j=1

Ih(ξ
(1)
j (v− v(2)H ))

︸ ︷︷ ︸

=:v(2)j,I

. (17b)

Moreover, v(i)H,I ∈ V
(i)

H and the decompositions (17) satisfy a stable decomposition

property (6) with a constant K only depending on n(i)I , τλ , and the shape regularity
of Th.

Proof. The identities (17) follow by the linearity of Ih and the fact that Ihv = v for
all v ∈ V .

v(i)H,I ∈ V
(i)

H follows directly from the definitions of v(i)H, j and V
(i)

H .
For showing stability we need to reduce decompositions (17) to the case (8).

Thus, it suffices to show that for any v ∈ V we have that

aΩ

(

Ih(ξ
(i)
j v), Ih(ξ

(i)
j v)

)

≤C aΩ

(

ξ (i)
j v, ξ (i)

j v
)

, (18)

with a constant C only depending on the mesh regularity of Th. By [15, Proposi-
tion 15] (see also [4, Lemma 4.5.3]) we know that (18) is satisfied. �

Remark 3.4. Note that for the additive Schwarz preconditioner corresponding to the
second variant of a stable decomposition, i.e., (17b), the local solves are carried out

with respect to V0(Ω
(1)
j ), j = 1, . . . ,n(1)Ω , whereas by the definition of V

(2)
H we see

that the supports of the coarse basis functions are given by Ω(2)
j , j = 1, . . . ,n(2)Ω . That

is, the subdomains of the local solves do not need to coincide with the supports of
the coarse basis functions.

This observation is in contrast to the first variant of a stable decomposition,

i.e., (17a), where the support of the coarse basis functions is given by Ω(1)
j , j =

1, . . . ,n(1)Ω , corresponding to the spaces of the local solves, i.e., V0(Ω
(1)
j ), j, . . . ,n(1)Ω .

Remark 3.5. For actual numerical computations it is important to have a basis of

V
(i)

H available. Definition (16) obviously provides a generating set of our spectral

coarse space. Note, however, that even though the generalized eigenfunctions ϕ(i)
j,λ

are mutually aΩ j(·, ·) orthogonal, it is not clear that the generating set in (16) also
constitutes a basis. In fact, in particular for anisotropic problems (see [28]) it is
discussed that this generating set may not be minimal. Nevertheless, for simplicity
we assume in the following that the set given in (16) constitutes a basis and refer to
[28] for the more general situation.
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4 Analysis of Spectral Coarse Space Dimensions

After establishing the robustness of the additive Schwarz preconditioner given

by Algorithm 1 and utilizing the coarse spaces V
(i)

H it is important to analyze
the dimension of these coarse spaces. This is in particular crucial for the overall
computational complexity of the method, and it is generally desirable to keep the

dimension of V
(i)

H as small as possible.

By construction the dimension of V
(i)

H is determined by the number of general-
ized eigenvalues below the threshold τ−1

λ (see Proposition 3.2). We now investigate
the number of these “small” eigenvalues for binary geometries and for different
choices of subdomains and partition of unities. For this we first recall the well-
known min–max/Courant–Fischer principle (see e.g. [14, Theorem 7.36]), which
states that

λ (i)
j,k = min

Vk(Ω
(i)
j )⊂V (Ω(i)

j )

max
v∈Vk(Ω

(i)
j )

a
Ω(i)

j
(v, v)

m(i)

Ω(i)
j

(v, v)
, (19)

where Vk(Ω
(i)
j ) for k ≥ 1 is a k-dimensional subspace of V (Ω(i)

j ) and λ (i)
j,k denotes

the k-th eigenvalue of (14) sorted in increasing order accounting for multiplicity.
By our assumption of having a binary medium we know that Ω = Ωp∪Ωs such

that

κ(xxx) =
{

κmax, xxx ∈Ωs

κmin, xxx ∈Ωp,

which in particular means that the contrast κmax/κmin is the problem parameter of
interest.

For simplicity of the exposition we restrict to the case when {Ω(2)
j }

n(2)Ω
j=1 =

{Ω(1)
j }

n
(1)
Ω

j=1 and {ξ (2)
j }

n
(2)
Ω

j=1 = {ξ (1)
j }

n
(1)
Ω

j=1. Thus, without any danger of confusion we

may drop the superindices (1) and (2) distinguishing different families of subdomains
and partition of unity functions. Note, however, that even with this simplification the

bilinear forms m(1)
Ω j
(·, ·) and m(2)

Ω j
(·, ·) are not identical.

Furthermore, let Ωp
j := Ωp∩Ω j and similarly Ωs

j := Ωs∩Ω j. Besides, we set

Ωint
j := Ω j\(

⋃

k �= j

Ωk).

Note that we do not exclude the possibility that Ωint
j = /0. Additionally, let Ωs

j,k,
k= 1, . . . ,Lj be the path-connected components of Ωs

j, where we assume an ordering

such that Ωs
j,k\Ωint

j �= /0 for k = 1, . . . , L̃ j, where L̃ j ≤ Lj is suitably chosen. If

Ωs
j,k\Ωint

j = /0 for k = 1, . . . ,Lj we set L̃ j = 1 and Ωs
j,1 = Ω j\Ωint

j . The diameter

of the subdomains {Ω j}nΩ
j=1 is assumed to beO(H), and the width of the overlaps of

intersecting subdomains is assumed to beO(δ ). For a better understanding of these
definitions we refer to Fig. 1.
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Fig. 1 Subdomain Ω j with connected components of Ωs
j and non-overlapping part Ωint

j . In the
present configuration L j = 7 and L̃ j = 4

Let

V c
L̃ j
(Ω j) := {v ∈ V (Ω j) |

ˆ
Ωs

j,k

vdxxx = 0 for k = 1, . . . , L̃ j}.

Obviously, any L̃ j +1-dimensional subspace of V (Ω j) has a nontrivial intersection
with V c

L̃ j
(Ω j). Thus, by (19) we see that there exists a w ∈ V c

L̃ j
(Ω j) such that

λ (i)
j,L̃ j+1

≥
aΩ j(w, w)

m(i)
Ω j
(w, w)

. (20)

We first consider the case (i) = (1) and note that by Schwarz’ inequality

m(1)
Ω j
(w, w) =

ˆ
Ω j

κ(∇(ξ jw))
2 dxxx≤ 2

ˆ
Ω j

κw2(∇ξ j)
2 dxxx+2

ˆ
Ω j

κξ 2
j (∇w)2 dxxx

︸ ︷︷ ︸

≤aΩ j
(w,w)

. (21)

Since ξ j ≡ 1 in Ωint
j we have that

ˆ
Ω j

κw2(∇ξ j)
2 dxxx =

ˆ
Ω j\Ωint

j

κw2(∇ξ j)
2 dxxx

≤Cδ−2
ˆ

Ω j\Ωint
j

κw2 dxxx

≤Cδ−2

⎛

⎝

L̃ j

∑
k=1

ˆ
Ωs

j,k

κmaxw2 dxxx+
ˆ

Ω j\Ωint
j

κminw2 dxxx

⎞

⎠

≤C

(

H
δ

)2
⎛

⎝

L̃ j

∑
k=1

ˆ
Ωs

j,k

κmax(∇w)2 dxxx+
ˆ

Ω j\Ωint
j

κmin(∇w)2 dxxx

⎞

⎠

≤C

(

H
δ

)2

aΩ j(w, w) , (22)
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where we have used Poincaré’s inequality, which is possible since w ∈ V c
L̃ j
(Ω j), and

where C is independent of H, h, δ , and κmax/κmin.
Similarly, but again slightly more complicated, we obtain for (i) = (2)

m(2)
Ω j
(w, w) = ∑

k:Ωk∩Ω j �= /0

ˆ
Ω j

κ(∇(ξ jξkw))2 dxxx

≤ 2 ∑
k:Ωk∩Ω j �= /0

ˆ
Ω j

κw2(∇(ξ jξk))
2 +κ(∇w)2(ξ jξk)

2 dxxx

≤ 4
ˆ

Ω j

κw2(∇ξ j)
2 dxxx+ 4 ∑

k:Ωk∩Ω j �= /0

ˆ
Ω j∩Ωk

κw2(∇ξk)
2 dxxx+ 2aΩ j(w, w) .

Noting that

ˆ
Ω j∩Ωk

κw2(∇ξk)
2 dxxx ≤ Cδ−2

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ˆ
Ω j\Ωint

j

κw2 dxxx, if j = k
ˆ

Ω j∩Ωk

κw2 dxxx, if j �= k

≤ Cδ−2
ˆ

Ω j\Ωint
j

κw2 dxxx

we thus obtain by (22) that

m(2)
Ω j
(w, w)≤C

(

H
δ

)2

aΩ j(w, w) . (23)

where C is again independent of H, h, δ , and κmax/κmin.
Combining (20), (21), and (22) on the one hand and (20) and (23) on the other

hand we thus obtain

λ (i)
j,L̃ j+1

≥C

(

δ
H

)2

. (24)

Hence, choosing δ =O(H) yields a lower bound of λ (i)
j,L̃ j+1

, which is independent of

mesh parameters H and h as well as of the contrast κmax/κmin, which is our problem
parameter of interest.

4.1 Choice of the Bilinear Form mΩj(·, ·)

So far, we have carried out our analysis for the bilinear forms m(i)
Ω j
(·, ·), i = 1, 2,

defined by (11) and (12), respectively. Now, we generalize this choice to any bilinear
form mΩ j(·, ·) satisfying

m(i)
Ω j
(v, v)≤CaΩ j(v, v)+mΩ j(v, v) for any v ∈ V (Ω j) (25)
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for i = 1 or i = 2. Now, analogously to (14) consider the corresponding generalized
eigenvalue problem

Find (ϕ j,λ , λ ) such that a
Ω(i)

j

(

w, ϕ j,λ

)

= λ m
Ω(i)

j

(

w, ϕ j,λ

)

for all w ∈ V (Ω(i)
j ).

In exactly the same way as (15) in Proposition 3.2 we then obtain

m
Ω(i)

j
(v− vH, j , v− vH, j)≤ τλ a

Ω(i)
j
(v− vH, j, v− vH, j)≤ τλ a

Ω(i)
j
(v, v) ,

where vH, j ∈ V (Ω j) denotes the aΩ j(·, ·)-orthogonal projection of v|Ω j onto the

span of those eigenfunctions ϕ j,λ for which λ ≤ τ−1
λ . Using (25) together with this

estimate we therefore obtain

m(i)
Ω j
(v− vH, j , v− vH, j) ≤ CaΩ j(v− vH, j , v− vH, j)+mΩ j(v− vH, j , v− vH, j)

≤ (C+ τλ )aΩ j(v− vH, j , v− vH, j)

≤ (C+ τλ )aΩ j(v, v) .

That is, up to a change in the constant we obtain the same estimate as (15), which
implies that in the coarse space construction of our robust preconditioner we may

use ϕ j,λ instead of ϕ(i)
j,λ in the definition of V

(i)
H (see (16)).

Looking at (21) we see that (25) is satisfied for (i) = (1) and

mΩ j(v, w) := 2
ˆ

Ω j

κ(∇ξ j)
2vwdxxx,

which is essentially the choice made in [15, 16].

4.2 Partition of Unity vs. Partition of Identity

As indicated in Remark 3.1 the authors of [9] advocate the use of partition of identity
operators {Ξ j}nΩ

j=1 instead of partition of unity functions {ξ j}nΩ
j=1. We now elaborate

on the changes that this modification necessitates in the analysis of the coarse space
dimension.

In the following we consider the case when

Ξ jv := Ih(ξ jv),

where v is either an element of V or V (Ω j). Instead of m(1)
Ω j
(·, ·) given by (12) we

then consider aΩ j(Ξ jw, Ξ jw) for which we obtain

aΩ j(Ξ jw, Ξ jw) = aΩ j(Ih(ξ jw), Ih(ξ jw))≤CaΩ j(ξ jw, ξ jw) =Cm(1)
Ω j
(w, w) ,
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where we have used estimate (18). The remainder of the analysis proceeds along the
lines of (21) and (22).

We note that when using partition of unity functions estimate (18) is needed for

establishing the stable decomposition property when employing a coarse space V
(i)

H
defined in (16) (see Proposition 3.3). When using partition of identity operators the
same estimate is necessary for analyzing the number of asymptotically small (w.r.t.

the contrast κmax/κmin) generalized eigenvalues and thus the dimension of V
(i)

H .

4.3 Choice of the Subdomains

Concerning the choice of the subdomains estimate (24) admits several observations.

First of all we see that regardless of the choice of δ the lower bound for λ (i)
j,L̃ j+1

is independent of the contrast κmax/κmin. Our computational experience confirms

that this bound on the eigenvalue index is sharp in the sense that λ (i)
j,k → 0

as κmax/κmin→∞ for k = 1, . . . , L̃ j. For (very) high-contrast problems one may
therefore expect a “gap” in the spectrum and to recover L̃ j “small” eigenvalues
below τ−1

λ provided this threshold is chosen to lie within this spectral gap.
These considerations imply the following tradeoff regarding the choice of δ . On

the one hand one would like to choose δ small, e.g., δ = O(h), in order to have
Ωint

j as large and thus L̃ j as small as possible. The latter is desirable, since one is
generally interested in a small dimensional coarse space VH .

On the other hand choosing δ (very) small leads to a (very) small lower bound
in (24). In particular choosing a minimal overlap of one layer of fine cells T ∈ Th—

or more generally δ = O(h)—results in a lower bound for λ (i)
j,L̃ j+1

that depends on

the mesh parameters and degenerates as H/h→∞. The occurrence of a spectral gap
therefore depends on the relation of H/h and κmax/κmin. Hence for a given threshold
τ−1

λ and H/h sufficiently large one may in fact recover more “small” eigenvalues
than L̃ j, which may ultimately result in a larger dimensional coarse space.

4.4 Eigenvalue Problems in Overlaps of Subdomains

For the case of Ωint
j �= /0 a further modification is suggested in [9], which results

in a reduction of the number of degrees of freedom involved in the solution of the
generalized eigenvalue problem (14). To achieve this one may proceed as follows:

Let
Ṽ (Ω j) := {v ∈ V (Ω j) |aΩ j(v, w) = 0 ∀w ∈ V0(Ωint

j )}.

Note that by construction we have that

V (Ω j) = V0(Ωint
j )⊕ Ṽ (Ω j) and V0(Ωint

j )⊥a Ṽ (Ω j) (26)
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and that for small overlaps δ the dimension of Ṽ (Ω j) may be much smaller than
the dimension of V (Ω j).

Now, consider the following modification of the generalized eigenvalue problem
(14) posed with respect to Ṽ (Ω j) instead of V (Ω j), i.e.,

Find (ϕ̃(i)
j,λ , λ )∈ Ṽ (Ω j)×R+

0 s.t. aΩ j

(

w, ϕ̃(i)
j,λ

)

= λ m(i)
Ω j\Ωint

j

(

w, ϕ̃(i)
j,λ

)

∀w∈ Ṽ (Ω j),

(27)
where

m(1)
Ω j\Ωint

j
(v, w) := aΩ\Ωint

j
(ξ jv, ξ jw)

and
m(2)

Ω j\Ωint
j
(v, w) := ∑

k:Ωk∩Ω j �= /0

aΩ j\Ωint
j
(ξ jξkv, ξ jξkw) ,

respectively. Note that with these definitions we have

m(i)
Ω j
(v, w) = m(i)

Ω j\Ωint
j
(v, w)+ aΩint

j
(v, w) . (28)

Furthermore, for the solvability of (27) it is again important to note that m(i)

Ω j\Ωint
j
(·, ·)

is positive definite on Ṽ (Ω j). This follows from the fact that supp(ξ j) = Ω j by
assumption and v|Ω j\Ωint

j
�≡ 0 for all v ∈ Ṽ (Ω j)\{0} by construction.

According to the analysis in Sect. 3 we need to prove a statement analogous to
that of Proposition 3.2.

Proposition 4.1. For v ∈ V let ṽ(i)H, j := Π̃(i)
j v ∈ Ṽ (Ω j) be the aΩ j(·, ·)-orthogonal

projection of v|Ω j onto those eigenfunctions of (27) corresponding to eigenvalues

below τ−1
λ > 0, i.e., Π̃(i)

j v ∈ span{ϕ̃(i)
j,λ |λ < τ−1

λ } satisfies

aΩ j

(

v− Π̃(i)
j v, ϕ̃(i)

j,λ

)

= 0 for all λ < τ−1
λ .

Then we have that

m(i)
Ω j

(

v− ṽ(i)H, j, v− ṽH, j

)

≤ (1+ τλ )aΩ j

(

v− ṽ(i)H, j, v− ṽ(i)H, j

)

≤ (1+ τλ )aΩ j(v, v) .

(29)

Proof. The second inequality in (29) is obvious for the same reason as the second
inequality in (15).

By (28) we have that

m(i)
Ω j

(

v− Π̃(i)
j v, v− Π̃(i)

j

)

= m(i)
Ω j\Ωint

j

(

v− Π̃(i)
j v, v− Π̃(i)

j

)

+ aΩint
j

(

v− Π̃(i)
j v, v− Π̃(i)

j v
)

︸ ︷︷ ︸

≤aΩ j

(

v−Π̃(i)
j v,v−Π̃(i)

j v
)

.
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Thus, it remains to show that

m(i)

Ω j\Ωint
j

(

v− Π̃(i)
j v, v− Π̃(i)

j v
)

≤ τλ aΩ j

(

v− Π̃(i)
j v, v− Π̃(i)

j v
)

. (30)

By a reasoning identical to that of Proposition 3.2 it follows that (30) holds for all
v ∈ Ṽ (Ω j).

For general v ∈ V (Ω j) consider the unique aΩ j(·, ·)-orthogonal decomposition

v = vint + ṽ with vint ∈ V0(Ωint
j ) and ṽ ∈ Ṽ (Ω j). By the aΩ j(·, ·)-orthogonality of

V0(Ωint
j ) and Ṽ (Ω j) and since Π̃(i)

j is an aΩ j(·, ·)-orthogonal projection onto a

subspace of Ṽ (Ω j) it easily follows that Π̃(i)
j v = Π̃(i)

j ṽ. Thus, and since supp(vint)⊂
Ωint

j we have that

m(i)

Ω j\Ωint
j

(

v− Π̃(i)
j v, v− Π̃(i)

j v
)

= m(i)

Ω j\Ωint
j

(

vint + ṽ− Π̃(i)
j ṽ, vint + ṽ− Π̃(i)

j ṽ
)

= m(i)
Ω j\Ωint

j

(

ṽ− Π̃(i)
j ṽ, ṽ− Π̃(i)

j ṽ
)

≤ τλ aΩ j

(

ṽ− Π̃(i)
j ṽ, ṽ− Π̃(i)

j ṽ
)

≤ τλ aΩ j

(

vint + ṽ− Π̃(i)
j v, vint + ṽ− Π̃(i)

j v
)

= τλ aΩ j

(

v− Π̃(i)
j v, v− Π̃(i)

j v
)

,

where the first inequality holds, since (30) is satisfied for v∈ Ṽ (Ω j), and the second
inequality follows by aΩ j(·, ·)-orthogonality. �

In view of Proposition 4.1 we may perform the same reasoning as in Sect. 3 with

v(i)H, j replaced by ṽ(i)H, j , and we thus obtain an additive Schwarz preconditioner with a

coarse space given by Ṽ
(i)

H := span{Ih(ξ
(i)
j ϕ̃(i)

j,λ ) |λ < τ−1
λ , j = 1, . . . ,n(i)Ω } yielding

a condition number independent of problem and mesh parameters.

4.5 Choice of the Partition of Unity

So far, in the derivations of this section we have tacitly assumed that the choice
of our partition of unity functions only depends on the subdomains {Ω j}nΩ

j=1.
According to estimate (24) this choice is certainly viable. As a matter of fact, it
is necessary to have ξ j ≡ 1 in Ωint

j .
Nevertheless, in particular for large overlaps δ one may consider to choose

{ξ j}nΩ
j=1 in a problem, i.e., κ , dependent way. The objective of such an approach,

which was first considered in [16], is to reduce the number of asymptotically
small (w.r.t. κmax/κmin) eigenvalues without introducing a degeneracy due to an
increasingly smaller overlap δ .



320 J. Willems

Fig. 2 Subdomain Ω j with connected components of Ωs
j . Due to the large overlap Ωint

j = /0. In the
present configuration L j = 7 and L̃ j = 3

Let us consider a coarse grid TH of cells obtained by agglomerating fine cells
in Th (cf. [26, Sect. 1.9] for a description of an agglomeration procedure). The
agglomerate coarse cells are assumed to have diameters O(H). We consider an
overlapping decomposition {Ω j}nΩ

j=1 of Ω, where each subdomain Ω j is associated
with a coarse node xxx j and is given by Ω j := interior(∪{T ∈ TH |xxx j ∈ T}), i.e., the
union of all cells T ∈ TH containing this coarse node. Thus, we obviously have that
δ =O(H) and Ωint

j = /0.
In the following we outline the construction of a multiscale partition of unity—

henceforth denoted by {ξ ms
j }

nΩ
j=1. Let ξ ms

j satisfy ∇ · (κ∇ξ ms
j ) = 0 in those

T∈TH for which T ⊂ Ω j. Here we assume that ξ ms
j |T satisfies suitable boundary

conditions on ∂T , which are chosen in such a way that ∑nΩ
j=1 ξ ms

j ≡ 1. One may for
instance think of the boundary conditions as being given by the solutions of lower
dimensional problems along the agglomerate edges constituting the boundary of T .
Here we suppose that ξ ms

j constructed in this way satisfies 0 ≤ ξ ms
j ≤ 1, which is

guaranteed if the validity of a discrete maximum principle is assumed. For a more
general situation we refer to [27, Sect. 5].

As above we denote by Ωs
j,k, k = 1, . . . ,Lj, the path-connected components of

Ωs
j. This time we assume an ordering such that those Ωs

j,k are ordered first for which

it holds that Ωs
j,k ∩ (∂T\∂Ω j) �= /0 for some T ∈ TH with T ⊂ Ω j. The number of

these path-connected components of Ωs
j is denoted by L̃ j ≤ Lj. We refer to Fig. 2

for a better understanding of the current setting. The idea of this construction is that
(κ∇ξ ms

j )|Ωs
j,k

, k = L̃ j + 1, . . . ,Lj is small, which seems desirable when looking at

the definition of mΩ j(·, ·). More precisely, it is shown in [12, Sect. 5] that provided

∥

∥∇ξ ms
j

∥

∥

L∞(Ω j)
≤CH−1 and

∥

∥κmax∇ξ j
∥

∥

L∞(Ωs
j,k)
≤CH−1, ∀k = L̃ j + 1, . . . ,Lj

(31)
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we have that
λ (i)

j,L̃ j+1
≥C > 0,

where C is independent of κmax/κmin, δ , H, and h. Although a rigorous analysis
clarifying the question when (31) can be expected to hold is still a largely unsolved
problem for general coefficients κ , the computational practice shows that using
multiscale partition of unity functions as opposed to standard ones may significantly
reduce the coarse space dimension, while maintaining the robustness of the overall
preconditioner.

Remark 4.2. It should be noted here that the analysis above generalizes to different
symmetric positive definite bilinear forms corresponding, e.g., to the equations of
linear elasticity or the curl–curl equation with a positive L2-term arising in the
solution of Maxwell’s equations (see [27]). The major difficulty in a rigorous, fully
discrete analysis is the establishment of an estimate analogous to (18). Also, the
construction of a suitable (multiscale) partition of unity/identity resulting in small
dimensional coarse spaces has not been addressed in the literature, so far.

5 Numerical Experiments

We now turn to some numerical experiments to exemplify the robustness of two-
level additive Schwarz preconditioners using spectral coarse spaces. To demonstrate
the necessity of employing this spectral coarse space we also report numerical
results for two-level additive Schwarz preconditioners using standard coarse spaces
and coarse spaces spanned by multiscale finite element functions. More precisely,
we consider the following four different cases

• V st
H := span{ξ j | j = 1, . . . ,nΩ} (cf. [21, Sect. 2.5.3]).

• V ms,st
H := span{ξ ms

j | j = 1, . . . ,nΩ} (cf. [17]).

• VH := span{Ih(ξ jϕ j,λ ) |λ < τ−1
λ , j = 1, . . . ,nΩ} (see (16)).

• V ms
H := span{Ih(ξ ms

j ϕ j,λ ) |λ < τ−1
λ , j = 1, . . . ,nΩ} (see Sect. 4.5),

with {ξ j}nΩ
j=1 a standard partition of unity and {ξ ms

j }
nΩ
j=1 as in Sect. 4.5. The

subdomains are chosen as described in Sect. 4.5, and the bilinear form mΩ j(·, ·) is
chosen as 1/2mΩ j(·, ·) in Sect. 4.1 with the standard partition of unity ξ j and the
multiscale partition of unity ξ ms

j , respectively. The eigenvalue threshold is fixed by
setting τλ = 2.

On our computational domain Ω := (0, 1)2 we use a 256× 256 fine and a
16× 16 coarse tensor grid. The problems under consideration are discretized using
bilinear Lagrange finite elements. We emphasize that there is no essential difficulty
in treating more realistic settings. In particular one can consider the case of an
unstructured two- or three-dimensional fine grid and a corresponding coarse grid
resulting from an agglomeration procedure as, e.g., outlined in [26, Sect. 1.9].
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Fig. 3 κ for two random geometries. (a) κ for a binary random multiscale geometry.
(b) Logarithmic plot of κ for a non-binary random multiscale geometry

We choose two different configurations for κ . The first geometry depicted in
Fig. 3a is a binary one, i.e., κ only takes two values. As opposed to this, Fig. 3b
shows a coefficient κ which assumes a multitude of values between κmin and κmax.
Although both geometries are artificial in the sense that they do not represent any
concrete real life application, we consider them to be “hard” test problems. In
particular the (highly) varying coefficients represent multiscale features, which is
common in, e.g., reservoir simulations.

In our numerical experiments below we consider the cases κmin = 1 and κmax =
1e1, . . . ,1e6 to test our preconditioner for robustness. We would also like to point
out that the coefficient variations are not aligned with the coarse 16× 16 grid.

For completeness we remark that our implementations are carried out in C++
using the deal.II finite element library (cf. [2]), which in turn uses the LAPACK
software package (cf. [1]) for solving all appearing direct and eigenvalue problems.

In Table 1(1) we report the results obtained for the binary geometry shown in
Fig. 3a. The table shows the condition numbers of the additive Schwarz precondi-
tioned systems, where we employ the different choices of coarse spaces listed at the
beginning of this section. The numbers reported in parentheses are the respective
coarse space dimensions. As we can see, the condition numbers corresponding to
the spaces V st

H and V ms,st
H increase quite substantially with increasing the contrast

κmax/κmin. As opposed to this the preconditioners with the spectral coarse spaces
VH and V ms

H yield condition numbers which are robust with respect to the contrast.
This robustness comes at the expense of having to solve local generalized eigenvalue
problems, which of course can be done completely in parallel, and of having a larger
dimensional coarse space, which is in particular pronounced for higher contrasts. We
emphasize, however, that this increase in complexity can be significantly reduced
by multiscale partition of unity functions, i.e., by using V ms

H instead of VH . For
the highest considered contrast the dimension of the former is less than 3 times as
large as the dimension of V st

H and V ms,st
H , whereas for the latter the factor is close

to 10. As indicated above the dimension of the spectral coarse spaces changes with
increasing the contrast. Nevertheless, in coherence with our theory in Sect. 4 this
increase appears to reach some saturation for very high contrasts.



Spectral Coarse Spaces in Robust Two-Level Schwarz Methods 323

Table 1 Condition numbers of the additive Schwarz preconditioned systems for
the geometries shown in Fig. 3 with different contrasts κmax/κmin. In parentheses
we report the coarse space dimension.

(1) Results for Fig. 3a
κmax

κmin V st
H V ms,st

H VH V ms
H

1e1 4.7e0(225) 4.7e0(225) 4.7e0(279) 4.7e0(276)
1e2 1.2e1(225) 8.2e0(225) 4.9e0(570) 5.3e0(340)
1e3 7.6e1(225) 3.6e1(225) 4.6e0(1477) 5.2e0(547)
1e4 7.2e2(225) 3.4e2(225) 4.7e0(1995) 5.2e0(669)
1e5 6.1e3(225) 3.1e3(225) 4.8e0(2081) 5.2e0(668)
1e6 4.4e4(225) 2.8e4(225) 4.8e0(2093) 5.2e0(665)
(2) Results for Fig. 3b
κmax

κmin V ms
H

1e1 4.6e0(276)
1e2 4.7e0(273)
1e3 4.9e0(275)
1e4 4.9e0(306)
1e5 5.3e0(380)
1e6 5.4e0(461)

In order to not only test our theory for binary geometries we also consider
the coefficient depicted in Fig. 3b. For this geometry we only report the results
corresponding to the coarse space V ms

H in Table 1(2). As we can see, the condition
numbers also behave robustly in this situation. Also, similarly to the binary
geometry, we can observe the trend that increasing the contrast tends to increase
the dimension of the coarse space. Nevertheless, even for the highest contrast 1e6
the size of the coarse space is still rather manageable and in particular smaller than
the corresponding one for the binary geometry.

We close this section by some comments regarding the computational complexity
of the discussed domain decomposition methods using spectral coarse spaces. These
remarks apply not only to the considered two-dimensional examples but also to the
three-dimensional case.

The bottleneck of the discussed methods is the coarse space construction and
in particular the solution of the local generalized eigenvalue problems. As indi-
cated above these eigenvalue problems are solved using LAPACK. The algorithm
implemented in the subroutine DSYGVX first reduces the generalized eigenvalue
problems to standard ones by performing Cholesky decompositions. The resulting
matrices are then reduced to Hessenberg tridiagonal form, which can be done by
Householder transformations. A QR-algorithm employing Givens rotations can then
be used to compute the actual eigenpairs. The overall complexity of this algorithm
is cubic in the number of unknowns.

Even though the generalized eigenvalue problems can be solved in parallel, it
may be unreasonably costly to construct a spectral coarse space, if one is only
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interested in solving a single problem on a given geometry. However, if one needs to
solve many problems on a single geometry, which, e.g., is the case when computing
an approximate solution of a time-dependent problem by an implicit time-stepping
scheme, constructing a spectral coarse space may be rather reasonable.

If one wants to solve many problems on a single geometry, it makes sense to
distinguish between an offline phase, which in particular includes the construction of
the spectral coarse space, and an online phase, which is the actual application of the
preconditioner. As the computations in the offline phase are only carried out once,
the computational cost of the online phase becomes the major concern. Considering
the discussed methods we see that one iteration of a two-level algorithm with a
coarse space given by VH or V ms

H is about as expensive as one iteration of a two-level
algorithm with a coarse space given by V st

H or V ms,st
H . The only difference making

the former somewhat more expensive than the latter is due to the increased coarse
space dimension. Although this space dimension is inherently problem dependent,
we note that dim(V ms

H ) remains rather manageable for the considered examples.
In view of drastically reduced condition numbers of the preconditioned systems,
this slight increase in computational complexity for one iteration in the online phase
seems justified. After all, the number of preconditioned conjugate gradient iterations
needed to achieve a prescribed accuracy depend on the condition number of the pre-
conditioned system, and one may therefore expect significant overall computational
savings by employing two-level preconditioners using spectral coarse spaces.

6 Conclusions

We have given an overview of several recently proposed approaches for constructing
spectral coarse spaces for robust preconditioners. For this we have developed a
monolithic framework enabling us to detail the similarities and distinctions of the
different methods and to discuss their advantages and shortcomings. In this context
we have in particular related the more recent abstract works for general symmetric
positive definite bilinear forms to the originally introduced concepts and ideas for
the scalar elliptic equation. To show the applicability of the discussed analysis, we
have presented some numerical examples to validate the theoretical results.
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