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Abstract Domain decomposition iterative methods and implicit schemes are usu-
ally used for solving evolution equations. An alternative approach is based on
constructing non-iterative method based on special schemes of splitting into sub-
domains. Such regional-additive schemes are based on the general theory of
additive operator-difference schemes. Domain decomposition analogues of the
classical schemes of alternating direction method, locally one-dimensional schemes,
factored schemes, and regularized vector-additive schemes are used here. The main
results in the literature are obtained for time-dependent problems with selfadjoint
second-order elliptic operators. This paper discusses the Cauchy problem for
first-order evolution equations with nonnegative nonselfadjoint operators in a finite-
dimensional Hilbert space. Based on the partition of unity, we have constructed
nonnegativity preserving decomposition operators for the respective operator term
in the equation. We construct unconditionally stable additive domain decomposition
schemes based on the principle of regularization of operator-difference schemes and
vector-additive schemes.
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1 Introduction

Domain decomposition methods are often used for the numerical solution of
boundary value problems for partial differential equations on parallel computers.
The theory of the domain decomposition (DD) methods is mostly developed for
stationary problems [11, 12, 24, 25]. Numerous sequential and parallel algorithms
for overlapping and nonoverlapping DD methods are developed and analysed in
conjunction with such problems.

Domain decomposition methods for unsteady problems are based on two ap-
proaches [14]. In the first approach, standard implicit approximation in time is used.
After that, domain decomposition methods developed for steady-state problems can
be applied for solving the discrete problem on the new time level. In the case
of optimal DD iterative methods, the number of iterations does not depend on
space and time discretization steps [3, 4]. In the second approach, non-iterative
domain decomposition algorithms are constructed for unsteady problems. In some
cases, this can be interpreted as performing at each time step only one iteration
of the Schwarz alternating method for the approximate solution of boundary value
problems for second-order parabolic equation [6, 7]. We also construct a special
scheme of splitting into subdomains (regional-additive schemes [26, 27]).

The construction of regional-additive schemes and the investigation of their
convergence are based on the general theory of the splitting schemes [10, 13, 34].
Most interesting for the practice is the situation when the operator is split into
a sum of three or more noncommutative nonselfadjoint operators. In the case of
such a multicomponent splitting, stable additive splitting schemes are constructed
based on the concept of additive approximation. Furthermore, additively averaged
summarized approximation schemes are interesting, when we focus on parallel
computers. In the class of splitting schemes with full approximation [19], we
point to the vector-additive schemes, when the original equation is transformed
into a system of similar equations [1, 2, 31]. The most suitable approach for
constructing additive regularized operator-difference schemes for multicomponent
splitting [18,23] is the one in which the stability is achieved due to perturbations of
the operators of the difference scheme.

A domain decomposition scheme is defined by a decomposition of the com-
putational domain and by defining the splitting of the operator. To construct the
decomposition operators when solving BVP for PDEs, it is convenient to use a
partition of unity for the computational domain [5, 8, 16, 26, 28, 29, 33]. In the
overlapping DD methods, a function is associated with each subdomain, and this
function takes value between zero and one. Domain decomposition methods for
unsteady convection-diffusion problems are studied in the works [17, 20, 30]. In
the extreme case, the width of the overlap of the subdomains is equal to the space
discretization step. In this case the regionally additive schemes can be interpreted
as nonoverlapping domain decomposition schemes, where the exchange is achieved
by setting proper boundary conditions for each of the subdomain. Research results
on domain decomposition method for unsteady boundary value problems are
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summarized in the books [14, 19]. From the more recent studies, we mention
[32], where DD schemes which are more suitable for computer implementation are
presented.

In this paper, we construct a domain decomposition schemes for first-order evo-
lution equations with general nonnegative operator in a finite-dimensional Hilbert
space. Decomposition operators are constructed separately for the selfadjoint and
for the skew-symmetric part of the operator. The splitting is based on partition of
unity in the appropriate spaces. We propose two classes of unconditionally stable
regionally additive regularized schemes, and we consider vector-additive operator-
difference domain decomposition scheme.

2 The Cauchy Problem for First-Order Evolution Equations

Let H be finite-dimensional real Hilbert space of grid functions, in which the scalar
product and the norm are (·, ·) ‖ · ‖, respectively. Consider a time independent and
nonnegative in H grid operator A:

A ≥ 0,
d
dt

A = A
d
dt
. (1)

Let us denote by E the identity operator in H. We seek a solution to the Cauchy
problem

du
dt

+Au = f (t), 0 < t ≤ T, (2)

u(0) = u0. (3)

The problem (1)–(3) is obtained after a finite-difference approximation in space
of initial boundary value problems (IBVP) for second-order partial differential
equations (PDEs). Similar systems of ordinary differential equations arise when
finite element method (FEM) or finite volume method (FVM) are used for space
discretization.

Let us give a standard a priori estimate for the problem (1)–(3). We take a scalar
product in H of the Eq. (2) and u. In view of (1) we arrive at

1
2

d
dt
‖u‖2 ≤ ( f ,u). (4)

Taking into account

( f ,u) ≤ ‖ f‖‖u‖,

from (4) we obtain

d
dt
‖u‖ ≤ ‖ f‖.
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Using the Gronwall lemma, we obtain the desired estimate

‖u‖ ≤ ‖u0‖+
ˆ t

0
‖ f (θ )‖dθ , (5)

which expresses the stability of the solution to the initial data and right-hand side.
The scope of this work is to present discretizations in time for the Eq. (2). Our

discretizations belong to the class of the two-layer schemes. Let τ be the time step
and let yn = y(tn), tn = nτ , n = 0,1, . . . ,N, Nτ = T . Equation (2) is approximated
by a two-level weighted scheme as follows:

yn+1 − yn

τ
+A(σyn+1 +(1−σ)yn) = ϕn, n = 0,1, . . . ,N − 1, (6)

where, for example, ϕn = f (σ tn+1 +(1−σ)tn). It is supplemented by the initial
condition

y0 = u0. (7)

Difference scheme (6), (7) has approximation error O(τ2+(σ −0.5)τ). An analogy
of (5) for the discretized in time function reads as follows:

‖yn+1‖ ≤ ‖yn‖+ τ‖ϕn‖, n = 0,1, . . . ,N − 1. (8)

We prove the following theorem.

Theorem 1. The difference scheme (1), (6), (7) is unconditionally stable for σ ≥
0.5, and the estimate (8) holds for the solution of the above difference equation.

Proof. Let us rewrite (6) in the form

yn+1 = Syn + τ(E +στA)−1ϕn, (9)

where
S = (E +στA)−1(E − (1−σ)τA) (10)

is the operator of the transition to a new time level. From (9) we have

‖yn+1‖= ‖S‖‖yn‖+ τ‖(E +στA)−1ϕn‖. (11)

For the last term on the right side of (11), in the class of operators (1), under
natural conditions σ ≥ 0, we have

‖(E +στA)−1ϕn‖ ≤ ‖ϕn‖.

Let us show that if σ ≥ 0.5, for nonnegative operator A, it holds

‖S‖ ≤ 1. (12)
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In real Hilbert space H, the inequality (12) is equivalent to [9] the fulfilment of the
operator inequality

SS∗ ≤ E.

In view of (10), this inequality takes the form

(E +στA)−1(E − (1−σ)τA)(E − (1−σ)τA∗)(E +στA∗)−1 ≤ E.

Multiplying this inequality on the left by (E +στA)−1 and on the right by (E +
στA∗)−1, we obtain

(E − (1−σ)τA)(E− (1−σ)τA∗)≤ (E +στA)(E +στA∗).

It follows from here that

τ(A+A∗)+ (σ2 − (1−σ)2)τ2AA∗ ≥ 0.

This inequality holds for nonnegative operators A withσ ≥ 0.5. In view of (12), from
(11), we have obtained the required estimate (8). ��

3 Decomposition Operators

To better understand the formal structure of the operators of the domain de-
composition, we give a typical example. We consider a model nonstationary
convection-diffusion problem with time-independent (but space-dependent) diffu-
sion coefficient and velocity. The convective term below is written in the so-called
(see, e.g., [21]) symmetric form. In a bounded domain Ω , the unknown function
u(xxx, t) satisfies the following equation:

∂u
∂ t

+
1
2

m

∑
α=1

(
vα(xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)u)

)

−
m

∑
α=1

∂
∂xα

(
k(xxx)

∂u
∂xα

)
= f (xxx, t), xxx ∈ Ω , 0 < t < T,

(13)

in which k(xxx) ≥ κ > 0, xxx ∈ Ω . Equation (13) is supplemented with homogeneous
Dirichlet boundary conditions

u(xxx, t) = 0, xxx ∈ ∂Ω , 0 < t < T. (14)

In addition, we define the initial condition

u(xxx,0) = u0(xxx), xxx ∈ Ω . (15)
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We will consider the set of functions u(xxx, t), satisfying the boundary conditions
(14). Let us write the above unsteady convection-diffusion problem in the form of
differential-operator equation

du
dt

+Au = f (t), 0 < t < T. (16)

We consider the Cauchy problem for the evolution equation (16):

u(0) = u0. (17)

Let us explicitly specify the diffusive and convective operators and rewrite (16) in
the following form:

A= C+D. (18)

The diffusion operator stands for

Du =−
m

∑
α=1

∂
∂xα

(
k(xxx)

∂u
∂xα

)
.

On the set of functions (14) in H = L2(Ω), the diffusion operator D is selfadjoint
and positive definite:

D =D∗ ≥ κδE , δ = δ (Ω)> 0, (19)

where E is the identity operator in H.
The convective transport operator C is defined by the expression

Cu =
1
2

m

∑
α=1

(
vα(xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)u)

)
.

For any vα(xxx), the operator C is skew-symmetric in H:

C =−C∗. (20)

Taking into account the representation (18), from (19), (20), it follows that A>0 H.
A domain decomposition scheme for this problem will be associated with the

partition of unity of the computational domain Ω . Let the domain Ω consists of p
(possibly overlapping) separate subdomains

Ω = Ω1 ∪Ω2 ∪ . . .∪Ωp.

With each separate subdomain Ωα , α = 1,2, . . . , p, we associate function
ηα(xxx), α = 1,2, . . . , p, such that
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ηα(xxx) =

{
> 0, xxx ∈ Ωα ,

0, xxx /∈ Ωα ,
α = 1,2, . . . , p, (21)

where
p

∑
α=1

ηα(xxx) = 1, xxx ∈ Ω . (22)

In view of (21), (22) from (18), we obtain the representation

A=
p

∑
α=1

Aα , Aα = Cα +Dα , α = 1,2, . . . , p, (23)

in which

Dα u =−
m

∑
α=1

∂
∂xα

(
k(xxx)ηα (xxx)

∂u
∂xα

)
,

Cα u =
1
2

m

∑
α=1

(
vα(xxx)ηα (xxx)

∂u
∂xα

+
∂

∂xα
(vα(xxx)ηα (xxx)u)

)
.

Similarly to (19), (20), it holds for the subdomain operators:

Dα =D∗
α ≥ 0, Cα =−C∗

α , α = 1,2, . . . , p. (24)

Due to (24), the operators in the splitting (23) satisfy

Aα ≥ 0, α = 1,2, . . . , p, (25)

and the selfadjoint part of the operator A splits into sum of nonnegative selfadjoint
operators, and the skew-symmetric operator splits into sum of skew-symmetric
operators.

The diffusive transport operator D is conveniently represented as

D = G∗G, G = k1/2 grad, G∗ =−divk1/2, (26)

with G : H→ H̃, where H̃= (L2(Ω))p is the corresponding Hilbert space of vector
functions. Using these notations, operators Dα , α = 1,2, . . . , p can be written as

Dα = G∗ηαG, α = 1,2, . . . , p. (27)

Similarly, each of Cα , α = 1,2, . . . , p has the representation

Cα =
1
2
(ηαC+Cηα), α = 1,2, . . . , p. (28)
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The advantage of the notations (27), (28) is that diffusion and convection operators
have clearly visible structure in the subdomains defined by the splitting (21), (22),
and it is easy to verify if (24) is satisfied.

A similar consideration can be given for the operator of the general problem
defined by (2), (3). Let us discuss it with some details. Let us select the selfadjoint
and the skew-symmetric part of the operator A:

A =C+D, C =
1
2
(A−A∗), D =

1
2
(A+A∗). (29)

The nonnegative operator D can be written as

D = G∗G, (30)

in which G : H → H̃. Let E and Ẽ be identity operators in the spaces H and H̃,
respectively, and let the following partitions of unity define the decomposition of
the domain

p

∑
α=1

χα = E, χα ≥ 0, α = 1,2, . . . , p, (31)

p

∑
α=1

χ̃α = Ẽ, χ̃α ≥ 0, α = 1,2, . . . , p. (32)

In analogy with (23)–(25), we use the splitting

A =
p

∑
α=1

Aα , Aα ≥ 0, α = 1,2, . . . , p, (33)

in which

Aα =Cα +Dα , Dα = D∗
α ≥ 0, Cα =−C∗

α , α = 1,2, . . . , p. (34)

Based on (32), we set

Dα = G∗χ̃α G, α = 1,2, . . . , p. (35)

The presentation of the terms in the antisymmetric part is based on (31):

Cα =
1
2
(χαC+Cχα), α = 1,2, . . . , p. (36)

Such an additive representation is a discrete analogue of (27), (28), and it is
interpreted as respective version of the domain decomposition.
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4 Regularized Domain Decomposition Schemes

Various splitting schemes can be used solving the Cauchy problem for Eqs. (2),
(3). The transition to a new time level is based on the solution p separate subtasks,
each of which is based on solving a problem with individual operators Aα , α =
1,2, . . . , p. Taking into account the structure of the operators (see (34)–(36)), the
presented splitting schemes belong to the class of regionally additive schemes and
are based on consistent application of non-iterative domain decomposition schemes.

Currently, the principle of regularization of difference schemes is being consid-
ered as a basic methodological principle for improving the difference schemes [13].
The construction of unconditionally stable additive-difference schemes [19], based
on the principle of regularization, will be implemented here in the following ways:

1. A simple difference scheme (called here generating difference scheme) is
constructed for the original problem. This scheme does usually not possess the
desired properties. For example, in the construction of additive schemes, the
generating scheme can be only conditionally stable or even can be completely
unstable.

2. The difference scheme is rewritten in a form for which the stability conditions
are known.

3. Quality of the scheme (e.g., its stability) is improved due to perturbations of the
operators of the difference scheme, at the same time preserving the possibility
for its computational implementation as an additive scheme.

Let us now illustrate the above methodology by a particular case study. Applied
to the problem (2), (3), we choose as a generating scheme the simple explicit scheme

yn+1 − yn

τ
+Ayn = ϕn, n = 0,1, . . . ,N − 1, (37)

which is complemented by the initial conditions (7). This scheme stable (see the
proof of Theorem 1) if the inequality

A+A∗− τAA∗ ≥ 0 (38)

is fulfilled. The inequality (38) with D > 0 imposes restrictions on the time step, i.e.,
the scheme (29), (37) is conditionally stable. Note also that if D = 0, the scheme
(29), (37) is absolutely unstable. Taking into account the splitting (33), we refer to
the scheme under consideration as to a scheme from the class of additive schemes.

In the construction of additive schemes, we can consider also an alternative
variant, using as generating scheme the more general scheme (6), (7), which is not
additive, but which is unconditionally stable for σ ≥ 0.5. In this latter case, the
perturbation is applied just in order to obtain an additive scheme while preserving
the property of unconditional stability.
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Regularization of difference schemes for improving the stability range (in the
construction of splitting schemes) can be achieved via perturbation of the operator
A. Another way is related to perturbation of the finite-difference approximation of
the time derivative term. In the construction of additive schemes, it is convenient to
work with the transition operator S, writing down the generating scheme (37) as

yn+1 = Syn + τϕn, n = 0,1, . . . ,N − 1. (39)

In the case of (37), we have
S = E − τA. (40)

A regularized scheme based on the perturbation of the operator S has the form

yn+1 = S̃yn + τϕn, n = 0,1, . . . ,N − 1. (41)

Let us formulate general conditions on S̃.
The generating scheme (39), (40) has first-order approximation in time, and to

preserve this order of approximation, we impose on S̃ the following condition:

S̃ = E − τA+O(τ2). (42)

The scheme (41) is stable in the sense of the estimate (8) provided that the following
inequality holds:

‖S̃‖ ≤ 1. (43)

Additionally, it should be noted that we seek for additive regularization scheme,
where the transition to a new time level is achieved via solving individual subprob-
lems for the operators Aα , α = 1,2, . . . , p in the decomposition (33).

The first class of regularized splitting schemes considered here is based on
the following additive representation of the transition operator of the generating
scheme:

S =
1
p

p

∑
α=1

Sα , Sα = E − pτAα , α = 1,2, . . . , p.

We use a similar additive representation for the transition operator in the regularized
scheme

S̃ =
1
p

p

∑
α=1

S̃α , α = 1,2, . . . , p. (44)

The individual terms S̃α , α = 1,2, . . . , p are based on perturbations of the operators
Aα , α = 1,2, . . . , p. In analogy with (10), we set

S̃α = (E +σ pτAα)
−1(E − (1−σ)pτAα), α = 1,2, . . . , p. (45)
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If σ ≥ 0.5 (see proof of Theorem 1) we have

‖S̃α‖ ≤ 1, α = 1,2, . . . , p.

In view of (44), this provides fulfilment of the stability conditions (43).
Accounting for

S̃α = E − pτ(E +σ pτAα)
−1Aα , α = 1,2, . . . , p

the regularized additive scheme (41), (44), (45) can be rewritten in the form

yn+1 − yn

τ
+

p

∑
α=1

(E +σ pτAα)
−1Aα yn = ϕn, n = 0,1, . . . ,N − 1. (46)

Comparing to the generating scheme (33), (37), we see that the regularization in
this case is achieved by perturbation of A. The outcome of our consideration is the
following theorem.

Theorem 2. The additive-difference scheme (7), (41), (44), (45) is unconditionally
stable for σ ≥ 0.5, and stability estimate (8) holds for its solution.

The computational implementation of the scheme (7), (46) can be carried out as
follows. We set

yn+1 =
1
p

p

∑
α=1

yn+1
α , ϕn =

p

∑
α=1

ϕn
α .

In this case, we obtain

yn+1
α − yn

pτ
+(E +σ pτAα)

−1Aα yn = ϕn
α , α = 1,2, . . . , p (47)

for the individual components of the approximate solution at the new time level
yn+1

α , α = 1,2, . . . , p. The scheme (47) can be rewritten as

yn+1
α − yn

pτ
+Aαyn(σyn+1

α +(1−σ)yn) = (E +σ pτAα)ϕn
α .

In this form we can interpret the scheme (47) as a variant of the additive-averaged
component splitting scheme [19].

Another class of regularized splitting schemes instead of additive (see (44)),
exploits multiplicative representation of the transition operator:

S̃ =
p

∏
α=1

S̃α , α = 1,2, . . . , p. (48)
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Taking into account (42), we have

S =
p

∏
α=1

Sα +O(τ2), Sα = E − τAα , α = 1,2, . . . , p.

Similarly to (45), we set

S̃α = (E +στAα)
−1(E − (1−σ)τAα), α = 1,2, . . . , p. (49)

Under the standard restrictions σ ≥ 0.5, the regularized scheme (41), (48), (49) is
stable.

Theorem 3. The additive-difference scheme (7), (41), (48), (49) is unconditionally
stable for σ ≥ 0.5, and the stability estimate (8) holds for its solution.

Let us discuss a possible computer implementation of the constructed regularized
scheme. We introduce auxiliary quantities yn+α/p, α = 1,2, . . . , p. Taking into
account (41), (48), these are defined from the equations

yn+α/p = S̃αyn+(α−1)/p, α = 1,2, . . . , p− 1,

yn+1 = S̃pyn+(p−1)/p+ τϕn. (50)

Similar to (47), we obtain from (50)

yn+α/p − yn+(α−1)/p

τ
+(E +στAα)

−1Aαyn+(α−1)/p = ϕn
α , (51)

where

ϕn
α =

{
0, α = 1,2, . . . , p− 1,
ϕn, α = p.

We write the scheme (51) as

yn+α/p − yn+(α−1)/p

τ
+Aα(σyn+α/p +(1−σ)yn+(α−1)/p) = ϕ̃n

α , (52)

in which
ϕ̃n

α = (E +στAα)ϕn
α , α = 1,2, . . . , p.

Scheme (52) can be considered as a special version of the standard component-wise
splitting scheme [10, 13, 34]. However, those schemes are additive approximation
schemes, while the constructed here scheme is a full approximation one. Regular-
ized scheme (41), (44), (45), built on the additive representation (44) of the transition
operator, is more suitable for parallel computations, compared to the regularized
schemes (41), (48), (49) which is based on the multiplicative representation (48).
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5 Vector Schemes for Domain Decomposition

Difference schemes for nonstationary problems can often be regarded as appropriate
iterative methods for approximate solution of stationary problems. The introduced
above regularized additive schemes are based on perturbation of the operator A in the
producing scheme (37). Such schemes, as well as the standard additive component-
wise splitting schemes, are not suitable for constructing iterative methods for
solving stationary equations. Better opportunities in this direction are provided by
the vector-additive schemes [1, 31].

Instead of a single unknown u(t), we consider p unknowns uα , α = 1,2, . . . , p,
which are to be determined from the system

duα
dt

+
p

∑
β=1

Aβ uβ = f (t), α = 1,2, . . . , p, 0 < t ≤ T. (53)

The following initial conditions are used for the system of equations (53)

uα(0) = u0, α = 1,2, . . . , p, (54)

which follow from (2). Obviously, each function is a solution of (2), (3), (33).
Approximate solution of (2), (3), (33) will be constructed on the basis of difference
schemes for the vector problem (53), (54).

To solve the problem (53), (54), we use the following two-level scheme:

yn+1
α − yn

α
τ

+
α

∑
β=1

Aβ yn+1
β +

p

∑
β=α+1

Aβ yn
β = ϕn,

α = 1,2, . . . , p, n = 0,1, . . . ,N − 1, (55)

complemented with the initial conditions

yα(0) = u0, α = 1,2, . . . , p. (56)

The computational implementation of this scheme is connected with a consecutive
inversion of operators E + τAα , α = 1,2, . . . , p.

Theorem 4. The vector-additive difference scheme (33), (55), (56) is uncondition-
ally stable, and stability estimate holds for its components

‖yn+1
α ‖ ≤ ‖yn

α‖+ τ‖ϕ0−Au0‖+ τ
n

∑
k=1

τ
∥∥∥∥ϕk −ϕk−1

τ

∥∥∥∥ ,

α = 1,2, . . . , p, n = 0,1, . . . ,N − 1, (57)

is valid.
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Proof. The analysis of the vector scheme (55), (56) will be carried out following
the work [22]. ��

We emphasize that the above stability estimates (57) are obtained for each indi-
vidual component yn+1

α , α = 1,2, . . . , p. Each of them or their linear combination

yn+1 =
p

∑
α=1

cα yn+1
α , cα = const ≥ 0, α = 1,2, . . . , p

can be regarded as an approximate solution to our problem (2), (3), (33) at time
t = tn+1.

6 Model Problem

The performance of the considered domain decomposition schemes is illustrated
considering a simple example for numerical solution of the boundary value problem
for parabolic equation. Consider a rectangular domain

Ω = { xxx | xxx = (x1,x2), 0 < xα < lα , α = 1,2}.

The following boundary value problem

∂u
∂ t

=
2

∑
α=1

∂ 2u
∂x2

α
, xxx ∈ Ω , 0 < t < T, (58)

u(xxx, t) = 0, xxx ∈ ∂Ω , 0 < t < T, (59)

u(xxx,0) = u0(xxx), xxx ∈ Ω (60)

is to be solved in Ω .
We introduce a uniform rectangular grid in Ω :

ω̄ = {xxx | xxx = (x1,x2), xα = iα hα , iα = 0,1, . . . ,Nα , Nα hα = lα}

and let ω be the set of internal nodes (ω̄ =ω∪∂ω). For grid functions y(xxx) = 0, xxx∈
∂ω , we define Hilbert space H = L2(ω) with the scalar product and norm

(y,w)≡ ∑
xxx∈ω

y(xxx)w(xxx)h1h2, ‖y‖ ≡ (y,y)1/2.

After spatial approximations of the problem (58), (59), we arrive at the
differential-difference equation:

dy
dt

+Ay = 0, xxx ∈ ω , 0 < t < T, (61)
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in which

Ay =− 1

h2
1

(y(x1 + h1,x2)− 2y(x1,x2)+ y(x1 − h1,x2))

− 1

h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2 − h2)), xxx ∈ ω .

(62)

In the space H the operator A is selfadjoint and positive definite [13, 15]:

A = A∗ ≥ (δ1 + δ2)E, δα =
4

h2
α

sin2 πhα
2lα

, α = 1,2. (63)

Taking into account (60), Eq. (62) is supplemented with the initial condition

y(xxx,0) = u0(xxx), xxx ∈ ω . (64)

For simplicity, the DD operator in the investigated problem (61)–(64) is con-
structed without the explicit separation of the operator G and G and the space H̃,
focusing on the decomposition (21), (22). We set

Aα y =− 1

h2
1

ηα(x1 + 0.5h1,x2)(y(x1 + h1,x2)− y(x1,x2))

+
1

h2
1

ηα(x1 − 0.5h1,x2)(y(x1,x2)− y(x1 − h1,x2))

− 1

h2
2

ηα(x1,x2 + 0.5h2)(y(x1,x2 + h2)− y(x1,x2))

+
1

h2
2

ηα(x1,x2 − 0.5h2)(y(x1,x2)− y(x1,x2 − h2)),

α = 1,2, . . . , p.

(65)

In view of (21), (22) we have

A =
p

∑
α=1

Aα , Aα = A∗
α , α = 1,2, . . . , p. (66)

Thus, we are in a class of additive schemes (33), for which we construct different
additive schemes.

Numerical calculations are carried out for the problem (58)–(60) in the unit
square (l1 = l2 = 1) when the solution has the form

u(xxx, t) = sin(n1πx1)sin(n2πx2)exp(−π2(n2
1 + n2

2)t) (67)
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Fig. 1 Domain decomposition

for natural n1 and n2. We use this solution to set the initial conditions (60). The
domain is decomposed into four overlapping subdomains (see Fig. 1). The discon-
nected subdomains can be considered as one subdomain, and the decomposition in
Fig. 1 can be considered as a decomposition into two subdomains and described by
two functions: ηα = ηα(x1), α = 1,2.

Overlapping and nonoverlapping domain decomposition methods can be con-
structed for problems of type (58)–(60). Methods without overlap require for-
mulation of interface conditions at the common boundaries. Here we consider
overlapping DD and therefore do not need to formulate such conditions. However,
the proposed here schemes have straightforward extension for the case of nonover-
lapping DD.

A fundamental question in DD methods, especially in their parallel implemen-
tation, is the exchange of calculated data between different subdomains. The usual
explicit schemes can serve as reference in order to explain the exchange challenges.
In this case, the domain decomposition can be associated with certain subsets of
grid nodes: ωα , α = 1,2, where ω = ω1 ∪ω2. In the case of (58)–(60) (seven point
stencil in space), the transition to a new level in time for the explicit scheme is
associated with the use of solution values at the boundary nodes (here we mean
the boundary of each subdomain). We need to transfer the calculated data volume
∼ ∂ωα , α = 1,2. In solving numerically the problem (61)–(64), we can consider
two possibilities for minimal overlap of the subdomains. In our case, the first one
corresponds to allocating the inter-subdomain boundary along the grid nodes with
integer numbers; the second one is allocating interface lines along nodes with non-
integer numbering.

The variant with division along integer-numbered nodes is displayed in Fig. 2.
Let the decomposition be carried out in the variable x1, i.e. θ = x1. Decomposition
of the domain held by the node θ = θi. Given this decomposition, the operator (65)
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Fig. 2 Decomposition in integer nodes

is written in the form

A1y =
1

h2
1

(y(x1,x2)− y(x1 − h1,x2))

− 1

2h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2 − h2)),

A2y =− 1

h2
1

(y(x1 + h1,x2)− y(x1,x2))

− 1

2h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2 − h2)), x1 = θi.

This decomposition can be associated with Neumann boundary conditions as
exchange boundary conditions. Relationship between the individual subdomains is
minimal and they can exchange data with θ = θi. This case can be identified by the
decomposition operators (32) as follows:

R(χ̃α) = [0,1], α = 1,2, . . . , p. (68)

The values of ηα (x1 ± 0.5h1,x2), ηα(x1,x2 ± 0.5h1), α = 1,2 for (65), (67) are
equal to 0 or 1.

The second possibility, which is associated with decomposition along the non-
integer nodes, is illustrated in Fig. 3. In this case, instead of (68), we have

R(χ̃α) = [0,1/2,1], α = 1,2, . . . , p. (69)

In the node θ = θi, difference approximation is used with less twice the flux. With
regard to the case in the decomposition of the variable x1, operators decomposition
(65) is
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Fig. 3 Decomposition of a half-integer nodes

Fig. 4 Decomposition in integer nodes with a width of overlap 3h

A1y =
1

2h2
1

(y(x1,x2)− y(x1 − h1,x2))

− 1

4h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2 − h2)),

A2y =− 1

h2
1

(y(x1 + h1,x2)− y(x1,x2))+
1

2h2
1

(y(x1,x2)− y(x1 − h1,x2))

− 3

4h2
2

(y(x1,x2 + h2)− 2y(x1,x2)+ y(x1,x2 − h2)), x1 = θi.

For the calculations in Ω1 (see Fig. 3), we use half of the flux at the node θ = θi.
Thus, when using the domain decomposition method, the exchanges are minimal
and coincide with the exchanges in the implementation of the explicit scheme.

The decomposition variants (68), (69) presented above correspond to the case of
minimum overlapping of the subdomains. At the discrete level, the width of overlap
is determined by the mesh size, h and 2h, respectively. Similar variants are built
for larger overlap of the subdomains. In particular, for the decomposition variant in
Fig. 4, we have

R(χ̃α) = [0,1/3,2/3,1], α = 1,2, . . . , p. (70)
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Fig. 5 Accuracy at N1 = N2 = 32, N = 10

In this case the volume of the data exchange is increased, but on the other hand, the
transition from one subdomain to another is much smoother. The latter allows us
to expect higher accuracy of the approximate solution. Let us present the numerical
results obtained in solving (58)–(60). Recall that the exact solution is given by (67)
for n1 = 2, n2 = 1 at T = 0.01. Square grid N1 = N2 is used. Regularized fully
implicit (σ = 1) scheme based on additive perturbation (scheme (7), (41), (45),
(45)) and based on multiplicative perturbation (scheme (7), (41), (48), (49)) is used,
as well as vector-additive scheme (33), (55), (56). The results are compared with the
finite-difference solution, which we obtain by using the implicit scheme (1), (6), (7)
with σ = 1 (i.e., scheme without splitting). The errors of the approximate solutions
are measured as ε(tn) = ‖yn(xxx)− u(xxx, tn)‖ on a single time step.

In the case of the decomposition (68) (the width of the overlay is h), the grid
space of N1 = N2 = 32 and grid on time N = 10 (τ = 0.001), the error norms of
the difference solution using different decomposition schemes are shown in Fig. 5.
Figures 6–8 show the local error at the final time. The error is localized in areas of
overlap, and for vector decomposition scheme, it is much lower than for the additive
and multiplicative versions of regularized additive schemes.

With an increase in the grid space, the error of approximate solution of domain
decomposition schemes in comparison with the implicit scheme grows (Fig. 9). In
this case, the width of the overlap is reduced by half.

The influence of the width of the overlap is shown in Fig. 10. When using
the decomposition (70), there is a substantial increase in the accuracy of the
approximate solution compared to the decomposition (68) (compare Figs. 5 and 10).
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Fig. 6 Error of scheme (7), (41), (48), (49)

Fig. 7 Error of scheme (7), (41), (45), (45)
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Fig. 8 Error of scheme (33), (55), (56)

Fig. 9 The error at N1 = N2 = 64, N = 10



300 P. Vabishchevich and P. Zakharov

Fig. 10 The error at N1 = N2 = 32 and N = 10 and decomposition R = [0,1/3,2/3,1]

7 Conclusions

1. In this paper we have constructed domain decomposition operators for solving
evolution problems. The splitting of the common nonselfadjoint nonnegative
finite-dimensional operator is carried out separately for its selfadjoint and skew-
symmetric parts. This preserves the property of nonnegativity for the operator
terms associated with each of the subdomains.

2. Unconditionally stable regularized additive schemes for the Cauchy problem for
first-order evolution equations are constructed by splitting problem operators into
sum of nonselfadjoint nonnegative operators. This regularization be based on the
principles of regularization of operator-difference schemes with perturbation of
the transition operator of the explicit scheme. Variants with regularization based
on additive and multiplicative splitting are presented, the relationship between
the new schemes and the classical additive schemes with summarized approx-
imation (additively averaged schemes and standard component-wise splitting
schemes) is discussed.

3. Among the splitting schemes for evolution equations, the vector additive schemes
with full approximation are emphasized. They are based on the transition to a
system of similar problems in each component with the special organization for
computing the approximate solution at the new time level.

4. Numerical simulations for IBVP for a parabolic problem in a rectangular domain
are performed. Calculations demonstrate the capabilities of the suggested domain
decomposition schemes. The best results in terms of accuracy are demonstrated
by the vector-additive scheme of domain decomposition.
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