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Abstract This article introduces and analyzes a weak Galerkin mixed finite
element method for solving the biharmonic equation. The weak Galerkin method,
first introduced by two of the authors (J. Wang and X. Ye) in (Wang et al., Comput.
Appl. Math. 241:103–115, 2013) for second-order elliptic problems, is based on
the concept of discrete weak gradients. The method uses completely discrete finite
element functions, and, using certain discrete spaces and with stabilization, it
works on partitions of arbitrary polygon or polyhedron. In this article, the weak
Galerkin method is applied to discretize the Ciarlet–Raviart mixed formulation
for the biharmonic equation. In particular, an a priori error estimation is given
for the corresponding finite element approximations. The error analysis essentially
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follows the framework of Babus̆ka, Osborn, and Pitkäranta (Math. Comp. 35:1039–
1062, 1980) and uses specially designed mesh-dependent norms. The proof is
technically tedious due to the discontinuous nature of the weak Galerkin finite
element functions. Some computational results are presented to demonstrate the
efficiency of the method.

Keywords Weak Galerkin finite element methods • Discrete gradient • Bihar-
monic equations • Mixed finite element methods

AMS subject classifications. Primary, 65N15, 65N30

1 Introduction

In this paper, we are concerned with numerical methods for the following bihar-
monic equation with clamped boundary conditions:

Δ2u = f in Ω,

u = 0 on ∂Ω,

∂u
∂n

= 0 on ∂Ω,

(1)

where Ω is a bounded polygonal or polyhedral domain in R
d (d = 2,3). To

solve the problem (1) using a primal-based conforming finite element method,
one would need C1 continuous finite elements, which usually involve large degree
of freedoms and hence can be computationally expensive. There are alternative
numerical methods, for example, by using either nonconforming elements [2,25,28],
the C0 discontinuous Galerkin method [8, 14], or mixed finite element methods
[6, 10, 11, 13, 20–22, 24–27]. One of the earliest mixed formulations proposed for
(1) is the Ciarlet–Raviart mixed finite element formulation [11] which decomposes
(1) into a system of second-order partial differential equations. In this mixed
formulation, one introduces a dual variable w = −Δu and rewrites the fourth-order
biharmonic equation into two coupled second-order equations:

{
w+Δu = 0,

−Δw = f .
(2)

In [11], the above system of second-order equations is discretized by using
the standard H1 conforming elements. However, only suboptimal order of error
estimates is proved in [11] for quadratic or higher order of elements. Improved error
estimates have been established in [5, 15, 19, 32] for quadratic or higher order of
elements. In [5], Babus̆ka, Osborn, and Pitkäranta pointed out that a suitable choice
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of norms are L2 for w and H2 (or H2-equivalence) for u in order to use the standard
LBB stability analysis. In this sense, one has “optimal” order of convergence in
H2 norm for u and in L2 norm for w, for quadratic or higher order of elements.
However, when equal-order approximation is used for both u and w, the “optimal”
order of error estimate is restricted by the interpolation error in H2 norm and thus
may not be really optimal. Moreover, this standard technique does not apply to the
piecewise linear discretization, since in this case the interpolation error cannot even
be measured in H2 norm. A solution to this has been proposed by Scholz [32] by
using an L∞ argument. Scholz was able to improve the convergence rate in L2 norm
for w by h

1
2 , and this theoretical result is known to be sharp. Also, Scholz’s proof

works for all equal-order elements including piecewise linears.
The goal of this paper is to propose and analyze a weak Galerkin discretization

method for the mixed formulation (2) with equal-order elements. The weak Galerkin
method was recently introduced in [29, 35, 36] for second-order elliptic equations.
It is an extension of the standard Galerkin finite element method where classical
derivatives were substituted by weakly defined derivatives on functions with dis-
continuity. Error estimates of optimal order have been established for various weak
Galerkin discretization schemes for second-order elliptic equations [29, 35, 36]. A
numerical implementation of weak Galerkin was presented in [29, 30] for some
model problems.

Some advantages of the weak Galerkin method have been identified in [29, 30,
36]. For example, the weak Galerkin method based on a stabilization works for
finite element partitions of arbitrary polygon or polyhedron [29,36]. Weak Galerkin
methods use completely discrete finite element spaces and the resulting numerical
scheme is symmetric, positive definite, and parameter-free if the original problem
is. Weak Galerkin methods retain the mass conservation property as the original
system. The unknowns in the interior of each element can be eliminated in parallel,
yielding a discrete problem with much fewer number of unknowns that the original
system and other competing algorithms. Nevertheless, the weak Galerkin method is
still a very new method, and there remains a lot to explore for researchers. This paper
shall demonstrate the portability of weak Galerkin to the biharmonic equation. Our
future research will focus on a generalization of weak Galerkin to other numerically
challenging equations.

Applying the weak Galerkin method to both second-order equations in (2) ap-
pears to be trivial and straightforward at first glance. However, the application turns
out to be much more complicated than simply combining one weak Galerkin scheme
with another one. The application is particularly non-trivial in the mathematical
theory on error analysis. In deriving an a priori error estimate, we follow the
framework as developed in [5] by using mesh-dependent norms. Many commonly
used properties and inequalities for standard Galerkin finite element method need to
be re-derived for weak Galerkin methods with respect to the mesh-dependent norms.
Due to the discrete nature of the weak Galerkin functions, technical difficulties
arise in the derivation of inequalities or estimates. The technical estimates and tools
that we have developed in this paper should be essential to the analysis of weak
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Galerkin methods for other type of modeling equations. They should also play
an important role in future developments of preconditioning techniques for weak
Galerkin methods. Therefore, we believe this paper provides useful technical tools
for future research, in addition to introducing an efficient new method for solving
biharmonic equations.

The paper is organized as follows. In Sect. 2, a weak Galerkin discretization
scheme for the Ciarlet–Raviart mixed formulation of the biharmonic equation is
introduced and proved to be well-posed. Section 3 is dedicated to defining and
analyzing several technical tools, including projections, mesh-dependent norms, and
some estimates. With the aid of these tools, an error analysis is presented in Sect. 4.
Finally, in Sect. 5, we report some numerical results that show the efficiency of the
method.

2 A Weak Galerkin Finite Element Scheme

For illustrative purpose, we consider only the two-dimensional case of (1), and the
corresponding weak Galerkin method will be based on a shape-regular triangulation
of the domain Ω. The analysis given in this paper can easily be generalized into
two-dimensional rectangular meshes and with a few adaptations, also into three-
dimensional tetrahedral and cubic meshes. Another issue we would like to clarify
is that, although the weak Galerkin method using certain discrete spaces and with
stabilization is known to work on partitions of arbitrary polygon or polyhedron
[29, 36], here we choose to concentrate on a weak Galerkin discretization without
stabilization. This discretization only works for triangular, rectangular, tetrahedral
and cubic meshes, but the theoretical analysis would be considerably easier since
there is no stabilization involved. We are confident that the technique introduced in
this paper can be generalized to the stabilized weak Galerkin method on arbitrary
meshes [29, 36]. But details need to be worked out in future research.

Let D ⊆ Ω be a polygon; we use the standard definition of Sobolev spaces Hs(D)
and Hs

0(D) with s ≥ 0 (e.g., see [1, 12] for details). The associated inner product,
norm, and semi-norms in Hs(D) are denoted by (·, ·)s,D, ‖·‖s,D, and | · |r,D,0≤ r ≤ s,
respectively. When s = 0, H0(D) coincides with the space of square integrable
functions L2(D). In this case, the subscript s is suppressed from the notation of norm,
semi-norm, and inner products. Furthermore, the subscript D is also suppressed
when D = Ω. For s < 0, the space Hs(D) is defined to be the dual of H−s

0 (D).
Occasionally, we need to use the more general Sobolev space W s,p(Ω), for 1 ≤

p≤∞, and its norm ‖·‖Ws,p(Ω). The definition simply follows the standard one given
in [1, 12]. When s = 0, the space W s,p(Ω) coincides with Lp(Ω).

The above definition/notation can easily be extended to vector-valued and matrix-
valued functions. The norm, semi-norms, and inner-product for such functions
shall follow the same naming convention. In addition, all these definitions can
be transferred from a polygonal domain D to an edge e, a domain with lower



A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations 251

dimension. Similar notation system will be employed. For example, ‖ ·‖s,e and ‖ ·‖e

would denote the norm in Hs(e) and L2(e) etc. We also define the H(div) space as
follows:

H(div,Ω) = {q : q ∈ [L2(Ω)]2, ∇ ·q ∈ L2(Ω)}.

Using notations defined above, the variational form of the Ciarlet–Raviart mixed
formulation (2) seeks u ∈ H1

0 (Ω) and w ∈ H1(Ω) satisfying

{
(w,φ)− (∇u,∇φ) = 0 for all φ ∈ H1(Ω),

(∇w,∇ψ) = ( f ,ψ) for all ψ ∈ H1
0 (Ω).

(3)

For any solution w and u of (3), it is not hard to see that w = −Δu. In addition, by
choosing φ = 1 in the first equation of (3), we obtain

ˆ
Ω

wdx = 0.

Define H̄1(Ω)⊂ H1(Ω) by

H̄1(Ω) = {v : v ∈ H1(Ω),

ˆ
Ω

vdx = 0},

which is a subspace of H1(Ω) with mean-value-free functions. Clearly, the solution
w of (3) is a function in H̄1(Ω).

One important issue in the analysis is the regularity of the solution u and w.
For two-dimensional polygonal domains, this has been thoroughly discussed in
[7]. According to their results, the biharmonic equation with clamped boundary
condition (1) satisfies

‖u‖4−k ≤ c‖ f‖−k, (4)

where c is a constant depending only on the domain Ω. Here, the parameter k is
determined by

k = 1 if all internal angles of Ω are less than 180◦

k = 0 if all internal angles of Ω are less than 126.283696 · · ·◦

The above regularity result indicates that the solution u ∈ H3(Ω) when Ω is a
convex polygon and f ∈ H−1(Ω). It follows that the auxiliary variable w ∈ H1(Ω).
Moreover, if all internal angles of Ω are less than 126.283696 · · ·◦ and f ∈ L2(Ω),
then u ∈ H4(Ω) and w ∈ H2(Ω). The drawback of the mixed formulation (3) is that
the auxiliary variable w may not possess the required regularity when the domain is
non-convex. We shall explore other weak Galerkin methods to deal with such cases.

Next, we present the weak Galerkin discretization of the Ciarlet–Raviart mixed
formulation. Let Th be a shape-regular, quasi-uniform triangular mesh on a
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polygonal domain Ω, with characteristic mesh size h. For each triangle K ∈ Th,
denote by K0 and ∂K the interior and the boundary of K, respectively. Also denote
by hK the size of the element K. The boundary ∂K consists of three edges. Denote
by Eh the collection of all edges in Th. For simplicity of notation, throughout
the paper, we use “�” to denote “less than or equal to up to a general constant
independent of the mesh size or functions appearing in the inequality.”

Let j be a nonnegative integer. On each K ∈ Th, denote by Pj(K0) the set of
polynomials with degree less than or equal to j. Likewise, on each e ∈ Eh, Pj(e) is
the set of polynomials of degree no more than j. Following [35], we define a weak
discrete space on mesh Th by

Vh = {v : v|K0 ∈ Pj(K0), K ∈ Th; v|e ∈ Pj(e),e ∈ Eh}.

Observe that the definition of Vh does not require any continuity of v ∈Vh across the
interior edges. A function in Vh is characterized by its value on the interior of each
element plus its value on the edges/faces. Therefore, it is convenient to represent
functions in Vh with two components, v = {v0,vb}, where v0 denotes the value of v
on all K0 and vb denotes the value of v on Eh.

We further define an L2 projection from H1(Ω) onto Vh by setting Qhv ≡
{Q0v, Qbv}, where Q0v|K0 is the local L2 projection of v in Pj(K0), for K ∈ Th, and
Qbv|e is the local L2 projection in Pj(e), for e ∈ Eh. To take care of the homogeneous
Dirichlet boundary condition, define

V0,h = {v ∈Vh : v = 0 on Eh ∩∂Ω}.

It is not hard to see that the L2 projection Qh maps H1
0 (Ω) onto V0,h.

The weak Galerkin method seeks an approximate solution [uh; wh] ∈ V0,h ×Vh

to the mixed form of the biharmonic problem (2). To this end, we first introduce a
discrete L2-equivalent inner-product and a discrete gradient operator on Vh. For any
vh = {v0,vb} and φh = {φ0,φb} in Vh, define an inner-product as follows:

((vh,φh))� ∑
K∈Th

(v0,φ0)K + ∑
K∈Th

hK〈v0 − vb,φ0 −φb〉∂K .

It is not hard to see that ((vh,vh)) = 0 implies vh ≡ 0. Hence, the inner-product is well
defined. Notice that the inner-product ((·, ·)) is also well defined for any v ∈ H1(Ω)
for which v0 = v and vb|e = v|e is the trace of v on the edge e. In this case, the
inner-product ((·, ·)) is identical to the standard L2 inner-product.

The discrete gradient operator is defined element-wise on each K ∈ Th. To this
end, let RTj(K) be a space of Raviart–Thomas element [31] of order j on triangle K.
That is,

RTj(K) = (Pj(K))2 + xPj(K).
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The degrees of freedom of RTj(K) consist of moments of normal components on
each edge of K up to order j, plus all the moments in the triangle K up to order
( j− 1). Define

Σh = {q ∈ (L2(Ω))2 : q|K ∈ RTj(K), K ∈ Th}.

Note that Σh is not necessarily a subspace of H(div,Ω), since it does not require any
continuity in the normal direction across any edge. A discrete weak gradient [35] of
vh = {v0,vb} ∈Vh is defined to be a function ∇wvh ∈ Σh such that on each K ∈ Th,

(∇wvh,q)K =−(v0,∇ ·q)K + 〈vb,q ·n〉∂K , for all q ∈ RTj(K), (5)

where n is the unit outward normal on ∂K. Clearly, such a discrete weak gradient
is always well defined. Also, the discrete weak gradient is a good approximation to
the classical gradient, as demonstrated in [35]:

Lemma 2.1. For any vh = {v0, vb} ∈ Vh and K ∈ Th, ∇wvh|K = 0 if and only if
v0 = vb = constant on K. Furthermore, for any v ∈ Hm+1(Ω), where 0 ≤ m ≤ j+1,
we have

‖∇w(Qhv)−∇v‖� hm‖v‖m+1.

We are now in a position to present the weak Galerkin finite element formulation
for the biharmonic problem (2) in the mixed form: Find uh = {u0, ub} ∈ V0,h and
wh = {w0, wb} ∈Vh such that

{
((wh, φh))− (∇wuh, ∇wφh) = 0, for all φh = {φ0, φb} ∈Vh,

(∇wwh, ∇wψh) = ( f , ψ0), for all ψh = {ψ0, ψb} ∈V0,h.
(6)

Theorem 2.2. The weak Galerkin finite element formulation (6) has one and only
one solution [uh;wh] in the corresponding finite element spaces.

Proof. For the discrete problem arising from (6), it suffices to show that the solution
to (6) is trivial if f = 0; the existence of solution stems from its uniqueness.

Assume that f = 0 in (6). By taking φh = wh and ψh = uh in (6) and adding
the two resulting equations together, we immediately have ((wh, wh)) = 0, which
implies wh ≡ 0. Next, by setting φh = uh in the first equation of (6), we arrive at
(∇wuh,∇wuh) = 0. By using Lemma 2.1, we see that uh must be a constant in Ω,
which together with the fact that uh = 0 on ∂Ω implies uh ≡ 0 in Ω. This completes
the proof of the theorem. 
�

One important observation of (6) is that the solution wh has mean value zero over
the domain Ω, which is a property that the exact solution w = −Δu must possess.
This can be seen by setting φh = 1 in the first equation of (6), yielding

(wh,1) = ((wh,1)) = (∇wuh,∇w1) = 0,
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where we have used the definition of ((·, ·)) and Lemma 2.1. For convenience, we
introduce a space V̄h ⊂Vh defined as follows:

V̄h = {vh : vh = {v0,vb} ∈Vh,

ˆ
Ω

v0 dx = 0}.

3 Technical Tools: Projections, Mesh-Dependent Norms,
and Some Estimates

The goal of this section is to establish some technical results useful for deriving an
error estimate for the weak Galerkin finite element method (6).

3.1 Some Projection Operators and Their Properties

Let Ph be the L2 projection from (L2(Ω))2 to Σh and ΠΠΠh be the classical interpolation
[10] from (Hγ (Ω))2,γ > 1

2 , to Σh defined by using the degrees of freedom of Σh in
the usual mixed finite element method. It follows from the definition of ΠΠΠh that
ΠΠΠhq ∈ H(div,Ω)∩Σh for all q ∈ (Hγ(Ω))2. In other words, ΠΠΠhq has continuous
normal components across internal edges. It is also well known that ΠΠΠh preserves
the boundary condition q ·n|∂Ω = 0, if it were imposed on q. The properties of ΠΠΠh

have been well developed in the context of mixed finite element methods [10, 18].
For example, for all q ∈ (W m,p(Ω))2 where 1

2 < m ≤ j+1 and 2 ≤ p ≤ ∞, we have

Q0(∇ ·q) = ∇ ·ΠΠΠhq, if in addition q ∈ H(div,Ω), (7)

‖q−ΠΠΠhq‖Lp(Ω) � hm‖q‖Wm,p(Ω). (8)

It is also well known that for all 0 ≤ m ≤ j+ 1,

‖q−Phq‖� hm‖q‖m. (9)

Using the above estimates and the triangle inequality, one can easily derive the
following estimate:

‖ΠΠΠh∇v−Ph∇v‖� hm‖v‖m+1 (10)

for all v ∈ Hm+1(Ω) where 1
2 < m ≤ j+ 1.

Next, we shall present some useful relations for the discrete weak gradient ∇w,
the projection operator Ph, and the interpolation ΠΠΠh. The results can be summarized
as follows.
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Lemma 3.1. Let γ > 1
2 be any real number. The following results hold true.

(i) For any v ∈ H1(Ω), we have

∇w(Qhv) = Ph(∇v). (11)

(ii) For any q ∈ (Hγ (Ω))2 ∩H(div,Ω) and vh = {v0,vb} ∈Vh, we have

(∇ ·q, v0) =−(ΠΠΠhq, ∇wvh)+ ∑
e∈Eh∩∂Ω

〈(ΠΠΠhq) ·n,vb〉e. (12)

In particular, if either vh ∈V0,h or q ·n = 0 on ∂Ω, then

(∇ ·q, v0) =−(ΠΠΠhq, ∇wvh). (13)

Proof. To prove (11), we first recall the following well-known relation [10]:

∇ ·RTj(K) = Pj(K0), RTj(K) ·n|e = Pj(e).

Thus, for any w ∈ Σh and K ∈ Th, by the definition of ∇w and properties of the L2

projection, we have

(∇wQhv,w)K =−(Q0v,∇ ·w)K + 〈Qbv,w ·n〉∂K

=−(v,∇ ·w)K + 〈v,w ·n〉∂K

= (∇v,w)K

= (Ph∇v,w)K ,

which implies (11). As to (12), using the fact that ∇ ·RTj(K) = Pj(K0), the property
(7), and the definition of ∇w, we obtain

(∇ ·q, v0) = (Q0(∇ ·q), v0) = (∇ ·ΠΠΠhq, v0)

= − ∑
K∈Th

(ΠΠΠhq,∇wvh)K + ∑
K∈Th

〈vb,ΠΠΠhq ·n〉∂K

= − ∑
K∈Th

(ΠΠΠhq,∇wvh)K + ∑
e∈Th∩∂Ω

〈(ΠΠΠhq) ·n,vb〉e.

This completes the proof of (12). The equality (13) is a direct consequence of (12)
since the boundary integrals vanish under the given condition. 
�

3.2 Discrete Norms and Inequalities

Let vh = {v0,vb} ∈Vh. Define on each K ∈ Th
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‖vh‖2
0,h,K = ‖v0‖2

0,K + h‖v0− vb‖2
∂K ,

‖vh‖2
1,h,K = ‖v0‖2

1,K + h−1‖v0 − vb‖2
∂K,

|vh|21,h,K = |v0|21,K + h−1‖v0 − vb‖2
∂K .

Using the above quantities, we define the following discrete norms and semi-norms
for the finite element space Vh:

‖vh‖0,h :=

(
∑

K∈Th

‖vh‖2
0,h,K

)1/2

,

‖vh‖1,h :=

(
∑

K∈Th

‖vh‖2
1,h,K

)1/2

,

|vh|1,h :=

(
∑

K∈Th

|vh|21,h,K

)1/2

.

It is clear that ‖vh‖2
0,h = ((vh,vh)). Hence, ‖ ·‖0,h provides a discrete L2 norm for Vh.

It is not hard to see that | · |1,h and ‖ ·‖1,h define a discrete H1 semi-norm and a norm
for Vh, respectively. Observe that |vh|1,h = 0 if and only if vh ≡ constant. Thus, | · |1,h
is a norm in V0,h and V̄h.

For any K ∈ Th and e being an edge of K, the following trace inequality is well
known:

‖g‖2
e � h−1‖g‖2

K + h2s−1|g|2s,K ,
1
2
< s ≤ 1, (14)

for all g ∈ H1(K). Here, |g|s,K is the semi-norm in the Sobolev space Hs(K). The
inequality (14) can be verified through a scaling argument for the standard Sobolev
trace inequality in Hs with s ∈ ( 1

2 ,1]. If g is a polynomial in K, then we have from
(14) and the standard inverse inequality that

‖g‖2
e � h−1‖g‖2

K. (15)

From (15) and the triangle inequality, it is not hard to see that for any vh ∈Vh one
has

(
∑

K∈Th

(‖v0‖2
0,K + h‖vb‖2

∂K)

)1/2

� ‖vh‖0,h �
(

∑
K∈Th

(‖v0‖2
0,K + h‖vb‖2

∂K)

)1/2

.

In the rest of this paper, we shall use the above equivalence without particular
mentioning or referencing.

The following Lemma establishes an equivalence between the two semi-norms
| · |1,h and ‖∇w · ‖.
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Lemma 3.2. For any vh = {v0,vb} ∈Vh, we have

|vh|1,h � ‖∇wvh‖� |vh|1,h. (16)

Proof. Using the definition of ∇w, integration by parts, the Schwarz inequality, the
inequality (15), and the Young’s inequality, we have

‖∇wvh‖2
K =−(v0,∇ ·∇wvh)K + 〈vb,∇wvh ·n〉∂K

= 〈vb − v0,∇wvh ·n〉∂K +(∇v0,∇wvh)K

≤ ‖v0 − vb‖∂K‖∇wvh ·n‖∂K + ‖∇v0‖K‖∇wvh‖K

� ‖v0 − vb‖∂Kh−
1
2 ‖∇wvh‖K + ‖∇v0‖K‖∇wvh‖K

� ‖∇wvh‖K

(
‖∇v0‖K + h−

1
2 ‖v0 − vb‖∂K

)
.

This completes the proof of ‖∇wvh‖� |vh|1,h.
To prove |vh|1,h � ‖∇wvh‖, let K ∈ Th be any element and consider the following

subspace of RTj(K):

D( j,K) := {q ∈ RTj(K) : q ·n = 0 on ∂K}.

Note that D( j,K) forms a dual of (Pj−1(K))2. Thus, for any ∇v0 ∈ (Pj−1(K))2,
one has

‖∇v0‖K = sup
q∈D( j,K)

(∇v0,q)K

‖q‖K
. (17)

It follows from the integration by parts and the definition of ∇w that

(∇v0,q)K =−(v0,∇ ·q)K = (∇wvh,q)K ,

which, together with (17) and the Cauchy–Schwarz inequality, gives

‖∇v0‖K ≤ ‖∇wvh‖K . (18)

Note that for j = 0, we have ∇v0 = 0 and the above inequality is satisfied trivially.
Analogously, let e be an edge of K and denote by De( j,K) the collection of all

q ∈ RTj(K) such that all degrees of freedom, except those for q · n|e, vanish. It is
well known that De( j,K) forms a dual of Pj(e). Thus, we have

‖v0 − vb‖e = sup
q∈De( j,K)

〈v0 − vb,q ·n〉e

‖q ·n‖e
. (19)

It follows from (5) and the integration by parts on (v0,∇ ·q)K that

(∇wvh,q)K = (∇v0,q)K + 〈vb − v0,q ·n〉∂K , ∀ q ∈ RTj(K). (20)
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In particular, for q ∈ De( j,K), we have

(∇v0,q)K = 0, 〈vb − v0,q ·n〉∂K = 〈vb − v0,q ·n〉e.

Substituting the above into (20) yields

(∇wvh,q)K = 〈vb − v0,q ·n〉e, ∀ q ∈ De( j,K). (21)

Using the Cauchy–Schwarz inequality we arrive at

|〈vb − v0,q ·n〉e| ≤ ‖∇wvh‖K ‖q‖K ,

for all q∈De( j,K). By the scaling argument, for such q∈De( j,K), we have ‖q‖K �
h

1
2 ‖q ·n‖e. Thus, we obtain

|〈vb − v0,q ·n〉e|� h
1
2 ‖∇wvh‖K ‖q ·n‖e, ∀q ∈ De( j,K),

which, together with (19), implies the following estimate:

‖v0 − vb‖e � h
1
2 ‖∇wvh‖K .

Combining the above estimate with (18) gives a proof of |vh|1,h � ‖∇wvh‖. This
completes the proof of (16). 
�

The discrete semi-norms satisfy the usual inverse inequality, as stated in the
following lemma.

Lemma 3.3. For any vh = {v0,vb} ∈Vh, we have

|vh|1,h � h−1‖vh‖0,h. (22)

Consequently, by combining (16) and (22), we have

‖∇wvh‖� h−1‖vh‖0,h. (23)

Proof. The proof follows from the standard inverse inequality and the definition of
‖ · ‖0,h and | · |1,h; details are thus omitted. 
�

Next, let us show that the discrete semi-norm ‖∇w(·)‖, which is equivalent to
| · |1,h as proved in Lemma 3.2, satisfies a Poincaré-type inequality.

Lemma 3.4. The Poincaré-type inequality holds true for functions in V0,h and V̄h.
In other words, we have the following estimates:

‖vh‖0,h � ‖∇wvh‖ ∀ vh ∈V0,h, (24)
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‖vh‖0,h � ‖∇wvh‖ ∀ vh ∈ V̄h. (25)

Proof. For any vh ∈ V0,h, let q ∈ (H1(Ω))2 be such that ∇ · q = v0 and ‖q‖1 �
‖v0‖. Such a vector-valued function q exists on any polygonal domain [3]. One
way to prove the existence of q is as follows. First, one extends vh by zero to a
convex domain which contains Ω. Secondly, one considers the Poisson equation on
the enlarged domain and set q to be the flux. The required properties of q follow
immediately from the full regularity of the Poisson equation on convex domains.
By (7), we have

‖ΠΠΠhq‖ � ‖q‖1 � ‖v0‖.

Consequently, by (13) and the Schwarz inequality,

‖v0‖2 = (v0,∇ ·q) =−(ΠΠΠhq,∇wvh)� ‖v0‖‖∇wvh‖.

It follows from Lemma 3.2 that

∑
K∈Th

h‖v0 − vb‖2
∂K � ∑

K∈Th

h−1‖v0 − vb‖2
∂K ≤ |vh|21,h � ‖∇wvh‖2.

Combining the above two estimates gives a proof of the inequality (24).
As to (25), since vh ∈ V̄h has mean value zero, one may find a vector-valued

function q satisfying ∇ ·q = v0 and q ·n = 0 on ∂Ω (see [3] for details). In addition,
we have ‖q‖1 � ‖v0‖. The rest of the proof follows the same avenue as the proof
of (24). 
�

Next, we shall introduce a discrete norm in the finite element space V0,h that plays
the role of the standard H2 norm. To this end, for any internal edge e ∈ Eh, denote
by K1 and K2 the two triangles sharing e, and by n1, n2 the outward normals with
respect to K1 and K2. Define the jump on e by

[[∇wψh ·n]] = (∇wψh)|K1 ·n1 +(∇wψh)|K2 ·n2.

If the edge e is on the boundary ∂Ω, then there is only one triangle K which admits
e as an edge. The jump is then modified as

[[∇wψh ·n]] = (∇wψh)|K ·n.

For ψh ∈V0,h, define

|||ψh|||=
(

∑
K∈Th

‖∇ ·∇wψh‖2
K + ∑

e∈Eh

h−1‖[[∇wψh ·n]]‖2
e)

)1/2

. (26)

Lemma 3.5. The map ||| · ||| : V0,h →R, as given in (26), defines a norm in the finite
element space V0,h. Moreover, one has
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(∇wvh,∇wψh)� ‖vh‖0,h|||ψh||| ∀ vh ∈Vh, ψh ∈V0,h, (27)

sup
vh∈Vh

(∇wvh,∇wψh)

‖vh‖0,h
� |||ψh||| ∀ ψh ∈V0,h. (28)

Proof. To verify that ||| · ||| defines a norm, it is sufficient to show that |||ψh||| = 0
implies ψh ≡ 0. To this end, let |||ψh||| = 0. It follows that ∇ ·∇wψh = 0 on each
element and [[∇wψh · n]] = 0 on each edge. The definition of the discrete weak
gradient ∇w then implies the following:

(∇wψh,∇wψh) = ∑
K∈Th

(−(ψ0,∇ ·∇wψh)K + 〈ψb,∇wψh ·n〉∂K) = 0.

Thus, we have ∇wψh = 0. Since ψh ∈ V0,h, then ∇wψh = 0 implies ψh ≡ 0. This
shows that ||| · ||| defines a norm in V0,h. The inequality (27) follows immediately
from the following identity:

(∇wvh,∇wψh) = ∑
K∈Th

(−(v0,∇ ·∇wψh)K + 〈vb,∇wψh ·n〉∂K)

and the Schwarz inequality.
To verify (28), we chose a particular v∗h ∈Vh such that

v∗0 =−∇ ·∇wψh in K0,

v∗b = h−1[[∇wψh ·n]] on edge e.

It is not hard to see that ‖v∗h‖0,h � |||ψh|||. Thus, we have

sup
vh∈Vh

(∇wvh,∇wψh)

‖vh‖0,h
≥ (∇wv∗h,∇wψh)

‖v∗h‖0,h

=
∑K∈Th

(
−(v∗0,∇ ·∇wψh)K + 〈v∗b,∇wψh ·n〉∂K

)
‖v∗h‖0,h

=
|||ψh|||2

‖v∗h‖0,h
� |||ψh|||.

This completes the proof of the lemma. 
�

Remark 3.1. Using the boundedness (27) and the discrete Poincare inequality (24),
we have the following estimate for all ψh ∈V0,h:

‖∇wψh‖2 = (∇wψh,∇wψh)� ‖ψh‖0,h|||ψh|||� ‖∇wψh‖|||ψh|||.
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This implies that ‖∇wψh‖ � |||ψh|||. In other words, ||| · ||| is a norm that is stronger
than ‖ · ‖1,h. In fact, the norm ||| · ||| can be viewed as a discrete equivalence of the
standard H2 norm for smooth functions with proper boundary conditions.

Next, we shall establish an estimate for the L2 projection operator Qh in the
discrete norm ‖ · ‖0,h.

Lemma 3.6. Let Qh be the L2 projection operator into the finite element space Vh.
Then, for any v ∈ Hm(Ω) with 1

2 < m ≤ j+ 1, we have

‖v−Qhv‖0,h � hm‖v‖m. (29)

Proof. For the L2 projection on each element K, it is known that the following
estimate holds true:

‖v−Q0v‖K � hm‖v‖m,K . (30)

Thus, it suffices to deal with the terms associated with the edges/faces given by

∑
K

h‖(v−Q0v)− (v−Qbv)‖2
∂K = ∑

K
h‖Q0v−Qbv‖2

∂K . (31)

Since Qb is the L2 projection on edges, then we have

‖Q0v−Qbv‖2
∂K ≤ ‖v−Q0v‖2

∂K .

Let s ∈ ( 1
2 ,1] be any real number satisfying s ≤ m. It follows from the above

inequality and the trace inequality (14) that

‖Q0v−Qbv‖2
∂K � h−1‖v−Q0v‖2

K + h2s−1|v−Q0v|2s,K .

Substituting the above into (31) yields

∑
K

h‖(v−Q0v)− (v−Qbv)‖2
∂K � ∑

K

(
‖v−Q0v‖2

K + h2s|v−Q0v|2s,K
)

� h2m‖v‖2
m,

which, together with (30), completes the proof of the lemma. 
�

3.3 Ritz and Neumann Projections

To establish an error analysis in the forthcoming section, we shall introduce and
analyze two additional projection operators, the Ritz projection Rh and the Neumann
projection Nh, by applying the weak Galerkin method to the Poisson equation with
various boundary conditions.
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For any v ∈ H1
0 (Ω) ∩ H1+γ(Ω) with γ > 1

2 , the Ritz projection Rhv ∈ V0,h is
defined as the unique solution of the following problem:

(∇w(Rhv),∇wψh) = (ΠΠΠh∇v,∇wψh), ∀ ψh ∈V0,h. (32)

Here, γ > 1
2 in the definition of Rh is imposed to ensure that ΠΠΠh∇v is well defined.

From the identity (13), clearly if Δv ∈ L2(Ω), then Rhv is identical to the weak
Galerkin finite element solution [35] to the Poisson equation with homogeneous
Dirichlet boundary condition for which v is the exact solution. Analogously, for any
v ∈ H̄1(Ω)∩H1+γ(Ω) with γ > 1

2 , we define the Neumann projection Nhv ∈ V̄h as
the solution to the following problem:

(∇w(Nhv),∇wψh) = (ΠΠΠh∇v,∇wψh), ∀ ψh ∈ V̄h. (33)

It is useful to note that the above equation holds true for all ψh ∈ Vh as ∇w1 = 0.
Similarly, if Δv ∈ L2(Ω) and in addition ∂v/∂n = 0 on ∂Ω, then Nhv is identical to
the weak Galerkin finite element solution to the Poisson equation with homogeneous
Neumann boundary condition, for which v is the exact solution. The well-posedness
of Rh and Nh follows immediately from the Poincaré-type inequalities (24) and (25).

Using (11), it is easy to see that for all ψh ∈V0,h we have

(∇w(Qhv−Rhv),∇wψh) = ((Ph −ΠΠΠh)∇v,∇wψh). (34)

And similarly, for all ψh ∈ V̄h,

(∇w(Qhv−Nhv),∇wψh) = ((Ph −ΠΠΠh)∇v,∇wψh). (35)

From the definitions of V̄h and Qh, clearly Qh maps H̄1(Ω) into V̄h.
For convenience, let us adopt the following notation:

{R0v,Rbv} := Rhv, {N0v,Nbv} := Nhv,

where again the subscript “0” denotes the function value in the interior of triangles,
while “b” denotes the trace on Eh. For Ritz and Neumann projections, the following
approximation error estimates hold true.

Lemma 3.7. For v ∈ H1
0 (Ω)∩ Hm+1(Ω) or H̄1(Ω)∩ Hm+1(Ω), where 1

2 < m ≤
j+ 1, we have

‖∇w(Qhv−Rhv)‖ � hm‖v‖m+1, (36)

‖∇w(Qhv−Nhv)‖ � hm‖v‖m+1. (37)

Moreover, assume Δv ∈ L2(Ω) and that the Poisson problem in Ω with either
the homogeneous Dirichlet boundary condition or the homogeneous Neumann
boundary condition has H1+s regularity, where 1

2 < s ≤ 1, then



A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations 263

‖Q0v−R0v‖� hm+s‖v‖m+1 + h1+s‖(I−Q0)Δv‖, (38)

‖Q0v−N0v‖� hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖. (39)

Proof. The estimates (36)–(37) follow immediately from (34)–(35), (10), and the
Schwarz inequality. Next, we prove (39) by using the standard duality argument. Let

φ ∈ H̄1(Ω) be the solution of −Δφ = Q0v−N0v with boundary condition ∂φ
∂n

∣∣∣
∂Ω

=

0. Note that φ is well defined since Qhv−Nhv ∈ V̄h. According to the regularity
assumption, we have φ ∈ H1+s(Ω) and ‖φ‖1+s � ‖Q0v−N0v‖. Then, by (13), (35),
the Schwarz inequality and (10), we arrive at

‖Q0v−N0v‖2 = (Q0v−N0v,−Δφ) = (ΠΠΠh∇φ ,∇w(Qhv−Nhv))

= (ΠΠΠh∇φ −∇w(Nhφ),∇w(Qhv−Nhv))+ ((Ph −ΠΠΠh)∇v,∇w(Nhφ))

≤
(
‖ΠΠΠh∇φ −Ph∇φ‖+ ‖∇w(Qhφ −Nhφ)‖

)
‖∇w(Qhv−Nhv)‖

+((Ph −ΠΠΠh)∇v,∇w(Nhφ −Qhφ))+ ((Ph −ΠΠΠh)∇v,Ph∇φ)

� hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v,Ph∇φ).

Using integration by parts, the triangular inequality and the definition of ΠΠΠh,
we have

((I −ΠΠΠh)∇v,Ph∇φ)

=((I −ΠΠΠh)∇v,(Ph − I)∇φ)+ ((I−ΠΠΠh)∇v,∇φ)

�hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v ·n,φ)∂Ω − (∇ · (I−ΠΠΠh)∇v,φ)

=hm+s‖φ‖1+s‖v‖m+1 +((I−ΠΠΠh)∇v ·n,φ −Qbφ)∂Ω − ((I−Q0)Δv,φ)

�hm+s‖φ‖1+s‖v‖m+1 +(hm− 1
2 ‖v‖m+ 1

2 ,∂Ω)(h
min(s+ 1

2 , j+1)‖φ‖s+ 1
2 ,∂Ω)

− ((I−Q0)Δv,(I−Q0)φ)

�hm+min(s, j+ 1
2 )‖φ‖1+s‖v‖m+1 + h1+s‖φ‖1+s‖(I −Q0)Δv‖. (40)

In the proof of (40), we have used the fact that Πh(∇v ·n) is exactly the L2 projection
of ∇v ·n on ∂Ω. Combining the above gives

‖Q0v−N0v‖2 �
(

hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖

)
‖φ‖1+s

�
(

hm+min(s, j+ 1
2 )‖v‖m+1 + h1+s‖(I−Q0)Δv‖

)
‖Q0v−N0v‖.
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This completes the proof of the estimate (39). The inequality (38) can be verified in a
similar way by considering a function φ ∈ H1

0 (Ω) satisfying a Poisson equation with
homogeneous Dirichlet boundary condition. Observe that in this case, the boundary
integral ((I −ΠΠΠh)∇v · n,φ)∂Ω in inequality (40) shall vanish due to the vanishing
value of φ . 
�

Remark 3.2. It is not hard to see from (40) that for the Neumann projection, if
in addition we have ∂v

∂n = 0 on ∂Ω, then the term ((I −ΠΠΠh)∇v · n,φ)∂Ω vanishes

and one obtains the optimal order estimate of hm+s instead of hm+min(s, j+ 1
2 ) for the

Neumann projection operator.

Remark 3.3. If the Poisson equation has the full H2 regularity in Ω, then for v
satisfying the assumptions of Lemma 3.7, we have

‖Q0v−R0v‖� hm+1‖v‖m+1 + h2‖(I −Q0)Δv‖ for
1
2
< m ≤ j+ 1,

‖Q0v−N0v‖�
{

hm+ 1
2 ‖v‖m+1 + h2‖(I−Q0)Δv‖ for j = 0, 1

2 < m ≤ 1,

hm+1‖v‖m+1 + h2‖(I−Q0)Δv‖ for j ≥ 1, 1
2 < m ≤ j+ 1.

Again, if in addition, ∂v
∂n = 0 on ∂Ω, then the Neumann projection has optimal order

of error estimates, even for j = 0.

Remark 3.4. The duality argument used in Lemma 3.7 works only for ‖Q0v −
R0v‖ and ‖Q0v−N0v‖. For ‖Qhv−Rhv‖0,h and ‖Qhv−Nhv‖0,h involving element
boundary information, we currently have only suboptimal estimates. More precisely,
for v satisfying the assumptions in Lemma 3.7, the following estimates hold true:

‖Qhv−Rhv‖0,h � ‖∇w(Qhv−Rhv)‖� hm‖v‖m+1 for
1
2
< m ≤ j+ 1,

‖Qhv−Nhv‖0,h � ‖∇w(Qhv−Nhv)‖� hm‖v‖m+1 for
1
2
< m ≤ j+ 1. (41)

Although numerical experiments in [30] suggest an optimal order of convergence in
the ‖ · ‖0,h norm, it remains to see if optimal order error estimates hold true or not
theoretically.

Another important observation is that, for sufficiently smooth v, ∇wRhv is
identical to the mixed finite element approximation of ∇v, discretized by using RTj

and discrete Pj elements. Indeed, we have the following lemma:

Lemma 3.8. For any v ∈ H1
0 ∩H1+γ(Ω) with γ > 1

2 and Δv ∈ L2(Ω), let qh ∈ Σh ∩
H(div,Ω) and v0 ∈ L2(Ω) be piecewise Pj polynomials solving
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{
(qh,χχχh)− (∇ · χχχh,v0) = 0 ∀χχχh ∈ Σh ∩H(div,Ω),

(∇ ·qh,ψ0) = (Δv,ψ0) ∀ψ0 ∈ L2(Ω) piecewise Pj polynomials.
(42)

In other words, qh and v0 are the mixed finite element solution, discretized using
the RTj element, to the Poisson equation with homogeneous Dirichlet boundary
condition for which v is the exact solution. Then, one has ∇wRhv = qh.

Proof. We first show that ∇wRhv ∈ Σh ∩H(div,Ω) by verifying that (∇wRhv) ·n is
continuous across internal edges. Let e ∈ Eh\∂Ω be an internal edge and K1, K2 be
two triangles sharing e. Denote n1 and n2 the outward normal vectors on e, with
respect to K1 and K2, respectively. Let ψh ∈V0,h satisfy ψb|e �= 0 and ψ0, ψb vanish
elsewhere. By the definition of Rh, ∇w and the fact that ΠΠΠh∇v ∈ H(div,Ω), we have

0 = (ΠΠΠh∇v−∇wRhv,∇wψh)

= (ΠΠΠh∇v−∇wRhv,∇wψh)K1 +(ΠΠΠh∇v−∇wRhv,∇wψh)K2

= ((ΠΠΠh∇v−∇wRhv)|K1 ·n1 +(ΠΠΠh∇v−∇wRhv)|K2 ·n2,ψb)e

=−(∇wRhv|K1 ·n1 +∇wRhv|K2 ·n2,ψb)e.

The above equation holds true for all ψb|e ∈ Pj(e). Since ∇wRhv|K1 ·n1 +∇wRhv|K2 ·
n2 is also in Pj(e), therefore it must be 0. This completes the proof of ∇wRhv ∈
H(div,Ω).

Next, we prove that ∇wRhv is identical to the solution qh of (42). Since the
solution to (42) is unique, we only need to show that ∇wRhv, together with a certain
v0, satisfies both equations in (42). Consider the test function ψh ∈ V0,h with the
form ψh = {ψ0,0}. By the definition of ∇w, Eqs. (32) and (13), we have

(∇ ·∇wRhv,ψ0) =−(∇wRhv,∇wψh) =−(ΠΠΠh∇v,∇wψh) = (Δv,ψ0).

Hence ∇wRhv satisfies the second equation of (42). Now, note that ∇· is an onto
operator from Σh∩H(div,Ω) to the space of piecewise Pj polynomials, which allows
us to define a v0 that satisfies the first equation in (42) with qh set to be ∇wRhv. This
completes the proof the lemma. 
�

Remark 3.5. Using the same argument and noticing that (33) holds for all ψh ∈Vh,
one can analogously prove that for v ∈ H̄1(Ω)∩ H1+γ(Ω) with γ > 1

2 and Δv ∈
L2(Ω),

∇wNhv ∈ Σh ∩H(div,Ω),

and
∇ ·∇wNhv = Q0Δv.

Because ∇wRhv is identical to the mixed finite element solution to the Poisson
equation, by [18, 34], we have the following quasi-optimal order L∞ estimate:

‖∇v−∇wRhv‖L∞(Ω) � hn+1| lnh|‖Δv‖Wn,∞(Ω), (43)
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for 0 ≤ n ≤ j. Furthermore, for j ≥ 1 and v ∈ W j+2,∞(Ω), we have the following
optimal order error estimate:

‖∇v−∇wRhv‖L∞(Ω) � hn+1‖v‖Wn+2,∞(Ω), (44)

for 1 ≤ n ≤ j.

Inspired by [32], using the above L∞ estimates, we obtain the following lemma,
which will play an essential role in the error analysis to be given in the next section.

Lemma 3.9. The following quasi-optimal and optimal order error estimates hold
true:

(i) Let 0 ≤ n ≤ j and v ∈ H1
0 (Ω)∩W n+2,∞(Ω). Then for all φh = {v0,vb} ∈Vh, we

have

|(ΠΠΠh∇v−∇wRhv,∇wφh)|� hn+ 1
2 | lnh|‖v‖Wn+2,∞(Ω)‖φh‖0,h. (45)

(ii) Let j ≥ 1, 1 ≤ n ≤ j, and v ∈ H1
0 (Ω)∩W n+2,∞(Ω). Then, for all φh = {v0,vb} ∈

Vh we have

|(ΠΠΠh∇v−∇wRhv,∇wφh)|� hn+ 1
2 ‖v‖Wn+2,∞(Ω)‖φh‖0,h. (46)

Proof. We first prove part (i). Denote by E∂Ω the set of all edges in Eh∩∂Ω. For any
e ∈ E∂Ω, let Ke be the only triangle in Th that has e as an edge. Denote by T∂Ω the
set of all Ke, for e ∈ E∂Ω. For simplicity of notation, denote qh = ΠΠΠh∇v−∇wRhv.
Since (ΠΠΠh∇v−∇wRhv,∇wψh) = 0 for all ψh ∈ V0,h, without loss of generality, we
only need to consider φh that vanishes on the interior of all triangles and all internal
edges. Then by the definition of φh and ∇w, the scaling argument, and the Schwarz
inequality,

|(ΠΠΠh∇v−∇wRhv,∇wφh)|=
∣∣∣∣∣ ∑
Ke∈T∂ Ω

(qh,∇w(φb|e))Ke

∣∣∣∣∣
=

∣∣∣∣∣ ∑
e∈E∂ Ω

(φb,qh ·n)e

∣∣∣∣∣
� ∑

e∈E∂ Ω

h‖φb‖L∞(e)‖qh‖L∞(e)

� ‖qh‖L∞(Ω) ∑
e∈E∂ Ω

h
(
‖φ0‖L∞(Ke) + ‖φ0 −φb‖L∞(e)

)
� ‖qh‖L∞(Ω) ∑

Ke∈T∂ Ω

‖φh‖0,h,Ke

� ‖qh‖L∞(Ω)

(
∑

Ke∈T∂ Ω

‖φh‖2
0,h,Ke

) 1
2
(

∑
Ke∈T∂ Ω

1

) 1
2

� h−
1
2 ‖qh‖L∞(Ω)‖φh‖0,h.
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Now, by inequalities (8) and (43), we have

‖qh‖L∞(Ω) ≤ ‖∇v−ΠΠΠh∇v‖L∞(Ω) + ‖∇v−∇wRhv‖L∞(Ω)

� hn+1‖v‖Wn+2,∞(Ω) + hn+1| lnh|‖Δv‖Wn,∞(Ω),

for 0 ≤ n ≤ j. This completes the proof of part (i).
The proof for part (ii) is similar. One simply needs to replace inequality (43) by

(44) in the estimation of ‖qh‖L∞(Ω). 
�

4 Error Analysis

The main purpose of this section is to analyze the approximation error of the
weak Galerkin formulation (6). For simplicity, in this section, we assume that the
solution of (6) satisfies u ∈ H3+γ(Ω) and w ∈ H1+γ(Ω), where γ > 1

2 . This is not
an unreasonable assumption, as we know from (4), the solution u can have up to H4

regularity as long as Ω satisfies certain conditions. However, our assumption does
not include all the possible cases for the biharmonic equation.

Testing w =−Δu with φh = {φ0,φb} ∈Vh, and then by using (13), we have

((w,φh)) = (w,φ0) =−(∇ ·∇u,φ0) = (ΠΠΠh∇u,∇wφh). (47)

Similarly, testing −Δw = f with ψh = {ψ0,ψb} ∈V0,h gives

(ΠΠΠh∇w,∇wψh) = ( f ,ψ0). (48)

Comparing (47)–(48) with the weak Galerkin form (6), one immediately sees
that there is a consistency error between them. Indeed, since Vh and V0,h are
not subspaces of H1(Ω) and H1

0 (Ω), respectively, the weak Galerkin method is
nonconforming. Therefore, we would like to first rewrite (47)–(48) into a form
that is more compatible with (6). By using (32) and (33), Eqs. (47)–(48) can be
rewritten as {

((Nhw,φh))− (∇wRhu,∇hφh) = E(w,u,φh),

(∇wNhw,∇wψh) = ( f ,ψ0),
(49)

where

E(w,u,φh) = ((Nhw−w,φh))+ (ΠΠΠh∇u−∇wRhu,∇wφh).

Define εu = Rhu− uh ∈ V0,h and εw = Nhw−wh ∈ Vh. By subtracting (49) from
(6), we have

{
((εw,φh))− (∇wεu,∇hφh) = E(w,u,φh) for all φh ∈Vh,

(∇wεw,∇wψh) = 0 for all ψh ∈V0,h.
(50)
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Notice here (∇wεw,∇wψh) = 0 does not necessarily imply εw = 0, since the equation
only holds for all ψh ∈V0,h while εw is in Vh.

Lemma 4.1. The consistency error E(w,u,φh) is small in the sense that

|E(w,u,φh)|� hm‖w‖m+1‖φh‖0,h + hn+ 1
2 | lnh|‖u‖Wn+2,∞(Ω)‖φh‖0,h,

where 1
2 < m ≤ j + 1 and 0 ≤ n ≤ j. Moreover, for j ≥ 1, we have the improved

estimate

|E(w,u,φh)|� hm‖w‖m+1‖φh‖0,h + hn+ 1
2 ‖u‖Wn+2,∞(Ω)‖φh‖0,h,

where 1
2 < m ≤ j+ 1 and 1 ≤ n ≤ j.

Proof. The proof is straightforward by using the Schwarz inequality, Lemma 3.6,
Remark 3.4, and Lemma 3.9. 
�

To derive an error estimate from (50), let us recall the standard theory for mixed
finite element methods. Given two bounded bilinear forms a(·, ·) defined on X ×X
and b(·, ·) defined on X ×M, where X and M are finite dimensional spaces. Denote
X0 ⊂ X by

X0 = {φ ∈ X : b(φ ,ψ) = 0 for all ψ ∈ M}.

Then for all χ ∈ X and ξ ∈ M,

sup
φ∈X ,ψ∈M

a(χ ,φ)+ b(φ ,ξ )+ b(χ ,ψ)

‖φ‖X + ‖ψ‖M
� ‖χ‖X + ‖ξ‖M,

if and only if

sup
φ∈X0

a(χ ,φ)
‖φ‖X

� ‖χ‖X , for all χ ∈ X0,

sup
φ∈X

b(φ ,ξ )
‖φ‖X

� ‖ξ‖M, for all ξ ∈ M.

(51)

In our formulation, we set X =Vh with norm ‖·‖0,h and M =V0,h with norm ||| · |||.
Define

a(χ ,φ) = ((χ ,φ)), b(φ ,ξ ) =−(∇wφ ,∇wξ ).

It is not hard to check that both of these bilinear forms are bounded under the given
norms. In particular, the boundedness of b(·, ·) has been given in (27). It is also clear
that the first inequality in (51) follows from the definition of a(·, ·) and ‖ · ‖0,h, and
the second inequality follows directly from (28). Combine the above, we have for
all χ ∈Vh and ξ ∈V0,h:

sup
φ∈Vh,ψ∈V0,h

((χ ,φ))− (∇wφ ,∇wξ )− (∇wχ ,∇wψ)

‖φ‖0,h + |||ψ ||| � ‖χ‖0,h + |||ξ |||. (52)
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Theorem 4.2. The weak Galerkin formulation (6) for the biharmonic problem (1)
has the following error estimate:

‖εw‖0,h + |||εu|||� hm‖w‖m+1 + hn+ 1
2 | lnh|‖u‖Wn+2,∞(Ω),

where 1
2 < m ≤ j + 1 and 0 ≤ n ≤ j. Moreover, for j ≥ 1, we have the improved

estimate
‖εw‖0,h + |||εu|||� hm‖w‖m+1 + hn+ 1

2 ‖u‖Wn+2,∞(Ω),

where 1
2 < m ≤ j+ 1 and 1 ≤ n ≤ j.

Proof. By (50) and (52),

‖εw‖0,h + |||εu|||� sup
φh∈Vh,ψh∈V0,h

((εw,φh))− (∇wφh,∇wεu)− (∇wεw,∇wψh)

‖φh‖0,h + |||ψh|||

= sup
φh∈Vh,ψh∈V0,h

E(w,u,φh)

‖φh‖0,h + |||ψh|||
.

Combining this with Lemma 4.1, this completes the proof of the theorem. 
�

Remark 4.1. Assume that the exact solution w and u are sufficiently smooth. It
follows from the above theorem that the following convergence holds true:

‖εw‖0,h + |||εu|||�
{

O(h
1
2 | lnh|) for j = 0,

O(h j+ 1
2 ) for j ≥ 1,

where j is the order of the finite element space, i.e., order of polynomials on each
element.

At this stage, it is standard to use the duality argument and derive an error
estimation for the L2 norm of εu. However, estimating ‖εu‖0,h is not an easy task, as
is similar to the case of Poisson equations. For simplicity, we only consider ‖εu,0‖,
where εu is conveniently expressed as εu = {εu,0,εu,b}. Define

{
ξ +Δη = 0,

−Δξ = εu,0,
(53)

where η = 0 and ∂η
∂n = 0 on ∂Ω. We assume that all internal angles of Ω are less

than 126.283696 · · ·◦. Then, according to (4), the solution to (53) has H4 regularity:

‖ξ‖2 + ‖η‖4 � ‖εu,0‖.
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Furthermore, since such a domain Ω is convex, the Poisson equation with either
the homogeneous Dirichlet boundary condition or the homogeneous Neumann
boundary condition has H2 regularity.

Clearly, Eq. (53) can be written into the following form:

{
((Nhξ , φh))− (∇wRhη , ∇wφh) = E(ξ ,η ,φh) for all φh = {φ0, φb} ∈Vh,

(∇wNhξ , ∇wψh) = (εu,0, ψ0) for all ψh = {ψ0, ψb} ∈V0,h.
(54)

For simplicity of the notation, denote

Λ(Nhξ ,Rhηh; φh,ψh) = ((Nhξ , φh))− (∇wRhη , ∇wφh)− (∇wNhξ , ∇wψh).

Note that Λ is a symmetric bilinear form. By setting φh = εw and ψh = εu in (54)
and then subtract these two equations, one get

‖εu,0‖2 = E(ξ ,η ,εw)−Λ(Nhξ ,Rhη ; εw,εu)

= E(ξ ,η ,εw)−Λ(εw,εu; Nhξ ,Rhη)

= E(ξ ,η ,εw)−E(w,u,Nhξ ).

(55)

Here we have used the symmetry of Λ(·, ·) and Eq. (50).
The two terms, E(ξ ,η ,εw) and E(w,u,Nhξ ), in the right-hand side of Eq. (55)

will be estimated one by one. We start from E(ξ ,η ,εw). By using Lemma 4.1, it
follows that

(i) When j = 0,

E(ξ ,η ,εw)�
(

h‖ξ‖2+ h
1
2 | lnh|‖η‖W2,∞(Ω)

)
‖εw‖0,h

� h1/2| lnh|(‖ξ‖2 + ‖η‖4)‖εw‖0,h.

(56)

(ii) When j ≥ 1, let δ > 0 be an infinitely small number which ensures the Sobolev
embedding from W 4,2(Ω) to W 3−δ ,∞(Ω). Then

E(ξ ,η ,εw)�
(

h‖ξ‖2 + h
3
2−δ | lnh|‖η‖W3−δ ,∞(Ω)

)
‖εw‖0,h

� h(‖ξ‖2 + ‖η‖4)‖εw‖0,h.
(57)

Next, we give an estimate for E(w,u,Nhξ ).

Lemma 4.3. Assume all internal angles of Ω are less than 126.283696 · · ·◦, which
means the biharmonic problem with clamped boundary condition in Ω has H4

regularity. Then
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(i) For j = 0,

E(w,u,Nhξ )�
(

hm+ 1
2 ‖w‖m+1 + h2‖(I−Q0) f‖+ hn+1‖u‖n+1

)
‖ξ‖2,

where 1
2 < m ≤ 1 and 1/2 < n ≤ 1.

(ii) For j ≥ 1,

E(w,u,Nhξ )�
(
hm+1‖w‖m+1 + h2‖(I−Q0) f‖+ hn+1‖u‖n+1

)
‖ξ‖2,

where 1
2 < m ≤ j+ 1 and 1/2 < n ≤ j+ 1.

Proof. By definition,

E(w,u,Nhξ ) = ((Nhw−w,Nhξ ))+ (ΠΠΠh∇u−∇wRhu,∇wNhξ ). (58)

First, by the definition of ((·, ·)), the Schwarz inequality, Remarks 3.3 and 3.4, we
have

((Nhw−w,Nhξ ))

=(N0w−Q0w,N0ξ )+ ∑
K∈Th

h(N0w−Nbw,N0ξ −Nbξ )∂K

�‖N0w−Q0w‖‖N0ξ‖+ ‖Nhw−w‖0,h‖Nhξ − ξ‖0,h

�
{
(hm+ 1

2 ‖w‖m+1 + h2‖(I −Q0)Δw‖)‖ξ‖2 for j = 0, 1
2 < m ≤ 1

(hm+1‖w‖m+1 + h2‖(I−Q0)Δw‖)‖ξ‖2 for j ≥ 1, 1
2 < m ≤ j+ 1

.

(59)

Next, by using inequalities (11), (33), (13), (10), (37), and (38) one after one, we get

(ΠΠΠh∇u−∇wRhu,∇wNhξ )

=((ΠΠΠh −Ph)∇u,∇wNhξ )+ (∇w(Qhu−Rhu),∇wNhξ )

=((ΠΠΠh −Ph)∇u,∇wNhξ )+ (∇w(Qhu−Rhu),ΠΠΠh∇ξ )

=((ΠΠΠh −Ph)∇u,∇w(Nhξ −Qhξ ))+ ((ΠΠΠh −Ph)∇u,Ph∇ξ )− (Q0u−R0u,Δξ )

�hn+1‖u‖n+1‖ξ‖2 +((ΠΠΠh − I)∇u,Ph∇ξ )+ h2‖(I−Q0)Δu‖‖ξ‖2,

for 1
2 < n ≤ j + 1. The estimation for ((ΠΠΠh − I)∇u,Ph∇ξ ) follows the same

technique used in inequality (40). By the definition of ΠΠΠh and since ∂u
∂n = 0 on

∂Ω, we know that (ΠΠΠh − I)∇u ·n also vanishes on ∂Ω. Therefore, using the same
argument as in (40), one has

((ΠΠΠh − I)∇u,Ph∇ξ )� hn+1‖u‖n+1‖ξ‖2 + h2‖(I−Q0)Δu‖‖ξ‖2

for 1
2 < n ≤ j+ 1. Combining the above gives
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(ΠΠΠh∇u−∇wRhu,∇wNhξ )�
(
hn+1‖u‖n+1 + h2‖(I−Q0)Δu‖

)
‖ξ‖2. (60)

for 1
2 < n ≤ j+ 1.

Notice that

h2‖(I−Q0)Δu‖= h2‖(I −Q0)w‖ � hm+2‖w‖m for 0 ≤ m ≤ j+ 1,

h2‖(I−Q0)Δw‖= h2‖(I −Q0) f‖.
(61)

The lemma follows immediately from (58)–(61). 
�

Finally, combining Theorem 4.2, inequalities (55), (56)–(57), and Lemma 4.3,
we get the following L2 error estimation:

Theorem 4.4. Assume all internal angles of Ω are less than 126.283696 · · ·◦, which
means the biharmonic problem with clamped boundary condition in Ω has H4

regularity. Then

(i) For j = 0,

‖εu,0‖� hm+ 1
2 | lnh|‖w‖m+1 + h| lnh|2‖u‖W2,∞(Ω)

+ h2‖(I−Q0) f‖+ hn+1‖u‖n+1,

where 1
2 < m ≤ 1 and 1

2 < n ≤ 1.
(ii) For j ≥ 1,

‖εu,0‖� hm+1‖w‖m+1 + hl+ 3
2 ‖u‖Wl+2,∞(Ω) + h2‖(I−Q0) f‖+ hn+1‖u‖n+1,

where 1
2 < m ≤ j+ 1, 1

2 < n ≤ j+ 1 and 1 ≤ l ≤ j.

Remark 4.2. If u, w, and f are sufficiently smooth, then we get

‖εu,0‖�
{

O(h| lnh|2) for j = 0,

O(h j+ 3
2 ) for j ≥ 1.

5 Numerical Results

In this section, we would like to report some numerical results for the weak Galerkin
finite element method proposed and analyzed in previous sections. Before doing
that, let us briefly review some existing results for H1-H1 conforming, equal-order
finite element discretization of the Ciarlet–Raviart mixed formulation. As discussed
in [5,32], theoretical error estimates for such schemes are indeed suboptimal due to
an effect of infχh ‖u− χh‖2, where χh is taken from the employed H1 conforming
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finite element space. For example, when H1-H1 conforming quadratic elements
are used to approximate both u and w, the error satisfies ‖u− uh‖2 + ‖w−wh‖ �
infχh ‖u−χh‖2+ infχh ‖w−χh‖�O(h), while intuitively, one may expect ‖w−wh‖
to have an O(h2) convergence. By using the L∞ argument, Scholz [32] was able to

improve the convergence rate of L2 norm for w by h
1
2 , and it is known that this

theoretical result is indeed sharp. For the weak Galerkin approximation, from the
discussing in the previous sections, clearly we are facing the same issue.

However, numerous numerical experiments have illustrated that H1-H1 con-
forming, equal-order Ciarlet–Raviart mixed finite element approximation often
demonstrates convergence rates better than the theoretical prediction. Indeed, this
has been partly explained theoretically in [33], in which the author proved that
optimal order of convergence rates can be recovered in certain fixed subdomains
of Ω, when equal-order H1 conforming elements are used. We point out that similar
phenomena have been observed in the numerical experiments using weak Galerkin
discretization. This means that numerical results are often better than theoretical
predictions.

Another issue in the implementation of the weak Galerkin finite element method
is the treatment of nonhomogeneous boundary data:

u = g1 on ∂Ω,

∂u
∂n

= g2 on ∂Ω.

Clearly, both boundary conditions are imposed on u, and u = g1 is the essential
boundary condition, while ∂u

∂n = g2 is the natural boundary condition. To impose the
natural boundary condition, we shall modify the first equation of (6) into

((wh, φh))− (∇wuh, ∇wφh) =−〈g2,φb〉∂Ω.

The essential boundary condition should be enforced by taking the L2 projection of
the corresponding boundary data.

Consider three test problems defined on Ω = [0,1]× [0,1] with exact solutions

u1 = x2(1− x)2y2(1− y)2,

u2 = sin(2πx)sin(2πy) and u3 = sin(2πx+
π
2
)sin(2πy+

π
2
),

respectively. The reason for choosing these three exact solutions is that they have
the following type of boundary conditions:
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Table 1 Numerical results for the test problem with exact solution u1 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 1.33e−03 2.40e−04 4.59e−04 5.66e−02 2.96e−03 6.91e−03
0.05 4.69e−04 6.18e−05 1.17e−04 2.80e−02 9.14e−04 1.99e−03
0.025 2.00e−04 1.55e−05 2.97e−05 1.60e−02 2.64e−04 5.70e−04
0.0125 9.56e−05 3.90e−06 7.44e−06 1.21e−02 8.33e−05 1.89e−04
0.00625 4.72e−05 9.77e−07 1.86e−06 1.13e−02 3.26e−05 7.91e−05
Asym. order 1.1930 1.9876 1.9877 0.5864 1.6461 1.6298

O(hk), k =

u1|∂Ω = 0
∂u1

∂n

∣∣∣∣
∂Ω

= 0,

u2|∂Ω = 0
∂u2

∂n

∣∣∣∣
∂Ω

�= 0,

u3|∂Ω �= 0
∂u3

∂n

∣∣∣∣
∂Ω

= 0.

This allows us to test the effect of different boundary data on convergence rates.
Although the theoretical error estimates are given for εu = Rhu−uh and εw = Nhw−
wh, by using the triangle inequality and the approximation properties of Rh, Nh and
Qh, it is clear that they have at least the same order as eu = Qhu− uh and ew =
Qhw−wh, provided that the exact solution is smooth enough. Thus for convenience,
we only compute different norms for eu and ew, instead of for εu and εw.

The tests are performed using an unstructured triangular initial mesh, with
characteristic mesh size 0.1. The initial mesh is then refined by dividing every
triangle into four sub-triangles, to generate a sequence of nested meshes with various
mesh size h. All discretization schemes are formulated by using the lowest order
weak Galerkin element, with j = 0. For simplicity of notation, for any v∈Vh, denote

‖vb‖=
(

∑
K∈Th

h‖vb‖2
∂K

)1/2

.

The results for test problems with exact solutions u1, u2, and u3 are reported
in Tables 1, 2, and 3, respectively. The results indicate that u always achieves an
optimal order of convergence, while the convergence for w varies with different
boundary conditions. It should be pointed out that both of them have outperformed
the convergence as predicted by theory.

Our final example is a case where the exact solution has a low regularity in the
domain Ω = [0,1]× [0,1]. More precisely, the exact solution is given by
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Table 2 Numerical results for the test problem with exact solution u2 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 9.58e−01 8.66e−02 1.65e−01 4.39e+01 6.09e−01 2.01e+00
0.05 3.34e−01 2.18e−02 4.14e−02 2.32e+01 2.78e−01 7.19e−01
0.025 1.43e−01 5.47e−03 1.03e−02 1.37e+01 1.15e−01 2.81e−01
0.0125 6.81e−02 1.37e−03 2.59e−03 1.02e+01 5.12e−02 1.26e−01
0.00625 3.36e−02 3.42e−04 6.49e−04 9.33e+00 2.45e−02 6.12e−02
Asym. order 1.1958 1.9958 1.9975 0.5649 1.1709 1.2587

O(hk), k =

Table 3 Numerical results for the test problem with exact solution u3 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 8.23e−01 1.18e−01 2.27e−01 5.61e+01 4.25e+00 9.42e+00
0.05 3.07e−01 3.18e−02 6.09e−02 2.43e+01 1.24e+00 2.58e+00
0.025 1.35e−01 8.13e−03 1.55e−02 1.13e+01 3.28e−01 6.61e−01
0.0125 6.49e−02 2.04e−03 3.90e−03 5.58e+00 8.42e−02 1.67e−01
0.00625 3.21e−02 5.11e−04 9.78e−04 2.77e+00 2.14e−02 4.21e−02
Asym. order 1.1599 1.9679 1.9682 1.0801 1.9157 1.9558

O(hk), k =

Table 4 Numerical results for the test problem with exact solution u4 and lowest order of WG
elements

h ‖∇weu‖ ‖eu,0‖ ‖eu,b‖ ‖∇wew‖ ‖ew,0‖ ‖ew,b‖
0.1 3.73e−02 9.44e−04 2.15e−03 2.88e+01 4.05e−01 1.78e+00
0.05 1.87e−02 2.55e−04 5.73e−04 4.08e+01 2.86e−01 1.26e+00
0.025 9.37e−03 6.60e−05 1.46e−04 5.77e+01 2.02e−01 8.91e−01
0.0125 4.68e−03 1.67e−05 3.69e−05 8.16e+01 1.42e−01 6.30e−01
0.00625 2.34e−03 4.19e−06 9.24e−06 1.15e+02 1.01e−01 4.45e−01
Asym. order 0.9984 1.9567 1.9690 −0.4998 0.5008 0.5000

O(hk), k =

u4 = r3/2
(

sin
3θ
2

− 3sin
θ
2

)
,

where (r,θ ) are the polar coordinates. It is easy to check that u ∈ H2.5. The errors
for weak Galerkin finite element approximations are reported in Table 4. Here, u
still achieves an optimal order of convergence, while the convergence rates for w is
restricted by the fact that w ∈ H0.5. All the results are in consistency with the theory
established in this article.
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