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Abstract We present an overview on the state of the art of robust AMLI
preconditioners for anisotropic elliptic problems. The included theoretical
results summarize the convergence analysis of both linear and nonlinear AMLI
methods for finite element discretizations by conforming and nonconforming
linear elements and by conforming quadratic elements. The initially proposed
hierarchical basis approach leads to robust multilevel algorithms for linear but not
for quadratic elements for which an alternative AMLI method based on additive
Schur complement approximation (ASCA) has been developed by the authors just
recently. The presented new numerical results are focused on cases beyond the
limitations of the rigorous AMLI theory. They reveal the potential and prospects
of the ASCA approach to enhance the robustness of the resulting AMLI methods
especially in situations when the matrix-valued coefficient function is not resolved
on the coarsest mesh in the multilevel hierarchy.
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1 Introduction

Anisotropy arises in many applications such as heat transfer, electrostatics,
magnetostatics, flow in porous media (see, e.g., [12]), and many other areas in
science and engineering. For instance, in porous media a strong anisotropy of
conductivity can be due to fractures, where the direction of dominating anisotropy is
determined by the orientation of the fractures. The presence of fracture corridors can
form long and tiny highly anisotropic channels. The network of channels is resolved
at the finest mesh. The ratio of anisotropy in the channels can be of 5–6 orders of
magnitude. Such kind of high-contrast and high-frequency anisotropic problems are
still beyond the limits of robust algebraic multilevel preconditioning. At the end of
the paper we experimentally study the robustness of algebraic multilevel iteration
(AMLI) methods on model problems with channels.

In this paper we consider the elliptic boundary value problem

Lu ≡−∇ · (a(x)∇u(x)) = f (x) in Ω ,

u = 0 on ΓD,

(a(x)∇u(x)) ·n = 0 on ΓN ,

(1)

where Ω is a polygonal domain in R
2, f (x) is a given function in L2(Ω), the

coefficient matrix a(x) is symmetric positive definite and uniformly bounded in
Ω , and n is the outward unit vector normal to the boundary Γ = ∂Ω , where
Γ = Γ̄D ∪ Γ̄N . We assume also that the elements of the diffusion coefficient matrix
a(x) are piecewise smooth functions on Ω̄ .

The weak formulation of the problem reads as follows: Given f ∈ L2(Ω), find
u ∈ V ≡ H1

D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u,v) = ( f ,v) :=
´

Ω f (x)v(x)dx ∀v ∈ H1
D(Ω), where

A(u,v) :=
´

Ω a(x)∇u(x) ·∇v(x)dx.
(2)

We assume that the domain Ω is discretized by the triangulation T0 which is
obtained by a proper number of � uniform refinement steps of a given coarser
triangulation T�. We suppose also that T� is aligned with the discontinuities of
a(x) so that over each element T ∈ T�, the entries of the coefficient matrix
(diffusion tensor) a(x) are smooth functions. This assumption is mainly needed
for theoretical considerations and is disregarded in the computational examples
presented in Sect. 5.

The variational problem (2) is discretized using the finite element method (FEM),
i.e., the continuous space V is replaced by a finite-dimensional space Vh. Then the
finite element formulation is the following: find uh ∈ Vh, satisfying

Ah(uh,vh) = ( f ,vh) ∀vh ∈ Vh, where
Ah(uh,vh) := ∑e∈Th

´
e a(e)∇uh ·∇vhdx.

(3)
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We note that the element-by-element additive setting of Ah(uh,vh) is applicable to
both conforming and nonconforming FEM discretizations.

Here a(e) is a piecewise constant symmetric positive definite matrix, defined
by the integral averaged values of a(x) over each element from the coarsest
triangulation T�, i.e.,

a(e) =
1
|e|

ˆ

e
a(x)dx, ∀e ∈ T�.

In this way strong coefficient jumps across the boundaries between adjacent finite
elements from T� are allowed.

The resulting FEM linear system of equations reads as

Ahuh = fh, (4)

with Ah and fh being the corresponding global stiffness matrix and global right-
hand side and h being the discretization (mesh size) parameter for the underlying
triangulation T0 = Th of Ω .

The stiffness matrix is symmetric, positive definite, and sparse. The sparsity
property means that the number of nonzero entries in each row/column is uniformly
bounded with respect to the number of the unknowns N = O(h−2).

In the case of advanced real-life applications (and in the context of this paper),
Ah could be very large, that is, N is of order 106 up to 109. For such problems,
the advantages of the iterative solution methods increase quickly with the size
of the problem. The conjugate gradient (CG) method invented 60 years ago by
Hestenes and Stiefel [15] is the fastest basic iterative scheme for such kind of
problems. It provides a sequence of best approximations to the exact solution in the
Krylov subspaces generated by the stiffness matrix. The number of CG iterations
nCG

it depends on the spectral condition number of the matrix κ(Ah). In the case
of two-dimensional FEM elliptic systems, κ(Ah) = O(N) and nCG

it = O(
√

κ(Ah)) =

O(N1/2). The aim of the preconditioning is to relax the mesh-size dependency of the
iterations’ count. The following estimate characterizes the preconditioned conjugate
gradient (PCG) method:

nPCG
it ≤ 1

2

√
κ (B−1Ah) ln

(
2
ε

)
+ 1, (5)

where B is a symmetric and positive definite preconditioning matrix (also called
preconditioner) and nPCG

it is the related number of PCG iterations sufficient to get
a prescribed relative accuracy of ε > 0. The general strategy for efficient precondi-
tioning simply follows from the estimate (5). It reads as follows: (i) The condition
number of the preconditioned matrix is much less than the original one, i.e.,
κ
(
B−1A

)
<< κ(A); (ii) The computational complexity to solve the preconditioned

system is much smaller than the complexity to solve the original problem, i.e.,
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N
(
B−1v

)
<< N

(
A−1v

)
. One could say that these conditions are contradictory.

Indeed, when κ
(
B−1A

)
tends to its minimal value, the preconditioner should tend

to A and N
(
B−1v

)
→ N

(
A−1v

)
. Fortunately, such kind of reasonings are too

pessimistic according to the recent state of the art of the preconditioning algorithms.

Definition 1. The preconditioner is called optimal if the related PCG algorithm has
optimal order of computational complexity N PCG = O(N), that is, if κ

(
B−1A

)
=

O(1) and N
(
B−1v

)
= O(N).

The existence of optimal iterative solution methods has been an open question
before the early 1960s. Now, the optimal order multigrid and multilevel methods are
well known in the community of researchers and engineers dealing with large-scale
scientific computations and their advanced applications.

This paper is devoted to some recent achievements in the development of robust
preconditioners for FEM elliptic systems belonging to the class of multilevel block
factorization methods of the AMLI type. It provides a survey on robust AMLI
methods for anisotropic elliptic problems, covering a significantly enriched state
of the art in this field as compared to the related earlier paper [21].

Based on a sequence of nested finite element meshes, the AMLI methods were
originally introduced by Axelsson and Vassilevski in [6] for the case of isotropic
elliptic problems discretized by conforming linear finite elements. They are optimal
with respect to the mesh parameter (problem size) and can handle straightforwardly
arbitrary coefficient jumps on the coarsest mesh. The originally introduced AMLI
methods are based on a hierarchical basis (HB) splitting of the stiffness matrix and a
recursive application of HB two-level preconditioning. Since then the AMLI theory
has evolved beyond the HB framework; see, e.g., [2,16,17,25]. The construction of
AMLI is always based on a recursive approximate (two-by-two) block factorization.
Under rather general assumptions, the HB AMLI methods are robust in the case
of linear (conforming and nonconforming) elements which does not hold for
higher-order FEM. Here we present complimentary some very recent results for
quadratic elements where the approximate block factorization on each level exploits
an additive Schur complement approximation (ASCA), thereby avoiding the HB
splitting; see [18, 20] for further details. The resulting (nonlinear) AMLI is very
robust with respect to anisotropy that does not have to be aligned with the grid
if it is complemented by a proper block-relaxation process. The efficiency of the
interplay between these two components can be enhanced if one applies the ASCA
and the block smoother on specific, augmented coarse grids (cf. Sect. 4 and [20]).

In our presentation we follow the mathematical concept of high anisotropy or
orthotropy introduced in [12]. For any x∈Ω , we denote the eigenvalues 0< μ1(x)≤
μ2(x) and eigenvectors q j(x), j = 1,2 (written as vector columns) of the coefficient
(diffusion) matrix a(x). Then

a(x) = μ1(x)q1(x)q1(x)
T + μ2(x)q2(x)q2(x)

T .

In this notation, obviously,

μ1(x)q
T q ≤ qT a(x)q ≤ μ2(x)q

T q, ∀q ∈ IR2.
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Depending on the variation of the eigenvalues μ j(x), we may have various scenarios
of highly anisotropic materials. The aspect ratio of coefficient anisotropy is
introduced as

κ(a) = max
x

μ2(x)
μ1(x)

= max
e

μ2(e)
μ1(e)

.

The direction of dominating anisotropy is determined by the eigenvector q2(x).
The following simple examples illustrate the general mathematical concept of

high anisotropy, where η � 1: (a) In the case of orthotropic problem we have, e.g.,
a = [1,0;0,η ]. Then μ1 = 1, μ2 = η , consequently κ = η , and q2 = [0,1]T , i.e.,
the direction of dominating anisotropy is along the coordinate y-axis. (b) Let a =
[1+η ,η − 1;η − 1,1+η ]. Then μ1 = 2, μ2 = 2η , and κ = η . The direction of
dominating anisotropy is determined by q2 = [1+η ,1−η ]T/

√
2(1+η2) where

q2 → [1,−1]T/
√

2 when η → ∞.
In what follows later, two representative variants of the coefficient a(e) are

considered:

(a) The isotropic/orthotropic problem associated with

a(e) =
[

1 0
0 ε

]
. (6)

(b) The rotated diffusion problem associated with

a(e) =
[

cosθ −sinθ
sinθ cosθ

][
1

ε

][
cosθ −sinθ
sinθ cosθ

]T

, (7)

where ε > 0 and θ = θe is a piecewise constant angle.

The setting of (7) allows to study problems with a given fixed or varying direction
(angle) of anisotropy. Nongrid-aligned anisotropy in general is much more difficult
to handle than orthotropy (or grid-aligned anisotropy) thus far.

The remainder of the paper is organized as follows. The theoretical background
of the AMLI methods is presented next. Together with the classical formulations,
Sect. 2 contains the main convergence results for linear and nonlinear AMLI
methods. A complete set of robustness results for anisotropic linear FEM systems
is presented in Sect. 3, where the HB AMLI method is considered. The estimates
are robust with respect to coefficient and mesh anisotropy for both conforming and
nonconforming elements. Section 4 is devoted to preconditioning of quadratic FEM
systems. It starts with a few comments on HB splittings, which are not robust in this
case. Then some very recent results are presented on an AMLI method based on
ASCA. In the latter method two additional stabilizing components are incorporated,
namely, augmented coarse grids and a global (block) smoothing. The numerical
results in Sect. 5 demonstrate the potential of this approach for complicated
and more realistic problems which are still beyond the scope of rigorous theory.
The survey concludes with final remarks given in Sect. 6.
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2 Algebraic Multilevel Methods

The AMLI methods have originally been introduced and studied in a multiplicative
form; see [6, 7]. The presentation in this section follows [27]. Consider the linear
system (4) where Ah =: A(0) is the fine-grid stiffness matrix. We assume that
the standard components of a multigrid (MG) method, that is, the kth-level
matrices A(k), smoothers M(k), and coarse-to-fine interpolation matrices P(k), have

been defined and that the Galerkin relation A(k+1) = P(k)T
A(k)P(k) holds for k =

0,1, . . . , �− 1.
The AMLI preconditioner B(k) is defined recursively via its inverse. On the

coarsest level � we set

B(�)−1
= A(�)−1

. (8)

Then, assuming that B(k+1)−1
has already been defined for k+1 ≤ �, one constructs

B(k)−1
in two steps. First, an approximation Z(k+1) of A(k+1) is defined by

Z(k+1) := A(k+1)
(

I− p(k)(B(k+1)−1
A(k+1))

)−1
, (9)

where p(k) denotes a polynomial of degree ν = νk, satisfying

p(k)(0) = 1. (10)

It is important to note that in view of (10) Eq. (9) is equivalent to

B(k+1)
ν

−1
:= Z(k+1)−1

= B(k+1)−1
q(k)(A(k+1)B(k+1)−1

) (11)

where the polynomial q(k) is given by

q(k)(x) =
1− p(k)(x)

x
(12)

showing that the application of B(k+1)
ν

−1
= Z(k+1)−1

requires only applications of

A(k+1) and B(k+1)−1
but not of the inverse of the coarse-level matrix A(k+1) (as this

is the case in the exact two-level method). Second, the AMLI preconditioner B(k) at
level k is defined by

B(k)−1
:= M̄(k)−1

+
(

I −M(k)−T
A(k)
)

P(k)B(k+1)
ν

−1
P(k)T

(
I −A(k)M(k)−1

)
(13)
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where B(k+1)
ν

−1
is given by (11) and M̄(k) denotes the symmetrized smoother at

level k, that is,

M̄(k)−1
= M(k)−1

+M(k)−T −M(k)−T
A(k)M(k)−1

. (14)

We observe that the multilevel preconditioner defined via (11) and (13) is getting
close to an exact two-level method when the polynomial (12) approximates well 1/x

in which case B(k+1)
ν

−1
≈A(k+1)−1

. In order to obtain an efficient multilevel method,

the action of B(k+1)
ν

−1
on an arbitrary vector should be much cheaper to compute (in

terms of the number of arithmetic operations) than the action of A(k+1)−1
. Optimal

order solution algorithms typically require the arithmetic work for one application

of B(k+1)
ν

−1
to be of the orderO(Nk+1) where Nk+1 denotes the number of unknowns

at level k+ 1.
In the classical AMLI method, as it has been introduced in [6,7], the coarse-grid

matrix A(k+1) is retrieved from a (two-level) hierarchical basis transformation of
A(k). The preconditioner B̃(k) (in its multiplicative variant) then is defined by

(B̃(k))−1 =

[
B(k)

11

−1
0

0 0

]

+

[
−B(k)

11

−1
Â(k)

12
I

]

B(k+1)
ν

−1
[
−Â(k)

21 B(k)
11

−1
, I

]

=

[
B(k)

11

−1
0

0 0

]

+(L̃(k))T
[

0
I

]
B(k+1)

ν
−1

[0, I] L̃(k)

where

L̃(k) =

[
I −A(k)

11 B(k)
11

−1
0

−Â(k)
21 B(k)

11

−1
I

]

.

Writing the equation above in the form (13), one finds that

M(k)−1
= M(k)−T

=

[
B(k)

11

−1
0

0 0

]

(15)

is a smoother that acts only on the hierarchical complement of the coarse space,

where B(k)
11 is a proper approximation of A(k)

11 . The corresponding symmetrized
smoother then is given by

M̄(k)−1
=

[
2B(k)

11

−1
−B(k)

11

−1
A(k)

11 B(k)
11

−1
0

0 0

]

, (16)

and P(k) takes the simple form

P(k) =

[
0
I

]
. (17)
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The latter is due to the fact that the (classical) AMLI preconditioner is defined for
the hierarchical two-level matrix Â(k), which contains the coarse-level matrix as a
sub-matrix in its lower right block, i.e.,

A(k+1) = [0, I] Â(k)
[

0
I

]
.

This, however, is in agreement with the Galerkin relation A(k+1) = P(k)T
A(k)P(k) as

is used in (algebraic) multigrid methods.
The convergence theory of the classical AMLI methods (in the multiplicative

variant) is based on the spectral equivalence of the k-th level hierarchical matrix
Â(k) and its (multiplicative) two-level preconditioner

B̂(k) =

[
B(k)

11 0

Â(k)
21 Â(k)

22

][
I B(k)

11

−1
Â(k)

12
0 I

]

, (18)

that is,

ϑ̂kB̂(k) ≤ Â(k) ≤ B̂(k), k = �− 1, . . . ,0. (19)

Note that if B(k)
11 = A(k)

11 then ϑ̂k = 1− γ2
k where γk is the constant in the strengthened

Cauchy–Bunyakovsky–Schwarz (CBS) inequality associated with the hierarchical
matrix Â(k). The subscript of γ is usually skipped when uniform estimate of the
CBS constant with respect to the refinement level k is assumed (see, e.g., (35)). We
conclude that the polynomial acceleration techniques described in this paper can
be exploited in various implementations of AMLI preconditioners, which can be
viewed as inexact two-level methods. The performance of these methods crucially
depends on the particular choice of the polynomial q(k) in Eq. (11) and on two-level
estimates like (19) or (31).

2.1 Condition Number Estimates for AMLI Preconditioners

Let us first summarize the main result of the analysis of the AMLI-cycle multigrid
preconditioner as presented in [27].

The AMLI-cycle is a ν-fold multigrid (MG) cycle with variable ν = νk. In the
following, let ν ≥ 1 and k0 ≥ 1 be two fixed integers. We set νsk0 = ν > 1 for
s = 1,2,3, . . . and νk = 1 otherwise. That is, we let

B((s+1)k0)
ν

−1
= B((s+1)k0)

−1
qν−1(A

((s+1)k0)B((s+1)k0)
−1
) (20)

if k+ 1 = (s+ 1)k0, and

B(k+1)
ν

−1
= B(k+1)−1

(21)
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otherwise. Then for the AMLI-cycle MG preconditioner B(k) defined in (13), the
following result can be proven (cf. Theorem 5.29 in [27]).

Theorem 1 ([27]). With a proper choice of the parameters k0 and ν , and for a
proper choice of the polynomial p(k)(x) = pν(x) satisfying (10), the condition num-

ber of B(k)−1
A(k) can be uniformly bounded provided the V-cycle preconditioners

with bounded level difference �−k ≤ k0 have uniformly bounded condition numbers
K� �→k

MG .

More specifically, for a fixed k0, and ν >
√

K� �→k
MG , we can choose α > 0 such that

αK� �→k
MG +K� �→k

MG
(1−α)ν

[
∑ν

j=1(1+
√

α)ν− j(1−
√

α) j−1
]2 ≤ 1

and employ the polynomial

pν(x) =
1+Tν

( 1+α−2x
1−α

)

1+Tν
(

1+α
1−α

)

where Tν is the Chebyshev polynomial of the first kind of degree ν .
Alternatively, we can choose α ∈ (0,1) such that

αK� �→k
MG +K� �→k

MG
(1−α)ν

∑ν
j=1(1−α) j−1 ≤ 1

and use the polynomial pν(x) = (1−x)ν to define qν−1(x) := (1− pν(x))/x in (20).
Then for both choices of the polynomial pν (respectively qν−1), the resulting

AMLI-cycle preconditioner B=B(0), as defined via (8)–(13), is spectrally equivalent
to the matrix A = A(0), and the following estimate holds

vT Av ≤ vT Bv ≤ 1
α

vT Av ∀v, (22)

with the respective α ∈ (0,1] depending on the choice of the polynomial.

2.2 Nonlinear AMLI-Cycle Method

Consider a sequence of two-by-two block matrices

A(k) =

[
A(k)

11 0

A(k)
21 S(k)

][
I A(k)

11

−1
A(k)

12
0 I

]

=

[
A(k)

11 A(k)
12

A(k)
21 S(k) +A(k)

21 A(k)
11

−1
A(k)

12

]

(23)
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associated with a (nested) sequence of meshes Tk, k = 0,1,2, . . . , �, where T� denotes
the coarsest mesh (and A(k) could also be in hierarchical basis). Let S(k) be the Schur
complement in the exact block factorization (23) of A(k). Moreover, the following
abstract (linear) multiplicative two-level preconditioner

B̄(k) =

[
B(k)

11 0

A(k)
21 Q(k)

][
I B(k)

11

−1
A(k)

12
0 I

]

=

[
B(k)

11 A(k)
12

A(k)
21 Q(k) +A(k)

21 B(k)
11

−1
A(k)

12

]

(24)

to A(k) is defined at levels k = 0,1,2, . . . , �− 1. Here B(k)
11 is a preconditioner to A(k)

11
and Q(k) is a sparse approximation of S(k). In order to relate the two sequences
(A(k))k=0,1,2,...,�−1 and (B̄(k))k=0,1,2,...,�−1 to each other, one sets

A(0) := Ah = A, (25)

where Ah is the stiffness matrix in (4), and defines

A(k+1) := Q(k), k = 0,1,2, . . . , �− 1. (26)

Next the nonlinear AMLI-cycle preconditioner B(k)[·] : IRNk �→ IRNk for k = �−
1, . . . ,0 is defined recursively by

B(k)−1
[y] :=U (k)D(k)[L(k)y], (27)

where

L(k) :=

[
I 0

−A(k)
21 B(k)

11

−1
I

]

, (28)

U (k) = L(k)T
, and

D(k)[z] =

[
B(k)

11

−1
z1

Z(k+1)−1
[z2]

]

. (29)

The (nonlinear) mapping Z(k+1)−1
[·] is defined by

Z(�)−1
[·] = A(�)−1

,

Z(k)−1
[·] := B(k)−1

[·] if ν = 1 and k < �,

Z(k)−1
[·] := B(k)

ν
−1
[·] if ν > 1 and k < �,

(30)

with

B(k)
ν

−1
[d] := x(ν)

where x(ν) is the ν-th iterate obtained when applying the generalized conjugate

gradient (GCG) algorithm (see [8]) to the linear system A(k)x = d using B(k)[·]
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as a preconditioner and starting with the initial guess x(0) = 0. The vector ννν =

(ν1,ν2, . . . ,ν�−1)
T specifies how many inner GCG iterations are performed at each

of the levels k = �− 1, . . . ,1, and ν0 = mmax denotes the maximum number of
orthogonal search directions at level 0. Typically the algorithm is restarted after
every mmax iterations. If a fixed number ν of inner GCG-type iterations is performed
at every intermediate level, i.e., νk = ν for k = �−1, . . . ,1, the method is referred to
as (nonlinear) ν-fold W-cycle AMLI method.

Convergence: Next the main convergence result from [16] is presented.
Denoting by x(i) the i-th iterate generated by the nonlinear AMLI method, the

goal is to derive a bound for the error reduction factor in A norm. This can be done
by assuming, for example, that the two-level preconditioners (24) and the matrices
(23) are spectrally equivalent, i.e.,

ϑ kB̄(k) ≤ A(k) ≤ ϑ kB̄(k), k = �− 1, . . . ,0. (31)

A slightly different approach to analyze the nonlinear AMLI-cycle method is based
on the assumption that all fixed-length V-cycle multilevel methods from any coarse-
level k+ k0 to level k with exact solution at level k+ k0 are uniformly convergent in
k with an error reduction factor δk0 ∈ [0,1); see [26,27]. Both approaches, however,
are based on the idea to estimate the deviation of the nonlinear preconditioner B(k)[·]
from an SPD matrix B̄(k).

The following theorem (see [16, 18]) summarizes the main convergence result.

Theorem 2 ([16]). Consider the linear system A(0)x = d(0) where A(0) is an SPD
stiffness matrix, and let x(i) be the sequence of iterates generated by the nonlinear
AMLI algorithm. Further, assume that the approximation property (31) holds and
let ϑ := max0≤k<�ϑ k/ϑ k. If ν , the number of inner GCG iterations at every coarse

level (except level � where Z(�)−1
[·] = A(�)−1

) is chosen such that

δ (ν):=
(

1− 4ϑ(1− ε)2

(1+ϑ − 2ε +ϑε2)2

)ν/2

≤ ε (32)

for some positive ε < 1 then

‖x− x(i+1)‖A(0)

‖x− x(i)‖A(0)
≤

√

1− 4ϑ(1− ε)2

(1+ϑ − 2ε +ϑε2)2 = δ (1) =: δ < 1. (33)

Remark 1. Note that the relative condition number κ(Q(k)−1
S(k)) affects the ap-

proximation property (31). In the simplest case in which the multiplicative two-level

preconditioner (24) is considered under the assumption B(k)
11 = A(k)

11 , this results in

ϑ = κ(Q(k)−1
S(k)).
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2.3 Optimality Conditions

As has been stated in Theorem 2, uniform convergence of the AMLI method can
be proven under the assumption (31), which guarantees that the (multiplicative)
two-level preconditioner satisfies a certain approximation property. Equivalently,
uniform convergence of the multilevel V-cycle preconditioner (ν = 1) with bounded
level difference can be required as the basic assumption to prove uniform conver-
gence of the AMLI method for unbounded level difference as this was done in
Theorem 1 in case of the linear preconditioner. In many cases these assumptions
can be verified by studying the angle between the coarse space and its hierarchical
complement. In fact, and this was shown in the original convergence analysis
of linear AMLI methods [7], a stabilization of the condition number of the
(multiplicative) multilevel preconditioner can be achieved under the assumption

A(k)
11 ≤ B(k)

11 ≤ ωA(k)
11 (34)

on the approximation of the pivot block A(k)
11 if

1
√

1− γ2
< ν. (35)

Assuming now that we have a fully stabilized multilevel method, i.e., the
solutions for a repeatedly refined mesh (in principle for any number of regular
refinement steps) are obtained at a constant number of iterations. Then the second
condition to be fulfilled for an optimal order solution process is that the computa-
tional cost of each single iteration is proportional to the total number of degrees of
freedom (DOF).

The computational work (operation count) of the ν-fold W-cycle of either linear
or nonlinear AMLI at level 0 (associated with the finest mesh) can be estimated by

w(0) ≤ c(N0 +ν N1 + . . .+ν�N�)

= cN0

(

1+
ν
ρ
+

(
ν
ρ

)2

+ . . .+

(
ν
ρ

)�
)

= cN0

1−
(

ν
ρ

)�+1

1− ν
ρ

.

Assuming that the number of DOF at level k+ 1 is (approximately) 1/ρ times the
number of DOF at level k, each visit of level k must induce less than ρ visits
of level k + 1 (at least in average). This means that if the coarsening ratio is,
for example, four, i.e., ρ = 4, then two but also three inner GCG iterations, or,
alternatively, the employment of second- but also third-degree matrix polynomials
at every intermediate level, result in a computational complexity O(N) = O(N0) of
one (outer) iteration. The condition for optimal order single iterations is thus

ν < ρ , (36)
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which combined with (35) results in the (combined) optimality conditions

1
√

1− γ2
< ν < ρ . (37)

In what follows, we assume that the default meaning of AMLI is the multiplicative
one.

Remark 2. The optimality conditions for the symmetric preconditioner of block-
diagonal (additive) form are given by

√
1+ γ
1− γ

< ν < ρ . (38)

Stabilization techniques for additive multilevel iteration methods and nearly
optimal order parameter-free block-diagonal preconditioners of AMLI type are
discussed in [4, 5].

3 Linear Elements

The material selected in this section follows the spirit of the robust AMLI methods
as originally presented in [3,4,9,10,22,24] as well as the earlier survey paper [21].
The hierarchical basis approach is followed for both conforming and nonconforming
elements. This allows systematically to use local constructions and analysis at the
level of element and macroelement matrices.

3.1 Conforming Elements

Some Basic Relations: Let us remind that the analysis for an arbitrary triangle (e)
can be done on the reference triangle (ẽ). Transforming the finite element functions
between these triangles, the element bilinear form Ae(., .) takes the form

Aẽ(ũ, ṽ) =
ˆ

ẽ
∑
i, j

ãi j
∂ ũ
∂ x̃i

∂ ṽ
∂ x̃ j

, (39)

where the coefficients ãi j depend on both the coordinates in e and the coefficients
ai j in the differential operator.

The important conclusion is that it suffices for the local analysis to consider the
(macro)element stiffness matrices for the reference triangle and arbitrary anisotropic
coefficients [ai j] or, alternatively, for the isotropic operator −Δ and an arbitrary
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triangle e. In this sense, the mesh and coefficient anisotropy are equivalent, which
obviously holds true for any conforming or nonconforming triangular finite element.

Following the FEM assembling procedure, we write the global stiffness matrix A
in the form

A = ∑
e∈Tk

RT
e AeRe, (40)

where Ae is the element stiffness matrix and Re stands for the restriction mapping of
the global vector of unknowns to the local one corresponding to element e ∈ Tk.

Consider now the Laplace operator and an arbitrary shaped linear triangular finite
element (mesh anisotropy). Then, the element stiffness matrix Ae can be written in
the form

Ae =
1
2

⎡

⎣
b+ c −c −b
−c a+ c −a
−b −a a+ b

⎤

⎦ , (41)

where a, b, and c equal the cotangent of the angles in e ∈ Th. Without loss of
generality, we assume in the local analysis that |a| ≤ b ≤ c, which follows from
the next lemma; see, e.g., [3].

Lemma 1. Let θ1,θ2,θ3 be the angles in an arbitrary triangle. Then with a =
cotθ1, b = cotθ2, c = cotθ3, it holds

(i) a = (1− bc)/(b+ c)
(ii) If θ1 ≥ θ2 ≥ θ3 then |a| ≤ b ≤ c
(iii) a+ b > 0.

Applying Lemma 1, we simply get the scaled representation of the element stiffness
matrix:

Ae =
c
2

⎡

⎣
β + 1 −1 −β
−1 α + 1 −α
−β −α α +β

⎤

⎦ , (42)

α = a/c, β = b/c, and (α,β ) ∈ D, where

D = {(α,β ) ∈R
2 : −1

2
< α ≤ 1,max{− α

α + 1
, |α|} ≤ β ≤ 1}. (43)

The local analysis in terms of (α,β ) belonging to the convex curvilinear triangle D
plays a key role in the derivation of robust estimates for anisotropic problems; see
[3, 10].

Uniform Estimates of the Constant in the Strengthened CBS Inequality:
Consider two consecutive meshes Tk+1 ⊂ Tk. A uniform refinement procedure is
set as a default assumption where the current coarse triangle e ∈ Tk+1 is subdivided
in four congruent triangles by joining the mid-edge nodes to get the macroelement
E ∈Tk. The related macroelement stiffness matrix consists of blocks which are 3×3
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matrices and, the local eigenproblem to compute γE has a reduced dimension of
2× 2.

In the so-arising six node-points of the macroelement, we can also use hierarchi-
cal basis functions, where we keep the linear basis functions in the vertex nodes and
add piecewise quadratic basis functions in the mid-edge nodes with support on the
whole triangle. Let us denote by γ̂E the corresponding CBS constant. The following
relation between γE and γ̂E holds.

Theorem 3 ([23]). Let us consider a piecewise Laplacian elliptic problem on an
arbitrary finite element triangular mesh Tk+1, and let each element from Tk+1 be
refined into four congruent elements to get Tk. Then

γ̂2
E =

4
3

γ2
E , (44)

where γ̂E , γE are the local CBS constants for the hierarchical piecewise quadratic
and the piecewise linear finite elements, respectively.

Taking into account that γ̂E < 1, we get the local estimate

γ2
E <

3
4

(45)

which holds uniformly with respect to the mesh anisotropy. Then, the next funda-
mental result follows directly from the local estimate (45), the equivalence relation
(39), and the inequality γ ≤ maxE γE .

Theorem 4. Consider the problem (3) discretized by conforming linear finite
elements, where the coarsest grid T� is aligned with the discontinuities of the
coefficient a(e), e ∈ T�. Let us assume also that Tk+1 ⊂ Tk are two consecutive
meshes where each element from Tk+1 is refined into four congruent elements to
get Tk. Then, the estimate

γ2 <
3
4

(46)

of the CBS constant holds uniformly with respect to the coefficient jumps, mesh
or/and coefficient anisotropy, and the refinement level k.

Preconditioning of the Pivot Block: When applicable, we will skip the super-
scripts of the pivot block and its approximation. Here, we will write A11, B11,

instead of A(k)
11 , B(k)

11 . The construction and the analysis of the preconditioners B11

are based on a macroelement-by-macroelement assembling procedure. Following
(40), we write A11 in the form

A11 = ∑
E∈Tk+1

RT
EAE:11RE . (47)

Following the scaled representation (42), we get
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AE:11 = rT cT

⎡

⎣
α +β + 1 −1 −β

−1 α +β + 1 −α
−β −α α +β + 1

⎤

⎦ . (48)

Then, the additive preconditioner of A11 is defined as follows:

B(A)
11 = ∑

E∈Tk+1

RT
EB(A)

E:11RE , (49)

where

B(A)
E:11 = 2rT cT

⎡

⎣
α +β + 1 −1 0

−1 α +β + 1 0
0 0 α +β + 1

⎤

⎦ . (50)

As one can see, the local matrix B(A)
E:11 is obtained by preserving only the strongest

off-diagonal entries. Alternatively, the multiplicative preconditioner B(M)
E is defined

as a symmetric block Gauss–Seidel preconditioner of A11 subject to a proper node
numbering (see, e.g., [3]).

Theorem 5 ([3, 4]). The additive and multiplicative preconditioners of A11 are
uniform, i.e.,

κ
(

B(A)
11

−1
A11

)
<

1
4
(11+

√
105)≈ 5.31, (51)

κ
(

B(M)
11

−1
A11

)
<

15
8

= 1.875. (52)

These condition number bounds hold independently on shape and size of each
element (mesh anisotropy) and on the coefficient matrix a(e) of the FEM problem
(coefficient anisotropy).

3.2 Nonconforming Elements

For the nonconforming Crouzeix–Raviart finite element, where the nodal basis
functions are defined at the midpoints along the edges of the triangle rather than
at its vertices (cf. Fig. 1), the natural vector spaces VH(E) := span{φI ,φII ,φIII} and
Vh(E) := span{φi}9

i=1 (cf. the macroelement in Fig.1) are no longer nested, i.e.,
VH(E)� Vh(E). A simple computation shows that the element stiffness matrix for
the Crouzeix–Raviart (CR) element, ACR

e , coincides with that of the corresponding
conforming linear element up to a factor 4, i.e.,
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6 1 2 5

8 9

3

7 4

I

III

II

Fig. 1 Macroelement composed of four Crouzeix–Raviart elements

ACR
e = 2

⎡

⎢
⎢
⎣

b+ c −c −b

−c a+ c −a

−b −a a+ b

⎤

⎥
⎥
⎦ , (53)

(cf., (41)). The construction of the hierarchical stiffness matrix at macroelement
level starts with the assembly of four such matrices according to the numbering
of the nodal points, as shown in Fig. 1. It further utilizes a transformation, which
is based on a proper decomposition of the vector space V(E) = Vh(E), which is
associated with the fine-grid basis functions related to this macroelement E . We
consider hierarchical splittings, which make use of half-difference and half-sum
basis functions. Let us denote by ΦE := {φ (i)}9

i=1 the set of the “midpoint” basis
functions of the four congruent elements in the macroelement E , as depicted in
Fig. 1. The splitting of V(E) can be defined in the general form (see [22]):

V1(E) := span{φ1, φ2, φ3, φD
1 +φ4 −φ5, φD

2 +φ6 −φ7, φD
3 +φ8 −φ9} ,

V2(E) := span{φC
1 +φ4 +φ5, φC

2 +φ6 +φ7, φC
3 +φ8 +φ9} ,

(54)

where φD
i := ∑k dikφk and φC

i := ∑k cikφk with i,k ∈ {1,2,3}. The transformation
matrix is given by

JT
E = JT

E (C,D) =

[
I3 D C

0 J− J+

]

(∈ R
9×9), (55)

where I3 denotes the 3× 3 identity matrix and C and D are 3× 3 matrices whose
entries ci j, respectively, di j are to be specified later. The 3× 6 matrices
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J−:=
1
2

⎡

⎢
⎢
⎣

1 −1

1 −1

1 −1

⎤

⎥
⎥
⎦

T

and J+:=
1
2

⎡

⎢
⎢
⎣

1 1

1 1

1 1

⎤

⎥
⎥
⎦

T

(56)

introduce the so-called half-difference and half-sum basis functions associated with
the sides of the macroelement triangle. The matrix JE transforms the vector of the
macroelement basis functions φE := (φ (i))9

i=1 to the hierarchical basis vector φ̃E :=
(φ̃ (i))9

i=1 = JT
E φE , and the hierarchical stiffness matrix at macroelement level is

obtained as

ÃE = JT
E AEJE =

[
ÃE:11 ÃE:12

ÃT
E:12 ÃE:22

]
} ∈ V1(E)

} ∈ V2(E)
. (57)

The related global stiffness matrix is obtained as Ãh := ∑E∈TH
RT

EÃERE .
The transformation matrix J = J(C,D) such that φ̃ = JT φ is then used for the

transformation of the global matrix Ah to its hierarchical form Ãh = JT AhJ, and
(by a proper permutation of rows and columns) the latter admits the 3 × 3-block
representation:

Ãh =

⎡

⎢
⎢
⎣

Ã11 Ã12 Ã13

ÃT
12 Ã22 Ã23

ÃT
13 ÃT

23 Ã33

⎤

⎥
⎥
⎦

}

∈ V1

} ∈ V2

(58)

according to the interior, half-difference, and half-sum basis functions, which are
associated with (54). The next two variants follow [9].

Definition 2 (Differences and Aggregates (DA)). The splitting based on differ-
ences and aggregates corresponds to D = 0 and C = 1

2 diag(1,1,1).

Definition 3 (First Reduce (FR) Splitting). The splitting based on differences and
aggregates incorporating a “first reduce” (static condensation) step is characterized
by setting D = 0 and C =−A−1

11 Ā13 in (55).

Theorem 6 ([22]). Consider the problem (3) discretized by nonconforming linear
finite elements, where the multilevel meshes satisfy the conditions from Theorem 4.
Then, the estimate

γ2
FR ≤ γ2

DA ≤ 3
4

(59)

of the CBS constants corresponding to FR and DA splittings holds uniformly with
respect to the coefficient jumps, the mesh or/and coefficient anisotropy, and the
refinement level k.
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The preconditioning of the pivot blocks for FR and DA splittings is studied in
[10]. The structure of the related systems (after a static condensation for the case of
DA) coincides with those for conforming linear elements. Although the derivation
of the related condition number estimates is rather different, it is based again on
a macroelement analysis in terms of (α,β ) belonging to the convex curvilinear
triangle D; see (43). In both FR and DA cases, the construction of the additive and
multiplicative preconditioners and the related robust upper bounds are the same as
in the case of conforming elements; see Theorem 6.

Let us summarize the main results in this section. The results of Theorems 4–5
for the case of conforming elements, Theorem 6 and the analogue of Theorem 5
for nonconforming elements, in combination with the optimal solvers for systems
with the additive and multiplicative preconditioners for the corresponding pivot
blocks (see for more details [3]), ensure the optimal complexity of the related W-
cycle AMLI algorithms with polynomial degree β ∈ {2,3}. All presented results
are robust with respect to both mesh and/or coefficient anisotropy.

4 Quadratic Elements

In [23] and [1], it has been demonstrated that the standard (P2 to P1) hierarchical two-
level splitting of piecewise quadratic basis functions does not result in robust two-
and multilevel methods for highly anisotropic elliptic problems in general. A more
recent paper, [19], proves that for orthotropic problems it is possible to construct a
robust two-level preconditioner for FEM discretizations using conforming quadratic
elements via the HB approach. In the general setting of an arbitrary elliptic operator,
however, the standard techniques, based on HB two-level splittings (cf. [13]) and on
the direct assembly of local Schur complements (cf. [14]), do not result in splittings
in which the angle between the coarse space and its (hierarchical) complement is
uniformly bounded with respect to the mesh and/or coefficient anisotropy.

One way to overcome this problem has been suggested in [20]. The idea is
to construct a multilevel approximate block factorization based on ASCA and to
combine the standard (nonlinear) AMLI with a block smoother. The recursive
application of ASCA on a sequence of augmented coarse grids will be described
in some more detail in the remainder of this section.

4.1 Notation

Let HA = (VA,EA) denote the (undirected) graph of a matrix A ∈ IRN×N . The set of
vertices (nodes) of A is denoted by VA := {vi : 1 ≤ i ≤ N} and the set of edges by
EA := {ei j : 1 ≤ i < j ≤ N and ai j �= 0}.
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Definition 4. Any subgraph F of HA is referred to as a structure. The set of
structures whose relevant (local) structure matrices AF satisfy the assembling
property

∑
F∈F

RT
FAF RF = A. (60)

is denoted by F .

Definition 5. Any union G of structures F ∈ F is referred to as a macrostructure.
The set of macrostructures is denoted by G. It is assumed that any set of correspond-
ing macrostructure matrices AG = {AG : G ∈ G} has the assembling property

∑
G∈G

RT
GAGRG = A. (61)

Definition 6. If Fi∩Fj = /0 (or Gi∩G j = /0) for all i �= j, we refer to the set F (or G)
as a nonoverlapping covering; otherwise, we call F (or G) an overlapping covering.

4.2 Additive Schur Complement Approximation

Let S = S(k) be the exact Schur complement of A= A(k) that we wish to approximate
on a specific (augmented) coarse grid, and let us denote the corresponding graph
by H. To give an example, in case of a uniform mesh as illustrated in Fig. 3c, we
construct overlapping coverings of H by structures F and macrostructures G where
each macrostructure G ∈ G is composed of nine 13-node structures F ∈ F which
overlap with half of their width or height as shown on Fig. 2. Then the following
algorithm for approximating Q can be applied (see [18]):

1. For all G ∈ G assemble the macrostructure matrix AG.
2. To each AG perform a permutation of the rows and columns according to the

global two-level splitting of the DOF and compute the Schur complement:

SG = AG:22 −AG:21A−1
G:11AG:12.

3. Assemble a sparse approximation Q to the exact global Schur complement S =
A22 −A21(A11)

−1A12 from the local macrostructure Schur complements:

Q := SG = ∑
G∈G

RT
G:2SGRG:2.
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Fig. 2 One macrostructure Gi used in the computation of Q; Gi is composed of nine overlapping
structures, Fi1 ,Fi2 , . . . ,Fi9

a b c

Fig. 3 (a) Uniform mesh consisting of conforming quadratic elements, (b) standard coarse grid,
and (c) augmented coarse grid

4.3 Recursive Approximate Block Factorization
on Augmented Grids

Consider a uniform fine mesh as depicted in Fig. 3a, the standard coarse grid as
depicted in Fig. 3b, and the augmented coarse grid as illustrated in Fig. 3c.



238 J. Kraus et al.

Then, since the original problem is formulated on a standard (and not on an
augmented) grid, as a first step, one has to define a preconditioner B̄(0) at the level
of the original finite element mesh with mesh size h, i.e.,

B̄(0) ≈ A(0) := Ah (62)

where B̄(0) := B̄h is defined by

B̄h :=

[
I

Ah:21A−1
h:11 I

][
Ah:11

Qh

][
I A−1

h:11Ah:12

I

]
. (63)

Note that (63) involves the Schur complement approximation Q(0) := Qh, which
refers to the first augmented (coarse) grid. This is the starting point for constructing
B̄(k) as defined in (24), which is used to approximate A(k) for all subsequent levels
k = 1,2, . . . , �−1. The sequence of (approximate) two-level factorizations defines a
multilevel block factorization algorithm if A(k+1) serves as an approximation to the
Schur complement of A(k), that is, A(k+1) is used in the construction of B̄(k). Hence
it is quite natural to set A(k+1) = Q(k) where Q(k) is obtained from ASCA for all
k ≥ 0. Here it is assumed that the same construction can be applied recursively using
the Schur complement approximation Q(k) to define the next coarse(r) problem;
see (26). At levels k ≥ 1 the use of the augmented coarse grids is advocated since
it results in a very efficient combined AMLI algorithm with block (line) smoothing
at every coarse level. The numerical experiments presented in Sect. 5 demonstrate
that based on this approach it is possible to construct robust multilevel methods for
anisotropic elliptic problems even in the more difficult situations of using quadratic
elements and/or when the direction of dominating anisotropy is not aligned with the
grid, and/or the diffusion tensor has large jumps which cannot be resolved on the
coarsest mesh.

4.4 Remarks on the Analysis

The following theorem can be proved for the error propagation of one block Jacobi
iteration; see [20].

Theorem 7. Consider the elliptic model problem (1) with a constant diffusion
coefficient a(x) = (ai j)

2
i, j=1 scaled such that a11 = 1, and discretized on a uniform

mesh with mesh size h, and Dirichlet boundary conditions. Further, let Q = D+
L+LT denote the related ASCA where D and L are the block-diagonal and lower
block-triangular parts of Q. Then the following bound holds for the iteration matrix
of the block Jacobi method:

‖I−D−1Q‖2
Q ≤ 1− 1

1+ c0
=: 1− c1, (64)

where c0 := (a22 + |a12|)/(ch2) and hence c1 is in the interval (0,1).
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Fig. 4 (a) Grid-aligned anisotropy, ε = 2−t , t ∈ {0,1, . . .,20}: estimated convergence factor 1−α
plotted against t . (b) Rotated diffusion problem, ε ∈ {10−1,10−2,10−3}, θ ∈ {0◦,1◦, . . .,90◦}:
estimated convergence factor 1−α plotted against θ

The norm of the error propagation matrix of the two-level method corresponding
to the preconditioner B̄ as defined in (24) but with B11 = A11 satisfies

‖I− B̄−1A‖2
A ≤ 1−αλmin(Q

−1S)≤ 1−α, (65)

where α can be estimated locally.
In Fig. 4 it is plotted a local estimate of the error reduction factor of the two-level

method when considering grid-aligned and nongrid-aligned anisotropy. As it can be
seen, in the first case, there is uniform convergence, i.e., the method is robust with
respect to the parameter ε in (6) that has been varied in the range from 20 to 2−20.
However, the results are worse for the rotated diffusion problem associated with (7)
where the convergence estimate in general deteriorates when ε tends to 0. Still, for
a (moderate) fixed value of ε , the estimate is uniform with respect to the angle of
the direction of strong anisotropy.

5 Numerical Tests

In this section 2D numerical results are presented for the studied FEM discretiza-
tions based on conforming linear (P1) and quadratic (P2) finite elements. On the level
of the coarsest discretization, the considered domain Ω = [0,1]× [0,1] is split into
2×8×8 = 2×23 ×23 linear elements or, alternatively, into 2×4×4 = 2×22×22

quadratic elements. Dirichlet boundary conditions are imposed upon the entire
boundary Γ = ∂Ω . The finest mesh in all experiments is obtained via � = 2, . . . ,7
steps of uniform mesh refinement resulting in 2× 2�+3 × 2�+3 linear elements or
2× 2�+2× 2�+2 quadratic elements.

The numerical tests demonstrate the performance of the nonlinear AMLI W-
cycle algorithm with 2 inner GCG iterations and an optional pre-smoothing step
at every coarse level. The underlying multilevel block factorization is constructed
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Fig. 5 Coarse mesh and coefficient, Example 1

based on the ASCA described in Sect. 4; see also [18,20]. The following variants of
complementary subspace correction are tested:

(a) One-point Gauss–Seidel (PGS) iteration
(b) One-line Gauss–Seidel (LGS) iteration
(c) One-tree Gauss–Seidel (TGS) iteration

The blocks in variant (b) correspond to grid lines parallel to the x-axis. The blocks
in variant (c) are constructed algebraically, by extracting strong paths from a
previously computed nearly maximum spanning tree. The tree is constructed via
a modified version of Kruskal’s algorithm in which the global sorting of the edges
according to their weights is replaced by a partial (local) sorting (cf. [16]). For a
given edge ei j = (i, j), its weight wi j is defined by wi j := |Ai j|/

√
AiiA j j (cf. [11]).

If wi j > ρ for some threshold ρ , e.g., ρ = 0.25, then ei j is called a strong edge.

Example 1. In the first set of experiments we consider a permeability field with
inclusions and channels on a background of conductivity one, as shown in Fig. 5.
The diffusion tensor a(x) equals the identity matrix outside the channels, whereas
inside the channels it corresponds to highly anisotropic material and is determined
by {a11,a12,a22}= {105,0,1}.

The results presented in Table 1 show that no additional smoothing (complemen-
tary subspace correction) is required when the direction of dominating anisotropy is
aligned with the grid. The method performs absolutely robustly and very similar for
both P1 and P2 elements, although the channels are NOT resolved on the coarsest
mesh!
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Table 1 Number of iterations for residual reduction by a factor 108.
Nonlinear AMLI W-cycle without additional smoothing, Example 1

Type of element �= 3 �= 4 �= 5 �= 6 �= 7

P1 8 8 8 8 8
P2 8 8 8 8 8

Fig. 6 Coarse mesh and direction of dominating anisotropy, Example 2

Example 2. In the second set of experiments the domain is split into three nonover-
lapping parts Ω = Ω1

⋃
Ω2
⋃

Ω3 where Ω1 = [0,5/8]× [0,1], Ω2 = [5/8,11/16]×
[0,1], and Ω3 = [11/16,1]× [0,1] as shown on Fig. 6. We consider the rotated
diffusion problem (7) where the angle θe = 1◦ over the left and right subdomains,
while in the middle one θe =−85◦.

The results in Table 2 show that while the method performs robustly without
additional smoothing in case of P1 elements, the convergence deteriorates without a
complementary subspace correction step in case of P2 elements; however, it can be
improved significantly by introducing a proper block Gauss–Seidel pre-smoothing
step.

Example 3. The third set of experiments presents the performance of the nonlinear
AMLI algorithm for the case of rotated diffusion problem with θ varied smoothly
from the left to the right border of the domain Ω = [0,1]× [0,1] according to the
function θ =−π(1−|2x− 1|)/6 for x ∈ (0,1) (Fig. 7).

The results are very similar to those for the second test problem. Note that all
numerical experiments were designed in such a way that the coarsest mesh does not
resolve the arising jumps of the coefficient (Table 3).
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Table 2 Number of iterations for residual reduction by a factor 108. Nonlinear AMLI W-cycle,
Example 2

ε = 10−6 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 12 11 10 11
3 11 10 10 10 34 17 11 11
4 11 10 10 10 73 25 14 14
5 11 10 10 9 ∗ 50 18 15
6 11 10 10 9 ∗ 105 51 22
7 12 10 10 9 ∗ 195 91 31

ε = 10−4 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 11 11 10 10
3 11 10 10 10 12 11 10 10
4 11 10 10 10 16 12 10 10
5 11 10 9 9 18 13 12 10
6 11 10 10 9 19 15 14 11
7 11 10 10 9 22 17 16 12

ε = 10−2 P1 elements P2 elements
�����

sm.
No PGS LGS TGS No PGS LGS TGS

2 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10
4 10 10 10 10 10 10 10 10
5 10 10 9 9 10 10 10 10
6 10 10 9 9 10 10 9 9
7 10 9 9 9 10 10 9 9

6 Concluding Remarks

The theory of robust AMLI methods based on HB techniques is well established for
conforming and nonconforming linear finite element discretizations of anisotropic
second-order elliptic problems under the fundamental assumption that variations
of the coefficient tensor can be resolved on the coarsest mesh. However, in many
practical applications, this is a too strong restriction. Hence, alternative methods,
e.g., based on energy-minimizing coarse spaces or robust Schur complement
approximations, have recently been moving into the center of interest.

Here we describe a class of nonlinear AMLI methods that are based on ASCA
and, though not fully analyzed yet, have been shown to be very efficient for
problems with highly heterogeneous and anisotropic media. In case of conforming
FEM and P1 elements, this method performs robustly (even without additional
smoothing). Using P2 elements the numerical results demonstrate that in certain
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Fig. 7 Coarse mesh and direction of dominating anisotropy, Example 3

Table 3 Number of iterations for residual reduction by a factor 108. Nonlinear AMLI W-cycle,
Example 3

ε = 10−5 P1 elements P2 elements
�����

sm.
No PGS TGS No PGS TGS

2 11 11 11 13 12 12
3 11 11 11 13 12 12
4 11 11 11 18 13 13
5 11 11 11 28 16 14
6 12 11 11 46 23 19
7 12 11 11 59 30 25

ε = 10−4 P1 elements P2 elements
�����

sm.
No PGS TGS No PGS TGS

2 11 11 11 13 12 12
3 11 11 11 13 12 12
4 11 11 11 16 13 13
5 11 11 11 22 15 14
6 11 11 11 25 18 16
7 12 11 11 28 20 18

situations (when the convergence deteriorates) an additional smoothing step can
improve the performance of the AMLI algorithm considerably. The construction
of block smoothers based on graph concepts such as spanning trees seems to be
very promising in this context (cf. Examples 2 and 3). The combination of an
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augmented coarse grid with a proper complementary subspace correction step is the
key to obtain extremely efficient (oftentimes optimal or nearly optimal) solvers for
strongly anisotropic problems even in case of varying and nongrid-aligned direction
of dominating anisotropy and also for quadratic FEM.

Current (and future) investigations are devoted to extending the theory of this
new class of methods and to improving the complementary subspace correction
step(s) by refining the ideas of using (nearly maximum) spanning trees and strong
paths in their construction. The latter is crucial also for the successful generalization
of the new methodology to three-dimensional problems and/or discretizations on
unstructured grids, where the suggested ASCA technique can be applied directly.
Other topics of interest include the application to systems of partial differential
equations and mixed methods.
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