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Abstract In this paper, we present and discuss the results of our numerical studies
of preconditioned MinRes methods for solving the optimality systems arising from
the multiharmonic finite element approximations to time-periodic eddy current
optimal control problems in different settings including different observation and
control regions, different tracking terms, as well as box constraints for the Fourier
coefficients of the state and the control. These numerical studies confirm the
theoretical results published by the first author in a recent paper.
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1 Introduction

This work is devoted to the study of efficient solution procedures for the following
time-periodic eddy current optimal control problem: Minimize the functional
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J(y,u) =
α
2

ˆ
Ω1×(0,T)

|y− yd|2dxdt+
β
2

ˆ
Ω1×(0,T)

|curly− yc|2dxdt

+
λ
2

ˆ
Ω2×(0,T)

|u|2dxdt,

(1)

subject to the state equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ
∂y
∂ t

+ curl(ν curly) = u, in Ω × (0,T),

div(σy) = 0, in Ω × (0,T),

y× n = 0, on ∂Ω × (0,T),

y(0) = y(T ), in Ω ,

(2)

where Ω is a bounded, simply connected Lipschitz domain with the boundary ∂Ω .
The domains Ω1 and Ω2 are nonempty Lipschitz subdomains of Ω , i.e., Ω1,Ω2 ⊂
Ω ⊂ R

3. The reluctivity ν ∈ L∞(Ω) and the conductivity σ ∈ L∞(Ω) are supposed
to be uniformly positive, i.e.,

0 < νmin ≤ ν(x)≤ νmax, and 0 < σmin ≤ σ(x)≤ σmax, x ∈Ω .

We mention that the electric conductivity σ vanishes in regions consisting of
nonconducting materials. In order to fulfill the assumption made above on the
uniform positivity of σ , one can replace σ(x) by max{ε,σ(x)} with some suitably
chosen positive ε; see, e.g., [10, 12] for more details. We here assume that the
reluctivity ν is independent of |curly|, i.e., we only consider linear eddy current
problems. The regularization parameter λ also representing a weight for the cost
of the control is assumed to be a suitably chosen positive real number. The weight
parameters α and β are nonnegative. In fact, we only study the cases (α = 1,β = 0)
and (α = 0,β = 1). The functions yd and yc from L2((0,T ),L2(Ω)) are the given
desired state and the desired curl of the state, respectively.

The problem setting (1)–(2) has been analyzed in [11, 12], wherein, due to the
time-periodic structure, a time discretization in terms of a truncated Fourier series,
also called multiharmonic approach, is used. In [12], we consider the special case
of a fully distributed optimal control problem for tracking some yd in the complete
computational domain, i.e., Ω1 = Ω2 = Ω and β = 0 in (1), whereas [11] is devoted
to the various other settings including different observation and control regions,
different tracking terms, as well as box constraints for the Fourier coefficients of the
state and the control. Similar optimal control problems for time-periodic parabolic
equations and their numerical treatment by means of the multiharmonic finite ele-
ment method (FEM) have recently been considered in [9] and [8]. Other approaches
to time-periodic parabolic optimal control problems have been discussed in [1].
There are many publications on optimal control problems with PDE constraints
given by initial-boundary value problems for parabolic equations; see, e.g., [14]
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for a comprehensive presentation. There are less publications on optimal control
problems where initial-boundary value problems for eddy current equations are
considered as PDE constraints; see, e.g., [15,16], where one can also find interesting
applications. The multiharmonic approach allows us to switch from the time domain
to the frequency domain and, therefore, to replace a time-dependent problem by
a system of time-independent problems for the Fourier coefficients. Since we are
here interested in studying robust solvers, this special time discretization technique
justifies the following assumption: Let us assume that the desired states yd and yc

are multiharmonic, i.e., yd and yc have the form of a truncated Fourier series:

yd =
N

∑
k=0

yc
d,k cos(kωt)+ ys

d,k sin(kωt),

yc =
N

∑
k=0

yc
c,k cos(kωt)+ ys

c,k sin(kωt).

(3)

Consequently, the state y and the control u are multiharmonic as well and, therefore,
have a representation in terms of a truncated Fourier series with the same number of
modes N, i.e.,

y =
N

∑
k=0

yc
k cos(kωt)+ ys

k sin(kωt),

u =
N

∑
k=0

uc
k cos(kωt)+ us

k sin(kωt).

(4)

Using the multiharmonic representation of yd, yc, y, and u, the minimization
problem (1)–(2) can be stated in the frequency domain: Minimize the functional

JN =
1
2

N

∑
k=0

[

∑
j∈{c,s}

[
α
ˆ

Ω1

|yj
k− yj

d,k|
2dx+β

ˆ
Ω1

|curlyj
k− yj

c,k|
2dx

+λ ∑
j∈{c,s}

ˆ
Ω2

|uj
k|

2dx
]]
,

(5a)

subject to the state equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

kω σys
k + curl(ν curlyc

k) = uc
k, in Ω ,k = 1, . . . ,N,

−kω σyc
k + curl(ν curlys

k) = us
k, in Ω ,k = 1, . . . ,N,

curl(ν curlyc
0) = uc

0, in Ω ,

yc
k× n = ys

k× n = 0, on ∂Ω ,k = 1, . . . ,N,

y0
k× n = 0, on ∂Ω ,

(5b)
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completed by the divergence constraints

⎧
⎪⎪⎨

⎪⎪⎩

kω div(σyc
k) = 0, in Ω ,k = 1, . . . ,N,

kω div(σys
k) = 0, in Ω ,k = 1, . . . ,N,

div(σyc
0) = 0, in Ω .

(5c)

Additionally, we add control constraints associated to the Fourier coefficients of the
control u, i.e.,

uc
k ≤ uc

k ≤ uc
k, a.e. in Ω ,k = 0,1, . . . ,N,

us
k ≤ us

k ≤ us
k, a.e. in Ω ,k = 1, . . . ,N,

(5d)

and state constraints associated to the Fourier coefficients of the state y, i.e.,

yc
k
≤ yc

k ≤ yc
k, a.e. in Ω ,k = 0,1, . . . ,N,

ys
k
≤ ys

k ≤ ys
k, a.e. in Ω ,k = 1, . . . ,N.

(5e)

This minimization problem is typically solved by deriving the corresponding
optimality system, which fortunately decouples in terms of the mode k. The
decoupled systems are then discretized in space by means of the FEM. Since even
the simple box constraints (5d)–(5e) give rise to nonlinear optimality systems, we
apply a primal–dual active set strategy (semi-smooth Newton) approach for their
solution [5]. The resulting procedure is summarized in Algorithm 1.

Algorithm 1: Primal–dual active set strategy

Input: number of modes N, initial guesses x(k,0) ∈ R
n(k = 0, . . . ,N) .

Output: approximate solution x(k,l) ∈ R
n(k = 0, . . . ,N).

for k← 0 to N do
Determine the active sets Ec

k,0 and E s
k,0;

end
Set l := 0;
while not converged do

for k← 0 to N do

Compute b(k,l+1)
E , A(k,l+1)

E ;

Solve A(k,l+1)
E x(k,l+1) = b(k,l+1)

E ;
Determine the active sets Ec

k,l+1 and E s
k,l+1;

end
Set l := l + 1;

end

The specific structure of the Jacobi matrix A(k,l+1)
E depends on the actual

computational setting. In our applications, the matrixA(k,l+1)
E has either the formA1

(cf. (6a)) or the form A2, cf. (6b). It is clear that the efficient and parameter-robust
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solution of the (N + 1) linear systems of equations at each semi-smooth Newton
step is essential for the efficiency of the proposed method. For further details we
refer to [11].

2 Parameter-Robust and Efficient Solution Procedures

In order to discretize the problems in space, we use the edge (Nédélec) finite element
space ND0

0(Th), that is a conforming finite element subspace of H0(curl,Ω), and
the nodal (Lagrange) finite element space S1

0 (Th), that is a conforming finite element
subspace of H1

0 (Ω). Let {ϕi}i=1,Nh and {ψi}i=1,Mh denote the usual edge basis of
ND0

0(Th) and the usual nodal basis of S1
0 (Th), respectively. We are now in the

position to define the following FEM matrices:

(Kν)i j = (ν curlϕi,curlϕj)0,Ω ,

(Mσ ,kω)i j = kω(σϕi,ϕj)0,Ω ,

(M)i j = (ϕi,ϕj)0,Ω ,

(Dσ ,kω)i j = kω(σϕi,∇ψ j)0,Ω ,

where (·, ·)0,Ω denotes the inner product in L2(Ω). Throughout this paper we are
repeatedly faced with the following two types of system matrices:

A1 =

⎛

⎜
⎜
⎝

∗ 0 Kν −Mσ ,kω
0 ∗ Mσ ,kω Kν

Kν Mσ ,kω −λ−1∗ 0
−Mσ ,kω Kν 0 −λ−1∗

⎞

⎟
⎟
⎠ (6a)

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ 0 Kν −Mσ ,kω 0 0 Dσ ,kω
T 0

0 ∗ Mσ ,kω Kν 0 0 0 Dσ ,kω
T

Kν Mσ ,kω −λ−1∗ 0 Dσ ,kω
T 0 0 0

−Mσ ,kω Kν 0 −λ−1∗ 0 Dσ ,kω
T 0 0

0 0 Dσ ,kω 0 0 0 0 0
0 0 0 Dσ ,kω 0 0 0 0

Dσ ,kω 0 0 0 0 0 0 0
0 Dσ ,kω 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(6b)

Therein, the placeholder ∗ stands for a symmetric and positive semi-definite
matrix, that actually depends on the considered setting (cf. Table 1). We refer
to problems described by matrices of the types A1 and A2 as Formulation OC-
FEM 1 and Formulation OC-FEM 2, respectively. In fact, the system matrices A1
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and A2 are symmetric and indefinite and have a two- or threefold saddle point
structure, respectively. Since A1 and A2 are symmetric, the corresponding systems
can be solved by a preconditioned minimal residual (MinRes) method (cf. [13]).
Typically, the convergence rate of any iterative Krylov subspace method applied
to the unpreconditioned system deteriorates, with respect to the mesh size h, the
parameters k = 0,1, . . . ,N and ω involved in the spectral time discretization and the
problem parameters ν , σ , and λ (cf. also Tables 2 and 3). Therefore, preconditioning
is an important issue.

The proper choice of parameter-robust and efficient preconditioners has been
addressed by the authors in [11, 12]. While for equations with system matrices of
type (6a), we propose to use the preconditioner

C := diag

(√
λ F,
√

λF,
1√
λ

F,
1√
λ

F

)

, (7)

with the block F = Kν +Mσ ,kω + 1/
√

λM; for equations with system matrices of
type (6b), we advise to use the preconditioner

CM = diag

(√
λF,
√

λ F,
1√
λ

F,
1√
λ

F,
1√
λ

SJ,
1√
λ

SJ,
√

λ SJ,
√

λSJ

)

, (8)

where SJ =Dσ ,kω
T F−1Dσ ,kω . In a MinRes setting, the quality of the preconditioners

C and CM , used for the system matrices A1 and A2, respectively, is in general
determined by the condition number κ1 or κ2 of the preconditioned system, defined
as follows:

κ1 := ‖C−1A1‖C‖A−1
1 C‖C and κ2 := ‖C−1

M A2‖CM‖A−1
2 CM‖CM . (9)

In Table 1, we list the theoretical results that have been derived for different settings
of (5) in [11, 12]. We especially want to point out that the bounds for the condition
numbers are at least uniform in the space discretization parameter h as well as
the time discretization parameters ω and N. This has the important consequence
that the proposed preconditioned MinRes method converges within a few iterations,
independent of the discretization parameters that are directly related to the size of
the system matrices.

3 Numerical Validation

The main aim of this paper is to verify the theoretical proven convergence rates
by numerical experiments. We consider an academic test problem of the form (1)–
(2) or rather (5) in the unit cube Ω = (0,1)3 and report on various numerical test
for various computational settings and varying parameters. Since we are here only
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Table 1 Condition number estimates for different settings. Here (σ ) denotes robustness with
respect to σ ∈R

+

Test case α β Domains Equations Condition number estimate

I 1 0 Ω1 = Ω2 (5a)–(5b) κ1 ≤
√

3 	= c(h,ω,N,σ ,ν ,λ )
II 1 0 Ω1 = Ω2 (5a)–(5c) κ2 ≤

√
3(1+

√
5) 	= c(h,ω,N,σ ,ν ,λ )

III 0 1 Ω1 = Ω2 (5a)–(5c) κ2 ≤ c 	= c(h,ω,N, (σ ))

IV 1 0 Ω1 	= Ω2 (5a)–(5c) κ2 ≤ c 	= c(h,ω,N, (σ ),Ω1,Ω2)

V 1 0 Ω1 = Ω2 (5a)–(5d) κ2 ≤ c 	= c(h,ω,N, (σ ), index sets)
VI 1 0 Ω1 = Ω2 (5a)–(5b) + (5e) κ1 ≤ c 	= c(h,ω,N,σ ,ν ,λ , index sets)

interested in the study of the robustness of the solver, it is obviously sufficient to
consider the solution of the system corresponding to the block of the mode k = 1.
The numerical results presented in this section were attained using ParMax.1 We
demonstrate the robustness of the block-diagonal preconditioners with respect to the
involved parameters. Therefore, for the solution of the preconditioning equations
arising from the diagonal blocks F, we use the sparse direct solver UMFPACK,2

that is very efficient for several thousand unknowns in the case of three-dimensional
problems [2–4]. For numerical tests, where the diagonal blocks are replaced by an
auxiliary space preconditioner [6, 7], we refer the reader to [10] and [12].

3.1 Test Case I

Tables 2–5 provide the number of MinRes iterations needed for reducing the initial
residual by a factor of 10−8. These experiments demonstrate the independence of
the MinRes convergence rate of the parameters ω , σ , λ and the mesh size h for
all computed constellations. Indeed, the number of iterations is bounded by 28, that
is very close to the theoretical bound 30 given by the condition number estimate√

3. We mention that varying ω also covers the variation of kω in terms of k.
Furthermore, in Tables 2 and 3, we also report the number of unpreconditioned
MinRes iterations, that are necessary for reducing the initial residual by a factor of
10−8. The large number of iterations in the unpreconditioned case underlines the
importance of appropriate preconditioning.

3.2 Test Case II

Table 6 provides the number of MinRes iterations needed for reducing the initial
residual by a factor 10−8. These experiments demonstrate the independence of the

1http://www.numa.uni-linz.ac.at/P19255/software.shtml.
2http://www.cise.ufl.edu/research/sparse/umfpack/.

http://www.numa.uni-linz.ac.at/P19255/software.shtml
http://www.cise.ufl.edu/research/sparse/umfpack/
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Table 2 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for DOF = 2,416,
ν = σ = 1, and different values of λ and ω . [·] denotes the number of MinRes iterations without
preconditioner

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 7 7 7 7 7 7 7 7 7 6 4
[587] [587] [586] [587] [587] [587] [587] [591] [485] [263] [116]

10−6 21 21 21 21 21 21 20 12 6 4 4
[373] [373] [373] [373] [373] [373] [373] [263] [116] [114] [114]

10−2 20 20 20 20 20 20 20 12 6 4 4
[1,134] [1,134] [1,134] [1,136] [1,135] [1,134] [227] [114] [114] [114] [114]

1 10 10 10 10 10 14 20 12 6 4 4
[2,349] [2,351] [2,349] [2,350] [2,350] [2,274] [222] [114] [114] [114] [114]

102 6 6 6 6 8 10 20 12 6 4 4
[2,688] [2,681] [2,696] [2,667] [3,291] [2,494] [224] [114] [114] [114] [114]

106 4 4 4 6 6 10 20 12 6 4 4
[1,152] [1,159] [3,434] [4,697] [4,867] [2,493] [222] [114] [114] [114] [114]

1010 2 4 4 4 4 10 20 12 6 4 4
[1,157] [1,163] [4,937] [5,881] [4,791] [2,501] [224] [114] [114] [114] [114]

Table 3 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for DOF = 16,736,
ν = σ = 1, and different values of λ and ω . [·] denotes the number of MinRes iterations without
preconditioner. [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9 9 9 9 9 9 9 10 6 4 4
[708] [708] [708] [708] [708] [708] [708] [711] [578] [308] [134]

10−6 21 21 21 21 21 21 20 18 6 4 4
[825] [824] [825] [825] [825] [825] [824] [307] [134] [132] [132]

10−2 18 18 18 18 18 20 22 20 6 4 4
[6,698] [6,669] [6,696] [6,698] [6,690] [6,676] [1,095] [132] [132] [132] [132]

1 10 10 10 10 10 14 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

102 6 6 6 6 8 10 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

106 4 4 4 6 6 10 22 20 6 4 4
[7,365] [7,547] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

1010 2 4 4 4 4 10 22 20 6 4 4
[7,381] [1,545] [-] [-] [-] [-] [1,094] [132] [132] [132] [132]

MinRes convergence rate of the parameters ω , σ , λ and the mesh size h since the
number of iterations is bounded by 88 for all computed constellations. The condition
number estimate from Table 1 yields 106 as a bound for the maximal number of
iterations.
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Table 4 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
DOF = 124,096, ν = σ = 1, and different values of λ and ω

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 13 13 13 13 13 13 13 13 8 4 4
10−8 21 21 21 21 21 21 21 17 8 4 4
10−6 21 21 21 21 21 21 21 20 8 4 4
10−4 20 20 20 20 20 20 28 22 8 4 4
10−2 16 16 16 16 16 18 22 22 8 4 4
1 10 10 10 10 10 12 20 22 8 4 4
102 6 6 6 6 8 10 20 22 8 4 4
104 4 4 4 6 6 10 20 22 8 4 4
106 4 4 4 4 6 10 20 22 8 4 4
108 2 4 4 4 6 10 20 22 8 4 4
1010 3 4 4 4 4 10 20 22 8 4 4

Table 5 Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
DOF = 124,096, ω = σ = 1, and different values of λ and ν

λ \ ν 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 2 2 3 3 5 13 21 16 6 4 3
10−8 2 2 3 4 7 21 20 10 4 4 3
10−6 2 3 3 5 13 21 16 6 4 4 4
10−4 2 3 4 7 21 20 10 6 4 4 4
10−2 3 4 6 13 21 18 8 4 4 6 6
1 4 4 8 17 28 12 6 4 6 6 9
102 4 4 8 20 22 10 6 4 6 6 8
104 4 4 8 22 20 10 6 4 4 4 8
106 4 4 8 22 20 10 4 4 4 4 8
108 4 4 8 22 20 10 4 4 4 4 8
1010 4 4 8 22 20 10 4 2 4 4 8

Table 6 Formulation OC-FEM 2 for test case II. Number of MinRes iterations for ν = σ = 1,
different values of λ and ω , and DOF = 19,652 / 143,748

λ \ ω 10−10 10−6 10−2 1 102 106 1010

10−10 21 / 27 19 / 25 17 / 25 17 / 25 17 / 25 12 / 16 10 / 10
10−6 33 / 32 33 / 32 33 / 32 33 / 32 29 / 33 10 / 14 8 / 8
10−2 22 / 20 22 / 20 26 / 23 31 / 29 34 / 35 14 / 16 10 / 10
1 12 / 12 14 / 14 14 / 14 14 / 14 24 / 24 10 / 12 8 / 8
102 11 / 11 13 / 13 13 / 13 18 / 18 34 / 34 14 / 16 10 / 10
106 13 / 13 13 / 15 21 / 21 28 / 30 56 / 58 22 / 24 14 / 14
1010 31 / 46 34 / 65 33 / 33 42 / 42 80 / 88 30 / 38 16 / 16

3.3 Test Case III

Numerical results for the observation of the magnetic flux density are reported
in Tables 7–9. The robustness with respect to the space and time discretization
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Table 7 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for ν = σ = λ = 1 and for different values of ω and various DOF

ω
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 13 13 14 14 14 16 23 12 9 8 7
2,916 11 12 13 13 13 15 29 16 10 8 8
19,652 11 11 12 12 12 14 30 21 11 8 8
143,748 11 11 12 12 12 14 28 27 13 8 8

Table 8 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for σ = ω = 1, different values of λ and ν , and DOF =
19,652/143,748. [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−6 10−2 1 102 106 1010

10−10 174 / 325 175 / 326 175 / 327 213 / 411 290 / 505 14 / 14 8 / 8
10−6 146 / 289 146 / 289 177 / 359 215 / 392 58 / 53 8 / 10 8 / 8
10−2 272 / 543 272 / 543 306 / 523 55 / 52 13 / 13 9 / 8 13 / 15
1 290 / 543 290 / 541 240 / 325 14 / 14 8 / 8 8 / 8 12 / 14
102 475 / 948 479 / 941 83 / 79 18 / 18 12 / 12 14 / 14 26 / 36
106 193 / 688 195 / 680 55 / 55 28 / 30 18 / 18 24 / 26 360 / [-]
1010 36 / 56 39 / 55 84 / 88 42 / 42 26 / 26 50 / 54 [-] / [-]

Table 9 Observation of the magnetic flux density B in Formulation OC-FEM 2 for test case III .
Number of MinRes iterations for ν = σ = ω = 1 and for different values of λ and various DOF

λ
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 36 36 37 39 40 16 19 26 30 36 44
2,916 115 113 121 121 55 15 18 24 28 38 44
19,652 213 214 215 195 55 14 18 24 28 36 42
143,748 411 402 392 265 52 14 18 24 30 36 42

parameters h and ω is demonstrated in Table 7. Table 8 describes the non-robust
behavior with respect to the parameters λ and ν . In Table 9 we observe that for large
mesh sizes, good iteration numbers are observed even for small λ . Nevertheless, for
fixed λ , the iteration numbers are growing with respect to the involved degrees of
freedom.

The next experiment demonstrates that robustness with respect to the time
discretization parameter ω cannot be achieved by using the preconditioner C in
Formulation OC-FEM 1. In Table 10 the number of MinRes iteration needed for
reducing the initial residual by a factor of 10−8 is displayed. In Table 11, the same
experiment as in Table 8 is performed, but using Formulation OC-FEM 1 instead of
Formulation OC-FEM 2. Indeed, comparing Table 7 with Table 10 and Table 8 with
Table 11 clearly shows that it is essential to work with Formulation OC-FEM 2.
Besides the robustness with respect to the frequency ω , that is related to the time
discretization parameters, we additionally observe better iteration numbers with
respect to the regularization parameter λ in the interesting region 0 < λ < 1.
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Table 10 Observation of the magnetic flux density B in Formulation OC-FEM 1 for test case III .
Number of MinRes iterations for ν = σ = λ = 1 and for different values of ω and various DOF .
[-] indicates that MinRes did not converge within 10,000 iterations

ω
DOF 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

392 4,133 [-] 46 20 16 15 21 9 5 4 3
2,416 [-] [-] 64 29 15 13 27 12 6 4 4
16,736 [-] [-] 102 28 15 13 26 18 7 4 4
124,096 [-] [-] 28 13 12 26 24 9 5 4 4

Table 11 Observation of the magnetic flux density B in Formulation OC-FEM 1 for test case III .
Number of MinRes iterations for DOF = 16,736, σ = ω = 1, and different values of λ and ν . [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 739 901 1,073 1,140 1,462 1,153 1,548 182 32 19 [-]
10−6 357 361 357 385 478 607 96 17 10 9 18
10−2 234 234 234 253 279 50 9 6 7 6 9
1 260 260 260 259 214 13 7 5 6 6 8
102 462 462 469 440 76 11 6 4 6 6 7
106 79 79 79 73 21 10 4 4 4 4 6
1010 10 10 9 19 22 10 4 3 4 4 6

Table 12 Different control and observation domains in Formulation OC-FEM 2 / OC-
FEM 1 for test case IV. Number of MinRes iterations for ν = σ = λ = 1 and for different
values of ω and various DOF

ω
DOF 10−10 10−6 10−2 1 102 106 1010

2,916 19 / 34 20 / 67 23 / 52 30 / 30 30 / 22 12 / 6 8 / 4
19,652 19 / 32 20 / 82 24 / 51 30 / 30 32 / 22 12 / 6 8 / 4
143,748 19 / 29 19 / 83 23 / 48 29 / 30 32 / 20 14 / 8 8 / 4

3.4 Test Case VI

In this subsection we consider a numerical example with different observation and
control domains Ω1 and Ω2, i.e., Ω1 = Ω = (0,1)3 and Ω2 = (0.25,0.75)3. Let
us mention that we have to ensure that Ω1 and Ω2 are resolved by the mesh. The
corresponding numerical results are documented in Tables 12–14. Robustness with
respect to the space and time discretization parameters h and ω is demonstrated in
Table 12. Table 13 describes the non-robust behavior with respect to the parameters
λ and ν . Table 12 in combination with Table 14 indicates that, for the Formulation
OC-FEM 1 in combination with the preconditioner C, robustness with respect to the
frequency ω , that is related to the time discretization parameters, cannot be obtained.
Here, we want to mention that the good iteration numbers observed in Table 12 are
caused by the special choice of λ = 1.
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Table 13 Different control and observation domains in Formulation OC-FEM 2 / OC-FEM 1 for
test case IV. Number of MinRes iterations for DOF = 19,652 / 16,736, σ = ω = 1, and different
values of λ and ν . [-] indicates that MinRes did not converge within 10,000 iterations

λ \ ν 10−10 10−6 10−2 1 102 106 1010

10−10 1,038 / 34 661 / 36 [-] / 2,701 [-] / [-] [-] / 983 49 / 60 9 / [-]
10−6 342 / 31 363 / 32 6,843 / 2,630 7,142 / 828 619 / 81 26 / 41 8 / 73
10−2 188 / 29 209 / 37 607 / 169 204 / 61 114 / 43 79 / 37 106 / 47
1 40 / 19 41 / 22 52 / 39 30 / 30 26 / 25 26 / 22 26 / 24
102 41 / 10 42 / 11 70 / 22 40 / 13 26 / 12 22 / 11 28 / 10
106 24 / 6 30 / 6 76 / 22 38 / 10 24 / 6 26 / 6 414 / 6
1010 22 / 4 34 / 6 148 / 22 46 / 10 44 / 4 68 / 4 [-] / 6

Table 14 Different control and observation domains in Formulation OC-FEM 1 for test case IV.
Number of MinRes iterations for DOF = 16,736, σ = ν = 1, and different values of λ and ω . [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9,338 9,347 9,346 9,340 [-] [-] 2,630 66 11 6 4
10−6 571 571 571 1,075 983 828 169 20 6 4 4
10−2 49 49 122 103 81 61 22 20 6 4 4
1 32 33 82 67 51 30 22 20 6 4 4
102 23 112 60 46 43 13 22 20 6 4 4
106 [-] 46 41 39 12 10 22 20 6 4 4
1010 [-] 58 37 12 6 10 22 20 6 4 4

3.5 Test Case V

Numerical results for the case of state constraints imposed on the Fourier coeffi-
cients are presented in Tables 15, 16. Here we choose 15,512 random points as
the active sets Ec and E s and solve the resulting Jacobi system. The dependence of
the MinRes convergence rate on the Moreau–Yosida regularization parameter ε is
demonstrated in Table 15. Table 16 clearly demonstrates the robustness with respect
to the parameters λ and ω . We refer the reader to [11] for a detailed description
of the treatment of state constraints via the Moreau–Yosida regularization. Further-
more, we mention that the presence of constrains imposed on the control Fourier
coefficients finally results in (linearized) systems with system matrices having the
same structure as the system matrix arising from the case of different observation
and control domains.

4 Summary and Conclusion

We demonstrated in many numerical experiments that the preconditioners derived
and analyzed in [12] and [11] lead to parameter-robust and efficient solvers in many
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Table 15 State constraints in Formulation OC-FEM 1 for test case VI. Number of MinRes
iterations for ν = σ = ω = 1, different values of λ and ε , and DOF = 16,736 / 124,096. [-]
indicates that MinRes did not converge within 10,000 iterations

λ \ ε 10−10 10−6 10−2 1 102 106 1010

10−10 88 / 142 59 / 94 31 / 46 17 / 22 9 / 13 9 / 13 9 / 13
10−6 992 / 3,275 612 / 1,930 220 / 372 36 / 35 21 / 21 21 / 21 21 / 21
10−2 [-] / [-] [-] / [-] 351 / 383 29 / 29 20 / 18 20 / 18 20 / 18
1 [-] / [-] [-] / [-] 191 / 206 24 / 24 16 / 16 14 / 13 14 / 12
102 [-] / [-] [-] / [-] 120 / 124 13 / 13 12 / 12 10 / 10 10 / 10
106 [-] / [-] 5,882 / 6,619 12 / 11 10 / 10 10 / 10 10 / 10 10 / 10
1010 [-] / [-] 162 / 167 10 / 10 10 / 10 10 / 10 10 / 10 10 / 10

Table 16 State constraints in Formulation OC-FEM 1 for test case VI. Number of MinRes
iterations for DOF = 124,096, ν = σ = ε = 1, and different values of λ and ω

λ \ ω 10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 22 22 22 22 22 22 22 22 12 6 4
10−6 35 35 35 35 35 35 35 22 8 4 4
10−2 30 30 30 30 30 29 22 22 8 4 4
1 20 20 20 20 20 24 20 22 8 4 4
102 16 16 16 16 18 13 20 22 8 4 4
106 13 13 14 18 12 10 20 22 8 4 4
1010 13 13 16 12 6 10 20 22 8 4 4

practically important cases. Therefore, we reported on a broad range of numerical
experiments, that confirm the theoretical convergence rates. Consequently, the
multiharmonic finite element discretization technique in combination with efficient
and parameter-robust solvers leads to a very competitive method. Furthermore, we
want to mention that due to the decoupling nature of the frequency domain equations
with respect to the individual modes, a parallelization of the proposed method is
straightforward (cf. Algorithm 1).
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