8
Tree-Based Methods

In this chapter, we describe tree-based methods for regression and
classification. These involve stratifying or segmenting the predictor space
into a number of simple regions. In order to make a prediction for a given
observation, we typically use the mean or the mode of the training observa-
tions in the region to which it belongs. Since the set of splitting rules used
to segment the predictor space can be summarized in a tree, these types of
approaches are known as decision tree methods.

Tree-based methods are simple and useful for interpretation. However,
they typically are not competitive with the best supervised learning ap-
proaches, such as those seen in Chapters 6 and 7, in terms of prediction
accuracy. Hence in this chapter we also introduce bagging, random forests,
and boosting. Each of these approaches involves producing multiple trees
which are then combined to yield a single consensus prediction. We will
see that combining a large number of trees can often result in dramatic
improvements in prediction accuracy, at the expense of some loss in inter-
pretation.

decision tree

8.1 The Basics of Decision Trees

Decision trees can be applied to both regression and classification problems.
We first consider regression problems, and then move on to classification.

G. James et al., An Introduction to Statistical Learning: with Applications in R, 303
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_8,
© Springer Science+Business Media New York 2013

304 8. Tree-Based Methods

Years < 4.5
T

Hits <[117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form X; < ti) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to X; > ty.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

8.1.1 Regression Trees

In order to motivate regression trees, we begin with a simple example.

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary
is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series
of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.! The predicted salary

1Both Years and Hits are integers in these data; the tree() function in R labels
the splits at the midpoint between two adjacent values.

regression
tree

8.1 The Basics of Decision Trees 305

238

Rs

Hits

R 117.5

R.

Years

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of €>197 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as Ry ={X | Years<4.5}, Ry ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates
the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000xe”197 =$165,174, $1,000xe>999 =$402,834, and
$1,000x 5740 =$845,346 respectively.

In keeping with the tree analogy, the regions Ri, Ra, and R3 are known
as terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision
trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal
nodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches.

We might interpret the regression tree displayed in Figure 8.1 as follows:
Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who

terminal
node
leaf

internal node

branch

306 8. Tree-Based Methods

have been in the major leagues for five or more years, the number of hits
made in the previous year does affect salary, and players who made more
hits last year tend to have higher salaries. The regression tree shown in
Figure 8.1 is likely an over-simplification of the true relationship between
Hits, Years, and Salary. However, it has advantages over other types of
regression models (such as those seen in Chapters 3 and 6): it is easier to
interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly speaking,
there are two steps.

1. We divide the predictor space—that is, the set of possible values for
Xi,X9,...,X,—into J distinct and non-overlapping regions,
Ry,Ro,...,Ry.

2. For every observation that falls into the region R;, we make the same
prediction, which is simply the mean of the response values for the
training observations in R;.

For instance, suppose that in Step 1 we obtain two regions, R; and Rg,
and that the response mean of the training observations in the first region
is 10, while the response mean of the training observations in the second
region is 20. Then for a given observation X = z, if x € R; we will predict
a value of 10, and if x € Ry we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions
Ry,...,R;? In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional rectangles, or
bozes, for simplicity and for ease of interpretation of the resulting predic-
tive model. The goal is to find boxes Ry, ..., Ry that minimize the RSS,
given by

J
Z Z (i — ZQRJ-)27 (8.1)

j=1i€R;

where §p, is the mean response for the training observations within the
jth box. Unfortunately, it is computationally infeasible to consider every
possible partition of the feature space into J boxes. For this reason, we take
a top-down, greedy approach that is known as recursive binary splitting. The
approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.

recursive
binary
splitting

8.1 The Basics of Decision Trees 307

In order to perform recursive binary splitting, we first select the pre-
dictor X; and the cutpoint s such that splitting the predictor space into
the regions {X|X; < s} and {X|X, > s} leads to the greatest possible
reduction in RSS. (The notation {X|X; < s} means the region of predictor
space in which X; takes on a value less than s.) That is, we consider all
predictors Xy, ..., X, and all possible values of the cutpoint s for each of
the predictors, and then choose the predictor and cutpoint such that the
resulting tree has the lowest RSS. In greater detail, for any j and s, we
define the pair of half-planes

R1(j,8) = {X|X; < s} and Ra(j,s) = {X|X, > s}, (8.2)

and we seek the value of j and s that minimize the equation

Yoo e+ D, Wi e (8.3)

it x;€R1(J,8) it x;€R2(],s)

where {5, is the mean response for the training observations in Ry (j, s),
and Jr, is the mean response for the training observations in Ra(j,s).
Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within
each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.

Once the regions Ry, ..., Ry have been created, we predict the response
for a given test observation using the mean of the training observations in
the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning

The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree
with fewer splits (that is, fewer regions Ry, ..., R;) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very
good split—that is, a split that leads to a large reduction in RSS later on.

308 8. Tree-Based Methods

Ry ty

t Ry

Ry

Xy X1

Ry Ry Ry

Ry Rs

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

Therefore, a better strategy is to grow a very large tree Ty, and then
prune it back in order to obtain a subtree. How do we determine the best
way to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us
a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter o.

prune

subtree

cost
complexity
pruning

weakest link
pruning

8.1 The Basics of Decision Trees 309

Algorithm 8.1 Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of a.

3. Use K-fold cross-validation to choose . That is, divide the training
observations into K folds. For each k =1,..., K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of «.

Average the results for each value of «, and pick « to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of a.

For each value of « there corresponds a subtree T' C Ty such that

17|

Z Z yRm + a|T| (8'4)

m=14: x;ERm

is as small as possible. Here |T| indicates the number of terminal nodes
of the tree T, R,, is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and yz,, is the predicted response
associated with R,,—that is, the mean of the training observations in R,,
The tuning parameter o controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When o = 0, then the subtree T'
will simply equal Tj, because then (8.4) just measures the training error.
However, as « increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.

It turns out that as we increase « from zero in (8.4), branches get pruned
from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of « is easy. We can select a value of
« using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to a. This process is
summarized in Algorithm 8.1.

310 8. Tree-Based Methods

Years < 4.5
T

RBI 4 60.5 Hits <|/117.5

Putouts < 82 Years|< 3.5

Years|< 3.5 Fj
5.487 5.394 6.189

4.622 5.183

Walks < 43.5 Walks|< 52.5
Runs k475 [RBI 4 80.5
6.407 Ye 65
6.015 5571 6.549 cars<

7.289
6459 7.007

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied « in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as
a function of a. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,? while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its

2 Although CV error is computed as a function of «, it is convenient to display the
result as a function of |T'|, the number of leaves; this is based on the relationship between
a and |T| in the original tree grown to all the training data.

8.1 The Basics of Decision Trees

1.0

0.8

0.6

Mean Squared Error

0.0

Vi
i
\

== Training
= Cross-Validation
= Test

_

Tree Size

311

FIGURE 8.5. Regression tree analysis for the Hitters data. The training,

cross-validation, and test MSE are shown as a function of the number of termi-
nal nodes in the pruned tree. Standard error bands are displayed. The minimum

cross-validation error occurs at a tree size of three.

minimum for a three-node tree, while the test error also dips down at the

three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees

A classification tree is very similar to a regression tree, except that it is

classification

used to predict a qualitative response rather than a quantitative one. Re- tree

call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the

same terminal node. In contrast, for a classification tree, we predict that

each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.
The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive
binary splitting to grow a classification tree. However, in the classification

setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan
to assign an observation in a given region to the most commonly occurring ecrror rate
class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not

belong to the most common class:

classification

312 8. Tree-Based Methods
E=1- ml?x(ﬁmk). (8.5)

Here p,,i represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by

K
G = Dl = Pmr), (8.6)
k=1

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p,,;’s are close to
zero or one. For this reason the Gini index is referred to as a measure of
node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by

K

D == pmrlogpmk. (8.7)
k=1

Since 0 < P < 1, it follows that 0 < —py,x log Prri. One can show that
the entropy will take on a value near zero if the p,,;’s are all near
zero or near one. Therefore, like the Gini index, the entropy will take
on a small value if the mth node is pure. In fact, it turns out that the Gini
index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the
entropy are typically used to evaluate the quality of a particular split,
since these two approaches are more sensitive to node purity than is the
classification error rate. Any of these three approaches might be used when
pruning the tree, but the classification error rate is preferable if prediction
accuracy of the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),
and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and

Gini index

entropy

8.1 The Basics of Decision Trees 313

Thal:a

Slopd< 1.5 Oldpedk < 1.1

MaxHR|< 161.5 Chestfpain:bc Agel< 52 RestEQG < 1

ChestPain:a Yes
RestBR < 157 Yes No No Yes Yes
No Chol k 244 Sex £ 0.5
No Yes

No No No Yes

Thal:a

g 7 = Training '
—=Cross-Validation
= Test
o
o
<
o
S o |
5 ©
\iji’ ££>§/§:§>£(E’¥\§/%/ cat05 Cat05
~ < o
X!
TR E
5 A E E\E'E;E\E’E\E MaxHR|< 161.5 Chestfpain:bc Yes Yes
g B No No
T T T No Yes
5 10 15
Tree Size

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned tree.
Bottom Right: The pruned tree corresponding to the minimal cross-validation
error.

assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

314 8. Tree-Based Methods

Figure 8.6 has a surprising characteristic: some of the splits yield two
terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
of the value of RestECG, a response value of Yes is predicted for those ob-
servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
Yes. Why is node purity important? Suppose that we have a test obser-
vation that belongs to the region given by that right-hand leaf. Then we
can be pretty certain that its response value is Yes. In contrast, if a test
observation belongs to the region given by the left-hand leaf, then its re-
sponse value is probably Yes, but we are much less certain. Even though
the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models

Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

F(X) =B+ X;B;, (8.8)
j=1

whereas regression trees assume a model of the form

M
FX) = em Lixer, (8.9)
m=1
where R1, ..., Ry represent a partition of feature space, as in Figure 8.3.

Which model is better? It depends on the problem at hand. If the
relationship between the features and the response is well approximated
by a linear model as in (8.8), then an approach such as linear regression
will likely work well, and will outperform a method such as a regression
tree that does not exploit this linear structure. If instead there is a highly
non-linear and complex relationship between the features and the response
as indicated by model (8.9), then decision trees may outperform classical
approaches. An illustrative example is displayed in Figure 8.7. The rela-
tive performances of tree-based and classical approaches can be assessed by
estimating the test error, using either cross-validation or the validation set
approach (Chapter 5).

Of course, other considerations beyond simply test error may come into
play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.

8.1 The Basics of Decision Trees 315

o o o =
SR SIEE
T T
¥ ¥ -
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
X1 X1
1S o =
2 o SR
T T
e % -
T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
X4 X4

FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the azes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

A Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

A Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

A Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

A Trees can easily handle qualitative predictors without the need to
create dummy variables.

316 8. Tree-Based Methods

V¥ Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

V¥ Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved. We introduce these concepts in the next section.

8.2 Bagging, Random Forests, Boosting

Bagging, random forests, and boosting use trees as building blocks to
construct more powerful prediction models.

8.2.1 Bagging

The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is
used in many situations in which it is hard or even impossible to directly
compute the standard deviation of a quantity of interest. We see here that
the bootstrap can be used in a completely different context, in order to
improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance.
This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets; linear regression tends
to have low variance, if the ratio of n to p is moderately large. Bootstrap
aggregation, or bagging, is a general-purpose procedure for reducing the
variance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.

Recall that given a set of n independent observations Z1, ..., Z,, each
with variance o2, the variance of the mean Z of the observations is given
by 02 /n. In other words, averaging a set of observations reduces variance.
Hence a natural way to reduce the variance and hence increase the predic-
tion accuracy of a statistical learning method is to take many training sets
from the population, build a separate prediction model using each training
set, and average the resulting predictions. In other words, we could cal-
culate f1(z), f2(x),..., fB(z) using B separate training sets, and average
them in order to obtain a single low-variance statistical learning model,

bagging

8.2 Bagging, Random Forests, Boosting 317

given by
A 1< 5
Jave(@) = B Zf (2).

b=

—

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f *0(z), and finally average
all the predictions, to obtain

B
b=

Foaslt) = 35 3 F (@),

1

This is called bagging.

While bagging can improve predictions for many regression methods,
it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y. How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a magority vote: the overall prediction is the most commonly occurring
class among the B predictions.

Figure 8.8 shows the results from bagging trees on the Heart data. The
test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we
use a value of B sufficiently large that the error has settled down. Using
B =100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show

majority
vote

318 8. Tree-Based Methods

=}
CQ —
=}
[Te)
(\! —
o
55
w o
o)
[}
— Test: Bagging
Test: RandomForest
o —— OOB: Bagging
- OOB: RandomForest
© T T T T T T T
0 50 100 150 200 250 300

Number of Trees

FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m = \/p. The dashed line
indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is considerably lower.

that on average, each bagged tree makes use of around two-thirds of the
observations.® The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We
can predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the
overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating

3This relates to Exercise 2 of Chapter 5.

out-of-bag

8.2 Bagging, Random Forests, Boosting 319

the test error is particularly convenient when performing bagging on large
data sets for which cross-validation would be computationally onerous.

Variable Importance Measures

As we have discussed, bagging typically results in improved accuracy over
prediction using a single tree. Unfortunately, however, it can be difficult to
interpret the resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram that results, such as
the one displayed in Figure 8.1. However, when we bag a large number of
trees, it is no longer possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which variables
are most important to the procedure. Thus, bagging improves prediction
accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret
than a single tree, one can obtain an overall summary of the importance of
each predictor using the RSS (for bagging regression trees) or the Gini index
(for bagging classification trees). In the case of bagging regression trees, we
can record the total amount that the RSS (8.1) is decreased due to splits
over a given predictor, averaged over all B trees. A large value indicates
an important predictor. Similarly, in the context of bagging classification
trees, we can add up the total amount that the Gini index (8.6) is decreased
by splits over a given predictor, averaged over all B trees.

A graphical representation of the variable importances in the Heart data
is shown in Figure 8.9. We see the mean decrease in Gini index for each vari-
able, relative to the largest. The variables with the largest mean decrease
in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests

Random forests provide an improvement over bagged trees by way of a
small tweak that decorrelates the trees. As in bagging, we build a number
of decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
m predictors is taken at each split, and typically we choose m ~ ,/p—that
is, the number of predictors considered at each split is approximately equal
to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

In other words, in building a random forest, at each split in the tree,
the algorithm is not even allowed to consider a majority of the available
predictors. This may sound crazy, but it has a clever rationale. Suppose
that there is one very strong predictor in the data set, along with a num-
ber of other moderately strong predictors. Then in the collection of bagged

variable
importance

random
forest

320 8. Tree-Based Methods

Fbs
RestECG

ExAng

Sex

Slope
Chol

Age
RestBP
MaxHR
Oldpeak
ChestPain

Ca

Thal

o o
N
o

40 60

o]
o
-
o
o

Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the mazimum.

trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.
Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quanti-
ties. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p — m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.

The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m = ,/p leads to a reduction in both test error and OOB error
over bagging (Figure 8.8).

Using a small value of m in building a random forest will typically be
helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes

8.2 Bagging, Random Forests, Boosting 321

have different levels of activity, or expression, in particular cells, tissues,
and biological conditions. In this data set, each of the patient samples has
a qualitative label with 15 different levels: either normal or 1 of 14 different
types of cancer. Our goal was to use random forests to predict cancer type
based on the 500 genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set, and
applied random forests to the training set for three different values of the
number of splitting variables m. The results are shown in Figure 8.10. The
error rate of a single tree is 45.7 %, and the null rate is 75.4 %.* We see that
using 400 trees is sufficient to give good performance, and that the choice
m = /p gave a small improvement in test error over bagging (m = p) in
this example. As with bagging, random forests will not overfit if we increase
B, so in practice we use a value of B sufficiently large for the error rate to
have settled down.

8.2.3 Boosting

We now discuss boosting, yet another approach for improving the predic-
tions resulting from a decision tree. Like bagging, boosting is a general
approach that can be applied to many statistical learning methods for re-
gression or classification. Here we restrict our discussion of boosting to the
context of decision trees.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-
tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.

Consider first the regression setting. Like bagglng, boosting involves com-
bining a large number of decision trees, f-, fro fe. fB Boosting is described
in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large deci-
sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y, as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By

4The null rate results from simply classifying each observation to the dominant class
overall, which is in this case the normal class.

boosting

322 8. Tree-Based Methods

v _|
<]
-
[
=
L
c =
o S
T
Q
=
@
17}
< o
o o
=
3
2
N
=]

T T T T T
0 100 200 300 400 500
Number of Trees

FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Fach colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7 %.

fitting small trees to the residuals, we slowly improve f in areas where it
does not perform well. The shrinkage parameter A slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting
classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.

Boosting has three tuning parameters:

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter A, a small positive number. This controls the
rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small A can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted
ensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls

stump

interaction
depth

8.3 Lab: Decision Trees 323

Algorithm 8.2 Boosting for Regression Trees

1. Set f(z) =0 and r; = y; for all i in the training set.
2. For b=1,2,..., B, repeat:

(a) Fit a tree f° with d splits (d+ 1 terminal nodes) to the training
data (X, 7).

(b) Update f by adding in a shrunken version of the new tree:

@) flo) + Af(). (8.10)
(c) Update the residuals,
T <—Ti—/\fb(xi)- (8.11)

3. Output the boosted model,

B
f@) = S AP (@), (8.12)
b=1

the interaction order of the boosted model, since d splits can involve
at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller
trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.3 Lab: Decision Trees

8.8.1 Fitting Classification Trees

The tree library is used to construct classification and regression trees.

> library (tree)

324 8. Tree-Based Methods

0.25
1

—— Boosting: depth=1
—— Boosting: depth=2
—— RandomForest: m=/p

0.20
1

0.15
1

Test Classification Error

0.10
1

0.05
|

T T T T T T
0 1000 2000 3000 4000 5000

Number of Trees

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The
test error is displayed as a function of the number of trees. For the two boosted
models, X = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard errors are around 0.02, making
none of these differences significant. The test error rate for a single tree is 24 %.

We first use classification trees to analyze the Carseats data set. In these
data, Sales is a continuous variable, and so we begin by recoding it as a
binary variable. We use the ifelse() function to create a variable, called
High, which takes on a value of Yes if the Sales variable exceeds 8, and
takes on a value of No otherwise.

> library (ISLR)
> attach(Carseats)
> High=ifelse (Sales<=8,"No","Yes")

Finally, we use the data.frame() function to merge High with the rest of
the Carseats data.

> Carseats=data.frame (Carseats ,High)

We now use the tree () function to fit a classification tree in order to predict
High using all variables but sales. The syntax of the tree () function is quite
similar to that of the 1m() function.

> tree.carseats=tree (High~.-Sales, Carseats)

The summary() function lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

> summary (tree.carseats)

Classification tree:

tree(formula = High ~ . - Sales, data = Carseats)
Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice"

ifelse()

tree()

8.3 Lab: Decision Trees 325

[6] "Population" "Advertising" "Age" "ys*"
Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373
Misclassification error rate: 0.09 = 36 / 400

We see that the training error rate is 9 %. For classification trees, the de-
viance reported in the output of summary() is given by

‘_2j£:§£:7hnklogﬁnma
m k

where n,,i is the number of observations in the mth terminal node that
belong to the kth class. A small deviance indicates a tree that provides
a good fit to the (training) data. The residual mean deviance reported is
simply the deviance divided by n—|Tp|, which in this case is 400 —27 = 373.

One of the most attractive properties of trees is that they can be
graphically displayed. We use the plot () function to display the tree struc-
ture, and the text() function to display the node labels. The argument
pretty=0 instructs R to include the category names for any qualitative pre-
dictors, rather than simply displaying a letter for each category.

> plot(tree.carseats)
> text(tree.carseats ,pretty=0)

The most important indicator of Sales appears to be shelving location,
since the first branch differentiates Good locations from Bad and Medium
locations.

If we just type the name of the tree object, R prints output corresponding
to each branch of the tree. R displays the split criterion (e.g. Price<92.5), the
number of observations in that branch, the deviance, the overall prediction
for the branch (Yes or No), and the fraction of observations in that branch
that take on values of Yes and No. Branches that lead to terminal nodes are
indicated using asterisks.

> tree.carseats
node), split, n, deviance, yval, (yprob)
* denotes terminal mnode
1) root 400 541.5 No (0.590 0.410)
2) ShelvelLoc: Bad,Medium 315 390.6 No (0.689 0.311)
4) Price < 92.5 46 56.53 Yes (0.304 0.696)
8) Income < 57 10 12.22 No (0.700 0.300)

In order to properly evaluate the performance of a classification tree on
these data, we must estimate the test error rather than simply computing
the training error. We split the observations into a training set and a test
set, build the tree using the training set, and evaluate its performance on
the test data. The predict() function can be used for this purpose. In the
case of a classification tree, the argument type="class" instructs R to return
the actual class prediction. This approach leads to correct predictions for
around 71.5 % of the locations in the test data set.

326 8. Tree-Based Methods

set.seed (2)
train=sample (1:nrow(Carseats), 200)
Carseats .test=Carseats [-train,]
High.test=High[-train]
tree.carseats=tree (High~.-Sales,Carseats,subset=train)
tree.pred=predict (tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)
High.test

tree.pred No Yes

No 86 27

Yes 30 57
> (86+57) /200
[1] 0.715

V V.V V V V Vv

Next, we consider whether pruning the tree might lead to improved
results. The function cv.tree() performs cross-validation in order to
determine the optimal level of tree complexity; cost complexity pruning
is used in order to select a sequence of trees for consideration. We use
the argument FUN=prune.misclass in order to indicate that we want the
classification error rate to guide the cross-validation and pruning process,
rather than the default for the cv.tree() function, which is deviance. The
cv.tree() function reports the number of terminal nodes of each tree con-
sidered (size) as well as the corresponding error rate and the value of the
cost-complexity parameter used (k, which corresponds to « in (8.4)).
> set.seed (3)
> cv.carseats=cv.tree(tree.carseats ,FUN=prune.misclass)
> names (cv.carseats)

[1] "size" "dev" DRE "method"
> cv.carseats

$size

[1] 19 17 14 13 9 7 3 2 1

$dev
[1] 55 55 53 52 50 56 69 65 80

$k

[1] -Inf 0.0000000 0.6666667 1.0000000 1.7500000
2.0000000 4.2500000

[8] 5.0000000 23.0000000

$method
[1] "misclass"

attr(,"class")
[1] "prune" "tree.sequence"

Note that, despite the name, dev corresponds to the cross-validation error
rate in this instance. The tree with 9 terminal nodes results in the lowest
cross-validation error rate, with 50 cross-validation errors. We plot the error
rate as a function of both size and k.

> par (mfrow=c(1,2))

cv.tree()

8.3 Lab: Decision Trees 327

> plot(cv.carseats$size ,cv.carseats$dev ,type="Db")
> plot(cv.carseats$k ,cv.carseats$dev ,type="b")

We now apply the prune.misclass() function in order to prune the tree to prune.
obtain the nine-node tree. misclass ()

> prune.carseats=prune.misclass (tree.carseats ,6 best=9)
> plot(prune.carseats)
> text (prune.carseats,pretty=0)

How well does this pruned tree perform on the test data set? Once again,
we apply the predict () function.

> tree.pred=predict (prune.carseats,Carseats.test,type="class")
> table(tree.pred,High.test)
High.test

tree.pred No Yes

No 94 24

Yes 22 60
> (94+60) /200
[1] 0.77

Now 77 % of the test observations are correctly classified, so not only has
the pruning process produced a more interpretable tree, but it has also
improved the classification accuracy.

If we increase the value of best, we obtain a larger pruned tree with lower
classification accuracy:

prune.carseats=prune.misclass (tree.carseats,best=15)
plot (prune.carseats)
text (prune.carseats ,pretty=0)
tree.pred=predict (prune.carseats,Carseats.test,type="class")
table (tree.pred,High.test)
High.test

tree.pred No Yes

No 86 22

Yes 30 62
> (86+62) /200
[1] 0.74

vV V. V VvV VvV

8.3.2 Fitting Regression Trees

Here we fit a regression tree to the Boston data set. First, we create a
training set, and fit the tree to the training data.

library (MASS)

set.seed (1)

train = sample (l:nrow(Boston), nrow(Boston)/2)
tree.boston=tree (medv~.,Boston,subset=train)
summary (tree.boston)

vV V. V V VvV

Regression tree:
tree(formula = medv ~ ., data = Boston, subset = train)

328 8. Tree-Based Methods

Variables actually used in tree construction:
[1] "lstat" "rm" "dis"
Number of terminal nodes: 8
Residual mean deviance: 12.65 = 3099 / 245
Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max .
-14.1000 -2.0420 -0.0536 0.0000 1.9600 12.6000

Notice that the output of summary() indicates that only three of the vari-
ables have been used in constructing the tree. In the context of a regression
tree, the deviance is simply the sum of squared errors for the tree. We now
plot the tree.

> plot(tree.boston)
> text(tree.boston,pretty=0)

The variable 1lstat measures the percentage of individuals with lower
socioeconomic status. The tree indicates that lower values of 1stat cor-
respond to more expensive houses. The tree predicts a median house price
of $46,400 for larger homes in suburbs in which residents have high socioe-
conomic status (rm>=7.437 and lstat<9.715).

Now we use the cv.tree() function to see whether pruning the tree will
improve performance.

> cv.boston=cv.tree(tree.boston)
> plot(cv.boston$size ,cv.boston$dev ,type=’b’)

In this case, the most complex tree is selected by cross-validation. How-
ever, if we wish to prune the tree, we could do so as follows, using the
prune.tree() function:

> prune.boston=prune.tree(tree.boston,best=5)

> plot(prune.boston)
> text (prune.boston ,pretty=0)

In keeping with the cross-validation results, we use the unpruned tree to
make predictions on the test set.

yhat=predict (tree.boston ,newdata=Boston[-train,])
boston.test=Boston[-train,"medv"]

plot (yhat ,boston.test)

abline (0,1)

> mean ((yhat-boston.test) ~2)

[1] 25.05

vV V Vv Vv

In other words, the test set MSE associated with the regression tree is
25.05. The square root of the MSE is therefore around 5.005, indicating
that this model leads to test predictions that are within around $5, 005 of
the true median home value for the suburb.

8.3.3 Bagging and Random Forests

Here we apply bagging and random forests to the Boston data, using the
randomForest package in R. The exact results obtained in this section may

prune.tree()

8.3 Lab: Decision Trees 329

depend on the version of R and the version of the randomForest package
installed on your computer. Recall that bagging is simply a special case of
a random forest with m = p. Therefore, the randomForest() function can

) . random
be used to perform both random forests and bagging. We perform bagging . .ct ()
as follows:

> library (randomForest)

> set.seed (1)

> bag.boston=randomForest (medv~.,data=Boston,subset=train,
mtry=13, importance =TRUE)

> bag.boston

Call:
randomForest (formula = medv ~ ., data = Boston, mtry = 13,
importance = TRUE, subset = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 13

Mean of squared residuals: 10.77
% Var explained: 86.96

The argument mtry=13 indicates that all 13 predictors should be considered
for each split of the tree—in other words, that bagging should be done. How
well does this bagged model perform on the test set?

> yhat.bag = predict (bag.boston ,newdata=Boston[-train,])
> plot(yhat.bag, boston.test)

> abline (0,1)

> mean ((yhat.bag-boston.test) "2)

[1] 13.16

The test set MSE associated with the bagged regression tree is 13.16, almost
half that obtained using an optimally-pruned single tree. We could change
the number of trees grown by randomForest() using the ntree argument:

> bag.boston=randomForest (medv~.,data=Boston ,subset=train,
mtry=13,ntree=25)

> yhat.bag = predict (bag.boston ,newdata=Boston[-train,])

> mean ((yhat.bag-boston.test) "2)

[1] 13.31

Growing a random forest proceeds in exactly the same way, except that
we use a smaller value of the mtry argument. By default, randomForest ()
uses p/3 variables when building a random forest of regression trees, and
/P variables when building a random forest of classification trees. Here we
use mtry = 6.

> set.seed (1)

> rf.boston=randomForest(medv~.,data=Boston,subset=train,
mtry=6, importance =TRUE)

> yhat.rf = predict (rf.boston ,newdata=Boston[-train,h])

> mean ((yhat.rf-boston.test) ~2)

[1] 11.31

330 8. Tree-Based Methods

The test set MSE is 11.31; this indicates that random forests yielded an
improvement over bagging in this case.

Using the importance() function, we can view the importance of each
variable.

> importance (rf.boston)
%IncMSE IncNodePurity

crim 12.384 1051.54
zn 2.103 50.31
indus 8.390 1017.64
chas 2.294 56 .32
nox 12.791 1107.31
rm 30.754 5917.26
age 10.334 552.27
dis 14.641 1223.93
rad 3.583 84.30
tax 8.139 435.71
ptratio 11.274 817.33
black 8.097 367.00
lstat 30.962 7713.63

Two measures of variable importance are reported. The former is based
upon the mean decrease of accuracy in predictions on the out of bag samples
when a given variable is excluded from the model. The latter is a measure
of the total decrease in node impurity that results from splits over that
variable, averaged over all trees (this was plotted in Figure 8.9). In the
case of regression trees, the node impurity is measured by the training
RSS, and for classification trees by the deviance. Plots of these importance
measures can be produced using the varImpPlot () function.

> varImpPlot (rf.boston)

The results indicate that across all of the trees considered in the random
forest, the wealth level of the community (1stat) and the house size (rm)
are by far the two most important variables.

8.3.4 Boosting

Here we use the gbm package, and within it the gbm() function, to fit boosted
regression trees to the Boston data set. We run gbm() with the option
distribution="gaussian" since this is a regression problem; if it were a bi-
nary classification problem, we would use distribution="bernoulli". The
argument n.trees=5000 indicates that we want 5000 trees, and the option
interaction.depth=4 limits the depth of each tree.

> library (gbm)

> set.seed (1)

> boost.boston=gbm(medv~.,data=Boston[train,],distribution=
"gaussian",n.trees=5000, interaction .depth=4)

The summary () function produces a relative influence plot and also outputs
the relative influence statistics.

importance()

varImpPlot ()

gbm()

8.3 Lab: Decision Trees 331

> summary (boost.boston)

var rel.inf
1 lstat 45.96
2 rm 31.22
3 dis 6.81
4 crim 4.07
5 nox 2.56
6 ptratio 2.27
7 black 1.80
8 age 1.64
9 tax 1.36
10 indus 1.27
11 chas 0.80
12 rad 0.20
13 zn 0.015

We see that 1stat and rm are by far the most important variables. We can

also produce partial dependence plots for these two variables. These plots '
illustrate the marginal effect of the selected variables on the response after ﬁi;’ﬁfidmc
integrating out the other variables. In this case, as we might expect, median Plot
house prices are increasing with rm and decreasing with 1stat.

> par (mfrow=c(1,2))
> plot(boost.boston,i="rm")
> plot(boost.boston,i="1lstat")

We now use the boosted model to predict medv on the test set:

> yhat.boost=predict (boost.boston ,newdata=Boston[-train,],
n.trees=5000)

> mean ((yhat.boost-boston.test) ~2)

[1] 11.8

The test MSE obtained is 11.8; similar to the test MSE for random forests
and superior to that for bagging. If we want to, we can perform boosting
with a different value of the shrinkage parameter A in (8.10). The default
value is 0.001, but this is easily modified. Here we take A = 0.2.

> boost.boston=gbm(medv~.,data=Boston[train,],distribution=
"gaussian",n.trees=5000, interaction .depth=4, shrinkage=0.2,
verbose=F)
> yhat.boost=predict (boost.boston ,newdata=Boston[-train,],
n.trees=5000)
> mean ((yhat.boost-boston.test) ~2)
[1] 11.5

In this case, using A = 0.2 leads to a slightly lower test MSE than A = 0.001.

332

8. Tree-Based Methods

8.4 Exercises

Conceptual

1.

Draw an example (of your own invention) of a partition of two-
dimensional feature space that could result from recursive binary
splitting. Your example should contain at least six regions. Draw a
decision tree corresponding to this partition. Be sure to label all as-
pects of your figures, including the regions R, Rs, ..., the cutpoints
t1,ta,..., and so forth.

Hint: Your result should look something like Figures 8.1 and 8.2.

. It is mentioned in Section 8.2.3 that boosting using depth-one trees

(or stumps) leads to an additive model: that is, a model of the form

Explain why this is the case. You can begin with (8.12) in
Algorithm 8.2.

Consider the Gini index, classification error, and entropy in a
simple classification setting with two classes. Create a single plot
that displays each of these quantities as a function of p,,1. The z-
axis should display p,,1, ranging from 0 to 1, and the y-axis should
display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, pm1 = 1 — Pma. You could make
this plot by hand, but it will be much easier to make in R.

This question relates to the plots in Figure 8.12.

(a) Sketch the tree corresponding to the partition of the predictor
space illustrated in the left-hand panel of Figure 8.12. The num-
bers inside the boxes indicate the mean of Y within each region.

(b) Create a diagram similar to the left-hand panel of Figure 8.12,
using the tree illustrated in the right-hand panel of the same
figure. You should divide up the predictor space into the correct
regions, and indicate the mean for each region.

Suppose we produce ten bootstrapped samples from a data set
containing red and green classes. We then apply a classification tree
to each bootstrapped sample and, for a specific value of X, produce
10 estimates of P(Class is Red|X):

0.1,0.15,0.2,0.2,0.55,0.6,0.6,0.65,0.7, and 0.75.

8.4 Exercises 333

X2 <1
T
15
X2 1 5
0
0 3

10 X1 1 X2|<2

0 1 X1 0
X 2.49
1
-1.80 063 —106 021

FIGURE 8.12. Left: A partition of the predictor space corresponding to Fxer-
cise 4a. Right: A tree corresponding to Exercise 4b.

There are two common ways to combine these results together into a
single class prediction. One is the majority vote approach discussed in
this chapter. The second approach is to classify based on the average
probability. In this example, what is the final classification under each
of these two approaches?

6. Provide a detailed explanation of the algorithm that is used to fit a
regression tree.

Applied

7. In the lab, we applied random forests to the Boston data using mtry=6
and using ntree=25 and ntree=500. Create a plot displaying the test
error resulting from random forests on this data set for a more com-
prehensive range of values for mtry and ntree. You can model your
plot after Figure 8.10. Describe the results obtained.

8. In the lab, a classification tree was applied to the Carseats data set af-
ter converting Sales into a qualitative response variable. Now we will
seek to predict Sales using regression trees and related approaches,
treating the response as a quantitative variable.

(a) Split the data set into a training set and a test set.

b) Fit a regression tree to the training set. Plot the tree, and inter-
g g
pret the results. What test MSE do you obtain?

(c) Use cross-validation in order to determine the optimal level of
tree complexity. Does pruning the tree improve the test MSE?

(d) Use the bagging approach in order to analyze this data. What
test MSE do you obtain? Use the importance () function to de-
termine which variables are most important.

334 8.

()

Tree-Based Methods

Use random forests to analyze this data. What test MSE do you
obtain? Use the importance() function to determine which vari-
ables are most important. Describe the effect of m, the number of
variables considered at each split, on the error rate
obtained.

9. This problem involves the 0J data set which is part of the ISLR
package.

()
(b)

(k)

Create a training set containing a random sample of 800 obser-
vations, and a test set containing the remaining observations.

Fit a tree to the training data, with Purchase as the response
and the other variables as predictors. Use the summary () function
to produce summary statistics about the tree, and describe the
results obtained. What is the training error rate? How many
terminal nodes does the tree have?

Type in the name of the tree object in order to get a detailed
text output. Pick one of the terminal nodes, and interpret the
information displayed.

Create a plot of the tree, and interpret the results.

Predict the response on the test data, and produce a confusion
matrix comparing the test labels to the predicted test labels.
What is the test error rate?

Apply the cv.tree() function to the training set in order to
determine the optimal tree size.

Produce a plot with tree size on the x-axis and cross-validated
classification error rate on the y-axis.

Which tree size corresponds to the lowest cross-validated classi-
fication error rate?

Produce a pruned tree corresponding to the optimal tree size
obtained using cross-validation. If cross-validation does not lead
to selection of a pruned tree, then create a pruned tree with five
terminal nodes.

Compare the training error rates between the pruned and un-
pruned trees. Which is higher?

Compare the test error rates between the pruned and unpruned
trees. Which is higher?

10. We now use boosting to predict Salary in the Hitters data set.

(a)

Remove the observations for whom the salary information is
unknown, and then log-transform the salaries.

(b)
(c)

8.4 Exercises 335

Create a training set consisting of the first 200 observations, and
a test set consisting of the remaining observations.

Perform boosting on the training set with 1,000 trees for a range
of values of the shrinkage parameter A. Produce a plot with
different shrinkage values on the x-axis and the corresponding
training set MSE on the y-axis.

Produce a plot with different shrinkage values on the z-axis and
the corresponding test set MSE on the y-axis.

Compare the test MSE of boosting to the test MSE that results
from applying two of the regression approaches seen in
Chapters 3 and 6.

Which variables appear to be the most important predictors in
the boosted model?

Now apply bagging to the training set. What is the test set MSE
for this approach?

11. This question uses the Caravan data set.

(a)
(b)

Create a training set consisting of the first 1,000 observations,
and a test set consisting of the remaining observations.

Fit a boosting model to the training set with Purchase as the
response and the other variables as predictors. Use 1,000 trees,
and a shrinkage value of 0.01. Which predictors appear to be
the most important?

Use the boosting model to predict the response on the test data.
Predict that a person will make a purchase if the estimated prob-
ability of purchase is greater than 20 %. Form a confusion ma-
trix. What fraction of the people predicted to make a purchase
do in fact make one? How does this compare with the results
obtained from applying KNN or logistic regression to this data
set?

12. Apply boosting, bagging, and random forests to a data set of your
choice. Be sure to fit the models on a training set and to evaluate their
performance on a test set. How accurate are the results compared
to simple methods like linear or logistic regression? Which of these
approaches yields the best performance?

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	Predicting Baseball Players' Salaries Using Regression Trees
	Prediction via Stratification of the Feature Space
	Tree Pruning

	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting
	8.2.1 Bagging
	Out-of-Bag Error Estimation
	Variable Importance Measures

	8.2.2 Random Forests
	8.2.3 Boosting

	8.3 Lab: Decision Trees
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting

	8.4 Exercises

