
7
Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models
are relatively simple to describe and implement, and have advantages over
other approaches in terms of interpretation and inference. However, stan-
dard linear regression can have significant limitations in terms of predic-
tive power. This is because the linearity assumption is almost always an
approximation, and sometimes a poor one. In Chapter 6 we see that we can
improve upon least squares using ridge regression, the lasso, principal com-
ponents regression, and other techniques. In that setting, the improvement
is obtained by reducing the complexity of the linear model, and hence the
variance of the estimates. But we are still using a linear model, which can
only be improved so far! In this chapter we relax the linearity assumption
while still attempting to maintain as much interpretability as possible. We
do this by examining very simple extensions of linear models like polyno-
mial regression and step functions, as well as more sophisticated approaches
such as splines, local regression, and generalized additive models.

• Polynomial regression extends the linear model by adding extra pre-
dictors, obtained by raising each of the original predictors to a power.
For example, a cubic regression uses three variables, X , X2, and X3,
as predictors. This approach provides a simple way to provide a non-
linear fit to data.

• Step functions cut the range of a variable into K distinct regions in
order to produce a qualitative variable. This has the effect of fitting
a piecewise constant function.
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266 7. Moving Beyond Linearity

• Regression splines are more flexible than polynomials and step
functions, and in fact are an extension of the two. They involve di-
viding the range of X into K distinct regions. Within each region,
a polynomial function is fit to the data. However, these polynomials
are constrained so that they join smoothly at the region boundaries,
or knots . Provided that the interval is divided into enough regions,
this can produce an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

• Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly inte-
grated in order to model a response Y as a function of several predictors
X1, . . . , Xp.

7.1 Polynomial Regression

Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = β0 + β1xi + εi

with a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + . . .+ βdx

d
i + εi, (7.1)

where εi is the error term. This approach is known as polynomial regression,
polynomial
regressionand in fact we saw an example of this method in Section 3.3.2. For large

enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors xi, x

2
i , x

3
i , . . . , x

d
i . Generally speaking, it is unusual

to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dotted curves indicate an estimated 95% confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95% confidence interval.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 62 values for age from 18 to 80 in
order to understand the relationship between age and wage.
In Figure 7.1, a pair of dotted curves accompanies the fit; these are (2×)

standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, x0:

f̂(x0) = β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0 + β̂4x

4
0. (7.2)

What is the variance of the fit, i.e. Varf̂(x0)? Least squares returns variance

estimates for each of the fitted coefficients β̂j, as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f̂(x0).

1 The estimated pointwise standard error of

f̂(x0) is the square-root of this variance. This computation is repeated

1If Ĉ is the 5 × 5 covariance matrix of the β̂j , and if �T0 = (1, x0, x2
0, x3

0, x4
0), then

Var[f̂(x0)] = �T0 Ĉ�0.
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at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95% confidence interval.
It seems like the wages in Figure 7.1 are from two distinct populations:

there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age
as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x

2
i + . . .+ βdx

d
i )

1 + exp(β0 + β1xi + β2x2
i + . . .+ βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95% confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X . We can instead
use step functions in order to avoid imposing such a global structure. Here

step function
we break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable.

ordered
categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X ,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true,
indicator
functionand returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X , and
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dotted curves indicate an estimated 95% confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95% confidence interval.

equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X , C0(X) +C1(X) + . . .+CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + . . .+ βKCK(xi) + εi. (7.5)

For a given value of X , at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can
be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.
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Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + . . .+ βKCK(xi))

1 + exp(β0 + β1C1(xi) + . . .+ βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.
Unfortunately, unless there are natural breakpoints in the predictors,

piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam-

basis
functionily of functions or transformations that can be applied to a variable X :

b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X , we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + . . .+ βKbK(xi) + εi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.
Thus far we have considered the use of polynomial functions and piece-

wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines.

regression
spline
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7.4 Regression Splines

Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials

Instead of fitting a high-degree polynomial over the entire range ofX , piece-
wise polynomial regression involves fitting separate low-degree polynomials

piecewise
polynomial
regression

over different regions ofX . For example, a piecewise cubic polynomial works
by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi, (7.8)

where the coefficients β0, β1, β2, and β3 differ in different parts of the range
of X . The points where the coefficients change are called knots.

knot
For example, a piecewise cubic with no knots is just a standard cubic

polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point c takes the form

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + εi if xi < c;

β02 + β12xi + β22x
2
i + β32x

3
i + εi if xi ≥ c.

In other words, we fit two different polynomial functions to the data, one
on the subset of the observations with xi < c, and one on the subset of
the observations with xi ≥ c. The first polynomial function has coefficients
β01, β11, β21, β31, and the second has coefficients β02, β12, β22, β32. Each of
these polynomial functions can be fit using least squares applied to simple
functions of the original predictor.
Using more knots leads to a more flexible piecewise polynomial. In gen-

eral, if we place K different knots throughout the range of X , then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!
The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to

a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model.

degrees of
freedom

7.4.2 Constraints and Splines

The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage

data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to
have continuous first and second derivatives. Bottom Right: A linear spline is
shown, which is constrained to be continuous.

under the constraint that the fitted curve must be continuous. In other
words, there cannot be a jump when age=50. The top right plot in Figure 7.3
shows the resulting fit. This looks better than the top left plot, but the V-
shaped join looks unnatural.
In the lower left plot, we have added two additional constraints: now both

the first and second derivatives of the piecewise polynomials are continuous
derivative

at age=50. In other words, we are requiring that the piecewise polynomial
be not only continuous when age=50, but also very smooth. Each constraint
that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit. So in the top left plot, we are using eight degrees of free-
dom, but in the bottom left plot we imposed three constraints (continuity,
continuity of the first derivative, and continuity of the second derivative)
and so are left with five degrees of freedom. The curve in the bottom left
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plot is called a cubic spline.3 In general, a cubic spline with K knots uses
cubic spline

a total of 4 +K degrees of freedom.
In Figure 7.3, the lower right plot is a linear spline, which is continuous

linear spline
at age=50. The general definition of a degree-d spline is that it is a piecewise
degree-d polynomial, with continuity in derivatives up to degree d − 1 at
each knot. Therefore, a linear spline is obtained by fitting a line in each
region of the predictor space defined by the knots, requiring continuity at
each knot.
In Figure 7.3, there is a single knot at age=50. Of course, we could add

more knots, and impose continuity at each.

7.4.3 The Spline Basis Representation

The regression splines that we just saw in the previous section may have
seemed somewhat complex: how can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d − 1 derivatives) be
continuous? It turns out that we can use the basis model (7.7) to represent
a regression spline. A cubic spline with K knots can be modeled as

yi = β0 + β1b1(xi) + β2b2(xi) + · · ·+ βK+3bK+3(xi) + εi, (7.9)

for an appropriate choice of basis functions b1, b2, . . . , bK+3. The model
(7.9) can then be fit using least squares.
Just as there were several ways to represent polynomials, there are also

many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,
x, x2, x3—and then add one truncated power basis function per knot.

truncated
power basisA truncated power basis function is defined as

h(x, ξ) = (x− ξ)3+ =

{
(x − ξ)3 if x > ξ

0 otherwise,
(7.10)

where ξ is the knot. One can show that adding a term of the form β4h(x, ξ)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at ξ; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.
In other words, in order to fit a cubic spline to a data set withK knots, we

perform least squares regression with an intercept and 3+K predictors, of
the form X,X2, X3, h(X, ξ1), h(X, ξ2), . . . , h(X, ξK), where ξ1, . . . , ξK are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K+4 degrees
of freedom.

3Cubic splines are popular because most human eyes cannot detect the discontinuity
at the knots.
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data.

Unfortunately, splines can have high variance at the outer range of the
predictors—that is, when X takes on either a very small or very large
value. Figure 7.4 shows a fit to the Wage data with three knots. We see that
the confidence bands in the boundary region appear fairly wild. A natu-
ral spline is a regression spline with additional boundary constraints : the

natural
splinefunction is required to be linear at the boundary (in the region where X is

smaller than the smallest knot, or larger than the largest knot). This addi-
tional constraint means that natural splines generally produce more stable
estimates at the boundaries. In Figure 7.4, a natural cubic spline is also
displayed as a red line. Note that the corresponding confidence intervals
are narrower.

7.4.4 Choosing the Number and Locations of the Knots

When we fit a spline, where should we place the knots? The regression
spline is most flexible in regions that contain a lot of knots, because in
those regions the polynomial coefficients can change rapidly. Hence, one
option is to place more knots in places where we feel the function might
vary most rapidly, and to place fewer knots where it seems more stable.
While this option can work well, in practice it is common to place knots in
a uniform fashion. One way to do this is to specify the desired degrees of
freedom, and then have the software automatically place the corresponding
number of knots at uniform quantiles of the data.
Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we

have fit a natural cubic spline with three knots, except this time the knot
locations were chosen automatically as the 25th, 50th, and 75th percentiles
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FIGURE 7.5. A natural cubic spline function with four degrees of freedom is
fit to the Wage data. Left: A spline is fit to wage (in thousands of dollars) as
a function of age. Right: Logistic regression is used to model the binary event
wage>250 as a function of age. The fitted posterior probability of wage exceeding
$250,000 is shown.

of age. This was specified by requesting four degrees of freedom. The ar-
gument by which four degrees of freedom leads to three interior knots is
somewhat technical.4

How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? One option is to try out different num-
bers of knots and see which produces the best looking curve. A somewhat
more objective approach is to use cross-validation, as discussed in Chap-
ters 5 and 6. With this method, we remove a portion of the data (say 10%),
fit a spline with a certain number of knots to the remaining data, and then
use the spline to make predictions for the held-out portion. We repeat this
process multiple times until each observation has been left out once, and
then compute the overall cross-validated RSS. This procedure can be re-
peated for different numbers of knots K. Then the value of K giving the
smallest RSS is chosen.

4There are actually five knots, including the two boundary knots. A cubic spline
with five knots would have nine degrees of freedom. But natural cubic splines have two
additional natural constraints at each boundary to enforce linearity, resulting in 9−4 = 5
degrees of freedom. Since this includes a constant, which is absorbed in the intercept,
we count it as four degrees of freedom.
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage

and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

Figure 7.6 shows ten-fold cross-validated mean squared errors for splines
with various degrees of freedom fit to the Wage data. The left-hand panel
corresponds to a natural spline and the right-hand panel to a cubic spline.
The two methods produce almost identical results, with clear evidence that
a one-degree fit (a linear regression) is not adequate. Both curves flatten
out quickly, and it seems that three degrees of freedom for the natural
spline and four degrees of freedom for the cubic spline are quite adequate.
In Section 7.7 we fit additive spline models simultaneously on several

variables at a time. This could potentially require the selection of degrees
of freedom for each variable. In cases like this we typically adopt a more
pragmatic approach and set the degrees of freedom to a fixed number, say
four, for all terms.

7.4.5 Comparison to Polynomial Regression

Regression splines often give superior results to polynomial regression. This
is because unlike polynomials, which must use a high degree (exponent in
the highest monomial term, e.g. X15) to produce flexible fits, splines intro-
duce flexibility by increasing the number of knots but keeping the degree
fixed. Generally, this approach produces more stable estimates. Splines also
allow us to place more knots, and hence flexibility, over regions where the
function f seems to be changing rapidly, and fewer knots where f appears
more stable. Figure 7.7 compares a natural cubic spline with 15 degrees of
freedom to a degree-15 polynomial on the Wage data set. The extra flexibil-
ity in the polynomial produces undesirable results at the boundaries, while
the natural cubic spline still provides a reasonable fit to the data.
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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines

7.5.1 An Overview of Smoothing Splines

In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.
In fitting a smooth curve to a set of data, what we really want to do is

find some function, say g(x), that fits the observed data well: that is, we
want RSS =

∑n
i=1(yi − g(xi))

2 to be small. However, there is a problem
with this approach. If we don’t put any constraints on g(xi), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the yi. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.
How might we ensure that g is smooth? There are a number of ways to

do this. A natural approach is to find the function g that minimizes

n∑
i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (7.11)

where λ is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline.

smoothing
splineWhat does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-

mulation that we encounter in the context of ridge regression and the lasso
in Chapter 6. The term

∑n
i=1(yi − g(xi))

2 is a loss function that encour-
loss function

ages g to fit the data well, and the term λ
∫
g′′(t)2dt is a penalty term
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that penalizes the variability in g. The notation g′′(t) indicates the second
derivative of the function g. The first derivative g′(t) measures the slope
of a function at t, and the second derivative corresponds to the amount by
which the slope is changing. Hence, broadly speaking, the second derivative
of a function is a measure of its roughness : it is large in absolute value if
g(t) is very wiggly near t, and it is close to zero otherwise. (The second
derivative of a straight line is zero; note that a line is perfectly smooth.)
The

∫
notation is an integral , which we can think of as a summation over

the range of t. In other words,
∫
g′′(t)2dt is simply a measure of the total

change in the function g′(t), over its entire range. If g is very smooth, then
g′(t) will be close to constant and

∫
g′′(t)2dt will take on a small value.

Conversely, if g is jumpy and variable then g′(t) will vary significantly and∫
g′′(t)2dt will take on a large value. Therefore, in (7.11), λ

∫
g′′(t)2dt en-

courages g to be smooth. The larger the value of λ, the smoother g will be.
When λ = 0, then the penalty term in (7.11) has no effect, and so the

function g will be very jumpy and will exactly interpolate the training
observations. When λ → ∞, g will be perfectly smooth—it will just be
a straight line that passes as closely as possible to the training points.
In fact, in this case, g will be the linear least squares line, since the loss
function in (7.11) amounts to minimizing the residual sum of squares. For
an intermediate value of λ, g will approximate the training observations
but will be somewhat smooth. We see that λ controls the bias-variance
trade-off of the smoothing spline.
The function g(x) that minimizes (7.11) can be shown to have some spe-

cial properties: it is a piecewise cubic polynomial with knots at the unique
values of x1, . . . , xn, and continuous first and second derivatives at each
knot. Furthermore, it is linear in the region outside of the extreme knots.
In other words, the function g(x) that minimizes (7.11) is a natural cubic
spline with knots at x1, . . . , xn! However, it is not the same natural cubic
spline that one would get if one applied the basis function approach de-
scribed in Section 7.4.3 with knots at x1, . . . , xn—rather, it is a shrunken
version of such a natural cubic spline, where the value of the tuning pa-
rameter λ in (7.11) controls the level of shrinkage.

7.5.2 Choosing the Smoothing Parameter λ

We have seen that a smoothing spline is simply a natural cubic spline
with knots at every unique value of xi. It might seem that a smoothing
spline will have far too many degrees of freedom, since a knot at each data
point allows a great deal of flexibility. But the tuning parameter λ controls
the roughness of the smoothing spline, and hence the effective degrees of
freedom. It is possible to show that as λ increases from 0 to ∞, the effective

effective
degrees of
freedom

degrees of freedom, which we write dfλ, decrease from n to 2.
In the context of smoothing splines, why do we discuss effective degrees

of freedom instead of degrees of freedom? Usually degrees of freedom refer
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to the number of free parameters, such as the number of coefficients fit in a
polynomial or cubic spline. Although a smoothing spline has n parameters
and hence n nominal degrees of freedom, these n parameters are heavily
constrained or shrunk down. Hence dfλ is a measure of the flexibility of the
smoothing spline—the higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline. The definition of effective degrees of
freedom is somewhat technical. We can write

ĝλ = Sλy, (7.12)

where ĝ is the solution to (7.11) for a particular choice of λ—that is, it is a
n-vector containing the fitted values of the smoothing spline at the training
points x1, . . . , xn. Equation 7.12 indicates that the vector of fitted values
when applying a smoothing spline to the data can be written as a n × n
matrix Sλ (for which there is a formula) times the response vector y. Then
the effective degrees of freedom is defined to be

dfλ =

n∑
i=1

{Sλ}ii, (7.13)

the sum of the diagonal elements of the matrix Sλ.
In fitting a smoothing spline, we do not need to select the number or

location of the knots—there will be a knot at each training observation,
x1, . . . , xn. Instead, we have another problem: we need to choose the value
of λ. It should come as no surprise that one possible solution to this problem
is cross-validation. In other words, we can find the value of λ that makes
the cross-validated RSS as small as possible. It turns out that the leave-
one-out cross-validation error (LOOCV) can be computed very efficiently
for smoothing splines, with essentially the same cost as computing a single
fit, using the following formula:

RSScv(λ) =
n∑

i=1

(yi − ĝ
(−i)
λ (xi))

2 =
n∑

i=1

[
yi − ĝλ(xi)

1− {Sλ}ii

]2
.

The notation ĝ
(−i)
λ (xi) indicates the fitted value for this smoothing spline

evaluated at xi, where the fit uses all of the training observations except
for the ith observation (xi, yi). In contrast, ĝλ(xi) indicates the smoothing
spline function fit to all of the training observations and evaluated at xi.
This remarkable formula says that we can compute each of these leave-
one-out fits using only ĝλ, the original fit to all of the data!5 We have
a very similar formula (5.2) on page 180 in Chapter 5 for least squares
linear regression. Using (5.2), we can very quickly perform LOOCV for
the regression splines discussed earlier in this chapter, as well as for least
squares regression using arbitrary basis functions.

5The exact formulas for computing ĝ(xi) and Sλ are very technical; however, efficient
algorithms are available for computing these quantities.
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FIGURE 7.8. Smoothing spline fits to the Wage data. The red curve results
from specifying 16 effective degrees of freedom. For the blue curve, λ was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective
degrees of freedom.

Figure 7.8 shows the results from fitting a smoothing spline to the Wage

data. The red curve indicates the fit obtained from pre-specifying that we
would like a smoothing spline with 16 effective degrees of freedom. The blue
curve is the smoothing spline obtained when λ is chosen using LOOCV; in
this case, the value of λ chosen results in 6.8 effective degrees of freedom
(computed using (7.13)). For this data, there is little discernible difference
between the two smoothing splines, beyond the fact that the one with 16
degrees of freedom seems slightly wigglier. Since there is little difference
between the two fits, the smoothing spline fit with 6.8 degrees of freedom
is preferable, since in general simpler models are better unless the data
provides evidence in support of a more complex model.

7.6 Local Regression

Local regression is a different approach for fitting flexible non-linear func-
local
regressiontions, which involves computing the fit at a target point x0 using only the

nearby training observations. Figure 7.9 illustrates the idea on some simu-
lated data, with one target point near 0.4, and another near the boundary
at 0.05. In this figure the blue line represents the function f(x) from which
the data were generated, and the light orange line corresponds to the local
regression estimate f̂(x). Local regression is described in Algorithm 7.1.
Note that in Step 3 of Algorithm 7.1, the weights Ki0 will differ for each

value of x0. In other words, in order to obtain the local regression fit at a
new point, we need to fit a new weighted least squares regression model by
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FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f̂(x). The orange colored
points are local to the target point x0, represented by the orange vertical line.
The yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f̂(x0) at x0 is
obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at x0 (orange solid dot) as the estimate f̂(x0).

minimizing (7.14) for a new set of weights. Local regression is sometimes
referred to as amemory-based procedure, because like nearest-neighbors, we
need all the training data each time we wish to compute a prediction. We
will avoid getting into the technical details of local regression here—there
are books written on the topic.
In order to perform local regression, there are a number of choices to be

made, such as how to define the weighting function K, and whether to fit
a linear, constant, or quadratic regression in Step 3 above. (Equation 7.14
corresponds to a linear regression.) While all of these choices make some
difference, the most important choice is the span s, defined in Step 1 above.
The span plays a role like that of the tuning parameter λ in smoothing
splines: it controls the flexibility of the non-linear fit. The smaller the value
of s, the more local and wiggly will be our fit; alternatively, a very large
value of s will lead to a global fit to the data using all of the training
observations. We can again use cross-validation to choose s, or we can
specify it directly. Figure 7.10 displays local linear regression fits on the
Wage data, using two values of s: 0.7 and 0.2. As expected, the fit obtained
using s = 0.7 is smoother than that obtained using s = 0.2.
The idea of local regression can be generalized in many different ways.

In a setting with multiple features X1, X2, . . . , Xp, one very useful general-
ization involves fitting a multiple linear regression model that is global in
some variables, but local in another, such as time. Such varying coefficient



282 7. Moving Beyond Linearity

Algorithm 7.1 Local Regression At X = x0

1. Gather the fraction s = k/n of training points whose xi are closest
to x0.

2. Assign a weight Ki0 = K(xi, x0) to each point in this neighborhood,
so that the point furthest from x0 has weight zero, and the closest
has the highest weight. All but these k nearest neighbors get weight
zero.

3. Fit a weighted least squares regression of the yi on the xi using the
aforementioned weights, by finding β̂0 and β̂1 that minimize

n∑
i=1

Ki0(yi − β0 − β1xi)
2. (7.14)

4. The fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0.

models are a useful way of adapting a model to the most recently gathered
varying
coefficient
model

data. Local regression also generalizes very naturally when we want to fit
models that are local in a pair of variables X1 and X2, rather than one.
We can simply use two-dimensional neighborhoods, and fit bivariate linear
regression models using the observations that are near each target point
in two-dimensional space. Theoretically the same approach can be imple-
mented in higher dimensions, using linear regressions fit to p-dimensional
neighborhoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few training
observations close to x0. Nearest-neighbors regression, discussed in Chap-
ter 3, suffers from a similar problem in high dimensions.

7.7 Generalized Additive Models

In Sections 7.1–7.6, we present a number of approaches for flexibly predict-
ing a response Y on the basis of a single predictor X . These approaches can
be seen as extensions of simple linear regression. Here we explore the prob-
lem of flexibly predicting Y on the basis of several predictors, X1, . . . , Xp.
This amounts to an extension of multiple linear regression.
Generalized additive models (GAMs) provide a general framework for

generalized
additive
model

extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity. Just like linear models, GAMs

additivity
can be applied with both quantitative and qualitative responses. We first
examine GAMs for a quantitative response in Section 7.7.1, and then for a
qualitative response in Section 7.7.2.
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FIGURE 7.10. Local linear fits to the Wage data. The span specifies the fraction
of the data used to compute the fit at each target point.

7.7.1 GAMs for Regression Problems

A natural way to extend the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

in order to allow for non-linear relationships between each feature and the
response is to replace each linear component βjxij with a (smooth) non-
linear function fj(xij). We would then write the model as

yi = β0 +

p∑
j=1

fj(xij) + εi

= β0 + f1(xi1) + f2(xi2) + · · ·+ fp(xip) + εi. (7.15)

This is an example of a GAM. It is called an additive model because we
calculate a separate fj for each Xj , and then add together all of their
contributions.
In Sections 7.1–7.6, we discuss many methods for fitting functions to a

single variable. The beauty of GAMs is that we can use these methods
as building blocks for fitting an additive model. In fact, for most of the
methods that we have seen so far in this chapter, this can be done fairly
trivially. Take, for example, natural splines, and consider the task of fitting
the model

wage = β0 + f1(year) + f2(age) + f3(education) + ε (7.16)
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FIGURE 7.11. For the Wage data, plots of the relationship between each feature
and the response, wage, in the fitted model (7.16). Each plot displays the fitted
function and pointwise standard errors. The first two functions are natural splines
in year and age, with four and five degrees of freedom, respectively. The third
function is a step function, fit to the qualitative variable education.

on the Wage data. Here year and age are quantitative variables, and
education is a qualitative variable with five levels: <HS, HS, <Coll, Coll,
>Coll, referring to the amount of high school or college education that
an individual has completed. We fit the first two functions using natural
splines. We fit the third function using a separate constant for each level,
via the usual dummy variable approach of Section 3.3.1.
Figure 7.11 shows the results of fitting the model (7.16) using least

squares. This is easy to do, since as discussed in Section 7.4, natural splines
can be constructed using an appropriately chosen set of basis functions.
Hence the entire model is just a big regression onto spline basis variables
and dummy variables, all packed into one big regression matrix.
Figure 7.11 can be easily interpreted. The left-hand panel indicates that

holding age and education fixed, wage tends to increase slightly with year;
this may be due to inflation. The center panel indicates that holding
education and year fixed, wage tends to be highest for intermediate val-
ues of age, and lowest for the very young and very old. The right-hand
panel indicates that holding year and age fixed, wage tends to increase
with education: the more educated a person is, the higher their salary, on
average. All of these findings are intuitive.
Figure 7.12 shows a similar triple of plots, but this time f1 and f2 are

smoothing splines with four and five degrees of freedom, respectively. Fit-
ting a GAM with a smoothing spline is not quite as simple as fitting a GAM
with a natural spline, since in the case of smoothing splines, least squares
cannot be used. However, standard software such as the gam() function in R

can be used to fit GAMs using smoothing splines, via an approach known
as backfitting. This method fits a model involving multiple predictors by

backfitting
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FIGURE 7.12. Details are as in Figure 7.11, but now f1 and f2 are smoothing
splines with four and five degrees of freedom, respectively.

repeatedly updating the fit for each predictor in turn, holding the others
fixed. The beauty of this approach is that each time we update a function,
we simply apply the fitting method for that variable to a partial residual.6

The fitted functions in Figures 7.11 and 7.12 look rather similar. In most
situations, the differences in the GAMs obtained using smoothing splines
versus natural splines are small.
We do not have to use splines as the building blocks for GAMs: we can

just as well use local regression, polynomial regression, or any combination
of the approaches seen earlier in this chapter in order to create a GAM.
GAMs are investigated in further detail in the lab at the end of this chapter.

Pros and Cons of GAMs

Before we move on, let us summarize the advantages and limitations of a
GAM.

▲ GAMs allow us to fit a non-linear fj to each Xj , so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.

▲ The non-linear fits can potentially make more accurate predictions
for the response Y .

▲ Because the model is additive, we can still examine the effect of
each Xj on Y individually while holding all of the other variables
fixed. Hence if we are interested in inference, GAMs provide a useful
representation.

6A partial residual for X3, for example, has the form ri = yi − f1(xi1) − f2(xi2).
If we know f1 and f2, then we can fit f3 by treating this residual as a response in a
non-linear regression on X3.
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▲ The smoothness of the function fj for the variable Xj can be sum-
marized via degrees of freedom.

◆ The main limitation of GAMs is that the model is restricted to be
additive. With many variables, important interactions can be missed.
However, as with linear regression, we can manually add interaction
terms to the GAM model by including additional predictors of the
form Xj × Xk. In addition we can add low-dimensional interaction
functions of the form fjk(Xj , Xk) into the model; such terms can
be fit using two-dimensional smoothers such as local regression, or
two-dimensional splines (not covered here).

For fully general models, we have to look for even more flexible approaches
such as random forests and boosting, described in Chapter 8. GAMs provide
a useful compromise between linear and fully nonparametric models.

7.7.2 GAMs for Classification Problems

GAMs can also be used in situations where Y is qualitative. For simplicity,
here we will assume Y takes on values zero or one, and let p(X) = Pr(Y =
1|X) be the conditional probability (given the predictors) that the response
equals one. Recall the logistic regression model (4.6):

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + · · ·+ βpXp. (7.17)

This logit is the log of the odds of P (Y = 1|X) versus P (Y = 0|X), which
(7.17) represents as a linear function of the predictors. A natural way to
extend (7.17) to allow for non-linear relationships is to use the model

log

(
p(X)

1− p(X)

)
= β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp). (7.18)

Equation 7.18 is a logistic regression GAM. It has all the same pros and
cons as discussed in the previous section for quantitative responses.
We fit a GAM to the Wage data in order to predict the probability that

an individual’s income exceeds $250,000 per year. The GAM that we fit
takes the form

log

(
p(X)

1− p(X)

)
= β0 + β1 × year+ f2(age) + f3(education), (7.19)

where

p(X) = Pr(wage > 250|year, age, education).
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FIGURE 7.13. For the Wage data, the logistic regression GAM given in (7.19)
is fit to the binary response I(wage>250). Each plot displays the fitted function
and pointwise standard errors. The first function is linear in year, the second
function a smoothing spline with five degrees of freedom in age, and the third a
step function for education. There are very wide standard errors for the first
level <HS of education.

Once again f2 is fit using a smoothing spline with five degrees of freedom,
and f3 is fit as a step function, by creating dummy variables for each of
the levels of education. The resulting fit is shown in Figure 7.13. The last
panel looks suspicious, with very wide confidence intervals for level <HS. In
fact, there are no ones for that category: no individuals with less than a
high school education make more than $250,000 per year. Hence we refit
the GAM, excluding the individuals with less than a high school education.
The resulting model is shown in Figure 7.14. As in Figures 7.11 and 7.12,
all three panels have the same vertical scale. This allows us to visually
assess the relative contributions of each of the variables. We observe that
age and education have a much larger effect than year on the probability
of being a high earner.

7.8 Lab: Non-linear Modeling

In this lab, we re-analyze the Wage data considered in the examples through-
out this chapter, in order to illustrate the fact that many of the complex
non-linear fitting procedures discussed can be easily implemented in R. We
begin by loading the ISLR library, which contains the data.

> library (ISLR)

> attach (Wage)
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FIGURE 7.14. The same model is fit as in Figure 7.13, this time excluding the
observations for which education is <HS. Now we see that increased education
tends to be associated with higher salaries.

7.8.1 Polynomial Regression and Step Functions

We now examine how Figure 7.1 was produced. We first fit the model using
the following command:

> fit=lm(wage∼poly(age ,4) ,data=Wage)

> coef(summary (fit))

Estimate Std . Error t value Pr(>|t|)

(Intercept ) 111.704 0.729 153.28 <2e -16

poly(age , 4)1 447.068 39.915 11.20 <2e -16

poly(age , 4)2 -478.316 39.915 -11.98 <2e -16

poly(age , 4)3 125.522 39.915 3.14 0.0017

poly(age , 4)4 -77.911 39.915 -1.95 0.0510

This syntax fits a linear model, using the lm() function, in order to predict
wage using a fourth-degree polynomial in age: poly(age,4). The poly() com-
mand allows us to avoid having to write out a long formula with powers
of age. The function returns a matrix whose columns are a basis of or-
thogonal polynomials, which essentially means that each column is a linear

orthogonal
polynomialcombination of the variables age, age^2, age^3 and age^4.

However, we can also use poly() to obtain age, age^2, age^3 and age^4

directly, if we prefer. We can do this by using the raw=TRUE argument to
the poly() function. Later we see that this does not affect the model in a
meaningful way—though the choice of basis clearly affects the coefficient
estimates, it does not affect the fitted values obtained.

> fit2=lm(wage∼poly(age ,4, raw =T),data=Wage)

> coef(summary (fit2))

Estimate Std. Error t value Pr(>|t|)

(Intercept ) -1.84e+02 6.00e+01 -3.07 0.002180

poly(age , 4, raw = T)1 2.12e+01 5.89e+00 3.61 0.000312

poly(age , 4, raw = T)2 -5.64e-01 2.06e-01 -2.74 0.006261



7.8 Lab: Non-linear Modeling 289

poly(age , 4, raw = T)3 6.81e-03 3.07e-03 2.22 0.026398

poly(age , 4, raw = T)4 -3.20e-05 1.64e-05 -1.95 0.051039

There are several other equivalent ways of fitting this model, which show-
case the flexibility of the formula language in R. For example

> fit2a=lm(wage∼age+I(age ^2)+I(age ^3)+I(age ^4) ,data=Wage)

> coef(fit2a)

(Intercept ) age I(age ^2) I(age ^3) I(age ^4)

-1.84e+02 2.12e+01 -5.64e-01 6.81e -03 -3.20e -05

This simply creates the polynomial basis functions on the fly, taking care
to protect terms like age^2 via the wrapper function I() (the ^ symbol has wrapper

a special meaning in formulas).

> fit2b=lm(wage∼cbind(age ,age ^2, age ^3, age ^4) ,data=Wage)

This does the same more compactly, using the cbind() function for building
a matrix from a collection of vectors; any function call such as cbind() inside
a formula also serves as a wrapper.
We now create a grid of values for age at which we want predictions, and

then call the generic predict() function, specifying that we want standard
errors as well.

> agelims =range(age)

> age.grid=seq (from=agelims [1], to=agelims [2])

> preds=predict (fit ,newdata =list(age=age.grid),se=TRUE)

> se.bands=cbind(preds$fit +2* preds$se .fit ,preds$fit -2* preds$se .

fit)

Finally, we plot the data and add the fit from the degree-4 polynomial.

> par(mfrow =c(1,2) ,mar=c(4.5 ,4.5 ,1 ,1) ,oma=c(0,0,4,0))

> plot(age ,wage ,xlim=agelims ,cex =.5, col =" darkgrey ")

> title (" Degree -4 Polynomial ",outer =T)

> lines(age .grid ,preds$fit ,lwd =2, col =" blue")

> matlines (age .grid ,se.bands ,lwd =1, col =" blue",lty =3)

Here the mar and oma arguments to par() allow us to control the margins
of the plot, and the title() function creates a figure title that spans both

title()
subplots.
We mentioned earlier that whether or not an orthogonal set of basis func-

tions is produced in the poly() function will not affect the model obtained
in a meaningful way. What do we mean by this? The fitted values obtained
in either case are identical:

> preds2 =predict (fit2 ,newdata =list(age=age.grid),se=TRUE)

> max(abs(preds$fit - preds2$fit ))

[1] 7.39e -13

In performing a polynomial regression we must decide on the degree of
the polynomial to use. One way to do this is by using hypothesis tests. We
now fit models ranging from linear to a degree-5 polynomial and seek to
determine the simplest model which is sufficient to explain the relationship
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between wage and age. We use the anova() function, which performs an
anova()

analysis of variance (ANOVA, using an F-test) in order to test the null
analysis of
variancehypothesis that a model M1 is sufficient to explain the data against the

alternative hypothesis that a more complex model M2 is required. In order
to use the anova() function, M1 and M2 must be nested models: the
predictors in M1 must be a subset of the predictors in M2. In this case,
we fit five different models and sequentially compare the simpler model to
the more complex model.

> fit .1= lm(wage∼age ,data=Wage)

> fit .2= lm(wage∼poly(age ,2) ,data=Wage)

> fit .3= lm(wage∼poly(age ,3) ,data=Wage)

> fit .4= lm(wage∼poly(age ,4) ,data=Wage)

> fit .5= lm(wage∼poly(age ,5) ,data=Wage)

> anova(fit .1, fit .2, fit .3, fit .4, fit .5)

Analysis of Variance Table

Model 1: wage ∼ age

Model 2: wage ∼ poly(age , 2)

Model 3: wage ∼ poly(age , 3)

Model 4: wage ∼ poly(age , 4)

Model 5: wage ∼ poly(age , 5)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 2998 5022216

2 2997 4793430 1 228786 143.59 <2e-16 ***

3 2996 4777674 1 15756 9.89 0.0017 **

4 2995 4771604 1 6070 3.81 0.0510 .

5 2994 4770322 1 1283 0.80 0.3697

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-value comparing the linear Model 1 to the quadratic Model 2 is
essentially zero (<10−15), indicating that a linear fit is not sufficient. Sim-
ilarly the p-value comparing the quadratic Model 2 to the cubic Model 3

is very low (0.0017), so the quadratic fit is also insufficient. The p-value
comparing the cubic and degree-4 polynomials, Model 3 and Model 4, is ap-
proximately 5% while the degree-5 polynomial Model 5 seems unnecessary
because its p-value is 0.37. Hence, either a cubic or a quartic polynomial
appear to provide a reasonable fit to the data, but lower- or higher-order
models are not justified.
In this case, instead of using the anova() function, we could have obtained

these p-values more succinctly by exploiting the fact that poly() creates
orthogonal polynomials.

> coef(summary (fit .5))

Estimate Std . Error t value Pr(>|t|)

(Intercept ) 111.70 0.7288 153.2780 0.000e+00

poly(age , 5)1 447.07 39.9161 11.2002 1.491e-28

poly(age , 5)2 -478.32 39.9161 -11.9830 2.368e-32

poly(age , 5)3 125.52 39.9161 3.1446 1.679e-03
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poly(age , 5)4 -77.91 39.9161 -1.9519 5.105e-02

poly(age , 5)5 -35.81 39.9161 -0.8972 3.697e-01

Notice that the p-values are the same, and in fact the square of the
t-statistics are equal to the F-statistics from the anova() function; for
example:

> ( -11.983) ^2

[1] 143.6

However, the ANOVA method works whether or not we used orthogonal
polynomials; it also works when we have other terms in the model as well.
For example, we can use anova() to compare these three models:

> fit .1= lm(wage∼education +age ,data=Wage)

> fit .2= lm(wage∼education +poly(age ,2) ,data=Wage)

> fit .3= lm(wage∼education +poly(age ,3) ,data=Wage)

> anova(fit .1, fit .2, fit .3)

As an alternative to using hypothesis tests and ANOVA, we could choose
the polynomial degree using cross-validation, as discussed in Chapter 5.
Next we consider the task of predicting whether an individual earns more

than $250,000 per year. We proceed much as before, except that first we
create the appropriate response vector, and then apply the glm() function
using family="binomial" in order to fit a polynomial logistic regression
model.

> fit=glm(I(wage >250)∼poly(age ,4) ,data=Wage ,family =binomial )

Note that we again use the wrapper I() to create this binary response
variable on the fly. The expression wage>250 evaluates to a logical variable
containing TRUEs and FALSEs, which glm() coerces to binary by setting the
TRUEs to 1 and the FALSEs to 0.
Once again, we make predictions using the predict() function.

> preds=predict (fit ,newdata =list(age=age.grid),se=T)

However, calculating the confidence intervals is slightly more involved than
in the linear regression case. The default prediction type for a glm() model
is type="link", which is what we use here. This means we get predictions
for the logit: that is, we have fit a model of the form

log

(
Pr(Y = 1|X)

1− Pr(Y = 1|X)

)
= Xβ,

and the predictions given are of the formXβ̂. The standard errors given are
also of this form. In order to obtain confidence intervals for Pr(Y = 1|X),
we use the transformation

Pr(Y = 1|X) =
exp(Xβ)

1 + exp(Xβ)
.
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> pfit=exp(preds$fit )/(1+ exp( preds$fit ))

> se.bands.logit = cbind(preds$fit +2* preds$se .fit , preds$fit -2*

preds$se .fit)

> se.bands = exp(se.bands.logit)/(1+ exp(se.bands.logit))

Note that we could have directly computed the probabilities by selecting
the type="response" option in the predict() function.

> preds=predict (fit ,newdata =list(age=age.grid),type=" response ",

se=T)

However, the corresponding confidence intervals would not have been sen-
sible because we would end up with negative probabilities!
Finally, the right-hand plot from Figure 7.1 was made as follows:

> plot(age ,I(wage >250) ,xlim=agelims ,type ="n",ylim=c(0 ,.2) )

> points (jitter (age), I((wage >250) /5) ,cex =.5, pch ="|",

col =" darkgrey ")

> lines(age .grid ,pfit ,lwd =2, col =" blue")

> matlines (age .grid ,se.bands ,lwd =1, col =" blue",lty =3)

We have drawn the age values corresponding to the observations with wage

values above 250 as gray marks on the top of the plot, and those with wage

values below 250 are shown as gray marks on the bottom of the plot. We
used the jitter() function to jitter the age values a bit so that observations

jitter()
with the same age value do not cover each other up. This is often called a
rug plot.

rug plot
In order to fit a step function, as discussed in Section 7.2, we use the

cut() function.
cut()

> table(cut (age ,4))

(17.9 ,33.5] (33.5 ,49] (49 ,64.5] (64.5 ,80.1]

750 1399 779 72

> fit=lm(wage∼cut (age ,4) ,data=Wage)

> coef(summary (fit))

Estimate Std . Error t value Pr(>|t|)

(Intercept ) 94.16 1.48 63.79 0.00e+00

cut (age , 4) (33.5 ,49] 24.05 1.83 13.15 1.98e -38

cut (age , 4) (49 ,64.5] 23.66 2.07 11.44 1.04e -29

cut (age , 4) (64.5 ,80.1] 7.64 4.99 1.53 1.26e -01

Here cut() automatically picked the cutpoints at 33.5, 49, and 64.5 years
of age. We could also have specified our own cutpoints directly using the
breaks option. The function cut() returns an ordered categorical variable;
the lm() function then creates a set of dummy variables for use in the re-
gression. The age<33.5 category is left out, so the intercept coefficient of
$94,160 can be interpreted as the average salary for those under 33.5 years
of age, and the other coefficients can be interpreted as the average addi-
tional salary for those in the other age groups. We can produce predictions
and plots just as we did in the case of the polynomial fit.
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7.8.2 Splines

In order to fit regression splines in R, we use the splines library. In Section
7.4, we saw that regression splines can be fit by constructing an appropriate
matrix of basis functions. The bs() function generates the entire matrix of

bs()
basis functions for splines with the specified set of knots. By default, cubic
splines are produced. Fitting wage to age using a regression spline is simple:

> library (splines )

> fit=lm(wage∼bs(age ,knots =c(25 ,40 ,60) ),data=Wage)

> pred=predict (fit ,newdata =list(age =age.grid),se=T)

> plot(age ,wage ,col =" gray ")

> lines(age .grid ,pred$fit ,lwd =2)

> lines(age .grid ,pred$fit +2* pred$se ,lty =" dashed ")

> lines(age .grid ,pred$fit -2* pred$se ,lty =" dashed ")

Here we have prespecified knots at ages 25, 40, and 60. This produces a
spline with six basis functions. (Recall that a cubic spline with three knots
has seven degrees of freedom; these degrees of freedom are used up by an
intercept, plus six basis functions.) We could also use the df option to
produce a spline with knots at uniform quantiles of the data.

> dim(bs(age ,knots=c(25 ,40 ,60) ))

[1] 3000 6

> dim(bs(age ,df =6))

[1] 3000 6

> attr(bs(age ,df=6) ,"knots ")

25% 50% 75%

33.8 42.0 51.0

In this case R chooses knots at ages 33.8, 42.0, and 51.0, which correspond
to the 25th, 50th, and 75th percentiles of age. The function bs() also has
a degree argument, so we can fit splines of any degree, rather than the
default degree of 3 (which yields a cubic spline).
In order to instead fit a natural spline, we use the ns() function. Here

ns()
we fit a natural spline with four degrees of freedom.

> fit2=lm(wage∼ns(age ,df =4) ,data=Wage)

> pred2=predict (fit2 ,newdata =list(age=age.grid),se=T)

> lines(age .grid , pred2$fit ,col ="red",lwd =2)

As with the bs() function, we could instead specify the knots directly using
the knots option.
In order to fit a smoothing spline, we use the smooth.spline() function.

smooth.

spline()Figure 7.8 was produced with the following code:

> plot(age ,wage ,xlim=agelims ,cex =.5, col =" darkgrey ")

> title (" Smoothing Spline ")

> fit=smooth .spline (age ,wage ,df =16)

> fit2=smooth .spline (age ,wage ,cv=TRUE)

> fit2$df

[1] 6.8

> lines(fit ,col ="red ",lwd =2)



294 7. Moving Beyond Linearity

> lines(fit2 ,col =" blue",lwd =2)

> legend (" topright ",legend =c("16 DF " ,"6.8 DF"),

col=c("red "," blue "),lty =1, lwd =2, cex =.8)

Notice that in the first call to smooth.spline(), we specified df=16. The
function then determines which value of λ leads to 16 degrees of freedom. In
the second call to smooth.spline(), we select the smoothness level by cross-
validation; this results in a value of λ that yields 6.8 degrees of freedom.
In order to perform local regression, we use the loess() function.

loess()

> plot(age ,wage ,xlim=agelims ,cex =.5, col =" darkgrey ")

> title (" Local Regression ")

> fit=loess (wage∼age ,span =.2, data=Wage)

> fit2=loess(wage∼age ,span =.5, data=Wage)

> lines(age .grid ,predict (fit ,data.frame(age=age.grid)),

col ="red ",lwd =2)

> lines(age .grid ,predict (fit2 ,data.frame(age=age.grid)),

col =" blue",lwd =2)

> legend (" topright ",legend =c("Span =0.2" ," Span =0.5") ,

col=c("red "," blue "),lty =1, lwd =2, cex =.8)

Here we have performed local linear regression using spans of 0.2 and 0.5:
that is, each neighborhood consists of 20% or 50% of the observations. The
larger the span, the smoother the fit. The locfit library can also be used
for fitting local regression models in R.

7.8.3 GAMs

We now fit a GAM to predict wage using natural spline functions of year
and age, treating education as a qualitative predictor, as in (7.16). Since
this is just a big linear regression model using an appropriate choice of
basis functions, we can simply do this using the lm() function.

> gam1=lm(wage∼ns(year ,4)+ns(age ,5) +education ,data=Wage)

We now fit the model (7.16) using smoothing splines rather than natural
splines. In order to fit more general sorts of GAMs, using smoothing splines
or other components that cannot be expressed in terms of basis functions
and then fit using least squares regression, we will need to use the gam

library in R.
The s() function, which is part of the gam library, is used to indicate that

s()
we would like to use a smoothing spline. We specify that the function of
year should have 4 degrees of freedom, and that the function of age will
have 5 degrees of freedom. Since education is qualitative, we leave it as is,
and it is converted into four dummy variables. We use the gam() function in

gam()
order to fit a GAM using these components. All of the terms in (7.16) are
fit simultaneously, taking each other into account to explain the response.

> library (gam)

> gam.m3=gam(wage∼s(year ,4)+s(age ,5)+education ,data=Wage)
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In order to produce Figure 7.12, we simply call the plot() function:

> par(mfrow =c(1,3))

> plot(gam.m3, se=TRUE ,col ="blue ")

The generic plot() function recognizes that gam.m3 is an object of class gam,
and invokes the appropriate plot.gam() method. Conveniently, even though

plot.gam()
gam1 is not of class gam but rather of class lm, we can still use plot.gam()

on it. Figure 7.11 was produced using the following expression:

> plot.gam(gam1 , se=TRUE , col ="red ")

Notice here we had to use plot.gam() rather than the generic plot()

function.
In these plots, the function of year looks rather linear. We can perform a

series of ANOVA tests in order to determine which of these three models is
best: a GAM that excludes year (M1), a GAM that uses a linear function
of year (M2), or a GAM that uses a spline function of year (M3).

> gam.m1=gam(wage∼s(age ,5) +education ,data=Wage)

> gam.m2=gam(wage∼year+s(age ,5)+education ,data=Wage)

> anova(gam .m1 ,gam.m2 ,gam.m3,test="F")

Analysis of Deviance Table

Model 1: wage ∼ s(age , 5) + education

Model 2: wage ∼ year + s(age , 5) + education

Model 3: wage ∼ s(year , 4) + s(age , 5) + education

Resid. Df Resid . Dev Df Deviance F Pr(>F)

1 2990 3711730

2 2989 3693841 1 17889 14.5 0.00014 ***

3 2986 3689770 3 4071 1.1 0.34857

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We find that there is compelling evidence that a GAM with a linear func-
tion of year is better than a GAM that does not include year at all
(p-value=0.00014). However, there is no evidence that a non-linear func-
tion of year is needed (p-value= 0.349). In other words, based on the results
of this ANOVA, M2 is preferred.
The summary() function produces a summary of the gam fit.

> summary (gam.m3)

Call: gam(formula = wage ∼ s(year , 4) + s(age , 5) + education ,

data = Wage)

Deviance Residuals :

Min 1Q Median 3Q Max

-119.43 -19.70 -3.33 14.17 213.48

(Dispersion Parameter for gaussian family taken to be 1236)

Null Deviance : 5222086 on 2999 degrees of freedom

Residual Deviance : 3689770 on 2986 degrees of freedom
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AIC : 29888

Number of Local Scoring Iterations : 2

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept ) 1

s(year , 4) 1 3 1.1 0.35

s(age , 5) 1 4 32.4 <2e-16 ***

education 4

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The p-values for year and age correspond to a null hypothesis of a linear
relationship versus the alternative of a non-linear relationship. The large
p-value for year reinforces our conclusion from the ANOVA test that a lin-
ear function is adequate for this term. However, there is very clear evidence
that a non-linear term is required for age.
We can make predictions from gam objects, just like from lm objects,

using the predict() method for the class gam. Here we make predictions on
the training set.

> preds=predict (gam.m2,newdata =Wage)

We can also use local regression fits as building blocks in a GAM, using
the lo() function.

lo()
> gam.lo=gam(wage∼s(year ,df=4)+lo(age ,span =0.7)+education ,

data=Wage)

> plot.gam(gam .lo , se=TRUE , col ="green ")

Here we have used local regression for the age term, with a span of 0.7.
We can also use the lo() function to create interactions before calling the
gam() function. For example,

> gam.lo.i=gam (wage∼lo(year ,age ,span =0.5) +education ,

data=Wage)

fits a two-term model, in which the first term is an interaction between
year and age, fit by a local regression surface. We can plot the resulting
two-dimensional surface if we first install the akima package.

> library (akima)

> plot(gam.lo.i)

In order to fit a logistic regression GAM, we once again use the I() func-
tion in constructing the binary response variable, and set family=binomial.

> gam.lr=gam(I(wage >250)∼year+s(age ,df =5)+education ,

family =binomial ,data=Wage)

> par(mfrow =c(1,3))

> plot(gam.lr,se=T,col =" green ")
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It is easy to see that there are no high earners in the <HS category:

> table(education ,I(wage >250) )

education FALSE TRUE

1. < HS Grad 268 0

2. HS Grad 966 5

3. Some College 643 7

4. College Grad 663 22

5. Advanced Degree 381 45

Hence, we fit a logistic regression GAM using all but this category. This
provides more sensible results.

> gam.lr.s=gam (I(wage >250)∼year+s(age ,df=5)+education ,family =

binomial ,data=Wage ,subset =( education !="1. < HS Grad"))

> plot(gam.lr.s,se=T,col =" green ")

7.9 Exercises

Conceptual

1. It was mentioned in the chapter that a cubic regression spline with
one knot at ξ can be obtained using a basis of the form x, x2, x3,
(x− ξ)3+, where (x− ξ)3+ = (x− ξ)3 if x > ξ and equals 0 otherwise.
We will now show that a function of the form

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− ξ)3+

is indeed a cubic regression spline, regardless of the values of β0, β1, β2,
β3, β4.

(a) Find a cubic polynomial

f1(x) = a1 + b1x+ c1x
2 + d1x

3

such that f(x) = f1(x) for all x ≤ ξ. Express a1, b1, c1, d1 in
terms of β0, β1, β2, β3, β4.

(b) Find a cubic polynomial

f2(x) = a2 + b2x+ c2x
2 + d2x

3

such that f(x) = f2(x) for all x > ξ. Express a2, b2, c2, d2 in
terms of β0, β1, β2, β3, β4. We have now established that f(x) is
a piecewise polynomial.

(c) Show that f1(ξ) = f2(ξ). That is, f(x) is continuous at ξ.

(d) Show that f ′
1(ξ) = f ′

2(ξ). That is, f
′(x) is continuous at ξ.
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(e) Show that f ′′
1 (ξ) = f ′′

2 (ξ). That is, f
′′(x) is continuous at ξ.

Therefore, f(x) is indeed a cubic spline.

Hint: Parts (d) and (e) of this problem require knowledge of single-
variable calculus. As a reminder, given a cubic polynomial

f1(x) = a1 + b1x+ c1x
2 + d1x

3,

the first derivative takes the form

f ′
1(x) = b1 + 2c1x+ 3d1x

2

and the second derivative takes the form

f ′′
1 (x) = 2c1 + 6d1x.

2. Suppose that a curve ĝ is computed to smoothly fit a set of n points
using the following formula:

ĝ = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(m)(x)

]2
dx

)
,

where g(m) represents the mth derivative of g (and g(0) = g). Provide
example sketches of ĝ in each of the following scenarios.

(a) λ = ∞,m = 0.

(b) λ = ∞,m = 1.

(c) λ = ∞,m = 2.

(d) λ = ∞,m = 3.

(e) λ = 0,m = 3.

3. Suppose we fit a curve with basis functions b1(X) = X , b2(X) =
(X − 1)2I(X ≥ 1). (Note that I(X ≥ 1) equals 1 for X ≥ 1 and 0
otherwise.) We fit the linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ε,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = −2. Sketch the
estimated curve between X = −2 and X = 2. Note the intercepts,
slopes, and other relevant information.

4. Suppose we fit a curve with basis functions b1(X) = I(0 ≤ X ≤ 2)−
(X− 1)I(1 ≤ X ≤ 2), b2(X) = (X− 3)I(3 ≤ X ≤ 4)+ I(4 < X ≤ 5).
We fit the linear regression model

Y = β0 + β1b1(X) + β2b2(X) + ε,

and obtain coefficient estimates β̂0 = 1, β̂1 = 1, β̂2 = 3. Sketch the
estimated curve between X = −2 and X = 2. Note the intercepts,
slopes, and other relevant information.
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5. Consider two curves, ĝ1 and ĝ2, defined by

ĝ1 = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(3)(x)

]2
dx

)
,

ĝ2 = argmin
g

(
n∑

i=1

(yi − g(xi))
2 + λ

∫ [
g(4)(x)

]2
dx

)
,

where g(m) represents the mth derivative of g.

(a) As λ → ∞, will ĝ1 or ĝ2 have the smaller training RSS?

(b) As λ → ∞, will ĝ1 or ĝ2 have the smaller test RSS?

(c) For λ = 0, will ĝ1 or ĝ2 have the smaller training and test RSS?

Applied

6. In this exercise, you will further analyze the Wage data set considered
throughout this chapter.

(a) Perform polynomial regression to predict wage using age. Use
cross-validation to select the optimal degree d for the polyno-
mial. What degree was chosen, and how does this compare to
the results of hypothesis testing using ANOVA? Make a plot of
the resulting polynomial fit to the data.

(b) Fit a step function to predict wage using age, and perform cross-
validation to choose the optimal number of cuts. Make a plot of
the fit obtained.

7. The Wage data set contains a number of other features not explored
in this chapter, such as marital status (maritl), job class (jobclass),
and others. Explore the relationships between some of these other
predictors and wage, and use non-linear fitting techniques in order to
fit flexible models to the data. Create plots of the results obtained,
and write a summary of your findings.

8. Fit some of the non-linear models investigated in this chapter to the
Auto data set. Is there evidence for non-linear relationships in this
data set? Create some informative plots to justify your answer.

9. This question uses the variables dis (the weighted mean of distances
to five Boston employment centers) and nox (nitrogen oxides concen-
tration in parts per 10 million) from the Boston data. We will treat
dis as the predictor and nox as the response.

(a) Use the poly() function to fit a cubic polynomial regression to
predict nox using dis. Report the regression output, and plot
the resulting data and polynomial fits.
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(b) Plot the polynomial fits for a range of different polynomial
degrees (say, from 1 to 10), and report the associated residual
sum of squares.

(c) Perform cross-validation or another approach to select the opti-
mal degree for the polynomial, and explain your results.

(d) Use the bs() function to fit a regression spline to predict nox

using dis. Report the output for the fit using four degrees of
freedom. How did you choose the knots? Plot the resulting fit.

(e) Now fit a regression spline for a range of degrees of freedom, and
plot the resulting fits and report the resulting RSS. Describe the
results obtained.

(f) Perform cross-validation or another approach in order to select
the best degrees of freedom for a regression spline on this data.
Describe your results.

10. This question relates to the College data set.

(a) Split the data into a training set and a test set. Using out-of-state
tuition as the response and the other variables as the predictors,
perform forward stepwise selection on the training set in order
to identify a satisfactory model that uses just a subset of the
predictors.

(b) Fit a GAM on the training data, using out-of-state tuition as
the response and the features selected in the previous step as
the predictors. Plot the results, and explain your findings.

(c) Evaluate the model obtained on the test set, and explain the
results obtained.

(d) For which variables, if any, is there evidence of a non-linear
relationship with the response?

11. In Section 7.7, it was mentioned that GAMs are generally fit using
a backfitting approach. The idea behind backfitting is actually quite
simple. We will now explore backfitting in the context of multiple
linear regression.

Suppose that we would like to perform multiple linear regression, but
we do not have software to do so. Instead, we only have software
to perform simple linear regression. Therefore, we take the following
iterative approach: we repeatedly hold all but one coefficient esti-
mate fixed at its current value, and update only that coefficient
estimate using a simple linear regression. The process is continued un-
til convergence—that is, until the coefficient estimates stop changing.

We now try this out on a toy example.
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(a) Generate a response Y and two predictors X1 and X2, with
n = 100.

(b) Initialize β̂1 to take on a value of your choice. It does not matter
what value you choose.

(c) Keeping β̂1 fixed, fit the model

Y − β̂1X1 = β0 + β2X2 + ε.

You can do this as follows:

> a=y-beta1 *x1

> beta2=lm(a∼x2)$coef [2]

(d) Keeping β̂2 fixed, fit the model

Y − β̂2X2 = β0 + β1X1 + ε.

You can do this as follows:

> a=y-beta2 *x2

> beta1=lm(a∼x1)$coef [2]

(e) Write a for loop to repeat (c) and (d) 1,000 times. Report the

estimates of β̂0, β̂1, and β̂2 at each iteration of the for loop.
Create a plot in which each of these values is displayed, with β̂0,
β̂1, and β̂2 each shown in a different color.

(f) Compare your answer in (e) to the results of simply performing
multiple linear regression to predict Y using X1 and X2. Use
the abline() function to overlay those multiple linear regression
coefficient estimates on the plot obtained in (e).

(g) On this data set, how many backfitting iterations were required
in order to obtain a “good” approximation to the multiple re-
gression coefficient estimates?

12. This problem is a continuation of the previous exercise. In a toy
example with p = 100, show that one can approximate the multiple
linear regression coefficient estimates by repeatedly performing simple
linear regression in a backfitting procedure. How many backfitting
iterations are required in order to obtain a “good” approximation to
the multiple regression coefficient estimates? Create a plot to justify
your answer.
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