
6
Linear Model Selection
and Regularization

In the regression setting, the standard linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε (6.1)

is commonly used to describe the relationship between a response Y and
a set of variables X1, X2, . . . , Xp. We have seen in Chapter 3 that one
typically fits this model using least squares.
In the chapters that follow, we consider some approaches for extending

the linear model framework. In Chapter 7 we generalize (6.1) in order to
accommodate non-linear, but still additive, relationships, while in Chap-
ter 8 we consider even more general non-linear models. However, the linear
model has distinct advantages in terms of inference and, on real-world prob-
lems, is often surprisingly competitive in relation to non-linear methods.
Hence, before moving to the non-linear world, we discuss in this chapter
some ways in which the simple linear model can be improved, by replacing
plain least squares fitting with some alternative fitting procedures.
Why might we want to use another fitting procedure instead of least

squares? As we will see, alternative fitting procedures can yield better pre-
diction accuracy and model interpretability.

• Prediction Accuracy: Provided that the true relationship between the
response and the predictors is approximately linear, the least squares
estimates will have low bias. If n 
 p—that is, if n, the number of
observations, is much larger than p, the number of variables—then the
least squares estimates tend to also have low variance, and hence will
perform well on test observations. However, if n is not much larger
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204 6. Linear Model Selection and Regularization

than p, then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future
observations not used in model training. And if p > n, then there
is no longer a unique least squares coefficient estimate: the variance
is infinite so the method cannot be used at all. By constraining or
shrinking the estimated coefficients, we can often substantially reduce
the variance at the cost of a negligible increase in bias. This can
lead to substantial improvements in the accuracy with which we can
predict the response for observations not used in model training.

• Model Interpretability : It is often the case that some or many of the
variables used in a multiple regression model are in fact not associ-
ated with the response. Including such irrelevant variables leads to
unnecessary complexity in the resulting model. By removing these
variables—that is, by setting the corresponding coefficient estimates
to zero—we can obtain a model that is more easily interpreted. Now
least squares is extremely unlikely to yield any coefficient estimates
that are exactly zero. In this chapter, we see some approaches for au-
tomatically performing feature selection or variable selection—that is,

feature
selection

variable
selection

for excluding irrelevant variables from a multiple regression model.

There are many alternatives, both classical and modern, to using least
squares to fit (6.1). In this chapter, we discuss three important classes of
methods.

• Subset Selection. This approach involves identifying a subset of the p
predictors that we believe to be related to the response. We then fit
a model using least squares on the reduced set of variables.

• Shrinkage. This approach involves fitting a model involving all p pre-
dictors. However, the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance. Depending on what
type of shrinkage is performed, some of the coefficients may be esti-
mated to be exactly zero. Hence, shrinkage methods can also perform
variable selection.

• Dimension Reduction. This approach involves projecting the p predic-
tors into a M -dimensional subspace, where M < p. This is achieved
by computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

In the following sections we describe each of these approaches in greater de-
tail, along with their advantages and disadvantages. Although this chapter
describes extensions and modifications to the linear model for regression
seen in Chapter 3, the same concepts apply to other methods, such as the
classification models seen in Chapter 4.
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6.1 Subset Selection

In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

To perform best subset selection, we fit a separate least squares regression
best subset
selectionfor each possible combination of the p predictors. That is, we fit all pmodels

that contain exactly one predictor, all
(
p
2

)
= p(p−1)/2 models that contain

exactly two predictors, and so forth. We then look at all of the resulting
models, with the goal of identifying the one that is best.
The problem of selecting the best model from among the 2p possibilities

considered by best subset selection is not trivial. This is usually broken up
into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection

1. Let M0 denote the null model , which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k = 1, 2, . . . p:

(a) Fit all
(
p
k

)
models that contain exactly k predictors.

(b) Pick the best among these
(
p
k

)
models, and call it Mk. Here best

is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.

In Algorithm 6.1, Step 2 identifies the best model (on the training data)
for each subset size, in order to reduce the problem from one of 2p possible
models to one of p + 1 possible models. In Figure 6.1, these models form
the lower frontier depicted in red.
Now in order to select a single best model, we must simply choose among

these p + 1 options. This task must be performed with care, because the
RSS of these p + 1 models decreases monotonically, and the R2 increases
monotonically, as the number of features included in the models increases.
Therefore, if we use these statistics to select the best model, then we will
always end up with a model involving all of the variables. The problem is
that a low RSS or a high R2 indicates a model with a low training error,
whereas we wish to choose a model that has a low test error. (As shown
in Chapter 2 in Figures 2.9–2.11, training error tends to be quite a bit
smaller than test error, and a low training error by no means guarantees
a low test error.) Therefore, in Step 3, we use cross-validated prediction
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FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R2. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

error, Cp, BIC, or adjusted R2 in order to select among M0,M1, . . . ,Mp.
These approaches are discussed in Section 6.1.3.
An application of best subset selection is shown in Figure 6.1. Each

plotted point corresponds to a least squares regression model fit using a
different subset of the 11 predictors in the Credit data set, discussed in
Chapter 3. Here the variable ethnicity is a three-level qualitative variable,
and so is represented by two dummy variables, which are selected separately
in this case. We have plotted the RSS and R2 statistics for each model, as
a function of the number of variables. The red curves connect the best
models for each model size, according to RSS or R2. The figure shows that,
as expected, these quantities improve as the number of variables increases;
however, from the three-variable model on, there is little improvement in
RSS and R2 as a result of including additional predictors.

Although we have presented best subset selection here for least squares
regression, the same ideas apply to other types of models, such as logistic
regression. In the case of logistic regression, instead of ordering models by
RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure

deviance
that plays the role of RSS for a broader class of models. The deviance is
negative two times the maximized log-likelihood; the smaller the deviance,
the better the fit.
While best subset selection is a simple and conceptually appealing ap-

proach, it suffers from computational limitations. The number of possible
models that must be considered grows rapidly as p increases. In general,
there are 2p models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if
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p = 20, then there are over one million possibilities! Consequently, best sub-
set selection becomes computationally infeasible for values of p greater than
around 40, even with extremely fast modern computers. There are compu-
tational shortcuts—so called branch-and-bound techniques—for eliminat-
ing some choices, but these have their limitations as p gets large. They also
only work for least squares linear regression. We present computationally
efficient alternatives to best subset selection next.

6.1.2 Stepwise Selection

For computational reasons, best subset selection cannot be applied with
very large p. Best subset selection may also suffer from statistical problems
when p is large. The larger the search space, the higher the chance of finding
models that look good on the training data, even though they might not
have any predictive power on future data. Thus an enormous search space
can lead to overfitting and high variance of the coefficient estimates.
For both of these reasons, stepwise methods, which explore a far more

restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative to best
forward
stepwise
selection

subset selection. While the best subset selection procedure considers all
2p possible models containing subsets of the p predictors, forward step-
wise considers a much smaller set of models. Forward stepwise selection
begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.
In particular, at each step the variable that gives the greatest additional
improvement to the fit is added to the model. More formally, the forward
stepwise selection procedure is given in Algorithm 6.2.

Algorithm 6.2 Forward stepwise selection

1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, . . . , p− 1:

(a) Consider all p − k models that augment the predictors in Mk

with one additional predictor.

(b) Choose the best among these p − k models, and call it Mk+1.
Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.
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Unlike best subset selection, which involved fitting 2p models, forward
stepwise selection involves fitting one null model, along with p− k models
in the kth iteration, for k = 0, . . . , p − 1. This amounts to a total of 1 +∑p−1

k=0(p−k) = 1+p(p+1)/2 models. This is a substantial difference: when
p = 20, best subset selection requires fitting 1,048,576 models, whereas
forward stepwise selection requires fitting only 211 models.1

In Step 2(b) of Algorithm 6.2, we must identify the best model from
among those p−k that augment Mk with one additional predictor. We can
do this by simply choosing the model with the lowest RSS or the highest
R2. However, in Step 3, we must identify the best model among a set of
models with different numbers of variables. This is more challenging, and
is discussed in Section 6.1.3.
Forward stepwise selection’s computational advantage over best subset

selection is clear. Though forward stepwise tends to do well in practice,
it is not guaranteed to find the best possible model out of all 2p mod-
els containing subsets of the p predictors. For instance, suppose that in a
given data set with p = 3 predictors, the best possible one-variable model
contains X1, and the best possible two-variable model instead contains X2

and X3. Then forward stepwise selection will fail to select the best possible
two-variable model, because M1 will contain X1, so M2 must also contain
X1 together with one additional variable.

Table 6.1, which shows the first four selected models for best subset
and forward stepwise selection on the Credit data set, illustrates this phe-
nomenon. Both best subset selection and forward stepwise selection choose
rating for the best one-variable model and then include income and student

for the two- and three-variable models. However, best subset selection re-
places rating by cards in the four-variable model, while forward stepwise
selection must maintain rating in its four-variable model. In this example,
Figure 6.1 indicates that there is not much difference between the three-
and four-variable models in terms of RSS, so either of the four-variable
models will likely be adequate.
Forward stepwise selection can be applied even in the high-dimensional

setting where n < p; however, in this case, it is possible to construct sub-
models M0, . . . ,Mn−1 only, since each submodel is fit using least squares,
which will not yield a unique solution if p ≥ n.

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection provides an
backward
stepwise
selection

efficient alternative to best subset selection. However, unlike forward

1Though forward stepwise selection considers p(p + 1)/2 + 1 models, it performs a
guided search over model space, and so the effective model space considered contains
substantially more than p(p + 1)/2 + 1 models.
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# Variables Best subset Forward stepwise

One rating rating

Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income, rating, income,

student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

stepwise selection, it begins with the full least squares model containing
all p predictors, and then iteratively removes the least useful predictor,
one-at-a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection

1. Let Mp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1:

(a) Consider all k models that contain all but one of the predictors
in Mk, for a total of k − 1 predictors.

(b) Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using cross-
validated prediction error, Cp (AIC), BIC, or adjusted R2.

Like forward stepwise selection, the backward selection approach searches
through only 1+p(p+1)/2 models, and so can be applied in settings where
p is too large to apply best subset selection.2 Also like forward stepwise
selection, backward stepwise selection is not guaranteed to yield the best
model containing a subset of the p predictors.
Backward selection requires that the number of samples n is larger than

the number of variables p (so that the full model can be fit). In contrast,
forward stepwise can be used even when n < p, and so is the only viable
subset method when p is very large.

2Like forward stepwise selection, backward stepwise selection performs a guided
search over model space, and so effectively considers substantially more than 1+p(p+1)/2
models.
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Hybrid Approaches

The best subset, forward stepwise, and backward stepwise selection ap-
proaches generally give similar but not identical models. As another al-
ternative, hybrid versions of forward and backward stepwise selection are
available, in which variables are added to the model sequentially, in analogy
to forward selection. However, after adding each new variable, the method
may also remove any variables that no longer provide an improvement in
the model fit. Such an approach attempts to more closely mimic best sub-
set selection while retaining the computational advantages of forward and
backward stepwise selection.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p pre-
dictors. In order to implement these methods, we need a way to determine
which of these models is best. As we discussed in Section 6.1.1, the model
containing all of the predictors will always have the smallest RSS and the
largest R2, since these quantities are related to the training error. Instead,
we wish to choose a model with a low test error. As is evident here, and as
we show in Chapter 2, the training error can be a poor estimate of the test
error. Therefore, RSS and R2 are not suitable for selecting the best model
among a collection of models with different numbers of predictors.
In order to select the best model with respect to test error, we need to

estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

Cp, AIC, BIC, and Adjusted R2

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R2 cannot be used
to select from among a set of models with different numbers of variables.
However, a number of techniques for adjusting the training error for the

model size are available. These approaches can be used to select among a set
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FIGURE 6.2. Cp, BIC, and adjusted R2 are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

of models with different numbers of variables. We now consider four such
approaches: Cp, Akaike information criterion (AIC), Bayesian information

Cp

Akaike
information
criterion

criterion (BIC), and adjusted R2. Figure 6.2 displays Cp, BIC, and adjusted

Bayesian
information
criterion

adjusted R2

R2 for the best model of each size produced by best subset selection on the
Credit data set.
For a fitted least squares model containing d predictors, the Cp estimate

of test MSE is computed using the equation

Cp =
1

n

(
RSS + 2dσ̂2

)
, (6.2)

3Mallow’s Cp is sometimes defined as C′
p = RSS/σ̂2 + 2d − n. This is equivalent to

the definition given above in the sense that Cp = 1
n

σ̂2(C′
p + n), and so the model with

smallest Cp also has smallest C′
p.

where σ̂2 is an estimate of the variance of the error ε associated with each
response measurement in (6.1).3

Essentially, the Cp statistic adds a penalty
of 2dσ̂2 to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust
for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if σ̂2 is an unbiased estimate of σ2 in
(6.2), then Cp is an unbiased estimate of test MSE. As a consequence, the
Cp statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest Cp value. In Figure 6.2, Cp selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

Typically is estimated using the full
model containing all predictors.

σ̂2
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The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

AIC =
1

nσ̂2

(
RSS + 2dσ̂2

)
,

where, for simplicity, we have omitted an additive constant. Hence for least
squares models, Cp and AIC are proportional to each other, and so only
Cp is displayed in Figure 6.2.
BIC is derived from a Bayesian point of view, but ends up looking similar

to Cp (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

(6.3)

Like Cp, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2dσ̂2 used by Cp with a log(n)dσ̂2

term, where n is the number of observations. Since logn > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than Cp.
In Figure 6.2, we see that this is indeed the case for the Credit data set;
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.
The adjustedR2 statistic is another popular approach for selecting among

a set of models that contain different numbers of variables. Recall from
Chapter 3 that the usual R2 is defined as 1 − RSS/TSS, where TSS =∑

(yi − y)2 is the total sum of squares for the response. Since RSS always
decreases as more variables are added to the model, the R2 always increases
as more variables are added. For a least squares model with d variables,
the adjusted R2 statistic is calculated as

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
. (6.4)

Unlike Cp, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R2 indicates a model with a
small test error. Maximizing the adjusted R2 is equivalent to minimizing
RSS

n−d−1 . While RSS always decreases as the number of variables in the model

increases, RSS
n−d−1 may increase or decrease, due to the presence of d in the

denominator.
The intuition behind the adjusted R2 is that once all of the correct

variables have been included in the model, adding additional noise variables

BIC =
(
RSS + log(n)dσ̂2

)
.

1

nσ̂2



6.1 Subset Selection 213

will lead to only a very small decrease in RSS. Since adding noise variables

leads to an increase in d, such variables will lead to an increase in RSS
n−d−1 ,

and consequently a decrease in the adjusted R2. Therefore, in theory, the
model with the largest adjusted R2 will have only correct variables and
no noise variables. Unlike the R2 statistic, the adjusted R2 statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R2 for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding gender to
the model selected by Cp and AIC.
Cp, AIC, and BIC all have rigorous theoretical justifications that are

beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R2 is not as well
motivated in statistical theory as AIC, BIC, and Cp. All of these measures
are simple to use and compute. Here we have presented the formulas for
AIC, BIC, and Cp in the case of a linear model fit using least squares;
however, these quantities can also be defined for more general types of
models.

Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, Cp, and adjusted R2, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the model) or hard to
estimate the error variance σ2.
In the past, performing cross-validation was computationally prohibitive

for many problems with large p and/or large n, and so AIC, BIC, Cp,
and adjusted R2 were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.
Figure 6.3 displays, as a function of d, the BIC, validation set errors, and

cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using k = 10 folds.
In this case, the validation and cross-validation methods both result in a
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.

six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
errors.
In fact, the estimated test error curves displayed in the center and right-

hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the one-

standard-
error
rule

standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one
standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.

6.2 Shrinkage Methods

The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately
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obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
β0, β1, . . . , βp using the values that minimize

RSS =
n∑

i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2

.

Ridge regression is very similar to least squares, except that the coefficients
ridge
regressionare estimated by minimizing a slightly different quantity. In particular, the

ridge regression coefficient estimates β̂R are the values that minimize

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa-
tuning
parametertion 6.5 trades off two different criteria. As with least squares, ridge regres-

sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is

shrinkage
penaltysmall when β1, . . . , βp are close to zero, and so it has the effect of shrinking

the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ → ∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to β1, . . . , βp, but

not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables—that is,
the columns of the data matrix X—have been centered to have mean zero
before ridge regression is performed, then the estimated intercept will take
the form β̂0 = ȳ =

∑n
i=1 yi/n.
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of λ and ‖β̂R

λ ‖2/‖β̂‖2.

An Application to the Credit Data

In Figure 6.4, the ridge regression coefficient estimates for the Credit data
set are displayed. In the left-hand panel, each curve corresponds to the
ridge regression coefficient estimate for one of the ten variables, plotted
as a function of λ. For example, the black solid line represents the ridge
regression estimate for the income coefficient, as λ is varied. At the extreme
left-hand side of the plot, λ is essentially zero, and so the corresponding
ridge coefficient estimates are the same as the usual least squares esti-
mates. But as λ increases, the ridge coefficient estimates shrink towards
zero. When λ is extremely large, then all of the ridge coefficient estimates
are basically zero; this corresponds to the null model that contains no pre-
dictors. In this plot, the income, limit, rating, and student variables are
displayed in distinct colors, since these variables tend to have by far the
largest coefficient estimates. While the ridge coefficient estimates tend to
decrease in aggregate as λ increases, individual coefficients, such as rating

and income, may occasionally increase as λ increases.
The right-hand panel of Figure 6.4 displays the same ridge coefficient

estimates as the left-hand panel, but instead of displaying λ on the x-axis,
we now display ‖β̂R

λ ‖2/‖β̂‖2, where β̂ denotes the vector of least squares
coefficient estimates. The notation ‖β‖2 denotes the �2 norm (pronounced

�2 norm

“ell 2”) of a vector, and is defined as ‖β‖2 =
√∑p

j=1 βj
2. It measures

the distance of β from zero. As λ increases, the �2 norm of β̂R
λ will always

decrease, and so will ‖β̂R
λ ‖2/‖β̂‖2. The latter quantity ranges from 1 (when

λ = 0, in which case the ridge regression coefficient estimate is the same
as the least squares estimate, and so their �2 norms are the same) to 0
(when λ = ∞, in which case the ridge regression coefficient estimate is a
vector of zeros, with �2 norm equal to zero). Therefore, we can think of the
x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge
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regression coefficient estimates have been shrunken towards zero; a small
value indicates that they have been shrunken very close to zero.
The standard least squares coefficient estimates discussed in Chapter 3

are scale equivariant: multiplying Xj by a constant c simply leads to a
scale
equivariantscaling of the least squares coefficient estimates by a factor of 1/c. In other

words, regardless of how the jth predictor is scaled, Xj β̂j will remain the
same. In contrast, the ridge regression coefficient estimates can change sub-
stantially when multiplying a given predictor by a constant. For instance,
consider the income variable, which is measured in dollars. One could rea-
sonably have measured income in thousands of dollars, which would result
in a reduction in the observed values of income by a factor of 1,000. Now due
to the sum of squared coefficients term in the ridge regression formulation
(6.5), such a change in scale will not simply cause the ridge regression co-
efficient estimate for income to change by a factor of 1,000. In other words,
Xj β̂

R
j,λ will depend not only on the value of λ, but also on the scaling of the

jth predictor. In fact, the value of Xj β̂
R
j,λ may even depend on the scaling

of the other predictors! Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − xj)2

, (6.6)

so that they are all on the same scale. In (6.6), the denominator is the
estimated standard deviation of the jth predictor. Consequently, all of the
standardized predictors will have a standard deviation of one. As a re-
sult the final fit will not depend on the scale on which the predictors are
measured. In Figure 6.4, the y-axis displays the standardized ridge regres-
sion coefficient estimates—that is, the coefficient estimates that result from
performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As λ increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel
of Figure 6.5 displays the variance of the ridge regression predictions as a
function of λ. At the least squares coefficient estimates, which correspond
to ridge regression with λ = 0, the variance is high but there is no bias. But
as λ increases, the shrinkage of the ridge coefficient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is a function of the variance plus the squared bias. For values
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of λ and ‖β̂R

λ ‖2/‖β̂‖2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

of λ up to about 10, the variance decreases rapidly, with very little increase
in bias, plotted in black. Consequently, the MSE drops considerably as λ
increases from 0 to 10. Beyond this point, the decrease in variance due to
increasing λ slows, and the shrinkage on the coefficients causes them to be
significantly underestimated, resulting in a large increase in the bias. The
minimum MSE is achieved at approximately λ = 30. Interestingly, because
of its high variance, the MSE associated with the least squares fit, when
λ = 0, is almost as high as that of the null model for which all coefficient
estimates are zero, when λ = ∞. However, for an intermediate value of λ,
the MSE is considerably lower.
The right-hand panel of Figure 6.5 displays the same curves as the left-

hand panel, this time plotted against the �2 norm of the ridge regression
coefficient estimates divided by the �2 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.
In general, in situations where the relationship between the response

and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coefficient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the
least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.
Ridge regression also has substantial computational advantages over best

subset selection, which requires searching through 2p models. As we
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discussed previously, even for moderate values of p, such a search can
be computationally infeasible. In contrast, for any fixed value of λ, ridge
regression only fits a single model, and the model-fitting procedure can
be performed quite quickly. In fact, one can show that the computations
required to solve (6.5), simultaneously for all values of λ, are almost iden-
tical to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ = ∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit

data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.
The lasso is a relatively recent alternative to ridge regression that over-

lasso
comes this disadvantage. The lasso coefficients, β̂L

λ , minimize the quantity

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2

+ λ

p∑
j=1

|βj | = RSS + λ

p∑
j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an �1 (pronounced “ell 1”) penalty
instead of an �2 penalty. The �1 norm of a coefficient vector β is given by
‖β‖1 =

∑ |βj |.
As with ridge regression, the lasso shrinks the coefficient estimates

towards zero. However, in the case of the lasso, the �1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is, sparse

models that involve only a subset of the variables. As in ridge regression,
selecting a good value of λ for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ‖β̂L

λ ‖1/‖β̂‖1.

As an example, consider the coefficient plots in Figure 6.6, which are gen-
erated from applying the lasso to the Credit data set. When λ = 0, then
the lasso simply gives the least squares fit, and when λ becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of λ, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on λ.

Another Formulation for Ridge Regression and the Lasso

One can show that the lasso and ridge regression coefficient estimates solve
the problems

minimize
β

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2
⎫⎪⎬
⎪⎭

subject to

p∑
j=1

|βj | ≤ s

(6.8)
and

minimize
β

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2
⎫⎪⎬
⎪⎭

subject to

p∑
j=1

β2
j ≤ s,

(6.9)
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respectively. In other words, for every value of λ, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of λ there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|β1| + |β2| ≤ s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by β2

1 + β2
2 ≤ s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then

∑p
j=1 |βj | must be

small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2
⎫⎪⎬
⎪⎭

subject to

p∑
j=1

I(βj �= 0) ≤ s.

(6.10)
Here I(βj �= 0) is an indicator variable: it takes on a value of 1 if βj �= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient es-
timates such that RSS is as small as possible, subject to the constraint that
no more than s coefficients can be nonzero. The problem (6.10) is equivalent
to best subset selection. Unfortunately, solving (6.10) is computationally
infeasible when p is large, since it requires considering all

(
p
s

)
models con-

taining s predictors. Therefore, we can interpret ridge regression and the
lasso as computationally feasible alternatives to best subset selection that
replace the intractable form of the budget in (6.10) with forms that are
much easier to solve. Of course, the lasso is much more closely related to
best subset selection, since only the lasso performs feature selection for s
sufficiently small in (6.8).

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient
estimates that are exactly equal to zero? The formulations (6.8) and (6.9)
can be used to shed light on the issue. Figure 6.7 illustrates the situation.
The least squares solution is marked as β̂, while the blue diamond and
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β β^^

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain β̂, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to λ = 0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.
The ellipses that are centered around β̂ represent regions of constant

RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at β1 = 0, and so the
resulting model will only include β2.
In Figure 6.7, we considered the simple case of p = 2. When p = 3,

then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R2 on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.

constraint for ridge regression becomes a hypersphere, and the constraint
for the lasso becomes a polytope. However, the key ideas depicted in Fig-
ure 6.7 still hold. In particular, the lasso leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression

It is clear that the lasso has a major advantage over ridge regression, in
that it produces simpler and more interpretable models that involve only a
subset of the predictors. However, which method leads to better prediction
accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of
the lasso applied to the same simulated data as in Figure 6.5. Clearly the
lasso leads to qualitatively similar behavior to ridge regression, in that as λ
increases, the variance decreases and the bias increases. In the right-hand
panel of Figure 6.8, the dotted lines represent the ridge regression fits.
Here we plot both against their R2 on the training data. This is another
useful way to index models, and can be used to compare models with
different types of regularization, as is the case here. In this example, the
lasso and ridge regression result in almost identical biases. However, the
variance of ridge regression is slightly lower than the variance of the lasso.
Consequently, the minimum MSE of ridge regression is slightly smaller than
that of the lasso.
However, the data in Figure 6.8 were generated in such a way that all 45

predictors were related to the response—that is, none of the true coefficients
β1, . . . , β45 equaled zero. The lasso implicitly assumes that a number of the
coefficients truly equal zero. Consequently, it is not surprising that ridge
regression outperforms the lasso in terms of prediction error in this setting.
Figure 6.9 illustrates a similar situation, except that now the response is a
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both
are plotted against their R2 on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.

function of only 2 out of 45 predictors. Now the lasso tends to outperform
ridge regression in terms of bias, variance, and MSE.
These two examples illustrate that neither ridge regression nor the lasso

will universally dominate the other. In general, one might expect the lasso
to perform better in a setting where a relatively small number of predictors
have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better
when the response is a function of many predictors, all with coefficients of
roughly equal size. However, the number of predictors that is related to the
response is never known a priori for real data sets. A technique such as
cross-validation can be used in order to determine which approach is better
on a particular data set.
As with ridge regression, when the least squares estimates have exces-

sively high variance, the lasso solution can yield a reduction in variance
at the expense of a small increase in bias, and consequently can gener-
ate more accurate predictions. Unlike ridge regression, the lasso performs
variable selection, and hence results in models that are easier to interpret.
There are very efficient algorithms for fitting both ridge and lasso models;

in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit. We will explore this
further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso

In order to obtain a better intuition about the behavior of ridge regression
and the lasso, consider a simple special case with n = p, and X a diag-
onal matrix with 1’s on the diagonal and 0’s in all off-diagonal elements.
To simplify the problem further, assume also that we are performing regres-
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sion without an intercept. With these assumptions, the usual least squares
problem simplifies to finding β1, . . . , βp that minimize

p∑
j=1

(yj − βj)
2. (6.11)

In this case, the least squares solution is given by

β̂j = yj .

And in this setting, ridge regression amounts to finding β1, . . . , βp such that

p∑
j=1

(yj − βj)
2 + λ

p∑
j=1

β2
j (6.12)

is minimized, and the lasso amounts to finding the coefficients such that

p∑
j=1

(yj − βj)
2 + λ

p∑
j=1

|βj | (6.13)

is minimized. One can show that in this setting, the ridge regression esti-
mates take the form

β̂R
j = yj/(1 + λ), (6.14)

and the lasso estimates take the form

β̂L
j =

⎧⎪⎨
⎪⎩

yj − λ/2 if yj > λ/2;

yj + λ/2 if yj < −λ/2;

0 if |yj | ≤ λ/2.

(6.15)

Figure 6.10 displays the situation. We can see that ridge regression and
the lasso perform two very different types of shrinkage. In ridge regression,
each least squares coefficient estimate is shrunken by the same proportion.
In contrast, the lasso shrinks each least squares coefficient towards zero by
a constant amount, λ/2; the least squares coefficients that are less than
λ/2 in absolute value are shrunken entirely to zero. The type of shrink-
age performed by the lasso in this simple setting (6.15) is known as soft-
thresholding. The fact that some lasso coefficients are shrunken entirely to

soft-
thresholdingzero explains why the lasso performs feature selection.

In the case of a more general data matrix X, the story is a little more
complicated than what is depicted in Figure 6.10, but the main ideas still
hold approximately: ridge regression more or less shrinks every dimension
of the data by the same proportion, whereas the lasso more or less shrinks
all coefficients toward zero by a similar amount, and sufficiently small co-
efficients are shrunken all the way to zero.
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matrix with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

Bayesian Interpretation for Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through
a Bayesian lens. A Bayesian viewpoint for regression assumes that the
coefficient vector β has some prior distribution, say p(β), where β =
(β0, β1, . . . , βp)

T . The likelihood of the data can be written as f(Y |X, β),
where X = (X1, . . . , Xp). Multiplying the prior distribution by the likeli-
hood gives us (up to a proportionality constant) the posterior distribution,

posterior
distributionwhich takes the form

p(β|X,Y ) ∝ f(Y |X, β)p(β|X) = f(Y |X, β)p(β),

where the proportionality above follows from Bayes’ theorem, and the
equality above follows from the assumption that X is fixed.
We assume the usual linear model,

Y = β0 +X1β1 + . . .+Xpβp + ε,

and suppose that the errors are independent and drawn from a normal dis-
tribution. Furthermore, assume that p(β) =

∏p
j=1 g(βj), for some density

function g. It turns out that ridge regression and the lasso follow naturally
from two special cases of g:

• If g is a Gaussian distribution with mean zero and standard deviation
a function of λ, then it follows that the posterior mode for β—that

posterior
modeis, the most likely value for β, given the data—is given by the ridge

regression solution. (In fact, the ridge regression solution is also the
posterior mean.)
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FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaus-
sian prior. Right: The lasso is the posterior mode for β under a double-exponential
prior.

• If g is a double-exponential (Laplace) distribution with mean zero
and scale parameter a function of λ, then it follows that the posterior
mode for β is the lasso solution. (However, the lasso solution is not
the posterior mean, and in fact, the posterior mean does not yield a
sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11.
Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow
directly from assuming the usual linear model with normal errors, together
with a simple prior distribution for β. Notice that the lasso prior is steeply
peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the
lasso expects a priori that many of the coefficients are (exactly) zero, while
ridge assumes the coefficients are randomly distributed about zero.

6.2.3 Selecting the Tuning Parameter

Just as the subset selection approaches considered in Section 6.1 require
a method to determine which of the models under consideration is best,
implementing ridge regression and the lasso requires a method for selecting
a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the
value of the constraint s in (6.9) and (6.8). Cross-validation provides a sim-
ple way to tackle this problem. We choose a grid of λ values, and compute
the cross-validation error for each value of λ, as described in Chapter 5. We
then select the tuning parameter value for which the cross-validation error
is smallest. Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.
Figure 6.12 displays the choice of λ that results from performing leave-

one-out cross-validation on the ridge regression fits from the Credit data
set. The dashed vertical lines indicate the selected value of λ. In this case
the value is relatively small, indicating that the optimal fit only involves a
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of λ. Right: The coefficient
estimates as a function of λ. The vertical dashed lines indicate the value of λ
selected by cross-validation.

small amount of shrinkage relative to the least squares solution. In addition,
the dip is not very pronounced, so there is rather a wide range of values
that would give very similar error. In a case like this we might simply use
the least squares solution.
Figure 6.13 provides an illustration of ten-fold cross-validation applied to

the lasso fits on the sparse simulated data from Figure 6.9. The left-hand
panel of Figure 6.13 displays the cross-validation error, while the right-hand
panel displays the coefficient estimates. The vertical dashed lines indicate
the point at which the cross-validation error is smallest. The two colored
lines in the right-hand panel of Figure 6.13 represent the two predictors
that are related to the response, while the grey lines represent the unre-
lated predictors; these are often referred to as signal and noise variables,

signal
respectively. Not only has the lasso correctly given much larger coeffi-
cient estimates to the two signal predictors, but also the minimum cross-
validation error corresponds to a set of coefficient estimates for which only
the signal variables are non-zero. Hence cross-validation together with the
lasso has correctly identified the two signal variables in the model, even
though this is a challenging setting, with p = 45 variables and only n = 50
observations. In contrast, the least squares solution—displayed on the far
right of the right-hand panel of Figure 6.13—assigns a large coefficient
estimate to only one of the two signal variables.

6.3 Dimension Reduction Methods

The methods that we have discussed so far in this chapter have controlled
variance in two different ways, either by using a subset of the original vari-
ables, or by shrinking their coefficients toward zero. All of these methods
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit
for which the cross-validation error is smallest.

are defined using the original predictors, X1, X2, . . . , Xp. We now explore
a class of approaches that transform the predictors and then fit a least
squares model using the transformed variables. We will refer to these tech-
niques as dimension reduction methods.

dimension
reductionLet Z1, Z2, . . . , ZM represent M < p linear combinations of our original
linear
combination

p predictors. That is,

Zm =

p∑
j=1

φjmXj (6.16)

for some constants φ1m, φ2m . . . , φpm, m = 1, . . . ,M . We can then fit the
linear regression model

yi = θ0 +

M∑
m=1

θmzim + εi, i = 1, . . . , n, (6.17)

using least squares. Note that in (6.17), the regression coefficients are given
by θ0, θ1, . . . , θM . If the constants φ1m, φ2m, . . . , φpm are chosen wisely, then
such dimension reduction approaches can often outperform least squares
regression. In other words, fitting (6.17) using least squares can lead to
better results than fitting (6.1) using least squares.
The term dimension reduction comes from the fact that this approach

reduces the problem of estimating the p+1 coefficients β0, β1, . . . , βp to the
simpler problem of estimating the M + 1 coefficients θ0, θ1, . . . , θM , where
M < p. In other words, the dimension of the problem has been reduced
from p+ 1 to M + 1.
Notice that from (6.16),

M∑
m=1

θmzim =

M∑
m=1

θm

p∑
j=1

φjmxij =

p∑
j=1

M∑
m=1

θmφjmxij =

p∑
j=1

βjxij ,
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.

where

βj =

M∑
m=1

θmφjm. (6.18)

Hence (6.17) can be thought of as a special case of the original linear
regression model given by (6.1). Dimension reduction serves to constrain
the estimated βj coefficients, since now they must take the form (6.18).
This constraint on the form of the coefficients has the potential to bias the
coefficient estimates. However, in situations where p is large relative to n,
selecting a value ofM � p can significantly reduce the variance of the fitted
coefficients. If M = p, and all the Zm are linearly independent, then (6.18)
poses no constraints. In this case, no dimension reduction occurs, and so
fitting (6.17) is equivalent to performing least squares on the original p
predictors.
All dimension reduction methods work in two steps. First, the trans-

formed predictors Z1, Z2, . . . , ZM are obtained. Second, the model is fit
using these M predictors. However, the choice of Z1, Z2, . . . , ZM , or equiv-
alently, the selection of the φjm’s, can be achieved in different ways. In this
chapter, we will consider two approaches for this task: principal components
and partial least squares.

6.3.1 Principal Components Regression

Principal components analysis (PCA) is a popular approach for deriving
principal
components
analysis

a low-dimensional set of features from a large set of variables. PCA is
discussed in greater detail as a tool for unsupervised learning in Chapter 10.
Here we describe its use as a dimension reduction technique for regression.
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An Overview of Principal Components Analysis

PCA is a technique for reducing the dimension of a n× p data matrix X.
The first principal component direction of the data is that along which the
observations vary the most. For instance, consider Figure 6.14, which shows
population size (pop) in tens of thousands of people, and ad spending for a
particular company (ad) in thousands of dollars, for 100 cities. The green
solid line represents the first principal component direction of the data. We
can see by eye that this is the direction along which there is the greatest
variability in the data. That is, if we projected the 100 observations onto
this line (as shown in the left-hand panel of Figure 6.15), then the resulting
projected observations would have the largest possible variance; projecting
the observations onto any other line would yield projected observations
with lower variance. Projecting a point onto a line simply involves finding
the location on the line which is closest to the point.
The first principal component is displayed graphically in Figure 6.14, but

how can it be summarized mathematically? It is given by the formula

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad). (6.19)

Here φ11 = 0.839 and φ21 = 0.544 are the principal component loadings,
which define the direction referred to above. In (6.19), pop indicates the
mean of all pop values in this data set, and ad indicates the mean of all ad-
vertising spending. The idea is that out of every possible linear combination
of pop and ad such that φ2

11 + φ2
21 = 1, this particular linear combination

yields the highest variance: i.e. this is the linear combination for which
Var(φ11 × (pop− pop) + φ21 × (ad − ad)) is maximized. It is necessary to
consider only linear combinations of the form φ2

11+φ2
21 = 1, since otherwise

we could increase φ11 and φ21 arbitrarily in order to blow up the variance.
In (6.19), the two loadings are both positive and have similar size, and so
Z1 is almost an average of the two variables.
Since n = 100, pop and ad are vectors of length 100, and so is Z1 in

(6.19). For instance,

zi1 = 0.839× (popi − pop) + 0.544× (adi − ad). (6.20)

The values of z11, . . . , zn1 are known as the principal component scores, and
can be seen in the right-hand panel of Figure 6.15.
There is also another interpretation for PCA: the first principal compo-

nent vector defines the line that is as close as possible to the data. For
instance, in Figure 6.14, the first principal component line minimizes the
sum of the squared perpendicular distances between each point and the
line. These distances are plotted as dashed line segments in the left-hand
panel of Figure 6.15, in which the crosses represent the projection of each
point onto the first principal component line. The first principal component
has been chosen so that the projected observations are as close as possible
to the original observations.
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FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop, ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the x-axis.

In the right-hand panel of Figure 6.15, the left-hand panel has been
rotated so that the first principal component direction coincides with the
x-axis. It is possible to show that the first principal component score for
the ith observation, given in (6.20), is the distance in the x-direction of the
ith cross from zero. So for example, the point in the bottom-left corner of
the left-hand panel of Figure 6.15 has a large negative principal component
score, zi1 = −26.1, while the point in the top-right corner has a large
positive score, zi1 = 18.7. These scores can be computed directly using
(6.20).
We can think of the values of the principal component Z1 as single-

number summaries of the joint pop and ad budgets for each location. In
this example, if zi1 = 0.839 × (popi − pop) + 0.544 × (adi − ad) < 0,
then this indicates a city with below-average population size and below-
average ad spending. A positive score suggests the opposite. How well can a
single number represent both pop and ad? In this case, Figure 6.14 indicates
that pop and ad have approximately a linear relationship, and so we might
expect that a single-number summary will work well. Figure 6.16 displays
zi1
the first principal component and the two features. In other words, the first
principal component appears to capture most of the information contained
in the pop and ad predictors.
So far we have concentrated on the first principal component. In gen-

eral, one can construct up to p distinct principal components. The second
principal component Z2 is a linear combination of the variables that is un-
correlated with Z1, and has largest variance subject to this constraint. The
second principal component direction is illustrated as a dashed blue line in
Figure 6.14. It turns out that the zero correlation condition of Z1 with Z2

versus both pop and ad. The plots show a strong relationship between4

4The principal components were calculated after first standardizing both pop and ad,
a common approach. Hence, the x-axes on Figures 6.15 and 6.16 are not on the same scale.
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FIGURE 6.16. Plots of the first principal component scores zi1 versus pop and
ad. The relationships are strong.

is equivalent to the condition that the direction must be perpendicular, or
perpendicular

orthogonal, to the first principal component direction. The second principal
orthogonal

component is given by the formula

Z2 = 0.544× (pop− pop)− 0.839× (ad− ad).

Since the advertising data has two predictors, the first two principal com-
ponents contain all of the information that is in pop and ad. However, by
construction, the first component will contain the most information. Con-
sider, for example, the much larger variability of zi1 (the x-axis) versus
zi2 (the y-axis) in the right-hand panel of Figure 6.15. The fact that the
second principal component scores are much closer to zero indicates that
this component captures far less information. As another illustration, Fig-
ure 6.17 displays zi2 versus pop and ad. There is little relationship between
the second principal component and these two predictors, again suggesting
that in this case, one only needs the first principal component in order to
accurately represent the pop and ad budgets.
With two-dimensional data, such as in our advertising example, we can

construct at most two principal components. However, if we had other
predictors, such as population age, income level, education, and so forth,
then additional components could be constructed. They would successively
maximize variance, subject to the constraint of being uncorrelated with the
preceding components.

The Principal Components Regression Approach

The principal components regression (PCR) approach involves constructing
principal
components
regression

the firstM principal components, Z1, . . . , ZM , and then using these compo-
nents as the predictors in a linear regression model that is fit
using least squares. The key idea is that often a small number of prin-
cipal components suffice to explain most of the variability in the data, as
well as the relationship with the response. In other words, we assume that
the directions in which X1, . . . , Xp show the most variation are the direc-
tions that are associated with Y . While this assumption is not guaranteed
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FIGURE 6.17. Plots of the second principal component scores zi2 versus pop

and ad. The relationships are weak.
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FIGURE 6.18. PCR was applied to two simulated data sets. Left: Simulated
data from Figure 6.8. Right: Simulated data from Figure 6.9.

to be true, it often turns out to be a reasonable enough approximation to
give good results.
If the assumption underlying PCR holds, then fitting a least squares

model to Z1, . . . , ZM will lead to better results than fitting a least squares
model to X1, . . . , Xp, since most or all of the information in the data that
relates to the response is contained in Z1, . . . , ZM , and by estimating only
M � p coefficients we can mitigate overfitting. In the advertising data, the
first principal component explains most of the variance in both pop and ad,
so a principal component regression that uses this single variable to predict
some response of interest, such as sales, will likely perform quite well.
Figure 6.18 displays the PCR fits on the simulated data sets from

Figures 6.8 and 6.9. Recall that both data sets were generated using n = 50
observations and p = 45 predictors. However, while the response in the first
data set was a function of all the predictors, the response in the second data
set was generated using only two of the predictors. The curves are plotted
as a function of M , the number of principal components used as predic-
tors in the regression model. As more principal components are used in
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FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simulated
data set in which the first five principal components of X contain all the informa-
tion about the response Y . In each panel, the irreducible error Var(ε) is shown as
a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid)
and ridge regression (dotted). The x-axis displays the shrinkage factor of the co-
efficient estimates, defined as the �2 norm of the shrunken coefficient estimates
divided by the �2 norm of the least squares estimate.

the regression model, the bias decreases, but the variance increases. This
results in a typical U-shape for the mean squared error. When M = p = 45,
then PCR amounts simply to a least squares fit using all of the original
predictors. The figure indicates that performing PCR with an appropriate
choice of M can result in a substantial improvement over least squares, es-
pecially in the left-hand panel. However, by examining the ridge regression
and lasso results in Figures 6.5, 6.8, and 6.9, we see that PCR does not
perform as well as the two shrinkage methods in this example.
The relatively worse performance of PCR in Figure 6.18 is a consequence

of the fact that the data were generated in such a way that many princi-
pal components are required in order to adequately model the response.
In contrast, PCR will tend to do well in cases when the first few principal
components are sufficient to capture most of the variation in the predictors
as well as the relationship with the response. The left-hand panel of Fig-
ure 6.19 illustrates the results from another simulated data set designed to
be more favorable to PCR. Here the response was generated in such a way
that it depends exclusively on the first five principal components. Now the
bias drops to zero rapidly as M , the number of principal components used
in PCR, increases. The mean squared error displays a clear minimum at
M = 5. The right-hand panel of Figure 6.19 displays the results on these
data using ridge regression and the lasso. All three methods offer a signif-
icant improvement over least squares. However, PCR and ridge regression
slightly outperform the lasso.
We note that even though PCR provides a simple way to perform

regression using M < p predictors, it is not a feature selection method.
This is because each of the M principal components used in the regression
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FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M . Right: The ten-fold cross validation MSE obtained
using PCR, as a function of M .

is a linear combination of all p of the original features. For instance, in
(6.19), Z1 was a linear combination of both pop and ad. Therefore, while
PCR often performs quite well in many practical settings, it does not result
in the development of a model that relies upon a small set of the original
features. In this sense, PCR is more closely related to ridge regression than
to the lasso. In fact, one can show that PCR and ridge regression are very
closely related. One can even think of ridge regression as a continuous ver-
sion of PCR!4

In PCR, the number of principal components, M , is typically chosen by
cross-validation. The results of applying PCR to the Credit data set are
shown in Figure 6.20; the right-hand panel displays the cross-validation
errors obtained, as a function of M . On these data, the lowest cross-
validation error occurs when there are M = 10 components; this corre-
sponds to almost no dimension reduction at all, since PCR with M = 11
is equivalent to simply performing least squares.
When performing PCR, we generally recommend standardizing each

predictor, using (6.6), prior to generating the principal components. This
standardization ensures that all variables are on the same scale. In the
absence of standardization, the high-variance variables will tend to play a
larger role in the principal components obtained, and the scale on which
the variables are measured will ultimately have an effect on the final PCR
model. However, if the variables are all measured in the same units (say,
kilograms, or inches), then one might choose not to standardize them.

4More details can be found in Section 3.5 of Elements of Statistical Learning by
Hastie, Tibshirani, and Friedman.
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FIGURE 6.21. For the advertising data, the first PLS direction (solid line) and
first PCR direction (dotted line) are shown.

6.3.2 Partial Least Squares

The PCR approach that we just described involves identifying linear combi-
nations, or directions, that best represent the predictors X1, . . . , Xp. These
directions are identified in an unsupervised way, since the response Y is not
used to help determine the principal component directions. That is, the
response does not supervise the identification of the principal components.
Consequently, PCR suffers from a drawback: there is no guarantee that the
directions that best explain the predictors will also be the best directions
to use for predicting the response. Unsupervised methods are discussed
further in Chapter 10.
We now present partial least squares (PLS), a supervised alternative to

partial least
squaresPCR. Like PCR, PLS is a dimension reduction method, which first identifies

a new set of features Z1, . . . , ZM that are linear combinations of the original
features, and then fits a linear model via least squares using these M new
features. But unlike PCR, PLS identifies these new features in a supervised
way—that is, it makes use of the response Y in order to identify new
features that not only approximate the old features well, but also that are
related to the response. Roughly speaking, the PLS approach attempts to
find directions that help explain both the response and the predictors.
We now describe how the first PLS direction is computed. After stan-

dardizing the p predictors, PLS computes the first direction Z1 by setting
each φj1 in (6.16) equal to the coefficient from the simple linear regression
of Y onto Xj . One can show that this coefficient is proportional to the cor-
relation between Y and Xj. Hence, in computing Z1 =

∑p
j=1 φj1Xj , PLS

places the highest weight on the variables that are most strongly related
to the response.
Figure 6.21 displays an example of PLS on data

ad dimension per unit

a synthetic set with Sales in
each of 100 regions as the response, and two predictors; Population Size
and Advertising Spending. The solid green line indicates the first PLS
direction, while the dotted line shows the first principal component direction.
PLS has chosen a direction that has less change in the

6

6This dataset is distinct from the Advertising data discussed in Chapter 3.
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To identify the second PLS direction we first adjust each of the variables
for Z1, by regressing each variable on Z1 and taking residuals. These resid-
uals can be interpreted as the remaining information that has not been
explained by the first PLS direction. We then compute Z2 using this or-
thogonalized data in exactly the same fashion as Z1 was computed based
on the original data. This iterative approach can be repeated M times to
identify multiple PLS components Z1, . . . , ZM . Finally, at the end of this
procedure, we use least squares to fit a linear model to predict Y using
Z1, . . . , ZM in exactly the same fashion as for PCR.
As with PCR, the number M of partial least squares directions used in

PLS is a tuning parameter that is typically chosen by cross-validation. We
generally standardize the predictors and response before performing PLS.
PLS is popular in the field of chemometrics, where many variables arise

from digitized spectrometry signals. In practice it often performs no better
than ridge regression or PCR. While the supervised dimension reduction
of PLS can reduce bias, it also has the potential to increase variance, so
that the overall benefit of PLS relative to PCR is a wash.

6.4 Considerations in High Dimensions

6.4.1 High-Dimensional Data

Most traditional statistical techniques for regression and classification are
intended for the low-dimensional setting in which n, the number of ob-

low-
dimensionalservations, is much greater than p, the number of features. This is due in

part to the fact that throughout most of the field’s history, the bulk of sci-
entific problems requiring the use of statistics have been low-dimensional.
For instance, consider the task of developing a model to predict a patient’s
blood pressure on the basis of his or her age, gender, and body mass index
(BMI). There are three predictors, or four if an intercept is included in
the model, and perhaps several thousand patients for whom blood pressure
and age, gender, and BMI are available. Hence n 
 p, and so the problem
is low-dimensional. (By dimension here we are referring to the size of p.)
In the past 20 years, new technologies have changed the way that data

are collected in fields as diverse as finance, marketing, and medicine. It is
now commonplace to collect an almost unlimited number of feature mea-
surements (p very large). While p can be extremely large, the number of
observations n is often limited due to cost, sample availability, or other
considerations. Two examples are as follows:

1. Rather than predicting blood pressure on the basis of just age, gen-
der, and BMI, one might also collect measurements for half a million

pop is
ad. The PLS direction

change in the pop dimension, relative to PCA. This suggests that

explaining the response.
not fit the predictors as closely as does PCA, but it does a better job

more highly correlated with the response than is
does
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single nucleotide polymorphisms (SNPs; these are individual DNA
mutations that are relatively common in the population) for inclu-
sion in the predictive model. Then n ≈ 200 and p ≈ 500,000.

2. A marketing analyst interested in understanding people’s online shop-
ping patterns could treat as features all of the search terms entered
by users of a search engine. This is sometimes known as the “bag-of-
words” model. The same researcher might have access to the search
histories of only a few hundred or a few thousand search engine users
who have consented to share their information with the researcher.
For a given user, each of the p search terms is scored present (0) or
absent (1), creating a large binary feature vector. Then n ≈ 1,000
and p is much larger.

Data sets containing more features than observations are often referred
to as high-dimensional. Classical approaches such as least squares linear

high-
dimensionalregression are not appropriate in this setting. Many of the issues that arise

in the analysis of high-dimensional data were discussed earlier in this book,
since they apply also when n > p: these include the role of the bias-variance
trade-off and the danger of overfitting. Though these issues are always rele-
vant, they can become particularly important when the number of features
is very large relative to the number of observations.
We have defined the high-dimensional setting as the case where the num-

ber of features p is larger than the number of observations n. But the con-
siderations that we will now discuss certainly also apply if p is slightly
smaller than n, and are best always kept in mind when performing super-
vised learning.

6.4.2 What Goes Wrong in High Dimensions?

In order to illustrate the need for extra care and specialized techniques
for regression and classification when p > n, we begin by examining what
can go wrong if we apply a statistical technique not intended for the high-
dimensional setting. For this purpose, we examine least squares regression.
But the same concepts apply to logistic regression, linear discriminant anal-
ysis, and other classical statistical approaches.
When the number of features p is as large as, or larger than, the number

of observations n, least squares as described in Chapter 3 cannot (or rather,
should not) be performed. The reason is simple: regardless of whether or
not there truly is a relationship between the features and the response,
least squares will yield a set of coefficient estimates that result in a perfect
fit to the data, such that the residuals are zero.
An example is shown in Figure 6.22 with p = 1 feature (plus an intercept)

in two cases: when there are 20 observations, and when there are only
two observations. When there are 20 observations, n > p and the least
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FIGURE 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters to be
estimated (an intercept and a coefficient).

squares regression line does not perfectly fit the data; instead, the regression
line seeks to approximate the 20 observations as well as possible. On the
other hand, when there are only two observations, then regardless of the
values of those observations, the regression line will fit the data exactly.
This is problematic because this perfect fit will almost certainly lead to
overfitting of the data. In other words, though it is possible to perfectly fit
the training data in the high-dimensional setting, the resulting linear model
will perform extremely poorly on an independent test set, and therefore
does not constitute a useful model. In fact, we can see that this happened
in Figure 6.22: the least squares line obtained in the right-hand panel will
perform very poorly on a test set comprised of the observations in the left-
hand panel. The problem is simple: when p > n or p ≈ n, a simple least
squares regression line is too flexible and hence overfits the data.
Figure 6.23 further illustrates the risk of carelessly applying least squares

when the number of features p is large. Data were simulated with n = 20
observations, and regression was performed with between 1 and 20 features,
each of which was completely unrelated to the response. As shown in the
figure, the model R2 increases to 1 as the number of features included in the
model increases, and correspondingly the training set MSE decreases to 0
as the number of features increases, even though the features are completely
unrelated to the response. On the other hand, the MSE on an independent
test set becomes extremely large as the number of features included in the
model increases, because including the additional predictors leads to a vast
increase in the variance of the coefficient estimates. Looking at the test
set MSE, it is clear that the best model contains at most a few variables.
However, someone who carelessly examines only the R2 or the training set
MSE might erroneously conclude that the model with the greatest number
of variables is best. This indicates the importance of applying extra care
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FIGURE 6.23. On a simulated example with n = 20 training observations,
features that are completely unrelated to the outcome are added to the model.
Left: The R2 increases to 1 as more features are included. Center: The training
set MSE decreases to 0 as more features are included. Right: The test set MSE
increases as more features are included.

when analyzing data sets with a large number of variables, and of always
evaluating model performance on an independent test set.
In Section 6.1.3, we saw a number of approaches for adjusting the training

set RSS or R2 in order to account for the number of variables used to fit
a least squares model. Unfortunately, the Cp, AIC, and BIC approaches
are not appropriate in the high-dimensional setting, because estimating σ̂2

is problematic. (For instance, the formula for σ̂2 from Chapter 3 yields an
estimate σ̂2 = 0 in this setting.) Similarly, problems arise in the application
of adjusted R2 in the high-dimensional setting, since one can easily obtain
a model with an adjusted R2 value of 1. Clearly, alternative approaches
that are better-suited to the high-dimensional setting are required.

6.4.3 Regression in High Dimensions

It turns out that many of the methods seen in this chapter for fitting
less flexible least squares models, such as forward stepwise selection, ridge
regression, the lasso, and principal components regression, are particularly
useful for performing regression in the high-dimensional setting. Essentially,
these approaches avoid overfitting by using a less flexible fitting approach
than least squares.
Figure 6.24 illustrates the performance of the lasso in a simple simulated

example. There are p = 20, 50, or 2,000 features, of which 20 are truly
associated with the outcome. The lasso was performed on n = 100 training
observations, and the mean squared error was evaluated on an independent
test set. As the number of features increases, the test set error increases.
When p = 20, the lowest validation set error was achieved when λ in
(6.7) was small; however, when p was larger then the lowest validation
set error was achieved using a larger value of λ. In each boxplot, rather
than reporting the values of λ used, the degrees of freedom of the resulting
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FIGURE 6.24. The lasso was performed with n = 100 observations and three
values of p, the number of features. Of the p features, 20 were associated with
the response. The boxplots show the test MSEs that result using three different
values of the tuning parameter λ in (6.7). For ease of interpretation, rather than
reporting λ, the degrees of freedom are reported; for the lasso this turns out
to be simply the number of estimated non-zero coefficients. When p = 20, the
lowest test MSE was obtained with the smallest amount of regularization. When
p = 50, the lowest test MSE was achieved when there is a substantial amount
of regularization. When p = 2,000 the lasso performed poorly regardless of the
amount of regularization, due to the fact that only 20 of the 2,000 features truly
are associated with the outcome.

lasso solution is displayed; this is simply the number of non-zero coefficient
estimates in the lasso solution, and is a measure of the flexibility of the
lasso fit. Figure 6.24 highlights three important points: (1) regularization
or shrinkage plays a key role in high-dimensional problems, (2) appropriate
tuning parameter selection is crucial for good predictive performance, and
(3) the test error tends to increase as the dimensionality of the problem
(i.e. the number of features or predictors) increases, unless the additional
features are truly associated with the response.
The third point above is in fact a key principle in the analysis of high-

dimensional data, which is known as the curse of dimensionality. One might
curse of di-
mensionalitythink that as the number of features used to fit a model increases, the

quality of the fitted model will increase as well. However, comparing the
left-hand and right-hand panels in Figure 6.24, we see that this is not
necessarily the case: in this example, the test set MSE almost doubles as
p increases from 20 to 2,000. In general, adding additional signal features
that are truly associated with the response will improve the fitted model,
in the sense of leading to a reduction in test set error. However, adding
noise features that are not truly associated with the response will lead
to a deterioration in the fitted model, and consequently an increased test
set error. This is because noise features increase the dimensionality of the
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problem, exacerbating the risk of overfitting (since noise features may be
assigned nonzero coefficients due to chance associations with the response
on the training set) without any potential upside in terms of improved test
set error. Thus, we see that new technologies that allow for the collection
of measurements for thousands or millions of features are a double-edged
sword: they can lead to improved predictive models if these features are in
fact relevant to the problem at hand, but will lead to worse results if the
features are not relevant. Even if they are relevant, the variance incurred
in fitting their coefficients may outweigh the reduction in bias that they
bring.

6.4.4 Interpreting Results in High Dimensions

When we perform the lasso, ridge regression, or other regression proce-
dures in the high-dimensional setting, we must be quite cautious in the way
that we report the results obtained. In Chapter 3, we learned about multi-
collinearity, the concept that the variables in a regression might be corre-
lated with each other. In the high-dimensional setting, the multicollinearity
problem is extreme: any variable in the model can be written as a linear
combination of all of the other variables in the model. Essentially, this
means that we can never know exactly which variables (if any) truly are
predictive of the outcome, and we can never identify the best coefficients
for use in the regression. At most, we can hope to assign large regression
coefficients to variables that are correlated with the variables that truly are
predictive of the outcome.
For instance, suppose that we are trying to predict blood pressure on the

basis of half a million SNPs, and that forward stepwise selection indicates
that 17 of those SNPs lead to a good predictive model on the training data.
It would be incorrect to conclude that these 17 SNPs predict blood pressure
more effectively than the other SNPs not included in the model. There are
likely to be many sets of 17 SNPs that would predict blood pressure just
as well as the selected model. If we were to obtain an independent data set
and perform forward stepwise selection on that data set, we would likely
obtain a model containing a different, and perhaps even non-overlapping,
set of SNPs. This does not detract from the value of the model obtained—
for instance, the model might turn out to be very effective in predicting
blood pressure on an independent set of patients, and might be clinically
useful for physicians. But we must be careful not to overstate the results
obtained, and to make it clear that what we have identified is simply one
of many possible models for predicting blood pressure, and that it must be
further validated on independent data sets.
It is also important to be particularly careful in reporting errors and

measures of model fit in the high-dimensional setting. We have seen that
when p > n, it is easy to obtain a useless model that has zero residu-
als. Therefore, one should never use sum of squared errors, p-values, R2
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statistics, or other traditional measures of model fit on the training data as
evidence of a good model fit in the high-dimensional setting. For instance,
as we saw in Figure 6.23, one can easily obtain a model with R2 = 1 when
p > n. Reporting this fact might mislead others into thinking that a sta-
tistically valid and useful model has been obtained, whereas in fact this
provides absolutely no evidence of a compelling model. It is important to
instead report results on an independent test set, or cross-validation errors.
For instance, the MSE or R2 on an independent test set is a valid measure
of model fit, but the MSE on the training set certainly is not.

6.5 Lab 1: Subset Selection Methods

6.5.1 Best Subset Selection

Here we apply the best subset selection approach to the Hitters data. We
wish to predict a baseball player’s Salary on the basis of various statistics
associated with performance in the previous year.
First of all, we note that the Salary variable is missing for some of the

players. The is.na() function can be used to identify the missing observa-
is.na()

tions. It returns a vector of the same length as the input vector, with a TRUE

for any elements that are missing, and a FALSE for non-missing elements.
The sum() function can then be used to count all of the missing elements.

sum()

> library (ISLR)

> fix(Hitters )

> names(Hitters )

[1] "AtBat " "Hits" "HmRun " "Runs" "RBI"

[6] "Walks " "Years " "CAtBat " "CHits " "CHmRun "

[11] "CRuns " "CRBI" "CWalks " "League " "Division "

[16] "PutOuts " "Assists " "Errors " "Salary " "NewLeague "

> dim(Hitters )

[1] 322 20

> sum(is.na(Hitters$Salary))

[1] 59

Hence we see that Salary is missing for 59 players. The na.omit() function
removes all of the rows that have missing values in any variable.

> Hitters =na.omit(Hitters )

> dim(Hitters )

[1] 263 20

> sum(is.na(Hitters ))

[1] 0

The regsubsets() function (part of the leaps library) performs best sub-
regsubsets()

set selection by identifying the best model that contains a given number
of predictors, where best is quantified using RSS. The syntax is the same
as for lm(). The summary() command outputs the best set of variables for
each model size.
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> library (leaps)

> regfit .full=regsubsets (Salary∼.,Hitters )

> summary (regfit .full)

Subset selection object

Call: regsubsets .formula (Salary ∼ ., Hitters )

19 Variables (and intercept )

...

1 subsets of each size up to 8

Selection Algorithm : exhaustive

AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits

1 ( 1 ) " " " " " " " " " " " " " " " " " "

2 ( 1 ) " " "*" " " " " " " " " " " " " " "

3 ( 1 ) " " "*" " " " " " " " " " " " " " "

4 ( 1 ) " " "*" " " " " " " " " " " " " " "

5 ( 1 ) "*" "*" " " " " " " " " " " " " " "

6 ( 1 ) "*" "*" " " " " " " "*" " " " " " "

7 ( 1 ) " " "*" " " " " " " "*" " " "*" "*"

8 ( 1 ) "*" "*" " " " " " " "*" " " " " " "

CHmRun CRuns CRBI CWalks LeagueN DivisionW PutOuts

1 ( 1 ) " " " " "*" " " " " " " " "

2 ( 1 ) " " " " "*" " " " " " " " "

3 ( 1 ) " " " " "*" " " " " " " "*"

4 ( 1 ) " " " " "*" " " " " "*" "*"

5 ( 1 ) " " " " "*" " " " " "*" "*"

6 ( 1 ) " " " " "*" " " " " "*" "*"

7 ( 1 ) "*" " " " " " " " " "*" "*"

8 ( 1 ) "*" "*" " " "*" " " "*" "*"

Assists Errors NewLeagueN

1 ( 1 ) " " " " " "

2 ( 1 ) " " " " " "

3 ( 1 ) " " " " " "

4 ( 1 ) " " " " " "

5 ( 1 ) " " " " " "

6 ( 1 ) " " " " " "

7 ( 1 ) " " " " " "

8 ( 1 ) " " " " " "

An asterisk indicates that a given variable is included in the corresponding
model. For instance, this output indicates that the best two-variable model
contains only Hits and CRBI. By default, regsubsets() only reports results
up to the best eight-variable model. But the nvmax option can be used
in order to return as many variables as are desired. Here we fit up to a
19-variable model.

> regfit .full=regsubsets (Salary∼.,data=Hitters ,nvmax =19)

> reg.summary =summary (regfit .full)

The summary() function also returns R2, RSS, adjusted R2, Cp, and BIC.
We can examine these to try to select the best overall model.

> names(reg .summary )

[1] "which" "rsq " "rss " "adjr2" "cp" "bic"

[7] "outmat " "obj "
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For instance, we see that the R2 statistic increases from 32%, when only
one variable is included in the model, to almost 55%, when all variables
are included. As expected, the R2 statistic increases monotonically as more
variables are included.

> reg. summary$rsq

[1] 0.321 0.425 0.451 0.475 0.491 0.509 0.514 0.529 0.535

[10] 0.540 0.543 0.544 0.544 0.545 0.545 0.546 0.546 0.546

[19] 0.546

Plotting RSS, adjusted R2, Cp, and BIC for all of the models at once will
help us decide which model to select. Note the type="l" option tells R to
connect the plotted points with lines.

> par(mfrow =c(2,2))

> plot(reg.summary$rss ,xlab=" Number of Variables ",ylab=" RSS",

type="l")

> plot(reg.summary$adjr2 ,xlab =" Number of Variables ",

ylab=" Adjusted RSq",type="l")

The points() command works like the plot() command, except that it
points()

puts points on a plot that has already been created, instead of creating a
new plot. The which.max() function can be used to identify the location of
the maximum point of a vector. We will now plot a red dot to indicate the
model with the largest adjusted R2 statistic.

> which.max (reg.summary$adjr2)

[1] 11

> points (11, reg.summary$adjr2[11], col ="red",cex =2, pch =20)

In a similar fashion we can plot the Cp and BIC statistics, and indicate the
models with the smallest statistic using which.min().

which.min()

> plot(reg.summary$cp ,xlab =" Number of Variables ",ylab="Cp",

type=’l’)

> which.min (reg.summary$cp )

[1] 10

> points (10, reg.summary$cp [10], col ="red",cex =2, pch =20)

> which.min (reg.summary$bic )

[1] 6

> plot(reg.summary$bic ,xlab=" Number of Variables ",ylab=" BIC",

type=’l’)

> points (6, reg .summary$bic [6], col =" red",cex =2, pch =20)

The regsubsets() function has a built-in plot() command which can
be used to display the selected variables for the best model with a given
number of predictors, ranked according to the BIC, Cp, adjusted R2, or
AIC. To find out more about this function, type ?plot.regsubsets.

> plot(regfit .full ,scale ="r2")

> plot(regfit .full ,scale =" adjr2 ")

> plot(regfit .full ,scale ="Cp")

> plot(regfit .full ,scale ="bic ")
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The top row of each plot contains a black square for each variable selected
according to the optimal model associated with that statistic. For instance,
we see that several models share a BIC close to −150. However, the model
with the lowest BIC is the six-variable model that contains only AtBat,
Hits, Walks, CRBI, DivisionW, and PutOuts. We can use the coef() function
to see the coefficient estimates associated with this model.

> coef(regfit .full ,6)

(Intercept ) AtBat Hits Walks CRBI

91.512 -1.869 7.604 3.698 0.643

DivisionW PutOuts

-122.952 0.264

6.5.2 Forward and Backward Stepwise Selection

We can also use the regsubsets() function to perform forward stepwise
or backward stepwise selection, using the argument method="forward" or
method="backward".

> regfit .fwd=regsubsets (Salary∼.,data=Hitters ,nvmax =19,

method =" forward ")

> summary (regfit .fwd )

> regfit .bwd=regsubsets (Salary∼.,data=Hitters ,nvmax =19,

method =" backward ")

> summary (regfit .bwd )

For instance, we see that using forward stepwise selection, the best one-
variable model contains only CRBI, and the best two-variable model ad-
ditionally includes Hits. For this data, the best one-variable through six-
variable models are each identical for best subset and forward selection.
However, the best seven-variable models identified by forward stepwise se-
lection, backward stepwise selection, and best subset selection are different.

> coef(regfit .full ,7)

(Intercept ) Hits Walks CAtBat CHits

79.451 1.283 3.227 -0.375 1.496

CHmRun DivisionW PutOuts

1.442 -129.987 0.237

> coef(regfit .fwd ,7)

(Intercept ) AtBat Hits Walks CRBI

109.787 -1.959 7.450 4.913 0.854

CWalks DivisionW PutOuts

-0.305 -127.122 0.253

> coef(regfit .bwd ,7)

(Intercept ) AtBat Hits Walks CRuns

105.649 -1.976 6.757 6.056 1.129

CWalks DivisionW PutOuts

-0.716 -116.169 0.303
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6.5.3 Choosing Among Models Using the Validation Set
Approach and Cross-Validation

We just saw that it is possible to choose among a set of models of different
sizes using Cp, BIC, and adjusted R2. We will now consider how to do this
using the validation set and cross-validation approaches.
In order for these approaches to yield accurate estimates of the test

error, we must use only the training observations to perform all aspects of
model-fitting—including variable selection. Therefore, the determination of
which model of a given size is best must be made using only the training
observations. This point is subtle but important. If the full data set is used
to perform the best subset selection step, the validation set errors and
cross-validation errors that we obtain will not be accurate estimates of the
test error.
In order to use the validation set approach, we begin by splitting the

observations into a training set and a test set. We do this by creating
a random vector, train, of elements equal to TRUE if the corresponding
observation is in the training set, and FALSE otherwise. The vector test has
a TRUE if the observation is in the test set, and a FALSE otherwise. Note the
! in the command to create test causes TRUEs to be switched to FALSEs and
vice versa. We also set a random seed so that the user will obtain the same
training set/test set split.

> set.seed (1)

> train=sample (c(TRUE ,FALSE), nrow(Hitters ),rep=TRUE)

> test =(! train )

Now, we apply regsubsets() to the training set in order to perform best
subset selection.

> regfit .best=regsubsets (Salary∼.,data=Hitters [train ,],

nvmax =19)

Notice that we subset the Hitters data frame directly in the call in or-
der to access only the training subset of the data, using the expression
Hitters[train,]. We now compute the validation set error for the best
model of each model size. We first make a model matrix from the test
data.

test.mat=model.matrix (Salary∼.,data=Hitters [test ,])

The model.matrix() function is used in many regression packages for build-
model.

matrix()ing an “X” matrix from data. Now we run a loop, and for each size i, we
extract the coefficients from regfit.best for the best model of that size,
multiply them into the appropriate columns of the test model matrix to
form the predictions, and compute the test MSE.

> val.errors =rep(NA ,19)

> for(i in 1:19){

+ coefi=coef(regfit .best ,id=i)
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+ pred=test.mat [,names(coefi)]%*% coefi

+ val.errors [i]= mean(( Hitters$Salary[test]-pred)^2)

}

We find that the best model is the one that contains ten variables.

> val.errors

[1] 220968 169157 178518 163426 168418 171271 162377 157909

[9] 154056 148162 151156 151742 152214 157359 158541 158743

[17] 159973 159860 160106

> which.min (val.errors )

[1] 10

> coef(regfit .best ,10)

(Intercept ) AtBat Hits Walks CAtBat

-80.275 -1.468 7.163 3.643 -0.186

CHits CHmRun CWalks LeagueN DivisionW

1.105 1.384 -0.748 84.558 -53.029

PutOuts

0.238

This was a little tedious, partly because there is no predict() method
for regsubsets(). Since we will be using this function again, we can capture
our steps above and write our own predict method.

> predict .regsubsets =function (object ,newdata ,id ,...){

+ form=as.formula (object$call [[2]])

+ mat=model.matrix (form ,newdata )

+ coefi =coef(object ,id=id)

+ xvars =names (coefi )

+ mat[,xvars ]%*% coefi

+ }

Our function pretty much mimics what we did above. The only complex
part is how we extracted the formula used in the call to regsubsets(). We
demonstrate how we use this function below, when we do cross-validation.
Finally, we perform best subset selection on the full data set, and select

the best ten-variable model. It is important that we make use of the full
data set in order to obtain more accurate coefficient estimates. Note that
we perform best subset selection on the full data set and select the best ten-
variable model, rather than simply using the variables that were obtained
from the training set, because the best ten-variable model on the full data
set may differ from the corresponding model on the training set.

> regfit .best=regsubsets (Salary∼.,data=Hitters ,nvmax =19)

> coef(regfit .best ,10)

(Intercept ) AtBat Hits Walks CAtBat

162.535 -2.169 6.918 5.773 -0.130

CRuns CRBI CWalks DivisionW PutOuts

1.408 0.774 -0.831 -112.380 0.297

Assists

0.283
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In fact, we see that the best ten-variable model on the full data set has a
different set of variables than the best ten-variable model on the training
set.
We now try to choose among the models of different sizes using cross-

validation. This approach is somewhat involved, as we must perform best
subset selection within each of the k training sets. Despite this, we see that
with its clever subsetting syntax, R makes this job quite easy. First, we
create a vector that allocates each observation to one of k = 10 folds, and
we create a matrix in which we will store the results.

> k=10

> set.seed (1)

> folds=sample (1:k,nrow(Hitters ),replace =TRUE)

> cv.errors =matrix (NA ,k,19, dimnames =list(NULL , paste (1:19) ))

Now we write a for loop that performs cross-validation. In the jth fold, the
elements of folds that equal j are in the test set, and the remainder are in
the training set. We make our predictions for each model size (using our
new predict() method), compute the test errors on the appropriate subset,
and store them in the appropriate slot in the matrix cv.errors.

> for(j in 1:k){

+ best.fit =regsubsets (Salary∼.,data=Hitters [folds !=j,],

nvmax =19)

+ for(i in 1:19) {

+ pred=predict (best.fit ,Hitters [folds ==j,], id=i)

+ cv.errors [j,i]= mean( (Hitters$Salary[folds ==j]-pred)^2)

+ }

+ }

This has given us a 10×19 matrix, of which the (i, j)th element corresponds
to the test MSE for the ith cross-validation fold for the best j-variable
model. We use the apply() function to average over the columns of this

apply()
matrix in order to obtain a vector for which the jth element is the cross-
validation error for the j-variable model.

> mean.cv.errors =apply(cv.errors ,2, mean)

> mean.cv.errors

[1] 160093 140197 153117 151159 146841 138303 144346 130208

[9] 129460 125335 125154 128274 133461 133975 131826 131883

[17] 132751 133096 132805

> par(mfrow =c(1,1))

> plot(mean.cv.errors ,type=’b’)

We see that cross-validation selects an 11-variable model. We now perform
best subset selection on the full data set in order to obtain the 11-variable
model.

> reg.best=regsubsets (Salary∼.,data=Hitters , nvmax =19)

> coef(reg.best ,11)

(Intercept ) AtBat Hits Walks CAtBat

135.751 -2.128 6.924 5.620 -0.139
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CRuns CRBI CWalks LeagueN DivisionW

1.455 0.785 -0.823 43.112 -111.146

PutOuts Assists

0.289 0.269

6.6 Lab 2: Ridge Regression and the Lasso

We will use the glmnet package in order to perform ridge regression and
the lasso. The main function in this package is glmnet(), which can be used

glmnet()
to fit ridge regression models, lasso models, and more. This function has
slightly different syntax from other model-fitting functions that we have
encountered thus far in this book. In particular, we must pass in an x

matrix as well as a y vector, and we do not use the y ∼ x syntax. We will
now perform ridge regression and the lasso in order to predict Salary on
the Hitters data. Before proceeding ensure that the missing values have
been removed from the data, as described in Section 6.5.

> x=model.matrix (Salary∼.,Hitters )[,-1]

> y=Hitters$Salary

The model.matrix() function is particularly useful for creating x; not only
does it produce a matrix corresponding to the 19 predictors but it also
automatically transforms any qualitative variables into dummy variables.
The latter property is important because glmnet() can only take numerical,
quantitative inputs.

6.6.1 Ridge Regression

The glmnet() function has an alpha argument that determines what type
of model is fit. If alpha=0 then a ridge regression model is fit, and if alpha=1
then a lasso model is fit. We first fit a ridge regression model.

> library (glmnet )

> grid =10^ seq (10,-2, length =100)

> ridge.mod =glmnet (x,y,alpha =0, lambda =grid)

By default the glmnet() function performs ridge regression for an automati-
cally selected range of λ values. However, here we have chosen to implement
the function over a grid of values ranging from λ = 1010 to λ = 10−2, es-
sentially covering the full range of scenarios from the null model containing
only the intercept, to the least squares fit. As we will see, we can also com-
pute model fits for a particular value of λ that is not one of the original
grid values. Note that by default, the glmnet() function standardizes the
variables so that they are on the same scale. To turn off this default setting,
use the argument standardize=FALSE.
Associated with each value of λ is a vector of ridge regression coefficients,

stored in a matrix that can be accessed by coef(). In this case, it is a 20×100
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matrix, with 20 rows (one for each predictor, plus an intercept) and 100
columns (one for each value of λ).

> dim(coef(ridge.mod ))

[1] 20 100

We expect the coefficient estimates to be much smaller, in terms of �2 norm,
when a large value of λ is used, as compared to when a small value of λ is
used. These are the coefficients when λ = 11,498, along with their �2 norm:

> ridge.mod$lambda [50]

[1] 11498

> coef(ridge.mod)[,50]

(Intercept ) AtBat Hits HmRun Runs

407.356 0.037 0.138 0.525 0.231

RBI Walks Years CAtBat CHits

0.240 0.290 1.108 0.003 0.012

CHmRun CRuns CRBI CWalks LeagueN

0.088 0.023 0.024 0.025 0.085

DivisionW PutOuts Assists Errors NewLeagueN

-6.215 0.016 0.003 -0.021 0.301

> sqrt(sum(coef(ridge.mod)[ -1 ,50]^2) )

[1] 6.36

In contrast, here are the coefficients when λ = 705, along with their �2
norm. Note the much larger �2 norm of the coefficients associated with this
smaller value of λ.

> ridge.mod$lambda [60]

[1] 705

> coef(ridge.mod)[,60]

(Intercept ) AtBat Hits HmRun Runs

54.325 0.112 0.656 1.180 0.938

RBI Walks Years CAtBat CHits

0.847 1.320 2.596 0.011 0.047

CHmRun CRuns CRBI CWalks LeagueN

0.338 0.094 0.098 0.072 13.684

DivisionW PutOuts Assists Errors NewLeagueN

-54.659 0.119 0.016 -0.704 8.612

> sqrt(sum(coef(ridge.mod)[ -1 ,60]^2) )

[1] 57.1

We can use the predict() function for a number of purposes. For instance,
we can obtain the ridge regression coefficients for a new value of λ, say 50:

> predict (ridge.mod ,s=50, type =" coefficients")[1:20 ,]

(Intercept ) AtBat Hits HmRun Runs

48.766 -0.358 1.969 -1.278 1.146

RBI Walks Years CAtBat CHits

0.804 2.716 -6.218 0.005 0.106

CHmRun CRuns CRBI CWalks LeagueN

0.624 0.221 0.219 -0.150 45.926

DivisionW PutOuts Assists Errors NewLeagueN

-118.201 0.250 0.122 -3.279 -9.497
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We now split the samples into a training set and a test set in order
to estimate the test error of ridge regression and the lasso. There are two
common ways to randomly split a data set. The first is to produce a random
vector of TRUE, FALSE elements and select the observations corresponding to
TRUE for the training data. The second is to randomly choose a subset of
numbers between 1 and n; these can then be used as the indices for the
training observations. The two approaches work equally well. We used the
former method in Section 6.5.3. Here we demonstrate the latter approach.
We first set a random seed so that the results obtained will be repro-

ducible.

> set.seed (1)

> train=sample (1: nrow(x), nrow(x)/2)

> test=(- train )

> y.test=y[test]

Next we fit a ridge regression model on the training set, and evaluate
its MSE on the test set, using λ = 4. Note the use of the predict()

function again. This time we get predictions for a test set, by replacing
type="coefficients" with the newx argument.

> ridge.mod =glmnet (x[train ,],y[train],alpha =0, lambda =grid ,

thresh =1e -12)

> ridge.pred=predict (ridge .mod ,s=4, newx=x[test ,])

> mean(( ridge.pred -y.test)^2)

[1] 101037

The test MSE is 101037. Note that if we had instead simply fit a model
with just an intercept, we would have predicted each test observation using
the mean of the training observations. In that case, we could compute the
test set MSE like this:

> mean(( mean(y[train ])-y.test)^2)

[1] 193253

We could also get the same result by fitting a ridge regression model with
a very large value of λ. Note that 1e10 means 1010.

> ridge.pred=predict (ridge .mod ,s=1e10 ,newx=x[test ,])

> mean(( ridge.pred -y.test)^2)

[1] 193253

So fitting a ridge regression model with λ = 4 leads to a much lower test
MSE than fitting a model with just an intercept. We now check whether
there is any benefit to performing ridge regression with λ = 4 instead of
just performing least squares regression. Recall that least squares is simply
ridge regression with λ = 0.5

5In order for glmnet() to yield the exact least squares coefficients when λ = 0,
we use the argument exact=T when calling the predict() function. Otherwise, the
predict() function will interpolate over the grid of λ values used in fitting the
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> ridge.pred=predict (ridge .mod ,s=0, newx=x[test ,], exact=T)

> mean(( ridge.pred -y.test)^2)

[1] 114783

> lm(y∼x, subset =train)

> predict (ridge.mod ,s=0, exact =T,type=" coefficients") [1:20 ,]

In general, if we want to fit a (unpenalized) least squares model, then
we should use the lm() function, since that function provides more useful
outputs, such as standard errors and p-values for the coefficients.
In general, instead of arbitrarily choosing λ = 4, it would be better to

use cross-validation to choose the tuning parameter λ. We can do this using
the built-in cross-validation function, cv.glmnet(). By default, the function

cv.glmnet()
performs ten-fold cross-validation, though this can be changed using the
argument nfolds. Note that we set a random seed first so our results will
be reproducible, since the choice of the cross-validation folds is random.

> set.seed (1)

> cv.out =cv.glmnet (x[train ,],y[train],alpha =0)

> plot(cv.out)

> bestlam =cv.out$lambda .min

> bestlam

[1] 212

Therefore, we see that the value of λ that results in the smallest cross-
validation error is 212. What is the test MSE associated with this value of
λ?

> ridge.pred=predict (ridge .mod ,s=bestlam ,newx=x[test ,])

> mean(( ridge.pred -y.test)^2)

[1] 96016

This represents a further improvement over the test MSE that we got using
λ = 4. Finally, we refit our ridge regression model on the full data set,
using the value of λ chosen by cross-validation, and examine the coefficient
estimates.

> out=glmnet (x,y,alpha =0)

> predict (out ,type=" coefficients",s=bestlam )[1:20 ,]

(Intercept ) AtBat Hits HmRun Runs

9.8849 0.0314 1.0088 0.1393 1.1132

RBI Walks Years CAtBat CHits

0.8732 1.8041 0.1307 0.0111 0.0649

CHmRun CRuns CRBI CWalks LeagueN

0.4516 0.1290 0.1374 0.0291 27.1823

DivisionW PutOuts Assists Errors NewLeagueN

-91.6341 0.1915 0.0425 -1.8124 7.2121

glmnet() model, yielding approximate results. When we use exact=T, there remains
a slight discrepancy in the third decimal place between the output of glmnet() when
λ = 0 and the output of lm(); this is due to numerical approximation on the part of
glmnet().
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As expected, none of the coefficients are zero—ridge regression does not
perform variable selection!

6.6.2 The Lasso

We saw that ridge regression with a wise choice of λ can outperform least
squares as well as the null model on the Hitters data set. We now ask
whether the lasso can yield either a more accurate or a more interpretable
model than ridge regression. In order to fit a lasso model, we once again
use the glmnet() function; however, this time we use the argument alpha=1.
Other than that change, we proceed just as we did in fitting a ridge model.

> lasso.mod =glmnet (x[train ,],y[train],alpha =1, lambda =grid)

> plot(lasso.mod)

We can see from the coefficient plot that depending on the choice of tuning
parameter, some of the coefficients will be exactly equal to zero. We now
perform cross-validation and compute the associated test error.

> set.seed (1)

> cv.out =cv.glmnet (x[train ,],y[train],alpha =1)

> plot(cv.out)

> bestlam =cv.out$lambda .min

> lasso.pred=predict (lasso .mod ,s=bestlam ,newx=x[test ,])

> mean(( lasso.pred -y.test)^2)

[1] 100743

This is substantially lower than the test set MSE of the null model and of
least squares, and very similar to the test MSE of ridge regression with λ
chosen by cross-validation.
However, the lasso has a substantial advantage over ridge regression in

that the resulting coefficient estimates are sparse. Here we see that 12 of
the 19 coefficient estimates are exactly zero. So the lasso model with λ
chosen by cross-validation contains only seven variables.

> out=glmnet (x,y,alpha =1, lambda =grid)

> lasso.coef=predict (out ,type =" coefficients",s=bestlam )[1:20 ,]

> lasso.coef

(Intercept ) AtBat Hits HmRun Runs

18.539 0.000 1.874 0.000 0.000

RBI Walks Years CAtBat CHits

0.000 2.218 0.000 0.000 0.000

CHmRun CRuns CRBI CWalks LeagueN

0.000 0.207 0.413 0.000 3.267

DivisionW PutOuts Assists Errors NewLeagueN

-103.485 0.220 0.000 0.000 0.000

> lasso.coef[lasso.coef !=0]

(Intercept ) Hits Walks CRuns CRBI

18.539 1.874 2.218 0.207 0.413

LeagueN DivisionW PutOuts

3.267 -103.485 0.220
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6.7 Lab 3: PCR and PLS Regression

6.7.1 Principal Components Regression

Principal components regression (PCR) can be performed using the pcr()
pcr()

function, which is part of the pls library. We now apply PCR to the Hitters

data, in order to predict Salary. Again, ensure that the missing values have
been removed from the data, as described in Section 6.5.

> library (pls)

> set.seed (2)

> pcr.fit=pcr(Salary∼., data=Hitters ,scale=TRUE ,

validation ="CV")

The syntax for the pcr() function is similar to that for lm(), with a few
additional options. Setting scale=TRUE has the effect of standardizing each
predictor, using (6.6), prior to generating the principal components, so that
the scale on which each variable is measured will not have an effect. Setting
validation="CV" causes pcr() to compute the ten-fold cross-validation error
for each possible value ofM , the number of principal components used. The
resulting fit can be examined using summary().

> summary (pcr.fit )

Data: X dimension : 263 19

Y dimension : 263 1

Fit method : svdpc

Number of components considered : 19

VALIDATION : RMSEP

Cross - validated using 10 random segments .

(Intercept ) 1 comps 2 comps 3 comps 4 comps

CV 452 348.9 352.2 353.5 352.8

adjCV 452 348.7 351.8 352.9 352.1

...

TRAINING : % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

X 38.31 60.16 70.84 79.03 84.29 88.63

Salary 40.63 41.58 42.17 43.22 44.90 46.48

...

The CV score is provided for each possible number of components, ranging
from M = 0 onwards. (We have printed the CV output only up to M = 4.)
Note that pcr() reports the root mean squared error ; in order to obtain
the usual MSE, we must square this quantity. For instance, a root mean
squared error of 352.8 corresponds to an MSE of 352.82 = 124,468.

One can also plot the cross-validation scores using the validationplot()
validation

plot()function. Using val.type="MSEP" will cause the cross-validation MSE to be
plotted.

> validationplot(pcr .fit ,val.type=" MSEP")



6.7 Lab 3: PCR and PLS Regression 257

We see that the smallest cross-validation error occurs when M = 16 com-
ponents are used. This is barely fewer than M = 19, which amounts to
simply performing least squares, because when all of the components are
used in PCR no dimension reduction occurs. However, from the plot we
also see that the cross-validation error is roughly the same when only one
component is included in the model. This suggests that a model that uses
just a small number of components might suffice.
The summary() function also provides the percentage of variance explained

in the predictors and in the response using different numbers of compo-
nents. This concept is discussed in greater detail in Chapter 10. Briefly,
we can think of this as the amount of information about the predictors or
the response that is captured using M principal components. For example,
setting M = 1 only captures 38.31% of all the variance, or information, in
the predictors. In contrast, using M = 6 increases the value to 88.63%. If
we were to use all M = p = 19 components, this would increase to 100%.
We now perform PCR on the training data and evaluate its test set

performance.

> set.seed (1)

> pcr.fit=pcr(Salary∼., data=Hitters ,subset =train ,scale =TRUE ,

validation ="CV")

> validationplot(pcr .fit ,val.type=" MSEP")

Now we find that the lowest cross-validation error occurs when M = 7
component are used. We compute the test MSE as follows.

> pcr.pred=predict (pcr.fit ,x[test ,], ncomp =7)

> mean((pcr .pred -y.test)^2)

[1] 96556

This test set MSE is competitive with the results obtained using ridge re-
gression and the lasso. However, as a result of the way PCR is implemented,
the final model is more difficult to interpret because it does not perform
any kind of variable selection or even directly produce coefficient estimates.
Finally, we fit PCR on the full data set, using M = 7, the number of

components identified by cross-validation.

> pcr.fit=pcr(y∼x,scale =TRUE ,ncomp =7)

> summary (pcr.fit )

Data: X dimension : 263 19

Y dimension : 263 1

Fit method : svdpc

Number of components considered : 7

TRAINING : % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

X 38.31 60.16 70.84 79.03 84.29 88.63

y 40.63 41.58 42.17 43.22 44.90 46.48

7 comps

X 92.26

y 46.69
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6.7.2 Partial Least Squares

We implement partial least squares (PLS) using the plsr() function, also
plsr()

in the pls library. The syntax is just like that of the pcr() function.

> set.seed (1)

> pls.fit=plsr(Salary∼., data=Hitters ,subset =train ,scale=TRUE ,

validation ="CV")

> summary (pls.fit )

Data: X dimension : 131 19

Y dimension : 131 1

Fit method : kernelpls

Number of components considered : 19

VALIDATION : RMSEP

Cross - validated using 10 random segments .

(Intercept ) 1 comps 2 comps 3 comps 4 comps

CV 464.6 394.2 391.5 393.1 395.0

adjCV 464.6 393.4 390.2 391.1 392.9

...

TRAINING : % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

X 38.12 53.46 66.05 74.49 79.33 84.56

Salary 33.58 38.96 41.57 42.43 44.04 45.59

...

> validationplot(pls .fit ,val.type=" MSEP")

The lowest cross-validation error occurs when only M = 2 partial least
squares directions are used. We now evaluate the corresponding test set
MSE.

> pls.pred=predict (pls.fit ,x[test ,], ncomp =2)

> mean((pls .pred -y.test)^2)

[1] 101417

The test MSE is comparable to, but slightly higher than, the test MSE
obtained using ridge regression, the lasso, and PCR.
Finally, we perform PLS using the full data set, usingM = 2, the number

of components identified by cross-validation.

> pls.fit=plsr(Salary∼., data=Hitters ,scale=TRUE ,ncomp =2)

> summary (pls.fit )

Data: X dimension : 263 19

Y dimension : 263 1

Fit method : kernelpls

Number of components considered : 2

TRAINING : % variance explained

1 comps 2 comps

X 38.08 51.03

Salary 43.05 46.40

Notice that the percentage of variance in Salary that the two-component
PLS fit explains, 46.40%, is almost as much as that explained using the
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final seven-component model PCR fit, 46.69%. This is because PCR only
attempts to maximize the amount of variance explained in the predictors,
while PLS searches for directions that explain variance in both the predic-
tors and the response.

6.8 Exercises

Conceptual

1. We perform best subset, forward stepwise, and backward stepwise
selection on a single data set. For each approach, we obtain p + 1
models, containing 0, 1, 2, . . . , p predictors. Explain your answers:

(a) Which of the three models with k predictors has the smallest
training RSS?

(b) Which of the three models with k predictors has the smallest
test RSS?

(c) True or False:

i. The predictors in the k-variable model identified by forward
stepwise are a subset of the predictors in the (k+1)-variable
model identified by forward stepwise selection.

ii. The predictors in the k-variable model identified by back-
ward stepwise are a subset of the predictors in the (k + 1)-
variable model identified by backward stepwise selection.

iii. The predictors in the k-variable model identified by back-
ward stepwise are a subset of the predictors in the (k + 1)-
variable model identified by forward stepwise selection.

iv. The predictors in the k-variable model identified by forward
stepwise are a subset of the predictors in the (k+1)-variable
model identified by backward stepwise selection.

v. The predictors in the k-variable model identified by best
subset are a subset of the predictors in the (k + 1)-variable
model identified by best subset selection.

2. For parts (a) through (c), indicate which of i. through iv. is correct.
Justify your answer.

(a) The lasso, relative to least squares, is:

i. More flexible and hence will give improved prediction ac-
curacy when its increase in bias is less than its decrease in
variance.

ii. More flexible and hence will give improved prediction accu-
racy when its increase in variance is less than its decrease
in bias.
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iii. Less flexible and hence will give improved prediction accu-
racy when its increase in bias is less than its decrease in
variance.

iv. Less flexible and hence will give improved prediction accu-
racy when its increase in variance is less than its decrease
in bias.

(b) Repeat (a) for ridge regression relative to least squares.

(c) Repeat (a) for non-linear methods relative to least squares.

3. Suppose we estimate the regression coefficients in a linear regression
model by minimizing

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2

subject to

p∑
j=1

|βj | ≤ s

for a particular value of s. For parts (a) through (e), indicate which
of i. through v. is correct. Justify your answer.

(a) As we increase s from 0, the training RSS will:

i. Increase initially, and then eventually start decreasing in an
inverted U shape.

ii. Decrease initially, and then eventually start increasing in a
U shape.

iii. Steadily increase.

iv. Steadily decrease.

v. Remain constant.

(b) Repeat (a) for test RSS.

(c) Repeat (a) for variance.

(d) Repeat (a) for (squared) bias.

(e) Repeat (a) for the irreducible error.

4. Suppose we estimate the regression coefficients in a linear regression
model by minimizing

n∑
i=1

⎛
⎝yi − β0 −

p∑
j=1

βjxij

⎞
⎠

2

+ λ

p∑
j=1

β2
j

for a particular value of λ. For parts (a) through (e), indicate which
of i. through v. is correct. Justify your answer.
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(a) As we increase λ from 0, the training RSS will:

i. Increase initially, and then eventually start decreasing in an
inverted U shape.

ii. Decrease initially, and then eventually start increasing in a
U shape.

iii. Steadily increase.

iv. Steadily decrease.

v. Remain constant.

(b) Repeat (a) for test RSS.

(c) Repeat (a) for variance.

(d) Repeat (a) for (squared) bias.

(e) Repeat (a) for the irreducible error.

5. It is well-known that ridge regression tends to give similar coefficient
values to correlated variables, whereas the lasso may give quite dif-
ferent coefficient values to correlated variables. We will now explore
this property in a very simple setting.

Suppose that n = 2, p = 2, x11 = x12, x21 = x22. Furthermore,
suppose that y1+y2 = 0 and x11+x21 = 0 and x12+x22 = 0, so that
the estimate for the intercept in a least squares, ridge regression, or
lasso model is zero: β̂0 = 0.

(a) Write out the ridge regression optimization problem in this set-
ting.

(b) Argue that in this setting, the ridge coefficient estimates satisfy

β̂1 = β̂2.

(c) Write out the lasso optimization problem in this setting.

(d) Argue that in this setting, the lasso coefficients β̂1 and β̂2 are
not unique—in other words, there are many possible solutions
to the optimization problem in (c). Describe these solutions.

6. We will now explore (6.12) and (6.13) further.

(a) Consider (6.12) with p = 1. For some choice of y1 and λ > 0,
plot (6.12) as a function of β1. Your plot should confirm that
(6.12) is solved by (6.14).

(b) Consider (6.13) with p = 1. For some choice of y1 and λ > 0,
plot (6.13) as a function of β1. Your plot should confirm that
(6.13) is solved by (6.15).
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7. We will now derive the Bayesian connection to the lasso and ridge
regression discussed in Section 6.2.2.

(a) Suppose that yi = β0+
∑p

j=1 xijβj+εi where ε1, . . . , εn are inde-

pendent and identically distributed from a N(0, σ2) distribution.
Write out the likelihood for the data.

(b) Assume the following prior for β: β1, . . . , βp are independent
and identically distributed according to a double-exponential
distribution with mean 0 and common scale parameter b: i.e.
p(β) = 1

2b exp(−|β|/b). Write out the posterior for β in this
setting.

(c) Argue that the lasso estimate is the mode for β under this pos-
terior distribution.

(d) Now assume the following prior for β: β1, . . . , βp are independent
and identically distributed according to a normal distribution
with mean zero and variance c. Write out the posterior for β in
this setting.

(e) Argue that the ridge regression estimate is both the mode and
the mean for β under this posterior distribution.

Applied

8. In this exercise, we will generate simulated data, and will then use
this data to perform best subset selection.

(a) Use the rnorm() function to generate a predictor X of length
n = 100, as well as a noise vector ε of length n = 100.

(b) Generate a response vector Y of length n = 100 according to
the model

Y = β0 + β1X + β2X
2 + β3X

3 + ε,

where β0, β1, β2, and β3 are constants of your choice.

(c) Use the regsubsets() function to perform best subset selection
in order to choose the best model containing the predictors
X,X2, . . . , X10. What is the best model obtained according to
Cp, BIC, and adjusted R2? Show some plots to provide evidence
for your answer, and report the coefficients of the best model ob-
tained. Note you will need to use the data.frame() function to
create a single data set containing both X and Y .
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(d) Repeat (c), using forward stepwise selection and also using back-
wards stepwise selection. How does your answer compare to the
results in (c)?

(e) Now fit a lasso model to the simulated data, again using X,X2,
. . . , X10 as predictors. Use cross-validation to select the optimal
value of λ. Create plots of the cross-validation error as a function
of λ. Report the resulting coefficient estimates, and discuss the
results obtained.

(f) Now generate a response vector Y according to the model

Y = β0 + β7X
7 + ε,

and perform best subset selection and the lasso. Discuss the
results obtained.

9. In this exercise, we will predict the number of applications received
using the other variables in the College data set.

(a) Split the data set into a training set and a test set.

(b) Fit a linear model using least squares on the training set, and
report the test error obtained.

(c) Fit a ridge regression model on the training set, with λ chosen
by cross-validation. Report the test error obtained.

(d) Fit a lasso model on the training set, with λ chosen by cross-
validation. Report the test error obtained, along with the num-
ber of non-zero coefficient estimates.

(e) Fit a PCR model on the training set, with M chosen by cross-
validation. Report the test error obtained, along with the value
of M selected by cross-validation.

(f) Fit a PLS model on the training set, with M chosen by cross-
validation. Report the test error obtained, along with the value
of M selected by cross-validation.

(g) Comment on the results obtained. How accurately can we pre-
dict the number of college applications received? Is there much
difference among the test errors resulting from these five ap-
proaches?

10. We have seen that as the number of features used in a model increases,
the training error will necessarily decrease, but the test error may not.
We will now explore this in a simulated data set.

(a) Generate a data set with p = 20 features, n = 1,000 observa-
tions, and an associated quantitative response vector generated
according to the model

Y = Xβ + ε,

where β has some elements that are exactly equal to zero.
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(b) Split your data set into a training set containing 100 observations
and a test set containing 900 observations.

(c) Perform best subset selection on the training set, and plot the
training set MSE associated with the best model of each size.

(d) Plot the test set MSE associated with the best model of each
size.

(e) For which model size does the test set MSE take on its minimum
value? Comment on your results. If it takes on its minimum value
for a model containing only an intercept or a model containing
all of the features, then play around with the way that you are
generating the data in (a) until you come up with a scenario in
which the test set MSE is minimized for an intermediate model
size.

(f) How does the model at which the test set MSE is minimized
compare to the true model used to generate the data? Comment
on the coefficient values.

(g) Create a plot displaying
√∑p

j=1(βj − β̂r
j )

2 for a range of values

of r, where β̂r
j is the jth coefficient estimate for the best model

containing r coefficients. Comment on what you observe. How
does this compare to the test MSE plot from (d)?

11. We will now try to predict per capita crime rate in the Boston data
set.

(a) Try out some of the regression methods explored in this chapter,
such as best subset selection, the lasso, ridge regression, and
PCR. Present and discuss results for the approaches that you
consider.

(b) Propose a model (or set of models) that seem to perform well on
this data set, and justify your answer. Make sure that you are
evaluating model performance using validation set error, cross-
validation, or some other reasonable alternative, as opposed to
using training error.

(c) Does your chosen model involve all of the features in the data
set? Why or why not?
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