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Linear Regression

This chapter is about linear regression, a very simple approach for
supervised learning. In particular, linear regression is a useful tool for pre-
dicting a quantitative response. Linear regression has been around for a
long time and is the topic of innumerable textbooks. Though it may seem
somewhat dull compared to some of the more modern statistical learning
approaches described in later chapters of this book, linear regression is still
a useful and widely used statistical learning method. Moreover, it serves
as a good jumping-off point for newer approaches: as we will see in later
chapters, many fancy statistical learning approaches can be seen as gener-
alizations or extensions of linear regression. Consequently, the importance
of having a good understanding of linear regression before studying more
complex learning methods cannot be overstated. In this chapter, we review
some of the key ideas underlying the linear regression model, as well as the
least squares approach that is most commonly used to fit this model.
Recall the Advertising data from Chapter 2. Figure 2.1 displays sales

(in thousands of units) for a particular product as a function of advertis-
ing budgets (in thousands of dollars) for TV, radio, and newspaper media.
Suppose that in our role as statistical consultants we are asked to suggest,
on the basis of this data, a marketing plan for next year that will result in
high product sales. What information would be useful in order to provide
such a recommendation? Here are a few important questions that we might
seek to address:

1. Is there a relationship between advertising budget and sales?
Our first goal should be to determine whether the data provide
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60 3. Linear Regression

evidence of an association between advertising expenditure and sales.
If the evidence is weak, then one might argue that no money should
be spent on advertising!

2. How strong is the relationship between advertising budget and sales?
Assuming that there is a relationship between advertising and sales,
we would like to know the strength of this relationship. In other
words, given a certain advertising budget, can we predict sales with
a high level of accuracy? This would be a strong relationship. Or is
a prediction of sales based on advertising expenditure only slightly
better than a random guess? This would be a weak relationship.

3. Which media contribute to sales?
Do all three media—TV, radio, and newspaper—contribute to sales,
or do just one or two of the media contribute? To answer this question,
we must find a way to separate out the individual effects of each
medium when we have spent money on all three media.

4. How accurately can we estimate the effect of each medium on sales?
For every dollar spent on advertising in a particular medium, by
what amount will sales increase? How accurately can we predict this
amount of increase?

5. How accurately can we predict future sales?
For any given level of television, radio, or newspaper advertising, what
is our prediction for sales, and what is the accuracy of this prediction?

6. Is the relationship linear?
If there is approximately a straight-line relationship between advertis-
ing expenditure in the various media and sales, then linear regression
is an appropriate tool. If not, then it may still be possible to trans-
form the predictor or the response so that linear regression can be
used.

7. Is there synergy among the advertising media?
Perhaps spending $50,000 on television advertising and $50,000 on
radio advertising results in more sales than allocating $100,000 to
either television or radio individually. In marketing, this is known as
a synergy effect, while in statistics it is called an interaction effect. synergy

interaction

It turns out that linear regression can be used to answer each of these
questions. We will first discuss all of these questions in a general context,
and then return to them in this specific context in Section 3.4.
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3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward
simple linear
regressionapproach for predicting a quantitative response Y on the basis of a sin-

gle predictor variable X . It assumes that there is approximately a linear
relationship between X and Y . Mathematically, we can write this linear
relationship as

Y ≈ β0 + β1X. (3.1)

You might read “≈” as “is approximately modeled as”. We will sometimes
describe (3.1) by saying that we are regressing Y on X (or Y onto X).
For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales ≈ β0 + β1 × TV.

In Equation 3.1, β0 and β1 are two unknown constants that represent
the intercept and slope terms in the linear model. Together, β0 and β1 are

intercept

slope
known as the model coefficients or parameters. Once we have used our

coefficient

parameter

training data to produce estimates β̂0 and β̂1 for the model coefficients, we
can predict future sales on the basis of a particular value of TV advertising
by computing

ŷ = β̂0 + β̂1x, (3.2)

where ŷ indicates a prediction of Y on the basis of X = x. Here we use a
hat symbol, ˆ , to denote the estimated value for an unknown parameter
or coefficient, or to denote the predicted value of the response.

3.1.1 Estimating the Coefficients

In practice, β0 and β1 are unknown. So before we can use (3.1) to make
predictions, we must use data to estimate the coefficients. Let

(x1, y1), (x2, y2), . . . , (xn, yn)

represent n observation pairs, each of which consists of a measurement
of X and a measurement of Y . In the Advertising example, this data
set consists of the TV advertising budget and product sales in n = 200
different markets. (Recall that the data are displayed in Figure 2.1.) Our

goal is to obtain coefficient estimates β̂0 and β̂1 such that the linear model
(3.1) fits the available data well—that is, so that yi ≈ β̂0 + β̂1xi for i =

1, . . . , n. In other words, we want to find an intercept β̂0 and a slope β̂1 such
that the resulting line is as close as possible to the n = 200 data points.
There are a number of ways of measuring closeness. However, by far the
most common approach involves minimizing the least squares criterion,

least squares
and we take that approach in this chapter. Alternative approaches will be
considered in Chapter 6.
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates β̂0 and β̂1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of β0 and β1,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(β̂0, β̂1) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ε for some unknown function f , where ε
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = β0 + β1X + ε. (3.5)

Here β0 is the intercept term—that is, the expected value of Y when X = 0,
and β1 is the slope—the average increase in Y associated with a one-unit
increase in X . The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y , and there may be measurement
error. We typically assume that the error term is independent of X .
The model given by (3.5) defines the population regression line, which

population
regression
line

is the best linear approximation to the true relationship between X and
Y .1 The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

least squares
line

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ε, (3.6)

where ε was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the
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concept of these two lines is a natural extension of the standard statistical
approach of using information from a sample to estimate characteristics of a
large population. For example, suppose that we are interested in knowing
the population mean μ of some random variable Y . Unfortunately, μ is
unknown, but we do have access to n observations from Y , which we can
write as y1, . . . , yn, and which we can use to estimate μ. A reasonable
estimate is μ̂ = ȳ, where ȳ = 1

n

∑n
i=1 yi is the sample mean. The sample

mean and the population mean are different, but in general the sample
mean will provide a good estimate of the population mean. In the same
way, the unknown coefficients β0 and β1 in linear regression define the
population regression line. We seek to estimate these unknown coefficients
using β̂0 and β̂1 given in (3.4). These coefficient estimates define the least
squares line.
The analogy between linear regression and estimation of the mean of a

random variable is an apt one based on the concept of bias. If we use the
bias

sample mean μ̂ to estimate μ, this estimate is unbiased, in the sense that
unbiased

on average, we expect μ̂ to equal μ. What exactly does this mean? It means
that on the basis of one particular set of observations y1, . . . , yn, μ̂ might
overestimate μ, and on the basis of another set of observations, μ̂ might
underestimate μ. But if we could average a huge number of estimates of
μ obtained from a huge number of sets of observations, then this average
would exactly equal μ. Hence, an unbiased estimator does not systematically
over- or under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates given by (3.4) as well: if
we estimate β0 and β1 on the basis of a particular data set, then our
estimates won’t be exactly equal to β0 and β1. But if we could average
the estimates obtained over a huge number of data sets, then the average
of these estimates would be spot on! In fact, we can see from the right-
hand panel of Figure 3.3 that the average of many least squares lines, each
estimated from a separate data set, is pretty close to the true population
regression line.
We continue the analogy with the estimation of the population mean

μ of a random variable Y . A natural question is as follows: how accurate
is the sample mean μ̂ as an estimate of μ? We have established that the
average of μ̂’s over many data sets will be very close to μ, but that a
single estimate μ̂ may be a substantial underestimate or overestimate of μ.
How far off will that single estimate of μ̂ be? In general, we answer this
question by computing the standard error of μ̂, written as SE(μ̂). We have

standard
errorthe well-known formula

Var(μ̂) = SE(μ̂)2 =
σ2

n
, (3.7)
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where σ is the standard deviation of each of the realizations yi of Y .2

Roughly speaking, the standard error tells us the average amount that this
estimate μ̂ differs from the actual value of μ. Equation 3.7 also tells us how
this deviation shrinks with n—the more observations we have, the smaller
the standard error of μ̂. In a similar vein, we can wonder how close β̂0

and β̂1 are to the true values β0 and β1. To compute the standard errors
associated with β̂0 and β̂1, we use the following formulas:

SE(β̂0)
2
= σ2

[
1

n
+

x̄2

∑n
i=1(xi − x̄)2

]
, SE(β̂1)

2
=

σ2

∑n
i=1(xi − x̄)2

, (3.8)

where σ2 = Var(ε). For these formulas to be strictly valid, we need to as-
sume that the errors εi for each observation are uncorrelated with common
variance σ2. This is clearly not true in Figure 3.1, but the formula still
turns out to be a good approximation. Notice in the formula that SE(β̂1) is
smaller when the xi are more spread out; intuitively we have more leverage
to estimate a slope when this is the case. We also see that SE(β̂0) would be

the same as SE(μ̂) if x̄ were zero (in which case β̂0 would be equal to ȳ). In
general, σ2 is not known, but can be estimated from the data. The estimate
of σ is known as the residual standard error, and is given by the formula

residual
standard
error

RSE =
√
RSS/(n− 2). Strictly speaking, when σ2 is estimated from the

data we should write ŜE(β̂1) to indicate that an estimate has been made,
but for simplicity of notation we will drop this extra “hat”.
Standard errors can be used to compute confidence intervals. A 95%

confidence
intervalconfidence interval is defined as a range of values such that with 95%

probability, the range will contain the true unknown value of the parameter.
The range is defined in terms of lower and upper limits computed from the
sample of data. For linear regression, the 95% confidence interval for β1

approximately takes the form

β̂1 ± 2 · SE(β̂1). (3.9)

That is, there is approximately a 95% chance that the interval
[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]
(3.10)

will contain the true value of β1.
3 Similarly, a confidence interval for β0

approximately takes the form

β̂0 ± 2 · SE(β̂0). (3.11)

2This formula holds provided that the n observations are uncorrelated.
3Approximately for several reasons. Equation 3.10 relies on the assumption that the

errors are Gaussian. Also, the factor of 2 in front of the SE(β̂1) term will vary slightly
depending on the number of observations n in the linear regression. To be precise, rather
than the number 2, (3.10) should contain the 97.5% quantile of a t-distribution with
n−2 degrees of freedom. Details of how to compute the 95% confidence interval precisely
in R will be provided later in this chapter.
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In the case of the advertising data, the 95% confidence interval for β0

is [6.130, 7.935] and the 95% confidence interval for β1 is [0.042, 0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,940 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.
Standard errors can also be used to perform hypothesis tests on the

hypothesis
testcoefficients. The most common hypothesis test involves testing the null

hypothesis of
null
hypothesis

H0 : There is no relationship between X and Y (3.12)

versus the alternative hypothesis
alternative
hypothesis

Ha : There is some relationship between X and Y . (3.13)

Mathematically, this corresponds to testing

H0 : β1 = 0

versus
Ha : β1 �= 0,

since if β1 = 0 then the model (3.5) reduces to Y = β0 + ε, and X is
not associated with Y . To test the null hypothesis, we need to determine
whether β̂1, our estimate for β1, is sufficiently far from zero that we can
be confident that β1 is non-zero. How far is far enough? This of course
depends on the accuracy of β̂1—that is, it depends on SE(β̂1). If SE(β̂1) is

small, then even relatively small values of β̂1 may provide strong evidence
that β1 �= 0, and hence that there is a relationship between X and Y . In
contrast, if SE(β̂1) is large, then β̂1 must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,

t-statistic
given by

t =
β̂1 − 0

SE(β̂1)
, (3.14)

which measures the number of standard deviations that β̂1 is away from
0. If there really is no relationship between X and Y , then we expect
that (3.14) will have a t-distribution with n− 2 degrees of freedom. The t-
distribution has a bell shape and for values of n greater than approximately
30 it is quite similar to the normal distribution. Consequently, it is a simple
matter to compute the probability of observing any number equal to |t| or
larger in absolute value, assuming β1= 0. We call this probability the p-value.

p-value

ial association between the pre-

between the predictor and the response. Hence, if we see a small p-value,

Roughly speaking, we interpret the p-value as follows: a small p-value indicates
that it is unlikely to observe such a substant
dictor and the response due to chance, in the absence of any real association
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then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient Std. error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 �= 0 and β1 �= 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F-statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ε. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X . The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.
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Quantity Value

Residual standard error 3.26
R2 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of ε. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑
i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =

n∑
i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .
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To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion
of variability in Y that can be explained using X . An R2 statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error σ2 is high,
or both. In Table 3.2, the R2 was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.
The R2 statistic (3.17) has an interpretational advantage over the RSE

(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smallerR2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!

The R2 statistic is a measure of the linear relationship between X and
Y . Recall that correlation, defined as

correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X,Y ) instead of R2 in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write ̂Cor(X, Y ); however, we omit the “hat” for ease of
notation.
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and the R2 statistic are identical. However, in the next section we will
discuss the multiple linear regression problem, in which we use several pre-
dictors simultaneously to predict the response. The concept of correlation
between the predictors and the response does not extend automatically to
this setting, since correlation quantifies the association between a single
pair of variables rather than between a larger number of variables. We will
see that R2 fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the
basis of a single predictor variable. However, in practice we often have more
than one predictor. For example, in the Advertising data, we have examined
the relationship between sales and TV advertising. We also have data for
the amount of money spent advertising on the radio and in newspapers,
and we may want to know whether either of these two media is associated
with sales. How can we extend our analysis of the advertising data in order
to accommodate these two additional predictors?
One option is to run three separate simple linear regressions, each of

which uses a different advertising medium as a predictor. For instance,
we can fit a simple linear regression to predict sales on the basis of the
amount spent on radio advertisements. Results are shown in Table 3.3 (top
table). We find that a $1,000 increase in spending on radio advertising is
associated with an increase in sales by around 203 units. Table 3.3 (bottom
table) contains the least squares coefficients for a simple linear regression of
sales onto newspaper advertising budget. A $1,000 increase in newspaper
advertising budget is associated with an increase in sales by approximately
55 units.
However, the approach of fitting a separate simple linear regression model

for each predictor is not entirely satisfactory. First of all, it is unclear how to
make a single prediction of sales given levels of the three advertising media
budgets, since each of the budgets is associated with a separate regression
equation. Second, each of the three regression equations ignores the other
two media in forming estimates for the regression coefficients. We will see
shortly that if the media budgets are correlated with each other in the 200
markets that constitute our data set, then this can lead to very misleading
estimates of the individual media effects on sales.
Instead of fitting a separate simple linear regression model for each pre-

dictor, a better approach is to extend the simple linear regression model
(3.5) so that it can directly accommodate multiple predictors. We can do
this by giving each predictor a separate slope coefficient in a single model.
In general, suppose that we have p distinct predictors. Then the multiple
linear regression model takes the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε, (3.19)
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Simple regression of sales on radio

Coefficient Std. error t-statistic p-value

Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30

TABLE 3.3.More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales variable is in thousands of units, and the radio and newspaper

variables are in thousands of dollars).

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response. We interpret βj as the average
effect on Y of a one unit increase in Xj , holding all other predictors fixed.
In the advertising example, (3.19) becomes

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper + ε. (3.20)

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-
ficients β0, β1, . . . , βp in (3.19) are unknown, and must be estimated. Given

estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0, β1, . . . , βp

to minimize the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi)
2

=

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2. (3.22)

0.00115
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X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper

in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates
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Coefficient Std. error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV

and radio fixed.
Does it make sense for the multiple regression to suggest no relationship

between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This reveals a
tendency to spend more on newspaper advertising in markets where more
is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales

versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio

advertising; newspaper gets “credit” for the effect of radio on sales.
This slightly counterintuitive result is very common in many real life

situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.
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TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F-statistic,
F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)
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Quantity Value

Residual standard error 1.69
R2 0.897
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

where, as with simple linear regression, TSS =
∑

(yi − ȳ)2 and RSS =∑
(yi− ŷi)

2. If the linear model assumptions are correct, one can show that

E{RSS/(n− p− 1)} = σ2

and that, provided H0 is true,

E{(TSS− RSS)/p} = σ2.

Hence, when there is no relationship between the response and predictors,
one would expect the F-statistic to take on a value close to 1. On the other
hand, if Ha is true, then E{(TSS − RSS)/p} > σ2, so we expect F to be
greater than 1.
The F-statistic for the multiple linear regression model obtained by re-

gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F-statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis H0. In other words, the
large F-statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F-statistic had been closer to
1? How large does the F-statistic need to be before we can reject H0 and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F-statistic that is just a
little larger than 1 might still provide evidence against H0. In contrast,
a larger F-statistic is needed to reject H0 if n is small. When H0 is true
and the errors εi have a normal distribution, the F-statistic follows an
F-distribution.6 For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F-statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject H0. For the advertising data, the p-value associated with
the F-statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.
In (3.23) we are testing H0 that all the coefficients are zero. Sometimes

we want to test that a particular subset of q of the coefficients are zero.
This corresponds to a null hypothesis

H0 : βp−q+1 = βp−q+2 = . . . = βp = 0,

6Even if the errors are not normally-distributed, the F-statistic approximately follows
an F-distribution provided that the sample size n is large.
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where for convenience we have put the variables chosen for omission at the
end of the list. In this case we fit a second model that uses all the variables
except those last q. Suppose that the residual sum of squares for that model
is RSS0. Then the appropriate F-statistic is

F =
(RSS0 − RSS)/q

RSS/(n− p− 1)
. (3.24)

Notice that in Table 3.4, for each individual predictor a t-statistic and
a p-value were reported. These provide information about whether each
individual predictor is related to the response, after adjusting for the other
predictors. It turns out that each of these are exactly equivalent7 to the
F-test that omits that single variable from the model, leaving all the others
in—i.e. q=1 in (3.24). So it reports the partial effect of adding that variable
to the model. For instance, as we discussed earlier, these p-values indicate
that TV and radio are related to sales, but that there is no evidence that
newspaper is associated with sales, in the presence of these two.
Given these individual p-values for each variable, why do we need to look

at the overall F-statistic? After all, it seems likely that if any one of the
p-values for the individual variables is very small, then at least one of the
predictors is related to the response. However, this logic is flawed, especially
when the number of predictors p is large.
For instance, consider an example in which p = 100 and H0 : β1 = β2 =

. . . = βp = 0 is true, so no variable is truly associated with the response. In
this situation, about 5% of the p-values associated with each variable (of
the type shown in Table 3.4) will be below 0.05 by chance. In other words,
we expect to see approximately five small p-values even in the absence of
any true association between the predictors and the response. In fact, we
are almost guaranteed that we will observe at least one p-value below 0.05
by chance! Hence, if we use the individual t-statistics and associated p-
values in order to decide whether or not there is any association between
the variables and the response, there is a very high chance that we will
incorrectly conclude that there is a relationship. However, the F-statistic
does not suffer from this problem because it adjusts for the number of
predictors. Hence, if H0 is true, there is only a 5% chance that the F-
statistic will result in a p-value below 0.05, regardless of the number of
predictors or the number of observations.
The approach of using an F-statistic to test for any association between

the predictors and the response works when p is relatively small, and cer-
tainly small compared to n. However, sometimes we have a very large num-
ber of variables. If p > n then there are more coefficients βj to estimate
than observations from which to estimate them. In this case we cannot
even fit the multiple linear regression model using least squares, so the

7The square of each t-statistic is the corresponding F-statistic.
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F-statistic cannot be used, and neither can most of the other concepts that
we have seen so far in this chapter. When p is large, some of the approaches
discussed in the next section, such as forward selection, can be used. This
high-dimensional setting is discussed in greater detail in Chapter 6.

high-
dimensional

Two: Deciding on Important Variables

As discussed in the previous section, the first step in a multiple regression
analysis is to compute the F-statistic and to examine the associated p-
value. If we conclude on the basis of that p-value that at least one of the
predictors is related to the response, then it is natural to wonder which are
the guilty ones! We could look at the individual p-values as in Table 3.4,
but as discussed, if p is large we are likely to make some false discoveries.
It is possible that all of the predictors are associated with the response,

but it is more often the case that the response is only related to a subset of
the predictors. The task of determining which predictors are associated with
the response, in order to fit a single model involving only those predictors,
is referred to as variable selection. The variable selection problem is studied

variable
selectionextensively in Chapter 6, and so here we will provide only a brief outline

of some classical approaches.
Ideally, we would like to perform variable selection by trying out a lot of

different models, each containing a different subset of the predictors. For
instance, if p = 2, then we can consider four models: (1) a model contain-
ing no variables, (2) a model containing X1 only, (3) a model containing
X2 only, and (4) a model containing both X1 and X2. We can then se-
lect the best model out of all of the models that we have considered. How
do we determine which model is best? Various statistics can be used to
judge the quality of a model. These include Mallow’s Cp, Akaike informa-

Mallow’s Cp
tion criterion (AIC), Bayesian information criterion (BIC), and adjusted

Akaike
information
criterion

Bayesian
information
criterion

R2. These are discussed in more detail in Chapter 6. We can also deter-

adjusted R2

mine which model is best by plotting various model outputs, such as the
residuals, in order to search for patterns.
Unfortunately, there are a total of 2p models that contain subsets of p

variables. This means that even for moderate p, trying out every possible
subset of the predictors is infeasible. For instance, we saw that if p = 2, then
there are 22 = 4 models to consider. But if p = 30, then we must consider
230 = 1,073,741,824 models! This is not practical. Therefore, unless p is very
small, we cannot consider all 2p models, and instead we need an automated
and efficient approach to choose a smaller set of models to consider. There
are three classical approaches for this task:

• Forward selection. We begin with the null model—a model that con-
forward
selection

null model

tains an intercept but no predictors. We then fit p simple linear re-
gressions and add to the null model the variable that results in the
lowest RSS. We then add to that model the variable that results
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in the lowest RSS for the new two-variable model. This approach is
continued until some stopping rule is satisfied.

• Backward selection. We start with all variables in the model, and
backward
selectionremove the variable with the largest p-value—that is, the variable

that is the least statistically significant. The new (p − 1)-variable
model is fit, and the variable with the largest p-value is removed. This
procedure continues until a stopping rule is reached. For instance, we
may stop when all remaining variables have a p-value below some
threshold.

• Mixed selection. This is a combination of forward and backward se-
mixed
selectionlection. We start with no variables in the model, and as with forward

selection, we add the variable that provides the best fit. We con-
tinue to add variables one-by-one. Of course, as we noted with the
Advertising example, the p-values for variables can become larger as
new predictors are added to the model. Hence, if at any point the
p-value for one of the variables in the model rises above a certain
threshold, then we remove that variable from the model. We con-
tinue to perform these forward and backward steps until all variables
in the model have a sufficiently low p-value, and all variables outside
the model would have a large p-value if added to the model.

Backward selection cannot be used if p > n, while forward selection can
always be used. Forward selection is a greedy approach, and might include
variables early that later become redundant. Mixed selection can remedy
this.

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and
R2, the fraction of variance explained. These quantities are computed and
interpreted in the same fashion as for simple linear regression.
Recall that in simple regression, R2 is the square of the correlation of the

response and the variable. In multiple linear regression, it turns out that it
equals Cor(Y, Ŷ )2, the square of the correlation between the response and
the fitted linear model; in fact one property of the fitted linear model is
that it maximizes this correlation among all possible linear models.
An R2 value close to 1 indicates that the model explains a large portion

of the variance in the response variable. As an example, we saw in Table 3.6
that for the Advertising data, the model that uses all three advertising me-
dia to predict sales has an R2 of 0.8972. On the other hand, the model that
uses only TV and radio to predict sales has an R2 value of 0.89719. In other
words, there is a small increase in R2 if we include newspaper advertising
in the model that already contains TV and radio advertising, even though
we saw earlier that the p-value for newspaper advertising in Table 3.4 is not
significant. It turns out that R2 will always increase when more variables
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are added to the model, even if those variables are only weakly associated
with the response. This is due to the fact that adding another variable to
the least squares equations must allow us to fit the training data (though
not necessarily the testing data) more accurately. Thus, the R2 statistic,
which is also computed on the training data, must increase. The fact that
adding newspaper advertising to the model containing only TV and radio
advertising leads to just a tiny increase in R2 provides additional evidence
that newspaper can be dropped from the model. Essentially, newspaper pro-
vides no real improvement in the model fit to the training samples, and its
inclusion will likely lead to poor results on independent test samples due
to overfitting.
In contrast, the model containing only TV as a predictor had an R2 of 0.61

(Table 3.2). Adding radio to the model leads to a substantial improvement
in R2. This implies that a model that uses TV and radio expenditures to
predict sales is substantially better than one that uses only TV advertis-
ing. We could further quantify this improvement by looking at the p-value
for the radio coefficient in a model that contains only TV and radio as
predictors.
The model that contains only TV and radio as predictors has an RSE

of 1.681, and the model that also contains newspaper as a predictor has
an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV

has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion
that a model that uses TV and radio expenditures to predict sales is much
more accurate (on the training data) than one that only uses TV spending.
Furthermore, given that TV and radio expenditures are used as predictors,
there is no point in also using newspaper spending as a predictor in the
model. The observant reader may wonder how RSE can increase when
newspaper is added to the model given that RSS must decrease. In general
RSE is defined as

RSE =

√
1

n− p− 1
RSS, (3.25)

which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.
In addition to looking at the RSE and R2 statistics just discussed, it

can be useful to plot the data. Graphical summaries can reveal problems
with a model that are not visible from numerical statistics. For example,
Figure 3.5 displays a three-dimensional plot of TV and radio versus sales.
We see that some observations lie above and some observations lie below
the least squares regression plane. In particular, the linear model seems to
overestimate sales for instances in which most of the advertising money
was spent exclusively on either TV or radio. It underestimates sales for
instances where the budget was split between the two media. This pro-
nounced non-linear pattern cannot be modeled accurately using linear re-
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Sales

Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those visible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

gression. It suggests a synergy or interaction effect between the advertising
media, whereby combining the media together results in a bigger boost to
sales than using any single medium. In Section 3.3.2, we will discuss ex-
tending the linear model to accommodate such synergistic effects through
the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X1, X2, . . . , Xp. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates β̂0, β̂1, . . . , β̂p are estimates for β0, β1, . . . , βp.
That is, the least squares plane

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp

is only an estimate for the true population regression plane

f(X) = β0 + β1X1 + · · ·+ βpXp.

The inaccuracy in the coefficient estimates is related to the reducible
error from Chapter 2. We can compute a confidence interval in order
to determine how close Ŷ will be to f(X).
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2. Of course, in practice assuming a linear model for f(X) is almost
always an approximation of reality, so there is an additional source of
potentially reducible error which we call model bias . So when we use a
linear model, we are in fact estimating the best linear approximation
to the true surface. However, here we will ignore this discrepancy,
and operate as if the linear model were correct.

3. Even if we knew f(X)—that is, even if we knew the true values
for β0, β1, . . . , βp—the response value cannot be predicted perfectly
because of the random error ε in the model (3.21). In Chapter 2, we
referred to this as the irreducible error. How much will Y vary from
Ŷ ? We use prediction intervals to answer this question. Prediction
intervals are always wider than confidence intervals, because they
incorporate both the error in the estimate for f(X) (the reducible
error) and the uncertainty as to how much an individual point will
differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding
confidence
intervalthe average sales over a large number of cities. For example, given that

$100,000 is spent on TV advertising and $20,000 is spent on radio advertising
in each city, the 95% confidence interval is [10,985, 11,528]. We interpret
this to mean that 95% of intervals of this form will contain the true value of
f(X).8 On the other hand, a prediction interval can be used to quantify the

prediction
intervaluncertainty surrounding sales for a particular city. Given that $100,000 is

spent on TV advertising and $20,000 is spent on radio advertising in that city
the 95% prediction interval is [7,930, 14,580]. We interpret this to mean
that 95% of intervals of this form will contain the true value of Y for this
city. Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.

3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.

8In other words, if we collect a large number of data sets like the Advertising data
set, and we construct a confidence interval for the average sales on the basis of each
data set (given $100,000 in TV and $20,000 in radio advertising), then 95% of these
confidence intervals will contain the true value of average sales.
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For example, the Credit data set displayed in Figure 3.6 records balance
(average credit card debt for a number of individuals) as well as several
quantitative predictors: age, cards (number of credit cards), education

(years of education), income (in thousands of dollars), limit (credit limit),
and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a
pair of variables whose identities are given by the corresponding row and
column labels. For example, the scatterplot directly to the right of the word
“Balance” depicts balance versus age, while the plot directly to the right
of “Age” corresponds to age versus cards. In addition to these quantitative
variables, we also have four qualitative variables: gender, student (student
status), status (marital status), and ethnicity (Caucasian, African Amer-
ican or Asian).
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.
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Coefficient Std. error t-statistic p-value

Intercept 509.80 33.13 15.389 < 0.0001
gender[Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-

factor

levelble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy variable that takes on two possible

dummy
variablenumerical values. For example, based on the gender variable, we can create

a new variable that takes the form

xi =

{
1 if ith person is female

0 if ith person is male,
(3.26)

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 + β1xi + εi =

{
β0 + β1 + εi if ith person is female

β0 + εi if ith person is male.
(3.27)

Now β0 can be interpreted as the average credit card balance among males,
β0 + β1 as the average credit card balance among females, and β1 as the
average difference in credit card balance between females and males.
Table 3.7 displays the coefficient estimates and other information asso-

ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.
The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and

has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for β0 and β1 would have been 529.53 and −19.73, respectively, leading once
again to a prediction of credit card debt of $529.53− $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable
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xi =

{
1 if ith person is female

−1 if ith person is male

and use this variable in the regression equation. This results in the model

yi = β0 + β1xi + εi =

{
β0 + β1 + εi if ith person is female

β0 − β1 + εi if ith person is male.

Now β0 can be interpreted as the overall average credit card balance (ig-
noring the gender effect), and β1 is the amount that females are above the
average and males are below the average. In this example, the estimate for
β0 would be $519.665, halfway between the male and female averages of
$509.80 and $529.53. The estimate for β1 would be $9.865, which is half of
$19.73, the average difference between females and males. It is important to
note that the final predictions for the credit balances of males and females
will be identical regardless of the coding scheme used. The only difference
is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

xi1 =

{
1 if ith person is Asian

0 if ith person is not Asian,
(3.28)

and the second could be

xi2 =

{
1 if ith person is Caucasian

0 if ith person is not Caucasian.
(3.29)

Then both of these variables can be used in the regression equation, in
order to obtain the model

yi = β0+β1xi1+β2xi2+εi =

⎧
⎪⎨

⎪⎩

β0+β1+εi if ith person is Asian

β0+β2+εi if ith person is Caucasian

β0+εi if ith person is African American.

(3.30)
Now β0 can be interpreted as the average credit card balance for African
Americans, β1 can be interpreted as the difference in the average balance
between the Asian and African American categories, and β2 can be inter-
preted as the difference in the average balance between the Caucasian and
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Coefficient Std. error t-statistic p-value

Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] −18.69 65.02 −0.287 0.7740
ethnicity[Caucasian] −12.50 56.68 −0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

African American categories. There will always be one fewer dummy vari-
able than the number of levels. The level with no dummy variable—African
American in this example—is known as the baseline.

baseline
From Table 3.8, we see that the estimated balance for the baseline,

African American, is $531.00. It is estimated that the Asian category will
have $18.69 less debt than the African American category, and that the
Caucasian category will have $12.50 less debt than the African American
category. However, the p-values associated with the coefficient estimates for
the two dummy variables are very large, suggesting no statistical evidence
of a real difference in credit card balance between the ethnicities. Once
again, the level selected as the baseline category is arbitrary, and the final
predictions for each group will be the same regardless of this choice. How-
ever, the coefficients and their p-values do depend on the choice of dummy
variable coding. Rather than rely on the individual coefficients, we can use
an F-test to test H0 : β1 = β2 = 0; this does not depend on the coding.
This F-test has a p-value of 0.96, indicating that we cannot reject the null
hypothesis that there is no relationship between balance and ethnicity.
Using this dummy variable approach presents no difficulties when in-

corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable
for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.
There are many different ways of coding qualitative variables besides

the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic

contrast
is beyond the scope of the book, and so we will not pursue it further.

3.3.2 Extensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additive assumption

additive

linear
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means that the effect of changes in a predictor Xj on the response Y is
independent of the values of the other predictors. The linear assumption
states that the change in the response Y due to a one-unit change in Xj is
constant, regardless of the value of Xj . In this book, we examine a number
of sophisticated methods that relax these two assumptions. Here, we briefly
examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV

and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average effect
on sales of a one-unit increase in TV is always β1, regardless of the amount
spent on radio.
However, this simple model may be incorrect. Suppose that spending

money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio

and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.
Consider the standard linear regression model with two variables,

Y = β0 + β1X1 + β2X2 + ε.

According to this model, if we increase X1 by one unit, then Y will increase
by an average of β1 units. Notice that the presence of X2 does not alter
this statement—that is, regardless of the value of X2, a one-unit increase
in X1 will lead to a β1-unit increase in Y . One way of extending this model
to allow for interaction effects is to include a third predictor, called an
interaction term, which is constructed by computing the product of X1

and X2. This results in the model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = β0 + (β1 + β3X2)X1 + β2X2 + ε (3.32)

= β0 + β̃1X1 + β2X2 + ε
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Coefficient Std. error t-statistic p-value

Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

where β̃1 = β1 + β3X2. Since β̃1 changes with X2, the effect of X1 on Y is
no longer constant: adjusting X2 will change the impact of X1 on Y .

For example, suppose that we are interested in studying the productiv-
ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units ≈ 1.2 + 3.4× lines+ 0.22× workers + 1.4× (lines × workers)

= 1.2 + (3.4 + 1.4× workers)× lines+ 0.22× workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 × workers. Hence the more workers we have, the
stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses
radio, TV, and an interaction between the two to predict sales takes the
form

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio × TV) + ε

= β0 + (β1 + β3 × radio)× TV+ β2 × radio + ε. (3.33)

We can interpret β3 as the increase in the effectiveness of TV advertising
for a one unit increase in radio advertising (or vice-versa). The coefficients
that result from fitting the model (3.33) are given in Table 3.9.
The results in Table 3.9 strongly suggest that the model that includes the

interaction term is superior to the model that contains only main effects.
main effect

The p-value for the interaction term, TV×radio, is extremely low, indicating
that there is strong evidence for Ha : β3 �= 0. In other words, it is clear that
the true relationship is not additive. The R2 for the model (3.33) is 96.8%,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 − 89.7)/(100−
89.7) = 69% of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient
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estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (β̂1+β̂3×radio)×1,000 = 19+1.1×radio

units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (β̂2 + β̂3 × TV)× 1,000 = 29 + 1.1× TV units.
In this example, the p-values associated with TV, radio, and the interac-

tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we

hierarchical
principleshould also include the main effects, even if the p-values associated with

their coefficients are not significant. In other words, if the interaction be-
tween X1 and X2 seems important, then we should include both X1 and
X2 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X1 × X2 is related to the response,
then whether or not the coefficients of X1 or X2 are exactly zero is of lit-
tle interest. Also X1 ×X2 is typically correlated with X1 and X2, and so
leaving them out tends to alter the meaning of the interaction.
In the previous example, we considered an interaction between TV and

radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student

(qualitative) variables. In the absence of an interaction term, the model
takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student

0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student

β0 if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, β0 + β2 versus β0, but the same slope, β1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.
This limitation can be addressed by adding an interaction variable, cre-

ated by multiplying income with the dummy variable for student. Our
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

model now becomes

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student

0 if not student

=

{
(β0 + β2) + (β1 + β3)× incomei if student

β0 + β1 × incomei if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
β0+β2 versus β0, as well as different slopes, β1+β3 versus β1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In

polynomial
regressionlater chapters, we will present more complex approaches for performing

non-linear fits in more general settings.
Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)

versus horsepower is shown for a number of cars in the Auto data set. The
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a

quadratic
model of the form

mpg = β0 + β1 × horsepower + β2 × horsepower2 + ε (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X1 = horsepower

and X2 = horsepower2. So we can use standard linear regression software to
estimate β0, β1, and β2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R2 of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.
If including horsepower2 led to such a big improvement in the model, why

not include horsepower3, horsepower4, or even horsepower5? The green curve
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Coefficient Std. error t-statistic p-value

Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower2.

in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.
The approach that we have just described for extending the linear model

to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.

2. Correlation of error terms.

3. Non-constant variance of error terms.

4. Outliers.

5. High-leverage points.

6. Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relation-
ship between the predictors and the response. If the true relationship is
far from linear, then virtually all of the conclusions that we draw from the
fit are suspect. In addition, the prediction accuracy of the model can be
significantly reduced.
Residual plots are a useful graphical tool for identifying non-linearity.

residual plot
Given a simple linear regression model, we can plot the residuals, ei =
yi − ŷi, versus the predictor xi. In the case of a multiple regression model,
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FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto

data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower2. There is little pattern in the
residuals.

since there are multiple predictors, we instead plot the residuals versus
the predicted (or fitted) values ŷi. Ideally, the residual plot will show no

fitted
discernible pattern. The presence of a pattern may indicate a problem with
some aspect of the linear model.
The left panel of Figure 3.9 displays a residual plot from the linear

regression of mpg onto horsepower on the Auto data set that was illustrated
in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed
in order to make it easier to identify any trends. The residuals exhibit a
clear U-shape, which provides a strong indication of non-linearity in the
data. In contrast, the right-hand panel of Figure 3.9 displays the residual
plot that results from the model (3.36), which contains a quadratic term.
There appears to be little pattern in the residuals, suggesting that the
quadratic term improves the fit to the data.
If the residual plot indicates that there are non-linear associations in the

data, then a simple approach is to use non-linear transformations of the
predictors, such as logX ,

√
X, and X2, in the regression model. In the

later chapters of this book, we will discuss other more advanced non-linear
approaches for addressing this issue.

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error
terms, ε1, ε2, . . . , εn, are uncorrelated. What does this mean? For instance,
if the errors are uncorrelated, then the fact that εi is positive provides
little or no information about the sign of εi+1. The standard errors that
are computed for the estimated regression coefficients or the fitted values
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are based on the assumption of uncorrelated error terms. If in fact there
is correlation among the error terms, then the estimated standard errors
will tend to underestimate the true standard errors. As a result, confi-
dence and prediction intervals will be narrower than they should be. For
example, a 95% confidence interval may in reality have a much lower prob-
ability than 0.95 of containing the true value of the parameter. In addition,
p-values associated with the model will be lower than they should be; this
could cause us to erroneously conclude that a parameter is statistically
significant. In short, if the error terms are correlated, we may have an
unwarranted sense of confidence in our model.
As an extreme example, suppose we accidentally doubled our data, lead-

ing to observations and error terms identical in pairs. If we ignored this, our
standard error calculations would be as if we had a sample of size 2n, when
in fact we have only n samples. Our estimated parameters would be the
same for the 2n samples as for the n samples, but the confidence intervals
would be narrower by a factor of

√
2!

Why might correlations among the error terms occur? Such correlations
frequently occur in the context of time series data, which consists of ob-

time series
servations for which measurements are obtained at discrete points in time.
In many cases, observations that are obtained at adjacent time points will
have positively correlated errors. In order to determine if this is the case for
a given data set, we can plot the residuals from our model as a function of
time. If the errors are uncorrelated, then there should be no discernible pat-
tern. On the other hand, if the error terms are positively correlated, then
we may see tracking in the residuals—that is, adjacent residuals may have

tracking
similar values. Figure 3.10 provides an illustration. In the top panel, we see
the residuals from a linear regression fit to data generated with uncorre-
lated errors. There is no evidence of a time-related trend in the residuals.
In contrast, the residuals in the bottom panel are from a data set in which
adjacent errors had a correlation of 0.9. Now there is a clear pattern in the
residuals—adjacent residuals tend to take on similar values. Finally, the
center panel illustrates a more moderate case in which the residuals had a
correlation of 0.5. There is still evidence of tracking, but the pattern is less
clear.
Many methods have been developed to properly take account of corre-

lations in the error terms in time series data. Correlation among the error
terms can also occur outside of time series data. For instance, consider a
study in which individuals’ heights are predicted from their weights. The
assumption of uncorrelated errors could be violated if some of the individ-
uals in the study are members of the same family, or eat the same diet,
or have been exposed to the same environmental factors. In general, the
assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods, and good experimental design
is crucial in order to mitigate the risk of such correlations.
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated
with differing levels of correlation ρ between error terms for adjacent time points.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the
error terms have a constant variance, Var(εi) = σ2. The standard errors,
confidence intervals, and hypothesis tests associated with the linear model
rely upon this assumption.
Unfortunately, it is often the case that the variances of the error terms are

non-constant. For instance, the variances of the error terms may increase
with the value of the response. One can identify non-constant variances in
the errors, or heteroscedasticity, from the presence of a funnel shape in

heterosceda-
sticitythe residual plot. An example is shown in the left-hand panel of Figure 3.11,

in which the magnitude of the residuals tends to increase with the fitted
values. When faced with this problem, one possible solution is to trans-
form the response Y using a concave function such as log Y or

√
Y . Such

a transformation results in a greater amount of shrinkage of the larger re-
sponses, leading to a reduction in heteroscedasticity. The right-hand panel
of Figure 3.11 displays the residual plot after transforming the response
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FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.

using log Y . The residuals now appear to have constant variance, though
there is some evidence of a slight non-linear relationship in the data.
Sometimes we have a good idea of the variance of each response. For

example, the ith response could be an average of ni raw observations. If
each of these raw observations is uncorrelated with variance σ2, then their
average has variance σ2

i = σ2/ni. In this case a simple remedy is to fit our
model by weighted least squares, with weights proportional to the inverse

weighted
least squaresvariances—i.e. wi = ni in this case. Most linear regression software allows

for observation weights.

4. Outliers

An outlier is a point for which yi is far from the value predicted by the
outlier

model. Outliers can arise for a variety of reasons, such as incorrect recording
of an observation during data collection.
The red point (observation 20) in the left-hand panel of Figure 3.12

illustrates a typical outlier. The red solid line is the least squares regression
fit, while the blue dashed line is the least squares fit after removal of the
outlier. In this case, removing the outlier has little effect on the least squares
line: it leads to almost no change in the slope, and a miniscule reduction
in the intercept. It is typical for an outlier that does not have an unusual
predictor value to have little effect on the least squares fit. However, even
if an outlier does not have much effect on the least squares fit, it can cause
other problems. For instance, in this example, the RSE is 1.09 when the
outlier is included in the regression, but it is only 0.77 when the outlier
is removed. Since the RSE is used to compute all confidence intervals and
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FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between −3 and 3.

p-values, such a dramatic increase caused by a single data point can have
implications for the interpretation of the fit. Similarly, inclusion of the
outlier causes the R2 to decline from 0.892 to 0.805.
Residual plots can be used to identify outliers. In this example, the out-

lier is clearly visible in the residual plot illustrated in the center panel of
Figure 3.12. But in practice, it can be difficult to decide how large a resid-
ual needs to be before we consider the point to be an outlier. To address
this problem, instead of plotting the residuals, we can plot the studentized
residuals, computed by dividing each residual ei by its estimated standard

studentized
residualerror. Observations whose studentized residuals are greater than 3 in abso-

lute value are possible outliers. In the right-hand panel of Figure 3.12, the
outlier’s studentized residual exceeds 6, while all other observations have
studentized residuals between −2 and 2.
If we believe that an outlier has occurred due to an error in data collec-

tion or recording, then one solution is to simply remove the observation.
However, care should be taken, since an outlier may instead indicate a
deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response yi is
unusual given the predictor xi. In contrast, observations with high leverage

high leverage
have an unusual value for xi. For example, observation 41 in the left-hand
panel of Figure 3.13 has high leverage, in that the predictor value for this
observation is large relative to the other observations. (Note that the data
displayed in Figure 3.13 are the same as the data displayed in Figure 3.12,
but with the addition of a single high leverage observation.) The red solid
line is the least squares fit to the data, while the blue dashed line is the
fit produced when observation 41 is removed. Comparing the left-hand
panels of Figures 3.12 and 3.13, we observe that removing the high leverage
observation has a much more substantial impact on the least squares line
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FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its X2 value, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

than removing the outlier. In fact, high leverage observations tend to have
a sizable impact on the estimated regression line. It is cause for concern if
the least squares line is heavily affected by just a couple of observations,
because any problems with these points may invalidate the entire fit. For
this reason, it is important to identify high leverage observations.
In a simple linear regression, high leverage observations are fairly easy to

identify, since we can simply look for observations for which the predictor
value is outside of the normal range of the observations. But in a multiple
linear regression with many predictors, it is possible to have an observation
that is well within the range of each individual predictor’s values, but that
is unusual in terms of the full set of predictors. An example is shown in
the center panel of Figure 3.13, for a data set with two predictors, X1 and
X2. Most of the observations’ predictor values fall within the blue dashed
ellipse, but the red observation is well outside of this range. But neither its
value for X1 nor its value for X2 is unusual. So if we examine just X1 or
just X2, we will fail to notice this high leverage point. This problem is more
pronounced in multiple regression settings with more than two predictors,
because then there is no simple way to plot all dimensions of the data
simultaneously.
In order to quantify an observation’s leverage, we compute the leverage

statistic. A large value of this statistic indicates an observation with high
leverage
statisticleverage. For a simple linear regression,

hi =
1

n
+

(xi − x̄)2∑n
i′=1(xi′ − x̄)2

. (3.37)

It is clear from this equation that hi increases with the distance of xi from x̄.
There is a simple extension of hi to the case of multiple predictors, though
we do not provide the formula here. The leverage statistic hi is always
between 1/n and 1, and the average leverage for all the observations is
always equal to (p+1)/n. So if a given observation has a leverage statistic
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FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.

that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.
The right-hand panel of Figure 3.13 provides a plot of the studentized

residuals versus hi for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
collinearity

are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.
Figure 3.15 illustrates some of the difficulties that can result from collinear-

ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
β for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (βLimit, βRating) with a similar value for RSS.

lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.
In contrast, the right-hand panel of Figure 3.15 displays contour plots

of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating

coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.
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Coefficient Std. error t-statistic p-value

Intercept −173.411 43.828 −3.957 < 0.0001
Model 1 age −2.292 0.672 −3.407 0.0007

limit 0.173 0.005 34.496 < 0.0001

Intercept −377.537 45.254 −8.343 < 0.0001
Model 2 rating 2.202 0.952 2.312 0.0213

limit 0.025 0.064 0.384 0.7012

TABLE 3.11. The results for two multiple regression models involving the
Credit data set are shown. Model 1 is a regression of balance on age and limit,
and Model 2 a regression of balance on rating and limit. The standard error
of β̂limit increases 12-fold in the second regression, due to collinearity.

Since collinearity reduces the accuracy of the estimates of the regression
coefficients, it causes the standard error for β̂j to grow. Recall that the

t-statistic for each predictor is calculated by dividing β̂j by its standard
error. Consequently, collinearity results in a decline in the t-statistic. As a
result, in the presence of collinearity, we may fail to reject H0 : βj = 0. This
means that the power of the hypothesis test—the probability of correctly power

detecting a non-zero coefficient—is reduced by collinearity.
Table 3.11 compares the coefficient estimates obtained from two separate

multiple regression models. The first is a regression of balance on age and
limit, and the second is a regression of balance on rating and limit. In the
first regression, both age and limit are highly significant with very small p-
values. In the second, the collinearity between limit and rating has caused
the standard error for the limit coefficient estimate to increase by a factor
of 12 and the p-value to increase to 0.701. In other words, the importance
of the limit variable has been masked due to the presence of collinearity.
To avoid such a situation, it is desirable to identify and address potential
collinearity problems while fitting the model.
A simple way to detect collinearity is to look at the correlation matrix

of the predictors. An element of this matrix that is large in absolute value
indicates a pair of highly correlated variables, and therefore a collinearity
problem in the data. Unfortunately, not all collinearity problems can be
detected by inspection of the correlation matrix: it is possible for collinear-
ity to exist between three or more variables even if no pair of variables
has a particularly high correlation. We call this situation multicollinearity.

multi-
collinearityInstead of inspecting the correlation matrix, a better way to assess multi-

collinearity is to compute the variance inflation factor (VIF). The VIF is
variance
inflation
factor

the ratio of the variance of β̂j when fitting the full model divided by the

variance of β̂j if fit on its own. The smallest possible value for VIF is 1,
which indicates the complete absence of collinearity. Typically in practice
there is a small amount of collinearity among the predictors. As a rule of
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of
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collinearity. The VIF for each variable can be computed using the formula

VIF(β̂j) =
1

1−R2
Xj |X−j

,

where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other

predictors. If R2
Xj |X−j

is close to one, then collinearity is present, and so

the VIF will be large.
In the Credit data, a regression of balance on age, rating, and limit

indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.
As we suspected, there is considerable collinearity in the data!
When faced with the problem of collinearity, there are two simple solu-

tions. The first is to drop one of the problematic variables from the regres-
sion. This can usually be done without much compromise to the regression
fit, since the presence of collinearity implies that the information that this
variable provides about the response is redundant in the presence of the
other variables. For instance, if we regress balance onto age and limit,
without the rating predictor, then the resulting VIF values are close to
the minimum possible value of 1, and the R2 drops from 0.754 to 0.75.
So dropping rating from the set of predictors has effectively solved the
collinearity problem without compromising the fit. The second solution is
to combine the collinear variables together into a single predictor. For in-
stance, we might take the average of standardized versions of limit and
rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data
that we set out to answer at the beginning of this chapter.

1. Is there a relationship between advertising sales and budget?
This question can be answered by fitting a multiple regression model
of sales onto TV, radio, and newspaper, as in (3.20), and testing the
hypothesis H0 : βTV = βradio = βnewspaper = 0. In Section 3.2.2,
we showed that the F-statistic can be used to determine whether or
not we should reject this null hypothesis. In this case the p-value
corresponding to the F-statistic in Table 3.6 is very low, indicating
clear evidence of a relationship between advertising and sales.

2. How strong is the relationship?
We discussed two measures of model accuracy in Section 3.1.3. First,
the RSE estimates the standard deviation of the response from the
population regression line. For the Advertising data, the RSE is 1,681
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units while the mean value for the response is 14,022, indicating a
percentage error of roughly 12%. Second, the R2 statistic records
the percentage of variability in the response that is explained by
the predictors. The predictors explain almost 90% of the variance in
sales. The RSE and R2 statistics are displayed in Table 3.6.

3. Which media contribute to sales?
To answer this question, we can examine the p-values associated with
each predictor’s t-statistic (Section 3.1.2). In the multiple linear re-
gression displayed in Table 3.4, the p-values for TV and radio are low,
but the p-value for newspaper is not. This suggests that only TV and
radio are related to sales. In Chapter 6 we explore this question in
greater detail.

4. How large is the effect of each medium on sales?
We saw in Section 3.1.2 that the standard error of β̂j can be used
to construct confidence intervals for βj . For the Advertising data,
the 95% confidence intervals are as follows: (0.043, 0.049) for TV,
(0.172, 0.206) for radio, and (−0.013, 0.011) for newspaper. The confi-
dence intervals for TV and radio are narrow and far from zero, provid-
ing evidence that these media are related to sales. But the interval
for newspaper includes zero, indicating that the variable is not statis-
tically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide stan-
dard errors. Could collinearity be the reason that the confidence in-
terval associated with newspaper is so wide? The VIF scores are 1.005,
1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence
of collinearity.

In order to assess the association of each medium individually on
sales, we can perform three separate simple linear regressions. Re-
sults are shown in Tables 3.1 and 3.3. There is evidence of an ex-
tremely strong association between TV and sales and between radio

and sales. There is evidence of a mild association between newspaper

and sales, when the values of TV and radio are ignored.

5. How accurately can we predict future sales?
The response can be predicted using (3.21). The accuracy associ-
ated with this estimate depends on whether we wish to predict an
individual response, Y = f(X) + ε, or the average response, f(X)
(Section 3.2.2). If the former, we use a prediction interval, and if the
latter, we use a confidence interval. Prediction intervals will always
be wider than confidence intervals because they account for the un-
certainty associated with ε, the irreducible error.
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6. Is the relationship linear?
In Section 3.3.3, we saw that residual plots can be used in order to
identify non-linearity. If the relationships are linear, then the residual
plots should display no pattern. In the case of the Advertising data,
we observe a non-linear effect in Figure 3.5, though this effect could
also be observed in a residual plot. In Section 3.3.2, we discussed the
inclusion of transformations of the predictors in the linear regression
model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?
The standard linear regression model assumes an additive relation-
ship between the predictors and the response. An additive model is
easy to interpret because the effect of each predictor on the response is
unrelated to the values of the other predictors. However, the additive
assumption may be unrealistic for certain data sets. In Section 3.3.2,
we showed how to include an interaction term in the regression model
in order to accommodate non-additive relationships. A small p-value
associated with the interaction term indicates the presence of such
relationships. Figure 3.5 suggested that the Advertising data may
not be additive. Including an interaction term in the model results in
a substantial increase in R2, from around 90% to almost 97%.

3.5 Comparison of Linear Regression
with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric
approach because it assumes a linear functional form for f(X). Parametric
methods have several advantages. They are often easy to fit, because one
need estimate only a small number of coefficients. In the case of linear re-
gression, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a
disadvantage: by construction, they make strong assumptions about the
form of f(X). If the specified functional form is far from the truth, and
prediction accuracy is our goal, then the parametric method will perform
poorly. For instance, if we assume a linear relationship between X and Y
but the true relationship is far from linear, then the resulting model will
provide a poor fit to the data, and any conclusions drawn from it will be
suspect.
In contrast, non-parametric methods do not explicitly assume a para-

metric form for f(X), and thereby provide an alternative and more flexi-
ble approach for performing regression. We discuss various non-parametric
methods in this book. Here we consider one of the simplest and best-known
non-parametric methods,K-nearest neighbors regression (KNN regression).

K-nearest
neighbors
regression
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FIGURE 3.16. Plots of f̂(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K = 1 results in a rough step func-
tion fit. Right: K = 9 produces a much smoother fit.

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point x0, KNN
regression first identifies the K training observations that are closest to
x0, represented by N0. It then estimates f(x0) using the average of all the
training responses in N0. In other words,

f̂(x0) =
1

K

∑
xi∈N0

yi.

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors.
The fit with K = 1 is shown in the left-hand panel, while the right-hand
panel corresponds toK = 9. We see that whenK = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form of
a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant
prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.
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In what setting will a parametric approach such as least squares linear re-
gression outperform a non-parametric approach such as KNN regression?
The answer is simple: the parametric approach will outperform the non-
parametric approach if the parametric form that has been selected is close
to the true form of f . Figure 3.17 provides an example with data generated
from a one-dimensional linear regression model. The black solid lines rep-
resent f(X), while the blue curves correspond to the KNN fits using K = 1
and K = 9. In this case, the K = 1 predictions are far too variable, while
the smoother K = 9 fit is much closer to f(X). However, since the true
relationship is linear, it is hard for a non-parametric approach to compete
with linear regression: a non-parametric approach incurs a cost in variance
that is not offset by a reduction in bias. The blue dashed line in the left-
hand panel of Figure 3.18 represents the linear regression fit to the same
data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that
linear regression outperforms KNN for this data. The green solid line, plot-
ted as a function of 1/K, represents the test set mean squared error (MSE)
for KNN. The KNN errors are well above the black dashed line, which is
the test MSE for linear regression. When the value of K is large, then KNN
performs only a little worse than least squares regression in terms of MSE.
It performs far worse when K is small.
In practice, the true relationship between X and Y is rarely exactly lin-

ear. Figure 3.19 examines the relative performances of least squares regres-
sion and KNN under increasing levels of non-linearity in the relationship
between X and Y . In the top row, the true relationship is nearly linear.
In this case we see that the test MSE for linear regression is still superior
to that of KNN for low values of K. However, for K ≥ 4, KNN out-
performs linear regression. The second row illustrates a more substantial
deviation from linearity. In this situation, KNN substantially outperforms
linear regression for all values of K. Note that as the extent of non-linearity
increases, there is little change in the test set MSE for the non-parametric
KNN method, but there is a large increase in the test set MSE of linear
regression.
Figures 3.18 and 3.19 display situations in which KNN performs slightly

worse than linear regression when the relationship is linear, but much better
than linear regression for non-linear situations. In a real life situation in
which the true relationship is unknown, one might draw the conclusion that
KNN should be favored over linear regression because it will at worst be
slightly inferior than linear regression if the true relationship is linear, and
may give substantially better results if the true relationship is non-linear.
But in reality, even when the true relationship is highly non-linear, KNN
may still provide inferior results to linear regression. In particular, both
Figures 3.18 and 3.19 illustrate settings with p = 1 predictor. But in higher
dimensions, KNN often performs worse than linear regression.
Figure 3.20 considers the same strongly non-linear situation as in the

second row of Figure 3.19, except that we have added additional noise
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FIGURE 3.17. Plots of f̂(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K = 1 (blue) and K = 9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and KNN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .

predictors that are not associated with the response. When p = 1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p ≥ 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
100 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 100 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is,

curse of di-
mensionalitythe K observations that are nearest to a given test observation x0 may be

very far away from x0 in p-dimensional space when p is large, leading to a
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non–
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

very poor prediction of f(x0) and hence a poor KNN fit. As a general rule,
parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.
Even in problems in which the dimension is small, we might prefer linear

regression to KNN from an interpretability standpoint. If the test MSE
of KNN is only slightly lower than that of linear regression, we might be
willing to forego a little bit of prediction accuracy for the sake of a simple
model that can be described in terms of just a few coefficients, and for
which p-values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library() function is used to load libraries, or groups of functions and
library()

data sets that are not included in the base R distribution. Basic functions
that perform least squares linear regression and other simple analyses come
standard with the base distribution, but more exotic functions require ad-
ditional libraries. Here we load the MASS package, which is a very large
collection of data sets and functions. We also load the ISLR package, which
includes the data sets associated with this book.

> library (MASS)

> library (ISLR)

If you receive an error message when loading any of these libraries, it
likely indicates that the corresponding library has not yet been installed
on your system. Some libraries, such as MASS, come with R and do not need to
be separately installed on your computer. However, other packages, such as
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ISLR, must be downloaded the first time they are used. This can be done di-
rectly from within R. For example, on a Windows system, select the Install

package option under the Packages tab. After you select any mirror site, a
list of available packages will appear. Simply select the package you wish to
install and R will automatically download the package. Alternatively, this
can be done at the R command line via install.packages("ISLR"). This in-
stallation only needs to be done the first time you use a package. However,
the library() function must be called each time you wish to use a given
package.

3.6.2 Simple Linear Regression

The MASS library contains the Boston data set, which records medv (median
house value) for 506 neighborhoods around Boston. We will seek to predict
medv using 13 predictors such as rm (average number of rooms per house),
age (average age of houses), and lstat (percent of households with low
socioeconomic status).

> fix(Boston )

> names(Boston )

[1] "crim" "zn" "indus" "chas" "nox" "rm" "age"

[8] "dis" "rad" "tax" "ptratio " "black" "lstat" "medv"

To find out more about the data set, we can type ?Boston.
We will start by using the lm() function to fit a simple linear regression

lm()
model, with medv as the response and lstat as the predictor. The basic
syntax is lm(y∼x,data), where y is the response, x is the predictor, and
data is the data set in which these two variables are kept.

> lm.fit =lm(medv∼lstat)

Error in eval(expr , envir , enclos ) : Object "medv" not found

The command causes an error because R does not know where to find
the variables medv and lstat. The next line tells R that the variables are
in Boston. If we attach Boston, the first line works fine because R now
recognizes the variables.

> lm.fit =lm(medv∼lstat ,data=Boston )

> attach (Boston )

> lm.fit =lm(medv∼lstat)

If we type lm.fit, some basic information about the model is output.
For more detailed information, we use summary(lm.fit). This gives us p-
values and standard errors for the coefficients, as well as the R2 statistic
and F-statistic for the model.

> lm.fit

Call:

lm(formula = medv ∼ lstat)
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Coefficients:

(Intercept ) lstat

34.55 -0.95

> summary (lm.fit)

Call:

lm(formula = medv ∼ lstat)

Residuals :

Min 1Q Median 3Q Max

-15.17 -3.99 -1.32 2.03 24.50

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept ) 34.5538 0.5626 61.4 <2e-16 ***

lstat -0.9500 0.0387 -24.5 <2e-16 ***

---

Signif . codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error : 6.22 on 504 degrees of freedom

Multiple R-squared : 0.544 , Adjusted R-squared : 0.543

F-statistic : 602 on 1 and 504 DF , p-value: <2e-16

We can use the names() function in order to find out what other pieces
names()

of information are stored in lm.fit. Although we can extract these quan-
tities by name—e.g. lm.fit$coefficients—it is safer to use the extractor
functions like coef() to access them.

coef()

> names(lm.fit )

[1] " coefficients" "residuals " "effects "

[4] "rank" "fitted .values " "assign "

[7] "qr" "df.residual " "xlevels "

[10] "call" "terms" "model"

> coef(lm.fit)

(Intercept ) lstat

34.55 -0.95

In order to obtain a confidence interval for the coefficient estimates, we can
use the confint() command.

confint()

> confint (lm.fit)

2.5 % 97.5 %

(Intercept ) 33.45 35.659

lstat -1.03 -0.874

The predict() function can be used to produce confidence intervals and
predict()

prediction intervals for the prediction of medv for a given value of lstat.

> predict (lm.fit ,data.frame(lstat=c(5 ,10 ,15) ),

interval =" confidence ")

fit lwr upr

1 29.80 29.01 30.60

2 25.05 24.47 25.63

3 20.30 19.73 20.87
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> predict (lm.fit ,data.frame(lstat=c(5 ,10 ,15) ),

interval =" prediction ")

fit lwr upr

1 29.80 17.566 42.04

2 25.05 12.828 37.28

3 20.30 8.078 32.53

For instance, the 95% confidence interval associated with a lstat value of
10 is (24.47, 25.63), and the 95% prediction interval is (12.828, 37.28). As
expected, the confidence and prediction intervals are centered around the
same point (a predicted value of 25.05 for medv when lstat equals 10), but
the latter are substantially wider.
We will now plot medv and lstat along with the least squares regression

line using the plot() and abline() functions.
abline()

> plot(lstat ,medv)

> abline (lm.fit)

There is some evidence for non-linearity in the relationship between lstat

and medv. We will explore this issue later in this lab.
The abline() function can be used to draw any line, not just the least

squares regression line. To draw a line with intercept a and slope b, we
type abline(a,b). Below we experiment with some additional settings for
plotting lines and points. The lwd=3 command causes the width of the
regression line to be increased by a factor of 3; this works for the plot()

and lines() functions also. We can also use the pch option to create different
plotting symbols.

> abline (lm.fit ,lwd =3)

> abline (lm.fit ,lwd =3, col ="red ")

> plot(lstat ,medv ,col ="red ")

> plot(lstat ,medv ,pch =20)

> plot(lstat ,medv ,pch ="+")

> plot (1:20 ,1:20, pch =1:20)

Next we examine some diagnostic plots, several of which were discussed
in Section 3.3.3. Four diagnostic plots are automatically produced by ap-
plying the plot() function directly to the output from lm(). In general, this
command will produce one plot at a time, and hitting Enter will generate
the next plot. However, it is often convenient to view all four plots together.
We can achieve this by using the par() function, which tells R to split the

par()
display screen into separate panels so that multiple plots can be viewed si-
multaneously. For example, par(mfrow=c(2,2)) divides the plotting region
into a 2× 2 grid of panels.

> par(mfrow =c(2,2))

> plot(lm.fit)

Alternatively, we can compute the residuals from a linear regression fit
using the residuals() function. The function rstudent() will return the

residuals()

rstudent()
studentized residuals, and we can use this function to plot the residuals
against the fitted values.
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> plot(predict (lm.fit), residuals (lm.fit))

> plot(predict (lm.fit), rstudent (lm.fit))

On the basis of the residual plots, there is some evidence of non-linearity.
Leverage statistics can be computed for any number of predictors using the
hatvalues() function.

hatvalues()

> plot(hatvalues (lm.fit ))

> which.max (hatvalues (lm.fit))

375

The which.max() function identifies the index of the largest element of a
which.max()

vector. In this case, it tells us which observation has the largest leverage
statistic.

3.6.3 Multiple Linear Regression

In order to fit a multiple linear regression model using least squares, we
again use the lm() function. The syntax lm(y∼x1+x2+x3) is used to fit a
model with three predictors, x1, x2, and x3. The summary() function now
outputs the regression coefficients for all the predictors.

> lm.fit =lm(medv∼lstat+age ,data=Boston )

> summary (lm.fit)

Call:

lm(formula = medv ∼ lstat + age , data = Boston )

Residuals :

Min 1Q Median 3Q Max

-15.98 -3.98 -1.28 1.97 23.16

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept ) 33.2228 0.7308 45.46 <2e-16 ***

lstat -1.0321 0.0482 -21.42 <2e-16 ***

age 0.0345 0.0122 2.83 0.0049 **

---

Signif . codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error : 6.17 on 503 degrees of freedom

Multiple R-squared : 0.551 , Adjusted R-squared : 0.549

F-statistic : 309 on 2 and 503 DF , p-value: <2e-16

The Boston data set contains 13 variables, and so it would be cumbersome
to have to type all of these in order to perform a regression using all of the
predictors. Instead, we can use the following short-hand:

> lm.fit =lm(medv∼.,data=Boston )

> summary (lm.fit)

Call:

lm(formula = medv ∼ ., data = Boston )
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Residuals :

Min 1Q Median 3Q Max

-15.594 -2.730 -0.518 1.777 26.199

Coefficients:

Estimate Std . Error t value Pr(>|t|)

(Intercept ) 3.646e+01 5.103 e+00 7.144 3.28e -12 ***

crim -1.080 e-01 3.286e-02 -3.287 0.001087 **

zn 4.642e-02 1.373e-02 3.382 0.000778 ***

indus 2.056e-02 6.150e-02 0.334 0.738288

chas 2.687e+00 8.616e-01 3.118 0.001925 **

nox -1.777 e+01 3.820 e+00 -4.651 4.25e -06 ***

rm 3.810e+00 4.179e-01 9.116 < 2e -16 ***

age 6.922e-04 1.321e-02 0.052 0.958229

dis -1.476 e+00 1.995e-01 -7.398 6.01e -13 ***

rad 3.060e-01 6.635e-02 4.613 5.07e -06 ***

tax -1.233 e-02 3.761e-03 -3.280 0.001112 **

ptratio -9.527 e-01 1.308e-01 -7.283 1.31e -12 ***

black 9.312e-03 2.686e-03 3.467 0.000573 ***

lstat -5.248 e-01 5.072e-02 -10.347 < 2e -16 ***

---

Signif . codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.745 on 492 degrees of freedom

Multiple R-Squared : 0.7406 , Adjusted R-squared : 0.7338

F-statistic : 108.1 on 13 and 492 DF , p-value: < 2.2e -16

We can access the individual components of a summary object by name
(type ?summary.lm to see what is available). Hence summary(lm.fit)$r.sq

gives us the R2, and summary(lm.fit)$sigma gives us the RSE. The vif()
vif()

function, part of the car package, can be used to compute variance inflation
factors. Most VIF’s are low to moderate for this data. The car package is
not part of the base R installation so it must be downloaded the first time
you use it via the install.packages option in R.

> library (car)

> vif(lm.fit)

crim zn indus chas nox rm age

1.79 2.30 3.99 1.07 4.39 1.93 3.10

dis rad tax ptratio black lstat

3.96 7.48 9.01 1.80 1.35 2.94

What if we would like to perform a regression using all of the variables but
one? For example, in the above regression output, age has a high p-value.
So we may wish to run a regression excluding this predictor. The following
syntax results in a regression using all predictors except age.

> lm.fit1=lm(medv∼.-age ,data=Boston )

> summary (lm.fit1)

...

Alternatively, the update() function can be used.
update()
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> lm.fit1=update (lm.fit , ∼.-age)

3.6.4 Interaction Terms

It is easy to include interaction terms in a linear model using the lm() func-
tion. The syntax lstat:black tells R to include an interaction term between
lstat and black. The syntax lstat*age simultaneously includes lstat, age,
and the interaction term lstat×age as predictors; it is a shorthand for
lstat+age+lstat:age.

> summary (lm(medv∼lstat *age ,data=Boston ))

Call:

lm(formula = medv ∼ lstat * age , data = Boston )

Residuals :

Min 1Q Median 3Q Max

-15.81 -4.04 -1.33 2.08 27.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept ) 36.088536 1.469835 24.55 < 2e-16 ***

lstat -1.392117 0.167456 -8.31 8.8e-16 ***

age -0.000721 0.019879 -0.04 0.971

lstat:age 0.004156 0.001852 2.24 0.025 *

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error : 6.15 on 502 degrees of freedom

Multiple R-squared : 0.556 , Adjusted R-squared : 0.553

F-statistic : 209 on 3 and 502 DF , p-value: <2e-16

3.6.5 Non-linear Transformations of the Predictors

The lm() function can also accommodate non-linear transformations of the
predictors. For instance, given a predictor X , we can create a predictor X2

using I(X^2). The function I() is needed since the ^ has a special meaning
I()

in a formula; wrapping as we do allows the standard usage in R, which is
to raise X to the power 2. We now perform a regression of medv onto lstat

and lstat2.

> lm.fit2=lm(medv∼lstat +I(lstat ^2))

> summary (lm.fit2)

Call:

lm(formula = medv ∼ lstat + I(lstat ^2))

Residuals :

Min 1Q Median 3Q Max

-15.28 -3.83 -0.53 2.31 25.41
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept ) 42.86201 0.87208 49.1 <2e-16 ***

lstat -2.33282 0.12380 -18.8 <2e-16 ***

I(lstat ^2) 0.04355 0.00375 11.6 <2e-16 ***

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error : 5.52 on 503 degrees of freedom

Multiple R-squared : 0.641 , Adjusted R-squared : 0.639

F-statistic : 449 on 2 and 503 DF , p-value: <2e-16

The near-zero p-value associated with the quadratic term suggests that
it leads to an improved model. We use the anova() function to further

anova()
quantify the extent to which the quadratic fit is superior to the linear fit.

> lm.fit =lm(medv∼lstat)

> anova(lm.fit ,lm.fit2)

Analysis of Variance Table

Model 1: medv ∼ lstat

Model 2: medv ∼ lstat + I(lstat ^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 504 19472

2 503 15347 1 4125 135 <2e -16 ***

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here Model 1 represents the linear submodel containing only one predictor,
lstat, while Model 2 corresponds to the larger quadratic model that has two
predictors, lstat and lstat2. The anova() function performs a hypothesis
test comparing the two models. The null hypothesis is that the two models
fit the data equally well, and the alternative hypothesis is that the full
model is superior. Here the F-statistic is 135 and the associated p-value is
virtually zero. This provides very clear evidence that the model containing
the predictors lstat and lstat2 is far superior to the model that only
contains the predictor lstat. This is not surprising, since earlier we saw
evidence for non-linearity in the relationship between medv and lstat. If we
type

> par(mfrow=c(2,2))

> plot(lm.fit2)

then we see that when the lstat2 term is included in the model, there is
little discernible pattern in the residuals.
In order to create a cubic fit, we can include a predictor of the form

I(X^3). However, this approach can start to get cumbersome for higher-
order polynomials. A better approach involves using the poly() function

poly()
to create the polynomial within lm(). For example, the following command
produces a fifth-order polynomial fit:
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> lm.fit5=lm(medv∼poly(lstat ,5))

> summary (lm.fit5)

Call:

lm(formula = medv ∼ poly(lstat , 5))

Residuals :

Min 1Q Median 3Q Max

-13.543 -3.104 -0.705 2.084 27.115

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept ) 22.533 0.232 97.20 < 2e-16 ***

poly(lstat , 5)1 -152.460 5.215 -29.24 < 2e-16 ***

poly(lstat , 5)2 64.227 5.215 12.32 < 2e-16 ***

poly(lstat , 5)3 -27.051 5.215 -5.19 3.1e-07 ***

poly(lstat , 5)4 25.452 5.215 4.88 1.4e-06 ***

poly(lstat , 5)5 -19.252 5.215 -3.69 0.00025 ***

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error : 5.21 on 500 degrees of freedom

Multiple R-squared : 0.682 , Adjusted R-squared : 0.679

F-statistic : 214 on 5 and 500 DF , p-value: <2e-16

This suggests that including additional polynomial terms, up to fifth order,
leads to an improvement in the model fit! However, further investigation of
the data reveals that no polynomial terms beyond fifth order have signifi-
cant p-values in a regression fit.
Of course, we are in no way restricted to using polynomial transforma-

tions of the predictors. Here we try a log transformation.

> summary (lm(medv∼log(rm),data=Boston ))

...

3.6.6 Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR library.
We will attempt to predict Sales (child car seat sales) in 400 locations
based on a number of predictors.

> fix( Carseats )

> names(Carseats )

[1] "Sales " "CompPrice " "Income " "Advertising "

[5] " Population " "Price" "ShelveLoc " "Age"

[9] " Education " "Urban" "US"

The Carseats data includes qualitative predictors such as Shelveloc, an in-
dicator of the quality of the shelving location—that is, the space within
a store in which the car seat is displayed—at each location. The pre-
dictor Shelveloc takes on three possible values, Bad, Medium, and Good.
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Given a qualitative variable such as Shelveloc, R generates dummy variables
automatically. Below we fit a multiple regression model that includes some
interaction terms.

> lm.fit =lm(Sales∼.+ Income :Advertising +Price :Age ,data=Carseats )

> summary (lm.fit)

Call:

lm(formula = Sales ∼ . + Income : Advertising + Price:Age , data =

Carseats )

Residuals :

Min 1Q Median 3Q Max

-2.921 -0.750 0.018 0.675 3.341

Coefficients:

Estimate Std . Error t value Pr(>|t|)

(Intercept ) 6.575565 1.008747 6.52 2.2e -10 ***

CompPrice 0.092937 0.004118 22.57 < 2e -16 ***

Income 0.010894 0.002604 4.18 3.6e -05 ***

Advertising 0.070246 0.022609 3.11 0.00203 **

Population 0.000159 0.000368 0.43 0.66533

Price -0.100806 0.007440 -13.55 < 2e -16 ***

ShelveLocGood 4.848676 0.152838 31.72 < 2e -16 ***

ShelveLocMedium 1.953262 0.125768 15.53 < 2e -16 ***

Age -0.057947 0.015951 -3.63 0.00032 ***

Education -0.020852 0.019613 -1.06 0.28836

UrbanYes 0.140160 0.112402 1.25 0.21317

USYes -0.157557 0.148923 -1.06 0.29073

Income :Advertising 0.000751 0.000278 2.70 0.00729 **

Price:Age 0.000107 0.000133 0.80 0.42381

---

Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error : 1.01 on 386 degrees of freedom

Multiple R-squared : 0.876 , Adjusted R-squared : 0.872

F-statistic : 210 on 13 and 386 DF, p-value : <2e-16

The contrasts() function returns the coding that R uses for the dummy
contrasts()

variables.

> attach (Carseats )

> contrasts (ShelveLoc )

Good Medium

Bad 0 0

Good 1 0

Medium 0 1

Use ?contrasts to learn about other contrasts, and how to set them.
R has created a ShelveLocGood dummy variable that takes on a value of

1 if the shelving location is good, and 0 otherwise. It has also created a
ShelveLocMedium dummy variable that equals 1 if the shelving location is
medium, and 0 otherwise. A bad shelving location corresponds to a zero
for each of the two dummy variables. The fact that the coefficient for
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ShelveLocGood in the regression output is positive indicates that a good
shelving location is associated with high sales (relative to a bad location).
And ShelveLocMedium has a smaller positive coefficient, indicating that a
medium shelving location leads to higher sales than a bad shelving location
but lower sales than a good shelving location.

3.6.7 Writing Functions

As we have seen, R comes with many useful functions, and still more func-
tions are available by way of R libraries. However, we will often be inter-
ested in performing an operation for which no function is available. In this
setting, we may want to write our own function. For instance, below we
provide a simple function that reads in the ISLR and MASS libraries, called
LoadLibraries(). Before we have created the function, R returns an error if
we try to call it.

> LoadLibraries

Error: object ’LoadLibraries ’ not found

> LoadLibraries()

Error: could not find function " LoadLibraries"

We now create the function. Note that the + symbols are printed by R and
should not be typed in. The { symbol informs R that multiple commands
are about to be input. Hitting Enter after typing { will cause R to print the
+ symbol. We can then input as many commands as we wish, hitting Enter
after each one. Finally the } symbol informs R that no further commands
will be entered.

> LoadLibraries=function (){

+ library (ISLR)

+ library (MASS)

+ print (" The libraries have been loaded .")

+ }

Now if we type in LoadLibraries, R will tell us what is in the function.

> LoadLibraries

function (){

library (ISLR)

library (MASS)

print ("The libraries have been loaded .")

}

If we call the function, the libraries are loaded in and the print statement
is output.

> LoadLibraries()

[1] "The libraries have been loaded ."
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3.7 Exercises

Conceptual

1. Describe the null hypotheses to which the p-values given in Table 3.4
correspond. Explain what conclusions you can draw based on these
p-values. Your explanation should be phrased in terms of sales, TV,
radio, and newspaper, rather than in terms of the coefficients of the
linear model.

2. Carefully explain the differences between the KNN classifier and KNN
regression methods.

3. Suppose we have a data set with five predictors, X1 = GPA,X2 = IQ,
X3 =Gender (1 for Female and 0 for Male),X4 = Interaction between
GPA and IQ, and X5 = Interaction between GPA and Gender. The
response is starting salary after graduation (in thousands of dollars).

Suppose we use least squares to fit the model, and get β̂0 = 50, β̂1 =
20, β̂2 = 0.07, β̂3 = 35, β̂4 = 0.01, β̂5 = −10.

(a) Which answer is correct, and why?

i. For a fixed value of IQ and GPA, males earn more on average
than females.

ii. For a fixed value of IQ and GPA, females earn more on
average than males.

iii. For a fixed value of IQ and GPA, males earn more on average
than females provided that the GPA is high enough.

iv. For a fixed value of IQ and GPA, females earn more on
average than males provided that the GPA is high enough.

(b) Predict the salary of a female with IQ of 110 and a GPA of 4.0.

(c) True or false: Since the coefficient for the GPA/IQ interaction
term is very small, there is very little evidence of an interaction
effect. Justify your answer.

4. I collect a set of data (n = 100 observations) containing a single
predictor and a quantitative response. I then fit a linear regression
model to the data, as well as a separate cubic regression, i.e. Y =
β0 + β1X + β2X

2 + β3X
3 + ε.

(a) Suppose that the true relationship between X and Y is linear,
i.e. Y = β0 + β1X + ε. Consider the training residual sum of
squares (RSS) for the linear regression, and also the training
RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.
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(b) Answer (a) using test rather than training RSS.

(c) Suppose that the true relationship between X and Y is not linear,
but we don’t know how far it is from linear. Consider the training
RSS for the linear regression, and also the training RSS for the
cubic regression. Would we expect one to be lower than the
other, would we expect them to be the same, or is there not
enough information to tell? Justify your answer.

(d) Answer (c) using test rather than training RSS.

5. Consider the fitted values that result from performing linear regres-
sion without an intercept. In this setting, the ith fitted value takes
the form

ŷi = xiβ̂,

where

β̂ =

(
n∑

i=1

xiyi

)
/

(
n∑

i′=1

x2
i′

)
. (3.38)

Show that we can write

ŷi =

n∑
i′=1

ai′yi′ .

What is ai′?

Note: We interpret this result by saying that the fitted values from
linear regression are linear combinations of the response values.

6. Using (3.4), argue that in the case of simple linear regression, the
least squares line always passes through the point (x̄, ȳ).

7. It is claimed in the text that in the case of simple linear regression
of Y onto X , the R2 statistic (3.17) is equal to the square of the
correlation between X and Y (3.18). Prove that this is the case. For
simplicity, you may assume that x̄ = ȳ = 0.

Applied

8. This question involves the use of simple linear regression on the Auto

data set.

(a) Use the lm() function to perform a simple linear regression with
mpg as the response and horsepower as the predictor. Use the
summary() function to print the results. Comment on the output.
For example:
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i. Is there a relationship between the predictor and the re-
sponse?

ii. How strong is the relationship between the predictor and
the response?

iii. Is the relationship between the predictor and the response
positive or negative?

iv. What is the predicted mpg associated with a horsepower of
98? What are the associated 95% confidence and prediction
intervals?

(b) Plot the response and the predictor. Use the abline() function
to display the least squares regression line.

(c) Use the plot() function to produce diagnostic plots of the least
squares regression fit. Comment on any problems you see with
the fit.

9. This question involves the use of multiple linear regression on the
Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables
in the data set.

(b) Compute the matrix of correlations between the variables using
the function cor(). You will need to exclude the name variable,

cor()
which is qualitative.

(c) Use the lm() function to perform a multiple linear regression
with mpg as the response and all other variables except name as
the predictors. Use the summary() function to print the results.
Comment on the output. For instance:

i. Is there a relationship between the predictors and the re-
sponse?

ii. Which predictors appear to have a statistically significant
relationship to the response?

iii. What does the coefficient for the year variable suggest?

(d) Use the plot() function to produce diagnostic plots of the linear
regression fit. Comment on any problems you see with the fit.
Do the residual plots suggest any unusually large outliers? Does
the leverage plot identify any observations with unusually high
leverage?

(e) Use the * and : symbols to fit linear regression models with
interaction effects. Do any interactions appear to be statistically
significant?

(f) Try a few different transformations of the variables, such as
log(X),

√
X , X2. Comment on your findings.
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10. This question should be answered using the Carseats data set.

(a) Fit a multiple regression model to predict Sales using Price,
Urban, and US.

(b) Provide an interpretation of each coefficient in the model. Be
careful—some of the variables in the model are qualitative!

(c) Write out the model in equation form, being careful to handle
the qualitative variables properly.

(d) For which of the predictors can you reject the null hypothesis
H0 : βj = 0?

(e) On the basis of your response to the previous question, fit a
smaller model that only uses the predictors for which there is
evidence of association with the outcome.

(f) How well do the models in (a) and (e) fit the data?

(g) Using the model from (e), obtain 95% confidence intervals for
the coefficient(s).

(h) Is there evidence of outliers or high leverage observations in the
model from (e)?

11. In this problem we will investigate the t-statistic for the null hypoth-
esis H0 : β = 0 in simple linear regression without an intercept. To
begin, we generate a predictor x and a response y as follows.

> set.seed (1)

> x=rnorm (100)

> y=2*x+rnorm (100)

(a) Perform a simple linear regression of y onto x, without an in-

tercept. Report the coefficient estimate β̂, the standard error of
this coefficient estimate, and the t-statistic and p-value associ-
ated with the null hypothesis H0 : β = 0. Comment on these
results. (You can perform regression without an intercept using
the command lm(y∼x+0).)

(b) Now perform a simple linear regression of x onto y without an
intercept, and report the coefficient estimate, its standard error,
and the corresponding t-statistic and p-values associated with
the null hypothesis H0 : β = 0. Comment on these results.

(c) What is the relationship between the results obtained in (a) and
(b)?

(d) For the regression of Y onto X without an intercept, the t-

statistic for H0 : β = 0 takes the form β̂/SE(β̂), where β̂ is
given by (3.38), and where

SE(β̂) =

√∑n
i=1(yi − xiβ̂)2

(n− 1)
∑n

i′=1 x
2
i′
.
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(These formulas are slightly different from those given in Sec-
tions 3.1.1 and 3.1.2, since here we are performing regression
without an intercept.) Show algebraically, and confirm numeri-
cally in R, that the t-statistic can be written as

(
√
n− 1)

∑n
i=1 xiyi√

(
∑n

i=1 x
2
i )(
∑n

i′=1 y
2
i′)− (

∑n
i′=1 xi′yi′)2

.

(e) Using the results from (d), argue that the t-statistic for the re-
gression of y onto x is the same as the t-statistic for the regression
of x onto y.

(f) In R, show that when regression is performed with an intercept,
the t-statistic for H0 : β1 = 0 is the same for the regression of y
onto x as it is for the regression of x onto y.

12. This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate β̂ for the linear regression of
Y onto X without an intercept is given by (3.38). Under what
circumstance is the coefficient estimate for the regression of X
onto Y the same as the coefficient estimate for the regression of
Y onto X?

(b) Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression ofX onto Y is different
from the coefficient estimate for the regression of Y onto X .

(c) Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is the
same as the coefficient estimate for the regression of Y onto X .

13. In this exercise you will create some simulated data and will fit simple
linear regression models to it. Make sure to use set.seed(1) prior to
starting part (a) to ensure consistent results.

(a) Using the rnorm() function, create a vector, x, containing 100
observations drawn from a N(0, 1) distribution. This represents
a feature, X .

(b) Using the rnorm() function, create a vector, eps, containing 100
observations drawn from a N(0, 0.25) distribution i.e. a normal
distribution with mean zero and variance 0.25.

(c) Using x and eps, generate a vector y according to the model

Y = −1 + 0.5X + ε. (3.39)

What is the length of the vector y? What are the values of β0

and β1 in this linear model?
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(d) Create a scatterplot displaying the relationship between x and
y. Comment on what you observe.

(e) Fit a least squares linear model to predict y using x. Comment

on the model obtained. How do β̂0 and β̂1 compare to β0 and
β1?

(f) Display the least squares line on the scatterplot obtained in (d).
Draw the population regression line on the plot, in a different
color. Use the legend() command to create an appropriate leg-
end.

(g) Now fit a polynomial regression model that predicts y using x

and x2. Is there evidence that the quadratic term improves the
model fit? Explain your answer.

(h) Repeat (a)–(f) after modifying the data generation process in
such a way that there is less noise in the data. The model (3.39)
should remain the same. You can do this by decreasing the vari-
ance of the normal distribution used to generate the error term
ε in (b). Describe your results.

(i) Repeat (a)–(f) after modifying the data generation process in
such a way that there is more noise in the data. The model
(3.39) should remain the same. You can do this by increasing
the variance of the normal distribution used to generate the
error term ε in (b). Describe your results.

(j) What are the confidence intervals for β0 and β1 based on the
original data set, the noisier data set, and the less noisy data
set? Comment on your results.

14. This problem focuses on the collinearity problem.

(a) Perform the following commands in R:

> set .seed (1)

> x1=runif (100)

> x2 =0.5* x1+rnorm (100) /10

> y=2+2* x1 +0.3* x2+rnorm (100)

The last line corresponds to creating a linear model in which y is
a function of x1 and x2. Write out the form of the linear model.
What are the regression coefficients?

(b) What is the correlation between x1 and x2? Create a scatterplot
displaying the relationship between the variables.

(c) Using this data, fit a least squares regression to predict y using

x1 and x2. Describe the results obtained. What are β̂0, β̂1, and
β̂2? How do these relate to the true β0, β1, and β2? Can you
reject the null hypothesis H0 : β1 = 0? How about the null
hypothesis H0 : β2 = 0?
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(d) Now fit a least squares regression to predict y using only x1.
Comment on your results. Can you reject the null hypothesis
H0 : β1 = 0?

(e) Now fit a least squares regression to predict y using only x2.
Comment on your results. Can you reject the null hypothesis
H0 : β1 = 0?

(f) Do the results obtained in (c)–(e) contradict each other? Explain
your answer.

(g) Now suppose we obtain one additional observation, which was
unfortunately mismeasured.

> x1=c(x1 , 0.1)

> x2=c(x2 , 0.8)

> y=c(y,6)

Re-fit the linear models from (c) to (e) using this new data. What
effect does this new observation have on the each of the models?
In each model, is this observation an outlier? A high-leverage
point? Both? Explain your answers.

15. This problem involves the Boston data set, which we saw in the lab
for this chapter. We will now try to predict per capita crime rate
using the other variables in this data set. In other words, per capita
crime rate is the response, and the other variables are the predictors.

(a) For each predictor, fit a simple linear regression model to predict
the response. Describe your results. In which of the models is
there a statistically significant association between the predictor
and the response? Create some plots to back up your assertions.

(b) Fit a multiple regression model to predict the response using
all of the predictors. Describe your results. For which predictors
can we reject the null hypothesis H0 : βj = 0?

(c) How do your results from (a) compare to your results from (b)?
Create a plot displaying the univariate regression coefficients
from (a) on the x-axis, and the multiple regression coefficients
from (b) on the y-axis. That is, each predictor is displayed as a
single point in the plot. Its coefficient in a simple linear regres-
sion model is shown on the x-axis, and its coefficient estimate
in the multiple linear regression model is shown on the y-axis.

(d) Is there evidence of non-linear association between any of the
predictors and the response? To answer this question, for each
predictor X , fit a model of the form

Y = β0 + β1X + β2X
2 + β3X

3 + ε.
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