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Preface

Patients with cancer are treated with conventional chemotherapeutic drugs and/or
radiation. Initially, the majority of patients respond well to such therapies. How-
ever, there is a subset of patients who does not respond initially and another subset
who no longer responds to further treatments. Clearly, in those two subsets of
patients, the cancer cells exhibit mechanisms of resistance to apoptotic stimuli,
resulting in cancer progression and metastasis and ultimately death of the patients.
One of the main challenges facing us to date is to develop new therapies to treat
patients with the resistant tumors in an effort to prolong their survival and to
preferentially achieve long-term cures. The development of new effective thera-
pies will be dependent on delineating the biochemical, molecular, and genetic
mechanisms that regulate tumor cell resistance to cytotoxic drugs-induced apop-
tosis. Such mechanisms have revealed gene products that directly regulate resis-
tance and, thus, one may develop new drugs that target these resistance factors.
Such new drugs may be either selective or common to various cancers. If suc-
cessful, doses used by such new drugs may not be toxic and may be used effec-
tively in combination with subtoxic conventional drugs to achieve synergy and to
reverse the resistance. Clearly, the development of sensitizing drugs in combina-
tion should lead to better clinical responses in patients with the resistant tumors
and poor prognosis. Above efforts and approaches have resulted in several FDA-
approved drugs that were able to overcome drug resistance and are successfully
used clinically. They have been used as monotherapy or synergized with other
therapies for the treatment of resistant tumors.

This volume assembles several selective reviews by scientist leaders in the field
of cancer drug resistance. Specific mechanisms in drug resistance are reviewed and
novel approaches for each mechanism are being proposed for intervention based
on the targets that regulate resistance in different cancers. This volume consists of
a total of 12 chapters each of which has been selected to cover a different topic in
the field of drug resistance. Clearly, these chapters only review selected topics and
it was not the intent of this volume to review the whole field of drug resistance.
The highlights of each chapter are briefly summarized below.

Doctors Ambudkar and associates describe the multiple resistance phenotypes
mediated by the multiple drug resistance (MDR) gene products that are exhibited
by many cancer types. They discuss the mechanisms by which the three
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ATP-binding cassettes (multiple drug transporters, namely, ABCB1, ABCC1, and
ABCG2) prevent cytotoxic drugs to mediate their cytotoxic effects. How these
gene products regulate the drug transport and how a large number of chemically
unrelated drugs are regulated by the same ABC drug transporter have been thor-
oughly discussed. Of interest, the authors report single nucleotide polymorphisms
(SNPs) in the ABC transporters in certain human populations. These findings open
the door to possibly individualize specific treatments of such populations. More-
over, this SNP polymorphism and its relationship to the ABC transporter functions
for drugs may also be used as biomarkers and screening to predict a priori the
patients’ response to certain drugs. The authors also suggest various means of
intervention to reverse drug resistance by the use, for example, of tyrosine kinase
inhibitors and various novel products. Doctors Daniel and Rauch extend the
review by Dr. Ambudkar and colleagues on the biochemical and molecular
mechanisms upon which the MDR functions in cancer cells. They describe how
the physical properties of the cell membrane affect MDR functions and, primarily,
discuss the pH changes responsible for altering the cell membrane physical
properties and MDR activities. They also proposed an integrated approach uni-
fying all reported studies and mechanisms of drug resistance. Doctors Freeman
and Morrison discuss the role of the constitutively activated Raf/MEK/ERK
pathways in cancer and how inhibitors of these pathways initially resulted in the
reversal of resistance. However, tumor cells also develop resistance to such
inhibitors. The constitutive activation of the above pathways is due, in part, in the
acquisition of oncogenic mutations in components of this pathway. For instance, it
has been reported that Ras mutation is found in approximately 20 % of cancers and
in melanoma, Ras mutation is found in over 50 % of cases. The development of
resistance to inhibitors of the Raf/MEK/ERK pathway, however, is a critical
clinical problem for the treatment of patients with such resistance. The authors
provide convincing evidence of how the resistance to inhibitors may develop and
how interventions may obviate therapy in otherwise resistant patients. While there
are currently many active clinical trials assessing the therapeutic drugs targeted
MEK and Raf kinases in cancer, it is clear that a large body of data will be
generated assessing clinical responses in relationship with the genotype of the
tumor. Therefore, it may be possible to select the proper inhibitor for a particular
cancer and prevent the development of resistance to the inhibitor. (2) Doctors
Tantravahi, Hoffman, and Reddy extend the above studies by Doctors Freeman
and Morrison and review published work by others and theirs on the mechanism of
resistance of cancer cells to B-Raf therapies. They discuss the FDA-approved
B-Raf inhibitor Vemurafinib (Plexxikon) in melanoma and the development of
resistance to this drug. In this review, they describe how the B-Raf signaling
pathway regulates the development of melanoma and how diverse mechanisms
regulate resistance and suggest approaches to be considered for the reversal
resistance. The above authors also suggested a different approach than the one
used by conventional approaches whereby most of targeted therapies used ATP
mimetic small molecules as competitive inhibitors of kinases. They proposed that
cancer cells cytotoxicity takes precedence over affinity toward the targets. Hence,
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ATP mimetics can be assayed in cultures of tumor cells for cytotoxicity and safety.
Doctors Mukherjee and colleagues review the role of b1 integrins in drug resis-
tance in lung cancer. They discussed that the interaction between transmembrane
integrin receptors and ligands in the extracellular milieu is of paramount impor-
tance in the pathogenesis of lung cancer. They review the primary role of b1
integrins that are preferentially expressed in lung cancer and their involvement in
cell proliferation, survival, invasion, and metastasis. b-integrins are also involved
in drug resistance. They raise the issue whether targeting b1 integrins can reverse
drug resistance and may be of therapeutic importance.

Doctor Hara and colleagues reviewed the critical role of aldo-keto reductases
(AKR) in colon cancer. In addition to the reported factors that regulate drug
resistance such as P-glycoproteins, growth factors, proteasomes, Dr. Hara and
colleagues emphasize the important role of aldo-keto-reductases as well. These are
upregulated and are involved in both carcinogenesis and resistance. The AKR
family consists of NAD(P)(H)-dependent enzymes that catalyzes the oxidore-
ductase of a variety of substrates. They report that three members only, AKR1B10,
AKR1C1, and AKR1C3 are important in the regulation of drug resistance. The
mechanism by which these enzymes regulate resistance are also discussed. They
suggest that the above three enzymes are not only diagnostic/prognostic marker
candidates, but are themselves therapeutic targets. Doctor Maiti reviews the role of
elevated levels of ROS in cancer cells in relationship to drug resistance. Based on
the observation in ovarian cancer that anti-cancer drugs initially increase ROS
levels and induce cytotoxicity whereas long exposure of the same drug reduces
ROS levels and leads to drug resistance; they suggest that the constant mainte-
nance of high ROS levels is critical. They explain that since most drugs induce
toxicity in the cells based on the induction of ROS, cancer cells that have low
levels of ROS may be resistant to drugs-induced cytotoxicity. The underlying
mechanism of ROS generation and maintenance of genes that regulate ROS in
drug resistance may identify new targets for elevation of ROS levels and sensi-
tization to drugs-induced cytotoxicity. Doctors Nie and colleagues review a
clinically relevant question regarding the inherent resistance of cancer stem cells
(CSCs) to cytotoxic drugs. They reviewed the putative underlying mechanisms of
CSC resistance and various approaches to target CSCs to improve the clinical
response to chemotherapy. Doctors Maga and colleagues review the potential use
of DNA repair in the reversal of drug resistance and propose to target both the
signal transduction pathways and DNA repair pathways. They review the differ-
ences that exist between normal cells and cancer cells with respect to underlying
mechanisms with respect to cell proliferation and genetic stability in an effort to
unravel novel targets for therapeutic intervention. Combination treatment targeting
signal transduction and DNA repair pathways should lead to the cancer cells’
demise by apoptosis. Doctors Efferth and colleagues review an important mech-
anism in drug resistance, namely, ‘‘collateral sensitivity.’’ Collateral sensitivity is
defined as the hypersensitivity of otherwise drug-resistant cells. Collateral sensi-
tivity has not been examined in detail when compared to a large number of
mechanisms of drug resistance. The mode of action of collateral sensitivity of
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currently used new drugs has not been studied in detail. They suggest the devel-
opment of drugs with high degree of collateral sensitivity to treat drug-resistant
cancer.

Doctors Hao and Bellail reviewed the resistance of cancer cells to TRAIL-
mediated apoptosis. Phase I and phase II clinical trials have examined recombinant
TRAIL and agonist monoclonal antibodies to TRAIL DR4 and DR5 receptors.
These clinical trials have not yielded any encouraging results, although, precli-
nically in mice, the results were highly encouraging. They suggest that it is pos-
sible that the previous analyses were done by using primarily tumor cell lines and
that freshly derived tumor tissues may have either the absence of TRAIL apoptotic
pathways or they may be defective. They propose to analyze freshly-derived
human tumor tissues for analysis of TRAIL-mediated cytotoxicity. Doctor She-
khar reviews the paradoxical role of apoptosis in cancer cells. They propose that
apoptosis results in the accumulation of genomic instability and the promotion of
malignant progression of tumors, findings that may have been observed clinically.
They suggest that rather than using combination of drugs to induce apoptosis, on
the contrary, we have to use drugs that inhibit apoptosis.

I wish to acknowledge the assistance of Daphne Liang, Melissa Cao, Kathy
Nguyen, and Suzie Vardanyan for their valuable assistance in the preparation and
editing the various contributions in this volume.

Benjamin Bonavida, Ph.D.
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Multidrug Resistance in Cancer: A Tale
of ABC Drug Transporters

Khyati Kapoor, Hong May Sim and Suresh V. Ambudkar

Abstract ATP-binding Cassette (ABC) drug transporters are present throughout
prokaryotes as well as eukaryotes and have an important physiological role in
detoxification and protection of sensitive tissues from toxic compounds. The over-
expression of these transporters contributes to the development of multidrug
resistance (MDR) by decreasing the intracellular concentration of therapeutic
drugs. MDR is characterized by the ability of drug-resistant tumors to exhibit
simultaneous resistance to a number of structurally and functionally unrelated
chemotherapeutic agents. This chapter discusses the phenomenon of MDR and the
proposed ways to overcome its challenges. It particularly focuses on how the three
major ABC drug transporters, ABCB1, ABCC1 and ABCG2 hamper chemother-
apy in the treatment of cancer. We provide an overview of the structural and
functional aspects of these three transporters, discuss the role of single nucleotide
polymorphisms in these transporters in the overall pharmacokinetics and phar-
macodynamics of chemotherapeutic agents, and summarize current knowledge on
the reversal of MDR mediated by these transporters using tyrosine kinase inhib-
itors and natural products as modulators.

Keywords ABC transporter �ABCG2 �Catalytic cycle �Drug efflux �Modulators �
Multidrug resistance � MRP1 � P-glycoprotein � Tyrosine kinase inhibitors
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EGFR Epithelial growth factor receptor
EPR Electron paramagnetic resonance
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GSH Glutathione
HDL High-density lipoprotein
HER Human epidermal growth factor receptor
LTC4 Leukotriene C4
MAP Mitogen-activated protein
MDR Multidrug resistance
MRP Multidrug-resistance protein
NBD Nucleotide-binding domain
PDGFR Platelet-derived growth factor receptor
P-gp P-glycoprotein
SNP Single nucleotide polymorphism
TK Tyrosine kinase
TKI TK inhibitor
TM Transmembrane
TMD Transmembrane domain
VEGFR Vascular endothelial growth factor receptor
Vi Sodium ortho-vanadate

Introduction

Multidrug Resistance in Cancer

According to recent statistics from the American Cancer Society (http://
www.cancer.org), the top three cancers in men are prostate, lung and colorectal
cancers. In women, the lung, breast, colon and rectum are the cancer sites most
frequently leading to death. About 45 % of all cancers are resistant to chemo-
therapy and the main hurdle to treating resistant cancer cells is the development of
multidrug resistance (MDR). By definition, MDR is a phenomenon associated with
the resistance of tumor cells to the cytostatic or cytotoxic actions of structurally
dissimilar and functionally divergent drugs commonly used in cancer chemo-
therapy [1]. The mechanisms of MDR have been discussed in numerous reviews
and can be generalized to the following mechanisms: (1) Over-expression of ATP-
binding cassette (ABC) efflux transporters (2) decrease in drug uptake by solute
carriers (3) inhibition of apoptosis (4) increase in DNA repair and (5) inactivation
of chemotherapeutic drugs by metabolic enzymes [2–4]. In this chapter, we will
focus on the role of ABC drug transporters in the development of MDR.

2 K. Kapoor et al.
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Intrinsic Versus Acquired Resistance

The clinical problem of MDR can be broadly classified as either intrinsic or
acquired. Intrinsic MDR refers to pre-existing resistance present in the tumor cells
at the time of diagnosis, hence giving rise to the MDR phenotype, while acquired
MDR occurs when resistance develops during the course of chemotherapy. To
differentiate the two mechanisms of MDR in clinical samples, it is usually nec-
essary to identify the population of self-renewing cells (also referred to as cancer
stem cells) present in the tumor. Cancer stem cells have the ability to initiate and
sustain the growth of a heterogeneous cancer through self-renewal and differen-
tiation [5]. Often, to isolate this population of cancer stem cells is a challenge, as
the properties of these cells depend primarily on their niche environment and they
may not be easily identified within the tumor population. Cancer stem cells are
able to evade cancer chemotherapy through many avenues. A recent review
includes a thorough discussion of the mechanisms of MDR in cancer stem cells. It
ascribes the MDR phenotype of cancer stem cells to certain features of the tumor
microenvironment and immunosuppression, in addition to the increased expression
of ABC transporters [6]. An alternative way for tumor cells to acquire MDR is
proposed by Levchenko et al. [7] who suggest that cancer cells can acquire the
MDR phenotype by functional intercellular transfer of P-glycoprotein (P-gp).
While this concept is interesting, the exact mechanism is not known and the
physiological relevance of this mechanism remains to be determined [8].

MDR is multi-factorial and the over-expression of ABC transporters is one
major contributor to MDR. Nonetheless, MDR can also develop with anticancer
drugs that are not substrates of ABC transporters and clinical MDR can be med-
iated by other mechanisms besides the involvement of ABC transporters. An
example is ‘atypical MDR’, a term which was applied to a structurally varied class
of topoisomerase inhibitors including doxorubicin and etoposide. This type of
MDR is mediated by the altered expression of topoisomerase II [9]. Other
mechanisms of acquired MDR largely involve the suppression of signaling path-
ways that leads to the apoptosis of cancer cells.

Recently, the notion of cancer drug pan-resistance has emerged, referring to the
state of a tumor when it has acquired resistance to all available chemotherapy
treatments and often also to ionizing radiation [10]. According to a review by Piet
Borst, pan-resistance should be differentiated from MDR, as its underlying
mechanisms of resistance are more perplexing than MDR mediated by drug efflux
pumps. This review also explains pan-resistance of cancer cells as mimicry,
superior defense or compensation [10]. Cancer cells adopt the proliferation strat-
egies of normal cells and thus mimic them. Also, cancer cells can set up a strong
defense system by upregulation of expression of ABC efflux pumps (e.g., P-gp) or
by compensation mechanisms by which the cancer cells adapt indirectly without
affecting drug-target interaction.

To counteract MDR as well as pan-resistance of cancer cells mediated by the
over-expression of efflux transporters such as P-gp, the use of agents that
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specifically target cells with upregulated P-gp can be employed through a strategy
referred to as collateral sensitivity (CS). CS is the ability of small molecules to
selectively kill multidrug-resistant cells and not their parental cells [11, 12].
Examples of compounds that promote CS include verapamil [13], desmosdumotin
B analog [14], NSC73306 [15] and tiopronin [16]. Although the development of
CS agents to overcome MDR is a novel strategy, the precise mechanisms for the
action of these CS agents have yet to be elucidated and warrant more research.

ABC Transporters and their Participation in Diseases

The ABC superfamily is one of the largest superfamilies of transporters, found in all
living kingdoms from prokaryotes to eukaryotes. The transporters of this family
perform a wide variety of functions. At present there are 48 known ABC members in
the human genome and the over-expression of many of these results in various
human diseases. These transporters can be subdivided into seven sub-families (A-G)
based on structural and sequence similarities. Out of these seven, three subfamilies
are commonly linked to MDR. They are the ‘B’ subfamily, which includes P-gp
(MDR1 or ABCB1), the ‘C’ subfamily, which includes multidrug-resistance protein
(MRP1 or ABCC1) and the ‘G’ subfamily, which includes breast cancer resistance
protein (ABCG2 or MXR). P-gp, ABCG2 and MRP1 are the three most common
ABC transporters reported to contribute to the development of MDR. Their con-
tribution to resistance is still not well defined, largely because of the difficulties
associated with the quantification of the expression level and the activity of these
ABC transporters in tumor tissues compared to that in normal tissues in carefully
designed trials [17]. Besides these three heavily investigated ABC transporters that
are linked to MDR, there are at least 11 other members that can transport drugs [18].
They are ABCA2 [19], ABCA3 [20], ABCB4 [21], ABCB5 [22, 23], ABCB11 [24],
ABCC2 [25], ABCC3 [26], ABCC4, ABCC5 [27], ABCC10 [28] and ABCC11 [29].
Defects in 14 ABC transporters cause 12 known genetic diseases, the most common
of which are cystic fibrosis, Stargardt disease, adrenoleukodystrophy, Pseudoxan-
thoma elasticum and Tangier disease (Table 1).

Other than ABCC8 and ABCC9, which encode proteins not known to transport
drugs, the ABCC family consists of members that are involved in the transport of
various types of molecules. Some of the molecules are organic anions formed from
conjugated drug metabolites. The MRPs also transport endogenous metabolites
such as cysteinyl leukotrienes, prostaglandins, steroids and glucuronide conju-
gates. ABCC10 (MRP7) has a membrane topology similar to that of other MRPs
but has the least sequence identity to them. The expression of ABCC10 has been
seen in small-cell lung cancer cells after exposure to paclitaxel. In vitro, ABCC10
is known to confer resistance to taxols such as docetaxel and paclitaxel and a few
other compounds such as vincristine, vinblastine and epothilone. Studies indicate
MRP7 functions as a lipophilic anion transporter [30].

4 K. Kapoor et al.



The localization of ABCC2, also known as MRP2, is exclusively on the apical
membrane of polarized epithelial and endothelial cells in the liver, kidney and
intestines. A mutation in the ABCC2 gene results in an autosomal recessive dis-
order known as Dubin-Johnson syndrome. Individuals harboring this mutation
have increased serum-conjugated bilirubin levels, as the biliary elimination of
bilirubin glucuronides is impaired [30]. Both ABCC1 and ABCC2 are able to
confer resistance to a variety of natural product anticancer drugs. However, unlike
ABCC1, ABCC2 is able to confer resistance to an important class of chemo-
therapeutics including platinum-containing drugs [17, 31–34]. Despite its role in
conferring resistance to these drugs, the clinical significance of ABCC2 is limited,
as there is no clear association between its expression and clinical outcome [17].

In 2003, ABCB5 was reported to regulate rhodamine transport in progenitor
cells [35]. ABCB5 has also been identified in malignant melanoma-initiating cells
(MMICs) and its expression was reported to be associated with the resistance of
melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic
melanin intermediates and metabolites [36]. ABCB5-transfected HEK293 cells
showed higher resistance to many anticancer drugs, which are also known sub-
strates of P-gp. In addition, a reversal of this resistance in the transfectants was
observed upon treatment with ABCB5 siRNA, thus indicating that the full-length
ABCB5 may play a role in MDR in melanoma cells. However, additional work
will be required to better understand the function of this transporter [22].

Table 1 Disease-associated human ABC transporters

ABC transporter Associated diseasea

ABCA1 (ABC1) Tangier disease and familial HDL deficiency
ABCA4 (ABCR) Stargardt disease, age-related macular degeneration, retinitis pigmentosa
ABCB1 (P-gp) Cancer, inflammatory bowel disease
ABCB4 (MDR2) Progressive familial intrahepatic cholestasis
ABCB7 (ABC7) Sideroblastic anemia and ataxia
ABCB11 (SPGP) Progressive familial intrahepatic cholestasis
ABCC1 (MRP1) Cancer, chronic obstructive pulmonary disease, cystic fibrosis
ABCC2 (MRP2) Dubin-Johnson syndrome
ABCC6 (MRP6) Pseudoxanthoma elasticum
ABCC7 (CFTR) Cystic fibrosis
ABCC8 (SUR1) Persistent hypoglycemia of infancy, neonatal diabetes
ABCC9 (SUR2) Persistent hypoglycemia of infancy, neonatal diabetes
ABCD1 (ALD) Adrenoleukodystrophy
ABCG2 (BCRP) Cancer, gout
ABCG5 Sitosterolemia
ABCG8 Sitosterolemia, gallstone disease
a In some instances association with disease condition is due to non-synonymous single nucle-
otide polymorphisms [125]
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Tissue Localization and Substrate Specificity of ABC
Transporters

Out of the 48 ABC proteins known in humans [37], only 14 appear to transport
chemotherapeutic drugs [38]. Further, only three have been demonstrated to have
an impact on drug resistance observed in the clinic. There are differences observed
in their functions, substrate specificities, molecular mechanisms, and in vivo
localizations. We will limit ourselves here to the discussion of only P-gp, ABCG2
and MRP1, which are known to be the major ABC drug transporters linked to
MDR in cancer [39]. In addition to their role in drug resistance, they are expressed
in non-malignant tissues and are believed to be involved in protecting those tissues
from xenobiotic accumulation and resulting toxicity [31]. The localization of these
three transporters in various human tissues is listed in Table 2.

One of the well-studied and best-characterized ABC transporters is P-gp, which
was first discovered by Juliano and Ling because of its involvement in the
development of MDR in cancer cells [40]. P-gp is expressed at the apical mem-
branes of epithelial cells in kidney proximal tubules, the lungs, intestines, liver,
brain microvascular endothelia, blood-nerve barrier, placenta, adrenal cortex,
blood-testis barrier, uterus, lymphocytes, and in hematopoietic cells [41]. Its pri-
mary pharmacological function is to prevent the uptake of toxic compounds from
the gut into the body, to expel them in the bile, urine or feces and to protect some
very sensitive organs, such as the brain, from them [42–44]. P-gp is also involved
in other physiologic processes, such as the control and regulation of apoptosis,
stress, hypoxia, stem cell differentiation, cellular immune response and plasma
membrane dynamics [45–47].

The second transporter that impacts the pharmacology of chemotherapeutic
drugs and the latest to be discovered is ABCG2. Since this gene was isolated from
a breast cancer cell line, it was named BCRP [48–50]. It is a half transporter, but
functions as a homodimer or oligomer. In addition to its expression in stem cells,
ABCG2 localizes mainly in the placental syncytiotrophoblast plasma membrane,
the bile canalicular membrane of liver hepatocytes, the luminal membrane of
villous epithelial cells in the small and large intestine, the apical side of ducts and
lobules in the breast, and in the venous and capillary endothelial cells of almost all
tissues [51, 52]. The tissue distribution of ABCG2 overlaps with that of P-gp,
which indicates that it might have similar pharmacological functions as P-gp. The

Table 2 Tissue localization of three ABC drug transporters

ABC transporter Tissue localization

ABCB1 (P-gp) Intestine, liver, kidney, placenta, adrenal gland, blood–brain barrier,
stem cells and hematopoietic cells

ABCG2 (BCRP) Placenta, intestine, breast, liver, blood–brain barrier, liver, kidney
and stem cells

ABCC1 (MRP1) Ubiquitous and present in all tissues
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localization of these three ABC drug transporters strongly suggests their impor-
tance in restricting the penetration of toxic substances in crucial tissues such as the
central nervous system, intestines, and in the fetus and hematopoietic cells, thus
playing a protective role.

Another ABC transporter, MRP1, is one of the best-characterized members of
the MRP family and was identified by Cole et al. in 1992 [53]. The main physi-
ological function of MRP1 is presumably leukotriene C4 transport. It is also
known to maintain glutathione homeostasis in vivo. MRP1 is expressed in most
tissues throughout the body, with relatively high levels found in the lung, testis,
kidneys, skeletal muscle, and peripheral blood mononuclear cells. Unlike P-gp, it
is mainly localized to the basolateral membrane of epithelial cells [54]. The
endogenous expression of MRP1 can contribute to the basal resistance of cell lines
to a wide range of chemotherapeutic drugs [55, 56].

Of the other ABCC subfamily members, ABCC4 (MRP4) has been found to be
present at higher levels in the prostate and is implicated in the aggressiveness of
prostate tumors and neuroblastomas [57, 58]. Depending on the tissue where MRP4
is found, it can be localized to either the basolateral or the apical membranes in
polarized cells. In prostate cells and hepatocytes, MRP4 is localized to the baso-
lateral membrane while in renal proximal tubules and brain capillaries, it is found on
the apical side [59, 60]. MRP5 is detected at higher levels in brain capillary endo-
thelial cells, pyramidal neurons and astrocytes and in smooth muscle cells of tissues
in the genitourinary system [60, 61]. MRP5 can also be localized either on the apical
side (in brain capillary endothelial cells) or the basolateral side (some polarized
epithelial cells) [60, 62]. ABCC11 (MRP8) is considered to be a non-essential gene,
since no orthologous genes have been found in mammals, except in primates [17].
Full-length MRP8 is reported to localize to the apical membrane in stably-trans-
fected polarized epithelial cells [17] and this protein has been detected in axons of
neurons in human central and peripheral nervous systems [63].

Topologies of ABC Transporters

The topology of ABC transporters typically consists of four domains, which include
two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs),
located in the lipid bilayer and the cytoplasm, respectively. These four domains of
ABC transporters form the minimum functional unit needed for transport of sub-
strates across the lipid bilayer, powered by the energy from ATP binding and
hydrolysis at the NBDs. ABC transporters have varying domain organizations and
can exist as a complex of four separate single-domain polypeptides of two NBDs and
two TMDs (e.g. bacterial maltose or histidine permease) or they can be two half-
transporters with each half of the transporter having one NBD and one TMD, such as
members of the ABCG subfamily (ABCG2/BCRP). They can also exist as a single
four-domain polypeptide chain, such as P-gp, which has interconnecting NBDs and
TMDs. Interestingly, in some of the ABCC subfamily members including MRP1,
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besides the four critical domains; there is an additional N-terminal TMD (TMD0)
that is smaller than the core TMDs. It has been shown that the deletion of TMD0 does
not significantly affect function, but the linker region between TMD0 and TMD1 is
important for activity [30, 64].

Substrate Specificity of ABC Drug Transporters

The most striking property of the ABC drug transporters is their broad substrate
specificity, which leads to the efflux of a large number of chemically unrelated
hydrophobic or amphipathic compounds from the cells. The substrate specificities of
the three ABC drug transporters are notably overlapping, but each transporter can
handle its own unique set as well (http://www.genecards.org/). P-gp can interact
with a vast array of compounds including natural products, chemotherapeutic drugs,
steroids, linear and cyclic peptides, fluorescent dyes and ionophores. Amphipath-
icity and hydrophobicity are a few of the common structural characteristics of P-gp
substrates. Because of their hydrophobic nature, these compounds can easily cross
the plasma membrane and penetrate into tissues and other pharmacological com-
partments. The half transporter ABCG2 also has a remarkable range of substrate
specificity, and confers resistance to mitoxantrone, topotecan, methotrexate and
many other drugs [50, 65]. On the other hand, MRP1 functions as co-transporter of
amphipathic organic anions. Further, it extrudes drugs conjugated to glutathione
(GSH), glucuronate, or sulfate. MRP1 also mediates the co-transport of unconju-
gated amphiphilic anions, together with free GSH. The high affinity substrates of
MRP1 are leukotriene C4 (LTC4), 17 b-glucuronosyl estradiol and bis-glucuronosyl
bilirubin [66–68]. The overlapping substrate specificity of the three drug trans-
porters P-gp, ABCG2 and MRP1, as listed in Table 3, is very clear.

ABC Transporters: Polymorphisms
and Pharmacogenomics

ABC transporters often have naturally occurring genetic polymorphisms, mainly
single nucleotide polymorphisms (SNP), which result in changes in a single
nucleotide (substitution, deletion or insertion) within the DNA sequence, some of
which may or may not have an impact on the expression and function of the
protein. Many SNPs, both synonymous (sSNP) as well as non-synonymous
(nsSNP), have been identified in human ABC transporters. Although synonymous
mutations are thought to have no effect on protein structure, there is a possibility
that the secondary structure of the mRNA could be affected in such a way that its
stability is altered, thus leading to a change in the protein expression levels as well
as the functional properties [69]. Polymorphisms in P-gp and ABCG2 are widely
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discussed, as they can alter the pharmacokinetics and pharmacodynamics of
chemotherapeutic drugs. These SNPs can result in changes in substrate specificity,
thus altering drug responses in certain individuals. Details on most of these
polymorphisms are available in several databases (www.ncbi.nlm.nih.gov/
projects/SNP and www.genecards.org).

There are over 60 known SNPs in the coding region of human P-gp, which
include both synonymous SNPs as well as non-synonymous SNPs. These SNPs

Table 3 Substrate specificity of three ABC drug transporters

Substrate P-GP ABCG2 MRP1

Apatinib + + -

Bisantrene + + -

Calcein - - +
Calcein AM + - +
Colchicine + - -

Cyclosporine A + - -

Daunorubicin + + +
Dihydropyridines + + -

Digoxin + - -

Diltiazem + - -

Docetaxel + - -

Doxorubicin + + +
Estrone-3 sulfate - + +
Erythromycin + - -

Etoposide + + +
Flavopiridol - + -

Fluo-3-AM + - +
H33342 + + -

Indinavir + - -

LTC4 - - +
Losartan + - -

Methotrexate - + +
Mitoxantrone + + +
Nelfinavir + - -

NEM-GS - - +
Nilotinib + + -

Paclitaxel + - -

Pheophorbide A - + -

Prazosin + + -

Sparfloxacin + - -

Sulfasalazine - + -

Topotecan + + +
Uric acid - + -

Verapamil + - -

Vinblastine + - +
Vincristine + - +

+ indicates a substrate, - indicates a non-substrate
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have been discussed in detail in a recent review by Wolf et al. [70]. Genetic
polymorphisms in P-gp have been reported to change the mRNA expression,
protein expression and function of P-gp [71]. Since P-gp plays a role in cellular
defense against toxic substances, it is not surprising that polymorphisms in this
transporter have been linked to inflammatory bowel diseases such as Crohn’s
disease and ulcerative colitis [72, 73] (Table 1). Some polymorphisms are also
known to increase the risk of renal epithelial tumors. Most of the SNPs in the
coding region of P-gp can be mapped to the homology model of human P-gp based
on the crystal structure of mouse Abcb1 (mdr1a). Notably, the occurrence of SNPs
in the transmembrane region of the protein is much lower in comparison to the
extracellular or intracellular regions of the protein [70]. Two synonymous SNPs
and 12 non-synonymous SNPs have been associated with differences in function or
expression of P-gp. Further, none of these SNPs is known to result in non-func-
tional P-gp. Thus, the exact functional consequences of most of the polymor-
phisms are not yet clear. Naturally occurring null mutations in P-gp have been
reported in mice and dogs but not yet in humans [74, 75]. Expressing human ABC
proteins and their variants in yeast allows the function of individual variants to be
assessed directly [76].

Analysis of the ABCG2 gene has identified over 80 SNPs and other naturally
occurring mutations in various ethnic groups. Individuals carrying these poly-
morphisms are predicted to show altered drug responses due to reduced activity of
this efflux pump. Some polymorphisms even affect the stability of ABCG2 in
cellular organelles, leading to increased degradation of the transporter [77, 78].
Most of the pharmacogenomic effects of ABCG2 polymorphisms are with respect
to its substrates. One of the most characterized SNPs in ABCG2 is the Q141K
mutation, which is located between the Walker A and signature motifs in the NBD.
Similar to mutations in ABCC7 (CFTR), the Q141K mutation affects cell surface
expression of ABCG2 [79]. This SNP has been shown to be associated with Gout
disease [80] by genome-wide association studies [81]. The Q141K mutation is
commonly found in Chinese and Japanese patients and affects their response to
chemotherapy. ABCG2 mediates transport of urate and the Q141K mutation
affects this function, which would lead to increased accumulation of uric acid in
the kidneys of Gout patients. Another ABC transporter gene, MRP1, displays high
haplotype diversity; a number of polymorphisms have been determined and many
more are being investigated [82]. However, most of the polymorphisms in MRP1
do not appear to have any effect on drug disposition and only a very few have been
associated with clinical disease or altered drug response.

Pharmacogenomic analysis is a way to predict the response of an individual to a
certain drug, which can lead to improved treatment strategies. Drug therapy could
be more effective if we were able to tailor drugs to an individual’s genetic makeup.
Polymorphisms in ABC drug transporters definitely affect the pharmacokinetics
and pharmacodynamics of drugs. However, there are many other factors, such as
age, race and diet, which will continue to influence the drug responses in different
individuals.
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Structure and Mechanism of ABC Drug Transporters

Despite their substrate diversity, ABC transporters share a basic modular structure. It
has been well established that the TMDs harbor the drug-binding sites, while the
more conserved NBDs are involved in the ATP binding and hydrolysis. We further
explain the structure and mechanism of a typical ABC transporter in the sections
below.

Drug-Binding Sites of P-gp

While the NBDs across the superfamily are highly conserved in primary sequence,
the TMDs vary between the subfamilies of ABC transporters in both the primary
sequence and protein folding. These differences in the TMDs lead to differences in
the substrate specificities of the transporters. Some ABC transporters recognize
very specific substrates, such as the E. coli vitamin B12 importer, BtuCD. Others,
such as P-gp, are highly promiscuous and recognize a broad range of chemically
and structurally diverse compounds, a property known as polyspecificity. Fur-
thermore, the highly flexible nature of P-gp allows it to have a polyspecific nature,
binding at least two chemically different drug molecules simultaneously. Identi-
fying the residues in transmembrane (TM) helices that line the drug-binding
pocket of P-gp has been intensively investigated by Loo and Clarke, who used
cysteine scanning mutagenesis and cross-linking experiments, reporting that TM
helices 4, 5, 6, 7, 10, 11 and 12 contribute to drug-binding [83–85]. Using
methanethiosulfonate cross linkers and stipiamide derivatives of different lengths,
the central putative drug-substrate binding region was proposed to be large enough
to bind two drugs simultaneously [86–89]. With the determination of the structure
of mouse P-gp, the structural basis for the polyspecificity of P-gp is explained by
the large central cavity of 6,000 Å, involving p–p and cation-p stacking as well as
hydrophobic and hydrogen bonding interactions between structurally diverse
ligands and this transporter [90].

The crystal structures of some ABC exporters have been resolved, including
those of mouse Abc1a (mdr1a) in the apo conformation [91] and bacterial Sav1866
in the ADP-bound conformation [92]. Most recently, a high resolution structure of
Caenorhabditis elegans P-gp in the apo conformation was published [93]. In
addition, the structure of the bacterial MsbA homodimer has been reported in
various conformations [94]. The X-ray crystal structure of mouse P-gp was
reported at resolutions of 3.8–4.4 Å [91], in the apo state in which the substrate is
absent and in states in which stereoisomeric cyclic hexapeptide inhibitors (QZ59-
RRR and QZ59-SSS) are bound to the transporter. The stereoselectivity of P-gp is
based on differences in hydrophobic and aromatic interactions between the protein
and the isomers. In the inward-facing apo conformation (in the shape of an
inverted ‘V’), the NBDs in the apo conformation are wide apart, separated by
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approximately 30 Å. To convert from the inward facing to the outward-facing
conformation (in the shape of a regular ‘V’), the protein has to undergo drastic
conformational changes involving the TMDs, following a bellows-like mechanism
of action that is commonly proposed for ABC transporters [95]. The evidence for a
regular ‘V’ shape of the outward conformation stems from the crystal structure of
Sav1866 (a bacterial homolog of P-gp) [92], in which the NBDs are in a close
arrangement with ADP in both the nucleotide-binding pockets and the TMDs are
open on the extracellular side, forming a central cavity. The homology models of
human P-gp using the structures of mouse P-gp in apo conformation and Sav1866
in ADP-bound conformation is given in Fig. 1.

The validity of the crystal structure of mouse P-gp is controversial [95] with
regards to the large separation of the NBDs and whether the solved apo confor-
mation is physiologically relevant [96]. Nonetheless, there is also a body of evi-
dence that supports the mouse P-gp model. The crystal structure of the lipid A
exporter, MsbA, in the apo state reveals a large distance of *50 Å between the

Fig. 1 Conformation of P-gp before and after ATP hydrolysis. The homology model of human
P-gp in apo (open) form based on mouse P-gp structure [91] and in ADP-bound (closed) form
based on Sav1866 structure [92] is shown. Binding of ATP per se has no effect on the
conformation of either the ATP site or the transport substrate site(s). However, formation of the
P-gp•ATP (E•S) reaction intermediate is accompanied by conformation changes in the drug
binding site. These changes result in the high affinity (or ‘‘ON’’) site being transformed to the low
affinity (or ‘‘OFF’’) site in the drug-binding site. ‘‘ON’’ site refers to the drug-binding site that is
exposed to the cytoplasm and affinity for the drug substrate is high. ‘‘OFF’’ site refers to the drug-
binding site that is exposed extracellularly with decreased affinity for the drug substrate
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NBDs, although the resolution is poor. Using another technique known as electron
paramagnetic resonance (EPR), the distance between the NBDs of MsbA are
reported as 55 Å in the apo state and 27 Å in the ADP-Vi trapped state.

The crystal structure of C. elegans in the apo state was solved recently at a
resolution of 3.4 Å [93]. C. elegans P-gp, like mouse P-gp, confers a multidrug-
resistant phenotype in the insect cells [93]. Compared to mouse P-gp, which has
87 % sequence identity to human P-gp, C. elegans P-gp is only 46 % identical.
However, similar to the mouse crystal structure, which was determined at the
slightly lower resolution of 3.8 Å, C. elegans P-gp also showed an inward-facing
conformation and the NBDs were seen to have a larger degree of separation as
compared to the NBDs of mouse P-gp. In the apo form of C. elegans P-gp, the
distance between the two serine residues located at the ABC signature motif and the
Walker A motif is 35 Å. However, in the mouse P-gp, the same pair of serine
residues would be separated by a shorter distance of 19 Å. This inward-facing
conformation of the C. elegans P-gp in an inverted ‘V’ shape is similar to the crystal
structure of mouse P-gp in the apo conformation, which is not consistent with the in
silico model proposed by Jones and George [97]. The in silico model involves
constant contact of the NBDs throughout the transport cycle, oscillating around the
vertical axis to allow alternating access to the two nucleotide-binding pockets.

Furthermore, in the crystal structure of C. elegans P-gp, the drug transport
pathway is open to the cytoplasmic surface and is continuous with the membrane
inner leaflet. This structure is consistent with the hypothesis that drugs enter ABC
exporters through the membrane’s inner leaflet according to ‘‘hydrophobic vacuum
cleaner’’ model instead of entering directly from the cytoplasm (the ‘‘flippase’’
model). An interesting structural feature observed in C. elegans P-gp that is dif-
ferent from the mouse P-gp is the discontinuity of both helices TM10 and TM12
lining the lateral opening of C. elegans P-gp. Between the discontinuous TM
helices are extended loops that can potentially mediate drug binding. These loops
flanking the lateral opening are also highly flexible and can function as hinges to
gate the pathway of drug transport. These loop structures may account for the
polyspecificity of P-gp. Although the crystal structures of mouse and C. elegans P-
gp may help reveal the molecular basis of polyspecificity, there is still a significant
gap in our understanding of the molecular complexity of multiple drug-binding
sites in human P-gp.

Structure of NBDs of ABC Transporters

The transport of substrates by ABC transporters is driven by the binding and
hydrolysis of ATP. Even within the ABC exporters, the catalytic and transport
mechanisms are not fully conserved [98, 99]. However, the structure and function
of NBDs is quite conserved among ABC transporters. Each NBD contains an A-
loop, the Walker A and the Walker B motifs, the signature motif (also known as
the C motif with consensus sequence LSGGQ), and the D- and H-loops. The two
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NBDs are arranged in a head-to-tail manner with the two ATPs sandwiched
between the Walker A and B motifs from one NBD and the ABC signature motif
from the apposed NBD to form two nucleotide-binding sites. The signature motif
as well as the Walker A motifs are involved in the binding of ATP, while the
Walker B motif is involved in Mg2+ and water co-ordination at the catalytic sites.
Other conserved motifs in the NBDs include the Q-loop, which has a role similar
to that of Walker B, the A loop (upstream of the Walker A motif), which is a
conserved aromatic residue that interacts with the adenine ring of the bound ATP
to form p-p interactions [100], the D loop (downstream of Walker B motif), which
is involved in indirect co-ordination of the c-phosphate of ATP through a water
molecule [101] and lastly the H-loop that participates in the hydrogen bonding of
the c-phosphate of ATP. An interesting feature to note is the presence of the X-
loop (with consensus sequence TEVGERG), which is only present in ABC
exporters. These are involved in interdomain communication and cross-talk
between NBDs and TMDs.

Drug Transport Models for P-gp

Two main models that describe drug transport by P-gp are the ‘‘hydrophobic vacuum
cleaner’’ and the ‘‘flippase’’ models (Fig. 2). These two models involve the
hydrophobic or amphipathic drug partitioned in the lipid bilayer, unlike the normal
action of a transporter that expels water soluble substrates directly from the cyto-
plasm to the extracellular medium (pump model on the left in Fig. 2). P-gp sub-
strates are relatively hydrophobic or amphipathic and are readily partitioned in the
lipid bilayer by diffusion. P-gp has been suggested to function as a ‘‘hydrophobic
vacuum cleaner’’, binding nonpolar substances that are partitioned in the membrane
and then expelling them into the extracellular medium [102, 103]. This model is
supported by the recent X-ray crystal structure of mouse P-gp where two stereo-
isomeric cyclic peptides (QZ59-RRR and QZ59-SSS) are shown bound deep within
the transmembrane helices of mouse P-gp. This suggests that these cyclic peptides
can gain access to the protein from within the lipid bilayer [91]. Alternatively, P-gp
has been suggested to function as a ‘‘flippase’’ for physiological substrates such as
lipid-like drugs and platelet-activating factor [103–105], moving these substrates
from the cytoplasm to the extracellular medium by flipping from the inner leaflet to
the outer leaflet of the lipid bilayer. At present, the experimental data are lacking to
distinguish between the vacuum cleaner and the flippase model for P-gp.

Transport Cycle of P-gp

As P-gp is the prototypical ABC exporter involved in MDR, there are extensive
studies investigating the molecular features of its catalytic cycle and drug
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transport. The functional NBDs were shown to be essential for the hydrolysis of
ATP and the inactivation of either one of the NBDs, for example, by the trapping
of an inorganic phosphate analogue, orthovanadate (Vi), which inhibits this
hydrolysis [106]. It is recognised that in order to hydrolyze ATP, the NBDs must
dimerize to form an ‘ATP sandwich dimer’ with two ATP molecules bound along
the interface [107]. However, there are many aspects of the catalytic and transport
cycle that are still not well understood. Molecular details on how ATP hydrolysis
is co-ordinated between the two NBDs, and how energy from this hydrolysis is
transmitted to the TMDs to drive drug transport and whether one or two ATP
molecules is/are hydrolyzed per drug molecule transported, are still unknown [100,
108, 109].

In 1966, in his report on membrane pumps, Jardetzky introduced the current
consensus view of the mechanism of ABC exporters to be that of the alternating-
access switch model [110]. As proposed, a transport event should involve at least
three steps: (1) binding of the transport substrate to the TMDs in the ‘high-affinity
inward-facing orientation’ (2) the binding of ATP to the NBDs to form the ‘ATP
sandwich dimer’ and (3) ATP hydrolysis, which leads to transmission of confor-
mational changes from the NBDs to the TMDs to effect a high-affinity to

Fig. 2 Models for drug transport by P-gp. Substrates of P-gp are proposed to be transported via
two models, which involve the partitioning of the amphipathic or hydrophobic substrate molecule

such as an anticancer drug ( ) into the lipid bilayer. In the conventional pump model (left), a

water soluble substrate such as calcium, sodium, potassium or proton is directly effluxed out of
the cell from the cytoplasm to the extracellular medium by P-type ATPases [195]. In the
‘‘hydrophobic vacuum cleaner’’ model (middle), the drug molecule from the extracellular
medium is partitioned into the lipid bilayer and is effluxed out of the cell by P-gp, with only a few
molecules entering the cytoplasm [196]. In the ‘‘flippase’’ model (right), the drug molecule is
partitioned into the lipid bilayer either from the extracellular medium or from the cytoplasm, and
then it is flipped from the inner leaflet to the outer leaflet and subsequently effluxed out of the cell
by P-gp [103]. In all cases, the energy for transport is provided by hydrolysis of ATP by the
NBDs. Black arrows indicate the direction of movement of a drug molecule
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low-affinity switch at the substrate-binding site, as illustrated in Fig. 1. Notably,
both nucleotide and the transport substrate can bind in the absence of each other.
Different models have been proposed to identify the power stroke step which is
used to drive the conformation from a high to a low affinity for drug-substrates. Is
the power stroke obtained from ATP dimerization in the ATP sandwich or is it
from ATP hydrolysis? Our work suggests that the power stroke for conformational
change is provided only after formation of a pre-hydrolysis transition-like (E•S)
state [111, 112].

Catalytic Cycle of P-gp

P-gp is energized by the hydrolysis of ATP to efflux substrates out of the cell.
Senior et al. [113] proposed that there are two independent events of ATP
hydrolysis in a single catalytic cycle and at a given time, only one NBD hydrolyzes
ATP. Therefore, the NBDs work via an ‘‘alternating catalytic sites’’ system with
no preference for either the N- or the C-terminal ATP site during ATP hydrolysis
[114]. A simplified reaction scheme for ATP hydrolysis by P-gp is given in Fig. 3.
The end products of ATP hydrolysis are inorganic phosphate (Pi) and ADP. Pre-
ceding the hydrolysis, there is evidence for the formation of an asymmetric

Fig. 3 Reaction intermediates in the catalytic cycle of ATP hydrolysis by human P-gp. A
simplified scheme for the ATPase reaction of P-gp is shown. The P-gp•MgATP intermediate is
equivalent to the E•S complex, which represents the ‘‘occluded-nucleotide conformation’’ that
can be obtained with the use of ATP-c-S, a non-hydrolyzable analog of ATP or by using the
Walker B E556Q/E1201Q double mutant [112]. One of two ATPs is occluded at the ATP site and
only the ATP that is occluded is committed to hydrolysis. Similarly, the P-gp•MgADP•Pi

intermediate is equivalent to the E•P complex and can be captured using Vi, which is an analog
of Pi, to form a ‘‘Vi-trapped state’’. The occluded pre-hydrolysis intermediate state at the NBD is
proposed to be the ‘‘power stroke’’ for conformational change at the drug-binding site(s) in the
TMDs [197]. The release of ADP at step IV (E ? P) appears to be the rate-limiting step in the
catalytic cycle [198]
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occluded nucleotide as a reaction intermediate in the catalytic cycle of P-gp. This
occluded reaction intermediate (E•S) is different from the nucleotide-bound state
of P-gp. In the occluded nucleotide conformation, P-gp has reduced affinity for
transport substrates. The role of this intermediate was characterized by Sauna et al.
[112] using ATP-c-S, which is a non-hydrolyzable analog of ATP. Those studies
demonstrated that two ATP molecules initiate dimerization but only one is driven
to an occluded pre-hydrolysis intermediate state at the NBD and this is the basis
for the power stroke for conformational changes at the TMDs resulting in the
movement of the drug substrate. Similarly, the ADP-Vi trapped post-hydrolysis
conformation (E•P) also exhibits reduced affinity for drug-substrates [115].

Modulation of ABC Drug Transporters

Compounds having the ability to reverse resistance against anticancer drugs are
termed chemosensitizers, MDR modulators or inhibitors. Modulators targeting P-
gp function belong to a number of chemical classes and have been classified as
first, second or third generation MDR reversal agents on the basis of their affinity
for the transporter proteins and relative toxicity towards normal cells. Drugs that
were used for other pharmacological functions and were coincidently found to be
effective in sensitizing drug-resistant tumors towards chemotherapy are referred to
as first generation modulators. These include compounds like verapamil (calcium
channel blocker) and cyclosporine A (immunosuppressant) [116]. Obviously, these
had lower affinity and were required in high doses and thus failed to manipulate
MDR. Additionally, the higher dosage resulted in toxicity and other adverse effects
towards normal cells [117]. Thus, these drugs were modified, giving rise to second
generation modulators such as R verapamil (R-enantiomer of verapamil, a weaker
calcium channel blocker). However, these drugs also failed to deliver the desired
efficacy due to their low affinity for their target transporter proteins. Thus, third
generation inhibitors were designed specifically for high transport affinity and low
pharmacokinetic interaction. These included drugs such as tariquidar and mitotane,
which exhibit high affinity and selectivity for target MDR transporter(s) at a low
nanomolar range and subsequently low toxicity towards normal cells [118]. These
molecules, when co-administered with the anticancer drug, act as competitive
inhibitors for the drug-binding site of the transporter proteins, allowing the drug to
accumulate inside the cells to effective lethal concentrations.

There are many alternative approaches to handle the problem of MDR, among
which targeting RNA is the most popular. This is done by using antisense oligonu-
cleotides, hammerhead ribozymes or siRNA. Other treatments include transcrip-
tional regulators, agents to alter the plasma membrane and also compounds that
selectively target MDR cancer cells [119]. All of these approaches, although effec-
tive, have not been rigorously tested in clinical trials. MDR reversal agents are known
to inhibit the efflux activity of ABC transporters, thus leading to cytotoxicity and are,
therefore, important alternative treatments to overcome MDR. Most modulators act
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by binding to these ABC transporters in the drug-binding pocket, while others can
influence gene expression; for example, the alkaloid piperine was found to lower the
expression levels of ABCB1, ABCC1, and ABCG2 genes possibly by acting on the
transcription factors [120].

Tyrosine Kinase Inhibitors (Small Molecule Targeted
Therapies)

The practice of targeted therapies has significantly changed the treatment of cancer
over the past decade. These therapies involve the use of monoclonal antibodies and
small molecule inhibitors. Keeping in mind the scope of this chapter, we will
discuss only small molecule inhibitors and natural products as modulators of
MDR. Cancer treatment has undergone revolutionary changes with the introduc-
tion of tyrosine kinase inhibitors (TKIs) that selectively inhibit growth factor
pathways critical for tumor growth. TKs can be further classified as receptor TKs
(RTKs) and non-receptor TKs (NRTKs) and TKIs block the phosphorylation
mediated by these TKs.

TKs initiate a downstream signaling response leading to cell growth, prolifer-
ation, migration or angiogenesis in normal as well as malignant tissues. Small-
molecule inhibitors target these kinases by directly affecting the tumor cells, rather
than by causing immune responses, as monoclonal antibodies do. These small
molecule inhibitors typically interrupt cellular processes by interfering with the
intracellular signaling of tyrosine kinases. These can be broadly divided into three
categories: (1) Inhibitors that block the binding of ATP to the active site of
kinases, such as the BCR-ABL kinase inhibitors imatinib, nilotinib and dasatinib,
the epidermal growth factor receptor inhibitors gefitinib and erlotinib, and the
cyclin-dependent kinase inhibitor, roscovitine. (2) The allosteric inhibitors block
sites other than the catalytic sites. These sites are usually required for the acti-
vation of kinases, such as the p38 inhibitor BIRB 796, the RAF inhibitor BAY43-
9006, and the MAP kinase inhibitor PD184352. (3) Other TKIs include drugs that
may inhibit the activation of fusion of TKs by blocking their dimerization, anti-
bodies against RTKs or their ligands, which interrupt TK signaling through neu-
tralization of ligands, blockade of ligand binding, or receptor internalization. Most
small-molecule inhibitors of TKs are ATP mimetics. These either block the active
site or allosteric site within the intracellular catalytic domain of TKs, thereby
inhibiting the subsequent downstream signaling processes (Table 4).

Imatinib or Gleevec, which was approved in 2001 by the FDA, was the first
small molecule inhibitor targeted to the BCR-ABL kinase. It is used for the
treatment of chronic myeloid leukemia and acts by inhibiting the continuously
active BCR-ABL that results from the reciprocal translocation between chromo-
somes 9 and 22 (the Philadelphia chromosome). Unlike monoclonal antibodies,
most small molecule inhibitors are metabolized by cytochrome P450 enzymes.
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But these TKIs such as imatinib (Gleevec), dasatinib (Sprycel), sorafenib
(Nexavar), and sunitinib (Sutent) are multitargeting in nature, so they are much
less specific as compared to the monoclonal antibodies used for treament. Gefitinib
(Iressa) and erlotinib (Tarceva) selectively inhibit the epidermal growth factor
receptor (EGFR), and both are efficacious against EGFR-expressing cancers.
Erlotinib in combination with an antimetabolite, gemcitabine, is also approved for
treating advanced pancreatic cancer. More recently, small molecule inhibitors
targeting the EGFR pathway have been used in the treatment of solid tumors, such
as non-small-cell lung cancer.

Emerging resistance towards the TKIs is a cause of major concern. Some of the
most reported and studied mechanisms of resistance to TKIs are point mutations
within the kinase domain resulting in decreased sensitivity of the kinases towards
the TKIs. These mutations block the inhibitors from accessing the catalytic site
and/or activation loop of the kinase. Another mechanism is the efflux of TKIs
mainly by P-gp and ABCG2, which has been reported as a contributing factor to
the development of resistance towards these inhibitors. A majority of TKIs are
transported by P-gp and ABCG2 [121]. It is important to note that TKIs which
inhibit ATP-binding to the active site of kinases interact at the drug-binding site in
the TMDs of the ABC transporters. Such TKIs do not bind to the ATP sites in

Table 4 Tyrosine kinase inhibitors, their kinase and ABC transporter targets

TKIs Target kinase ABC transporter References

AG1478 EGFR ABCB1, ABCG2 [126]
Apatinib VEGFR2 ABCB1, ABCG2 [127]
Bortezomib 28s protease ABCB1 [128]
Canertinib EGFR, HER2, 3, 4 ABCG2 [129]
Cediranib VEGFR2, PDGFR, c-KIT ABCB1, ABCC1 [130]
Danusertib BCR-ABL, Aurora kinases ABCG2 [131]
Dasatinib BCR-ABL, Src, c-KIT,

PDGFR
ABCB1, ABCG2 [132]

Erlotinib EGFR ABCB1, ABCG2, ABCC10 [133, 134]
Gefitinib EGFR ABCB1, ABCG2 [135]
Imatinib BCR-ABL, c-KIT, PDGFR ABCB1, ABCG2, ABCC1,

ABCC10
[121, 136]

Lapatinib EGFR, HER2 ABCB1, ABCG2. ABCC10 [134]
Neratinib EGFR, HER2 ABCB1 [137]
Nilotinib BCR-ABL, c-SRC ABCB1, ABCG2, ABCC10 [136, 138]
Ponatinib PDGFR, VEGFR2, BCR-ABL

and c-SRC
ABCG2 [139]

Saracatinib c-SRC ABCB1 [140]
SGI-1776 FLT-3, Pim ABCB1, ABCG2 [141]
Sorafenib EGFR, VEGFR 2, PDGFR,

B-raf
ABCC2 [142]

Sunitinib PDGFR, VEGFR2, c-KIT,
FLT-3

ABCB1, ABCG2 [143]

Vemurafenib B-Raf, MAP ABCB1, ABCG2 [144]
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these ABC transporters, suggesting that the ATP sites in kinases and those in the
ABC transporters are structurally different. Taken together, an ideal TKI would be
a molecule that can inhibit the activity of the target TK but would not be a
substrate or modulator for ABC drug transporters. The development of such a
molecule will lead to novel TKIs that will be effective and will be able to kill
tumor cells at much lower concentrations.

Natural Products as Modulators of ABC Drug Transporters

It is widely known that natural compounds found in vegetables, fruits, plant-
derived beverages and herbal dietary supplements not only have anticancer
properties, but may also modulate the activity of ABC transporters. Such com-
pounds extracted from natural sources are now referred to as ‘‘fourth generation
inhibitors’’. The secondary metabolites of plants, which include alkaloids, phen-
olics and terpinoids, can interfere with the activity of the well-known efflux pumps
[122]. These may either interact directly with the protein, disturbing the tertiary
structure, or might function as competitive inhibitors for therapeutic drugs. They
can also be used in combination with a cytotoxic agent, resulting in reversal of
MDR. Out of these numerous natural products, flavonoids are the most well-
known and well-studied. Over 6,000 flavonoids have now been identified and are
the most abundant polyphenols in the human diet. They are found in foods such as
fruits, vegetables, food supplements, tea and wine. This class of secondary
metabolites includes flavonols (quercetin, myricetin), flavones (luteolin, apigenin,
and chrysin), isoflavones (genistein, diadzein), flavonones (naringenin, hesperetin),
flavonolols, chalcones and aurones. In addition to the antitumor, antimitotic and
antiviral properties of flavonoids, they are also able to inhibit kinases, and are
active in radical scavenging and metal ion chelating. Most of these natural product
modulators act by binding to the drug-binding pocket of ABC transporters. These
compounds can thus change the absorption, distribution, metabolism and excretion
(ADME) properties of chemotherapeutic drugs by modulating the activity of ABC
transporters. A few of them might affect the ATP-binding or hydrolysis at the
NBDs or alter the cell-surface expression of ABC transporters. Since most of these
natural compounds are components of the human diet, it may be presumed that
they would be non-toxic even at higher doses. A list of important natural product
modulators for the three ABC drug transporters is given in Table 5. Although
many innovative approaches are currently available, studies to design and find a
modulator that is selective, relatively less toxic and highly potent appear to be the
most likely way to resolve the problem of MDR [123, 124].
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Table 5 Plant natural products as modulators of ABC transporters

Natural product ABC transporter References

P-gp ABCG2 MRP1

30-40-70-trimethoxyflavone - + - [145]
5-bromotetrandrine + - - [146]
6-prenylchrysin - + - [124]
Abietane diterpene + - - [147]
Acacetin + + - [148]
Afrormosin + - + [149]
Agosterol A and derivatives + - - [150]
Alisol B 23-acetate + - - [151]
Amooranin + - - [152]
Apigenin + + + [153, 154]
Asarum heteropoides var. mandshuricum + - - [155]
Ayanin - + - [156]
Baicalein and derivatives + - - [124]
Biochanin A + + - [157]
Bitter melon extract + - - [158]
Cantharidin + - - [159]
Cannabinoids + + + [124]
Carotenoids + + - [160]
Catechins + - - [161]
Cepharanthine + - + [124]
Chrysin + + - [149, 153]
Citronellal + - - [162]
Coumarins + - - [163]
Curcumin + + + [124]
Cycleanine + - - [164]
Cycloartanes + - - [165]
Cyclopamine + - - [166]
Deoxyschizandrin + - - [167]
Dimethoxyaurone + + ND [168, 169]
Diadzein - + - [145]
Eudesmin + - - [170]
Eupatin - + - [171]
Euphocharacins A-L + - - [172]
Formononetin + - + [149]
Fumitremorgin C - + - [124]
Galangin - + - [122]
Genistein + + + [148]
Ginkgo biloba extract + - + [124]
Ginsenoside Rg + - - [173]
Ginsenosides - + - [174]
Grapefruit juice extracts + - - [175]
Hapalosin + - - [176]
Harmine - + - [177]

(continued)
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Table 5 (continued)

Natural product ABC transporter References

P-gp ABCG2 MRP1

Hesperetine + + - [145]
Hypericin + - - [124]
Hyperforin + - - [124]
Ibogaine - + - [178]
Isoquinoline alkaloid + - - [124]
Isotetrandrine + - - [124]
Jatrophanes + - - [179]
Kaempferol - + + [148]
Kaempferia parviflora extracts + - + [124]
Kavalactones + - - [124]
Kendarimide A + - - [180]
Limonin + - - [181]
Luteolin + + + [153]
Morin + - - [157]
Myricetin - - + [182]
Naringin, Naringenin and derivatives + + + [122]
Ningalin B and derivatives + - - [124]
Opiates + - - [183]
Phloretin + + - [122]
Piperine + - - [184]
Plumbagin - + - [185]
Polyoxygenated steroids + - - [124]
Protopanaxatriol ginsenosides + - - [124]
Pyranocoumarins + - - [186]
Quercetin + + + [124]
Resveratrol - + - [145]
Retusin - + - [156]
Rotenoids - + - [187]
Rutaecarpine + - - [122]
Sanguinarine + - - [188]
Schisandrol A + - - [189]
Sesquiterpines + - - [190]
Silymarin + + - [124]
Sinensetin + - - [191]
Stemona curtissi root extract + - + [124]
Stilbenoids - + - [192]
Taxane derivatives + - - [124]
Tectochrysin - + - [187]
Terpenoids + + - [124]
Tetrahydrocurcumin - + - [122]
Tryprostatin A + - - [193]
Tryptanthrin + - - [194]
Vitamin E TPGS + - - [124]

+ modulation; - no effect; ND Not determined
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Conclusion

With the advent of targeted therapies and improved drugs, the treatment of cancer
has made remarkable progress in the past few decades. However, the MDR phe-
nomenon limits the benefits of chemotherapy. Studies deciphering the structural
and functional aspects of ABC transporters help us to better understand the
mechanism of these transporters and assist in designing targeted drugs as modu-
lators for these efflux proteins. Furthermore, understanding changes in the phar-
macokinetics and pharmacodynamics of drugs owing to SNPs in these transporters
in certain ethnic populations helps us to design treatment plans for specific pop-
ulations or patients, which is a step towards individualized medicine. This area is
being recognized due to variation in the genetic makeup of individuals and,
hopefully, soon we will be able to predict the patient-specific efficacy of certain
drugs. Clinical MDR is multifaceted and the broad and overlapping substrate
specificity of ABC drug transporters adds another dimension to this problem.
Recently characterized targeted-therapy drugs including TKIs and fourth genera-
tion natural product modulators will have to be tested in clinical trials along with
conventional chemotherapeutic drugs to overcome MDR in the clinic and to
increase the efficiency of chemotherapy for cancer patients.
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Multidrug Resistance: A Role for
Membrane Physics, pH and Drug
Transporters

Chloe Daniel and Cyril Rauch

Abstract Cancer is the second cause of mortality worldwide (*8 million death a
year) with a cost amounting to *$900b a year. Early treatment is of paramount
importance, and tissue susceptible to becoming cancerous is a target for preven-
tative treatment. Multi-drug resistance (MDR) is a common cause of chemother-
apeutic failure in the case of 90 % of metastatic cancer. Different valid theories
have been suggested about MDR (drugs transporters, pH, membrane and so on) but
there is now a need to provide a unified model concerning all these observations.
Herein we show how the alteration in the membrane physical properties mediated
by pH changes and the expression of drug transporters are paramount in MDR.

Keywords MDR � NHE1 � pH � Warburg’s hypothesis

Abbreviations
ABC ATP-binding cassette
MDR Multi-drug resistance
NHE1 The sodium-hydrogen exchanger 1
Pgp P-glycoprotein

Introduction

The number of cases of cancer in the year 2030 has been estimated, via extrap-
olation of 2007 statistics [1], and is expected to surpass 430,000 new clinical cases.
With a projected rise in all cancers of 45 % by the year 2030 [1], despite taking
into the account the predicted increase in screening for breast and prostate cancer,
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research into potential therapeutic techniques is becoming more important than
ever. A major obstacle in the treatment of cancer is the development of Multi-drug
resistance (MDR) in both metastatic and benign tumours. This transformation,
from a cell susceptible to treatment by drugs to a state of resistance has long been
the focus of cancer research and continues to be to this day.

MDR involves necessarily the plasma membrane as drugs need to cross the
plasma membrane leading to interactions between their physico-chemical prop-
erties and those of the bilayer structure. Furthermore, pH [2–4], proton pumps/
transporters [5], Pgp [6, 7] and sodium channels [8] are just a few examples of
other cancer cell features which have been discovered to have a role in tumour cell
survival and/or MDR. All things considered, an interaction must exist between all
these biological and physico-chemical components and the ability of a cancer cell
to escape drugs treatment.

Understanding how the usual mechanisms of apoptosis are avoided, and how
MDR is achieved, should facilitate our research into reversing these characteristics
of cancer cells. Whilst the ultimate aim would be a cure for cancer, it is crucial that
all researchers have the patient in mind; therefore, it is more realistic that research
will enable us to provide palliative treatment options rather than a cure.

Multi-Drug Resistance and the Fluid Mosaic Model
of the Plasma Membrane

The plasma membrane of a cell is composed of a phospholipid bilayer, as well as
many other lipids and proteins. Its structural integrity is maintained by the elec-
trostatic forces between amphipathic phospholipids; outward facing hydrophilic
heads protect the hydrophobic fatty acid tails. The membrane creates a selectively
impermeable barrier to most water-soluble solutes. However, it is by no means a
rigid, static structure; the many membrane proteins and lipids can laterally traverse
the surface, and the numbers of these cell membrane features can alter dramati-
cally, even between the inner and outer leaflet. This constant movement of the
constituents, and the varying composition, of the plasma membrane has led to the
term ‘Fluid Mosaic Model’ [9] being used to describe the cell membrane structure.
In addition to the make-up of the membrane, the presence, or absence, of certain
membrane proteins can radically modify the permeability of a cell to a range of
molecules.

In the treatment of cancer, as in many other diseases, a drug molecule must first
negotiate the cell membrane before acting on its target inside the cell. For that
reason, the phospholipid bilayer can be seen as the first barrier a drug must
encounter at the level of the cell. It therefore follows, that alterations in the
composition, fluidity and, as a result, the permeability of the membrane can have a
significant effect on the efficacy of a drug.
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Multi-drug resistance can be characterised by cells ability to avoid apoptosis
when treated with a substance which aims to bring about its’ demise. MDR is
known to occur at the level of the cell membrane, it has been shown to manifest
itself through increased efflux of a drug as well as through complex interactions
with the components of the membrane itself, leading to decreased permeability
[10–12]. This suggests that part of the MDR cause may reside in a change of the
plasma membrane physical properties.

MDR and Lipid Packing Theory

The density of phospholipids in the membrane has been shown to have a
noticeable effect on membrane biomechanics [13, 14] such as fluid-phase endo-
cytosis [15, 16] and the overall permeability of the membrane.

A densely populated cell membrane leads to a more compact packing of
phospholipids and this, in turn, augments the rigidity of the membrane [17]. The
stiffer the membrane, the less permeable it is to drugs, for example [18].

A higher density of phospholipids in the inner membrane of a cell, compared to
the outer leaflet, has been shown to increase the rate of endocytosis [15, 16]. In an
intracellular vesicle, the number of phospholipids in the outer membrane is greater
than that in the inner membrane, causing a spherical structure to form. This means,
therefore, that more lipid was present in the inner leaflet of the plasma membrane
at the onset of vesiculation. Increasing the number of phospholipids in the inner
leaflet of a cell membrane causes compression, and an out-pouching must occur to
alleviate the pressure and rectify the imbalance between the two layers.

Endocytosis of anticancer drugs envelops them in intracellular compartments
where they are not free to interact with other cytosolic components of the cell. This
can be easily observed in culture conditions [19]. It therefore follows that an
increased rate of endocytosis will render more of the drug futile. It has been shown
that in cancer cells that are resistant to drugs, the inner leaflet of the membrane is
more densely compacted [11, 20], thus a level of MDR can be achieved through
the packing of lipids within the cell membrane impeding the transverse movement
of drugs. Let us think 1 min about the changes that an increase in membrane
tension (i.e. lipid packing) can generate. To interact with its intracellular target a
drug needs to traverse the membrane but this event can take some time usually
defined by classical rules of thermodynamics and energy barriers involved. If the
membrane is ‘‘stiffer’’, the drug will remain trapped in the lipid bilayer for longer
period of time. During its residency time, the drug is not static but does diffuse.
This residency time will likely increase the likelihood of a drug interacting with
any partner on the membrane. Here comes an essential aspect as MDR is also
related to the expression of drug transporters among those the archetypal Pgp.
Interaction between drugs and Pgp may thus fundamentally rely on the membrane
physical state.
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Pgp

P-glycoprotein (Pgp) is a member of the ATP-binding cassette (ABC) transporter
family, and is also commonly known as the Multi-drug resistance protein 1
(MDR1). As the name suggests, the protein is involved in controlling what sub-
stances cross the membrane. A low level of Pgp is present in many tissues of the
body [21], however, higher levels of expression occur in tissues such as the blood–
brain barrier [22] and excretory luminal epithelium [21, 23]. Distribution of this
protein suggests a role in protection of tissues from xenobiotics and toxins of the
circulatory system. In cancer, Pgp is responsible for the efflux of xenobiotic drugs
[6], and hence has an important role to play in the development of multi-drug
resistance in cancer cells. Pgp actively transports the drug back out of the cell and
acts as a ‘‘flippase’’ to eject the drug from the membrane [24, 25].

Pgp expression is known to be upregulated in the MDR phenotype [7, 26, 27] in
cancer cells and as such is a key target for improving the efficacy of chemotherapy.
Pgp inhibitors, such as guggulsterone and CJX1, are capable of re-sensitising cells
to drugs [28, 29]. They are known to achieve this through inhibiting Pgp drug
expulsion mechanisms in addition to preventing expression of the channel protein
in the lipid bilayer.

The Pgp theory looks adequate on its own but there is one point that needs
further investigation. Why would drugs interact with a transporter like Pgp and be
expelled efficiently? Remind that by definition MDR violates the law of enzyme
specificity. The question is to envision a mechanism whereby chemical efficiency
without the need for chemical affinity occurs.

The Role of Space Dimensions in MDR

There is one beautiful mathematical theorem known as Polya’s theorem that shows
that when a particle diffuses in a space with a dimension smaller or equal to two,
all the space will be visited and this possibly more than one time [30]. This means
that a drug diffusing in the membrane over a long period of time will repeatedly
collide with drug transporters. According to Polya’s theorem the amount of col-
lision should be far greater in 2D than 3D. In a sense the dimensionality of the
membrane (as a 2D object) is paramount for MDR. What we see here is that the
low dimensionality of a membrane plays a significant role similar (but certainly
not identical) to the one that the temperature plays. This brings in an interesting
point that is that if we were living in a different universe with a different number of
space dimensions, say 4D for example, MDR would be ‘‘physically’’ impossible.

In any case, Polya’s theorem reinforces the role of membrane stiffness in MDR
with the presence of drug transporters. The next question is to find out the main
biological process that by changing the membrane physical properties increases its
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stiffness to allow repeated collisions between drugs and transporters (as dictated by
Polya’s theorem). An important contributor to membrane stiffness is the pH.

pH

Intracellular pH is intricately regulated by all animal cells, with the exception of
erythrocytes, and a small change in [H+] can dramatically change the ionisation
state of all weak bases and acids, affecting most internal cellular processes.
Although the actual mechanisms for pHi regulation are complex and diverse, the
concept of pH management is relatively simple. As reviewed by Boron et al. [31]
transporters known as ‘‘Acid extruders’’ and ‘‘Acid loaders’’ are responsible for the
alkalinisation and acidification, respectively, of the cytosol. For a competent pHi

regulation mechanism to exist, there must be a pH sensor, a signal-transduction
system and effector proteins—the ‘extruders’ and ‘loaders’. In this review the
membrane-bound protein NHE1 is extensively reviewed as an example.

A reversal in the pH gradient of the cell membrane is now recognised as the
foundation for the neoplastic phenotype. Pioneering the research into the involve-
ment of pH in MDR, Otto Warburg’s ‘Theory of Cancer’ of 1927 [32], more com-
monly known as ‘Warburg’s Hypothesis’, is to this day, the most widely accepted
explanation for the aforementioned reversal of the pH gradient. Intracellular pH is
known to increase from 6.2–6.9 to 7.3–7.4, alongside a decrease in extracellular pH
from 7.12–7.7 to 6.99–7.05 [33]. pH is known to be regulated via many membrane
proteins [34], including NHE1 [35], Carbonic anhydrases [36], Monocarboxylic
transporters [37], V-ATPase [38, 39] and Cl-/HCO3

- [40]. However, the role of
NHE1 in particular, has been thoroughly examined [5, 33, 35, 41] and its importance
validated in the absence of other membrane transporters. The role of NHE1 will be
considered in more detail later in this review. Both intracellular and extracellular pH
have a role to play in cancer cell survival, metastasis and invasion.

Warburg’s Hypothesis

In 1924, Otto Heinrich Warburg was the first to propose that tumorigenesis is
driven by the upregulation of glycolysis [32], an anaerobic mechanism for respi-
ration which promotes cell survival in the often hypoxic environment in the centre
of a solid tumour. However, Warburg discovered that this switch to glycolysis is
observed even under aerobic conditions. The level of proliferation in cancer cells
is much higher than in other cells [42], and therefore they have an increased
metabolic rate and subsequent demand for ATP. Given the relative inefficiency of
glycolysis, a yield of just 2 ATP molecules in contrast to the 36–38 ATP molecules
generated via oxidative phosphorylation, upregulation would appear to be counter-
intuitive. This is indeed the case when the cells are under aerobic conditions,
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however, as previously mentioned, when cells are subjected to the hypoxic con-
ditions typical of solid tumours. Aerobic respiration via oxidative phosphorylation
can therefore not take place and glycolysis must provide the ATP necessary.
Warburg demonstrates that the upregulation of glycolysis as seen in cancer cells is
initiated by damage to the mitochondria [32], this alleviates mitochondrial inhi-
bition of glycolysis [43]. Bonnet et al. [44] reversed the damage to mitochondrial
respiration in cancer cells and thus observed a decline in growth and proliferation,
validating the role of the mitochondria in the switch to glycolysis.

The Warburg Effect, not to be mistaken for the Warburg hypothesis, is a
measurement of this switch to glycolysis, and is calculated as the ratio of gly-
colysis to respiration. The impact of this switch to glycolysis is the build-up of
lactate and its dissociation products: lactic acid and H+. Accumulation of H+ ions
intracellularly is detrimental to cell survival and so the cell must extrude excess H+

ions via proton pumps and transporters. As is described earlier, the mechanism for
this externalisation of H+ ions is via membrane proteins, especially NHE1. It
therefore follows that it is the reversal of the pH gradient which must occur first, or
indeed in parallel, in order to permit tumour cells to undergo a switch to
glycolysis.

NHE1: The Archetypal Example in Cancer

The Sodium-Hydrogen Exchanger 1 (NHE1) is an antiporter which is involved in
the regulation of cell pH and volume; it achieves this through mediating the influx
and efflux of the cations Na+ and H+ respectively, across the cell membrane
[34, 35]. NHE1 is incredibly pH sensitive [45]. Its activity is triggered by a drop in
intracellular pH, whereby the membrane-bound protein causes the efflux of H+

ions, to bring the intracellular pH back towards normal. An allometric binding-site
for protons is able to detect the smallest in changes of pHi. In normal cells, NHE1
is calibrated to the physiological pH of the cytosol and remains dormant until such
a time as a fall in pHi is measured [35]. This is then quickly rectified via extrusion
of positively-charged hydrogen ions. Present in virtually all tissues [46], the Na+/
H+ exchanger also plays a particularly important role in the cardiomyocyte action
potential.

The role of NHE1 is crucial to the development of the reversed pH gradient and
subsequent cancer cell survival. Tumour cells undergo a transformation propelled
by the oncogenes ras and v-mas [47, 48]. Activity of the transmembrane protein,
NHE1, is amplified through increasing the affinity for its proton substrate [33]. In
addition, increased transcription of the gene SLC9A1 upregulates the expression of
NHE1 in tumour cells, one factor implicated in the increased transcription of this
gene is epidermal growth factor (EGF) [49]. It has recently been hypothesised that,
for NHE1 to be functioning at full capacity and efficiency, the sodium-ion channel
NaV1.5 must also be present [50, 51]. The theory behind this describes the role of
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NaV1.5 in replenishing the intracellular Na+ stock which NHE1 uses in exchange
for H+ ions to bring about intracellular alkalinisation [35].

The combination of increased expression and activity of NHE1 augments the
efflux of hydrogen ions, acidifying the external microenvironment with the excess
of positively charged ions. The resulting depletion of hydrogen ions from the
cytosol creates an intracellular alkalinisation. This reversal of the pH gradient
across the membrane is necessary for the further transformations a tumour cell
must undergo, including, and arguably most importantly, the metabolic switch to
glycolysis.

pH and Tumour Cell Survival

Once a reversed pH gradient has been established, tumour cells are free to invade
surrounding tissues and commence metastasis. The efflux of H+ ions, mediated by
transporters such as NHE1, not only permits glycolysis to take place at an elevated
rate, but also enhances tumour cell aggressiveness [52, 53]. Extruded H+ ions
contribute to sufficiently lowering the pHe such that the immediate tumour
microenvironment is toxic to surrounding tissues [54, 55]. Indeed, proteases
secreted by the tumour cell itself have been suggested to become activated by
acidic pHe and therefore bring about the destruction of the extracellular matrix
[56]. Furthermore, specific proteases such as Cathepsin B and metalloproteinases
have been implicated in cancer cell invasion [57]. Death of adjoining cells creates
space for tumour cell advancement, and therefore permits metastasis.

The role of pH in cancer cell survival has been thoroughly researched.
Reviewed recently by Harguindey et al. [41] it can be summarised as follows. An
increase in pHi alkalinity drives cells into the S-phase of the cell cycle, promoting
a state of perpetual disorganised cell division, and therefore tumour growth.
Inhibition of NHE1, an important pH regulator, can prevent tumour cell growth by
reducing cancer cell proliferation. Neoangiogenesis is an important feature of
tumours, as it allows oxygen and other important nutrients to perfuse solid
tumours. Peptides which promote angiogenesis are known to be mediated via
NHE1, therefore upregulation and intracellular alkalinisation promote the growth
of new blood vessels. pHi has also been implicated in the functioning of p53,
tumour suppressor gene; alkaline pH inhibits p53 therefore promoting cell sur-
vival. Suppression of p53 is widely recognised as being an important factor
implicated in MDR; loss of function is key to resistance to anticancer drugs.

The effect of intracellular and extracellular pH in cancer cell invasion and
metastasis is summarised in Fig. 1.

Multidrug Resistance 41



pH and MDR

To consider the role of pH in MDR, both intracellular and extracellular pH must be
reviewed in turn. Whilst the role of extracellular pH has been examined in detail,
intracellular pH has only recently been considered a more significant participant in
MDR [58].

The pH partition theory is a widely accepted model which explains how pHe

affects weakly acidic and weakly basic drug entry into a cell. From this theory, it is
understood that acidic pHe has the effect of reducing uptake of weakly basic drugs,
such as Doxorubicin, due to protonation making the compound impermeable to the
cell membrane barrier [59].

The significance of pHi has an impact on current potential anticancer therapies.
Re-establishing a normal pH gradient across cells would decrease pHi, with the
potential to increase weak base drugs binding with their intracellular targets.

In addition to its effect on the drug itself, it has been proposed that pH can have an
effect on the lipid-packing of the cell membrane, which will contribute towards
MDR [20]. In a drug-sensitive cell, the fluidity of the inner leaflet of the membrane is
maintained via accumulation of protons in the cytosol in close proximity to the
membrane. It is hypothesised that these positively-charged ions could have the effect
of diminishing the electrostatic repulsion between neighbouring, negatively-
charged, phospholipids. However, in a drug-resistant cell, as previously discussed, a
proton-efflux has been established which leads to depletion of intracellular protons.

Fig. 1 This figure highlights the role of NHE1 in the acidification of the extracellular tumoural
microenvironment and alkalinisation of the cellular cytosol. It also summarises the effects of the
aforementioned reverse in membrane potential [35]
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Therefore, neutralisation of the repulsive charges between the phospholipids could
not be achieved to the same extent, resulting in a more rigid and less permeable
membrane.

Conclusion

MDR is of paramount importance when considering treating a patient with any
disease. This is especially so in cancer where often palliative care, and not a cure,
is the prevailing objective. MDR is responsible for anticancer drug therapy failure,
and the focus of research today is to reverse this phenomenon with the aim of
re-sensitising cells to current therapeutic treatments.

Research into the influence of the cell membrane in MDR is extensive and
related now to the pioneering research of Otto Warburg and his discovery of the
switch in cancer cell metabolism. It is now widely accepted that MDR can be
characterised at the level of the cell membrane, and that the key determining factor
in the neoplastic phenotype relies predominantly on the pH gradient across the
membrane. The Na+/H+ antiporter NHE1 is perhaps one of the most important
membrane-bound transporters involved in the maintenance of the reversed pH
gradient, and therefore it has been the focus of many studies.

Research into MDR will continue indefinitely, with the aim being: to identify
other parameters involved in MDR, and ultimately to discover therapeutic methods
that disrupt the mechanisms cancer cells employ to achieve resistance to multiple
drugs.
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Mechanisms and Potential Therapies
for Acquired Resistance to Inhibitors
Targeting the Raf or MEK Kinases
in Cancer

Alyson K. Freeman and Deborah K. Morrison

Abstract Aberrant activation of the Ras/Raf/MEK/ERK signaling pathway often
occurs in human cancer through the acquisition of oncogenic mutations in key
pathway components. In particular, Ras mutations are found in about 20 % of
human cancers, and B-Raf mutations occur in more than half of all melanomas.
Thus, this pathway has become an attractive target for cancer therapies. Inhibitors
targeting either the Raf or MEK kinases have shown initial success in treating
cancers that depend on the Ras/Raf/MEK/ERK signaling pathway; unfortunately,
resistance to the inhibitors eventually develops. For both sets of inhibitors,
resistance most commonly occurs via reactivation of the Ras/Raf/MEK/ERK
pathway or upregulated signaling from an alternate pathway, such as the PI3K/
AKT pathway. Here, we discuss the mechanisms for acquired resistance to
inhibitors targeting the Raf or MEK kinases and possible combination therapies to
overcome or delay drug resistance.
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NSCLC Non-small-cell lung carcinoma
PDGFR-b Platelet-derived growth factor receptor-b
PI3K Phosphatidylinositide 3-kinase
PTEN Phosphatase and tensin homolog
RTK Receptor tyrosine kinase
SAHA Suberoylanilide hydroxamic acid
STAT3 Signal transducer and activator of transcription 3
VEGFR Vascular endothelial growth factor receptor

Introduction

The Ras/Raf/MEK/ERK Pathway

The Ras/Raf/MEK/ERK pathway is a critical regulator of cellular processes that
include proliferation, differentiation, and senescence [1]. Upon receptor tyrosine
kinase (RTK) activation, Ras (K-Ras, N-Ras, or H-Ras) cycles to its active GTP-
bound form and recruits the Raf kinases (A-Raf, B-Raf, and C-Raf) to the
membrane. At the cell surface, the Rafs dimerize and become active, thus initi-
ating a phosphorylation cascade in which Raf activates MEK, and MEK activates
ERK [2, 3]. Once activated, ERK phosphorylates numerous substrates that are
then needed for the desired cellular response. Active ERK also instigates a
negative feedback loop, whereby ERK phosphorylates the Rafs at several sites,
thus attenuating Raf signaling by disrupting the Ras–Raf interaction and disso-
ciating the Raf dimers [4, 5]. ERK activation also results in the upregulation of
protein phosphatase activity, which in combination with ERK’s inhibitory phos-
phorylation on Raf as well as the Ras guanine exchange factor SOS1, provides
tight control of pathway signaling [6, 7].

The biological importance of proper Ras/Raf/MEK/ERK pathway regulation is
highlighted by the frequent mutation of its components in human cancer. Ras is
mutated in 20 % of all human cancers, and B-Raf is mutated in *50 % of mel-
anomas, with a single valine-to-glutamic acid substitution at position 600 (V600E)
accounting for 90 % of the B-Raf mutations in melanoma [8–10]. Two recent
reviews have examined in detail how activating mutations in Ras and Raf can
affect various hallmarks of cancer [11, 12]. Given the role of the Ras/MEK/ERK
pathway in cancer, the kinase components of this signaling cascade have become
attractive targets for pharmaceutical inhibition [13]. A number of Raf inhibitors as
well as MEK inhibitors have been developed and are in clinical use. Although
these inhibitors are showing promise in the treatment of certain cancers, as has
been observed with other kinase-targeted therapeutics, drug-resistance to the
inhibitor eventually develops [14, 15].
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Raf Inhibitors

Given that B-Raf is a prominent cancer driver and that signaling initiated by
activated RTK or Ras proteins is dependent on the Rafs, considerable effort has
been focused on the development of Raf kinase inhibitors (Table 1). These include
drugs that target all three Raf family members (B-Raf, C-Raf, and A-Raf) as well
as those with specificity towards the V600E-B-Raf mutant. Most of the reported
Raf inhibitors are ATP-competitive kinase inhibitors, including sorafenib (BAY
43-9006), vemurafenib (PLX4032 and PLX472, a tool compound for in vitro
studies), dabrafenib (GSK2118436), SB590885, AZ628, and RAF265. Of these,
sorafenib, vemurafenib, and dabrafenib have been studied most extensively in
clinical trials.

Sorafenib is a multi-kinase inhibitor that exhibits activity towards wild-type Raf
kinases and V600E-B-Raf, as well as the RTKs VEGFR and PDGFR-b, among
others [16]. Because B-Raf is so highly mutated in melanoma, several clinical
trials have investigated sorafenib’s effects in treating this cancer. Unfortunately,
this drug appears ineffective at treating melanoma, with a beneficial effect only
observed in a subset of patients that have yet to be characterized [17]. Nonetheless,
sorafenib has been approved as a standard therapy for hepatocellular carcinoma
and shows potential for the treatment of renal cancer [18, 19].

Table 1 Kinase inhibitors that target either the Raf or MEK kinases

Generic name Target(s) Mechanism References

Raf inhibitors
BAY 43-9006 Sorafenib C-Raf, VEGFR-2,

VEGFR-3, B-Raf,
V600E-B-Raf,
PDGFRb, Flt-3,
c-KIT

ATP competitive [16]

PLX4032/PLX4720 Vemurafenib V600E-B-Raf, BRK,
B-Raf

ATP competitive [20]

GSK2118436 Dabrafenib V600E-B-Raf, B-Raf,
C-Raf

ATP competitive [21]

SB590885 V600E-B-Raf, C-Raf ATP competitive [88]
AZ628 V600E-B-Raf, B-Raf ATP competitive [89]
RAF265 C-Raf, B-Raf, V600E-

B-Raf, VEGFR-2
ATP competitive [90]

MEK inhibitors
AZD6244/

ARRY142886
Selumetinib MEK1/2 Allosteric [91]

GSK1120212/
JTP-74057

Trametinib MEK1/2 Allosteric [92]

RO4927350/RG7167 MEK1/2 Allosteric [93]
PD0325901 MEK1/2 Allosteric [94]
CI-1040/PD184352 MEK1/2 Allosteric [94]
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Unlike sorafenib, vemurafenib and dabrafenib primarily target the highly active
V600E-B-Raf [20, 21]. Both of these inhibitors have exhibited clinical efficacy for
the treatment of metastatic melanomas that express the B-Raf V600E mutant [14,
15]. However, a frequently reported adverse effect has been the appearance of
cutaneous squamous-cell carcinomas and keratoacanthomas that, in many cases,
develop because the patient’s skin cells harbor an oncogenic mutation in H-Ras
[22–25]. In addition, vemurafenib treatment of one melanoma patient was found to
promote the proliferation of a previously undetected Ras-mutant leukemia [26].
Surprisingly, all ATP-competitive Raf inhibitors generated to date promote and
stabilize Raf dimer formation in the presence of activated Ras, and in these sec-
ondary cancers, inhibitor treatment causes a paradoxical activation of the pathway,
which results in tumor progression [27–29].

MEK Inhibitors

Although MEK mutations are rare in human cancer, MEK kinases, like the Rafs,
are requisite mediators of Ras/Raf/MEK/ERK signaling. Thus, numerous MEK
inhibitors have also been developed (Table 1), all of which are allosteric inhibitors
and bind to a site other than the ATP-binding pocket. These drugs include selu-
metinib (AZD6244/ARRY-142886), trametinib (GSK1120212/JTP-74057),
RO4927350 (RG7167), PD0325901, CI-1040 (PD184352), and U0126 (a tool
compound). Of the MEK inhibitors, trametinib and selumetinib have progressed
the furthest in clinical trials, as discussed below.

During inhibitor development, several groups set out to determine predictive
markers for cellular responsiveness to MEK inhibition in a variety of Ras pathway-
dependent tumor types. Overall, the presence of Ras or B-Raf mutations was found
to correlate with sensitivity to various MEK inhibitors when tested in cancer cell
lines of diverse lineages [30–35]. Although one study examining colorectal cancer
lines did not find a significant correlation between the presence of K-Ras or B-Raf
mutations and sensitivity to the MEK inhibitor selumetinib, the seven lines they
deemed sensitive did have mutations in K-Ras or B-Raf [36]. Interestingly, sen-
sitivity to the MEK inhibitors has not been found to correlate with levels of
phosphorylated ERK or AKT in several studies [32, 33, 36]. In addition, some cell
types may be inherently more sensitive to MEK inhibition than others. For
example, basal-type and triple-negative breast cancer lines are quite sensitive to
MEK inhibition as are the hematologic malignancies AML and CML, whereas
breast cancer lines of luminal-origin and cancer cells that have undergone an
epithelial-to-mesenchymal transition are less sensitive [35, 37].

MEK inhibitors have shown mixed responses in clinical trials. Similar to Raf
inhibitor therapy, one study found that trametinib treatment led to improved
overall and progression-free survival in melanoma patients containing a V600E or
V600K B-Raf mutation [38]. One important difference, however, was that unlike
the Raf inhibitors, treatment with trametinib did not induce secondary squamous
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cell carcinomas [38]. In regard to selumetinib, although several clinical trials
indicate that it has no significant benefit as a general cancer therapy, other studies
find that it may be useful for the treatment of melanoma or other cancers that
contain oncogenic Ras or B-Raf mutations [39–45].

Raf Inhibitor Resistance

Despite the reported success of the Raf inhibitors vemurafenib and dabrafenib in
the treatment of metastatic melanoma, drug resistance typically develops within
months [14, 15]. As a consequence, much effort has been focused on determining
the mechanism(s) of acquired resistance. Vemurafenib is the best characterized of
these drugs and has been approved by the Food and Drug Administration for use in
unresectable or metastatic melanoma, many of which contain activating B-Raf
mutations [46]. Therefore, much of the work investigating Raf inhibitor resistance
has been conducted with vemurafenib and melanoma cell lines or patient tumors
samples expressing V600E-B-Raf. To date, the majority of resistance mechanisms
identified involve either reactivation of the Ras/Raf/MEK/ERK pathway or sus-
tained upregulation of an alternative pathway, such as the PI3K/AKT pathway
(Fig. 1).

Reactivation of the Ras/Raf/MEK/ERK Pathway in Raf
Inhibitor Resistance

A common mechanism conferring resistance to numerous ATP-competitive kinase
inhibitors is mutation of the gatekeeper residue in the protein kinase domain,
which disrupts drug binding [47]. Although experimentally-induced mutation of
the B-Raf gatekeeper site can confer the V600E-B-Raf or V600K-B-Raf proteins
resistance to many Raf inhibitors [48], mutation of the gatekeeper site does not
appear to be a naturally occurring mechanism of Raf inhibitor resistance, in that
DNA sequencing has failed to identify any B-Raf gatekeeper mutations in patient
samples or melanoma lines exhibiting drug resistance [49–55]. However, a B-Raf
alteration that has been identified in patient samples and melanoma lines resistant
to vemurafenib involves a splice variant of V600E-B-Raf [56]. This mutant protein
lacks exons coding for the Ras binding domain, and it dimerizes in a Ras-inde-
pendent manner [56]. Thus, due to its enhanced dimerization potential, this mutant
increases ERK signaling in the presence of Raf inhibitor [56].

Another mechanism of Raf inhibitor resistance involves the upregulation of Raf
protein levels. In a report by Shi et al. [57], whole exon sequencing of tumor
samples from four patients with disease progression following vemurafenib
treatment revealed copy number gains in the mutant B-Raf gene. Increased
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expression of the V600E-B-Raf mutant has also been observed in a vemurafenib-
resistant melanoma cell line [51]. Interestingly, further investigation by Shi et al.
[57] revealed that the vemurafenib-resistance caused by upregulation of V600E-
B-Raf could be overcome by increasing the dose of the Raf inhibitor. An increase
in C-Raf protein levels has also been reported to promote drug resistance in
melanoma cell lines treated with the Raf inhibitors PLX4720, AZ628 or SB590885
[50, 51, 58]. Moreover, another study using shRNAs to deplete each Raf family
member independently and then simultaneously showed that, although the sus-
tained ERK activation in drug-resistant cells required the Rafs, the signal could be
generated by any of the Raf family members [53]. Taken together, these studies
indicate that, in the presence of a Raf inhibitor, increased signaling from mutant
B-Raf or through A-Raf or C-Raf can increase the activation of ERK, thus con-
ferring drug resistance.

Reactivation of the Ras pathway despite inhibitor treatment can also occur via
increased signaling from components upstream of Raf, such as RTKs and Ras.
A recent study found that FGFR3 showed heightened activity in vemurafenib-resistant
melanoma cell lines, potentially due to an autocrine loop generated by an increase in
cellular bFGF protein and secreted FGF2 ligand [55]. Upregulated signaling from the

Fig. 1 Mechanisms of Raf inhibitor resistance. Several mechanisms of Raf inhibitor resistance
are highlighted in red, all of which can increase signaling through the Ras/Raf/MEK/ERK or
PI3K/AKT pathways. These include increased signaling through FGFR3; higher levels of HGF
causing increased signaling through MET; an increase in the number of EGF, IGF-1, or PDGF
receptors; mutations (indicated by stars) in K-Ras, N-Ras, MEK, PI3K, or PTEN; an increase in
C-Raf, V600E-B-Raf, or COT1 protein levels; and a splice variant of V600E-B-Raf
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PDGFR and the IGF-1R has also been observed in resistant melanomas [49, 53].
In addition, a case study of a patient whose cancer progressed after vemurafenib
treatment reported two different activating mutations in N-Ras at metastatic sites:
Q61K and Q61R [49]. Several other studies have linked mutations at N-Ras Q61 to
vemurafenib and dabrafenib resistance [49, 52, 57, 59], which may be dependent, in
part, on C-Raf and the SHOC2/Sur8 scaffold protein, which contributes to C-Raf
activation [60]. Two additional Ras mutations, N-Ras A146T and K-Ras K117N, have
also been implicated as mediators of vemurafenib resistance in B-Raf mutant mela-
nomas [51].

Alterations in Ras pathway components that function downstream or parallel to
Raf can also confer Raf inhibitor resistance. For example, activating mutations in
the downstream MEK1 kinase, such as C121S, Q65P, and K59del, have been
reported to mediate PLX4720/vemurafenib resistance in melanoma cells [61–63].
In a study conducted by Shi and colleagues [61], pre-existing MEK1 mutations,
P124S or I111S, were identified in baseline tumors from five melanoma patients.
However, when a doxycycline-repressible promoter was used to regulate the
expression of these MEK1 mutants in cells, neither mutation was found to alter
ERK signaling or confer vemurafenib-resistance [61]. In contrast, a different group
found that MEK1 P124S or P124L could confer modest resistance to vemurafenib
[62]. The cause for this difference is currently unknown, but may be related to
different experimental conditions or the influence of other cellular factors.

Raf inhibitor resistance has also been observed in cells with increased
expression of Cot1/Tpl2, a kinase that functions parallel to Raf to phosphorylate
and activate MEK. By stably expressing cDNA clones encoding various protein
kinases in a melanoma cell line, Johannessen et al. [58] found that increased Cot1
protein levels could confer resistance to PLX4720 by increasing MEK and ERK
phosphorylation in a Raf-independent manner. High Cot1 expression levels and
increased ERK signaling have also been observed in a dabrafenib-resistant mel-
anoma cell line [59]. Moreover, in the study by Johannessen et al. [58], two out of
three samples from patients treated with vemurafenib showed increased expression
of the mRNA for Cot1, and in a specimen from a patient whose cancer had
recurred, the expression was further increased.

Raf Inhibitor Resistance Through Alternative Pathways

Another major mechanism for resistance to Raf inhibitor therapy is the upregu-
lation of signaling through the PI3K/AKT pathway. In particular, an increase in
phosphorylated AKT and AKT activity appears to play a role in promoting
vemurafenib resistance in melanoma lines [51, 64]. The mechanism is likely to be
due, in part, to the pro-survival/anti-apoptotic activity of activated AKT, given that
the expression of a constitutively active AKT can protect melanoma cells from
PLX4720-induced apoptosis in collagen growth assays [65]. In further support of
this mechanism, melanoma cells lacking PTEN, a negative regulator of the PI3K/
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AKT pathway, showed reduced apoptosis in response to PLX4720 treatment [66].
Moreover, a failure to upregulate the pro-apoptotic factors Bim and Bmf was
found to accompany the reduction in apoptosis, indicating that increased AKT
signaling may block the initiation of the apoptotic pathway [65–67].

One manner by which the PI3K/AKT pathway can be engaged is through
enhanced RTK signaling. In one study, upregulation of IGF-1R led to increased
PI3K/AKT signaling in SB590885-resistant melanoma cells, with the upregulation
of IGF-1R due, at least in part, to the downregulation of its negative regulator,
IGFBP-3 [53]. In addition, increases in IGF-1R expression and phosphorylated
AKT levels were observed in a tumor biopsy from a post-relapse melanoma patient
treated with vemurafenib [53]. The upregulation of PDGFR-b can also promote
increased levels of phosphorylated AKT and reduced apoptosis in vemurafenib-
resistant melanoma lines, and in one study, four of eleven resistant tumors from
patients showed higher levels of PDGFR-b expression as compared to the baseline
tumor [49, 68].

Although activation of the PI3K/AKT pathway via EGFR upregulation has not
been reported in drug resistant melanoma cells, activation of EGFR appears to
contribute to the efficacy of the Raf inhibitors in certain cancer types. More spe-
cifically, while vemurafenib is beneficial in the treatment of metastatic melanoma
harboring the B-Raf V600E mutation, it has little effect on colon cancers with the
same mutation [69]. The inhibition of V600E-B-Raf in colon cancer cells
reportedly causes feedback activation of EGFR, thus increasing AKT activation
and reducing the tumor’s dependence on mutant B-Raf to ERK signaling [70].
Interestingly, melanoma cells express relatively low levels of EGFR, and thus
cannot deploy this mechanism of inhibitor resistance, at least at the time of initial
treatment [70].

Finally, signals from the tumor microenvironment can also impact Raf inhibitor
therapy. For example, melanoma cells exposed to the HGF ligand in a cell culture
setting had increased resistance to the PLX4720 tool compound and showed
elevated ERK and AKT signaling that was initiated by the MET RTK [71, 72].
Similarly, melanoma patients with high plasma levels of HGF or whose stromal
cells secreted HGF, showed poorer responses to vemurafenib than patients lacking
these characteristics [71, 72].

MEK Inhibitor Resistance

MEK inhibitor resistance is mediated by many of the same mechanisms as Raf
inhibitor resistance. These include reactivation of Ras/Raf/MEK/ERK pathway
signaling, via MEK mutations or increases in Ras or Raf protein levels, as well as
increased signaling through alternative pathways, including the PI3K/AKT and
STAT3 pathways (Fig. 2).
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MEK Inhibitor Resistance Via Reactivation
of the Ras/Raf/MEK/ERK Pathway

Although secondary mutations that disrupt drug binding to oncogenic B-Raf have
not been identified as a naturally occurring mechanism of Raf inhibitor resistance,
this type of mutation does promote acquired resistance to the MEK inhibitors in
tumor cell lines and patients. By expressing a saturating cDNA library of MEK1
mutations in melanoma cells containing V600E-B-Raf, a study by Emery et al.
[62] identified two classes of mutations that conferred resistance to the MEK
inhibitors selumetinib or CI-1040: one set that may enhance MEK1 activity (Q56P
and P124S) and another set that alters binding of the drug to MEK1 either through
direct mutation of the binding site or by altering the conformation of the aC helix.
Mutations in the MEK allosteric binding pocket, including L115P, F129L, and
V215E, have been found to promote resistance against the MEK inhibitors
RO4927350 or PD0325901 in breast cancer cells harboring an activated K-Ras
mutation and in colorectal cells with a B-Raf mutation [73, 74]. Of note, the MEK

Fig. 2 Mechanisms of MEK inhibitor resistance. Several mechanisms of MEK inhibitor
resistance are highlighted in red. These include mutations (indicated by stars) in EGFR, MEK,
PI3K, or PTEN, upregulation of STAT3 expression, and an increase in mutant K-Ras or mutant
B-Raf protein levels. These alterations can all cause increased signaling through either the Ras/
Raf/MEK/ERK, PI3K/AKT, or STAT3 pathways
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F129L mutant also showed increased kinase activity over wild-type MEK1
in vitro, as well as stronger binding to C-Raf [74].

MEK inhibitor resistance can also arise from gene amplification that upregu-
lates the expression of mutant Ras or Raf proteins. In colorectal cancer lines
expressing V600E-B-Raf, an increased copy number of mutant B-Raf has been
found to upregulate mutant B-Raf protein levels, and thereby confer selumetinib
resistance [72, 75]. An increase in K-Ras gene copy number has also been
observed in selumetinib or CI-1040 resistant colorectal lines that contain a mutant
K-Ras [73]. Strikingly, when the driver oncogene in these cases was K-Ras, K-Ras
amplification increased both ERK and PI3K/AKT signaling; however, when
V600E-B-Raf was the amplified driver, only the ERK signaling was activated [72].

Finally, upregulation of RTK signaling can affect tumor susceptibility to MEK
inhibition. More specifically, intrinsic/de novo resistance to MEK inhibition (via
PD0325901 or CI-1040) has been observed in non-small-cell lung carcinoma
(NSCLC) cell lines with mutations in the EGFR kinase domain [31], and in several
breast cancer cell lines where increased EGFR and AKT activation were detected
[37]. As with the Raf inhibitors, further analysis of patient samples and tumor cell
lines will be required to determine whether increased EGFR signaling will be a
mechanism of acquired resistance to MEK inhibition.

Upregulation of Alternative Pathways Can Cause MEK
Inhibitor Resistance

Several studies have focused on the role of increased signaling through the PI3K/
AKT pathway in MEK inhibitor resistance. In one report, four selumetinib-resis-
tant lung cancer cell lines exhibited high levels of phosphorylated AKT and high
AKT activity [76]. In another study, increased signaling through the PI3K/AKT
pathway in a panel of colorectal cancer cell lines was found to correlate with a
decrease in sensitivity to the MEK inhibitor selumetinib [77]. Moreover, in diverse
cancer cell lines, K-Ras mutant cells that lacked PTEN or contained activating
mutations in PI3K exhibited resistance to MEK inhibition by PD0325901 or
selumetinib treatment [78, 79]. Taken together, these findings suggest that
increased signaling through the PI3K/AKT pathway can mediate both de novo and
acquired resistance to MEK inhibitors.

Additional factors may also contribute to MEK inhibitor resistance. In partic-
ular, an increase in STAT3 activation has been reported to promote selumetinib
resistance in NSCLC cell lines by upregulating miR-17, a microRNA cluster that
modulates the expression of certain genes including the pro-apoptotic gene Bim
[80]. As a result, STAT3 activation prevented apoptosis by blocking the upregu-
lation of Bim and, in turn, PARP cleavage [79, 80]. Treatment of colorectal cancer
and melanoma cells with TNFa has also been shown to block cell death in
response to the MEK inhibitor CI-1040 [81]. In one study, a 13-gene signature that
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predicts selumetinib resistance mediated by Ras effectors other than PI3K was
identified [30]. In addition, gene array analysis has revealed that upregulation of
the Wnt pathway can contribute to selumetinib resistance in K-Ras mutant colo-
rectal cancer cell lines [36]. Finally, intrinsic resistance to selumetinib in a panel of
NSCLC or colorectal cancer cell lines has also been linked to cAMP-dependent
PKA activation [82].

Treatment Strategies to Overcome RAF or MEK Inhibitor
Resistance

Current studies with cancer cell lines and patient samples indicate that the
administration of two or more targeted inhibitors may be more effective than
single-drug therapies in treating human malignancies. In particular, combination
therapies are proving beneficial for the treatment of tumors that have developed
resistance to a particular inhibitor. Moreover, using combination therapy from the
start of treatment may prevent or delay the development of drug resistance.
Selecting combination therapies to treat Raf or MEK inhibitor resistance has
largely focused on the two most common mechanisms of resistance, namely,
reactivation of the Ras/Raf/MEK/ERK pathway and upregulation of the PI3K/
AKT pathway (for details, see above sections).

Dual Therapies Co-Targeting Raf and MEK

Dual therapies that co-target the Raf and MEK kinases are proving successful for
suppressing growth in cancer lines that have become resistant to either Raf or
MEK inhibition via reactivated ERK signaling. In melanoma cells, the combina-
tion of vemurafenib and selumetinib has been reported to act synergistically and to
inhibit the proliferation of vemurafenib-resistant cells that have increased FGFR3
activation or the amplification of mutant N-Ras or B-Raf genes [55, 57]. Vemu-
rafenib and the MEK inhibitor RO5068760 were also found to promote apoptosis
in B-Raf mutant melanoma cells with acquired resistance to vemurafenib and to
have significant antitumor activity in mouse xenograft assays [51]. In dabrafenib-
resistant melanoma cells containing N-Ras or B-Raf mutations, the combination of
dabrafenib and trametinib was found to inhibit growth and induce apoptosis,
although it may only partially restore sensitivity to dabrafenib [52]. Combined
treatment with PLX4720 and a MEK inhibitor (CI-1040 or selumetinib) has also
been reported to be more effective at reducing cell growth than either single
treatment in melanoma cells with elevated Cot1 expression [58, 59].

It is likely that dual targeting of Raf and MEK will also be useful for the
treatment of some colorectal cancers. Studies indicate that colorectal cell lines
resistant to a MEK inhibitor (RO4927350 or selumetinib) due to a MEK1 mutation
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or amplification of the mutant B-Raf gene are sensitive to combination therapy
with the MEK inhibitor and a Raf inhibitor (RG7204 or AZ628) [72, 74, 75]. In
some cases, both the resistant and parental cells were shown to display increased
apoptosis with dual treatment [75]. These findings indicate that combination
therapy can be effective even in MEK-inhibitor-naïve cells, and that dual treatment
may prevent inhibitor resistance from developing. Indeed, the emergence of
resistant colonies was inhibited when B-Raf mutant melanoma cells with or
without a MEK1 mutation were treated with both Raf and MEK inhibitors
(PLX4720 and selumetinib or U0126) [62, 83].

Dual therapies with Raf and MEK inhibitors are currently ongoing in the clinic.
Recently, the results of a phase 1/2 combined trial revealed that patients receiving
dual dabrafenib and trametinib therapy had significantly improved progression-
free survival when compared with dabrafenib monotherapy (an average of 9.4 vs.
5.8 months) [84]. Moreover, the percentage of progression-free survival at one
year was also greater with the combined therapy (41 % as opposed to 9 %) [84].
Of note, the secondary squamous cell carcinomas seen in single-therapy trials with
dabrafenib, but not with trametinib, also occurred with the dual therapy [84].
Should resistance to the dual inhibition of Raf and MEK develop, it will be
interesting to determine whether the mechanisms are similar to those seen in single
inhibitor therapies.

Combination Therapies Co-Targeting Raf and RTKs

In certain cases, the co-inhibition of Raf and an upstream RTK may also be an
effective cancer therapy. For example, treatment of NSCLC and colorectal cancer
cell lines containing K-Ras or B-Raf mutations with a Raf inhibitor (sorafenib or
vemurafenib) plus an EGFR inhibitor (erlotinib, cetuximab, or gefitinib) caused
synergistic anti-growth effects and enhanced apoptosis [70, 85]. This combined
approach was also effective in reducing tumor growth in xenograft mouse models
[70, 85]. The combined inhibition of Raf and MET (using PLX4720 and crizotinib
or gefitinib) also exhibited a synergistic effect in the treatment of B-Raf mutant
non-melanoma cell lines that secret HGF [71]. Finally, melanoma cells with
vemurafenib resistance through increased FGFR3 activity were re-sensitized to
vemurafenib via treatment with the FGFR inhibitor LY2874455 [55].

Combination Therapies Co-Targeting Raf and the PI3K/AKT
Pathway

Simultaneously targeting the Ras/Raf/MEK/ERK and PI3K/AKT pathways may be
an additional method for combating Raf-inhibitor resistance. Studies have found
that B-Raf mutant melanoma cells resistant to the Raf inhibitor vemurafenib/
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PLX4720 can be re-sensitized to drug by co-inhibition of Raf and PI3K (using
LY294002 or GDC-0941), Raf and AKT (using MK-2206), or Raf and mTOR
(a kinase component of both the mTORC1 and mTORC2 complexes in the PI3K/
AKT pathway) [51, 64, 66, 68]. In addition, the dual PI3K and mTOR inhibitor
BEZ235 has been reported to have a strongly synergistic anti-growth effect when
combined with vemurafenib to treat resistant melanoma cells expressing V600E-
B-Raf [68]. Villanueva et al. [53] also observed increased cell cycle arrest and
apoptosis when Raf inhibitor (SB590885)-resistant melanoma cells were treated
with a MEK inhibitor (trametinib or selumetinib) and the PI3K inhibitor
GSK2126458. Two more studies have provided further support that treatment with
inhibitors for PI3K/AKT and either Raf or MEK may be effective against Raf
inhibitor-resistant cancers. In one study, combination treatment with trametinib or
dabrafenib and the PI3K/mTOR inhibitor GSK2126458 synergistically inhibited
cell growth in dabrafenib-resistant melanoma cells expressing mutant N-Ras or
B-Raf [52]. In a second study, the addition of an AKT inhibitor to treatment with
vemurafenib or selumetinib synergistically blocked the growth of patient-derived
melanoma cell lines previously exposed to vemurafenib [54]. Finally, Staussman
et al. [71] found that HGF-induced PLX4720 resistance in melanomas could be
suppressed by the inhibition of MEK and AKT (using PD184352 and MK-2206).

As well, cells resistant to MEK inhibitors may be sensitive to the co-targeting of
MEK and PI3K or AKT. U0126 and the PI3K inhibitor LY294002 were found to
have an additive effect when used on a cell line derived from a metastatic mela-
noma that was partially resistant to these inhibitors alone [86]. Some breast cancer
cell lines resistant to the MEK inhibitor CI-1040 have also shown sensitivity to
dual MEK/PI3K inhibition using CI-1040 and PIK90 or PI103 [37]. However,
targeting MEK and the PI3K/AKT pathway may not work in all MEK inhibitor-
resistant cells, given that selumetinib-resistant colorectal cancer cells with
upregulation of the mutant K-Ras gene were also resistant to the combination of
selumetinib and a PI3K/mTOR inhibitor, AZ12321046 [72].

Other Potential Therapeutic Combination Strategies

The use of other targeted inhibitors is also being explored as therapies for cancers
resistant to Raf or MEK inhibition. For example, HSP90 inhibitors may be of value
in dual therapy strategies, given that AZ628-resistant melanoma cells expressing
elevated C-Raf protein levels were reported to be significantly more sensitive to
the HSP90 inhibitor geldanamycin than were parental cells [50]. In addition, the
HSP90 inhibitor XL888 could effectively induce apoptosis in a variety of vemu-
rafenib-resistant melanoma cell lines, regardless of their mechanism of resistance
[87]. In a study by Shao et al. [67], treating PLX4720-resistant melanoma cells
with the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid)
and either PLX4720 or selumetinib re-sensitized cells and inhibited the re-emer-
gence of PLX4720-resistant colonies in a long-term survival assay. The combined
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inhibition of MEK using selumetinib and STAT3 with JSI-124 has also been found
to re-sensitize selumetinib-resistant NSCLC cell lines to selumetinib and increase
the level of selumetinib-induced apoptosis [79, 80]. Finally, other combination
therapies that may be beneficial, depending on the mechanism of resistance,
include treatment with a Raf or MEK inhibitor and a Cot1, IGF-1R, or ERK
inhibitor [53, 58, 73].

Conclusions

There are currently hundreds of active clinical trials evaluating the use of drugs
targeting the MEK or Raf kinase in cancer treatment (for details, see
www.clinicaltrials.gov). New inhibitors are also in development, and may prove
even more effective. With the knowledge coming from these trials, we are moving
ever forward into the era of personalized medicine. It is now clear that knowing the
genotype of a tumor prior to treatment is critical for selecting the proper kinase
inhibitor therapy and for predicting the possible mechanisms of inhibitor resis-
tance. With time, it may be possible to prevent kinase inhibitor resistance from
developing, which may end the danger of recurrence for at least some tumor types.
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Mechanisms of Resistance to Targeted
B-Raf Therapies

Ramana V. Tantravahi, Benjamin Hoffman
and E. Premkumar Reddy

Abstract Targeted Cancer Therapies and Resistance Our modern search for
effective cancer therapies began after the First World War and the discovery of the
myelosuppressive properties of nitrogen mustards. Since that time, adjuvant and
chemo-radiotherapy have become the standard of care for many cancers. These
non-targeted therapies have produced remissions in many patients. As our tech-
nical capacity to target radiation to tumors and our ability to perform surgical
interventions improves, it is likely that these approaches will gain in effectiveness.
Nevertheless, the dose limiting toxicities of chemotherapy drugs and ionizing
radiation have served to expose vulnerabilities in this clinical approach. Modern
translational research has sought to develop novel, targeted approaches to cancer
therapy. These new approaches are based upon our understanding of cellular
growth control, and bring with them the promise of greater potency and safety. The
concept of targeted cancer therapy began with the identification and character-
ization of growth regulatory proteins in normal cells. These proteins were initially
identified in acute transforming retroviruses. During the 1970s and 1980s, inves-
tigators working in a number of laboratories learned that the transforming genes of
these viruses were actually derived from the host genome. In subsequent years,
investigators came to understand that biochemical or genetic inactivation of these
deleterious proteins in cultured cell lines leads to tumor cell death. This new
understanding led to the search for specific proteins, whose activities drive the
malignant transformation process. These proteins are now referred to as druggable
targets. Chemical and molecular biologists are translating their understanding of
the cell proliferation control into molecular therapeutics directed at these targets.
Targeted therapy development for cancer is still in its infancy. Despite this,
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clinical trials for a number of small molecules have provided positive outcomes in
patients who may have been given dire prognoses only a few years ago. Two FDA-
approved drugs, Gleevec (Novartis) and Vemurafinib (Plexxikon) have provided
some of the most dramatic results. Unfortunately, these drugs have also revealed a
new challenge in cancer therapy—the development of resistance and relapse. Here,
we describe the B-raf growth signaling pathway associated with the development
of melanoma, summarize the mechanisms associated with resistance to targeted
B-raf therapies, and discuss the future of this field of inquiry.

Keywords B-Raf mutations � Melanoma � Vemurafenib � Resistance

Abbreviations

BCR Breakpoint cluster region
CML Chronic myelogenous leukemia
Src The transforming gene of the Rous Sarcoma Virus (RSV), a non-receptor

tyrosine kinase that represents a family of such kinases that regulate cell
proliferation and play a prominent role in malignant transformation

Abl The transforming gene of Abelson Murine Leukemia Virus (A-MuLV).
Abl is a src family kinase associated with transformation of the lymphoid
compartment of the hematopoietic system

MAP Originally microtubule-associated protein, now also mitogen-activated
protein. MAP kinases refer to a group of cytoplasmic protein kinases that
act downstream of growth factor receptors to transmit proliferative
signals to cells

FTI Farnesyl transferase inhibitor
JNK c-Jun N terminal kinase
PI-3K Phosphatidyl inositol 30 kinase
MEK Mitogen activated/extracellular regulatory kinase
ERK Extracellular regulatory kinase

Introduction: Growth Associated Signaling Pathways

The development of cancer has long been understood to have a genetic basis.
Investigators have come to understand the clonal nature of malignancy from the
earliest observations of tumors arising in avian and murine systems. Studies in
human populations led Nordling [1] and later Knudson [2] to assert that a mini-
mum of two mutational events within a single cell is necessary for cancer
development [1, 2]. Our modern understanding of cancer is now considerably
more sophisticated than it was at the turn of the 20th century. Since then, we have
assembled and tested elegantly constructed experimental model systems, identified
numerous growth control genes and elucidated complex regulatory pathways that
control cell growth, differentiation and death.
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The characterization of complex signal transduction networks lies at the heart
of our current understanding of cancer; it shapes many of the strategies with which
therapeutics are conceived and developed. One of the most transformative
developments in modern cancer therapy was the development of Gleevec�

(Imatinib mesylate, STI57, Novartis), a targeted treatment for chronic myeloge-
nous leukemia (CML) [3]. The synthesis of Gleevec followed on from the accu-
mulated understanding of decades of basic science research into the identity and
biological function of a subset of growth control proteins known as the src family
tyrosine kinases. The oncogenic activation of the src family kinase c-Abl via
chromosomal translocation was determined to be the critical step in CML devel-
opment [4]. Gleevec is the result of structure-based design of a molecule that could
effectively inhibit the kinase activity of the deleterious BCR-Abl protein [5]. The
structure-based design paradigm led to a drug that acts specifically and with great
efficacy in the clinic.

The development of Gleevec is a useful case study in the current development
of targeted cancer therapies. CML is treated with Gleevec routinely across the
world where once less effective and more highly toxic interventions served as the
only therapeutic avenues [6]. Despite its widespread success, Gleevec does not
cure CML. Many patients, after years in remission, develop resistance to the drug
and relapse [7]. So while our greater understanding of the molecular events
underlying the malignant transformation has led to significant advances in thera-
peutics development, the enthusiasm over these advances must be tempered with
the understanding that much work remains to be done.

The present chapter addresses the identification and development of novel
therapies directed at a different growth control protein, B-raf, as well as the
observed mechanisms of therapeutic resistance to B-raf inhibitors. B-raf sits at the
center of a highly complex series of regulatory nodes that control proliferation,
differentiation, and programmed death (apoptosis). As was the case with the Abl
protein in CML, the B-raf protein, and one of its mutant isoforms, B-rafV600E, is
associated with a particular form of cancer, melanoma [8]. Here, we discuss the
identification and function of B-raf and its role in cellular homeostasis. We will
also discuss the mechanistic effects of B-raf mutation on cell proliferation control
and the current state of therapeutics development.

MAP Kinase Pathway Signaling

For many decades, investigators in a variety of disciplines have tried to come to an
understanding as to how extracellular mediators can guide changes in patterns of
gene expression. Molecular biologists addressed this issue within the past 30 years
through identification, and structure–function characterization of gene products
associated with cell growth and proliferation. These gene products were found to
form interdependent regulatory networks. The key proteins involved in these net-
works were found to have discrete biochemical functions, and their dysregulation in a
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variety of cellular contexts was often found to contribute to malignant
transformation.

Figure 1 is a representation of the Mitogen-Activated Protein (MAP) kinase
network, which serves to couple extracellular signals in the form of soluble growth
factors with changes in gene expression associated with proliferation and survival.
Growth factor receptors—cell surface proteins with extracellular ligand-binding
and intracellular tyrosine kinase domains initiate this process. Ligand binding
results in receptor dimerization coupled with auto- and trans-phosphorylation of
receptor dimers. Phosphorylated dimers are then primed to bind intracellular
mediators, including single subunit GTP-binding proteins of the ras family, and
cytoplasmic protein kinases. The MAP kinase cascade plays a central role in
cellular growth dynamics because of the association of its terminal kinases,
p38MAPK, c-Jun N-Terminal Kinase (JNK), Extracellular Regulatory Kinase
(ERK), and Phosphatidyl Inositol 30 kinase (PI-3 kinase) with DNA-binding
transcription factors. These transcription factors regulate genes involved in the
control of proliferation and survival. The ERK1/2 pathway is the most commonly
involved in the proliferative response. ERK1/2 activation is also associated with
malignant transformation, and the components of the MAP kinase pathway most
frequently involved in dysregulated activation occur upstream of ERK1/2. Con-
stitutively upregulated activity of RTK, or overexpression of growth factors can
lead to upregulation of ERK1/2. Also, mutations in Ras and Raf isoforms can
similarly lead to constitutive proliferation signals mediated by ERK1/2.

Growth factor

Receptor
Tyrosine
Kinase

Ras pathway
Ras-GTP

Ras-GTP

Raf

ERK

MEK

P13-K Pathway

P-ins (4,5)-P2 P-ins (3,4,5)-P3

Akt(PKB)

Proliferation/
survival

Fig. 1 Signaling Pathways that control Proliferation and Survival–Extracellular mediators such
as soluble growth factors bind with high affinity to their cognate receptors, leading to the
activation of downstream kinase cascades. Certain receptor tyrosine kinases (RTK)
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Ras

The Ras proteins comprise a subset of small membrane-associated single
polypeptides that bind to and hydrolyze GTP. Four isoforms of Ras have been
identified in humans, Ha-ras, N-ras, Ki-ras 4A and Ki-Ras 4B [9]. Each Ras
isoform has a distinct pattern of expression and a characteristic ability to affect
specific downstream signaling pathways, such as the MAP kinase cascade, or the
PI-3 kinase/protein kinase B (Akt) pathway via differential interaction with Raf
isoforms [10]. Each Ras isoform is encoded on a single gene, except for Ki-ras 4A
and 4B, which arise from differential splicing of a single parental transcript [9].

History

The Ras genes were identified in isolates from three acute transforming retrovi-
ruses. The Harvey and Kirstein sarcoma viruses (named for their discoverers) were
able to induce RAt Sarcomas, and were thus named ras genes (Ha-ras, and Ki-ras)
[11, 12]. A third virus that transduced the mouse ortholog of ras was isolated from
a BALB/c mouse tumor and was named as BALB-MSV [13]. Sequence analysis of
these three viral oncogenes revealed that BALB-MSV encodes the mouse homolog
of the Ha-ras oncogene [14–16]. Human cellular Ras orthologs were discovered
later by several groups [17]. As is the case with many of the oncogenes first
identified in the genomes of sarcoma viruses, the ras gene has been the subject of
intense scrutiny for the past 30 years. Ras is the most commonly mutated gene in
all human cancers, and mutation of the coding sequence has been observed in a
variety of human malignancies. The identification of specific cellular Ras muta-
tions at codons 12 and 61 remains a fundamental contribution to our understanding
of the neoplastic process [18–24].

Structure and Function

The human genome encodes three Ras genes, termed H-, K- and N-Ras. These
three Ras genes encode proteins of approximately 200 amino acids characterized
by a GTP-binding domain. This domain is encoded on 5 so-called G box elements
spread throughout the primary amino acid sequence [25]. The C-terminus of Ras
encodes a membrane-association sequence, CAAX. Either farnesyl or geranyl-
geranyl transferase enzymes covalently modify the cysteine residue within the
CAAX sequence [26]. These two isoprenoid lipid moieties enable Ras association
with the plasma membrane. Ras isoforms that cannot associate with membranes
fail to transmit mitogenic signals as efficiently as does wild type Ras [27]. Con-
sequently, inhibition of lipid modification has been considered a viable strategy for
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therapy development. Many attempts have been made to develop small molecules
that target farnesyl transferases [28, 29]. Some of these molecules have been
assessed in clinical trials, although their efficacy has not had the dramatic effect
that had been originally hoped. Since certain Ras proteins can be modified by both
farnesylation and geranylgeranylation, inhibition of one process does not neces-
sarily prevent Ras association with the plasma membrane. Farnesyl transferase
inhibitors (FTI) are largely unable to inhibit geranylgeranyl transfer. Conse-
quently, Ras can associate with the plasma membrane even in the presence of these
compounds. Also, FTI affect H-Ras disproportionately. K-Ras and N-Ras are,
however, more commonly mutated in human cancer [27]. While activated Ras
remains a high profile target for drug design and development, it has become clear
in recent years that the Ras downstream effector, Raf, can also contribute to the
neoplastic process.

Raf

The Raf proteins function as intracellular conduits through which growth, differ-
entiation and apoptosis signals are transmitted. Raf proteins are serine/threonine
protein kinases that reside proximal to the membrane and participate in complex
multi-protein kinase relays that ultimately activate powerful programs of gene
expression. Raf proteins are now known to participate in membrane-associated
signaling events, such as transduction of growth factor receptor signals via Ras.
Recent studies have tied mutations in raf genes, particularly B-raf, with melanoma
as well as carcinomas of the thyroid, ovary and colon [30–32].

History

The v-raf oncogene was first identified in the murine acute transforming retrovirus,
3611-MSV by Ulf Rapp in 1983 [33, 34]. The name raf derives itself from the
ability of 3611-MSV to induce RApid murine Fibrosarcomas. Jansen et al. [35]
working in avian systems, isolated the MH2 acute transforming virus in the same
year. The MH2 transforming gene was named v-mil. In the following year, two
groups would report that v-mil and v-raf are sequence orthologs derived from
murine and avian genomes and that both genes encode serine/threonine protein
kinase activities [36, 37]. Cellular raf genes were later cloned, and the first isoform
cloned was named c-raf [38]. C-Raf is highly conserved in evolution, with
orthologs reported in D. melanogaster, and C. elegans [39, 40]. There are 2
mammalian c-raf genes, c-raf-1 and c-raf-2 (c-raf-1 is now referred to as Raf-1).
Raf-1 is a protein coding gene, while c-raf-2 is a pseudogene [32, 37]. In 1986 and
1987, two different groups reported the sequence of A-raf, a highly similar, but not
identical isoform of Raf-1 [35, 40] Humans possess two A-raf gene sequences,
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A-Raf-1 and A-Raf-2. As was the case with Raf-1, A-Raf-2 is a pseudogene [41].
The B-raf ortholog was identified by Marx et al. [42] in 1988. The original study
was designed to identify acute transforming viruses following infection with the
Rous-associated virus-1 (RAV-1) in chicken neuroretinal cells. The isolation of
proliferating cells revealed the presence of a novel virus isolate, Ic10, that had
transduced the coding sequence from the host genome between the RAV-1 gag
and env genes. When sequenced, the host-derived gene bore significant homology
to Raf-1, but was considered to be a related gene due to sequence divergence at the
N and C termini of the predicted protein and the presence of the genomic sequence
in an unrelated area of the genome to the avian Raf-1 gene.

Structure and Function

Raf proteins share significant structural homology befitting their similar roles in
cell homeostasis and their similar biochemical functions. Raf isoforms differ in
size and patterns of expression. Human A-Raf is a 68 kD protein. Raf-1, with a
slightly longer N-terminus, is approximately 74 kD. B-Raf protein sizes are het-
erogeneous, appearing anywhere from 75 to 100 kD. Multiple B-Raf species arise
due to alternative splicing of the B-raf message [43]. Raf-1 is expressed ubiqui-
tously both during development and in the adult organism; B-Raf expression
predominates in neuronal tissues. A-Raf expression predominates in the epididy-
mis and ovary [44].

Each Raf protein isoform contains three principle regions of homology denoted
as conserved regions (CR) 1, 2 and 3 [45]. Each of these regions contains struc-
tural and/or regulatory properties of interest. CR1 contains two sub-regions, the
RAS-binding domain, and the cysteine-rich region, both of which are responsible
directly or indirectly for the movement of Raf toward the plasma membrane.
Upstream of the CR1 region, Raf-1 contains a regulatory serine (S43), which acts
as an inhibitor of Ras/Raf association [45]. CR2 contains docking sites for the 14-
3-3 class of adapter proteins. This further reinforces the notion that Raf signaling
occurs against the backdrop of formation of large multifactorial protein complexes
that can regulate activity both spatially and temporally. CR2 also contains the
protein’s N region, a site of overall negative charge. Phosphorylation of the N
region is considered to be a mechanism by which Raf kinase activity is primed to
overcome its intramolecular negative regulation by its C-terminus [45]. The Raf
CR3 contains the ATP-binding site and kinase domain. Serine and threonine
residues within CR3, especially those near the ATP binding activation segment,
are of particular interest from a regulatory perspective. In the case of B-raf,
mutations within this region are particularly informative with regard to cancer
development [45].
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BRAF Mutations in Cancer

In 1988, BRAF was identified as an oncogene through the NIH/3T3 assay system
[46]. Following this discovery, attempts were made to characterize BRAF muta-
tions in human tumor samples. Yet, it was not until 2002 when a team of
researchers were able to identify specific abnormalities in the gene encoding B-Raf
[47]. In this seminal study, investigators used high-throughput sequencing tech-
nology on 923 cancer samples and ultimately identified 43 presumptive mutations.
Strikingly, they also found that 70 % of the melanoma samples tested harbored
mutations in the BRAF gene.

BRAF Mutations in Melanoma

A preponderance of the lesions, first identified by Davies and colleagues [47], were
found to occur in exons 11 and 15 of the BRAF gene. At the structural level, nearly
all of the mutations were immediately adjacent to the B-Raf kinase domain, and
one particular mutation, a V600E substitution (initially called V599E), was highly
represented in many of the melanoma samples tested. In the same study, it was
found that the V600E lesion caused a mutated version of B-Raf that had increased
enzymatic activity [47].

The V600E lesion occurs in a critical coding region and is the result of a single
point mutation involving a thymine to adenine switch (T1796A) [47]. This point
mutation alters the coding sequence and leads to a glutamate -[ valine substi-
tution (at the peptide level) causing a structural change in the activation segment of
the B-raf catalytic domain [48]. Ultimately, this structural change introduces a
negative charge that mimics critical activation events such as the phosphorylation
of threonine 598 and serine 601 [48, 49]. In this way, the V600E mutation allows
for a B-Raf mutant, that is independent of Ras and, thus, can signal through its
downstream effectors in the absence of any upstream stimuli (see Fig. 2).

The added kinase activity of V600E B-raf has been well characterized and its
functionality in establishing and maintaining the melanoma phenotype has been
studied by a number of groups including Pollock et al. Their work, in particular,
was the first to provide evidence that V600E B-Raf was critical for all of the steps
in melanoma pathogenesis [50]. By examining benign pre-melanocytic nevi, pri-
mary malignant melanoma, and metastatic disease, Pollock and colleagues were
able to demonstrate that the V600E mutation was pervasive in each step in the
natural history of melanoma. While this study validated the importance of the B-
Raf/MEK pathway in disease maintenance, it also suggested a role for additional
oncogenic signals in the transformation process.
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Prevalence of BRAF Mutations in Melanoma

According to the SEER database (SEER.cancer.gov), 76,250 people are expected
to be diagnosed with melanoma in the United States in 2012. Nearly 4 % of newly
diagnosed melanoma patients have distal metastases and 9 % have disease that has
spread regionally to their lymph nodes (SEER.cancer.gov). Therefore, almost
10,000 new cases of un-resectable melanoma are expected to be diagnosed this
year in the US alone. In a recent clinical study, 56 % of un-resectable melanoma
cases tested positive for the V600E mutation [51].

BRAF Mutations in Other Malignancies

Mutations in BRAF have been identified in other human malignancies. In addition to
melanoma, BRAF is mutated in other solid tumors such as: papillary thyroid car-
cinoma, non-small cell lung cancer, and colorectal cancer [52–55]. Also, a recent a
clinico-pathological report suggested a novel role for BRAF in hematological
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malignancies [56]. In this study, a team of investigators used whole exome
sequencing technology to test paired malignant/normal tissues from 47 patients that
had been diagnosed with Hairy Cell Leukemia (HCL). Using the advanced
sequencing technology, they were able to positively identify V600E mutations in
100 % of the patients that were tested. Interestingly, this mutation was not present in
any of the other leukemias or B cell disorders that were studied. In light of this report,
more work will be required to fully characterize the role of BRAF mutations in the
many different types of human hematological malignancies.

B-Raf as a Target for Anti-Cancer Agents

The discovery that BRAF was highly mutated in human cancer spurred an intense
effort by both industry and academia to develop targeted B-Raf agents. To date, a
number of different B-Raf agents with varying molecular mechanisms of action
have been tested in the clinic for the treatment of both solid and hematological
malignancies.

Sorafenib

Bay 43-9006 (sorafenib or Nexavar) was the first Raf-targeting agent to achieve
clinical success in treating human cancers. Sorafenib is a biaryl urea ATP-com-
petitive protein kinase inhibitor [57]. It was first identified as a potent small
molecule inhibitor of the Raf family of kinases and in particular as a C-Raf
inhibitor [58]. However, it was later shown that sorafenib also had a high affinity
for wild type B-Raf, B-RafV600E, and a number of other tyrosine kinases including
some of the VEGFR and the PDGFR family members [59]. The elucidation of this
dual mechanism has helped to explain both the anti-angiogenic and pro-apoptotic
effects of sorafenib [58, 60]. Moreover, the in vitro activities and molecular
mechanism of sorafenib may also help explain its strong clinical activity. To date,
sorafenib has been approved for use in the treatment of advanced renal cell car-
cinoma (RCC) as well as primary hepatocellular carcinoma (HCC). While so-
rafenib has shown clinical efficacy in the treatment of HCC and RCC, it lacked
substantial activity when treating malignant melanoma [61]. While this ended the
development of sorafenib for this indication, it did provide critical information
regarding the class of B-Raf inhibitors.

78 R. V. Tantravahi et al.



PLX-4032

The failure of sorafenib in melanoma provided an important data point for both
scientists and physicians to build upon. Many in the field hypothesized that so-
rafenib’s promiscuous nature or lack of selectivity for B-Raf and B-RafV600E

explained the nominal clinical efficacy in malignant melanoma [62]. The first test
of this principle occurred when researchers, using crystallographic techniques,
identified a 7-azaindole derivative (PLX4270) which was highly selective for the
active B-Raf kinase or the V600E mutant [63]. Not only was this molecule shown
to be active in the test tube, but it was also active against melanoma cell lines in
the laboratory and in melanoma-based xenograft models. Moreover, the high
degree of selectivity for the active B-Raf kinase allowed for a minimal amount of
preclinical toxicity. Ultimately, an analogue of PLX4270, called PLX4032
(vemurafenib), was carried into the clinic for testing in human subjects.

The translation into the clinic followed a unique development strategy. To
provide proof of principle, developers designed clinical trials to enrich for
malignant melanoma patients that harbored the V600E B-Raf mutation. This
strategy allowed clinicians to observe efficacy at a very early point in clinical
development, and the proof of principle was provided in the first of these trials
[64]. Vemurafenib is now approved for the treatment of mutant B-RafV600E met-
astatic melanoma.

Other B-Raf Agents in Development

Sorafenib and vemurafenib provided direct evidence that inhibition of the Raf
family of proteins, and in particular B-Raf, was a highly effective strategy for the
development of targeted anti-tumor agents. A number of investigational agents has
added to this class of molecules. Follow-on-drugs such as dabrafenib are being
advanced in the clinic, and while these agents should provide differentiation with
respect to toxicity profile and general tolerability, they do not alleviate any of the
clinical resistance that has been seen with the first-in-class agents [65]. Therefore,
strategies need to be developed that deal with the mechanisms which are associ-
ated with resistance to the B-Raf class of inhibitors.

Clinical Observations of Resistance to B-Raf Inhibitors

Although clinical trials have shown that select tumors are extremely sensitive to
mutant B-Raf inhibition, resistance has also been observed [66]. In the first clinical
publication of PLX4032, Flaherty et al. [64] demonstrated complete or partial
regressions in 81 % of V600E melanoma patients. While this response was
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observed to last 2–18 months, ultimately patients were desensitized to B-Raf
inhibition and their disease progressed. Moreover, 19 % of the patients tested in
these trials had no significant clinical response (indicated as [30 % tumor
regression).

Mechanisms of Resistance

Understanding the mechanisms that underlie desensitization and resistance have
become an area of intense interest. A number of molecular mechanisms have been
proposed and subsequently tested in the laboratory setting. Many of the proposed
mechanisms have been studied using cultured melanoma cell lines and melanoma
patient samples, and therefore these mechanisms may well be cell-type specific.
Ultimately, other tissue-specific resistance mechanisms may be identified, but for
the scope of this review, we will focus on the resistance mechanisms that have
hitherto been elucidated in melanoma.

The canonical Ras-Raf-MEK-ERK1/2 pathway is well characterized. The result
of Raf activation is phosphorylation of ERK1/2, and the translocation of activated
ERKs into the nucleus to activate substrates that are involved in cellular prolif-
eration. Melanoma cells, in which the predominance of signaling is mediated
through V600E B-Raf, are highly dependent on the MEK/ERK signaling, and
mutant B-Raf inhibitors can affect this signaling in a mutation-specific manner
[67]. Given the critical nature of the MEK/ERK signaling, it is not surprising that
all of the resistance mechanisms, hitherto identified, involve the reactivation of the
tumorigenic MEK/ERK signaling.

Reactivation of the MEK-ERK Signaling Pathway
by Overexpression of RAF Isomers

In 2008, Monagut et al. [68] were the first to demonstrate a specific resistance
mechanism. Their research efforts predated any observations of clinical resistance
and involved the establishment of drug-insensitive clones using human melanoma
cells that harbored the V600E mutation. While the investigators did not test for
resistance to PLX4032, they did use a similar compound (AZ268 a V600E
inhibitor) for selection. Monagut and colleagues followed clonal selection with
DNA sequencing and discovered that resistance and desensitization resulted from
an increase in CRAF expression and reactivation of the MEK-ERK signaling axis.
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Reactivation of the MEK-ERK Signaling Pathway
by Upstream Activation

Resistance and desensitization can also occur in response to activation of signals
that are upstream of the Raf proteins [69]. In 2010, Nazarian and colleagues used
PLX-4032 drug-resistant cell lines, as well as tumor-matched short term cultures
from melanoma patients, to identify two mechanisms for acquired resistance. The
first was an activating mutation in NRAS (Q61 K), and in a series of elegant
experiments, the investigators demonstrated that constitutive Ras potentiated
MEK-ERK signaling in a canonical pattern through the WT RAF. The second
mechanism involved overexpression of PDGFRb, activation downstream through
WT RAF and MEK-ERK phosphorylation. While these mechanisms were found to
be mutually exclusive, they both acted to promote resistance through WT Raf
dimerization and the reactivation of MEK-ERK signals. Moreover, both molecular
lesions were confirmed in patients that were either resistant or insensitive to
PLX4032.

Reactivation of MEK-ERK Signaling by COT

Overexpression of COT is a third resistance mechanism that has been identified.
Importantly, COT overexpression leads to Raf-independent reactivation of MEK-
ERK. Johannessen et al. [70] were the first to suggest this new paradigm. Using a
cDNA library that encoded 75 % of the human kinome, the investigators intro-
duced activated kinases into a V600E melanoma cell line and then analyzed for
resistance to PLX4032. In addition to COT, Johannessen and colleagues identified
C-Raf as a mediator for the resistance phenotype, thus providing an internal val-
idation for their approach; however, the discovery that COT also mediated resis-
tance was a breakthrough. COT, as reviewed earlier, activates MEK-ERK in a Raf-
independent manner. Furthermore, its expression is inversely correlated to V600E
expression, suggesting that mutant BRAF activation may downregulate COT. It is
therefore feasible to hypothesize that when this pressure is removed (through
pharmacological inhibition of V600E) COT can mediate resistance by directly
activating MEK-ERK.

Other Mechanisms of Resistance

In addition to the above described mechanisms of resistance, additional acquired
resistance mechanisms have been reported; these include upregulation of insulin-
like growth factor-1 receptor (IGF1R) signaling and acquisition of activating
mutations in MEK1 [71–73], high level expression of epidermal growth factor
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receptor (EGFR) [74] and activation of PI3 Kinase pathway as a result of loss of
PTEN expression [72, 73].

Moreover, alternative splicing of BRAFV600E has also been described in a
subset of melanoma tumor samples from patients who relapsed following BRAF
inhibitor therapy [75]. The protein encoded by this alternatively spliced mRNA
lacked the regulatory elements of BRAF, including the RAS binding site, resulting
in a kinase that is capable of dimerizing and activating MEK even in the presence
of a BRAF inhibitor. It is interesting to note that most of these resistance mech-
anisms involve the reactivation of the MEK/ERK pathway. However, increased
insulin growth factor receptor 1 (IGF-1R) signaling or acquired loss of PTEN
which correlated with increased activation of AKT [71–73] represent examples of
MAPK-independent bypass mechanisms. Most of these mechanisms have been
corroborated in small numbers of tumor samples from patient biopsies.

The discovery that RAS mutations promote resistance to RAF inhibitors led to a
series of studies showing that RAF inhibitors often induce hyperactivation of
MEK–ERK1/2 signaling in cells harboring N-RAS mutations [76]. Thus, ectopic
expression of mutant N-RAS in a mutant B-RAF colorectal cancer cell line
resulted in resistance to PLX4720 [77], a result that could also be seen in B-
RAFV600E melanoma cells [69, 70]. As mentioned earlier, another possible
mechanism to by-pass the activity of RAF inhibitors is through mutations in
MEK1 and 2 which are downstream effectors of B-RAF. Through a random
mutagenesis screen, P124L mutation in MEK1 was identified to confer cellular
resistance to the MEK inhibitor, AZD624478. MEK1P124L expression also
conferred resistance to PLX4720 in cell-based assays and was identified in a
metastasis from a patient with acquired resistance to AZD6244, indicating the
clinical relevance of this mutation [78]. Interestingly, the combination of PLX4720
plus AZD6244 overcame the resistance conferred by MEK1P124L expression.
These and other data have prompted the use of MEK inhibitors in clinical trials
enrolling mutant B-RAF melanoma patients who were previously treated with or
without a BRAF inhibitor. Thus, phase I/II trials of the BRAF inhibitor dabrafenib
in combination with the MEK inhibitor trametinib (GSK1120212, NCT01072175)
and vemurafenib combined with the MEK inhibitor GDC-0973 (NCT01271803)
are underway and results from the phase I/II trial of the trametinib-dabrafenib
combination was reported to be associated with objective response rates of 77 %
[79, 80]. Other clinical studies combining BRAF inhibitors with inhibitors of the
mTOR/PI3K/AKT pathway are due to commence in the near future.

Conclusions

The introduction of targeted therapies such as Gleevec and Vemurafinib represent
a historical shift in our approach to cancer treatment. For the first time, serious
malignancies have been attacked by therapeutic agents that account for our new
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and specialized understanding of the nature of cancer and the controls on cellular
proliferation in normal cells. While the initial results in laboratory studies and in
the clinic have proved promising, they have also provided cancer biologists and
oncologists with a cautionary tale. Resistance to targeted therapy reveals a level of
plasticity in the response of the cancer cell to the agents that seek its destruction. In
some cases, that response is genetic selection, as is revealed by the allele specific
suppressor mutations revealed in the BCR-Abl protein and the B-raf protein. In
other cases, the response manifests itself by compensatory changes in the regu-
lation of co-linear signaling pathways, such as growth factor receptor upregulation
upstream of Raf, or constitutive activation of the MAP kinase cascade.

Strategies for the development of targeted therapies, such as Gleevec and
Vemurafinib, rely on the identification of druggable targets. Those targets can be
involved in what Weinstein and Joe described as oncogene addiction [81].
Oncogene addiction scenarios, such as the expression of the bcr-abl fusion gene,
transform normal cells into cancer cells through creation of growth signaling
dysequilibria. In the laboratory, restoration of the equilibrium in cultured cells
through inactivation of these deleterious proteins results in the induction of
apoptosis. This critical observation has provided the rationale for structure based
rational drug design. Using molecular modeling and x-ray crystallography, teams
of chemical biologists designed small molecules that inactivated the biochemical
properties of druggable target proteins. As we have witnessed, the initial results in
the clinic provided impressive results. Nevertheless, the difficulty of resistance
remains. In the future, it may be possible to marshal the vast bioinformatics
resources now available to design individualized therapies that account for sig-
naling plasticity. Perhaps, using combinations of targeted therapies will limit the
probability of resistance reactions.

A different therapy strategy may also prove more efficacious. At the present time,
most targeted therapies rely on the deactivation of ATP-dependent reactions using
ATP-mimetic small molecules that act as competitive inhibitors. Almost all of the
available ATP mimetic compounds seek to inhibit kinase reactions in much the same
manner that both Gleevec and Vemurafinib do. In the future, we may abandon
structure-based rational drug design, and move to a development strategy in which
cancer cell cytotoxicity takes precedence over affinity toward a target determined a
priori. In that way, ATP mimetic scaffolds and their derivatives can be assayed in
culture for both their ability to kill cultured tumor cell lines and their safety. Because
of the highly conserved tertiary structure of kinase ATP-binding sites, these com-
pounds will likely affect a combination of growth control kinases with varying
affinity. In so doing, compounds developed by this method will likely affect multiple
routes of aberrant signaling within cancer cells. By using cancer cell cytotoxicity as
a first measure of efficacy, we should be able to accomplish two goals simulta-
neously: (1) the development of effective therapeutics and (2) the identification of
novel targets or target combinations that limit the possibility of resistance.

The future of targeted therapy for cancer remains bright. Our continuing
accumulation of knowledge from basic research into cellular growth control will
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serve to shed light on our already well-developed understanding of malignant
transformation. In recognizing the phenomena of non-response and resistance,
basic and applied researchers will learn and adapt to these challenges.
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Role of b1 Integrins in the Complication
and Drug Resistance Against Lung
Cancer: Targeting b1 Integrins
to Eradicate Lung Cancer

Srirupa Mukhopadhyay, Parth Malik, Sunil Kumar Arora
and Tapan K. Mukherjee

Abstract Lung cancer is a major global concern of inevitable mortality and
morbidity in modern times. In the context of lung carcinogenesis, bi-directional
cell signaling events mediated by the interaction of transmembrane integrin
receptors with the extracellular matrix (ECM) is highly critical. Structurally, the
integrin superfamily comprises of a large family of receptors consisting of hete-
rodimeric a and b chains, noncovalently linked with each other. Eighteen different
a subunits combine with 8 different b subunits to emerge 24 known integrin family
members. By far, b1 integrins combine with their 12 different a subunits to yield
the largest family members within the integrin superfamily. b1 integrins are
preferentially expressed in lung cancer cells and are significantly involved in lung
carcinogenesis in terms of cell proliferation, survival, invasion and metastasis.
Besides, the b1 integrin family has a prime role in imparting chemoresistance to
the lung cancer cells. The present discussion entitles a brief overview of the
integrin superfamily, the cross-talk of b1 integrins with ECM proteins, the
importance of b1 integrins as prognostic factors for lung cancer, the role of b1
integrins in the complication of lung cancer and the associated drug resistance and,
finally, targeting b1 integrin functions to control lung cancer.
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Abbreviations
BAD Bcl2/BclxL-associated death promoter
ECM Extracellular matrix
EGFR TKIs Epidermal growth factor receptor tyrosine kinase inhibitors
FAK Focal adhesion kinases
mTOR Mammalian target of rapamycin
NSCLC Non-small cell lung cancer
PKB Phosphatidyl inositol 3-kinase [PI(3)K]-protein kinase B
RGD Arginine-(R)-glycine-(G)-aspartic acid-(D)
SCLC Small cell lung cancer
ZO-1 Zonula-occludensa

Introduction

Lung cancer is one of the prominent reasons of mortality in recent times owing to
the cause of lung being the major vital organ that needs ultimate care and spe-
cialized supervision. There are mainly two types of lung cancer, namely, non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). SCLC is
further subdivided into adenocarcinoma and large cell differentiated carcinoma. In
addition, carcinoid, Kaposi’s sarcoma and melanoma are other types of lung
cancers. The development of carcinogenesis in lung is a life long process, there-
fore, in all possibilities cancer cells from other organs may eventually metastasize
and subsequently grow and develop in the lungs [1].

Normally, cells interact with their extracellular matrix (ECM) either by trans-
mitting signals to the ECM (inside out signaling) or receive signals from ECM into
the cell (outside in signaling) via cell surface integrins. Thus, integrins act as bidi-
rectional signal transduction molecules [2, 3]. Biochemically, integrins are trans-
membrane glycoprotein receptors [4] that bind specifically with their corresponding
ECM ligands, namely, fibronectins, collagens, vitronectins and laminins [5]. The
integrin-ligand interaction and activation of bidirectional signal transduction are
mediated through the activation of a number of so called proteins (e.g. talin) and the
engagement of various kinases (e.g. focal adhesion kinases) (FAK) [6–11]. How-
ever, the integrins themselves lack any intrinsic kinase activity.

In practice, integrins promote cancer in two distinct ways; firstly, by preventing
the apoptosis and, secondly, by imparting resistance of cancer cells to chemo-
therapeutic agents. Collectively, the inside out and outside in signaling mediated by
integrins are key limiting steps in the regulation of antiapoptosis (pro-survival),
growth, proliferation and the invasive properties of tumor cells into the surrounding
tissues including blood vessels, and finally metastasizing to distant organs. Inte-
grins are therefore regarded as the targets of cancer chemotherapy [12–14].
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b1 integrins are the largest family among the integrin superfamily members
[15]. Various members of the b1 family are preferentially expressed in the lung
cancer tissues [16, 17]. The present review describes the central role of b1 inte-
grins in the survival, proliferation, invasion, metastasis and drug resistance of
SCLC and NSCLC. In addition, it also summarizes various drugs that target b1
integrins to combat various cancers including lung cancers.

Expression of Various Integrin Superfamily Members
in Lung Cancers

The integrin superfamily consists of 24 family members. These integrin family
members are transmembrane receptors consisting of heterodimeric noncovalently
linked different a and b chains. Based on their specific functions, integrins can be
commonly subdivided into three main types: cell–cell adhesion integrins, vascular
integrins and cell-ECM adhesion integrins. Commonly, integrins having the b1
subunit constitute the majority of receptors for the ECM components and, there-
fore, hold an immense potential for cancer chemotherapy. The b1 integrin family
is largely composed of 12 different a subunits members (a1–a12). Various a
subunit members have the capacity to bind with the b1 subunit and, therefore, form
12 different b1 integrin subfamilies. Various subfamily members of the b1 inte-
grins family are expressed in pulmonary tissues and, therefore, assume a very
important role in the complication of lung cancer [15–18].

Basically, integrin expression is noticed in most of the nontransformed (normal)
cells as well as cancer cells [18]. Comprehensive review articles by Gogali et al.
[16] and Mizejewsk [17] described the distribution and action of various integrins
in the lung and other cancer tissues. In general, SCLC cell lines fail to interact with
the adhesive proteins in serum as well as with most ECM proteins, although, some
SCLC cell lines can attach themselves onto the laminin substrates [19–21].
Feldman et al. [22] have shown that SCLC lung cancer cells viz, NCI-H187, H345,
H146, H209, and N417 express sufficiently high levels of a3b1. Similarly, Pel-
legrini et al. have demonstrated that the a6b1 integrin is expressed by SCLC lung
cancer cells [23]. In the following years, by using 19 human lung cancer cell lines,
Hirasawa et al. have noticed that the main integrin expressed by SCLC cells is b1
and combined with a2, a3, a5 and a6, respectively [24]. In the same year, Falconi
et al. have described that b1, b3, b4 and b5 integrins expressed by human lung
carcinoma cells [25]. Using various SCLC cell lines, Sethi et al. have again
reconfirmed that a2b1, a3b1, a6b1 and a5b1 are abundantly expressed in these
cell lines [26]. Recently, Roman et al., by using mouse Lewis lung carcinoma
cells, further demonstrated that the a5b1 integrin is highly essential for adhesion
with fibronectin and lack of the a5 subunit of this integrin drastically affects cell
proliferation, migration and colony formation [27]. Another recent study by
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Dingemans et al. have indicated that the major integrin expressed by the NSCLC
cells is a5b1 [28]. Thus, the major b1 integrins expressed by various lung cancer
cells/tissues are a5b1, a3b1, a2b1, and a6b1 integrins, respectively.

Cross Talk of Integrins with Extracellular Matrix Proteins

ECM-cell interactions occur locally in specialized structural foci called focal
adhesions (FA). FA are the specific focal contact zones between ECM and the
cytoskeleton of the cell [8, 9], permitting the physical attachment of the integrins
in membrane to their ECM ligands (e.g. fibronectins, vitronectins, laminins and
collagen IV) and the intracellular transduction of downstream signals [29]. Other
adhesion complexes mediated by integrins are focal complexes, fibrillar com-
plexes, podosomes, etc. [30]. Critchley et al. have proved that the cytoplasmic
domain of the b subunit of the integrin is important in the localization of integrins
to focal adhesions, and for integrin-mediated cell adhesion/spreading. The b-
subunit of the integrins can be linked to F-actin via the actin-binding proteins talin,
a-actinin, filamin and vinculin [31]. Thus, these intracellular signaling proteins are
highly essential for the connections of the integrins with the cytoskeleton.

The b1 integrins preferentially interact with various ECM proteins. For exam-
ple, a1b1 and a2b1 integrins are major collagen receptors, whereas a4b1 and a5b1
integrins bind to fibronectins and a3b1 and a6b1 are receptors for laminins [3]. In
SCLC lung cancer cells viz, NCI-H187, H345, H146, H209, and N417 cells,
laminin is the major ligand which binds with the a3b1 integrin [22]. Similarly, the
a6b1 integrin of the lung tissues binds with laminin [23]. Immunohistochemical
analyses have confirmed the high level expression of collagen IV, which binds to
a2b1 or a3b1 integrins and fibronectins bind to the a5b1 integrin [32, 33] (Fig. 1
describe the various ligands of b1 integrins).

Extracellular Matrix Proteins (ligands of integrins)

Major Integrin receptors expressed by lung cancer cells

Fibronectin

α4β1 α5β1 α3β1 α6β1 α1β1 α2β1

Laminin Collagen

Fig. 1 Cell surface integrin
receptors binds with various
extracellular matrix proteins
namely fibronectins, laminins
and collagen IV. a2b1, a3b1,
a5b1 and a6b1 are the major
integrins involved in lung
cancer complication
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Moreover, the SCLC cells express the functional CXCR4, the chemokine
receptor for the stromal cell-derived factor 1 (SDF1). Expression of SDF-1
increases SCLC cell adhesion to collagen 1 and fibronectin via a2b1 and a5b1,
respectively [34]. Of the various ECM molecules, the level of expression of
fibronectins and collagens are unusually high in NSCLC cells and tissue samples
[35, 36]. In A549 NSCLC cells, radiation-induced apoptosis or the cytotoxic drug
ukrain-induced cell death are prevented by laminins and fibronectins, respectively
[37]. In a comprehensive review article, Cacavari et al. have described the
mechanism through which integrins-ECM interactions affects TGFb and EGFR
signaling in lung cancer cells [38]. Another study by Han et al. has demonstrated
that the presence of fibronectin activates the survival of lung cancer cells by
activating cyclooxyginase 2 (COX-2) through a5b1 integrin [39].

Interactions of Integrins with Extracellular
Matrix Proteins

At the cellular level, several integrins bind with their corresponding ECM ligands
(proteins), having a highly conserved amino acid sequence of the tripeptide
arginine-(R)-glycine-(G)-aspartic acid-(D) [RGD]. avb3, a5b1 and aIIbb3 are the
examples of this kind of integrins that recognize the RGD sequence of the ECM
proteins. However, other integrins may recognize a different amino acid sequence
of the ECM proteins. For example, the a4b1 integrins recognize EILVD and
REVD amino acid sequences in the alternatively spliced CS-1 fibronectin. In a
comprehensive review article, Ruoslahti described RGD and other recognition
sequences of various ECM proteins/ligands that interact with the integrins [40].
Mizejewsk [17] has tabulated the various ligands of integrins with respect to their
structural motifs, recognition sites and functional activities. Identifying and
understanding these unique binding sequences is important for targeting integrin-
mediated therapy since the know-how of these amino acid sequences helps to
develop therapeutic peptides or antibodies that could disrupt integrins-ECM
interactions and regulate integrin-directed proliferation, growth, survival and
metastasis of the cancer cells [41–44].

b1 Integrins as a Prognostic Factor in Small Cell Lung
Cancer and Non Small Cell Lung Cancer

The level of expression of b1 integrins is related to the prognosis of both SCLC
and NSCLC. A clinical study of transbronchial biopsies revealed that the increased
expression of b1 integrins is directly correlated with chemoresistance and poor
prognosis in SCLC [45]. Another study by the same group has shown that an
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association of b1 integrin and oncogenic p53 gene expression together can act as a
prognostic factor in SCLC [46]. In a recent in vivo study, by using samples from
SCLC patients, Lawson et al. have shown that the levels of expressions of b1
integrin and Bcl2 are independent prognostic factors for the development of SCLC
[47]. A number of other studies have also confirmed the elevated expression of b1
integrins in SCLC cells but not of b3, b4, or b5 integrins [48, 49]. However, in
another very recent study using SCLC patients neither b1 integrin nor its down-
stream signaling molecule rac1 are confirmed as a prognostic indicator [50].

In NSCLC, the expression of a5 integrins has been suggested to play a role in
predicting the clinical course and prognosis of this disease [51, 52]. Okamura et al.
[53] have shown that elevated b1 integrin expression is a prognostic factor for
overall survival in NSCLC patients. During early stages of the disease, the NSCLC
patients suffer with a high risk of recurrence, therefore, determination of the level
of a5b1 expression may predict the prognosis of the disease in the individual
patient [28]. A number of other studies also confirm the importance of a5b1 as a
prognostic factor against NSCLC. Thus, it is essential to check the level of
expression of b1 integrins and ECM proteins involved in various lung cancer cells.

Role of b1 Integrins in Prosurvival of Small Cell Lung
Cancer Cells and Non Small Cell Lung Cancer: Implication
on Anoikis

In normal cells, the interaction of cell surface integrins with various ECM proteins
leads to pro-attachment signals. These pro-attachment signals generate pro-
survival signals, whereas detachment from the ECM triggers many non-cancerous
(normal) cell types to undergo ‘‘anoikis’’, a form of cell death due to cellular
detachment [54, 55]. Understanding anoikis is very important for cancer cells since
the acquisition of a resistance to anoikis constitutes a critical step in tumor pro-
gression and immortality, particularly in the emergence of invasive and metastatic
cells [56]. Cancer cells have a unique potential of growth that enable them to have
an anchorage-independent growth signaling which again signifies that cancer cells
are not dependent on integrin-mediated cell-ECM interactions. Accordingly,
cancer cells have a unique feature that allows them to escape and evade anoikis as
they can survive without anchorage-dependent growth and, therefore, may rapidly
metastasize to other body parts.

It must be mentioned that cancer cells exhibit major alterations in their rep-
ertoire of expressed integrins as well as in their surrounding ECM [57–59].
Moreover, metastatic cells display a marked resistance to anoikis [60–62]. For
example, unlike normal cells, cell detachment-induced anoikis does not occur in
cells expressing the oncogenes Src or Ras. These oncogenes must therefore
express themselves properly with the active participation of specific integrins for
the unlimited and infinite survival of associated tumor cells [63, 64].
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Not only the enhanced expression of integrins and ECM proteins, the ability of
integrins to prevent aniokis and to allow the cells to survive depends upon integrin-
dependent activation of a number of prosurvival pathways [64]. However, unlike
growth factors, integrins have no intrinsic kinase activity. Interestingly, integrins
have the capacity to cocluster with kinases and adaptor proteins in focal com-
plexes, thereby transmitting downstream prosurvival signals. A number of review
articles describe in details integrin-dependent cell survival and inhibition of
aniokis both in transformed cells and nontransformed cells [12]. At present,
intensive attention has been given to FAK and Src in tumor progression [65–67],
as well as two main downstream signaling pathways engaged by them, such as the
PI(3)-K/AKT and MEK/ERK pathways, respectively [68, 69]. The most important
signaling pathways that are involved in generating a prosurvival signal and
eventually drug resistance in the lung cancer cells are discussed below.

SCLC is particularly the more aggressive form of lung cancer. In SCLC cells,
the interaction of b1 integrins with the ECM proteins activate the phosphatidyl
inositol 3-kinase [PI(3)K]-protein kinase B (PKB) pathway, a prosurvival pathway
and a key regulator of cell cycle progression [70, 71]. Of note, PKB is also known
as AKT, a serine-threonine kinase. In SCLC cells, the PI(3)K-PKB prosurvival
pathway thus inhibits the expression of p21 and p27, the critical inhibitors of cell
cycle. It has also been observed that this prosurvival pathway is active even in the
presence of DNA damage, indicating that DNA damage cannot prevent the cell
cycle to proceed forward [72]. The integrins a5b1 and a5b6 are also involved in
the elevated expression of the anti-apoptotic Bcl2 protein [73]. Further studies
showed that AKT activation actually leads to the generation of anti-apoptotic
mechanisms such as the phosphorylated inactivation of the Bcl2/BclxL-associated
death promoter (BAD), a key negative regulator of cell survival that binds and
blocks the anti-apoptotic Bcl2 family proteins [74].

NSCLC is the most common type of lung cancer. Sometimes, the word NSCLC
is also used as a generic term when a particular lung cancer cannot be properly
classified. b1 integrins play a very important role in NSCLC cells growth, angi-
ogenesis, invasion, and metastasis to specific organs [75]. Han et al. have shown
that in NSCLC cells, fibronectin activates the AKT-mammalian target of rapa-
mycin (mTOR)-S6 kinase and inactivates the liver kinase B1 (LKB1)-50-adenosine
monophosphate-activated protein kinase (AMPK) pathway. The net effect of this
dual action results in the enhanced proliferation of NSCLC cells [76]. In a recent
study using NSCLC cells A549, b1 integrin gene-silencing results in defective
activity of the epidermal growth factor receptor (EGFR). This phenomenon leads
to reduced in vitro proliferation, enhanced sensitivity towards the chemothera-
peutic agents cisplatin and gefitinib and leading to impaired migration and inva-
sive behavior of the A549 cells [77]. The integrin-linked kinase (ILK)-AKT
pathway also provides a significant advantage to NSCLC cells for proliferation,
survival, and invasion to distant organs (metastasis) by the protein kinase Ce
(PKCe)-dependent signaling pathway [78].
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b1 Integrins in the Migration and Metastasis of Small Cell
Lung Cancer Cells and Non Small Cell Lung Cancer Cells

The involvement of integrins in cancer cell invasion and migration are explained
in a number of studies [79–81]. Normally, SCLC cells have a high tendency to
metastasize in the bone marrow and bone marrow cells secrete a high amount of
the chemokine stromal cell derived factor-12 (CXCL12) [82]. Of note, CXCL12 is
a chemokine constitutively expressed by bone marrow stromal cells. CXCR4 is a
lone receptor for the CXCL12 chemokine, which plays an important role in the
housing of cancer cells within the bone marrow microenvironment [83–86]. The
role of CXCL12-CXCR4 interaction is, thus, a very critical and an important
driving factor for lung cancer onset as it drives the cytoskeletal organization of
tumor cells involving the activation of vital cell surface receptors. This phenom-
enon also results in the attachment of cancer cells to the ECM via b1 integrins
[86]. Therefore, the adhesion of SCLC cells through b1 integrins to fibronectin and
collagen ligands is increased by the CXCL12 chemokine.

Likewise, studies using the NSCLC cell line NCI-H1299 have shown that
integrin signaling induces various proteolytic enzymes (proteases) that are
co-localized within the integrins regulating the interface between integrins and the
intracellular cytoskeleton. In one study, urokinase, a protease, promotes the ligand-
like binding of its receptor (urokinase receptor is a GPI linked membrane adaptor
protein) to a set of b1 integrins. This binding, in turn, affects integrin-dependent
cell invasion [87]. Similar findings by Takenaka et al. have shown that a highly
metastatic variant of PC9 cells has increased a5b1 integrin expression and that the
metastatic potential of these cells can be reduced to more than half by treatment
with an anti-b1 integrin antibody [88]. Interestingly, studies by Han et al. have
demonstrated that increased expression of a5b1 integrin is associated with lymph
node metastasis in NSCLC patients [35]. An association between increased inte-
grin a5 or b1 expression and poor prognosis in NSCLC patients are reported
previously [35].

A number of studies indicate the central role of PKCs in invasion and migration
of NSCLC. For example, PKCe has been recently identified as a key regulator of a
molecular network controlling the migration of NSCLC cells through the active
coupling of zonula-occludensa-1 (ZO-1) proteins and a5b1 integrin [78]. Protein
kinase inhibitors prevent junction dissociation-induced by low extracellular
calcium in MDCK epithelial cells [89]. Moreover, the clinical diagnosis of
NSCLC cancer patients has revealed the presence of ZO-1-a5b1 complex, being
actively involved in the metastasis of the related disease. These clinical reports
summarize the key signaling events brought about by the PKCe-a5b1-ZO-1
pathway suggesting its extremely sensitive role in the metastasis of NSCLC in
humans. Although the molecular mechanism responsible for ILK over-expression
in NSCLC cells is still not well understood, it is a highly likely perception that the
integrin-ILK-AKT signaling pathway may provide a big boost for NSCLC cell
proliferation, survival and invasion. So, inhibition of ILK expression to attenuate
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the onset of NSCLC presents an exciting approach to prevent the lung cancer
occurrence. Some initial successes in this regard have been achieved following the
use of KP-392 and cisplatin, a chemical inhibitor (drug) that prevents the growth
and malignancy of NSCLC cells [90]. In a most recent study using A549 and H1299
cell lines, a novel histone deacetylase inhibitor HTPB significantly suppresses
tumor metastasis, partly, through inhibition of the b1 integrin-focal adhesion kinase
(FAK)-matrix metallo proteinase (MMP)-RhoA-F-actin pathway [91]. These
observations obviously lead to the conclusion that a5b1 integrin is actively
involved in promoting both NSCLC proliferation as well as its metastatic invasion.

Role of Integrins Other than b1 in the Complication
of Lung Cancer

While b1 integrins are the major integrin subfamily involved in lung cancer sur-
vival, invasion, metastasis and drug resistance, a few other b integrin family
members are also involved in the complication of lung cancers. Two such integrin
members of this type are amb5 integrins and avb3 integrins respectively, as dis-
cussed below.

Role of amb5 Integrins in Lung Cancer Complication

In a significant attempt, Zhu et al. have investigated the combined role of the
protease-activated receptor (PAR-1) and amb5 integrin during the onset of
thrombin-mediated lung cancer invasion, both in immobilized as well as in native
state. They have found an active involvement of amb5 integrins in both native as
well as in the immobilized thrombin-mediated tumor cell invasion. amb5 integrins
promote lung cancer cell adhesion, migration and extracellular signal-regulated
kinase (ERK) phosphorylation, in both native as well as in immobilized thrombin
configuration. This study indicates that targeting of amb5 integrins or the amb5
integrin complex with PAR-1 can be an excellent therapeutic strategy in the
treatment of lung cancer invasion [92].

Role of amb3 Integrins in Lung Cancer Complication

Recently, Meng et al. have predicted that there is an active cooperative signaling
between avb3 integrins and the estrogen receptor alpha (ERa), which in turn, is
involved in the proliferation of lung cancer via thyroid hormone induction. In their
study, Meng et al. have comprehensively analyzed the signaling mediated by ERa-
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positive human lung cancer cells and have successfully concluded that the pro-
liferative action of the thyroid hormone is mediated by the corresponding activity
of ERa. Their analysis has further shown that the lung cancer cell proliferation has
an active dependence on the corresponding integrin receptors and that the thyroid
hormone crosstalks with avb3 integrins and is an active endogenous factor sup-
porting the proliferation of lung cancer [93].

Very recently two more studies have also described the importance of the
contributory role of the amb3 integrin in the adhesion, invasion and metastasis of
B6 melanoma cells in the lungs. In one of these studies, Lonsdorf et al. have
observed a reduction in the hematogenous metastasis of B16 melanoma cells to the
lungs following treatment with a monoclonal antibody aimed specifically at
blocking the expression of a subunit of the amb3 integrin. This study further
concludes that there is an active role of engagement of GPIIb/IIIa (platelet
receptors) with amb3 integrin interaction that mediates the interaction of tumor
cells with platelets and also explains how this interaction is involved in hema-
togenous tumor metastasis [94].

In another comprehensive study, Goldeman et al. have suggested crucial roles
of b3 integrins in the progression and metastasis of lung cancer and have proposed
these b3 integrins to be the potential targets in the treatment of lung cancer via
therapeutic agents. They have used the RNA interference (siRNA) technology to
study the consequence of b3 integrins impairment in the B16 murine melanoma
cells. They have also screened their expression for tumor proliferation, metastasis,
invasion, adhesion and migration. They have shown through their analysis that
siRNA against b3 causes a significant reduction in the progression, metastasis,
invasion and adhesive nature of the lung cancer. However, the proliferation rate of
the lung cancer cells remains unaltered. These findings concluded that targeting
the b3 integrins expression at the molecular level can be an excellent therapeutic
approach in the treatment of lung cancer [95].

Interestingly, another study has demonstrated that a5b1 integrin is the major
integrin expressed in the lung cancer cells and it regulates amb3-dependent angi-
ogenesis by modulating the activity of the protein kinase A (PKA) [96]. Another
study has also explained the signaling cooperation between b1 and b3 integrins
[97]. Thus, it can be solely predicted that a combined inhibition of a5b1 and amb3
may be more effective to attenuate lung cancer angiogenesis instead of targeting
a5b1or amb3 alone.

Role of b1 Integrins in Drug Resistance in Small Cell Lung
Cancer and Non-Small Cell Lung Cancer

Cancer cells are inherently different from their normal counterparts and have
differential expression of integrins. While a particular cancer cell sufficiently
expresses a few particular types of integrins, the same integrins may not be

98 S. Mukhopadhyay et al.



sufficiently expressed by some other cancer cells. Moreover, any particular cancer
cell may express more than one type of integrins. Therefore, the task of under-
standing the role of integrins in the regulation of drug resistance of metastatic
cancer cells seems to be a daunting subject. The rapid metastasis (for example to
the bone marrow) and the tendency to develop resistance towards chemothera-
peutic drugs are the two main reasons for the extreme malignancy of SCLC [98].

It is speculated that adhesion molecules are somehow related to drug resistance
[99]. Interestingly, adhesion of SCLC lung carcinoma cells to fibronectins
enhances tumorigenicity and confers resistance to apoptosis-induced by standard
chemotherapeutic agents against cancers [33]. A similar study has reported that the
adhesion of SCLC cells to fibronectin enhances their viability and cytoskeletal
organization mainly by activating the PI(3)K-FAK pathway [100]. Kraus et al.
[101] have demonstrated that chemoresistance of SCLC cells correlates with
adhesion to ECM and constitutive activation of the Akt and MAPK-dependent
prosurvival and proproliferative pathways. Moreover, Tsurutani et al. have shown
that laminin-mediated activation of the PI(3)K-Akt pathway enables SCLC cells to
escape from imatinib-induced apoptosis [102]. In a comprehensive work by Sethi
et al., it is further discussed that adhesion of SCLC cells via b1 integrins to ECM
components promotes cell survival and conferring resistance to chemotherapeutic
agents. The chemotherapeutic resistance is possibly due to the activation of the
PI(3)K-PKB prosurvival pathway which inhibits the expression of p21 and p27,
the critical inhibitors of cell cycle. Interestingly, this prosurvival pathway is active
even in the presence of DNA damage, indicating DNA damage cannot prevent the
cell cycle to move forward [26]. Krystal et al. have described that inhibition of the
PI(3)K-Akt pathway attenuates growth, promotes apoptosis and enhances sensi-
tivity of SCLC cells to chemotherapy [70]. Similarly, Hartmann et al. have
reported that in SCLC cells the interaction of a2, a4, a5, and b1 integrins with the
chemokine receptor CXCR4 induces adhesion and chemoresistance [33]. Con-
temporary studies have also reported that over expression of b1 integrins leads to
chemoresistance, thus affecting the diagnosis of SCLC [45]. In another significant
attempt, Ritzenthal et al. have demonstrated that there is an elevated expression of
matrix glycoprotein fibronectins in most of the chronic lung disorders. They have
explained that the increased expression of fibronectins in the lung cancer cells
leads to an increased signaling with the cell surface integrins in these cells that
further activate and stimulate the intercellular signals involved in the pathobiology
of lung carcinogenesis and lung tumor chemoresistance including those of the
MAPKs, GTPases and the PI3-kinase/Akt/mTOR pathways [103]. In yet another
significant study, Kohmo et al. have explained the extreme aggressiveness of the
malignant and metastatic nature of SCLC cells, citing chemoresistance as
the primary cause after the very early initial trials. They have suggested that the
signaling by ECM proteins is very acutely involved in imparting of the chemo-
resistance towards the mostly used cytotoxic drugs. They have also confirmed that
there is an unusual and extraordinary subcellular signal transduction ability
mediated via the activity of the tetraspanin family member CD9 which expresses
itself in SCLC tumors and leading to the development of resistance against
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cisplatin and etoposide. They have further analyzed that the higher expression of
CD-9 in SCLC cell lines continues even after 48 h of their exposure to the
potential anticancerous drugs. In their study, Kohmo et al. have found that
chemoresistant SCLC cell lines express the CD-9 receptor in an uncharacteristi-
cally higher concentration and are also bound to the fibronectins via b1 integrins
far more tightly than their non-chemoresistant counterparts. However, they are less
metastatic due to lower motility. They have further analyzed that the secretion of
cell surface CD-9 receptor on the chemoresistant cells are decreased significantly
following treatment with the chemokine CXCL12 and this has also resulted in the
restoration of the motility. To support their conclusive evidence, they have also
found that selectively treating with either specific anti-CD-9 monoclonal antibody
or the incorporation of CD-9 siRNA they resulted in the initiation of apoptosis in
the chemoresistant SCLC cell lines [104]. Another attempt by Hoddkinson et al.
have concluded that there is an extraordinary role of SCLC-ECM-proteins inter-
actions via integrin activation and PI-3 kinase activity, which is responsible for the
generation of a high degree of ECM protein mass around the SCLC cells.
Therefore, ECM-integrin signaling becomes a hot target pathway for chemother-
apy of lung cancers [72]. Thus, b1 integrin expression is directly related to the
metastatic potential and drug resistance of SCLC.

In the NSCLC cell line PC9/AB2, overexpression of b1 integrin leads towards
the resistance to epidermal growth factor receptor tyrosine kinase inhibitors
(EGFR TKIs) such as gefitinib and erlotinib [92]. Notably, b1 integrins control
EGRF signaling and tumorigenic properties of lung cancer cells [77]. Altogether,
these studies emphasize the critical role of b1 integrins in both the malignancy and
chemoresistance in lung cancer, in particular to SCLC cells.

Modulation of Interactions Between b1 Integrins
and Extracellular Matrix Proteins

A number of molecules regulate the interactions between b1 integrins and ECM
proteins. Palecek et al. [105] have described in details the various molecules (e.g.
COX-2) that may affect the integrin-ligand binding. Transforming growth factor
beta (TGFb) is a potent regulator of integrin-ligand interactions [106]. In fact, the
latent form of TGFb acts as a ligand for a5b1 integrins [107]. A recent study has
shown that the chief tobacco alkaloid nicotine stimulates lung cancer growth via
the elevated synthesis of the ECM protein fibronectin. Truly, a5b1 integrins are the
major receptors involved in the synthesis of the fibronectin ligand and its acti-
vation. Again, silencing the functional activity of a5b1 integrins impairs the
mitogenic effect of nicotine on lung cancer cells [108]. Thus, COX-2, TGFb and
nicotine are some of the molecules that affect the engagement of b1 integrins with
the ECM protein ligands and, thereby, regulate several cell signaling pathways
both in SCLC and NSCLC cell types.
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b1 Integrins as a Drug Target Against Lung Cancer

Several studies have been tried in the last decade to establish the role of integrins
as suitable therapeutic targets against various cancers. Some of these strategies are
focused on the regulation of integrin-dependent angiogenesis. Notably, integrins
have a very distinct role in cancer angiogenesis [109, 110]. In a comprehensive
review, Brook has described various anti-angiogenic strategies for the treatment of
lung cancer [111]. Similarly, Jin et al. have described the role of integrins in
cancer development and as therapeutic targets [14]. They have described several
clinical trials of various cancers by using anti-a5b1 or anti-avb3 antibodies or
peptides and concluded that these anti-integrin antibodies or peptides have
promising anti-antiangiogenic effects against these cancers. Lately, Desgrosellier
in a comprehensive review article has described various strategies utilized for anti-
integrin therapy and thereby attenuating cancer complications [112]. In another
comprehensive review, Chen has also described various synthetic peptides and
proteins that targets the RGD sequence of integrin-ligands and integrin-targeted
delivery of nanoparticles carrying therapeutic agents to regulate integrin ligand-
integrin interactions [113]. All these above studies are limited to different phases
of clinical trials. More importantly, in a study by Reynolds et al., it is shown that
deletion of Itgb3 (which encodes avb3) or deletion of both Itgb3 and Itgb5 (which
encodes avb5) failed to inhibit angiogenesis and actually potentiated angiogenesis
[114]. Therefore, more studies are necessary with other integrins to conclusively
determine the success of anti-integrin therapy to inhibit vascular angiogenesis.

Noteworthy, attention must also be given on several in vitro experiments using
various lung cancer cell lines. For example, Takenake et al. have shown the
involvement of the b1 subunit during attachment and this result is consistent with
data showing reduced metastasis by a lung carcinoma cell line after treatment with
blocking antibodies to the b1 integrin subunit [88]. In another attempt, the
CXCL12-CXCR4 binding-axial orientation has been targeted with BKT140, an
antagonist of the CXCR4 chemokine. This has helped in the inhibition of the
growth of NSCLC cells and also helped in augmenting the remedial effects of
chemotherapy and radiotherapy [115].

BRL 49653 and GW1929, the ligands of peroxisome proliferator-activated
receptor gamma (PPARc), inhibit lung carcinoma cell growth by inhibiting the
expression of a5 subunit of a5b1 integrins [116]. Tsai Y et al. have indicated that
glabridin, a flavonoid, inhibits migration, invasion, and angiogenesis of in vitro
cultured A549 cells by inhibiting the FAK/rho signaling pathway. Inhibition of this
signaling pathway is possible due to proteasomal degradation of amb3 integrins
[117]. The study by Aixinjueluo et al. has further elaborated the mechanism of
anti-GD2-ganglioside-dependent apoptosis of the SCLC cell lines SK-LC-17,
NCI-417, ACC-LC-171, and ACC-LC-96. This study also claimed that GD2+

SCLC cells undergo anoikis through the conformational changes of integrin
molecules and subsequent FAK dephosphorylation [118]. In SBC-5 and SBC-3
SCLC cell lines, siRNA-dependent down regulation of b3 integrins may prevent
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the metastatic potential of the cancer cells [119]. In a recent experimental
metastasis study, a powerful subcellular in vivo imaging model is used to dem-
onstrate how an anti-integrin antibody affects seeding and growth of osteosarcoma
cells on the lungs. However, treatment with anti-b1 integrin monoclonal antibody,
AIIB2, greatly inhibited the seeding of cancer cells on the lungs. This study has
concluded that AIIB2 significantly inhibited the spontaneous lung metastasis but
not the primary tumor growth [120]. In addition, in the human lung cancer cell line
A549 and H1299, a novel histone deacetylase inhibitor, HTPB, significantly
suppressed tumor metastasis partly through inhibition of the integrin-b1/FAK/
MMP/RhoA/F-actin pathways [91].

Conclusion and Future Perspective

The studies and findings collected in this review highlight the importance of the b1
integrin-ECM signaling in tumorigenesis and drug resistance, with particular
reference to lung cancer. b1 integrins have been correctly implicated as very
important mediators of the pathogenesis of lung cancer including proliferation,
invasion and metastasis. Targeting integrins, particularly b1 integrins, could be
one of the most crucial breakthroughs in the successful treatment of lung cancers.
Studies aimed at inhibiting the expression of integrins and the weakening of their
interaction with the ECM protein ligands are being investigated at the present time
for the treatment of lung cancer in different parts of the world.
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Aldo-Keto Reductases as New Therapeutic
Targets for Colon Cancer
Chemoresistance

Toshiyuki Matsunaga, Ossama El-Kabbani and Akira Hara

Abstract The aldo-keto reductase (AKR) superfamily comprises NAD(P)(H)-
dependent enzymes that catalyze the oxidoreduction of a variety of substrates,
including prostaglandins, steroids, toxic aldehydes and drugs. Among members of
this superfamily, AKR1B10, AKR1C1, AKR1C2 and/or AKR1C3 are overex-
pressed in several types of cancers. Out of the four AKRs, AKR1B10, AKR1C1
and AKR1C3 are also significantly up-regulated with acquisition of resistance to
several anticancer drugs in colon cancer, although the up-regulated enzyme spe-
cies differ among themselves depending on the drug types. Studies with cell-based
experiments have proposed multiple mechanisms leading to the drug resistance
through regulation of cell proliferation and detoxification of lipid-derived toxicants
by the up-regulated enzymes. Thus, the three enzymes have been recognized not
only as potential diagnostic and/or prognostic markers, but also as potential
therapeutic targets for the prevention and treatment of the colon cancer chemo-
resistance. Recently, potent and selective inhibitors of AKR1B10, AKR1C1 and
AKR1C3 have been reported, and experimentally used for reversal of the colon
cancer chemoresistance. In this chapter, we describe the current literature focusing
mainly on the expression profiles of the three AKRs in chemoresistance of colon
cancer cells and availability of the inhibitors for overcoming the anticancer drug
resistance.
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Abbreviations

AKR Aldo-keto reductase
ARE Antioxidant response element
BPSA 3-Bromo-5-phenylsalicylic acid
CDDP Cisplatin
CPSA 3-Chloro-5-phenyl salicylic acid
DOX Doxorubicin
EGF Epidermal growth factor
FAL Farnesal
FOH Farnesol
GGAL Geranylgeranial
GGOH Geranylgeraniol
HAHE 3-(4-Hydroxy-2-methoxyphenyl)acrylic acid 3-(3-hydroxyphenyl)

propyl ester
HNE 4-Hydroxy-2-nonenal
HSD Hydroxysteroid dehydrogenase
HT29/CDDP HT29 phenotype resistant to cisplatin
Keap1 Kelch-like ECH-associated protein 1
LOHP Oxaliplatin
MAPK Mitogen-activated protein kinase
MMC Mitomycin C
NSAID Non-steroidal anti-inflammatory agent
NFjB Nuclear factor-jB
Nrf2 Nuclear factor-erythroid 2-related factor 2
ONE 4-Oxo-2-nonenal
PHPC (Z)-2-(4-Methoxyphenylimino)-7-hydroxy-N-(pyridin-2-yl)-2H-

chromene-3-carboxamide
PG Prostaglandin
PPAR Peroxisome proliferator-activated receptor
ROS Reactive oxygen species
VEGF Vascular endothelial growth factor

Introduction

Colon cancer is one of the most common cause of death from gastrointestinal
malignancy and the first leading cause of cancer-related mortality in Japanese
women [1]. A first-line of treatment for metastatic colon cancer is chemotherapy,
in which chemotherapeutic drugs, such as 5-fluorouracil, leucovorin, oxaliplatin
(LOHP), irinotecan, tegafur, doxifluridine, carmofur, capecitabine, doxorubicin
(DOX) and mitomycin C (MMC), are clinically utilized for retracting the tumor
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prior to surgery or averting the recurrence after the surgery [2]. Since the cancer
cells easily acquire tolerance toward the drugs during the long-term administra-
tion, most patients with metastatic colon cancer receive the combined chemo-
therapy and irradiation therapy [3] despite of the appearance of severe side effects
including neutropenia and alopecia. Several different mechanisms underlying the
resistance induction in colon cancer cells were previously reported. For example,
one major mechanism underlying the chemotherapeutic therapy-induced resistance
is the overexpression of P-glycoprotein [4], which secretes the chemotherapeutic
agents from the cells before exerting the genotoxic efficacy. Other mechanisms of
the resistance appear to be due to the reinforcements of the proliferative and
tumorigenic potentials through hypersecretion of growth factors, e.g. epidermal
growth factor (EGF) [5, 6] and vascular endothelial growth factor (VEGF) [6], and
activation of the proteasome [7, 8], a multi-catalytic proteolytic apparatus for
degrading damaged proteins, and an up-regulation of cell surface markers, CD133
[9, 10] and CD44 [6, 10], some of which could jointly lead to lowering the
sensitivity to chemotherapy-based therapy. Some effective inhibitors for the above
target molecules were developed [11–15], and have been in part approved for
clinical use as the adjuvant drugs against the inducible chemoresistance of colon
cancer.

The aldo-keto reductase (AKR) superfamily is a rapidly growing group of
NAD(P)(H)-dependent oxidoreductases that metabolize carbohydrates, steroids,
prostaglandins (PGs), and other endogenous aldehydes and ketones, as well as
xenobiotic compounds [16–18]. Members of this superfamily are classified into 15
families and each individual family is further subdivided into several subfamilies
based on their amino acid sequence similarities and substrate specificities. Structural
and enzymatic features of all AKR members are collected and listed at an AKR
superfamily homepage (http://www.med.upenn.edu/akr/). In humans, 15 genes for
AKRs have been identified. Ten of the human AKRs belong to the AKR1 family,
which include aldehyde reductase (AKR1A1), aldose reductase (AKR1B1) and its
related enzymes (AKR1B10 and AKR1B15), and hydroxysteroid dehydrogenases
(HSDs: AKR1C1, AKR1C2, AKR1C3 and AKR1C4). Among them, four AKR
members (AKR1B10, AKR1C1, AKR1C2 and AKR1C3) have been reported to be
up-regulated in several types of cancer and cultured cancer cells [19–21]. Therefore,
the four AKRs act as potential markers for the corresponding overexpressing can-
cers. In addition, AKR1B10, AKR1C1 and AKR1C3 have been recently shown to be
involved not only in facilitating proliferation of some cancer cells [16, 19, 21, 22],
but also in developing chemoresistance of the cells [21, 23–25]. Thus, these AKRs
have also received considerable attention as potential therapeutic targets for
chemoresistance of colon cancer cells. Here, we provide an overview of the path-
ophysiological roles of the AKRs in the development of colon cancer cell resistance
to anticancer drugs and the usefulness of their inhibitors in overcoming the
chemoresistance.
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Possible Factors Involved in Colon Cancer
Chemoresistance

The tumor microenvironment has been formerly accepted as a major mechanism that
leads to the induction of drug resistance [4, 26, 27]. That is because the environment
surrounding the tumor limits accessibility of antitumor drugs to the tumor cells and
reduces the oxygen radicals generated during the treatment by the drugs [4, 26].
Recent reports provided substantial evidence indicating that the cancer chemore-
sistance is heterogenously developed by endogenous defensive responses to lethal
stress, including sources derived from the microenvironment, and the possible
mechanisms encompassing a variety of factors including the P-glycoprotein [4],
EGF [5, 6], VEGF [6], CD133 [9, 10], CD44 [6, 10] and the proteasome [7, 8]. Here
we outline the factors that are believed to be responsible for inducible chemoresis-
tance of colon cancers, except for AKRs.

P-Glycoprotein

The P-glycoprotein, encoded by the gene for human multidrug-resistance protein 1
[28], is a transporter ATP-binding cassette family protein, which is expressed in
the apical membrane of epithelial cells in the small and large intestines and
functions as a part of the gastrointestinal barrier for protecting against xenobiotics,
bacterial toxicants and drugs [29, 30]. It also plays central roles in the absorption,
distribution and excretion of chemotherapeutic drugs and actively extrudes
xenobiotic substances including the cytotoxic drugs due to the overexpression in
colon cancer cells, displaying drug resistance [4]. The aberrant cellular trans-
portability by the overexpression is considered to be a major causal factor for
mechanisms underlying drug resistance of colon cancer cells. Recently, gluco-
sylceramide synthase, that converts ceramide into glucosylceramide and then
reduces the ceramide-induced apoptosis, has been reported to be coincidently
overexpressed with P-glycoprotein in drug-resistant cells [31, 32]. Based on these
studies, the glucosylceramide synthase appears to modulate expression of the
transporter protein through c-Src and b-catenin signaling pathways and confers the
cell resistance to DOX, daunorubicin, and tumor necrosis factor-a [32]. Admin-
istration of zosuquidar, a potent and specific inhibitor of P-glycoprotein, reverses
P-glycoprotein-mediated resistance in acute myeloid leukemia and breast cancer
[11, 12], but little is known about the effect of the inhibitor on the colon cancer
resistance.
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EGF Receptor and VEGF

The EGF receptor is expressed in a large proportion (30–85 %) of patients with
colorectal cancer, and its signaling pathway is always activated in the cancer cells
[5, 33]. Experiments show that persistent activation of the signaling through the
EGF receptor promotes cell growth [34] and metastatic transformation [35], and
inhibits apoptosis of the cells [36]. Upon EGF receptor stimulation by the binding
of its ligand, including EGF and transforming growth factor, the ligand-receptor
complex triggers a chain of the down-stream signaling pathways such as the
mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase [37].
Therefore, potent blocking agents of the EGF receptor are expected to suppress the
colon cancer growth and resistance to certain drugs. Cetuximab is a monoclonal
antibody that targets the extracellular domain of the EGF receptor and inhibits the
ligand binding to the receptor [13]. Based on a randomized phase II clinical trial,
the antibody was approved for use in combination with irinotecan or as mono-
therapy in EGF receptor-positive irinotecan-refractory colorectal cancer [38].
Thus, the clinical use is limited for treatment of patients with overexpression of the
EGF receptor.

Angiogenesis is an essential event for progression and metastasis of tumors
[39]. The anti-angiogenic therapy interferes with the supply of oxygen and
nutrients that are required for the tumor growth and is, therefore, utilized for the
treatment of a variety of cancers as well as colon cancer [39]. A major target of the
therapy is VEGF, which is known to promote several steps in angiogenesis
including proliferation, migration and tube formation of endothelial cells. Bev-
acizumab, a monoclonal antibody that binds to VEGF, is approved for use in the
treatment of metastatic colorectal cancer [14] and its application is expanded to
non-small-cell lung carcinoma and breast cancer because of the clinical avail-
ability [40].

CD133 and CD44

Significant increase in a cancer stem cell marker CD133-positive subpopulations
of colorectal cancer was found in human colorectal cancer HT29 cells resistant to
high doses of 5-fluorouracil [41]. A recent study also revealed that up-regulation of
CD133 is associated with prognosis in patients bearing the drug-resistant colo-
rectal cancer [42], suggesting that CD133 is a potential prognostic marker for the
resistant cells. The drug tolerance seemed to be sensitized to 5-fluorouracil- or
LOHP-mediated damage by using an anti-interleukin-4 neutralizing antibody [43].
In addition to the marker CD133, CD44 is recently proposed as the new potential
marker, based on the data showing the positive relationship of its expression in
colon SW620 cells with high potentials concerning colony formation, proliferation
and chemoresistance development [44, 45].
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Proteasome

The proteasome is a large multi-subunit assembly that degrades unwanted proteins,
which include oxidized and damaged proteins formed during exposure of cells to
chemotherapeutic drugs, as well as proteins involved in the regulation of the cell
cycle and transcription [46–48]. Compared to the normal cells, the proteolytic
activity of the proteasome in colon cancer cells is considerably higher, but is lower
than that in chemoresistant phenotypes of colon cancer cells [25]. The proteasome
is considered an important potential therapeutic target for chemoresistance. One
potential proteasome inhibitor that reverses the chemoresistance is bortezomib,
and its availability is supported by the clinical trials [49] as well as data from the
cell-based experiments [50]. The bortezomib-mediated sensitization of the cancer
cells to drugs has been shown to be mediated by multiple regulations of cell cycle
progression including the p21 cyclin-dependent kinase, checkpoint kinase and
cyclins [51], and by controlling turnover of transcriptional factors including
nuclear factor-jB (NFjB) and hypoxia-inducible factor-1 [15, 49]. Currently,
bortezomib is approved for treating only refractory and recurrent multiple mye-
loma in Japan and has been tested against other cancers such as lymphoma [52],
lung cancer [53] and colorectal cancer [54].

Up-Regulation of AKRs Related to Development of Cancer
and Chemoresistance

High Expression of AKRs in Tumors and Carcinomas Cells

AKR1B10 is a 36-kDa cytosolic NADPH-dependent reductase that is originally
identified as aldose reductase-like 1 or small intestine aldose reductase [55]. The
enzyme is expressed in human gastrointestinal tract and adrenal gland, but its
expression levels in other tissues including lung and liver are low [56, 57]. Clinical
investigation exhibited that high expression of AKR1B10 is found in airway of
healthy smokers compared to those of healthy non-smokers [57–62], suggesting
that the enzyme is up-regulated due to components of tobacco smoke. The sig-
nificant overexpression is also reported in the malignant tumors such as squamous
cell lung carcinomas [63–66], hepatocellular carcinomas [67, 68], uterine carci-
nomas [69], cholangiocarcinomas [67], and gastric [70] and esophageal tumors
[71], albeit at different expressions depending on their stage and sites examined.
Thus, AKR1B10 is the tumor marker, and is suggested that its overexpression is
implicated in carcinogenesis of the above types of cancers.

Four human members (AKR1C1, AKR1C2, AKR1C3 and AKR1C4) in the
AKR1C subfamily are cytosolic HSDs with different positional and stereochemical
preferences for steroid substrates [16]. AKR1C1 (20a-HSD), AKR1C2 (type 3 3a-
HSD), AKR1C3 (type 2 3a-HSD and type 5 17b-HSD) and AKR1C4 (type 1 3a-HSD)

114 T. Matsunaga et al.



share [84 % amino acid sequence identity, and collectively called AKR1C isoforms.
With the exception of liver-specific AKR1C4, the other three isoforms are expressed
in many human tissues, in which the extents of their expressions are different from
each other [16–18]. The three isoforms are overexpressed in cancer tissues, but their
expression levels are different depending on types of cancer. For example, AKR1C1 is
overexpressed in lung [63, 72, 73], uterine cervix [74] and colon cancers [23, 48].
Expression of AKR1C2 is elevated in lung [72], bladder [75] and esophageal cancers
[71]. In contrast, AKR1C3 is up-regulated in leukemia [76], lung cancers [77],
squamous cell carcinomas of head and neck [78], and carcinomas of hormone-sen-
sitive tissues such as the prostate [79] and the mammary gland [80]. The differences in
the expression levels of AKR1C1, AKR1C2 and AKR1C3 may reflect their various
roles in carcinogenesis and/or cancer cell proliferation [19–22].

Alteration in the AKR Expression in Colon Cancer
Chemoresistance

Resistance to chemotherapy is a principal problem in treating most common solid
tumors. Like the solid tumors, colon cancers are frequently resistant to the che-
motherapy and irradiation. One of the major problems is that the resistance leads to
malignant transformation and metastasis of tumors [2, 3]. Despite progressive
improvement of the therapeutic approach for colorectal cancer, a high proportion
of patients carrying the tumors eventually succumb to the metastatic transforma-
tion resulting from the resistance. Therefore, it is of great importance to discover
new cardinal factors that are involved in the development of colon cancer che-
moresistance, besides the above factors mentioned in section Possible Factors
Involved in Colon Cancer Chemoresistance.

There is growing evidence that some members of the AKR superfamily are
induced during the development of chemoresistance in a variety of cancers. The
alteration in expression of the AKR members (AKR1B10, AKR1C1, AKR1C2 and
AKR1C3) in various cancer cells resistant to anticancer drugs has been reviewed
[21]. In colon cancers, there are four papers that describe the changes in expression
of the AKRs caused by chemoresistance [21, 23–25], which are summarized in
Table 1. Although other AKR species were not examined, AKR1C1 is up-regu-
lated in methotrexate-resistant HT29 cells, and is suggested to abolish the cell
cycle arrest at S-phase and apoptotic response provoked by the drug [23]. In HT29
phenotypes resistant to MMC [24] and 2 lM LOHP (low-grade) [21], the AKRs,
other than AKR1C2, are overexpressed, and the level is the highest in AKR1B10,
followed by AKR1C1 and AKR1C3. However, the expressions of the four
enzymes are decreased in the HT29 phenotype resistant to 20 lM LOHP (high-
grade) [21]. Table 1 includes our unpublished data on the expression levels of
AKR1B10, AKR1C1, AKR1C2 and AKR1C3 in the HT29 phenotypes resistant to
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DOX and CDDP (HT29/CDDP). Gain of DOX resistance increases the expression
of AKR1B10, AKR1C1 and AKR1C3, and the expression patterns of the four
AKRs are similar to those in the MMC- and low-grade LOHP-resistant cells. In
contrast, the CDDP resistance resulted in significant decreases in the expression
levels of the four AKRs, which are similar to those in the high-grade LOHP-
resistant cells. The diversity in the AKR expression may be due to different toxic
mechanisms toward HT29 cells among the two platin-based drugs (CDDP and
LOHP), DOX and MMC. Presumably, the difference is also explained by the
results that the HT29/CDDP phenotype had high cross-resistance to toxicity
induced by LOHP, but the cross-resistance to DOX or MMC was low (unpublished
data). On the other hand, our recent study revealed that significant overexpressions
of AKR1C1 and AKR1C3 result from acquisition of CDDP resistance of other
colon cancer HCT15 and RKO cells, in which the mRNA for AKR1B10 is hardly
expressed [25]. Thus, alteration in the AKR expression due to the chemoresistance
is affected by both the enzyme distribution and cell types employed. Considering
that the four AKR members (AKR1C1, AKR1C2, AKR1C3 and AKR1B10) are
up-regulated with the development of chemoresistance of cancer cells derived
from other tissues [19–21], these enzymes are suggested to be closely involved in
cancer cell chemoresistance, except in some cases using the two platin drugs.

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional reg-
ulator of many enzymes including AKR1B10, AKR1C1, AKR1C2 and AKR1C3
(Fig. 1) [61, 81–83]. Under normal conditions, Kelch-like ECH-associated protein
1 (Keap1) recruits Nrf2 into the Cul3 containing ubiquitin ligase E3 complex for
ubiquitin conjugation and subsequent proteasomal degradation. When cells receive
various stimuli including reactive oxygen species (ROS) [84] and electrophiles
[85], Nrf2 is dissociated from Keap1 for translocation into the nuclei, and binds
with Maf to genes of antioxidant response element (ARE) to transcriptionally
induce proteins including the above AKRs. Ciaccio et al. showed that the

Table 1 Expression of AKRs in chemoresistant colon cancer cells

Cell Druga Concentrationb (lM) Expression of AKRc Ref.

1B10 1C1 1C2 1C3

HT29 MTX 10 nd : nd nd [23]
MMC 0.5 :: : ? : [24]
LOHP 2 (low-grade) :: : ? : [21]

20 (high-grade) ; ; ; ; [21]
DOX 0.5 :: : ? : Unpublished
CDDP 10 ; ; ; ; Unpublished

HCT15 CDDP 10 ne :: ? :: [25]
RKO CDDP 5 ne :: ? :: Unpublished

a MTX methotrexate; MMC mitomycin C; LOHP oxaliplatin; DOX doxorubicin; and CDDP
cisplatin
b Drug concentration that is used to establish the resistant cells
c Change compared to the parental cells: :: Highly up-regulation; : up-regulation; ? no change;
; down-regulation. nd not determined. ne no expression is observed
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acquisition of resistance to ethacrynic acid, a potent AKR inducer and Nrf2
activator, up-regulates the expression of AKRs in HT29 cells, and the resistant
cells also exhibit cross-resistance to adriamycin and MMC [86, 87]. These findings
apparently indicate that the AKR overexpression in cancer showing chemoresis-
tance is conceivably due to the Nrf2 activation. Induction of chemoresistance in
cancer cells frequently requires some somatic mutations [88, 89], which disrupt the
interaction between Nrf2 and Keap1. Therefore, constitutive up-regulation of these
AKRs may be triggered by an abnormality of the Nrf2-Keap1 system that occurred
during acquisition of chemoresistance. The mechanistic base for hyperactivation
of Nrf2 in the chemotherapy-resistant cancer cells is also explained by down-
regulation of Cul3 ubiquitin E3 ligase [90]. Thus, the constitutive activation of
Nrf2 is considered as a crucial event in the development of chemoresistance.

Possible Roles of AKRs in Colon Cancer Chemoresistance

Cell Proliferation

Retinoids function as major regulators for proliferation, differentiation and mor-
phogenesis of various types of cells (Fig. 2) [91]. Retinols are oxidized into retinoic
acids via retinals, and the resulting retinoic acids (all-trans-retinal, 9-cis-retinal and

Fig. 1 Induction of AKRs by Nrf2-dependent mechanism. Under basal conditions, Nrf2
complexed with Keap1-Cul3-ubiquitin (Ub) ligase E3 is subjected to polyubiquitination, and the
modified proteins are degraded in the Ub-dependent proteasome system. Upon stimulation with
oxidants such as ROS and electrophiles, Nrf2 is dissociated from Keap1 through its structural
modification by formation of disulfide bonds. Nrf2 is translocated to the nucleus, forms a
heterodimer with its obligatory partner Maf, and ultimately induces the expression of ARE-
dependent proteins such as NADPH: quinone oxidoreductase (NQO) 1 and AKRs
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13-cis-retinal) promote cell differentiation through bindings to retinoic acid recep-
tors or retinoid X receptors. In cancer cells, retinoic acids are maintained at low
concentrations, resulting in the high growth potentials [91]. AKR1B10 efficiently
reduces the retinals to their corresponding retinols, as its catalytic efficiency is much
higher than those of other enzymes including AKR1B1, AKR1C1 and AKR1C3
[92,93]. AKR1B10 overexpressed in cancer cells is thought to contribute to cancer
development by lowering the cellular levels of retinoic acids by reducing retinals
back to retinols [92–94].

Three AKR1C isoforms (AKR1C1, AKR1C2 and AKR1C3) are involved in the
synthesis of active androgen and estrogen, whose hyperproduction is recently
considered to promote proliferation of prostate and breast cancer cells [16, 19]. In
addition, the metabolism of PGs by the AKR1C isoforms is likely to be one potential
mechanism of cellular proliferation (Fig. 3). AKR1C1 and AKR1C2 convert PGD2

into its 11b-OH form, 9a,11b-PGF2, but have low PGF2a synthase activity [95]. As
AKR1C3 was originally identified as a PGF synthase, it efficiently catalyzes both the
formation of PGF2a from PGH2 and the reduction of PGD2 into 9a,11b-PGF2 [96].
The produced PGs (PGF2a and 9a,11b-PGF2) are ligands for the PGF receptor, and
their binding to the receptor activates signaling pathways including MAPK and
NFjB, finally promoting cellular proliferation [97, 98]. At the same time, the up-
regulation of the enzymes decreases the formation of 15-deoxy-PGJ2, an endoge-
nous ligand for peroxisome proliferator-activated receptor (PPAR) c, resulting in
inactivation of the pro-apoptotic signaling pathway [95].

In addition to the PG-dependent signaling, we have recently proposed the con-
tribution of two isoprene derivatives to the proliferative potential of cells (Fig. 4)
[21, 99]. Isoprenyl aldehydes, farnesal (FAL) and geranylgeranial (GGAL), are the
intermediates in the metabolism of farnesol (FOH) and geranylgeraniol (GGOH),

Fig. 2 Retinoid metabolism and cell proliferation. Retinols are oxidized to retinoic acids via
retinals by alcohol dehydrogenases (ADHs) or retinol dehydrogenases (RDHs), and aldehyde
dehydrogenase (ALDHs). 9-cis- and all-trans-Retinoic acids bind to nuclear retinoic acid receptor
heterodimers composed of RAR and/or RXR, and promotes the expression of genes involved in
cell differentiation through binding of the heterodimer to retinoic acid response element (RARE)
and consequently dissociating a corepressor protein. AKR1B10 efficiently reduces retinals back
to retinols, leading to cell proliferation through cellular low concentrations of the active retinoic
acids
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Fig. 3 PG metabolism by AKRs related to cell proliferation. PGF2a and 9a,11b-PGF2 are
formed from PGH2 and PGD2, receptivity, by AKR1C1, AKR1C2 and/or AKR1C3, and are
ligands for PGF receptor, leading to cell proliferation through activation of signal cascades
including MAPK, PI3K and/or NFjB. PGD2 is also metabolized to 15-deoxy-PGJ2, which is
assumed to link to the initiation of differentiative process via its binding to PPARc and/or
inactivation of NFjB. The reduction of PGD2 by the AKRs decreases the cellular level of 15-
deoxy-PGJ2, and the low level of 15-deoxy-PGJ2 also promotes cell proliferation

Fig. 4 Metabolic pathway of isoprenoids. Two prenyl pyrophosphates (farnesyl and geranyl-
geranyl pyrophosphates), intermediates of the mevalonate pathway, are dephosphorylated to the
corresponding alcohols (FOH and GGOH), which are oxidized to the carboxylic acids by alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) via the aldehydes (FAL and GAL).
FAL and GAL are also released from prenylated proteins by lysosomal prenylcysteine lyase
(Lyase). The carboxylic acid metabolites possibly lead to activation of apoptotic signaling
pathway. Like the retinoid metabolism, the reduction of FAL and GAL by AKRs decreases the
cellular concentrations of the apoptotic carboxylic acid metabolites, and increases those of FOH
and GGOH. FOH and GGOH are converted to their pyrophosphates, which are thought to
provoke both prenylation of cellular proteins including Ras and activation of MAPK cascade,
resulting in cell proliferation
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respectively, into their carboxylic acids (farnesoic acid and geranylgeranoic acid) by
the catalysis of dehydrogenases. The two isoprenyl alcohols (FOH and GGOH) are
phosphorylated to their pyrophosphates, which are rendered to prenylation of cel-
lular proteins including small G-proteins and activation of the downstream MAPK
signaling, leading to promotion of cell proliferation [100]. AKR1B10 efficiently
reduces FAL and GGAL into FOH and GGOH, respectively [99]. Comparison of the
kinetic constants (kcat/Km values) involved in reduction of the aldehydes among
seven AKR members (AKR1A1, AKR1B1, AKR1B10, AKR1C1, AKR1C2,
AKR1C3 and AKR1C4) reveals that AKR1B10 and AKR1C3 are predominant
enzymes involved in the reduction of FAL and GGAL, respectively [99]. Consistent
with the enzymatic activities, enhancement of growth potential by forced overex-
pressions of AKR1B10 and AKR1C3 was observed in human leukemia U937 [101]
and prostate PC3 cells [102], and is in accordance with data in similar experiments
using other cell lines [103–105]. In addition, it should be stated that the proliferation
rate in colon cancer HT29 cells is positively correlated with the AKR1B10
expression, and enhanced by the addition of low concentrations of FAL [21]. These
findings clearly indicate that the AKR1B10-mediated reduction of FAL into FOH
promotes the cell proliferation. When compared with the proliferation rates between
AKR1B10- and AKR1C3-overexpressing U937 cells prepared under the same
transfection conditions, the overexpression of AKR1B10 resulted in a 1.5-fold
higher growth rate than that of AKR1C3 (unpublished data). Although the precise
mechanisms underlying the difference remain uncertain, elevation of the prolifer-
ative capacity by the overexpression of AKR1B10 may be due to promotion of fatty
acid and lipid synthesis through acetyl-CoA carboxylase a [106, 107], in addition to
the above mentioned metabolisms of retinoids and isoprenoids.

Antioxidant Capacity

Exposure of some chemotherapeutic agents (DOX, MMC and CDDP) to cancer
cells generates ROS. The accumulation of ROS into the cells evokes the oxidative
damage of biomolecules, such as proteins, lipids and nucleic acids, and conse-
quently forms highly reactive and toxic carbonyl compounds including lipid
peroxidation-derived 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). It
has been previously proposed that glutathione S-transferase [108], AKRs (1B1,
1B10 and 1C1) [107, 109–111] and aldehyde dehydrogenases (ALDH) [112] are
the major detoxifying enzymes of the lipid peroxidation-derived aldehydes and
their glutathione-conjugated derivatives. Among them, one of the most effective
enzymes is AKR1B10, because overexpression of AKR1B10 lowers damage
induced by lipid aldehydes including HNE, ONE and acrolein in non-resistant and
resistant cancer cells [24, 103]. In addition, knockdown of AKR1B10 gene by
small interference RNAs sensitizes colon cancer HCT-8 cells to acrolein and
crotonaldehyde [103]. Thus, the detoxification of lipid peroxidation-derived car-
bonyl compounds is a role of AKR1B10 in tumor development. In colon cancer
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showing chemoresistance, up-regulation of AKR1B10 is responsible for inducing
MMC resistance in HT29 cells, and the major molecular basis is suggested to be
due to the enzyme-mediated detoxification of the lipid aldehydes resulting from
the MMC treatment [24]. In HCT15 cells that do not express AKR1B10, AKR1C1
and AKR1C3 are overexpressed and detoxify the aldehydes in the CDDP resistant
cells [25]. This study also shows that the AKR-mediated detoxification of the toxic
aldehydes and proteolytic activity of the proteasome toward the oxidatively
damaged proteins formed during the CDDP treatment collaborate to confer the
colon cancer chemoresistance. Since the treatment with proteasome inhibitors
bortezomib and MG132 enhances the expression levels of AKR1C1, AKR1C3 and
AKR1B10 in four colon cancer cells (SW480, HT29, Caco2 and HRT-18) [47, 48],
it is very intriguing to evaluate the relationship between AKR expression and
proteasomal activation.

Metabolism of Anticancer Drugs

AKR1B10 and AKR1C3 are suggested to be involved in the metabolic inactivation
of anticancer drugs, such as daunorubicin, idarubicin, epirubicin, oracin and DOX,
by reducing the carbonyl groups of the drugs into their less active alcohol metabolites
[113–119]. Recently, we have also found high NADPH-linked reductase activity
towards MMC in the drug-resistant HT29 cells (unpublished data), in which
AKR1B10 is significantly overexpressed compared to the parental cells [24]. Indeed,
AKR1B10 exhibits the MMC reductase activity, as it efficiently reduces several other
p-quinones [120]. In addition to the above two mechanisms of AKR1B10-overex-
pression in the development of MMC resistance, the ability of AKR1B10 to
metabolize this drug may be in part responsible for the drug resistance [24].

Reversal of Colon Cancer Chemoresistance Due
to Inhibitors Specific to Individual AKRs

As mentioned above, AKR1B10, AKR1C1 and AKR1C3 are predominant factors
for the gain of colon cancer chemoresistance, and their specific inhibitors are
therefore expected to be potential adjuvants to suppress the cancer tolerance to
anticancer drugs, leading to the persistence of the therapeutic efficacy. Since the
enzymes are recognized to be targets for the prevention and treatment of several
types of cancers described in the Introduction, various kinds of their inhibitors
have been reported [20, 21, 121, 122]. However, there are few studies that show
the selectivity of the inhibitors to the target enzyme in comparison with their
inhibitory potencies for the structurally similar enzymes with distinct functions.
The amino acid sequence identity between AKR1B10 and AKR1B1 is 73 %, and
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that among the four AKR1C isoforms (1C1-1C4) is [84 %. In particular,
AKR1C1 and AKR1C2 differ only by seven amino acids. Recently, several spe-
cific inhibitors of the respective enzymes have been found by molecular docking
and virtual screening based on the crystal structures of the enzymes and databases
of compounds that may show anti-tumor properties. In this section, we briefly
review recent progress on specific inhibitors of AKR1B10, AKR1C1 and
AKR1C3, in relation to prevention of resistance to anticancer drugs.

AKR1B10 Inhibitors

Various synthetic and natural compounds show inhibitory effects on AKR1B10, as
reviewed previously [21]. Table 2 summarizes the inhibitory potency and selec-
tivity (ratio of AKR1B10 to AKR1B1) of the inhibitors including those reported
recently. Among the natural compounds, c-mangostin is the most potent inhibitor
of AKR1B10, and oleanoic acid, followed by bisdemethoxycurcumin, show high
selectivity. The natural compounds listed in Table 2 have been described as being
effective in the chemoprevention of cancer or having potential antitumor actions,
and their inhibitory activities of AKR1B10 are believed to be responsible for their
anti-cancer properties [101, 123–125]. In the synthetic inhibitors, (Z)-2-(4-meth-
oxyphenylimino)-7-hydroxy-N-(pyridine-2-yl)-2H-chromene-3-carboxamide (PHPC)
and 3-(4-hydroxy-2-methoxyphenyl)acrylic acid 3-(3-hydroxyphenyl)propyl ester
(HAHE) are the most potent inhibitors. HAHE is highly selective, because it is
designed based on molecular docking of caffeic acid phenthyl ester in AKR1B10,
for synthesis of potent and selective inhibitors [101]. PHPC and 9-methyl-2,3,7-
trihydroxy-6-fluorone were found by virtual screening of chemical databases based
on the crystal structure of AKR1B10 [126, 127], but like an AKR1B1 inhibitor
tolrestat, they lack the selectivity to AKR1B10.

Table 2 Natural and synthetic inhibitors of AKR1B10

Inhibitor AKR1B10 AKR1B1 IC50 ratio Ref.

IC50 (lM) Ki (nM) IC50 (lM) (1B1/1B10)

Natural compounds
c-Mangostin 0.018 5.6 0.29 16 [123]
Bisdemethoxycurcumin 0.060 22 5.1 85 [124]
CAPEa 0.080 46 0.57 7 [101]
Oleanolic acid 0.090 72 124 1,370 [125]

Synthetic compounds
PHPC 0.0060 2.7 0.011 2 [126]
HAHE 0.0062 2.6 4.9 790 [101]
Tolrestat 0.054 46 0.014 0.3 [128]
MTFb 0.40 200 1.6 4 [127]

a CAPE caffeic acid phenthyl ester; b MTF 9-methyl-2,3,7-trihydroxy-6-fluorone
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The efficacies of bisdemethoxycurcumin [124], oleanolic acid [125], PHPC
[126], HAHE [101] and tolrestat [128] as the inhibitors were demonstrated in cel-
lular AKR1B10-mediated metabolism. In addition, PHPC [21] and HAHE [101]
suppress the proliferative potential in AKR1B10-overexpressing U937 cells. The
proliferation capacity of HT29 cells resistant to MMC and oxaliplatin is also
decreased by the addition of oleanolic acid [125] and PHPC [21], respectively.
Furthermore, an endogenous AKR1B10 inhibitor, PGA1, exhibits anti-tumoral
activity, and is also suggested to counteract the DOX-induced resistance of lung
cancer A549 cells through the inhibition of DOX metabolism by this enzyme [129].

Inhibitors of AKR1C1 and AKR1C3

In 2011, three elegant reviews on the inhibitors have been published [20, 121, 122].
Recently, new inhibitors with high potency and/or selectivity have been reported,
and are focused in this section. The potent inhibitor of AKR1C1 is 3-chloro-5-
phenyl salicylic acid (CPSA), which shows an inhibition constant (Ki) value of
0.86 nM [130]. The inhibitory potency and selectivity are compared with those of
several known inhibitors [20, 131–135] in Table 3, in which the IC50 values are
determined under the same assay conditions using S-1-tetralol as the substrate.
CPSA shows the highest selectivity to AKR1C1 over other AKR1C isoforms, but its
selectivity versus AKR1C2 is still low (only 30-fold). This low selectivity is due to
the structural similarity between AKR1C1 and AKR1C2, which differs only by one
active-site residue (Leu54 versus Val54). Table 3 also includes two flavonoids,
naringenin and 7-hydroxyflavone, which are reported to inhibit AKR1C1 potently
and selectively [134, 135]. The inhibitory potency and selectivity of the two
flavonoids are much lower than those of the synthetic inhibitors, CPSA and its
bromo derivative, 3-bromo-5-phenylsalicylic acid (BPSA).

AKR1C3 is inhibited by several structurally different compounds, which are
divided into steroidal and non-steroidal inhibitors, as previously reviewed [121, 122].
Representative steroidal inhibitors are medroxyprogesterone acetate and steroidal

Table 3 Inhibitory potency and selectivity of AKR1C1 inhibitors

Inhibitor IC50 (lM)a IC50 ratio
(1C2/1C1)

Ref.

AKR1C1 AKR1C2 AKR1C3 AKR1C4

CPSA 0.0037 0.11 [50 [50 30 [130]
BPSA 0.018 0.38 [50 33 21 [131]
3,5-Dichlorosalicylic acid 0.044 0.39 [50 [50 9 [132]
Benzbromarone 0.048 0.35 2.2 0.73 7 [133]
Naringenin 0.31 4.0 0.91 0.62 13 [134]
7-Hydroxyflavone 0.74 2.5 1.0 12 3 [135]
a The values are determined with substrate (S-1-tetralol) concentrations of 0.1 mM (for
AKR1C1) and 1.0 mM (for other enzymes) in the presence of 0.25 mM NADP+ at pH 7.4
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lactones, and the non-steroidal inhibitors are non-steroidal anti-inflammatory agents
(NSAIDs) and their analogues, benzodiazepines, prostaglandin analogues, flavonoids,
cyclopentane derivatives, and cinnamic acids. These inhibitors lack AKR1C3 selec-
tivity or their inhibitory effects on other AKR1C isoforms have not been tested.
Among the previously known inhibitors, a highly selective inhibitor is an indo-
methacin analogue, N-(4-chlorobenzoyl)-melatonin, but its IC50 value is 7.8 lM
[136]. Recently, more potent and selective AKR1C3 inhibitors have been reported and
are listed in Table 4. Two NSAIDs, tolfenamic acid and R-flurbiprofen, are more
potent and/or selective inhibitors of AKR1C3 than N-(4-chlorobenzoyl)-melatonin
[99]. Using a NSAID, flufenamic acid, as lead compound, several highly potent and
selective inhibitors of AKR1C3 have been synthesized [137]. The selectivity of a
representative inhibitor, compound 40, is shown in Table 4. The remarkable feature of
this inhibitor is the lack of cyclooxygenase inhibition, which is an undesirable action
for AKR1C3 inhibitors derived from NSAIDs. In addition, more selective inhibitors
that are structurally distinct from NSAIDs have been found by biological evaluation of
natural compounds and virtual screening of chemical libraries. Baccharin [3-prenyl-4-
(dihydrocinnamoyloxy)cinnamic acid], a component of honeybee propolis, is a potent
competitive inhibitor (Ki 56 nM) with high selectivity to AKR1C3 [102]. Compounds,
38 and 26, are actually specific inhibitors of AKR1C3 [138, 139], and compound 38
shows the highest inhibitory potency, and inhibits cellular AKR1C3-mediated
metabolism at low nM concentration [138].

Table 4 Selective AKR1C3 inhibitors

Inhibitor IC50 (lM) IC50 ratio Ref.

AKR1C3 AKR1C1 AKR1C2 AKR1C4 1C1/
1C3

1C2/
1C3

1C4/
1C3

Compound 38a 0.0061 [30 [30 [30 [4,918 [4,918 [4,918 [138]
Compound 40a 0.062 22.7 15.4 62.7 368 249 1,015 [137]
Tolfenamic

acid
0.017 0.71 0.57 53 42 34 3,118 [99]

Baccharin 0.11 [100 [100 [100 [909 [909 [909 [102]
Compound 26a 0.213 [300 206 [300 [1,408 967 [1,408 [139]
R-Flurbiprofen 1.5 [50 [50 act [30 [30 – [99]
CBMb 7.8 [100 [100 nd [13 [13 – [136]

a Structures

b Abbreviations CBM N-(4-chlorobenzoyl)-melatonin; act activation; and nd not determined
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In the cell-based experiments, the AKR1C1 inhibitors BPSA [131] and CPSA
[130] effectively inhibit cellular progesterone metabolism by AKR1C1, showing
low IC50 values of 0.46 and 0.10 lM, respectively. The AKR1C3 inhibitors, tol-
fenamic acid [99] and baccharin [102], are capable of mitigating facilitation of
proliferation potential of U937 and PC3 cells, respectively, by overexpression of
AKR1C3, in addition to almost completely inhibiting the cellular metabolism of
the preferred substrates (FAL and 17-ketosteroids). Treatment with tolfenamic
acid is also found to promote U937 cell differentiation through conceivably
lowering the proliferative effect of AKR1C3 [140]. Moreover, our recent study
shows that combination of BPSA and tolfenamic acid increases the sensitivity of
CDDP-resistant HCT15 cells to the anti-cancer drug [25]. This result may confer
direct evidence that AKR1C1 and AKR1C3 are key enzymes responsible for
CDDP resistance of the colon cancer cells. However, there is limited evidence in
the literature regarding the suppressive effects of the inhibitors on colon cancer
chemoresistance. It is therefore necessary to further determine efficacy of the
adjuvant therapy using the inhibitors in various malignant stages, such as invasion,
metastasis and tumorigenesis of cancer cells, caused with the chemoresistance.

Conclusion

Treatment with chemotherapeutic agents against colon cancer is currently limited
by appearance of the therapy-resistant cancer cells. Previous studies for evaluating
the molecular basis have proposed some candidates of the adjuvant therapy targets,
which include P-glycoprotein, growth factors, cell membrane antigens and pro-
teasomes. Besides them, other rationale candidates are three AKRs (AKR1B10,
AKR1C1 and AKR1C3), because they are up-regulated and play roles in not only
developing carcinogenesis of cells, but also acquiring colon cancer chemoresis-
tance. Therefore, accumulation of such experimental data using the inhibitors
specific to the enzymes would lead to the development of a new strategy, which
makes combination of anticancer drugs and the inhibitors applicable to colon
cancer chemotherapy. Since the cancer tolerance to chemotherapy is the most
significant problem for other carcinomas including lung cancer, we believe that
exploration of potent and specific inhibitors of the respective AKRs directly leads
to the development of adjuvant drugs useful for the treatments of various kinds of
cancers.
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Overcoming Drug Resistance Through
Elevation of ROS in Cancer

Amit K. Maiti

Abstract Drug resistance is the most devastating problem in treating cancer and
drug-resistant cells are harder to kill with the same drug. The mechanism of drug
resistance is believed to differ in various cancers for different anticancer drugs.
Most of the anticancer agents induce the generation of Reactive Oxygen Species
(ROS) to kill cancer cells by apoptosis. However, prolonged treatment with the
same drug reduces the ROS level and this reduced ROS level causes drug-sensitive
cancer cells to become drug-resistant. Exogenous ROS in conjunction with the
same drug resensitizes these drug-resistant cells. Thus, the apoptosis of cancer
cells by inducing ROS generation or drug resistance by lack of ROS could be the
principle mechanisms of drug sensitivity or drug resistance in various cancer cells.
The genetic mechanism of ROS-induced drug sensitivity and ROS depletion
leading to drug resistance in various cancer cells with most of the anticancer drugs
could involve ‘common molecular pathways’. Understanding the molecular
mechanism of ROS generation and maintenance could identify distinct targets for
subsequent manipulation to elevate ROS levels in cancer cells. Thus, a ‘combi-
national chemotherapy’ could be designed using an anticancer drug while main-
taining an elevated level of ROS in the cell during the drug treatment for
developing a successful chemotherapy.
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Abbreviations

ABCB1 ATP-binding cassette sub-family B member 1
APEX1 APEX nuclease (multifunctional DNA repair enzyme) 1
CASPs Caspases
CAT Catalase
CDDO-ME C-28 methyl ester derivative methyl-2-cyano-3,12-dioxooleana-

1,9(11)-dien-28-oate
ERK1/2 Extracellular-signal-regulated kinases
IPA Ingenuity Pathway Analysis
GST Glutathione-S-transferase
HIF 2-alpha Hypoxia-inducible factor 2, alpha subunit
hTERT Human telomerase reverse transcriptase
JUN Jun proto-oncogene
KEAP1 Kelch-like ECH-associated protein 1
MAPK8 Mitogen-activated protein kinase 8
MCTS Multi-cellular tumor spheroids
MDR1 Multi drug resistance protein 1
NFE2L2 Nuclear factor (erythroid-derived 2)-like 2
NF-jB Nuclear factor kappa-light-chain-enhancer of activated B cells
PEITC Phynyl isothiocyanate
ROS Reactive Oxygen Species
SOD Superoxide dismutase

Introduction

Cancer, a complex disease, arises as a result of a progressive accumulation of
genetic and epigenetic changes that lead to the breakdown of normal cell division
checkpoints. The World Health Organization (WHO 2008) estimated that 10
million patients worldwide die of this disease every year [1]. The remarkable fact
is that most deaths occur after subsequent medical intervention with anticancer
therapy that includes radio, chemo, targeted, immune and gene therapy. Despite
initial high response rates, a large proportion of patients relapse, resulting in a
therapeutic challenge. Many of these patients are not curable with current che-
motherapeutic strategies, so the goal of therapy is only to improve the quality and
length of life [2]. Consequently, more focus is needed on understanding drug
resistance in chemotherapy.

Chemotherapy is the most commonly used therapy that randomly kills rapidly
growing cancer cells. These chemotherapeutic drugs are classified in different
families such as DNA damaging agents (cisplatin, carboplatin), alkylating agents
(chlorambucil, cyclophosphamide, temozolomide, carmustine), topoisomerase
inhibitors (irinotecan, etoposide,), anti-metabolites (5-fluorouracil, methotrexate,
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capecitabine) and oncoprotein targeting antibodies and small molecule inhibitors [3].
These anticancer agents generally affect various cellular functions leading to rapid
cell death. Although anticancer agents kill cancer cells, biological barriers make it
difficult for anticancer drugs to access specific targets in cancer cells. The major
problems are that efflux pumps (p-glycoprotein, encoded by ABCB1 or MDR1) that
expel the drugs from these cells into the blood may lead to adequate levels of the drug
in the bloodstream with only small concentrations actually reaching the targeted area
and cells. Sometimes, drugs accumulate in isolated cellular areas, known as reser-
voirs, and never reach the targeted cells [4].

Therefore, improvements in the successful therapeutic management of cancer
require an understanding of multi drug resistance (MDR) mechanisms and the
identification of the underlying drug resistant pathways to successfully manipulate
genes for all classes of tumors. This process is believed to be dependent on the
cellular and microenvironmental context that include oncogene expression,
apoptosis mechanisms, cell cycle control and regulation, DNA repair and muta-
tion, vascularization, and many others.

The cellular signaling leading to these above mentioned molecular processes
depends on redox signaling in the cell. Altered redox signaling affects the stability
and integrity of cellular proteins, DNA, RNA and other small molecules and
modifies normal cellular pathways. Thus, understanding the redox regulation and
its role in developing drug resistance in cancer cells is immensely important in
overcoming chemotherapeutic challenges.

Fig. 1 Most common
reactive oxygen species
(ROS). Red is the unpaired
electron which makes an
extremely unstable
configuration and reacts with
other molecules or radicals to
achieve stable configuration.
The superoxide anion, which
is both ion (2) and radical (1).
Hydroxyl radical (3) is the
most reactive of all radicals.
It differs from the hydroxyl
ion (4) and hydrogen
peroxide (5). Ions like the
hypochlorite ion (6) is also
very reactive than other ions
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How ROS Changes Cellular Pathways

Reactive oxygen species (ROS) with a highly reactive oxygen atom (Fig. 1) reacts
with DNA, amino acids of proteins and unsaturated fatty acids leading to oxidation
of these biomolecules. ROS can lead to oxidation of amino acid residues of side
chains, formation of protein–protein cross-linkages and oxidation of the protein
backbone resulting in protein fragmentation [5]. These oxidized proteins, in turn,
modify normal protein functions, and have profound effects in cellular signaling
and create oxidative stresses in the cell, thus, compelling cells to adopt altered
molecular pathways.

How ROS is Generated or Maintained in Cancer Cells

ROS is generally produced at the electron transport chain of the mitochondria as a
byproduct during ATP generation and at the plasma membrane to kill cellular
microorganisms such as bacteria and viruses. Increasing evidence suggests that
mitochondrial ROS generation is the principal contributor in the growth of cancer
cells [6–8]. The Warburg effect states that cancer originates from a shift towards
excess glycolysis due to defective mitochondrial oxidative phosphorylation that
promotes differentiated cells to become undifferentiated cells [9]. Mutations in the
TCA cycle enzymes, indeed, show mitochondrial dysfunction with excess gly-
colysis in cancer cells [10] and oncogene activation increases the chance of
mitochondrial dysfunction [11].

External agents such as chemicals, radiation, and viruses induce mutations in
cancer-causing genes and proteins that lead to cancer. Hypoxia (low glucose
leading to low oxygen supply) increases HIF2-alpha expression leading to sup-
pression of the DNA mismatch repair system that continually increases mito-
chondrial ROS generation and induces oxidative damage in the mitochondrial and

Fig. 2 ROS generation in
cancer cells. Excess ROS in
cancer cells induces
mitochondrial DNA damage
leading to secondary
mutations that virtually
produce nonfunctional
enzymes and, in turn,
generates more ROS through
aberrant respiration. The
excess ROS production at the
mitochondria elevates the
ROS level in cancer cells
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nuclear genome. This view is widely supported as tumor cells have often found to
harbor numerous mutations in the mitochondrial genome [12, 13] leading to
abnormal metabolism and increased glycolysis [14] (Fig. 2). Thus, in cancer cells,
a cycle is maintained when excess ROS induces mutations in the mitochondrial
genome and excess mitochondrial genome mutations produce abnormal enzymes
that induce ROS generation .

Apart from ROS generation, cancer cells have distinct mechanisms for ROS
maintenance. Mitochondrial oxidative damage also triggers redox-sensitive tran-
scription to regulate ROS levels by eliminating ROS-scavenging systems such as
NFE2L2 (NRF2)-KEAP1, catalase, superoxide dismutases, glutathione peroxi-
dases, peroxiredoxins, glutaredoxins and thioredoxins [15]. A general mechanism of
ROS maintenance includes NF2EL2-KEAP1 systems (Fig. 3). NF2EL2 remains
bound with KEAP1 in the cytoplasm. However, excess ROS in the cell releases
KEAP1 from NF2EL2 and free NF2EL2 is phosphorylated by kinases and enters the
nucleus. Phosphorylated NFE2L2 binds to Antioxidant Responsive Element (ARE)
of the antioxidant genes such as catalase (CAT) or glutathione S-transferase (GST)
[16] and facilitates transcription. The minimum sequence requirement for ARE is 50-

Fig. 3 NFE2L2—KEAP1 mechanism for maintaining the ROS level in cancer cells. NFE2L2
remains bound with KEAP1, RBX1 and CUL3 at the cytoplasm. An excess ROS release KEAP1,
RBX1 and CUL3 from NFE2L2 and free NFE2L2 is phosphorylated in the cytoplasm.
Phosphorylated NFE2L2 travels to the nucleus and binds at the promoter of ARE sequence
carrying antioxidant genes to facilitate transcription leading to increased antioxidant enzymes
production that reduce excess ROS. P, the phosphate group, MAF-oncoprotein v-MAF family
members
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gagTcACaGTgAGtCggCAaaatt-30 or TMAnnRTGAYnnnGCRwwww or TGA(C/
T)nnnGCA [17, 18] and the presence of two or more copies of the ARE in close
proximity to each other often serves as a bona fide ARE [19]. As a result of NFE2L2
binding at the promoter, increased transcription of antioxidant genes leads to
increased protein synthesis that reduces the ROS level in the cell. However, all
antioxidant genes do not possess ARE sequences at their promoters such as SOD1,
SOD2, SOD3 etc. and must be activated through an unknown mechanism.

The Role of ROS in Tumor Development

ROS concentrations act as a double-edged sword for tumor progression as high
concentrations of ROS are needed for cancer progression but are toxic to normal
cells. The positive ROS signaling is a necessary prerequisite for the development
of tumors [15, 20] and cancer cells have higher ROS content than normal cells
[14, 21]. ROS acts as a second messenger and its signaling is necessary for cancer
metastasis, cellular adhesion and spreading [22, 23]. Recent studies also strongly
support the important relationship between the extracellular redox state and cancer
cell aggressiveness [24]. ROS compartmentalization and distribution within cancer
cells also plays a critical role in tumor progression [25]. ROS oxidizes and inhibits
MAPK phosphatases resulting in enhanced cancer cell proliferation and survival.
ROS also affects transcription through phosphorylation, activation, oxidation of
transcription factors such as APEX1, NF-jB complex, p53, and HIF-2 alpha
leading to changes in targeted gene expression [26–29].

An opposite view is also speculated by the observation of the fact that the
increase of some of the oncogenes such as K-Ras, B-Raf and Myc induce NFE2L2
expression that detoxify excess ROS in the cell and induce tumorigenesis in mice
[30]. This hypothesis considers that low level of ROS promotes tumorigenesis.
Several factors should be considered before considering this apparent conflict
between the ROS reduction and generation-inducing tumorigenesis. The effect of
only three oncogenes on an increase of NFE2L2 expression may not be sufficient
to assume that overall reduction of the ROS level induces tumor development. In
human lung cancer, several somatic mutations in KEAP1 are identified and
although the functions of these individual mutations are not studied [31], it is
believed that these mutations abolish KEAP1 binding with NFE2L2. Therefore,
free NFE2L2 could activate the antioxidant system to decrease the ROS level in
lung cancer but the direct evidence for such an assumption is not verified.
Unfortunately, Keap1-/- mice expressed NFE2L2 consistently but did not live
more than 21 days, making it impossible to assess its direct role in tumorigenesis
[32]. In contrast to oncogenes, tumor suppressor genes, such as p53 down regu-
lation induces ROS generation during tumorigenesis [33] and have also been
shown to harbor numerous mutations in many cancers [34, 35]. Thus, p53 mutation
supports the view that positive ROS signaling is necessary for tumorigenesis.
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In addition, no germline mutations in NFE2L2 or KEAP1 have been identified
in any cancers that would justify the notion that an increase in antioxidants
facilitates tumor development. It is believed that cancer stem cells or normal cells
when becoming cancerous do need increased ROS signaling [20, 23], but mature
tumor cells cannot sustain excessive ROS generation due to abnormal mitochon-
drial mutations in cancer cells [6, 14, 36]. Any cell, including a cancer cell is
vulnerable to excess ROS, thus somatic mutations in NFE2L2 or KEAP1 genes
observed in cancer cells could activate antioxidant systems to reduce the ROS
level that actually helps tumor progression, but may not initiate tumor develop-
ment. Importantly, several NFE2L2 mutations are also observed in lung cancer
patients (11/103 patients) and are believed to help tumor progression [31]. It has
also been proposed that excess ROS, generated by cancer cells, itself drives cancer
cells from their primary site towards the bloodstream and is a molecular basis for
metastasis [37]. This assumes that the adherence properties of cancer cells are
reduced in the presence of excessive ROS signaling and ROS-mediated physio-
logical changes help to prepare them to move from primary sites. Although
extensive research is needed to establish this, it appears that tumorigenesis
depends on a critical level of ROS in a dose-dependent manner but not solely on a
decrease or increase of ROS level in the cell [38, 39]. By combining both views it
is also possible that before transformation of normal cells to tumor cells, the ROS
level is low but it increases in the tumor cells due to secondary mutations in the
mitochondrial genome and then reaches a tolerable level of cancer cells before
metastasis.

Anticancer Drugs Induce the Generation of ROS to Kill
Cancer Cells Through Apoptosis

Excessive ROS kills cancer cells through induction of apoptosis [40]. Most of the
anticancer agents or drugs initially induce ROS generation to kill cancer cells
through apoptosis [41, 42]. Numerous anticancer agents including rotenone, ther-
moquinone, sulforaphane, menadione, rosmarinic acid, tanshinone, chlorambucil,
cisplatin, chrysophenol, dithiophene and others initially induce the generation of
ROS in various cancer cells [43]. However, it is unknown how these anticancer
agents influence cellular mechanisms to generate ROS. Direct relationships between
anticancer drugs and antioxidant modulating genes or proteins are yet to be estab-
lished. It is not known whether ROS generation is the only way to induce apoptosis,
or if other mechanisms also play an important role in inducing apoptosis. It is evident
that various anticancer agents induce ROS in various cancers by activating different
genes and these genes activate the same set of master genes that could induce
apoptosis. For example, in breast cancer, rotenone activates ERK1/2, JUN and
MAPK8 [44], but sulforaphane is known to inhibit hTERT functions [45]. Dithi-
ophene induces IL-24 in pancreatic cancer cells to activate apoptosis [46]. Similarly,
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in ovarian cancer, chlorambucil and cisplatin activate NF-jB and p53 [47] whereas
CDDO-ME (C-28 methyl ester derivative methyl-2-cyano-3,12-dioxooleana-
1,9(11)-dien-28-oate) downregulates NFE2L2 [48]. APEX1, a DNA transcription
factor and DNA repair gene, confers drug resistance through ROS generation and
MDR activation [29]. Recently, Li et al. [49] showed that APEX1 regulates mito-
chondrial membrane potential and ROS production after photodynamic therapy of
lung cancer cells and induces apoptosis. Again, ROS activates a master set of genes
such as CFLAR, MAPK8, PRKDC, p53, and RB1 that act on apoptosis-inducing
genes leading to apoptosis [43, 50, 51]. IPA analysis (Ingenuity Pathway Analysis;
www.ingenuity.com) has shown the interacting pathways of these genes (Fig. 4).
These master regulatory genes could activate Caspases (CASPs), FADD/MORT and
cytochrome C to activate apoptosis. Thus, the ROS-apoptosis model demonstrates
that various anticancer agents in most of the cancer cells induce apoptosis through
‘common molecular pathways’ [52].

Fig. 4 ROS-mediated apoptosis through common molecular pathways. Various anticancer drugs
activate different genes to induce ROS generation. However, these genes act on some master
regulatory genes that act on apoptotic genes leading to the induction of apoptosis. Thus,
anticancer agents share ‘common molecular pathways’ for ROS-mediated apoptosis
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ROS Reduction is the Key Underlying Mechanism of Drug
Resistance

Although most of these anticancer drugs induce apoptosis through ROS generation,
prolonged treatment with the same drug reduces the ROS level in ovarian cancer
cells [47]. Thus, drug resistant cells have a lower ROS content than the drug sen-
sitive cells. Addition of exogenous ROS in conjunction with the drug resensitizes
drug resistant cells to drug sensitive cells. The specific mechanism for this observed
phenomenon is unknown. Also, it is not clear whether a reduced ROS level makes
the sensitive cancer cells become resistant or if resistant cells reduce ROS levels in
the cell for their survival. More clearly, upon prolonged drug treatment, it is unclear
whether ROS reduction is a primary mechanism for drug sensitive cancer cells to
become drug resistant cells or a secondary consequence of resistant cells. Never-
theless, based on these observations, an ROS management cycle in cancer cells
could be established, which demonstrates these events (Fig. 5).

In support of this view, evidence is accumulating that the reduced ROS level
could be the primary reason for acquired drug resistance in various cancers. It is
observed that drug resistant cells have a higher expression of catalase at the plasma
membrane which could reduce some of the ROS level [53] in the cells derived from

Fig. 5 ROS cycle of drug resistance. A flow cycle of ROS-mediated drug resistance is shown
where anticancer drugs initially induce the generation of ROS that kills cancer cells by apoptosis.
However, prolonged treatment of the same drug reduces the ROS level and transforms drug-
sensitive cancer cells to drug-resistant cells. Exogenous ROS in combination with the drug
sensitizes drug-resistance cells
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human ovarian, gastric and cervical carcinomas. In fibrosarcoma cells, p21-medi-
ated apoptosis could be blocked by overexpression of catalase at the mitochondria of
these cells [54]. Overexpression of human catalase in transgenic mice breast cancer
model shows resistance to H2O2 associated oxidative stress [55]. Recent observa-
tions also indicate that overexpression of NFE2L2, that mechanistically should
reduce ROS, actually confers resistance to lung and ovarian epithelial cancers for
platinum based drugs [56, 57]. Depletion of glutathione S transferase (GST), an
antioxidant producing enzyme, induces apoptosis through Phenyl isothiocyanate
(PEITC) in MCF7 breast cancer cells [58]. However, it remains to be seen whether
prolong treated anticancer drug-mediated ROS reduction is a general mechanism of
various cancer cells for most of the anticancer drugs.

Drug Resistance Could be Overcome Through Modulation
of ROS Along with Drug Treatment as a ‘Combinational
Chemotherapy’

Elevation of the ROS level in combination with a drug is a useful strategy for
‘combinational chemotherapy’. Along with drug treatment, ROS level in cancer
cells could be elevated by modulating specific ROS level-elevating genes or
proteins. It could be achieved by (1) inactivating ROS generating and maintenance
genes or proteins, such as CAT, SODs, GSTPs or (2) modulating ROS regulatory
master genes, such as, ARHGEF6, NFE2L2, KEAP1, p53, APEX1 etc. or (3) direct
delivery of ROS at the tumor site during chemotherapy.

(1) Inactivating ROS generating and maintenance genes or proteins.

Manipulation of drug-resistant mechanisms by redox modulation could have sig-
nificant therapeutic implications by inhibiting the antioxidative enzyme systems of
tumor cells [15, 53, 59]. These are superoxide dismutases (SOD1, SOD2 and
SOD3), glutathione peroxidases, peroxiredoxins, glutaredoxins, thioredoxins and
catalases. Using optimal concentrations of the catalase inhibitor [3-aminotriazole
(3-AT)], or site-specific generation of hydroxyl radicals at the cell membrane of
the tumor could prove useful for maintaining excess ROS levels in cancer cells
[53]. The function of these target proteins could also be impaired by screening
small molecules or siRNA or triplex oligo-mediated gene silencing.

Drugs such as mitocans are being developed that selectively target the mito-
chondria of malignant cells without adversely affecting mitochondria of normal
cells. Mitocans selectively interfere with the bioenergetic functions of cancer cell
mitochondria, causing major disruptions that lead to increased ROS production
and induction of intrinsic apoptotic pathways [6].
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(2) Modulating ROS regulatory master genes.

Modulation of ROS regulatory genes should have a significant impact to maintain
the elevated level of ROS in the cell. As most cancers share common pathways for
antioxidant regulation to induce apoptosis, these strategies could be useful for
developing advanced chemotherapy for many cancers. siRNA silencing, triplex-
mediated oligo or regulating gene specific microRNA (miRNA) could be used for
elevation of ROS in cancer cells. Systematic knockdown of NFE2L2 or KEAP1
using siRNA confers resistance to carboplatin-treated epithelial ovarian cancer
cells [57]. However, it is not known whether KEAP1 downregulation overcomes
complete resistance in these cells. Experiments with combined manipulation of
several genes would be necessary for overcoming complete resistance in drug-
treated cancer cells. Cancer cell specific delivery of inhibitors of these genes could
be achieved using cancer specific biomarkers attached to suitable nanoparticles
[60, 61]. In these cases, a tumor specific attached biomarker would guide the
nanoparticles specifically to the tumor cells and the inhibitors directed to specific
ROS-reducing genes, such as NFE2L2 or ARHGEF6, could be inhibited leading to
excess ROS generation. Efficient delivery of oligo to cancer cells through lipo-
plexes and polyplexes has also been recently developed as a useful tool for effi-
cient gene silencing [62].

(3) Direct delivery of ROS at the tumor site during chemotherapy.

Finally, the most important aspect is to explore the direct delivery of ROS into
tumor cells along with drug treatment. Designing suitable vehicles to efficiently
deliver or generate ROS in conjunction with specific drugs could help to overcome
drug resistance in cancer cells in vivo. Among the emerging techniques, liposome-
polycation-DNA (LPDI and LPDII) nanoparticles conjugated with an ROS-
generating agent, is a promising discovery for treating cancer cells. LPD nano-
particles with a guanidinium containing cationic lipid such as DSAA [N,N-
distearyl-N-methyl-N-2-(N0-arginyl) aminoethyl ammonium chloride] can induce
ROS, down regulate MDR transporter expression (Pgp-glycoprotein mediated drug
efflux), increase doxorubixin uptake and also shows a significant improvement in
tumor growth inhibition [63]. Magnetically engineered nanoparticles also have
advantages of inducing ROS in cancer cells [64]. In another approach, multi-
cellular tumor spheroids (MCTS) offer an excellent in vitro system that mimics the
endogenous oxidative stress often observed in tumors and could potentially be
exploited for ROS generation in vivo [65].

Conclusion

Increased generation of ROS with an altered redox status might not only be
exploited for treatment of primary tumors, but has the potential to be used for
sensitizing drug-resistant cancer. Numerous antitumor agents induce ROS
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production and activate ROS-dependent apoptotic pathways. As observed in
ovarian carcinoma cells, anticancer drugs initially increase ROS levels, but pro-
longed treatment with the same drugs reduces ROS levels in cancer cells resulting
in drug resistance. Thus, constant maintenance of higher ROS levels in cancer cells
may be necessary for better drug efficacy. A rigorous investigation could be ini-
tiated to assess whether drug resistance due to ROS reduction is a general
mechanism for most cancer types with most of the anticancer drugs. Nevertheless,
using a ‘combinational chemotherapy’ with anticancer drug and elevation of ROS
could be an efficient alternative to increase the efficacy of drug treatments, thereby
precluding drug resistance.
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Cancer Stem Cells in Resistance
to Cytotoxic Drugs: Implications
in Chemotherapy

Man-Tzu Wang, Hongmei Jiang, Debasish Boral and Daotai Nie

Abstract The efficacy of cytotoxic chemotherapy is limited by drug resistance
presented by some cancer cells. Cancer stem cells (CSCs) are a sub-population of
tumor cells that can initiate tumor formation. If chemotherapy kills bulk of cells
within a tumor but not CSCs, the surviving CSCs can initiate the formation of
recurrent tumors. This article discusses the inherent resistance of CSCs toward
cytotoxic chemotherapy and some possible mechanisms involved. Approaches to
target CSCs to improve the efficacy of chemotherapy will also be discussed.
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Introduction

Cytotoxic chemotherapy is often used in the management of advanced cancer,
especially when the disease becomes metastatic. But the efficacy of chemotherapy
is often limited by drug resistant cancer cells [1–4]. The major target of cytotoxic
chemotherapy is the rapidly dividing cells found within a tumor mass. This has the
inherent consequence of collateral damages to other rapidly dividing cells found in
the bone marrow, the intestinal and respiratory epithelial lining and cells of the
hair bulb. Due to the limited therapeutic windows for most chemotherapeutic
agents and steep toxicity curves, the drug-resistant tumor cells cannot be killed
simply by dose escalations.

Several possible mechanisms and molecular alterations associated with tumors
have been implicated in resistance to chemotherapy, such as hypoxia associated
with poor vascularization in tumors [5], activation of pro-surviving signals such as
NF-jB [6, 7], overexpression of p-glycoprotein [8–10], defects in apoptosis
[11–16], and presence of drug-resistant cancer stem cells (CSCs). These mecha-
nisms are not necessarily mutually exclusive; in fact, they often overlap. In this
review, we will evaluate the role of CSCs in resistance to cytotoxic drugs and its
implications in chemotherapy.

The Conceptual Framework of Cancer Stem Cells

Tumors are quite heterogeneous. In a given tumor, there is considerable hetero-
geneity among tumor cells in terms of proliferation, differentiation, and their
ability to form tumors when transplanted [4]. It is increasingly appreciated that
cancer cells with stem cell-like properties are responsible for the initiation,
maintenance and growth of the tumor [17]. Cancer stem cells (CSCs) are defined
as a small subpopulation of cells within a tumor that possesses the capability to
renew itself and gives rise to a tumor that can recapitulate all the heterogeneous
cell lineages of tumor cells within the original tumors [18]. CSCs are also termed
as ‘‘tumor initiating cells’’ based on their capacity to initiate tumors when trans-
planted into immuno-compromised mice. The number of CSCs varies from 5 to
30 % of the total malignant cell population [6]. Studies suggest that, although
representing only a small percentage of cells within tumors, the CSCs isolated can
reconstitute a new tumor with all the cell types represented in the tumor of origin
when transplanted [19].
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Identification and Characterization of Cancer Stem Cells

A study of acute myelogeneous leukemia provided the first experimental evidence on
the existence of cancer stem cells. A subpopulation of leukemic cells, which
expresses the CD34 surface maker but lacks the CD38 marker, was able to reca-
pitulate leukemia in NOD/SCID mice [20]. The cells exhibited a cell surface
immune-phenotype similar to the normal hematopoietic stem cells. In addition to
leukemia, CSCs have been isolated from different types of cancers, with different but
sometimes overlapping profiles of cell surface markers (Table 1). For example, in
breast cancer, as few as 200 CD44+/CD24-/low cells were able to form tumors in
immune deficient mice, whereas injections of 20,000 cells from the remaining
population failed to form tumors [21, 22]. The tumorigenic population gave rise to
additional CD44+/CD24-/low epithelial tumors; these cells were able to form tumors
in other immune deficient mice when they were serially transplanted [21, 22].

Role of CSCs in Resistance to Cytotoxic Chemotherapy

A significant implication of the cancer stem cell theory is the intended target of
cancer therapy such as chemo- or radio-therapy. If cancer treatment kills most of
the cancer cells in the stage of transit amplifying and differentiation without killing
the stem cells, the surviving CSCs will eventually lead to the recurrence of tumors.
In fact, there are a number of studies demonstrating the increased resistance of
CSCs toward chemotherapy [34]. For example, the CD133-positive cells isolated
from a glioblastoma patient sample has exhibited significant resistance to the
chemotherapeutic agents including temozolomide, carboplatin, and paclitaxel
(Taxol) [35]. The increased resistance of CSCs to cytotoxic chemotherapy [34]
raises an interesting question regarding how to kill CSCs in a more effective way.

Table 1 Various CSCs isolated on the basis of cell surface markers by cell sorting techniques

Cancer CSC phenotype Reference

AML CD34+CD38-CD90- [20]
Breast cancer ESA+CD44+CD24-/lowLin-, ALDH1+ [21, 22]
Brain cancer CD133+ [23]
Colon cancer CD133+ , CD44+ EpCam+CD166+ [24, 25]
Osteosarcoma CD133+ [26]
Pancreatic cancer CD44+CD24+ESA+ [27]
Prostate cancer CD44+a2b1+CD133+ [28]
CNS CD133+ [29]
Head and neck CD44+ [30]
Melanoma ABCB5+ [31]
Liver CD133+CD13+, ALDH+ [32, 33]
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The mechanism of action of most chemotherapeutic drugs includes the
impairment of cell division or mitosis, DNA damages, and induction of apoptosis
and other types of cell death. Although the chemotherapeutic drugs kill most cells in
a tumor, the key question is whether CSCs can survive and cause tumor recurrence.
Indeed, CSCs have an inherent resistance to chemotherapy thorough various
mechanisms, including increased functionalities of ATP-binding cassette efflux
transporters, increased stress response and pro-surviving signals, and increased
DNA repairs. Finally, but not lastly, the quiescence of CSCs can pose significant
resistance to chemotherapy whose cytotoxic chemotherapy is more geared to target
the rapidly proliferating tumor cells than to those quiescent tumor cells.

Role of ABC Efflux Transporters in CSC Resistance
to Chemotherapy

Multi-drug resistance (MDR), a clinical phenomenon of decreased intracellular
drug retention and changed tumor response, is one of the primary factors limiting
effective therapy in cancer [36]. Many in vitro and in vivo models have been
developed to study the development of MDR and to assess the potential clinical
application of MDR modulators [7, 37]. The differential induction of adenosine
triphosphate (ATP)-binding cassette (ABC) transporters has been associated with
MDR in many cancers [38, 39]. These transporters transport solutes across
membranes, and their roles in drug resistance have been extensively investigated.
The ABC transporter gene products, such as ABCB1 (MDR1, P-gp), ABCG2 and
BCRP, expressed in tumor cells allow cancer to resist the chemotherapies. For
example, ABCB5, a super-family of ABC, has a significant role in chemo-resis-
tance in human melanoma. When ABCB5 mRNA levels are intentionally reduced
using siRNAs, sensitivity of melanoma tumor cells to various drugs, including 5-
flourouracil, camptothecin, and mitoxantrone, improves considerably [40].

Both normal stem cells and CSCs commonly express drug pumps such as the
ABC transporters, ABCB1 and BCRP. Historically, stem cells or CSCs have been
isolated as the ‘‘side population’’ (SP) [37, 41], which express active efflux trans-
porters [37, 41]. For example, CSCs enriched from leukemia SP fractions have an
increased ability to pump daunorubicin and mitoxantrone out of the cell [42]. The
CSCs have been found to be closely associated with the high expression of ABC
transporters including ABCB1 and ABCG2. It has been experimentally shown that
ABCG2 and other ABC transporters are responsible for the transporting of fluo-
rescent dye out of normal murine and human cancer cells [43]. Among the common
chemotherapeutics, vinblastine and paclitaxel are common substrate for ABCB1.
Methotrexate, topotecan, and imatibib mesylate are substrates for BCRP. The
enhanced expression and activities of the ABC transporters can enable CSCs to
pump out chemotherapeutic agents, when they are the substrate for the ABC
transporters, which can lead to an increased resistance to chemotherapy.
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Role of Drug Modifying Enzymes in CSC Resistance
to Chemotherapy

Aldehyde dehydrogenases (ALDH) (EC 1.2.1.3) are a group of enzymes that
catalyze the oxidation (dehydrogenation) of aldehydes, leading to the detoxifica-
tion of exogenously and endogenously generated aldehydes [44]. ALDH1 activi-
ties are frequently used to isolate breast cancer stem cells, and ALDH1 expression
is associated with a poor prognosis [45]. Increased ALDH activities were also
noted in leukemic CSCs [46–48]. In liver cancer, ALDH is associated with liver
CSCs [33]. The increased ALDH expression/activity may confer CSCs with
increased resistance to chemotherapeutics such as cyclophosphamide, as ALDH
may oxidize and inactivate aldophosphamide/4-hydroxycyclophosphamide
(4-HC), the bioactive metabolic byproduct of cyclophosphamide [49].

Role of Pro-Survival Signaling in CSC Resistance Toward
Chemotherapy

Another mechanism of CSC resistance to chemotherapy is the preferential
activation of pro-survival signaling. For example, hepatocellular carcinoma CSCs
presented a preferential activation of the Akt signaling pathway in resistance to
chemotherapy [50]. CD44, a receptor for hyaluronan (HA), is a major marker for
CSCs in a variety of cancers. The binding of CD44 by HA can lead to the
association of CD44 with the epidermal growth factor receptor (EGFR) [51, 52].
This association can cause the activation of MAP kinase and other cellular sig-
naling pathways which promote cell survival in responses to chemotherapeutic
drugs such as cisplatin, methotrexate, and adriamycin [51]. Further, the HA-CD44
interaction can activate the EGFR-elicited cellular signaling pathways without
engagement of the ligand EGF [51, 52], which also leads to the resistance toward
targeted anti-EGFR therapy. It is of interest to determine whether other CSC
surface markers can initiate or potentiate pro-survival signaling in the resistance to
chemotherapy.

Role of Increased DNA Repairs of CSC: Potential Role
in Drug Resistance?

In a seminal study, it was found that CSCs isolated from glioblastomas presented
an increased resistance toward radiotherapy via the preferential activation of
DNA-damage repair mechanisms [23]. It was found that, while radiation caused
equal levels of damage to all cancer cells, CSCs repaired the damage more rapidly
than non-CSCs, through the ready activation of the DNA damage and replication

Cancer Stem Cells in Resistance to Cytotoxic Drugs 155



checkpoints that include the checkpoint kinases, Chk1 and Chk2 [23]. The
increased ability of DNA repairs in CSCs can confer resistance toward chemo-
therapy, especially those that can cause DNA damages and checkpoint controls.
For example, as a participant in the cytarabine-induced S-phase checkpoint acti-
vation, Chk1 can cause the resistance of AML cells toward cytarabine [53]. The
inhibition of Chk1 sensitized AML cells toward cytarabine [53]. It is unknown,
however, whether other mechanisms of DNA damage repairs are involved in the
resistance of CSCs toward chemo- or radio-therapy. It is likely that the process is
multi-factorial. Some unique features of stem cells or CSCs, such as slow cycling
or quiescence, can make it possible for the cells to repair the damages.

Role of CSC Quiescence in Resistance to Chemotherapy

Normal adult stem cells are usually slow-cycling and quiescent. Under steady-state
conditions, adult stem cells divide asymmetrically to maintain tissue homeostasis
by keeping their number constant. Asymmetric division refers to the asymmetric
partitioning of cell components and/or placement of daughter cells relative to
external microenvironments. It is a defining strategy used by stem cells to self-
renew and at the same time generate progeny cells for differentiation. Selective
segregation of template DNA strands is one feature of stem cells that has been
utilized to characterize stem cells known as long term label retaining cells (LRCs)
[54]. Normal stem cells cycle less frequently than the more differentiated transit-
amplifying cells, and therefore, adult stem cells are often LRCs.

Since most cytotoxic chemotherapeutic agents preferentially target the rapidly
proliferative cells, another mechanism of CSC drug resistance is the quiescence.
CSCs from acute and chronic myelogenous leukemias are relatively quiescent
[55, 56], which may cause their resistance to chemotherapy. It is conceivable that
the CSC can enter a state of quiescence under substantial selection pressure from
chemotherapy. Therefore, there must exist a period of relative lack of proliferation,
during which the CSCs can reduce their metabolic rate and enter into a quiescent
state to adapt to the new selection pressure.

Role of Stem Cell Factors in Chemoresistance

The transcription factors Nanog, Oct3/4, and SOX2 constitute the core tran-
scriptional regulatory circuitry in human embryonic stem cells (ESCs) [57, 58].
Ectopic expression of ESC-associated transcription factors can reprogram fibro-
blasts into pluripotent stem cells [59]. The Nanog expression at the mRNA level
was detected in NT2 teratocarcinoma cells [60, 61], malignant cervical cancer
[62], testicular carcinoma in site and germ tumors [63], oral carcinoma [64],
Ewing’s sarcoma [65], seminoma and breast carcinoma [66]. It was found that
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Nanog functionally regulates tumor growth [67]. It has been demonstrated that
NANOGP8, a pseudogene of NANOG, promotes cancer stem cell characteristics
and enables prostate cancer to resist androgen deprivation therapy [68].

In addition to Nanog, Oct3/4 and SOX2 expressions in cancer have been
reported. Oct3/4 expression promoted dedifferentiation of melanoma cells to CSC-
like cells, with concurrent marked increase in resistance to chemotherapeutic
agents [69]. Interestingly, Oct4-induced dedifferentiation was associated with the
increased expression of endogenous Oct4, Nanog and Klf4 [69]. The stem cell
factors also collaborate with CD44 to promote resistance of CSCs to cisplatin in
head and neck squamous cell carcinoma [70]. In this study, it was found that HA
stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog
leading to both a complex formation and the nuclear translocation of three CSC
transcription factors, stimulation of miR-302 expression in CSCs, cancer stem cell
properties that include the resistance to chemotherapeutic agents such as cisplatin
[70]. The studies suggest a critical role of stem cell factors in mediating CSC
resistance to cytotoxic chemotherapy.

Can We Target CSCs to Eliminate Drug Resistance
and Tumor Recurrence?

Given its role in tumor initiation, CSCs should be targeted to eliminate tumor
recurrence after therapeutic interventions such as chemotherapy. However, this
effort is made difficult by the inherent resistance of CSCs to chemotherapy. It is
important to elucidate how CSCs acquire resistance to chemotherapy so that a
strategy can be formulated to sensitize CSCs to chemotherapy. There are a number
of promising approaches reported to sensitize CSCs to cytotoxic chemotherapies.
For example, colon CSCs, which were resistant to fluorouracil or oxaliplatin, can
be sensitized by an interleukin-4 blocking antibody [71]. It was shown that the
autocrine stimulation of interleukin-4 receptors on CSCs may contribute to their
stemness including the drug-resistant phenotype [71]. The drug resistance of CSCs
is likely multi-factorial. By further understanding of the biology of CSC drug
resistance and the factors/pathways involved, we can develop means to eliminate
those drug resistant cells and, therefore, tumor recurrence will not occur.
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Abstract The hallmarks of cancer cells are a higher proliferative activity and an
aberrant genotype with respect to normal cells. These features can be exploited for
the development of selective chemotherapeutic treatments against cancer. In par-
ticular, the connections among signal transduction pathways, cell cycle checkpoints
and DNA replication and repair have the potential to provide new venues for the
treatment of cancer. Here, we will review how the differences existing between
normal and tumour cells, with respect to control of cell proliferation and mainte-
nance of the genetic stability, can be exploited in cancer chemotherapy.
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Introduction

Tumour cells are characterized by a higher proliferative activity with respect to the
surrounding cells. This hallmark of cancer cells has been regarded since the begin-
ning as a feature to be exploited for the development of selective chemotherapeutic
treatments against cancer. Indeed, anticancer chemotherapy can be regarded as the
science of selective toxicity, since it is aimed at reducing the proliferation of cancer
cells with minimal perturbation of the homeostasis of normal cells.

In order to achieve selectivity, however, a first requirement to be fulfilled is the
identification of a suitable target. Ideally, such a molecular entity should play an
essential role in cancer cells, while being dispensable for the normal life of healthy
cells. Once a suitable target is identified, small molecules need to be developed
which selectively suppress that particular molecular function, without interfering
with other similar proteins eventually present in the cells.

In practice, neither of these two goals has been fully achieved in contemporary
anticancer chemotherapy. Classical anticancer drugs, in fact, target proteins which
are involved in the proliferation of both normal and diseased cells. Selectivity is
achieved on the basis that in adult organisms only a small subset of cells have
proliferative indexes similar to cancer ones, thus administering the correct doses of
drugs for a limited period of time, may achieve suppression of cancer growth
without making too much damage to the normal cells.

In recent years, thanks to the advancement of our understanding of the physi-
ology of cancer cells, it was realized that tumourigenesis is almost invariably
driven by aberrations in various signal transduction and DNA repair pathways. As
a result, cancer cells are dependent, for their survival, on a narrower complement
of molecular functions than normal cells. Fostered by these findings, novel targets
have been identified, such as tyrosine kinases and DNA repair enzymes. Selective
inhibitors of these new targets have been developed and have already entered the
clinics. However, after a few years, also these new approaches did not completely
fulfill the expectations of the researchers. In many instances, drug resistance
readily developed and, thus, reducing the efficacy of the drugs. In addition,
alternative pathways, sometimes tumour-specific, can be activated in cancer cells
to surrogate for the functions inhibited by the drugs.
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As a result, it is now clear that a shift of paradigm is required to develop a new
generation of anticancer drugs. Genome-wide analyses of cancer cells proteomes
and transcriptomes have provided the experimental evidence for the existence of
truly different molecular phenotypes among different tumour types. Thus, cell
proliferation cannot be considered anymore, according to the simplistic view of the
past, as the hallmark of all cancers since the molecular pathways leading to
uncontrolled proliferation are very diverse.

A more fruitful approach should be based on the understanding of the links
connecting signal transduction pathways to cell cycle checkpoints and DNA
replication and repair. Proliferative signals, which are transduced by tyrosine
kinases, beside inducing DNA replication, also activate those pathways that are
required to maintain a level of genomic stability compatible with cell survival,
including DNA repair. These pathways are the same that also allow tumour cells to
cope with the DNA damage induced by classic anticancer agents such as etoposide
or cis-Pt. At the same time, tumours are very often defective in one or more DNA
repair pathways, thus depending on the remaining ones for their survival. Thus, a
strategy aimed to specifically target both signal transduction and DNA damage
tolerance pathways may prove to be effective on a large fraction of tumours. An
additional benefit of such a combination targeted chemotherapy could be to reduce
the emergence of drug resistance. In fact, the genetic barrier required to develop at
least one independent mutation for each target will be higher than in the case of
monotherapy regimens. To date, several signal-transducing kinases are being
regarded as attractive targets for selective cancer chemotherapy. In addition, the
realization that in human cells there are at least 15 different DNA polymerases
playing non-overlapping roles in DNA replication and repair, has provided entirely
new venues for the development of novel cancer drugs.

Targeting Signal Transducing Pathways

Phosphorylation is a fundamental mechanism used in transduction pathways to
propagate the signal to final effectors. The reaction consists in the transfer of the —
phosphate from ATP to amino acidic residues in specific peptide substrates. The
enzymes responsible for this reaction are tyrosine kinases (TKs) and serine-thre-
onine kinases (STKs). These enzymes regulate multiple aspects of cellular
metabolism, determining differentiation, adhesion, motility, genome stability, cell
growth and death.

Receptor Tyrosine Kinases (RTKs) are single transmembrane domain receptors
resident in the plasma membrane with high affinity for ligands like growth factors,
cytokines or hormones. Unlike RTKs, non receptor tyrosine kinases (NRTKs) lack
both extracellular and transmembrane domains and can be found free in the
cytosol as well as in the nucleus, or linked to the inner cell membranes by
myristoylation or palmitoylation modifications. These enzymes harbour protein–
protein interaction domains like Src homology-2 (SH2), Src homology-3 (SH3)
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and pleckstrin homology domains by which NRTKs interact with substrates or
regulatory factors.

STKs include a large number of kinases whose activity can be regulated by
numerous chemical signals, including DNA damage, cAMP/cGMP, diacylglycerol
and Ca2+/calmodulin. Their activity is crucial in the genome stability and its
maintenance. Given their roles within the cell, their overexpression or deregulation
are linked to the onset, progression and malignancy in a wide range of cancers.
Moreover, the deregulation of one or more specific kinases appears to have a positive
effect on particular cancer cells survival. Therefore, the specific inhibition of such
kinases leads to cancer cell death without impairing the survival of healthy cells. For
these reasons, kinases represent ideal candidates for cancer targeted therapy.

BCR-Abl as the Prototype of Molecular Targeted
Chemotherapy

The classic example of a successful therapy targeted to a protein kinase is the
inhibition of the Abl kinase in leukemias. NRTKs Abl1 and Abl2 are members of
the Abl family of kinases, involved in actin remodelling, cell adhesion and
motility, DNA damage response and microbial pathogen response [1]. Equally to
the Src Family Kinase (SFK) members, Abl proteins can exist either in an active
(open), or inactive (closed) form. The shift from open to close conformation is
regulated through self interaction between the regulatory domains SH2 and SH3
and the C-terminal part of the protein. ABL genes are constitutively activated by
chromosome translocations in various haematopoietic malignancies. Chronic
myeloid leukemia (CML) is characterized in almost all cases by a t(9q34;22q11)
translocation that fuses the Bcr (breakpoint cluster region) and ABL1 genomic
regions. The Bcr-Abl1 fusion gene product (p210) has a constitutive tyrosine
kinase activity that leads to the activation of the downstream pathways of Abl,
conferring to the haematopoietic cell a tumoral phenotype [2]. A similar translo-
cation occurs in three to five percent of childhood [3] and 20–30 % of adult acute
lymphoblastic leukemia (ALL) cases. Additional ABL1 fusion variants like
NUP214-ABL1, EML1-ABL1 and ETV6-ABL1 [4–6] have been reported in some
other leukemias, such as acute myeloid leukemias (AMLs) [7]. In all of these
cases, the cell transformation activity by ABL fusion proteins is inextricably tied
to their tyrosine kinase activity. In May 2001, the FDA approved Imatinib as the
first-line treatment for CML. Imatinib is a selective TK inhibitor which competes
with ATP in binding to the Bcr-Abl protein kinase. In particular, the drug occupies
a part of the ATP-binding pocket of the enzyme and stabilizes the inactive, non-
ATP-binding form of Bcr-Abl [8]. Imatinib has shown excellent activity against
CML, inducing apoptosis in leukemia cells; its introduction in therapy greatly
improved the outcome of CML patients with complete haematological remission
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in more than 90 % of previously treated patients who are resistant to interferon
treatment [9, 10].

Beyond Imatinib: New Generation TK Inhibitors

After Imatinib, many other small-molecule inhibitors specifically targeting different
kinases have been approved for the treatment of different cancers or are in clinical
trial (Table 1). Erlotinib and Gefitinib are small-molecule inhibitors targeting the
Epidermal Growth Factor Receptor (EGFR) Family that are approved in breast and
non–small cell lung cancers therapy. EGFR is the cell-surface receptor of extra-
cellular protein ligands of the epidermal growth factor family (EGF-family) mem-
bers. As for other RTKs, binding of the ligand stimulates the dimerization of EGFR
resulting in autophosphorylation and, consequently, in the full activation of the
kinase domain [11]. In non–small cell lung cancer (NSCLC), which accounts for
approximately 85 % of lung cancer cases, EGFR is overexpressed or hyper activated
through somatic gain-of-function mutations in exons encoding the EGFR tyrosine
kinase domain (in-frame deletions in exon 19 or L858R substitution) [12, 13].

Table 1 Tyrosine kinase
inhibitors in anticancer
therapy

Inhibitor Target

Small molecule inhibitors
Axitinib Multiple targets
Bosutinib Bcr-Abl/SRC
Crizotinib ALK/MET
Dastinib Multiple targets
Erlotinib EGFR
Gefitinib EGFR
Imatinib Bcr-Abl
Lapatinib ErbB1/ErbB2
Nilotinib Bcr-Abl
Pazopanib VEGFR2/PDGFR/KIT
Pegaptanib VEGFR
Ruxolitinib JAX
Sorafenib Multiple targets
Sunitinib Multiple targets
Vandetanib RET/VEGFR/EGFR
Vemurafenib BRAF
Monoclonal antibodies
Bevacizumab VEGFR
Cetuximab ErbB1
Panitumumab EGFR
Ranibizumab VEGFR
Trastuzumab Erb2
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Erlotinib and Gefitinib affect the EGFR kinase activity by acting as ATP competing
molecules, binding in a reversible fashion to the ATP-binding site of the receptor.
Like EGFR, Human Epidermal growth factor Receptor 2 (HER-2) is a member of
the EGFR family. HER-2 is a RTK normally involved in signal transduction path-
ways leading to cell growth and differentiation, migration and apoptosis. It is con-
sidered an orphan receptor because none of the Epidermal Growth Factor (EGF)
ligands are able to activate it. On the other hand, HER-2 is the preferential dimer-
ization partner of all other members of the EGFR family. HER-2 amplification or
overexpression in breast cancer was found to be correlated with aggressive tumour
growth and poor clinical prognosis, rendering HER-2 an ideal candidate for che-
motherapy [14]. Lapatinib is a selective, potent, small-molecule inhibitor of HER1
and HER-2 that is approved in combination with Capecitabine for the treatment of
patients with advanced or metastatic breast tumour stages with overexpression of
HER-2 [15, 16]. The binding mechanism resembles that one of Imatinib to Abl,
hence, it binds to the inactive HER-2 form [17].

The Unmet Promises: Drug Resistance to TK Inhibitors

Despite the administration of these drugs that have greatly ameliorated the efficacy
of the therapy, in many cases, the onset of drug resistance leads to treatment
failure. Drug resistance can be achieved in different ways that are best described in
ABL-related tumours. Indeed, the follow-up of CML patients receiving Imatinib
showed that primary resistance (no response to Imatinib after the initial treatment)
or secondary resistance (development of resistance after achieving an objective
response) emerged in 31 % of the patients. In all cases, Imatinib resistance was
characterized by the presence of active Bcr-Abl, rather than the activation by the
cell of an alternative signaling pathway independent from Bcr-Abl [18] and, thus,
indicating that the BCR-ABL signal transduction pathway is crucial to cancer cells
survival. The mechanisms of acquired Imatinib resistance were due to BCR-ABL
gene amplification or mutation events. In the first case, due to BCR-ABL gene
amplification or overexpression, the intracellular Imatinib concentration is not
high enough to inhibit all Bcr-Abl molecules in leukaemic cells [19, 20]. In the
second case, BCR-ABL mutations emerged upon the selective treatment pressure.
Up to now, nearly 100 ABL mutants have been described, some of these appearing
with higher frequency than others: 15 single amino-acid substitutions account for
more than 85 % of the reported mutations, and 66 % of reported cases occur
specifically at seven sites only (G250, Y253, E255, T315, M351, F359, H396).
Furthermore, different amino-acid substitutions can involve the same residue like
F317C, F317L, and F317V, all showing reduced Imatinib sensitivity [21–23].
Since these mutations in the BCR-ABL fusion gene were observed only after
Imatinib administration, it indicates that there must have been a low prevalence of
mutant cells before the therapy. This idea is supported by the fact that these
mutations do not provide any growth advantage in the absence of Imatinib, but are
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selected specifically only upon drug exertion pressure [24]. Kinase activity is not
abrogated by the mutations, although some mutants demonstrate lower enzymatic
activity compared with the wild-type BCR-ABL. On the other hand, the kinase
activity is enhanced by other type of mutation [25].

It has been shown that besides displaying inhibitory activity towards ABL,
Imatinib is active against the RTKs KIT and PDGFRA [26]. KIT is a cytokine
receptor expressed on the surface of hematopoietic stem cells and plays a role in
cell survival, proliferation, and differentiation; PDGFRA is a member of the
platelet-derived growth factor family implicated in mesenchymal cells prolifera-
tion. These RTKs are constitutively activated by gain-of-function mutations in
most Gastrointestinal Stromal Tumours (GISTs) [27]. Experiments on human
tumour cell lines, dependent on the KIT pathway, showed that Imatinib could
block the activity of KIT in the GIST cells, arresting therefore proliferation and
causing apoptosis. Currently, Imatinib is in phase II and III clinical trials for GIST
treatment; the prognosis of GIST patients has dramatically improved after
recruitment of Imatinib into the therapeutic arsenal (80 % clinical response rate).
However, the mutation resistance issue arising during the Imatinib therapy sig-
nificantly influences the clinical response also in the case of KIT. As for the BCR-
ABL Imatinib resistance model, Imatinib efficacy is affected by the KIT mutations
that directly block the drug binding or pose an energetic hindrance disfavouring
the closed conformation of the kinase [28, 29].

Also in the case of Erlotinib and Gefitinib, targeting EGFR, after an initial
response characterized by tumour regression and improvement in disease-related
symptoms, most patients relapse. In response to Erlotinib or Gefitinib treatment,
different resistance mechanisms can occur and one of the most frequent is the
amplification of the MET proto-oncogene [30]. MET is another RTK (also known
as Hepatocyte Growth Factor Receptor) and its amplification has also been
observed in gastric and esophageal cancers [31, 32]. MET is involved in a pathway
distinct from EGFR, and it is normally expressed by cells of epithelial origin
where it promotes cell growth and motility [33]. In NSCLC cell lines whose
Gefitinib resistance was obtained by continuous drug administration, a marked
focal amplification within chromosome 7q31.1–7q33.3, containing the MET proto-
oncogene, was observed. It is known that Gefitinib leads to the disruption of the
signal cascade EGFR/ERBB3/PI3K/Akt [34, 35]. In Gefitinib resistant cell lines,
MET amplification leads to PI3K/Akt signaling through ERBB3 activation,
independently from EGFR; hence, MET inhibition restores sensitivity to Gefitinib.
Resistance towards Erlotinib or Gefitinib can also occur as a consequence of
mutations in the K-RAS gene, a GTPase of the Ras family, which is a downstream
effector of EGFR, [36]. Similarly, treatment of HER-2 overexpressing cancers is
not always effective because resistance to Lapatinib develops in some patients
during prolonged exposure to the drug. It is known that resistance to Lapatinib in
breast cancer arose through AXL overexpression. AXL is a RTK, closely related to
MET, involved in cell proliferation and motility and, as the case of MET for
NSCLC, its overexpression is associated with poor prognosis and increased
invasiveness of several human cancers [37].
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In order to avoid drug resistance, design of drugs with inhibitory properties
against the mutant kinase forms is being actively pursued. It is the case of the ABL
inhibitor Nilotinib, targeting Bcr-Abl with an increased potency (approximately
20-fold) when compared to Imatinib. Even if both drugs act in the same manner,
hence, binding to the kinase domain of the inactive ABL form, Nilotinib binding is
energetically more stable [38]. Nilotinib remains active towards all Imatinib
resistant mutations lying in the activation domain (A-loop), as well as towards
mutations spread across the entire Bcr-Abl kinase domain, including the P-loop. In
fact, the clinical efficacy of Nilotinib was demonstrated in patients harbouring
most Imatinib-resistant mutations, with the exception of Y253H, E255K/V,
F359C/V and T315I BCR-ABL mutations. In particular, overcoming the Imatinib
resistance mutation T315I, that confers resistance also towards Nilotinib with IC50
value 800-fold greater than against wild type Bcr-Abl, still constitutes a significant
unmet medical need [39].

Overcoming Drug Resistance: The Dual Inhibitor Concept

A more innovative strategy to overcome drug resistance consists in the develop-
ment of drugs able to inhibit not only the primary target kinase, but also other
kinases that contribute to cancer survival. For instance, Src Family Kinases (SFKs)
are downstream effectors of Bcr-Abl; Dasatinib, another second generation agent
developed for the treatment of CML, besides inhibiting Bcr-Abl, has been shown
to successfully inhibit also the SFKs Src, Lyn, Yes, and Lck [40]. In particular,
Lyn and Hck are involved in signal transduction pathways downstream of Bcr-Abl.
Thus, the activity of Dasatinib, especially towards LYN, contributes to the overall
efficacy of this drug in the treatment of CML. Like Imatinib and Nilotinib, Da-
satinib acts as a competitor of the ATP substrate, but differently from other drugs,
it binds to ABL both in its active and inactive conformation [41]. Compared with
Imatinib, Dasatinib has an approximately 300-fold increased potency in antipro-
liferative assays. Despite the fact that Dasatinib remains active towards the
majority of Imatinib-resistance mutants, the mutations T315I/A and F317I still
result in a completely resistant phenotype.

Many other drugs showing a dual activity against Abl and SFKs are already in
different clinical trial phases and preliminary research investigations. For instance,
Bafetinib and Bosutinib are other dual inhibitors of Abl and SFKs that have been
tested in clinical trials for CML treatment. Bafetinib targets Abl and Lyn, showing
limited inhibition against other SFKs [42]. Despite the fact that Bafetinib is
effective in a heavily pretreated (Imatinib, Nilotinib, Dasatinib) population, it lacks
any appreciable efficacy against T315I mutation and in blastic CML phases, or in
Ph-positive ALL [43]. Another drug in phase III clinical trials for CML treatment,
Bosutinib [44], shows similar limitations [39, 45].

The mutation T670I in KIT is selected in GIST tumours after prolonged I-
matinib administration. T670 of KIT was identified as one of the key hydrogen
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bonds for Imatinib binding [46], similarly to T315I in Bcr-Abl. In the same way,
the EGFR T790M resistance mutation occurs after prolonged administration of
Elrlotinib or Gefitinib in NSCLCs. Also, this mutation is in an analogous position
to T315I in Abl and T670I in Kit [47].

In addition to small-molecule inhibitors, monoclonal antibodies (mAb) target-
ing RTK are also in use in clinical therapy (Table 1). Their use relies on the
principle that the targeted receptors are expressed at higher levels on cancer cells
than on healthy cells. Several mAbs are approved for cancer therapy or are in
clinical trials. Targets of these mAbs are EGFR, HER2, VEGFR, MET, VEGFR2
and IGF1-R. The anti-cancer activity of a mAb is due to different mechanisms: the
binding with the receptor can (1) prevent ligand-receptor interaction (2) promote
receptor internalization (3) prevent receptor dimerization and activation and (4)
induce apoptosis or immune response toward the target cells [48]. As for small-
molecule inhibitors, primary and secondary resistance towards these drugs have
emerged. Multiple studies showed that primary resistance can be conferred by
activating mutations in KRAS, PIK3CA, BRAF or loss of PTEN expression. These
mutations negatively correlate with the response to Cetuximab or Panitumumab,
two EGFR-targeting mAbs [49]. Secondary resistance is due to (1) overexpression
and aberrant phosphorylation of alternative RTK (2) expression of receptor
variants (3) increased expression of the target receptor and (4) activation of
alternative pathways [48]. To date, both point mutations in the target receptor or
rearrangements in the corresponding genomic regions have been observed after
mAb treatment.

Expanding the Dual-Inhibitor Concept: The Quest
for Multi-Targeting TK Inhibitors

The drug development research field is still the problem of the unsatisfactory
efficacy of to-date approved inhibitors towards the T315I substitution and ana-
logue mutations in other kinases. Some encouraging data are now emerging in
clinical trials with other kinase inhibitors. Sunitinib, approved as second line
therapy of GIST and renal cell carcinoma (RCC), is a multi-targeted RTKs
inhibitor active toward PDGFR, VEGFR, Kit, Ret, CSF-1R and Flt3 [50]. Contrary
to Imatinib, it is also active towards several Imatinib-resistant KIT secondary
mutations, including the T670I KIT mutant. In the same way, Sorafenib, a small-
molecule inhibitor that targets the RTKs vascular endothelial growth factor
receptor (VEGFR) and Platelet-derived growth factor receptor (PDGFR) and the
STKs C-Raf and B-Raf [51], is also able to inhibit Kit mutation that provides
resistance toward Imatinib and Dasatinib.

If the availability of inhibitors that target multiple kinases could result in a
higher degree of transduction signal inhibition, and thus in higher efficacy on
cancer treatment, it could also result in enhanced toxicity for healthy cells.
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The identification of the hierarchical pattern of inhibition of a given compound
against all the kinome is now emerging as an essential step in order to estimate the
effect of a drug against a selected cancer. Recently, high-throughput screening
approaches have been use by Anastassiadis et al. [52] and Davis et al. [53] with the
aim to score the inhibition potency and selectivity of 72 and 128 known kinase
inhibitors, respectively, against large panels of kinases (442 and 300, respectively).
Traditionally, the discovery of kinase inhibitors starts from a high-throughput
screening of small molecules with inhibitory properties targeting a kinase of
interest. The selectivity of effective compounds is then evaluated against a panel of
representative kinases. The same goal can be obtained by screening libraries of
compounds against large panels of protein kinases, thus revealing the degree of
selectivity of each compound. This method led to the identification of inhibitors
that were unexpected for the kinase of interest, revealing multi-targeted inhibitors
active on a number of kinase targets larger than predicted. For example, Sunitinib,
known to target PDGFR, VEGFR, Kit, RET, CSF-1R and Flt3 [50], shows affinity
for RET harboring gatekeeper mutations [RET (V804L/M)], which is resistant to
the approved RET inhibitor Vandetanib. In the same way, PKC-412, a compound
designed as a protein kinase C (PKC) inhibitor, was shown to be more active
against the EGFR mutant T790M. These studies also revealed that compounds
designed to target a specific kinase could show higher potency of inhibition against
another, unrelated enzyme. For example, DMBI, designed as a Platelet-derived
growth factor receptor (PDGFR) inhibitor, is an highly potent inhibitor of FLT3
and TrkC; SB202474, an inactive analog of the p38 MAP kinase inhibitor
SB202190 [54], showed significant activity only against the haploid germ cell–
specific nuclear protein kinase Haspin. These data open new opportunities for
clinical use of drugs already tested for their pharmacological properties.

In order to improve the efficacy of target therapy and to fight/avoid the onset of
resistance, a valid strategy should be the analysis of the signalling network sur-
rounding a target kinase. The determination of a unique factor responsible for drug
resistance is not possible in many tumours that show heterogeneous resistance due
to partial contributions by multiple proteins. Network models paradigm conjecture
that signalling pathways are made with no hierarchy and feedback loops and are
redundant. This implicates that inhibiting a specific oncogene can lead to the
rescue of the signaling by enrichment (gain of function, amplification, overex-
pression) of proteins that compose the web of interaction with the target. Astsat-
urov et al. [55] screened siRNA libraries targeting EGFR network in order to
identify synthetic lethality with EGFR inhibitors. This approach consented to
identify previously uncharacterized genes that can drive resistance modulating
EGFR signaling or that can be considerate as concomitant target for the treatment
of EGFR hyper activated cancers. For instance, in the case of the EGFR network,
the inhibition of SFKs or Aurora A kinase enhances the effect on cancer viability
of EGFR inhibitors. The application of this approach to other validated targets
could greatly ameliorate the clinical strategy in other malignancies.
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Why Targeting DNA Repair in Anticancer Chemotherapy?

RTKs and NRTKs are involved in transducing proliferative signals, hence,
resulting in the activation of DNA replication and cell division. In turn, the high
proliferative phenotype of tumour cells is very often accompanied by alterations in
their genetic structure, leading to chromosomal aberrations and aneuploidy.

The genomic instability and the high mutation rate, typical features of human
cancer cells, are mainly due to defects in DNA repair. In fact, very often at least
one of the six major DNA repair pathways (mismatch repair MMR, base excision
repair BER, nucleotide excision repair NER, homologous recombination HR, non-
homologous end joining NHEJ and translesion synthesis TLS) is indeed defective
in tumours. The mechanisms through which cancer cells respond to damaged DNA
have important implications in the development of both the tumoral phenotype and
the resistance to chemotherapy [56, 57].

Activation of the various DNA repair pathways during cell cycle progression
depends on proper regulation of checkpoints, that are signalling cascades, often
involving multiple kinases, leading to the activation of specific transcription fac-
tors. One of the main transcriptional effectors activated by DNA damage check-
points is the protein p53. It is, thus, not surprising that p53 is one of the most
frequently mutated gene in human cancers due to its ability to halt cell growth and
to modulate apoptosis after checkpoint activation when DNA damage and/or
genotoxic stress occur [58].

Germline mutations of p53 are associated with a disease called Li-Fraumeni
Syndrome characterized by an increased risk of developing various cancers with an
early age of onset [59]. Moreover, various clinical phenotypes in different types of
cancer are associated with somatic p53 mutations at specific residues [60]. The
involvement of p53 in DNA repair pathways has also a detrimental effect on
chemosensitivity, helping cells to resist to DNA damage caused by therapy. An
example is the well documented resistance against anthracyclines and mitomycin
due to p53 mutations in breast cancer as well as in haematological malignancies [61].

Polymorphism regarding BER genes such as OGG1, APE1, MutYH and XRCC1
have been examined for their possible effect on cancer development [62]. As an
example, a DDR gene strongly associated with cancer development is MutYH,
whose missense mutations, insertions, deletions and duplications give rise to
MutYH-associated polyposis, the most common colorectal cancer and polyposis
syndrome. MutYH recognizes the mismatch 8-oxo-G:A and, through its action,
restores the pair 8-oxo-G:C, that can be acted upon by OGG1, another BER
glycosylase. The OGG1 polymorphism Ser326Cys is associated with the risk of
lung cancer and increased risk of colorectal cancer; these findings confirm the roles
of MutYH and OGG1 as essential players in the maintenance of genome stability
against oxidative damage. In addition, the polymorphism Asp148Glu of APE1
seems to be associated with hypersensitivity to ionizing radiation and cancer risk
and it can affect the prognosis of ovarian, gastro-oesophageal and pancreatico-
biliary cancers [62–65]. Finally, polymorphisms of XRCC1, such as Arg399Gln
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and Arg194Trp, are related to the risk of skin, upper aerodigestive and lung
cancers; moreover, it is important to know that these genetic polymorphisms might
be associated with overall survival and response to platinum-based chemotherapy
in lung cancer patients [62, 66].

Another DNA repair pathway whose alterations are strongly related to tumour
development is the MMR pathway. The Lynch syndrome, a tumour predisposition
syndrome characterized by colorectal and endometrial cancer and other extraco-
lonic malignancies, is indeed caused by monoallelic germline mutations in mis-
match repair genes, such as MLH1, MSH2, MSH6 and PMS2, while biallelic
mutations lead to a more severe scenario called constitutional mismatch repair
deficiency (CMMRD). Childhood onset of leukemia/lymphoma, brain tumours and
other rare malignancies are all typical features of the CMMRD disease [67, 68].

Interestingly, distinct phenotypes and clinical manifestations are due to dif-
ferent MMR gene deficiencies; for example, an increased risk of colon cancer is
particularly associated with MLH1 mutations, whereas MSH2 mutations have a
higher incidence of extracolonic tumours. Also, as shown for clinical features, the
chemotherapy resistance has different outcomes based on MMR gene loss; for
example, the MSH2-deficient cells, but not MLH1-deficient, are sensitive to
psoralen, a chemotherapic agent that induces DNA interstrand crosslinks [69].

These examples of DDR defective-associated cancers justify the strong interest
in figuring out all the features related with the regulation of DDR to reach a deeper
knowledge of cancer development and chemoresponse.

Targeting DNA Repair Enzymes in Cancer Therapy: The
Concept of Synthetic Lethality

Somatic and hereditary mutations in DNA damage response (DDR) genes are thus
associated with an increased cancer risk, but they can also offer new venues for
cancer treatment. For example, the mutations of BRCA1 and BRCA2 genes,
involved in double strand breaks repair via HR, are among the most studied, due to
their strong correlation with breast and ovarian cancer development. Indeed, it was
discovered that, due to their intrinsic deficiency in HR, these BRCA-deficient
tumours are particularly sensitive to inhibitors of another DNA repair enzyme:
poly(ADP-ribose) polymerase1 (PARP1).

PARP1 has the ability to bind single strand-breaks (SSBs) and facilitate their
repair. Loss of PARP1 activity is supposed to cause formation of DNA-SSBs
which are subsequently converted to double strand breaks (DSBs). In BRCA-
positive cells, these DSBs are repaired by HR, but in BRCA1-or BRCA2- deficient
cells they are presumed to accumulate leading to subsequent cells death [70, 71].
This discovery allowed the development of specific PARP1 inhibitors that, in the
context of a BRCA1 or BRCA2 deficient genetic backgrounds, proved to be very
effective in suppressing tumour growth in Phase I/II clinical trials. Such a synthetic
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lethality approach, however, did not entirely meet the expectations and failed in
Phase III clinical studies. An explanation for this behaviour could be the activation
of an alternative DSB repair pathway, such as NHEJ, that allows the survival of
HR-deficient cells. However, Patel et al. [71] turn this hypothesis upside down,
demonstrating that disabling NHEJ diminished the genomic instability and
lethality of PARP inhibition in HR-deficient cells rather than exacerbating it. In
this context, an emerging role could be assumed by the X-family DNA poly-
merases; in fact, they are involved in many of the alternative pathways of the
DSBs repair like the Microhomology-Mediated End Joining (MMEJ), Single-
strand annealing (SSA), Break Induced Replication (BIR) and others. Recent
results make polk an ideal candidate for a new target therapy due to its ability to
promote strand annealing and subsequent elongation between two DNA strands
with limited homology (5–10 nt) [72].

New Candidates for Synthetic Lethality: Repair DNA
Polymerases

The case of PARP1 inhibitors highlights a fundamental problem: namely,
achieving a true synthetic lethality by suppressing a particular molecular function
in the context of the high level of redundancy existing among the cellular meta-
bolic pathways. A possibility to attain such a difficult goal might be to target
enzymes common to different DNA repair pathways. The most obvious candidates
are, of course, the DNA polymerases (pols). In fact, since DNA pols are essential
to several repair pathways, their inhibition might potentially achieve a high level
of tumour cell sensitization to chemotherapeutics.

Specialized DNA pols are required to bypass DNA damage lesions that would
otherwise cause replication arrest and cell death. In recent years, a number of
specialized DNA pols of the X and Y families have been identified. These are
characterized by their ability to bypass different classes of lesions and to maintain
a high degree of genetic fidelity by incorporating the nucleotide that would nor-
mally pair with the undamaged version of the base. Thus, under normal circum-
stances, specialized pols can be considered as agents that promote genomic
stability. Trans-lesion synthesis (TLS), however, needs to be a highly regulated
process because, when copying non-cognate lesions or undamaged DNA, the
specialized pols have been shown to exhibit reduced fidelity. In addition to a role
in mutagenesis, over-expression or increased activity of specialized pols could also
result in enhanced TLS capability, allowing cancer cells to better cope with the
high environmental stress that results from increased replication rates and higher
level of oxidative damage. Moreover, increased TLS could provide cancer cells
with an advantage in coping with the DNA damage resulting from the chemo-
therapeutic assault [73].
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The Y-family members, in human cells, are DNA pol i, DNA pol j, DNA pol g
and Rev1, each of them has a preference for catalysing DNA synthesis across
certain kind of lesions. For example, the loss of DNA pol g reduces the efficiency
to copy cis-syn cyclobutane dimer, one of the main lesion generated by sun
exposure, and gives rise to the variant form of xeroderma pigmentosum (XP-V), a
disease characterized by high susceptibility to sunlight-induced skin cancer. In
addition, it has been shown that pol g has a key role in the cellular response to
cisplatin and in the cellular resistance to this antitumour drug [74]. Another
example is the role of pol i in the induction of lung tumours, in fact pol i knockout
mice treated with urethane, a pulmonary adenoma inducer, did not develop cancer
compared to wild type controls. Thus, it suggested that pol i deficiency could lead
to reduction of lung tumour [75]. On the other hand, Ziv et al. [76] discovered an
important role of another Y-family enzyme, pol j, in protecting cells from UV
damages. Based on these findings, it is becoming clear that the mis-regulation of
the Y-family members promotes genetic disorders and can be associated with a
malignant phenotype [77].

Beside TLS, the BER and NHEJ DNA repair pathways seem to play a prom-
inent role in promoting genetic instability in cancer cells. Central to these path-
ways are the X-family enzymes DNA pol b, k, l and TdT. TdT has the peculiar
characteristic of elongating a single stranded DNA sequence without the need of a
template strand. It normally acts during immunoglobulin and T cell receptor gene
rearrangements, thus increasing the diversity of these molecules. A DNA pol with
closely related amino acid sequence and functional domain organization to TdT is
pol l, whose roles in V(D)J recombination and NHEJ are well described. The
over-expression of TdT and pol l has been observed in several acute leukemia
cells and in Non-Hodgkin’s lymphomas, respectively, suggesting a possible role in
tumourigenesis [78, 79].

Pol b is the smallest pol and is composed of a single 39 kDa polypeptide
containing 335 amino acid residues. It is involved in BER pathways (short and
long patch BER) and implicated in meiotic events associated with synapsis and
recombination and SSB repair [80]. Mice carrying a target disruption of the pol
gene show growth retardation and high perinatal lethality; histological examina-
tion of the embryos revealed defective neurogenesis, indicating that pol plays an
essential role in neural development [81].

The over-expression of pol b has been found at both the mRNA and protein
levels in many tumour types, in particular in uterus, ovary, prostate and stomach
samples. In addition, its ectopic over-expression in cancer cells can increase
mutagenesis and enhance resistance to chemotherapeutic agents, including cis-
platin, while cancer cells deficient in pol are hypersensitive to oxaliplatin che-
motherapy, indicating that BER impairment could affect the therapy outcome
[73, 82]. Cells deficient in pol b converted into another kind of critical pro-
apoptotic lesion during replication. These critical secondary DNA lesions are
likely to be unrepaired DNA double strand breaks, which trigger apoptosis in a
replication-dependent way by activating the mitochondrial death pathway, i.e. the
decline of Bcl-2 level and activation of caspase-9 and caspase-3 [83].
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Pol k is a protein of 67–70 kDa which is expressed at highest level in the testis,
ovary and fetal liver and it seems to be implicated in short patch BER repair,
NHEJ, TLS over 8-oxo-G and V(D)J recombination [84, 85]. Despite the strong
expression of pol k seen in testis, POLL null mice were fertile and the only effect
seemed to be a modification of heavy chain junctions during V(D)J recombination
[86, 87]. Pol k was found to be over-expressed at a significant extent in a range of
different tumour types, albeit less frequently than pol b [73]. Recently, a new
allelic variant of human pol k has been described. It is the result of the amino acid
change Arg 438 to Trp and it seems to have a reduced base substitution fidelity.
Thus, the ectopic expression of R438W hPolk variant in mammalian cells
increases the mutation frequency, affects the DSB repair NHEJ pathway and
generates chromosomal aberrations [88]. Another recent study reports that the pol
k protein level can be modulated in tumour cells, and in fact, NSCLC that express
less protein amount are in a significantly more advanced stage [89]. Furthermore, it
has been observed that more than 90 % of leukemic cells of acute lymphocytic
leukemia and approximately 30 % of leukemic cells in chronic myelogenous
leukemia crisis exhibit elevated TdT activity, which is associated with poor
prognosis and response to chemotherapy and reduced survival time. Since leu-
kemic cells also often over-express pol k, which has been shown to possess a
strong bona fide TdT-like activity, it is possible that both pol k and TdT have an
important role in tumourigenesis and progression of the acute leukemia [90]. In a
recent study, pol k seems to be involved in the incorporation of therapeutic
nucleoside analogs into DNA during BER and NHEJ, thus it may have an impact
on the cellular sensitivity to these compounds following DNA damage [91].

Recently, another DNA pol, member of the A-family, called DNA polymerase
h might be implicated in cancer development. It seems to be involved in tolerance
of bulky adducts or in some DNA repair pathways such as BER, DNA interstrand
crosslink and DNA break repair. Its overexpression is found in breast, colon and
lung cancers and it is usually related to poor prognosis [92, 93]. In addition, a
recent study demonstrated that DNA pol h knockdown on a panel of tumour cell
lines from different primary sites resulted in radiosensitization, whereas having
little or no effects on normal tissue cell lines [94].

Development of Selective Inhibitors of Specialized DNA
Polymerases

Currently, several classes of DNA pol inhibitors have been developed. Most of them
are non-nucleosidic compounds of natural origin (polypeptides, fatty acid, triterp-
enoids, sulfolipids, polar lipids, secondary bile acids, phenalenone-derivates, ana-
cardic acids, harbinatic acid, flavonoid derivates and pamoic acid), but only a few
are enough specific and active to be potentially considered as drug candidates.
Nucleoside analogs (NAs), on the other hand, mimicking the structure of the natural
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nucleotides, can interact with the catalytic site of the pols and inhibit the DNA
synthesis and/or repair by competing with the natural substrates. In addition, the lack
of the 30 hydroxyl group, typical feature of most NAs, prevents the elongation step,
determining an abortive DNA replication and single strand breaks formation. Cur-
rently, eight NAs have been already approved by FDA for cancer treatment: mer-
captopurine, thioguanine, fludarabine and cladribine (purines), cytarabine and
gemcitabine (pyrimidines), fluorouracil and capecitabine (fluoropyrimidines);
whereas clofarabine (CAFdA), nelarabine, immucillin H (BCX-1777, forodesine)
and 8-chloroadenosine (8-Cl-Ado), all novel purine analogs are in advanced clinical
phase. Unfortunately, NAs suffer from a number of drawbacks. First, they need to be
subjected to three independent cellular phosphorylation steps to be converted to their
active forms. Moreover, they can be easily degraded by other enzymes such as
nucleosidases and phosphorylases and, finally, their inhibitory effects can affect also
replicative polymerases, thus becoming toxic to normal cells [95, 96]. In this sce-
nario, a novel diketo hexenoic acid (DKHA) analog was described as a selective
non-nucleoside inhibitor of the template-independent activity of pol k and TdT.
Locatelli et al. [90] proved that this compound can selectively suppress cell pro-
liferation of TdT+, but not Tdt-, leukemic cells, holding the potential to be further
developed as a novel antitumour agent.

Tying the Ends Together: Targeting Proliferation
and Repair in Cancer Cells

The inhibition of different targets in order to obtain synthetic lethality within
cancer cells could greatly ameliorate the efficacy of target therapy. In this way, it is
possible to hypothesize the concomitant inhibition of targets that belong to dif-
ferent cellular process. A fascinating idea regards the targeting of factors that link
signal transduction and DNA repair. In fact, oncogenic kinases activity is linked to
DNA repair [97]. For example, it is known that tumours dependent on fusion
kinases, like Bcr-Abl, present an elevated number of DNA double-strand breaks
(DSBs). These are caused by high ROS levels generated by the altered cell
metabolism and also by chemotherapy [98]. The DSBs repair processes require the
activity of Werner Helicase/Exonuclease (WRN) which plays a critical role in
optimizing DSB repair mechanisms due to its DNA end-processing activities.
Slupianek et al. [99] showed that Bcr-Abl is able to enhance WRN expression via
c-Myc–induced transactivation and Bcl-xL–dependent inhibition of caspase-
mediated cleavage. Moreover, the Bcr-Abl kinase forms a complex with WRN
protein which results in constitutive phosphorylation and activation of WRN itself.
As result, WRN promotes the survival of Bcr-Abl positive leukemia cells under
oxidative and genotoxic stress. Furthermore, in these cells, WRN promote alter-
native DSBs repair mechanisms such as Homologous Recombination (HR) and
Single Strand Annealing (SSA). Additionally, in Bcr-Abl positive leukemia cells,
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WRN caused aberrant Non Homologous End Joining (NHEJ) repair products
[100]. Altogether, these effects can promote survival of cancer cells, inducing at
the same time the accumulation of genetic aberrations in CML, a mechanism by
which cancer cells could acquire resistance mutation to the therapy.

Other studies underline a strict interplay between signal transduction proteins
and DNA repair factors. For example, inhibition of Chk1, a STK that is activated
in response to DNA damage, was found to be synthetically lethal with Src or ERK
inhibitors in myeloma and leukemia cells, respectively [101–103]. Also, EGFR
was found to interact with BRCA1 in highly aggressive breast cancers. Con-
comitant inhibition of EGFR with Lapatinib and PARP1 with ABT-888 led to
transient DSBs repair deficiency which resulted in the activation of the intrinsic
pathway of apoptosis [104].

Casein Kinase II (CK2) is an ubiquitously expressed STK, whose activity is
implicated in cell growth and proliferation. Its overexpression is linked to can-
cerogenesis and attenuated apoptosis induced by chemotherapeutic drugs [105],
posing CK2 as an attractive target for cancer treatment. In particular, CK2 inhibits
the tumour suppressor activity of promyelocytic leukemia protein (PML) and
phosphatase and tensin homology protein (PTEN) [106]. CK2 phosphorylates
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Fig. 1 The synthetic lethality approach through targeting DNA repair and signal transduction.
a In a cancer cell, a defect in a DNA repair pathway can be overcome through the induction of an
alternative pathway, often under the control of signal-transducing kinases. b In a normal cell,
where all the DNA repair pathways are effective, inhibition of one of them, either by targeting the
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XRCC1, a scaffold protein that plays a critical role in DNA base excision repair
(BER) by interacting with Ligase III (LigIII). Phosphorylation of XRCC1 in
human cell extracts is required for XRCC1-Lig III complex stability and phos-
phorylation reduction leads to DSBs accumulation [107]. Thus, inhibition of CK2
would lead not only to apoptosis in response to chemotherapeutic drugs, but also in
accumulation of DSBs that will enhance the apoptotic effects of the therapy.

Conclusions

The above-discussed examples highlight the intimate connections between the
proliferative signal transduction pathways and the DNA repair. In such a context,
inhibition of specialized DNA pols, that act in different repair mechanisms, will
reduce the ability of cancer cells to cope with the genotoxic stress imposed by
proliferation and/or cancer treatment. Thus, simultaneously targeting signal
transduction and DNA repair pathways will drive very efficiently cancer cells to
apoptosis (Fig. 1). The investigation of the interplay between signal transduction
pathways and DNA repair pathways in cancer cells can lead to the identification of
novel therapeutical targets and to the design of cancer treatment strategies that
avoid the onset of resistance to the therapy.
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Collateral Sensitivity in Drug-Resistant
Tumor Cells

Mohamed Saeed, Henry Johannes Greten and Thomas Efferth

Abstract Collateral sensitivity is a term for the hypersensitivity of otherwise
drug-resistant cells. The selective killing of tumor cells by drugs exerting collateral
sensitivity might be used as a novel treatment strategy. In this chapter, we give an
overview on drug resistance phenotypes with known collateral sensitivities; fur-
thermore, their molecular and cellular mechanisms were discussed to explain
mediation of these hypersensitivities.

Keywords ABC transporter � Cancer � Chemotherapy � Collateral sensitivity �
Cross resistance � Multidrug resistance � P-glycoprotein

Abbreviations
ABC transporter ATP-binding cassette transporter
P-gp P-glycoprotein

Cross-Resistance and P-glycoprotein

Chemotherapy still belongs to the main options to treat cancer. A major problem
with drug treatment is that tumors frequently develop resistance. Concentrations
high enough to kill tumor cell subpopulations frequently cannot be applied because
of severe side effects of most classical anti-cancer drugs, e.g. myelosuppression,
gastrointestinal mucositis, alopecia, sterility, etc. Clinically two major types of
resistance are observed: (1) primary or inherent drug resistance, whereby tumors
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do not respond to chemotherapy from the beginning of therapy and (2) secondary
or acquired resistance, whereby tumors initially respond to drugs but, during the
course of chemotherapy, drug-resistant subpopulations overgrow the entire tumor
and ultimately lead to refractoriness and treatment failure.

During the past three decades, the concept of multidrug resistance has been
developed. The basic idea of combination treatment is to kill tumor subpopulations
resistant to one drug by another drug in the combination. While this concept
undoubtedly is a mainstay of cancer therapy leading to improving survival times of
patients during the past decades by constantly optimizing combination regimens,
nevertheless, cancers can develop resistance to many drugs at the same time.
While cross-resistance of tumors to many different anticancer drugs was a well-
known phenomenon already in the early days of cancer chemotherapy [1], a
specific profile of cross-resistance was described as multidrug resistance. This
profile comprises cross-resistance between anthracyclines, Vinca alkaloids, taxanes,
epipodophyllotoxins, but not antimetabolites, alkylating agents or platinum com-
pounds. The reason for this classical type of multidrug resistance is a membrane-
located efflux transporter which extrudes drugs out of tumor cells. This drug
transporter has been termed P-glycoprotein and is encoded by the MDR1 (ABCB1)
gene and belongs to the ATP-binding cassette (ABC) transporter family.

A typical, but unusual feature of the P-glycoprotein is that it translocates a wide
variety of chemically diverse compounds. While many speculations on the
mechanism of action of P-glycoprotein have been made, the only common prop-
erty of P-glycoprotein substrates is their relative hydrophobic, amphiphilic nature
[2, 3]. While initially one binding domain and subsequently two binding sites have
been proposed for the P-glycoprotein, more recent investigations suggested mul-
tiple different binding sites [4, 5]. An alternative model hypothesized that the
P-glycoprotein extrudes diverse drugs by an induced-fit mechanism [6].

Recently, homology models for the P-glycoprotein based on the crystal structure
of the bacterial ABC transporter from Staphylococcus aureus Sav1866 have been
described [7]. Three main membrane-related binding regions were outlined in the
P-glycoprotein. The binding region 1 is located at the interface between the mem-
brane and the cytosol and two other binding regions are located in the transmem-
brane parts of the protein. The regions contain multiple binding pockets. Hence, it is
possible that drugs, depending on their structural properties, may bind to either more
hydrophobic or more hydrophilic pockets, or even to more than one pocket simul-
taneously. Additionally, a large binding pocket resides in the protein cavity, which
may represent an ‘‘escaping’’ site, where the compounds that bind to any of these
regions are released from the protein. Site-directed mutagenesis experiments fit to
these putative binding sites of the homology models [8], but a final proof can only be
delivered by drug-protein crystal structures. Considering these complex and unre-
solved situations, the substrate specificity of P-glycoprotein may be much broader
than estimated thus far. The binding of established compounds to the P-glycoprotein
as a first step in the drug efflux process is illustrated in Figs. 1, 2, 3, 4. By means of a
molecular docking approach, we have shown that compounds of diverse drug classes
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and mode of action bind to different binding sites on the human P-glycoprotein
(doxorubicin, Fig. 1; vinblastine, Fig. 2; paclitaxel, Fig. 3; etoposide, Fig. 4).

The human genome contains 49 ABC transporter genes encoding for proteins
with diverse functions [9, 10]. After characterization of the classical multidrug
resistance phenotypes and the P-glycoprotein, atypical forms have been described
with other cross-resistance profiles [11, 12], Atypical multidrug resistance can be
caused by other ABC transporters, e.g. multidrug-resistance related proteins
(MRPs, ABCCs) or breast cancer resistance protein (BCRP, ABCG2) or proteins
not related to the ABC transporters such as DNA topoisomerases, enzymes related
to the glutathione redox cycle or DNA repair enzymes [13, 14].

After the description of the calcium channel blocker verapamil as an inhibitor
of the P-glycoprotein a plethora of synthetic drugs from diverse pharmacological
classes [15] and natural products [16] have been identified. The concept was to

Fig. 1 Graphical representation of the binding of doxorubicin to the human P-glycoprotein
(P-gp). Human P-gp was homology-modeled using MODELLER software [111] with the mouse
P-gp crystal structure (PDB-ID 3G5U at www.pdb.org) as template. The docking was performed
using AutoDock version 4.2 (http://autodock.scripps.edu/). The best docked position of doxoru-
bicin was illustrated in different styles. Top The P-gp surface was calculated and drawn as a black
shadow (ghost mode) for better contrast with the drug. Bottom left For a clearer view of the cavity
where the drug was docked, the box shows a close-up view of the drug in the cavity. Bottom right:
Amino acids in close proximity to the docked drug molecule, which constitute the binding cavity
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inhibit the efflux function of the P-glycoprotein and, thereby, to increase anti-
cancer drug concentrations by the combination regimen of cytostatic drugs and
P-glycoprotein inhibitors.

Unfortunately, clinical trials with P-glycoprotein inhibitors were not successful
to reverse multidrug resistance [17], although the relevance of the P-glycoprotein
for treatment failure and worse survival time prognosis of cancer patients has been
unambiguously shown [18–20]. Among the reasons for the unfavorable outcome
of these clinical trials were: (1) P-glycoprotein inhibitors have been initially
developed for the treatment of other diseases than cancer. For instance, verapamil
blocks calcium channels in the heart and is an established drug to treat heart
rhythm disturbances. These main drug activities may appear as non-tolerable side
effects in cancer therapy, (2) The P-glycoprotein is not only expressed in tumors,
but also in normal tissues to detoxify potentially harmful xenobiotic compounds
taken up with food. High P-glycoprotein expression can be found in the gastro-
intestinal tract, liver, kidney, blood brain barrier, blood placenta barrier etc.
Systemic treatment with P-glycoprotein inhibitors may, therefore, not only affect

Fig. 2 Graphical representation of the binding of vinblastine to the human P-glycoprotein. For
details see Fig. 1 legend
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P-glycoprotein’s functions in multidrug-resistant tumors, but also in healthy tis-
sues and (3) some P-glycoprotein inhibitors are strong inducers of cytochrome
P450 monooxygenase (CYP) enzymes in the liver. Up-regulated CYP enzymes
metabolize anticancer drugs more rapidly and efficiently leading rather to treat-
ment failure than to reversal of multidrug resistance.

The fact that it was not possible as of yet to establish novel treatment protocols
to combat multidrug resistance by the addition of P-glycoprotein inhibitors to
standard treatment -protocols resulted with much disappointment in the scientific
community.

Hypersensitivity in Resistant Cells

In the hype to search for P-glycoprotein inhibitors, it was sometimes overseen that
multidrug resistance comprises not all classes of anticancer drugs and that
P-glycoprotein-expressing tumor cells retain sensitivity e.g. to antimetabolites,
alkylating agents or platinum compounds. This finding opened the opportunity to
bypass multidrug resistance by treatment with non-cross-resistant drugs.

Fig. 3 Graphical representation of the binding of paclitaxel to the human P-glycoprotein. For
details see Fig. 1 legend
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Even more, some of these non-cross-resistant drugs are hypersensitive in multi-
drug-resistant cells, i.e. they kill multidrug-resistant cells at lower concentrations
than their drug-sensitive counterparts. This phenomenon has been termed collat-
eral sensitivity. Hypersensitivity or collateral sensitivity is not a unique feature of
multidrug-resistant tumor cells as it has first been described in drug-resistant
Escherichia coli [21]. Collateral sensitivity was also observed in an otherwise
pleiotropic cross-resistant mutant of Saccharomyces cerevisiae [22]. These data
indicate that collateral sensitivity is a general biological and pharmacological
phenomenon, by which organisms react to toxic insults. Collateral sensitive drugs
have also been recognized in tumor cell lines, long before the P-glycoprotein was
discovered [1]. Bech-Hansen et al. [23] were the first to describe collateral sen-
sitivity in colchicine-selected P-glycoprotein expressing, multidrug-resistant Chi-
nese hamster ovary cells.

The selective killing of P-glycoprotein-expressing tumor cells by taking
advantage of collateral sensitivity has been compared to the concept of synthetic
lethality [24, 25]. Synthetic lethality is a novel approach that specifically targets
cancer cells with specific gene mutations that are not found in normal cells. If two
parallel pathways both contribute to an essential cellular process and one pathway
is inhibited by a specific mutation, the second pathway may be inhibited by small

Fig. 4 Graphical representation of the binding of etoposide to the human P-glycoprotein. For
details see Fig. 1 legend
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molecules leading to the death of cancer cells. Normal cells will be spared from
the cytotoxic effects of the small molecule, since they escape using the intact first
pathway without gene mutation [26, 27]. One example for the concept of synthetic
lethality is the inhibition of PARP-1 to specifically kill cancer with mutations in
the BRCA1 or BRCA2 genes. The idea in the context of multidrug resistance is to
find a drug that specifically kills P-glycoprotein-over-expressing multidrug-resis-
tant tumor cells, but not other cells.

Although drugs exerting collateral sensitivity in multidrug-resistant cells do not
differentiate between normal and cancerous tissue (because the P-glycoprotein is
also expressed in normal organs), it is an intriguing idea to take advantage of
collateral sensitivity as ‘‘Achilles’ heel’’ to specifically target otherwise refractory
tumors.

In the past three to four decades, a plethora of compounds have been identified
to exert collateral sensitivity in P-glycoprotein expressing otherwise drug-resistant
tumors, including local anesthetics, detergents, antimetabolites, alkylating agents,
platinum compounds as well as natural products such as saponins or flavonoids
(Table 1). Collateral sensitivity is a phenomenon which is not restricted to the
expression of P-glycoprotein, although some studies provided strong evidence by
analyzing revertant cell lines or applying siRNA targeting the MDR1 gene that
collateral sensitivity was linked to the presence of the P-glycoprotein (Table 1). It
can be speculated that different forms of collateral sensitivity may exist depending
on the drug used to select for resistance and the molecular mechanisms of drug
resistance in resistant cell lines.

Mechanisms of Collateral Sensitivity

Increased ATP Hydrolysis and ROS Generation
by Futile Cycling

Intriguingly, many P-glycoprotein inhibitors are also substrates of this efflux
pump. This means that these substances are exported out of the cell under ATP
consumption, diffuse back into the cell, and are exported again and so on. These
futile cycles cause increased ATP hydrolysis [28, 29]. The process of multidrug-
resistant cells to replenish ATP generates oxidative stress leading both to increased
levels of reactive oxygen species (ROS) provided from oxidative phosphorylation
and to oxidation of glutathione as an antioxidant stress response. Non-detoxified
ROS may lead to induction of apoptosis causing collateral sensitivity of multidrug-
resistant cells. These effects have been shown for verapamil as a model compound
for P-glycoprotein inhibition [30–32]. Whether this mechanism is also valid for
other classes of P-glycoprotein inhibitors should be investigated in the future.
Interestingly, verapamil causes collateral sensitivity not only in P-glycoprotein-
expressing cells, but also in MRP1-expressing ones, although verapamil is a much
weaker substrate for MRP1 than for the P-glycoprotein [33–35]. It has been
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hypothesized that verapamil increases MRP1-mediated glutathione efflux rather
than being effluxed itself by MRP1 [33]. Increased glutathione efflux reduces the
detoxification capacity for ROS, hence, leading to increased apoptosis and col-
lateral sensitivity.

Inhibition of ATP Production

The fact that ATP depletion plays a role for preferential killing by verapamil of
multidrug-resistant tumor cells led to the hypothesis that ATP depletion by meta-
bolic inhibitors may also cause collateral sensitivity of multidrug-resistant cells.
Indeed, the glycolysis inhibitor 2-deoxy-D-glucose, the electron transport chain
inhibitors rotenone and antimycin A are hypersensitive in P-glycoprotein-express-
ing cells [25, 36, 37]. Tunicamycin reduced GLUT1-mediated glucose transport and
potentiated the effects of 2-deoxy-D-gluxose in P-glycoprotein-expressing cells
[38]. This indicates that tunicamycin decreased intracellular glucose levels, thus,
leading to decreased ATP production and enhancement of collateral sensitivity.

Effects on Membrane Fluidity

Collateral sensitivity also occurs in the absence of P-glycoprotein as shown in Table 1.
Membrane-active compounds may account for P-glycoprotein-independent effects.
Membrane fluidity has been described as a P-glycoprotein-independent mechanism
of doxorubicin resistance affecting the uptake rates in sensitive and multidrug-
resistant tumor cells [39].

Membrane-active compounds such as detergents (Triton-X) or local anesthetics
perturb the biophysical properties of cell membranes [23]. Thereby, they may not
only reverse multidrug-resistance by increasing uptake of co-applied anticancer
drugs, but also cause collateral sensitivity if applied alone. As membrane pertur-
bation by these compounds is more pronounced in multidrug-resistant cells than in
parental, drug-sensitive cells reversal of resistance and collateral sensitivity seem
to be specifically linked to membrane-active drugs such as detergents and local
anesthetics [40]. Differences of membrane fluidity occur independently of P-gly-
coprotein in multidrug-resistant cells, since P-glycoprotein-transfected cells did
not show such alterations [41]. Hence, biophysical membrane alterations are rather
a consequence of the drug selection process during resistance development than a
direct functional linkage to the presence of P-glycoprotein.

Alterations of Target Proteins for Collateral Sensitive Drugs

Tumor cell lines resistant to typical drugs involved in multidrug resistance and
drug-resistant cells with other phenotypes may show specific alterations in activity
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and expression of target proteins for other drugs which then cause collateral
sensitivity. It is not known whether these changes occur as specific adaptation
during selection pressure by the corresponding resistance-including agent or
whether these alterations occur more or less by chance as secondary events.

Double selection of tumor cells with doxorubicin and verapamil led to collateral
sensitivity to streptozotocin and carmustine due to functional loss of DNA repair
enzyme O6-methyl guanine DNA methyltransferase (AGMT) [42]. Diarylsulfo-
nylurea resistant cells show collateral sensitivity to vincristine and actinomycin D
[43]. The hypersensitivity to these two drugs can be explained by decreased
expression of P-glycoprotein. Melphalan-resistant xenograft tumors were collat-
eral sensitive to etoposide [44], which could be explained by an increase in protein
expression and activity of DNA-topoisomerase II, which is the target protein of
etoposide. Davies et al. [45] observed that collateral sensitivity to the DNA
topoisomerase II alpha-inhibitor, ICRF-159, was associated with down-regulation
of this protein. The collateral sensitivity to methotrexate and the antifolate TNP-
351 in doxorubicin-resistant cells was associated by a faster uptake and intracel-
lular accumulation, possibly pointing to increased activity of an uptake transporter
[46]. A multidrug-resistant P-glycoprotein expressing cell line revealed collateral
sensitivity to 5-fluorouracil due to increased thymidylate synthase protein and
mRNA expression and activity. The marine steroid aragusterol provoked collateral
sensitivity in cisplatin-resistant cells [47]. Treatment with the compound caused
G1 phase arrest in the cell cycle, decreased R6 phosphorylation and expression of
cyclins and cyclin-dependent kinases as well as decreased p53 expression. Col-
lateral sensitivities to gemcitabine and cytarabine in daunorubicin- or teniposide-
resistant cells may be explained by specific alterations in metabolic enzymes, e.g.
increased activity of the gemcitabine and cytarabine-activating deoxycytidine
kinase. Furthermore, deoxycytidine deaminase was decreased, which inactivates
both drugs [48, 49].

Conclusion

A synopsis of the literature on collateral sensitivity in drug-resistant tumor cells
clearly shows that multiple mechanisms account for this phenotype. As collateral
sensitivity has not been investigated in the same detail as the role of P-glyco-
protein for multidrug resistance, it is possible that our knowledge on collateral
sensitivity is still very incomplete and that we know only the tip of the iceberg as
yet. More systematic analyses are required to unravel the full biological and
pharmacological relevance.

The molecular mechanisms of some compounds have been significantly
investigated (e.g. verapamil) but the modes of action of collateral sensitivity of
many other drugs are still sparely known. This is true for both drug resistance-
related and -unrelated with ABC transporters. Collateral sensitivity of P-glyco-
protein- or MRP-1-expressing cells has been analyzed, but less is known about
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collateral sensitivity in resistant cells expressing other ABC transporters. For
instance, compounds causing collateral sensitivity in P-glycoprotein-expressing
cells do not show hypersensitivity in MRP4-, MRP5-, or BCRP-expressing cells
[50]. It is also largely unknown whether collateral sensitivity plays a role in the
clinical context. In vitro tests of patient samples of chronic lymphocytic leukemia
have been performed by Bosanquet and Bell [51]. Comparisons of untreated and
treated patients revealed that chlorambucil treatment induced sensitivity to ste-
roids. It still has to be clarified, whether collateral sensitivity is apparent in
refractory tumors and whether it can be used to improve survival times of cancer
patients. From a pharmacological point of view, the identification of drugs with
high degrees of collateral sensitivity is desirable. Most drugs described to exert
collateral sensitivity have not been identified in a targeted search for such com-
pounds, but frequently appeared as side products in test panels to characterize
cross-resistance profiles. As a consequence, most collateral sensitive drugs only
exert modest degrees of collateral sensitivity. As exemplarily shown by Golds-
borough et al. [52]. more potent drugs causing hypersensitivity are needed, if
collateral sensitivity should be further developed as a novel treatment strategy of
otherwise drug-resistant tumors.
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Human Cancer Resistance
to Trail-Apoptotic Pathway-Targeted
Therapies

Anita C. Bellail and Chunhai Hao

Abstract Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)
mediates innate and adaptive immunity against the tumorigenesis and tumor pro-
gression. TRAIL binds its two death receptors, DR4 and DR5, which activate
intracellular pathway of apoptosis for self destruction of tumor cells. To target this
apoptotic pathway, recombinant human TRAIL and monoclonal antibodies to DR4
and DR5 have been generated as TRAIL agonists for clinical cancer therapies. A
number of TRAIL agonists have passed drug safety evaluation in phase I trials;
however, the data from phase II trials thus far are disappointing: TRAIL agonists
either in monotherapy or combination have failed to show clinical antitumor activity.
In this chapter, we will provide a historic review of the advances and the challenges in
the development of TRAIL agonists for clinical treatment of human cancers.
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Introduction

Apoptosis is a genetically programmed cell death that eliminates unwanted cells
and maintains tissue homeostasis under physiological and pathological conditions.
More than 230,000 articles have been published on apoptosis in the last four
decades since Kerr, Wyllie and Currie first used the term of apoptosis for pro-
grammed cell death in 1972 [1]. More than 70 % of these publications occurred in
the last decade after Brenner, Horvitz and Sulston were awarded with the 2002
Nobel Prize in Medicine for their work on programmed cell death. These efforts
have contributed to our understanding of programmed cell death in the aspects of
biology, biochemistry, genetics, physiology, pathology and pharmacology, ulti-
mately leading to the genesis of a new class of apoptotic pathway-targeted ther-
apeutic agents. To date, thousands of patients have received apoptotic pathway-
targeted therapies in treating various human diseases.

Human cancers are genetic diseases in which genomic alterations result in the
deregulation of cell growth and death pathways and thus lead to the relentless
cancer cell growth at expense of cancer cell death [2]. The ultimate goal of
apoptotic pathway-targeted therapies is to restore the endogenous programmed cell
death and drive cancer cells into self destruction [3, 4]. To date, two classic
pathways of apoptosis have been well characterized for therapeutic targeting: the
death receptors-mediated extrinsic pathway [5] and the mitochondrial intrinsic
pathway [6]. Therapeutic agents targeting these two cell death pathways have been
developed and entered clinical trials for cancer treatments [7–9].

Death receptors belong to the tumor necrosis factor receptor (TNFR) super-
family that can trigger apoptosis upon binding of ligands of the tumor necrosis
factor (TNF) family. TRAIL is a TNF family ligand that binds death receptor-4
(DR4) and DR5 on the cell surface and activates intracellular pathway of pro-
grammed cell death [7, 10]. Recombinant human TRAIL (rhTRAIL) and DR4 and
DR5 agonistic antibodies have been developed as TRAIL agonists for clinical
trials [11, 12]. Despite the excitement from phase I trials, however, the data from
phase II trials have clearly established the resistance of human cancers to the
treatment of TRAIL agonists [13]. In this chapter, we will provide a historic
review of the development of death receptors-targeted cancer therapies and discuss
the challenges that we currently face in cancer resistance to the targeted therapies.

Historic Review of TNF Family in Cancer therapies

In 1975, TNFa, the prototype of TNF family ligands was isolated from the serum of
mice treated with endotoxin and named as such because it caused tumor necrosis
[14]. Nineteen TNF family ligands have been identified as type II transmembrane
proteins [15] and seventeen of them have C-terminal TNF homology domains that
bind the cysteine repeat domains of receptors of the TNF receptor (TNFR)
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superfamily. The TNFR family receptors are expressed by various cells in different
organ systems; in contrast, however, almost all of the TNF family ligands are
expressed by cells of the immune system, including B and T lymphocytes, natural
killer and dendritic cells, and monocytes [16]. Ligand-receptor interactions initiate
multiple signaling pathways promoting cell survival, death, differentiation, and
inflammation in the receptor-expressing cells, depending on the activation state of
the cells and the expression levels of the TNFR superfamily receptors.

Twenty-eight receptors of the TNFR family have been reported [7] and clas-
sified into three groups: death receptors, decoy receptors and TNFR-associated
factor binding receptors [17]. The death receptors have cysteine rich extracellular
domains that recognize their death ligands and homologous cytoplasmic domains
that activate intracellular apoptosis pathway [18]. The following four sets of death
ligands and death receptors have been reported (Table 1): TNFa [14, 19, 20] and
TNFR1 (CD120a, DR1, p55, p60) [21]; Fas ligand (FasL, CD95L) [22] and Fas
(APO-1, CD95, DR2) [23]; TNF ligand superfamily member 15 (TNFSF15,
TL1A) [24–26] and DR3 (Apo3, LARD, TR3, TRAMP, WSL-1) [27–31]; TRAIL
[32, 33] and TRAIL receptor-1 (TRAILR1, APO-2, DR4) [34, 35] or TRAILR2
(DR5, KILLER, TRICK2) [35–38]. Since their discovery, preclinical and clinical
efforts have been made for development of these pathways-targeted therapeutic
agents for clinical treatments of cancers. The first major roadblock in translation of
these therapeutic agents into successful clinical therapies was the hepatotoxicity
that these agents caused in mice and human.

TNFR1 and Fas Targeted Cancer Therapies and Toxicities

In 1984, TNFa gene was cloned from human [19] and recombinant human TNFa
(rhTNFa) was soon generated and studies showed its antitumor activity but also
toxicity to normal cells in mice [39]. Despite the toxicity of rhTNFa observed in
mice, phase I and II trials of rhTNFa were launched in the 1990s and dose-limiting
side effects of hypotension and hepatotoxicity were observed in patients [40–44].
The systemic use of rhTNFa as a therapeutic agent has therefore been abandoned
since. In 1989, an agonistic antibody against Fas was shown to have the ability to
activate Fas-mediated apoptosis [45]. Systemic injection of the Fas agonistic anti-
body in mice, however, caused profound hepatotoxicity [46] so that clinical trials of

Table 1 The TNF Family Ligands and Death Receptors and Toxicities

Ligands Death Receptors Therapeutic Agent Toxicity

TNFa TNFR1 rh TNFa Hypotension and hepatotoxicity
FasL Fas Fas antibody Hepatotoxicity
TNFSF15 DR3
TRAIL DR4, DR5 tagged rhTRAIL Toxicity to hepatocytes and neural cells
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Fas agonistic antibody have never been considered. Currently, clinical use of TNFa
and FasL is limited to local delivery to avoid the systemic side effects [47, 48].

Tagged rhTRAIL-Induced Hepatotoxicity

TRAIL was identified in 1995 by Immunex [32] and 1996 by Genentech [33] and
rhTRAIL was soon generated as a TRAIL agonist for cancer therapies [49, 50].
Studies of these recombinant proteins, however, revealed the toxicities of tagged
forms of rhTRAIL to normal cells: a leucine zipper-fused rhTRAIL killed isolated
human astrocytes in culture [49]; a polyhistidine-tagged rhTRAIL was toxic to
isolated human hepatocytes [51]; and a Flag-tagged rhTRAIL induced apoptosis of
neural cells in human brain slice culture [52]. These in vitro studies raised the same
safety concern as those expressed with rhTNFa and Fas agonistic antibody and
triggered a call for ‘‘steering anti-cancer drugs away from the TRAIL’’ [53]. In
contrast, however, studies of non-tagged native sequence soluble forms of rhTRAIL
showed that non-tagged rhTRAIL was not toxic to normal cells in non-human
primates [50] and isolated human astrocytes in culture [54]. A mouse monoclonal
antibody (mAb) against DR5 (TRA-8) was generated as a TRAIL agonist for having
antitumor activity without causing liver injury in mice [55]. Systemic injection of
non-tagged rhTRAIL inhibited the growth of cancer xenografts but caused no injury
to human hepatocytes in chimeric mice reconstituted with human livers [56]. It
appears that non-tagged rhTRAIL contains sufficient bound zinc ions and forms the
homotrimers whereas polyhistidine-tagged rhTRAIL has poor zinc ion coordination
and forms disulfide-liked dimmers that cause hepatotoxicity [57]. Moreover, normal
human cells express the cell surface DR4 and/or DR5 not sufficiently enough to
engage intracellular death pathway [56, 58].

Phase I Trials of the Safety of TRAIL Agonists

Preclinical findings that non-tagged rhTRAIL and its agonistic antibody are non-
toxic to normal cells have provided renewed impetus for the launch of clinical
trials of these TRAIL-apoptotic pathway-targeted therapeutic agents. In 2005,
phase I trials of full human mAb against DR4 (HGS-ETR1, Human Genome
Sciences) and DR5 (HGS-ETR2, Human Genome Sciences) were reported at the
96th Annual Meeting of the American Association for Cancer Research (AACR),
revealing that these DR4 and DR5 agonistic antibodies were safe and well toler-
ated in patients. At the 42nd Annual Meeting of the American Society of Clinical
Oncology (ASCO) in 2006, a phase I trial of rhTRAIL (Apo2L/TRAIL, Genen-
tech/Amgen) showed that monotherapy with this no-tagged rhTRAIL was well
tolerated in patients with no dose-limiting toxicity. In addition, this phase I trial
showed the monotherapy of rhTRAIL was associated with partial response and
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stable disease in patients with advanced cancer. These preclinical and clinical
studies have finally put TRAIL toxicity issue behind and, as a result, a number of
DR4/DR5 agonistic antibodies have been generated and quickly entered clinical
trials as TRAIL agonist [11].

TRAIL-Induced Apoptosis in Cancer Immunity

Since its discovery in the middle 1990s [32, 33], TRAIL has been well studied for
its physiological functions. The studies of mice treated with TRAIL-neutralizing
antibody revealed for the first time that TRAIL is required for natural killer cells-
mediated innate immunity against cancer progression and metastasis in mice
[59, 60]. Studies of TRAIL-deficient mice further showed that TRAIL plays a
critical role in immunosurveillance against tumorigenesis [61]. In addition, TRAIL
contributes to T lymphocyte-mediated adaptive and dendritic cell-mediated innate
immunity against cancers [62, 63]. Therefore, these studies have established
TRAIL as a natural cancer killer of immune system in immunosurveillance and it
can drive cancer cells into self destruction through activation of the endogenous
pathway of programmed cell death [16].

TRAIL-Induced Extrinsic Pathway of Apoptosis

TRAIL is a type II transmembrane protein with a short intracellular amino-
terminal and a long extracellular carboxy-terminal [32, 33]. The extracellular
carboxy-terminal containing the receptor-binding domain [64] can be cleaved to
yield a biologically active soluble protein of the amino acids 114–281 of the full
TRAIL protein [65]. TRAIL has two death receptors, DR4 [34, 35] and DR5 [36–
38]; both are type I transmembrane proteins with two extracellular cysteine-rich
domains that can bind TRAIL and a cytoplasmic death domain (DD) that can
engage intracellular machinery of apoptosis. DR4 and DR5 exist either as ho-
motrimers or heterotrimers linked through an interaction between the pre-ligand
assembly domains in the extracellular termini [66]. Upon TRAIL ligation, DR4
and DR5 recruit the intracellular adaptor, Fas-associated death domain (FADD)
[36, 67]. FADD contains a carboxy-terminal DD and an amino-terminal death
effector domain (DED) [68], through which, FADD recruits DED-containing
apoptosis-initiating protease caspase-8 [69–71] and caspase-10 [71–74] to the
receptors for the formation of a death-inducing signaling complex (DISC), similar
to the one reported in Fas apoptotic pathway [75, 76]. In the DISC (Fig. 1),
caspase-8 and caspase-10 are dimerized and cleaved, become enzymatically
active, and cleave apoptosis effector caspase-3 and caspase-7 in the execution of
programmed cell death [77].
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TRAIL-Induced Intrinsic Pathway of Apoptosis

The intrinsic mitochondrial pathway of apoptosis is required for TRAIL-induced
apoptosis (Fig. 1). Once cleaved and enzymatically activated in the DISC, caspase-8
active enzyme was released from the DISC and cleaves Bcl-2 inhibitory BH3-
domain-containing protein (Bid) in cytoplasm [78]. The truncated Bid (tBid) in turn
interacts with Bax and Bak and induces the protein oligomerization in mitochondrial
membrane, leading to the change of the membrane potential and subsequent release
from the mitochondria of cytochrome c [79] and second mitochondria-derived
activator of caspase (Smac) or direct inhibitor of apoptosis binding protein with low
pI (DIABLO) [80, 81]. In the cytosol, cytochrome c binds to Apoptotic protease
activating factor 1 (Apaf1) and recruits dATP and caspase-9 for the formation of
apoptosome (Fig. 1). Herein caspase-9 is cleaved through autoproteolysis and
becomes active and cleaves downstream effector caspase-3 [82]. The caspase-3

Fig. 1 TRAIL-induced apoptosis through the extrinsic and intrinsic pathways
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cleavage, however, is inhibited in cancers due to the expression of X-linked inhibitor
of apoptosis (XIAP) and interaction of XIAP and caspase-3 [83]. Therefore, TRAIL-
induced extrinsic pathway can be rescued by the release of mitochondrial Smac that
binds XIAP, removes it from caspase-3 and thus releases its inhibition of caspase-3
cleavage [84].

Caspase-8 in TRAIL-Induced Apoptosis

Caspase-8 (also termed FADD-like interleukin-1b-converting enzyme, FLICE) is
an apoptosis-initiating caspase that is synthesized as a zymogen and exists in two
isoforms (p55, p53); each consists of two DED domains and a protease domain
made of two subunits, p18 and p12 [85]. Through its DEDs, caspase-8 zymogens
are recruited to the DISC where they become cleaved through two-step autopro-
teolytic processes: the first intra-molecular cleavage generates p12 subunit [86, 87]
and the second cleavage results in the release of the p18 subunit from the DED and
p10 from the p12 subunit [88, 89]. The caspase-8 p18 and p10 subunits become
enzymatically active and cleave downstream caspase-3 and caspase-7 [77]. Cas-
pase-3 and caspase-7 are effector caspases and each of them consists of a protease
domain with a large and small subunit. Once cleaved and activated, caspase-3
cleaves downstream DNA fragmentation factor 45 (DFF45) in the execution of
programmed cell death [90].

It remains debated about how a caspase-8 zymogen becomes cleaved and acti-
vated when there is no protease above it. An induced proximity model initially
suggested that caspase-8 zymogens were brought into close proximity in the DISC
for the autoproteolytic cleavage [91, 92]. Further in vitro biochemical studies pro-
posed the dimerization model that caspase-8 zymogens first form dimers through an
interaction of alanine 397 residues of their protease domains and become proteo-
lytically active and cleaved to form the enzymatically active p18 and p10 tetramer
[93–95]. However, this model of caspase-8 activation remains to be established
in vivo in normal or cancerous cells. In addition, the question remains why there are
two apoptosis initiators, caspase-8 and caspase-10 in the DISC.

TRAIL’s Antitumor Activity

The cytotoxicity of rhTRAIL was first reported in cancer cell lines originated from
various organs and its antitumor activity was shown in the cell lines-derived xe-
nografts in mice [49, 50, 96]. The expression of DR4 and/or DR5 on the surface of
cancer cell lines and in some cancer tissues were reported [54, 97–100] and the
cytotoxicity of TRAIL agonists were shown due to the induction of apoptosis in
cancer cell lines [54, 55, 101–103]. TRAIL-induced apoptosis was further shown to
involve the DISC assembly through DR4 and/or DR5-mediated recruitment of
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FADD, caspase-8 and caspase-10 [71] in the lipid rafts [104]. In the DISC, caspase-8
and caspase-10 are cleaved through autoproteolysis and once released from the
DISC, caspase-8 and caspase-10 enzymatically active subunits cleave Bid and thus
induce mitochondrial release of cytochrome c and Smac, leading to the cleavage of
XIAP and caspase-3 in the execution of TRAIL-induced apoptosis [99].

The preclinical studies have developed therapeutic modalities for TRAIL dis-
tribution in tumors. Systemic administration by intraperitoneal and intravenous
injection of rhTRAIL and DR4/DR5 agonistic antibody was shown to inhibit the
growth of tumor xenografts in mice [55, 96]. A local convection-enhanced
delivery effectively distributed rhTRAIL throughout xenografts in rat brains [105]
and intratumor injection of TRAIL-secreting neural stem cells inhibited the growth
of brain tumor xenografts in mice [106]. Furthermore, intratumor injection of an
adenovirus vector specifically replicating in tumor cells and expressing TRAIL
significantly inhibited the growth of tumor xenografts in mice [107, 108]. These
in vitro and in vivo preclinical studies suggest that TRAIL-apoptotic pathway
exists in cancer cells and thus can be targeted for clinical cancer therapies.

Trail Resistance in Human Cancers

The understanding of TRAIL physiology in tumor immunosurveillance boosts
enthusiasms in the development of TRAIL agonists for cancer therapies [16]. On
the other hand, however, the notion that TRAIL mediates innate and adaptive
immunity against cancer predicts that cancers occur in patients by evasion of
TRAIL-mediated immunosurveillance and are resistant to the treatment of TRAIL
agonists. This seems to be true since studies of human cancer cell lines from the
earlier stage showed that only a fraction of the cell lines undergo apoptosis under
TRAIL treatment [54] and most if not all in vivo studies utilized TRAIL sensitive
cancer cell lines in generation of xenografts [50, 56, 109]. While it remains under
intensive investigation about how cancers invade the immunosurveillance, studies
of cancer human cancer cell lines and derived xenografts have revealed the
multiple checkpoints of TRAIL resistance from the upstream death receptors down
to the cleavage of effector caspases.

Genomic Defects in TRAIL Apoptotic Pathway

Genetic mutations, epigenetic silencing and chromosomal alterations have been
identified in human cancers, resulting in the loss or silencing of apoptotic genes of
TRAIL apoptotic pathway. Somatic inactive mutations of Bax gene were first
identified [110], leading to TRAIL resistance in colon cancer cells [111]. Somatic
inactive mutations of DR4 and DR5 were reported in non-Hodgkin lymphoma
(NHL) and lung, head, neck, gastric and breast cancers [112–116]. The mutations
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occur in the DD of DR4/DR5 and block DR4/DR5-mediated intracellular signal
transduction [117, 118]. DR4 and DR5 genes map to human chromosome 8p12-23
and cytogenetic analysis revealed loss of chromosome 8p12-23 in TRAIL-resistant
glioblastoma cell lines [119]. Caspase-8 is silenced in neuroblastoma by DNA
methylation, leading to the cancer resistance to the treatments of TRAIL agonists
[120, 121]. Somatic inactive mutations of caspase-8 were reported in colorectal
and gastric carcinomas [122, 123] and loss of the caspase-8 loci on chromosome
2q33-34 was identified in glioblastoma cell lines [119]. Inactive mutations and
genomic loss of TRAIL apoptotic genes in human cancers lead to the cancer
resistance to the treatments of TRAIL agonists.

Inhibition by Decoy Receptors

In addition to DR4 and DR5, TRAIL has two membrane-associated decoy
receptors, DcR1 (TRAIL-R3) [124–126] and DcR2 (TRAIL-R4) [127–129]. DcR1
is a glycosyl phosphatidylinositol (GPI)-anchored membrane protein with cyste-
ine-rich extracellular domains but no cytoplasmic DD. DcR2 is a type I trans-
membrane protein with extracellular domains and a cytoplasmic DD. Through
their extracellular domains, DcR1 and DcR2 interact with rhTRAIL and inhibit
TRAIL-induced apoptosis either by competing with death receptors for TRAIL
binding [130, 131] or by interrupting the homotrimeric formation of death
receptors [132]. In addition, the interaction of TRAIL and DcR2 activates the
nuclear factor-jB (NF-jB) pathway for cancer cell survival [129]. These studies
have suggested DcR1/DcR2 act as TRAIL inhibitors and therefore raised concerns
about the usefulness of rhTRAIL as compared to DR4/DR5 agonistic antibodies.
This concern, however, is mainly based on the studies in transfectants and analysis
of human cancer cell lines and tissues has detected neither DcR1 nor DcR1 and
thus rule them out in TRAIL resistance [133].

DISC Modifications and Inhibition of Caspase-8 Cleavage

The DISC can be modified by intracellular adaptors that either inhibit caspase-8 or
activate cell survival pathways (Fig. 2). Receptor interacting protein (RIP) and
TNFR1-associated death domain (TRADD), first identified as DD adaptor proteins
in TNFR1 and Fas pathway [134–136], were found in the DR4/DR5-mediated
DISC in transfectants [38], but analysis of human cancer cell lines detected RIP,
but not TRADD in the DISC and showed that RIP recruits an inhibitor of jB (IjB)
kinase c (IKKc), through which IKKa and IKKb are subsequently recruited to the
DISC for the activation of IKKa/b kinases, the phosphorylation of IjB, and the
activation of nuclear factor-jB (NF-jB) [133, 137–139].
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FADD is an adaptor protein that interacts with DR4/DR5 through its DD and
caspase-8 through its DED. Through the DED interaction, FADD can also recruit
two DED adaptors to the DISC: one is cellular FADD-like interleukin-1b-con-
verting enzyme [FLICE]-inhibitory protein (c-FLIP) [140] and another is phos-
phoprotein enriched in diabetes or phosphoprotein enriched in astrocytes-15 kDa
(PED/PEA-15) [141]. The c-FLIP exists in two isoforms: a short form (c-FLIPS)
consisting of two DEDs, and a long form (c-FLIPL) containing two DEDs and a
caspase-like domain that lacks catalytic activity [140, 142]. PED/PEA-15 possess
a DED but not a caspase-like domain [141, 143]. Through the DED, c-FLIP and
PED/PEA-15 interact with caspase-8 and inhibit caspase-8 cleavage in the DISC
[71, 144]. In addition, c-FLIP and PED/PEA-15 may interact with RIP and TNFR-
associated factor 2 (TRAF2) and thus link the DISC to NF-jB and extracellular
signal-regulated kinase 1/2 (ERK1/2) pathway [145–147].

Fig. 2 The DISC modification in TRAIL-induced non-apoptotic signals
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NF-jB Pathway

Treatment of human cancer cell lines with rhTRAIL can activate NF-jB and
ERK1/2 signaling pathways through RIP, c-FLIP and PED/PEA-15; however, the
question then is whether NF-jB and ERK1/2 activity in cancer cells lead to the
cell resistance to TRAIL. Some have reported that NF-jB activity inhibits TRAIL-
induced apoptosis in lymphoid cells [148] and promotes the growth of ductal
carcinoma cells [149], thus raising concern about the therapeutic use of rhTRAIL
and its agonists [150]. These effects might be cell type-dependent as no such
effects were observed in other cancer cells such as non-small cell lung carcinoma
(NSCLC) [104]. NF-jB activity has been shown to upregulate anti-apoptotic genes
c-FLIP and Mcl-1 and cIAP2 [151–153] as well as apoptotic genes TRAIL and
DR5 [154, 155]. TRAIL-induced NF-jB activity requires IjB phosphorylation and
NF-jB nuclear translocation; however, targeting these steps affects neither c-FLIP
expression nor TRAIL resistance [156, 157]. In contrast, knockdown of RIP,
c-FLIP and PED releases the inhibition of caspase-8 cleavage and converts
TRAIL- resistant cells to the sensitive phenotype [104, 133, 158, 159]. These
studies suggest that the DISC is the molecular switch that controls caspase-8
cleavage and thereby the intracellular cell death and survival machinery.

Inhibition of Mitochondrial Pathway and Effector Caspases

TRAIL-induced apoptosis requires the activation of the intrinsic mitochondrial
pathway that is regulated by the Bcl-2 family proteins. The Bcl-2 family can be
divided into three subfamilies: Bcl-2, Bax and BH3-only proteins [160]. Bid is a
BH3-only protein and once cleaved by caspase-8, tBid interacts with Bax and Bak of
the Bax subfamily, resulting in the change of mitochondrial membrane potential
whereas Bcl-2 and Bcl-XL of the Bcl-2 subfamily interact with Bax and Bak to
maintain the mitochondrial membrane potential [161, 162]. Overexpression of
either Bcl-2 or Bcl-XL blocks TRAIL-induced apoptosis [163–165] and inactivation
of Bax leads to the cell resistance to TRAIL [111]. However, it is largely unknown
how these Bcl-2 family proteins are expressed in human cancers and consequently
how they interact with each other and control the mitochondrial pathway.

The family of inhibitors of apoptosis proteins (IAP) consists of XIAP, cellular
IAP1 (cIAP1), cIAP2, survivin, and livin. IAPs interact with caspase-3 and cas-
pase-7 to prevent their cleavage and enzymatic activation [166]. XIAP, cIAP1, and
cIAP2 have been shown to be highly expressed in various human cancer cell lines
and tissues in correlation with poor clinical prognosis [83, 167–169]. Inhibition of
the expression of XIAP and survivin enhances TRAIL-induced apoptosis in cancer
cells [170, 171]. Targeting of XIAP by Smac peptide [172], Smac mimic [173] and
XIAP antisense RNA [174] has been shown to enhance TRAIL-induced apoptosis
in already sensitive cancer cell lines; thus, the ability of these XIAP-targeted
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agents to overcome TRAIL resistance in resistant cell lines remains to be seen. In
addition, it is unclear whether Bcl-2 and/or IAP family proteins constitute the
checkpoints that block TRAIL apoptotic pathway in any given human cancers.

Ubiquitin Regulation of TRAIL Pathway

The caspase-8 dimerization and cleavage are the critical upstream events in TNF
family-induced apoptosis [93, 94, 175, 176] and post-translational modification of
proteins by ubiquitin regulates these biochemical processes [177]. Ubiquitin (UB)
is covalently attached to lysine residues of the substrate proteins through the
catalytic reactions mediated by UB-activating (E1), conjugating (E2) and ligase
(E3) and removed by deubiquitinating (DUB) enzymes [178]. UB has seven lysine
(K) residues; each of them and its N-terminal methionine (M1) can be linked to the
C-terminal glycine residue of another UB to form polyUB chains [179], which
regulate TNFa-induced signal [177]. Upon TNFa binding, TNF receptor 1
(TNFR1) recruits receptor-interacting protein 1 (RIP1), cellular inhibitor of
apoptosis protein 1 and 2 (cIAP1 and cIAP2) and TNFR-associated factor 2
(TRAF2) for the assembly of TNFR1-associated complex I [173]. TRAF2, cIAP1
and cIAP2 E3 ligases that activate nuclear factor-jB (NF-jB) through attaching
polyUB chains to RIP1 [180] and binding of the polyUB chain to IjB kinase c
(IKKc) [181]. TRAF2 and RIP1 then detach from TNFR1 and recruit FADD and
caspase-8 for the assembly of the cytoplasm complex II [182], where cylin-
dromatosis (CYLD), a DUB removes the polyUB chains from RIP1 and promotes
caspase-8 cleavage for TNFa-induced apoptosis [183].

Unlike TNFR1, however, DR4 and DR5 recruit FADD and caspase-8 in the
assembly of a plasma membrane bound DISC where caspase-8 becomes dimerized
and cleaved, initiating apoptosis [69, 70]. Cullin 3 (CUL3), an E3 ligase adds K48
and K63-linked polyUB chains to caspase-8 and facilitates its dimerization and
cleavage in the DISC, where A20 DUB removes the polyUB chains from caspase-
8 [184]. A20 (TNFa-induced protein 3; TNFAIP3) is well known for its anti-
inflammatory activities [185] through its N-terminal ovarian tumor domain (OTU)
that acts as a DUB and removes K63-linked polyUB chains from RIP1, TRAF6
and RIP2, thus restricting TNFR1, Toll-like receptor and nucleotide-binding
oligomerization domain-induced NF-jB signal [186–188]. In contrast to the role
of A20 in the TNFR1 pathway, the A20 C-terminal Zinc finger (Znf) domain of an
E3 ligase [189] can mediate RIP1 polyubiquitination through K63-linked polyUB
chains in TRAIL-induced DISC [190]. In TRAIL-resistant glioblastoma cell lines,
A20 and DR5 form a plasma membrane-bound preligand assembly complex
(PLAC) under physiologic conditions and TRAIL treatment leads to the recruit-
ment of caspase-8 to the PLAC for the assembly of the DISC, in which the polyUB
chains attached to RIP1 bind to the caspase-8 protease domain and inhibit caspse-8
cleavage and the initiation of TRAIL-induced apoptosis. It remains to be seen
whether this revised TRAIL model can be applied in other cancers and whether
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A20 E3 ligase inhibitors, which are currently under development, can overcome
TRAIL resistance for combination cancer therapy with TRAIL agonists.

TRAIL-Based Combination Therapies

The genetic defects in TRAIL apoptotic genes have been detected only in a small
fraction of human cancers [119]. The vast majority of human cancers appears to
have intact TRAIL apoptotic pathway and thus can be therapeutically targeted by
TRAIL agonists. Unfortunately, the pathway is often inhibited in human cancers at
multiple points in the apoptotic pathway through numerous mechanisms [11, 191].
Therapeutic agents targeting these resistance points have been developed for
combination therapies with TRAIL agonists. Moreover, cancer-addicted onco-
genes can inhibit cancer cell death pathway and thus drive cancer growth; thus,
oncogene-targeted therapeutic agents may have potential for synergistic antitumor
activity with TRAIL agonists. Finally, chemotherapy and radiation therapy remain
the standard clinical treatment of human cancers and have shown synergistic
antitumor activity with TRAIL agonists.

Targeting of the DISC Modification and Mitochondrial
Pathway

A number of therapeutic agents that target the TRAIL inhibitors, c-FLIP, Bcl-2
and XIAP have been developed as single agents or in combination with TRAIL
agonists for cancer therapies. 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic acid
(CDDO) is a synthetic oleanane triterpenoid [192] and its derivatives, CDDO-
methyl ester (CDDO-Me) and CDDO-imidazolide (CDDO-Im) have been shown
to be able to inhibit c-FLIP expression and promote TRAIL-induced apoptosis in
cancer cell lines [193, 194]. In a phase I trial of CDDO, sponsored through the
collaboration between the National Cancer Institute and Reata Pharmaceuticals,
thromboembolic side effect was revealed and considered as dose-limiting toxicity
[195]. Antisense oligodeoxynucleotides against Bcl-2 (Genasense; Genta Inc.,
Berkeley Heights, JN) [196], XIAP (AEG35156; Aegera Therapeutics, Montreal,
Quebec, Canada) [197] and survivin (LY2181308; Eli Lilly and Company, IN)
[198] have passed phase I trials of drug safety and pharmacokinetic analysis. In
addition, a number of Smac mimetics with a high affinity for XIAP including
synthetic Smac N-terminal peptide [172], small molecule Smac mimic [173],
Smac peptidomimetic (LBW242, Novartis, Cambridge, MA) [199] and SM-164
[200] have been generated for clinical treatment of cancers. It remains to be seen
whether the combination of these agents with TRAIL agonists may lead to
effective cancer therapies.

226 A. C. Bellail and C. Hao



Targeting Oncogenes-Driven Signaling Pathways

Mutations and/or deletions of tumor suppressors such as TP53 and PTEN are
commonly seen in human cancers [201], but it is unclear whether the genomic
status of each of the genes correlates to TRAIL sensitivity. Studies of glioblastoma
cell lines failed to show this correlation [54, 99], but other studies suggest that
DR5 is p53 target gene and p53 rescue compound can induce the expression of
DR5 [37] and thus enhance TRAIL killing of cancer cells [202]. Oncogene-driven
pathways such as mammalian target of rapamycin (mTOR) have been reported to
contribute to TRAIL resistance through induction of c-FLIPS expression [203].
Other mechanisms in TRAIL resistance include DNA methyltransferases through
the up-regulation of PED/PEA-15 [204], heat shock protein 90a facilitating c-
FLIPS recruitment to the DISC [205], microRNA-21 inhibiting TRAIL killing of
tumor cells [206] and the ubiquitin–proteasome pathway blocking c-FLIPS deg-
radation [207].

Therapeutic agents targeting oncogene-driven signaling pathways have been
developed for clinical treatments of cancers. These therapeutic agents have also
been evaluated in preclinical studies for the synergistic antitumor activity in
combination with TRAIL agonists, including proteasome inhibitor bortezomib
[208, 209], epidermal growth factor receptor inhibitors [210], histone deacetylase
inhibitor [211, 212], DNA methylation inhibitor [204], cyclooxygenase 2 inhibi-
tors [213, 214], mTOR inhibitor [203], phosphatidylinositide-3-kinase (PI3K)
inhibitor [215], kinase inhibitor sorafenib [153], and CD20 antibody Rituximab
[216, 217]. The molecular mechanisms by which these therapeutic agents can
overcome the cancer resistance to TRAIL and the clinical value of the combination
with TRAIL agonists for cancer therapies remain to be investigated.

Combination of TRAIL Agonists with Chemotherapy
and Radiation

Chemotherapeutic agents can interact with DNA and form intra-strand cross-links
and thus affect intracellular signal pathways [218]. Unfortunately, human cancers
eventually become resistant to chemotherapy. In addition, chemotherapy non-
specifically targets both cancer and normal cells and causes a broad range of
unwanted side effects at therapeutic doses. On the other hand, studies have shown
that chemotherapeutic agents enhance TRAIL-induced apoptosis in cancer cells
[98, 219–229]; although the molecular mechanisms in the synergistic effects
remain controversial. Some studies showed that the treatment with cisplatin and
etoposide up-regulate DR4/DR5 mRNA [219], but others observed that cisplatin
has no effect on the expression of DR4 and DR5 protein [222]. In addition, studies
showed that camptothecin up-regulates Bax [98]; cisplatin activates JNK/p38
[227]; cisplatin down-regulates c-FLIPS [98] and 1-(2-chloroethyl)-3-cyclohexyl-
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1-nitrosourea (CCNU), temozolomide and topotecan have the synergistic cyto-
toxicity with TRAIL [229] perhaps through down-regulation of c-FLIPS [99].
While the mechanisms remain controversial, these studies suggest that chemo-
therapy can enhance TRAIL apoptotic effects on human cancer cell lines and
derived xenografts.

Radiation therapy is the standard adjuvant treatment of human cancers. Studies
have shown the synergistic cytotoxic effects of radiation with TRAIL agonists.
Combination treatment with rhTRAIL and ionizing radiation can kill human
glioblastoma cells through activation of the extrinsic and intrinsic apoptotic
pathways [230]. Radiation treatment can up-regulate caspase-8 [231] and DR5
[232] and combination treatment of radiation and TRA-8 antibody increases the
survival of mice with intracranial glioblastoma xenografts [232]. Clearly, the
combination treatment of TRAIL agonists with radiation requires the presence of
TRAIL death machinery in human cancers.

Clinical Trials of TRAIL Agonists

The unraveling of TRAIL apoptotic pathway in cancer cells has resulted in a rapid
development of the pathway-targeted cancer therapies. A number of therapeutic
agents and modalities have been developed, of which rhTRAIL and DR4/DR5
agonistic antibodies have been under clinical investigation [11, 12]. The advantage
in clinical use of rhTRAIL is that the recombinant ligand can target DR4 and DR5.
On the other hand, antibodies have been proven to be effective clinical therapeutics
because they selectively target specific antigens and have a much longer half-life
than recombinant proteins. Two major categories of DR4 and DR5 mAbs have
been developed: humanized mouse and fully human monoclonal antibodies
(Table 2). Several of DR4 and DR5 agonistic antibodies and rhTRAIL have been
evaluated in phase I-II trials for their safety, pharmacokinetics and therapeutic
efficacy [9, 11].

Clinical Trials of rhTRAIL

A soluble form of non-tagged rhTRAIL (Apo2L/TRAIL, dulanermin) is currently
under clinical development jointly by Genentech and Amgen for cancer therapy
[233]. The data from phase I trial were first reported at the 42nd ASCO Annual
Meeting in 2006 and published in 2010 [234]: 41 patients with advanced cancers
and non-Hodgkin lymphoma were enrolled; the monotherapy was well-tolerated
with partial response in 3 % and stable disease in 53 % of patients. The data of
phase Ib trial of 24 patients with advanced non-small-cell lung carcinoma
(NSCLC) was then published, showing that the addition of paclitaxel, carboplatin
and bevacizumab (PCB) to rhApo2L/TRAIL (dulanermin) improved the response
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rates such as progression-free survival of patients [235]. It was therefore a surprise
when the data from the phase II trial of 213 patients with advanced NSCLC were
published in 2011, showing that the addition of PCB to rhApo2L/TRAIL (dula-
nermin) did not improve the response rates [236]. The small sample size and lack
of control in the phase Ib may explain the difference in the outcome between the
phase Ib and II trials. The phase II trial, however, has clearly established the
resistance of advanced NSCLC to the TRAIL treatment, either in monotherapy or
in combination with chemotherapy.

Humanized Monoclonal Antibodies against DR5

In 2001, a mouse mAb against human DR5 (TRA-8) was generated by immunizing
mice with a fusion protein of DR5 extracellular domain and IgG [55]. This mouse
mAb was then humanized for clinical treatment of cancers by Daiichi Sankyo
[237]. The data of phase I trial of the humanized IgG1 mAb (CS-1008, tigat-
uzumab) was published in 2010: 17 patients were enrolled with 16 of them
diagnosed with carcinoma and 1 patient with lymphoma; all these patients toler-
ated well of the monotherapy of tigatuzumab and 7 of the 17 patients presented
with stable disease [238]. At the 2008 ASCO Annual Meeting, Novartis presented
the data from a phase I trial of a chimeric (mouse/human) mAb, LYB135, either in
monotherapy or combination with capecitabine in treating patients with advanced
solid cancers: LBY135 was well tolerated in 56 patients enrolled and showed signs
of clinical activity.

At the 2012 ASCO Annual Meeting, the preliminary data from the phase II trial
of tigatuzumab (CS-1008) in combination with carboplatin and paclitaxel were

Table 2 Clinical Trails of TRAIL Agonists

Target Agonist Molecular type Sponsoring
company

Clinical trial

DR4/
5

Apo2L/TRAIL
(dulanermin)

rhTRAIL Genentech/Amgen Phase I/II

DR4 HGS-ETR1
(mapatumumab)

fully human mAb HGS Phase I/II

DR5 HGS-ETR2
(lexatumumab)

fully human mAb HGS Phase I/II

DR5 HGS-TR2J (KMTR2) fully human mAb HGS and Kirin
Pharma

discontinued

DR5 CS-1008 (tigatuzumab) humanized mouse mAb Daiichi Sankyo Phase I
DR5 AMG 655

(conatumumab)
fully human mAb Amgen Phase I/II

DR5 PRO95780 (drozitumab) fully human mAb Genentech Phase I/II
DR5 LBY135 chimeric mouse/human

mAb
Novartis Phase I
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reported: 100 patients with naïve metastatic and unrespectable NSCLC were
enrolled and the treatments did not improve the efficacy of carboplatin and pac-
litaxel. A phase II trial of tigatuzumab (CS-1008) in combination with the nano-
particle albumin-bound paclitaxel is currently ongoing in treating patients with
metastatic, triple-negative breast cancers.

Fully Human Monoclonal Antibodies Against DR4

At the 93rd AACR Annual Meeting in 2002, Human Genome Sciences in col-
laboration with Cambridge Antibody Technology reported for the first time the
generation of fully human monoclonal antibodies against human DR4 and DR5
through phage display: the DR4 agonistic human mAb HGS-ETR1 (map-
atumumab) and the DR5 human mAb HGS-ETR2 (lexatumumab) and HGS-TR2J
(KMTR2). The antibodies bind DR4/DR5 directly and trigger apoptotic cell death
in human cancer cell lines [239]. The data from the phase I trials of HGS-ETR1
showed that the monotherapy of HGS-ETR was well tolerated in patients
[240, 241]. Phase II trials of HGS-ETR1 in treating patients with NSCLC [242]
and colorectal cancer [243] showed no clinical activity of a single agent. At the
2010 ASCO Annual Meeting, the data from phase II trial showed that the com-
bination of HGS-ERT1 with paclitaxel and carboplatin did not improve the
response rates in the patients with advanced cancer.

Fully Human Monoclonal Antibodies Against DR5

The data of a phase I trial of the first fully human mAb HGS-ETR2 (lexatumumab)
in treating patients with advanced solid cancer were published in 2007 and 2010:
the 10 mg/kg dose was identified as the maximum tolerated dose; dose-limiting
toxicity was reached at 20 mg/kg; and twelve of the patients had stable disease
[244, 245]. At the 2007 ASCO Annual Meeting, the data from a phase Ib trial
showed that patients tolerated well with HGS-ETR2 in combination with gem-
citabine, pemetrexed, doxorubicin or FOLFIRI and tumor shrinkage was observed
in the FOLFIRI and the doxorubicin combination. HGS-ETR2 is currently in phase
I and II trials as a single agent or in combination with chemotherapeutic agents.
HGS-TR2J (KMTR2) is a fully human mAb derived from trans-chromosomal
mice expressing a human Ig locus immunized with the DR5 extracellular domain
under the co-development of Human Genome Sciences and Kirin Pharma [246].
Recently, however, the companies announced to discontinue clinical development
of this DR5 mAb.

At the 2007 ASCO Annual Meeting, Genentech reported the generation of a
fully human DR5 mAb, Apomab (PRO95780, drozitumab) through phage display
[247] and the preliminary data of phase I trial: this mAb was well tolerated in
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patients with advanced cancers. At the 2010 ASCO Annual Meeting, the data from
two phase II trials were released, showing that PRO95780 (drozitumab) plus rit-
uximab in treating patients with relapsed NHL and in combination of PCB in
treating patients with NSCLC did not improve the response rates in the patients.

At the 2007 AACR Annual Meeting, Amgen reported its pre-clinical study of a
fully human DR5 agonistic mAb, AMG655 (conatumumab). The preliminary data
from phase I trial were then reported at the 2007 ASCO Annual Meeting and the
phase I trial data were published: showing that this mAb was well tolerated in
Japanese patients [248] and the patients in US [249]. The subsequent data from a
phase I/II trial showed that the addition of AMG655 to doxorubicin was safe but
did not improved cancer control in patients with soft tissue sarcoma [250].

Conclusions and Future Directions

Since the discovery of TNFa in 1975 [14], a tremendous amount of efforts have
been made with the hope that these efforts will lead to an effective clinical
treatment of human cancers. 30 years later in 2005, TRAIL agonists of the TNF
family finally passed the phase I trials of drug safety test and became available for
clinical treatment of cancers. Unfortunately, the data from phase II trials of
therapeutic efficacy evaluation have been disappointing: TRAIL agonists, alone or
in combination, have failed to show antitumor activities. More data are expected to
be released from ongoing clinical trials of TRAIL agonists in treating various
human cancers. The hope is that these phase II trials of efficacy test may identify
the types of cancers and/or the fraction of the type cancer that can be effectively
treated with TRAIL agonists. Clearly, however, the vast majority of human can-
cers are resistant to the treatment of TRAIL agonists, alone or in combination.

TRAIL mediates the innate and adaptive immunity against cancer. This phys-
iological role of TRAIL suggests that cancers occur in patients by escape from
TRAIL-mediated immunity and thus predicts that cancers are resistant to the
treatment of TRAIL agonists. In consideration of this possibility, most phase II
trials started with a combination of TRAIL agonists with various cancer thera-
peutic agents, but still failed to show antitumor activity of TRAIL agonists. This is
truly a surprise and a disappointment, but it does bring us back to the fundamental
question: how cancers evade the immunosurveillance. Understanding how TRAIL-
mediated immunity works against cancer will certainly lead to the smart design of
TRAIL-based cancer therapies.

The current molecular models of TRAIL modulations in human cancer have
been established mainly through studies of cancer cell lines and cell lines-derived
xenografts. There is no doubt about the value of these cancer research models in
establishment of the fundamental principles. At this stage of the development of
TRAIL agonists, it may become more important that we analyze human cancer
tissues and tissues-derived stem cell models genetically and functionally. This may
allow us to determine whether TRAIL apoptotic pathway exists and can be
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therapeutically targeted, in particular in each individual patient. If TRAIL resis-
tance occurs, this approach may allow us to identify the roadblock for targeted
therapy to remove the resistance. It seems that we know much more about mol-
ecules, cell lines, and animal xenografts, but very little about human cancers when
it comes to how TRAIL pathway works. It has been a 35-year journey from the
discovery of TNFa to the clinical trials of TRAIL agonists. It may take the same
amount of time and efforts to develop this new class of cancer therapeutics as
effective clinical therapeutics; but this will only occur, if we finally understand the
therapeutic targets – patient’s cancers.
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The Dark Side of Apoptosis

Malathy P. V. Shekhar

Abstract Apoptosis is conventionally regarded as an anti-cancer mechanism that
eliminates or prevents mutant cell expansion necessary for tumor development and
progression. However, evidence for the paradoxical role of apoptosis in tumor
progression is accumulating. In this chapter, we describe the mechanisms by which
apoptosis serves as a vehicle for accumulating genomic instability to promote
malignant progression of tumors, and show a direct association between apoptosis
and tumor progression in clinical settings. The negative therapeutic implications of
increased apoptosis on clinical outcome and the need to inhibit apoptosis or dis-
able proliferation in apoptotic tumors are discussed.
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Introduction

Apoptosis represents a major mechanism by which tissue maintains homeostasis.
Apoptosis also plays an important role in protecting tissues against tumorigenesis
and malignant conversion. Cell loss occurs once tumors have grown more than a
few million cells [1, 2]. Intracellular stresses such as hypoxia, nutrient deprivation,
telomere shortening, and cell elimination by the host immune system are thought
to contribute to steady attrition of a portion of cancer cells in solid tumors [3–5].
A hypothetical link between apoptosis and tumorigenesis has been described by
Hanahan and Weinberg [6]. According to their model, the process of tumorigen-
esis and malignant conversion forces expression of proapoptotic factors that assist
with elimination of ‘mutant’ cells and protection from transformation. Thus,
mechanisms contributing to acquired resistance to apoptosis serve as a potential
mechanism for cell survival and neoplastic conversion.

For cells to acquire the ability for limitless replicative potential or resistance to
apoptosis, cells need to uncouple their growth/proliferation programs from envi-
ronmental signals. It is, however, becoming abundantly clear that there are situations
in which tumor cells undergo programmed cell death under conditions of optimal
growth stimulation and in the absence of environmental stress. In these tumors, the
apoptosis program is wired independently of cell–cell and cell-environmental
communications. Interestingly, despite the proficiency for spontaneous cell death,
the surviving tumor cells exhibit increased ability for malignant progression. This
suggests that the very same process used for protecting cells against malignant
conversion can contribute to greater vulnerability to malignancy. In metastatic
melanoma, spontaneous regression of individual metastatic deposits is seen
throughout the life history of the disease, yet the final outcome is usually death [7].
Similarly, spontaneous regression has been reported in metastatic renal carcinoma,
neuroblastoma, colorectal carcinoma, and a wide range of solid tumors [8], sug-
gesting that spontaneous cell loss is not an infrequent event. Yet, despite the loss of
tumor cells, the final outcome is not often favorable. The fact that cell loss can occur
in vitro under optimal growth and normoxic conditions suggests that cell loss seen
in vivo is not necessarily due to nutrient deprivation or hypoxia but rather these
tumor cells are intrinsically programmed to undergo apoptosis.

Causes of spontaneous death. Spontaneous loss of cells occurring in the
absence of extracellular factors suggests that the fully transformed cells may be
intrinsically unstable due to specific genetic abnormalities, and that in the process
of achieving stability they undergo apoptotic cell death. Factors responsible for
spontaneous apoptosis in tumors are diverse. In some tumors apoptotic cells are
found near foci of confluent necrosis suggesting that mild ischemia may contribute
to the initiation of apoptosis. The release of cytokines such as TNF-a by infiltrating
macrophages is regarded as one of the contributing factors. The extrinsic or death
receptor pathway of apoptosis involves stimulation of external surface receptors by
FasL and TRAIL leading to activation of caspase-8. In the intrinsic or mito-
chondrial pathway, proapoptotic signals meet at the mitochondria with resultant
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loss of the mitochondrial membrane potential, release of cytochrome c and acti-
vation of the caspase-9 signaling cascade [9, 10]. The intrinsic pathway is regu-
lated by members of the Bcl-2 family that have either antiapoptotic (Bcl-2, Bcl-xL,
Bcl-W, Mcl-1) or proapoptotic (Bax, Bim, Bak, Bid) function. The p53 tumor
suppressor protein functions in apoptosis by transcriptional upregulation of genes
(e.g., Bax, PUMA) that are directly involved in apoptosis [11, 12]. Both apoptotic
pathways converge on the same execution pathway resulting in the activation of
caspase-3, DNA fragmentation and formation of apoptotic bodies. Tumor cells
exhibit resistance to apoptosis through overexpression of FLIP, reduced expression
of CD95, TRAIL DR4 or DR5 receptors, or by overexpression of IAPs or altered
expression of the Bcl-2 family members [10].

Paradoxical role of Bcl-2 and Bax in tumor progression. Upregulation of
Bcl-2, Bcl-xL, and Mcl-1 are associated with inhibition of apoptosis; however,
their expressions do not often correlate strictly with poor clinical prognosis
[13, 14]. In breast cancer, Bcl-2 overexpression is associated with normal ploidy,
estrogen receptor positivity, and absence of metastasis; all characteristics associ-
ated with better clinical outcome and a more favorable prognosis that is contra-
dictory to its predicted role in apoptosis resistance [15, 16]. In colorectal adenoma,
Bcl-2 levels are decreased compared to the adjacent normal tissue [17]. Similar
data are reported in cervical, prostate, and endometrial cancers [18]. Overex-
pression of Mcl-1 is associated with poor prognosis for lung, and head and neck
cancers [17–20]. Thus, there are malignancies in which Bcl-2 family member
overexpression correlates with favorable prognosis and those in which it is cor-
relative of high tumor grade. Paradoxically, elevated expressions of the proa-
poptotic proteins Bax and Bak have been associated with poor prognosis in
esophageal carcinoma and bladder cancer, respectively [21–23]. In breast tumors,
an increase in the proportion of apoptotic cells was observed in recurrent tumors as
compared with primary lesions, and patients with tumors with higher apoptotic
indices were associated with shorter survival [24]. Several examples of a positive
correlation between the apoptotic index and the tumor grade have been reported
[25–27]. The role of apoptosis suppression as a vehicle for enhancing genomic
instability was tested by measuring the effects of Bcl-2 overexpression on the
frequency of CAD gene amplification in cells exposed to the CAD inhibitor
PALA. Bcl-2 overexpression failed to increase the frequency of CAD gene
amplification. However, similar analysis on cells expressing mutant p53 showed
enhanced frequency of CAD gene amplification. These data suggest that although
both p53 inactivation and Bcl-2 overexpression suppress apoptosis, apoptosis
inhibition by Bcl-2 overexpression does not make the cells genetically unstable
[28]. These data are consistent with low grade tumors produced by Bcl-2 over-
expressing cells, further confirming that apoptosis inhibition by Bcl-2 overex-
pression does not favor selection of tumor cell variants to increase genomic
instability [28].

Apoptosis as a mechanism for driving genomic instability. Reduced rates of
apoptosis correlate with fewer cell divisions and, hence, the possibility of gener-
ating fewer mutant clones. On the other hand, higher rates of apoptosis would
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require increased rates of cell division to compensate for cell loss, and conse-
quently lay the foundation for accruing genomic instability [29, 30]. As discussed
above, Bcl-2 overexpression and p53 loss both act by blocking apoptosis; how-
ever, only the latter enhances accumulation of genomic instability. In this context,
it is interesting to note that Bcl-2 overexpression and mutant p53 are rarely
coexpressed in a tumor. Bcl-2 overexpression was found in breast and head and
neck cancers expressing wild type p53 [13], [31–34], whereas breast tumors with
p53 accumulation (indicative of mutant p53 expression) showed low Bcl-2
expression [31, 35]. p53 is inactivated late in most cancers, suggesting that loss of
p53 function in later stages of tumorigenesis may translate into higher rates of
apoptosis and consequently higher rates of proliferation during the course of tumor
development that would enable expansion and accumulation of mutant clones
favoring malignant progression. Clinical data show that noncomedo-ductal car-
cinoma in situ (DCIS) breast cancers express normal levels of Bcl-2 compared to
comedo-DCIS that express weak or negligible Bcl-2, strong Bax and mutant p53.
Accordingly, comedo-DCIS lesions are characterized by high apoptotic and
mitotic indices [36], and are at greater risk for recurrence and malignant pro-
gression compared to noncomedo-DCIS. Evidence for a direct link between
increased apoptosis and tumorigenesis was recently demonstrated with a mouse
model harboring the loxP-targeted allele of Mcl-1 and albumin promoter-driven
Cre-recombinase. Hepatocytes of Mcl-1 fl/fl-AlbCre mice lacking Mcl-1 exhibited
increased apoptosis and spontaneously developed hepatocellular carcinoma-like
lesions at [50 % higher incidence [37]. These data suggest that apoptosis and
proliferation work in concert to drive malignant progression.

Mechanisms contributing to tumor progression in apoptotic tumors.
Apoptosis allows elimination of unwanted or unstable cells by processing them
into an array of smaller bodies called apoptotic bodies by cellular blebbing and
fragmentation. Apoptotic bodies have intact plasma membrane and adequate
energy supply to maintain their membrane integrity. Cells undergoing apoptosis
and apoptotic bodies expose phosphatidylserine on their surface that promote
recognition by professional (macrophages, dendritic cells, B-lymphocytes) and
nonprofessional (epithelial cells and fibroblasts) phagocytes, resulting in quick
ingestion and lysosomal degradation [38]. It is generally believed that apoptosis
does not induce inflammation because the apoptotic bodies are rapidly cleared to
prevent release of harmful immunogenic materials from the dying cells [39]. We
posit that the clearance rates of apoptotic bodies and the presence of associated
inflammation will depend upon the extent and rate of apoptosis. Tumor tissues
undergoing massive apoptotic cell loss such as comedo-DCIS breast cancers are
generally associated with a strong inflammatory response. It is possible that these
cells are recruited to mop-up the overwhelming amounts of released apoptotic
bodies, or that the slow clearing of apoptotic bodies induces the inflammatory
response. Either way, a tumor microenvironment rich in inflammatory cells would
promote tumor progression. Additionally, slow or incomplete removal of apoptotic
bodies would result in the accumulation of released genetic material into the
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cellular milieu and, thus, trigger the horizontal transfer or uptake of the DNA by
neighboring tumor or stromal cells.

Horizontal transfer of genetic material via cell–cell fusion. Horizontal
transfer of genes has been reported in bacteria and fungi and plays an important
role in the generation of antibiotic resistance and the adaptation to new environ-
ments [40]. Thus, horizontal transfer of genes represents a powerful mechanism
for bacterial diversification. Cell–cell fusion is considered to play an important
role in horizontal transmission of genes and malignant transformation [41–43].
Transfer of genetic information could occur via fusions between tumor and stromal
cells or between tumor cells. Human glioblastoma grafted to hamster cheek
pouches produced hybrid human/hamster tumors in which human chromosome
segregation occurred within the first transplant generation and showed widespread
metastasis. At least seven genes from the six human chromosomes were retained
of which three genes implicated in oncogenesis (CD7, CXCR4 and PLAGL2)
showed continued expression [44]. CXCR4 (also called fusin), a G-protein coupled
chemokine receptor for SDF-1 has been implicated in proliferation, motility,
homing and metastasis of cancer cells and is associated with regions of cell death
and angiogenesis. These data suggest that in vivo stability of the resulting hybrids
depends upon the selective growth advantage provided by the DNA taken up.

Horizontal transfer of DNA via apoptotic conversion. There is increasing
evidence that even cell-free cancer DNA can be transferred to induce malignancy.
Holmgren et al. [45] demonstrated that DNA can be transferred from apoptotic
cells to recipient neighboring cells by phagocytosis. Cocultivation of cell lines
containing integrated copies of the Epstein-Barr virus (EBV) resulted in rapid a
uptake of EBV DNA to the nucleus of the phagocytosing cell. Once transferred,
the expression of EBV encoded genes was detected at both the mRNA and protein
levels. Similarly, apoptotic bodies derived from c-Ha-rasVal [12] and c-myc
transformed rat embryo fibroblasts (REFs) were able to transform p53-/- or p21-/-
mouse embryo fibroblasts (MEFs) but not wild type MEFs [46, 47]. FISH analysis
confirmed that entire chromosomes are transferred from the apoptotic bodies of
REFs and become integrated into the mouse host genome. However, the stability
of the integrated DNA can be maintained only if it confers a selective growth
advantage to the recipient cell. Following uptake of the apoptotic genetic material,
normal recipient cells with the activated Chk2/p53/p21 DNA damage response
pathway block replication of the transferred DNA, thereby protecting them from
the potentially harmful effects of the apoptotic DNA [48]. Similar uptake of
apoptotic bodies with resultant acquisition of and propagation of drug resistance
genes has been demonstrated in prostate cancer cells [49]. Since p53 is lost in most
cancers, horizontal transfer of genetic material from the dying tumor cells to
recipient tumor cells may serve as a driving force for accumulation of genomic
instability and high mutability of tumor cells. Apoptotic DNA from the dying
tumor cells can also be transferred to recipient stromal cells (fibroblasts, endo-
thelial cells, macrophages). Such transfers could actively modify the structure and
behavior of the surrounding microenvironment, and potentially provide an
explanation for pro-tumorigenic and pro-metastatic properties of the tumor
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microenvironment. Apoptotic DNA was detected in the nuclei of *15 % of the
phagocytosing cells [45], suggesting that horizontal DNA transfer is an efficient
mode of enhancing genomic diversity of tumor cells that is dictated by the rate and
extent of apoptosis in the tumor. In contrast, mutation of specific genes is an
inefficient process that requires amplification of the mutated cells and is limited by
activities of surveillance mechanisms that monitor and maintain the genomic
integrity. It is possible that the fluidity of the cell membrane is increased in cells
sensitive to apoptosis, making it more receptive for cell fusion and DNA transfer.
Given the manner in which even highly differentiated epithelial cells are stimu-
lated to become phagocytic by the proximity of an apoptotic body, it is one of the
less studied but more remarkable components of apoptosis [48, 50]. Horizontal
DNA transfer or apoptotic conversion may be clinically important particularly in
tumors characterized by high spontaneous apoptosis such as comedo-DCIS breast
cancer since these tumor cells also express mutant p53.

Genetic exchanges occurring either via cell–cell fusions or by apoptotic con-
version can provide the residual tumor with new attributes for survival, growth,
progression and metastasis. It is possible that the phenotypic and genotypic
diversity (or heterogeneity) observed in cells within a tumor, between primary and
recurrent tumors, primary and metastatic tumors, and/or between metastases of the
same tumor arise at least in part by horizontal transmission of genes and gene
products by cell–cell fusions or direct incorporation of apoptotic DNA into cancer
or stromal cells.

Cancer stem cell activation. Recent studies have invoked the role of cancer
stem cells to explain the relationship between enhanced apoptosis and tumor
progression. It has been proposed that in tumors with high apoptotic rates, the
dying cells may free up space for cancer stem cells to proliferate into and populate
the tumor [51, 52]. To determine the association between apoptosis and increased
tumor growth/progression, Enderling et al. [53] simulated tumor development for
different spontaneous cell death rates, and initialized each simulation with one
cancer stem cell, stopping the simulation after 35 months or when the tumor
reached confluence. When random cell death among tumor cells was increased, an
increase in the number of stem cells was observed [53]. While spontaneous cell
death can reduce the number of tumor cells in the short run, they can facilitate
sufficient symmetric stem cell divisions to enrich the stem cell pool and ultimately
promote malignant expansion [54]. These findings have therapeutic implications
since conventional anti-cancer therapies are directed towards eradicating apopto-
sis-sensitive tumor bulk populations while sparing the therapy of resistant cancer
stem cells. Thus, the accelerated tumor recurrence following therapy may be
explained by the opportunistic proliferation of quiescent tumor cells into the space
made available by the initial killing. This treatment recovery cycle could favor the
creation of new stem cells by symmetrical division of previously quiescent stem
cells as the latter are considered to be more resistant to radiation [55] and che-
motherapy [56] compared to their nonstem counterparts [53]. As the tumor returns
to its pretreatment size, the tumor could become more refractory to treatment. This
notion is supported by observations that high rates of apoptosis in cancer cells
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correlate with tumor progression [30], whereas upregulation of anti-apoptotic
factors suppresses tumor progression and improves prognosis [18, 28]. Alterna-
tively, apoptosis may accelerate tumor generation or progression by preferentially
eliminating cells that retain normal apoptosis sensitivity while sparing apoptosis-
resistant mutant cells for expansion of mutant clones [57, 58].

A prototype clinical disease depicting pertinence of apoptosis adverse
effects. The relevance of detrimental effects of apoptosis to clinical settings is best
illustrated with comedo-type ductal carcinoma in situ. Among the several ductal
carcinoma in situ (DCIS) subtypes of preinvasive breast cancer, comedo type
DCIS or comedo-DCIS accounts for *10 % of all DCIS and confers the greatest
risk for progression and post-operative recurrence [59, 60]. Comedo-DCIS tumors
are easily distinguished from other DCIS by the characteristic central comedo-
necrosis [61] that results from extensive spontaneous apoptosis [62]. Yet despite
abundant cell loss, comedo-DCIS often demonstrates microinvasion, chromosome
aneuploidy, and higher proliferation and recurrence rates compared to non-comedo
DCIS tumors [63–65]. MCF10DCIS.com human breast cancer cells produce
tumors that resemble clinical comedo-DCIS and recapitulate the temporal
sequence of progression from in situ to invasive cancer [62, 66, 67]. Using the
MCF10DCIS.com model, we have demonstrated that spontaneous apoptosis
contributes to the etiology and progression of comedo-DCIS [62] (Fig. 1). Spon-
taneous MCF10DCIS.com cell loss is activated by the mitochondrial pathway with
upregulation of Bax, decreases in Bcl-2 and loss of p53 [62]. Clinical comedo-
DCIS, like MCF10DCIS.com cells, show a significant drop in Bcl-2 expression
combined with an increase in mutant p53 levels [36]. MCF10DCIS.com cells
undergo spontaneous apoptosis in vitro under optimal growth conditions indicating
that cell loss in vivo is not due to extraneous factors, but rather they are prepro-
grammed to undergo apoptosis [62]. The high rates of apoptosis in comedo-DCIS
are accompanied by compensatory increases in PCNA-positive cells that are
enriched for the CD44+/CD24- phenotype (Fig. 2). CD44+/CD24- cells have
tumor-initiating properties in breast cancer [68]. The CD44+/CD24- phenotype is
associated with stem cell-like characteristics [69], enhanced potential for invasion
[70], radiation resistance [71] and with distinct genetic profiles that correlate with
adverse prognosis [72]. These data corroborate that abundant cell loss in comedo-
DCIS provides increased opportunities for selecting cell variants with greater
malignancy potential. The presence of an intact myoepithelial layer is indicative of
DCIS lacking invasive potential. Interestingly, apoptosis is also implicated in the
initiation of progression of clinical and MCF10DCIS.com-derived comedo-DCIS
tumors as both luminal epithelial and myoepithelial cells are concurrently elimi-
nated by apoptosis [62] (Fig. 2). These data provide clinical support for the
adverse effects of apoptosis in neoplastic progression and show that apoptosis is
tightly linked with the coordinated and concerted events that lead up to malignant
progression (summarized in Fig. 3).

Therapeutic implications. The majority of anti-cancer therapies work by
inducing apoptosis in tumors. In tumors undergoing high rates of natural (spon-
taneous) or therapy-induced apoptosis, increased horizontal transfer of genetic
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material by cell–cell fusions or apoptotic conversion, cancer stem cell activation,
and/or associated inflammatory response may all contribute to the adverse effects
of chemo- and radio-therapy, viz., initial tumor regression that is accompanied by
quicker relapse, a greater tumor burden and therapy resistance [73]. Thus, it would
seem that using therapies that induce apoptosis in tumors experiencing high rates
of spontaneous apoptosis is counterintuitive. Inhibiting apoptosis in these tumor
tissues may be beneficial as it could decrease compensatory proliferation of

Fig. 1 Progression of MCF10DCIS.com to comedo-DCIS occurs by high rates of spontaneous
apoptosis of luminal epithelial and myoepithelial cells. Panels a, a0: early DCIS lesions; b, b0:
comedo-DCIS lesions; c, c0: MCF10DCIS.com multicellular tumor spheroids undergoing
spontaneous apoptosis in vitro. Panels a and c, H&E staining; b, silver staining; a0–c0, TUNEL
staining. Thin and thick arrows in b0 show apoptotic luminal epithelial and myoepithelial cells,
respectively
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Fig. 2 Progression of MCF10DCIS.com-derived comedo-DCIS lesions is accompanied by
increase in PCNA-positive and CD44+ (CD24-negative, not shown) cells. Panels a, a0 PCNA
expression in early and comedo-DCIS lesions, respectively. Note the presence of cells with
uniform nuclei in early lesions (panel a) compared to cells with larger or pleiomorphic nuclei in
the vicinity of the apoptotic core (indicated by arrow) of advanced lesions (panel a0). Panels b, b0

CD44 expression. Note low CD44 expression in early lesion (thin arrow in b) and strong CD44
expression in advanced comedo-DCIS (thick arrow in b and b0). Panels c, c0 H&E and PCNA
staining, respectively, of MCF10DCIS.com multicellular tumor spheroids generated in vitro.
Note the appearance of large nucleated cells in the apoptotic core (arrow in c) with PCNA
expression (c0). Panels d–e cell–cell fusion propensity. MCF10DCIS.com cells were prelabeled
with DiI (red) or DiO (green) and cocultured. Note the formation of fused cells in panel d0 and e
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surviving tumor cells, decrease activation and expansion of initiated or cancer
stem cells, decrease acquisition of genetic instability by inhibiting horizontal DNA
transfer and reduce inflammation. Taking into account the adverse effects of
apoptosis in malignant transformation and progression, it would seem that dis-
abling proliferation of stem and nonstem cells in ‘‘apoptotic tumors’’ may be
necessary to achieve a longer lasting clinical response.

Conclusion

Contrary to the popular belief that apoptosis acts to safeguard cells from neoplastic
conversion and progression, apoptosis must also be viewed as a ‘‘not so innocent’’
participant that actively promotes tumor progression. The latter paradoxical role
becomes relevant to tumors experiencing high rates of natural (spontaneous)
apoptosis or therapy-induced apoptosis, and must be taken into account when
therapy decisions are made.
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Fig. 1 Most common reactive oxygen species (ROS). Red is the unpaired electron which makes
an extremely unstable configuration and reacts with other molecules or radicals to achieve stable
configuration. The superoxide anion, which is both ion (2) and radical (1). Hydroxyl radical (3) is
the most reactive of all radicals. It differs from the hydroxyl ion (4) and hydrogen peroxide (5).
Ions like the hypochlorite ion (6) is also very reactive than other ions

Fig. 2 ROS generation in cancer cells. Excess ROS in cancer cells induces mitochondrial DNA
damage leading to secondary mutations that virtually produce nonfunctional enzymes and, in
turn, generates more ROS through aberrant respiration. The excess ROS production at the
mitochondria elevates the ROS level in cancer cells
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Fig. 3 NFE2L2—KEAP1 mechanism for maintaining the ROS level in cancer cells. NFE2L2
remains bound with KEAP1, RBX1 and CUL3 at the cytoplasm. An excess ROS release KEAP1,
RBX1 and CUL3 from NFE2L2 and free NFE2L2 is phosphorylated in the cytoplasm.
Phosphorylated NFE2L2 travels to the nucleus and binds at the promoter of ARE sequence
carrying antioxidant genes to facilitate transcription leading to increased antioxidant enzymes
production that reduce excess ROS. P, the phosphate group, MAF-oncoprotein v-MAF family
members
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