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Gauss–type quadrature

Walter Van Assche

Walter Gautschi’s work in this area has had a profound impact, especially on the
computational and practical aspects of Gauss quadrature. I have heard people refer
to it as Gautschian quadrature, just to emphasize Walter’s many contributions to
the theory and computation.

To fix notation, suppose one wants to approximate the integral of a function f
by a sum using only n evaluations of the function:

∫ b

a

f(x) dμ(x) =

n∑

k=1

λk,nf(xk,n) + En(f). (15.1)

Here the general case is considered where integration is with respect to a positive
measure μ on the real line, supported on the finite or infinite interval [a, b], but
quite often only a weight function w on [a, b] is used. If {xk,n : 1 ≤ k ≤ n} are the
zeros of the nth-degree orthogonal polynomial pn for the measure μ, i.e.,

∫ b

a

pn(x)x
k dμ(x) = 0, 0 ≤ k ≤ n− 1,

one can find weights {λk,n : 1 ≤ k ≤ n} such that En(f) = 0 for every polynomial
f of degree at most 2n− 1, and hence the quadrature gives the exact value of the
integral for polynomials of degree less than or equal to 2n− 1. These weights are
known as Christoffel weights or Christoffel numbers, and the quadrature formula is
known as the Gauss quadrature formula or, as Walter Gautschi usually calls it, the
Gauss–Christoffel quadrature formula. In his book [GAB3, §1.4.2] Gautschi uses the
term Gauss-type quadrature to refer to this class of quadrature formulas, including those
modified by Radau and Lobatto (cf.
(1816 [5]) considered the case where μ is the uniform measure on [−1, 1], for which
the corresponding quadrature nodes are the zeros of the Legendre polynomial Pn;
Elwin Bruno Christoffel [2] in 1877 extended this to more general weight functions.

Section 15.2). Carl Friedrich Gauss originally
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15.1. Construction of Gauss quadrature formulas

For the construction of Gauss quadrature formulas one basically needs to compute
the n zeros x1,n < · · · < xn,n of the orthogonal polynomial pn and the Christoffel
numbers {λj,n : 1 ≤ j ≤ n}. The measure μ is given and one needs the first 2n
moments (μk)0≤k≤2n−1 of μ to find the zeros and the Christoffel numbers:

μk =

∫ b

a

xk dμ(x) =

n∑

j=1

(xj,n)
kλj,n, 0 ≤ k ≤ 2n− 1.

Gautschi shows in [GA31] that the map (μk)0≤k≤2n−1 �→ (xj,n, λj,n)1≤j≤n is ill
conditioned and gives some lower bounds for the condition number κn showing that
for a large class of weights on [−1, 1] this κn grows exponentially like (17+6

√
8)n =

(1 +
√
2)4n and he concludes that

“The lesson to be learned from this analysis is evident: the moments
are not suitable, as data, for constructing Gauss–Christoffel quadrature
formulas of large order n. Apart from the fact that they are not always easy
to compute, small changes in the moments (due to rounding, for example)
may result in very large changes in the Christoffel numbers.”

He proposes an alternative procedure in which the inner product involving the
measure μ (or weight w) is replaced by a discrete inner product

〈f, g〉N =

N∑

k=1

wk,Nf(yk,N )g(yk,N ), wk,N > 0,

in such a way that

lim
N→∞

〈f, g〉N =

∫ b

a

f(x)g(x) dμ(x)

lim
N→∞

πn,N (x) = pn(x),

and the corresponding zeros and Christoffel numbers converge to the required quan-
tities for the Gauss quadrature,

Szegő calls it Gauss–Jacobi mechanical quadrature in his book [10, §3.4], whereas
Stroud and Secrest [9] refer to it as Gaussian quadrature formulas in their book
(which contains many tables).

for all polynomials f and g. In his later work he refers to this as the discretized
Stieltjes procedure [GA81, §2.2], [GA117, §4.2]; it has since become known as the
discretized Stieltjes–Gautschi procedure (cf. Section 11.2.2). The orthogonal poly-
nomials (πn,N )n∈N for this discrete inner product then have the property that
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lim
N→∞

x
(N)
j,n = xj,n, lim

N→∞
λ
(N)
j,n = λj,n.

In order to be practical, one needs to find a suitable discrete inner product 〈· , ·〉N .
Gautschi suggests using the Fejér quadrature formula (introduced by Fejér in 1933
[4] and studied by Gautschi in 1967 [GA30]) or the Gauss–Chebyshev quadrature
formula to do the discretization. The convergence can be accelerated by Newton’s
method.

Another procedure was proposed by Sack and Donovan in 1969 and quickly
picked up by Gautschi in [GA40]. Instead of starting from the moments

μk =

∫ b

a

xk dμ(x),

it uses modified moments

νk =

∫ b

a

qk(x) dμ(x),

where the (qn)n∈N are given orthogonal polynomials for a measure ν on [α, β],

∫ β

α

qk(x)qn(x) dν(x) = δk,n,

and hence satisfy a three-term recurrence relation

xqk(x) = αk+1qk+1(x) + βkqk(x) + αkqk−1(x).

If one chooses the measure ν close to the measure μ (in particular with the same
support [a, b] = [α, β]), the mapping from the modified moments to the zeros and
Christoffel numbers is often well conditioned. In [GA40] Gautschi gives an up-
per bound for the condition number and various asymptotic estimates for Jacobi
weights. He also gives an algorithm for generating orthogonal polynomials (pn)n∈N

for the measure μ, starting from the modified moments. Numerical examples (and
tables of Gaussian quadrature on an accompanying microfiche supplement) show
that this is indeed a very convenient way to construct Gauss quadrature formulas.

A very convincing way to show people that the mapping from moments to zeros
and Christoffel numbers is ill conditioned is given in [GA84] where Gautschi displays
a table for the nodes {xj,n : 1 ≤ j ≤ n} and Christoffel numbers {λj,n : 1 ≤ j ≤ n}
for n = 15 and weight w(x) = e−x3/3 on [0,∞), which appeared in the Journal of
Chemical Physics in 1980. Table 1 shows 16 decimals but only the first two are
correct. Gautschi also gives Table 2 with his own computation using a discretized
Stieltjes procedure and a suitable partition of the infinite interval [0,∞) into eight
subintervals. Instead of saying that the first table is wrong, Gautschi describes four
tests which can be used to check the accuracy of the table and leaves it to the reader
to decide that the second table is accurate to 16 decimals. He also explains why
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Table 1 was thought to be accurate: it passes two of the tests. The first test is to
check the quadrature formula on the moments, i.e., on the functions f(x) = xk with
0 ≤ k ≤ 2n− 1, and indeed both tables show that the quadrature formula produces
the moments accurately to about 15 correct decimals. But this is an extreme case
of correlation of errors. Test 2 suggested by Gautschi is to compute the coefficients
in the recurrence relation

xpk(x) = ak+1pk+1(x) + bkpk(x) + akpk−1(x), k ≥ 0,

of the orthogonal polynomials using the quadrature formula, and then to check
whether

μ2n =

n∑

j=1

λj,nx
2n
j,n + a21a

2
2 · · ·a2n,

which follows from the formula for the error term En(x
2n) of the Gauss quadra-

ture formula. This test too does not distinguish between the two tables. The two
other tests show that Table 1 is not accurate but Table 2 is. Test 3 is to com-
pute the recurrence coefficients using the quadrature formula and to check them
with the explicit formulas in terms of Gram determinants (cf. Eq. (11.5) of Sec-
tion 11.1). This test indeed shows that the accuracy of the recurrence coefficients
decreases by one decimal in each step for Table 1, but remains stable for Table
2. Test 4 is to compute the sum of the nodes, which is the trace of the Jacobi
matrix and which can be computed as the ratio of two determinants. This test
also shows that Table 1 is only accurate to two decimals, whereas Table 2 gives
12 accurate decimals. I have computed the nodes and Christoffel numbers for this
weight and n = 15 using Maple (which nowadays is a convenient way to perform
multiprecision computations) and found that one needs to work with a precision of
45 decimals (Digits:=45) to produce Table 2 if one starts from the moments and
uses the method with which Table 1 was generated. Gautschi’s approach requires
only double precision and hence is to be preferred. A Matlab suite for generating
orthogonal polynomials and related quadrature rules can be found on his website
http://www.cs.purdue.edu/archives/2002/wxg/codes/ under the heading OPQ.

15.2. Gauss–Radau and Gauss–Lobatto quadrature

The Gauss quadrature formulas can be extended somewhat to include information
of the function at the endpoints of the interval [a, b]. For Gauss–Radau quadrature
one uses a fixed node at one of the endpoints a or b, and then n nodes in (a, b) are
taken such that for every polynomial f of degree ≤ 2n

∫ b

a

f(x)w(x) dx = λaf(a) +

n∑

j=1

λj,nf(xj,n),
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which is the Gauss–Radau quadrature rule with fixed left endpoint, or
∫ b

a

f(x)w(x) dx = λbf(b) +

n∑

j=1

λj,nf(xj,n),

which is the Gauss–Radau quadrature rule with fixed right endpoint. Even though
these formulas use n+1 quadrature points, the effect of fixing one quadrature point
is to reduce the degree of the polynomials which can be correctly integrated by one.
Recall that the Gauss quadrature rule with n + 1 points has degree of exactness
2n+ 1, which is one higher than the Gauss–Radau rule. The n other nodes are all
in the open interval (a, b) and turn out to be zeros of the orthogonal polynomial
of degree n for the modified weight function (x − a)w(x) when one fixes the left
endpoint a, or (b − x)w(x) when one fixes the right endpoint b. These orthogonal
polynomials are known as kernel polynomials [1, §1.7] and can be expressed in terms
of the Christoffel–Darboux formula.

For Gauss–Lobatto quadrature one uses both endpoints as fixed nodes and one
looks for n nodes in (a, b) such that

∫ b

a

f(x)w(x) dx = λaf(a) + λbf(b) +
n∑

j=1

λj,nf(xj,n)

for every polynomial f of degree≤ 2n+1. There are n+2 quadrature nodes, but two
nodes are now fixed at a and b, resulting in the reduction of the polynomial degree of
exactness by 2 (Gauss quadrature with n+2 nodes has degree of exactness 2n+3).
The n remaining nodes turn out to be the zeros of the orthogonal polynomial of
degree n for the modified weight (x−a)(b−x)w(x). These orthogonal polynomials
can be expressed in terms of the orthogonal polynomials for the weight w by means
of a formula of Christoffel [10, §2.5].

An e-mail from someone inquiring how to fix an underflow problem when com-
puting high-order Gauss–Lobatto quadrature rules for the Legendre case w(x) = 1
on [−1, 1] prompted Walter Gautschi to investigate the more general case of Jacobi
weights w(x) = (1−x)α(1+x)β on [−1, 1] in [GA163]. The Gauss–Lobatto formula
then uses the quadrature nodes ±1 and the zeros of the orthogonal polynomials for
the weight (1 − x2)w(x), which is again a Jacobi weight but now with parameters
(α + 1, β + 1). Gautschi first notes that underflow can be avoided by computing
the two modified elements of the Jacobi matrix directly as functions of α and β,
rather than by solving the usual 2×2 system of linear equations (which for large
n becomes singular, numerically). He then gives explicit formulas for the weights

λ1 and λ−1 and for the interior weights in terms of the Jacobi polynomials P
(α,β)
n

evaluated at the interior nodes. He compares the results obtained by direct com-
putation using his formulas with the results obtained by computing the modified
Jacobi matrix and the first components of the eigenvectors. The conclusion is that
the direct computation using the explicit formulas is more accurate in 90% of all
the 8,400 cases he investigated.
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Gauss–Radau quadrature for the Jacobi weight is investigated in [GA164] where
again explicit formulas are found for the weight at the boundary and for the interior
weights in terms of the Jacobi polynomials evaluated at the interior nodes. No
numerical results are presented but the explicit formula for the boundary weight
is said to be more accurate than the result computed using the eigenvector of the
modified Jacobi matrix. For the interior weights, however, in about two-thirds of
the cases computed, the results of the direct computation are found less accurate
than the results obtained by using the eigenvectors of the modified Jacobi matrix.
[GA164] also deals with the Gauss–Radau formula for the Laguerre measure w(x) =
xαe−x on [0,∞) and an explicit formula for the weight λ0 is given, together with
a formula for the interior weights in terms of the Laguerre polynomials evaluated
at the interior nodes. Again no numerical results are presented but the conclusion
is said to be much like in the case of the Jacobi weight, i.e., the boundary weight
is always considerably more accurate by means of direct computation than via
eigenvectors, whereas for the interior weights the result using the eigenvectors is
generally more accurate than the explicit formula.

In [GA126] Walter Gautschi and Shikang Li extend the Gauss–Radau and
Gauss–Lobatto idea by allowing the endpoints to appear with multiplicity 2. This
amounts to using also the derivatives of f at the endpoints, i.e., for Gauss–Radau
quadrature with fixed left endpoint

∫ b

a

f(x)w(x) dx = λ0f(a) + λ1f
′(a) +

n∑

j=1

λj,nf(xj,n) + ER
n (f).

If one takes for the n nodes xj,n the zeros of the orthogonal polynomial of degree
n for the modified weight (x− a)2w(x), then ER

n (f) = 0 can be achieved for every
polynomial of degree at most 2n+1. Of course a similar formula can be constructed
for the right endpoint. Gautschi and Li show that the weights in this quadrature
formula are all positive and they give explicit formulas for the weights λ0 and λ1

when w is the Chebyshev weight function on [−1, 1] of any of the four kinds,

w(x) = (1− x)±1/2(1 + x)±1/2.

They also handle the extension of Gauss–Lobatto quadrature, where

∫ b

a

f(x)w(x) dx = λ0f(a) + λ1f
′(a) +

n∑

j=1

λj,nf(xj,n) + μ0f(b)− μ1f
′(b) + EL

n (f).

Note the negative sign before μ1f
′(b). Choosing the n nodes xj,n as the zeros of

the orthogonal polynomial of degree n for the weight (x − a)2(b − x)2w(x) then
results in EL

n (f) = 0 for every polynomial of degree at most 2n+3. All the weights
are again positive and the weights λ0, λ1, μ0, μ1 are explicitly given for the four
Chebyshev weights. Their paper ends with various examples.
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There is nothing really special about multiplicity two in Gauss–Radau or Gauss–
Lobatto quadrature, so the natural next step is to consider having nodes of arbitrary
multiplicity at one or both endpoints of the interval [a, b]. This is worked out
in [GA173] in a general setting, and in [GA194] for Jacobi and Laguerre weight
functions. The generalized Gauss–Radau formula has the form

∫ b

a

f(x)w(x) dx =
r−1∑

k=0

λ(k)
a f (k)(a) +

n∑

j=1

λj,nf(xj,n) + ER
n,r(f),

where r > 1 is the multiplicity of the endpoint a. The degree of exactness is
2n−1+r, i.e., one has ER

n,r(f) = 0 for every polynomial of degree at most 2n−1+r,
if one takes for the internal nodes {xj,n : 1 ≤ j ≤ n} the zeros of the orthogonal
polynomial of degree n for the weight function (x − a)rw(x). For the generalized
Gauss–Lobatto quadrature, similarly,

∫ b

a

f(x)w(x) dx =
r−1∑

k=0

λ(k)
a f (k)(a)+

n∑

j=1

λj,nf(xj,n)+
r−1∑

k=0

(−1)kλ
(k)
b f (k)(b)+EL

n,r(f),

where EL
n,r(f) = 0 for every polynomial f of degree at most 2n− 1 + 2r when the

internal nodes are the zeros of the orthogonal polynomial of degree n for the weight
(x − a)r(b − x)rw(x). Note the alternating sign for the weights at the endpoint
b. This is useful in the case of a symmetric weight w(−x) = w(x) on a symmetric

interval, where λ
(k)
a = λ

(k)
b for 0 ≤ k ≤ r− 1. For questions regarding the positivity

of the weights, see Section 7.6.2, Vol. 1.
Gautschi developed in [GA173] a routine for computing these generalized Gauss–

Radau and Gauss–Lobatto formulas for arbitrary r, and Matlab routines are
downloadable from his website http://www.cs.purdue.edu/archives/2002/wxg/
codes/ under the heading HOGGRL.

15.3. Error bounds for Gauss quadrature

So far we witnessed Gautschi’s skills in constructing Gauss quadrature formulas. He
also is a very skillful analyst able to find sharp bounds for the error En(f) in Gauss
quadrature on [−1, 1] for functions f which are analytic in a domain D containing
[−1, 1]. Together with Richard Varga he starts in [GA85] from the contour integral
representation

En(f) =
1

2πi

∫

Γ

Kn(z)f(z) dz,

where the kernel is

Kn(z) =
1

pn(z)

∫ 1

−1

pn(t)

z − t
dμ(t),
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and Γ is a contour in D surrounding [−1, 1]. A straightforward estimation gives

|En(f)| ≤ �(Γ)

2π
max
z∈Γ

|Kn(z)|max
z∈Γ

|f(z)|,
where �(Γ) is the length of the contour Γ. The first maximum depends only on μ
and the second maximum only on the function f , thus separating the dependence
of the error on the quadrature rule and on the function to be integrated. If Γ
is the circle {|z| = r} with r > 1, then Gautschi and Varga show that for a
large class of measures μ the maximum of |Kn(z)| is attained on the real line and
is either Kn(r) or |Kn(−r)|, and they show that it can be evaluated accurately
and efficiently by recursion. This class of measures includes the Jacobi weights
dμ(x) = (1 − x)α(1 + x)β dx for arbitrary α, β > −1. They also investigate elliptic
contours Γ = {z = 1

2 (re
iθ + 1

r e
−iθ), 0 ≤ θ ≤ 2π} for which they show that in the

case of Chebyshev weights α = β = ± 1
2 and α = − 1

2 , β = 1
2 the maximum of

|Kn(z)| is attained on the real positive axis, hence equal to Kn((r+1/r)/2), except
for the Chebyshev weight of the second kind (α = β = 1

2 ) for which the maximum
is located on the imaginary axis when n is odd, and near the imaginary axis when
n is even. The problem is much more complicated for general Jacobi weights; in
this case some empirical results are worked out.

The problem for the elliptic contour and Chebyshev weights is taken up again
in [GA119] with Tychopoulos and Varga, and a more detailed analysis is made for
the Chebyshev weight α = β = 1

2 and n even. They show that for r ≥ rn+1, where
rn+1 > 1 is the root of an explicitly stated algebraic equation, the maximum of
|Kn(z)| occurs on the imaginary axis while for r < rn+1 it is near the imaginary
axis within an angular distance less than π/(2n + 2). Furthermore, the sequence
(rn)n≥2 decreases monotonically to 1.

A similar error bound analysis is done in [GA123] and [GA121] for Gauss–Radau
quadrature and Gauss–Lobatto quadrature where the endpoints have multiplicity
one and two, respectively, and integration is with respect to any of the Chebyshev
weight functions. The original analysis can be carried over fairly well since most of
the ingredients still involve orthogonal polynomials, albeit with a modified weight
function. Furthermore, if one starts with a Chebyshev weight function, then the
modified weights are still Jacobi weights and the corresponding orthogonal polyno-
mials are linear combinations of Chebyshev polynomials.

15.4. Gauss quadrature for rational functions

The quadrature formulas so far are designed to integrate functions that are close
to polynomials. If one deals with functions having poles (outside the interval of
integration) or other singularities, then the best thing to do is to absorb that infor-
mation in the weight function, or, which amounts to the same thing, to construct
quadrature formulas that exactly integrate rational functions with prescribed loca-
tion of the poles. This kind of rational quadrature is something I was interested
in myself through the thesis of one of the PhD students in my department; see
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[12], where we studied the case of poles of multiplicity one or two. The following
characterization appears in [GA137] and [GA167]:

Theorem 1. Let {ζk : 1 ≤ k ≤ M} be complex numbers such that −1/ζk /∈ [a, b] and
define

ωm(x) =

M∏

k=1

(1 + ζkx)
sk , m =

M∑

k=1

sk,

where sk ∈ N. Assume that the weight w(x)/ωm(x) admits the n-point Gaussian
quadrature formula

∫ b

a

f(x)
w(x)

ωm(x)
dx =

n∑

j=1

wG
j,nf(xj,n) + EG

n (f),

with EG
n (f) = 0 for every polynomial f of degree at most 2n− 1. Then

∫ b

a

g(x)w(x) dx =

n∑

j=1

λj,ng(xj,n) + En(g), λj,n = wG
j,nωm(xj,n), (15.2)

has the property that

En(g) = 0 if

{
g(x) = (1 + ζkx)

−s, k = 1, 2, . . . ,M, s = 1, 2, . . . , sk,

g(x) = xk, k = 0, 1, 2, . . . , 2n−m− 1.

Hence one can construct n-point quadrature formulas for rational functions by us-
ing the n-point Gaussian quadrature formula for the weight w(x)/ωm(x) which has
prescribed poles outside [a, b] with given multiplicities. Furthermore, Gautschi de-
scribes in [GA137] and [GA167] a way to compute the quadrature formula (15.2),
either by a partial fraction decomposition and modification algorithms, or by the
discretization method, which we described earlier. A number of examples illus-
trate the efficiency of the quadrature rule. Some other types of rational quadrature
rules are also given in [GA167] such as the rational Fejér quadrature rule, ratio-
nal Gauss–Kronrod quadrature, rational Gauss–Turán quadrature, and rational
Cauchy principal value quadrature. The latter three are described in more detail
in [GA162], where many numerical examples are given.

15.5. Gauss quadrature for special weights

The methods for constructing orthogonal polynomials, their recursion coefficients
and the corresponding Gaussian quadrature, which were proposed by Gautschi,
have been applied to a number of interesting explicit cases. In [GA93] Walter
Gautschi and Gradimir Milovanović worked out the details for the weights
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εr(x) =
xr

(ex − 1)r
, ϕr(x) =

1

(ex + 1)r
, x ∈ [0,∞),

for r = 1 and r = 2. The weight ε1 is known as the Einstein function and ϕ1 as
the Fermi function. Integrals involving the functions εr occur in phonon statistics,
lattice specific heats, and in the study of radiative recombination processes. In-
tegrals involving the functions ϕr are encountered in the dynamics of electrons in
metals and heavy doped semiconductors. For the weights εr (r = 1, 2) they propose
to compute the recursion coefficients of the orthogonal polynomials by means of a
discretized Stieltjes–Gautschi procedure based on the Gauss–Laguerre quadrature
rule, which uses the zeros of the Laguerre polynomial Ln as quadrature nodes. This
indeed makes a lot of sense since ε1(x) ∼ xe−x and ε2(x/2) ∼ x2e−x as x → ∞,
so that these weights behave near infinity as the weight w(x) = e−x for Laguerre
polynomials, up to polynomial growth. A different procedure is suggested for the
weights ϕr because the poles ±iπ of these weights are closer to the real axis. Instead,
a composite Fejér quadrature rule is proposed where the interval [0,∞) is decom-
posed into four subintervals [0, 10]∪ [10, 100]∪ [100, 500]∪ [500,∞]. These methods
are illustrated by a number of numerical results. Tables of the recursion coefficients
are included in the appendix of [GA93] and the quadrature nodes and quadrature
weights are included in a supplement to [GA93]. A particularly interesting appli-
cation is the summation of certain series

∑∞
n=1(±1)nan where an is expressible as

a Laplace transform or the derivative of a Laplace transform. Indeed, if

an =

∫ ∞

0

f(t)e−nt dt,

then
∞∑

n=1

(−1)n−1an =

∫ ∞

0

f(t)

et + 1
dt =

∫ ∞

0

f(t)ϕ1(t) dt,

and when

an =

∫ ∞

0

tf(t)e−nt dt = − d

dx

∫ ∞

0

f(t)e−xt dt

∣
∣
∣
∣
x=n

,

then
∞∑

n=1

an =

∫ ∞

0

f(t)
t

et − 1
dt =

∫ ∞

0

f(t)ε1(t) dt.

Several examples of infinite series of this type are worked out, showing the efficiency
of Gauss quadrature for evaluating slowly converging infinite series. Particularly
useful is the advice they give for each example and ways to circumvent problems
that occur.

In [GA154] Gautschi and Milovanović join forces again, but now their interest
is in constructing Gauss–Turán quadrature rules, which are of the form
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∫ 1

−1

f(x) dx =

k−1∑

i=0

n∑

j=1

Ai,jf
(i)(xj,n) + En,k(f),

using the derivatives f (i) for 0 ≤ i ≤ k− 1 at the quadrature nodes. Turán showed
that for k = 3 the nodes can be chosen in such a way that the formula is exact
for polynomials f of degree at most 4n − 1. In general one can choose the nodes
{xj,n : 1 ≤ j ≤ n} in such a way that En,k(f) = 0 for polynomials of degree
≤ (k+ 1)n− 1 whenever k = 2s+ 1 is odd, but this does not work when k is even.
The nodes are zeros of the monic polynomial πn that minimizes the Lk+1 norm

∫ 1

−1

[πn(x)]
k+1 dx.

This can be extended to positive measures dμ on the real line and Gauss–Turán
quadrature is possible for k = 2s+ 1 odd, with nodes being the zeros of the monic
polynomial πn minimizing the Lk+1(μ) norm. This minimization is equivalent to
the conditions

∫

R

[πn(x)]
2s+1xr dμ(x) = 0, r = 0, 1, . . . , n− 1,

and the corresponding polynomials πn are known as s-orthogonal polynomials.
Gautschi and Milovanović observe that these s-orthogonal polynomials are the poly-
nomials πn,n from a sequence of orthogonal polynomials (πk,n)k≤n for the varying
weight [πn(x)]

2s dμ(x):
∫

R

[πn(x)]
2sπk,n(x)x

j dμ(x) = 0, j = 0, 1, . . . , k − 1.

Note, however, that the s-orthogonal polynomials πn are implicitly defined in this
way, since the varying measure involves the polynomial πn. Gautschi and Milo-
vanović propose a method for computing the recurrence coefficients of the orthogo-
nal polynomials starting from an initial guess for the unknown polynomial πn and
then applying an iterative procedure (Newton-Kantorovič method) to compute the
recursion coefficients of the orthogonal polynomials (πk,n)0≤k≤n, which in the end
gives the required πn = πn,n. The elements in the Jacobian, which one needs for the
Newton method, are integrals which can all be computed exactly by using Gaussian
quadrature for the (nonvarying) measure μ taking (s+ 1)n quadrature nodes. The
procedure is illustrated with numerical examples. For the Chebyshev measure of
the first kind on [−1, 1], the monic polynomials minimizing

∫ 1

−1

|πn(x)|k+1

√
1− x2

dx, k ≥ 0,

are the monic Chebyshev polynomials of the first kind Tn(x)/2
n−1, hence the nodes

for the Gauss–Turán formula are cos (2j − 1)π/2n 1 ≤ j ≤ n.,)(
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In his most recent paper [GA211], Gautschi returns to Gauss–Turán quadrature,
suggesting an improvement of the procedure described above in the case of Laguerre
and Hermite weight functions.

Another example where Gautschi’s construction of Gauss quadrature rules works
well is Gauss quadrature for refinable weight functions, which appear in multireso-
lution analysis and wavelet analysis in particular. In [GA161] Gautschi worked with
Laura Gori and Francesca Pitolli on Gaussian quadrature for a weight φ satisfying

φ(x) =
∑

j∈Z

ajφ(2x− j),

where

aj = 2−h

[(
m+ 1

j

)

+ 4(2h−m − 1)

(
m− 1

j − 1

)]

, h ≥ m ≥ 2.

The function φ is only computable at dyadic points

xk = −m+ 1

2
+ k · 2−r, k = 0, 1, 2, . . . , (m+ 1)2r,

hence these points are used for the discrete inner product needed for the discretiza-
tion method. The inner product is taken as Simpson’s quadrature. Numerical
results and examples illustrate the proposed procedure.

The more recent paper [GA198] deals with weight functions with logarithmic
factors, such as v(x) = xαe−x(x − 1 − log x) on [0,∞) and w(x) = (1 − x)α(1 +
x)β log(2/(1 + x)) on [−1, 1], which are logarithmic modifications of the Laguerre
weight and the Jacobi weight, respectively. The procedure is to use a (symbolic)
modified Chebyshev algorithm based on ordinary as well as modified moments
executed with sufficiently high precision. The natural choice for modified moments
for the weight v is to use Laguerre polynomials,

νk =

∫ ∞

0

xαe−x(x− 1− log x)Lα
k (x) dx,

and for w it is natural to make the change of variable x = 2t−1 and use the shifted
Jacobi polynomials,

νk =

∫ 1

0

tβ(1− t)α log(1/t)P
(α,β)
k (2t− 1) dt.

These modified moments can be expressed explicitly in terms of special functions
and evaluated to arbitrary precision. As usual, a number of examples illustrate the
numerical results.
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15.6. The circle theorem for Gauss-type quadrature

If one plots the n Gaussian weights (suitably normalized) against the n Gaussian
nodes, one finds that, asymptotically as n → ∞, they come to lie on a half circle
when the weight is supported on a finite interval and satisfies a mild condition. This
is known as the circle theorem and was first established by Davis and Rabinowitz
[3] in 1961 for Jacobi weights w(x) = (1− x)α(1 + x)β on [−1, 1].

Theorem 2. Let w be a weight function on [−1, 1] in the Szegő class, i.e.,

∫ 1

−1

logw(x)
dx√
1− x2

> −∞

and suppose that 1/w ∈ L1(Δ) for a compact interval Δ ⊂ (−1, 1). Then

nλj,n

w(xj,n)
∼ π

√
1− x2

j,n, n → ∞,

for all nodes xj,n (and corresponding weights λj,n) that lie in Δ.

This theorem is useful if one wants to check whether the quadrature weights
that one computed for a certain weight w are indeed reliable: if they don’t follow
the circle theorem, then one cannot trust the computed results. The circle theorem
basically follows as a corollary of the asymptotic behavior of Christoffel functions

λn(x) =
1

∑n−1
k=0 p

2
k(x)

of a weight w, where (pn)n∈N are the orthonormal polynomials for w. Indeed, Nevai
proved that

lim
n→∞nλn(x) = πw(x)

√
1− x2 (15.3)

holds almost everywhere in Δ under the conditions given in the theorem. The
relation λj,n = λn(xj,n) then gives the circle theorem. See [8, §4.5] for a discussion
on asymptotics for the Christoffel functions, which shows that the idea of the circle
theorem predates Davis and Rabinowitz [3]. The asymptotic behavior in (15.3) for
weights w on [−1, 1] holds almost everywhere on an open interval Δ ⊂ [−1, 1] under
the weaker condition [7, Thm. 8]

∫

Δ

logw(x) dx > −∞.

Gautschi extends this circle theorem in [GA180] to Gauss–Radau and Gauss–
Lobatto quadrature for weights w satisfying the conditions in Theorem 2. He also
considers Gauss–Kronrod quadrature
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∫ 1

−1

f(x)w(x) dx =

n∑

j=1

λj,nf(xj,n) +

n+1∑

k=1

λ∗
k,nf(x

∗
k,n) + En(f),

where {xj,n : 1 ≤ j ≤ n} are the Gaussian nodes and the Kronrod nodes {x∗
k,n :

1 ≤ k ≤ n+ 1} and the weights {λj,n : 1 ≤ j ≤ n} and {λ∗
k,n : 1 ≤ k ≤ n+ 1} are

such that En(f) = 0 whenever f is a polynomial of degree at least 3n − 1. (For
Gauss–Kronrod quadrature, see also Section 14.1.) The Kronrod nodes are the
zeros of the polynomial πn+1 which is the orthogonal polynomial of degree n+1 for
the (nonpositive) weight pn(x)w(x), with pn the orthogonal polynomial of degree
n for the weight w:

∫ 1

−1

πn+1(x)x
kpn(x)w(x) dx = 0, k = 0, 1, 2, . . . , n.

The Kronrod nodes are not necessarily in the interval [−1, 1] and may in fact be
complex, but when all the Kronrod nodes are real, distinct, in the interval (−1, 1),
and different from the Gauss nodes, there is indeed a chance for a circle theorem
to hold. Gautschi proves such a circle theorem for Gauss–Kronrod quadrature for
a restricted class of weights.

The function π
√
1− x2 in the circle theorem and in (15.3)

of the density of
weight of the first
then a variant of the circle theorem would be

nλj,n

w(xj,n)
∼ 1

wE(xj,n)
,

where wE is the density of the equilibrium measure of the compact set E. This
holds, for instance, almost everywhere on Δ ⊂ E when E is a regular set and
[11, Thm. 1] ∫

Δ

logw(x) dx > −∞.

Gautschi illustrates this when the weight w is supported on two disjoint in-
tervals and remarks that the equilibrium measure is explicitly known for a set
E = T−1([−1, 1]), where T is a polynomial, referring to my joint work [6] with Jeff
Geronimo in 1988.

Before concluding this presentation, this may be a good place to reaffirm that
Walter Gautschi has written quite a few nice and interesting papers on Gauss-
type quadrature, which are very influential and even essential when one plans to
make numerical computations. Furthermore, he is very well aware of the existing
literature, has a good taste in the choice of specific problems and examples, and

is in fact the reciprocal

the equilibrium measure for the interval [−1, 1] (the Chebyshev
kind). If one considers weights on a compact set E of the real line,
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his papers are a pleasure to read. Some of the codes are available on his web-
site http://www.cs.purdue.edu/archives/2002/wxg/codes/ showing that he is
willing to share his knowledge and results with the international community.

References

[1] T. S. Chihara. An introduction to orthogonal polynomials. Mathematics and Its
Applications 13, Gordon and Breach, New York, 1978. xii+249 pp. ISBN: 0-677-
04150-0.

[2] E. B. Christoffel. Sur une classe particulière de fonctions entières et de fractions
continues. Ann. Mat. Pura Appl. (2), 8:1–10, 1877; Ges. Math. Abhandlungen II,
42–50.

[3] P. J. Davis and P. Rabinowitz. Some geometrical theorems for abscissas and weights
of Gauss type. J. Math. Anal. Appl., 2(3)428–437, 1961.

[4] L. Fejér. Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z.,
37(1):287–309, 1933; Ges. Arbeiten, 457–478.

[5] C. F. Gauss. Methodus nova integralium valores per approximationem inveniendi.
Comment. Soc. Regiae Sci. Gottingensis Recentiores 3, 1816; Werke III, 163–196.

[6] J. S. Geronimo and W. Van Assche. Orthogonal polynomials on several intervals via
a polynomial mapping. Trans. Amer. Math. Soc., 308(2):559–581, 1988.
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[8] Paul Nevai. Géza Freud, orthogonal polynomials and Christoffel functions. A case
study. J. Approx. Theory, 48(1):3–167, 1986.

[9] A. H. Stroud and Don Secrest. Gaussian quadrature formulas. Prentice-Hall, Engle-
wood Cliffs, NJ, 1966. ix+374 pp.

[10] Gábor Szegő. Orthogonal polynomials. Fourth edition. Amer. Math. Soc. Col-
loq. Publ. 23, American Mathematical Society, Providence, RI, 1975, xii+432 pp.

[11] Vilmos Totik. Asymptotics for Christoffel functions for general measures on the real
line. J. Anal. Math., 81(1):283–303, 2000.

[12] Walter Van Assche and Ingrid Vanherwegen. Quadrature formulas based on rational
interpolation. Math. Comp., 61(204):765–783, 1993.


	15. Gauss–type quadrature
	15.1 Construction of Gauss quadrature formulas
	15.2 Gauss–Radau and Gauss–Lobatto quadrature
	15.3 Error bounds for Gauss quadrature
	15.4 Gauss quadrature for rational functions
	15.5 Gauss quadrature for special weights
	15.6 The circle theorem for Gauss-type quadrature
	References


