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Orthogonal polynomials on the real line

Gradimir V. Milovanović

In about two dozen papers, Walter Gautschi developed the so-called constructive
theory of orthogonal polynomials on R, including effective algorithms for numerically
generating orthogonal polynomials, a detailed stability analysis of such algorithms
as well as several new applications of orthogonal polynomials. Furthermore, he
provided software necessary for implementing these algorithms (see Section 23,

Let P be the space of real polynomials and Pn ⊂ P the space of polynomials of
degree at most n. Suppose dμ(t) is a positive measure on R with finite or unbounded
support, for which all moments μk =

∫
R
tkdμ(t) exist and are finite, and μ0 > 0.

Then the inner product

(p, q) =

∫

R

p(t)q(t)dμ(t)

is well defined for any polynomials p, q ∈ P and gives rise to a unique system of
monic orthogonal polynomials πk( · ) = πk( · ; dμ); that is,

πk(t) ≡ πk(t; dμ) = tk + terms of lower degree, k = 0, 1, . . . ,

and

(πk, πn) = ||πn||2δkn =

{
0, n �= k,

||πn||2, n = k.

11.1. Three-term recurrence relation

Because of the property (tp, q) = (p, tq), these polynomials satisfy a three–term
recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2 . . . , (11.1)

Vol. 3) and applications.
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with π0(t) = 1 and π−1(t) = 0, where (αk) = (αk(dμ)) and (βk) = (βk(dμ)) are
sequences of recursion coefficients which depend on the measure dμ. The coefficient
β0 may be arbitrary, but is conveniently defined by β0 = μ0 =

∫
R
dμ(t). In the

case of a discrete measure dμ = dμN , i.e., when μ(t) has only N points of increase,
the system of polynomials {πk} consists of only N polynomials π0, π1, . . . , πN−1

(discrete orthogonal polynomials).
There are many reasons why the coefficients αk and βk in the three-term re-

currence relation (11.1) are fundamental quantities in the constructive theory of
orthogonal polynomials (for details see [GA81]). For example, αk and βk provide
a compact way of representing and easily calculating orthogonal polynomials, their
derivatives, and their linear combinations, requiring only a linear array of parame-
ters.

The same recursion coefficients αk and βk appear also in the Jacobi continued
fraction associated with the measure dμ,

F (z) =

∫

R

dμ(t)

z − t
∼ β0

z − α0−
β1

z − α1− · · · ,

which is the Stieltjes transform of the measure dμ (for details see [GAB3, p. 15],
[17, p. 114]). The nth convergent of this continued fraction is easly seen to be

β0

z − α0−
β1

z − α1− · · · βn−1

z − αn−1
=

σn(z)

πn(z)
, (11.2)

where σn are the so-called associated polynomials defined by

σk(z) =

∫

R

πk(z)− πk(t)

z − t
dμ(t), k ≥ 0.

They satisfy the same fundamental relation (11.1), i.e.,

σk+1(z) = (z − αk)σk(z)− βkσk−1(z), k ≥ 0,

with starting values σ0(z) = 0, σ−1(z) = −1.
The functions of the second kind,

�k(z) =

∫

R

πk(t)

z − t
dμ(t), k ≥ 0, (11.3)

where z is outside the spectrum of dμ (the Stieltjes transforms of πk), also satisfy
the same three-term recurrence relation (11.1) and, under some mild conditions,
represent itsminimal solution (cf. Section 21, Vol. 3) normalized by �−1(z) = 1. This

75] and is a remarkable result, very important
for computation in the areas of orthogonal polynomials, special functions, and
numerical analysis. Gautschi [GA75] showed that this minimal solution can be

has been observed by Gautschi in [GA



11.1 Three-term recurrence relation 5

computed accurately by means of his continued fraction algorithm presented in
[GA29]. Namely, if one wishes to compute �k(z) for k = 0, 1, . . . , n, then for some

ν > n one generates quantities r
(ν)
k and �

(ν)
k by

r(ν)ν = 0, r
(ν)
k−1 =

βk

z − αk − r
(ν)
k

, k = ν, ν − 1, . . . , 1, 0,

�
(ν)
−1 = 1, �

(ν)
k = r

(ν)
k−1�

(ν)
k−1, k = 0, 1, . . . , n.

The quantities �
(ν)
k (z) then tend to �k(z) when ν → ∞, for every k = 0, 1, . . . , n.

For some standard measures dμ, Gautschi also provides good estimates for the
starting index ν, given n and the desired accuracy.

Notice that the rational function (11.2) has simple poles at the zeros z = xn,k,
k = 1, . . . , n, of the polynomial πn(t). By λn,k we denote the corresponding residues,
i.e.,

λn,k = lim
z→xn,k

(z − xn,k)
σn(z)

πn(z)
=

1

π′
n(xn,k)

∫

R

πn(t)

t− xn,k
dμ(t),

so that the continued fraction representation (11.2) assumes the form

σn(x)

πn(x)
=

n∑

k=1

λn,k

x− xn,k
. (11.4)

The coefficients λn,k play an important role in Gauss–Christoffel quadrature for-
mulae, being the Christoffel numbers associated with dμ. Using procedures of
numerical linear algebra, notably the QR or QL algorithm, one easily computes the
zeros of the orthogonal polynomials πn rapidly and efficiently as eigenvalues of the
leading nth-order principal minor matrix of the Jacobi matrix associated with dμ,

J(dμ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0

√
β1 0

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The first components of the corresponding normalized eigenvectors give also imme-
diately the Christoffel numbers λn,k (cf. [12, GA65]).

Unfortunately, the recursion coefficients are known explicitly only for some nar-
row classes of orthogonal polynomials. One of the most important classes for which
these coefficients are known explicitly are surely the so-called very classical or-
thogonal polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials),
which appear frequently in applied analysis and computational science. Orthogonal
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polynomials for which the recursion coefficients are not known we call strongly non-
classical polynomials. In this case, if we know how to compute the first n recursion
coefficients αk and βk, k = 0, 1, . . . , n − 1, we can compute all orthogonal polyno-
mials of degree ≤ n by a straightforward application of the three-term recurrence
relation (11.1).

In [GA81] Walter Gautschi starts with an arbitrary positive measure dμ(t),
which is given explicitly, or implicitly via moment information, and considers the
actual (numerical) construction of orthogonal polynomials to be a basic computa-
tional problem: For a given measure dμ and for given n ∈ N, generate the first n
coefficients αk(dμ) and βk(dμ), k = 0, 1, . . . , n− 1.

At that time, and even more so in the “pre-computer” era, the problem was given
surprisingly little attention in the literature, probably because it has a straight-
forward theoretical solution. Indeed, if one knows the moments μk, k ≥ 0, the
polynomial πk(t; dμ) can be expressed in the form

πk(t; dμ) =
1

Δk

∣
∣
∣
∣
∣
∣
∣
∣
∣

μ0 μ1 · · · μk−1 1
μ1 μ2 · · · μk t
...

...
...

...
μk μk+1 · · · μ2k−1 tk

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where the Hankel determinant

Δk =

∣
∣
∣
∣
∣
∣
∣
∣
∣

μ0 μ1 · · · μk−1

μ1 μ2 · · · μk

...
...

...
μk−1 μk · · · μ2k−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

is nonvanishing. The coefficients in the three-term recurrence relation can also be
expressed in terms of Hankel determinats (or by Darboux’s formulae),

αk =
Δ′

k+1

Δk+1
− Δ′

k

Δk

(

=
(tπk, πk)

(πk, πk)

)

, βk =
Δk−1Δk+1

Δ2
k

(

=
(πk, πk)

(πk−1, πk−1)

)

, (11.5)

where Δ′
k denotes the determinant obtained from Δk by replacing the last column

[μk−1 μk . . . μ2k−2]
T by [μk μk+1 . . . μ2k−1]

T .
Thus, the recursion coefficients αk and βk in (11.1) can be computed from (11.5)

in terms of Hankel-type determinants, but this involves excessive complexity and is
subject to extreme numerical instability. In the numerical construction of recursion
coefficients an important aspect is the sensitivity of the problem with respect to
small perturbations in the data (for example, perturbations in the first 2n moments
μk, k = 0, 1, . . . , 2n− 1, when calculating the coefficients for k ≤ n− 1). There is a
simple algorithm, due to Chebyshev, which transforms the moments to the desired
recursion coefficients, [μk]

2n−1
k=0 �→ [αk, βk]

n−1
k=0 , but its viability is strictly dependent

on the conditioning of this mapping. The latter is usually severely ill conditioned
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so that these calculations via moments, in finite precision on a computer, are quite
ineffective. The only salvation, in this case, is to either use symbolic computation,
which however requires special resources and often is not possible, or else to use
the explicit form of the measure. In the latter case, an appropriate discretization of
the measure and subsequent approximation of the recursion coefficients is a viable
alternative.

11.2. Basic procedures for generating the recursion coefficients

There are three well-known approaches for generating recursion coefficients: the
method of (modified) moments, the , and the
Lanczos algorithm.

11.2.1. Method of (modified) moments

In an attempt to avoid ill-conditioning, one can use the so-called modified moments
mk =

∫
R
pk(t)dμ(t), k = 0, 1, 2, . . . , where pk are monic polynomials of degree k

“close” in some sense to the desired polynomials πk. Usually, the polynomials pk
satisfy a three-term recurrence relation of the form (11.1), with coefficients ak (∈ R)
and bk (≥ 0) (instead of αk and βk). Then there is a unique map Kn : R

2n → R
2n

that takes the first 2n modified moments into the desired n recurrence coefficients
αk and βk, i.e., [mk]

2n−1
k=0 �→ [αk, βk]

n−1
k=0 . An algorithm for realizing this map (modi-

fied Chebyshev algorithm) is formulated and summarized schematically in Gautschi
[GA81]. In a somewhat different form, the algorithm has been first proposed by
Sack and Donovan [29], and modified by Wheeler [33]. A derivation can also be
found in [GA64]. For ak = bk = 0 we have pk(t) = tk and the modified moments
mk reduce to the standard moments μk.

A rigorous and detailed analysis of the map Kn was given by Gautschi in [GA81]
(see also [GA94] and especially his excellent survey [GA146] on applications and
computational aspects of orthogonal polynomials). The novelty of his treatment
consists in representing Kn : R

2n → R
2n as a composition of two maps, Kn = Hn ◦

Gn, where Gn : [mk]
2n−1
k=0 → [xn,k, λn,k]

n
k=1 is the map from the modified moments

to the Gauss–Christoffel nodes and weights, and Hn : [xn,k, λn,k]
n
k=1 → [αk, βk]

n−1
k=0 ,

the map from the Gauss–Christoffel quadrature rule

∫

R

f(t) dμ(t) =

n∑

k=1

λn,kf(xn,k) +Rn(f), Rn(P2n−1) = 0,

to the desired recursion coefficients. Notice that xn,k, k = 1, . . . , n, are the zeros
of the orthogonal polynomial πn associated with the measure dμ. The parameters
xn,k and λn,k, k = 1, . . . , n, also appear in (11.4).

The components Hn and Gn of the map Kn can be analyzed individually with
regard to their numerical condition, which in turn yields a bound on the condition

discretized Stieltjes–Gautschi procedure
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of the composite map. The map Hn is usually fairly well conditioned, but Gn is the
mo sensitive one. The map Kn for standard moments, [μk]

2n−1
k=0 �→ [αk, βk]

n−1
k=0 , is

severely ill conditioned when n is large. By using modified moments, the map may
become better conditioned, very much so when the measure has finite support.

11.2.2. Discretization methods

The basic idea for these methods is an approximation of the given measure dμ by
a discrete N -point measure, usually through an appropriate quadrature rule,

dμ(t) ≈ dμN (t) =

N∑

k=1

wkδ(t− xk), wk > 0,

where δ is the Dirac delta function. Thereafter, the first n recursion coefficients are
approximated by those of the discrete measure,

αk(dμ) ≈ αk(dμN ), βk(dμ) ≈ βk(dμN ), k = 1, 2, . . . , n.

The approximate coefficients are computed by a discretized Stieltjes procedure. It
takes N � n and uses Darboux’s formulae in (11.5) for k ≤ n− 1, computing the
inner products as finite sums by

(p, q)N =

∫

R

p(t)q(t) dμN (t) =

N∑

k=1

wkp(xk)q(xk).

All aspects of discretization methods, theoretical and practical, are carefully
analyzed by Gautschi in [GA81] (questions of convergence, problems of computing
recursion coefficients of discrete measures, appropriate choices of discretizations,
numerical stability of the procedure, etc.). The idea of discretizing inner products
appeared already in the 1968 paper [GA31], where the discretization is effected
by the Fejér quadrature rule. Because of Gautschi’s important contributions, the
method is now known as the discretized Stieltjes–Gautschi procedure.

11.2.3. Lanczos algorithm

An alternative approach for obtaining the recursion coefficients of a discrete measure
is the Lanczos algorithm, which is based on ideas of Lanczos and Rutishauser (for
details see [GA146] and Gautschi’s book from 2004 [GAB3, pp. 97–98]).

11.3. Examples of interesting classes of orthogonal polynomials

Walter’s work and his contributions in the constructive theory of orthogonal poly-
nomials allow the construction of many new classes of polynomials and their ap-
plication in diverse areas of applied and numerical analysis (numerical integration,

re
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interpolation processes, integral equations, probability, moment-preserving spline
approximation, summation of slowly convergent series, approximation theory, etc.),
as well as in many other areas of applied and computational science.

In this subsection we mention some interesting nonclassical measures dμ(t) =
w(t) dt for which the recursion coefficients αk( dμ), βk( dμ), k = 0, 1, . . . , n−1, have
been obtained in the literature and used in the construction of Gaussian quadra-
tures and other applications of orthogonal polynomials. Many interesting examples,
including discrete and continuous measures, were considered by Gautschi [GA81] in
order to illustrate the strengths and weaknesses of the various constructive methods
and to test the underlying theory.

1) Christoffel’s example dμ(t) = [(1−k2t2)(1− t2)]−1/2 dt on [−1, 1], 0 < k < 1,
was treated in [GA81, GA94] by the method of moments, using modified moments
relative to Chebyshev polynomials of the first kind.

2) The logarithmic weight w(t) = tα log(1/t), α > −1, on (0, 1) was first con-
sidered by Piessens and Branders [28] for some particular values of α. Gautschi
[GA81, GA117] gave a complete stability analysis and used the modified moments
relative to shifted Jacobi polynomials [GA67] in his construction, even for the more
general measure dμ(t) = tα(1− t)β log(1/t) dt, where α, β > −1.

3) The half-range Hermite measure dμ(t) = exp(−t2) dt on [0,∞) was dealt
with in [GA81] by using the discretized Stieltjes–Gautschi procedure. Orthogonal
polynomials with respect to the same measure, but on a finite interval [0, c] (Maxwell
velocity distribution), were considered for c = 1 and n = 10 by Steen, Byrne, and
Gelbard [30]. A stable construction is given by Gautschi in [GA122].

4) Polynomials orthogonal with respect to multiple-component distributions,
e.g., dμ(t) = [(1 − t2)−1/2 + a] dt on [−1, 1], a > 0 (adding a multiple of the
Legendre weight function to the Chebyshev weight function), was considered in
[GA81].

5) In [GA90] Gautschi developed constructive methods for a class of polynomials
orthogonal on two symmetric intervals with respect to the measure dμ(t) = w(t) dt
on [−1, 1], where

w(t) =

{ |t|γ(t2 − ζ2)p(1 − t2)q, t ∈ [−1,−ζ] ∪ [ζ, 1],

0 elsewhere, 0 < ζ < 1, p > −1, q > −1, γ ∈ R.

An analysis is given of certain phenomena of instability in connection with nonlinear
recursions. The special case γ = 1, p = q = −1/2, ζ = (1 − r)/(1 + r) (0 < r < 1)
arises in the study of the diatomic linear chain (cf. J. C. Wheeler [34]). Gautschi
showed how to use the recurrence relations for related polynomials orthogonal on
[ζ, 1] to generate the coefficients βk in the desired three-term recurrence relation.
For certain special values of the parameters p, q and γ, he obtained βk explicitly
in closed form. For general parameters, the theory of this class of polynomials has
previously been studied by Barkov [2]. In 1989 Locher [14] obtained an explicit
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representation of these polynomials in the case γ = 0 (and in some other cases
where γ is an even integer), from which the recurrence relation can be derived.

6) The Airy weight w(t) = exp(−t3/3) on (0,+∞) was considered in the chem-
istry literature [13], but the numerical results obtained were accurate to only 1− 2
decimal digits (cf. also Section 15.1). The inhomogeneous Airy functions Hi(t) and
Gi(t) arise in theoretical chemistry (e.g. in harmonic oscillator models for large
quantum numbers); their integral representations [13] are given by

Hi(t) =
1

π

∫ +∞

0

w(x)ext dx,

Gi(t) = − 1

π

∫ +∞

0

w(x)e−xt/2 cos
(√3

2
xt+

2π

3

)
dx.

These functions can effectively be evaluated by Gaussian quadrature relative to the
Airy weight w(t) once the orthogonal polynomials with respect to this weight are
known. Gautschi [GA84] computed their recursion coefficients for n = 15 to 16
decimal digits after the decimal point, using standard double-precision arithmetic.

7) The reciprocal gamma function w(t) = 1/Γ(t) as a weight function on (0,+∞)
was considered by Gautschi in [GA80]. It could be useful as a probability density
function in reliability theory (see Fransén [10]).

8) Einstein’s and Fermi’s weight functions on (0,+∞),

w1(t) = ε(t) =
t

et − 1
and w2(t) = ϕ(t) =

1

et + 1
,

arise in solid state physics. (For this example, see also Section 15.5.) For w1(x),
w2(x), w3(x) = ε(x)2 and w4(x) = ϕ(x)2, in a joint paper with Walter Gautschi
[GA93], we determined the recursion coefficients αk and βk for n = 40 to 25 decimal
digits, and gave an application of the respective Gauss–Christoffel quadratures to
the summation of slowly convergent series whose general term is expressible in
terms of a Laplace transform or its derivative. (For this, see also Section 25.2, Vol. 3)

ur collaboration has recently been told by
Walter Gautschi [GA201] on the occasion of my 60th anniversary. Our collaboration
has started in the mid eighties of the last century, just at the time when Walter
developed his constructive theory of orthogonal polynomials. I was then in my
thirties, so his influence on my scientific work and my further development was of
crucial importance; for this I am very grateful to him.

9) For the hyperbolic weights on (0,+∞),

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
,

I constructed the recursion coefficients αk, βk for n = 40 to 30 decimal digits [19]
using the discretized Stieltjes–Gautschi procedure with a discretization based on

It was our first joint paper. The story of o
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the Gauss–Laguerre quadrature rule. The Gaussian quadratures relative to these
weights were used in the summation of slowly convergent series (for details see
[19–21]); see also Dahlquist [7–9] and [25] for related work.

10) The weight distribution dμ(t) = tαK0(t) dt on [0,∞), α > −1, where
K0 is the modified Bessel function, arose in work of R. Wong [35]. In [GA81]
Gautschi showed how to decompose and discretize the inner product (p, q) =∫∞
0

p(t)q(t) dμ(t) in order to apply an appropriate Stieltjes–Gautschi procedure.
Recently, Gautschi [GA169] described procedures for the high-precision calculation
of the modified Bessel function Kν(t), 0 < ν < 1, and the Airy function Ai(t),
for positive arguments t, as prerequisites for generating Gaussian quadrature rules
having these functions as a weight function.

Recent progress in symbolic computation and variable-precision arithmetic now
makes it possible to generate the coefficients αk and βk in the three-term recurrence
relation (11.1) directly by using the original Chebyshev method in sufficiently high
precision. Respective symbolic/variable-precision software for orthogonal polyno-
mials is available (Gautschi’s package SOPQ inMatlab —see Section 23, Vol. 3 — and

package OrthogonalPolynomials [5, 26]). Thus, all that is required
is a procedure for the (symbolic) calculation of the moments in variable-precision
arithmetic. Gautschi [GA176] illustrates this approach in the case of orthogonal
polynomials having such unorthodox weight functions as 1 + sin(1/t) on [0, 1], or
exp(−t− 1/t) on [0,∞], which are respectively densely oscillating at one endpoint,
or exponentially decaying at both. In each case the moments of the weight function
are expressible in terms of special functions which can be evaluated to arbitrary
precision. Similarly, in [GA195] Gautschi considered Freud and half-range Hermite
polynomials, Bose–Einstein polynomials, and Fermi–Dirac polynomials.

Very recently, Gautschi [GA205] considered orthogonal polynomials relative to
the Jacobi weight function w(x) = (1 − x)α(1 + x)β , α, β > −1, but orthogonal
on a strict subinterval [−c, c] or [−1, c], 0 < c < 1, especially with regard to their
numerical computation. Such sub-range Jacobi polynomials πk(x) can be expressed
in terms of polynomials orthogonal on [−1, 1] relative to the weight function w(ct)
resp. w(12 (1+ c)t− 1

2 (1− c)) and constructed using a discretized Stieltjes–Gautschi
procedure. Gautschi also considered corresponding Gaussian quadrature rules.

11.4. Christoffel modifications of the measure – modification
algorithms

Let dμ(t) be a positive measure with finite support supp( dμ) = [a, b],

u(t) = ±
�∏

k=1

(t− uk), v(t) =

m∏

k=1

(t− vk)

the Mathematica
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be two real polynomials, relatively prime and not vanishing on [a, b], the sign + or
− in u(t) being chosen so that u(t)/v(t) > 0 on [a, b]. Define a new measure

dμ̂(t) =
u(t)

v(t)
dμ(t), t ∈ [a, b]. (11.6)

The main problem is to generate the three-term recurrence coefficients of the mod-

measure, αk = αk(dμ) and βk = βk(dμ). Methods for implementing this transfor-
mation are known as modification algorithms. The first result in this area is due to
Christoffel [4], who in 1858 expressed u(t)πn(t; dμ̂), when v ≡ 1 and dμ(t) = dt, in
determinantal form as a linear combination of orthogonal polynomials πn+ν(t; dμ),
ν = 0, 1, . . . , �. The case with v(t) �≡ 1 was solved hundred years later by Uvarov
[31].

Modifications by linear and quadratic factors and divisors play an important
role in the computational use of orthogonal polynomials. Subsequent to a paper
of Galant [11], who considered modification by a linear factor, Gautschi [GA77]
in 1982 developed general modification algorithms for linear and quadratic factors
u(t) = t − x and u(t) = (t − x)2 + y2 and analogous divisors. Based on work by
Verlinden [32], these methods can be simplified considerably and in this simplified
form are included in Gautschi’s book [GAB3, §2.4] along with Matlab software. An
interesting quadratic factor is u(t) = (t − x)2. It can be treated by techniques
of numerical linear algebra (cf. [GA170]). Namely, in order to obtain Jn( dμ̂) one
applies a single step of the QR algorithm with shift x to the Jacobi matrix Jn+2( dμ)
of order n + 2 and then discards the last two rows and columns of the resulting
matrix.

In [GA134] Gautschi (with Shikang Li) considered dμ̂(t) = [πn(t; dμ)]
2 dμ(t)

and constructed the orthogonal polynomials πn(t; dμ̂) and their recursion coeffi-
cients from the coefficients αk(dμ) and βk(dμ) of the polynomials πn(t; dμ). They
proposed a stable computational algorithm, which uses a sequence of QR steps with
shifts, but for all four Chebyshev measures they obtained the desired coefficients
analytically in closed form. These ideas have been used in [6] to develop a ratio-
nal algorithm for quadratic Christoffel modification and to apply it to constrained
L2-approximation.

Recently, Gautschi [GA206] has developed algorithms for computing the recur-
sion coefficients in the three-term recurrence relation of repeatedly modified orthog-
onal polynomials, the modifications involving division of the orthogonality measure
by linear functions with real or complex coefficients. Several interesting examples
are given, including Bose–Einstein distributions and the Szegő–Bernstein measure.

11.5. Sobolev-type orthogonal polynomials

In the last two decades, interest arose, and grew, in the development of orthogo-
nal polynomials with respect to an inner product of Sobolev type, i.e., involving
derivatives up to a given order with corresponding positive measures. There is a

ified measure (11.6), α̂k = αk(dμ̂) and β̂k = βk(dμ̂), from those of the original
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growing literature on this kind of orthogonal polynomials, largely concerned with
analytic and algebraic properties (cf. [15]). Computational aspects were first dis-
cussed systematically by Gautschi and his student M. Zhang [GA145], where the
inner product considered is a bilinear functional involving derivatives up to some
order s (≥ 1) with arbitrary positive measures dμν , ν = 0, 1, . . . , s,

(p, q)Hs =

s∑

ν=0

∫

R

p(ν)(t)q(ν)(t) dμν(t). (11.7)

Here Hs denotes the Sobolev space Hs(R) = {f :
∑s

ν=0

∫
R
[f (ν)(t)]2 dμν(t) < ∞}.

They developed two numerical methods for determining the coefficients in the (long)
recurrence relation for orthogonal polynomials of Sobolev type,

πk+1(t) = tπk(t)−
k∑

ν=0

βk
νπk−ν(t), k = 0, 1, . . . .

The first is based on modified moments of the constitutive measures and generalizes
what for ordinary orthogonal polynomials is known as “modified Chebyshev algo-
rithm”. The second is a generalized Stieltjes–Gautschi procedure. The numerical
features of these methods are illustrated in the case of old, as well as new, Sobolev
orthogonal polynomials. The coefficients in the recurrence relation can be used to
compute the zeros of πn(t) as eigenvalues of an upper Hessenberg n × n matrix.
Based on numerical experimentation, a number of conjectures are formulated with
regard to the location and interlacing properties of the respective zeros.

In [GA151] Gautschi develops two recursive schemes for computing a special
class of Sobolev-type orthogonal polynomials, considered previously by F. Marcellán
and A. Ronveaux [16]. The inner product involves functions with an arbitrary
positive measure dμ(t) on R, and a derivative of fixed order r with a one-
point atomic measure, i.e., [f, g] = (f, g) + f (r)(c)g(r)(c), r ≥ 1, c ∈ R, and
(f, g) =

∫
R
f(t)g(t) dμ(t). Gautschi combines in an elegant way known algebraic

properties of such Sobolev orthogonal polynomials with algorithmic ideas of his own
to arrive at effective methods for computing these polynomials numerically. He il-
lustrates them in the case of Hermite, Laguerre and Legendre measures, and uses
them to explore numerically the zeros of the respective Sobolev-type orthogonal
polynomials.

In the very interesting paper [GA153] Gautschi and Kuijlaars, using potential-
theoretic methods, study the asymptotic distribution of zeros and critical points of
Sobolev polynomials πn orthogonal with respect to the inner product (11.7) with
s = 1, assuming that dμ0 and dμ1 are compactly supported positive measures on
the real line with finite total mass and infinite Σ = supp(μ0) ∪ supp(μ1). Under
appropriate assumptions they show that the critical points (zeros of π′

n) have a
canonical asymptotic limit distribution supported on the real line. In certain cases
the zeros themselves have the same asymptotic limit distribution. They also give a
new result on zero distributions of asymptotically extremal polynomials.
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11.6. Further extensions and applications

Gautschi’s work on the constructive theory of orthogonal polynomials has had a
great impact on the general development of the theory of orthogonal polynomials
and led to many new applications of orthogonal polynomials in numerical integra-
tion, interpolation processes, approximation and optimization theory, spline theory,
integral and differential equations, linear algebra, and in many other fields of ap-
plied and computational science. In particular, the development of appropriate
software has encouraged a number of new applications. His article [GA81] alone is
cited over 150 times (according to the Web of Science) in papers from the previously
mentioned areas of mathematics, mechanics, computer science, physics, chemistry,
engineering, etc.

In conclusion, I would like to mention a few generalizations and applications of
Gautschi’s ideas in my own work.

(a) Construction of s-orthogonal polynomials. These polynomials {πn,s(t)}∞n=0

(with a fixed s ∈ N) are characterized by the nonlinear orthogonality relation

∫

R

tν [πn,s(t)]
2s+1 dμ(t) = 0, ν = 0, 1, . . . , n− 1,

and play an important role in the construction of so-called Turán quadratures
with multiple nodes (cf. [23]). In [18] we first reinterpret these relations as ordi-
nary orthogonality conditions relative to the positive measure (implicitly defined)
dμn,s(t) = [πn,s(t)]

2s dμ(t),

∫

R

tνπn,s(t) dμn,s(t) = 0, ν = 0, 1, . . . , n− 1,

and then apply Gautschi’s idea of the discretized Stieltjes procedure to the corre-
sponding system of nonlinear equations. In a joint paper with Walter Gautschi
[GA154], and more recently in [GA211], the method was applied to construct
Gauss–Turán quadrature formulae. (For this, see also Section 15.5.) These methods
have led to further progress in the theory of quadratures with multiple nodes.

(b) Orthogonal polynomials on radial rays. In 1997 I introduced a class of
polynomials orthogonal on radial rays in the complex plane [22]. For the numer-
ical construction of the corresponding recurrence coefficients I used a generalized
Stieltjes–Gautschi procedure [24].

(c) Multiple orthogonal polynomials. A nice survey of these polynomials, known
also as Hermite–Padé polynomials, was given by Aptekarev [1]. In 2003, with my
student Stanić, I gave an application of the generalized Stieltjes–Gautschi procedure
to the numerical construction of a special class of multiple orthogonal polynomials
(see [27]). Using these polynomials, we also described a method for the stable
construction of Borges quadrature rules [3].
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