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Foreword

Crop improvement is now one of the most significant subject matters in agriculture, 
which includes the genetic alteration of plants to satisfy ever increasing human need. 
A large number of genetic techniques were developed and refined in the twentieth-
century. It has been suggested that many of the limitations of conventional breeding 
can be overcome with advances in molecular biology. The aim in crop develop-
ment is to support innovative and excellent research to underpin the development 
of improved crop varieties that deliver increased productivity and consistent, high 
quality end products. The limitations of the new breeding methods include technical 
problems, such as the difficulty of transformation, problems of gene expression, or 
the lack of knowledge concerning suitable genes to transfer.

Biotechnology is generally accepted as the use of living systems and organisms 
to develop or make useful products. Increases in crop yield is one of the most obvi-
ous applications of modern biotechnology in agriculture, it is also recognized the 
most difficult one. Many of the genetic characteristics associated with yield (e.g., 
enhanced growth) are controlled by a large number of genes, each of which has a 
minimal effect on the overall yield. Most of the current commercial applications of 
modern biotechnology in agriculture are related to reduce the dependence of farm-
ers on agrochemicals. There is a need much scientific work to be done in this area.

The book contains state-of-the-art new research results in crop improvement 
and related disciplines in crop development. It provides up-to-date information for 
researchers, educators, graduate students and industry. It consists of 17 Chapters. 
The first Chapter provides the reader with extensive information on A. rhizogene, 
s which is responsible for the development of hairy root disease in a wide range of 
dicotyledonous plants and its T-DNA system components. Second Chapter talks 
about recent advances in bioinformatic tools, together with advance molecular 
technology under clear biological categories. Chapter 3 deals with tissue culture, 
which is employed for large-scale propagation of disease free clones and gene pool 
conservation. It covers in vitro propagation and role of biotechnology in crop im-
provement. Chapter 4 describes about mutagenesis, which is a crucial step in crop 
improvement program.

Chapter 5 explains the importance of biofertilizers in sustainable ecosystem. 
Biofertilizers are now gaining ground as they are used to maintain the soil health, 
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curtail the environmental pollution and cut down on the use of chemicals in agricul-
ture. Chapter 6 indicates the importance of Arbuscular mycorrhizal fungi (AMF) 
for soil quality and tolerance of plants to biotic and abiotic stresses. Biotic stress is 
the subject matter of Chap. 7 is the subject matter of how wheat genetic variability 
is obtained. New and useful genetic variations exist in the wild wheat progenitor 
species that can be utilized for the enhancement of the existing wheat breeding 
pools and improve yield stability. This was followed by Chapter 8 dealing specifi-
cally with Variability in Fusarium Species causing wilt disease in crops. Abiotic 
stresses including salinity are a major threat to agricultural productivity and hence 
global food security are described in Chapter 9. Crop plants have adopted special-
ized strategies to reduce the impact of stress.

Chapter 10 is devoted to wheat grain quality advances in the genomics of grain 
quality are considered crucial for defining genes and their networks underpinning 
functional flour qualities. Chapter 11 talks about N use efficiency (NUE) in agri-
culture and future development. The use of N in agriculture and its significance in 
the sustaining human society is addressed, especially in the developing countries. 
Chapters 12 and 13 covers the issue of heavy metals toxicity in soils, uptake by 
plants. They throw light on the arsenic toxicity in plants and their tolerance mecha-
nism in plants.

Chapter 14 describes the in vitro production of secondary metabolites using 
elicitor in Catharanthus roseus. Elicitation has been carried out in a large number 
of medicinal plants, this article deals with the Catharanthus roseus, as it is an im-
portant source of anticancer compounds Vinblastine (VLB) and Vincristine (VCR). 
Handling soybeans under stress is the topic of Chapter 15. Soybean is among the 
most important leguminous plants with the ability to establish symbiotic association 
with the N-fixing bacteria, Bradyrhizobium japonicum. One of the most important 
processes, affecting the performance of soybean under stress is the inhibited ex-
change of the signal molecules, specifically genistein, between the host legume and 
B. japonicum during the initiation of symbiosis. Chapter 16 is a review on the genus 
Atriplex. This review is a contribution to the knowledge on the ecological and socio-
economical potential of some plant genus Atriplex. The last Chapter 17 deals with’ 
the role of polyamines in stress responses’. Genetic manipulation of crop plants for 
altered regulation of PA biosynthesis/catabolism may lead to improved stress toler-
ance potential.

This book will be a new contribution on crop improvement and be useful for 
scientists and graduate students in the area.

Prof. Dr. Ahmet Ruhi Mermut
President, Federation of the European Soil Scientists, Turkey & Prof. of Soil 
Sciences, University of Saskatchewan, Canada.

Foreword
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Preface

The improvement of crop species has been a basic pursuit since cultivation began 
thousands of years ago. To feed an ever increasing world population will require a 
great increase in food production. Wheat, corn, rice, potato and few others are ex-
pected to lead as the most important crops in the world. Enormous efforts are made 
all over the world to document as well as use these resources. Everybody knows 
that the introgression of genes in wheat provided the foundation for the “Green 
Revolution”. Later also demonstrated the great impact that genetic resources have 
on production. Several factors are contributing to high plant performance under 
different environmental conditions, therefore an effective and complementary use 
of all available technological tools and resources is needed to meet the challenge.

The developments in biotechnology, genomic research, and molecular marker 
applications has brought to the forefront an interdisciplinary science that is revo-
lutionizing 21st century crop improvement. Many new genomics technologies like 
next generation sequencing, omics technologies have emerged as powerful tools for 
understanding genome variation in crop species at different molecular levels.

The era of genomics seems to be upon us and new techniques will probably 
enable us to access the genetic basis of metabolomics associated traits much more 
rapidly. The information and developments related to the metabolomics, tran-
scriptomics analysis and extensive phenotyping of genetically diverse populations 
together with bioinformatics is going to prove of great help in the field of crop 
biotechnology. These technologies will unveil the metabolic pathways for under-
resourced crop species.

In this book attempt has been made to bring together chapters from different 
authors and highlight the current status of crop productivity in the light of develop-
ments in crop biotechnology, and at the same time provide information on some 
recent genomic tools and novel genetic and breeding approaches with a final aim of 
crop improvement. Emphasis has been laid on the topics related to advances in crop 
biotechnology, the key principles influencing the current practice in crop improve-
ment programs and elucidate the nature of new approaches as well as modern tech-
niques in crop improvement and how molecular plant breeding opens new avenues 
for research and is contributing to discoveries in this field.
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We hope that a new generation of researchers will benefit much from this book 
and share the respect for the crop plants we all live by and concern for the mainte-
nance of diversity.

The final objective of this book is to refresh and emphasize the fact that we are 
compelled to save our biodiversity, otherwise plant breeding possibilities will de-
crease to the extent that it will cost us much.

Dr. Khalid Rehman Hakeem
Dr. Parvaiz Ahmad
Prof. Munir Ozturk

Preface
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Abstract The history of Agrobacterium-related plant biotechnology goes back for 
more than three decades with the discovery of molecular mechanisms of crown gall 
disease in plants. After 1980s, gene technologies began developing rapidly and today, 
related with the improved gene transfer methods, plant biotechnology has become one 
of the most important branches in science. Till now, the most important genes related 
with agricultural affairs have been utilized for cloning of plants with the deploy-
ment of different techniques used in genetic engineering. Especially, Agrobacterium 
tumefaciens was used extensively for transferring desired genetic materials to plants 
rapidly and effectively by the researchers to create transgenic plants. Recognition 
of the biology of Agrobacterium species and newly developed applications of their 
T-DNA systems has been a great step in plant biotechnology. This chapter provides 
the reader with extensive information on A. rhizogenes which is responsible for the 
development of hairy root disease in a wide range of dicotyledonous plants and its 
T-DNA system. This knowledge will be useful in improving utilization of crops and 
the formulation of new and up-graded transgenic based food products.

Introduction

The increase in demand for food is dramatic with an expanding population 
growth in the world. According to latest projections, continued increase at the 
current rate of the population is expected to reach between 7.5 and 10.5 billion by 

K. R. Hakeem et al. (eds.), Crop Improvement, DOI 10.1007/978-1-4614-7028-1_1, 
© Springer Science+Business Media, LLC 2013
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2050 (Census 2012). Climate changes in terms of shifting weather patterns will 
result in decreased water availability and in conjunction with this, providing food 
for this inevitable future population size will be a very hard task without adding 
new arable lands (Milly et al. 2005). To deal with this challenge one of the ma-
jor solutions is plant breeding, which has been used since ancient times in order 
to create desired genotypes and phenotypes for specific objectives. The main 
goals of conventional plant breeding are improvement of crop yield and quality, 
agricultural convenience and resistance to the parasites. While the conventional 
plant breeding efforts used in the past were sufficient, nowadays with the increas-
ing demand additional and supplementary technology necessities emerged (Ge-
pts 2002). As a result of industrial revolution and its reflection to the biological 
and agricultural sciences, plant biotechnology reached spectacular success with 
understanding of how genes operate and function in plant. The first genetically 
modified crops were obtained in the early 1980s by using Agrobacterium tume-
faciens following the plant regeneration systems, production of novel chimeric 
genes and transformation vectors. Multidisciplinary studies of academic institu-
tions and agricultural seed companies took the leadership on genetic engineering 
and biotechnological progresses of crop plants (Özcan et al. 2004). Although, 
many political, regulatory, ethical and religious obstacles are still present, the 
adoption rate of crop biotechnology in the area of agriculture is high at global 
level. Crop biotechnology involves a different set of technologies such as indus-
trial use of recombinant DNA, cell fusion and tissue engineering. Agrobacteri-
um-mediated transformation has always been the most commonly used method 
for novel transgenic technologies. Till now, a number of commercially valuable 
crops like tomato, potato, rice, wheat, maize, cotton, soybean, alfalfa, barley, car-
rot, sugarcane, pepper and broccoli were obtained using Agrobacterium-mediated 
transformation (Ozyigit 2012).

Characteristics of Agrobacterium�rhizogenes

Certain bacterial species are capable of transferring some of their genes to higher 
plants ending up with insertion and permanent integration in the nuclear genome 
(Broothaerts et al. 2005; Kumar et al. 2006). Members of genus Agrobacterium are 
widely known for their ability of forming a wide variety of different neoplastic dis-
eases, including crown gall ( A. tumefaciens and A. vitis), hairy root ( A. rhizogenes) 
and cane gall ( A. rubi) (Gelvin 2009; Ozyigit 2012). Among them, the first identi-
fied one was A. rhizogenes (formerly Phytomonas rhizogenes) in 1930s belonging 
to the family Rhizobiaceae in the alpha-2 subclass of Proteobacteria (Riker et al. 
1930; Hildebrand 1934; Conn 1942; White 1972; Kersters and De Ley 1984; Woese 
et al. 1984; Willems and Collins 1993).

A. rhizogenes is a rod-shaped Gram-negative, non-spore forming (0.6–1 μm by 
1.5–3.0 μm in size) soil bacterium that occurs singly or in pairs and is motile by 
means of one to six peritrichous flagella (Conn 1942; Meyer et al. 2000; Tzfira and 
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Citovsky 2000; Giri and Giri 2007; Murugesan et al. 2010) (Fig. 1.1). It is a close 
relative of the better known A. tumefaciens, which is the best-characterized species 
among the genus Agrobacterium (Rao 2009; Ozyigit 2012) (Fig. 1.1).

All A. rhizogenes strains are characterized by the presence of a large root induc-
ing (Ri) plasmid containing a highly conserved “core” DNA region required for 
hairy root formation (Filetici et al. 1987; Gelvin 2003; Veena and Taylor 2007). 
Like the crown gall disease, which is caused by A. tumefaciens (Ream 2002; Mc-
Cullen and Binns 2006; Ozyigit 2012) A. rhizogenes causes hairy root (root-mat) 
disease in infected plants through genetic transformation (Weller and Stead 2002; 
Weller et al. 2005).

Hairy Root Disease

The “hairy root” is the term first used in 1900 by Stewart et al. (as quoted by Hil-
debrandt 1934). The distinctive symptom of hairy root disease is the formation of 
a mass of roots. Following the A. rhizogenes infection, hairy root formation occurs 
as a result of protruding large numbers of small roots as fine hairs directly from 
the infection site (Chandra 2012) (Fig. 1.2). Besides the plagiotropic root growth, 
hairy-root disease is characterized as short internodes, a high degree of lateral 
branching, wrinkled leaves, reduced apical dominance, reduced fertility, profusion 
of root hairs, abnormal flower production, advanced flowering, increased number 
of flowers, enhanced growth rates and changed secondary metabolite accumulation 
(Ackermann 1977; Tepfer 1983; Balandrin et al. 1985; Charlwood and Charlwood 
1991; Pellegrineschi et al. 1994; Flores et al. 1999; Lee et al. 2001; Keil 2002; Ca-
sanova et al. 2004; Veena and Taylor 2007) (Fig. 1.2).

1 Agrobacterium rhizogenes-Mediated Transformation …

Fig. 1.1   Scanning electron 
micrograph of attachment of 
Agrobacterium rhizogenes 
strain R1000 to sunflower 
( Helianthus annuus L.) coty-
ledonary node cell
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In nature, when plants are suffering from wounds, phenolic compounds are re-
leased from wounded sides and that cause attraction for A. rhizogenes. The bacte-
rium moves toward the wounded sites by chemotaxis and infect plant cells. Sub-
sequent infection at wound site followed by transfer of a particular DNA segment 
(T-DNA) from the root-inducing (Ri) plasmid (pRi) of the bacteria (Kumar et al. 
2006). A. rhizogenes-induced roots have the unique property of being able to grow 
in vitro without exogenous plant growth regulators (Lee et al. 2001; Rao and Rav-
ishankar 2002). With this unique ability, by the utilization of A. rhizogenes strains 
in in vitro plant organ cultures, broad range difficulties were eliminated and as a 
result, fast growing organs with the capable of producing extensive branching and 
main metabolites even higher than the mother plant or new metabolites undetected 
in the mother plant or in other kinds of in vitro cultures were generated (Doran 
2002; Nader et al. 2006; Bensaddek et al. 2008).

Over the three decades, hairy roots have been applied in a wide range of funda-
mental studies of plant biochemistry, molecular biology, and physiology, as well as 
for agricultural, horticultural, and large-scale tissue culture purposes (Doran 2002). 
In general, hairy root cultures have been used extensively in root nodule research 
(Diaz et al. 1989; Quandt et al. 1993; Diouf et al. 1995; Hu and Du 2006; Hirotaka 
and Hiroshi 2003; Aarrouf et al. 2012), production of artificial seeds (Uozumi and 
Kobayashi 1997), plant secondary metabolites and proteins (Aarrouf et al. 2012), 
plant breeding and plant improvement, experimental systems to study responses to 
chemicals (Downs et al. 1994; Mugnier 1997), plant morphology and development 
(Bandyopadhyay et al. 2007; Turgut-Kara and Ari 2008; Hasancebi et al. 2011; 
Aarrouf et al. 2012), detoxifing environmental pollutants (Rugh 2001), validate 
and analyze the functions of genes conferring resistance to root specific pathogens 
(Remeeus et al. 1998; Hwang et al. 2000; Alpizar et al. 2006; Aarrouf et al. 2012) 
and study interactions with other organisms such as nematodes (Kifle et al. 1999), 
mycorrhizal fungi and root pathogens (Mugnier 1997; Christey 2001). Besides 
these sights, enhanced rooting in plants helps establishment or surviving transplant 
shocks or abiotic stress like drought, salinity and heavy metal stress (Bulgakov, 
2008; Li et al. 2011).

Fig. 1.2   Hairy root formation induced by A. rhizogenes strain 8196 in potato ( Solanum tuberosum 
L.) callus cultures (a), regenerated tobacco ( Nicotiana tabacum L.) plantlets (b). (From Arican)

I. I. Ozyigit et al.
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The Mechanism of Hairy Root Formation

The overall process of hairy roots disease by A. rhizogenes wild strains is defined 
by the following four steps. Chimiotactism is the first step leading to induced move-
ment of Agrobacterium towards to the plant cells. The following step is binding of 
Agrobacterium to the surface components of the cell wall (Fig. 1.3). After binding, 
transfer and integration of the transfer-DNA (T-DNA) into the plant genome is com-
pleted. The last step is subsequent induction of root formation and growth (Zupan 
et al. 1996). The information gained in the first three steps is better understood be-
cause of the similarities in biological processes and existing models of pathogenesis 
provided by extensive studies of A. tumefaciens stain C58 (Tomilov et al. 2007; 
Abarca-Grau et al. 2011). The compositions as well as structures are broadly simi-
lar for Ri and the Ti plasmids from A. rhizogenes and A. tumefaciens, respectively 
(Gelvin 2003; Ozyigit 2012) (Fig. 1.3).

Comparative studies showed a high degree of homology between Ri and Ti 
plasmids indicating that there are conserved regions between the two types of plas-
mids. This shows general mechanisms such as activation, processing, and move-
ment of the T-DNA from the bacteria to the plant cell are highly sustained. A seg-
ment in both Ri and Ti plasmids called T-DNA consists of highly homologous 
24-bp direct repeats known as border sequences (Yadav et al. 1982; Filichkin and 
Gelvin 1993; Ziemienowicz 2001; Veena and Taylor 2007; Chandra 2012). Dur-
ing infection with Agrobacterium, T-DNA is transferred from the bacterium to the 
plant cell (Rao et al. 2009). The wild-type T-DNA encodes oncogenes and opine 
catabolism genes, which cause neoplastic growth of tissues and the production of 
opines (Guyon et al. 1980, 1993; Costantino et al. 1994; Gaudin et al. 1994; Weis-
ing and Kahl 1996; Hong et al. 1997; Lee et al. 2001; Rao and Ravishankar 2002; 
Veena and Taylor 2007). Also, another segment known as the virulence (vir) region 
in the Ti-plasmid is involved in transferring of DNA into the plant genome (Bulga-

Fig. 1.3   Scanning Electron 
Micrograph of A. rhizo-
genes strain 8196 colonizing 
sunflower ( H. annuus L.) 
cotyledonary node cell wall
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kov et al. 2004). Hairy roots are capable of growing in the absence of exogenous 
plant hormones on the plant cells due to the presence of T-DNA. Agrobacterium 
species are highly adapted for sophisticated parasitic relationship with host plants 
and thus found to establish a unique ecological niche by genetically engineering 
(Vilkar et al. 1987).

Gall�Proteins

One of the similarities of Ri and Ti plasmid is that bearing nearly identical or-
ganization of the vir operons (Zhu et al. 2000). Only noticeable difference can 
be seen is neither genomes nor Ri plasmids of A. rhizogenes contains virE1 and 
virE2 genes (Moriguchi et al. 2001; Hodges et al. 2004). As known from studies 
about A. tumafaciens VirE2 is a single-stranded DNA binding protein and VirE1 
acts as a chaperone of VirE2. The VirE2 covers single-stranded T-DNA (T-strands) 
from nuclease attack (Rossi et al. 1996; Ozyigit 2012) and involves nuclear im-
port of T-DNA to the plant cells (Yusibov et al. 1994; Rossi et al. 1996; Zupan 
et al. 1996; Gelvin 1998). virE genes play critical roles in pathogenesis of A. tu-
mefaciens (Christie et al. 1988; Citovsky et al. 1992; Ward and Zambryski 2001; 
Duckely and Hohn 2003; Ozyigit 2012). However, the absence of virE genes or no 
other homolog genes in the A. rhizogenes genome clearly shows that virE genes 
are not necessary in the mechanism of hairy root induction (Moriguchi et al. 2001). 
Recent studies imply that despite sharing no homology, the GALLS gene located 
on the Ri plasmid can substitute VirE2 function in A. tumefaciens (Hodges et al. 
2004). GALLS protein differs from VirE2 with ATP-binding and helicase motifs 
resembling to those in TraA protein involved in conjugation. Both GALLS and 
VirE2 contain nuclear localization sequences and a C-terminal type IV secretion 
signal. Mutations in these domains lead to loss of GALLS ability to substitute for 
VirE2 (Sinkar et al. 1988; Hodges et al. 2006). However, mechanism of GALLS 
protein in A. rhizogenes is still not fully known. All these facts reveal that in spite 
of differences in their virulence systems, the Ti and Ri plasmids are share a com-
mon ancestor. However, the way of T-DNA transfer and those other variations in 
T-DNA processing also show signs of independent evolution from each other. Cur-
rent understanding of the molecular bases of the differences between hairy root and 
gall formation will be accelerated by further studies on genome sequencing and 
comparison of various Agrobacterium strains (Hodges et al. 2006).

Ri Plasmid

Ri plasmid in all A. rhizogenes strains has a region known as T-DNA which carries 
genes ( rol-genes) involved in root initiation and development and genes essential 
for opine biosynthesis (Slightom et al. 1986; Hansen et al. 1994a). Agrobacterium 

I. I. Ozyigit et al.



7

T-DNA makes up a small region (approximately 200 kb) of Ti/Ri plasmids which 
are involved in functions not only for Ti/Ri plasmid conjugation, opine synthesis 
and catabolism, but also initiation, transfer and integration of the T-DNA (Ozyigit 
2012). Although T-DNA contains genes with bacterial origin, these genes have eu-
karyotic regulatory sequences enabling their expression in infected plant cells (Giri 
and Narasu 2000). After integration of T-DNA into genomic DNA of the plant cell, 
T-DNA expresses enzymes that direct the synthesis of unusual amino acid sugar de-
rivatives known as opines, which used by the Agrobacterium as nutrient source (Pe-
tit et al. 1983; Dessaux et al. 1992; Gartland 1995; Moyano et al. 1999; Navarrete 
et al. 2006; Bensaddek et al. 2008; Ozyigit 2012).

There are at least two classes of opines produced by A. rhizogenes strains. One 
such class is represented by opines of agropine group, and the other class being 
the agrocinopine group. Most of the A. rhizogenes strains are capable of producing 
agrocinopine type opines and all or a few strains of producing agropine type opines. 
The agropine-type opines including agropine, mannopine, agropinic acid and man-
nopinic acid are produced by the strains known as the agropine-type whereas all 
agropine-type opines excluding agropine are produced by the strains known as the 
mannopine-type (Figs. 1.4, 1.5) (White et al. 1982; Petit et al. 1983; Tempe et al. 
1984; Savka et al. 1990; Gartland, 1995; Navarrete et al. 2006).

1 Agrobacterium rhizogenes-Mediated Transformation …

Fig. 1.4   Schematic representation of Mannopine type Ri plasmid of A. rhizogenes
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The most common A. rhizogenes strains which represented by Ri plasmids are 
agropine-type: pRiA4, pRi1855, pRiHRI, pRi15834, and pRiLBA9402, manno-
pine-type: pRi8196, cucumopine type: pRi2659 and mikimopine-type pRi1724. Al-
though mikimopine and cucumopine are stereo-isomers, there is no homology be-
tween opine biosynthetic genes on the nucleotide level (Filetici et al. 1987; Davioud 
et al. 1988; Gartland 1995; Ouartsi et al. 2004; Veena and Taylor 2007) (Fig. 1.4).

Among the different known strains of A. rhizogenes, K47, K599 and HRI are 
hyper-virulent types known to be capable of infecting a broad range of plant hosts. 
More research on the virulence factors of these strains needs to be done for under-
standing of whether they are located on the chromosome(s), plasmid(s) or both 
(Petit et al. 1983; Isogai et al. 1988; Porter 1991; Suzuki et al. 2001). Also, there 
are differences between A. rhizogenes strains in terms of polarity of infection of 
the plant tissue. For example, root growth can be induced by some strains of A. 
rhizogenes only on the apical surfaces of carrot root discs and yield no detectable 
outgrowth on the basal surfaces, whereas root proliferation can be induced by oth-
ers both inoculation of apical and basal surfaces (Cardarelli et al. 1985; Ryder et al. 
1985; Capone et al. 1989; Limami et al. 1998). Based on these findings, various A. 
rhizogenes strains were further classified as polar and non-polar types. Agropine 

Fig. 1.5   Schematic representation of Agropine type Ri plasmid of A. rhizogenes
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type strains are non-polar whereas all other strains are polar. Agropine type strains 
give rise to the formation of the hairy roots regardless of the orientation of the disc 
and the strains other than agropine type form hairy roots when the disc is placed 
inverted orientation. The presence of second T-DNA encoding genes responsible 
for auxin production possibly causes observed variation in the polarity of infection 
in the plant cells transformed by the agropine-type Ri plasmid (Meyer et al. 2000; 
Veena and Taylor 2007) (Fig. 1.5).

Ri�T-DNA�Genes

Independent transformations of both left T-DNA (TL-DNA) (about 15–20 kb) and 
right T-DNA (TR-DNA) (about 8–20 kb) to the plant genome termed as “split” 
T-DNA are carried out by Agropine strains pRi, whereas mannopine strains only 
transfer a single T-DNA (TL-DNA). TL-DNA of pRi contains the four rol genes, 
designated as rolA, rolB, rolC and rolD (Schmulling et al. 1988; Petersen et al. 
1989; Gelvin 2003; Bensaddek et al. 2008). In Ri plasmid, TL-DNA and TR-DNA 
are separated from each other by at least 15 kb of non-integrated DNA, which is 
represented by T-Central DNA (TC-DNA) as seen in Fig. 1.5.

The phenotype of hairy root is related with the genes whose products act as the 
determinants located on TL-DNA (Tepfer 1984; Taylor et al. 1985; Jouanin et al. 
1987b; Nakamura et al. 1988; Schmulling et al. 1988; Sinkar et al. 1988) whereas 
the genes on the TR-DNA would only play a role in root induction (Cardarelli et al. 
1985; Ryder et al. 1985; Cardarelli et al. 1987a; Smulders et al. 1991). Two frag-
ments, defined as TL-DNA and TR-DNA, can be transferred and integrated indepen-
dently into the plant genome during the infection process. However, the integration 
capacity of TL-DNA was much higher than TR-DNA (Chilton et al. 1982; Costan-
tion et al. 1984; David et al. 1984; Grant et al. 1991; Phelep et al. 1991; Nilsson 
and Olsson 1997; Holefors et al. 1998; Sevon and Oksman-Caldentey 2002; Kumar 
et al. 2006; Navarrete et al. 2006; Bensaddek et al. 2008). Furthermore, the present 
findings imply that a higher number of Ri-T-DNA copies integrated into the plant 
genome increase the phenotypic effect in the Ri-line (Christensen et al 2008).

TR-DNA

It was found that the right T-DNA (TR-DNA) contains genes homologous to T-DNA 
of A. tumefaciens Ti plasmid (Huffman et al. 1984; Jouanin 1984; Vilaine and Casse-
Delbart 1987; Hansen et al. 1991; Chandra 2012). Among them, the most impor-
tant genes are those homologous to the tms1 and tms2 of the Ti-plasmid. tms1 and 
tms2 genes play important roles in auxin biosynthesis in A. tumefaciens (Inze et al. 
1984; Schröder et al. 1984; Thomashow et al. 1984, 1986; Vilaine and Casse-Delbart 
1987). Homology, mutagenesis and complementation experiments show that the two 
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Fig. 1.6   Schematic represen-
tation of gene locations on 
TR-DNA

                  

morphogenic loci located on the TR-DNA are counterpart of the tms loci located 
on the Ti plasmids and involve in hairy root tumorigenesis (White et al. 1985). In 
A. rhizogenes infected Nicotiana glauca tissue, the transcripts of the tms loci of Ri 
plasmids are found to be similar in size to those transcripts found in the tms region 
of Ti-plasmids (Willmitzer et al. 1983; Taylor et al. 1985; Vilaine and Casse-Delbart 
1987). Similar transcripts were also found in carrot plants regenerated from tissues 
infected with A. rhizogenes (De Paolis et al. 1985; Vilaine and Casse-Delbart 1987). 
The root induction is probably due to auxin biosynthesis carried out by the aux loci 
located on TR-DNA. The aux loci are found to be homologous to the tms loci of A. 
tumefaciens T-DNA (Vilaine and Casse-Delbart 1987).

aux1, aux2, rolBTR, mas1, mas2, and ags genes located on the TR-DNA are 
responsible for the biosynthesis of agropine and auxin, which cause differences 
in hairy root growth and morphology when compared to non-transformed roots 
(Fig. 1.6). It was also reported that the presence of these genes on transformed plant 
cells caused increase auxin sensitivity (Grant et al. 1991; Lambert and Tepfer 1992; 
van der Salm et al. 1997; Hansen et al. 1997; Meyer et al. 2000; Alpizar et al. 2006; 
Nemoto et al. 2009).

Sequence analysis revealed two open reading frames corresponding to proteins 
of 749 amino acids as aux1 gene protein and 466 amino acids aux2 gene protein 
(De Paolis et al. 1985; Camilleri and Jouanin 1991; Gaudin and Jouanin 1995; 
Christensen et al. 2008; Chandra 2012). Auxin biosynthetic pathway comprises two 
steps. The t2m (tryptophan 2- monooxygenase) gene product encoded by the aux1 
catalyzes the conversion of tryptophan to indole-3-acetamide (IAM) (Comai and 
Kosuge 1982; Van Onckelen et al. 1986; Camilleri and Jouanin 1991). Then, IAM 
is converted to indole-3-acetic acid (IAA) by IAM hydrolase, the product of the 
aux2 (Jouanin 1984; Schröder et al. 1984; Thomashow et al. 1984). The T-DNA of 
mannopine, cucumopine and mikimopine type strains in Ri plasmids do not carry 
aux genes. Since these strains are still capable to induce a “hairy-root” phenotype, it 
can be said that the presence of the aux genes on TR-DNA is not necessary to gener-
ate hairy root phenotype. It has been demonstrated that the aux genes are required 
to support the “hairy root” phenotype and to extend the host range of the bacterium 
(White et al. 1985; Cardarelli et al. 1987b; Hansen et al. 1991; Sevon and Oksman-
Caldentey 2002).

Hybridization experiments also revealed that the genes encoding agropine bio-
synthesis ( ags) are also located on the TR-DNA region (Willmitzer et al. 1982; 
Huffman et al. 1984; Lahners et al. 1984; Vilaine and Casse-Delbart 1987; Giri and 
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Narasu 2000; Christey 2001). Deletion of the right border of nopaline-type or oc-
topine-type T-DNA in Ri plasmids appears to affect virulence. Also, mutations cre-
ated within this region have the same effect as removing the tms loci of Ti plasmid 
resulted with being avirulent on plants. The deletion of TL-DNA in Ri plasmids 
is being less susceptible to oncogenic transformation than the TR-DNA deletion 
(Vilaine and Casse-Delbart 1987). Expression of the TR-DNA alone can induce root 
formation in some plants, but the resulting phenotype is not as strong as when both 
TL- and TR-DNA are introduced together (Vilaine and Casse-Delbart 1987).

TL-DNA

The size of TL-DNA of agropine type Ri-plasmid is about 19–20 kb in length but, 
unlike the TR-DNA, it does not appear to be closely related to any other characterized 
loci of Ti-plasmids (Huffman et al. 1984; Vilaine and Casse-Delbart 1987; Aoki and 
Syono 1999; Chandra 2012). In many species, TL-DNA size seems almost constant, 
except in Nicotiana tabacum consisting shorter TL-DNA (Jouanin et al. 1987b). The 
mannopine/cucumopine type T-DNAs and the agropine type TL-DNA contain two 
strongly conserved regions which flank an only partially homologous central region 
(Filetici et al. 1987; Brevet and Tempe 1988; Aoki and Syono 1999; Chandra 2012). 
A substance carrying out stimulation of hairy root differentiation under the influence 
of endogenous auxin is synthesized by genes of TL-DNA (Ooms et al. 1986; Shen 
et al. 1988; Giri and Narasu 2000; Mishra and Ranjan 2008).

As a result of mutagenesis in TL-DNA of Ri plasmid, the loss or attenuation of 
virulence is shown (White et al. 1985). The TL-DNA of Ri plasmids carrying several 
loci is identified to be essential for hairy root induction (so-called rol genes for root 
oncogenic loci) (Fig. 1.7). Transposon mutagenesis in the TL-DNA has identified 
at least four genes ( rolA, rolB, rolC and rolD) involved in tumorigenesis as affect-
ing some plants (White et al. 1985; Estramareix et al. 1986; Slightom et al. 1986; 
Vilaine and Casse-Delbart 1987; Meyer et al. 2000; Christensen et al. 2008). All rol 
genes have been shown to carry out formation of hairy root phenotype (White et al. 
1985; Cardarelli 1987a; Jouanin 1987a; Vilaine et al. 1987a; Schmulling et al. 1988; 
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Fig. 1.7   Schematic representation of gene locations on TL-DNA
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Petersen et al. 1989; Lee et al. 2001; Bensaddek et al. 2008). It has been reported 
that the TL-DNA of the agropine-type Ri plasmid consists of at least 18 open read-
ing frames (ORF). ORF 10, 11, 12 and 15 coincided with rolA, rolB, rolC and rolD, 
respectively (Slightom et al. 1986; Scorza et al. 1994).

Rol Genes

The T-DNAs have many other genes other than those opine and hormone synthesis 
genes. Although their functions are not well characterized, they are known to have 
very strong effects on growth. At least four genetic loci (rolA, B, C and D) were 
identified in the T-DNA regions of pRiA4 by a series of deletions and transposon 
insertions studies and shown to play important roles of root-inducing properties 
of A. rhizogenes on the TL-DNA (Table 1.1) (White et al. 1985). The rol genes lo-
cated on the TL-DNA of Ri plasmid modify auxin and cytokinin biosynthesis and/
or endogenous hormone levels and their expressions stimulate the formation of 
roots in transformed tissues (Nilsson et al. 1993a; Maurel et al. 1994; Moritz and 
Schmülling 1998; Shen et al. 1990; Bonhomme et al. 2000; Ishizaki et al. 2002; 
Hong et al. 2006; Bensaddek et al. 2008). Studies have focused on characterizing 
the three rol genes named as rolA, rolB, and rolC because they are considered es-
sential for the hairy root initiation based on transposon “loss-of-function” analysis 
(White et al. 1985). Induced adventitious root formation by rolA, rolB and rolC 
genes is shown on tobacco, kalanchoe and tomato leaves (Cardarelli et al. 1987a; 
Spena et al. 1987; Vilaine et al. 1987; Spano et al. 1988; van Altvorst et al. 1992; Ki-
yokawa et al. 1994) and plants carrying these genes are morphologically equivalent 
to those carrying the whole TL-DNA (Spano et al. 1988). Inactivation or overexpres-
sion of various rol genes in stable transgenic lines or hairy-root cultures exhibits dif-
ferent variations in plant phenotypes and root morphology (Schmulling et al. 1988; 
Martin-Tanguy et al. 1996; Casanova et al. 2004).

rolA

The rolA gene is found on all Ri plasmids and encodes a small protein with a 
molecular mass of approximately 11 kDa (Nilsson and Olsson 1997). The rolA 
gene sequence length differs in various A. rhizogenes strains ranges from 279 to 
423 bp (Meyer et al. 2000). Analysis of amino acid sequences showed that rolA 
encodes a protein with basic isoelectric point (PI 11.2). It also contains a frequent 
sequence motif common in DNA-binding proteins (Suzuki 1989) and proposed 
to function as a regulatory transcription factor (Levesque et al. 1988; Veena and 
Taylor 2007).

A dramatic reduction in several classes of hormones, including auxin, cytokinin, 
gibberellic acid (GA) and abscisic acid triggered by the expression of rolA gene is 
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Gene Protein Function Phenotype
rolA Sequence motif 

common in DNA-
binding proteins

Regulatory transcrip-
tion factor

Inhibits cell elongation via 
diffusible factor

Decreases hormone 
concentrations

Increase sensitivity to auxin
Modulating hormone physiol-

ogy of GA
Interfere polyamine 

metabolism
Correlate with plasma mem-

brane H+ ATPase activity

Stunted growth, dark green 
wrinkled leaves with 
an altered length to 
width ratio, condensed 
inflorescences, retarded 
onset of flowering, 
compact reduced number 
of flowers

rolB Localizes to plasma 
membrane

Alterations in the reception/
transduction of the auxin 
signal

Stimulates new meristem 
formation

Induce secondary metabolism

Fast growth, root meri-
stem neoformation, 
high branching and 
plagiotropism

rolC Phloem-specific 
expression in the 
root, low expres-
sion in the leaf, 
and no expression 
in the shoot tip

Reduces cell size
Reduces abscisic acid (ABA), 

polyamine, and ethylene 
levels

Formation of shoot meristems
Regulate sugar metabolism 

and transport
Stimulate the production of 

high levels of secondary 
metabolites

Increased branching, 
dwarfed plants with short 
internodes, reduced epi-
dermal cell size in inter-
nodes, lanceolate leaves, 
early flowering, reduced 
flower size and reduced 
pollen production

rolD Only expresses in 
Agropine type 
strains

Cytosolic protein
Exhibits poor tissue- 

or organ-specific 
expression

Incapable of inducing root 
formation on its own

Provide defense response as 
a result of environmental 
stress

Increased flowering, reduced 
rooting, elongating and 
expanding tissues of each 
organ but not on apical 
meristem, callus growth 
giving rise to initia-
tion of tumor resemble 
formation

rolBTR CX5R motif is absent
N-terminal part 

contain 14 amino 
acids

rolB homolog on TR-DNA 
in the agropine type Ri 
plasmid

Wrinkled leaves bent 
strongly downward, 
formed shoots at the base 
of the stem and retarded 
growth

ORF3n Modification of phe-
nolic enzymes and 
involve secondary 
metabolism and/
or the transport of 
hormones

Negative regulator to the 
dedifferentiation of tissues

Retarded flowering, less 
dense inflorescences, 
altered internode elonga-
tion and leaf morphology 
and necrotic tips of upper 
leaves, sepals and bracts 
no sign of necrosis on the 
basal leaves

Table 1.1   Oncogenes of A. rhizogenes, their encoded proteins, functions and phenotypic changes 
in host plants
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observed in N. tabacum. The reduction ratio depends on tissue type and growth stage 
of the plant (Dehio et al. 1993). It was demonstrated that despite low level of auxin 
concentration, auxin sensitivity is enhanced in transgenic plants (Maurel et al. 1991; 
Vansuyt et al. 1992). Additionally, the effects of rolA can be attenuated, probably 
through methylation (Martin-Tanguy et al. 1996; Lee et al. 2001). Inactivation of 
rolA leads to the formation of long, straight roots giving a less compact appearance 
on Kalanchoe daigremontiana leaves (Vilaine and Casse-Delbart 1987). Transgenic 
N. tabacum plants are also show stunted growth, dark green wrinkled leaves with an 
altered length to width ratio, condensed inflorescences, retarded onset of flowering, 
a reduced number of flowers and compact styles (Dehio et al. 1993).

A. rhizogenes infected plant tissues are 100 times more sensitive to auxin than 
normal phenotype exhibiting plant tissues. This suggests that the increased sensitiv-
ity of transformed plants should not be due to a particular insertion position of the 
rolA gene in the transgenic plant genome, but rather reflects the effect(s) of the rolA 
gene product (Vansuyt et al. 1992). It was found that N. tabacum leaves of rolA 

Gene Protein Function Phenotype
ORF8 Fusion protein 

consisting of 
N-terminal 
domain (NORF8) 
and C-terminal 
part (CORF8)

Tryptophan monoox-
ygenase activity

Modifies sucrose transport
N-terminal domain causes 

sugar/starch accumulation
C-terminal domain reduces 

sugar/starch accumulation

Growth retardation, chlo-
rotic and necrotic leaves 
and accumulation of high 
levels of sugars (glucose, 
fructose and sucrose) and 
starch

ORF13 Contains a con-
servative 
retinoblastoma 
(RB)-binding 
motif LxCxE

Hormone homeostasis and 
regulation of the cell cycle

Increases number of mitoses 
in shoot apical meristem

Induces dedifferentiation (pre-
requisite to competence)

Graft transmissible

Induce cell proliferation 
such as dense green and 
rapidly proliferating cal-
lus, including irregular 
formation of leaves, 
severe leaf nervure, 
shortened and variable 
internode length, abnor-
mal and asymmetric 
flowers, agravitropic root 
growth and a reduced 
cell number and cell size 
in the root

ORF13a Tissue specific 
manner in plants, 
primarily in leaf 
vascular tissues

May interact directly 
with DNA

SPXX repeat motif

Necessary for root induction
Regulatory function of itself

Not yield a visible 
phenotype

ORF14 Auxin like effect Act together with ORF13 to 
induce root induction

No morphological change

I. I. Ozyigit et al.
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transgenic clones show 40–60 % reduction of GA content compared to wild-type 
leaves. The reduction of GA content is indirectly cause stem elongation and planar 
leaf blade growth (Dehio et al. 1993). When the wild-types of N. tabacum treated 
by gibberellin biosynthesis inhibitors, rolA expressing plants and wild types show 
similar phenotypes. On the other hand, when rolA transgenic plants treated with GA, 
the phenotype of transgenic plant not completely restored (Dehio and Schell 1993; 
Dehio et al. 1993). All these shows that the rolA gene has been considered in playing 
an important role in modulating hormone physiology of GA and polyamine metabo-
lism (Sun et al. 1991; Dehio and Schell 1993; Dehio et al. 1993; Prinsen et al. 1994; 
Martin-Tanguy et al. 1996; Veena and Taylor 2007). It was thought that the sensitiv-
ity of auxin response might correlate with plasma membrane H+ ATPase activity ob-
served in rolA expressing transgenic plants (Maurel et al. 1991; Vansuyt et al. 1992).

There is data suggesting that there is an antagonism between rolA and rolB genes 
in general. An observation of additional transcripts ranging from 2.1 to 2.8 kb in 
size explains this antagonism (Durand-Tardif et al. 1985). Size of transcription of 
rolA would be more than 2 kb. This would span the whole rolB sequence, leading to 
the generation of an antisense message for rolB. Its occurrence could be the major 
cause of antagonism between rolA and rolB in the transformed plant cells. Probably, 
existence of a mechanism prevents co-expression of rolA and rolB (Capone et al. 
1989; van Altvorst et al. 1992; Veena and Taylor 2007).

rolB

The rolB gene size ranging 765 (strain 8196) to 840 bp (strain 2659) length depend-
ing on the strain and encodes 254–279 amino acid protein which has molecular 
weight of 30 kDa localized in the plasma membrane (Filippini et al. 1996; Meyer 
et al. 2000; Veena and Taylor 2007). rolB gene is present in all Ri plasmids with 
approximately 60 % identity between strains (Meyer et al. 2000). RolB proteins 
encoded by pRi1724 and pRi2659 have a 17 amino acid longer N-terminal stretch 
than the RolB proteins encoded by pRi1855 (pRiA4) (Meyer et al. 2000). The phys-
ical presence of the rolB gene in TL-DNA segment of Ri plasmid of the infecting 
Agrobacterium in leaf tissues of plants regenerated from selected rhizoclones was 
demonstrated by a positive PCR amplification (Pal et al. 2012).

The reports have shown that the RolB may have a critical role in early steps of 
hairy-root induction (Bellincampi et al. 1996). The root induction is totally allevi-
ated when rolB gene is inactivated in the pRiA4 on kalanchoe leaves (White et al. 
1985). rolB also has capacity nearly as much as the wild type A. rhizogenes T-
DNA for enhancing rooting and hairy root formation on wounded N. tabacum stems 
(Cardarelli et al. 1987b; Bellincampi et al. 1996; Altamura and Tomassi 1998; Binns 
and Costantino 1998) and leaves (Spena et al. 1987).

Phenotypical abnormalities such as root meristem neoformation on leaf discs and 
fast growth of rolB-transgenic plants and growth pattern of rolB-induced roots are 
characterized by fast growth, high branching, and plagiotropism. As a result of these 
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observations firstly suggested that there is a similarity between the auxin-mediated 
effects and morphogenic effects of rolB. However, further studies demonstrated 
that an auxin-induced hyperpolarization at the plasma membrane is exhibited by 
rolB-transformed plants. The morphogenic effects of rolB involve changes in either 
the responsiveness to auxin or in auxin content (Cardarelli et al. 1987b; Shen et al. 
1988; Capone et al. 1989; Maurel et al. 1991). Activation of auxin-induced hyper-
polarization through H+ ATPase protein pump at the plasma membrane appears to 
be related to the proton excretion (Ephritikhine et al. 1987; Keller and Van Volken-
burgh 1998). rolB gene causes transformed plant cells to bind more auxin than wild 
type and the additional auxin-binding activity is completely abolished by using anti-
RolB antibodies (Filippini et al. 1994; Shoja 2010).

Estruch et al. (1991) reported that RolB protein exhibits a β-glucosidase activ-
ity able to hydrolyze biologically active indole-3-glucosidese. It can be explained 
by the increased auxin perception and sensitivity with releasing the hormone from 
β-glucoside conjugates. As a result of increase concentration of auxin cause the 
phenotypic alterations observed in rolB transgenic tissues (Shen et al. 1988, 1990; 
Maurel et al. 1991, 1994; Meyer et al. 2000). However, later studies showed that 
neither the intracellular concentration nor the metabolism of auxin was changed 
by rolB expression in plant cells. Rather, the increased auxin sensitivity of rolB-
transformed cells results from alterations in the reception/transduction of the auxin 
signal (Nilsson et al. 1993b; Schmülling et al. 1993; Delbarre et al. 1994; Bellin-
campi et al. 1996; Veena and Taylor 2007).

Overexpressing rolB gene under a constitutive promoter in transgenic plants 
suppresses adventitious root induction (Spena et al. 1987) and necrosis in callus 
tissues and leaves of young plants (Schmulling et al. 1988). Both callus and root 
formations at wound sites are cancelled if mutations occur in rolB gene (Vilaine and 
Casse-Delbart 1987). Normal growth of these organs depends upon the expression 
level of rolB gene necessary for active growth of hairy roots. A high or low level 
of expression correlates with impaired growth of these organs (Tanaka et al. 2001; 
Veena and Taylor 2007).

A. rhizogenes rol genes enhance the biosynthesis of certain groups of secondary 
metabolites in transformed plant cells. It was shown that rolB is apparently the most 
powerful inducer of secondary metabolism and at the same time, the most important 
inhibitor of callus growth (Palazon et al. 1998; Bonhomme et al. 2000; Bulgakov 
et al. 2002a; Shkryl et al. 2008; Shoja 2010). rolB gene mediated stimulatory effect 
on resveratrol and anthraquinone production suppresses with the tyrosine phospha-
tase inhibitors proven that RolB also has tyrosine phosphatase activity (Filippini 
et al. 1996; Kiselev et al. 2007).

rolC

The rolC gene sequences vary in different strains but their sizes are similar and 
ranging between 537 bp (strain 8196) to 543 bp (strain 2659, 1724 and A4). rolC 
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gene encodes 178–180 amino acid protein (approximately 20 kDa) that share more 
than 65 % identity with each other (Meyer et al. 2000).

rolC transformed plants exhibited reduced apical dominance leading to increased 
branching, dwarfed plants with short internodes, lanceolate leaves, early flowering, 
reduced flower size and reduced pollen production (Schmulling et al. 1988). Dwarf-
ing was caused by reduced epidermal cell size in internodes (Oono et al. 1990). 
Regulation of expression of rolC is complex, and varies depending upon the exis-
tence of the complete T-DNA sequences. In addition, root production was increased 
compared to untransformed plants, but decreased compared to plants transformed 
with the complete set of rol genes (Palazòn et al. 1998). Expressing rolC shows 
phloem-specific expression in the root, low expression in the leaf, and no expres-
sion in the shoot tip (Schmulling et al. 1988; Estruch et al. 1991). However, rolC is 
highly expressed in leaves when the whole T-DNA is present (Durand-Tardif et al. 
1985; Leach and Aoyagi 1991). More recently, rolC gene has been shown to play 
a role in formation of shoot meristems, hence suggesting its important role in the 
formation of pluripotent stem cells (Gorpenchenko et al. 2006).

The rolC promoter is utilized extensively for phloem-specific gene expression 
making it a useful tool in some biotechnological programs on pathogen resistance. 
Replication of many plant viruses, including luteoviruses, reoviruses and most 
geminiviruses transmitted by hemipteran vectors occur exclusively in phloem-
associated tissues. Therefore, by introducing an insecticidal gene that is toxic to 
hemipteran vectors under the control of phloem-specific rolC is a promising way 
for the control of such viruses through its expression in transgenic plants (Graham 
et al. 1997). Similarly, a plant lectin with insecticidal activity is encoded by ASAL 
( Allium sativum leaf agglutinin) gene and under control of the rolC promoter, it 
confers resistance against various hemipteran pests in transgenic rice, tobacco and 
chickpea plants (Saha et al. 2007).

rolC is known to stimulate rooting by an auxin-like effect of the gene (Schmull-
ing et al. 1988; Zuker et al. 2001; Casanova et al. 2003). An increase in auxin 
sensitivity may lead to occurrence of the auxin-like effect. In fact, in comparison 
between rolC transgenic N. tabacum protoplasts and their wild-type counterparts 
showed that more sensitivity was recorded in transgenic N. tabacum in the measure-
ment of transmembrane hyperpolarization in response to auxin (Maurel et al. 1991; 
Shoja 2010).

Also, abscisic acid (ABA), polyamine, and ethylene levels are extensively re-
duced due to rolC expression. The promoter of rolC activated by sucrose was found 
to be very high (Yokoyama et al. 1994; Faiss et al. 1996), implying that rolC may be 
influencing the source-sink relationship of a plant by regulating sugar metabolism 
and transport (Nilsson et al. 1996a, b; Martin-Tanguy 2001).

Alike rolB, the rolC gene is able to stimulate the production of high levels of sec-
ondary metabolites such as tropane alkaloids (Bonhomme et al. 2000), pyridine al-
kaloids, indole alkaloids (Palazon et al. 1998), ginsenosides (Bulgakov et al. 1998) 
and anthraquinone phytoalexins (Bulgakov et al. 2002b; Shkryl et al. 2008; Shoja 
2010) in transgenic plants.
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rolD

The rolD gene is found only in TL-DNA of agropine type Ri plasmids. It is also 
the only rol gene that is incapable of inducing root formation on its own (Mauro 
et al. 1996). The rolD gene size 1,032 bp and encodes a protein of 344 amino acids 
(Meyer et al. 2000; Christey 2001). This is a cytosolic protein with a sequence 
similar to ornithine cyclodeaminase (OCD) that catalyzes the conversion of orni-
thine to proline. Proline is an osmoprotectant and its accumulation is considered 
to be a defense response as a result of environmental stress in many plant species 
(Mauro et al. 1996; Trovato et al. 2001; Bettini et al. 2003). High levels of proline 
accumulation are in flowers suggesting a role in flowering (Trovato et al. 2001). 
The pleiotropic effects induced by expression of rolD gene in transgenic plants are 
increased flowering and reduced rooting (Mauro et al. 1996; Trovato et al. 2001). 
Although flower yield is accelerated, the flowers show heteromorphic incompa-
bility, which prevents self-fertilization. Production of viable seeds is achieved 
through manually-selfed plants (Mauro et al. 1996). However, it should be noted 
that these experiments were conducted using the rolD sequence from pRi1855. It 
has been reported that the induction of flowering is not performed by rolD from 
pRiHRI (Lemcke and Schmulling 1998). rolD exhibits poor tissue- or organ-spe-
cific expression in comparison with other rol genes but is shown to have a pre-
dominantly developmental expression pattern (Vilaine and Casse-Delbart 1987). 
Activity is seen in the elongating and expanding tissues of each organ in adult 
plants, but never in apical meristems. As the plants age, expression decreases and 
ceases at senescence. The mutations in rolD appear to accentuate callus growth 
giving rise to initiation of tumor formation resembling the Ti-plasmid infection 
(Trovato et al. 1997).

rolBTR�(rolB�Homologue�in�TR-DNA)

A rolB homolog on TR-DNA in the agropine type Ri plasmid was discovered and 
named as rolBTR. Excluding the 5′ or 3′ flanking sequences, there is a 53 % nucleo-
tide similarity between rolBTR and rolB in their sequences (Bouchez and Camilleri 
1990). The expression of rolBTR in N. tabacum is shown to cause phenotypical 
alterations such as wrinkled leaves bent strongly downward, formed shoots at the 
base of the stem and retarded growth is observed which are different than rolB 
phenotype. Two big differences were noted by the alignment of protein sequences 
of rolB and rolBTR. First, a CX5R motif is absent in rolBTR and second, N-terminal 
part of RolBTR contains 14 amino acids and mutations in the corresponding se-
quence in rolBTR gene cause abolishment of the altered phenotype (Lemcke and 
Schmulling 1998).
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ORF Genes

Besides rol (root locus) genes, there are several ORFs (Open Reading Frames) locat-
ed on the TL-DNA (Slightom et al. 1986). Many of 18 open reading frames (ORFs) 
nucleotide sequences identified on TL-DNA region contain 5′ and 3′ regulatory ele-
ments similar to those found in eukaryotic genes. They have at least 255 nucleotides 
and start with the initiation codon ATG (Slightom et al. 1986; Holefors et al. 1998). 
In many cases, CCAAT and TATA elements were situated upstream of putative tran-
scriptional initiation codons and poly(A) addition (AATAAA) elements were present 
in presumed 3′-noncoding regions (Slightom et al. 1986). The sequence length of 
coding regions of ORFs differ in ranging from 255 bp (ORF 9) up to 2280 bp (ORF8) 
and encode protein products ranging in size from 9,600 to 85,000 daltons, respective-
ly. The results from analysis of insertion mutants within the T-DNA region (White 
et al. 1985) and transformation experiments with individual or combinations of the 
ORFs have showed that the open reading frames ORF10, 11 and 12, corresponding 
to the genes rolA, rolB and rolC, were able to promote the formation of hairy root 
syndrome (Table 1.1) (Jouanin et al. 1987b; Vilaine et al. 1987; Spena et al. 1987; 
Spano et al. 1988; Schmulling et al. 1988). Besides this, it has been showed that 
ORF3n, ORF8 and ORF13 DNA sequences are highly conserved among all known 
Ri plasmids, indicating that they alter plant morphogenesis or response of transgenic 
tissues to plant hormones (Lemcke and Schmulling 1998; Veena and Taylor 2007). 
The sensitivity to auxin and cytokinin in combination or auxin alone can be lowered 
by expressions of both ORF3n and ORF8 (Lemcke and Schmulling 1998).

ORF3n

Expression of ORF3n in transgenic N. tabacum caused retarded flowering, less 
dense inflorescences, altered internode elongation and leaf morphology and necrot-
ic tips of upper leaves, sepals and bracts (Lemcke and Schmulling 1998). Appear-
ance of localized necrosis was noticed on the tips of apical narrow leaves whereas 
there was no sign of necrosis on the basal leaves. Additionally, senescence was not 
altered in these leaves, and bracts became necrotic as a whole. On sepals, the ne-
crosis emerged on the tips just when the corolla was visible through the calyx (Kol-
tunow et al. 2001; Lemcke and Schmulling 1998). The ORF3n protein (48.7 kDa) 
resembles phenolic-modifying enzymes and may be involved in secondary metab-
olism and/or the transport of hormones (Binns et al. 1987; Jacobs and Rubery 1988; 
Lemcke and Schmulling 1998). A cessation was observed in the shoot formation 
from ORF3n callus in response to auxin and cytokinin. Also, plantlets transferred 
to the medium containing auxin and cytokinin showed decreased sensitivity lead-
ing to small and fewer calli than controls. Thus, it has been proposed that ORF3n 
may act to negative regulator to the dedifferentiation of tissues as a reaction to 
auxin and cytokinin, which may favor the formation of rol gene-induced roots from 
such cells during pathogenesis (Britton et al. 2008; Dodueva 2007).
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ORF8

The ORF8 gene has the longest sequence of TL-DNA and coding for a protein con-
taining 780 amino acids (Slightom et al. 1986). The ORF8 protein has one of the 
most conserved amino acid sequences (81 % similarity) between different strains 
like pRiA4 and pRi2659 (Ouartsi et al. 2004).

The protein encoded by the ORF8 gene is a natural fusion protein consisting of 
N-terminal domain (NORF8) of 213 amino acids homologous to RolB protein of 
the A. rhizogenes strain A4 T-DNA and the C-terminal part (CORF8) of approxi-
mately 506–524 amino acids shows homology to the IaaM proteins of various other 
bacteria (Yamada et al. 1985; Slightom et al. 1986; Levesque et al. 1988; Dodueva 
2007; Shoja 2010). iaaM genes that homologues to the coding sequence of CORF8 
codes for a tryptophan monooxygenase which catalyzes the formation of indole-3-
acetamide (IAM) from tryptophan (Lemcke et al. 2000).

Furthermore, ORF8 possesses a 200 amino acid stretch at its N-terminus that 
shows homology with the rolB gene product (33.5 % amino acid identity) (Levesque 
et al. 1988). The N-terminal part (NORF8) of this protein functions in carbohydrate 
metabolism such that when only NORF8 was expressed, transformed plant showed 
growth retardation, chlorotic and necrotic leaves and accumulation of high levels of 
sugars (glucose, fructose and sucrose) and starch (Otten and Helfer 2001).

However, some studies show that the auxin content can be elevated by the 
genes found in the TL-DNA region on the T-DNA in some hosts, independent of 
the presence of the TR-DNA (Lemcke et al. 2000). Presumably this occurs because 
of conversion of IAM to IAA in cells expressing only t2m protein (Klee et al. 1987; 
Prinsen et al. 1990). Besides this, as a characteristic functional motif of the t2m pro-
teins that catalyzes decarboxylation of tryptophan to indole-3-acetamide exhibits 
23-aminoacid- long a flavin adenine dinucleotide (FAD) binding site was identified 
by Levesque et al. (1988). The experimental data obtained from plants and bacteria 
suggest that the gene product of ORF8 of A. rhizogenes TL-DNA has t2m activ-
ity responsible for the increased IAM content in transgenic tissues (Lemcke et al. 
2000). Moreover, there is a physical connection between N- and C-regions of ORF8 
protein required for the emergence of a specific phenotype in transgenic plants con-
sisting ORF8 gene. This suggests a distinct specific function for the whole protein 
(Umber et al. 2005; Dodueva 2007).

ORF13�and�ORF14

The ORF13 and ORF14 genes are found to be highly conserved among A. rhizo-
genes strains (Stieger et al. 2004). It has been demonstrated that alone A4-rolABC 
genes carried by an Agrobacterium strain are showed to be incapable of inducing 
rooting on carrot disc and aux genes located on the TR-DNA or ORF13 and ORF14 
located on TL-DNA are also required for rooting (Cardarelli et al. 1987b; Capone 
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et al. 1989). In N. tabacum leaf discs harboring rolB and ORF13 genes had capac-
ity to induce rooting almost as well as the full length of TL-DNA (Aoki and Syono 
1999). The results obtained via co-inoculation of leaf discs achieved using the rolA, 
rolB and rolC with either ORF13 or ORF14 showed a limited root induction on car-
rot disks (Capone et al. 1989). A comparison from the studies showed that there is 
no homology between ORF13/ORF14 and auxin biosynthetic genes. Furthermore, 
unlike the genes controlling biosynthesis of auxin (Camilleri and Jouanin 1991), 
ORF13 and ORF14 have no activity for the induction of roots on N. tabacum leaf 
discs (Cardarelli et al. 1987b). A highly divergent gene family known as plast gene 
family is constituted by rolB, rolC, ORF13 and ORF14. They have similar func-
tions and are thought to be evolutionary related (Levesque et al. 1988).

The ORF13 gene is approximately 600 bp in size, encoding a 197–200 amino 
acid protein, whose expression leads to higher levels in leaves and roots (Durand-
Tardif et al. 1985; Veena and Taylor 2007). ORF13 gene leads to the formation of 
induce cell proliferation such as dense green and rapidly proliferating callus on 
transformed carrot root and tobacco leaf discs (Capone et al. 1989; Frundt et al. 
1998; Dodueva 2007). Wound-inducible and organ-specific expression of ORF13 in 
transgenic plants lead to a variety of characteristic modifications including irregular 
formation of leaves, severe leaf nervure, shortened and variable internode length, 
abnormal and asymmetric flowers, agravitropic root growth and a reduced cell 
number and cell size in the root (Hansen et al. 1993, 1997; Lemcke and Schmulling 
1998; Veena and Taylor 2007). Accelerated expression level in ORF13 gene trig-
gered a more severe reduction of growth in stem and roots through TC-dependent 
overproduction of the ORF13 gene product, affecting both cell number and cell size 
in the root. Interestingly, growth and gravitropism was normal in the ORF13 high 
expressers (Lemcke and Schmulling 1998).

Expression of ORF13 provokes specific phenotype similar to cytokinin-treated 
plants however free or bound cytokinin content of the transformed tissues shows 
no difference from wild-type (Medford et al. 1989; Hansen et al. 1993; Lemcke 
and Schmulling 1998). Furthermore, the shoot part of the ORF13 transformed plant 
does not resemble cytokinin-overproducing plants, indeed the growth reduction re-
sults from the inhibition of cell division in the apical meristems and development 
of leaves (Lemcke and Schmülling 1998). Some of the phenotypic alterations in 
transgenic plants are thought to arise from interaction of ORF13 with hormone 
signaling pathways. ORF13 may play roles in hormone homeostasis and regulation 
of the cell cycle in infected cells (Veena and Taylor 2007). The observations and 
grafting of transgenic shoots onto wild type plants revealed that ORF13 may cause 
the production of a diffusible factor with cytokinin-like activity (Hansen et al. 1993; 
Dodueva 2007).

Since the only T-DNA gene that induces cell proliferation is ORF13, when in-
oculated with both carrot discs and tobacco leaf discs produce green callus (Hansen 
et al. 1993; Frundt et al. 1998). Application of exogenous cytokinin increases the 
number of roots produced from ORF13 tobacco leaf discs, but does not change root 
induction on untransformed, even though there was no difference in endogenous cy-
tokinin levels (Specq et al. 1994; Lemcke and Schmulling 1998, Britton et al. 2008). 
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Furthermore, endoreduplication was reduced in ORF13 plants (Meyer et al. 2000), 
indicating an interaction of ORF13 with cell cycle control. Stieger et al. (2004) 
claimed that a proliferative effect of ORF13 expression in the shoot apical meristem 
(SAM) caused increased number of mitoses and showed no influence on meristem 
structure. In consequence, the reductions of cell and meristem sizes and the retar-
dation in the formation of leaf primordia were observed. Smaller leaf sizes can be 
explained by an earlier cessation of leaf growth, but not explained with a reduced 
size of leaf cells, since the number of epidermal leaf cells per square millimeter was 
remain unaltered. Enhanced number of cell divisions in the shoot apical meristems 
and accelerated production of leaf primordia were seen in plant expressing ORF13. 
ORF13 is involved in the inference of the cell cycle regulation leading to an earlier 
stop in organ growth in the developing leaves. Furthermore, earlier flowering of 
plants expressing ORF13 may arrest leaf initiation and leaf expansion, explaining 
the fewer leaves formed in ORF13 plants (Stieger et al. 2004).

It has been also revealed that ORF13 protein contains a conservative retinoblas-
toma (RB)-binding motif LxCxE (Meyer et al. 2000). This motif was found in all 
members of the ORF13 family, including agropine-, mannopine-, cucumopine-, and 
mikimopine-type Ri plasmids (Stieger et al. 2004). When mutations are introduced 
into the Rb motif, normal leaf size is restored, but plants still show stunting and 
reduced apical dominance. It was also observed that ORF13 expression leads to 
the formation of spur between minor veins on leaves and petals N. tabacum (Meyer 
et al. 2000). Similar structures are formed on leaves, when KNOX (KNOTTED1-
like homeobox) genes are overexpressed (Sinha et al. 1993; Chuck et al. 1996; 
Sentoku et al. 2000; Stieger et al. 2004). It was explained that cytokinin-like phe-
notype such as the formation of spikes, stunted growth, loss of apical dominance, 
fusion of organs, and stem fasciations observed as consequences of ectopic expres-
sion of KNOX genes which are induced by ORF1 and cell cycle regulations (Stieger 
et al. 2004).

Among the additional ORFs in the TL-DNA, there are two genes, which may 
also contribute to the hairy root phenotype, ORF13a and ORF14. ORF13a is located 
between ORF13 and ORF14 on the opposite strand. Expression of this gene is taken 
place in a tissue specific manner in plants, primarily in leaf vascular tissues (Hansen 
et al. 1994b). ORF13a is necessary for root induction (Capone et al. 1989). ORF13a 
containing motifs common to phorphorylated gene regulatory proteins codes for a 
protein that may interact directly with DNA (Hansen et al. 1994b). Despite a higher 
expression rate of ORF13a was found in roots compared to leaves, its expression 
did not yield a visible phenotype (Lemcke and Schmulling 1998; Veena and Taylor 
2007). The putative protein encoded by ORF13a has a SPXX repeat motif and is 
considered to have a regulatory function for this gene (Hansen et al. 1994b). ORF14 
is in the same gene family as rolB, rolC, ORF8 and ORF13 (Levesque et al. 1988). 
Although overexpression of ORF14 in transgenic carrot and tobacco produced no 
morphological changes (Lemcke and Schmulling 1998), it has been shown that the 
rol genes and ORF13 act together to induce root induction (Capone et al. 1989; 
Aoki and Syono 1999) (Table 1.1).

I. I. Ozyigit et al.



23

A. rhizogenes and Crop Biotechnology

Genes can be transferred between species and in conjunction with this fact; plant 
improvements for many decades have been relied heavily upon gene transfer. Either 
by natural selection or through the efforts of plant breeders, development of plants 
has always depended upon creating, evaluating and selecting of right combination 
of alleles. Transgenic plants possessing useful features such as resistance to dis-
eases, insects and pests have been developed by transferring such traits to crop 
varieties from different species.

Since 1970, rapid progress being made in developing tools for recombinant DNA 
technology has led to the creation of genetically modified plants. Genetically modi-
fied crops have been developed for improving various agricultural, nutritional and 
food processing traits and used commercially all over the world (Miflin 2000; Kui-
per et al. 2001; James 2006; Olempska-Beer et al. 2006). Establishment of plant 
tissue culture techniques are the most important and preliminary steps for many 
direct (electroporation, biolistic, microinjection, etc.) and indirect (virus- or bacte-
ria-mediated) gene transfer methods in biotechnology and these methods are used 
successfully by a lot of laboratories around the world (Ozyigit 2012). The particle 
bombardment and electroporation transformation methods were favored DNA de-
livery systems because they do not show any plant host range problems and very 
effective with high DNA delivery rate (Hauptmann et al. 1987; Birch 1997; Taylor 
and Fauquet 2002; Turgut-Kara and Ari 2010). However with these methods, gene 
silencing/co-suppression can be occurred as a result of high copy number of DNA 
inserted in host cells (Block 1993; Yasuda et al. 2005). On the other hand, Agro-
bacterium-based plant transformation is very effective method of creating plants at 
low cost, simple to use and with low copy number inserted. Limited number of host 
range is the only disadvantage (Lessard et al. 2002; Chandra 2012). For achieving 
transformation of plants, Agrobacterium based technology has been used since the 
mid-1990s increasingly (Hiei et al. 1994). Agrobacterium-mediated transformation 
in generating transgenic plants has been employed as a major DNA delivery system 
for novel transgenic technologies starting with the transformations of dicotyledon-
ous (Zambryski et al. 1983) and monocotyledonous (Hiei et al. 1994) species in the 
1980–1990s. Increasing understanding of Agrobacterium-plant relationship (Gelvin 
2003) and the mechanisms of transgene integration and genetic recombination in 
plants (Vain 2007) will lead to achieve further advances in these areas. Conducting 
efficient and controlled research on targeted gene replacement/alteration, overex-
pression and mis-expression could provide valuable resource to define gene regula-
tion/function and traits in further in crops. Achievements on Agrobacterium-based 
transformation technologies enable large-scale transgenic studies in a range of im-
portant plant and crop species (such as indica rice, wheat, barley, etc.) (Vain 2007) 
and also bring opportunity to define and select plant cultivars, which could not be 
obtained by conventional breeding methods (Christou 1997).

For many crops, aim of breeding program is altering plant forms. Establishment 
of plants with reduced size is favorable in many crops ranging from fruit trees to 
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annual bedding plants (Mayo 1987). Breeding strategies empowered by genetic en-
gineering will lead to the development of more useful and productive crops for 
plant breeders. While transferring genes to plants for being resistant against dis-
eases and insects, they might have been affected in other ways having altered prop-
erties (Oono et al. 1987; Spena et al. 1987; Schmulling et al. 1988; Fladung 1990; 
Smigocki and Hammerschlag 1991; Scorza et al. 1994). Legumes are not only pro-
viding a main source of protein and oil for human and animal nutrition but also 
contributing to the biological fixation of nitrogen. Moreover, a better understanding 
of plant-microbe interactions such as symbiotic nitrogen fixation, mycorrhizal as-
sociations, and legume-pathogen interactions can be possible with legume studies 
(Chilton et al. 1982; Christey 2001). Studies on aspects of hairy roots in legumes 
showed that proliferous root growth and abundant lateral branching are important 
for improving nitrogen fixation (Cheng et al. 1992).

Most plant structures, such as the hypocotyl, leaf, stem, stalk, petiole, shoot tip, 
cotyledon, protoplast, storage root, and tuber, have shown capacity to be infected 
and genetically transformed by A. rhizogenes resulting in stimulation of hairy root 
formation (Mugnier 1988; Han et al. 1993; Bajrovic et al. 1995; Arican et al. 1998; 
Drewes and Staden 1995; Giri et al. 2001; Krolicka et al. 2001; Azlan et al. 2002; 
Veena and Taylor 2007). Applications of plant biotechnology favor hairy-root cul-
tures because of their special properties such as fast growth, short doubling time, 
ease of maintenance, and ability to synthesize a range of chemical compounds and 
proteins. Hairy root cultures are usually able to produce the same compounds found 
in wild-type roots of the parent plant, without the loss of concentration (Kim et al. 
2002; Veena and Taylor 2007). Above all, hairy roots have an ability to regenerate 
stable transgenic plants either by a process of somatic embryogenesis or adventi-
tious bud formation, so that genetically modified generations can be achieved (Spa-
no and Costantino 1982; Tepfer 1984; Han et al. 1993; Cho and Wildholm 2002).

It is also known that modification of the cell hormonal balances occurring in 
response to infection causes root formation at the infected site (Gaudin et al. 1994; 
Aarrouf et al. 2012). However, the response varies depending upon the strain and its 
interaction with the plant. One of the most important advantages is that hairy root 
formation can be used as a verification of transformation. The use of antibiotic re-
sistance markers in the development of transgenic plants is given rise to substantial 
public attention because of their unknown effects (Christey 2001).

Hairy roots have been used for infection of bacteria, fungi and nematodes and 
shown to successfully complete their life cycles (Cho et al. 1998; Collier et al. 
2005). The resistance genes of nematode have been studied through using hairy 
roots (Cai et al. 1995; Remeeus et al. 1998; Kifle et al. 1999; Hwang et al. 2000). 
Development of plants using hairy roots have become of interest because of great 
potential for building up tolerance to biotic stresses and abiotic stresses (Porter 
1991). Hairy root cultures provide an advantage related with making possible the 
analysis of the changes in enzyme activities and their isoenzyme patterns (Messner 
and Boll 1993; Kärkönen et al. 2002; Talano et al. 2006).

A variety of dicotyledonous plants are susceptible to A. rhizogenes. As a result 
of stable transformation, root cultures have been established from a range of spe-
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cies of plants (Tepfer 1990). In 1997, Christey reported plant species that had been 
genetically modified produced from hairy roots of 60 different taxa, representing 
51 species from 41 genera and 23 families including Pinaceae Fabaceae, Brassica-
ceae and Solanaceae Araliaceae, Caricaceae and Rutaceae. In 2001, it was reported 
that, transgenic plants have been derived via transgenesis using in 89 different taxa, 
representing 79 species from 55 genera and 27 families (Christey 2001). Because 
lack of susceptibility, monocotyledonous plants are not a host for A. rhizogenes for 
and still there is no example for transgenic monocotyledonous plant except onion 
(Dommisse et al. 1990) and asparagus (Hernalsteens et al. 1993; Christey 2001). 
According to Web of Science, currently there are more than 500 studies conducted 
on A. rhizogenes. Table 1.2 summarizes the studies conducted, the plants and the 
genes transferred via A. rhizogenes in chronological order.

Conclusion and Future Perespective

This chapter deals with current research on A. rhizogenes-mediated transformation 
and its applications in crops. A. rhizogenes is responsible for the development of 
hairy root disease in a wide range of dicotyledonous plants and characterized by a 
proliferation of excessively branching roots. Containing case studies demonstrating 
the result of A. rhizogenes-mediated transformation includes biosynthesis pathways 
in plants created a valuable platform in the last years. Furthermore, the plants trans-
formed with A. rhizogenes are become increasingly popular for offering approaches 
to create cost-effective options in mass-producing desired plant metabolites and 
expressing foreign proteins. The data from numerous proof-of-concept studies in-
cluding improved the nutritional quality, agronomical characteristics, production of 
plant-derived products encourages for the realization of scaling up Agrobacterium 
based practices. Recently, transgenic plants produced by Agrobacterium-mediated 
transformation have also been shown to have immense potential for applications 
in phytoremediation. This chapter highlights recent progresses in the field of A. 
rhizogenes-mediated transformation and outlines future perspectives for the exploi-
tation of it.
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Table  1.2   Summary of the studies conducted, the plants and the genes transferred via 
A.rhizogenes in chronological order
Daucus carota Carrot rol David et al. 1984
Kalanchoe daigremontiana Devil’s backbone rol White et al. 1985
Arabidopsis thaliana Mouse ear cress rol Pavingerova and Ondrej 1986
Cucumis sativus Cucumber NPTII Trulson et al. 1986
Lycopersicon esculentum Tomato NPTII Shahin et al. 1986
Petunia hybrida Petunia rol Ondrej and Biskova 1986
Armoracia lapathifolia Horseradish rol Noda et al. 1987
Lycopersicon peruvianum – NPTII Morgan et al. 1987
Nicotiana debneyi Debney’s tobacco NPTII Davey et al. 1987
Nicotiana plumbaginifolia – NPTII Davey et al. 1987
Solanum nigrum Black nightshade NPTII Davey et al. 1987
Anagallis arvensis Pimpernel rol Mugnier 1988
Convolvulus arvensis Morning glory rol Mugnier 1988
Foeniculum vulgare Fennel rol Mugnier 1988
Linum usitatissimum Flax rol Zhan et al. 1988
Nicotiana glauca Tree tobacco rol Sinkar et al. 1988
Nicotiana hesperis – rol Walton and Belshaw 1988
Brassica oleracea var. 

acephala
Ornamental kale rol Hosoki et al. 1989

Catharanthus roseus Periwinkle rol Brillanceau et al. 1989
Glycine argyrea Wild soybean NPTII Rech et al. 1989
Glycine canescens Wild soybean NPTII Rech et al. 1989
Lotus corniculatus Bird’s-Foot trefoil GUS Forde et al. 1989
Solanum tuberosum Potato NPT II, GUS Visser et al. 1989
Stylosanthes humilis Townsville stylo NPT II Manners and way 1989
Trifolium repens White clover rol Diaz et al. 1989
Brassica napus Rapeseed NPTII Boulter et al. 1990
Nicotiana rustica Mapacho ODS Hamill et al. 1990
Nicotiana tabacum Tobacco NPTII Hatamoto et al. 1990
Vicia faba Fava bean NPTII Ramsay and Kumar 1990
Actinidia deliciosa Kiwifruit rol Rugini et al. 1991
Allocasuarina verticillata Drooping she-oak rol Phelep et al. 1991
Cichorium intybus Chicory rol Sun et al. 1991
Hyoscyamus muticus Egyptian henbane rol Oksman-Caldentey et al. 

1991
Medicago arborea Tree medick HPT Damiani and Aricioni 1991
Medicago sativa Alfalfa/lucerne rol Golds et al. 1991
Olea europaea Olive rol Rugini et al. 1996
Onobrychis viciifolia Sainfoin rol Golds et al. 1991
Pistacia vera Pistachio rol Rugini and Mariotti 1991
Malus domestica Apple rolB Rugini and Mariotti 1991
Solanum dulcamara Nightshade NPTII, rol McInnes et al. 1991
Anthyllis vulneraria Kidney vetch NPTII, ipt Stiller et al. 1992
Atropa belladonna Deadly nightshade bar Saito et al. 1992
Brassica campestris Turnip NPT II Christey and Sinclair 1992
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Brassica campestris var. 
rapifera

Turnip GUS, NPTII, 
ALS

Christey and Sinclair 1992

Brassica oleracea var. 
acephala

Forage kale GUS, NPTII, 
ALS

Christey and Sinclair 1992

Malus pumila Apple rol Lambert and Tepfer 1992
Medicago truncatula Barrel clover NPTII Thomas et al. 1992
Papaver somniferum Opium poppy rol Yoshimatsu and Shimomura 

1992
Coffea arabica Coffea rol Spiral et al. 1993
Eucalyptus sp. Eucalyptus rol MacRae and van Staden 1993
Glycine max Soybean GUS Olhoft et al. 2007
Ipomoea batatas Sweet potato NPTII, GUS Otani et al. 1993
Populus trichocarpa × 

P. deltoides
Cottonwood NPTII Han et al. 1993

Robinia pseudoacacia Black locust NPTII Han et al. 1993
Vicia hirsuta Hairy vetch rol Quandt et al. 1993
Vigna aconitifolia Moth bean SbPRP1 Suzuki et al. 1993; Lee et al. 

1993
Diospyros kaki Japanese 

persimmon
rol Tao et al. 1994

Larix decidua European larch NPTII, aroA, 
BT

Shin et al. 1994

Pelargonium graveolens Lemon geranium rol Pellegrineschi et al. 1994
Rosa hybrida Hybrid tea rose NPTII, GUS Firoozabady et al. 1994
Rubia peregrina Wild madder ICS Downs et al. 1994
Vinca minor Lesser periwinkle NPTII, GUS Tanaka et al. 1994
Vitis vinifera Grapevine NPTII, GUS Nakano et al. 1994
Casuarina glauca Swamp she-oak GUS Diouf et al. 1995
Gentiana scabra Japanese gentian rol Suginuma and Akihama 1995
Solanum tuberosum L. Potato rol Bajrovic et al. 1995
Rudbeckia hirta Black-Eyed susan rol Daimon and Mii 1995
Verticordia grandis Scarlet 

featherflower
NPTII, GUS Stummer et al. 1995

Citrus sinensis Sweet orange rol Li et al. 1996
Ajuga reptans Blue bugle GUS Uozumi et al. 1996
Begonia tuberhybrida Begonia rol Kiyokawa et al. 1996
Brassica campestris Turnip GUS Christey et al. 1997
Brassica oleracea Wild cabbage GUS Christey et al. 1997
Carica papaya Papaya NPTII, GUS Cabrera-Ponce et al. 1996
Eustoma grandiflorum Lisianthus NPTII, GUS Handa 1992
Ipomoea trichocarpa Blue morning 

glory
NPTII, GUS Otani et al. 1993

Juglans regia Walnut rolB Caboni et al. 1996
Lotus angustissimus Slender bird’s-foot 

trefoil
NPTII, GUS Nenz et al. 1996

Pelargonium fragrans Nutmeg geranium rol Pellegrineschi and Davolio-
Mariani 1996

Table 1.2   (continued)
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Pelargonium 
odoratissimum

Apple geranium rol Pellegrineschi and Davolio-
Mariani 1996

Pelargonium quercifolium Oak-Leaved 
geranium

rol Pellegrineschi and Davolio-
Mariani 1996

Pinus contorta Lodgepole pine rol Yibrah et al. 1996
Pinus halepensis Aleppo pine rol Tzfira et al. 1996
Pinus nigra Austrian pine rol Mihaljevic et al. 1996
Populus tremula Aspen NPTII, GUS Tzfira et al. 1996
Rosa sp. Rose rol Van der Salm et al. 1997
Scoparia dulcis Licorice weed rol Yamazaki et al. 1996
Aconitum heterophyllum Indian atees rol Giri et al. 1997
Artemisia annua Sweet wormwood rol Banerjee et al. 1997
Brassica napus Oilseed rape GUS, NPTII, 

ALS
Christey et al. 1997

Brassica oleracea Wild cabbage GUS, NPTII Christey et al. 1997
Datura arborea Angel’s trumpets rol Giovannini et al. 1997
Datura sanguinea Red Angel’s 

trumpets
rol Giovannini et al. 1997

Digitalis lanata Grecian foxglove rol Pradel et al. 1997
Gentiana cruciata Gentian GUS Momčilović et al. 1997
Gentiana purpurea Purple gentian rol Momčilović et al. 1997
Gentiana triflora × G. 

scabra
– rol Hosokawa et al. 1997

Lotus japonicus Lotus japonicus rol Stiller et al. 1997
Nierembergia scoparia Tall cupflower rol Godo et al. 1997
Peganum harmala Harmal TDS Berlin et al. 1993
Antirrhinum majus Snapdragon bar, NPTII Hoshino and Mii 1998
Arachis hypogaea L. Groundnut rol Akasaka et al. 1998
Astragalus sinicus Chinese milk vetch GUS Cho et al. 1998
Citrus aurantifolia Mexican lime NPTII, GUS Pérez-Molphe-Balch and 

Ochoa-Alejo 1998
Nicotiana spp. – rol Palazon et al. 1998
Panax ginseng Ginseng rol Yang and Choi 2000
Prunus avium Sweet cherry rol Gutierrez-Pesce et al. 1998
Brassica campestris var. 

pekinensis
Chinese cabbage NPTII, EAS Christey et al. 1999

Brassica oleracea L. var. 
italica

Broccoli rol Henzi et al. 1999

Brassica oleracea var. 
botrytis

Cauliflower NPTII, GUS Christey et al. 1999

Brassica oleracea var. 
capitata

Cabbage NPTII, GUS Christey et al. 1999

Brassica oleracea var. 
gemmifera

Brussels sprouts NPTII Christey et al. 1999

Brassica oleracea var. 
italica

Broccoli NPTII, EAS Christey et al. 1999

Gentiana punctata Spotted gentian GUS Vinterhalter et al. 1999
Pimpinella anisum Anise rol Andarwulan and Shetty 1999
Pyrus communis Pear rolC Bell et al. 1999
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Rubia tinctorum Common madder rol Ercan et al. 1999
Ulmus spp. Elm rol Rinallo et al. 1999
Ziziphus jujuba Jujube rol Hatta et al. 1996
Crotalaria juncea Sunn hemp rol Ohara et al. 2000
Trifolium pratense Red clover rol Díaz et al. 2000
Brassica napus var. 

rapifera
Swede (Rutabaga) bar Christey and Braun 2001

Oryza sativa var. japonica Japanese Rice rolA, NPTII Lee et al. 2001
Spinacia oleracea Spinach rol Ishizaki et al. 2002
Citrus aurantium Bergamot orange rol Chavez-Vela et al. 2003
Ginkgo biloba Ginkgo rol Ayadi and Tremouillaux-

Guiller 2003
Rauvolfia micrantha – rol Sudha et al. 2003
Sesbania rostrata Pea rol Van de Velde et al. 2003
Aesculus hippocastanum Horse-chestnut GUS Zdravkovic-Korac et al. 2004
Alstroemeria sp. Peruvian lily NPTII, GUS, 

rol
Akutsu et al. 2004

Camptotheca acuminata Happy tree rol Lorence et al. 2004
Genista tinctoria Greenweed rol Luczkiewicz and 

Kokotkiewicz 2005
Typha latifolia Common bulrush rol Nandakumar et al. 2005
Brassica oleracea var. 

sabauda 
Savoy cabbage GUS Sretenovıc-Rajicic et al. 2006

Brassica oleracea var. 
sabauda

Savoy cabbage rol Sretenovic-Rajicic et al. 2006

Eustoma grandiflorum Lisianthus rol Popa et al. 2006
Echinacea purpurea Purple coneflower rolB Wang et al. 2006
Phaseolus vulgaris Common bean GFP, GUS Estrada-Navarrete et al. 2006
Tylophora indica Indian ipecac rol Chaudhuri et al. 2006
Asimina triloba Pawpaw rolB, C Ayala-Silva et al. 2007
Pueraria candollei – rolB Medina-Bolivar et al. 2007
Beta vulgaris Red beet NPTII Thimmaraju et al. 2008
Glycyrrhiza glabra Licorice rol Mehrotra et al. 2008
Musa sp. Banana rol Matsumoto et al. 2009
Plumbago rosea Plumbago rol Satheeshkumar et al. 2009
Podophyllum hexandrum Himalayan 

mayapple
rol Lin et al. 2003

Psoralea corylifolia Babchi rol Shinde et al. 2009
Drosera burmannii Tropical sundew rol Putalun et al. 2010
Echium rauwolfii Echium rauwolfii rol Abd El-Mawla 2010
Fagopyrum esculentum Buckwheat GUS Kim et al. 2010
Mangifera indica Mango rol Chavarri et al. 2010
Przewalskia tangutica – rol Lan and Quan 2010
Corchorus capsularist Jute GUS Chattopadhyay et al. 2011
Nasturtium officinale Watercresses rol Park et al. 2011
Prunus sp. – Egfp, NPTII Bosselut et al. 2011
Amaranthus spinosus Spiny amaranth rolB Pal et al. 2012
Capsicum annuum Pepper GFP Aarrouf et al. 2012
Clitoria ternatea Butterfly pea rol Swain et al. 2012

Table 1.2   (continued)
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Abstract Bioinformatic resources and web databases are essential for the most 
effective use of genetic, proteomic, metabolomic and phenome information impor-
tant in increasing agricultural crop productivity. Innovations in web based platforms 
for omics based research, and application of such information has provided the 
necessary platform to promote molecular based research in model plants, as well 
as important crop plants. Combinations of multiple omics web based sites and inte-
gration of outcomes is now an important strategy to identify molecular systems 
promoting comparative genomics, the biological properties in many species, and 
to accelerate gene discovery and functional analyses. The review details recent 
advances in plant omics data acquisition sites, together with relevant databases 
and advance molecular technology under clear biological categories. The informa-
tion is set out under the molecular biology divisions of; DNA based resources and 
sequencing, RNA and variation analysis, proteomics, structural proteins, and post-
translation modifications, metabolomics, phenome and plant comparative analyses. 
Tables of relevant web sites are presented under similar headings for convenience, 
and the application of bioinformation data is reviewed in light of the possible use 
of these resources for crop improvement. Finally, a long list of future perspectives 
and research still to be attempted is detailed, which in the fullness of time should 
enable the full potential of bioinformatics and use in crop improvement programs 
to be achieved.

Introduction

Sustainable agricultural production and food security are two important issues of 
concern in response to population increase, environmental degradation and climate 
change (Brown and Funk 2008; Turner et al. 2009). According to the United Na-
tions, the world population increases by 70–75 million people annually, an aver-
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age of more than two persons every second; and over 95 % of these will live in 
developing countries (De Filippis 2012). It will be difficult satisfying the needs of 
this growing population and avoid serious food shortages or even famine from the 
limited arable land and natural resources available. These factors combined have 
already resulted in food deficiency and malnutrition, which have become serious 
health problems. Additionally, recent increased demand for biofuel crops has cre-
ated a new market for agricultural commodities, causing even more stress on food 
security (Ozturk et al. 2006; Ozturk 2010; Hakeem et al. 2012). In order to try to re-
solve these problems and increase crop yields, breeding plants based on a better mo-
lecular understanding of gene function, and on the regulatory mechanisms involved 
in crop production (Pinstrup-Andersen and Cohen 2000; Takeda and Matsuoka 
2008) appears to be necessary. Plant molecular biology continues to progress, and 
important gene sequences and their function have been described; many of which 
are related to crop yields (production), crop quality (protein and carbohydrate), and 
tolerance to biotic and abiotic stresses (De Filippis 2012). There are legal, social 
and political barriers to the full potential use of crop biotechnology and transgenic 
plants, nevertheless advances in these fields have lead to improvements in agricul-
ture and human life. One vital tool of biotechnology is ‘bioinformatics’, which is 
commonly used to genetically type and identify genotypic and phenotypic changes 
in plants, and this information is important for improvement in performance of crop 
plants (Ahmad et al. 2011).

The complete genome sequence of the mustard plant Arabidopsis thaliana has 
been available to scientists since 2000 (International Arabidopsis Genome Initia-
tive 2000; Somerville and Dangl 2000). Similarly, the rice ( Oryza sativun cv. ja-
ponica) complete genome sequence has been documented since 2005 (International 
Rice Genome Sequencing Project 2005; Itoh et al. 2007; Hakeem et al. 2012). The 
rice genome sequencing project in particular with its molecular methods and DNA 
markers on chromosomes, introduced important developments in mapping popula-
tions and chromosome marker resources, which accelerated the isolation of agro-
nomically important quantitative trait loci (QTLs) in crop breeding programs (Ashi-
kari et al. 2005; Konishi et al. 2006; Ma et al. 2006; Kurakawa et al. 2007; Ma et al. 
2007; Zhang et al. 2007).

Each biological element that can been measured, can also be represented in a 
typical plant cell, tissue and organ at various molecular and/or morphological lev-
els, or in other words a conceptual model with layers ranging from the ‘genome’ 
to the ‘phenome’; a model called ‘omic space’ (Fig. 2.1) (Toyoda and Wada 2004). 
Advances in each ‘omics’ research area have become essential for investigations of 
gene function and structure, and the type of phenotypic changes present in plants. 
A schematic presentation of relevant ‘omics’ resource is shown in Fig. 2.1, together 
with the current status of available areas of research from Arabidopsis, rice, soy-
bean, corn and Brassica; just to cite a few examples. Some of these advances have 
included improved methods for gene expression, gene modifications, molecular 
breeding, plant genome and proteome interactions, and metabolite profiling. Large 
volumes of information in biological resources, mass identification of mutant lines 
and full-length cDNAs, and the publication of this information in web-based data 
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banks have been available for some time (Brady and Provart 2009; Kuromori et al. 
2009; Seki and Shinozaki 2009).

Bioinformatic information and web sites have become important for crop scien-
tists in gene data mining, and linking this knowledge to its biological significance 
(Mochida and Shinozaki 2010). However there needs to be a note of caution. As 
genomic and proteomic knowledge expands, new forms of electronic data becomes 
available to help interpret results. Biological data is notoriously variable (even unre-
liable at times) and ‘noisy’ in electronic form, due to living systems being complex 
and measurement and analysis technologies are often imperfect. In my experience 
two approaches for reducing ‘noise’ and help reliability of this type of data are 
required; aggregation and visualisation. Firstly, when combined, multiple forms of 
evidence become more and more accurate than for example a single source of data, 
simply because each replicate form of the data reduces overall uncertainty. Sec-
ondly, the human mind is an outstanding data analysis tool. It can absorb textual 
data rather poorly, but it can assimilate visual information in great detail, and the 
mind can process visual data efficiently to help identify common trends and themes 
(Cline and Kent 2009).

In this chapter, we provide an overview of the many web-based resources avail-
able for use in ‘omics’ plant research, with particular emphasis on recent progress 
related to crop species and crop improvement. Therefore we describe DNA and 
RNA sequence-related resources, molecular markers, whole genome sequencing, 
protein coding and non-coding transcripts, and provide molecular technology up-
dates. We then review resources important for genetic map-based approaches such 
as QTL analyses and population genetic (diversity) studies. We also describe the 
current status of resources and some technologies for transcriptomics, proteomics 
and metabolomics; however some of these research areas are more comprehensive-
ly described in other chapters of this book. We then review molecular developments 
in each ‘omics’ field, as well as instances of their combined uses in investigations 
of particular crop systems. Mutant genotypes for use in ‘phenome’ research will be 
discussed, and the integration of ‘omics’ data between plant species in comparative 
genomics is dealt with. Throughout this review we provide examples of applica-

Fig. 2.1   A conceptual 
model called ‘omic space’ 
with layers ranging from the 
‘genome’ to the ‘phenome’. 
(After Toyoda and Wada 
2004)
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tions through available databases in crop plants, and where improvement in crop 
production has been described.

Bioinformatics and web addresses for plant genomics and proteomics have been 
reviewed by a number of authors (Rose et al. 2004; Sterck et al. 2007; Takeda and 
Matsuoka 2008; Zhang 2008; Baginsky 2009; Varshney et al. 2009; Mochida and 
Shinozaki 2010; Jackson et al. 2011; Memon 2012), and this review will basically 
cover some new areas in population (breeding) genetics, and topics which require 
more detail explanation and are updated in crop plants. The excellent review by 
Mochida and Shinozaki (2010) has provided the framework for this review, and we 
intend to concentrate on more recent developments, and focus on bioinformation 
and implications in crop improvement; although the technology, instrumentation 
and molecular biology achieved in other plants must also be covered.

DNA Based Sequence Resources

Genome�Sequencing�Projects

Initially, the publication and accumulation of nucleotide sequences for model plants 
only provided fundamental information, however now these base sequences form 
the fundamentals of research in functional plant genetics in applied species such as 
crops and domestic animals. Furthermore, DNA sequence data continues to be cen-
tral in providing the genomic basis for accelerating molecular level understanding 
of basic biological mechanisms, and the application of such information to crops. 
In this section, we describe recently developed plant sequencing advancements. 
Species-specific nucleotide sequences are now providing information related to 
phenotypic characters, even when based on genome comparative analyses from the 
few model plants available (Cogburn et al. 2007; Flicek et al. 2008; Paterson 2008; 
Tanaka et al. 2008).

The genome sequence of Arabidopsis thaliana is now used as a model species 
in plant molecular biology mainly because of its small size, short generation time 
and high efficiency of transformation. The genome sequence of rice ( Oryza sativa), 
including japonica and indica (an important staple food and a model monocotyle-
don) has also been used for comparative studies. These two plants still provide the 
only model plant systems to date, however several genome sequencing projects 
involving other plants have been completed, and many others are in progress; these 
are detailed in Table 2.1. Listed below are six of the most important web-based sites 
for DNA based genome sequencing and annotation projects, their purpose and their 
URL are detailed in Table 2.2.

NCBI—BioProject

The NCBI site provides genome sequences and information for many plant spe-
cies (Viridiplantae) designed to facilitate comparative genomic studies amongst the 
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many other records of plants there. The current version consists of documentation 
in at least 115 different plants with partial sequences, and about 40,000 Expressed 
Sequence Tags (ESTs). It also contains separate sites and resources for other web 
based tools, data banks and other web servers, including agronomically important 
crops for food or fruit, medicinal plants, a number of green algae, pathogenic bac-
teria and fungi, viruses and animals. It will be important to become familiar and 
navigate through this very important site.

Phytozome

The site includes genome sequences and data sets for various crop species designed 
to facilitate comparative genomic studies amongst other green plants. The current 
version consists of 31 plant species wholly or partially sequenced, and is set-up into 
10 evolutionary significant nodes.

2 Bioinformatic Tools in Crop Improvement

Table 2.1   List of plant species in which partial or whole genomes have been sequenced. (Data 
extracted from the following internet sites: http://www.ncbi.nlm.nih.gov/genomes/PLANTS/
PlantList.html; http://www.arabidopsis.org/portals/genAnnotation/other_genomes/index.jsp; 
http://www.ildis.org/)
Division Class Species
Non Vascular Algae Chlamydomonas reinhardtii Chlorella variabilis Cocco-

myxa sp. Cyanidioschyzon merolae Ectocarpus siliculo-
sus Micromonas pusilla Micromonas sp. Ostreococcus 
lucimarinus Ostreococcus tauri Volvox carteri Zostera 
marina

Bryophytes Physcomitrella patens Selaginella moellendorffii
Vascular Dicotyledons Amborella trichopoda Aquilegia sp. Arabidopsis lyrata 

Arabidopsis thaliana Arachis hypogaea Asclepias syri-
aca Beta vulgaris Boechera holboellii Brassica napus 
Brassica napa Brassica rapa Caffea caneophora Cajanus 
cajan Cannabis sativa Capsella rubella Carica papaya 
Castanea mollissima Citrullus lanatus Citrus clementine 
Corchorus olitorius Cucumis sativus Eucalyptus grandis 
Fragaria vesca Glycine max Gossypium hirsutum Gos-
sypium raimonddi Hordeum vulgare Jatropha curcas 
Lactuca sativa Linum usitatissinun Lotus japonicas 
Malus domestica Manihot esculenta Medicago trun-
catula Mimulus guttatus Phaseolus vulgaris Pinus taeda 
Populus tremula Ricinus communis Theobroma cacao 
Populus nigra Populus trichocarpa Prunus avium Prunus 
persica Pyrus bretschneideri Rubus idaeus Salix purpure 
Solanum lycopersicum Solanum pimpinellifolium 
Solanum tuberosum Spirodella polyrhiza Thellungiella 
parvula Vitis vinifera

Monocotyledons Brachypodium distachyon Elaeis guineensis Miscanthus 
giganteus Musa acuminate malaccensis Oryza sativa 
Oryza glaberrima Panicum hallii Panicum virgatum 
Phoenix dactylifera Seratia italic Sorghum bicolor Triti-
cum aestivum Zea mays

http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html;
http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html;
http://www.arabidopsis.org/portals/genAnnotation/other_genomes/index.jsp; http://www.ildis.org/)
http://www.arabidopsis.org/portals/genAnnotation/other_genomes/index.jsp; http://www.ildis.org/)
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Gramene

An information resource established as a portal for grass species and grass genom-
ics; including genome sequence information. The current version provides data on 

Table 2.2   Integrative databases for DNA, Gene Sequences and Population Genetics analysis in 
plants
Database Name Plant Species/Purpose URL
Home—BioPro-

ject—NCBI
Multi-Purpose site; Over 1000 

genomes; plants, animals, bacte-
ria, fungi, virus

http://www.ncbi.nlm.nih.gov/sites/
entrez?db=bioproject

Phytozome v8.0: 
Details

Over 31 species of plants; some 
software

http://www.phytozome.net/Phyto-
zome_info.php

Gramene Over 29 species of mainly monocots http://www.gramene.org/
BLAST: Basic 

Local Align-
ment Search 
Tool

Multi-Purpose site for genome com-
parison; plants, animals, bacteria, 
fungi, virus

http://blast.ncbi.nlm.nih.gov/Blast.
cgi

GrainGenes Class 
Browser: 
Marker

Triticeae and Avena site; nearly 200 
species

http://wheat.pw.usda.gov/
cgi-bin/graingenes/browse.
cgi?class=marker

PlantGDB—
Resource Plant 
Comparative 
Genomics

Multi Plant site; 15 dicot, 7 monocot, 
3 other plant species

http://www.plantgdb.org/

TreeView Phylogenetic tree software http://taxonomy.zoology.gla.ac.uk/
rod/treeview.html

Rod Page Population genetics, gene diversity 
software

http://taxonomy.zoology.gla.ac.uk/
rod/rod.html

Software Softwere site; BLAST, sequence 
alignment

http://evolve.zoo.ox.ac.uk/Evolve/
Software.html

LALIGN Server Sequence alignment software http://www.ch.embnet.org/software/
LALIGN_form.html

PopGene Population genetics software http://www2.unil.ch/popgen/soft-
wares/fstat.htm

Arlequin 3.11 Population genetics program http://cmpg.unibe.ch/software/
arlequin3/

ANU Bot Zool Population genetics statistics, 
software

http://www.anu.edu.au/BoZo/
GenAlEx/genalex_down-
load_6_1.php

SOPH U AB Population genetics programs http://www.soph.uab.edu/ssg/
linkage/population

Francis Yeh PopGen software http://www.ualberta.ca/~fyeh/
IBD Gene and Distance relations statistics http://www.bio.sdsu.edu/pub/andy/

IBD.html
PRIMER-E Population software and gene diver-

sity statistics and indices
http://www.primer-e.com/

http://www.ncbi.nlm.nih.gov/sites/entrez?db=bioproject
http://www.ncbi.nlm.nih.gov/sites/entrez?db=bioproject
http://www.phytozome.net/Phytozome_info.php
http://www.phytozome.net/Phytozome_info.php
http://www.gramene.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://www.plantgdb.org/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/Evolve/Software.html
http://evolve.zoo.ox.ac.uk/Evolve/Software.html
http://www.ch.embnet.org/software/LALIGN_form.html
http://www.ch.embnet.org/software/LALIGN_form.html
http://www2.unil.ch/popgen/softwares/fstat.htm
http://www2.unil.ch/popgen/softwares/fstat.htm
http://cmpg.unibe.ch/software/arlequin3/
http://cmpg.unibe.ch/software/arlequin3/
http://www.anu.edu.au/BoZo/GenAlEx/genalex_download_6_1.php
http://www.anu.edu.au/BoZo/GenAlEx/genalex_download_6_1.php
http://www.anu.edu.au/BoZo/GenAlEx/genalex_download_6_1.php
http://www.soph.uab.edu/ssg/linkage/population
http://www.soph.uab.edu/ssg/linkage/population
http://www.ualberta.ca/~fyeh/
http://www.bio.sdsu.edu/pub/andy/IBD.html
http://www.bio.sdsu.edu/pub/andy/IBD.html
http://www.primer-e.com/
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24 plants; including 12 wild and domesticated rice genomes. An organelle data bank 
is also available from this site (Sect. 4.5).

NCBI—Entrez

Tracks over 800 whole genome projects from biological organisms, and the 115 
species of Viridiplantae; including agronomically important crops for food and 
fruit, medicine and a number of green algae. The Entrez database can be accessed 
through the home page of NCBI.

NCBI—BLAST

One of the most important sites and tools available, in determining base similari-
ties between nucleotide sequences in databanks. It also contains protein searches 
and queries. It includes searches for translated nucleotide sequences, conserved do-
mains, multiple alignment tools, evolutionary relationships, and can be applied to 
all organisms, or limited to specific plants.

GrainGenes and PlantGDB

GrainGenes is a specific database for Triticeae and Avena genes, markers, maps 
and germplasm. PlantGDB contains sequences and a search engine linked to NCIB 
BLAST for 15 Dicotyledon, 7 Monocotyledon and 3 other plant species. It contains 
more limited information than the NCBI site over most plants, but is especially use-
ful for agricultural grain species.

DNA�Sequencing�and�UltraHigh-Throughput

Genome sequence information aids researchers in identify genes and gene families, 
including the identification of coding or non-coding regions, regulatory genes, and 
repetitive sequences within the genome (e.g. simple sequence repeats—SSRs); all 
of these are important in molecular biology. This type of information has become 
primary material for the design of genome advancements, such as microarrays, till-
ing arrays or molecular and chromosome markers, and these methods are important 
in whole plant genomic sequencing (Sect. 2.3 below). Pyrosequencing, massive 
parallel DNA sequencing and single molecule sequencing are adaptations of exist-
ing methods, which have become available in recent years (Margulies et al. 2005; 
Ansorge 2009). These new technologies have provided researchers with new meth-
ods to addressed web information in an entirely different way, and ongoing innova-
tions in next-generation sequencing technology (Sect. 2.3), and the release of new 
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genome sequenced plants (listed in Table 2.1) is expected to accelerate the use of 
the DNA based web-information considerably in crop plants.

Whole�Genome�Sequencing

Information obtained from whole-genome sequencing in plants allows attempts 
at chromosome-scale genetic comparisons, thereby identifying conserved genetic 
areas, which can facilitate identification and documentation of similar genomic 
sequences in related plant species (Haas et al. 2004; De Bodt et al. 2005). Whole-
genome comparisons identifying chromosomal duplication of alleles among related 
species for example can provide comparative evolutionary histories and diversifi-
cation of species in ecology, taxonomy and plant breeding (Paterson et al. 2009; 
Schnable et al. 2009). Next-generation sequencing will allow identification of even 
more fundamental diversity and variation in genes amongst and between individu-
als, strains and/or populations. Single nucleotide polymorphisms (SNPs) have been 
central to these advancements, and SSR fragments have been shown to map con-
sistently in many non-sequenced plant species; a capability that is of immensely 
important in genetic research. A genome re-sequencing project to identify whole-
genome sequence variations in 1001 strains (accessions) of Arabidopsis is in prog-
ress. On completion this data will become an important resource for future genetics 
and population studies to identify alleles associated with phenotypes and diversity 
across entire plant species (http://1001genomes.org/) (Weigel and Mott 2009). In 
the same way a high-throughput method for genotyping recombinations in popu-
lations of rice, using whole-genome resequencing data generated by the Illumina 
Genome Analyzer has already been initiated (Huang et al. 2009).

Molecular�(DNA)�Markers

Identification and location of available molecular DNA markers have contributed 
significantly to marker-assisted studies and selection (MAS) in plant breeding, and 
in a wider range of research, including species identification and evolution. Genetic 
markers constructed to cover the complete genome may allow identification of in-
dividual genes associated with complex traits by QTL analysis, and the identifica-
tion of genetic diversity and induced variations (Feltus et al. 2004; Varshney et al. 
2005; Caicedo et al. 2007). Genome sequencing and large-scale EST databanks 
(Sect. 3) have become important for the construction of molecular markers, and 
a number of genome-wide rice DNA polymorphic markers have been constructed 
based on co-alignment between japonica and indica rice ESTs (Han and Xue 2003; 
Shen et al. 2004). Computer assisted EST-base single-nucleotide polymorphisms 
(SNPs) and/or EST-SNP markers for the purpose of identifying sequence-tagged 
sites (STS) has progressed for numerous species; including the crop plants of bar-
ley, wheat, maize, melon, Brassica, common bean, sunflower, potato, citrus and 
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grapevine (Mullins et al. 2006; Torada et al. 2006; Jaillon et al. 2007; Heesacker 
et al. 2008; Kota et al. 2008; Talon and Gmitter 2008; Blair et al. 2009; Deleu et al. 
2009; Kaur et al. 2009; Li et al. 2009).

Some molecular markers identified this way allow the indirect selection of in-
teresting genotypes (i.e. breeding lines in crops), and these cultivars constitute an 
essential tool for the development of marker-assisted selection (MAS) in plant 
breeding. The use of DNA markers (and indirectly EST markers from RNA) for 
direct selection offers greater potential gains in breeding for QTL and traits with 
low heritability, and these can be the most difficult to work with in crop breeding. 
However these low heritability traits are also amongst the most interesting and the 
most difficult to develop.

When a locus has many variants, or alleles, it is referred to as being polymor-
phic. Mutation(s) at a number of loci generate multiple alleles, most of which are 
eliminated from the population by genetic drift or breeding selection. Only a small 
number of alleles are incorporated into the population by chance or selection. Most 
polymorphisms can be genetically straightforward, with two alleles directly de-
termining two versions of the same protein (gene), however, some can be highly 
complex, with multiple, related genes in a complex system of metabolic differ-
ences. Crop breeders have known the complexity of multiple alleles for decades. 
However with the advent of molecular markers, genetic diversity and other forms 
of genetic structure in breeding populations is possible. Listed in Table 2.2 are the 
most important web-based sites for DNA markers and some of the population sta-
tistics programs and web resources commonly in use. Molecular markers fall into a 
number of types listed below, each having positive and negative features, and care-
ful consideration is required before they are adopted in any type of research (Hoang 
et al. 2009; De Filippis 2012).

Restriction Fragment Length Polymorphism (RFLP)

RFLP requires hydrolysis of probe DNA from samples. RFLP can provide high 
quality data but has severe restrictions on throughput because large amounts of 
DNA are required, and because it is not based on amplification of the target DNA 
via the polymerase chain reaction (PCR).

Random Amplified Polymorphic DNA (RAPD)

RAPD is a method based on PCR but uses arbitrary short primers (10 bases long) 
to identity plant DNA regions. No knowledge of the genome is needed, but by the 
same token markers can target many places on the genome. Results can be inconsis-
tent and only dominant genes can be identified.
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Simple Sequence Repeats (SSR)

SSR are high quality and consistent DNA markers, but they are the most expensive 
to develop. SSR markers require extensive band sequencing data for each marker 
developed, and often the markers are species and even cultivar specific. However 
they are molecular markers of choice in crop plants. 

Amplified Fragment Length Polymorphism (AFLP)

AFLP requires enzymatic degradation of DNA and careful fragment separation, 
where only a sub-fraction of the population genetic data is sampled by PCR. It can 
provide too much information at any time. It is more technically demanding and 
information can be difficult to interpret. It produces very good high quality data, 
which is suitable for high output sources and automation.

Single Nucleotide Polymorphism (SNP)

SNP relies on the fact that the vast majority of differences in eukaryotic organisms 
are surprising point mutations in their DNA. So there are a vast number of poly-
morphisms that are SNPs. The biggest advantage is automation and techniques that 
do not require electrophoresis to separate fragments. However it does require DNA 
sequencing which can be costly. SNPs are becoming more and more important as 
molecular markers for genome information and advancement in crop plants.

Expressed Sequence Tags (EST)

ESTs require cDNA synthesis from RNA, and therefore are the only markers list-
ed which are based on RNA. Preferences for this method should be for crop spe-
cies where there is already extensive sequencing, and part or full EST data present 
(Sect. 3).

NCBI—Plant Markers

A genetic marker web database that contains molecular markers such as SNP, SSR 
and conserved ortholog set cosmid (COS) markers and primers from various plant 
resources (Heesacker et al. 2008).

GrainGenes

Theweb site for Triticeae genomics, and provides considerable detail of DNA mark-
ers and chromosome linkage map data on wheat, barley, rye and oat (Carollo et al. 
2005).
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Gramene

A database for plant comparative genomics providing gene information and some 
genetic linkage maps for 29 monocotyledon (grass) species, using some of the more 
important and more commonly used genetic markers detailed above (Liang et al. 
2008; Ware 2007).

Genetic�Diversity�and�Population�Genetics�Analysis

Comprehensive discussion of the genetic and statistical analyses employed in popu-
lation genetics is beyond the scope of this review, but I refer you to the following 
books and reviews (Clark and Gorley 2001; Conte et al. 2008; Wall et al. 2008; 
Barnholtz-Sloan and Tiwari 2009; Pu et al. 2009). Population gene family data are 
usually produced by computational procedures including a first step that conducts 
an all-against-all sequence similarity analysis or matrix, and then a second step in 
building clusters of inter- and intra- population analysis parameters, by methods 
such as Markov Clustering (MCL), multi dimensional scaling (MDS), and principle 
component analysis (PPO); using programs like PRIMER and Arlequin (Table 2.1). 
Advanced software statistics (GenAlEx—Table 2.2) can yield indices and informa-
tion that are useful for further statistical analysis and phylogenetic studies using 
Analysis of Co-Variance (ANCOVA), Analysis of Similarity and Analysis of Vari-
ance (ANOVA). Listed in Table 2.2 are a number of important web-based sites for 
population genetics analysis and computation; and for ease their purpose and URL 
are also presented there.

RNA Variation Resources

EST�and�cDNA

Expressed Sequence Tag (ESTs) are determined by partial sequencing of randomly 
picked gene transcripts that have originated from isolated RNA and converted to 
cDNA (Adams et al. 1993). Since cDNA and EST collections can be easily gener-
ated regardless of chromosome and gene complexity, this method has been applied 
not only to model plants, but also to a number of crop species with large genomes; 
due mainly to polyploidy and/or to the number of repetitive sequences. Because 
EST data collected from cDNA libraries of an organism consists of redundant se-
quences from the same gene locus or RNA target, it is often necessary to perform 
EST grouping by metabolic and/or functional units. Then these groups are further 
consolidated into alignment sequences for each transcript before further analysis 
(Ewing et al. 1998; Huang and Madan 1999; Masoudi-Nejad et al. 2006). The 
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comprehensive and rapid accumulation of cDNA clones, together with mass data 
sets of their sequence tags have become important resources for functional genom-
ics (Boguski et al. 1993). ESTs derived from tissues in a range of developmental 
stages or under various kinds of stress could significantly facilitate discovery of 
new genes and their function. For example, large-scale expression analysis, genome 
comparative DNA sequences and the design of expressed gene-specific molecular 
markers and probes for microarrays have only been possible with extensive EST 
data (Zhang et al. 2004; Kawaura et al. 2006; Mochida et al. 2006). Listed below 
are a number of important web-based sites for RNA analysis and ESTs; and for ease 
their purpose and URL are detailed in Table 2.3.

TriMEDB

The Triticeae Mapped EST database (TriMEDB) provides information regarding 
mapped cDNA motifs, which are related to barley and wheat sequences (Mochida 
et al. 2008); a similar database, TriFLDB has much the same information (Mochida 
et al. 2009b).

NCBI—dbEST (Expressed Sequence Tag)

There are over 63 million ESTs in the NCBI dbEST databank, a most important 
public domain EST database that includes a number of crop plant species (Boguski 
et al. 1993). The data sets obtained from representative transcripts can be used as 
unified transcript and sequence data, in line with other web sites below (Lee et al. 
2005; Close et al. 2007; Duvick et al. 2008).

NCBI—UniGene

Identifies transcripts from the same locus as expressed in different types of tissue, 
age or health status. Most importantly it reports not only on ESTs, but also on re-
lated proteins and clone resources.

TIGR

Plant transcript assemblies and gene indices web site. The databank relies on EST/
cDNA sequences linked to GenBank from NCBI. New releases and new plant data-
bases are documented regularly.
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Table 2.3   Integrative databases for RNA and Expressed Sequence Tag (EST) analysis in plants
Database Name Plant Species/Purpose Uniform Resource Locator 

(URL)
TriMEDB:Triticeae 

Mapped EST DataBase 
ver.2.0

Triticeae EST database; over 
6000 sequences

http://trimedb.psc.riken.jp/
index.pl

NCBI dbEST EST of the extensive databank 
from NCBI; multi species

http://www.ncbi.nlm.nih.gov/
dbEST/

Home—UniGene—NCBI Unigene (EST) comparison site 
from NCBI; multi species

http://www.ncbi.nlm.nih.gov/
unigene

TIGR Plant Transcript 
Assemblies

TA and EST of many plants, 
including conifers, algae, 
monocots and dicots

http://plantta.jcvi.org/

DFCI—Plant Gene Indices Plant gene indices (similar to 
TA) of 60 important agricul-
tural plants

http://compbio.dfci.harvard.
edu/tgi/plant.html

HarvEST Home Page EST database of 10 of the most 
important agricultural/horti-
cultural plants

http://harvest.ucr.edu/

HARVEST-BLAST.ORG HarvEST Blast search software 
from NCBI

http://www.harvest-blast.org/

Plant MicroRNA Database Plant micro RNA website and 
database of some commer-
cial plants

http://bioinformatics.cau.edu.
cn/PMRD/

Diversity Arrays Technol-
ogy Pty Ltd (DArT 
P/L) | Diversity Arrays 
Technology

Analysis of molecular diversity; 
SNP, SSR, AFLP, RFLP, 
methylation

http://www.diversityarrays.com/
index.html

Home | Affymetrix GeneChip mi RNA arrays 
information—Affymetrix

http://www.affymetrix.com/
estore/

miRNA Array | Noncoding 
RNA | Affymetrix

GeneChip mi RNA information 
and species

http://www.affymetrix.com/
estore/browse/products.
jsp?productId=131473#1_1

GeneChip Medicago 
Genome Array | 
Affymetrix

Medicago GeneChip array and 
its symbiont

http://www.affymetrix.
com/browse/products.
jsp?productId=131472#1_1

GoldenGate Genotyping 
Assay—A flexible, pre-
optimized assay

Site for Golden Gate genotype 
assay

http://www.illumina.com/tech-
nology/goldengate_genotyp-
ing_assay.ilmn

Illumina—Assay 
Technology

Golden Gate genotype technol-
ogy information

http://www.illumina.com/com-
pany/assay_technology.ilmn

Illumina Genotyping High-throughput SNP 
genotyping—Illumina

http://dnatech.genomecenter.
ucdavis.edu/illumina.html

CLC Biology Multi-purpose gene work 
bench; with downloads

http://www.clcbio.com/index.
php?id=354

http://trimedb.psc.riken.jp/index.pl
http://trimedb.psc.riken.jp/index.pl
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/unigene
http://www.ncbi.nlm.nih.gov/unigene
http://plantta.jcvi.org/
http://compbio.dfci.harvard.edu/tgi/plant.html
http://compbio.dfci.harvard.edu/tgi/plant.html
http://harvest.ucr.edu/
http://www.harvest-blast.org/
http://bioinformatics.cau.edu.cn/PMRD/
http://bioinformatics.cau.edu.cn/PMRD/
http://www.diversityarrays.com/index.html
http://www.diversityarrays.com/index.html
http://www.affymetrix.com/estore/
http://www.affymetrix.com/estore/
http://www.affymetrix.com/estore/browse/products.jsp?productId=131473#1_1
http://www.affymetrix.com/estore/browse/products.jsp?productId=131473#1_1
http://www.affymetrix.com/estore/browse/products.jsp?productId=131473#1_1
http://www.affymetrix.com/browse/products.jsp?productId=131472#1_1
http://www.affymetrix.com/browse/products.jsp?productId=131472#1_1
http://www.affymetrix.com/browse/products.jsp?productId=131472#1_1
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn
http://www.illumina.com/technology/goldengate_genotyping_assay.ilmn
http://www.illumina.com/company/assay_technology.ilmn
http://www.illumina.com/company/assay_technology.ilmn
http://dnatech.genomecenter.ucdavis.edu/illumina.html
http://dnatech.genomecenter.ucdavis.edu/illumina.html
http://www.clcbio.com/index.php?id=354
http://www.clcbio.com/index.php?id=354
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Plant Gene Index

The web site documents a number of animal, plant, protist and fungi species. The 
site contains a number of web tools, and contains cDNA and genechip data from a 
number of crop plants.

HarvEST

HarvEST software is available for 10 important agricultural crops. It originated 
as an EST database with software linked to gene function, microarray design and 
SNP identification. It is also available as a HarvEST BLAST search engine from an 
alternative site present on the homepage.

cDNA�(Full�Length)

Partial cDNAs are useful for rapidly documenting and cataloguing targeted genes, 
but they are not used or suitable for further study of gene function. This is because 
the most popular method for preparing a cDNA library does not provide the full-
length cDNA that includes the capped site sequences. The biotinylated cap trap 
method using a thermostabilised reverse transcriptase is one method for construct-
ing full-length cDNA-enriched libraries suitable for studies of gene function; and 
these have become invaluable for life science projects (Maeda et al. 2006; Tanaka 
et al. 2008; Yamasaki et al. 2008a). The sequences derived from full-length cDNAs 
can also help in identifying transcribed regions in completed or draft genomes in 
other plants. In Arabidopsis and rice, full-length cDNA sequences have been used 
to identify genomic structural features, such as transcription start sites (TSSs) and 
transcriptional genes and variant alleles in metabolic activity (Iida et al. 2004; Itoh 
et al. 2007; Yamamoto et al. 2009). In species for which we have draft genomes, 
such as Physcomitrella, soybean and poplar, full-length cDNA clones have been 
used to help consolidate genomic (gene) and chromosome structure and function; 
and this should also greatly contribute to discovery of new genetic information 
(Nanjo et al. 2007; Ralph et al. 2008a; Umezawa et al. 2008).

Full-length cDNA libraries have contributed to functional analysis using over-
expressors in reverse genetics. The full-length cDNA overexpressor (FOX) gene 
hunting system, which uses full-length cDNA from transgenic plants as overex-
pressors, has introduced another approach to high-throughput analysis of functional 
genes associated with phenotypic traits (Ichikawa et al. 2006; Fujita et al. 2007; 
Kondou et al. 2009). Full-length enriched cDNA libraries have been constructed 
for non-sequenced crop or forestry species, such as wheat ( Triticum aestivum), bar-
ley ( Hordeum vulgare), cassava ( Manihot esculenta), Japanese cedar ( Cryptomeria 
japonica), Sitka spruce ( Picea sitchensis) and Lotus (Sato et al. 2008; Kawaura 
et al. 2009; Sato et al. 2009); as well as for plant species showing specific charac-
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teristics such as salt tolerance in salt cress ( Thellungiella halophila) and selenium 
accumulation in a number of species (De Filippis 2010). Full-length cDNA libraries 
serve as primary sequence resources for designing microarray probes, and as cloned 
resources for genetic engineering to improve crop efficiency (Sakurai et al. 2007; 
Futamura et al. 2008; Ralph et al. 2008b; Taji et al. 2008). Because of the important 
function of full-length cDNA resources in ‘omics’ data and information, it is es-
sential to establish relevant information resources that provide gateways to these 
sites, and to integrate this to related data sets derived from other ‘omics’ field. A 
comprehensive computational tool to achieve this total integration is the CLC Biol-
ogy workbench system (Table 2.3).

small�RNA�(sRNA)�Information

In plants, sRNAs, which can include microRNAs (miRNAs), short interfering 
RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs) play important roles in 
epigenetic processes, and may control gene activities involved in plant develop-
ment and homeostasis (Ruiz-Ferrer and Voinnet 2009). These RNA molecules are 
important regulatory resources that should be detailed, and their expression anal-
ysed using the most recent next-generational genomic methods (Nobuta et al. 2007; 
Chellappan and Jin 2009). In maize, sRNAs in the wild type and in the isogenic 
mop1-1 loss-of-function mutant were analysed by deep sequencing using Illumina’s 
sequencing-by-synthesis (SBS) technology to characterise possible regulatory roles 
for maize sRNA (Nobuta et al. 2008). In poplar, expressed sRNAs from leaves and 
vegetative buds were also studied using high throughput Roche 454 pyrosequenc-
ing, and genes in similar families of miRNA identified, including novel new genes 
(Barakat et al. 2007). Nucleotide sequencing of Brachypodium sRNAs have also 
been performed, resulting in the identification of miRNAs involved in low tem-
perature stress tolerance (Zhang et al. 2009a). The plant miRNA database (PMRD) 
is a useful information resource on plant miRNA, and is available on the web site 
of PMRD (Zhang et al. 2009b). The Affymetrix GeneChip miRNA Arrays web site 
is also important for such studied. Listed in Table 2.3 are important web-based sites 
and URL for databanks often used in regulatory plant micro RNA research.

Variation�Analysis�Platforms

High-throughput polymorphic analyses are important for studying genome-wide ge-
notyping using a hybridization-based SNP molecular marker methods, which have 
been used to analyse Arabidopsis ecotypes and rice strains, and the data identified 
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variation patterns for each species. The Arabidopsis 1,001 project and genome-wide 
variation study is one of the few available information web sites so far contain-
ing this information. Therefore, the demand is rapidly increasing for high through-
put and cost-effective platforms for comprehensive variation analysis studies (also 
called ‘variome’ analysis). Complete genome resequencing information are already 
being realized as a direct solution to ‘variome’ analysis in species whose reference 
genome sequence data are already available; the URL list for the web sites used for 
variation analysis are detailed below and URL listed in Table 2.3.

DArT P/L

Diversity Array Technology (DArT) is a high throughput genotyping system that 
was developed based on microarrays (Jaccoud et al. 2001; Wenzl et al. 2007). In 
various crop species such as wheat, barley and sorghum, DArT markers have been 
used with other conventional molecular markers to construct dense genetic maps 
and/or to perform genetic association studies (Crossa et al. 2007; Peleg et al. 2008; 
Mace et al. 2009). This genotype technology web site describes DNA variations us-
ing SNP, as well as other molecular markers; and also described is information on 
DNA methylation.

Gene Chip Array

In barley and wheat, Affymetrix GeneChip Arrays have been used to show nucle-
otide polymorphisms based on the differential hybridization of GeneChip probes 
(Rostoks et al. 2005; Bernardo et al. 2009). The Affimetrix site includes a spe-
cific Medicago chip and a miRNA site. The Illumina GoldenGate Assay allows 
the simultaneous analysis of up to 1,536 SNPs in 96 samples, and has been used to 
analyse genotypes of segregating populations in order to construct genetic maps of 
SNPs in crops such as barley, wheat and soybean (Hyten et al. 2008; Akhunov et al. 
2009; Close et al. 2009).

SNP Genotyping

The University of California, Davis site contains a number of options for high 
throughput genotyping. It operates a commercial division where SNP genotyping 
can be performed using Illumina technology and GoldenGate Assay.

Analysis of Variation

Comprehensive gene family data sets are usually produced by computer programs, 
including a sequence similarity search, and then a step for building clusters of EST 
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families by methods such as Markov Clustering (MCL), multi dimensional scaling 
(MDS) and principle component analysis (PPO) (Table 2.1). Advanced statistics 
can yield data sets that are useful for further variation analysis using gene mark-
ers, as well as phylogenetic studies, using Analysis of Co-Variance and Phylogeny 
programs (see also Sect. 2.5). Listed in Table 2.1 are a number of web-based sites 
for genetic variation analysis and computation; and for ease their purpose and URL 
are also detailed there.

Transcriptome�Resources

Comprehensive, high-throughput analysis of gene expression, also called ‘transcrip-
tome’ analysis, is a good approach to screen targeted genes, predict gene function 
and discover cis-regulatory motifs. Hybridization-based methods, such as that used 
in microarrays and GeneChips have been well established now for acquiring large-
scale gene expression profiles from various species. The recent rapid accumulation 
of data containing large-scale gene expression profiles, and comparison of this data 
to large repositories in genetic databanks have provided large amounts of informa-
tion now available in the public domain. This public data is an efficient and valuable 
resource for many secondary uses, such as co-expression of genes and comparative 
genomic studies. Furthermore, as next-generation DNA sequencing applications 
and deep sequencing of short fragments of expressed RNAs and sRNAs become 
common, they become important tools to use in both genome-sequenced and non-
sequenced species (Harbers and Carninci 2005; de Hoon and Hayashizaki 2008). 
Listed below are the most important web-based sites for microchip and microarray 
analysis; their purposes and their URL are detailed in Table 2.4.

Sequence Tag Based Transcriptomics

Documentation of large-scale sequence ESTs from cDNA libraries was an early 
approach in developing transcriptome data. The alternative is to use ESTs that are 
randomly sequenced in an unbiased cDNA library, which are classified into clusters 
of transcriptional units using sequence-clustering and/or other assembly methods. 
The abundance of each transcript unit expressed in each tissue is then estimated by 
counting the number of ESTs with identifiers for each cDNA library and/or each 
sequence cluster. The same methodological principles have been applied in hu-
man and mouse, and a form of ‘organism map’ to determine the transcriptome in 
various tissues and organs has been realised (Hishiki et al. 2000; Kawamoto et al. 
2000; Ogasawara et al. 2006). There are no impediments in similar methods and 
approaches being use in plant and crop transcriptomics.
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UniGene

The digital differential display (DDD) tool, a component of the NCBI’s UniGene 
database has been applied in large-scale cDNA projects for various species, includ-
ing crop plants (Mochida et al. 2003; Fei et al. 2004; Sterky et al. 2004; Zhang et al. 
2004). Although this approach, coupled with cDNA clone resources has facilitated 
gene discovery and expression profiling, various disadvantages including high cost 
and limited resolution due to the need for large-scale sequencing are still present.

L. F. De Filippis

Table 2.4   Integrative databases for Microarray and Microchip technology and analysis in plants
Database Name Plant Species/Purpose Uniform Resource Locator 

(URL)
Serial Analysis of Gene 

Expression
Serial analysis of gene expres-

sion (SAGE) information 
page

http://www.sagenet.org/

Serial Analysis of Gene 
Expression-SAGE™ | 
Life Technologies

SAGE differential expression 
of genes

http://www.invitrogen.com/
site/us/en/home/Products-
and-Services/Applications/
Sequencing/Capillary-
Electrophoresis-Sequencing/
SAGE-Sequencing.html

Microarray, SAGE and 
other gene expression 
databases | HSLS

Microarray, SAGE and gene 
expression data bases; 
multi-species

http://www.hsls.pitt.edu/obrc/
index.php?page=gene_
expression_databases

Serial Analysis of Gene 
Expression

Applications for SAGE; multi 
purpose

http://www.sagenet.org/find-
ings/index.html

GermSAGE | Home Germ cell line SAGE; mainly 
animal species

http://germsage.nichd.nih.gov/
germsage/home.html

Bioinformatics resources Ultimate web site for SAGE; 
applications, information, 
books etc

http://www.bioinformatics.fr/
resources.php?tag=sage

MAGE—Workgroups—
FGED

Microarray Analysis of Gene 
Expression; MAGE site

http://www.mged.org/Work-
groups/MAGE/mage.html

CEA Direction des sciences 
du vivant—iBiTec-S: 
Adaptation du SAGE 
pour micro-quantités

SADE; SAGE adaptation 
for downsized extracts 
(microquantities)

http://www-dsv.cea.fr/dsv/
instituts/institut-de-biol-
ogie-et-de-technologies-
de-saclay-ibitec-s/unites/
service-de-biologie-
integrative-et-genetique-
moleculaire-sbigem/
laboratoire-de-physio-
genomique-lpg/adaptation-
du-sage-pour-micro-quan-
tites

Next-Gen Sequence 
Databases

Next-generation sequences 
databases; some commercial 
crops

http://mpss.udel.edu/

PlantPromoterDB Genome sequences and regula-
tory elements for Rice and 
Arabidopsis

http://ppdb.agr.gifu-u.ac.jp/
ppdb/cgi-bin/index.cgi

http://www.sagenet.org/
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing/Capillary-Electrophoresis-Sequencing/SAGE-Sequencing.html
http://www.hsls.pitt.edu/obrc/index.php?page=gene_expression_databases
http://www.hsls.pitt.edu/obrc/index.php?page=gene_expression_databases
http://www.hsls.pitt.edu/obrc/index.php?page=gene_expression_databases
http://www.sagenet.org/findings/index.html
http://www.sagenet.org/findings/index.html
http://germsage.nichd.nih.gov/germsage/home.html
http://germsage.nichd.nih.gov/germsage/home.html
http://www.bioinformatics.fr/resources.php?tag=sage
http://www.bioinformatics.fr/resources.php?tag=sage
http://www.mged.org/Workgroups/MAGE/mage.html
http://www.mged.org/Workgroups/MAGE/mage.html
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://www-dsv.cea.fr/dsv/instituts/institut-de-biologie-et-de-technologies-de-saclay-ibitec-s/unites/service-de-biologie-integrative-et-genetique-moleculaire-sbigem/laboratoire-de-physio-genomique-lpg/adaptation-du-sage-pour-micro-quantites
http://mpss.udel.edu/
http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi
http://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi
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SAGE

Serial analysis of gene expression (SAGE) is a method based on sequencing of 
short-read cDNA tags. SAGE allows the identification of a large number of tran-
scripts present in tissues, and enables quantitative comparison of transcriptomes 
(Velculescu et al. 1995). Sequencing of selected clones from the SAGE library al-
lows the efficient collection of transcript sequencetags (TSS). Complete genome 
sequencing or large-scale ESTs data are required, and because few plants fall into 
this category, very few crop plants have approached the genetics of crop improve-
ment in this manner.

SAGE Derivatives

Some derivatives of the original SAGE protocol (MAGE, SADE, microSAGE, 
miniSAGE, longSAGE, superSAGE, deepSAGE, GermSAGE, 5′ SAGE) have 
been developed to improve the utility of SAGE (Hashimoto et al. 2004; Anisimov 
2008). For example, superSAGE is an improved version of SAGE, and this method 
has been applied to quantitative gene expression of both rice infected host cells and 
their pathogen (Matsumura et al. 2003). The development of superSAGE tags has 
also been used to design probes directly for oligonucleotide based microarrays in 
plants (Matsumura et al. 2008).

Parallel Signature Sequencing (MPSS)

Massive parallel signature sequencing (MPSS) is uses as an alternate method to 
quantify gene expression levels, and generate short sequence tags using a micro-
bead array (Brenner et al. 2000). The database of MPSS includes information from 
Arabidopsis, rice, grape, soybean, Medicago, maize, Brachypodium and Magna-
porthe grisea (the rice blast fungus) (Nakano et al. 2006).

MPSS 2 and Plus (Arabidopsis profiling)

A new MPSS method has been used to perform genome-scale expression profiling 
of sRNAs in Arabidopsis and rice (Lu et al. 2006; Nobuta et al. 2007). The MPSS2 
method has recently been used for quantitative analysis of the 5′ end of transcripts, 
which are then coupled to the cap-trap method for full-length cDNA cloning; it is 
reported to be applicable to a number of different plants.
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High Density Mapping of TSS

The method has been applied to perform high-density mapping of TSS in Arabidop-
sis, and identify genome-scale presence of plant promoters (Yamamoto et al. 2009). 
The data set of Arabidopsis CT-MPSS tags is accessible from the PPDB site, a plant 
promoter database that provides promoter information and motifs for Arabidopsis 
and rice (Yamamoto and Obokata 2008).

Hybridisation-Based�Platforms

DNA microarrays had their beginning with Brown’s research at Stanford University 
in 1995 (Schena et al. 1995), and since then, microarray and DNA chip-related tech-
nologies have advanced rapidly; and their application has expanded to a wide vari-
ety of life science disciplines. DNA microarray or GeneChip analysis are designed 
to acquire comprehensive data of the molecular abundance of each molecule in a 
given sample, based on its simultaneous hybridization with a large population of 
synthetic (DNA or cDNA) oligonucleotide species; usually immobilized on a glass 
slide or on a silicon chip. With the recent and rapid increase in the number of se-
quenced plant species, the availability of DNA microarrays have also increased for 
transcriptome analysis. For example, Seki and co-workers designed a custom DNA 
microarray that uses 7,000 full-length cDNA clones of Arabidopsis as probes, and 
then successfully screened genes in response to abiotic stresses using a two-colour 
method (Seki et al. 2002a). With the recent increase in commercially available DNA 
microarrays, laboratories are able to use a particular DNA microarray design to 
obtain transcriptome data from many experiments, and in so doing accumulate com-
prehensive information on organism-specific transcriptional data. Gene expression 
analysis and gene chip technology, URL web sites and the use of such technology 
are detailed in Table 2.5.

DNA Microarray Types

DNA microarrays can be classified into two types: (i) the ‘spotting’ type, which 
was developed at Stanford University; and (ii) the ‘on-chip synthesis’ type based on 
manufactured probes by a number of molecular biology companies. The spotting 
type was commonly used during the early years of transcriptome research. This 
method entailed preparing DNA microarrays by spotting a cDNA solution onto a 
glass slide, but spot microarrays are being replaced quickly by on-chip synthesis 
type.
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Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

Roche NimbleGen | Array 
Synthesis

Roche platform; information on 
MAS digital technology

http://www.nimblegen.
com/company/technol-
ogy/index.html

Roche NimbleGen Information website for biochip 
technology

http://www.biochipnet.
com/node/146

Gene Expression Omnibus 
(GEO) Main page

GEO navigation and browser 
software—NCBI

http://www.ncbi.nlm.nih.
gov/geo/

AtGenExpress—Weigel 
World

Microarray data and web informa-
tion for plant species

http://www.weigel-
world.org/resources/
microarray/
AtGenExpress/

TAIR—Gene Expression Micrarray data and gene expression, 
and stress factors in Arabidopsis

http://arabidopsis.org/
portals/expression/
microarray/ATGenEx-
press.jsp

AtGenExpress JPN (Arabi-
dopsis Gene Expression 
profile data base) | Data-
base Registry | RIKEN

Arabidopsis gene expression profile 
data base from RIKEN

https://database.riken.
jp/sw/en/AtGenEx-
press_JPN_(Arabidop-
sis_Gene_Expression_
profile_data_base)/
crib151s2rib151s85i/

ATTED-II: Home Site for the co-regulation gene func-
tions; mainly in Arabidopsis and 
rice

http://atted.jp/

GENEVESTIGATOR—The 
gene expression search 
engine

Site for the search engine—Gene-
investigator; biomedical, plant 
biology

https://www.genevestiga-
tor.com/gv/

The BAR and other Data 
Analysis Tools for Plant 
Biology

Bio Array resource for plant biology; 
number of crop plants

http://bar.utoronto.ca/
welcome.htm

http://www.bar.utoronto.
ca/3DDI/

3D data display initiative for large 
scale dataset display

http://3ddi.org/

http://www.arexdb.org/ Arabidopsis gene expression data 
base web site

http://www.arexdb.org/

Yale Rice Project Whole genome transcription profile 
for rice cells, tissues

http://bioinformatics.med.
yale.edu/riceatlas/

Tiling Array, Tiling primers 
& probes, design prim-
ers for tiling, amplify 
whole genome tiling 
arrays

Design whole genome primers for 
use in array design, including 
DNA methylation

http://www.premierbiosoft.
com/dnamicroarray/til-
ing_array.html

Tiling Arrays, Library File 
Updates | Affymetrix

GeneChip tilling array, software and 
analysis

http://www.affymetrix.
com/support/technical/
libraryfileupdatesmain.
affx

Arabidopsis thaliana—Til-
ing Array Express—
Weigel World

Arabidopsis tilling array express; 
genome browser and used for 
visual cross platform comparison

http://www.weigel-
world.org/resources/
microarray/at-tax

Table 2.5   Integrative databases for Gene Expression analysis and technology in plants
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On-Chip Transcriptome Research

The on-chip in situ oligo synthesis-based method is a light-directed chemical pro-
cess that combines solid-phase synthesis with photolithographic techniques. This 
method was initially employed with the Affymetrix-manufactured GeneChip Array 
system. In the Affymetrix GeneChip system, a known gene or potentially expressed 
sequence is represented on the chip by up to 20 unique oligonucleotide probes. 
The ‘On-Chip’ technology is fast becoming more readily available and more cost 
effective.

High Density DNA Array

Roche NimbleGen and Agilent Technology offer platforms to manufacture high-
density DNA arrays based on Roche’s patented Maskless Array Synthesizer (MAS) 
technology, and on a non-contact industrial inkjet printing process, both of which 
are also used for in situ oligonucleotide synthesis.

NCBI Gene Expression Omnibus (GEO)

NCBI’s Gene Expression Omnibus (GEO) and the European Bioinformatics Insti-
tute (EBI)’s ArrayExpress are important web sites serving as primary archives of 
transcriptome data in the public domain (Parkinson et al. 2007; Barrett et al. 2009). 

L. F. De Filippis

Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

Publication Detail Arabidopsis whole genome tilling 
array and expression and tran-
script identification

http://www.arabidopsis.
org/servlets/TairObj
ect?type=publication
&id=501727375

ChIP-Seq On line analysis tool; cross-referenc-
ing numerous datasets and gene 
expression profiles

http://ccg.vital-it.ch/
chipseq/

MACS—Model-based 
Analysis for ChIP-Seq

Model based analysis for ChIP Seq 
datasets and software

http://liulab.dfci.harvard.
edu/MACS/

SOLiD® ChIP-Seq | Life 
Technologies

Chromatin immunoprecipitation 
(ChIP) sequencing kits protocols

http://www.invitrogen.
com/site/us/en/
home/Products-and-
Services/Applications/
epigenetics-noncoding-
rna-research/Chro-
matin-Remodeling/
Chromatin-Immuno-
precipitation-ChIP/
SOLiD-ChIP-Seq-.html

Chromatin Immunopre-
cipitation sequencing 
(ChIP-Seq)—Data

ChIP sequencing technology; chro-
matin immunoprecipitation

http://www.illumina.com/
technology/chip_seq_
assay.ilmn

Table 2.5   (continued)
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There are cross-linkages on this web site to several focused databases that provide 
calculated transcriptome data with user-friendly interfaces.

AtGenExpress

AtGenExpress is a multinational project designed to uncover the transcriptome of 
A. thaliana. The data sets collected in AtGenExpress have been one of the most 
comprehensive resources for the Arabidopsis transcriptome described to date 
(Kilian et al. 2007; Goda et al. 2008).

ATTED II

ATTED II is a database that provides co-expression analysis calculated from pub-
licly available Arabidopsis ATH1 GeneChip data (Obayashi et al. 2007, 2009). Co-
expression analysis generated from collected transcriptomes has aided gene expres-
sion studies in plants.

GeneInvestigator

Genevestigator, which is a reference expression database and meta-analysis system, 
also provides summary information from hundreds of microarray experiments on 
various organisms, including Arabidopsis, barley and soybean, with an easyinter-
face forresults (Zimmermann et al. 2004).

Electronic Fluorescence Pictograph (eFP)

The electronic fluorescent pictograph (eFP) browser provides gene expression 
patterns collected from Arabidopsis, poplar, Medicago, rice and barley via a user-
friendly program (Winter et al. 2007). The Bio-Array resources on this site, how-
ever, directs most of the information to Arabidopsis, and the 3DDI site provides 
three dimensional display data designed to generate extendible models for plants.

AREX

The Arabidopsis Gene Expression Database AREX is a web site that provides data 
of high-resolution gene expression patterns of root tissues in Arabidopsis (Birn-
baum et al. 2003; Brady et al. 2007).
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RICEATLAS

The RICEATLAS is a database housing rice transcriptome data covering various 
types of tissues using laser capture microdissection (Jiao et al. 2009). It is housed 
within the search engine of the Yale Virtual Centre for Cellular Expression Profiling 
of Rice web address, and in the TIGR site.

Tilling Arrays

Tilling arrays are high-density oligonucleotide probes covering the genome in a 
particular organism, and therefore are a platform for analysing expressed regions 
throughout the genome. The method is effective in discovering novel genes and elu-
cidating their structure. For example, Seki and co-workers performed transcriptome 
analysis in Arabidopsis under abiotic stress using whole-genome tilling array and 
described a number of antisense transcripts induced by stress (Matsui et al. 2008).

At-TAX

Arabidopsis thaliana Tilling Array Express (At-TAX) is a whole-genome tilling 
array resource for developmental expression analysis and transcript identification 
(Laubinger et al. 2008; Zeller et al. 2009). The utility of tilling arrays has been ex-
tended recently by coupling this platform with an immunoprecipitation method (see 
Sects. 3.6.13 and 3.6.14 below).

MADS

The MADS domain uses a chromatin immunoprecipitation (ChIP) method that has 
been used to identify transcriptional regulator sites for somatic embryogenesis, 
when coupled with the Affymetrix tilling array for Arabidopsis. This rather complex 
method to use and master, nevertheless found approximately 2,000 sites of regula-
tion (Zheng et al. 2009).

ChIP–Seq

A methylcytosine immunoprecipitation (mCIP) method, in combination with Ara-
bidopsis tilling array, can map comprehensive DNA methylation sites; and is often 
referred to as ‘methylome’ data (Zhang et al. 2006). Sequencing of co-precipitated 
DNA and a protein using next generation sequencing, ‘ChIP-seq’, has also become 
an important experimental approach (Park 2009). MACS and SOLiD ChIP-Seq 
web sites contain information and commercial kits and alternative analysis using 
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the ChIP-Seq platform. A chromatin ChIP-Seq assay is also available from Illumina 
using the chromatin immunoprecipitation approach (Farrer et al. 2009).

Protein (Proteomics)

Genome sequencing projects for several organisms have been completed, but pro-
teome analysis, which is the detailed investigation of the function, modification 
network and 3D structure of proteins, has gained increase attention (De Filippis and 
Magel 2012; Memon 2012). Large-scale proteome information can be an important 
resource for a better understanding of protein function in cellular systems, which 
are controlled primarily by polypeptides and proteins. Protein dynamic properties 
reflect cell and organ differences in terms of growth, development and response to 
biotic and abiotic stress. The primary objective of plant proteomics has tradition-
ally been to simply identify all (or most of) the proteins in cells, organs and tissues. 
Recent rapid technical advances in proteomics (e.g. protein separation and purifica-
tion, advances in mass spectrometry and methodological development in protein 
quantification and identification) have lead scientists into the second stage of pro-
teomics, including quantitative proteomics, subcellular proteomics, modifications 
of proteins and protein-metabolite interactions (Rose et al. 2004; Rossignol et al. 
2006; Baginsky 2009; Yates et al. 2009).

Resources�in�Proteomics

The different Web-accessible plant proteome-related databases are summarized 
on the proteomics subcommittee home web page of the Multinational Arabidopsis 
Steering Committee (MASCP); under the heading of ‘Proteomic Databases and Re-
sources’. A summary of the information in various basic and advance proteomics 
sites and databases is given in Table 2.6, including their relevant URL.

Proteome�Profiling

A typical experimental research pathway for protein profiling can be summa-
rized as; (i) sample preparation of impure plant protein mixtures, (ii) separation 
and purification of the proteins, (iii) detection of proteins and/or polypeptides, and 
(iv) identification of fractionated or ionised proteins and polypeptides. Various 
technical advances for each step of the process above have greatly increased the 
overall performance, efficiency and cost effectiveness of plant proteomics research 
(Rose et al. 2004; Jorrin-Novo et al. 2009; Uauy et al. 2009).
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Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

Matrix 
Science—Mascot

Home page for peptide mass fin-
gerprint database, searches and 
peptide identification

http://www.matrixscience.com/
search_form_select.html

Entrez Databases Entrez database and tools; a multi-
purpose proteomics site

http://www.ncbi.nlm.nih.gov/
About/tools/restable_mol.
html

Main Page—Mascp Arabidopsis proteomic multinational 
sub-committee

http://www.masc-proteomics.
org/mascp/index.php/
Main_Page

World-2DPAGE 
Constellation: 
SWISS-2DPAGE

ExPASy Swiss protein 2D PAGE; 
important web site for documen-
tation and software

http://world-2dpage.expasy.org/
swiss-2dpage/

The World-2DPAGE 
Constellation

ExPASy Swiss protein 2D PAGE 
site; important repository and 
search engine software

http://world-2dpage.expasy.org/

Kazusa Genome 
Resources

Genome and proteomic resources 
from Miyakogusa.jp

http://genome.kazusa.or.jp/

Cyanobase CyanoBase; resources for 
cyanobacteria

http://genome.kazusa.or.jp/
cyanobase

Rhizobase RhizoBase; resources for 
rhyzobacteria

http://genome.kazusa.or.jp/
rhizobase/

MudPIT Multidimensional protein identifica-
tion technology

http://www.proteome.soton.
ac.uk/mudpit.htm

FTICR/MS 
Technology

Fourier transform mass spectrom-
etry (FTMS) derived from ion 
cyclotron resonance (ICR) 
spectrometry

http://www.wangnmr.com/
FTICR_MS_technology.htm

DIGE Protein abundance changes using 
dige multi-fluorescent dye

http://www.med.uc.edu/pro-
teomics/dige.htm

DECODON—Dif-
ferential in gel 
electrophoresis 
(DIGE)—image 
analysis—Delta2D

Generic proteomics site for informa-
tion on methodologies

http://www.decodon.com/Solu-
tions/Delta2D/digeAnalysis.
html

Proteomics services: 
2D DIGE, iTRAQ, 
MS, and Phosphor-
ylation sites

Generic proteomics site for informa-
tion on methodologies

http://www.appliedbiomics.
com/

3Dye™ 2D DIGE Kits Kits and uses for 3Dye 2D DIGE http://www.lumiprobe.
com/p/2d-dige-kits

Isotope-Coded Affin-
ity Tags (ICAT) 
Methodology

The ICAT methodology and its 
uses—an interactive site

http://www.bio.davidson.edu/
courses/genomics/ICAT/
ICAT.html

ICAT, Quantitation, 
Quantification, Iso-
tope Coded Affinity 
Tag Technology

ICAT uses in relative quantitative 
proteomics, especially regulation

http://www.creative-proteomics.
com/ICAT.htm

Table 2.6   Integrative databases for Proteomics and Protein (Polypeptide) analysis in plants
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Sample Preparation

Sample preparation is perhaps one of the most important steps in proteomics re-
search. Methods that use trichloroacetic acid (TCA) and acetone are still the most 
commonly used procedures for protein precipitation and separation from other me-
tabolites in plant mixtures (Song et al. 2006; Wang et al. 2006). An alternate method 
using phenol and ammonium acetate/methanol is also popular for plant separation. 
Sample purification effectively improves protein detection and increases proteome 
separation in subsequent steps by reducing interference in samples. The use of dif-
ferent reagents to separate proteins by their different solubilities and membrane as-
sociations can be effective in reducing the complexity of proteins in fractions, and 
to enrich rare proteins in samples. Modifications of these basic procedures can be 
used to separate membrane associated proteins in large amounts from the remainder 
of the soluble protein fraction (Agrawal et al. 2005; Barjaktarovic et al. 2007).

Chromatography (SDS-PAGE)

Sequential treatment of the isolated proteins on various inert substrates is a common 
method for separating protein samples based on a combination of solubility, molec-
ular mass and isoelectric point. At one time only one-dimensional SDS–PAGE had 
wide use in separating complex proteins, based only on their molecular mass, but 
now this approach has limited application. In contrast, high-resolution separation 
of proteins by two-dimensional gel electrophoresis (2-DE), which uses isoelectric 
focusing (IEF) in the first dimension and SDS–PAGE in the second dimension, is 
a more effective and exact technique. The recent development of the immobilized 
pH gradient (IPG)-IEF strips for use in the first dimension has improved reproduc-
ibility and resolution. The 2-DE method has been widely accepted in proteomics 
for a range of important crop and bacterial species containing massive cell walls 
(Chen and Harmon 2006; Herbert et al. 2006; Berkelman and Stenstedt 2002). Da-
tabases housing 2-DE information have been developed and released to the public. 
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Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

SILAC—Stable 
isotope labeling by 
amino acids in cell 
culture

Stable isotope labeling by amino 
acid in cell culturing for MS 
quantitative proteomics

http://www.silac.org/

Super-SILAC Technol-
ogy for Quantita-
tive Proteomics in 
Neoplasms

Peptide fingerprint analysis method 
used in conjunction with MS 
ionization

http://medgadget.com/2011/02/
supersilac_technology_for_
quantitative_proteomics_in_
neoplasms.html

Duke Proteomics Core 
Facility—Protein 
Quantitation—IGSP

Facilities and methodology for pro-
tein quantification using methods 
described in Table 8

http://www.genome.duke.edu/
cores/proteomics/services/
protein-quantitation/

Table 2.6   (continued)
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For example, the Swiss Institute of Bioinformatics SWISS-2DPAGE database, Ex-
pasy and the Kazusa DNA Research Institute Cyano2Dbase are important. Differ-
ent chromatography separation methods, such as gel filtration chromatography, ion 
exchange chromatography and affinity chromatography can also be used, but are 
used less often in plants (Wu et al. 2005; Frolich and Arnold 2006).

Identification Methods

To identify each protein or polypeptide found in a sample, peptide mass fingerprint-
ing has been widely employed. Currently the most efficient method available con-
sists of two steps; (i) enzymatic digestion of well separated proteins excised from 
gels into smaller peptides, and (ii) accurate mass measurements (fingerprints) of the 
peptide fractions using mass spectrometry (MS). Various ‘in-gel’ digestion methods, 
and modifications of these have been used to separate protein samples using 2-DE, 
and further developments of these methods will continue to play an important role 
in proteomics. The MS equipment generally consists of a source to ionise samples 
and a mass spectrometer(s) to detect the ionized samples. The matrix-assisted laser 
desorption ionization (MALDI) method is used in combination with time of flight 
(TOF) MS (as MALDI-TOF-MS), or the electrospray ionization (ESI) method is 
used in combination with quadrupole (Q) or ion trap (IT) MS. More recent develop-
ments in MS procedures, such as Q-TOF MS, IT-TOF MS or MALDI Q-TOF MS, 
have become popular. Furthermore, ion fragmentation by collision-induced dissoci-
ation (CID) using tandem MS such as Q-TOF MS or post-source decay (PSD) using 
MALDI-TOF MS have been used to determine more correctly peptide amino acid 
sequences. Eventually though, to identify the target proteins obtained, peptide mass 
fingerprint data are searched against a database of theoretically predicted masses of 
known amino acid sequences (Hirano et al. 2004; Newton et al. 2004). To aid in the 
correct identification of proteins and polypeptides, pI and molecular mass informa-
tion from gels are used to check the accuracy of MS identification fingerprint data 
(De Filippis and Magel 2012).

Shotgun�Proteomics

Conventional gel electrophoresis-based separation is by far the most common meth-
od used, however a gel-free separation method has been used from time to time; 
sometimes being referred to as a ‘shotgun proteomics’ approach. In this gel-free 
method, the protein mixture is directly digested into peptides and separated by one 
of the separation and identification methods just described.
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MudPIT

The multidimensional protein identification technology (MudPIT) consists of a 
combination of different separation methods described before, in atypical ‘shotgun 
approach’. MudPIT is especially suitable for the analysis of proteins that are diffi-
cult to separate by 2-DE, as well as for high-volume analysis by automated analyti-
cal instruments now in common use (Yates et al. 2009).

FT-ICR MS

Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR MS) 
possesses high resolution, high sensitivity, high dynamic range and high mass 
measurement accuracy. The high resolution and precision of FT-ICR MS allows 
researchers to carry out ‘top-down proteomics’, similar to a ‘shotgun approach’ 
in which an intact protein mixture is analysed directly, without separation and/or 
purification of the proteins (Bogdanov and Smith 2005).

Quantitative�Proteomics

Quantification of the abundance of proteins identified is important for a better un-
derstanding of protein dynamics and kinetics, in response to cellular activities and 
environmental changes. A quantitative proteome approach also plays a crucial role 
in the discovery of key proteomic changes, including expression, repression, inter-
action and modification of proteins that are associated with genetic variations and/
or phenotypic changes in organisms (Gstaiger and Aebersold 2009).

DIGE

Difference gel electrophoresis (DIGE) is now a popular method for differential dis-
play of proteins for quantitative protein comparisons. In DIGE, protein samples 
are labelled with different fluorescent dyes before 2-D electrophoresis, enabling 
accurate determination of differences in protein abundance between samples (Ros-
signol et al. 2006). This method is effective in minimising and even negatinggel to 
gel variation while significantly increasing accuracy and reproducibility of samples. 
There are a number of commercial suppliers of 2D DIGE based gels available and 
ready for proteomic studies.

iCAT (iTRAQ)

Isotope-coded affinity tags (ICATs) and isobaric tags for relative and absolute quan-
tification and comparison in basic regulation of proteins (iTRAQ), are other impor-
tant methods in proteomics.
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SILAC

Stable isotope labelling with amino acids in cell cultures (SILAC) is a method used 
for protein differential display using stable isotope labelling (Jorrin-Novo et al. 
2009). Super SILAC technology is available from suppliers, and well suited for 
plant cell and tissue culture comparisons.

MS-MS Analysis (Differential Isotopes)

Using a single MS/MS analysis, corresponding peptides from each sample are dif-
ferentially detected based on mass shifts caused by the different isotopes used; and 
this type of analysis allows comparison of relative protein and polypeptide abun-
dance between samples.

LC-MS/MS

Recently, label-free quantitative techniques have been developed to facilitate high-
throughput comparisons specific for proteomic expression. For example, label-free 
quantification in the proteomes from each of two samples are separately analysed 
using liquid chromatography (LC)-MS/MS. Then, each MS spectrum is aligned to 
calculate relative protein abundance and changes based on ion intensity differences, 
such as peptide peak areas or peak heights in the chromatograms. Finally, MS/MS 
analysis is used to identify the peptides of interest (Gstaiger and Aebersold 2009).

Subcellular�Proteomics�(Organelles)

Accurate and quick proteome analysis of cell organelles has become very important 
for understanding the various enzymatic activities within cell organelles, the com-
partmentalisation of metabolites and metabolic pathways, cellular logistics such as 
protein targets, their movement and regulation; and it has become very important to 
understand proteomic dynamics at the subcellular level (Andersen and Mann 2006; 
Chen and Harmon 2006; Baginsky 2009). A number of different approaches listed 
below have been applied to analyse the proteome of organelles and subcellular com-
partments of plant cells. Studies so far have included cell organelles and compart-
ments like the chloroplasts, etioplasts, amyloplasts, chromoplasts, mitochondria, 
vacuoles, plasma membrane, nucleus, peroxisomes, cytosolic ribosomes and cell 
walls (Baginsky 2009).
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Chloroplasts, Mitochondia and Organelles

Proteomic analyses of chloroplasts, mitochondria and othercell fractions have been 
carried out to determine detailed localisation of proteins in sub-cellular compart-
ments. Methods for organelle isolation and purification are already available, and 
are essential in the initial steps before protein is isolated and identified from them 
(Sakai et al. 2004; Holy and Perkins 2009).Techniques for quantitative proteomics, 
such as ICAT and iTRAQ described above, are then applied to resolve quantita-
tive data on the proteome in each organelle or cell compartment. In Arabidopsis, 
rice and algae, differential proteome profiles of the plant plasma membranes were 
obtained, and used to identify different proteins expressed in response to environ-
mental stresses such as cold, salt stress and bacterial elicitors (Benschop et al. 2007; 
Katz et al. 2007; Cheng et al. 2009; Minami et al. 2009). Listed below are the most 
important web-based sites for sub-cellular proteomics, their purpose and the URL 
are detailed in Table 2.7. Several databases below provide subcellular proteome 
information.

Rice Proteome Database

The rice proteome database is a 2-DE image information base for rice that con-
tains data from various tissues, as well as subcellular compartments and organelles 
(Komatsu 2005).

Plant Organelle Database and GOBASE

These two web sites detail numerous external links to plant organelles (O’Brien 
et al. 2009).

NASC Proteomics Database

The Nottingham Arabidopsis Stock Centre (NASC) Proteomics database is also 
useful for both cellular and organelle data mining of proteins.

SUBA

The Sub-cellular location database for Arabidopsis proteins (SUBA) provides sub-
cellular proteome analytical and energy data on proteins in subcellular compart-
ments (Dunkley et al. 2006).

2 Bioinformatic Tools in Crop Improvement



80

Table 2.7   Integrative databases for Sub-cellular Proteomics and Protein Modification analysis 
in plants
Database Name Plant Species/Purpose Uniform Resource Locator (URL)
Enzyme 

Database—
BRENDA

A comprehensive protein and 
enzyme information search and 
retrevel data system; an impor-
tant proteomics site

http://www.brenda-enzymes.org/

Rice Proteome 
Database

Rice proteome database; protocols 
and tools including sub-cellular 
proteins and modifications of 
proteins

http://gene64.dna.affrc.go.jp/RPD/

Proteomics 
Database for 
Arabidopsis 
data

Arabidopsis NASC) proteome 
database; protocols and tools 
including sub-cellular and modi-
fications of proteins

http://proteomics.arabidopsis.info/

SUBA II Search engine for Arabidopsis pro-
teins, including phosphoproteins 
and protein modifications

http://suba.plantenergy.uwa.edu.au/

My 2D-PAGE—
map viewer

Soybean proteome database; 2D 
protocols and tools including 
sub-cellular and modifications of 
proteins

http://proteome.dc.affrc.go.jp/cgi-
bin/2d/2d_view_map.cgi

PhosPhAt 3.0 Protein phosphorylation database 
mainly using MS, and predictor 
software

http://phosphat.mpimp-golm.mpg.
de/

P3DB—Plant 
Protein Phos-
phorylation 
DataBase

Plant protein phosphorylation data-
base for 6 plants, but contains 
over 11,000 phosphoproteins and 
32,000 phosphosites

http://www.p3db.org/

GOBASE—The 
Organelle 
Genome 
Database

Gene databank for cell 
orgamelles and sub-cellular 
compartmentation

http://gobase.bcm.umontreal.ca/

Soybean Proteome Database

The soybean proteome database also provides 2-DEdata for various tissues, as well 
as for subcellular compartments and organelles (Sakata et al. 2009).

Gramene

A database for plant comparative genomics and proteomics providing information 
on monocotyledon (grass) plant species, and is cross linked to the GenBank protein 
and organelle databases (Ware 2007).
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Post-Translation�Protein�Modification

Modificon

Modificon research is when a comprehensive approach is used to investigate vari-
ous kinds of post-translational protein modifications, which can play an important 
role in our current understanding of proteomics. Modificon data reports and iden-
tifies modified proteins, and elucidates and coordinates the role of each protein 
modification with its associated biological action (Kwon et al. 2006). In this regards 
protein phosphorylation is one of the most critical key regulatory process we have 
discovered that can control the expression of many regulatory proteins. The list 
of web sites and URL for protein modification structure and analysis are given in 
Table 2.7, including their URL.

Protein Phosphorylation

Protein phosphorylation is an important regulatory step in most signalling path-
ways, and is a widespread protein modification step affecting most basic cellu-
lar processes in eukaryotic organisms (Schmelzle and White 2006). Advances in 
MS-based technologies, accompanied by phosphopeptide enrichment techniques 
have allowed researchers to perform high-volume, large-scale in vivo phosphory-
lation site mapping. So far, several different plant phosphoproteome studies have 
been reported (Nuhse et al. 2004; de la Fuente van Bentem et al. 2006; Benschop 
et al. 2007; Nuhse et al. 2007; Sugiyama et al. 2008). For example, the proteome-
wide mapping of in vivo phosphorylation sites in Arabidopsis have recently been 
achieved, and some other preliminary studies have been completed on other plants 
(Chitteti and Peng 2007; Barjaktarovic et al. 2009).

LC MS/MS

A primary method for proteome-wide mapping of in vivo phosphorylation sites in 
Arabidopsis, and this has recently been achieved by using complementary phospho-
peptide enrichment methods, coupled to high-accuracy LC-MS/MS with a Finnigan 
LTQ-Orbitrap (Sugiyama et al. 2008).

PhosPhAT

The Arabidopsis Protein Phosphorylation Site Database (PhosPhAt) provides infor-
mation on Arabidopsis phosphorylation sites, which have been identified in MS by 
different research groups.
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P3DB

The Plant Protein Phosphorylation Database (P3DB) is an information resource for 
plant phosphoproteome research, andprovides a resource for protein phosphoryla-
tion data and detail information from multiple plant species (Gao et al. 2009).

Ubiquitination

Ubiquitination of protein is another one of the post-translational modifications oc-
curring in most eukaryotic cells, including plants. Protein ubiquitination is another 
regulatory mechanism that controls protein localization and activity. Several large-
scale analyses of protein ubiquitination sites in plants have been reported (Maor 
et al. 2007; Manzano et al. 2008; Igawa et al. 2009).

Anti-Ubiquitin Antibody

In Arabidopsis, affinity purification using an anti-ubiquitin antibody, and the subse-
quent use of MS/MS analyses has been performed to identify ubiquitinated proteins 
(Igawa et al. 2009).

Structural�Proteomics

Large data sets of protein 3D structures are also important as information resources 
for elucidating relationships between protein function and structure, or for analys-
ing the active sites and their molecular identity in various protein complexes. To 
deal with the technical aspects, methodology and interpretation of protein structure 
in more detail is beyond the scope of this review, and I refer you to some recent 
reviews on this topic (Yan and Chen 2005; Wlodawer et al. 2008). However listed 
below in summary form are some of the most important features for structural pro-
teomics and web-based sites for protein structural projects, their purpose and URL 
are detailed in Table 2.8.

ISGO

The International Structural Genomics Organization (ISGO) site (Stevens et al. 
2001) is designed to facilitate co-operation to determine protein structures using 
existing instrumentation in a number of international laboratories for structural pro-
teomics, and have identified many DNA-binding domains (DBDs) of plant-specific 
transcription factors (TF) (Yamasaki et al. 2004; Yamasaki et al. 2008b).
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Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

International Structural 
Genomics Organization

ISGO main web site: Reports, 
Activities and Publications

http://www.isgo.org/

Welcome to RSGI 
(RIKEN)

RIKEN Structural Genomic 
Proteomic Initiative—Home 
page

http://www.rsgi.riken.jp/

RSGI (RIKEN Structural 
Genomics/Proteomics 
Initiative) structure | 
Integrated Database of 
Protein | SciNetS

Integrated database for pro-
tein structure, including 
Arabidopsis

https://database.riken.jp/sw/
links/en/cria266s4i/6p

Download | (RIKEN 
Structural Genomics/
Proteomics Initiative) 
Somantic Ontology 
Class Database | RDF/
OWL

Download web page for most 
of the RIKEN proteomic 
software

http://biolod.org/class/
cria266s4i/RSGI_RIKEN_
Structural_Genomics_Pro-
teomics_Initiative_structure

Home : PSI-Nature 
Structural Biology 
Knowledgebase

Web site to keep informed on 
structural genomics and 
biology

http://www.sbkb.org/

The Protein Structure 
Initiative: achievements 
and visions for the 
future—F1000 Biology

Web site for research articles 
and methods on structural 
genomics and structural 
biology

http://f1000.com/reports/b/4/7

PSI Pilot Phase Fact 
Sheet—National Insti-
tute of General Medical 
Sciences

NIH web site for proteomics 
fact sheets and protein infor-
mation in mainly the health 
sciences

http://www.nigms.nih.gov/
Research/FeaturedPrograms/
PSI/Background/PilotFacts.
htm

RCSB Protein Data 
Bank—RCSB PDB

Portal and search engine  
–Biological Macromolecular 
Structures and Resouces

http://www.pdb.org/pdb/home/
home.do

CLC bio: Integrated 3D 
molecule viewer

Integrated workbench for 
analyzing 2D gel data and 
MS peptide fingerprinting 
profiles

http://www.clcbio.com/index.
php?id=500

I-TASSER server for 
protein structure and 
function prediction

Complete function and structure 
prediction for over 1,00,000 
proteins from international 
sources linked to the NCBI 
protein databanks

http://zhanglab.ccmb.med.
umich.edu/I-TASSER/

DisEMBL 1.5—Predic-
tors of intrinsic protein 
disorder

Intrinsic protein disorder 
prediction web site linked to 
SWISS protein identification

http://dis.embl.de/

GTOP database Genomes TO Protein structure 
and function site; unfor-
tunately contains no plant 
data, but has interesting 
bacteria and virus

http://spock.genes.nig.
ac.jp/~genome/gtop.html

Table 2.8   Integrative databases for Structural Proteomics analysis in plants
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RIKEN (RSGI)

The RIKEN Structural Genomics/Proteomics Initiative (RSGI) in Japan is an im-
portant and key centre for structural genomic and proteomic analysis. BioLOD.org 
is another of the RSGI sub-web sites for structural proteomics. The RIKEN SGPI 
has solved over 2,700 protein structures, including 33 from Arabidopsis that appear 
on another important web site, the PDB site listed below.

SBKB from PSI Nature

Keeps you informed about advances in structural biology and structural proteomics. 
It is an easy to navigate web site and includes information on other proteomic re-
search done at other web addresses.

PSI and F1000

The Protein Structure Initiative (PSI) in the USA, and the structural genomics cen-
tres of Europe (Yokoyama et al. 2000) are important sites. The PSI has promoted 
large-scale attempts to determine the 3D structure of proteins and deposition into a 
database. In 2005, the PSI shifted to its second phase, known as PSI-2 ‘information 
phase’ which was to solve more challenging structures such as protein complexes 
and folding, and to identify membrane associated proteins (Fox et al. 2008).

L. F. De Filippis

Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

CATH: Protein Structure 
Classification Data-
base—Prof. Orengo’s 
Bioinfomatics Group at 
UCL, London, UK

Proteins classified into struc-
tural domains and superfam-
ilies; useful web site once 
protein identity is known 
even with plants

http://www.cathdb.info/

SCOP: Structural Classifi-
cation of Proteins

Contains proteins in fold 
domains and superfamilies; 
useful in assessing protein 
structural similarities across 
species

http://scop.mrclmb.cam.ac.uk/
scop/index.html

PANTHER—Classifica-
tions of Genes and 
Proteins

Browser and search engine 
for proteins, and divides 
them into ontogeny and 
superfamilies

http://www.pantherdb.org/

Table 2.8   (continued)
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PDB

The number of solved protein structures appearing in the protein data bank (PDB) 
is fast growing, and has been one of the most popular resources for biomolecular 
structural data; the PDB site has had a dramatically increased in available data de-
posited during the past decade (Kouranov et al. 2006).

CLC BIO

CLC has an integrated 3D molecular viewer for determining structures of proteins. 
It has a fully navigational and integrated 3D viewer tool for use. It has file systems 
and graphics that are compatible with publication of the 3D structures directly.

Cell-Free System (Wheat Germ Embryo)

Although methodological problems still exist in structural and analytical pro-
teomics, some new methods and computational advances have played important 
roles in cellular protein determination and identification. One major bottleneck has 
been the production of proteins as they may be present in living organism, in 3D 
structure. Most researchers in structural proteomics have used Escherichia coli cells 
for protein production in automated methods, as an approximation of the cell-based 
3D protein structure. However Escherichia coli is a bacterium and prokaryote, and 
doubts have been expressed as to the protein folds and structures assembled in a 
prokaryote being relevant to eukaryotic organisms. Cell-free expression systems 
have also been used mainly as a method to address several limitations of cell-based 
methods, such as protein quality and quantity, and high throughput issues. The wheat 
germ embryo cell-free system has been developed as a eukaryotic cell-free system 
to overcome such problems, and has the advantage of producing multi-domain pro-
teins (Endo and Sawasaki 2003, 2006). For example, a comparative study of protein 
production from 96 Arabidopsis open reading frames (ORFs) demonstrated marked 
differences in protein profiles between the wheat germ cell system and the cell free 
system (Tyler et al. 2005).

NMR Methods Plus CP/MAS/DD

The technology and platform of NMR spectroscopy has played an important role in 
structural proteomics. High-resolution multidimensional solid-state NMR methods 
used in combination with cross polarization (CP), magic angle spinning (MAS) 
and dipolar decoupling (DD) are now becoming the methods of choice for struc-
tural analysis in NMR equipment (Castellani et al. 2002; McDermott 2009). Recent 
improvements in NMR include a cryoprobe for improved sensitivity, a micro-coil 
probe for sample mitigation, and a flow-probe designed to shorten preparation time.
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X-Ray Crystallography

X-ray crystallography has also been used to determine the protein structures of 
almost 90 % of protein entries in the PDB database. The third generation X-ray syn-
chrotrons have become essential for macromolecular crystallography (MX) of large 
proteins and protein complexes (Samatey et al. 2001). For example, the synchrotron 
SPring-8 of RIKEN in Japan has been used to determine the structures of important 
membrane proteins and large complex proteins; such as Ca2+-ATPase, rhodopsin 
and flagellin (Palczewski et al. 2000; Samatey et al. 2001; Toyoshima et al. 2003).

Informationand�Web�Resources�in�Structural�Proteomics

Bioinformatics and related databases are therefore important tools for advancing 
the study of structural proteomics. The methods used in computational prediction 
of protein 3D structures are readily available and described by Zhang (2008) and 
Zhang (2009b). Free modeling, which is sometimes called ‘de novo’ modelling is 
used to predict the 3D structure of proteins, and the web-based sites for information 
on structural proteomics, their purpose and URL are detailed in Table 2.8.

I-TASSER

A number of web servers and computational tools for free and/or template-based 
protein modelling have recently been made available; for example, the I-TASSER 
internet server.

CASP

I-TASSER is often used in Critical Assessment of Techniques for Protein Struc-
ture Prediction (CASP) (Zhang 2009a). This template-based modelling method is a 
comparatively new method for matching proteins using evolutionarily related pro-
teins of known structure as a template.

Swiss Model Server (DisEMBL)

There are many web services and tools (e.g. Swiss Institute of Bioinformatics 
SWISS-MODEL server) to support template-based modelling (Schwede et al. 
2003). The Intrinsic Protein Disorder prediction program, which is linked to the 
Swiss Model server, is one such piece of software.
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GTOP

Databases housing previously predicted structures from amino acid sequences by 
template-based modelling for a wide range of species exist on this site; the Genome 
TO Protein structure and function (GTOP) database. Data in this site is obtained 
by the application of various computational tools for structural prediction from se-
quences of amino acids and genomes (Fukuchi et al. 2009).

CATH/SCOP

The databases for structure-related protein classification, as typified by CATH and 
the Structural Classification of Proteins (SCOP) data sites, have provided important 
clues to the relationship between proteins, protein function and protein evolution 
(Greene et al. 2007; Andreeva et al. 2008).

PANTHER

A database for protein families based on conserved protein domains, the Protein 
Analysis Through Evolutionary Relationships (PANTHER) is an important site for 
classifying proteins into families. The database contains the evolution and function 
of proteins, and the resources are used in genome-wide identification of genes (Mi 
et al. 2005; Wilson et al. 2007; Finn et al. 2008; Wilson et al. 2008).

Plant-Metabolism (Metabolomics)

Metabolomics is referred to as an understanding of metabolism primarily based on 
comprehensive and multidimensional approaches, by taking advantage of various 
analytical instruments and bioinformation available to identify metabolites. Metab-
olomic data can include individual and multiple assessments of metabolites, and to 
quantify particular metabolites in order to provide advantages over chemical pheno-
type analysis. The plant metabolome is complex enough for an individual plant, but 
it is even more challenging for comparison between plants (Bino et al. 2004; von 
Roepenack-Lahaye et al. 2004). Therefore, plant metabolomics is a great analyti-
cal challenge, but nevertheless it is important to an understanding of plant growth 
and development. Metabolomics has the ability to improve knowledge of plant cell 
systems, to engineer molecular breeding and to improve the productivity and func-
tion of plants in areas like stress tolerance, pharmaceutical production, food quality, 
biomaterials and energy (Trethewey 2004; Oksman-Caldentey and Saito 2005; Fer-
nie and Schauer 2009). In this section, we include metabolomic analytical sites for 
plants, metabolic profiling, instrumentation and their applications with respect to 
other ‘omics’ research. We also describe plant metabolomics related computational 
tools and databases commonly in use.
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Instruments�in�Metabolomics

Many technological advances have recently been made in instrumentation related 
to metabolomics. Metabolomics data starts with the acquisition of metabolic finger-
prints using these analytical instruments (Fiehn et al. 2000; Roessner et al. 2001; 
Fernie et al. 2004). Methods for sample separation, such as gas chromatography 
(GC), high-performance or ultra performance liquid chromatography (LC) and cap-
illary electrophoresis (CE) are used, in conjunction with various types of MS. CE-
MS is especially effective, because it is a highly-sensitive method for separating 
and analysing biological molecules (Ramautar et al. 2009). Detailed below, are the 
URL web pages for explanation, methodology and instruments used in metabolo-
mics, and outlined in Table 2.9.

QMS and TOF MS

QMS is especially usefull in metabolomics. TOF MS are also well regarded for use 
in metabolomics. Triple Q (QqQ) MS (a tandem-type MS) and Q-TOF (a hybrid 
type MS) are also in common use.

FT-ICR MS

Methods that do not involve pre-separation of samples can be used, e.g. FT-ICR 
MS, are often employed, allowing for MS analysis even on quite crude plant prepa-
rations (Werner et al. 2008).

NMR Based Methods

NMR-based methods are used in metabolomic analysis (Dixon et al. 2006; Schripse-
ma 2009). These methods can be broadly classified into solution NMR and insolu-
ble or solid-state NMR, according to sample solubility. High-resolution (hr)-MAS 
techniques can generate suitable metabolic fingerprints from insoluble samples 
and solid-state preparations (Bertocchi and Paci 2008). One-dimensional NMRis 
where protons (1 H) are observed (1 H-NMR), however more detailed analyses 
and metabolite identification and/or flux analysis can be obtained with other nuclei, 
particularly 13 C and 15 N (Kikuchi et al. 2004; Sekiyama and Kikuchi 2007). 
Processed sets of data are subsequently used to identify metabolites corresponding 
to each spectrum signal by searching against standard compound databases. In non-
target analyses, spectrum data sets that include spectra of unknown compounds are 
subjected to statistical analyses, such as multivariate analysis (Sect. 5.1.8 below), to 
mine data for biological significance (Tikunov et al. 2005). In target analyses, spec-
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Database Name Plant Species/Purpose Uniform Resource Locator (URL)
GC/MS Web Site Web site for explanation of 

gas chromatography and 
mass spectrometry

http://www.scientific.org/tutorials/
articles/gcms.html

Comprehensive Pesticide 
Residue Analysis by 
LC/MS/MS Using 
an Ultra Aqueous 
C18 Column/Foods, 
Flavor—Restek 
Chromatography

Agricultural, food, flavor and 
fragrance identity of com-
pounds via LC/MS/MS—a 
commercial company site

http://www.restek.com/Technical-
Resources/Technical-Library/
Foods-Flavors-Fragrances/
fff_A020

Lipid Analysis with 
GC-MS, LC-MS, 
FT-MS—Metabolo-
mics Fiehn Lab

Metabolite (lipid) identity of 
compounds via LC/MS/
MS—another commercial 
site

http://fiehnlab.ucdavis.edu/
staff/kind/Metabolomics/
LipidAnalysis/

FTIR Analysis Industrial application and 
compound identity—FTIR

http://www.semlab.com/ftir.html

FTIR Analysis—Fourier 
Transform Infrared 
Spectroscopy

Web site explaining FTIR 
analysis and identity

http://www.ides.com/articles/test-
ing/2008/FTIR_Analysis.asp

NMR Analysis, Processing 
and Prediction

Explanation of NMR analysis http://nmr-analysis.blogspot.com.
au/

NMR Analysis NMR analysis, methodol-
ogy and equipment 
requirements

http://www.intertek.com/analysis/
nmr/

Metabolome Analysis 
Service by CE-MS

Various applications for 
CE-MS in drugs, toxicol-
ogy, disease, blood, cell 
and tissue; including pos-
sible use in plants

http://www.infinitebio.com/prod-
ucts/HMT_Metaborolomics_
Analysis/index.html

QMS 403 C Aëo-
los®—Quadrupole 
Mass Spectrometer-
NETZSCH

New dimensions and equip-
ment for gas analysis; the 
QMS 403; the quadruple 
MS instrument

http://www.netzsch-thermal-anal-
ysis.com/en/products/detail/
pid,33.html

Evolved Gas Analysis-
EGA (QMS, TG-
GC-MS, FTIR, 
SKIMMER)

Quadruple MS and standard 
MS analysis, especially 
coupled to FTIR; pulse 
thermal analysis

http://www.netzsch-thermal-
analysis.com/en/products/
evolved-gas-analysis/

GEN | Application Notes: 
MALDI-TOF MS 
Analysis of Nanotrap 
Enriched Low Molecu-
lar Weight Protein—
Human Serum example

MALDI-TOF MS; used to 
select Biomarkers which 
are often masked by high 
abundant proteins, and/
or may be susceptible to 
proteolysis

http://www.genengnews.
com/application-notes/
maldi-tof-ms-analysis-of-
nanotrap-enriched-low-molec-
ular-weight-proteins-from-
human-serum/22/

NMR Spectroscopy Web site to explain Proton 
NMR spectroscopy and 
multi uses

http://www2.chemistry.msu.edu/
faculty/reusch/VirtTxtJml/
Spectrpy/nmr/nmr1.htm

Table 2.9   Integrative databases for Metabolomics and Instrumentation analysis in plants
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http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/nmr/nmr1.htm
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trum data sets that are associated with particular compounds are used as metabolic 
profiles for each compound.

Statistics (PCA-HC-SOM)

Data analysis is most important in determination of biological significance in 
metabolomics. Statistical analyses using multivariate analysis, such as principal 
component analysis (PCA), hierarchical clustering analysis (HCA) and self-orga-
nization mapping (SOM), are typically used to classify samples and/or metabolites 
(Hirai et al. 2004; Jonsson et al. 2004; Matsuda et al. 2009). The visualization of 
metabolic profiles on metabolic maps is also used in combination with other ‘omics’ 
methods, which can include gene expression profiles of particular genes encoding 
the enzymes involved in those particular pathways (Thimm et al. 2004; Tokimatsu 
et al. 2005).

Metabolite�Profiling�Plants

The systematic collection of metabolite profiles is the initial step in metabolomics. 
This step can be performed with various instruments (described above) capable of 
high turnover and simultaneously many measurements. Comprehensive metabolic 
profile data can contribute to the understanding of the cellular system in response to 
changes in intracellular and extracellular metabolites. Furthermore, the changes in 
metabolic pathways associated with genetic variations can be evaluated as chemical 
fingerprints to identify genes involved in metabolism. A number of studies of meta-
bolic profiling in plant species have been performed that have resulted in the release 
of results; unfortunately these results are mostly present on web databases. Listed 
below are the most important web-based sites for metabolite and product analysis, 
their purpose and URL are detailed in Table 2.10.

L. F. De Filippis

Database Name Plant Species/Purpose Uniform Resource Locator (URL)
SOMA | Self Organizing 

Map Application Site
A web tool used in DNA 

and protein fragment 
classification

http://soma.arb-silva.de/

Recent advances from the 
F1000 Biology Reports

Research article on the web 
describing recent advances 
in metabolomics and 
greener pastures (ie in 
plant biology)

http://f1000.com/reports/b/2/7/

Table 2.9   (continued)
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Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

Metabolomic Tool 
Kit—GARNet

Arabidopsis web site predicting 
metabolites and enzymes; 
software ‘omics viewer is 
particularly usefull

http://www.garnetcommu-
nity.org.uk/resources/
metabolomic-tool-kit

Metabolomics 
Bioinformatics

Search engine for metabolomics 
and protein

http://appliedbioinformatics.
wur.nl/moto/

Database—KOMICS A series of databases for plant 
transcriptome and metabo-
lome analysis

http://www.kazusa.or.jp/komics/
en/en-database.html

ARMec Repository Database for mass spectrometry 
identity

http://www.armec.org/
MetaboliteLibrary/

CSB.DB: GMD Golm metabolome database 
for some model organisms, 
including Arabidopsis

http://csbdb.mpimp-golm.mpg.
de/csbdb/gmd/gmd.html

MS2T Phytochemical spectral data for 
proteomic research; Arabi-
dopsis, rice, wheat, soybean, 
brassica, allium

http://prime.psc.riken.jp/lcms/
ms2tview/ms2tview.html

PRIMe LC-MS Branch Mass spectrometry of plant 
fractionation databank of 
secondary metabolites

http://prime.psc.riken.jp/lcms/

AtMetExpress LCMS Mass spectrometry data of 
different growth stage and 
metabolites in Arabidopsis

http://prime.psc.riken.jp/lcms/
AtMetExpress/

PRIMe: Simple BL-SOM Self-organising map and sta-
tistics tool to detail genes/
metabolites into a series of 
rows for analysis

http://prime.psc.riken.
jp/?action=blsom_index

TAIR—Home Page Arabidopsis information on 
genetic maps, markers, 
sequencing and expression

http://www.arabidopsis.org/

KEGG PATHWAY 
Database

Collection of manually drawn 
pathway maps for molecular 
interactions

http://www.genome.jp/kegg/
pathway.html

Plant metabolic pathway 
database (PMN/Plant 
Cyc) home page

Broad network of plant meta-
bolic pathways; including 
literature, analysis, proteins, 
enzymes

http://www.plantcyc.org/

Pathway Tools Information 
Site

Comprehensive systems biology 
software and bioinformatics 
databank

http://bioinformatics.ai.sri.com/
ptools/

Home—MapMan Software for analysis of RNA 
and sequences

http://mapman.gabipd.org/web/
guest

Home—KaPPA—Portal Web based databank for visual 
uploaded ‘omics’ metabolic 
pathway data

http://kpv.kazusa.or.jp/en/
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Plant Metabolomics

In the case of Arabidopsis, an NSF-funded multi-institutional project aimed at fully 
developing the metabolomics database, ‘Plantmetabolomics’, has recently been 
documented through GARNet. The site contains a tool kit of resources for meta-
bolic data analysis and comparison.

Solanaceae (Tomato/Potato)

Several databases for Solanaceae and other plants are available (also web sites be-
low) at the Plant Research International at Wageningen, Netherlands homepage. 
The Metabolome Tomato Database (Moco et al. 2006) and potato database CIPO-
TATO were developed here (Mullins et al. 2006).

KOMICS

The KOMICS (Kazusa-omics) database collects annotation data of metabolite peaks 
detected by LC-FT-ICR-MS, and the web site contains a representative metabolome 
data set for the model tomato cultivar, ‘Micro-tom’ (Iijima et al. 2008).

ARMeC Repository Project

The Armec Repository Project provides metabolome data on the potato, and serves 
as a data repository for metabolite peaks detected by ESI-MS.

Golm Metabolome Database

The Golm Metabolome Database (GMD) provides public access to custom mass 
spectral libraries and metabolite profile data, and contains additional tools and base 
information (Kopka et al. 2005).

L. F. De Filippis

Database Name Plant Species/Purpose Uniform Resource Locator 
(URL)

PRIMe: Platform for 
RIKEN Metabolomics

Web based service for transcrip-
tomics and metabolomics in 
life science

http://prime.psc.riken.jp/

International Potato Center Potato centre web site which 
includes the potato databank

http://cipotato.org/

Table 2.10   (continued)
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MS2T/PRIMe

The MS/MS spectral tag (MS2T) libraries at the Riken Metabolomics (PRIMe) 
website provides access to libraries of phytochemical LC-MS2 spectra obtained 
from various plant species.

LC-ESI-Q TOF/MS

By using the automatic MS2 retreval function of LC-ESI-QTOF/MS (Matsuda et al. 
2009), MS2T/PRIMe and LC-ESI-Q TOF/MS databases can play crucial roles as 
information resources and repositories of large amount of new data. They also serve 
as tools for further integration of metabolic profiles containing comprehensive data 
acquired from other ‘omics’ research (Akiyama et al. 2008).

Combined�Approaches�in�Metabolomics

Metabolome research can help in the understanding of metabolic activity at the 
cell, tissue and organ levels, and achieving profiles complementary to other ‘omics’ 
research; which can aid genetic variation studies. At present these combination of 
methods have been demonstrated mostly in the model plant Arabidopsis by utilising 
the many other ‘omics’ web sites and resources that currently exist for this model 
plant; including whole-genome sequencing, large-scale transcriptome data and re-
lated expression data, bioresources from mutants, and full-length cDNA clones. 
The experimental scheme for systematic information retrieval of gene-to-metab-
olite data through a combination of transcriptome and metabolome resources has 
been demonstrated by Saito’s group at the RIKEN Plant Science Centre (Saito et al. 
2008). The URL list and resources below are also listed in Table 2.10.

map (BL-SOM)

Data containing transcriptome and metabolome changes in Arabidopsis under stress 
conditions induced by deficiency of sulfur and nitrogen were analysed using batch-
learning, self-organizing map (BL-SOM) analysis, which enabled the identification 
of genes involved in glucosinolate biosynthesis (Hirai et al. 2004). An integrated 
approach with an activation-tagged mutant line with overexpressed genes wasd 
used to identify genes involved in anthocyanin biosynthesis (Tohge et al. 2005).
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ATTED II Database

Co-expression data of the Arabidopsis transcriptome has been provided by the AT-
TED-II database. Investigation of key genes involved in specific metabolic path-
ways, and metabolome analysis was used with mutant lines (Obayashi et al. 2009). 
The ATTED-II database has identified genes involved in lipid metabolism, and 
UDP-glucose pyrophosphorylase 3 (UGP3) as an essential requirement in the first 
step of sulfolipid biosynthesis (Okazaki et al. 2009). Co-expression analysis was 
used to identify genes related to flavonoid biosynthesis, and the role of two key and 
important flavonoid pathway genes UGT78D3 and RHM1 (Yonekura-Sakakibara 
et al. 2008).

Results in Metabolite Profiling

The metabolic pathways that act in response to cold and dehydration conditions 
in Arabidopsis were investigated by metabolome analysis using MS and microar-
ray analysis of overexpressors in genes encoding transcriptional factors (Maruyama 
et al. 2009). Metabolomic profiling was also used to investigate chemical pheno-
typic changes between wild-type Arabidopsis and a knockout mutant of the NCED3 
gene under dehydration. The metabolic data was integrated with transcriptome data 
to reveal ABA-dependent regulatory pathways (Urano et al. 2009). Metabolome 
profiling has also been used to evaluate chemical phenotypes of natural variations 
and/or segregating populations in plant ecology and plant breeding. Analysis be-
tween metabolic expression and genomic diversity will enable the discovery of 
more key genes involved in differences between metabolic and phenotype expres-
sion of plants (Schauer et al. 2008; Fu et al. 2009).

Metabolite QTL (mQTL)

Metabolite QTL (mQTL) analysis using segregated populations has been applied to 
various plant species such as Arabidopsis, poplar and tomato in a popular ‘forward 
genetics’ approach (Morreel et al. 2006; Schauer et al. 2006; Lisec et al. 2008; 
Rowe et al. 2008; Schauer et al. 2008).

Metabolic and Genomic Diversities

The recent availability of data for genome-wide variation acquired by high-through-
put genotyping methods, including high volume resequencing, has provided some 
details of genes association with nucleotide variation and phenotypic changes; es-
pecially ibn relation to the identification of key genes that play significant roles 
in evolutionary histories and phylogeny (Sect. 2.5). Attempts to mine correlative 
patterns between metabolic and genomic diversities have recently been applied to 
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sesame and rice using seeds of natural variant phenotypes (Laurentin et al. 2008; 
Mochida et al. 2009a).

Information�Resources�for�Metabolomics

Various information resources related to metabolomics have played a central role 
not only in metabolome research but also in synergistic integration of data with 
other ‘omics’ information through a variety of sites; such as the web sites listed 
below and their URL are detailed in Table 2.10.

TAIR

The web site of metabolome resources at TAIR provides a summarized list of web 
hyperlinks to resources that facilitate metabolome research around the world, and 
other web pages and sites.

KEGG

A set of biological pathway maps is available via the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG), using a popular database for general information on life sci-
ences called the KEGG PATHWAY Database (Kanehisa and Goto 2000; Kanehisa 
et al. 2008).

PMN

The Plant Metabolic Network (PMN) is a collaborative project that aims to build 
plant metabolic pathway databases for plants. It contains a number of other impor-
tant web tools described below.

Plant Cyc

PlantCyc, is a comprehensive plant biochemical pathway database that contains in-
formation from available literature, and computational analyses and tools for genes, 
enzymes, compounds, reactions and pathways involved in primary and secondary 
plant metabolism.
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AraCyc/PoplarCyc

AraCyc and PoplarCyc are also available at the PMN web site, which provides a 
review of information about metabolic pathways in Arabidopsis and poplar respec-
tively (Mueller et al. 2003). There are also metabolic pathway databases for several 
other plant species generated by PMN researchers. MapMan is a tool to project 
‘omics’ data onto metabolic pathways (Thimm et al. 2004).

KaPPA-View

KaPPA-View is a web-based analysis tool that can be used to superimpose tran-
scriptome and metabolome data onto plant metabolic pathway maps (Tokimatsu 
et al. 2005).

PRIMe

PRIMe is a web-based service that provides data of metabolites measured by multi-
dimensional NMR spectroscopy, GC-MS, LC-MS and CE-MS, in an integrated ap-
proach to analysis of comprehensive data within the metabolome and transcriptome 
search engines present there (Akiyama et al. 2008).

Plant Phenotype (Phenome) Analysis

Analysis of mutants is an effective approach for investigation of gene structure and 
function (Springer 2000; Stanford et al. 2001). Collections of mutant lines are also 
essential bioresources for accelerating forward and reverse genetics in plants. The 
available mutant resources for phenome analysis in plant species have been well 
described in a recent review by Kuromori et al. (2009). The demand for compre-
hensive collection of mutants and related information has increased dramatically 
encouraged by the high-throughput and genome-wide phenome analysis in plants 
(Alonso and Ecker 2006). Listed below are six of the most important web-based 
sites for phenome analysis and insertion mutants, their purpose and their URL are 
detailed in Table 2.11.

Insertion�Mutants

Insertion mutant resources with index data that document the inserted gene muta-
tion position have become extremely beneficial resources to investigate functional 
analysis of genes that can be up-regulated by promoters, or disrupted, down-regu-
lated and silenced by reverse genetics.

L. F. De Filippis
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Table 2.11   Integrative databases for Phenotype and Genotype Tagging analysis in plants
Database Name Plant Species/Purpose Uniform Resource Locator 

(URL)
SNPs between Nip-

ponbare IRGSP 
build4—Koshihikari

Generic browser for SNP in 
plants, animals and micoor-
ganisms, and chromosome 
locations

http://koshigenome.dna.affrc.
go.jp/cgi-bin/gbrowse/
koshig/?help=general

Rice Genome Annotation 
Project

Sequence annotation of the 12 
rice chromosomes

http://rice.plantbiology.msu.
edu/

OryzaSNP @ MSU Rice SNP identification and 
sequence; over 150,000 high 
quality SNP

http://oryzasnp.plantbiology.
msu.edu/

OryGenesDB: database for 
rice reverse genetics

Rice database and information 
on Flanking Sequence Tags 
(FST)

http://orygenesdb.cirad.fr/

FOX Hunting | RIKEN 
SciNetS

Full-length cDNA library for 
plant expression studies by 
repeated transformation

http://nazunafox.psc.data-
base.riken.jp/sw/en/
FOX_Hunting_/ria61i/

Rice FOX Database Rice full-length cDNA over-
expressed Arabidopsis 
mutant database website

http://ricefox.psc.riken.jp/

Tilling Targeting induced local lesions 
in genomes website; wide 
application in plant gene 
function and breeding

http://tilling.ucdavis.edu/index.
php/Main_Page

TILLING Genes To 
Improve Soybeans

Soybean targeting induced local 
lesions in genomes site

http://www.ars.usda.gov/is/ar/
archive/jul05/genes0705.
htm

About RevGen UK Platform and data for gel based 
reverse genetics in Lotus, 
Medicago, Brassica

http://revgenuk.jic.ac.uk/about.
htm

TILLING DATABASE Platform and databank for 
phenotype recording in Pea, 
Tomato and Brachypodium

http://urgv.evry.inra.fr/UTILLdb

CATMA Website Complete Arabidopsis tran-
scriptome microarray page 
for gene specific tag (GST)

http://www.catma.org/

http://www.agrikola.org/ Systematic RNAi knockouts in 
Arabidopsis GST from the 
CATMA consortium

http://www.agrikola.org/index.
php?o=/agrikola/%20html/
index

GO:0009616 virus induced 
gene silencing

Virus induced gene silencing 
wbsite; including cross-links

http://www.ebi.ac.uk/QuickGO/
GTerm?id=GO:0009616

fioreDB: Database for 
Flower Bio-engineering 
by CRES-T system

Gene silencing technology and 
database for genes encoding 
crop, flower factors

http://www.cres-t.org/fiore/pub-
lic_db/index.shtml

http://koshigenome.dna.affrc.go.jp/cgi-bin/gbrowse/koshig/?help=general
http://koshigenome.dna.affrc.go.jp/cgi-bin/gbrowse/koshig/?help=general
http://koshigenome.dna.affrc.go.jp/cgi-bin/gbrowse/koshig/?help=general
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://oryzasnp.plantbiology.msu.edu/
http://oryzasnp.plantbiology.msu.edu/
http://orygenesdb.cirad.fr/
http://nazunafox.psc.database.riken.jp/sw/en/FOX_Hunting_/ria61i/
http://nazunafox.psc.database.riken.jp/sw/en/FOX_Hunting_/ria61i/
http://nazunafox.psc.database.riken.jp/sw/en/FOX_Hunting_/ria61i/
http://ricefox.psc.riken.jp/
http://tilling.ucdavis.edu/index.php/Main_Page
http://tilling.ucdavis.edu/index.php/Main_Page
http://www.ars.usda.gov/is/ar/archive/jul05/genes0705.htm
http://www.ars.usda.gov/is/ar/archive/jul05/genes0705.htm
http://www.ars.usda.gov/is/ar/archive/jul05/genes0705.htm
http://revgenuk.jic.ac.uk/about.htm
http://revgenuk.jic.ac.uk/about.htm
http://urgv.evry.inra.fr/UTILLdb
http://www.catma.org/
http://www.agrikola.org/index.php?o=/agrikola/%20html/index
http://www.agrikola.org/index.php?o=/agrikola/%20html/index
http://www.agrikola.org/index.php?o=/agrikola/%20html/index
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009616
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009616
http://www.cres-t.org/fiore/public_db/index.shtml
http://www.cres-t.org/fiore/public_db/index.shtml


98

T-DNA-tagged (SNP)

Transferred DNA-tagged (T-DNA-tagged) lines and transposon-tagged lines have 
recently become popular for investigation of insertion mutants in plants, and short 
nucleotide polymorphisms (SNPs) (Krysan et al. 1999). The two component maize 
transposon, Activator ( Ac)/Dissociation ( Ds), is a popular system for the produc-
tion of transposon-based insertion mutations, and generation of mutants with a high 
proportion of single-copy insertions (SNP) (Long et al. 1993). In rice, the endog-
enous retrotransposon Tos17, which can be activated under controlled conditions, 
is also available for the study of the insertion mutant lines of japonica rice cultivars 
(see under SNP markers for rice).

Nipponbare

Nipponbare (Miyao et al. 2003, 2007), is the web resource that provides informa-
tion on the rice Tos17 mutant rice lines with flanking sequences of insertion.

Maize Enhancer/Suppressor Mutator

The maize Enhancer/Suppressor Mutator ( En/Spm) element has also been used as 
an effectivetool for the study of functional genomics in maize cultivars (Kumar 
et al. 2005).

Enhanced Trap (ET)/Gene Trap (GT)

The enhancer trap (ET) and the gene trap (GT) genetic constructs have been cou-
pled with T-DNA and Ac/Ds transposons, and can facilitate discovery of genes ad-
jacent to promoter or enhancer activities sites in plants (Sundaresan et al. 1995; An 
et al. 2005).

OryGenes DB

OryGenesDB is a database that integrates information of available insertion mutant 
resources in rice (Droc et al. 2009). There are a number of resources for insertion 
mutant populations with insertion site index and tagged data available for various 
other plant species (Kuromori et al. 2009)

Activation�Tagging

Activation tagging (AT) is another popular method for generating gain-of-function 
mutant lines. The method uses T-DNA or a transposable element containing the 
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cauliflower mosaic virus 35S enhancer (Weigel et al. 2000). Transcriptional activa-
tion of genes near the insertion aids in novel phenotype identification and identifies 
genes that are redundant and/or essential for survival. AT resources have now been 
used to isolate genes from Arabidopsis, rice, petunia and tomato (Kakimoto 1996; 
Zubko et al. 2002; Mathews et al. 2003; Mori et al. 2007). Recently, AT systems 
using transposons of maize En/Spm or Ac/Ds have been developed in Arabidopsis, 
rice and soybean (Weigel et al. 2000; An et al. 2005: Schneider et al. 2005; Qu 
et al. 2008; Kuromori et al. 2009). Web-based sites for genotype tagging and mutant 
lines, and their purpose and URL are detailed in Table 2.11.

Fox�Hunting

The FOX gene hunting system has been developed as an efficient gain-of-function 
system that combines a transformation algorithm with large-scale information from 
full-length cDNA clones (Ichikawa et al. 2006). The system can be applied across 
plant species, like the development of a set of full-length rice cDNA clones aimed 
at ‘in planta’ high-throughput screening of rice functional genes; but with Arabi-
dopsis set as the host reference species (Nakamura et al. 2007; Kondou et al. 2009). 
Similar results (overexpressors using cDNA) have been achieved in tobacco (Lein 
et al. 2008).

Chemical�and�Physical�Mutagenesis

Spontaneous and induced mutations are the major source of most of the existing 
genetic variation in plants, and are commonly used in plant breeding. The occur-
rence of spontaneous mutations in nature is relatively rare and difficult to identify 
because they can be recessive, or are deleterious and quickly eliminated. Increasing 
the rate of mutation (ie induced mutations) can provide additional sources of variant 
genotypes important in plant breeding. Mutagenic agents include alkylating agents, 
ethyl methanesulfonate (EMS), sodium azide and methylnitrosourea (MNU), or 
X-ray and UV-light, fast-neutrons, ion-beam irradiationand nuclear (alpha, beta, 
gamma rays) radiation. Alkylating agents that react with DNA to change nucleotide 
sequences produce relatively few useful point mutations. However, the absorption 
of ionising radiation produces more complex DNA and structural chromosomal 
changes, and are considered the mutagenic agents of choice in plant breeding appli-
cations, however most of these mutagenic agents have been used to generate mutant 
populations for many years now; these mutant lines have been particularly useful 
in forward genetics studies in various plant species (Hoang et al. 2009; Uauy et al. 
2009; Jackson et al. 2011).

Mutations can occur in tissue cultured plantlets and the process can be rapid; this 
process is sometimes called ‘somaclonal variation’ and these plants have also found 
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value in plant breeding. In recent years the use of tissue culture in combination with 
radiation induced mutations have resulted in a number of desired genotypes in rice, 
and a number of these have been used directly or indirectly in breeding programs 
(Hoang et al. 2009; Rahman et al. 2012). Some web sites and URL for developing 
mutant lines, analysis and use in crop breeding are detailed in Table 2.11.

TILLING

Targeting induced local lesions in genomes (TILLING) was developed as a reverse-
genetics tool that provides an allelic series of induced point mutations in genes of 
importance (Till et al. 2004, 2006). Because high-throughput TILLING permits the 
rapid and low-cost recovery of induced point mutations in populations of chemical-
ly mutagenised individuals, the methods employed have had a level of acceptance 
and have yielded informationon various animal and crop plant species.

EcoTILLING

The TILLING methodology can also be used to explore allelic variations that ap-
pear in natural populations; this technology is called EcoTILLING (Comai et al. 
2004; Wang et al. 2006). Several laboratory sites have established TILLING and/
or EcoTILLING centers for researches in the public domain (Barkley and Wang 
2008). TILLING mutagenic lines and projects in rice, tomato, soybean and Arabi-
dopsis have been performed at the University of California, Davis Genome Centre.

RevGenUK

RevGenUK at the John Innes Centre provides TILLING service for population 
studies and information in Medicago trunculata, Lotus japonica and Brassica rapa.

UTILLdb/ INRA

UTILLdb of INRA is another database for TILLING populations of pea and tomato 
that provide an interface to search for TILLed crop lines based on phenotype de-
scriptions.

Gene�Silencing�Techniques

Although insertion mutagenesis is an effective method for generating loss-of-func-
tion mutants, it has severe limitations in use with redundant genes and lethal muta-
tions. To overcome these limitations, methods to interrupt gene expression have 
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been developed and applied to the functional analysis of plant genes. Some web 
sites and URL for gene silencing are detailed in Table 2.11.

RNAi

RNA interference (RNAi) is a method for RNA-mediated gene silencing by se-
quence-specific degradation of homologous mRNA, triggered by double-stranded 
RNA (dsRNA); also known as post-transcriptional gene silencing (PTGS) (Water-
house et al. 1998; Chuang and Meyerowitz 2000).

ihp RNA

Constitutive expression of an intron-containing self-complementary hairpin RNA 
(ihpRNA) has been another method for silencing target genes in plants. With de-
mands for conditional silencing of target genes (the most useful silencing in genet-
ics is that which results in prevention of plant regeneration or embryonic lethality), 
RNAi systems using chemical-inducible Cre/LoxP recombination or a promoter of 
heat shock inducible genes have been developed (Guo et al. 2003; Masclaux et al. 
2004).

CATMA

In Arabidopsis, the Complete Arabidopsis Transcriptome MicroArray (CATMA) 
project has been initiated to design and produce high-quality gene-specific and gene 
silencing sequence tags (GSTs) covering most of the Arabidopsis genome.

AGRIKOLA

Using the GST data set of the CATMA project, the Arabidopsis Genomic RNAi 
Knock-out Line Analysis (in AGRIKOLA) project has also been started, with the 
goal of systematically analysing Arabidopsis genes by RNAi interference (Hilson 
et al. 2003). The Medicago trunculata RNAi database is also available on this web 
site as an information resource for RNAi-based gene silencing.

VIGS

Virus-induced gene silencing (VIGS) is a derivative method of the ones above that 
takes advantage of the plant RNAi-mediated antiviral defence mechanism, via RNA 
interference. The VIGS system was used to assess the function of almost 5000 ran-
dom Nicotiana benthamiana cDNAs in disease resistance (Lu et al. 2003a, b).
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CRES-T

The chimeric repressor silencing technology (CRES-T) system was developed as 
a novel method for gene silencing, and a plant specific repression domain that act 
as a repressor in transgenic plants; and these can inhibit the expression of target 
genes (Hiratsu et al. 2003). The CRES-T system has been applied to Arabidopsis in 
order to analyse their biological function, and to obtain transgenic plants with agro-
nomically preferable traits. An associated database, FioreDB (Mitsuda and Ohme-
Takagi 2009) also provides gene silencing information through chimeric repression 
in flowers.

Plant Comparison Genomics and Databases

The accumulation of nucleotide sequences for many of the agricultural crop species 
and domestic animals, will allow us to perform genome-wide comparative analy-
ses with the aim of discovering new and important genes involved in phenotypic 
expression (Sato and Tabata 2006; Itoh et al. 2007; Neale and Ingvarsson 2008). 
The accumulation of genomic resources derived from various species, such as the 
extensive collection of cDNAs, ESTs and data from whole-genome sequencing, 
should facilitate sharing of information about gene function between model plants 
and other less described crop plants. In time this will also accelerate molecular and 
cellular systems related to agronomically important traits. A number of information 
resources for plant genomics comparisons and data exchange on the web have ap-
peared, along with appropriate analytical tools. Here we highlight integrative data-
bases promoting complete plant comparative genomics that we have not described 
previously. The URLs of each integrative database in plant genomics are shown in 
Table 2.12.

Plant�Portal�Information

TAIR

TAIR is one of the most popular and integrated information resources in plants, 
and although mentioned before it plays important roles as a portal in Arabidopsis 
research (Swarbreck et al. 2008).

SIGnAL

The Salk Institute Genomic Analysis Laboratory (SIGnAL) is also an information 
resource that integrates various data sets of whole plant‘omics’ results, again mainly 
related to Arabidopsis.
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Table 2.12   Integrative databases for Comparison Genomics Database analysis in plants
Database Name Plant Species/Purpose Uniform Resource Locator 

(URL)
SIGnAL: Salk Institute 

Genomic Analysis 
Laboratory Home Page

Salk insertion sequence data-
base; Rice, Arabidopsis 
included, also Human data

http://signal.salk.edu/

RARGE- RIKEN Ara-
bidopsis Genome 
Encyclopedia

Site for downloading a number 
of important web brows-
ers and search engines for 
Arabidopsis

https://database.riken.jp/sw/en/
RIKEN_RARGE_Promoter/
ria12i/

WebGBrowse Generic genome browser used 
for display along reference 
sequences

http://webgbrowse.cgb.indiana.
edu/cgi-bin/webgbrowse/
uploadData

GBrowse.org Home Page Portal for entry to software, 
repository, and browsers

http://www.gbrowse.org/index.
html

Generic Model Organ-
ism Database Proj-
ect—Generic Genome 
Browser at SourceForge.
net

A free and easy to use database 
and browser in a number of 
different languages

http://sourceforge.net/projects/
gmod/files/Generic%20
Genome%20Browser/

Sol Genomics Network Solonaceae website for QTL 
and molecular breeding; 
mainly tomato

http://nar.oxfordjournals.org/
content/early/2010/10/08/
nar.gkq866.full

SoyBase.org SoyBase and soybean breed-
ers toolbox; molecular and 
physiological data present

http://soybase.org/

MaizeGDB Maize informatics; molecular 
and physiological data 
present

http://www.maizegdb.org/

Plant Genome Duplication 
Database

Database to catalogue whole 
plant genomes; focus on 30 
agronomic flowering plants

http://chibba.agtec.uga.edu/
duplication/

GRASSIUS: Plant Genome 
Project

Systems approach to identify 
regulatory netwirks in 
grasses

http://grassius.org/plantgenome.
html

GRASSIUS: About Home Page for extensive web 
resource for gene expres-
sion, and regulation in 
grasses

http://grassius.org/about.html

GRASSIUS: GrassTFDB: 
Transcription Factor 
Database

Transcriptional factors database 
for grasses; maize, sugar-
cane, sorghum and rice

http://grassius.org/grasstfdb.
html

LegumeTFDB Digital library and database 
for legume transcriptional 
factors

http://dl.acm.org/citation.
cfm?id=1707758

SoybeanTFDB Digital library and database 
for legume transcriptional 
factors

http://soybeantfdb.psc.riken.jp/

http://signal.salk.edu/
https://database.riken.jp/sw/en/RIKEN_RARGE_Promoter/ria12i/
https://database.riken.jp/sw/en/RIKEN_RARGE_Promoter/ria12i/
https://database.riken.jp/sw/en/RIKEN_RARGE_Promoter/ria12i/
http://webgbrowse.cgb.indiana.edu/cgi-bin/webgbrowse/uploadData
http://webgbrowse.cgb.indiana.edu/cgi-bin/webgbrowse/uploadData
http://webgbrowse.cgb.indiana.edu/cgi-bin/webgbrowse/uploadData
http://www.gbrowse.org/index.html
http://www.gbrowse.org/index.html
http://sourceforge.net/projects/gmod/files/Generic%20Genome%20Browser/
http://sourceforge.net/projects/gmod/files/Generic%20Genome%20Browser/
http://sourceforge.net/projects/gmod/files/Generic%20Genome%20Browser/
http://nar.oxfordjournals.org/content/early/2010/10/08/nar.gkq866.full
http://nar.oxfordjournals.org/content/early/2010/10/08/nar.gkq866.full
http://nar.oxfordjournals.org/content/early/2010/10/08/nar.gkq866.full
http://soybase.org/
http://www.maizegdb.org/
http://chibba.agtec.uga.edu/duplication/
http://chibba.agtec.uga.edu/duplication/
http://grassius.org/plantgenome.html
http://grassius.org/plantgenome.html
http://grassius.org/about.html
http://grassius.org/grasstfdb.html
http://grassius.org/grasstfdb.html
http://dl.acm.org/citation.cfm?id=1707758
http://dl.acm.org/citation.cfm?id=1707758
http://soybeantfdb.psc.riken.jp/
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RARGE

The RIKEN Arabidopsis Genome Encyclopaedia (RARGE) is a portal site provid-
ing a gateway for access to comprehensive ‘omics’ data and/or bioresources (Saku-
rai et al. 2005). The site also house cross-referenced data between each described 
gene and its description, such as full-length cDNA clones, gene mutants, gene ex-
pression patterns, homologous genes and phenotypic expression.

Gbrowse

Web browsers are commonly used to visualize genes along with genome sequences 
and associated information, genome browsers such as Gbrowse have been very of-
ten used (Donlin 2007).

Gramene

Gramene is a popular site for integrated rice information and plant comparative 
genomics in grasses. Gramene offers integrated genome associated data including 
sequences and molecular markers, but is also an important QTL database for breed-
ing in Gramineae species (Ware 2007; Liang et al. 2008).

Sol Genomics

The integration of a number of resources have recently been completed for various 
individual plant species. The Sol genomics network is a portal site for Solanaceae 
species that includes information on the tomato and potato genome sequencing 
projects (Mueller et al. 2005; Mullins et al. 2006).

Soybase

SoyBase is a resource portal and repository site for genomic soybean research and it 
includes released whole-genome sequence data for this important crop plant.

Maize GDB

The MaizeGDB is the community database for biological information about Zea 
mays, and includes genetic and genomic data sets and other related information on 
maize (Lawrence et al. 2004).
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Genome-wide�Comparison�in�Plants

The completion of a number of genome sequencing projects in plants has increased 
information on genome-scale comparative analyses and data that facilitate identi-
fication of conserved and/or characteristic properties between plant species. Using 
model and inferred proteome data deduced from sequenced genomes of plants has 
enabled several efforts to completed and construct comprehensive gene families 
in other species for comparison. The aim of establishing platforms to verify and 
compare gene content and elucidating the process of gene duplication and func-
tional diversification among species is on the way (Sterck et al. 2007). Web-based 
sites for genome-wide comparison in plants, their purpose and URL are detailed in 
Table 2.11.

Markov Clustering and Multi Dimensional Scaling

Comprehensive gene family data sets are usually produced by computational pro-
cedures including a step that conducts an all-against-all sequence similarity search 
matrices, and then a step for building clusters of protein families by methods such 
as Markov Clustering (MCL), multi dimensional scaling (MDS) (see Sects. 2.5, 3.4 
and 5.1; programs and statistical URL sites are listed in Table 2.1).

PGDD

Correlated gene arrangements among taxa, along with chromosomal location, also 
known as synteny and collinearity, have become valuable sites for inference of 
shared ancestry amongst genes, and for transfer of knowledge from one species to 
another related species (Tang et al. 2008a). The plant genome duplication database 
(PGDD) provides a data set of intra-genome or cross-genome syntenic relation-
ships identified throughout genome-sequenced plant species at present (Tang et al. 
2008b).

Databases�for�Plant�Genomics

Databases housing sets of genomic information and annotations of cross-reference 
species are now essential for a better understanding of the biology of plants, in 
particular gene families and/or particular cellular processes. In plants, the genome-
wide identification of genes encoding transfer factors (TFs) in Arabidopsis have 
been reported, and comparisons with other organisms revealed important informa-
tion (Riechmann et al. 2000; Guo et al. 2008). Further integration of such data must 
be performed, establishing an integrative, knowledge-based resource across related 
plant species in terms of comparative genomics of regulation processes. A number 
of general and specific web-based crop plant databases, their purpose and URL are 
detailed in Table 2.11.
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GRASSIUS

GRASSIUS provides the first step toward building a comprehensive platform for 
integration of data, tools and resources in comparative regulatory genomics across 
the grass species (Yilmaz et al. 2009).

Grass TFDB

The Grass Transcription Factor Database (GrassTFDB) of GRASSIUS houses in-
tegrated information on a number of important crop species, and the species listed 
below in Sect. 7.3.3 are all available.

Crop Plant Specific Databases

GRASSIUS contains MaizeTFDB, RiceTFDB, SorghumTFDB, SugarcaneTFDB 
and Brachypodium TFDB.

Legume TFDB

The LegumeTFDB provides predicted TF encoding genes in the genome sequences 
of three major legume species: soybean, L. japonicus and M. trunculata; and is an 
extended version of the Soybean TFDB site below.

Soybean TFDB

SoybeanTFD is aimed at a more integrated knowledge base for legume TFs, provid-
ing a public resource for comparative genomics of the TFs of legumes, non-legume 
plants and even other organisms (Mochida et al. 2009c, 2010).

Conclusions and Future Perspective

High-throughput DNA technological advances have provided new opportunities to 
develop collections of related genomic and proteomic information for crop plants, 
never before available to plant and agricultural scientists. Such comprehensive ap-
proaches can provide an excellent starting point for integrating knowledge and al-
lowing the comparison among, and within crop species. This approach promises to 
be an efficient way to discover new information on genes and their function that are 
important in crop improvement. However there is much research still to be done!
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Pyrosequencing procedures, massive parallel DNA sequencing and single mol-
ecule sequencing are now becoming normal and readily available to scientists. Ad-
ditionally, these new technologies have provided researchers with new avenues to 
addressed web information at the entire genome level in the fields of inter-species 
and intra-species comparative genomics and evolutionary genetics. In evolution-
ary and population genetics, knowledge of genetic diversity, natural and induced 
variations and population structure are not only important in ecology, but are also 
important to the breeding and biodiversity of crop plants in agriculture.

New and efficient procedures for whole-genome de novo sequencing in crop 
plants is perhaps one of the most anticipated innovations for next-generation se-
quencing and related applications. Although, to date, this approach has been real-
ized only in bacteria, a number of tentative attempts are being made to realise this 
advancement in higher plants, and this must be developed further in crop species.

Breeding crop plants for QTL and traits with low heritability can be the most 
interesting and the most difficult to work with in breeding programs, but marker as-
sisted selection (MAS) is improving all the time and stable, specific more informa-
tive molecular markers must be developed for crop plants. In crop plants especially 
these traits with low heritability can be important in improving yield, quality and 
production, and despite being difficult to master must be addressed.

Expressed Sequence Tags (ESTs) derived from different and specific tissues, 
including tissues from organisms in a range of developmental stages or under biotic 
and abiotic stress could significantly facilitate gene discovery, and this information 
is vital in the design of molecular markers and probes for microarrays and gene-chip 
studies. Full-length cDNA libraries have contributed to function alanalysis by creat-
ing overexpressors used in reverse genetics, and this approach is only beginning to 
be applied in crop plants. However for results to be easily interpreted, reverse genet-
ics must be used in conjunction with comparative analyses of ‘modificon’ events 
among plants.

RNA interference, includingsRNAs, microRNAs (miRNAs), short interfering 
RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs) are playing important roles 
as crucial components of epigenetic processes, and gene networks involved in plant 
development and homeostasis. More information on identification and expression 
of interfering RNA molecules is necessary, especially by using next-generational 
genomic technologies in crop plants.

Measurement in abundance of transcripts expressed in cells, tissues and organs 
can now be estimated from sequence clusters. These methodological principle have 
been applied in human and mouse, in the form of a type of ‘tissue or organ map’ to 
derive the transcriptome in organs; and such ‘plant tissue and organ’ mapping could 
be instrumental as reference material for increased crop production.

Differential display methods are now cost effective and produce large amounts 
of data. Serial analysis of gene expression (SAGE) and derivatives of this method 
can genetically define host cells and their pathogens simultaneously in crop plants, 
and additionally superSAGE tags have been used to design probes directly for oligo 
microarrays in plants and pathogen alike. Microarray and DNA chip-related tech-
nologies have advanced rapidly and their application has expanded to a wide variety 
of crop science disciplines. Today commercially available DNA microarrays are 
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becoming easier and cheaper to obtain, which promises increased availability of 
‘transciptome’ information in all plants

Functional proteomics, including quantitative proteomics, subcellular pro-
teomics and various modifications of proteins and polypeptides, and protein-protein 
and protein-DNA interactions are new and essential technologies to develop in crop 
plants. The MALDI or ESI MS methods are still popular and important, but more 
recent MS procedures must be considered and used in crop plants to obtain high res-
olution, high sensitivity, high dynamic range and high mass measurement accuracy.

Difference gel electrophoresis (DIGE), isotope-coded affinity tags (ICATs) and 
isobaric tags for relative and absolute quantitation (iTRAQ) of proteins will enable 
a better insight into basic regulation of proteins and polypeptides. Stable isotope 
labelling with amino acids in cell culture (SILAC) combined with MS-MS Analysis 
(using differential isotope analysis) are further improvements in protein determina-
tion important to crop plant proteomics.

Cell organelle analysis of their proteome and metabolite contents are essential 
for understanding the various enzymatic activities within cell organelles, the com-
partmentalisation of metabolic pathways, protein targeting, trafficking and regula-
tion, and polypeptide dynamics for many of the crop plants still to be investigated. 
Modificon research can be aimed to identify modified proteins, through protein 
phosphorylation and ubiquitination, and although these important studies are just 
beginning they are becoming more and more important to our understanding of 
plant metabolism.

Systematic collection of metabolite profiles and advances in instrumentation like 
NMR analysis will create new information in metabolomics. Chemical phenotype 
identification are important to develop in crop plants, which can be used to identify 
genes involved in particular metabolic pathways and cellular processes. This type of 
information is important to integrate with other ‘omics’ research, such as profiles of 
the transcriptome and proteome, now mainly available in Arabidopsis.

It is essential in crop breeding to associate and determine molecular, metabolic, 
genomic and proteomic diversity of species, cultivars and breeding lines in those 
plants. This will increase our knowledge and identify many of the genes involved in 
phenotypic changes, and would also aid in the identification of genetic associations, 
providing a strong basis for better utilisation of marker assisted selection (MAS), 
and the use of more stable and informative molecular markers in plant breeding.

T-DNA-tagged lines have emerged as a popular mutant resource, due to the 
rapid generation of large-scale mutant populations, but are not readily available in 
many crop plants. Activation tagging (AT) is a popular method for generating gain-
of-function mutants important in breeding, and a better knowledge across related 
breeding stocks and species in terms of comparative genomics. Computer assembly 
into gene families can verify gene content and elucidates gene duplication (poly-
ploidy).

Chemical mutagenic agents and physical mutagens should be utilised more often 
to obtain a comprehensive set of crop mutant lines, and then employ these to target 
induced local lesions in genomes (ie TILLING) as a tool for general reverse-genet-
ics, and RNA interference (RNAi) to screen for gene silencing and gene inactiva-
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tion. Gene silencing and virus-induced gene silencing (VIGS) can be used in crop 
plants to discover key genes involved in phenotypic differences.
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Abstract Plant tissue culture has emerged as a powerful and cost-effective tool for 
the crop improvement. Tissue culture is alternatively called cell, tissue and organ 
culture through in vitro condition. It can be employed for large scale propagation 
of disease free clones and gene pool conservation. Agricultural industry has applied 
immensely in vitro propagation approach for large scale plant multiplication of elite 
superior varieties. As a result, hundreds of plant tissue culture laboratories have 
come up worldwide, especially in the developing countries due to cheap labour 
costs. Tissue culture has been exploited to create genetic variability from which 
crop plants can be improved and to increase the number of desirable germplasms 
available to the plant breeder. The selection of somaclonal variations appearing in 
the regenerated plants may be genetically stable and useful in crop improvement. 
Available methods for the transfer of genes could significantly simplify the breed-
ing procedures and overcome some of the agronomic and environmental problems, 
which otherwise would not be achievable through conventional propagation meth-
ods. Transgenic crops resistant to pests, insects, diseases and other abiotic stresses is 
a great achievement in the field of plant biotechnology. This article is cover in vitro 
propagation and role of biotechnology in crop improvement.
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Introduction

Plant biotechnology involves a number of technologies and the techniques, methods 
and strategies involved in in-vitro culture are only a part of it. Plant tissue culture has 
now become a major component of this applied branch. Advances made in molecu-
lar biology can be manifested in plants through plant tissue culture. This technique 
is new and has changed the scenario of plant science (Hussain and Hasnain 2012). 
Apart from the conventional methods of pollination and cross fertilization, there are 
a number of methods for producing genetically modified plants. Last 20 years have 
witnessed a number of developments in this field. However, the modern molecular 
biological techniques are still under way to make a broad based development on 
crop improvement to raise a selected plant to the stage of cultivar release (Hussain 
et al. 2011). A number of recalcitrant crops are now able to regenerate using the 
techniques of in-vitro culture utilizing cells or calli or protoplasts in this process 
and each such explants can be used in genetic transformation (Davey et al. 2005). 
Now a days the application of tissue culture to various branches of plant science 
like plant breeding, horticulture, forestry, industrial production of compounds and 
conservation of ever depleting natural genetic resources has been the focal point of 
research (Roy et al. 2011).

Advancement in the techniques of protoplast, cell, tissue and organ culture and 
regeneration of whole plants has resulted in the development of tissue culture as a 
technology (Thorpe 2012). The technique has advanced rapidly over the years due 
to extensive investigations into problems related to basic and applied aspects of 
plants. The phenomenon of growth, metabolism, differentiation and morphogen-
esis can be well understood by the knowledge of tissue culture (Karkonen et al. 
2011). Plant tissue culture is of great interest to molecular biologists, plant breeders 
and industrialists. The methods of tissue culture have been used as an important 
aid to conventional methods of plant improvement. They have been used for the 
production of genetically modified superior clones, ex-situ conservation of germ-
plasm, pathogen free plants as well as in the synthesis of many important secondary 
compounds (including pharmaceuticals). The advantages offered by tissue culture 
in agriculture and general plant biotechnology have well been witnessed by many 
research labs and industries (Mustafa et al. 2011).

The conventional breeding programmes can be complemented by biotechnol-
ogy and expedite the crop improvement programmes. A large number of centres 
are involved in studies involving in vitro culture and selection, micropropagation, 
embryo rescue, genetic transformation, marker assisted characterization and DNA 
fingerprinting worldwide. Micropropagation protocols and somatic embryogenesis 
has been achieved in a number of important genera. Germplasm screening has be-
come successful due to the techniques of in vitro selections for antibiotic tolerance 
and fungal toxin resistance. Agrobacterium tumefaciens mediated transformation 
has been established in a number of cereal, fruit and vegetable crops (Azria and 
Bhalla 2011; Pons et al. 2012). A number of fruit ripening genes have been cloned 
and transferred into plants and DNA fingerprinting for genetic diversity analysis 
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has been conducted on many crop species (Shi and Zhang 2012, Chandel et al. 
2010). The technique of tissue culture helps in crop improvement through different 
approaches like breeding, wide hybridization, haploidy, somaclonal variation and 
micropropagation.

Approaches for Crop Improvement

Distant�Hybridisation

Crop improvement can be achieved by the methods of genetic transfer, whether via 
single gene, through genetic engineering, or multiple genes, through conventional 
breeding or tissue culture techniques. In angiosperms fertilization depends upon a 
number of factors which include, transfer of pollen grains from anthers to stigma, 
germination of pollen grains to produce a pollen tube, penetration of pollen tube to 
the stigma and the style to reach the ovule. The pollen tube discharge triggers and 
the two sperm nuclei then fuse with their respective partners i.e., the egg cell and 
the secondary nucleus which results in the formation of the embryo and endosperm 
respectively. However, this phenomenon can be stopped at any stage, resulting in 
a barrier to hybridization and thus, the inhibition of gene transfer between the two 
plants. However, in case of distant crosses involving individuals of different spe-
cies or genus, a number of barriers have to be overcome for hybridization to take 
place. These barriers include pre-fertilization barriers like failure of pollen tube to 
germinate or poor pollen tube growth which can be overcome by in vitro fertiliza-
tion (Dresselhaus et al. 2011) and post-fertilization barriers such as no endosperm 
development which may be overcome by embryo, ovule or pod culture. Protoplast 
fusion has been successful in producing the desired hybrids in plants where fertil-
ization can’t be induced by in vitro treatments (Ingram 2010).

In�Vitro Fertilization

In vitro fertilization has been used to obtain both interspecific and intergeneric hy-
brids by overcoming physiological based self-incompatibility. A large number of 
plant species have been obtained via pollination of pistils and ovules (Palanivelu 
and Preuss 2006). This range includes agricultural crops, such as tobacco, rice, 
corn, clover, poppy and cotton. Wide hybridization, pollination with abortive pol-
len, delayed pollination, and physicochemical treatment of the ovary can be used to 
produce haploids (Islam and Tuteja 2012). In vitro fertilization studies have helped 
to understand many important phenomena regarding pollination and fertilization. A 
glycoprotein, TTS was purified from tobacco stylar tissue, which supports pollen 
tube growth (Hancock et al. 2005)
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Embryo Culture

Poor endosperm development in wide hybridization results in embryo abortion dur-
ing post-zygotic events. The in-vitro embryo culture technique has been successful 
in overcoming the major barrier and solving the problems of low seed set, seed dor-
mancy, slow seed germination, including embryo growth in the absence of a symbi-
otic partner and the production of monoploids (Lin et al. 2011). The breeding cycle 
of a number of ornamentals like roses, orchids and banana and Colocasia has been 
reduced (Henning et al. 2004). A number of interspecific and intergeneric hybrids 
of a number of agriculturally important crops have been produced, including cotton, 
barley, tomato, rice, jute, Hordeum x Secale, Tripsacumx Zea and some Brassicas 
(Sanei et al. 2010; Tommonaro et al. 2012). At least seven Canadian barley cultivar 
were obtained from the material selected from doubled haploids originating through 
the bulbosum method of cross-fertilization and embryo rescue (Munoz-Amatrian 
et al. 2009). Monoploid wheat varieties have also been produced by this technique 
(Zhang et al. 2008). An in vitro spikelet culture system was developed to check the 
fruit set and early fruit development in rice crop. The cultured ovary of pollinated 
spikelets developed into fruits with an embryo and endosperm. While unpollinated 
spikelets when cultured on a medium containing 2,4-D, developed parthenocarpic 
fruits (Uchiumi and Okamoto 2010). An in-vitro protocol was developed for the 
culture of immature embryos of Medicago truncatula that permits their develop-
ment in a way comparable to that observed in plants (Ochatt 2011).

Protoplast Fusion

When hybrid plants cannot be produced by conventional breeding, the role of proto-
plast fusion comes into play which acts as a means of creating unique hybrid plants. 
Protoplasts can be obtained from a number of crop species (Wang et al. 2011). 
However, while protoplasts of any two plants can be fused by chemical or physical 
means, production of unique somatic hybrid production is limited by the ability to 
generate the fused product and sterility in the interspecific hybrids rather than the 
production of protoplasts. Nicotiana is the best example of the use of protoplast 
fusion to improve crop production. The somatic hybrid products of a chemical fu-
sion of protoplasts have been produced with modified alkaloid content and disease 
resistance of commercial tobacco cultivars (Patel et al. 2011).

The genetic components needed for taxol synthesis in Taxus chinensis var. mairei 
were transferred to a more tractable plant Bupleurum scorzonerifolium. RAPD data 
of the hybrid genome confirmed the presence of 82.4–96.8 % genome of B. scor-
zonerifolium and 4.6–13.9 % from the donor i.e., T. chinensis (Zhang et al. 2011).

Haploids

The significance of haploids in genetics and plant breeding has been realized for a 
long time. However, their exploitation remained restricted because of the extremely 
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low frequency with which they occur in nature (usually 0.001–0.01 %). Spontane-
ous production of haploids usually occurs through the process of parthenogenesis 
(embryo development from an unfertilized egg). However, they reproduce the char-
acters of the male parent alone suggesting their origin through ovule androgenesis 
(embryo development inside the ovule by the activity of the male nucleus alone). 
Haploid plants have the gametophytic number of chromosomes (Atanassov et al. 
1995; Zapata Arias et al. 1995). The production of haploids in tomato has been tried 
and is still at a poor stage of development. The process of early embryogenesis from 
isolated microspores and the disruption of normal meiotic development and change 
of developmental fate towards callus proliferation, morphogenesis and plant regen-
eration have been shown in tomato by using light and electron microscopy (Segui-
Simaro and Nuez 2007). For cell culture studies and breeding in flax, haploid and 
double haploid material and homozygous lines need to be produced. Anther culture 
has proved to be the most successful method producing doubled haploid lines in 
flax (Obert et al. 2009).

A fast and cheap method to obtain pure or homozygous lines is a priority for 
hybrid seed production in important crop plants. Pure lines can be produced tra-
ditionally by inbreeding and selection techniques, which are time consuming and 
costly. Alternatively, it has become possible through a biotechnological approach to 
accelerate the production of homozygous lines i.e., the induction of androgenesis to 
generate double haploid plants. Androgenesis reduces this process to a single gen-
eration, which implies time and cost saving. Due to these advantages, androgenic 
doubled haploids are the choice in a number of important crop plants where the 
methodology is well set up. In solanaceae family, crops like eggplant and pepper 
anther cultures are used for doubled haploid production and recent advances in the 
knowledge of embryo development are opening new ways to achieve the final goal 
of an efficient protocol in recalcitrant species (Segui-Simaro et al. 2011).

Gynogenesis is the phenomenon of production of whole plants from the unfer-
tilized ovules. In Gentian ( Gentiana triflora, G. scabra and their hybrids) an or-
namental flower, unfertilized ovules were cultured in a medium containing a high 
concentration of sucrose (Doi et al. 2011) results in production of young plantlets. 
Although the embryos showed genotypic variation, all the genotypes gave response. 
The ovules collected from flower buds just before anthesis showed higher response. 
The dark culture condition also gave more number of haploid embryos as in 16-hour 
light condition.

Somaclonal�Variation

The phenotypic variation of plants regenerated from cell culture is referred to as so-
maclonal variation. Apart from the mutant cell lines and plants obtained as a result 
of mutations many variants have been obtained through the tissue culture process 
cycle itself. The somaclonal variants may be genetic or epigenetic and are usually 
observed in the regenerated plantlets (Velker et al. 2012). These are dependent on 
the natural variations in a population of cells. Somaclonal variation may be due to 
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pre-existing genetic differences in the cells or variations induced by tissue culture. 
The variation may be created through several types of mutations like inversion, 
deletion, duplication, gene amplification or de-amplification, by the activation of 
transposable element, point mutations, or re-activation of silent genes in multigene 
families (Karp 1994). Many aspects of the mechanism of somaclonal variation re-
main undefined, however in rice transposition of retrotransposons is one of the main 
causes of somaclonal variation (Pistelli et al. 2012). Somaclonal variation may also 
be induced in cultures via tissue culture process as reported in Saintpaulia sp. (Sato 
et al. 2011). A number of somaclonal variations observed in in vitro raised regener-
ants have been found to be of agricultural and horticultural significance. Some of 
such important alterations include chloroplast and chromoplast physiology, growth 
and development of the plant, seed yield, morphology of the flower and leaf, pro-
duction of essential oils, fruit solids and disease resistance. Many of the important 
crops including wheat, rice, oats, maize, sugarcane, alfalfa, tobacco, tomato, potato, 
oil seed rape and celery have been observed with such variations (Karp 1994). This 
variation can also be obtained from gametic tissue.

One of the most important advantages of somaclonal variation is the induction 
of more genetic variability in economically important crops (Schellenbaum et al. 
2008). In vitro selection of such somaclonal variants or rapid plant screening meth-
ods will be valuable. Enhancement in some somaclonal variants has been reported 
under in vitro conditions that include resistance to diseases, pathotoxins and herbi-
cides or tolerance to different stress conditions (Zebrowska 2010).

Micropropagation

Propagation of Plants

Almost all types of plants can now be regenerated into plantlets from explants or 
callus. Thus, majority of the plant species have now well established micropropaga-
tion protocols and at present among the different techniques of plant tissue culture 
technology micropropagation is of widest use (Loyola-Vargas and Ochoa Alejo 
2012). At present there are a number of tissue culture firms involved in in vitro mul-
tiplication, elimination of pathogens, storage of germplasm, genetic manipulation 
and plant-breeding programs (Ding et al. 2008). Micropropagation plays a major 
role in crop improvement. However, there are several limitations to the use of this 
technique. Up to 70 % of the production costs of micropropagation are required to 
fulfill the cost of labour needed to transfer tissue repeatedly between vessels and for 
asepsis. Tissue culture laboratory is greatly affected by the problems of vitrification, 
acclimatization and contamination (Doran 2009). A large number of desirable eco-
nomic traits are lost in the tissue-cultured products due to genetic variation in cul-
tured lines, such as polyploidy, aneuploidy and mutations. Enhancing axillary-bud 
breaking, production of adventitious buds and somatic embryogenesis are the three 
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methods of micropropagation. In the latter two methods, differentiated structures 
arise directly or indirectly from callus. Axillary bud breaking produces very less 
number of plantlets as the number of shoots cultured is affected by the number of 
axillary buds cultured. However, it is the most widely used method in commercial 
micropropagation as it produces the most true to type plantlets. Adventitious bud-
ding is advantageous as bud primordial may be formed on any part of the inoculums 
(Brown and Thorpe 1996). Unfortunately, largest number of plantlets can be pro-
duced by somatic embryogenesis but only limited numbers of species respond to it. 
The use of bioreactors helps in large scale production of somatic embryos and their 
delivery in the form of synthetic seeds.

Synthetic Seeds

Synthetic or artificial seed is analogous to a zygotic seed and may be defined as a 
somatic embryo encapsulated inside a coating (Redenbaugh 1993). Synthetic seeds 
may be of different types: somatic embryos in a coating of water gel, dried and 
coated somatic embryos, suspended in a fluid, and buds encapsulated in a water gel. 
The use of synthetic seeds is advantageous over the traditional micropropagation 
protocols as it may have a cost of saving, as the labour intensive step of transfer-
ring plants from in vitro to field conditions. Other applications of synthetic seeds 
include the male sterile and parental line maintenance, for hybrid crop production 
and the preservation and multiplication of woody plants that have long juvenile 
developmental phase (Marimuthu et al. 2011). However, before the widespread of 
this technology, somaclonal variation has to be minimized. The production of high 
quality embryos at large scale must be perfected in the desired species and the mi-
cropropagation protocols will have to be cost-effective compared with existing seed 
or technologies.

Pathogen Eradication

The crop plants multiplying through vegetative propagation are generally infected 
with pathogens. Although in many cases the presence of the pathogen may not be 
obvious, but the yield or quality may be substantially reduced due to infection. In 
vitro culture has helped in increasing the yield of many crop plants. In China, virus 
free potatoes, produced by in vitro culture gave higher yields than the normal field 
plants with increase up to 150 % (Meiyalaghan et al. 2011). Seeds are responsible 
for only 10 % of viral infection, therefore, careful propagation from seeds can elimi-
nate most of the viruses. The viruses are not distributed uniformly in the plant and 
the apical meristems are usually free from viruses (Wang and Valkonen 2008). The 
culture of the apical meristem coupled with chemo or thermo-therapy, have been 
used to produce virus-free material for micropropagation (Cantrill et al. 2005).
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Germplasm Preservation

Conservation of germplasm, under in vitro storage can be done by slow growth 
conditions i.e., at low temperature or by fortifying the medium with growth retard-
ing compounds. This is usually done by cryopreservation or by desiccated synthetic 
seeds (Silva et al. 2012). All such technologies depend on reducing or stopping 
growth and metabolic activity. However, the limiting factors are lack of a com-
mon method suitable for all species and genotypes, the expenditure and somaclonal 
variations and non-intentional cell-type selection in the preserved material e.g., cell 
divisions resulting in aneuploidy at low temperature or non-optimal conditions giv-
ing a particular cell type a selective growth advantage (Hajari et al. 2011).

Plant Tissue Culture, a Back Bone to Genetically Modified 
(GM) Crops

The expression of heterosis via hybrid vigour could be realized by performing pol-
lination under controlled conditions as this leads to the development of new genera-
tions that performed better in the field than either of the parents and the progeny of 
the subsequent generation. Manipulation of the genetic makeup is one of the major 
activities in plant breeding, thus, a availability of genetic diversity is the prerequi-
site in plant breeding (Shefferson and Roach 2012). And the role of biotechnology 
and tissue culture comes into play in this area for creating genetic diversity and ma-
nipulating genetic variability. Although there is still lot of integration required most 
of the plant biotechnology and plant breeding programmes, but field trials of trans-
genics have now become much more common. Therefore, the modern technologies 
have revolutionized the advancements in the crop improvement programmes and it 
has been predicted for more than a decade (Ranganath 2011).

Various plant species are being modified genetically, either by vector dependent 
e.g., Agrobacterium or vector independent, which includes biolistic, micro-injection 
and liposome methods (Tagaki et al. 2011; She et al. 2012). In majority of the cases, 
tissue culture technology has been used to recover the modified cells or tissues. In 
fact, plant tissue culture techniques have played a major and important role in the 
development of genetic engineering. Plant tissue culture has helped in achieving 
many great successes in the field of transgenics. Davis and Reznikov (1992) have 
set milestones in the field of plant biotechnology by using a range of protoplast, 
microscope, tissue and organ culture protocols in many crop plants. Development 
of efficient transformation methods can enable the possibility of obtaining trans-
genic events that are devoid of marker gene/s upfront. Eggplant, an economically 
important vegetable crop does form only a non-significant percentage of agricul-
tural production as it is susceptible to a number of pathogens with bacterial and 
fungal wilts being most devastating. A crop improvement approach has been de-
veloped which involves an Agrobacterium mediated transformation from two types 
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of egg plants, a Solanum melongena L. breeding line, and S. melongena L. Black 
egg plant (Todaro et al. 2011). The use of leaf derive callus for the generation of 
stably transformed maize plants has been reported (Ahmadabadi et al. 2007; Chen 
et al. 2010). This method combines both conventional breeding and biotechnologi-
cal techniques. Genetic transformation using Agrobacterium tumefaciens mediated 
transformation has been reported in mango, an important fruit crop (Krishna and 
Singh 2007; Singh et al. 2011). A technique for developing transgenics without the 
use of any selectable marker gene has been developed in peanut by taking advan-
tage of high and consistent transformation potential of this crop (Bhatnagar et al. 
2010). The technique of genetic engineering especially gene transfer depends upon 
plant tissue culture for the foreseeable future (Budzianowska 2009).

Besides this backcloth, a number of transgenic crops have been developed and a 
few are being grown in many parts of the world and these crops are either herbicide-
tolerant or insect resistant.

Insect�Resistance

For 21st century, the demands of sustainable agriculture were fulfilled by the ge-
netically engineered crop resistance to insect pests that offers the prospective us-
er-friendly environment and consumer friendly method of crop production. These 
biotech crops are genetically modified with Bacillus thuringiensis (Bt) endotoxins 
for insect resistance and the development of Bt crops stands as one of the most out-
standing successes of transgenic plant biotechnology (Table 3.1). The Bt is a strong 
biological insecticide, which comprises of crystal protein endotoxin that is pro-
duced by some stains of soil bacterium Bacillus thuringiensis (Goudar et al. 2012). 
The Bt crystal (cry) genes are toxic to lepidopterans (Cohen et al. 2000), dipterans 
(Andrews et al. 1987) and coleopterans (Herrnstadt et al. 1986). Bt cry protein is 
toxic to insects (BANR 2000) and non-toxic to humans and animals. The Bt toxin 
gene was first discovered by Ishiwaki in 1901, in diseased silkworms and the first 
Bt toxin gene was cloned in 1981 (Jain et al. 2007). In 1986, the field test of trans-
genic tobacco expressing Bt toxin was performed. Moreover, in 1988 the first GM 
plant of japonica rice was produced and after that indica rice in 1990 (Ahmad et al. 
2012). Now the biotech crops are grown globally including soybean, maize, cot-
ton, canola, squash, papaya, sugar beet and tomato and the global biotech crop area 
derives soybean, corn, cotton and canola (Brookes and Barfoot 2011). The avail-
able data this time showed that biotech crops like soybean accounted the largest 
share (52 %) followed by corn (30 %) and canola (5 %). 16.7 million farmers across 
29 countries (10 industrialized and 19 developing countries) planted 160 million 
hectares of biotech crops in 2011 and 90 % were small and resource poor farmers in 
developing countries (James 2010; Ahmad et al. 2012). However the combination 
of transgenic expression and improved protein stability has resulted even death of 
the Bt-resistant insects (Chougule and Bonning 2012; Kota et al. 1999). But now 
a days other insecticidal proteins like lectins, antibodies, protease inhibitors, wasp 
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and microbial insecticides, spider toxins and insect peptide hormone have been dis-
covered (Whetstone and Hammock 2007; Van Damme 2008). For instance, bacte-
rium Photorhabdus luminescens produces photorhabdus toxin, which is an alterna-
tive to Bt for transgenic production. And the combination of photorhabdus toxins 

Table 3.1   Transgenic plants expressing genes for insect and disease resistance
Plant Gene Resistance to Reference

Potato Cry1Ab Potato tuber moth Kumar et al. (2010)
Rice Cry1Ab Lepidopteron Qi et al. 2009
Tobacco Magi6 peptide Spodoptera frugiperda Hernández-Campuz-

ano et al. 2009
Rice (Indica, Basmati) Cry1Ac, Cry2A YSBa Bashir et al. (2005)
Rice (Indica, Ming-

huli 63)
Cry2A YSB Chen et al. (2005)

Rice (Indica, Ming-
huli 63)

Cry1Ac, Cry2A, Cry9c YSB and Asiatic rice 
borer

Chen et al. 2008

Rice (Elite 
Vietnamese)

Fused gene, Cry1Ab-
1B and hybrid 
Bt gene, Cry1A/
Cry1Ac

YSB Ho et al. (2006)

Indica pusa basmati 1, 
Japonica, Tainung 
67

Potato proteinase 
inhibitor 2 (Pin 2)

YSB Bhutani et al. (2006)

Indica basmati 370 Cry1Ac, Cry2A YSB Riaz et al. (2006)
Rice (Korean variet-

ies) P-I, P-II, P-III
Cry1Ab YSB Kim et al. (2008)

Rice (Zhuxian B) Sbti + GNA Leaf folder + BPH Li et al. (2005)
Indica rice Cry1Ab, Cry1Ac, gna YSB Ramesh et al. (2004)
Indica rice Cry1Ab, Cry1Ac YSB Alcantara et al. (2004)
Indica rice Cry1Ac, Cry2A, gna Lepidopteron insects Rahman et al. (2007)
Indica rice Chitinase + β-1,3-

glucanase genes
Rhizoctonia solani Sridevi et al. (2008)

Rape hrf2 gene encoding 
harpinxooc protein

Sclerotinia 
sclerotinorium

Ma et al. (2008)

Tobacco p35 gene from baculo-
virus Autographa 
californica

TMV a Wang et al. (2008)

Japonica Pi-d2 Rice leaf blast and 
neck blast

Chen et al. (2010)

Tobacco GbTLP1 Verticillium dahliae Munis et al. (2010)
Potato StPUB17 (UND/PUB/

ARM) repeat type 
gene

Phytophthora 
infestans

Ni et al. (2010)

Potato RB resistance gene Potato late blight Liu and Halterman 
(2009)

Wheat Ta-Tlp (thaumatin-
like protein gene)

Powdery mildew and 
Fusarium head 
blight

Xing et al. (2008)

a YSB yellow stem borer, TMV tobacco mosaic virus
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and Bt toxins in transgenic crops can be used to fight insect resistance. US based 
company Monsanto with India’s Maharastra Hybrid Seeds Company (Mahyco) has 
recently developed a Bt eggplant ( Solanum melongena) by incorporating a crystal 
gene (Cry1Ac) from B. thuringiensis (Krattiger 2010; Cotter 2011).

Disease�Resistance

Diseases caused by bacteria, fungi, viruses and nematodes are responsible for dam-
aging the crop plants, i.e phytopathogens have been threatening human life through 
the loss of crop production. For example the production of potato has been threat-
ened by several fungal diseases and microbial pathogens resulting in 20 % yield 
loss (Walter et al. 2011). Even though in potato the Botrytis cinerea is not the main 
disease, it may cause other serious diseases like Fusarium solani and Phytophthora 
infestans. But the transgenic approaches have used the genes encoding pathogenesis 
related (PR) proteins that confer the resistance to fungal pathogens (Hoshikawa  
et al. 2012; Gao et al. 2000) (Table 3.1). These PR proteins have antimicrobial 
properties against many fungal and bacterial pathogens. Transgenic approaches pro-
vide a powerful tool for the development of disease resistant crops (Melchers and 
Stuiver 2000; Rommens and Kishor 2000; Ellis et al. 2000). One approach involves 
the viral gene expression that interferes with the completion of life cycle of viruses. 
Powell-Abel et al. 1986 discovered that the coat proteins for TMV (tobacco mosaic 
virus) expressed in host plant interfered with the replication and plants expressing 
the TMV coat protein gene were resistant to TMV infection. This approach is now 
widely used to protect the crops from a large number of viruses (Mundembe et al. 
2009). In 1992, china was the first country to commercialize these virus resistant 
transgenic crops (Brookes and Barfoot 2012; James 1997). After this virus-resis-
tant tomato, squash and watermelon plants were also produced (Meeusen 1996). 
In oilseed rape, overexpression of tomato chitinase gene with a strong promoter 
gene has resulted increased resistance fungal attack in plants (i.e pathogens such as  
Cylindrosporium concentricum and Phoma lingam) (Grison et al. 1996). Anand 
et al. (2003) reported that wheat plants co-expressing a chitinase and β-1, 3-glu-
canase genes obtained to Fusarium graminearum. And under the green house and 
field conditions, transgenic potato plants expressing alfalfa antifungal peptide (al-
fAEP) showed strong defense activity against fungal pathogen, Verticillium dahliae 
(Gao et al. 2000). Thionins (PR proteins) are toxic to phytopathogens by attacking 
the cell membrane to increase their permeability and cause the death of the fungal 
cell due to leakage of proteins, nucleotides and other components (Chan et al. 2005; 
Hoshikawa et al. 2012). For example, overexpressed gamma-thionin gene from 
wasabi ( Eutrema wasabi) in transgenic rice enhanced resistance to rice blast disease 
caused by Magnaporthe grisea (Kanzaki et al. 2002). Even in transgenic potato 
plants, potato thionin (snaking-1) gene expressed enhanced resistance to Rhizocto-
nia solani and Erwinia cartovora (Almasia et al. 2008). The wasabi thionin gene in 
transgenic potato plants had antifungal activity against gray mold ( Botrytis cinerea) 
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(Khan et al. 2006; Hoshikawa et al. 2012). Another disease that adversely affect the 
barely and wheat production is Fusarium head blight (FHB). Fusarium produced 
trichothecene mycotoxin deoxynivalenol (DON) contamination with food is a great 
risk for humans and animals because trichothecenes are cytotoxins for eukaryotic 
cell. Recently, Di et al. (2010) has verified that expression of an N-terminal frag-
ment of yeast L3 (L3∆) in wheat showed reduction in disease ruthlessness and im-
proved level of DON in transgenic wheat kernel when compared to non-transgenic 
wheat plants. Trichothecenes play multiple roles in the cell. They inhibit the protein 
synthesis (McLaughlin et al. 2009; Di et al. 2010). Critical role of trichothecene 
mycotoxin (tcmI) in the protein synthesis (Grant et al. 1976), which encodes the 
ribosomal protein L3 in yeast was observed by McLaughlin et al. (2009). Over-
expression of RPL3 gene in transgenic plants induces resistance to trichothecene 
mycotoxin deoxynivalenol (DON) (McLaughlin et al. 2009).

Herbicide�Resistance

Effective weed control has become one of the most important procedures in crop-
ping operations to ensure good quality harvest. But the required mechanical weed 
control practices are now viewed as unsatisfactory and have been replaced by 
chemical weed control using herbicides. Herbicides are vicious for most of the 
plants because they function by disrupting the essential processes like photosyn-
thesis, pigment biosynthesis, mitosis or essential amino acid biosynthesis (Mulwa 
and Wanza 2006). Now a day these herbicides have been replaced by new chemi-
cals like glyphosate that is environmental friendly as it is degraded rapidly by soil 
micro-organisms (Day 1996). Glyphosate a highly translocated foliar herbicide was 
discovered in 1970 (Franz et al. 1996). Glyphosate is a non specific herbicide like 
many other herbicides and kills the green plants, therefore it can be used prior to 
seed emergence. Plants expressing herbicide tolerance accounted for 71 % of all the 
transgenic crops were grown worldwide in 1998 and 1999 (James 1999). Herbicide 
tolerant soybean, corn, cotton and canola represents the major transgenic products 
(James 1999; Liu 1999). Scientists in 1983, at Monsanto and Washington University 
isolated the common soil bacteria, Agrobacterium tumefaciens strain CP4, which is 
highly tolerant to glyphosate because its EPSPS (5-enolpyruvylshikimate-3-phos-
phate synthase) is less sensitive to inhibition by glyphosate than EPSPS found in 
plants (Watrud et al. 2004). In 1986, they successfully inserted the CP4 EPSPS gene 
into the plant genome and obtained the glyphosate resistant (GR) plants. GR soy-
bean was commercialized within 10 years. Initial GR crops were the most quickly 
adopted technology in the history of agriculture (James 2007).

Recently, herbicide resistant Amaranthus palmeri by expressing glyphosate-in-
sensitive herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase 
(EPSP) that is involved in the shikimate cycle where it catalyzes the reversible addi-
tion of the enolpyruvyl moiety of phosphor-enolpyruvate to shikimate 3-phosphate 
was developed (Gaines et al. 2010). In the western and central Africa considerable 
loss of maize was observed by a parasitic weed Striga hermonthica. Menkir et al. 
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(2010) incorporated an imidazolinone resistance (IR) XA17 gene into some maize 
lines that confers resistance to imazaquin and nicosulfuron herbicides. These IR-
maize lines showed resistance to the Striga hermonthica weed and the yield loss 
was minimized to a considerable level. The expression of bar gene responsible for 
resistance to herbicides in sweet potato was demonstrated by Zang et al. (2009).

Approaches that have been used to generate herbicide-tolerant crops are: (1) 
Decrease the sensitivity of the plants to the herbicide by modifying the sensitivity of 
the target enzyme and (2) engineer a herbicide detoxifying pathway in to the plant 
(Simoens and Van Montagu 1995). For instance glyphosate and acifluoren tolerance 
is included in first approach. Transgenic plants tolerant to the herbicide acifluorfen, 
which inhibits chlorophyll biosynthesis, have been produced through overexpres-
sion of the target enzyme involved in chlorophyll biosynthesis (Lermontova and 
Grimm 2000; Ahmad et al. 2012). Second approach includes the resistance to glu-
fosinate and bromoxynil. To enhance the metabolism of these herbicides various 
genes were introduced and the active compound is converted to products are non-
toxic to the crop (Haumann 1997; Ahmad et al. 2012). Now the critics of herbicide 
resistant crops fear the over use of herbicides and the development of herbicide 
resistant weeds. But the herbicide resistant weeds can be controlled by rotating the 
crops with different transgenic modes of action. Various environmentally friendly 
herbicides and their corresponding resistant genes are available that makes crop 
rotation practices possible.

Abiotic�Stress

Abiotic stress (Salinity, drought, temperature, UV Radiations etc.) has been found 
to have negative impact on the crop production. The crop loss due to these abiotic 
stresses is responsible for the enormous economic loss worldwide (Ahmad et al. 
2008, 2010, 2012).

Conventional breeding techniques have been used to improve the crop produc-
tion but much success has not been achieved in generating stress tolerant plants. 
Plant biologists have developed transgenic technology to generate stress tolerant 
plants and to improve the crop production. Modification of the biochemical path-
ways through the transgenic approach and overexpression of the stress tolerant 
genes have great success in achieving the target of generating stress tolerant plants. 
For further information see Table 3.2.

Conclusions and Future Perspectives

Plant tissue culture has emerged as an inescapable tool with possibilities for comple-
menting the conventional methods in plant breeding and crop improvement. These 
techniques have proved successful and are now being used globally for the ex-situ 
conservation of the plants including crop plants. Plant cell/tissue culture is a rapidly 
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Table 3.2   Some promising genes that can be expressed in plants for abiotic stress tolerance
Gene and gene product Plant Resistance to Reference
betA (Choline 

dehydrogenase)
Tobacco Salinity and low 

temperature
Holmstrom et al. 

(2000)
BADH1 (Betaine aldehyde 

dehydrogenase)
Tomato Salinity Jia et al. (2002)

EctA, ectB, ectC Tobacco Salinity Nakayama et al. 
(2000)

OstA, OstB (Trehalose-6-P 
synthase, Trehalose-6-P 
phosphatase)

Tobacco rice Salt, drought Garg et al. (2002)

TPS and TPP (Trehalose 
synthesis)

Arabidopsis Drought, salt, 
temperature

Miranda et al. (2007)

TPP1 (Trehalose synthesis) Rice Salt and cold Ge et al. (2008)
TPS1 (Trehalose synthesis) Alfalfa Drought, salt, 

temperature
Suarez et al. (2009)

WCOR15 (cold induced 
gene)

Tobacco Freezing Shimamura et al. 
(2006)

AtOAT (Ornithine amino 
transferase)

Rice Drought and salt Jang et al. (2003)

pdc1 (Pyruvate decarboxylase 
overexpression)

Rice Submergence 
tolerance

Minhas and Grover 
(1999)

pdc1 and pdc2 (Pyru-
vate decarboxylase 
overexpression)

Arabidopsis Hypoxic stress 
survival

Ismond et al. (2003)

ppo (Polyphenol oxidases 
suppression)

Tomato Drought Thipyapong et al. 
(2004)

SAMDC (polyamine 
synthesis)

Tobacco Drought, salinity, 
Verticillium, 
Fusarium wilts

Waie and Rajam 
(2003)

SPDS (Spermidine synthase) Arabidopsis Salinity Bagni et al. (2006)
P5CS (∆1-pyrroline-5-carbox-

ylate synthase)
Bean Drought, salt and cold Chen et al. (2009)

P5CS (∆1-pyrroline-5-carbox-
ylate synthase)

Potato Salt Hmida-Sayari et al. 
(2005)

P5CS (∆1-pyrroline-5-carbox-
ylate synthase)

Wheat Drought Vendruscolo et al. 
(2007)

adc (polyamine synthesis) Rice Drought Capell et al. (2004)
Osm1 to Osm4 (Osmotin 

protein accumulation)
Strawberry Salt and drought Husaini and Abdin 

(2008)
ME-leaN4 (Lea protein) Lettuce Salt Park et al. (2005)
Os LEA3-1 (Lea protein) Rice Drought Xiao et al. (2007)
HVA1 (group 3 LEA protein 

gene)
Mulberry Salt and drought Lal et al. (2008)

BhLEA1, LEA2 (LEA 
protein)

Tobacco Drought Liu et al. (2009)

HAL3 (FMN-binding 
protein)

Arabidopsis Salt and osmotic 
tolerance

Espinosa-Ruiz et al. 
(1999)

HAL1 Arabidopsis Salt Ellul et al. (2003)
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Table 3.2   (continued )
Gene and gene product Plant Resistance to Reference

HAL1 Watermelon Salt Yang et al. (2001)
OsDREB1A Arabidopsis Drought, salt and cold 

tolerance
Dubouzet et al. (2003)

DREB1A (Transcription 
factor)

Paspalum 
grass

Drought James et al. (2008)

DREB1A (Transcription 
factor)

Tobacco Salt Cong et al. (2008)

DREB1A, DREB2A (Tran-
scription factor)

Arabidopsis Drought and cold Maruyama et al. 
(2009)

OsNAC10 (Transcription 
factor)

Rice Drought Jeong et al. (2010)

OsSMCP1 (Transcription 
factor)

Arabidopsis Salt Yokotani et al. (2009)

Osmyb4 (Cold induced tran-
scription factor)

Apple Drought and cold 
tolerance

Pasquali et al. (2008)

A1fin1 (Transcription factor) Alfalfa Salt Winicov (2000)
OrbHLH2 (Transcription 

factor)
Arabidopsis Salt and osmotic 

stress
Zhou et al. (2009)

OsWRKY45 (Transcription 
factor)

Arabidopsis Drought Qiu and Yu (2009)

Tsi1 (EREBP/AP2 DNA 
binding motif)

Tobacco Salt and pathogen Park et al. (2001)

CBF1 (DREB1B) Tomato Drought Hsieh et al. (2002)
CBF4 Arabidopsis Drought Haake et al. (2002)
ABF3/ABF4 Arabidopsis Drought Kang et al. (2002)
AtMYC2/AtMYB2 Arabidopsis Drought Abe et al. (2003)
ZPT2-3 (Cys2/His2-type 

Zinc-finger protein)
Petunia Drought Sugano et al. (2003)

CpMYB10 Arabidopsis Drought and salt Villalobos et al. 
(2004)

FeSOD (Superoxide 
dismutase)

Tobacco Salt and oxidative 
stress

Van Camp et al. 
(1996)

MnSOD Arabidopsis Oxidative stress Wang et al. (2004)
MnSOD Rice Oxidative stress Tanaka et al. (1999)
Glutathione-S-transferase/

glutathione peroxidase
Tobacco Salt and cold Roxas et al. (1997)

KatE (Catalase) Tobacco Salt and oxidative 
stress

Al-Taweel et al. 
(2007)

DHAR1 (Dehydroascorbate 
reductase)

Arabidopsis Salt tolerance Ushimaru et al. (2006)

AtALDH3 (Aldehyde 
dehydrogenase)

Arabidopsis Drought, salt and 
oxidative stress

Sunkar et al. (2003)

MsALR (Aldose/aldehyde 
reductase)

Alfalfa Drought and heavy 
metal

Oberschall et al. 
(2000)

Ascorbate peroxidise Tobacco Drought and salt Badawi et al. (2004)
GlyI and GlyII (Glyoxylase) Tobacco Salt Yadav et al. (2005)
OsCDPK (calcium dependent 

protein kinase)
Rice Drought and salt Saijo et al (2000)
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developing technology which holds promise of restructuring agricultural, horticul-
tural and forestry practices. Cultured explants undergo frequent genetic changes 
which are expressed at biochemical or molecular level. The genetic variability ex-
pressed in regenerated plants can be transmitted to the progeny through sexual or 
vegetative propagation. Rapid advances in plant genetic engineering have made it 
possible to improve endogenous metabolic pathways and/or bestow foreign func-
tions. Utilization of plants, however, is disturbed by environmental stresses such as 
drought, high salinity, low temperature, and pathogens, which either directly cause 
cell death or inhibit growth by disarranging the intracellular water balance. The 
application of tissue culture technology as a central tool or as an adjunct to other 
methods, including recombinant DNA techniques, is at the vanguard in plant modi-
fication and improvement for agriculture, horticulture and forestry.

Table 3.2   (continued )
Gene and gene product Plant Resistance to Reference

Cnb1 (Calcineurin) Tobacco Salt Pardo et al (1998)
DnaK (Heat shock proteins) Tobacco Salt Sugino et al. (1999)
AtHsp 17.6A (Small heat 

shock protein)
Arabidopsis Drought and salt Sun et al (2001)

AtGSK1 Arabidopsis Drought and Salt Piao et al (2001)
AtNDPK2 (Nucleotide 

diphosphate kinase)
Arabidopsis Salt, cold, methyl 

viologen
Moon et al. (2002)

AtNHX1 (Vacuolar Na+/H+ 
antiporter)

Tomato Salt Zhang and Blumwald 
(2001)

AtNHX1 (Vacuolar Na+ /H+ 
antiporter)

Mustard Salt Zhang et al. (2001)

AtNHX1 (Vacuolar Na+ /H+ 
antiporter)

Rice Salt Ohta et al. (2002)

SOS1 (Plasma membrane 
Na+/H+ antiporter)

Arabidopsis Salt Shi et al. (2003)

AVP1 (K+ /Na+ transport 
regulation)

Arabidopsis Drought and salt Gaxiola et al. (2001)

CaXTH3 (Xyloglucan 
endotransglucosylase)

Arabidopsis Drought and salt Cho et al. (2006)

ZmOPR1 (12-Oxo-Phytodie-
noic acid reductases)

Arabidopsis Osmotic and salt 
stress

Gu et al. (2008)

SPCP2 (papain-like cysteine 
protease)

Arabidopsis Salt and drought Chen et al. (2010)

W6 (Ethylene responsive fac-
tor gene)

Tobacco Salt tolerance Lu et al. (2010)

TSRF1 (Ethylene responsive 
factor)

Rice Drought Quan et al. (2010)

TERF2/LeERF2 (Ethylene 
responsive factor)

Tomato 
tobacco

Freezing Zhang and Huang 
(2010)

StPUB17 (UND/PUB/ARM) 
repeat type gene

Potato Salt tolerance Ni et al. (2010)
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Abstract Global environmental dissociative changes are now in steady state. Its 
negative impacts were gradually imposed on a wide range of crops and thus crop 
improvement was hindered as well. Given this challenge, existing and new, appro-
priate technologies need to be integrated for global crop improvement. Among the 
different present approaches, mutagenesis and mutation breeding and the isolation 
of improved or novel phenotypes in conjunction with conventional breeding pro-
grammes can result in mutant varieties endowed with new and desirable variation of 
agrometrical traits. Induced mutations and its related technologies play very well in 
this ground and this overall strategy helps to trace the crop genetic diversity along 
with its biodiversity maintenance. Such induced mutagenesis, a crucial step in crop 
improvement programme, is now successful in application due to the advancement 
and incorporation of large-scale selection techniques, micropropagation and other 
in vitro culture methods, molecular biology tools and techniques in modern crop 
breeding performance. Time to time, different mutation techniques and their appli-
cation processes are changing significantly; in this perspective, insertional muta-
genesis and retrotransposons are taking more supports for mutational tagging and 
new mutation generation. For details investigation on plant structure and function, 
mutagenic agents and their precise role are much essential as it can produce mutants 
with some phenotypic changes. Functional genomics studies make the ultimatum 
platform on this field of study where few crop plants were used for mutational 
experimentation on some prime agronomic traits till now. This is a prerequisite step 
and is applying on diverse crop for further improvement. High throughput DNA 
technologies for mutation screening such as TILLING (Targeting Induced Limited 
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Lesions IN Genomes), high-resolution melt analysis (HRM), ECOTILLING etc. 
are the key techniques and resources in molecular mutation breeding. Molecular 
mutation breeding will significantly increase both the efficiency and efficacy of 
mutation techniques in crop breeding. Such modern and classical technologies are 
using for the development of mutation induction with the objective of using a set 
of globally important crops to validate identified relevant novel techniques and 
build these into modular pipelines to serve as technology packages for induced 
crop mutations. Thus, mutation assisted plant breeding will play a crucial role in the 
generation of ‘designer crop varieties’ to address the uncertainties of global climate 
variability and change, and the challenges of global plant-product insecurity.

Introduction

Mutation breeding is the purposeful application of mutations in plant breeding area. 
It offers good prospects for the domestication of promising underutilized wild spe-
cies, for agricultural or horticultural uses as well as for improving adaptation of 
recently introduced crops to unsuitable environments. Mutagenesis has remained 
popular for close to a century because of its simplicity, technical and economic via-
bility, applicability to all plant species and usability at small or large scales (Siddiqui 
and Khan 1999). More than 2,000 plant varieties that contain induced mutations 
have been officially released for cultivation either directly as new varieties or used 
as parents to derive new varieties without the regulatory restrictions faced by ge-
netically modified material (Maluszynski et al. 2000; Waugh et al. 2006). The main 
strategy in mutation-based breeding has been to upgrade the well-adapted plant 
varieties by improving a few desirable major yield and quality traits (Ahloowalia 
et al. 2004; Wilde et al. 2012). Besides, the increased yield and enhanced quality of 
the novel varieties included several other components such as subsequent use for 
breeding, improved harvest index from heterosis in hybrid cultivars, response to 
increased agronomic inputs, and consumer preference.

Plant breeding categorized into three sub-types as mutation breeding, recombi-
nation breeding and transgenic breeding has the potential of generating variation 
and selection of target lines. In case of mutation breeding, the basic fundamental 
and the unique feature is the generation of new mutated alleles. The key steps 
includes analysis of difference in the sensitivity of different genotypes and plant 
tissues to different mutations often measured using lethal doses (LD), generation 
of genetic chimeras after mutagenic treatment and analysis of their effect on trans-
mission of mutated alleles and segregation in the subsequent generation and also 
often the recessive nature of induced mutations. This knowledge is important for 
establishing proper doses and modes of mutagenic treatment. Apart from this, the 
knowledge can also be employed for the planning of methodology of harvesting 
and growing second mutant (M2) populations from first mutant (M1) generations 
(Table 4.1). Like any other scientific innovative technology, mutation breeding has 
its advantages and limitations. The advantages being creation of new genetic al-
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leles that do not persist in germplasm pools and the induction of new gene alleles 
for a commercial variety such that new varieties carrying desired mutation alleles 
can be directly used as a commercial variety. Also, the limited genetic changes 
of any single plant of a mutated population and the often recessive nature enable 
breeders to develop a new variety in a short breeding cycle. The limitation being its 
limited power in generating the dominant alleles which might be desired; its less 
effectiveness than cross breeding for a trait needs for a combination of multiple 
alleles, such as tolerance to abiotic stresses. The low mutation frequency requires 
growing and screening a large population for selection of desired mutants at a rea-
sonable confidence. This becomes very expensive for traits that have to be evalu-
ated through laborious phenotypic analysis (Roychowdhury 2011; Roychowdhury 
and Tah 2011).

The knowledge of the extent to which the desirable characters with economic 
values are heritable is a prerequisite for any crop improvement programme (Roy-
chowdhury and Tah 2011b; Roychowdhury et al. 2011a). Breeders have continually 
retained their interest in the grouping of the germplasm and the pedigree of selected 
cultivars since the information might be particularly helpful in effective breeding 
strategy determination (Ali et al. 2011). For this purpose, inducible mutation, using 
chemical or physical mutagens, is a suitable source of producing variation through 
mutation breeding procedure (Domingo et al. 2007; Roychowdhury and Tah 2011a) 
which can produce several improved mutant varieties with high demanding eco-
nomic value (Din et al. 2004). From implicational point of view, it is quite possible 
to induce gene-mutation artificially with the help of some potent chemical muta-
gens to create any new variation in crops.

Table 4.1   Three important plant breeding strategies
Breeding 
Methods

Source of genetic 
variation

Transmission, 
expression and 
inheritance

Nature of gene 
action

Breeding 
generations

Mutation 
breeding

New alleles 
artificially 
and randomly 
created from 
endogenous 
genes

Induced mutations 
subject to diplon-
tic and haplontic 
selection

Mostly recessive 
alleles

About 2–3 
generations

Recombinant 
breeding

Recombination 
of gene alleles 
from parental 
varieties

No selective 
transmission; 
co-segregation 
of closely linked 
alleles

Dominant, 
recessive 
alleles, and 
QTLs

About 10 
generations

Transgenic 
breeding

Insertion of new 
genes or 
modification 
of endogenous 
genes

Expression of trans-
genes subject to 
position effect or 
silencing

Mostly domi-
nant alleles

About 3 
generations

QTL-Quantitative trait loci
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Time to time, the spectrum of available mutation techniques has also signifi-
cantly increased. Important practical results have been achieved through the use of 
chronic irradiation from gamma-field or by irradiation with heavy ion beam or by 
chemical mutagenesis. In vitro cultured somaclonal variations have been proved to 
be useful for creating variation in many characters, especially the ones that can be 
selected under in vitro cultural environments. Classical insertional mutagenesis and 
more recently retro-transposons have become almost irreplaceable tools in generat-
ing and tagging of new mutations for crop improvement. Potent mutagenic agents 
(‘mutagens’ that cause mutation) can be used to produce the ‘morphological mu-
tants’ that are essential for dissecting plant structure, functions and their regulation 
(Maluszynski 1999). The traditional mission of mutation breeding technology deals 
with the development of new and desired variation(s) through breeding programs 
for overall crop improvement that has recently been significantly spread widely. In-
duced mutations can play an important role in the conservation and preservation of 
crop biodiversity. Induced mutations and related advance technologies are impor-
tant not only for extending genetic diversity of major crops but also are an important 
additional source of biodiversity enhancement of neglected and local crops.

Mutation and Mutagens

A mutation is a sudden heritable change in the DNA of a living cell, not caused 
by the common phenomena of genetic segregation or genetic recombination. Mu-
tations may occur in nature without intentional human intervention, and are said 
to be spontaneous. Spontaneous mutations may result from the activity of mobile 
genetic elements (transposons) that can move around to different positions within 
the genome of a single cell and affect the activity of the gene in which they are 
inserted (Wessler 2006). Mobile genetic elements affect the gene function through 
various mechanisms. Retro-transposons, for example, move in the genome by be-
ing transcribed to RNA and then back to DNA by reverse transcriptase, while DNA 
transposons move directly from one position to another within the genome using 
a transposase enzyme to ‘cut and paste’ them within the genome, causing sponta-
neous mutations (Kidwell 2005). Most spontaneous mutations occur in very low 
frequencies (10−6) of an individual gene. Moreover, not all phenotypically observed 
variation refers to genetic changes. At the same time, not all the spontaneous chang-
es in the DNA ultimately result in permanent changes of the DNA. Even if such 
changes would be permanent, they may not always result in visible or detectable ef-
fects (Ranel 1989). For example, there may be latent adaptive mutations in African 
nightshade that help the plants to survive in the wild, but these are not known so far. 
Besides, spontaneous mutations depend on chance and make breeding programmes 
considerably slow. Although selection for economically useful spontaneous mu-
tants still takes place with some level of success (Ahloowalia et al. 2004; Wilde 
et al. 2012), the purposeful induction of a specifically desired mutation at a specific 
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time and place, and in a selected genotype for a selected purpose is a much more 
attractive option.

Mutation Induction

A physical or chemical agent that changes the genetic information (usually DNA) 
of an organism and thus increasing the number of mutations above the natural back-
ground level is called a mutagen (Fig. 4.1). DeVries (1905) suggested the use of 
radiation to induce mutations. The discovery that X-ray induced mutations in Dro-
sophila melanogaster (Muller 1927) and in Hordeum vulgare (Stadler 1928) led to 
the use of radiation-induced mutations for changing plant traits by plant breeders 
and geneticists. Auerbach and Robson (1946) reported the use of chemicals such 
as mustard gas to be highly mutagenic. Since then a number of agents have been 
discovered that can increase the frequency of artificially induced mutations. The 
main mutagens available for induction of mutations include UV radiation, electro-
magnetic waves such as X-rays, γ-rays and cosmic rays; fast moving particles such 
as α-particles, β-particles and neutrons; and chemical agents such as, alkylating 
agents, acridines, azides, hydroxyl amides, etc. In general, ionizing radiations such 
as X-rays and γ-rays are preferred over chemical mutagens because of their ease of 
application, good penetration and reproducibility, high mutation frequency and less 
disposal problems. The X-rays are obtained from X-ray machines by bombarding 
tungsten or molybdenum with electrons in a vacuum, whereas γ-rays are obtained 
from radioisotopes like 60Co and 137Caesium in the γ-chamber. The UV-radiations 
possess limited tissue penetrating ability [low linear energy transfer or in short 
LET] and cause relatively little damage except after prolonged exposure as a result 
of which their use is restricted to pollen grains (Kovacs and Keresztes 2002).

The application of this phenomenon has come a long way to become a real 
tool, not only in crop breeding but also in basic research on the plant genome, its 
structure and function. Breeders were the first to recognize the potential of induced 
mutations through analogy with spontaneous mutants, often selected as new plant 
types in many crops, from cereals to apples, not to mention ornamental and decora-
tive plants. Many mutants with desired traits were selected in the second or third 
generation after mutagenic treatment and subsequently released as new cultivars 
after agronomic evaluation in regional and national trials. These or other mutants 
developed with mutations in desired traits, even though not released as new cul-
tivars, have been used in cross-breeding programmes as a source of particular al-
leles, often allelic to the spontaneous ones, but in a desired genotype. Among them 
were sources for characters such as short stature and lodging resistance; disease 
resistance; oil quality; and increased nitrogen fixation. These mutated genes are 
especially valuable as the best currently grown cultivar was usually selected for 
mutagenic treatment. A desired mutation in a good genetic background is a very 
attractive component in breeding programmes. This approach is much simpler and 
faster than crossing with an exotic source, and it is one of the main reasons for the 
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wide use of mutated alleles in the breeding of numerous species. Mutation induction 
raises the natural mutation rates 10–100 fold, expanding the opportunity to isolate a 
higher number of mutants in a limited space. Today, induced mutations are ideal for 
augmenting natural variation in germplasm and as an alternative to hybridization 
and recombination in plant breeding. Mutations provide new starting material for 
the production of new cultivars and on the other hand they offer excellent tools for 
identifying new genes, for studying the nature of genes and their way of controlling 
biochemical pathways (Micke et al. 1990). The genetic variation from mutagenesis 
is different from that existing in germplasm collections or obtainable from cross-
ing as it is not yet selected by nature or man and thus contains traits which were 
not favored during evolution or previous plant breeding activities. Besides, genes 
for a desired trait may not be fit or may be tightly linked with undesirable genes so 
that recombination through hybridization is rare or impossible. For example, genes 

Fig. 4.1   Different kinds of physical and chemical mutagens that are mostly used and selected 
plants parts for mutagenic treatment/induction
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causing pollen abortion cannot be transmitted gametophytically to future genera-
tions; consequently homozygous plants with all aborted pollen are lost in the cause 
of evolution.

Mutation and mutation breeding is a tool and being used to study the nature and 
function of genes which are the building blocks and basis of plant growth and de-
velopment, thereby producing raw materials for genetic improvement of economic 
crops (Adamu and Aliyu 2007). Mutation induction offers significant increase in 
crop production (Kharkwal and Shu 2009) and the possibility of inducing desired 
attributes that either cannot be found in nature or have been lost during evolution. 
Treatment with mutagens alters genes or breaks chromosomes. Gene mutations oc-
cur naturally as errors in DNA replication. Most of these errors are repaired but some 
may pass to the next cell division to become established in the plant offspring as 
spontaneous mutations. Gene mutations without phenotypic expressions are usually 
not recognized. Consequently, genetic variation appears rather limited and breeders 
have to resort to mutation induction (Novak and Brunner 1992; Kozgar et al. 2012).

Mutagenic agents have been used to induce useful phenotypic variations in plants 
for more than seventy decades (Vasline et al. 2005; Roychowdhury et al. 2011). 
During the past 70 years, more than 2,543 mutant cultivars from 175 plant species 
including ornamentals, cereals, oilseeds, pulses, vegetables, fruits and fibers have 
been officially released in 50 countries all over the world (Maluszynski et al. 2000; 
Chopra 2005). Chemical mutagenesis (the non-GMO approach) is an approach to 
create mutation in plants for their improvement of potential agronomic traits. In 
any mutation breeding programme, selection of an effective and efficient mutagen 
is very essential to produce high frequency of desirable mutation. Many chemical 
mutagens have been employed for obtaining useful mutants in various crop spe-
cies (Singh and Singh 2001a; Roychowdhury and Tah 2011c; Roychowdhury et al. 
2012a). However the various workers emphasizes that artificial induction of muta-
tion by colchicine (COL), ethyl methane sulphonate (EMS), sodium azide (SA), 
maleic hydrazide (MH) provides tool to overcome the limitations of variability in 
plants and induces specific improvement without disturbing their better attributes 
(Mensah and Obadoni 2007; Islam 2010; Roychowdhury 2011; Roychowdhury and 
Tah 2011; Roychowdhury et al. 2011b; Gnanamurthy et al. 2012). It might be con-
sidered that, these chemical induced growth abnormalities were mainly due to cell 
death and suppression of mitosis at different exposures. Several factors such as 
properties of mutagens, duration of treatment, pH, pre- and post-treatment, tem-
perature and oxygen concentrations, etc. influence the effect of mutagens. The dose 
of a mutagen applied is an important consideration in any mutagenesis programme. 
Generally, it was observed that higher the concentrations of the mutagen greater 
the biological damage. To enhance the mutagenic effectiveness and efficiency and 
especially the metabolite, more knowledge about the effect of time, pH value, tem-
perature, seed soaking and various concentrations are required (Khan et al. 2009; 
Roychowdhury and Tah 2011a, 2011c; Roychowdhury et al. 2012a). Crop plants of-
fers many opportunities exploitation of mutations, recombination and of increasing 
genetic variability in quantitatively inherited agronomic characters. Induced muta-
tions are also useful when it is desired to improve easily identifiable characters.
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Initial studies on induced mutations were mainly directed to finding optimum 
combination of mutagen and dose to elicit the best response. Both physical and 
chemical mutagens were tested in various crop species such as wheat, barley, rice, 
tobacco, corn, Brassica, fruit crops and vegetables. These studies helped to initiate 
large-scale mutation breeding experiments for various practical applications (Cho-
pra 2005). Since various physical and chemical mutagens are known to act in dif-
ferent ways to cause DNA lesions, combined effects of mutagens were investigated. 
In wheat, combined treatment with UV and X-rays showed dose-dependent ef-
fects. UV pretreatment of seeds reduced the frequency of mutations at low doses of  
X-rays (11–16 kr) but increased it at high doses of 22–30 kr (Swaminathan and Na-
tarajan 1959; Bansal et al. 1962). In barley, treatment with S-2 aminoethylisothiou-
ronium bromide hydrobromide (AET) was tested as both pre- and post-treatment 
with X-rays. Frequency of chromosome aberrations and chlorophyll mutations reg-
istered a significant drop when AET treatment was followed by X-ray irradiation. 
On the other hand, post x-ray treatment of AET caused a slight drop in chromosome 
aberrations (Chopra et al. 1965). Similarly, combined treatment of two chemical 
mutagens, ethyl methane sulfonate (EMS) and hydroxyl amine (HA), was inves-
tigated in wheat. Data of chlorophyll and viable mutations indicated that EMS is 
a potent mutagen in Triticum dicoccum but HA is a weak mutagen. But when HA 
was administered after EMS treatment, there was a significant drop in mutation 
frequency indicating that HA may be involved in mutational repair process (Cho-
pra and Swaminathan 1966). Studies with Drosophila showed that formaldehyde, 
which is not mutagenic in female flies, could enhance mutation frequency when 
administered following X-ray treatment. This suggested that formaldehyde might 
be blocking some DNA repair process (Mahajani and Chopra 1973).

Mutagens�and�Their�Doses

One of most crucial requirements for a successful breeding programme is the selec-
tion of an effective and efficient doze of a mutagen for mutagenizing the starting 
material. Historically, the effectiveness of a mutagen has been measured in terms 
of biological effect that it produces. It is, however, desirable to establish a relation-
ship between the observed biological effect to a well-defined and easily measurable 
physical quantity characterizing the amount of radiation or chemical mutagen re-
sponsible for that effect (Roychowdhury 2011). Therefore, the mutagenic effect in 
biological targets is commonly and conveniently described in terms of dose-effect 
relationships. In quantitative radiation biology, the ‘simple dose’ (D) is the amount 
of energy absorbed per mass of irradiated matter at the point of interest. The special 
unit of D is rad (1 tad 100 erg/g = 10−2 joule/kg), expressed in terms of time as rad/h, 
rad/min and rad/s. Thus, among others, changes in radiation doses and duration of 
exposure of biological material to the irradiation are important parameters of physi-
cal mutations. In case of chemical agents, the dose of treatment is determined based 
on several parameters viz., (i) concentration, (ii) duration of treatment and (iii) tem-
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perature during treatment. The concentration of chemical mutagen is determined 
by the per cent strength of the chemical in the solvent (distilled water). The volume 
of treatment solution is also equally important so as to provide each seed or organ 
an opportunity to absorb the same number of moles of mutagen. It is generally ac-
cepted that a treatment giving 30–40 % growth reduction is likely to give an optimal 
mutation yield in crops. The treatment duration must provide an opportunity for 
hydration and full penetration through the treated tissue of the mutagen. Long treat-
ment is advisable, but it can be shortened by using pre-soaked seeds. However, the 
treatment duration also depends on the hydrolytic rate of the mutagen. For a short 
period, a high concentration is used after pre-soaking at high temperatures. The 
temperature of mutagenic solution greatly influences the mutagenic process. When 
there is no published information of mutation dose in a particular crop, we often re-
sort to LD50 (Lethal Dose-50), which is a common parameter to decide the effective 
doses of both physical and chemical mutagens (Albokari et al. 2012). Thus, LD50 is 
a dose, which results in 50 % mortality of treated seeds (Roychowdhury 2011). With 
ionizing radiations, a dose which restricts survival to 50 % (LD50) or growth to 50 % 
(GR50) is a good treatment.

Ion�Beam�Mutagenesis

Application of ion beams for mutation induction was started with low-energy  
ions in China in the late 1980s and with heavy ions in Japan in the early 1990s. 
While ion beam technology has been used for food crop improvement in China, 
it has been more extensively used for floriculture plants in Japan. Ion beams as 
a mutagen are different from other physical mutagens such as gamma or X-rays 
in that they not only involve energy transfer (as gamma or X-rays), but also mass 
deposition and charge exchange (Hase et al. 2012); hence could result in complex 
DNA damage and changes that are not found when gamma or X-rays are used  
(high percentage of double strand breaks and subsequent chromosome aberrations). 
Ion beams are produced by particle accelerators, i.e. cyclotrons. Figure 4.2 is a 
schematic view of the E5B beam line available in the RIKEN Accelerator Research 
Facility (RARF), Japan.
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Typical heavy ions used for irradiation on biological samples are neon-20, nitro-
gen-14, carbon-12, lithium-7, argon-40, iron-56 (Table 4.2).

They have different energy levels and linear energy transfer (LET), ionization 
densities which correlate to the complexity of DNA damage, and different ranges 
of penetration (Fig. 4.3).

LET is the energy deposited to target material when an ionizing particle passes 
through it. Once an accelerated particle encounters any substance, it gradually los-
es its own energy (i.e., the same amount of energy is transferred to the substance 
causing damage.) and eventually stops at the point where the maximum energy 
loss is observed (Fig. 4.4). In this figure, an ionizing particle gradually loses its 
own energy as it slows down in the target material. LET refers to this energy loss, 
which is deposited to the material. In this cartoon, LET is represented by wavy 
lines. LET reaches its maximum just before the ionizing particle stops. Immediately 
after this peak, LET plunges to zero. LET is usually expressed in kilo electron volts 
per micrometer (keV/mm), which represents the average amount of energy lost per 
unit distance. Ion beams have a relatively high LET (around 10–1,000 keV/µm or 
higher), while X-rays, γ-rays and electrons have low LETs (around 0.2 keV/µm). 
Therefore, ion beams are able to cause more severe damage to living cells than 
other forms radiation, resulting in the high relative biological effectiveness (Blakely 
1992; Lett 1992). It is possible to modulate the treatment of plant material with one 
species of ion at different LETs by passing the ions through a combination of ab-
sorbers—since changes in the LET of ion species occur as they pass through matter 
(Kazama et al. 2008).

Studies have shown that the biological effect of ion beam radiation is dependent 
on absorption doses and LET values but independent of ion species (Kazama et al. 
2008), which means that the treatment of carbon-12 would produce similar biologi-
cal effect on rice seeds as neon-20 if the same dose (say 50 Gy) and same LET (say 
30 keV/μm) is applied. DNA double strand breaks are believed to be the most im-
portant consequence of ion beam radiation. Very complex repair mechanisms have 
been unveiled but are prone to errors due to double-strand breaks and lead to dele-
tions, insertions, inversions and translocations. Studies on the mutant gene alleles 
induced by ion beam radiation showed that most mutations are deletions and that 
the size of DNA deletion is LET-dependent. Most complex DNA damage caused 
by the intricate set of effects of heavy ion beams (HIB) escapes the repair efforts 

Table 4.2   Heavy ions for biological research in RIKEN Accelerator Research Facility (RARF). 
(Modified from Kazama et al. 2008)
Heavy ions Charges Energy LET (keV/μm) Range in water 

(mm)MeV/u GeV
12C + 6 135 1.62 22.5 43
14N + 7 135 1.89 26.3 34
20Ne + 10 135 2.70 61.1 23
40Ar + 17 95 3.80 280.0 8
56Fe + 24 90 5.04 624.0 4
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and thus is described as more biologically effective and mutagenic than X-rays and 
gamma rays. A wider mutation spectrum and less collateral physiological damage 
(i.e. effect on plant survival and growth) is commonly reported for ion beam radia-
tion as compared to other mutagens, which is considered an important advantage. 
In China, 23 new rice and wheat mutant varieties have been bred using ion beam 
technology and released for large scale commercial production (more than 1 mil-
lion ha per annum). The wheat variety ‘Wanmai 54’ displayed excellent resistance 
to head scab disease and rust disease and recorded the highest yield in the national 
new wheat variety yield trial (2003–2007), with yield increases over control variety 
of 7–10.6 %. In Japan, ion beam technology has been used for generating mutants 
for a vast number of plant species by various researchers; for example, a consortium 
of more than 90 user groups was established to utilize the ion beam technology 

Fig. 4.3   A beam with suf-
ficient energy penetrates a 
plantlet and/or plant tissue 
with rather low and uniform 
LET and it will then drasti-
cally increase towards the 
end of the track that is known 
as the Bragg peak (BP). 
(Modified from Kazama et al. 
2008)

Fig. 4.4   Conceptual diagram 
of LET
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available in RARF (Japan). Six new flower varieties have been developed using 
this technology and marketed in Canada, Japan, USA and the EU since 2002. Oka-
mura et al. (2012) demonstrated that ion-beam radiation mediated breeding can 
alter and improve petal color and shading; this leads to the success creating the 
most glittering carnation ever by taking advantage of new mutagenesis techniques 
combined with exploiting genomic information. Here, Nakayam et al. (2012) sum-
marized their ideas obtained from their successive ion-beam mutant studies that can 
be generally applied to the generation of mutants as follows:

1. Because of cooperative and compensative biosynthetic regulation between a tar-
get and its related compounds, mutants in which the target compounds either 
increased or decreased could be generated by ion-beam irradiation.

2. When multiple compounds are concerned in the expression of one phenotype, 
different types of mutants occur among the same phenotype.

3. Structural changes of the target compound influence the physical, chemical and 
physicochemical properties, such as light-absorption, co-pigmentation effect and 
solubility, respectively, resulting in the acquisition of a novel phenotype.

Gamma�Phytotron

Genetic improvement by chronic irradiation is another important option of mutation 
breeding technique, especially when a wide array of mutants and minimal growth 
arrest are needed. Therefore, a chronic irradiation of living plant materials has been 
favored to induce useful mutants in mutation breeding. Unfortunately, these kinds’ 
of facilities are scarce and only a few Asian countries including Japan, Malaysia, 
and Thailand have operational chronic irradiation facilities such as gamma field, 
gamma greenhouse, and gamma phytotron, respectively. There are still many fac-
tors to consider when operating these types of facilities such as security and man-
agement issues. For this purpose, Kang et al. (2010) constructed a new gamma 
phytotron which can be occupied with living pot plants or cultured callus during 
long periods of chronic irradiation at lower doses. The ionizing source is 60Co with 
the radioactivity strength of about 400 curies. The facility consists of an irradiation 
room, a non-irradiation room, a glasshouse for acclimation, an operating room, and 
an office. The total area of the irradiation room is about 104.16 m2. The target plant 
materials for a gamma ray irradiation can be arranged from 2 m (612.9 m Gy/h) to 
7 m (60.1 m Gy/h) from the 60Co source at present.

For safety reasons, the building, where the 60Co source is located, is surrounded 
by concrete walls with 1.2 m depth and a twofold lead shielded door between the 
control room and the irradiation room. Moreover, the irradiation room is equipped 
with two CCD camera systems, which enable an inner situation check of the con-
trol room. The irradiation room and non-irradiation control room have automatic 
control systems for various ranges of temperature (15–35 °C), humidity (50–80 %) 
and light condition (maximum 30,000 lx), which can be finely setup according to 
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the growth conditions of targeted plants (Fig. 4.5). The difference of mutagenic ef-
fects of the acute and chronic irradiation can be compared using the same treatment 
dose. It is expected that the heavy applications of the chronic gamma phytotron will 
be extended to various crop plants, which are eventually provided to domestic and 
global communities for mutation breeding and fundamental research.

Chemical�Mutagenesis

The use of chemical mutagens is also very simple and can be done in any bio-
logical laboratory with basic equipment. However, it should be kept in mind that 
most chemical mutagens are also strong carcinogens. For this reason, all steps of 
mutagenic treatment should be carried out wearing gloves and under a Biohazard 
flow-hood. These safety conditions are not necessary for treatment with sodium 
azide, which is a very powerful mutagen, but only for a limited number of species, 
including barley, rice, maize, oat, sorghum, sesame, jute and soybean. Numerous 
chemical mutagens have been successfully used for crop improvement.

The mutagenic action of a chemical mutagen induces somatic and genetic effects 
in a treated cell, tissue or organ. After treatment of seeds, only unrepaired damage 
to the DNA in initial cells of the sporogenic layer (germ line cells) are transferred 
as mutations to the next generation. Other mutations in somatic cells of the embryo, 
including mitotic chromosomal aberrations, together with toxic action of a muta-
gen on all components of cytosol, affect plant growth and development, and are 
called the ‘somatic effect’ of the mutagen. The steps generally followed in muta-
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genic treatment of seeds with chemical mutagens are: pre-soaking in distilled water, 
pre-treatment rinsing in tap water, treatment with the mutagen, post-treatment rins-
ing in tap water and drying (if necessary) on a filter paper. All steps of mutagenic 
treatment should be done using glass beakers to avoid any interaction of chemical 
mutagens with even trace quantities of metallic cataions or other active reagents. 
Seeds for each dose of mutagenic treatment (M0 generation) and for the untreated 
control, usually the parent variety, are put into beakers that are visibly labeled with 
the applied concentration of mutagen (Roychowdhury 2011).

As dry seeds are usually used for treatment, pre-soaking in distilled water should 
be applied to activate seeds physiologically before treatment with mutagen. The 
amount of water used in pre-soaking should be at least 2–3 times the volume of dry 
seeds. The beakers with pre-soaked seeds should be gently shaken a few times to 
remove air bubbles, which can block access of mutagen to embryos. Duration of 
pre-soaking depends on the biology of germination of a particular crop species. For 
example, in barley and other major cereals, 8–10 h of pre-soaking in room tempera-
ture (20–24 °C) is usually applied. Pre-soaking significantly reduces the somatic 
effect of chemical mutagen (Roychowdhury and Tah 2011a). Short washing, 2–3 
times in room-temperature tap water should be applied after soaking to remove 
water-soluble substances leaching from the seed. Such prepared seeds are ready 
for mutagenic treatment. It is advisable to use three doses of mutagen for a large-
scale field experiment. This is especially desired for regions with very variable 
and unpredictable weather conditions during the growing period of mutagenetically 
treated material. Drought, cold and heat can significantly modify the somatic ef-
fect of a mutagen and influence the final effect of treatment. The concentration of 
mutagen, its duration and temperature of treatment are understood under the term 
‘dose’ in chemical mutagenesis. A temperature of mutagenic solution of 22–24°C is 
most often applied for the seed treatment of various crop species. The use of other 
temperatures is also possible. However, it should be noted that the increased tem-
perature will significantly shorten the half-life of chemical mutagen and generate 
products of hydrolysis that can increase undesired somatic effect of a mutagen. This 
is especially relevant to treatment with mutagens such as diethyl sulfate (DES) or 
ethyl methane sulphonate (EMS). To obtain equal penetration of a mutagen through 
the cells of a seed embryo, it is necessary to treat seeds in a water solution of the 
mutagen for 3–5 h. Similar to the pre-soaking, the treatment should be done with 
a significant surplus of mutagenic solution, some 2–3 times the volume of the dry 
seeds. In cereals, about 1–1.5 ml of mutagenic solution is applied per seed. The 
concentration of the mutagen should be considered, together with duration of the 
treatment. A shorter treatment time with higher concentration of mutagen can in-
crease somatic effects and could be insufficient to penetrate equally all cells in the 
plant material. A gentler treatment requires a lower concentration but longer period 
of application.

Extensive post-treatment rinsing several times in room-temperature tap water is 
necessary to stop action of the mutagen and to remove its residues from the surface 
of the seeds. To facilitate sowing, the treated seeds can be dried on filter paper 
under a fume hood. However, too intensive drying, especially with increased air 
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temperature, can enhance somatic effects of the mutagen. Surface-dry seeds are 
ready for sowing and are termed the M1 generation. In a well-organized labora-
tory, pre-soaking is done overnight and mutagenic treatment in the early morning. 
This allows the M1 seeds to be sown the same day. Should this be impossible, due 
to prolonged pre-soaking or mutagenic treatment, the mutagen treated seeds, after 
brief drying, can be kept in a refrigerator at a temperature of around 6–8 °C. Some 
mutagens are active in a particular acidity of a treatment solution. This is the case 
for sodium azide, which is a very efficient mutagen in several species if applied at 
low pH. For this reason, sodium azide is dissolved in a phosphate buffer at pH 3 and 
this solution is used for treatment.

Mutation Breeding Strategy

A sequential strategy is essential for any mutation breeding steps where mutagen-
ic induction and its mutagenesis are much helpful for autogamous crops than the 
cross-pollinating one. This is due to several problems regarding the incorporation, 
selection and maintenance of recessive mutations in crop plant, many plant breed-
ing problems in the cross-pollinating species, sometime many handling based prob-
lem for the existing variability. Where the lack of variability exists for specific 
and simply inherited traits, the basis of choosing between induced mutations and 
hybridization is essentially the same in self- and cross-fertilizing species. However, 
the genetic consequences of the failure of recessive imitations to express in cross-
fertilizing systems without forced selling or sib-mating must be taken into consid-
eration in assessing the cost of such ventures. The efficiency of mutation breeding, 
more than any other breeding method is dependent on the effectiveness with which 
useful variants can be recognized in M2 or M3 generation. The first step in the muta-
tion breeding selection process is to reduce the population of potential variants to a 
sufficiently small fraction to permit more detailed analysis and evaluation.

Probability�of�Obtaining�Mutants

Mutations occur more or less at random and for mutagenesis-derived populations, 
unlike segregating populations derived from cross-breeding, there is no clue as to 
the kind or magnitude of genetic change. A particular gene can be expected to mu-
tate once in about 10,000 mutagen treated cells, provided that an effective treatment 
was given. On an average, it appears that tail about five cells of the embryonic 
shoot apex may become part of the germ line and thus relate to the next generation. 
This would mean that for seed propagated species the M2 generation of 2,000 mu-
tagen treated (M1) plants has to be examined in order to have reasonable chance of 
finding mutation in a particular gene. To extend the simplified calculation further, one  
might assume that plant genome possesses 10–100 × 103 relevant genes. Based 
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upon the single locus mutation rate estimate of 1 × 10-4 this would mean that in an 
experiment using 2,000 M1 plants, there would 10–100 × 10-3 mutations or 1–10 
per treated cell. Of these, some may be easily recognizable, others not; few usable, 
most of them not. Admittedly such estimates cannot be very accurate but the old, of 
magnitude should be acceptable and, therefore, be taken into account (Roychowd-
hury 2011).

Size�of�Ml�Population

The Ml population is the plants that are generated from mutagenized seeds or other 
propagules. Determination of target population size in Ml is the most crucial com-
ponent of mutation breeding. The target should be fixed so as to allow high number 
of mutation events, yet the population size should be manageable by the breeder. 
It is obvious that the population size will depend on the inheritance pattern of the 
gene. If the mutation is monogenic recessive, the probability of recovering a mutant 
phenotype will be higher than for a trait controlled by more than one gene. In math-
ematical terms, if ‘n’ is the number of mutation events in the Ml generation after 
treatment, and ‘P’ is the probability of occurrence of at least one mutation, then-

With a mutation frequency of 1 × 10-4, ‘n’ equals to 46,520 for a monogenic reces-
sive trait. As there are two alleles, the number may be reduced to 23,260, indicating 
that about 25,000 plants are to be grown to obtain a useful mutation in Ml genera-
tion. In practice, ten times of the size has to be considered, because the mutation 
produced may be useful or undesirable. Mutation breeding is an input intensive 
process. It is therefore advisable to select mutagens with high mutation frequency, 
so that Ml generation size can be reduced.

While planting Ml population, it is suitable to divide the whole seed lot in dif-
ferent small sections for ease of screening and analysis of chimera. It is to be re-
membered that germ-line mutations take place only in the initial cells of embryo, 
so depending on the nature of the species, products of initial divisions should be 
screened. For example, cereals like rice, wheat, barley, oat etc. produce multiple 
tillers. Those tillers that generates first (primary tillers) have maximum chance to 
carry mutation. In case of tuber crops like potato, the mutation may be present in 
any of the stems arising from different discs of a tuber, so each of them has equal 
chance to give rise to a mutation. Obviously, here the segregation pattern of muta-
tion will depend on both the number of stems as well as the ploidy level of potato, 
which is an autotetraploid crop. Mutation breeding in polyploidy crop is more dif-
ficult than a diploid crop due to therecombination and segregation problem.

Genetically, a mutant plant in Ml should be heterozygous, because during treat-
ment, only one allele is affected by one mutation. Probability of occurrence of a 

n =
log(1 − P )

log(1 − µ )
, where µ is the rate of mutation
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mutation in both the alleles simultaneously is product of individual probabilities 
of mutation and therefore, is extremely low. It is not possible to identify a reces-
sive mutation in Ml stage; only dominant mutations can be identified. However, 
due to occurrence of this expression is also sectorial, or may not be observable. A 
breeder should attempt to screen mutations in M2 generation, where the mutation 
will segregate generating homozygotes for recessive or dominant alleles. The Ml 
plants should not be allowed to cross pollinate, because recombination will lead to 
generation of new variability that will be difficult to separate from effects of muta-
tion (Roychowdhury 2011).

M1�Generation�Maintenance

The treated seeds need to be handled with care. The seeds treated, with physical mu-
tagens can be stored before sowing. However, the seeds treated with chemical mu-
tagens should be washed thoroughly and be planted as soon as possible. If the seeds 
cannot be plowed soon for various reasons such as weather or long transport, the 
seeds should be dried in shade to a moisture content of about 13 % as soon as pos-
sible without causing any damage to the seeds. Soil conditions can have consider-
able influence on survival and growth of the M1. Nitrogen fertility of the soil should 
be normal or slightly sub-normal to limit excessive vegetative growth. However, 
other nutrients should be at optimum levels. The time of sowing should be slightly 
later (2 or 3 weeks) than normal so as to reduce excessive vegetative growth. The 
purpose of isolation of the M1 is to avoid the introduction of genetic variability 
other than that induced with the mutagenic treatment. Most mutagen treatments will 
induce some pollen sterility increasing the amount of out crossing. M1 population 
should be planted 75–100 m apart from the parental or other genotypes of the same 
crop species. If the crop is frequently insect pollinated, as with some legumes, the 
required isolation may he greater and other means of isolation may be required. 
Mutagen treated M1 materials normally flower over a longer period than the control 
materials. A slightly later sowing of M1 material than the parental genotype will 
permit separation of flowering times. When mutation breeding is practiced with a 
limited number of M1 types of a crop, it may be possible to grow M1 treatments side 
by side since F1 hybrids may not occur or could easily be recognized by means of 
marker traits such as flower, plant or spike colour. Mechanically isolation can be 
achieved by bagging spikes in cereals using plastic or paper bags to prevent cross-
pollination and bird damage. M1 generation can also be grown in a green house or 
in the screen enclosures to achieve control over pollination by insects. Methods of 
harvesting the M1 populations will depend on the pattern of ontogenetic develop-
ment in the species, the methods of screening and the generation to be screened 
for mutants. In case the seed yield from each branch is reasonably adequate, it is 
suggested that each primary branch may be harvested separately. In case of cereals, 
individual plant or spike can be harvested (Roychowdhury 2011; Roychowdhury 
et al. 2011c, 2012).
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Management�of�M2�Population

Sowing of M2 generation depends upon the method of harvesting of M1 generation. 
Two methods of sowing M2 generation can be followed. Firstly, M1 plant to row, 
where all seeds produced from a single plant are grown in row. The success of its 
use will depend, to a large extent, on how well the branching has been controlled 
because it tends to dilute the yield of M2 mutants. Second method is of M1 spike 
or branch to row, which offers the greatest precision with regard to the origin of a 
mutant when the material treated is genetically homogeneous as regards the non-
mutant allele and when outcrossing is controlled.

Mainly three types of screening/selection techniques can be employed for the 
selection of mutants in M2 and subsequent generation viz. visual, mechanical/physi-
cal and other methods (Roychowdhury et al. 2012). Visual screening is the most 
effective and efficient method for identifying mutant phenotypes. Visual selection 
often is the prime basis for selecting for disease resistance, earliness, plant height, 
colour changes, ion-shattering, adaptation to soil, climate, growing period etc. 
Mechanical or physical selection can be used very efficiently for seed size, shape, 
weight, density, etc., using appropriate sieving machinery. In other category, chemi-
cal, biochemical, physiological, physio-chemical like screening procedures may be 
needed for selecting certain types of mutants. Low alkaloid content mutants can he 
selected using colorimetric tests. Colorimetric, chromatographic or electrophoresis 
techniques may be used to select isolate protein variants.

Propagation�and�Evaluation�of�Mutants

When a mutant appears promising, seed multiplication for extensive field testing is 
necessary. The mutant, the mother strain and other varieties with which it is intend-
ed to compare, should produce comparable seed properties for the basic trial seed. 
Mutants of vegetatively propagated plants can be multiplied by the usual method 
for the crop in question such as cuttings, grafting, budding, layering, bulbs, tubers 
etc. The methods of testing mutants in comparative trials are essentially the same 
as for any other newly developed strain. It is intended to find whether the mu-
tant promises to become a variety surpassing the value of the mother strain and of  
the best available variety (a) in at least one property or (b) by a better combina-
tion of different characters; mutants of growth rhythm, growth habit, structure  
and yield components should be tested in a wide range of environments such as 
locations, soil, water and nutrient conditions, seed rates, planting, distances, sowing 
dates etc.
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Mutagenesis and Genetic Variability

Diversifying the limited genetic variability for agronomic traits of interest, espe-
cially yield and its associate attributes and developing new crop cultivars are much 
demanding in this modern era (Roychowdhury et al. 2012). Due to lack of suf-
ficient natural variability, the mutation breeding performance in crop species can 
significantly accelerate many breeding endeavors, which have proven difficult with 
classical breeding procedures (Roychowdhury 2011; Roychowdhury et al. 2011). 
Various metrical attributes like seed weight, number of branches, leaves, flowers, 
leaf area, etc., are very much complex in nature because it is governed by polygenes 
and greatly influenced by environmental factors (Roychowdhury et al. 2011, 2011c, 
2012). This may raise breeder’s concern, since the genetic organization provides 
the base for crop enhancement of environmental adaptation, yield and other associ-
ated attributes. The presence of adequate genetic variability between treatments of 
a cultivar is critically important (Fasoula and Fasoula 2002). Moreover, the genetic 
progress in a breeding program is actually dependent on the variation in the pres-
ent gene pool (Dreisigacker et al. 2004) associated with the magnitude of several 
genetic parameters.

It is a powerful and effective tool in the hands of plant breeders for self-pol-
linating crops having narrow genetic base as well as for cross-pollinating crops 
(Micke 1988). The success of any breeding program depends to a large extent on 
the amount of genetic variability present in the population. The role of mutation 
breeding in increasing the genetic variability for desired traits in various crop plants 
have been proved beyond doubt by a number of scientists (Tah 2006; Adamu and 
Aliyu 2007; Khan and Goyal 2009; Kozgar et al. 2011; Mostafa 2011; Kozgar et al. 
2012). Wide spectrum of genetic variability has been induced using both physical 
and chemical mutagens in order to utilize it in crop improvement and inheritance 
studies (Patil 1966; Ashri 1970; Gowda et al. 1996). Induced mutations have been 
used to generate genetic variability and have been successfully utilized to improve 
yield and yield components of various crops like Oryza sativa (Singh et al. 1998), 
Dianthus caryophyllus (Roychowdhury and Tah 2011b), Solanum melongena (Roy-
chowdhury et al. 2011c), Cicer arietinum (Kozgar et al. 2012), Vicia faba (Ismail 
et al. 1977), Vigna radiata (Wani and Khan 2006; Roychowdhury et al. 2012), 
Vigna unguiculata (Mensah and Akomeah 1992), Cajanus cajan (Srivastava and 
Singh 1996), Vigna mungo (Singh and Singh 2001b) and Lens culinaris (Khan et al. 
2006). These reports show that mutagenesis is a potential tool to be employed for 
crop improvement.

Overall variability must be partitioned into heritable and non-heritable compo-
nents with the aid of genetic parameters such as genotypic and phenotypic coef-
ficients of variation, heritability and genetic advance (Ariyo 1987; Roychowdhury 
and Tah 2011b; Roychowdhury et al. 2011a, 2011c, 2012). Genetic variability stud-
ies provide basic information regarding the genetic properties of the population 
based on which breeding methods are formulated for further improvement of the 
crop. These studies are also helpful to know about the nature and extent of vari-
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ability that can be attributed to different causes, sensitive nature of the crop to envi-
ronmental influences, heritability of the characters and genetic advance that can be 
realized in practical breeding. Progress in any crop improvement venture depends 
mainly on the magnitude of genetic variability and heritability present in the source 
material. The extent of variability is measured by genotypic coefficient of variance 
(GCV) and phenotypic coefficient of variance (PCV) which provides information 
about relative amount of variation in different characters. Hence, to have a thorough 
comprehensive idea, it is necessary to have and analytical assessment of metrical 
components. Since heritability is also influenced by environment, the information 
on heritability alone may not help in pin pointing characters enforcing selection. 
Nevertheless, the heritability estimates in conjunction with the predicted genetic ad-
vance will be more reliable (Johnson et al. 1955). Heritability gives the information 
on the magnitude of inheritance of quantitative traits, while genetic advance will be 
helpful in formulating suitable selection procedures. Thus such studies permit an 
effective screening of large plant population leading to generate demanding mutant 
lines. Therefore, an investigative attempt is essential for estimation the extent of 
various genetic parameters like variability, heritability and genetic advance in mu-
tagen treated crop lines for some common agronomically important metrical traits 
and establishing a suitable breeding procedure, except expensive available molecu-
lar breeding methods along with developing a high quality and better yielding new 
crop germplasm to increase its diversity and sustainable agro-economical market 
demand by analyzing the stability capability and effect of mutagens for character 
improvement (Roychowdhury et al. 2011c).

Introduce of analysis of variance (ANOVA) revealed either significant or non-
significant differences (at 1 % and/or 5 % level of probability) amongst the crop 
genotypes for all the analyzed traits. When highly significant differences were 
found, the crop genotypes showed a wide range of variation for all the characters 
studied. After analysis of variance (ANOVA) for each character, F-value was cal-
culated. The wide range of F-values provides bright scope to select superior and 
suitable genotypes to be incorporated in the breeding programmes for further crop 
improvement. It is also important to note the value of coefficient of variation (CV) 
and critical difference (CD) values whose significant numerals indicate that the 
crop cultivar is suitable for its respective locational field where prevailing environ-
mental effects were favorable. The higher CD value indicates higher stability in that 
environment (Roychowdhury 2011).

Substantial differences within phenotypic (PCV) and genotypic (GCV) co-ef-
ficient of variation were needed to mark for all the studied attributes. The least 
difference between PCV and GCV indicating phenotypic variability is reliable mea-
sure of genotypic variability. The PCV was higher than the corresponding GCV 
for all time the traits which might be due to the interaction of the genotypes with 
the environment to some degree or other denoting environmental factors influenc-
ing the expression of these characters. Close correspondence between PCV and 
GCV for the characters implied their relative resistance to prevailing environmental 
variation. Higher values of PCV and GCV indicate the presence of high degree of 
variability and better scope for improvement. However, low values have indicated 
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narrow range of variation for these characters and provides very least scope for se-
lection. This also described that genetic factors were predominantly responsible for 
expression of these attributes and selection could be made effectively on the basis 
of phenotypic performance (Roychowdhury et al. 2011c).

The heritability estimates indicate the relative amount of estimates have been 
found to be satisfactory tools for selection based on phenotypic performance. The 
high estimates of heritability suggested that selection based on phenotypic perfor-
mance would be more effective. However, heritability values alone may not provide 
clear predictability of the breeding value. Heritability in conjugation with genetic 
advance over mean (GAM) and/or genetic gain is more effective and reliable in 
predicting the resultant effect of selection (Roychowdhury and Tah 2011b; Roy-
chowdhury et al. 2011c, 2012). High heritability combined with high genetic gain 
indicates less influence of environment in expression of these characters; and preva-
lence of additive gene action in their inheritance (Panse 1957). Hence, these metri-
cal traits require simple selection in breeding programmes. High heritability with 
moderate genetic gain indicates that the characters were governed by additive gene 
interaction. High heritability coupled with low genetic gain indicating non-additive 
gene action; hence heterosis breeding would be recommended for that trait.

Mutational Analysis of Plant Structure and Function

As a prerequisite for functional genomics, mutational analysis of the most important 
characters that determine the plant productivity should be considered for the most 
important crops. Germplasm collection and maintenance is necessary for the re-
covery of various crop mutants. Rice, maize, barley, mung bean, carnation, tomato 
are the only positive examples of crop mutant germplasm conservation. In all these 
collections, the number of mutants with described and characterized mutations of 
genes responsible for plant productivity or for other agronomically important and 
desirable characters for breeding is exceptionally low.

According to Brown and Peters (1996), during investigation on mouse genom-
ics for dissection of basic pathophysiological mechanisms, the first defined term 
‘Phenotype gap’ depicts that many mouse mutations are extremely valuable for the 
investigation of human diseases and for identification of the critical genes involved 
in human pathologies. This ‘phenotype gap’ concept can easily be extended to ge-
netic investigation of plant species as a basic component of the mutational analysis 
of any crop plants. The phenotype gap will reflect the gulf between available mutant 
resources and the full range of phenotypes of an investigated plant species.

In Arabidopsis thaliana, having a very low amount of DNA per haploid genome, 
it seems that the phenotype gap is also very wide. Probably only 1.8 % of visible 
markers have been described in which 167 genes are expected per megabase (Mb) 
and an average number of identified visible markers of 3 per Mb have been identi-
fied (Vizir et al. 1994). The genome of rice ( Oryza sativa), barley ( Hordeum vul-
gare) and wheat ( Triticum aestivum) contain about 4, 37 and 115 times more DNA 
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(DNA amounts correspond to genome length) than A. thaliana. This indicates the 
amount of work that should be done to fill in the ‘phenotype gap’ in higher plants, 
especially the major crop species. Because of the small rice genome size, large scale 
mutational work should be initiated with this crop. The synteny of cereal genomes 
can help in the use of mutated genes in other cereals.

To narrow the ‘phenotype gap’ in crop plant species, it is necessary to expand 
mutant resources in breadth and depth (Brown and Peters 1996) by recovering mu-
tations at new loci and recovering further mutations at known mutated loci. Closing 
the ‘phenotype gap’ requires efficient mutagenesis protocols and sensitive screen-
ing methods. As current mutagenesis has a great number of mutagenic agents such 
as various types of radiation, chemical mutagenesis, in vitro conditions, insertional 
mutagenesis, and activation of retro-transposons, the efficient and sensitive screen-
ing method is still the most limiting factor for isolation of a particular mutation.

There are many misconceptions related to frequency of specific locus mutations. 
Most probably, underestimation of the frequency of mutations induced by radia-
tion or chemical mutagens leads to a very critical assessment of their usefulness in 
generating desired genetic variability and diversity in plants. It has generally been 
accepted, from the last 3 decades, that the average frequency of induced mutations 
is approximately on the level of 1 × 10−6. This figure ignores the data related to the 
level of spontaneous mutations which have almost similar level for higher eukary-
otes (Drake et al. 1998). Consequently, too high of mutagen doses have often been 
used, which induced too many mutations in the nucleus of each treated cell. The 
generative progeny that develop from this cell segregate for many characters that 
may negatively influence agronomically important characters, such as adaptability 
and yield potential. As a result, due to the use of high doses, many mutants were se-
lected in mutated populations but most frequently with significant modifications in 
parental genetic background that made their usefulness in breeding programs high-
ly questionable. The effectiveness of mutational strategies was also compromised 
by improper handling of successive mutated generations due to misunderstanding 
of the genetic consequences of chimeric structure of first mutant generation (M1) 
plants and the adoption of ‘diplontic selection’ concept. In reality, the frequency 
of mutations at numerous loci is much higher, as is indicated by the frequency of 
mutants in the second mutant generation (M2) of some crop species.

Recent developments of gene transfer technology have enormous promise for 
improvement of plant productivity; however, there is a lack of available new genes 
which can be transferred to current high-yielding varieties and further significantly 
increase yield. In other words, there are no genes that have been identified which 
can contribute to world crop production. Borlaug (1997) referred to these genes as 
‘master genes’ and concluded that Biotechnology may be a new window through 
which to search for new ‘master genes’ for high yield potential by eliminating the 
confounding effects of other genes. Therefore until new master genes are discov-
ered, alternative solutions for crop improvement must be pursued. Further increases 
in crop yield may involve breeding for improved root systems. Breeding programs 
for high yield and adaptability have only indirectly selected favorable root systems. 
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Nevertheless, such an approach cannot replace a gene recombination breeding pro-
gram that focuses on such characters of the root system as the dynamics of soil 
penetration; seminal, adventitious, and secondary root numbers; total root length; 
weight, number, and distribution of root hairs; and many physiological characters 
that directly influence plant productivity. Phosphorus uptake in barley can be almost 
doubled by increasing root hair density and length (Gahoonia and Nielsen 1997). 
The availability of phosphorous, zinc and other nutrients in poor soils as well as 
water and nitrogen nutrition depend also on mycorrhiza associations (Barker et al. 
1998). Mycorrhizal fungi transfer assimilated carbon between tobacco plants (Mull-
er and Dulieu 1998). These examples indicate an urgent need for further develop-
ment of selection methods and for studies of the inheritance of characters related 
to the root system structure, function, and their linkage with other plant characters. 
Mutational analysis of selected root characters in breadth and depth would be the 
most desired approach, especially since a high frequency of induced mutations has 
been observed in relation to the root characters. More than 3.3 % of progenies of 
barley M1 plants have indicated mutation in root system characters after combined 
seed treatment with sodium azide (NaN3) and N-methyl-N-nitroso-urea (MNH) ac-
cording to the mutagenic treatment method described by Szarejko and Maluszynski 
(1980). Mutant lines selected in M3 generation indicated mutations related to root 
hairs, number and length of seminal roots, rootlessness, and abnormal root tip de-
velopment.

Root mutants, described in maize, were obtained after mutagenic treatment with 
EMS and mutator MU (Feix et al. 1997). Mutants with unusual gravitropism be-
havior, aberrant lateral root formation, premature root degradation, and with lack of 
crown and brace roots were described in mutated generations. The genetic analysis 
of mutants indicated that the formation of the various root types and classes is con-
trolled by different genes. Mutational analysis has been demonstrated as a powerful 
tool to dissect signaling pathways for plant defense responses (Dangl et al. 1996; 
Yang et al. 1997). There are also several examples of the use of mutational analysis 
to define the physical size, organization, and the sequence complexity of the major 
cluster of pathogenesis-related genes or the fine gene structure, e.g. downy mildew 
resistance genes in lettuce (Anderson et al. 1996) and for the Mlo locus for powdery 
mildew resistance in barley (Buschges et al. 1997).

Induced mutations in rice, especially for semi-dwarfness and earliness, are 
most often used to demonstrate the fastest way to obtain these characters in geno-
types where crosses can modify particular characters such as adaptability, aroma, 
taste as well as requirements of local markets. More recently, mutation techniques  
have also been used to generate mutants with particular requirements related to 
quality characters where a rapid selection method is available. Very useful mu-
tants have been obtained for fatty acid composition in rapeseed (Kott 1995), canola 
(Wong and Swanson 1991), flax (Dribnenki et al. 1996), soybean (Schnebly et al. 
1995), cuphea (Knapp and Tagliani 1991), camelina (Vollmann et al. 1997), for 
grain quality in rice (Kumamaru et al. 1997) and for amylose-free starch in potato 
(Leij et al. 1991).
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Officially Released Mutant Varieties

Of a total of 1,847 accessions of the FAO/IAEA Mutant Varieties Database (http://
www-mvd.iaea.org), crop species are represented by 1,357 officially released mu-
tant cultivars and ornamental and decorative plant species by 490 mutant varieties. 
Crop mutant cultivars were mainly developed in seed propagated plant species 
(1,284 entries), whereas vegetatively propagated crops are represented by only 73 
varieties. Among the cereals (869 mutant varieties), rice (333) ranks first, followed 
by barley (261), bread wheat (147), maize (49), durum wheat (25), and others 
(54). Most of the rice mutant varieties (67.6 %) were released as ‘direct mutants’, 
i.e. direct seed multiplication of selected mutants and their subsequent distribu-
tion to farmers. In addition, some mutants such as ‘Reimei’ (Japan) and ‘Calrose 
76’ (United States) were successfully used in extensive crossbreeding programs. 
Semi-dwarfness (129 varieties) and earliness (117 varieties) were the most often 
selected characters from the treated populations. The list of improved characters 
also contains traits desired for increasing sustainability in rice production, i.e. tol-
erance to cold (13) salinity (6), and photoperiod insensitivity (3). The vast majority 
(201) of the directly released rice mutant varieties was induced with physical and 
only 25 with chemical mutagens. Radiation was applied in 199 cases and laser 
mutagenesis only in the development of two mutant varieties. Among the radiation 
sources, gamma rays were used in 199 cases, including 37 varieties developed by 
chronic gamma irradiation, followed by 14 with X-rays, 9 with neutrons, and 3 
varieties with other sources of radiation. Methyl- and ethyl-nitroso-urea (12) as 
well as ethyl methane sulphonate or EMS (9) was most commonly used as chemi-
cal mutagens to induce mutations for breeding new varieties. According to the 
database, the mutant rice varieties were officially released in 26 countries. The 
seven top countries are: China (117), Japan (46), India (31), United States (23) and 
Vietnam (14). The economic impact of rice mutant varieties has been reviewed by 
Rutger (1992).

Achievements Through Mutagenesis

Several achievements in crop improvement through mutation breeding: mutation 
breeding efforts to date have resulted into two major outcomes—improved varieties 
that are directly used as variety for commercial cultivation and new genetic stocks 
with improved characters or with better combining ability. Although development 
of new cultivars has been the primary objective of mutation breeding, the genetic 
stocks developed can have numerous applications in plant breeding, from being 
used as a donor parent in conventional breeding programme or as a parent in hybrid 
breeding programme. Apart from these, mutation research itself has also a very dif-
ferent objective, i.e., mapping of genes. The technique of identification of a gene 
by knockdown of the phenotypic expression through induced mutagenesis is a ma-
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jor component of today research on molecular genetics and genomics. Specific se-
quences like transposons can be randomly inserted into a genotype through genetic 
crossing, which when inserted within a gene, blocks its transcription, thereby caus-
ing loss of phenotype. The gene then can be identified by using the sequences of 
transposon, a technique known as transposon tagging. A variety of other techniques 
including RNA interference, gene trap, activation tagging and virus induced gene 
silencing are based on the same principle of knocking out the phenotype through 
inactivation either at DNA or RNA level to establish gene-phenotype relationship. 
Discussion of such techniques is beyond the scope of discussion and will primarily 
concentrate on the application of mutation induction for crop improvement purpose 
only. International Atomic Energy Association (IAEA) has categorized its mutant 
variety database of 3,220 (as on December 2008) varieties according to six breeding 
methods namely:

1. Development of commercial cultivars through direct mutagenesis of genotype 
(2,738 genotypes),

2. Development of variety using mutant line as one of the parents in crossing pro-
gramme (375 genotypes),

3. Development of variety through crossing of two mutants (28 genotypes),
4. Development of hybrid variety using mutant genotype as one parent (26 

genotypes),
5. Development of variety through mutation of segregating generation (53 

genotypes).

The first category includes 273R varieties and involves all the released variety 
through mutagenesis of seed, vegetative propagules and cultured tissues. Among 
the other classes, more success have resulted from using mutant line as parent in 
breeding programme as well as mutagenesis of breeding nurseries. Country wise, 
China ranks first in development of new varieties through induced mutagenesis 
and is well ahead of other countries in numbers. Many of these mutant varieties 
have been developed in rice, the principal food crop of India, China and other some 
Asian countries, through induced mutagenesis of seed as well as anther culture. 
Major commercial mutant varieties of China have been developed in rice, wheat, 
maize, Capsicum, cotton, tomato and groundnut. India ranks second after China, 
developing about 240 mutant varieties of different crops through direct mutagenesis 
of which major varieties have been developed for rice, wheat, barley, pearl millet, 
jute, groundnut, soybean, chickpea, mung bean, cowpea, black gram, sugarcane, 
chrysanthemum, rose and Dahlia. Additionally, about 50 varieties have been devel-
oped through using mutant lines in breeding programme. Indian mutation breeding 
programme became successful in the sixties with development of mutant varieties 
in wheat and rice and thereafter flourished in the next decades where new mutants 
have been developed in about 60 agricultural and horticultural crops. The major 
methods of mutation breeding in India involve irradiation with gamma rays, X-rays 
and treatment with EMS. Major Indian Institutes involved in mutation breeding are 
Bhabha Atomic Research Centre (BARC) in Mumbai, Indian Agricultural Research 
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Institute (IARI) in New Delhi and National Botanical Research Institute (NBRI) 
in Lucknow. Besides, some State Universities like The University of Burdwan 
(BU), Punjab Agricultural University (PAU), Tamil Nadu Agricultural University 
(TNAU) and crop specific National Research Centers have contributed a lot in mu-
tation breeding programme in India.

Functional Genomics Approach

In plants, the two most common methods for producing reduction-of-function 
mutations are antisense RNA suppression (Finnegan et al. 1996) and insertional 
mutagenesis (van Houwelingen et al. 1998; Speulman et al. 1999). However, anti-
sense RNA suppression requires considerable effort for any given target gene be-
fore knowing whether it will work, and insertional mutagenesis occurs at a low 
frequency per genome. However, its efficacy is not yet clear; for example, epigen-
etic phenotypes can be variegated and unpredictable (Que and Jorgensen 1998). 
Because these techniques rely either on Agrobacterium T-DNA vectors for trans-
mission or on an endogenous tagging system, their usefulness as general reverse 
genetics methods is limited to very few plant species. Moreover, these techniques 
produce a very limited range of allele types. Therefore, as the amount of sequence 
data grows for Arabidopsis and other organisms, it is important to develop genome-
scale reverse genetic strategies that are automated, broadly applicable, and capable 
of creating the wide range of mutant alleles that is needed for functional analysis.

Targeting specific loci is especially attractive when only a few genes of interest 
exist. Of the targeting methods for plants, posttranscriptional gene silencing (PTGS) 
is becoming increasingly popular (Waterhouse et al. 1998), replacing the less re-
liable antisense suppression methods that have been used for years. PTGS takes 
advantage of the innate RNAi system that is found in most eukaryotes, in which 
double-stranded RNAs are processed into 22–25-bp pieces (Baulcombe 2002) that 
can diffuse out of cells through plasmodesmata and the vascular system and into 
other cells. These pieces then target homologous transcripts for degradation and 
even can target genes for DNA methylation (Matzke et al. 2001). Reports of suc-
cess using this method are encouraging (Chuang and Meyerowitz 2000), although 
the efficiency of silencing can vary, so results may be unpredictable. Furthermore, 
throughput is limited by the needs to engineer a construct for each gene of interest 
and to individually transform plants with each one. PTGS may be the best way to 
simultaneously target multiple closely related genes in a family.

Homologous recombination may be the most desirable strategy for targeted mu-
tagenesis and has been routine in some microbial organisms such as E. coli and 
yeast for decades (Struhl et al. 1979). However, this technique has thus far been dif-
ficult or infeasible in multicellular eukaryotes, which have less-active homologous 
recombination systems. In a few model organisms, including mammals (Capecchi 
2000), flies (Rong and Golic 2000), and the moss Physcomytrella (Schaefer 2001), 
there has been substantial progress in developing targeting by homologous recom-
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bination. However, in higher plants, homologous recombination is not yet efficient 
enough for practical use (Wang et al. 2001). Another potentially powerful targeting 
method uses chimeric RNA/DNA hybrid oligonucleotides to introduce base chang-
es, insertions, or deletions (Rice et al. 2000), although, to our knowledge, the broad 
applicability of this method remains to be demonstrated.

Nucleotide sequence variation is a major determinant of heritable phenotypic 
difference in plant genomes. Variation can either be natural, from divergent popu-
lations, or induced through treatment with mutagens (Till et al. 2007a). There are 
several methods used in discovery mutations, which are natural or induced through 
treatment with mutagens in the genomes. TILLING and ECOTILLING are closely 
related methods that are useful in the rapid detection of small mutations and natural 
polymorphisms, respectively.

TILLING:�A�Best�Screening�Tool�for�Mutant�Plant�Population

Genetic variation is a powerful resource that humans have exploited over the mil-
lennia to advance biological knowledge and generate the crops and horticultural 
varieties that have become so much a part of everyday life. In recent years, the 
availability of genomic sequences from many plant species and the development of 
a wide array of molecular-genetic technologies have enhanced our ability to detect 
or engineer such variation at specific genetic loci (reverse genetics), greatly expand-
ing our capacity for both probing gene function and genetic engineering. McCallum 
et al. (2000a) have introduced a new reverse genetic strategy that combines the high 
density of point mutations provided by traditional chemical mutagenesis with rapid 
mutational screening to discover induced lesions. TILLING ( Targeting Induced Lo-
cal Lesions IN Genomes) combines chemical mutagenesis (Koornneef et al. 1982) 
with a sensitive mutation detection instrument.

The TILLING strategy utilizes traditional mutagenesis followed by high through-
put mutation discovery (Mccallum et al. 2000b; Colbert et al. 2001). The main 
steps in TILLING are mutagenesis, the development of a non-chimeric population, 
preparation of a germplasm stock, DNA extraction and sample pooling, screening 
the population for induced mutations, and the validation and evaluation of mutants 
(Fig. 4.6). The methods required for each step can be applied to many species, mak-
ing the TILLING process broadly applicable. Mutants discovered by TILLING can 
be used for gene-function studies and can be introduced into breeding programs.

In a pilot experiment, DNA from a collection of EMS-mutagenized Arabidop-
sis plants was pooled, subjected to PCR amplification, and screened for mutations 
using denaturing HPLC (DHPLC). DHPLC detects mismatches in heteroduplexes 
created by melting and annealing of heteroallelic DNA. Among the lesions detected 
were base transitions causing missense and nonsense changes that can be used for 
phenotypic analyses.

TILLING is suitable for any organism that can be heavily mutagenized, even 
those that lack genetic tools. Starting with a homozygous population is desirable, 
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Fig. 4.6   A TILLING chart for gene function analysis and developing new crop varieties. A muta-
genized population is prepared using a mutagen that primarily causes small lesions (single nucleo-
tide polymorphisms, or insertions/deletions) randomly throughout the genome. Many mutagenic 
treatments produce a chimeric plant in the first generation. Chimeras are dissolved and a structured 
population is typically developed. A germplasm stock is prepared for long term storage of mutant 
lines, and DNA is extracted from each individual mutant. DNAs are pooled and the library of 
samples is screened for induced mutations in selected regions of target genes. Candidate mutants 
are removed from the germplasm stock and further characterized genotypically and phenotypi-
cally. Individuals or lines exhibiting the desired characteristics can be incorporated into the breed-
ing program

                  

because DHPLC will detect polymorphisms. Nevertheless, this strategy can be ap-
plied to species and hybrids that cannot be practically homozygosed: we and others 
have detected rare polymorphisms in a heteroallelic background using DHPLC. The 
general applicability of TILLING makes it appropriate for genetic modification of 
crops, and there may be agricultural interest in producing phenotypic variants with-
out introducing foreign DNA of any type into a plant’s genome.

TILLING consists of several major steps: development of a mutagenized popu-
lation, DNA preparation and pooling, and mutation discovery (Fig. 4.7). At first, 
random mutations are induced in genomes by using chemical mutagens; seeds are 
mutagenized by treatment with ethyl methane sulfonate (EMS). The resulting M1 
plants are self-fertilized to get the M2 individuals which are used to prepare DNA 
samples for mutational screening. DNA is extracted from test samples. The DNA 
samples are pooled and arrayed into microtiter plates. Screening for mutations be-
gins with PCR amplification of a target fragment of up to 1.5 kb using gene-specific 
infra-red dye-labeled primers. The forward primer is 5′-end labeled with a fluores-
cent dye that is detected at 700 nm (IRDye 700) and the reverse primer is labeled 
with the IRDye 800 nm (Till et al. 2006). These PCR products are denatured and 
re-annealed to allow the formation of mismatches, or heteroduplexes, which rep-
resent naturally occurring single nucleotide polymorphisms (SNPs) and induced 
SNPs. Samples, are then incubated with a single-strand specific nuclease to digest 
mismatched base pairs. For mismatch-specific cleavage, several enzymes, includ-
ing S1 nuclease (Howard et al. 1999) and T4 endonuclease VII (Youil et al. 1996) 
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have been used. After cleavaging, DNA samples are purified from buffer compo-
nents and then each sample is loaded onto a denaturing polyacrylamide gel. Cleaved 
heteroduplexes produced two smaller molecular weight products, one labeled with 
IRDye 700 and the other with IRDye 800, whose sizes added up to the size of the 
full length product (Till et al. 2007b).
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Fig.  4.7   Schematic diagram of the overall TILLING and ECOTILLING strategy for plants. 
(Modified from Simsek and Kacar 2010)
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TILLING was first applied to Arabidopsis thaliana (McCallum et al. 2000a, 
2000b). A mutagenized population was created by treating seeds with EMS. Proof 
of concept was shown by the discovery of novel alleles in two cytosine methyl 
transferase genes. Researchers have also developed web based software programs 
to calculate the putative effect of induced or natural polymorphisms on gene func-
tion. CODDLE (http://www.proweb.org/input) allows requestors to specifically de-
sign their PCR primers to target the functional domain in which they are interested 
or to target the most-conserved domain, which is likely to be the most sensitive 
to amino-acid substitutions (Gilchrist and Haughn 2005). Also, the conservation-
based SIFT (Sorting Intolerant from Tolerant) software predicts with approximately 
75 % accuracy, whether or not an amino acid change is damaging a protein (Ng 
and Henikoff 2003). By using a reference DNA sequence, an exon/intron position 
model and a list of polymorphisms, software reports the effects of these polymor-
phisms on the expressed gene product in a graphical format (Taylor and Greene 
2003). Perry et al. (2003) adapted the TILLING method for the model legume Lotus 
japonicas. In a pilot experiment, the frequency of point mutations was analyzed in 
the symbiosis defective (symbiosis receptor kinase) gene, which is required for root 
symbioses (Stracke et al. 2002). Using this population, 17 mutations were identified 
that relate to six independent alleles, thus demonstrating the concept of Perry et al. 
(2003) The applicability of TILLING in a polyploid species for wheat was reported 
by Slade and Knauf (2005). Over 200 mutations were discovered in the pilot screen 
and the estimated mutation densities were exceptionally high: 1 mutation/40 kb in 
tetraploid and 1/24 kb in hexaploid wheat. The TILLING method was applied to 
model crop rice (Till et al. 2007b). Two different mutagenic treatments provide 
a suitably high density of mutations (over 1/500 kb) to consider development of 
rice for a high throughput TILLING service. It was shown that high-throughput 
TILLING is feasible to maize (an important commercial crop plant with a large ge-
nome but with limited reverse-genetic resources).Screening results from the pools 
of DNA samples for mutations in 1 kb segments from 11 different genes, obtaining 
17 independent induced mutations from a population of 750 pollens mutagenized in 
maize plants. One of the genes targeted was the DMT102chromomethylase gene, in 
which an allelic series of three missense mutations were obtained and are predicted 
to be strongly deleterious (Till et al. 2004).

High-Resolution�Melt�Analysis�(HRM):�An�Alternative��
Screening�Platform

Although Cel1-based TILLING is very efficient for detecting mutations in large 
(1–2 kb) exon-rich amplicons from target genes, it is less productive when used to 
screen genes with multiple small exons separated by larger introns, as mutations in 
introns, except those at splice junctions, rarely affect gene function. High-resolution 
melt analysis (HRM) has been established as an alternative screening platform for 
such targets. HRM depends on the loss of fluorescence from intercalating dyes bound 
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to double-stranded DNA during thermal denaturation (Ririe et al. 1997). Accurate 
control of temperature and continuous monitoring of fluorescence in instruments al-
lows detection of single base mismatches in amplicons up to 500 bp. The method has 
been used both for genotyping and SNP discovery in medical genetics (Zhou et al. 
2004, 2005), and SNP genotyping in plants has been demonstrated. Mutation scan-
ning by HRM in hexaploid wheat requires a two-step amplification process, first, 
using homeologue-specific primers to amplify a larger amplicon containing several 
coding regions, followed by HRM analysis using primers specific for each exon or 
part thereof; a simple flowchart is shown in Fig. 4.8. As the melt analysis following 
PCR is extremely rapid, the throughput of this technique is equal to or greater than 
that of Cel1-based TILLING and is, arguably, easier to establish (Parry et al. 2009).

Ecotilling

The genomes of individuals within a single species contain significant genetic vari-
ation that has arisen from spontaneous mutation. The vast majority of this diversity 
is in the form of single nucleotide changes commonly referred to as simple nucleo-
tide polymorphisms (SNPs). Such naturally occurring SNPs are of great interest 
to scientists because they are useful as genetic markers in mapping, breeding and 
genotyping and can provide information concerning gene structure, linkage dis-
equilibrium, population structure or adaptation. A number of different techniques 
for identifying SNPs have been developed. Some of these detect differences in de-
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naturation or single stand structure that result from changes in nucleotide sequence 
but such techniques fail to identify the number or position of mutations within the 
DNA fragment examined (DeFrancesco and Perkel 2001) so detection must be fol-
lowed by sequencing to distinguish between different polymorphisms. The more 
direct methods of array hybridization or sequencing are currently expensive when 
applied to multiple loci in large numbers of individuals. TILLING provides an alter-
nate approach to identification of naturally occurring SNPs in large populations that 
is both robust and relatively inexpensive. This application of TILLING has been 
termed ECOTILLING (Comai et al. 2004). Allowing of forceful discovery of mu-
tations, high throughput TILLING technology is ideal for the detection of natural 
polymorphisms: CEL I cut with partial efficiency, allowing the display of multiple 
mismatches in a DNA duplex. Therefore, interrogating an unknown homologous 
DNA by heteroduplexing to a known sequence reveals the number and position of 
polymorphic sites. Both nucleotide changes and small insertions and deletions are 
identified, including at least some repeat number polymorphisms. This method is 
called ECOTILLING.

As with TILLING, ECOTILLING is general, and should be applicable to most 
species. The ECOTILLING allows the rapid detection of variation in many indi-
viduals and is cost effective because only one individual for each haplotype need to 
be sequenced. The technology is applicable to any organism including those that are 
heterozygous and polyploid (Comai et al. 2004). Sixty-three novel SNPs were iden-
tified in 9 target genes, for 41 tree accessions. The ECOTILLING method also was 
applied to sugarcane ( Saccharum sp.), a complex polyploidy species, as a model to 
develop and test new protocols for high throughput ECOTILLING using capillary 
electrophoresis (Eliot et al. 2008). If SNPs in a population occur relatively rarely 
(less than one polymorphic individual per pool), the DNA of up to eight such in-
dividuals can be pooled, as is done in TILLING. However, when most individuals 
within a population differ at one or more base pairs in any given specific target 
sequence, 8-fold pooling will complicate genotyping. For this reason, in highly het-
erozygous species, the genomic DNA from each individual is usually pooled only 
with DNA from a reference individual for which the target has been sequenced. 
In addition, to detect those loci that were heterozygous prior to pooling, unpooled 
genomic DNA from an individual is Ecotilled separately.

ECOTILLING detects the number and relative position of all SNP’s, includ-
ing point mutations, and small insertions and deletions, within a target sequence in 
each individual tested. Thus both the spectrum of natural variation within the target 
sequence and the distribution of that variation throughout the population can be 
established. If knowledge of the specific nucleotide changes is required then DNA 
sequencing must be done following ECOTILLING (Fig. 4.7). However, since the 
number of different genotypes will normally be much smaller than the number of in-
dividuals examined, the target DNA from only a few representative individuals will 
need to be sequenced to establish the exact array of genotypes thus reducing the cost 
of SNP detection relative to direct sequencing (Simek and Novoselovi 2012). The 
efficacy of ECOTILLING has been demonstrated by two recent studies involving 
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representative plants from different ecotypes of Arabidopsis thaliana (Comai et al. 
2004) and different sub-populations of the poplar Populus trichocarpa (Gilchrist 
and Haughn 2005). Both studies were effective in rapidly identifying numerous 
target sequence SNP’s within the populations examined. The poplar study provided 
information on population heterozygosity and linkage disequilibrium, identified a 
conserved potential regulatory domain in an intron and generated ecotype and spe-
cies specific markers for genotyping. The fact that A. thaliana is a small inbreeding 
annual while P. trichocarpa is a large out-breeding perennial underscore the univer-
sality of ECOTILLING.

Conclusion and Future Perspectives

The spectrum of available mutation techniques has significantly increased; as a 
result, following the recent trend in the release of crop mutant varieties in some 
countries, the number of officially released mutant varieties listed in the FAO/IAEA 
Mutant Varieties Database will exceed exponentially year after year. The conven-
tional breeding method takes several years to develop a new cultivar/variety from 
wild species. Induced mutagenesis and its breeding approaches are potential tools 
and being highly used in crops to improve their quality and quantitative yield traits. 
Mutagenic induction is much easy to apply on crops and inexpensive to develop de-
sired agronomical traits, high yield, stress tolerance properties and resistant ability 
in various crops. Developing genetically novel germplasm becomes more feasible 
concurrent with the enhancement of breeding techniques, genomics, molecular ma-
nipulations and genetic engineering. The cost effectiveness of applying new muta-
tion associated technologies (mutation breeding) and trained manpower would be 
of paramount importance for crop improvement. In classical mutation breeding, 
induced mutations are embedded in mutants that are either directly or indirectly 
(through crosses with other varieties) used for developing a new variety, whereby 
it is rather difficult to trace the mutated genes in subsequent breeding. The mutant 
plant species can be easily selected from some conventional simple screening and 
by PCR and non PCR based techniques. Therefore, it should be applied on vari-
ous crops. It is now possible to tag mutated genes, pyramid them into a single elite 
breeding line, and follow them up in subsequent breeding programs. In view of 
the significance of conventionally induced mutants in functional genomics, there is 
great opportunity ahead for us in the era of genomics.

Now, several modern and classical technologies are using for the development 
of mutation induction with the objective of using a set of globally important crops 
to validate identified relevant novel techniques and build these into modular pipe-
lines to serve as technology packages for induced crop mutations. Thus, mutation 
assisted plant breeding will play a crucial role in the generation of ‘designer crop 
varieties’ to address the uncertainties of global climate variability and change, and 
the challenges of global food insecurity.
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Abstract Bio-fertilizers are cost effective, ecofriendly and renewable source of 
plant nutrients to supplement chemical fertilizers in sustainable agricultural system. 
Bio-fertilizers are preparations containing living cells of efficient nitrogen fixing, 
P-solubilizing/mobilizing or cellulose decomposing microorganisms, which when 
applied to seed or inoculated into the soil enhance availability of nutrients to plants 
either working symbiotically/asymbiotically or through solubiization of soil nutri-
ents such as phosphorus or decomposition of complex materials. Bio-fertilizers are 
gaining impetus due to the growing emphasis on maintenance of soil health, curtail 
the environmental pollution and cut down on the use of chemicals in agriculture. 
Bio-fertilizers are also ideal input for reducing the cost of cultivation and for prac-
ticing organic farming. In the present context of very high cost of chemical fertil-
izers, the bio-fertilizers assume special significance.
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Introduction

Bio-fertilizers are microbial inoculants of bacteria, algae, fungi that augment the 
availability of nutrients to the plants. Use of bio-fertilizers, in contrast to chemical 
fertilizers, accounts economical and ecological benefits to farmers (Brahmaprakash 
and Sahu 2012). Different types of microorganisms show the potential of converting 
essential soil nutrients which are in unavailable form to available form with the help 
of biological activity biological process such as nitrogen fixation and solubilization 
of rock phosphate (Rokhzadi et al. 2008). Bio-fertilizers improve plant growth, pro-
tect plants from amelioration of toxic effect in soils, root pest and disease control, 
improved water usage and soil fertility (Halim 2009; El-yazeid et al. 2007; Badawi 
et al. 2011; Mader et al. 2011; Mohammadi and Sohrabi 2012).

In addition they get engaged in symbiotic as well as associative microbial activi-
ties with higher plants Tiwari et al. 2003. These being an economical and safer source 
of plant nutrition for increasing the agricultural production, improve soil fertility and 
are called mini fertilizer factories (Vyas et al. 2008). The microorganisms form root 
nodules in leguminous plants by colonizing roots of legumes. Nitrogen fixation, phos-
phorus solublization and phytohormone production abilities have been observed and 
result in enhancement of agricultural productivity, e.g. Rhizobium for legumes (grain, 
fodder) (Ali et al. 2010) plant growth promoting rhizobacteria (PGPR) for cereals 
(wheat, rice, grasses etc.), Azolla for rice ecosystem, and actinomycetes ( Frankia 
spp.) (Zhang et al. 2012), for forest trees (Danso et al. 1992). These microorganisms 
also have the ability to convert atmospheric nitrogen to plant usable form and can pro-
vide up to 200 kg N/ha/crop. Besides nitrogen, phosphorus is an essential element for 
crop production. Another group of bacteria which play important role in stimulating 
growth of plants are plant growth-promoting rhizobacteria (PGPR), they in addition 
to stimulating growth of plants also control plant pathogens, and pest infestation i.e 
they act as bio-fertilizers as well as biopesticides and ought to have meticulous con-
sideration for agricultural purposes (Lugtenberg and Kamilova 2009). PGPR colo-
nizes the rhizosphere, i.e, around the root, and even in the intercellular spaces of root.

Advantages of Bio-fertilizers over Chemical Fertilizers

Uses of microbial products have various advantages over traditional chemicals for 
agricultural purposes (Mahdi et al. 2010). These products have been commended 
safer than many of the chemicals that are used, they can fix atmospheric nitrogen 
in nodules of leguminous plants and soil and make it available to the plants and in-
crease the fertility of soil (Shankar et al. 2012). They solublize the insoluble forms 
of phosphorous and again make is available to the plants (Hashemabadi et al. 2012), 
they also produce hormones which promote the growth of rhizosphere in addition to 
these properties they also help in mineralization of soil by decomposing the organic 
matter (Mahdi et al. 2010).
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Above all neither toxic exudates of these microbes, nor microbes themselves 
are accumulated in the food chain, self-replication of microbes curtails the need for 
repeated application and target organisms rarely build up resistance as is observed 
when chemical agents are used to get rid of the pests detrimental to plant develop-
ment (Mahdi et al. 2010).

Agricultural land deprived of essential nutrients gets impoverished after long 
term cultivation, to provide or nourish the soil nutrient content under conventional 
farming system, farmers use apply elevated doses of chemical fertilizers which in 
turn contaminate the ecosystem. Thus to implement the agricultural land a balanced 
and accountable use of organic agriculture is required. The principles of organic 
farming also outline the similar concepts where the soil health and biodiversity 
is built up to sustain the plant growth in longer term (Mahdi et al. 2010). Various 
beneficial microbes and their products found in rhizosphere are useful to plants 
by means of promoting growth or by acting as bio-control agents or both and are 
termed as Plant Growth-Promoting Rhizobacteria (PGPR) (Akhtar et al. 2012; 
Faramarzi et al. 2012). Rosenblueth and Martinez (2006) described several endo-
phytic bacteria from different plant species mainly belonging to genera Rhizobium, 
Azospirillum, Bacillus, Pseudomonas, Azotobacter, Burkholderia, Herbaspirillum, 
etc. play beneficial roles e.g. endophytic N-fixation, increased P-uptake, improve 
photosynthesis and plant vigor, tolerance to biotic as well as abiotic stresses and in 
addition to these properties they act as insecticides and help in phytoremediation of 
polluted soils. Bio-fertilizers application can be used on crops prior to planting i.e. 
directly to soil, as a side dressing or as a foliar spray because it does not pollute and 
it adds humus to the soil (Raj 2007; Venkatashwarlu 2008). Co-inoculation of some 
Pseudomonas and Bacillus strains along with effective Rhizobium spp. is shown 
to stimulate chickpea growth, nodulation and nitrogen fixation (Mohammadi et al. 
2010). Findings of Mohammadi et al. (2010) showed that the highest sugar, protein, 
starch contents, nodule weight and seed nitrogen, potassium, phosphorus of chick-
pea were obtained from combined application of phosphate solubilizing bacteria, 
Rhizobium and Trichoderma fungus. The Bio-fertilizers fix nitrogen in the soil that 
benefits the plant to overcome the nutritional stress. Appropriate doses of phospho-
rus, potassium, zinc, iron, molybdenum and cobalt along with fertilizers mitigate 
the stress and the legume starts responding directly to the nutrient. Usually most 
of the nitrogen fixed passes directly into the plant whereas some of it gets leaked 
into the soil for non-legume plant. However, after death, decay of these legumes by 
micro-organisms nitrogen eventually returns to the soil.

Types of Bio-fertilizers

A variety of recognized microorganisms for nitrogen fixation are also used such as 
Azorhizobium caulinodans and is effectively utilized in rice and maize. Likewise 
Acetobacter and Sinorhizobium have been used for sugarcane and soybean crop. 
Respectively microbes like Thiobacillus and Thiooxidans are known for sulphur 
and iron oxidization.
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Nitrogen�Fixing�Bio-fertilizers

The nitrogen fixing bacteria are of two types’ i.e., biological nitrogen fixation (sym-
biotic) and non-symbiotic nitrogen fixation (free living). The former develops as 
an association with crop plants through formation of nodules in their roots while 
as free living bacteria can fix atmospheric nitrogen without association with plants.

Biological Nitrogen Fixation

Atmosphere contains approximately 70 % of N which is not readily available form 
and therefore is not consumed by living organisms. It can be made available with 
the help of chemical or biological processes, though chemical nitrogen fertilizers 
are relatively expensive (Zilli et al. 2004). Living organisms utilize nitrogen in the 
form of ammonia to synthesize proteins, nucleic acids, amino acids, and other nitro-
gen-containing compounds for the maintenance of life. The process of conversion 
of inert N2 to biologically important NH3 with the help of bacteria is called biologi-
cal Nitrogen Fixation. The nitrogen fixation is done by the bacteria, and the NH3 
produced is absorbed by the plant.

This biological reduction of nitrogen to ammonia is performed only by some 
prokaryotes and is a highly oxygen-sensitive process. The Biological nitrogen fixa-
tion includes diverse range of diazotrophic soil microbes belonging to aerobes ( Azo-
tobacter, Beijerinckia, Drexia), facultative anaerobes (Clostridium, Pseudomonas, 
Rhizobium), heterotrophs ( Klebsiella, Enterobacter), phototrophs ( Anabaena, Nos-
toc, Azosprillium) The most competent nitrogen fixers establish a symbiosis with 
higher plants in which the energy for nitrogen fixation and, in general, the oxygen 
protection system in particular are provided by the plant partner. In these symbiotic 
relationships prokaryotic partnership is provided by soil bacteria Rhizobium in legu-
minous plants and Frankia bacteria in actinorhizal symbiosis. Biological Nitrogen 
Fixation confers tremendous amount of NH3 to natural ecosystems.

Rhizobium

Rhizobium is a gram-negative, free living organism present in soil, once it comes 
in contact with specific legume crop, nitrogen fixation starts and this rhizobium-
legume association is of significant environmental and agricultural importance in 
view of the fact that it accounts for an estimated 180 million tons biological ni-
trogen fixation per year (Postgate 1982). Rhizobium invades the root hairs of the 
legumes by forming nodules. First time, bacterium capable of fixing nitrogen was 
isolated from nodules of a legume in 1888 by Beijirinck from Holland. Later on this 
bacterium was reported in Bergey’s Manual of Determinative Bacteriology under 
the genus Rhizobium. Rhizobium has the ability to fix the atmospheric N in symbi-
otic state only. Rhizobium also exists as an endosymbiotic N fixing microorganism 
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associated with root of legumes. It enters into plants through the root system then 
it forms nodule. The name Rhizobium was established by Frank in 1889. Seven 
distinct species of rhizobium has so far being discovered on the basis of “Cross 
Inoculation Group Concept” and more than twenty cross-inoculations groups have 
been established so far. Out of this, merely seven are most important. One group of 
rhizobia are very slow growing and are known as Bradyrhizobium while as other 
group is rhizobia is fast growing and is known as Rhizobium. Both slow growing as 
well as fast growing rhizobia has ability to fix atmospheric nitrogen. They create a 
symbiotic association with legumes and some non-legumes like Parasponia. Rhizo-
bium legume symbiosis is very host-specific process and it fixes N in particular host 
plant only, this host specifity is mediated by plant compounds such as flavonoids 
(Goethals et al. 1992). Flavonoid activates the nod genes present in Rhizobium. The 
communication of rhizobia and legumes begins with signal exchange and recogni-
tion of the symbiotic partners, which is followed by attachment of the rhizobia to 
the plant root hairs. After infection, the root hair starts deforming, and the bacteria 
invades the plant by a newly produced infection thread growing through it at the 
same time, cortical cells which are mitotically activated, give rise to the nodule pri-
mordium. Infection threads grow toward the primordium, and the bacteria are then 
released into the cytoplasm of the host cells, surrounded by a plant derived perib-
acteroid membrane (PBM) (Van Workum et al. 1998). In the course of process the 
nodule primordium develops into a mature nodule, while the bacteria differentiate 
into their endosymbiotic form that is called as the bacteroid. The effective nodules 
are filled with pink sap called leghaemoglobin pigment. Leghaemoglobin regulates 
the supply of oxygen to the bacteria and helps the activity of nitrogenase enzyme 
and other regulatory enzymes (Choudhury and Kennedy 2004). The nitrogenase is 
responsible for reduction of nitrogen to ammonia in the process of nitrogen fixation. 
Bacteroids, together with the surrounding PBMs, are called symbiosomes. When 
symbiosomes are developed, bacteria synthesize nitrogenase, which catalyzes 
the reduction of nitrogen (Mylona et al. 1995). The product of nitrogen fixation, 
ammonia, is then exported to the plant. The plant provides all immediate nutrients 
and energy for the bacteria and just in a week small bead like structures i.e., nodules 
are formed. The root nodules act as a micro fermentor for biological N fixation 
where they can convert atmospheric N into ammonia. Rhizobium is able to induce 
the shoot and root growth in rice plants. (Yanni and El-Fattah 1999). Nodules occur 
in many shapes such as in Alfalfa and clover, nodules are fingerlike, round in Lentil, 
palm shaped in Cicer, though the entire nodule is generally less than 1/2 in in di-
ameter during favorable conditions. Since the Nitrogen fixed is not free so the plant 
must contribute a considerable amount of energy in the form of photosynthates and 
other essential nutritional factors which are important for the bacteria. Rhizobium 
plays a key role and is the maximum researched bio-fertilizer (Mishra and Dadhich 
2010). Currently the legume-rhizobia symbiosis has been extended to economically 
essential food crops or cereals and certain rhizobia that are competent of crack entry 
into ruptured epidermis during emergence of lateral rootlets in cereal crops (Kalia 
and Gupta 2002) the process can be improved by the addition of phytohormones 
(Kannaiyan et al. 2001) or use of signal chemicals (Amutha and Kannaiyan 2000).
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Classification of Rhizobium Bio-fertilizers

1. Rhizobium leguminosarum
2. Biovarphaseoli Phaseolus (Bean)
3. Biovarviceae Vicea (Vetch)
4. Biovartrifolii Trifolium (Berseem)
5. Rhizobium meliloti Melilotus (Senji) Rhizobium loti
6. Bradyrhizobium japonicum Glycine (Soybean)
7. Bradyrhizobium species Lupinus (Lupin), Vigna, Cicer

Recently two more genera have been included in the family Rhizobiaceae. They are 
Sinorhizobium and Azorhizobium which are nodulating the Soybean and Dhaincha 
(Sesbania), respectively. Azorhizobium caulinodans were isolated from the stem 
nodules of Sesbania rostrata but can also colonise and produce nodules in rice 
roots. Azorhizobium caulinodans also capable of fixing nitrogen in the free living 
state (Mandon et al. 1998).

Blue Green Algae (BGA)/Cyanobacteria

Blue-green algae or cyanobacteria are photosynthetic prokaryotes capable of fixing 
nitrogen with the help of enzyme nitrogenase. They are generally aquatic, small 
organisms visible as a single cell or large accumulation of cells (colonies) or strings 
of cells i.e. trichomes under microscope, sometimes accumulations are so large that 
they can be seen with a naked eye. Another name for blue-green algae is cyano-
phytes, cyanobacteria and most recently cyanoprokaryotes. As far as vegetative 
structure is considered they are resemble algae and other free living bodies. Their 
requirements for light, nutrients and carbon dioxide are similar. Certain types of 
blue-green algae have tiny gas vesicles in their cells that help to regulate buoyancy 
or get submerged under water in response to light fluctuations and availability of 
nutrient. BGA include Anabaena, Nostoc, Plectonema, Syctonema, Calothrix, Aulo-
sira, Tolypothrix. Among these commercially available representatives are cultures 
of Anabaena, Nostoc, Tolyphorix and Aulosira. The blue-green alga ( Anabaena 
azollae) shows a symbiotic association with Azolla (aquatic fern) and also fixes 
atmospheric nitrogen. BGA has shown to be associated with the Azolla present in 
ventral pore along the dorsal lobe of each vegetative leaf. This endophyte fixes at-
mospheric nitrogen and remains inside the tissue of the water fern in addition to its 
use in utilization in paddy fields. BGA fixes atmospheric nitrogen in semi aquatic 
ecosystem and takes part in photosynthetic activity. Azolla is a fast growing water 
fern and has ability to double its weight within a week. Azolla being rich in organic 
manure mineralizes the soil nitrogen rapidly and is made available to the plants. It 
is a protein rich feed to fish and poultry. BGA besides nitrogen fixation also synthe-
sizes and releases growth stimulating substances viz., auxin and amino compounds 
that enhance the growth of rice plants. Algae can be multiplied in the paddy field 
by broadcasting the inoculants at the rate of about 10 kg/ha. It has been observed 
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that incorporation of Azolla-Anabaena to paddy field increases rice yields and ad-
dition of dried Azolla filiculoides at the rate of 93 kg N/ha has increased a rice yield 
upto 70 %, the increase obtained with an equivalent amount of ammonium sulphate 
(Anitha and Kannaiyan 1999). In a field experiment the cyanobacteria was used 
to degrade coir pith with the help of lignolytic enzyme. (Malliga et al. 1996) and 
produced cyanopith, it can be used as bio-fertilizer to improve the crop productivity 
(Jha and Prasad 2005). Coir pith contains high lignin (31 %), cellulose (27 %), con-
tent (Bhat et al. 2003) and carbon nitrogen ratio (C/N) of 104:1 (Palaniappan 2005). 
Manoharan et al. 2011 used cynopith as bio-fertilizers on Amaranthus dubius that 
increases the growth of Amaranthus.

Azospirillum

Azospirillum is microaerophilic, free living, non-symbiotic, loosely associative 
nitrogen fixing bacteria and it establishes a close association with various plants 
mainly with C4 maize, sorghum, sugarcane, ray grass, Amaranthus etc. This micro-
organism fixes atmospheric N and makes it available for plants in asymbiotic man-
ner (Steenhoudt and Vanderleyden 2006). Azospirillum grows in the rhizosphere of 
the plants or occasionally penetrates into the root tissues but is not able to produce 
any visible nodule or out growth on the root tissue but grows intracellularly (Saikia 
et al. 2007). This association is due to the ability of the microbe to use malic acid, 
an organic acid formed for capturing CO2 as a carbon source. It also secretes vari-
ous phytohormones which include gibberellins, cytokinins, auxins and affect de-
velopment and morphology of root by increasing root length, number of root hair 
cells, lateral roots. Azosprillium also secretes iron-chelating siderphores that help 
in the sequestering of iron sufficient for plant growth (Romerheld and Marshner 
1986). A free living nitrogen fixing bacteria was for the first time reported by Bei-
jerinck in 1925 under the name of Spirillum lipoferum and later on renamed this 
organism as Azospirillum (nitrogen fixing Spirillum) in 1978. Azosprillium is one 
of recognized dominant soil microbe and is able to fix about 10–40 kgN/ha. The 
Azosprillium inoculation improves vegetative growth of the plants (Naderifar and 
Daneshian 2012). Till date only four species of Azospirillum have been identified 
which include A. lipoferum, A. brasilense, A. amazonense, A. iraquense. Among 
these species only A. brasilense and A. lipoferum are very common in Indian soils. 
Inoculation of vegetable crops with Azospirillum has resulted in yield enhancement. 
The field experiment of Azosprillium with maize was examined and was confirmed 
that this association benefits enzyme activating glutamine synthetase and glutamine 
synthetase in the leaves of paranodulated maize plants. Bhaskara Rao and Charyulu 
(2005) studied the association of A. lipoferum inoculated to foxtail millet plant in 
combination with N fertilizer and demonstrated the increase in plant growth level, 
dry weight of shoot and root over when compared with control plants.

Maize plants inoculated with Azospirillum showed high rate of photosynthesis 
and stomatal conduction leading to high yield compared to control plants (Kumar 
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and Bhaskara Rao 2012). Rice plant inoculated with A. brasilense at population 
rate of 8 × 10–7/g of dry weight under field conditions showed a yield of 1.6–10.5 g 
plant-1 (Mirza et al. 2000; Malik et al. 2002). Azospirillum population enhances the 
uptake of P and NH4 compounds in rice plants (Murty and Ladha 1988).

Azotobactor

Azotobactor is a gram-negative, aerobic, heterotrophic, rod shaped nitrogen fix-
ing bacteria present in alkaline and neutral soils (Lakshmi-narayana 1993). They 
are free living organism present in soil, water and also in association with some 
plants (Gandora et al. 1998; Martyniuk and Martyniuk 2003). Various species of 
Azotobacter are A. agilis, A. chrococcum, A. beijerinckii, A. vinelandii, A. ingrinis. 
Among these Azotobacter, Azotobactor chrococcum is the most commonly found 
in arable soils of India. In addition to its capability to fix atmospheric nitrogen 
(20–40 Kg N/ha) for different crops, it can also produce various growth promot-
ing substances viz., auxins, and gibberellins cytokinins, indole acetic acid includ-
ing vitamins and antibiotics, which control plant pathogens and help to maintain 
soil fertility. Azotobacter produces slime like substances which help in aggregation 
of soil particles. Many strains of Azotobactor exhibit fungicidal properties against 
certain species of fungus. Various crop plants like rice, maize, cotton, sugarcane, 
pearl millet, vegetable and some plantation crops show response to Azotobacter. 
Occurrence of organic matter in uncultivated soil promotes its multiplication and 
nitrogen fixing capacity. Field experiments carried out on Azotobacter under differ-
ent agro-climatic conditions pointed out that Azotobacter is suitable when inocu-
lated with seed or seedling of crop plants like onion, brinjal, tomato and cabbage. 
Azotobacter being heaviest among breathing organism and requires a large amount 
of organic carbon for its growth. Although it is poor competitor for nutrients in soil 
but it enhances plant growth through nitrogen fixation, release of growth promot-
ing substances, and fungicidal substances. It improves seed germination and plant 
growth. N fixation process which is highly sensitive to O2, Azotobacter have special 
mechanism against O2 it reduces the concentration of O2 in the cells (Shank Yu 
et al. 2005). Nitrogenase enzyme is also sensitive to O2, but is supposed that the 
extreme respiration role of Azotobacter utilizes free O2 within the cells and pro-
tects the nitrogenase (Kumar and Bhaskara Rao 2012). Azotobacter species have 
various types of nitrogenases viz., molybdenum–iron nitrogenase, vanadium–iron 
nitrogenase (Robson et al. 1986; Narula et al. 2000). Azotobacter requires carbon 
source for their energy (Kanungo et al. 1997) and is capable of fixing 10 mg N/g of 
carbohydrates in field conditions. Azotobacter is believed to be one of the signifi-
cant bio-fertilizer for rice and other cereals, it can be applied by seed dipping and 
seedling root dipping methods (Kannaiyan et al. 1980; Kannaiyan 1999; Ruttimann 
et al. 2003; Singh et al. 1999). Azotobacter can also able to enhance the growth in 
wheat crop (Kader et al. 2002).

M.-ul-H. Chesti et al.



197

Non-legume-Frankia Symbiosis

Frankia a genus of actinomycetes, is a free, gram’s positive nitrogen fixing bac-
terium that lives in soil and develops symbiotic interaction with various trees and 
shrubs forming symbiotic nodules (Verghese and Misra 2002). There are about 264 
species belonging to 25 genera which take part in Frankia symbiosis. The Frankia 
is of fundamental and ecological interests for diverse reasons that include its wide 
distribution, its ability to fix nitrogen, differentiate specialized cell for nitrogen 
fixation (Verghese 2002). These specialized cells are called sporangium and ves-
icles and in addition to it can nodulate non-leguminous trees by forming root nod-
ules, such as Casuarina, Alnus, Dansea, Myrica, Elaeagnus (Dawson et al. 2005; 
Franche et al. 2009). In wastelands fertility of soil can be improved by growing 
such non-leguminous plants in nitrogen deficient soils. In the process of nodula-
tion, Frankia develops as little lateral swelling on roots and subsequently develops 
into new lobes at their apices forming cluster coralloid structure (Duhoux et al. 
2001). Inoculation of Frankia enhances growth, nodulation, nitrogenase activity of 
nodule and nodule dry weight of Casuarina and Alnus plants. They live in the soil 
and have a symbiotic relationship with certain woody angiosperms, called actino-
rhizal plants. Frankia sp. produces three types of cells: sporangiospores, hyphae, 
and diazo-vesicles (Tjepkema et al. 1980), these diazo-vesicles are spherical, thick 
walled, lipid-enveloped cellular structures responsible for providing sufficient ni-
trogen to the host plant during symbiosis. Frankia enter into plants by root hair 
infection, nodules formed on lateral roots with cortical cylinder of vascular tissue 
(Ganesh et al. 1994). Frankia supplies almost total nitrogen needed by host plant 
and thus can establish a nitrogen-fixing symbiosis with host plants where nitrogen 
is the limiting factor for plant development. Therefore, actinorhizal plants colonize 
and often prosper in soils that are low in combined nitrogen (Benson and Silvester 
1993). Symbiotic interaction of this category adds a large quantity of new nitrogen 
to numerous ecosystems such as temperate forests, dry chaparral, sand dunes, mine 
wastes etc. They also assist in creating and transporting certain root hormones, con-
trolling pathogens and nematodes, water retention, mineral uptake, root exploration 
and resource sharing (Benson and Silvester 1993). Frankia specifically fixes nitro-
gen in the air and produces molecules that other plants can use. Frankia is said to be 
responsible for 15 % of the biologically fixed nitrogen in the world (Trujillo 2008).

Plant Growth Promoting Rhizobacteria

An assemblage of rhizobacteria (bacteria on rhizosphere) to facilitate beneficial 
effect on plant growth is referred to as plant growth promoting rhizobacteria or 
PGPR (Schroth and Hacock 1981). PGPR belong to several genera, e.g., Alcalige-
nes, Agrobacterium Arthrobacter, Azotobacter, Actinoplanes, Bacillus, Bradyrhizo-
bium, Amorphosporangium, Pseudomonas sp., Enterobacter, Rhizobium, Erwinia, 
Cellulomonas, Streptomyces Flavobacterium, and Xanthomonas (Weller 1988). In 
a recent study it was found that PGPR covers a wide range of plant species. In all 
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successful plant microbe interactions, the capability to colonize plant habitats is 
important. Single bacterial cells can affix to surfaces and, after repeated cell di-
visions and proliferation, dense aggregates are formed which are commonly re-
ferred to as macro colonies or biofilms (Mohammadi and Sohrabi 2012). Steps of 
colonization include attraction, recognition, adherence, invasion (only endophytes 
and pathogens), colonization and growth, and several strategies to establish inter-
actions (Nihorimbere et al. 2011). There is crosstalk between plant roots and soil 
microbes. Plants roots initiate crosstalk by producing signals that are recognized by 
the microbes, which in turn produce signals that initiate colonization (Berg 2009). 
PGPR reach root surfaces by active motility facilitated by flagella and are guided 
by chemotactic responses. This implies that PGPR capability highly depends either 
on their abilities to take advantage of a specific environment or on their abilities 
to adapt to changing conditions or plant species (Nihorimbere et al. 2011). Habibi 
et al. (2011) strongly recommended that use of bio-fertilizers (combined strains) in 
addition with organic and chemical fertilizers have resulted in the maximum grain 
yield and oil yield in medicinal pumpkin. They revealed that 50 % of required ni-
trogen and phosphorus fertilizers might be replaced by bio and organic fertilizers, 
since bio and organic fertilizers improve the efficiency of recommended nitrogen 
and phosphorus fertilizers and reduced the cost of chemical fertilizers and also pre-
vent the environment pollution from extensive application of chemical fertilizers. 
de Freitas et al. (1993) demonstrated that inoculation of beans with Rhizobium. 
leguminosarum and Pseudomonas putida increased the number of nodules and 
acetylene reduction activity (ARA) significantly. A significant positive effect on 
grain yield and ARA in roots of barley was obtained due to combined inoculation of 
nitrogen fixer’s A. lipoferum, Arthrobacter mysorens and the phosphate solubilizing 
strain Agrobacterium radiobacter by Belimov et al. (1995). Radhakrishnan (1996) 
revealed that inoculation of Azospirillum and phosphor-bacteria resulted in higher 
root biomass and more bolls in cotton. Findings of Mohammadi (2010) showed 
that inoculation of bio-fertilizers (PSB + Trichoderma fungi) + application of FYM 
had a great influence on canola growth, height and grain yield when compared to 
control treatment. Findings of Mohammadi et al. (2011) showed that application of 
bio-fertilizers had a significant effects on nutrient uptake of chickpea combined ap-
plication of Phosphate solubilizing bacteria and Trichoderma harzianum produced 
the highest leaf P content and grain P content. Capacity of Bacillus sp. to produce 
organic acid such as gluconic, citric and fumaric acids under P-limiting conditions 
may increase the solubility of poorly soluble phosphorus (Mohammadi and Sohrabi 
2012).

Phosphorus Solubilizing/Mobilizing Microorganisms (PSM)

Phosphorous makes about 0.2 % of the plant on dry weight basis. It has distinct role 
in plant metabolism which includes cell division, cell development, photosynthesis, 
breakdown of sugars, nuclear transport within plants, and transfer of genetic char-
acteristics from one generation to another generation and regulation of metabolic 
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pathway (Rodriguez and Fraga 1999). The plant obtains their phosphate require-
ments from the soil pool. It occurs in soil as inorganic phosphate, produced by 
weathering of rocks that is unable to be utilized by the plants (Lee et al. 2005) or as 
organic phosphate derived from decaying plant, animal or microorganisms (Rodri-
guez and Fraga 1999). About 15–20 % of applied phosphorus is recovered from the 
crops and rest gets fixed in the soil and is not readily available to the plants. A group 
of morphologically different microorganisms which have the property of solubiliz-
ing the fixed phosphorous by producing organic acids and enzymes and to make 
them easily available to the crops are known as Phosphorous Solublising Microor-
ganisms (PSM). They include diverse species of Bacillus, Aspergillus, Pseudomo-
nas, Penicillium, Agrobacterium, Achromobacter, Burkholderia, Aerobacter, Er-
winia, Micrococcus, Flavobacterium and Trichoderma. These organisms solubilize 
the fixed soil phosphorus thereby releasing the citrate and water soluble phosphorus 
so as to help in mineralizing organic phosphate compounds that are present in the 
organic wastes (Rodriguez and Fraga 1999). These microorganisms have the prop-
erty to bring phosphate solublization by secreting organic acids such as propionic 
acid, lactic acid, formic acid, acetic acid, succinic acids etc. these acids lower the 
pH and help to dissolve the phosphate bound (Rodriguez and Fraga 1999). They 
also produce growth promoting substances e.g. IAA, GA etc. experiments conduct-
ed in field conditions in India have shown to replace 20–50 kg P2O5/ha in different 
crops due to PSM’s inoculation (Vora and Shelat 1996, 1998, 1999). Improvement 
in seed germination by application of PSB has been reported by Sharma et al. (2007) 
in Cicer arietinum. Various horticultural plants and vegetables were successfully 
inoculated with P-solubilizing bio-fertilizers to obtain higher yields (Khan et al. 
2010; Velineni and Brahmaprakash 2011). Field experiments demonstrated that P-
solubilizing bio-fertilizers in addition to improving the growth and quality of crops, 
also reduced) the usage of chemical or organic fertilizers significantly (Young 1990; 
Chang and Young 1992a, b; Young et al. 1998a, b; Young and Chen 1999; Chang 
and Young 1999; Young et al. 2000; Liu and Young 2001; Young et al. 2003). Phos-
phate solubilizing bacteria has the capacity to convert inorganic unavailable phos-
phorus form to soluble forms like HPO4

2− and H2PO4
− with the help of processes 

like organic acid production, chelation and ion exchange reactions and make them 
available to plants (Chang and Yang 2009; Banerjee et al. 2010). Naturally occur-
ring rhizospheric phosphorus solubilizing microorganism (PSM) has a long history 
and dates back to 1903 (Khan et al. 2007). Alam et al. (2002) pointed out that bac-
teria are more effective in phosphorus solubilization than fungi. Among the whole 
microbial population in soil, phosphate solubilizing bacteria (PSB) comprise 
1–50 %, whereas phosphorus solubilizing fungi (PSF) are only 0.1–0.5 %. (Chen 
et al. 2006). Number of phosphorous solubilizing bacteria amongst total PSM in 
north Iranian soil was around 88 % (Fallah 2006). Microorganisms concerned in 
phosphorus acquirement include mycorrhizal fungi and PSMs (Fankem et al. 2006). 
Among the soil bacterial communities, effective phosphate solubilizers ectorhizo-
spheric strains from Pseudomonas and Bacilli, and endosymbiotic  rhizobia have 
been described as (Igual et al. 2001). Strains from bacterial genera Pseudomonas, 
Bacillus, Rhizobium and Enterobacter along with Penicillium and Aspergillus fungi 
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are the most influential P solubilizers (Whitelaw 2000). B. circulans, Bacillus 
megaterium, B. subtilis, B. sircalmous, B. polymyxa, Enterobacter and Pseudomo-
nas striata, can be referred as the most important strains (Subbarao 1988; Kucey 
et al. 1989). A fungus Arthrobotrys oligospora is also found to have the ability to 
solubilize the phosphate rocks (Duponnois et al. 2006). Increased high percentage 
of PSM is concentrated in the rhizosphere, and they are metabolically more active 
than from other sources (Vazquez et al. 2000). By and large, 1 g of fertile soil con-
tains about 101–1010 bacteria, and their live weight may exceed 2,000 kg ha−1. Soil 
bacteria can be cocci (sphere, 0.5 μm), bacilli (rod, 0.5–0.3 μm) or spiral  (1–100 μm) 
shapes. Bacilli are common in soil, where as spirilli are very rare in natural environ-
ments (Baudoin et al. 2002). The PSB are cosmopolitan and vary in forms and pop-
ulation in diverse soils. Their population depends upon the physical and chemical 
properties organic content and phosphorous content of soil and cultural activities 
(Kim et al. 1998). Maximum populations of PSB are found in agricultural and 
rangeland soils (Yahya and Azawi 1998). In north of Iran, the PSB count ranged 
from 0 to 107 cells g−1 soil, with 3.98 % population of PSB among total bacteria 
(Fallah 2006). Mineralization and solubilization potential for organic and inorganic 
phosphorus, are also shown by bacterial populations (Hilda and Fraga 1999; Khiari 
and Parent 2005). Phosphorus solubilizing activity is determined by the capacity of 
microbes to liberate metabolites such as organic acids, which through their hydrox-
yl and carboxyl groups chelate the cation bound to phosphate, than are transformed 
to soluble forms (Sagoe et al. 1998). Various microbial processes/mechanisms in-
cluding organic acid production and proton extrusion are used in Phosphate solubi-
lization. (Surange 1995; Dutton and Evans 1996; Nahas 1996). A wide range of 
microbial P solubilization mechanisms exist in nature and much of the global cy-
cling of insoluble organic and inorganic soil phosphates is attributed to bacteria and 
fungi (Banik and Dey 1982). Whitelaw (2000) suggested that Phosphorus solubili-
zation is also carried out by a large number of saprophytic bacteria and fungi acting 
on sparingly soluble soil phosphates, mainly by chelation-mediated mechanisms. 
Phosphate solubilizing microorganisms secrete organic acids and enzymes that act 
on insoluble phosphates and convert it into soluble form, thus, proving P to plants 
(Ponmurugan and Gopi 2006). Inorganic P is solubilized by the action of organic 
and inorganic acids secreted by PSB in which hydroxyl and carboxyl groups of ac-
ids chelate cations (Al, Fe, Ca) and decrease the pH in basic soils (Kpomblekou and 
Tabatabai 1994; Stevenson 2005). The PSB dissolve the soil P through production 
of low molecular weight organic acids mainly gluconic and ketogluconic acids 
(Goldstein 1995; Deubel et al. 2000), in addition to lowering the pH of rhizosphere. 
The pH of rhizosphere is lowered through biotical production of proton/bicarbonate 
release (anion/cation balance) and gaseous (O2/CO2) exchanges. Phosphorus solu-
bilization ability of PSB has direct correlation with pH of the medium. In addition 
to phosphorous solublization ability of PSB, they also can improve plant growth by 
enhancing the availability of other trace element such as iron (Fe), zinc (Zn), etc. 
Gull et al. (2004) suggested that PSB can solubilize the fixed soil P and applied 
phosphates resulting in higher crop yields. According to Goenadi et al. (2000) direct 
application of phosphate rock is usually ineffective in the short time period of most 
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annual crops. Gyaneshwar et al. (2002) suggested that acid producing microorgan-
isms are able to increase the solubilization of phosphatic rock. The PSB in conjunc-
tion with single super phosphate and rock phosphate reduce the P dose by 25 and 
50 %, respectively (Sundara et al. 2002). Pseudomonas striata and Bacillus poly-
myxa solubilized 156 and 116 mg P L−1, respectively (Rodríguez and Fraga 1999). 
Pseudomonas fluorescens solubilized 100 mg P L−1 containing Ca3(PO4)

2 or 92 and 
51 mg P L−1 containing AlPO4 and FePO4, respectively (Henri et al. 2008).

Mycorrhiza

Mycorrhizae are mutualistic associations between fungi and plant roots. The host 
plant gets mineral nutrients from mycorrhizal fungi, while as the fungus partener is 
provided with photosynthetic products from the host plant (Jakobsen et al. 2002). 
Fungi become integrated into the root structure, or fungi lives in close association 
with plant roots. Fungal hyphae may live on the external surface of roots (ectomy-
corrhizal) or may invade root cells (endomycorrhizal). Mycorrhiza belong to fun-
gi kingdom Basidiomycetes, Ascomycetes and Zygomycetes. Mycorrhizal fungi, 
and fungi generally, have a strong influence on soil structure (Rillig and Mummey 
2006). Their hyphal strands help to hold soil aggregates together, and they also 
excrete organic substances that help cement the aggregates (Rillig and Mummey 
2006). Hyphae conduct water and immobile nutrients (like P) to roots despite dis-
ruption of capillary water flow in soil. Of the many types of mycorrhizal associa-
tion the most important association which are economically as well as ecologically 
importance are: ectomycorrhizal associations, and the endomycorrhizal association 
of the vesicular-arbuscular (VA) type (Rillig and Mummey 2006). In case of ecto-
mycorrhizal associations, the fungi attack the cortical region of the host root devoid 
of piercing cortical cells. Ectomychorrhizae are recognized to occur in the families 
of Salicaceae, Fagaceae, Pinaceae, Betulaceae, Tiliaceae, Juglandaceae and Ceasal-
pinionideae. The ectomycorrhizal roots lack root hairs and are covered by a sheath 
of fungal hypae which almost looks like host tissue. This tissue is called Pseudopa-
renchamatous sheath. Hyphae from this sheath enter into the cortex and remain in 
the outer cortical region to form a network called Hartig’s net (Alizadeh 2011). The 
nutrients absorbed by the hyphae are transported to the plant with the help of this 
Hartig’s net. Infection of host plants by ectomycorrhizal fungi frequently leads to 
changes in feeder roots that are apparent to the naked eye but in case of endomycor-
rhizal associations of the VA type, the fungi penetrate the cortical cells and form 
clusters of delicately divided hyphae known as arbuscules in the cortex (Alizadeh 
2011). They also form vesicles, which are membrane-bound organelles of varying 
shapes, inside or outside the cortical cells. Arbuscules are supposed to be the sites 
where resources are exchanged among the host plant and the fungi (Alizadeh 2011). 
Vesicles in general serve as storage space but when they are old they can serve as 
reproductive structures. Vesicles and arbuscules, together with large spores, com-
prise the diagnostic features of the VA mycorrhizas. Most ectomycorrhizal fungi 
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belong to several genera within the class Basidiomycetes, while some belong to the 
zygosporic Zygomycetes and Ascomycetes. On the other hand, AM fungi belong to 
six genera within the azygosporous zygomycetes

Vesicular�Arbuscular�Mycorrhiza�(VAM)

VAM are common, ancient and most fascinating class of fungi which proves to 
be very beneficial to plants (Alizadeh 2011). VAM is an endotrophic mycorrhiza 
formed by aseptate phycomycetous fungi. They produce an interconnected network 
of hyphae between cortical cells that extend to the soil and hence absorb various 
nutrients and water (Sally et al. 2011) VAM forms an association with various crop 
plants which include monocot, dicot, annual or perennial crops. The use of VAM en-
hances growth of plants in less fertile soils besides application of FYM and cereal- 
legume crop rotations. Whereas, application of chemicals mostly fungicide sup-
presses its existence.

Mycorrhiza enhances the feeding areas of the plant root as the hyphae spreads 
around the roots. It also mobilizes the nutrients particularly phosphorous that are 
present in organic or inorganic form in soil and translocate it to plants with the help 
of extensive mycelium. In addition to translocation of phosphorous to plant it also 
stores the nutrients and removes the toxic substances for example, phenolics which 
otherwise hinder nutrient availability in addition to this it also provides protection 
against other fungi and nematodes. VAM also assists in transfer of nutrients other 
than phosphorus, like zinc and sulfur Cu (copper), K (potassium), Al (aluminum), 
Mn (manganese), Fe (iron) and Mg (magnesium) from the soil to the plant roots. 
They act as intracellular obligate fungal endo-symbiont by penetrating the root 
cortex (Alizadeh 2011). In addition they possess vesicles intended for storage of 
nutrients and arbuscular for transferring these nutrients into root system as well as 
enhances water absorption. However, in ecto-mycorrhiza, the hyphae cover both 
outside and within the root in the intercellular spaces of epidermis and cortex. Trees 
are usually found to be infected with ectomycorrhiza, they increase the tolerance of 
plants against drought and salt stress, increase the photosynthetic activity of plants, 
higher chlorophyll content, higher leaf water potential restored capacity (Wang 
1989, 1998). VAM helps in soil conservation and soil aggregation, increase the re-
sistance of plants against root-pathogens, increases habitatrestoration (Dodd 2000).

Conclusions and Future Prospects

Bio-fertilizers increase crop productivity by increasing availability or uptake of nu-
trients through solubilization or increased absorption stimulation of plant growth 
with the help of hormonal action or antibiosis, or by decomposition of organic resi-
dues. Moreover, bio-fertilizers also help to reduce the use of chemical fertilizers 
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which in turn reduces the amount and cost of chemical fertilizers and thus prevents 
the environment pollution from extensive application of chemical fertilizers.

To get better productivity of agricultural lands and to maintain this productiv-
ity, the integrated approach to determine the most favorable plant-microorganism 
interaction is important. The bio-fertilizers are thought to be more expensive and 
show unpredictable performance. Besides, the effect on the crops is slow, compared 
to chemical fertilizers. In order to get potential benefit from bio-fertilizers in com-
mercial agriculture, consistency in their performance is to be improved. Special 
care such as mode of application on crops and to keep them effective for extensive 
use is needed. As bio-fertilizers contain living organisms, their concert therefore 
depends on environment surrounding them, Short shelf life, lack of suitable carrier 
materials, susceptibility to high temperature, problems in transportation and storage 
of bio-fertilizers are major bottlenecks that are at a standstill and have to be solved 
in order to acquire efficient inoculation. The main criteria to take into consideration 
in making of bio-fertilizers are microbes’ growth profile, types and optimum condi-
tion of organism, and formulation of inoculums, methods of application and storage 
of the product are all critical to the success for a sustainable agriculture.
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Abstract Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiosis 
(arbuscular mycorrhiza—AM), with the roots of most species of terrestrial plants, 
acting as a bridge between the soil and plants. AMF are critical in the establish-
ment and adaptation of plants in locations severely disturbed. They affect also the 
physico-chemical properties of substrate and act for the formation and maintenance 
of soil structure, acting in the aggregation of soil particles. The AM occurs in the 
roots of most plants, promoting improvements in the growth and development of 
plants and increase in tolerance and/or plant resistance to various adverse environ-
mental agents and can also be used as a potential biological control agent of plant 
diseases. The different responses of plants to this symbiosis can be assigned to the 
functional diversity of AM, depending of the interaction between AMF, plants and 
environmental conditions. The establishment and functioning of MAs during stress 
conditions involves a complex process of recognition and development, concur-
rently at physiological, biochemical and molecular changes in both symbionts. In 
addition, mycorrhizal colonization of roots has a significant impact on the gene 
expression of several plants that encode proteins presumably involved in tolerance 
to stress. In this context, whereas the AMF are essential in the establishment and 

K. R. Hakeem et al. (eds.), Crop Improvement, DOI 10.1007/978-1-4614-7028-1_6, 
© Springer Science+Business Media, LLC 2013

Chapter 6
Plant-Microorganism Interactions: Effects  
on the Tolerance of Plants to Biotic and  
Abiotic Stresses

Muriel da Silva Folli-Pereira, Lydice Sant’Anna Meira-Haddad,  
Cristina Maria Nobre Sobral de Vilhena da Cruz Houghton and  
Maria Catarina Megumi Kasuya

M. C. Megumi Kasuya () · M. da Silva Folli-Pereira
Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-000 Viçosa,  
Minas Gerais, Brasil
e-mail: mkasuya@ufv.br

M. da Silva Folli-Pereira
e-mail: mfolli@gmail.com

L. Sant’Anna Meira-Haddad
Centro de Ciências Agrárias, Ambientais e Biológicas,  
Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
e-mail: lydicemeira@yahoo.com.br

C. M. N. S. de Vilhena da Cruz Houghton
Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
e-mail: cristinacruzhoughton@gmail.com



210

adaptation of plants on disturbed sites, this chapter will be covered the molecular 
and physiological mechanisms of the association MA, responsible for this adapta-
tion and greater tolerance of plants to biotic and abiotic stresses.

Introduction

Plants are constantly exposed to various abiotic and biotic stresses, such as radia-
tion, temperature, water, minerals, plants, animals, and microorganisms, which alter 
the biosynthesis and development of plants as a consequence of oxidative burst 
(Gill and Tuteja 2010). During aerobic metabolism, molecular oxygen is partially 
reduced, generating transient intermediates that are highly reactive and damaging 
to the cell. This partial reduction of O2 produces reactive oxygen species (ROS), 
including the superoxide anion (O2), the hydroxyl radical (OH-), and hydrogen per-
oxide (H2O2). Further conversions can occur among these molecules, transforming 
them into even more reactive species (Hajiboland and Joudmand 2009; Gill and 
Tuteja 2010; Abdel Latef and Chaoxing 2011). These ROS cause morphological, 
physiological and molecular alterations, resulting in plant damage and eventual 
death. However, plants have enzymatic and non-enzymatic defence systems to mi-
nimise the effects of ROS (Arfaoui et al. 2007; Gill and Tuteja 2010).

The microhabitat of the rhizosphere is a specialised ecosystem, where microbial 
populations are highly favoured, allowing the growth, development and multiplica-
tion of these microorganisms. Plants can form beneficial associations with these 
microorganisms, acquiring tolerance and/or resistance to biotic and abiotic stress 
factors (Dimkpa et al. 2009; Singh et al. 2011)

Bacteria and fungi are the most numerous inhabitants of the rhizosphere. Plant 
growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonise the 
root system of plants and promote growth through various mechanisms including 
producing plant growth regulators, increasing the cycling and availability of soil 
nutrients, functioning as pathogen biocontrol agents and conferring tolerance and/
or resistance to biotic and abiotic stresses (del Mar Alguacil et al. 2009). Arbus-
cular mycorrhizal fungi (AMF) are common inhabitants of soil that form mutu-
alistic associations within the root systems of a large number of agricultural plant 
species, conferring benefits to host plants distributed throughout various habitats 
(Smith et al. 2010). Arbuscular mycorrhizae improve the nutritional status of plants, 
facilitate plant adaptation to different ecosystems, and increase plant tolerance to 
biotic and abiotic stress factors, and they are also considered to be biocontrol agents 
(Singh et al. 2012)

Plants that associate with microorganisms become more tolerant to stress condi-
tions. Several mechanisms have been described to explain this greater tolerance 
(Pozo et al. 2010). The physiological changes induced in the plant through relation-
ships with symbionts prevent pathogenic attacks and activate defence mechanisms. 
Phytoalexins, pathogenesis-related proteins, and agents for the lignification of the 
cell wall have been reported in mycorrhizal plants in areas far from infection sites, 
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thus indicating the occurrence of systemic resistance. AMF play an important role 
in enhancing the absorption of water and nutrients, conferring an enhanced hydra-
tion and nutritional status to the plant (Pozo et al. 2010; Folli-Pereira et al. 2012).

The benefits of microorganisms might help plants in terms of tolerance to several 
biotic and abiotic stress factors. Thus, it is necessary to understand each symbiosis 
to ensure the best utilisation of the benefits to plants.

AMF and Growth Promoter Bacteria as Potential Factors 
Involved in Plant Tolerance to Stress

Plant growth promoting rhizobacteria (PGPRs) are bacteria that increase plant 
growth through interactions with plant roots. PGPRs represent a functionally ac-
tive portion of the soil biota present inside the plant root, in the rhizosphere, or 
on the rhizoplane. The literature indicates their potential as a component of the 
sustainable management of agricultural systems, conferring characteristics such as 
greater resistance to biotic and abiotic stress conditions to the host and promoting 
plant growth, leading to their widespread biotechnological use. PGPRs can enhance 
growth of plants through a variety of mechanisms: (a) production of plant hor-
mones; (b) controlling pathogens; and (c) increasing tolerance to stress conditions 
(Kohler et al. 2006, 2009; Jalili et al. 2009; del Mar Alguacil et al. 2009).

The mechanisms of plant growth promotion include direct actions, such as bio-
logical nitrogen fixation, production of plant growth regulator hormones, and the 
solubilisation of inorganic phosphate, and indirect actions, such as biological con-
trols, production of siderophores and allelochemicals and the induction of local and 
systemic resistance. The use of PGPRs in biotechnology has intensified with the 
production of antibiotics and other bioactive molecules and the application of these 
microorganisms in bioremediation processes and transgenic techniques.

These mechanisms are potentially applicable in the field for the quantitative and 
qualitative improvement of agricultural production. The use of these microorgan-
isms in agriculture depends on knowledge of their diversity, plant-bacteria interac-
tion mechanisms, and the ability to maintain, manipulate, and modify beneficial 
populations under field conditions.

PGPRs, especially those belonging to the fluorescent Pseudomonas group, 
have been well studied but have a disadvantage relative to Bacillus. Bacillus have 
developed a resistance structure, called the endospore, which is produced under ad-
verse conditions and enables the bacterium to withstand these conditions. Once the  
conditions change in favour of the microorganism, its reproduction cycle allows it 
to express its beneficial characteristics to the host plant.

Arbuscular mycorrhizal associations in turn have important consequences for 
nutrient cycling in soil, providing plants with essential nutrients such as phosphorus 
when they are scarce or if they have low mobility in the soil solution. In exchange, 
photosynthetic carbon is transported to the soil through the transfer of sugar from 
the root to the AMF, which subsequently translocates this carbon as lipids and sug-
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ars into the external mycelium distributed throughout the soil (Bago et al. 2003). 
The symbiosis between plants and AMF also results in the reduction of physiologi-
cal losses through stress (Munier-Lamy et al. 2007) and consequently faster growth, 
leading to economy input and a reduction of environmental contamination (Huang 
et al. 2009). Moreover, these fungi can act as potential biological control agents, 
reducing the effects and damage from plant pathogens through indirect means or 
increased nutrition and plant resistance (Meira-Haddad 2008; Folli-Pereira et al. 
2012). AMF also play an important role in the aggregation of soil particles.

PGPRs have been traditionally used as inducers of systemic resistance to dis-
eases in plants. Currently, new PGPRs have been proposed for use in agricultural 
crops. Studies concerning the specific interactions of symbiotic microorganisms 
and pathogens have demonstrated the complexity of rhizospheric interactions in-
volving both mycorrhizal and non-mycorrhizal fungi, beneficial and pathogenic 
bacteria, the plant and the soil. It is no longer possible to study only the isolated 
microorganism without considering the complexity of its habitat. The association of 
PGPRs with other microorganisms such as AMF is both economical and practical.

PGPRs colonise plant roots and promote the development of AMF through the 
enhanced absorption of P and N (Artursson et al. 2006; Richardson et al. 2009). 
However, there are limited data concerning the PGPR hyphal inoculation of AMF 
(Hartmann et al. 2009).

The strength of the physiological phases of bacterial binding to AMF hyphae 
varies, including a weak electrostatic binding in the first stage, followed by a strong 
bond in the second stage, which is related to the production of cellulose and other 
extracellular bacterial products (Artursson et al. 2006). Indeed, mutant bacteria 
are unable to produce these products in the presence of the AMF hyphae (Arturs-
son et al. 2006). Some bacterial strains such as Pseudomonas spp. can colonise 
both plant roots and AMF hyphae, suggesting that the mechanisms of the related  
processes could be relatively similar.

The association of gram-positive bacteria with AMF is high compared with 
gram-negative bacteria, although this relationship has not been verified (Artursson 
et al. 2005). The significance of these interactions is due to the synergistic inter-
action of some important PGPRs, including the gram-positive Bacillus spp., with 
AMF (Francis et al. 2010). The enzymes of soil bacteria and AMF can also influ-
ence the decomposition of organic matter in the soil (de Boer et al. 2005).

There are a large number of bacteria, including PGPR and Rhizobium, which pro-
mote the activity and development of AMF (Frey-Klett et al. 2007; Richardson et al. 
2009). These mycorrhizal helper bacteria are usually fungus-specific (Rillig et al. 
2005) and promote the growth of specific AMF during symbiosis with the host plant. 
This specificity has been attributed to the size and surface rugosity of the spore (Bha-
radwaj et al. 2008). Thus, Frey-Klett et al. (2007) proposed the term “mycorrhizal 
auxiliary bacteria” to describe a broader concept than “mycorrhizal helper bacteria” 
(MHB), which includes the beginning of the arbuscular mycorrhizal symbiosis and 
the effects of MHB on the biocontrol of other species in terms of specificity. MHB 
may influence the germination of spores, affect the spore wall (de Boer et al. 2005), 
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produce stimulants such as CO2 (Carpenter-Boggs et al. 1995), or affect the absorp-
tion of P by the AMF (Ruiz-Lozano and Bonfante 2000).

Moreover, the AMF might compete for nutrients from the soil, resulting in af-
fecting changes within the bacterial community of the rhizosphere. The associa-
tion of some bacteria with AMF is specific (Artursson et al. 2005), suggesting that 
fungal exudates stimulate communication between bacteria and AMF (Artursson 
et al. 2006). Indeed, some genera of bacteria, including Arthrobacter and Bacillus, 
were most commonly observed in the hyphosphere or within soil around AMF hy-
phae, while Pseudomonas spp. were more distributed in the rhizosphere of Sorghum 
bicolour (Artursson et al. 2005).

The adhesion of PGPRs to AMF is determined by the formation of biofilms 
(Seneviratne et al. 2009). MHB, which primarily includes Bacillus and Pseudomo-
nas, can affect the functions of the AMF, influencing root permeability, root exu-
dation, AMF colonisation of the host root, and phytohormone production, thereby 
mitigating the adverse effects of the environment on hyphal growth and stimulating 
the growth of root hairs in plants. Some strains of rhizobia are also able to affect 
the pre-symbiotic stage of fungi, influencing spore germination and hyphal growth 
(Frey-Klett et al. 2007).

The symbiosis between AMF and plants contributes to the stability of soil aggre-
gates, including soils with high salinity (Caravaca et al. 2005). Stability is initiated 
through macroaggregates (> 250 mm), which tangle hyphae and deposit organic 
substances that assist in the subsequent stability of soil aggregates. A key factor in 
the contribution of these fungi to the stabilisation of saline soils is the production 
of glomalin, a glycoprotein that acts as an insoluble glue to stabilise aggregates 
(Gadkar and Rillig 2006).

The influence of AMF on plant growth has been attributed to bacteria associated 
with the mycorrhizosphere (Larsen et al. 2009). The production of exopolysaccha-
rides (EPSs) in response to adverse environmental conditions such as drought can 
contribute to soil aggregation, leading to increased water retention in the rhizo-
sphere (Kaci et al. 2005), which can eventually affect the growth of AMF in these 
soils. The effectiveness of the PGPR inoculation of plants leads to soil stabilisation 
and promotes soil fertility (Kohler et al. 2006). The study of the antagonistic and 
synergistic effects of different microbial inoculants when co-inoculated is a crucial 
step in the development of efficient host-microorganism combinations. The inocu-
lation with rhizobacteria, alone or in combination with AMF, improves the physical 
properties of the soil, even under saline stress.

Inoculation with AMF is an effective method of increasing the capacity of host 
plants to establish and address stress situations, such as nutrient deficiency, drought 
and soil disturbance (Caravaca et al. 2003). In fact, several authors have indicated 
that AMF inoculation stimulates the absorption of water and nutrients, especially 
N and P (Jeffries et al. 2003; Folli-Pereira et al. 2012) in the plant or enhances the 
aggregation of eroded soils (Caravaca et al. 2002) to improve seedling performance. 
In return, the mycorrhizal plants provide fungus with photosynthetic C, which is 
delivered into the soil through fungal hyphae. Thus, the formation of mycorrhizae 
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can affect the microbial population in the rhizosphere directly or indirectly through 
changes in exudation patterns or fungal exudates. Moreover, soil microorganisms 
might affect the formation and function of arbuscular mycorrhiza (AM). Growth-
promoting mycorrhizal helper bacteria are known to stimulate the mycelial growth 
of AMF or improve the establishment of the mycorrhizal association (Toro et al. 
1997).

The combined inoculation of beneficial microorganisms in the soil rhizosphere 
reduces the need for agricultural chemicals that are harmful to the environment; 
consequently, these microorganisms are gaining more attention for establishing 
sustainable agroecosystems. Indeed, microorganisms are active at the soil-plant in-
terface, where microcosm systems such as the rhizosphere are developed (Cordier 
et al. 2000). Carbon flows are essential to the functioning of the rhizosphere. Many 
microbial interactions are responsible for key environmental processes, such as bio-
geochemical nutrient cycles and the maintenance of plant health and soil quality.

The effectiveness of microorganisms as modifiers of soil fertility and facilitators 
of plant development has been verified through the analysis of alterations in nutri-
tional status and plant development. The combined inoculation of selected micro-
organisms in the rhizosphere has been recommended to maximise the growth and 
nutrition of plants. The study of the antagonistic and synergistic effects of different 
microbial inoculants when co-inoculated is a crucial step for the development of 
effective microorganism-host combinations. It has been reported that the double in-
oculation of Glomus intraradices and Bacillus subtilis promotes the establishment 
of the AMF and increases the plant biomass and P accumulation (Toro et al. 1997).

Inoculation with both growth-promoting bacteria and AMF produced decreased 
Na and increased K absorption in lettuce leaves, increasing the salinity tolerance 
of plants (Kohler et al. 2009). The PGPR strain Pseudomonas mendocina produces 
exopolysaccharides (Kohler et al. 2006) that bind to cations, including Na, thereby 
decreasing the content of Na available for absorption by plants.

AMF might influence bacterial communities in the soil, including PGPRs that 
are involved in soil aggregation through the exudation of carbon derived from pho-
tosynthesis in the mycorrhizosphere. However, the mechanisms underlying changes 
in the soil matrix and their significance for soil aggregation are poorly understood. 
Unlike AMF, which exert a strong influence on the scale of macroaggregates, rhi-
zobacteria directly influence the formation and stabilisation of microaggregates. 
Thus, the AMF-mediated alteration of prokaryotic communities could indirectly 
influence aggregation processes at smaller scales than macroaggregates. In drought 
conditions, the formation of aggregates in the soil and the consequent soil stabilisa-
tion are essential for the increased accumulation of water in the soil, which conse-
quently increases plant productivity during water stress. In addition, PGPRs and 
AMF produce phytohormones that contribute to increased development and root 
growth, and plant roots contribute to the stability of soil aggregates directly through 
the root “material” and indirectly through the stimulation of microbial activity in 
the rhizosphere.
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Glomalin in Soil: The Importance of the Soil-Plant-
Microorganism System

AMF are critical for the establishment and adaptation of plants in severely disturbed 
locations, including those contaminated with heavy metals (Vallino et al. 2006). 
They also affect the physicochemical characteristics of the substrate and contribute 
to the formation and maintenance of soil structure through the aggregation of soil 
particles, hyphal exudates, and residues. Moreover, mycorrhizal fungi produce glo-
malin, a protein extracted from soil as glomalin-related soil protein (GRSP) (Rillig 
2004), which plays a key role in the stability of the soil (Bedini et al. 2009).

GRSP is an alkali-soluble protein material related to AMF (Rillig 2004; Nichols 
and Wright 2006), whose biochemical nature has not been elucidated. As fungal 
hyphae are shed (Driver et al. 2005), GRSP is transferred to the soil as a complex of 
repeat monomer structures connected by hydrophobic interactions (Nichols 2003), 
which bind to soil particles and stabilise aggregates (Rillig and Mummey 2006). In 
addition, GRSP contains bound iron (0.04–8.8 %) (Nichols 2003), but it does not 
contain phenolic compounds such as tannins (Rillig et al. 2001).

Glomalin contains approximately 60 % carbohydrates, comprising N linked to 
oligosaccharides. It also contains Fe, which is insoluble in water. Glomalin exhibits 
high hydrophobicity, which might contribute to the initiation of soil aggregation. 
The amount of immunoreactive glomalin extracted from the soil is directly pro-
portional to soil aggregate stability in various regions of the world. Glomalin was 
detected in large amounts in many soils (Nichols 2003), which has been attributed 
to the fact that AMF colonise the roots of approximately 80 % of vascular plant 
species and have a global distribution. Large “pools” of glomalin might result from 
their high persistence in soil (Rillig et al. 2001).

Soil aggregates have also become an important protective environment for AMF 
hyphae. In degraded soils in recovery, improved aggregation is accompanied by an 
increased amount of colonised fine roots and hyphae that influence the geometric 
diameter of the aggregates. Because well-aggregated soils are less affected by ero-
sion and more favourable for plant development, the effects of AMF on aggregation 
contribute to agricultural productivity and sustainability and to the conservation and 
functionality of natural ecosystems.

C losses in the soil result from leaching and erosion (Rillig et al. 2006). Stable 
soil structural units (aggregates) provide resistance to erosion. The importance of 
AMF in reducing erosion losses is related to their role in soil aggregation (Rillig 
2004) and consequently in nutrient cycling through the reduction of carbon leaching 
in soils (Rillig et al. 2006).

Cations are bound to GRSP in quantities that vary in different soils (Nichols 
2003; Chern et al. 2007). Recently, González-Chávez et al. (2004) clearly showed 
an increased binding capacity of GRSP to heavy metals (MTs) (Cu, Pb and Cd). 
Based on the results of his investigation, it has been suggested that this sequestra-
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tion could be important for biostabilisation in soils contaminated with MTs. Bedini 
et al. (2009) showed that the amounts of Cu, Ni, Pb and Co bound to GRSP were, 
respectively 2.3, 0.83, 0.24, 0.24 % of the total amount of MTs present in contami-
nated soil, thereby reducing the bioavailability of toxic elements and, consequently, 
plant stress. Vodnik et al. (2008) showed that GRSP represented 21.2 % of the or-
ganic matter in soil contaminated with MTs, which was positively correlated with 
the concentrations of Pb and Zn in the soil; notably, the amount of lead bound to 
GRSP ranged from 0.69 to 23.4 mg g-1 DW GRSP, which represented 0.8–15.5 % 
of the total Pb in the soil.

Wright et al. (1996) hypothesised that AMF secrete glomalin into the soil, which 
helps in soil aggregation. This model was directly based on the observed correla-
tion between the GRSP concentrations with the stability of soil aggregates in water. 
The increase of soil aggregation would benefit both the host and associated AMF, 
justifying the energy “cost” of glomalin production. Experimental evidence, though 
obtained in an artificial manner, suggested that relations between the production 
of glomalin, soil aggregation and the enhancement of extraradicular AMF hyphae 
growth might indeed exist (Bedini et al. 2010). However, AMF also appear to pro-
duce GRSP in soils where organic matter is not the primary binding agent in the 
soil, and GRSP and soil aggregation are not correlated (Rillig et al. 2003). This find-
ing suggests that the promotion of soil aggregation might not be the primary func-
tion of glomalin. In addition, the AMF communities and many other groups of soil 
biota profit from an improved soil structure (Niklaus et al. 2003), which makes it 
unlikely that the promotion of soil aggregation is the primary function of glomalin.

Using an in vitro sterile culture system, Driver et al. (2005) showed that most 
(80 %) of the glomalin was contained in the fungal mycelium, rather than in the liq-
uid growth medium. It is unclear if this result translates from the artificial aqueous 
culture system to the soil environment, or if it applies to fungi across the spectrum 
of AMF species. However, if it does, it suggests that a primary function of glomalin 
may be in the living fungus. Indeed, the putative function of glomalin is homolo-
gous to that of heat shock proteins. Based on these observations, Purin and Rillig 
(2007) proposed a new model for glomalin function. This model has the following 
key components: (a) glomalin primarily functions as chaperone in the cell. It is 
known that certain chaperones have the ability to act as a signal, resulting in greater 
thermotolerance and control of spore viability; (b) in the context of soil aggregation, 
the environmental function of glomalin is secondary to its primary physiological 
function.

There are few reports of heat shock proteins (Hsp) that act as chaperones in 
Glomeromycota, other than glomalin. Using the AMF species G. intraradices, 
Porcel et al. (2006) showed the expression of the small Hsp 30 improved plant 
tolerance to water stress.
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Functional Diversity of AMF as a Determinant in the 
Ability of AMF to Increase Plant Tolerance to Stress 
Conditions

Arbuscular mycorrhizal fungi form the most common mutualistic relationship in 
nature with the roots of approximately 80 % of terrestrial plants, with a presumed 
origin of approximately 460 million years ago (INVAM 2012). The intimacy of 
mycorrhizal associations provides a seamless morphological and physiological in-
tegration, resulting in increased functional compatibility. Fungal hyphae act as an 
extension of the plant root system, conferring increased absorption of water and nu-
trients to plants, while the plant provides the fungus with photo-assimilates, allow-
ing it to complete its life cycle, which only occurs in the presence of the host in the 
case of AMF (Smith and Read 2008). Although this symbiosis is often considered 
to be mutualistic because the AMF receive carbon from the plant, the net effect on 
the plant capacity varies from mutualistic to parasitic (Kiers and van der Heijdenet 
2006), depending on the ecological conditions and plant-fungus combinations.

Spores, fragments of colonised roots and the extraradicular mycelium of soils are 
the primary potential sources of inoculum, contributing the colonisation of plants. 
The relative contribution of each type of propagule to the colonisation of plant roots 
is difficult to determine.

Colonising ability (Avio et al. 2006) is used to describe the ability of AMF to 
propagate inside the plant roots. As such, it should be considered to be a measure of 
the ‘‘steady state’’, differing from the level of colonisation observed in a particular 
segment of the root at a given time. The dynamic colonisation process requires a 
continuous signal exchange during the growth of hyphae and roots. Different AMF 
can colonise a particular host species at the same level, whereas the symbiotic ef-
fectiveness, measured as the growth response, can vary substantially (Smith et al. 
2004). Abiotic and biotic factors influence the symbiotic effectiveness between the 
two partners at the organismal and cellular level. At the community level, abiotic 
factors such as the availability of soil nutrients; the micro and macroclimate, includ-
ing light and moisture (Staddon et al. 2003); and biotic factors such as community 
composition (Klironomos et al. 2000) indirectly influence symbiotic effectiveness. 
Interactions with pathogens and parasites affect carbon gain at the community level 
and the organismal levels.

Because of the lack of evidence for “taxonomic specificity”, the different sym-
biotic responses of the host plant to the various AMF isolates suggest the existence 
of a “functional specificity” (Finlay 2004). This specificity is related to the balance 
between benefits and costs of the fungus for the host, which is sometimes attrib-
uted to differences in the colonisation degree or the efficiency of nutrient transport 
between fungus and plant. There may be a preferential fungus-plant association at  
a certain stage of plant development, which is modulated by the physiology and 
ecology of the plant through mechanisms of evolutionary convergence between 
symbionts (Pawlowska 2004). Therefore, a functional mycorrhiza results from 
the seamless morphological and physiological integration of partners, reflecting 
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complex biochemical, genetic and physiological interactions and relationships that 
depend on the nature of the soil and the environment.

Although there is no evidence for host-specific AMF, there is evidence of  
functional specificity when considering the effects of these fungi on host plants 
(Pouyu-Rojas et al. 2006). As fungal isolates may vary depending on environ-
mental changes, it is important to evaluate occurrence and functional diversity as 
critical factors in the structure of the plant community and ecosystem productivity 
(O’Connor et al. 2002).

Knowing the AMF community structure of a certain environment or biome and 
evaluating the functional diversity of these symbionts are critically important when 
trying to exploit the potential of these fungi. The functional diversity of arbuscular 
mycorrhizae (AMs) has often been defined in terms of responses in plant growth, 
which can range from negative to positive, depending on the particular plant-fungus 
combination and environmental conditions (Johnson et al. 1997). This functional 
diversity can be measured using the colonisation rate, absorption of nutrients and 
plant growth effects. Plants respond differently to different AMF, and these respons-
es are observed both among the AMF of different species and among isolates of the 
same species (Munkvold et al. 2004; Smith et al. 2004).

Pouyu-Rojas et al. (2006) suggested the existence of selectivity and differen-
tiated symbiotic compatibility, with preferred combinations in the formation of 
AMs and variable responses depending on the mycorrhizal genotype involved in 
the fungus-plant relationship. Some studies have shown that a given AMF species 
originates from the same soil and colonises different plant species with distinct 
sporulation patterns (Eom et al. 2000). In some cases, AMF that promote the host 
growth in one plant species could inhibit growth in another (Smith and Read 2008), 
and this beneficial or parasitic relationship depends on the fungus-plant combina-
tion and environmental conditions (Johnson et al. 1997; Smith and Read 2008).

Additionally, individual species of AMF can vary greatly in their response to 
the growth of different plant species, and variations can occur both among AMF 
isolates belonging to different species and isolates of the same species (Munkvold 
et al. 2004; Smith et al. 2004). Consequently, the presence or absence of certain 
AMF species influences structural changes in the population (Klironomos et al. 
2000). For example, increasing the diversity of these fungi in the soil (Rillig 
2004) influences the diversity, structure and productivity of the plant community 
(Heijden et al. 2004), in experimental studies performed in greenhouses and in natural 
ecosystems.

Inoculation with different AMF species differentially alters the growth and co-
existence of different plant species (Heijden et al. 2003), and increasing the species 
richness of these fungi increases the diversity and productivity of plants. Santos 
(2008) verified the influence of AMF species richness in the soil community on 
the initial growth of tree species native to Brazil. The results of this study showed 
that the benefits of increased AMF richness are greater when plants are grown in 
complex communities with a considerable amount of competition. However, those 
studies used a single individual as a representative of each AMF species, and each 
culture was initiated from a single spore. Therefore, these results cannot indicate 
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whether intraspecific variation could account for the differences observed between 
isolates of the same species.

Hart and Klironomos (2002) showed that variation in plant growth was greater 
among plants inoculated with different AMF species than among those inoculated 
with different isolates of the same species. However, this finding does not prove 
that the variability within isolates is not ecologically important. More recently, 
considerable variability has been observed within AMF species. Munkvold et al. 
(2004) demonstrated that large differences in plant growth and P absorption were 
observed within AMF species, showing the importance of the ecological potential 
of variability within AMF species. Hart and Reader (2002), tested the effect of 21 
AMF isolates on plant growth, and showed that AMF families also differ in the ben-
efits conferred to host plants, although there is great variability within and between 
AMF species and genera. These studies show that there is considerable functional 
diversity in AMF and that variability within an AMF species can be greater than 
between different AMF species or genera. This functional diversity is important for 
individual plant growth and the composition of plant communities. Thus, it is clear 
that there is great functional diversity in AMF and that the increase in the diversity 
of these fungi in soil (Rillig 2004) influences the diversity and productivity of the 
plant community.

It is unclear whether plants utilise this diversity to select efficient AMF or AMF 
combinations that are more beneficial in terms of the stimulation of their growth 
(Heijden et al. 2004). Thus, it is important to determine whether increasing the 
AMF diversity in soil influences plants and which plant-fungus combinations oc-
cur preferentially and effectively. Moreover, it would be important to determine 
whether the inoculation of plants with a mixture of AMF reconstitutes the AMF 
community observed in nature. Studies like these can be used to monitor plant per-
formance and reveal whether the diversity of the AMF species in plant roots is 
linked to functional diversity.

Almost all data on the variability of the functions or functional diversity of AMF 
were obtained from experiments in which plants have been inoculated with an AMF 
isolate and the plant growth or total P absorption was measured. Such experiments 
are not entirely relevant to field situations when more than one AMF species is gen-
erally present in a single root system (Jansa et al. 2003). Currently, the challenge 
is to establish mixed communities using different AMF species to assess whether 
plants are able to select efficient AMF or AMF combinations that are complemen-
tary in their functions. However, such studies are complex because of the difficulty 
to identify the AMF that are colonising the roots, which becomes a limiting factor 
for understanding the control of these relationships. The consequences of the si-
multaneous colonisation of a plant by functionally different AMF have been little 
explored.

If a plant is colonised by AMF species that are complementary in their func-
tions, for example the absorption of nutrients from different soil “pools”, they can 
be more beneficial to the plant as a mixture than any one species separately (Alkan 
et al. 2006; Gustafson and Casper 2006). Johnson et al. (2004) showed that the di-
versity of AMF in the roots of Plantago lanceolata was positively correlated with 

6 Plant-Microorganism Interactions: Effects on the Tolerance of Plants …



220

the concentrations of P and N in the shoots of the plants. However, other studies 
indicate that the maximum benefits to the plants could be achieved with a single 
efficient AMF species and that increasing the mycorrhizal diversity would not re-
sult in greater benefits for the plants. According to Santos (2008), increasing AMF 
diversity in the community present in the soil can increase the chances for the estab-
lishment of a fungus species that is more efficient for plant growth. Thus, it is im-
portant to characterise the community structure of AMF in a particular environment 
or ecosystem and assess the functional diversity of these symbionts to establish 
whether there is a relationship between the AMF diversity and benefits to plants.

Physiological Aspects of the Arbuscular Mycorrhizal 
Association in the Plant Tolerance to Stress

The establishment of AMs confers the plants with a range of benefits, primarily 
through the extraradicular mycelium of the fungus that facilitates the absorption 
of nutrients from areas located beyond the depletion zone of the roots, particularly 
phosphorus, and it increases the availability and translocation of nutrients to cortex 
cells in the plant roots. Other relevant effects of AMF are increased plant resistance 
to pathogens of the root system and water absorption capacity. In soil, they favour 
aggregate formation and stability, not only through the physical action of the my-
celium but also through the action of glomalin. Through the enhancement of the 
hydric and nutritional status of plants, AMF can contribute the increased tolerance 
to environmental stress conditions.

Thus, the symbiosis between plants and AMF also results in the reduction of 
losses by stresses (Munier-Lamy et al. 2007) and consequently faster growth, with 
economic inputs and the reduction of environmental contamination (Huang et al. 
2009). Furthermore, these fungi can act as potential biological control agents, re-
ducing the effects or damage caused by plant pathogens through indirect means, 
enhanced plant nutrition, or increased resistance in the root system.

The plant response to colonisation by AMF depends on the severity and frequen-
cy of drought, and other soil conditions. AMF can affect the growth and productiv-
ity of the host plant under conditions of high and low humidity (Borowicz 2010). 
Thus, symbiosis could increase plant responses to moderate water deficit through 
various mechanisms, including increased water absorption from the soil through 
the hyphae (Augé et al. 2003), alteration of hormonal levels causing changes in sto-
matal conductance (Augé et al. 2008), increased leaf turgor and osmotic potential 
reduction (Wu et al. 2006), and improved nutrition of the host plant (Chen et al. 
2005).

Mycorrhizal plants develop a root system uses carbon more efficiently. Conse-
quently, these plants convert larger quantities of photosynthates in the root develop-
ment to increase their absorption capacity (Neocleous and Vasilakakis 2007).

The chlorophyll concentration in the leaves is an important physiological in-
dex for determining the degree of photosynthesis in plants. AMF can increase the 
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chlorophyll concentration in the leaves. Indeed, mycorrhizal plants growing under 
stress conditions possess greener leaves, suggesting that salt interferes with the syn-
thesis of chlorophyll (Colla et al. 2008). Mycorrhizal inoculation also increases the 
absorption of phosphorus and magnesium and reduces the sodium content in the 
plant, which in turn increases the chlorophyll content and consequently improves 
the overall performance of mycorrhizal plants under stress conditions (Sheng et al. 
2008).

Plants associated with AMF often have greater resistance to saline stress, per-
haps with greater consistency than the stress due to drought. Salinity negatively 
affects the formation and functioning of the mycorrhizal symbiosis (Sheng et al. 
2008). Studies indicate that AMF can increase plant growth and nutrient absorption, 
reduce losses in productivity under salinity conditions and improve the tolerance to 
salinity (Hajiboland et al. 2010). The colonisation of plant roots by some AMF is 
reduced in the presence of NaCl (Giri et al. 2007), potentially due to the direct effect 
of NaCl on the fungi (Juniper and Abbott 2006), indicating that salinity can inhibit 
the formation of mycorrhiza (Sheng et al. 2008).

Many researchers have reported that AMF increases the ability of plants to ad-
dress saline stress (Jahromi et al. 2008) because of the enhanced absorption of 
nutrients by the plants (Asghari et al. 2005) and the ionic equilibrium (Giri et al. 
2007), which protects enzymatic activity (Rabie and Almadini 2005), and facilita-
tion of water absorption. However, there are few studies concerning the influence of 
mycorrhizal inoculation on photosynthesis and water relations during saline stress. 
Some reports indicate that mycorrhizal colonisation can improve the relative water 
content in squash leaves (Colla et al. 2008), hydric potential and photosynthesis 
of maize plants (Sheng et al. 2008), and chlorophyll concentration in the leaves of 
various plant species (Sannazzaro et al. 2006; Colla et al. 2008).

Recent findings suggest that glomalin might indirectly influence the storage of 
carbon in the soil through the stabilisation of soil aggregates (Zhu and Miller 2003) 
and soil stability. The stability of soil aggregates is one of the most important prop-
erties to control plant growth in arid and semi-arid environments through the con-
trol of the soil-plant hydric status.

The establishment of mycorrhizal associations results in increased tolerance of 
plants to environmental stresses (Tang et al. 2009). However, little is known about 
the physiological and molecular mechanisms responsible for this greater tolerance. 
Increased activity and induction of new isoenzymes that participate in the anti-
oxidant system in inoculated plants allow the plant to tolerate excess superoxide 
radicals generated during the prevalence of stress conditions.

Salinity induces oxidative stress in plants (Hajiboland and Joudmand 2009). 
Plant cells contain an array of protection mechanisms and repair systems that can 
minimise the occurrence of oxidative damage caused by reactive oxygen species 
(ROS) (Abdel Latef and Chaoxing 2011). The induction of enzymes that eliminate 
ROS such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and 
ascorbate peroxidase (APX) is the most common mechanism for detoxifying the 
ROS synthesised during a stress response.
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Information about the response of the antioxidant defence system under condi-
tions of stress in mycorrhizal plants is contradictory: an increase, lack of change, 
and even a decrease in SOD, CAT, APX and POD activity were reported in mycor-
rhizal soy (Porcel et al. 2003) subjected to hydric stress and tomatoes subjected to 
salinity (He et al. 2007; Hajiboland et al. 2010).

Under conditions of hydric deficit, plants attempt to maintain their water content 
by accumulating compatible, non-toxic solutes such as proline and glycine beta-
ine, which do not interfere with the normal physiological processes of the plant 
(Ma et al. 2006; Zhang et al. 2008). The accumulation of these solutes is a sensi-
tive physiological index of plants in response to salt and other stresses (Peng et al. 
2008). For plants to survive under conditions of salinity and water, adjusting the 
leaf osmotic potential is important and requires intracellular osmotic balance. Thus, 
under hydric and salinity stresses, plants accumulate some organic solutes (pro-
line, soluble sugars, glycine betaine, among others) and inorganic ions to maintain 
greater osmotic adjustment (Yang et al. 2009). The presence of AMF in the roots 
could modify the osmotic potential of the leaves and influence the carbohydrate 
composition and proline level.

Proline is the most common compatible osmolyte in plants and plays an impor-
tant role in increasing the adaptation of plants to drought and salinity (Hasegawa 
et al. 2000). In addition to osmotic adjustment, this molecule has other proposed 
functions in osmotically stressed plant tissues: it maintains and protects the integ-
rity of the plasma membrane (Hincha and Hagemann 2004), acts as a source of 
carbon and nitrogen, and eliminates hydroxyl radicals. Proline accumulation in my-
corrhizal plants subjected to drought has been reported, and the variable effects of 
mycorrhizal colonisation on the levels of proline in plants under saline stress have 
been observed. However, to date, there is little information concerning the influence 
of colonisation by arbuscular mycorrhizal fungi on this accumulation (Sannazzaro 
et al. 2007).

Despite the accumulation of proline induced in plants under stress (Andrade et al. 
2009), evidence of the effects of mycorrhizal symbiosis on the levels of proline or 
soluble amino acids are scarce or null under stress conditions. Andrade et al. (2010) 
observed that soluble amino acids and the proline content of the leaves of mycor-
rhizal and non-mycorrhizal bean plants increased in response to the addition of Cu 
to soil, suggesting a stress response similar to the excess of this metal in the soil. 
However, proline accumulation in the leaves of mycorrhizal plants showed a more 
pronounced increase in response to Cu in the soil when compared to homologous 
non-mycorrhizal plants, indicating a possible role of this amino acid in the response 
to Cu toxicity in mycorrhizal plants, which exhibited greater biomass accumulation 
than non-mycorrhizal plants.

Moreover, AMF increase the vigorousness of the root system and stimulate the 
production of hormones by plants (Yao et al. 2005). Thus, the increase in plant tol-
erance to hydric and/or saline stress might be related to the increased expression of 
genes in response to stress.

Glycine betaine acts as a protective non-toxic osmolyte during periods of drought 
in many organisms, including algae, bacteria, large plants and animals (Treberg and 
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Driedzic 2007). It is synthesised at high levels in many plant species in response to 
several types of environmental stresses, acting not only as an osmoprotectant but 
also as a stabiliser of proteins and membranes (Oishi and Ebina 2005). This com-
pound appears to be a critical determinant of stress tolerance. Its accumulation is 
induced under stress conditions, and this accumulation is correlated with the toler-
ance level (Wu et al. 2008).

The role of arbuscular mycorrhizae in attenuating the stress caused by heavy 
metals in plants growing in contaminated soils has been recognised (Göhre and 
Paszkowski 2006). Improvement of the nutritional status and reduced or altered 
metal absorption are among the greatest benefits related to mycorrhizae on host 
plants under heavy metal stress (Andrade et al. 2008). AMF can alter the concentra-
tion of metals in plants through the immobilisation of metal in the cell wall of in-
tra or extraradicular hyphae, metal chelation through compounds secreted by AMF 
such as glomalin (Vodnik et al. 2008), or metallic compartmentalisation in fungal 
cells. Thus, these fungi act as a filter for metal, reducing local concentrations in the 
soil and creating a suitable environment for plant growth in soils contaminated with 
metals (Göhre and Paszkowski 2006).

The mycorrhizal association can alter the metal absorption in plants (Andrade 
et al. 2008), with reports of both the increase and reduction of metal concentrations 
in plant tissues. As a consequence of physiological alterations, mycorrhizal plants 
perform better under metal stress conditions (Paradi et al. 2003). At the molecular 
level, the expression of some genes related to plant tolerance to heavy metals is al-
tered through arbuscular mycorrhizal symbiosis. However, the global mechanisms 
by which the fungi reduce the phytotoxicity of the metal in plants have not been 
fully elucidated, and the results f some studies show conflicting results, depending 
on specific plant/fungal species/metal interactions.

The literature has reported several detoxification mechanisms in plants, but the 
mechanisms associated with AMF vary among plant species. Variation is also ob-
served for the metal used, applied concentration, plant organ, and duration of the 
exposure (Gratão et al. 2008).

Abiotic Stress and its Influence on the AMF Community  
in the Soil

Mycorrhizae are complex symbioses formed by several components that determine 
the colonisation rate, incidence of propagules and the effects and functions of the 
symbiosis for plants and ecosystems. The primary components of this system are 
the fungus, the plant, and the environment (soil), which have strong interrelation-
ships and interdependences.

Arbuscular mycorrhizae (AMs) are of widespread occurrence in superior plants, 
and AMF are prevalent among fungi normally found in the rhizosphere or among 
root colonisers. It is estimated that most plant species (approximately 250,000  
species) are capable of forming AMs. Therefore, this association has widespread 
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occurrence, except in plants that are members of the following families: Brassica-
ceae, Amarantaceae, Comelinaceae, Juncaceae, Proteaceae, Poligonaceae, Cypera-
ceae and Chenopodiaceae. Approximately 87 % of the Cruciferae (Brassicaceae), 
67 % of the Chenopodiaceae, 37 % of the Poligonaceae and 4 % of the legumes do 
not form AMs. Surveys conducted in various regions of the world confirm that AMs 
are much more abundant than ectomycorrhizae and occur in most Phanerogams 
(97 %), including almost all species of agronomic and pastoral interest and forest 
species native to the tropics.

The richness of AMF varies greatly, and two to 33 species per ecosystem have 
been identified. Although several studies have been conducted, the wealth, diversity 
and symbiotic potential of AMF populations in Brazilian ecosystems have not yet 
been sufficiently studied. The occurrence of AMF in the country includes surveys 
conducted in various crops and non-cultivated ecosystems. Many of them reveal 
the richness of the species, with many of them that have not yet been identified  
(approximately 20 % of the species observed).

The cultivation of soil and the imposition of environmental stress cause major 
changes in the structure of fungal communities through changes in the distribution 
and dominance of the species. These effects are due to biotic and abiotic changes 
in the edaphic environment, such as changes in the vegetation (roots) and chemical 
properties of the soil, especially in the components of acidity, availability of nutri-
ents, water, salinity and heavy metal contamination. Propagules of these fungi are 
present in almost all soils, and the type of vegetation and environment determine 
the occurrence and degree of root colonisation. AMF have reduced occurrence or 
are absent in soils that are fumigated, severely disturbed by erosion, subject to min-
ing, in areas of civil construction, under long fallow period or flooding, and those 
cultivated for long periods with non-host species and high concentrations of envi-
ronmental pollutants.

The presence of heavy metals at toxic concentrations in the soil greatly influ-
ences the AMF. The excess metals reduce spore germination, mycelia growth, de-
gree of colonisation and sporulation of these fungi, causing a significant impact 
on their ecology and diversity (Klauberg-Filho et al. 2005). Despite these effects, 
more than 30 species of AMF have been identified in contaminated soils world-
wide and some at high frequencies, such as Paraglomus occultum, G. clarum, 
G. intraradices and Scutellospora pellucida, in addition to abundant colonisation 
and sporulation. Even at high concentrations of toxic metals, increased colonisation 
rates and spore densities have been reported (Gaur and Adhoeya 2004); however, 
in soils contaminated with Cd, Zn, Cu and Pb, the species richness decreases with 
the increasing concentration of these metals in the soil (Klauberg-Filho et al. 2002). 
The presence of heavy metals inhibits spore germination and mycelial growth, re-
ducing the mycorrhizal colonisation of plants. Several studies provide evidence of 
the different AMF behaviours in relation to excess metals in the soil, and several 
isolates are known to be tolerant to multiple metal contaminants in the soil. Con-
sidering the importance of these fungi in the ecology of plants, isolates tolerant  
to heavy metals are of great interest in the revegetation of areas degraded by the 
accumulation of these elements.
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The “arable” layer of the soil is where the absorbing roots of plants are  
concentrated, becoming the primary habitat and reservoir of AMF propagules in 
ecosystems. Any factor impacting this layer will exert a great influence on the AMF 
community. Weissenhorn et al. (1993) and Weissenhorn et al. (1994) evaluated the 
tolerance of isolates of Glomus mosseae obtained from adjacent areas that were 
polluted or not polluted with heavy metals (Cd and Zn), and also in relation to a 
reference isolate maintained in the laboratory. Germination tests showed that the 
isolates obtained from contaminated areas showed greater tolerance to heavy met-
als than the isolates from adjacent uncontaminated areas. This result demonstrates 
that different isolates of the same “species” are functionally distinct and suggest that 
AMF have the ability to adapt to anthropogenic changes.

The AMF responses to heavy metals are diverse at the fungus species level (Hil-
debrandt et al. 2007). For example, Glomus etunicatum was more sensitive to Cd, 
Pb and Zn than G. intraradices (Pawlowska and Charvat 2004), and the G. mosseae 
isolated from soils polluted with heavy metals was more tolerant to Cd than the 
same species isolated from a non-polluted substrate (Weissenhorn et al. 1994). An 
adequate understanding of the AMF community under stress by heavy metals could 
contribute to the recognition of the interactions between fungi and heavy metals 
and future revegetation or phytoremediation of regions polluted by heavy metals 
(Hildebrandt et al. 2007). Studies indicate that many species of plants growing well 
in areas polluted by a single heavy metal, such as Fragaria vesca, Viola calaminar-
ia, Veronica rechingeri, Solidago giante, Thymus polytrichus and Thlaspi praecox, 
were colonised by various AMF and AMF isolates that can positively act to regulate 
plant resistance to heavy metal stress (Zarei et al. 2008; Sonjak et al. 2009).

Studies conducted with AMF in preserved and disturbed areas show the impor-
tance of these fungi in the studied areas (Silva et al. 2005). Silva et al. (2005) identi-
fied 15 species of AMF in an area of preserved caatinga and an area degraded by 
copper mining and observed a strong reduction in plant diversity and AMF species 
community; the community was quantitatively and qualitatively affected by mining 
activity. In areas of high salinity, Yano-Melo et al. (2003) identified 21 taxa of AMF, 
especially G. mosseae and G. intraradices, which favoured sporulation in the first 
cycle of multiplication in a trap culture and decreased from the second cycle.

Salinity stress negatively affects the formation and function of mycorrhizal sym-
biosis by inhibition of spore germination, plant colonisation and formation of new 
spores (Juniper and Abbott 2006; Giri et al. 2007; Abdel Latef and Chaoxing 2011). 
Other environmental factors such as soil water content, concentrations of available 
phosphorus, organic matter content in the soil, soil pH and vegetation coverage 
affect levels of colonisation in plants through AMF. AMF in wetland habitats are 
periodically exposed to anaerobic conditions and high salinity in soils (Bohrer et al. 
2004; Carvalho et al. 2004). Depending on the AMF species, soil salinity levels 
can affect spore production and germination (Carvalho et al. 2004). The presence 
of heavy metals in toxic concentrations in the soil also exert great influence on the 
AMF, and the excess metal reduces spore germination, mycelial growth, degree of 
colonisation, and sporulation of these fungi, which might have a significant impact 
on their ecology and diversity (Klauberg-Filho et al. 2005).
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Because mycorrhizae are compartmentalised biological systems, they are in-
fluenced by the effects of the environment and countless edaphic factors of each 
component that directly or indirectly regulate the formation, operation, and occur-
rence of AMs. The components and controlling factors have constant and intense 
interactions, such that a change in any of these factors influences the occurrence of 
mycorrhizae and AMF propagules.

Establishment of AMF in Extreme Temperature Conditions

Arbuscular mycorrhizal fungi (AMF) may respond to high temperature conditions 
by changing their morphology, modifying their external environment, or adapting 
their internal metabolism, although the degree of phenotypic plasticity might vary. 
Because AMF obtain carbon from autotrophic host plants, fungi can also be ex-
posed to stress through changes in carbon allocation from the host plant. Results 
obtained from the refinement and application of molecular identification methods 
in recent years has revealed that the degree of host specificity by some mycorrhi-
zal fungi might be greater than expected. This result implies that the availability 
of compatible roots influences the survival of the fungus and changes in species 
composition in plant communities. Restricting the supply of assimilates from the 
compatible host root could limit the growth of certain fungi in rehabilitation areas. 
Therefore, in many situations, mycorrhizal colonisation appears to be more depen-
dent on the host plant than on the temperature (Hawkes et al. 2008), and normally 
high temperatures such as 35 and 40 °C show no significant effects on mycorrhizal 
development (Zhu et al. 2010).

There are few studies that examine in detail the factors that affect the survival 
of specific AMF in their natural habitats. Instead, the effects of physical-chemical 
factors, especially temperature, on plants are widely reported.

Few plant species survive under continuous temperatures above 45 °C. Both 
photosynthesis and respiration are inhibited at supra-optimal temperatures. How-
ever, as the temperature increases, the photosynthetic rate decreases more rapidly 
than the respiration.

The structure and stability of cell membranes are important during high tempera-
ture stress. The excessive fluidity of lipid membranes at elevated temperatures is 
correlated with the loss of physiological function. In some species, the acclimatisa-
tion to high temperatures is associated with the increased saturation of fatty acids 
in the lipids, which makes membranes less fluid. The strength of hydrogen bonds 
and electrostatic interactions between the polar groups of the aqueous phase of the 
membrane decreases, which results in a stronger association between integral pro-
teins of the membrane and its lipid phase. Thus, high temperatures modify the com-
position and structure of membranes, resulting in the loss of ions and the inhibition 
of metabolic processes such as photosynthesis and respiration.

One aspect common to fungi and plants when subjected to high temperature 
stress is the generation of reactive oxygen species. The uncontrolled accumulation 
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of ROS generates oxidative stress and can cause membrane lipid peroxidation, inac-
tivation of enzymes containing SH groups, and RNA and DNA damage. ROS, par-
ticularly the superoxide radical (O2

-) and hydrogen peroxide (H2O2), are generated 
in the cytoplasm, chloroplasts, mitochondria, peroxisomes, and apoplast.

In microorganisms, particularly AMF, the components of antioxidant systems 
are not well known. It is known, however, that enzymes such as catalase, peroxi-
dise, and superoxide dismutase participate in the decomposition of ROS. Histori-
cally, research has shown that the establishment of mycorrhizal associations result 
in increased plant tolerance to adverse environmental factors, although many of the 
effects are attributed to enhanced plant nutrition associated with the AMF. The in-
creased activity and induction of new isoenzymes that participate in the antioxidant 
system in mycorrhizal plants confers tolerance to excess superoxide radicals gen-
erated during the prevalence of stress conditions (Costa 2003). In arbuscular my-
corrhizal associations ( Trifolium pratense–G. mosseae), there is an increase in the 
activity and synthesis of new SOD isoenzymes induced through symbiosis (Palma 
et al. 1993).

Through the involvement of oxidative stress enzymes against oxidative dam-
age caused by the increased production of ROS during stress conditions, AMF can 
increase the capacity to resist oxidative and environmental stresses in the plant, 
conferring increased tolerance to ROS, although the role of these enzymes in my-
corrhizae is little elucidated.

Arbuscular Mycorrhizal Fungi in Plants Tolerance 
to Nematode Attacks

The protection of plants against abiotic stress caused by pathogens in soil can also 
be attributed to AMF (Moraes et al. 2004; Meira 2004; Hol and Cook 2005; Elsen 
et al. 2008; Meira-Haddad 2008; Vos et al. 2012).

AMF can be considered to be biocontrol agents (Azcón-Aguilar and Barea 1996; 
Pozo et al. 2002) and have received much attention for promoting resistance and/
or tolerance, decreasing the incidence and severity of plant diseases, and reducing 
the number of soil pathogens (Cordier et al. 1998; Hol and Cook 2005; Borges et al. 
2007; Meira-Haddad 2008; Vos et al. 2012).

According to Azcón-Aguilar and Barea (1996), AMF promotes the following 
mechanisms for biological control of plant diseases: improving the nutritional status 
of the host plant, compensation for damage caused by the pathogen, competition for 
the site of infection and colonisation site, anatomical and morphological changes in 
the root system of the host, changes in the microbial population of the rhizosphere, 
and activation of systemic and localised defence mechanisms (Pozo et al. 2002).

Several studies have demonstrated that AMF affect the reproduction of nema-
todes by reducing oviposition, the number of individuals in the roots of infected 
plants, and the number of galls and by increasing plant tolerance to pathogen attack 
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through reductions in their development (Elsen et al. 2003; de La Peña et al. 2006; 
Jaiti et al. 2008; Meira-Haddad 2008).

Populations of Pratylenchus coffeae, Radophulus similis, Meloidogyne javanica, 
among others, were reduced by G. mosseae and G. intraradices when associated 
with banana roots (Pinochet et al. 1996; Elsen et al. 2003). The mycorrhizal fun-
gi might affect nematode reproduction by reducing galls and eggs and inhibiting 
penetration (Siddiqui and Mahmood 1995; Meira-Haddad 2008; Vos et al. 2012). 
These diverse effects indicate that this interaction is specific, and the plant geno-
type, nematode species, fungal isolates, and changes in the environment could ex-
plain these different responses (Siddiqui and Mahmood 1995; Hol and Cook 2005; 
Borges et al. 2007; Jaiti et al. 2008).

Using the root compartmentalisation system of two banana cultivars, it was pos-
sible to demonstrate the direct effect of AMF on M. incognita (Meira-Haddad 2008). 
When AMF and nematodes were inoculated in the same compartment, a reduction 
in the number of eggs in the cv. Prata-anã and both the number of eggs and galls 
in the cv. FHIA 01 was observed (Meira-Haddad 2008). Studies have shown that 
plants colonised by AMF have few galls containing few females, and the nematodes 
are smaller in size. Because of this characteristic, they need more time to develop to 
adulthood (Diedhiou et al. 2003; Freire et al. 2007; de La Peña et al. 2006).

Cells of the root system with arbuscules were not infected with the pathogens, 
and its proliferation was reduced in the mycorrhizal roots and also in parts of the 
root system, demonstrating that bioprotection is directly linked to AMF root colo-
nisation. Cytomolecular studies have shown that the systemic and localised pro-
tective effect induced of AMF colonisation involves the accumulation of defence 
molecules in combination with the elicitation reaction of the host cell wall. Modi-
fications of the cell wall associated with localised resistance and the formation of 
papillae characterises systemic resistance to P. parasitica in mycorrhizal tomato 
plants (Cordier et al. 1998).

The changes in the root system caused by the AMF promote the vigorous growth 
of the plant, thus reducing the negative effect of the pathogen (Siddiqui and Mah-
mood 1995). The reduction of plant growth due to the establishment of nematodes 
in roots is lower when colonised by mycorrhizal fungi (Cofcewicz et al. 2001).

The success of the plant defence system against pathogens depends primarily on 
the recognition of invasion by the pathogen in the initial stages for the activation 
of defence response cascades. Plants in mycorrhizal symbiosis undergo biochemi-
cal, physiological and molecular alterations related to the plant defence system for 
the establishment of symbiosis (Garcia-Garrido and Ocampo 2002). However, the 
plant defence responses are limited, transient, and restricted to specific cells; how-
ever, the reactions share similarities with the physiological reactions observed dur-
ing colonisation by pathogens (Garcia-Garrido and Ocampo 2002; Lambais et al. 
2003). The mycorrhizal colonisation acts as the primary system of plant defence to 
pathogen attack (Elsen et al. 2008).

The physiological changes in the plant caused by the symbionts prevent pathogen 
attack and activate defence mechanisms because proteins related to pathogenesis, 
phytoalexin production, and cell wall lignification have been reported in mycor-
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rhizal plants at regions far from the infection sites, indicating the occurrence of sys-
temic resistance (Cordier et al. 1998; Pozo et al. 2002; Selosse et al. 2004).

The successful establishment of mycorrhiza is essential for the control of nema-
todes and has a negative effect on the reproduction of these organisms (Cordier 
et al. 1998; Elsen et al. 2003; Vos et al. 2012).

The bioprotector effect of the AMF to plant pathogens might be related to the 
induction of localised or systemic resistance (Cordier et al. 1998; Pozo et al. 2002; 
Elsen et al. 2008). When colonised by AMF, plants exhibit biochemical, physiologi-
cal and molecular alterations related to the plant defence system as symbiosis is 
established (Garcia-Garrido and Ocampo 2002; De Gara et al. 2003; Selosse et al. 
2004). However, the plant defence responses are limited, transient, and restricted 
to specific cells, but the plant reactions have physiological similarities with the 
reactions observed during colonisation by pathogens (Garcia-Garrido and Ocampo 
2002; Lambais et al. 2003). Mycorrhizal colonisation acts as the primary system of 
plant defence against pathogens (Elsen et al. 2008). Plants with higher antioxidant 
activities are more tolerant to different stresses, and mycorrhizae increase the activ-
ity of antioxidant enzymes, such as peroxidise, catalase and superoxide dismutase 
(Costa 2003; Lambais et al. 2003; Meira 2004; Arfaoui et al. 2007).

Peroxidase is an enzyme that is transiently induced and subsequently suppressed 
during mycorrhizal colonisation. The peroxidases catalyse the oxidative polymeri-
sation of phenylpropanoids for the production of lignin and are involved in cross-
linking the proteins of the cell wall, thus contributing to increased rigidity (Siddiqui 
and Mahmood 1995; Hol and Cook 2005; del Río et al. 2006). Consequently, hydro-
gen peroxide plays an important role in strengthening the cell wall and the systemic 
induction of defence genes (del Río et al. 2006).

Phenylalanine ammonia lyase is a key enzyme in the phenylpropanoid pathway, 
which is responsible for the deamination of L-phenylalanine to form trans-cinnamic 
acid and ammonia. Trans-cinnamic acid is incorporated in different phenolic com-
pounds to produce phytoalexins, which are antimicrobial compounds that are closely 
related to the resistance of plants to pathogens (Wuyts et al. 2006; Arfaoui et al. 2007).

The study of the mechanisms involved in the AMF bioprotection to nematodes 
has been limited due to obligatory biotrophism and parasitism of both. AMF can be 
considered to be biological control agents; however, the diversity of responses to 
the combination AMF-nematode and plants is unique. Generalisations are hindered 
because these interactions are dependent on the host, nematode species, AMF spe-
cies and combinations of nematode and AMF initial inoculum density, soil fertility 
and nematode inoculum.

Conclusions and Future Perspectives

The various interactions that occur between plant roots and microorganisms in the 
soil are of importance to ecosystems. The understanding of these interactions can 
greatly benefit agriculture through the manipulation of populations of common mi-
croorganisms that inhabit the soil associated with roots, which is a promising area 

6 Plant-Microorganism Interactions: Effects on the Tolerance of Plants …



230

of research that can be an effective option for increasing plant tolerance to biotic 
and abiotic stresses. Beneficial microorganisms that promote plant growth and con-
fer a protective effect against soil pathogens are considered to be of great value to 
production systems.

Despite of more than 120 years, since the first descriptions and hypotheses about 
the functionality of the mycorrhizal associations, it is suspected that the deeper im-
pact of this symbiosis is yet to be revealed.

The effort by the potentiation of AMF in the field, as well as by the generation of 
related techniques, demand studies incorporating multiplication protocols of AMF. 
Implies consider this component in long-term studies that seek to detect not only 
its impact on the growth and development of a plant, but about the magnitude of its 
contribution to global events and structure of plant communities.

With the perspective opened by molecular techniques, there are the opportu-
nity to understand mechanisms of evolution of plant species and the symbiosis. It 
remains to researchers in AM extend your range of research in a multidisciplinary 
effort, even because, without this approach, it will not possible to understand the 
full dimension of this formidable symbiosis.

The AMF and the symbiotic association process require an interaction between 
root and fungi, so far not clarified with regard to the mechanism for the recognition 
of symbiotic partners and interaction, or the moment from which it is recognized as 
an association.

The symbiosis between plants and AMF results in the reduction of losses by 
stresses and consequently faster growth, with economic inputs and the reduction 
of environmental contamination. Furthermore, AMF can act as potential biological 
control agents, reducing the effects or damage caused by plant pathogens through 
indirect means, enhanced plant nutrition, or increased resistance in the root system.

Little is known about the physiological and molecular mechanisms responsible 
for greater tolerance of mycorrhizal plants. The knowledge that one of the physi-
ological responses to biotic and abiotic stress in plants mediated by AM consists 
in the increase of the activity of an oxidative stress set of enzymes (SOD, APX, 
POD), in the production of compounds with antimicrobial activity (phenols, qui-
nones, phytoalexins) and the activation of enzymes that catalyze the reactions for 
the production of compounds that act as chemical or physical barriers. Furthermore, 
increased activity and induction of new isoenzymes that participate in the antioxi-
dant system in inoculated plants can allow the plant to tolerate excess superoxide 
radicals generated during the prevalence of stress conditions.

Know the community structure of the AMF of a particular environment or bi-
ome, and evaluate the functional diversity of these symbionts are of fundamental 
importance when you want to explore the potential of these fungi to increase the 
plants tolerance to biotic and abiotic stress. There are few works that examine in 
detail the factors that affect the survival of AMF in their natural habitats. On the 
contrary, the effects of physical and chemical factors on plants are widely reported.

Studies on the factors that may regulate the establishment and functioning of 
AM and changes biochemical, physiological and molecular in both symbionts dur-
ing biotic and abiotic stress conditions have been made in recent years. However, 
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the elucidation of these mechanisms is still far from being completed. The limited 
information about the genetics of the AMF and the difficulties encountered in car-
rying out these studies, which is hampered by the obligatory symbiotic relation-
ship that is required and by the complexity of fungal genomics, has contributed to  
limiting the knowledge of that symbiosis.
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Abstract Currently much of the wheat genetic variability is obtained through con-
ventional crop improvement methods involving land races and normal varieties. 
Hence, the germplasm base available in the form of cultivars is becoming increas-
ingly narrow and the need for widening the gene pool is essential in view of the 
emerging biotic and abiotic stresses due to global warming and climate change. 
Major abiotic constraints that have surfaced are due to increased salinity, water log-
ging, drought and heat. Biotic stresses of emphasis here additionally contribute to 
the crops productivity situation. To counter these maladies a broad genetic base 
is essential to have on hand and its implementation a dire need forming the focus 
of this communication. New and useful genetic variations exist in the wild uncul-
tivated wheat progenitor species that can be utilized for the enhancement of the 
existing wheat breeding pools and improve yield stability. These genetic variations 
can be harnessed through a combination of conventional breeding methods coupled 
with interspecific, intraspecific and intergeneric hybridization approaches popularly 
known as “wide crossing” that independently and cumulatively augment the avail-
able genetic variability for wheat improvement.

Diploid wheat progenitors (2n = 2x = 14) A, B, and D are the constituents of 
bread wheat ( Triticum aestivum L) offering extensive diversity that contributes to 
crop improvement by providing novel allelic enrichment. A and D genome dip-
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loids belong to the “primary” gene pool and the B(S) genome to the “secondary” 
pool. Exploiting these diploids requires skills of developing user friendly genetic 
stocks commonly known as “synthetic hexaploids (SH)”. The stocks are produced 
by combining durum wheat cultivars (2n = 4x = 28) with each diploid thus generat-
ing hexaploids that are genomically AABBDD, AABBAA and AABBBB(SS). All 
stocks cytologically are expected to be 2n = 6x = 42 and major resources and provide 
unique allelic diversity for wheat improvement. 

Biotic stresses of significance vary according to location and our major ones are 
the three rusts, karnal bunt with upcoming concern prevailing for powdery mildew, 
barley yellow dwarf and the new emergence of spot blotch. Progress to combat 
these stresses has be driven in tandem with locational priorities and these dictates 
have shifted global and national focus among the rusts to stem rust with the threat 
of race UG99’s spread linked with a local races presence. Thus diversity for ex-
ploitation has extended beyond the diploid relatives to include tertiary gene pool 
resources where most notable mention is of the diploid Thinopyrum bessarabicum 
that has the potential to address multiple stress factors and will be elucidated in an 
agglomerated manner to embrace various accessional sources as they relate to the 
major biotic stresses resistance management.

Introduction

Currently much of the wheat genetic variability is obtained through conventional 
crop improvement methods involving land races and normal varieties. Hence, the 
germplasm base available in the form of cultivars is becoming increasingly nar-
row and the need for widening the gene pool is essential in view of the emerging 
biotic and abiotic stresses due to global warming and climate change. Major abiotic 
constraints that have surfaced are due to increased salinity, water logging, drought 
and heat (Mujeeb-Kazi et al. 2008a). Biotic stresses of emphasis here additionally 
contribute to the crops productivity situation. To counter these maladies a broad 
genetic base is essential to have on hand and its implementation a dire need forming 
the focus of this communication. New and useful genetic variations exist in the wild 
uncultivated wheat progenitor species that can be utilized for the enhancement of 
the existing wheat breeding pools and improve yield stability. These genetic varia-
tions can be harnessed through a combination of conventional breeding methods 
coupled with interspecific, intraspecific and intergeneric hybridization approaches 
popularly known as “wide crossing” that independently and cumulatively augment 
the available genetic variability for wheat improvement.

Diploid wheat progenitors (2n = 2x = 14) A, B, and D are the constituents of bread 
wheat ( Triticum aestivum L) offering extensive diversity that contributes to crop 
improvement by providing novel allelic enrichment. A and D genome diploids be-
long to the “primary” gene pool and the B(S) genome to the “secondary” pool. 
Exploiting these diploids requires skills of developing user friendly genetic stocks 
commonly known as “synthetic hexaploids (SH)” (Mujeeb-Kazi et al. 1996a). The 
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stocks are produced by combining durum wheat cultivars (2n = 4x = 28) with each 
diploid thus generating hexaploids that are genomically AABBDD, AABBAA and 
AABBBB(SS). All stocks cytologically are expected to be 2n = 6x = 42 and major 
genetic resources that provide unique allelic diversity for wheat improvement.

Biotic stresses of significance vary according to location and our major ones 
are the three rusts, karnal bunt with upcoming concern prevailing for powdery mil-
dew, barley yellow dwarf and the new emergence of spot blotch (Mujeeb-Kazi et al. 
2008b). Progress to combat these stresses has be driven in tandem with locational 
priorities and these dictates have shifted global and national focus among the rusts 
to stem rust with the threat of race UG99’s spread linked with a local races pres-
ence (Mirza et al. 2010). Thus diversity for exploitation has extended beyond the 
diploid relatives to include tertiary gene pool resources where most notable men-
tion is of the diploid Thinopyrum bessarabicum that has the potential to address 
multiple stress factors and will be elucidated in an agglomerated manner to embrace 
various accessional sources as they relate to the major biotic stresses resistance 
management. This communication covers our major biotic stresses, address a few 
of international importance using strategies that embrace diverse means of intro-
gressing genes integrating technologies that add to the efficiency of pre-breeding 
and breeding to deliver outputs that are expected to form a conduit to food security. 
The overall theme is captioned “wide crossing”.

Major credit for motivating research on the course of wide crosses goes to Kruse 
1967, 1969, 1973, 1974 following the events of 1891 (Rimpau) and 1904 (Farrar). 
Initial impetus was derived from the wheat/barley findings of Kruse 1974 that paved 
the way for significant cytogenetical outputs by Islam et al. (1981) and followed by 
some additional digressions with other Triticeae members Sharma and Gill (1983), 
Mujeeb-Kazi and Kimber (1985), Mujeeb-Kazi et al. (1987, 1989), Wang (1989), 
Jiang et al. (1994), Sharma (1995). All these reports have centered on “intergeneric 
hybridization” and considered complex for realizing alien genetic transfers. Paral-
lel to these efforts since mid-1980s emerged the era of exploiting of close relatives 
particularly the diploid wheat progenitor Aegilops tauschii (2n = 2x = 14, DD) via 
direct crossing (Alonso and Kimber 1984; Gill and Raupp 1987) or via bridge cross-
ing (Mujeeb-Kazi and Hettel 1995; Mujeeb-Kazi et al. 1996a). Both these strategies 
will be highlighted but for handling practical outputs for key biotic stresses only 
those at a priority in our perception shall be considered that others could modify 
according to their desires.

Wheat Production

The productivity levels across varied environments are separated into the irrigated 
and rainfed regimes of cultivation. Stress constraints vary as well and these are 
locational holding their specific priority profiles. Often diversity to address a trait 
is present in conventional sources but when limitations prevail then unique sources 
are tapped. Over the past few decades this emphasis on suing novel genetic resourc-
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es has increased and the benefits have also resulted (Mujeeb-Kazi et al. 2008b). 
Maximum benefits on a practical scale has come from the closely related wild pro-
genitors like the D genome diploid grass Ae. tauschii that has resulted in variet-
ies in China, Spain, Afghanistan, Ecuador and an abundance of advanced varietal 
candidate lines globally possessing biotic stress resistances and high yield levels 
(David Bonnett, Personal Communication). Specifying the contribution of special 
resources towards biotic stresses a brief consideration covers spot blotch, Septoria 
tritici, Karnal bunt, Fusarium graminearum, powdery mildew, yellow rust and stem 
rust, substantiated by inputs from other resources that are more divergent are out-
puts for spot blotch and stem rust.

Germplasm for Combating Biotic Stresses

The wheat family members are distributed within three gene pools; primary, sec-
ondary and tertiary (Jiang et al. 1994) and their utilization ranges from a relative 
ease to complex based upon genetic distance and genetic affinity traversing from 
perfect homology to genomic homeology. Details to elucidate the species distribu-
tion and range are provided in Dewey (1984), Kimber and Feldman (1987).

a. The conventional resource. The globally available accessions in ex situ gene 
banks number approximately 800,000 of which 3 % are of wild wheats (Valk-
oun 2001). Those categorized as conventional wheats, land races and grouped 
into winter, spring and facultative fall in this section from which special men-
tion will be made of some land races and naturally originated wheats that have 
been in extensive use since mid-1970s that carry the spontaneous translocation 
T1BL.1RS. National land races approach 1,000 in Pakistan of which 112 are 
widely studied and have been evaluated for various parameters. They are further 
unique diversity candidates to exploit for wheat improvement.

b. The unique wild/exotic gene pool resources including the diploid progenitors of 
the primary and secondary gene pool plus various tetraploids with their contribu-
tion of derived usable stocks which address biotic stresses. In extensive use have 
been the D genome followed by the A and in very limited use so far the B(S) 
genomes. Capturing interest also are the tetraploids Triticum dicoccum, T. dicoc-
coides, T. carthlicum and the hexaploid T. spelta.

c. The tertiary gene pool species with their diversity made user friendly and specifi-
cally targeted for a biotic stress of current global significance and a potent threat 
to wheat production will be addressed. The contributions from this pool have 
been tabulated and reported by Mujeeb-Kazi et al. (1987, 1989, 2008a), Sharma 
and Gill (1983), Sharma (1995), Friebe et al. (1996), Mujeeb-Kazi (2003, 2005, 
2006a), Trethowan and Mujeeb-Kazi (2008), Ogbonnaya et al. (2013) elucidat-
ing that almost all major stresses encountered in wheat cultivation plots can ben-
efit from alleles of value present in these resources.
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Germplasm Choice for Wheat Improvement

The range of available genetic resources for improving wheat is enormous but if 
the time span for the delivery of final products that translate into varieties is the 
measure then the priority would follow intraspecific, interspecific and intergeneric.

At the intraspecific level T. dicoccum/T. dicoccoides followed by T. carthlicum 
take lead for both durum and bread wheat improvement with T. spelta being a good 
candidate for bread wheat.

At the interspecific level based upon homology the D genome heads the list 
along the strategy of bridge crossing and direct crossing. For additive variation A 
genome accessions come next and lastly usage of the B(S) from the Sitposis section 
that is rarely exploited for applied goals of wheat production.

At the intergeneric level most of the tertiary gene pool species are genomically 
far removed from the wheat A, B and D genomes. Hence parental choice of the alien 
resource is paramount. If trait is present across various ploidy levels then the prefer-
ence of the species to be exploited would be the lower ploidy. Using such a strategy 
the salt tolerance gene transfers from the diploids Thinopyrum bessarabicum or Th. 
elongatum are preferred over the tetraploid source T. junceum or the decaploid Th. 
ponticum. It is fortuitous that the diploid Th. bessarabicum is also resistant to the 
UG99 pathotypes and thus for this paper it shall be discussed in detail.

Hybrid Production

Hybridization varies from the conventional to the radical combinations and thus 
can be rather easy to highly complex. In general where polyploidy levels differ, 
the higher polyploidy parent serves as the female and after crossing seed is set that 
may mature and be shriveled or would have to have its embryo excised from after 
10 to 15 days and give plantlets that are self-sterile requiring induced doubling or 
backcrossing for further use in pre-breeding or breeding.

Pre-Breeding

Of late this term has been used to justify program organization in some internation-
al output projections. Unfortunately assigning the pre-breeding category to those 
crosses where F1 embryo rescue is not needed needs to be separated and fitted 
into the conventional hybridization category well within the work arsenal of any 
wheat breeder. Intraspecifc crosses have across many decades being handled by 
breeders where the classic examples are of the bread wheat/ durum wheat combina-
tions forming the pentaploid and their further exploitation. This remains a 100 % 
field operation and calling it pre-breeding in our perception is inappropriate. Thus 
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all crosses using the AABB tetraploids onto wheat or AABBDD hexaploids with 
AABB tetraploids that do not require embryo culture and laboratory assistance to 
handle self-fertility or chromosome doubling should fall under the breeder’s do-
main of conventional breeding and not categorized as “pre-breeding”.

Wide hybridization returning to Triticale production, the classic wheat/barley 
hybrids then additional Triticeae species that require embryo rescue and media 
preparation skills, special plantlet regeneration strategies, handling care of the hy-
brid that is self-sterile with its advance via amphiploidy or backcrossing to affect 
alien transfers is the true categorization of the term “pre-breeding” and has been in 
operation since the start of such efforts highlighted in reports of Rimpau (1891), 
Farrar (1904), Kruse (1967, 1969), Islam et al. (1978), Sharma and Gill (1983), 
Mujeeb-Kazi and Kimber (1985), Mujeeb-Kazi et al. (1987, 1989, 1996a, 2013), 
Sharma (1995) and Mujeeb-Kazi and Hettel (1995). Outputs from such diverse 
crossings require infrastructure and skills that are hard to find within the conven-
tional breeding professionals and requires expertise and controlled environment 
facilities that permits adopting special tools for F1 crossing to be done, compat-
ibility to be harnessed, tissue culture to rescue the embryos, cytology to validate the 
hybrid, growing conditions that promote vigorous growth, amphiploid induction 
and/ or backcrossing before the BC or the amphiploid could be manipulated to 
deliver advanced lines that have the potential to become varietal materials. These 
facets are true “pre-breeding” steps that has been not been mentioned and the term 
loosely used to chart program structures in developing world programs fostered by 
international funding.

Breeding

An efficient protocol being followed in CIMMYT has been limited backcrossing 
coupled with selected modified bulk for breeding program efficiency. Where novel 
diversity becomes a donor of alleles the same protocol has been utilized effectively. 
With the focus on bread wheat improvement these steps are as follows:

a. Bread wheat parent as the female crossed by the novel tetraploids to produce 
pentaploid F1 hybrids that upon limited backcrossing are advanced mediated by 
selected bulk and ultimate cytology to generate hexaploid euploids (2n = 6x = 42, 
AABBDD)

b. Similar crossing as in (a) of bread wheat by synthetic hexaploids to result in 
F1’s that are ABD AAB, ABD ABB(S) or ABD ABD to yield BC1’s and upon 
advance deliver euploids with the 42 complement.

Often with the D genome hexaploids the F1 hybrids exhibit necrosis this knowledge 
of the necrotic genes is important to overcome this limitation. Also the tough rachis 
requires a sizeable F2 population to allow for selecting free threshing derivatives. 
Even though major efforts are on limited backcrossing use of F1 top-crossing in 
wide crossing has been exploited significantly (Mujeeb-Kazi and Asiedu 1990). 
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Mediated in this breeding scheme is achieving homozygosity as early as possible 
and often on the segregating F3 population where each selected individual is made 
homozygous via the detached tiller strategy (Riera-Lizarazu and Mujeeb-Kazi 
1990) that uses haploids from crossing the selections by maize.

The Interspecific Contribution to Biotic Stresses: Some 
Crucial Steps in Outputs Generation to Combat Biotic 
Stresses

Bridge�Crosses

The genetic stocks used for identifying resistance are known as synthetic hexa-
ploids and these are of the three wheat genomes. According to their usage level 
they genomically rank as the D, A and B with their hexaploids being AABBDD, 
AABBAA and AABBSS with all being 2n = 6x = 42. These have been elaborately 
discussed in literature (Mujeeb-Kazi 2003, 2006a; Mujeeb-Kazi et al. 2004, 2008b, 
Ogbonnaya et al. 2013).

The�Synthetic�Production�Across�A,�B�(S)�and�D�Genome�Diploids,�
Maintenance�and�Their�Utilization�Mode

Standard conventional procedures of crossing using T. turgidum cultivars as the 
female parent, embryo rescue, seedling differentiation, hybrid seedling develop-
ment and induction of the doubled fertile product (amphiploid/ synthetic hexaploid) 
permit harnessing of the various stocks that are 2n = 6x = 42 (AABBAA, AABBSS 
and AABBDD). Lesser has been the use of T. dicoccum and T. dicoccoides as the 
female parental source. No special modifications are needed but subtle variations do 
enhance the frequency of the outputs.

The variations are in:

a. use of early pollination or bud pollination,
b. giving cold treatment of 6C to the plated embryos for 2–3 weeks and
c. delaying the colchicine treatment until the 6 leaf stage around a vigorously grow-

ing hybrid plantlet or slightly later.

The synthetics that result are in limited amount as to seed resource and these C-0 
stocks require increase that is done on each seed after its cytological validation 
having the 42 complement. This is essential since aneuploidy does prevail (Mujeeb-
Kazi and Hettel 1995). Such seed increases for each synthetic allows for building 
up each entries seed quantity allowing for materials to be screened for biotic and 
abiotic stresses, conduct molecular diagnostics and distribute globally. Extensively 
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in use has been the D genome synthetics and their elite sub-sets 1 plus 2. Lesser 
targeted usage also happens and special requests are met from the euploid reserve 
holdings. One significant provision was of a synthetic hexaploid wheat stock to Cor-
nell University wheat program where after being crossed with the cultivar “Opata” 
the famous ITMI population of 150 RIL’s was developed . This population was the 
conduit for developing the wheat microsatellite map (Roder et al. 1998). D genome 
synthetic production has been of worldwide interest but large numbers have been 
associated with the CIMMYT wide cross program where close to 1,200 spring and 
winter habits synthetics have been produced (Mujeeb-Kazi et al. 2008b) and these 
numbers are increasing (Bonnett, Personal Communication with A Mujeeb-Kazi). 
In depth details of the global inputs of various laboratories towards the D genome 
stocks have been recently reviewed by Ogbonnaya et al. (2013) where the current 
status of their practical utilization has also been elucidated.

The close relative genetic diversity beyond the D genome has exploited acces-
sions of the A diploid resources T. boeoticum, T. monococcum and T. urartu and to 
a very limited extent the B(S) genome diploid Ae. speltoides of the Sitopsis section. 
The A and the B(S) genome stocks have yet to be widely utilized.

The use of the SH route is categorized as bridge crossing as upon crossing se-
lected SH s with bread wheat for its improvement all three genomes are contributors 
and allelic richness is harnessed from all three of the SH genomes, i.e., A, B and D 
allowing for intraspecific and interspecific coverage to occur where the intraspe-
cific portion simulates the bread wheat/ durum wheat pentaploid breeding protocol.

Direct�Crosses

The most efficient technique for exploiting Ae. tauschii variability for bread wheat 
improvement is to achieve direct transfers from resistant/tolerant Ae. tauschii ac-
cessions to bread wheat. The methodology rapidly produces improved BC1 deriv-
atives with the six genomes (AABBDD), five of which (AABBD) resemble the 
elite bread wheat cultivar used in the cross (Fig. 7.1). Aneuploidy in the BC does 
surface and thus recovery of euploids (2n = 6x = 42) requires cytology. Advantages 
of direct crossing have been elucidated by Cox et al. (1990) and has tremendous 
potential to go beyond the D genome into the A genome diploids. For a targeted ap-
proach screening of the genomic resource is important for practical wheat produc-
tivity goals. Alonso and Kimber (1984), Cox et al. (1990, 1991) and Gill and Raupp 
(1987) unequivocally placed priority on direct Ae. tauschii crossing with bread 
wheat cultivars. Based on the transfer of stem rust resistance from Ae. tauschii to 
the cultivar Chinese Spring Alonso and Kimber (1984) determined that one back-
cross onto the F1 hybrids reinstated 92 % of the genotype of the recurrent parent.

Where there are constraints to screening of the Ae. tauschii accessions, screen-
ing the synthetic hexaploids derived from T. turgidum/Ae. tauschii is an alternative 
particularly where the durum parent is susceptible and thus the SH resistance is  
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attributed to the Ae. tauschii accession. Therefore, the accession can be selected 
from such synthetics for a trait and used in direct crosses.

Innovative Use of Resistance Pyramiding within “D” 
Genome Synthetics

Underutilized but with a high potential is the modus operandi is combining resis-
tances identified in two divergent D genome synthetics for a biotic stress that adds 
efficiency to pre-breeding/breeding. Divergent synthetics with resistance contribu-
tion from two accessions are first crossed and their F1’s superior resistance perfor-
mance than either parent detected. The F1 upon selfing generates a segregating F2 
population from which superior plants with resistance resembling the F1 and bet-
ter than either parent in the cross are selected. Representative tillers detached and 
doubled haploids produced, which upon further seed increase and screening will 
have value additive of the two synthetic parents in the DH derivatives (Fig. 7.2). In-
tegrated in this scheme could be the DNA profile of both SHs of the cross to ensure 
that DNA polymorphism is prevalent extended further to genes in either parent that 
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could be combined via marker technology. Hence in the offing exists a genetic re-
source area that could combine desired SHs for enhancing recombination breeding 
efficiency and for which the entire over a 1,000 D genome SH’s of the D genome 
and a couple hundred of the A genome await exploitation.

Additional Diversification from the A and B (S) Genomes

With production and maintenance protocols similar to those of the D genome diploid 
accession SH derivatives, uniqueness of the A and B (S) genome synthetics resides 
essentially in widening the variability resource that allows for novel allelic richness 
to become user friendly and provide the wheat crop additional genes that would  
be additive for resistance durability. The generated resource can not only enrich 

Fig. 7.2   Protocol for pyramiding resistance value of polymorphic synthetic hexaploid wheats for 
adding to breeding efficiency
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durum breeding programs but can also complement the efforts with bread wheat im-
provement akin to what pentaploid breeding (2n = 5x = 35, AABBD) efforts provide 
due to bread/durum crossings. This diversification comes from numerous acces-
sions of the diploid progenitors and is extended to cover the tetraploids not being 
extensively used in the current breeding programs. The allelic richness that becomes 
available to exploit does have a down side and needs voicing. In case where genetic 
diversity is distributed in the two ploidy level crops by combining and shuffling 
their genes, a fear exists that the spectrum of divergence may be reduced or elimi-
nated thus narrowing the base making germplasm derivatives of breeding programs 
prone to greater susceptibility occurrences.

The Practical Output Contribution of Novel Genomic 
Diversity

Apart from the conventional mode of wheat improvement is the newer trend where 
close relatives of the primary gene pool are exploited for improvement programs 
and categorized as interspecific breeding. The focus here is on the D genome that 
could easily be extended to the A genome diploids and novel AB tetraploids. Though 
direct crossing has greater precision this group’s emphasis has been on adding di-
versity to wheat across its three genomes for global handling of complex stresses. 
Hence bridge crossing has been favored and has contributed on the applied scale 
as evidenced from global varietal releases, registration of stocks and generation of 
pre-bred materials. Information has been captured from research conducted up to 
2004 in CIMMYT Mexico and reported in Annual Wheat Newsletter of 2004 with 
additional outputs from similar resource materials but environmentally removed to 
Islamabad, Pakistan from 2005 until the present having the group leader as the com-
mon lead person throughout.

The most significant practical usage of the D genome synthetics for biotic stress-
es to date have been for Fusarium head blight, Septoria leaf blotch, Cochliobolus 
spot blotch, karnal bunt, yellow, leaf and stem rust and powdery mildew. The strat-
egy has been to identify resistance first in the primary synthetic hexaploids and then 
exploit those in crosses onto elite wheat cultivars that need such improvement. Each 
of these biotic stresses are briefly discussed:

Fusarium�Head�Scab

The internationally recognized Sumai 3 has over the past few decades stood as the 
resistant standard for scab resistance and if the emphasis is on Type2 resistance 
then acceptance of up to 15 % infection is considered as resistant since the central 
inoculated florets get damaged, thus immunity is never present. The extensive test-
ing done in Mexico by the CIMMYT Wheat Wide Crossing program researchers 
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allowed interspecific and intergeneric cross combination products to define several 
entries that were similar to or better than Sumai 3; better in the sense that the in-
oculated florets in the middle of the spike did not damage the seed formation com-
pletely as happens with Sumai 3. Two groups with potent resistance were selected 
and one set is of the D genome synthetics (Zaharieva et al. 2003) and another that 
has pyramided resistance from a intergeneric combination combined with a primary 
synthetic. The former SH group formed a sub-set with 35 primaries and the latter 
a few sister lines with extended details to cover all 4 categories of evaluation from 
type 1 to 4 and then evaluated for multiple stresses (Mujeeb-Kazi et al. 2004)

Septoria�Leaf�Blotch

Septoria leaf blotch ( Bipolaris sorokiniana) limits wheat production in high rain-
fall areas across 10.4 × 106 hectares globally. Disease scoring is of a double-digit 
scale from 1-1 (resistant) to 9-9 (susceptible) and recorded over the three grain 
development stages (watery, milky, doughy). The D genome synthetics proved to 
be superior for their resistance levels with numerous giving scores between 1-1 and 
3-1 compared to the bread wheat cultivars that exhibited a susceptible trend with 
scores between 4-1 and 9-9. The identification of resistance in unique SH sources 
led breeders to exploit the germplasm in their wheat improvement efforts. The de-
rivatives allowed for selection of good agronomic plant progenies with high levels 
of resistance and also led to germplasm registrations (Mujeeb-Kazi et al. 2000, 
2001a). Similar resistance was also observed in the A genome synthetics (AAB-
BAA) where the score range of 1-1–2-1 in abundance were superior to the levels 
seen for their durum parents that had the best at 4-1 to poor forms reaching 8-9. 
Recently, Aggarwal et al. (2011) developed a SCAR marker for detection of spot 
blotch in leaf and field soil which is suggested to play a key role in effective man-
agement of this disease.

Cochliobolus�Spot�Blotch

Spot blotch affects wheat crops across several environments from Latin America, 
Asia and southeast Asia with Bangladesh being represented as a major disease loca-
tion. Its presence in the wheat crop cycle of 2009–2010 in lower Punjab of Pakistan 
was alarming causing a leading cultivar “Bhakkar” to be banned from further plant-
ing in that area. The screening site for this disease is the most severe in Mexico at 
the location “Poza Rica” where field screening under natural conditions allowed nu-
merous entries to be selected with resistance that included genetic stocks of various 
genomes and their advanced pre-bred derivatives. The best resistant lines selected 
were later called “Mayoor” and “Sabuf” leading to crop registration (Mujeeb-Kazi 
et al. 1996b). Subsequently when focus shifted to exploitation of close wheat pro-
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genitors, the D genome diversity at the basic primary level and for the advanced 
derivatives became significant for wheat breeding efforts. From the Mayoor and 
Sabuf test scores of 9-2–9-4 (9-9 susceptible) screening and a grain finish between 
1 and 3 (5 poor blemished grain) the derivatives and D genome stocks utilizing 
Ae. tauschii produced selected products that scored 9-2 with a grain finish of 1–2. 
These were far superior than Mayoor and Sabuf and utilized via gene pyramid-
ing options. Mayoor was hybridized with a synthetic combination TKSN1081/Ae. 
tauschii (222) to yield superior spot blotch resistant derivatives which also possess 
multiple disease resistance that covers scab (type 1–4), Septoria and karnal bunt. 
Both Mayoor and Sabuf have been further utilized in the development of molecular 
mapping populations with susceptible wheat Flycatcher and Ciano (Mujeeb-Kazi 
et al. 2004) as follows:

1. Mayoor//TKSN 1081/Ae tauschii (222)/3/Flycatcher with 171 doubled haploids
2. Sabuf/3/Bacanora//Ceta/Ae. tauschii(895)/4/Flycatcher with 125 doubled haploids
3. Sabuf/3/Bacanora//Ceta/Ae. tauschii(895)/4/Ciano with 102 doubled haploids.

The above populations are a conduit for molecular studies involving QTL mapping 
aspects and testing internationally.

Karnal�Bunt

This soil borne disease ( Neovossia indica) is a tremendous quarantine concern as 
once the soil is infected its occurrence is un-ending. The national level of accep-
tance of grain for consumption is set for 3 % infection. Grains shipped across na-
tions spread the disease if they carry it and thus caution is exercised to wash seed, 
treat it and stringently apply quarantine testing to provide seed disbursement that is 
virtually 0 % infectious. Disease free sites are used for seed increase as in Mexico 
by CIMMYT. However some countries are lax as to the seed been tested across 
wheat cultivation zones and danger prevails as to its spread. Diversity for resis-
tance exists and breeding efforts are preferred. Durum cultivars are generally field 
resistant with bread wheats open to high susceptibility levels. Search for resistant 
resources has been a priority for the past 2–3 decades. Since swift outputs have been 
sought the choice of the D genome has had a high priority and fortuitously the SH 
wheats derived from durum/Ae. tauschii combinations gave outputs where immu-
nity was abundant in the materials tested. Stringent testing under controlled testing 
made the field resistant durums susceptible with their SH products remaining im-
mune (Villareal et al. 1996); an unequivocal proof that D genome accessions carried 
the resistance. This led to the identification of user friendly developed stocks and 
their registration (Mujeeb-Kazi et al. 2001b). Further the SH wheats upon crossing 
to susceptible elite bread wheats gave derivatives that had resistance transferred 
into the selections (Mujeeb-Kazi et al. 2006a). The identification of QTLs under-
lying the resistance to karnal bunt has been carried out using disease screening in 
multiple-environment data and it was established that two major QTLs reside on 
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chromosomes 3BL and 2DS which ultimately reduced the disease spread (Sukh-
winder-Singh et al. 2012).

Rusts�(Leaf,�Stem�and�Yellow)

Of the total 215 million hectares area planted to bread and durum wheat globally 
about 44 % (95 million hectares) are in Asia. Sixty-nine million hectares are in Chi-
na, India and Pakistan. Most of the farmers are classed as “poor” or “small” farm-
ers and hence food security plus production stability are of significant importance. 
Stem rust has been under control since the green revolution times of the mid-sixties. 
Leaf rust (caused by Puccinia triticina) and yellow rust (caused by Puccinia strifor-
mis) however have the potential to affect production levels up to 60 and 43 million 
hectares respectively in Asia if susceptible cultivars were grown (Singh et al. 2004). 
Though fungicidal applications offer control their use is an added cost to farmers 
besides being unsafe environmentally. Hence growing resistant cultivars is the most 
effective and efficient control strategy (Rizwan et al. 2008). These major stresses 
have to be simultaneously addressed.

Rusts have remained very dynamic pathogens that have consistently existed as 
a major wheat-breeding objective globally. Currently major attention is given to 
stem rust and yellow rust is a close second that should not be a reason to look at 
leaf rust with complacency. The conventional picture details numerous genes for all 
three rusts in the Wheat Rust compilation (McIntosh et al. 2003). Genes have been 
identified from within conventional wheat cultivars and also from alien species. 
The resource of the D genome Ae. tauschii is of interest for this presentation and its 
contributions to yellow rust and stem rust shall be elucidated. An in depth coverage 
of leaf rust has been made by Dubin and Brennan (2009) in the IFPRI 2020 Vision 
Initiative Report hence it is not covered here.

Stripe or Yellow Rust

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is an important 
foliar disease of wheat. It occurs in wheat growing areas of temperate, moist and 
cool regions in all continents except Antarctica (Chen 2005). Its wider prevalence is 
a global threat to wheat production inflicting about 30–100 % grain losses besides 
affecting the quality of grain and forage (Chen 2005). In China, India and Paki-
stan; the top wheat producers in Asia where 59.3 million hectares are under wheat  
cultivation, stripe rust prevails in 24.8 million hectares i.e., ∼ 40 % of wheat 
grown area (Singh et al. 2004). The deployment of stripe rust resistant genes is the 
most effective method to protect wheat productivity and several stripe rust resistant 
genes have been deployed successfully in the past. So far 84 Yr genes have been 
designated in wheat out of which 36 genes have temporary designations (McIn-
tosh et al. in MacGenes 2010). Additionally, 52 QTLs have also been identified 
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conferring resistance to stripe rust in bread and durum wheats (McIntosh et al. in 
MacGenes 2010).

Utilization of genetic resistance and its incorporation in wheat demands genetic 
resources with enormous potential. These genetic resources have been categorized 
as wild relatives, elite cultivars and landraces (Bux et al. 2012a; Kazi et al. 2012; 
Arif et al. 2012). Wild progenitors of wheat possess abundant unutilized genetic 
diversity. There are several stripe rust resistance genes derived from wild relatives 
like Yr5 from T. spelta (Kema 1992), Yr8 from Ae. comosa (Riley et al. 1968), 
Yr9 from Secale cereale (Zeller 1973), Yr28 from Ae. tauschii (Singh et al. 1998), 
Yr37 from Ae. kotschyi (Marais et al. 2005), Yr38 from Ae. sharonensis (Marais 
et al. 2006), Yr40 from Ae. geniculata (Kuraparthy et al. 2007) and Yr42 from Ae. 
neglecta (Marias et al. 2009). Recently, Ren et al. (2012) tagged a Yr gene in syn-
thetic hexaploid line C110 and designated the gene as YrC110. Unfortunately, no 
resistance gene to stripe rust has been identified and transferred to wheat from the 
A-genome diploid progenitors T. monococcum and T. urartu.

Stem Rust

Stem rust ( Puccinia graminis tritici) resistance got high attention after the new race 
TTKSK (UG99) emerged in Uganda in 1999 (Pretorius et al. 2000). Stem rust per 
se has the potential to devastate wheat in all continents (Dubin and Brennan 2009; 
Hodson 2011) The subsequent spread of TTKSK in that region soon found it to 
attack wheat in Kenya, Ethiopia, Yemen reaching up to Iran throwing the SE Asia 
region in jeopardy as the migration trends could take the pathogen into Pakistan 
and beyond. CIMMYT wheat breeding program had been utilizing the D genome 
synthetics for various other attributes and advanced derivatives screened in Kenya 
gave encouraging resistant results. Selections were high yielding and also UG99 
resistant (Singh et al. 2011a, b) show promise and the danger from its spread some-
what reduced. Global alliances and funding have alleviated the hazard from this 
new race and also from its mutant forms. The threat of the race and its lineage has 
been substantiated (Singh et al. 2008).

In Pakistan exists a local race of stem rust that has shown virulence and is an 
added concern for that region. We have advocated that screening against this race 
should be a priority and from the resistant selections further evaluations be made in 
Kenya to ensure that final selections have resistance against both forms (i.e. UG99, 
mutants, and the local Pakistan race).

Resistance gene Sr2 provided stability to wheat varieties with the release of Ya-
qui 50 in Mexico and other Sr2 carrying wheats released since then stabilized the 
stem rust situation in Mexico and other countries where semi-dwarf wheats got 
adopted. When present alone Sr2 gene confers slow rusting that is inadequate under 
heavy disease pressure but does provide satisfactory resistance when it is in combi-
nation with other minor genes. Identifying/developing adapted resistant cultivars in 
a relatively short time and replacing the susceptible cultivars before rust migrates 
into our terrain is the strategy to mitigate potential losses. Although several genes 
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will provide resistance to the race UG99 the long-term strategy should focus on 
rebuilding the “Sr2 complex” to achieve long-term durability. The complex to be 
built will involve an assemblage of slow rusting gene Sr2 with other unknown ad-
ditive genes of similar nature (Singh et al. 2006). Addressing the target swiftly has 
been considered very crucial as migratory paths present a gloomy picture for wheat 
production should adequate resistance not be incorporated in regional wheat variet-
ies (Hodson et al. 2005, Reynolds and Borlaug 2006). To add to the swiftness would 
be efficient tools (Mujeeb-Kazi et al. 2006b; Randhawa et al. 2009) as an integral 
means to drive the gene transfers (Mago et al. 2005) and give allelic output stability 
(Mujeeb-Kazi 2003, 2005, 2006). The allelic diversity from unique genetic resourc-
es will also be a significant aid (Coghlan 2006; Rizwan et al. 2007; Simonite 2006).

Hence, the availability of broad-based genetic variability is a pre-requisite for 
having a sound and successful wheat improvement program. Genomic diversity is 
one unique option available and the maximum ease that permits exploitation of this 
resource comes from the D and A genome diploids of the primary Triticeae gene 
pool that have generated via pre-breeding the synthetic hexaploid germplasm (Mu-
jeeb-Kazi 2003, 2006). Synthetic hexaploids created by crossing Triticum turgidum 
with Aegilops tauschii tap the desirable genes present in the wild D genome dip-
loid species (Trethowan and Mujeeb-Kazi 2008; Trethowan and Van-Ginkel 2009). 
These synthetic hexaploid wheats have been used as an intermediary for transfer-
ring resistance genes from the wild D genome ancestor to cultivated wheat. As both 
synthetic hexaploid and bread wheat varieties have the same genomic constitution 
with perfect homology they can be readily inter-crossed.

Several varieties with UG99 and its lineage lines have been released in various 
countries based upon data gathered from Kenya and Ethiopia (Joshi et al. 2011) 
and as early as 2006 in CIMMYT a targeted program to increase yield and pos-
sess stem and yellow rust resistance got actively moving with its superior products 
obtained as reported by Singh et al. (2011b). It was encouraging to see that in the 
various promising high yielding and resistant lines identified a significant number 
had unique genetic resources in their pedigrees that included several of Ae. squar-
rosa (Syn. Ae. tauschii) and Thinopyrum acutum. Almost all possessed APR genes 
and others that contributed. The contribution to yield from alien resources has been 
well demonstrated by the varietal release in Sichuan, China of Chaunmai 42 that 
reported a yield enhancement of 22.7 % over the earlier cultivar Chaunmai 107 
(Yang et al. 2009).

In initial stages has been the contribution with basic research aspects where sig-
nificant contributions related to UG99 pathotypes resistance has been reported. This 
has come through screening of various accessions of the AA diploid progenitor 
wheats (Rouse and Jin 2011), the D genome Ae. tauschii accessions (Rouse et al. 
2011) and the tertiary gene pool diploid Th. bessarabicum promise (Xu et al. 2009). 
All the above have opened up avenues for global researchers to embark on vola-
tile “pre-breeding” programs where from the closely related forms of the AA and 
DD resource pay offs will be swifter while those from the EbEb genome transfers 
more time consuming due to the genetic distance of that diploid resource but still 
needed as translocations from this source may be additive to what has recently been 
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reported by Qi et al. (2011) with Dasypyrum villosum ( Sr52). A new dimension to 
the wild progenitor usage also exists in land race genetic diversity resources that 
are worthy of exploiting as done recently by Pretorius et al. (2012) for the South 
African land races where Sr2, Sr24 and Sr34 were detected via marker diagnostics.

A Major Anticipated Contribution of the Tertiary Gene Pool using Th. bessara-
bicum

Th. bessarabicum is a diploid salt tolerant grass species with the Eb genome 
and a preferred alien diversity resource extensively used by wide cross research-
ers since early 1980’s in England, USA and Mexico. It has been combined with T. 
aestivum cv Chinese Spring to yield an amphiploid that is an octoploid (2n = 8x = 56, 
AABBDDEbEb). All seven addition lines have since been produced from the initial 
five were studied by Zhang et al. 2002. The initial addition line set was shared 
with R.R-C Wang by A. Mujeeb-Kazi from CIMMYT, Mexico. Very recently the 
complete set of seven was developed by Kazi 2011. The germplasm provided to Xu 
by R.R-C Wang in USA has been screened by Xu et al. 2009 for evaluating each 
addition line (2n = 6x = 42 + 2 = 44; 1J {Eb} to 7 {Eb}) and the amphiploid for UG99 
resistance. Results have shown considerable promise for resistance to race TTKSK 
(known as UG99 or TTKS). Disease scores of 0, 1 and 2 were considered as low 
infection types and the data obtained by Xu et al. 2009 suggests that the amphiploid, 
and addition lines 1J, 2J, 6J and 7J (J = Eb) fell in the low infection category. Under-
way has been a program to introgress the value of resistance from the alien diploid 
species into wheat using the Ph gene manipulation strategy exploiting the recessive 
ph genetic stock developed by late ER Sears. This effort was initiated to promote 
wheat alien translocations from the amphiploid source (Mujeeb-Kazi 2006a) and 
also initiated in a targeted manner from each disomic addition line of Th. bessarabi-
cum (Kazi 2011). Several Robertsonian and subtle homologous translocations have 
been identified by C-banding and euploid progeny (2n = 6x = 42) recovered (Kazi 
2011). Additional resources studies by Xu et al. 2009 included Th. intermedium, Th. 
elongatum, Th. ponticum, Elynus recticetus, Ae. caudate and Ae. speltoides which 
suggest the value of this removed tertiary gene pool for harnessing diversity of 
value.

Powdery�Mildew

Wheat powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. Triti-
ci Em. Marchal ( Bgt) = Erysiphe graminis DC. Ex Merat f. sp. Tritici Em. Marchal, 
is one of the most devastating diseases of common wheat occurs in many areas, 
including China, Germany, Japan, Russia, United Kingdom, South and West Asia, 
North and East Africa, and the Southeastern United States. Yield losses range from 
13–34 % due to this disease (Griffey et al. 1993). To date, 41 loci with more than 
60 genes/alleles for resistance to powdery mildew have been identified and located 
on 18 different chromosomes in bread wheat. 29 resistance genes/alleles have been 
tagged with different types of molecular markers. The desirable type of resistance 
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to powdery mildew is called adult plant resistance (APR), which retards infection, 
growth and reproduction of the pathogen in adult plants but not in seedlings. It is 
also called “slow mildewing” and “partial resistance”. APR in wheat cultivar Knox 
and its derivatives remained effective against powdery mildew infection during the 
20 years in which these cultivars were grown commercially (Shaner 1973). Another 
cultivar, Massey, which is a derivative of Knox62, was developed and released in 
1981 (Starling et al. 1984) and still has effective powdery mildew resistance in adult 
plants. Common sources of Pm genes are different species within the primary, sec-
ondary and tertiary gene pools. Many of the resistance genes were introduced from 
ancestral and other wild species related to common wheat such as Triticum mono-
coccum, close relative of the A genome progenitor Triticum uratu, the B genome 
progenitor Aegilops speltoides, and the D genome progenitor Ae. Tauschii (Hsam 
and Zeller 2002). They reported a total of 22 resistance alleles at ten loci in com-
mon wheat indicating that Pm genes may still be found in cultivated wheat. Earlier 
studies by Mains (1933) identified that the wild wheat relatives T. monococcum 
(AA genomes), T. dicoccum (AABB), and T. timopheevi (AAGG) are the sources 
of resistance genes to powdery mildew as early as 1933. Screening of old wheat 
cultivars, landraces and related species for resistance to powdery mildew started 
in the 1930’s (Hsam and Zeller 2002). Pm genes were identified in many different, 
widely distributed wheat cultivars and landraces. Pm5a and Pm5b, followed by 
Pm2, Pm6, and Pm8 are the most common in Europe, Asia and Mediterranean cul-
tivars. Pm3a is commonly found in wheat cultivars grown in diverse geographical 
locations including the Balkans, Japan, China and the US. Pm3c was identified in 
Germany, while Pm3d was found in several European countries and China. Pm4a 
has been used in commercial wheat cultivars in Germany and China. A number 
of commercially grown cultivars have been found to have Pm gene combinations 
(Heun and Fischbeck 1987). The best known cultivars are Normandie with Pm1, 
Pm2, and Pm9, Maris Huntsman with Pm2 and Pm6, Kronjuvel with Pm4b and 
Pm8, and 623/65 with Pm4b and Pm8 (Liu et al. 1999). Gene transfer from species 
within the primary gene pool of Triticum with homologous chromosomes to wheat 
can be done directly by hybridization, recombination and backcrossing.

Ae. tauschii has proved to be an important source of resistance against pow-
dery mildew. Earlier Gill et al. (1986) screened 60 Ae. tauschii accessions to four 
different Bgt isolates and identified 11 highly resistant and 20 moderately resis-
tant accessions. Hsam and Zeller (2002) transferred two resistance genes, Pm2 
and Pm19, from Ae. tauschii to common wheat. Two germplasm lines, NC96B-
GTD3 and NC97BGTD7, were developed which carries resistance genes Pm34 
and Pm35 against PM (Murphy et al. 1998; Mirinda et al. 2006, 2007). Similarly, 
Pm25 has been transferred from diploid T. monococcum to common wheat germ-
plasm NC96BGTA5 (Shi et al. 1998; Murphy et al. 1998). In tetraploid wild emmer 
wheat ( T. dicoccoides), seven PM resistance genes viz. Pm16, Pm26, Pm3, Pm31, 
Pm36, Pm41 and pm42 have been identified and transferred to wheat (Rong et al. 
2000; Liu et al. 2002; Hsam and Zeller 2002; Hua et al. 2009). Recently, Rafiq et al. 
(2012) identified several A- ( T. monococcum; T. urartu) and S-genome ( Ae. speltoi-

A. G. Kazi et al.



257

des) derived amphiploids resistant to PM. Both diploid and tetraploid parental lines 
were proposed to carry resistance genes against PM.

The other resistance sources against powdery mildew include Pm12 (6B) and 
Pm32 (1B) from Ae. speltoides (Jia 1996; Hsam et al. 2003), Pm29 (7D) from Ae. 
geniculata (Zeller et al. 2002), Pm34 and Pm35 (5DL) from Ae. tauschii (Miranda 
et al. 2006, 2007; Qiu et al. 2006), Pm39 from Ae. umbellulata (Zhu et al. 2006), 
and some undesignated genes from Ae. longissima, Ae. searsii, Ae. umbellulata 
(Buloichik et al. 2008), Ae. comosa (Bennett 1984) and Ae sharonesis (Olivera 
et al. 2007). From T. monococcum, Pm25 and three temporarily designated genes, 
Pm2026, Mlm3033 and Mlm80, have been introduced in wheat (McIntosh et al. 
2010).

Molecular Diagnosis for Host Resistance

So far, six genes providing resistance against diseases in wheat have been suc-
cessfully cloned (Liu et al. 2012). Diagnostic markers having ability to capture 
allelic variation have been developed for a major powdery mildew resistance lo-
cus, Pm3, and Lr34/Yr18/Pm38 locus providing broad spectrum resistance against 
leaf rust, stripe rust and powdery mildew (Tommasini et al. 2006; Lagudah et al. 
2009; Miedner et al. 2012). The cloning followed by sequencing of the adjacent un-
translated regions of Pm3 resistance alleles helped in development of seven allele-
specific molecular markers which successfully discriminated allelic variants at the 
Pm3 locus (Tommasini et al. 2006). In multiple studies, these markers identified 
desirable alleles in the US and European wheat cultivars (Peusha et al. 2008; Chen 
et al. 2009; Lillemo et al. 2010; Mohler et al. 2011). However, their use for identi-
fication of alleles in Chinese wheats is restricted due to the susceptibility of the all 
seven alleles in China. The major locus Lr34/Yr18/Pm38 provides durable resis-
tance against many diseases and its usage is encouraged worldwide. The functional 
markers developed by Lagudah et al. (2009) are very simple to apply due to their 
easy resolution on agarose gels. This marker provided positive association between 
stripe rust and marker data on a wide array of wheat lines developed at CIMMYT 
(Wu et al. 2010). In another study on Chinese landraces, this marker showed the 
presence of Lr34/Yr18/ Pm38 allele in 82.1 % genotypes. However, 25 % of these 
genotypes were found susceptible to stripe rust in field (Wu et al. 2010). The sus-
ceptibility of landraces with positive Lr34/Yr18/ Pm38 allele is proposed due to 
the presence of inhibitor genes or absence of a functional gene that is essential in 
the biosynthetic pathway for the expression of Lr34/Yr18/Pm38. For more than a 
decade, the T1BL.1RS translocation has been widely used in global wheat breed-
ing programs. Several agronomic features and resistance to diseases are associated 
with this translocation, although its resistances to diseases have been overcome in 
many locations. Therefore, it is important to identify the T1BL.1RS translocation 
in wheat breeding. Functional markers based on the rye secalin gene on 1RS were 
successfully applied in breeding (Liu et al. 2008). Another important stripe rust 
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resistance gene, Yr17 located on chromosome 2NS of T. ventricosum Tausch. has 
been translocated to the short arm of bread wheat chromosome 2AS (Helguera et al. 
2003), and this chromosomal segment also conferred resistance to leaf rust ( Lr37) 
and stem rust (Sr38). The Lr19 gene, originated from decaploid Th. ponticum, was 
transferred into durum wheat, and widely conferring resistance to leaf rust in wheat 
(Gennaro et al. 2009). Ae. tauschii Cosson was the donor of the Lr21 that is a du-
rable and highly effective leaf rust resistance gene, and it has been incorporated into 
wheat cultivar and is available for breeding (Talbert et al. 1994). The leaf rust resis-
tance gene Lr47 confers resistance to a wide spectrum of leaf rust strains. This gene 
was recently transferred from chromosome 7S of T. speltoides Tausch to chromo-
some 7A of common wheat (Helguera et al. 2000). Leaf rust resistance gene Lr51, 
located within a segment of T. speltoides Tausch chromosome 1S, was translocated 
to the long arm of chromosome 1B of bread wheat, which is resistant to the cur-
rent predominant races in USA (Helguera et al. 2005). The gene-specific markers 
Xucw108 and Xuhw89 for Gpc-B1 and Yr36 originated from chromosome 6BS of 
T. turgidum ssp. dicoccoides. They were identified and validated in a collection of 
117 cultivated tetraploid and hexaploid wheat germplasm (Uauy et al. 2006).

Molecular Basis of Disease Resistance

It is important to understand the molecular mechanism of disease resistance to 
devise sustainable control (Bux et al. 2012b). The earlier findings of Flor (1956) 
proposing gene-for-gene hypothesis provided basis for predicting the molecular ba-
sis of disease resistance. The molecular interpretation of Flor’s findings, avirulent 
( Avr) genes encode signal transduction that is perceived by the products of plant R 
genes, are regarded as foundation concept in disease resistance. The R-gene/aviru-
lence factor complex is thought to instigate a series of signaling cascades leading 
to disease resistance. Rapid oxidative bursts, cell wall strengthening, induction of 
defense gene expression and rapid cell death at the site of infection are the down-
stream cellular events that confer resistance state (Morel and Dangl 1997). In more 
elaborated form, the direct or indirect recognition of pathogen by host ‘R’ genes 
lead to a resistance response known as effector-triggered immunity (ETI), which 
includes localized programmed cell death (PCD), known as the hypersensitive re-
sponse (HR) which ultimately restrict pathogen growth (Dangl et al. 1996). R gene 
proteins serve to recognize pathogen effectors either through direct interaction or as 
guards for target molecules and are known to confer resistance to bacteria, viruses, 
nematodes, oomycetes, insects, and biotrophic fungi (Martin et al. 2003). Genes for 
resistance, their protein products, and underlying mechanism are being investigated 
(Hammond-Kosack and Jones 1996). Sufficient progress has been made in these 
aspects that will facilitate developing effective control strategies.

Most of the R genes cloned so far, revealed a nucleotide-binding site (NBS) 
and a leucine-rich-repeat (LRR) region. These are the most abundant types in 
plant species (Meyers et al. 1998). These plant R genes encode proteins that have 
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a putative amino-terminal signaling domain, a nucleotide binding site and a series 
of carboxy-terminal leucine repeats (Meyers et al. 2005). Two different types of 
NBS-LRR proteins have been reported. One major class has an amino-terminal 
TIR (Toll/interleukin receptor) domain also called TIR-NBS-LRR or TNL proteins. 
Other class includes the genes which encode an amino-terminal coiled-coiled motif 
(CC-NBS-LRR or CNL proteins). The mechanism of resistance induced by Pm3a 
and its other allelic forms in wheat (Feng et al. 2010) and by Pb1 against rice blast 
clearly exemplifies that the single amino acid residue at the final position of the ki-
nase-2 motif is the characteristic of coiled-coil (CC) motif while the trytophan (W) 
and aspartic acid (D) are the characteristics of TIR-type proteins. The details of the 
molecular functions of these protein domains and their interacting partners are still 
being established. However, the consistent identification of this class of proteins 
across diverse plant species demonstrates that the NBS-LRR genes are a pillar of 
plant defense against pathogen. The majority of the R genes in Arabidopsis are TNL 
genes; however they have not yet been reported in cereals. In rice, about 1,500 NBS 
coding sequences were analyzed and not a single sequence was known to have TIR 
binding domain (Zhou et al. 2004).Three leaf rust resistance genes, Lr1, Lr10, Lr21 
and one powdery mildew resistance gene, Pmb3b, are known to have CNL type 
domain (Feuillet et al. 2003; Huang et al. 2003; Yahiaoui et al. 2004).

Conclusions and Future Prospects

Three areas of prevailing concern that have received enormous attention are global 
warming, climate change and food security. Associated with these has been popula-
tion growth with futuristic projections made first at 2025 (8.2 billion) and now for 
2050 at 9.2 billion expected to touch 10 billion swiftly by 2055. The three catchy 
buzz words above have generated many discussion fora, created a lot of debate and 
delivered numerous “smart” ideas as the outcome of various interactive sessions. 
However, at the end of the day if we look at national “wheat” based food security 
it is doubtful if we are better off now in 2012 than we were a few years before. Our 
productivity is not that earth shaking, average national yields in several countries 
fluctuate yearly and the yield gap remains as significant as before. The stress con-
straints are more complex and the resolve to adopt a way forward for achieving 
promising returns rather feeble. Have we addressed these constraints and can the 
outputs be quantified? The trend is negative or on the conservative side “STATIC” 
as to progress. The umbrella cover that integrates research/production activities is 
non-existent and resources are far from being neatly agglomerated. Taking wheat 
in Pakistan as an example we still hover around 25 million tons per acre and mean 
yields are not beyond 25–30 maunds. The per hectare figure is estimated at 2.6 t. 
Stress constraints still dominate the scene and one wonders if solutions have been 
found to allow us to see durability with high value. Problems galore relate to the 
three rusts with stem rust the one abused most for personal projection and profes-
sional clout but done with questionable structural quality science. Then come other 
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attributes like Karnal bunt. Minor diseases like mildew, spot blotch, BYDV, aphids, 
loose smut are additive and the environmental limitations imposed by heat, water 
and salinity more complex.

Increasing yield per se must receive special attention as we project forward and 
for that a holistic strategy is vital that embraces both biotic/abiotic stresses com-
plimented by exploiting targeted yield traits. Details to directly increase yield are 
essential to have and it is prudent to be aware how we can get more per unit area 
through focused research strategies. Crucial will be “food” security that emanates 
from gene and varietal deployment. The tools are there in enormous untapped close 
and distant genomic diversity mines, large spikes, 1,000 grain weight, photosyn-
thetic efficiency, root profile, various phenology parameters and efficient technolo-
gies that should be exploited for practical benefit. Advocates of food security must 
set targets stringently and implement. The vision 2050 is excellent if we prepare 
ourselves accordingly to combat those challenges by on ground outputs that capture 
the wide expanses of allele rich diversity resources. Paramount would be holistic 
strategies that maintain good multidisciplinary balance, embrace integration, ex-
ploit the conventional resources, selectively tap the high technology inputs, deliver 
products that can redefine the output limits that currently exist and have built in du-
rability that can sustain the produce within the national boundaries and also protect 
us from the vagrancies of pathogenic migrations via environmental means.

Turbulent environmental scenarios will necessitate researchers to harness genes 
from close and distant species resources distributed within the three Triticeae gene 
pools and utilize efficient technologies that can add efficiency to delivering varietal 
output products in a swift manner. Efforts will rely more on the primary gene pool 
species and accessions but not refrain to exploit those forms that are removed and 
placed in the tertiary pool. Multiple stresses will be the order of research focus ad-
dressed through multidisciplinary research protocols mediated by novel techniques 
that add efficiency to breeding like limited backcrossing, selected modified bulk, 
doubled haploidy for rapid homozygosity at earlier segregating generations (prefer-
ably F3), molecular diagnostics (marker assisted selection, gene pyramiding, choice 
of linked genes and markers) that are allele specific correlated with agronomic prac-
tices that maximize production targets that fall under crop management.

True that research is the major factor of providing food security but we can safe-
ly say that management can provide faster returns if its cohesive structure is handled 
astutely to maximize production via “IMPLEMENTATION” of major contributing 
strategies. Objectivity has to guide progress with “creativity” being the pivotal word 
in which “diversity” takes the lead for biotic stresses across all wheat genomic 
levels. Integration of all available technologies shall be essential to cope with the 
projected population increases that will be dictated by availability of practical out-
puts (varieties) that have built in stability for agricultural sustainability on farmers 
fields by agglomeration of genes that offer disease resistance durability that can 
tackle the volatile dynamic nature of the pathogenic interplay as well as possessing 
abiotic tolerance for traits that have a static system and thus generally have a longer 
performance tolerance life. For biotic stresses and use of genomic resources for im-
provement the diversity combination permutations are excessive and offer abundant 
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options for stabilizing wheat varietal profiles for continued wheat global productiv-
ity. The reliance on conventionally available variation within wheat cultivars across 
its spring, winter and facultative habits will persist, but the course ahead for adding 
unique variations will increase. The forms of closer D genome affinity or homology 
receiving greater attention currently (Ogbonnaya et al. 2013) shall be complimented 
by a significant shift that shall exploit the other two genomes and the tertiary gene 
pool species (Mujeeb-Kazi et al. 2008b). With all pre-breeding and breeding efforts 
working in tandem across multiple disciplines aided by molecular diagnostics and 
efficient crop production technologies that fit the “holistic” production strategies 
we end this presentation optimistically by projecting that the approximately 2 % an-
nual increase required to feed the growing populace is within our grasp.
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Abstract Crops are indispensible for the existence of humans and animals and the 
commercial importance comes under threat when they are attacked and infected 
by the pathogens. The crops are constantly under threat and are exposed to various 
pathogens. Some pathogens are host specific and thus can infect the healthy plant 
and some of them are opportunists, which gain entry from the wounding site. The 
most important and devastating among the pathogens are the fungal pathogens and 
important amongst these is Fusarium sp. This genus contains many species attack-
ing diversity of agricultural crops. These are pathogenic to plants and also produce 
toxins, which affect the animals and humans consuming the plants. This review 
focuses on the pathogenesis of Fusarium sp. causing crop diseases and understand-
ing the host-pathogen interactions including plant defense responses. This article 
perceives the potential of transcriptomics in association between two-species. The 
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identified association between species (crops and microbes ( Fusarium sp.) can 
reveal processes which can be exploited beneficially for applications in biotechnol-
ogy. Specifically, we address the question how the new knowledge gained from 
transcriptomic approaches and analyses of interactions between plants and disease 
causing microbes ( Fusarium) can be exploited in ways that will ultimately lead to 
crop improvement by development of crop cultivars that are productive under mul-
tiple environmental pressures.

Introduction

The genus Fusarium consists of species that attack almost all food crops. Out of 
101 most economically important plants, at least 81 are hosts of Fusarium sp. 
(Table 8.1) (Nayaka et al. 2011). The Fusarium spp are responsible for various 
diseases among live-stocks and humans and these diseases are ascribed to myco-
toxins produced by these fungi belong to secondary metabolites (Table 8.2). The 
diseases caused by Fusarium spp have had several major economic impacts around 
the world in time and resulted in loss of billions of dollars. So, due to their economic 
importance Fusarium spp are being used as models for various biological and mor-
phological studies. Plant pathogenic fungi show variability as they are known to 
contain a considerable number of sub-species/formae specialis or strains, which are 
almost morphologically identical but they may have quite different infection capac-
ity on their hosts (Nayaka et al. 2011). This variability in pathogenic populations 
results in variation in host resistance (Leilani et al. 2006). Thus, degree of varia-
tions among plant pathogens are must for understanding the pathogen as well as 
the disease they cause. The amount of pathogen variation may have a direct impact 
on its biological activity and its role in the environment (Zabalgogeazcoa 2008). 
The variations may occur at any stage of growth leading to changes in morphology 
that determine its host range, inoculum potential, infectivity, and virulence (Parker 
and Gregory 2004). Therefore, it is relevant to monitor pathogen populations for 
shift in virulence with changes in environmental factors and host cultivar(s). Hence, 
the variability studies within and between pathogenic populations from different 
geographical regions is essential for selection of resistant genotypes in breeding 
programs that aim at developing resistant varieties.

Crop Productivity for Food Security

The Environment has a role in limiting the plant productivity due to biotic and abi-
otic stresses, e.g. most or all the existing crops can be significantly affected by dis-
eases and have reduced productivity in terms of yield and quality. The prevention of 
diseases by conventional breeding to yield resistant crops is most effective (Akhond 
and Machray 2009; Gust et al. 2010) and is said to be the environmentally friendly 
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and responsible approach to disease prevention as opposed to the indiscriminate 
use of pesticides. The other environmentally sensible approach is to understand 
and utilize the biotic and abiotic environment of the plant and develop sustainable 
disease management strategies. However, the development of management strate-
gies requires in-depth knowledge and understanding of the plant-microbe intimate 
interactions with one another in extremely complex environment leading to differ-
ent physiological changes within the plant. Further, more information generation 
and knowledge is required to understand the resource utilization within the plant 
upon the exposure to the pathogens. The resource management upon exposure to 
disease in terms of prioritizing themselves for utilizing in defense mechanisms in-
stead of growth and development to develop the sustainable strategies to improve 
upon health of plants and thus agriculture (Schenk et al. 2012).

Table 8.1   Important Fusarium diseases in major food crops
Pathogen Host plant Disease
Fusarium spp. Barley Scab/head blight
Fusarium graminearum
Fusarium avenaceum
Fusarium culmorum
Fusarium nivale
Fusarium verticillioides Corn Kernel, root and stalk rot, seed rot, seedling blight
Fusarium avenaceum
Fusarium subglutinans
Fusarium graminearum
Fusarium culmorum
Fusarium oxysporum
Fusarium poae
Fusarium solani
Fusarium pallidoroseum
Fusarium verticillioides Millets Head mold/top rot
Fusarium spp.
Fusarium verticillioides Paddy Root rots/seedling blight/bakanae disease
Fusarium fujikuroi
Fusarium proliferatum
Fusarium spp.
Fusarium verticillioides Sorghum Fusarium head blight, root and stalk rot
Fusarium spp.
Fusarium subglutinans
Fusarium spp. Wheat Crown rot/foot rot, seedling blight, root rot
Fusarium 
pseudograminearum
Fusarium graminearum
Fusarium avenaceum
Fusarium culmorum
Fungal names according to http://www.indexfungorum.org/
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Plant-Fungi Interaction

The wilting caused by Fusarium is result of various factors guided by host-pathogen 
interaction such as recognition of pathogen by plant root, attachment of pathogen 
by differentiated structure, penetration of the pathogen to have access to vascular 
tissue, adaptation of pathogen within the plant system, the proliferation of fungal 
components (hyphae and microconidia) in xylem vessels and lastly the secretion 
by the pathogen (proteins and toxins) (Inoue et al. 2002; Di Pietro et al. 2003). The 
primary defense response by the host includes the production of gums, tyloses and 
gels (Beckman 1987). Thus, there is the need for understanding host-pathogen asso-
ciation in terms of infection process (at molecular level), which would provide the 
information about the mechanisms of this interaction. The study of this interaction 
will unravel the genes involved in different signaling cascades, which would help 
us in identifying genes involved in resistance as well as susceptibility. This kind of 
association ( Fusarium-Tomato) study has been recently reported as a model system 
for infection process (resistance and susceptibililty) at molecular level (Takken and 
Rep 2010). Further, some processes related to mechanisms of infection resistance 
have been determined by molecular techniques such as gene silencing or insertion 
mutagenesis (Inoue et al. 2002; Di Pietro et al. 2003; Michielse 2009). The knowl-
edge about the infection resistance or susceptibility in agricultural crops would help 
us in better understanding about the development of strategies in controlling the 
disease factors such as infection responses and progression. For example, mRNA 
changes in association (host-pathogen) during the infection process could give in-
formation about the resistance and susceptibility processes (Wise et al. 2007).

Use of DNA Based Markers

The advances and development in molecular biology techniques and its applications 
to genetic analysis has led to better understanding in terms of knowledge which has 
led to elucidation of behavior and structure of fungal genome. For example, these 
advances have helped the fungal taxonomists in identification of isolates more rap-
idly and for determining virulence/toxicity of fungal strains. The advances in mo-
lecular biology led to distinction between species (closely related) having little or no 
similarity at the morphological level (Wulff et al. 2010) or strain identification with-
in species (Chandra et al. 2010). And thus by looking for the variation within DNA 
sequences, the molecular biology provides the base for precise identification within 
and between the species. The Polymerase chain reaction (PCR) based assays are be-
ing employed widely used for identification, diagnosis and characterization of patho-
gens ( Fusarium species) (Doohan et al. 1998). Various PCR based markers are in use 
(Nayaka et al. 2011), which has led to the understanding of genetic diversity and 
establishing phylogeny among different Fusarium species. The PCR based methods 
which have been used to generate sequence information include RFLP, AFLP, 
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RAPD, SCARs, RT-PCR, SNPs, microarrays, pyrosequencing, DNA barcoding and 
many more and this has led to gene function determination in fungi (Nayaka et al. 
2011). The DNA microarrays and next-generation sequencing techniques have 
helped greatly in genome-wide expression, but in these cases known collection of 
transcript sequences must be readily available (Roh et al. 2010). However, in com-
parison with above tools, the method of choice for gene discovery (identifying tran-
scripts) in plant-microbe interaction remains to be cDNA-AFLP (Vuylsteke et al. 
2007; Gupta et al. 2009). The cDNA-AFLP technique has been used to study the 
interaction between the Fusarium pathogens and the plant hosts, e.g. Fusarium in-
teraction with host Cucumis melo through the analysis of differentially expressed 
genes in the vascular colonization by using the approach of cDNA-AFLP (Szafran-
ska et al. 2008; Sestili et al. 2011). In the species other than model species the utili-
zation of cDNA-AFLP techniques for expression studies is appropriate as it helps in 
identification of genes in two species during infection and is also important for 
identifying factors of pathogenesis and virulence and thus would help in developing 
strategies in controlled manner (Durrant et al. 2000; Guo et al. 2006; Polesani et al. 
2008; Wang et al. 2009; Gupta et al. 2010; Zvirin et al. 2010). Under the evolution-
ary pressure the species of Fusarium have modified for better adaptability and thus 
have colonized in differing ecological systems (Desjardins et al. 1993). These spe-
cies produce a variety of compounds (bioactive secondary metabolites), which are 
show toxicity towards plants (Munkvold et al. 1997). These toxins also find their 
way to animals and humans through the plant products consumed as fodder or food. 
The Fusaria have different strains belonging to many groups which are identical 
morphologically and thus are difficult to study such as endophytes (Bacon and Hin-
ton 1996), saprophytes (Fracchia et al. 2000), and plant pathogens (Chandra et al. 
2008) and thus is the reason for difficulty in establishing taxonomy systems for 
Fusarium species. So, it is required to utilize molecular based methods in differen-
tiating taxa. In this context, in recent times the application of phylogenetic species 
concept to Fusarium systematic has helped in resolving the difficulties in taxono-
my. This concept requires several characters such as morphology of species cross-
ing between species and molecular markers in species for it to be statistically pow-
erful (Yli-Mattila et al. 2002). However, the molecular markers (DNA sequence 
data) are preferred because they provide relevant characters. The molecular data in 
combination with other morphological characters within Fusarium have helped to 
differentiate species, which were otherwise placed differently (Zeller et al. 2003). It 
has been noted, based on the DNA sequences that often the strains of Fusarium 
placed in a forma specialis differ significantly and these need not be monophyletic 
in origin (Baayen et al. 2000). Inferring from this the traits of plant pathogenicity, 
which have high economic importance, need not to have characters that are evolu-
tionary conserved and thus is part in Fusarium species description. Since the arrival 
of DNA sequencing at the scene it has become an important criterion in diagnostics 
and distinguishing species. The most commonly used sequences to distinguish Fu-
sarium sp. are calmodulin (O’Donnell et al. 2000), TEF (translocation elongation 
factor 1-α) (Wulff et al. 2010), ITS1 and ITS2 (internally transcribed spacer regions 
in the ribosomal repeat region) (O’Donnell and Cigelnik 1997), tub2 (β-tubulin) 
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(O’Donnell et al. 1998), and IGS (intergenic spacer region) (Yli-Mattila and Gag-
kaeva 2010). However, it has been seen that all these sequences do not equally work 
well with all species (Nayaka et al. 2011). Further, the proteins such as histone H3, 
calmodulin, and Tri101 are also used for distinction of species besides (Mule et al. 
2005). In short, it is difficult to distinguish and identify Fusarium sp. accurately 
based on old traditional methods because of their morphological similarity and ge-
netic variation. Hence, for the accurate identification and characterization of species 
DNA-based tools are required. In this direction, SSRs (single sequence repeats) of 
the EST databases shall provide a way forward in identification and characteriza-
tion of Fusarium sp. These sequences are ubiquitously transcribed which are co-
dominant and locus-specific, and also are highly polymorphic, often multi-allelic 
and finally SSRs are transferrable among species within genera (Power et al. 1996; 
Morgante et al. 2002; Varshney et al. 2005a, b). Various EST-SSR markers devel-
oped from EST databases are used for genotyping in several species of flowering 
plants (Varshney et al. 2005a) and these have been developed in many plant species 
like rice (Temnykh et al. 2001) wheat (Eujayl et al. 2002) rye (Hackauf and Wehling 
2002) Cotton (Han et al. 2006) Grape (Cordeiro et al. 2001). These EST-SSR mark-
ers are gene-tagged associated with the expressed gene and are also linked with al-
leles of quantitative and qualitative trait locus (QTLs) (Torben et al. 2007). So far, 
many genomes have been sequenced and thus to the comparative genomics has 
become an important discipline which helps to extend the information from one 
species (model) to another unrelated species or between related species having a 
much complex genome (Gale and Davos 1998). The EST-SSR markers in related 
species show high level of transferability in comparison to anonymous DNA mark-
ers because they are more conserved and thus these markers are useful for com-
parative genomics, comparative mapping and evolutionary studies across species 
(Cordeiro et al. 2001; Thiel et al. 2003; Eujayl et al. 2004; Scott et al. 2000; Saha 
et al. 2004). However, the degree of polymorphism may be limited due to conserved 
nature of EST-SSRs (Torben et al. 2007) as the transferability across species of the 
SSR loci within genus is reported above 50 % (Thiel et al. 2003; Eujayl et al. 2004; 
Peakall et al. 1998; Gaitán-Solís et al. 2002; Dirlewanger et al. 2002) and the trans-
ferability across genera of SSRs loci is reported to be poor (Thiel et al. 2003; Peak-
all et al. 1998; White and Powell 1997; Roa et al. 2000). Amongst the molecular 
markers the SSRs are widely used for molecular mapping, selection, assessment of 
genetic diversity, protection of varieties and thus helping to link genotypic and phe-
notypic variation (Powell et al. 1996; Gupta and Varshney 2000; Varshney et al. 
2005a). The SSRs are comprised of tandemly repeated sequences having mono-, 
di-, tri-, tetra-, penta-, or hexa- nucleotide units (Ellegren 2004) found in coding and 
non-coding regions in prokaryotic and eukaryotic DNA.

The presence of various characteristics within SSRs such as relative abundance, 
multi-allelic nature, simple detection, high reproducibility, co-dominant inheritance, 
multi-allelic nature, and extensive genome coverage make them the ideal molecular 
markers (Powell et al. 1996). However, the SSRs are known to experience high rate 
of mutations (reversible length-altering) by replication slippage (transient disso-
ciation of replicating DNA) and unequal crossing over (misaligned reassociation), 
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which leads to variability in number of SSR motifs at a locus (Levinson and  
Gutman 1987; Richards and Sutherland 1992). SSRs show highest variability among 
DNA sequences within the genome (Weber 1990), and the rate of mutation and type 
mainly depends upon the number of repeat motifs (Wierdl et al. 1997). However,
the rates of mutations differ among loci, among alleles, and between species  
(Ellegren 2000). Among the earlier studies the anonymous DNA fragments (isolated
from genomic libraries) were utilized for the development of SSR markers. How-
ever, recently SSRs are being developed computationally from the sequencing data 
generated from large-scale EST sequencing projects. The EST-SSR markers are 
superior and informative than anonymous DNA markers because they are gene-
tagged and are associated with the expressed gene and hence linked to quantitative 
and qualitative trait loci (QTLs) (Andersen and Lübberstedt 2003). The Fusarium 
genomes have been conserved and are well documented, and to compare genetic 
information from model to related species comparative genomics has become nec-
essary. In short, EST-SSRs derived from expressed genes are conserved with higher 
transferability to related species in comparison to anonymous DNA markers, thus, 
are very useful as strong markers for evolutionary studies comparative genomics 
and comparative mapping across species (Torben 2007).

Fusarium Databases

The comparative analysis among the fungal species is facilitated by the Fusarium 
database which gives accesses to various sequenced genomes of Fusarium simul-
taneously. The three most important Fusarium spp, which have been studied exten-
sively due to their devastating impact on crops, are F. oxysporum, F. verticillioides 
and F. graminearum. Over the last decade there has been enormous advancement 
in genomic technology and sequencing of various species has been completed and 
thus there arose the need for comparative projects. Thus, the Fusarium Compara-
tive project (http://www.broad.mit.edu/annotation/genome/fusarium_group/Multi-
Home.html) is one such effort which compared the above three species. This project 
improved gene annotations and identifying non-coding elements. As these species 
are biologically distinct evolutionary studies were done among these above spe-
cies and it was found that F. oxysporum and F. verticillioides genomes have di-
verged from F. graminearum, and thus the comparative of these offers a platform 
for interaction studies in plant-fungi (pathogenicity, virulence factors and evolu-
tion). The comparative genomics among these have highlighted the presence of 
lineage-specific chromosomes comprising the transposable elements (TEs) and en-
coding pathogenicity related (PR) genes. These projects have also helped in explor-
ing the genetic composition of these chromosomes among the strains of the above 
Fusarium species. The F. oxysporum spp. are ubiquitous plant and soil inhabiting 
microbes causing the wilt and root rot diseases in over 120 plant species (Michielse 
and Rep 2009). It has been reported that many of the strains don’t show apparent 
symptoms on the plant and can even protect them from subsequent infections (Al-
abouvette et al. 2009). Further, some strains have also been identified as pathogenic 

R. ul Rehman et al.



2778 Variability in Fusarium species Causing Wilt Disease in Crops …

to humans causing localized or disseminated infections (O’Donnell et al. 2004). 
The aims and objectives of comparative genomes project has been to make genome 
sequence data for strains available along with the host specificities. The first among 
strains of F. oxysporum spp was made available in 2007 which caused tomato wilt 
and on comparison with F. graminearum and F. verticillioides genomes, and it 
was discovered that the mobile supernumerary chromosomes contained genes for 
host specific infection and disease (Ma et al. 2010). Subsequently, 11 more strains
 of F. oxysporum have been sequenced out of which two infected tomato (Gale et al.
 2003; Rosewich et al. 1999). The other two of the sequenced strains showed speci-
ficity towards crucifers (cabbage yellow disease, radish wilt), Arabidopsis (Diener 
and Ausubel 2005) and the other sequenced strain caused wilt of banana, melon, 
cotton and pea (Fourie et al. 2011). Some Fusarium oxysporum strains causing 
humans diseases such as strains from human blood (O’Donnell et al. 2004) have 
been shown to cause necrotic diseases in immune-competent individuals such as 
outbreak of keratitis in contact lens users (Chang et al. 2006) and may also be 
disseminating infections in neutropenic patients (Boutati and Anaissie 1997). Fur-
thermore, a strain of Fusarium oxysporum has been sequenced which is known to 
colonize host roots and shown to be biotic component for wilt disease suppression 
(Fravel et al. 2003). Another important species among Fusarium which is distrib-
uted worldwide is Fusarium graminearum which causes head blight of wheat and 
barley (O’Donnell et al. 2000, 2004) and it had an economic losses worth of ap-
proximately 3 billion dollars in 1990s to U.S. agriculture (McMullen et al. 1997; 
Windels 2000), further it is becoming a threat due to outbreaks in Canada, Europe, 
Asia and South America in recent past (Dubin et al. 1997). Fusarium graminearum 
species also causes disease on rice and corn (White 1999; Webster and Gunnell 
1992) and results in reduced yield and seed quality and also the infestation makes 
the food and feed unsuitable due to production of mycotoxins (McMullen et al. 
1997). The strains of Fusarium graminearum sequenced by International Gibber-
ella zeae Genomics Consortium (IGGR) was PH-1 (NRRL 31084) (Trail and Com-
mon 2000) was shown to produce mycotoxins; trichothecenes and zearalenone such 
as deoxynivalenol and nivalenol toxin (Garvey et al. 2008). Another important spe-
cies present worldwide is Fusarium verticillioides causes kernel and ear rot disease 
of maize. The abiotic stress conditions such as high temperature, drought along with 
other biotic factors such as the damage by insect can further amplify and enhance 
the disease and thus cause reduce crop quality and yield. The negative economic 
impact of this species causing several animal (Howard et al. 2001; Seefelder et al. 
2003; Wilson et al. 1992; Kriek et al. 1981) and human diseases (Seefelder et al. 
2003) is due to fumonisin mycotoxins.

Plant-Defense Responses

The evolution of fungi is dependent directly on the development and the spread of 
green plants and most of fungi are saprophytic and few among them are parasitic. 
These fungi require nutrients to complete their life cycle, which is provided to them 
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by the living cells. The plants have effective defense mechanisms to limit the spread 
of parasitic fungi and they have to encounter the primary line of defense provided 
by cell wall of host plants, which inhibit their penetration to the tissues. The second-
ary line of defense includes the production of wide range of secondary metabolites 
or compounds which act as fungicides. These compounds are induced, that is they 
are produced only after the infection has occurred (e.g. Phytoalexins). The fungal 
parasites are host specific and some of them even require the alteration of hosts, 
which may or may not be phylogenetically related for stage wise development on 
either host. The fungal pathogens have been seen to cause more damage to agri-
culture (monocultures) than in plant communities rich in species due to high host 
specificity. To get hold of the plant nutrients the fungal parasites are having at least 
three strategies. (1) Production of enzymes for cell wall and cuticle breakdown. (2) 
Production of toxins to either reduce or inhibit the cellular activity. (3) Production 
of host-specific substances (e.g. phytohormones) and thus disturbing the hormonal 
equilibrium and thus causing disruption of growth and differentiation of the cells 
and tissues (e.g. Gibberella fujikuroi) produces gibberellins which affect the growth 
of rice. The literature about pathogenicity of fungi is very extensive and majority of 
these emphasize on economic considerations, classification, life cycle, symptoms 
and diagnostic, host range and factors of host resistance. The processes of plants 
molecular mechanisms after infection have been elucidated in recent past and these 
can be partially generalized due to variation in possible interaction reactions. The 
host resistance is not only based on general and unspecific defense mechanisms 
but also on specific mechanisms during which genetically determined substances 
are produced which are directed against specific fungal pathogen. Genetic analyses 
have shown that the host resistance is caused by genes inherited independently of 
each other, such as the existence of dominant alleles of the respective genes, and 
resistance genes. It has been shown by microarray analysis that resistance to virus in 
melon is associated with defense responsive gene expression/induction (Gonzalez-
Ibeas et al. 2012a) which led to development of a cost-effective kit for microar-
rays (Gonzalez-Ibeas et al. 2012b). Further, the silenced lines of melon developed 
by RNA Interference showed resistance against the viruses (Rodriguez-Hernandez 
et al. 2012). Plants protect themselves against the diversity of herbivores and mi-
crobial pathogens by expressing an array of constitutive and induced defenses ren-
dering the plant an inaccessible or unsuitable food source. The perception of attack 
and deployment of the induced defenses is primarily mediated by three well-studied 
defense-signaling pathways that are regulated by jasmonic acid (JA), salicylic acid 
(SA) and ethylene (ET) (Glazebrook 2005; Howe and Jander 2008; Walling 2009). 
Herbivores and pathogens introduce a distinct set of elicitors and effectors that are 
perceived by host plants and these signals allow the plant to tailor its defense re-
sponse to individual challengers (Glazebrook 2005; Howe and Jander 2008; Wall-
ing 2009; McSteen 2008; Zhao et al. 2008a; Stout et al. 2006; Bari and Jones 2009). 
The SA-regulated defense pathway is activated by biotrophic pathogens (pathogens 
that invade living plant tissue) and many phloem-feeding insects (Glazebrook 2005; 
Walling 2009; Kempema et al. 2007; Puthoff et al. 2010; Kusnierczyk et al. 2008; 
Zarate 2007). Often SA-induced signaling antagonizes JA- and ET-regulated signal-
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ing pathways, although exceptions do exist (Mur et al. 2006; Leon-Reyes et al. 2010; 
Verhage et al. 2010). The suppression of JA/ET-regulated defenses confers suscep-
tibility to many tissue-damaging and phloem-feeding herbivores (Howe and Jander 
2008; Zarate 2007; Gao et al. 2007; Pieterse and Dicke 2007) and can influence at-
traction of natural enemies (Zhang et al. 2009). However, in some plant—herbivore 
interactions, SA-regulated defenses and/or novel defense-signaling pathways con-
tribute to the plant immune response (Thaler et al. 2010; Bhattarai et al. 2007, 2010). 
Therefore, the nature of defenses elicited by endosymbiont-like pathogens in their 
host plants have the potential to profoundly impact the plant’s interaction with the 
insect and/or ability to resist attacks by other pathogens or pests. If an herbivore can 
circumvent induced plant defenses or plant recognition by vectoring its endosym-
biont associate into its host plant during feeding, it may have a selective advantage 
relative to insects feeding on uninfected plants. Alternatively, effectors from the 
endosymbiont may circumvent the plant recognition system, compromising plant 
immune responses and related insect and bacterial resistance in both the JA/ET- and 
SA-regulated defense pathways. Thus, the endosymbiont’s modification of plant 
defenses could result in a more susceptible host plant for both symbiotic partners.

Understanding Pathogenesis: Role of Systems Biology

The Fusarium spp. causes disease to crops (Table 8.1) and the disease effect is huge 
in terms of economy due to problems in health to animals as well as humans by con-
suming the contaminated grain (McMullen et al. 1997) with mycotoxins (Garvey 
et al. 2008). Thus, it becomes necessary to understand pathogenesis (pathogenic 
genes) and thereby prevent the invasion by these destructive pathogens. The plant 
pathology discipline describe the pathogenesis genes as those which causes losses 
or in other words are those which when disrupted causes the reduction of disease 
symptoms (Idnurm and Howlett 2001). The identification of these genes can be 
done with either the gene silencing or gene knockout studies (Liu et al. 2010). In 
F. graminearum 49 pathogenic genes have been verified by utilizing the biologi-
cal methods and then stored in PHI-base database (http://www.phi-base.org/query.
php). However, when we consider the genome size of F. graminearum, it is real-
ized that compilation of the pathogenesis related genes is a huge uphill task as well 
as time consuming. To solve this problem, the computational biological methods 
could provide an alternative for solving this problem, especially after the release 
of genome sequences in Broad Institute (http://www.broadinstitute.org) (Liu et al. 
2010). Hence, for the prediction of pathogenesis genes comparative genomics will 
be handy and will help in comparison between fungi, which are either pathogenic or 
non-pathogenic (Zhao et al. 2008b, c). But, recently it has been found that it is dif-
ficult to identify pathogenesis genes in F. graminearum because there are no unique 
features in specific genes among pathogenic and non-pathogenic fungi (Liu et al. 
2010). On the basis of literature on pathogenicity in model pathogens (Gohre and 
Robatzek 2008), it can be believed that F. graminearum pathogenesis is also involv-
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ing the networks of proteins and molecules while interacting from itself as well as 
the ones secreted by the host cells (Liu et al. 2010). Thus based on systems biology 
approach, the network of molecular interaction in Fusarium spp. can provide ad-
ditional insights into the processes of pathogenesis. Moreover, the protein-protein 
interaction maps can also provide clues to potential pathogenesis genes and thus 
pathogenesis procedure (Zhao et al. 2009). The pathogenesis genes are generally 
expressed differentially before and after invasion so that the pathogen can sustain or 
pass through the host immune system and thus adapt in the host. Similarly the dif-
ferentially expressed genes of F. graminearum may be pathogenic genes (Liu et al. 
2010). However, false positives may be produced by differentially expressed genes 
while identifying genes involved in disease procedures, as some of these genes 
are not involved in pathogenesis, despite expression changes during experimenta-
tion. However, by integrating the protein interaction and gene expression studies 
on perturbations (drug, extracellular stimuli) (Zhao et al. 2010) shall be useful in 
identifying the pathogenesis processes. The approaches in systems biology helps 
in integrating the protein interaction mapping data and gene expression data and 
works on assumptions proteins interacting in a network share similar functions and 
it is termed as “Association rule” (Zhao et al. 2010) and thus are most probably in-
volved in the similar pathways (Zhao et al. 2010). In F. graminearum the prediction 
results have shown that most of the pathogenesis genes belong to G-protein coupled 
receptors and MAPK signaling pathways (Liu et al. 2010) (Table 8.2).

Transcriptomics: Understanding of Plant—Microbe 
Interactions

Transcript profiling is a functional genomics tool, which is used most widely and 
can be conducted along with various genomic tools such as SAGE (serial analysis 
of gene expression), MPSS (massive parallel signature sequencing) and microar-
rays (Dilip et al. 2010). The transcriptomics of related species (pathogenic and non-
pathogenic) have led to identification of divergence among them in the genome 
(Wurtzel et al. 2012). The role of regulatory processes in pathogenesis (i.e. the 
protein abundance) can be compared with reference proteomics as well as tran-
scriptomics (Voge and Marcotte 2012). The transcriptomic approach is necessary 
for understanding the pathogenesis processes in particular the receptors present 
in the plants which help in recognizing or perceiving the conserved signatures of 
pathogens (Schwessinger and Ronald 2012). The responses of plants to the biotic 
stresses (pathogens) leads to the several changes such as cellular, physiological, 
biochemical and most importantly the transcriptomic levels. The interactions are 
very complex and are mediated and regulated by the hormonal signaling pathways 
(Atkinson and Urwin 2012; Tian et al. 2012). The modulation of defense systems 
by the plants upon the infection, invasion or any other biotic stress can be stud-
ies at the transcriptomic level of interacting host and pathogen (Lee et al. 2012; 
Tian et al. 2012). The metabolomic and transcriptomic studies could be helpful in 
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revealing the mechanisms of antagonism between species infecting the same plant 
as reported recently among Ustilago maydis and Fusarium verticillioides infecting 
maize (Jonkers et al. 2012). Based on the extensive collection of ESTs, several mi-
croarrays have been developed for crops (Torben et al. 2007). The plant expression 
database of plants and pathogens (PLEXdb, http://www.plexdb.org/index.php) can 
provide the microarray data of Fusarium graminearum (obtained with Affymetrix 
GeneChip) (Liu et al. 2010). The transcriptomics approach to study the interaction 
between two- species may lead to the discovery of important genes in plants and 
Fusarium thus leading to characterization, which shall provide disease resistance 
strategies (Fig. 8.1). The multidisciplinary approaches are required for obtaining 
a comprehensive systems biology look of the involved processes. The studies of 
genomics, transcriptomics, proteomics and metabolomics will provide data sets, 
which shall be integrated using bioinformatics and statistical tools and thus will 
help to identify important biological processes and thus make prediction models. 
These approaches are being used to access the information about the associations 
(beneficial/detrimental) among two or multiple species. For example, the ectomy-
corrhizal interaction between Laccaria bicolor and aspen ( Populus tremuloides) 
roots led to the identification of genes expressed significantly, which were later 
mapped to specific metabolic pathways and hence gave rise to the model of ectomy-
corrhizal metabolome. Identification of which genes are expressed is done by uti-
lizing the next-generation short-read transcriptomic sequencing data (Larsen et al. 

Fig. 8.1   Depicting approaches towards utilizing the interaction of plant-microbe for applications 
in biotechnology. (Adapted from Schenk et al. 2012)
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2011). Predictions were made on the basis of the above model that various metabo-
lites such as allantoin, glutamate, glycine, which are synthesized by L. bicolor may 
be used by aspen and in return; the latter provides sugars such as glucose or fructose 
to the fungus and thus implying that these analyses could be applied in case of tran-
scriptomics data from other complex systems (Larsen et al. 2011). In addition, the 
functional studies and analysis would be useful for the identification of functions of 
genes, RNA (Fig. 8.1) and more importantly the functions of proteins and metabo-
lites during plant–microbe interactions. These studies will pin point the important 
processes that control these interactions. The above vision can also be achieved by 
developing genomic models, which will suit the analysis of metabolic flux. In these 
models the microbes may be viewed at one level as one closely interacting super or-
ganisms, whereas the interacting plant may be viewed by genomic models at several 
levels based on compartmentalization and thus distinguishing metabolic processes 
in vacuoles, mitochondria, chloroplasts, cytoplasm and peroxisomes (Schenk et al. 
2012). The genome-scale models have been recently constructed for Arabidopsis, 
C4 plants and more than 25 bacterial species based on primary metabolites (Ober-
hardt et al. 2009; de Oliveira Dal’Molin et al. 2010a, b). In addition the quantitative 
data obtained from gene expression studies and metabolomics can also be included 
in both types of model. Although the transcriptomics approaches are useful for un-
derstanding the plant-microbe interactions, there is a scope for improvements as in 
case of transcriptional profiling studies the data generated has not been replicated 
and thus defy statistical analyses. It is due to the reason that it has high cost and 
is very complex. The less complex environmental samples from sea water (micro-
bial complexity compared to soil) revealed among the unique reference genes only 
17 % overlap by repeated pyrosequencing (Stewart et al. 2010) which suggests that 
current sequencing platforms need to evolve further for gasping the complexities 
within communities. The sequencing platforms of with better coverage are cur-
rently being developed and then are coupled with replicate profiling and statistical 
analyses and thus these hold a great promise for representation of the expression 
profiles of interactions accurately. Currently, HiSeq 2000 (maximum 600 Gb, cor-
responding to 3 billion reads using TreSeq v3 reagent kits; Illumina, Inc.) platform 
delivers the largest amount of sequence data. New insights will be provided by  
understanding the detrimental or beneficial plant—Fusarium interactions for bio-
technological purposes. For the association studies between grasses and endophytes 
the use of transcriptomics is a tractable system. Similarly, transcriptomics of detri-
mental association identified candidate genes which play pivotal role in infection 
processes and in which the interaction switches from being mutalistic to pathogenic 
between interacting partners (Eaton et al. 2011; Beatty and Good 2011). Thus the 
knowledge obtained from interactions (beneficial/detrimental) between plants and 
microbes will provide tremendous opportunities to increase crop productivity. Fur-
thermore, transcriptomics of the environment (soil/water) should be included in 
systems biology as an essential component and thus integrated along with other 
omics technologies. The future prospect would be if we as scientists could harness 
the potential of microbes by engineering such crop plants, which are particularly 
suited for beneficial interactions with microbes. An example in this direction could 

R. ul Rehman et al.



2838 Variability in Fusarium species Causing Wilt Disease in Crops …

be the development of cereals, which can fix nitrogen significantly through their 
associated N-fixing microbe partners. The cereal crops (such as rice, corn, wheat, 
barley, sorghum and sugarcane) are consumed worldwide by humans and animals 
and thus if the nitrogen fixing ability of microbes is controlled among these crops, 
it will reap enormous financial as well as environmental benefits and the ways to 
achieve these milestones are being discussed presently the world over (Charpentier 
and Oldroyd 2010). Despite the recent progresses, we are at the beginning stages 
and by looking at the current pace of progress the future research upholds great 
promise and potential and these new insights will be of great value for the develop-
ment of sustainable production by utilizing new technologies.

Metatranscriptomics Approach

In Metatranscriptomics the environmental samples such as soil or water are used for 
RNA extraction to analyze the gene expression in microbial communities without 
their cultivation (Morales and Holben 2011; Simon and Daniel 2011). The study 
of this multi-species association or interaction with the plant presents with oppor-
tunities, which will help in discovering relationships among plant-microbes with 
potential impact. These metatranscriptomic studies of the whole microbial com-
munities at same time will lead to identification of new plant-microbe interactions 
either beneficial or detrimental. For example, it is reported that among 150 Pseu-
domonas sp. from rhizosphere of wheat, 40 % of isolates increased the root growth 
upon individual inoculation on wheat (Campbell and Greaves 1990). Further, the 
outcome of the plant-microbe interaction can be determined by the influence of 
environmental conditions such as abiotic along with biotic stresses on the physi-
ological pathways of plants. Thus, understanding of signaling processes and the 
cross talk between individual pathways may allow harnessing these pathways to our 
advantage for solving problems related to pathogenesis. The expression profiling of 
the genes of signaling pathways have revealed that these mechanisms have protein 
switches regulated by hormones (e.g. transcription factors, kinases or G-proteins) 
(Memelink 2009; Yao et al. 2011; Depuyd and Hardtke 2011; Zhao et al. 2010). The 
signaling responses to abiotic and biotic stresses are complicated such as the abiotic 
stress-experiencing plants may channel their physiological resources for adaptation 
towards such factors but in doing so these plants may become susceptible towards 
attack by pathogen or herbivore (Thaler and Bostock 2004; Trewavas 2009; Hey 
et al. 2010). The pathways which are activated through the mediation by abscisic 
acid (ABA) seem to be dominant in providing protection towards abiotic stresses 
and seem antagonistic to defense pathways controlled by SA (salicylic acid), JA 
(jasmonic acid) and/or ET (ethylene) (Zabala et al. 2009; Raghavendra et al. 2010; 
Peleg and Blumwald 2011). In plants under abiotic stresses such as UV radiation, 
increase in ROS (reactive oxygen species) is triggered and these show resistance 
against biotrophic pathogens and this response is also achieved when SA is applied 
to plants (Bechtold et al. 2005; Kunz et al. 2008; Ahmad et al. 2010). In contrast 
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the necrotrophic pathogens are benefitted from any kind of physical damage to cells 
and JA provides defense against these and further JA is also associated with induced 
systemic resistance (ISR), which is a priming reaction against subsequent infections 
(Pieterse et al. 2009; Matilla et al. 2010). Henceforth these recent advanced techni-
cal studies of microbial communities on metagenomics and metatranscriptomics 
(Morales and Holben 2011; Kakirde et al. 2010) could be applied to pathogens 
and then conjoining with plant transcriptomics, shall provide deeper insights into 
multiple interactions. In the plant rhizospere 33,000 archeal and bacterial species 
were found when grown on disease-suppressive soil, by combining a high-density 
16S ribosomal DNA oligonucleotide microarray (PhyloChip metagenomics) of the 
rhizosphere microbiome with culture dependent functional analyses (Mendes et al. 
2011). The disease caused by Rhizoctonia solani (fungal root-infecting pathogen) 
was found to be suppressed by the Proteobacteria, Firmicutes and Actinobacteria 
species, which led to the proposal or conclusion that plants interaction with multiple 
microbe species can contribute to suppression of the disease (Schenk et al. 2012).

Future Prospects

The prime concerns are related to with the understanding of host-pathogen interac-
tions including plant defense responses. To monitor fungal colonization the system-
atic re-isolation procedures are required in host-pathogen combinations (compatible 
and incompatible). This is a challenging issue, which will lead to developing new 
strategies to control disease. In order to identify the genes required for the hyper-
sensitive response, studies shall focus on performing expression profiling of crop 
plants. The cDNA-AFLP analysis shall provide expression profiling of both normal 
and Fusarium infected plants, (identification of plant/pathogen genes associated 
with the infection process). The focus on variability of Fusarium sp. infecting Crops 
is the need of hour and will help to understand the host-pathogen relationship for 
disease management. The crop colonization by Fusarium sp. shall be studied and 
the samples collected from definite time points irrespective of speed and extent 
of colonization among the strains. The molecular biology advancements have led 
to the use of DNA based markers in place of morphological markers. Initially, the 
RNA samples of (healthy/infected plants) shall be put to cDNA-AFLP analysis for 
identifying transcripts differentially expressed, which are associated with resistance 
response and infection process.

Further, the RNA samples from in vitro grown fungal strains shall help in iden-
tifying in planta expressed fungal transcripts and also in identifying in vitro differ-
entially expressed fungal genes among the strains. The infected plants samples col-
lected for analysis by cDNA-AFLP at different time intervals will determine early 
to late stages of infection and will also allow detection of the pathogen transcripts. 
The expression patterns of the transcripts shall be monitored with several different 
primer combinations for amplification in a selective manner and for every primer 
combination; the TDFs (transcript derived fragments) can be viewed as bands on 
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gels. These bands can be visually scored and compared for the differences in inten-
sity for detecting transcripts expressed differentially in plants and for comparison 
these will be eluted and reamplified with appropriate cDNA-AFLP primers. This is 
followed by sequencing and then the products are screened using public databases 
for finding homologous sequences with significant alignment. Using the BLAST 
analysis, sequences identical to crop transcripts, transcripts homologous to known 
plant sequences in UNIPORT KB Swiss-Prot or TrEMBL http://www.expasy.ch/
sprot/databases or NCBI databases (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and 
transcripts homologous to known Fusarium sp. sequences considered as express-
ing in planta shall be identified. The transcripts, which have no matches in any 
of the databases, shall also be seen; these may represent transcripts that currently 
lack functional annotations. Further the expression pattern and clustering of crop 
transcripts shall be done to overview differences between infected and control. The 
functional annotation of each transcript can be done with help of Gene Ontology 
Database http://www.geneontology.org and through carefully analyzing the scien-
tific literature. Further for the identification of Fusarium genes expressed in crop 
plant during infection we can include sequences from all Fusarium sp available in 
public databases. Finally, the fungal transcripts differentially expressed among the 
strains shall be identified when grown in vitro searching the Fusarium database (Fu-
sarium Comparative Database 2). These studies will provide with information re-
garding transcriptional changes in crops upon Fusarium pathogenesis and also if the 
wilting symptoms are derived from active plant response besides the infection. The 
studies shall generate information regarding In planta expressed pathogen-derived 
transcripts during the infection processes which are related potentially to virulence 
functions as well as the in vitro expressed transcripts (expressed differentially be-
tween strains). These will further provide the sequences, which will be helpful for 
distinguishing between races. For the dissipation of information the sequence data 
generated from these studies shall be deposited in Gene Bank (Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo). The second impor-
tant concern is related to Identification of the target regions in the fungal genome 
for probe generation for their use in phylogeny of Fusarium sp. Further, the use of 
a comprehensive EST collection in Fusarium for SSR identification shall help to 
develop EST-SSR markers for genetic mapping which will be extremely useful for 
diagnostics and research concerned with fungal biology, ecology, and genetics. The 
analysis will yield the frequency, type and distribution of SSR motifs in ESTs de-
rived from Fusarium sp. The Perl script MIcroSAtelitte (MISA) (Thiel et al. 2003) 
can be used to identify SSRs in the Fusarium spp. EST sequences. These data can 
be used to perform comparative analysis of SSR motif polymorphisms between 
allelic sequences, and orthologous sequences to conduct and finally to identify 
functionally associated EST-SSR markers for application in comparative genomics. 
There is a need to study and focus on the development of EST-SSRs. Due to the lack 
of sufficient markers for Fusarium sp, it becomes necessary to develop enough mo-
lecular markers for potential use in Fusarium sp. pathogenicity. With the develop-
ment of Fusarium database/projects a vast amount of available EST sequence data 
has been generated. The screening for repeat motifs (perfect and imperfect) can be 
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done in unigenes within the transcript assembly. The SSRs with a minimum repeat 
count ( n) threshold of n ≥ 5 can be selected for further analysis and EST-SSR marker 
development. Flanking forward and reverse primers will be designed for SSRs in 
unigenes using Primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.
cgi) and products can be genotyped by sequencing and the allele lengths can be as-
certained by gene mapper. The SSR markers can be screened for amplification and 
length polymorphisms among Fusarium strains on agarose. The estimation of EST-
SSR individual markers heterozygosities ( H) and Genetic distances ( G) can be done 
using the proportion of shared alleles estimator in Microsat, where G = (1 − p) and p 
is the proportion of shared alleles http://hpgl.stanford.edu/projects/microsat/. These 
data offer an opportunity to identify single sequence repeats (SSRs) in expression 
sequence tags (ESTs) by data mining. Such kind of studies shall give an insight into 
the frequency, distribution and type of Fusarium EST-SSRs and demonstrate suc-
cessful development of EST-SSR markers in crop pathogenesis. These EST-SSR 
markers would be enriching the current resources of molecular markers for the sci-
entific community and would be useful for Fusarium identification at species level 
and breeding programs to develop resistant varieties. Further, the novel EST-SSRs 
would be useful for comparative genetic mapping which shall give us information 
about the genetic diversity and polymorphism among the Fusarium sp. All these 
shall provide the novel insights and knowledge about Fusarium pathogenesis.
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Abstract Abiotic stresses including salinity are a major threat to agricultural pro-
ductivity and hence global food security. Crop plants have adopted specialized 
strategies to reduce the impact of stress. The biogenic volatile organic compounds 
(VOCs) emitted from a wide range of plants help enable the buildup defense 
against biotic and abiotic stresses. Plant VOCs are comprised of different isoprene 
and monoterpene class of compounds in addition to alkanes, alkenes, carbonyls, 
alcohols, esters, ethers, and acids which have a demonstrated role against abiotic 
stress factors. Although it has been shown that several metabolic pathways may be 
involved in building up the defense, antioxidant route of alleviation is believed to 
be a common mechanism. The identification of the genes, transcriptomic profiling 
and proteins of the biosynthetic pathway has enabled ways to manipulate the syn-
thesis of isoprenoid compounds. In recent years, there has been a growing interest 
in adopting VOC strategy to alleviate abiotic stresses in crop plants.

Introduction

Environmental stress is a major threat to agricultural productivity and plants have 
adopted specialized strategies to reduce the impact of stress. The abiotic stresses 
include drought, salinity, cold and high temperature that affect the plant growth, de-
velopment and yields of crop plants. Plants being sessile, experience multiple stress-
es in their life cycle and hence the tolerance trait has become complex to be under-
stood and managed. Among the different abiotic stresses, salinity stress is the most 
severe limiting crop productivity. Salinity interferes with the plant’s accessibility to 
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nutrients and water. Moreover, it induces osmotic stress; the physiological drought, 
which typically reduces the growth and photosynthesis in plants (Munns and Tester 
2008). Salinity affects plant growth and development in two ways: through osmotic 
stress by reducing the soil water potential leading to limiting the water uptake and 
by causing uptake of Na+ and Cl− which have an effect on plant metabolism. The 
mechanism by which plants perceive stress signals and relay their transmission to 
cellular machinery to trigger adaptive responses is crucial for the improvement of 
different strategies to impart stress tolerance in crops (Mantri et al. 2012).

The different abiotic stress factors result in the production of reactive oxygen 
species (ROS) that are extremely reactive and cause damage to biological macro-
molecules like proteins, lipids, carbohydrates and DNA ultimately leading to oxi-
dative stress. The ROS include, superoxide radicals, hydroxyl radical, perhydroxy 
radical, alkoxy radicals, hydrogen peroxide and singlet oxygen (Gill and Tuteja 
2010). Under normal growth conditions, the ROS molecules are managed by effi-
cient scavenging machinery consisting of various antioxidative defense mechanisms 
(Foyer and Noctor 2005). The production of ROS and their scavenging needs to be 
balanced under normal conditions of growth but, however the equilibrium is dis-
turbed by abiotic stress factors including salinity (Tuteja 2007; Mantri et al. 2012).

Volatile Organic Compounds (VOC’s) and Their Action

Plants are sessile and have to encounter challenges imposed by other organisms and 
with the environment mainly by depending on their chemical repertoire. The signif-
icance of natural products and their metabolic diversity contribute very much to the 
survival of the plant kingdom. The biogenic volatile organic compounds (VOCs) 
released from a wide range of plants help enable the buildup defense against insects, 
fungi, herbivores and environmental changes (Loreto and Schnitzler 2010; Holo-
painen and Blande 2012). Plant VOCs are comprised of isoprenoids mainly isoprene 
and monoterpenes (Variyar et al. 2010). The function of isoprenoid compounds dur-
ing environmental stress includes protection of the photosynthetic apparatus, de-
toxification from free radicals and reactive oxygen species (ROS) (Munné-Bosch 
and Alegre 2000a; Spinelli et al. 2011). Although it has been shown that several 
metabolic pathways may be involved in building up the defense, antioxidant route is 
believed to be the common mechanism (Vickers et al. 2009a). The identification of 
genes in the biosynthetic pathway and transcriptomic profiling has enabled ways to 
manipulate the synthesis of isoprenoid compounds. Since chloroplasts are the sites 
of isoprene synthesis a possible relation may occur between isoprene production 
and environmental stresses affecting the photosynthetic apparatus (Velikova 2008; 
Loyola et al. 2012). It should thus be of interest to investigate isoprene synthesis in 
plants in relation to environmental chemistry. The emission of VOCs contributes to 
an appreciable quantity of photosynthetic carbon fixation under stress conditions, 
and hence VOCs could also play a significant role in the carbon exchange between 
the biosphere and the atmosphere (Guenther et al. 2011). Significant research prog-
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ress has been made in the study of physiological mechanism(s) underlying iso-
prenoid synthesis under abiotic stress conditions, especially high temperatures and 
oxidative stress conditions (Fineschi and Loreto 2012).

Isoprenoids protect plants against different abiotic stresses through improving 
the ability of plants to deal with cellular oxidative modifications, possibly through 
reaction of isoprenoids with the oxidizing species, or alteration of ROS signaling, or 
via membrane stabilization. It is postulated that dissolution of VOCs in membranes 
coupled to interactions with membrane proteins can lead to changes in transmem-
brane potential and modulation of ion fluxes thereby inducing gene activity and a 
subsequent cellular response to stress (Vickers et al. 2009a). Plants have developed 
an efficient antioxidant mechanisms for ROS detoxification (Ahmad et al. 2008; 
Gill and Tuteja 2010; Ahmad and Umar 2011). Isoprenes can boost plant’s defense 
system not only by keeping the membrane integrity intact and making it less sensi-
tive to denaturation, but also due to the fact that they have the capacity to quench 
ROS produced under oxidative stress. Vickers et al. (2009a) discussed the possible 
functions of isoprenes as natural antioxidant machinery in plants.

Plants are endowed with protective mechanisms to cope with a variety of abiotic 
stresses. When the stress impact goes beyond a certain threshold, plants normally 
experience stress, resulting in reduced growth and development. Most common and 
ensuing response, thus, is the production of reactive oxygen spices (ROS). The 
antioxidant effect of the isoprenoid compounds is mediated by their capacity to 
swiftly combine with different ROS such as singlet oxygen, superoxide, hydro-
gen peroxide, hydroxyl radical that are released under stress regime (Holopainen 
2004; Fineschi and Loreto 2012). Isoprenes are also known to alleviate visible dam-
age (necrosis) of leaves exposed to ozone through a mechanism involving release 
of nitric oxide that interacts with increasing levels of ROS especially hydrogen 
peroxide. The occurrence of conjugated double bonds (delocalized π-electrons) in 
the isoprene molecule may mediate electron and energy transfers, conferring ROS-
scavenging ability (Vickers et al. 2009a). Considering chloroplast as the site of iso-
prene biosynthesis (Logan et al. 2000), the ROS scavenging ability of isoprene 
molecule makes it important in plant defense against oxidative stress. Isoprenoids 
including terpenoids have also been shown to confer a protective effect on photo-
synthetic process under heat and oxidative stress (Sharkey and Yeh 2001). Isoprenes 
have also been implicated to protect the photosynthetic system from thermal stress. 
The mechanism underlying such protective nature is attributed to the stabilization 
of membrane lipid bilayer by enhancing the hydrophobic (lipid–lipid, lipid–pro-
tein and/or protein–protein) interactions (Sharkey et al. 2008). Based on modeling 
studies with membranes, Siwko et al. (2007) demonstrated that isoprenes are able 
to partition into the phospholipid membrane enhancing membrane order without 
major alteration in the dynamic properties of the membrane.

Much less evidence has been accumulated so far on the role of volatile monoter-
penes in alleviating oxidative stress. In plants that don’t emit monoterpenes, it has 
been proved that photosynthesis becomes less sensitive to ozone that are externally 
supplied with volatile monoterpenes (Loreto and Fares 2007). In contrast, when 
monoterpene synthesis is blocked, ROS rapidly accumulate. The highly volatile 
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Table 9.1   List of cloned genes involved in the biosynthesis of monoterpenes
Gene Organism References
Linalool synthase Clarkia breweri; Arte-

misia annua L.
Dudareva et al. (1996); Cseke 

et al. (1998); Jia et al. 
(1999)

(-)-Limonene synthase Abies grandis; Mentha 
spicata

Colby et al. (1993); Bohlmann 
et al. (1997)

( + )-Limonene synthase Agastache rugoa Maruyama et al. (2002)
(-)-Pinene synthase Abies grandis Bohlmann et al. (1997)
Myrcene synthase Abies grandis, Quercus 

ilex L.; Arabidopsis 
thaliana

Bohlmann et al. (1997); 
Bohlmann et al. (2000); 
Fischbach et al. (2001)

β-Ocimene synthase Arabidopsis thaliana Bohlmann et al. (2000)
( +)-Bornyl diphosphate synthase, 

1,8 cineole synthase and 
( + )-Sabinene synthase

Salvia offcinalis Wise et al. (1998)

(-)-β-Phellandrene synthase, 
(-)-camphene synthase, Terpi-
nolene synthase and (-)- limo-
nene/(-)-α-pinene synthase

Abies grandis Bohlmann et al. (1999)

(E)-Beta farnesene synthase Citrus junos Maruyama et al. (2001)

monoterpenes exhibit more effectiveness in scavenging antioxidants. On the other 
hand, the less volatile isoprenes pool up in membrane and intercellular spaces and 
thus become more effective antioxidants in the aqueous phase. Volatile sesqui-
terpenes are produced in high levels in ozone-resistant tobacco upon exposure to 
ozone. It is thus possible that volatile isoprenoids constitute one of the non-enzy-
matic oxidative defense systems thereby, reducing the oxidative damage caused by 
abiotic stresses.

Monoterpenes have different effects on plant growth and development, depend-
ing on their structure and the quantity. Thus α-pinene exerts protective effect on 
the photosynthetic apparatus, while α-terpinol shows toxicity. Monoterpenes exog-
enously applied at levels of 0.5 g/l exhibited toxicity in plant cell cultures (Brown 
et al. 1987). Monoterpenes such as cineole, thymol, geraniol, menthol and camphor 
induced oxidative stress and lipid oxidation in maize roots (Zunino and Zygadlo 
2004) while, β-myrcene, limonene, β-ocimene and γ-terpinene generated ROS and 
oxidative damage (Singh et al. 2009). Menthol has shown an increase in cytosolic 
free calcium ions which can generate signal transduction pathways in cucumber 
roots (Maffei et al. 2001). The aliphatic monoterpenes (ocimene and myrcene) in-
duced considerable changes in the transcription of several hundred genes in Ara-
bidopsis, many of them are designated as transcription factors, stress and defence 
genes (Godard et al. 2008). Several genes involved in the biosynthesis of terpenes 
have now been cloned in different plants (Phillips et al. 2006; Christianson 2006; 
Degenhardt et al. 2009). Table 9.1 lists some of the genes involved in the synthesis 
of monoterpenes.
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Salt stress is known to mimic water stress limiting CO2 inflow by lowering con-
ductance of stomata and mesophyll and by impairing carbon metabolism (Delfine 
et al. 1998, 1999). Loreto and Delfine (2000) tested whether revival from mod-
est salt treatment could result in bursts of isoprene emission and concluded that 
the progression leading to isoprene release is resistant than photosynthesis to salt 
stress, and that a secondary source of isoprene, independent of photosynthesis, is 
induced by salt-stress. In case of short-term drought stress, significant reductions in 
photosynthesis were observed, whereas isoprene emission was either not repressed 
or became reduced in Quercus virginiana (Tingey et al. 1981) and Pueraria lo-
bata (Sharkey and Loreto 1993). On the other hand, there was a good relationship 
between terpene emission and plant water status. The emission of several mono-
terpenes and sesquiterpenes was studied in Mediterranean species ( Rosmarinus of-
ficinalis, Pinus halepensis, Cistus albidus and Quercus coccifera) upon subjecting 
them to long term water dehydration stress (Ormeno et al. 2007). There was a slow 
decrease of emissions in plants exposed to long term water deficit periods in P. 
halepensis and C. albidus as compared to decrease in sesquiterpene release of R. 
officinali. Šimpraga et al. (2011) opined that drought stress can affect the VOC 
emissions in plants. In their experiments with young Common beech, the authors 
observed sudden burst of non-monoterpene class of VOCs during acute drought 
stress indicating opportunities for plant sensing using VOCs.

Manipulating the Synthesis of VOCs

Isoprenoids have been demonstrated to confer defense against abiotic stress fac-
tors, mainly thermal stress and oxidative stress conditions. A full understanding 
of the function of terpenes in plant defense process will require experiments at the 
molecular level, as terpenes may induce the expression of a number of stress-related 
genes. Studies in this direction by using inhibitors like fossidomycin that can inhibit 
the MEP pathway, fumigating non-isoprene synthesizing plants with exogenous iso-
prenoid compounds and transgenic plants either expressing terpene synthesis genes 
or gene silencing, have yielded results supporting their protection against stresses 
(Dudareva and Pichersky 2008; Vickers et al. 2009a).

The enzymes leading to the production of monoterpene all appear to be active 
in the plastids, as all the genes in this pathway possess plastid-targeting signals 
(Haudenschild and Croteau 1998) and seems to be localized in chloroplasts (Bou-
vier et al. 2000) and leucoplasts (Turner et al. 1999). The principal functional role 
of isoprene emission in plants is associated with the protection of leaf physiological 
processes against oxidative stress induced by heat (Sharkey and Yeh 2001). Behnke 
et al. (2007) analyzed this ‘physiological role’ by testing transgenic Grey poplar 
plants in which expression of isoprene synthase ( ISPS) was either silenced via RNA 
interference (RNAi) mechanism or upregulated by over-expression of the ISPS 
gene. Despite increased ISPS mRNA levels, there was no steady increase in isoprene 
release in the over-expressing lines, suggesting that ISPS could be regulated at the 
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post-transcriptional level while in the RNAi lines, there was no isoprene emission. 
The researchers also exposed transgenic lines to high temperature with three tem-
porary heat stages (38–40 °C), followed by recovery at 30 °C. During heat stress, 
the non-isoprene-emitting transgenic poplars exhibited low rates of net assimilation 
and photosynthetic electron transport, compared to situation where there was no 
stress. The poplars plants in which isoprene was repressed had an increased zeaxan-
thin in the absence of stress, suggesting increased non-photochemical quenching 
or may indicate an increased necessity for antioxidants (Behnke et al. 2007). This 
study demonstrated that down-regulation of isoprene can influence thermotolerance 
and induce increased energy dissipation by non-photochemical quenching path-
ways. Isoprene synthase transcription has been shown to increase as leaves undergo 
maturity (Wiberley et al. 2005) and is temperature- and light responsive (Sasaki 
et al. 2005; Cinege et al. 2008). Variation in the accumulation of isoprene synthase 
protein is also observed under different environmental conditions (Schnitzler et al. 
2005; Wiberley et al. 2009; Calfapietra et al. 2007).

Transgenic tobacco ( Nicotiana tabacum L.) plants transformed with an isoprene 
synthase gene (from poplar) showed isoprene emission at comparable amounts to 
a natural situation. These transgenic plants when subjected to heat and combined 
heat/light exhibited considerable tolerance to stress-induced oxidative stress (Vick-
ers et al. 2009b). Further, Vickers et al. (2011) used transgenic tobacco lines harbor-
ing a poplar isoprene synthase gene and then examined control of isoprene emis-
sion. In mature transgenic tobacco leaves, it was observed that primary controls on 
isoprene emission was thought to be via the substrate supply and changes in enzyme 
kinetics rather than changes in isoprene synthase levels or post-translational regula-
tion of activity. The transgenic tobacco plants also had emission patterns remark-
ably similar to naturally emitting plants under a wide variety of conditions and the 
emissions correlated with photosynthetic rates in developing and mature leaves, and 
with the amount of isoprene synthase protein in mature leaves. Isoprene synthase 
protein levels did not change under short-term increase in heat/light, despite an 
increase in emissions under these conditions. In a study with a halophytes ( Kande-
lia candel) and Bruguiera gymnorrhiza, mRNA expression of four oxidosqualene 
cyclase ( OSC) genes namely, KcMS multifunctional terpenoid synthase and Kc-
CAS cyloartenol synthase ( K. candel), BgbAS ß-amyrin synthase and BgLUS lupeol 
synthase ( B. gymnorrhiza) in relation to salt concentration was analyzed (Basyunia 
et al. 2009). The mRNA levels of KcMS in both roots and leaves of K. candel and 
BgLUS and BgbAS in the roots of B. gymnorrhiza increased with salt concentration. 
This result suggested that the function of terpenoids in root is associated with the 
salt stress.

Attempts have been made to over-accumulate isoprenoids in transgenic plants 
to study their role in stress alleviation. Over-expression of Hevea brasiliensis 3-hy-
droxy-3-methylglutaryl coenzyme A reductase (HMGR) in transgenic tobacco led 
to an increase in sterol production (Schaller et al. 1995). Neelakandan et al. (2011) 
over-expressed Arabidopsis HMGR1 in soybean, resulting in greater seed sterol 
content. The Populus alba isoprene synthase gene was introduced into Arabidopsis 
and has shown to confer elevated heat tolerance in the transgenic lines over wild 
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type (Sasaki et al. 2007). Similarly, the content in some plastidial isoprenoids has 
also been successfully enhanced in plants through genetic engineering. Transgenic 
mint over-expressing 1-deoxy-D-xylulose-5-phosphate synthase, one of the entry 
enzymes into the MEP pathway (DXS), showed increased essential oil content 
(Mahmoud and Croteau 2001). Arabidopsis plants over-expressing Brassica juncea 
3-hydroxy-3-methylglutaryl-CoA synthase gene ( BjHMGS), coding for the second 
enzyme in the cytosolic isoprenoid biosynthesis pathway, have been shown to pro-
vide enhanced fungal and hydrogen peroxide-tolerance (Wang et al. 2011). The 
Brassica gene was found to be down-regulated by abscisic acid, mannitol, and water 
stress, but up-regulated by growth regulators like salicylic acid, methyl jasmonate, 
and wounding, suggesting that it could have a role in plant stress resistance.

The genetic engineering of volatile compounds have also brought to light some 
genetic changes on plant growth and development, and challenges to accomplish 
efficient production of the suitable volatile terpenoid compounds in a spatial and 
temporal mode (Dudareva and Pichersky 2008). For example in Arabidopsis, over-
expression of FaNES1 resulted in the diversion of carbon to linalool production, 
without affecting the levels of chlorophylls, lutein and bcarotene, and resulting in a 
growth-retardation phenotype that was stable through several generations (Aharoni 
et al. 2003). Transgenic potato engineered for linalool production resulted in growth 
retardation and leaf bleaching of plants when grown in the greenhouse (Aharoni 
et al. 2006). Transgenic tobacco containing high levels of patchoulol as a result of 
the expression of PTS coupled with FPP synthase, both targeted to the plastids, led 
to plants with growth disturbances like leaf chlorosis, vein clearing, and reduced 
stature (Wu et al. 2006). Such growth abnormalities are attributed to the conse-
quences of the reduction of isoprenoid precursors for other metabolites which are 
otherwise are essential for plant growth and development, or that the newly intro-
duced terpenoids could become toxic to plant cells.

A number of plant species synthesize myriad of isoprenoid for plant growth, 
development and for adaptation to environment (Leivara et al. 2011). The enzyme 
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the mevalonate pathway 
is modulated by many endogenous and external stimuli. Two B′′ regulatory sub-
units (B′′α and B′′β) of protein phosphatase 2A (PP2A) interact with HMGR1S 
and HMGR1L, the two major isoforms of Arabidopsis thaliana HMGR (Leivara 
et al. 2011). Since B′′α and B′′β are Ca2+ binding proteins of the EF-hand type, it 
was found that PP2A modulates HMGR transcript. Under salt stress conditions, the 
B′′α and PP2A mediated the decrease and subsequent increase of HMGR activity 
in Arabidopsis seedlings, resulting from a steady rise of HMGR1-encoding tran-
script level and an early sharper reduction of HMGR protein level. In the non-stress 
conditions, the PP2A operates as a posttranslational negative regulator of HMGR 
activity with the involvement of B′′β. The authors suggested that PP2A can exert 
multilevel regulation on HMGR through the five-member B′′ protein family in re-
sponse to stress conditions (Leivara et al. 2011).

The mevalonate pathway that mediates the production of isoprenoids has 
been operative in higher eukaryotes. Brodersen et al. (2012) studied the necessi-
ty of isoprenoid biosynthesis for plant miRNA activity in Arabidopsis. In plants 
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ARGONAUTE (AGO) protein complexes are guided by microRNAs (miRNAs) to 
regulate expression of complementary RNAs. Brodersen et al. (2012) used mad3 
and mad4, the miRNA action deficient ( mad) mutants, for the isolation of genes in-
volved in isoprenoid biosynthesis. The 3-hydroxy-3-methylglutaryl CoA reductase 
(HMG1), acting in the initial C5 building block biogenesis that precedes isoprenoid 
metabolism and acts as a key regulatory enzyme controlling the amounts of iso-
prenoid end products is encoded by MAD3 while, the sterol C-8 isomerase that acts 
downstream in dedicated sterol biosynthesis is encoded by MAD4. Complementa-
tion studies using yeast system and treatment in planta with an inhibitor of HMG1 
(lovastatin), indicated that lack of catalytic activity in HMG1 is adequate to inhibit 
miRNA activity. Further knockdown of HMG1/MAD3 reduced AGO1-membrane 
interaction and specific hypomorphic mutant alleles of AGO1 displayed compro-
mised membrane association. The study has shown an interesting possibility that for 
the activity of plant miRNAs, isoprenoid synthesis could be required and this could 
unravel underlying mechanisms of microRNA function and regulation.

Conclusions and Future Perspectives

Abiotic stresses including salinity, drought and high temperature limit crop pro-
ductivity. In this regard, PVOCs either emitted or induced from different plant spe-
cies can be applied to confer better defense. Understanding of the biosynthesis of 
volatile compounds and the genetic machinery involved has greatly contributed to 
use this chemical repertoire for integrating biochemical, molecular and functional 
data into stress alleviation. A complete picture of metabolic network of PVOC syn-
thesis and information on their regulation will necessitate further investigation. In 
addition, screening and use of suitable compounds involved in the biosynthesis of 
volatile-induced plant defenses will greatly facilitate fine tuning of plant responses 
to stress factors. In the past decade, considerable progress has been made in the 
metabolic engineering of the isoprenoid biosynthetic pathway in plants (Mahmoud 
and Croteau 2001; Lucker et al. 2001; Nagegowda 2010). An increasing number of 
successful attempts have raised hopes that their manipulation could offer a promis-
ing tool for increasing isoprenoid content for varied applications in stress tolerance 
and protection from environmental damage.

Another direction in PVOCs is by using priming approach by which planting a 
few transgenic plants that release defense volatiles in the field may contribute to 
plant protection and provide an advantage to non-transgenic plants (Dudareva and 
Pichersky 2008). In order to derive such benefits, it is imperative that we need to 
investigate the molecular mechanisms underlying priming induced capacitance, the 
detection of volatile signal components that activate the capacitance, species spe-
cific responses and molecular markers for the primed state in crop plants. It has also 
been suggested that histone modifications that are operative during a primary event 
might create memory associated reaction to a second stress exposure (Jaskiewicz 
et al. 2011).
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Plants produce a plethora of volatile compounds for both general and special-
ized functions (Ueda et al. 2012). The plant volatilome is defined as the complex 
consortium of volatile organic compounds through different biosynthetic pathways 
and produced by plants, constitutively and/or after induction, as a defense strategy 
against biotic and abiotic stress (Maffei et al. 2007). An integrated approach will 
greatly help our understanding about the metabolism, genomics and interactome of 
the VOCs in plant’s adaptation to environmental stresses.
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Abstract Cereal grain quality aspects are integral aspects of a complex food chain, 
which assimilate outputs achievable by breeding, production and processing. In 
order to get better economic gains and be internationally competitive in diverse 
market scenarios, it is paramount to breed wheat cultivars with better grain quality. 
Higher grain quality demands are exponentially increasing due to novel processing 
technologies, environmental changes and change in consumer preferences due to 
striking demographic shifts. Advances in the genomic arena of grain quality are 
considered crucial for defining genes and their networks underpinning functional 
flour qualities. The complexities associated with the genes underlying these traits 
can be resolved by elucidating functional and comparative genomics information 
of relevant genes and the efficient transfer of such information across cultivars. 
Wheat, due to wider consumption as a staple food, has been a subject of inten-
sive cytogenetic investigations which are now extended further in the genomics 
era using powerful tools of molecular biology and new genetic stocks. The recent 
progress in wheat genomics research particularly the use of molecular markers for a 
variety of purposes and advances in map based positional cloning of several genes 
has been remarkable. As a result we have been able to better understand the wheat 
genome and the mechanisms involved in the function of different quality encod-
ing genes. Additionally, we have also utilized information generated from genom-
ics research in producing better quality grains. The advances in the genomics of 
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quality presented in this chapter provide ample information to the underlying gene 
networks controlling quality traits thereby addressing the challenges of the brisk 
changes prevalent within the wheat based food systems. Aiding the exploitation 
of novel genome diversity for quality value addition, research has benefitted from 
the unique germplasm resource generated by synthesizing wheat from genomic/
allelic variability residing in the wheat progenitor accessional resource. These 
under-utilized diploid wheat progenitor accessions are a promising conduit to wheat 
productivity enhancement and the novel genomic resource contributing to wheat 
quality as elucidated here.

Introduction

Bread wheat ( Triticum aestivum) is one of the most important crop species, with 
global annual production currently over 600 million tonnes providing approximately 
one fifth of the world’s total calorific input (FAO 2009). Continually raising the 
yield potential of wheat to match human population growth and stabilizing yield 
against the damaging effects of climate change is a top priority for agricultural sci-
ence (Reynolds et al. 2009). The multitude demands of variable wheat products are 
challenging to fulfill in a scenario of maintaining competitiveness in international 
marketplace. Especially, in the most rapidly growing markets of South-Asia and 
China where the grain quality improvement has a critical role to play in establish-
ing the linkages with customers. The traditional quality aspects of wheat need to be 
evolved due to the advent of new processing technologies and changes in the market 
place resulting from the striking demographic changes in the region. The integration 
of several disciplines like functional genomics, biotechnology and exploitation of 
the genetic resources is stimulating the identification of genetic, biochemical and 
physiological basis of quality encoding traits in wheat. The ongoing activities for 
wheat quality improvement aim to address the major challenge of capturing the 
information from both wheat and model organisms, such as rice and Arabidopsis, 
in order to define genes that underpin the unique quality attributes of wheat. The re-
sources being developed using biotechnology, comparative and functional genom-
ics include comprehensive mapping initiatives, genome-wide expression studies 
and exploring the molecular basis of quality characteristics. The linkage of large 
information generated from these tools need to be incorporated in wheat-breeding 
programs in conjunction with high-throughput screening in order to provide the 
solution to efficiently develop new, improved quality wheat varieties.

Grain yield and quality, both are determined by the size and composition of 
wheat endosperm. Biochemical and genetic studies in the past three decades have 
considerably increased the understanding of genetics, structure and composition of 
different proteins stored in endosperm which highly influence end-use quality traits 
(Ma et al. 2007). Wheat storage proteins include glutenins, gliadins, secalins and 
puroindolines within endosperm which largely determine the rheological properties 
of wheat flour, the most important quality attribute. Additionally the mineral and 
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phytate competition is the major determinant of bioavailability of essential minerals 
which is an important component of wheat grain quality. The recent discovery of 
NAC gene transcription factor, TtNAM-B1, role in enhancing grain mineral concen-
tration (Uauy et al. 2006b) has opened new ways to efficiently utilize the genomic 
approaches to harness quality related genes from wild relatives in order to get desir-
able products.

Some of the quality-encoding traits are polygenic, while the others are simply 
inherited. The development and utilization of the functional markers for monogen-
ic quality traits like high molecular weight glutenins (HMW-GS), Low molecular 
weight glutenins (LMW-GS), grain hardiness genes ( PINA and PINB) and waxy 
alleles have dramatically changed the selection of appropriate breeding material 
having desirable genes. Similarly, efforts are underway to identify gene networks 
underlying the quality traits through bi-parental quantitative trait and analysis 
(QTL) and genome wide association studies (GWAS).

Genomics of Wheat Storage Proteins

The composition and amount of seed storage proteins play an important role in 
determining wheat quality (Payne 1987). Beccari in 1745, first isolated the gluten 
proteins and until now, the gluten proteins have been active area of investigation 
at genomic and proteomic level over a period of 250 years, in order to determine 
their structure and properties and to provide basis for manipulating and improving 
end use quality (Shewry et al. 2002). At the beginning of the 20th century, Osborne 
(1907) developed a systematic way to classify wheat storage proteins based on their 
graded extraction and differences in solubility. According to Osborne (1907) four 
different protein groups can be recognized in wheat flour. These groups include al-
bumins (water soluble), globulins (water insoluble and soluble in saline solutions), 
prolamins (soluble in 70–90 % ethanol) and glutens (soluble in dilute acid or alkali). 
The most important protein, gluten, gives rise to two distinct groups based on their 
solubility in 70 % ethanol, known as glutenins and gliadins (Wrigley et al. 1996).

Glutenins

High Molecular Weight Glutenin Subunits (HMW-GS)

HMW-GS reportedly account for 12 % of the total seed storage protein which corre-
spond to about 1–1.7 % of the flour dry weight (Halford et al. 1992). However much 
of the work has been focused on functional and structural aspects of HMW-GS due 
to their largest contribution in wheat end-use quality. HMW-GS are  encoded at 
Glu-1 loci present on the long arm of homeologous group 1 chromosomes (1AL, 
1BL and 1DL), each locus contributing two gene subunits that differ in their prop-
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erties and are called x-type and y-type subunits (Payne et al. 1980). These loci are 
named Glu-A1, Glu-B1 and Glu-D1, respectively. The x- and y-type subunits have 
a comparatively high and low molecular weight, respectively. In earlier studies on 
the allelic variation of Glu-1 loci, the number of alleles at all three loci differed 
greatly (Payne and Lawrence 1983). Glu-A1 had three allelic forms, eleven alleles 
for Glu-1B, and six alleles for Glu-1D were found. However, in the subsequent 
studies several alleles were found and the latest information has been documented 
by McIntosh et al. (2010).

Gene Expression

All bread wheat cultivars express 1Bx, 1Dx, and 1Dy subunits while some culti-
vars also express 1By and 1Ax subunit as well. The gene encoding the 1Ay subunit 
usually remains silent. Nevertheless, many accessions of A-genome related spe-
cies T. monococcum and T. urartu express 1Ay subunits (Waines and Payne 1987; 
Rasheed et al. Unpublished; Alvarez et al. 2009; Caballero et al. 2008; Gutierrez 
et al. 2011). Some bread wheat with six HMW-GS have also been reported (Mar-
giotta et al. 1996). The extensive studies on the electrophoretic mobility of glute-
nin subunits revealed that durm and bread wheat genotypes lack certain subunits 
(Lafiandra et al. 1988). Beitz et al. (1975) reported some mutants lack 1D encoded 
HMW-GS in landraces from Nepal. Contrastingly, some tetraploid and hexaploid 
genotypes with four and six subunits, respectively, were developed by replacing the 
silenced subunit of Glu-A1 by the expressed ones. These genotypes showed an in-
crement in polymeric glutenin quantity, hence better flour characteristics (Lafiandra 
et al. 1998). Allelic variation at Glu-D1 has most profound effect on bread-making 
quality, although limited numbers of alleles have been reported at this locus. In 
addition to hexaploid wheat, Aegilops tauschii Cosson, the diploid ancestor of the 
D-genome, conserves many unique Glu-D1 alleles. So far, 14 x-types and 10 y-type 
subunits in Ae. tauschii have been identified resulting into combination of 85 differ-
ent Glu-D1 alleles (Rehman et al. 2008).

Amino Acid Composition and Structure

HMW-GS is a highly complex mixture of proteins and high level of polymorphism 
is the main limiting factor to study the structure of gluten proteins. However in the 
last 30 years, much of the work has focused on HMW-GSs of wheat (Shewry et al. 
2002). There is a high resemblance in primary structure of x- and y-type subunits. 
Both subunits consist of a signal peptide, N- and C-terminal domains and a repeti-
tive central domain (Shewry and Halford 2002). The significant difference is in the 
number of conserved cysteine residues which are four in majority of x-type sub-
units and usually seven in the y-type subunits. These cysteine residues had a major 
role in the formation of disulphide bonds within and between subunits. Therefore 
these are primarily important in structure and function of the elastic properties of 
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gluten protein result in risen loaf of wheat dough (Shewry and Tatham 1997). The 
repetitive domains are consisted of short and repeated peptide motifs in both x- and 
y-type subunits. These peptide motifs may be tripeptide, hexapeptide and nanopep-
tide, while the presence of the tripeptide motif is unique to the repetitive domain 
of x-type subunits (Shewry and Tatham 1997). Because the HMW-GS have very 
high glutamic acid contents, therefore proline and glycine contents are also very 
high, while lysine contents are very low. It is also evident from amino acid com-
position of HMW-GS that the central repetitive domain has hydrophilic nature and 
N- and C-terminal domains have hydrophobic characteristics (Shewry et al. 1989). 
The polypeptide motifs determine the proportion of the different amino acids in 
HMW-GS. Shewry and Tatham (1997) revealed that > 90 % of the repetitive do-
mains are formed from the variations in the consensus repeat sequences (PGQGQQ 
and GYYPTSPQQ). Moreover, x-type subunits are characterized by the presence 
of unique tri-peptide motif (GQQ). While in y-type subunits, the second proline is 
replaced by a leucine in the GYYPTSPQQ repeat motif.

Alleleic identification

The invaluable platform for HMW-GS diagnosis is, no doubt, sodium dodecyl sul-
phate poly-acrylamide gel electrophoresis (SDS-PAGE). However some limitations, 
like co-migration of some subunits, difficulty in detecting differences in expression 
levels, results in inaccurate identification of alleles differing in functional proper-
ties. Moreover, this technique is only possible from the flour of mature grains. The 
advancements in molecular biology has enabled us to overcome these limitations 
by using allele specific PCR markers. These markers are developed based on DNA 
polymorphism present among the glutenin subunit genes are considered perfect to 
study allelic variations for HMW-GS. The major advantage is the high-throughput 
analysis of different alleles in breeding materials which is also possible during the 
vegetative growth stages (Liu et al. 2008a). We have discussed in detail the mo-
lecular diagnosis approaches for HMW-GS identification in “Functional markers” 
section of this chapter.

Among the other proteomics based technologies used to detect HMW-GS in-
clude reversed-phase high-performance liquid chromatography (RP-HPLC) and 
the most recent matrix assisted laser desorption time-of-flight mass spectrometry 
(MALDI-TOF). Gao et al. (2010) analyzed HMW-GS separation and characteriza-
tion of bread wheat and wild accessions on MALDI-TOF, SDS-PAGE and RP-
HPLC. Comparative analysis demonstrated merits and demerits of each method-
ology. Incorrect identification due to low resolution and overestimation has been 
the main drawback of SDS-PAGE. Irrespective of its disadvantages, SDS-PAGE 
is the simplest and cheaper technique, therefore, suitable for large-scale and high-
throughput HMW-GS screening for wheat genotypes especially when the glutenin 
composition is clear in the breeding material. The most recent mass spectroscopy 
MALDI-TOF had several technical advantages including high throughput, high 
resolution, and accuracy. However, high equipment cost is the main hindrance to 
access this technology for many breeding programs.
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Low Molecular Weight Glutenin Subunits

Low molecular weight glutenin subunits (LMW-GS) are also major fraction of glu-
tenins and are also known as prolamine due to high amino acid, glutamines and 
pralines. LMW-GS represent about one third of the storage proteins and about 60 % 
of total glutenins (Beitz and Wall 1973). The genes controlling LMW-GS are pres-
ent at short arm of group 1 chromosomes, Glu-3 loci ( Glu-A3, Glu-B3 and Glu-
D3), which are tightly linked to the Gli-1 loci. Additionally, three new loci Glu-2, 
Glu-4 (Jackson et al. 1985; Liu and Shepherd 1995) and Glu-5 (Sreeramulu and 
Singh 1997) located on chromosomes 1B, 1D and 7D respectively, with molecular 
weights ranging from 30-31,000 Da, have also been reported to encode LMW-GS. 
The LMW-GS are more difficult to characterize and study as compared to HMW-
GS, due to their heterogeneity. However, different analytical tools become avail-
able with the advancement of technology which made easier their characterization. 
Biochemical classification revealed three classes of LMW-GS i.e. B, C and D types 
(Jackson et al. 1983). Additionally, B type LMW-GS are further classified into three 
classes, LMW-m, LMW-s and LMW-i, based on the first amino acid residue which 
may be Methionine, Serine and Ile, respectively. Genes present at Glu-A3 locus 
manly encode LMWi type subunits, which is the most recently identified class of 
LMW-GS (Zhang et al. 2004). Additionally, LMW-i had significant structural dif-
ferences from LMW-m and LMW-s groups due to the lack of an N-terminal region 
and localization of cysteine residues in C-terminal region. However, eight number 
of cysteine residues are common in all groups. This structural difference is proposed 
to encode quality differences by glutenin polymer formation and gluten interac-
tion. The C and D type subunits are composed mainly of proteins related to α/β-, 
γ- and ώ-gliadins which have variable numbers of cysteine residues. D’Ovidio and 
Masci (2004) proposed these subunits are incorporated into the polymeric network 
by virtue of unpaired cysteines. The dough quality is known to be influenced greatly 
by allelic variations at the Glu-3 loci and ranking of different alleles due to their 
functional properties have been reported (Juhász and Gianibelli 2006).

Gene Expression and Polymorphism

In MacGene (2010) 17, 26 and 11 alleles differentiated by different diagnostic tech-
niques are documented at all Glu-3 loci wheat. However, this does not include the 
allelic variants encoded and confirmed in different wild relatives of Triticeae. In 
earlier studies, 20 different LMW-GSs were identified in 222 common wheat vari-
eties from 32 countries (Gupta and Shepherd 1990). It was revealed that six alleles 
were encoded at Glu-A3, nine at Glu-B3 and five at Glu-D3 locus. Allelic richness 
of chromosome 1A encoded subunits was relatively low and even some cultivars 
did not express any LMW-GS. While the B-genome encoded LMW-GS, Glu-B3, 
showed highest polymorphism. Gupta and Shepherd (1993) provided evidence for 
the presence of LMW-GS genes on group 6 chromosomes. There is a close link-
age between gliadins encoded by Gli-1 loci and LMW-GS encoded by Glu-3 loci 
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(Gianibelli et al. 2001). This linkage between alleles of two loci helped in diagnosis 
of several Glu-B3 and Glu-D3 alleles in wheat genotypes. Several glaidins were 
found as reliable markers LMW-GS allele diagnosis, due to their easy detection 
(Jackson et al. 1996).

Amino Acid Composition and Structure

The N-termninal sequence is most important for identification of LMW-GS, there-
fore seven main types of LMW-GS have been identified on the basis of first ami-
no acid in the N-terminal sequences of the proteins. These include, seven LMW-s 
with starting with sequence SHIPGL-, three LMW-m with N-terminal sequences 
of METSHIPGL-, METSRIPGL and METSCIPGL respectively. In three LMW-
GS, the N-terminal sequences resembles to the α-, β- and γ-type gliadins (Cloutier 
et al. 2001). The further classification of LMW-GS is based on deduced amino 
acid sequences and cysteine residue position facilitating inter-molecule disulfide 
linkage (Ikeda et al. 2002). Twelve such LMW-GS groups have been identified in 
wheat. Collectively, more than 100 genes of LMW-GS have been characterized and 
sequenced from common wheat including several partial and pseudogenes (Cloutier 
et al. 2001; Zhang et al. 2004). There was an effort by Long et al. (2005) to develop 
LMW-GS group specific primers, which they developed from the analysis of 69 
known gene sequences from GenBank and classified them into nine groups by the 
deduced amino acid sequence of the highly conserved N-terminal domain. Later on, 
Ikeda et al. (2006) also developed 10 primers, based on the available sequences in 
the GenBank, which were group specific. In wheat varieties from Australia, Zhao 
et al. (2006, 2007) identified 6 different gene sequences and 12 gene haplotypes at 
the Glu-D3 locus.

There is high similarity between the secondary structures of LMW-GS and struc-
ture of the S rich gliadins and the only exception of D type LMW-GS (D’Ovidio 
et al. 1995). There are about 250–300 residues are reported in polypeptides. Sev-
eral workers have reported the further modification in the two domian structure 
of LMW-GS (Kasarda et al. 1984; Wieser 1995). In both domains, the N-terminal 
repetitive domains is rich in β-turns while short nonrepetitive domain is rich in 
α-helix and is more compact (Thomson et al. 1992).

Allelic identification

SDS-PAGE is considered one of the simplest techniques to identify LMW-GS with 
some restrictions. At Glu-A3 locus, SDS-PAGE could identify five out of seven al-
leles, while 2-D gel electrophoresis and PCR based markers identified all the allelic 
variation at this locus in bread wheat (Liu et al. 2010). The Glu-B3 alleles are easier 
to be identified by SDS-PAGE, MALDI-TOF and PCR based markers but some ad-
ditional validation is more reliable by 2-DE method. Liu et al. (2010) compared four 
techniques (SDS-PAGE, 2-DE, MALDI-TOF, PCR based markers) as a conduit to 

10 An Overview of Omics for Wheat Grain Quality Improvement



314

test their suitability to be integrated in breeding programs. They established that 
the PCR based markers are the simplest, most accurate, lowest cost technique and 
therefore recommended this method for the identification of Glu-A3 and Glu-B3 al-
leles in breeding programs. However, the combination of different techniques was 
required to identify certain alleles, and would be especially useful when character-
izing new alleles from new genetic resources. They also recommended a standard 
set of 30 cultivars for use in future studies to represent all LMW-GS allelic variants 
in the collection. 

Gliadins

In wheat storage proteins, gliadin is an important fraction that accounts for about 
40–50 % of the total proteins. It has great impact on processing and nutritional 
quality of flour, followed by HMW-GS and LMW-GS. Gliadins are soluble in 70 % 
ethanol and are heterogeneous mixtures of single-chained polypeptides. Gliadins 
can be seperated in A-PAGE (acid-PAGE) based on the differences in their mobil-
ity. The four different groups identified include α-, β-, γ-, and ω-gliadins, of which 
α- gliadins has fastest while ω-gliadins has slowest mobility. Gliadins are controlled 
by Gli-1 loci, which are complex and comprise the ω-gliadin and γ-gliadin (Me-
cham et al. 1978) multi-gene families (Harberd et al. 1985), which in some circum-
stances may be divided into Gli-1-1 and Gli-1-2, respectively. The LMW glutenin 
multigene families, which are closely linked to the Gli-1 loci (Jackson et al. 1983), 
are listed separately as the Glu-3 set (Singh and Shepherd 1985); information on 
map distance and gene order in relation to Glu-3 and the centromere is given in the 
preamble for the Glu-3 loci.

Gene Expression and Polymorphism

It was identified that short arms of group 1 and group 6 chromosomes encode glia-
din genes. The genes present on Gli-1 loci are controlled by Gli-A1, Gli-B1, and 
Gli-D1 loci on 1AS,1BS and 1DS, respectively. Similarly, Gli-2 genes are con-
trolled by Gli-A2, Gli-B2, and Gli-D2 loci on chromosomes 6AS, 6BS and 6DS, 
respectively. The genetic analysis revealed that all ω- and many γ-gliadins are en-
coded by Gli-1 loci and all α-, many of β-, and some of γ-gliadins are encoded by 
Gli-2 loci. The gene clusters of gliadins encode polypeptides as Mendalian factor 
and multiple allelism phenomenons have been observed at both loci (Metakovsky 
1991). In MacGene (2010), 23 alleles are listed for Gli-A1, 24 for Gli-B1 and 15 
alleles for Gli-D1 in bread and durum wheat. Similarly, among Gli-2 loci, Gli-A2 
encodes 36 alleles, Gli-B2 encodes 47 and Gli-D1 encodes 31 alleles. Apart from 
these two loci, several workers reported many other loci. These include Gli-3 (4 al-
leles at Gli-A3 and 3 alleles at Gli-B3) coding for ω-gliadins on short arms of group 
1 chromosomes (Galili et al. 1984; Sobko 1984), Gli-5 (2 alleles at both Gli-A5 and 
Gli-B5 loci) coding for ω-gliadins on short arm of chromosomes 1A and 1B distal 
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to Gli-1 (Pogna et al. 1993), Gli-6 and Gli-7 on short arm of chromosome 1A and 
1D (Metacovsky et al. 1996; Hassani et al. 2006).

Amino Acid Composition and Structure

Among the four gliadin groups, ω-gliagins have high level of glutamione and pro-
line while low level of sulfurous amino acids (Gianibelli et al. 2002). Compara-
tively, they had few amino acids and high phenylalanine levels as compared to other 
gliadin groups (Kasarda et al. 1983; Tatham and Shewry 1995). Difference does 
exist among gliadin groups for surface hydrophobicity and ω-gliagins are lower 
hydrophobic than that of the α- and γ-type gliadins. Popineau and Pineau (1987) 
identified the gliadins as first peptides elute from the reverse phase-HPLC column. 
Among all the gluten protein fractions, gliadins are highest hydrophilic with refer-
ence to amino acid composition with only a few residues with charged side chains 
(Dupont et al. 2000). Three different types of ω-gliagins have been observed on 
the basis of the N-terminal sequences. The nomenclature of ω-gliadins is followed 
from the first three amino acids in their N-terminal sequences (Kasarda et al. 1983). 
Therefore, these three groups are called ARQ-, KEL-, and SRL-types based on the 
aforesaid nomenclature system (Tatham and Shewry 1995).

Similar to the ω-gliadins, α-, β- and γ-gliadins are also rich in glutamine and 
proline. In these groups, about 90 % of the glutamic and aspartic acid residues are 
amidated (Bietz et al. 1977; Kasarda et al. 1983). They are also characterized by 
low levels of basic amino acids and high leucine. In α/β- and γ-gliadins cysteine 
residues are 6 and 8, respectively and both all types are rich in sulfur. Müller and 
Wieser (1995, 1997) confirmed that 3–4 disulfide bonds between molecules are 
formed. The α/β-gliadins are represented by a very small sequence of five amino 
acid residues (VRVPV) on the basis of N-terminal sequences (Bietz et al. 1977). In 
α/β-gliadin, the pentapeptide motifs (PQQQP and PQQPY) are always present in a 
repetitive region that follows the N-terminal region of the proteins (Shewry et al. 
1986). Contrastingly, in γ-gliadins the N-terminal region is consisted twelve amino 
acid residues (NMQVDPSGQVQW) followed by several repeats of consensus mo-
tif PQQPFPQ (Kasarda et al. 1983; Shewry and Tatham 1990).

Recently, Qi et al. (2009) analyzed 170 γ-gliadin genes isolated from common 
wheat and its closely related species, among which 138 sequences are putatively 
functional. The ORF lengths of these sequences range from 678 to 1089 bp, and the 
repetitive region is mainly responsible for the size heterogeneity of γ-gliadins. The 
repeat motif 

P(Q/L/S/T/I/V/R/A)F(S/Y/V/Q/I/C/L)P(R/L/S/T/H/C/Y)Q1–2(P(S/L/T/A/F/
H)QQ)1–2 

is repeated from 7 to 22 times. They found a wide range of amino acid composition 
in γ-gliadins, and those γ-gliadins from subgroup SG-10 and SG-12 and γ-gliadins 
with a short repetitive domain are more nutritional.
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Kernel Texture (Ha Locus)

In wheat, the grain texture is encoded by the friabilin group of proteins having 
Mr~13 k Da. These proteins have strong association with starch. In soft grains, 
these are frequently associated with water-washed starch. While in hard grains and 
durum they show limited and no association with starch, respectively. It was gener-
ally suggested that friabilins are non-sticky proteins minimizing sticking of starch 
granules and protein matrix, thus allowing their easier separation. Friabilin give 
rise to two major polypeptides upon electrophoresis separation and amino acid se-
quencing. There are three polypeptides viz. puroindoline a, puroindoline b and grain 
softness protein-1 which are designated as PINA, PINB and GSP-1, respectively. 
Morris (2002) reviewed the properties, purification methods and discovery of fria-
bilin. Hard and soft kernel textures are not due to difference in amount of friabilin 
because both classes have similar amount of friabilin. Rather difference is due to 
association of strach granules with friabilin during aqueous isolation. The major 
locus, Ha, is responsible for textural properties (Symes 1965), and has been identi-
fied on 5DS chromosome (Mattern et al. 1973; Sourdill et al. 1996). Puroindoline 
proteins encoded by two strongly linked genes at this locus were identified that is 
associated with variation for grain hardiness (Gautier et al. 1994). A mutation in 
Pinb gene results in change in amino acid giving rise to altered protein structure to 
bind with membrane polar lipids (Giroux and Morris 1998). This results in altera-
tion of binding strength between protein matrix and starch granules. Apart from this 
mutation, Giroux and Morris (1998) also identified a null allele, Pina-Da, on other 
puroindoline gene. It was concluded that a variety will have the hard texture hav-
ing mutant alleles ( Pina-D1b or Pinb-D1b) at both puroindoline genes. Although, 
higher allelic variation observed at these loci (Morris 2002) but genotypes having 
alleles Pina-D1a/Pinb-D1a (soft), Pina-D1a/Pinb-D1b (hard) and Pina-D1b/Pinb-
D1a (extra hard) are predominant (Cane et al. 2004). A positive correlation of these 
genotypic classes with water absorption was observed. Genotypes with extra hard 
texture absorbed 3.5 % more water than varieties with the hard texture and 8.3 % 
more than those with the soft texture. Contrastingly, they, did not find any differ-
ence for water absorption in the ‘‘extra hard’’ and ‘‘hard’’ classes. However a drop 
in milling yield in extra hard genotypes was observed by both. Apart from Ha locus, 
several QTLs underlying grain hardness characteristics have been discovered.

Genes�and�Polymorphism

Bhave and Morris (2008) reviewed the molecular genetics, gene regulation and 
structure of puroindolines. MacGene (McIntosh et al. 2010) listed 17 alleles at Pina-
D1, 29 alleles at Pinb-D1 and 9 alleles at Gsp-D1 locus. Recently, Chen et al. (2009) 
identified 9 haplotypes in 56 sequences from einkorn wheat. Guzman et al. (2012) 
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also observed genetic polymorphism and nucleotide diversity of puroindoline genes 
in einkorn wheat and T. urartu accessions. A new translocation lines (5AmS.5AS) 
from CS background carries puroindolines and GSP-1 alleles that confer softer ker-
nel texture. Massa et al. (2004) analyzed 50 accessions of Ae. tauschii which held 
enormous diversity at Ha locus. Simeone et al. (2006) identified putative puroin-
doline proteins with 22 and 28 amino acid replacements while working on diploid 
species. In some accessions of Ae. speltoides and Ae. searsii, a stop codon at final 
Tryptophane of PINA was observed while in other accessions one-residue was de-
leted inin PINB (Lillemo et al. 2002).

Structure�of�Genes�at�Ha�Locus

The intronless coding regions of the Pina-D1 and Pinb-D1 genes of bread wheat are 
447 bp long. The genes are 70.2 % identical in the coding regions but only ~53 % 
identical in the 30 un-translated region (Gautier et al. 1994). The physical order 
of these genes within BAC clones was identified as Pinb-Pina-Gsp-1 in T. mono-
coccum (Tranquilli et al. 1999) and Ae. tauschii (Turnbull et al. 2003). There are 
several reports where additional partial copy of Pina-D1 has been found on 5DL. 
Bahve and Morris (2008) discussed in detail the gene expression their regulation 
and promoter sequences of puroindolines. The characterization of nucleotide se-
quence in A and B genome of tetraploid wheat, the 50 boundary of the Ha locus was 
defined by Gsp gene. A gene cluster known as Gene7 and Gene8 was also validated 
by the presence of the 30 boundary. Therefore, a ca 55 kb gDNA segment is defined 
as the Ha locus having the Pina, Pinb, two Pinb degenerated copies, Gene3 (only in 
D-genome) and Gene5. Chantret et al. (2005) identified a deletion of 38 kb in com-
mon wheat instead of Gene3 and Gene5. Instead these genes were annotated in dip-
loid progenitors of hexaploid wheat. In barley, analysis of Ha locus identified some 
genes clusters were found conserved between wheat and barley (Caldwell et al. 
2004). Some rearrangements were observed in barley hordoindolines (equivalents 
of puroindilines) like upstream position of gene from GC2 instead of downstream 
(as in wheat) and they are also in the opposite orientation. However, in barley grain 
hardiness is focused to their resistance to pest and disease invasion rather than mill-
ing attributes.

The other important part of Ha locus is Gsp-1 gene which is tightly linked to 
Pina and Pinb on chromosome 5DS. Unlike Pin genes, GSP-1 genes are present on 
all three group 5 chromosomes in wheat (Chantret et al. 2005). The nucleotide cod-
ing region of these genes consists of 495 nucleotides without introns and resembles 
90–100 % with one another and ~42 % with Pin genes (Bhave and Morris 2008). 
Some studies suggest multiple Gsp-1 copies per genome in at least some genomes/
accessions (Gollan et al. 2007) whereas mapping studies show only one gene at the 
Ha locus (Chantret et al. 2005).

10 An Overview of Omics for Wheat Grain Quality Improvement



318

Grain Protein Content (GPC) and Nutritional Aspects

Improving the grain protein content has been area of main focus for wheat breed-
ers due to its major contribution in bread and pasta-making quality and has a major 
contribution in improving nutritional status of masses. Despite of its importance, 
constrains prevail to increase protein contents due to its quantitative inheritence 
and high influence of the environment (Simmonds, 1995). Several reports are avail-
able on QTLs controlling GPC and linked markers are available for MAS. An au-
thentic source of high protein content has been identified in accession of Triticum 
turgidum L. ssp. dicoccoides (referred to as DIC) during a survey (Avivi (1978). 
Cantrell and Joppa (1991) substituted each chromosome of DIC with the durum 
cultivar ‘Langdon (LDN)’ and later it was found that 6B substitution line of DIC 
into LDN (DIC-6B) had highest protein contents (Joppa et al. 1997). The DIC-6B 
substitution line and LDN were used a parents and a RILs mapping population was 
developed to map QTL conferring high GPC, which was found on the chromo-
some 6BS. Another secondary mapping population (RILs) was developed to further 
shorten this QTL and it was mapped between RFLP probes Xcdo365 and Xucw65 
as a single Mendelian locus ( Gpc-B1) within a 2.7 cm region (Olmos et al. 2003). 
Some new markers were developed in this region for high density mapping through 
Rice-Wheat micro-colinearity studies. Some additional recombination was initiated 
by developing more RILs and Gpc-B1 locus was reduced with a 0.3 cm segment us-
ing newly developed markers (Distelfeld et al. 2004). The Gpc-B1 gene within the 
0.3 cm segment was physically mapped which spanned about 250 kb region (Dis-
telfeld et al. 2006). The Gpc-B1 allele in DIC accelerates leaf senescence and Uauy 
et al. (2006a) suggested the differences in GPC are actually pelotropic effects of the 
in senescence. Kade et al. (2005) discovered the effect of DIC Gpc-B1 allele during 
senescence explained the higher levels of soluble proteins and amino acids in flag 
leaves after anthesis relative to those with the LDN allele. Higher mineral contents 
in DIC were found to be associated with chromosome 6B (Cakmak et al. 2004), but 
its association with 250 kb region including Gpc-B1 was validated later (Distelfeld 
et al. 2007). The major discovery was reported when map based cloning identified 
the Gpc-B1 as a NAC transcription factor ( TtNAM-B1) and it was established that 
wild emmer wheat has a functional allele whereas modern wheat varieties carry 
a nonfunctional allele originated by a frame shift mutation (Uauy et al. 2006b). 
The functional NAM-B1 orthologous has been found on chromosome 6A and 6D 
( TtNAM-A1 and TaNAM-A1) and 6D ( TaNAM-D1), and closely related paralogues 
on chromosomes 2B ( TtNAM-B2 and TaNAM-B2) and 2D ( TaNAM-D2). In RNAi 
studies, RNA levels of these NAM homologs was reduced which in turn delayed 
senescence for more than 3 months and reduced grain protein and mineral contents 
by more than 30 % as compared to control lines (Uauy et al. 2006b). Most Recently, 
Cantu et al. (2011) employed mRNA-seq approach to detect small differences in 
transcript levels and identified the monocarpic senescence as an active process lead-
ing to large-scale changes in gene expression which begins considerably before the 
appearance of visual symptoms of senescence. As a result several GPC-regulated 
genes including transporters, hormone regulated genes, and transcription factors 
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are activated. These GPC-regulated genes, particularly those up-regulated during 
senescence, provide valuable entry points to dissect the early stages of monocarpic 
senescence and nutrient remobilization in wheat.

Another main miner bioavailability limiting factor is the presence of phytic acid 
(PA). PA is stored in the aleurone layer and hampers the intestinal absorption of 
mineral cations by making insouluble complexes (Cheryan, 1980). Phytase activity 
of the flour strongly reduces the PA breakdown. Therefore, the mineral bio-avail-
ability depends on, both, mineral and phytase concentrations and these should be 
taken into account in wheat improvement for biofortification. Recently, Ram et al. 
(2011) indicated the presence of higher genetic variability of phytase in synthetic 
hexaploids as compared to Indian cultivars. There is a greater scope for manipu-
lating phytase levels as compared to phytate in wheat breeding, due to the larger 
genetic effects and greater genetic variability of the phytase in wheat. Thus, D-ge-
nome synthetics hold significance to be used as source for increasing phytase levels. 
The release of cultivars with high mineral concentrations complemented with high 
intrinsic phytasic activity could greatly improve the nutritional value of bread, pro-
vided that less refined flour is utilized to preserve the source of the minerals. CIM-
MYT nearly a decade ago screened some wheat progenitor resources and identified 
accessions of T. dicoccon with elevated levels of iron and zinc. On these tetraploids, 
synthetic hexaploids were developed by the wide crossing unit and produced stocks 
( T. dicoccon/Ae. tauschii) for wheat breeding program. A nursery set has been de-
ployed in India and Pakistan from which promise has been observed but impacting 
findings are still awaited.

QTLS for Grain Quality Traits

Understanding the genetic architecture underlying quality traits is essential to iso-
late and characterize the desirable genes. Extensive QTL mapping studies have 
been performed to study the genetic control of quality traits. The recent trend shifted 
to association mapping is the further extension to bi-parental mapping to study the 
QTLs with accuracy and precision (Mascri et al. 2012). Earlier, Campbell et al. 
(1999, 2001) identified QTL for kernel, milling, and baking traits. QTL for kernel 
traits are located on chromosomes 1A, 2B, 2D, 3B, 7A, and 7B. Earlier to this, 
Parker et al. (1998) identified two major loci for flour color on chromosomes 3A 
and 7A, using RFLP marker in 150 RILs. In quantitative terms, the most important 
trait is flour yield and several QTLs have been identified for this trait on chromo-
somes 4A, 4D, 5D (Nelson et al. 2006), 5D (Campbell et al. 2001) and 7D (McCart-
ney et al. 2006). Recently, Carter et al. (2012) identified two QTLs on chromosome 
7B explaining the 17 and 19 % variability in 188 RILs population. Similarly, flour 
and grain protein identified as a key quality trait largely influencing the quality at-
tributes of dough had several QTLs identified in RILs (Nelson et al. 2006; Carter 
et al. 2012) and double haploid (McCartney et al. 2006; Huang et al. 2006) mapping 
populations. Two QTLs on chromosomes 2D and 4D explained about 30 % of the 
phenotypic variability and were also validated by other researchers.
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The genetic control of milling and baking qualities is of paramount interest for 
industry. QTL mapping population from a soft x hard wheat was used by Breseghe-
llo et al. (2005) and about 15 QTL conferred control of milling traits, protein con-
tent and baking assay, were detected on group 1 and group 2 chromosomes with 
some QTLs on 3A/B, 4B, 5B, and 6B. In another mapping population from RL4452 
x ‘AC Domain’ hard wheat cross, about 99 QTLs were found on 18 chromosomes 
for 41 quality traits (McCartney et al. 2006). A major QTL on 4D controlling plant 
height (Rht-D1b) flanked about 20 QTLs while a crop maturity controlling locus 
adhered about 10 QTLs controlling grain quality characteristics like starch contents, 
mixograph, farinograph and baking performance.

Apart from the bi-parental QTL studies, recently few association-mapping stud-
ies have been attempted to detect QTL for quality traits in sets of soft wheat germ-
plasm. Several QTLs conferring control of kernel morphology were detected on 
chromosomes 2D, 5A, and 5B. Similarly, several quality-encoding QTLs were de-
tected on 15 different chromosomes in an association mapping population by Reif 
et al. (2011). The majority of QTLs for flour characteristics, retention capacity of 
solvent and softness equivalent were found to be located on chromosome 1B and 
2B in soft wheat bi-parental mapping population. We have presented an overview of 
QTL detection efforts for grain quality traits in wheat in Table 10.1.

Functional Markers for Wheat Grain Quality Traits

During the past two decades, there are extensive studies on the molecular mapping 
of the genes underlying the grain quality traits and a brief overview has been pre-
sented in earlier heading. These QTL analyses identified linked molecular markers 
such as SSRs, RAPDs, AFLPs, RFLPs and DArTs with the key quality traits. The 
low detection power, distance from the genes and allele specificity to the population 
and parents are the key characteristics of the neutral markers which effect on their 
predictive value in the diverse populations. Therefore, the diagnostics by the linked 
markers (MAS) is questioned in breeding programs and their use is restricted with 
some exceptional cases. Due to recent developments in molecular biology, there is 
overwhelming response for the use of functional markers as a selection tool due to 
their apparent advantage over the linked molecular markers. These are developed 
from the nucleotide sequence of the functional gene and it has powerful tendency to 
distinguish allelic variation on a single locus, thus are considered perfect markers 
for MAB (Varshney et al. 2005). Nevertheless, with the progress in gene cloning 
during the last years, the development of corresponding functional markers is get-
ting fast track. In quantitative terms, 97 markers have been developed as a result of 
cloning of 30 genes. These markers had ability to identify 93 disease resistance al-
leles, agronomic and grain quality traits. In wheat, the grain processing and baking 
quality is controlled by high- and low-molecular weight glutenins, grain hardiness, 
and starch contents, polyphenol oxidase (PPO) activity, lipoxynase (LOX) activ-
ity and yellow pigment content (YPC). In total, 56 functional markers have been 
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developed for quality traits by cloning of 62 alleles at 16 loci. Functional markers 
that have application for wheat quality improvement are presented in Table 10.2.

Isolation and characterization of functional motifs within genes controlling phe-
notypic variability is critical to develop allele specific markers. These motifs are 
usually characterized by single nucleotide polymorphisms (SNPs) or insertions/de-
letions (InDels) within the nucleotide sequences of different alleles. Using the map-
based cloning approach, several genes have been isolated in plants; however, the 
very large genome is the main problem in common wheat which makes map-based 
cloning difficult as compared to rice and maize. Rice-wheat micro-colinerarity and 
different comparative genomics tools provides an alternate and efficient way to 
dissect target genes in wheat. This is due to the fact that rthologs descended from a 
common ancestor often have conserved functions and are expected to produce simi-
lar phenotypes across species (Devos 2005). The whole genome sequence is avail-
able for several grasses including rice, maize and Brachypodium which provided 
powerful tools for gene discovery in wheat (Vogel et al. 2010). The in silico technol-
ogy is now widely used for discovery of genes of interest in wheat (Ma et al. 2012). 
A major breakthrough is the availability of expressed sequence tags (EST) database, 
from where the sequences of putative wheat genes can be obtained by aligning and 
joining of orthologous genes with the same function in the grass.

Description�of�Quality�Traits�and�Their�Functional�Markers

Significance of HMW-GS and LMW-GS ingrain quality has been described ear-
lier. There are several reports on the nucleotide sequences of the cloned genes for 
HMW-GS and LMW-GS. The nucleotide sequence of these cloned genes provided 
the basis for marker development for their further use in breeding. Zhang et al. 
(2004) developed markers for Glu-A3 alleles based on DNA polymorphisms identi-
fied between the LMW glutenin genes. However markers developed by Wang et al. 
(2009b, 2010) for Glu-A3 and Glu-B3 are more efficient and easier to use. However, 
due to limited variation among Glu-D3 haplotypes, no allele specific marker was 
developed (Liu et al. 2010), and comparatively their impact is also very small com-
pared to Glu-A3 and Glu-B3 loci (Gupta et al. 1989). Zhao et al. (2007b) attempted 
to develop markers for Glu-D3 haplotypes and later Appelbee et al. (2009) tried to 
use those haplotype specific marker combinations for diagnosis of some specific al-
leles like Glu-D3a, b, c and f. A total of seven allele specific markers for Glu-A3 and 
ten markers for Glu-B3 loci have been reported. Additionally, Wang et al. (2009b, 
2010) also established multiplex PCR strategies to reduce the cost of technique in 
practical breeding programs. The practical usage of functional markers for HMW-
GS and LMW-GS to test wheat cultivars and lines has been established and reported 
(Liang et al. 2010; Jin et al. 2011; Ram et al. 2011; Khalid et al. 2013).

The GBSS I (granule-bound starch synthase) is defined as Waxy ( Wx) protein, 
and it is a primary enzyme involved in synthesis of amylose in wheat endosperm. 
The amylose contents play an important role in determining noodle quality. The 

A. Rasheed et al.
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Wx-B1 null allele in a wheat cultivar is characterized by low amylose level that is 
associated with high noodle making quality. Several allele specific markers have 
been developed to facilitate marker assisted introgression of desired waxy allele 
(Saito et al. 2009; Nakamura et al. 2002).

The description of puroindoline genes determining the kernel hardness has been 
described earlier. Two genes designated as Pina-D1 and Pinb-D1 encoding puroin-
doline a and puroindoline b proteins, respectively, has a profound effect on wheat 
milling quality. Molecular markers for identifying alleles at both loci have been 
developed by many workers (Giroux and Morris 1997; Gazza et al. 2005; Chen et al. 
2012). The allele specific marker for Pinb-D1b is diagnostic for superior milling and 
processing qualities and is in extensive use in wheat breeding (Chen et al. 2012).

Polyphenol oxidase (PPO) activity is responsible for brown discoloration of the 
wheat products especially Asian noodles, which is an undesirable character. It is 
important to screen cultivars for low PPO activity and several markers have been 
developed to serve the purpose. The PPO genes are present on chrosomosomes 2A 
and 2D (Sun et al. 2005; He et al. 2007). Low PPO activity encoded by the Ppo-A1 
gene is characterized by the presence of 87 and 481 PCR fragments amplified by 
PPO18 and PPO33 markers, respectively. Similarly, two other allele specific mark-
ers PPO16 and PPO29 can distinguish alleles Ppo-D1a and Ppo-D1b which are 
associated with lower and higher PPO activity, respectively. Practical usage of these 
markers in wheat breeding for identification of genotypes with lower PPO activity 
is scientifically valid (Liang et al. 2010). Nevertheless, PPO gene located on 2B 
chromosome had limited polymorphism in Chinese wheat to develop a functional 
marker. Lipoxygenase activity is also major determinant of color and processing 
quality of wheat products (Geng et al. 2012). A lipoxygenase (LOX) gene has been 
localized on chromosome 4BS ( TaLox-B1) and two allele specific markers LOX16 
and LOX18 amplify 48 and 791 bp PCR fragments in cultivars with higher and 
lower LOX activities, respectively (Geng et al. 2012). The gene, TaLox-B1 was 
sequenced and a SNP was identified in the third exon which was helped in develop-
ment of two markers for identifying alleles TaLox-B1a and TaLox-B1b.The color 
of wheat derived products is due to the yellow pigment content. Regional prefer-
ence for color does exist, like bright white color is preferred for Chinese white 
salted noodles, whereas yellow alkaline noodles with bright yellow color are widely 
preferred in southeastern Asia and Japan (Parker et al. 1998). Carotenoids are re-
sponsible for yellow pigment (He et al. 2008) while phytoene synthase (PSY) and 
zeta-carotene desaturase (ZDS) are important enzymes in the biosynthetic pathway 
for carotenoid synthesis in wheat (Zhang et al. 2011; Dong et al. 2012). PSY genes 
are present chromosomes 7AL, 7BL and 7DL and several allele specific markers for 
PSY genes have been developed (He et al. 2008, 2009a; Wang et al. 2009a). Simi-
larly, markers for ZDS genes on chromosomes 2A and 2D can discriminate alleleic 
difference in wheat (Zhang et al. 2011; Dong et al. 2012).
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Genetic Resources for Quality Improvement

The tribe Triticeae had almost 350 species, of which wheat and barley are the mem-
bers. This natural diversity in the Triticeae gene pool can be incorporated in con-
trolled and well directed manner for which the priority is given to annual and peren-
nial Triticeae species. The species resources are distributed within gene pools and 
wheat improvement for environmental stresses can be realized by genetic transfer 
from these gene pools over short- and long term time frames. The allelic diversity 
within Triticeae is crucial to harness for meeting the projected global demand of 
wheat. The key resources of variability at priority are the primary gene pool diploid 
D genome donor accessions of wheat; Aegilops tauschii, and some sources from 
the tertiary gene pool possessing high potential values. Utilization of these genetic 
resources to develop genetically compatible germplasm readily available for wheat 
improvement needs integrated breeding approach with association of emerging 
technologies and multidisciplinary specialties facilitating exploitation of molecular 
tools of MAS, SMART (Selectison with marker and advanced reproductive tech-
nologies) breeding and QTLs hopefully to add to breeding efficiency.

The genes coding for high molecular weight glutenins has been dissected from 
several species of Triticeae including Hordeum, Secale, Taeniatherum, Thinopy-
rum, Aegilops, Crithopsis, Dasypyrum and their different ploidy members (Wan 
et al. 2002; Yan et al. 2002; De Bustos and Jouve 2003; Liu et al. 2003; Sun et al. 
2004; Wang et al. 2006; Cao et al. 2007; Liu et al. 2007). Due to wheat domestica-
tion syndrome, Glu-Ay always remains silent in durum and bread wheat however 
several A-genone wild species and wild tetraplopid species ( T. dicoccoides and 
T. dicoccon) express this gene (Waines and Payne 1987). The presence of active 
Ay genes had significant positive effect on the bread-making quality (Ciaffi et al. 
1995). The narrow allelic diversity for Glu-A1 locus in bread and durum wheat 
which encodes limited number of x-type subunits and does not express an active 
y-type subunit require attention to expand it by using novel allelic variants reported 
by several workers in T. urartu and T. monococcum (Waines and Payne 1987; Ciaffi 
et al. 1998; Alvarez et al. 2009; Caballero et al. 2008; Gutierrez et al. 2011). There 
are extensive studies on identification and characterization of allelic variation for 
Glu-Dt1 loci from Ae. tauschii and D-genome synthetic hexaploids (An et al. 2009; 
Yan et al. 2003; Gianibelli et al. 2001; Rehman et al. 2008; Xu et al. 2010; Bibi 
et al. 2012; Rasheed et al. 2012). A higher variability of HMW-GS due to their elec-
trophoretic mobility has been observed in A-genome species ( T. monococcum and 
T. urartu) Lee et al. 1999b; Caballero et al. 2008; Gutierrez et al. 2011), AB genome 
species ( T. dicoccoides) (Ciaffi et al. 1993), and D-genome species ( T. tauschii) 
(Rehman et al. 2008). More recently, Niu et al. (2011) analyzed HMW-GS in Th. 
bessarabicum, Th. intermedium, Lophopyrum elongatum, Ae. markgrafii and their 
addition lines. The information provided is useful for the development of molecular 
markers that will facilitate the introgression of desirable genes from the alien chro-
mosomes into wheat genomes. The identified novel HMWGS alleles may serve as 
new genetic resources for wheat quality improvement.
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Likewise HMW-GSs, many genes encoding LMW-GS have been isolated and 
analyzed in cultivated and wild species of the family Triticeae. The genes coding 
LMW-GS have been studied in the genera Elytrigia (Gupta and Shephard, 1990) 
Elymus (Obukhova et al. 1997), Dasypyrum (Blanco et al. 1991) and Hordeum 
(Atienza et al. 2002). Ae. tauschii (DD) has been an important source for genetic 
studies of LMW-GS (Gianibelli et al. 2000, 2002a; Hsam et al. 2001; Pfluger et al. 
2001; Vensel et al. 1997; Zhao et al. 2008) and exhibited greater variation in the 
coding sequence of LMW-GS (Masci et al. 1991; Lafiandra et al. 2000). Similarly, 
the other speices that have been analyzed for LMW-GS include T. monococcum, 
T. urartu (Tranquilli et al. 2002; Lee et al. 1999), T. turgidum var. dicoccoides 
(AABB) (Ciaffi et al. 1993), T. dicoccum (AABB) (Galterio et al. 2001), T. poloni-
cum (AABB) (Liu and Shepherd, 1996), T. macha (Xiong et al. 2010), Ae. bellulata, 
Ae. comosa, Ae. markgrafii and Ae. speltoides (Li et al. 2010), hexaploid obsolete 
cultivars and landraces (Ovesna et al. 2001). The variability found for LMW-GS 
in wheat wild relatives indicates the valuable potential is available to improve the 
properties demanded to make variable products. The advancements have been re-
ported on the molecular characterization of Glu-3 genes from different Triticeae 
species. For example nucleotide sequences are available from several species of 
Aegilops spp. (Jiang et al. 2008; Li et al. 2008), Agropyron elongatum (Luo et al. 
2005), Secale sylvestre (Shang et al. 2005), Crithopsis delileana (Guo et al. 2008), 
Hordeum chilense, and H. brevisubulatum (Piston et al. 2005). The nucleotide di-
versity of LMW-GS in these wild species indicated the allelic rich of Glu-3 loci in 
Triticeae. The comparative analysis of nucleotide sequences of LMW-GS revealed 
some important differences among species. For example, Hordeum chilense and 
A. elongatum lacks the N-terminal regions in the predicted mature proteins (Piston 
et al. 2005). However, further efforts need to be continued to study the evolution-
ary pattern and structure of LMW-GS gene in Triticeae which will further facilitate 
their utilization for wheat quality improvement.

A wide survey to isolate hundreds of Pina, Pinb and GSP genes from wild ac-
cessions of T. aestivum, T. turgidum, T. urartu, T. monococcum, T. timopheevii, T. 
zhukovskyi, Ae. tauschii, Ae. speltoides, Secale and Hordeum have been conducted 
(Morris 2002). The wild ancestors are known to have very soft texture as compared 
to domesticated derivatives (Morris 2002) however the exact variability for tex-
ture is not well established in diploid species. Diploid and hexaploid accessions 
of wild species had starch-associated friabilin which are generally absent in tetra-
ploid species. However puroindoline genes are present in accessions of diploid T. 
urartu, T. monococcum, Ae. tauschii and Ae. speltoides (Lillemo et al. 2002). SKCS 
based characterization of 67 accessions of T. monococcum revealed the soft texture 
(Pogna et al. 2002). Similarly, scanning electron microscopy based characteriza-
tion of texture revealed that Aegilops accessions of different genomes and ploidy 
were usually soft (Chen et al. 2005) with exception of a single Ae. Sharonensis 
accession. The species which lack Pina sequences include S-genome species Ae. 
bicornis and Ae. longissima which was contradictory to the findings of Simeone 
et al. (2006). They analyzed many combinations of 13 and 24 variable amino acids 
in the seven new haplotypes of Pina and Pinb, respectively. A null allele at PINA 
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locus was found, which carries a premature stop codon, in two Ae. kotschyi (UUSS) 
accessions. In Ae. sharonensis (SshSsh) novel haplotypes of Pina and Pinb were 
observed with their possible pseudogenes. The credibility of cDNA of intron-less 
genes is questioned due to the lack of cDNA equivalents for some genomic cop-
ies. Recently, Chen et al. (2009) studied several accessions of einkorn wheat and 
identified 56 sequences encoding the pina protein. All the gene sequences from T. 
urartu grouped together, whereas some sharing by three and two clusters was ob-
served for T. monococcum ssp. aegilopoides and T. monococcum ssp. monococcum, 
respectively. Guzman et al. (2012) also identified various alleles for Pina and Pinb 
genes including three novel alleles for the Pinb locus, Pinb-Am1i, Pinb-Am1j and 
Pinb-Am1k, from T. monococcum.

The breeding of food crops for biofortification with high iron and zinc contents 
is primarily important component within the food security nexus, especially in de-
veloping countries. There is need to develop special conventional and molecular 
breeding approaches for cost effective nutritional improvement in cereal crops 
(Bouis and Welch 2010). Currently, the cultivated durum and bread wheat varieties 
are low in grain iron and zinc contents than the related wild Triticum and Aegilops 
species (Chhuneja et al. 2006). Therefore the wild relatives should be emphasized 
for screening for the targeted biofortification traits. Due to ease of genetic transfer, 
preference should be given to the T. monococcum L., Triticum turgidum L. ssp. 
dicoccoides (Korn. ex Asch. et Graebn.) Thell, Triticum turgidum L. ssp. dicoccon 
(Schrank) Thell., and Ae. tauschii accessions. Several QTLs have been identified 
for higher grain iron and zinc contents in a Triticum monococcum x T. boeoticum 
mapping population consisting of RILs Tiwari et al. (2009). Two chromosomes 2A 
and 7A were found important for the presence of QTLs controlling iron zinc con-
centrations. Several Aegilops species have been identified as potential donors of 
useful variability for high iron and zinc concentration Rawat et al. (2009). These 
species include Ae. kotschyi Boiss., Ae. peregrina (Hack.) Maire et Weill., Ae. ge-
niculata Roth, Ae. ventricosa Tausch, and Ae. cylindrica Host. Recently, Rawat 
et al. (2011) characterized addition and substitution lines chromosome 1, 2 and 7 
from Ae. kotschyi which possess genes for high grain micronutrients. Similarly, 
Neelam et al. (2011) also identified the introgression of group 4 and 7 chromosomes 
from Ae. peregrine enhances 100–200 % grain iron and zinc density. A series of 
wheat–Ae. longissima amphiploids were also reported to have high grain iron and 
zinc concentrations (Tiwari et al. 2008) and could be used as immortal sources of 
variability for biofortification of wheat for high grain micronutrient concentrations.

Conclusions and Future Perspectives

The implementation of marker-trait combination is pre-requisite for genomics 
based wheat improvement. There is rapid advancement in high-throughput protein 
and gene analyses techniques offering large scale comparative analysis of genes 
from wild and domestication sources. Advances in developing functional markers 
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for quality traits is aiding in diagnostics and introgression of favorable alleles from 
different genetic resources of higher and lower ploidy including land races and wild 
species. Harnessing the new allelic variability from wild sources using molecular 
markers will catalyze the genetic improvement by broadening the gene pool for 
maximizing the genetic gain of desirable alleles. The information discussed in this 
chapter ensures that the advances in the molecular diagnostics and cytological intro-
gression approaches would resolve the complexities of the gene networks underpin-
ning quality attributes that would help to meet the challenges presented by the swift 
changes occurring within the food chain.

Large scale genome sequencing and integration of bioinformatics will accelerate 
the analysis structure and function of quality genes. Analysis of huge databases gen-
erated from genome sequencing and high-throughput marker analyses (SNPs and 
microarray) of the expressed genes in developing grain and their integration with 
web-based comparative genomic tools are formulating the strategies leading to-
wards stringent objectivity. Another avenue is the use of TILLING and small RNAs 
where the specific functions are assigned to quality encoding genes by identifying 
mutants and deleting the mRNA, respectively. The recent advent of Multi-parent 
Advanced Generation Inter-Cross (MAGIC) approach will identify more precisely 
the quality encoding genes and resolve the complexities of gene networks underpin-
ning the quality attributes to meet the upcoming challenges in grain quality.
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Abstract Agriculture plays significant role in the sustaining human society among 
most of the developing countries. The agricultural practices are dependent on the 
application of the nitrogenous fertilizers. The excessive application of nitrogenous 
fertilizer contributes enormously to the environmental pollution. So, in today’s sce-
nario there is growing need to reduce N fertilizer applications thereby improving 
plant’s N-use efficiency (NUE). Initially, various studies have been carried out to 
improve inputs of N fertilizers interaction with soil, water and air but low efficiency 
of the plant to make use of available N has initiated biological interferences. In this 
article, we will be discussing the possible technologies applied towards understand-
ing the genetic control of nitrogen use efficiency and its improvement in crops. The 
classification/identification of suitable target candidates like phenotypes, genotypes 
or molecular markers, for the upgrading of NUE poses big confront. Therefore, it 
is necessary to understand NUE and its importance with respect to economy and 
environment. Also, to figure out the diverse approaches for progress towards NUE 
enhancement and possibilities for future development.

Introduction

The rate at which India’s population is growing it is expected to reach up to a  
total of 1.5 billion by the year 2030 (FAO 2008).Over the next few decades food 
security will be a major concern in India. However, there are limited options to meet 
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Fig. 11.1   Crop production of India in the past 50 years

                  

food production for increasing population, since most of the available is already 
under cultivation, and in many areas land cannot be used for intensified produc-
tivity because of rapid urbanization and increasing environmental pollution. To-
gether, all of these issues have forced a great challenge on Indian agriculture for 
developing novel approaches that can increase crop productivity on the cultivable 
land. Development of high-yielding wheat and rice varieties and use of chemical 
fertilizers have made enormous contribution in doubling crop production of India 
in the past 50 years. The production of wheat and rice in 1950–1951 was 6.46 and 
20.57 million tonnes, respectively, which has increased to 76.2 and 85.9 million 
tonnes in 2008–2009 (Directorate of Economics and Statistics 2008) (Fig. 11.1). 
In order to increase crop production, the consumption of N fertilizer has increased 
up to 10-folds in last 50 years globally (Lian et al. 2005), because high-yielding 
present crop varieties have high demands for N. The problem lies in the, nitrogen 
use efficiency (NUE) which is as low as 33 % for cereals on global basis (Raun and 
Johnson 1999). The unutilized 60–70 % caused severe environmental hazards. It is, 
therefore, necessary to control too much input of chemical N fertilizers into the field 
by enhancing the NUE of the crops.

N-assimilation Processes in Plants

Nitrate (NO3-) is the major resource of nitrogen for most of the cultivated crops. 
The first step in acquisition of nitrate is its uptake by root cells. NO3- reaches the 
aerial organs by moving out in the external medium from root cell or by unloading 
in the xylem vessel (Kant et al. 2011). NO3- assimilation takes place in leaves and 
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root; it is first reduced to nitrite in the cytosol by nitrate reductase (NR). Nitrite 
gets translocated to the chloroplast and reduced into ammonium by nitrite reductase 
(NiR), NH 4+ the end product is finally integrated into the amino acids via the GS/
GOGAT pathway (Mokhele et al. 2012)

Nitrate�Reductase�(EC�1:6:6:1)

Nitrate reductase (NR) in higher plants is thought to be a homodimer. The estimated 
subunit size of the monomers is between 100–120 kDa (Caboche and Rouze 1990). 
The monomer size is about 100 kDa. In higher plants each monomer constitutes 
three functional domains, each of which has three redox centers formed by FAD, 
heme and a molybdenum Co-factor (MoCo). These are present in the steochiom-
etry of 1:1:1 (Caboche and Rouze 1990). These redox centres catalytically transfer 
two electrons from NAD(P)H to NO3-. According to Lillo and Ruoff (1992), there 
is a second site for NADH, which is occupied in the allosteric, regulating the NR 
activity. Thus, electrons are able to move from redox centres in one subunit to the 
redox centres in second subunit, hence enabling the total electron transfer from 
NADPH to NO3- in heterodimers. NR is found in cytoplasm of shoot and root cells 
identified using either cell-fractionation and biochemical techniques or immune cy-
tochemistry (Fedorova et al. 1994). In the cytoplasm of the leaf cells, the NADH 
required for the functioning of NR is supplied by either of two shatter mechanisms, 
one involving the phosphate translocator located in the chloroplast envelope and 
the other involving the malate oxaloacetate translocator located in the envelopes 
of mitochondria. In root cells where NR  can utilize both NADH and NADPH as 
reductants, either the glucose 6-phosphate dehydrogenase or 6-phospogluconate 
dehydrogenase, present in the cytoplasm or plastid, can supply NADPH (Bowsher 
et al. 1993).

Nitrite�Reductase�(EC�1.�7.7�.1)

Nitrite reductase (NiR) catalyses the 6 electron transfer reaction from reduced fer-
redoxin to NO2-, leading to the synthesis of NH4+. It is localized inside chloroplasts 
of the leaf, also in plastids of the root tissues (Sechley et al. 1992). In both roots 
and leaves, the reduced ferredoxinacts as an electron donor. The NiR enzymes are 
monomeric proteins of about 63 kDa containing siroheem and a 4Fe-4S centre as 
prosthetic groups (Seigel and Wilkerson 1989). Wray 1993 confirmed that the NiR 
apoprotein is synthesised as a precursor of transit peptide carrying an N-terminal 
extension which helps in recognition of the protein in chloroplast/plastid. This NiR 
apoprotein is encoded by nuclear DNA.
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Glutamine�Synthetase�(EC�6.3.1.2)

Glutamine synthetase (GS) catalyzes the critical inclusion of inorganic ammonium 
into glutamine. GS catalyzes the ATP-dependent condensation of NH4 + with gluta-
mate to yield glutamine. The native GS protein weighs 350 kDa and is composed 
of 8 almost identical subunits (Sechley et al. 1992; Nogueira et al. 2005). In leaves, 
it is present in both chloroplasts (GS2) and cytoplasm (GS1) (Scarpeci et al. 2007). 
The chloroplast form appears to play role in the assimilation of photorespiratory 
NH4+ (Freeman et al. 1990). The root enzyme too, is found in both cytoplasm and 
plastids. In pea, the dominant form is plastidic, whereas in maize it is cystosolic 
(Sakakibara et al. 1992). Studies carried out to encode the genes for GS has helped 
to elucidate the function of each isoform are involved. Chloroplastic GS (GS2) is 
believed to be having function in the re-assimilation of photorespiratory conditions 
(Freeman et al. 1990). The gene for the cystosolic GS (GS3A in pea) is found to be 
active in the phloem of the transgenic tobacco and alfalfa, indicating that it func-
tions primarily to produce glutamine for intercellular transfer (Fei et al. 2003). In 
rice plants, cytosolic GS has been reported to be present in vascular bundle. In leaf 
tissue, it is active in exporting nitrogen to ‘sink’ tissues (Gallais et al. 2006).

Glutamate�Synthase�(EC�1.4.7.1�and�1.4.1.14)

Glutamate synthase (glutamine-2-oxoglutarate aminotransferase, GOGAT) is in-
volved in the reductive relocation of the GS to 2-oxoglutarate to create two mol-
ecules of glutamate. One of the glutamate molecules can then be cycled back as the 
substrate for the GS reaction. This is GS-GOGAT cycle was defined by Lea and 
Miflin (1974). Based on the nature of electron donor, two forms of GOGAT exists, 
the ferredoxin-GOGAT and the NAD(P)H-GOGAT (Suzuki and Knaff 2005). In 
rice leaves Fd-GOGAT is known to be present in mesophyll cells, consistent with a 
job in photorespiratory nitrogen metabolism (Hayakawa et al. 1994). The NAD(P)
H-GOGAT occurs in vascular bundles of developing leaf blades, indicating a role 
in the synthesis of glutamate from glutamine that is imported to the vascular bundle 
from roots and senescing tissues (Tabuchi et al. 2007).

Glutamate�Dehydrogenase�(EC�1.4.1.2)

Glutamate dehydrogenase (GDH) is capable either of synthesizing or de-aminating 
glutamate (Pahlich 1996). One isoform of the enzyme is localized in the mitochon-
dria. It uses NADH as the electron donor (Sechley et al. 1992). Another form that 
has a specific requirement for NAD(P)H is present in the chloroplasts of photosyn-
thetic tissues. Levels of the NADH form of GDH increase with senescence or after 
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adding NH4 + to the medium (Pahlich 1996). These factors also lead to higher levels 
of GDH protein in maize root tissues (Oaks 1994). A primary role of GDH is known 
to replenish TCA cycle intermediates through their oxidation to 2-oxoglutarate.
However, in vivo, aspartate amino transferase and glutamate decarboxylase also 
maintain the supply of carbon to the citric acid cycle (Kisaka et al. 2007). Glutamate 
is deaminated to 2-oxoglutarate in isolated mitochondria; however in the presence 
of amino-oxy acetate, glutamate no longer contributes to mitochondrial respiration 
(Sechley et al. 1992). This observation indicates that GDH does not oxidize gluta-
mate. Thus, the correct in vivo role of GDH in nitrogen metabolism of higher plants 
remains to be defined (Pahlich 1996).

Acquisition of N by Roots and Its Regulation

The nitrate uptake is the foremost step that adds to N use of any plant. The identi-
fication of genes and the proteins responsible for NO3- transport and distribution is 
required for enhanced understanding of the mechanisms that takes place within the 
plant. Nitrate transport is a proton-symport type of transporter system (Crawford 
1995). Nitrate uptake and its release into cells are mediated by nitrate transporter(s) 
located into the plasma membrane of the root. Three transporters have been identi-
fied by kinetic measurements in plant roots (Remans et al. 2006). These are consti-
tutive High Affinity Nitrate Transporter (cHATS), inducible High Affinity Nitrate 
Transporter (iHATS) and Low Affinity Nitrate Transporter (LATS) (Okamoto et al. 
2006; Chandna et al. 2011). Two of these display saturable kinetics; a low capacity 
constitutive system and a high capacity inducible system (Okamoto et al. 2006). In 
addition, a non-saturating low affinity, high capacity system becomes apparent only 
at higher external NO3- concentration (Kronzucker et al. 1995; Cerezo et al. 2000, 
2001). The high affinity transport system (HATS) works at low concentrations 
(1 µM–1 mM). HATS transporters are constitutively expressed (cHATS) as well as 
nitrate-inducible (iHATS), and are subjected to negative feedback regulation by the 
products of nitrate assimilation. Both types of HATS happen to active during low N 
(< 1 mM) concentration in the medium, they show up-regulation on the availability 
of nitrate. Thus, constitutive HATS seems to offer a high affinity and low capacity 
passage for nitrate entry in un-induced plants, a 3-fold increase in their expression 
is observed on introduction of nitrate (Crawford and Glass 1998). Inducible HATS 
are known to be induced on presence of nitrate or nitrite (Orsel et al. 2006). The low 
affinity transport system (LATS) is known to work under high external nitrate con-
centrations i.e:  > 1 mM (Glass 2003). NO3- uptake appears to increase linearly with 
increasing NO3- concentration with no indication of saturation even at 100 mM 
(Omata et al. 1989). The linear concentration dependence of the LATS has been 
observed in a wide variety of organisms. LATS for NO3- in barley are referred to 
as constitutive (Kronzucker et al. 1995). LATS which are constitutive, perhaps also 
have a signalling function to play in induction of HATS and other nitrate assimila-
tory genes, which might plays a nutritional role when above a certain threshold.
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C and N Interactions in Plants

Carbon (C) and Nitrogen (N) both are important component that play crucial role 
in carrying out basic cellular activities of plants. C and its compounds is part of 
various carbohydrates like sucrose and glucose. Both the C-skeletons and energy 
are provided by carbohydrates during amino acid biosynthesis. N nutrients from 
the part of inorganic compounds such as ammonium and nitrate, also participates 
in building organic compounds like amino acids. Research has disclosed the tight 
coordination between cellular C and N metabolism, suggesting their importance 
for plant growth (Xu et al. 2012). CO2 is assimilated through photosynthesis that 
results in formation of sucrose and glucose via glycolysis and tricarboxylic acid 
cycle to 2-oxoglutarate (2OG) or α-ketoglutarate. Nitrate reductase reduces nitrate 
(NO3-) to nitrite (NO2-). NO2 by nitrite reductase finally converting it to ammonium 
(NH 4+). 2-oxoglutarate provide C skeleton for the synthesis of glutamate (Glu) by 
incorporating NH 4+ formed by photorespiration. NH4+ that is gained from the as-
similation of N is induced in Glu, that results in the formation of glutamine (Gln). 
Glu and GlncontributeNH 4+ that is finally used for the synthesis of all other amino 
acids, that also includes aspartate (Asp) or asparagine (Asn), which in-turn serves 
as NH4 + donor. Proteins particularly enzymes are essential for all cellular functions, 
like metabolic reactions, and are involved in C and N metabolism. Therefore, it is 
necessary to maintain an appropriate proportion of C and N nutrients (Zheng 2009).

Concepts of Nitrogen Use Efficiency

The term NUE has two basic components: (1) Nitrogen uptake, recovery or acquisi-
tion efficiency (2) Nitrogen use, physiological N use, or internal N use efficiency 
The terms NUE has been used as a ratio that considers an output (i.e., grain yield, to-
tal plant dry matter yield, N accumulation in grain, or N accumulation in total plant 
dry matter) as a numerator and input (i.e., total N supply, soil N supply or fertilizer 
N supply) as a denominator. NUE is based on different parameters of efficiency, 
including N uptake, N utilization efficiency, and N-use efficiency, it is expressed as 
a ratio of output (biomass produced) and input (total N supplied) (Xu et al. 2012). 
Agronomic, Recovery and Physiological efficiency ratios have been widely used to 
quantify NUE. Agronomic efficiency of nitrogen (AEN) or partial factor productiv-
ity (PFPN), relates integrative index of total economic outputs relative to the use 
of all sources of N. Nitrogen recovery efficiency (REN) measures the efficiency of 
the plant to assimilate N provided. Physiological N use efficiency (PEN) defines 
the rate at which plant uses N from available N to produce grain (Table 11.1). The 
average AEN has a narrow range of 16–22 kg grain increase per kg N applied, stud-
ies have shown it to be smallest in maize and largest in rice. Whereas PFPN has 
large differences as observed by Ladha 2005 in Maize and rice having similar PFPN 
values of 65–70, whereas wheat had 44 (Ladha 2005). These large differences in 
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PFPN, indicates that maize and rice are able to produce large economic outputs 
with respect to applied N fertilizer. These differences may be due to differences in 
(1) internal N requirement for plant growth, (2) ability of the plant to translocation 
and distribution of N, (3) flag leaf N import/export and leaf senescence pattern 
and (4) plant’s efficiency in converting CO2 to carbohydrate (Ladha et al. 1998).
Proper N-application rates and timing of application are very important to meet 
plant N demand and improve NUE. Studies done by Abdin et al. (2005) states that 
timing of N fertilizer applications does show noticeable results in plant growth and 
N uptake with respect to its application. In addition, the application of the fertilizer 
at different growth stages of plants determines NUE, which also showed genotypic 
variation (Hirel et al. 2007).The amount of N that is finally available to the plant can 
be improved by using various simple techniques like sustained-release fertilizers, 
split applications and other nutrient and crop management strategies (Abdin et al. 
2005). Nitrogen applications in split doses have shown to enhance the yield, NUE, 
and N uptake efficiency in hard red winter wheat under temperate conditions when 
compared with fall N applications (Sowers et al. 1994). Nitrogen use efficiency 
(NUE) in the perspective of photosynthesis is called as photosynthetic nitrogen use 
efficiency (PNUE), which is measured as the rate of carbon assimilation per unit 
leaf nitrogen (Kumar et al. 2002).

Analysis of Variation Nitrogen Use Efficiency

Genotypic differences in the NR levels have been studied and reported by Ab-
din et al. (1992) in corn, wheat, barley and sorghum. Hakeem et al. (2011, 2012) 
also observed the genotypic differences in the NR levels in rice. Further, Bhatt 

Table 11.1   The key parameters involved in uptake and utilization efficiencies of nitrogen in plants
S.N. Components of NUE Formula

1 NUE NUE = Sw/N
2 Usage index UI = Sw*( Sw/N)
3 Utilization efficiency UtE = Gw/Nt
4 Agronomic efficiecy AE = ( G  – G)/Nf
5 Physiological efficiency uptake PE = ( Gwf–Gwc)/Nf – Nc uptake
6 Uptake efficiency UpE = Nt/Ns
7 Apparent plant recovery AR = ( Nt uptake – Nc N nitrogen 

uptake)/Nt*100

Sw shoot weight, N total nitrogen content of shoots, Gw grain weight, Ns nitrogen supplied in gram 
per plant, Nt total nitrogen in plant, Gwf grain weight with fertilizer, Gwc grain weight without 
fertilizer (control), Nf nitrogen fertilizer applied, Nf uptake plant nitrogen with fertilizer, Nc uptake 
plant nitrogen unfertilized control, PE physiological N-use efficiency, NUE N-use efficiency
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et al. (1979) showed in sorghum, a decrease in the height of the plant with the 
enhancement of NR activity while such relationship with tall and dwarf cultivars of 
wheat were not observed (Abdin and Abrol 1997). Abdin and Abrol 1997 revealed 
in Wheat genotypes more than two-fold variation in NR activity was observed, that 
might be due to genetic levels of NR enzyme which is heritable. These genetic dif-
ferences in the NR activity are also reflected in N harvest and it may be associated 
with improvement in growth and yield in some genotypes. In some of the high NR 
genotypes, the grain N concentration was significantly higher. It was observed that 
high NR (HNR) genotypes maintained higher levels of NR activity even under low 
N levels (Abdin et al. 1992, 1996) this may be because of high levels of NADH that 
might enhance NR activity in high NR genotypes (Bauwe and Kolukisaoglu 2003). 
The activity was especially maintained at the later stages of growth i.e. at the time 
of flag leaf emergence and anthesis (Jain and Abrol 2005). Studies also indicated 
that the activity of the NR was regulated at the level of gene expression (Jain and 
Abrol 2005; Skiba et al. 2011). Recent studies of the genotypes that differed in the 
levels of their NR activity have revealed that not only the single enzyme NR but the 
whole N metabolism pathway operates at the elevated level viz. all the enzymes of 
the pathway nitrite reductase, glutamine synthetase and glutamate synthase func-
tion at significantly higher levels in the high NR genotypes as compared with the 
LNR genotypes, leading to higher accumulation of grain N (Xu et al. 2012). The se-
lection of genotypes with a more efficient mechanism of N uptake and metabolism 
is a strategy aimed at increasing N utilization efficiency of the maize crop. Several 
trials for efficient use of N under conditions of low N availability have been carried 
out with maize (Machado et al. 1992). In order to characterize and select genotypes 
for efficient use of N, several authors have used physiological and biochemical 
parameters, such as high nitrate in leaves (Mollaretti et al. 1987), enlarged nitrate 
reductase activity (Feil et al. 1993), glutamine synthetase activities (Machado and 
Magalhães 1995), or increased enlistment of N from leaves and stems to the ker-
nels (Machado et al. 1992). Genetic diversity has several ‘indicators’, which are 
measured using various tools such as Mendelian genetic analysis that are employed 
to assess disparity in single known gene (qualitative traits), such as resistance to 
disease (Smale and McBride 1996) or multivariate traits/quantitative traits. Also, 
pair-wise coefficients of parentage are calculated from pedigree information that 
serves as genetic diversity indicators of (Cox et al. 1996). Nitrogen use efficiency 
is a complex quantitative trait which is governed by many genes depending on the 
number of internal and external factors like nutritional and environmental that lim-
its the nitrogen availability.Quantitative genetic studies are associated with molecu-
lar markers provides insight to the identification of Quantitative Trait Loci (QTL) 
that is known to be part of the genetic variation of a complex character such as NUE 
(Harrison et al. 2004; Hirel et al. 2007) and gives a new turning point in identifica-
tion of agronomic traits.
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Crop Management Practices and Source-sink 
Relationships for Improving NUE

The strategies developed to work in favour of nitrogen utilization efficiency in-
cluded use of variety of fertilizers and their manner of application also avoiding 
runoff and limiting the fertilizer loss from soil. Use of slow-release fertilizers and of 
organic manures also minimizes N fertilizer use and their loss. The legumes crop-
ping systems have added advantage of correcting the imbalanced use and nutrient 
management (Wang et al. 2012a). Strategies that increase fertilizer N use by crop-
can also be the part of focus by increasing the fertilizer N use during the growing 
season since that will decrease the N loss thus, higher NUE (Balasubramanian et al. 
2004). Other management practices like soybean-corn rotations, forage-only pro-
duction systems, conservation tillage systems have low N losses and improved NUE 
(Wen-Yuan et al. 1996).When differences were studied by Moll et al. 1982 among 
corn hybrids after application of N before anthesis, under low N levels, observed 
improved NUE. Machado et al (1992) observed that NUE status is parallel that off 
water use efficiency (WUE) in corn. Another way is to distribute more of N resourc-
es to the organ of interest, such as grains. Since, the efficiency of protein synthesis is 
known to be dependent on the light and dark regulation of aspargine synthase (AS) 
of leaf that leads to the elevationsasparagine levels that is an important parameter 
used to screen for high grain-protein cultivars of maize and rye (Dembinski et al. 
1995). Also, by controlling the expression of the ASN 1 gene that control the ASN 
levels might lead to manipulation of the relationship between Asn and seed N status 
and enable another way to enhance nutritional quality which needs to be tested.

Biotechnological Inventions for Improving Nitrogen  
Use Efficiency

NUE is governed by multigenes that involve huge number of genes and expand be-
yond the key steps of nitrate metabolism and incorporation. The efforts of creating 
transgenic that can targets those genes which participating in N uptake, transport, 
assimilation, and carbon metabolism. Manipulation of signalling and metabolic 
pathway regulatory elements is emerging as an important target for biotechnologi-
cal advancements. Different transgenic experiments that were attempted in a hope 
to improve NUE are summarized below and some of the significant work is listed 
in Table 11.2.

Nitrate reductase enzyme considered being the rate-limiting step of nitrate as-
similation, but its genetic manipulation in Nicotiana spp. indicated its importance 
in other steps as well (Ali et al. 2007). The constitutive NR expression in tobacco 
showed 2-fold increase in its activity while a 20 % decrease in foliar nitrate content 
was observed. Also an increase in total amino acids contents, but simultaneously 
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no changes in total N, starch and productivity parameters were observed (Quillere 
et al. 1994). The transgenics with NR double mutant Nia30 were not able to show 
any detectable NR activity. While the when plant was transformed with the Nia2-
cDNA, a decreased in NR activity with enhanced levels of nitrate accumulation 
was observed (Hansch et al. 2001). Transformed Nicotiana plumbaginifolia plants 
that were constitutively expressing nitrate reductase (NR) showed a momentarily 
delayed in drought-induced loss of NR activity, hence permitting speedy recov-
ery of N assimilation. Since NR enzyme is post-translationally controlled by phos-
phorylation and also with binding of 14-3-3 proteins, several attempts to reduce the 
inhibitory effect on NR regulation have been made. 56 amino acids were deleted in 
the amino terminal domain of NR that was known to impair this type of regulation 
in Nicotiana plumbaginifolia (Provan et al. 2000). Over-expression of NR genes 
from various plants have been worked on since past ten years (Lea et al. 2006), but 
without any important outcome for the improvement in NUE.

In an effort for improving NUE, over expression of NiR genes were studied in 
Arabidopsis and tobacco that though increased the NiR transcript levels but showed 

Table 11.2   List of transgenic effort towards improving N-use efficiency (NUE)

Gene Target plant Phenotype observed

Nrt1.1—high affinity nitrate 
transporter

Arabidopsis Increase in constitutive nitrate 
uptake but not induced

NR—nitrate reductase N. tabacum Three to four fold drop in NR 
protein and activity, no change 
in NR transcript

NiR—Nitrite reductase N. plumbaginifolia, 
Arabidopsis

NiR activity, no phenotypic 
difference

GS2—chloroplastic glutamine 
synthetase

N. tabacum Improved photorespiration capac-
ity, and increased resistance to 
photo-oxidation

Fd-GOGAT—Fd dependent 
glutamate synthase

N. tabacum Diurnal changes in NH3 
assimilation

GS1—cytosolic glutamine 
synthetase

N. tabacum, P. sativum Enhanced capacity to accumulate 
nitrogen and enhanced growth 
under N starvation higher 
biomass and leaf proreins

NADH-GOGAT—NADH 
dependent glutamate 
synthase

O. sativa, N. tabacum Enhanced grain filling, increased 
grain weight and higher total C 
and N content, increased dry wt

GDH—glutamate 
dehydrogenase

N. tabacum Increased biomass and dry weight

Dof1—transcription factor Arabidopsis Enhanced growth rate under 
N-limited conditions, increase 
in amino acid content

ANR1—MADS transcription 
factor

Arabidopsis Lateral root induction and 
elongation
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decrease in enzyme activity levels. This may be because of post-translational modi-
fications (Shigeto et al. 2006). Till now there is no confirmations fromNiR overex-
pression in terms of improvement in NUE.

Hirel et al. (2005) signified glutamine synthetase (GS) involvement in kernel 
production of maize, through QTLs for studying the GS activity in leaf showed 
that the GS activity to coincide with QTLs for yield. One QTL was concurrent for 
thousand kernels weight with a GS (Gln1-4) locus, and two QTLs conceded for 
GS (Gln1-3) locus of thousand kernel weight and yield. This shows the positive 
association between kernel yield and GS activity.In another two experiments by 
Li et al. 1993 and Martin et al. 2006 identified the two cytosolic GS isoenzymes 
(GS1) in maize, and their molecular and physiological properties were examined 
using knockout mutation on kernel yield, thereby examining the plants grown un-
der N deficient conditions.Martin et al. 2006 observed the over expressing trans-
genic lines of Gln1-3 in leaves showed rise in kernel number, proving that the 
GS1-3 isoenzyme plays an important role in regulating kernel yield under optimal 
N-fertilization conditions. Yanagisawa et al. 2004; Coque and Gallais 2006; Hirel 
et al. 2007 also observed the GS mutants and the GS-overexpressing lines that were 
grown under N-limiting conditions and observed the reduction inkernel number 
when compared to wild type. Huang et al. (2005) carried out experiments in wheat 
by adding an extra GS gene and observed no overall increase in the amount of GS. 
Many other studies in various crop plants like tobacco and rice employed the role 
of GS and enhanced N-assimilation efficiency (Oliveria et al. 2002; Man 2005; Sun 
et al. 2005; Cai et al. 2009)

Transgenic over-expression and antisense technologies in alfalfa and rice plants 
were engaged to alter the expression of NADH-GOGAT (Yamaya et al. 2002). The 
studies highlighting the antisense RNA for NADH-GOGAT carried out in transgen-
ic rice plants throws some light towards the possible improvement of the transport 
of N via phloem in senescing leaves. Andrews et al. 2004, studied the expression 
of NADH-GOGAT in initial growing leaf blades and spikelets, also showed the of 
glutamine transported from senescing organs. Tabuchi et al. 2007 showed changes 
in various nitrogenous metabolites and decreased leaf protein, rubisco activity and 
nitrate contents in Barley mutants having reduced Fd-GOGAT. Genes does emerge 
to be good candidates that can be employed for improving NUE, but the use de-
pends on crop and cropping conditions (Shrawat and Good 2008).

Improving NUE Through Manipulation of Signalling 
Targets

The failure to improve NUE through over expression of candidate genes in trans-
genic plants involved in nitrate and ammonia assimilation concluded that that meta-
bolic flux of these pathways are being controlled by regulatory switches outside 
these pathways. Yet, the exact mechanism involved in nitrate signalling still needs 
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to be understood. Studies have revealed that nitrate signalling is affected by light, 
though there are researches stating the involvement of 14-3-3 proteins also.Ca2+ and 
protein kinases/ phosphatise are also known to be associated with nitrate signalling. 
They have known to be involved in mediating the expression of NR, NiR and GS2 
m RNAs through nitrate signal (Wang et al. 2012b). Krapp et al. (2002) highlighted 
the role played by Ca2+ dependent kinases in implicating nitrate and the other in-
volved signals. The role of light as an additional signal in regulation of NR gene 
expression has been studied in number of previous studies. Lillo and Appenroth 
2001 expressed the role of light in signalling and N-use efficiency, by revealing 
the signals being transmitted through photosynthesis and sugars.Castaings et al. 
2011 found ANR1 in Arabidopsis thaliana, an N-use efficiency transcription factor 
homologous to the MADS box family and also known to play role in signalling. 
He showed the nitrate-dependent stimulation leading to lateral-root proliferation 
in transgenic plants. However, it is reported that ANR1 does not bring about tran-
scription of all the known nitrate responses even in the root.Transgenic Arabidop-
sis lines over expressing, a maize protein Dof1 was created by Yanagisawa et al. 
(2004). Dof1 belonged to Dof family of plant-specific transcription factors that are 
known to stimulate C-metabolizing genes. This research revealed the fact that Dof1 
transcription factor can carry coordinated expression of nitrate-responsive genes 
involved in N and C metabolites. This approach could be one of the new targets for 
future metabolic-engineering efforts (Lochab et al. 2007).

Understanding NUE Through Proteomics

Uptake of nutrients from the surroundings in order to maintain energy, metabolism 
and growth is the main concern all living organisms. Organism therefore, enfolds 
and evolves numerous programs so that they are able to adapt to changing environ-
ment. Such processes are involved in immediate responses that include changes in 
metabolites, activation or inhibition of enzymes, slower processes are also involved 
like changes in the levels of macromolecules. The online availability of genome se-
quences of model plants has assisted technologies that permit inclusive analysis of 
global mRNA profiles, expanding the horizon to screen the transcriptional program-
ming within cells in response to change in their environment (Daran-Lapujade et al. 
2004). The use of methods for protein identification has brought about advancement 
in studying descriptive analysis of protein patterns. Two-dimensional gel electro-
phoresis (2-DE), has been a turnover in this field that brought about transformation. 
Thus, combining metablomics, transcriptomics and proteomics techniques, together 
forms a powerful tool for functional genomics analysis, these days effectively used 
in plant studies (Kusano et al. 2011; Amiour et al. 2012). Proteomics has proved 
itself as a vital tool for analysing the differences occurring in the protein profile 
caused due to environmental conditions, gene mutations, introduction or silencing 

R. Chandna and K. R. Hakeem



357

of genes, fairly being fast, sensitive and productive. Proteomics science has become 
an important source for generating information on physiological, biochemical, ge-
netic and architectural aspects. This approach has gained recognition in revealing/
characterising individuals or mutants or lines, estimation of genetic variability, es-
tablishment of genetic distances to be used in phylogentic studies (Thiellement et al. 
1999). It has turned out to be most promising technique that is able to characterize 
proteins showing differential expression or post-transcriptionally modified during 
a complex developmental process like senescence. Application of proteomics has 
brought about a great deal of improvement in agricultural production (Xu et al. 
2006). It has been revealed by Salon et al. 2001, using proteomics that during seed 
filling, supply of N from the mother plant helps in assimilation of proteins in the 
seeds. In legumes, this N is accumulated either from exogenous nitrogen supplied 
in soil/atmosphere assimilated by the symbiotic fixation or from the nitrogen that 
is translocated from vegetative parts. In monocarpic species, nitrogen mobilization 
such as in pea, for seed filling is tightly linked to the senescence of vegetative parts, 
which is brings about decrease in protein and chlorophyll content, followed by leaf 
yellowing.Nitrogen availability and type of nitrogen source also initiate a complex 
and still not fully understood metabolic rearrangement (Wek et al. 2004; Wang et al. 
2012b). Kolkman et al. 2006, showed that limitations and availability of N results in 
the induced proteins belonging to the category ‘metabolism’ reflecting a significant 
metabolic rearrangement in yeast enabling it to adapt to the nutrient availability. 
Lin et al. 2005 in an effort to understand N metabolism and its regulation studied 
the response of nitrogen limitation in cultured Monascus cells and identified pro-
teins playing role during the nitrogen-limited media and C/N ratio. These researches 
demonstrates that proteomics provide means of exploring biological processes by 
methodical examination of a large number of expressed proteins that bridges se-
quence information and functional genomics.

Conclusions and Future Perspectives

The developed countries have contributed enormously in research in crop improve-
ments, development of new fertilizers and adapted better management practices. 
This have attributed to improved NUE that greatly exceeds from that in developing 
countries. Promotion of improved N management practices and technologies might 
reduce N losses in the environment. However, efforts to increase NUE at farm level 
needs a combination of improved technologies/knowledge and carefully crafted lo-
cal policies that will help in sustaining yield increases. In this Omics era, the trend is 
now to search the mechanism/s in detail to understand the nutrient use efficiencies 
by the crop plants. Though some basic steps in this path has been taken, there is a 
lot of scope to explore the hidden mechanism fully by omics tools.
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Abstract Heavy metal stress is increasing at an alarming rate in agricultural soils 
through out the world. Heavy metal (Cd, Cu, Zn, Ni, Co, Cr, Pb and As) toxicity 
have been reported to be responsible for the reduced crop production. Among the 
heavy metals arsenic (As) is non-essential and toxic to both plants and animals. As 
can exist in environment in the form of oxidized arsenate (AsV) and reduced arse-
nite (AsIII). As stress has become a global concern, the uptake of As in the plants 
through contaminated soil will make its entry into the human food chain. As toxicity 
can lead to skin, bladder, lung and prostate cancer. Soil contaminated with As is the 
main source of arsenic in drinking water. Uptake of As by plants is very important 
in understanding its physiological effects and its metabolism within plants. How 
plants respond to the arsenic stress in plants is a major concern to biologists. As per 
the published literature numerous physiological processes are affected by the As 
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toxicity. As is also responsible for oxidative stress in plants through the generation 
of reactive oxygen species (ROS) which attack the biomolecules like, membranes 
proteins, carbohydrates, nucleic acids etc. At the same time activity of enzymatic 
and non-enzymatic antioxidants are increased which helped the plant to withstand 
the toxicity of As. The present chapter throws light on the arsenic toxicity in plants 
and their tolerance mechanism in plants. The chapter also highlights the generation 
of reactive oxygen species and antioxidants during As stress.

Introduction

In human history, metal pollutants have been their part. However, due to the onset 
of industrial revolution, the biosphere has been intensely polluted by toxic metals 
leading to the major environmental and health problems (Bhattacharya et al. 2012; 
Lui et al. 2012). Arsenic (As) is of major concern among all the metal pollutants 
because it is a persistent bioaccumulative carcinogen (Kaur et al. 2011). The an-
thropogenic activities have increased many folds the level of arsenic as humans 
constantly endeavored to improve quality of life when compared to the naturally 
occurring elements occurring in the earth’s crust (Moreno-Jimenez et al. 2012). The 
global input of arsenic to soil by human activities was estimated between 52,000 
and 1,12,000 t per year (Chandra and Srivastava 2003). Severe problems like vege-
tation loss, contamination of ground water, and toxicity of arsenic in animals, plants 
and have been caused by arsenic contamination (Fowler 1983; Zhao et al 2010). 
Although several studies have reported the detoxification of arsenic ions through 
metal binding peptides (Schmoger et al. 2000; Bondada and Ma 2002), due to the 
lack of literature regarding to the role of ascorbate -glutathione pathway in cellular 
defense against arsenic in plants.

Heavy metals produce oxidative-stress possibly by free-radical generation and 
active oxygen species (Hall 2002). The reaction of these oxyradicals with proteins, 
lipids, pigments and nucleic acids causes lipid peroxidation, membrane damage 
and inactivation of enzymes, thus affecting the cell viability. Two major roles are 
played by active oxygen species: (1) exacerbating damage and (2) signaling the 
activation of defence responses. Recently these two functions have been verified by 
several abiotic stress responses (Dat et al. 2000). In higher vascular plants, change 
in cellular metabolism is required to counteract with heavy metal stresses. Various 
antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate 
peroxidase (APX) and glutathione reductase (GR) of the ascorbate glutathione path-
way is the main mechanism for ROS quenching under heavy metal stress. (Clijsters 
et al. 1999). Apart from these enzymes, low molecular weight antioxidants metabo-
lites like ascorbate and reduced glutathione (GSH) also play an important role in 
plants by protecting them from oxidative. Antioxidant responses to arsenic in higher 
plants have not been studied so far.
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Occurrence and Distribution of Arsenic

In relation to the other element, arsenic ranks twentieth in abundance and is natu-
ral constituent on earth’s crust. In continental crust, the average As content varies 
between 1 and 2 mg As/kg. It is distributed in a variety of minerals but occurs 
commonly as arsenides of copper, iron, lead, silver and gold or as sulfides. Realgar 
(As4S4) and orpiment (As2S3) are the two common As sulphides where As occurs 
in oxidized form in the mineral arsenolite (As2O3). Loellingite (FeAs2), safforlite 
(CoAs), niccolite (NiAs), rammelesbergite (NiAs2), arsenopyrite (FeAsS), Cobal-
lite (CoAsS), enargite (CU3), (As2S4), gerdsorfite (NiAsS), glucodal [(CO, Fe)AsS] 
and elemental As are other naturally occurring As-bearing minerals.

Sources

From its origin in the earth’s crust, As can enter the environment through natural 
and anthropogenic processes. Two principal pathways of As emission in the envi-
ronment, are (a) natural processes and (b) industrial activities. In natural environ-
ment, arsenic is released through natural processes such as weathering and volcanic 
eruptions and as a suspended particulate arsenic may be transported over long dis-
tances through air or water. However, the most important source of As emission is 
industry and accounts for widespread section, we discuss these two principal modes 
of As emissions and their comparison among these two courses.

Natural�Sources

Mean global atmospheric emission of As from natural sources is about 12.2 Gg. 
These sources include wind bloom dust from weathered continental crust, forest 
fires, volcanoes, sea spray, hot springs, and geysers. Emissions of As from volca-
nic eruptions very considerably as high as 8.9 Gg 1 year from Mount Saint Helens  
in the united states to about 0.04 Gg 1 year from poas in Costa Rica. Arsenic  
emission through volcanic ca.2.3 Gg/year compared to nearly 0.01 Gg/year as 
volatile forms.

Anthropogenic�Sources

The major producers of As2O3 (“white arsenic”) are the United States, Sweden, 
France, the former USSR, Mexico and South West Africa. The As compounds 
such as monosodium methylarsonate (NaCH3HAsO3), disodium methyle arsonate 
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(Na2CH3, AsO3), and diethylarsenic acid [(CH3)2AsO(OH)] are widely used as 
agricultural insecticides, larvicides, and herbicides. Sodium arsenite (NaH2AsO4) is 
used for aquatic weed control and for sheep and cattle dips. Arsenic acid (H3AsO4) 
is used to defoliate cotton balls prior to harvesting and as a wood preservative. 
As2O3 is used in the manufacture of pharmaceuticals. Elemental As is mainly used 
in Pb, Cu, Sb, Sn, Al, and Ga alloys.

Mining, smelting and are beneficiation, pesticides, fertilizers and chemical in-
dustries, thermal power plants using coal, wood preservation industries using CCA 
and incineration of preserved wood wastes contribute to significant influx of As to 
the environment. Global emission of As in the atmosphere has been estimated to 
be 0.019 Gg (0.012–0.026 Gg), but in soil and aquatic environment, the estimated 
figures are 0.082 and 0.042 Gg, respectively. However, there has been a substantial 
decrease in the atmospheric emission of As in Europe, from Circa 0.005 Gg in 1986 
to 0.00031 Gg in 1995.

Mining and Ore Beneficiation

Elevated concentration of As, as well as other metals such as cadmium copper, 
nickel and zinc are commonly encountered in the acid mine effluents. The principal 
source of As in mine tailings is the oxidation of arsenopyrite (FeAsS) following the 
reaction.

FeAsS(s) + 13 Fe3+ + 8H2O = 14 Fe2+ + SO2
4 + 13H+ + H3AsO4

Arsenopyrite can be oxidized by both O2 and Fe, but the rate of oxidation by FeIII is 
faster than pyrite. The rate of this reaction was reported as 1.7 µ mal/m2, a reaction 
faster than a similar oxidation reaction for pyrite. Under extremely acidic environ-
ment, with a pH of about 1.5 and an aqueous As concentration at > 10 m mol/l, 
As precipitates as scordite (FeAsO4.2H2O). Under acidic conditions (pH < 3), AsV 
may substitute SO4 in the structure of Jarosite [KFe3(SO4)2(OH)6] in different mine 
wastes. Adsorption of As on Fe(OH)3 surfaces was found to be the principal sink 
for As in studies of acid mine drainage. However, the adsorption of As by Fe(OH)3 
may be only transient as changes in redone conditions (Eh) and pH may result in 
dissolution of Fe(OH)3 with consequent mobilization of As. Effluents and water in 
tailings ponds are often treated with lime to increase pH levels to stabilize the dis-
solved As and other metals as precipitates.

Agriculture

Over hundreds of years, inorganic arsenicals (arsenic trioxide, arsenic-acid, arse-
nates of calcium, Cu, Pb, and Na and arsenites of Na and K) have been widely used 
in pigments, pesticides, insecticides, herbicides and fungicides. At present, As is 
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no longer used in agriculture in the west, but persistence of the residue of the inor-
ganic arsenicals in soil is an issue of environmental concerns. Studies by Kenyon 
et al. 1979 and Aten et al. 1980 have indicated elevated concentrations of As in 
vegetables grown in soils contaminated by lead arsenate used as an insecticide in 
apple orchards. The recalcitrant nature of arsenical herbicides has, however, been 
observed in agricultural soils particularly around old orchards. Biomethylation of 
As is a mechanism through which a significant quantity of methylarsines may be 
released into the atmosphere following the application of As compounds to the soil. 
A relatively faster production of dimethyl and trimethylarsinics has been reported 
from grasslands treated with methylarsenic compounds while grass treated with 
sodium arsenite indicated slow release of methylorsene into the atmosphere.

Wood Preservation

The extensive contamination of soils and aquatic environments has been due to the 
use of CCA and other As-based chemicals in wood preservation industries. The wood 
preservative chemical like CCA has attained wide scale industrial application due 
to biocidic characteristics of CuII and Asv. The preservative chemical used for pres-
sure impregnation comprises a water-based mineral of diachronic acid (H2Cr2O7) 
arsenic acid (H3AsO4) and CuII as divalent cation at variable proportions. Cr is 
used to bind As and Cu into the cellular structure of the wood. Fixation of CCA is 
dependent on the transformation of CrIII to CrIII, a reaction that is dependent on the 
temperature and water content of the wood. CrIII forms insoluble complexes with 
both As and Cu. Further stabilization of these complexes takes place after complete 
fixation of the As and Cu in the wood tissues and minimizes the risk of leaching of 
the CCA components from processed wood. Among the active ingredients of CCA 
wood preservatives. As is most mobile and toxic to a broad range of organisms 
including human beings.

Chemistry of Arsenic in Soil

The natural content of As in soils varies significantly but is mostly in a range below 
10 mg/kg. The background concentration of As in soils is governed by the lithalogy 
of the parent rocks. As concentration in Swedish tills (< 0.06 mm) range between < 5 
and 175 mg/kg with a medium value of 8 mg 1 kg (Selenics, Personal Communica-
tion 2000). Availability and dispersal of As in the soil environment are influenced 
by several factors. Rainfall, surface runoff, rate of infiltration, and the groundwater 
level like climatic and geographic characteristics and their fluctuations affect the 
mobility and distribution of As. The speciation and mobility of As in soils also 
depends upon the soil physical characteristics like grain size and mineralogy and 
chemical characteristics such as redox potential (Eh) and pH conditions of the soils.
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Physical�Characteristics�of�Arsenic

• Arsenic is tin white tarnishes to dark grey or black in colour.
• It is metallic but tarnishes to dull in luster.
• Its crystals are opaque.
• Crystals are rare pseudocubic rhombohediral and acircular radial aggregates. 

It is usually found in fine-grained masses with concentric bands or botryoidal 
crusts. Allied minerals of arsenic are barite, cinnabar and neckline. Others are 
poisonous.

• Arsenic is found to occur in France, Kangsberg, Norway, Somany and Harz 
Mountains, Germany, Honshu, Japah, England, Italy, and Santa Cruz, Arizona 
and New Jersey, USA.

• Best field indicators are tarnish, density, softness, crystal habits, color, garlic, 
small and association.

Behaviour�of�Arsenic

Both arsenic and phosphorus have similar chemical properties, therefore they act 
similarly in soil. Phosphorous and arsenic competes for soil fixation sites and for 
plant uptake (Adriano 1986). By decreasing soil phosphorus level the phytotoxicity 
of arsenic increases (Rumberg et al. 1960). Other experiments showed that addi-
tional phosphorus may increase arsenic phytotoxicity by releasing more arsenic into 
solution (Jacobs and Keeney 1970).

Availability�of�Arsenic

Arsenic availability cannot be determined by the total arsenic concentration in soils 
(Adriano 1986). Even though a limited quantity of arsenic in soil is readily mobile 
and the rest is not available to plants because it is associated with iron (Fe) and 
almunium (Al).

In soil the solubility of reduced form of arsenic (arsenite) is more oxidized form 
(arsenate). Soluble arsenic concentration is directly proportional to the plant arsenic 
toxicity, (Kabata-Pendias and Pendias 2001; Sturchio et al. 2011).

Many soil factors like soil pH affect the arsenic availability (Adriano 2001). 
Therefore, soil pH is important because it plays a vital role in arsenic speciation and 
leachability. The optimum adsorption for arsenite is approximately at pH 7.0 while 
as arsenate adsorbs at pH 4.0 (Pierce and Moore 1982). On the whole, low soil pH, 
clays makes the amorphous silicates and metal oxides protonated and is then able to 
absorb arsenic anions present in the soil. Arsenic is less mobile at low pH as most 
arsenic is present as arsenate in soils and at this pH there are high concentrations of 
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arsenic- binding species such as iron and aluminum. With the increase in pH proton-
ated sites allow the arsenic to become more mobile.

Arsenic does not have the capability to form a strong association with calcium 
(calcite) at higher pH. According to Woolson (1983) under high arsenic concentra-
tions this association may be found where calcium is the secondary preference over 
aluminum. Acidic conditions i.e. lower pH allows the calcite to be dissolved and the 
arsenic is released.

The other aspect that affects the arsenic availability is soil texture (Adriano 
2001). Soil surface area is affected by soil texture e.g. textured soils (silt and clays) 
have much more surface area than sandy soils therefore they are more reactive. 
Higher amounts of trace elements are likely to be retained by fine textured soils 
as compared to sandy soils (Chen et al. 1999). Fine textured soils have higher cat-
ion enhance capacity (CEC) apart from increased surface area. Higher retention of 
cationic species like copper is caused due to higher cationic enhancement capacity 
(Chen et al. 1999).

High organic matter (OM) is found in finer textured soils with a higher CEC, 
compared to sandy soils with low CEC. Often, higher organic matter leads to higher 
cationic enhance capacity. In fine textured soils the pH dependent charge condi-
tions also favours the organic matter accumulation and retention. Retention of both 
anionic and cationic species increases in organic matter because cations bridge with 
the iron and aluminum, resulting in anion retention and the dissociation of organic 
matter complexes in response to change in pH.

Sandy textured soils increases the arsenic toxicity in plants and arsenic mobil-
ity compared to soils with the clayed textures (Jacobs and Keeney 1970; Adriano 
1986). Presence of aluminium and iron oxides play a vital role in the ability of soil 
to retain arsenic (Adriano 2001; Jacobs and Keeney 1970). Moreover, concentra-
tions of iron and phosphorus influences arsenic concentrations in florida soils (Chen 
et al. 2002). In sand grains the phophorus with clay coatings increases the retention 
of elements as compared to bare quartz grains (Harris et al. 1987a, b). Metal oxides 
and alumino-silicates are coating compounds that have higher affinity for trace ele-
ments such as arsenic soil horizons (i.e, albic horizons in spodosols) that have been 
exposed to extreme weathering and leaching. And the weathering results in sand 
grains that are exposed to clay coatings (Harris et al. 1987a, b). Rhue et al. (1994) 
found that these horizons are able to retain these clay coatings and they exhibit 
higher retention as compared to those that did not retain their coatings.

Arsenic�Uptake

Plants metabolize the elements through the plasma membrane of the roots. Electro-
chemical potential is created by H+-ATPases across the membrane (Kennedy and 
Gonsalves 1987; Palmgren 2001). Membrane potential is depolarized by plasma 
membrane and acidifies the cytoplasm by the excess of positively charged ions 
passing through it (Cumming and Taylor 1990: Axelsen and Palmgren 2001). Mem-
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brane potential is disturbed by the arsenates of Pb and Zn (Barlian-Aidid and Oka-
moto 1992) e.g. low Zn concentration in the plasma membrane of roots of Zea mays 
and enhances the H+ATPase activity by competing with Mg (Axelsen and Palmgren 
2001), but 3 mM of Zn is inhibitory. Whereas lead does not activate the ATPase 
but depolarizes the membrane potential slowly (Kennedy and Gonsalves 1987). In 
Lemma gibba arsenate depolarization is dependent on the phosphate level (Ulrich-
Eberius et al. 1989), and in Impatients balbaniana stem sections Pb (0.5 mM) xy-
lem parenchyma membrane potential is depolarized (Barlian-Aidid and Okamoto 
1992). Recent studies have confirmed the phosphate and arsenate competition at 
the uptake level (Clements and Munson 1947) e.g. in Oryza sativa (Abedin et al. 
2002), Halcustantus (Hartley-Whitaker et al. 2001a, b), L. gibba (Ulrich-Eberius 
et al. 1989), Brassica juncea (Pickering et al. 2000) and pteris ferns (Zhao et al. 
2002). Uptake metabolism of As in plants has been reviewed by Meharg and Hart-
ley-Whitaker (2002). Negative charged root cells absorb anions instead of moving 
them in to apoplastic space of the root cortex (Clarckson 1996). Uptake of arsenic 
is characterized as proton anion co-transport in Lemna gibba (Ulrich-Eberius et al. 
1989). Uptake system is shared by arsenate and phosphate in higher plants (Abedin 
et al. 2002), mycorrhizae (Sharples et al. 2000) and bacteria (Bruins et al. 2000), 
and the further details are being investigated (Meharg and Hartley-Whitaker 2002). 
Accumulation of arsenate follows the Michaelis-Menten kinetics in which concen-
tration range coincides with the level of activity of the high affinity phosphate up-
take (Sharples et al. 2000; Abedin et al. 2002). In micro-organisms, two types of 
arsenate transporters have been recognized operating in the pumping arsenite either 
into the vacuole or in efflux from cells (Rosen 1999; Ali et al. 2009). It means that 
accumulation, uptake and toxicity, varies within and between plant species and in 
general more the As in soil higher will be the concentration in plants (Banejad and 
Olyaie 2011).

Arsenic�Tolerance�and�Toxicity

Contaminated and naturally enriched soils will be used for agriculture in future 
with higher concentrations of one or more elements (Abedin et al. 2002). Met-
al resistance enhancement in crop varieties is important only as long as the food  
plants with metal concentration do not exceed health levels. The variable response 
of crop plants to soil toxicants extends itself to their nutrient efficiency (Aniol and 
Gustafson 1989). Tolerance “represents a genotype environment interaction” (Mac-
nair 1993) and the plants have been divided into two groups such as accumulators 
or excluders (Baker 1987; Tangahu et al. 2011). According to Aniol and Gustafson 
1989 many crop plants are accumulators. Excluder plant reduces the elements up-
take, Baker (1987). Exclusion capacity in higher plants is poor or absent (Ernst, 
1976), while as in bacteria (Nies and Silver 1995) and some mycorrhiza (Sharples 
et al. 2000) are able to efflux toxicants. Tolerance is under genetic control, although 
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the number of genes from one to smaller or larger number of genes varies and the 
action may be influenced by modified genes (Macnair 1993; Schat et al. 1996). 
Tolerance may be constitutive and adaptive i.e depending upon external factor and 
both types are interlinked (Macnair 1993). For example, an increase in soil toxic-
ity leads to selection pressure, which plays an important role in tolerance (Schat 
et al. 1996). Metal tolerance can be separate i.e regulated by separated genes for 
each metal tolerance or co-tolerance (Pleiotropy), although the multiple tolerance 
developed by plant is by growing them on soils with more than one metal (Macnair 
1993) e.g., Silene vulgar population originating from metalliferous sites in Ireland 
and Germany and from non-metalliferous site in Netherlands, two main co-additive 
gene control of Zn tolerance in this species (Schat et al. 1996). The understand-
ing of cellular level processes has been progressed by metal trafficking proteins, 
but the relationship between tolerance to toxic metals or metalloids and element 
homeostasis of the entire organism is less known (Clemens 2001). Parameters like 
yield reduction, shoot and root length or fresh and dry matter describes the toxic-
ity (Berry and Wallace 1981; Odjegba 2012), but the reversibility of plasmolysis 
enzyme activities, chlorophyll contents and other physiological parameters are also 
employed (Baker and Walker 1989). Several indices have been developed for the 
measurement of tolerance and toxicity. The relationship between root growth with 
and without a toxic element is expressed by tolerance index (TI). The dose CD50 
toxicant causes the reduction, it may be expressed as EC10 to EC50 i.e. ‘effective 
concentrations (EC) to lower the yield by 10–50 % (Ernst 1997a; Kooijman 1997). 
Macnicol and Beckett (1985) found that critical tissue toxicant concentration can 
also be used e.g. in soybean and cabbage soil culture, 10 % toxicity occurs at the 
upper critical tissue by the As level between 1 and 4 mgAs kg–1 plant shoot and leaf 
dry weight. For soybean, bush beans and pea, the values for the essential micronu-
trient like Zn are higher and the values are 450, 250, and 380–500 mgZnkg–1 for 
shoot or leaf dry weight (Macnicol and Beckett 1985).

Physiological Response Mechanisms

Modes of action of plants under exposure instead of the term tolerance mechanism 
are used in the meaning of ‘response mechanism’. Tolerance or toxicity mecha-
nisms are not fully defined as yet (Schat et al. 1996), and tolerance mechanism also 
includes responses like altered permeability, enhanced metal binding capacity of  
the root apoplasm and root exudates. Cellular mechanism includes the synthesis  
of phytochelatins, organic acids, proteins and membrane adjusting functions togeth-
er with the synthesis of specific transporters (Hall 2002). Still the question arises as 
which mechanism provides contribution to the primary and secondary responses. 
These mechanisms shows the element and plant species dependency and more than 
one mechanism is active simultaneously in a species (Macnair 1993). Recently 
Fodor (2002) has reviewed heavy metal responses of higher plants.
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Phytochelatins

Synthesis of phytochelatins (PCs) and metallothioniens (MTs) is the response of 
plants applied with the high concentration of metals or metalloids. Due to their sim-
ilarity with metallothioniens, phytochelatins have been called as class III metallo-
thioniens (Cobbett and Goldsbrough 2002). The distribution task between PCs and 
MTs is repeatedly reviewed (Cobbett 2000; Cobbett and Goldsbrough 2002). At 
present, PCs primarily functions in detoxification while as MTs have been given 
other roles, e.g. in chaperoning the metallic element translocation. MTs belong to 
the gene family and PCs are enzymatically produced (Cobbett and Goldsbrough 
2002). The small molecular weight phytochelatins are cysteine rich polypeptides 
with n = 2–11 (Reddy and Prasad 1990) or n = 2–5 (Cobbett and Goldsbrough 2002). 
They were first detected in cell suspension culture of Rauwalfia serpentina exposed 
to 0.2 mM CdSO4 (Grill et al. 1985). Phytochelatins are synthesized in response to 
Cd, Au, Cu, Ag, Ni, Pb, Sb, Sn, Hg, Te and Zn (Grill et al. 1987) and selenate and 
arsenate (Grill et al. 1986). The proposed sequence to the intensity of induction in 
metal specific is: Hg > Cd > As > Te > Ag > Cu > Ni > Sb > Au > Sn > Se > Bi > Pb 
> W > Zn (Ernst 1997b). Many exceptions to this sequence raised, e.g. Pb is strong 
inducer of phytochelatins in some legumes (Piechalak et al. 2002). To confirm this 
the sequence of the root culture of Rubia tinctorium; Ag > Cd > Pb > Hg > As (III) 
> Cu > As (V) > Zn > Pd > In > Ga > Se > Ni has been suggested (Maitani et al. 
1996). Phytochelatins production leads to toxicity rather than tolerance (Ebbs et al. 
2002). Current studies revealed that phtochelatins do not contribute to Zn, Cd (Ebbs 
et al. 2002; Schat et al. 2002) or Cu tolerance (Schat et al. 2002). In the root cells 
of Silene cucubalus the Cu tolerance is associated with the glutathione level, i.e by 
restricting the influx of Cu to these cells and PC synthesis reduction (De Vos et al. 
1992). Apart from toxic element inactivation, PCs perform other functions as well 
like micronutrient homeostasis (Schat et al. 2002), sulphur metabolism (Tomasze-
wska et al. 1996) maintainance of enzyme activity (Kneer and Zenk 1992) translo-
cation of metals (Cobbett and Goldsbrough 2002) and transport and storage of As 
(Hartley-Whitaker et al. 2001b). It has been anticipated that PCs primary function 
is homeostasis and inactivation is secondary (Steffens 1990). In higher plants and 
microorganisms, the trafficking of PC-complex metals in energy consuming across 
tonoplast, the transport is mediated by ABC-type cassette binding ATPase (Nies and 
Silver 1995). Avena sativa roots have shown that these ATPases transport Cd-PCs 
in tonoplast vesicles in the presence of Mg2+ (Salt and Rauser 1995). Most likely, 
higher plants have a gene homologue to the hunt gene that regulates the production 
of these transporter proteins in Schizosaccharomyces pombe (Ortiz et al. 1992). 
Five types of PCs have been known on the basis of C-terminal amino-acid and the 
length of the chain (PC0-PC4) (Rauser 1995). In addition to PCs, i.e. the polymer 
of glutamyl-cysteinyl glycine, homo phytochelatins (h-PCs), polymer of glutamyl-
cysteinyl alanine occurs in legumes (Piechalak et al. 2002). Evidences point towards 
glutathione and homoglutathione acts as precursor of PCs and h-PCs (Cobbett and 
Goldsbrough 2002). The polymerization of glutathione and PC synthase the metal 
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of PC reaction is catalysed by glutamyl-cysteine synthetase (Piechalak et al. 2002). 
PC-metal complex regulates the PC synthase (Cobbett 2000). In many plants 
PC synthase is present in the cytoplasm and also in the roots of Pisum sativum 
(Klapheck et al. 1995) metal ion is most likely to be activated although de novo 
synthesis may occur (Cobbett 2000).

Oxidative�Stress�and�Antioxidative�System�in�Plants

Oxidative stress is an essential regulated process, as the equilibrium between the 
oxidative and antioxidative capacities determines the fate of the plant. The antioxi-
dant defence system provides sufficient protection against active oxygen and free 
radicals under non-stressful conditions. Natural and anthropogenic both stresses 
provoke the high production of toxic oxygen derivatives. In this condition, the re-
sponse of the capacity of the antioxidative defence system is increased, but in many 
situations the response is moderate. In addition, important sites like reaction center 
and apoplastic space have very little protection against this oxidative damage.

About two billion years ago, ROS have been the unwanted companions of aero-
bic metabolism. Apart from molecular oxygen (O2), partially reduced or activated 
derivatives of oxygen (O2

–1, H2O2 and HO) are highly reactive and toxic and cause 
the oxidative destruction of cells. This results that evolution of all aerobic organism 
has been dependent on the development of efficient ROS scavenging mechanisms. 
Recently new rate for ROS was known like the control and regulation of biological 
processes such as cell death, stress responses, hormonal signaling and development. 
Therefore the understandings of ROS suggest its dual role in plant biology:

• Toxic products of aerobic metabolism
• Key regulators of metabolic and defense

The�ROS�Cycle

Rate of ROS in different cellular compartments is determined by the relationship be-
tween multiple ROS-producing pathways and ROS scavenging mechanisms. ROS 
signal transduction pathways control these mechanisms and form the ‘basic ROS 
cycle’. This pathway monitors the level of ROS, produced by aerobic metabolism, 
and controls the expression and ROS-scavenging pathways during normal growth 
and development. The ROS cycle also performs good metabolic timing e.g. Photo-
synthesis control to reduce the production rate of ROI. The ROS source in plants be-
longs to the aerobic metabolic reactions, such as photosynthesis and respiration and 
others belong to pathways enhanced during abiotic stresses like photorespiration. 
Recently, NADPH oxidase, amino-oxidases and cell wall bound peroxidases were 
identified to be the new sources of ROS in plants. They participate and are tightly 
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regulated in control processes like stress responses, programmed cell death and 
pathogen defense pathways. The estimated constant rate of 240 µMO2 and steady 
level of 0.5 µH2O2 for ROS production in cells are optimal growth conditions. On 
the other hand, stresses that destroy the cellular homeostasis of cells result in the 
enhancement production of ROS (i.e. up to 720 µMO2 and steady state level of 
5–15 µMH2O2). These stresses consist of salt, drought, chilling, heavy metal, heat 
shock, UV radiations, desiccation and air pollutants such as ozone and SO2, nutrient 
deprivation, mechanical stress, pathogen attack and high light. Stress enhanced the 
production of ROS that creates threat to cells and these conditions also enhance the 
expression of ROS scavenging enzymes.

Under stress conditions, ROS are produced by cells (e.g. by NADPH oxidase) 
and the signals for the defence pathways are also produced. Therefore, ROS may 
be considered as the cellular byproduct of stress metabolism as well as secondary 
messenger for signal transduction pathway in stress response.

Plant cells require different mechanisms to regulate their intracellular ROS con-
centrations by scavenging ROS because ROS are toxic and participate in key signal 
events as well. These include superoxide dismutase (SOD), ascorbate peroxidase 
(APX) and catalase (CAT). The equilibrium between SOD and APX activity in cells 
is considered to be crucial for estimating the steady state level of O2

–1 and H2O2. 
And the balance with metal ions like Fe and Cu by ferritin and copper binding pro-
teins is also important to prevent formation of highly toxic OH by metal-dependent 
Haber-Wiess or Fenton reaction. Other antioxidants important for the defence of 
plants against oxidative stress are ascorbic acid and glutathione that are found at 
high concentrations in chloroplasts and other cellular compartments. Though the 
ROS scavenging enzymes expression increases the tolerance of plants under abiotic 
stress. However, in chloroplasts and mitochondria a group of enzymes called alter-
native oxides also decreases the ROS production in cells by alternative channelling 
of electrons in electron transport chain.

Conclusion and Future Perspectives

In this review article, arsenic occurrence, distribution, sources, chemistry, physi-
ological response mechanism and oxidative stress were discussed. We found that 
arsenic from both natural and anthropogenic sources have been considered as one of 
the most toxic element affecting millions of people in the world. And several prob-
lems like vegetation loss, contamination of ground water and toxicity in animals, 
plants has been due to arsenic contaminations. From many published reports, it is 
now clear that arsenic induces cellular toxicity by damaging the oxidative defense 
mechanism that can be prevented by the phytochelation method. But we need more 
sound information related to arsenic as treatments of residues from smelting or 
mining, preventing the use of agrochemicals containing As or simple methods for 
soil/water testing in field or laboratory which will allow us in making decision for 
remediation and an adequate disposal plan.
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It is clear now that still we are far away from having a safe, specific and effective 
chelating agent for the treatment of metal poisoning. Several factors must be con-
sidered in order to accomplish a high performance of remediation result. Phytore-
mediation is the most thriving way to remediate arsenic contaminated environment, 
as it has many advantages as compared to other conventional technologies.
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Abstract Arsenic (As) toxicity is a global concern due to increasing contamina-
tion of metalloid in water, soil and crops especially in South East Asia. Arsenic 
poses a serious threat of food chain contamination by accumulating in various crops 
through the phosphate transporters as a phosphate analogue. After accumulating 
in plant tissues arsenic interferes with various metabolic processes and thereby 
adversely affects the plant metabolism, and ultimately leads to reduced plant pro-
ductivity. Alteration of phosphate, nitrogen, sulfur metabolism and disorder in 
major physiological reactions like respiration, photosynthesis and transpiration are 
responsible for metabolic dysfunction of plants exposed to arsenic. This chapter 
discusses recent advances in plant arsenic interaction at molecular, biochemical and 
physiological levels. It is necessary to develop a detailed biochemical understand-
ing about interaction of arsenic with plants to limit detrimental effects of arsenic on 
crops and also for better agronomic production.

Introduction

Arsenic (As) is an environmental and food chain contaminant. The toxicity of arse-
nic was known as early as in 300 B.C. It has been used at least from the 12th century 
A.D in metallic form. It bears a sinister connotation linked to suicides, witchcraft 
and murder and it was a source of despair and inspiration to alchemists wishing 
to transform metals into gold (Azcue and Nriagu 1994). Arsenic is a metalloid of 
group VA in the periodic system. It is a natural constituent of the lithosphere and oc-
curs in some 200 minerals, frequently as mixed sulphides. Metal oars such as lead, 
gold, zinc and copper, volcanic eruptions and sea spray liberate arsenic naturally, 
and it can be methylated, demethylated and volatilized by soil bacteria (Matscullat 
2000). Anthropogenic sources of arsenic pollution are spreading of herbicides or 
pesticides, coal combustion and timber preservatives. High-temperature urban 
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waste combustion generates particulate emissions of arsenic, that contribute to dry 
(particles) and wet deposits (rain) (Melanen et al. 1999). Inorganic arsenic is a po-
tent human carcinogen, associated with increased risk for cancer of the skin, lungs, 
urinary bladder and kidneys, as well as hyperkeratosis, pigmentation changes, and 
effects on the circulatory and nervous systems. It is also known to generate oxida-
tive stress in humans (Benton et al. 2011).

Distribution�of�Arsenic�in�World

Arsenic contamination has become a problem in many parts of the world. The World 
Health Organization (WHO) has set a guideline of 10 µg As L-1 as the drinking water 
standard (WHO 2008). However, As concentrations in the range of > 1,000 µg L-1 
have been reported from various places throughout the world (Tuli et al. 2010). 
Especially Australia, Canada, Japan, Mexico, Thailand, United Kingdom, United 
States, Argentina, Bangladesh, Cambodia, Chile, China, Ghana, Hungary, Inner 
Mongolia, Mexico, Nepal, New Zealand, Philippines, Taiwan, the United States 
and Vietnam are reported as highly contaminated countries (WHO 2002).

In India sever contamination of arsenic in ground water has been reported in West 
Bangal (69 times more arsenic than WHO standard) whereas Jharkhand, Assam, Bi-
har, Utter Pradesh, Manipur and Chhattisgarh are some other states well effected by 
arsenic toxicity. In Rajasthan also, arsenic bearing groundwater has been reported 
in the vicinity of Cu (Khetri) and Zn mines (Zawar). It has been reported that agri-
cultural land contains ≤ 10 mg kg-1 in non-contaminated soil whereas it increases 
up to 1,000–3,000 mg kg-1 in contaminated soil (Panda et al. 2009). Growing crops 
in arsenic contaminated soil and irrigation with arsenic contaminated water effects 
the crops in terms of growth, yield, biomass production and arsenic accumulation 
which can directly leads to food chain contamination.

Arsenic�Species�Found�in�the�Environment

The oxidation states and electron orbital of arsenic is similar to those of phospho-
rus. Arsenic forms alloys with various metals and covalent bonds with carbon, hy-
drogen, oxygen, and sulfur. In nature, arsenic exists predominantly in inorganic 
form as trivalent arsenite (III) or pentavalent arsenate (V). The major species found 
in the environment are arsenite As(III), arsenate As(V), mono methylarsonic acid 
(MMA), dimethyal arsenic acid (DMA), arseno betain and arseno choline (Tangahu 
et al. 2011). In the environment arsenic is present in both organic and inorganic 
forms. The inorganic species arsenate As(V) and arsenite As(III) are more abundant 
in soil as compare to organic species, monomethyarsonic (MMA), Dimethylarse-
nic (DMM) etc. (Takamatsu et al. 1982). These forms have different physical and 
chemical characteristics resulting in various degrees of mobility, bioavailability and 
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toxicity. In general inorganic arsenic species are more toxic than organic arsenic 
species (Adriano 2001).

Arsenic accumulation and speciation in plants are affected by root aeration and 
porosity (Wu et al. 2011). Behavior of arsenic in soil and also in plants is differ-
ent due to its dynamic and complex chemical species with inter conversable forms 
regulated by biotic and abiotic process (Fig. 13.1).

This chapter evaluates all the changes in plants at physiological, biochemical and 
molecular level to better understand toxicity and resistance mechanisms in plants.

Interaction of Arsenic with Plants

Uptake�of�Arsenic�in�Plants

Different soil parameters like pH and redox state has a major influence on the toxic-
ity of arsenic species due to altered availability (solubility and mobility). The up-
take of arsenic affected by some factors such as soil type, nutrient supply, pH of the 
medium and mugineic acid which is excreted by some graminaceous (grassy) plants 
(Sultana and Katsuichiro 2011). Among all factors phosphorus and pH are the most 
important ones influencing plant growth and As uptake. As(V) has been shown to 
be taken up by the high affinity phosphate uptake system (Ullrich-Eberius et al. 
1989) while As(III) uptake is thought to be through aquaporins in the roots (Meharg 
and Jardine 2003) while low level uptake of organic As species, such as MMA and 
DMA has also been observed in rice but the underlying transport pathways are un-
known (Meharg 2004). Recently, Arsenic transformation and volatilization is also 
investigated. The uptake of As species into rice roots is in the order of arsenate 
[As(V)] > monomethylarsonic acid [MMAs(V)] > dimethylarsinic acid [DMAs(V)] 
> trimethylarsine oxide (TMAs(V)O), but the order of the root-to-shoot transport 
index (Ti) is reverse. The volatilization of trimethylarsine (TMAs) from rice plants 
is also observed when plants were treated with TMAs(V)O but not with As(V), 
DMAs(V) and MMAs(V) (Jia et al. 2012). Lomax et al. (2012) has reported a latest 
finding on the basis of GeoChip analysis of microbial genes in a Bangladeshi paddy 
soil that plants are unable to methylate inorganic As, and instead take up methylated 
As produced by microorganisms. Recently, specific accumulation patterns were ob-
served among growth habitat and plant groups, it was found that submerged plants 
have a higher accumulation than emergent and terrestrial plants. Whereas ( Oryza 
sativa) grown in multiple sites (Norton et al. 2012).

Once arsenic enters inside root cells, As(V) is quickly reduced to As(III) and 
become complexed with phytochelatines. Phosphorus nutrition influences As(V) 
uptake and toxicity in Gymnosperms had a high [As](shoot): [As](root) ratio (Bergqvist 
2012). Statistically significant effect of year, location and flooding management 
are also reported as an important factors to develop variation in grain arsenic 
evaluated in a varied section of rice plants, whilst silicon has similar influences 
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on As(III). Phytotoxic effects commonly observed from As exposure includes 
growth inhibition, chlorophyll degradation, nutrient depletion and oxidative stress  
(Moreno-Jiménez et al. 2012). As(III) can react with sulphahydryl groups of en-
zymes and proteins, which lead to loss of function and can cause cell death. As(V) 
can compete with phosphate, replacing it in key molecules, including ATP (Scott 

Fig.  13.1   Various forms of arsenic present in the environment. (Adapted from http: elements.
geoscienceworld.org)
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et al. 1993; Meharg and Hartley-Whitaker 2002; Quaghebeur and Rengel 2003). 
Exposure of plants to inorganic As leads to the synthesis of phytochelatins that 
complex with As(III), those complexes or as alone, being transported across the 
tonoplast by ABC-type transporters or can be efflux from the cytoplasm by As(III) 
efflux transporters. Once arsenic enters in plant cell it causes various changes in 
normal metabolic activities. The changes occur due to arsenic toxicity and also in 
process to cope up from arsenic toxicity to some extent. But at higher concentration 
of arsenic toxicity plants fails to counterbalance between toxicity and resistance.

Anatomical�Changes�in�Plants�Exposed�to�Arsenic

Arsenic causes many physiological changes and damages in plants (Wells and 
Gilmor 1997). There are several anatomical parameters, in which reduction in 
growth is the earliest As toxicity response. Arsenic affects root growth more se-
verely than shoot growth possibly due to the retention of As in the roots in higher 
amount than in the stem. Stoeva et al. (2005) also reported that arsenic accumulated 
mainly in the root system and to a lesser extent in the overgrown organs. This also 
confirmed from the study of mung bean and Anadenanthera Peregrina (Pal et al. 
2006; Gomes et al. 2012). There is however, contrasting reports showing that the 
effect of arsenic on stem and root growth varies depending on the plant species, 
level of contamination and plant tissue ability to As. Arsenic also inhibits fresh and 
dry biomass accumulation (Wells and Gilmor 1997) which may be possibly due to 
plant growth inhibition. From the study of mung bean it is also observed that reduc-
tion in root elongation is accompanied by the anatomical changes, which occurs on 
exposure to arsenic toxicity (Pal et al. 2006). The anatomical changes are severe 
decrease or completely loss of root hairs, damage to epidermal cells and the cortex, 
with those cells losing their shape and showing signs of shriveling and disintegra-
tion while the untreated epidermal root cells are intact and the root hairs are turgid. 
Further compared to the control roots, where the stele is in a tetrarch condition, 
there is a lack of complete differentiation and pith formation in arsenic treated root 
cells. Also, arsenic cause necrosis and reduction of the number of raminification in 
root system (Stoeva et al. 2005). According to a study by Kopittke et al. (2012) the 
accumulation of As causes permanent damage to the meristem but root border cells 
accumulates high levels of As and limiting its movement into the root. When roots 
are counteract with arsenic in soil environment a greater diffusion of oxygen from 
the roots indicates increased root oxidizability (RO). This is considering as avoid-
ance from the toxicity. The TIC, salt used to measure RO, which absorbs electrons 
from the mitochondrial transport chain and correlates positively with the respiratory 
activity, in term associated with enhanced RO is also an indicator of higher reactive 
oxygen species generation (Singh et al. 2007).

Besides roots, above ground part of plant is also affected by arsenic toxicity. 
There is reduction in leaf area, necrosis and chlorosis of leaf tips are occurred on 
arsenic toxicity (Stoeva et al. 2005). Arsenic also changes the osmotic adjustment 
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of plant. The leaf water potential decreases while the relative water content (RWC) 
slightly decreases in toxic condition. All these changes, collectively lead to the 
changes in important physiological activities of plant like photosynthesis, transpira-
tion, stomatal conductance etc.

Arsenic causes a reduction in photosynthetic rate (Miteva and Merakchiyska 
2002). The reduced photosynthetic rate can be due to the many factors like result of 
disturbance in assembling of the pigment protein complex and thylakoid membrane. 
Arsenic can release protein; lipid and element components of thylakoid membrane 
indispensable for photosynthesis activity of proteins especially connected with the 
water splitting system and of lipid, glactolipid probably connected with PSII are lib-
erated. Another reason for decreasing the photosynthesis rate could be disturbance 
in the pigment apparatus. The photosynthesis pigments are some of the most impor-
tant internal factor which in certain cases is able to limit the photosynthesis rate. It 
is believed that they are target of toxic As effect (Miteva and Merakchiyska 2002). 
There is considerable decrease of chlorophyll and carotenoid contents on exposure 
to arsenic (Stoeva et al. 2005). Also photosynthetic reactions are closely related 
with stomata behavior, due to closure of stomata in stress condition, diminish or 
cessation of CO2 uptake, by which photosynthetic rate also reduced (Biehler et al. 
1996). The insufficient water supply in tissue may also induce photo inhibition, 
which influence rate of electron transport. The transpiration processes also reduced 
on exposure to arsenic probably is a result of the disturbed uptake and transport of 
water, caused by the changes in root system. (Stoeva et al. 2005). As(V) affect cell 
wall, primary and secondary metabolism, abscisic acid metabolism and germination 
of the seedlings whereas, As(III) mainly affects hormonal and signaling processes 
(Chakrabarty et al. 2009). Anarchy in mitotic and labeling index, mitotic arrays of 
microtubules, increased percentage of metaphase and DNA fragmentation are also 
observed in roots of Pisum sativum exposed arsenic (Faria et al. 2010).

Biochemical�Changes�in�Plants�Exposed�to�Arsenic

At biochemical level plants shows many changes during exposure to arsenic. Some 
of the constituents are decreased due to toxicity of arsenic and some are increased to 
combat from detrimental effects of toxicant. Arsenate acts as a phosphate analogue 
and is transported across the plasma membrane via phosphate co-transport system 
(Ullrich-Eberius et al. 1989). Once inside the cytoplasm it competes with phosphate 
from several vital reactions like in the glycolysis (metabolism of glucose) the con-
version of 1, 3 bisphosphoglycerate to 3 phosphoglycerate, ATP molecule is formed 
by using inorganic phosphate but in the toxicity of arsenic, arsenate competes with 
phosphate and give l-arseno-3 phosphoglycerate which hydrolyses spontaneously 
to 3 phosphoglycerate without forming ATP so deprives the cell from the energy 
sources. Also arsenate can replace phosphate group from DNA causing disorganize 
the structure of nucleic acid which effects directly to gene function. Similarly arse-
nite is a well known thiol reagent that combines rapidly with dithiol groups on pro-
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teins and act as an effective inhibitor of enzymes requiring free sulfahydryl groups 
(Webb et al. 2003). Thus phosphate replacement and inactivation of enzymes by 
binding with their thiol groups are the main modes of arsenic toxicity (Table 13.1).

Arsenic interferes with various events of respiratory cycle. Arsenite act as an 
inhibitor of α-ketoglutrate dehydrogenase enzyme in TCA cycle, causing the accu-
mulation of substrate α-ketoglutrate and no product formation (succinyl Co-A). The 
nutrient uptake is also affected due to arsenic toxicity. Phosphorus uptake decreases 
with increasing arsenic concentration due to similarity with arsenate. Also uptake of 
nitrate is reduced on exposure to arsenic. The uptake of nitrate and further assimila-
tion to ammonium is also altered, possibly due to interference of arsenic with the 
involving enzymes, nitrate reductase and nitrite reductase (Table 13.2).

Arsenic Induced Oxidative Stress in Plants

There is significant evidence that exposure to inorganic arsenic species (ROS) 
results in the generation of reactive oxygen species caused oxidative damages to 
plants (Sharma 2012). This probably occurs through the conversion of arsenate 
to arsenite, a process which readily occurs in plants. After this reduction, arsenic 
may be potentially further metabolized to methylated species leading to further 
oxidative stress (Zaman and Pardini 1996) because methylation is thought to be 
redox driven and such reactions could give rise to reactive oxygen species (ROS). 
However there is no sufficient evidence for methylation in higher plants but it can 
be seen in the cell suspension of Cathranthus roseus (Cullen and Hettipathirana 
1994) and in phosphate starved tomato plants (Nissen and Benson 1982). Also Wu 
et al. (2002) has been shown in vitro methylation of arsenic in cell extracts from 
bent grass ( Agrostis tenuis). These reactive oxygen species causes peroxidation of 
lipid by reacting with lipid bilayer and thereby leading to membrane leakage. Lipid  
peroxidation can be measured in terms of MDA content. An increase in MDA con-

Table 13.1    Enzymes affected by arsenic toxicity in plants
Mode of as toxicity Target enzyme References
Phosphate replacement 

with arsenic
F1-F0 ATP synthases Gresser (1981)

GDPH (glycolytic enzyme) Orsit and Cleland (1972)
Aspartate-β-semialdehyde 

dehydrogenase
Kish and Viola (1999)

Purine Nucleoside Phosphorylase 
(PNP)

Park and Agrawal (1972)

Binding with thiol groups Dihydrolipomide (Co-factor of pyru-
vate dehydrogenase complex (mt 
PDC, pt PDC)

Bergquist et al. (2009)

Gly decarboxylase complex (GDC) Peters et al. (1946)
Branched Chain 2-oxoaciddecarboxyl-

ase complex (BCOADC)
Bergquist et al. (2009)
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tent indicates the occurrence of membrane damage due to peroxidation of polyun-
saturated fatty acids, resulting in the generation of ROS and subsequent oxidative 
stress. There are several reports that confirm that MDA content increase on expo-
sure to arsenic (Stoeva et al. 2005; Srivastava et al. 2007).

The amount of soluble protein content is reduced in the arsenic toxicity. In the 
study of Stoeva et al. (2005) oat root has been shown that protein content decreased 
linearly on increasing the arsenic concentration which may be most probably a 
result of the reduced anabolic or the accelerated catabolic processes. The protein 
degradation to amino acids is in fact an adaptation of the cells to the carbohydrate 
deficiency. On the other hand, the accelerated catabolism is probably due to the con-
siderable disturbance in the membrane systems, in response to metal phytotoxicity 
(Fig. 13.2).

As well as different mechanisms of heavy metal toxicity, several defense  
strategies related to metal tolerance in plants have also been well characterized. 
Similarly plants have also several detoxification mechanisms related to arsenic 
toxicity, these are suppression of high affinity arsenate/phosphate uptake systems, 
reduction of arsenate to arsenite, chelation of arsenite to metal binding peptides, 
induction of different antioxidant enzymes such as superoxide dismutase (SOD), 
ascorbate peroxidase (APX), catalase (CAT), and nonenzymatic antioxidants like 
glutathione, ascorbate, tochopherol etc., effluxation of arsenic from cytoplasm, and 

13 Arsenic Stress in Plants: An Inside Story

Fig. 13.2   Major plant physiological reactions severely affected by exposure to arsenic
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finally sequestration of arsenic in vacuoles (Sharma et al. 2007). Increasing activ-
ity of Guaiacol peroxidase, Catalase, Ascorbate peroxidase contributes to high ac-
cumulation of the arsenic species by the plants (Srivastava et al. 2011). Similarly, 
another non enzymatic antioxidant of glutathione-ascorbate cycle like ascorbate 
(AsA) and dehydroascorbate (DAsA), were also analyzed in some plants during 
As(V) exposure. As(V) treatment caused an increase in the ratio of AsA/DAsA in 
P. vitatta, P. ensiformis, H. verticillata, and O. sativa (Singh et al. 2006; Srivastava 
et al. 2011; Tripathi et al. 2012b) indicating the significant role of ascorbate in As 
induced stress tolerance. Also Requejo and Tena (2005) confirmed that the level 
of these enzyme increased because these are involved in cellular homeostasis for 
redox perturbation by the study of proteome analysis in maize roots (Fig. 13.3).

Reduction of arsenate to arsenite is catalyzed by enzyme arsenate reductase, 
it is also considered as a mechanism involved in detoxification because arsenite  
can bind with phytochelatins. Arsenate reduction is coupled to NADP (NADPH) 
oxidation via the reduction of oxidized glutathione by glutathione reductase (GR) 
and with the resulting glutathione (GSH) serving as the electron donor for arsenate 
reductase (Ellis et al. 2006).

The activity of arsenate reductase (AR) is well studied in yeast (Rosen 2002). 
Root extracts from the arsenic hyperaccumulator fern Pteris vittata also show the 

I. Sharma

Fig. 13.3   Possible mechanism of arsenic induced oxidative stress and antioxidant defense system. 
(Adopted from Sharma 2012)
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ability to reduce arsenate to arsenite by same enzyme; this reaction is similar to 
yeast in terms of arsenate reduction, substrate specificity and sensitivity towards 
inhibitors.

In the resistance mechanism of arsenic the level of phytochelatins is increased 
because arsenite binds with phytochelatins. Phytochelatins are heavy metal bind-
ing peptides derived from glutathione (GSH) with the general structure (γ-glu-
cys)nGly. The biosynthesis of phytochelatins involves the transpeptidation of 
γ-glutamyl-cysteinyl dipeptides from GSH by the action of constitutively expressed 
phytochelatins synthetase (Grill et al. 1987). Recent studies have confirmed that 
As(III) is complexed with phytochelatins in a range of terrestrial plant species, sug-
gesting that phytochelatins play an important role in decreasing the toxicity of ar-
senic in crops (Hartley-Whitaker et al. 2001; Zhang et al. 2012). Recently, Duana 
et al. (2011) has suggest that PC complexation of arsenite in rice leaves reduces As 
translocation from leaves to grains, and implicate that manipulation of PC synthesis 
might mitigate As accumulation in rice grain. Similarly induced levels of PCs were 
also observed in O. sativa (Tripathi et al. 2012a) under As stress.

Molecular�Changes�in�Plants�Exposed�to�Arsenic

There are several molecular responses by plants towards exposure to arsenic, due 
to both arsenic toxicity and also due to arsenic tolerance. Arsenic affects the ex-
pression of many genes that are involved in various essential cellular processes 
in plants. A number of genes involved in cell growth, cellular morphogenesis and 
cell cycle are down regulated on exposure to arsenic. From the study of the rice 
genome, two expansion genes (OsOlg14660 and Os04g46650), two tubulin genes 
(Os03g45920 and Os03g56810), an actin gene (OsOlg64630) and two microtubule 
genes (Os03g13460 and Os09g27700) which are involved in cell cycle and cell 
growth are less expressed when exposed to arsenic at low concentration for long 
term exposure (Norton et al. 2008). In As(V)-treated rice seedling, a triose-phos-
phate/Pi translocator gene was transcriptionally up-regulated (Chakrabarty et al. 
2009). This protein would be expected to transport Pi and As(V) across the plastid 
inner membrane in exchange for triose-phosphate. The effect of As exposure on 
genome-wide expression was also examined in rice (Yu et al. 2012). An As tolerance 
gene has been identified and mapped to chromosome 6 in rice (Tripathi et al. 2012a). 
A signaling molecule Nitric oxide, was also found to be induced during As(V) stress 
condition in A. thaliana (Leterrier et al. 2012).

The genes responsible for the expression of nutrient uptake transporters are re-
sponding differentially in arsenic toxicity. Norton et al. (2008) has also revealed that 
genes for transporters of various nutrients differentially expressed in rice genome. 
For phosphate, chloride, ammonium and nitrate transporters are down regulated 
which possibly cause nutrient deficiency in plants while sulphate transporters are 
up regulated, this is may be due to increased uptake of sulphur for the synthesis of 
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glutathione which is precursor of phytochelatins because chelation capacity of a 
plant is increased under metal toxicity (Cherian and Oliveira 2005). As previously 
describes that As(III) is taken up by aquaporins, two genes for these aquaporins in 
rice (Os05g14240 and Os12g10280) are also down regulated in the study of Norton 
et al. (2008). It is also reported that lower expression of genes expression of PHT1 
encoding phosphate transporters contributes to arsenic tolerance and accumulation 
in shrub willow (Puckett et al. 2011). The differential expression pattern of sul-
phate transporters were observed after As(V) exposure (Kumar et al. 2011). Three 
members of rice PIP subfamily of aquaporins have been recently reported to medi-
ate As(III) transport (Mosa et al. 2012). Overexpression of OsPIP2;4, OsPIP2;6, 
and OsPIP2;7 proteins in Arabidopsis resulted in increased As(III) resistance (Ma-
ciaszczyk-Dziubinska et al. 2012).

By analyzing maize root proteome Requejo and Tena (2005) revealed that oxi-
dative stress is the main contributing factor to plant arsenic toxicity. They reported 
that three superoxide dismutase, two glutathione peroxidase, one peroxidation and 
one p-benzoquinone are up regulated and these are involved in cellular homeosta-
sis for redox perturbation. Conversely, recently by the study of rice genome very 
surprising results came in which enzymes involved in detoxifying various reactive 
oxygen species and free radicals, gives no response to low concentration of arsenic 
for long term exposure (Norton et al. 2008). Only some of the Tau classes of GSTs 
(Glutathione-S-transferase) showed remarkable changes in expression which was 
only agreement with Mylona et al. (1998).

As part of arsenic detoxification, the majority of arsenate is reduced to arsenite 
by the enzyme arsenate reductase (AR). Recently, AR genes have been identified 
in plants, including Arabidopsis thaliana (AtAsr/AtACR2), Holcus lanatus (HI-
Asr) and Pteris vittata (PvACR2) (Dhankher et al. 2006; Bleeker et al. 2006; Ellis 
et al. 2006). The Arabidopsis, fungal, protist ACR2 sequences show homology a 
region within the CDC25 super family of protein tyrosine phosphatases (PTPase) 
that also contains the conserved HCXs-R motif and also has similar catalytic ac-
tivity like arsenate reductase. The arsenic detoxification gene is well studied in 
yeast in which three genes in cluster ACR1, ACR2, ACR3 are present for As toler-
ance. ACRI encodes a transcription factor, ACR2 encodes an arsenate reductase and 
ACR3 encodes a plasma membrane As(III) efflux transporter (Ghosh et al. 1999; 
Rosen 2002).

Many studies showed that alteration in the expression of arsenate reductase 
genes leads to the more arsenic tolerance in plants. Dhankher et al. (2006) cloned 
an Arsenate reductase gene from Arabidopsis thaliana (At ACR2) and silenced its 
expression in root (because of it appears that in most plants, arsenite is sequestered 
in roots, preventing it from moving up into stems, leaves and reproductive organs 
but to enhance phytoremediation it should be stored in aboveground tissues) and 
obtaining RNAi transgenics that accumulated 10–16 fold more arsenic in the shoots 
and retained less root As compared with WT plants when grown in the presence of 
low levels of As(V). However transgenic lines are more sensitive than WT plants 
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when exposed to high concentrations of As(V), probably because of the negative 
effects of As(V) on phosphate metabolism. By contrast, Bleeker et al. (2006) found 
that in Arabidopsis (equivalent to AtACR2) loss of function mutants are more As 
sensitive than WT plants, even to low levels of As(V) and when they over expressed 
AtASR the plant showed enhance tolerance to mildly toxic levels of As(V) to more 
toxic As(III). Recently two arsenate reductase genes have been identified in rice 
(OsArs 1, Oslog39860 and OsArs2, Os03g0 1770) (Duan et al. 2007). But interest-
ingly, besides their major role in arsenic detoxification these genes are not differ-
entially regulated on exposure to arsenic in the whole rice genome study (Norton 
et al. 2008).

Further arsenite binds with phytochelatins as described earlier in respect to re-
ducing arsenic toxicity. Overexpression of genes involving in phytochelatins syn-
thesis, like phytochelatins synthatase, γ-glutamylcystein synthatase and glutathione 
synthetase provides tolerance to arsenic toxicity. Li et al. (2004) overexpressed the 
AtPCSI resulted in a substantial increase in arsenic resistance, with a 20–100 times 
greater biomass in transgenic plants after exposure to arsenic, but led to Cd hy-
persensitivity. In contrasts in the study of Picault et al. (2006) overexpression of 
cytoplasmic AtPCS 1 markedly increased tolerance in transgenic plants to arsenic, 
whereas chloroplast-targeted overexpression of the same gene resulted in decreased 
tolerance of transgenic plants to arsenic. This is may be due to the limiting supply of 
essential metabolites such as cystein, γ-glutamylcystein and glutathione, which are 
needed for the production of phytochelatins. Because of phytochelatins production 
on exposure to arsenic leads to depletion of GSH, overexpression of components 
involved in GSH biosynthesis, such as γ-glutamylcystein synthetase (γ ECS) and 
glutathione synthetase (GS), will lead to increased tolerance to arsenic. Li et al. 
(2005) overexpressed γ ECS in Arabidopsis thaliana and found a 3–20 fold greater 
production of γ-glutamylcystein, glutathione and phytochelatins in plants exposed 
to arsenic. These studies shows that the expression of all these genes play important 
role in balance between toxicity and resistance to arsenic.

As part of the detoxification mechanism, Arsenic can be effluxed from the cy-
toplasm through As(III)-efflux transporters and can be sequestered in vacuoles by 
ABC type transporters. The genes for these transporters are not well identified in 
plants till now but it has homology to yeast. In yeast in ACR gene cluster, ACR3 
gene encoded a plasma membrane As(III)-efflux transporter, for the removal of 
cytosolic arsenic and an ABC type transporter, yeast cadmium factor (YCF I) is 
located at the vacuolar membrane by which arsenic sequester in vacuoles (Rosen 
2002). Ali et al. (2012) reported that heterologous expression of the yeast arsenite 
efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress.

In general, the expression of genes that encode various transporters is higher in 
hyperaccumulater plants than non-accumulators (Krammer 2005). By some stud-
ies it is confirm that by increase in the over expression of these transporters can 
increase the tolerance of arsenic. Ellis et al. (2006) isolate and characterized arse-
nate reductase (PvACR2) and arsenite transporter (PvACR3) from pteris vittata that 
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can suppress the arsenic sensitivity. The expression of PvACR3 in Pteris vittata is 
rapidly increased within 24 h after exposure to arsenate. But to date, there is lack 
of information regarding these type of transporters mediated arsenic detoxification 
in higher plants and effect on their expression in arsenic toxicity. Little informa-
tion are present upon the expression of these transporter from the study of whole 
genome analysis in rice that three genes with the predicted putative function of an 
ABC transporter family protein (Os 04g49890, Os04g52900, and Os11g05700) is 
up regulated in the arsenic toxicity. Phylogenetic analysis of these ABC transporters 
gene sequences revealed that they are also MRP transporter. MRPs are a subclass 
of that ATP-binding cassette (ABC) transporter, which are involved in the transport 
of glutathione conjugated compounds into the vacuoles of plants (Rea et al. 1998). 
And also a single gene with an annotated putative function of a glutathione conju-
gate transporter (Os04g 1321 0) is also upregulated on exposure to arsenic (Norton 
et al. 2008).

A number of genes involved in N transport also appear to alter expression in 
response to As. Amino acid transporters are down- regulated in response to As(V) 
in roots and seedlings of rice (Norton et al. 2008; Chakrabarty et al. 2009). How-
ever, amino acid transporter gene transcript levels were not influenced by As(III) 
(Chakrabarty et al. 2009). Peptide and oligopeptide transporters have also been re-
ported to be As(V) responsive in rice, but reports disagree on the direction (Norton 
et al. 2008; Chakrabarty et al. 2009).

Arsenic is also known to interfere with sulfur metabolism. It is reported at mo-
lecular level that in As(V)-treated rice, up to five sulfate transporter genes are up-
regulated in roots (Norton et al. 2008), and at least one sulfate transporter is up-reg-
ulated in Arabidopsis (Sung et al. 2009). As(III) also induces a sulfate transporter 
gene in rice and B. juncea seedlings (Chakrabarty et al. 2009). Although it is not yet 
clear whether As(V) and As(III) influence the expression of these transporters in the 
same way, but at least one of the transporter genes is induced by both forms of As 
(Chakrabarty et al. 2009). During transfer of sulfate from soil to plant once sulfate 
is reduced to sulfide, the sulfide is combined with O-acetylserine to form Cys in a 
reaction catalyzed by O-acetylserine(thiol)-lyase also known as Cys synthase. It ap-
pears that As(V) and As(III) exposure may cause a down-regulation of (OAS-TL), 
(OAS-TL)in As-sensitive plants. OAS-TL protein disappeared from maize shoots 
exposed to As (Requejo and Tena 2006), while OAS-Tl activity was repressed in an 
As-sensitive line of B. juncea (Srivastava et al. 2009).

Moreover, in rice, several methyl transferase genes are induced by As(V)-treat-
ment (Norton et al. 2008). Two of these are homocysteine S-methyltransferases, 
which catalyze the formation of S-adenosyl-l-homocysteine and Met from S-ade-
nosylmethionine and l-homocysteine.The enzyme is involved in the synthesis of 
S-methylmethionine (Ranocha et al. 2001), and may play a key role in maintaining 
a pool of soluble Met, in the cycling of methyl groups within cells, or as a phloem-
mobile form of Met that can be used to translocate sulfur derived from protein  
degradation (Bürstenbinder and Sauter 2012).
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Conclusion and Future Perspectives

Arsenic contamination in food chain is challenging issue for researchers. Various 
aspects of the study include biochemical, molecular, physiological and anatomi-
cal changes appeared in the plants as a result of arsenic exposure. Moreover, there 
are new findings regarding methylation of inorganic arsenic, uptake mechanism 
and accumulation of arsenic in plant. The role of transporters in uptake and vacu-
olar localization reveal that these processes are the key to understand As-resistance. 
There is considerable knowledge gap regarding arsenic mediated hindrance in plant 
physiological reactions, nutrient uptake, pathway of oxidative stress and effect on 
crop yield. This basic information will be significant in phytoremediation studies 
to eradicate the arsenic contamination from agricultural soil. We can acquire new 
insight about arsenic and plant interaction by using molecular advances and sophis-
ticated analytical technologies. So, research should focus on combing physiology 
and genetics to breed plants with low arsenic in edible plant parts and productivity.
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Abstract Secondary metabolites are mainly derived from plants and are used by 
humans from time immemorial. A plant cell, tissue, and organ culture has an inher-
ent capacity to manufacture valuable chemical compounds as the parent plant does 
in nature. In vitro plant materials are one of the good sources for the production 
of secondary metabolite and elicitation can be used as one of the important tool 
in order to improve the synthesis of these compounds. In a variety of plant cell 
cultures, elicitors have increased production of terpenoid indole alkaloids, isoflavo-
noid phytoalexins, serquiterpenoid phytoalexin, coumarins etc. Although elicitation 
has been carried out in large number of medicinal plants, we extensively studied it 
in Catharanthus roseus, because it is an important source of anticancer compounds 
Vinblastine (VLB) and Vincristine (VCR). The use of elicitor is also important in 
order to meet the market demands, for reducing production costs and for in-depth 
investigation of biochemical and metabolic pathways. This information helps us 
in manipulation of biosynthetic pathways which can be used as a powerful tool to 
make natural product-like compounds.
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Introduction

Plants with medicinal properties (secondary metabolites) have been used by humans 
to treat infections, health disorders, and illness since the early days of mankind 
(Lovkova et al. 2001; Wyk and Wink 2004; Toso 2010). Plants and plant cell cul-
tures have served as resources for flavours (food additives), aromas and fragrances, 
cosmetics (cosmeceuticals), biobased fuels, insecticides, perfumes, fine chemicals 
and bioactive compounds (Balandrin and Klocke 1988) and are collectively known 
as secondary metabolites. These compounds are also well known to play a key 
role in the adjustment of plants to their surroundings (Rao and Ravishankar 2002). 
During the last 50 years research work on plant secondary metabolites has been 
increasing because the daily lives including health care are essentially depends on 
these plant products (Mulabagal and Tsay 2004). Therefore, in order to achieve the 
market demand, cultivation of medicinal plants and in vitro production of plant 
secondary metabolites are the only sustainable ways.

Plant cell, tissue, and organ cultures has an inherent capacity to manufacture 
valuable chemical compounds as the parent plant does in nature which has been 
recognized since the commencement of in vitro technology. In vitro plant materials 
are one of the good sources for the production of secondary metabolite and also pro-
vide an excellent environment for in-depth investigation of biochemical and meta-
bolic pathways (Mulabagal and Tsay 2004; Karuppusamy 2009). In vitro studies 
including plant tissues and suspension cultures are continued in diverse directions 
for the commercial production of secondary metabolites (Ramawat and Merillon 
2007; Ghorpade et al. 2011). The accumulation of secondary compounds during 
plant cell cultures varies significantly due to the elements of the culture medium 
and environmental conditions (Stafford et al. 1986). Various efforts have been made 
to circumvent these biological and technological limitations (Lee and Shuler 1991). 
Robins (1994) reported different strategies in order to improve the synthesis of sec-
ondary metabolites in suspension cultures. Different media have been employed for 
different species and the use of biotic and abiotic elicitors has also been engaged 
because of their strong and rapid improving effects on indole alkaloid synthesis 
(Moreno et al 1995). There are many reports of cell culture in which secondary 
metabolites has been produced, such as solasodine production from calli of Sola-
num eleagnifolium and from root cultures of Senecio production of pyrrolizidine 
alkaloids (Nigra et al. 1987; Toppel et al. 1987) and production of anthraquinones 
in cell cultures of Rubia tinctorum(Abd El-Mawla 2012). Jha et al. (1988) separated 
cephaelin and emetine from callus cultures of Cephaelis ipecacuanha and quinoline 
alkaloids in considerable amount was separated from Cinchona ledgeriana cell sus-
pension cultures (Scragg et al. 1992). In C. roseus, Zhao et al. (2001e) reported en-
hanced alkaloid biosynthesis in suspension culture, Ravishankar and Grewal (1991) 
reported production of diosgenin in callus culture of Dioscorea deltoidea by assess-
ing the effect of media constituents and nutrient stress. Cardenolides biosynthesis 
was noted to be maximum in the hairy root culture of Digitalis lanata as compared 
to leaf (Pradel et al. 1997) and in vitro synthesis of azadirachtin and nimbin was less 
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in field grown plant as compared to cultured shoots and roots of Azadirachta indica 
(Srividya and Devi 1998). It has also been found that because of the source and the 
type of explants lepidine content in Lepidium sativum vary considerably (Pande 
et al. 2002). It shows that biosynthetic efficiency of populations varies; therefore 
we should select a high yielding variety as a starting material (Tripathi and Tripathi 
2003). The basic prerequisite in all this is a good yield of the compound, and cheap 
cost compared to the natural synthesis by the plants.

Elicitation can be used as one of the important strategy in order to get better pro-
ductivity of the bioactive secondary products (Chong et al. 2005; Smetanska 2008; 
Sharma et al. 2011; Hussain et al. 2012) and reducing production costs (Miao et al. 
2000; Zhang et al. 2003). There are reports where elicitors have increased produc-
tion of isoflavonoid phytoalexins (Smith and Banks 1986), serquiterpenoid phyto-
alexin (Threlfall and Whitehead 1988), coumarins (Hamerski et al. 1990), podo-
phyllotoxin (Muranaka et al. 1992), azadirachtin (Prakash and Srivastava 2008), 
terpenoids (Gao et al. 2011), hypericins (hypericin and pseudohypericin) and hyper-
forin (Coste et al. 2011), capsaicinoid (Gururaj et al. 2012), tanshinone (Kai et al. 
2012), vascicine (Bhambhani et al. 2012) and resistance to pathogens (Benhamou 
et al. 2001). Mihai et al. (2011) reported that biotic and abiotic elicitors stimulate 
biosynthesis and increase of resveratrol in Vitis vinifera callus cultures. Ahmed et al. 
(2012) reported that different concentration fungal extract ( Aspergillus niger and 
Penicillium notatum), yeast extract and chitosan enhance the synthesis of psoralen 
in Psoralea corylifolia suspension cultures.

The other side of the elicitation has also been used to elucidate the complex 
metabolic pathways (Moreno et al. 1996), to characterize the interaction between 
biotic and abiotic stress responses at a molecular level (Atkinson and Urwin 2012). 
There are also studies which have been published to mark the effects of elicitors on 
enzymes of secondary metabolism (Zenk 1991), important signal molecules that 
mediate plant resistance reactions (Gao et al. 2012; Bux et al. 2012), oxidative burst 
(Davis et al. 1993) phytoalexin signal transduction (Preisig 1994) and anion chan-
nels (Zimmermann et al. 1998). Beside that elicitors can be used to study the chemi-
cal nature and signaling pathways of natural substances discharged by microbes, 
herbivores, and plants during pathogenic contamination, herbivory, symbiosis and 
allelopathic interactions (El- Samra et al. 2011; Maffei et al. 2012).

Elicitors and Elicitation

Earlier the term elicitor was used for molecules, which induced the production of 
phytoalexins, but it is now simplified as a compound which promotes various kinds 
of plant defense system (Hahn 1996; Nürnberger 1999). Further an elicitor may also 
be defined as a material which, instigate or advances the biosynthesis of specific 
compounds when added in small amount to a living cell system. In this way elicita-
tion can be explained as the stimulated or improved biosynthesis of compounds due 
to addition of trace amounts of elicitors (Radman et al 2003, Angelova et al. 2006). 
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On the basis of their origin, structure and type, elicitors can be classified as biotic 
and abiotic (Eilert 1987; Barz et al. 1988). There is one more benefit of the use 
of elicitors is that they also encourage release of the metabolites into the medium 
(Pitta-Alvarez et al. 2000).

Biotic�Elicitors

These are chemically complex biological compounds with unknown composition 
like microbial cell-wall preparations and yeast extract. In some cases, and particu-
larly in recent years, elicitors with known chemical structure have been selected 
which helped in more detailed investigation of the elicitation process. Carbohy-
drates and proteins are examples of such defined elicitors (Radman et al. 2003). 
Different workers further classified these substances on the basis of their similarity. 
Material from living organisms include different polysaccharides from plant cell 
walls (pectin or cellulose) and microbial extracts (chitin or glucans) and glycopro-
teins (Eilert 1987; Nishi 1994; Benhamou 1996; Shirsau et al. 1997); phytoalexins: 
which are low-molecular-mass antimicrobial secondary compounds synthesized by 
plants in reaction of fungal or bacterial attack and physical damage. Protein kinase: 
regulate growth and cellular development by phosphorylating a number of target 
proteins; calmodulin: intracellular Ca2 + -binding proteins consisting of at least two 
different peptides, with four Ca2 + binding sites; calmodulin has no enzyme activity 
of its own, but acts by binding to other proteins (Radman et al 2003, Angelova et al. 
2006). Recently Siddiqui et al. (2010) described fungal elicitor as a potent approach 
for enhancing secondary metabolites in cultured cells.

Abiotic�Elicitors

As compared to biotic elicitors the use of abiotic elicitors in plant cell cultures 
has received less interest (Radman et al 2003, Angelova et al. 2006). Abiotic elici-
tor or stress agents are non-biological substances which includes different kinds of  
inorganic salts and physical factors like UV radiation, heavy metal salts (Cu and 
Cd ions), Ca2 + , high pH and other chemical compounds with diverse mechanism of 
action (Eilert 1987; Radman et al 2003). Recently Zuccarini (2009) reviewed ozone 
as a fungal elicitor. Addition of AgNO3 and CdCl2 to the cultures of Brugmansia 
candida (angel’s trumpet) enhanced significantly the accumulation and release of 
these alkaloids, but CdCl2 inhibited the growth of the hairy roots (Pitta-Alvarez 
et al. 2000). Wu et al. (2001) investigated the synthesis of taxol in cell cultures 
of Taxus sp. under the influence of the rare-earth metal lanthanum and reported 
a considerable augmentation (280 %) of taxol. Although elicitation has been car-
ried out in large number of medicinal plants but for this chapter we extensively 
studied it in C. roseus. There is a great importance of this plant as it is an important 
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source of anticancer compounds with activity against various kinds of carcinoma 
(Svoboda and Blake 1975; Schmeller and Wink 1998) along with it also houses 
a large number of Terpenoid indole alkaloids (TIAs) (Svoboda and Blake 1975; 
Van der Heijden et al. 1989; 2004), which possess pharmacological activity against 
different other diseases. The aerial parts of the plant contain 0.2–1 % alkaloids 
(Bruneton 1993). About 130 alkaloids have been isolated from C. roseus, of par-
ticular interest is a group of 20 dimeric alkaloids (Evans 1996). However of this 
large number of chemical compounds, only few (~ 11) are regularly investigated  
and even lesser (~ 8) are commercially available (Hisiger and Jolicoeur 2007). VCR 
and VLB are two most important alkaloids which can be found in C. roseus and are 
known for their antineoplastic activity. Ajmalicine and serpentine are the antihyper-
tensive agents (Shanks et al. 1998), used to combat heart arrhythmias and improves 
the blood circulation in the brain (Moreno et al. 1995; Schmeller and Wink 1998). 
Other alkaloidal fractions from the leaves including vindoline are antibacterial in 
nature. Pericalline, perivine, VLB, VCR, carosine etc. show antiviral activity in vi-
tro against vaccinia and polio type III viruses with pericalline being the most effec-
tive. Vincolidine, lochrovicine, catharanthine and vindoline shows diuretic activity. 
In different Indian system of medicine it is used as an antidiabetic agent (Singh et al. 
2001), catharanthine, leurosine, lochnerine, tetrahydroalstonine, vindolineproduce 
varying degrees of lowering of blood sugar in rats. An alkaloidal mixture obtained 
from flowers showed significant hypoglycaemic activity in rabbits (Wealth of India 
1992). Velban® is a trade name for Vinblastine sulphate and is employed mainly 
for the treatment of Hodgkin’s disease in addition lymphosarcoma, choricarcinoma 
and carcinoma of the lungs, breast and other organs in acute and chronic leukemia. 
Oncovin® sold as Vincristine sulphate, arrests mitosis in metaphase and is very suc-
cessful for the treatment of acute leukemia in children and lymphocytic leukemia. 
It is also administered against Hodgkin’s disease, Wilm’s tumour, rhabdosarcoma, 
reticulum cell sarcoma and neuroblastoma. VCR is superior to VLB in the treat-
ment of lymphosarcoma and has greater toxicity (Wealth of India 1992). In terms of 
production of VLB and VCR, India ranks third in the world and is exporting these 
alkaloids to European countries. High demand and low yield of these alkaloids in 
the plant has led to research for alternative means for their production.

Elicitation of C.�roseus

The use of a variety of biotic and abiotic elicitors or signal molecules in cell cultures 
frequently increases the yield of certain secondary compounds, perhaps due to their 
role in defense (Zhao and Verpoorte 2007; Aijaz et al. 2011). The biosynthesis of 
secondary metabolites in C. roseus cell cultures was lucidly reviewed by Moreno 
et al. (1995) and important factors affecting the production of indole alkaloids were 
discussed. Further Moreno et al. (1996) studied the suspension cultures of C. roseus 
cell under the influence of fungal filtrate of Phytium aphanidermatum as an elici-
tor. Although there was no enhancement in alkaloid synthesis was observed but the 

14 In vitro Production of Secondary Metabolites Using Elicitor in Catharanthus roseus …



406

authors studied the result of elicitation on different metabolic pathways and summa-
rized that the biosynthesis of phenolics and the pathway to tryptamine are the two 
important fluxes of intermediates in C. roseus cell cultures. There are reports which 
suggest that indole alkaloids production is also affected by abiotic stresses of sorbi-
tol and mannitol (osmotic stress) whereas NaCl and KCl were employed to create 
salt stress (Moreno et al. 1995; Zhao et al. 2000b). Zhao et al. (2000a) employed 
metal stress with the help of vanadyl sulphate, sodium orthovanadate and some rare 
earth elements whereas (Zhao et al. 2000c; 2001c) stimulated with various chemi-
cals. Fungal elicitors and hormones were used by (Namdeo et al. 2000; Zhao et al. 
2001d; El-Sayed and Verpoorte 2004). Thus elicitation of C. roseus cell cultures not 
only enhances indole alkaloid biosynthesis in short time, but it is also responsible 
for the excretion of the products into the medium (Zhao and Verpoorte 2007).

Rijhwani and Shanks (1998) reported the effects of pectinase and methyl jasmo-
nate elicitor on growth and levels of several alkaloids in C. roseus. When pectinase 
(72 units) was added about 150 % increase in tabersonine was observed whereas 
due to addition of jasmonic acid (JA) a progressive increase of 60, 80, 150 and 
500 % was observed respectively in serpentine, ajmalicine, lochnericine hörham-
mericine. The production of ajmalicine or catharanthine in cell suspension cultures 
of C. roseus was enhanced by cerium (CeO2 and CeCl3), yttrium (Y2O3) and neo-
dymium (NdCl3). The yield of ajmalicine in these treated-cultures reached 51 mg/l 
(CeO2), 40 mg/l (CeCl3), 41 mg/l (Y2O3) and 49 mg/l (NdCl3) while catharanthine 
production reached to 36 mg/l (CeO2) and 31 mg/l (CeCl3). In these treatments a 
main part of improved alkaloids was released into medium (Zhao et al. 2000a). 
When 14–1 bioreactor was compared with shake flask culture of C. roseus cell 
line a 80 % decrease in total alkaloid production was observed, but in the same cul-
ture when 1 mM trans-cinnamic acid was added the original alkaloid amounts was 
restored (Godoy-Hernandez et al. 2000). Zhao et al. (2001b) reported that indole 
alkaloid biosynthesis in C. roseus cell cultures due to the action of elicitor is asso-
ciated to Ca2 + influx and the oxidative burst and up to some extent indole alkaloid 
accumulation was inhibited by calcium channel blockers which could be improved 
by re-addition of calcium chloride.

In C. roseus cell suspension culture Zhao et al. (2001a, b) employed biotic 
elicitors derived from 12 fungi in order to test their effect on indole alkaloid pro-
duction. They reported that different indole alkaloids were stimulated by different 
fungal mycelium homogenates and an improvement (2–5-fold high than control) 
in alkaloid synthesis was observed. Ten Hoopen et al. (2002) marked the effect of 
temperature on growth and ajmalicine production and reported that 27.50 C was 
optimum temperature for biomass and secondary metabolite production. In shake 
flasks and bioreactors an improved catharanthine synthesis in C. roseus cell cultures 
was observed by combined elicitor treatment (Zhao et al. 2001a). A combination 
of fungal preparations and chemicals enhanced the alkaloid accumulation, a high-
est yield of ajmalicine with an enhanced catharanthine accumulation was observed 
in a combination of tetramethyl ammonium bromide and mycelial homogenate of 
Aspergillum niger. The combination of malate and sodium alginate proved to be 
beneficial for the highest yield of catharnthine with a high yield of ajmalicine pro-
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duction. Later the process was optimized and refined by the authors (Zhao et al. 
2001b), after 10 days of C. roseus cells in shake flasks and in bioreactor they re-
ported 25 mg/l, 32 mg/l and 22 mg/l catharanthine yields in 500 ml flasks, 1,000 ml 
flasks and in 20 l airlift bioreactor, respectively. The defense responses, such as lipid 
peroxidation was believed to be stimulated by the combination of malate and algi-
nate treatment in all C. roseus culture processes which further mediate the catharan-
thine production via the jasmonate pathway. El-Sayed and Verpoorte (2002) tested 
2, 4-D and abscisic acid (phytohormones), salicylic acid (SA) and MJ on growth 
and accumulation of secondary metabolites in C. roseus cell suspension culture 
upon feeding with the precursors loganin and tryptamine. Among the tested treat-
ments only MJ enhanced the accumulation of alkaloids whereas due to addition of 
abscisic acid catabolism of strictosidine was delayed.

Zheng and Wu (2004) treated the C. roseus cell with different Cadmium (Cd) 
concentration (0.05 to 0.4mM) and ajmalicine yield was monitored. They reported 
that due to Cd treatment a higher yield of ajmalicine was recorded because of the in-
creased level of tryptophan decarboxylase (Tdc) transcript, the cellular tryptamine 
concentration, and ajmalicine excretion. The effect of different elements namely Co, 
Zn, Ni, Mn, Cr, W, Cu, B, V, Fe, and Mo and various hormones including natural 
and synthetic auxins, cytokinins, and gibberellin on the production and accumula-
tion of indole alkaloids in C. roseus was investigated (Lovkova et al. 2005) studied. 
These compounds modified different phases in the biosynthesis of catharanthine 
and vindoline and up to a certain extent a feasible mechanism of the effect of Zn and 
auxin on this process were simplified. In C. roseus cell suspension cultures indole 
alkaloid production through a protein kinase-dependent signal pathway was stimu-
lated using nitric oxide (Xu and Dong 2005) whereas CaCl2 enhanced MJ-induced 
ajmalicine production in C. roseus (Lee-parson and Ertürk 2005). About 160 % in-
crease in ajmalicine production was noted in C. roseus cultures and the synthesis 
depends on intracellular Ca2 + concentration. When Ca2 + influx was increased after 
a certain level by the addition of extracellular Ca2 + , ajmalicine production was de-
clined, similarly a decrease in the accumulation of alkaloids was noted down when 
Ca2 + influx was dropped off.

For the production of ajmalicine in C. roseus cultures different strategies of op-
timizing gas compositions were used (Lee-Parsons 2007). Guo et al. (2007) con-
ducted an experiment to study the effect of various temperatures on variation of 
alkaloid metabolism in C. roseus seedlings. The authors observed that with relation 
to the treatment time, at high temperature biosynthesis of different alkaloids were 
elevated in C. roseus seedlings. In C. roseus cell suspension culture a low dose of 
UV-B irradiation was applied (Ramani and Jayabaskaran 2007), which stimulated 
the transcription of genes encoding tryptophan decarboxylase ( Tdc) and strictosi-
dine synthetase (Str) and induced enhanced amount of catharanthine. In another ex-
periment Ramani and Chelliah (2008) evaluated the influence of UV-B treatment on 
cell suspension culture of C. roseus in different growth phase. The results suggested 
that in stationary phase cultures the response to UV-B irradiation was more than the 
late exponential phase. There was a 3 and 12-fold enhancement in catharanthine and 
vindoline respectively. An efficient and promising protocol for achievement and 
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enhancement of anthocyanin production from calli cultures of C. roseus was de-
veloped by Taha et al. (2008). The highest values 78.73 μg/gm of total anthocyanin 
production were recorded with Catharanthus calli cultures, when the MS medium 
was amended with 3 and 0.5 μM of L-phenylalanine and CaCl2 respectively.

Binder et al. (2009) recorded a considerable enhancement in the production of 
TIAs on C. roseus hairy roots by exposing UV-B light. Alkaloid concentrations 
were analyzed up to 168 h after UV-B exposure that shows a considerable increase 
in the accumulation of lochnericine and considerable decrease in the accumulation 
of hörhammericine over time. In in vitro cell suspension, rootless shoot cultures and 
hairy roots of C. roseus effects of different abiotic agents like SA, ethylene and MJ 
on alkaloid accumulation was described (Vázquez-Flota et al. 2009). Jasmonate and 
ethylene treatments promoted ajmalicine accumulation; catharanthine and ajmali-
cine were stimulated by jasmonate in hairy roots, catharanthine accumulation was 
only induced by ethylene. In shoot cultures a positive vindoline accumulation was 
noticed under the influence of jasmonate and ethylene whereas in any of the studied 
in vitro culture systems, SA did not spot any effect. Ruiz-May et al. (2009) noted 
enhanced accumulation of alkaloids (ajmalicine, serpentine, ajmaline and cathar-
anthine) in C. roseus hairy roots with different concentrations of MJ elicitation. 
Senoussi et al. (2009) reported that the lack of oxygenation in the culture medium 
provoked a very strong inhibition in accumulation of alkaloids and the addition 
of BA to the culture medium restored accumulation by increasing the ajmalicine 
production and eliminated the inhibitory effect of hypoxia. In Egyptian C. roseus, 
suspension culture was induced from leaf explants and the influences of different 
amino acids (L-tryptophan L-glutamine; L-asparagine; L-cystine and L-arginine) 
at different concentrations were examined for enhanced production of indole al-
kaloids. With modified MS medium containing 300 mg/l of either L-glutamine or 
L-typtophan the highest biomass and indole alkaloids production were achieved 
(Taha et al. 2009). Poutrin et al. (2009) demonstrated that calcium regulated the 
auxin-dependent monoterpenoid indole alkaloid (MIA) biosynthesis in C. roseus. 
Mustafa et al. (2009) examined the metabolic profile of C. roseus suspension using 
NMR spectroscopy and multivariate data analysis under the effect of SA. The data 
revealed that in SA treated cells high level of sugars (glucose and sucrose) were 
accumulated after treatment and/thereafter an active variation in tryptamine, amino 
acids and phenylpropanoids were observed. VCR production in callus culture of C. 
roseus was affected by auxin and cytokinin (Kalidass et al. 2010). The accumulation 
of VLB, vindoline and catharanthine in C. roseus was monitored under the influence 
of several agents (Pan et al. 2010). A noteworthy increase in VLB, vindoline and 
catharanthine was recorded down under SA and ethylene treatments, while abscisic 
acid and gibberellic acid had shown a negative effect on the accumulation of the 
same alkaloids. MJ treatment was not effective on the synthesis of these alkaloids 
and chlormequat chloride lowered the concentration of vindoline and catharanthine 
but it improved the accumulation of VLB. In the presence of flavin mononucleotide 
and manganese ions coupling reaction between catharanthine and vindoline occurs 
non-enzymatically at NUV light irradiation in vitro (Asano et al. 2010). It was also 
noted that the catharanthine and vindoline synthesis reduced and those of dimeric 

Z. H. Siddiqui et al.



409

indole alkaloids were enhanced under NUV light at 40 C in C. roseus. A homogenate 
of Pythium aphanidermatum and MJ was studied on in vitro cultures of C. roseus 
(cv. ‘Dhawal’) (Shukla et al. 2010). Due to elicitation transcriptional upregulation 
of strictosidine beta-D:-glucosidase (SGD) occur which in turn improved the syn-
thesis of total alkaloids but did not produce vindoline. Recently in a pot experiment 
foliar application of SA was conducted, to find out the unfavorable effects of water 
stress on periwinkle and its amelioration by SA (Idrees et al. 2011). The result sug-
gested that SA (10−5M) foliar application minimized destructive effects of stress 
and enhanced growth parameters and simultaneously improved the anticancerous 
compound VCR and VLB in stressed plants. Aslam et al. (2011) reported effects of 
freezing and non-freezing temperature on somatic embryogenesis and vinblastine 
synthesis in C. roseus. At 15ºC temperature maximum numbers of embryos were 
produced whereas the same were matured in maximum number at 4ºC. They also 
reported that VLB synthesis was temperature dependent. By using cyclodextrins 
and methyljasmonate along with a short exposure of UV enhanced the ajmalicine 
accumulation in suspension culture of C. roseus (Almagro et al. 2011). In C. roseus 
(Guo et al. 2012) studied the physiological responses of different nitrogen forms 
including varying ratio of nitrate to ammonium (1:0, N1; 1:1, N2; 1:3 N3). After 
long term incubation in N2 nitrogen solution catharanthine and VLB synthesis was 
increased to two folds than in N1 or N3 nitrogen solution.

Mechanism of Elicitor Action

In order to find out the mechanism of elicitor action in plants a thorough research 
has been dedicated (Angelova et al. 2006; Siddiqui et al. 2010), however, the in-
duction mechanisms conveyed by fungal elicitors and the plant signals, as a whole, 
is still undefined (Djonović et al. 2007). While understanding the mechanism a 
general outline for the biotic elicitation in plants may be abridged by different work-
ers on the basis of elicitor-receptor interaction (Zhao et al. 2005; Namdeo 2007). 
Elicitors are of very large array of structure, and can be transmitted by the pathogen 
(exogenous elicitors) or formed by the plant as a result of the plant–pathogen inter-
action (endogenous elicitors); in both cases, they stimulate the defense reaction of 
the plant (Ebel and Cosio 1994). After pathogen or elicitor recognition, sequences 
of cytological variation and biochemical reactions have been identified in plant 
cells. The cytological variations include papilla formation, increased cytoplasmic 
streaming and nuclear migration, which are connected with depolymerization of 
microtubules and microfilaments (Kombrink and Schmelzer 2001). The biochemi-
cal reactions include transformation in the H + , K + , Cl−, and Ca2 + fluxes across 
the plasma membrane, and the development of reactive oxygen species (ROS) that 
occur within 2–5 min after treatment of elicitor (Low and Merida 1996; Nürnberger 
1999), oxidative cross linking of cell wall proteins, formation of phytoalexins, hy-
drolytic enzymes, incrustations of cell wall proteins with phenolics and hypersensi-
tive death of plant cell (Namdeo 2007).
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The first step during the contact between a pathogen and its host is species specif-
ic in which elicitor binds to plasma membrane receptor for the process of elicitation 
(Braun and Walker 1996; Hanania and Avni 1997), after that the genes of avirulence 
brought by the pathogen (the elicitors) faces resistance from the host genes of resis-
tance. After proper recognition of the elicitors by the proper receptors of the plant, 
defenses mechanism comes into play and they activate its genes of resistance (Hahn 
1996; Montesano et al. 2003) through a series of complex reaction which is still un-
der investigation and might not be similar for all type of elicitors but it might give an 
insight about their mechanism of action (Radman et al. 2003, Namdeo 2007). After 
binding of the elicitor to plasma membrane a rapid ion fluxes across the membrane 
occur (Mathieu et al. 1991). As per other reports (Gelli et al. 1997; Pitta-Alvarez 
et al. 2000; Mithöfer et al. 2001) an influx of Ca2 + to the cytoplasm from the extra-
cellular environment and intracellular Ca2 + reservoir and stimulation of K + and Cl− 
efflux take place (Ivashikina et al. 2001). It is followed by speedy changes in pro-
tein phosphorylation and protein kinase activation pattern upon elicitor treatment 
(Yang et al. 1997; Roemis 2001); activation of protein kinases, in turn activate the 
mitogen-activated protein kinase (MAPK), MAP-kinases and calcium-dependant 
kinases catalyze mostly the Thr-Ser phosphorylation in the target proteins (Roemis 
2001). The MAP kinase cascade involves MAP kinase kinase kinase (MAPKKK) 
proteins phosphorylating MAP kinase kinases that in turn phosphorylate MAP ki-
nases. Upon activation, MAPKs are transported to the nucleus where they phos-
phorylate specific transcription factors. Activation of G-protein by some workers 
(Tyler 2002; Luan 1998; Roos et al. 1998) suggested their involvement in the early 
responses to elicitors (Legendre et al. 1992), followed by the production of second-
ary messengers Ins (1, 4, 5) P3 and diacylglycerol (DAG) (Mahady et al. 1998) me-
diating intracellular Ca2 + release, nitric oxide (Delledonne et al. 2002; Huang et al. 
2002) and octadecanoid signalling pathway (Piel et al. 1997). Later on AOS and cy-
tosol acidification is carried out by activation of NADPH oxidase (Leburun-Garcia 
et al. 1999) and reorganization of cytoskeleton take place (Kobayashi et al. 1995) 
and production of ROS like superoxide anion and H2O2 (Low and Merida 1996). It 
is followed by accumulation of pathogenesis-related proteins (PR proteins) (Mittler 
et al. 2004). Earlier Bol et al. (1990) and Bowles (1990) reported individually about 
the increase in PR proteins in response to elicitor. PR protein included chitinases, 
glucanases, endoploygalactouranases that contribute to the release of signaling pec-
tic oligomers, hydroxyproline rich glycoproteins and protease inhibitors (Van Loon 
and Van Strien 1999). In hyper sensitive responses cell death occurs at the infection 
site (Luan 1998) and changes in the cell wall organization (lignification of the cell 
wall, callus deposition) take place (Kauss et al 1989). These all consequences are 
responsible for the transcriptional activation of the corresponding defence response 
genes (Memelnik et al. 2001; Huang et al. 2002) and accumulation of phytoalexins 
and tannins (Pedras et al. 2002) which stimulate the production of jasmonic and SA 
as secondary messengers (Memelink et al. 2001; Katz et al. 2002) and plant cell 
acquired systematic resistance (Lebrun-Garcia et al. 1999). It is known that the se-
quence of these events and arrangements is a very complex process and is still under 
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investigation. It is further reported that this sequence of events is not followed by 
all elicitors, in some peptide elicitors plasma-membrane receptors are active (Ne-
nnstiel et al. 1998), certain peptides of bacterial origin act themselves as messenger 
of invasion signals and get transported to distal tissues. The systemic necrosis due 
to these proteins is not stimulated by rapid secondary signaling, but by transporta-
tion of the elicitor inside the tissue (Devergne et al. 1992). On the basis of available 
information, we summarize the following role/involvement of elicitor in the course 
of essential events in secondary metabolism.

• Binding of the elicitor to plasma membrane receptor.
• Changes in Ca2 + influx to the cytoplasm from extracellular and intracellular 

pools.
• Decrease of pH of the cytoplasm and activation of NADPH oxidases, protein 

phosphorylation patterns and protein kinase activation.
• Changes in cell wall structure (lignification) and in generating reactive oxygen 

species.
• Synthesis of JA and SA as secondary messengers.
• Activation of genes that produce defence-related proteins, plant defence mol-

ecules like phytoalexins and other secondary compounds including alkaloids.

In the same way elicitor-based signaling model has been proposed recently for en-
hanced activation of gene expression in C. roseus (Fig. 14.1) where alkalization 
of the medium by influxing proton molecule (particularly by calcium) was carried 
out by yeast elicitor. This in turn stimulates the octadecanoid pathway and synthe-
sis o JA takes place. JA act as secondary messenger and influences the synthesis 
of nuclear proteins ORCA2 and ORCA3. These proteins interact with TDC- and 
‘JA-responsive STR’ promoter of several biosynthetic genes and activate their gene 
expression (Memelink et al. 2001). Due to ‘elicitor-receptor’ mediated signaling, a 
large number of key gene’s activities such as Tdc, Str, geraniol 10 dehydrogenase 
( Gh), anthranilate synthetase ( As) increased (Van der Fits and Memelink 2000). We 
also believe that this architecture will evolve in future as refinement of cell biology 
and molecular biology approaches will allow further and full dissection of plant cell 
signaling pathways that effectively regulate elicitation events in C. roseus.

Conclusion and Future Perspectives

C. roseus is a very important plant due to large number of alkaloids which are used 
in treatment of various diseases including antineoplastic agents VLB and VCR. 
Present review provides an overview of external stress stimuli used for eliciting C. 
roseus cell to undergo a complex network of reactions which ultimately lead to the 
synthesis and accumulation of secondary metabolites. These secondary metabolites 
help out the plant to endure in stress challenge. They are also under high demands 
due to their pharmacological activities but due to the poor understanding of plant 
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secondary metabolism, production is still far behind the target. By unraveling the 
signaling network would help in specific and competent engineering of the produc-
tion of target secondary metabolites. The elicitation approaches not only enhances 
the synthesis of secondary metabolites in the plant system, it also helps us in bet-
ter understanding and identifying the rate-limiting steps of complex biosynthetic 
pathways existing in secondary metabolite synthesis which in turn can contribute 
towards better productivity by utilizing metabolic engineering aspects.
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Abstract Soybean is among the most important leguminous plants with the abil-
ity to establish symbiotic association with the N-fixing bacteria, Bradyrhizobium 
japonicum. With respect to the environmental and economical significance of N fix-
ation, there has been extensive research work regarding the production of legumes 
including soybean under different conditions. Soils are usually subjected to some 
kind of stress including salinity, acidity and suboptimal root zone temperature. One 
of the most important processes, affecting the performance of soybean under stress 
is the inhibited exchange of the signal molecules, specifically genistein, between 
the host legume and B. japonicum during the initiation of symbiosis. Interestingly, 
inoculation of B. japonicum with the signal molecule genistein has partially or 
completely alleviated the stress. It is also of significance to determine the right 
combination of N-fertilization and rhizobium inoculums when planting leguminous 
including soybean. The use of breeding techniques may also be among the effective 
methods of improving soybean performance under stress. In this chapter some of 
the most important advances regarding the performance of soybean under different 
conditions including stress with respect to the molecular techniques are reviewed. 
Some future perspectives are also presented, the production of tolerant plants and 
microbes are among the most important ones.

Introduction

Soybean ( Glycine max L.) is a crop plant belonging to the leguminous family and 
is widely cultivated in different parts of the world. It is a source of food, with high 
protein rate, containing useful nutrients. It is the major leguminous crop plant rep-
resenting 50 % of the crop legume production and 68 % of the total crop production 
in the world. It is able to develop symbiotic association with the bacteria from the 
rhizobium family, Bradyrhizobium japonicum, fixing atmospheric N2. The amount 
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of N fixed by soybean is annually equal to 16.4 Tg, accounting for 77 % of the total 
N fixed by leguminous plants. With respect to the importance of soybean as a source 
of food for human and because N-fixation can contribute to a large part of neces-
sary N for plant use, there has been extensive research work regarding the process 
of N-fixation in leguminous plants. Enhancing the efficiency of N-fixation can sig-
nificantly increase crop yield and is of environmental and economical significance 
(Herridge et al. 2008).

The process of symbiotic N-fixation is between some soil bacteria, collectively 
called rhizobium, and the leguminous plants in which the atmospheric N2 is fixed 
by the bacteria and reduced to ammonia. The ammonia is then assimilated by the 
host plant into the structure of amino acids and proteins. The process of N-fixation 
between rhizobium and leguminous plants is specific, indicating that only one strain 
of rhizobium is able to colonize the host plant roots and form nodules. Nodules are 
the place of rhizobium residence and hence N fixation (Hungria et al. 2005; Wang 
et al. 2011).

Between a hundred to a few hundred kg ha−1 atmospheric N2 is fixed by rhizo-
bium, providing a major part of necessary N for plant use. For example, in soy-
bean, 50–60 % of necessary N is supplied by biological N fixation (Salvagiotti et al. 
2008). Although chemical fertilization can quickly supply the necessary nutrients 
for plant use, it has also some disadvantages including: (1) adversely affecting soil 
structure, and (2) being subjected to leaching and hence resulting in the pollution 
of water resources. This is why biological nitrogen fixation is important, as it can 
inhibit such un-favorable effects of chemical fertilization on the soil properties, and 
hence on the environment (Evans 1993; Salvagiotti et al. 2008).

Usually rhizobium can be found in the soil, especially under soil optimal condi-
tions; however, its population may not be adequate to efficiently inoculate the host 
plant. For this reason, use of bacterial inoculum can be a useful method to inoculate 
the host plant with appropriate bacterial population. Inoculums have a carrier with 
a high bacterial population, used to inoculate seeds before planting or at the time 
of planting. The bacterial inoculum must have the ability to compete with the soil 
bacteria, adapted to the soil conditions (Miransari 2010, 2011).

Exploiting the potential genetic of plant and climate properties are among the 
most efficient methods, resulting in the enhancement of soybean yield (Salvagiotti 
et al. 2008). Although soybean is not a tolerant crop plant under stress, different 
methods have been tested to increase its tolerance under different stresses includ-
ing salinity and drought, acidity, high amount of mineral N and sub-optimal root 
temperature. Among the most important hypotheses that have been successfully 
tested and approved by researchers is that soil stresses disrupt the process of mo-
lecular communications between rhizobium and the host plant. In the initial stages 
of N-fixation the two symbionts, rhizobium and host plant must exchange signal 
molecules to realize their presence and start the process of N-fixation. The disrup-
tion of such signaling exchange between the two symbionts can inhibit N-fixation 
by rhizobium and the host plant (Miransari et al. 2007, 2008, 2009).

Preincubation of Bradyrhizobium japonicum with the signal molecules, from the 
flavonoids biochemical group, have been shown to be a useful method to alleviate 
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soil stresses on the process of N2-fixation. In the case of soybean symbiotic bacteria, 
Bradyrhizobium japonicum, geneistin is among the dominant signal molecules, pro-
duced by the host plant root. Pretreatment of Bradyrhizobium japonicum with ge-
nistein can partially or completely alleviate the stress on the process of N-fixation. 
In this case, the bacterial genes become activated under the stress and proceed with 
the next stages of N-fixation process (Zhang and Smith 1995). Accordingly, some 
of the most recent findings regarding the methods used to alleviate soil stresses on 
soybean growth and yield production with some prospects for future research are 
presented.

Significance of Biological Nitrogen Fixation

Biological nitrogen fixation and specifically the symbiosis between legume plants 
and rhizobium, is one of the most important biological activities, globally. In the 
process of symbiotic association between legume plants and rhizobium, the atmo-
spheric N is fixed by the bacteria and turned into available N (NH3) by nitrogenase 
enzyme. Depending on the conditions, most part of the N necessary for legume 
growth and yield production is supplied by the process of N-fixation. However, it 
is likely to enhance the efficiency of N-fixation, especially under stress (Unkovich 
and Pate 2000; Yasmin et al. 2006).

With respect to the economical and environmental importance of biological ni-
trogen fixation, it can significantly contribute to the enhanced efficiency of eco-
system including crop production. Although N-chemical fertilization can rapidly 
provide the necessary N for plant growth, it is subjected to leaching and hence can 
adversely affect the water sources. N-fixation can also be economically consider-
able as there is a high annual rate of expenses, spent for the production and use 
of synthetic N (Miransari and Smith 2007, 2008, 2009; Miransari and Mackenzie 
2010, 2011a, b).

There are different parameters affecting the process of N-fixation between le-
gume and rhizobium including plant species, bacterial strains, N-chemical fertiliza-
tion and soil and plant properties. There are some legume plant species and rhizo-
bium strains, with specific genotypic properties, which can perform more effec-
tively. Accordingly, some plant-bacterium combinations may be more efficient. Al-
though N-fertilization at seeding can enhance the growth of legume seedlings, high 
amounts of N-fertilization can adversely affect the process of N-fixation. Under 
optimal soil conditions, the efficiency of N-fixation process can be at the highest, 
however, soil stresses can decrease the rate of N-fixation by negatively influencing 
both the host plant and the bacteria (Valliyodan and Nguyen 2008; Hamilton et al. 
2011; Salah et al. 2011).

Climate properties including light, temperature, precipitation, and concentra-
tion of carbon dioxide can affect both plant and the symbiotic rhizobium. Light is 
necessary for the process of photosynthesis and at optimal rates can increase the 
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photosynthetic process. Legume plants are adapted to mild temperatures and have 
the higher rate of N-fixation and yield production at the range of 20–30 °C. Higher 
or lower temperatures can reduce plant growth and yield production (Lynch and 
Smith 1993). Legume plants can grow well at the optimum soil moisture and hence 
precipitation. High or low level of soil moisture can decrease plant growth and yield 
production of legume plants (Sakthivelu et al. 2008; Sorensen et al. 2012).

The concentration of CO2 can also affect plant performance by affecting the pro-
cess of photosynthesis. Higher rates of CO2 (500–1000 µmol mol−1) decreased plant 
efficiency by decreasing the rate of protein. As a result of elevated CO2 concentra-
tion, the concentration of Rubisco reduces. It is because the expression of photo-
synthetic genes, which are dependent on carbohydrate concentration, is affected. 
However, other mechanisms may also cause such alterations (Stitt and Krapp 1999; 
Taub et al. 2008). The reduction in the leaf protein concentration can decrease seed 
protein concentration, because usually the N content of senescing tissues is trans-
located to plants seeds (Fangmeier et al. 1999; Salon et al. 2001). However, com-
pared with cereals, soybean grains indicated much smaller rates of protein reduc-
tion, which is mostly due to its symbiotic association with rhizobium. Root nodules 
are sinks for photosynthates, inhibiting plant leaf to increase the level of hexose, 
which can adversely affect Rubisco concentration. The fluctuations in ozone can 
also affect plant performance as higher rates of exposure can have negative effects 
on plant growth by adversely affecting the structure of leaf mesophyll, and hence 
decreased carbon assimilation and photosynthesis rate (Long and Naidu 2002; Garg 
and Bhandari 2012).

However, the adverse effects of ozone exposure on plant leaf can be inhibited by 
the elevated levels of CO2 resulting in the enhanced protein seed concentration. It 
is because ozone can have negative effects on the process of N fixation, and hence 
decrease the translocation of photosynthates to the nodules (Pausch et al. 1996; Ti 
et al. 2012). Accordingly, elevated CO2 levels may enhance the rate of N-fixation 
by increasing the level of C assimilation (De Graaff et al. 2006; Rogers et al. 2006).

Carbon cycling between soil and atmosphere is important affecting different bio-
logical processes such as N-fixation. The higher rate of carbon in soil can contribute 
to higher biological activities by soil microbes, improve soil structure and enhance 
soil fertility. However, for N-fixing rhizobium the atmospheric carbon may be of 
more importance as photosynthesis process assimilates it into carbohydrate. Rhizo-
bium bacteria utilize hydrocarbons, supplied by plant as source of energy for their 
activities. Accordingly, higher rate of atmospheric C up to some level can increase 
the rate of photosynthesis and hence the process of N-fixation (Townsend et al. 
2011; Finzi et al. 2011).

Hence, the process of N-fixation by legume plants and rhizobium is of high 
importance significantly contributing to the necessary N for plant growth and yield 
production while agriculturally and environmentally sustainable. This process is 
affected by different parameters and hence it is pertinent to find methods that can 
enhance its efficiency under different conditions including stress.
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Soybean, Salinity and Drought

About one milliard hectares of agricultural soils are saline or subjected to some kind 
of salinity, worldwide (Flowers and Yeo 1995). Leguminous plants are classified 
among sensitive or moderately tolerant plants to salinity (Lauchli 1984). Legume’s 
tolerance to salinity differs among different species (Lu et al. 2009) and usually un-
der salinity they excrete ion salt from the leaf or localized the salt in different parts 
of the plant. Under high salinity rhizobium are not able to become dormant, and 
hence must have the ability to tolerate high salt levels. Parameters including soil 
fertility, N source, temperature, drought, relative humidity and physical properties 
can affect plant growth under saline conditions (Velagaleti et al. 1990; Munns 2002; 
Vercruysse et al. 2011; Meilhoc et al. 2011).

Higher concentration of salt in mature leaf, relative to the young leaf, results in 
the senescence of mature leaf. Plant ability to allocate salt to the cellular vacuoles is 
among the important parameters determining plant tolerance to salinity. The higher 
the plant ability to allocate salt to the vacuoles the higher its tolerance to salinity 
is. Plant hormones such as abscisic acid (ABA) can also regulate plant activities 
under stress by for example controlling the stomatal activities (Wolf et al. 1990; 
Yang et al. 2012). Salt adverse effects on plant growth under salinity also include 
cytoplasm malfunctioning, membrane leakage, and loss of turgor and water.

Drought and salinity adversely influence legume-host plant symbiosis by affect-
ing the growth and survival of bacterium, delaying the infection process, suppress-
ing nodule functionality, decreasing the photosynthesis rate, plant growth and N 
uptake in the host plant. There are usually interactions between drought/salinity and 
rhizobium as there are bacterial strains, which are more tolerant and hence efficient 
under stress. Physiological alterations under stress make the plants allocate more 
carbon to their roots (Miransari and Smith, 2007; Miransari et al. 2007; 2008).

Researchers hypothesized and proved that addition of genistein (4′,5,7-trihy-
droxyisoflavone), the plant to bacterium signal, under stress, enhanced the activa-
tion rate of bacterial Nod genes resulting in the increased production of nodulation 
(Nod) factors by Bradyrhizobium japonicum (Miransari et al. 2006; Wang et al. 
2012) and hence faster formation of nodules (Zhang and Smith 1995; Pan and Smith 
1998a; b). According to Miransari and Smith (2007, 2008, 2009) the effects of ge-
nistein became greater with time by more effectively influencing N-fixation and 
hence plant growth and yield in the second sampling compared with the first sam-
pling. This also indicates that genistein persistence in soil is suitable.

Flavonoids are able to:

1. regulate the polar transport of auxin followed by the imbalance of auxin-cytoki-
nin and initiation of nodule meristem formation (Schmidt et al. 1994),

2. enhance bacterial growth,
3. increase the production of Nod factors by bacteria as a result of higher Nod genes 

activation, resulting in the alteration of root morphological properties including 
root hair curling and bulging and eventual formation of root nodules by inducing 
cellular division at different sites, and
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4. increase root exudates of isoflavonoids (Verma et al. 1992; Zhang and Smith 
1995; Corradini et al. 2011).

Under stress root growth is less affected than nodulation (Abd-Alla et al. 1998; 
Miransari and Smith 2007), because under stress plant must spend more energy to 
alleviate the stress rather than developing a symbiotic association with the soil mi-
crobes (Miransari and Smith 2007; Miransari et al. 2007, 2008). Nodules are tissues 
with a high energy requirement and hence a part of energy produced by plant must 
be allocated to nodules for different activities such as respiration and development 
(Zhang and Smith 1995).

Under stress different concentrations of genistein ranging from 5 to 20  µM were 
tested and proved to be effective. In addition, the highest concentration of genis-
tein (20  µM) did not adversely affect bacterial N fixation and hence plant growth. 
Results indicated that with increasing the level of stress genistein became more ef-
fective. The mathematical equations used to relate genistein concentration to nodu-
lation and plant growth indicated that the most effective concentration of genistein 
ranged from 5 to 11  µM. Using multivariate equations, it is possible to predict the 
most optimum concentration of genistein under stress with respect to plant response 
to genistein affecting plant growth and yield production under field and greenhouse 
conditions (Miransari and Smith 2007).

During drought stress, water deficiency can adversely affect plant growth and 
yield production. Plant roots absorb water, which moves solutes to different plant 
parts for utilization and assimilation, and nutrients from the surrounding soil. Water 
is necessary for cellular expansion and development by producing the necessary 
turgor for cell growth. During the process of evapo-transpiration, water is evapo-
rated from plant leaf creating the necessary potential for the uptake of water and nu-
trients by plant roots and their movement to different parts of the plant. Hence, with 
respect to the importance of water in plant its deficiency can significantly decrease 
plant growth and yield production (Asbjornsen et al. 2011).

Under drought plant utilizes different mechanisms to alleviate the stress. Such 
mechanisms result in the adjustment of plant growth and production of organic 
compounds as osmoprotectants regulating cellular water potential and the uptake 
of nutrients. The morphological and physiological alterations in plant growth under 
drought can alleviate the stress up to some extent. Yamaghuchi et al. (2010) indi-
cated that different parts of soybean primary roots respond differently to drought 
stress. They attributed such a response to the regulation of phenypropanoid metabo-
lism in different parts of the roots and hence the biosynthesis of isoflavonoids. How-
ever, contrary to this alteration, the production of caffeoyl-CoA O-methyltransferse, 
which is responsible for the production of lignin, highly increased resulting in the 
inhibition of root growth in the specific parts. In addition, different proteins were 
produced in the water stressed part of roots to alleviate the oxidative stress.

There are some responsive genes, being induced under salinity. For example, Li 
et al. (2008) found that a protein, which is homologous to oxysterol binding protein 
in soybean, was expressed under salinity stress resulting in cotyledon senescence. 
Under salinity, the isomer of a pathogenic related protein, as a responsive protein to 
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high rate of salinity and drought was localized in the extracellular space of soybean 
roots. In addition, a lucine like protein was also identified in the mature tissues 
of soybean shoot under saline conditions. The production of enzyme, acid phos-
phatase, was related to plant response, under salinity by affecting the formation of 
reactive oxygen species as well as by affecting the transduction pathways, related 
to stress (Liao et al. 2003; Sobhanian et al. 2010). The salt responsive gene, Gm-
DREB2, was expressed under salinity stress, resulting in the production of higher 
levels of proline, relative to the wild types, improving plant tolerance to salinity 
stress (Chen et al. 2007). It has been indicated that soybean genotypes, which are 
tolerant to salinity have the same gene (Lee et al. 2004).

Relative to the wild types, the salt tolerant of soybean genotypes was due to the 
inhibition of Cl− transport from the soybean roots to the shoots. However, in the 
wild variety the tolerance was more related to the prevention of Na+ movement 
from the plant roots to the aerial parts. This indicates that salt tolerance in the ge-
netically modified varieties have been improved relative to wild types (Lee et al. 
2009).

Under stresses like salinity and drought the level of proline increases in soybean 
nodules, as its synthesis is enhanced. High proline accumulation in the nodules 
results in the high ratio of NADP/NADPH and hence the activation of pentose phos-
phate pathway and eventual production of purine. The derivatives of purine can act 
as transporters of fixed N. Proline can be the transporter for the redox potential from 
plant cytoplasm to the bacteroid, verified by the high activity of pro dehydrogenase 
in the bacteroids of root nodules (Kohl 1988, 1990; Verbruggen and Hermans 2008; 
Sharma and Yadav 2012).

Although plant morphological and physiological properties are altered by salin-
ity stress, the role of plant hormones is among the most important mechanisms 
by which plant can alleviate the stress of salinity (Velitcukova and Fedina 1998). 
Accordingly, the production of several proteins during salinity stress is induced by 
plant hormones such as jasmonates (Chao et al. 1999; Thaler 1999), salicylic acid 
(Hoyos and Zhang 2000) and abscisic acid (Jin et al. 2000; Wang et al. 2001; Kang 
et al. 2005; Miransari 2012a).

Yoon et al. (2009) found that salinity stress significantly decreased plant 
growth, gibberellins concentration, rate of photosynthesis and transpiration, and 
considerably increased ABA production as well as proline accumulation. How-
ever, application of methyl jasmonate (MeJA) significantly alleviated the stress 
of salinity on soybean growth, chlorophyll, photosynthesis and transpiration rate, 
and proline content, while enhancing the level of ABA and gibberellins (Miran-
sari 2012a).

Calreticulin is a protein, which is able to bind calcium, and hence regulates cal-
cium homeostasis and protein folding in the plant endoplasmic reticulum. Under 
salinity, osmotic stress resulted in the down regulation of calreticulin in rice, indi-
cating the role of calcium under salinity stress as the main secondary messenger. 
Salinity also down regulated the activity of RuBisco activase, adversely affecting 
photosynthesis (Menegazzi et al. 1993; Rokka et al. 2001; Sobhanian et al. 2010).
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The flow of cell cycling under stress must be maintained to alleviate the effects 
of stress on plant growth. Cellular cycling and integrity is important for cellular 
communication and signaling, particularly under stress. Using the proteomic analy-
sis, Sobhanian et al. (2010) indicated the responsive proteins in soybean, which are 
expressed during salinity. They found that under salinity, the related proteins are 
mostly down regulated. The results of their study showed that NaCl down regulated 
the activity of Glyceraldehyde-3-phosphate dehydrogenase at both protein and m-
RNA levels in soybean. In addition, Kinesin is a large family of proteins affecting 
microtubule activities and hence cell cycling (Liu et al. 1996) and its up regulation 
under saline conditions indicate its role in the alleviation of stress.

Using hydroponic growing medium, Martins et al. (2008) indicated that drought 
significantly decreased the mitotic activities of root cells as the expression of the 
related genes was altered. Drought stress can markedly decrease the rate of photo-
synthesis, followed by stomatal closure and increased temperature. As a result of 
cellular dehydration and increased leaf temperature, electron pathways are changed 
during respiration, significantly decreasing the rate of ATP production in mitochon-
dria and hence the rate of photosynthesis (Flexas et al. 2004; Ribas-Carbo et al. 
2005).

Plant initiates its response to stress at molecular level resulting in the alteration 
of the related genes. For the start of gene expression under stress some transcrip-
tional elements like clone A2B3-2, which is a helix-loop-helix with a putative basic 
(bHLH) is necessary. Such bHLH proteins are transcription factors with so many 
genes (Dey and Harborne 1997; Lewin 2000; Chen et al. 2002). Accordingly, if the 
related transcription factors are modified, it may be likely to enhance plant toler-
ance to stress (Jaglo-Ottosen et al. 1998).

There are carrier proteins, which are able to move carrier monomers in the cel-
lular bilayers (Cleves et al. 1991). Such kinds of proteins are able to influence the 
transduction pathways, the related signal molecules, and the movement of mol-
ecules across the cellular membrane (Kapranov et al. 2001). Such proteins can also 
regulate different cellular activities including perception, division and development 
as well as stomatal activities. However, drought may alter the structure and activi-
ties of such proteins and plant hormones (Martins et al. 2008).

Soybean and Acidity

Acidic and infertile soils including Oxisols and Ultisols are widely distributed in the 
humid areas covering about 1.6 × 109 ha of tropical soils worldwide (Sanchez and 
Salinas 1981). High rain leaches the alkaline cations in the soil and results in the 
high rate of weathering producing iron and aluminum oxides. Soils are subjected 
to pH fluctuations usually ranging from 4 to 10. There is a wide range of alkaline 
soils adversely affecting plant growth and the process of N-fixation. Under alkaline 
conditions low precipitation and the accumulation of anions such as carbonate and 
bicarbonate and cations such as calcium and magnesium increases soil pH, affect-
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ing different soil processes including microbial activities and nutrient availability 
(Joris et al. 2012).

In addition to the high H+ concentration, the high level of Al can also adversely 
affect plant growth under acidic conditions. Under such conditions high Al decreas-
es plant growth by reducing root growth, the photosynthetic ability and competing 
with nutrients such as N, Mg, P and Fe. In acid soils the reaction of P with Al and 
Fe, results in the precipitation of P compounds and hence significantly decreases P 
availability (Akaya and Takenaka 2001; Shamsi et al. 2008).

Al presence increased the activities of antioxidant enzymes including malondi-
aldehyde (MDA), super oxidase dismutase (SOD) and peroxidase (POD). Shamsi 
et al. (2008) indicated that the differences in soybean genotypes under the high lev-
els of elements such as Al are determined by the root ability to absorb such metals. 
Fluctuations in soil acidity can affect the physiological properties such as enzymatic 
structure and activities in plants and microbes. Accordingly, neutral pH is the most 
optimum acidity for the growth of crop plants and activity of soil microbes (Marti-
nez et al. 2012; Bissoli et al. 2012).

The most suitable method to adjust high soil hydroxyl concentration is the use 
of elemental sulfur inoculated with the chemo-autotrophic bacteria, Thiobacillus 
spp. These bacteria are able to acquire the energy necessary for their activities by 
oxidizing sulfur, resulting in the production of hydrogen and sulfate ions, and hence 
decreasing soil pH. Use of tolerant plant species may also be another alternative to 
alleviate acidity stress on plant growth and yield production (Miransari and Smith 
2007).

Soil acidity can adversely affect the process of N-fixation in leguminous plants 
by affecting both the host plant and rhizobium. In a 17-year experiment under acidic 
conditions Popescu (1998) found that pH’s less than six decreased soybean yield. 
Usually the leguminous family is sensitive to high levels of soil acidity. High soil 
acidity decreased root nodulation in white clover (Wood et al. 1984) subclover 
(Whelan and Alexander 1986), pea (Lie 1969; Evans et al. 1980), cowpea (Keyser 
1979), alfalfa (Munns 1968, 1970) and bean (Wolff et al. 1993; Vassileva et al. 
1997) even in the presence of high rhizobial population. Soil acidity, lower than 
five, inhibits nodule formation (Appunu and Dhar 2006).

There are plants, which are able to accumulate high rate of alkaline cations in 
their tissues, while their growth and performance remains unaffected. Soybean 
plants grow the best at pH’s around seven and under high or low acidity their growth 
may be adversely affected. Under acidic conditions plants produce lower amounts 
of hydrogen ions affecting the uptake of nutrients by plant roots (Marschner 1995). 
It can also affect the cytoplasmic pH and hence result in the reduction of shoot and 
root growth (Schubert et al. 1990; Yan et al. 1992).

Appunu and Dhar (2006) evaluated the survival of different strains of acid toler-
ant Bradyrhizobium japonicum under high acidity (pH = 4) and found that they can 
tolerate high acidity level. Interestingly, the strains showed higher tolerance to acid-
ity in soil than in YEM broth medium. The slow growing Bradyrhizobium are more 
tolerant to acidity than the fast growing rhizobium (Cooper et al. 1985; Graham 
et al. 1994; Miransari and Smith 2007; Ferreira et al. 2012). All the tolerant spe-
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cies were able to noldulate the soybean roots with high differences in nodulation, 
nitrogenase activity, N uptake and plant growth (Zhang et al. 2002; Meghvanshi 
et al. 2005). Inoculation with the bacterium significantly enhanced the growth and 
N uptake of soybean plants.

The most sensitive stages of nodulation to acidity appear to be the early stages 
including attachment (Howieson et al. 1993), root morphological changes (Munns 
1968; Evans 1980; Miransari et al. 2006) and the formation of infection tread 
(Evans 1980; Franco and Munns 1982). The followings may indicate the higher 
sensitivity of the early stages of N-fixation to low pH: decreased rhizobial number 
and growth, changes in the structure of plant roots adversely affecting bacterial rec-
ognition and higher uptake of some nutrients (Vassileva et al. 1997; Miransari et al. 
2006; Miransari and Smith 2007; Ferreira et al. 2012).

The onset of N-fixation is with the exchange of signal molecules between the 
bacteria and the host plant. Plant roots produce different products with nutritional 
and non-nutritional values acting as secondary metabolites. Secondary metabolites, 
which are necessary with a threshold level of 10−12 M have different functioning in 
plant including the activation of microbial genes during the process of symbiosis 
(Boller 1995).

For the onset of N-fixation the specific host plant produces flavonoids, which are 
able to trigger the bacterial chemotaxis response and movement toward the plant 
roots. Subsequently, the nodulation genes (Nod genes) in bacteria are activated, re-
sulting in the production of lipochitooligosacharides (LCO) by bacteria (Subrama-
nian et al. 2004). LCO molecules are able to induce morphological changes in the 
roots of their host plant by curling or bulging the root hairs, inducing cell cycling, 
and stimulation of nodule formation. These stages are followed by the formation 
of infection thread, which results in the entrance of bacteria into the plant roots. 
Bacteria alter some of the root cellular, morphological and physiological activities, 
which can increase the division rate of root cortical cells resulting in the formation 
of root nodules (Aguilar et al. 1988; Long 2001; Miransari et al. 2006, Miransari 
and Smith 2007, 2008, 2009).

Miransari and Smith (2007) hypothesized that stress results in the disruption of 
the signal molecule exchange between the bacteria and the host plant at the onset of 
symbiosis under acidity. They also hypothesized and proved that preincubation of 
Bradyrhizobium japonicum inoculum with the signal molecule genistein may par-
tially or completely inhibit the adverse effects of stress on the process of N-fixation 
under greenhouse and field conditions. By addition of salt or sulfur to the field soil 
they adjusted soil salinity and pH to the desired values, followed by the plantation 
of soybean seeds, and inoculation with the bacteria preincubated with genistein at 
µM levels. Different nodulation and soybean growth and yield parameters were 
measured both under salinity and acidity treatments. According to the results, ge-
nistein could alleviate the stress of salinity and acidity on soybean nodulation and 
hence N-fixation as well as soybean yield production. The enhancing effects of 
genistein on nodulation could be due to increasing the possibility of infection, re-
sulting in the higher number of infections and nodulation (Zhang and Smith 1995). 
Under stress the production of signal molecules by soybean root as well as the sen-
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sitivity of Badyrhizobium japonicum to the signal molecule is decreased resulting 
in the inhibition of N-fixation process. (Miransari and Smith 2007, 2008, 2009).

Soybean and Suboptimal Root Zone Temperature

There are areas in the world, which are subjected to sub optimal root zone tempera-
ture, most of the year. Under such conditions plant growth as well as microbial ac-
tivities is adversely affected. The symbiotic association between the host plant and 
the N-fixing bacteria is also influenced by suboptimal root temperature, resulting in 
the decline of N-fixation between the two symbionts. Similar to other stresses, sub-
optimal root temperature can also disrupt the initials stages of N-fixation, most im-
portantly the exchange of the signal molecules between the two symbionts (Smith 
and Lynch 1993; Miransari 2012b).

The optimum temperature for soybean growth is between 25 and 30 °C (Lynch 
and Smith 1993). Falvonoids can act as Nod gene inducers and also enhance plant 
resistance to pathogens in soil. Higher rates of flavonoids are produced at higher 
temperature by plant roots. Accordingly, under lower temperature higher concen-
tration of signal molecule may be necessary to induce the molecular changes in 
rhizobium as the effectiveness of the signal molecule is temperature dependent. The 
signal molecule by itself and its concentration can also affect the communications 
between the two symbionts (Miransari and Smith 2008; Miransari 2012b).

The activity of nitrogenase enzyme is oxygen dependent and under stress where 
plant growth is adversely affected the nodules permeability to oxygen may also 
change. This may influence nodule functionality by affecting the activity of nitroge-
nase enzyme (Wei and Layzell 2006). Temperature fluctuations can alter root respi-
ratory demand and its permeability to oxygen. Hence, plant can use such a mecha-
nism to regulate root permeability to oxygen under decreased temperature, which 
reduces root permeability to oxygen (Kuzma and Layzell 1994; Wang et al. 2012).

Using intact soil samples in cylinders, collected from the field soil, Miransari and 
Smith (2008) stimulated some of the field conditions under greenhouse conditions. 
They found that soil texture may also affect the signal communications between the 
host plant and rhizobium. This has been attributed mostly to the physical properties 
of the different soil textures. According to their results genistein addition was more 
effective under loamy and clay textures. Textures with finer particles have a higher 
rate of microporosity. Finer soil textures are higher in soil nutrients, because of their 
chemical structure and hence can provide more nutrients to the soil microbes as well 
as plant roots affecting their activities.

Different microbial activities are affected by soil texture including mineralization 
of organic matter, microbial biomass, respiration, nitrification and denitrification 
(Hassink 1992). Soils, with a more improved structure, result in the higher produc-
tion of roots exudates influencing microbial activities more effectively. Van Gestel 
et al. (1996) indicated that relative to the bacterial population in sandy soils (7 %), 
significantly higher bacterial population was found in clay soils (More than 50 %).
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There are some kind of interactions between genistein and some plant regula-
tors such as the plant hormone, auxin. Falvonoids can adversely or positively affect 
the activity and transport of auxin (Brown et al. 2001). Geneistin may inhibit the 
transport of auxin in the plant. It has been indicated that the use of auxin transport 
inhibitors in soybean may result in the formation of nodule like organs, and expres-
sion of genes, which induce morphogenesis alteration in the roots resulting in the 
formation of root nodules (Fang and Hirsch 1998).

Soybean and N Fertilization

During the past 30 years, soybean yield has increased continuously, due to the im-
provement in the use of genetic techniques and agricultural practices with the yearly 
increase of 28 kg ha−1, globally (Specht et al. 1999; Wilcox 2004). Biological N 
fixation and mineral N fertilization are the main sources of providing necessary 
N for soybean growth. However, biological N fixation by the residing bacteria in 
the root nodules and mineral N fertilization can behave antagonistically, especially 
when the other soil stresses are not present (Streeter 1988; Soares Novo et al. 1999; 
Purcell et al. 2004).

If there is not adequate amounts of N for plant use, plant will re-translocate N 
from the leaf to the grains, reducing plant photosynthetic potential and hence crop 
production. Van Kessel and Hartley (2000) indicated that rate of yield production 
can adjust nitrogenase activity, as higher amounts of yield results in higher nitro-
genase activity. This is especially the case for when soybean plants yield at rates 
higher than 4.5 t. ha−1 (Mengel 1994).

In situations where the process of N-fixation is not able to supply the necessary 
N for plant growth and yield production, plant response to N-fertilization can be sig-
nificant (Thies et al. 1995). However, usually there are antagonistic effects between 
N-fixation and N-fertilization. Nitrate present in the soil can decrease the process 
of N-fixation (Herridge and Rose 1994). Even little amounts of N-fertilization can 
suppress N-fixation during the first stages of plant growth; however at the same 
time N deficiency may delay the onset of nodule formation and hence, N-fixation 
by adversely affecting crop growth (Zhang and Smith 2002; Ikeda et al. 2011).

Salvagiotti et al. (2008) analysed a complete set of data regarding N-fixation and 
N-fertilization related to different parts of the world. They found that N-fixation 
is negatively and exponentially related to N-fertilization when it was applied to 
the soil surface at 20 cm. Their economical analyses, with respect to soybean and 
N-fertilization pricing, indicated that N-fertilization is advantageous when plant re-
quirements are not met by the process of N-fixation. They accordingly suggested 
that to enhance the efficiency of N uptake by plant, future research must indicate 
the contribution of each N component including, N-fixation, N-fertilization and 
soil N. It is because, if N-fertilization is supplied adequately, while not affecting  
N-fixation, it can enhance the efficiency of plant N uptake (Ikeda et al. 2011).
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It has been suggested and tested that plants be modified genetically for nitrate 
tolerant; however such a method has not been appropriate, because it resulted in the 
reduction of crop yield (Salvagiotti et al. 2008). Although the physiological altera-
tions in plant metabolism is one of the main reasons for decreased N-fixation at the 
time of N-fertilization, however the other important reason is that the process of 
N-fixation is demanding and requires high rate of energy spent by the host plant; 
when N-fertilization provides mineral N for plan use, the plant will not be willing 
to develop a symbiotic association with the bacteria, adversely affecting the process 
of N fixation.

Conclusions and Future Perspectives

Handling crop plants under stress is among the most important research issues. Soy-
bean is a leguminous crop plant most used by human. Although it is not considered 
a tolerant crop plant to stress, research has indicated that it is likely to alleviate the 
effects of different stresses such as acidity, salinity, sub optimal roots zone tempera-
ture and N-fertilization on soybean growth and yield using molecular and breeding 
methods. Researchers have tested and proved that use of the plant to bacteria signal, 
genistein, for the pre incubation of soybean symbiotic bacteria, Bradyrhizobium 
japonicum can be useful to alleviate the unfavorable effects of stress on soybean 
growth and yield. Identification of tolerant genes in different plant species and in-
serting them in soybean may also be effective to alleviate stress.

Although research work has indicated much detail related to the handling of 
soybean under stress, there are more, which must be elucidated. For example, us-
ing proteomic analysis, the production of different proteins under stress must be 
indicated and accordingly the related genes be recognized and inserted to produce 
tolerant varieties. The other important point is the production of tolerant rhizobium 
under stress, which may also be similarly recognized and produced.
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Abstract Atriplex species are members of the Chenopodiaceae. There are more 
than 400 species growing naturally in arid and semi arid regions of the world, most 
of which are highly tolerant to drought and salt. Atriplex species contain high levels 
of protein and economically valuable compounds. These characteristics could make 
Atriplex a suitable food for livestock in saline or arid/ semi-arid area. Furthermore, 
Atriplex can take up salt ions from saline soil and sequester it into the salt glands at
the leaf surface. This trait is of high significance since it allows them to be used 
for revegetation of saline or arid/semi-arid lands. Atriplex species have also been 
used for cloning some genes related to drought and salt tolerance. This review is a 
new contribution that updates knowledge on the ecological and socio-economical 
potential of some plant genus Atriplex.

 Introduction

Many arid and semi-arid regions in the world have soils and water resources that are 
too saline for most of the common conventional crop systems (Pitman and Lauchli 
2002). Halophytes are plants that have been naturally selected in saline environ-
ments and are distinguishable from glycophytes by their capacity to cope with ex-
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cessive levels of ions by various eco-physiological mechanisms. Some halophytes 
possess unique adaptations, such as salt glands or bladders that alleviate the delete-
rious effects of high ion concentrations. However, intrinsically cellular processes-
must make the major contribution to the capacity of plants for salt adaptation. At the 
molecular level, the higher salt-adaptive plasticity of halophytes may be due to con-
stitutive expression of genes that encode salt-tolerance determinants (Casas et al. 
1992) or the better aptitude to regulate the expression of these genes in response to 
salt. This hypothesis makes halophytes a source of exclusive genes or new genetic 
mechanisms that could be applied in genetic manipulation of crops. Cultivation of 
salt-tolerant crops, or halophytes, on saline soil has significant social and economi-
cal potential that needs to be further explored and developed (Debez et al. 2011).

Among the halophytes extensively used in physiological and molecular bio-
logical investigations is the Atriplex genus. The genus Atriplex (Chenopodiaceae) 
contains various species distinguishable by different morphology, biological  
cycles and ecological adaptations (Le Houérou 1992). Tolerance to salinity, drought, 
heavy metals and temperature are important characteristics of species of Atriplex. 
However, the value of certain Atriplex species has been recognized by their incor-
poration in the rangelands improvement programs in many salt-affected regions 
throughout the world. In this contribution, we review the literature regarding the 
ecological and agronomic importance of the plant genus Atriplex in arid and semi 
arid regions.

 Geographical Distribution of the Genus Atriplex

Atriplex species constitute the largest and most diversified genus of the family Che-
nopodiaceae (Kadereit et al. 2010). Atriplex species (saltbushes) are dominant in 
many arid and semi-arid regions of the world, particularly in habitats that combine 
relatively high soil salinity with aridity (Ortíz-Dorda et al. 2005). Over 400 spe-
cies of Atriplex have been found to be geographically distributed on all continents. 
Atriplex species are mainly found in the deserts and semi-deserts in North America, 
South Australia, South Central Asia, West and South East America, and the Medi-
terranean basin. A. nummularia, and A. halimus are the most widely distributed 
species of the genus Atriplex. A. halimus is a perennial native shrub of the Mediter-
ranean region (Ortíz-Dorda et al. 2005). This species has two subspecies: the subsp. 
halimus, which is present on the northern shores of the Mediterranean basin and the 
subsp. schweinfurthii (Boiss.) common on the southern shores of the Mediterranean 
basin, North Africa and Near East. A. nummularia occurs naturally in the semi arid 
and arid zone of southern and central Australia where it was divided in three subspe-
cies (subsp. nummularia; subsp. Omissa and subsp. Spathulata). Molecular genetic 
and taxonomic evidence suggests that Atriplex was transported to Australia during 
the late Miocene (Kadereit et al. 2010). A. nummularia is proposed to have evolved 
from a common octoploid ancestor A. paludosa ssp. moquiniana (Moq.) Parr-Smith 
in the coastal semi-arid fringe of southwestern Australia. Sampson and Byrne 
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(2012) suggested that many species spread and diversified from this zone to exploit 
the arid and saline habitats that were increasingly becoming available as a result of 
changing climatic conditions through the Pliocene and Pleistocene in inland areas 
of Australia. There are two species that are considered to be closely related to A. 
nummularia that are found in the arid zones of Western and South Australia, respec-
tively: A. amnicola Paul G. Wilson and A. incrassate F Muell (Sampson and Byrne 
2012). A. breweri and A. cansecens are relatively close to A. halimus. Between 1920 
and 1930, A. nummularia, A. semibaccata from Australia and A. canescens from 
USA were introduced to Tunisia and Morocco (Ben Salem et al. 2010). Only 13 
species and subspecies are used for rangeland rehabilitation and fodder production: 
A. halimus subsp. halimus, A. halimus subsp. schweinfurthii, A. mollis, A. glauca, 
A. leucoclada, A. nummularia, A. canescens subsp. canescens, A. canescens subsp. 
linearis, A. amnicola, A. undulata, A. repanda, A. semibaccata, and A. barclayana 
(Ben Salem et al. 2010).

 The Importance of Atriplex Species for Saline Soil 
Reclamation

Salt affected soils are widely spread in many arid and semi-arid regions of the world 
and increasingly threatening agricultural expansion and productivity. Yet, in many 
arid environments, high quality water in not available to support the establishment 
of plants for revegetation projects. The removal of sodium salts from saline soils by 
halophytes plants, as alternative for costly chemical amendments, has emerged as an 
efficient low cost technology (Gharaibeh et al. 2011). It is well known that Atriplex 
species actively accumulate soluble salts in leaves, especially sodium, in association 
with a drought tolerance mechanism. For this reason it is also considered as an ex-
cellent species for reducing soil salinity in drylands, if cut and collected (Ben Salem 
et al. 2005). It was found that the dehydrated A. halimus accumulated more Na+ than 
the control plants even without the addition of NaCl to the stressed plants (Martinez 
et al. 2003). Glenn and Brown (1998) concluded that tolerance of A. canescens to 
water and salt stress was linked through a common mechanism of accumulating 
Na+ for osmotic adjustment. By comparing salinity tolerance of three Atriplex spe-
cies in well-watered and drying soil Glenn et al. (2012) found that A. hortensis was 
able to complete its life cycle on drying soil with a final salt content 85 g/l NaCl. A. 
lentiformis was able to survive on drying soils with salinities five times higher than 
seawater, whereas A. canescens had high survival on drying soils but was less salt 
tolerant than either A. hortensis or A. lentiformis. It has been demonstrated that there 
is a relationship between the habitat of the Mediterranean xero-halophyte species A. 
halimus and the strategy adopted for NaCl and osmotic stress resistance. The coastal 
(Monastir, salt-affected site) population is more tolerant of salinity than the inland 
(Sbikha, non saline semi-arid area) population and displays a higher ability to ac-
cumulate glycinebetaine (GB) in response to this constraint. In contrast, the inland 
population, exposed in its natural habitat to transient periods of drought, is more 
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resistant to osmotic stress induced by 15 % PEG, and mainly accumulates proline in 
response to this treatment (Ben Hassine et al. 2008). Some Atriplex species grown 
under rangeland conditions has leaf ash concentrations of 13–27 % (Welch 1978; 
Hyder 1981; Berrett-Lennard 2002) and Atriplex species grown in saline soils can 
have leaf ash concentrations up to 39 % (Malcolm et al. 1988). Khan et al. (2000) 
reported that A. halimus was more salt-tolerant than A. calotheca and A. nitens, 
when grown at 750 mM NaCl (− 40, − 67 and − 80 % of biomass production) but in-
terestingly, all three species were able to survive at this salt concentration. Recently, 
Benzarti et al. (2012) found that A. portulacoides was able to grow in medium con-
taining 1,000 mM NaCl without displaying salt-induced toxicity symptoms. The 
salinity resistance of some Atriplex species is often attributed to the presence of 
vesiculated trichomes covering the leaf surface and containing large amounts of 
salt (Smaoui et al. 2011). These trichomes play a significant role in removing salt 
from the the leaf tissues, thereby preventing the accumulation of toxic salts in the 
parenchyma and vascular tissues. For many Atriplex species, more than 50 % of the 
salt transported to the shoots is excreted via these epidermic trichomes (Belkheiri 
and Mulas 2011). These attributes have led some workers to suggest that Atriplex 
species could be grown to remove salt from the soil (Barrett-Lennard 2002).

Atriplex species ( A. canescens) has been especially recommended for arid zone 
restoration projects (Fitzsimmons et al. 1998). In a field experiment Chisci et al. 
(2001) demonstrated the use of A. halimus in improving physical characteristics of a 
clay soil in Italy and to provide environmental protection by controlling runoff and 
reducing soil erosion on slopes. Atriplex plant litter can modify the top soil salinity, 
along with other soil properties. Maganhotto de Souza Silva et al. (2008) found that 
soils cultivated with A. nummularia and irrigated with saline effluents, in semi-arid 
conditions in Brazil, improved their fertility (organic carbon, nitrogen and phospho-
rus contents) and microbiological properties (enzymes activity). Sameni and Solei-
mani (2007) studied the distribution of salinity and of some soil physico-chemical 
properties, observing significant changes in salinity and pH and found that A. num-
mularia may actually facilitate growth of plants under their canopy. The work by 
Zucca et al. (2011) in a study site in Morocco also confirmed that the significant 
relationship between soil properties and A. nummularia development can be mostly 
observed within the first 10 cm. A. nummularia is one of the most important species 
used for the revegetation of degraded land in low rainfall areas. Slavich et al. (1999) 
planted A. nummularia as a vegetative cover in a salt affected land in southeast Aus-
tralia. Brown et al. (1999) showed that A. barclayana could be used as a biofilter to 
remove nutrients from saline aquaculture effluents. Gharaibeh et al. (2011) showed 
that amelioration of a calcareous saline sodic soil can be achieved efficiently by 
growing A. halimus without applying an amendment. Planting A. halimus reduced 
soil sodicity and electrical conductivity considerably to values comparable to that 
of gypsum treatments.

The Atriplex species may also be used for wildfire prevention purposes. The 
high salt concentration found in its leaves increases their moisture content, which 
makes this species behave as a fire retardant in the event of wildfire (Montgomery 
and Cheo 1969).
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 The Importance of Atriplex Species in Heavy Metal 
Phytoremediation

The contamination of soil by heavy metals is one of the most serious environmental 
problems and has significant implications for human health. The clean up of heavy 
metals contaminated soils is one of the most difficult tasks for environmental engi-
neering. In most cases, traditional physiochemical methods are quite expensive and 
may lead to soil alterations (Gardea-Torresdey et al. 2005). Phytoremediation based 
on the use of plants to remove or degrade inorganic and organic pollutants, has 
been proposed as a promising, environmentally friendly and relatively cheap. The 
success of phytoremediation depends upon the identification of suitable plant spe-
cies those hyperaccumulate heavy metals. The use of deep-rooting xero-halophyte 
species is may be of special interest in this context to remediate salty contaminated 
area, especially in arid and semi-arid regions. Several species of the genus Atriplex, 
which are naturally salt- and drought-tolerant have been also suggested as poten-
tial candidates for a phytoremediation approach (Table 16.1) because of their high 
biomass production associated with a deep root system. A. portulacoides was sug-
gested as a suitable species for the phytoremediation owing to the high translocation 
rates of Cd and Cu towards the aboveground tissues (Reboreda and Caçador 2007). 
A. portulacoides can tolerate external Cu levels of up to 15 mmol/l (1,000 mg Cu/l) 
without suffering adverse physiological effects (Cambrollé et al. 2012a). Further-
more, despite the fact that Cu concentrations of between 20 and 100 mg Cu/kg 
DW in leaf tissue are generally considered excessive or toxic (Kabata-Pendias and 
Pendias 2001), growth parameters of this species are unaffected by leaf tissue con-
centrations as high as 80 mg Cu/kg DW. A. portulacoides is able to survive with 
external Cu levels of 35 mmol/l and can be found growing in sediments that con-
tain 300–3,000 ppm Cu. Sousa et al. (2008) stated that compartmentalization and 
detoxification mechanisms are crucial to allow A. portulacoides to tolerate high 
levels of heavy metals, and found that this species is able to retain a considerable 
quantity of metals in the root cell wall. Cambrollé et al. (2012b) reported also that 
this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted 

Table 16.1   Potential candidates for phytoremediation approach
Species Metal contaminants Reference
A. halimus Cd/Zn/Pb Lutts et al. 2004
A. portulacoides Cd/Cu/Zn/Fe/Ti Luque et al. 1999; Rebordea and Caçador 

2007; Cambrollé et al. 2012a, b
A. canescens Cd/Cr Sawalha et al. 2006
A. hortensis spp purpurea Pb/Zn Kachout et al. 2012
A. hortensis spp rubra Cu/Ni Kachout et al. 2012
A. atacamensis Phil Ar Vromman et al. 2011
A. conodocarpa Hg Lomonte et al. 2010
A. palula Se Vickerman et al. 2002
A. spongiosa Se Vickerman et al. 2002
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areas since the plant can tolerate high tissue concentrations of Zn without suffer-
ing adverse physiological effects, and can produce a significant amount of biomass 
while sequestrating high concentrations of this metal. Other species that belong to 
the Atriplex genus, such as Atriplex halimus, have already been studied for their 
level of resistance to heavy metals (Cd, Zn, Pb). These species have been recom-
mended as a promising species for the phytoremediation of heavy-metal contami-
nated areas based on their high biomass production, deep root systems and ability to 
tolerate high concentrations of toxic elements (Lutts et al. 2004; Lefèvre et al. 2009; 
Manousaki and Kalogerakis 2009). Precipitation of heavy-metal with oxalate and/
or its excretion into trichomes and increased synthesis of glycine betaine may con-
tribute to the tolerance of A. halimus. Among the heavy metals frequently present 
in contaminated soils, mercury is arguably of the greatest environmental and public 
health concern. A. conodocarpa proved to be the most suitable candidates for mer-
cury phytoextraction because of its ability to translocate mercury from roots to the 
above-ground tissues (Lomonte et al. 2010). Vickerman et al. (2002) evaluated 30 
Atriplex lines for potential habitat improvement and phytoremediation of selenium 
contaminated sites. A. patula was found to be one of the top selenium accumula-
tors and grew well in saline soil. A. atacamensis Phil has been proposed as possible 
candidates for phytoremediation of Ar (Vromman et al. 2011).

 Atriplex Species Forage Production

The main limitations to animal production in the arid and semi-arid regions, is the 
scarcity of green forage. The use of native or introduced halophytes for livestock 
production is an important issue in many semi-arid and arid areas. Several halo-
phytes plants have been used as fodder crops under saline conditions in order to 
produce green forage during the dry season (El Shaer 2010). These include planting 
perennial salt marsh plant species, mainly Atriplex species, in numerous regions. In 
several experiments, the Mediterranean Atriplex species has been the most success-
ful shrub species in terms of establishment and productivity. Research conducted in 
north-east Morocco showed an average production of 920 Kg DM/ha (1,000 plants/
ha density), with variations from 406 to 2,140 Kg DM/ha depending on the spe-
cies studied. A. vesicaria, A. semibaccata, A. nummularia and A. paludosa scored 
the high levels of production. Other reports indicate that forage production from a 
2-year old Atriplex plantation was 5 t under 150 and 200 mm rainfall.

The pastoral value of fodder shrubs depends not only upon their biomass but 
also upon their nutritive value and their palatability and digestibility (Salem et al. 
2012). The low concentrations of metabolizable energy and high concentrations of 
soluble salt in herbage of Atriplex species as well as the presence of anti-nutritional 
compounds, including tannins, flavonoids, oxalate tends to reduce fodder palatabil-
ity and feed intake of sheep and goats. Several methods have been devised to lessen 
adverse effects of phenols and to alleviate deleterious effects of sodium chloride 
found in tree and shrub fodder foliages. These include treatment with alkalis such 
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as urea, ammonia and calcium hydroxide and oxidizing agents such as potassium 
dichromate. Addition of exogenous enzymes is also a method to improve the nutri-
tive value of tree leaves. The study of Salem et al. (2012) showed that there are ben-
eficial impacts of sun-drying and/or dietary exogenous enzyme addition for sheep 
fed A. halimus.

Despite the limited nutritional values, the use of Atriplex species as an important 
component of the diet should be considered in arid and semi-arid regions since 
this plant produces 2.5–20 t of dry matter per hectare per year and it is available 
most of the year. Given the low nutritional value of the Atriplex species, various 
authors have proposed supplementing them with other types of feed like barley 
grain, barly straw or spineless cactus so that the animals could obtain the energy 
from the hay and grain, and the protein and minerals from Atriplex species. Abu-
Zanat (2005) reported that grazing a combination of salt-tolerant grasses, legumes 
and Atriplex species improved feeding value and maximize animal production (feed 
intake and growth rates) from saline land. Norman et al. (2008) reported that 170 g/
day of grain was the minimum required to ensure sheep fed A. nummularia and A. 
amnicola maintained live weight. In the study of Ben Salem et al. (2005)  lambs 
fed A. nummularia and supplemented with barley achieved a growth rate of 67 g/
day over an 85-day period. Data presented by van der Baan et al. (2004) clearly 
demonstrate that supplementation with grains such as barley or maize significantly 
increases the digestibility of A. nummularia and this leads to an increase in growth 
rate of ruminant. Mixing alfalfa with Atriplex as green fodders to sheep may in-
crease the palatability and consequently intake and utilization of Atriplex which 
lead to improvement of the performance of animal. Abu-Zanat (2005) reported that 
it is possible to replace up to 50 % of alfalfa hay by A. nummularia without negative 
effects on intake and digestibility of dry matter by Awassi lambs. Jacobs and Smith 
(1977) reported significant differences in chemical composition between ( Atriplex 
nummularia, A. Canescens, A. Brewerii and A. Lentiformis) species and between 
seasons. Kandil and El-Shaer (1989) reported that Atriplex nummularia had higher 
nutritive value in spring and winter than in summer and autumn. Riasi et al. (2008) 
reported that A. dimorphostegia have more number of beneficial chemical nutritive 
components and digestible values than Suaeda arcuata as forage for ruminants. 
Farmers in some arid areas of the world have already begun to cultivate Atriplex as 
a salt-tolerant forage crop on lands where other crops are difficult to grow.

 Characterization of Bioactive Compounds from Some 
Atriplex Species

Several salt marsh plants have traditionally been used for medical, nutritional, and 
even artisanal purposes. Currently, an increasing interest is granted to these species 
because of their high content in bioactive compounds (Ksouri et al. 2011). Various 
Atriplex species have medicinal values, e.g. A. semibaccata has been used as an 
antifungal agent and A. vestita in the traitement of bronchitis. A. hortensis has been 
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regarded as a source of Vit A (Siddiqui et al. 1994). The arial parts of A. hortensis 
were used in flak medicine against diseases of respiratory tract, digestive and uri-
nary systems, and due to their analgestic properties, in rheumatism (Bylka et al. 
2001). A. halimus is effective in the treatment of type II diabetic patients (Bakh-
tiuary 2011) and it used in veterinary medicine to combat internal parasites. Extracts 
of A.confertifolia has significant bioactivity against human breast cancer cell lines; 
the bioactivity of A. confertifolia extract on these cells was compared to a FDA-
approved cancer drug (Onxol®) and an industry-standard leukocyte control cell line. 
A dose-response curve of the extracts displayed significant cell death similar to 
Onxol® (Capua et al. 2010). Boughalleb et al. (2009) reported that many Atriplex 
species ( A. inflate and A. portulacoides) may contain phytochemical compounds 
with fungicide properties.

Several studies attributed the anti-carcinogenic, anti-inflamatory, antifongique 
and antioxydants activities potential of plant extracts to their bioactive compounds 
compositions (Ksouri et al. 2011). Chemical investigation of the species of the 
genus Atriplex (Table 16.2) showed the presence of saponin glycosides, alkaloids, 
ascorbic acid and phytoecdysteroids (Keckeis et al. 2000). Benhammou et al. 
(2009) reported that A. halimus leaves and stems were characterized by the pres-
ence of the flavonoids, the tannins, the alkaloids and the sponins where the leaves 
exhibited the higher yields. Bylka et al. (2001) isolated from leaves of A. hortensis 
tow relatively rare sulphated flavonoids: kaempferol 3-O-sulphate-7-O-arabinopy-
ranoside and quercetin 3-O-sulphate-7-O-arabinopyranoside (belong the group of 
compounds easily soluble in water) and a new acetylated flavonol glycoside from 

Table 16.2   Some Atriplex species and their isolated compounds
Species Chemical content Reference
A. portulacoides Phenolic compounds Boughalleb et al. 2009
A. inflata Phenolic compounds Boughalleb et al. 2009
A. halimus Tanins, alkaloids, saponins, ascorbic acid Benhammou et al. 2009
A. lentiformis Quercetin 6,4′-dimethoxy-3-fructo rhamnoside, 

quercetin 4′-methoxy-3-fructo rhamnoside, 
kaempferol-4′-methoxy-rutinoside, kaemp-
ferol 7-rhamnoside, kaempferol 3,7-dirhamno-
side, quercetin and kaempferol

Awaad et al. 2012

A. nummularia Vit E, Vit A, saponins, polypodine, 20 
hydroxyecdysone

Keckeis et al. 2000

A. hortensis Kaempferol 3-O-sulphate-7-O arabinopyranoside 
quercetin 3-O-sulphate-7-O-arabinopyranoside

Bylka et al. 2001

A. littoralis Patuletin 3-O-β-D-glucopyranoside, patule-
tin 3-O[5′′′-O-feruloyl-β-D-apiofuranosyl 
(1′′′→2′′)-β-D-glucopyranoside

Bylka 2004

A. farinosa Naringin, naringenin 7-O-glucoside, isorhamnetin 
3-O-rhamnosyl (1-6) glucopyranoside and 
isorhamnetin 7-O-glucopyranoside

Al-Jaber et al. 1992

A. stocksii Ursolic acid, oleanolic acid, β-amyrin, 
β-sitosterol, stigmasterol, atriplexinol

Siddiqui et al. 1994
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A. littoralis (Bylka 2004). Other earlier works suggested the presence the narin-
gin, naringenin 7-O-glucoside, isorhamnetin 3-O-rhamnosyl (1–6) glucopyranoside 
and isorhamnetin 7-O-glucopyranoside in A. farinose (Al-Jaber et al. 1992). More 
recently, two new flavonoids, quercetin 6,4′-dimethoxy-3-fructo-rhamnoside and 
quercetin 4′-methoxy-3-fructo-rhamnoside in addition to another five known com-
pounds were isolated from A. lentiformis (Torr.) S. Wats (Awaad et al. 2012). All of 
the extracts and the isolated compounds were tested for their antioxidant activity, 
the two new compounds were found to have the highest antioxidant activity with 
no side effect.

 Isolation and Characterization of Genes  
from Atriplex Species

Atriplex species are among the most salt tolerant higher plants. And the elucidation 
of its salt tolerance mechanisms is of significance for generating salt tolerant crops 
via selective breeding or genetic engineering. Studying the regulation of stress in-
ducible genes can lead to understanding of the mechanisms by which halophytes 
maintain growth and thrive under abiotic stress. Several stress related genes have 
been isolated from these halophytes (Table 16.3). Both glycophytes and halophytes 
cannot tolerate large amounts of salt in the cytoplasm. Plants maintain a low con-
centration of Na+ in the cytosol by active exclusion of Na+ ions into the apoplast 
and vacuole by using specific plasma membrane and tonoplast Na+/H+ antiporter 

Table 16.3   Genes isolated from some Atriplex species
Species Gene Gene Bank Product Reference
A. gmelini AgNHX1 AB038492 Antiporter Na+/H+ Hamada et al. 2001
A. nummularia AnGAPDH U02886.1 Glyceraldehyde-3-phosphate 

dehydrogenase
Niu et al. 1994

AnCMO AB112481 Choline monooxygenase Tabuchi et al. 2005
AnPEAMT AB196771 Phosphoethanolamine 

N-methyltransferase
Tabuchi et al. 2005

AnSAMS AB183565 S-adenosyl-L-methionine 
synthase 5

Tabuchi et al. 2005

H+-ATPase – PM H+-ATPase Niu et al. 1993
A. hortensis AhCMO AF270651 Choline monooxygenase Zhang et al. 2009; 

Shen et al. 2002
AhBADH DQ497233 Betaine aldehyde 

dehydrogenase
A. prostrata ApCMO AY082068 Choline monooxygenase Wang et al. 2004
A. centralasi-

atica
AcBADH AY093684 Betaine aldehyde 

dehydrogenase
Yin et al. 2002

A. halimus AsDBRE JF451138 DRE binding transcription 
factor

Khedr et al. 2011
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(NHX1) (Shi and Zhu 2002). In particular, the vacuolar Na+/H+ antiporter had been 
demonstrated to play a key role in salt tolerance of plants (Blumwald et al. 2000). 
The greater salt tolerance in Atriplex species is related to the transport to shoots of 
high quantities of Na+ concomitant to an efficient vacuolar compartmentation of 
this ion, which prevents the ionic damage to the cytoplasm. The vacuolar Na+/H+ 
antiporter genes has been characterized and identified from A. gmelili ( AgNHX1) 
(Hamada et al. 2001). The analysis and comparison of these genes showed that 
they were highly homologous with similar structural and conserved domains. Ohta 
et al. (2002) demonstrated that transgenic rice plants overexpressing AgNHX1 gene 
could survive after short period of high concentration salt exposure (300 mM NaCl 
for 3 days). Evacuation of Na+ from the cytoplasm is energy-dependent. A partial 
sequence of an isoform of the plasma membrane PM-H+-ATPase was been isolated 
from A. nummularia. Increased H+-ATPase mRNA abundance was reported in A. 
nummularia when NaCl adapted (342 mM NaCl) cells were re-exposed to NaCl 
after having been grown in media without additional NaCl (Niu et al. 1993). Which 
provide evidence that enhanced H+-transport activity by NaCl in A. nummularia 
is mediated at least in part by transcriptional or post-transcriptional processes that 
result in higher mRNA accumulation.

Exposure to saline and drought stress results in the accumulation in the cytosol of 
low-molecular mass compounds, termed as compatible solutes, which do not inter-
fere with normal biochemical reactions. It has been frequently reported that GB acts 
as the main stress-induced agent involved in the osmotic adjustment and protection 
of cellular structure in plant species belonging to the Chenopodiaceae (Rhodes and 
Hanson 1993). GB facilitates osmotic adjustment by lowering the internal osmotic 
potential that contributes to the water stress tolerance ability. In addition, it stabi-
lizes both PSII complex and RuBisCO during photosynthesis under stress condi-
tions (Sakamoto and Murata 2000). Yang et al. (2007) reported that genetically 
engineered tobacco with the ability to accumulate GB showed a higher content of 
ascorbate and reduced glutathione as well as an increase in the activity of superox-
ide dismutase (SOD). The positive effect of exogenous glycine betaine application 
in plant growing under salinity stress has been proven. Plant cell could be pro-
tected from the adverse effect of salinity induced oxidative stress by the exogenous  
application of glycine betaine (Demiral and Türkan 2004). In A. nummularia GB 
play a major role in cytosol osmotic adjustment in both leaves and roots, regardless 
of NaCl presence (Silveira et al. 2009). In higher plants, the first and second steps in 
the biosynthesis of GB are catalyzed by a rate-limiting enzyme choline monooxy-
genase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively (Saka-
moto and Murata 2000). CMO gene from A. hortensis ( AhCMO) has been isolated 
and used for GB production in tobacco (Shen et al. 2002) and cotton plants (Zhang 
et al. 2009) to improve its abiotic stress tolerance. CMO homologs have been also 
identified in A. prostrate (Wang and Showalter 2004) and A. nummularia (Tabuchi 
et al. 2005). The gene encoding the second enzyme, BADH, has been cloned from 
A. hortensis ( AhBADH) and introduced into rice, wheat, and turf grass (Xiao et al. 
1995; Guo et al. 1997, 2000) and improvement of salt tolerance in transgenic plants 
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was observed during growth. Similar result was also achieved in transgenic trifoli-
ate orange (Fu et al. 2011). The enhanced salt tolerance was correlated, at least in 
part, with reduced lipid peroxidation, greater abundance in photosynthetic proteins, 
stimulation of K+ uptake, and low Na+/K+ ratios. The BADH gene that originated 
from A. hortensis was also transformed into the most important forage crop alfalfa 
with Agrobacterium-mediated transformation method. The transgenic plants grew 
vigorous in salt stress condition, whereas the wild type plants was retarded and 
did not survive. The expression of BADH gene in alfalfa genome enhanced its salt 
tolerance through improved membrane protection as measured by relative electrical 
conductivity and malondialdehyde (MDA) content, scavenge of free radicals by 
increase of peroxidase (POD) and SOD activities, and the osmotic adjustment  
(Liu et al. 2011).

Transcription factor genes play important roles in stress survival by serving as 
master regulators of sets of downstream stress-responsive genes via binding to spe-
cific elements ( cis-elements) in target genes. Functional analysis of the promoter 
regions of some of stress-inducible genes has led to identification of the cis-element 
DRE (Dehydration-responsive element), which is responsible for dehydration-
inducible transcription (Yamaguchi-Shinozaki and Shinozaki 1994). Full-length 
DRE-binding transcription factor ( AhDREB1) gene has been isolated from A. 
hortensis (Shen et al. 2003). In transgenic tobacco, AhDREB1 led to the accu-
mulation of its putative downstream genes and these transgenic lines showed an  
increased stress tolerance, suggesting that the AhDREB1 protein functions as a 
DRE-binding transcription factor and play roles in the stress tolerant response of A. 
hortensis. DREB in A. halimus ( AsDBRE) is regulated by the osmotic component 
but not by the ionic one of salt stress (Khedr et al. 2011). It seemed that DREB 
was not involved in the regulation of sodium manipulating genes like NHX1, SOS1 
or H  +-PPase. Moreover, DREB could be involved directly of indirectly in CMO 
regulation because of timing of induction. Also, DREB was the most up-regulated 
gene under salt (fivefold) and drought (twofold) conditions, which reinforced the 
importance of this gene in A. halimus tolerance to stress. Moreover, its constitutive 
expression under normal conditions also indicated its involvement in other growth 
and developmental programs (Khedr et al. 2011).

Microsatellites are widely used in population genetic studies and may prove to 
be useful in studies of closely related species to infer relationships when sequence 
variation is very low or there are few or no genome resources available. Ortíz-Dorda 
et al. 2005 has evaluated the genetic structure of 51 populations of A. halimus from 
the Mediterranean Basin using RAPD (random amplified polymorphic DNA)-PCR 
technique. The authors found that there are a clear intrapopulational diversity of 
A. halimus. Such heterogeneity could be exploited to select clones or develop syn-
thetic populations with a combination of good traits such as high palatability, high 
edible biomass production, and good adaptability to environmental limiting factors 
in semi-arid Mediterranean environments. 12 polymorphic loci were isolated in A. 
nummularia (Byrne et al. 2008) which will be useful to describe levels of genetic 
variability across the range of the species and in a breeding programme.
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Xu et al. (2011) investigate the physiological responses and differential gene 
expression caused by salinity exposure in A. centralasiatica plants grown from 
two different seed morphs. A. centralasiatica widely distributed in China produce 
tow type of seeds, yellow and brown seeds. Seedlings derived from yellow seeds 
showed a greater salt tolerance than those derived from brown seeds. By using sup-
pression subtractive hybridization (SSH) and subsequent microarray and RT-PCR 
analysis to isolate and compare genes that were differentially expressed, the authors 
suggest a major contribution of gene regulation to the salt resistant phenotype of 
seedlings derived from yellow seeds. These genes encoded proteins related to os-
motic and ionic homeostasis, redox equilibrium and signal transduction. This study 
clearly links physiological responses with differential gene expression in seedlings 
derived from dimorphic seeds. Such dimorphism offers the advantage to halophytic 
plants to survive in highly variable environments.

 Conclusion and Future Perspective

The global distribution of the genus Atriplex in arid and semi-arid areas and its abi-
otic stress tolerance combined with the utility of Atriplex species for restoration, re-
mediation and forage for livestock have helped these plants to rank among the most 
widely studied native halophytes species. The major limitation of use Atriplex in 
livestock production is its high salt concentration. Atriplex species are best consid-
ered as a supplement rather forage. The plant used for these purposes are primarily 
wild type and there are little information available on the nutritive value of Atriplex 
species growing in greenhouse and irrigated with different concentration of NaCl. 
Strategies need to be devised to minimize the salt contents in the Atriplex leaves.

Although the biochemistry of Atriplex species tends to establish that they may be 
a source of novel compounds along with providing a new source for many already 
know biologically active compounds. Data of chemical composition of Atriplex 
species is still not completed.

Atriplex species are well adapted to both salt and drought stress and can serve 
as model species to understand the mechanisms of tolerance in plant (Flowers and 
Colmer 2008). Very little research has been carried out to identify the molecular 
mechanisms directly responsible for the specific tolerance of Atriplex species to 
abiotic stress. In this way, Atriplex may serve as a particularly useful model plant 
for studies of regulatory mechanisms related to the activation of the GB biosyn-
thetic pathway in response to environmental stress.

With over 400 species of this genus, a significant opportunity then exists to ex-
plore the potential of other locally adapted Atriplex species. Research is required to 
select and breed potentially useful plants and identify the best species combining 
nutritional, agronomic and environmental potential.
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Abstract Extreme environmental conditions including drought, high- and low-
temperatures, high salinity, mineral deficiency and heavy metal toxicity severely 
affect crop loss worldwide. Improvement of plants for enhanced resistance to 
adverse climatic conditions is a key issue in sustainable crop production, strength-
ening the global food safety. Understanding stress tolerance mechanisms of plants 
are a prime importance in crop improvement. Among the array of components 
involved, plant polyamines (PAs) are identified as one such group of components 
that play an important role in diverse environmental stress responses. PAs are small 
organic cations containing two or more amino groups. These are growth regula-
tors present widely in all living organisms with varying quantities ranging from 
micromolar to milimolar. In plants, the most abundantly found PAs are di-amine 
putrescine, tri-amine spermidine and tetra-amine spermine. Accumulation of long 
chain and conjugated forms of PA occur under some environmental and growth con-
ditions. Biosynthesis, transport, degradation and conjugation determine the level 
of PAs and vary throughout a plant life cycle. Catabolism of PAs by amine oxi-
dases is trivial in the regulation of cellular levels of PAs. Apart from the essential 
functions in growth and development, PAs play a key role in environmental stress 
responses such as drought, chilling, salinity, mineral deficiencies such as potassium, 
nitrogen and magnesium deficiency, heavy metal toxicity, mechanical injuries and 
defence signalling against pathogens. Differential transcriptional regulation of sev-
eral stress-related genes in PA-overexpressed transgenic plants suggests potential 
signalling function of PAs in stress responses. Genetic manipulation of crop plants 
for altered regulation of PA biosynthesis/catabolism may lead to improved stress 
tolerance potential. This article summarizes the recent findings on the involvement 
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of PAs in abiotic stress responses in plants and possible means of manipulating PAs 
in the crop plants for enhanced stress tolerance.

Introduction

The impact of extreme climatic conditions such as atmospheric warming, desertifi-
cation and soil salinisation on agriculture is growing, causing substantial crop loss 
worldwide. Climate change also modifies the risks of pest and pathogen outbreak, 
negatively affecting crop productivity. Devastating climate coupled with population 
growth exerts constant pressure on crop production, demanding more attention to 
find ways and means of crop adaptability to challenging environmental conditions. 
In order to secure the food requirements in changing climate scenario new technolo-
gies, efficient and sustainable farming practices have to be taken into consideration.

Plants are continuously being exposed to abiotic stress conditions such as 
drought, heat, chilling, freezing and high salinity and biotic stresses like pathogen 
invasion, insect predations and weeds. Understanding the mechanisms that trigger 
stress damage and adaptive machinery of plants to various stress situations is of 
prime importance in the progress of agriculture industry. Adaptation and acclima-
tion to stresses is a result of a combination of events occurring at the anatomical 
and morphological levels to the cellular, biochemical and molecular levels. Signal 
transduction pathways that link the perception of stress signals with the appropri-
ate cellular responses leading to stress tolerance are extensively studied (Taiz and 
Zeiger 2006) and profound knowledge in all these aspects is needed in production 
of plants with improved stress tolerance.

Among array of components involved, polyamines (PAs) are one of the compo-
nents that play significant functions in plant stress responses. PAs are small organic 
cations containing two or more amino groups and known to be essential growth 
regulators present ubiquitously in both prokaryotic and eukaryotic cells (Evans and 
Malmberg 1989; Buchanan et al. 2000; Martin-Tanguy 2001). The most abundant 
free PAs in plants are di-amine putrescine (put), tri-amine spermidine (spd) and tetra-
amine spermine (spm). PAs occur as free form or as conjugated forms attached to 
proteins, nucleic acids, hydroxycinnamic acid forming phenol amides, anionic com-
ponents of phospholipids and cell wall components such as pectic polysaccharides 
(Buchanan et al. 2000; Kakkar et al. 2000; Martin-Tanguy 2001; Kakkar and Sawh-
ney 2002; Takahashi and Kakehi 2010). The equilibrium between free and conju-
gated forms of PAs is crucial in development and their titer fluctuates in response 
to environmental conditions (Torrigiani et al. 1987; Galston and Sawhney 1990). In 
plants the PA content varies from micromolar to more than milimolar amounts.

The functions of PAs in growth and development (Kakkar et al. 2000; Martin-
Tanguy 2001; Kakkar and Sawhney 2002; Kusano et al. 2008; Hussain et al. 2011) 
and in biotic and abiotic stress responses (Walter 2003; Alcázar et al. 2006b, 2010a; 
Groppa and Benavides 2008; Hussain et al. 2011; Marco et al. 2011; Nambeesan 
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et al. 2012; Shelp et al. 2012) are extensively reviewed. PAs are crucial components 
in embryogenesis (Evans and Malmberg 1989; Galston et al. 1997; Kakkar et al. 
2000; Bertoldi et al. 2004; Silveira et al. 2006; Pieruzzi et al. 2011), differentiation 
and morphogenesis (Kusano et al. 2007a, 2008; Hassannejad et al. 2012; Takano 
et al. 2012; Yoshimoto et al. 2012), floral initiation and development and fruit de-
velopment (Galston et al. 1997; Bagni and Tassoni 2001; Kusano et al. 2007a, 2008) 
and senescence (Evans and Malmberg 1989; Takahashi and Kakehi 2010). Involve-
ment of PAs in several types of abiotic stress responses such as salinity (Alcázar 
et al. 2006b; Liu et al. 2007; Alet et al. 2012; Hu et al. 2012), drought (Galston et al. 
1997; Alcázar et al. 2006b; Groppa and Benavides 2008; Wang et al. 2011), extreme 
temperature tolerance (Evans and Malmberg 1989; Urano et al. 2003; Zhang et al. 
2011; Cheng et al. 2012; Cvikrová et al. 2012; Lee et al. 2012;), and in mineral 
deficiencies and heavy metal toxicity (Martin-Tanguy 2001; Alcázar et al. 2010a; 
Shevyakova et al. 2011; Kumar et al. 2012) is extensively described.

PA catabolism is an important process in regulating PA levels in cells. In plants, 
copper-binding diamine oxidases (CuAO/DAO) and flavin adenine dinucleotide 
(FAD)-binding polyamine oxidases (PAO) have diversified roles in growth cycle 
and in environmental stress tolerance (reviewed in Cona et al. 2006; Moschou et al. 
2008b). CuAO/DAO and PAO are involved in cell wall strengthening and rigidity 
during cell growth and development (Paschalidis and Roubelakis-Angelakis 2005; 
Cona et al. 2006; Delis et al. 2006; Tisi et al. 2011). In dormancy alleviation, dif-
ferential regulation of genes involved in reactive oxygen species (ROS) production 
including amine oxidases is observed (Oracz et al. 2009). Further, association of 
PAO in developmental programmed cell death is reported (Paschalidis and Roube-
lakis-Angelakis 2005; Cona et al. 2006). Differential regulation of PAO genes and 
concomitant accumulation of proline accompanied with enhanced H2O2 production 
leading to salt tolerance is reported in some plant species (reviewed in Cona et al. 
2006; Alcázar et al. 2010a; Campestre et al. 2011). Induction of PAO is described 
in water deficient conditions leading to stomatal regulation by ABA signalling 
(Moschou et al. 2008b) and osmotic stress tolerance (Aziz et al. 1997; Moschou 
et al. 2008b). Evidences indicate that H2O2 induced by DAO and PAO activity has a 
function in plant-pathogen/elicitor defence responses (reviewed in Cona et al. 2006; 
Moschou et al. 2008b; Wimalasekara et al. 2011a).

Biosynthesis of Polyamines

The intracellular levels of PAs are determined by their biosynthesis, degradation and 
conjugation. Spatial and temporal variations of intracellular PA levels are reported 
in many plant species. The initial step of the biosynthesis of PAs is the formation 
of di-amine put. Biosynthesis of put in plants occurs through two distinct pathways 
either directly from ornithine by ornithine decarboxylase (ODC) or from arginine 
by arginine decarboxylase (ADC) followed by two successive reactions catalysed 
by agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase 
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(CPA). The tri-amine spd and tetra-amine spm are synthesised by successive ad-
dition of aminopropyl groups to put and spd respectively in reactions catalyzed by 
spermidine synthase (SPDS) and spermine synthase (SPMS) (Slocum et al. 1984; 
Tiburcio et al. 1997). The aminopropyl groups are produced from decarboxylation 
of S-adenosylmethionine (SAM) catalyzed by SAM decarboxylase (SAMDC) (Slo-
cum et al. 1984; Tiburcio et al. 1997) (Fig. 17.1). The presence of ODC pathway 
and characterization of genes coding for ODC is reported from many plant species 
(Michael et al. 1996). However, Arabidopsis lacks ODC pathway and biosynthesis 
of put occurs exclusively through the ADC pathway (Hanfrey et al. 2001). ADC1 
and ADC2 are the two genes that encode ADC of Arabidopsis and they are shown 
to be expressed in a tissue specific manner (Soyka and Heyer 1999). Arabidopsis 
has single genes that code for AIH and CPA (Janowitz et al. 2003; Piotrowski et al. 
2003), two genes namely SPDS1 and SPDS2 that code for spermidine synthase 
(Panicot et al. 2002), genes SPMS and ACL5 coding, spermine synthase (Hanzawa 
et al. 2000) and at least four genes coding SAM decarboxylase (Urano et al. 2004). 
In some plant species, subcellular compartmentalization of ADC pathway is re-
ported which probably lead to a concentration gradient of put in a cell (Borrell et al. 
1995; Bortolotti et al. 2004). A number of studies indicate that genes coding for PA 
biosynthesis is highly regulated by an array of abiotic and biotic factors and PA me-
tabolism interacts largely with other metabolic pathways (Bouchereau et al. 1999; 
Soyka and Heyer 1999; Urano et al. 2003; Alcázar et al. 2006b, 2010a).

Fig. 17.1   Schematic representation of PA biosynthetic pathways in plants. ADC arginine decar-
boxylase, AIH agmatine iminohydrolase, CPA N-carbamoylputrescine amidohydrolase, ODC 
ornithine decarboxylase, SPDS spermidine synthase, SPMS spermine synthase, SAM synthase 
S-adenosylmethionine synthase, SAMDC S-adenosylmethionine decarboxylase, ACC synthase 
1-amino-cyclopropane-1-carboxylic-acid synthase, ACC oxidase 1-amino-cyclopropane-1-
carboxylic-acid oxidase. (Adapted from Wimalasekara et al. 2011a)
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Catabolism of Polyamines

PA catabolism is an important process that regulates the intra-cellular levels of 
PA. PAs are oxidatively catabolised by copper-binding diamine oxidases (CuAO)/
diamine oxidases (DAO) and FAD-binding polyamine oxidases (PAO) which are 
commonly found in all living organisms (Buchanan et al. 2000; Bagni and Tassoni 
2001; Cona et al. 2006). Plant CuAO/DAO preferentially catalyses the oxidation of 
di-amine put, at the primary amine group producing 4-aminobutanal with concomi-
tant production of NH3 and H2O2. Resulting 4-aminobutanal is further converted 
to γ-aminobutyric acid (GABA) via Δ1-pyrroline. PAOs preferentially catalyse the 
oxidation of spd and spm at the secondary amine group producing 4-aminobutanal 
and N-(3-aminopropyl)-4 aminobutanal, respectively, with concomitant production 
of 1,3-diaminopropane (DAP) and H2O2 (Buchanan et al. 2000; Cona et al. 2006; 
Moschou et al. 2008b, c) (Fig. 17.2). Experimental evidences indicate that CuAO/
DAO and PAO have important regulatory function in plant growth and in stress tol-
erance by modulating the levels of PAs and their reaction products. They are impor-
tant regulators of ROS and GABA synthesis, which are key metabolites involved 
in various physiological processes. Both CuAO/DAO and PAO have species and 
tissue specific regulatory functions and sptio-temporal expression patterns (Cona 
et al. 2006). CuAO/DAO encoding genes have been isolated and characterized from 
some plants for example, from Arabidopsis (Moller and McPherson 1998), chick 
pea (Rea et al. 1998) and pea (Tipping and McPherson 1995). PAOs are identified 
from many plant species particularly in monocots (Sebela et al. 2001). Gene family 
of PAO from maize which consist of three members and proteins are bound to cell 
walls (Tavladoraki et al. 1998) and symplast localized barley PAO family consisting 
of two genes (Cervelli et al. 2001) are widely been studied. In Arabidopsis, twelve 
CuAO/DAO and five PAO coding genes have been identified and characterized. 
The proteins are localized in apoplast and in peroxisomes (Alcázar et al. 2006b; 
Cona et al. 2006; Tavladoraki et al. 2006). Studies on gain and loss of function mu-
tants especially in Arabidopsis have provided new insights into molecular mecha-
nisms of PA function and PA interaction with other signal transduction pathways. 
These findings with special emphasis on abiotic stress tolerance are discussed in 
detail in the following sections.

Abiotic Stresses

Experimental evidences indicate that differential regulation of plant PA biosynthe-
sis, conjugation and catabolism are important in dealing with stress tolerance in 
response to a variety of environmental stresses ranging from drought, salinity, tem-
perature extremes, mineral deficiency to wounding (reviewed in Cona et al. 2006; 
Groppa and Benavides 2008; Moschou et al. 2008b; Alcázar et al. 2010a; Angelini 
et al. 2010; Wimalasekara and Scherer 2010; Wimalasekara et al. 2011a). The bal-
ance between PA catabolism and anabolism is shown to play a significant role in 
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PA-mediated stress tolerance. A number of recent studies indicate that cross talk of 
PA signalling with other signalling pathways in a variety of abiotic stress responses 
(Alcázar et al. 2010a).

Salt�Stress

Plant growth is restricted when the soil contains excess amounts of minerals. Salin-
ity affects a considerable amount of crop loss worldwide specifically in arid and 
semiarid regions. Salt injury is caused by decrease in water potential and by accu-
mulation of ions to toxic levels. Tolerance levels to soil salinity differ dramatically 
among plant species. The mechanisms by which plants tolerate salinity are complex 

Fig. 17.2   Schematic representation of PA catabolic pathways in plants. Copper-binding diamine 
oxidases (CuAO)/diamine oxidases ( DAO) catalyses the oxidation of di-amine putrescine, at the 
primary amine group producing hydrogen peroxide (H2O2), ammonia (NH3) and 4-aminobutanal 
as reaction products. Polyamine oxidase ( PAO) catalyses the oxidation of spermidine and sperm-
ine at the secondary amine group producing 4-aminobutanal and N-(3-aminopropyl)-4 aminobu-
tanal respectively, in addition to 1,3-diaminopropane and H2O2. 4-aminobutanal produced through 
putrescine and spermidine oxidation is further converted to γ-aminobutyric acid (GABA) via 
Δ1-pyrroline. Besides terminal catabolic pathway, back-conversion pathway takes place produc-
ing spermidine and putresine. H2O2 and 3-aminopropanal is produced as reaction products in the 
polyamine back conversion pathway. (Modified from Angelini et al. 2010)
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involving molecular synthesis, enzyme induction and membrane transport. Over 
the years, attempts were made to enhance the salt tolerance of several salt sensitive 
crop species using classical plant breeding and molecular biological approaches 
(Taiz and Zeiger 2006).

Significance of PAs, CuAO/DAO and PAO in salt stress tolerance is described in 
several plant species (reviewed in Alcázar et al. 2006b, 2010a; Cona et al. 2006; Liu 
et al. 2007). Accumulation of increased amounts of PAs in rice, tobacco and Arabi-
dopsis is reported to enhance the tolerance to high salinity conditions. In salt-tolerant 
cultivars of rice, accumulated amount of spd and spm was higher than in the salt-
sensitive rice cultivars while the latter showed higher amounts of put accumulation 
(Basu and Ghosh 1991). The quantification of PA levels in salt-sensitive rice culti-
vars showed that salt-sensitivity is related with the differences in PA accumulation 
in the shoot system under high salinity, specifically put to a higher level and spd and 
spm to lower levels (Krishnamurthy and Bhagwat 1989). In salt-tolerant cultivars of 
rice, root plasma membranes were rich in spd and spm while in salt-sensitive culti-
vars root plasma membranes were rich in put (Roy et al. 2005). In barley seedlings, 
salt injuries caused by high concentration of NaCl could be partially attenuate by 
exogenous application of put and spd (0.5 mM) (Zhao and Qin 2004). In roots and 
leaves of Lupinus luteus growing on high salinity conditions, accumulated increased 
amounts of PAs bound to microsomal membranes implying less injuries caused by 
salt stress (Legocka and Kluk 2005). There are more reports on adverse salinity-me-
diated increase in PA amounts in a number of plant species. For example, an increase 
in free, acid-soluble bound and total spm was observed in leaf tissues of sunflower 
exposed to increasing concentrations of NaCl (Mutlu and Bozcuk 2005), In spinach, 
lettuce, melon, pepper, broccoli, tomato and wheat high salt concentrations resulted 
in substantial accumulation of spd and spm (El-Shintinawy 2000; Zapata et al. 2004).

Experimental evidences indicate that salt stress induced PA-mediated responses 
mainly rely on the activation of arginine decarboxylase ( ADC2) and amine oxi-
dases. In Arabidopsis, strikingly increased expression level of ADC2 and spermine 
synthase ( SPMS) was observed under high salinity (Soyka and Heyer 1999). Fur-
ther, mutants defect in PA biosynthesis displayed increased sensitivity to salt stress 
(Soyka and Heyer 1999; Yamaguchi et al. 2006). External supplementation of spm 
to spm-deficient mutants suppressed the salt sensitivity of these mutants (Yamagu-
chi et al. 2006). Arabidopsis mutants spe1-1 and spe2-1 with reduced ADC activ-
ity showed no accumulation of PAs in response to salt treatment, demonstrating 
the importance of ADC activity in salt tolerance (Kasinathan and Wingler 2004). 
Moreover, rice over-expressing oat ADC showed increased plant biomass under 
salinity indicating higher PA production by enhanced ADC activity (Roy and Wu 
2001). In another study, salt stress resulted in an induction of AtADC2 transcripts 
in Arabidopsis correlating with the accumulation of free put (Urano et al. 2004). 
Rice varieties exposed to high salinity showed an increase in transcript levels of 
S-adenosylmethionine decarboxylase ( SAMDC1) and in the salt-tolerant variety, 
transcription of SAMDC1 was higher than in the salt-sensitive variety (Li and Chen 
2000). These experimental evidences indicate an obvious protective function of spd 
and spm in salt stress tolerance. Presence of a pool of put may be a prerequisite 
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to spd and spm synthesis. spm and spd prevented the leakage of electrolytes and 
amino acids from roots and shoots of rice proposing a positive correlation between 
salt tolerance and increased accumulation of PAs (Chattopadhayay et al. 2002). The 
protective function of PAs in salt stress may be at least partly due to rigidifying 
microsomal membrane surfaces leading to stabilization against NaCl and osmotic 
stress (Legocka and Kluk 2005).

PA effect on salt-stress tolerance can also be attributed to the differential regula-
tion of catabolism of PA by DAO and PAO (Moschou et al. 2008b; Angelini et al. 
2010). The catabolic products of PA such as 4-aminobutanal, H2O2 and GABA are 
associated with various physiological processes involved in stress responses includ-
ing salt stress tolerance. Enhanced DAO/CuAO and PAO activities was observed 
in the salt stressed oat seedlings and tomato leaf discs followed by accumulation of 
proline and proline accumulation was hindered when these plants were treated with 
DAO/CuAO inhibitors (Alcázar et al. 2010b).

In high salinity exposed soybean roots increase in CuAO and GABA activities 
was seen with concomitant decrease in put, cadaverine and spd levels (Xing et al. 
2007). Decrease in CuAO activity, recovery of PA levels and a simultaneous reduc-
tion of GABA level was found in soybean during the recovery from NaCl stress pro-
posing that GABA derived from PA catabolism is probably involved in salt-stress 
mediated defence reactions (Xing et al. 2007). Increased amounts of H2O2 produced 
by DAO/CuAO and PAO activities lead to PCD and expression of defence genes 
suggesting importance of amine oxidases in salt stress responses. Maize ZmPAO 
overexpressing tobacco plants showed high quantities of spd followed by increased 
activity of apoplastic PAO. As a result, an elevated amount of H2O2 was produced 
and PCD was induced (Moschou et al. 2008a). In contrast, tobacco plants down-
regulating endogenous PAO accumulated lower amounts of H2O2 in response to salt 
stress exhibiting less PCD than wild type plants (Moschou et al. 2008a). Induction 
of several stress-responsive genes could be observed as a result of apoplastic PA 
catabolism by PAO (Moschou et al. 2008a). Moreover, downstream signalling sub-
stances such as mitogen activated protein kinases (MAPK) were induced by H2O2 
produced through PAO activity. In maize, salt stress induced ROS generated by 
PAO was involved in signalling the adaptive responses to high salinity (Rodríguez 
et al. 2009). These studies indicate that ratio of PA catabolism and anabolism is 
crucial in salt stress tolerance.

Taken together, increased PA levels represent a salt-stress induced protective 
function in many different plant species. Genetic modification of PA biosynthesis 
and catabolism pathways is useful in enhancing salt-tolerance function of model 
plants as well as in crop plants.

Water�Stress

Drought has a direct effect on agriculture leading to crop losses in different mag-
nitudes in many parts of the world. Far beyond the crop loss, drought causes many 
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socio-economic impacts and even famine in some less developed countries. It is 
being predicted that wide spread drought conditions may happen more regularly, 
severely and last for extended periods in coming decades as a result of global warm-
ing and climate change. Strategies for efficient management of droughts include 
strategic management of agriculture. Apart from efficient practices for water and 
soil management and crop planning, several attempts have been paid to improve the 
drought tolerant capacity of plants especially important crop plants by conventional 
as well as by modern genetic engineering techniques.

Drought resistance mechanisms vary with climate and soil conditions and the 
capacity of drought resistant vary greatly among plant species. Plants exhibit vari-
ous responses to water stress such as inhibition of leaf expansion which occur as a 
result of decrease in turgor, limits in photosynthesis, leaf abscission, increased wax 
deposition on the leaf surface, altered energy dissipation from leaves, root exten-
sion into deeper wetter soil and stomatal closure. Sensing of water deficiency and 
signal transduction leads to the induction of genes responsible for acclimation and 
adaptation to stress. Several of these genes encode enzymes associated with os-
motic adjustment (Taiz and Zeiger 2006). Considerable effort have been directed 
towards identifying traits associated with drought resistance of crop plants and with 
the availability of molecular techniques crops have been modified for improved 
drought resistance.

Among the many components, PAs are identified as one such component hav-
ing regulatory function in water stress. In water stressed plants endogenous levels 
of PAs are considerably increased confirming stress-specific roles of PAs (Galston 
et al. 1997; Groppa and Benavides 2008). For example, in wheat seedlings exposed 
to drought, PAs especially spd accumulated to a higher level in comparison to the 
control plants (Kubis and Krzywanski 1989), chickpea plants responded to onset 
of drought by increasing the endogenous spd levels and total PA content in the 
roots (Nayyar and Chander 2004; Nayyar et al. 2005), and in water stressed V. faba 
leaves, free spd levels increased considerably (Liu et al. 2000). The Arabidopsis 
double mutant acl5/spms that produce lower spm is hypersensitive to drought stress 
(Kusano et al. 2007b). Manipulation of PA biosynthesis pathway caused altered 
drought resistant capacities in many plant species. In Arabidopsis, overexpression 
of ADC2 increased put levels and drought tolerance was enhanced by stimulation 
of stomatal closure (Alcázar et al. 2010b). Rice plants overexpressing ADC gene of 
oat showed improved drought tolerance by increasing put levels and reducing chlo-
rophyll loss (Capell et al. 1998, 2004). Up-regulation of ADC gene was observed 
in the osmotically-stressed oat leaves, indicating increased PA synthesis leading to 
stress tolerance (Galston et al. 1997). Overexpression of S-adenosyl methionine 
decarboxylase in Arabidopsis lead to increased spm levels and enhanced the expres-
sion of a key ABA biosynthesis gene NCED3 (Alcázar et al. 2006a). During drought 
conditions, accumulation of put was impaired in the ABA-deficient and ABA-in-
sensitive mutants (Alcázar et al. 2006a). During water stress, ABA is known to 
modulate PA metabolism by up-regulating the expression of ADC2, spermidine syn-
thase ( SPDS1) and spermine synthase ( SPMS) genes (Alcázar et al. 2006a). A study 
by Lie et al. (2000) revealed that physiological function of elevated PA levels during 
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water stress tolerance was attributed to PA-mediated regulation of inward K +  chan-
nel in the plasma membrane of guard cells and modulation of stomatal aperture. 
Further, these findings indicate that PAs target a putative guard cell K +  channel 
KAT1-like inward K + channels in guard cells and modulate stomatal movements, 
providing evidence for presence of link among stress conditions, polyamine levels, 
and stomatal regulation (Lie et al. 2000). When dehydrated in vitro grown Citrus 
reticulata plants were treated with exogenous spm, stomatal closure was promoted 
and exhibited a less wilted phenotype, reduction of water loss and electrolyte leak-
age compared to spm untreated plants (Shi et al. 2010), again indicating a function 
of PA in stomatal regulation.

The importance of PA catabolism in water stress responses is described in many 
plant species (reviewed in Cona et al. 2006; Moschou et al. 2008b; Angelini et al. 
2010). Osmotic stress tolerance of rape leaf discs and whole rape seedlings sub-
jected to drought is linked to increased amounts of put and DAP which is a product 
of PAO activity (Aziz et al. 1997). Experimental evidence of Toumi et al. (2010) 
indicated that drought-tolerant grapevine has increased PAO activity as compared 
to drought-sensitive variety. H2O2 produced by PA oxidation reaction was involved 
in signalling cascade of drought tolerance (Toumi et al. 2010). DAO/CuAO and 
PAO are considered as important controllers of ABA signalling pathway in stomatal 
regulation (Lie et al. 2000; An et al. 2008; Moschou et al. 2008a, b). In Arabidop-
sis, induction of AtPAO2, AtPAO3 and AtPAO4 by ABA suggests a role of PAO in 
ABA signalling (Moschou et al. 2008a). Gene expression analysis demonstrated 
that PAO2 of Arabidopsis is upregulated during drought stress and shows similar 
expression kinetics as the ABA-inducible RD29A and RD22 genes supporting a role 
of PAO2 in drought resistance (Alcázar et al. 2011). An et al. (2008) showed that 
exogenous application of ABA to the Vicia faba leaf epidermis caused stimulation 
of apoplast CuAO activity followed by increased H2O2 production finally leading 
to induced stomatal closure. When CuAO inhibitors were applied these processes 
were impaired. These factors indicate that CuAO in V. faba guard cells is an es-
sential enzymatic source for H2O2 production in ABA-induced stomatal closure. 
For the ABA-induced stomatal closure, second messengers such as Ca2 +, ROS, 
and nitric oxide (NO) are also important. CuAO/DAO and PAO may be important 
in regulating the other signalling substances probably via generation of H2O2 in 
stress situations like water stress. Involvement of DAO in the ABA induced H2O2 
production in roots of rice seedling is reported (Lin and Kao 2001). Biosynthe-
sis of H2O2 by ABA-stimulated CuAO activity resulted in root growth inhibition 
by cell wall stiffening by peroxidases (Lin and Kao 2001). Involvement of a 
copper amine oxidase gene, COPPER AMINE OXIDASE1 ( CuAO1) of Arabidop-
sis was tested for its role in ABA mediated stress responses using the knockouts 
cuao1-1 and cuao1-2 (Wimalasekara et al. 2011b). Compared to WT, the knock-
outs showed less sensitivity to ABA during germination, seedling establishment 
and root growth inhibition characterizing knockouts as ABA-insensitive. Fur-
ther, PA-induced and ABA-induced NO production in cuao1-1 and cuao1-2 were 
impaired suggesting a function of CuAO1 in PA and ABA-mediated NO production 
(Wimalasekara et al. 2011b).
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Heat�and�Cold�Stress

Global warming is becoming a worldwide concern and over the last 25 years an in-
creasing rate of warming has taken place. Regional temperature anomalies, extreme 
high temperature with frequent heat waves and extreme cold weather conditions 
are also inevitable. Influence of unusually high and low temperatures on agricul-
ture, forestry and fisheries are enormous finally leading to socio-economic impacts 
around the world. High temperature on crop production most of the times affect 
Asia and Africa. Prolonged winter and irregular low temperature conditions affect 
agriculture in many European and American countries. In terms of agriculture, apart 
from mitigation measures, adaptation mechanisms to such adverse impacts include 
development of cultivation techniques and development of resistant crop varieties.

Most plants are unable to survive extended exposure to temperatures above 45°C 
while succulent plants are adapted to high temperatures tolerating temperatures of 
60–65°C. High temperatures most of the times lead to heat stress and heat shock and 
often the water and temperature stresses are interrelated. Heat stress inhibits pho-
tosynthesis and impairs membrane function and protein stability. Adaptive mecha-
nisms to heat stress include responses that decrease light absorption by the leaves, 
heat shock protein synthesis which act as molecular chaperons in stabilizing and 
correcting protein folding and biochemical responses leading to pH and metabolic 
homeostasis (Taiz and Zeiger 2006).

Chilling and freezing stresses are triggered by low temperature. Typical chilling 
injuries such as slow growth, leaf lesions and wilting are caused primarily by loss of 
membrane properties ensuing from changes in membrane. Freezing injury is linked 
basically to damage caused by formation of ice crystals within cells. Mechanisms 
that confer freeze resistant include dehydration and supercooling of leaves, which 
limit the growth of ice crystals to extracellular spaces. Cold stress leads to osmotic 
stress and activate osmotic stress-related signalling pathways and accumulation of 
proteins involved in cold acclimation (Taiz and Zeiger 2006).

Several plant species including important crop species have been produced for 
better tolerance to high and low temperature regimes by modifying physiological 
and biochemical pathways concerned. There are number of reports showing differ-
ential accumulation of PAs in response to high and low temperatures (reviewed in 
Kakkar and Sawhney 2002; Alcázar et al. 2006b, 2010a; Cona et al. 2006; Groppa 
and Benavides 2008; Moschou et al. 2008b; Gill and Tuteja 2010; Wimalasekara 
et al. 2011a). Importance of put accumulation in freezing temperature tolerance 
in Arabidopsis and transcriptional upregulation of ADC1 and ADC2 upon cold 
treatment is described (Cuevas et al. 2008, 2009). Compared to wild type plants, 
mutants adc1 and adc2 displayed higher sensitivity to freezing and treating with 
put complemented the stress sensitivity (Cuevas et al. 2008, 2009). Moreover, this 
study revealed that detrimental consequences of put depletion during cold stress are 
due, at least in part, to alterations in the levels of ABA by modulating expression of 
ABA biosynthesis genes (Cuevas et al. 2008, 2009). Complementation analysis of 
adc1 mutants with ABA and reciprocal complementation of aba2-3 mutant with put 
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revealed that diamine control the levels of ABA in response to cold by modulating 
ABA biosynthesis (Cuevas et al. 2008, 2009). In another study, PA levels specially 
put levels increased in chickpea subjected to chilling temperature (Nayyar 2005). 
Accumulation of put occurs as a rapid reaction to low temperature as seen in poplar 
seedlings grown at 4°C (Renaut et al. 2005). Supplementation of growth medium 
with spd prior to the cold treatment resulted higher cold tolerance in cucumber (He 
et al. 2002). In cold-tolerant cultivars of cucumber, markedly increased level of spd 
was observed during chilling as opposed to the cold sensitive cultivars (Shen et al. 
2000). OsSPDS2, a novel SPDS gene from rice was involved in chilling responses 
in rice roots (Imai et al. 2004). Further, Arabidopsis plants overexpressing Cucur-
bita ficifolia SPDS1 showed increased tolerance to chilling and freezing tolerance 
(Kasukabe et al. 2004). Microarray analysis revealed that increased transcription 
of several stress responsive genes in the transgenic plants under chilling stress sug-
gesting an important role for spd as a signaling compound or as a regulator of stress 
signaling pathways, leading to developed stress tolerance mechanisms (Kasukabe 
et al. 2004).

Altered regulation of PA biosynthesis is observed as one of the mechanisms in-
volved in high-temperature tolerance. Overexpression of SAMDC (from Saccharo-
myces cerevisiae) in tomato caused 1.7–2.4 fold higher levels of spd and spm pro-
duction under high temperature stress, enhanced antioxidant enzyme activity and 
the protection of membrane lipid peroxidation (Cheng et al. 2009). The levels of 
free and conjugated PAs and ADC were higher in calli of heat-tolerant rice cultivars 
than in heat-sensitive cultivars under non-stressed conditions. Heat stress caused 
greater accumulation of free and conjugated polyamines in calli of the heat-tolerant 
cultivar (Roy and Ghosh 1996). PA catabolism was also associated with heat stress 
as shown by increased PAO activity in heat-tolerant rice cultivars (Roy and Ghosh 
1996). In another study, tobacco plants over-producing proline showed a transient 
increase in the levels of free and conjugated Put and in the levels of free spd, nor-
spermidine (N-Spd) and spm after a 2-h lag phase (Cvikrová et al. 2012). The find-
ings indicate that proline and PA biosynthetic pathways act together in dealing with 
heat stress conditions.

All these experimental results indicate that transgenic approach, which increases 
PA biosynthesis could be a good strategy to improve the high and cold temperature 
tolerance.

Oxidative�Stress

Oxidative stress is induced by various abiotic factors such as hyperoxia, light, 
drought, high salinity, cold, metal ions, pollutants, xenobiotics and toxins, biotic 
factors like pathogen infection and developmental transitions such as seed matura-
tion and aging of plant organs. Oxidative stress produces ROS in plant cells (Grene 
2002). Under physiological steady state, ROS are scavenged by antioxidative de-
fence components that are often confined to particular cell compartments. In some 
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instances, plants generate ROS as defence responses to various stresses. If the equi-
librium between ROS production and scavenging is disturbed it is harmful to the 
plants (Apel and Hirt 2004). The most important ROS scavenging enzymes are 
superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase 
(GPX), and catalase (CAT).

PAs play a role in oxidative stress tolerance by functioning as antioxidants under 
some environmental conditions (Groppa et al. 2001, Chattopadhayay et al. 2002; 
Kakkar and Sawhney 2002). Few examples are, leaf injury of the ozone-sensitive 
tobacco cultivar Bel W3 caused by ozone treatments was minimized when put, spd 
or spm was applied to the root system (Bors et al. 1989) and it was suggested that 
the antioxidative effect is due to a combination of their anionic and cationic-binding 
properties in radical scavenging function (Bors et al. 1989). Løvaas (1997) reported 
that PAs are involved in preventing photooxidative damage. But there are contrdict-
ing evidences regarding lack of antioxidant activity of PAs.

A study using vesicles prepared with mixed soy bean phospholipids showed  
that PA mediated inhibition of lipid peroxidation by metal-catalysed the oxida-
tive reactions (Tadolini et al. 1988). H2O2 produced as a result of catabolism of 
PA by CuAO/DAO and PAO act as a signalling molecule that promotes activa-
tion of defence responses but it can also act as a prooxidant agent (Groppa and 
Benavides 2008).

Mineral�Deficiency�and�Heavy�Metal�Stress

Both, natural and agricultural ecosystems are most of the times known to have 
sub-optimal levels of mineral nutrients (Lynch and Clair 2004). Mineral stress con-
ditions cause important, complex, and poorly understood interactions with global 
climate change. Factors such as changes in rainfall, temperature, solar radiation and 
atmospheric CO2 concentration have significant impact on soil nutrient status and 
soil erosion rates. Inadequate supply of minerals to the plants results in nutritional 
disorders manifested by characteristic deficiency symptoms. Presence of excess 
minerals in the soil mostly associated with accumulation of heavy metals such as 
zinc, copper, cobalt, nickel, mercury, lead and cadmium causing severe toxicity in 
plants (Taiz and Zeiger 2006). In plants metal toxicity arise from the binding of 
metals to sulphydryl groups of proteins inhibiting enzymes activities or altering 
protein structure (Van Assche and Clijsters 1990), stimulation of ROS formation 
leading to oxidation of macromolecules and oxidative stress (Sandalio et al. 2001). 
The presence of excess minerals in soil also leads to saline conditions in which 
plant growth is restricted. Most of the times mineral deficiency and toxic stresses in 
plants are not clearly identifiable with other stress conditions making it even more 
complicated to predict and find solutions in improving crop yield. Genetic variation 
among plants has a significant influence in dealing with mineral stresses. Plants  
display variable morphological, physiological and biochemical adoptive responses 
in dealing with particular mineral deficient condition and heavy metal toxicity. 

17 Dealing with Environmental Stresses: Role of Polyamines in Stress Responses



472

Considerable efforts have been made to improve the yield of plants subjected to 
these stresses by modifying the soil, selecting and breeding genotypes and by ge-
netic modification.

Mineral deficient conditions influence differential regulation of hormones and 
growth promoting substances. Altered metabolism of PAs in response to K +, Mg + 
and PO4 

+ deficiencies are reported (reviewed in Groppa and Benavides 2008). 
K + deficiency-induced PA metabolism is mostly studied. Young and Galston (1984) 
showed that accumulation of put under K-deficiency by long term growing of oat 
plants on a low-K nutrient medium. ADC and ODC activities in entire K-deficient 
shoots were 6-fold and 2-fold greater than in the K-sufficient grown plants respec-
tively (Young and Galston 1984). Arabidopsis thaliana responded to K-deficiency 
by increasing ADC activity upto 10-fold over unstressed plants with a correspond-
ing increase in put levels up to 20-fold (Watson and Malmberg 1996). Important 
function of put in maintaining cation-anion balance in plant tissues is well known 
(reviewed in Bouchereau et al. 1999). In birch leaves, increased amounts of put and 
DAP, a product of PAO activity was found in K-deficient situations (Sarjala and 
Kaunisto 2002). Put accumulation is considered as a good indicator of K-deficiency 
of forest trees (Kaunisto and Sarjala 1997; Sarjala and Kaunisto 2002). In tobacco 
plants a short-term boron deficiency caused an increase in free put in roots and con-
jugated put in leaves indicating a possible link between boron and PA levels (Cama-
cho-Cristóbal et al. 2005). Source of Nitrogen dependent PA accumulation has been 
reported in wheat and pepper. Significant increase in put content was observed in 
ammonium nutrition and to a lesser extent in urea nutrition (Houdusse et al. 2005). 
However, put content was significant reduced with nitrate nutrition (Houdusse et al. 
2005). Proline content of the plants also showed a similar pattern as put content but 
to a lesser degree (Houdusse et al. 2005). They hypothesized that put biosynthesis 
might be related to proline degradation by a specific pathway related to ammonium 
detoxification. It is also reported that Mg and N deficiencies induced changes in PA 
content in grapevine (Evans and Malmberg 1989).

Changes in PA metabolism occur by metal toxicity (Groppa et al. 2001, 2003, 
2007; Lin and Kao 1999). Increased accumulation of total PAs was observed when 
tobacco BY-2 cells were exposed to 0.05 mM Cd2 + for 3 days (Kuthanová et al. 
2004). Among all the PAs, put content was significantly higher and DAO activity 
was also stimulated (Kuthanová et al. 2004). Treating mungbean seedlings with 
CdCl2 (0.1–1.5 mmol/L) resulted decreased DAO activities and subsequently re-
stricted the accumulation of endogenous PAs (Choudhary and Singh 2000). Groppa 
et al. (2003) reported that PA metabolism is differentially regulated by Cd2 + and 
Cu2 + in sunflower and wheat leaves. Both metals increased put content in wheat 
leaves but reduced put content in sunflower leaves. Treating wheat leaves with Cd2 + 
raised the ADC and ODC activities while Cu2 + raised only ODC activity (Groppa 
et al. 2003). Groppa et al. (2007) showed that both ADC and ODC activities in 
shoots of sunflower plants were increased by 1 mM Cd, whereas 1 mM Cu en-
hanced only ADC activity. A protective role of PAs in Cd2 + and Cu2 +-induced oxi-
dative stress in sunflower leaves is described (Groppa et al. 2001). Pre-treatment 
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with 1 mM spd and spm prevented the Cd2 + and Cu2 +-mediated reduced activities 
of glutathione reductase (GR) and superoxide dismutase activities (Groppa et al. 
2001). In accordance, Tang et al. 2005 showed increased tolerance of Typha latifola 
under Cd2 + stress by exogenous addition of spd, primarily by increasing GR activity 
and GSH level.

Taken together all these experimental evidences indicate a function of PA in 
mineral deficiency and heavy metal toxicity stress responses although the molecular 
mechanism is not well understood.

Mechanical�Stress

Mechanical damage/wounding caused by abiotic factors such as rain and wind, and 
by biotic factors such as pathogen attack and insect bite is a continuous threat to 
plants and it leads to a reduction in crop yield. Mechanical stress initiates signalling 
pathways and known to generate signalling substances for example jasmonic acid, 
salicylic acid, NO and H2O2 for the induction of wound-responsive genes.

Recent studies indicate that PAs are also involved in mechanical stress respons-
es. In mechanically injured Arabidopsis and oilseed rape a significant increase of 
put levels was observed (Perez-Amador et al. 2002; Cowley and Walters 2005). 
In response to mechanical wounding and methyl jasmonate treatment, Arabidopsis 
showed increased expression of ADC2 and a transient increase in the level of free 
put (Perez-Amador et al. 2002). Moreover, after wounding a decrease in the level 
of free spm, coincident with the increase in put was observed (Perez-Amador et al. 
2002). Cowley and Walters (2005) showed that mechanical wounding of the oilseed 
rape leaves led to significant, but transient, increases in ADC activity and decrease 
in DAO activity both locally and systemically (Cowley and Walters 2005). Several 
reports provide evidences regarding the wound-healing function of CuAO/DAO and 
PAO (reviewed in Angelini et al. 2010). In chickpea seedlings mechanical wound-
ing induced a rapid increase in CuAO expression levels and treatment of plants with 
CuAO inhibitor decreased the accumulation of H2O2 and lignosuberization along 
the lesion (Rea et al. 2002). In Zea mays, involvement of PAO in increased H2O2 
biosynthesis during wounding was observed and wound healing was accelerated by 
the deposition of lignin and suberin along the wound area (Angelini et al. 2008). 
Importance of PAO-mediated H2O2 in wound healing was observed and it was re-
vealed that lignin and suberin deposition along the wound area was accelerated by 
increased PAO activity (Angelini et al. 2008). Furthermore, CuAO involvement in 
wound healing is demonstrated in pea seedlings and injury induced an increase of 
CuAO and peroxidase activities and increased levels of put, cadevarine, spd and 
GABA (Petrivalský et al. 2007). In general, the function of CuAO/DAO and PAO in 
wound healing is considered to be due to the intensified lignin and suberine deposi-
tion as a consequence of H2O2 release.
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Other�Stresses

Increased levels of UV radiation and ozone and herbicide are some of the factors 
that impose stress in plants and they have developed various physiological and bio-
chemical adaptations to deal with these stress conditions. A number of components 
in plants involved in the stress tolerance reactions are identified. PAs, CuAO/DAO 
and PAO are among these components playing a role in these stress responses (re-
viewed in Groppa and Benavides 2008).

Increasing UV radiation in the atmosphere is a reality in Antarctic regions. A few 
of the examples of association of PA in UV stress are: in response to UV-B radiation 
total free PAs was decreased and conjugated PAs increased in Phaseolus vulgaris 
plants (Smith et al. 2001), in cucumber leaves UV-B radiation resulted in decreased 
total PA content concomitant with increased electrolyte leakage and weakening of 
plant growth (An et al. 2004), in tobacco cultivars subjected to UV-B radiation, PAs 
especially put was increased and after extended periods of UV-B exposure PA levels 
declined (Lutz et al. 2005). The influence of UV-B on PA metabolism is an indicator 
that plants indeed sense UV-B as a stress that also may affect crop yield.

Increasing ozone content in the biosphere is a great problem, which contributes 
to global crop losses and forest decline. For the year 2000 global crop yield loss 
due to ambient ozone was estimated to be worth $14–26 billion, and 40 % of this 
damage occurred in China and India (Van Dingenen et al. 2009). Exposure to ozone 
results in foliar injury, impaired photosynthesis, reduced growth and yield, and an 
accelerated onset of senescence in plants (Langebartels et al. 1991). Plants have 
evolved preventive mechanisms to minimize the damages caused by ozone. They 
can limit entry of ozone to interior through stomatal closure or they have tolerance 
mechanisms, which include the detoxification of ozone diffused into the leaf inte-
rior through chemical reactions with ascorbic acid or enzymatic conversion to H2O2 
(Chen et al. 2003). Since the toxicity of ozone results mainly from oxidative stress, 
protecting plants through application of antioxidants is being investigated. PAs ex-
ert several functions, which counteract ozone effects (Langebartels et al. 1991). 
Accumulation of PAs in response to ozone exposure and protection against ozone-
derived oxidative damage has been reported from different plant species for exam-
ple from barley (Rowland-Bamford et al. 1989), wheat (Raab and Weinstein 1990) 
and tobacco (Langebartels et al. 1991). Increased ADC activity and accumulation of 
free and conjugated put was observed in tobacco cultivar Bel B (Langebartels et al. 
1991). In accordance with this study, Van Buuren et al. (2002) showed that accu-
mulation of free put in both tobacco cultivars, ozone-resistant and ozone-sensitive 
when exposed to ozone. In tissues undergoing cell death in ozone-sensitive cultivar, 
accumulation of conjugated put and transient increase of ADC and ODC activity 
was observed (Van Buuren et al. 2002). The protective function of PAs in ozone 
damage may be due to the control of the cellular redox state, though the precise 
mode of action remains unknown (Van Buuren et al. 2002).
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A large number of herbicides are widely used in agriculture. Some experimental 
evidences exist on the relationship of PAs and herbicides such as paraquat, an inten-
sively used oxidative stress inducer (Groppa and Benavides 2008). In Arabidopsis, 
treated with paraquat, there was an increase in put, but not spd and spm (Benavides 
et al. 2000). Exogenous addition of PAs was effective in protection against paraquat 
toxicity to various degrees in Arabidopsis (Benavides et al. 2000) and in maize 
leaves (Durmus and Kadioglu 2005). These results suggested that PAs protective 
function may be due to the antioxidative function.

Taken together, PAs are growth regulators present in plants implicated in vast 
number of physiological processes in growth and development and abiotic and bi-
otic stress responses (reviewed in Bouchereau et al. 1999; Groppa and Benavides 
2008; Alcázar et al. 2010a; Wimalasekara et al. 2011a). As discussed in this review, 
differential regulation of PA biosynthesis and catabolism play important roles in 
responding to several types of abiotic stresses leading to stress tolerance. Availabil-
ity of information about key genes in biosynthetic and catabolic pathways provide 
useful information in manipulating the same for the production of gain and loss of 
function mutants which in turn provide the underlying molecular mechanism of PA 
functions. For example, overexpression of PA biosynthetic genes, ADC1 and ADC2 
was successful in generating several plant species ranging from the model plant 
Arabidopsis to the important crop plant rice that exhibited enhanced tolerance to a 
variety of stresses. Further, transgenic plants ( Arabidopsis, rice, pear) overexpress-
ing spd and spm synthase genes SPDS and SPMS showed enhanced tolerance to a 
number of abiotic stresses (Groppa and Benavides 2008; Alcázar et al. 2010a). In 
most of the cases, these transgenic plants showed tolerance to a broad spectrum of 
abiotic stresses suggesting interaction in mechanisms of stress resistance common 
in different stress types.

Importance of PA catabolic enzymes CuAO/DAO and PAO in plant development 
and stress tolerance is extensively reviewed (Cona et al. 2006; Kusano et al. 2008; 
Moschou et al. 2008b; Angelini et al. 2010; Wimalasekara et al. 2011a). For ex-
ample, overexpression of CuAO in tobacco showed enhanced tolerance to salt stress 
(Moschou et al. 2008b) and overexpression of ZmPAO in tobacco showed enhanced 
wound-healing response (Angelini et al. 2008). Most of the PA catabolic functions 
are associated with H2O2 that is produced by the activity of CuAO/DAO and PAO. 
In most of the instances, H2O2 produced in this manner is involved in reactions 
occurring during stress-induced cell wall modifications, in PCD, and as a second 
messenger in signalling stomatal regulation. Several experimental evidences exist 
regarding the roles of CuAO/DAO and POA in biotic stress tolerance especially in 
triggering the hypersensitive response and CPD (reviewed in Walter 2003; Angelini 
et al. 2010; Moschou et al. 2008a). Transfer of the knowledge obtained from rather 
limited plant species over to valuable crop species will be a future challenge in the 
agriculture industry despite the many constrains that exist.
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Conclusion and Future Perspective

Plant growth is highly affected by the adverse environmental conditions such as 
drought, high salinity, extreme temperature regimes, mineral deficiencies and metal 
toxicity causing decreased crop yields. The dynamic climate changes have great im-
pacts on global food security, emphasising vital solution for the crop improvement 
by enhancing the stress tolerance. Despite the improvement of conventional meth-
ods, considerable attention has been paid to the utilization of recent advancements 
such as transgenic approach, marker assisted screening methods and breeding in 
enhancing plant performance under stress conditions.

Apart from essential growth regulatory functions, plant PAs are known to play 
important role in stress tolerance by modulating the PA levels. Considerable evi-
dences exist for the natural variations of PAs in different cultivars/accessions cor-
relating with stress situations (Bouchereau et al. 1999). As described in this article, 
PA biosynthesis and catabolism are genetically manipulated in some plant species 
especially in model plants for enhanced environmental stress tolerance ranging 
from drought, salinity, temperature extremes, mineral deficiency to wounding. Fur-
ther investigations are necessary in understanding the molecular mechanisms of 
PA action in response to multiple stress situations. Broader insight is also required 
on the interacting components and signalling pathways in the PA metabolism and 
catabolism to fully uncover the protective function of PAs for subsequent successful 
utilization in enhanced crop performance. Advanced techniques including microar-
ray, proteomics and metabolomics will be helpful in gaining detailed understanding. 
Future challenge is to transfer knowledge obtained especially from model plants to 
a variety of important crop species for enhanced tolerance to adverse environmental 
stresses finally aiming at increased crop yields.
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