
Chapter 93
Enhancing Ability of Fault Detection
for Component Systems Based on Object
Interactions Graph

Fuzhen Sun, Lejian Liao, Jianguang Du and Guoqiang Li

Abstract Test case prioritization is a technique to schedule the test case in order
to maximize some objective function. Early fault detection can provide a faster
feedback generating a scope for debuggers to carry out their task at an early stage.
In this paper, a method is proposed to prioritize the test cases for testing com-
ponent dependency in a Component Based Software Development (CBSD) envi-
ronment using Greedy Approach. The OIG (Object Interaction Graph) is traversed
to calculate the total number of inter component object interactions and intra
component object interactions. Depending upon the number of interactions, the
objective function is calculated and the test cases are ordered accordingly. This
technique is applied to the components developed in Java for a software system
and found to be very effective in early fault detection as compared with non-
prioritize approach.

Keywords Test case prioritization � Fault detection � Object interaction graph
(OIG) � Component based software development (CBSD)

93.1 Introduction

A technique like test case prioritization has to be devised, which will lead to early
fault detection. Test case prioritization aims at finding an execution order for the
test cases which maximizes a given objective function. Among the others, the most

F. Sun (&) � L. Liao � J. Du � G. Li
Beijing Engineering Research Centre of High Volume Language Information Processing
& Cloud Computing Applications, Beijing Key Laboratory of Intelligent Information
Technology, School of Computer Science, Beijing Institute of Technology, Beijing, China
e-mail: 10907023@bit.edu.cn

F. Sun
School of Computer Science and Technology, Shandong University of Technology,
Zibo, China

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_93,
� Springer Science+Business Media New York 2013

837



important prioritization objective is probably discovering faults as early as
possible, which refers to maximize the rate of fault detection.

The major challenges in Component Based Software Development (CBSD) are
testing component dependency. CBSD uses the reusable components as the
building blocks for constructing the complex software system (component based
system). Component based system promotes the software quality and productive.
This building block approach has been increasingly adopted for software devel-
opment, especially for large-scale software systems.

Previous work on test case prioritization [1–5] is based on the computation of a
prioritization index, which determines the ordering of the test cases (e.g., by
decreasing values of the index) [6, 7]. Srivastava [8] suggested prioritizing test
cases according to the criterion of increased Average percentage of Faults detected
(APFD) value. Rothermel et al. [9] have described several techniques for test case
prioritization and empirically examined their relative abilities to improve how
quickly faults can be detected by those suites. More importance is given to cov-
erage based prioritization here [10, 11].

In this paper for describing each component we have taken the help of sequence
diagrams, then a Object Interaction Graph (OIG) from sequence diagrams is
constructed which shows the interrelation among the components. A new test
prioritization algorithm is presented which is applied on OIG to count the maxi-
mum number of inter component interactions and intra component interactions
made by the test cases.

93.2 Proposed Test Case Prioritization Model

In CBSD Component interface is defined as the only way that a component
communicates with the external environment. There are two kinds of interface:
service providing and service required. When the services are provided by an
interface, it is called service providing interface and when the interface of a
component requiring a service it is called service required interface. All compo-
nents should be plug-compatible i.e. a service required interface can be connected
to a service providing interface. We have defined a Component as follows:
Component C = (P, R), where P = P1, P2, Pn is the set of providing services
interface, R = R1, R2, Rm is the set of required services interface. The providing
and required services of a component C is denoted by C.P and C.R respectively
and C.P\C.R = ;.

In Fig. 93.1 the required services of C1P C2 are the union of C1.R1 and C2.R2
with the remove of satisfied services in S. With the definition of composition the
providing and required services are propagated to the interface of composed
component, so the composition could be carried parallel. A Component interaction
graph (OIG) is used to describe the interrelation of components. A complete
component interaction graph (OIG) makes the testing quite easy.

838 F. Sun et al.



To facilitate regression testing by optimizing the time and cost, we propose a
method to prioritize the test cases by using model based prioritization method by
extracting the benefits of Unified Modelling Language (UML). UML provides
lifecycle support in software development and is widely used to describe analysis
and design specifications of software. It is a big challenge to study the test case
generation from UML diagram (Fig. 93.2).

We have used sequence diagram from the set of diagrams present in UML 2.0.
As Sequence diagram represents various object interactions through message
passing, it can act as an input to the proposed model. We are generating an OIG
from the sequence diagrams present. The methodology we have used for gener-
ating the graph has been discussed in Sect. 93.2.1 Further in Sect. 93.2.2 we have
discussed how to traverse the OIG to calculate the number of inter component
object interaction and intra component object interaction. Section 93.2.3 describes
about objective function evaluation and the prioritization technique.

C6

C5 C3

C4

C2C1

R1

R1
P1

P2

P1

R1

R2 P1

P1

R2

R1

Fig. 93.1 Object interaction
graph(OIG)

NOIi and NIi

Sequence Diagram

Prioritized Test Cases

System Models

Generating OIG

Counting Numbers of Interaction in OIG

Test Case Prioritization

OIG

Fig. 93.2 A frame work for
generating prioritized test
cases

93 Enhancing Ability of Fault Detection for Component Systems 839



93.2.1 Generating OIG Form System Models

We have used sequence diagram for system modeling, and the object interactions
can be very well identified by using a sequence diagram. During regression testing
any modification in the code will have no effect on the sequence diagram. The
object interaction can be categorized into two different types. One of them is intra
component object interactions and the other one is inter component object
interactions.

Sequence diagrams in UML are used to model how an object communicates
with other objects in its life time. A complete object interaction graph (OIG)
makes the testing quite easy. An OIG is a directed graph where OIG = (V, E), V
represents a set of nodes. For generating Object Interaction Graph (OIG), each
object present in the sequence diagram is represented as a node in the graph. The
intra component object interactions form the edges of the graph and represented in
Solid arrows. The inter component object interactions form the edges of the graph
and represented in Dashed arrows.

Algorithm: GENERATE OIG
Input: Sequence Diagrams of various components of the system representing

message passing between objects
Output: Object Interaction Graph (OIG)//It is a directed graph

1. Initialize OIG to be empty
2. For i = 1 to n//n is the total number of objects
3. Add a node Ni to OIG == Ni represents ith node.

Object shared by different components treated as a single node.
4. For i = 1 to n
5. For j = 1 to n
6. For each incoming message from object Oi to Oj == All guard conditions are

ignored
7. if (interaction types == intra) Establish an edge between Oi to Oj (i.e. Ni and Ni)

and represent it as‘‘Solid arrow’’ as well as append the pre and post conditions.
8. Else Establish an edge between Oi to Oj (i.e. Ni and Nj) and represent it as

‘‘Dashed arrow’’ as well as append the pre and post conditions.
9. The possible start and end of the scenario sequences are represented with solid

arrows.

93.2.2 Traversing OIG

When the OIG is generated from the system models, it has to be traversed to count
the number of inter component and intra component object interactions. NOIi

represents the number of Object Interactions discovered by test case ti with in one
component of the software and NIi represents the number of Object Interactions

840 F. Sun et al.



discovered by test case ti between two different components of the software. We
follow the depth first search (DFS) methodology for traversing the graph. The type
of interaction is decided depending upon the color of the edge in the graph. If the
edge color is found to be ‘‘Solid arrow’’, it represents an intra component object
interaction, where as edges colored as ‘‘Dashed arrow’’ represents inter component
object interaction

Algorithm: IN_CALCULATE
Input: Test case ti & Object Interaction Graph (OIG)
Output: NOIi and NIi

1. Initialize both NOIi and NIi to 0.
2. Traverse each interaction in the OIG for ti in DFS
3. If (edge color ==‘VISITED’ && current edge is not visited already)
4. NOIi ? + // Increment the value for intra component interaction
5. Else
6. NIi ? + // Increment the value for inter component interaction
7. Return NOIi and NIi.

93.2.3 Generating Prioritized Test Cases

Once we get the value for NIi and NOIi by using the algorithm described in
Sect. 93.2.3, prioritization process starts. For each test case ti, the value of NIi and
NOIi are added. We have considered the total number of intra component inter-
action where as the total number of inter component object interactions is found
out by multiplying it with RP i.e. total number of providing service interface and
required service interface. If the faults due to component integration are detected
early, it will give a better coverage. The added result is divided with unit time U to
determine value of the objective function i.e. factor criteria FCi. We try to max-
imize the objective function using a Greedy approach.

Algorithm: TEST_PRI
Input: Regression Test Suite T
Output: Prioritize Test Suite T’

1. Traverse the test suite T, for each test case ti present, call IN_CALCULATE
(ti) to calculate NOIi and NIi

2. Define some unit time U
3. Calculate objective function (FCi) for test case ti as FCi = (NOIi ? RP*NIi)/

U. (1)
//RP represents total number of providing service interface.

4. Generate T’ by Sorting the test suit T in ascending order of FCi for each ti.
5. Store T’ in the test case repository for regression testing.

93 Enhancing Ability of Fault Detection for Component Systems 841



93.3 Case Study: A Cellular Network Manager

We have taken the case study of a Cellular Network Manager to explain the
proposed model. Two components i.e. ‘‘Dialing a Phone’’ and ‘‘Cellular Network
Connection’’ have been presented.

From the sequence diagram of both the components given in Figs. 93.3 and
93.4, corresponding OIG are designed as given in Fig. 93.5.

Three test cases are considered to test the prioritization algorithm. The test
cases are designed to test the Dialer Display (t1), to test the Speaker (t2) and to test
the Cellular Radio Display (t3). Table 93.1 contains the value of NOIi, NIi and
FCi. Here the unit time U is considered to be 1 unit.

From the Table 93.1 we conclude that the prioritized test sequence is: t3, t2, t1
or t3, t1, t2 The proposed model found to be very effective as it increases the
Average Percentage of Fault Detection (APFD) when it is compared with gen-
eralized model based method and few code based methods like LOC count and
Function count. The comparison made is summarized in Table 93.2.

The cost and time required for regression testing can be minimized by using the
prioritization technique discussed in this paper. Here we have proposed a model
based prioritization method by considering the number of Object Interactions per
unit time as the objective function. Here more importance is given to number of
inter component object interactions present because maximum faults are expected

Digit 

Button Adaptor Dialler Display Speaker

Digit() 
Display() 

EntireDigit() 

For Each Digit 

PrintProcessed() 

Fig. 93.3 Sequence diagram
for dialing the number

Send 
Button Adaptor Dialler

Cellar 
Radio Display 

SendProcessd() 
Send() 

Connection() 
Listen() 

Fig. 93.4 Sequence diagram
for cellular connection

842 F. Sun et al.



to be present when components interact with each other. The proposed model
found to be very effective as it increases the Average Percentage of Fault
Detection (APFD) when it is applied to few of the projects developed in Java by
java 45–50 %.

93.4 Conclusion

In this paper, the authors have taken the help of sequence diagrams of describing
each component to construct an Object Interaction Graph (OIG) which shows the
interrelation among the components. Furthermore, A new test prioritization
algorithm is presented which is applied on OIG to count the maximum number of
inter and intra component interactions. The experiments show that this approach is
mainly applicable to test the component composition in case of component based
software maintenance.

A 

B 

D 

C
E 

F
G

H
J

Fig. 93.5 OIG for a cellular
network manager

Table 93.1 Objective
function (FCi) evaluation

Test cases NOIi NIi FCi

t1 3 0 3
t2 3 0 3
t3 2 4 6

Table 93.2 a comparative
study

Name of prioritized technique Approximate increase
in APFD value (%)

Code based approach (LOC count,
function count etc.)

30

General model based approach 35
Model based approach using the

dependency criteria in CBSD
45

93 Enhancing Ability of Fault Detection for Component Systems 843



The proposed method can further be extended to prioritize test cases to perform
regression testing for real time systems and distributed systems. The authors are
also working on adding new criterion like frequency of data base access number of
state changes in UML state chart diagram.

References

1. Elbaum, Z.S., Malishevsky, A., Rothermel, G.: Test case prioritization: a family of empirical
studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2012)

2. Kim, J.M., Porter, A.A.: A history-based test prioritization technique for regression testing in
resource constrained environments. In: Proceedings of the International Conference on
Software Engineering (ICSE). ACM Press, pp. 119–129 (2011)

3. Rothermel, G., Untch, R., Chu, C., Harrold, M.J.: Test case prioritization. IEEE Trans. Softw.
Eng. 27(10), 929–948 (2012)

4. Srikanth, H., Williams, L., Osborne, J.: System test case prioritization of new and regression
test cases. In: Proceedings of the 4th International Symposium on Empirical Software
Engineering (ISESE). IEEE Computer Society, pp. 62–71(2005)

5. Thiagarajan, S.J.: Effectively prioritizing tests in development environment. In: Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA). ACM Press,
pp. 97–106 (2009)

6. Kim, J., Porter, A.: A history-based test prioritization technique for regression testing in
resource constraint environments. In: Proceeding of the 24th International Conference on
Software Engineering, pp. 19–129 (2011)

7. Korel, B., Tahat, L., Harman, M.: Test prioritization using system models. 21st IEEE
International Conference Software Maintenance (ICSM’05), pp. 559–568 (2005)

8. Korel, B., Koutsogiannakis, G., Tahat, L.: Application of system models in regression test
suite prioritization. In: Proceeding of the 24th International Conference Software
Maintenance (ICSM’08), pp. 247–256 (2008)

9. Li, Z., Harman, M., Hierons, R.: Search algorithms for regression test case prioritization.
IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

10. UML 2.0 Reference Manual, Object Management Group (2003)
11. Thiagarajan, S.J.: Effectively prioritizing tests in development environment. In: Proceeding

ACM International Symposium on Software Testing and Analysis, ISSTA-02, pp. 97–106
(2002)

844 F. Sun et al.


	93 Enhancing Ability of Fault Detection for Component Systems Based on Object Interactions Graph
	Abstract
	93.1…Introduction
	93.2…Proposed Test Case Prioritization Model
	93.2.1 Generating OIG Form System Models
	93.2.2 Traversing OIG
	93.2.3 Generating Prioritized Test Cases

	93.3…Case Study: A Cellular Network Manager
	93.4…Conclusion
	References


