
Chapter 89
Optimization for Family Energy
Consumption in Real-Time Pricing
Environment
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Abstract In order to help consumers adapt to electricity consumption in real-time
electricity pricing environment, an energy consumption scheme is proposed in this
paper. This scheme focuses on the prediction, modeling and optimization for
family energy consumption. A method based on support-vector machine (SVM) is
used to predict the real-time price (RTP) and the optimization model divides every
hour into equal time slots and thus provides more opportunities to schedule
household appliances in proper working time. Then the simulation results show
that the proposed optimal control model reduces the daily electricity expenditures.

Keywords RTP � Electricity consumption scheduling � Price prediction � Time
slot

89.1 Introduction

Nowadays, real-time pricing model has been proposed in order to reflect the real
supply—demand relationship in the electricity market more accurately. This
pricing strategy not only reflects the actual wholesale prices but also encourages
consumers to shift high-load household appliances to off-peak hours so that it can
reduce their electricity payments and peak-to-average ratio (PAR) in load demand
simultaneously [1, 2].

However, recent studies showed that there are two major limitations to
implement the RTP strategy. On one hand, most consumers do not want to choose
the RTP electricity supply system due to lack of the knowledge about it. On the
other hand, the absence of automatic family energy management system is the

W. Wu (&) � G. Yang � C. Pan � C. Ju
Department of Automation, and Key Laboratory of System Control and Information
Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai, China
e-mail: weipowu@126.com

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_89,
� Springer Science+Business Media New York 2013

799



other element which limits the consumers to respond to the time-varying elec-
tricity prices more properly [3].

This paper focuses on the family energy consumption scheduling model which
aims to solve the above problem. The second section explains details of an
electricity prediction method based on SVM, and then gives the forecasting value
based on the RTP data of Illinois Power Company (IPC) from January 2009 to
December 2011 [4]. In the third section, it clearly describes how to schedule the
consumption under different conditions. Then, it gives a model that could ensure
the consumer spend the minimum payment but still finish the work in a comfort
way. In the fourth section, this paper illustrates the simulation results. Finally,
there is the conclusion.

89.2 Price PredictionModel

Clearly, electricity price mainly depends on the wholesale market prices, different
time in the day and different weathers which determine the supply and demand of
the electricity [5]. Since it has several input variables, the prediction model will be
the non-linear mapping function. In order to be used in the Real-time pricing
environment, this section will use the (SVM) Price Prediction Strategy [6].

Recent studies showed that hourly price of electricity is highly related with the
historical price [7]. This part will analyze the RTP data by IPC from January 2009
to December 2011 [4].

The result has been showed in the Fig. 89.1, which plotted the correlation
among the current hourly-prices with the same time in the past few days. Clearly
indicated in the Fig. 89.1, the correlation coefficient is declining cyclically as it
goes further back, and the prices have the highest correlation between two con-
tinuous days, e.g., today and yesterday. Additionally, the figure also represents a
noticeable correlation between the prices today and those in the same day last
week.

With consideration of these characteristics of the price series, the following
vector of input features has been considered to forecast the price ph at hour h
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Xi ¼ ph� 1; ph� 2; ph� 22; ph� 23; ph� 24; ph� 25½ ;

ph� 26; ph� 167; ph� 168; ph� 169; ph� 192; ph� 193�
ð89:1Þ

In (89.1), the first two terms that consist of price information of the two pre-
vious hours are used to model the trend of the price signal. The rest of the terms
contain information about price in the previous period to model the multiple
seasonality of the electricity price signal.

This paper uses LIBSVM software to perform experiments and choose Mean
Squared Error (MSE) which is defined as follow to measure its prediction accuracy
[8].

MSE ¼ 1
l

Xl

i¼1

ðf Xið Þ � yiÞ2 ð89:2Þ

where l is the number of prediction prices, yi is the real price data and f Xið Þ is the
forecasting price data. So it is easy to know Xi is the input vector of prediction
model, f is the prediction function.

This paper chooses the data from 1st May to 31st July in 2011 as training data,
and chooses the data in August as testing data as well as chooses cross-validation
and grid search method to determine the penalty parameter c and kernel parameter
g in LIBSVM [8]. The result about parameters is shown in Fig. 89.2(a, b) where
they find the best penalty parameter c ¼ 0:5 and kernel parameter g ¼ 4. At the
same time, the forecasting electricity price is shown in Fig. 89.3 and the prediction
result approximates to the real data, where the MSE ¼ 0:0275 is far less than the
result of Back-Propagation Neural Network model, which is 1.1230.
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89.3 Model Formulations

This section will introduce the family energy consumption optimal control model,
aiming to help each household to maximize the efficiency of electricity they are
consumed, and meanwhile minimize the electricity payment they are supposed to
spend.

89.3.1 Electricity Consumption Scheduling

This part will describe the energy consumption scheduling model including con-
tinuous electricity consumption and discrete electricity consumption. Additionally,
the situation with uninterruptible electricity consumption will be discussed.

89.3.1.1 Continuous Electricity Consumption

Consider that each residential unit wants to optimize the electricity consumption in
the next HðH� 1Þ hours, where H represents the scheduling horizon and we define
H ¼ ½1; . . .;H�. Let A denotes the set of appliances, which could include washing
machine, refrigerator, air condition, etc. Because the working time of most
household appliances does not occupy the whole hour, therefore, the time axis of
each hour could be divided into equal time slots D. It has to ensure the number of
time slots in each hour N ¼ 1=D is an integer. Thus, the number of total time slots
in scheduling horizon is L ¼ N � H, where L ¼ ½1; . . .; L�.As a result, for each
appliance a 2 A, we define an electricity consumption scheduling vector [7]

ea ¼ e1
a; . . .; en

a; . . .; eL
a

� �
ð89:3Þ

where en
a means how much electricity the appliance a consumed in the nth time

slot. So it is easy to know en
a� 0 when n 2 L and a 2 A.
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Now, assume consumers set their own scheduling horizon for each household
appliance. For example, consumers want the automatic clean machine start to
clean the house at their working time. Hence, they set the machine’s scheduling
horizon from 8:00 A.M. to 17:00 P.M. Then, electricity consumption Ea is
expressed as follow,

Xba

n¼aa

en
a ¼ Ea ð89:4Þ

where aa� 1 is the beginning of time interval, and ba� aa is the ending of time
interval of the scheduling horizon for appliance a.

However, as we know, the household appliance is working in a limited power.
So the constraint could be expressed as

cmin
a =N� en

a� cmax
a =N; 8n 2 ½aa; ba� ð89:5Þ

which means the scheduled energy consumption of appliance a in hour h is
bounded between cmin

a and cmax
a .

Due to the assigned electricity load for each family at each hour is limited, so
the limited equation is

X

a2A
en

a�Emax=N; 8n 2 L; h 2 H ð89:6Þ

where Emax� 0 is the upper limited power in hour h for a family.

89.3.1.2 Discrete Electricity Consumption

So far it considers the household appliances consume electricity in a continuous
way. However, some households work with discrete electricity consumption level,
which AD denotes. In other words, the scheduled electricity consumption for some
appliance may only take the discrete values cmin

a =N and cmax
a =N when the appli-

ance is ‘‘off’’ and ‘‘on’’.
In order to describe this kind of households, let yn

a denote an auxiliary binary
variable, when yn

a ¼ 1 the appliance a is ‘‘on’’ and when yn
a ¼ 0 the appliance a is

‘‘off’’. By definition, the former requires an energy consumption level of en
a ¼

cmin
a =N while the latter is en

a ¼ cmax
a =N. Therefore, for each appliance a 2 AD, the

relationship between the energy consumption scheduling vector ea and the

auxiliary y a ¼ ½yaa
a ; . . .; yn

a ; . . .; yba
a � can be expressed as follows:

en
a ¼ yn

a � cmax
a =N þ 1� yn

a

� �
� cmin

a =N ð89:7Þ
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89.3.1.3 Uninterruptible Electricity Consumption

Under another circumstance, the household may have some appliances that have to
work in uninterruptible electricity consumption condition. We call them uninter-
ruptible loads which mean once the appliances start operation, their operation need
to continue until they finish. This paper defines them as AU .

Consider an uninterruptible load a 2 AU working in discrete energy con-
sumption level, let ha denote the duration of time, in number of time slots, the
appliance a needs to operate at power level cmax

a =N. Let’s impose zn
a as an auxiliary

binary variable as well. When the uninterruptible load starts to operate, zn
a ¼ 1,

otherwise zn
a ¼ 0. So equations are expressed as follow,

Pba�haþ1

n¼aa

zn
a ¼ 1;

zn
a ¼ 0; 8n 2 Ln½aa; . . .; ba � ha þ 1�;

8a 2 AU ð89:8Þ

that is, the operation of appliance a is to begin working between time slot aa and
ba � ha þ 1.We can relate the start time vector za ¼ ½zaa

a ; . . .; zn
a; . . .; zba � ha þ 1

a � with
auxiliary vector ya as

yn
a � zn

a ; . . .; yba�haþ1
a � zn

a ; 8n 2 ½aa; . . .; ba � ha þ 1� ð89:9Þ

from (89.8), if zn
a ¼ 1; yn

a ¼ ynþ1
a ¼ . . . ¼ ynþha�1

a ¼ 1. On the other hand, from
(89.7) and (89.9), it is easy to get en

a ¼ enþ1
a ¼ . . . ¼ enþha�1

a ¼ cmax
a =N.

89.3.2 Problem Formulation

In this section, assume that each household is equipped with a smart meter with
two-way communication and the real-time prices are provided by the utility
company via local area network. The consumers choose their requirements by
selecting parameters Ea; aa; ba; cmin

a and cmax
a as well as adjusted the appliance’s

energy consumption ways, such as continuous way, discrete way or interruptible
way. Consequently, the electricity scheduler determines the optimal choice of
electricity consumption scheduling vector e. Then the resulting electricity
consumption schedule is applied to all household appliances.

To minimize the energy payment, the optimal control model is

min
XH

h¼1

ph Ehð Þ � Eh ð89:10Þ

where H is the schedule horizon and h 2 H as well as phðEhÞ is the electricity price
of hour h. Additionally, Formulation (89.4–89.9) are the constraints of this model
and how much energy is consumed in hourh is calculated as follow:
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Eh ¼
Xh �N

n¼ h� 1ð Þ�Nþ 1

X

a2A
en

a ð89:11Þ

89.4 Simulations

This section will present the simulation results and evaluate the performance of the
proposed model with price prediction. Consider a single household with different
appliances and assume that it has adopted the RTP program. The test period is one
month from 1st August to 31st August in 2011, which includes 31 days in total.
For the purpose of this paper, assume that the number of appliances used in this
household each day varies from 10 to 15. They include certain appliances with
fixed consumption schedules such as lighting, heating, refrigerator, etc., and
appliances with flexible energy consumption schedules such as house clean
machine, dishwasher, clothes washer, and PHEV, etc [9]. Here assume that the
scheduling horizon H ¼ 24. As the user has subscribed for the RTP program
adopted by IPC, this would require price prediction as discussed in Sect. 89.3.

89.4.1 Gains with Control Model

This paper simulates the energy consumption in two ways. In the first way, con-
sider the household consume energy with the proposed optimal model while the
other way is to use power as usual. As indicated in Fig. 89.4, the payment with
energy optimal control and the parameter N ¼ 1 is less than the expenditures
without control. In the August 2011, the user only need to pay 29.26 dollars for the
electricity consumption with scheduling optimal control, while 32.41 dollars will
be cost if there was not an energy optimal control scheme, which is nearly 10 %
cheaper. However, there still have some exceptions that in 3rd and 26th of August,
the electricity charges with control are higher than that without control. It is easy
to understand as the error of price forecasting. Nevertheless, the differences
between those payments are not significant; therefore, this control scheme could be
seen as useful.

89.4.2 The Influence of the Parameter N

Here discuss the influence of parameter N. it uses the optimal control model with
different value of N. Figure 89.5 shows that the electricity payment with 4 time
slot per hour (N ¼ 4) will pay 4.585 % less than that with only 1 time slot per hour
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(parameter N ¼ 1). This is mainly due to the fact that with more time slots, the
control model will have more schedule range to ensure the appliances to work in
more proper time, such as off-peak time.

According to Fig. 89.6, the payment is decreasing when parameter N is
increasing. The reason is the same as above, i.e., with more time slot in an hour,
the optimal control model will have more opportunities to schedule the household
appliances in order to decrease the expenses. However, as presented in the
Fig. 89.6, the decreasing rate of payment is lower when time slot s higher than 5.
Thus, there must be a proper number of N could help the consumer to save
maximum money. However, because different consumer will set their own
parameters, therefore, the appropriate of N is hard to measure based on single
benchmark. The graph here only describes the overall pattern.

89.5 Conclusion

This paper proposes a family energy consumption optimal control model which is
applied in the environment installed smart meter and aims to minimize the elec-
tricity payment based on the needs declared by users. It argues that any load
control in real-time electricity pricing environment essentially requires some price
prediction capabilities to enable planning for the household energy consumption in
advance. This paper uses SVM method with proper input values to forecast the
hourly-based prices adopted by IPC from January 2009 to December 2011 and
obtains the best parameters for the prediction model. Then it describes the elec-
tricity consumption scheduling model where it divides each hour into equal time
slots. In the end, it makes a simulation whose results show that the optimal control
model reduces the daily electricity expenditures, which will encourage the users to
participate in the proposed control model.
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