
Chapter 87
Contract-Based Combined Component
Interaction Graph Generation

Haiqiang Li, Min Cao and Jian Cao

Abstract Component interaction graph is used to describe the interrelation of
components, which provides an objective basis and technology to test component
composition. However, the traditional component interaction graph cannot serve
as a basis to test a component itself and the state transition between components
for lacking of description of states of individual component. Therefore, a novel
model, named Contract-Based Combined Component Interaction Graph (CBC-
CIG) is put forward in this paper. CBCCIG combined the thought of contract test
with the UML state diagram which is introduced in the paper. The proposed model
can not only support the quick assembly of the software system depending on
developer’s own willing, but also the automatic or semi-automatic generation of
test cases which are the state transition and information interaction between
components. Thus, CBCCIG improves the efficiency of development and testing.

Keywords CBSD � Component composition � CIG � UML state diagram �
Testing by contracts

87.1 Introduction

Component-based Software Development (CBSD) is an effective and efficient
approach to improve the productivity and quality of software development [1]. In
CBSD, the most important thing is how to obtain suitable components and inte-
grate them to product a reliable software system. Component composition is a

H. Li (&) � M. Cao
School of Computer Engineering and Science, Shanghai University, Shanghai, China
e-mail: lhqmaillove@163.com

J. Cao
School of Physics, Nankai University, Tianjin, China

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_87,
� Springer Science+Business Media New York 2013

781

critical process which determines whether your CBSD can acquire, reuse, or build
a component. Due to different component versions, different component technol-
ogies, and different integrated environments, there is no mature technical standard
and feasible method to capture the mistakes in the integration testing [2]. CBSD
improves the efficiency of software development, but it brings the testing diffi-
culties at the same time.

Component Interaction Graph (CIG) is used to describe the interrelation of
components, which provides an objective basis and technology for the imple-
mentation of component composition testing [3]. Nowadays, there are many
researches on the generation of CIG. Ye Wu et al. [4] presented a method to
construct the CIG in which the interactions and the dependency relationships
among components are illustrated. By utilizing the CIG, they propose a family of
test adequacy criteria which allow optimization of the balancing among budget,
schedule, and quality requirements typically necessary in software development.
Based on the direct and indirect correlation analysis, CIG was established [5]. By
using the component specification structure and the established CIG, the compo-
nent interactions can be modeled to provide support for testing component-based
software. Lun [6] represented software architecture possessing C2 style through
CIG, and abstracted the behavior of interactive between components and con-
nectors, then they defined three testing criteria and introduced algorithms to
generate testing coverage set according to edge types of CIG.

The above methods provide theoretical and experimental basis for the gener-
ation of CIG. However, these traditional CIGs do not describe the state of indi-
vidual component. They cannot serve as a basis for testing a component itself and
the state transition between components. In this paper, a component is firstly
represented in the form of UML state diagram. Then, synthesizing CIG and UML
state diagram, we propose a novel model, named (CBCCIG), to generate test cases
of the state transition between components and information interaction.

87.2 Related Concepts

87.2.1 Component and Component Composition

Component interfaces are the access points of components, through which a client
component can request a service declared in an interface of the service providing
component. Each interface is identified by an interface name and a unique inter-
face ID.

Definition 1 A component is a 2-tuple C = (P, R), where:

• P ¼ P1; P2; . . .; Pnf g is the set of providing services interface.
• R = r1; r2; . . .; rnf g is the set of required services interface.

782 H. Li et al.

In this case, collections and the elements in the collection are represented by
capital letters and small letters respectively.

Definition 2 Component composition: The composition of two component means
that the required services of one component are provided by another partly or fully.

87.2.2 Testing by Contracts

A contract is a stipulation between two parties, containing benefits and obligations
for each part. Design by Contract (DBC) is an object oriented design technique
that ensures high-quality software by guaranteeing that every component of a
system lives up to its expectations [7]. Under the design by contract theory, a
software system is viewed as a set of communicating components whose inter-
action are based on precisely defined specifications of the mutual obligations–
contracts. Every good contract entails obligations as well as benefits for three
parties: (1) the precondition; (2) the post-condition; (3) the invariant.

87.3 Contract-Based Combined Component Interaction
Graph

87.3.1 CIG

87.3.1.1 Semantic Analysis

A CIG is a directed graph which is used to depict interaction scenarios among
components. The major elements related to interactive feature are interfaces,
events, context dependence and content dependence [4].

• Interfaces:
Interfaces are the basic access means via which components are activated.

• Events:
We define an event as an incident in which an interface is invoked in response to
the incident. The interface events defined in the CIG are usually methods.

• Context dependence:
One event has a context dependence relationship with the other event if there
exists an execution path which triggers one event directly or indirectly.

• Content dependence:
The content dependence relationship is defined as follows: a function (named
functions 2) depends on another function (named function 1) if the value of a
variable defined in function 1 is used in function 2.

87 Contract-Based Combined Component Interaction Graph Generation 783

87.3.1.2 Mathematical Definition

Definition 3 A CIG is a 2-tuple CIG= \ V, E [, where:

• V = VCUVE is a set of nodes. Accordingly to definition 1, VC = (P, R) is the
set of component interface nodes, VE is the set of event caused by component.

• E = ECUED represents a set of directed edges. EC represents context depen-
dence, ED represents content dependence.

If there is an existing edge form C1.P1 to C2.R1 in the CIG, it means the
required service R1 of C2 has been satisfied by the providing service P1 of C1,
namely, C2.R1 = C1.P1. We denote an interface with an ellipse and a component
with square, and the interfaces belong to one component that was drawn in the
same square. Then the CIG is built as follows shown in Fig. 87.1.

87.3.1.3 Effects and Problems of CIG

Component-based software is often built through component composition. Com-
ponent interfaces are the access points of components and define all content of
interaction with the external. The only way that a component communicates with
the outside is component interface. We modeled component interaction by
establishing CIG, which can describe the interaction semantic better and also
provide support for testing component-based software. At the same time, the test
model can be useful to explain interactive and dependent relationship between
components. Both the direct and indirect interaction relationship between com-
ponents, based on which the test cases are chosen, by traversing the CIG. How-
ever, in the traditional component interaction graph, components are presented in
the form of interfaces, which does not describe the state of individual component.
CIG cannot serve as a basis for testing a component itself and the state transition
between components. Therefore, we introduce UML state diagram to represent the
state of components. The combination of CIG and UML state diagram can be used
to generate the test cases of the state transition and interaction between
components.

p1

r1 p1

p1 p2

r1

r2r1

c1

c2

c4

c3

Fig. 87.1 Component interaction graph

784 H. Li et al.

87.3.2 UML State Diagram

87.3.2.1 Semantic Analysis

UML state diagrams depict the various states that a specific component may be in
and the transitions between those states, which will be modified by events. UML
state diagram consists of states, transitions, events and actions [8].

• States:
States are defined as a condition in which a component is in. State will change
when some event is triggered.

• Transitions:
A transition is a progression from one state to another, triggered by an event
which is either internal or external to the component. It also causes an important
change of state.

• Events:
Events will cause some actions and the transitions between states. Generally,
they are method invocations.

• Actions:
An action is an operation of an active component. When an event is dis-
patched, the component responds with performing actions, which cannot be
interrupted.

87.3.2.2 Mathematical Definition

Definition 4 A state chart diagram is a 5-tuple SD ¼ ðS;E; F; s0; sFÞ where:

• S ¼ s0; s1; . . .si; . . .; snf g is a finite set of states, where i 2 0; nð Þ.
• E is a finite set of event driven of state chart diagram.
• F is a finite set of transitions. f : S� E! S; f q; eð Þ ¼ p , where 8e 2 E.
• s0 2 S is an initial state. A SD must have one and only one initial state.
• sF � S is a nonempty set of final states.

87.3.2.3 Effects

In our model, we represent the components of CIG in form of UML state
diagrams. The proposed approach indicates not only the state transition of a
component itself, but also the state transition between components. Therefore,
Combined Component Interaction Graph (CCIG) is putting forward by com-
bining CIG and state chart diagram. CBCCIG introduces the thought of contract
in CCIG.

87 Contract-Based Combined Component Interaction Graph Generation 785

87.3.3 CBCCIG

87.3.3.1 Thought and Semantic Analysis

In CIG, the interaction among components can be described as directional arrows,
with the providing service interface points to required services interface. We define
an event as an incident in which an interface is invoked in response to it. They are
usually methods. Also, the state transition of UML state diagram can be described
as directional arrows, with initial state points to final state. The arrows with state
input information are methods too. Therefore, CIG and UML state diagram in the
same system can be combined. We represent the components of CIG in form of
UML state diagram, and combine the special features of these two models.

In our model, there is a one-to-one mapping between the interfaces of CIG and
the states of UML state diagram. At the same time, we analyze the transition
arrows with method name and finally form the CBCCIG.

87.3.3.2 Mathematical Definition

Definition 5 A CBCCIG is a 5-tuple CBCCIG = (C, CS, CE, CF, CG), where:

• C is a finite set of all components.
• CS is a finite set of states of C. cisj represents the sate j of component i.
• CE = (precondition, E, postcondition) represents a set of events of C. We have

described the concepts of event in the previous chapters in the component interface
and state transition manner. However, there are no restraint conditions to guar-
antee the proper operation of the method, such as the accuracy of input parameters
and return results. Therefore, in order to ensure the accuracy of the interaction and
connection among components, we introduce the basic idea of contract testing, and
add some constraint rules like precondition and postcondition to event.

• s0 2 S is an initial state. A SD must have one and only one initial state.
• CF is a finite set of transitions between component states.

f : CS� CE! CS,cf ðcisj; e) = cpsq represents the transition from cisj to cpsq,
where 8e 2 CE.

• CG � CS called intermediate state. These states neither cause an event to
interact with another component actively nor need the service provided by
component itself or other components.

87.3.3.3 Generation Algorithm

Definition 6 The abstract mapping between interface and state: let a component
c1 be at state s1, and a component c2 be at states2. If c1 is triggered by an event and

786 H. Li et al.

it reaches at state s2 automatically, we definite s1 as an interface which provides
service and in reverse s2 as an interface which requires service.

According to above definition, we present a way to generate the CBCCIG.

Figure 87.2 is an incorporative CIG, in which a rectangle, a circle and a square
denotes component, component state and component interface respectively. In
addition, the solid line represents the state transition of individual components, and

s0

s2

s1

s3

s0

s1

s2

r1

G0

p0

G1

r2

p3

p2

c1

c2

Fig. 87.2 Combined component interaction graph

87 Contract-Based Combined Component Interaction Graph Generation 787

the dotted line represents the state transition among components. p is the providing
service interface, while r is the requiring service interface.

87.3.4 Research Significance of the CBCCIG

The core technology of CBSD is component composition. A large number of
components need to be assembled together for a complex system. Most of the
component composition testing is realized with the help of the combination of
the component models, for example the CIG which provides an objective basis and
technology for the implementation of the component composition testing. In this
paper, the proposed model, named CBCCIG, not only contains the assembly and
interactive elements that the development model needed, but also increases the
testing elements, such as state, contract and so on. The model fully plays the role
of testing in CBSD. Test driven component composition treats the test as the
center, thus makes every step of the development process have the measure cri-
teria. At the same time, with this model framework, we can not only assemble the
software system according to own willing quickly, but also generate test cases of
the state transition between components and information interaction automatically
or semi-automatically. Both the development and testing efficiency are improved
under this novel model framework.

87.4 Conclusion

Take CIG and UML state diagram together, and also consider about the thought of
contract test, this paper proposes a new type of CBCCIG model, which will be
much helpful with the generation of test cases of the state transition between
components and information interaction. The future work includes the develop-
ment of a tool to support automation of the CBCCIG generation, and automated
generation of test cases from this model.

References

1. Shang, M., Wang, H., Jiang, L.: The development process of component-based application
software. In: 2011 International Conference of Information Technology, Computer Engineer-
ing Management Sciences, pp. 11–14 (2011)

2. Fu, L., Sun, G., Chen, J.: An approach for component-based software development. In:
International Forum on Information Technology and Applications, pp. 22–25 (2010)

3. Li, L., Wang, Z., Zhang, X.: An approach to testing based component composition. In:
International Colloquium Computer Communication, Control Management, pp. 735–739
(2008)

788 H. Li et al.

4. Wu, Y., Pan, D., Chen, M-H.: Techniques for testing component-based software. In:
Proceedings of the Seventh IEEE International Conference on Engineering of Complex
Computer Systems, vol. 2, pp. 222–232 (2001)

5. Cao, W., Zhang, W., A software test method based on CBD. Comput. Sci. 2, 156–158 (2005)
(Chinese)

6. Lun, L., Chi, X.: Software architecture testing in the C2 Style. In: 2001 3rd International
Conference Advanced Computer Theory Engine, pp. 123–127 (2010)

7. Valentini, E., Fliess, G., Haselwanter, E.: A framework for efficient contract-based testing of
software components. In: Proceeding of the 29th Annual International Computer Software and
Applications Conference, pp. 219–222 (2005)

8. Mohanty, S., Acharya, A.A., Mohapatra, D.P.: A model based prioritization technique for
component based software retesting using UML state diagram. In: International Conference
Electronics Computer Technology, pp. 364–368 (2011)

87 Contract-Based Combined Component Interaction Graph Generation 789

	87 Contract-Based Combined Component Interaction Graph Generation
	Abstract
	87.1…Introduction
	87.2…Related Concepts
	87.2.1 Component and Component CompositionComponent Composition
	87.2.2 Testing by ContractsTesting by Contracts

	87.3…Contract-Based Combined Component Interaction Graph
	87.3.1 CIGCIG
	87.3.1.1 Semantic Analysis
	87.3.1.2 Mathematical Definition
	87.3.1.3 Effects and Problems of CIGCIG

	87.3.2 UML State DiagramUML state diagram
	87.3.2.1 Semantic Analysis
	87.3.2.2 Mathematical Definition
	87.3.2.3 Effects

	87.3.3 CBCCIG
	87.3.3.1 Thought and Semantic Analysis
	87.3.3.2 Mathematical Definition
	87.3.3.3 Generation Algorithm

	87.3.4 Research Significance of the CBCCIG

	87.4…Conclusion
	References

