
Chapter 48
Super Sparse Projection Reconstruction
of Computed Tomography Image
Based-on Reweighted Total Variation

Gongxian Liu and Jianhua Luo

Abstract Sparse projection is an effective way to reduce the exposure to radiation
during X-ray CT imaging. However, reconstruction of images from sparse pro-
jection data is challenging. In this paper, a novel method called reweight total
variation (WTV) is applied to solve the challenging problem. And based on WTV,
an iteration algorithm which allows the image to be reconstructed accurately is
also proposed. The experimental results on both simulated and real images have
consistently shown that, compared to the popular total variation (TV) method and
the classical Algebra Reconstruction Technique (ART), the proposed method
achieves better results when the projection is sparse, and performs comparably
with TV and ART when the number of projections is relatively high. Therefore,
the application of the proposed reconstruction algorithm may permit reduction of
the radiation exposure without trade-off in imaging performance.

Keywords Sparse Projection Reconstruction � CT � Reweight total variation �
Iterative Reconstruction

48.1 Introduction

X-ray computed tomography (CT) has played an important role in medical field.
Nonetheless, exposing in strong X-ray intensity for a long time will do harm to
people’s health. An effective way to achieve the reduction of the radiation
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exposure is to reduce the number of projections required for reconstructing the
image, but the image reconstructed from sparse projections often suffers from
serious problems, such as blurring and artifacts.

Various algorithms have been developed to reconstruct image from sparse pro-
jections. There are mainly two methods, i.e., interpolating the missing data which is
followed by image analytic reconstruction and iterative reconstruction. Numerous
iterative algorithms have been developed for tomography image reconstruction.
Among these algorithms mentioned, the widely used iterative algorithms for
tomography imaging are the algebraic reconstruction technique (ART) and the
expectation–maximization (EM) Algorithm. These methods differ in the constraints
exposed on the image and the cost function that to be minimized [1]. Furthermore,
they will result in artifacts as the projections reduce. For the case where the data is
consistent yet is not sufficient to determine a unique solution to the imaging model,
the ART algorithm finds the image that is consistent with the data and minimizes the
sum-of-squares of the image pixel values [2]. In this paper, TV [3] and WTV [4] are
introduced to reconstruct tomography images with super sparse projections. The two
methods are actually iterative methods that differ in the cost function. WTV is a
novel method for sparse image recovery and substantially less measurement is
needed for exact recovery. It is a method that adds weights to TV, i.e., large coef-
ficients in TV are penalized heavily than small coefficients [5].

The organization of this paper is as follows. Firstly, central slice theory and the
main theory of TV and WTV are introduced in Sect. 48.2. Based on the theories
mentioned in Sect. 48.2, experiments on both simulated images and real images
are devised in Sect. 48.3. Finally, the conclusions are drawn and the future work is
discussed in Sect. 48.4.

48.2 Theories

48.2.1 Central Slice Theory

The central slice theory is that if projecting an image to a line and doing a Fourier
transform of the projection, it is equivalent to doing a two-dimensional Fourier
transform to the image first and slicing through the original in the orthogonal
direction. Then sparse projections can be converted into sparse radial spectral data
according to the Fourier slice theorem. The Fourier transform of a parallel beam
projection gives a slice of the two-dimensional (2-D) Fourier transform. Given an
image, M projections in the image space are equivalent to sampling M radial lines
of the image’s spectrum, thus generating sparsely sampled radial spectral data. The
smaller M is, the sparser the radial spectral data will be. Therefore, M is also
referred to as sparse level of projections [6]. As Fig. 48.1 shows, suppose that
there are 30 projections in the image domain, it is equivalent to getting data in the
orthogonal directions in Fourier domain.
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48.2.2 Total Variation and Reweight Total Variation

Since CT image has a sparse or nearly sparse gradient, it is meaningful to search
for the reconstruction with minimal TV norm, i.e.,

min xk kTV s:t y ¼ Ux ð48:1Þ

In Eq. (48.1), xn�nis the image to be reconstructed and Un�n is the measurement
matrix which is defined as U ¼ MF, where Mm�n is the mask matrix that samples
data in the image in Fourier domain. The mask matrix is also called radial trace.
Fn�n is Fourier masking operator, and ym�n is the measured data. xk kTV is defined
in Eq. (48.2):

xk kTV ¼
X

1� i;j� n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1;j � xi;j

� �2þ xi;jþ1 � xi;j

� �2
q

¼ Dxk k ð48:2Þ

And adding some weights to TV, it will get WTV which is defined as Eq. (48.3)

xk kWTV ¼
X

1� i;j� n�1

Wi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1;j � xi;j

� �2þ xi;jþ1 � xi;j

� �2
q

¼ WDxk k ð48:3Þ

where Wi:j is the weight of TV, which is defined in Eq. (48.4):

Wl
iþ1 ¼

1

xl
i;j

���
���

TV
þe

ð48:4Þ

In Eq. (48.4), e is set above zero to provide stability of the algorithm and this
will ensure that a zero-valued component in x‘does not strictly prohibit a nonzero
estimate at the next step. Empirically, e should be set slightly smaller than the
expected nonzero magnitudes of x. In this paper, e = 0.1. Then by solving the
following equation, the exact reconstruction will be acquired.

min xk kWTV s:t y ¼ Ux ð48:5Þ
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Fig. 48.1 Projection in image space is transformed to Fourier domain based on central slice
theorem
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Based on the above theory, the main steps of solving WTV are devised in the
following.

• Step 1. Set l ¼ 0and W0
i;j ¼ 1; 1� i; j� n ;

• Step 2. Solve the WTV minimization problem, xl ¼ arg min
P

1� i;j� n
xi;j

�� ��
WTV

s:t: y ¼ Ux ;

• Step 3. Update the weights for each ði; jÞ 1� i; j� n; Wlþ1
i;j ¼ 1

xl
i;jk kTV

þe
;

• Step 4. Terminate on convergence or when l gets the max iterations. Otherwise
increases l and go to step 2.

A robust quasi-Newton method [7] is used in step 2. Consider Eq. (48.5), the
energy functional is given by Eq. (48.6).

Eðx; kÞ ¼ xk kWTVþ
k
2

Ux� yk k2 ð48:6Þ

where k controls the tradeoff between solution sparsity and data fidelity. Then
minima of E are yielded as solutions of the associated Euler–Lagrange Eq. (48.7).

Lðx; kÞ ¼ W�Wxþ kU�ðUx� yÞ ¼ 0 ð48:7Þ

where w ¼ WD. Then consolidation of the target variable x yields

W�Wþ kU�U½ �x ¼ kU�y ð48:8Þ

Then robust quasi-Newton iteration is obtained for the computation of x.

xtþ1 ¼ xt þ Dt ð48:9Þ

where

W�Wþ kU�U½ �Dt ¼ �Lðxt; kÞ ð48:10Þ

48.3 Experimental Results

To evaluate the WTV and TV method, digital phantoms from popular Shepp-
Logan image and one real image are used. The sparse projections are simulated by
generating the specified number of uniformly distributed projections from the
phantom and real images. And to evaluate the accuracy of the reconstructed image,
we adopt the standard deviation (STD) of errors between the constructed image
and reference image.
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48.3.1 Measurement of the Accuracy

We consider the constructed image as xði; jÞ and the original image as x0ði; jÞ, the
STD is computed in Eq. (48.11).

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN

i¼1

XN

j¼1

½eði; jÞ � e�
2

vuut ð48:11Þ

where eði; jÞ ¼ xði; jÞ � x0ði; jÞ, and e ¼ 1
N2

PN
i¼1

PN
j¼1 eði; jÞ. The smaller the STD

is, the less the reconstructed error is.

48.3.2 Reconstruction of Phantom Image

The performances of the ART, TV and WTV methods at different sparse level M
are evaluated using both noise-free and noisy projections of the Shepp-Logan
phantom image. The noisy projections are generated by adding to the noise-free
projections zero-mean Gaussian noise with variance 0.0001. Sparse projections are
simulated at the sparse levels ranging from 10 to 31 and images are reconstructed
using the ART, TV and WTV methods. The experimental results are shown in
Fig. 48.2. In Fig. 48.2b, c and d, WTV method can reconstruct the phantom image
perfectly with only 10 projections, while image reconstructed by TV method
suffers artifacts severely. In Fig. 48.2f, g and h, WTV performs a little better than
TV method under noise condition. Notice from Fig. 48.2i, j that the WTV method
constantly outperforms the ART and TV methods at all sparse levels in both noise-
free and noisy cases. In Fig. 48.2j, The Y-Axis uses semi-log since the STD of
WTV is approximate to zero.

48.3.3 Reconstruction of Real Images

To study the performance of TV and WTV methods in reconstructing images with
complex structures, 99 axial slices of a real CT brain images (courtesy of North
Carolina Memorial Hospital and University of North Carolina, http://www-
graphics.stanford.edu/data/voldata/) are used. Fig. 48.3 shows the reconstruction
results of the 61st slice. A line profile of a pertinent section of each image is shown
in Fig. 48.3e, which shows WTV method performs better. Notice from Fig. 48.3f
that the WTV method constantly outperforms the ART and TV methods at all
sparse levels.
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Fig. 48.2 Reconstruction of phantom image. a Is the noise-free image; b, c and d are images
reconstructed by the ART, TV and WTV methods respectively with 10 projections; e is noised
image, f, g and h are noised images reconstructed with 30 projections; i and j shows the STDs
between reconstructed image and noise-free or noised image with 11–31 projections, respectively
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Fig. 48.3 Reconstruction of the slice 61 (brain), in which the number of projections is 66. a Is
the reference image, b, c and d are the images reconstructed by the ART, TV and WTV methods,
respectively. e Shows the line profile. f Shows the STD between the reference image and
reconstructed image using 30–66 projections

430 G. Liu and J. Luo



48.4 Discussion and Conclusion

Numerical experiment results on both simulated and real data have shown that
WTV has a better performance than classical TV method. WTV can reconstruct
images more accurately by using fewer projections. As a consequence, the
application of WTV method may permit reduction of the radiation exposure
without trade-off in imaging performance. However, both methods perform
unstably with increasing projections. Initial guess is that sampled data is uniform.
And it is difficult to make general conclusions about the performance of WTV
algorithm because its performance depends on the structure of the scanned object.
During the process of iteration, e is set to be a fixed value. How to get the best
value of e also needs to be researched. The future work is to search some algo-
rithms to ensure the stability of reconstruction methods and doing more tests about
other kinds of CT images. And testing the algorithm with adaptive e to get the best
one is another future task.
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