
Chapter 25
A Framework for Porting Linux OS
to a cc-NUMA Server Based on Loongson
Processors

Kun Zhang, Hongyun Tian, Li Ruan, Limin Xiao, Yongnan Li
and Yuhang Liu

Abstract In order to make the Linux operating system available on a cache
coherence NUMA (cc-NUMA) server based on Loongson processors, a family of
general-purpose MIPS64 CPUs developed by the Institute of Computing Tech-
nology in China, this paper proposes a framework for porting Linux operating
system to this cc-NUMA server. Researchers present the overall port scheme after
analyzing the framework of the Linux kernel and the architecture of the hardware
platform, and then they discuss the transplantation in details with processor-level
transplantation, memory management transplantation, interrupt and trap trans-
plantation. The performance evaluation shows that the whole system works stable
and the ported operating system could reach about 30 % of the theoretical peak
value of floating-point calculation. The method could port Linux OS to the target
board successfully and can be used on other platforms. The research has great
significance to the development of the domestic Loongson processor and the cc-
NUMA platform based on Loongson processors.

Keywords High performance computer � cc-NUMA � Loongson � Linux kernel

25.1 Introduction

Loongson is a family of general-purpose MIPS64 CPUs developed by the Institute
of Computing Technology (ICT) in China. The Loongson-3B processor is an
8-coreprocessor with 1 GHz frequency [1]. Non-Uniform Memory Architecture

K. Zhang (&) � H. Tian � L. Ruan � L. Xiao � Y. Li � Y. Liu
State Key Laboratory of Software Development Environment, Beihang University, Beijing,
China
e-mail: zhangkun2441@126.com

K. Zhang � L. Ruan (&)
School of Computer Science and Engineering, Beihang University, Beijing, China
e-mail: ruanli@buaa.edu.cn

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_25,
� Springer Science+Business Media New York 2013

215



(NUMA) has been more and more popular in the field of high performance
computer as it has better scalability than Uniform Memory Architecture (UMA)
[2]. The NUMA system has the feature that for any given region of physical
memory, some processors are closer to it than the other processors.

cc-NUMA is a kind of NUMA system. cc-NUMA server based on Loongson
processors is devised by the Institute of Computer Architecture of BeiHang Uni-
versity. Figure 25.1 shows the logic building-block view of the target platform.
There are two nodes on the board with a processor per node. As depicted in Fig. 25.1,
the CPU0 can access to its own memory faster than access to the memory on the
other node. Frequently remote memory access would degrade the system perfor-
mance seriously. So we need to avoid remote memory access in the porting scheme.
CPU0 on the node0 is the boot CPU of the system and the other processors need to be
initialized by it. Therefore, we need to solve this problem during the system ini-
tialization. Besides, the North Bridge chipset connects the peripheral component and
South Bridge chipset with the boot CPU. Then we need to program the under-layer
functions of the PCI device handler to make them work properly.

The rest of this paper is organized as follows. Section 25.2 analyzes the Linux
kernel and puts forward an overall porting scheme. Section 25.3 discusses the
transplantation in detail and we evaluate the modified kernel in Sect. 25.4. Some
related work is introduced in Sect. 25.5 befor the conclusion in Sect. 25.6.

25.2 Linux Kernel Analysis and Overall Porting Scheme

Linux is one of the most widely ported operating system kernels. In this section,
we first analyze the kernel and then put forward an overall porting scheme. As
shown in Fig. 25.2, the Linux kernel lies between the user space and the under-
layer hardware.

Fig. 25.1 The logic building-block of the cc-NUMA system based on Loongson CPU

216 K. Zhang et al.



Kernel is the key part of the operating system with different modules respon-
sible for monitoring and management of the entire computer system [3]. As pre-
sented in Fig. 25.2, the Linux operating system can be divided into three layers.
Kernel layer lies under the system call interface and can be further divided into
architecture independent module and architecture relevant module. Architecture
independent module is common to all Linux support architectures. Architecture
relevant module is called as Board Support Package (BSP), which is relevant to the
hardware architecture and the processors [4].

The most important modules in the kernel are Process management module
(PMM), memory management module (MMM), virtual file system (VFS) and
network interface module (NIM) [5]. These modules cooperate with each other to
make the kernel runs properly. PMM chooses the next-running process during the
clock interrupt and it is also responsible for the load balance of the system [6]. As
introduced in Sect. 25.1, it must be careful to choose the next-running process
because of the problem of remote memory access. To make sure the scheduler
works well on the cc-NUMA architecture, some information of the under-layer
needs to be provided to the scheduler.

The MMM is responsible for deciding the region of memory that each process
can use and determining what to do when not enough memory is available [7]. The
memory management module can be logically divided into two parts, architecture-
independent module and architecture-relevant module. The architecture-relevant
part contains codes of memory initialization and some handler functions of memory
management. The virtual file system provides a unified interface for all devices, and
hides the specifics of the under-layer hardware. To perform useful functions, pro-
cesses need to access to the peripherals connected to the North Bridge and South
Bridge, which are controlled by the kernel through device drivers. The device driver
module is device specific [8]. We don’t need to rewrite the device driver code, as
the AMD Inc. has already provided the driver for the peripheral devices.

We get the overall porting scheme according to our analysis to the kernel code
as presented in Fig. 25.3. Details will be discussed in the next section.

Cpu Memory

System Call Interface

GNU C function lib(glibc)

Process Manager Virtual File System

Memory 
Manager

Network 
Subsystem

Interrupt 
Manager

User Library

Architecture 
Related Code Device Driver

Disk, Console Net device

Block 
Device

User Space

Kernel Space

GNU/Linux

Hardware

Fig. 25.2 A simplified view of Linux operating system

25 A Framework for Porting Linux OS 217



25.3 Kernel Porting

In order to port Linux to the Loongson cc-NUMA platform, we take the stable
version of Linux 2.6.36 as our orignal edition. As schematically described in
Fig. 25.3, we will concretely discuss the kernel porting in detail in this section.

25.3.1 Processor-Level Transplantation

Processor-level transplantation includes the initialization of CPU related structure,
cache volumes and TLB volumes. Specifically, it contains the following steps:

1. Initialize the CPU related structure. Such as the processor_id of Loongson-3B,
the machine type, the instruction cache, the data cache and the second cache.

2. Get the architecture type of the CPU according to the processor_id. Loongson-
3B processor is based on MIPS 4KC.

3. Get the cpu_id, fpu_id and the type of the CPU based on the front two steps.
4. Check the virtual memory bits with EntryHi register to prepare for the memory

management transplantation, Table 25.1.

25.3.2 Memory Management Transplantation

Memory is the key component of the system, process can’t work without memory.
The memory management transplantation mainly contains 5 parts.

Memory management transplant

Processor level transplant Support for loongson-3B 
processor

Initialization of Cache and TLB

Parse of boot parameters

Interrupt and trap transplant

Board-level
Transplant

Board-level
Transplant

Initialization of CPU related struct

Initialization of I/O base address

Initialization of environment variable

NUMA memory initialization

Initialization of UART base address

Support for NUMA 
architecture

Initialization of interrupt handler

Exception handling table initialization

Non-maskable interrupts set

Board-related interrupt initialization

Enable of LPC and I/O interrupt

CPU interrupt route path

Support for interrupt of 
loongson-3B processor

General exception entryset

Initialization of instruction set

Fig. 25.3 The overall porting scheme

218 K. Zhang et al.



1. Initialize the base address of I/O space. The Loongson-3B processor unified the
whole physical space. As a result, the I/O memory address is a part of them.

2. Parse the boot command. The default command is ‘‘console = tty, 115200,
root = /dev/sda1’’. We parse the boot command to determine the frequency of
the console and the path of the root file system. In addition, some other envi-
ronment variables can be passed by the boot command.

3. Parse the environment variables. These parameters are transferred by the boot-
loader according to hardware registers, including the frequency of bus clock,
cpu clock and the size of the memory, high memory size et al.

4. Initialize memory subsystem supporting for NUMA architecture. As we
introduced in Sect. 25.1, it needs to avoid remote memory access as much as
possible to be efficiently. We distinguish the memory between NUMA nodes
with the memory size of each NUMA node. Each NUMA node has its own
memory and the kernel can be conscious about the system memory.

5. Initialize the UART base address. The UART port is very important for the
system debug as it can print out the debug information for the developer. The
UART base address varies between the different processors, which should be
set according to the datasheet.

25.3.3 Interrupt and Trap Transplantation

Interrupt subsystem is the essential composition of multithread system. This part
can be divided into three parts as follows.

1. Initialize the system interrupts. First, the kernel gets the active cpu_id from the
CP0_coprocessor, then it sets the interrupt registers to mask all the interrupt
flags and clear the interrupts hanged up. Then the kernel enables the LPC and
I/O interrupt controller and other interrupt related registers.

2. Map the interrupt handler to the irq number. We need to rewrite the hardware
related interrupt handlers such as shown in Table 25.2.

Table 25.1 Example code of processor-level transplantation

#define PRID_IMP_LOONGSON3A 0x6305

#define PRID_IMP_LOONGSON3B 0x6306 //definition of the processor_id

#define enable_fpu() \

do { \

if (cpu_has_fpu) \

__enable_fpu(); \

} while (0);

25 A Framework for Porting Linux OS 219



3. Set the trap base address and initialize the exception handling table. Some
under layer related handlers need to be rewrite.

25.4 Evaluation

In this section, we evaluate our ported system with stressapptest 1.0.4 to test the
memory subsystem. Besides, we use linpack to test the peak value of floating-point
calculation to evalute the system performance. The linpack test case is ‘‘mpiexec –
np 8./xhpl’’ with HUGE_TLB configured in kernel. The test score of stressapptest
showed in Fig. 25.4 demonstrates that the memory subsystem works stable. While
the test score of linpack in Fig. 25.5 shows that our ported system can reach about
30 % of the theoretical peak value of floating-point calculation.

25.5 Related Work

It has been a long time of work to port Linux OS to other platforms such as ARM,
MIPS. Hu Jie [9] has transplanted Linux OS to the ARM platform. As of Loongson
platform, Cheng xiao-yu [10, 11] has transplanted the lC/OS to the Loongson
based platform, and Qian Zheng-jiang [12] discussed about the development of
Linux distribution on Loongson platform. Besides, the ICT has made a lot of work

Table 25.2 Example code of interrupt and trap transplantation

void __init mach_init_irq(void)

{

lpc_interrupt_route(); //Route the LPC interrupt to Core0 INT0

ht_interrupt_route(); // Route the HT interrupt to Core0 INT1

mips_cpu_irq_init();// Route the cpu related interrupt to Core0

init_i8259_irqs(); // Route the serial interrupt on the south bridge to Core0

}

Fig. 25.4 Evaluation with stressapptest 1.0.4

220 K. Zhang et al.



on the Loongson-3A processor. Our research can make up for the current situation
about lacking of research to the Loongson-3B platform.

25.6 Conclusion

In this paper, Researchers analyzed the Linux kernel architecture and the hardware
platform based on Loongson processor. Besides, they discussed porting Linux to
Loongson NUMA platform concretely. Processor-level transplantation, memory
management transplantation and interrupt related transplantation were introduced
in detail. The evaluate score shows that the ported system runs smoothly on the
Loongson platform. The research provides an example of porting Linux to
Loongson platforms and can be easily used on other platforms. The research has
great significance to the development of domestic Loongson processor and the
cc-NUMA platform based on Loongson processors.

Acknowledgments Our research is sponsored by the Hi-tech Research and Development Pro-
gram of China (863 Program) under Grant NO.2011AA01A205, the National Natural Science
Foundation of China under Grant NO.61232009, the Doctoral Fund of Ministry of Education of
China under Grant NO.20101102110018, the Beijing Natural Science Foundation under Grant
NO.4122042, the fund of the State Key Laboratory of Software Development Environment under
Grant NO.SKLSDE-2012ZX-07.

References

1. Weiwu, H., Ru, W., Baoxia, F., et al.: Physical implementation of the eight core Loongson-
3B microprocessor. J. Comput. Sci. Technol. 26(3), 520–527 (2011)

2. Bolosky, W., Fitzgerald, R.: The development of computer architecture in HPC. In:
Proceedings of the 19th International Conference on Parallel Architectures, pp. 557–561

3. Sanjeev, K.: Reliability estimation and analysis of linux kernel. Int. J. Comput. Sci. Technol.
12(2), 529–533 (2011)

4. Bowman, T.: Linux as a case study: its extracted software architecture [EB/OL]. http://
pIg.uwater-Ioo. ca/* itbowman/papers

5. Jones, T.: Inside the Linux 2.6 Completely Fair Scheduler. [EB/OL]. http://www.ibm.com/
deve-loperworks/linux/library/l-completely-fair-scheduler

6. Galvin, S.: Operating System Concepts, 4th edn. pp. 458–460 (1994)

Fig. 25.5 Evaluation with linpack

25 A Framework for Porting Linux OS 221

http://pIg.uwater-Ioo
http://pIg.uwater-Ioo
http://www.ibm.com/deve-loperworks/linux/library/l-completely-fair-scheduler
http://www.ibm.com/deve-loperworks/linux/library/l-completely-fair-scheduler


7. Eranian, S.: Virtual Memory in the MIPS Linux Kernel, pp. 320–331. Prentice Hall PTR,
Upper Saddle River (2005)

8. Choi, J., Baek, S., Shin, S.Y.: Design and implementation of a kernel resource protector for
robustness of Linux module programming. In: Proceedings of the 2006 ACM Symposium on
Applied Computing, pp. 1477–1481 (2006)

9. Jie, H., Genbao, Z.: Research transplanting method of embedded Linux kernel based on ARM
platform. International Conference of Information Science and Management Engineering.
Xi’an, China, pp. 424–432 (2010)

10. Qian, Z., Fujian, W., Boyan, L.: Transplant Method and Research of lC/OS_II on Loongson
paltform. 2011 Fourth International Conference on Intelligent Computation Technology and
Automation, pp. 291–301. Xi’an, China (2011)

11. Xiao yu, C., Duyan, B., Ye, C et al.: Transplantation of lC/OS on loongson processor and its
performance analysis. Comput. Eng. 05(02), 372–379 (2009)

12. Zhengjiang, Q., Jin yi, C.: Development of Linux release based on Loongson mipsel
architecture. J. Chang Shu Inst. Technol. 22(10), 87–91 (2008)

222 K. Zhang et al.


	25 A Framework for Porting Linux OS to a cc-NUMA Server Based on Loongson Processors
	Abstract
	25.1…Introduction
	25.2…Linux KernelLinux Kernel Analysis and Overall Porting Scheme
	25.3…Kernel Porting
	25.3.1 Processor-Level Transplantation
	25.3.2 Memory Management Transplantation
	25.3.3 Interrupt and Trap Transplantation

	25.4…Evaluation
	25.5…Related Work
	25.6…Conclusion
	Acknowledgments
	References


