
Chapter 21
Analysis and Optimization of CFS
Scheduler on NUMA-Based Systems

Hongyun Tian, Kun Zhang, Li Ruan, Mingfa Zhu, Limin Xiao,
Xiuqiao Li and Yuhang Liu

Abstract Non Uniform Memory Access (NUMA) architecture becomes more and
more popular as it has better scalability than Uniform Memory Access (UMA).
However, all previous work on the operation system scheduler assumed that the
underlying system is UMA. As a result, the performance degrades on NUMA
machines due to lacking of consideration to the underlying hardware. Researchers
discover that the Completely Fair Scheduler (CFS) does not work smoothly on
NUMA machines and even interfere performance relative to the O (1) scheduler.
In this paper researchers investigate the causes for the performance decline and
devise an architecture aware task-bound approach for NUMA system, which can
help the CFS scheduler works efficiently on NUMA platforms. The evaluation
shows that the approach can upgrade the system performance by more than 60 %
on average. The research has great significance to the development and popularity
of domestic operating system.

Keywords NUMA � CFS scheduler � Operating system � High-performance
computer

H. Tian (&) � K. Zhang � L. Ruan (&) � M. Zhu � L. Xiao � X. Li � Y. Liu
State Key Laboratory of Software Development Environment, Beijing, China
e-mail: sympathyh@gmail.com

L. Ruan
e-mail: ruanli@buaa.edu.cn

H. Tian � L. Ruan
School of Computer Science and Engineering, Beihang University, Beijing, China

W. E. Wong and T. Ma (eds.), Emerging Technologies for Information
Systems, Computing, and Management, Lecture Notes in Electrical
Engineering 236, DOI: 10.1007/978-1-4614-7010-6_21,
� Springer Science+Business Media New York 2013

181

21.1 Introduction

UMA architecture has been widely used in kinds of computer architectures. As
shown in Fig. 21.1, all cores access to the same memory node according to the bus
line. However, the memory access according to the bus line will be sharply
increases as the number of cores per processor increases. As a result, bus con-
tention turns to be the bottleneck of the system. New multicore systems increas-
ingly use the NUMA architecture due to its better decentralized and scalable
nature than UMA. There are multiple memory nodes in the NUMA systems. Each
node has its own memory controller, compute nodes use Hyper Transport Bus to
connect with each other. Each core can access to the memory on its own node and
other nodes with different access latency, the memory access to the local node
(local access) can be faster than the remote node (remote access). The bus con-
tention is diminished but schedule strategy needs to be carefully decided to avoid
remote memory access.

Linux is a leading operating system on servers and other big iron systems [1].
The task scheduler is a key part of Linux operating system and Linux continues to
evolve and innovate in this area. A lot of good schedulers have been implemented
by the kernel developers. O(1) scheduler and CFS scheduler are two most popular
schedulers among them.

The O(1) scheduler is a multi-queue scheduler, each processor has a operation
queue, but it cannot detect the node layer on NUMA systems. As a result, it cannot
guarantee the process in scheduling keep running on the same node. Therefore,
Eirch Focht developed a node affinitive NUMA scheduler based on the O(1)
scheduler. But the O (1) scheduler needs large mass of code to calculate heuristics
and became unwieldy in the kernel [2]. Ingo Molnar then developed the CFS based
on some of the ideas from Kolivas’s RSDL scheduler. CFS has been a part of the
Linux since kernel 2.6.23. The purpose of CFS is to make sure that all the pro-
cesses need run time could get an equal and fair share of processing time. It makes
a progress in the fairness of assigning runtime among tasks but unfortunately it
didn’t take the under hardware layer into account. Processes may need to remote

Memory

……
C0

BUS Connection

C2

C1

C3

C4

C6

C5

C7

CPU0 CPUnCPU0 CPUn

Hyper Transport BUS
C0

C2

C1

C3

C4

C6

C5

C7

Node1_Memory

BUS Connection

Node0_Memory

BUS Connection

Node0 Node1Node0 Node1

UMA architectureUMA architecture NUMA architectureNUMA architecture

Fig. 21.1 Schematic overview of UMA and NUMA systems

182 H. Tian et al.

access to its memory frequently, which can cause the performance degrade shar-
ply. As a result, it cannot work well on the NUMA platform compared with the
O(1) scheduler with NUMA patch.

We discover that the CFS scheduler not only fails to managing processes
effectively on NUMA systems but even hurts performance when compared to the
O(1) scheduler with Eirch Focht’s NUMA patch. Our experiment setup on an
NUMA system based on Loongson CPU, we use LMbench to evaluate the pipe
bandwidth and latency, the test score shows that CFS scheduler will degrade as
much as 40 % relative to the O(1) scheduler with NUMA patch.

The focus of our study is to investigate why CFS fails to work smoothly on
NUMA platforms and devise the architecture aware task-bound approach that
would help CFS work efficiently on NUMA platforms. The rest of this paper is
organized as follows. Section 21.2 demonstrates why CFS scheduler fails to work
well on NUMA systems. Section 21.3 presents our improved measure. Sec-
tion 21.4 evaluates the task-bound approach. Section 21.5 discusses the related
work before we make a conclusion about our research in Sect. 21.6 and present our
acknowledgment in last section.

21.2 Motivation

The focus of this section is to experimentally demonstrate why CFS fails to work
smoothly on NUMA platforms. We quantify the effects of performance degrada-
tion with benchmarks from the LMbench benchmark suite. We perform experi-
ments on a Dual way NUMA server equipped with a Loongson3 processor per
node running at 1 GHz, and 4 GB of RAM per node. The kernel of the operating
system is Linux 2.6.36.1. Figure. 21.1 schematically represents the architecture of
the dual way server.

To quantify the effects of performance degradation caused by the CFS sched-
uler, we run the bw_pipe (a tool to test the pipe communication bandwidth) and
lat_pipe (a tool to test the pipe communication latency) sub items of LMbench to
test the pipe communication bandwidth and latency. Besides, we look into the
schedule pattern of the benchmark process use the linux command top.

As we depicted in Figs. 21.2 and 21.3, the test scores show that the pipe latency
with CFS scheduler grows 67.9 % on average while the bandwidth degrades
51.6 % compared with the NUMA patched O(1) scheduler. That is really bad!
Besides, the test scores with CFS scheduler show strong randomness feature while
the test scores with O(1) scheduler are far more stable.

To quantify the cause of the big difference between O(1) NUMA scheduler and
CFS scheduler, we use top to look into the schedule pattern of the benchmark
process during the test. Finally we find out that the test processes were scheduled
among the 8 cores randomly by the CFS scheduler, while the O(1) NUMA
scheduler always try to let the process running on the same core during the test.
These results demonstrate a very important point that the CFS scheduler cannot

21 Analysis and Optimization of CFS Scheduler on NUMA-based Systems 183

work efficiently due to lacking of consideration of the hardware architecture, the
CFS scheduler does not distinguish the cores on the NUMA nodes and just assign
tasks randomly to the cores.

Now that we are familiar with causes of performance degradation on NUMA
systems, we are ready to explain why CFS scheduler fails to work efficiently on
NUMA platforms. The main idea behind the CFS is maintaining balance fairness.
To determine the balance, the CFS maintains the amount of time provided to a
given task which called the virtual runtime, and the CFS maintains a virtual
runtime ordered red-black tree (see Fig. 21.4) rather than run queue as has been
done in prior Linux scheduler. The CFS scheduler always choose the process on
the most left node of the RB tree and choose a free core to run the process.

Suppose that there are several processes p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 in the
system, the orders of the virtual runtime among these processes are
p9 [p8 [p7 [p6 [p5 [p4 [p3 [p2 [p1 [p0. The CFS scheduler tries to
choose the smaller virtual runtime process to run first. As a result, p0 to p7 are
assigned to run on the 8 cores while p8 and p9 still in the RB tree waiting to be
scheduled. In the next clock interrupt, the p7 finishes its work and then be deleted
from the RB tree while the p0 process was moved to the end of the tree as its runtime
increases, the p8 and p9 then get the chance to run on the cores. But in the come clock
interrupt, another process, take p5 for example, finishes its work and been deleted
from the tree. Then at this clock interrupt, the p0 is reassigned to core 5. The problem
of remote memory access coming out as p0’s memory is on the memory of node 0.

To summarize, CFS scheduler ignores the under layer of the hardware and
finally causes the performance degradation. It fails to eliminate remote memory

1 2 3 4 5 6 7 8 9 10

O(1) 24.48 24.29 25.29 25.27 24.11 23.58 23.89 23.78 24.31 23.39

CFS 39.52 44.42 35.07 43.87 38.67 46.81 44.77 42.43 38.73 36.78

0

10

20

30

40

50
pi

pe
 L

at
en

cy
/m

ic
ro

se
co

nd

Fig. 21.2 Contrast test with lat_pipe in LMbench

1 2 3 4 5 6 7 8 9 10

O(1) 389.27 391.28 390.25 392.18 391.23 389.78 392.47 391.39 392.59 391.69

CFS 158.4 251.38 164.13 164.3 271.47 161.89 164.39 163.75 230.21 164.18

0
50

100
150
200
250
300
350
400
450

B
an

dw
id

th
 M

B
/S

ec
on

d

Fig. 21.3 Contrast test with bw_pipe in LMbench

184 H. Tian et al.

access and even introduces remote latency overhead. To solve this problem, we
devise the task-bound approach to avoid remote memory access automatically.

21.3 Implementation

In order to devise the automatic task-bound approach exploiting NUMA archi-
tectures, it needs some kind of description to the system. For instance the
Advanced Configuration and Power Interface Specification (ACPI), it provides the
distance between hardware resources on different NUMA nodes [4]. But the ACPI
does not define how this table is filled, and furthermore the ACPI does not make
sense for MIPS processors.

Here we propose the concept of system topology matrix, the system topology
matrix only needs to know how many cores are there in the system. Dirk proposed
a similar concept of system distance matrix [5], but their matrix needs information
from the system initialization and cannot be filled automatically.We implement the
system topology matrix in the kernel after the kernel get the number of the cores in
the system, for example, if the system has 8 cores, then we create a double
dimensional array with ST_matrix [8][8] (see Fig. 21.5) to express the topology of
the system. ST_matrix [0][1] means the distance between the core0 and core1, we
normalized the data such that the cores on the same node results in a value of 1.

We use an average latency test to measure the communication latency between
eight threads running on all eight cores, each test process is bounded on a core. For
high performance technical computing application, the connect latency and the
memory bandwidth frequently are the critical performance bottleneck, thus opti-
mizing application code for connect latency and memory bandwidth is very
important. Fig. 21.6 shows the results of our latency tests. The measured matrix

Fig. 21.4 Example of a red-black tree [3]

21 Analysis and Optimization of CFS Scheduler on NUMA-based Systems 185

depict huge distance differences between remote nodes and we reset the cores to two
nodes, core0 to core3 to node0 while core4 to core7 to node1.

After we get the system topology information according to the topology test
module, we reset the cpuset of the system and ergodic the processes in the system once
to bound them to the different nodes use the schedule_set_affinity(). Any process
created after the test module will be automatically bound to a node. Then the CFS
scheduler can schedule these processes on the node and remote memory is eliminated.

21.4 Evaluation

In this section we evaluate our architecture aware task-bound approach with the
same environment we used in Sect. 21.2. We evaluate the benchmark with the
task-bound approach on and off.

The task-bound approach can help CFS scheduler magically on the NUMA
platform according to our tests. As depicted in Figs. 21.7 and 21.8, the test scores
are far more excellent than the original CFS scheduler and are also better than the
O(1) scheduler with NUMA patch. The pipe latency has been reduced by 66 % on
average compared with the CFS scheduler, and also smaller than the average of the
O(1) scheduler about 42.9 %. The pipe bandwidth has been upgraded by more than
196 % on average relative to the CFS scheduler and also 37 % higher than the
O(1) scheduler on average. Besides, our test scores with task-bound approach are

Fig. 21.5 Initialization of the system topology matrix ST_matrix [8][8]

Fig. 21.6 Normalized score of system topology matrix

186 H. Tian et al.

very stable. Our evaluation demonstrates that our task-bound is significantly useful
to help the CFS scheduler work efficiently on NUMA systems.

21.5 Related work

Research on NUMA related system optimizations dates back many years. Many
research make efforts to address the computation and related memory on the same
node [5, 6–8, 9]. None of the previous efforts, however, addressed automatic sort
the system source and bound the task to the subsystem.

Li et al. [10] analyzed the O(1) scheduler and introduced a hierarchical
scheduling algorithm based on NUMA topology. Their algorithm depends on the
topology information provided by the system initialization and can not be used on
the CFS scheduler anymore. Our algorithm is based on the architecture-aware
module and can be ported to other platforms.

Blagodurov et al. [11] promoted the concept of resource conscious and pre-
sented a contention-aware scheduler, they identified threads complete for shared
resources of a memory domain and placed them into different domain while put
the independent processes on the same node, they tried to keep processes and their

1 2 3 4 5 6 7 8 9 10

O(1) 24.48 24.29 25.29 25.27 24.11 23.58 23.89 23.78 24.31 23.39

CFS 39.52 44.42 35.07 43.87 38.67 46.81 44.77 42.43 38.73 36.78

CFS+TB 14.03 14.09 13.73 13.61 13.69 13.9 13.82 13.72 13.76 13.78

0

10

20

30

40

50
pi

pe
 la

te
nc

y
/ m

s

Fig. 21.7 Contrast test with lat_pipe in LMbench

1 2 3 4 5 6 7 8 9 10

O(1) 389.27 391.28 390.25 392.18 391.23 389.78 392.47 391.39 392.59 391.69

CFS 158.4 251.38 164.13 164.3 271.47 161.89 164.39 163.75 230.21 164.18

CFS+TB 537 528.95 533.65 549.88 522.37 548.32 525.09 551.29 534.11 541.51

0

100

200

300

400

500

600

pi
pe

 b
an

dw
id

th
 /

M
B

/s

Fig. 21.8 Contrast test with bw_pipe in LMbench

21 Analysis and Optimization of CFS Scheduler on NUMA-based Systems 187

memory on the same memory domain. Kamali in his master thesis [12] demon-
strated the influence of remote memory access to the NUMA systems.

Dirk et al. [9, 13] proposed a platform-independent approach to describe the
system topology, they use a distance matrix to provide system information, but
their implantation depends on the user-defined strategies, only expert users can
take advantage of their approach. Bosilca [5] proposed a framework as a mid-
dleware of MPI to tune types of shared memory communications according to the
locality and topology.

21.6 Conclusion

Researchers have discovered that the original CFS scheduler fails to work effi-
ciently on NUMA platforms due to lacking of consideration to the underlying
hardware. Remote memory access occurring when the scheduler assigns tasks
fairly on all the nodes. To address this problem, researchers devise the architecture
aware task-bound approach. The evaluation shows that task-bound approach is of
signality to the efficient work of CFS scheduler on NUMA systems. The research
has a great significance to the development and popularity of domestic operating
system.

Acknowledgments Our research is sponsored by the National ‘‘Core electronic devices high-end
general purpose chips and fundamental software’’ project under Grant No.2010ZX01036-001-001,
the Hi-tech Research and Development Program of China (863 Program) under Grant NO.2011
AA01A205, the National Natural Science Foundation of China under Grant NO.60973007, the
Doctoral Fund of Ministry of Education of China under Grant NO.20101102110018, the Beijing
Natural Science Foundation under Grant NO.4122042, the fund of the State Key Laboratory of
Software Development Environment under Grant NO.SKLSDE-2012ZX-07.

References

1. Burkhardt, H.: KSR. June 2011 | TOP500 Supercomputing Sites (2011)
2. Jones, T.: Inside the Linux scheduler——The latest version� Copyright IBM Corporation

(2006)
3. Jones, T.: Inside the Linux 2.6 Completely Fair Scheduler� Copyright IBM Corporation

(2009)
4. Hewlett-Packard, Intel, Toshiba.: Advanced configuration and power interface (2011)
5. Ma, T., Bosilca, G., Bouteiller, A., Dongarra, J.J.: Locality and topology aware intra-node

communication among multicore CPUs. In: Proceedings for EuroMPI, pp. 265–274 (2010)
6. Li, T., Baumberger D, et al.: Efficient operating system scheduling for performance-

asymmetric multi-core architectures. In: Proceedings of Supercomputing (2007)
7. Azimi, T., et al.: Thread clustering: sharing-aware scheduling on multiprocessors. In:

Proceedings of Eurosys (2007)
8. Corbalan, J., Martorell, X.: Evaluation of the memory page migration influence in the system

performance. In: Proceedings of super computing, pp. 121–129 (2003)

188 H. Tian et al.

9. Blagodurov, S., et al.: User-level scheduling on NUMA multicore systems under Linux.
ACM Trans. Comput. Syst. 28(4), Article 8 (2010)

10. Li, X.: NUMA scheduling algorithm based on affinitive node. Comput. Eng. 32(1), 99–101
(2006)

11. Blagodurov, S., Zhuravle, S., et al.: A case for NUMA-aware contention management on
multicore systems. In: PaCT, pp. 557–558 (2010)

12. Kamali, A: Sharing Aware Scheduling on Multicore Systems. Simon Fraser University,
Burnaby (2010)

13. Schmidl, D.: Towards NUMA support with distance information. In: IWOMP’11
Proceedings of the 7th International Conference on OpenMP, pp. 69–79. Springer, Berlin,
Heidelberg � (2011)

21 Analysis and Optimization of CFS Scheduler on NUMA-based Systems 189

	21 Analysis and Optimization of CFS SchedulerCFS Scheduler on NUMANUMA-Based Systems
	Abstract
	21.1…Introduction
	21.2…Motivation
	21.3…Implementation
	21.4…Evaluation
	21.5…Related work
	21.6…Conclusion
	Acknowledgments
	References

