
Chapter 7
Capacity

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1. A capacity on X is a function

cap : K → [0,+∞] : K → cap(K)

such that:

(C1) (monotonicity.) For every A, B ∈ K such that A ⊂ B, cap(A) ≤ cap(B).
(C2) (regularity.) For every K ∈ K and for every a > cap(K), there exists U ∈ O
such that K ⊂ U, and for all C ∈ K satisfying C ⊂ U, cap(C) < a.
(C3) (strong subadditivity.) For every A, B ∈ K ,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).

The Lebesgue measure of a compact subset of RN is a capacity.
We denote by cap a capacity on X. We extend the capacity to the open

subsets of X.

Definition 7.1.2. The capacity of U ∈ O is defined by

cap(U) = sup{cap(K) : K ∈ K and K ⊂ U}.

Lemma 7.1.3. Let A, B ∈ O and K ∈ K be such that K ⊂ A ∪ B. Then there exist
L, M ∈ K such that L ⊂ A, M ⊂ B, and K = L ∪ M.
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140 7 Capacity

Proof. The compact sets K \A and K \B are disjoint. Hence there exist disjoint open
sets U and V such that K \ A ⊂ U and K \ B ⊂ V . It suffices to define L = K \U and
M = K \ V . 	

Proposition 7.1.4. (a) (monotonicity.) For every A, B ∈ O such that A ⊂ B,

cap(A) ≤ cap(B).
(b) (regularity.) For every K ∈ K , cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}.
(c) (strong subadditivity.) For every A, B ∈ O,

cap(A ∪ B) + cap A ∩ B) ≤ cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let us define Cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}. By definition,

cap(K) ≤ Cap(K). Let a > cap(K). There exists U ∈ O such that K ⊂ U and
for every C ∈ K satisfying C ⊂ U, cap(C) < a. Hence Cap(K) ≤ cap(U) < a.
Since a > cap(K) is arbitrary, we conclude that Cap(K) ≤ cap(K).

(c) Let A, B ∈ O, a < cap(A ∪ B), and b < cap(A ∩ B). By definition, there exist
K,C ∈ K such that K ⊂ A∪ B, C ⊂ A∩ B, a < cap(K), and b ≤ cap(C). We can
assume that C ⊂ K. The preceding lemma implies the existence of L, M ∈ K
such that L ⊂ A, M ⊂ B, and K = L ∪ M. We can assume that C ⊂ L ∩ M. We
obtain by monotonicity and strong subadditivity that

a + b ≤ cap(K) + cap(C) ≤ cap(L ∪ M) + cap(L ∩ M)
≤ cap(L) + cap(M) ≤ cap(A) + cap(B).

Since a < cap(A∪B) and b < cap(A∩B) are arbitrary, the proof is complete. 	

We extend the capacity to all subsets of X.

Definition 7.1.5. The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U ∈ O and U ⊃ A}.

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6. (a) (monotonicity.) For every A, B ⊂ X, cap(A) ≤ cap(B).
(b) (strong subadditivity.) For every A, B ⊂ X,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let A, B ⊂ X and U,V ∈ O be such that A ⊂ U and B ⊂ V . We have

cap(A ∪ B) + cap(A ∩ B) ≤ cap(U ∪ V) + cap(U ∩ V) ≤ cap(U) + cap(V).

It is easy to conclude the proof. 	
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Proposition 7.1.7. Let (Kn) be a decreasing sequence in K . Then

cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋂

n=1

Kn

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞ cap(Kn).

Proof. Let K =
∞⋂

n=1

Kn and U ∈ O, U ⊃ K. By compactness, there exists m such that

Km ⊂ U. We obtain, by monotonicity, cap(K) ≤ lim
n→∞cap(Kn) ≤ cap(U). It suffices

then to take the infimum with respect to U. 	

Lemma 7.1.8. Let (Un) be an increasing sequence in O. Then

cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

n=1

Un

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞ cap(Un).

Proof. Let U =
∞⋃

n=1

Un and K ∈ K ,K ⊂ U. By compactness, there exists m such

that K ⊂ Um. We obtain by monotonicity cap(K) ≤ lim
n→∞cap(Un) ≤ capU. It suffices

then to take the supremum with respect to K. 	

Theorem 7.1.9. Let (An) be an increasing sequence of subsets of X. Then

cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

n=1

An

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞ cap(An).

Proof. Let A =
∞⋃

n=1

An. By monotonicity, lim
n→∞cap(An) ≤ cap(A). We can assume that

lim
n→∞cap(An) < +∞. Let ε > 0 and an = 1− 1/(n+ 1). We construct, by induction, an

increasing sequence (Un) ⊂ O such that An ⊂ Un and

cap(Un) ≤ cap(An) + ε an. (∗)

When n = 1, (∗) holds by definition. Assume that (∗) holds for n. By definition,
there exists V ∈ O such that An+1 ⊂ V and

cap(V) ≤ cap(An+1) + ε(an+1 − an).

We define Un+1 = Un ∪ V , so that An+1 ⊂ Un+1. We obtain, by strong subadditivity,

cap(Un+1) ≤ cap(Un) + cap(V) − cap(Un ∩ V)
≤ cap(An) + ε an + cap(An+1) + ε(an+1 − an) − cap(An)
= cap(An+1) + ε an+1.
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It follows from (∗) and the preceding lemma that

cap(A) ≤ cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

n=1

Un

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞ cap(Un) ≤ lim
n→∞ cap(An) + ε.

Since ε > 0 is arbitrary, the proof is complete. 	

Corollary 7.1.10 (Countable subadditivity). Let (An) be a sequence of subsets

of X. Then cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

n=1

An

⎞
⎟⎟⎟⎟⎟⎠ ≤

∞∑

n=1

cap(An).

Proof. Let Bk =

k⋃

n=1

Ak. We have

cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

n=1

An

⎞
⎟⎟⎟⎟⎟⎠ = cap

⎛
⎜⎜⎜⎜⎜⎝

∞⋃

k=1

Bk

⎞
⎟⎟⎟⎟⎟⎠ = lim

k→∞
cap(Bk) ≤

∞∑

n=1

cap(An). 	


Definition 7.1.11. The outer Lebesgue measure of a subset of RN is defined by

m∗(A) = inf{m(U) : U is open and U ⊃ A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the spaceD1,p(RN).

Definition 7.2.1. Let 1 ≤ p < N. On the space

D1,p(RN) = {u ∈ Lp∗ (RN) : ∇u ∈ Lp(RN ;RN)},

we define the norm

||u||D1,p(RN ) = ||∇u||p.
Proposition 7.2.2. Let 1 ≤ p < N.

(a) The spaceD(RN) is dense inD1,p(RN).
(b) (Sobolev’s inequality.) There exists c = c(p,N) such that for every u ∈ D1,p(RN),

||u||p∗ ≤ c||∇u||p.

(c) The spaceD1,p(RN) is complete.

Proof. The space D(RN) is dense in D1,p(RN) with the norm ||u||p∗ + ||∇u||p. The
argument is similar to that of the proof of Theorem 6.1.10.
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Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u ∈
D1,p(RN),

||∇u||p ≤ ||u||p∗ + ||∇u||p ≤ (c + 1)||∇u||p.
Let (un) be a Cauchy sequence in D1,p(RN). Then un → u in Lp∗ (RN), and for

1 ≤ k ≤ N, ∂kun → vk in Lp(RN). By the closing lemma, for 1 ≤ k ≤ N, ∂ku = vk.
We conclude that un → u inD1,p(RN). 	

Proposition 7.2.3. Every bounded sequence in D1,p(RN) contains a subsequence
converging in L1

loc(RN) and almost everywhere on R
N.

Proof. Cantor’s diagonal argument will be used. Let (un) be bounded in D1,p(RN).
By Sobolev’s inequality, for every k ≥ 1, (un) is bounded in W1,1(B(0, k)). Rellich’s
theorem and Proposition 4.2.10 imply the existence of a subsequence (u1,n) of (un)
converging in L1(B(0, 1)) and almost everywhere on B(0, 1). By induction, for every
k, there exists a subsequence (uk,n) of (uk−1,n) converging in L1(B(0, k)) and almost
everywhere on B(0, k). The sequence vn = un,n converges in L1

loc(RN) and almost
everywhere on R

N . 	

Definition 7.2.4. Let 1 ≤ p < N and let K be a compact subset of RN . The capacity
of degree p of K is defined by

capp(K) = inf

{∫

RN
|∇u|pdx : u ∈ D1,p

K (RN)

}

,

where

D1,p
K (RN) = {u ∈ D1,p(RN) : there exists U open such that K ⊂ U and χU ≤ u

almost everywhere}.
Theorem 7.2.5. The capacity of degree p is a capacity on R

N.

Proof. (a) Monotonicity is clear by definition.
(b) Let K be compact and a > capp(RN). There exist u ∈ D1,p(RN) and U open

such that K ⊂ U, χU ≤ u almost everywhere, and
∫

RN
|∇u|pdx < a. For every

compact set C ⊂ U, we have

capp(C) ≤
∫

RN
|∇u|pdx < a,

so that capp is regular.
(c) Let A and B be compact sets, a > capp(A), and b > capp(B). There exist u, v ∈
D1,p(RN) and U and V open sets such that A ⊂ U, B ⊂ V , χU ≤ u, and χV ≤ v
almost everywhere and

∫

RN
|∇u|pdx < a,

∫

RN
|∇v|pdx < b.
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Since max(u, v) ∈ D1,p
A∪B(RN) and min(u, v) ∈ D1,p

A∩B(RN), Corollary 6.1.14
implies that

∫

RN
|∇max(u, v)|pdx +

∫

RN
|∇min(u, v)|p =

∫

RN
|∇u|pdx +

∫

RN
|∇v|pdx ≤ a + b.

We conclude that

capp(A ∪ B) + capp(A ∩ B) ≤ a + b.

Since a > capp(A) and b > capp(B) are arbitrary, capp is strongly subadditive.
	


The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6. There exists a constant c = c(p,N) such that for every A ⊂ R
N,

m∗(A) ≤ c capp(A)N/(N−p).

Proof. Let K be a compact set and u ∈ D1,p
K (RN). It follows from Sobolev’s

inequality that

m(K) ≤
∫

RN
|u|p∗dx ≤ c

(∫

RN
|∇u|pdx

)p∗/p

.

By definition,
m(K) ≤ c capp,RN (K)N/(N−p).

To conclude, it suffices to extend this inequality to open subsets of R
N and to

arbitrary subsets of RN . 	

The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7. Let K be a compact set. Then

capp(∂K) = capp(K).

Proof. Let a > capp(∂K). There exist u ∈ D1,p(RN) and an open set U such that
∂K ⊂ U, χU ≤ u almost everywhere, and

∫

RN
|∇u|pdx < a.

Let us define V = U ∪ K and v = max(u, χV ). Then v ∈ D1,p
K (RN) and

∫

RN
|∇v|pdx ≤

∫

RN
|∇u|pdx,
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so that capp(K) < a. Since a > capp(∂K) is arbitrary, we obtain

capp(K) ≤ capp(∂K) ≤ capp(K). 	


Example. Let 1 ≤ p < N and let B be a closed ball in R
N . We deduce from the

preceding propositions that

0 < capp(B) = capp(∂B).

Theorem 7.2.8. Let 1 < p < N and U an open set. Then

capp(U) = inf

{∫

RN
|∇u|pdx : u ∈ D1,p(RN), χU ≤ u almost everywhere

}

.

Proof. Let us denote by Capp(U) the second member of the preceding equality. It
is clear by definition that capp(U) ≤ Capp(U).

Assume that capp(U) < ∞. Let (Kn) be an increasing sequence of compact

subsets of U such that U =
∞⋃

n=1

Kn, and let (un) ⊂ D1,p(RN) be such that for every n,

χKn ≤ un almost everywhere and

∫

RN
|∇un|pdx ≤ capp(Kn) + 1/n.

The sequence (un) is bounded inD1,p(RN). By Proposition 7.2.3, we can assume that
un → u in L1

loc(RN) and almost everywhere. It follows from Sobolev’s inequality that
u ∈ Lp∗ (RN). Theorem 6.1.7 implies that

∫

RN
|∇u|pdx ≤ lim

n→∞

∫

RN
|∇un|pdx ≤ lim

n→∞ capp(Kn) ≤ capp(U).

(By Theorem 7.1.9, lim
n→∞capp(Kn) = capp(U).) Since almost everywhere, χU ≤ u,

we conclude that Capp(U) ≤ capp(U). 	

Corollary 7.2.9. Let 1 < p < N, and let U and V be open sets such that U ⊂ V
and m(V \ U) = 0. Then capp(U) = capp(V).

Proof. Let u ∈ D1,p(RN) be such that χU ≤ u almost everywhere. Then χV ≤ u
almost everywhere. 	


Corollary 7.2.10 (Capacity inequality). Let 1 < p < N and u ∈ D(RN). Then for
every t > 0,

capp({|u| > t}) ≤ t−p
∫

RN
|∇u|pdx.

Proof. By Corollary 6.1.14, |u|/t ∈ D1,p(RN). 	
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Definition 7.2.11. Let 1 ≤ p < N. A function v : R
N → R is quasicontinuous

of degree p if for every ε > 0, there exists an ω-open set such that capp(ω) ≤ ε

and v
∣∣
∣
RN\ω is continuous. Two quasicontinuous functions of degrees p, v, and w are

equal quasi-everywhere if capp({|v − w| > 0}) = 0.

Proposition 7.2.12. Let 1 < p < N and let v and w be quasicontinuous functions of
degree p and almost everywhere equal. Then v and w are quasi-everywhere equal.

Proof. By assumption, m(A) = 0, where A = {|v − w| > 0}, and for every n, there
exists an ωn-open set such that capp(ωn) ≤ 1/n and |v − w|∣∣∣

RN\ωn
is continuous. It

follows that A ∪ ωn is open. We conclude, using Corollary 7.2.9, that

capp(A) ≤ capp(A ∪ ωn) = capp(ωn)→ 0, n→ ∞. 	


Proposition 7.2.13. Let 1 < p < N and u ∈ D1,p(RN). Then there exists a function
v quasicontinuous of degree p and almost everywhere equal to u.

Proof. By Proposition 7.2.2, there exists (un) ⊂ D(RN) such that un → u
in D1,p(RN). Using Proposition 7.2.3, we can assume that un → u almost
everywhere and

∞∑

k=1

2kp
∫

RN
|∇(uk+1 − uk)|pdx < ∞.

We define

Uk = {|uk+1 − uk| > 2−k}, ωm =

∞⋃

k=m

Uk.

Corollary 7.2.10 implies that for every k,

capp(Uk) ≤ 2kp
∫

RN
|∇(uk+1 − uk)|pdx.

It follows from Corollary 7.1.10 that for every m,

capp(ωm) ≤
∞∑

k=m

2kp
∫

RN
|∇(uk+1 − uk)|pdx→ 0, m→ ∞.

We obtain, for every x ∈ RN \ ωm and every k ≥ j ≥ m,

|u j(x) − uk(x)| ≤ 21− j,

so that (un) converges simply to v on R
N \

∞⋂

m=1

ωm. Moreover, v
∣
∣∣
RN\ωm

is continuous,

since the convergence of (un) on R
N \ ωm is uniform. For x ∈

∞⋂

m=1

ωm, we define

v(x) = 0. Since by Proposition 7.2.6, m(ωm) → 0, we conclude that u = v almost
everywhere. 	
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1. Let Ω be an open subset of RN . The divergence of v ∈ C1(Ω;RN)
is defined by

div v =
N∑

k=1

∂kvk.

The total variation of u ∈ L1
loc(Ω) is defined by

||Du||Ω = sup

{∫

Ω

u div v dx : v ∈ D(Ω;RN), ||v||∞ ≤ 1

}

,

where

||v||∞ = sup
x∈Ω

⎛
⎜⎜⎜⎜⎜⎝

N∑

k=1

(vk(x))2

⎞
⎟⎟⎟⎟⎟⎠

1/2

.

Theorem 7.3.2. Let (un) be such that un → u in L1
loc(Ω). Then

||Du||Ω ≤ lim
n→∞
||Dun||Ω.

Proof. Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1. We have, by definition,

∫

Ω

u div v dx = lim
n→∞

∫

Ω

un div v dx ≤ lim
n→∞
||Dun||Ω.

It suffices then to take the supremum with respect to v. 	

Theorem 7.3.3. Let u ∈ W1,1

loc (Ω). Then the following properties are equivalent:

(a) ∇u ∈ L1(Ω;RN);
(b) ||Du||Ω < ∞.

In this case,

||Du||Ω = ||∇u||L1(Ω).

Proof. (a) Assume that ∇u ∈ L1(Ω;RN). Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1.
It follows from the Cauchy–Schwarz inequality that

∫

Ω

u div v dx = −
∫

Ω

N∑

k=1

vk∂ku dx ≤
∫

Ω

|∇u|dx.

Hence ||Du||Ω ≤ ||∇u||L1(Ω).
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Theorem 4.3.11 implies the existence of (wn) ⊂ D(Ω;RN) converging to ∇u
in L1(Ω;RN). We can assume that wn → ∇u almost everywhere on Ω. Let us
define

vn = wn/
√
|wn|2 + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

||∇u||L1(Ω) =

∫

Ω

|∇u|dx = lim
n→∞

∫

Ω

vn · ∇u dx ≤ ||Du||Ω.

(b) Assume that ||Du||Ω < ∞ and define

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n}.
Then by the preceding step, we obtain

||∇u||L1(ωn) = ||Du||ωn ≤ ||Du||Ω < ∞.
Levi’s theorem ensures that ∇u ∈ L1(Ω;RN). 	


Example. There exists a function everywhere differentiable on [−1, 1] such that
||Du||]−1,1[ = +∞. We define

u(x) = 0, x = 0,
= x2 sin 1

x2 , 0 < |x| ≤ 1.

We obtain

u′(x) = 0, x = 0,
= 2x sin 1

x2 − 2
x cos 1

x2 , 0 < |x| ≤ 1.

The preceding theorem implies that

+∞ = lim
n→∞ ||u

′||L1(]1/n,1[) ≤ ||Du||]−1,1[.

Indeed,

2
∫ 1

0
| cos

1
x2
|dx

x
=

∫ ∞

1
| cos t|dt

t
= +∞.

The function u has no weak derivative!

Example (Cantor function). There exists a continuous nondecreasing function with
almost everywhere zero derivative and positive total variation. We use the notation
of the last example of Sect. 2.2. We consider the Cantor set C corresponding to
�n = 1/3n+1. Observe that

m(C) = 1 −
∞∑

j=0

2 j/3 j+1 = 0.



7.3 Functions of Bounded Variations 149

We define on R,

un(x) =

(
3
2

)n ∫ x

0

χCn (t)dt.

It is easy to verify by symmetry that

||un+1 − un||∞ ≤ 1
3

1
2n+1

.

By the Weierstrass test, (un) converges uniformly to the Cantor function u ∈ C(R).
For n ≥ m, u′n = 0 on R \ Cm. The closing lemma implies that u′ = 0 on R \ Cm.
Since m is arbitrary, u′ = 0 on R \C. Theorems 7.3.2 and 7.3.3 ensure that

||Du||R ≤ lim
n→∞
||u′n||L1(R) = 1.

Let v ∈ D(R) be such that ||v||∞ = 1 and v = −1 on [0, 1] and integrate by parts:

∫

R

v′u dx = lim
n→∞

∫

R

v′un dx = − lim
n→∞

∫

R

vu′ndx = lim
n→∞

(
3
2

)n

m(Cn) = 1.

We conclude that ||Du||R = 1. The function u has no weak derivative.

Definition 7.3.4. Let Ω be an open subset of RN . On the space

BV(Ω) = {u ∈ L1(Ω) : ||Du||Ω < ∞},

we define the norm

||u||BV(Ω) = ||u||L1(Ω) + ||Du||Ω
and the distance of strict convergence

dS (u, v) = ||u − v||L1(Ω) +
∣
∣
∣||Du||Ω − ||Dv||Ω

∣
∣
∣.

Remark. It is clear that convergence in norm implies strict convergence.

Example. The space BV(]0, π[), with the distance of strict convergence, is not
complete. We define on ]0, π[,

un(x) =
1
n

cos nx,

so that un → 0 in L1(]0, π[). By Theorem 7.3.3, for every n,

||Dun||]0,π[ =

∫ π

0
| sin nx|dx = 2.
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Hence lim
j,k→∞

dS (u j, uk) = lim
j,k→∞

||u j − uk||L1(]0,π[) = 0. If lim
n→∞dS (un, v) = 0, then v = 0.

But lim
n→∞dS (un, 0) = 2. This is a contradiction.

Proposition 7.3.5. The normed space BV(Ω) is complete.

Proof. Let (un) be a Cauchy sequence on the normed space BV(Ω). Then (un) is a
Cauchy sequence in L1(Ω), so that un → u in L1(Ω).

Let ε > 0. There exists m such that for j, k ≥ m, ||D(u j − uk)||Ω ≤ ε. Theorem
7.3.2 implies that for k ≥ m, ||D(uk − u)|| ≤ lim

j→∞
||D(u j − uk)||Ω ≤ ε. Since ε > 0 is

arbitrary, ||D(uk − u)||Ω → 0, k → ∞. 	

Lemma 7.3.6. Let u ∈ L1

loc(RN) be such that ||Du||RN < ∞. Then

||∇(ρn ∗ u)||L1(RN ) ≤ ||Du||RN and ||Du||RN = lim
n→∞ ||∇(ρn ∗ u)||L1(RN ).

Proof. Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. It follows from Proposition 4.3.15
that

∫

RN
(ρn ∗ u) div v dx =

∫

RN
u

N∑

k=1

ρn ∗ ∂kvkdx =
∫

RN
u

N∑

k=1

∂k(ρn ∗ vk)dx.

The Cauchy–Schwarz inequality implies that for every x ∈ RN ,

N∑

k=1

(ρn ∗ vk(x))2 =

N∑

k=1

(∫

RN
ρn(x − y)vk(y)dy

)2

≤
N∑

k=1

∫

RN
ρn(x − y)(vk(y))2dy ≤ 1.

Hence we obtain
∫

RN
(ρn ∗ u) div v dx ≤ ||Du||RN ,

and by Theorem 7.3.3, ||∇(ρn ∗ u)||L1(RN ) ≤ ||Du||RN .
By the regularization theorem, ρn ∗ u→ u in L1

loc(RN). Theorems 7.3.2 and 7.3.3
ensure that

||Du||RN ≤ lim
n→∞
||∇(ρn ∗ u)||L1(RN ). 	


Theorem 7.3.7. (a) For every u ∈ BV(RN), (ρn ∗ u) converges strictly to u.
(b) (Gagliardo–Nirenberg inequality.) Let N ≥ 2. There exists c

N
> 0 such that for

every u ∈ BV(RN),

||u||LN/(N−1)(RN ) ≤ c
N
||Du||RN .

Proof. (a) Proposition 4.3.14 and the preceding lemma imply the strict conver-
gence of (ρn ∗ u) to u.
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(b) Let N ≥ 2. We can assume that ρnk ∗u→ u almost everywhere on R
N . It follows

from Fatou’s lemma and Sobolev’s inequality in D1,1(RN) that

||u||N/(N−1) ≤ lim
k→∞
||ρnk ∗ u||N/(N−1) ≤ c

N
lim
n→∞ ||∇(ρnk ∗ u)||1 = c

N
||Du||RN . 	


7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1. Let Ω be an open subset of R
N of class C1 with a bounded

boundary Γ. Then
∫

Γ

dγ = ||DχΩ||RN .

Proof. Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. The divergence theorem and the
Cauchy–Schwarz inequality imply that

∫

Ω

div v dx =
∫

Γ

v · n dγ ≤
∫

Γ

|v| |n|dγ ≤
∫

Γ

dγ.

Taking the supremum with respect to v, we obtain ||DχΩ||RN ≤
∫

Γ

dγ.

We use the notation of Definition 9.2.1 and define

U = {x ∈ RN : ∇ϕ(x) � 0},

so that Γ ⊂ U. The theorem of partitions of unity ensures the existence of ψ ∈ D(U)
such that 0 ≤ ψ ≤ 1 and ψ = 1 on Γ. We define

v(x) = ψ(x)∇ϕ(x)/|∇ϕ(x)|, x ∈ U
= 0, x ∈ RN \ U.

It is clear that v ∈ K(RN ;RN) and for every γ ∈ Γ, v(γ) = n(γ). For every m ≥
1, wm = ρm ∗ v ∈ D(RN ;RN). We infer from the divergence and regularization
theorems that

lim
m→∞

∫

Ω

div wm dx = lim
m→∞

∫

Γ

wm · n dγ =
∫

Γ

n · n dγ =
∫

Γ

dγ.

By definition, ||v||∞ ≤ 1, and by the Cauchy–Schwarz inequality,
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N∑

k=1

(ρm ∗ vk(x))2 =

N∑

k=1

(∫

RN
ρm(x − y)vk(y)dy

)2

≤
N∑

k=1

∫

RN
ρm(x − y)(vk(y))2dy ≤ 1.

We conclude that
∫

Γ

dγ ≤ ||DχΩ||RN . 	


The preceding theorem suggests a functional definition of the perimeter due to
De Giorgi.

Definition 7.4.2. Let A be a measurable subset of RN . The perimeter of A is defined
by p(A) = ||DχA||RN .

The proof of the Morse–Sard theorem is given in Sect. 9.3.

Theorem 7.4.3. Let Ω be an open subset of RN and u ∈ C∞(Ω). Then the Lebesgue
measure of

{t ∈ R : there exists x ∈ Ω such that u(x) = t and ∇u(x) = 0}

is equal to zero.

Theorem 7.4.4. Let 1 < p < ∞, u ∈ Lp(Ω), u ≥ 0, and g ∈ Lp′ (Ω). Then

(a)
∫

Ω

g u dx =
∫ ∞

0
dt

∫

u>t
g dx;

(b) ||u||p ≤
∫ ∞

0
m({u > t})1/pdt;

(c) ||u||pp =
∫ ∞

0
m({u > t})ptp−1dt.

Proof. (a) We deduce from Fubini’s theorem that

∫

Ω

g u dx =
∫

Ω

dx
∫ ∞

0
g χu>t dt

=

∫ ∞

0
dt

∫

Ω

g χu>t dx

=

∫ ∞

0
dt

∫

u>t
g dx.

(b) If ||g||p′ = 1, we obtain from Hölder’s inequality that

∫

Ω

g u dx ≤
∫ ∞

0
m({u > t})1/pdt.

It suffices then to take the supremum.
(c) Define f (t) = tp. It follows from Fubini’s theorem that
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||u||pp =
∫

Ω

dx
∫ u

0
f ′(t)dt

=

∫

Ω

dx
∫ ∞

0

χu>t f ′(t)dt

=

∫ ∞

0
dt

∫

Ω

χu>t f ′(t)dx

=

∫ ∞

0
m({u > t}) f ′(t)dt. 	


Theorem 7.4.5 (Coarea formula). Let u ∈ D(RN) and f ∈ C1(RN). Then

∫

RN
f |∇u| dx =

∫ ∞

0
dt

∫

|u|=t
f dγ.

Moreover, for every open subset Ω of RN ,

∫

Ω

|∇u| dx =
∫ ∞

0
dt

∫

|u|=t

χΩ dγ.

Proof. By the Morse–Sard theorem, for almost every t ∈ R,

u(x) = t =⇒ ∇u(x) � 0.

Hence for almost every t > 0, the open sets {u > t} and {u < −t} are smooth.
We infer from Lemma 6.1.1, Theorem 7.4.4, and the divergence theorem that for

every v ∈ C1(RN ;RN),

∫

RN
∇u · v dx = −

∫

RN
u div v dx

= −
∫ ∞

0
dt

∫

u>t
div v dx +

∫ ∞

0
dt

∫

u<−t
div v dx

=

∫ ∞

0
dt

∫

|u|=t
v · ∇u
|∇u|dγ.

Define

vn = f ∇u/
√
|∇u|2 + 1/n.

Lebesgue’s dominated convergence theorem implies that
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∫

RN
f |∇u| dx = lim

n→∞

∫

RN
∇u·vn dx = lim

n→∞

∫ ∞

0
dt

∫

|u|=t
vn· ∇u
|∇u|dγ =

∫ ∞

0
dt

∫

|u|=t
f dγ.

Define

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n}.
For all n, there exists ϕn ∈ D(ωn+1) such that 0 ≤ ϕn ≤ 1 and ϕn = 1 on ωn. Levi’s
monotone convergence theorem implies that

∫

Ω

|∇u|dx = lim
n→∞

∫

RN
ϕn|∇u|dx = lim

n→∞

∫ ∞

0
dt

∫

|u|=t
ϕndγ =

∫ ∞

0
dt

∫

|u|=t

χΩ dγ. 	


Lemma 7.4.6. Let 1 ≤ p < N, let K be a compact subset of RN, and a > capp(K).

Then there exist V open and v ∈ D(RN) such that K ⊂ V, χV ≤ v, and
∫

Ω

|∇v| dx < a.

Proof. By assumption, there exist u ∈ D1,p(RN) and U open such that K ⊂ U,
χU ≤ u, and ∫

RN
|∇u|pdx < a.

There exists V open such that K ⊂ V ⊂⊂ U. For m large enough, χV ≤ w = ρm ∗ u
and

∫

RN
|∇w|pdx < a.

Let θn(x) = θ(|x|/n) be a truncating sequence. For n large enough, χV ≤ v = θnw and

∫

RN
|∇v|pdx < a. 	


Theorem 7.4.7. Let N ≥ 2 and let K be a compact subset of RN. Then

cap1(K) = inf{p(U) : U is open and bounded, and U ⊃ K}.

Proof. We denote by Cap1(K) the second member of the preceding equality. Let U
be open, bounded, and such that U ⊃ K. Define un = ρn ∗ χU . For n large enough,
u ∈ D1,1

K (RN). Lemma 7.3.6 implies that for n large enough,

cap1(K) ≤
∫

RN
|∇un|dx ≤ ||DχU ||RN = p(U).

Taking the infimum with respect to U, we obtain cap1(K) ≤ Cap1(K).
Let a > cap1(K). By the preceding lemma, there exist V open and v ∈ D(RN)

such that K ⊂ V , χV ≤ v and
∫

RN
|∇v|dx < a. We deduce from the Morse–Sard

theorem and from the coarea formula that
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Cap1(K) ≤
∫ 1

0
dt

∫

v=t
dγ ≤

∫ ∞

0
dt

∫

v=t
dγ =

∫

RN
|∇v|dx < a.

Since a > cap1(K) is arbitrary, we conclude that Cap1(K) ≤ cap1(K). 	


7.5 Comments

The book by Maz’ya ([51]) is the main reference on functions of bounded variations
and on capacity theory. The beautiful proof of the coarea formula (Theorem 7.4.5)
is due to Maz’ya. The derivative of the function of unbounded variation in Sect. 7.3
is Denjoy–Perron integrable (since it is a derivative); see Analyse, fondements
techniques, évolution by J. Mawhin ([49]).

7.6 Exercises for Chap. 7

1. Let 1 ≤ p < N. Then

λp + N < 0⇔ (1 + |x|2)λ/2 ∈ W1,p(RN),

(λ − 1)p + N < 0⇔ (1 + |x|2)λ/2 ∈ D1,p(RN).

2. What are the interior and the closure of W1,1(Ω) in BV(Ω)?
3. Let u ∈ L1

loc(Ω). The following properties are equivalent:

(a) ||Du||Ω < ∞;
(b) there exists c > 0 such that for every ω ⊂⊂ Ω and every y ∈ RN such that
|y| < d(ω, ∂Ω)

||τyu − u||L1(ω) ≤ c|y|.
4. (Relative variational capacity.) Let Ω be an open bounded subset of R

N (or
more generally, an open subset bounded in one direction). Let 1 ≤ p < ∞ and
let K be a compact subset of Ω. The capacity of degree p of K relative to Ω is
defined by

capp,Ω(K) = inf

{∫

Ω

|∇u|pdx : u ∈ W1,p
K (Ω)

}

,

where

W1,p
K (Ω) = {u ∈ W1,p

0 (Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω
and χω ≤ u a.e. on Ω}.

Prove that the capacity of degree p relative to Ω is a capacity on Ω.
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5. Verify that

capp,Ω(K) = inf

{∫

Ω

|∇u|pdx : u ∈ DK(Ω)

}

,

where

DK(Ω) = {u ∈ D(Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω and χω ≤ u}.

6. (a) If capp,Ω(K) = 0, then m(K) = 0. Hint: Use Poincaré’s inequality.
(b) If p > N and if capp,Ω(K) = 0, then K = φ. Hint: Use the Morrey

inequalities.
7. Assume that capp,Ω(K) = 0. Then for every u ∈ D(Ω), there exists (un) ⊂
D(Ω \ K) such that |un| ≤ |u| and un → u in W1,p(Ω).

8. (Dupaigne–Ponce, 2004.) Assume that cap1,Ω(K) = 0. Then W1,p(Ω \ K) =
W1,p(Ω). Hint: Consider first the bounded functions in W1,p(Ω \ K).

9. For every u ∈ BV(RN),

||D|u|||RN ≤ ||Du+||RN + ||Du−||RN = ‖Du‖RN .

Hint: Consider a sequence (un) ⊂ W1,1(RN) such that un → u strictly in
BV(RN).

10. Let u ∈ L1(Ω) and f ∈ BC1(Ω). Then

||D( f u)||Ω ≤ || f ||∞||Du||Ω + ||∇ f ||∞||u||L1(Ω).

11. (Cheeger constant.) Let Ω be an open bounded domain in R
N and define

h(Ω) = inf{p(ω)/m(ω) : ω ⊂⊂ Ω and ω is of class C1}.

Then for 1 ≤ p < ∞ and every u ∈ W1,p
0 (Ω),

(
h(Ω)

p

)p ∫

Ω

|u|pdx ≤
∫

Ω

|∇u|pdx.

Hint: Assume first that p = 1 and apply the coarea formula to u ∈ D(Ω).
12. Let u ∈ W1,1(Ω). Then

∫

Ω

√
1+|∇u|2dx = sup

⎧
⎪⎪⎨
⎪⎪⎩

∫

Ω

(vN+1 + u
N∑

k=1

∂kuk)dx : u ∈ D(Ω;RN+1), ‖u‖∞ ≤ 1

⎫
⎪⎪⎬
⎪⎪⎭
.
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