Chapter 7 Capacity

7.1 Capacity

The notion of *capacity* appears in potential theory. The abstract theory was formulated by Choquet in 1954. In this section, we denote by *X* a metric space, by K the class of compact subsets of *X*, and by O the class of open subsets of *X*.

Definition 7.1.1. A capacity on *X* is a function

$$
cap: \mathcal{K} \to [0, +\infty] : K \to cap(K)
$$

such that:

(C_1) (monotonicity.) For every $A, B \in \mathcal{K}$ such that $A \subset B$, cap(A) ≤ cap(B). (C_2) (regularity.) For every $K \in \mathcal{K}$ and for every $a > \text{cap}(K)$, there exists $U \in O$ such that $K \subset U$, and for all $C \in \mathcal{K}$ satisfying $C \subset U$, cap(*C*) < *a*. (C_3) (strong subadditivity.) For every $A, B \in \mathcal{K}$,

$$
cap(A \cup B) + cap(A \cap B) \le cap(A) + cap(B).
$$

The Lebesgue measure of a compact subset of \mathbb{R}^N is a capacity.

We denote by cap a capacity on *X*. We extend the capacity to the open subsets of *X*.

Definition 7.1.2. The capacity of $U \in O$ is defined by

$$
cap(U) = sup\{cap(K) : K \in \mathcal{K} \text{ and } K \subset U\}.
$$

Lemma 7.1.3. *Let* $A, B ∈ O$ *and* $K ∈ K$ *be such that* $K ⊂ A ∪ B$ *. Then there exist L*, *M* ∈ *K such that* $L \subset A$ *,* $M \subset B$ *, and* $K = L \cup M$.

Proof. The compact sets $K \setminus A$ and $K \setminus B$ are disjoint. Hence there exist disjoint open sets *U* and *V* such that $K \setminus A \subset U$ and $K \setminus B \subset V$. It suffices to define $L = K \setminus U$ and $M = K \setminus V$.

- **Proposition 7.1.4.** *(a) (monotonicity.) For every A, B* \in *O such that A* \subset *B.* $\text{cap}(A) \leq \text{cap}(B)$.
- *(b)* (regularity.) For every $K \in \mathcal{K}$, cap(K) = inf{cap(U) : $U \in O$ and $U \supset K$ }.
- *(c)* (strong subadditivity.) For every $A, B \in \mathcal{O}$,

 $cap(A \cup B) + cap(A \cap B) \leq cap(A) + cap(B).$

Proof. (a) Monotonicity is clear.

- (b) Let us define $\text{Cap}(K) = \inf \{ \text{cap}(U) : U \in \mathcal{O} \text{ and } U \supset K \}$. By definition, $cap(K) \leq Cap(K)$. Let $a > cap(K)$. There exists $U \in O$ such that $K \subset U$ and for every $C \in \mathcal{K}$ satisfying $C \subset U$, cap(C) < *a*. Hence Cap(K) < cap(U) < *a*. Since $a > \text{cap}(K)$ is arbitrary, we conclude that $\text{Cap}(K) < \text{cap}(K)$.
- (c) Let $A, B \in \mathcal{O}$, $a < \text{cap}(A \cup B)$, and $b < \text{cap}(A \cap B)$. By definition, there exist *K*, *C* ∈ *K* such that *K* ⊂ *A* ∪ *B*, *C* ⊂ *A* ∩ *B*, *a* < cap(*K*), and *b* < cap(*C*). We can assume that $C \subset K$. The preceding lemma implies the existence of $L, M \in \mathcal{K}$ such that $L \subset A$, $M \subset B$, and $K = L \cup M$. We can assume that $C \subset L \cap M$. We obtain by monotonicity and strong subadditivity that

$$
a + b \le \text{cap}(K) + \text{cap}(C) \le \text{cap}(L \cup M) + \text{cap}(L \cap M)
$$

$$
\le \text{cap}(L) + \text{cap}(M) \le \text{cap}(A) + \text{cap}(B).
$$

Since *a* < cap($A \cup B$) and *b* < cap($A \cap B$) are arbitrary, the proof is complete. \Box

We extend the capacity to all subsets of *X*.

Definition 7.1.5. The capacity of a subset *A* of *X* is defined by

$$
cap(A) = inf \{ cap(U) : U \in O \text{ and } U \supset A \}.
$$

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6. *(a) (monotonicity.) For every A, B* $\subset X$ *, cap(A)* \leq cap(B). *(b)* (strong subadditivity.) For every $A, B \subset X$,

$$
cap(A \cup B) + cap(A \cap B) \le cap(A) + cap(B).
$$

Proof. (a) Monotonicity is clear.

(b) Let $A, B \subset X$ and $U, V \in O$ be such that $A \subset U$ and $B \subset V$. We have

 $cap(A \cup B) + cap(A \cap B) \leq cap(U \cup V) + cap(U \cap V) \leq cap(U) + cap(V).$

It is easy to conclude the proof.

Proposition 7.1.7. *Let* (*Kn*) *be a decreasing sequence in* K*. Then*

$$
\operatorname{cap}\left(\bigcap_{n=1}^{\infty} K_n\right) = \lim_{n \to \infty} \operatorname{cap}(K_n).
$$

Proof. Let $K = \bigcap_{n=1}^{\infty} K_n$ and $U \in O$, $U \supset K$. By compactness, there exists *m* such that *K_m* ⊂ *U*. We obtain, by monotonicity, cap(*K*) ≤ $\lim_{n\to\infty}$ cap(*K_n*) ≤ cap(*U*). It suffices then to take the infimum with respect to U .

Lemma 7.1.8. *Let* (*Un*) *be an increasing sequence in* O*. Then*

$$
\mathrm{cap}\left(\bigcup_{n=1}^{\infty} U_n\right) = \lim_{n \to \infty} \mathrm{cap}(U_n).
$$

Proof. Let $U = \int_{0}^{\infty} U_n$ and $K \in \mathcal{K}, K \subset U$. By compactness, there exists *m* such that *K* ⊂ *U_m*. We obtain by monotonicity cap(*K*) ≤ $\lim_{n\to\infty}$ cap(*U_n*) ≤ cap*U*. It suffices then to take the supremum with respect to K .

Theorem 7.1.9. *Let* (*An*) *be an increasing sequence of subsets of X. Then*

$$
\operatorname{cap}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \operatorname{cap}(A_n).
$$

Proof. Let $A = \bigcup_{n=1}^{\infty} A_n$. By monotonicity, $\lim_{n \to \infty} \text{cap}(A_n) \leq \text{cap}(A)$. We can assume that $\lim_{n\to\infty}$ cap(*A_n*) < +∞. Let $\varepsilon > 0$ and $a_n = 1 - 1/(n + 1)$. We construct, by induction, an increasing sequence $(U_n) \subset O$ such that $A_n \subset U_n$ and

$$
cap(U_n) \le cap(A_n) + \varepsilon a_n. \tag{*}
$$

When $n = 1$, (*) holds by definition. Assume that (*) holds for *n*. By definition, there exists $V \in O$ such that $A_{n+1} \subset V$ and

$$
\operatorname{cap}(V) \le \operatorname{cap}(A_{n+1}) + \varepsilon (a_{n+1} - a_n).
$$

We define $U_{n+1} = U_n \cup V$, so that $A_{n+1} \subset U_{n+1}$. We obtain, by strong subadditivity,

$$
cap(U_{n+1}) \le cap(U_n) + cap(V) - cap(U_n \cap V)
$$

\n
$$
\le cap(A_n) + \varepsilon a_n + cap(A_{n+1}) + \varepsilon (a_{n+1} - a_n) - cap(A_n)
$$

\n
$$
= cap(A_{n+1}) + \varepsilon a_{n+1}.
$$

It follows from (∗) and the preceding lemma that

$$
\operatorname{cap}(A) \le \operatorname{cap}\left(\bigcup_{n=1}^{\infty} U_n\right) = \lim_{n \to \infty} \operatorname{cap}(U_n) \le \lim_{n \to \infty} \operatorname{cap}(A_n) + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the proof is complete.

Corollary 7.1.10 (Countable subadditivity). Let
$$
(A_n)
$$
 be a sequence of subsets
of X. Then $\text{cap} \Biggl(\bigcup_{n=1}^{\infty} A_n \Biggr) \le \sum_{n=1}^{\infty} \text{cap}(A_n)$.
Proof. Let $B_k = \bigcup_{n=1}^{k} A_k$. We have

$$
\text{cap} \Biggl(\bigcup_{n=1}^{\infty} A_n \Biggr) = \text{cap} \Biggl(\bigcup_{k=1}^{\infty} B_k \Biggr) = \lim_{k \to \infty} \text{cap}(B_k) \le \sum_{n=1}^{\infty} \text{cap}(A_n).
$$

Definition 7.1.11. The outer Lebesgue measure of a subset of \mathbb{R}^N is defined by

 $m^*(A) = \inf\{m(U) : U \text{ is open and } U \supseteq A\}.$

7.2 Variational Capacity

In order to define *variational capacity*, we introduce the space $\mathcal{D}^{1,p}(\mathbb{R}^N)$.

Definition 7.2.1. Let $1 \leq p \leq N$. On the space

$$
\mathcal{D}^{1,p}(\mathbb{R}^N)=\{u\in L^{p^*}(\mathbb{R}^N): \nabla u\in L^{p}(\mathbb{R}^N;\mathbb{R}^N)\},\
$$

we define the norm

$$
||u||_{\mathcal{D}^{1,p}(\mathbb{R}^N)}=||\nabla u||_p.
$$

Proposition 7.2.2. *Let* $1 \leq p \leq N$.

- *(a)* The space $\mathcal{D}(\mathbb{R}^N)$ *is dense in* $\mathcal{D}^{1,p}(\mathbb{R}^N)$ *.*
- *(b) (Sobolev's inequality.) There exists* $c = c(p, N)$ *such that for every* $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ *,*

 $||u||_{p^*} \leq c||\nabla u||_p.$

(c) The space $\mathcal{D}^{1,p}(\mathbb{R}^N)$ *is complete.*

Proof. The space $\mathcal{D}(\mathbb{R}^N)$ is dense in $\mathcal{D}^{1,p}(\mathbb{R}^N)$ with the norm $||u||_{p^*} + ||\nabla u||_p$. The argument is similar to that of the proof of Theorem 6.1.10.

$$
\Box
$$

Sobolev's inequality follows by density from Lemma 6.4.2. Hence for every $u \in$ $\mathcal{D}^{1,p}(\mathbb{R}^N)$,

$$
\|\nabla u\|_p \le \|u\|_{p^*} + \|\nabla u\|_p \le (c+1) \|\nabla u\|_p.
$$

Let (u_n) be a Cauchy sequence in $\mathcal{D}^{1,p}(\mathbb{R}^N)$. Then $u_n \to u$ in $L^{p^*}(\mathbb{R}^N)$, and for $1 \leq k \leq N$, $\partial_k u_n \to v_k$ in $L^p(\mathbb{R}^N)$. By the closing lemma, for $1 \leq k \leq N$, $\partial_k u = v_k$. We conclude that $u_n \to u$ in $\mathcal{D}^{1,p}(\mathbb{R}^N)$.

Proposition 7.2.3. *Every bounded sequence in* $\mathcal{D}^{1,p}(\mathbb{R}^N)$ *contains a subsequence converging in* $L^1_{loc}(\mathbb{R}^N)$ *and almost everywhere on* \mathbb{R}^N .

Proof. Cantor's diagonal argument will be used. Let (u_n) be bounded in $\mathcal{D}^{1,p}(\mathbb{R}^N)$. By Sobolev's inequality, for every $k \ge 1$, (u_n) is bounded in $W^{1,1}(B(0,k))$. Rellich's theorem and Proposition 4.2.10 imply the existence of a subsequence (u_1, n) of (u_n) converging in $L^1(B(0, 1))$ and almost everywhere on $B(0, 1)$. By induction, for every *k*, there exists a subsequence ($u_{k,n}$) of ($u_{k-1,n}$) converging in $L^1(B(0, k))$ and almost everywhere on $B(0, k)$. The sequence $v_n = u_{n,n}$ converges in $L^1_{loc}(\mathbb{R}^N)$ and almost everywhere on \mathbb{R}^N .

Definition 7.2.4. Let $1 \leq p \leq N$ and let K be a compact subset of \mathbb{R}^N . The capacity of degree *p* of *K* is defined by

$$
\text{cap}_p(K) = \inf \left\{ \int_{\mathbb{R}^N} |\nabla u|^p dx : u \in \mathcal{D}^{1,p}_K(\mathbb{R}^N) \right\},\
$$

where

 $\mathcal{D}_K^{1,p}(\mathbb{R}^N) = \{u \in \mathcal{D}^{1,p}(\mathbb{R}^N) : \text{there exists } U \text{ open such that } K \subset U \text{ and } \chi_U \leq u\}$

almost everywhere}.

Theorem 7.2.5. *The capacity of degree p is a capacity on* \mathbb{R}^N .

Proof. (a) Monotonicity is clear by definition. (b) Let *K* be compact and $a > \text{cap}_p(\mathbb{R}^N)$. There exist $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ and *U* open such that $K \subset U$, $\chi_U \leq u$ almost everywhere, and $\int_{\mathbb{R}^N} |\nabla u|^p dx < a$. For every compact set $C \subset U$, we have

$$
\mathrm{cap}_p(C) \le \int_{\mathbb{R}^N} |\nabla u|^p dx < a,
$$

so that cap_p is regular.

(c) Let *A* and *B* be compact sets, $a > \text{cap}_p(A)$, and $b > \text{cap}_p(B)$. There exist $u, v \in$ $\mathcal{D}^{1,p}(\mathbb{R}^N)$ and *U* and *V* open sets such that $A \subset U, B \subset V, \chi_{U} \leq u$, and $\chi_{V} \leq v$ almost everywhere and

$$
\int_{\mathbb{R}^N}|\nabla u|^pdx
$$

Since $\max(u, v) \in \mathcal{D}_{A\cup B}^{1, p}(\mathbb{R}^{N})$ and $\min(u, v) \in \mathcal{D}_{A\cap B}^{1, p}(\mathbb{R}^{N})$, Corollary 6.1.14 implies that

$$
\int_{\mathbb{R}^N} |\nabla \max(u,v)|^p dx + \int_{\mathbb{R}^N} |\nabla \min(u,v)|^p = \int_{\mathbb{R}^N} |\nabla u|^p dx + \int_{\mathbb{R}^N} |\nabla v|^p dx \leq a+b.
$$

We conclude that

$$
\operatorname{cap}_p(A \cup B) + \operatorname{cap}_p(A \cap B) \le a + b.
$$

Since $a > \text{cap}_p(A)$ and $b > \text{cap}_p(B)$ are arbitrary, cap_p is strongly subadditive.

 \Box

The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6. *There exists a constant c* = $c(p, N)$ *such that for every* $A \subset \mathbb{R}^N$ *,*

$$
m^*(A) \le c \, \text{cap}_p(A)^{N/(N-p)}.
$$

Proof. Let *K* be a compact set and $u \in \mathcal{D}_K^{1,p}(\mathbb{R}^N)$. It follows from Sobolev's inequality that

$$
m(K) \leq \int_{\mathbb{R}^N} |u|^{p^*} dx \leq c \left(\int_{\mathbb{R}^N} |\nabla u|^p dx \right)^{p^*/p}
$$

.

By definition,

$$
m(K) \le c \, \text{cap}_{p, \mathbb{R}^N}(K)^{N/(N-p)}.
$$

To conclude, it suffices to extend this inequality to open subsets of \mathbb{R}^N and to arbitrary subsets of \mathbb{R}^N .

The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7. *Let K be a compact set. Then*

$$
\operatorname{cap}_p(\partial K) = \operatorname{cap}_p(K).
$$

Proof. Let $a > \text{cap}_p(\partial K)$. There exist $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ and an open set *U* such that $\partial K \subset U$, $\chi_U \leq u$ almost everywhere, and

$$
\int_{\mathbb{R}^N} |\nabla u|^p dx < a.
$$

Let us define $V = U \cup K$ and $v = \max(u, \chi_V)$. Then $v \in \mathcal{D}_K^{1,p}(\mathbb{R}^N)$ and

$$
\int_{\mathbb{R}^N}|\nabla v|^pdx\leq \int_{\mathbb{R}^N}|\nabla u|^pdx,
$$

so that cap_p(K) < *a*. Since $a > \text{cap}_p(\partial K)$ is arbitrary, we obtain

$$
\operatorname{cap}_p(K) \le \operatorname{cap}_p(\partial K) \le \operatorname{cap}_p(K). \qquad \Box
$$

Example. Let $1 \leq p \leq N$ and let *B* be a closed ball in \mathbb{R}^N . We deduce from the preceding propositions that

$$
0 < \text{cap}_p(B) = \text{cap}_p(\partial B).
$$

Theorem 7.2.8. *Let* $1 < p < N$ *and U an open set. Then*

$$
\operatorname{cap}_p(U) = \inf \left\{ \int_{\mathbb{R}^N} |\nabla u|^p dx : u \in \mathcal{D}^{1,p}(\mathbb{R}^N), \chi_U \le u \text{ almost everywhere} \right\}.
$$

Proof. Let us denote by $Cap_p(U)$ the second member of the preceding equality. It is clear by definition that $cap_p(U) \le Cap_p(U)$.

Assume that cap_p $(U) < \infty$. Let (K_n) be an increasing sequence of compact subsets of *U* such that $U = \int_{0}^{\infty} K_n$, and let $(u_n) \subset \mathcal{D}^{1,p}(\mathbb{R}^N)$ be such that for every *n*, $\chi_{K_n} \leq u_n$ almost everywhere and

$$
\int_{\mathbb{R}^N} |\nabla u_n|^p dx \leq \mathrm{cap}_p(K_n) + 1/n.
$$

The sequence (u_n) is bounded in $\mathcal{D}^{1,p}(\mathbb{R}^N)$. By Proposition [7.2.3,](#page-4-0) we can assume that $u_n \to u$ in $L^1_{loc}(\mathbb{R}^N)$ and almost everywhere. It follows from Sobolev's inequality that $u \in L^{p^*}(\mathbb{R}^N)$. Theorem 6.1.7 implies that

$$
\int_{\mathbb{R}^N} |\nabla u|^p dx \le \lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n|^p dx \le \lim_{n \to \infty} \text{cap}_p(K_n) \le \text{cap}_p(U).
$$

(By Theorem [7.1.9,](#page-2-0) $\lim_{n\to\infty} \text{cap}_p(K_n) = \text{cap}_p(U)$.) Since almost everywhere, $\chi_U \leq u$, we conclude that $Cap_p(U) \le cap_p(U)$.

Corollary 7.2.9. *Let* $1 < p < N$ *, and let U and V be open sets such that* $U \subset V$ *and* $m(V \setminus U) = 0$ *. Then* cap_p(*U*) = cap_p(*V*)*.*

Proof. Let $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ be such that $\chi_U \leq u$ almost everywhere. Then $\chi_V \leq u$ almost everywhere.

Corollary 7.2.10 (Capacity inequality). *Let* $1 < p < N$ *and* $u \in \mathcal{D}(\mathbb{R}^N)$ *. Then for* $every$ $t > 0$,

$$
\mathrm{cap}_p(\{|u| > t\}) \le t^{-p} \int_{\mathbb{R}^N} |\nabla u|^p dx.
$$

Proof. By Corollary 6.1.14, $|u|/t \in \mathcal{D}^{1,p}(\mathbb{R}^N)$.

Definition 7.2.11. Let $1 \leq p \leq N$. A function $v : \mathbb{R}^N \to \mathbb{R}$ is quasicontinuous of degree *p* if for every $\varepsilon > 0$, there exists an ω -open set such that cap_p(ω) $\leq \varepsilon$ and $v|_{\mathbb{R}^N \setminus \omega}$ is continuous. Two quasicontinuous functions of degrees p, v, and w are equal quasi-everywhere if $\text{cap}_p({|v - w| > 0}) = 0$.

Proposition 7.2.12. *Let* 1 < *p* < *N and let v and w be quasicontinuous functions of degree p and almost everywhere equal. Then v and w are quasi-everywhere equal.*

Proof. By assumption, $m(A) = 0$, where $A = \{ |v - w| > 0 \}$, and for every *n*, there exists an ω_n -open set such that cap_p(ω_n) $\leq 1/n$ and $|v - w|_{\mathbb{R}^N \setminus \omega_n}$ is continuous. It follows that $A \cup \omega_n$ is open. We conclude, using Corollary [7.2.9,](#page-6-0) that

$$
\operatorname{cap}_p(A) \le \operatorname{cap}_p(A \cup \omega_n) = \operatorname{cap}_p(\omega_n) \to 0, \quad n \to \infty.
$$

Proposition 7.2.13. *Let* $1 < p < N$ *and* $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ *. Then there exists a function v quasicontinuous of degree p and almost everywhere equal to u.*

Proof. By Proposition [7.2.2,](#page-3-0) there exists $(u_n) \subset \mathcal{D}(\mathbb{R}^N)$ such that $u_n \to u$ in $\mathcal{D}^{1,p}(\mathbb{R}^N)$. Using Proposition [7.2.3,](#page-4-0) we can assume that $u_n \to u$ almost everywhere and

$$
\sum_{k=1}^{\infty} 2^{kp} \int_{\mathbb{R}^N} |\nabla (u_{k+1}-u_k)|^p dx < \infty.
$$

We define

$$
U_k = \{ |u_{k+1} - u_k| > 2^{-k} \}, \quad \omega_m = \bigcup_{k=m}^{\infty} U_k.
$$

Corollary [7.2.10](#page-6-1) implies that for every *k*,

$$
\operatorname{cap}_p(U_k) \le 2^{kp} \int_{\mathbb{R}^N} |\nabla (u_{k+1} - u_k)|^p dx.
$$

It follows from Corollary [7.1.10](#page-3-1) that for every *m*,

$$
\operatorname{cap}_p(\omega_m) \le \sum_{k=m}^{\infty} 2^{kp} \int_{\mathbb{R}^N} |\nabla (u_{k+1} - u_k)|^p dx \to 0, \quad m \to \infty.
$$

We obtain, for every $x \in \mathbb{R}^N \setminus \omega_m$ and every $k \geq j \geq m$,

$$
|u_j(x) - u_k(x)| \le 2^{1-j},
$$

so that (u_n) converges simply to v on $\mathbb{R}^N \setminus \bigcap_{n=1}^{\infty}$ *m*=1 ω_m . Moreover, $v|_{\mathbb{R}^N \setminus \omega_m}$ is continuous,

since the convergence of (u_n) on $\mathbb{R}^N \setminus \omega_m$ is uniform. For $x \in \bigcap_{m=1}^{\infty} \omega_m$, we define $v(x) = 0$. Since by Proposition [7.2.6,](#page-5-0) $m(\omega_m) \to 0$, we conclude that $u = v$ almost everywhere.

7.3 Functions of Bounded Variations

A function is of *bounded variation* if its first-order derivatives, in the sense of distributions, are bounded measures.

Definition 7.3.1. Let Ω be an open subset of \mathbb{R}^N . The divergence of $v \in C^1(\Omega; \mathbb{R}^N)$ is defined by

$$
\operatorname{div} v = \sum_{k=1}^N \partial_k v_k.
$$

The total variation of $u \in L^1_{loc}(\Omega)$ is defined by

$$
||Du||_{\Omega} = \sup \left\{ \int_{\Omega} u \, \text{div } v \, dx : v \in \mathcal{D}(\Omega; \mathbb{R}^{N}), ||v||_{\infty} \leq 1 \right\},\
$$

where

$$
||v||_{\infty} = \sup_{x \in \Omega} \left(\sum_{k=1}^{N} (v_k(x))^2 \right)^{1/2}.
$$

Theorem 7.3.2. *Let* (u_n) *be such that* $u_n \to u$ *in* $L^1_{loc}(\Omega)$ *. Then*

$$
||Du||_{\mathcal{Q}} \leq \lim_{n\to\infty} ||Du_n||_{\mathcal{Q}}.
$$

Proof. Let $v \in \mathcal{D}(\Omega; \mathbb{R}^N)$ be such that $||v||_{\infty} \leq 1$. We have, by definition,

$$
\int_{\Omega} u \operatorname{div} v \, dx = \lim_{n \to \infty} \int_{\Omega} u_n \operatorname{div} v \, dx \le \lim_{n \to \infty} ||Du_n||_{\Omega}.
$$

It suffices then to take the supremum with respect to v .

Theorem 7.3.3. Let $u \in W^{1,1}_{loc}(\Omega)$. Then the following properties are equivalent:

 $(a) ∇u ∈ L¹(Ω; ℝ^N)$; (b) $||Du||_O < ∞$.

In this case,

$$
||Du||_{\Omega} = ||\nabla u||_{L^1(\Omega)}.
$$

Proof. (a) Assume that $\nabla u \in L^1(\Omega; \mathbb{R}^N)$. Let $v \in \mathcal{D}(\Omega; \mathbb{R}^N)$ be such that $||v||_{\infty} \leq 1$. It follows from the Cauchy–Schwarz inequality that

$$
\int_{\Omega} u \operatorname{div} v \, dx = -\int_{\Omega} \sum_{k=1}^{N} v_k \partial_k u \, dx \le \int_{\Omega} |\nabla u| dx.
$$

Hence $||Du||_{Q} \leq ||\nabla u||_{L^{1}(Q)}$.

Theorem 4.3.11 implies the existence of $(w_n) \subset \mathcal{D}(\Omega; \mathbb{R}^N)$ converging to ∇u in $L^1(\Omega; \mathbb{R}^N)$. We can assume that $w_n \to \nabla u$ almost everywhere on Ω . Let us define

$$
v_n = w_n / \sqrt{|w_n|^2 + 1/n}.
$$

We infer from Lebesgue's dominated convergence theorem that

$$
\|\nabla u\|_{L^1(\Omega)} = \int_{\Omega} |\nabla u| dx = \lim_{n \to \infty} \int_{\Omega} v_n \cdot \nabla u \, dx \le \|Du\|_{\Omega}.
$$

(b) Assume that $||Du||_Q < \infty$ and define

$$
\omega_n = \{x \in \Omega : d(x, \partial \Omega) > 1/n \text{ and } |x| < n\}.
$$

Then by the preceding step, we obtain

$$
\|\nabla u\|_{L^1(\omega_n)} = \|Du\|_{\omega_n} \le \|Du\|_{\Omega} < \infty.
$$

Levi's theorem ensures that
$$
\nabla u \in L^1(\Omega; \mathbb{R}^N)
$$
.

Example. There exists a function everywhere differentiable on [−1, 1] such that $||Du||_{[-1,1]} = +\infty$. We define

$$
u(x) = 0, \t x = 0,
$$

= $x^2 \sin \frac{1}{x^2}$, 0 < |x| \le 1.

We obtain

$$
u'(x) = 0, \t x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}, \t 0 < |x| \le 1.
$$

The preceding theorem implies that

$$
+\infty = \lim_{n\to\infty} ||u'||_{L^1(]1/n,1[)} \leq ||Du||_{]^{-1,1[}}.
$$

Indeed,

$$
2\int_0^1 |\cos\frac{1}{x^2}| \frac{dx}{x} = \int_1^\infty |\cos t| \frac{dt}{t} = +\infty.
$$

The function *u* has no weak derivative!

Example (Cantor function). There exists a continuous nondecreasing function with almost everywhere zero derivative and positive total variation. We use the notation of the last example of Sect. 2.2. We consider the Cantor set *C* corresponding to $\ell_n = 1/3^{n+1}$. Observe that

$$
m(C) = 1 - \sum_{j=0}^{\infty} 2^j / 3^{j+1} = 0.
$$

7.3 Functions of Bounded Variations 149

We define on \mathbb{R} .

$$
u_n(x) = \left(\frac{3}{2}\right)^n \int_0^x \chi_{C_n}(t)dt.
$$

It is easy to verify by symmetry that

$$
||u_{n+1}-u_n||_{\infty}\leq \frac{1}{3}\frac{1}{2^{n+1}}.
$$

By the Weierstrass test, (u_n) converges uniformly to the *Cantor function* $u \in C(\mathbb{R})$. For $n \ge m$, $u'_n = 0$ on $\mathbb{R} \setminus C_m$. The closing lemma implies that $u' = 0$ on $\mathbb{R} \setminus C_m$. Since *m* is arbitrary, $u' = 0$ on $\mathbb{R} \setminus C$. Theorems [7.3.2](#page-8-0) and [7.3.3](#page-8-1) ensure that

$$
||Du||_{\mathbb{R}} \leq \lim_{n \to \infty} ||u'_n||_{L^1(\mathbb{R})} = 1.
$$

Let *v* ∈ $\mathcal{D}(\mathbb{R})$ be such that $||v||_{\infty} = 1$ and *v* = −1 on [0, 1] and integrate by parts:

$$
\int_{\mathbb{R}} v'u\ dx = \lim_{n\to\infty} \int_{\mathbb{R}} v'u_n\ dx = -\lim_{n\to\infty} \int_{\mathbb{R}} vu'_n dx = \lim_{n\to\infty} \left(\frac{3}{2}\right)^n m(C_n) = 1.
$$

We conclude that $||Du||_{\mathbb{R}} = 1$. The function *u* has no weak derivative.

Definition 7.3.4. Let Ω be an open subset of \mathbb{R}^N . On the space

$$
BV(\Omega) = \{ u \in L^1(\Omega) : ||Du||_{\Omega} < \infty \},
$$

we define the norm

$$
||u||_{BV(\mathcal{Q})} = ||u||_{L^1(\mathcal{Q})} + ||Du||_{\mathcal{Q}}
$$

and the distance of strict convergence

$$
d_S(u, v) = ||u - v||_{L^1(\Omega)} + |||Du||_{\Omega} - ||Dv||_{\Omega}.
$$

Remark. It is clear that convergence in norm implies strict convergence.

Example. The space $BV(]0, \pi[)$, with the distance of strict convergence, is not complete. We define on $]0, \pi[$,

$$
u_n(x) = \frac{1}{n} \cos nx,
$$

so that $u_n \to 0$ in $L^1(]0, \pi[$). By Theorem [7.3.3,](#page-8-1) for every *n*,

$$
||Du_n||_{]0,\pi[} = \int_0^{\pi} |\sin nx| dx = 2.
$$

Hence $\lim_{j,k\to\infty} d_S(u_j, u_k) = \lim_{j,k\to\infty} ||u_j - u_k||_{L^1(]0,\pi[)} = 0$. If $\lim_{n\to\infty} d_S(u_n, v) = 0$, then $v = 0$. But $\lim d_S(u_n, 0) = 2$. This is a contradiction.

Proposition 7.3.5. *The normed space* $BV(\Omega)$ *is complete.*

Proof. Let (u_n) be a Cauchy sequence on the normed space $BV(\Omega)$. Then (u_n) is a Cauchy sequence in $L^1(\Omega)$, so that $u_n \to u$ in $L^1(\Omega)$.

Let $\varepsilon > 0$. There exists *m* such that for $j, k \ge m$, $||D(u_j - u_k)||_{Q} \le \varepsilon$. Theorem 7.3.2 implies that for $k \ge m$, $||D(u_k - u)|| \le \lim_{j \to \infty} ||D(u_j - u_k)||_{\Omega} \le \varepsilon$. Since $\varepsilon > 0$ is arbitrary, $||D(u_k - u)||_{\Omega} \to 0, k \to \infty$.

Lemma 7.3.6. *Let* $u \in L^1_{loc}(\mathbb{R}^N)$ *be such that* $||Du||_{\mathbb{R}^N} < \infty$ *. Then*

$$
\|\nabla(\rho_n * u)\|_{L^1(\mathbb{R}^N)} \leq \|Du\|_{\mathbb{R}^N} \text{ and } \|Du\|_{\mathbb{R}^N} = \lim_{n \to \infty} \|\nabla(\rho_n * u)\|_{L^1(\mathbb{R}^N)}.
$$

Proof. Let $v \in \mathcal{D}(\mathbb{R}^N;\mathbb{R}^N)$ be such that $||v||_{\infty} \leq 1$. It follows from Proposition 4.3.15 that

$$
\int_{\mathbb{R}^N} (\rho_n * u) \, \mathrm{div} \, v \, dx = \int_{\mathbb{R}^N} u \sum_{k=1}^N \rho_n * \partial_k v_k dx = \int_{\mathbb{R}^N} u \sum_{k=1}^N \partial_k (\rho_n * v_k) dx.
$$

The Cauchy–Schwarz inequality implies that for every $x \in \mathbb{R}^N$,

$$
\sum_{k=1}^N (\rho_n * \nu_k(x))^2 = \sum_{k=1}^N \left(\int_{\mathbb{R}^N} \rho_n(x-y) \nu_k(y) dy \right)^2 \leq \sum_{k=1}^N \int_{\mathbb{R}^N} \rho_n(x-y) (\nu_k(y))^2 dy \leq 1.
$$

Hence we obtain

$$
\int_{\mathbb{R}^N} (\rho_n * u) \, \mathrm{div} \, v \, dx \leq ||Du||_{\mathbb{R}^N},
$$

and by Theorem [7.3.3,](#page-8-1) $\|\nabla(\rho_n * u)\|_{L^1(\mathbb{R}^N)} \leq \|Du\|_{\mathbb{R}^N}$.

By the regularization theorem, $\rho_n * u \to u$ in $L^1_{loc}(\mathbb{R}^N)$. Theorems [7.3.2](#page-8-0) and [7.3.3](#page-8-1) ensure that

$$
||Du||_{\mathbb{R}^N} \leq \lim_{n \to \infty} ||\nabla(\rho_n * u)||_{L^1(\mathbb{R}^N)}.
$$

Theorem 7.3.7. *(a) For every* $u \in BV(\mathbb{R}^N)$ *,* $(\rho_n * u)$ *converges strictly to u.*

(b) (Gagliardo–Nirenberg inequality.) Let $N \geq 2$. There exists $c_{N} > 0$ such that for $every u \in BV(\mathbb{R}^N)$,

$$
||u||_{L^{N/(N-1)}(\mathbb{R}^N)} \leq c_{N}||Du||_{\mathbb{R}^N}.
$$

Proof. (a) Proposition 4.3.14 and the preceding lemma imply the strict convergence of $(\rho_n * u)$ to *u*.

(b) Let $N \ge 2$. We can assume that $\rho_{n_k} * u \to u$ almost everywhere on \mathbb{R}^N . It follows from Fatou's lemma and Sobolev's inequality in $\mathcal{D}^{1,1}(\mathbb{R}^N)$ that

$$
||u||_{N/(N-1)} \leq \lim_{k \to \infty} ||\rho_{n_k} * u||_{N/(N-1)} \leq c \lim_{N \to \infty} ||\nabla(\rho_{n_k} * u)||_1 = c \, ||Du||_{\mathbb{R}^N}.
$$

7.4 Perimeter

The *perimeter* of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1. *Let* Ω *be an open subset of* \mathbb{R}^N *of class* C^1 *with a bounded boundary* Γ*. Then*

$$
\int_{\Gamma} d\gamma = ||D\chi_{\mathcal{Q}}||_{\mathbb{R}^N}.
$$

Proof. Let $v \in \mathcal{D}(\mathbb{R}^N;\mathbb{R}^N)$ be such that $||v||_{\infty} \leq 1$. The divergence theorem and the Cauchy–Schwarz inequality imply that

$$
\int_{\Omega} \operatorname{div} v \, dx = \int_{\Gamma} v \cdot n \, d\gamma \le \int_{\Gamma} |v| \, |n| d\gamma \le \int_{\Gamma} d\gamma.
$$

Taking the supremum with respect to *v*, we obtain $||D\chi_{\Omega}||_{\mathbb{R}^N} \leq \int d\gamma$. Γ

We use the notation of Definition 9.2.1 and define

$$
U = \{x \in \mathbb{R}^N : \nabla \varphi(x) \neq 0\},\
$$

so that $\Gamma \subset U$. The theorem of partitions of unity ensures the existence of $\psi \in \mathcal{D}(U)$ such that $0 \leq \psi \leq 1$ and $\psi = 1$ on Γ . We define

$$
\nu(x) = \psi(x)\nabla\varphi(x)/|\nabla\varphi(x)|, x \in U
$$

= 0, $x \in \mathbb{R}^N \setminus U$.

It is clear that $v \in \mathcal{K}(\mathbb{R}^N;\mathbb{R}^N)$ and for every $\gamma \in \Gamma$, $v(\gamma) = n(\gamma)$. For every $m \geq$ 1, $w_m = \rho_m * v \in \mathcal{D}(\mathbb{R}^N;\mathbb{R}^N)$. We infer from the divergence and regularization theorems that

$$
\lim_{m\to\infty}\int_{\Omega} \text{div } w_m \, dx = \lim_{m\to\infty}\int_{\Gamma} w_m \cdot n \, d\gamma = \int_{\Gamma} n \cdot n \, d\gamma = \int_{\Gamma} d\gamma.
$$

By definition, $||v||_{\infty} \le 1$, and by the Cauchy–Schwarz inequality,

$$
\sum_{k=1}^N (\rho_m * \nu_k(x))^2 = \sum_{k=1}^N \left(\int_{\mathbb{R}^N} \rho_m(x-y) \nu_k(y) dy \right)^2 \le \sum_{k=1}^N \int_{\mathbb{R}^N} \rho_m(x-y) (\nu_k(y))^2 dy \le 1.
$$

We conclude that $\int_{\Gamma} d\gamma \leq ||D\chi_{\mathcal{Q}}||_{\mathbb{R}^N}$.

The preceding theorem suggests a functional definition of the perimeter due to De Giorgi.

Definition 7.4.2. Let *A* be a measurable subset of \mathbb{R}^N . The perimeter of *A* is defined by $p(A) = ||D \chi_A||_{\mathbb{R}^N}$.

The proof of the *Morse–Sard theorem* is given in Sect. 9.3.

Theorem 7.4.3. *Let* Ω *be an open subset of* \mathbb{R}^N *and* $u \in C^\infty(\Omega)$ *. Then the Lebesgue measure of*

 ${t \in \mathbb{R} : there exists x \in \Omega such that u(x) = t and \nabla u(x) = 0}$

is equal to zero.

Theorem 7.4.4. *Let* $1 < p < \infty$ *, u* \in *LP*(Ω)*, u* \geq 0*, and* $g \in L^{p'}(\Omega)$ *. Then*

(a)
$$
\int_{\Omega} g u dx = \int_{0}^{\infty} dt \int_{u>t} g dx;
$$

\n(b) $||u||_{p} \le \int_{0}^{\infty} m((u>t))^{1/p} dt;$
\n(c) $||u||_{p}^{p} = \int_{0}^{\infty} m((u>t))pt^{p-1} dt.$

Proof. (a) We deduce from Fubini's theorem that

$$
\int_{\Omega} g u dx = \int_{\Omega} dx \int_0^{\infty} g X_{u>t} dt
$$

$$
= \int_0^{\infty} dt \int_{\Omega} g X_{u>t} dx
$$

$$
= \int_0^{\infty} dt \int_{u>t} g dx.
$$

(b) If $||g||_{p'} = 1$, we obtain from Hölder's inequality that

$$
\int_{\Omega} g u dx \le \int_0^{\infty} m(\{u > t\})^{1/p} dt.
$$

It suffices then to take the supremum.

(c) Define $f(t) = t^p$. It follows from Fubini's theorem that

$$
||u||_p^p = \int_{\Omega} dx \int_0^u f'(t)dt
$$

=
$$
\int_{\Omega} dx \int_0^{\infty} \chi_{u>t} f'(t)dt
$$

=
$$
\int_0^{\infty} dt \int_{\Omega} \chi_{u>t} f'(t)dx
$$

=
$$
\int_0^{\infty} m(\{u > t\}) f'(t)dt.
$$

Theorem 7.4.5 (Coarea formula). *Let* $u \in \mathcal{D}(\mathbb{R}^N)$ *and* $f \in C^1(\mathbb{R}^N)$ *. Then*

$$
\int_{\mathbb{R}^N} f |\nabla u| \, dx = \int_0^\infty dt \int_{|u|=t} f \, d\gamma.
$$

Moreover, for every open subset Ω of \mathbb{R}^N ,

$$
\int_{\Omega} |\nabla u| \, dx = \int_0^{\infty} dt \int_{|u|=t} \chi_{\Omega} \, d\gamma.
$$

Proof. By the Morse–Sard theorem, for almost every $t \in \mathbb{R}$,

$$
u(x) = t \Longrightarrow \nabla u(x) \neq 0.
$$

Hence for almost every $t > 0$, the open sets $\{u > t\}$ and $\{u < -t\}$ are smooth.

We infer from Lemma 6.1.1, Theorem [7.4.4,](#page-13-0) and the divergence theorem that for every $v \in C^1(\mathbb{R}^N;\mathbb{R}^N)$,

$$
\int_{\mathbb{R}^N} \nabla u \cdot v \, dx = -\int_{\mathbb{R}^N} u \, \text{div } v \, dx
$$

$$
= -\int_0^\infty dt \int_{u>t} \text{div } v \, dx + \int_0^\infty dt \int_{u < -t} \text{div } v \, dx
$$

$$
= \int_0^\infty dt \int_{|u|=t} v \cdot \frac{\nabla u}{|\nabla u|} dy.
$$

Define

$$
v_n = f \nabla u / \sqrt{|\nabla u|^2 + 1/n}.
$$

Lebesgue's dominated convergence theorem implies that

$$
\int_{\mathbb{R}^N} f |\nabla u| dx = \lim_{n \to \infty} \int_{\mathbb{R}^N} \nabla u \cdot v_n dx = \lim_{n \to \infty} \int_0^{\infty} dt \int_{|u|=t} v_n \cdot \frac{\nabla u}{|\nabla u|} d\gamma = \int_0^{\infty} dt \int_{|u|=t} f dy.
$$

Define

$$
\omega_n = \{x \in \Omega : d(x, \partial \Omega) > 1/n \text{ and } |x| < n\}.
$$

For all *n*, there exists $\varphi_n \in \mathcal{D}(\omega_{n+1})$ such that $0 \leq \varphi_n \leq 1$ and $\varphi_n = 1$ on ω_n . Levi's monotone convergence theorem implies that

$$
\int_{\Omega} |\nabla u| dx = \lim_{n \to \infty} \int_{\mathbb{R}^N} \varphi_n |\nabla u| dx = \lim_{n \to \infty} \int_0^{\infty} dt \int_{|u|=t} \varphi_n d\gamma = \int_0^{\infty} dt \int_{|u|=t} \chi_{\Omega} d\gamma. \quad \Box
$$

Lemma 7.4.6. *Let* $1 \leq p \leq N$ *, let* K *be a compact subset of* \mathbb{R}^N *, and a* > cap_{*n*}(K)*.* Then there exist V open and $v \in \mathcal{D}(\mathbb{R}^N)$ such that $K \subset V, \chi_V \leq v,$ and \int_{Ω} $|\nabla v| dx < a$.

Proof. By assumption, there exist $u \in \mathcal{D}^{1,p}(\mathbb{R}^N)$ and *U* open such that $K \subset U$, $X_U \leq u$, and

$$
\int_{\mathbb{R}^N} |\nabla u|^p dx < a.
$$

There exists *V* open such that $K \subset V \subset\subset U$. For *m* large enough, $\chi_V \leq w = \rho_m * u$ and

$$
\int_{\mathbb{R}^N} |\nabla w|^p dx < a.
$$

Let $\theta_n(x) = \theta(|x|/n)$ be a truncating sequence. For *n* large enough, $\chi_V \le v = \theta_n w$ and

$$
\int_{\mathbb{R}^N} |\nabla v|^p dx < a. \qquad \qquad \Box
$$

Theorem 7.4.7. *Let* $N \geq 2$ *and let* K *be a compact subset of* \mathbb{R}^N *. Then*

$$
cap_1(K) = inf\{p(U) : U \text{ is open and bounded, and } U \supset K\}.
$$

Proof. We denote by $Cap_1(K)$ the second member of the preceding equality. Let *U* be open, bounded, and such that $U \supset K$. Define $u_n = \rho_n * \chi_U$. For *n* large enough, $u \in \mathcal{D}_{K}^{1,1}(\mathbb{R}^{N})$. Lemma [7.3.6](#page-11-0) implies that for *n* large enough,

$$
\mathrm{cap}_1(K) \le \int_{\mathbb{R}^N} |\nabla u_n| dx \le ||D\chi_U||_{\mathbb{R}^N} = p(U).
$$

Taking the infimum with respect to U, we obtain $cap_1(K) \le Cap_1(K)$.

Let *a* > cap₁(*K*). By the preceding lemma, there exist *V* open and $v \in \mathcal{D}(\mathbb{R}^N)$ such that $K \subset V$, $\chi_V \leq v$ and $\int_{\mathbb{R}^N} |\nabla v| dx < a$. We deduce from the Morse–Sard theorem and from the coarea formula that

$$
\mathrm{Cap}_1(K) \le \int_0^1 dt \int_{v=t} dy \le \int_0^\infty dt \int_{v=t} dy = \int_{\mathbb{R}^N} |\nabla v| dx < a.
$$

Since $a > cap_1(K)$ is arbitrary, we conclude that $Cap_1(K) \le cap_1(K)$.

7.5 Comments

The book by Maz'ya ([51]) is the main reference on functions of bounded variations and on capacity theory. The beautiful proof of the coarea formula (Theorem [7.4.5\)](#page-14-0) is due to Maz'ya. The derivative of the function of unbounded variation in Sect. [7.3](#page-8-2) is Denjoy–Perron integrable (since it is a derivative); see *Analyse, fondements techniques, évolution* by J. Mawhin ([49]).

7.6 Exercises for Chap. [7](#page-0-0)

1. Let $1 \leq p \leq N$. Then

$$
\lambda p + N < 0 \Leftrightarrow (1 + |x|^2)^{\lambda/2} \in W^{1,p}(\mathbb{R}^N),
$$

$$
(\lambda - 1)p + N < 0 \Leftrightarrow (1 + |x|^2)^{\lambda/2} \in \mathcal{D}^{1,p}(\mathbb{R}^N).
$$

- 2. What are the interior and the closure of $W^{1,1}(\Omega)$ in $BV(\Omega)$?
- 3. Let $u \in L^1_{loc}(\Omega)$. The following properties are equivalent:
	- (a) $||Du||_Q < \infty;$
	- (b) there exists $c > 0$ such that for every $\omega \subset\subset \Omega$ and every $y \in \mathbb{R}^N$ such that $|y| < d(\omega, \partial\Omega)$

$$
||\tau_y u - u||_{L^1(\omega)} \le c|y|.
$$

4. (Relative variational capacity.) Let Ω be an open bounded subset of \mathbb{R}^N (or more generally, an open subset bounded in one direction). Let $1 \le p < \infty$ and let *K* be a compact subset of Ω. The capacity of degree *p* of *K* relative to Ω is defined by

$$
\operatorname{cap}_{p,Q}(K) = \inf \left\{ \int_{\Omega} |\nabla u|^p dx : u \in W^{1,p}_K(\Omega) \right\},\
$$

where

$$
W_K^{1,p}(\Omega) = \{ u \in W_0^{1,p}(\Omega) : \text{there exists } \omega \text{ such that } K \subset \omega \subset\subset \Omega
$$

and $\chi_\omega \le u \text{ a.e. on } \Omega \}.$

Prove that the capacity of degree *p* relative to Ω is a capacity on Ω.

5. Verify that

$$
\operatorname{cap}_{p,Q}(K) = \inf \left\{ \int_{\Omega} |\nabla u|^p dx : u \in \mathcal{D}_K(\Omega) \right\},\
$$

where

 $\mathcal{D}_K(\Omega) = \{u \in \mathcal{D}(\Omega) : \text{there exists } \omega \text{ such that } K \subset \omega \subset\subset \Omega \text{ and } \chi_\omega \leq u\}.$

- 6. (a) If $cap_{n,Q}(K) = 0$, then $m(K) = 0$. *Hint*: Use Poincaré's inequality.
	- (b) If $p > N$ and if cap_{p, $Q(K) = 0$, then $K = \phi$. *Hint*: Use the Morrey} inequalities.
- 7. Assume that cap_{p, $\mathcal{Q}(K) = 0$. Then for every $u \in \mathcal{D}(\Omega)$, there exists $(u_n) \subset$} $\mathcal{D}(\Omega \setminus K)$ such that $|u_n| \leq |u|$ and $u_n \to u$ in $W^{1,p}(\Omega)$.
- 8. (Dupaigne–Ponce, 2004.) Assume that cap_{1, $Q(K) = 0$}. Then $W^{1,p}(Q \setminus K) =$ $W^{1,p}(Q)$. *Hint*: Consider first the bounded functions in $W^{1,p}(Q \setminus K)$.
- 9. For every $u \in BV(\mathbb{R}^N)$,

 $||D|u||_{\mathbb{R}^N} \leq ||Du^+||_{\mathbb{R}^N} + ||Du^-||_{\mathbb{R}^N} = ||Du||_{\mathbb{R}^N}.$

Hint: Consider a sequence $(u_n) \subset W^{1,1}(\mathbb{R}^N)$ such that $u_n \to u$ strictly in $BV(\mathbb{R}^N)$.

10. Let $u \in L^1(\Omega)$ and $f \in \mathcal{B}C^1(\Omega)$. Then

$$
||D(fu)||_{\mathcal{Q}} \leq ||f||_{\infty}||Du||_{\mathcal{Q}} + ||\nabla f||_{\infty}||u||_{L^{1}(\mathcal{Q})}.
$$

11. (Cheeger constant.) Let Ω be an open bounded domain in \mathbb{R}^N and define

 $h(\Omega) = \inf \{ p(\omega) / m(\omega) : \omega \subset \Omega \text{ and } \omega \text{ is of class } C^1 \}.$

Then for $1 \le p < \infty$ and every $u \in W_0^{1,p}(\Omega)$,

$$
\left(\frac{h(\mathcal{Q})}{p}\right)^p\int_{\mathcal{Q}}|u|^pdx\leq \int_{\mathcal{Q}}|\nabla u|^pdx.
$$

Hint: Assume first that $p = 1$ and apply the coarea formula to $u \in \mathcal{D}(\Omega)$. 12. Let *u* ∈ *W*^{1,1}(Q). Then

$$
\int_{\Omega} \sqrt{1+|\nabla u|^2} dx = \sup \left\{ \int_{\Omega} (\nu_{N+1} + u \sum_{k=1}^{N} \partial_k u_k) dx : u \in \mathcal{D}(\Omega; \mathbb{R}^{N+1}), ||u||_{\infty} \leq 1 \right\}.
$$