Chapter 7
Capacity

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1. A capacity on X is a function
cap : K — [0, +0c0] : K — cap(K)

such that:

(C)) (monotonicity.) For every A, B € K such that A C B, cap(A) < cap(B).

(C») (regularity.) For every K € K and for every a > cap(K), there exists U € O
such that K c U, and for all C € K satisfying C c U, cap(C) < a.

(C3) (strong subadditivity.) For every A, B € K,

cap(A U B) + cap(A N B) < cap(A) + cap(B).
The Lebesgue measure of a compact subset of R" is a capacity.

We denote by cap a capacity on X. We extend the capacity to the open
subsets of X.

Definition 7.1.2. The capacity of U € O is defined by
cap(U) = supfcap(K) : K € K and K c U}.

Lemma 7.1.3. Let A, B € O and K € K be such that K C A U B. Then there exist
L. Me K suchthat LC A, M C B, and K = LU M.
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Proof. The compact sets K\ A and K\ B are disjoint. Hence there exist disjoint open
sets U and V such that K\ A c U and K\ B C V. It suffices to define L = K\ U and
M=K\V. O

Proposition 7.1.4. (a) (monotonicity.) For every A,B € QO such that A C B,
cap(A) < cap(B).

(b) (regularity.) For every K € K, cap(K) = inf{cap(U) : U € O and U D K}.

(c) (strong subadditivity.) For every A, B € O,

cap(A U B) + cap AN B) < cap(A) + cap(B).

Proof. (a) Monotonicity is clear.

(b) Let us define Cap(K) = inf{cap(U) : U € O and U D> K}. By definition,
cap(K) < Cap(K). Let a > cap(K). There exists U € O such that K c U and
for every C € K satisfying C c U, cap(C) < a. Hence Cap(K) < cap(U) < a.
Since a > cap(K) is arbitrary, we conclude that Cap(K) < cap(K).

(¢c) Let A,B € O, a < cap(A U B), and b < cap(A N B). By definition, there exist
K,C e Ksuchthat K Cc AUB,C C ANB,a < cap(K), and b < cap(C). We can
assume that C C K. The preceding lemma implies the existence of L, M € K
such that LC A, M Cc B,and K = L U M. We can assume that C € L N M. We
obtain by monotonicity and strong subadditivity that

a+b < cap(K) + cap(C) < cap(LU M) + cap(LN M)
< cap(L) + cap(M) < cap(A) + cap(B).

Since a < cap(AU B) and b < cap(A N B) are arbitrary, the proof is complete. O
We extend the capacity to all subsets of X.
Definition 7.1.5. The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U € O and U D A}.

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6. (a) (monotonicity.) For every A, B C X, cap(A) < cap(B).
(b) (strong subadditivity.) For every A, B C X,

cap(A U B) + cap(A N B) < cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let A,BC Xand U,V € Obe suchthat A Cc U and B C V. We have

cap(A U B) + cap(A N B) < cap(U U V) + cap(U N V) < cap(U) + cap(V).

It is easy to conclude the proof. O
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Proposition 7.1.7. Let (K,) be a decreasing sequence in K. Then

cap [ﬂ Kn] = lim cap(K,).

n=1

Proof. LetK = ﬂKn and U € O, U > K. By compactness, there exists m such that
n=1

K, ¢ U. We obtain, by monotonicity, cap(K) < limcap(K,) < cap(U). It suffices
then to take the infimum with respect to U. O

Lemma 7.1.8. Let (U,) be an increasing sequence in O. Then

cap (U U,,] = lim cap(U,).
=1 n—oo
Proof. Let U = UU" and K € K,K c U. By compactness, there exists m such

n=1
that K c U,,. We obtain by monotonicity cap(K) < limcap(U,) < capU. It suffices
then to take the supremum with respect to K. O

Theorem 7.1.9. Let (A,) be an increasing sequence of subsets of X. Then

cap (U An] = lim cap(A,).

n=1

Proof. LetA = UA”' By monotonicity, limcap(A,) < cap(A). We can assume that

n=1
limcap(A,) < +oc0.Lete > 0anda, = 1 — 1/(n+ 1). We construct, by induction, an

n—oo

increasing sequence (U,) C O such that A,, c U,, and
cap(U,) < cap(A,) + € a,. (*)

When n = 1, (x) holds by definition. Assume that (x) holds for n. By definition,
there exists V € O such that A,,; C V and

cap(V) < cap(Ap+1) + &(an+1 — an)-
We define U,y; = U, UV, so that A, C U,;;. We obtain, by strong subadditivity,
cap(Uns1) < cap(U,,) + cap(V) = cap(U, N V)

< cap(Ay) + € a, + cap(Aps1) + (ans1 — a,) — cap(A,)
= Cap(An+l) + & ap+1.
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It follows from (*) and the preceding lemma that

00

cap(A) < cap [U U,,] = lim cap(U,) < lim cap(A,) + €.

n=1

Since € > 0 is arbitrary, the proof is complete. O

Corollary 7.1.10 (Countable subadditivity). Let (A,) be a sequence of subsets
of X. Then cap(U An] < anp(An).

n=1 n=1

k
Proof. Let By = UAk. We have
n=1

o)

cap (UA") = cap [UB") = klgg cap(By) < Z cap(4,). 0O
n=1 k=1 =1

Definition 7.1.11. The outer Lebesgue measure of a subset of R is defined by

m*(A) = inf{m(U) : U is open and U D A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the space D'"P(RV).

Definition 7.2.1. Let1 < p < N. On the space
DPRY) = (u e L” (RY) : Vu € LP(RY; RV))},

we define the norm
||“||Z)1=F(RN) = ||VM||p~
Proposition 7.2.2. Let1 < p < N.
(a) The space D(RY) is dense in D"P(RM).
(b) (Sobolev’sinequality.) There exists ¢ = c(p, N) such that for every u € D"P(RV),

lluellpe < el Vullp.

(c) The space DVP(RN) is complete.

Proof. The space D(RY) is dense in D'P(R") with the norm |ull,» + [|Vul|,. The
argument is similar to that of the proof of Theorem 6.1.10.
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Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u €
DIPRY),
IVull, < llullye + IVull, < (¢ + DIVull,.
Let (u,) be a Cauchy sequence in D""P(R"). Then u, — u in L”" (RV), and for

1 <k <N, 0, — vy in LP(RV). By the closing lemma, for 1 < k < N, dyu = vy.
We conclude that u,, — u in DV (RY). m]

Proposition 7.2.3. Every bounded sequence in D" (RY) contains a subsequence
converging in Lllo C(RN ) and almost everywhere on RV,

Proof. Cantor’s diagonal argument will be used. Let (u,) be bounded in D'?(RV).
By Sobolev’s inequality, for every k > 1, (u,) is bounded in W'!(B(0, k)). Rellich’s
theorem and Proposition 4.2.10 imply the existence of a subsequence (u;,,) of (u,)
converging in L' (B(0, 1)) and almost everywhere on B(0, 1). By induction, for every
k, there exists a subsequence (uy,,) of (ux—1,) converging in LY(B(0, k)) and almost
everywhere on B(0, k). The sequence v, = u,, converges in Llloc(]RN ) and almost
everywhere on RV, |

Definition 7.2.4. Let 1 < p < N and let K be a compact subset of RY. The capacity
of degree p of K is defined by

cap,,(K) = inf{ fR IVuldx:ue Dgp(RN)},

where
D}(‘P (RM) = {u € D'P(RY) : there exists U open such that K ¢ U and Xy < u

almost everywhere}.
Theorem 7.2.5. The capacity of degree p is a capacity on RV,

Proof. (a) Monotonicity is clear by definition.
(b) Let K be compact and a > cap,(RY). There exist u € D"(R") and U open

such that K c U, Xy < u almost everywhere, and |[VulPdx < a. For every
RN
compact set C ¢ U, we have

cap,(C) < fN [VulPdx < a,
R

so that cap), is regular.

(c) Let A and B be compact sets, a > capp(A), and b > capp(B). There exist u,v €
D'P(RN) and U and V open sets such that A c U, BC V, Xy < u,and Xy < v
almost everywhere and

f [VulPdx < a, f |VviPdx < b.
RN RN
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. 1,
R") and min(u,v) € D,",

Since max(u,v) € D RM), Corollary 6.1.14

SINEe AUB
implies that

|V max(u, v)|Pdx + f |V min(u, v)IP = f [VulPdx + f [VvIPdx < a+b.
RV RN

RN RN

We conclude that
cap,(AU B) +cap,(ANB) < a+b.

Since a > cap,(A) and b > cap,,(B) are arbitrary, cap,, is strongly subadditive.
O

The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6. There exists a constant ¢ = c¢(p, N) such that for every A ¢ RV,

m*(A) < ¢ cap, (AN NP,

Proof. Let K be a compact set and u € Z)}{”7 (RM). Tt follows from Sobolev’s
inequality that
. r'lp
m(K) Sf [u|P dx < c(f IVulpdx) .
RY RV

m(K) <c cappyRN(K)N/(N”’).

By definition,

To conclude, it suffices to extend this inequality to open subsets of RV and to
arbitrary subsets of RV. i

The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7. Let K be a compact set. Then
capp(aK) = cap,(K).

Proof. Let a > cap,(9K). There exist u € D"P(RY) and an open set U such that
0K Cc U, Xy < u almost everywhere, and

[VulPdx < a.
]RN

Let us define V = U U K and v = max(u,Xy). Thenv € D;(’p(]RN) and

p p

- )

[VvlPdx < [VulPdx
RV RV
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so that cap,,(K) < a. Since a > cap,(9K) is arbitrary, we obtain
cap,(K) < capp(ﬁK) < cap,(K). O

Example. Let 1 < p < N and let B be a closed ball in RY. We deduce from the
preceding propositions that

0 < cap,(B) = cap,(9B).

Theorem 7.2.8. Let 1 < p < N and U an open set. Then
cap,(U) = inf{f [VulPdx : u € DVP(RM), Xy < u almost everywhere}.
]RN

Proof. Let us denote by Cap,(U) the second member of the preceding equality. It
is clear by definition that cap,(U) < Cap,(U).
Assume that cap,(U) < oo. Let (K,) be an increasing sequence of compact

subsets of U such that U = UK”’ and let (u,) € D'P(RV) be such that for every n,
n=1
Xk, < u, almost everywhere and

B [Vu,|Pdx < cap,(Ky) + 1/n.
R

The sequence (u,) is bounded in D'”(R"). By Proposition 7.2.3, we can assume that
u, = uin LlloC (R") and almost everywhere. It follows from Sobolev’s inequality that
u € L7 (RV). Theorem 6.1.7 implies that

fRN [VulPdx < lim Vu,|Pdx < ’}grolo cap,(Ky) < cap,(U).

n—oo RN

(By Theorem 7.1.9, lim capp(Kn) = capp(U).) Since almost everywhere, Xy < u,
we conclude that Cap,(U) < cap,(U). O
Corollary 7.2.9. Let 1 < p < N, and let U and V be open sets such that U Cc V
and m(V\ U) = 0. Then capp(U) = capp(V).

Proof. Let u € D"P(RN) be such that X < u almost everywhere. Then Xy < u
almost everywhere. O

Corollary 7.2.10 (Capacity inequality). Let 1 < p < N and u € D(R"). Then for
everyt >0,

cap,({lul > 1)) < 17 fR Vald.

Proof. By Corollary 6.1.14, |u|/t € D""P(RN). O
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Definition 7.2.11. Let 1 < p < N. A function v : RV — R is quasicontinuous
of degree p if for every & > 0, there exists an w-open set such that cap,(w) < &
and v R¥o
equal quasi-everywhere if capp({|v -w| >0} =0.

is continuous. Two quasicontinuous functions of degrees p, v, and w are

Proposition 7.2.12. Let 1 < p < N and let v and w be quasicontinuous functions of
degree p and almost everywhere equal. Then v and w are quasi-everywhere equal.

Proof. By assumption, m(A) = 0, where A = {|v — w| > 0}, and for every n, there
exists an w,-open set such that capp(wn) < 1/nand|v - W”R”\w is continuous. It
follows that A U w,, is open. We conclude, using Corollary 7.2.9, that

capp(A) < capp(A Uwy,) = capp(wn) — 0, n— oo O

Proposition 7.2.13. Let 1 < p < N and u € D"P(RN). Then there exists a function
v quasicontinuous of degree p and almost everywhere equal to u.

Proof. By Proposition 7.2.2, there exists (u,) C D(RY) such that u, — u
in D'P(RY). Using Proposition 7.2.3, we can assume that u, — u almost

everywhere and
Z 2kpf IV(upes1 — I/tk)|de < 00,
k=1 RY

We define

00

Up = (g = el > 279, wn = | J Uk

k=m

Corollary 7.2.10 implies that for every k,

cap,(Uy) < 2kpf [V(utgs1 — wo)lPdx.
RN

It follows from Corollary 7.1.10 that for every m,
cap,(wm) < Z 2k fN V(s — ulPdx — 0, m — co.
k=m R

We obtain, for every x € RV \ w,, and every k > j > m,

luj(x) — ur(x)] < 2",

00

so that (u,) converges simply to v on RV \ ﬂa)m. Moreover, V|RN\w is continuous,

m=1
(o)

since the convergence of (u,) on RY \ w,, is uniform. For x € ﬂwm, we define

m=1
v(x) = 0. Since by Proposition 7.2.6, m(w,,) — 0, we conclude that u = v almost

everywhere. O
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1. Let Q be an open subset of RY. The divergence of v € C!(Q; RY)

is defined by
N
divv = Z OVi.
k=1

The total variation of u € LIIOC(Q) is defined by

[|Dullo = sup{f udivvdx:ve DQ;RY), IVlle < 1},
Q

where
1/2

N
Ml = sup[Z(vk(x»Z]

xeQ =1

Theorem 7.3.2. Let (u,) be such that u,, — u in LIIOC(Q). Then

IDullg < lim [|Du|lq.

n—oo

Proof. Letv € D(Q;R") be such that ||v|| < 1. We have, by definition,

f udivvdx = lim | u,divvdx < lim ||Du,l|o.
Q

n—oo Jo n—oo

It suffices then to take the supremum with respect to v. O
Theorem 7.3.3. Letu e Wlt‘cl (). Then the following properties are equivalent:

(a) Vu e LY(Q;RM);
(b) |IDullo < oo.

In this case,

IDulle = [IVull 1)

Proof. (a) Assume that Vu € L'(Q; RV). Let v € D(2;R") be such that ||Vl < 1.
It follows from the Cauchy—Schwarz inequality that

N
f udivvdx = — Z vedyu dx < f [Vuldx.
Q Q

Q%=1

Hence ||Dullo < [[Vullig)-
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Theorem 4.3.11 implies the existence of (w,) C D(2; RY) converging to Vu
in L'(Q; RY). We can assume that w, — Vu almost everywhere on Q. Let us

define
Vi = Wi/ VIwa? + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

IVl ) = fquIdx = lim fvn - Vu dx < ||Dul|g.
Q n—-oo Q
(b) Assume that ||Du||o < oo and define
wp={xeQ:dx,dQ) > 1/nand |x| < n}.
Then by the preceding step, we obtain
IVullpi @,y = l1Dully, < lIDullg < co.

Levi’s theorem ensures that Vu € L'(Q; RV). O

Example. There exists a function everywhere differentiable on [—1, 1] such that
I1Dull—1,1f = +o0. We define

u(x) =0, x=0,
=xzsinx—12, 0<|x <1.
‘We obtain
u'(x) =0, x=0,
=2xsind —2coss, O<|x<1.
X X X

The preceding theorem implies that

+00 = V}LIQOHM/“LI(]UM[) < [|Dullj-1,11-

! 1 dx * dt
2 | cos —2|— = |cost|— = +oo.
0 X X 1 t

The function u has no weak derivative!

Indeed,

Example (Cantor function). There exists a continuous nondecreasing function with
almost everywhere zero derivative and positive total variation. We use the notation
of the last example of Sect.2.2. We consider the Cantor set C corresponding to
¢, = 1/3™*1. Observe that

m(C) = 1- 273" =0
j=0
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U (X) =(%) j;ch(t)dt.

It is easy to verify by symmetry that

We define on R,

11
[[tpr1 = tnlloo < 35wl

By the Weierstrass test, (u,) converges uniformly to the Cantor function u € C(R).
Forn > m, u,, = 0 on R\ C,,. The closing lemma implies that ¥’ = 0 on R \ C,,.

Since m is arbitrary, u’ = 0 on R \ C. Theorems 7.3.2 and 7.3.3 ensure that

IDullr < lim [juy || 1wy = 1.
Let v € D(R) be such that ||[v||.c = 1 and v = —1 on [0, 1] and integrate by parts:

3 n
fv’u dx=1lim | Vu,dx=-1lm | vu,dx= lim (E) m(C,) = 1.
R

n—oo R n—oo R n—oo

We conclude that ||Dul|g = 1. The function u has no weak derivative.

Definition 7.3.4. Let Q be an open subset of RY. On the space
BV(Q) = {u € L'(Q) : |Dullg < co},

we define the norm
lullavia) = llullpio) + I1Dullo

and the distance of strict convergence
ds (u,v) = llu =Vl @) + |IDulle = IDVIlg|-

Remark. Tt is clear that convergence in norm implies strict convergence.

Example. The space BV(]0,n[), with the distance of strict convergence, is not
complete. We define on ]0, z[,

1
u,(x) = — cosnx,
n
so that u,, — 0in L'(]0, xr[). By Theorem 7.3.3, for every n,

T
Dunllion = f | sinnldx = 2.
0
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Hence llkim ds(uj,u) = lkim [lu; — urllpr oo = 0. If limdg (uy,v) = 0, thenv = 0.
JR—0 ’ Jok—oo 7 n—oo

But limds (u,,0) = 2. This is a contradiction.

Proposition 7.3.5. The normed space BV (L) is complete.

Proof. Let (u,) be a Cauchy sequence on the normed space BV(£). Then (u,) is a
Cauchy sequence in L' (Q), so that u, — u in L' (Q).

Let & > 0. There exists m such that for j,k > m, [|[D(u; — w)lle < &. Theorem
7.3.2 implies that for k > m, ||D(u — w)|| < lim [|[D(u; — wp)lle < &. Since € > 0 is

Jj—0

arbitrary, ||D(uy — w)llo — 0, k — oo. O
Lemma 7.3.6. Letue L}

loc

(RY) be such that ||Dul|gy < co. Then

IV = ey < [1Dullpy and [|Dullpy = 1im [[V(py * )iz g

Proof. Letv € D(RN;R") be such that ||v]|. < 1. It follows from Proposition 4.3.15
that

N N
(p,,*u)divvdxzf u pn*ﬁvdxzf u y Ok(on * vi)dx.

The Cauchy—Schwarz inequality implies that for every x € R,

N

N 2 N
D on () = ( fR pulx= y)w(y)dy) <>, fR pulx =) dy < 1.
k=1 k=1

k=1
Hence we obtain

f (o5 * u) div v dx < ||Dul|gw,
RN

and by Theorem 7.3.3, ||V(p, * u)llpiwyy < |[Dullgy.
By the regularization theorem, p,, * 4 — u in Llloc(]RN ). Theorems 7.3.2 and 7.3.3
ensure that

[[1Dullgy < 1im [[V(p, * w)l|L1 ). o

n—oo

Theorem 7.3.7. (a) For every u € BV(RY), (p, * u) converges strictly to u.
(b) (Gagliardo—Nirenberg inequality.) Let N > 2. There exists ¢, > 0 such that for

every u € BV(RV),
[leall pvrev-n oy < CN||DM||RN-

Proof. (a) Proposition 4.3.14 and the preceding lemma imply the strict conver-
gence of (p,, * u) to u.
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(b) Let N > 2. We can assume that p,, *u — u almost everywhere on RV Tt follows
from Fatou’s lemma and Sobolev’s inequality in D! (R") that

llully/v-1 £ lim [lo,, * ullyyv-1) < ¢ lim [[V(pp, * wlli = ¢ ||Dullgv. O
oo N n—oo N

7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1. Let Q be an open subset of RN of class C' with a bounded
boundary I'. Then

de = [IDXollg~-
r

Proof. Let v € D(RY;RM) be such that ||v||, < 1. The divergence theorem and the
Cauchy—-Schwarz inequality imply that

fdivvdxzfv-ndysf|v||n|dysfdy.
Q r r r

Taking the supremum with respect to v, we obtain ||DX gl|gy < f dy.
r

‘We use the notation of Definition 9.2.1 and define
U={xeR": Vo) # 0},

so that I" C U. The theorem of partitions of unity ensures the existence of Yy € D(U)
such that 0 < < 1 and ¢ = 1 on I". We define

v(x) = Y()Ve(x)/IVe(x)l, x € U
=0, xeRV\ U

It is clear that v € K (RV;RY) and for every v € I, v(y) = n(y). For every m >

1, wy = pm*v € D(RY; RY). We infer from the divergence and regularization
theorems that

limfdivwmdxz lim w,,,-ndy:fwndy:fdy.
m—o ) m—oo J r r

By definition, ||v||. < 1, and by the Cauchy—Schwarz inequality,
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N N 2 N

PNCEINENEDY ( f P = y)w(y)dy) <> f Pn(x = D) dy < 1.

=1 =1 WRY =1 VRY

We conclude that fdy < IDXollrw. O
r

The preceding theorem suggests a functional definition of the perimeter due to
De Giorgi.

Definition 7.4.2. Let A be a measurable subset of RY. The perimeter of A is defined
by p(A) = ||DX allg~.

The proof of the Morse—Sard theorem is given in Sect. 9.3.

Theorem 7.4.3. Let Q be an open subset of RN and u € C*(Q). Then the Lebesgue
measure of

{t € R : there exists x € Q such that u(x) = t and Vu(x) = 0}

is equal to zero.

Theorem 7.4.4. Let 1 < p < oo, u € LP(Q), u >0, and g € LV (Q). Then

(a) fgudx—f dtf g dx;

(b) lull, < fo il > )P dr:

(c) llully = j:o m({u > t))pi””"dt.

Proof. (a) We deduce from Fubini’s theorem that

fgudx:fdxf g X > dt
Q Q 0
=f dtfg)(u>rdx
0 Q
=f dtf g dx.
0 u>t

(b) If|lgll,» = 1, we obtain from Holder’s inequality that

fg udx < f m({u > 1})"/Pdt.
Q 0

It suffices then to take the supremum.
(c) Define f(r) = ¢. It follows from Fubini’s theorem that
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lull? = f dx f P
Q 0
:fdxfooXu>tf’(t)dt
Q 0
= foodtf)(u>,f’(t)dx
0 Q

= foo m({u > t})f’ (t)dkt. O
0

Theorem 7.4.5 (Coarea formula). Let u € D(RY) and f € C'(RN). Then

f fIVuIdxzf dt | fady.
RN 0 lul=t

Moreover, for every open subset Q of RY,

f|Vu|dx=f dtf Xody.
Q 0 lul=t

Proof. By the Morse—Sard theorem, for almost every € R,
u(x) =t = Vu(x) # 0.

Hence for almost every ¢ > 0, the open sets {u > t} and {u < —¢} are smooth.
We infer from Lemma 6.1.1, Theorem 7.4.4, and the divergence theorem that for
every v € C'(RV; RV),

fVu-vdx:—f udivvdx
RN RV
—f dtf divvdx+f dtf divvdx
0 u>t 0 u<—t
dtf V. —
f e |Vu| @

Vu = f Vu/ |Vul? + 1/n.

Lebesgue’s dominated convergence theorem implies that

Define
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(ee] V (o]
f f|Vuldx = limf Vu-v, dx = lim dtf v,,-—udy =f dtf fdy.
RY n—eo Jpy n—e Jo = Vil 0 lul=t

Define
wp,={x€eQ : dx,00) > 1/nand |x| < n}.

For all n, there exists ¢, € D(w,+1) such that 0 < ¢, < 1 and ¢, = 1 on w,. Levi’s
monotone convergence theorem implies that

fquIdxz lim ©n|Vuldx = lim dtf tpndyzf dtf Xody. O
Q n—eo JRN n—e Jo lul=t 0 lul=t

Lemma 7.4.6. Let 1 < p < N, let K be a compact subset of RY, and a > cap,(K).

Then there exist V open andv € D(R) suchthat K C V, Xy < v, andfle| dx < a.
Q

Proof. By assumption, there exist u € D'"P(RY) and U open such that K ¢ U,

Xv < u, and

[VulPdx < a.
]RN

There exists V open such that K ¢ V cc U. For m large enough, Xy < w = p,, * u
and

|Vw|Pdx < a.
RN

Let 6,(x) = 6(|x|/n) be a truncating sequence. For n large enough, Xy < v = 6,w and

f IVv|Pdx < a. O
RN

Theorem 7.4.7. Let N > 2 and let K be a compact subset of RY. Then
cap,(K) = inf{p(U) : U is open and bounded, and U D> K}.

Proof. We denote by Cap,(K) the second member of the preceding equality. Let U
be open, bounded, and such that U > K. Define u, = p, * Xy. For n large enough,
ue D}(’I(RN ). Lemma 7.3.6 implies that for n large enough,

capy(K) < [ 1Vuldx < DXl = p(O),
R
Taking the infimum with respect to U, we obtain cap;(K) < Cap;(K).
Let a > cap,(K). By the preceding lemma, there exist V open and v € D(RY)
such that K ¢ V, Xy < v and f IVvldx < a. We deduce from the Morse—Sard
N

R
theorem and from the coarea formula that
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1 00
Capl(K)Sf dtf dysf dtf dy:f [Vvldx < a.
0 V=t 0 V=t RN

Since a > cap,(K) is arbitrary, we conclude that Cap;(K) < cap,(K). O

7.5 Comments

The book by Maz’ya ([51]) is the main reference on functions of bounded variations
and on capacity theory. The beautiful proof of the coarea formula (Theorem 7.4.5)
is due to Maz’ya. The derivative of the function of unbounded variation in Sect. 7.3
is Denjoy—Perron integrable (since it is a derivative); see Analyse, fondements
techniques, évolution by J. Mawhin ([49]).

7.6 Exercises for Chap.7

1. Let1 < p < N.Then

Ap+N <0 (1+|xHY? e WP@RN),
(A=1p+N <0 o (1+2)Y2 e DPRY),
2. What are the interior and the closure of W!'(Q) in BV(Q)?
3. Letue LIIOC(Q). The following properties are equivalent:

(a) ||Dulle < oo;
(b) there exists ¢ > 0 such that for every w cC © and every y € R" such that
Iyl < d(w, 0Q)

llryu = ullpwy < clyl.

4. (Relative variational capacity.) Let 2 be an open bounded subset of R (or
more generally, an open subset bounded in one direction). Let 1 < p < co and
let K be a compact subset of Q. The capacity of degree p of K relative to Q is
defined by

cap, o(K) = inf{ f \VulPdx : u € W}y’(g)},
Q

where

WIE‘P(.Q) ={ue WS”’(Q) : there exists w such that K ¢ w cc

and y, <u a.e.on Q}.

Prove that the capacity of degree p relative to Q is a capacity on Q.
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5. Verify that
cap, o(K) = inf {f |VulPdx : u e Z)K(Q)},
Q
where
Dk (Q) = {u € D(Q) : there exists w such that K € w cC Qand X, < u}.
6.(a) If cap, o(K) = 0, then m(K) = 0. Hint: Use Poincaré’s inequality.
(b) If p > N and if cap,o(K) = O, then K = ¢. Hint: Use the Morrey
inequalities.
7. Assume that cap, o(K) = 0. Then for every u € D(Q), there exists (u,) C
D(R\ K) such that |u,| < || and u, — uin WHP(Q).
8. (Dupaigne-Ponce, 2004.) Assume that cap; o(K) = 0. Then Whr(Q\ K) =

WLP(Q). Hint: Consider first the bounded functions in W'?(Q \ K).
9. For every u € BV(RV),

IDlulllzy < DU llgx + 1Du |y = [|Dullgx
Hint: Consider a sequence (#,) ¢ WH!(RV) such that u, — u strictly in
BV(RY).
10. Letu € L'(Q) and f € BC'(Q). Then
ID(fwllo < [ flleollDulle + IV flleollullz1(q)-
11. (Cheeger constant.) Let Q be an open bounded domain in RY and define

h(Q) = inf{p(w)/m(w) : w cc Q and w is of class C'}.

Then for 1 < p < oo and every u € Wé‘P (Q),

P
(@) f|u|"’dxsf|Vu|"dx.
p Q Q

Hint: Assume first that p = 1 and apply the coarea formula to u € D(Q).
12. Letu € W(Q). Then

N
f V1+|Vul2dx = sup {f(vNH +u Z O )dx : u € DQ; RN, lulleo < 1}.
Q Q k=1
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