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Preface

L’induction peut étre utilement employée en Analyse comme un
moyen de découvertes. Mais les formules générales ainsi
obtenues doivent étre ensuite vérifiées a [’aide de
démonstrations rigoureuses et propres a faire connaitre les
conditions sous lesquelles subsistent ces mémes formules.

Augustin Louis Cauchy

Mathematical analysis leads to exact results by approximate computations. It is

based on the notions of approximation and limit process. For instance, the derivative

is the limit of differential quotients, and the integral is the limit of Riemann sums.
How to compute double limits? In some cases,

f lim u, dx = lim | w,dx,
QHA)OO n—oo Q

— lim u, = lim —u,,.
xk n—oo n—oo -xk

In the preceding formulas, three functional limits and one numerical limit appear.
The first equality leads to the Lebesgue integral (1901), and the second to the
distribution theory of Sobolev (1935) and Schwartz (1945).
In 1906, Fréchet invented an abstract framework for the limiting process: metric
spaces. A metric space is a set X with a distance
d: XxX->R:(uv)-du,v)
satisfying some axioms. If the real vector space X is provided with a norm

X->R:u |4,

then the formula

vii



viii Preface

d(u,v) = |lu—vl|

defines a distance on X. Finally, if the real vector space X is provided with a scalar
product
XXX ->R:(uv)e (uy),

lleell =/ (utloe)

then the formula

defines a norm on X.

In 1915, Fréchet defined additive functions of sets, or measures. He extended the
Lebesgue integral to abstract sets. In 1918, Daniell proposed a functional definition
of the abstract integral. The elementary integral

L—>R:u+—>fudy,
Q

defined on a vector space L of elementary functions on £, satisfies certain axioms.
When u is a nonnegative pu-integrable function, its integral is given by the
Cavalieri principle:

fud,uzfmp({xeg:u(x)>t})dt.
Q 0

To measure a set is to integrate its characteristic function:
H(A) = f Xadp.
Q
In particular, the volume of a Lebesgue-measurable subset A of RY is defined by

m(A) = f Xadx.
]RN

A function space is a space whose points are functions. Let 1 < p < oco. The real
Lebesgue space L”(Q, 1) with the norm

I/p
lull, = ( f Iulf’du)
Q

is a complete normed space, or Banach space. The space L*(R, 1), with the scalar

product
(ulv)zfuvdu,
Q

is a complete pre-Hilbert space, or Hilbert space.
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Duality plays a basic role in functional analysis. The dual of a normed space is
the set of continuous linear functionals on this space. Let 1 < p < oo and define p’,
the conjugate exponent of p, by 1/p + 1/p’ = 1. The dual of L7(Q, u) is identified
with LP' (Q, y1).

Weak derivatives are also defined by duality. Let f be a continuously differen-
tiable function on an open subset Q of RY. Multiplying g—i = g by the test function
u € D(L) and integrating by parts, we obtain

The preceding relation retains its meaning if f and g are locally integrable functions
on Q. If this relation is valid for every test function u € D(L), then by definition,
g is the weak derivative of f with respect to x;. Like the Lebesgue integral, the
weak derivatives satisfy some simple double-limit rules and are used to define some
complete normed spaces, the Sobolev spaces W+ (Q).

A distribution is a continuous linear functional on the space of test functions
D(K). Every locally integrable function f on £ is characterized by the distribution

Z)(Q)—>R:u0—>ffudx.
Q

The derivatives of the distribution f are defined by

of ou

a_Xk’ M> = _<f’ _>

< 6xk

Whereas weak derivatives may not exist, distributional derivatives always exist! In
this framework, Poisson’s theorem in electrostatics becomes

-4 (i) = 4né,

|x]

where 6 is the Dirac measure on R3.
The perimeter of a Lebesgue-measurable subset A of RY, defined by duality, is
the variation of its characteristic function:

p(A) = sup {f div vdx : v € D(RY; RY), V]l < 1}_
A

The space of functions of bounded variation BV(RY) contains the Sobolev space
WI’I(RN).

Chapter 8 contains many applications to elliptic problems and to analytic or
geometric inequalities. In particular, the isoperimetric inequality and the Faber—
Krahn inequality are proved by purely functional-analytic methods.
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The isoperimetric inequality in RV asserts that the ball has the largest volume
among all domains with fixed perimeter. In R?, the isoperimetric inequality is
equivalent to

41 m(A) < p(A)*.

The Faber—Krahn inequality asserts that among all domains with fixed volume,
the ball has the lowest fundamental eigenvalue for the Dirichlet problem. This
fundamental eigenvalue is defined by

—Ade = Aje in Q,
e>0 in Q,
e=0 on 0Q.

Our approach is elementary and constructive. Integration theory is based on
only one property: monotone convergence. It appears successively as an axiom,
a definition, and a theorem. The inequalities of Holder, Minkowski, and Hanner
follow from the same elementary inequality, the convexity inequality. Weak conver-
gence, convergence of test functions, and convergence of distributions are defined
sequentially. The Hahn—Banach theorem is proved constructively in separable
normed spaces and in uniformly convex smooth Banach spaces.

For the convenience of the reader, we recall the Appendix some topics in
calculus. The Epilogue contains historical remarks on the close relations between
functional analysis and the integral and differential calculus.

The readers must have a good knowledge of linear algebra, classical differential
calculus, and the Riemann integral.
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Chapter 1
Distance

1.1 Real Numbers

Analysis is based on the real numbers.

Definition 1.1.1. Let S be a nonempty subset of R. A real number x is an upper
bound of S if for all s € S, s < x. A real number x is the supremum of S is x is an
upper bound of S and for every upper bound y of S, x < y. A real number x is the
maximum of S is x is the supremum of S and x € S. The definitions of lower bound,
infimum, and minimum are similar. We shall write sup S, max S, inf S, and min S.

Let us recall the fundamental property of R.
Axiom 1.1.2. Every nonempty subset of R that has an upper bound has a supremum.

In the extended real number system, every subset of R has a supremum and an
infimum.

Definition 1.1.3. The extended real number system R=RuU {—00, +00} has the
following properties:

(a) if x € R, then —c0 < x < +oo and x + (+o0) = +00 + x = +00, X + (—0c0) =
—00 + X = —00;

(b) if x > 0, then x - (+00) = (+00) - X = 400, x - (—00) = (—00) - x = —00;

(c) if x <0, then x - (+00) = (+0) - x = —00, x - (—00) = (—00) - X = +00.

If § c R has no upper bound, then sup S = +oo. If S has no lower bound, then
inf § = —co. Finally, sup ¢ = —co and inf ¢ = +c0.

Definition 1.1.4. Let X be a set and F : X — R. We define

sup F' = sup F(x) = sup{F(x) : x € X},inf F = inf F(x) = inf{F(x) : x € X}.
X xeX X xeX

Proposition 1.1.5. Let X and Y be setsand f : X X Y — R. Then

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 1
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2 1 Distance

sup sup f(x,y) = supsup f(x,y), sup 1nf f(x y) < 1nf sup f(x,y).

xeX yeY yeY xeX

Definition 1.1.6. A sequence (x;) C Ris increasing if for every n, x, < x,41. The
sequence (x,) is decreasing if for every n, x,+1 < x,. The sequence (x,) is monotonic
if it is increasing or decreasing.

Definition 1.1.7. The lower limit of (x,) C R is defined by lim x, = sup 1nfx,, The

n—oo

upper limit of (x,) is defined by lim x, = 12f sup x;,.
n—oo n>k

Remarks. (a) The sequence a; = mf X, is increasing, and the sequence by = sup x,
n>k
is decreasing.

(b) The lower limit and the upper limit always exist, and

lim x, < lim x,.

n—oo n—oo

Proposition 1.1.8. Let (x,,), (y,) C ]—00, +00] be such that —oo < lim x,, and —oo <

n—oo

lim y,. Then

n—oo

lim x, + limy, < lim (x, + y,).

n—oo n—oo n—oo

Let (x,), (yu) C [—00, +oo[ be such that lim X, < 400 and lim Yn < +0o. Then

n—oo n—o0o
lim (x, +y,) < lim x, + lim y,.
n—0oo n—0oo n—0oo

Definition 1.1.9. A sequence (x,) C R converges to x € R if for every & > 0, there
is m € N such that for every n > m, |x, — x| < . We then write limx,, = x.

n—oo

The sequence (x,) is a Cauchy sequence if for every &£ > 0, there exists m € N
such that for every j,k > m, |x; — x| < &.

Theorem 1.1.10. The following properties are equivalent:

(a) (x,) converges,
(b) (x») is a Cauchy sequence,
(c) —o0 < lim x, < lim x, < +00.

n—oo frames

If any and hence all of these properties hold, then lim x, = lim x, = lim x,.

n—oo n—oo n—oo
Let us give a sufficient condition for convergence.

Theorem 1.1.11. Every increasing and majorized, or decreasing and minorized,
sequence of real numbers converges.

Remark. Every increasing sequence of real numbers that is not majorized converges
in R to +oco. Every decreasing sequence of real numbers that is not minorized
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converges in R to —co. Hence, if (x,) is increasing, then

lim x, = sup x;,,

n—oo n
and if (x,) is decreasing, then

lim x, = inf x,,.
n

n—oo
In particular, for every sequence (x,) C R,

lim x, = lim inf x,

n—oo k—00 n>k
and

lim x, = lim sup x;,.

n—oco k—co n>k

00

Definition 1.1.12. The series an converges, and its sum is x € R if the sequence

n=0
k -
Zx,, converges to x. We then write Zx,, =x.
n=0 n=0

Theorem 1.1.13. The following statements are equivalent:

(o]
(a) Zx,, converges;
n=0

k
b) i n=0.
) Jim ),
j<k n=j+1

Theorem 1.1.14. Let (x,) be such that Z|x,,| converges. Then Zx,, converges and
n=0 n=0

o)

< ) bl

n=0

(o]
2%
n=0

1.2 Metric Spaces

Metric spaces were created by Maurice Fréchet in 1906.

Definition 1.2.1. A distance on a set X is a function
XXX ->R:(uv)—duv)

such that



4 1 Distance

(D)) foreveryu,ve X,du,v) =0 = u=v;
(D) for every u,v € X, d(u,v) = d(v, u);
(D) (triangle inequality) for every u, v, w € X, d(u, w) < d(u,v) + d(v, w).

A metric space is a set together with a distance on that set.

Examples. 1. Let (X, d) be a metric space and let S c X. The set S together with d
(restricted to S X §') is a metric space.
2. Let (X1, d;) and (X3, d») be metric spaces. The set X X X, together with

d((x1, x2), (v1, y2)) = max{di(x1, y1), da(x2, y2)}

is a metric space.
3. We define the distance on the space R" to be

d(x,y) = max{|lx; — yil,..., %, — yal}.

4. We define the distance on the space C([0, 1]) = {u : [0, 1] = R : u is continuous}
to be

d(u,v) = max |u(x) — v(x)|.
xe[0,1]

Definition 1.2.2. Let X be a metric space. A sequence (1,) C X converges to
ueXif
lim d(u,,u) = 0.

n—oo

We then write limu, = u or u, — u, n — oo. The sequence (u,) is a Cauchy

n—oo

sequence if
lim d(uj,u;) = 0.
Jik—o0

The sequence (u,) is bounded if

sup d(ug, u,) < oo.

Proposition 1.2.3. Every convergent sequence is a Cauchy sequence. Every Cauchy
sequence is a bounded sequence.

Proof. If (u,) converges to u, then by the triangle inequality, it follows that
0<d(uj,u) <d(uj,u) +d(u, u)
and 'lkim d(uj, u) = 0.
Jok—00
If (u,,) is a Cauchy sequence, then there exists m such that for j, k > m, d(uj, uy) <

1. We obtain for every n that

d(u07 “n) S max{d(u07 I/l]), MR d(u07 um*1)7 d(“O, um) + 1} l:l
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Definition 1.2.4. A sequence (uy,;) is a subsequence of a sequence (uy,) if for every
j, n; <njyp.

Definition 1.2.5. Let X be a metric space. The space X is complete if every Cauchy
sequence in X converges. The space X is precompact if every sequence in X contains
a Cauchy subsequence. The space X is compact if every sequence in X contains a
convergent subsequence.

Remark. (a) Completeness allows us to prove the convergence of a sequence
without using the limit.

(b) Compactness will be used to prove existence theorems and to find hidden
uniformities.

The proofs of the next propositions are left to the reader.

Proposition 1.2.6. Every Cauchy sequence containing a convergent subsequence
converges. Every subsequence of a convergent, Cauchy, or bounded sequence
satisfies the same property.

Proposition 1.2.7. A metric space is compact if and only if it is precompact and
complete.

Theorem 1.2.8. The real line R, with the usual distance, is complete.

Example (A noncomplete metric space). We define the distance on X = C([0, 1])
to be

1
d(u,v) = f lu(x) — v(x)| dx.
0

Every sequence (u,) C X such that

(a) for every x and for every n, u,(x) < u,41(x),
1 1
(b) sup f u,(x)dx = lim f uy(x)dx < 400,
n 0 n—-oo 0

is a Cauchy sequence. Indeed, we have that

1 1
lim f |uj(x) — up(x)ldx = lim | f (uj(x) — ur(x))dx| = 0.
0 ‘ Jik—oo " o ‘

Jik—00

But X with d is not complete, since the sequence defined by
uy(x) = min{n, 1/ Vx)

satisfies (a) and (b) but is not convergent. Indeed, assuming that («,) converges to u
in X, we obtain, for 0 < £ < 1, that

1 1 1
f lu(x) — 1/ Vxldx = lim f [t(x) — up(x)|ldx < lim f [u(x) — up(x)|ldx = 0.
& n—oo Py n—oo 0

But this is impossible, since u(x) = 1/ +/x has no continuous extension at 0.
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Definition 1.2.9. Let X be a metric space, u € X, and r > 0. The open and closed
balls of center u# and radius r are defined by

Bu,r)={veX:dv,u)<r}, Blurl={veX:dv,u) <r}.

The subset S of X is open if for all u € S, there exists r > 0 such that B(u,r) C S.
The subset S of X is closed if X \ S is open.

Example. Open balls are open; closed balls are closed.

Proposition 1.2.10. The union of every family of open sets is open. The intersection
of a finite number of open sets is open. The intersection of every family of closed sets
is closed. The union of a finite number of closed sets is closed.

Proof. The properties of open sets follow from the definition. The properties of
closed sets follow by considering complements. O

Definition 1.2.11. Let S be a subset of a metric space X. The interior of S, denoted
by S, is the largest open set of X contained in S. The closure of S, denoted by S, is the

smallest closed set of X containing S. The boundary of § is defined by dS = S\ § .
The set S is dense if S = X.

Proposition 1.2.12. Let X be a metric space, S C X, and u € X. Then the following
properties are equivalent:

(a) ue S;
(b) forallr >0, Blu,r)yNS # ¢;
(c) there exists (u,) C S such that u,, — u.

Proof. Tt is clear that (b) & (c). Assume that u ¢ S. Then there exists a closed
subset F of X such thatu ¢ F and S C F. By definition, then exists > 0 such that
B(u,r)NS = ¢. Hence (b) implies (a). If there exists > 0 such that B(u,r)NS = ¢,
then F = X \ B(u, r) is a closed subset containing S. We conclude that u ¢ S. Hence
(a) implies (b). O

Theorem 1.2.13 (Baire’s theorem). In a complete metric space, every intersection
of a sequence of open dense subsets is dense.

Proof. Let (U,) be a sequence of dense open subsets of a complete metric space X.
We must prove that for every open ball B of X, BN (ﬂ,‘f:OUnﬁ) # ¢. Since B N U
is open (Proposition 1.2.10) and nonempty (density of Uyp), there is a closed ball
Blug, ro] € BN Uyp. By induction, for every n, there is a closed ball

B[un, rn] c B(un—l, rn—l) N Un

such that , < 1/n. Then (u,) is a Cauchy sequence. Indeed, for j, k > n, d(u;, uy) <
2/n. Since X is complete, (u,) converges to u € X. For j > n, u; € Bluy, r,], so that
for every n, u € Bluy, r,]. It follows that u € BN (ﬁ,‘;":OUn). O
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Example. Let us prove that R is uncountable. Assume that (r,) is an enumeration
of R. Then for every n, the set U, = R\ {r,} is open and dense. But then ()", U, is
dense and empty. This is a contradiction.

Definition 1.2.14. Let X be a metric space with distance d and let S c X. The
subset S is complete, precompact, or compact if S with distance d is complete,
precompact, or compact. A covering of S is a family ¥ of subsets of X such that the
union of # contains S.

Proposition 1.2.15. Let X be a complete metric space and let S C X. Then S is
closed if and only if S is complete.

Proof. 1t suffices to use Proposition 1.2.12 and the preceding definition. O

Theorem 1.2.16 (Fréchet’s criterion, 1910). Let X be a metric space and let S C
X. The following properties are equivalent:

(a) S is precompact;
(b) for every € > 0, there is a finite covering of S by balls of radius ¢.

Proof. Assume that S satisfies (b). We must prove that every sequence (u,) C S
contains a Cauchy subsequence. Cantor’s diagonal argument will be used. There
is a ball B; of radius 1 containing a subsequence (i ,) from (u,). By induction, for
every k, there is a ball By of radius 1/k containing a subsequence (u,,) from (ug—1 ).
The sequence v, = u,, is a Cauchy sequence. Indeed, for m,n > k, v,,, v, € By and
d(vp, vy) < 2/k.

Assume that (b) is not satisfied. There then exists € > 0 such that S has no finite
covering by balls of radius €. Let uy € S. There is u; € S \ Bluy, £]. By induction,
for every k, there is

k-1

wee S \| JBlujel.
=0

Hence for j < k, d(u;,ux) > &, and the sequence (u,) contains no Cauchy
subsequence. O

Every precompact space is separable.

Definition 1.2.17. A metric space is separable if it contains a countable dense
subset.

Proposition 1.2.18. Let X and Y be separable metric spaces and let S be a
subset of X.

(a) The space X X Y is separable.
(b) The space S is separable.

Proof. Let (e,) and (f;,) be sequences dense in X and Y. The family {(e,, fi) : (n,k) €
N?} is countable and dense in X x Y. Let
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F ={(n,k) e N?>: k> 1,Ble,, 1/k)NS # ¢}

For every (n,k) € F, we choose f,x € B(e,, 1/k) N S. The family {f,x : (n, k) € F}
is countable and dense in S. O

1.3 Continuity

Let us define continuity using distances.
Definition 1.3.1. Let X and Y be metric spaces. A mapping u : X — Y is
continuous at y € X if for every € > 0, there exists § > 0 such that

sup{dy(u(x), u(y)) : x € X,dx(x,y) <o} < e. (%)

The mapping u is continuous if it is continuous at every point of X. The mapping u
is uniformly continuous if for every € > 0, there exists § > 0 such that

wy(0) = sup{dy(u(x), u(y)) : x,y € X,dx(x,y) < 6} < e.

The function w, is the modulus of continuity of u.

Remark. It is clear that uniform continuity implies continuity. In general, the
converse is false. We shall prove the converse when the domain of the mapping
is a compact space.

Example. The distance d : X X X — R is uniformly continuous, since

ld(x1, x2) = d(y1, y2)l < 2max{d(x1, y1), d(x2,y2)}.

Lemma 1.3.2. Let X and Y be metric spaces, u : X — Y, and y € X. The following
properties are equivalent:

(a) u is continuous at y;
(b) if vn) converges toy in X, then (u(y,)) converges to u(y)inY.

Proof. Assume that u is not continuous at y. Then there is &€ > 0 such that for every
n, there exists y, € X such that

dx(yp,y) £ 1/n and  dy(u(y,),u(y)) > &.

But then (y,) converges to y in X and (u(y,)) is not convergent to u(y).

Let u be continuous at y and (y,) converging to y. Let & > 0. There exists ¢ > 0
such that (x) is satisfied, and there exists m such that for every n > m, dx(y,,y) < 6.
Hence for n > m, dy(u(y,), u(y)) < e. Since € > 0 is arbitrary, (u(y,)) converges
to u(y). O
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Proposition 1.3.3. Let X and Y be metric spaces, K a compact subset of X, and
u : X — Y a continuous mapping, constant on X\ K. Then u is uniformly continuous.

Proof. Assume that u is not uniformly continuous. Then there is € > 0 such that for
every n, there exist x, € X and y, € K such that

dx(Xn, yn) < 1/n and dy(u(x,), uyn)) > &

By compactness, there is a subsequence (y,, ) converging to y. Hence (x,,) converges
also to y. It follows from the continuity of u at y and from the preceding lemma that

e < kh_m dY(“(xnk)’ u(yﬂk))
< lim dy(u(x,), u(y)) + lim dyu(y), u(ys)) = 0.

This is a contradiction. 0O

Lemma 1.3.4. Let X be a setand F : X — ]|—00, +00] a function. Then there exists
a sequence (y,) C X such that lim F(y,) = iI}l{f F. The sequence (y,) is called a

minimizing sequence.
Proof. If c = ir)}f F € R, then for every n > 1, there exists y, € X such that
c<FQOy) <c+1/n.
If ¢ = —oo, then for every n > 1, there exists y, € X such that
F(y,) < —n.

In both cases, the sequence (y,) is a minimizing sequence. If ¢ = +oo, the result is
obvious. O

Proposition 1.3.5. Let X be a compact metric space and let F : X — R be a
continuous function. Then F is bounded, and there exist y,z € X such that

F(y)= m}gnF, F(z) = m)?xF.

Proof. Let (y,) € X be a minimizing sequence: lim F(y,) = ir}}f F. There is a
n—oo

subsequence (y,,) converging to y. We obtain
F@y) = klim FQy,,) = il’)}fF.

Hence y minimizes F on X. To prove the existence of z, consider —F. O

The preceding proof suggests a generalization of continuity.
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Definition 1.3.6. Let X be a metric space. A function F : X — ]—oo, +00] is lower
semicontinuous (l.s.c.) at y € X if for every sequence (y,) converging to y in X,

F(y) < Lim F(y,).

n—oo

The function F is lower semicontinuous if it is lower semicontinuous at every point
of X. A function F : X — [—o0, +00[ is upper semicontinuous (u.s.c.) at y € X if for
every sequence (y,) converging to y in X,

lim F(y,) < F(y).

n—oo
The function F is upper semicontinuous if it is upper semicontinuous at every point
of X.

Remarks. A function F : X — R is continuous at y € X if and only if F is both
l.s.c. and u.s.c. at y.

Let us generalize the preceding proposition.

Proposition 1.3.7. Let X be a compact metric space and let F : X —] — 00, 0] be
an l.s.c. function. Then F is bounded from below, and there exists y € Y such that

F@) = m}}n F.

Proof. Let (y,) C X be a minimizing sequence. There is a subsequence (y,,)
converging to y. We obtain

F(y) < lim F(y,,) = inf F.
k—o0

Hence y minimizes F on X. O
When X is not compact, the situation is more delicate.

Theorem 1.3.8 (Ekeland’s variational principle). Let X be a complete metric
space and let F : X — ]—o00,+00] be an Ls.c. function such that ¢ = infx F € R.
Assume that € > 0 and 7 € X are such that

F(z) < iI}l{fF+e.

Then there exists y € X such that

(a) F(y) < F(2);
(b) div,2) < 1;
(c) foreveryx € X\ {y}, F(y) — e d(x,y) < F(x).

Proof. Let us define inductively a sequence (y,). We choose yy = z and

Y1 € Sp ={x € X : F(x) < F(yn) — & d(yn, X)}
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such that

. 1
F(yn+1) _lg,lufF < 5

F(y,) — inf F} . (%)

Since for every n,
&d(Yn, Yns1) < F(yn) = F(Yur1),
we obtain
¢ < F(yns1) < F(yn) < F(yo) = F(2),
and for every k > n,
& d(yn, i) < F(yn) = F(yi)- (%)

Hence
lim d(y,, ye) = 0.
k=n
Since X is complete, the sequence (y,) convergesto y € X. Since F is l.s.c., we have
F(y) < lim F(y,) < F(2).

It follows from (**) that for every n,
£d(yn,y) < Flyn) = F(y).
In particular, for every n, y € S,,, and for n = 0,
edz,y)) S F(Q—-F(y)<c+e—-c=e.
Finally, assume that
F(x) < F(y)—ed(x,y).
The fact that y € S, implies that x € S,,. By (), we have

2F (1) = FQyn) < inf F < F(x),

so that
F(y) < lim F(y,) < F(x).

We conclude that x = y, because
ed(x,y) < F(y)— F(x) <0. O
Definition 1.3.9. Let X be a set. The upper envelope of a family of functions F; :

X — ]—00,00], j € J, is defined by

(sup Fj) (x) = sp}) Fi(x).
JE

jeJ
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Proposition 1.3.10. The upper envelope of a family of L.s.c. functions at a point of
a metric space is l.s.c. at that point.

Proof. Let F; : X — ]—o00,+c0] be a family of ls.c. functions at y. By
Proposition 1.1.5, we have, for every sequence (y,) converging to y,

sup F;(y) < sup lim F;(y,) = sup sup inf F;(ym-)
J J ko™

n—oo J

< supinfsup Fj(yu+k) = lim sup F;(y,).
kMmoo

Hence sup Fjis Ls.c. aty. O
i

Proposition 1.3.11. The sum of two Ls.c. functions at a point of a metric space is
L.s.c. at this point.

Proof. Let F,G : X — ]—o00,00] be Ls.c. at y. By Proposition 1.1.10, we have for
every sequence (y,) converging to y that

F(y)+G@y) < lim F(y,) + lim G(y,) < lim (F(y,) + G(ya))-

n—oo n—oo n—oo

Hence F + G is Ls.c. at y. O
Proposition 1.3.12. Let F' : X — }-o0, oo]. The following properties are equivalent:

(a) Fisls.c.;
(b) foreveryte R {F >t} ={x € X : F(x) > t} is open.

Proof. Assume that F is not L.s.c. Then there exists a sequence (x,) converging to x
in X and there exists ¢ € R such that

lim F(x,) <t < F(x).
Hence for every r > 0, B(x, r) ¢ {F > t}, and {F > t} is not open.

Assume that {F > 1} is not open. Then there exists a sequence (x;,) converging to
x in X such that for every n,

F(x,) <t< F(x).

Hence lim F(x,) < F(x) and F is not l.s.c. at x. O

n—oo

Theorem 1.3.13. Let X be a complete metric space and let (Fj : X — R)jc; be a
Sfamily of l.s.c. functions such that for every x € X,

sup Fj(x) < +oo. (%)
jeJ
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Then there exists a nonempty open subset V of X such that

sup sup Fj(x) < +oo.
jeJ xeV

Proof. By Proposition 1.3.10, the function F = sup F is l.s.c. The preceding
jeJ

proposition implies that for every n, U, = {F > n} is open. By (x), ﬂUn = ¢.

n=1
Baire’s theorem implies the existence of n such that U, is not dense. But then

{F < n} contains a nonempty open subset V. O
Definition 1.3.14. The characteristic function of A C X is defined by

Xa(x)=1, x€A,
=0, xeX\A

Corollary 1.3.15. Let X be a metric space and A C X. Then
Ais open &< X4 is Ls.c., Aisclosed = X, is u.s.c.

Definition 1.3.16. Let S be a nonempty subset of a metric space X. The distance of
xto S is defined on X by d(x, S) = ing d(x, s).

NS
Proposition 1.3.17. The function “distance to S ” is uniformly continuous on X.

Proof. Let x,y € X and s € §. Since d(x, s) < d(x,y) + d(y, s), we obtain

d(x,§) <inf (d(x,y) +d(y, 5)) = d(x,y) + d(3, 5).

We conclude by symmetry that |d(x, S) — d(y,S)| < d(x, y). O

Definition 1.3.18. Let Y and Z be subsets of a metric space. The distance from Y
to Z is defined by d(Y, Z) = inf{d(y,z) : ye Y,z € Z}.

Proposition 1.3.19. Let Y be a compact subset and let Z be a closed subset of a
metric space X suchthatY N Z = ¢. Then d(Y,Z) > 0.

Proof. Assume that d(Y,Z) = 0. Then there exist sequences (y,) C Y and (z,) C Z
such that d(y,, z,) — 0. By passing, if necessary, to a subsequence, we can assume
that y, — y. Butthend(y,z,) > 0Oandye Y N Z. O
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Definition 1.4.1. Let X be aset and let Y be a metric space. A sequence of mappings
u, : X = Y converges simply to u : X — Y if for every x € X,

lim d(u,(x), u(x)) = 0.
The sequence (u,) converges uniformly to u if

lim sup d(u,(x), u(x)) = 0.

n—oo xeX

Remarks. (a) Clearly, uniform convergence implies simple convergence.

(b) The converse is false in general. Let X = ]0, 1[, ¥ = R and u,(x) = x". The
sequence (u,) converges simply but not uniformly to 0.

(c) We shall prove a partial converse due to Dini.

Notation. Let u, : X — Rbea sequence of functions. We write u,, T u when for
every x and for every n, u,(x) < u,41(x) and

u(x) = sup u,(x) = lim u,(x).

We write u, | u when for every x and every n, u,1(x) < u,(x) and
u(x) = inf u,(x) = lim u,(x).

Theorem 1.4.2 (Dini). Let X be a compact metric space and let u, : X — R be a
sequence of continuous functions such that

(a) un Tuoru, | u;
(b) u:X — Ris continuous.

Then (u,) converges uniformly to u.

Proof. Assume that

0 < lim sup |u,(x) — u(x)| = inf sup |u,(x) — u(x)|.
=0 xeX n20 yex

There exist € > 0 and a sequence (x,) C X such that for every n,
& < |up(xn) — u(xy)|.
By monotonicity, we have for 0 < m < n that

& < um(xy) — ulxy)l.
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By compactness, there exists a sequence (x,,) converging to x. By continuity, we
obtain for every m > 0,

& < |upm(x) — u(x)|.
But then (u,) is not simply convergent to u. O

Example (Dirichlet function). Let us show by an example that two simple limits
suffice to destroy every point of continuity. Dirichlet’s function

u(x) = lim lim (coszm!x)*"

m—00 n—00

is equal to 1 when x is rational and to O when x is irrational. This function
is everywhere discontinuous. Let us prove that uniform convergence preserves
continuity.

Proposition 1.4.3. Let X and Y be metric spaces, y € X, and u, : X — Y a
sequence such that

(a) (u,) converges uniformly to u on X;
(b) for every n, u, is continuous at y.

Then u is continuous at y.

Proof. Let € > 0. By assumption, there exist n and ¢ > 0 such that

sup d(u,(x), u(x)) < eand sup d(u,(x),u,(y)) <e.
xeX X€B[y,d]

Hence for every x € B[y, 6],
d(u(x), u(y)) < du(x), u,(x)) + d(u(x), un(y)) + d(u,(y), u(y)) < 3e.

Since € > 0 is arbitrary, u is continuous at y. O

Definition 1.4.4. Let X be a set and let Y be a metric space. On the space of
bounded mappings from X to Y,

BX,Y)={u:X—>Y: sup du(x),uy)) < oo},
x,yeX

we define the distance of uniform convergence

d(u,v) = sup d(u(x), v(x)).
xeX

Proposition 1.4.5. Let X be a set and let Y be a complete metric space. Then the
space B(X, Y) is complete.

Proof. Assume that (u,) is such that

tim sup d(uj(x), ux(x)) = 0.
xeX

Jok—oo
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Then for every x € X,
,lkim d(uj(x), ug(x)) = 0,
Jok—00
and the sequence (u,(x)) converges to a limit u(x). Let & > 0. There exists m such
that for j,k > mand x € X,
d(uj(x), ux(x)) < &.

By continuity of the distance, we obtain, for k > m and x € X,
d(u(x), u(x)) < e.

Hence for k > m,

sup d(u(x), ug(x)) < e.
xeX

Since € > 0 is arbitrary, (u,) converges uniformly to u. It is clear that u is bounded.
O

Corollary 1.4.6 (Weierstrass test). Let X be a set and let u, : X — R be a
sequence of functions such that

o)

c= Z sup |u,(x)| < +oo.
=1 xeX

Then the series converges absolutely and uniformly on X.

o J
Proof. 1t is clear that for every x € X, Z|un(x)| < ¢ < oo. Let us write v; = Zun.

n=1 n=1
By assumption, we have for j < k that

k k
SUp V() = (0l = Supl 3 (9IS D7 supl()] 0, j = oo,
XE

X i n=j+l €

Hence 'lkim d(v;,vi) =0, and (v;) converges uniformly on X. O
j, —00

Example (Lebesgue function). Let us show by an example that a uniform limit
suffices to destroy every point of differentiability. Let us define

00 o)

f(x) = Z % sin 2" x = Z U, (x).

n=1 n=1

Since for every n, suplu,(x)| = 27", the convergence is uniform, and the function f
xeR

is continuous on R. Let x € R and A, = J_r7r/2m2“. A simple computation shows
that forn > m+ 1, u,(x + hy) — u,(x) = 0 and
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U (X + ha) = t(x) 277

h

2 . 2
[cos2™ x Fsin 2™ x].

Let us choose h = hy or h = h_ such that the absolute value of the expression in
brackets is greater than or equal to 1. By the mean value theorem,

m—1 m=1
3 Gt 2 D) W yron ¢ gt gi-ames
; < .

n=1 n=1

Hence
pm*=m+1 _ pamed i uy(x + h) — u,(x) _ 'f(x +h) - f(x) ’
n n=1 h h
and for every & > 0,
0<lhi<s h

The Lebesgue function is everywhere continuous and nowhere differentiable.
Uniform convergence of the derivatives preserves differentiability.

1.5 Comments

Our main references on functional analysis are the three classical works

— S. Banach, Théorie des opérations linéaires ([6]),
— F Riesz and B.S. Nagy, Lecons d’analyse fonctionnelle ([62]),
— H. Brezis, Analyse fonctionnelle, théorie et applications ([8]).

The proof of Ekeland’s variational principle [20] in Sect. 1.3 is due to Crandall [21].
The proof of Baire’s theorem, Theorem 1.2.13, depends implicitly on the axiom
of choice. We need only the following weak form.

Axiom of dependent choices. LetS be a nonempty set and let R ¢ S X S be such
that for each a € S, there exists b € S satisfying (a, b) € S. Then there is a sequence
(a,) € S such that (a,-1,a,) ER,n=1,2,....
We use the notation of Theorem 1.2.13. On
S ={m,u,r):meN,ueX,r>0,B(u,r) C B},
we define the relation R by

((m,u,r), (n,v,s)) €R
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ifandonlyifn=m+1, s < 1/n, and

Blv,s) < B, 0 (| U).

J=1

Baire’s theorem follows then directly from the axiom of dependent choices.

In 1977, C.E. Blair proved that Baire’s theorem implies the axiom of dependent
choices.

The reader will verify that the axiom of dependent choices is the only principle
of choice that we use in this book.

1.6 Exercises for Chap. 1

1. Every sequence of real numbers contains a monotonic subsequence. Hint: Let
E ={n e N:forevery k > n,x; < x,}.

If E is infinite, (x,) contains a decreasing subsequence. If E is finite, (x,)
contains an increasing subsequence.
2. Every bounded sequence of real numbers contains a convergent subsequence.
3. Let (K,) be a decreasing sequence of compact sets and U an open set in a metric

space such that ﬂKn C U. Then there exists n such that K,, C U.

n=1
4. Let (U,) be an increasing sequence of open sets and K a compact set in a metric

space such that K C UU”' Then there exists n such that K C U,,.

n=1

5. Define a sequence (S,) of dense subsets of R such that ﬂSn = ¢. Define a
n=1
family (U)es of open dense subsets of R such that me =¢.
jel
6. In a complete metric space, every countable union of closed sets with empty
interior has an empty interior. Hint: Use Baire’s theorem.
7. Dirichlet’s function is 1.s.c. on R \ Q and u.s.c. on Q.
8. Let (u,) be a sequence of functions defined on [a, b] and such that for every n,

a<x<y<b= u(x) < u(y).

Assume that (u,) converges simply to u € C([a,b]). Then (u,) converges
uniformly to u.

9. (Banach fixed-point theorem.) Let X be a complete metric space and let f :
X — X be such that
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10.

11.

12.

13.

14.

Lip(f) = sup{d(f(x), f(¥)/d(x,y) : x,y € X, x # y} < 1.

Then there exists one and only one x € X such that f(x) = x. Hint: Consider a
sequence defined by xp € X, x,41 = f(x,).

(McShane’s extension theorem.) Let Y be a subset of a metric space X and let
f Y — R be such that

A = Lip(f) = sup{lf(x) = fWI/d(x,y) : x,y € ¥, x # y} < +oo.

Define on X
g(x) = sup{f(y) — Ad(x,y) : y € Y}.

Then g|y = f and

Lip(g) = sup{lg(x) — g(»)/d(x,y) : x,y € X, x # y} = Lip(f).

(Fréchet’s extension theorem.) Let Y be a dense subset of a metric space X and
let f: Y — [0, +00] be an l.s.c. function. Define on X

g(x) = inf{ lim f(x,): (x,) € Y and x,, — x}.

n—oo

Then g is Ls.c., g|Y = f, and for every L.s.c. function & : X — [0, +c0] such that
hl,=fh<g

Let X be a metric space and u : X — [0,+0c0] an l.s.c. function such that
u # +oo. Define

uy(x) = inf{u(y) + nd(x,y) : y € X}.

Then u, T u, and for every x,y € X, |u,(x) — u,(y)| < nd(x,y).

Let X be a metric space and v : X — ]—o0, c0]. Then v is l.s.c. if and only if
there exists a sequence (v,) € C(X) such that v, T v. Hint: Consider the function
u=5%+tan'y.

(Sierpinski, 1921.) Let X be a metric space and # : X — R. The following
properties are equivalent:

(a) There exists (#,) € C(X) such that for every u € X, Z |, (x)| < oo and

n=1
(o9

u(x) = Zun(x).

n=1

(b) There exists f,g : X — [0, +oo[ Ls.c. such that for every x € X, u(x) =
S(x) — g(x).
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15. We define

X ={u :]0,1[— R : u is bounded and continuous}.

‘We define the distance on X to be

d(u,v) = sup |u(x)—v(x)|.
x€]0,1[

What are the interior and the closure of

Y = {u € X : u is uniformly continuous}?

1

Distance



Chapter 2
The Integral

Le vrai est simple et clair; et quand notre maniére d’y arriver
est embarrassée et obscure, on peut dire qu’elle méne au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1. Let Q be an open subset of RY. We define
C(Q) ={u:Q — R : uis continuous},
K(Q) = {u e C(RY) : supp u is a compact subset of Q}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from 0.

Let u € K(R"). By definition, there is R > 1 such that
sptuc{xeRY :|xlo <R-1}.
Let us define the Riemann sums of u:

§;=2N Z u(k)27).

kezZN
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The factor 27/V is the volume of the cube with side 277 in R. Let C = [0, 11" and
let us define the Darboux sums of u:

A= 2*/”2 min{u(x) : 2'x—k € C}, B, = 2*/”2 max{u(x) : 2/x — k € C}.
keZN keZN

Let & > 0. By uniform continuity, there is j such that w,(1/2/) < &. Observe that
Bi-A;<(2R)e,Aj 1 <A;<S;<B;<Bj,.

The Cauchy integral of u is defined by
f u(x)dx =1lim §; = limA; = lim B;.
Theorem 2.1.2. The space K(RY) and the Cauchy integral

KR > R:u- udx
RN

are such that

(a) for every u € K@®RN), [ul € K@RN);
(b) for every u,v € K(RY) and every a,8 € R,

fau+,8vdx=af udx+,8f vdx;
RV RV RV

(c) for every u € K(RY) such that u > 0, f udx > 0;
RN

(d) for every sequence (u,) € K@RYN) such that u, | 0, lim u,dx = 0.

n—co Jpn

Proof. Properties (a)—(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

sptug C K ={xeRY : |xlo <R -1}.

By Dini’s theorem, (u,) converges uniformly to 0 on K. Hence
0< f updx < (2R)N max u,(x) - 0, n— oo. 0O
RN xekK

The above properties define an elementary integral. They suffice for constructing
the Lebesgue integral.
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The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral
satisfying the property of monotone convergence,

(e) if (u,) is an increasing sequence of integrable functions such that

supf U,dx < oo,
n RN

then u(x) = limu,(x) is integrable and

udx = lim u, dx,
RN n—c Jpn

and linearity,
(f) if u and v are integrable functions and if @ and 8 are real numbers, then

f a/u+,8vdx=afudx+,8fvdx.
RN

Let us sketch the construction of the (concrete) Lebesgue integral.
By definition, the function u belongs to £ (R, dx) if there exists an increasing
sequence (u,) of functions of K(R") such that u, T u and sup f u, dx < oo,
RN

n

The integral, defined by the formula

udx = lim u,dx,
RN n—oo RN

satisfies property (e). We shall prove that the integral depends only on u.

Let f,g € L*(R",dx). The difference f(x) — g(x) is well defined except if
f(x) = g(x) = +o0. A subset S of R is negligible if there exists h € L*(RN,dx)
such that for every x € S, h(x) = +c0.

By definition a function u belongs to L' (R", dx) if there exists f,g € LT (RY,
dx) such that u = f — g except on a negligible subset of RV. The integral defined by

fudx:ffdx—f gdx
RV RV RV

satisfies properties (e) and (f). Again we shall prove that the integral depends only
on u.

The Lebesgue integral will be constructed in an abstract framework, the elemen-
tary integral, generalizing the Cauchy integral.

Example (Limit of integrals). It is not always permitted to permute limit and
integral. Let us define, on [0, 1], u,(x) = 2nx(1 - x2)"!. Since for every x € 10, 1,
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hm un+1(x)
5% 10(x)

=(1-xH<1,

u, converges simply to O on [0, 1]. But

1 1
0= f lim u,(x)dx < lim up(x)dx = 1.
0 n—-oo 0

n—oo

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1. An elementary integral on the set Q is defined by a vector space
L = L(Q, ) of functions from 2 to R and by a functional

,u:£—>]R:u+—>fud,u
Q

such that

(J1) foreveryu € L, |ul € L;
(J>) for every u,v € £ and every a,8 € R,

fau+ﬁvdu=afudy+,8fvdy;
Q o] Q

(J>3) for every u € L such that u > 0, fu du > 0;
Q

(J4) for every sequence (u,) C L such that u, | 0, lim fun du=0.
Q

n—oo

Proposition 2.2.2. Letu,v € L. Then u*,u”, max(u, v), min(u,v) € L.

Proof. Let us recall that u™ = max(u, 0), u~ = max(—u, 0),

1 1 1 1
max(u,v) = E(M +v)+ Elu —v|, min(u,v) = z(u +v)— Elu - O

Proposition 2.2.3. Let u,v € L be such that u < v. Then f udyp < f vdu.
o] o]
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Proof. We deduce from (J3) and (J3) that

Osfv—uduzfvdu—fudu. O
o] Q Q

Definition 2.2.4. A fundamental sequence is an increasing sequence (u,) C £ such
that

lim | wu,du= supf uydu < oo,
Q n Q

n—oo

Definition 2.2.5. A subset S of Q is negligible (with respect to w) if there is a
fundamental sequence (u,) such that for every x € §, limu,(x) = +oc0. A property

is true almost everywhere if the set of points of Q where it is false is negligible.
Let us justify the definition of a negligible set.

Proposition 2.2.6. Let (u,) be a decreasing sequence of functions of L such that

everywhere u, > 0 and almost everywhere, limu,(x) = 0. Then lim | wu,dy = 0.
n—oo

—00
n Q

Proof. Let £ > 0. By assumption, there is a fundamental sequence (v,) such that
if limu,(x) > 0, then limv,(x) = +co. We replace v, by v/, and we multiply by a

strictly positive constant such that

v, =0, fvndu <e.
Q

We define w, = (1, — v,)*. Then w,, | 0, and we deduce from axiom () that

0< limfundy < limfwn + v,du = limfwnd,u + limfvnd,u
Q Q Q Q

= limfvndy <e
Q

Since € > 0 is arbitrary, the proof is complete. O

Proposition 2.2.7. Let (u,) and (v,) be fundamental sequences such that almost
everywhere,

u(x) = lim u,(x) < lim v,(x) = v(x).
Then

lim | w,du < lim | v,du.

n—oo Q n—oo Q

Proof. We choose k and we define w,, = (ux — v,)*. Then (w,) C L is a decreasing
sequence of positive functions such that almost everywhere,
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limw, (%) = (ue(x) = v(0))" < (u(x) - v(x))" = 0.

We deduce from the preceding proposition that

fukdu < lim f Wy + vy du = lim f wpdu + lim f Vpdu = limfvndu.
Q Q Q Q Q

Since k is arbitrary, the proof is complete. O

Definition 2.2.8. A functionu : Q — ]—o0, +00] belongs to L+ = L¥(2, u) if there
exists a fundamental sequence (u,,) such that u, T u. The integral (with respect to )

of u is defined by
fudy = lim fund,u.
Q n—oo Q

By the preceding proposition, the integral of u is well defined.
Proposition 2.2.9. Let u,ve L™ and o, > 0. Then
(a) max(u,v), min(u, v), u*t € L*;

(b) au+,8ve£+andfcm+ﬁvd,u=a/fudy+ﬁfvdy;
Q Q Q

(c) if u < v almost everywhere, then | udu < | vdu.
Q Q

Proof. Proposition 2.2.7 is equivalent to (c). O

Proposition 2.2.10 (Monotone convergence in £*). Let (u,) C L* be everywhere
(or almost everywhere) increasing and such that

c= supfundu< 0.
n Q

Then (u,) converges everywhere (or almost everywhere) to u € L+ and

fudyz limfundu.
Q n—oo Q

Proof. We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (uy,,) such that uy, T ug.
The sequence v, = max(uy , .. ., Uy,) 1S increasing, and almost everywhere,

v, < max(uy,...,U,) = Uy.

fv,,du < fu,,du <c,
Q o)

Since
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the sequence (v,,) C £ is fundamental. By definition, v, T u, u € £*, and

fud,u = lim | v,du.
Q n—oo Q

For k < n, we have almost everywhere that
Ukn < Vi < Uy

Hence we obtain, almost everywhere, that u;, < u < limu, and

n—oo

fukd,u < fu du < 21_)1?0 und,u.

It is easy to conclude the proof. O
Corollary 2.2.11. Every countable union of negligible sets is negligible.

Proof. Let (S) be a sequence of negligible sets. For every k, there exists v, € L*
such that for every x € Sy, vi(x) = +oo. We replace v by v{, and we multiply by a
strictly positive constant such that

1
v 20, kady < —.
fe 2k

The sequence u, = ) vy is increasing and
k=1

=1
updu < —kﬁl.
fQ k12

Hence u, T u and u € L*. Since for every x € USk, u(x) = +oo, the set USk is

negligible. O

By definition, functions of L™ are finite almost everywhere. Hence the difference
of two functions of L* is well defined almost everywhere. Assume that f, g,v,w €
L* and that f — g = v—w almost everywhere. Then f +w = v+ g almost everywhere

and
ffdu+fwdvu=ff+wdy=fv+gdy=fvdu+fgdﬂ,
Q Q Q Q Q Q
so that
ffdy—fgd/,tzfvdu—fwd/,t.
Q Q Q Q
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Definition 2.2.12. A real function u almost everywhere defined on 2 belongs to
L' = £1(Q,p) if there exist f,g € L* such that u = f — g almost everywhere.
The integral (with respect to w) of u is defined by

Lud#=Lfdﬂ—Lgd#~

By the preceding computation, the integral is well defined.

Proposition 2.2.13. (a) Ifu € L', then |u| € L.
(b) Ifu,ve L' andifa,B R, then au + pv € L' and

au+ﬁvd,u=afud,u+ﬁfvdy.
Q Q

Q
(c) Ifu € L' and if u > 0 almost everywhere, then f udu > 0.
Q
Proof. Observe that
If — gl = max(f, g) — min(f, g). o

Lemma 2.2.14. Letu € L' and e > 0. Then there exist v,w € L* such thatu = v—w

almost everywhere, w > 0, and f wdu < e.
o]

Proof. By definition, there exist f, g € L such that u = f — g almost everywhere.
Let (g,) be a fundamental sequence such that g, T g. Since

fgdy =lim | g,du,
Q n—oo Q

there exists n such that fg —gndu<e Wechoosew=g—g,>0andv=f—-g,

Q
[m]

We extend the property of monotone convergence to L.

Theorem 2.2.15 (Levi’s monotone convergence theorem). Let (i,) € L' be an
almost everywhere increasing sequence such that

c:supfundp<00.
n Jo

Then limu, € £' and

n—oo

f lim u,du = lim | wu,du.
o] o]

n—oo n—oo

Proof. After replacing u, by u, — up, we can assume that uy = 0. By the preceding

lemma, for every k > 1, there exist vi, wy € L* such that wy > 0, fwkd,u < 1/2",
Q
and, almost everywhere,

U — Up—1 = Vg — Wk
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Since (uy) is almost everywhere increasing, v; > 0 almost everywhere.
We define

n

ﬁlzzvlm gn=zn:wk.
k=1

k=1

The sequences (f,,) and (g,) are almost everywhere increasing, and

n n 1
gndu = fwkd,us — <1, ffnd,uzfun+gndySc+l.
fg kZ::‘ o ;2]‘ e Q

Proposition 2.2.10 implies that almost everywhere,

limf, = fe L limg,=ge L*
n—oo n—oo

ffduzlimffndu,fgduzlimfgdu.
Q n—oo Q _Q n—oo Q

We deduce from Corollary 2.2.11 that almost everywhere,

and

S —g=1lim(f, —g,) = lim u,.

Hence limu, € £ and

n—oo

flimundyszdu—fgdyz limfﬁ—gndyz limfundy.

Theorem 2.2.16 (Fatou’s lemma). Let (u,) C L' and f € L' be such that

(a) supfund,u < oo;

n Jo
(b) for every n, f < u, almost everywhere.

Then lim u, € £ and

n—oo

| e
Q n—oo n—oo o)

Proof. We choose k, and we define, for m > k,
U = MIN(Ug, . .., Uy).

The sequence (1 ,,) decreases to vy = infu,,, and
n>k
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ffdysfuk,md,u.
Q Q

The preceding theorem, applied to (—u ), implies that v; € £! and

f vidy = lim Ugmdp < lim min f updy = inf f u,du.
0 m—oo Jo m—o0 k<n<m o) n>k 0

The sequence (v) increases to lim u,, and

n—oo

kad,u < supf uydu < co.
Q n Je

It follows from the preceding theorem that lim u, € £! and

n—oo

f lim u,dy = lim | vidp < lim inff u,du = lim fund,u. O
Q k—oo Q Q

n—oo 0 k—oo n>k n—oo

Theorem 2.2.17 (Lebesgue’s dominated convergence theorem). Let (u,) c L!
and f € L' be such that

(a) u, converges almost everywhere;
(b) for every n, lu,| < f almost everywhere.

Then limu, € £' and

n—oo

f lim u,du = lim | wu,du.
Q n—oo n—oo _Q

Proof. Fatou’s lemma implies that u = lim u, € £' and
n—oo

2ffdus lim 2f—|un—u|du=2ffdu—ﬁ |t — uldp.
Q Q Q

n—0oo n—oo

Hence
lim| | w,—udyl < limflun—u|d,u=0. O
n—oo Q

— 00
n Q

Theorem 2.2.18 (Comparison theorem). Let (u,) C L' and f € L' be such that

(a) u, converges almost everywhere to u;
(b) |ul < f almost everywhere.

Thenu e L.
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Proof. We define
v, = max(min(uy,, ), —f).

The sequence (v,) € £L! is such that

(a) v, converges almost everywhere to u;
(b) for every n, |v,| < f almost everywhere.

The preceding theorem implies that # = limv, € £'. O

n—oo

Definition 2.2.19. A real function u defined almost everywhere on £ is measurable
(with respect to u) if there exists a sequence (u#,) C L such that u, — u almost
everywhere. We denote the space of measurable functions (with respect to u) on Q
by M = M(Q, w).

Proposition 2.2.20. (a) Lc Lt c L' c M.

(b) If u e M, then |u| € M.

(c) Ifu,ve Mandifa,B € R, then au + Bv € M.

(d) Ifu € Mand if, almost everywhere, [u| < f € L', thenu € L.

Proof. Property (d) follows from the comparison theorem. O

Notation. Let u € Mbe such thatu > 0 and u ¢ £'. We write fu du = +co. Hence

Q
the integral of a measurable nonnegative function always exists.

Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21. Let (u,) C L be an almost everywhere increasing sequence
converging to an almost everywhere finite function u. Then u € M.

Proof. For every k, there exists a fundamental sequence (uy,) such that uy, T u.
The increasing sequence v, = max(ujy,...,U,,) converges to v, and almost
everywhere,

v, <max(uy,...,u,) = u,.

For k < n, we have, almost everywhere, u;,, < v, < u,. Hence almost everywhere,
ur < v < u. Itis now easy to conclude the proof. O

Lemma 2.2.22. Let (u,) C L' be an increasing sequence converging to an almost
everywhere finite function u. Then u € M.

Proof. By Lemma 2.2.14, for every n > 1 there exist v,, w,, € L" such that almost
everywhere,

O0<uy —Up_1 =V, — Wy, W, > 0,fwnd,u <1/2".
Q

Proposition 2.2.10 and the preceding lemma imply that
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00 00

an=w6£+, Zvn=v€M.
n=1 n=1
Since almost everywhere, u = v —w + ug, u € M. |

Lemma 2.2.23. Let (u,) C M be an increasing sequence converging to an almost
everywhere finite function u. Then u € M.

Proof. Replacing u,, by u, —ug, we can assume that u, > 0. For every k, there exists
a sequence (ug,) C L converging almost everywhere to u;. We can assume that
Urm = 0. By Levi’s theorem,

Vin = hﬁ:uhm € lﬂ.
m>n

For every k, (vy,,) is increasing and converges almost everywhere to u;. We define
1
Vp = max(Vip, ..., Vpn) € L.
The sequence (v,) is increasing and converges almost everywhere to u. By the

preceding lemma, u € M. O

Theorem 2.2.24. Let (u,) C M be a sequence converging almost everywhere to a
finite limit. Then u € M.

Proof. By the preceding lemma,

Vi = sup u, € Mand limu, = —sup(—v;) € M. O
n>k k

The class of measurable functions is the smallest class containing £ that is closed
under almost everywhere convergence.

Definition 2.2.25. A subset A of Q is measurable (with respect to u) if the
characteristic function of A is measurable. The measure of A is defined by

p(A) = f Xady.
Q
Proposition 2.2.26. Let A and B be measurable sets and let (A,) be a sequence of

measurable sets. Then A\ B, UA” and ﬂAn are measurable, and

n=1 n=1

H(AU B) + u(A N B) = u(A) + u(B).

If, moreover, for every n, A,, C Ap+1, then

u[U An] = lim p(A,).

n=1
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If, moreover, u(Ay) < oo, and for every n, A,+1 C A, then

u[ﬂ An] = lim p(A,).

n=1
Proof. Observe that

Xaup +Xanp = max(Xa, X p) + min(X4,Xp) = Xa + X,

Xa\ = Xa —min(X4,Xp),

XU A, = 31_)11; max(Xy,,....Xa,),
Xﬁ:ozlAn - ,}gg, min(XAl [ ,XA,,)-

The proposition follows then from the preceding theorem and Levi’s theorem. O

Proposition 2.2.27. A subset of Q is negligible if and only if it is measurable and
its measure is equal to 0.

Proof. Let A C 2 be a negligible set. Since X4 = 0 almost everywhere, we have by
definition that X4 € £ and u(A) = fXAdy =0.
fo)

Let A be a measurable set such that u(A) = 0. For every n, f nXady = 0.
By Levi’s theorem, u = hm nx, € L'. Since u is finite almost everywhere and
u(x) = +oo on A, the set A 1s neghglble O

The hypothesis in the following definition will be used to prove that the set {u > 1}
is measurable when the function u > 0 is measurable.

Definition 2.2.28. A positive measure on & is an elementary integral u : £ — R
on £ such that

(Js) forevery u € L, min(u, 1) € L.

Proposition 2.2.29. Let y be a positive measure on Q, u € M, and t > 0. Then
min(u, 1) € M.

Proof. If t = 0, min(u,0) = u* € M. Let ¢t > 0. There is a sequence (u,) C
L converging to u almost everywhere. Then v, = tmin(f'u,,1) € Land v, —
min(u, t) almost everywhere. O

Theorem 2.2.30. Let u be a positive measure on Q and let u : Q — [0, +0] be
almost everywhere finite. The following properties are equivalent:

(a) uis measurable;
(b) foreveryt >0, {u >t} ={x € Q:u(x)>t}is measurable.
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Proof. Assume that u is measurable. For every t > 0 and n > 1, the preceding
proposition implies that

u, = n[min(u, t + 1/n) — min(u, 1)]
is measurable. It follows from Theorem 2.2.24 that
Xust) = lim u, € M.

Hence {u > t} is measurable.
Assume that u satisfies (b). Let us define, for n > 1, the function

00

1
Uy = — ZX{M>I</2”}- (*)

n
2 k=1

For every x € Q, u(x) — 1/2" < u,(x) < u(x). Hence (u,) is simply convergent to u.
Theorem 2.2.24 implies that (¢,) ¢ M and u € M. m]

Corollary 2.2.31. Let u,v € M. Then uv € M.

Proof. If f is measurable, then for every ¢ > 0, the set
2 >a={f>1
is measurable. Hence f? is measurable. We conclude that
1
uv:z[(u+v)2—(u—v)2]€M. O

Definition 2.2.32. A function u : Q — [0, +o0] is admissible (with respect to the
positive measure ) if u is measurable and if for every 7 > 0,

() = u({u > 1)) = u({x € Q: u(x) > t}) < +oo.

The function y, is the distribution function of u.

Corollary 2.2.33 (Markov inequality). Let u € L', u > 0. Then u is admissible,
and for every t > 0,
() < ! f udu.
Q

Proof. Observe that for every t > 0, v = tX{4»y < u. By the comparison theorem,

veLlandfvdysfud,u. |
Q Q
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Corollary 2.2.34 (Cavalieri’s principle). Letu e L', u > 0. Then

fudﬂzf Hu(Ddt.
Q 0

Proof. The sequence (u,) defined by (x) is increasing and converges simply to
u. The function g, :]0,+oco[— [0, +oo[ is nonincreasing. We deduce from Levi’s
theorem that

, 1< k °"
Ludﬂﬂﬂ undﬂ:}Ln;E;ﬂu(?):L‘ M (B)dt. mi

Q

Definition 2.2.35. Let Q be an open set of RV, The Lebesgue measure on ( is the
positive measure defined by the Cauchy integral

7((9)—)R:u»—>fudx.
Q

The Lebesgue measure of a measurable subset A of Q2 is defined by

m(A) = f)(Adx.
Q

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RV,

Theorem 2.2.36. We consider the Lebesgue measure on RY.

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RN, there exist a sequence (Gy) of open sets of

RN and a negligible set S of RV such that AU S = ﬂGk.
k=1
(c) For every measurable set A of RN, there exist a sequence (Fy) of closed sets of

RY and a negligible set T of RN such that A = U FrUT.
k=1

Proof. (a) Let G be an open bounded set and define
up(x) = min{1, n d(x, RV \ G)}. ()

Since (#,) ¢ K(RY) and u,, — Xg, the set G is measurable. For every open set

G, G, = GN B(0, n) is measurable. Hence G = UG" is measurable. Taking the
n=1
complement, every closed set is measurable.
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(b) Let A be a measurable set of RY. By definition, there exist a sequence (u,) C
K(RN) and a negligible set R of RY such that u, — X, on RY \ R. There is
also f € L* suchthat R ¢ § = {f = +oo}. By Proposition 1.3.10, f is Ls.c.
Proposition 1.3.12 implies that for every r € R, {f > ¢} is open. Let us define
the open sets

Uy, = {up > 1/2}U{f >n} and Gk:UUn.
n=k

Itis clear that forevery k, AUS c Gy andAU S = mGk. Since S is negligible
k=1

by definition, the proof is complete.
(c) Taking the complement, there exist a sequence (Fy) of closed sets of RN and a
negligible set S of RY such that

ANRN\S) = UFk.
k=1

It suffices then to define T = AN S. O
Corollary 2.2.37. Leta < b. Then

m(la, b)) = m([a,b]) = b — a.

In particular, m({a}) = 0, and every countable set is negligible.

Proof. Let (u,) be the sequence defined by (). Proposition 2.2.10 implies that

m(la, b]) = fX]a,;,[dx = lim updx = b — a.
R

—00
n R

Since [a, b] = ﬂ]a — 1/n,b + 1/n], it follows from Proposition 2.2.26 that
n=1

m(la,b))=lmb—-a+2/n=>b-a. O
Example. Let A > —1. For every n > 2, the function

() = XX (%)

is integrable by the comparison theorem. It follows from Levi’s monotone conver-
gence theorem that

1
f Xdx=1/QA+1).
0
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Let A < —1. For every n > 2, the function
Va(x) = X1 (%)

is integrable. It follows that

fmx‘dm /1A +1].
1

Example (Cantor sets). Let 0 < € < 1 and (£,,) C ]0, 1] be such that

g= i 2"¢,.
n=0

From the interval Cy = [0, 1], remove the open middle interval Jy; of length &.
Remove from the two remaining closed intervals the middle open intervals J; ; and
J12 of length £;. In general, remove from the 2" remaining closed intervals the
middle open intervals J, 1, ..., J,2» of length £,,. Define

2" o0
Cost = C\ | e =[G
k=1 n=1

The set C is the Cantor set (corresponding to (£,)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each C,, is closed.

The interior of C is empty. Indeed, each C, consists of 2" closed intervals of
equal length, so that ¢ is the only open subset in C.

The Lebesgue measure of C is equal to 1 — &. By induction, we have for every n
that

Mm(Cpy) = 1 — Z 2/t;.
j=0
Proposition 2.2.26 implies that

mC)=1->"2/t;=1-e¢
j=0

The set C is not countable. Let (x,) C C. Denote by [a;, b;] the interval of C
not containing x;. Denote by [ay, b;] the first interval of C, N [ay, b;] not containing
xy. In general, let [a,, b,] denote the first interval of C,, N [a,,—1, b,—1] not containing

x,. Define x = supa, = lim a,. For every n, we have
n n—oo

[am bn] c Cnaxn ¢ [am bn]7-x € [am bn]
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Hence x € C, and for every n, x, # x.

For € = 1, C is not countable and negligible.

Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at
every point of C.

The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by
Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.

N
Definition 2.3.1. Define on R, f(r) = (1-|¢[)*. The family f;(x) = ]_[ f(2jx,, —ky),
n=1

j€N, keZVN, is such that fj; € K(R"),

Spt fix = Buslk/27,1/27, 3" fue =1, fix 2 0.
kezZN

Proposition 2.3.2. Let Q be an open set in RN and let u € K(Q). Then the sequence

uj= " uk/2

kezZN

converges uniformly to u on Q.

Proof. Let € > 0. By uniform continuity, there exists m such that w,(1/2™) < e.
Hence for j > m,

() = (0] = 1 Y @) = ulk/2) faol < & D fix(x) = & o

keZN keZN

Proposition 2.3.3. Let u € K(R"). Then
(a) for every x, € R, u(.,xN) e KRN,

(b) u(x', )dx' € KR);
RN*I

(c) jﬂ;N u(x)dx = deN LN,IM(X/’XN)dX/'

Proof. Every restriction of a continuous function is continuous.
Let us define v(xN) = f

RN-1
theorem implies that v is continuous on R. Since the support of u is a compact

subset of RY, the support of v is a compact subset of R.

u(x’,xN)dx’. Lebesgue’s dominated convergence



2.3 Multiple Integrals 39

We have, for every j € N and every k € Z, by definition of the integral that

jﬂ;N Sfir(x)dx = fRde fRN?I fj,k(x’,xN)dx’.

Hence for every j € N,

LN uj(x)dx = deN jﬂ;vil uj(x ,xN)dx.

There is R > 1 such that
sptuc {x eRY : |xlo <R -1}

For every j € N, by the definition of the integral

'f u(x) — uj(x)dx
RN

< 2RN max |u(x) = uj(0)

we obtain
dezv L}M u(x’,xN) - uj(x’,xN)dx' < 2RN ?;%% |u(x) - uj(x)|.
It is easy to conclude the proof using the preceding proposition. O

Definition 2.3.4. The elementary integral 4 on Q = ©Q; X £, is the product of the
elementary integrals ¢; on £ and u; on €, if for every u € L(Q, p),

(@) u(.,x2) € L(Qy,u) for every x; € Qy;
(b) f u(xy, )dpy € L(2, wo);

2,
(© fu(xl,xz)du=f dﬂzfu(xl,xz)dﬂl-
Q 2 Q

We assume that y is the product of u; and 5.

Lemma 2.3.5. Let u € L*(Q,u). Then

(a) for almost every x; € £y, u(., x2) € LY (21, 1),
(b) f u(xy, )y € L7(Q2, o),

2,
(c) fu(xl,xz)du=f dﬂZf”(xl,xz)d/JL
Q 2 Q
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Proof. Let (u,) c L(Q,n) be a fundamental sequence such that u, T u. By
definition,

by = f unCrr, ity € L2, p12),
Q

and (v,) is a fundamental sequence. But then v, T v, v € L7(0,, u»), and

f V(s = lim f o).
Q) n—eo (23

For almost every x; € £;, v(x;) € R. In this case, (u,(., x2)) € L(Q, ) is a
fundamental sequence and u,(., x2) T u(., x2). Hence u(., x,) € L¥(2, 11) and

f u(xr, x2)dpn = lim f et )dtr = Tim v, (x2) = v(x2).

It follows thatf u(xy, Yduy € L(92,, uo) and
Q

f w(xr, x)dp = Tim | w1, x2)dp
Q n—oo .Q

lim f du f (1, X2)dlpty
n—e Jo Q,

lim f v (x2)dbts
n—oo -Qz

=f V(xz)d#2=f d,uzf u(xy, xo)du; . O
o oy 2

Lemma 2.3.6. Let S C Q be negligible with respect to u. Then for almost every
Xy € £,

Sy, ={x1 €21 :(x1,x) €S}

is negligible with respect to ;.

Proof. By assumption, there is u € L*(Q, u) such that
S c{(x1,x2) € Q:ulxy, xp) = +00}.

The preceding lemma implies that for almost every x, € £,,
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Sy, Clx1 € Q1 u(xy, x2) = +oo}

is negligible with respect to y;. O
Theorem 2.3.7 (Fubini). Let u € £'(Q, y). Then

(a) for almost every x; € &, u(., x) € Ll(Ql,,ul);

(b) f u(xi, )dur € L'(Qs, 12);

Q
(c) fu(xl,xz)d,u=f d#zf“(xl,xz)dﬂl-
Q 2, 2

Proof. By assumption, there is f,g € L7(Q,u) such that u = f — g almost
everywhere on Q. By the preceding lemma, for almost every x; € Q,,

u(xy, x2) = f(x1,x2) — g(x1, x2)

almost everywhere on ;. The conclusion follows from Lemma 2.3.5. O

The following result provides a way to prove that a function on a product space
is integrable.

Theorem 2.3.8 (Tonelli). Let u : Q — [0, +oo[ be such that
(a) for every n € N, min(n, u) € L'(Q, p);

(b) c= | dus | u(xi,x2)du; < +oo.
o) 2

Then u € L£L1(Q, ).

Proof. Let us define u, = min(n, u). Fubini’s theorem implies that

fun(xl,xz)d#=f d#zf un(x1, X2)dpy < c.
Q 2 2

The conclusion follows from Levi’s dominated convergence theorem. O

2.4 Change of Variables

Let Q be an open set of RY and let dx be the Lebesgue measure on Q. We define
LYQ) = L1(Q,dx), L'(Q) = L1(2,dx).

Definition 2.4.1. Let ©Q and w be open. A diffeomorphism is a continuously
differentiable map f : £ — w such that for every x € Q,

J(x) = det f'(x) #0.
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We assume that f : 2 — w is a diffeomorphism. The next theorem is proved in
Sect. 9.1.

Theorem 2.4.2. Let u € K(w). Then u(f)lJ¢| € K(Q) and

L u(fCNI (x0)ldx = f u(y)dy. (*)

Lemma 2.4.3. Let u € L*(w). Then u(f)|Js| € L*(2), and (*) is valid.

Proof. Let (1,) € K(w) be a fundamental sequence such that u, T u. By the
preceding theorem, v, = u,(f)|Jy| € K(Q) and (v,) is a fundamental sequence.
It follows that

_Luuumhuwu=gg;LuAﬂmnuuwu=ggjﬁmw@=Lfmw@.

O
Lemma 2.4.4. Let S C w be a negligible set. Then f~'(S) is a negligible set.
Proof. By assumption, there is u € L (w) such that
S c{yew:uly) = +oo}.
The preceding lemma implies that the set
NS clx e Q:u(f(x) = +oo)
is negligible. O

Theorem 2.4.5. Let u € L' (w). Then u(HIJyl € LNQ), and (%) is valid.

Proof. By assumption, there exist v,w € L"(w) such that u = v — w almost
everywhere on w. It follows from the preceding lemma that

u(HWU gl = vl = wPHI gl

almost everywhere on Q. It is easy to conclude the proof using Lemma 2.4.3. O

Let
BNz{xeRN:|x|<1}

be the unit ball in RV, and let ‘?v = m(BN) be its volume. By the preceding theorem,
forevery r > 0,

mw@m=f dy=r" [ ax=rv.
[yl<r

|x|<1
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We now define polar coordinates. Let N > 2 and RY = RV \ {0}. Let
S ={ceRY ;o] = 1)
be the unit sphere in RN, The polar change of variables is the homeomorphism
10, co[xSN ! — RY - (r,0) +— 0.

Definition 2.4.6. The surface measure on SV~! is defined on C(S¥~!) by

L fo)do = NJ;Nf(ﬁ)dx.

Observe that the function f(x/|x|) is bounded and continuous on BN \ {0}.

Since S¥~! is compact, Dini’s theorem implies that the surface measure is a
positive measure.

Lemma 2.4.7. Let u € K(RY). Then
(a) for every r > 0, the function o — u(ro’) belongs to C(S¥~1);

(b) i u(x)dx = V7! f u(ro)do;
dr Jiy<r Sy-1

(c)f u(x)dx:fmerldrf u(ro)do.
RV 0 Sy

Proof. (a) The restriction of a continuous function is a continuous function.

(b) Letw(r) = u(x)dx and v(r) = f u(ro)do, r > 0. By definition, we have
SN—I

v(r) =Nf M(Lx)dx.
g \lxl
N

Choose r > 0 and & > 0. By definition of the modulus of continuity, we have

f u(x) — u(rx/|x))dx
r<|x|<r+e

< a)u(s)VN[(r +e)V — V.

|x|<r

’w(r +¢&)—w(r) — u(rx/|x))dx

r<|x|<r+e

The preceding theorem implies that

N _
f u(rx/|x))dx = f u(rx/lxl)dx—f u(rx/|x))dx = Wv(r).
r<|x|<r+e |x|<r+e |x|<r
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Hence we find that

N _
w(r +&) —w(r) = va <w@V, [+ e =],
so that
lim M - ,Nflv(r) =0.
e—0 &€
e>0

The right derivative of w is equal to #V~!v. Similarly, the left derivative of w is
equal to V1.
(c) The fundamental theorem of calculus implies that for 0 < a < b,

b b
f u(x)dx = w(b) —w(a) = f v dr = f rN_ldrf u(ro)do.
a<|x|<b a a Sh-1

Taking the limit as @ — 0 and b — +oc0, we obtain (c). 0
Theorem 2.4.8. Let u € L'(RY). Then

(a) for almost every r > 0, the function o — u(rca) belongs to L' (SN, do);

(b) the function r — f u(ro)do belongs to L' (10, co[, ¥V dr);
sN-1

(c)f u(x)dxzfoor’v’ldrf u(ro)do.
RV 0 Sh-1

Proof. By the preceding theorem, the Lebesgue measure on R” is the product of
the surface measure on SV~! and the measure ¥~'dr on 10, oo[. It suffices then to
use Fubini’s theorem. O

Theorem 2.4.9. The volume VN is given by the formulas

2m
V1 = 2, Vz =n and VN = NVN_z.

Proof. Let N > 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

\% =f dx
N Ixl<1
=f d)g...dxf dx\dx;
X +xl <l N K43 <I=(F+..4+22)
; N ; N

nf 1—(x%+...+x2)dx3...dx
K24 4x2 <1 N N

1
2
(N - 2)VN,2f (1= dr = Vi, o
0
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2.5 Comments

The construction of the Lebesgue integral in Chap.2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space L defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (u,) of elementary functions such that

supfund,u<00.
n Jo

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

— Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

— The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].

Lemma 2.4.7 is due to Baker [4]. The book by Saks [67] is still an excellent
reference on integration theory.

The history of integration theory is described in [39,57]. See also [31] on the life
and the work of Emile Borel.

An informal version of the Lebesgue dominated convergence theorem appears
(p- 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).

2.6 Exercises for Chap. 2
1. (Independence of J4.) The functional defined on
L= {u ‘N> R: ]}im u(k) exists}

by (f,u) = klim u(k) satisfies (J1-,_3) but not J4.
2. (Independence of J5.) The elementary integral defined on

L={u:[0,l]>R:x—ax:acR}

fudp =u(l)

by

is not a positive measure.
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. (Counting measure.) Let © be a set. The elementary integral defined on

L={u:Q — R: {ux)# 0} is finite}

by
f udu = Z u(x),
Q u(x)%0
satisfies o
LN, p) = {u ‘NoR: Z lu(n)| < oo}
n=0
and

du = .
fNup nzz(;u(n)

Prove also that when 2 = R, the set R is not measurable.

. (Axiomatic definition of the Cauchy integral.) Let us recall that 7,u(x) = u(x —

y). Let £ : K(RY) — R be a linear functional such that
(a) foreveryu € KRY), u>0= (f,u) >0;
(b) forevery y € RN and for every u € K(RY), (f,tyu)y = (f, u).

Then there exists ¢ > 0 such that for every u € KRN, (f,u) = cf u dx.
RN
Hint: Use Proposition 2.3.2.

. Let u be an elementary integral on Q. Then the following statements are

equivalent:
(a) ue LMQ,u.
(b) There exists a decreasing sequence (u,) C L*(2,u) such that almost

everywhere, u = limu, and inf | u,du > —oo.

—00
n Q

. Let Q@ = B(0,1) c RV. Then

A+N>0= ' e L1Q),1+N <0 = |x' e L'R"\ Q).

. Let u : R? > R be such that for every y € R, u(.,y) is continuous and for every

x € R, u(x,.) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to  on R?.

. Construct a sequence (wy) of open dense subsets of R such that m[ﬂ wk) =0.

k=0
Hint: Let (g,) be an enumeration of Q and let I,; be the open interval with

center g, and length 1/ 2"k Define wy = UI"”"
n=0
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Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d(u,v) = max Ju(x) — v(x)|.

Hint: Let Y be the set of functions in X that are dlfferentlable at at least one
point and define, forn > 1,

F, = {u € X : there exists 0 < x < 1 such that,

forall 0 <y <1, |u(x) — u(y)| < nlx —y|}.

Since Y C UF"’ it suffices to prove that mG is dense in X, where G,, = X\ F,,.

By Baire’s theorem it suffices to prove that every G, is open and dense.
It is clear that

G,={ueX :forall0 < x <1, thereexists0 <y <1
such that n|x — y| < [u(x) — u()|}.

Let u € G,,. The function
S(x) = max{lu(x) —u@)| - n(x -yl :0<y <1},

is such that
inf f(x) = min f(x) > 0.
0<x<1 0<x<1

It follows that G, is open.
We use the functions f;x of Definition 2.3.1. Let u € X and & > 0. Define

w0 = > ulk/2) i),

0<k<2/
gm(x) = ed2"x,N).
Then for j and m large enough,
du,uj) <e, u;+gme€G,.
It follows that G,, is dense.
(Iterated integrals, Baker 1990.) Let K = [0, 11V and let u be an elementary
integral on Q. Assume that f € £'(Q, ) and

F:KxQ—-R:(x,y)- F(x,y)

are such that
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(a) For almost all y € Q, F(.,y) is continuous;
(b) Forall x € K, F(x,.)is u-measurable;
©) [F(x, I < f().

Then:

(a) The function G(x) = f F(x,y)du is continuous on K.
Q

(b) The function H(y) = f F(x,y)dx is u-measurable on Q.
K

(©) f G(x)dx = f H)du.
K Q

Hint: Define on Q ' .
Hi(y)=2"N 3" Fk/2),y)

keNN
Kloo <27

and observe that
lim Hj0) = HO), i f Hi(y)dy = f H(y)d.

(Proof of Euler’s identity by M. Ivan, 2008).

1+y o

1 1 1 Jog X 1 .20
dx gl—y Yy
d = d :2 d
(@) Il yIl 1 +2xy + y? j:l y Y nz(;fl 2n+1 Y
= 1
=4 _—
Z(2n+1)2

n=0

1 1 1 2
dy n big

(b) fdxf =f dx = —.
a0 Jal+2xy+yr JaoVi— 22 2

1 n* .
m =3 is equivalent to the formula ol

n=1

00

(¢) The formula Z
n=0

Letu € C((RY) N K(RY). Then

L[ Yux-y-y
u(x) = f dy.
NV Jer oV

Hint: For every o € SV1,

u(x) = fm Vu(x — ro) - odr.
0
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13. The Newton potential of the ball B = B(0,R) C R3 is defined, for [yl > R, by

d
90(y)=f i
Bg [y —

Since By is invariant by rotation, we may assume thaty = (0, 0, a), where a = |y|.
It follows that

e(y) = ka\/

x2 +x2+(x3—a)2

R Rz—x§ r
=2n f dxs f ——dr
-R 0 rz + (x3 —a)?

R
=7Tf (\/R2+a2—2ax3—a+x3)dX3
R

4 BB 4R

34 T3

14. The Newton potential of the sphere S? is defined, for |y| # 1, by

do
e ly—ol

y(y) =

For |y| > R, we have that

4 R R
—T— = f rzf(r,y)dr,
30yl 0

d
f(r,y)=f T
s ly—rol

2
47rﬂ = R*f(R, y).

where

It follows that

In particular, for |y| > 1,

v() = f(1,y) = —.
[l



Chapter 3
Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.
Definition 3.1.1. A norm on a real vector space X is a function

X->R:u |ul
such that

(N1) forevery u € X \ {0}, ||ul| > 0;
(N,) forevery u € X and for @ € R, |lau|| = |a|||ul|;
(N3)  (Minkowski’s inequality) for every u,v € X,

lle + VIl < fluel] + |IV]]-

A (real) normed space is a (real) vector space together with a norm on that space.

Examples. 1. Let (X, ||.|[) be a normed space and let Y be a subspace of X. The space
Y together with ||.|| (restricted to Y) is a normed space.
2. Let (X1, |I.Il1), (X2, ||.]l2) be normed spaces. The space X; X X, together with

[1Geer, u2)ll = max(luglly, lluzll2)

is a normed space.
3. We define the norm on the space RY to be

[*oo = maX{lel, cees IxNI}.

Every normed space is a metric space.

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 51
DOI 10.1007/978-1-4614-7004-5_3, © Springer Science+Business Media, LLC 2013
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Proposition 3.1.2. Let X be a normed space. The function
XXX ->R:(uv) e |lu-v
is a distance on X. The following mappings are continuous:

X > R:uw |ul,
XXX —>X:(u,v)—u+v,
RxX— X:(a,u) — au.

Proof. By N1 and N,
duv)=0=u=v, du,v)=|—w-v)=Iv—ull=dv,u).
Finally, by Minkowski’s inequality,
du,w) < d(u,v) +d(v,w).
Since by Minkowski’s inequality,
= | < e = v,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. O

Definition 3.1.3. Let X be a normed space and (u,) C X. The series Z””

n=0
k

converges, and its sum is u € X if the sequence Zun converges to u. We then
n=0

o)

write Z”” =u.

n=0

o) e8]

The series Z”” converges normally if Z||un|| < 00,
n=0 n=0

Definition 3.1.4. A Banach space is a complete normed space.

Proposition 3.1.5. In a Banach space X, the following statements are equivalent:

(o]
(a) Z u, converges;
n=0

(b) jli)moo Z U, = 0.

n=j+1
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k
Proof. Define Sy = Zun. Since X is complete, we have

n=0
k
(@< lim IS¢=Sjl=0 lim || > ) =0 b). O
j= e ‘ Joeoll S
j<k j<k /

Proposition 3.1.6. In a Banach space, every normally convergent series converges.
(&9

Proof. Let Z“" be a normally convergent series in the Banach space X.
n=0
Minkowski’s inequality implies that for j < k,

k

k
DLl < D7 Nl

n=j+1 n=j+l1

Since the series is normally convergent,

k
Jim > gl = 0.
— 00

jj 25 neil

It suffices then to use the preceding proposition. O

Examples. 1. The space of bounded continuous functions on the metric space X,

BCX) = {u € C(X) : suplu(x)| < oo},
xeX

together with the norm

Il = sup a2,
xeX
is a Banach space. Convergence with respect to ||.|| iS uniform convergence.
2. Let u be a positive measure on . We denote by L!(Q, u) the quotient of £!(Q, 1)
by the equivalence relation “equality almost everywhere.” We define the norm

wm=fwwL
Q

Convergence with respect to ||.||; is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L' (2, u) is a Banach space.

3. Letdx be the Lebesgue measure on the open subset 2 of RY. We denote by L!(Q)
the space L!(, dx). Convergence in mean is not implied by simple convergence,
and almost everywhere convergence is not implied by convergence in mean.
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If m(Q) < oo, the comparison theorem implies that for every u € BC(Q),
i = | ludx < (@
Q

Hence BC(Q) c L'(RQ), and the canonical injection is continuous, since
llee = vIli < m()llu = Voo

Proposition 3.1.7. Let u € L'(Q, 1). Then for every € > 0, there exists 6 > 0 such
that for every measurable subset A of Q satisfying u(A) <6, f luldu < e.
A

Proof. Let € > 0. Markov’s inequality implies that for every r > 0 and for every
measurable set A,

f luldyt < 1 u(A) + f ldp < 1 pCA) + .
A {lul>1}

We choose ¢ = 2||ul|; /€ and 6 = €/(2¢). We obtain, when u(A) < 9§, that f|u|dy <e.
A
O

Definition 3.1.8. A subset S of L'(Q, u) is uniformly integrable if for every & > 0,
there exists § > 0 such that for every measurable subset A of Q2 satisfying u(A) < 4,

supflulduga.
ueS JA

Theorem 3.1.9 (Vitali). Let u(Q) < oo and let (u,) € L'(Q,u) be a sequence
almost everywhere converging to u. Then the following properties are equivalent:

(a) {u, : n € N} is uniformly integrable;
(b) llup —ully = 0,n — oo.

Proof. Assume that (a) is satisfied and let € > 0. For every n, we have

f i — ldp = f i — ldp + f u — sl *)
Q |uy—ul<e |ty —u|>e

<eu(Q) + f |uenldu + f |u|dpt.
|ty —u|>e lup—ul>e

There exists, by assumption and Fatou’s lemma, a § > 0 such that for every
measurable subset A of Q satisfying u(A) < 6,

sup f lnldp < . f uldy < e. (+5)
n A A

By Lebesgue’s dominated convergence theorem and the fact that u(£2) < oo, there
exists m such that for every n > m,
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wlu, —ul > e} <6.

It follows from (x) and (xx) that for every n > m,

f |, — uldu < (U(Q) + 2)e.
Q

Since € > 0 is arbitrary, ||u, — ull; = 0, n — oo.
Assume that (b) is satisfied. For every measurable subset A of 2, we have

flunldu < fluld#+ lltn — ully-
A A

Let € > 0. There exists m such that for every n > m, ||u, — ul|; < /2 and there exists
6 > 0 such that for every measurable subset A of Q, u(A) < ¢ implies that

flulduSS/Z,flulld,uSa,...flum_llduSS.
A A A

Then for every n, f luyldu < € and {u,, : n € N} is uniformly integrable. O
A

Theorem 3.1.10 (de la Vallée Poussin criterion). Let S ¢ L'(Q, u) be such that

¢ = supllul|; < +oo. The following properties are equivalent:
ues

(a) S is uniformly integrable;
(b) there exists an increasing convex function F : [0, oo[— [0, oo[ such that

lim F(t)/t = 400 and M = supfF(Iul)d/,c < 00,
Q

[—00 ues

Proof. It S satisfies (b), then for every € > 0, there exists # > 0 such that for every
s>t, F(s)/s > M/e. Hence for all u € S, we have

f uldy < = f F(luldu < &.
{lul>1) M Jyusn

We choose ¢ = &/t. For every measurable subset A of Q such that u(A) < ¢ and for
every u € S, we obtain

fluldu < tu(A) + f luldu < 2e.
A {lul>1}

Markov’s inequality implies that for every u € S and every ¢ > 0,

pilul > 1} < lulli/t < /1.
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Assume that S satisfies (a). Then there exists a strictly increasing sequence of
integers a, > 1 such that sup luldu < 27". We define f(s) = 0 on [0, 1[ and

ueS J{|ul>a,)
f(s) = f(m) on Jm, m+ 1[, where f(m) is the number of integers n such that a, < m.

Let F(r) = ff(s)ds We choose u € §, and we define b,, = u{|lu| > m}. Since

LF(IMI)d# < Sl <ul < 2} + (F(D) + f2)pi2 < |ul < 3} +

and
”Z;" b, < n;;”mp m<u<m+1} < fu|>an} luldu < 27",
we find that Z F(m)by, = Z Z O
n=1 m=a,

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir I’opération que I’on considére, de méme qu’on fait la
théorie de ’addition sans définir la nature des termes a
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.

Proposition 3.2.1. Let X and Y be normed spaces and A : X — Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

A
) e v sup 1A
uex lul
u#0

Proof. 1f ¢ < oo, we obtain
l1Au — Av|| = |A(u — )I| < cllu —vI|.

Hence A is continuous.
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If A is continuous, there exists 6 > 0 such that for every u € X,
llull = |lu = Ol| <6 = ||Aul| = [|Au — AO|| < 1.

Hence for every u € X \ {0},

lu g lu
lAull = —=[IA|{—u]ll < —. o
o lull 0

Proposition 3.2.2. The function

[|Au|
lAll= sup —— = sup |[|Aul|
ueX |"‘” ueXx
#0 [lll = 1

defines a norm on the space L(X,Y) = {A : X - Y : A is linear and continuous}.
Proof. By the preceding proposition, if A € £(X,Y), then 0 < [|A]| < co. If A # 0, it
is clear that ||A]| > 0. It follows from axiom N, that

lleAll = sup |leAull= sup |al||Aull = |allAll.
ueX ueX
lluell = 1 lluell = 1

It follows from Minkowski’s inequality that

l|A+B||= sup ||Au+ Bul|< sup (||Aull+||Bull) < ||A]l + ||B]|. o
ueX ueX
[lull = 1 lull = 1

Proposition 3.2.3 (Extension by density). Let Z be a dense subspace of a normed
space X, Y a Banach space, and A € L(Z,Y). Then there exists a unique mapping
B e L(X,Y) such that B|Z = A. Moreover, ||B|| = ||A]l.

Proof. Let u € X. There exists a sequence (u,) C Z such that u,, — u. The sequence
(Au,) is a Cauchy sequence, since

lAu; — Awgl| < l|AJ |luej — uell = 0, jok — o0

by Proposition 1.2.3. We denote by f its limit. Let (v,) C Z be such that v, — u.
We have

lAvn = Augll < Al Ve = unll < AI (Ve = wll + [l = unll) = 0, 1 — oco.

Hence Av, — f, and we define Bu = f. By Proposition 3.1.2, B is linear. Since for
every n,

lAun|| < A Hleeall,
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we obtain by Proposition 3.1.2 that
1Bull < lIAI {la].

Hence B is continuous and ||B|| < ||A]]. It is clear that ||A|| < ||B||. Hence ||A|| = || B
If C € L(X,Y) is such that C|, = A, we obtain

Cu = lim Cu, = lim Au,, = lim Bu, = Bu. O

n—oo n—oo n—oo

Proposition 3.2.4. Let X and Y be normed spaces, and let (A,) c L(X,Y) and
A € L(X,Y) be such that ||A, — A]| = 0. Then (A,) converges simply to A.

Proof. For every u € X, we have
lAnu — Aull = |I(An = Aull < [|An — All lluel]. 0

Proposition 3.2.5. Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (A,) C L(X,Y) be such that

(a) ¢ = supl|A|| < oo;

(b) for evnery v € Z, (A,v) converges.

Then A, converges simply to A € L(X,Y), and

llAll' < Lim [|A,].

Proof. Let u € X and € > 0. By density, there exists v € B(u, &) N Z. Since (A,Vv)
converges, Proposition 1.2.3 implies the existence of n such that

hkzn=|Ay-Apl <e
Hence for j, k > n, we have

[|Aju — Agull < ||Aju— Al + 1Ay — Ayl + [|Agy — Agul|
<2c|lu—v||+e¢
= 2c+ De.

The sequence (A,u) is a Cauchy sequence, since £ > 0 is arbitrary. Hence (A,u)
converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2
that A is linear and that

Aull = lim [lA,ull < Lim [JA,]] flull

n—oo

But then A is continuous and ||A|| < lim [|A,]]. O
n—oo
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Theorem 3.2.6 (Banach—Steinhaus theorem). Let X be a Banach space, Y a
normed space, and let (A,) C L(X, Y) be such that for every u € X,

sup ||[Apu|| < oo.
n

Then

sup [|Ap|| < co.
n

First Proof. Theorem 1.3.13 applied to the sequence F, : u — ||A,u|| implies the
existence of a ball B(v, r) such that

c=sup sup [|[Anull < oo.
n ueB,r)

It is clear that for every y,z € Y,

lIyll < max{llz + yll, llz = ylI}. ()
Hence for every n and for every w € B(0, r), ||A,w|| < ¢, so that

sup [|A,ll < c/r.

Second Proof. Assume to obtain a contradiction that sup,, [|A,|| = +co. By consider-
ing a subsequence, we assume that n 3" < [|4,||. Let us define inductively a sequence
(u,). We choose 1y = 0. There exists v, such that ||v,|| = 37" and %3’”||An|| < ||Apvall-
By (x), replacing if necessary v, by —v,, we obtain

3 -n
4_13 AL < NAVall < |An(tn-1 + vi)ll.

We define u, = u,-; + v,, so that ||u,, — u,—|| = 37". It follows that for every k > n,
llex — unll < 37"/2.

Hence (u,) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

llu = unll < 37/2.

We conclude that
”Anu” > ”Anun” - ”An(un - Lt)”
3
> IIAnII[ZT" =, - ull}

1
>n 3”[%3” - 53”} =n/4. O
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Corollary 3.2.7. Let X be a Banach space, Y a normed space, and (A,) C L(X,Y)
a sequence converging simply to A. Then (A,) is bounded, A € L(X,Y), and

Al < lim [|A,]l.

n—oo

Proof. For every u € X, the sequence (A,u) is convergent, hence bounded, by
Proposition 1.2.3. The Banach—Steinhaus theorem implies that sup||A,|| < oco. It

follows from Proposition 3.1.2 that A is linear and

Aull = lim [[A,ul] < 1im [JA,]}flul,

n—oo

so that A is continuous and [|A]| < lim ||A,]|. O

n—oo

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.

Example (Convergence of functionals). We define the linear continuous functionals
f,on L'(J0, 1]) to be

1
(fn,u)zf u(x)x" dx.
0

Since for every u € L'(]0, 1[) such that [u||; = 1, we have

1
)] < fo (ol = 1,

it is clear that

Wfll= sup  [{fo,u)l < 1.

u
llully =1

Choosing vi(x) = (k + 1)x*, we obtain

k+1
1. ns = 1 =
kg?o<f Vi) kglolo k+n+1

It follows that ||f,]| = 1, and for every u € L'(]0, 1[) such that [[u|; = 1,

s ] < M1full-

Lebesgue’s dominated convergence theorem implies that (f,) converges simply to
f = 0. Observe that

IAAF < Tim | fall.

n—oo
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1. A scalar product on the (real) vector space X is a function
XXX ->R:(uv)- (uy)

such that

(8)) foreveryu € X\ {0}, (ulu) > O;
(S,) forevery u,v,w € X and for every a, 8 € R, (au + Bviw) = a(ulw) + B(v|w);
(83) forevery u,v e X, (uly) = (viu).

We define |[u|| = v(ulu). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2. Let u,v,w € X and let a,3 € R. Then

(a) (ulav +Bw) = aulv) + Bulw);
(b) llaull = la| |lull

Proposition 3.3.3. Let X be a pre-Hilbert space and let u,v € X. Then

(a) (parallelogram identity) |lu + v||* + |lu — v||* = 2||ul® + 2|[v|[*;
(b) (polarization identity) (ulv) = illu +v|)? - illu —v||%;
(c) (Pythagorean identity) (ulv) = 0 & |lu + v|]*> = |jull> + |[V|*

Proof. Observe that
e + VI =l + 2(ulv) + VI, ()
Nl = VI = fld® = 2ul) + vIF. (%)
By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. O
Proposition 3.3.4. Let X be a pre-Hilbert space and let u,v € X. Then

(a) (Cauchy—Schwarz inequality) |(ulv)| < |lull [[VI|;
(b) (Minkowski’s inequality) ||u + v|| < |lull + |[vI].
Proof. It follows from (x) and (**) that for |[u|| = ||v|| = 1,

) < 5 (1l + I1P) = 1.

u,v
—l— <1
(IIMII IIVII)

Hence for u # 0 # v, we obtain

|Cuv)]

lleelNIVII
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By (%) and the Cauchy—Schwarz inequality, we have

2 2 2 2
[l + VI < laal[” + 2[uel]l V] + VII7 = (||M|| + ||V||) . O

Corollary 3.3.5. (a) The function ||ul| = V(ulu) defines a norm on the pre-Hilbert
space X.
(b) The function

XXX ->R:(uv)e- (uy)
is continuous.

Definition 3.3.6. A family (e;) s in a pre-Hilbert space X is orthonormal if

(ejlex) =1, j=k,
=0, j+#k

Proposition 3.3.7 (Bessel’s inequality). Let (e,) be an orthonormal sequence in a
pre-Hilbert space X and let u € X. Then

e’ < .
n=0

Proof. 1t follows from the Pythagorean identity that

2

k k
P = = > leen + D (ulee,
n=0 n=0
k 2k )
= |l =D @lenen|| + > |ulen)|
n=0 n=0
>

k 2
> Jclen)”
n=0

O

Proposition 3.3.8. Let (e, .. ., ex) be a finite orthonormal sequence in a pre-Hilbert
space X, u € X, and xy, ..., x; € R. Then

k k
u— Z(u | en)ey u-— Z Xp€n
n=0 n=0

Proof. 1t follows from the Pythagorean identity that

<
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2 2

U— ) Xy,

k k
= =D @l enen+ D (wl en) = xe
n=0 n=0

k
n=0

k 2k
==Y wlenen + > |len - x|
n=0 n=0

O

Definition 3.3.9. A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10. Let (e,) be a Hilbert basis of a pre-Hilbert space X and let
u € X. Then

(@) u= ) (ulexen;
n=0

(b) (Parseval’s identity) lul? = Z|(u | en)lz.
n=0

Proof. Let & > 0. By definition, there exists a sequence xo, ..., x; € R such that

J
[lu— anenﬂ <e&.

n=0

It follows from the preceding proposition that for k > j,

k
= (| en)ell < .
n=0

Hence u = Z(u | en)en, and by Proposition 3.1.2,
n=0

2 2

k

lim > (| en)e,

n=0

k

as

n=0

= lim
k—o0

k (o9
= lim 3" Jwle) =) Jwle)
n=0 n=0

O

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11. Assume the existence of a sequence (f;) generating a dense
subset of the normed space X. Then X is separable.

Proof. By assumption, the space of (finite) linear combinations of (f}) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of (f;)
is dense in X. Since this space is countable, X is separable. O
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Proposition 3.3.12. Let X be an infinite-dimensional pre-Hilbert space. The fol-
lowing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof. By the preceding proposition, (b) implies (a).

If X is separable, it contains a sequence (f;) generating a dense subspace. We
may assume that (f;) is free. Since the dimension of X is infinite, the sequence (f})
is infinite. We define by induction the sequences (g,) and (e,):

eo = fo/llfll
n—1

g = fo— Y (falees en=gulligall, n>1.
=0

The sequence (e,) generated from (f,) by the Gram—Schmidt orthonormalization
process is a Hilbert basis of X. O

Definition 3.3.13. A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Rlesz—Flscher) Let (e,) be an orthonormal sequence in the

Hilbert space X. The sequence chen converges if and only if Zc < 00. Then

n=0 =
(o] 2 (o]
S =3
n=0 n=0

n=0
k 2 k
12 — _ 2
_ =Y
1Se=SAP = > cuenl| = D¢
n=j+1 n=j+1

Hence

lim_ IS, =S 1P =0 = lim_ Zc —0=Zc < 0.
J J n=j+1 =l
j<k j<k /

Since X is complete, (S) converges if and only if Zcﬁ < 0. Then chen =

n=0 n=0
klimSk, and by Proposition 3.1.2,
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33
1~
o
Il
gk
Do
[}

Il im S¢|)> = Lim IS = li
k—oo k— oo k-

—

Examples. 1. Let u be a positive measure on Q. We denote by L*(Q,u) the
quotient of

L2, = {u e M(Q,p) : fg uldu < oo}

by the equivalence relation “equality almost everywhere.” If u, v € L*(Q, 1), then
u+vel*Q, ). Indeed, almost everywhere on 2, we have

[t(x) + v < 20U + (x)).

(ulv) = f uv du
Q
on the space L?(Q, ).

The scalar product is well defined, since almost everywhere on ©,

We define the scalar product

1
() vl < 5 (P + ).

12
wm{fw%d.
Q

Convergence with respect to ||.||, is convergence in quadratic mean. We will prove
in Sect. 4.2, on Lebesgue spaces, that [*(Q, () is a Hilbert space. If u(€2) < oo, it
follows from the Cauchy—Schwarz inequality that for every u € L*(Q, u),

By definition,

wmiwasmmmwu
Q

Hence L2(Q, 1) C L'(Q, 1), and the canonical injection is continuous.
2. Let dx be the Lebesgue measure on the open subset 2 of RV. We denote by L*(Q)
the space L*(R, dx). Observe that

1 e L*(J1, )\ L'(]1, oo[) and < e L'(0, 1D\ L*(0, 1]).
* Vi

If m(€Q) < oo, the comparison theorem implies that for every u € BC(Q),
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llull3 = f utdx < m(Q)|lull%.
Q

Hence BC(Q) c L*(RQ), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945). Let (e,) be an orthonormal sequence
in L*(1a, b]). The following properties are equivalent:

(a) (ey) is a Hilbert basis;
0 : 2
(b) foreverya <t<b, Z(f en(x)dx) =t—-a;

n=1

e b ! 2 N2
(c) Zf (f en(x)dx) dt = G 2a) .
n=1 Y4 a

Proof. Property (b) follows from (a) and Parseval’s identity applied to X[4.
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.
O

2
Example. The sequence e,(x) = \/j sinn x is orthonormal in L*(]0, [). Since
T

200 T 1 2 o 1
— i dx| dt=73 —
H;L(ﬁm“x) >

n=1
and since by a classical identity due to Euler,

o
DA

n=1

the sequence (e,,) is a Hilbert basis of L*(]0, zi]).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1. Let X be a real vector space and let A : X — X be a linear
mapping. The eigenvectors corresponding to the eigenvalue A € R are the nonzero
solutions of

Au = Au.

The multiplicity of A is the dimension of the space of solutions. The eigenvalue A is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range
of A.
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Definition 3.4.2. Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X — X such that for every u, v € X, (Au|v) = (u|Av).

Proposition 3.4.3. Let X be a pre-Hilbert space and A : X — X a symmetric
continuous operator. Then

lAll = sup  [(Aulu)l.

ueX
[lull =1
Proof. It is clear that
a= sup |(Aulw)| <b = sup [(Aulv)| = ||A]l.
ueX u,veX
[lull =1 [lell = [IvIl =1
If ||u|| = |Ivl| = 1, it follows from the parallelogram identity that
1
[(Aulv)| = ZI(A(M WU+ v) = (Al —v)lu—v)|
a
< gl vIE + fl = vIP)
a
= 7200l + 2001 = @
Hence b = a. O

Corollary 3.4.4. Under the assumptions of the preceding proposition, there exists
a sequence (u,) C X such that

llnll = 1, 1Aty = Ayunll = 0, 14,] = ||A]l.
Proof. Consider a maximizing sequence (u,):

lleenll = 1, |(Autnlun)l = sup  [(Aulu)] = [|A]l.
ueX
llull = 1

By passing if necessary to a subsequence, we can assume that (Au,lu,) — A,
|A1] = ||A]l. Hence

0 < llAuy — Ljunl* = Au|l* = 221 (Aunliay) + A3yl

<222 =22 (Auylu,) = 0, n— co. o

Definition 3.4.5. Let X and Y be normed spaces. A mapping A : X — Y is compact
if the set {Au : u € X, ||u|| < 1} is precompactin Y.
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By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6. Let X be a Hilbert space and let A : X — X be a symmetric
compact operator. Then there exists an eigenvalue Ay of A such that |1;| = ||A]|.

Proof. We can assume that A # 0. The preceding corollary implies the existence of
a sequence (u#,) C X such that

lleanll = 1, [|Asn = Ayun|l = 0, 111] = ||A]l.

Passing if necessary to a subsequence, we can assume that Au, — v. Hence u, —
U= /lIIV, llul| = 1, and Au = A;u. O

Theorem 3.4.7 (Poincaré’s principle). Let X be a Hilbert space andA : X — X a
symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1,...,e,—1) and the corresponding eigenvalues (A1, . .., A,-1). Then there exists an
eigenvalue A, of A such that

|4, = max{|(Aulw)| : u € X, |lull = 1, (ule)) = ... = (ule,—1) = 0}

and A, — 0, n — oo,

Proof. The closed subspace of X
X, ={ueX:(ue)=...=ule-1) =0}
is invariant by A. Indeed, if u € X, and 1 < j <n - 1, then

(Aulej) = (ulAe)) = Aj(ule;) = 0

Hence A, = A‘ is a nonzero symmetric compact operator, and there exist an
eigenvalue 4, of A such that |1,| = ||A,|| and a corresponding eigenvector ¢, € X,
such that |le,|| = 1. By construction, the sequence (e,) is orthonormal, and the

sequence (|4,]) is decreasing. Hence |1,| — d, n — oo, and for j # k,
lAe; — Aerll® = A5+ 43 — 2d°,  jk — oo.

Since A is compact, d = 0. O
Theorem 3 4.8. Under the assumptions of the preceding theorem, for every u € X,

the series Z(ulen)en converges and u — Z(u|en)en belongs to the kernel of A:

n=1 n=1

Au= ) diulenen. (*)

n=1
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k
Proof. Forevery k > 1, u — Z(u|en)en € Xy+1. It follows from Proposition 3.3.8.

n=1

that

<Akl flull = 0, k — oo.

U= zk:(ulen)en

n=1

k
Au — Z A (uley)e,

n=1

< Akl

Bessel’s inequality implies that Z:Kulen)l2 < ||u||2. We deduce from the Riesz—

n=1
(o)

Fischer theorem that Z(u|en)en converges to v € X. Since A is continuous,

n=1

Av = Z Ay (uley)e, = Au

n=1

and A(u —v) =0. O

Formula (*) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].
The first proof of the Banach—Steinhaus theorem in Sect.3.2 is due to Favard
[22], and the second proof to Royden [66].

3.6 Exercises for Chap.3

Prove that BC(Q) N L' (Q) c L*(Q).
. Define a sequence (1,) ¢ BC(]0, 1[) such that ||u,|l; — O, |lu,l> = 1, and
et lloo — 00.

3. Define a sequence (u,) ¢ BC(R) N L'(R) such that ||u,||; — oo, |lunl» = 1 and
l#nlle — O.

4. Define a sequence (u,) € BC(]O, 1[) converging simply to u such that ||u,||. =
lleelloo = Nt — ullco = 1.

5. Define a sequence (u,) C L'(00, 1]) such that |ju,ll; — O and for every

0 < x <1, lim u,(x) = 1. Hint: Use characteristic functions of intervals.

n—oo

o =

1
6. On the space C([0, 1]) with the norm ||u||; = f |u(x)|dx, is the linear functional
0
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10.

11.

12.

13.

14.

15.

3 Norms

f:CI0, 1) > R:u- u(l/2)

continuous?
Let X be a normed space such that every normally convergent series converges.
Prove that X is a Banach space.

. A linear functional defined on a normed space is continuous if and only if its

kernel is closed. If this is not the case, the kernel is dense.

Is it possible to derive the norm on L'q0, 1D (respectively BC(]0, 1[)) from a
scalar product?

Prove Lagrange’s identity in pre-Hilbert spaces:

2
[l1vllee = Nallv]|™ = 201l PV = 21l (]It

Let X be a pre-Hilbert space and u,v € X \ {0}. Then

u 1%

llull> v

=l

Nl 111

Let f, g, h € X. Prove Ptolemy’s inequality:

IfIHlg = 7ll < Nl = gl + gl = f1I.

(The Jordan—von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

1
(av) = 5 (1l + VP = [l = v

Verify that
(f +glh) + (f = glh) = 2(f1h),

(ulh) + (v]h) = 2 (”T”m) = (u+vlh).

Let f be a linear functional on L*(]0, 1[) such that u > 0 = (f,u) > 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||,. Prove that
f is not necessarily continuous with respect to the norm ||.||;.

Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (u,) such that
[lu,]] = 1 and ||Au,|| — oo. Then use the Banach—Steinhaus theorem to obtain a
contradiction.

In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.
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16. Assume that u(Q) < oco. Let (u,) € L'(Q, 1) be such that

(a) Supflunlé’n(l + |un)dp < +00;
n Je
(b) (u,) converges almost everywhere to u.

Then u, — uin L' (Q, ).

71



Chapter 4
Lebesgue Spaces

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1. A subset C of a vector space X is convex if for every u, v € C and
every)0 <A< 1,wehave (1 - D)x+ Ay eC.

A point x of the convex set C is internal if for every y € X, there exists € > 0
such that x + gy € C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x € C and every 4 > 0, we have Ax € C.

Let C be a convex set. A function F : C —] — oo, +00] is convex if for every
x,y€ Candevery 0 < A < 1, we have F((1 — D)x + Ay) < (1 — DF(x) + AF(y).

A function F : C — [—o0, +00[ is concave if —F is convex.

Let C be a cone. A function F : C —] — o0, +00] is positively homogeneous if for
every x € C and every 4 > 0, we have F(Ax) = AF(x).

Examples. Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
anormed space are convex.

Proposition 4.1.2. The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3. Let Y be a hyperplane of a real vector space X, f : Y — R linear
and F : X —] — oo, +00] convex and positively homogeneous such that f < F onY
and

YN int{x € X : F(x) < oo} # ¢.

Then there exists g : X — R linear such that g < F on X and g|Y = f.

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 73
DOI 10.1007/978-1-4614-7004-5_4, © Springer Science+Business Media, LLC 2013
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Proof. There exists z € X such that X = Y & Rz. We must prove the existence of
¢ € R such that for every y € Y and every t € R,
(fim+ct<FQy+12).

Since F is positively homogeneous, it suffices to verify that for every u,v e Y,
(fouy—Fu—-z2) <c<F(v+2)={f,v).
For every u,v € Y, we have by assumption that
(fou) +{f,v) < Fu+v)<Fu-20+F(+2).

We define
a=sup{f,uy—F(u—-2z)<b= in;F(v+z)—(f,v).

ueYy
Letu € YN int{x € X : F(x) < oo}. For t large enough, F(tu—z) = tF(u—z/t) < +oo.
Hence —co < a. Similarly, b < +00. We can choose any c € [a, b]. O

Let us state a cornerstone of functional analysis, the Hahn—Banach theorem.

Theorem 4.1.4. Let Y be a subspace of a separable normed space X and let f €
L(Y,R). Then there exists g € L(X,R) such that ||g|| = || f|| and g’y: f.

Proof. Let (z,) be a sequence dense in X. We define fy = f, Yo = Y,and ¥, =
Y,-1 + Rz,, n > 1. Let there be f,, € L(Y,,, R) such that || f,|| = ||f]| and ﬁ1|Y = fu-1.
1

n—

If Y41 = Y, we define f,,1 = f,. If this is not the case, the preceding lemma implies

the existence of f,41 : Y41 — R linear such that f,,.; = f» and for every x € Y44,

n

et X < AFIHIIXL

On Z = UY,, we define & by h‘Y = fu, n > 0. The space Z is dense in X,
n=0 "
h e L(ZR), ||hl = |Ifll, and h'Yz f. Finally, by Proposition 3.2.3, there exists
g € L(X,R) such that ||g|| = ||Al| and g'zz h. O
Corollary 4.1.5. Let X be a separable normed space. Then for every u € X,
lull = max (fouw)= max L
feX

fex ul
71l =1 £#0

The next theorem is due to P. Roselli and the author. Let us define

C. ={(x1,x) € R?:x,>0,x > 0}.
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Theorem 4.1.6 (Convexity inequality). Let F : C, — R be a positively homoge-
neous function and let u; € LY(Q, p) be such that u; >0, fujdu >0,j=1,2IfF
Q

F(fuldy,fugdu)SfF(ul,ug)du.
Q Q Q

If F is concave, the reverse inequality holds.

is convex, then

Proof. We define F(x) = 400, x € R2\C,, andy; = fujd,u,j =1,2.Lemma4.1.3
Q

implies the existence of @, 8 € R such that
F(y1,y2) = ay; + By, and, for all x1, x; € R, ax; + Bxy < F(x1, x2). (%)
For every 0 < 2 < 1, we have
a(l =D +PA<FA1 -2, <1 -DF1,0)+ AF(0, 1),

so that ¢ = sup |F(1 — 4, 2)| < co. Since
0<a<1

|F(ur,u)| < c(uy + u),

the comparison theorem implies that F(uy,uy) € L'(Q,u). We conclude from (x)

that
F(fuld/,t,fuzdu)=afu1du+ﬁfu2du
Q Q Q Q

=fa/u1+ﬁu2d/1
Q

< fF(ul,uz)dp. O
Q

Lemma 4.1.7. Let F : C. — R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof. Assume that F(., 1) is convex. It suffices to prove that for every x,y € (C:Ur,
F(x+y) < F(x) + F(y). The preceding inequality is equivalent to

+
F( yl,l)s 2 F(_l)y_F(y_l) g
X2 +y2 X2 +y2 \Xx2 X2+y2 \»n




76 4 Lebesgue Spaces

Remark. Define F on R? by

F(y’z):_\/y_’ (y’Z)€C+,
= +oo, (,2) €R*\ Cy.

The function F is positively homogeneous and, by the preceding lemma, is convex
on C,, hence on R%. Tt is clear that 0 = F on Y = R x {0}. There is no linear function
g:R?> > Rsuchthatg < FonR>andg=0onY.

The convexity inequality implies a version of the Cauchy—Schwarz inequality: if
v,w € L'(Q, 1), then

1/2 1/2
f |vw|”2dus( f IVId#) ( f IWIdu) .
Q Q Q

Definition 4.1.8. Let 1 < p < oo. The exponent p’ conjugate to p is defined by
1/p+1/p’ = 1. On the Lebesgue space

L@ = {u e M@.p1): f byt < oo},
Q

1/p
we define the norm [|ull, = (f Iulpdu) .
Q

Theorem 4.1.9. Let 1 < p < co.
(a) (Holder’s inequality.) Let v € LP(Q, 1) and w € LV (Q, ). Then

[ i< o
Q
(b) (Minkowski’s inequality.) Let v,w € LP(Q, ). Then
v+ wll, < VI, + [Iwllp.
(c) (Hanner’s inequalities.) Let v,w € LP(Q,u). If 2 < p < oo, then
v+ Wil + v = wilh < AVl + 1wll,)? + [IIvll, = lIwll,

|P

If 1 < p <2, the reverse inequality holds.
Proof. On C,, we define the continuous positively homogeneous functions
Up 1/p
F(xi,x) = x)/" )",

G(xi,x2) = (x)/P + x)/P)P,

e = G 4237 7 =
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Inequality (a) follows from the convexity inequality applied to F and u =
(v, [wl?"). Inequality (b) follows from the convexity inequality applied to G and
u = (|v|?, |[w|?). Finally, inequalities (c) follow from the convexity inequality applied
to H and u = (|v|?, [w|”). When v = 0 or w = 0, the inequalities are obvious.

On [0, +oo[, we define f = F(.,1),g = G(., 1), h = H(, 1). Itis easy to verify that

1-p

Fr0) = —2x72,
p
g0 = —Lx e+ ),
” l_p -1 -1 p—2 -1 p—2
h'(x) = X o |(x P+ DT —|x T = 1P,

Hence f and g are concave. If 2 < p < oo, then & is concave, and if 1 < p < 2, then
h is convex. It suffices then to use the preceding lemma. O

4.2 Lebesgue Spaces

Let u : £ — R be a positive measure on the set Q.

Definition 4.2.1. Let 1 < p < co. The space L? (£, y) is the quotient of £7(Q, i) by
the equivalence relation “equality almost everywhere.” By definition,

I/p
lllzrcgn = Nl = ( f |u|"dy) :
Q

When dx is the Lebesgue measure on the open subset Q of RY, the space L”(L, dx)
is denoted by L”(€Q).

In practice, we identify the elements of L”(£, i) and the functions of L7 (Q, u).

Proposition 4.2.2. Let 1 < p < oo. Then the space LP(, p1) with the norm ||.||,, is a
normed space.

Proof. Minkowski’s inequality implies that if u,v € LP(Q, u), then u + v € LP(Q, u)
and
lu + i, < Mleell, + (VI

It is clear that if u € LP(Q, ) and A € R, then Au € LP(Q, ) and [|Aull, = |A] [|ull,.
Finally, if ||u||, = O, then u = 0 almost everywhere and u = 0 in L”(Q, u). 0O

The next inequalities follow from Holder’s inequality.

Proposition 4.2.3 (Generalized Holder’s inequality). Ler 1 < p; < oo, u; €
k

LPiQu), 1< j<kandl/p+...+1/p; = 1. Then ]_[uj e L'(Q, ) and

J=1
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k

k
fg [ [ty < T Tihesl,-

J=1 J=1

Proposition 4.2.4 (Interpolation inequality). Let 1 < p < g <r < oo,

— = +
q p

1-14 2
r’

andu € LP(Q,u) N L'(Q2,w). Then u € LI1(Q, u) and
loally < Heell ™ Ml
Proposition 4.2.5. Let 1 < p < g < oo, u(Q) < oo, and u € LI(Q,p). Then u €
LP(Q, ) and
1_1
lluelly < (€27 fually-
Proposition 4.2.6. Let 1 < p < co and (u,) C LP(Q, u) be such that

(a) llunllp = llullp, n — oo;
(b) u, converges to u almost everywhere.

Then |lu, — ull, — 0, n — oo.

Proof. Since almost everywhere
0 < 2P(unl” + [l”) = |y, — ul”,

Fatou’s lemma ensures that

2+l f ulPdys < lim f (27 unl? + 1) — ity — g
Q Q

= or+l f|u|‘”d,u —ﬁf |ty — ulPdp.
Q

T p
Hence lim ||u,, — ull,, < 0. O
The next result is more precise.

Theorem 4.2.7 (Brezis—-Lieb lemma). Let 1 < p < oo and let (u,) C LP(Q, ) be
such that

(a) ¢ =sup ”un”p < 0o;
n
(b) u, converges to u almost everywhere.

Then u € LP(Q, u) and

lim h— —ullD) = |jullb.
1im () Nty = wl}) = [l
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Proof. By Fatou’s lemma, |lu|l, < c. Let & > 0. There exists, by homogeneity,
c(e) > 0 such that for every a,b € R,

lla+blP —lal” - |blP| < elal” + c(e)|bIP.

We deduce from Fatou’s lemma that

f c@luldp < lim [ elu, —ul” + c@)lul” = |lunl” =ty = ul” = lul”|dpe
Q Q

n—oo

< 2o)fe+ f c()lul’dy ~ Tim f lltal?” = luty = wal? = |ul?| e,
Q n—o Jg

or
lim f il = 1t = ul? = |ul?|du < 2c)Pe.
n—oo Q
Since € > 0 is arbitrary, the proof is complete. O
We define
Ry(s)=s+h, s<-h,
=0, Is] < h,
=s—h, s>h

Theorem 4.2.8 (Degiovanni-Magrone). Let u(2) < oo, 1 < p < oo, and (u,) C
LP(Q, ) be such that

(a) ¢ = suplluyll, < oo;

n
(b) u, converges to u almost everywhere.
Then

lim(up—Rup)zup—Rup.
lim llnlly = lIRUnll, ) = llull, = lIRull,

Proof. Let us define
F(s) = 1sl” = [Ru(s)I”.

For every € > 0, there exists c(g) > 0 such that

1£(s) = F@)] < &lsl? + 17| + c(o).

It follows from Fatou’s lemma that
28[ [ulPdu+c(e)m(Q) < lim & (Iu,,IP+|ulp)+c(£)—|f(u,,)—f(u)|du
Q n—oo o]

<sc’+s f lul’dp + e(e)u(2) — Tim f |f ) = f)|dpe
Q n—eo Jo
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Hence
lim f|f(un) —f(u)|d/1 <ech.
n—oo Q
Since € > 0 is arbitrary, the proof is complete. O

Theorem 4.2.9 (F. Riesz, 1910). Let 1 < p < oo. Then the space LP(Q,p) is
complete.

Proof. Let (u,) be a Cauchy sequence in LP (£, ut). There exists a subsequence v; =
up,; such that for every j,

[Vjrr = vjll, < 1/27.

We define the sequence
k
Ji = Z|Vj+1 — Vjl.
Jj=1

Minkowski’s inequality ensures that
k P
Lf,fd,u < [Z 1/2/) <1

=

Levi’s theorem implies the almost everywhere convergence of f; to f € LP(Q, w).
Hence vy converges almost everywhere to a function u. For m > k + 1, it follows
from Minkowski’s inequality that

m—1 P
f W — el dpt < [Z 1 /2/’] < (224
2 =

By Fatou’s lemma, we obtain

f lu = vilPdu < (2/2".
Q

In particular, u = u — v; + v; € LP(Q,u). We conclude by invoking the Cauchy
condition:

k
llee = wally < Mot = vidlp + llvie = wiellpy < 2/2% + Ml — willp = 0,k — oo, o

Proposition 4.2.10. Let 1 < p < oo and let u, — u in LP(Q, u). Then there exist a
subsequence vj = u,, and g € LP(Q, ) such that almost everywhere,

vil<gandv; - u, j— oo.
=8 J J



4.2 Lebesgue Spaces 81

Proof. 1f the sequence (u,) converges in LP(Q, u), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (v;) in the proof of the preceding theorem
converges almost everywhere to u, and for every j,

o
il < Wi+ > vjer = vil = il + f € (2, ). o
j=1

Theorem 4.2.11 (Density theorem). Let 1 < p < oo and L C LP(Q, u). Then L is
dense in LP(Q, ).

Proof. Let u € LP(L2, u). Since u is measurable with respect to ¢ on ©, there exists
a sequence (u,) C L such that u#, — u almost everywhere. We define

v = max(min(|uy|, ), —|unl).
By definition, |v,| < |u,|, and almost everywhere,

Vo —ulf < ulP € L' [v, —ul’ -0, n— oo,

It follows from Lebesgue’s dominated convergence theorem that |lv, — ull, — O,
n — oo. Hence

Y ={u e LP(Q, ) : there exists f € L such that |u| < f almost everywhere}

is dense in LP(Q, u). It suffices to prove that £ is dense in Y.
Letu € Y, f € L be such that |u| < f almost everywhere and (,) ¢ L such that
u, — u almost everywhere. We define

w, = max(min(f, u,), —f).
By definition, w,, € £ and, almost everywhere,
lwp—ulP <2PfP € L', lw, —ul’ = 0, n— oo.
It follows from Lebesgue’s dominated convergence theorem that |lw, — ul|, — O,

n — oo. Hence £ is dense in Y. O

Theorem 4.2.12. Let Q be open in RN and 1 < p < co. Then the space LP(Q) is
separable.

Proof. By the preceding theorem, K (£2) is dense in L?(£2). Proposition 2.3.2 implies
that for every u € K(Q),

uj= " uk/2)

kezZN

converges to u in L7 (). We conclude the proof using Proposition 3.3.11. O
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4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siecle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnétes fonctions qui servent a quelque chose.

Henri Poincaré

Regularization by convolution allows one to approximate locally integrable func-
tions by infinitely differentiable functions.

Definition 4.3.1. Let © be an open subset of RY. The space of test functions on Q
is defined by

D) ={uce C""(RN) : spt u is a compact subset of Q}.

Leta = (ay, ..., a/N) € NV be a multi-index. By definition,
v P
lal=a; +...+a, D"=0y'...0N, 0;=_——.
N N ’ 6xj

Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element in D(0D).

Proposition 4.3.2. The function defined on R by

f(x) =exp(1/x), x <0,
=0, x>0,

is infinitely differentiable.
Proof. Let us prove by induction that for every n and every x < 0,
fP0) =0, ) = Py(1/x)exp(1/x),

where P, is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

()] _ fn
i S0 = f1O) L Pu(l/x) exp(l/x) _

x—0~ X x—0~- X

0.

Hence f**1(0) = 0. Finally, we have for x < 0,

F D (x) = (=1/x*)(Pu(1/x) + P.(1/x)) exp(1/x) = Ppy1(1/x) exp(1/x). o
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Definition 4.3.3. We define on R the function

p(x) = ¢ exp(1/(jxl* = 1)), Ix] < 1,
=0, [x[ > 1,

where

c= f exp(1/(Jx* = 1))dx.
B(0,1)

The regularizing sequence p,(x) = n"p(nx) is such that
pn € DRY), sptp, = B[O, 1/n], f pndx=1, p,>0.
RN

Definition 4.3.4. Let Q be an open set of RY. By definition, w cc Q if w is open
and w is a compact subset of 2. We define, for 1 < p < oo,

LP

loc

@Q={u:2—->R:forallwcc Q,u| € L”(w)}.

P

A sequence (u,) converges to u in Ly (£2) if for every w cC Q,

flun—ulpdx—>0, n— oo,
w

Definition 4.3.5. Let u € L} (2) and v € K(RY) be such that spt v c B[O, 1/n].
For n > 1, the convolution v * u is defined on

Q, ={xeQ:dx.0Q) > 1/n}
by
v u(o) = f VCx = yu(y)dy = f W)ux = y)dy.
Q B(0,1/n)

If [y| < 1/n, the translation of u by y is defined on Q, by T u(x) = u(x —y).

Proposition 4.3.6. Let u € L] (Q) and v € D(RY) be such that spt v C B[O, 1/n].
Then v + u € C*(2,), and for every a € N, D¥(v % u) = (DV) * u.

Proof. Let |a| = 1 and x € Q,. There exists r > 0 such that B[x, r] C ©,,. Hence
w=B(x,r+1/n)ccQ,

and for0 < |g| < r,

u(y)dy.

v*u(x+sa)—v*u(x)_fv(x+ga—y)—v(x—y)
e a w &
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But
+ — — —
lim vxt e —y) —vx—y) = D%(x —y)
e—0 &€
e#0
and
+ —_ — —_
sup vxtea—y) —vx—y)|
YyEwW &
O<lel<r

Lebesgue’s dominated convergence theorem implies that

D (v u)(x) = f D*v(x — y)u(y)dy = (D*v) * u(x).

It is easy to conclude the proof by induction. O
Lemma 4.3.7. Let w cC £.

(a) Let u € C(Q). Then for every n large enough,

sup |o, * u(x) — u(x)| < sup sup |ryu(x) — u(x)|.
XEW [yl<l/n xew

(b) Letuc L (Q), 1 < p < oo. Then for every n large enough,

loc

lon * u — ullpr) < sup lltyu — ullpr)-
Iyl<1/n

Proof. For every n large enough, w cc Q,. Let u € C(£2). Since

f enMdy =1,
B(0,1/n)

we obtain for every x € w,

| o * ) —u(x) | =

f a3 (ue(x = ) - u(x))dy’
B(0,1/n)

< sup sup |u(x -y) - u(x)|.

Iyl<1/n xew

Letuel?

10c(82), 1 < p < co. By Holder’s inequality, for every x € w, we have

| o u(x) = u(x) | = l f Pn()(1t(x = y) = u(x))dyl
B(0,1/n)

1/p
s( f m(y)!u(x—y)—u(x)!”dy) :
B(0,1/n)
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Fubini’s theorem implies that

f‘pn w u(x) — u(x)‘pdx < fdxf pn(y)|u(x -y) - u(x)‘pdy
w w B(0,1/n)

= f dy f Pn)|uCx = y) — u(x)|"dx
B(0,1/n) W

< sup f|u(x -y) - u(x)|pdx. O

Iyl<1/n

Lemma 4.3.8 (Continuity of translations). Let w CC Q.
(a) Letu € C(Q). Then limo sup |tyu(x) — u(x)| = 0.

Y=V xew
(b) Letuell

(@), 1 < p < co. Then }Lmo llryu — ullirw) = 0.

Proof. We choose an open subset U such that w cc U cc Q. If u € C(Q), then
property (a) follows from the uniform continuity of # on U.

Letu e L{:) C(.Q), 1 < p < o0, and € > 0. The density theorem implies the existence
of v € K(U) such that |[|u — v||») < €. By (), there exists 0 < § < d(w, dU) such

that for every [y| < 6, sup|ryv(x) — v(x)| < &. We obtain for every [y| < 6,
XEW

llryu = ullzrwy < Ity — TyVllrw) + Ity = Vi) + v = ullrew)

< 2llu = Vlzrwy + m(w)"/Psuplryv(x) — v(x)|
XEW

< 2+ m(w)'Pe.
Since € > 0 is arbitrary, the proof is complete. O
We deduce from the preceding lemmas the following regularization theorem.

Theorem 4.3.9. (a) Let u € C(Q). Then p,, = u converges uniformly to u on every
compact subset of Q.
(b) Letu € L’ (), 1< p < oco. Then p, * u converges to u in L’ ().

loc loc

The following consequences are fundamental.

Theorem 4.3.10 (Annulation theorem). Let u € LIIOC(Q) be such that for every
v e DQ),

f v(x)u(x)dx = 0.
Q

Then u = 0 almost everywhere on Q.
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Proof. By assumption, for every n, p, * u = 0 on Q,. O
Theorem 4.3.11. Let 1 < p < oo. Then D(Q) is dense in LP(Q).

Proof. By the density theorem, K(Q) is dense in L7(Q). Let u € K (). There exists
an open set w such that spt u C w CC Q. For j large enough, the support of u; =
p;j * u is contained in w. Since u; € C(RM) by Proposition 4.3.6, u i € D(LQ). The
regularization theorem ensures that u; — u in LF(Q). O

Definition 4.3.12. A partition of unity subordinate to the covering of the compact
subset I" of RY by the open sets Uy, ..., Uy is a sequence i1, . .., ¥ such that

(a)IﬁJED(U)lﬁJ>OJ—1 . k;

(b) Zw, —lonT, le, < 1lonRY,

J=1 J=1

Theorem 4.3.13 (Partition of unity). There exists a partition of unity subordinate
to the covering of the compact subset I' of RN by the open sets Uy, ..., Uy.

Proof. For n large enough, we have that I',, C U V;, where
j=1

Iy={x:dx,I)<1/n},V;=V;, = {x:d(x,RN\Uj) > 1/n,|x| < n}.

k
If this is not the case, then for every n, there exists x,, € I, \ [U Vj,n]. But then, by

j=1
k

compactness, there exists x € I \ {U U‘i]- This is a contradiction.

j=1
We define, for j =1,...,k,

k
d(x, I, + ) dee RV \ V|,

i=1

9i(x) = d(x, RV \ V))/

We obtain
(a) @ €(]((Uj),(,0j ZO,jZ 1,...,k;
k k

(b) thj =1lonr,, Zgoj <lonRM.
j=1 J=1
For m large enough, we have, by the definition of convolution,
(C)pm*<p,€1)(U)pm*<p,>01—1 k.

(d) me*cpj—lonl" me*¢,<lonRN O
J=1 j=1

Now we consider Euclidean space.
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Proposition 4.3.14. Let 1 < p < oo and u € LP(RY). Then ||p, * ull, < llull, and
pn *u — uin LP(RY).
Proof. Tt follows from Holder’s inequality that

1/p
S ‘

lon * u(x)| = | fR u)pn(x = y)dy fR Jul patix = )y

Fubini’s theorem implies that

f'Pn*u(x)|pdef dxf )| pu(x = y)dy
RN RN RN
- f dy f )| onx - y)dx
RN RN

= f )| dy.
RV
Hence ||o, = ull, < [ullp.

Let u € LP(RY) and & > 0. The density theorem implies the existence of v €
K(RM) such that |lu— v||, < &. By the regularization theorem, p, * v — v in LP(R").
Hence there exists m such that for every n > m, ||p, * v — V||, < &. We obtain for
every n > m that

llon * u— ““p < lon * (u - V)“p + lon * v — V“p +lv - ““p < 3e.

Since € > 0 is arbitrary, the proof is complete. O

Proposition 4.3.15. Let 1 < p < oo, f € LP(RY), and g € K@RY). Then

f(pn*f)gd-xzf S(on * g)dx.
RN RN

Proof. Fubini’s theorem and the parity of p imply that

f (o * PDg(Ox = f dx f pal — DF g X)dy
RN RN RN

_ f dy f pulx = ) F()g(x)dx
RY  JR¥

_ fR (pn QO W)y, O
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4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1. Let X be a precompact metric space and let S be a set of uniformly
continuous functions on X such that

(a) ¢ =sup sup |u(x)| < 00y
ueS xeX
(b) for every & > 0, there exists 6 > 0 such that sup w,(0) < &.

uesS

Then S is precompact in BC(X).

Proof. Let € > 0 and ¢ correspond to € by (b). There exists a finite covering of the
precompact space X by balls B[x,d], ..., B[x, 0]. There exists also a finite covering
of [—c, c] by intervals [y; — &,y1 + €l,...,[yn — & yn + €]. Let us denote by J the
(finite) set of mappings from {1,...,k} to {1,...,n}. For every j € J, we define

Si={ues |ulx) -yl <e ..., ulx)—yjwl <&l

By definition, (S ) ;s is a covering of §. Let u,v € S; and x € X. There exists m
such that |x — x,,,| < §. We have

JuCen) = yion| < & V() = yion| < €

and, by (b),
|u(x) - u(xm)l <eg, |v(x) - v(xm)| <e.
Hence |u(x) — v(x)| < 4e, and since x € X is arbitrary, |lu — vlle < 4&. If §; is

nonempty, then S ; C Blu, 4¢]. Since £ > 0 is arbitrary, S is precompact in BC(X)
by Fréchet’s criterion. O

We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2. Let Q be an open subset of RV, 1 < p < oo, and let S C LP(Q) be
such that

(a) c= sup [lullpr@) < oo;

(b) for every &> 0, there exists w CC Q such that sup ||ullpro\w) < &
ues
(c) forevery w CcC Q, }1mO sug) Iyt — ullzp(wy = 0.
—YV ue

Then S is precompact in LP(Q).
Proof. Lete > 0 and w correspond to € by (b). Assumption (c) implies the existence
of 0 < § < d(w, dRQ) such that for every |y| < 6,

suplltyu — ullrw <&
ues
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We choose n > 1/6. We deduce from Lemma 4.3.7 that

sup|lon * u — ullzrwy < sup sup [ltyu — ullrw) < 6. (%)
ues ues |yl<l/n

We define
U={xeR" :dxw)<1/n}ccQ.

Let us prove that the family R = {p, * u|w : u € S} satisfies the assumptions of
Ascoli’s theorem in BC(w).

1. By (a), for every u € S and for every x € w, we have
lon = u(x)| < f pu(x = D|u(@)|dz < suplp,| llullp ) < c1.
U RV
2. By (a), for every u € S and for every x,y € w, we have

lon = u(x) = pu * u(y)| < fU lon(x = 2) = puly = 2)| |u(2)|dz

< sup|pn(x = 2) = pu(y = 2)| Mutllp ) < calx = .
Z

Hence R is precompact in BC(w). Since

1/p

IVllzr() < m(w)™'? sup v,
w

R is precompact in L”(w). But then (x) implies the existence of a finite covering
of § |w in LP(w) by balls of radius 2¢. Assumption (b) ensures the existence of a
finite covering of S in L”(£) by balls of radius 3e. Since £ > 0 is arbitrary, S is
precompact in L” () by Fréchet’s criterion. O

4.5 Comments

Proofs of the Hahn—Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by
Favard [22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.
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4.6 Exercises for Chap.4

1. (Young’s inequality.) Let 1 < p < co. Then for every a,b > 0,

, A B A B
First proof: A = {na”’, B={nb?", exp(— + —) < &P + exp/ .
p p p

b arl
Second proof: — = sup (ab - —)
p a>0 p
2. (Holder’s inequality.) Let 1 < p < oo. If [lull, # O # [[vll,», then by Young’s

inequality,
L lluell IIVIIp

3. (Minkowski’s inequality.) Prove that

@ Ilull, = sup f ww dy:
Q

[l =1

®) llu+vll, < llullp + VIl

4. (Minkowski’s inequality.) Let 1 < p < oo and define, on L?(£, 1), the convex
function G(u) = flulpdu. Then with A = |||, /([lull, + VII),
Q

u+v v
Gl——" | = i
(nunp " ||v||,,) (( Vi ||p ||v||p)

_(I—A)G( )AG(L)=1
[l VIl

Hence |lu +vl|, < llull, + VIl
5. (Jensen’s inequality.)

(a) Let f : [0, +co[— R be a convex function and y > 0. There exists @, 8 € R
such that

f(y) = @y + B and, forall x > 0, ax + B < f(x).

(b) Let f : [0,+0c0o[— R be a convex function. Let p be a positive measure
on Q such that 4(2) = 1 and let u € L'(Q,u) be such that u > 0 and

fud,u>O.Then
Q
f(fudu)gff(u)dug+oo.
Q Q
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If f is concave, the reverse inequality holds.
Assume that 4(2) = 1. Then for every u € LY@, w,u >0,

OSexpffnud,usfud,usfnfexpud,us+00.
Q Q Q

Let Q = B(0, 1) ¢ RY. Then
Ap+N>0 e [x' € P(Q),Ap+N <0 > [x' € LRV \ Q).
A differentiable function u : R — R satisfies
X2 (x) + u(x) =0
if and only if u(x) = cf(x), where ¢ € R and f is the function defined in

Proposition 4.3.2.
(Hardy’s inequality.) Let 1 < p < oo and f € K(R,), where R™ =]0, +oo[.

Define F(x) = f f(®)dt. Then
0

f \FIP/xPdx = —2— f \FIP2F f/xP " dx.
0 p—1Jo

Let f € LP(R*). Then F/x € LP(R*) and

4
M lr@.).

IF/ X,y <
P

Verify that this inequality is optimal using the family

fe(0) =1, 0<x<1,

_1_
=xr° x>1.

(Rising sun lemma, F. Riesz, 1932.) Let g € C([a, b]). The set

E:{a<x<b:g(x)<maxg}
[x.b]

consists of a finite or countable union of disjoint intervals ]ay, by[ such that
g(ay) < g(by). Hint: If ay < x < by, then g(x) < g(by).

(Maximal inequality, Hardy-Littlewood, 1930.) Let u € L'(]a, b[), u > 0. The
maximal function defined on ]a, b[ by

y
Mu(x) = sup L u(s)ds

x<y<b Y — X
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satisfies, for every ¢ > 0,

b
{Mu >0 <! f u(s)ds.

Hint: Use the rising sun lemma with
g(x) = f u(s)ds — tx.

(Lebesgue’s differentiability theorem.) Let u € L'(]a, b[). Prove that for almost
everya < x < b,

1 Y
lim —— f |u(s) — u(x)|ds = 0.

y—ux —
yox y X

Hint: Use Theorem 4.3.11 and the maximal inequality.



Chapter 5
Duality

5.1 Weak Convergence

A fruitful process in functional analysis is to associate to every normed space X the
dual space X* of linear continuous functionals on X.

Definition 5.1.1. Let X be a normed space. The dual X* of X is the space of linear
continuous functionals on X. A sequence (f;) € X* converges weakly to f € X* if
(fn) converges simply to f. We then write f, — f.

Let us translate Proposition 3.2.5 and Corollary 3.2.7.

Proposition 5.1.2. Let Z be a dense subset of a normed space X and (f,) C X*
such that

(a) supllfull < oo;
(b) foreveryv e Z, {f,,Vv) converges.
Then (f,) converges weakly to f € X* and

Il < Tim | fall.

n—oo

Theorem 5.1.3 (Banach—Steinhaus). Let X be a Banach space and (f,) Cc X*
simply convergent to f. Then (f,) is bounded, f € X*, and

IAIF< Lim [|f]l.

n—oo

Theorem 5.1.4 (Banach). Let X be a separable normed space. Then every se-
quence bounded in X* contains a weakly convergent subsequence.

Proof. A Cantor diagonal argument will be used. Let (f;,) be bounded in X* and
let (v¢) be dense in X. Since ({f,, v1)) is bounded, there exists a subsequence (fi,,)

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 93
DOI 10.1007/978-1-4614-7004-5_5, © Springer Science+Business Media, LLC 2013
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of (f,) such that (fj,,v;) converges as n — co. By induction, for every k there
exists a subsequence (f,) of (fi—1,,) such that (f; ,, vk) converges as n — oco. The
sequence g, = f,, is bounded, and for every k, (g, vx) converges as n — oco.
By Proposition 5.1.2, (g,) converges weakly in X*. O

Example (Weak convergence). Let us prove that BC(]O, 1[) is not separable. We de-
fine on this space the functionals (f,,, u) = u(1/n). Itis clear that || £, || = 1. For every
increasing sequence (ny), there exists u € BC(]0, 1[) such that u(1/ny) = (-Dk.
Hence

lim (f,,, u) = —1, kh_m<fnk,u> =1,
k—o0 —00

and the sequence (f;,) is not weakly convergent.
Let Q be an open subset of RY. We define

K (Q) ={ueK): forall x € Q,u(x) > 0}.
Theorem 5.1.5. Let u : K(Q2) — R be a linear functional such that for every

u € Ko (Q), (u,uy > 0. Then u is a positive measure.

Proof. We have only to verify that if u, | 0, then (i, u,) — 0. By the theorem of
partition of unity, there exists ¥ € D(£2) such that 0 < s < 1 and ¢ = 1 on spt up.
By the positivity of y, we obtain

0 <, llullooty — un).

We conclude, using Dini’s theorem, that

0 < {u, un) < Pllulles — 0. i

Let i : K(©2) — R be the difference of two positive measures ., and y_. Then
for every u € K, (Q),

sup{(u, f) : f € K(Q), 1] < u} < (e, u) + (o, u) < +oo.
We shall prove the converse.
Definition 5.1.6. Let M > 1. A measure is a linear functional u : K(Q;RY) — R
such that for every u € K, (Q),

(ks uy = sup{(, f) = f € K@ RM), If] < u} < +oo.

The measure is scalar when M = 1 and vectorial when M > 2.

Theorem 5.1.7. Let u : K(2;RM) — R be a measure. Then the functional defined
on K(Q) by

(lutls )y = el ™ = lual w™)

is a positive measure.
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Proof. 1. Letu,v € K.(Q), f, g € K(Q2; RM) be such that | f| < u and |g| < v. Then
W [+ 8) = (s f + &) <l u+v).
Taking the supremum, we obtain
Clual, ) + Clpal, v) < Clpal, e+ v).
2. Letu,v € K.(Q), h € K(2;R™) be such that || < u + v. Define f and g on Q by

f=uh/(u+v),g=vh/(u+v), u+v>0,
f=g=0, u+v=0.

It is easy to verify that f, g € K(2; R™) and |f] < u, |g] < v, so that
s hy = s £ + s &) < lual, ) + ludl, v)-
Taking the supremum, we obtain
(Il e+ v) < lpal, w) + (lpl, v).
Hence, by the preceding step,
(Il e+ v) = (ll, w) + (ll, v).
3. Let ug, vi € K (), k = 1,2, be such that u; — vi = up — v,. Then
(e, ) + Il v2) = Clul, ur + v2) = (lul, uz + vi) = (ul, w2y + (ul, vi),

so that
(s wry = Clul, viy = Clul, u) = (ul, v2).

Since for every u, v € K(Q),
U+ " —u+v) =u+v=ut+vT - +v),

we conclude that
(s e+ vy =l ) + (Jul, v).

4. Itis clear that for every u € K(Q) and every A € R,

Clpal, Auy = Al ),

and that for u € K, (Q), (|ul,u) > 0. O
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Corollary 5.1.8 (Jordan decomposition theorem). Leru : K(Q) — R be a scalar
measure. Then u = i, — 1, where

p o u Cul=u
T2 T2
are positive measures.
We need a new function space.

Definition 5.1.9. We define

Co(Q) = {u € BC(Q) : for every € > 0, there exists a compact subset K of Q

such that sup |u| < €}.
Q\K

Example. The space Co(RY) is the set of continuous functions on R" tending to 0
at infinity.

Proposition 5.1.10. The space Cy(Q) is the closure of K(Q) in BC(Q). In particu-
lar, Co() is separable.

Proof. 1f u is a cluster point of K(Q) in BC(L2), then for every & > 0, there exists
v € K(Q) such that ||u — V|| < &. Let K = spt u. We obtain

sup lu(x)l = sup lu(x) - v(x)l <e&.
Q\K Q\K

If u € Co(Q), then for every £ > 0, there exists a compact subset K of  such
that supg, g [u(x)| < &. The theorem of partitions of unity implies the existence of
e D(Q)suchthat 0 < ¢ < 1 and ¢ = 1 on K. Define v = pu. Then v € K(2) and

llue = vlloo = sup (1 = @(x)|u(x)| < &.
Q\K

Hence Cy(€Q) is the closure of K(£2) in BC(LQ). By Propositions 2.3.2 and 3.3.11,
Co(Q) is separable. O

Definition 5.1.11. The total variation of the measure u : K(2;RM) — R is
defined by

llklle = supt(u, f) : f € K RY),|Ifllw < 1),

The measure y is finite if ||u|lo < co. By the preceding proposition, every finite
measure u has a continuous extension to Co(L2; RM). A sequence (u,) of finite
measures converges weakly to u if for every f € Co(2; RM),

Hns ) = (s f).
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Theorem 5.1.12 (de la Vallée Poussin, 1932). Every sequence (u,) of measures on
Q such that sup ||uylle < co contains a weakly convergent subsequence.
n

Proof. By the preceding proposition, Co(£2; RM) is separable. It suffices then to use
Banach’s theorem. O

5.2 James Representation Theorem

Let us define two useful classes of normed spaces.

Definition 5.2.1. A normed space is smooth if its norm F(x#) = ||u|| has a linear
directional derivative F’(u) for every u # 0:

d
(F'(u),v) = e SZOF(u + &v).

Definition 5.2.2. A normed space is uniformly convex if forevery 0 < £ < 1,

u+v
2

Sx(e) = inf{l g = I = L =l 28} >0,

The function dx(e) is the modulus of convexity of the space.
The proof of the next result is left to the reader.

Proposition 5.2.3. Let X be a smooth normed space and u € X\{0}. Then ||[F’(u)|| =
1 and
(F"(u), u) = llull = max({f, u).

II71=1

Choose f # 0 in the dual of the normed space X and consider the dual problem
maximize {f, u),

P

{ueX,Ilullzl. ®)

Lemma 5.2.4. Let X be a smooth normed space, f € X* \ {0}, and u a solution of
(P). Then f = || fIIF" (w).

Proof. By assumption, (f, u) = ||f||. Let v € X. The function

8@ = If Il llu + evll = {f, u + ev)

reaches its minimum at & = 0. Hence g’(0) = 0 and
AIKF (), v) = (f,v) = 0.

Since v € X is arbitrary, the proof is complete. O
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Lemma 5.2.5. Let X be a uniformly convex Banach space and f € X* \ {0}. Then
(P) has a unique solution.

Proof. Let (u,) C X be a maximizing sequence for the problem (P):

luall = 1, (foun) = IIfIl, 1 — co.

Let us prove that (,) is a Cauchy sequence. Let 0 < € < 1 and let dx(g) be the
modulus of convexity of X at . There exists m such that for j, k > m,

|Iu, + ukll

I = 6x(e)) < (fruj) +<f, w2 = (f 222 <

Hence j,k > m = |lu; — uzl| < 2e. Since X is complete, (u,) converges to u € X. By
continuity, ||¢|| = 1 and (f, u) = ||f||. Hence u is a solution of (P).

Assume that # and v are solutions of (#). The sequence (u,v,u,v,...) is
maximizing. Hence it is a Cauchy sequence, so that u = v. O

From the two preceding lemmas, we infer the James representation theorem.
Theorem 5.2.6. Let X be a smooth uniformly convex Banach space and f € X*\{0}.

Then there exists one and only one u € X such that

lull = 1,  (fowy=1fl, = If F'(w).
From the James representation theorem, we deduce a variant of the Hahn—
Banach theorem.

Theorem 5.2.7. Let Y be a subspace of a smooth uniformly convex Banach space
X and f € Y*. Then there exists one and only one g € X* such that ||g|| = ||f|| and

gl =1

Y

Proof. Existence. If f = 0, then g = 0. Let f # 0. After extending f to Y by
Proposition 3.2.3, we can assume that Y is closed.

The James representation theorem implies the existence of one and only one
u € Y such that

lull =1, (fowy=1IAL, f= IIfII(F'Y)’(u)-
Define g = ||f|| F’(u). It is clear that ||g|| = ||f]| and
g, = 1] Y =
Uniqueness. If h € X* is such that ||4|| = || f]| and h|y = f, then

Chyuy = (fsuy = |If1l = [lAll.
Lemma 5.2.4 implies that h = ||| F'(«) = ||fIIF’ (u). O
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5.3 Duality of Hilbert Spaces

By the Cauchy—Schwarz inequality, for every g fixed in the Hilbert space X, the
linear functional

X->R:ve(gv)

is continuous. The Fréchet—Riesz theorem asserts that every continuous linear
functional on X has this representation.

Theorem 5.3.1. Let X be a Hilbert space and f € X*. Then there exists one and
only one g € X such that for every v € X,

fiv) = (8.

Moreover, |Ig|l = I fIl.

Proof. Existence. If f = 0, then g = 0. Assume that f # 0. It follows from the
parallelogram identity that for 0 < & < 1, 8(e) > 1 — V1 —&? > 0. Hence X is
uniformly convex.

If u € X\ {0}, we find that

, d -
(F'(u),v) = Tole Nl + &vll = lladll ™ (ulv).
Ele=0

Hence X is smooth.
The James representation theorem implies the existence of # € X such that

llull =1, (fowy=1IfIl,  f=IFIF ().
But then, for every v € X,

vy = 1) = (1 fllefv).
Uniqueness. If for every v € X,

(glv) = {f,v) = (hlv),
then ||g — hl)*> = 0 and g=nh O

Definition 5.3.2. The vector space X is the direct sum of the subspaces Y and Z if
YNZ={0}and X ={y+z:yeY,zeZ}. Wethenwrite X = Y®Z, and everyu € X
has a unique decompositionu =y+z,ye Y, z€ Z.

Definition 5.3.3. The orthogonal space to a subset Y of a pre-Hilbert space X is
defined by

Y- ={z€ X :foreveryy € Y,(zly) = 0}.

It is easy to verify that Y= is a closed subspace of X.
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Corollary 5.3.4. Let Y be a closed subspace of a Hilbert space X. Then X is the
direct sum of Y and Y*.

Proof. Tfu € Y N Y+, then (ulu) = 0 and u = 0.
Let u € X. The Fréchet—Riesz theorem implies the existence of y € Y such that
forevery v e Y, (ulv) = (ylv). Butthenz =u—y € Y*. O

Corollary 5.3.5. A subspace Y of a Hilbert space X is dense if and only if Y+ = {0}.

Proof. Let Y be a subspace of X. Then Y is a closed subspace of X. By continuity
of the scalar product, Y+ = Y. It follows from the preceding corollary that

X=YoY =YooV ]

Definition 5.3.6. A sequence (u,) converges weakly to u in the Hilbert space X if
for every v € X, (u,|v) — (ulv). We then write u,, — u.

Proposition 5.3.7. Let Z be a dense subset of a Hilbert space X and (u,) C X be
such that

() supllu,l < oo;
(b) f(;lr everyv € Z, (u,|v) converges.

Then (u,) converges weakly in X.

Proof. 1t suffices to use Proposition 5.1.2 and the Fréchet-Riesz theorem. O

Theorem 5.3.8. Let (u,) be a sequence weakly convergent to u in the Hilbert space
X. Then (u,) is bounded and
llull < Lim |z, |-

n—oo

Proof. Tt suffices to use Theorem 5.1.3 and the Fréchet—Riesz theorem. O

Theorem 5.3.9. Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Proof. Let (u,) be a bounded sequence in the Hilbert space X and let Y be the
closure of the space generated by (u,,). The sequence (u,) is bounded in the separable
Hilbert space Y. By the Banach theorem and the Fréchet—Riesz theorem, there exists
a subsequence vx = u,, weakly converging to u in Y. Foreveryv € X,v =y + g,
y € Y, and z € Y* by Corollary 5.3.4. By definition, (v|z) = (ulz) = 0. Hence
(vilv) = (u|v) and vy — uin X. O

Definition 5.3.10. Letyu : £ — Rand v : £ — R by positive measures on Q. By

definition, u < vifforeveryu e L, u >0, f udu < fu dv.
Q Q

Lemma 5.3.11. Let yu < v. Then L'(Q,v) c LY(Q, u), and for every u € L'(Q, V),
llullz@u < Nl o)
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Proof. Let u € L'(2, V). By the density theorem, there exists a sequence (u,) C L
such that u, — u in L'(Q, V) and v-almost everywhere. Clearly, u, — u p-almost
everywhere. By Fatou’s lemma, u € L'(Q, 1) and

|uldu < lim f|un|d/JS limflunldv=f|uldv. O
Q n—oo JQ n—ee Jo Q

Lemma 5.3.12 (von Neumann). Let u <V and v(Q) < +co. Then there exists one
and only one function g : Q — [0, 1] measurable with respect to v and such that for

everyu € L'(Q,v),
fudu = fug dv.
Q Q

Proof. By assumption, L*(Q, V) C L'(Q, V). Let us define f on L*(2, V) by

Fouy = f i dt.
Q

By the Cauchy—Schwarz inequality, we have

1/2 1/2
|<f,u>|s<u<9>>”2( f uzdu) s(;z(g))“z( f uzdv) :
Q Q

The Fréchet-Riesz theorem implies the existence of one and only one function g €
L*(Q, V) such that for every v € L2(Q,V),

fvduzfvgdv. ()
Q Q
0< f g du=- f (g)’dv

fe fe

and v({g < 0}) = 0. Similarly, we have

0sf(l—g)‘dv—f(l—g)‘du=—f[(1—g>‘]2dv
Q Q Q

and v({g > 1}) = 0. Letu € LY(Q, V), u > 0, and define u, = min(u, n). We deduce
from (*) and Levi’s theorem that

In particular, we obtain

fu du=1lim | w,dy=1lm | wu,gdv= fug dv.
Q Q Q

n—oo .Q n—oo
Since u = u* — u~, the preceding equality holds for every u € L' (2, v). O

Let us prove Lebesgue’s decomposition theorem.
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Theorem 5.3.13. Letu : L - Randv : L — R be positive measures on L such
that u(Q) < co, W(Q) < oo. Then there exist h € L'(Q,V) and X C Q, measurable
with respect to u and v, such that

(a) v(2)=0,h>0;
(b) for every u € L'(Q, ) N LY(Q, V), uh € L'(Q,v) and

fuduzfuhdv+fudu.
o] Q z

Proof. Let X = L'(Q, 1) N L' (2, v). The preceding lemma implies the existence of
g Q — [0, 1], measurable with respect to ¢ and v, such that for every v € X,

fvdyzfvgdy+fvgdv.
Q Q Q

Let2 = {g = 1}. Since for every v € X,

IV(I—g)du=fvgdv, ()
Q Q

we obtain v(2) = 0. Let us define 7 = Xo\58/(1 — g). Choose u € X, u > 0, and
define
u,=0+g+...+g"Hu

We deduce from (*) and Levi’s theorem that

f udu = f ug/(l1—gydv = fuh av.
Qx oz Q

Since u = u* — u~, the preceding equality holds for every u € X. Finally, we have

fhdv:y(Q\Z)<+00. O
Q

Remark. Every other decomposition of u corresponding to sy and 2y is such that
2o\ 2) = pu2'\ 20) = 0 and v({ho # h}) = 0.
Let us prove the polar decomposition of vector measures theorem.

Theorem 5.3.14. Let Q be an open subset of RN and let u : K(Q;RM) — R be a
measure such that ||u|lo < +oco. Then there exists a function g : Q — RM such that

(a) g is |u|-measurable;
(b) 1g(x)| = 1, |ul-almost everywhere on Q;

(c) forall f € K(Q:RM), (u, f) = fg £ gdl
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Proof. Letey,..., ey be the standard basis of RM  and for 1 < k < M, define M on

K(2) by
(ug, uy = (U, u ex).

It is clear that for all u € K(Q),
g, )] < f lul dlpal < eall Y eell 22 -
Q

Since K(Q) is dense in L*(L,|ul), Proposition 3.2.3 implies the existence of
a continuous extension of i to LXQ, |ul). By the Fréchet—Riesz representation
theorem, there exists g; € L>(Q, |u|) such that for all u € K(Q),

</lk,’4>=fugk d|ul.
Q

M
We define g = ngek, so that for all f € K(2;RM),
=

M M
<u,f>=;w,fkek>=; fg fege diul = fg £ g dil

Let u € K (Q). We have, by Definition 5.1.6,

C=SuP{Lf'gdlﬂllfGW(Q;RM),IfISM}=fgudlﬂl-

It is clear that ¢ < fu|g| d|u|. Theorem 4.2.11 implies the existence of (w,) C

K(Q;RM) converging to g in LX(Q, |u]). Let us define

Ve = uwy/ \Iwa? + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

c< fulgl dlu| = lim fv,,-gdlul <ec.
Q n—oo Q

We conclude that for all u € K(Q),

f ulgl il = f u dil.
Q Q

Hence |g| — 1 is orthogonal to K(L) in LX(Q, |u)). By Corollary 5.3.5, [g| — 1 = 0,
|u|-almost everywhere. O
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5.4 Duality of Lebesgue Spaces

Let 1 < p < oo and let p’ be the exponent conjugate to p defined by 1/p+1/p’ = 1.
By Holder’s inequality, for every g fixed in L' (@, i), the linear functional

LPQu)—»>R:vi fgvdy
Q

is continuous. Riesz’s representation theorem asserts that every continuous linear
functional on L?(€, u) has this representation. We denote by u : £ — R a positive
measure on £.

Theorem 5.4.1. Let 1 < p < oo. Then the space LP(Q,u) is smooth, and the
directional derivative of the norm F(u) = ||ull, is given, for u # 0, by

(). v) = Il f 2y dy.
Q

Proof. We define G(u) = f |ulPdu, and we choose u,v € L?. By the fundamental

0
theorem of calculus, for 0 < || < 1 and almost all x € Q,
llue(x) + ev(0)I” = [u(0)IP| < p'f lee(x) + IV(x)I”‘IIV(X)Idt'
0

< plel(juol + vl) ol

It follows from Holder’s inequality that
()l + D" vl € L.
Lebesgue’s dominated convergence theorem ensures that
’ d —2
(G'(w),v) = —' Gu+ev)=p | [uf"uvdu.
d8 =0 Q
Hence for u # 0,

d
(Flupy=—|

YCu+ev) = Gu) ™ f P2y dy. O
Q

Theorem 5.4.2 (Clarkson, 1936). Let 1 < p < oo. Then the space LP(Q,u) is
uniformly convex.
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Proof. If L? is not uniformly convex, then there exist 0 < £ < 1 and (u,), (v,) such
that
”Mn”p = ”Vn”p =1, |lu, - Vn”p —2¢ and |lu, + Vn”p - 2.

If 2 < p < o0, we deduce from Hanner’s inequality that
[lot, + Vn“ﬁ + [y — Vn“ﬁ <2P

Taking the limit, we obtain 27 + 27gP < 2. This is a contradiction.
If 1 < p <2, we deduce from Hanner’s inequality that

| J-

Taking the limit, we find by strict convexity that

P

<2

Uy, + vy,

2

Uy = Vn

2

U, +vy,

2

Up = Vn

2

P

p p

2<(1+ef +(1-g) <2.

This is also a contradiction. O

Theorem 5.4.3 (Riesz’s representation theorem). Let 1 < p < o and [ €
(LP(Q, p))*. Then there exists one and only one g € LV (Q, 1) such that for every

v e LP(Q, p),
(fov)y = fgvd,u.
Q

Proof. Existence. If f = 0, then g = 0. Assume f # 0. Since L” is smooth and
uniformly convex by the preceding theorems, the James representation theorem
implies the existence of u € L” such that

Moreover ||gll,» = IIf]l.

e, =1, (fouy=1fI, f = IFIF (w.
But then for every v € L7,

(fiv) = IIfIILIMI"’Zuv du.

Define g = ||f]| |u|”’2u. It is easy to verify that g € L? and gl = A1l

Uniqueness. Tt suffices to prove that if g € L” is such that for every v € L?,

fgv du = 0, then g = 0. Since |g|” ~2g € L”, we obtain
Q

el = [ to"au=o. 0
Q
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Definition 5.4.4. Let 1 < p < co. We identify the spaces (L” (2, u))* and LP(Q, p).
A sequence (u,) converges weakly to u in L?(Q, ) if for every v € L” (Q, ),

funvd,uafuvd,u.
Q Q

Proposition 5.4.5. Let 1 < p < oo, let Z be a dense subset of L (Q, 1), and let
(u,) C LP(Q, w) be such that

We then write u, — u.

(a) SUP”Mn”p < 00,
n

(b) foreveryv e Z, funv du converges.
Q

Then (u,) converges weakly to u € LP(Q, u).
Proof. 1t suffices to use Proposition 5.1.2 O

Theorem 5.4.6. Let 1 < p < oo and let (u,) be a sequence weakly convergent to u
in LP(Q, p). Then (u,) is bounded and

lluellp < 1im fugl -

n—oo

Proof. 1Tt suffices to use Theorem 5.1.3 O
Proposition 5.4.7. Let 1 < p < co and let (u,) C LP(Q, u) be such that

(a) ¢ = suplluyll, < oo;
(b) (u,) converges almost everywhere to u on Q.

Then u,, — u in LP(Q, ).

Proof. By Fatou’s lemma, [lu||, < c. We choose v in L7 (Q, 1), and we define
Ay ={x € Q: |uy(x) — u()| < @)™}, B, =2\ A,

We deduce from Holder’s and Minkowski’s inequalities that

1/p’
f let — ul vIdp < f letn — ul Vidp + [lup — ull, (f [vI” d#)
Q An B,
) 1p
< f e, — u] vdu + 2¢ (f [v|? dy) .
Ay B,

Lebesgue’s dominated convergence theorem ensures that

lim [y, — ul vldu = 0 = lim f VP du. m|
A n—-e Jg

n—oo
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Theorem 5.4.8. Let 1 < p < oo and let Q be an open subset of RN. Then every
bounded sequence in LP () contains a weakly convergent subsequence.

Proof. By Theorem 4.2.11, L (Q) is separable. It suffices then to use Banach’s
theorem. O

Examples (Weak convergence in LP). What are the obstructions to the (strong)
convergence of weakly convergent sequences? We consider three processes by
which in L”(9),

u, =0, wu,»0.
Oscillation. The sequence u,(x) = 7—2r

follows from Bessel’s inequality that u, — 0. But ||u,||, = 1.

sinn x is orthonormal in L(]0, x[). It

Concentration. Let 1 < p < oo, u € K(RV) \ {0}, and u,(x) = n¥/Pu(nx). For every
n, lluall, = llull, > 0, and for all x # 0, u,(x) — 0, n — co. By Proposition 5.4.6,
Uy — 0in LP(RV).

Translation. Let1 < p < oo, u € KRV)\ {0}, and u,(x) = u(x; —n, 12, .. .,xN). For

every n, |[uyll, = llull, > 0, and for all x, u,(x) — 0, n — co. By Proposition 5.4.7,
u, — 0in L?(RM).

5.5 Comments

A representation theorem gives to an abstract mathematical object like a functional
a more concrete representation involving in many cases an integral. It replaces a
structural definition by an analytic description. The first representation theorem
(proved by Riesz in 1909 [61]) asserts that every continuous linear functional on
C([0, 1]) is representable by a Stieltjes integral (see Sect. 10.1). In this chapter, we
use as a basic tool the James representation theorem [35].

5.6 Exercises for Chap. 5

1. Define a sequence (f,) of finite measures on ]O, 1[ such that

@ Nfll = 11£1
®) fu—fi
©) Ilfa = fll - 0.

2. Let X be a Hilbert space and let (#,) C X be such that

(@) Tim [lul < Ifull;
(b) u, — u.

Then ||u, — u|| — O.
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. Let1 < p < o0 and (u,) C LP(L, 1) be such that

(@) Tim lull, < llully;
(d) u, — u.

Vptv ||
2 lp

Then |lu, — ull, — 0. Hint: If v, — v, then ||v[|, < lim ||

. Letl < p <ocoandu, — uin L7(, ). Is it true that

lim (|2 = |un — ullb) = |ullf?
Hm(ll allp = New = ully) = |lull,

Hint: When p # 2, construct a counterexample using oscillating step functions.

. Let X be a smooth uniformly convex Banach space and f, g € X’. Then

max ,y)y = min||f — Ag]|.
<&y>:0<f)0 AdRHf gll
Iyl =1

Let C be a closed convex subset of a uniformly convex Banach space X. Then
for every u € X, there exists one and only one v € C such that ||u —v|| = d(u, C).
Let £ be an open subset of RV and f € L} (). Prove that

,u:7((.Q)—>R:u0—>ff(x)dx
Q

is a measure on £2 such that

lllo = f FCOldx.
Q

. Let u be a positive measure on Q2 such that u(€2) = 1. We define, on M(Q, u),

||u]|lc = inf{c > O : almost everywhere on Q, [u(x)| < c}.

We define also
L2(Q, 1) = {u € M(Q, ) : [lulleo < +o0}.

We identify two functions of L*(€, ) when they are p-almost everywhere
equal. If ||ul|cc < +00, then u € ﬂ LP(Q, ) and ||ulleo = lim [Jue|] .
p—o

1<p<eo

. Assume that u(Q) = 1. For every f € (L'(, u))*, there exists one and only one

g € L™(2, u) such that for every v € L'(Q, p),

ww:fww.
Q

Moreover, ||gll = || fll. Hint: Use Riesz’s representation theorem on (L”)*, 1 <
p < .
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Let Q be a bounded open subset of RV and let (g,) C L*(L,dx) be such that
supl|gullec < +00. Then there exist a subsequence (g,,) of (g,) and g € L™ (£, dx)

such that for every v € L(Q, dx),

lim | g,vdx= fgv dx.
Q Q

k—oo



Chapter 6
Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by ©Q an open subset of RY. We begin with an
elementary computation.

Lemma 6.1.1. Let 1 < |a| < mand let f € C"(Q). Then for every u € D(Q),

f f D% dx = (-1) f (D f)u dx.
Q Q
Proof. We assume that @ = (0,...,0,1). Let u € D(L) and define

g(x) = f(u(x), x € Q,
=0, xeRV\ Q.

The fundamental theorem of calculus implies that for every x’ € RV~!,

LD g(x ,xN)de =0.

Fubini’s theorem ensures that

f(fDau + (D*Hu)dx = f D% dx = f dx’fDag dx =0.
Q RV RN R N

When |e| = 1, the proof is similar. It is easy to conclude the proof by induction. O
Weak derivatives were defined by S.L. Sobolev in 1938.

Definition 6.1.2. Leta € NV and f € L} (£2). By definition, the weak derivative of
order a of f exists if there is g € Llloc(.Q) such that for every u € D(Q),

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 111
DOI 10.1007/978-1-4614-7004-5_6, © Springer Science+Business Media, LLC 2013
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f f D% dx = (-1) f gu dx.
Q Q

The function g, if it exists, will be denoted by 0 f.
By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3. Assume that 3° f exists. On
Q,={xeQ:d(x,dQ) > 1/n},

we have that
Doy * f) = pn = 0" f.

Proof. We deduce from Proposition 4.3.6 and from the preceding definition that for
every x € Q,,

DGy« 100 = [ Dipute=yfdy
_ (1) fg DEpu(x =) f()dy

= (=1)%! fg pa(x = )" f(y)dy
=Pn* aaf(x) o

Theorem 6.1.4 (du Bois-Reymond lemma). Let || = 1 and let f € C(Q) be such
that 0° f € C(Q2). Then D f exists and D*f = 0° f.

Proof. By the preceding proposition, we have
D¥(pn * [) = pn 0" f.
The fundamental theorem of calculus implies then that
on* f(x+ea) = py * f(x) +f Pn * 0% f(x + ta)dt.
0
By the regularization theorem,
poxfofy paxd'f—odf
uniformly on every compact subset of ©2. Hence we obtain
fx+ea) = f(x)+ f 0 f(x + ta)dt,
0

so that 0% f = D® f by the fundamental theorem of calculus. O
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Notation. From now on, the derivative of a continuously differentiable function will
also be denoted by 9°.

Let us prove the closing lemma. The graph of the weak derivative is closed in
x LI

loc*

Ll

loc

Lemma 6.1.5. Let (f,) € L\ () and let « € NV be such that in L!

loc loc

Q)

oo fs 0o g

Then g = 9 f.
Proof. For every u € D(£2), we have by definition that

f fu0%u dx = (=) f (0% f,)u dx.
Q Q

Since by assumption,

| f o= 6w do] < 1%l f o= fldx — 0
Q supp u

and

f @ f, - udx
Q

ff&”u dx = (=)l f gudx. O
fo) Q

Example (Weak derivative). If —-N < A < 1, the function f(x) = |x|* is locally
integrable on RY. We approximate f by

< lullo f 0%, — gldx — 0,
supp u

we obtain

£ = (2 +e) ", e>0.

Then f, € C*(R") and

a2
2

O felx) = Axi(laf? +6) T,

|0xfo(x)| < A
If 1> 1— N, we obtain in L, (R") that

() > f(x) = |x,
Ofe(X) = g(x) = A xelx* 2

Hence ;. f(x) = A |x*2x;.
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Definition 6.1.6. The gradient of the (weakly) differentiable function u is
defined by
Vu = (0u,. ..,6Nu).

The divergence of the (weakly) differentiable vector field v = (vl,...,vN) is

defined by
divv=90vi+...+9 v.
NN

Letl <p<ooandue L! (Q)be such that dju € LP(Q), j=1,...,N. We define

loc
p/2 \MP
dx] .

1/p N
IVullpro) = (f IVulpdx) = [f Z(aju)Z
Q Q =

Theorem 6.1.7. Let 1 < p < co and let (u,) C LIIOC(Q) be such that

(a) u, - uin LIIOC(Q);
(b) for every n, Vu, € LP(Q;RM);
(c) ¢ =sup|[Vu,l|, < coc.

Then Vu € LP(2;R") and

IVull, < lim [[Vu|| .

n—oo

Proof. We define f on D(Q2; RY) by

(f,v)zfudivvdx.
Q

We have that
Kf,v) = lim | | u, divvdx|

n—oo Q

= lim| | Vu,-vdx|
n—oo Q

’ l/p/

< Lim [[Vuy||, (f vl” dx) :

n—-oo Q

Since D(Q) is dense in L¥ (Q), Proposition 3.2.3 implies the existence of a
continuous extension of f to L” (2; RY). By Riesz’s representation theorem, there
exists g € LP(2; R") such that for every v € D(Q; RV),

fg-vdxz(f,v)zfudivvdx.
Q Q
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Hence Vu = —g € LP(Q;R"). Choosing v = |Vul|P~2Vu, we find that

1/p
f VulPdax = f Vu-vdx < lim [[Vil, ( f |v|p’dX)
Q Q n—oo 0

1-1/p
= lim [|Vu,l|, (f IVulpdx) .
n—oo Q

Sobolev spaces are spaces of differentiable functions with integral norms.
In order to define complete spaces, we use weak derivatives.

Definition 6.1.8. Letk > 1 and I < p < 0. On the Sobolev space
WEP(Q) = {u € LP(Q) : for every |a| < k, 8%u € LP(Q)),

we define the norm

1/p
> f |6”u|1’dx] .
0

la|<k

lleellwrr (o) = Nulle,p = [

On the space HY(Q) = W*2(Q), we define the scalar product

W [ V) = Z(a”u [ 0"V)120)-

lal<k

The Sobolev space W{;’f (L) is defined by

WoP(@) = ue Ll

loc

(Q): forallw cc Q,ul € WrFP(w)).

A sequence (u,) converges to u in Wlko‘f (Q) if for every w cC Q,
lltn = ullwir@y = 0, n— oo,

The space W(l;”’ (Q) is the closure of D(Q) in W*P(Q). We denote by HS(Q) the space
W52(Q).
0

Theorem 6.1.9. Let k > 1 and 1 < p < co. Then the spaces W*P(Q) and W(l;’p (%))
are complete and separable.

Proof. Let M = Z 1. The space LP(€; RM) with the norm

lal<k
1/p
> |va|f'dx]
Q

le|<k

”(Va)”p = [
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is complete and separable. The map
@ WP(Q) = LP(QRM) - u v (0%u)a1<k

is a linear isometry: ||D(u)||, = ||ullx,p. By the closing lemma, H(W*P(Q)) is a closed
subspace of L”(2;RM). It follows that WEP(Q) is complete and separable. Since
Wg’p (L) is a closed subspace of WEP(Q), it is also complete and separable. O

Theorem 6.1.10. Let 1 < p < co. Then Wy"(RN) = W'P(RY).

Proof. Tt suffices to prove that D(R") is dense in W!?(R"). We use regularization
and truncation.

Regularization. Let u € W'P(RV) and define u, = p, * u. By Proposition 4.3.6,
u, € C*(RY). Proposition 4.3.14 implies that in L”(R"),

Up — U, Oy, = Py * O — Orlt.
We conclude that WLP(RY) N C°(RY) is dense in W'P(RM).
Truncation. Let 6 € C*(R) be such that 0 < 6 < 1 and

o =1, t<1,
=0, >2.

We define a sequence
6n(x) = 6(|xI/n).

Let u € WHP@RN) N C®(RM). It is clear that u, = 6,u € DARN). It follows easily
from Lebesgue’s dominated convergence theorem that u,, — u in WHP(RV). O

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of variables). Let w and Q be open subsets of RY,
G : w — Q a diffeomorphism, and u € WIIO’CI(Q). ThenuoG € W' 1(a)) and

loc

D woy=S M o6 %
Oy — Ox;

Proof. Letv € D(w) and u,, = p, * u. By Lemma 6.1.1, for n large enough, we have

o
[we6o) sroas=- [ s " o G —(y) Wy, ()

It follows from Theorem 2.4.5 with H = G~! that
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fun(x) Ov o H(x)|det H'(x)|dx
Q Oyk

Aun
f Z - x )— o H(x)v o H(x)| det H' (x)ld>x. ()
The regularization theorem implies that in L10C (Q),
ou,, ou
u, — u, - —.
ox j ox j

Taking the limit, it is permitted to replace u, by u in (*x). But then it is also permitted
to replace u, by u in (x), and the proof is complete. O

Proposition 6.1.12 (Derivative of a product). Ler u € Wlt‘cl (Q) and f € CH(Q).
Then fu € W,>!(Q) and
O(fu) = fOru + (O fu.

Proof. Let u, = p, * u, so that by the classical rule of derivative of a product,

O(fun) = (Okfun + fOrun.

It follows from the regularization theorem that

fun - fu’ 6k(fun) - (akf)u + faku

1
in L.

(£). We conclude by invoking the closing lemma. O

Proposition 6.1.13 (Derivative of the composition of functions). Letu € Wllo’c1 Q)
and let f € C'(R) be such that ¢ = sup|f’| < co. Then fou € Wllo‘cl(Q) and
R

Ok(fou)=f"oudu.

Proof. We define u, = p, * u, so that by the classical rule,

ak(f ° un) = f/ o Uy akun-
We choose w cC Q. By the regularization theorem, we have in L' (w),
U, = u, Ok, — Oru.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
u, — u almost everywhere on w. We obtain

f|foun—fou|dx§cf|un—u|dx—>0,
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f|f/o“n Oxtty— [ ou Oquldx < Cf|5kun—5kuldx+f|f/0bln—f/°'4| [Ouldx — 0.
Hence in L' (w),
fou,— fou, [ ouy,Ohu, — f" oudu.

Since w CC 2 is arbitrary, we conclude the proof by invoking the closing lemma.
O

On R, we define
sgn(®) =t/ltl, t#0
=0, t=0.
Corollary 6.1.14. Let u € W' (Q). Then u*, u~, |ul € W"!(Q), and

loc loc

Vut = X0 Vi, Vu~ = —Xpu<o)Vu,  Vu| = (sgn u)Vu.

Proof. We define for € > 0, f:(f) = ([max(0, NP + )2 andv = Xu>0,0kut. The
preceding proposition implies that

qu

([u+]2 + 82)1/2 6/‘“'

h(feou) =

Hence in L}
0C

),

feou—ut, O(feou) —v.

The closing lemma ensures that d;u™ = v. Since u~ = (—u)*, it is easy to finish the
proof. O

Corollary 6.1.15. Let 1 < p < oo and let u € W'"P(Q) N C(Q) be such that u = 0
on 0Q. Then u € Wé‘p ().

Proof. It is easy to prove by regularization that W' (Q) N K(Q) c Wé”’ (D).
Assume that supp u is bounded. Let f € C'(R) be such that |[f(¥)] < |f{ on R :

f@W=0, <1,
=t =2

Define u, = f(n u)/n. Then u, € K(£), and by the preceding proposition, u, €
W'P(Q). By Lebesgue’s dominated convergence theorem, u, — u in W'?(Q), so
that u € W, " ().

If supp u is unbounded, we define u, = 6,u when (6,) is defined in the proof of
Theorem 6.1.10. Then supp u, is bounded. By Lebesgue’s dominated convergence
theorem, u, — u in WHP(Q), so that u € Wé‘P Q). O

Proposition 6.1.16. Let Q be an open subset of RN. Then there exist a sequence
(Uy) of open subsets of 2 and a sequence of functions y,, € D(U,) such that
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(a) for everyn, U, cC Qand y, > 0;
(b) an = 1onQ;
(c) for every w CC Q there exists m,, such that for n > m,, we have U, N w = ¢.

Proof. Let us define w-; = wyg = ¢, and forn > 1,

wp ={xe€eQ:d(x,09Q)> 1/nand |x| < n},
K, = a)_n \ Wp-1,
Uy, = wpe1 \ 022

The theorem of partitions of unity implies the existence of ¢, € D(U,) such that
0 < ¢, <1and g, =1 on K,. It suffices then to define

Uy = ‘pn/i‘ﬁj- O
J=1

Theorem 6.1.17 (Hajlasz). Let 1 < p < oo, u € W,’(Q), and & > 0. Then there
exists v € C*(Q) such that

(a) v—uce Wé’p(Q);
(b) ”V - M”Wl.p(Q) <&
Proof. Let (U,) and (¢,) be given by the preceding proposition. For every n > 1,
there exists &, such that
= Pk, * Wntt) € D(Uy)
and
”Vn - lpn”t”l,p < 8/2n~

By Proposition 3.1.6, Z(vn — Y,u) converges to w in Wé’p (£2). On the other hand,
n=1
we have on w cC € that

ivn Zw:vneC (w), lenu—u

n=

e8]

Setting v = Zvn, we conclude that

n=1

(o9
V= ullyp = wllip < " 1vn = gl < & a

n=1

Corollary 6.1.18 (Deny-Lions). Let 1 < p < co. Then C*(2) N WLP(Q) is dense
in WP (Q).
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6.2 Cylindrical Domains

Let U be an open subset of RV~! and 0 < r < c0. Define
Q=Ux]-rrl, Q,=Ux]0,r[.

The extension by reflection of a function in W'7(Q,) is a function in W'7(Q).
For every u : Q, — R, we define on Q,

pu(x',xN) = u(x', IxNI), a'u(x',xN) = (sgn xN)u(x’, IxNI).

Lemma 6.2.1 (Extension by reflection). Let 1 < p < oo and u € W'"P(Q,). Then
pu € WhP(Q), 0i(ou) = p(Oru), 1 <k <N -1, and 6N(pu) = 0'(6Nu), so that

1 1
lloullzry = 2 PNl lloullwioy = 2P llullwincg,)-

Proof. Letv € D(£). Then by a change of variables,

L(pu)@Nv dx = f+ u 6NW dx, ()

where
w(x’, xN) = y(x/, xN) —v(x, —xN).

A truncation argument will be used. Let € C*°(R) be such that

n® =0, r<1/2,
=1, >1,

and define 77, on 2, by
M(x) = (0 x ).

The definition of weak derivative ensures that

f Tl = - fg @ omw (+)

where

(9N(77,,w) = nn(')Nw + nn'(n xN)w.

Since w(x’,0) = 0, w(x ,xN) = h(x ,xN)xN, where

1
h(x’, xN) = j; 6Nw(x N xN)dt.
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Lebesgue’s dominated convergence theorem implies that

nn'(nx )wudx f ny'(nx)hx udx
f N Ux 10,1/n[ NN

< ||77'||oof |huldx — 0, n — oo.
Ux 10,1/n]

Taking the limit in (**), we obtain

f ud wdxz—f(a u)wdxz—fv((? u)v dx.
N o, N o N

It follows from (x) that

L(pu)de dx = —fgo-(aNu)v dx.

Since v € D(L) is arbitrary, 6N(pu) = 0'(6Nu). By a similar but simpler argument,
Ok(pu) = p(Ogu), 1 <k <N -1. O

It makes no sense to define an L” function on a set of measure zero. We will
define the trace of a W' function on the boundary of a smooth domain. We first
consider the case of RY.

Notation. We define .
DQ) = {ulg : u € DR)},

RY = ((x): ¥ € RN—l,xN > 0}.
Lemma 6.2.2 (Trace inequality). Let 1 < p < co. Then for every u € D(@),
[ o ax < plaf g ate
Proof. The fundamental theorem of calculus implies that for all x* € RV~!,
|u(x’,0)|p < pj:olu(x’,xN)|p_l|6Nu(x’,xN)|de.

When 1 < p < oo, using Fubini’s theorem and Holder’s inequality, we obtain

f |u(x,0)"dx" < p f lul”~10_uldx
RN-1 RY N
, 1/p’ 1/p
p( |u|<P—1>de) ( f 10 u|de)
RY Ry N
1-1/p 1/p
p( f |u|de) ( f 9 ulpdx) .
RY RV N

The case p = 1 is similar. O

IA
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Proposition 6.2.3. Let 1 < p < oco. Then there exists one and only one continuous
linear mapping yo : W'"P(RY) — LP(RN') such that for every u € D(RY),
you = u(.,0).

Proof. Letu € D(@) and define you = u(., 0). The preceding lemma implies that
Ivoullprsy < p P lullyrogy).

The space D(RY) is dense in W!»(RY) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, yo has a unique continuous linear extension to W!P(RY). O

Proposition 6.2.4 (Integration by parts). Let 1 < p < oo, u € W'P(RY), and
Ve D(Rﬂy ). Then

f vo udxz—f 6] v)udx—f Yov You dx’,
rY N rRY N R-!

fvﬁkudxz—f(akv)udx, 1<k<N-1.
RY RY

Proof. Assume, moreover, that u € D(@). Integrating by parts, we obtain for all
Y e RN*I’

and

j; v(x’, xN)aNu(x s xN)de =- j; an(x R xN)u(x R xN)de —v(x’, 0)u(x’,0).

Fubini’s theorem implies that

f vo udx = —f 0 vu dx —f v(x', 0u(x’,0)dx’.
rRY N rY N RN-1

Letu € WiP(RY). Since D(]RTJY) is dense in W!-P(RY), there exists a sequence (u,) C
D(RY) such that u, — u in WHP(RY). By the preceding lemma, you, — you in
LP(RN1). 1t is easy to finish the proof.

The proof of the last formulas is similar. O

Notation. For every u : RY — R, we define u on RY by

u(x’, xN) =u(x, xN),
=0,

Proposition 6.2.5. Let 1 < p < co and u € W'"P(RY). The following properties are
equivalent:
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(a) ue W, (RY);
(b) you =0; o
(c) ue WPRN) and 6y = O, 1 <k < N.

Proof. If u € WyP(RY), there exists (u,) ¢ D(RY) such that u, — u in W'P(RY).

Hence you, = 0 and you, — you in LP(RN™1), so that you = 0.
If you = 0, it follows from the preceding proposition that for every v € D(RV),

fvmcz)cz— dwvudx, 1<k<N.
RN RN

We conclude that (c) is satisfied.

Assume that (c) is satisfied. We define u, = 6,u, where (6,) is as defined in
the proof of Theorem 6.1.10. It is clear that u, — u in W'P(R") and spt u, C
B[0,2n] N RY.

We can assume that spt u, is a compact subset of RY. We define y, =
,...,0,1/n) and v, = 7, u. Since v, = 7,,0ku, the lemma of continuity of
translations implies that u, — u in WP(RY).

We can assume that spt u is a compact subset of RY. For n large enough, p,, * u €
D(RY). Since p, * u — u is in WP(RN), we conclude that u € WS”’(RN). ]

6.3 Smooth Domains

In this section, we consider an open subset Q = {¢ < 0} of RV of class C! with a
bounded boundary I". We use the results of Sect. 9.2.

Let y € I'. There exist r > 0, U an open neighborhood of y in RY, V an open
subset of R¥~! and 8 € BC'(Vx 1-r, r[) such that for every |f| < r,

{op=0tNnU={x,B(x',1):x" € V}.
We have
QNU={(x,Bx,0)): X eV,—r<t<0}, I'NU={x,By(x)):x €V},

where By(x") = B(x’, 0).

The Borel-Lebesgue theorem implies the existence of a finite covering Uy, . .., Uy
of I' by open subsets satisfying the above properties. There exists a partition of unity
V1, ..., Y subordinate to this covering.

Theorem 6.3.1 (Extension theorem). Let 1 < p < oo and let Q be an open subset
of RY of class C' with a bounded frontier or the product of N open intervals. Then
there exists a continuous linear mapping
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P:W(Q) —» WH(RY)

such that Pu|g =u.

Proof. Let Q be an open subset of RV of class C! with a bounded frontier, and let
u € Whr(Q). Proposition 6.1.11 and Lemma 6.2.1 imply that

Pyu(x) = u(x’, B, =lp(x', x ) € whr ().

Moreover,
IPyullwiry < avllullwiro)- (*)

k
We define yg = 1 — Z Vi,

J=1

uy = You, x€,
=0, xeRV\ Q,

andfor 1 < j <k,
uj = PUI.(W,'M), X € Uj,
=0, XERN\ Uj.

Formula (*) and Proposition 6.1.12 ensure that for 0 < j < k,

[l jllwrrwyy < bjllullwieg)-

(The support of Vi) is compact!) Hence

k

1, N
Pu= " u;e WPRY), Pullyses) < clullyio),
J=0

and for all x € Q,

k
Pu(x) = )" ;(u(x) = u().
=0

If Q is the product of N open intervals, it suffices to use a finite number of extensions
by reflections and a truncation. O

Theorem 6.3.2 (Density theorem in Sobolev spaces). Let 1 < p < oo and let Q be
an open subset of RV ofclasiC1 with a bounded frontier or the product of N open
intervals. Then the space D(Q) is dense in W'P(Q).

Proof. Letu e W'P(Q). Theorem 6.1.10 implies the existence of a sequence (v,) C
DIRY) converging to Pu in WLP(RY). Hence u, = v, converges to u in WhP(Q).
O

lo
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Theorem 6.3.3 (Trace theorem). Let 1 < p < oo and let Q be an open subset
of RN of class C' with a bounded frontier I'. Then there exists one and only one
continuous linear mapping

yo: WH(Q) — LP(I)

such that for all u € DQ), You = “'r'
Proof. Let u € D(U). Proposition 6.1.11 implies that

v(x', 1) = u(x', B, 1) € BC'(Vx1-1,0D.

Since the support of v is a compact subset of VX ]— r, 0], Proposition 6.2.3 ensures
that

14 2
Nl ) = f o, O N1+ [VBoG)|” dx’ < aflvI ey o < DUl g
, :

Let u € D(RY) and define you = u| - 1t follows from the preceding inequality
that

k k
voudlrry < )o@l < D bu Wi, < cllulloo.
j=1 J=1

It suffices then to use Proposition 3.2.3 and the density theorem in Sobolev spaces.
[m]

Theorem 6.3.4 (Divergence theorem). Let Q be an open subset of RN of class C'
with a bounded frontier I and v € W1 (Q; R"). Then

fdivvdxzfyov-ndy.
Q r

Proof. Whenv € D(Q; RY), the proof is given in Sect. 9.2. In the general case, it
suffices to use the density theorem in Sobolev spaces and the trace theorem. |

6.4 Embeddings

Let 1 < p,q < oo. If there exists ¢ > 0 such that for every u € D(RY),
lleell zaqrry < cllVullppwyy,

then necessarily
q=p =Np/(N=-p).
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Indeed, replacing u(x) by u (x) = u(Ax), A > 0, we find that
1+

_N
lllgozry < AU 55Vl ),

so that g = p*.
We define for 1 < j < N and x € RY,

X = (W X Xt X, ).
Lemma 6.4.1 (Gagliardo’s inequality). Let N > 2 and fi..... [, € IN-I RN,

N
Then f(x) = ]_[ f5(%) € L'\RY) and

J=1

N
sy < [ [l e,
J=1

Proof. We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N > 2. Let fi, ..., fy+1 € LNRM) and

N
SO, xne1) = 1_[ Si(xg, xne1) fus1(x).
=1

It follows from Holder’s inequality that for almost every xy1; € R,

N
f |f(X, xN+1)|dx < {f ]_[ |fj(5c';-, XN+1)|N i
. RY =1
~ N 1/N
< l_[ [LNI |f,(5€;, XN+1)| d)’c;] ||fN+l||LN(RN)'
j=1

The generalized Holder inequality implies that

1N’

[l f v+l @y

N 1N
_ N o
1Az maery < ]_[ [f lfj(xj, XN+1)| dxjdeH} [ fvet v ey
. RV
J=1

N+1

= [ [l o
J=1

Lemma 6.4.2 (Sobolev’s inequalities). Let 1| < p < N. Then there exists a
constant ¢ = c(p, N) such that for every u € D(RY),

lludllr mvy < cllVall ).
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Proof. Let u € C!(RM) be such that spt u is compact. It follows from the
fundamental theorem of calculus that for 1 < j < N and x € RV,

‘u(x)| <= f|a u(x)|dxj

By the preceding lemma,

-, N 1/(N-1)
f ‘ (x )‘ x < ]_[[ jﬂ;N|(3ju(x)|dx} .
j=1

Hence we obtain

DN | —

N
N
leellvyv-1y < 5 | [ 110;ull; N < ¢ Vull;.
N
J=1

For p > 1, we define ¢ = (N — 1)p*/N > 1. Let u € D(RY). The preceding
inequality applied to |u|? and Holder’s inequality imply that

N-1
N
( f |ul? dx) <qc f |u|? | Vuldx
N RN
, 1/p’ 1/p
<gqgc ( f |u|<q1>1’dx) ( f |Vu|”dx) )
NAJRrwY RV

It is easy to conclude the proof. O

Lemma 6.4.3 (Morrey’s inequalities). Let N < p < coand A = 1 — N/p. Then
there exists a constant ¢ = c(p,N) such that for every u € D(RN) and every
X,y € RV,

|u(x) = u@)| < clx = M IVull o),

llulleo < cllutllwrrqny.-

Proof Let u € DRN) and Q = B.(0,r/2). It follows from the fundamental
theorem of calculus that for x € Q,

1 1
|u(x) - u(0)| < f |x|o<,|Vu(tx)|ldt < rf |Vu(tx)|ldt.
0 0

1
Let f U=—- f u(x)dx. Integrating on Q, we obtain
m(Q) Jo
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1
’
’fu—u(O)' < Q) defo |Vu(tx)|ldt
1 l
mjo‘ dtL|Vu(tx)|ldx
1 ! dy
= mfo dtj;QWu(y)lltW

Hoélder’s inequality implies that

'fu—u(O)

After a translation, for x € RY we have

'fu—u(x)

Choosing r = 1, we find that

\/_
< —||Vu||U,(Q)rN/P f —dl— —r ||VM||Lp(Q)

VN
< TrAIIVMIIU(Q).

VN
ul + T“VMHL”(Q) < aillullwirgy < cillullwrry).

|u(x)‘ <

Let x,y € RY. Choosing r = 2|x — y|, we find that

21+/1
1) = )] < = VNLx = 311V ullirco) < ealx =y IVullse. O

Notation. We define .
Co(Q) = {u|,, : u € CoRM)}.

Theorem 6.4.4 (Sobolev’s embedding theorem, 1936-1938). Let Q2 be an open
subset of RN of class C' with a bounded frontier or the product of N open intervals.

(a) If1 < p<Nandif p<q< p, then WP(Q) c LI(Q), and the canonical
injection is continuous.

(b) IfN<p<oandd=1-N/p, then W'P(Q) c Co(Q), the canonical injection
is continuous, and there exists ¢ = c(p, ) such that for every u € WP(Q) and
all x,y € Q,

|u(x) = u)| < cllullwroo)lx = y1*.

Proof Let 1 < p < N and u € W'(RY). By Theorem 6.1.10, there exists a
sequence (u,) C D(RM) such that u,, — u in WH(RV).

We can assume that u, — u almost everywhere on R”. It follows from Fatou’s
lemma and Sobolev’s inequality that
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lltll e vy < 1im [litll e vy < € i [IVatgllzr vy = cllVallrgey).-
n—oo o

Let P be the extension operator corresponding to 2 and v € W'»(Q). We have
IVl @) < 1PVl ey < cllVPVI@yy < cillvilwieg)-
Ifp<qg<p’,wedefine0 <A<1by

1-14 2

1
a p P
and we infer from the interpolation inequality that

1-0 11,4 A
Vllza@) < IV pig) VIl o) < cilVIwer)-

The case p > N follows from Morrey’s inequalities. O

Lemma 6.4.5. Let Q be an open set satisfying the assumptions of the preceding
theorem, w cC Q, u € W"'(Q), and |y| < d(w, 0Q). Then

llryu = ullpiwy < YHIVullp ).

Proof. Let u € D(Q). It follows from the fundamental theorem of calculus that

1 1
|Tyu(x) - u(x)| = 'f y - Vu(x — ty)dt| < [yl f |Vu(x - ty)|dt.
0 0

Hence if |y| < d(w, 092), then

1
llryut = ull 1wy < Iyl f dx f |Vu(x — ty)|dt
w 0

1
= |y|f dtf|Vu(x—ty)|dx
0 w
1
= Iylf dtf [Vu@)|dz < W 1IVull o)
0 w—ty

We conclude using the density theorem in Sobolev spaces. O

Theorem 6.4.6 (Rellich—-Kondrachov embedding theorem). Let Q be a bounded
open subset of RN of class C' or the product of N bounded open intervals.

(a) If1 < p < Nandl < g < p*, then W'P(Q) c LUQ), and the canonical
injection is compact. -
(b) If N < p < o0, then W' C Cy(Q), and the canonical injection is compact.
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Proof. Let1 < p <N, 1< q < p*. Letus prove that
S ={ue W@ : llullwrg < 1}

satisfies the assumptions of M. Riesz’s theorem in LY(£).

(a) It follows from Holder’s inequality and from the preceding theorem that for
everyu € S,

1
lellzoqey < lullpr @m()i™» < ci.

(b) Let e > 0. There exists k > 1 such that forevery u € S,
11 11
lellacovan < Nl (@v0pm(2\ )17 < cam(Q2\ Q)e 7 <e.

(c) We choose w cc ©, and we define 0 < 1 < 1 by
1 A
-—=1-2+ -
q p
If |y < d(w,09Q), we infer from the interpolation inequality and from the
preceding lemma that for every u € S,

1-2 A
lTyu — ullzow) < llTyu — ““Ll(w)”Ty“ - u”Lp*(w)

1-2 1-1 A
< "IV ully i, Clidll @)
< ely"™

Hence S is precompact in L?(€).

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. O

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s inequality in Wé’p ). Let 1 < p < oo and let Q be an
open subset of RN such that Q ¢ RN='x]0, a[. Then for every u € Wé’p(Q),

a
lullzro) < §||VM||LF(Q)-

Proof. Let 1 < p < oo and v € D(]0, a[). Holder’s inequality implies that for 0 <

x< a,
a 1/p
ool < 5 fo ok < | f: ol ad .

Hence we obtain
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2 » ab'r’ f‘“ , apf ,
dx £ — dx = —
f(:|v(x)‘ X > a ; X 7 J

If u € D(Q), we infer from the preceding inequality and from Fubini’s theorem that

flulpdx—f dx’ f|u(x x)|1dx

dx.

Sﬁ RN]dxflﬁ u(x’', x)l dx
P
-2 f 10 ulPdx.
20 Jo N
It is easy to conclude by density. The case p = 1 is similar. O

Definition 6.4.8. A metric space is connected if the only open and closed subsets
of X are ¢ and X.

Theorem 6.4.9 (Poincaré’s inequality in W''?). Let 1 < p < oo and let Q be a
bounded connected open subset of RN of class C' or the product of N bounded open
intervals. Then there exists ¢ = c(p, ) such that for every u € W'»(Q),

i fu

1
Wherefu = — fu dx. If, moreover, Q is convex, then ¢ < 2V/Pd, where
m(&) Jo

< cVullzr @),
Lr(Q)

d = sup |x -yl
x,yeQ

Proof. 1t suffices to prove that
= inf{||Vu||p TuE W”’(Q),fu =0, |lull, = 1} > 0.
Let (u,) € W"P(Q) be a minimizing sequence:

il = 1. fu=0, Vuall, — A

By the Rellich—Kondrachov theorem, we can assume that u,, — u in L”($2). Hence

[lull, = 1 and fu = 0. Theorem 6.1.7 implies that u € W'»(Q) and

[IVull, < lim |[Vu,||, = 4.
P P
n—o00
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IfA=0,thenVu=0and u = f u, since £ is connected. This is a contradiction.

We assume that Q is convex. Holder’s inequality implies that

, () — u()
fg |u<y>—fu|fdy< f dy[ (e dx}
e f dy f () — u()Pd.

It follows from the fundamental theorem of calculus that

1 P
fdyflu(x)—u(y)lpdxgdpfdyfdx[f |Vu((1—t)x+ty)|dt]
Q Q Q Q 0
1
Sdpfdyfdxf IVu((1 = O)x + ty)|Fdt
Q Q 0

1
< 24" f dy f dx | |Vu((1 = )x + ty)|Pdt
Q Q 1/2

<2VgP f dy f \Vu(z)|"dz.
Q Q
f () - qu’dyssz” f Vu)|dy. 0
Q Q

Theorem 6.4.10 (Hardy’s inequality). Let 1 < p < N. Then for every u €
WLP@RN), u/|x| € LP(RY) and

We conclude that

e/ x| Lr ey < (RN)-

Proof. Letu € DRN) and v € D(RY; RY). We infer from Lemma 6.1.1 that

lulPdiv v dx = —pf [ulP~2uVu - v dx.
RN RN

Approximating v(x) = x/|x|” by ve(x) = x/(Ix* + &)P/?, we obtain

(N - P)f [ul?/|x|Pdx = —pf ul?~2uVu - x/|x|Pdx.
RN RN

Hoélder’s inequality implies that
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1/p 1/p
f il rdx < 2 (f Iul""“f”/|x|pdx) ( f |Vu|de)
RN N_p RN RN
p 1-1/p 1/p
=—( f |u|f’/|x|"dx) ( f IVul”dx) .
N—p RN RN

We have thus proved Hardy’s inequality in D(RV). Let u € W!'P(RY). Theo-
rem 6.1.10 ensures the existence of a sequence (u,) C D(RY) such that u, — u
in Wi (RY). We can assume that u,, — u almost everywhere on RY. We conclude
using Fatou’s lemma that

llee/ 1xlllp < im {fae,/|x[1], <

n—oo

p . p
— lim [[Vu I, = N—_p”V““p- .

Fractional Sobolev spaces are interpolation spaces between LP(Q) and W'P(Q).
Definition 6.4.11. Let1 < p < 0,0 < s < 1, and u € LP(Q). We define

[u(x) = u(y)|? Vp
|M|pr(g) |M|Sp (ff ) (y) ———dx dy < +4o00.

x = y[Vesp
On the fractional Sobolev space
WHP(Q) = {u € LP(Q) : |ulwsr(@) < +00},
we define the norm

lullwsr) = llulls,p = llullr@) + lulwsr).

We give, without proof, the characterization of traces due to Gagliardo ([26]).
Theorem 6.4.12. Let 1 < p < oo.

(a) Foreveryu € WYWP(RN), you € WI=pP(RN-1),
(b) The mapping vy : W'P(RY) — WI=VrP(RN=1) is continuous and surjective.
(¢) The mapping yo : WHL(RY) — LY@RNYY is continuous and surjective.

6.5 Comments

The main references on Sobolev spaces are the books

— R. Adams and J. Fournier, Sobolev spaces ([1]);

— H. Brezis, Analyse fonctionnelle, théorie et applications ([8]);

— V. Maz’ya, Sobolev spaces with applications to elliptic partial differential
equations ([51]).
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The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of the Poincaré inequalities, for every smooth, bounded, and connected
domain £, we have that

Q) = inf{f \Vuldx : u € H)(Q), f Wdx = 1} >0,
Q Q

w(Q) = inf{f [Vul?dx : u e H'(Q), f uldx = 1,fudx = o} > 0.
Q Q Q

Hence the first eigenvalue 2, (£2) of the Dirichlet problem

—Au=Au in Q,
u=0 onodQ,
and the second eigenvalue w,(£2) of the Neumann problem

—Au = Au in Q,
n-Vu=0 ondQ,

are strictly positive. Let us denote by B an open ball such that m(B) = m(L2). Then

A4(B) < 41(2)  (Faber—Krahn inequality),
() < up(B)  (Weinberger, 1956).

Moreover, if Q is a convex domain with diameter d, then
w2 )d* < i (Q) (Payne—Weinberger, 1960).
We prove in Theorem 6.4.9, the weaker estimate
1/Q2Vd*) < 12(9Q).

There exists a domain 2 < R? such that w(9) = 0. Consider on two sides of
a square @, two infinite sequences of small squares connected to Q by very thin

pipes.
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6.6 Exercises for Chap. 6

1. Let Q = B(0,1) c RN. Then for A # 0,
A=1Dp+N>0= |xf e W'P(Q),
Ap+N <0 ' € WPRN\ Q),
p<N = ﬁ € WP(Q;RM).
X

2. Let1 < p < oo and u € LP(Q). The following properties are equivalent:

(a) u e Whr(Q);

(b) sup {f udivvdx:ve D@QRY), Vg = 1} < oo;

Q
(c) there exists ¢ > 0 such that for every w cc  and for every y € R such

that |y| < d(w, 09Q),
[lryu = ullpr ) < clyl.

3. Let 1 < p < N and let  be an open subset of R". Define

SQ) = inf Vulliro).
() uemZ)(Q) IVullzr )

leell .+ @ = 1

Then S (Q) = S (RY).
4. Let1 < p < N. Then

1 .
v S ®Y) = inf {[Vullypy, el y, = w € HURY) \ (0},

5. (Poincaré—Sobolev inequality.)

(a) Let 1 < p < N and let Q be an open bounded subset of RY of class C'.
Then there exists ¢ > 0 such that for every u € Whr(Q),

u —fu
1 .
Wherefu = — fu dx. Hint: Apply Theorem 6.4.4 to u —fu.
m(2) Jo
(b) Let A = {u = 0} and assume that m(A) > 0. Then

m(2)11/p"
el o < c(l *om) )uwum).

[ <= fus o,

< clVullpr@),
L™ (Q)

Hint:
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6.

11.

12.

13.

6 Sobolev Spaces

(Nash inequality.) Let N > 3. Then for every u € D(RV),
lull N < cllully™ Va5,

2 1

Hint: Use the interpolation inequality.
Letl < p<Nandg=p(N—-1)/(N—- p). Then for every u € D(Rﬂ:’),

’ q ’ gq-1
fR | Ju 0 dx” < gl g 1 e
Verify that Hardy’s inequality is optimal using the family

ug(x) =1, |x] <1,

N
=[x 7% |xf > 1.

Let 1 < p < N. Then D(RM \ {0}) is dense in WHP(RM).

. Let2 < N < p < 0. Then for every u € Wé’p(RN \ {0, u/|x| € LP(RY) and

p
p—N

[t/ |2l Lparyvy < IVull £ ey

Let 1 < p < oo. Verify that the embedding W'*(RY) c LP(R") is not compact.

Let 1 < p < N. Verify that the embedding WS”’ (B(0, 1)) ¢ L”" (B(0, 1)) is not

compact.

Let us denote by D,(RV) the space of radial functions in D(RY). Let N > 2 and

1 < p < . Then there exists c(N, p) > 0 such that for every u € D,(RV),
luC)| < eV, pliudly ™ 11Vull P10

Let 1 < p < N. Then there exists d(N, p) > 0 such that for every u € D, (R"),

|u(x)| < d(N, p)IIVulle| P~

Hint: Let us write u(x) = u(r), r = |x|, so that
—1 )4 p-1 du N—1
N |u(r)| <p |u(s)| |—(s)|s ds,
p dr

|u(r)| < j:m‘%(s)|ds.

Let us denote by W, ”(R") the space of radial functions in W'»(RY). Verify
that the space D,(R") is dense in W, (R").
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Exercises for Chap. 6 137

Let1 < p<Nand p < g < p*. Verify that the embedding W,"”(RV) c LI(R")
is compact. Verify also that the embedding W,1 P(RY) ¢ LP(RV) is not compact.
Let 1 < p < oo and let  be an open subset of RY. Prove that the map

WEP(Q) - WHP(Q) s u v ut
is continuous. Hint: Vu* = H(u)Vu, where

Hn=1, >0,
=0, t<0.



Chapter 7
Capacity

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1. A capacity on X is a function
cap : K — [0, +0c0] : K — cap(K)

such that:

(C)) (monotonicity.) For every A, B € K such that A C B, cap(A) < cap(B).

(C») (regularity.) For every K € K and for every a > cap(K), there exists U € O
such that K c U, and for all C € K satisfying C c U, cap(C) < a.

(C3) (strong subadditivity.) For every A, B € K,

cap(A U B) + cap(A N B) < cap(A) + cap(B).
The Lebesgue measure of a compact subset of R" is a capacity.

We denote by cap a capacity on X. We extend the capacity to the open
subsets of X.

Definition 7.1.2. The capacity of U € O is defined by
cap(U) = supfcap(K) : K € K and K c U}.

Lemma 7.1.3. Let A, B € O and K € K be such that K C A U B. Then there exist
L. Me K suchthat LC A, M C B, and K = LU M.

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 139
DOI 10.1007/978-1-4614-7004-5_7, © Springer Science+Business Media, LLC 2013



140 7 Capacity

Proof. The compact sets K\ A and K\ B are disjoint. Hence there exist disjoint open
sets U and V such that K\ A c U and K\ B C V. It suffices to define L = K\ U and
M=K\V. O

Proposition 7.1.4. (a) (monotonicity.) For every A,B € QO such that A C B,
cap(A) < cap(B).

(b) (regularity.) For every K € K, cap(K) = inf{cap(U) : U € O and U D K}.

(c) (strong subadditivity.) For every A, B € O,

cap(A U B) + cap AN B) < cap(A) + cap(B).

Proof. (a) Monotonicity is clear.

(b) Let us define Cap(K) = inf{cap(U) : U € O and U D> K}. By definition,
cap(K) < Cap(K). Let a > cap(K). There exists U € O such that K c U and
for every C € K satisfying C c U, cap(C) < a. Hence Cap(K) < cap(U) < a.
Since a > cap(K) is arbitrary, we conclude that Cap(K) < cap(K).

(¢c) Let A,B € O, a < cap(A U B), and b < cap(A N B). By definition, there exist
K,C e Ksuchthat K Cc AUB,C C ANB,a < cap(K), and b < cap(C). We can
assume that C C K. The preceding lemma implies the existence of L, M € K
such that LC A, M Cc B,and K = L U M. We can assume that C € L N M. We
obtain by monotonicity and strong subadditivity that

a+b < cap(K) + cap(C) < cap(LU M) + cap(LN M)
< cap(L) + cap(M) < cap(A) + cap(B).

Since a < cap(AU B) and b < cap(A N B) are arbitrary, the proof is complete. O
We extend the capacity to all subsets of X.
Definition 7.1.5. The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U € O and U D A}.

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6. (a) (monotonicity.) For every A, B C X, cap(A) < cap(B).
(b) (strong subadditivity.) For every A, B C X,

cap(A U B) + cap(A N B) < cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let A,BC Xand U,V € Obe suchthat A Cc U and B C V. We have

cap(A U B) + cap(A N B) < cap(U U V) + cap(U N V) < cap(U) + cap(V).

It is easy to conclude the proof. O
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Proposition 7.1.7. Let (K,) be a decreasing sequence in K. Then

cap [ﬂ Kn] = lim cap(K,).

n=1

Proof. LetK = ﬂKn and U € O, U > K. By compactness, there exists m such that
n=1

K, ¢ U. We obtain, by monotonicity, cap(K) < limcap(K,) < cap(U). It suffices
then to take the infimum with respect to U. O

Lemma 7.1.8. Let (U,) be an increasing sequence in O. Then

cap (U U,,] = lim cap(U,).
=1 n—oo
Proof. Let U = UU" and K € K,K c U. By compactness, there exists m such

n=1
that K c U,,. We obtain by monotonicity cap(K) < limcap(U,) < capU. It suffices
then to take the supremum with respect to K. O

Theorem 7.1.9. Let (A,) be an increasing sequence of subsets of X. Then

cap (U An] = lim cap(A,).

n=1

Proof. LetA = UA”' By monotonicity, limcap(A,) < cap(A). We can assume that

n=1
limcap(A,) < +oc0.Lete > 0anda, = 1 — 1/(n+ 1). We construct, by induction, an

n—oo

increasing sequence (U,) C O such that A,, c U,, and
cap(U,) < cap(A,) + € a,. (*)

When n = 1, (x) holds by definition. Assume that (x) holds for n. By definition,
there exists V € O such that A,,; C V and

cap(V) < cap(Ap+1) + &(an+1 — an)-
We define U,y; = U, UV, so that A, C U,;;. We obtain, by strong subadditivity,
cap(Uns1) < cap(U,,) + cap(V) = cap(U, N V)

< cap(Ay) + € a, + cap(Aps1) + (ans1 — a,) — cap(A,)
= Cap(An+l) + & ap+1.
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It follows from (*) and the preceding lemma that

00

cap(A) < cap [U U,,] = lim cap(U,) < lim cap(A,) + €.

n=1

Since € > 0 is arbitrary, the proof is complete. O

Corollary 7.1.10 (Countable subadditivity). Let (A,) be a sequence of subsets
of X. Then cap(U An] < anp(An).

n=1 n=1

k
Proof. Let By = UAk. We have
n=1

o)

cap (UA") = cap [UB") = klgg cap(By) < Z cap(4,). 0O
n=1 k=1 =1

Definition 7.1.11. The outer Lebesgue measure of a subset of R is defined by

m*(A) = inf{m(U) : U is open and U D A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the space D'"P(RV).

Definition 7.2.1. Let1 < p < N. On the space
DPRY) = (u e L” (RY) : Vu € LP(RY; RV))},

we define the norm
||“||Z)1=F(RN) = ||VM||p~
Proposition 7.2.2. Let1 < p < N.
(a) The space D(RY) is dense in D"P(RM).
(b) (Sobolev’sinequality.) There exists ¢ = c(p, N) such that for every u € D"P(RV),

lluellpe < el Vullp.

(c) The space DVP(RN) is complete.

Proof. The space D(RY) is dense in D'P(R") with the norm |ull,» + [|Vul|,. The
argument is similar to that of the proof of Theorem 6.1.10.
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Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u €
DIPRY),
IVull, < llullye + IVull, < (¢ + DIVull,.
Let (u,) be a Cauchy sequence in D""P(R"). Then u, — u in L”" (RV), and for

1 <k <N, 0, — vy in LP(RV). By the closing lemma, for 1 < k < N, dyu = vy.
We conclude that u,, — u in DV (RY). m]

Proposition 7.2.3. Every bounded sequence in D" (RY) contains a subsequence
converging in Lllo C(RN ) and almost everywhere on RV,

Proof. Cantor’s diagonal argument will be used. Let (u,) be bounded in D'?(RV).
By Sobolev’s inequality, for every k > 1, (u,) is bounded in W'!(B(0, k)). Rellich’s
theorem and Proposition 4.2.10 imply the existence of a subsequence (u;,,) of (u,)
converging in L' (B(0, 1)) and almost everywhere on B(0, 1). By induction, for every
k, there exists a subsequence (uy,,) of (ux—1,) converging in LY(B(0, k)) and almost
everywhere on B(0, k). The sequence v, = u,, converges in Llloc(]RN ) and almost
everywhere on RV, |

Definition 7.2.4. Let 1 < p < N and let K be a compact subset of RY. The capacity
of degree p of K is defined by

cap,,(K) = inf{ fR IVuldx:ue Dgp(RN)},

where
D}(‘P (RM) = {u € D'P(RY) : there exists U open such that K ¢ U and Xy < u

almost everywhere}.
Theorem 7.2.5. The capacity of degree p is a capacity on RV,

Proof. (a) Monotonicity is clear by definition.
(b) Let K be compact and a > cap,(RY). There exist u € D"(R") and U open

such that K c U, Xy < u almost everywhere, and |[VulPdx < a. For every
RN
compact set C ¢ U, we have

cap,(C) < fN [VulPdx < a,
R

so that cap), is regular.

(c) Let A and B be compact sets, a > capp(A), and b > capp(B). There exist u,v €
D'P(RN) and U and V open sets such that A c U, BC V, Xy < u,and Xy < v
almost everywhere and

f [VulPdx < a, f |VviPdx < b.
RN RN
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. 1,
R") and min(u,v) € D,",

Since max(u,v) € D RM), Corollary 6.1.14

SIee AUB
implies that

|V max(u, v)|Pdx + f |V min(u, v)IP = f [VulPdx + f [VvIPdx < a+b.
RV RN

RN RN

We conclude that
cap,(AU B) +cap,(ANB) < a+b.

Since a > cap,(A) and b > cap,,(B) are arbitrary, cap,, is strongly subadditive.
O

The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6. There exists a constant ¢ = c¢(p, N) such that for every A ¢ RV,

m*(A) < ¢ cap, (AN NP,

Proof. Let K be a compact set and u € Z)}{”7 (RM). Tt follows from Sobolev’s
inequality that
. r'lp
m(K) Sf [u|P dx < c(f IVulpdx) .
RY RV

m(K) <c cappyRN(K)N/(N”’).

By definition,

To conclude, it suffices to extend this inequality to open subsets of RV and to
arbitrary subsets of RV. i

The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7. Let K be a compact set. Then
capp(aK) = cap,(K).

Proof. Let a > cap,(9K). There exist u € D"P(RY) and an open set U such that
0K Cc U, Xy < u almost everywhere, and

[VulPdx < a.
]RN

Let us define V = U U K and v = max(u,Xy). Thenv € D;(’p(]RN) and

p p

- )

[VvlPdx < [VulPdx
RV RV
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so that cap,,(K) < a. Since a > cap,(9K) is arbitrary, we obtain
cap,(K) < capp(ﬁK) < cap,(K). O

Example. Let 1 < p < N and let B be a closed ball in RY. We deduce from the
preceding propositions that

0 < cap,(B) = cap,(9B).

Theorem 7.2.8. Let 1 < p < N and U an open set. Then
cap,(U) = inf{f [VulPdx : u € DVP(RM), Xy < u almost everywhere}.
]RN

Proof. Let us denote by Cap,(U) the second member of the preceding equality. It
is clear by definition that cap,(U) < Cap,(U).
Assume that cap,(U) < oo. Let (K,) be an increasing sequence of compact

subsets of U such that U = UK”’ and let (u,) € D'P(RV) be such that for every n,
n=1
Xk, < u, almost everywhere and

B [Vu,|Pdx < cap,(Ky) + 1/n.
R

The sequence (u,) is bounded in D'”(R"). By Proposition 7.2.3, we can assume that
u, = uin LlloC (R") and almost everywhere. It follows from Sobolev’s inequality that
u € LP" (RV). Theorem 6.1.7 implies that

fRN [VulPdx < lim Vu,|Pdx < ’}grolo cap,(Ky) < cap,(U).

n—oo RN

(By Theorem 7.1.9, lim capp(Kn) = capp(U).) Since almost everywhere, Xy < u,
we conclude that Cap,(U) < cap,(U). O
Corollary 7.2.9. Let 1 < p < N, and let U and V be open sets such that U Cc V
and m(V\ U) = 0. Then capp(U) = capp(V).

Proof. Let u € D"P(RN) be such that X < u almost everywhere. Then Xy < u
almost everywhere. O

Corollary 7.2.10 (Capacity inequality). Let 1 < p < N and u € D(R"). Then for
everyt >0,

cap,({lul > 1)) < 17 fR Vald.

Proof. By Corollary 6.1.14, |u|/t € D"P(RN). O
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Definition 7.2.11. Let 1 < p < N. A function v : RV — R is quasicontinuous
of degree p if for every & > 0, there exists an w-open set such that cap,(w) < &
and v R¥o
equal quasi-everywhere if capp({|v -w| >0} =0.

is continuous. Two quasicontinuous functions of degrees p, v, and w are

Proposition 7.2.12. Let 1 < p < N and let v and w be quasicontinuous functions of
degree p and almost everywhere equal. Then v and w are quasi-everywhere equal.

Proof. By assumption, m(A) = 0, where A = {|v — w| > 0}, and for every n, there
exists an w,-open set such that capp(wn) < 1/nand|v - W”R”\w is continuous. It
follows that A U w,, is open. We conclude, using Corollary 7.2.9, that

capp(A) < capp(A Uwy,) = capp(wn) — 0, n— oo O

Proposition 7.2.13. Let 1 < p < N and u € D"P(RN). Then there exists a function
v quasicontinuous of degree p and almost everywhere equal to u.

Proof. By Proposition 7.2.2, there exists (u,) C D(RY) such that u, — u
in D'P(RY). Using Proposition 7.2.3, we can assume that u, — u almost

everywhere and
Z 2kpf IV(upes1 — I/tk)|de < 00,
k=1 RY

We define

00

Up = (g = el > 279, wn = | J Uk

k=m

Corollary 7.2.10 implies that for every k,

cap,(Uy) < 2kpf [V(utgs1 — wo)lPdx.
RN

It follows from Corollary 7.1.10 that for every m,
cap,(wm) < Z 2k fN V(s — ulPdx — 0, m — co.
k=m R

We obtain, for every x € RV \ w,, and every k > j > m,

luj(x) — ur(x)] < 2",

00

so that (u,) converges simply to v on RV \ ﬂa)m. Moreover, V|RN\w is continuous,

m=1
(o)

since the convergence of (u,) on RY \ w,, is uniform. For x € ﬂwm, we define

m=1
v(x) = 0. Since by Proposition 7.2.6, m(w,,) — 0, we conclude that u = v almost

everywhere. O
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1. Let Q be an open subset of RY. The divergence of v € C!(Q; RY)

is defined by
N
divv = Z OVi.
k=1

The total variation of u € LIIOC(Q) is defined by

[|Dullo = sup{f udivvdx:ve DQ;RY), IVlle < 1},
Q

where
1/2

N
Ml = sup[Z(vk(x»Z]

xeQ =1

Theorem 7.3.2. Let (u,) be such that u,, — u in LIIOC(Q). Then

IDullg < lim [|Du|lq.

n—oo

Proof. Letv € D(Q;R") be such that ||v|| < 1. We have, by definition,

f udivvdx = lim | u,divvdx < lim ||Du,l|o.
Q

n—oo Jo n—oo

It suffices then to take the supremum with respect to v. O
Theorem 7.3.3. Letu e Wlt‘cl (). Then the following properties are equivalent:

(a) Vu e LY(Q;RM);
(b) |IDullo < oo.

In this case,

IDulle = [IVull 1)

Proof. (a) Assume that Vu € L'(Q; RV). Let v € D(2;R") be such that ||Vl < 1.
It follows from the Cauchy—Schwarz inequality that

N
f udivvdx = — Z vedyu dx < f [Vuldx.
Q Q

Q%=1

Hence ||Dullo < [[Vullig)-
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Theorem 4.3.11 implies the existence of (w,) C D(2; RY) converging to Vu
in L'(Q; RY). We can assume that w, — Vu almost everywhere on Q. Let us

define
Vi = Wi/ VIwa? + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

IVl ) = fquIdx = lim fvn - Vu dx < ||Dul|g.
Q n—-oo Q
(b) Assume that ||Du||o < oo and define
wp={xeQ:dx,dQ) > 1/nand |x| < n}.
Then by the preceding step, we obtain
IVullpi @,y = l1Dully, < lIDullg < co.

Levi’s theorem ensures that Vu € L'(Q; RV). O

Example. There exists a function everywhere differentiable on [—1, 1] such that
I1Dull—1,1f = +o0. We define

u(x) =0, x=0,
=xzsinx—12, 0<|x <1.
‘We obtain
u'(x) =0, x=0,
=2xsind —2coss, O<|x<1.
X X X

The preceding theorem implies that

+00 = V}LIQOHM/“LI(]UM[) < [|Dullj-1,11-

! 1 dx * dt
2 | cos —2|— = |cost|— = +oo.
0 X X 1 t

The function u has no weak derivative!

Indeed,

Example (Cantor function). There exists a continuous nondecreasing function with
almost everywhere zero derivative and positive total variation. We use the notation
of the last example of Sect.2.2. We consider the Cantor set C corresponding to
¢, = 1/3™1. Observe that

m(C) = 1- 273" =0
j=0
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U (X) =(%) j;ch(t)dt.

It is easy to verify by symmetry that

We define on R,

11
[[tpr1 = tnlloo < 35wl

By the Weierstrass test, (u,) converges uniformly to the Cantor function u € C(R).
Forn > m, u,, = 0 on R\ C,,. The closing lemma implies that ¥’ = 0 on R \ C,,.

Since m is arbitrary, u’ = 0 on R \ C. Theorems 7.3.2 and 7.3.3 ensure that

IDullr < lim [juy || 1wy = 1.
Let v € D(R) be such that ||[v||.c = 1 and v = —1 on [0, 1] and integrate by parts:

3 n
fv’u dx=1lim | Vu,dx=-1lm | vu,dx= lim (E) m(C,) = 1.
R

n—oo R n—oo R n—oo

We conclude that ||Dul|g = 1. The function u has no weak derivative.

Definition 7.3.4. Let Q be an open subset of RY. On the space
BV(Q) = {u € L'(Q) : |Dullg < co},

we define the norm
lullavia) = llullpio) + I1Dullo

and the distance of strict convergence
ds (u,v) = llu =Vl @) + |IDulle = IDVIlg|-

Remark. Tt is clear that convergence in norm implies strict convergence.

Example. The space BV(]0,n[), with the distance of strict convergence, is not
complete. We define on ]0, z[,

1
u,(x) = — cosnx,
n
so that u,, — 0in L'(]0, xr[). By Theorem 7.3.3, for every n,

T
Dunllion = f | sinnldx = 2.
0
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Hence llkim ds(uj,u) = lkim [lu; — urllpr oo = 0. If limdg (uy,v) = 0, thenv = 0.
JR—0 ’ Jok—oo 7 n—oo

But limds (u,,0) = 2. This is a contradiction.

Proposition 7.3.5. The normed space BV (L) is complete.

Proof. Let (u,) be a Cauchy sequence on the normed space BV(£). Then (u,) is a
Cauchy sequence in L' (Q), so that u, — u in L' (Q).

Let & > 0. There exists m such that for j,k > m, [|[D(u; — w)lle < &. Theorem
7.3.2 implies that for k > m, ||D(u — w)|| < lim [|[D(u; — wp)lle < &. Since € > 0 is

Jj—0

arbitrary, ||D(uy — w)llo — 0, k — oo. O
Lemma 7.3.6. Letue L}

loc

(RY) be such that ||Dul|gy < co. Then

IV = ey < [1Dullpy and [|Dullpy = 1im [[V(py * )iz g

Proof. Letv € D(RN;R") be such that ||v]|. < 1. It follows from Proposition 4.3.15
that

N N
(p,,*u)divvdxzf u pn*ﬁvdxzf u y Ok(on * vi)dx.

The Cauchy—Schwarz inequality implies that for every x € R,

N

N 2 N
D on () = ( fR pulx= y)w(y)dy) <>, fR pulx =) dy < 1.
k=1 k=1

k=1
Hence we obtain

f (o5 * u) div v dx < ||Dul|gw,
RN

and by Theorem 7.3.3, ||V(p, * u)llpiwyy < |[Dullgy.
By the regularization theorem, p,, * 4 — u in Llloc(]RN ). Theorems 7.3.2 and 7.3.3
ensure that

[[1Dullgy < 1im [[V(p, * w)l|L1 ). o

n—oo

Theorem 7.3.7. (a) For every u € BV(RY), (p, * u) converges strictly to u.
(b) (Gagliardo—Nirenberg inequality.) Let N > 2. There exists ¢, > 0 such that for

every u € BV(RV),
[leall pvrev-n oy < CN||DM||RN-

Proof. (a) Proposition 4.3.14 and the preceding lemma imply the strict conver-
gence of (p,, * u) to u.
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(b) Let N > 2. We can assume that p,, *u — u almost everywhere on RV Tt follows
from Fatou’s lemma and Sobolev’s inequality in D! (R") that

llully/v-1 £ lim [lo,, * ullyyv-1) < ¢ lim [[V(pp, * wlli = ¢ ||Dullgv. O
oo N n—oo N

7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1. Let Q be an open subset of RN of class C' with a bounded
boundary I'. Then

de = [IDXollg~-
r

Proof. Let v € D(RY;RM) be such that ||v||, < 1. The divergence theorem and the
Cauchy—-Schwarz inequality imply that

fdivvdxzfv-ndysf|v||n|dysfdy.
Q r r r

Taking the supremum with respect to v, we obtain ||DX gl|gy < f dy.
r

‘We use the notation of Definition 9.2.1 and define
U={xeR": Vo) # 0},

so that I" C U. The theorem of partitions of unity ensures the existence of Yy € D(U)
such that 0 < < 1 and ¢ = 1 on I". We define

v(x) = Y()Ve(x)/IVe(x)l, x € U
=0, xeRV\ U

It is clear that v € K (RV;RY) and for every v € I, v(y) = n(y). For every m >

1, wy = pm*v € D(RY; RY). We infer from the divergence and regularization
theorems that

limfdivwmdxz lim w,,,-ndy:fwndy:fdy.
m—o ) m—oo J r r

By definition, ||v||. < 1, and by the Cauchy—Schwarz inequality,
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N N 2 N

PNCEINENEDY ( f P = y)w(y)dy) <> f Pn(x = D) dy < 1.

=1 =1 WRY =1 VRY

We conclude that fdy < IDXollrw. O
r

The preceding theorem suggests a functional definition of the perimeter due to
De Giorgi.

Definition 7.4.2. Let A be a measurable subset of RY. The perimeter of A is defined
by p(A) = ||DX allg~.

The proof of the Morse—Sard theorem is given in Sect. 9.3.

Theorem 7.4.3. Let Q be an open subset of RN and u € C*(Q). Then the Lebesgue
measure of

{t € R : there exists x € Q such that u(x) = t and Vu(x) = 0}

is equal to zero.

Theorem 7.4.4. Let 1 < p < oo, u € LP(Q), u >0, and g € LV (Q). Then

(a) fgudx—f dtf g dx;

(b) lull, < fo il > )P dr:

(c) llully = j:o m({u > t))pi””"dt.

Proof. (a) We deduce from Fubini’s theorem that

fgudx:fdxf g X > dt
Q Q 0
=f dtfg)(u>rdx
0 Q
=f dtf g dx.
0 u>t

(b) If|lgll,» = 1, we obtain from Holder’s inequality that

fg udx < f m({u > 1})"/Pdt.
Q 0

It suffices then to take the supremum.
(c) Define f(r) = ¢. It follows from Fubini’s theorem that
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lull? = f dx f P
Q 0
:fdxfooXu>tf'(t)dt
Q 0
= foodtf)(u>,f’(t)dx
0 Q

= foo m({u > t})f' (r)dt. O
0

Theorem 7.4.5 (Coarea formula). Let u € D(RY) and f € C'(RN). Then

f fIVuIdxzf dt | fady.
RN 0 lul=t

Moreover, for every open subset Q of RY,

f|Vu|dx=f dtf Xody.
Q 0 lul=t

Proof. By the Morse—Sard theorem, for almost every € R,
u(x) =t = Vu(x) # 0.

Hence for almost every ¢ > 0, the open sets {u > t} and {u < —¢} are smooth.
We infer from Lemma 6.1.1, Theorem 7.4.4, and the divergence theorem that for
every v € C'(RV; RV),

f Vu-vdx:—f udiv v dx
]RN RN
—f dtf divvdx+f dtf divvdx
0 u>t 0 u<—t
dtf V. —
f it |Vu| i

Vu = f Vu/ |Vul? + 1/n.

Lebesgue’s dominated convergence theorem implies that

Define
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(ee] V (o]
f f|Vuldx = limf Vu-v, dx = lim dtf v,,-—udy =f dtf fdy.
RY n—eo Jpy n—e Jo = Vil 0 lul=t

Define
wp,={x€eQ : dx,00) > 1/nand |x| < n}.

For all n, there exists ¢, € D(w,+1) such that 0 < ¢, < 1 and ¢, = 1 on w,. Levi’s
monotone convergence theorem implies that

fquIdxz lim ©n|Vuldx = lim dtf tpndyzf dtf Xody. O
Q n—eo JRN n—e Jo lul=t 0 lul=t

Lemma 7.4.6. Let 1 < p < N, let K be a compact subset of RY, and a > cap,(K).

Then there exist V open andv € D(R) suchthat K C V, Xy < v, andfle| dx < a.
Q

Proof. By assumption, there exist u € D'"P(RY) and U open such that K ¢ U,

Xv < u, and

[VulPdx < a.
]RN

There exists V open such that K ¢ V cc U. For m large enough, Xy < w = p,, * u
and

|Vw|Pdx < a.
RN

Let 6,(x) = 6(|x|/n) be a truncating sequence. For n large enough, Xy < v = 6,w and

f IVv|Pdx < a. O
RN

Theorem 7.4.7. Let N > 2 and let K be a compact subset of RY. Then
cap,(K) = inf{p(U) : U is open and bounded, and U D> K}.

Proof. We denote by Cap,(K) the second member of the preceding equality. Let U
be open, bounded, and such that U > K. Define u, = p, * Xy. For n large enough,
ue D}(’I(RN ). Lemma 7.3.6 implies that for n large enough,

capy(K) < [ 1Vuldx < DXl = p(O),
R
Taking the infimum with respect to U, we obtain cap;(K) < Cap;(K).
Let a > cap,(K). By the preceding lemma, there exist V open and v € D(RY)
such that K ¢ V, Xy < v and f IVvldx < a. We deduce from the Morse—Sard
N

R
theorem and from the coarea formula that
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1 00
Capl(K)Sf dtf dysf dtf dy:f [Vvldx < a.
0 V=t 0 V=t RN

Since a > cap,(K) is arbitrary, we conclude that Cap;(K) < cap,(K). O

7.5 Comments

The book by Maz’ya ([51]) is the main reference on functions of bounded variations
and on capacity theory. The beautiful proof of the coarea formula (Theorem 7.4.5)
is due to Maz’ya. The derivative of the function of unbounded variation in Sect. 7.3
is Denjoy—Perron integrable (since it is a derivative); see Analyse, fondements
techniques, évolution by J. Mawhin ([49]).

7.6 Exercises for Chap.7

1. Let1 < p < N.Then

Ap+N <0 (1+|xHY? e WP@RN),
(A=1p+N <0 o (1+2)Y2 e DPRY),
2. What are the interior and the closure of W!'(Q) in BV(Q)?
3. Letue LIIOC(Q). The following properties are equivalent:

(a) ||Dulle < oo;
(b) there exists ¢ > 0 such that for every w cC © and every y € R" such that
Iyl < d(w, 0Q)

llryu = ullpwy < clyl.

4. (Relative variational capacity.) Let 2 be an open bounded subset of R (or
more generally, an open subset bounded in one direction). Let 1 < p < co and
let K be a compact subset of Q. The capacity of degree p of K relative to Q is
defined by

cap, o(K) = inf{ f \VulPdx : u € W}y’(g)},
Q

where

WIE‘P(.Q) ={ue WS”’(Q) : there exists w such that K ¢ w cc

and y, <u a.e.on Q}.

Prove that the capacity of degree p relative to Q is a capacity on Q.
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5. Verify that
cap, o(K) = inf {f |VulPdx : u e Z)K(Q)},
Q
where
Dk (Q) = {u € D(Q) : there exists w such that K € w cC Qand X, < u}.
6.(a) If cap, o(K) = 0, then m(K) = 0. Hint: Use Poincaré’s inequality.
(b) If p > N and if cap,o(K) = O, then K = ¢. Hint: Use the Morrey
inequalities.
7. Assume that cap, o(K) = 0. Then for every u € D(Q), there exists (u,) C
D(R\ K) such that |u,| < || and u, — uin WHP(Q).
8. (Dupaigne-Ponce, 2004.) Assume that cap; o(K) = 0. Then Whr(Q\ K) =

WLP(Q). Hint: Consider first the bounded functions in W'?(Q \ K).
9. For every u € BV(RV),

IDlulllzy < DU llgx + 1Du |y = [|Dullgx
Hint: Consider a sequence (#,) ¢ WH!(RV) such that u, — u strictly in
BV(RY).
10. Letu € L'(Q) and f € BC'(Q). Then
ID(fwllo < [ flleollDulle + IV flleollullz1(q)-
11. (Cheeger constant.) Let Q be an open bounded domain in RY and define

h(Q) = inf{p(w)/m(w) : w cc Q and w is of class C'}.

Then for 1 < p < oo and every u € Wé‘P (Q),

P
(@) f|u|"’dxsf|Vu|"dx.
p Q Q

Hint: Assume first that p = 1 and apply the coarea formula to u € D(Q).
12. Letu € W(Q). Then

N
f V1+|Vul2dx = sup {f(vNH +u Z O )dx : u € DQ; RN, lulleo < 1}.
Q Q k=1



Chapter 8
Elliptic Problems

8.1 The Laplacian

The Laplacian, defined by

? o?
Au = div Vu = au +...+—u,
ox? ﬁxli

is related to the mean of functions.

Definition 8.1.1. Let Q be an open subset of RY and u € L (). The mean of u is
defined on

D={(x,r): x€Q,0 <r<d(x i)}
by

M(x,r) = V](,l f u(x + ry)dy.
By

Lemma 8.1.2. Let u € C*(Q). The mean of u satisfies on D the relation

N+2

72

11}})12 [M(x,r) — u(x)] = du(x).

Proof. Since we have uniformly for [y| < 1,
2
u(x +ry) = u(x) + rVu(x) -y + %Dzu(x)(y, y)+ 0(r2),

we obtain by symmetry

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 157
DOI 10.1007/978-1-4614-7004-5_8, © Springer Science+Business Media, LLC 2013
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) Vn
x-dx:O,f x'xkdx=0,J¢k,f x2dx = s
LN ! By By N+2

2
M(x,r) = u(x) + 5

and

Au(x) + o(r?).

N+2

Lemma 8.1.3. Let u € C*(Q). The following properties are equivalent:

(a) Au <0;
(b) forall (x,r) € D, M(x,r) < u(x).

Proof. By the preceding lemma, (a) follows from (b).
Assume that (a) is satisfied. Differentiating under the integral sign and using the
divergence theorem, we obtain

oM 1-1]y?
—(x,r) = Vg,l f Vu(x + ry) - ydy = rVII,1 f Au(x + ry) b dy <0.
or By By

) <

We conclude that
M(x,r) < lrIR)l M(x,r) = u(x).
O
Definition 8.1.4. Let u € Llloc(Q). The function u is superharmonic if for every
v € D(2) such thatv > 0, fuzlvdx <0.
The function u is subharrﬁonic if —u is superharmonic.
The function u is harmonic if for every v € D(Q), f udvdx = 0.

Q
We extend Lemma 8.1.3 to locally integrable functions.

Theorem 8.1.5 (Mean-value inequality.). Ler u € LIIOC(Q). The following proper-
ties are equivalent:

(a) uis superharmonic;
(b) for almost all x € Q and for all 0 < r < d(x,0Q), M(x,r) < u(x).

Proof. Let u,, = p, * u. Property (a) is equivalent to

(c) forevery n, 4u, <0 on ©,. Property (b) is equivalent to
(d) forall x € , and for all 0 < r < d(x, 092,), V;,lf upy(x + ry)dy < up(x).

By

We conclude the proof using Lemma 8.1.3.

(a) = (c). By Proposition 4.3.6, we have on Q,, that

Aun(x) = Apy * u(x) = L (dpn(x = M)u(y)dy < 0.
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(c) = (a). Itfollows from the regularization theorem that for every v € D(Q), v > 0,

fuzlvdx =lim | wu,dvdx = lim | (du,)vdx < 0.
Q Q

n—oo Jo n—oo

(b) = (d). We have on Q,, that

V;,lf u,(x + ry)dy = V](,lf de Pn(Qu(x + ry — z)dy
By BO1/m  JBy

< f Pu(@u(x = 2)dz = un(x).
B(0,1/n)

(d) = (b). For j > 1, we define
wj={x€Q:d(x,002) > 1/jand |x| < j}.

Proposition 4.2.10 and the regularization theorem imply the existence of a subse-
quence (uy,,) converging to u in L'(w;) and almost everywhere on w;. Hence for

almost all x € w; and for all 0 < r < d(x,0w;), M(x,r) < u(x). Since Q = ij,
j=1
property (b) is satisfied. O

Theorem 8.1.6 (Maximum principle.). Let Q be an open connected subset of RY

andu € Llloc(Q) a superharmonic function such that u > 0 almost everywhere on Q

and u = 0 on a subset of Q with positive measure. Then u = 0 almost everywhere
on Q.

Proof. Define

U, = {x € Q : there exists 0 < r < d(x,092) such that M(x, r) = 0},
U, = {x € Q : there exists 0 < r < d(x,092) such that M(x, r) > 0}.

It is clear that U; and U, are open subsets of Q such that Q = U; U U,. By the
preceding theorem, we obtain

U, ={xeQ:forall 0 < r <d(x,dQ), M(x,r) > 0},
so that U; and U, are disjoint. If Q = U, then u > 0 almost everywhere on Q by

the preceding theorem. We conclude that Q = U; and u = 0 almost everywhere
on £. O
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8.2 Eigenfunctions

En nous servant de quelques conceptions de I’analyse
fonctionnelle nous représentons notre probleme dans une forme
nouvelle et démontrons que dans cette forme le probleme admet
toujours une solution unique.

Si la solution cherchée existe dans le sens classique, alors notre
solution se confond avec celle-ci.

S.L. Sobolev

Let Q be a smooth bounded open subset of RV with frontier I". An eigenfunction
corresponding to the eigenvalue A is a nonzero solution of the problem

*P)

—Au=Au in Q,
u=0 onl.

We will use the following weak formulation of problem (P): find u € Hé () such

that for all v € Hy(9Q),
fVu-Vvdxz ﬂfuvdx.
Q Q

Theorem 8.2.1. There exist an unbounded sequence of eigenvalues of (P)
O<ly <<,

and a sequence of corresponding eigenfunctions that is a Hilbert basis of Hé Q).

Proof. On the space Hé (£), we define the inner product

a(u,v) = f Vu-Vvdx
Q

and the corresponding norm ||u||, = Va(u, u).
For every u € Hé (L), there exists one and only one Au € H(l) () such that for all

Ve H(l)(Q),
a(Au,v) = f uv dx.
Q

Hence problem (%) is equivalent to
A = Au.

Since a(Au, u) = f u’dx, the eigenvalues of A are strictly positive. The operator A
Q

is symmetric, since

a(Au,v) = f uv dx = a(u, Av).
Q
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It follows from the Cauchy—Schwarz and Poincaré inequalities that

2
|Au|l; = f“ Audx < ||M||L2(Q)||AM||L2(Q) < C||M||L2(Q)||AM||a~
Q
Hence
lAull, < cllullrzq)-

By the Rellich—Kondrachov theorem, the embedding H(l)(Q) — [2(Q)is compact,
so that the operator A is compact. We conclude using Theorem 3.4.8. O

Proposition 8.2.2 (Poincaré’s principle.). For everyn > 1,

ﬂnzmin{f |Vu|2dx:u€Hé(Q),fu2dx=1,fue1dx=...:fuen_ldx=0}.
Q Q Q Q

Proof. We deduce from Theorem 3.4.7 that

A )
Al = max{a( w) ue Hy(Q),u#0,a(ue)=...=a(ue, )= O}.

a(u,u)

Since ¢ is an eigenfunction,

a(u,er) =0 = f uerdx = 0.
Q

Hence we obtain

o fguzdx . | B 3 _
A, =max{————:1u€ Hy(Q),u#0, | ueldx=...= ue,_1dx =0y,
o IVuldx o o
or
o [VuPdx |
A, = min —:ueHO(Q),u;ﬁO,fueldxz...zfuen,ldxzo . O
fguzdx Q 0

Proposition 8.2.3. Letu € H(l)(.Q) be such that ||lul, = 1 and IIVullg =A1. Then u is
an eigenfunction corresponding to the eigenvalue A;.

Proof. Letv € H)(£). The function
g(@) = IV + el — Aillu + evll3

reaches its minimum at &€ = 0. Hence g’(0) = 0 and

fVu-Vvdx—/llfuvdxzo. O
Q Q
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Proposition 8.2.4. Let Q be a smooth bounded open connected subset of RY. Then
the eigenvalue Ay of (P) is simple, and e; is almost everywhere strictly positive on Q.

Proof. Let u be an eigenfunction corresponding to A; and such that |lu||, = 1. By
Corollary 6.1.14, v = |u| € H}(2) and [|VV|[5 = [[Vull} = 4. Since |Vl = llull, = 1,
the preceding proposition implies that v is an eigenfunction corresponding to A;.
Assume that ™ # 0. Then u* is an eigenfunction corresponding to A, and by the
maximum principle, u* > 0 almost everywhere on Q. Hence # = u*. Similarly, if
u- # 0, then —u = u~ > 0 almost everywhere on Q. We can assume that e; >
0 almost everywhere on Q. If e, corresponds to A, then e; is either positive or

negative, and f e1exdx = 0. This is a contradiction. O
Q

Example. Let Q = 10, n[. Then () becomes

{—u" =Au in]0,x],
u(0) = u(xm) = 0.

Sobolev’s embedding theorem and the Du Bois—Reymond lemma imply that u €
C%(10, z[) N C([0, 7r]). Hence A, = n? and e, = \/gs“:li The sequence (e,) is a

T

Hilbert basis on Hé(]O, n[) with scalar product f u'v' dx, and the sequence (ne,) is
0

a Hilbert basis of L>(]0, [) with scalar product f uvdx.
0
Definition 8.2.5. Let G be a subgroup of the orthogonal group O(N). The open
subset Q of RY is G-invariant if for every g € G and every x € Q, g7'x € Q. Let Q
be G-invariant. The action of G on H(9) is defined by gu(x) = u(g™"'x). The space
of fixed points of G is defined by
Fix(G) ={u € Hé(.Q) : forevery g € G, gu = u}.

A function J : Hé () — R is G-invariant if forevery g € G, Jo g = J.

Proposition 8.2.6. Let Q be a G-invariant open subset of RN satisfying the
assumptions of Proposition 8.2.4. Then e, € Fix(G).

Proof. By a direct computation, we obtain, for all g € G,
llgeillz = llerllz = L1IVgeull3 = Vel = Ar.
Propositions 8.2.3 and 8.2.4 imply the existence of a scalar A(g) such that
e1(g™'x) = Ag)er(x).

Integrating on £, we obtain A(g) = 1. But then ge; = e;. Since g € G is arbitrary,
e, € Fix(G). O
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Example (Symmetry of the first eigenfunction). For a ball or an annulus
Q={xeR":r<|x <R}

we choose G = O(N). Hence ¢ is a radial function.

We define v(|x]) = u(x). By a simple computation, we have

& v Xk L ( 1 x )
—u(x) = £ 4 S
ox? ux =v (|x|)|x|2 v x| |x?

Hence we obtain
Au=v"+ (N - 1)0/|x|.

Let Q = B(0, 1) c R3. The first eigenfunction, u(x) = v(|x|), is a solution of

V" =2V [r = Av.

The function w = rv satisfies

so that
w(r) = asin( Var - b)

and

w(r) =

Since u € H}(2) ¢ L%(Q), b = 0 and A = 7*. Finally, we obtain

sin( VAr — b)
af.

sin(7r|x|)

ux)=a

|x]
It follows from Poincaré’s principle that

7 = min {IVallF. g /1l g, < 1 € HY(2)\ {0}}.

Let us characterize the eigenvalues without using the eigenfunctions.

Theorem 8.2.7 (Max-inf principle). For everyn > 1,

A1, = max inf |Vul?dx,
VeVuer ueV+ Q
llull> = 1

where V,_| denotes the family of all (n — 1)-dimensional subspaces of Hé Q).

Proof. Let us denote by A, the second member of the preceding equality. It follows
from Poincaré’s principle that 4, < A,,.
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Let V € V,_,. Since the codimension of V* is equal to n — 1, there exists x €
n

RY \ {0} such that u = )" x;e; € V*. Since

J=1

n
fqulzdxzz:/ljx%fe?dxs/lnfuzdx,
Q = Q Q

we obtain
inf f |Vul*dx < A,.
ueVt Jo
[lull2 =1
Since V € V,,_; is arbitrary, we conclude that A, < 4,,. 0O

8.3 Symmetrization

La considération systématique des ensembles E[a < f < bl m’a
été pratiquement utile parce qu’elle m’a toujours forcé a
grouper les conditions donnant des effets voisins.

Henri Lebesgue

ROy

=
X

©

N 9®\

According to the isodiametric inequality in R?, among all domains with a fixed
diameter, the disk has the largest area.A simple proof was given by J.E. Littlewood
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in 1953 in A Mathematician’s Miscellany. We can assume that the domain £ is
convex and that the horizontal axis is tangent to £ at the origin. We obtain

1

_ 1! %2 2 T 2
A—zj; 0(60) + p (9+2)d9§n(d/2).

We will prove the isoperimetric inequality in RN using Schwarz symmetrization.
In this section, we consider the Lebesgue measure on RY. We define

K (RY) = {u € K@RY) : forall x € RN, u(x) > 0},
LYRY) = {u € LP(RV) : for almost all u(x) > 0},
WEP(RN) = WP (RY) 0 LE(RY),
BV.(RY) = BV(RY) n LL(RY).

Definition 8.3.1. The Schwarz symmetrization of a measurable subset A of RY is
defined by A* = {x € RY : |x"Vy < m(A)}. An admissible function u : RV —
[0, +c0] is a measurable function such that for all t+ > 0, m,(t) = m({u > t}) < oo.
The Schwarz symmetrization of an admissible function u is defined on RY by

u'(x) =sup{t e R: xe{u>r"}.

The following properties are clear:

(@) Xar =X};

(b) m(A*\ B*) <m(A\ B);

(c) wu” isradially decreasing, |x| < |y| = u*(x) > u*(y);
d usv=u* <v.

Lemma 8.3.2. Let (A,) be an increasing sequence of measurable sets. Then

CJoc-(CJa

n=1 n=1
Proof. By definition, A, = B(0, r,), [0 An]* = B(0,r), where r,I,VVN = m(A,),
n=1
Ny = m([] An]. It suffices to observe that by Proposition 2.2.26,
n=1
m(o A,,] = }Ln; m(A,). O
n=1

Theorem 8.3.3. Let u be an admissible function. Then u* is lower semicontinuous,
and forallt > 0, {u > t}* = {u* > t} and m,(t) = m,(¢).
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Proof. Let t > 0. Using the preceding lemma, we obtain

(>t = (U{u > s}) - U{u >SSl clu > clu>t)y.

s>t s>t
In particular, {u#* > t} is open and m{u > t} = m{u* > t}. O

Proposition 8.3.4. Let 1 < p < coand u,v € LY (RY). Then u*,v* € LY (RY) and

My = Nl llee™ = vl < Ml =Vl

Proof. Using Cavalieri’s principle and the preceding theorem, we obtain

|l = f My (Ot = f i (t)dt = |l
0 0

Assume that p > 2 and define g(#) = |#|”, so that g is convex, even, and of class
C?, and assume as well that £(0) = g’(0) = 0. For a < b, the fundamental theorem

of calculus implies that
b b
gb—-a)= f dsf gt — s)dt.

Hence we have that
gu—v)= f dsf 8"t — ) Wisn(1 =Xpng) + X oy (1 =Xy )] dt.

Integrating on RY and using Fubini’s theorem, we find that

fg(u v)dx—f dsf gt = 9)[m{u >\ {v>sh)+m{v >\ {u> s})]dr
RN

f g™ —vdx < f g(u —v)dx.
]RN ]RN

If 1 < p < 2, it suffices to approximate |f|” by g.(f) = (* + &2)P/> — &P, &£ > 0. O

Finally, we obtain

Approximating Schwarz symmetrizations by polarizations, we will prove that if
u € WyP(RY), then u* € WP (RV) and ||Vu*||, < [|Vull.

Definition 8.3.5. Let oy be the reflection with respect to the frontier of a closed
affine half-space H of RY. The polarization (with respect to H) of a function u :
RY — R is defined by

uf(x) = max{u(x), u(ocy(x))}, xe€H,
= min{u(x), u(cy(x))}, xeR¥\H.
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The polarization A7 of A ¢ R is defined by X4» = X&. We denote by H the family
of all closed affine half-spaces of RY containing 0.

Let us recall that a closed affine half-space of R" is defined by
H={xeR":a x<b)
where a € S¥~! and b € R. It is clear that
og(x)=x+2(b-a- x)a.

The following properties are easy to prove:

(a) if A is a measurable subset of RY, then m(A") = m(A);
®) {uf > 1) ={u>nf;

(c) if u is admissible, (u")* = u*;

(d) if moreover, H € H, (u")" = u*.

Lemma 8.3.6. Ler f : R — R be convexanda < b, ¢ < d. Then
Jo-d)+ fla=c)< fla=d)+ f(b-oc).
Proof. Definex=b—d,y=>b—a, and z = d — c. By convexity, we have
JO) = fx=y) < flx+2) = flx+z-y). o
Proposition 8.3.7. Let 1 < p < oo and u,v € LP(RM). Then u’ v € LP(RY) and
™11, = Naallp, Na™ =711 < =l

Proof. Observe that

f (P dx = f WGP + (o ()Pdx
RN H

= [ W s wonepds = [ worax
H RN
Using the preceding lemma, it is easy to verify that for all x € H,

! (20) = VIO + [ (o (x)) = v (o ()IP
< u(x) = v + lu(orp(x)) = v(og(x)IP.
It suffices then to integrate over H. O

Lemma 8.3.8. Let u : RY — R be a uniformly continuous function. Then the
function u™ : RN — R is uniformly continuous, and for all § > 0, w,u(6) < w, ().
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Proof. Letd > 0and x,y € RN be such that [x—y| < 6. If x,y € Horif x,y € RV\ H,
we have
lou(x) —on(l =lx =yl <6

and
' (x) — u" ()] < max(Ju(x) — u), lu(op(x)) — w(THO))]) < W(O).

If x€ Handy € RY \ H, we have
x =W =lou(x) =yl <log(x) —ogM|=|x—-y <6
and

" (20) = u ()| < max(ju(x) — u(opM)), lu(ou(x) = u®),
u(oh(x)) = u(or (M), lu(x) = u(y)l) < w,(6).

We conclude that

wn(8) = sup [u(x) — u () < W, (6). O
[x—yl<6

Lemma 8.3.9. Let1 < p < o0, u € LP(RY), and H € H. Define g(x) = e, Then

f ug dx < f uf’g dx. (*)

RV RV

f ug dx = f ug dx, (%%)
RV RV

Proof. For all x € H, we have

If, moreover, O e[fl and

then u = u.

u(x)g(x) + u(op(x)g(ou(x)) < u?(x)g(x) + u (on(x)g(ou(x)).

It suffices then to integrate over H to prove (x).
If (+%) holds, we obtain, almost everywhere on H,

u(x)g(x) + u(op(x)g(ou(x)) = u (x)g(x) + u (Tu(x)g(ou(x)).
If O eIO-I, then g(og(x)) < g(x) for all x EI(-)I, so that
u(x) = u (x), u(op(x) = u(ou(x)). O

Lemma 8.3.10. Let u € K (RV) be such that for all H € H, u" = u. Then u* = u.
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Proof. If |x| < |y|, there exists H € H such that x € H and y = oy(x). Hence
u(y) = u(y) < u(x) = u(x),

and for all # > 0, {u > t} = {u™ > t}. We conclude that u* = u. O

Consider a sequence of closed affine half-spaces
H,={xeR":q,-x<b,)

such that ((a,, b,)) is dense in SV~1x 10, +oo[.
The following result is due to J. Van Schaftingen.
Theorem 8.3.11. Let 1 < p < o and u € LY (RY). Define

uy = u,

H,..H,
Upil] = unl n+l1 A

Then the sequence (u,) converges to u* in LP(RV).

Proof. Assume that u € %, (R"). There exists » > 0 such that spt u ¢ B[0, r]. Hence
for all n,

spt u, C B[O, r].

The sequence (u,) is precompact in C(BI[O0, r]) by Ascoli’s theorem, since

(a) forevery n, |luyllco = [lullo;
(b) forevery & > 0, there exists ¢ > 0, such that for every n, w,, (0) < w,(6) < &.

Assume that (u,, ) converges uniformly to v. Observe that
sptv c B[O, r].
We shall prove that v = u*. Since by Proposition 8.3.4,
" =il = N, = v¥lle < llun, = Vil = 0, k — oo,

it suffices to prove that v = v*.
Let m > 1. For every ny > m, we have

Hy..Hy..Hy |
Upy,y = Uny .

Lemma 8.3.9 implies that

fN wlh-Hn g dx < fN Up,,, 8 dX.
R R
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It follows from Proposition 8.3.7 that

f yH-Hn g dxﬁf vg dx.
RN RV

By Lemma 8.3.9, v/' = v, and by induction, v/i» = v.

Letae SY!,b>0,and H = {x € R : a- x < b}. There exists a sequence (1)
such that (an,, bn,) — (a,b). We deduce from Lebesgue’s dominated convergence
theorem that

V" =vlly = W = vl - 0, &k — oo,

Hence for all H € H, v = v/, Lemma 8.3.10 ensures that v = v*.
Let u € LY(RY) and & > 0. The density theorem implies the existence of w €
. (RN) such that ||lu — w| » < €. By the preceding step, the sequence

Wy =w,
_ H.H,,
WV!+1 - Wn " bl

converges to w* in L? (RY). Hence there exists m such that for n > m, |[w, —w*|| p S E
It follows from Propositions 8.3.4 and 8.3.7 that for n > m,

llotr — |l < Netw — wallp + lwn — Wl + W = u’ll, < 2llu—wll, + & < 3e.

Since € > 0 is arbitrary, the proof is complete. O

Proposition 8.3.12. Let 1 < p < co and u € WHP(RM). Then u € WIP(RN) and
IV, = IVl

Proof. Define v = u o oy. Observe that

1 1
ull = E(u+v)+ Elu—vl, on H,

1 1
=§(u+v)—§|u—v|, on RV \ H.

Since the trace of |u — V| is equal to 0 on 8H, u” € W'P(RN). Let x € H.
Corollary 6.1.14 implies that for u(x) > v(x),

V' (x) = Vu(x), Vu (0 (x)) = Vu(ou(x)),
and for u(x) < v(x),

V' (x) = Vu(x), Vi (01 (x)) = V(0 (x)).
We conclude that on H,

IV O + [Vu! () = [Vu()lP + Vo ()P o
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Proposition 8.3.13. Let u € BV(RY). Then u"' € BV(RY) and ||Du”|| < ||Dull.

Proof. Let u, = p, * u. Propositions 4.3.14 and 8.3.7 imply that u, — u and u? —
ufl in L'(R"). Theorem 7.3.3 and Proposition 8.3.12 ensure that

H H
1Dw, 1| = IV, 11y = [[Vitllr-

We conclude by Theorem 7.3.2 and Lemma 7.3.6 that

1Du"|| < lim [|Duf]|| = Tim [|Vay ||y = [|Dul]. o
Theorem 8.3.14 (Polya-Szego inequality). Ler 1 < p < coand u € Wi“” (RV).
Then u* € WP (RN) and |[Vu|l, < |[Vull,.

Proof. The sequence (u,) given by Theorem 8.3.11 converges to u* in LP(RY). By
Proposition 8.3.12, for every n, ||Vu,||, = |[Vul|,. It follows from Theorem 6.1.7 that

||VM*||1, < liIn”V“n”p = “Vu”p- O

Theorem 8.3.15 (Hilden’s inequality, 1976). Let u € BV.(RM). Then u* €
BV.(RN) and ||Du*|| < ||Du]|.

Proof. The sequence (u,) given by Theorem 8.3.11 converges to u* in L' (R"). By
Proposition 8.3.13, for every n,

IDup 11l < lIDuyll < [|Dul|.
It follows from Theorem 7.3.2 that

IDu"|| < lim ||Duy|| < [|Dull. o
Theorem 8.3.16 (De Giorgi’s isoperimetric inequality). Let N > 2 and let A be

a measurable subset of RN with finite measure. Then

NVN (m(A)' =N < p(A).

Proof. If p(A) = +oo, the inequality is clear. If this is not the case, then X4 €
BV, (RM). By definition of Schwarz symmetrization,

A" = B(0,r), Vyr" = m(A).
Theorems 7.4.1 and 8.3.15 imply that
NVNr¥! = p(A") = [IDX g llpv = IDX IR < IDXAllRy = p(A).
It is easy to conclude the proof. O

Using scaling invariance, we obtain the following version of the isoperimetric
inequality.
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Corollary 8.3.17. Let A be a measurable subset of RN with finite measure and let
B be an open ball of RN, Then

p(B)/m(B)'~N < p(A)/m(A)' "'V,

The constant N VI{,/ N, corresponding to the characteristic function of a ball, is the
optimal constant for the Gagliardo—Nirenberg inequality.

Theorem 8.3.18. Let N > 2 and u € BV(RY). Then
NV N lully -1y < IDull.

Proof. Tt follows from Theorems 7.4.4 and 7.4.5 and from the isoperimetric
inequality that for all u € D(RV),

NV lullyjov-1) < NVIN f m({lul > th DNy

0
Sf dtf dy
0 lul=t

= |Vuldx.
RN

By density, we obtain, for every u € WHL(RY),
NV liallvyv-1y < 1Vl

We conclude using Proposition 4.3.14 and Lemma 7.3.6. O
Definition 8.3.19. Let Q be an open subset of RY. We define

A1(Q) = inf {[IVulB/Ilull3 : u € Wy (@) \ {0}}.

Theorem 8.3.20 (Faber-Krahn inequality). Let Q be an open subset of RN with
finite measure. Then 11(2%) < 1,(9Q).

Proof. Define Q(u) = ||Vu||§/||u||§. Let u € WS’Z(Q) \ {0} and v = |u|. By
Corollary 6.1.14, Q(v) = Q(u). Proposition 8.3.4 and the Pélya—Szegd inequality
imply that Q(v*) < Q(v). It is easy to verify that v* € WS’Z(Q*) \ {0}. Hence we
obtain

(%) < Q) < Q(v) = Q(w).
Since u € Wé’z(Q) \ {0} is arbitrary, it is easy to conclude the proof. O

Using scaling invariance, we obtain the following version of the Faber—Krahn
inequality.
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Corollary 8.3.21. Let Q be an open subset of RN and let B be an open ball of RV.
Then
L (BmBY*N < 4,(Qm(*™.

Remark. Equality in the isoperimetric inequality or in the Faber—Krahn inequality
is achieved only when the corresponding domain is a ball.

8.4 Distribution Theory

La mathématique est I’art de donner le méme nom a des choses
différentes.

Henri Poincaré

La mathématique est la science des choses qui se réduisent a
leur définition.

Paul Valéry

Distribution theory is a general framework including locally integrable functions.
A distribution is a continuous linear functional on the space of test functions.
Every distribution is infinitely differentiable, and differentiation of distributions is a
continuous operation. We denote by 2 an open subset of RV,

Definition 8.4.1. A sequence (u,) converges to u in D(Q) if there exists a compact
subset K of Q such that for every n, spt u,, C K, and if for every a € NV,

10" (up = wlleo — 0.

Definition 8.4.2. A distribution on 2 is a linear functional f : D(Q2) — R such
that for every sequence (u,) converging to u in D(Q), {f, u,) — {f,u), n — co0. We
denote by D*(L2) the space of distributions on £.

Definition 8.4.3. Let f € D*(Q) and @ € NV, The derivative of order a of f (in the
sense of distributions) is defined by

(0 f,uy = (=DVICF, 0%u).

It is easy to verify that 0° f € D*(Q).

Definition 8.4.4. The sequence (f;,) converges to f in D*(Q) if for every u € D(Q),
(S, uy = (f,u),n — oo,

Theorem 8.4.5. Let @ € NV and let (f,) be a sequence converging to f in D*(Q).
Then (0° f,) converges to 0 f in D*(Q).
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Proof. For every u € D(£2), we have
(@ f,uy = (=DIF, 8%) = lim (=)' f,,, 8%u) = im (D f,, u). o

Distributions generalize locally integrable functions.

Definition 8.4.6. The distribution corresponding to g € LIIOC(Q) is defined on
D(Q) by

(g, uy = fg(x)u(x)dx.
Q
It follows from the annulation theorem that the distribution g characterizes the
function g.

Theorem 8.4.7. (a) If g, — gin L
D*(Q).
(b) If g = 0“f in the weak sense, then g = 0° f in the sense of distributions.

(Q), then for every @ € NV, 8%, — 8% in

Example. We consider the everywhere differentiable function

u(x) =0, x=0,

=xsinL, O<lx <1

The function u has a classical derivative and a derivative in the sense of distributions:
1
DA-1,1D->R:v— —f u(x)v'(x)dx.
-1

Those two objects are different, since the classical derivative is not locally integrable.
There exists no locally integrable function corresponding to the Dirac measure.

Definition 8.4.8. The Dirac measure is defined on K(R") by

(6, uy = u(0).
Definition 8.4.9. The elementary solutions of the Laplacian are defined on RV \ {0}
by
1
Ey(x) = —log—, N=2,
2 7 |«
1 1
En(x) = N > 3.

(N =2)NVy [xN-2" -
Theorem 8.4.10. Let N > 2. In D*(RY), we have

—4Ey = 6.
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Proof. Define v(x) = w(|x|). Since
Av=w"+(N-Dw'/|x,
it is easy to verify that on RV \ {0}, 4Ey = 0. It is clear that Ey € L} (RV).

Let u € D(RY) and R > 0 be such that spt u € B(0, R). We have to verify that

—u(0) = f EnAu dx = lim EnAu dx.
RN

20 Jec|x<R

We obtain using the divergence theorem that

fle) = f (Endu — udEy)dx
e<|x|<R

= f (MVEN X ExVu - l) dy.
3B(0,8) [yl [yl

By a simple computation,

f VEy - Ldy=-1, lim Endy =0,
0B(0,6) [yl &0 Jop(0,s)

so that lir% f(e) = —u(0). O
Definition 8.4.11. Let f,g € D*(Q). By definition, f < g if for every u € D(Q)
such that u > 0, (f, u) < (g, u).

Theorem 8.4.12 (Kato’s inequality.). Let g € L\ () be such that Ag € L} (Q).
Then

(sgn g)dg < Algl.

Proof. Letu € D(2) and w cc 2 be such u > 0 and spt u C w. Define g, = p,, * g,
and for £ > 0, fo(r) = (> + £2)'/2. Since g, — g in L'(w), we can assume, passing if
necessary to a subsequence, that g, — g almost everywhere on w.

For all £ > 0 and for n large enough, we have

f (e gnu dx < f (U dx = f F(g)u dx.
Q Q Q

When n — oo, we find that

f £1(e)Agu dx < f F(g)du dix.
Q Q
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When ¢ | 0, we obtain

f(sgn U udx < f lgldu dx. O
Q Q

Distributions also generalize scalar measures.

Theorem 8.4.13. Let u : D(2) — R be a linear functional such that for every
ue 7<‘+(‘Q)7

(s ) = sup{{, v) : v € D(Q), M < u} < co.

Then p is a distribution and the restriction to D(2) of a scalar measure.

Proof. Let w cc Q. By the theorem of partitions of unity, there exists ¢ € D(Q)
such that 0 < ¢ < 1 and ¢ = 1 on w. For every v € D(£) such that spt v C w, we
have

V) <l IVllootp) = ColV]loo-

Hence u is a distribution.
Let v € K(£) be such that spt v C w and define v, = p, * v. For n large enough,
spt v, C w. The regularization theorem ensures that

Jim (G2, v)) = vl < e lim vy = vills = 0.

We define
<,Ll, V) = hm <,Ll, Vn)- o

Corollary 8.4.14. Let y : D(Q) — R be a linear functional such that {u,u) > 0
when u > 0. Then u is a distribution and the restriction to D(Q) of a positive
measure.

Theorem 8.4.15. Let u € L} (Q). Then

J=1

N
I1Dulle = sup {Z(aju, vj) v e D@ RY), [l < 1}.

In particular, ||Dullo < oo if and only if Oqu, . . ., 6Nu are finite measures on £.

In this case, there exists g : Q — RY such that

(a) g is|Du|-measurable;
(b) |g(x)| = 1, |Dul-almost everywhere on £;

(c) forallveD(Q;RN),fudivvdx:fv'gdlDuL
Q Q

Proof. We have, by definition of the variation and of the distributional derivative,
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IDullo = sup{f udivvdx:ve DQ;RY), Vo < 1}
Q

N
= sup {Z(@,-u, V) ve DR, RY), [Vl < 1}.

j=1
We conclude using Theorem 5.3.14. O

The next result improves Theorem 7.4.1.

Theorem 8.4.16. Let Q be an open subset of RN of class C' and let u € K@RM).

Then
fud)/:f u d|DXg|.
r RN

Proof. We can assume that u > 0. Let v € DRY;RM) be such that [v] < u. The
divergence theorem and the Cauchy—Schwarz inequality imply that

fdivvdxzfv-ndysflvllnldysfudy.
Q r r r

By Definition 5.1.6, we obtain

N
f u d|DXg| = sup {Z«a Nsvj) v e DRY;RY), v < u}
RY =1

= sup {f divv:ve DRY;RY), v < u}
Q

Sfudy.
r

We use the notation of Definition 9.2.1 and define
U={xeR": Vo) # 0},

so that I c U. The theorem of partitions of unity implies the existence of y €
D(RY) such that 0 < ¢ < 1 and ¢ = 1 on I'N spt u. We define

v(x) = u()Y(0)Ve(x)/[Ve(ol, xelU
=0, xeRV\ U

It is clear that v € K(RY;R"), and for every y € I', v(y) = u(y)n(y). For every
m>1,wy, =py*ve DRYN; RN). We infer from the divergence and regularization
theorems that
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lim fdivwmdxz lim fwm-ndyz fudy.

By the Cauchy—Schwarz inequality, we have

N N
Dlom v < Y f Pu(x = YOO dy < p * .
k=1 =1 VRY

By Definition 5.1.6, we conclude that

fu dy < lim Jom *u? d|DXxg| = f u d|DXgl. O
r m—eo JpN RV

Definition 8.4.17. Let 1| < p < oo and k > 1. Define M = Zl. The space
lal<k

WkP' (Q) is the space of distributions

g= > (=15,
lal<k
where (g,) € LV (Q;RM). By definition, H *(Q) = WHk2(Q).
Theorem 8.4.18. The following properties are equivalent:

(a) g€ WH'(Q);
(b) g is the restriction to D(Q) of f € (W(I;’I’(Q))*.

Proof. If g € WP (Q), we deduce from Holder’s inequality that on D(Q),

Kg 1l =] D gwm 0w =| > fg a0 dx| < ||l llullwes.

lal<k lal<k

It suffices then to use Proposition 3.2.3 to extend g to Wg’p ().

Let f € (W(I;’I’(Q))*. The Hahn-Banach theorem implies the existence of g €
(LP(2; RM))* such that ngk,p @ = f. Riesz’s representation theorem ensures the
0

existence of (g,) € L” (2; RM) such that for all (v,) € LP(Q; RY),

(g, (Vo)) = Z fg ZaVedx.

la|<k

On D(£2), we obtain

@uy=>" f a0 Uadx = " (=1)K3"gq, ). O

lal<k V€ lal<k

We prove a variant of the Banach—Steinhaus theorem.
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Theorem 8.4.19. Let (f;)) C D*(Q) be a sequence converging simply to the
Sfunctional f : D(Q2) — R. Then f € D*(Q).

Proof. The linearity of f is clear. Assume, for the sake of obtainiﬂg a contradiction,
that there exists (u,) C D(LQ) such that u, — 0in D(Q) and lim [f(u,)| > 0. We

can assume that lim f(u,) > 0. Using Cantor’s diagonal argument, we construct a
n—oo

subsequence (v¢) of (u,,) such that for every k and every |o| < &,
0<c<for), N0%lle < 1/2%

We choose vy, = vy and fj such that ¢ < {(fj,v). Given vg,..., v, , and
Sfivs-++» fj., there exists v such that form <n -1,

K fs Vi < 17277,
There also exists f;, such that

n
nc < Z<fj"’ Vi, -
m=1

By the Weierstrass test, kam = win D(LQ). Hence we obtain, for every n,
m=1

0o

(fj”,w)zz“(fju,vkm)>nc— Z 1/2" " =nc—1.
m=1

m=n+1
But then (fj,, w) — +00, n — oo. This is a contradiction. O

The preceding theorem explains why every natural linear functional defined on
PD() is continuous.
We shall prove the representation theorem of L. Schwartz.

Theorem 8.4.20. Let f € D*(Q), and let w CC Q be the product of N open
intervals. Then there exist g € Co(w) and B € NN such that f = 3g in D*(w).

Lemma 8.4.21. Let f € D*(Q). Then there exist @ € NN and ¢ > 0 such that for all
u € D(w),

IKf, w)l < 0" ul|oo.
Proof. By the fundamental theorem of calculus, for every n > 1, there exists ¢, > 0
such that for all u € D(w),

la|<n

Assume, to obtain a contradiction, that for every n > 1, there exists u, € D(w) such
that



180 8 Elliptic Problems

conclude that v, — 0 in D(Q) and (f,v,) — 0. But this is impossible, since for
every n, (f,v,) > 1. O

We prove the existence of a primitive of a distribution.

Lemma 8.4.22. Let f € D' (w), ] <k<N,ye€ NV, and ¢ > 0 be such that for all
u € D(w),

I<fs w)l < cllokd” ulloo.
Then there exist F € D*(w) and C > 0 such that f = Oy F and for all u € D(w),
KF, u)| < Cll0"ul|oo.

Proof. We can assume that w =]0, 1[Y and k = N. Let ¢ € D(]0, 1) be such that
fol @ds = 1. For every u € D(w), there exists one and only one v € D(w) such that

1
u(x) = j(; u(x',s)ds tp(xN) + (9N v(x).

The function v is given by the formula

X 1
v(x) = fN[u(x’,t) —f u(x',s)ds cp(t)]dt.
0 0

The distribution F is defined by the formula
<F’ M) = _<f’ V)'
Since |I6N67v||oo < d||0”ul|w, it is easy to finish the proof. O

Let us define
k(x,y) =-(1-y)x, 0<x<y<l,
=—(1-xy, 0<y<x<lI,

and

N
K(x,y) = [ [ kCon yn):

n=1

Lemma 8.4.23. For every u € D(]0, 1[V), we have that
u(x) = f K(x,3)0%2u(y)dy.
10,1(¥

Proof. When N = 1, it suffices to integrate by parts. When N > 2, the result follows
from Fubini’s theorem. O

We now prove the representation theorem of A. Pietsch (1960).
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Lemma 8.4.24. Let u be a finite measure on w. Then there exists g € Co(w) such

Proof. We can assume that w =]0, 1[V. By assumption, for every u € Cy(w),

[, )] < cllulloo, (*)

where ¢ = ||ull-
Let u € D(w). By the preceding lemma, we have that

We shall prove that
(u,u) = f gMI>Pu(y)dy,
where
gy =, K(-, y)).

Since

N
K(x,y) = Kl < ) vy =2l
i=1

it follows from (x) that

N
180) - g@l < e DIy~ )l

J=1

It is clear by definition that g = 0 on dw.

a0 =27 3" K k2w 2)lw = 0, j = oo.

keNV
koo < 27

It follows from (x) that

[y =273 g/ 2wik/2)] - 0, ) o,
keNV
kleo <2/

Since

[ eomoay =2 3 aths2mik27)] 0. o

keNV
koo < 27

we conclude that (u, u) = [ g(y)v(y)dy. H
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Proof of Theorem 8.4.20. Lemmas 8.4.21 and 8.4.22 imply the existence of @ € NV
and of a finite measure y on w such that f = 0%u in D*(w). By Lemma 8.4.24, there
exists g € Co(w) such that u = 3%?Pg in D*(w). ]

8.5 Comments

The notion of polarization of sets appeared in 1952, in a paper by Wolontis [87].
Polarizations of functions were first used by Baernstein and Taylor to approximate
symmetrization of functions on the sphere in the remarkable paper [3]. The
explicit approximation of Schwarz symmetrization by polarizations is due to Van
Schaftingen [84]. See [73, 85] for other aspects of polarizations. The proof of
Proposition 8.3.4 uses a device of Alberti [2]. The notion of symmetrization, and
more generally, the use of reflections to prove symmetry, goes back to Jakob Steiner
[79].
The elegant proof of Theorem 8.3.18 is due to Maz’ya.

8.6 Exercises for Chap. 8

1. Let u € C(£). The spherical means of u are defined on D by

S(x,r)=(NVy)~! f u(x + ro)do.

Verify that when u € C*(Q),
2N
lim —Z[S (x,r) —u(x)] = du(x).
rl0 r

2. Let u € C() be such that for every (x,r) € D, u(x) = M(x,r). Then for every
XEQu, pp*xu=uU
The argument is due to A. Ponce:

po s U(x) = f palx = Yu(y)dy = f dr f u(y)dy
RY 0 px=y)>t

= u(x)f\mdtf dy = u(x).
0 p(x=y)>t

3. (Weyl’s theorem.) Let u € LIIOC(Q). The following properties are equivalent:

(a) u is harmonic;
(b) For almost all x € 2 and for all 0 < r < d(x, 09Q), u(x) = M(x, r);
(c) There exists v € C(L2), almost everywhere equal to u, such that 4v = 0.
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Let u € C%(Q) be a harmonic function. Assume that # > 0 on B[0, R] c Q. Then
for every 0 < r < R and |y| < R —r, we have

1
u(y) - u(0)] < f u(x)dx
VN Jrpi<ini<raiy

_ DY = = )Y
I

u(0).

Hint: Use the mean-value property.

. (Liouville’s theorem.) Let u € C*(R") be a harmonic function, bounded from

below on RY. Then u is constant.
Let Q be an open connected subset of RY and let u € C*(2) be a harmonic
function such that for some x € Q, u(x) = il’!lzf u. Then u is constant.

If u € D0, 7[), then

T
ﬂr —uldx =

min f
ue Hy(10,7D) Jo

llull> = 1

u

Tidu  cosx |2
— X.

sin x

Hence

(Min—max principle.) For every n > 1,

A, = min max fquIzdx
VeV, ueV
[l =1

where V,, denotes the family of all n-dimensional subspaces of Hé Q).
Let us recall that

A(G) = inf {IVulB/lull3 : u € Wy(G) \ {0}}.

Let Q be an open subset of RY, and w an open subset of R". Then

(@) 42X w)=4(Q) +(w);
(b) L(RY)=0
© L@xRY) = ().

Define u € D, (R") such that for every y € R, 7,u # u*, and for 1 < p < oo,
[IVull, = [IVu™||,. Hint: Consider two functions v and w such thatv = v*, w = w*,
v=1lonB(0,1),sptw C B[0,1/2], and define u = v + 7,w
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11.

12.

13.

14.

15.

8 Elliptic Problems

(Hardy-Littlewood inequality.) Let 1 < p < oo, u € L(RV), and v € L¥ (RM).

Then
f uvdng uwvidx.
RV RV

Let1 < p < ooandu,v € L} (RY). Then
[lee + V”p <l + V*”p-

Hint: Assume first that p > 1. Observe that

le+vll, = sup (u+v)wdx.
we LV JRY
”W”p’

Let Q be a domain in R" invariant under rotations. A function u : Q — R is
foliated Schwarz symmetric with respect to e € S¥~! if u(x) depends only on
(r,0) = (|, cos’l(‘—f(I - ¢)) and is decreasing in 6.

Let e € S¥~!. We denote by H, the family of closed half-spaces H in RY
such that0 € 9H and e € H.

Prove that a function u : Q — R is foliated Schwarz symmetric with respect
to e if and only if for every H € H,, u = u.
(Support of a distribution.) Let f € D*(2) and w C Q. The restriction of f to w
is zero if for all u € D(w), (f, u) = 0. The support of f, denoted by spt f, is the
subset of ©2 complementary to the largest open set in £ on which the restriction
of f is zero. Prove that the support of f is well defined.
(Generalized divergence theorem.) Let A be a measurable subset of RY such
that [|[DX4|lgv < co. Then spt|DX4| C 0A, and there exists g : RY — RY such
that

(a) gis|DXal-measurable;
(b) |g(x)| = 1, |DX4|-almost everywhere on RY;

(©) forallveZ)(RN;RN),fdivvdx:f v - gd|DXy|.
A RY



Chapter 9
Appendix: Topics in Calculus

9.1 Change of Variables

In this appendix, for the convenience of the reader we recall some topics in calculus.
We begin with the formula for changing variables in multiple integrals.

Definition 9.1.1. Let 2 and w be open subsets of RY. A diffeomorphism f : Q — w
is a continuously differentiable bijective mapping such that for every x € Q,

Jr(x) = det f'(x) # 0.

Theorem 9.1.2. Let f : Q — w be a diffeomorphism and u € K(w). Then u(f) €
K(Q) and

L u(fCNI (x0)ldx = f u(y)dy. (*)

Lemma 9.1.3. Formula () is valid when N = 1.

Proof. We can assume that Q = ]a, b[. Then by the fundamental theorem of calculus,
we have

b f(b)
f u(F) S (x)dx = f u(y)dy.

fl@

If f > 0, then w =]f(a), f(b)[. If f' <0, then w =]f(b), f(a)[. Hence formula (x)
is valid. O

Proof of Theorem 9.1.2. We will use induction on N. By Lemma 9.1.3, formula (x)
is valid when N = 1.

Assume that (%) is valid in dimension N — 1. Let a € Q. Since f is a
diffeomorphism, (J; ];V (a),.. .,6N ];V (a)) # 0. We assume, in order to simplify the
notation, that (9N ];V (a) # 0. The other cases are similar. By the implicit function
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theorem, there exist r > 0, an open subsetU of £ containing a, an open subset V of
RN-! andB e Cl(Vx]J;V(a) = 1., (@) + r[) such that for [t — f (a)] < .

{];V =t4nU ={(x,B(x",1): X' € V}. (%)
We factorize f on U:
f= ).
h(x’,xN) = (x',];v(x’,xN)),
&(x') = f(¥, (X', 1)),
g(x', 1) = (D,(x), 1).

Assume that supp u C U. It follows from Fubini’s theorem and the induction

assumption that

fu(g(x))l.lg(x)ldxz fdtfu(@,(x’), DI, (x)dx’

= fdtfu(y’,t)dy’
- [uway.

Define v = u(g)|J,|. Fubini’s theorem and Lemma 9.1.3 imply that
fv(h(x))|]h(x)|dx = fdx fv(x "év(x ,xN))laN];V(x ,xN)|de
= fdx’ fv(x’, Ndrt

= f u(g(x))Jy(x)ldx.

Since f = go hon U, we have f' = g’(h)h’ and J; = J,(h)J,. We deduce from the
two preceding equalities that

f u(f())J p(x)ldx = f (8RN (RO [ n(x)ldx

_ f V(A (0)ldx

_ f u(y)dy.
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Let u € K(R"). The Borel-Lebesgue theorem implies the existence of a finite
covering of the compact set spt u by open subsets (U;) satisfying (+x). There exists
a continuous partition of unity (;) subordinated to the covering of spt u by (U)).

Since u = le‘ju, it is easy to conclude the proof. O
J

9.2 Divergence Theorem

An open subset of RV is smooth if its boundary is a smooth manifold.

Definition 9.2.1. Let m > 1. The open subset Q of RY is of class C™ if there exists
@ € C"(RM) such that

(@) Q={xeR":pkx) <0}
(b) I'=0Q={y e R" : g(y) = O};
(c) foreveryy e I', Vo(y) # 0.

The exterior normal at y € I is defined by

n(y) = Vo) /IVe(y)l.

Let y € I'. In order to simplify the notation, we assume that (9Nt,0()/) # 0. The

other cases are similar. By the implicit function theorem, there exist r > 0, an open
subset U of R" containing y, an open subset V of RV~!, and 8 € BC"(Vx ]-r,r])
such that for |¢f| < r,

lp=tnU={(,B(,1)):x €V} ()
Setting Bo(x') = B(x’, 0), we obtain
QNU = {(x.f(X,0): X € V,—r <1 <0},
InU ={(x.,Bo(x)):x €V}

Let us define the surface integral of a continuous function with compact support.

Definition 9.2.2. Let u € K(U). We define

j;u(y)d7= fvu(X’,ﬁo(X’)) 1+ VBo(x)I? dx’.

Let u € K(RY). The Borel-Lebesgue theorem implies the existence of a finite
covering of the compact set I'N spt u by open subsets (U;) satisfying (*). There
exists a partition of unity (¢;) subordinated to the covering of I'N spt u by (U)).
We define
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[ unar =3, [ wsomnar.
r 7 r

The surface integral is independent of the open covering (U ).

Proposition 9.2.3. Let Q be an open subset of RN of class C' and u € K(RYN). Then

1
f uydy = lim = u(0)|Vo(0)ldx.
r %0

—&<p<0

Proof. We can assume supp u C U, where U satisfies (+) and we define the change
of variables f(x’,1) = (x’,(x’,1)). We obtain, using Theorem 9.1.2 and Fubini’s
theorem, that

0
f u(x)|Ve(x)|dx = f dt f u(x', B, )V (X', B, )] 0,8(x, t)ldx’.
—&<p<0 - 14
By definition of 8, we have ¢(x’, 8(x’, 1)) = t. But then

Voo, B(x', 1)) + 5N90(X’,ﬁ(x’, NV, 1) =0,
(9N90(X’,ﬂ(X', D)OB 1) =1
and

IVe(x', B, )P 108X, P = 1 + VB, DI

Hence we obtain

f u(x)|Veo(x)|dx = detfu(x’,,B(x',t)) A1+ IVeBE, D2 dx .
£<p<0 -& 14

We deduce from the fundamental theorem of calculus that

1
lim = u(x)|Ve(x)ldx = fv u(x’, Bo(x)) /1 + VBo(x)* dx” = fr u(y)dy.

o0 —£<p<0

O

Theorem 9.2.4 (Divergence theorem). Let Q be an open subset of RN of class C!
andv € C'(RY; RY) n KRN ; RY). Then

fdivvdx:fv-ndy.
Q r



9.3 The Morse—Sard Theorem 189

Proof. Definen: R — R by

nn=1, r<-1
=-t, -1<t<0,
=0, r=0.

The preceding proposition implies that

1 \%
f divvdx = lirnf n(p/e)div v dx = lim — v-Vodx = fv . —‘pdy.
<0 “:‘9?(()] RV 20 & J_pcp<0 r Vgl

>0

9.3 The Morse-Sard Theorem

The Morse—Sard theorem ensures that almost all level sets of a smooth function are
smooth manifolds.

Theorem 9.3.1. Let Q be an open subset of RN and let u € C(Q). Then the
Lebesgue measure of the set

{t € R : there exists x € Q such that u(x) = t and Vu(x) = 0}

is equal to 0.

Lemma 9.3.2. Let u € CV*1(Q) and define
Cy = {x € Q: forevery|a| < N,du(x) = 0}.

Then the Lebesgue measure of u(Cy) is equal to 0.

Proof. Let K = Bo[x,r/2] C Q. Since Q is covered by a countable family of closed
cubes, it suffices to prove that u(Cy N K) is negligible.

By definition of Cy, Taylor’s formula implies the existence of ¢ > 0 such that for
every x e Cy N K andevery y € K,

lu(x) — u()| < cllx = ylIN.

We divide K into 2/ cubes with edge r/2/. Then u(Cy N K) is contained in at most
2/N intervals of length 2¢(r/2/)V*!. We conclude that

m(u(Cy N K)) < 2N2c(r/2)V = 2¢ V420 50, j— co.
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Proof of Theorem 9.3.1. We will use induction on N. By Lemma 9.3.2, the theorem
is valid when N = 1.
Assume that the theorem is valid in dimension N — 1 and define

C,, = {x € Q: forevery |a| < m,d%u(x) = 0}.

By Lemma 9.3.2, it suffices to prove that u(C,, \ Cy,+1) is negligible form = 1,...,
N — 1. Finally, it suffices to prove that u((C,, N K) \ Cy41) is negligible for K =
Bo[x,R/2] C Q.

Leta € (Cy N K) \ Cyy1). By definition, there exist @ € NV and 1 < j < N such
that || = m, 0%u(a) = 0, and 9;0°u(a) # 0. In order to simplify the notation, we
assume that j = N. The other cases are similar. We define ¢ = d%u. By the implicit
function theorem, there exist r > 0, an open subset U of © containing a, an open
subset V of RV"!, and 8 € C®(Vx |- r, r[) such that for |¢| < r,

l[p=00nU={(x,8(,0): x € V).
We define the reciprocal changes of variables
FOx) = (10 %)
g(-x,, t) = ('x/,ﬂ(x,, t))

We define also
h= glem}’v =uoh.

It follows from the induction assumption that
m({s € R : there exists x’ € V such that v(x') = sand Vv(x') = 0}) = 0. (%)
Let x € C,, N U. Since ¢(x) = d%u(x) = 0 and Vu(x) = 0, we obtain
u(x) =uoho f(x)=vo f(x),
V(f(0) = u (R(fFON)N (f(x) = u' (DR (f(x)) = 0.
We deduce from (x) that
m(u(C, NU)) =m(vo f(C,, NU))=0.

The Borel-Lebesgue theorem implies the existence of a finite covering of (C,, N K)\
C,u+1 by open subsets (U ) satisfying

m(u(C,, N Uj)) = 0.
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We conclude that

m(u((Cp N K)\ Cpus1)) = 0.

94 Comments

The proofs of Theorem 9.1.2, Proposition 9.2.3, and Theorem 9.3.1 depend only
on the implicit function theorem for one dependent variable and one equation.
A direct proof of this result is given in the book by Krantz and Parks on the implicit
function theorem ([41], Theorem 3.2.1). The short proof of the divergence theorem
in Sect. 9.2 was inspired by Example 3.7.2 in the book [40] by Krantz and Parks.
The proof we give of the Morse—Sard theorem for smooth functions is due to
Milnor [54].



Chapter 10
Epilogue: Historical Notes on Functional
Analysis

Differentiae et summae sibi reciprocae sunt, hoc est summa
differentiarum seriei est seriei terminus, et differentia
summarum seriei est ipse seriei terminus, quorum illud ita
enuntio: f dx aequ. x; hoc ita: d f X aequ. X.

G. Leibniz

10.1 Integral Calculus

In a concise description of mathematical methods, Henri Lebesgue underlined the
importance of definitions and axioms (see [47]).

When a mathematician foresees, more or less clearly, a proposition, instead of having
recourse to experiment like the physicist, he seeks a logical proof. For him, logical
verification replaces experimental verification. In short, he does not seek to discover new
materials but tries to become aware of the richness that he already unconsciously possesses,
which is built in the definitions and axioms. Herein lies the supreme importance of these
definitions and axioms, which are indeed subjected logically only to the condition that they
be compatible, but which could lead only to a purely formal science, void of meaning, if
they had no relationship to reality.

Leibniz conceived integration as the reciprocal of differentiation:

fdxzdfx:x.

The computation of the integral of f is reduced to the search for its primitive,
solution of the differential equation

F' =

The textbooks by Cauchy, in particular the Analyse algébrique (1821) (see [7])
and the Résumé des lecons données a I’Ecole Royale Polytechnique sur le calcul
infinitésimal (1823), opened a new area in analysis. Cauchy was the first to consider
the problem of existence of primitives:

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones, 193
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In integral calculus, it seemed necessary to me to demonstrate in general the existence of
integrals or primitive functions before giving their various properties. In order to reach this,
it was necessary to establish the notion of integral between two given limits or definite
integral.

Cauchy defines and proves the existence of the integral of continuous functions:

According to the preceding lecture, if one divides X — xj into infinitesimal elements x; —
Xg, X2 — X1+ -+ X — X,_1, the sum

S = (x1 — x0)f(x0) + (x1 — x2)f(x1) + -+ + (X = X0 f (Xu—1)

will converge to a limit given by the definite integral

X
f f(x)dx.

So Cauchy proved the existence of primitives of continuous functions using integral
calculus.

Though every continuous function has a primitive, Weierstrass proved in 1872
the existence of continuous nowhere differentiable functions. In a short note [44],
Lebesgue proved the existence of primitives of continuous functions without using
integral calculus. His proof is clearly functional-analytic.

In 1881 ([37]), Camille Jordan defined the functional space of functions of
bounded variation, which he called functions of limited oscillation. His goal was
to linearize Dirichlet’s condition for the convergence of Fourier series:

Let xy, ..., x, be a series of values of x between 0 and &, and yy,...,y, the corresponding
values of f(x). The points xj,y1;...; X,,y, will form a polygon.
Consider the differences

Y2 = V1,3 = Y255 Yn = Yn-1-

We will call the sum of the positive terms of this sequence the positive oscillation of the
polygon; negative oscillation is the sum of the negative terms; fotal oscillation is the sum
of those two partial oscillations in absolute value.

Let us vary the polygon; two cases may occur:

1° The polygon may be chosen so that its oscillations exceed every limit.

2° For every chosen polygon, its positive and negative oscillations will be less than some
fixed limits P, and N,. We will say in that case that F(x) is a function of limited
oscillation in the interval from 0 to &; P, will be its positive oscillation; N, its negative
oscillation; P, + N, its total oscillation.

This case will necessarily occur if F'(x) is the difference of two finite functions f(x) — ¢(x),
because it is clear that the positive oscillation of the polygon will be = f(g) — f(0), and its
<

negative oscillation = ¢(g) — ¢(0).
<
The converse is easy to prove. Indeed, it is easy to verify that

1° The oscillation of a function from 0 to € is equal to the sum of its oscillations from 0 to
x and from x to &, x being any quantity between 0 and &.
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2° We have that F(x) = F(0) + P, — N,, P, and N, denoting the positive and the negative
oscillations from 0 to x. But F(0) + P, and N, are finite functions nondecreasing from 0
to e.

Hence Dirichlet’s proof is applicable, without modification, to every function of bounded
oscillation from x = 0 to x = &, & being any finite quantity.

The functions of limited oscillations constitute a well-defined class, whose study could be
of some interest.

Functions of bounded variation will play a fundamental role in the following
domains:

(a) Convergence of Fourier series;
(b) Rectification of curves;
(c) Integration;
(d) Duality.
Let u : [0,1] — R be a continuous function. The length of the graph of u is
defined by

k
L) = sup D [(@per - ap? + (ulaen) — u(apy?| " :
0

J=

keN,0=a0<a1<...<ak+1=1}.

In 1887, in Volume III of the first edition of his Cours d’Analyse at the Ecole
Polytechnique, Jordan proved that L(u) is finite if and only if u is of bounded
variation. The case of surfaces is much more delicate (see Sect. 10.3).

In 1894 ([80]), Stieltjes defined a deep generalization of the integral associated
to an increasing function ¢:

More generally, let us consider the sum

FED[p(x1) — @(xo)] + fED[e(x2) — @(x)] + ... + fEDe(x) — (-] (A)

It will still have a limit, which we shall denote by

b
f fyde(w).

We will have only to consider some very simple cases like f(u) = u*, f(u) = % and there
is no interest in giving to the function f(u) its full generality. Thus it will suffice, as an
example, to suppose the function f(u) continuous, and then the proof presents no difficulty,
and we have no need to develop it, since it is done as in the ordinary case of a definite
integral.

It is easy to extend Stieltjes’s definition to every function ¢ of bounded variation.
Stieltjes breaks the reciprocity between integral and derivative.

In 1903 ([32]), J. Hadamard characterized the continuous linear functionals on

C([a, b)):
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It is easy to reach this, following Weierstrass and Kirchhoff, and introducing a function
F(x), with a finite number of maxima and minima and such that

+00
f F(x)dx =1,
1 -
e.g., F(x) = =

Starting then from the well-known identity

lim p f SOOF[u(x — xo)ldx = f(x0), a<xo<b,
H=%£00 b

and assuming (as the authors quoted before) the operation U to be continuous (in the sense
of Bourlet), it will suffice to define

UlpFu(x = xo0)] = D(xo, 1)

to show that our operation could be represented as
b
Ulfx)] = ”121920 f F(x)D(x, p)dx.

In 1909 ([61]), F. Riesz discovered a representation depending on only one
function:

In the present note, we shall develop a new analytic expression of the linear operation,
containing only one generating function.

Given the linear operation A[f(x)], we can determine a function of bounded variation a(x)
such that for every continuous function f(x), we have

1
ALF] = fo FOOdax).

Riesz’s theorem asserts that every continuous linear functional on C([0, 1]) is
representable by a Stieltjes integral.

10.2 Measure and Integral

Les notions introduites sont exigées par la solution d’un
probleme, et, en vertu de la seule présence parmi les notions
antérieures, elles posent a leur tour de nouveaux problémes.

Jean Cavailles
In 1898, Emile Borel defined the measure of sets in his Lecons sur la théorie des
fonctions:

The procedure that we have employed actually amounts to this: we have recognized that a
definition of measure could be useful only if it had certain fundamental properties: we have
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stated these properties a priori, and we have used them to define the class of sets that we
consider measurable.

Those essential properties that we summarize here, since we shall use them, are the
following: The measure of a sum of a denumerable infinity of sets is equal to the sum
of their measures; the measure of the difference of two sets is equal to the difference
of their measures; the measure is never negative; every set with a nonzero measure is
not denumerable. 1t is mainly this last property that we shall use. Besides, it is explicitly
understood that we speak of measures only for those sets that we called measurable.

Of course, when we speak of the sum of several sets, we assume that every pair them have
no common points, and when we speak of their difference, we assume that one set contains
all the points of the other.

Following Lebesgue,

The descriptive definition of measure stated by M. Borel is without doubt the first clear
example of the use of actual infinity in mathematics.

However, Borel does not prove the existence of the measure!

The Lebesgue integral first appeared on the 29 April 1901. In the note [42],
Lebesgue proved the existence of the Borel measure as a restriction of the Lebesgue
measure.

In the introduction of his thesis [43], Lebesgue stated his program:

In this work, I try to give definitions as general and precise as possible of some of the
numbers considered in Analysis: definite integral, length of a curve, area of a surface.

He formulated the problem of the measure of sets:
We intend to assign to every bounded set a positive or zero number called its measure and

satisfying the following conditions:

1. There exist sets with nonzero measure.

2. Two equal sets have equal measures.

3. The measure of the sum of a finite number or of a countable infinity of sets, without
common points, is the sum of the measures of those sets.

We will solve this problem of measure only for the sets that we will call measurable.

In his Lecons sur I’intégration et la recherche des fonctions primitives of 1904,
see [45], Lebesgue formulated the problem of integration.

We intend to assign to every bounded function f(x) defined on a finite interval (a,b),

positive, negative, or zero, a finite number fa b f(x)dx, which we call the integral of f(x)
in (a, b) and which satisfies the following conditions:

1. For every a, b, h, we have

b b+h
f f(x)dx = f(x— h)dx.
a a+h

+

2. For every a, b, ¢, we have

b d a
f f(o)dx + f f(x)dx + f f(x)dx = 0.
a b c
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b b b
f L) + p(0)ldx = f Fooda+ f o(x)dx.

4. If we have f = 0 and b > a, we also have

b
f f(x)dx = 0.

1
f I xdx=1.
0

6. If f,(x) increases and converges to f(x), then the integral of f,(x) converges to the
integral of f(x).

5. We have

Formulating the six conditions of the integration problem, we define the integral. This
definition belongs to the class of those that could be called descriptive; in those definitions,
we state the characteristic properties of the object we want to define. In the constructive
definitions, we state which operations are to be done in order to obtain the object we
want to define. Constructive definitions are more often used in Analysis; however, we use
sometimes descriptive definitions; the definition of the integral, following Riemann, is
constructive; the definition of primitive functions is descriptive.

In 1906, in his thesis [23], Maurice Fréchet tried to extend the fundamental
notions of analysis to abstract sets.

In this Mémoire we will use an absolutely general point of view that encompass these
different cases.

To this end, we shall say that a functional operation U is defined on a set E of elements of
every kind (numbers, curves, points, etc.) when to every element A of E there corresponds
a determined numerical value of U : U(A). The search for properties of those operations
constitutes the object of the Functional Calculus.

Fréchet defined distance which he called, in French, écart:

We can associate to every pair of elements A, B a number (A, B) > 0, which we will call the
distance of the two elements and which satisfies the following properties: (a) The distance
(A, B) is zero only if A and B are identical. (b) If A, B, C are three arbitrary elements, we
always have (A, B) < (A,C) + (C, B).

In [24], Fréchet defined additive families of sets and additive functions of sets:

An additive family of sets is a collection of sets such that:

1. If Ey, E, are two sets of this family, the set E| — E; of elements of Ej, if they exist and
that are not in E,, belongs also to the family.

2. If E|, E,, ... is a denumerable sequence of sets of this family, their sum, i.e., the set
E| + E; + - - of elements belonging at least to one set of the sequence, belongs also to
the family.
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A set function f(E) defined on an additive family of sets ¥ is additive on F if E|, E,, ...
being a denumerable sequence of sets of ¥ and disjoint, i.e., without pairwise common
elements, we have

JE+E+..)=f(ED+ f(E)+---.

When the sequence is infinite, the second member has obviously to converge regardless of
the order of the terms. Hence the series in the second member has to converge absolutely.

Fréchet defined the integral without using topology. Additive functions of sets
will be called measures.

In [12], Daniell chose a different method. He introduced a space L of elementary
functions and an elementary integral

L—>R:u+—>fudy

satisfying the axioms of linearity, positivity, and monotone convergence.
The two axiomatics are equivalent if to Daniell’s axioms we add Stone’s axiom
(1948):

forevery u € £, min(u, 1) € L,

or the axiom

foreveryu,ve Liuve L.

The choice of primitive notions and axioms is rather arbitrary. There are no
absolutely undefinable notions or unprovable propositions.

The axiomatization of integration by Fréchet opened the way to the axiomatiza-
tion of probability by Kolmogorov in 1933. The unification of measure, integral, and
probability was one the greatest scientific achievements of the twentieth century.

In his thesis [5], Banach defined the complete normed spaces:

There exists an operation, called norm (we shall denote it by the symbol || X]|), defined in the
field E, having as an image the set of real numbers and satisfying the following conditions:

[IXII > 0,
IX]l = 0 if and only if X = 6,
[la - X|| = lal - IX]],

1X + Y1l < lIXI[ + [1X]1.

If 1. {X,} is a sequence of elements of E, 2. }nglo [IX, — X,|l = 0, there exists an element X
pooo

such that
lim ||X - X,|| = 0.
Banach emphasized the efficiency of the axiomatic method:

The present work intends to prove theorems valid for different functional fields, which I
will specify in the sequel. However, in order not to be forced to prove them individually for
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every particular field, a tedious task, I chose a different way: I consider in some general way
sets of elements with some axiomatic properties, I deduce theorems, and I prove afterward
that the axioms are valid for every specific functional field.

The fundamental book of Banach ([6]), Théorie des opérations linéaires, was
published in 1932. Banach deduces Riesz’s representation theorem from the Hahn—
Banach theorem.

The original proof of the Hahn—Banach theorem holds in every real vector space.
Let F : X — R be a positively homogeneous convex function and let f : Z — R
be a linear function such that f < F on the subspace Z of X. By the well-ordering
theorem, the set X \ Z can be so ordered that each nonempty subset has a least
element. It follows then, from Lemma 4.1.3, by transfinite induction, that there
exists g : X — R such that g < F on X and glz = f.

Let us recall the principle of transfinite induction (see [72]). Let 8 be a subset of
a well-ordered set (A such that

yeA:y<x}cB=2xe8B.

Then B8 = A.

In set theory, the well-ordering theorem is equivalent to the axiom of choice and
to Zorn’s lemma. In 1905, Vitali proved the existence of a subset of the real line that
is not Lebesgue measurable. His proof depends on the axiom of choice.

10.3 Differential Calculus

L’activité des mathématiciens est une activité expérimentale.

Jean Cavailles

Whereas the integral calculus transforms itself into an axiomatic theory, the
differential calculus fits into the general theory of distributions.
The fundamental notions are

— Weak solutions;

— Weak derivatives;

— Functions of bounded variation;
— Distributions.

In [60], Poincaré defined the notion of weak solution of a boundary value
problem:
Let u be a function satisfying the following conditions:

du
— thu=e, 3
o Thu=e 3)
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Au+ f=0. ©)

Now let v be an arbitrary function, which I assume only continuous, together with a first-
order derivative. We shall have

du dv
f(v%—u%)dw—f(mu—ud v)dr,
. dv
fvfd‘r+fudvd‘r+fvgodw:fu(hv+5)dw. 5)

Condition (5) is thus a consequence of condition (3).

Conversely, if condition (5) is satisfied for every function v, condition (3) will be also
satisfied, provided that u and % are finite, well-defined, and continuous functions.

But it can happen that in some cases, we are unaware that % is a well-defined and
continuous function; we cannot assert then that condition (5) entails condition (3), and it

is even possible that condition (3) is meaningless.

so that

Poincaré named condition (5) a modified condition and asserted (p. 121),
It is obviously equivalent to condition (3) from the physical point of view.

This Mémoire of Poincaré contains (p. 70) the first example of an integral
inequality between a function and its derivatives:

Let V be an arbitrary function of x, y, z; define:

dv\* (dv\ [(dV)
— 2 — - el i
a=[var B—f[(dx) +(dy) +(dz) .
I will write to shorten:

B= fZ(Z—‘;)sz.

I assume first that V satisfies the condition:

deT=0

and I intend to estimate the lower limit of the quotient f.

The maximum principle is stated on p. 92. Poincaré’s principle appears in [59]
for the formal construction of the eigenvalues and eigenfunctions of the Laplacian.
In [60], Poincaré proved the existence of eigenvalues (for Dirichlet boundary
conditions) using the theory of meromorphic functions (see [50]).

Let us recall that we denote by L(u) the length of the graph of the continuous
function # : [0,1] — R. Following Jordan, L(u) < oo if and only if u is of
bounded variation. It follows then from a theorem due to Lebesgue that u is almost
everywhere differentiable on [0, 1]. In [82], Tonelli proved a theorem equivalent to
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1
L(u) = f V1 + @ (x)? dx = ue W0, 1]).
0

A counterexample due to Schwarz, published in 1882 in the Cours d’Analyse of
Hermite, shows that it is not possible to extend the definition of length due to Jordan
to surfaces. Let z = u(x, y) be a nonparametric surface, with u continuous on [0, 1] X
[0, 1]. Let 2 =]0, 1[x]0, 1[ and define, on X = C(@), the distance

d(u,v) = max{lu(x,y) = v(x,y)| : (x.) € Q).
The space of quasilinear functions on Qs defined by

Y = {u € X : there exists a triangulation 7 of Q
such that, for every T € 7, u|T is affine}.

The graph of u € Y consists of triangles. The sum of the areas of those triangles is
called the elementary area of the graph of u and is denoted by B(u).
The Lebesgue area of the graph of u is defined by

A(u) = inf{ lim B(u,) : (u,) c Y and d(u,,u) - 0, n— 00}. (%)

In [83] (see also [53]), Tonelli stated two theorems equivalent to

A(u) < 00 & [|Dullg < oo,

ou\’ (6u\’ L1
A(u):f 1+(6_) +(—) dxdy = ue W~ (Q).
Q X dy

Lebesgue area is a lower semicontinuous function on X. It extends the elementary
area: forevery u € Y, A(u) = B(u).

In [25], Fréchet observed that Lebesgue’s definition allows one to extend lower
semicontinuous functions. Let Y be a dense subset of a metric space X and let B :
Y — [0, +o0] be an L.s.c. function. The function A defined by (*) is an L.s.c. extension
of B on X such that for every l.s.c. extension C of B on X and for every u € X,
C(u) < A(u).

In [48], Leray defined the weak derivatives of [? functions, and called them
quasi-dérivées.

In [75], announced in [74] and translated in [78], Sobolev defined the distribu-
tions of finite order on RY, which he called fonctionnelles. (A distribution f on RY
is of order k if for every sequence (u,) C D(R") such that the supports of u, are

contained in some compact set and such that sup [|0“u,|l — 0, n — oo, we have
lal<|<k
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(f,uy)y = 0,n — c0.) Sobolev defined the derivative of a fonctionnelle by duality
and associated a fonctionnelle to every locally integrable function on RY.

Without reference to his theory of fonctionnelles, Sobolev defined in [77] the
weak derivatives of integrable functions. Regularization by convolution is due to
Leray for L* functions (see [48]) and to Sobolev for L? functions (see [77]).

In [69], Laurent Schwartz defined general distributions. In [70], he defined the
tempered distributions and their Fourier transform. The treatise [71] is a masterful
exposition of distribution theory.

Let g : R — R be a function of bounded variation on every bounded interval.
The formula of integration by parts shows that for every u € D(R),

fudg:—fu’gdx.
R R

The Stieltjes integral with respect to g is nothing but the derivative of g in the sense
of distributions! Riesz’s representation theorem asserts that every continuous linear
functional on C([0, 1]) is the derivative in the sense of distributions of a function of
bounded variation.

10.4 Comments

Some general historical references are [15, 19, 29]. We recommend also [46] on
Jordan, [52] on Hadamard, [81] on Fréchet, and [38] on Banach.
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Index of Notation

ut:2.22

u 1222

w, :1.3.1
sptu:2.1.1

Hy 2 2.2.32

my, : 8.3.1
sptu:2.1.1
uxv:4.3.5
Tyu:4.3.5
u*:8.3.1
uf:8.35
Vu:6.1.6
divu:6.1.6
Au = div Vu
”M”LP(Q,#) :4.2.1
[IVullro) : 6.1.6
llullwrro) : 6.1.8
[|Dullo : 7.3.1
llullpvo) : 7.3.4
[lgell@ = 5.1.11
[ul:5.1.6
pn:4.33
xa:13.14
u(A):2.2.25
m(A):2.2.35
p(A):7.42
A*:83.1

AH 835
wCcC:434
Vy:2.49
C):2.1.1
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K(Q):2.1.1
DQ):4.3.1
Co(9):5.1.9
L(Q2,p):22.1
L7(Q,u):2.2.8
LN, ) :2.2.12
MQ, 1) - 2.2.19
LP(Qu):4.1.8
LP(Q, ) :4.2.1
L (Q):43.4

WhP(Q) : 6.1.8
HQ):6.1.8

W) :6.1.8

Wy (Q):6.1.8
HE(©Q):6.1.8

WSP(Q) : 6.4.11
Wr'(Q): 8.4.17

H Q) :84.17
DWPRYY:7.2.1
BV(Q):7.3.4
D(Q):8.4.2
L(X,Y):322

X*:5.1.1

Il/p+1/p =1
p*=p"(N)=Np/(N - p)

Fundamental Theorem of Calculus
Letu € C([a, b]). For all a < x < b, we have

d X
Ej; u(t)dt = u(x).

Let u € C'([a, b]). For all a < x < b, we have

a

f’f ﬂ(t)dt = u(x) — u(a).
dx

Index of Notation



Index

C

capacity 7.1.1

— of degree p 7.2.4
closed subset 1.2.9
closure 1.2.11

coarea formula 7.4.5
cone 4.1.1

continuity 1.3.1

—, uniform 1.3.1
convergence

—, simple 1.4.1

—, uniform 1.4.1
convex set 4.1.1
convolution 4.3.5
covering 1.2.14
criterion

—, de la Vallée Poussin 3.1.10
—, Fréchet 1.2.16

—, Vitali 3.1.9

—, Vitali-Dalzell 3.3.15

D

diffeomorphism 2.4.1, 9.1.1
distance 1.2.1

distribution 8.4.2

E

eigenfunction 8.2.1
eigenvalue 3.4.1

—, multiplicity 3.4.1
—, simple 3.4.1
eigenvector 3.4.1

elementary solutions 8.4.9
exponent

—, conjugate 4.1.8

—, critical 6.4.2

exterior normal 9.2.1

F

frontier 1.2.11

function

—, admissible 2.2.32, 8.3.1

—, bounded variation 7.3.4, 8.4.15
—, characteristic 1.3.14

—, concave 4.1.1

—, convex 4.1.1

—, distribution 2.2.32, 8.3.1
—, distance 1.3.16

—, G-invariant 8.2.5

—, harmonic 8.1.4

—, integrable 2.2.12

—, locally integrable 4.3.4

—, lower semicontinuous 1.3.6
—, measurable 2.2.19

—, positively homogeneous 4.1.1
—, quasicontinuous 7.2.11

—, subharmonic 8.1.4

—, superharmonic 8.1.4

—, test 4.3.1

—, upper semicontinuous 1.3.6

H
Hilbert basis 3.3.9
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I

Identity

—, Parseval 3.3.10

—, parallelogram 3.3.3
—, polarization 3.3.3
—, Pythagorean 3.3.3
Inequality

—, Bessel 3.3.7

—, capacity 7.2.10

—, Cauchy—Schwarz 3.3.4
—, convexity 4.1.6

—, Faber—Krahn 8.3.20
—, Gagliardo 6.4.1

—, Gagliardo—Nirenberg 7.3.7, 8.3.18

—, Hanner 4.1.9

—, Hardy 6.4.10

—, Hilden 8.3.15

—, Holder 4.1.9

—, Holder generalized 4.2.3
—, interpolation 4.2.4
—, isoperimetric 8.3.16
—, Kato 8.4.12

—, mean-value 8.1.5
—, Markov 2.2.33

—, Minkowski 3.1.1, 3.3.4,4.1.9
—, Morrey 6.4.3

—, Poincaré 6.4.7, 6.4.9
—, Pdlya—Szeg6 8.3.14
—, Sobolev 6.4.2,7.2.2
—, trace 6.2.2

—, triangular 1.2.1
integral

—, elementary 2.2.1

—, Cauchy 2.1.2

—, Lebesgue 2.2.12
interior 1.2.11

L

lemma

—, Brezis—Lieb 4.2.7

—, closing 6.1.5

—, continuity of translations 4.3.8
—, Degiovanni—-Magrone 4.2.8
—, Du Bois-Reymond 6.1.4

—, extension by reflection 6.2.1
—, Fatou 2.2.16

—, von Neumann 5.3.12

M

mapping
—, bounded 1.4.4

—, compact 3.4.5

—, continuous 1.3.1

—, uniformly continuous 1.3.1
measure 5.1.6

—, finite 5.1.11

—, Lebesgue 2.2.35

—, outer 7.1.11

—, positive 2.2.28

—, scalar 5.1.6

— of a subset 2.2.25

—, surface 2.4.6,9.2.2

—, vectorial 5.1.6

modules of continuity 1.3.1

N
norm 3.1.1, 3.2.2

(0]

orthogonal 5.3.3
orthonormal 3.3.6
open subset 1.2.9
—of class C" 9.2.1
—, cylindrical 6.2.1
—, G-invariant 8.2.5

P

partition of unity 4.3.13, 6.1.16
perimeter 7.4.2

polarization 8.3.5

principle

—, Cavalieri 2.2.34

—, Ekeland’s variational 1.3.8
—, maximum 8.1.6

—, max-inf 8.2.7

—, Poincaré 3.4.7,8.2.2

product of elementary integrals 2.3.4

S

scalar product 3.3.1

Schwarz’s symmetrization 8.3.1
sequence

—, bounded 1.2.2

Index
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—, Cauchy 1.2.2

—, convergent 1.2.2

—, fundamental 2.2.4

—, minimizing 1.3.4

—, regularizing 4.3.3

—, truncation 6.1.10

—, weakly convergent 5.1.1, 5.3.6, 5.4.4
series

—, convergent 1.1.12,3.1.3
—, normally convergent 3.1.3
set

—, closed 1.2.9

—, convex 4.1.1

—, dense 1.2.10

—, measurable 2.2.25

—, negligible 2.2.5

—, open 1.2.9

space

—, Banach 3.1.4

—, compact 1.2.5

—, complete 1.2.5

—, dual 5.1.1

—, fractional Sobolev 6.4.11
—, Hilbert 3.3.13

—, Lebesgue 2.2.12,4.1.8, 4.2.1
—, metric 1.2.1

—, normed 3.1.1

—, precompact 1.2.5

—, pre-Hilbert 3.3.1

—, separable 1.2.17

—, smooth 5.2.1

—, Sobolev 6.1.8, 7.2.1

—, uniformly convex 5.2.2
subsequence 1.2.4

support 2.1.1

symmetric operator 3.4.2

T

theorem

—, annulation 4.3.10
—, Ascoli 4.4.1

—, Baire 1.2.13

—, Banach 5.1.4

—, Banach—Steinhaus 3.2.6, 5.1.3, 5.3.8, 5.4.6,

8.4.19

—, change of variables 2.4.2, 6.1.11, 9.1.2
—, Clarkson 5.4.2

—, comparison 2.2.18

—, de la Vallée Poussin 5.1.12

—, density 4.2.11, 4.3.11

—, density in Sobolev spaces 6.3.2
—, Deny-Lions 6.1.18

—, Dini 1.4.2

—, divergence 6.3.4,9.2.4

—, elementary spectral 3.4.8

—, extension in Sobolev spaces 6.3.1
—, Fréchet-Riesz 5.3.1

—, Fubini 2.3.7

—, Hahn-Banach 4.1.4,5.2.7

—, Hajtasz 6.1.17

—, James representation 5.2.6

—, Lebesgue’s decomposition 5.3.13
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—, Lebesgue’s dominated convergence 2.2.17

—, Levi 2.2.15
—, Morse—Sard 7.4.3,9.3.1
—, partition of unity 4.3.13, 6.1.16

—, polar decomposition of vector measures

5.3.14
—, regularization 4.3.9
—, Rellich-Kondrachov 6.4.6
—, Riesz representation 5.4.3
—, F. Riesz4.2.9
—, M. Riesz 4.4.2
—, Riesz—Fischer 3.3.14
—, separability 4.2.12
—, Sobolev 6.4.4
—, trace 6.3.3
total variation 7.3.1, 5.1.11
trace 6.2.3, 6.3.3

U
uniformly integrable 3.1.8
upper envelope 1.3.9

W
weak derivative 6.1.2
Weierstrass test 1.4.6
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