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Preface

L’induction peut être utilement employée en Analyse comme un
moyen de découvertes. Mais les formules générales ainsi
obtenues doivent être ensuite vérifiées à l’aide de
démonstrations rigoureuses et propres à faire connaı̂tre les
conditions sous lesquelles subsistent ces mêmes formules.

Augustin Louis Cauchy

Mathematical analysis leads to exact results by approximate computations. It is
based on the notions of approximation and limit process. For instance, the derivative
is the limit of differential quotients, and the integral is the limit of Riemann sums.

How to compute double limits? In some cases,

∫
Ω

lim
n→∞ un dx = lim

n→∞

∫
Ω

un dx,

∂

∂xk
lim
n→∞ un = lim

n→∞
∂

∂xk
un.

In the preceding formulas, three functional limits and one numerical limit appear.
The first equality leads to the Lebesgue integral (1901), and the second to the
distribution theory of Sobolev (1935) and Schwartz (1945).

In 1906, Fréchet invented an abstract framework for the limiting process: metric
spaces. A metric space is a set X with a distance

d : X × X → R : (u, v) �→ d(u, v)

satisfying some axioms. If the real vector space X is provided with a norm

X → R : u �→ ||u||,

then the formula

vii



viii Preface

d(u, v) = ||u − v||
defines a distance on X. Finally, if the real vector space X is provided with a scalar
product

X × X → R : (u, v) �→ (u|v),

then the formula
||u|| = √

(u|u)

defines a norm on X.
In 1915, Fréchet defined additive functions of sets, or measures. He extended the

Lebesgue integral to abstract sets. In 1918, Daniell proposed a functional definition
of the abstract integral. The elementary integral

L → R : u �→
∫
Ω

u dμ,

defined on a vector space L of elementary functions on Ω, satisfies certain axioms.
When u is a nonnegative μ-integrable function, its integral is given by the

Cavalieri principle:

∫
Ω

u dμ =
∫ ∞

0
μ({x ∈ Ω : u(x) > t})dt.

To measure a set is to integrate its characteristic function:

μ(A) =
∫
Ω

χA dμ.

In particular, the volume of a Lebesgue-measurable subset A of RN is defined by

m(A) =
∫
RN
χA dx.

A function space is a space whose points are functions. Let 1 ≤ p < ∞. The real
Lebesgue space Lp(Ω, μ) with the norm

||u||p =
(∫

Ω

|u|pdμ

)1/p

is a complete normed space, or Banach space. The space L2(Ω, μ), with the scalar
product

(u|v) =
∫
Ω

uv dμ,

is a complete pre-Hilbert space, or Hilbert space.
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Duality plays a basic role in functional analysis. The dual of a normed space is
the set of continuous linear functionals on this space. Let 1 < p < ∞ and define p′,
the conjugate exponent of p, by 1/p + 1/p′ = 1. The dual of Lp(Ω, μ) is identified
with Lp′ (Ω, μ).

Weak derivatives are also defined by duality. Let f be a continuously differen-
tiable function on an open subset Ω of RN . Multiplying ∂ f

∂xk
= g by the test function

u ∈ D(Ω) and integrating by parts, we obtain

∫
Ω

f
∂u
∂xk

dx = −
∫
Ω

g u dx.

The preceding relation retains its meaning if f and g are locally integrable functions
on Ω. If this relation is valid for every test function u ∈ D(Ω), then by definition,
g is the weak derivative of f with respect to xk. Like the Lebesgue integral, the
weak derivatives satisfy some simple double-limit rules and are used to define some
complete normed spaces, the Sobolev spaces Wk,p(Ω).

A distribution is a continuous linear functional on the space of test functions
D(Ω). Every locally integrable function f on Ω is characterized by the distribution

D(Ω)→ R : u �→
∫
Ω

f u dx.

The derivatives of the distribution f are defined by

〈 ∂ f
∂xk

, u〉 = −〈 f , ∂u
∂xk
〉.

Whereas weak derivatives may not exist, distributional derivatives always exist! In
this framework, Poisson’s theorem in electrostatics becomes

− Δ
(

1
|x|
)
= 4πδ,

where δ is the Dirac measure on R
3.

The perimeter of a Lebesgue-measurable subset A of RN , defined by duality, is
the variation of its characteristic function:

p(A) = sup

{∫
A

div vdx : v ∈ D(RN ;RN), ‖v‖∞ ≤ 1

}
.

The space of functions of bounded variation BV(RN) contains the Sobolev space
W1,1(RN).

Chapter 8 contains many applications to elliptic problems and to analytic or
geometric inequalities. In particular, the isoperimetric inequality and the Faber–
Krahn inequality are proved by purely functional-analytic methods.
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The isoperimetric inequality in R
N asserts that the ball has the largest volume

among all domains with fixed perimeter. In R
2, the isoperimetric inequality is

equivalent to
4π m(A) ≤ p(A)2.

The Faber–Krahn inequality asserts that among all domains with fixed volume,
the ball has the lowest fundamental eigenvalue for the Dirichlet problem. This
fundamental eigenvalue is defined by

−Δe = λ1e in Ω,
e > 0 in Ω,
e = 0 on ∂Ω.

Our approach is elementary and constructive. Integration theory is based on
only one property: monotone convergence. It appears successively as an axiom,
a definition, and a theorem. The inequalities of Hölder, Minkowski, and Hanner
follow from the same elementary inequality, the convexity inequality. Weak conver-
gence, convergence of test functions, and convergence of distributions are defined
sequentially. The Hahn–Banach theorem is proved constructively in separable
normed spaces and in uniformly convex smooth Banach spaces.

For the convenience of the reader, we recall the Appendix some topics in
calculus. The Epilogue contains historical remarks on the close relations between
functional analysis and the integral and differential calculus.

The readers must have a good knowledge of linear algebra, classical differential
calculus, and the Riemann integral.
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Augusto Ponce, Paolo Roselli, and Jean Van Schaftingen for their helpful comments
and suggestions. It is also a pleasure to thank Sébastien de Valeriola for the
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Chapter 1
Distance

1.1 Real Numbers

Analysis is based on the real numbers.

Definition 1.1.1. Let S be a nonempty subset of R. A real number x is an upper
bound of S if for all s ∈ S, s ≤ x. A real number x is the supremum of S is x is an
upper bound of S and for every upper bound y of S, x ≤ y. A real number x is the
maximum of S is x is the supremum of S and x ∈ S. The definitions of lower bound,
infimum, and minimum are similar. We shall write sup S,max S, inf S, and min S.

Let us recall the fundamental property of R.

Axiom 1.1.2. Every nonempty subset ofR that has an upper bound has a supremum.

In the extended real number system, every subset of R has a supremum and an
infimum.

Definition 1.1.3. The extended real number system R = R ∪ {−∞,+∞} has the
following properties:

(a) if x ∈ R, then −∞ < x < +∞ and x + (+∞) = +∞ + x = +∞, x + (−∞) =
−∞ + x = −∞;

(b) if x > 0, then x · (+∞) = (+∞) · x = +∞, x · (−∞) = (−∞) · x = −∞;
(c) if x < 0, then x · (+∞) = (+∞) · x = −∞, x · (−∞) = (−∞) · x = +∞.

If S ⊂ R has no upper bound, then sup S = +∞. If S has no lower bound, then
inf S = −∞. Finally, supφ = −∞ and inf φ = +∞.

Definition 1.1.4. Let X be a set and F : X → R. We define

sup
X

F = sup
x∈X

F(x) = sup{F(x) : x ∈ X}, inf
X

F = inf
x∈X F(x) = inf{F(x) : x ∈ X}.

Proposition 1.1.5. Let X and Y be sets and f : X × Y → R. Then

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 1, © Springer Science+Business Media, LLC 2013
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2 1 Distance

sup
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

sup
x∈X

f (x, y), sup
x∈X

inf
y∈Y f (x, y) ≤ inf

y∈Y sup
x∈X

f (x, y).

Definition 1.1.6. A sequence (xn) ⊂ R is increasing if for every n, xn ≤ xn+1. The
sequence (xn) is decreasing if for every n, xn+1 ≤ xn. The sequence (xn) is monotonic
if it is increasing or decreasing.

Definition 1.1.7. The lower limit of (xn) ⊂ R is defined by lim
n→∞

xn = sup
k

inf
n≥k

xn. The

upper limit of (xn) is defined by lim
n→∞

xn = inf
k

sup
n≥k

xn.

Remarks. (a) The sequence ak = inf
n≥k

xn is increasing, and the sequence bk = sup
n≥k

xn

is decreasing.
(b) The lower limit and the upper limit always exist, and

lim
n→∞

xn ≤ lim
n→∞

xn.

Proposition 1.1.8. Let (xn), (yn) ⊂ ]−∞,+∞] be such that −∞ < lim
n→∞

xn and −∞ <

lim
n→∞

yn. Then

lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn).

Let (xn), (yn) ⊂ [−∞,+∞[ be such that lim
n→∞

xn < +∞ and lim
n→∞

yn < +∞. Then

lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn.

Definition 1.1.9. A sequence (xn) ⊂ R converges to x ∈ R if for every ε > 0, there
is m ∈ N such that for every n ≥ m, |xn − x| ≤ ε. We then write lim

n→∞xn = x.

The sequence (xn) is a Cauchy sequence if for every ε > 0, there exists m ∈ N

such that for every j, k ≥ m, |x j − xk | ≤ ε.

Theorem 1.1.10. The following properties are equivalent:

(a) (xn) converges,
(b) (xn) is a Cauchy sequence,
(c) −∞ < lim

n→∞
xn ≤ lim

n→∞
xn < +∞.

If any and hence all of these properties hold, then lim
n→∞ xn = lim

n→∞
xn = lim

n→∞
xn.

Let us give a sufficient condition for convergence.

Theorem 1.1.11. Every increasing and majorized, or decreasing and minorized,
sequence of real numbers converges.

Remark. Every increasing sequence of real numbers that is not majorized converges
in R to +∞. Every decreasing sequence of real numbers that is not minorized
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converges in R to −∞. Hence, if (xn) is increasing, then

lim
n→∞ xn = sup

n
xn,

and if (xn) is decreasing, then

lim
n→∞ xn = inf

n
xn.

In particular, for every sequence (xn) ⊂ R,

lim
n→∞

xn = lim
k→∞

inf
n≥k

xn

and

lim
n→∞

xn = lim
k→∞

sup
n≥k

xn.

Definition 1.1.12. The series
∞∑

n=0

xn converges, and its sum is x ∈ R if the sequence

k∑
n=0

xn converges to x. We then write
∞∑

n=0

xn = x.

Theorem 1.1.13. The following statements are equivalent:

(a)
∞∑

n=0

xn converges;

(b) lim
j→∞
j<k

k∑
n= j+1

xn = 0.

Theorem 1.1.14. Let (xn) be such that
∞∑

n=0

|xn| converges. Then
∞∑

n=0

xn converges and

∣∣∣∣∣∣∣
∞∑

n=0

xn

∣∣∣∣∣∣∣ ≤
∞∑

n=0

|xn|.

1.2 Metric Spaces

Metric spaces were created by Maurice Fréchet in 1906.

Definition 1.2.1. A distance on a set X is a function

X × X → R : (u, v)→ d(u, v)

such that
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(D1) for every u, v ∈ X, d(u, v) = 0⇐⇒ u = v;
(D2) for every u, v ∈ X, d(u, v) = d(v, u);
(D3) (triangle inequality) for every u, v,w ∈ X, d(u,w) ≤ d(u, v) + d(v,w).

A metric space is a set together with a distance on that set.

Examples. 1. Let (X, d) be a metric space and let S ⊂ X. The set S together with d
(restricted to S × S ) is a metric space.

2. Let (X1, d1) and (X2, d2) be metric spaces. The set X1 × X2 together with

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}
is a metric space.

3. We define the distance on the space R
N to be

d(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.
4. We define the distance on the space C([0, 1]) = {u : [0, 1]→ R : u is continuous}

to be
d(u, v) = max

x∈[0,1]
|u(x) − v(x)|.

Definition 1.2.2. Let X be a metric space. A sequence (un) ⊂ X converges to
u ∈ X if

lim
n→∞ d(un, u) = 0.

We then write lim
n→∞un = u or un → u, n → ∞. The sequence (un) is a Cauchy

sequence if
lim

j,k→∞
d(u j, uk) = 0.

The sequence (un) is bounded if

sup
n

d(u0, un) < ∞.

Proposition 1.2.3. Every convergent sequence is a Cauchy sequence. Every Cauchy
sequence is a bounded sequence.

Proof. If (un) converges to u, then by the triangle inequality, it follows that

0 ≤ d(u j, uk) ≤ d(u j, u) + d(u, uk)

and lim
j,k→∞

d(u j, uk) = 0.

If (un) is a Cauchy sequence, then there exists m such that for j, k ≥ m, d(u j, uk) ≤
1. We obtain for every n that

d(u0, un) ≤ max{d(u0, u1), . . . , d(u0, um−1), d(u0, um) + 1}. ��
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Definition 1.2.4. A sequence (unj) is a subsequence of a sequence (un) if for every
j, n j < n j+1.

Definition 1.2.5. Let X be a metric space. The space X is complete if every Cauchy
sequence in X converges. The space X is precompact if every sequence in X contains
a Cauchy subsequence. The space X is compact if every sequence in X contains a
convergent subsequence.

Remark. (a) Completeness allows us to prove the convergence of a sequence
without using the limit.

(b) Compactness will be used to prove existence theorems and to find hidden
uniformities.

The proofs of the next propositions are left to the reader.

Proposition 1.2.6. Every Cauchy sequence containing a convergent subsequence
converges. Every subsequence of a convergent, Cauchy, or bounded sequence
satisfies the same property.

Proposition 1.2.7. A metric space is compact if and only if it is precompact and
complete.

Theorem 1.2.8. The real line R, with the usual distance, is complete.

Example (A noncomplete metric space). We define the distance on X = C([0, 1])
to be

d(u, v) =
∫ 1

0
|u(x) − v(x)| dx.

Every sequence (un) ⊂ X such that

(a) for every x and for every n, un(x) ≤ un+1(x),

(b) sup
n

∫ 1

0
un(x)dx = lim

n→∞

∫ 1

0
un(x)dx < +∞,

is a Cauchy sequence. Indeed, we have that

lim
j,k→∞

∫ 1

0
|u j(x) − uk(x)|dx = lim

j,k→∞
|
∫ 1

0
(u j(x) − uk(x))dx| = 0.

But X with d is not complete, since the sequence defined by

un(x) = min{n, 1/√x}
satisfies (a) and (b) but is not convergent. Indeed, assuming that (un) converges to u
in X, we obtain, for 0 < ε < 1, that
∫ 1

ε

|u(x) − 1/
√

x|dx = lim
n→∞

∫ 1

ε

|u(x) − un(x)|dx ≤ lim
n→∞

∫ 1

0
|u(x) − un(x)|dx = 0.

But this is impossible, since u(x) = 1/
√

x has no continuous extension at 0.
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Definition 1.2.9. Let X be a metric space, u ∈ X, and r > 0. The open and closed
balls of center u and radius r are defined by

B(u, r) = {v ∈ X : d(v, u) < r}, B[u, r] = {v ∈ X : d(v, u) ≤ r}.

The subset S of X is open if for all u ∈ S, there exists r > 0 such that B(u, r) ⊂ S.
The subset S of X is closed if X \ S is open.

Example. Open balls are open; closed balls are closed.

Proposition 1.2.10. The union of every family of open sets is open. The intersection
of a finite number of open sets is open. The intersection of every family of closed sets
is closed. The union of a finite number of closed sets is closed.

Proof. The properties of open sets follow from the definition. The properties of
closed sets follow by considering complements. ��
Definition 1.2.11. Let S be a subset of a metric space X. The interior of S, denoted

by S
◦
, is the largest open set of X contained in S. The closure of S, denoted by S, is the

smallest closed set of X containing S. The boundary of S is defined by ∂S = S \ S
◦
.

The set S is dense if S = X.

Proposition 1.2.12. Let X be a metric space, S ⊂ X, and u ∈ X. Then the following
properties are equivalent:

(a) u ∈ S ;
(b) for all r > 0, B(u, r)∩ S � φ;
(c) there exists (un) ⊂ S such that un → u.

Proof. It is clear that (b) ⇔ (c). Assume that u � S. Then there exists a closed
subset F of X such that u � F and S ⊂ F. By definition, then exists r > 0 such that
B(u, r)∩S = φ. Hence (b) implies (a). If there exists r > 0 such that B(u, r)∩S = φ,
then F = X \ B(u, r) is a closed subset containing S. We conclude that u � S. Hence
(a) implies (b). ��
Theorem 1.2.13 (Baire’s theorem). In a complete metric space, every intersection
of a sequence of open dense subsets is dense.

Proof. Let (Un) be a sequence of dense open subsets of a complete metric space X.
We must prove that for every open ball B of X, B ∩

(
∩∞n=0Un

)
� φ. Since B ∩ U0

is open (Proposition 1.2.10) and nonempty (density of U0), there is a closed ball
B[u0, r0] ⊂ B ∩ U0. By induction, for every n, there is a closed ball

B[un, rn] ⊂ B(un−1, rn−1) ∩ Un

such that rn ≤ 1/n. Then (un) is a Cauchy sequence. Indeed, for j, k ≥ n, d(u j, uk) ≤
2/n. Since X is complete, (un) converges to u ∈ X. For j ≥ n, u j ∈ B[un, rn], so that
for every n, u ∈ B[un, rn]. It follows that u ∈ B ∩

(
∩∞n=0Un

)
. ��
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Example. Let us prove that R is uncountable. Assume that (rn) is an enumeration
of R. Then for every n, the set Un = R \ {rn} is open and dense. But then

⋂∞
n=1 Un is

dense and empty. This is a contradiction.

Definition 1.2.14. Let X be a metric space with distance d and let S ⊂ X. The
subset S is complete, precompact, or compact if S with distance d is complete,
precompact, or compact. A covering of S is a family F of subsets of X such that the
union of F contains S.

Proposition 1.2.15. Let X be a complete metric space and let S ⊂ X. Then S is
closed if and only if S is complete.

Proof. It suffices to use Proposition 1.2.12 and the preceding definition. ��
Theorem 1.2.16 (Fréchet’s criterion, 1910). Let X be a metric space and let S ⊂
X. The following properties are equivalent:

(a) S is precompact;
(b) for every ε > 0, there is a finite covering of S by balls of radius ε.

Proof. Assume that S satisfies (b). We must prove that every sequence (un) ⊂ S
contains a Cauchy subsequence. Cantor’s diagonal argument will be used. There
is a ball B1 of radius 1 containing a subsequence (u1,n) from (un). By induction, for
every k, there is a ball Bk of radius 1/k containing a subsequence (uk,n) from (uk−1,n).
The sequence vn = un,n is a Cauchy sequence. Indeed, for m, n ≥ k, vm, vn ∈ Bk and
d(vm, vn) ≤ 2/k.

Assume that (b) is not satisfied. There then exists ε > 0 such that S has no finite
covering by balls of radius ε. Let u0 ∈ S. There is u1 ∈ S \ B[u0, ε]. By induction,
for every k, there is

uk ∈ S \
k−1⋃
j=0

B[u j, ε].

Hence for j < k, d(u j, uk) ≥ ε, and the sequence (un) contains no Cauchy
subsequence. ��

Every precompact space is separable.

Definition 1.2.17. A metric space is separable if it contains a countable dense
subset.

Proposition 1.2.18. Let X and Y be separable metric spaces and let S be a
subset of X.

(a) The space X × Y is separable.
(b) The space S is separable.

Proof. Let (en) and ( fn) be sequences dense in X and Y. The family {(en, fk) : (n, k) ∈
N

2} is countable and dense in X × Y. Let
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F = {(n, k) ∈ N2 : k ≥ 1, B(en, 1/k) ∩ S � φ}.

For every (n, k) ∈ F , we choose fn,k ∈ B(en, 1/k) ∩ S. The family { fn,k : (n, k) ∈ F }
is countable and dense in S. ��

1.3 Continuity

Let us define continuity using distances.

Definition 1.3.1. Let X and Y be metric spaces. A mapping u : X → Y is
continuous at y ∈ X if for every ε > 0, there exists δ > 0 such that

sup{dY (u(x), u(y)) : x ∈ X, dX(x, y) ≤ δ} ≤ ε. (∗)

The mapping u is continuous if it is continuous at every point of X. The mapping u
is uniformly continuous if for every ε > 0, there exists δ > 0 such that

ωu(δ) = sup{dY (u(x), u(y)) : x, y ∈ X, dX(x, y) ≤ δ} ≤ ε.

The function ωu is the modulus of continuity of u.

Remark. It is clear that uniform continuity implies continuity. In general, the
converse is false. We shall prove the converse when the domain of the mapping
is a compact space.

Example. The distance d : X × X → R is uniformly continuous, since

|d(x1, x2) − d(y1, y2)| ≤ 2 max{d(x1, y1), d(x2, y2)}.

Lemma 1.3.2. Let X and Y be metric spaces, u : X → Y, and y ∈ X. The following
properties are equivalent:

(a) u is continuous at y;
(b) if (yn) converges to y in X, then (u(yn)) converges to u(y) in Y.

Proof. Assume that u is not continuous at y. Then there is ε > 0 such that for every
n, there exists yn ∈ X such that

dX(yn, y) ≤ 1/n and dY(u(yn), u(y)) > ε.

But then (yn) converges to y in X and (u(yn)) is not convergent to u(y).
Let u be continuous at y and (yn) converging to y. Let ε > 0. There exists δ > 0

such that (∗) is satisfied, and there exists m such that for every n ≥ m, dX(yn, y) ≤ δ.
Hence for n ≥ m, dY(u(yn), u(y)) ≤ ε. Since ε > 0 is arbitrary, (u(yn)) converges
to u(y). ��
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Proposition 1.3.3. Let X and Y be metric spaces, K a compact subset of X, and
u : X → Y a continuous mapping, constant on X\K. Then u is uniformly continuous.

Proof. Assume that u is not uniformly continuous. Then there is ε > 0 such that for
every n, there exist xn ∈ X and yn ∈ K such that

dX(xn, yn) ≤ 1/n and dY (u(xn), u(yn)) > ε.

By compactness, there is a subsequence (ynk ) converging to y. Hence (xnk ) converges
also to y. It follows from the continuity of u at y and from the preceding lemma that

ε ≤ lim
k→∞

dY (u(xnk), u(ynk))

≤ lim
k→∞

dY (u(xnk), u(y)) + lim
k→∞

dY(u(y), u(ynk)) = 0.

This is a contradiction. ��
Lemma 1.3.4. Let X be a set and F : X → ]−∞,+∞] a function. Then there exists
a sequence (yn) ⊂ X such that lim

n→∞F(yn) = inf
X

F. The sequence (yn) is called a

minimizing sequence.

Proof. If c = inf
X

F ∈ R, then for every n ≥ 1, there exists yn ∈ X such that

c ≤ F(yn) ≤ c + 1/n.

If c = −∞, then for every n ≥ 1, there exists yn ∈ X such that

F(yn) ≤ −n.

In both cases, the sequence (yn) is a minimizing sequence. If c = +∞, the result is
obvious. ��
Proposition 1.3.5. Let X be a compact metric space and let F : X → R be a
continuous function. Then F is bounded, and there exist y, z ∈ X such that

F(y) = min
X

F, F(z) = max
X

F.

Proof. Let (yn) ⊂ X be a minimizing sequence: lim
n→∞F(yn) = inf

X
F. There is a

subsequence (ynk ) converging to y. We obtain

F(y) = lim
k→∞

F(ynk ) = inf
X

F.

Hence y minimizes F on X. To prove the existence of z, consider −F. ��
The preceding proof suggests a generalization of continuity.
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Definition 1.3.6. Let X be a metric space. A function F : X → ]−∞,+∞] is lower
semicontinuous (l.s.c.) at y ∈ X if for every sequence (yn) converging to y in X,

F(y) ≤ lim
n→∞

F(yn).

The function F is lower semicontinuous if it is lower semicontinuous at every point
of X. A function F : X → [−∞,+∞[ is upper semicontinuous (u.s.c.) at y ∈ X if for
every sequence (yn) converging to y in X,

lim
n→∞

F(yn) ≤ F(y).

The function F is upper semicontinuous if it is upper semicontinuous at every point
of X.

Remarks. A function F : X → R is continuous at y ∈ X if and only if F is both
l.s.c. and u.s.c. at y.

Let us generalize the preceding proposition.

Proposition 1.3.7. Let X be a compact metric space and let F : X →] − ∞,∞] be
an l.s.c. function. Then F is bounded from below, and there exists y ∈ Y such that

F(y) = min
X

F.

Proof. Let (yn) ⊂ X be a minimizing sequence. There is a subsequence (ynk )
converging to y. We obtain

F(y) ≤ lim
k→∞

F(ynk ) = inf
X

F.

Hence y minimizes F on X. ��
When X is not compact, the situation is more delicate.

Theorem 1.3.8 (Ekeland’s variational principle). Let X be a complete metric
space and let F : X → ]−∞,+∞] be an l.s.c. function such that c = infX F ∈ R.
Assume that ε > 0 and z ∈ X are such that

F(z) ≤ inf
X

F + ε.

Then there exists y ∈ X such that

(a) F(y) ≤ F(z);
(b) d(y, z) ≤ 1;
(c) for every x ∈ X \ {y}, F(y) − ε d(x, y) < F(x).

Proof. Let us define inductively a sequence (yn). We choose y0 = z and

yn+1 ∈ S n = {x ∈ X : F(x) ≤ F(yn) − ε d(yn, x)}



1.3 Continuity 11

such that

F(yn+1) − inf
S n

F ≤ 1
2

[
F(yn) − inf

S n

F

]
. (∗)

Since for every n,

ε d(yn, yn+1) ≤ F(yn) − F(yn+1),

we obtain

c ≤ F(yn+1) ≤ F(yn) ≤ F(y0) = F(z),

and for every k ≥ n,

ε d(yn, yk) ≤ F(yn) − F(yk). (∗∗)
Hence

lim
n→∞
k≥n

d(yn, yk) = 0.

Since X is complete, the sequence (yn) converges to y ∈ X. Since F is l.s.c., we have

F(y) ≤ lim
n→∞ F(yn) ≤ F(z).

It follows from (∗∗) that for every n,

ε d(yn, y) ≤ F(yn) − F(y).

In particular, for every n, y ∈ S n, and for n = 0,

ε d(z, y) ≤ F(z) − F(y) ≤ c + ε − c = ε.

Finally, assume that

F(x) ≤ F(y) − ε d(x, y).

The fact that y ∈ S n implies that x ∈ S n. By (∗), we have

2F(yn+1) − F(yn) ≤ inf
S n

F ≤ F(x),

so that
F(y) ≤ lim

n→∞ F(yn) ≤ F(x).

We conclude that x = y, because

ε d(x, y) ≤ F(y) − F(x) ≤ 0. ��
Definition 1.3.9. Let X be a set. The upper envelope of a family of functions F j :
X → ]−∞,∞], j ∈ J, is defined by

(
sup
j∈J

F j

)
(x) = sup

j∈J
F j(x).
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Proposition 1.3.10. The upper envelope of a family of l.s.c. functions at a point of
a metric space is l.s.c. at that point.

Proof. Let F j : X → ] − ∞,+∞] be a family of l.s.c. functions at y. By
Proposition 1.1.5, we have, for every sequence (yn) converging to y,

sup
j

F j(y) ≤ sup
j

lim
n→∞

F j(yn) = sup
j

sup
k

inf
m

F j(ym+k)

≤ sup
k

inf
m

sup
j

F j(ym+k) = lim
n→∞

sup
j

F j(yn).

Hence sup
j

F j is l.s.c. at y. ��

Proposition 1.3.11. The sum of two l.s.c. functions at a point of a metric space is
l.s.c. at this point.

Proof. Let F,G : X → ]−∞,∞] be l.s.c. at y. By Proposition 1.1.10, we have for
every sequence (yn) converging to y that

F(y) +G(y) ≤ lim
n→∞

F(yn) + lim
n→∞

G(yn) ≤ lim
n→∞

(F(yn) +G(yn)).

Hence F +G is l.s.c. at y. ��
Proposition 1.3.12. Let F : X → ]−∞,∞]. The following properties are equivalent:

(a) F is l.s.c.;
(b) for every t ∈ R, {F > t} = {x ∈ X : F(x) > t} is open.

Proof. Assume that F is not l.s.c. Then there exists a sequence (xn) converging to x
in X and there exists t ∈ R such that

lim
n→∞

F(xn) < t < F(x).

Hence for every r > 0, B(x, r) � {F > t}, and {F > t} is not open.
Assume that {F > t} is not open. Then there exists a sequence (xn) converging to

x in X such that for every n,

F(xn) ≤ t < F(x).

Hence lim
n→∞

F(xn) < F(x) and F is not l.s.c. at x. ��

Theorem 1.3.13. Let X be a complete metric space and let (F j : X → R) j∈J be a
family of l.s.c. functions such that for every x ∈ X,

sup
j∈J

F j(x) < +∞. (∗)
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Then there exists a nonempty open subset V of X such that

sup
j∈J

sup
x∈V

F j(x) < +∞.

Proof. By Proposition 1.3.10, the function F = sup
j∈J

F j is l.s.c. The preceding

proposition implies that for every n, Un = {F > n} is open. By (∗),
∞⋂

n=1

Un = φ.

Baire’s theorem implies the existence of n such that Un is not dense. But then
{F ≤ n} contains a nonempty open subset V . ��
Definition 1.3.14. The characteristic function of A ⊂ X is defined by

χA(x) = 1, x ∈ A,
= 0, x ∈ X \ A.

Corollary 1.3.15. Let X be a metric space and A ⊂ X. Then

A is open⇐⇒ χA is l.s.c., A is closed⇐⇒ χA is u.s.c.

Definition 1.3.16. Let S be a nonempty subset of a metric space X. The distance of
x to S is defined on X by d(x, S ) = inf

s∈S d(x, s).

Proposition 1.3.17. The function “distance to S ” is uniformly continuous on X.

Proof. Let x, y ∈ X and s ∈ S. Since d(x, s) ≤ d(x, y) + d(y, s), we obtain

d(x, S ) ≤ inf
s∈S (d(x, y) + d(y, s)) = d(x, y) + d(y, S ).

We conclude by symmetry that |d(x, S ) − d(y, S )| ≤ d(x, y). ��
Definition 1.3.18. Let Y and Z be subsets of a metric space. The distance from Y
to Z is defined by d(Y, Z) = inf{d(y, z) : y ∈ Y, z ∈ Z}.
Proposition 1.3.19. Let Y be a compact subset and let Z be a closed subset of a
metric space X such that Y ∩ Z = φ. Then d(Y, Z) > 0.

Proof. Assume that d(Y, Z) = 0. Then there exist sequences (yn) ⊂ Y and (zn) ⊂ Z
such that d(yn, zn) → 0. By passing, if necessary, to a subsequence, we can assume
that yn → y. But then d(y, zn)→ 0 and y ∈ Y ∩ Z. ��
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1.4 Convergence

Definition 1.4.1. Let X be a set and let Y be a metric space. A sequence of mappings
un : X → Y converges simply to u : X → Y if for every x ∈ X,

lim
n→∞ d(un(x), u(x)) = 0.

The sequence (un) converges uniformly to u if

lim
n→∞ sup

x∈X
d(un(x), u(x)) = 0.

Remarks. (a) Clearly, uniform convergence implies simple convergence.
(b) The converse is false in general. Let X = ]0, 1[, Y = R and un(x) = xn. The

sequence (un) converges simply but not uniformly to 0.
(c) We shall prove a partial converse due to Dini.

Notation. Let un : X → R be a sequence of functions. We write un ↑ u when for
every x and for every n, un(x) ≤ un+1(x) and

u(x) = sup
n

un(x) = lim
n→∞ un(x).

We write un ↓ u when for every x and every n, un+1(x) ≤ un(x) and

u(x) = inf
n

un(x) = lim
n→∞ un(x).

Theorem 1.4.2 (Dini). Let X be a compact metric space and let un : X → R be a
sequence of continuous functions such that

(a) un ↑ u or un ↓ u;
(b) u : X → R is continuous.

Then (un) converges uniformly to u.

Proof. Assume that

0 < lim
n→∞ sup

x∈X
|un(x) − u(x)| = inf

n≥0
sup
x∈X
|un(x) − u(x)|.

There exist ε > 0 and a sequence (xn) ⊂ X such that for every n,

ε ≤ |un(xn) − u(xn)|.

By monotonicity, we have for 0 ≤ m ≤ n that

ε ≤ |um(xn) − u(xn)|.
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By compactness, there exists a sequence (xnk ) converging to x. By continuity, we
obtain for every m ≥ 0,

ε ≤ |um(x) − u(x)|.
But then (un) is not simply convergent to u. ��
Example (Dirichlet function). Let us show by an example that two simple limits
suffice to destroy every point of continuity. Dirichlet’s function

u(x) = lim
m→∞ lim

n→∞(cosπm!x)2n

is equal to 1 when x is rational and to 0 when x is irrational. This function
is everywhere discontinuous. Let us prove that uniform convergence preserves
continuity.

Proposition 1.4.3. Let X and Y be metric spaces, y ∈ X, and un : X → Y a
sequence such that

(a) (un) converges uniformly to u on X;
(b) for every n, un is continuous at y.

Then u is continuous at y.

Proof. Let ε > 0. By assumption, there exist n and δ > 0 such that

sup
x∈X

d(un(x), u(x)) ≤ ε and sup
x∈B[y,δ]

d(un(x), un(y)) ≤ ε.

Hence for every x ∈ B[y, δ],

d(u(x), u(y)) ≤ d(u(x), un(x)) + d(un(x), un(y)) + d(un(y), u(y)) ≤ 3ε.

Since ε > 0 is arbitrary, u is continuous at y. ��
Definition 1.4.4. Let X be a set and let Y be a metric space. On the space of
bounded mappings from X to Y,

B(X, Y) = {u : X → Y : sup
x,y∈X

d(u(x), u(y)) < ∞},

we define the distance of uniform convergence

d(u, v) = sup
x∈X

d(u(x), v(x)).

Proposition 1.4.5. Let X be a set and let Y be a complete metric space. Then the
space B(X, Y) is complete.

Proof. Assume that (un) is such that

lim
j,k→∞

sup
x∈X

d(u j(x), uk(x)) = 0.
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Then for every x ∈ X,

lim
j,k→∞

d(u j(x), uk(x)) = 0,

and the sequence (un(x)) converges to a limit u(x). Let ε > 0. There exists m such
that for j, k ≥ m and x ∈ X,

d(u j(x), uk(x)) ≤ ε.
By continuity of the distance, we obtain, for k ≥ m and x ∈ X,

d(u(x), uk(x)) ≤ ε.

Hence for k ≥ m,

sup
x∈X

d(u(x), uk(x)) ≤ ε.

Since ε > 0 is arbitrary, (un) converges uniformly to u. It is clear that u is bounded.
��

Corollary 1.4.6 (Weierstrass test). Let X be a set and let un : X → R be a
sequence of functions such that

c =
∞∑

n=1

sup
x∈X
|un(x)| < +∞.

Then the series converges absolutely and uniformly on X.

Proof. It is clear that for every x ∈ X,
∞∑

n=1

|un(x)| ≤ c < ∞. Let us write v j =

j∑
n=1

un.

By assumption, we have for j < k that

sup
x∈X
|v j(x) − vk(x)| = sup

x∈X
|

k∑
n= j+1

un(x)| ≤
k∑

n= j+1

sup
x∈X
|un(x)| → 0, j→ ∞.

Hence lim
j,k→∞

d(v j, vk) = 0, and (v j) converges uniformly on X. ��

Example (Lebesgue function). Let us show by an example that a uniform limit
suffices to destroy every point of differentiability. Let us define

f (x) =
∞∑

n=1

1
2n

sin 2n2
x =

∞∑
n=1

un(x).

Since for every n, sup
x∈R
|un(x)| = 2−n, the convergence is uniform, and the function f

is continuous on R. Let x ∈ R and h± = ±π/2m2+1. A simple computation shows
that for n ≥ m + 1, un(x + h±) − un(x) = 0 and
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um(x + h±) − um(x)
h±

=
2m2−m+1

π
[cos 2m2

x ∓ sin 2m2
x].

Let us choose h = h+ or h = h− such that the absolute value of the expression in
brackets is greater than or equal to 1. By the mean value theorem,

∣∣∣∣∣∣∣
m−1∑
n=1

un(x + h) − un(x)
h

∣∣∣∣∣∣∣ ≤
m−1∑
n=1

2n2−n < 2(m−1)2−(m−1)+1 = 2m2−3m+3.

Hence

2m2−m+1

π
− 2m2−3m+3 ≤

∣∣∣∣∣∣∣
m∑

n=1

un(x + h) − un(x)
h

∣∣∣∣∣∣∣ =
∣∣∣∣∣ f (x + h) − f (x)

h

∣∣∣∣∣ ,

and for every ε > 0,

sup
0<|h|<ε

∣∣∣∣∣ f (x + h) − f (x)
h

∣∣∣∣∣ = +∞.
The Lebesgue function is everywhere continuous and nowhere differentiable.
Uniform convergence of the derivatives preserves differentiability.

1.5 Comments

Our main references on functional analysis are the three classical works

– S. Banach, Théorie des opérations linéaires ([6]),
– F. Riesz and B.S. Nagy, Leçons d’analyse fonctionnelle ([62]),
– H. Brezis, Analyse fonctionnelle, théorie et applications ([8]).

The proof of Ekeland’s variational principle [20] in Sect. 1.3 is due to Crandall [21].
The proof of Baire’s theorem, Theorem 1.2.13, depends implicitly on the axiom

of choice. We need only the following weak form.

Axiom of dependent choices. Let S be a nonempty set and let R ⊂ S × S be such
that for each a ∈ S, there exists b ∈ S satisfying (a, b) ∈ S. Then there is a sequence
(an) ⊂ S such that (an−1, an) ∈ R, n = 1, 2, . . ..

We use the notation of Theorem 1.2.13. On

S =
{
(m, u, r) : m ∈ N, u ∈ X, r > 0, B(u, r) ⊂ B

}
,

we define the relation R by

(
(m, u, r) , (n, v, s)

) ∈ R
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if and only if n = m + 1, s ≤ 1/n, and

B[v, s] ⊂ B(u, r) ∩ (
n⋂

j=1

U j).

Baire’s theorem follows then directly from the axiom of dependent choices.
In 1977, C.E. Blair proved that Baire’s theorem implies the axiom of dependent

choices.
The reader will verify that the axiom of dependent choices is the only principle

of choice that we use in this book.

1.6 Exercises for Chap. 1

1. Every sequence of real numbers contains a monotonic subsequence. Hint: Let

E = {n ∈ N : for every k ≥ n, xk ≤ xn}.

If E is infinite, (xn) contains a decreasing subsequence. If E is finite, (xn)
contains an increasing subsequence.

2. Every bounded sequence of real numbers contains a convergent subsequence.
3. Let (Kn) be a decreasing sequence of compact sets and U an open set in a metric

space such that
∞⋂

n=1

Kn ⊂ U. Then there exists n such that Kn ⊂ U.

4. Let (Un) be an increasing sequence of open sets and K a compact set in a metric

space such that K ⊂
∞⋃

n=1

Un. Then there exists n such that K ⊂ Un.

5. Define a sequence (S n) of dense subsets of R such that
∞⋂

n=1

S n = φ. Define a

family (U j) j∈J of open dense subsets of R such that
⋂
j∈J

U j = φ.

6. In a complete metric space, every countable union of closed sets with empty
interior has an empty interior. Hint: Use Baire’s theorem.

7. Dirichlet’s function is l.s.c. on R \Q and u.s.c. on Q.
8. Let (un) be a sequence of functions defined on [a, b] and such that for every n,

a ≤ x ≤ y ≤ b⇒ un(x) ≤ un(y).

Assume that (un) converges simply to u ∈ C([a, b]). Then (un) converges
uniformly to u.

9. (Banach fixed-point theorem.) Let X be a complete metric space and let f :
X → X be such that
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Lip( f ) = sup{d( f (x), f (y))/d(x, y) : x, y ∈ X, x � y} < 1.

Then there exists one and only one x ∈ X such that f (x) = x. Hint: Consider a
sequence defined by x0 ∈ X, xn+1 = f (xn).

10. (McShane’s extension theorem.) Let Y be a subset of a metric space X and let
f : Y → R be such that

λ = Lip( f ) = sup{| f (x) − f (y)|/d(x, y) : x, y ∈ Y, x � y} < +∞.

Define on X
g(x) = sup{ f (y) − λd(x, y) : y ∈ Y}.

Then g
∣∣∣
y
= f and

Lip(g) = sup{|g(x) − g(y)/d(x, y) : x, y ∈ X, x � y} = Lip( f ).

11. (Fréchet’s extension theorem.) Let Y be a dense subset of a metric space X and
let f : Y → [0,+∞] be an l.s.c. function. Define on X

g(x) = inf

{
lim
n→∞

f (xn) : (xn) ⊂ Y and xn → x

}
.

Then g is l.s.c., g
∣∣∣
Y
= f , and for every l.s.c. function h : X → [0,+∞] such that

h
∣∣∣
Y
= f , h ≤ g.

12. Let X be a metric space and u : X → [0,+∞] an l.s.c. function such that
u � +∞. Define

un(x) = inf{u(y) + n d(x, y) : y ∈ X}.
Then un ↑ u, and for every x, y ∈ X, |un(x) − un(y)| ≤ n d(x, y).

13. Let X be a metric space and v : X → ]−∞,∞]. Then v is l.s.c. if and only if
there exists a sequence (vn) ⊂ C(X) such that vn ↑ v. Hint: Consider the function
u = π

2 + tan−1v.
14. (Sierpiński, 1921.) Let X be a metric space and u : X → R. The following

properties are equivalent:

(a) There exists (un) ⊂ C(X) such that for every u ∈ X,
∞∑

n=1

|un(x)| < ∞ and

u(x) =
∞∑

n=1

un(x).

(b) There exists f , g : X → [0,+∞[ l.s.c. such that for every x ∈ X, u(x) =
f (x) − g(x).
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15. We define

X = {u :]0, 1[→ R : u is bounded and continuous}.

We define the distance on X to be

d(u, v) = sup
x∈]0,1[

|u(x) − v(x)|.

What are the interior and the closure of

Y = {u ∈ X : u is uniformly continuous}?



Chapter 2
The Integral

Le vrai est simple et clair; et quand notre manière d’y arriver
est embarrassée et obscure, on peut dire qu’elle mène au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1. Let Ω be an open subset of RN . We define

C(Ω) = {u : Ω→ R : u is continuous},

K(Ω) = {u ∈ C(RN) : supp u is a compact subset of Ω}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from 0.

Let u ∈ K(RN). By definition, there is R > 1 such that

spt u ⊂ {x ∈ RN : |x|∞ ≤ R − 1}.

Let us define the Riemann sums of u:

S j = 2− jN
∑
k∈ZN

u(k/2 j).

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 2, © Springer Science+Business Media, LLC 2013
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The factor 2− jN is the volume of the cube with side 2− j in R
N . Let C = [0, 1]N and

let us define the Darboux sums of u:

A j = 2− jN
∑
k∈ZN

min{u(x) : 2 jx − k ∈ C}, B j = 2− jN
∑
k∈ZN

max{u(x) : 2 jx − k ∈ C}.

Let ε > 0. By uniform continuity, there is j such that ωu(1/2 j) ≤ ε. Observe that

B j − A j ≤ (2R)Nε, A j−1 ≤ A j ≤ S j ≤ B j ≤ B j−1.

The Cauchy integral of u is defined by

∫
RN

u(x)dx = lim
j→∞ S j = lim

j→∞ A j = lim
j→∞ B j.

Theorem 2.1.2. The space K(RN) and the Cauchy integral

K(RN)→ R : u �→
∫
RN

u dx

are such that

(a) for every u ∈ K(RN), |u| ∈ K(RN);
(b) for every u, v ∈ K(RN) and every α, β ∈ R,

∫
RN
αu + βv dx = α

∫
RN

u dx + β
∫
RN

v dx;

(c) for every u ∈ K(RN) such that u ≥ 0,
∫
RN

u dx ≥ 0;

(d) for every sequence (un) ⊂ K(RN) such that un ↓ 0, lim
n→∞

∫
RN

un dx = 0.

Proof. Properties (a)–(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

spt u0 ⊂ K = {x ∈ RN : |x|∞ ≤ R − 1}.

By Dini’s theorem, (un) converges uniformly to 0 on K. Hence

0 ≤
∫
RN

undx ≤ (2R)N max
x∈K

un(x)→ 0, n→ ∞. ��

The above properties define an elementary integral. They suffice for constructing
the Lebesgue integral.
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The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral
satisfying the property of monotone convergence,

(e) if (un) is an increasing sequence of integrable functions such that

sup
n

∫
RN

undx < ∞,

then u(x) = lim
n→∞un(x) is integrable and

∫
RN

u dx = lim
n→∞

∫
RN

un dx,

and linearity,
(f) if u and v are integrable functions and if α and β are real numbers, then

∫
RN
αu + βv dx = α

∫
u dx + β

∫
v dx.

Let us sketch the construction of the (concrete) Lebesgue integral.
By definition, the function u belongs to L+(RN , dx) if there exists an increasing

sequence (un) of functions of K(RN) such that un ↑ u and sup
n

∫
RN

un dx < ∞.

The integral, defined by the formula

∫
RN

u dx = lim
n→∞

∫
RN

undx,

satisfies property (e). We shall prove that the integral depends only on u.
Let f , g ∈ L+(RN , dx). The difference f (x) − g(x) is well defined except if

f (x) = g(x) = +∞. A subset S of RN is negligible if there exists h ∈ L+(RN , dx)
such that for every x ∈ S , h(x) = +∞.

By definition a function u belongs to L1(RN , dx) if there exists f , g ∈ L+(RN ,
dx) such that u = f − g except on a negligible subset of RN . The integral defined by

∫
RN

u dx =
∫
RN

f dx −
∫
RN

g dx

satisfies properties (e) and (f). Again we shall prove that the integral depends only
on u.

The Lebesgue integral will be constructed in an abstract framework, the elemen-
tary integral, generalizing the Cauchy integral.

Example (Limit of integrals). It is not always permitted to permute limit and
integral. Let us define, on [0, 1], un(x) = 2nx(1 − x2)n−1. Since for every x ∈ ]0, 1[,
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lim
n→∞

un+1(x)
un(x)

= (1 − x2) < 1,

un converges simply to 0 on [0, 1]. But

0 =
∫ 1

0
lim
n→∞ un(x)dx < lim

n→∞

∫ 1

0
un(x)dx = 1.

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1. An elementary integral on the set Ω is defined by a vector space
L = L(Ω, μ) of functions from Ω to R and by a functional

μ : L → R : u �→
∫
Ω

u dμ

such that

(J1) for every u ∈ L, |u| ∈ L;
(J2) for every u, v ∈ L and every α, β ∈ R,

∫
Ω

αu + βv dμ = α
∫
Ω

u dμ + β
∫
Ω

v dμ;

(J3) for every u ∈ L such that u ≥ 0,
∫
Ω

u dμ ≥ 0;

(J4) for every sequence (un) ⊂ L such that un ↓ 0, lim
n→∞

∫
Ω

un dμ = 0.

Proposition 2.2.2. Let u, v ∈ L. Then u+, u−,max(u, v), min(u, v) ∈ L.

Proof. Let us recall that u+ = max(u, 0), u− = max(−u, 0),

max(u, v) =
1
2

(u + v) +
1
2
|u − v|, min(u, v) =

1
2

(u + v) − 1
2
|u − v|. ��

Proposition 2.2.3. Let u, v ∈ L be such that u ≤ v. Then
∫
Ω

u dμ ≤
∫
Ω

v dμ.
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Proof. We deduce from (J2) and (J3) that

0 ≤
∫
Ω

v − u dμ =
∫
Ω

v dμ −
∫
Ω

u dμ. ��

Definition 2.2.4. A fundamental sequence is an increasing sequence (un) ⊂ L such
that

lim
n→∞

∫
Ω

undμ = sup
n

∫
Ω

undμ < ∞.

Definition 2.2.5. A subset S of Ω is negligible (with respect to μ) if there is a
fundamental sequence (un) such that for every x ∈ S , lim

n→∞un(x) = +∞. A property

is true almost everywhere if the set of points of Ω where it is false is negligible.

Let us justify the definition of a negligible set.

Proposition 2.2.6. Let (un) be a decreasing sequence of functions of L such that

everywhere un ≥ 0 and almost everywhere, lim
n→∞un(x) = 0. Then lim

n→∞

∫
Ω

undμ = 0.

Proof. Let ε > 0. By assumption, there is a fundamental sequence (vn) such that
if lim

n→∞un(x) > 0, then lim
n→∞vn(x) = +∞. We replace vn by v+n , and we multiply by a

strictly positive constant such that

vn ≥ 0,
∫
Ω

vndμ ≤ ε.

We define wn = (un − vn)+. Then wn ↓ 0, and we deduce from axiom (J4) that

0 ≤ lim
∫
Ω

undμ ≤ lim
∫
Ω

wn + vndμ = lim
∫
Ω

wndμ + lim
∫
Ω

vndμ

= lim
∫
Ω

vndμ ≤ ε.

Since ε > 0 is arbitrary, the proof is complete. ��
Proposition 2.2.7. Let (un) and (vn) be fundamental sequences such that almost
everywhere,

u(x) = lim
n→∞ un(x) ≤ lim

n→∞ vn(x) = v(x).

Then

lim
n→∞

∫
Ω

undμ ≤ lim
n→∞

∫
Ω

vndμ.

Proof. We choose k and we define wn = (uk − vn)+. Then (wn) ⊂ L is a decreasing
sequence of positive functions such that almost everywhere,
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lim wn(x) = (uk(x) − v(x))+ ≤ (u(x) − v(x))+ = 0.

We deduce from the preceding proposition that

∫
Ω

ukdμ ≤ lim
∫
Ω

wn + vn dμ = lim
∫
Ω

wndμ + lim
∫
Ω

vndμ = lim
∫
Ω

vndμ.

Since k is arbitrary, the proof is complete. ��
Definition 2.2.8. A function u : Ω→ ]−∞,+∞] belongs to L+ = L+(Ω, μ) if there
exists a fundamental sequence (un) such that un ↑ u. The integral (with respect to μ)
of u is defined by ∫

Ω

u dμ = lim
n→∞

∫
Ω

undμ.

By the preceding proposition, the integral of u is well defined.

Proposition 2.2.9. Let u, v ∈ L+ and α, β ≥ 0. Then

(a) max(u, v),min(u, v), u+ ∈ L+;

(b) αu + βv ∈ L+ and
∫
Ω

αu + βv dμ = α
∫
Ω

u dμ + β
∫
Ω

v dμ;

(c) if u ≤ v almost everywhere, then
∫
Ω

u dμ ≤
∫
Ω

v dμ.

Proof. Proposition 2.2.7 is equivalent to (c). ��
Proposition 2.2.10 (Monotone convergence in L+). Let (un) ⊂ L+ be everywhere
(or almost everywhere) increasing and such that

c = sup
n

∫
Ω

undμ < ∞.

Then (un) converges everywhere (or almost everywhere) to u ∈ L+ and
∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ.

Proof. We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (uk,n) such that uk,n ↑ uk.

The sequence vn = max(u1,n, . . . , un,n) is increasing, and almost everywhere,

vn ≤ max(u1, . . . , un) = un.

Since ∫
Ω

vndμ ≤
∫
Ω

undμ ≤ c,
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the sequence (vn) ⊂ L is fundamental. By definition, vn ↑ u, u ∈ L+, and

∫
Ω

u dμ = lim
n→∞

∫
Ω

vndμ.

For k ≤ n, we have almost everywhere that

uk,n ≤ vn ≤ un.

Hence we obtain, almost everywhere, that uk ≤ u ≤ lim
n→∞un and

∫
Ω

ukdμ ≤
∫
Ω

u dμ ≤ lim
n→∞

∫
Ω

undμ.

It is easy to conclude the proof. ��
Corollary 2.2.11. Every countable union of negligible sets is negligible.

Proof. Let (S k) be a sequence of negligible sets. For every k, there exists vk ∈ L+
such that for every x ∈ S k, vk(x) = +∞. We replace vk by v+k , and we multiply by a
strictly positive constant such that

vk ≥ 0,
∫
Ω

vkdμ ≤ 1
2k
.

The sequence un =

n∑
k=1

vk is increasing and

∫
Ω

undμ ≤
n∑

k=1

1
2k
≤ 1.

Hence un ↑ u and u ∈ L+. Since for every x ∈
∞⋃

k=1

S k, u(x) = +∞, the set
∞⋃

k=1

S k is

negligible. ��
By definition, functions ofL+ are finite almost everywhere. Hence the difference

of two functions of L+ is well defined almost everywhere. Assume that f , g, v,w ∈
L+ and that f −g = v−w almost everywhere. Then f +w = v+g almost everywhere
and

∫
Ω

f dμ +
∫
Ω

w dvμ =
∫
Ω

f + w dμ =
∫
Ω

v + g dμ =
∫
Ω

v dμ +
∫
Ω

g dμ,

so that ∫
Ω

f dμ −
∫
Ω

g dμ =
∫
Ω

v dμ −
∫
Ω

w dμ.
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Definition 2.2.12. A real function u almost everywhere defined on Ω belongs to
L1 = L1(Ω, μ) if there exist f , g ∈ L+ such that u = f − g almost everywhere.
The integral (with respect to μ) of u is defined by

∫
Ω

u dμ =
∫
Ω

f dμ −
∫
Ω

g dμ.

By the preceding computation, the integral is well defined.

Proposition 2.2.13. (a) If u ∈ L1, then |u| ∈ L1.
(b) If u, v ∈ L1 and if α, β ∈ R, then αu + βv ∈ L1 and∫

Ω

αu + βv dμ = α
∫
Ω

u dμ +β
∫
Ω

v dμ.

(c) If u ∈ L1 and if u ≥ 0 almost everywhere, then
∫
Ω

u dμ ≥ 0.

Proof. Observe that
| f − g| = max( f , g) −min( f , g). ��

Lemma 2.2.14. Let u ∈ L1 and ε > 0. Then there exist v,w ∈ L+ such that u = v−w

almost everywhere, w ≥ 0, and
∫
Ω

w dμ ≤ ε.

Proof. By definition, there exist f , g ∈ L+ such that u = f − g almost everywhere.
Let (gn) be a fundamental sequence such that gn ↑ g. Since

∫
Ω

g dμ = lim
n→∞

∫
Ω

gndμ,

there exists n such that
∫
Ω

g − gn dμ ≤ ε. We choose w = g − gn ≥ 0 and v = f − gn.

��
We extend the property of monotone convergence to L1.

Theorem 2.2.15 (Levi’s monotone convergence theorem). Let (un) ⊂ L1 be an
almost everywhere increasing sequence such that

c = sup
n

∫
Ω

undμ < ∞.

Then lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞ undμ = lim

n→∞

∫
Ω

undμ.

Proof. After replacing un by un − u0, we can assume that u0 = 0. By the preceding

lemma, for every k ≥ 1, there exist vk,wk ∈ L+ such that wk ≥ 0,
∫
Ω

wkdμ ≤ 1/2k,

and, almost everywhere,
uk − uk−1 = vk − wk.
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Since (uk) is almost everywhere increasing, vk ≥ 0 almost everywhere.
We define

fn =
n∑

k=1

vk, gn =

n∑
k=1

wk.

The sequences ( fn) and (gn) are almost everywhere increasing, and

∫
Ω

gndμ =
n∑

k=1

∫
Ω

wkdμ ≤
n∑

k=1

1
2k
≤ 1,

∫
Ω

fndμ =
∫
Ω

un + gndμ ≤ c + 1.

Proposition 2.2.10 implies that almost everywhere,

lim
n→∞ fn = f ∈ L+, lim

n→∞ gn = g ∈ L+

and ∫
Ω

f dμ = lim
n→∞

∫
Ω

fndμ,
∫
Ω

g dμ = lim
n→∞

∫
Ω

g dμ.

We deduce from Corollary 2.2.11 that almost everywhere,

f − g = lim
n→∞( fn − gn) = lim

n→∞ un.

Hence lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞ undμ =

∫
Ω

f dμ −
∫
Ω

g dμ = lim
n→∞

∫
Ω

fn − gndμ = lim
n→∞

∫
Ω

undμ. ��

Theorem 2.2.16 (Fatou’s lemma). Let (un) ⊂ L1 and f ∈ L1 be such that

(a) sup
n

∫
Ω

undμ < ∞;

(b) for every n, f ≤ un almost everywhere.

Then lim
n→∞

un ∈ L1 and

∫
Ω

lim
n→∞

undμ ≤ lim
n→∞

∫
Ω

undμ.

Proof. We choose k, and we define, for m ≥ k,

uk,m = min(uk, . . . , um).

The sequence (uk,m) decreases to vk = inf
n≥k

un, and
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∫
Ω

f dμ ≤
∫
Ω

uk,mdμ.

The preceding theorem, applied to (−uk,m), implies that vk ∈ L1 and

∫
Ω

vkdμ = lim
m→∞

∫
Ω

uk,mdμ ≤ lim
m→∞ min

k≤n≤m

∫
Ω

undμ = inf
n≥k

∫
Ω

undμ.

The sequence (vk) increases to lim
n→∞

un and

∫
Ω

vkdμ ≤ sup
n

∫
Ω

undμ < ∞.

It follows from the preceding theorem that lim
n→∞

un ∈ L1 and

∫
Ω

lim
n→∞

undμ = lim
k→∞

∫
Ω

vkdμ ≤ lim
k→∞

inf
n≥k

∫
Ω

undμ = lim
n→∞

∫
Ω

undμ. ��

Theorem 2.2.17 (Lebesgue’s dominated convergence theorem). Let (un) ⊂ L1

and f ∈ L1 be such that

(a) un converges almost everywhere;
(b) for every n, |un| ≤ f almost everywhere.

Then lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞ undμ = lim

n→∞

∫
Ω

undμ.

Proof. Fatou’s lemma implies that u = lim
n→∞ un ∈ L1 and

2
∫
Ω

f dμ ≤ lim
n→∞

∫
2 f − |un − u|dμ = 2

∫
Ω

f dμ − lim
n→∞

∫
Ω

|un − u|dμ.

Hence

lim
n→∞ |

∫
Ω

un − u dμ| ≤ lim
n→∞

∫
Ω

|un − u|dμ = 0. ��

Theorem 2.2.18 (Comparison theorem). Let (un) ⊂ L1 and f ∈ L1 be such that

(a) un converges almost everywhere to u;
(b) |u| ≤ f almost everywhere.

Then u ∈ L1.
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Proof. We define
vn = max(min(un, f ),− f ).

The sequence (vn) ⊂ L1 is such that

(a) vn converges almost everywhere to u;
(b) for every n, |vn| ≤ f almost everywhere.

The preceding theorem implies that u = lim
n→∞vn ∈ L1. ��

Definition 2.2.19. A real function u defined almost everywhere on Ω is measurable
(with respect to μ) if there exists a sequence (un) ⊂ L such that un → u almost
everywhere. We denote the space of measurable functions (with respect to μ) on Ω
byM =M(Ω, μ).

Proposition 2.2.20. (a) L ⊂ L+ ⊂ L1 ⊂ M.
(b) If u ∈ M, then |u| ∈ M.
(c) If u, v ∈ M and if α, β ∈ R, then αu + βv ∈ M.
(d) If u ∈ M and if, almost everywhere, |u| ≤ f ∈ L1, then u ∈ L1.

Proof. Property (d) follows from the comparison theorem. ��

Notation. Let u ∈ M be such that u ≥ 0 and u � L1. We write
∫
Ω

u dμ = +∞. Hence

the integral of a measurable nonnegative function always exists.
Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21. Let (un) ⊂ L+ be an almost everywhere increasing sequence
converging to an almost everywhere finite function u. Then u ∈ M.

Proof. For every k, there exists a fundamental sequence (uk,n) such that uk,n ↑ uk.
The increasing sequence vn = max(u1,n, . . . , un,n) converges to v, and almost
everywhere,

vn ≤ max(u1, . . . , un) = un.

For k ≤ n, we have, almost everywhere, uk,n ≤ vn ≤ un. Hence almost everywhere,
uk ≤ v ≤ u. It is now easy to conclude the proof. ��
Lemma 2.2.22. Let (un) ⊂ L1 be an increasing sequence converging to an almost
everywhere finite function u. Then u ∈ M.

Proof. By Lemma 2.2.14, for every n ≥ 1 there exist vn,wn ∈ L+ such that almost
everywhere,

0 ≤ un − un−1 = vn − wn,wn ≥ 0,
∫
Ω

wndμ ≤ 1/2n.

Proposition 2.2.10 and the preceding lemma imply that
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∞∑
n=1

wn = w ∈ L+,
∞∑

n=1

vn = v ∈ M.

Since almost everywhere, u = v − w + u0, u ∈ M. ��
Lemma 2.2.23. Let (un) ⊂ M be an increasing sequence converging to an almost
everywhere finite function u. Then u ∈ M.

Proof. Replacing un by un − u0, we can assume that un ≥ 0. For every k, there exists
a sequence (uk,m) ⊂ L converging almost everywhere to uk. We can assume that
uk,m ≥ 0. By Levi’s theorem,

vk,n = inf
m≥n

uk,m ∈ L1.

For every k, (vk,n) is increasing and converges almost everywhere to uk. We define

vn = max(v1,n, . . . , vn,n) ∈ L1.

The sequence (vn) is increasing and converges almost everywhere to u. By the
preceding lemma, u ∈ M. ��
Theorem 2.2.24. Let (un) ⊂ M be a sequence converging almost everywhere to a
finite limit. Then u ∈ M.

Proof. By the preceding lemma,

vk = sup
n≥k

un ∈ M and lim un = −sup
k

(−vk) ∈ M. ��

The class of measurable functions is the smallest class containingL that is closed
under almost everywhere convergence.

Definition 2.2.25. A subset A of Ω is measurable (with respect to μ) if the
characteristic function of A is measurable. The measure of A is defined by

μ(A) =
∫
Ω

χAdμ.

Proposition 2.2.26. Let A and B be measurable sets and let (An) be a sequence of

measurable sets. Then A \ B,
∞⋃

n=1

An and
∞⋂

n=1

An are measurable, and

μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B).

If, moreover, for every n, An ⊂ An+1, then

μ

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ μ(An).
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If, moreover, μ(A1) < ∞, and for every n, An+1 ⊂ An, then

μ

⎛⎜⎜⎜⎜⎜⎝
∞⋂

n=1

An

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ μ(An).

Proof. Observe that

χA∪B + χA∩B = max(χA, χB) +min(χA, χB) = χA + χB,

χA\B = χA −min(χA, χB),

χ∪∞n=1An
= lim

n→∞max(χA1 , . . . , χAn ),

χ∩∞n=1An
= lim

n→∞min(χA1 , . . . , χAn ).

The proposition follows then from the preceding theorem and Levi’s theorem. ��
Proposition 2.2.27. A subset of Ω is negligible if and only if it is measurable and
its measure is equal to 0.

Proof. Let A ⊂ Ω be a negligible set. Since χA = 0 almost everywhere, we have by

definition that χA ∈ L1 and μ(A) =
∫
Ω

χAdμ = 0.

Let A be a measurable set such that μ(A) = 0. For every n,
∫
Ω

nχAdμ = 0.

By Levi’s theorem, u = lim
n→∞nχA ∈ L1. Since u is finite almost everywhere and

u(x) = +∞ on A, the set A is negligible. ��
The hypothesis in the following definition will be used to prove that the set {u > t}

is measurable when the function u ≥ 0 is measurable.

Definition 2.2.28. A positive measure on Ω is an elementary integral μ : L → R

on Ω such that

(J5) for every u ∈ L, min(u, 1) ∈ L.

Proposition 2.2.29. Let μ be a positive measure on Ω, u ∈ M, and t ≥ 0. Then
min(u, t) ∈ M.

Proof. If t = 0, min(u, 0) = u+ ∈ M. Let t > 0. There is a sequence (un) ⊂
L converging to u almost everywhere. Then vn = t min(t−1un, 1) ∈ L and vn →
min(u, t) almost everywhere. ��
Theorem 2.2.30. Let μ be a positive measure on Ω and let u : Ω → [0,+∞] be
almost everywhere finite. The following properties are equivalent:

(a) u is measurable;
(b) for every t ≥ 0, {u > t} = {x ∈ Ω : u(x) > t} is measurable.
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Proof. Assume that u is measurable. For every t ≥ 0 and n ≥ 1, the preceding
proposition implies that

un = n[min(u, t + 1/n) −min(u, t)]

is measurable. It follows from Theorem 2.2.24 that

χ{u>t} = lim
n→∞ un ∈ M.

Hence {u > t} is measurable.
Assume that u satisfies (b). Let us define, for n ≥ 1, the function

un =
1
2n

∞∑
k=1

χ{u>k/2n}. (∗)

For every x ∈ Ω, u(x) − 1/2n ≤ un(x) ≤ u(x). Hence (un) is simply convergent to u.
Theorem 2.2.24 implies that (un) ⊂ M and u ∈ M. ��
Corollary 2.2.31. Let u, v ∈ M. Then uv ∈ M.

Proof. If f is measurable, then for every t ≥ 0, the set

{ f 2 > t} = {| f | > t}

is measurable. Hence f 2 is measurable. We conclude that

uv =
1
4

[(u + v)2 − (u − v)2] ∈ M. ��

Definition 2.2.32. A function u : Ω → [0,+∞] is admissible (with respect to the
positive measure μ) if u is measurable and if for every t > 0,

μu(t) = μ({u > t}) = μ({x ∈ Ω : u(x) > t}) < +∞.

The function μu is the distribution function of u.

Corollary 2.2.33 (Markov inequality). Let u ∈ L1, u ≥ 0. Then u is admissible,
and for every t > 0,

μu(t) ≤ t−1
∫
Ω

u dμ.

Proof. Observe that for every t > 0, v = tχ{u>t} ≤ u. By the comparison theorem,

v ∈ L1 and
∫
Ω

v dμ ≤
∫
Ω

u dμ. ��
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Corollary 2.2.34 (Cavalieri’s principle). Let u ∈ L1, u ≥ 0. Then

∫
Ω

u dμ =
∫ ∞

0
μu(t)dt.

Proof. The sequence (un) defined by (∗) is increasing and converges simply to
u. The function μu :]0,+∞[→ [0,+∞[ is nonincreasing. We deduce from Levi’s
theorem that

∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ = lim
n→∞

1
2n

∞∑
k=1

μu

(
k
2n

)
=

∫ ∞

0
μu(t)dt. ��

Definition 2.2.35. Let Ω be an open set of RN . The Lebesgue measure on Ω is the
positive measure defined by the Cauchy integral

K(Ω)→ R : u �→
∫
Ω

u dx.

The Lebesgue measure of a measurable subset A of Ω is defined by

m(A) =
∫
Ω

χAdx.

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RN .

Theorem 2.2.36. We consider the Lebesgue measure on R
N.

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RN, there exist a sequence (Gk) of open sets of

R
N and a negligible set S of RN such that A ∪ S =

∞⋂
k=1

Gk.

(c) For every measurable set A of RN, there exist a sequence (Fk) of closed sets of

R
N and a negligible set T of RN such that A =

∞⋃
k=1

Fk ∪ T.

Proof. (a) Let G be an open bounded set and define

un(x) = min{1, n d(x,RN \G)}. (∗)

Since (un) ⊂ K(RN) and un → χG, the set G is measurable. For every open set

G, Gn = G ∩ B(0, n) is measurable. Hence G =
∞⋃

n=1

Gn is measurable. Taking the

complement, every closed set is measurable.



36 2 The Integral

(b) Let A be a measurable set of RN . By definition, there exist a sequence (un) ⊂
K(RN) and a negligible set R of RN such that un → χA on R

N \ R. There is
also f ∈ L+ such that R ⊂ S = { f = +∞}. By Proposition 1.3.10, f is l.s.c.
Proposition 1.3.12 implies that for every t ∈ R, { f > t} is open. Let us define
the open sets

Un = {un > 1/2} ∪ { f > n} and Gk =

∞⋃
n=k

Un.

It is clear that for every k, A∪ S ⊂ Gk and A∪ S =
∞⋂

k=1

Gk. Since S is negligible

by definition, the proof is complete.
(c) Taking the complement, there exist a sequence (Fk) of closed sets of RN and a

negligible set S of RN such that

A ∩ (RN \ S ) =
∞⋃

k=1

Fk.

It suffices then to define T = A ∩ S . ��
Corollary 2.2.37. Let a < b. Then

m(]a, b[) = m([a, b]) = b − a.

In particular, m({a}) = 0, and every countable set is negligible.

Proof. Let (un) be the sequence defined by (∗). Proposition 2.2.10 implies that

m(]a, b[) =
∫
R

χ]a,b[dx = lim
n→∞

∫
R

undx = b − a.

Since [a, b] =
∞⋂

n=1

]a − 1/n, b + 1/n[, it follows from Proposition 2.2.26 that

m([a, b]) = lim
n→∞ b − a + 2/n = b − a. ��

Example. Let λ > −1. For every n ≥ 2, the function

un(x) = xλχ]1/n,1[(x)

is integrable by the comparison theorem. It follows from Levi’s monotone conver-
gence theorem that ∫ 1

0
xλdx = 1/(λ + 1).
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Let λ < −1. For every n ≥ 2, the function

vn(x) = xλχ]1,n[(x)

is integrable. It follows that

∫ ∞

1
xλdx = 1/|λ + 1|.

Example (Cantor sets). Let 0 < ε ≤ 1 and (�n) ⊂ ]0, 1[ be such that

ε =

∞∑
n=0

2n�n.

From the interval C0 = [0, 1], remove the open middle interval J0,1 of length �0.
Remove from the two remaining closed intervals the middle open intervals J1,1 and
J1,2 of length �1. In general, remove from the 2n remaining closed intervals the
middle open intervals Jn,1, . . . , Jn,2n of length �n. Define

Cn+1 = Cn \
2n⋃

k=1

Jn,k, C =
∞⋂

n=1

Cn.

The set C is the Cantor set (corresponding to (�n)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each Cn is closed.

The interior of C is empty. Indeed, each Cn consists of 2n closed intervals of
equal length, so that φ is the only open subset in C.

The Lebesgue measure of C is equal to 1− ε. By induction, we have for every n
that

m(Cn+1) = 1 −
n∑

j=0

2 j� j.

Proposition 2.2.26 implies that

m(C) = 1 −
∞∑
j=0

2 j� j = 1 − ε.

The set C is not countable. Let (xn) ⊂ C. Denote by [a1, b1] the interval of C1

not containing x1. Denote by [a2, b2] the first interval of C2 ∩ [a1, b1] not containing
x2. In general, let [an, bn] denote the first interval of Cn ∩ [an−1, bn−1] not containing
xn. Define x = sup

n
an = lim

n→∞ an. For every n, we have

[an, bn] ⊂ Cn, xn � [an, bn], x ∈ [an, bn].
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Hence x ∈ C, and for every n, xn � x.
For ε = 1, C is not countable and negligible.
Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at

every point of C.
The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by

Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.

Definition 2.3.1. Define on R, f (t) = (1−|t|)+. The family f j,k(x) =
N∏

n=1

f (2 jxn−kn),

j ∈ N, k ∈ ZN , is such that f j,k ∈ K(RN),

spt f j,k = B∞[k/2 j, 1/2 j],
∑
k∈ZN

f j,k = 1, f j,k ≥ 0.

Proposition 2.3.2. LetΩ be an open set in R
N and let u ∈ K(Ω). Then the sequence

u j =
∑
k∈ZN

u(k/2 j) f j,k

converges uniformly to u on Ω.

Proof. Let ε > 0. By uniform continuity, there exists m such that ωu(1/2m) ≤ ε.
Hence for j ≥ m,

|u(x) − u j(x)| = |
∑
k∈ZN

(u(x) − u(k/2 j)) f j,k(x)| ≤ ε
∑
k∈ZN

f j,k(x) = ε. ��

Proposition 2.3.3. Let u ∈ K(RN). Then

(a) for every x
N
∈ R, u(., x

N
) ∈ K(RN−1);

(b)
∫
RN−1

u(x′, .)dx′ ∈ K(R);

(c)
∫
RN

u(x)dx =
∫
R

dx
N

∫
RN−1

u(x′, x
N

)dx′.

Proof. Every restriction of a continuous function is continuous.

Let us define v(x
N

) =
∫
RN−1

u(x′, x
N

)dx′. Lebesgue’s dominated convergence

theorem implies that v is continuous on R. Since the support of u is a compact
subset of RN , the support of v is a compact subset of R.
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We have, for every j ∈ N and every k ∈ Z, by definition of the integral that

∫
RN

f j,k(x)dx =
∫
R

dx
N

∫
RN−1

f j,k(x′, x
N

)dx′.

Hence for every j ∈ N,

∫
RN

u j(x)dx =
∫
R

dx
N

∫
RN−1

u j(x′, x
N

)dx′.

There is R > 1 such that

spt u ⊂ {x ∈ RN : |x|∞ ≤ R − 1}.

For every j ∈ N, by the definition of the integral

∣∣∣∣∣
∫
RN

u(x) − u j(x)dx
∣∣∣∣∣ ≤ (2R)N max

x∈RN

∣∣∣u(x) − u j(x)
∣∣∣ ,

we obtain
∣∣∣∣∣
∫
R

dx
N

∫
RN−1

u(x′, x
N

) − u j(x′, x
N

)dx′
∣∣∣∣∣ ≤ (2R)N max

x∈RN

∣∣∣u(x) − u j(x)
∣∣∣ .

It is easy to conclude the proof using the preceding proposition. ��

Definition 2.3.4. The elementary integral μ on Ω = Ω1 × Ω2 is the product of the
elementary integrals μ1 on Ω1 and μ2 on Ω2 if for every u ∈ L(Ω, μ),

(a) u(., x2) ∈ L(Ω1, μ1) for every x2 ∈ Ω2;

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.

We assume that μ is the product of μ1 and μ2.

Lemma 2.3.5. Let u ∈ L+(Ω, μ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L+(Ω1, μ1);

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L+(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.
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Proof. Let (un) ⊂ L(Ω, μ) be a fundamental sequence such that un ↑ u. By
definition,

vn =

∫
Ω

un(x1, .)dμ1 ∈ L(Ω2, μ2),

and (vn) is a fundamental sequence. But then vn ↑ v, v ∈ L+(Ω2, μ2), and

∫
Ω2

v(x2)dμ2 = lim
n→∞

∫
Ω2

vn(x2)dμ2.

For almost every x2 ∈ Ω2, v(x2) ∈ R. In this case, (un(., x2)) ⊂ L(Ω1, μ1) is a
fundamental sequence and un(., x2) ↑ u(., x2). Hence u(., x2) ∈ L+(Ω1, μ1) and

∫
Ω1

u(x1, x2)dμ1 = lim
n→∞

∫
Ω1

un(x1, x2)dμ1 = lim
n→∞ vn(x2) = v(x2).

It follows that
∫
Ω1

u(x1, .)dμ1 ∈ L+(Ω2, μ2) and

∫
Ω

u(x1, x2)dμ = lim
n→∞

∫
Ω

un(x1, x2)dμ

= lim
n→∞

∫
Ω2

dμ2

∫
Ω1

un(x1, x2)dμ1

= lim
n→∞

∫
Ω2

vn(x2)dμ2

=

∫
Ω2

v(x2)dμ2 =

∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1. ��

Lemma 2.3.6. Let S ⊂ Ω be negligible with respect to μ. Then for almost every
x2 ∈ Ω2,

S x2 = {x1 ∈ Ω1 : (x1, x2) ∈ S }
is negligible with respect to μ1.

Proof. By assumption, there is u ∈ L+(Ω, μ) such that

S ⊂ {(x1, x2) ∈ Ω : u(x1, x2) = +∞}.

The preceding lemma implies that for almost every x2 ∈ Ω2,
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S x2 ⊂ {x1 ∈ Ω1 : u(x1, x2) = +∞}

is negligible with respect to μ1. ��
Theorem 2.3.7 (Fubini). Let u ∈ L1(Ω, μ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L1(Ω1, μ1);

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L1(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.

Proof. By assumption, there is f , g ∈ L+(Ω, μ) such that u = f − g almost
everywhere on Ω. By the preceding lemma, for almost every x2 ∈ Ω2,

u(x1, x2) = f (x1, x2) − g(x1, x2)

almost everywhere on Ω1. The conclusion follows from Lemma 2.3.5. ��
The following result provides a way to prove that a function on a product space

is integrable.

Theorem 2.3.8 (Tonelli). Let u : Ω→ [0,+∞[ be such that

(a) for every n ∈ N, min(n, u) ∈ L1(Ω, μ);

(b) c =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1 < +∞.

Then u ∈ L1(Ω, μ).

Proof. Let us define un = min(n, u). Fubini’s theorem implies that

∫
Ω

un(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

un(x1, x2)dμ1 ≤ c.

The conclusion follows from Levi’s dominated convergence theorem. ��

2.4 Change of Variables

Let Ω be an open set of RN and let dx be the Lebesgue measure on Ω. We define

L+(Ω) = L+(Ω, dx),L1(Ω) = L1(Ω, dx).

Definition 2.4.1. Let Ω and ω be open. A diffeomorphism is a continuously
differentiable map f : Ω→ ω such that for every x ∈ Ω,

J f (x) = det f ′(x) � 0.
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We assume that f : Ω → ω is a diffeomorphism. The next theorem is proved in
Sect. 9.1.

Theorem 2.4.2. Let u ∈ K(ω). Then u( f )|J f | ∈ K(Ω) and

∫
Ω

u( f (x))|J f (x)|dx =
∫
ω

u(y)dy. (∗)

Lemma 2.4.3. Let u ∈ L+(ω). Then u( f )|J f | ∈ L+(Ω), and (∗) is valid.

Proof. Let (un) ⊂ K(ω) be a fundamental sequence such that un ↑ u. By the
preceding theorem, vn = un( f )|J f | ∈ K(Ω) and (vn) is a fundamental sequence.
It follows that
∫
Ω

u( f (x))|J f (x)|dx = lim
n→∞

∫
Ω

un( f (x))|J f (x)|dx = lim
n→∞

∫
ω

un(y)dy =
∫
ω

u(y)dy.

��
Lemma 2.4.4. Let S ⊂ ω be a negligible set. Then f −1(S ) is a negligible set.

Proof. By assumption, there is u ∈ L+(ω) such that

S ⊂ {y ∈ ω : u(y) = +∞}.

The preceding lemma implies that the set

f −1(S ) ⊂ {x ∈ Ω : u( f (x)) = +∞}

is negligible. ��
Theorem 2.4.5. Let u ∈ L1(ω). Then u( f )|J f | ∈ L1(Ω), and (∗) is valid.

Proof. By assumption, there exist v,w ∈ L+(ω) such that u = v − w almost
everywhere on ω. It follows from the preceding lemma that

u( f )|J f | = v( f )|J f | − w( f )|J f |

almost everywhere on Ω. It is easy to conclude the proof using Lemma 2.4.3. ��
Let

B
N
= {x ∈ RN : |x| < 1}

be the unit ball in R
N , and let V

N
= m(B

N
) be its volume. By the preceding theorem,

for every r > 0,

m(B(0, r)) =
∫
|y|<r

dy = rN
∫
|x|<1

dx = rNV
N
.
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We now define polar coordinates. Let N ≥ 2 and R
N∗ = R

N \ {0}. Let

S
N−1 = {σ ∈ RN : |σ| = 1}

be the unit sphere in R
N . The polar change of variables is the homeomorphism

]0,∞[×SN−1 −→ R
N
∗ : (r, σ) �−→ rσ.

Definition 2.4.6. The surface measure on S
N−1 is defined on C(SN−1) by

∫
SN−1

f (σ)dσ = N
∫

B
N

f

(
x
|x|
)

dx.

Observe that the function f (x/|x|) is bounded and continuous on B
N
\ {0}.

Since S
N−1 is compact, Dini’s theorem implies that the surface measure is a

positive measure.

Lemma 2.4.7. Let u ∈ K(RN). Then

(a) for every r > 0, the function σ �→ u(rσ) belongs to C(SN−1);

(b)
d
dr

∫
|x|<r

u(x)dx = rN−1
∫
SN−1

u(rσ)dσ;

(c)
∫
RN

u(x)dx =
∫ ∞

0
rN−1dr

∫
SN−1

u(rσ)dσ.

Proof. (a) The restriction of a continuous function is a continuous function.

(b) Let w(r) =
∫
|x|<r

u(x)dx and v(r) =
∫
SN−1

u(rσ)dσ, r > 0. By definition, we have

v(r) = N
∫

B
N

u

(
r
|x| x

)
dx.

Choose r > 0 and ε > 0. By definition of the modulus of continuity, we have

∣∣∣∣∣∣w(r + ε) − w(r) −
∫

r<|x|<r+ε
u(rx/|x|)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

r<|x|<r+ε
u(x) − u(rx/|x|)dx

∣∣∣∣∣∣
≤ ωu(ε)V

N
[(r + ε)N − rN].

The preceding theorem implies that

∫
r<|x|<r+ε

u(rx/|x|)dx =
∫
|x|<r+ε

u(rx/|x|)dx−
∫
|x|<r

u(rx/|x|)dx =
(r+ε)N−rN

N
v(r).
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Hence we find that
∣∣∣∣∣∣w(r + ε) − w(r) − (r + ε)N − rN

N
v(r)

∣∣∣∣∣∣ ≤ ωu(ε)V
N

[(r + ε)N − rN],

so that

lim
ε→ 0
ε > 0

∣∣∣∣∣w(r + ε) − w(r)
ε

− rN−1v(r)
∣∣∣∣∣ = 0.

The right derivative of w is equal to rN−1v. Similarly, the left derivative of w is
equal to rN−1v.

(c) The fundamental theorem of calculus implies that for 0 < a < b,

∫
a<|x|<b

u(x)dx = w(b) − w(a) =
∫ b

a
v(r)rN−1dr =

∫ b

a
rN−1dr

∫
SN−1

u(rσ)dσ.

Taking the limit as a→ 0 and b→ +∞, we obtain (c). ��
Theorem 2.4.8. Let u ∈ L1(RN). Then

(a) for almost every r > 0, the function σ→ u(rσ) belongs to L1(SN−1, dσ);

(b) the function r →
∫
SN−1

u(rσ)dσ belongs to L1(]0,∞[, rN−1dr);

(c)
∫
RN

u(x)dx =
∫ ∞

0
rN−1dr

∫
SN−1

u(rσ)dσ.

Proof. By the preceding theorem, the Lebesgue measure on R
N is the product of

the surface measure on S
N−1 and the measure rN−1dr on ]0,∞[. It suffices then to

use Fubini’s theorem. ��
Theorem 2.4.9. The volume V

N
is given by the formulas

V1 = 2,V2 = π and V
N
=

2π
N

VN−2.

Proof. Let N ≥ 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

V
N
=

∫
|x|<1

dx

=

∫
x2

3+...+x2

N
<1

dx3 . . . dx
N

∫
x2

1+x2
2<1−(x2

3+...+x2

N
)
dx1dx2

= π

∫
x2

3+...+x2

N
<1

1 − (x2
3 + . . . + x2

N
)dx3 . . . dx

N

= π(N − 2)VN−2

∫ 1

0
(1 − r2)rN−3dr =

2π
N

VN−2. ��



2.6 Exercises for Chap. 2 45

2.5 Comments

The construction of the Lebesgue integral in Chap. 2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space L+ defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (un) of elementary functions such that

sup
n

∫
Ω

un dμ < ∞.

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

– Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

– The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].
Lemma 2.4.7 is due to Baker [4]. The book by Saks [67] is still an excellent

reference on integration theory.
The history of integration theory is described in [39,57]. See also [31] on the life

and the work of Émile Borel.
An informal version of the Lebesgue dominated convergence theorem appears

(p. 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).

2.6 Exercises for Chap. 2

1. (Independence of J4.) The functional defined on

L =
{
u : N→ R : lim

k→∞
u(k) exists

}

by 〈 f , u〉 = lim
k→∞

u(k) satisfies (J1−2−3) but not J4.

2. (Independence of J5.) The elementary integral defined on

L = {u : [0, 1]→ R : x �→ ax : a ∈ R}

by ∫
u dμ = u(1)

is not a positive measure.
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3. (Counting measure.) Let Ω be a set. The elementary integral defined on

L = {u : Ω→ R : {u(x) � 0} is finite}

by ∫
Ω

u dμ =
∑

u(x)�0

u(x),

satisfies

L1(N, μ) =

⎧⎪⎪⎨⎪⎪⎩u : N→ R :
∞∑

n=0

|u(n)| < ∞
⎫⎪⎪⎬⎪⎪⎭

and ∫
N

u dμ =
∞∑

n=0

u(n).

Prove also that when Ω = R, the set R is not measurable.
4. (Axiomatic definition of the Cauchy integral.) Let us recall that τyu(x) = u(x −

y). Let f : K(RN)→ R be a linear functional such that

(a) for every u ∈ K(RN), u ≥ 0⇒ 〈 f , u〉 ≥ 0;
(b) for every y ∈ RN and for every u ∈ K(RN), 〈 f , τyu〉 = 〈 f , u〉.

Then there exists c ≥ 0 such that for every u ∈ K(RN), 〈 f , u〉 = c
∫
RN

u dx.

Hint: Use Proposition 2.3.2.
5. Let μ be an elementary integral on Ω. Then the following statements are

equivalent:

(a) u ∈ L1(Ω, μ).
(b) There exists a decreasing sequence (un) ⊂ L+(Ω, μ) such that almost

everywhere, u = lim
n→∞un and inf

∫
Ω

undμ > −∞.

6. Let Ω = B(0, 1) ⊂ R
N . Then

λ + N > 0⇐⇒ |x|λ ∈ L1(Ω), λ + N < 0⇐⇒ |x|λ ∈ L1(RN \ Ω).

7. Let u : R2 → R be such that for every y ∈ R, u(., y) is continuous and for every
x ∈ R, u(x, .) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to u on R

2.

8. Construct a sequence (ωk) of open dense subsets of R such that m

⎛⎜⎜⎜⎜⎜⎝
∞⋂

k=0

ωk

⎞⎟⎟⎟⎟⎟⎠ = 0.

Hint: Let (qn) be an enumeration of Q and let In,k be the open interval with

center qn and length 1/2n+k. Define ωk =

∞⋃
n=0

In,k.
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9. Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d(u, v) = max

0≤x≤1
|u(x) − v(x)|.

Hint: Let Y be the set of functions in X that are differentiable at at least one
point and define, for n ≥ 1,

Fn = {u ∈ X : there exists 0 ≤ x ≤ 1 such that,
for all 0 ≤ y ≤ 1, |u(x) − u(y)| ≤ n|x − y|}.

Since Y ⊂
∞⋃

n=1

Fn, it suffices to prove that
∞⋂

n=1

Gn is dense in X, where Gn = X\Fn.

By Baire’s theorem, it suffices to prove that every Gn is open and dense.
It is clear that

Gn = {u ∈ X : for all 0 ≤ x ≤ 1, there exists 0 ≤ y ≤ 1
such that n|x − y| < |u(x) − u(y)|}.

Let u ∈ Gn. The function

f (x) = max{|u(x) − u(y)| − n(x − y)| : 0 ≤ y ≤ 1},

is such that
inf

0≤x≤1
f (x) = min

0≤x≤1
f (x) > 0.

It follows that Gn is open.
We use the functions f j,k of Definition 2.3.1. Let u ∈ X and ε > 0. Define

u j(x) =
∑

0≤k≤2 j

u(k/2 j) f j,k(x),

gm(x) = ε d(2mx,N).

Then for j and m large enough,

d(u, u j) < ε, u j + gm ∈ Gn.

It follows that Gn is dense.
10. (Iterated integrals, Baker 1990.) Let K = [0, 1]N and let μ be an elementary

integral on Ω. Assume that f ∈ L1(Ω, μ) and

F : K × Ω→ R : (x, y) �→ F(x, y)

are such that
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(a) For almost all y ∈ Ω, F(., y) is continuous;
(b) For all x ∈ K, F(x, .) is μ-measurable;
(c) |F(x, y)| ≤ f (y).

Then:

(a) The function G(x) =
∫
Ω

F(x, y)dμ is continuous on K.

(b) The function H(y) =
∫

K
F(x, y)dx is μ-measurable on Ω.

(c)
∫

K
G(x)dx =

∫
Ω

H(y)dμ.

Hint: Define on Ω
H j(y) = 2− jN

∑
k∈NN

|k|∞<2 j

F(k/2 j, y)

and observe that

lim
j→∞H j(y) = H(y), lim

j→∞

∫
Ω

H j(y)dμ =
∫
Ω

H(y)dμ.

11. (Proof of Euler’s identity by M. Ivan, 2008).

(a)
∫ 1

−1
dy

∫ 1

−1

dx
1 + 2xy + y2

=

∫ 1

−1

log 1+y
1−y

y
dy = 2

∞∑
n=0

∫ 1

−1

y2n

2n + 1
dy

= 4
∞∑

n=0

1
(2n + 1)2

.

(b)
∫ 1

−1
dx

∫ 1

−1

dy

1 + 2xy + y2
=

∫ 1

−1

π

2
√

1 − x2
dx =

π2

2
.

(c) The formula
∞∑

n=0

1
(2n + 1)2

=
π2

8
is equivalent to the formula

∞∑
n=1

1
n2
=
π2

6
.

12. Let u ∈ C1(RN)
⋂ K(RN). Then

u(x) =
1

NV
N

∫
RN

∇u(x − y) · y
|y|N dy.

Hint: For every σ ∈ SN−1,

u(x) =
∫ ∞

0
∇u(x − rσ) · σdr.
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13. The Newton potential of the ball BR = B(0,R) ⊂ R
3 is defined, for |y| > R, by

ϕ(y) =
∫

BR

dx
|y − x| .

Since BR is invariant by rotation, we may assume that y = (0, 0, a), where a = |y|.
It follows that

ϕ(y) =
∫

BR

dx√
x2

1 + x2
2 + (x3 − a)2

= 2π
∫ R

−R
dx3

∫ √R2−x2
3

0

r√
r2 + (x3 − a)2

dr

= π

∫ R

−R

(√
R2 + a2 − 2ax3 − a + x3

)
dx3

=
4
3
π

R3

a
=

4
3
π

R3

|y| .

14. The Newton potential of the sphere S2 is defined, for |y| � 1, by

ψ(y) =
∫
S2

dσ
|y − σ| .

For |y| > R, we have that

4
3
π

R3

|y| =
∫ R

0
r2 f (r, y)dr,

where

f (r, y) =
∫
S2

dσ
|y − rσ| .

It follows that

4π
R2

|y| = R2 f (R, y).

In particular, for |y| > 1,

ψ(y) = f (1, y) =
4π
|y| .



Chapter 3
Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1. A norm on a real vector space X is a function

X → R : u �→ ||u||
such that

(N1) for every u ∈ X \ {0}, ||u|| > 0;
(N2) for every u ∈ X and for α ∈ R, ||αu|| = |α| ||u||;
(N3) (Minkowski’s inequality) for every u, v ∈ X,

||u + v|| ≤ ||u|| + ||v||.
A (real) normed space is a (real) vector space together with a norm on that space.

Examples. 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The space
Y together with ||.|| (restricted to Y) is a normed space.

2. Let (X1, ||.||1), (X2, ||.||2) be normed spaces. The space X1 × X2 together with

||(u1, u2)|| = max(||u1||1, ||u2||2)

is a normed space.
3. We define the norm on the space RN to be

|x|∞ = max
{
|x1|, . . . , |x

N
|
}
.

Every normed space is a metric space.

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 3, © Springer Science+Business Media, LLC 2013
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Proposition 3.1.2. Let X be a normed space. The function

X × X → R : (u, v) �→ ||u − v||

is a distance on X. The following mappings are continuous:

X → R : u �→ ||u||,
X × X → X : (u, v) �→ u + v,
R × X → X : (α, u) �→ αu.

Proof. By N1 and N2,

d(u, v) = 0⇐⇒ u = v, d(u, v) = || − (u − v)|| = ||v − u|| = d(v, u).

Finally, by Minkowski’s inequality,

d(u,w) ≤ d(u, v) + d(v,w).

Since by Minkowski’s inequality,

∣∣∣∣||u|| − ||v||
∣∣∣∣ ≤ ||u − v||,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. ��

Definition 3.1.3. Let X be a normed space and (un) ⊂ X. The series
∞∑

n=0

un

converges, and its sum is u ∈ X if the sequence
k∑

n=0

un converges to u. We then

write
∞∑

n=0

un = u.

The series
∞∑

n=0

un converges normally if
∞∑

n=0

||un|| < ∞.

Definition 3.1.4. A Banach space is a complete normed space.

Proposition 3.1.5. In a Banach space X, the following statements are equivalent:

(a)
∞∑

n=0

un converges;

(b) lim
j→ ∞
j < k

k∑
n= j+1

un = 0.
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Proof. Define S k =

k∑
n=0

un. Since X is complete, we have

(a)⇐⇒ lim
j→ ∞
j < k

||S k − S j|| = 0⇐⇒ lim
j→∞
j < k

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
k∑

n= j+1

un

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ = 0⇐⇒ b). ��

Proposition 3.1.6. In a Banach space, every normally convergent series converges.

Proof. Let
∞∑

n=0

un be a normally convergent series in the Banach space X.

Minkowski’s inequality implies that for j < k,
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
k∑

n= j+1

un

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ ≤
k∑

n= j+1

||un||.

Since the series is normally convergent,

lim
j→ ∞
j < k

k∑
n= j+1

||un|| = 0.

It suffices then to use the preceding proposition. ��
Examples. 1. The space of bounded continuous functions on the metric space X,

BC(X) =

{
u ∈ C(X) : sup

x∈X
|u(x)| < ∞

}
,

together with the norm

||u||∞ = sup
x∈X
|u(x)|,

is a Banach space. Convergence with respect to ||.||∞ is uniform convergence.
2. Let μ be a positive measure onΩ. We denote by L1(Ω, μ) the quotient ofL1(Ω, μ)

by the equivalence relation “equality almost everywhere.” We define the norm

||u||1 =
∫
Ω

|u| dμ.

Convergence with respect to ||.||1 is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L1(Ω, μ) is a Banach space.

3. Let dx be the Lebesgue measure on the open subsetΩ of RN . We denote by L1(Ω)
the space L1(Ω, dx). Convergence in mean is not implied by simple convergence,
and almost everywhere convergence is not implied by convergence in mean.
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If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||1 =
∫
Ω

|u|dx ≤ m(Ω)||u||∞.

Hence BC(Ω) ⊂ L1(Ω), and the canonical injection is continuous, since

||u − v||1 ≤ m(Ω)||u − v||∞.
Proposition 3.1.7. Let u ∈ L1(Ω, μ). Then for every ε > 0, there exists δ > 0 such

that for every measurable subset A of Ω satisfying μ(A) ≤ δ,
∫

A
|u|dμ ≤ ε.

Proof. Let ε > 0. Markov’s inequality implies that for every t > 0 and for every
measurable set A,

∫
A
|u|dμ ≤ t μ(A) +

∫
{|u|>t}
|u|dμ ≤ t μ(A) + ||u||1/t.

We choose t = 2||u||1/ε and δ = ε/(2t). We obtain, when μ(A) ≤ δ, that
∫

A
|u|dμ ≤ ε.

��
Definition 3.1.8. A subset S of L1(Ω, μ) is uniformly integrable if for every ε > 0,
there exists δ > 0 such that for every measurable subset A of Ω satisfying μ(A) ≤ δ,

sup
u∈S

∫
A
|u|dμ ≤ ε.

Theorem 3.1.9 (Vitali). Let μ(Ω) < ∞ and let (un) ⊂ L1(Ω, μ) be a sequence
almost everywhere converging to u. Then the following properties are equivalent:

(a) {un : n ∈ N} is uniformly integrable;
(b) ||un − u||1 → 0, n→ ∞.

Proof. Assume that (a) is satisfied and let ε > 0. For every n, we have
∫
Ω

|un − u|dμ =
∫
|un−u|≤ε

|un − u|dμ +
∫
|un−u|>ε

|un − u|dμ (∗)

≤ εμ(Ω) +
∫
|un−u|>ε

|un|dμ +
∫
|un−u|>ε

|u|dμ.
There exists, by assumption and Fatou’s lemma, a δ > 0 such that for every
measurable subset A of Ω satisfying μ(A) ≤ δ,

sup
n

∫
A
|un|dμ ≤ ε,

∫
A
|u|dμ ≤ ε. (∗∗)

By Lebesgue’s dominated convergence theorem and the fact that μ(Ω) < ∞, there
exists m such that for every n ≥ m,
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μ{|un − u| > ε} ≤ δ.

It follows from (∗) and (∗∗) that for every n ≥ m,

∫
Ω

|un − u|dμ ≤ (μ(Ω) + 2)ε.

Since ε > 0 is arbitrary, ||un − u||1 → 0, n→ ∞.
Assume that (b) is satisfied. For every measurable subset A of Ω, we have

∫
A
|un|dμ ≤

∫
A
|u|dμ + ||un − u||1.

Let ε > 0. There exists m such that for every n ≥ m, ||un − u||1 ≤ ε/2 and there exists
δ > 0 such that for every measurable subset A of Ω, μ(A) ≤ δ implies that

∫
A
|u|dμ ≤ ε/2,

∫
A
|u1|dμ ≤ ε, . . .

∫
A
|um−1|dμ ≤ ε.

Then for every n,
∫

A
|un|dμ ≤ ε and {un : n ∈ N} is uniformly integrable. ��

Theorem 3.1.10 (de la Vallée Poussin criterion). Let S ⊂ L1(Ω, μ) be such that
c = sup

u∈S
||u||1 < +∞. The following properties are equivalent:

(a) S is uniformly integrable;
(b) there exists an increasing convex function F : [0,∞[→ [0,∞[ such that

lim
t→∞ F(t)/t = +∞ and M = sup

u∈S

∫
Ω

F(|u|)dμ < ∞.

Proof. If S satisfies (b), then for every ε > 0, there exists t > 0 such that for every
s > t, F(s)/s > M/ε. Hence for all u ∈ S , we have

∫
{|u|>t}
|u|dμ ≤ ε

M

∫
{|u|>t}

F(|u|)dμ ≤ ε.

We choose δ = ε/t. For every measurable subset A of Ω such that μ(A) ≤ δ and for
every u ∈ S , we obtain

∫
A
|u|dμ ≤ tμ(A) +

∫
{|u|>t}
|u|dμ ≤ 2ε.

Markov’s inequality implies that for every u ∈ S and every t > 0,

μ{|u| > t} ≤ ||u||1/t ≤ c/t.
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Assume that S satisfies (a). Then there exists a strictly increasing sequence of

integers an ≥ 1 such that sup
u∈S

∫
{|u|>an}

|u|dμ ≤ 2−n. We define f (s) = 0 on [0, 1[ and

f (s) = f (m) on ]m,m+ 1[, where f (m) is the number of integers n such that an ≤ m.

Let F(t) =
∫ t

0
f (s)ds. We choose u ∈ S , and we define bm = μ{|u| > m}. Since

∫
Ω

F(|u|)dμ ≤ f (1)μ{1 < |u| ≤ 2} + ( f (1) + f (2))μ{2 < |u| ≤ 3} + · · ·

=

∞∑
m=1

f (m)bm,

and
∞∑

m=an

bm ≤
∞∑

m=an

m μ{m < |u| ≤ m + 1} ≤
∫
{|u|>an}

|u|dμ ≤ 2−n,

we find that
∞∑

m=1

f (m)bm =

∞∑
n=1

∞∑
m=an

bm ≤ 1. ��

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir l’opération que l’on considère, de même qu’on fait la
théorie de l’addition sans définir la nature des termes à
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.

Proposition 3.2.1. Let X and Y be normed spaces and A : X → Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

(b) c = sup
u ∈ X
u � 0

||Au||
||u|| < ∞.

Proof. If c < ∞, we obtain

||Au − Av|| = ||A(u − v)|| ≤ c||u − v||.

Hence A is continuous.
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If A is continuous, there exists δ > 0 such that for every u ∈ X,

||u|| = ||u − 0|| ≤ δ⇒ ||Au|| = ||Au − A0|| ≤ 1.

Hence for every u ∈ X \ {0},

||Au|| = ||u||
δ
||A

(
δ

||u||u
)
|| ≤ ||u||

δ
. ��

Proposition 3.2.2. The function

||A|| = sup
u ∈ X
u � 0

||Au||
||u|| = sup

u ∈ X||u|| = 1

||Au||

defines a norm on the space L(X, Y) = {A : X → Y : A is linear and continuous}.
Proof. By the preceding proposition, if A ∈ L(X, Y), then 0 ≤ ||A|| < ∞. If A � 0, it
is clear that ||A|| > 0. It follows from axiomN2 that

||αA|| = sup
u ∈ X||u|| = 1

||αAu|| = sup
u ∈ X||u|| = 1

|α| ||Au|| = |α| ||A||.

It follows from Minkowski’s inequality that

||A + B|| = sup
u ∈ X||u|| = 1

||Au + Bu|| ≤ sup
u ∈ X||u|| = 1

(||Au|| + ||Bu||) ≤ ||A|| + ||B||. ��

Proposition 3.2.3 (Extension by density). Let Z be a dense subspace of a normed
space X, Y a Banach space, and A ∈ L(Z, Y). Then there exists a unique mapping
B ∈ L(X, Y) such that B

∣∣∣
Z
= A. Moreover, ||B|| = ||A||.

Proof. Let u ∈ X. There exists a sequence (un) ⊂ Z such that un → u. The sequence
(Aun) is a Cauchy sequence, since

||Au j − Auk|| ≤ ||A|| ||u j − uk || → 0, j, k → ∞

by Proposition 1.2.3. We denote by f its limit. Let (vn) ⊂ Z be such that vn → u.
We have

||Avn − Aun|| ≤ ||A|| ||vn − un|| ≤ ||A|| (||vn − u|| + ||u − un||)→ 0, n→ ∞.

Hence Avn → f , and we define Bu = f . By Proposition 3.1.2, B is linear. Since for
every n,

||Aun|| ≤ ||A|| ||un||,
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we obtain by Proposition 3.1.2 that

||Bu|| ≤ ||A|| ||u||.

Hence B is continuous and ||B|| ≤ ||A||. It is clear that ||A|| ≤ ||B||. Hence ||A|| = ||B||.
If C ∈ L(X, Y) is such that C

∣∣∣
Z
= A, we obtain

Cu = lim
n→∞Cun = lim

n→∞ Aun = lim
n→∞ Bun = Bu. ��

Proposition 3.2.4. Let X and Y be normed spaces, and let (An) ⊂ L(X, Y) and
A ∈ L(X, Y) be such that ||An − A|| → 0. Then (An) converges simply to A.

Proof. For every u ∈ X, we have

||Anu − Au|| = ||(An − A)u|| ≤ ||An − A|| ||u||. ��

Proposition 3.2.5. Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (An) ⊂ L(X, Y) be such that

(a) c = sup
n
||An|| < ∞;

(b) for every v ∈ Z, (Anv) converges.

Then An converges simply to A ∈ L(X, Y), and

||A|| ≤ lim
n→∞
||An||.

Proof. Let u ∈ X and ε > 0. By density, there exists v ∈ B(u, ε) ∩ Z. Since (Anv)
converges, Proposition 1.2.3 implies the existence of n such that

j, k ≥ n⇒ ||A jv − Akv|| ≤ ε.

Hence for j, k ≥ n, we have

||A ju − Aku|| ≤ ||A ju − A jv|| + ||A jv − Akv|| + ||Akv − Aku||
≤ 2c ||u − v|| + ε
= (2c + 1)ε.

The sequence (Anu) is a Cauchy sequence, since ε > 0 is arbitrary. Hence (Anu)
converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2
that A is linear and that

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞
||An|| ||u||.

But then A is continuous and ||A|| ≤ lim
n→∞
||An||. ��
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Theorem 3.2.6 (Banach–Steinhaus theorem). Let X be a Banach space, Y a
normed space, and let (An) ⊂ L(X, Y) be such that for every u ∈ X,

sup
n
||Anu|| < ∞.

Then

sup
n
||An|| < ∞.

First Proof. Theorem 1.3.13 applied to the sequence Fn : u �→ ||Anu|| implies the
existence of a ball B(v, r) such that

c = sup
n

sup
u∈B(v,r)

||Anu|| < ∞.

It is clear that for every y, z ∈ Y,

||y|| ≤ max{||z + y||, ||z− y||}. (∗)
Hence for every n and for every w ∈ B(0, r), ||Anw|| ≤ c, so that

sup
n
||An|| ≤ c/r.

Second Proof. Assume to obtain a contradiction that supn ||An|| = +∞. By consider-
ing a subsequence, we assume that n 3n ≤ ||An||. Let us define inductively a sequence
(un). We choose u0 = 0. There exists vn such that ||vn|| = 3−n and 3

4 3−n||An|| ≤ ||Anvn||.
By (∗), replacing if necessary vn by −vn, we obtain

3
4

3−n||An|| ≤ ||Anvn|| ≤ ||An(un−1 + vn)||.

We define un = un−1 + vn, so that ||un − un−1|| = 3−n. It follows that for every k ≥ n,

||uk − un|| ≤ 3−n/2.

Hence (un) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

||u − un|| ≤ 3−n/2.

We conclude that

||Anu|| ≥ ||Anun|| − ||An(un − u)||

≥ ||An||
[
3
4

3−n − ||un − u||
]

≥ n 3n

[
3
4

3−n − 1
2

3−n

]
= n/4. ��
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Corollary 3.2.7. Let X be a Banach space, Y a normed space, and (An) ⊂ L(X, Y)
a sequence converging simply to A. Then (An) is bounded, A ∈ L(X, Y), and

||A|| ≤ lim
n→∞
||An||.

Proof. For every u ∈ X, the sequence (Anu) is convergent, hence bounded, by
Proposition 1.2.3. The Banach–Steinhaus theorem implies that sup

n
||An|| < ∞. It

follows from Proposition 3.1.2 that A is linear and

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞
||An|| ||u||,

so that A is continuous and ||A|| ≤ lim
n→∞
||An||. ��

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.

Example (Convergence of functionals). We define the linear continuous functionals
fn on L1(]0, 1[) to be

〈 fn, u〉 =
∫ 1

0
u(x)xn dx.

Since for every u ∈ L1(]0, 1[) such that ||u||1 = 1, we have

|〈 fn, u〉| <
∫ 1

0
|u(x)|dx = 1,

it is clear that

|| fn|| = sup
u ∈ L1

||u||1 = 1

|〈 fn, u〉| ≤ 1.

Choosing vk(x) = (k + 1)xk, we obtain

lim
k→∞
〈 fn, vk〉 = lim

k→∞
k + 1

k + n + 1
= 1.

It follows that || fn|| = 1, and for every u ∈ L1(]0, 1[) such that ||u||1 = 1,

|〈 fn, u〉| < || fn||.

Lebesgue’s dominated convergence theorem implies that ( fn) converges simply to
f = 0. Observe that

|| f || < lim
n→∞
|| fn||.
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1. A scalar product on the (real) vector space X is a function

X × X → R : (u, v) �→ (u|v)

such that

(S1) for every u ∈ X \ {0}, (u|u) > 0;
(S2) for every u, v,w ∈ X and for every α, β ∈ R, (αu + βv|w) = α(u|w) + β(v|w);
(S3) for every u, v ∈ X, (u|v) = (v|u).

We define ||u|| = √(u|u). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2. Let u, v,w ∈ X and let α, β ∈ R. Then

(a) (u|αv + βw) = α(u|v) + β(u|w);
(b) ||αu|| = |α| ||u||.
Proposition 3.3.3. Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (parallelogram identity) ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2;
(b) (polarization identity) (u|v) = 1

4 ||u + v||2 − 1
4 ||u − v||2;

(c) (Pythagorean identity) (u|v) = 0⇐⇒ ||u + v||2 = ||u||2 + ||v||2.

Proof. Observe that

||u + v||2 = ||u||2 + 2(u|v) + ||v||2, (∗)
||u − v||2 = ||u||2 − 2(u|v) + ||v||2. (∗∗)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. ��
Proposition 3.3.4. Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (Cauchy–Schwarz inequality) |(u|v)| ≤ ||u|| ||v||;
(b) (Minkowski’s inequality) ||u + v|| ≤ ||u|| + ||v||.
Proof. It follows from (∗) and (∗∗) that for ||u|| = ||v|| = 1,

|(u|v)| ≤ 1
2

(
||u||2 + ||v||2

)
= 1.

Hence for u � 0 � v, we obtain

|(u|v)|
||u|| ||v|| =

∣∣∣∣∣∣
(

u
||u||

∣∣∣ v
||v||

)∣∣∣∣∣∣ ≤ 1.
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By (∗) and the Cauchy–Schwarz inequality, we have

||u + v||2 ≤ ||u||2 + 2||u|| ||v|| + ||v||2 =
(
||u|| + ||v||

)2
. ��

Corollary 3.3.5. (a) The function ||u|| = √(u|u) defines a norm on the pre-Hilbert
space X.

(b) The function

X × X → R : (u, v) �→ (u|v)

is continuous.

Definition 3.3.6. A family (e j) j∈J in a pre-Hilbert space X is orthonormal if

(e j|ek) = 1, j = k,
= 0, j � k.

Proposition 3.3.7 (Bessel’s inequality). Let (en) be an orthonormal sequence in a
pre-Hilbert space X and let u ∈ X. Then

∞∑
n=0

∣∣∣(u|en)
∣∣∣2 ≤ ||u||2.

Proof. It follows from the Pythagorean identity that

||u||2 =
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

(u|en)en +

k∑
n=0

(u|en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

(u|en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

+

k∑
n=0

∣∣∣(u|en)
∣∣∣2

≥
k∑

n=0

∣∣∣(u|en)
∣∣∣2.

��
Proposition 3.3.8. Let (e0, . . ., ek) be a finite orthonormal sequence in a pre-Hilbert
space X, u ∈ X, and x0, . . . , xk ∈ R. Then

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

(u | en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

xnen

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

Proof. It follows from the Pythagorean identity that
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∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

xnen

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

(u | en)en +

k∑
n=0

((u | en) − xn)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣u −

k∑
n=0

(u | en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

+

k∑
n=0

∣∣∣(u | en) − xn

∣∣∣2.
��

Definition 3.3.9. A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10. Let (en) be a Hilbert basis of a pre-Hilbert space X and let
u ∈ X. Then

(a) u =
∞∑

n=0

(u | en)en;

(b) (Parseval’s identity) ||u||2 =
∞∑

n=0

|(u | en)|2.

Proof. Let ε > 0. By definition, there exists a sequence x0, . . . , x j ∈ R such that

||u −
j∑

n=0

xnen|| < ε.

It follows from the preceding proposition that for k ≥ j,

||u −
k∑

n=0

(u | en)en|| < ε.

Hence u =
∞∑

n=0

(u | en)en, and by Proposition 3.1.2,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ limk→∞

k∑
n=0

(u | en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= lim
k→∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

k∑
n=0

(u | en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= lim
k→∞

k∑
n=0

∣∣∣(u | en)
∣∣∣2 =

∞∑
n=0

∣∣∣(u | en)
∣∣∣2.
��

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11. Assume the existence of a sequence ( f j) generating a dense
subset of the normed space X. Then X is separable.

Proof. By assumption, the space of (finite) linear combinations of ( f j) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of ( f j)
is dense in X. Since this space is countable, X is separable. ��
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Proposition 3.3.12. Let X be an infinite-dimensional pre-Hilbert space. The fol-
lowing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof. By the preceding proposition, (b) implies (a).
If X is separable, it contains a sequence ( f j) generating a dense subspace. We

may assume that ( f j) is free. Since the dimension of X is infinite, the sequence ( f j)
is infinite. We define by induction the sequences (gn) and (en):

e0 = f0/|| f0||,

gn = fn −
n−1∑
j=0

( fn|e j)e j, en = gn/||gn||, n ≥ 1.

The sequence (en) generated from ( fn) by the Gram–Schmidt orthonormalization
process is a Hilbert basis of X. ��
Definition 3.3.13. A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer). Let (en) be an orthonormal sequence in the

Hilbert space X. The sequence
∞∑

n=0

cnen converges if and only if
∞∑

n=0

c2
n < ∞. Then

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞∑

n=0

cnen

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

=

∞∑
n=0

c2
n.

Proof. Define S k =

k∑
n=0

cnen. The Pythagorean identity implies that for j < k,

||S k − S j||2 =
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
k∑

n= j+1

cnen

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

=

k∑
n= j+1

c2
n.

Hence

lim
j→∞
j < k

||S k − S j||2 = 0⇐⇒ lim
j→ ∞
j < k

k∑
n= j+1

c2
n = 0⇐⇒

∞∑
n=0

c2
n < ∞.

Since X is complete, (S k) converges if and only if
∞∑

n=0

c2
n < ∞. Then

∞∑
n=0

cnen =

lim
k→∞

S k, and by Proposition 3.1.2,
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|| lim
k→∞

S k ||2 = lim
k→∞
||S k||2 = lim

k→∞

k∑
n=0

c2
n =

∞∑
n=0

c2
n. ��

Examples. 1. Let μ be a positive measure on Ω. We denote by L2(Ω, μ) the
quotient of

L2(Ω, μ) =

{
u ∈ M(Ω, μ) :

∫
Ω

|u|2dμ < ∞
}

by the equivalence relation “equality almost everywhere.” If u, v ∈ L2(Ω, μ), then
u + v ∈ L2(Ω, μ). Indeed, almost everywhere on Ω, we have

|u(x) + v(x)|2 ≤ 2(|u(x)|2 + |v(x)|2).

We define the scalar product

(u|v) =
∫
Ω

uv dμ

on the space L2(Ω, μ).
The scalar product is well defined, since almost everywhere on Ω,

|u(x) v(x)| ≤ 1
2

(|u(x)|2 + |v(x)|2).

By definition,

||u||2 =
(∫

Ω

|u|2dμ

)1/2

.

Convergence with respect to ||.||2 is convergence in quadratic mean. We will prove
in Sect. 4.2, on Lebesgue spaces, that L2(Ω, μ) is a Hilbert space. If μ(Ω) < ∞, it
follows from the Cauchy–Schwarz inequality that for every u ∈ L2(Ω, μ),

||u||1 =
∫
Ω

|u| dμ ≤ μ(Ω)1/2||u||2.

Hence L2(Ω, μ) ⊂ L1(Ω, μ), and the canonical injection is continuous.
2. Let dx be the Lebesgue measure on the open subsetΩ of RN . We denote by L2(Ω)

the space L2(Ω, dx). Observe that

1
x
∈ L2(]1,∞[) \ L1(]1,∞[) and

1√
x
∈ L1(]0, 1[) \ L2(]0, 1[).

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),
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||u||22 =
∫
Ω

u2dx ≤ m(Ω)||u||2∞.

Hence BC(Ω) ⊂ L2(Ω), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945). Let (en) be an orthonormal sequence
in L2(]a, b[). The following properties are equivalent:

(a) (en) is a Hilbert basis;

(b) for every a ≤ t ≤ b,
∞∑

n=1

(∫ t

a
en(x)dx

)2

= t − a;

(c)
∞∑

n=1

∫ b

a

(∫ t

a
en(x)dx

)2

dt =
(b − a)2

2
.

Proof. Property (b) follows from (a) and Parseval’s identity applied to χ[a,t].
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.

��

Example. The sequence en(x) =

√
2
π

sin n x is orthonormal in L2(]0, π[). Since

2
π

∞∑
n=1

∫ π

0

(∫ t

0
sin n x dx

)2

dt = 3
∞∑

n=1

1
n2

and since by a classical identity due to Euler,

∞∑
n=1

1
n2
=
π2

6
,

the sequence (en) is a Hilbert basis of L2(]0, π[).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1. Let X be a real vector space and let A : X → X be a linear
mapping. The eigenvectors corresponding to the eigenvalue λ ∈ R are the nonzero
solutions of

Au = λu.

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range
of A.
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Definition 3.4.2. Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X → X such that for every u, v ∈ X, (Au|v) = (u|Av).

Proposition 3.4.3. Let X be a pre-Hilbert space and A : X → X a symmetric
continuous operator. Then

||A|| = sup
u ∈ X||u|| = 1

|(Au|u)|.

Proof. It is clear that

a = sup
u ∈ X||u|| = 1

|(Au|u)| ≤ b = sup
u, v ∈ X

||u|| = ||v|| = 1

|(Au|v)| = ||A||.

If ||u|| = ||v|| = 1, it follows from the parallelogram identity that

|(Au|v)| = 1
4
|(A(u + v)|u + v) − (A(u − v)|u − v)|

≤ a
4

[||u + v||2 + ||u − v||2]

=
a
4

[2||u||2 + 2||v||2] = a.

Hence b = a. ��
Corollary 3.4.4. Under the assumptions of the preceding proposition, there exists
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un|| → 0, |λ1| = ||A||.

Proof. Consider a maximizing sequence (un):

||un|| = 1, |(Aun|un)| → sup
u ∈ X||u|| = 1

|(Au|u)| = ||A||.

By passing if necessary to a subsequence, we can assume that (Aun|un) → λ1,
|λ1| = ||A||. Hence

0 ≤ ||Aun − λ1un||2 = ||Aun||2 − 2λ1(Aun|un) + λ2
1||un||2

≤ 2λ2
1 − 2λ1(Aun|un)→ 0, n→ ∞. ��

Definition 3.4.5. Let X and Y be normed spaces. A mapping A : X → Y is compact
if the set {Au : u ∈ X, ||u|| ≤ 1} is precompact in Y.
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By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6. Let X be a Hilbert space and let A : X → X be a symmetric
compact operator. Then there exists an eigenvalue λ1 of A such that |λ1| = ||A||.
Proof. We can assume that A � 0. The preceding corollary implies the existence of
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un|| → 0, |λ1| = ||A||.

Passing if necessary to a subsequence, we can assume that Aun → v. Hence un →
u = λ−1

1 v, ||u|| = 1, and Au = λ1u. ��
Theorem 3.4.7 (Poincaré’s principle). Let X be a Hilbert space and A : X → X a
symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, . . . , en−1) and the corresponding eigenvalues (λ1, . . . , λn−1). Then there exists an
eigenvalue λn of A such that

|λn| = max
{|(Au|u)| : u ∈ X, ||u|| = 1, (u|e1) = . . . = (u|en−1) = 0

}

and λn → 0, n→ ∞.

Proof. The closed subspace of X

Xn =
{
u ∈ X : (u|e1) = . . . = (u|en−1) = 0

}

is invariant by A. Indeed, if u ∈ Xn and 1 ≤ j ≤ n − 1, then

(Au|e j) = (u|Ae j) = λ j(u|e j) = 0.

Hence An = A
∣∣∣∣
Xn

is a nonzero symmetric compact operator, and there exist an

eigenvalue λn of An such that |λn| = ||An|| and a corresponding eigenvector en ∈ Xn

such that ||en|| = 1. By construction, the sequence (en) is orthonormal, and the
sequence (|λn|) is decreasing. Hence |λn| → d, n→ ∞, and for j � k,

||Ae j − Aek||2 = λ2
j + λ

2
k → 2d2, j, k → ∞.

Since A is compact, d = 0. ��
Theorem 3.4.8. Under the assumptions of the preceding theorem, for every u ∈ X,

the series
∞∑

n=1

(u|en)en converges and u −
∞∑

n=1

(u|en)en belongs to the kernel of A:

Au =
∞∑

n=1

λn(u|en)en. (∗)
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Proof. For every k ≥ 1, u −
k∑

n=1

(u|en)en ∈ Xk+1. It follows from Proposition 3.3.8.

that
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Au −

k∑
n=1

λn(u|en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ ||Ak+1||

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ u −

k∑
n=1

(u|en)en

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ ||Ak+1|| ||u|| → 0, k → ∞.

Bessel’s inequality implies that
∞∑

n=1

|(u|en)|2 ≤ ||u||2. We deduce from the Riesz–

Fischer theorem that
∞∑

n=1

(u|en)en converges to v ∈ X. Since A is continuous,

Av =
∞∑

n=1

λn(u|en)en = Au

and A(u − v) = 0. ��
Formula (∗) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].
The first proof of the Banach–Steinhaus theorem in Sect. 3.2 is due to Favard

[22], and the second proof to Royden [66].

3.6 Exercises for Chap. 3

1. Prove that BC(Ω) ∩ L1(Ω) ⊂ L2(Ω).
2. Define a sequence (un) ⊂ BC(]0, 1[) such that ||un||1 → 0, ||un||2 = 1, and
||un||∞ → ∞.

3. Define a sequence (un) ⊂ BC(R) ∩ L1(R) such that ||un||1 → ∞, ||un||2 = 1 and
||un||∞ → 0.

4. Define a sequence (un) ⊂ BC(]0, 1[) converging simply to u such that ||un||∞ =
||u||∞ = ||un − u||∞ = 1.

5. Define a sequence (un) ⊂ L1(]0, 1[) such that ||un||1 → 0 and for every
0 < x < 1, lim

n→∞
un(x) = 1. Hint: Use characteristic functions of intervals.

6. On the space C([0, 1]) with the norm ||u||1 =
∫ 1

0
|u(x)|dx, is the linear functional
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f : C([0, 1])→ R : u �→ u(1/2)

continuous?
7. Let X be a normed space such that every normally convergent series converges.

Prove that X is a Banach space.
8. A linear functional defined on a normed space is continuous if and only if its

kernel is closed. If this is not the case, the kernel is dense.
9. Is it possible to derive the norm on L1(]0, 1[) (respectively BC(]0, 1[)) from a

scalar product?
10. Prove Lagrange’s identity in pre-Hilbert spaces:

∣∣∣∣∣∣||v||u − ||u||v∣∣∣∣∣∣2 = 2||u||2||v||2 − 2||u|| ||v||(u|v).

11. Let X be a pre-Hilbert space and u, v ∈ X \ {0}. Then

∣∣∣∣∣
∣∣∣∣∣ u
||u||2 −

v
||v||2

∣∣∣∣∣
∣∣∣∣∣ = ||u − v||
||u|| ||v|| .

Let f , g, h ∈ X. Prove Ptolemy’s inequality:

|| f || ||g − h|| ≤ ||h|| || f − g|| + ||g|| ||h− f ||.

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

(u|v) =
1
2
(||u + v||2 − ||u − v||2).

Verify that

( f + g|h) + ( f − g|h) = 2( f |h),

(u|h) + (v|h) = 2
(u + v

2
|h
)
= (u + v|h).

13. Let f be a linear functional on L2(]0, 1[) such that u ≥ 0 ⇒ 〈 f , u〉 ≥ 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||2. Prove that
f is not necessarily continuous with respect to the norm ||.||1.

14. Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (un) such that
||un|| = 1 and ||Aun|| → ∞. Then use the Banach–Steinhaus theorem to obtain a
contradiction.

15. In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.
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16. Assume that μ(Ω) < ∞. Let (un) ⊂ L1(Ω, μ) be such that

(a) sup
n

∫
Ω

|un|�n(1 + |un|)dμ < +∞;

(b) (un) converges almost everywhere to u.

Then un → u in L1(Ω, μ).



Chapter 4
Lebesgue Spaces

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1. A subset C of a vector space X is convex if for every u, v ∈ C and
every 0 < λ < 1, we have (1 − λ)x + λy ∈ C.

A point x of the convex set C is internal if for every y ∈ X, there exists ε > 0
such that x + εy ∈ C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x ∈ C and every λ > 0, we have λx ∈ C.
Let C be a convex set. A function F : C →] − ∞,+∞] is convex if for every

x, y ∈ C and every 0 < λ < 1, we have F((1 − λ)x + λy) ≤ (1 − λ)F(x) + λF(y).
A function F : C → [−∞,+∞[ is concave if −F is convex.
Let C be a cone. A function F : C →]−∞,+∞] is positively homogeneous if for

every x ∈ C and every λ > 0, we have F(λx) = λF(x).

Examples. Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
a normed space are convex.

Proposition 4.1.2. The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3. Let Y be a hyperplane of a real vector space X, f : Y → R linear
and F : X →] − ∞,+∞] convex and positively homogeneous such that f ≤ F on Y
and

Y ∩ int{x ∈ X : F(x) < ∞} � φ.
Then there exists g : X → R linear such that g ≤ F on X and g

∣∣∣
Y
= f .

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 4, © Springer Science+Business Media, LLC 2013
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Proof. There exists z ∈ X such that X = Y ⊕ Rz. We must prove the existence of
c ∈ R such that for every y ∈ Y and every t ∈ R,

〈 f , y〉 + ct ≤ F(y + tz).

Since F is positively homogeneous, it suffices to verify that for every u, v ∈ Y,

〈 f , u〉 − F(u − z) ≤ c ≤ F(v + z) − 〈 f , v〉.

For every u, v ∈ Y, we have by assumption that

〈 f , u〉 + 〈 f , v〉 ≤ F(u + v) ≤ F(u − z) + F(v + z).

We define

a = sup
u∈Y
〈 f , u〉 − F(u − z) ≤ b = inf

v∈Y F(v + z) − 〈 f , v〉.

Let u ∈ Y∩ int{x ∈ X : F(x) < ∞}. For t large enough, F(tu−z) = tF(u−z/t) < +∞.
Hence −∞ < a. Similarly, b < +∞. We can choose any c ∈ [a, b]. ��

Let us state a cornerstone of functional analysis, the Hahn–Banach theorem.

Theorem 4.1.4. Let Y be a subspace of a separable normed space X and let f ∈
L(Y,R). Then there exists g ∈ L(X,R) such that ||g|| = || f || and g

∣∣∣∣
Y
= f .

Proof. Let (zn) be a sequence dense in X. We define f0 = f , Y0 = Y, and Yn =

Yn−1 +Rzn, n ≥ 1. Let there be fn ∈ L(Yn,R) such that || fn|| = || f || and fn
∣∣∣∣
Yn−1

= fn−1.

If Yn+1 = Yn, we define fn+1 = fn. If this is not the case, the preceding lemma implies

the existence of fn+1 : Yn+1 → R linear such that fn+1

∣∣∣∣
Yn

= fn and for every x ∈ Yn+1,

〈 fn+1, x〉 ≤ || f || ||x||.

On Z =
∞⋃

n=0

Yn we define h by h
∣∣∣∣
Yn

= fn, n ≥ 0. The space Z is dense in X,

h ∈ L(Z,R), ||h|| = || f ||, and h
∣∣∣∣
Y
= f . Finally, by Proposition 3.2.3, there exists

g ∈ L(X,R) such that ||g|| = ||h|| and g
∣∣∣∣
Z
= h. ��

Corollary 4.1.5. Let X be a separable normed space. Then for every u ∈ X,

||u|| = max
f ∈ X′
|| f || = 1

〈 f , u〉 = max
f ∈ X′
f � 0

〈 f , u〉
||u|| .

The next theorem is due to P. Roselli and the author. Let us define

C+ =
{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
.
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Theorem 4.1.6 (Convexity inequality). Let F : C+ → R be a positively homoge-

neous function and let u j ∈ L1(Ω, μ) be such that u j ≥ 0,
∫
Ω

u jdμ > 0, j = 1, 2. If F

is convex, then

F

(∫
Ω

u1dμ,
∫
Ω

u2dμ

)
≤
∫
Ω

F(u1, u2)dμ.

If F is concave, the reverse inequality holds.

Proof. We define F(x) = +∞, x ∈ R2 \C+, and y j =

∫
Ω

u jdμ, j = 1, 2. Lemma 4.1.3

implies the existence of α, β ∈ R such that

F(y1, y2) = αy1 + βy2 and, for all x1, x2 ∈ R, αx1 + βx2 ≤ F(x1, x2). (∗)

For every 0 ≤ λ ≤ 1, we have

α(1 − λ) + βλ ≤ F(1 − λ, λ) ≤ (1 − λ)F(1, 0)+ λF(0, 1),

so that c = sup
0≤λ≤1
|F(1 − λ, λ)| < ∞. Since

∣∣∣F(u1, u2)
∣∣∣ ≤ c(u1 + u2),

the comparison theorem implies that F(u1, u2) ∈ L1(Ω, μ). We conclude from (∗)
that

F

(∫
Ω

u1dμ,
∫
Ω

u2dμ

)
= α

∫
Ω

u1dμ + β
∫
Ω

u2dμ

=

∫
Ω

αu1 + βu2dμ

≤
∫
Ω

F(u1, u2)dμ. ��

Lemma 4.1.7. Let F : C+ → R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof. Assume that F(., 1) is convex. It suffices to prove that for every x, y ∈ ◦C+,
F(x + y) ≤ F(x) + F(y). The preceding inequality is equivalent to

F

(
x1 + y1

x2 + y2
, 1

)
≤ x2

x2 + y2
F

(
x1

x2
, 1

)
+

y2

x2 + y2
F

(
y1

y2
, 1

)
. ��
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Remark. Define F on R
2 by

F(y, z) = −√yz, (y, z) ∈ C+,
= +∞, (y, z) ∈ R2 \C+.

The function F is positively homogeneous and, by the preceding lemma, is convex
on C+, hence on R

2. It is clear that 0 = F on Y = R×{0}. There is no linear function
g : R2 → R such that g ≤ F on R

2 and g = 0 on Y.

The convexity inequality implies a version of the Cauchy–Schwarz inequality: if
v,w ∈ L1(Ω, μ), then

∫
Ω

|vw|1/2dμ ≤
(∫

Ω

|v|dμ
)1/2 (∫

Ω

|w|dμ
)1/2

.

Definition 4.1.8. Let 1 < p < ∞. The exponent p′ conjugate to p is defined by
1/p + 1/p′ = 1. On the Lebesgue space

Lp(Ω, μ) =

{
u ∈ M(Ω, μ) :

∫
Ω

|u|pdμ < ∞
}
,

we define the norm ||u||p =
(∫

Ω

|u|pdμ

)1/p

.

Theorem 4.1.9. Let 1 < p < ∞.

(a) (Hölder’s inequality.) Let v ∈ Lp(Ω, μ) and w ∈ Lp′ (Ω, μ). Then

∫
Ω

|vw|dμ ≤ ||v||p||w||p′ .

(b) (Minkowski’s inequality.) Let v,w ∈ Lp(Ω, μ). Then

||v + w||p ≤ ||v||p + ||w||p.

(c) (Hanner’s inequalities.) Let v,w ∈ Lp(Ω, μ). If 2 ≤ p < ∞, then

||v + w||pp + ||v − w||pp ≤ (||v||p + ||w||p)p +
∣∣∣||v||p − ||w||p∣∣∣p .

If 1 < p ≤ 2, the reverse inequality holds.

Proof. On C+, we define the continuous positively homogeneous functions

F(x1, x2) = x1/p
1 x1/p′

2 ,

G(x1, x2) = (x1/p
1 + x1/p

2 )p,

H(x1, x2) = (x1/p
1 + x1/p

2 )p + |x1/p
1 − x1/p

2 |p.
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Inequality (a) follows from the convexity inequality applied to F and u =
(|v|p, |w|p′). Inequality (b) follows from the convexity inequality applied to G and
u = (|v|p, |w|p). Finally, inequalities (c) follow from the convexity inequality applied
to H and u = (|v|p, |w|p). When v = 0 or w = 0, the inequalities are obvious.

On [0,+∞[, we define f = F(., 1), g = G(., 1), h = H(., 1). It is easy to verify that

f ′′(x) =
1 − p

p2
x

1
p−2,

g′′(x) =
1 − p

p
x−

1
p−1(x−

1
p + 1)p−2,

h′′(x) =
1 − p

p
x−

1
p−1

[
(x−

1
p + 1)p−2 − |x− 1

p − 1|p−2
]
.

Hence f and g are concave. If 2 ≤ p < ∞, then h is concave, and if 1 < p ≤ 2, then
h is convex. It suffices then to use the preceding lemma. ��

4.2 Lebesgue Spaces

Let μ : L → R be a positive measure on the set Ω.

Definition 4.2.1. Let 1 ≤ p < ∞. The space Lp(Ω, μ) is the quotient of Lp(Ω, μ) by
the equivalence relation “equality almost everywhere.” By definition,

||u||Lp(Ω,μ) = ||u||p =
(∫

Ω

|u|pdμ

)1/p

.

When dx is the Lebesgue measure on the open subset Ω of RN , the space Lp(Ω, dx)
is denoted by Lp(Ω).

In practice, we identify the elements of Lp(Ω, μ) and the functions of Lp(Ω, μ).

Proposition 4.2.2. Let 1 ≤ p < ∞. Then the space Lp(Ω, μ) with the norm ||.||p is a
normed space.

Proof. Minkowski’s inequality implies that if u, v ∈ Lp(Ω, μ), then u + v ∈ Lp(Ω, μ)
and

||u + v||p ≤ ||u||p + ||v||p.
It is clear that if u ∈ Lp(Ω, μ) and λ ∈ R, then λu ∈ Lp(Ω, μ) and ||λu||p = |λ| ||u||p.
Finally, if ||u||p = 0, then u = 0 almost everywhere and u = 0 in Lp(Ω, μ). ��

The next inequalities follow from Hölder’s inequality.

Proposition 4.2.3 (Generalized Hölder’s inequality). Let 1 < p j < ∞, u j ∈
Lpj (Ω, μ), 1 ≤ j ≤ k, and 1/p1 + . . . + 1/pk = 1. Then

k∏
j=1

u j ∈ L1(Ω, μ) and
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∫
Ω

k∏
j=1

|u j|dμ ≤
k∏

j=1

||u j||pj .

Proposition 4.2.4 (Interpolation inequality). Let 1 ≤ p < q < r < ∞,

1
q
=

1 − λ
p
+
λ

r
,

and u ∈ Lp(Ω, μ) ∩ Lr(Ω, μ). Then u ∈ Lq(Ω, μ) and

||u||q ≤ ||u||1−λp ||u||λr .

Proposition 4.2.5. Let 1 ≤ p < q < ∞, μ(Ω) < ∞, and u ∈ Lq(Ω, μ). Then u ∈
Lp(Ω, μ) and

||u||p ≤ μ(Ω)
1
p− 1

q ||u||q.
Proposition 4.2.6. Let 1 ≤ p < ∞ and (un) ⊂ Lp(Ω, μ) be such that

(a) ||un||p → ||u||p, n→ ∞;
(b) un converges to u almost everywhere.

Then ||un − u||p → 0, n→ ∞.

Proof. Since almost everywhere

0 ≤ 2p(|un|p + |u|p) − |un − u|p,

Fatou’s lemma ensures that

2p+1
∫
Ω

|u|pdμ ≤ lim
∫
Ω

[
2p(|un|p + |u|p) − |un − u|p]dμ

= 2p+1
∫
|u|pdμ − lim

∫
Ω

|un − u|pdμ.

Hence lim ||un − u||pp ≤ 0. ��
The next result is more precise.

Theorem 4.2.7 (Brezis–Lieb lemma). Let 1 ≤ p < ∞ and let (un) ⊂ Lp(Ω, μ) be
such that

(a) c = sup
n
||un||p < ∞;

(b) un converges to u almost everywhere.

Then u ∈ Lp(Ω, μ) and

lim
n→∞

(||un||pp − ||un − u||pp) = ||u||pp.
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Proof. By Fatou’s lemma, ||u||p ≤ c. Let ε > 0. There exists, by homogeneity,
c(ε) > 0 such that for every a, b ∈ R,

∣∣∣|a + b|p − |a|p − |b|p∣∣∣ ≤ ε|a|p + c(ε)|b|p.

We deduce from Fatou’s lemma that
∫
Ω

c(ε)|u|pdμ ≤ lim
n→∞

∫
Ω

ε|un − u|p + c(ε)|u|p − ∣∣∣|un|p − |un − u|p − |u|p∣∣∣dμ

≤ (2c)pε +

∫
Ω

c(ε)|u|pdμ − lim
n→∞

∫
Ω

∣∣∣|un|p − |un − u|p − |u|p∣∣∣dμ,
or

lim
n→∞

∫
Ω

∣∣∣|un|p − |un − u|p − |u|p∣∣∣dμ ≤ (2c)pε.

Since ε > 0 is arbitrary, the proof is complete. ��
We define

Rh(s) = s + h, s ≤ −h,
= 0, |s| < h,
= s − h, s ≥ h.

Theorem 4.2.8 (Degiovanni–Magrone). Let μ(Ω) < ∞, 1 ≤ p < ∞, and (un) ⊂
Lp(Ω, μ) be such that

(a) c = sup
n
||un||p < ∞;

(b) un converges to u almost everywhere.

Then

lim
n→∞

(
||un||pp − ||Rhun||pp

)
= ||u||pp − ||Rhu||pp.

Proof. Let us define

f (s) = |s|p − |Rh(s)|p.
For every ε > 0, there exists c(ε) > 0 such that

| f (s) − f (t)| ≤ ε∣∣∣|s|p + |t|p∣∣∣ + c(ε).

It follows from Fatou’s lemma that

2ε
∫
Ω

|u|pdμ+c(ε)m(Ω) ≤ lim
n→∞

∫
Ω

ε
(|un|p+|u|p)+c(ε)−∣∣∣ f (un)− f (u)

∣∣∣dμ

≤ ε cp + ε

∫
Ω

|u|pdμ + c(ε)μ(Ω) − lim
n→∞

∫
Ω

∣∣∣ f (un) − f (u)
∣∣∣dμ.
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Hence

lim
n→∞

∫
Ω

∣∣∣ f (un) − f (u)
∣∣∣dμ ≤ ε cp.

Since ε > 0 is arbitrary, the proof is complete. ��
Theorem 4.2.9 (F. Riesz, 1910). Let 1 ≤ p < ∞. Then the space Lp(Ω, μ) is
complete.

Proof. Let (un) be a Cauchy sequence in Lp(Ω, μ). There exists a subsequence v j =

unj such that for every j,

||v j+1 − v j||p ≤ 1/2 j.

We define the sequence

fk =
k∑

j=1

|v j+1 − v j|.

Minkowski’s inequality ensures that

∫
Ω

f p
k dμ ≤

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

1/2 j

⎞⎟⎟⎟⎟⎟⎟⎠
p

< 1.

Levi’s theorem implies the almost everywhere convergence of fk to f ∈ Lp(Ω, μ).
Hence vk converges almost everywhere to a function u. For m ≥ k + 1, it follows
from Minkowski’s inequality that

∫
Ω

|vm − vk|pdμ ≤
⎛⎜⎜⎜⎜⎜⎜⎝

m−1∑
j=k

1/2 j

⎞⎟⎟⎟⎟⎟⎟⎠
p

≤ (2/2k)p.

By Fatou’s lemma, we obtain

∫
Ω

|u − vk|pdμ ≤ (2/2k)p.

In particular, u = u − v1 + v1 ∈ Lp(Ω, μ). We conclude by invoking the Cauchy
condition:

||u − uk||p ≤ ||u − vk ||p + ||vk − uk ||p ≤ 2/2k + ||unk − uk ||p → 0, k → ∞. ��

Proposition 4.2.10. Let 1 ≤ p < ∞ and let un → u in Lp(Ω, μ). Then there exist a
subsequence v j = unj and g ∈ Lp(Ω, μ) such that almost everywhere,

|v j| ≤ g and v j → u, j→ ∞.
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Proof. If the sequence (un) converges in Lp(Ω, μ), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (v j) in the proof of the preceding theorem
converges almost everywhere to u, and for every j,

|v j| ≤ |v1| +
∞∑
j=1

|v j+1 − v j| = |v1| + f ∈ Lp(Ω, μ). ��

Theorem 4.2.11 (Density theorem). Let 1 ≤ p < ∞ and L ⊂ Lp(Ω, μ). Then L is
dense in Lp(Ω, μ).

Proof. Let u ∈ Lp(Ω, μ). Since u is measurable with respect to μ on Ω, there exists
a sequence (un) ⊂ L such that un → u almost everywhere. We define

vn = max(min(|un|, u),−|un|).

By definition, |vn| ≤ |un|, and almost everywhere,

|vn − u|p ≤ |u|p ∈ L1, |vn − u|p → 0, n→ ∞.

It follows from Lebesgue’s dominated convergence theorem that ||vn − u||p → 0,
n→ ∞. Hence

Y = {u ∈ Lp(Ω, μ) : there exists f ∈ L such that |u| ≤ f almost everywhere}

is dense in Lp(Ω, μ). It suffices to prove that L is dense in Y.
Let u ∈ Y, f ∈ L be such that |u| ≤ f almost everywhere and (un) ⊂ L such that

un → u almost everywhere. We define

wn = max(min( f , un),− f ).

By definition, wn ∈ L and, almost everywhere,

|wn − u|p ≤ 2p f p ∈ L1, |wn − u|p → 0, n→ ∞.

It follows from Lebesgue’s dominated convergence theorem that ||wn − u||p → 0,
n→ ∞. Hence L is dense in Y. ��
Theorem 4.2.12. Let Ω be open in R

N and 1 ≤ p < ∞. Then the space Lp(Ω) is
separable.

Proof. By the preceding theorem,K(Ω) is dense in Lp(Ω). Proposition 2.3.2 implies
that for every u ∈ K(Ω),

u j =
∑
k∈ZN

u(k/2 j) f j,k

converges to u in Lp(Ω). We conclude the proof using Proposition 3.3.11. ��
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4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siècle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnêtes fonctions qui servent à quelque chose.

Henri Poincaré

Regularization by convolution allows one to approximate locally integrable func-
tions by infinitely differentiable functions.

Definition 4.3.1. Let Ω be an open subset of RN . The space of test functions on Ω
is defined by

D(Ω) = {u ∈ C∞(RN) : spt u is a compact subset of Ω}.

Let α = (α1, . . . , α
N

) ∈ NN be a multi-index. By definition,

|α| = α1 + . . . + α
N
, Dα = ∂α1

1 . . . ∂
α
N

N
, ∂ j =

∂

∂x j
.

Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element in D(Ω).

Proposition 4.3.2. The function defined on R by

f (x) = exp(1/x), x < 0,
= 0, x ≥ 0,

is infinitely differentiable.

Proof. Let us prove by induction that for every n and every x < 0,

f (n)(0) = 0, f (n)(x) = Pn(1/x) exp(1/x),

where Pn is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

lim
x→0−

f (n)(x) − f n(0)
x

= lim
x→0−

Pn(1/x) exp(1/x)
x

= 0.

Hence f (n+1)(0) = 0. Finally, we have for x < 0,

f (n+1)(x) = (−1/x2)(Pn(1/x) + P′n(1/x)) exp(1/x) = Pn+1(1/x) exp(1/x). ��
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Definition 4.3.3. We define on R
N the function

ρ(x) = c−1 exp(1/(|x|2 − 1)), |x| < 1,
= 0, |x| ≥ 1,

where

c =
∫

B(0,1)
exp(1/(|x|2 − 1))dx.

The regularizing sequence ρn(x) = nNρ(nx) is such that

ρn ∈ D(RN), spt ρn = B[0, 1/n],
∫
RN
ρn dx = 1, ρn ≥ 0.

Definition 4.3.4. Let Ω be an open set of RN . By definition, ω ⊂⊂ Ω if ω is open
and ω is a compact subset of Ω. We define, for 1 ≤ p < ∞,

Lp
loc(Ω) = {u : Ω→ R : for all ω ⊂⊂ Ω, u

∣∣∣∣
ω
∈ Lp(ω)}.

A sequence (un) converges to u in Lp
loc(Ω) if for every ω ⊂⊂ Ω,

∫
ω

|un − u|pdx→ 0, n→ ∞.

Definition 4.3.5. Let u ∈ L1
loc(Ω) and v ∈ K(RN) be such that spt v ⊂ B[0, 1/n].

For n ≥ 1, the convolution v ∗ u is defined on

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n}

by

v ∗ u(x) =
∫
Ω

v(x − y)u(y)dy =
∫

B(0,1/n)
v(y)u(x − y)dy.

If |y| < 1/n, the translation of u by y is defined on Ωn by τyu(x) = u(x − y).

Proposition 4.3.6. Let u ∈ L1
loc(Ω) and v ∈ D(RN) be such that spt v ⊂ B[0, 1/n].

Then v ∗ u ∈ C∞(Ωn), and for every α ∈ NN, Dα(v ∗ u) = (Dαv) ∗ u.

Proof. Let |α| = 1 and x ∈ Ωn. There exists r > 0 such that B[x, r] ⊂ Ωn. Hence

ω = B(x, r + 1/n) ⊂⊂ Ω,
and for 0 < |ε| < r,

v ∗ u(x + εα) − v ∗ u(x)
ε

=

∫
ω

v(x + εα − y) − v(x − y)
ε

u(y)dy.
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But

lim
ε→ 0
ε � 0

v(x + εα − y) − v(x − y)
ε

= Dαv(x − y)

and

sup
y ∈ ω

0 < |ε| < r

∣∣∣∣∣v(x + εα − y) − v(x − y)
ε

∣∣∣∣∣ < ∞.

Lebesgue’s dominated convergence theorem implies that

Dα(v ∗ u)(x) =
∫
ω

Dαv(x − y)u(y)dy = (Dαv) ∗ u(x).

It is easy to conclude the proof by induction. ��
Lemma 4.3.7. Let ω ⊂⊂ Ω.

(a) Let u ∈ C(Ω). Then for every n large enough,

sup
x∈ω
|ρn ∗ u(x) − u(x)| ≤ sup

|y|<1/n
sup
x∈ω
|τyu(x) − u(x)|.

(b) Let u ∈ Lp
loc(Ω), 1 ≤ p < ∞. Then for every n large enough,

||ρn ∗ u − u||Lp(ω) ≤ sup
|y|<1/n

||τyu − u||Lp(ω).

Proof. For every n large enough, ω ⊂⊂ Ωn. Let u ∈ C(Ω). Since

∫
B(0,1/n)

ρn(y)dy = 1,

we obtain for every x ∈ ω,

∣∣∣ ρn ∗ u(x) − u(x)
∣∣∣ =

∣∣∣∣∣∣
∫

B(0,1/n)
ρn(y)

(
u(x − y) − u(x)

)
dy

∣∣∣∣∣∣
≤ sup
|y|<1/n

sup
x∈ω

∣∣∣u(x − y) − u(x)
∣∣∣.

Let u ∈ Lp
loc(Ω), 1 ≤ p < ∞. By Hölder’s inequality, for every x ∈ ω, we have

∣∣∣ ρn ∗ u(x) − u(x)
∣∣∣ =

∣∣∣∣∣∣
∫

B(0,1/n)
ρn(y)

(
u(x − y) − u(x)

)
dy

∣∣∣∣∣∣

≤
(∫

B(0,1/n)
ρn(y)

∣∣∣u(x − y) − u(x)
∣∣∣pdy

)1/p

.
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Fubini’s theorem implies that∫
ω

∣∣∣ρn ∗ u(x) − u(x)
∣∣∣pdx ≤

∫
ω

dx
∫

B(0,1/n)
ρn(y)

∣∣∣u(x − y) − u(x)
∣∣∣pdy

=

∫
B(0,1/n)

dy
∫
ω

ρn(y)
∣∣∣u(x − y) − u(x)

∣∣∣pdx

≤ sup
|y|<1/n

∫
ω

∣∣∣u(x − y) − u(x)
∣∣∣pdx. ��

Lemma 4.3.8 (Continuity of translations). Let ω ⊂⊂ Ω.

(a) Let u ∈ C(Ω). Then lim
y→0

sup
x∈ω
|τyu(x) − u(x)| = 0.

(b) Let u ∈ Lp
loc(Ω), 1 ≤ p < ∞. Then lim

y→0
||τyu − u||Lp(ω) = 0.

Proof. We choose an open subset U such that ω ⊂⊂ U ⊂⊂ Ω. If u ∈ C(Ω), then
property (a) follows from the uniform continuity of u on U.

Let u ∈ Lp
loc(Ω), 1 ≤ p < ∞, and ε > 0. The density theorem implies the existence

of v ∈ K(U) such that ||u − v||Lp(U) ≤ ε. By (a), there exists 0 < δ < d(ω, ∂U) such
that for every |y| < δ, sup

x∈ω
|τyv(x) − v(x)| ≤ ε. We obtain for every |y| < δ,

||τyu − u||Lp(ω) ≤ ||τyu − τyv||Lp(ω) + ||τyv − v||Lp(ω) + ||v − u||Lp(ω)

≤ 2||u − v||Lp(U) + m(ω)1/psup
x∈ω
|τyv(x) − v(x)|

≤ (2 + m(ω)1/p)ε.

Since ε > 0 is arbitrary, the proof is complete. ��
We deduce from the preceding lemmas the following regularization theorem.

Theorem 4.3.9. (a) Let u ∈ C(Ω). Then ρn ∗ u converges uniformly to u on every
compact subset of Ω.

(b) Let u ∈ Lp
loc(Ω), 1 ≤ p < ∞. Then ρn ∗ u converges to u in Lp

loc(Ω).

The following consequences are fundamental.

Theorem 4.3.10 (Annulation theorem). Let u ∈ L1
loc(Ω) be such that for every

v ∈ D(Ω), ∫
Ω

v(x)u(x)dx = 0.

Then u = 0 almost everywhere on Ω.
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Proof. By assumption, for every n, ρn ∗ u = 0 on Ωn. ��
Theorem 4.3.11. Let 1 ≤ p < ∞. ThenD(Ω) is dense in Lp(Ω).

Proof. By the density theorem,K(Ω) is dense in Lp(Ω). Let u ∈ K(Ω). There exists
an open set ω such that spt u ⊂ ω ⊂⊂ Ω. For j large enough, the support of u j =

ρ j ∗ u is contained in ω. Since u j ∈ C∞(RN) by Proposition 4.3.6, u j ∈ D(Ω). The
regularization theorem ensures that u j → u in Lp(Ω). ��
Definition 4.3.12. A partition of unity subordinate to the covering of the compact
subset Γ of RN by the open sets U1, . . . ,Uk is a sequence ψ1, . . . , ψk such that

(a) ψ j ∈ D(U j), ψ j ≥ 0, j = 1, . . . , k;

(b)
k∑

j=1

ψ j = 1 on Γ,
k∑

j=1

ψ j ≤ 1 on R
N .

Theorem 4.3.13 (Partition of unity). There exists a partition of unity subordinate
to the covering of the compact subset Γ of RN by the open sets U1, . . . ,Uk.

Proof. For n large enough, we have that Γn ⊂
k⋃

j=1

V j, where

Γn = {x : d(x, Γ) ≤ 1/n},V j = V j,n = {x : d(x,RN \ U j) > 1/n, |x| < n}.

If this is not the case, then for every n, there exists xn ∈ Γn \
⎛⎜⎜⎜⎜⎜⎜⎝

k⋃
j=1

V j,n

⎞⎟⎟⎟⎟⎟⎟⎠. But then, by

compactness, there exists x ∈ Γ \
⎛⎜⎜⎜⎜⎜⎜⎝

k⋃
j=1

U j

⎞⎟⎟⎟⎟⎟⎟⎠. This is a contradiction.

We define, for j = 1, . . . , k,

ϕ j(x) = d(x,RN \ V j)/

⎡⎢⎢⎢⎢⎢⎢⎣d(x, Γn) +
k∑

i=1

d(x,RN \ Vi)

⎤⎥⎥⎥⎥⎥⎥⎦ .

We obtain

(a) ϕ j ∈ K(U j), ϕ j ≥ 0, j = 1, . . . , k;

(b)
k∑

j=1

ϕ j = 1 on Γn,
k∑

j=1

ϕ j ≤ 1 on R
N .

For m large enough, we have, by the definition of convolution,

(c) ρm ∗ ϕ j ∈ D(U j), ρm ∗ ϕ j ≥ 0, j = 1, . . . , k.

(d)
k∑

j=1

ρm ∗ ϕ j = 1 on Γ,
k∑

j=1

ρm ∗ ϕ j ≤ 1 on R
N . ��

Now we consider Euclidean space.
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Proposition 4.3.14. Let 1 ≤ p < ∞ and u ∈ Lp(RN). Then ||ρn ∗ u||p ≤ ||u||p and
ρn ∗ u→ u in Lp(RN).

Proof. It follows from Hölder’s inequality that

∣∣∣ρn ∗ u(x)
∣∣∣ =

∣∣∣∣∣
∫
RN

u(y)ρn(x − y)dy
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
RN

∣∣∣u(y)
∣∣∣pρn(x − y)dy

∣∣∣∣∣
1/p

.

Fubini’s theorem implies that

∫
RN

∣∣∣ρn ∗ u(x)
∣∣∣pdx ≤

∫
RN

dx
∫
RN

∣∣∣u(y)
∣∣∣pρn(x − y)dy

=

∫
RN

dy
∫
RN

∣∣∣u(y)
∣∣∣pρn(x − y)dx

=

∫
RN

∣∣∣u(y)
∣∣∣pdy.

Hence ||ρn ∗ u||p ≤ ||u||p.
Let u ∈ Lp(RN) and ε > 0. The density theorem implies the existence of v ∈

K(RN) such that ||u− v||p ≤ ε. By the regularization theorem, ρn ∗ v→ v in Lp(RN).
Hence there exists m such that for every n ≥ m, ||ρn ∗ v − v||p ≤ ε. We obtain for
every n ≥ m that

||ρn ∗ u − u||p ≤ ||ρn ∗ (u − v)||p + ||ρn ∗ v − v||p + ||v − u||p ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��
Proposition 4.3.15. Let 1 ≤ p < ∞, f ∈ Lp(RN), and g ∈ K(RN). Then

∫
RN

(ρn ∗ f )g dx =
∫
RN

f (ρn ∗ g)dx.

Proof. Fubini’s theorem and the parity of ρ imply that

∫
RN

(ρn ∗ f )(x)g(x)dx =
∫
RN

dx
∫
RN
ρn(x − y) f (y)g(x)dy

=

∫
RN

dy
∫
RN
ρn(x − y) f (y)g(x)dx

=

∫
RN

(ρn ∗ g)(y) f (y)dy. ��
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4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1. Let X be a precompact metric space and let S be a set of uniformly
continuous functions on X such that

(a) c = sup
u∈S

sup
x∈X

∣∣∣u(x)
∣∣∣ < ∞;

(b) for every ε > 0, there exists δ > 0 such that sup
u∈S

ωu(δ) ≤ ε.

Then S is precompact in BC(X).

Proof. Let ε > 0 and δ correspond to ε by (b). There exists a finite covering of the
precompact space X by balls B[x1, δ], . . . , B[xk, δ]. There exists also a finite covering
of [−c, c] by intervals [y1 − ε, y1 + ε], . . . , [yn − ε, yn + ε]. Let us denote by J the
(finite) set of mappings from {1, . . . , k} to {1, . . . , n}. For every j ∈ J, we define

S j = {u ∈ S : |u(x1) − y j(1)| ≤ ε, . . . , |u(xk) − y j(k)| ≤ ε}.

By definition, (S j) j∈J is a covering of S . Let u, v ∈ S j and x ∈ X. There exists m
such that |x − xm| ≤ δ. We have

∣∣∣u(xm) − y j(m)

∣∣∣ ≤ ε, ∣∣∣v(xm) − y j(m)

∣∣∣ ≤ ε
and, by (b), ∣∣∣u(x) − u(xm)

∣∣∣ ≤ ε, ∣∣∣v(x) − v(xm)
∣∣∣ ≤ ε.

Hence |u(x) − v(x)| ≤ 4ε, and since x ∈ X is arbitrary, ||u − v||∞ ≤ 4ε. If S j is
nonempty, then S j ⊂ B[u, 4ε]. Since ε > 0 is arbitrary, S is precompact in BC(X)
by Fréchet’s criterion. ��

We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2. Let Ω be an open subset of RN, 1 ≤ p < ∞, and let S ⊂ Lp(Ω) be
such that

(a) c = sup
u∈S
||u||Lp(Ω) < ∞;

(b) for every ε > 0, there exists ω ⊂⊂ Ω such that sup
u∈S
||u||Lp(Ω\ω) ≤ ε;

(c) for every ω ⊂⊂ Ω, lim
y→0

sup
u∈S
||τyu − u||Lp(ω) = 0.

Then S is precompact in Lp(Ω).

Proof. Let ε > 0 and ω correspond to ε by (b). Assumption (c) implies the existence
of 0 < δ < d(ω, ∂Ω) such that for every |y| ≤ δ,

sup
u∈S
||τyu − u ||Lp(ω) ≤ ε.
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We choose n > 1/δ. We deduce from Lemma 4.3.7 that

sup
u∈S
||ρn ∗ u − u||Lp(ω) ≤ sup

u∈S
sup
|y|<1/n

||τyu − u||Lp(ω) ≤ ε. (∗)

We define

U = {x ∈ RN : d(x, ω) < 1/n} ⊂⊂ Ω.
Let us prove that the family R = {ρn ∗ u

∣∣∣
ω

: u ∈ S } satisfies the assumptions of
Ascoli’s theorem in BC(ω).

1. By (a), for every u ∈ S and for every x ∈ ω, we have

∣∣∣ρn ∗ u(x)
∣∣∣ ≤

∫
U
ρn(x − z)

∣∣∣u(z)
∣∣∣dz ≤ sup

RN

|ρn| ||u||L1(U) ≤ c1.

2. By (a), for every u ∈ S and for every x, y ∈ ω, we have

∣∣∣ρn ∗ u(x) − ρn ∗ u(y)
∣∣∣ ≤

∫
U

∣∣∣ρn(x − z) − ρn(y − z)
∣∣∣ ∣∣∣u(z)

∣∣∣dz

≤ sup
z

∣∣∣ρn(x − z) − ρn(y − z)
∣∣∣ ||u||L1(U) ≤ c2|x − y|.

Hence R is precompact in BC(ω). Since

||v||Lp(ω) ≤ m(ω)1/p sup
ω
|v|,

R is precompact in Lp(ω). But then (∗) implies the existence of a finite covering
of S

∣∣∣
ω

in Lp(ω) by balls of radius 2ε. Assumption (b) ensures the existence of a
finite covering of S in Lp(Ω) by balls of radius 3ε. Since ε > 0 is arbitrary, S is
precompact in Lp(Ω) by Fréchet’s criterion. ��

4.5 Comments

Proofs of the Hahn–Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by
Favard [22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.
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4.6 Exercises for Chap. 4

1. (Young’s inequality.) Let 1 < p < ∞. Then for every a, b ≥ 0,

ab ≤ ap

p
+

bp′

p′
.

First proof: A = �n ap, B = �n bp′ , exp

(
A
p
+

B
p′

)
≤ exp A

p
+

exp B
p′

.

Second proof:
bp′

p′
= sup

a≥0

(
ab − ap

p

)
.

2. (Hölder’s inequality.) Let 1 < p < ∞. If ||u||p � 0 � ||v||p′ , then by Young’s
inequality, ∫

Ω

∣∣∣ u
||u||p

v
||v||p′

∣∣∣dμ ≤ 1.

3. (Minkowski’s inequality.) Prove that

(a) ||u||p = sup
||w||p′=1

∫
Ω

uw dμ;

(b) ||u + v||p ≤ ||u||p + ||v||p.

4. (Minkowski’s inequality.) Let 1 < p < ∞ and define, on Lp(Ω, μ), the convex

function G(u) =
∫
Ω

|u|pdμ. Then with λ = ||v||p/(||u||p + ||v||p),

G

(
u + v

||u||p + ||v||p
)
= G

(
(1 − λ)

u
||u||p + λ

v
||v||p

)

≤ (1 − λ)G

(
u
||u||p

)
+ λG

(
v
||v||p

)
= 1.

Hence ||u + v||p ≤ ||u||p + ||v||p.
5. (Jensen’s inequality.)

(a) Let f : [0,+∞[→ R be a convex function and y > 0. There exists α, β ∈ R
such that

f (y) = αy + β and, for all x ≥ 0, αx + β ≤ f (x).

(b) Let f : [0,+∞[→ R be a convex function. Let μ be a positive measure
on Ω such that μ(Ω) = 1 and let u ∈ L1(Ω, μ) be such that u ≥ 0 and∫
Ω

u dμ > 0. Then

f

(∫
Ω

u dμ

)
≤
∫
Ω

f (u)dμ ≤ +∞.
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If f is concave, the reverse inequality holds.
6. Assume that μ(Ω) = 1. Then for every u ∈ L1(Ω, μ), u ≥ 0,

0 ≤ exp
∫
Ω

�n u dμ ≤
∫
Ω

u dμ ≤ �n
∫
Ω

exp u dμ ≤ +∞.

7. Let Ω = B(0, 1) ⊂ R
N . Then

λp + N > 0⇐⇒ |x|λ ∈ Lp(Ω), λp + N < 0⇐⇒ |x|λ ∈ Lp(RN \ Ω).

8. A differentiable function u : R→ R satisfies

x2u′(x) + u(x) = 0

if and only if u(x) = c f (x), where c ∈ R and f is the function defined in
Proposition 4.3.2.

9. (Hardy’s inequality.) Let 1 < p < ∞ and f ∈ K(R+), where R
+ =]0,+∞[.

Define F(x) =
∫ x

0
f (t)dt. Then

∫ ∞

0
|F |p/xpdx =

p
p − 1

∫ ∞

0
|F |p−2F f /xp−1dx.

Let f ∈ Lp(R+). Then F/x ∈ Lp(R+) and

||F/x||Lp(R+) ≤ p
p − 1

|| f ||Lp(R+).

Verify that this inequality is optimal using the family

fε(x) = 1, 0 < x ≤ 1,

= x−
1
p−ε, x > 1.

10. (Rising sun lemma, F. Riesz, 1932.) Let g ∈ C([a, b]). The set

E =

{
a < x < b : g(x) < max

[x,b]
g

}

consists of a finite or countable union of disjoint intervals ]ak, bk[ such that
g(ak) ≤ g(bk). Hint: If ak < x < bk, then g(x) < g(bk).

11. (Maximal inequality, Hardy–Littlewood, 1930.) Let u ∈ L1(]a, b[), u ≥ 0. The
maximal function defined on ]a, b[ by

Mu(x) = sup
x<y<b

1
y − x

∫ y

x
u(s)ds
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satisfies, for every t > 0,

|{Mu > t}| ≤ t−1
∫ b

a
u(s)ds.

Hint: Use the rising sun lemma with

g(x) =
∫ x

a
u(s)ds − tx.

12. (Lebesgue’s differentiability theorem.) Let u ∈ L1(]a, b[). Prove that for almost
every a < x < b,

lim
y→x
y>x

1
y − x

∫ y

x
|u(s) − u(x)|ds = 0.

Hint: Use Theorem 4.3.11 and the maximal inequality.



Chapter 5
Duality

5.1 Weak Convergence

A fruitful process in functional analysis is to associate to every normed space X the
dual space X∗ of linear continuous functionals on X.

Definition 5.1.1. Let X be a normed space. The dual X∗ of X is the space of linear
continuous functionals on X. A sequence ( fn) ⊂ X∗ converges weakly to f ∈ X∗ if
( fn) converges simply to f . We then write fn ⇀ f .

Let us translate Proposition 3.2.5 and Corollary 3.2.7.

Proposition 5.1.2. Let Z be a dense subset of a normed space X and ( fn) ⊂ X∗
such that

(a) sup
n
|| fn|| < ∞;

(b) for every v ∈ Z, 〈 fn, v〉 converges.

Then ( fn) converges weakly to f ∈ X∗ and

|| f || ≤ lim
n→∞
|| fn||.

Theorem 5.1.3 (Banach–Steinhaus). Let X be a Banach space and ( fn) ⊂ X∗
simply convergent to f . Then ( fn) is bounded, f ∈ X∗, and

|| f || ≤ lim
n→∞
|| fn||.

Theorem 5.1.4 (Banach). Let X be a separable normed space. Then every se-
quence bounded in X∗ contains a weakly convergent subsequence.

Proof. A Cantor diagonal argument will be used. Let ( fn) be bounded in X∗ and
let (vk) be dense in X. Since (〈 fn, v1〉) is bounded, there exists a subsequence ( f1,n)

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 5, © Springer Science+Business Media, LLC 2013
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of ( fn) such that 〈 f1,n, v1〉 converges as n → ∞. By induction, for every k there
exists a subsequence ( fk,n) of ( fk−1,n) such that 〈 fk,n, vk〉 converges as n → ∞. The
sequence gn = fn,n is bounded, and for every k, 〈gn, vk〉 converges as n → ∞.
By Proposition 5.1.2, (gn) converges weakly in X∗. ��
Example (Weak convergence). Let us prove that BC(]0, 1[) is not separable. We de-
fine on this space the functionals 〈 fn, u〉 = u(1/n). It is clear that || fn|| = 1. For every
increasing sequence (nk), there exists u ∈ BC(]0, 1[) such that u(1/nk) = (−1)k.
Hence

lim
k→∞
〈 fnk , u〉 = −1, lim

k→∞
〈 fnk , u〉 = 1,

and the sequence ( fnk ) is not weakly convergent.
Let Ω be an open subset of RN . We define

K+(Ω) = {u ∈ K(Ω) : for all x ∈ Ω, u(x) ≥ 0}.

Theorem 5.1.5. Let μ : K(Ω) → R be a linear functional such that for every
u ∈ K+(Ω), 〈μ, u〉 ≥ 0. Then μ is a positive measure.

Proof. We have only to verify that if un ↓ 0, then 〈μ, un〉 → 0. By the theorem of
partition of unity, there exists ψ ∈ D(Ω) such that 0 ≤ ψ ≤ 1 and ψ = 1 on spt u0.
By the positivity of μ, we obtain

0 ≤ 〈μ, ||un||∞ψ − un〉.
We conclude, using Dini’s theorem, that

0 ≤ 〈μ, un〉 ≤ 〈μ, ψ〉||un||∞ → 0. ��

Let μ : K(Ω) → R be the difference of two positive measures μ+ and μ−. Then
for every u ∈ K+(Ω),

sup{〈μ, f 〉 : f ∈ K(Ω), | f | ≤ u} ≤ 〈μ+, u〉 + 〈μ−, u〉 < +∞.
We shall prove the converse.

Definition 5.1.6. Let M ≥ 1. A measure is a linear functional μ : K(Ω;RM) → R

such that for every u ∈ K+(Ω),

〈|μ|, u〉 = sup{〈μ, f 〉 : f ∈ K(Ω;RM), | f | ≤ u} < +∞.

The measure is scalar when M = 1 and vectorial when M ≥ 2.

Theorem 5.1.7. Let μ : K(Ω;RM)→ R be a measure. Then the functional defined
on K(Ω) by

〈|μ|, u〉 = 〈|μ|, u+〉 − 〈|μ|, u−〉
is a positive measure.
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Proof. 1. Let u, v ∈ K+(Ω), f , g ∈ K(Ω;RM) be such that | f | ≤ u and |g| ≤ v. Then

〈μ, f 〉 + 〈μ, g〉 = 〈μ, f + g〉 ≤ 〈|μ|, u + v〉.

Taking the supremum, we obtain

〈|μ|, u〉 + 〈|μ|, v〉 ≤ 〈|μ|, u + v〉.

2. Let u, v ∈ K+(Ω), h ∈ K(Ω;RM) be such that |h| ≤ u+ v. Define f and g on Ω by

f = uh/(u + v), g = vh/(u + v), u + v > 0,
f = g = 0, u + v = 0.

It is easy to verify that f , g ∈ K(Ω;RM) and | f | ≤ u, |g| ≤ v, so that

〈μ, h〉 = 〈μ, f 〉 + 〈μ, g〉 ≤ 〈|μ|, u〉 + 〈|μ|, v〉.

Taking the supremum, we obtain

〈|μ|, u + v〉 ≤ 〈|μ|, u〉 + 〈|μ|, v〉.

Hence, by the preceding step,

〈|μ|, u + v〉 = 〈|μ|, u〉 + 〈|μ|, v〉.

3. Let uk, vk ∈ K+(Ω), k = 1, 2, be such that u1 − v1 = u2 − v2. Then

〈|μ|, u1〉 + 〈|μ|, v2〉 = 〈|μ|, u1 + v2〉 = 〈|μ|, u2 + v1〉 = 〈|μ|, u2〉 + 〈|μ|, v1〉,

so that

〈|μ|, u1〉 − 〈|μ|, v1〉 = 〈|μ|, u2〉 − 〈|μ|, v2〉.
Since for every u, v ∈ K(Ω),

(u + v)+ − (u + v)− = u + v = u+ + v+ − (u− + v−),

we conclude that
〈|μ|, u + v〉 = 〈|μ|, u〉 + 〈|μ|, v〉.

4. It is clear that for every u ∈ K(Ω) and every λ ∈ R,

〈|μ|, λu〉 = λ〈|μ|, u〉,

and that for u ∈ K+(Ω), 〈|μ|, u〉 ≥ 0. ��
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Corollary 5.1.8 (Jordan decomposition theorem). Let μ : K(Ω)→ R be a scalar
measure. Then μ = μ+ − μ−, where

μ+ =
|μ| + μ

2
, μ− =

|μ| − μ
2

are positive measures.

We need a new function space.

Definition 5.1.9. We define

C0(Ω) = {u ∈ BC(Ω) : for every ε > 0, there exists a compact subset K of Ω

such that sup
Ω\K
|u| < ε}.

Example. The space C0(RN) is the set of continuous functions on R
N tending to 0

at infinity.

Proposition 5.1.10. The space C0(Ω) is the closure of K(Ω) in BC(Ω). In particu-
lar, C0(Ω) is separable.

Proof. If u is a cluster point of K(Ω) in BC(Ω), then for every ε > 0, there exists
v ∈ K(Ω) such that ||u − v||∞ < ε. Let K = spt u. We obtain

sup
Ω\K

∣∣∣u(x)
∣∣∣ = sup

Ω\K

∣∣∣u(x) − v(x)
∣∣∣ < ε.

If u ∈ C0(Ω), then for every ε > 0, there exists a compact subset K of Ω such
that supΩ\K |u(x)| < ε. The theorem of partitions of unity implies the existence of
ϕ ∈ D(Ω) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on K. Define v = ϕu. Then v ∈ K(Ω) and

||u − v||∞ = sup
Ω\K

(
1 − ϕ(x)

)∣∣∣u(x)
∣∣∣ < ε.

Hence C0(Ω) is the closure of K(Ω) in BC(Ω). By Propositions 2.3.2 and 3.3.11,
C0(Ω) is separable. ��
Definition 5.1.11. The total variation of the measure μ : K(Ω;RM) → R is
defined by

||μ||Ω = sup{〈μ, f 〉 : f ∈ K(Ω;RM), || f ||∞ ≤ 1}.
The measure μ is finite if ||μ||Ω < ∞. By the preceding proposition, every finite
measure μ has a continuous extension to C0(Ω;RM). A sequence (μn) of finite
measures converges weakly to μ if for every f ∈ C0(Ω;RM),

〈μn, f 〉 → 〈μ, f 〉.
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Theorem 5.1.12 (de la Vallée Poussin, 1932). Every sequence (μn) of measures on
Ω such that sup

n
||μn||Ω < ∞ contains a weakly convergent subsequence.

Proof. By the preceding proposition, C0(Ω;RM) is separable. It suffices then to use
Banach’s theorem. ��

5.2 James Representation Theorem

Let us define two useful classes of normed spaces.

Definition 5.2.1. A normed space is smooth if its norm F(u) = ||u|| has a linear
directional derivative F′(u) for every u � 0:

〈F′(u), v〉 = d
dε

∣∣∣∣
ε=0

F(u + εv).

Definition 5.2.2. A normed space is uniformly convex if for every 0 < ε ≤ 1,

δX(ε) = inf
{
1 − ||u + v

2
|| : ||u|| = ||v|| = 1, ||u − v|| ≥ 2ε

}
> 0.

The function δX(ε) is the modulus of convexity of the space.

The proof of the next result is left to the reader.

Proposition 5.2.3. Let X be a smooth normed space and u ∈ X\{0}. Then ||F′(u)|| =
1 and

〈F′(u), u〉 = ||u|| = max
f∈X∗
|| f ||=1

〈 f , u〉.

Choose f � 0 in the dual of the normed space X and consider the dual problem{
maximize 〈 f , u〉,
u ∈ X, ||u|| = 1.

(P)

Lemma 5.2.4. Let X be a smooth normed space, f ∈ X∗ \ {0}, and u a solution of
(P). Then f = || f ||F′(u).

Proof. By assumption, 〈 f , u〉 = || f ||. Let v ∈ X. The function

g(ε) = || f || ||u + εv|| − 〈 f , u + εv〉
reaches its minimum at ε = 0. Hence g′(0) = 0 and

|| f ||〈F′(u), v〉 − 〈 f , v〉 = 0.

Since v ∈ X is arbitrary, the proof is complete. ��
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Lemma 5.2.5. Let X be a uniformly convex Banach space and f ∈ X∗ \ {0}. Then
(P) has a unique solution.

Proof. Let (un) ⊂ X be a maximizing sequence for the problem (P):

||un|| = 1, 〈 f , un〉 → || f ||, n→ ∞.

Let us prove that (un) is a Cauchy sequence. Let 0 < ε < 1 and let δX(ε) be the
modulus of convexity of X at ε. There exists m such that for j, k ≥ m,

|| f ||(1 − δX(ε)) < (〈 f , u j〉 + 〈 f , uk〉)/2 = 〈 f , u j + uk

2
〉 ≤ || f || ||u j + uk||

2
.

Hence j, k ≥ m⇒ ||u j − uk|| < 2ε. Since X is complete, (un) converges to u ∈ X. By
continuity, ||u|| = 1 and 〈 f , u〉 = || f ||. Hence u is a solution of (P).

Assume that u and v are solutions of (P). The sequence (u, v, u, v, . . .) is
maximizing. Hence it is a Cauchy sequence, so that u = v. ��

From the two preceding lemmas, we infer the James representation theorem.

Theorem 5.2.6. Let X be a smooth uniformly convex Banach space and f ∈ X∗\{0}.
Then there exists one and only one u ∈ X such that

||u|| = 1, 〈 f , u〉 = || f ||, f = || f || F′(u).

From the James representation theorem, we deduce a variant of the Hahn–
Banach theorem.

Theorem 5.2.7. Let Y be a subspace of a smooth uniformly convex Banach space
X and f ∈ Y∗. Then there exists one and only one g ∈ X∗ such that ||g|| = || f || and

g
∣∣∣∣
Y
= f .

Proof. Existence. If f = 0, then g = 0. Let f � 0. After extending f to Y by
Proposition 3.2.3, we can assume that Y is closed.

The James representation theorem implies the existence of one and only one
u ∈ Y such that

||u|| = 1, 〈 f , u〉 = || f ||, f = || f ||(F
∣∣∣∣
Y
)′(u).

Define g = || f || F′(u). It is clear that ||g|| = || f || and

g
∣∣∣∣
Y
= || f ||(F

∣∣∣∣
Y
)′(u) = f .

Uniqueness. If h ∈ X∗ is such that ||h|| = || f || and h
∣∣∣∣
Y
= f , then

〈h, u〉 = 〈 f , u〉 = || f || = ||h||.
Lemma 5.2.4 implies that h = ||h||F′(u) = || f ||F′(u). ��
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5.3 Duality of Hilbert Spaces

By the Cauchy–Schwarz inequality, for every g fixed in the Hilbert space X, the
linear functional

X → R : v �→ (g|v)

is continuous. The Fréchet–Riesz theorem asserts that every continuous linear
functional on X has this representation.

Theorem 5.3.1. Let X be a Hilbert space and f ∈ X∗. Then there exists one and
only one g ∈ X such that for every v ∈ X,

〈 f , v〉 = (g|v).

Moreover, ||g|| = || f ||.
Proof. Existence. If f = 0, then g = 0. Assume that f � 0. It follows from the
parallelogram identity that for 0 < ε ≤ 1, δ(ε) ≥ 1 − √1 − ε2 > 0. Hence X is
uniformly convex.

If u ∈ X \ {0}, we find that

〈F′(u), v〉 = d
dε

∣∣∣∣
ε=0
||u + εv|| = ||u||−1(u|v).

Hence X is smooth.
The James representation theorem implies the existence of u ∈ X such that

||u|| = 1, 〈 f , u〉 = || f ||, f = || f ||F′(u).

But then, for every v ∈ X,

〈 f , v〉 = || f ||(u|v) = (|| f ||u|v).

Uniqueness. If for every v ∈ X,

(g|v) = 〈 f , v〉 = (h|v),

then ||g − h||2 = 0 and g = h. ��
Definition 5.3.2. The vector space X is the direct sum of the subspaces Y and Z if
Y ∩Z = {0} and X = {y+ z : y ∈ Y, z ∈ Z}. We then write X = Y ⊕Z, and every u ∈ X
has a unique decomposition u = y + z, y ∈ Y, z ∈ Z.

Definition 5.3.3. The orthogonal space to a subset Y of a pre-Hilbert space X is
defined by

Y⊥ = {z ∈ X : for every y ∈ Y, (z|y) = 0}.

It is easy to verify that Y⊥ is a closed subspace of X.
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Corollary 5.3.4. Let Y be a closed subspace of a Hilbert space X. Then X is the
direct sum of Y and Y⊥.

Proof. If u ∈ Y ∩ Y⊥, then (u|u) = 0 and u = 0.
Let u ∈ X. The Fréchet–Riesz theorem implies the existence of y ∈ Y such that

for every v ∈ Y, (u|v) = (y|v). But then z = u − y ∈ Y⊥. ��
Corollary 5.3.5. A subspace Y of a Hilbert space X is dense if and only if Y⊥ = {0}.
Proof. Let Y be a subspace of X. Then Y is a closed subspace of X. By continuity
of the scalar product, Y⊥ = Y

⊥
. It follows from the preceding corollary that

X = Y ⊕ Y
⊥
= Y ⊕ Y⊥. ��

Definition 5.3.6. A sequence (un) converges weakly to u in the Hilbert space X if
for every v ∈ X, (un|v)→ (u|v). We then write un ⇀ u.

Proposition 5.3.7. Let Z be a dense subset of a Hilbert space X and (un) ⊂ X be
such that

(a) sup
n
||un|| < ∞;

(b) for every v ∈ Z, (un|v) converges.

Then (un) converges weakly in X.

Proof. It suffices to use Proposition 5.1.2 and the Fréchet–Riesz theorem. ��
Theorem 5.3.8. Let (un) be a sequence weakly convergent to u in the Hilbert space
X. Then (un) is bounded and

||u|| ≤ lim
n→∞
||un||.

Proof. It suffices to use Theorem 5.1.3 and the Fréchet–Riesz theorem. ��
Theorem 5.3.9. Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Proof. Let (un) be a bounded sequence in the Hilbert space X and let Y be the
closure of the space generated by (un). The sequence (un) is bounded in the separable
Hilbert space Y. By the Banach theorem and the Fréchet–Riesz theorem, there exists
a subsequence vk = unk weakly converging to u in Y. For every v ∈ X, v = y + z,
y ∈ Y, and z ∈ Y⊥ by Corollary 5.3.4. By definition, (vk|z) = (u|z) = 0. Hence
(vk|v)→ (u|v) and vk ⇀ u in X. ��
Definition 5.3.10. Let μ : L → R and ν : L → R by positive measures on Ω. By

definition, μ ≤ ν if for every u ∈ L, u ≥ 0,
∫
Ω

u dμ ≤
∫
Ω

u dν.

Lemma 5.3.11. Let μ ≤ ν. Then L1(Ω, ν) ⊂ L1(Ω, μ), and for every u ∈ L1(Ω, ν),
||u||L1(Ω,μ) ≤ ||u||L1(Ω,ν).
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Proof. Let u ∈ L1(Ω, ν). By the density theorem, there exists a sequence (un) ⊂ L
such that un → u in L1(Ω, ν) and ν-almost everywhere. Clearly, un → u μ-almost
everywhere. By Fatou’s lemma, u ∈ L1(Ω, μ) and

∫
Ω

|u|dμ ≤ lim
n→∞

∫
Ω

|un|dμ ≤ lim
n→∞

∫
Ω

|un|dν =
∫
Ω

|u|dν. ��

Lemma 5.3.12 (von Neumann). Let μ ≤ ν and ν(Ω) < +∞. Then there exists one
and only one function g : Ω→ [0, 1] measurable with respect to ν and such that for
every u ∈ L1(Ω, ν), ∫

Ω

u dμ =
∫
Ω

ug dν.

Proof. By assumption, L2(Ω, ν) ⊂ L1(Ω, ν). Let us define f on L2(Ω, ν) by

〈 f , u〉 =
∫
Ω

u dμ.

By the Cauchy–Schwarz inequality, we have

|〈 f , u〉| ≤ (μ(Ω))1/2

(∫
Ω

u2dμ

)1/2

≤ (μ(Ω))1/2

(∫
Ω

u2dν
)1/2

.

The Fréchet–Riesz theorem implies the existence of one and only one function g ∈
L2(Ω, ν) such that for every v ∈ L2(Ω, ν),

∫
Ω

v dμ =
∫
Ω

vg dν. (∗)

In particular, we obtain

0 ≤
∫
Ω

g−dμ = −
∫
Ω

(g−)2dν

and ν({g < 0}) = 0. Similarly, we have

0 ≤
∫
Ω

(1 − g)−dν −
∫
Ω

(1 − g)−dμ = −
∫
Ω

[
(1 − g)−

]2
dν

and ν({g > 1}) = 0. Let u ∈ L1(Ω, ν), u ≥ 0, and define un = min(u, n). We deduce
from (∗) and Levi’s theorem that

∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ = lim
n→∞

∫
Ω

ung dν =
∫
Ω

ug dν.

Since u = u+ − u−, the preceding equality holds for every u ∈ L1(Ω, ν). ��

Let us prove Lebesgue’s decomposition theorem.
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Theorem 5.3.13. Let μ : L → R and ν : L → R be positive measures on Ω such
that μ(Ω) < ∞, ν(Ω) < ∞. Then there exist h ∈ L1(Ω, ν) and Σ ⊂ Ω, measurable
with respect to μ and ν, such that

(a) ν(Σ) = 0, h ≥ 0;
(b) for every u ∈ L1(Ω, μ) ∩ L1(Ω, ν), uh ∈ L1(Ω, ν) and

∫
Ω

u dμ =
∫
Ω

uh dν +
∫
Σ

u dμ.

Proof. Let X = L1(Ω, μ) ∩ L1(Ω, ν). The preceding lemma implies the existence of
g : Ω→ [0, 1], measurable with respect to μ and ν, such that for every v ∈ X,

∫
Ω

v dμ =
∫
Ω

vg dμ +
∫
Ω

vg dν.

Let Σ = {g = 1}. Since for every v ∈ X,

∫
Ω

v(1 − g)dμ =
∫
Ω

vg dν, (∗)

we obtain ν(Σ) = 0. Let us define h = χΩ\Σg/(1 − g). Choose u ∈ X, u ≥ 0, and
define

un = (1 + g + . . . + gn)u.

We deduce from (∗) and Levi’s theorem that

∫
Ω\Σ

u dμ =
∫
Ω\Σ

ug/(1 − g)dν =
∫
Ω

uh dν.

Since u = u+ − u−, the preceding equality holds for every u ∈ X. Finally, we have

∫
Ω

h dν = μ(Ω \ Σ) < +∞. ��

Remark. Every other decomposition of μ corresponding to h0 and Σ0 is such that
μ(Σ0 \ Σ) = μ(Σ \ Σ0) = 0 and ν({h0 � h}) = 0.

Let us prove the polar decomposition of vector measures theorem.

Theorem 5.3.14. Let Ω be an open subset of RN and let μ : K(Ω;RM) → R be a
measure such that ||μ||Ω < +∞. Then there exists a function g : Ω→ R

M such that

(a) g is |μ|-measurable;
(b) |g(x)| = 1, |μ|-almost everywhere on Ω;

(c) for all f ∈ K(Ω;RM), 〈μ, f 〉 =
∫
Ω

f · g d|μ|.
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Proof. Let e1, . . . , eM be the standard basis of RM , and for 1 ≤ k ≤ M, define μk on
K(Ω) by

〈μk, u〉 = 〈μ, u ek〉.
It is clear that for all u ∈ K(Ω),

|〈μk, u〉| ≤
∫
Ω

|u| d|μ| ≤ ||μ||1/2
Ω
||u||L2(Ω,|μ|).

Since K(Ω) is dense in L2(Ω, |μ|), Proposition 3.2.3 implies the existence of
a continuous extension of μk to L2(Ω, |μ|). By the Fréchet–Riesz representation
theorem, there exists gk ∈ L2(Ω, |μ|) such that for all u ∈ K(Ω),

〈μk, u〉 =
∫
Ω

u gk d|μ|.

We define g =
M∑

k=1

gkek, so that for all f ∈ K(Ω;RM),

〈μ, f 〉 =
M∑

k=1

〈μ, fkek〉 =
M∑

k=1

∫
Ω

fkgk d|μ| =
∫
Ω

f · g d|μ|.

Let u ∈ K+(Ω). We have, by Definition 5.1.6,

c = sup

{∫
Ω

f · g d|μ| : f ∈ K(Ω;RM), | f | ≤ u

}
=

∫
Ω

u d|μ|.

It is clear that c ≤
∫

u|g| d|μ|. Theorem 4.2.11 implies the existence of (wn) ⊂
K(Ω;RM) converging to g in L2(Ω, |μ|). Let us define

vn = u wn/
√
|wn|2 + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

c ≤
∫
Ω

u|g| d|μ| = lim
n→∞

∫
Ω

vn · g d|μ| ≤ c.

We conclude that for all u ∈ K(Ω),

∫
Ω

u|g| d|μ| =
∫
Ω

u d|μ|.

Hence |g| − 1 is orthogonal to K(Ω) in L2(Ω, |μ|). By Corollary 5.3.5, |g| − 1 = 0,
|μ|-almost everywhere. ��
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5.4 Duality of Lebesgue Spaces

Let 1 < p < ∞ and let p′ be the exponent conjugate to p defined by 1/p+ 1/p′ = 1.
By Hölder’s inequality, for every g fixed in Lp′ (Ω, μ), the linear functional

Lp(Ω, μ)→ R : v �→
∫
Ω

gv dμ

is continuous. Riesz’s representation theorem asserts that every continuous linear
functional on Lp(Ω, μ) has this representation. We denote by μ : L → R a positive
measure on Ω.

Theorem 5.4.1. Let 1 < p < ∞. Then the space Lp(Ω, μ) is smooth, and the
directional derivative of the norm F(u) = ||u||p is given, for u � 0, by

〈F′(u), v〉 = ||u||1−p
p

∫
Ω

|u|p−2uv dμ.

Proof. We define G(u) =
∫
Ω

|u|pdμ, and we choose u, v ∈ Lp. By the fundamental

theorem of calculus, for 0 < |ε| < 1 and almost all x ∈ Ω,

||u(x) + εv(x)|p − |u(x)|p| ≤ p
∣∣∣∣∣
∫ ε

0
|u(x) + tv(x)|p−1|v(x)|dt

∣∣∣∣∣
≤ p|ε|

(
|u(x)| + |v(x)|

)p−1|v(x)|.

It follows from Hölder’s inequality that

(|u(x)| + |v(x)|)p−1|v(x)| ∈ L1.

Lebesgue’s dominated convergence theorem ensures that

〈G′(u), v〉 = d
dε

∣∣∣∣
ε=0

G(u + εv) = p
∫
Ω

|u|p−2uv dμ.

Hence for u � 0,

〈F′(u), v〉 = d
dε

∣∣∣∣
ε=0

p
√

G(u + εv) = G(u)
1−p

p

∫
Ω

|u|p−2uv dμ. ��

Theorem 5.4.2 (Clarkson, 1936). Let 1 < p < ∞. Then the space Lp(Ω, μ) is
uniformly convex.
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Proof. If Lp is not uniformly convex, then there exist 0 < ε ≤ 1 and (un), (vn) such
that

||un||p = ||vn||p = 1, ||un − vn||p → 2ε and ||un + vn||p → 2.

If 2 ≤ p < ∞, we deduce from Hanner’s inequality that

||un + vn||pp + ||un − vn||pp ≤ 2p.

Taking the limit, we obtain 2p + 2pεp ≤ 2p. This is a contradiction.
If 1 < p ≤ 2, we deduce from Hanner’s inequality that

( ∣∣∣∣∣
∣∣∣∣∣un + vn

2

∣∣∣∣∣
∣∣∣∣∣
p
+

∣∣∣∣∣
∣∣∣∣∣un − vn

2

∣∣∣∣∣
∣∣∣∣∣
p

)p

+

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣un + vn

2

∣∣∣∣∣
∣∣∣∣∣
p
−
∣∣∣∣∣
∣∣∣∣∣un − vn

2

∣∣∣∣∣
∣∣∣∣∣
p

∣∣∣∣∣∣
p

≤ 2.

Taking the limit, we find by strict convexity that

2 < (1 + ε)p + (1 − ε)p ≤ 2.

This is also a contradiction. ��
Theorem 5.4.3 (Riesz’s representation theorem). Let 1 < p < ∞ and f ∈
(Lp(Ω, μ))∗. Then there exists one and only one g ∈ Lp′ (Ω, μ) such that for every
v ∈ Lp(Ω, μ),

〈 f , v〉 =
∫
Ω

gv dμ.

Moreover ||g||p′ = || f ||.
Proof. Existence. If f = 0, then g = 0. Assume f � 0. Since Lp is smooth and
uniformly convex by the preceding theorems, the James representation theorem
implies the existence of u ∈ Lp such that

||u||p = 1, 〈 f , u〉 = || f ||, f = || f ||F′(u).

But then for every v ∈ Lp,

〈 f , v〉 = || f ||
∫
Ω

|u|p−2uv dμ.

Define g = || f || |u|p−2u. It is easy to verify that g ∈ Lp′ and ||g||p′ = || f ||.
Uniqueness. It suffices to prove that if g ∈ Lp′ is such that for every v ∈ Lp,∫

Ω

gv dμ = 0, then g = 0. Since |g|p′−2g ∈ Lp, we obtain

||g||p′p′ =

∫
Ω

|g|p′dμ = 0. ��
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Definition 5.4.4. Let 1 < p < ∞. We identify the spaces (Lp′ (Ω, μ))∗ and Lp(Ω, μ).
A sequence (un) converges weakly to u in Lp(Ω, μ) if for every v ∈ Lp′ (Ω, μ),

∫
Ω

unv dμ→
∫
Ω

uv dμ.

We then write un ⇀ u.

Proposition 5.4.5. Let 1 < p < ∞, let Z be a dense subset of Lp′ (Ω, μ), and let
(un) ⊂ Lp(Ω, μ) be such that

(a) sup
n
||un||p < ∞;

(b) for every v ∈ Z,
∫
Ω

unv dμ converges.

Then (un) converges weakly to u ∈ Lp(Ω, μ).

Proof. It suffices to use Proposition 5.1.2 ��
Theorem 5.4.6. Let 1 < p < ∞ and let (un) be a sequence weakly convergent to u
in Lp(Ω, μ). Then (un) is bounded and

||u||p ≤ lim
n→∞
||un||p.

Proof. It suffices to use Theorem 5.1.3 ��
Proposition 5.4.7. Let 1 < p < ∞ and let (un) ⊂ Lp(Ω, μ) be such that

(a) c = sup ||un||p < ∞;
(b) (un) converges almost everywhere to u on Ω.

Then un ⇀ u in Lp(Ω, μ).

Proof. By Fatou’s lemma, ||u||p ≤ c. We choose v in Lp′ (Ω, μ), and we define

An = {x ∈ Ω : |un(x) − u(x)| ≤ |v(x)|p′−1}, Bn = Ω \ An.

We deduce from Hölder’s and Minkowski’s inequalities that

∫
Ω

|un − u| |v|dμ ≤
∫

An

|un − u| |v|dμ + ||un − u||p
(∫

Bn

|v|p′dμ
)1/p′

≤
∫

An

|un − u| |v|dμ + 2c

(∫
Bn

|v|p′dμ
)1/p′

.

Lebesgue’s dominated convergence theorem ensures that

lim
n→∞

∫
An

|un − u| |v|dμ = 0 = lim
n→∞

∫
Bn

|v|p′dμ. ��
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Theorem 5.4.8. Let 1 < p < ∞ and let Ω be an open subset of RN. Then every
bounded sequence in Lp(Ω) contains a weakly convergent subsequence.

Proof. By Theorem 4.2.11, Lp′ (Ω) is separable. It suffices then to use Banach’s
theorem. ��
Examples (Weak convergence in Lp). What are the obstructions to the (strong)
convergence of weakly convergent sequences? We consider three processes by
which in Lp(Ω),

un ⇀ 0, un � 0.

Oscillation. The sequence un(x) =
√

2
π sin n x is orthonormal in L2(]0, π[). It

follows from Bessel’s inequality that un ⇀ 0. But ||un||2 = 1.

Concentration. Let 1 < p < ∞, u ∈ K(RN) \ {0}, and un(x) = nN/pu(nx). For every
n, ||un||p = ||u||p > 0, and for all x � 0, un(x) → 0, n → ∞. By Proposition 5.4.6,
un ⇀ 0 in Lp(RN).

Translation. Let 1 < p < ∞, u ∈ K(RN) \ {0}, and un(x) = u(x1 − n, x2, . . . , x
N

). For
every n, ||un||p = ||u||p > 0, and for all x, un(x) → 0, n → ∞. By Proposition 5.4.7,
un ⇀ 0 in Lp(RN).

5.5 Comments

A representation theorem gives to an abstract mathematical object like a functional
a more concrete representation involving in many cases an integral. It replaces a
structural definition by an analytic description. The first representation theorem
(proved by Riesz in 1909 [61]) asserts that every continuous linear functional on
C([0, 1]) is representable by a Stieltjes integral (see Sect. 10.1). In this chapter, we
use as a basic tool the James representation theorem [35].

5.6 Exercises for Chap. 5

1. Define a sequence ( fn) of finite measures on ]0, 1[ such that

(a) || fn|| → || f ||;
(b) fn ⇀ f ;
(c) || fn − f ||� 0.

2. Let X be a Hilbert space and let (un) ⊂ X be such that

(a) lim ||un|| ≤ ||u||;
(b) un ⇀ u.

Then ||un − u|| → 0.
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3. Let 1 < p < ∞ and (un) ⊂ Lp(Ω, μ) be such that

(a) lim ||un||p ≤ ||u||p;
(b) un ⇀ u.

Then ||un − u||p → 0. Hint: If vn ⇀ v, then ||v||p ≤ lim || vn+v
2 ||p.

4. Let 1 < p < ∞ and un ⇀ u in Lp(Ω, μ). Is it true that

lim
n→∞(||un||pp − ||un − u||pp) = ||u||pp ?

Hint: When p � 2, construct a counterexample using oscillating step functions.
5. Let X be a smooth uniformly convex Banach space and f , g ∈ X′. Then

max〈g, y〉 = 0
||y|| = 1

〈 f , y〉 = min
λ∈R
|| f − λg||.

6. Let C be a closed convex subset of a uniformly convex Banach space X. Then
for every u ∈ X, there exists one and only one v ∈ C such that ||u− v|| = d(u,C).

7. Let Ω be an open subset of RN and f ∈ L1
loc(Ω). Prove that

μ : K(Ω)→ R : u �→
∫
Ω

f (x)dx

is a measure on Ω such that

||μ||Ω =
∫
Ω

| f (x)|dx.

8. Let μ be a positive measure on Ω such that μ(Ω) = 1. We define, onM(Ω, μ),

||u||∞ = inf{c ≥ 0 : almost everywhere on Ω, |u(x)| ≤ c}.

We define also

L∞(Ω, μ) = {u ∈ M(Ω, μ) : ||u||∞ < +∞}.
We identify two functions of L∞(Ω, μ) when they are μ-almost everywhere
equal. If ||u||∞ < +∞, then u ∈

⋂
1≤p<∞

Lp(Ω, μ) and ||u||∞ = lim
p→∞||u||p.

9. Assume that μ(Ω) = 1. For every f ∈ (L1(Ω, μ))∗, there exists one and only one
g ∈ L∞(Ω, μ) such that for every v ∈ L1(Ω, μ),

〈 f , v〉 =
∫
Ω

gv dμ.

Moreover, ||g||∞ = || f ||. Hint: Use Riesz’s representation theorem on (Lp)∗, 1 <
p < ∞.
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10. Let Ω be a bounded open subset of RN and let (gn) ⊂ L∞(Ω, dx) be such that
sup

n
||gn||∞ < +∞. Then there exist a subsequence (gnk) of (gn) and g ∈ L∞(Ω, dx)

such that for every v ∈ L1(Ω, dx),

lim
k→∞

∫
Ω

gnk v dx =
∫
Ω

gv dx.



Chapter 6
Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of RN . We begin with an
elementary computation.

Lemma 6.1.1. Let 1 ≤ |α| ≤ m and let f ∈ Cm(Ω). Then for every u ∈ D(Ω),

∫
Ω

f Dαu dx = (−1)|α|
∫
Ω

(Dα f )u dx.

Proof. We assume that α = (0, . . . , 0, 1). Let u ∈ D(Ω) and define

g(x) = f (x)u(x), x ∈ Ω,
= 0, x ∈ RN \ Ω.

The fundamental theorem of calculus implies that for every x′ ∈ RN−1,

∫
R

Dαg(x′, x
N

)dx
N
= 0.

Fubini’s theorem ensures that
∫
Ω

( f Dαu + (Dα f )u)dx =
∫
RN

Dαg dx =
∫
RN−1

dx′
∫
R

Dαg dx
N
= 0.

When |α| = 1, the proof is similar. It is easy to conclude the proof by induction. ��
Weak derivatives were defined by S.L. Sobolev in 1938.

Definition 6.1.2. Let α ∈ NN and f ∈ L1
loc(Ω). By definition, the weak derivative of

order α of f exists if there is g ∈ L1
loc(Ω) such that for every u ∈ D(Ω),

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
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∫
Ω

f Dαu dx = (−1)|α|
∫
Ω

gu dx.

The function g, if it exists, will be denoted by ∂α f .

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3. Assume that ∂α f exists. On

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n},

we have that
Dα(ρn ∗ f ) = ρn ∗ ∂α f .

Proof. We deduce from Proposition 4.3.6 and from the preceding definition that for
every x ∈ Ωn,

Dα(ρn ∗ f )(x) =
∫
Ω

Dα
xρn(x − y) f (y)dy

= (−1)|α|
∫
Ω

Dα
yρn(x − y) f (y)dy

= (−1)2|α|
∫
Ω

ρn(x − y)∂α f (y)dy

= ρn ∗ ∂α f (x). ��

Theorem 6.1.4 (du Bois-Reymond lemma). Let |α| = 1 and let f ∈ C(Ω) be such
that ∂α f ∈ C(Ω). Then Dα f exists and Dα f = ∂α f .

Proof. By the preceding proposition, we have

Dα(ρn ∗ f ) = ρn ∗ ∂α f .

The fundamental theorem of calculus implies then that

ρn ∗ f (x + εα) = ρn ∗ f (x) +
∫ ε

0
ρn ∗ ∂α f (x + tα)dt.

By the regularization theorem,

ρn ∗ f → f , ρn ∗ ∂α f → ∂α f

uniformly on every compact subset of Ω. Hence we obtain

f (x + εα) = f (x) +
∫ ε

0
∂α f (x + tα)dt,

so that ∂α f = Dα f by the fundamental theorem of calculus. ��
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Notation. From now on, the derivative of a continuously differentiable function will
also be denoted by ∂α.

Let us prove the closing lemma. The graph of the weak derivative is closed in
L1

loc × L1
loc.

Lemma 6.1.5. Let ( fn) ⊂ L1
loc(Ω) and let α ∈ NN be such that in L1

loc(Ω),

fn → f , ∂α fn → g.

Then g = ∂α f .

Proof. For every u ∈ D(Ω), we have by definition that

∫
Ω

fn∂
αu dx = (−1)|α|

∫
Ω

(∂α fn)u dx.

Since by assumption,

∣∣∣∣∣
∫
Ω

( fn − f )∂αu dx
∣∣∣∣∣ ≤ ||∂αu||∞

∫
supp u

| fn − f |dx→ 0

and ∣∣∣∣∣
∫
Ω

(∂α fn − g)u dx
∣∣∣∣∣ ≤ ||u||∞

∫
supp u

|∂α fn − g|dx→ 0,

we obtain ∫
Ω

f∂αu dx = (−1)|α|
∫
Ω

gu dx. ��

Example (Weak derivative). If −N < λ ≤ 1, the function f (x) = |x|λ is locally
integrable on R

N . We approximate f by

fε(x) =
(
|x|2 + ε

)λ/2
, ε > 0.

Then fε ∈ C∞(RN) and

∂k fε(x) = λ xk

(
|x|2 + ε

) λ−2
2
,

∣∣∣∂k fε(x)
∣∣∣ ≤ λ|x|λ−1.

If λ > 1 − N, we obtain in L1
loc(RN) that

fε(x) → f (x) = |x|λ,
∂k fε(x) → g(x) = λ xk |x|λ−2.

Hence ∂k f (x) = λ |x|λ−2xk.
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Definition 6.1.6. The gradient of the (weakly) differentiable function u is
defined by

∇u = (∂1u, . . . , ∂
N

u).

The divergence of the (weakly) differentiable vector field v = (v1, . . . , v
N

) is
defined by

div v = ∂1v1 + . . . + ∂
N

v
N
.

Let 1 ≤ p < ∞ and u ∈ L1
loc(Ω) be such that ∂ ju ∈ Lp(Ω), j = 1, . . . ,N. We define

||∇u||Lp(Ω) =

(∫
Ω

|∇u|pdx

)1/p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∫
Ω

∣∣∣∣∣∣∣∣
N∑

j=1

(∂ ju)2

∣∣∣∣∣∣∣∣
p/2

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/p

.

Theorem 6.1.7. Let 1 < p < ∞ and let (un) ⊂ L1
loc(Ω) be such that

(a) un → u in L1
loc(Ω);

(b) for every n, ∇un ∈ Lp(Ω;RN);
(c) c = sup

n
||∇un||p < ∞.

Then ∇u ∈ Lp(Ω;RN) and

||∇u||p ≤ lim
n→∞
||∇un||p.

Proof. We define f onD(Ω;RN) by

〈 f , v〉 =
∫
Ω

u div v dx.

We have that

|〈 f , v〉| = lim
n→∞
|
∫
Ω

un div v dx|

= lim
n→∞
|
∫
Ω

∇un · v dx|

≤ lim
n→∞
||∇un||p

(∫
Ω

|v|p′dx

)1/p′

.

Since D(Ω) is dense in Lp′ (Ω), Proposition 3.2.3 implies the existence of a
continuous extension of f to Lp′ (Ω;RN). By Riesz’s representation theorem, there
exists g ∈ Lp(Ω;RN) such that for every v ∈ D(Ω;RN),

∫
Ω

g · v dx = 〈 f , v〉 =
∫
Ω

u div v dx.
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Hence ∇u = −g ∈ Lp(Ω;RN). Choosing v = |∇u|p−2∇u, we find that

∫
Ω

|∇u|pdx =
∫
Ω

∇u · v dx ≤ lim
n→∞
||∇un||p

(∫
Ω

|v|p′dx

)1/p′

= lim
n→∞
||∇un||p

(∫
Ω

|∇u|pdx

)1−1/p

.

��
Sobolev spaces are spaces of differentiable functions with integral norms.

In order to define complete spaces, we use weak derivatives.

Definition 6.1.8. Let k ≥ 1 and 1 ≤ p < ∞. On the Sobolev space

Wk,p(Ω) = {u ∈ Lp(Ω) : for every |α| ≤ k, ∂αu ∈ Lp(Ω)},

we define the norm

||u||Wk,p(Ω) = ||u||k,p =
⎛⎜⎜⎜⎜⎜⎜⎝
∑
|α|≤k

∫
Ω

|∂αu|pdx

⎞⎟⎟⎟⎟⎟⎟⎠
1/p

.

On the space Hk(Ω) = Wk,2(Ω), we define the scalar product

(u | v)Hk(Ω) =
∑
|α|≤k

(∂αu | ∂αv)L2(Ω).

The Sobolev space Wk,p
loc (Ω) is defined by

Wk,p
loc (Ω) = {u ∈ Lp

loc(Ω) : for all ω ⊂⊂ Ω, u
∣∣∣∣
ω
∈ Wk,p(ω)}.

A sequence (un) converges to u in Wk,p
loc (Ω) if for every ω ⊂⊂ Ω,

||un − u||Wk,p(ω) → 0, n→ ∞.

The space Wk,p
0 (Ω) is the closure ofD(Ω) in Wk,p(Ω). We denote by Hk

0(Ω) the space
Wk,2

0 (Ω).

Theorem 6.1.9. Let k ≥ 1 and 1 ≤ p < ∞. Then the spaces Wk,p(Ω) and Wk,p
0 (Ω)

are complete and separable.

Proof. Let M =
∑
|α|≤k

1. The space Lp(Ω;RM) with the norm

||(vα)||p =
⎛⎜⎜⎜⎜⎜⎜⎝
∑
|α|≤k

∫
Ω

|vα|pdx

⎞⎟⎟⎟⎟⎟⎟⎠
1/p
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is complete and separable. The map

Φ : Wk,p(Ω)→ Lp(Ω;RM) : u �→ (∂αu)|α|≤k

is a linear isometry: ||Φ(u)||p = ||u||k,p. By the closing lemma,Φ(Wk,p(Ω)) is a closed
subspace of Lp(Ω;RM). It follows that Wk,p(Ω) is complete and separable. Since
Wk,p

0 (Ω) is a closed subspace of Wk,p(Ω), it is also complete and separable. ��
Theorem 6.1.10. Let 1 ≤ p < ∞. Then W1,p

0 (RN) = W1,p(RN).

Proof. It suffices to prove that D(RN) is dense in W1,p(RN). We use regularization
and truncation.

Regularization. Let u ∈ W1,p(RN) and define un = ρn ∗ u. By Proposition 4.3.6,
un ∈ C∞(RN). Proposition 4.3.14 implies that in Lp(RN),

un → u, ∂kun = ρn ∗ ∂ku→ ∂ku.

We conclude that W1,p(RN) ∩ C∞(RN) is dense in W1,p(RN).

Truncation. Let θ ∈ C∞(R) be such that 0 ≤ θ ≤ 1 and

θ(t) = 1, t ≤ 1,
= 0, t ≥ 2.

We define a sequence
θn(x) = θ(|x|/n).

Let u ∈ W1,p(RN) ∩ C∞(RN). It is clear that un = θnu ∈ D(RN). It follows easily
from Lebesgue’s dominated convergence theorem that un → u in W1,p(RN). ��

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of variables). Let ω and Ω be open subsets of RN,
G : ω→ Ω a diffeomorphism, and u ∈ W1,1

loc (Ω). Then u ◦G ∈ W1,1
loc (ω) and

∂

∂yk
(u ◦G) =

∑
j

∂u
∂x j
◦G

∂G j

∂yk
.

Proof. Let v ∈ D(ω) and un = ρn ∗ u. By Lemma 6.1.1, for n large enough, we have

∫
ω

un ◦G(y)
∂v
∂yk

(y)dy = −
∫
ω

∑
j

∂un

∂x j
◦G(y)

∂G j

∂yk
(y) v(y)dy. (∗)

It follows from Theorem 2.4.5 with H = G−1 that
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∫
Ω

un(x)
∂v
∂yk
◦ H(x)| det H′(x)|dx

= −
∫
Ω

∑
j

∂un

∂x j
(x)

∂G j

∂yk
◦ H(x)v ◦ H(x)| det H′(x)|dx. (∗∗)

The regularization theorem implies that in L1
loc(Ω),

un → u,
∂un

∂x j
→ ∂u

∂x j
.

Taking the limit, it is permitted to replace un by u in (∗∗). But then it is also permitted
to replace un by u in (∗), and the proof is complete. ��
Proposition 6.1.12 (Derivative of a product). Let u ∈ W1,1

loc (Ω) and f ∈ C1(Ω).
Then f u ∈ W1,1

loc (Ω) and

∂k( f u) = f∂ku + (∂k f )u.

Proof. Let un = ρn ∗ u, so that by the classical rule of derivative of a product,

∂k( f un) = (∂k f )un + f∂kun.

It follows from the regularization theorem that

f un → f u, ∂k( f un)→ (∂k f )u + f∂ku

in L1
loc(Ω). We conclude by invoking the closing lemma. ��

Proposition 6.1.13 (Derivative of the composition of functions). Let u ∈ W1,1
loc (Ω)

and let f ∈ C1(R) be such that c = sup
R

| f ′| < ∞. Then f ◦ u ∈ W1,1
loc (Ω) and

∂k( f ◦ u) = f ′ ◦ u ∂ku.

Proof. We define un = ρn ∗ u, so that by the classical rule,

∂k( f ◦ un) = f ′ ◦ un ∂kun.

We choose ω ⊂⊂ Ω. By the regularization theorem, we have in L1(ω),

un → u, ∂kun → ∂ku.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
un → u almost everywhere on ω. We obtain

∫
ω

| f ◦ un − f ◦ u|dx ≤ c
∫
ω

|un − u|dx→ 0,
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∫
ω

| f ′ ◦un ∂kun− f ′ ◦u ∂ku|dx ≤ c
∫
ω

|∂kun−∂ku|dx+
∫
ω

| f ′ ◦un− f ′ ◦u| |∂ku|dx→ 0.

Hence in L1(ω),

f ◦ un → f ◦ u, f ′ ◦ un ∂kun → f ′ ◦ u ∂ku.

Since ω ⊂⊂ Ω is arbitrary, we conclude the proof by invoking the closing lemma.
��

On R, we define
sgn(t) = t/|t|, t � 0

= 0, t = 0.

Corollary 6.1.14. Let u ∈ W1,1
loc (Ω). Then u+, u−, |u| ∈ W1,1

loc (Ω), and

∇u+ = χ{u>0}∇u, ∇u− = −χ{u<0}∇u, ∇|u| = (sgn u)∇u.

Proof. We define for ε > 0, fε(t) = ([max(0, t)]2 + ε2)1/2 and v = χ{u>0}∂ku. The
preceding proposition implies that

∂k( fε ◦ u) =
u+

([u+]2 + ε2)1/2
∂ku.

Hence in L1
loc(Ω),

fε ◦ u→ u+, ∂k( fε ◦ u)→ v.

The closing lemma ensures that ∂ku+ = v. Since u− = (−u)+, it is easy to finish the
proof. ��
Corollary 6.1.15. Let 1 ≤ p < ∞ and let u ∈ W1,p(Ω) ∩ C(Ω) be such that u = 0
on ∂Ω. Then u ∈ W1,p

0 (Ω).

Proof. It is easy to prove by regularization that W1,p(Ω) ∩ K(Ω) ⊂ W1,p
0 (Ω).

Assume that supp u is bounded. Let f ∈ C1(R) be such that | f (t)| ≤ |t| on R :

f (t) = 0, |t| ≤ 1,
= t, |t| ≥ 2.

Define un = f (n u)/n. Then un ∈ K(Ω), and by the preceding proposition, un ∈
W1,p(Ω). By Lebesgue’s dominated convergence theorem, un → u in W1,p(Ω), so
that u ∈ W1,p

0 (Ω).
If supp u is unbounded, we define un = θnu when (θn) is defined in the proof of

Theorem 6.1.10. Then supp un is bounded. By Lebesgue’s dominated convergence
theorem, un → u in W1,p(Ω), so that u ∈ W1,p

0 (Ω). ��
Proposition 6.1.16. Let Ω be an open subset of RN. Then there exist a sequence
(Un) of open subsets of Ω and a sequence of functions ψn ∈ D(Un) such that
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(a) for every n, Un ⊂⊂ Ω and ψn ≥ 0;

(b)
∞∑

n=1

ψn = 1 on Ω;

(c) for every ω ⊂⊂ Ω there exists mω such that for n > mω we have Un ∩ ω = φ.

Proof. Let us define ω−1 = ω0 = φ, and for n ≥ 1,

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n},
Kn = ωn \ ωn−1,

Un = ωn+1 \ ωn−2.

The theorem of partitions of unity implies the existence of ϕn ∈ D(Un) such that
0 ≤ ϕn ≤ 1 and ϕn = 1 on Kn. It suffices then to define

ψn = ϕn/
∞∑
j=1

ϕ j. ��

Theorem 6.1.17 (Hajłasz). Let 1 ≤ p < ∞, u ∈ W1,p
loc (Ω), and ε > 0. Then there

exists v ∈ C∞(Ω) such that

(a) v − u ∈ W1,p
0 (Ω);

(b) ||v − u||W1,p(Ω) < ε.

Proof. Let (Un) and (ψn) be given by the preceding proposition. For every n ≥ 1,
there exists kn such that

vn = ρkn ∗ (ψnu) ∈ D(Un)

and
||vn − ψnu||1,p < ε/2n.

By Proposition 3.1.6,
∞∑

n=1

(vn − ψnu) converges to w in W1,p
0 (Ω). On the other hand,

we have on ω ⊂⊂ Ω that

∞∑
n=1

vn =

mω∑
n=1

vn ∈ C∞(ω),
∞∑

n=1

ψnu = u.

Setting v =
∞∑

n=1

vn, we conclude that

||v − u||1,p = ||w||1,p ≤
∞∑

n=1

||vn − ψnu||1,p < ε. ��

Corollary 6.1.18 (Deny–Lions). Let 1 ≤ p < ∞. Then C∞(Ω) ∩W1,p(Ω) is dense
in W1,p(Ω).
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6.2 Cylindrical Domains

Let U be an open subset of RN−1 and 0 < r ≤ ∞. Define

Ω = U× ]− r, r[, Ω+ = U× ]0, r[.

The extension by reflection of a function in W1,p(Ω+) is a function in W1,p(Ω).
For every u : Ω+ → R, we define on Ω,

ρu(x′, x
N

) = u
(
x′, |x

N
|
)
, σu(x′, x

N
) = (sgn x

N
)u
(
x′, |x

N
|
)
.

Lemma 6.2.1 (Extension by reflection). Let 1 ≤ p < ∞ and u ∈ W1,p(Ω+). Then
ρu ∈ W1,p(Ω), ∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1, and ∂

N
(ρu) = σ(∂

N
u), so that

||ρu||Lp(Ω) = 21/p||u||Lp(Ω+), ||ρu||W1,p(Ω) = 21/p||u||W1,p(Ω+).

Proof. Let v ∈ D(Ω). Then by a change of variables,

∫
Ω

(ρu)∂
N

v dx =
∫
Ω+

u ∂
N

w dx, (∗)

where
w(x′, x

N
) = v(x′, x

N
) − v(x′,−x

N
).

A truncation argument will be used. Let η ∈ C∞(R) be such that

η(t) = 0, t < 1/2,
= 1, t > 1,

and define ηn on Ω+ by
ηn(x) = η(n x

N
).

The definition of weak derivative ensures that
∫
Ω+

u ∂
N

(ηnw)dx = −
∫
Ω+

(∂
N

u)ηnw dx, (∗∗)

where

∂
N

(ηnw) = ηn∂
N

w + nη′(n x
N

)w.

Since w(x′, 0) = 0, w(x′, x
N

) = h(x′, x
N

)x
N

, where

h(x′, x
N

) =
∫ 1

0
∂

N
w(x′, t x

N
)dt.
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Lebesgue’s dominated convergence theorem implies that
∣∣∣∣∣∣
∫
Ω+

n η′(n x
N

)w u dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

U× ]0,1/n[
n η′(n x

N
)h x

N
u dx

∣∣∣∣∣∣
≤ ||η′||∞

∫
U× ]0,1/n[

|hu|dx→ 0, n→ ∞.

Taking the limit in (∗∗), we obtain

∫
Ω+

u ∂
N

w dx = −
∫
Ω+

(∂
N

u)w dx = −
∫
Ω

σ(∂
N

u)v dx.

It follows from (∗) that ∫
Ω

(ρu)d
N

v dx = −
∫
Ω

σ(∂
N

u)v dx.

Since v ∈ D(Ω) is arbitrary, ∂
N

(ρu) = σ(∂
N

u). By a similar but simpler argument,
∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1. ��

It makes no sense to define an Lp function on a set of measure zero. We will
define the trace of a W1,p function on the boundary of a smooth domain. We first
consider the case of RN

+ .

Notation. We define
D(Ω) = {u|Ω : u ∈ D(RN)},

R
N
+ = {(x′, x

N
) : x′ ∈ RN−1, x

N
> 0}.

Lemma 6.2.2 (Trace inequality). Let 1 ≤ p < ∞. Then for every u ∈ D(RN
+ ),∫

RN−1

∣∣∣u(x′, 0)
∣∣∣pdx′ ≤ p||u||p−1

Lp(RN
+ )
||∂

N
u||Lp

(RN
+ )
.

Proof. The fundamental theorem of calculus implies that for all x′ ∈ RN−1,

∣∣∣u(x′, 0)
∣∣∣p ≤ p

∫ ∞

0

∣∣∣u(x′, x
N

)
∣∣∣p−1∣∣∣∂

N
u(x′, x

N
)
∣∣∣dx

N
.

When 1 < p < ∞, using Fubini’s theorem and Hölder’s inequality, we obtain∫
RN−1

∣∣∣u(x′, 0)
∣∣∣pdx′ ≤ p

∫
R

N
+

|u|p−1|∂
N

u|dx

≤ p

(∫
R

N
+

|u|(p−1)p′dx

)1/p′ (∫
R

N
+

|∂
N

u|pdx

)1/p

= p

(∫
R

N
+

|u|pdx

)1−1/p (∫
R

N
+

|∂
N

u|pdx

)1/p

.

The case p = 1 is similar. ��
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Proposition 6.2.3. Let 1 ≤ p < ∞. Then there exists one and only one continuous
linear mapping γ0 : W1,p(RN

+ ) → Lp(RN−1) such that for every u ∈ D(RN
+ ),

γ0u = u(., 0).

Proof. Let u ∈ D(RN
+ ) and define γ0u = u(., 0). The preceding lemma implies that

||γ0u||Lp(RN−1) ≤ p1/p||u||W1,p(RN
+ ).

The space D(RN
+ ) is dense in W1,p(RN

+ ) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, γ0 has a unique continuous linear extension to W1,p(RN

+ ). ��
Proposition 6.2.4 (Integration by parts). Let 1 ≤ p < ∞, u ∈ W1,p(RN

+ ), and

v ∈ D(RN
+ ). Then

∫
R

N
+

v ∂
N

u dx = −
∫
R

N
+

(∂
N

v)u dx −
∫
RN−1

γ0v γ0u dx′,

and ∫
R

N
+

v∂ku dx = −
∫
R

N
+

(∂kv)u dx, 1 ≤ k ≤ N − 1.

Proof. Assume, moreover, that u ∈ D(RN
+ ). Integrating by parts, we obtain for all

x′ ∈ RN−1,

∫ ∞

0
v(x′, x

N
)∂

N
u(x′, x

N
)dx

N
= −

∫ ∞

0
∂

N
v(x′, x

N
)u(x′, x

N
)dx

N
− v(x′, 0)u(x′, 0).

Fubini’s theorem implies that

∫
R

N
+

v ∂
N

u dx = −
∫
R

N
+

∂
N

vu dx −
∫
RN−1

v(x′, 0)u(x′, 0)dx′.

Let u ∈ W1,p(RN
+ ). SinceD(RN

+ ) is dense in W1,p(RN
+ ), there exists a sequence (un) ⊂

D(RN
+ ) such that un → u in W1,p(RN

+ ). By the preceding lemma, γ0un → γ0u in
Lp(RN−1). It is easy to finish the proof.

The proof of the last formulas is similar. ��
Notation. For every u : RN

+ → R, we define u on R
N by

u(x′, x
N

) = u(x′, x
N

), x
N
> 0,

= 0, x
N
≤ 0.

Proposition 6.2.5. Let 1 ≤ p < ∞ and u ∈ W1,p(RN
+ ). The following properties are

equivalent:
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(a) u ∈ W1,p
0 (RN

+ );
(b) γ0u = 0;
(c) u ∈ W1,p(RN) and ∂ku = ∂ku, 1 ≤ k ≤ N.

Proof. If u ∈ W1,p
0 (RN

+ ), there exists (un) ⊂ D(RN
+ ) such that un → u in W1,p(RN

+ ).
Hence γ0un = 0 and γ0un → γ0u in Lp(RN−1), so that γ0u = 0.

If γ0u = 0, it follows from the preceding proposition that for every v ∈ D(RN),

∫
RN

v ∂ku dx = −
∫
RN
∂kv u dx, 1 ≤ k ≤ N.

We conclude that (c) is satisfied.
Assume that (c) is satisfied. We define un = θnu, where (θn) is as defined in

the proof of Theorem 6.1.10. It is clear that un → u in W1,p(RN) and spt un ⊂
B[0, 2n]∩ R

N
+ .

We can assume that spt un is a compact subset of R
N
+ . We define yn =

(0, . . . , 0, 1/n) and vn = τyn u. Since ∂kvn = τyn∂ku, the lemma of continuity of
translations implies that un → u in W1,p(RN

+ ).
We can assume that spt u is a compact subset of RN

+ . For n large enough, ρn ∗ u ∈
D(RN

+ ). Since ρn ∗ u→ u is in W1,p(RN), we conclude that u ∈ W1,p
0 (RN). ��

6.3 Smooth Domains

In this section, we consider an open subset Ω = {ϕ < 0} of RN of class C1 with a
bounded boundary Γ. We use the results of Sect. 9.2.

Let γ ∈ Γ. There exist r > 0, U an open neighborhood of γ in R
N , V an open

subset of RN−1, and β ∈ BC1(V× ]−r, r[) such that for every |t| < r,

{ϕ = t} ∩ U = {(x′, β(x′, t)) : x′ ∈ V}.

We have

Ω ∩ U = {(x′, β(x′, t)) : x′ ∈ V,−r < t < 0}, Γ ∩ U = {(x′, β0(x′)) : x′ ∈ V},

where β0(x′) = β(x′, 0).
The Borel–Lebesgue theorem implies the existence of a finite covering U1, . . . ,Uk

of Γ by open subsets satisfying the above properties. There exists a partition of unity
ψ1, . . . , ψk subordinate to this covering.

Theorem 6.3.1 (Extension theorem). Let 1 ≤ p < ∞ and let Ω be an open subset
of RN of class C1 with a bounded frontier or the product of N open intervals. Then
there exists a continuous linear mapping
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P : W1,p(Ω)→ W1,p(RN)

such that Pu
∣∣∣
Ω
= u.

Proof. Let Ω be an open subset of RN of class C1 with a bounded frontier, and let
u ∈ W1,p(Ω). Proposition 6.1.11 and Lemma 6.2.1 imply that

PUu(x) = u(x′, β(x′,−|ϕ(x′, x
N

)|)) ∈ W1,p(U).

Moreover,
||PUu||W1,p(U) ≤ aU ||u||W1,p(Ω). (∗)

We define ψ0 = 1 −
k∑

j=1

ψ j,

u0 = ψ0u, x ∈ Ω,
= 0, x ∈ RN \ Ω,

and for 1 ≤ j ≤ k,
u j = PUj (ψ ju), x ∈ U j,

= 0, x ∈ RN \ U j.

Formula (∗) and Proposition 6.1.12 ensure that for 0 ≤ j ≤ k,

||u j||W1,p(RN ) ≤ b j||u||W1,p(Ω).

(The support of ∇ψ0 is compact!) Hence

Pu =
k∑

j=0

u j ∈ W1,p(RN), ||Pu||W1,p(RN ) ≤ c||u||W1,p(Ω),

and for all x ∈ Ω,

Pu(x) =
k∑

j=0

ψ j(x)u(x) = u(x).

IfΩ is the product of N open intervals, it suffices to use a finite number of extensions
by reflections and a truncation. ��
Theorem 6.3.2 (Density theorem in Sobolev spaces). Let 1 ≤ p < ∞ and letΩ be
an open subset of RN of class C1 with a bounded frontier or the product of N open
intervals. Then the spaceD(Ω) is dense in W1,p(Ω).

Proof. Let u ∈ W1,p(Ω). Theorem 6.1.10 implies the existence of a sequence (vn) ⊂
D(RN) converging to Pu in W1,p(RN). Hence un = vn

∣∣∣
Ω

converges to u in W1,p(Ω).
��
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Theorem 6.3.3 (Trace theorem). Let 1 ≤ p < ∞ and let Ω be an open subset
of RN of class C1 with a bounded frontier Γ. Then there exists one and only one
continuous linear mapping

γ0 : W1,p(Ω)→ Lp(Γ)

such that for all u ∈ D(Ω), γ0u = u
∣∣∣
Γ

.

Proof. Let u ∈ D(U). Proposition 6.1.11 implies that

v(x′, t) = u
(
x′, β(x′, t)

)
∈ BC1(V× ]− r, 0[).

Since the support of v is a compact subset of V× ]− r, 0], Proposition 6.2.3 ensures
that

||u||pLp(Γ) =

∫
V

∣∣∣v(x′, 0)
∣∣∣p
√

1 +
∣∣∣∇β0(x′)

∣∣∣2 dx′ ≤ ap
U ||v||pW1,p(V× ]−r,0[)

≤ bp
U ||u||pW1,p(U)

.

Let u ∈ D(RN) and define γ0u = u
∣∣∣
Γ

. It follows from the preceding inequality
that

||γ0u||Lp(Γ) ≤
k∑

j=1

∣∣∣∣∣∣γ0(ψ ju)
∣∣∣∣∣∣

Lp(Γ)
≤

k∑
j=1

bUj ||ψ ju||W1,p(Uj) ≤ c||u||W1,p(Ω).

It suffices then to use Proposition 3.2.3 and the density theorem in Sobolev spaces.
��

Theorem 6.3.4 (Divergence theorem). Let Ω be an open subset of RN of class C1

with a bounded frontier Γ and v ∈ W1,1(Ω;RN). Then

∫
Ω

div v dx =
∫
Γ

γ0v · n dγ.

Proof. When v ∈ D(Ω;RN), the proof is given in Sect. 9.2. In the general case, it
suffices to use the density theorem in Sobolev spaces and the trace theorem. ��

6.4 Embeddings

Let 1 ≤ p, q < ∞. If there exists c > 0 such that for every u ∈ D(RN),

||u||Lq(RN ) ≤ c||∇u||Lp(RN ),

then necessarily
q = p∗ = N p/(N − p).
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Indeed, replacing u(x) by uλ(x) = u(λx), λ > 0, we find that

||u||Lq(RN ) ≤ cλ
(
1+ N

q − N
p

)
||∇u||Lp(RN ),

so that q = p∗.
We define for 1 ≤ j ≤ N and x ∈ RN ,

x̂ j = (x1, . . . , x j−1, x j+1, . . . , x
N

).

Lemma 6.4.1 (Gagliardo’s inequality). Let N ≥ 2 and f1, . . . , f
N
∈ LN−1(RN−1).

Then f (x) =
N∏

j=1

f j(x̂ j) ∈ L1(RN) and

|| f ||L1(RN ) ≤
N∏

j=1

|| f j||LN−1(RN−1).

Proof. We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N ≥ 2. Let f1, . . . , fN+1 ∈ LN (RN) and

f (x, xN+1) =
N∏

j=1

f j(x̂ j, xN+1) fN+1(x).

It follows from Hölder’s inequality that for almost every xN+1 ∈ R,

∫
RN

∣∣∣ f (x, xN+1)
∣∣∣dx ≤

⎡⎢⎢⎢⎢⎢⎢⎣
∫
RN

N∏
j=1

∣∣∣ f j(x̂ j, xN+1)
∣∣∣N′dx

⎤⎥⎥⎥⎥⎥⎥⎦
1/N′

|| fN+1||LN (RN )

≤
N∏

j=1

[∫
RN−1

∣∣∣ f j(x̂ j, xN+1)
∣∣∣Ndx̂ j

]1/N

|| fN+1||LN (RN ).

The generalized Hölder inequality implies that

|| f ||L1(RN+1) ≤
N∏

j=1

[∫
RN

∣∣∣ f j(x̂ j, xN+1)
∣∣∣Ndx̂ jdxN+1

]1/N

|| fN+1||LN (RN )

=

N+1∏
j=1

|| f j||LN (RN ). ��

Lemma 6.4.2 (Sobolev’s inequalities). Let 1 ≤ p < N. Then there exists a
constant c = c(p,N) such that for every u ∈ D(RN),

||u||Lp∗ (RN ) ≤ c||∇u||Lp(RN ).
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Proof. Let u ∈ C1(RN) be such that spt u is compact. It follows from the
fundamental theorem of calculus that for 1 ≤ j ≤ N and x ∈ RN ,

∣∣∣u(x)
∣∣∣ ≤ 1

2

∫
R

∣∣∣∂ ju(x)
∣∣∣dx j.

By the preceding lemma,

∫
RN

∣∣∣u(x)
∣∣∣N/(N−1)

dx ≤
N∏

j=1

[
1
2

∫
RN

∣∣∣∂ ju(x)
∣∣∣dx

]1/(N−1)

.

Hence we obtain

||u||N/(N−1) ≤ 1
2

N∏
j=1

||∂ ju||1/N1 ≤ c
N
||∇u||1.

For p > 1, we define q = (N − 1)p∗/N > 1. Let u ∈ D(RN). The preceding
inequality applied to |u|q and Hölder’s inequality imply that

(∫
|u|p∗dx

) N−1
N

≤ q c
N

∫
RN
|u|q−1|∇u|dx

≤ q c
N

(∫
RN
|u|(q−1)p′dx

)1/p′ (∫
RN
|∇u|pdx

)1/p

.

It is easy to conclude the proof. ��
Lemma 6.4.3 (Morrey’s inequalities). Let N < p < ∞ and λ = 1 − N/p. Then
there exists a constant c = c(p,N) such that for every u ∈ D(RN) and every
x, y ∈ RN,

∣∣∣u(x) − u(y)
∣∣∣ ≤ c|x − y|λ||∇u||Lp(RN ),

||u||∞ ≤ c||u||W1,p(RN ).

Proof. Let u ∈ D(RN) and Q = B∞(0, r/2). It follows from the fundamental
theorem of calculus that for x ∈ Q,

∣∣∣u(x) − u(0)
∣∣∣ ≤

∫ 1

0
|x|∞

∣∣∣∇u(tx)
∣∣∣
1
dt ≤ r

∫ 1

0

∣∣∣∇u(tx)
∣∣∣
1
dt.

Let �
∫

u =
1

m(Q)

∫
Q

u(x)dx. Integrating on Q, we obtain
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∣∣∣∣∣�
∫

u − u(0)
∣∣∣∣∣ ≤ r

m(Q)

∫
Q

dx
∫ 1

0

∣∣∣∇u(tx)
∣∣∣
1
dt

=
1

rN−1

∫ 1

0
dt
∫

Q

∣∣∣∇u(tx)
∣∣∣
1
dx

=
1

rN−1

∫ 1

0
dt
∫

tQ

∣∣∣∇u(y)
∣∣∣
1

dy
tN
.

Hölder’s inequality implies that

∣∣∣∣∣�
∫

u − u(0)
∣∣∣∣∣ ≤
√

N
rN−1
||∇u||Lp(Q)r

N/p′
∫ 1

0

tN/p′

tN
dt =

√
N
λ

rλ||∇u||Lp(Q).

After a translation, for x ∈ RN we have

∣∣∣∣∣�
∫

u − u(x)
∣∣∣∣∣ ≤
√

N
λ

rλ||∇u||Lp(Q).

Choosing r = 1, we find that

∣∣∣u(x)
∣∣∣ ≤

∣∣∣∣∣�
∫

u
∣∣∣∣∣ +
√

N
λ
||∇u||Lp(Q) ≤ c1||u||W1,p(Q) ≤ c1||u||W1,p(RN ).

Let x, y ∈ RN . Choosing r = 2|x − y|, we find that

∣∣∣u(x) − u(y)
∣∣∣ ≤ 21+λ

λ

√
N |x − y|λ||∇u||Lp(Q) ≤ c2|x − y|λ||∇u||Lp(RN ). ��

Notation. We define
C0(Ω) = {u∣∣∣

Ω
: u ∈ C0(RN)}.

Theorem 6.4.4 (Sobolev’s embedding theorem, 1936–1938). Let Ω be an open
subset of RN of class C1 with a bounded frontier or the product of N open intervals.

(a) If 1 ≤ p < N and if p ≤ q ≤ p∗, then W1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is continuous.

(b) If N < p < ∞ and λ = 1 − N/p, then W1,p(Ω) ⊂ C0(Ω), the canonical injection
is continuous, and there exists c = c(p, Ω) such that for every u ∈ W1,p(Ω) and
all x, y ∈ Ω, ∣∣∣u(x) − u(y)

∣∣∣ ≤ c||u||W1,p(Ω)|x − y|λ.

Proof. Let 1 ≤ p < N and u ∈ W1,p(RN). By Theorem 6.1.10, there exists a
sequence (un) ⊂ D(RN) such that un → u in W1,p(RN).

We can assume that un → u almost everywhere on R
N . It follows from Fatou’s

lemma and Sobolev’s inequality that
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||u||Lp∗ (RN ) ≤ lim
n→∞
||un||Lp∗ (RN ) ≤ c lim

n→∞ ||∇un||Lp(RN ) = c||∇u||Lp(RN ).

Let P be the extension operator corresponding to Ω and v ∈ W1,p(Ω). We have

||v||Lp∗ (Ω) ≤ ||Pv||Lp∗ (RN ) ≤ c||∇Pv||Lp(RN ) ≤ c1||v||W1,p(Ω).

If p ≤ q ≤ p∗, we define 0 ≤ λ ≤ 1 by

1
q
=

1 − λ
p
+
λ

p∗
,

and we infer from the interpolation inequality that

||v||Lq(Ω) ≤ ||v||1−λLp(Ω)||v||λLp∗ (Ω) ≤ cλ1 ||v||W1,p(Ω).

The case p > N follows from Morrey’s inequalities. ��
Lemma 6.4.5. Let Ω be an open set satisfying the assumptions of the preceding
theorem, ω ⊂⊂ Ω, u ∈ W1,1(Ω), and |y| < d(ω, ∂Ω). Then

||τyu − u||L1(ω) ≤ |y| ||∇u||L1(Ω).

Proof. Let u ∈ D(Ω). It follows from the fundamental theorem of calculus that

∣∣∣τyu(x) − u(x)
∣∣∣ =

∣∣∣∣∣∣
∫ 1

0
y · ∇u(x − ty)dt

∣∣∣∣∣∣ ≤ |y|
∫ 1

0

∣∣∣∇u(x − ty)
∣∣∣dt.

Hence if |y| < d(ω, ∂Ω), then

||τyu − u||L1(ω) ≤ |y|
∫
ω

dx
∫ 1

0

∣∣∣∇u(x − ty)
∣∣∣dt

= |y|
∫ 1

0
dt
∫
ω

∣∣∣∇u(x − ty)
∣∣∣dx

= |y|
∫ 1

0
dt
∫
ω−ty

∣∣∣∇u(z)
∣∣∣dz ≤ |y| ||∇u||L1(Ω).

We conclude using the density theorem in Sobolev spaces. ��
Theorem 6.4.6 (Rellich–Kondrachov embedding theorem). Let Ω be a bounded
open subset of RN of class C1 or the product of N bounded open intervals.

(a) If 1 ≤ p < N and 1 ≤ q < p∗, then W1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is compact.

(b) If N < p < ∞, then W1,p ⊂ C0(Ω), and the canonical injection is compact.
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Proof. Let 1 ≤ p < N, 1 ≤ q < p∗. Let us prove that

S = {u ∈ W1,p(Ω) : ||u||W1,p(Ω) ≤ 1}

satisfies the assumptions of M. Riesz’s theorem in Lq(Ω).

(a) It follows from Hölder’s inequality and from the preceding theorem that for
every u ∈ S ,

||u||Lq(Ω) ≤ ||u||Lp∗ (Ω)m(Ω)
1
q− 1

p∗ ≤ c1.

(b) Let ε > 0. There exists k ≥ 1 such that for every u ∈ S ,

||u||Lq(Ω\Ωk) ≤ ||u||Lp∗ (Ω\Ωk)m(Ω \ Ωk)
1
q− 1

p∗ ≤ c3 m(Ω \ Ωk)
1
q− 1

p∗ ≤ ε.

(c) We choose ω ⊂⊂ Ω, and we define 0 ≤ λ < 1 by

1
q
= 1 − λ + λ

p∗
.

If |y| < d(ω, ∂Ω), we infer from the interpolation inequality and from the
preceding lemma that for every u ∈ S ,

||τyu − u||Lq(ω) ≤ ||τyu − u||1−λL1(ω)||τyu − u||λ
Lp∗ (ω)

≤ |y|1−λ||∇u||1−λL1(Ω)(2||u||Lp∗(Ω))
λ

≤ c2|y|1−λ.

Hence S is precompact in Lp(Ω).

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. ��

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s inequality in W1,p
0 ). Let 1 ≤ p < ∞ and let Ω be an

open subset of RN such that Ω ⊂ R
N−1×]0, a[. Then for every u ∈ W1,p

0 (Ω),

||u||Lp(Ω) ≤ a
2
||∇u||Lp(Ω).

Proof. Let 1 < p <∞ and v ∈ D(]0, a[). Hölder’s inequality implies that for 0 <
x < a,

∣∣∣v(x)
∣∣∣ ≤ 1

2

∫ a

0

∣∣∣v′(t)∣∣∣dt ≤ a1/p′

2

∣∣∣∣
∫ a

0

∣∣∣v′(t)∣∣∣pdt
∣∣∣∣1/p

.

Hence we obtain
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∫ a

0

∣∣∣v(x)
∣∣∣pdx ≤ ap/p′

2p
a
∫ a

0

∣∣∣v′(x)
∣∣∣pdx =

ap

2p

∫ a

0

∣∣∣v′(x)
∣∣∣pdx.

If u ∈ D(Ω), we infer from the preceding inequality and from Fubini’s theorem that

∫
Ω

|u|pdx =
∫
RN−1

dx′
∫ a

0

∣∣∣u(x′, x
N

)
∣∣∣pdx

N

≤ ap

2p

∫
RN−1

dx′
∫ a

0

∣∣∣∂
N

u(x′, x
N

)
∣∣∣pdx

N

=
ap

2p

∫
Ω

|∂
N

u|pdx.

It is easy to conclude by density. The case p = 1 is similar. ��
Definition 6.4.8. A metric space is connected if the only open and closed subsets
of X are φ and X.

Theorem 6.4.9 (Poincaré’s inequality in W1,p). Let 1 < p < ∞ and let Ω be a
bounded connected open subset of RN of class C1 or the product of N bounded open
intervals. Then there exists c = c(p, Ω) such that for every u ∈ W1,p(Ω),

∣∣∣∣∣
∣∣∣∣∣u −�

∫
u
∣∣∣∣∣
∣∣∣∣∣
Lp(Ω)

≤ c||∇u||Lp(Ω),

where �
∫

u =
1

m(Ω)

∫
Ω

u dx. If, moreover, Ω is convex, then c ≤ 2N/pd, where

d = sup
x,y∈Ω
|x − y|.

Proof. It suffices to prove that

λ = inf

{
||∇u||p : u ∈ W1,p(Ω),�

∫
u = 0, ||u||p = 1

}
> 0.

Let (un) ⊂ W1,p(Ω) be a minimizing sequence:

||un||p = 1, �

∫
u = 0, ||∇un||p → λ.

By the Rellich–Kondrachov theorem, we can assume that un → u in Lp(Ω). Hence

||u||p = 1 and �

∫
u = 0. Theorem 6.1.7 implies that u ∈ W1,p(Ω) and

||∇u||p ≤ lim
n→∞ ||∇un||p = λ.
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If λ = 0, then ∇u = 0 and u = �

∫
u, since Ω is connected. This is a contradiction.

We assume that Ω is convex. Hölder’s inequality implies that

∫
Ω

|u(y) −�
∫

u|pdy ≤
∫
Ω

dy

[∫
Ω

|u(x) − u(y)|
m(Ω)

dx

]p

≤ 1
m(Ω)

∫
Ω

dy
∫
Ω

|u(x) − u(y)|pdx.

It follows from the fundamental theorem of calculus that

∫
Ω

dy
∫
Ω

|u(x) − u(y)|pdx ≤ dP
∫
Ω

dy
∫
Ω

dx

[∫ 1

0
|∇u((1 − t)x + ty)|dt

]P

≤ dP
∫
Ω

dy
∫
Ω

dx
∫ 1

0
|∇u((1 − t)x + ty)|Pdt

≤ 2dP
∫
Ω

dy
∫
Ω

dx
∫ 1

1/2
|∇u((1 − t)x + ty)|Pdt

≤ 2NdP
∫
Ω

dy
∫
Ω

|∇u(z)|Pdz.

We conclude that
∫
Ω

|u(y) −�
∫

u|pdy ≤ 2NdP
∫
Ω

|∇u(y)|Pdy. ��

Theorem 6.4.10 (Hardy’s inequality). Let 1 < p < N. Then for every u ∈
W1,p(RN), u/|x| ∈ Lp(RN) and

||u/|x|||Lp(RN ) ≤ p
N − p

||∇u||Lp(RN ).

Proof. Let u ∈ D(RN) and v ∈ D(RN ;RN). We infer from Lemma 6.1.1 that

∫
RN
|u|pdiv v dx = −p

∫
RN
|u|p−2u∇u · v dx.

Approximating v(x) = x/|x|p by vε(x) = x/(|x|2 + ε)p/2, we obtain

(N − p)
∫
RN
|u|p/|x|pdx = −p

∫
RN
|u|p−2u∇u · x/|x|pdx.

Hölder’s inequality implies that
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∫
RN
|u|p/|x|pdx ≤ p

N − p

(∫
RN
|u|(p−1)p′/|x|pdx

)1/p′ (∫
RN
|∇u|pdx

)1/p

=
p

N − p

(∫
RN
|u|p/|x|pdx

)1−1/p (∫
RN
|∇u|pdx

)1/p

.

We have thus proved Hardy’s inequality in D(RN). Let u ∈ W1,p(RN). Theo-
rem 6.1.10 ensures the existence of a sequence (un) ⊂ D(RN) such that un → u
in W1,p(RN). We can assume that un → u almost everywhere on R

N . We conclude
using Fatou’s lemma that

||u/|x|||p ≤ lim
n→∞
||un/|x|||p ≤ p

N − p
lim
n→∞ ||∇un||p = p

N − p
||∇u||p. ��

Fractional Sobolev spaces are interpolation spaces between Lp(Ω) and W1,p(Ω).

Definition 6.4.11. Let 1 ≤ p < ∞, 0 < s < 1, and u ∈ Lp(Ω). We define

|u|Ws,p(Ω) = |u|s,p =
(∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

≤ +∞.

On the fractional Sobolev space

W s,p(Ω) = {u ∈ Lp(Ω) : |u|Ws,p(Ω) < +∞},

we define the norm

||u||Ws,p(Ω) = ||u||s,p = ||u||Lp(Ω) + |u|Ws,p(Ω).

We give, without proof, the characterization of traces due to Gagliardo ([26]).

Theorem 6.4.12. Let 1 < p < ∞.

(a) For every u ∈ W1,p(RN), γ0u ∈ W1−1/p,p(RN−1).
(b) The mapping γ0 : W1,p(RN)→ W1−1/p,p(RN−1) is continuous and surjective.
(c) The mapping γ0 : W1,1(RN)→ L1(RN−1) is continuous and surjective.

6.5 Comments

The main references on Sobolev spaces are the books

– R. Adams and J. Fournier, Sobolev spaces ([1]);
– H. Brezis, Analyse fonctionnelle, théorie et applications ([8]);
– V. Maz’ya, Sobolev spaces with applications to elliptic partial differential

equations ([51]).
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The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of the Poincaré inequalities, for every smooth, bounded, and connected
domain Ω, we have that

λ1(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H1
0(Ω),

∫
Ω

u2dx = 1

}
> 0,

μ2(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H1(Ω),
∫
Ω

u2dx = 1,
∫
Ω

udx = 0

}
> 0.

Hence the first eigenvalue λ1(Ω) of the Dirichlet problem

{−Δu = λu in Ω,
u = 0 on ∂Ω,

and the second eigenvalue μ2(Ω) of the Neumann problem

{ −Δu = λu in Ω,
n · ∇u = 0 on ∂Ω,

are strictly positive. Let us denote by B an open ball such that m(B) = m(Ω). Then

λ1(B) ≤ λ1(Ω) (Faber–Krahn inequality),
μ2(Ω) ≤ μ2(B) (Weinberger, 1956).

Moreover, if Ω is a convex domain with diameter d, then

π2/d2 ≤ μ2(Ω) (Payne–Weinberger, 1960).

We prove in Theorem 6.4.9, the weaker estimate

1/(2Nd2) ≤ μ2(Ω).

There exists a domain Ω ⊂ R
2 such that μ2(Ω) = 0. Consider on two sides of

a square Q, two infinite sequences of small squares connected to Q by very thin
pipes.
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6.6 Exercises for Chap. 6

1. Let Ω = B(0, 1) ⊂ R
N . Then for λ � 0,

(λ − 1)p + N > 0 ⇐⇒ |x|λ ∈ W1,p(Ω),

λp + N < 0 ⇐⇒ |x|λ ∈ W1,p(RN \ Ω),

p < N ⇐⇒ x
|x| ∈ W1,p(Ω;RN).

2. Let 1 < p < ∞ and u ∈ Lp(Ω). The following properties are equivalent:

(a) u ∈ W1,p(Ω);

(b) sup

{∫
Ω

u div v dx : v ∈ D(Ω,RN), ||v||Lp′ (Ω) = 1

}
< ∞;

(c) there exists c > 0 such that for every ω ⊂⊂ Ω and for every y ∈ R
N such

that |y| < d(ω, ∂Ω),
||τyu − u||Lp(ω) ≤ c|y|.

3. Let 1 ≤ p < N and let Ω be an open subset of RN . Define

S (Ω) = inf
u ∈ D(Ω)
||u||Lp∗ (Ω) = 1

||∇u||Lp(Ω).

Then S (Ω) = S (RN).
4. Let 1 ≤ p < N. Then

1
2N

S (RN) = inf
{
||∇u||Lp(RN

+ )/||u||Lp∗ (RN
+ ) : u ∈ H1(RN

+ ) \ {0}
}
.

5. (Poincaré–Sobolev inequality.)

(a) Let 1 < p < N and let Ω be an open bounded subset of RN of class C1.
Then there exists c > 0 such that for every u ∈ W1,p(Ω),

∣∣∣∣∣
∣∣∣∣∣u −�

∫
u
∣∣∣∣∣
∣∣∣∣∣
Lp∗ (Ω)

≤ c||∇u||Lp(Ω),

where �

∫
u =

1
m(Ω)

∫
Ω

u dx. Hint: Apply Theorem 6.4.4 to u −�
∫

u.

(b) Let A = {u = 0} and assume that m(A) > 0. Then

‖u‖Lp∗ (Ω) ≤ c

(
1 +

[m(Ω)
m(A)

]1/p∗
)
‖∇u‖Lp(Ω).

Hint: ∣∣∣∣�
∫

u
∣∣∣∣m(A)1/p∗ ≤ ‖u −�

∫
u‖Lp∗ (Ω).
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6. (Nash inequality.) Let N ≥ 3. Then for every u ∈ D(RN),

||u||2+4/N
2 ≤ c||u||4/N1 ||∇u||22.

Hint: Use the interpolation inequality.

7. Let 1 ≤ p < N and q = p(N − 1)/(N − p). Then for every u ∈ D(RN
+ ),

∫
RN−1

∣∣∣u(x′, 0)
∣∣∣qdx′ ≤ q||u||q−1

Lp∗ (RN
+ )
||∂

N
u||Lp(RN

+ ).

8. Verify that Hardy’s inequality is optimal using the family

uε(x) = 1, |x| ≤ 1,

= |x| p−N
p −ε, |x| > 1.

9. Let 1 ≤ p < N. ThenD(RN \ {0}) is dense in W1,p(RN).
10. Let 2 ≤ N < p < ∞. Then for every u ∈ W1,p

0 (RN \ {0}), u/|x| ∈ Lp(RN) and

||u/|x|||Lp(RN ) ≤ p
p − N

||∇u||Lp(RN ).

11. Let 1 ≤ p < ∞. Verify that the embedding W1,p(RN) ⊂ Lp(RN) is not compact.
Let 1 ≤ p < N. Verify that the embedding W1,p

0 (B(0, 1))⊂ Lp∗ (B(0, 1)) is not
compact.

12. Let us denote byDr(RN) the space of radial functions inD(RN). Let N ≥ 2 and
1 ≤ p < ∞. Then there exists c(N, p) > 0 such that for every u ∈ Dr(RN),

∣∣∣u(x)
∣∣∣ ≤ c(N, p)||u||1/p′

p ||∇u||1/p
p |x|(1−N)/p.

Let 1 ≤ p < N. Then there exists d(N, p) > 0 such that for every u ∈ Dr(RN),

∣∣∣u(x)
∣∣∣ ≤ d(N, p)||∇u||p|x|(p−N)/p.

Hint: Let us write u(x) = u(r), r = |x|, so that

rN−1
∣∣∣u(r)

∣∣∣p ≤ p
∫ ∞

r

∣∣∣u(s)
∣∣∣p−1∣∣∣du

dr
(s)

∣∣∣sN−1ds,

∣∣∣u(r)
∣∣∣ ≤

∫ ∞

r

∣∣∣∣du
dr

(s)
∣∣∣∣ds.

13. Let us denote by W1,p
r (RN) the space of radial functions in W1,p(RN). Verify

that the spaceDr(RN) is dense in W1,p
r (RN).
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14. Let 1 ≤ p < N and p < q < p∗. Verify that the embedding W1,p
r (RN) ⊂ Lq(RN)

is compact. Verify also that the embedding W1,p
r (RN) ⊂ Lp(RN) is not compact.

15. Let 1 ≤ p < ∞ and let Ω be an open subset of RN . Prove that the map

W1,p(Ω)→ W1,p(Ω) : u �→ u+

is continuous. Hint: ∇u+ = H(u)∇u, where

H(t) = 1, t > 0,
= 0, t ≤ 0.



Chapter 7
Capacity

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1. A capacity on X is a function

cap : K → [0,+∞] : K → cap(K)

such that:

(C1) (monotonicity.) For every A, B ∈ K such that A ⊂ B, cap(A) ≤ cap(B).
(C2) (regularity.) For every K ∈ K and for every a > cap(K), there exists U ∈ O
such that K ⊂ U, and for all C ∈ K satisfying C ⊂ U, cap(C) < a.
(C3) (strong subadditivity.) For every A, B ∈ K ,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).

The Lebesgue measure of a compact subset of RN is a capacity.
We denote by cap a capacity on X. We extend the capacity to the open

subsets of X.

Definition 7.1.2. The capacity of U ∈ O is defined by

cap(U) = sup{cap(K) : K ∈ K and K ⊂ U}.

Lemma 7.1.3. Let A, B ∈ O and K ∈ K be such that K ⊂ A ∪ B. Then there exist
L, M ∈ K such that L ⊂ A, M ⊂ B, and K = L ∪ M.

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 7, © Springer Science+Business Media, LLC 2013

139



140 7 Capacity

Proof. The compact sets K \A and K \B are disjoint. Hence there exist disjoint open
sets U and V such that K \ A ⊂ U and K \ B ⊂ V . It suffices to define L = K \U and
M = K \ V . ��
Proposition 7.1.4. (a) (monotonicity.) For every A, B ∈ O such that A ⊂ B,

cap(A) ≤ cap(B).
(b) (regularity.) For every K ∈ K , cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}.
(c) (strong subadditivity.) For every A, B ∈ O,

cap(A ∪ B) + cap A ∩ B) ≤ cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let us define Cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}. By definition,

cap(K) ≤ Cap(K). Let a > cap(K). There exists U ∈ O such that K ⊂ U and
for every C ∈ K satisfying C ⊂ U, cap(C) < a. Hence Cap(K) ≤ cap(U) < a.
Since a > cap(K) is arbitrary, we conclude that Cap(K) ≤ cap(K).

(c) Let A, B ∈ O, a < cap(A ∪ B), and b < cap(A ∩ B). By definition, there exist
K,C ∈ K such that K ⊂ A∪ B, C ⊂ A∩ B, a < cap(K), and b ≤ cap(C). We can
assume that C ⊂ K. The preceding lemma implies the existence of L, M ∈ K
such that L ⊂ A, M ⊂ B, and K = L ∪ M. We can assume that C ⊂ L ∩ M. We
obtain by monotonicity and strong subadditivity that

a + b ≤ cap(K) + cap(C) ≤ cap(L ∪ M) + cap(L ∩ M)
≤ cap(L) + cap(M) ≤ cap(A) + cap(B).

Since a < cap(A∪B) and b < cap(A∩B) are arbitrary, the proof is complete. ��
We extend the capacity to all subsets of X.

Definition 7.1.5. The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U ∈ O and U ⊃ A}.

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6. (a) (monotonicity.) For every A, B ⊂ X, cap(A) ≤ cap(B).
(b) (strong subadditivity.) For every A, B ⊂ X,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).

Proof. (a) Monotonicity is clear.
(b) Let A, B ⊂ X and U,V ∈ O be such that A ⊂ U and B ⊂ V . We have

cap(A ∪ B) + cap(A ∩ B) ≤ cap(U ∪ V) + cap(U ∩ V) ≤ cap(U) + cap(V).

It is easy to conclude the proof. ��



7.1 Capacity 141

Proposition 7.1.7. Let (Kn) be a decreasing sequence in K . Then

cap

⎛⎜⎜⎜⎜⎜⎝
∞⋂

n=1

Kn

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ cap(Kn).

Proof. Let K =
∞⋂

n=1

Kn and U ∈ O, U ⊃ K. By compactness, there exists m such that

Km ⊂ U. We obtain, by monotonicity, cap(K) ≤ lim
n→∞cap(Kn) ≤ cap(U). It suffices

then to take the infimum with respect to U. ��
Lemma 7.1.8. Let (Un) be an increasing sequence in O. Then

cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

Un

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ cap(Un).

Proof. Let U =
∞⋃

n=1

Un and K ∈ K ,K ⊂ U. By compactness, there exists m such

that K ⊂ Um. We obtain by monotonicity cap(K) ≤ lim
n→∞cap(Un) ≤ capU. It suffices

then to take the supremum with respect to K. ��
Theorem 7.1.9. Let (An) be an increasing sequence of subsets of X. Then

cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ cap(An).

Proof. Let A =
∞⋃

n=1

An. By monotonicity, lim
n→∞cap(An) ≤ cap(A). We can assume that

lim
n→∞cap(An) < +∞. Let ε > 0 and an = 1− 1/(n+ 1). We construct, by induction, an

increasing sequence (Un) ⊂ O such that An ⊂ Un and

cap(Un) ≤ cap(An) + ε an. (∗)

When n = 1, (∗) holds by definition. Assume that (∗) holds for n. By definition,
there exists V ∈ O such that An+1 ⊂ V and

cap(V) ≤ cap(An+1) + ε(an+1 − an).

We define Un+1 = Un ∪ V , so that An+1 ⊂ Un+1. We obtain, by strong subadditivity,

cap(Un+1) ≤ cap(Un) + cap(V) − cap(Un ∩ V)
≤ cap(An) + ε an + cap(An+1) + ε(an+1 − an) − cap(An)
= cap(An+1) + ε an+1.
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It follows from (∗) and the preceding lemma that

cap(A) ≤ cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

Un

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞ cap(Un) ≤ lim

n→∞ cap(An) + ε.

Since ε > 0 is arbitrary, the proof is complete. ��
Corollary 7.1.10 (Countable subadditivity). Let (An) be a sequence of subsets

of X. Then cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠ ≤
∞∑

n=1

cap(An).

Proof. Let Bk =

k⋃
n=1

Ak. We have

cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠ = cap

⎛⎜⎜⎜⎜⎜⎝
∞⋃

k=1

Bk

⎞⎟⎟⎟⎟⎟⎠ = lim
k→∞

cap(Bk) ≤
∞∑

n=1

cap(An). ��

Definition 7.1.11. The outer Lebesgue measure of a subset of RN is defined by

m∗(A) = inf{m(U) : U is open and U ⊃ A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the spaceD1,p(RN).

Definition 7.2.1. Let 1 ≤ p < N. On the space

D1,p(RN) = {u ∈ Lp∗ (RN) : ∇u ∈ Lp(RN ;RN)},

we define the norm

||u||D1,p(RN ) = ||∇u||p.
Proposition 7.2.2. Let 1 ≤ p < N.

(a) The spaceD(RN) is dense inD1,p(RN).
(b) (Sobolev’s inequality.) There exists c = c(p,N) such that for every u ∈ D1,p(RN),

||u||p∗ ≤ c||∇u||p.

(c) The spaceD1,p(RN) is complete.

Proof. The space D(RN) is dense in D1,p(RN) with the norm ||u||p∗ + ||∇u||p. The
argument is similar to that of the proof of Theorem 6.1.10.
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Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u ∈
D1,p(RN),

||∇u||p ≤ ||u||p∗ + ||∇u||p ≤ (c + 1)||∇u||p.
Let (un) be a Cauchy sequence in D1,p(RN). Then un → u in Lp∗ (RN), and for

1 ≤ k ≤ N, ∂kun → vk in Lp(RN). By the closing lemma, for 1 ≤ k ≤ N, ∂ku = vk.
We conclude that un → u inD1,p(RN). ��
Proposition 7.2.3. Every bounded sequence in D1,p(RN) contains a subsequence
converging in L1

loc(RN) and almost everywhere on R
N.

Proof. Cantor’s diagonal argument will be used. Let (un) be bounded in D1,p(RN).
By Sobolev’s inequality, for every k ≥ 1, (un) is bounded in W1,1(B(0, k)). Rellich’s
theorem and Proposition 4.2.10 imply the existence of a subsequence (u1,n) of (un)
converging in L1(B(0, 1)) and almost everywhere on B(0, 1). By induction, for every
k, there exists a subsequence (uk,n) of (uk−1,n) converging in L1(B(0, k)) and almost
everywhere on B(0, k). The sequence vn = un,n converges in L1

loc(RN) and almost
everywhere on R

N . ��
Definition 7.2.4. Let 1 ≤ p < N and let K be a compact subset of RN . The capacity
of degree p of K is defined by

capp(K) = inf

{∫
RN
|∇u|pdx : u ∈ D1,p

K (RN)

}
,

where

D1,p
K (RN) = {u ∈ D1,p(RN) : there exists U open such that K ⊂ U and χU ≤ u

almost everywhere}.
Theorem 7.2.5. The capacity of degree p is a capacity on R

N.

Proof. (a) Monotonicity is clear by definition.
(b) Let K be compact and a > capp(RN). There exist u ∈ D1,p(RN) and U open

such that K ⊂ U, χU ≤ u almost everywhere, and
∫
RN
|∇u|pdx < a. For every

compact set C ⊂ U, we have

capp(C) ≤
∫
RN
|∇u|pdx < a,

so that capp is regular.
(c) Let A and B be compact sets, a > capp(A), and b > capp(B). There exist u, v ∈
D1,p(RN) and U and V open sets such that A ⊂ U, B ⊂ V , χU ≤ u, and χV ≤ v
almost everywhere and

∫
RN
|∇u|pdx < a,

∫
RN
|∇v|pdx < b.



144 7 Capacity

Since max(u, v) ∈ D1,p
A∪B(RN) and min(u, v) ∈ D1,p

A∩B(RN), Corollary 6.1.14
implies that

∫
RN
|∇max(u, v)|pdx +

∫
RN
|∇min(u, v)|p =

∫
RN
|∇u|pdx +

∫
RN
|∇v|pdx ≤ a + b.

We conclude that

capp(A ∪ B) + capp(A ∩ B) ≤ a + b.

Since a > capp(A) and b > capp(B) are arbitrary, capp is strongly subadditive.
��

The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6. There exists a constant c = c(p,N) such that for every A ⊂ R
N,

m∗(A) ≤ c capp(A)N/(N−p).

Proof. Let K be a compact set and u ∈ D1,p
K (RN). It follows from Sobolev’s

inequality that

m(K) ≤
∫
RN
|u|p∗dx ≤ c

(∫
RN
|∇u|pdx

)p∗/p

.

By definition,
m(K) ≤ c capp,RN (K)N/(N−p).

To conclude, it suffices to extend this inequality to open subsets of R
N and to

arbitrary subsets of RN . ��
The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7. Let K be a compact set. Then

capp(∂K) = capp(K).

Proof. Let a > capp(∂K). There exist u ∈ D1,p(RN) and an open set U such that
∂K ⊂ U, χU ≤ u almost everywhere, and

∫
RN
|∇u|pdx < a.

Let us define V = U ∪ K and v = max(u, χV ). Then v ∈ D1,p
K (RN) and

∫
RN
|∇v|pdx ≤

∫
RN
|∇u|pdx,
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so that capp(K) < a. Since a > capp(∂K) is arbitrary, we obtain

capp(K) ≤ capp(∂K) ≤ capp(K). ��

Example. Let 1 ≤ p < N and let B be a closed ball in R
N . We deduce from the

preceding propositions that

0 < capp(B) = capp(∂B).

Theorem 7.2.8. Let 1 < p < N and U an open set. Then

capp(U) = inf

{∫
RN
|∇u|pdx : u ∈ D1,p(RN), χU ≤ u almost everywhere

}
.

Proof. Let us denote by Capp(U) the second member of the preceding equality. It
is clear by definition that capp(U) ≤ Capp(U).

Assume that capp(U) < ∞. Let (Kn) be an increasing sequence of compact

subsets of U such that U =
∞⋃

n=1

Kn, and let (un) ⊂ D1,p(RN) be such that for every n,

χKn ≤ un almost everywhere and

∫
RN
|∇un|pdx ≤ capp(Kn) + 1/n.

The sequence (un) is bounded inD1,p(RN). By Proposition 7.2.3, we can assume that
un → u in L1

loc(RN) and almost everywhere. It follows from Sobolev’s inequality that
u ∈ Lp∗ (RN). Theorem 6.1.7 implies that

∫
RN
|∇u|pdx ≤ lim

n→∞

∫
RN
|∇un|pdx ≤ lim

n→∞ capp(Kn) ≤ capp(U).

(By Theorem 7.1.9, lim
n→∞capp(Kn) = capp(U).) Since almost everywhere, χU ≤ u,

we conclude that Capp(U) ≤ capp(U). ��
Corollary 7.2.9. Let 1 < p < N, and let U and V be open sets such that U ⊂ V
and m(V \ U) = 0. Then capp(U) = capp(V).

Proof. Let u ∈ D1,p(RN) be such that χU ≤ u almost everywhere. Then χV ≤ u
almost everywhere. ��

Corollary 7.2.10 (Capacity inequality). Let 1 < p < N and u ∈ D(RN). Then for
every t > 0,

capp({|u| > t}) ≤ t−p
∫
RN
|∇u|pdx.

Proof. By Corollary 6.1.14, |u|/t ∈ D1,p(RN). ��
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Definition 7.2.11. Let 1 ≤ p < N. A function v : R
N → R is quasicontinuous

of degree p if for every ε > 0, there exists an ω-open set such that capp(ω) ≤ ε

and v
∣∣∣
RN\ω is continuous. Two quasicontinuous functions of degrees p, v, and w are

equal quasi-everywhere if capp({|v − w| > 0}) = 0.

Proposition 7.2.12. Let 1 < p < N and let v and w be quasicontinuous functions of
degree p and almost everywhere equal. Then v and w are quasi-everywhere equal.

Proof. By assumption, m(A) = 0, where A = {|v − w| > 0}, and for every n, there
exists an ωn-open set such that capp(ωn) ≤ 1/n and |v − w|∣∣∣

RN\ωn
is continuous. It

follows that A ∪ ωn is open. We conclude, using Corollary 7.2.9, that

capp(A) ≤ capp(A ∪ ωn) = capp(ωn)→ 0, n→ ∞. ��

Proposition 7.2.13. Let 1 < p < N and u ∈ D1,p(RN). Then there exists a function
v quasicontinuous of degree p and almost everywhere equal to u.

Proof. By Proposition 7.2.2, there exists (un) ⊂ D(RN) such that un → u
in D1,p(RN). Using Proposition 7.2.3, we can assume that un → u almost
everywhere and

∞∑
k=1

2kp
∫
RN
|∇(uk+1 − uk)|pdx < ∞.

We define

Uk = {|uk+1 − uk| > 2−k}, ωm =

∞⋃
k=m

Uk.

Corollary 7.2.10 implies that for every k,

capp(Uk) ≤ 2kp
∫
RN
|∇(uk+1 − uk)|pdx.

It follows from Corollary 7.1.10 that for every m,

capp(ωm) ≤
∞∑

k=m

2kp
∫
RN
|∇(uk+1 − uk)|pdx→ 0, m→ ∞.

We obtain, for every x ∈ RN \ ωm and every k ≥ j ≥ m,

|u j(x) − uk(x)| ≤ 21− j,

so that (un) converges simply to v on R
N \

∞⋂
m=1

ωm. Moreover, v
∣∣∣
RN\ωm

is continuous,

since the convergence of (un) on R
N \ ωm is uniform. For x ∈

∞⋂
m=1

ωm, we define

v(x) = 0. Since by Proposition 7.2.6, m(ωm) → 0, we conclude that u = v almost
everywhere. ��
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1. Let Ω be an open subset of RN . The divergence of v ∈ C1(Ω;RN)
is defined by

div v =
N∑

k=1

∂kvk.

The total variation of u ∈ L1
loc(Ω) is defined by

||Du||Ω = sup

{∫
Ω

u div v dx : v ∈ D(Ω;RN), ||v||∞ ≤ 1

}
,

where

||v||∞ = sup
x∈Ω

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

(vk(x))2

⎞⎟⎟⎟⎟⎟⎠
1/2

.

Theorem 7.3.2. Let (un) be such that un → u in L1
loc(Ω). Then

||Du||Ω ≤ lim
n→∞
||Dun||Ω.

Proof. Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1. We have, by definition,

∫
Ω

u div v dx = lim
n→∞

∫
Ω

un div v dx ≤ lim
n→∞
||Dun||Ω.

It suffices then to take the supremum with respect to v. ��
Theorem 7.3.3. Let u ∈ W1,1

loc (Ω). Then the following properties are equivalent:

(a) ∇u ∈ L1(Ω;RN);
(b) ||Du||Ω < ∞.

In this case,

||Du||Ω = ||∇u||L1(Ω).

Proof. (a) Assume that ∇u ∈ L1(Ω;RN). Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1.
It follows from the Cauchy–Schwarz inequality that

∫
Ω

u div v dx = −
∫
Ω

N∑
k=1

vk∂ku dx ≤
∫
Ω

|∇u|dx.

Hence ||Du||Ω ≤ ||∇u||L1(Ω).
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Theorem 4.3.11 implies the existence of (wn) ⊂ D(Ω;RN) converging to ∇u
in L1(Ω;RN). We can assume that wn → ∇u almost everywhere on Ω. Let us
define

vn = wn/
√
|wn|2 + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

||∇u||L1(Ω) =

∫
Ω

|∇u|dx = lim
n→∞

∫
Ω

vn · ∇u dx ≤ ||Du||Ω.

(b) Assume that ||Du||Ω < ∞ and define

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n}.
Then by the preceding step, we obtain

||∇u||L1(ωn) = ||Du||ωn ≤ ||Du||Ω < ∞.
Levi’s theorem ensures that ∇u ∈ L1(Ω;RN). ��

Example. There exists a function everywhere differentiable on [−1, 1] such that
||Du||]−1,1[ = +∞. We define

u(x) = 0, x = 0,
= x2 sin 1

x2 , 0 < |x| ≤ 1.

We obtain

u′(x) = 0, x = 0,
= 2x sin 1

x2 − 2
x cos 1

x2 , 0 < |x| ≤ 1.

The preceding theorem implies that

+∞ = lim
n→∞ ||u

′||L1(]1/n,1[) ≤ ||Du||]−1,1[.

Indeed,

2
∫ 1

0
| cos

1
x2
|dx

x
=

∫ ∞

1
| cos t|dt

t
= +∞.

The function u has no weak derivative!

Example (Cantor function). There exists a continuous nondecreasing function with
almost everywhere zero derivative and positive total variation. We use the notation
of the last example of Sect. 2.2. We consider the Cantor set C corresponding to
�n = 1/3n+1. Observe that

m(C) = 1 −
∞∑
j=0

2 j/3 j+1 = 0.
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We define on R,

un(x) =

(
3
2

)n ∫ x

0

χCn (t)dt.

It is easy to verify by symmetry that

||un+1 − un||∞ ≤ 1
3

1
2n+1

.

By the Weierstrass test, (un) converges uniformly to the Cantor function u ∈ C(R).
For n ≥ m, u′n = 0 on R \ Cm. The closing lemma implies that u′ = 0 on R \ Cm.
Since m is arbitrary, u′ = 0 on R \C. Theorems 7.3.2 and 7.3.3 ensure that

||Du||R ≤ lim
n→∞
||u′n||L1(R) = 1.

Let v ∈ D(R) be such that ||v||∞ = 1 and v = −1 on [0, 1] and integrate by parts:

∫
R

v′u dx = lim
n→∞

∫
R

v′un dx = − lim
n→∞

∫
R

vu′ndx = lim
n→∞

(
3
2

)n

m(Cn) = 1.

We conclude that ||Du||R = 1. The function u has no weak derivative.

Definition 7.3.4. Let Ω be an open subset of RN . On the space

BV(Ω) = {u ∈ L1(Ω) : ||Du||Ω < ∞},

we define the norm

||u||BV(Ω) = ||u||L1(Ω) + ||Du||Ω
and the distance of strict convergence

dS (u, v) = ||u − v||L1(Ω) +
∣∣∣||Du||Ω − ||Dv||Ω

∣∣∣.
Remark. It is clear that convergence in norm implies strict convergence.

Example. The space BV(]0, π[), with the distance of strict convergence, is not
complete. We define on ]0, π[,

un(x) =
1
n

cos nx,

so that un → 0 in L1(]0, π[). By Theorem 7.3.3, for every n,

||Dun||]0,π[ =

∫ π

0
| sin nx|dx = 2.
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Hence lim
j,k→∞

dS (u j, uk) = lim
j,k→∞

||u j − uk||L1(]0,π[) = 0. If lim
n→∞dS (un, v) = 0, then v = 0.

But lim
n→∞dS (un, 0) = 2. This is a contradiction.

Proposition 7.3.5. The normed space BV(Ω) is complete.

Proof. Let (un) be a Cauchy sequence on the normed space BV(Ω). Then (un) is a
Cauchy sequence in L1(Ω), so that un → u in L1(Ω).

Let ε > 0. There exists m such that for j, k ≥ m, ||D(u j − uk)||Ω ≤ ε. Theorem
7.3.2 implies that for k ≥ m, ||D(uk − u)|| ≤ lim

j→∞
||D(u j − uk)||Ω ≤ ε. Since ε > 0 is

arbitrary, ||D(uk − u)||Ω → 0, k → ∞. ��
Lemma 7.3.6. Let u ∈ L1

loc(RN) be such that ||Du||RN < ∞. Then

||∇(ρn ∗ u)||L1(RN ) ≤ ||Du||RN and ||Du||RN = lim
n→∞ ||∇(ρn ∗ u)||L1(RN ).

Proof. Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. It follows from Proposition 4.3.15
that

∫
RN

(ρn ∗ u) div v dx =
∫
RN

u
N∑

k=1

ρn ∗ ∂kvkdx =
∫
RN

u
N∑

k=1

∂k(ρn ∗ vk)dx.

The Cauchy–Schwarz inequality implies that for every x ∈ RN ,

N∑
k=1

(ρn ∗ vk(x))2 =

N∑
k=1

(∫
RN
ρn(x − y)vk(y)dy

)2

≤
N∑

k=1

∫
RN
ρn(x − y)(vk(y))2dy ≤ 1.

Hence we obtain ∫
RN

(ρn ∗ u) div v dx ≤ ||Du||RN ,

and by Theorem 7.3.3, ||∇(ρn ∗ u)||L1(RN ) ≤ ||Du||RN .
By the regularization theorem, ρn ∗ u→ u in L1

loc(RN). Theorems 7.3.2 and 7.3.3
ensure that

||Du||RN ≤ lim
n→∞
||∇(ρn ∗ u)||L1(RN ). ��

Theorem 7.3.7. (a) For every u ∈ BV(RN), (ρn ∗ u) converges strictly to u.
(b) (Gagliardo–Nirenberg inequality.) Let N ≥ 2. There exists c

N
> 0 such that for

every u ∈ BV(RN),

||u||LN/(N−1)(RN ) ≤ c
N
||Du||RN .

Proof. (a) Proposition 4.3.14 and the preceding lemma imply the strict conver-
gence of (ρn ∗ u) to u.
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(b) Let N ≥ 2. We can assume that ρnk ∗u→ u almost everywhere on R
N . It follows

from Fatou’s lemma and Sobolev’s inequality in D1,1(RN) that

||u||N/(N−1) ≤ lim
k→∞
||ρnk ∗ u||N/(N−1) ≤ c

N
lim
n→∞ ||∇(ρnk ∗ u)||1 = c

N
||Du||RN . ��

7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1. Let Ω be an open subset of R
N of class C1 with a bounded

boundary Γ. Then ∫
Γ

dγ = ||DχΩ||RN .

Proof. Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. The divergence theorem and the
Cauchy–Schwarz inequality imply that

∫
Ω

div v dx =
∫
Γ

v · n dγ ≤
∫
Γ

|v| |n|dγ ≤
∫
Γ

dγ.

Taking the supremum with respect to v, we obtain ||DχΩ||RN ≤
∫
Γ

dγ.

We use the notation of Definition 9.2.1 and define

U = {x ∈ RN : ∇ϕ(x) � 0},

so that Γ ⊂ U. The theorem of partitions of unity ensures the existence of ψ ∈ D(U)
such that 0 ≤ ψ ≤ 1 and ψ = 1 on Γ. We define

v(x) = ψ(x)∇ϕ(x)/|∇ϕ(x)|, x ∈ U
= 0, x ∈ RN \ U.

It is clear that v ∈ K(RN ;RN) and for every γ ∈ Γ, v(γ) = n(γ). For every m ≥
1, wm = ρm ∗ v ∈ D(RN ;RN). We infer from the divergence and regularization
theorems that

lim
m→∞

∫
Ω

div wm dx = lim
m→∞

∫
Γ

wm · n dγ =
∫
Γ

n · n dγ =
∫
Γ

dγ.

By definition, ||v||∞ ≤ 1, and by the Cauchy–Schwarz inequality,
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N∑
k=1

(ρm ∗ vk(x))2 =

N∑
k=1

(∫
RN
ρm(x − y)vk(y)dy

)2

≤
N∑

k=1

∫
RN
ρm(x − y)(vk(y))2dy ≤ 1.

We conclude that
∫
Γ

dγ ≤ ||DχΩ||RN . ��

The preceding theorem suggests a functional definition of the perimeter due to
De Giorgi.

Definition 7.4.2. Let A be a measurable subset of RN . The perimeter of A is defined
by p(A) = ||DχA||RN .

The proof of the Morse–Sard theorem is given in Sect. 9.3.

Theorem 7.4.3. Let Ω be an open subset of RN and u ∈ C∞(Ω). Then the Lebesgue
measure of

{t ∈ R : there exists x ∈ Ω such that u(x) = t and ∇u(x) = 0}

is equal to zero.

Theorem 7.4.4. Let 1 < p < ∞, u ∈ Lp(Ω), u ≥ 0, and g ∈ Lp′ (Ω). Then

(a)
∫
Ω

g u dx =
∫ ∞

0
dt
∫

u>t
g dx;

(b) ||u||p ≤
∫ ∞

0
m({u > t})1/pdt;

(c) ||u||pp =
∫ ∞

0
m({u > t})ptp−1dt.

Proof. (a) We deduce from Fubini’s theorem that

∫
Ω

g u dx =
∫
Ω

dx
∫ ∞

0
g χu>t dt

=

∫ ∞

0
dt
∫
Ω

g χu>t dx

=

∫ ∞

0
dt
∫

u>t
g dx.

(b) If ||g||p′ = 1, we obtain from Hölder’s inequality that

∫
Ω

g u dx ≤
∫ ∞

0
m({u > t})1/pdt.

It suffices then to take the supremum.
(c) Define f (t) = tp. It follows from Fubini’s theorem that
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||u||pp =
∫
Ω

dx
∫ u

0
f ′(t)dt

=

∫
Ω

dx
∫ ∞

0

χu>t f ′(t)dt

=

∫ ∞

0
dt
∫
Ω

χu>t f ′(t)dx

=

∫ ∞

0
m({u > t}) f ′(t)dt. ��

Theorem 7.4.5 (Coarea formula). Let u ∈ D(RN) and f ∈ C1(RN). Then

∫
RN

f |∇u| dx =
∫ ∞

0
dt
∫
|u|=t

f dγ.

Moreover, for every open subset Ω of RN ,

∫
Ω

|∇u| dx =
∫ ∞

0
dt
∫
|u|=t

χΩ dγ.

Proof. By the Morse–Sard theorem, for almost every t ∈ R,

u(x) = t =⇒ ∇u(x) � 0.

Hence for almost every t > 0, the open sets {u > t} and {u < −t} are smooth.
We infer from Lemma 6.1.1, Theorem 7.4.4, and the divergence theorem that for

every v ∈ C1(RN ;RN),

∫
RN
∇u · v dx = −

∫
RN

u div v dx

= −
∫ ∞

0
dt
∫

u>t
div v dx +

∫ ∞

0
dt
∫

u<−t
div v dx

=

∫ ∞

0
dt
∫
|u|=t

v · ∇u
|∇u|dγ.

Define

vn = f ∇u/
√
|∇u|2 + 1/n.

Lebesgue’s dominated convergence theorem implies that
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∫
RN

f |∇u| dx = lim
n→∞

∫
RN
∇u·vn dx = lim

n→∞

∫ ∞

0
dt
∫
|u|=t

vn· ∇u
|∇u|dγ =

∫ ∞

0
dt
∫
|u|=t

f dγ.

Define

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n}.
For all n, there exists ϕn ∈ D(ωn+1) such that 0 ≤ ϕn ≤ 1 and ϕn = 1 on ωn. Levi’s
monotone convergence theorem implies that

∫
Ω

|∇u|dx = lim
n→∞

∫
RN
ϕn|∇u|dx = lim

n→∞

∫ ∞

0
dt
∫
|u|=t

ϕndγ =
∫ ∞

0
dt
∫
|u|=t

χΩ dγ. ��

Lemma 7.4.6. Let 1 ≤ p < N, let K be a compact subset of RN, and a > capp(K).

Then there exist V open and v ∈ D(RN) such that K ⊂ V, χV ≤ v, and
∫
Ω

|∇v| dx < a.

Proof. By assumption, there exist u ∈ D1,p(RN) and U open such that K ⊂ U,
χU ≤ u, and ∫

RN
|∇u|pdx < a.

There exists V open such that K ⊂ V ⊂⊂ U. For m large enough, χV ≤ w = ρm ∗ u
and ∫

RN
|∇w|pdx < a.

Let θn(x) = θ(|x|/n) be a truncating sequence. For n large enough, χV ≤ v = θnw and

∫
RN
|∇v|pdx < a. ��

Theorem 7.4.7. Let N ≥ 2 and let K be a compact subset of RN. Then

cap1(K) = inf{p(U) : U is open and bounded, and U ⊃ K}.

Proof. We denote by Cap1(K) the second member of the preceding equality. Let U
be open, bounded, and such that U ⊃ K. Define un = ρn ∗ χU . For n large enough,
u ∈ D1,1

K (RN). Lemma 7.3.6 implies that for n large enough,

cap1(K) ≤
∫
RN
|∇un|dx ≤ ||DχU ||RN = p(U).

Taking the infimum with respect to U, we obtain cap1(K) ≤ Cap1(K).
Let a > cap1(K). By the preceding lemma, there exist V open and v ∈ D(RN)

such that K ⊂ V , χV ≤ v and
∫
RN
|∇v|dx < a. We deduce from the Morse–Sard

theorem and from the coarea formula that
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Cap1(K) ≤
∫ 1

0
dt
∫

v=t
dγ ≤

∫ ∞

0
dt
∫

v=t
dγ =

∫
RN
|∇v|dx < a.

Since a > cap1(K) is arbitrary, we conclude that Cap1(K) ≤ cap1(K). ��

7.5 Comments

The book by Maz’ya ([51]) is the main reference on functions of bounded variations
and on capacity theory. The beautiful proof of the coarea formula (Theorem 7.4.5)
is due to Maz’ya. The derivative of the function of unbounded variation in Sect. 7.3
is Denjoy–Perron integrable (since it is a derivative); see Analyse, fondements
techniques, évolution by J. Mawhin ([49]).

7.6 Exercises for Chap. 7

1. Let 1 ≤ p < N. Then

λp + N < 0⇔ (1 + |x|2)λ/2 ∈ W1,p(RN),

(λ − 1)p + N < 0⇔ (1 + |x|2)λ/2 ∈ D1,p(RN).

2. What are the interior and the closure of W1,1(Ω) in BV(Ω)?
3. Let u ∈ L1

loc(Ω). The following properties are equivalent:

(a) ||Du||Ω < ∞;
(b) there exists c > 0 such that for every ω ⊂⊂ Ω and every y ∈ RN such that
|y| < d(ω, ∂Ω)

||τyu − u||L1(ω) ≤ c|y|.
4. (Relative variational capacity.) Let Ω be an open bounded subset of R

N (or
more generally, an open subset bounded in one direction). Let 1 ≤ p < ∞ and
let K be a compact subset of Ω. The capacity of degree p of K relative to Ω is
defined by

capp,Ω(K) = inf

{∫
Ω

|∇u|pdx : u ∈ W1,p
K (Ω)

}
,

where

W1,p
K (Ω) = {u ∈ W1,p

0 (Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω
and χω ≤ u a.e. on Ω}.

Prove that the capacity of degree p relative to Ω is a capacity on Ω.
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5. Verify that

capp,Ω(K) = inf

{∫
Ω

|∇u|pdx : u ∈ DK(Ω)

}
,

where

DK(Ω) = {u ∈ D(Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω and χω ≤ u}.

6. (a) If capp,Ω(K) = 0, then m(K) = 0. Hint: Use Poincaré’s inequality.
(b) If p > N and if capp,Ω(K) = 0, then K = φ. Hint: Use the Morrey

inequalities.
7. Assume that capp,Ω(K) = 0. Then for every u ∈ D(Ω), there exists (un) ⊂
D(Ω \ K) such that |un| ≤ |u| and un → u in W1,p(Ω).

8. (Dupaigne–Ponce, 2004.) Assume that cap1,Ω(K) = 0. Then W1,p(Ω \ K) =
W1,p(Ω). Hint: Consider first the bounded functions in W1,p(Ω \ K).

9. For every u ∈ BV(RN),

||D|u|||RN ≤ ||Du+||RN + ||Du−||RN = ‖Du‖RN .

Hint: Consider a sequence (un) ⊂ W1,1(RN) such that un → u strictly in
BV(RN).

10. Let u ∈ L1(Ω) and f ∈ BC1(Ω). Then

||D( f u)||Ω ≤ || f ||∞||Du||Ω + ||∇ f ||∞||u||L1(Ω).

11. (Cheeger constant.) Let Ω be an open bounded domain in R
N and define

h(Ω) = inf{p(ω)/m(ω) : ω ⊂⊂ Ω and ω is of class C1}.

Then for 1 ≤ p < ∞ and every u ∈ W1,p
0 (Ω),

(
h(Ω)

p

)p ∫
Ω

|u|pdx ≤
∫
Ω

|∇u|pdx.

Hint: Assume first that p = 1 and apply the coarea formula to u ∈ D(Ω).
12. Let u ∈ W1,1(Ω). Then

∫
Ω

√
1+|∇u|2dx = sup

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

(vN+1 + u
N∑

k=1

∂kuk)dx : u ∈ D(Ω;RN+1), ‖u‖∞ ≤ 1

⎫⎪⎪⎬⎪⎪⎭ .



Chapter 8
Elliptic Problems

8.1 The Laplacian

The Laplacian, defined by

Δu = div ∇u =
∂2u

∂x2
1

+ . . . +
∂2u
∂x2

N

,

is related to the mean of functions.

Definition 8.1.1. Let Ω be an open subset of RN and u ∈ L1
loc(Ω). The mean of u is

defined on

D = {(x, r) : x ∈ Ω, 0 < r < d(x, ∂Ω)}
by

M(x, r) = V−1
N

∫
BN

u(x + ry)dy.

Lemma 8.1.2. Let u ∈ C2(Ω). The mean of u satisfies on D the relation

lim
r↓0

2
N + 2

r2
[M(x, r) − u(x)] = Δu(x).

Proof. Since we have uniformly for |y| < 1,

u(x + ry) = u(x) + r∇u(x) · y + r2

2
D2u(x)(y, y) + o(r2),

we obtain by symmetry

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 8, © Springer Science+Business Media, LLC 2013
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∫
BN

x jdx = 0,
∫

BN

x jxkdx = 0, j � k,
∫

BN

x2
jdx =

VN

N + 2
,

and

M(x, r) = u(x) +
r2

2
1

N + 2
Δu(x) + o(r2).

��
Lemma 8.1.3. Let u ∈ C2(Ω). The following properties are equivalent:

(a) Δu ≤ 0;
(b) for all (x, r) ∈ D, M(x, r) ≤ u(x).

Proof. By the preceding lemma, (a) follows from (b).
Assume that (a) is satisfied. Differentiating under the integral sign and using the

divergence theorem, we obtain

∂M
∂r

(x, r) = V−1
N

∫
BN

∇u(x + ry) · ydy = rV−1
N

∫
BN

Δu(x + ry)
1 − |y|2

2
dy ≤ 0.

We conclude that
M(x, r) ≤ lim

r↓0
M(x, r) = u(x).

��
Definition 8.1.4. Let u ∈ L1

loc(Ω). The function u is superharmonic if for every

v ∈ D(Ω) such that v ≥ 0,
∫
Ω

uΔvdx ≤ 0.

The function u is subharmonic if −u is superharmonic.

The function u is harmonic if for every v ∈ D(Ω),
∫
Ω

uΔvdx = 0.

We extend Lemma 8.1.3 to locally integrable functions.

Theorem 8.1.5 (Mean-value inequality.). Let u ∈ L1
loc(Ω). The following proper-

ties are equivalent:

(a) u is superharmonic;
(b) for almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), M(x, r) ≤ u(x).

Proof. Let un = ρn ∗ u. Property (a) is equivalent to

(c) for every n, Δun ≤ 0 on Ωn. Property (b) is equivalent to

(d) for all x ∈ Ωn and for all 0 < r < d(x, ∂Ωn), V−1
N

∫
BN

un(x + ry)dy ≤ un(x).

We conclude the proof using Lemma 8.1.3.

(a)⇒ (c). By Proposition 4.3.6, we have on Ωn, that

Δun(x) = Δρn ∗ u(x) =
∫
Ω

(
Δρn(x − y)

)
u(y)dy ≤ 0.
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(c)⇒ (a). It follows from the regularization theorem that for every v ∈ D(Ω), v ≥ 0,

∫
Ω

uΔvdx = lim
n→∞

∫
Ω

unΔvdx = lim
n→∞

∫
Ω

(Δun)vdx ≤ 0.

(b)⇒ (d). We have on Ωn, that

V−1
N

∫
BN

un(x + ry)dy = V−1
N

∫
B(0,1/n)

dz
∫

BN

ρn(z)u(x + ry − z)dy

≤
∫

B(0,1/n)
ρn(z)u(x − z)dz = un(x).

(d)⇒ (b). For j ≥ 1, we define

ω j = {x ∈ Ω : d(x, ∂Ω) > 1/ j and |x| < j}.

Proposition 4.2.10 and the regularization theorem imply the existence of a subse-
quence (unk ) converging to u in L1(ω j) and almost everywhere on ω j. Hence for

almost all x ∈ ω j and for all 0 < r < d(x, ∂ω j), M(x, r) ≤ u(x). Since Ω =
∞⋃
j=1

ω j,

property (b) is satisfied. ��
Theorem 8.1.6 (Maximum principle.). Let Ω be an open connected subset of RN

and u ∈ L1
loc(Ω) a superharmonic function such that u ≥ 0 almost everywhere on Ω

and u = 0 on a subset of Ω with positive measure. Then u = 0 almost everywhere
on Ω.

Proof. Define

U1 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) = 0},
U2 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) > 0}.

It is clear that U1 and U2 are open subsets of Ω such that Ω = U1 ∪ U2. By the
preceding theorem, we obtain

U2 = {x ∈ Ω : for all 0 < r < d(x, ∂Ω), M(x, r) > 0},

so that U1 and U2 are disjoint. If Ω = U2, then u > 0 almost everywhere on Ω by
the preceding theorem. We conclude that Ω = U1 and u = 0 almost everywhere
on Ω. ��
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8.2 Eigenfunctions

En nous servant de quelques conceptions de l’analyse
fonctionnelle nous représentons notre problème dans une forme
nouvelle et démontrons que dans cette forme le problème admet
toujours une solution unique.
Si la solution cherchée existe dans le sens classique, alors notre
solution se confond avec celle-ci.

S.L. Sobolev

Let Ω be a smooth bounded open subset of RN with frontier Γ. An eigenfunction
corresponding to the eigenvalue λ is a nonzero solution of the problem

{−Δu = λu in Ω,
u = 0 on Γ.

(P)

We will use the following weak formulation of problem (P): find u ∈ H1
0(Ω) such

that for all v ∈ H1
0(Ω), ∫

Ω

∇u · ∇v dx = λ
∫
Ω

uv dx.

Theorem 8.2.1. There exist an unbounded sequence of eigenvalues of (P)

0 < λ1 ≤ λ2 ≤ · · · ,
and a sequence of corresponding eigenfunctions that is a Hilbert basis of H1

0(Ω).

Proof. On the space H1
0(Ω), we define the inner product

a(u, v) =
∫
Ω

∇u · ∇v dx

and the corresponding norm ||u||a = √a(u, u).
For every u ∈ H1

0(Ω), there exists one and only one Au ∈ H1
0(Ω) such that for all

v ∈ H1
0(Ω),

a(Au, v) =
∫
Ω

uv dx.

Hence problem (P) is equivalent to

λ−1u = Au.

Since a(Au, u) =
∫
Ω

u2dx, the eigenvalues of A are strictly positive. The operator A

is symmetric, since

a(Au, v) =
∫
Ω

uv dx = a(u, Av).
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It follows from the Cauchy–Schwarz and Poincaré inequalities that

||Au||2a =
∫
Ω

u Au dx ≤ ||u||L2(Ω)||Au||L2(Ω) ≤ c||u||L2(Ω)||Au||a.

Hence
||Au||a ≤ c||u||L2(Ω).

By the Rellich–Kondrachov theorem, the embedding H1
0(Ω) → L2(Ω) is compact,

so that the operator A is compact. We conclude using Theorem 3.4.8. ��
Proposition 8.2.2 (Poincaré’s principle.). For every n ≥ 1,

λn = min

{∫
Ω

|∇u|2dx : u ∈ H1
0(Ω),

∫
Ω

u2dx = 1,
∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
.

Proof. We deduce from Theorem 3.4.7 that

λ−1
n = max

{
a(Au, u)
a(u, u)

: u ∈ H1
0(Ω), u � 0, a(u, e1) = . . . = a(u, en−1) = 0

}
.

Since ek is an eigenfunction,

a(u, ek) = 0⇐⇒
∫
Ω

uekdx = 0.

Hence we obtain

λ−1
n = max

⎧⎪⎪⎨⎪⎪⎩
∫
Ω

u2dx∫
Ω
|∇u|2dx

: u ∈ H1
0(Ω), u � 0,

∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

⎫⎪⎪⎬⎪⎪⎭ ,

or

λn = min

⎧⎪⎪⎨⎪⎪⎩
∫
Ω
|∇u|2dx∫
Ω

u2dx
: u ∈ H1

0(Ω), u � 0,
∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

⎫⎪⎪⎬⎪⎪⎭ . ��

Proposition 8.2.3. Let u ∈ H1
0(Ω) be such that ||u||2 = 1 and ||∇u||22 = λ1. Then u is

an eigenfunction corresponding to the eigenvalue λ1.

Proof. Let v ∈ H1
0(Ω). The function

g(ε) = ||∇(u + εv)||22 − λ1||u + εv||22
reaches its minimum at ε = 0. Hence g′(0) = 0 and

∫
Ω

∇u · ∇v dx − λ1

∫
Ω

uv dx = 0. ��
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Proposition 8.2.4. Let Ω be a smooth bounded open connected subset of RN. Then
the eigenvalue λ1 of (P) is simple, and e1 is almost everywhere strictly positive onΩ.

Proof. Let u be an eigenfunction corresponding to λ1 and such that ||u||2 = 1. By
Corollary 6.1.14, v = |u| ∈ H1

0(Ω) and ||∇v||22 = ||∇u||22 = λ1. Since ||v||2 = ||u||2 = 1,
the preceding proposition implies that v is an eigenfunction corresponding to λ1.
Assume that u+ � 0. Then u+ is an eigenfunction corresponding to λ1, and by the
maximum principle, u+ > 0 almost everywhere on Ω. Hence u = u+. Similarly, if
u− � 0, then −u = u− > 0 almost everywhere on Ω. We can assume that e1 >
0 almost everywhere on Ω. If e2 corresponds to λ1, then e2 is either positive or

negative, and
∫
Ω

e1e2dx = 0. This is a contradiction. ��

Example. Let Ω = ]0, π[. Then (P) becomes

{−u′′ = λu in ]0, π[,
u(0) = u(π) = 0.

Sobolev’s embedding theorem and the Du Bois–Reymond lemma imply that u ∈
C2(]0, π[) ∩ C([0, π]). Hence λn = n2 and en =

√
2
π

sin nx
n . The sequence (en) is a

Hilbert basis on H1
0(]0, π[) with scalar product

∫ π

0
u′v′ dx, and the sequence (nen) is

a Hilbert basis of L2(]0, π[) with scalar product
∫ π

0
uv dx.

Definition 8.2.5. Let G be a subgroup of the orthogonal group O(N). The open
subset Ω of RN is G-invariant if for every g ∈ G and every x ∈ Ω, g−1x ∈ Ω. Let Ω
be G-invariant. The action of G on H1

0(Ω) is defined by gu(x) = u(g−1x). The space
of fixed points of G is defined by

Fix(G) = {u ∈ H1
0(Ω) : for every g ∈ G, gu = u}.

A function J : H1
0(Ω)→ R is G-invariant if for every g ∈ G, J ◦ g = J.

Proposition 8.2.6. Let Ω be a G-invariant open subset of R
N satisfying the

assumptions of Proposition 8.2.4. Then e1 ∈ Fix(G).

Proof. By a direct computation, we obtain, for all g ∈ G,

||ge1||2 = ||e1||2 = 1, ||∇ge1||22 = ||∇e1||22 = λ1.

Propositions 8.2.3 and 8.2.4 imply the existence of a scalar λ(g) such that

e1(g−1x) = λ(g)e1(x).

Integrating on Ω, we obtain λ(g) = 1. But then ge1 = e1. Since g ∈ G is arbitrary,
e1 ∈ Fix(G). ��
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Example (Symmetry of the first eigenfunction). For a ball or an annulus

Ω = {x ∈ RN : r < |x| < R},

we choose G = O(N). Hence e1 is a radial function.

We define v(|x|) = u(x). By a simple computation, we have

∂2

∂x2
k

u(x) = v′′(|x|) x2
k

|x|2 + v′(|x|)
⎛⎜⎜⎜⎜⎝ 1
|x| −

x2
k

|x|3
⎞⎟⎟⎟⎟⎠ .

Hence we obtain
Δu = v′′ + (N − 1)v′/|x|.

Let Ω = B(0, 1) ⊂ R
3. The first eigenfunction, u(x) = v(|x|), is a solution of

−v′′ − 2v′/r = λv.

The function w = rv satisfies
−w′′ = λw,

so that
w(r) = a sin(

√
λr − b)

and

v(r) = a
sin(
√
λr − b)
r

.

Since u ∈ H1
0(Ω) ⊂ L6(Ω), b = 0 and λ = π2. Finally, we obtain

u(x) = a
sin(π|x|)
|x| .

It follows from Poincaré’s principle that

π2 = min
{
||∇u||2L2(Ω)/||u||2L2(Ω) : u ∈ H1

0(Ω) \ {0}
}
.

Let us characterize the eigenvalues without using the eigenfunctions.

Theorem 8.2.7 (Max-inf principle). For every n ≥ 1,

λn = max
V∈Vn−1

inf
u ∈ V⊥||u||L2 = 1

∫
Ω

|∇u|2dx,

whereVn−1 denotes the family of all (n − 1)-dimensional subspaces of H1
0(Ω).

Proof. Let us denote by Λn the second member of the preceding equality. It follows
from Poincaré’s principle that λn ≤ Λn.
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Let V ∈ Vn−1. Since the codimension of V⊥ is equal to n − 1, there exists x ∈
R

N \ {0} such that u =
n∑

j=1

x je j ∈ V⊥. Since

∫
Ω

|∇u|2dx =
n∑

j=1

λ jx
2
j

∫
Ω

e2
jdx ≤ λn

∫
Ω

u2dx,

we obtain

inf
u ∈ V⊥||u||L2 = 1

∫
Ω

|∇u|2dx ≤ λn.

Since V ∈ Vn−1 is arbitrary, we conclude that Λn ≤ λn. ��

8.3 Symmetrization

La considération systématique des ensembles E[a ≤ f < b] m’a
été pratiquement utile parce qu’elle m’a toujours forcé à
grouper les conditions donnant des effets voisins.

Henri Lebesgue

According to the isodiametric inequality in R
2, among all domains with a fixed

diameter, the disk has the largest area.A simple proof was given by J.E. Littlewood
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in 1953 in A Mathematician’s Miscellany. We can assume that the domain Ω is
convex and that the horizontal axis is tangent to Ω at the origin. We obtain

A =
1
2

∫ π
2

0
ρ2(θ) + ρ2

(
θ +

π

2

)
dθ ≤ π(d/2)2.

We will prove the isoperimetric inequality in R
N using Schwarz symmetrization.

In this section, we consider the Lebesgue measure on R
N . We define

K+(RN) = {u ∈ K(RN) : for all x ∈ RN , u(x) ≥ 0},
Lp
+(RN) = {u ∈ Lp(RN) : for almost all u(x) ≥ 0},

W1,p
+ (RN) = W1,p(RN) ∩ Lp

+(RN),
BV+(RN) = BV(RN) ∩ L1

+(RN).

Definition 8.3.1. The Schwarz symmetrization of a measurable subset A of RN is
defined by A∗ = {x ∈ R

N : |x|NVN < m(A)}. An admissible function u : R
N →

[0,+∞] is a measurable function such that for all t > 0, mu(t) = m({u > t}) < ∞.
The Schwarz symmetrization of an admissible function u is defined on R

N by

u∗(x) = sup{t ∈ R : x ∈ {u > t}∗}.

The following properties are clear:

(a) χA∗ = χ
∗
A;

(b) m(A∗ \ B∗) ≤ m(A \ B);
(c) u∗ is radially decreasing, |x| ≤ |y| ⇒ u∗(x) ≥ u∗(y);
(d) u ≤ v⇒ u∗ ≤ v∗.

Lemma 8.3.2. Let (An) be an increasing sequence of measurable sets. Then

∞⋃
n=1

A∗n =
⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠
∗
.

Proof. By definition, A∗n = B(0, rn),

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠
∗
= B(0, r), where rN

n VN = m(An),

rNVN = m

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠. It suffices to observe that by Proposition 2.2.26,

m

⎛⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞⎟⎟⎟⎟⎟⎠ = lim
n→∞m(An). ��

Theorem 8.3.3. Let u be an admissible function. Then u∗ is lower semicontinuous,
and for all t > 0, {u > t}∗ = {u∗ > t} and mu(t) = mu∗(t).
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Proof. Let t > 0. Using the preceding lemma, we obtain

{u > t}∗ =
⎛⎜⎜⎜⎜⎜⎝
⋃
s>t

{u > s}
⎞⎟⎟⎟⎟⎟⎠
∗
=
⋃
s>t

{u > s}∗ ⊂ {u∗ > t} ⊂ {u > t}∗.

In particular, {u∗ > t} is open and m{u > t} = m{u∗ > t}. ��
Proposition 8.3.4. Let 1 ≤ p < ∞ and u, v ∈ Lp

+(RN). Then u∗, v∗ ∈ Lp
+(RN) and

||u∗||p = ||u||p, ||u∗ − v∗||p ≤ ||u − v||p.

Proof. Using Cavalieri’s principle and the preceding theorem, we obtain

||u∗||pp =
∫ ∞

0
m(u∗)p (t)dt =

∫ ∞

0
mup (t)dt = ||u||pp.

Assume that p ≥ 2 and define g(t) = |t|p, so that g is convex, even, and of class
C2, and assume as well that g(0) = g′(0) = 0. For a < b, the fundamental theorem
of calculus implies that

g(b − a) =
∫ b

a
ds

∫ b

s
g′′(t − s)dt.

Hence we have that

g(u − v) =
∫ ∞

0
ds

∫ ∞

s
g′′(t − s)

[χ{u>t}(1 − χ{v>s}) + χ{v>t}(1 − χ{u>s})
]
dt.

Integrating on R
N and using Fubini’s theorem, we find that

∫
RN

g(u− v)dx =
∫ ∞

0
ds

∫ ∞

s
g′′(t − s)[m({u > t} \ {v > s})+m({v > t} \ {u > s})]dt.

Finally, we obtain ∫
RN

g(u∗ − v∗)dx ≤
∫
RN

g(u − v)dx.

If 1 ≤ p < 2, it suffices to approximate |t|p by gε(t) = (t2 + ε2)p/2 − εp, ε > 0. ��
Approximating Schwarz symmetrizations by polarizations, we will prove that if

u ∈ W1,p
+ (RN), then u∗ ∈ W1,p

+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Definition 8.3.5. Let σH be the reflection with respect to the frontier of a closed
affine half-space H of RN . The polarization (with respect to H) of a function u :
R

N → R is defined by

uH(x) = max{u(x), u(σH(x))}, x ∈ H,
= min{u(x), u(σH(x))}, x ∈ RN \ H.
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The polarization AH of A ⊂ R
N is defined by χAH = χH

A . We denote byH the family
of all closed affine half-spaces of RN containing 0.

Let us recall that a closed affine half-space of RN is defined by

H = {x ∈ RN : a · x ≤ b},

where a ∈ SN−1 and b ∈ R. It is clear that

σH(x) = x + 2(b − a · x)a.

The following properties are easy to prove:

(a) if A is a measurable subset of RN , then m(AH) = m(A);
(b) {uH > t} = {u > t}H ;
(c) if u is admissible, (uH)∗ = u∗;
(d) if moreover, H ∈ H , (u∗)H = u∗.

Lemma 8.3.6. Let f : R→ R be convex and a ≤ b, c ≤ d. Then

f (b − d) + f (a − c) ≤ f (a − d) + f (b − c).

Proof. Define x = b − d, y = b − a, and z = d − c. By convexity, we have

f (x) − f (x − y) ≤ f (x + z) − f (x + z − y). ��

Proposition 8.3.7. Let 1 ≤ p < ∞ and u, v ∈ Lp(RN). Then uH , vH ∈ Lp(RN) and

||uH ||p = ||u||p, ||uH − vH ||p ≤ ||u − v||p.

Proof. Observe that

∫
RN
|u(x)|pdx =

∫
H
|u(x)|p + |u(σH(x))|pdx

=

∫
H
|uH(x)|p + |uH(σH(x))|pdx =

∫
RN
|uH(x)|pdx.

Using the preceding lemma, it is easy to verify that for all x ∈ H,

|uH(x) − vH(x)|p + |uH(σH(x)) − vH(σH(x))|p
≤ |u(x) − v(x)|p + |u(σH(x)) − v(σH(x))|p.

It suffices then to integrate over H. ��
Lemma 8.3.8. Let u : R

N → R be a uniformly continuous function. Then the
function uH : RN → R is uniformly continuous, and for all δ > 0, ωuH (δ) ≤ ωu(δ).
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Proof. Let δ > 0 and x, y ∈ RN be such that |x−y| ≤ δ. If x, y ∈ H or if x, y ∈ RN \H,
we have

|σH(x) − σH(y)| = |x − y| ≤ δ
and

|uH(x) − uH(y)| ≤ max(|u(x) − u(y)|, |u(σH(x)) − u(σH(y))|) ≤ ωu(δ).

If x ∈ H and y ∈ RN \ H, we have

|x − σH(y)| = |σH(x) − y| ≤ |σH(x) − σH(y)| = |x − y| ≤ δ

and
|uH(x) − uH(y)| ≤ max(|u(x) − u(σH(y))|, |u(σH(x)) − u(y)|,

|u(σH(x)) − u(σH(y))|, |u(x)− u(y)|) ≤ ωu(δ).

We conclude that

ωuH (δ) = sup
|x−y|≤δ

|uH(x) − uH(y)| ≤ ωu(δ). ��

Lemma 8.3.9. Let 1 ≤ p < ∞, u ∈ Lp(RN), and H ∈ H . Define g(x) = e−|x|2 . Then

∫
RN

ug dx ≤
∫
RN

uHg dx. (∗)

If, moreover, 0 ∈ o
H and ∫

RN
ug dx =

∫
RN

uHg dx, (∗∗)

then uH = u.

Proof. For all x ∈ H, we have

u(x)g(x) + u(σH(x))g(σH(x)) ≤ uH(x)g(x) + uH(σH(x))g(σH(x)).

It suffices then to integrate over H to prove (∗).
If (∗∗) holds, we obtain, almost everywhere on H,

u(x)g(x) + u(σH(x))g(σH(x)) = uH(x)g(x) + uH(σH(x))g(σH(x)).

If 0 ∈ o
H, then g(σH(x)) < g(x) for all x ∈ o

H, so that

u(x) = uH(x), u(σH(x)) = uH(σH(x)). ��

Lemma 8.3.10. Let u ∈ K+(RN) be such that for all H ∈ H , uH = u. Then u∗ = u.
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Proof. If |x| ≤ |y|, there exists H ∈ H such that x ∈ H and y = σH(x). Hence

u(y) = uH(y) ≤ uH(x) = u(x),

and for all t > 0, {u > t} = {u∗ > t}. We conclude that u∗ = u. ��
Consider a sequence of closed affine half-spaces

Hn = {x ∈ RN : an · x ≤ bn}

such that ((an, bn)) is dense in S
N−1× ]0,+∞[.

The following result is due to J. Van Schaftingen.

Theorem 8.3.11. Let 1 ≤ p < ∞ and u ∈ Lp
+(RN). Define

u0 = u,
un+1 = uH1...Hn+1

n .

Then the sequence (un) converges to u∗ in Lp(RN).

Proof. Assume that u ∈ K+(RN). There exists r > 0 such that spt u ⊂ B[0, r]. Hence
for all n,

spt un ⊂ B[0, r].

The sequence (un) is precompact in C(B[0, r]) by Ascoli’s theorem, since

(a) for every n, ||un||∞ = ||u||∞;
(b) for every ε > 0, there exists δ > 0, such that for every n, ωun (δ) ≤ ωu(δ) ≤ ε.

Assume that (unk ) converges uniformly to v. Observe that

spt v ⊂ B[0, r].

We shall prove that v = u∗. Since by Proposition 8.3.4,

||u∗ − v∗||1 = ||u∗nk
− v∗||1 ≤ ||unk − v||1 → 0, k → ∞,

it suffices to prove that v = v∗.
Let m ≥ 1. For every nk ≥ m, we have

unk+1 = u
H1...Hm ...Hnk+1
nk

.

Lemma 8.3.9 implies that

∫
RN

uH1...Hm
nk

g dx ≤
∫
RN

unk+1 g dx.



170 8 Elliptic Problems

It follows from Proposition 8.3.7 that
∫
RN

vH1...Hm g dx ≤
∫
RN

vg dx.

By Lemma 8.3.9, vH1 = v, and by induction, vHm = v.
Let a ∈ SN−1, b ≥ 0, and H = {x ∈ RN : a · x ≤ b}. There exists a sequence (nk)

such that (ank , bnk ) → (a, b). We deduce from Lebesgue’s dominated convergence
theorem that

||vH − v||1 = ||vH − vHnk ||1 → 0, k → ∞.
Hence for all H ∈ H , v = vH . Lemma 8.3.10 ensures that v = v∗.

Let u ∈ Lp
+(RN) and ε > 0. The density theorem implies the existence of w ∈

K+(RN) such that ||u − w||p ≤ ε. By the preceding step, the sequence

w0 = w,
wn+1 = wH1...Hn+1

n ,

converges to w∗ in Lp(RN). Hence there exists m such that for n ≥ m, ||wn−w∗||p ≤ ε.
It follows from Propositions 8.3.4 and 8.3.7 that for n ≥ m,

||un − u∗||p ≤ ||un − wn||p + ||wn − w∗||p + ||w∗ − u∗||p ≤ 2||u − w||p + ε ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��
Proposition 8.3.12. Let 1 ≤ p < ∞ and u ∈ W1,p(RN). Then uH ∈ W1,p(RN) and
||∇uH ||p = ||∇u||p.

Proof. Define v = u ◦ σH . Observe that

uH =
1
2

(u + v) +
1
2
|u − v|, on H,

=
1
2

(u + v) − 1
2
|u − v|, on R

N \ H.

Since the trace of |u − v| is equal to 0 on ∂H, uH ∈ W1,p(RN). Let x ∈ H.
Corollary 6.1.14 implies that for u(x) ≥ v(x),

∇uH(x) = ∇u(x),∇uH(σH(x)) = ∇u(σH(x)),

and for u(x) < v(x),

∇uH(x) = ∇v(x),∇uH(σH(x)) = ∇v(σH(x)).

We conclude that on H,

|∇uH(x)|p + |∇uH(σH(x))|p = |∇u(x)|p + |∇u(σH(x))|p. ��
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Proposition 8.3.13. Let u ∈ BV(RN). Then uH ∈ BV(RN) and ||DuH || ≤ ||Du||.
Proof. Let un = ρn ∗ u. Propositions 4.3.14 and 8.3.7 imply that un → u and uH

n →
uH in L1(RN). Theorem 7.3.3 and Proposition 8.3.12 ensure that

||DuH
n || = ||∇uH

n ||1 = ||∇un||1.

We conclude by Theorem 7.3.2 and Lemma 7.3.6 that

||DuH || ≤ lim ||DuH
n || = lim ||∇un||1 = ||Du||. ��

Theorem 8.3.14 (Pólya–Szegő inequality). Let 1 < p < ∞ and u ∈ W1,p
+ (RN).

Then u∗ ∈ W1,p
+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Proof. The sequence (un) given by Theorem 8.3.11 converges to u∗ in Lp(RN). By
Proposition 8.3.12, for every n, ||∇un||p = ||∇u||p. It follows from Theorem 6.1.7 that

||∇u∗||p ≤ lim ||∇un||p = ||∇u||p. ��

Theorem 8.3.15 (Hilden’s inequality, 1976). Let u ∈ BV+(RN). Then u∗ ∈
BV+(RN) and ||Du∗|| ≤ ||Du||.
Proof. The sequence (un) given by Theorem 8.3.11 converges to u∗ in L1∗ (RN). By
Proposition 8.3.13, for every n,

||Dun+1|| ≤ ||Dun|| ≤ ||Du||.
It follows from Theorem 7.3.2 that

||Du∗|| ≤ lim ||Dun|| ≤ ||Du||. ��

Theorem 8.3.16 (De Giorgi’s isoperimetric inequality). Let N ≥ 2 and let A be
a measurable subset of RN with finite measure. Then

NV1/N
N (m(A))1−1/N ≤ p(A).

Proof. If p(A) = +∞, the inequality is clear. If this is not the case, then χA ∈
BV+(RN). By definition of Schwarz symmetrization,

A∗ = B(0, r),VNrN = m(A).

Theorems 7.4.1 and 8.3.15 imply that

NVNrN−1 = p(A∗) = ||DχA∗ ||RN = ||Dχ∗A||RN ≤ ||DχA||RN = p(A).

It is easy to conclude the proof. ��
Using scaling invariance, we obtain the following version of the isoperimetric

inequality.
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Corollary 8.3.17. Let A be a measurable subset of RN with finite measure and let
B be an open ball of RN. Then

p(B)/m(B)1−1/N ≤ p(A)/m(A)1−1/N.

The constant NV1/N
N , corresponding to the characteristic function of a ball, is the

optimal constant for the Gagliardo–Nirenberg inequality.

Theorem 8.3.18. Let N ≥ 2 and u ∈ BV(RN). Then

NV1/N
N ||u||N/(N−1) ≤ ||Du||.

Proof. It follows from Theorems 7.4.4 and 7.4.5 and from the isoperimetric
inequality that for all u ∈ D(RN),

NV1/N
N ||u||N/(N−1) ≤ NV1/N

N

∫ ∞

0
m({|u| > t})(N−1)/N dt

≤
∫ ∞

0
dt
∫
|u|=t

dγ

=

∫
RN
|∇u|dx.

By density, we obtain, for every u ∈ W1,1(RN),

NV1/N
N ||u||N/(N−1) ≤ ||∇u||1.

We conclude using Proposition 4.3.14 and Lemma 7.3.6. ��
Definition 8.3.19. Let Ω be an open subset of RN . We define

λ1(Ω) = inf
{
||∇u||22/||u||22 : u ∈ W1,2

0 (Ω) \ {0}
}
.

Theorem 8.3.20 (Faber–Krahn inequality). Let Ω be an open subset of RN with
finite measure. Then λ1(Ω∗) ≤ λ1(Ω).

Proof. Define Q(u) = ||∇u||22/||u||22. Let u ∈ W1,2
0 (Ω) \ {0} and v = |u|. By

Corollary 6.1.14, Q(v) = Q(u). Proposition 8.3.4 and the Pólya–Szegő inequality
imply that Q(v∗) ≤ Q(v). It is easy to verify that v∗ ∈ W1,2

0 (Ω∗) \ {0}. Hence we
obtain

λ1(Ω∗) ≤ Q(v∗) ≤ Q(v) = Q(u).

Since u ∈ W1,2
0 (Ω) \ {0} is arbitrary, it is easy to conclude the proof. ��

Using scaling invariance, we obtain the following version of the Faber–Krahn
inequality.
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Corollary 8.3.21. Let Ω be an open subset of RN and let B be an open ball of RN.
Then

λ1(B)m(B)2/N ≤ λ1(Ω)m(Ω)2/N .

Remark. Equality in the isoperimetric inequality or in the Faber–Krahn inequality
is achieved only when the corresponding domain is a ball.

8.4 Distribution Theory

La mathématique est l’art de donner le même nom à des choses
différentes.

Henri Poincaré

La mathématique est la science des choses qui se réduisent à
leur définition.

Paul Valéry

Distribution theory is a general framework including locally integrable functions.
A distribution is a continuous linear functional on the space of test functions.
Every distribution is infinitely differentiable, and differentiation of distributions is a
continuous operation. We denote by Ω an open subset of RN .

Definition 8.4.1. A sequence (un) converges to u in D(Ω) if there exists a compact
subset K of Ω such that for every n, spt un ⊂ K, and if for every α ∈ NN ,

||∂α(un − u)||∞ → 0.

Definition 8.4.2. A distribution on Ω is a linear functional f : D(Ω) → R such
that for every sequence (un) converging to u in D(Ω), 〈 f , un〉 → 〈 f , u〉, n → ∞. We
denote byD∗(Ω) the space of distributions on Ω.

Definition 8.4.3. Let f ∈ D∗(Ω) and α ∈ NN . The derivative of order α of f (in the
sense of distributions) is defined by

〈∂α f , u〉 = (−1)|α|〈 f , ∂αu〉.

It is easy to verify that ∂α f ∈ D∗(Ω).

Definition 8.4.4. The sequence ( fn) converges to f inD∗(Ω) if for every u ∈ D(Ω),
〈 fn, u〉 → 〈 f , u〉, n→ ∞.

Theorem 8.4.5. Let α ∈ NN and let ( fn) be a sequence converging to f in D∗(Ω).
Then (∂α fn) converges to ∂α f inD∗(Ω).
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Proof. For every u ∈ D(Ω), we have

〈∂α f , u〉 = (−1)|α|〈 f , ∂αu〉 = lim
n→∞(−1)|α|〈 fn, ∂αu〉 = lim

n→∞〈∂
α fn, u〉. ��

Distributions generalize locally integrable functions.

Definition 8.4.6. The distribution corresponding to g ∈ L1
loc(Ω) is defined on

D(Ω) by

〈g, u〉 =
∫
Ω

g(x)u(x)dx.

It follows from the annulation theorem that the distribution g characterizes the
function g.

Theorem 8.4.7. (a) If gn → g in L1
loc(Ω), then for every α ∈ N

N, ∂αgn → ∂αg in
D∗(Ω).

(b) If g = ∂α f in the weak sense, then g = ∂α f in the sense of distributions.

Example. We consider the everywhere differentiable function

u(x) = 0, x = 0,
= x2 sin 1

x2 , 0 < |x| < 1.

The function u has a classical derivative and a derivative in the sense of distributions:

D(] − 1, 1[)→ R : v→ −
∫ 1

−1
u(x)v′(x)dx.

Those two objects are different, since the classical derivative is not locally integrable.

There exists no locally integrable function corresponding to the Dirac measure.

Definition 8.4.8. The Dirac measure is defined on K(RN) by

〈δ, u〉 = u(0).

Definition 8.4.9. The elementary solutions of the Laplacian are defined on R
N \ {0}

by

EN(x) =
1

2π
log

1
|x| , N = 2,

EN(x) =
1

(N − 2)NVN

1
|x|N−2

, N ≥ 3.

Theorem 8.4.10. Let N ≥ 2. InD∗(RN), we have

−ΔEN = δ.
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Proof. Define v(x) = w(|x|). Since

Δv = w′′ + (N − 1)w′/|x|,

it is easy to verify that on R
N \ {0}, ΔEN = 0. It is clear that EN ∈ L1

loc(RN).
Let u ∈ D(RN) and R > 0 be such that spt u ⊂ B(0,R). We have to verify that

−u(0) =
∫
RN

ENΔu dx = lim
ε→0

∫
ε<|x|<R

ENΔu dx.

We obtain using the divergence theorem that

f (ε) =
∫
ε<|x|<R

(ENΔu − uΔEN)dx

=

∫
∂B(0,ε)

(
u∇EN · γ|γ| − EN∇u · γ|γ|

)
dγ.

By a simple computation,

∫
∂B(0,ε)

∇EN · γ|γ|dγ = −1, lim
ε→0

∫
∂B(0,ε)

ENdγ = 0,

so that lim
ε→0

f (ε) = −u(0). ��
Definition 8.4.11. Let f , g ∈ D∗(Ω). By definition, f ≤ g if for every u ∈ D(Ω)
such that u ≥ 0, 〈 f , u〉 ≤ 〈g, u〉.
Theorem 8.4.12 (Kato’s inequality.). Let g ∈ L1

loc(Ω) be such that Δg ∈ L1
loc(Ω).

Then
(sgn g)Δg ≤ Δ |g|.

Proof. Let u ∈ D(Ω) and ω ⊂⊂ Ω be such u ≥ 0 and spt u ⊂ ω. Define gn = ρn ∗ g,
and for ε > 0, fε(t) = (t2 + ε2)1/2. Since gn → g in L1(ω), we can assume, passing if
necessary to a subsequence, that gn → g almost everywhere on ω.

For all ε > 0 and for n large enough, we have

∫
Ω

f ′ε (gn)(Δgn)u dx ≤
∫
Ω

(Δ fε(gn))u dx =
∫
Ω

fε(gn)Δu dx.

When n→ ∞, we find that

∫
Ω

f ′ε (g)(Δg)u dx ≤
∫
Ω

fε(g)Δu dx.
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When ε ↓ 0, we obtain

∫
Ω

(sgn g)(Δg) u dx ≤
∫
Ω

|g|Δu dx. ��

Distributions also generalize scalar measures.

Theorem 8.4.13. Let μ : D(Ω) → R be a linear functional such that for every
u ∈ K+(Ω),

〈|μ|, u〉 = sup{〈μ, v〉 : v ∈ D(Ω), |v| ≤ u} < ∞.
Then μ is a distribution and the restriction toD(Ω) of a scalar measure.

Proof. Let ω ⊂⊂ Ω. By the theorem of partitions of unity, there exists ψ ∈ D(Ω)
such that 0 ≤ ψ ≤ 1 and ψ = 1 on ω. For every v ∈ D(Ω) such that spt v ⊂ ω, we
have

〈μ, v〉 ≤ 〈|μ|, ||v||∞ψ〉 = cω||v||∞.
Hence μ is a distribution.

Let v ∈ K(Ω) be such that spt v ⊂ ω and define vn = ρn ∗ v. For n large enough,
spt vn ⊂ ω. The regularization theorem ensures that

lim
j,k→∞

|〈μ, v j〉 − 〈μ, vk〉| ≤ cω lim
j,k→∞

||v j − vk ||∞ = 0.

We define
〈μ, v〉 = lim

n→∞〈μ, vn〉. ��
Corollary 8.4.14. Let μ : D(Ω) → R be a linear functional such that 〈μ, u〉 ≥ 0
when u ≥ 0. Then μ is a distribution and the restriction to D(Ω) of a positive
measure.

Theorem 8.4.15. Let u ∈ L1
loc(Ω). Then

||Du||Ω = sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

j=1

〈∂ ju, v j〉 : v ∈ D(Ω;RN), ||v||∞ ≤ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

In particular, ||Du||Ω < ∞ if and only if ∂1u, . . . , ∂
N

u are finite measures on Ω.

In this case, there exists g : Ω→ R
N such that

(a) g is |Du|-measurable;
(b) |g(x)| = 1, |Du|-almost everywhere on Ω;

(c) for all v ∈ D(Ω;RN),
∫
Ω

u div v dx =
∫
Ω

v · g d|Du|.

Proof. We have, by definition of the variation and of the distributional derivative,
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||Du||Ω = sup

{∫
Ω

u div v dx : v ∈ D(Ω;RN), ||v||∞ ≤ 1

}

= sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

j=1

〈∂ ju, v j〉 : v ∈ D(Ω;RN), ||v||∞ ≤ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We conclude using Theorem 5.3.14. ��
The next result improves Theorem 7.4.1.

Theorem 8.4.16. Let Ω be an open subset of RN of class C1 and let u ∈ K(RN).
Then ∫

Γ

u dγ =
∫
RN

u d|DχΩ |.

Proof. We can assume that u ≥ 0. Let v ∈ D(RN ;RN) be such that |v| ≤ u. The
divergence theorem and the Cauchy–Schwarz inequality imply that

∫
Ω

div v dx =
∫
Γ

v · n dγ ≤
∫
Γ

|v| |n|dγ ≤
∫
Γ

u dγ.

By Definition 5.1.6, we obtain

∫
RN

u d|DχΩ | = sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

j=1

〈∂ jχω, v j〉 : v ∈ D(RN ;RN), |v| ≤ u

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= sup

{∫
Ω

div v : v ∈ D(RN ;RN), |v| ≤ u

}

≤
∫
Γ

u dγ.

We use the notation of Definition 9.2.1 and define

U = {x ∈ RN : ∇ϕ(x) � 0},

so that Γ ⊂ U. The theorem of partitions of unity implies the existence of ψ ∈
D(RN) such that 0 ≤ ψ ≤ 1 and ψ = 1 on Γ∩ spt u. We define

v(x) = u(x)ψ(x)∇ϕ(x)/|∇ϕ(x)|, x ∈ U
= 0, x ∈ RN \ U.

It is clear that v ∈ K(RN ;RN), and for every γ ∈ Γ, v(γ) = u(γ)n(γ). For every
m ≥ 1, wm = ρm ∗ v ∈ D(RN ;RN). We infer from the divergence and regularization
theorems that
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lim
m→∞

∫
Ω

div wm dx = lim
m→∞

∫
Γ

wm · n dγ =
∫
Γ

u dγ.

By the Cauchy–Schwarz inequality, we have

N∑
k=1

(ρm ∗ vk(x))2 ≤
N∑

k=1

∫
RN
ρm(x − y)(vk(y))2dy ≤ ρm ∗ u2.

By Definition 5.1.6, we conclude that

∫
Γ

u dγ ≤ lim
m→∞

∫
RN

√
ρm ∗ u2 d|DχΩ | =

∫
RN

u d|DχΩ |. ��

Definition 8.4.17. Let 1 < p < ∞ and k ≥ 1. Define M =
∑
|α|≤k

1. The space

W−k,p′(Ω) is the space of distributions

g =
∑
|α|≤k

(−1)|α|∂αgα,

where (gα) ∈ Lp′ (Ω;RM). By definition, H−k(Ω) = W−k,2(Ω).

Theorem 8.4.18. The following properties are equivalent:

(a) g ∈ W−k,p′ (Ω);
(b) g is the restriction toD(Ω) of f ∈ (Wk,p

0 (Ω))∗.

Proof. If g ∈ W−k,p′ (Ω), we deduce from Holder’s inequality that onD(Ω),

|〈g, u〉| = ∣∣∣∑
|α|≤k

〈gα, ∂αu〉∣∣∣ = ∣∣∣ ∑
|α|≤k

∫
Ω

gα∂
αu dx

∣∣∣ ≤ ||g||Lp′ ||u||Wk,p .

It suffices then to use Proposition 3.2.3 to extend g to Wk,p
0 (Ω).

Let f ∈ (Wk,p
0 (Ω))∗. The Hahn–Banach theorem implies the existence of g ∈

(Lp(Ω;RM))∗ such that g
∣∣∣
Wk,p

0 (Ω)
= f . Riesz’s representation theorem ensures the

existence of (gα) ∈ Lp′ (Ω;RM) such that for all (vα) ∈ Lp(Ω;RM),

〈g, (vα)〉 =
∑
|α|≤k

∫
Ω

gαvαdx.

OnD(Ω), we obtain

〈g, u〉 =
∑
|α|≤k

∫
Ω

gα∂
αuαdx =

∑
|α|≤k

(−1)|α|〈∂αgα, u〉. ��

We prove a variant of the Banach–Steinhaus theorem.
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Theorem 8.4.19. Let ( f j) ⊂ D∗(Ω) be a sequence converging simply to the
functional f : D(Ω)→ R. Then f ∈ D∗(Ω).

Proof. The linearity of f is clear. Assume, for the sake of obtaining a contradiction,
that there exists (un) ⊂ D(Ω) such that un → 0 in D(Ω) and lim

n→∞
| f (un)| > 0. We

can assume that lim
n→∞

f (un) > 0. Using Cantor’s diagonal argument, we construct a

subsequence (vk) of (un) such that for every k and every |α| ≤ k,

0 < c < f (vk), ||∂αvk||∞ ≤ 1/2k.

We choose vk1 = v1 and f j1 such that c < 〈 f j1 , vk1〉. Given vk1 , . . . , vkn−1 and
f j1 , . . . , f jn−1 , there exists vkn such that for m ≤ n − 1,

|〈 f jm , vkn〉| ≤ 1/2n−m.

There also exists f jn such that

nc <
n∑

m=1

〈 f jn , vkm〉.

By the Weierstrass test,
∞∑

m=1

vkm = w inD(Ω). Hence we obtain, for every n,

〈 f jn ,w〉 =
∞∑

m=1

〈 f jn , vkm〉 > nc −
∞∑

m=n+1

1/2m−n = nc − 1.

But then 〈 f jn ,w〉 → +∞, n→ ∞. This is a contradiction. ��
The preceding theorem explains why every natural linear functional defined on

D(Ω) is continuous.
We shall prove the representation theorem of L. Schwartz.

Theorem 8.4.20. Let f ∈ D∗(Ω), and let ω ⊂⊂ Ω be the product of N open
intervals. Then there exist g ∈ C0(ω) and β ∈ NN such that f = ∂βg inD∗(ω).

Lemma 8.4.21. Let f ∈ D∗(Ω). Then there exist α ∈ NN and c ≥ 0 such that for all
u ∈ D(ω),

|〈 f , u〉| ≤ c‖∂αu‖∞.
Proof. By the fundamental theorem of calculus, for every n ≥ 1, there exists cn > 0
such that for all u ∈ D(ω),

sup
|α|≤n
‖∂αu‖∞ ≤ cn‖∂(n,...,n)u‖∞.

Assume, to obtain a contradiction, that for every n ≥ 1, there exists un ∈ D(ω) such
that

ncn‖∂(n,...,n)un‖∞ < 〈 f , un〉.
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Define vn = un/(ncn‖∂(n,...,n)un‖∞). Since for every n ≥ |α|, ‖∂αun‖∞ ≤ 1/n, we
conclude that vn → 0 in D(Ω) and 〈 f , vn〉 → 0. But this is impossible, since for
every n, 〈 f , vn〉 > 1. ��

We prove the existence of a primitive of a distribution.

Lemma 8.4.22. Let f ∈ D∗(ω), 1 ≤ k ≤ N, γ ∈ NN, and c ≥ 0 be such that for all
u ∈ D(ω),

|〈 f , u〉| ≤ c‖∂k∂
γu‖∞.

Then there exist F ∈ D∗(ω) and C ≥ 0 such that f = ∂kF and for all u ∈ D(ω),

|〈F, u〉| ≤ C‖∂γu‖∞.

Proof. We can assume that ω =]0, 1[N and k = N. Let ϕ ∈ D(]0, 1[) be such that∫ 1

0
ϕds = 1. For every u ∈ D(ω), there exists one and only one v ∈ D(ω) such that

u(x) =
∫ 1

0
u(x′,s)ds ϕ(x

N
) + ∂

N
v(x).

The function v is given by the formula

v(x) =
∫ x

N

0

[
u(x′, t) −

∫ 1

0
u(x′,s)ds ϕ(t)

]
dt.

The distribution F is defined by the formula

〈F, u〉 = −〈 f , v〉.
Since ‖∂

N
∂γv‖∞ ≤ d‖∂γu‖∞, it is easy to finish the proof. ��

Let us define
k(x, y) = −(1 − y)x, 0 ≤ x ≤ y ≤ 1,

= −(1 − x)y, 0 ≤ y ≤ x ≤ 1,

and

K(x, y) =
N∏

n=1

k(xn, yn).

Lemma 8.4.23. For every u ∈ D(]0, 1[N), we have that

u(x) =
∫

]0,1[N
K(x, y)∂(2,...,2)u(y)dy.

Proof. When N = 1, it suffices to integrate by parts. When N ≥ 2, the result follows
from Fubini’s theorem. ��

We now prove the representation theorem of A. Pietsch (1960).
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Lemma 8.4.24. Let μ be a finite measure on ω. Then there exists g ∈ C0(ω) such
that μ = ∂(2,...,2)g in D∗(ω).

Proof. We can assume that ω =]0, 1[N . By assumption, for every u ∈ C0(ω),

|〈μ, u〉| ≤ c‖u‖∞, (∗)
where c = ‖μ‖ω.

Let u ∈ D(ω). By the preceding lemma, we have that

〈μ, u〉 = 〈μ,
∫
ω

K(x, y)∂(2,...,2)u(y)dy〉.

We shall prove that

〈μ, u〉 =
∫
ω

g(y)∂(2,...,2)u(y)dy,

where
g(y) = 〈μ,K(·, y)〉.

Since

|K(x, y) − K(x, z)| ≤
N∑

i=1

|y j − z j|,

it follows from (∗) that

|g(y) − g(z)| ≤ c
N∑

j=1

|y j − z j|.

It is clear by definition that g = 0 on ∂ω.
Define v = ∂(2,...,2)u. The preceding lemma implies that

‖u(x) − 2− jN
∑

k ∈ NN

|k|∞ < 2 j

K(x, k/2 j)v(k/2 j)‖∞ → 0, j→ ∞.

It follows from (∗) that

∣∣∣∣〈μ, u〉 − 2− jN
∑

k ∈ NN

|k|∞ < 2 j

g(k/2 j)v(k/2 j)
∣∣∣∣→ 0, j→ ∞.

Since ∣∣∣∣
∫
ω

g(y)v(y)dy − 2− jN
∑

k ∈ NN

|k|∞ < 2 j

g(k/2 j)v(k/2 j)
∣∣∣∣→ 0, j→ ∞,

we conclude that 〈μ, u〉 = ∫
ω

g(y)v(y)dy. ��
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Proof of Theorem 8.4.20. Lemmas 8.4.21 and 8.4.22 imply the existence of α ∈ NN

and of a finite measure μ on ω such that f = ∂αμ inD∗(ω). By Lemma 8.4.24, there
exists g ∈ C0(ω) such that μ = ∂(2,...,2)g inD∗(ω). ��

8.5 Comments

The notion of polarization of sets appeared in 1952, in a paper by Wolontis [87].
Polarizations of functions were first used by Baernstein and Taylor to approximate
symmetrization of functions on the sphere in the remarkable paper [3]. The
explicit approximation of Schwarz symmetrization by polarizations is due to Van
Schaftingen [84]. See [73, 85] for other aspects of polarizations. The proof of
Proposition 8.3.4 uses a device of Alberti [2]. The notion of symmetrization, and
more generally, the use of reflections to prove symmetry, goes back to Jakob Steiner
[79].

The elegant proof of Theorem 8.3.18 is due to Maz’ya.

8.6 Exercises for Chap. 8

1. Let u ∈ C(Ω). The spherical means of u are defined on D by

S (x, r) = (NVN)−1
∫
SN−1

u(x + rσ)dσ.

Verify that when u ∈ C2(Ω),

lim
r↓0

2N
r2

[S (x, r) − u(x)] = Δu(x).

2. Let u ∈ C(Ω) be such that for every (x, r) ∈ D, u(x) = M(x, r). Then for every
x ∈ Ωn, ρn ∗ u = u.

The argument is due to A. Ponce:

ρn ∗ u(x) =
∫
RN
ρn(x − y)u(y)dy =

∫ ∞

0
dt
∫
ρ(x−y)>t

u(y)dy

= u(x)
∫ ∞

0
dt
∫
ρ(x−y)>t

dy = u(x).

3. (Weyl’s theorem.) Let u ∈ L1
loc(Ω). The following properties are equivalent:

(a) u is harmonic;
(b) For almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), u(x) = M(x, r);
(c) There exists v ∈ C∞(Ω), almost everywhere equal to u, such that Δv = 0.
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4. Let u ∈ C2(Ω) be a harmonic function. Assume that u ≥ 0 on B[0,R] ⊂ Ω. Then
for every 0 < r < R and |y| < R − r, we have

|u(y) − u(0)| ≤ 1
rNVN

∫
r−|y|<|x|<r+|y|

u(x)dx

=
(r + |y|)N − (r − |y|)N

rn
u(0).

Hint: Use the mean-value property.
5. (Liouville’s theorem.) Let u ∈ C∞(RN) be a harmonic function, bounded from

below on R
N . Then u is constant.

6. Let Ω be an open connected subset of RN and let u ∈ C∞(Ω) be a harmonic
function such that for some x ∈ Ω, u(x) = inf

Ω
u. Then u is constant.

7. If u ∈ D(]0, π[), then

∫ π

0

∣∣∣∣du
dx

∣∣∣∣2 − u2dx =
∫ π

0

∣∣∣∣du
dx
− cos x

sin x
u
∣∣∣∣2dx.

Hence

min
u ∈ H1

0 (]0, π[)
||u||2 = 1

∫ π

0

∣∣∣∣du
dx

∣∣∣∣2dx = 1.

8. (Min–max principle.) For every n ≥ 1,

λn = min
V∈Vn

max
u ∈ V||u||2 = 1

∫
Ω

|∇u|2dx,

whereVn denotes the family of all n-dimensional subspaces of H1
0(Ω).

9. Let us recall that

λ1(G) = inf
{
||∇u||22/||u||22 : u ∈ W1,2

0 (G) \ {0}
}
.

Let Ω be an open subset of RM , and ω an open subset of RN . Then

(a) λ1(Ω × ω) = λ1(Ω) + λ1(ω);
(b) λ1(RN) = 0;
(c) λ1(Ω × RN) = λ1(Ω).

10. Define u ∈ D+(RN) such that for every y ∈ RN , τyu � u∗, and for 1 ≤ p < ∞,
||∇u||p = ||∇u∗||p. Hint: Consider two functions v and w such that v = v∗, w = w∗,
v ≡ 1 on B(0, 1), spt w ⊂ B[0, 1/2], and define u = v + τyw.
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11. (Hardy–Littlewood inequality.) Let 1 < p < ∞, u ∈ Lp
+(RN), and v ∈ Lp′

+ (RN).
Then ∫

RN
u v dx ≤

∫
RN

u∗v∗dx.

12. Let 1 ≤ p < ∞ and u, v ∈ Lp
+(RN). Then

||u + v||p ≤ ||u∗ + v∗||p.

Hint: Assume first that p > 1. Observe that

||u + v||p = sup
w ∈ Lp′

||w||p′

∫
RN

(u + v)w dx.

13. Let Ω be a domain in R
N invariant under rotations. A function u : Ω → R is

foliated Schwarz symmetric with respect to e ∈ S
N−1 if u(x) depends only on

(r, θ) = (|x|, cos−1( x
|x| · e)) and is decreasing in θ.

Let e ∈ S
N−1. We denote by He the family of closed half-spaces H in R

N

such that 0 ∈ ∂H and e ∈ H.
Prove that a function u : Ω→ R is foliated Schwarz symmetric with respect

to e if and only if for every H ∈ He, uH = u.
14. (Support of a distribution.) Let f ∈ D∗(Ω) and ω ⊂ Ω. The restriction of f to ω

is zero if for all u ∈ D(ω), 〈 f , u〉 = 0. The support of f , denoted by spt f , is the
subset of Ω complementary to the largest open set in Ω on which the restriction
of f is zero. Prove that the support of f is well defined.

15. (Generalized divergence theorem.) Let A be a measurable subset of RN such
that ||DχA||RN < ∞. Then spt|DχA| ⊂ ∂A, and there exists g : RN → R

N such
that

(a) g is |DχA|-measurable;
(b) |g(x)| = 1, |DχA|-almost everywhere on R

N ;

(c) for all v ∈ D(RN ;RN),
∫

A
div v dx =

∫
RN

v · gd|DχA|.
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Appendix: Topics in Calculus

9.1 Change of Variables

In this appendix, for the convenience of the reader we recall some topics in calculus.
We begin with the formula for changing variables in multiple integrals.

Definition 9.1.1. LetΩ andω be open subsets ofRN . A diffeomorphism f : Ω→ ω
is a continuously differentiable bijective mapping such that for every x ∈ Ω,

J f (x) = det f ′(x) � 0.

Theorem 9.1.2. Let f : Ω → ω be a diffeomorphism and u ∈ K(ω). Then u( f ) ∈
K(Ω) and ∫

Ω

u( f (x))|J f (x)|dx =
∫
ω

u(y)dy. (∗)

Lemma 9.1.3. Formula (∗) is valid when N = 1.

Proof. We can assume thatΩ = ]a, b[. Then by the fundamental theorem of calculus,
we have ∫ b

a
u( f (x)) f ′(x)dx =

∫ f (b)

f (a)
u(y)dy.

If f ′ > 0, then ω = ] f (a), f (b)[. If f ′ < 0, then ω = ] f (b), f (a)[. Hence formula (∗)
is valid. ��
Proof of Theorem 9.1.2. We will use induction on N. By Lemma 9.1.3, formula (∗)
is valid when N = 1.

Assume that (∗) is valid in dimension N − 1. Let a ∈ Ω. Since f is a
diffeomorphism, (∂1 f

N
(a), . . . , ∂

N
f
N

(a)) � 0. We assume, in order to simplify the
notation, that ∂

N
f
N

(a) � 0. The other cases are similar. By the implicit function

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 9, © Springer Science+Business Media, LLC 2013
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theorem, there exist r > 0, an open subsetU of Ω containing a, an open subset V of
R

N−1, and β ∈ C1(V×] f
N

(a) − r, f
N

(a) + r[) such that for |t − f
N

(a)| < r,

{ f
N
= t} ∩ U = {(x′, β(x′, t)) : x′ ∈ V}. (∗∗)

We factorize f on U:

f = ( f ′, f
N

),

h(x′, x
N

) =
(
x′, f

N
(x′, x

N
)
)
,

Φt(x′) = f ′
(
x′, β(x′, t)

)
,

g(x′, t) =
(
Φt(x′), t

)
.

Assume that supp u ⊂ U. It follows from Fubini’s theorem and the induction
assumption that

∫
u
(
g(x)

)|Jg(x)|dx =
∫

dt
∫

u
(
Φt(x′), t

)|JΦt (x′)|dx′

=

∫
dt
∫

u(y′, t)dy′

=

∫
u(y)dy.

Define v = u(g)|Jg|. Fubini’s theorem and Lemma 9.1.3 imply that

∫
v
(
h(x)

)|Jh(x)|dx =
∫

dx′
∫

v
(
x′, f

N
(x′, x

N
)
)|∂

N
f
N

(x′, x
N

)|dx
N

=

∫
dx′

∫
v(x′, t)dt

=

∫
u
(
g(x)

)|Jg(x)|dx.

Since f = g ◦ h on U, we have f ′ = g′(h)h′ and J f = Jg(h)Jh. We deduce from the
two preceding equalities that

∫
u
(
f (x)

)|J f (x)|dx =
∫

u
(
g(h(x))

)|Jg
(
h(x)

)| |Jh(x)|dx

=

∫
v
(
h(x)

)|Jh(x)|dx

=

∫
u(y)dy.
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Let u ∈ K(RN). The Borel–Lebesgue theorem implies the existence of a finite
covering of the compact set spt u by open subsets (U j) satisfying (∗∗). There exists
a continuous partition of unity (ψ j) subordinated to the covering of spt u by (U j).

Since u =
∑

j

ψ ju, it is easy to conclude the proof. ��

9.2 Divergence Theorem

An open subset of RN is smooth if its boundary is a smooth manifold.

Definition 9.2.1. Let m ≥ 1. The open subset Ω of RN is of class Cm if there exists
ϕ ∈ Cm(RN) such that

(a) Ω = {x ∈ RN : ϕ(x) < 0};
(b) Γ = ∂Ω = {γ ∈ RN : ϕ(γ) = 0};
(c) for every γ ∈ Γ, ∇ϕ(γ) � 0.

The exterior normal at γ ∈ Γ is defined by

n(γ) = ∇ϕ(γ)/|∇ϕ(γ)|.

Let γ ∈ Γ. In order to simplify the notation, we assume that ∂
N
ϕ(γ) � 0. The

other cases are similar. By the implicit function theorem, there exist r > 0, an open
subset U of RN containing γ, an open subset V of RN−1, and β ∈ BCm(V× ]− r, r[)
such that for |t| < r,

{ϕ = t} ∩ U = {(x′, β(x′, t)) : x′ ∈ V}. (∗)

Setting β0(x′) = β(x′, 0), we obtain

Ω ∩ U = {(x′, β(x′, t)) : x′ ∈ V,−r < t < 0},

Γ ∩ U = {(x′, β0(x′)) : x′ ∈ V}.

Let us define the surface integral of a continuous function with compact support.

Definition 9.2.2. Let u ∈ K(U). We define

∫
Γ

u(γ)dγ =
∫

V
u(x′, β0(x′))

√
1 + |∇β0(x′)|2 dx′.

Let u ∈ K(RN). The Borel–Lebesgue theorem implies the existence of a finite
covering of the compact set Γ∩ spt u by open subsets (U j) satisfying (∗). There
exists a partition of unity (ψ j) subordinated to the covering of Γ∩ spt u by (U j).
We define
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∫
Γ

u(γ)dγ =
∑

j

∫
Γ

ψ j(γ)u(γ)dγ.

The surface integral is independent of the open covering (U j).

Proposition 9.2.3. LetΩ be an open subset of RN of class C1 and u ∈ K(RN). Then

∫
Γ

u(γ)dγ = lim
ε→0
ε>0

1
ε

∫
−ε<ϕ<0

u(x)|∇ϕ(x)|dx.

Proof. We can assume supp u ⊂ U, where U satisfies (∗) and we define the change
of variables f (x′, t) = (x′, β(x′, t)). We obtain, using Theorem 9.1.2 and Fubini’s
theorem, that

∫
−ε<ϕ<0

u(x)|∇ϕ(x)|dx =
∫ 0

−ε
dt
∫

V
u(x′, β(x′, t))|∇ϕ(x′, β(x′, t))| |∂tβ(x′, t)|dx′.

By definition of β, we have ϕ(x′, β(x′, t)) = t. But then

∇x′ϕ(x′, β(x′, t)) + ∂
N
ϕ(x′, β(x′, t))∇x′β(x′, t) = 0,

∂
N
ϕ(x′, β(x′, t))∂tβ(x′, t) = 1

and
|∇ϕ(x′, β(x′, t))|2 |∂tβ(x′, t)|2 = 1 + |∇x′β(x′, t)|2.

Hence we obtain

∫
−ε<ϕ<0

u(x)|∇ϕ(x)|dx =
∫ 0

−ε
dt
∫

V
u(x′, β(x′, t))

√
1 + |∇x′β(x′, t)|2 dx′.

We deduce from the fundamental theorem of calculus that

lim
ε→0
ε>0

1
ε

∫
−ε<ϕ<0

u(x)|∇ϕ(x)|dx =
∫

V
u(x′, β0(x′))

√
1 + |∇β0(x′)|2 dx′ =

∫
Γ

u(γ)dγ.

��
Theorem 9.2.4 (Divergence theorem). Let Ω be an open subset of RN of class C1

and v ∈ C1(RN ;RN) ∩ K(RN ;RN). Then

∫
Ω

div v dx =
∫
Γ

v · n dγ.
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Proof. Define η : R→ R by

η(t) = 1, t ≤ −1
= −t, −1 < t < 0,
= 0, t ≥ 0.

The preceding proposition implies that

∫
ϕ<0

div v dx = lim
ε→0
ε>0

∫
RN
η(ϕ/ε)div v dx = lim

ε→0
ε>0

1
ε

∫
−ε<ϕ<0

v · ∇ϕ dx =
∫
Γ

v · ∇ϕ|∇ϕ|dγ.

��

9.3 The Morse–Sard Theorem

The Morse–Sard theorem ensures that almost all level sets of a smooth function are
smooth manifolds.

Theorem 9.3.1. Let Ω be an open subset of RN and let u ∈ C∞(Ω). Then the
Lebesgue measure of the set

{t ∈ R : there exists x ∈ Ω such that u(x) = t and ∇u(x) = 0}

is equal to 0.

Lemma 9.3.2. Let u ∈ CN+1(Ω) and define

CN = {x ∈ Ω : for every |α| ≤ N, ∂αu(x) = 0}.

Then the Lebesgue measure of u(CN) is equal to 0.

Proof. Let K = B∞[x, r/2] ⊂ Ω. Since Ω is covered by a countable family of closed
cubes, it suffices to prove that u(CN ∩ K) is negligible.

By definition of CN , Taylor’s formula implies the existence of c ≥ 0 such that for
every x ∈ CN ∩ K and every y ∈ K,

|u(x) − u(y)| ≤ c||x − y||N+1
∞ .

We divide K into 2 jN cubes with edge r/2 j. Then u(CN ∩ K) is contained in at most
2 jN intervals of length 2c(r/2 j)N+1. We conclude that

m(u(CN ∩ K)) ≤ 2 jN2c(r/2 j)N+1 = 2c rN+1/2 j → 0, j→ ∞.

��
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Proof of Theorem 9.3.1. We will use induction on N. By Lemma 9.3.2, the theorem
is valid when N = 1.

Assume that the theorem is valid in dimension N − 1 and define

Cm = {x ∈ Ω : for every |α| ≤ m, ∂αu(x) = 0}.

By Lemma 9.3.2, it suffices to prove that u(Cm \ Cm+1) is negligible for m = 1, . . . ,
N − 1. Finally, it suffices to prove that u((Cm ∩ K) \ Cm+1) is negligible for K =
B∞[x,R/2] ⊂ Ω.

Let a ∈ ((Cm ∩ K) \Cm+1). By definition, there exist α ∈ NN and 1 ≤ j ≤ N such
that |α| = m, ∂αu(a) = 0, and ∂ j∂

αu(a) � 0. In order to simplify the notation, we
assume that j = N. The other cases are similar. We define ϕ = ∂αu. By the implicit
function theorem, there exist r > 0, an open subset U of Ω containing a, an open
subset V of RN−1, and β ∈ C∞(V× ]− r, r[) such that for |t| < r,

{ϕ = t} ∩ U = {(x′, β(x′, t)
)

: x′ ∈ V}.

We define the reciprocal changes of variables

f (x′, x
N

) =
(
x′, ϕ(x′, x

N
)
)

g(x′, t) =
(
x′, β(x′, t)

)
.

We define also
h = g

∣∣∣
V×{0}, v = u ◦ h.

It follows from the induction assumption that

m({s ∈ R : there exists x′ ∈ V such that v(x′) = s and ∇v(x′) = 0}) = 0. (∗)

Let x ∈ Cm ∩ U. Since ϕ(x) = ∂αu(x) = 0 and ∇u(x) = 0, we obtain

u(x) = u ◦ h ◦ f (x) = v ◦ f (x),

v′
(
f (x)

)
= u′

(
h( f (x))

)
h′
(
f (x)

)
= u′(x)h′

(
f (x)

)
= 0.

We deduce from (∗) that

m
(
u(Cm ∩U)

)
= m

(
v ◦ f (Cm ∩U)

)
= 0.

The Borel–Lebesgue theorem implies the existence of a finite covering of (Cm∩K)\
Cm+1 by open subsets (U j) satisfying

m
(
u(Cm ∩ U j)

)
= 0.
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We conclude that

m
(
u((Cm ∩ K) \Cm+1)

)
= 0.

��

9.4 Comments

The proofs of Theorem 9.1.2, Proposition 9.2.3, and Theorem 9.3.1 depend only
on the implicit function theorem for one dependent variable and one equation.
A direct proof of this result is given in the book by Krantz and Parks on the implicit
function theorem ([41], Theorem 3.2.1). The short proof of the divergence theorem
in Sect. 9.2 was inspired by Example 3.7.2 in the book [40] by Krantz and Parks.
The proof we give of the Morse–Sard theorem for smooth functions is due to
Milnor [54].



Chapter 10
Epilogue: Historical Notes on Functional
Analysis

Differentiae et summae sibi reciprocae sunt, hoc est summa
differentiarum seriei est seriei terminus, et differentia
summarum seriei est ipse seriei terminus, quorum illud ita
enuntio:

∫
dx aequ. x; hoc ita: d

∫
x aequ. x.

G. Leibniz

10.1 Integral Calculus

In a concise description of mathematical methods, Henri Lebesgue underlined the
importance of definitions and axioms (see [47]).

When a mathematician foresees, more or less clearly, a proposition, instead of having
recourse to experiment like the physicist, he seeks a logical proof. For him, logical
verification replaces experimental verification. In short, he does not seek to discover new
materials but tries to become aware of the richness that he already unconsciously possesses,
which is built in the definitions and axioms. Herein lies the supreme importance of these
definitions and axioms, which are indeed subjected logically only to the condition that they
be compatible, but which could lead only to a purely formal science, void of meaning, if
they had no relationship to reality.

Leibniz conceived integration as the reciprocal of differentiation:∫
dx = d

∫
x = x.

The computation of the integral of f is reduced to the search for its primitive,
solution of the differential equation

F′ = f .

The textbooks by Cauchy, in particular the Analyse algébrique (1821) (see [7])
and the Résumé des leçons données à l’Ecole Royale Polytechnique sur le calcul
infinitésimal (1823), opened a new area in analysis. Cauchy was the first to consider
the problem of existence of primitives:

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 10, © Springer Science+Business Media, LLC 2013
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In integral calculus, it seemed necessary to me to demonstrate in general the existence of
integrals or primitive functions before giving their various properties. In order to reach this,
it was necessary to establish the notion of integral between two given limits or definite
integral.

Cauchy defines and proves the existence of the integral of continuous functions:

According to the preceding lecture, if one divides X − x0 into infinitesimal elements x1 −
x0, x2 − x1 · · ·X − xn−1, the sum

S = (x1 − x0) f (x0) + (x1 − x2) f (x1) + · · · + (X − xn−1) f (xn−1)

will converge to a limit given by the definite integral

∫ X

x0

f (x)dx.

So Cauchy proved the existence of primitives of continuous functions using integral
calculus.

Though every continuous function has a primitive, Weierstrass proved in 1872
the existence of continuous nowhere differentiable functions. In a short note [44],
Lebesgue proved the existence of primitives of continuous functions without using
integral calculus. His proof is clearly functional-analytic.

In 1881 ([37]), Camille Jordan defined the functional space of functions of
bounded variation, which he called functions of limited oscillation. His goal was
to linearize Dirichlet’s condition for the convergence of Fourier series:

Let x1, . . . , xn be a series of values of x between 0 and ε, and y1, . . . , yn the corresponding
values of f (x). The points x1, y1; . . . ; xn, yn will form a polygon.
Consider the differences

y2 − y1, y3 − y2, . . . , yn − yn−1.

We will call the sum of the positive terms of this sequence the positive oscillation of the
polygon; negative oscillation is the sum of the negative terms; total oscillation is the sum
of those two partial oscillations in absolute value.
Let us vary the polygon; two cases may occur:

1◦ The polygon may be chosen so that its oscillations exceed every limit.
2◦ For every chosen polygon, its positive and negative oscillations will be less than some

fixed limits Pε and Nε. We will say in that case that F(x) is a function of limited
oscillation in the interval from 0 to ε; Pε will be its positive oscillation; Nε its negative
oscillation; Pε + Nε its total oscillation.

This case will necessarily occur if F(x) is the difference of two finite functions f (x) − ϕ(x),
because it is clear that the positive oscillation of the polygon will be =

<
f (ε) − f (0), and its

negative oscillation =
<
ϕ(ε) − ϕ(0).

The converse is easy to prove. Indeed, it is easy to verify that

1◦ The oscillation of a function from 0 to ε is equal to the sum of its oscillations from 0 to
x and from x to ε, x being any quantity between 0 and ε.
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2◦ We have that F(x) = F(0) + Px − Nx, Px and Nx denoting the positive and the negative
oscillations from 0 to x. But F(0) + Px and Nx are finite functions nondecreasing from 0
to ε.

Hence Dirichlet’s proof is applicable, without modification, to every function of bounded
oscillation from x = 0 to x = ε, ε being any finite quantity.
The functions of limited oscillations constitute a well-defined class, whose study could be
of some interest.

Functions of bounded variation will play a fundamental role in the following
domains:

(a) Convergence of Fourier series;
(b) Rectification of curves;
(c) Integration;
(d) Duality.

Let u : [0, 1] → R be a continuous function. The length of the graph of u is
defined by

L(u) = sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∑

j=0

[
(a j+1 − a j)2 +

(
u(a j+1) − u(a j)

)2]1/2 :

k ∈ N, 0 = a0 < a1 < . . . < ak+1 = 1

}
.

In 1887, in Volume III of the first edition of his Cours d’Analyse at the École
Polytechnique, Jordan proved that L(u) is finite if and only if u is of bounded
variation. The case of surfaces is much more delicate (see Sect. 10.3).

In 1894 ([80]), Stieltjes defined a deep generalization of the integral associated
to an increasing function ϕ:

More generally, let us consider the sum

f (ξ1)
[
ϕ(x1) − ϕ(x0)

]
+ f (ξ2)

[
ϕ(x2) − ϕ(x1)

]
+ . . . + f (ξn)

[
ϕ(xn) − ϕ(xn−1)

]
. (A)

It will still have a limit, which we shall denote by

∫ b

a
f (u)dϕ(u).

We will have only to consider some very simple cases like f (u) = uk , f (u) = 1
z+u , and there

is no interest in giving to the function f (u) its full generality. Thus it will suffice, as an
example, to suppose the function f (u) continuous, and then the proof presents no difficulty,
and we have no need to develop it, since it is done as in the ordinary case of a definite
integral.

It is easy to extend Stieltjes’s definition to every function ϕ of bounded variation.
Stieltjes breaks the reciprocity between integral and derivative.

In 1903 ([32]), J. Hadamard characterized the continuous linear functionals on
C([a, b]):
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It is easy to reach this, following Weierstrass and Kirchhoff, and introducing a function
F(x), with a finite number of maxima and minima and such that

∫ +∞

−∞
F(x)dx = 1;

e.g., F(x) = 1√
π

e−x2
.

Starting then from the well-known identity

lim
μ=±∞ μ

∫ a

b
f (x)F[μ(x − x0)]dx = f (x0), a < x0 < b,

and assuming (as the authors quoted before) the operation U to be continuous (in the sense
of Bourlet), it will suffice to define

U[μFμ(x − x0)] = Φ(x0, μ)

to show that our operation could be represented as

U[ f (x)] = lim
μ=±∞

∫ b

a
f (x)Φ(x, μ)dx.

In 1909 ([61]), F. Riesz discovered a representation depending on only one
function:

In the present note, we shall develop a new analytic expression of the linear operation,
containing only one generating function.
Given the linear operation A[ f (x)], we can determine a function of bounded variation α(x)
such that for every continuous function f (x), we have

A[ f (x)] =
∫ 1

0
f (x)dα(x).

Riesz’s theorem asserts that every continuous linear functional on C([0, 1]) is
representable by a Stieltjes integral.

10.2 Measure and Integral

Les notions introduites sont exigées par la solution d’un
problème, et, en vertu de la seule présence parmi les notions
antérieures, elles posent à leur tour de nouveaux problèmes.

Jean Cavaillès

In 1898, Emile Borel defined the measure of sets in his Leçons sur la théorie des
fonctions:

The procedure that we have employed actually amounts to this: we have recognized that a
definition of measure could be useful only if it had certain fundamental properties: we have
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stated these properties a priori, and we have used them to define the class of sets that we
consider measurable.
Those essential properties that we summarize here, since we shall use them, are the
following: The measure of a sum of a denumerable infinity of sets is equal to the sum
of their measures; the measure of the difference of two sets is equal to the difference
of their measures; the measure is never negative; every set with a nonzero measure is
not denumerable. It is mainly this last property that we shall use. Besides, it is explicitly
understood that we speak of measures only for those sets that we called measurable.
Of course, when we speak of the sum of several sets, we assume that every pair them have
no common points, and when we speak of their difference, we assume that one set contains
all the points of the other.

Following Lebesgue,

The descriptive definition of measure stated by M. Borel is without doubt the first clear
example of the use of actual infinity in mathematics.

However, Borel does not prove the existence of the measure!
The Lebesgue integral first appeared on the 29 April 1901. In the note [42],

Lebesgue proved the existence of the Borel measure as a restriction of the Lebesgue
measure.

In the introduction of his thesis [43], Lebesgue stated his program:

In this work, I try to give definitions as general and precise as possible of some of the
numbers considered in Analysis: definite integral, length of a curve, area of a surface.

He formulated the problem of the measure of sets:

We intend to assign to every bounded set a positive or zero number called its measure and
satisfying the following conditions:

1. There exist sets with nonzero measure.
2. Two equal sets have equal measures.
3. The measure of the sum of a finite number or of a countable infinity of sets, without

common points, is the sum of the measures of those sets.

We will solve this problem of measure only for the sets that we will call measurable.

In his Leçons sur l’intégration et la recherche des fonctions primitives of 1904,
see [45], Lebesgue formulated the problem of integration.

We intend to assign to every bounded function f (x) defined on a finite interval (a, b),

positive, negative, or zero, a finite number
∫ b

a
f (x)dx, which we call the integral of f (x)

in (a, b) and which satisfies the following conditions:

1. For every a, b, h, we have

∫ b

a
f (x)dx =

∫ b+h

a+h
f (x − h)dx.

2. For every a, b, c, we have

∫ b

a
f (x)dx +

∫ c

b
f (x)dx +

∫ a

c
f (x)dx = 0.
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3. ∫ b

a
[ f (x) + ϕ(x)]dx =

∫ b

a
f (x)dx +

∫ b

a
ϕ(x)dx.

4. If we have f � 0 and b > a, we also have

∫ b

a
f (x)dx � 0.

5. We have ∫ 1

0
1 × dx = 1.

6. If fn(x) increases and converges to f (x), then the integral of fn(x) converges to the
integral of f (x).

Formulating the six conditions of the integration problem, we define the integral. This
definition belongs to the class of those that could be called descriptive; in those definitions,
we state the characteristic properties of the object we want to define. In the constructive
definitions, we state which operations are to be done in order to obtain the object we
want to define. Constructive definitions are more often used in Analysis; however, we use
sometimes descriptive definitions; the definition of the integral, following Riemann, is
constructive; the definition of primitive functions is descriptive.

In 1906, in his thesis [23], Maurice Fréchet tried to extend the fundamental
notions of analysis to abstract sets.

In this Mémoire we will use an absolutely general point of view that encompass these
different cases.
To this end, we shall say that a functional operation U is defined on a set E of elements of
every kind (numbers, curves, points, etc.) when to every element A of E there corresponds
a determined numerical value of U : U(A). The search for properties of those operations
constitutes the object of the Functional Calculus.

Fréchet defined distance which he called, in French, écart:

We can associate to every pair of elements A, B a number (A, B) ≥ 0, which we will call the
distance of the two elements and which satisfies the following properties: (a) The distance
(A, B) is zero only if A and B are identical. (b) If A, B,C are three arbitrary elements, we
always have (A, B) ≤ (A,C) + (C, B).

In [24], Fréchet defined additive families of sets and additive functions of sets:

An additive family of sets is a collection of sets such that:

1. If E1, E2 are two sets of this family, the set E1 − E2 of elements of E1, if they exist and
that are not in E2, belongs also to the family.

2. If E1, E2, . . . is a denumerable sequence of sets of this family, their sum, i.e., the set
E1 + E2 + · · · of elements belonging at least to one set of the sequence, belongs also to
the family.
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A set function f (E) defined on an additive family of sets F is additive on F if E1, E2, . . .
being a denumerable sequence of sets of F and disjoint, i.e., without pairwise common
elements, we have

f (E1 + E2 + . . .) = f (E1) + f (E2) + · · · .
When the sequence is infinite, the second member has obviously to converge regardless of
the order of the terms. Hence the series in the second member has to converge absolutely.

Fréchet defined the integral without using topology. Additive functions of sets
will be called measures.

In [12], Daniell chose a different method. He introduced a spaceL of elementary
functions and an elementary integral

L → R : u �→
∫

u dμ

satisfying the axioms of linearity, positivity, and monotone convergence.
The two axiomatics are equivalent if to Daniell’s axioms we add Stone’s axiom

(1948):

for every u ∈ L,min(u, 1) ∈ L,

or the axiom

for every u, v ∈ L, uv ∈ L.

The choice of primitive notions and axioms is rather arbitrary. There are no
absolutely undefinable notions or unprovable propositions.

The axiomatization of integration by Fréchet opened the way to the axiomatiza-
tion of probability by Kolmogorov in 1933. The unification of measure, integral, and
probability was one the greatest scientific achievements of the twentieth century.

In his thesis [5], Banach defined the complete normed spaces:

There exists an operation, called norm (we shall denote it by the symbol ||X||), defined in the
field E, having as an image the set of real numbers and satisfying the following conditions:

||X|| ≥ 0,
||X|| = 0 if and only if X = θ,
||a · X|| = |a| · ||X||,
||X + Y || ≤ ||X|| + ||Y ||.

If 1. {Xn} is a sequence of elements of E, 2. lim
r→∞
p→∞
||Xr − Xp|| = 0, there exists an element X

such that

lim
n→∞ ||X − Xn|| = 0.

Banach emphasized the efficiency of the axiomatic method:

The present work intends to prove theorems valid for different functional fields, which I
will specify in the sequel. However, in order not to be forced to prove them individually for
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every particular field, a tedious task, I chose a different way: I consider in some general way
sets of elements with some axiomatic properties, I deduce theorems, and I prove afterward
that the axioms are valid for every specific functional field.

The fundamental book of Banach ([6]), Théorie des opérations linéaires, was
published in 1932. Banach deduces Riesz’s representation theorem from the Hahn–
Banach theorem.

The original proof of the Hahn–Banach theorem holds in every real vector space.
Let F : X → R be a positively homogeneous convex function and let f : Z → R

be a linear function such that f ≤ F on the subspace Z of X. By the well-ordering
theorem, the set X \ Z can be so ordered that each nonempty subset has a least
element. It follows then, from Lemma 4.1.3, by transfinite induction, that there
exists g : X → R such that g ≤ F on X and g

∣∣∣
Z
= f .

Let us recall the principle of transfinite induction (see [72]). Let B be a subset of
a well-ordered setA such that

{y ∈ A : y < x} ⊂ B ⇒ x ∈ B.

Then B = A.
In set theory, the well-ordering theorem is equivalent to the axiom of choice and

to Zorn’s lemma. In 1905, Vitali proved the existence of a subset of the real line that
is not Lebesgue measurable. His proof depends on the axiom of choice.

10.3 Differential Calculus

L’activité des mathématiciens est une activité expérimentale.

Jean Cavaillès

Whereas the integral calculus transforms itself into an axiomatic theory, the
differential calculus fits into the general theory of distributions.

The fundamental notions are

– Weak solutions;
– Weak derivatives;
– Functions of bounded variation;
– Distributions.

In [60], Poincaré defined the notion of weak solution of a boundary value
problem:

Let u be a function satisfying the following conditions:

du
dn
+ h u = ϕ, (3)
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Δu + f = 0. (4)

Now let v be an arbitrary function, which I assume only continuous, together with a first-
order derivative. We shall have

∫ (
v

du
dn
− u

dv
dn

)
dω =

∫
(vΔ u − uΔ v)dτ,

so that ∫
v f dτ +

∫
uΔ v dτ +

∫
vϕ dω =

∫
u

(
h v +

dv
dn

)
dω. (5)

Condition (5) is thus a consequence of condition (3).
Conversely, if condition (5) is satisfied for every function v, condition (3) will be also
satisfied, provided that u and du

dn are finite, well-defined, and continuous functions.
But it can happen that in some cases, we are unaware that du

dn is a well-defined and
continuous function; we cannot assert then that condition (5) entails condition (3), and it
is even possible that condition (3) is meaningless.

Poincaré named condition (5) a modified condition and asserted (p. 121),

It is obviously equivalent to condition (3) from the physical point of view.

This Mémoire of Poincaré contains (p. 70) the first example of an integral
inequality between a function and its derivatives:

Let V be an arbitrary function of x, y, z; define:

A =
∫

V2dτ, B =
∫ ⎡⎢⎢⎢⎢⎢⎣

(
dV
dx

)2

+

(
dV
dy

)2

+

(
dV
dz

)2⎤⎥⎥⎥⎥⎥⎦ dτ.

I will write to shorten:

B =
∫ ∑(

dV
dx

)2

dτ.

I assume first that V satisfies the condition:
∫

V dτ = 0

and I intend to estimate the lower limit of the quotient B
A .

The maximum principle is stated on p. 92. Poincaré’s principle appears in [59]
for the formal construction of the eigenvalues and eigenfunctions of the Laplacian.
In [60], Poincaré proved the existence of eigenvalues (for Dirichlet boundary
conditions) using the theory of meromorphic functions (see [50]).

Let us recall that we denote by L(u) the length of the graph of the continuous
function u : [0, 1] → R. Following Jordan, L(u) < ∞ if and only if u is of
bounded variation. It follows then from a theorem due to Lebesgue that u is almost
everywhere differentiable on [0, 1]. In [82], Tonelli proved a theorem equivalent to
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L(u) =
∫ 1

0

√
1 + (u′(x))2 dx⇐⇒ u ∈ W1,1(]0, 1[).

A counterexample due to Schwarz, published in 1882 in the Cours d’Analyse of
Hermite, shows that it is not possible to extend the definition of length due to Jordan
to surfaces. Let z = u(x, y) be a nonparametric surface, with u continuous on [0, 1]×
[0, 1]. Let Ω =]0, 1[×]0, 1[ and define, on X = C(Ω), the distance

d(u, v) = max{|u(x, y) − v(x, y)| : (x, y) ∈ Ω}.

The space of quasilinear functions on Ω is defined by

Y = {u ∈ X : there exists a triangulation τ of Ω
such that, for every T ∈ τ, u

∣∣∣
T

is affine}.

The graph of u ∈ Y consists of triangles. The sum of the areas of those triangles is
called the elementary area of the graph of u and is denoted by B(u).

The Lebesgue area of the graph of u is defined by

A(u) = inf

{
lim
n→∞

B(un) : (un) ⊂ Y and d(un, u)→ 0, n→ ∞
}
. (∗)

In [83] (see also [53]), Tonelli stated two theorems equivalent to

A(u) < ∞ ⇐⇒ ||Du||Ω < ∞,

A(u) =
∫
Ω

√
1 +

(
∂u
∂x

)2

+

(
∂u
∂y

)2

dx dy⇐⇒ u ∈ W1,1(Ω).

Lebesgue area is a lower semicontinuous function on X. It extends the elementary
area: for every u ∈ Y, A(u) = B(u).

In [25], Fréchet observed that Lebesgue’s definition allows one to extend lower
semicontinuous functions. Let Y be a dense subset of a metric space X and let B :
Y → [0,+∞] be an l.s.c. function. The function A defined by (∗) is an l.s.c. extension
of B on X such that for every l.s.c. extension C of B on X and for every u ∈ X,
C(u) ≤ A(u).

In [48], Leray defined the weak derivatives of L2 functions, and called them
quasi-dérivées.

In [75], announced in [74] and translated in [78], Sobolev defined the distribu-
tions of finite order on R

N , which he called fonctionnelles. (A distribution f on R
N

is of order k if for every sequence (un) ⊂ D(RN) such that the supports of un are
contained in some compact set and such that sup

|α|≤|≤k
||∂αun||∞ → 0, n → ∞, we have
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〈 f , un〉 → 0, n → ∞.) Sobolev defined the derivative of a fonctionnelle by duality
and associated a fonctionnelle to every locally integrable function on R

N .
Without reference to his theory of fonctionnelles, Sobolev defined in [77] the

weak derivatives of integrable functions. Regularization by convolution is due to
Leray for L2 functions (see [48]) and to Sobolev for Lp functions (see [77]).

In [69], Laurent Schwartz defined general distributions. In [70], he defined the
tempered distributions and their Fourier transform. The treatise [71] is a masterful
exposition of distribution theory.

Let g : R → R be a function of bounded variation on every bounded interval.
The formula of integration by parts shows that for every u ∈ D(R),

∫
R

u d g = −
∫
R

u′g dx.

The Stieltjes integral with respect to g is nothing but the derivative of g in the sense
of distributions! Riesz’s representation theorem asserts that every continuous linear
functional on C([0, 1]) is the derivative in the sense of distributions of a function of
bounded variation.

10.4 Comments

Some general historical references are [15, 19, 29]. We recommend also [46] on
Jordan, [52] on Hadamard, [81] on Fréchet, and [38] on Banach.
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1028 (1901)
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72. Sierpinski, W.: Leçons sur les nombres transfinis. Gauthier-Villars, Paris (1928)
73. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational

problems. Calc. Var. Part. Differ. Equat. 18, 57–75 (2003)
74. Sobolev, S.L.: Le problème de Cauchy dans l’espace des fonctionnelles. Comptes Rendus de

l’Académie des Sciences de l’U.R.S.S. 3, 291–294 (1935)
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Index of Notation

u+ : 2.2.2
u− : 2.2.2
ωu : 1.3.1
spt u : 2.1.1
μu : 2.2.32
mu : 8.3.1
spt u : 2.1.1
u ∗ v : 4.3.5
τyu : 4.3.5
u∗ : 8.3.1
uH : 8.3.5
∇u : 6.1.6
div u : 6.1.6
Δu = div ∇u
||u||Lp(Ω,μ) : 4.2.1
||∇u||Lp(Ω) : 6.1.6
||u||Wk,p(Ω) : 6.1.8
||Du||Ω : 7.3.1
||u||BV(Ω) : 7.3.4
||μ||Ω : 5.1.11
|μ| : 5.1.6
ρn : 4.3.3
χA : 1.3.14
μ(A) : 2.2.25
m(A) : 2.2.35
p(A) : 7.4.2
A∗ : 8.3.1
AH : 8.3.5
ω ⊂⊂ Ω : 4.3.4
VN : 2.4.9
C(Ω) : 2.1.1
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K(Ω) : 2.1.1
D(Ω) : 4.3.1
C0(Ω) : 5.1.9
L(Ω, μ) : 2.2.1
L+(Ω, μ) : 2.2.8
L1(Ω, μ) : 2.2.12
M(Ω, μ) : 2.2.19
Lp(Ω, μ) : 4.1.8
Lp(Ω, μ) : 4.2.1
Lp

loc(Ω) : 4.3.4
Wk,p(Ω) : 6.1.8
Hk(Ω) : 6.1.8
Wk,p

loc (Ω) : 6.1.8

Wk,p
0 (Ω) : 6.1.8

Hk
0(Ω) : 6.1.8

W s,p(Ω) : 6.4.11
W−k,p′(Ω) : 8.4.17
H−k(Ω) : 8.4.17
D1,p(RN) : 7.2.1
BV(Ω) : 7.3.4
D∗(Ω) : 8.4.2
L(X, Y) : 3.2.2
X∗ : 5.1.1
1/p + 1/p′ = 1
p∗ = p∗(N) = N p/(N − p)

Fundamental Theorem of Calculus
Let u ∈ C([a, b]). For all a ≤ x ≤ b, we have

d
dx

∫ x

a
u(t)dt = u(x).

Let u ∈ C1([a, b]). For all a ≤ x ≤ b, we have

∫ x

a

du
dx

(t)dt = u(x) − u(a).



Index

C
capacity 7.1.1
— of degree p 7.2.4
closed subset 1.2.9
closure 1.2.11
coarea formula 7.4.5
cone 4.1.1
continuity 1.3.1
—, uniform 1.3.1
convergence
—, simple 1.4.1
—, uniform 1.4.1
convex set 4.1.1
convolution 4.3.5
covering 1.2.14
criterion
—, de la Vallée Poussin 3.1.10
—, Fréchet 1.2.16
—, Vitali 3.1.9
—, Vitali–Dalzell 3.3.15

D
diffeomorphism 2.4.1, 9.1.1
distance 1.2.1
distribution 8.4.2

E
eigenfunction 8.2.1
eigenvalue 3.4.1
—, multiplicity 3.4.1
—, simple 3.4.1
eigenvector 3.4.1

elementary solutions 8.4.9
exponent
—, conjugate 4.1.8
—, critical 6.4.2
exterior normal 9.2.1

F
frontier 1.2.11
function
—, admissible 2.2.32, 8.3.1
—, bounded variation 7.3.4, 8.4.15
—, characteristic 1.3.14
—, concave 4.1.1
—, convex 4.1.1
—, distribution 2.2.32, 8.3.1
—, distance 1.3.16
—, G-invariant 8.2.5
—, harmonic 8.1.4
—, integrable 2.2.12
—, locally integrable 4.3.4
—, lower semicontinuous 1.3.6
—, measurable 2.2.19
—, positively homogeneous 4.1.1
—, quasicontinuous 7.2.11
—, subharmonic 8.1.4
—, superharmonic 8.1.4
—, test 4.3.1
—, upper semicontinuous 1.3.6

H
Hilbert basis 3.3.9

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5, © Springer Science+Business Media, LLC 2013

211



212 Index

I
Identity
—, Parseval 3.3.10
—, parallelogram 3.3.3
—, polarization 3.3.3
—, Pythagorean 3.3.3
Inequality
—, Bessel 3.3.7
—, capacity 7.2.10
—, Cauchy–Schwarz 3.3.4
—, convexity 4.1.6
—, Faber–Krahn 8.3.20
—, Gagliardo 6.4.1
—, Gagliardo–Nirenberg 7.3.7, 8.3.18
—, Hanner 4.1.9
—, Hardy 6.4.10
—, Hilden 8.3.15
—, Hölder 4.1.9
—, Hölder generalized 4.2.3
—, interpolation 4.2.4
—, isoperimetric 8.3.16
—, Kato 8.4.12
—, mean-value 8.1.5
—, Markov 2.2.33
—, Minkowski 3.1.1, 3.3.4, 4.1.9
—, Morrey 6.4.3
—, Poincaré 6.4.7, 6.4.9
—, Pólya–Szegő 8.3.14
—, Sobolev 6.4.2, 7.2.2
—, trace 6.2.2
—, triangular 1.2.1
integral
—, elementary 2.2.1
—, Cauchy 2.1.2
—, Lebesgue 2.2.12
interior 1.2.11

L
lemma
—, Brezis–Lieb 4.2.7
—, closing 6.1.5
—, continuity of translations 4.3.8
—, Degiovanni–Magrone 4.2.8
—, Du Bois-Reymond 6.1.4
—, extension by reflection 6.2.1
—, Fatou 2.2.16
—, von Neumann 5.3.12

M
mapping
—, bounded 1.4.4

—, compact 3.4.5
—, continuous 1.3.1
—, uniformly continuous 1.3.1
measure 5.1.6
—, finite 5.1.11
—, Lebesgue 2.2.35
—, outer 7.1.11
—, positive 2.2.28
—, scalar 5.1.6
— of a subset 2.2.25
—, surface 2.4.6, 9.2.2
—, vectorial 5.1.6
modules of continuity 1.3.1

N
norm 3.1.1, 3.2.2

O
orthogonal 5.3.3
orthonormal 3.3.6
open subset 1.2.9
— of class Cm 9.2.1
—, cylindrical 6.2.1
—, G-invariant 8.2.5

P
partition of unity 4.3.13, 6.1.16
perimeter 7.4.2
polarization 8.3.5
principle
—, Cavalieri 2.2.34
—, Ekeland’s variational 1.3.8
—, maximum 8.1.6
—, max-inf 8.2.7
—, Poincaré 3.4.7, 8.2.2
product of elementary integrals 2.3.4

S
scalar product 3.3.1
Schwarz’s symmetrization 8.3.1
sequence
—, bounded 1.2.2
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—, Cauchy 1.2.2
—, convergent 1.2.2
—, fundamental 2.2.4
—, minimizing 1.3.4
—, regularizing 4.3.3
—, truncation 6.1.10
—, weakly convergent 5.1.1, 5.3.6, 5.4.4
series
—, convergent 1.1.12, 3.1.3
—, normally convergent 3.1.3
set
—, closed 1.2.9
—, convex 4.1.1
—, dense 1.2.10
—, measurable 2.2.25
—, negligible 2.2.5
—, open 1.2.9
space
—, Banach 3.1.4
—, compact 1.2.5
—, complete 1.2.5
—, dual 5.1.1
—, fractional Sobolev 6.4.11
—, Hilbert 3.3.13
—, Lebesgue 2.2.12, 4.1.8, 4.2.1
—, metric 1.2.1
—, normed 3.1.1
—, precompact 1.2.5
—, pre-Hilbert 3.3.1
—, separable 1.2.17
—, smooth 5.2.1
—, Sobolev 6.1.8, 7.2.1
—, uniformly convex 5.2.2
subsequence 1.2.4
support 2.1.1
symmetric operator 3.4.2

T
theorem
—, annulation 4.3.10
—, Ascoli 4.4.1
—, Baire 1.2.13
—, Banach 5.1.4
—, Banach–Steinhaus 3.2.6, 5.1.3, 5.3.8, 5.4.6,

8.4.19

—, change of variables 2.4.2, 6.1.11, 9.1.2
—, Clarkson 5.4.2
—, comparison 2.2.18
—, de la Vallée Poussin 5.1.12
—, density 4.2.11, 4.3.11
—, density in Sobolev spaces 6.3.2
—, Deny–Lions 6.1.18
—, Dini 1.4.2
—, divergence 6.3.4, 9.2.4
—, elementary spectral 3.4.8
—, extension in Sobolev spaces 6.3.1
—, Fréchet–Riesz 5.3.1
—, Fubini 2.3.7
—, Hahn–Banach 4.1.4, 5.2.7
—, Hajłasz 6.1.17
—, James representation 5.2.6
—, Lebesgue’s decomposition 5.3.13
—, Lebesgue’s dominated convergence 2.2.17
—, Levi 2.2.15
—, Morse–Sard 7.4.3, 9.3.1
—, partition of unity 4.3.13, 6.1.16
—, polar decomposition of vector measures

5.3.14
—, regularization 4.3.9
—, Rellich–Kondrachov 6.4.6
—, Riesz representation 5.4.3
—, F. Riesz 4.2.9
—, M. Riesz 4.4.2
—, Riesz–Fischer 3.3.14
—, separability 4.2.12
—, Sobolev 6.4.4
—, trace 6.3.3
total variation 7.3.1, 5.1.11
trace 6.2.3, 6.3.3

U
uniformly integrable 3.1.8
upper envelope 1.3.9

W
weak derivative 6.1.2
Weierstrass test 1.4.6
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