
Chapter 1
Introduction to Dynamic Bifurcation Theory

1.1 Introduction

The change in the qualitative behavior of solutions as a control parameter (or control
parameters) in a system is varied and is known as a bifurcation. When the solutions
are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often
when the zero solution of the linearization of the system at the equilibrium changes
its stability. To illustrate the basic concepts of bifurcation phenomena, we consider
the following continuous dynamical system defined by the Cr (r ≥ 1) vector field f :
Λ ×U →R

n:

ẋ = f (μ ,x), μ ∈ Λ ⊆ R
m, x ∈U ⊆ R

n, (1.1)

where U and Λ are open sets, x is the state variable, and μ is the (bifurcation)
parameter.

Continuously varying μ may change the qualitative behavior of the solutions
of (1.1). A value μ ∈ Λ for which such a change occurs is called a bifurcation
(critical) value. The set of all bifurcation values is called the bifurcation set in the
parameter space R

m. We may use a bifurcation diagram to schematically show the
considered solutions (equilibria/fixed points, closed orbits/periodic orbits, invariant
tori) of a system as a function of a bifurcation parameter in the system. It is normal to
represent stable solutions with solid lines and unstable solutions with dashed lines.

Local bifurcations are relevant to the birth or initiation of bifurcations when the
bifurcation parameter is close to a bifurcation value. A local bifurcation from a given
solution (an equilibrium, a periodic orbit, etc.) can normally be detected from a local
stability analysis at the given solution. The global bifurcation thereby concerns the
continuation of a local bifurcation when the bifurcation parameter is away from the
bifurcation value.

The bifurcation phenomena is linked closely to the concepts of topological
equivalence, structural stability, and genericity, which are described in the next
section.
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2 1 Introduction to Dynamic Bifurcation Theory

1.2 Topological Equivalence

In the study of dynamical systems, we are interested in not only specific solutions of
a specific system, but also classification of solutions of a particular system and clas-
sification of systems according to general qualitative behaviors, that is, the number,
position, and stability of equilibria, periodic orbits, and other isolated invariant sets.

In what follows, we will not distinguish a flow and a dynamical system. This
means that we consider a continuous mapping Φ: R×U → U over an open set
U ⊆R

n such that Φ(0,x) = x and Φ(t,Φ(s,x)) = Φ(t +s,x) for t, s ∈R, and x ∈U .
Sometimes, we write it as Φt := Φ(t, ·): U →U for t ∈ R.

We consider two dynamical systems to be (locally) equivalent if their (local)
phase portraits are similar in a qualitative sense, that is, if they can be locally
transformed into each other through a continuous transformation. More precisely,
we introduce the following definition.

Definition 1.1. A dynamical system Φ in R
n is said to be topologically equivalent

in a region U ⊂ R
n to a dynamical system Ψ in a region V ⊂ R

n if there exists a
homeomorphism h: U → V that maps the orbits of Φ in U onto the orbits of Ψ in
V , preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse
are continuous. A homomorphism is called a diffeomorphism if it is C1-smooth
and its inverse is also C1-smooth. The definition of topological equivalence can be
generalized to cover more general cases in which the state space is a complete met-
ric or, in particular, a Banach space. The definition also remains meaningful when
the state space is a smooth finite-dimensional manifold in R

n, for example, a two-
dimensional torus T2 or sphere S

2. The phase portraits of topologically equivalent
systems are often said to be topologically equivalent.

Example 1.1. Consider the flows Φt and Ψ t associated with the differential
equations

ẋ =−x and ẏ =−3y,

respectively. The homeomorphism h: R→R given by h(x) = x3 for x ∈R maps the
orbits of Φ onto those of Ψ .

Definition 1.2. Two flows Φt (on U) and Ψ t (on V ) are called topologically
conjugate if there exists a homeomorphism h: U →V such that

Ψ t = h ◦Φt ◦ h−1 for t ∈ R.

We also use the term smoothly conjugate (or diffeomorphic) if the involved homeo-
morphism is a diffeomorphism and the flows are smooth.

For example, for a continuous-time system

ẋ = f (x), x ∈ R
n, (1.2)
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if h is a diffeomorphism from R
n to R

n, and x = h(y), then the system

ẏ = g(y), y ∈ R
n (1.3)

with g(y) = [Dh(y)]−1 f (h(y)) for all y ∈ R
n is smoothly equivalent (or diffeomor-

phic) to system (1.2). In fact, denoting by Φt (x) the flow associated with system
(1.2), and letting Ψ t(y) = h−1(Φt (h(y))), we have

Dh(Ψ t(y))
d
dt

Ψ t(y) = f (Φt (h(y))),

and so
d
dt

Ψ t(y) = [Dh(Ψ t(y))]−1 f (Φt (h(y))) = g(Ψ t(y)),

which implies that Ψ t(y) is the flow associated with system (1.3). Therefore,
systems (1.2) and (1.3) are smoothly equivalent (or diffeomorphic).

In what follows, if the degree of smoothness of h is of interest, we also use the
term Ck-equivalent or Ck-diffeomorphic.

Two diffeomorphic systems are practically identical and can be viewed as the
same system written using different coordinates. Two diffeomorphic systems have
similar qualitative behaviors. For such systems, the eigenvalues of corresponding
equilibria are the same: Let x0 and y0 = h(x0) be such equilibria and let A(x0) and
B(y0) denote corresponding Jacobian matrices. Then we have

A(x0) = M−1(x0)B(y0)M(x0),

where M(x) = Dh(x). Therefore, the characteristic polynomials for the matrices
A(x0) and B(y0) coincide.

It is easy to construct nondiffeomorphic but topologically equivalent flows.
To see this, consider a smooth scalar position function μ : Rn → (0,∞) and assume
that the right-hand sides of (1.2) and (1.3) are related by

f (x) = μ(x)g(x) for x ∈ R
n. (1.4)

Then systems (1.2) and (1.3) are topologically equivalent since their orbits are
identical, and it is the velocity of the motion that makes them different. Thus,
the homeomorphism h in Definition 1.1 is the identity map h(x) = x. In other
words, these two systems are distinguished only by the time parameterization along
the orbits. We say that two systems (1.2) and (1.3) satisfying (1.4) for a smooth pos-
itive function μ are orbitally equivalent. Usually, two orbitally equivalent systems
can be nondiffeomorphic, having cycles that look like the same closed curve in the
phase space but different periods. For example, the system

ṙ = r(1− r), θ̇ = 1

and the system

ρ̇ = 2ρ(1−ρ), ϕ̇ = 2
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in R
2 using polar coordinates are topologically equivalent, but not topologically

conjugate, because their periodic orbits r = 1 and ρ = 1 have periods 2π and π ,
respectively.

Let x0 be an equilibrium of the system (1.2), that is, f (x0) = 0, and let A denote
the Jacobian matrix D f (x) evaluated at x = x0. Let n−, n0, and n+ be the numbers
of eigenvalues of A (counting multiplicities) with negative, zero, and positive real
part, respectively. Recall that an equilibrium is called hyperbolic if n0 = 0, that
is, if A has no purely imaginary eigenvalues. A hyperbolic equilibrium is called a
hyperbolic saddle if n−n+ �= 0.

Topological equivalence of linear systems is generally easy to determine. If the
linearized flow near an equilibrium is asymptotically stable, then the equilibrium
is asymptotically stable. Moreover, two asymptotically stable n-dimensional linear
flows are topologically equivalent.

Example 1.2. Consider two linear planar systems:

ẋ =−x, ẏ =−y, (1.5)

and

ẋ =−x− y, ẏ = x− y. (1.6)

Clearly, the origin is a stable equilibrium in both systems. All other trajectories
of (1.5) are straight lines, while those of (1.6) are spirals. The equilibrium of
the first system is a node, while in the second systems it is a focus. These two
systems are neither orbitally nor smoothly equivalent. However, they are topologi-
cally equivalent.

We can further claim that near a hyperbolic equilibrium p, the system behaves
essentially like the linearized one. In other words, Φt is topologically equiva-
lent to eD f (p)t in a sufficiently small neighborhood of a hyperbolic equilibrium p
(Grobman–Hartman theorem). See Grobman [123], Hartman [161, 162], Hirsch
[163], Hale and Kocak [152] for details. As a result, determining topological equiv-
alence near hyperbolic equilibria boils down to counting the dimensions of the local
stable and unstable subspaces (manifolds).

Theorem 1.1. Two systems of differential equations with hyperbolic equilibria are
topologically equivalent near these equilibria if and only if their linearizations have
the same number n+ of eigenvalues with positive real parts and the same number
n− of eigenvalues with negative real parts.

1.3 Structural Stability

There are dynamical systems whose phase portrait (in some domain) does not
change qualitatively under all sufficiently small perturbations. For example, suppose
that (1.1) has an equilibrium x0 when μ = μ0, that is,

f (μ0,x0) = 0. (1.7)
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It is natural to ask about the stability of this equilibrium and how the stability or
instability is affected as μ is varied. Thus, we first linearize (1.1) at (μ0,x0) to get

ẋ = Dx f (μ0,x0)x, x ∈ R
n. (1.8)

If the eigenvalues of the linearized matrix Dx f (μ0,x0) are all nonzero, then the
linearized matrix is invertible, and by an application of the implicit function
theorem, there is a curve μ → β (μ) in R

n such that β (μ0) = x0 and f (μ ,β (μ))≡ 0
for all sufficiently small |μ −μ0|. In other words, for each μ in the domain of β , the
point β (μ) ∈ R

n corresponds to an equilibrium point for the member of the family
(1.1) at the parameter value μ .

If the equilibrium x0 is hyperbolic, that is, none of eigenvalues of the linearized
matrix Dx f (μ0,x0) lie on the imaginary axis, then the linearized matrix of (1.1)
at (μ ,β (μ)) is Dx f (μ ,β (μ)) it depends smoothly on μ and coincides with
Dx f (μ0,x0) at μ = μ0. Recall that if Dx f (μ0,x0) has no eigenvalues on the imag-
inary axis, then neither does Dx f (μ ,β (μ)) for each μ in a sufficiently small
neighborhood of μ0. In other words, β (μ) is a hyperbolic equilibrium of (1.1) for
all μ in a sufficiently small neighborhood of μ0. Moreover, the numbers n+ and
n− of the positive and negative eigenvalues of Dx f (μ ,β (μ)) are fixed for these
values of μ . In view of Theorem 1.1, system (1.1) is locally topologically equiva-
lent to ẋ = f (μ0,x) near the equilibria. This means that a hyperbolic equilibrium is
structurally stable under smooth perturbations.

Inspired by the above property, we now can define a structurally stable system,
which means that every sufficiently close system is topologically equivalent to the
structurally stable one.

Definition 1.3. A flow Φ is said to be structurally stable in a region D ⊂ R
n if for

every flow Ψ that is sufficiently C1-close to Φ , there exist regions U and V with
D ⊂U such that Ψ is topologically equivalent in V to Φ in U .

The following theorem results from the previous discussion.

Theorem 1.2. A flow with a hyperbolic equilibrium is structurally stable in a
neighborhood of the equilibrium.

In Definition 1.3, we require the C1 metric, instead of C0, because two C0 curves
may be arbitrarily close to each other but have different numbers of equilibria.
Moreover, it would be nice to show that structurally stable systems are generic.
The following classical theorem gives necessary and sufficient conditions for a
continuous-time system in a plane to be structurally stable.

Theorem 1.3 (Andronov and Pontryagin [16]). A smooth dynamical system

ẋ = f (x), x ∈ R
2,

is structurally stable in a region D0 ⊂ R
2 if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points.
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Furthermore, for two-dimensional vector fields on compact manifolds, we have
the following result due to Peixoto [244].

Theorem 1.4 (Peixoto’s theorem [244]). Let D be a compact two-dimensional
manifold without boundary and let X k(D) denote the Ck (k ≥ 1) vector fields
defined on D . Then f ∈ X k(D) is structurally stable on D if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points;

(iii) The nonwandering set consists of equilibria and periodic orbits.

Moreover, if D is orientable, then the set of such vector fields is open and dense in
X k(D).

This theorem is useful because it spells out precise conditions for structural
stability on the dynamics of a vector field on a compact two-manifold without
boundary under which it is structurally stable. Unfortunately, we do not have a sim-
ilar theorem in higher dimensions. This is in part due to the presence of complicated
recurrent motions (e.g., the Smale horseshoe). In light of this theorem, it appears
to be practically convenient to ignore more structurally unstable vector fields de-
fined on a compact two-dimensional manifold without boundary, because an arbi-
trarily small perturbation will usually turn a structurally unstable vector field into a
structurally stable one. However, as we shall see, if this vector field depends on a
parameter, more complicated dynamics will take place.

1.4 Codimension-One Bifurcations of Equilibria

Let x0 be a hyperbolic equilibrium point of (1.1) for μ = μ0. As we have seen in the
previous section, under a small parameter variation, the equilibrium moves slightly
but remains hyperbolic. Therefore, we can vary the parameter further and control
the equilibrium. It is clear that there are, generically, only two ways in which the
hyperbolicity condition can be violated. Either a simple real eigenvalue approaches
zero, or a pair of simple complex eigenvalues reaches the imaginary axis for some
values of the parameter.

If the equilibrium x0 of (1.1) is not hyperbolic, that is, Dx f (μ0,x0) has some
eigenvalues on the imaginary axis, then the topology of the local phase portrait of
the corresponding differential equation (1.1) at this equilibrium point may change
under perturbation, that is, a bifurcation occurs. For example, equilibria can be cre-
ated or destroyed, and time-dependent behavior such as periodic, quasiperiodic, ho-
moclinic, heteroclinic, or even chaotic dynamics can be created. Moreover, the more
eigenvalues on the imaginary axis, the more complicated the dynamics will be.

For equilibria of flows, a (generic) codimension-one bifurcation means that the
crossing of the stability region (the imaginary axis) is taking place with either one
eigenvalue of the linear part going through 0 or one pair of complex conjugate eigen-
values crossing the imaginary axis. This section will be devoted essentially to the
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proof that a nonhyperbolic equilibrium satisfying one of these two conditions is
structurally unstable and to the analysis of the corresponding bifurcations of the
local phase portrait under variation of the parameter.

Definition 1.4. The bifurcation associated with the appearance of eigenvalue 0 is
called a fold (or tangent) bifurcation.

This bifurcation is also associated with a lot of other names, including limit point
and turning point.

Definition 1.5. The bifurcation corresponding to the presence of a pair of complex
purely imaginary eigenvalues is called a Hopf (or Andronov–Hopf, or Poincaré–
Andronov–Hopf ) bifurcation.

As pointed out repeatedly by Arnold [19], examples of Hopf bifurcation can be
found in the work of Poincaré [248]. The first specific study and formulation of
a theorem in this area was due to Andronov [14]. However, the work of Poincaré
and Andronov was concerned with two-dimensional vector fields. The existence
of such a bifurcation was found in the context of general n-dimensional ordinary
differential equations (ODEs) by Hopf [167] in 1942. This was before the discovery
of the center manifold theorem. For these reasons, we usually refer to this kind of
bifurcation as a Poincaré–Andronov–Hopf bifurcation.

In the 1970s, Hsu and Kazarinoff [169], Poore [250], Marsden and McCracken
[217], and others discussed in their works the computation of important features of
the Hopf bifurcation, especially the direction of bifurcation and dynamical aspects
(stability, attractiveness, etc.), both from theoretical and numerical standpoints.
A very important new achievement was the proof by Alexander and Yorke [10]
of what is known as the global Hopf bifurcation theorem, which, roughly speaking,
describes the global continuation of the local branch. The theory was also extended
to allow further degeneracies (more than two eigenvalues crossing the imaginary
axis, or multiplicity higher than one, etc.), leading notably to the development
of the generalized Hopf bifurcation theory (Bernfeld et al. [31, 32], Negrini and
Salvadori [228]).

Now, if these phenomena were taking place in a linear system, then there would
be just a low-dimensional (1 or 2, respectively) invariant subspace to be affected
by the bifurcations. In what follows, we first study these bifurcations in systems of
smallest possible dimension for the bifurcations to take place. Here, the effort will
be to obtain expressions for these systems that are as simple as possible while still
capturing the bifurcations of interest, and at the same time to show that other sys-
tems undergoing the same bifurcation are locally topologically equivalent to these
simple ones. In subsequent chapters, we shall see that center manifold reduction
can transform the bifurcation problem in general functional differential equations
(of course, general n-dimensional ODEs) into that of ordinary differential equa-
tions on a one- or two-dimensional invariant manifold. Therefore, this part of study
is basic and crucial for discussing bifurcations in general functional differential
equations (see Chap. 7).



8 1 Introduction to Dynamic Bifurcation Theory

1.4.1 Fold Bifurcation

Consider the following one-parameter scalar ODE:

ẋ = f (μ ,x), x, μ ∈ R, (1.9)

where f (0,0) = 0. That is, (1.9) has an equilibrium x0 = 0 when μ = μ0 = 0.
The condition ensuring a fold bifurcation of (1.9) is that fx(0,0) = 0. Usually, we
may encounter three situations, as discussed in this section.

Example 1.3. Consider the family of differential equations

ẋ = μ − x2, x,μ ∈R.

We see that μ = 0 is the bifurcation value. In particular, if μ > 0, then there are
two equilibria: an unstable equilibrium −√μ and a stable one

√μ . At the bifurca-
tion value μ = 0, there is only one equilibrium, which is not hyperbolic. If μ < 0,
there are no equilibria. The bifurcation diagram is the parabola μ = x2 labeled as
in Fig. 1.1. Notice that the parameter μ is assigned to the horizontal axis, while the
stable equilibria are drawn in solid lines and the unstable equilibria in dashed lines.

−4 0 4 8

−3

3

μ

x*

stable

unstable

Fig. 1.1 Bifurcation diagram of a saddle-node bifurcation

The type of bifurcation described in Example 1.3—on one side of a parameter
value there are no equilibria, and on the other side there are two equilibria—is
referred to as a saddle-node bifurcation. The next theorem lists sufficient conditions
for a saddle-node bifurcation to occur at (μ ,x) = (0,0) in the scalar system (1.9).
A more general theorem on saddle-node bifurcation will be formulated and proved
later for general delay differential equations.
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Theorem 1.5. Suppose f in (1.9) is sufficiently smooth and satisfies

f (0,0) = 0, fx(0,0) = 0, fμ(0,0) fxx(0,0) �= 0. (1.10)

Then there are smooth invertible local changes of coordinate and parameter that
transform the system (1.9) into the following normal form:

ẏ = γ ± y2 +O(|y|3). (1.11)

Therefore, if fμ(0,0) fxx(0,0)< 0 (respectively, > 0), then near the origin, only two
equilibria exist for μ > 0 (respectively, < 0), only one equilibrium x = 0 exists for
μ = 0, and no equilibria exist for μ < 0 (respectively, > 0). In the case that two
equilibria exist, one is asymptotically stable and the other is unstable.

Proof. Expanding f with respect to x around μ = 0 yields

f (μ ,x) = f0(μ)+ f1(μ)x+ f2(μ)x2 +O(x3),

where

f j(μ) =
1
j!

∂ j f
∂x j (μ ,0), j = 0,1,2, . . . .

Obviously, f0(0) = f (0,0) = 0 and f1(0) = fx(0,0) = 0. Set ξ = x+ δ , where δ is
a constant independent of t. Then (1.9) can be transformed into

ξ̇ = f0(μ)− f1(μ)δ + f2(μ)δ 2 +O(δ 3)

+[ f1(μ)− 2 f2(μ)δ +O(δ 2)]ξ +[ f2(μ)+O(δ )]ξ 2 +O(ξ 3). (1.12)

Noting that f1(0) = 0 and f2(0) = 1
2 fxx(0,0) �= 0, and using the implicit function

theorem, we can find δ (μ) for small μ such that f1(μ)− 2 f2(μ)δ +O(δ 2) = 0.
This gives

δ (μ) =
fμx(0,0)

fxx(0,0)
μ +O(μ2).

Using this δ (μ), we have

ξ̇ = β (μ)+ [ f2(μ)+O(μ)]ξ 2 +O(ξ 3), (1.13)

where β (μ) = f ′0(0)μ +O(μ2). Recall that f ′0(0) = fμ(0,0) �= 0. Then the function
β is invertible near the origin. Hence, we can obtain μ(β ) with μ(0) = 0. Thus,
(1.13) can be changed into the form

ξ̇ = β ± c(β )ξ 2 +O(ξ 3),

where the sign is that of fxx(0,0) and c is a smooth positive function. Take y= c(β )ξ
and γ = c(β )β . Then we obtain (1.11), which is obviously topologically equivalent
to ẏ = γ ± y2. The rest of the proof follows from Example 1.3. �

Remark 1.1. In the study of bifurcations, we usually have bifurcation conditions and
genericity conditions (nondegeneracy conditions). For the saddle-node bifurcation
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of (1.9), the bifurcation conditions are f (0,0) = 0 and fx(0,0) = 0, and the gener-
icity conditions are fμ(0,0) = 0 and fxx(0,0) = 0. The bifurcation conditions will
be used to numerically search for bifurcation points, while the genericity conditions
will be used to verify whether a bifurcation point is really of the type we are looking
for, i.e., to guarantee that locally, nothing more complicated can occur.

1.4.2 Poincaré–Andronov–Hopf Bifurcation

We start with a simple example in which a pair of simple complex conjugate eigen-
values cross the imaginary axis.

Example 1.4. Consider the following planar system:

ẋ = μx− y− x(x2+ y2),
ẏ = x+ μy− y(x2+ y2),

(1.14)

where x,y,μ ∈R. Using the complex and polar coordinates z = x+ iy= reiθ , system
(1.14) takes the forms

ż = (μ + i)z− z|z|2

and

ṙ = r(μ − r2), θ̇ = 1,

which can be solved for (r,θ ):

r =

{√
μ(1+Ce−2μt)−1, μ �= 0,√
(2t +C)−1, μ = 0,

θ = t − t0,
(1.15)

where C and t0 are determined by the initial condition. Variations of the phase
portrait of system (1.14) as μ passes through zero can be easily analyzed using
the polar form (1.15), since the equations for r and θ are uncoupled. We can see that
system (1.14) always has a unique equilibrium at the origin, which is a stable focus
for μ < 0 and an unstable focus for μ > 0. This equilibrium is surrounded for μ > 0
by an isolated closed orbit (limit cycle) that is unique and stable. This bifurcation is
supercritical because the closed orbit (limit cycle) appears after the bifurcation.

The bifurcation diagram for periodic solutions of (1.14) is simply a plot of the
solutions of μ = r2 in the (μ ,r)-plane together with the line r = 0 (see Fig. 1.2).
As usual, stable periodic orbits are indicated by solid curves, and unstable ones with
dashed curves.

Similarly, the system

ẋ = μx− y+ x(x2+ y2), (1.16)

ẏ = x+ μy+ y(x2+ y2),
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µ<0 µ>0

−1 0 1 2

0

1

2

µ

r

stable unstable

stable

Fig. 1.2 A supercritical Hopf bifurcation

can be rewritten as

ż = (μ + i)z+ z|z|2

or

ṙ = r(μ + r2), θ̇ = 1.

This has an unstable periodic solution (limit cycle) for μ < 0. Hence this bifurcation
is subcritical.

As described in Example 1.4, in a Poincaré–Andronov–Hopf bifurcation, an
equilibrium of a system loses stability as a pair of complex conjugate eigenvalues
of the linearization around the equilibrium cross the imaginary axis of the com-
plex plane. Under reasonably generic assumptions about the dynamical system, we
can expect a small-amplitude limit cycle branching from the fixed point. Either the
limit cycle is orbitally stable and the bifurcation is supercritical, or the limit cycle is
unstable and the bifurcation is subcritical.

The next theorem lists sufficient conditions for a Poincaré–Andronov–Hopf
bifurcation to occur in a planar system.

Theorem 1.6 (Hassard and Wan [159]). Consider the following system:[
ẋ
ẏ

]
=

[
μ ω
−ω μ

][
x
y

]
+

[
f 1(x,y)
f 2(x,y)

]
, (1.17)



12 1 Introduction to Dynamic Bifurcation Theory

where ω > 0 and f j is three times differentiable, satisfying f j
x (0,0) = f j

y (0,0) = 0,
j = 1,2. Then there exists a branch of periodic solutions of (1.17) bifurcating
from the trivial solution x = 0, and the Poincaré–Andronov–Hopf bifurcation is
supercritical (subcritical), i.e., bifurcating periodic solutions exist for μ > 0 (re-
spectively, < 0) if ϒ < 0 (respectively, > 0), where

ϒ = f 1
xxx + f 1

xyy + f 2
xxy + f 2

yyy

+
1
ω
[ f 1

xy( f 1
xx + f 1

yy)− f 2
xy( f 2

xx + f 2
yy)− f 1

xx f 2
xx + f 1

yy f 2
yy].

More generally, in order to investigate Poincaré–Andronov–Hopf bifurcations in
high-dimensional ODEs, even in infinite-dimensional ODEs generated by partial
differential equations (PDEs) and functional differential equations (FDEs), we may
employ center manifold reduction and normal form theory to obtain the following
system:

ż = λ (μ)z+C(μ)z|z|2 +O(|z|5), (μ ,z) ∈ R×C, (1.18)

where λ (0) = iω and ω > 0. Detailed analysis can be found in Sects. 3.4.1, 4.3.1,
and 7.3.2. Also see [54, 55, 74, 152, 200, 257, 282, 302] for more background on
Poincaré-Andronov-Hopf bifurcation.

Definition 1.6. The first Lyapunov coefficient of a Hopf bifurcation is defined by
l1(0) = Re{C(0)}/ω .

As stated in Lemma 3.7 of Kuznetsov [200], if Re{λ ′(0)}Re{C(0)} �= 0, then
(1.18) can be transformed by a parameter-dependent linear coordinate transforma-
tion, a time rescaling, and a nonlinear-time reparameterization into an equation of
the form

ż = (β + i)z+ sz|z|2 +O(|z|5), (μ ,z) ∈ R×C, (1.19)

where s = sgnRe{C(0)} = sgnl1(0) and β is the new parameter. Obviously, the
truncated system of (1.19) is equivalent to either (1.14) (in the cases in which s =
−1) or (1.16) (in the cases in which s = 1). Thus, the bifurcation direction and
stability of bifurcated periodic solutions are determined by the signs of Re{λ ′(0)}
and Re{C(0)} (or equivalently, l1(0)).

1.5 Transcritical and Pitchfork Bifurcations of Equilibria

In a saddle-node bifurcation, on one side of a parameter value there is no
equilibrium, and on the other side there are two equilibria. In some examples,
we may meet another type of bifurcation: both equilibria exist before and after
the bifurcation value, and there is one unstable equilibrium and one stable one;
however, their stability is exchanged when they collide. So the unstable equilibrium
becomes stable and vice versa. We refer to this type as a transcritical bifurcation,
as shown in the following example.
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Example 1.5. Consider a vector field

ẋ = μx− x2, x,μ ∈ R.

If μ < 0, there are two equilibria: x = 0, which is stable, and x = μ , which is
unstable. These two equilibria coalesce at the bifurcation value μ = 0. If μ > 0,
there are also two equilibria: x = 0 is unstable, while x = μ is stable. The bifurcation
diagram is depicted in Fig. 1.3.

−3 0 3
−3

0

3

µ

x*

stable unstable

un
sta
ble

sta
ble

Fig. 1.3 Bifurcation diagram of a transcritical bifurcation

Similarly to the proof of Theorem 1.5, we may list sufficient conditions for a
transcritical bifurcation for the scalar system (1.9).

Theorem 1.7. Suppose f in (1.9) is sufficiently smooth and satisfies

f (μ ,0) = 0, fx(0,0) = 0, fxμ(0,0) fxx(0,0) �= 0. (1.20)

Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

ẏ = γy± y2 +O(|y|3). (1.21)

Therefore, besides the trivial solution, system (1.9) has a nonzero equilibrium,
which continuously depends on μ for all sufficiently small |μ | and is stable for all
sufficiently small μ such that μ fxμ(0,0)> 0.

To illustrate another generic equilibrium bifurcation, we consider the following
example.
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Fig. 1.4 Bifurcation diagram of a pitchfork bifurcation

Example 1.6. The vector field

ẋ = μx− x3, x,μ ∈ R

has one stable equilibrium x = 0 if μ < 0, and it has an unstable equilibrium x = 0
and two stable equilibria x =±√μ if μ > 0. See Fig. 1.4.

The bifurcation diagram is shown in Fig. 1.4, and this kind of bifurcation is
known as a pitchfork bifurcation. Note that x = 0 is always an equilibrium. How-
ever, as the parameter μ passes through the bifurcation value μ = 0, the equilibrium
at the origin loses its stability and two new stable equilibria are bifurcated from the
origin. This is also an example of spontaneous symmetry breaking, because the two
bifurcated equilibria do not have the symmetry Z2 possessed by the system. More-
over, this pitchfork bifurcation is called supercritical because new equilibria exist
for a parameter μ that is greater than the bifurcation value μ = 0. When additional
equilibria exist for a parameter μ smaller than the bifurcation value μ = 0, the bi-
furcation is called subcritical. An example of a subcritical pitchfork bifurcation can
be seen in the equation ẋ = μx+ x3.

Similarly, we may list sufficient conditions for a pitchfork bifurcation in the
scalar system (1.9). A more general theorem on pitchfork bifurcation will be
formulated and proved in Sect. 7.2.

Theorem 1.8. Suppose f in (1.9) is sufficiently smooth and satisfies

f (μ ,−x) =− f (μ ,x), fx(0,0) = 0, fxμ(0,0) fxxx(0,0) �= 0. (1.22)
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Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

ẏ = γy± y3 + o(|y|3). (1.23)

Therefore, if fxμ (0,0) fxxx(0,0) < 0 (respectively, > 0), then two nontrivial
equilibria exist for μ > 0 (respectively, < 0), and only the trivial equilibrium con-
tinues to exist for μ < 0 (respectively, > 0). Moreover, the two nontrivial equilibria
coalesce into zero as μ goes to 0.

Remark 1.2. The codimension of a bifurcation is the number of parameters that must
be varied for the bifurcation to occur. It coincides with the number of transversal-
ity conditions. This also corresponds to the codimension of the parameter set for
which the bifurcation occurs within the full space of parameters. Saddle-node bi-
furcations and Hopf bifurcations are the only generic local bifurcations that are re-
ally of codimension one, while transcritical and pitchfork bifurcations both have a
higher codimension. However, transcritical and pitchfork bifurcations are also often
thought of as begin of codimension one, because the normal forms (1.21) and (1.23)
can be written with only one parameter.

Remark 1.3. In Theorems 1.7 and 1.8, we study the transcritical and pitchfork
bifurcations of equilibria in the one-parameter scalar system (1.9). Based on
center manifold reduction (Chap. 3) and normal form theory (Chap. 4), we can
discuss these bifurcations in high-dimensional systems, even in infinite-dimensional
systems such as functional differential equations. See Sect. 7.2 for more details.

1.6 Bifurcations of Closed Orbits

When (1.1) has a periodic orbit Γ0 when μ = μ0, one may also be interested in the
qualitative behaviors of solutions of (1.1) in a neighborhood of the periodic orbit Γ0

for the parameter μ near μ0.
The so-called Poincaré map is a technical tool for studying the local behaviors

of solutions of (1.1) near a periodic orbit. To describe this tool, we consider a local
transversal section Lε to the periodic orbit Γ0 (see Fig. 1.5). There are α0 > 0 and δ >
0 such that for 0 ≤ |μ −μ0|< α0 and x0 ∈ Lδ , there is a first time T (μ ,x0)> 0 such
that the solution x(t; μ ,x0) of (1.1) satisfies x(T (μ ,x0); μ ,x0) ∈ Lε . Therefore, we
define the Poincaré map depending on parameters as Π(μ ,x0) = x(T (μ ,x0); μ ,x0)
mapping Lδ to Lε . Periodic orbits near Γ0 correspond to fixed points of Π(μ ,x0).
The periodic orbit through the point x0 ∈ Lδ is said to be hyperbolic if x0 is a hy-
perbolic fixed point of the Poincaré map Π(μ0, ·), that is, none of the eigenvalues of
the linearized operator DxΠ(μ0,x0) (also referred to as Floquet multipliers) lie on
the unit circle.
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x* xn+1 xn

Γ0

Lε

Fig. 1.5 An illustration of the Poincaré map for a periodic orbit, where xn+1 is the image of xn

under the Poincaré map

By means of the Poincaré map, we can investigate the behavior of solutions near
a periodic solution. If Γ0 is hyperbolic, then for each μ with |μ − μ0| small, there is
a unique periodic orbit Γμ near Γ0, and Γμ is also hyperbolic. When Γ0 is nonhyper-
bolic, the bifurcations near the periodic orbit Γ0 can be determined from those of the
Poincaré map Π(μ ,x0).

Example 1.7 (Saddle-node bifurcation of periodic orbits). Consider the planar
system

ẋ = μx− y+ x(x2+ y2)(1− x2 − y2), (1.24)

ẏ = x+ μy+ y(x2+ y2)(1− x2 − y2),

where x,y,μ ∈ R. In polar coordinates x+ iy = reiθ , the system (1.24) has the form

ṙ = r(μ + r2 − r4),
θ̇ = 1.

(1.25)

Since the two equations above are uncoupled, we may investigate directly the
local fold bifurcations for the r-equation using the general arguments in Sect. 1.4.
However, the r-equation is so special that we can employ the following arguments
to depict the global bifurcation explicitly and directly.

Indeed, if μ = −0.25, then the periodic orbit is given by r =
√

2
2 , and the

transversal section L becomes

L = {(r,θ ) ∈R×S
1 : r > 0, θ = 0}.

So the poincaré map Π(−0.25,r) has a fixed point at r =
√

2
2 . Moreover, it is easy

to see that DrΠ(−0.25,
√

2
2 ) = 1. Consequently, the corresponding periodic orbit

is nonhyperbolic. Moreover, since the first equation is independent of θ , it is easy
to see that in the radial direction, system (1.25) undergoes a saddle-node bifurca-
tion as the parameter μ passes through −0.25. If μ ∈ (−0.25,0), system (1.25) has
two periodic orbits: a stable periodic orbit r =

√
0.5+

√
μ + 0.25 and an unsta-

ble periodic orbit r =
√

0.5−√
μ + 0.25. If μ < −0.25, then system (1.25) has no

periodic orbits, because ṙ < 0 and all the solutions tend to the origin as t → ∞; see
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Fig. 1.6. At the bifurcation value μ = −0.25, there is only one semistable periodic

orbit r =
√

2
2 , which is not hyperbolic and has a Floquet multiplier equal to one.

For a nonhyperbolic periodic orbit of a higher-dimensional continuous dynamical
system, there may be some bifurcations of closed orbits, which cannot happen in a
planar system. For example, if at μ = μ0, the closed orbit has a Floquet multiplier
−1 and the modulus of all the remaining Floquet multipliers are not equal to 1, then
a period-doubling bifurcation (also referred to as flip or subharmonic bifurcation)
of the closed orbit may take place (see Fig. 1.7). Namely, as μ passes through μ0,
the closed orbit Γ0 becomes another closed orbit Γμ with approximately twice the
period of Γ0. See Arnold [19], Newhouse–Palis–Takens [230], Feigenbaum [94] for
further information. If at μ = μ0 the closed orbit Γ0 has a pair of complex conjugate
Floquet multipliers on the unit circle, then as μ passes through μ0, this nonhyper-
bolic closed orbit may bifurcate into a two-dimensional invariant torus Γμ (or T2).
This bifurcation has many names. Some call it Neimark–Sacker bifurcation, while
others call it the secondary Andronov–Hopf bifurcation due to its similarity to that
for flows discussed in the previous section. Detailed analysis of Neimark–Sacker
bifurcations can be found in Ruelle and Takens [256], Sacker [258], and Kuznetsov
[200]. For details and further results on periodic orbits and their bifurcations, see,
for example, [17, 63, 64, 98–102, 121, 122, 143, 151–155, 185, 212–214, 225, 288].

1.7 Homoclinic Bifurcation

A homoclinic orbit of a system is given by the intersection of the stable and
unstable manifolds of a saddle-type invariant set (see Andronov and Leontovich
[15], Kuznetsov [200]). Recall that the stable manifold is defined as the set of all
trajectories that tend to the invariant set in forward time, and the unstable manifold
is defined as the set of all trajectories that tend to the invariant set in backward time.
Here, the invariant sets that we consider are steady states (equilibria) and/or periodic
solutions.

For example, an orbit Γ0 starting at a point x ∈ R is called homoclinic to the
equilibrium x0 of system (1.1) with μ = μ0 if the solution ϕ(t;x,μ0) tends to x0

as t →±∞. In particular, if at μ = μ0, system (1.1) has a homoclinic loop Γ0, and
the intersection of the stable and unstable manifolds of equilibria or closed orbits
of system is not transversal,1 then system (1.1) is not structurally stable. A slight
perturbation of the parameter μ makes the stable and unstable manifolds either non-
intersecting or transversally intersecting, and so may change the topological struc-
ture of the vector field of (1.1). Thus, closed orbits can be created or destroyed, and
time-dependent behaviors such as invariant tori and even chaotic dynamics can be
created. Therefore, a homoclinic orbit to a steady state is of codimension one; it may
be destroyed by small perturbations to the system parameters.

1 Two smooth manifolds M, N ∈ R
n intersect transversally if there exist n linearly independent

vectors that are tangent to at least one of these manifolds at every intersection point.
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μ<−0.25 μ=−0.25

−0.25<μ<0 μ ≥ 0
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Fig. 1.6 The bifurcation phenomena of system (1.24)

Γ0

Γ1Γ0

Fig. 1.7 Period-doubling bifurcation of a closed orbit
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However, if a homoclinic orbit to a periodic solution is the transversal
intersection of the stable and unstable manifolds of the periodic solution (Kuznetsov
[200, Sects. 6.1 and 7.2.1]), then it cannot be destroyed by a small perturbation, but
it can be destroyed through a codimension-one homoclinic tangency. This occurs
when the intersection of the stable and unstable manifolds becomes tangential,
and thus a small perturbation can separate the manifolds completely. A transition
between a homoclinic orbit of a saddle-focus-type steady state and a homoclinic
orbit of a periodic solution occurs at a codimension-two Shil’nikov–Hopf bifurca-
tion (see Hirschberg and Knobloch [165]). At the Shil’nikov–Hopf bifurcation, the
homoclinic orbit is transferred from the steady state to the periodic solution.

Example 1.8 (Periodic orbit from a homoclinic loop). Consider the planar system

ẋ = 2y, (1.26)

ẏ = 2x− 3x2− y(x3 − x2 + y2 − μ),

where x,y,μ ∈ R. For all values of μ , system (1.26) always has two equilibria: one
saddle (0,0) and one source (2/3,0) when μ >−4/27. When μ = 0, we can employ
Lyapunov functions V (x,y) = x3 − x2 + y2 and phase portrait analysis to show that
system (1.26) has a homoclinic orbit loop through the origin and attracts from inside,
as seen in Fig. 1.8. For −4/27< μ < 0, using the invariance principle, one can show
that there is an orbitally asymptotically stable periodic orbit lying on the curves
x3−x2 +y2−μ = 0. As μ increases and tends to zero, the periodic orbit grows until
it collides with the saddle point. At the bifurcation point μ = 0, the period of the
periodic orbit has grown to infinity, and it has become a homoclinic orbit. For μ > 0,
the homoclinic loop is broken, and also there is no periodic orbit. This sequence of
bifurcations is illustrated in Fig. 1.8. Therefore, there is a homoclinic bifurcation
at μ = 0.

A homoclinic bifurcation often occurs when a periodic orbit collides with a
saddle point. Homoclinic bifurcations can occur supercritically or subcritically.
In three or more dimensions, bifurcations of higher codimension can occur, pro-
ducing complicated, possibly chaotic, dynamics [297, 298].

1.8 Heteroclinic Bifurcation

An orbit Γ0 starting at a point x ∈ R is called heteroclinic to the equilibria x1 and
x2 �= x1 of system (1.1) with μ = μ0 if the solution ϕ(t;x,μ0) tends to x1 as t → ∞
and to x2 as t → ∞. The nontransversal heteroclinic case is somehow trivial, since
the disappearance of the connecting orbit is the only essential event in a sufficiently
small neighborhood of Γ0 ∪{x1,x2} (see Example 1.9).

Example 1.9 (Heteroclinic bifurcation). Consider the planar system

ẋ = x2 − y2 − 1, (1.27)

ẏ = μ + y2 − xy,
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μ<0 μ=0

μ>0
μ

T

Fig. 1.8 Bifurcation phenomena in (1.26)

where x,y,μ ∈ R. When μ = 0, system (1.27) has a heteroclinic trajectory
connecting the two saddle points (1,0) and (−1,0). However, there is no hete-
roclinic trajectory when μ �= 0. Therefore, there is a heteroclinic bifurcation at
μ = 0 (Fig. 1.9).

1.9 Two-Parameter Bifurcations of Equilibria

Here we briefly review the generic bifurcations in two-parameter families of
differential equations. We only give a list for them, and refer to Kuznetsov
[200, 201], Guckenheimer [126], or Guckenheimer and Holmes [125] for anal-
ysis. There are two categories of generic bifurcations in two-parameter families: (1)
extra eigenvalues can approach the imaginary axis; (2) some of the genericity con-

μ=0 μ ≠ 0

Fig. 1.9 Bifurcation phenomena in (1.27)
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ditions for the codimension-one bifurcations can be violated. Thus, we can identify
five bifurcation (Bogdanov–Takens bifurcation, cusp bifurcation, Bautin bifurca-
tion, fold-Hopf bifurcation, and Hopf–Hopf bifurcation) points that one can meet
in generic two-parameter systems while moving along codimension-one curves.
Each of these bifurcations is characterized by two independent conditions. This
section is devoted to the study of these bifurcations in the least possible phase-space
dimensions.

1.9.1 Bogdanov–Takens Bifurcation

The Bogdanov–Takens bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue of (algebraic) multiplicity two. It is named after Rifkat Bogdanov
and Floris Takens, who independently and simultaneously described this bifurca-
tion. The main features of Bogdanov–Takens bifurcation were known to mathemati-
cians of the Andronov school in the late 1960s. However, the complete picture is due
to Bogdanov [35], as announced by Arnold [20] and Takens [274]. Their analysis is
based on the Pontryagin [249] technique.

The usual normal form of the Bogdanov–Takens bifurcation is

ẋ = y,

ẏ = μ1 + μ2x+ x2 ± xy+O(
√
(x2 + y2)3),

which was introduced by Bogdanov (see Sect. 7.4.2 for more details), while the
normal form derived by Takens is

ẋ = y+ μ2x+ x2 +O(
√
(x2 + y2)3),

ẏ = μ1 ± x2 +O(
√
(x2 + y2)3).

These two systems are equivalent, and their detailed analysis can be found, for
example, in Guckenheimer and Holmes [125] and Kuznetsov [200]. In the above
systems, four associated bifurcation curves meet at the Bogdanov–Takens bifur-
cation: two branches of the saddle-node bifurcation curve, an Andronov–Hopf
bifurcation curve, and a saddle homoclinic bifurcation curve. Moreover, these
bifurcations are nondegenerate, and no other bifurcations occur in a small fixed
neighborhood of (x,y) = (0,0) for parameter values sufficiently close to μ = 0.
In this neighborhood, the system has at most two equilibria and one limit cycle.

If system (1.1) has a fixed equilibrium x = x0 for all parameters μ , and the
equilibrium x0 has a zero eigenvalue of (algebraic) multiplicity two at μ = 0, then
the normal form of (1.1) at (μ ,x) = (0,x0) is not equivalent to the above two systems
derived by Bogdanov or Takens. See Sect. 7.4.3 for more details. Therefore, the goal
of this subsection is to investigate the following two-parameter system:

ẋ = y, (1.28)

ẏ = μ1x+ μ2y+ x2 + xy,
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where (μ1,μ2) ∈ R
2. At (μ1,μ2) = (0,0), the linearization of (1.28) at the

equilibrium O = (0,0) has exactly one eigenvalue 0 of geometric multiplicity
one and algebraic multiplicity two. The critical point (μ1,μ2) = (0,0) is referred to
as a Bogdanov–Takens point.

It is easy to see that system (1.28) always has two equilibria: O = (0,0) and
E = (−μ1,0). Moreover, the characteristic equation of (1.28) at the equilibria O
and E are λ 2 − μ2λ − μ1 = 0 and λ 2 − (μ2 − μ1)λ + μ1 = 0, respectively. Each
of these two equations can have between zero and two real roots. However, the
discriminant parabolas {(μ1,μ2) : μ2

2 +4μ1 = 0} and {(μ1,μ2) : (μ2−μ1)
2−4μ1 =

0} are not bifurcation curves at which the equilibrium O or E undergoes a node to
focus transition. Moreover, it is easy to see that the equilibrium O (respectively, E)
is a saddle for all parameters μ1 > 0 (respectively, μ1 < 0).

We can check that the equilibria O and E have a pair of purely imaginary
eigenvalues on the lines l1 = {(μ1,μ2) : μ1 < 0, μ2 = 0} and l2 = {(μ1,μ2) : μ1 =
μ2 ≥ 0}, respectively. This implies that the equilibrium O (or E) undergoes a nonde-
generate Hopf bifurcation along the line l1 (respectively, l2), giving rise to an unsta-
ble limit cycle, since the first Lyapunov coefficients are both 1/|μ1|> 0. The cycle
exists near l1 (or l2) for μ2 < 0 (respectively, μ2 < μ1). We have the following results
on the existence of a homoclinic bifurcation.

Theorem 1.9. There exist exactly two smooth curves m1 and m2 corresponding to
saddle homoclinic bifurcations in system (1.28) that originate at (μ1,μ2) = (0,0)
and have the following local representation:

m1 =

{
(μ1,μ2) : μ2 =

1
7

μ1 + o(|μ1|), μ1 ≤ 0

}

Fig. 1.10 Bifurcation sets for (1.28)

and

m2 =

{
(μ1,μ2) : μ2 =

6
7

μ1 + o(|μ1|), μ1 ≥ 0

}
.

Moreover, for ‖(μ1,μ2)‖ small, system (1.28) has a unique and hyperbolic unstable
cycle for parameter values inside the region bounded by the Hopf bifurcation curve
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l1 (or l2) and the homoclinic bifurcation curve m1 (respectively, m2), and no cycles
outside these regions.

Proof. First, we restrict our attention to the parameter region J2 in Fig. 1.10.
Performing a singular rescaling and introducing a new time

u = x/(−μ1), v = y/
√
(−μ1)3, s = t

√
(−μ1),

reduces (1.28) to

u̇ = v, (1.29)

v̇ = u(u− 1)− (γ1v+ γ2uv),

where the dots mean derivatives with respect to the new time s and

γ1 =−μ2/
√
(−μ1), γ2 =−

√
(−μ1). (1.30)

Clearly, system (1.29) is orbitally equivalent to a system induced by (1.28) with
the help of (1.30). Studying the limit cycles and homoclinic orbits of (1.29) for
(γ1,γ2) �= (0,0) provides complete information on these objects in (1.28). As stated
in Kuznetsov 1998 [200, Sect. 8.8], there is a unique smooth curve m corresponding
to a saddle homoclinic bifurcation in system (1.29) that originates at (γ1,γ2) = (0,0)
and has the following local representation:

m =

{
(γ1,γ2) : γ1 =−1

7
γ2 + o(|γ2|), γ2 ≤ 0

}
.

This homoclinic curve is mapped by (1.30) into the curve m1. Using arguments
similar to those in Kuznetsov 1998 [200, Sect. 8.8], we see that the cycle in (1.28)
is unique and hyperbolic within the region bounded by l1 and m1.

In what follows, we focus on the parameter region J5, where O is a saddle and E
is a stable focus. Translate the origin of the coordinate system to the left (antisaddle)
equilibrium E of system (1.28):

ξ1 = x+ μ1, ξ2 = y.

This obviously gives

ξ̇1 = ξ2, (1.31)

ξ̇2 = −μ1ξ1 +(μ2 − μ1)ξ2 + ξ 2
1 + ξ1ξ2.

Performing a singular rescaling and introducing a new time

u = x/μ1, v = y/
√

μ3
1 , s = t

√
μ1

reduces (1.31)–(1.29) with

γ1 = (μ1 − μ2)/
√

μ1, γ2 =−√
μ1. (1.32)
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Thus, the homoclinic curve m is mapped by (1.32) into the curve m2. Similarly, the
cycle in (1.28) is unique and hyperbolic within the region bounded by l2 and m2. �

Thus, for (μ1,μ2) ∈ m2 (or (μ1,μ2) ∈ m1), there is an orbit homoclinic to the
equilibrium O (respectively, E). In fact, we can also have nearly explicit expressions
for the homoclinic orbits. Scaling system (1.28) by

t∗ = εt, x∗ = x/ε2, μ∗
1 = μ1/ε2, μ∗

2 = μ2/ε2,

and then dropping the ∗ gives

x′′ − ε[μ2x′+ xx′]− (μ1x+ x2) = O(ε2). (1.33)

Letting ε = 0, the equation has an explicit homoclinic orbit for μ1 > 0:

x =−2μ1

2

[
1− tanh2

(√μ1

2
t

)]
.

Using the Melnikov method (see, for example, Guckenheimer and Holmes 1983
[125]), we can compute parameter values for which the homoclinic orbit to the
equilibrium O persists for ε . Moreover, the nearly explicit expressions for the
homoclinic orbit to the equilibrium E can be discussed analogously.

Make a round trip near the Bogdanov–Takens point (μ1,μ2) = (0,0)
(see Fig. 1.10), starting from region J1, where equilibrium E is a saddle. There is
a nonbifurcation curve (not shown in the figure) located in J1 and passing through
the origin at which the equilibrium O undergoes an unstable node to an unstable
focus transition. Entering from region J1 into region J2 through the Hopf bi-
furcation boundary l1, the unstable focus O gains stability, and an unstable limit
cycle O1 is present for sufficiently small parameters |μ1| and |μ2| satisfying μ1 < 0
and μ2 < 0. If we continue the journey counterclockwise, the unstable limit cycle
O1 grows and approaches the saddle, turning into a homoclinic orbit at m1. There
are no cycles in region J3, where the equilibrium E remains a saddle while the
stable focus O becomes a stable node. Entering from region J3 into region J4

through the negative μ2-axis, the two equilibria O and E coalesce into zero and then
exchange their properties, i.e., the stable node O becomes a saddle, while the saddle
E becomes a stable node. In region J4, the equilibrium O remains a saddle, while
the stable node E becomes a stable focus. Due to Theorem 1.9, system (1.28) has a
homoclinic orbit at the curve m2. As (μ1,μ2) continues moving counterclockwise
in region J5, the homoclinic orbit turns into an unstable limit cycle, which shrinks
and collides with equilibrium E and then disappears at the curve l2. In region J6,
the unstable focus E turns into an unstable node, while O remains a saddle.
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1.9.2 Cusp Bifurcation

Cusp bifurcation is a bifurcation of equilibria in a two-parameter family of
autonomous ODEs at which the critical equilibrium has one zero eigenvalue and
the quadratic coefficient for the saddle-node bifurcation vanishes. Let us begin by
considering the following example.

Example 1.10. Consider the following two-parameter system

ẋ = μ1 + μ2x− x3, (x,μ1,μ2) ∈ R
3. (1.34)

At (μ1,μ2) = (0,0), the linearization of (1.34) at the equilibrium 0 has exactly a
simple eigenvalue 0. The critical point (μ1,μ2) = (0,0) is referred to as a cusp
point. The local bifurcation diagram of (1.34) is presented in Fig. 1.11. The cusp
point (μ1,μ2) = (0,0) is the origin of two branches of the saddle-node bifurcation
curve:

LP± = {(μ1,μ2) : μ1 =∓ 2

3
√

3
μ3/2

2 , μ2 > 0},

which divides the parameter plane into two regions J1,2. Inside the region J1,
there are three equilibria, two stable and one unstable. In the region J2, there is a
single equilibrium, which is stable. A nondegenerate fold bifurcation (with respect
to the parameter μ1) takes place if we cross either LP+ or LP− at any point other
than the origin. More precisely, if the curve LP+ is crossed from region J1 to re-
gion J2, the right stable equilibrium collides with the unstable one, and then both
disappear. The same happens to the left stable equilibrium and the unstable equi-
librium at the curve LP−. In the symmetric case μ1 = 0, one observes a pitchfork
bifurcation as μ2 is reduced, with one stable solution suddenly splitting into two
stable solutions and one unstable solution as the physical system passes to μ2 > 0
through the cusp point μ = 0 (an example of spontaneous symmetry breaking). In
other words, if we approach the cusp point from inside the region J1, all three equi-
libria merge together into a triple root of the right-hand side of (1.34). Away from
the cusp point, there is no sudden change in a physical solution being followed:
when passing through the curve of saddle-node bifurcations, all that happens is that
an alternative second solution becomes available.

In view of the above example, at the cusp bifurcation point, two branches of
the saddle-node bifurcation curve meet tangentially, forming a semicubic parabola.
For nearby parameter values, the system can have three equilibria that collide and
disappear pairwise via the saddle-node bifurcations. The cusp bifurcation implies
the presence of a hysteresis phenomenon.

Cusp bifurcation occurs also in infinite-dimensional ODEs generated by PDEs
and DDEs, to which the center manifold theorem (see Chap. 3) applies. See Arrow-
smith and Place [21] for details. The nomenclature and analysis of cusp bifurcations
is based on cusps in singularity theory, where they appear as one of Thom’s seven el-
ementary catastrophes [275, 276]. The following theorem lists sufficient conditions
for a general one-dimensional ODE.
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Fig. 1.11 Bifurcation sets for (1.34)

Theorem 1.10. Suppose the system

ẋ = f (μ ,x), x ∈ R, μ = (μ1,μ2) ∈ R
2, (1.35)

with a smooth function f , has at μ = 0 the equilibrium x = 0 for which the cusp
bifurcation conditions are satisfied, namely, fx(0,0) = fxx(0,0) = 0. Assume that
the following genericity conditions are satisfied:

fxxx(0,0) �= 0, det

[
fμ1 fμ2

fxμ1 fxμ2

]
(μ,x)=(0,0)

�= 0. (1.36)

Then there are smooth invertible coordinate and parameter changes transforming
the system into

ẏ = β1 +β2y+ sy3 +O(y4), (1.37)

where the s = sign fxxx(0,0) and O(y4) terms depend smoothly on (β1,β2).

Proof. Expand f with respect to x around μ = 0:

f (μ ,x) = f0(μ)+ f1(μ)x+ f2(μ)x2 + f3(μ)x3 +O(x3),

where

f j(μ) =
1
j!

∂ j f
∂x j (μ ,0), j = 0,1,2, . . . .

Obviously, f0(0) = f (0,0) = 0, f1(0) = fx(0,0) = 0, and f2(0) = 1
2 fxx(0,0) = 0.

Set ξ = x+δ (μ), where δ is a constant independent of t. Then (1.35) can be trans-
formed into

ξ̇ = [ f0(μ)− f1(μ)δ + δ 2ϕ(μ ,δ )]+ [ f1(μ)− 2 f2(μ)δ + δ 2φ(μ ,δ )]ξ
+[ f2(μ)− 3 f3(μ)δ + δ 2ψ(μ ,δ )]ξ 2 +[ f3(μ)+ δθ (μ ,δ )]ξ 3 +O(ξ 4)

(1.38)
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for some smooth functions ϕ , φ , ψ , and θ . Since f2(0) = 0, we cannot use the
implicit function theorem to select a function δ (μ) to eliminate the linear terms in
ξ in the above equation. However, in view of f3(0) = 1

6 fxxx(0,0) �= 0, there is a
smooth shift function δ (μ), δ (0) = 0, that annihilates the quadratic terms in the
equation for all sufficiently small ‖μ‖. Indeed, let F(μ ,δ ) = f2(μ)− 3 f3(μ)δ +
δ 2ψ(μ ,δ ). Then we have F(0,0) = 0 and Fδ (0,0) = −3 f3(0) �= 0. Therefore, the
implicit function theorem gives the (local) existence and uniqueness of a smooth
scalar function δ = δ (μ) such that δ (0) = 0 and F(μ ,δ (μ)) = 0 for ‖μ‖ small
enough. Now with δ (μ) as constructed above, (1.38) contains no quadratic terms.
Let γ(μ) = (γ1(μ),γ2(μ)) be defined as

γ1(μ) = f0(μ)− f1(μ)δ (μ)+ δ 2(μ)ϕ(μ ,δ (μ)),
γ2(μ) = f1(μ)− 2 f2(μ)δ (μ)+ δ 2(μ)φ(μ ,δ (μ)).

Clearly, γ(0) = 0, and the Jacobian matrix of the map γ = γ(μ) is nonsingular at
μ = 0:

det

(
∂γ
∂ μ

)∣∣∣∣
μ=0

= det

[
fμ1 fμ2

fxμ1 fxμ2

]
μ=0

�= 0. (1.39)

Thus, the inverse function theorem implies the local existence and uniqueness of a
smooth inverse function μ = μ(γ) with μ(0) = 0. Therefore, the equation for ξ now
reads

ξ̇ = γ1 + γ2ξ + c(γ)ξ 3 +O(ξ 4),

where c(γ) = f3(μ(γ))+ δ (μ((γ))θ (μ(γ),δ (μ(γ))) is a smooth function of γ and
c(0) = f3(0) = 1

6 fxxx(0,0) �= 0. Finally, the above equation can be transformed into

(1.37) by performing a linear scaling y= ξ
√|c(γ)| and introducing new parameters:

β1 = γ1
√|c(γ)|, β2 = γ2. �

1.9.3 Fold–Hopf Bifurcation

The fold–Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue and a pair of purely imaginary eigenvalues. This phenomenon
is also called the zero–Hopf bifurcation or Gavrilov–Guckenheimer bifurcation.
An early example of this bifurcation in a specific system is provided by the Brus-
selator reaction–diffusion system in one spatial dimension (Guckenheimer [124],
Wittenberg and Holmes [299]).



28 1 Introduction to Dynamic Bifurcation Theory

The usual norm form of the fold–Hopf bifurcation is

ẏ = μ1 + b(u2 + v2)− y2 + h.o.t.,

u̇ = μ2u− v+ ayu+ h.o.t., (1.40)

v̇ = u+ μ2v+ ayv+ h.o.t.,

where μ = (μ1,μ2) and h.o.t. stands for “higher-order terms.” System (1.40) has
been studied by Broer and Vegter [44], Chow–Li–Wang [66], Dumortier and Ibáñez
[84], Gamero–Freire–Rodrı́guez–Luis [106], Gaspard [107], Gavrilov [108, 109],
Guckenheimer [124], Keener [187], Langford [202], Takens [272–274]. The bi-
furcation point μ = 0 in the μ-parameter plane lies at a tangential intersection
of curves of saddle-node bifurcations and Poincaré–Andronov–Hopf bifurcations.
Depending on the system, a branch of torus bifurcations can emanate from the fold–
Hopf bifurcation point. In such cases, other bifurcations occur for nearby parameter
values, including saddle-node bifurcations of periodic orbits on the invariant torus,
torus breakdown, and bifurcations of Shil’nikov homoclinic orbits to saddle-foci
and heteroclinic orbits connecting equilibria. See Guckenheimer and Holmes [125]
for more details.

If system (1.1) has a fixed equilibrium x = x0 for all parameters μ , and the
equilibrium x0 has a zero eigenvalue and a pair of purely imaginary eigenvalues
at μ = 0, then the normal form of (1.1) at (μ ,x) = (0,x0) is not equivalent to sys-
tem (1.40). Therefore, in this subsection we consider the following two-parameter
system:

ẏ = μ1y+ y2+ u2 + v2,

u̇ = μ2u− v+ ayu+ y2u, (1.41)

v̇ = u+ μ2v+ ayv+ y2v,

where 0 �= a ∈ R, μ = (μ1,μ2) ∈ R
2, and (y,u,v) ∈ R

3. At μ = 0, the linearization
of (1.41) at the equilibrium (0,0,0) has a zero eigenvalue λ1 = 0 and a pair of purely
imaginary eigenvalues λ2,3 = ±i. Let z = u+ iv =

√ρeiθ . Then system (1.41) can
be rewritten as

ẏ = μ1y+ y2+ |z|2, (1.42)

ż = (μ2 + i)z+ ayz+ y2z,

and

ẏ = μ1y+ y2+ρ ,
ρ̇ = 2ρ(μ2 + ay+ y2), (1.43)

θ̇ = 1.

The first two equations of (1.43) are decoupled from the third one. The equation for
θ describes a rotation around the y-axis with constant angular velocity θ̇ = 1. Thus,
to understand the bifurcations in (1.43), we only need to study the planar system for
(y,ρ) with ρ ≥ 0:
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ẏ = μ1y+ y2 +ρ ,
ρ̇ = 2ρ(μ2 + ay+ y2). (1.44)

It is easy to see that system (1.44) always has two equilibria, E1 = (0,0) and
E2 = (−μ1,0), and that there always exists one orbit connecting E1 and E2 due to
the symmetry that the y-axis is always invariant. Other equilibria (y,ρ) of (1.44)
with ρ > 0 satisfy

μ1y+ y2+ρ = 0 and μ2 + ay+ y2 = 0, (1.45)

which can have zero, one, or two solutions in the interior of the quadrants with
ρ > 0. Since we consider the dynamics of (1.44) only with μ sufficiently close to
0, we can require the parameters μ to be in J = {μ = (μ1,μ2): |μ1| < 1

2 |a| and
|μ2| < 1

4 a2}. Thus, the second equation of (1.45) has two solutions y1 and y2 with
y1 < y2. Moreover, y1 < y2 < 0 if μ2 > 0 and a > 0, while y1 < 0 < y2 if μ2 < 0
and a > 0. Next, we determine the signs of ρ j = −y2

j − μ1y j, j = 1,2, because we
consider the equilibrium (y,ρ) of (1.44) only with ρ ≥ 0.

We first consider the case a > 0. We divide the region J into six parts:

J11 = {μ ∈ J : μ1 < 0 and μ2 > 0} ,
J12 =

{
μ ∈ J : μ1 < 0 and μ2 < 0 and μ2

1 − aμ1 + μ2 > 0
}
,

J13 =
{

μ ∈ J : μ1 < 0 and μ2
1 − aμ1 + μ2 < 0

}
,

J14 =
{

μ ∈ J : μ1 > 0 and μ2
1 − aμ1 + μ2 > 0

}
,

J15 =
{

μ ∈ J : μ1 > 0 and μ2 > 0 and μ2
1 − aμ1 + μ2 < 0

}
,

J16 = {μ ∈ J : μ1 > 0 and μ2 < 0} .
These regions are illustrated in Fig. 1.12a, where the bold curve l4 represents the
parabola μ2

1 − μ1a+ μ2 = 0.

Lemma 1.1. Suppose a> 0. Then in the interior of the quadrants of the (y,ρ)-plane
with ρ > 0, system (1.45) has no solution (respectively, one solution (y2,ρ2) with
y2 > 0, one solution (y2,ρ2) with y2 < 0) for parameters μ in J \ (J12 ∪J15)
(respectively, J12, J15).

Proof. We distinguish two cases:
Case 1: μ1 < 0. Then y2 +μ1y is negative if 0 < y <−μ1 and positive otherwise.

If μ ∈J11, then y1 < y2 < 0, and hence ρ j =−y2
j −μ1y1 < 0, j = 1,2. If μ ∈J12,

then y1 < 0 < y2 < −μ1, and hence ρ1 < 0 and ρ2 > 0. If μ ∈ J13, then y1 < 0 <
−μ1 < y2, and hence ρ j =−y2

j − μ1y1 < 0, j = 1,2.
Case 2: μ1 > 0. Then y2 +μ1y is negative if −μ1 < y < 0 and positive otherwise.

If μ ∈ J14, then y1 < y2 <−μ1 < 0, and hence ρ j < 0, j = 1,2. If μ ∈ J15, then
y1 <−μ1 < y2 < 0, and hence ρ1 < 0 and ρ2 > 0. If μ ∈J16, then y1 <−μ1 < 0 <
y2, and hence ρ1 < 0 and ρ2 < 0. The proof is complete. �
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a b

Fig. 1.12 Bifurcation sets for (1.44)

Moreover, for parameters μ ∈ J12 ∪J15, the characteristic equation of (1.44)
at the equilibrium E3 = (y2,ρ2) is

ς2 − (μ1 + 2y2)ς − 2ρ2(a+ 2y2) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ2(a+ 2y2). For μ ∈ J12, it follows
from the proof of Lemma 1.1 that y2 > 0, and so ς1ς2 < 0. For μ ∈ J15, it follows
from the proof of Lemma 1.1 that − 1

2 a <−μ1 < y2 < 0, and hence ς1ς2 < 0. Thus,
we obtain the following:

Proposition 1.1. Suppose a > 0. Then, in the quadrants of the (y,ρ)-plane with
ρ ≥ 0, we have the following information on the equilibria of system (1.44):

(i) There are two equilibria E1 and E2 for μ ∈ J11, where E1 is a saddle and E2

is a source.
(ii) There are three equilibria E1, E2, and E3 for μ ∈ J12, where E1 is a sink, E2 is

a source, E3 = (y2,ρ2) satisfying y2 > 0 and ρ2 > 0 is a saddle.
(iii) There are two equilibria E1 and E2 for μ ∈ J13, where E1 is a sink and E2 is a

saddle.
(iv) There are two equilibria E1 and E2 for μ ∈ J14, where E1 is a source and E2

is a saddle.
(v) There are three equilibria E1, E2, and E3 for μ ∈J15, where E1 is a source, E2

is a sink, E3 = (y2,ρ2) satisfying y2 < 0 and ρ2 > 0 is a saddle.
(vi) There are two equilibria E1 and E2 for μ ∈ J16, where E1 is a saddle and E2

is a sink.

The following theorem follows immediately from the equivalence mentioned
before.

Theorem 1.11. Suppose a > 0. Then a semistable limit cycle of (1.41) appears as μ
crosses the negative μ1-axis from J11 to J12, which is always present for μ ∈J12,
and then disappears as μ crosses the parabola l4 from J12 to J13. Similarly, a
semistable limit cycle of (1.41) appears as μ crosses the parabola l4 from J14 to
J15, which is always present for μ ∈ J15, and then disappears as μ crosses the
positive μ1-axis from J15 to J16.
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Now we consider the case a < 0. Again, we divide the region J into six parts:

J21 = {μ ∈ J : μ1 > 0 and μ2 > 0} ,
J22 =

{
μ ∈ J : μ1 > 0 and μ2 < 0 and μ2

1 − μ1a+ μ2 > 0
}
,

J23 =
{

μ ∈ J : μ1 > 0 and μ2
1 − μ1a+ μ2 < 0

}
,

J24 =
{

μ ∈ J : μ1 < 0 and μ2
1 − μ1a+ μ2 > 0

}
,

J25 =
{

μ ∈ J : μ1 < 0 and μ2 > 0 and μ2
1 − μ1a+ μ2 < 0

}
,

J26 = {μ ∈ J : μ1 < 0 and μ2 < 0} .

These regions are illustrated in Fig. 1.12b, where the bold curve l4 and the dot-
ted curve l5 represent the parabolas μ2

1 − μ1a+ μ2 = 0 and μ2
1 − 2μ1a+ 4μ2 = 0,

respectively. Similarly, we have the following result.

Lemma 1.2. Suppose a< 0. Then, in the interior of the quadrants of the (y,ρ)-plane
with ρ > 0, system (1.45) has no solution (respectively, one solution (y1,ρ1) with
y1 < 0, one solution (y1,ρ1) with y1 > 0) for parameters μ in J \ (J22 ∪J25)
(respectively, J22, J25).

Moreover, for parameters μ ∈J22∪J25, the characteristic polynomial of (1.44)
at the equilibrium E4 = (y1,ρ1) is

ς2 − (μ1 + 2y1)ς − 2ρ1(a+ 2y1) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ1(a+ 2y1), which can be shown to be
positive. Then, we need to consider the sign of ς1+ς2 in order to discuss the stability
of the equilibrium E4. In fact,

ς1 + ς2 = μ1 + 2y1 = μ1 − a−
√

a2 − 4μ2.

It follows from 2|μ1|< |a| and a < 0 that μ1 − a > 0, and hence

sign(ς1 + ς2) = sign{(μ1 − a)2 − a2 + 4μ2}
= sign{μ2

1 − 2μ1a+ 4μ2}.
Let

J + =
{

μ : μ2
1 − 2μ1a+ 4μ2 > 0

}
and

J − =
{

μ : μ2
1 − 2μ1a+ 4μ2 < 0

}
.

Then we have the following:

Lemma 1.3. Suppose a < 0. For parameters μ ∈ J22 ∪J25, besides equilibria E1

and E2, system (1.45) has a third equilibrium E4, which is a sink if μ ∈ J − ∩
(J22 ∪J25) and a source if μ ∈ J +∩ (J22 ∪J25).
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Proposition 1.2. Suppose a < 0. Then, in the quadrants of the (y,ρ)-plane with
ρ ≥ 0, we have the following information about equilibria of system (1.44):

(i) There are two equilibria E1 and E2 for μ ∈ J21, where E1 is a source and E2

is a saddle.
(ii) There are three equilibria E1, E2, and E4 for μ ∈ J22, where E1 and E2

are saddles, and E4 = (y1,ρ1) satisfying y1 < 0 and ρ1 > 0 is a sink if
μ2

1 − 2μ1a+ 4μ2 < 0 and a source otherwise. Namely, in the region J22, as
μ crosses the parabola l5 from the region J22 ∩J + to the region J22 ∩J −,
the equilibrium E4 gains stability, and hence system (1.44) undergoes a Hopf
bifurcation, and a stable limit cycle appears; as μ varies further, this limit cycle
can approach a heteroclinic cycle formed by the separatrices of the two saddles
E1 and E2, i.e., its period tends to infinity and the cycle disappears.

(iii) There are two equilibria E1 and E2 for μ ∈ J23, where E1 is a saddle and E2

is a sink.
(iv) There are two equilibria E1 and E2 for μ ∈ J24, where E1 is a saddle and E2

is a source.
(v) There are three equilibria E1, E2, and E4 for μ ∈ J25, where E1 and E2 are

saddles, and E4 = (y1,ρ1) satisfying y1 > 0 and ρ1 > 0 is a sink if μ2
1 −2μ1a+

4μ2 < 0 and a source otherwise. Namely, in the region J25, as μ crosses the
parabola l5 from the region J25 ∩J + to the region J25 ∩J −, equilibrium
E4 gains stability, and hence system (1.44) undergoes a Hopf bifurcation, and
a stable limit cycle appears; as μ varies further, this limit cycle can approach a
heteroclinic cycle formed by the separatrices of the two saddles E1 and E2, i.e.,
its period tends to infinity, and the cycle disappears.

(vi) There are two equilibria E1 and E2 for μ ∈ J26, where E1 is a sink and E2 is a
saddle.

Theorem 1.12. Suppose that a < 0. Then the following statements are true:

(i) An unstable limit cycle O1 of (1.41) appears as μ crosses the positive μ1-axis
from J21 to J22. As μ crosses the parabola l5 from J22∩J + to J22∩J −,
this limit cycle O1 becomes stable and generates an unstable torus T1. Under
further variation of the parameter μ in J22 ∩J −, this torus T1 degenerates
to a sphere-like surface S1 and then disappears. As μ crosses the parabola l4
from J22 ∩J − to J23, the stable limit circle O1 disappears.

(ii) An unstable limit cycle O2 of (1.41) appears as μ crosses the parabola l4 from
J24 to J25. As μ crosses the parabola l5 from J25 ∩J + to J25 ∩J −,
this limit cycle O2 becomes stable and generates an unstable torus T2. Under
further variation of the parameter μ in J25∩J −, this torus T2 degenerates to
a sphere-like surface S2 and then disappears. As μ crosses the negative μ1-axis
from J25 ∩J − to J26, the stable limit circle O2 disappears.
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1.9.4 Bautin Bifurcation

Consider the following two-parameter system:

ẋ1 = μ1x1 − x2 + μ2x1(x
2
1 + x2

2)+σx1(x
2
1 + x2

2)
2, (1.46)

ẋ2 = x1 + μ1x2 + μ2x2(x
2
1 + x2

2)+σx2(x
2
1 + x2

2)
2,

where σ =±1, μ = (μ1,μ2) ∈R
2, and x = (x1,x2)∈R

2. At μ = 0, the linearization
of (1.46) at the equilibrium (0,0) has a pair of purely imaginary eigenvalues ±i. Let
z = u+ iv =

√ρeiθ . Then system (1.46) can be rewritten as

ż = (μ1 + i)z+ μ2z|z|2 +σz|z|4, z ∈C (1.47)

and

ρ̇ = 2ρ(μ1 + μ2ρ +σρ2), (1.48)

θ̇ = 1.

The first equation in (1.48) is uncoupled from the second one. Thus, to understand
the bifurcations in (1.48), it suffices to study the scalar equation for ρ , that is,

ρ̇ = 2ρ(μ1 + μ2ρ +σρ2). (1.49)

It follows that the trivial equilibrium ρ = 0 of (1.49) corresponds to the equilibrium
x = 0 of (1.46), and the existence and stability of positive equilibria of (1.49) deter-
mine the existence and stability of periodic solutions of (1.47) and hence of the orig-
inal system (1.46). In the remaining part of this subsection, we depict the complete
bifurcation diagrams of (1.49) on the μ-parameter plane.

We first consider the case σ = −1. Positive equilibria of (1.49) satisfy μ1 +
μ2ρ −ρ2 = 0, which can have zero, one, or two positive solutions. These solutions
branch from the trivial one along the line l1 on the μ-parameter plane and collide
and disappear at the half-parabola l2 (see Fig. 1.13a),

where
l1 : μ1 = 0 and l2 : μ2

2 + 4μ1 = 0 with μ2 > 0.

The details are summarized below.

1. In the region D11 = {μ : μ2
2 + 4μ1 < 0 or μ1 < 0 and μ2 < 0}, (1.49) has no

positive equilibria. Thus, the equilibrium ρ = 0 is globally asymptotically stable,
which means that system (1.46) has no periodic solutions in a sufficiently small
neighborhood of the stable equilibrium z = 0.

2. In the region D12 = {μ : μ1 > 0}, (1.49) has only one positive equilibrium, which
is stable. This means that system (1.46) has exactly one stable periodic solution
in a sufficiently small neighborhood of the unstable equilibrium x = 0.

3. In the region D13 = {μ : μ1 < 0, μ2 > 0, and μ2
2 + 4μ1 > 0}, (1.49) has two

positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the stable equilibrium x = 0.
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a b

Fig. 1.13 Bifurcation sets for (1.49)

Therefore, on the μ-parameter plane, the line l1 and the half-parabola l2 are
bifurcation curves. The bifurcation scenario is explained below.

(a) On the μ-parameter plane, if the point μ crosses the line l1 from region D11 to
region D12, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(b) On the μ-parameter plane, if the point μ crosses the line l1 from region D12

to region D13, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(c) On the μ-parameter plane, if the point μ crosses the line l2 from region D13 to
region D11, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

Now we come to the complete bifurcation diagram of (1.49) with σ = 1. Positive
equilibria of (1.49) satisfy μ1 + μ2ρ + ρ2 = 0, which can have zero, one, or two
positive solutions. These solutions branch from the trivial one along the line l1 on the
μ-parameter plane and collide and disappear at the half-parabola l3 : μ2

2 − 4μ1 = 0
and μ2 < 0 (see Fig. 1.13b). We have the following conclusions:

1. In the region D21 = {μ : μ2
2 − 4μ1 < 0 or μ1 > 0 and μ2 > 0}, (1.49) has no

positive equilibria. Thus, the equilibrium ρ = 0 is unstable. This means that sys-
tem (1.46) has no periodic solutions in a sufficiently small neighborhood of the
unstable equilibrium z = 0.

2. In the region D22 = {μ : μ1 < 0}, (1.49) has only one positive equilibrium, which
is unstable. This means that system (1.46) has exactly one unstable periodic
solution in a sufficiently small neighborhood of the stable equilibrium x = 0.

3. In the region D23 = {μ : μ1 > 0, μ2 < 0, and μ2
2 − 4μ1 > 0}, (1.49) has two

positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the unstable equilibrium x = 0.

Therefore, on the parameter plane μ , the line l1 and the half-parabola l3 are
bifurcation curves. More specifically, we have the following:
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(a) On the μ-parameter plane, if the point μ crosses the line l1 from region D21

to region D22, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(b) On the μ-parameter plane, if the point μ crosses the line l1 from region D22 to
region D23, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(c) On the μ-parameter plane, if the point μ crosses the line l3 from region D23 to
region D21, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

1.9.5 Hopf–Hopf Bifurcation

The Hopf–Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium
has two pairs of purely imaginary eigenvalues. This phenomenon is also called
the double Hopf bifurcation. For example, consider the following two-parameter
system:

ẋ1 = μ1x1 −ω1x2 +(A11x1 −B11x2)(x
2
1 + x2

2)+ (A12x1 −B12x2)(x
2
3 + x2

4),

ẋ2 = ω1x1 − μ1x2 +(A11x2 +B11x1)(x
2
1 + x2

2)+ (A12x2 +B12x1)(x
2
3 + x2

4),

ẋ3 = μ2x3 −ω2x4 +(A21x3 −B21x4)(x
2
1 + x2

2)+ (A22x3 −B22x4)(x
2
3 + x2

4),

ẋ4 = ω2x3 − μ2x4 +(A21x4 +B21x3)(x
2
1 + x2

2)+ (A22x4 +B22x3)(x
2
3 + x2

4),

(1.50)

where σ = ±1, μ = (μ1,μ2) ∈ R
2, and x = (x1,x2,x3,x4) ∈ R

4. At μ = 0, the lin-
earization of (1.50) at the equilibrium (0,0,0,0) has two pairs of purely imaginary
eigenvalues±iω1 and±iω2. Let x1+ ix2 = ρ1eiθ1 and x3+ ix4 = ρ2eiθ2 . Then system
(1.50) can be rewritten as

ρ̇1 = ρ1(μ1 +A11ρ2
1 +A12ρ2

2 ),

ρ̇2 = ρ2(μ2 +A21ρ2
1 +A22ρ2

2 ), (1.51)

θ̇1 = ω1 +B11ρ2
1 +B12ρ2

2 ,

θ̇2 = ω2 +B21ρ2
1 +B22ρ2

2 .

Note that the amplitude and phase variables of (1.51) decouple. As a result, the
bifurcation and asymptotic behavior of solutions of (1.50) can be studied via the
following two-dimensional amplitude equations alone:

ρ̇1 = ρ1(μ1 +A11ρ2
1 +A12ρ2

2 ), (1.52)

ρ̇2 = ρ2(μ2 +A21ρ2
1 +A22ρ2

2 ).
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The relation between equilibria of (1.52) and bifurcations of (1.50) is as follows:

(a) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium (r,0)
(respectively, (0,r)) on either axis, then (1.50) has an asymptotically stable (re-
spectively, unstable) periodic orbit of frequency close to ω1 (respectively, ω2).

(b) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium
(r1,r2) in the interior of the positive quadrant, then (1.50) has an asymptoti-
cally stable (respectively, unstable) two-dimensional invariant torus, i.e., (1.50)
has a quasiperiodic solution in a neighborhood of the origin.

(c) If (1.52) has an asymptotically stable (respectively, unstable) limit cycle in the
interior of the positive quadrant, then (1.50) has an asymptotically stable (re-
spectively, unstable) three-dimensional invariant torus in a neighborhood of the
origin.

From the above, we see that sufficiently close to the Hopf–Hopf bifurcation point
μ = 0, system (1.50) will exhibit either periodic or quasiperiodic motions. Thus, if
we can find combinations of parameters μi and Ai j (i, j = 1,2) that yield stable equi-
libria (r1,r2) with r1r2 �= 0, we can conclude that the stable quasiperiodic motions
should occur for the corresponding parameter values of system (1.50). Therefore,
from now on, we concentrate on describing the behavior of the coupled amplitude
equation (1.52) in the μ-parameter plane. The mode interaction equations (1.52)
have been investigated by many researchers. See, for example, Guckenheimer and
Holmes [125, Sect. 7.5]. Here, for the sake of completeness, we shall employ some
techniques from the above-mentioned classical work of Guckenheimer and Holmes
(including rescaling in time and variables) to investigate the qualitative behavior of
the mode interaction equations (1.52) in the parameter ranges of interest. We discuss
these case by case.

First, we consider the case that A11 < 0 and A22 < 0. Introducing new phase
variables according to

r1 =
√
|A11|ρ1, r2 =

√
|A22|ρ2, (1.53)

yields

ṙ1 = μ1r1 − r3
1 −θ r1r2

2, (1.54)

ṙ2 = μ2r2 − r3
2 −Δr2r2

1,

where θ = A12/A22 and Δ = A21/A11. Notice that the r1- and r2-axes are invariant
lines for the flow of (1.54). Simple linear analysis reveals the following results about
equilibria of (1.54):

(a) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{μ1,μ2}< 0,
a saddle if μ1μ2 < 0, and an unstable source if min{μ1,μ2}> 0.

(b) (r1,r2) = (
√μ1,0) is an equilibrium if μ1 > 0. If, in addition, Δ μ1 > μ2, then

it is a sink; otherwise, it is a saddle.
(c) (r1,r2) = (0,

√μ2) is an equilibrium if μ2 > 0. If, in addition, θ μ2 > μ1, then it
is a sink; otherwise, it is a saddle.
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(d) (r1,r2) = (
√

[μ1 −θ μ2]/[1−θΔ ],
√
[μ2 −Δ μ1]/[1−θΔ ]) is an equilibrium if

both radicands are positive. It is a saddle if θΔ > 1 and a sink if θΔ < 1.

Therefore, we deduce that bifurcations to the pure modes (
√μ1,0) and (0,

√μ2)
occur on the lines μ1 = 0 and μ2 = 0, whereas bifurcations to the mixed mode occur
on the lines μ1 = θ μ2 and μ2 = Δ μ1 if they exist. In addition, we need check that
no closed orbits (or limit cycles) can occur. Since the r1- and r2-axes are invariant,
any such closed orbit would have to lie in the interior of the positive quadrant and
must enclose at least one equilibrium with Poincaré index equal to 1.

If θΔ > 1 and μ1 − θ μ2 < 0 and μ2 − Δ μ1 < 0, then system (1.54) has an
equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0. Recall that (r̃1, r̃2) is a saddle with Poincaré in-
dex equal to −1. We immediately see that no closed orbit can occur around (r̃1, r̃2).
If θΔ < 1 and μ1−θ μ2 > 0 and μ2−Δ μ1 > 0, then system (1.54) has an equilibrium
(r̃1, r̃2) with r̃1 r̃2 �= 0, which is a sink. In what follows, we distinguish several cases
to conclude that no closed orbits can occur around the sink (r̃1, r̃2) when θΔ < 1
and μ ∈ E = {μ : μ1 −θ μ2 > 0 and μ2 −Δ μ1 > 0}.

Case 1: θ > 0 and Δ > 0. We follow a directional arc
−→
l1 crossing the line μ1 =

θ μ2 > 0 and then passing through the sector E and finally crossing the line μ2 =

Δ μ1 > 0. When μ ∈ −→
l1 crosses the line μ1 = θ μ2 > 0, the sink (0,

√μ2) becomes
a saddle, a sink (r̃1, r̃2) bifurcates from (0,

√μ2), and the unstable separatrix of the
saddle (0,

√μ2) limits this bifurcated sink (r̃1, r̃2). Thus, after bifurcation there is
no closed orbit around this sink. The only way whereby the closed orbit can appear
in the positive quadrant is by Hopf bifurcation from (r̃1, r̃2). But this is impossible,
because (r̃1, r̃2) remains stable for all μ ∈ E .

Case 2: θ > 0 > Δ . Similar arguments as those in Case 1 show that there is
no closed orbit in the positive quadrant when μ is in the sector 0 < μ2 < μ1/θ .
In order to rule out the existence of closed orbits in the positive quadrant when
μ is in the sector Δ μ1 < μ2 < 0, we follow another directional arc

−→
l2 crossing

the line μ2 = Δ μ1 and then passing through the sector Δ μ1 < μ2 < 0. When μ ∈−→
l2 crosses the line μ2 = Δ μ1, the sink (

√μ1,0) becomes a saddle, a sink (r̃1, r̃2)
bifurcates from (

√μ1,0), and the unstable separatrix of the saddle (
√μ1,0) limits

this bifurcated sink (r̃1, r̃2). Thus, after bifurcation there is no closed orbit around
this sink. Similarly, no Hopf bifurcation can occur from (r̃1, r̃2), since it remains
stable for all μ ∈ E .

Case 3: θ < 0 < Δ . Similar arguments as those in Case 1 tell us that there is no
closed orbit in the positive quadrant when μ is in the sector θ μ2 < μ1 < 0, while
arguments like those in Case 2 yield that there is no closed orbit in the positive
quadrant when μ is in the sector 0 < μ1 < μ2/Δ .

Case 4: θ < 0 and Δ < 0. The discussion is similar to that in Case 1 and hence
is omitted.

In summary, we have proved the following theorem.

Theorem 1.13. No closed orbit of system (1.54) can occur around the mixed mode
(r̃1, r̃2).
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Second, for the case that A11 > 0 and A22 > 0, we introduce new phase variables
and rescale time in (1.52) according to

r1 =
√
|A11|ρ1, r2 =

√
|A22|ρ2, t∗ =−t. (1.55)

After dropping ∗, we obtain

ṙ1 = −μ1r1 − r3
1 −θ r1r2

2, (1.56)

ṙ2 = −μ2r2 − r3
2 −Δr2r2

1,

where θ and Δ are the same as before. System (1.56) is quite similar to (1.54), and
hence similar arguments can be employed. We omit the details here.

Third, for the case that A11 > 0 and A22 < 0, we introduce new phase variables
and rescale time in (1.52) as (1.53). After dropping ∗, we obtain

ṙ1 = μ1r1 + r3
1 −θ r1r2

2, (1.57)

ṙ2 = μ2r2 − r3
2 +Δr2r2

1,

where θ and Δ are the same as before. Simple linear analysis produces the following
results:

(a) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{μ1,μ2}< 0,
a saddle if μ1μ2 < 0, and an unstable source if min{μ1,μ2}> 0.

(b) (r1,r2) = (
√−μ1,0) is an equilibrium if μ1 < 0. If, in addition, Δ μ1 < μ2, then

it is a source; otherwise, it is a saddle.
(c) (r1,r2) = (0,

√μ2) is an equilibrium if μ2 > 0. If, in addition, θ μ2 > μ1, then it
is a sink; otherwise, it is a saddle.

(d) (r1,r2) = (
√

[μ1 −θ μ2]/[θΔ − 1],
√
[Δ μ1 − μ2]/[θΔ − 1]) is an equilibrium if

both radicands are positive. If θΔ < 1, then it is a saddle; if θΔ > 1 and r̃1 > r̃2,
then it is a source; if θΔ > 1 and r̃1 < r̃2, then it is a sink.

It follows from the above results that bifurcations to the pure modes (
√−μ1,0)

and (0,
√μ2) occur on the lines μ1 = 0 and μ2 = 0, whereas bifurcations to the

mixed modes occur on the lines μ1 = θ μ2 and μ2 = Δ μ1 if they exist. Since the r1-
and r2-axes are invariant, any such closed orbit would have to lie in the interior of
the positive quadrant and must enclose at least one equilibrium with Poincaré index
equal to 1. If θΔ < 1, μ1 − θ μ2 < 0, and μ2 − Δ μ1 > 0, then system (1.57) has
an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0, which is a saddle with Poincaré index equal
to −1. We immediately conclude the following result.

Theorem 1.14. Assume that θΔ < 1, μ1 − θ μ2 < 0, and μ2 − Δ μ1 > 0. Then no
closed orbit of system (1.57) can occur around (r̃1, r̃2).

If θΔ > 1, (μ1,μ2) is in the sector I = {μ : μ1 −θ μ2 > 0, and μ2 −Δ μ1 < 0},
then system (1.57) has an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0. It follows from the
expressions for r̃1 and r̃2 that sign(r̃1 − r̃2) = sign(1− θ )sign{μ2 − χμ1}, where
χ = (1−Δ)/(θ − 1). Furthermore, if θ > 1, then χ < 1/θ and χ < Δ ; if 0 < θ <
1, then χ > 1/θ and χ > Δ ; if θ < 0, then Δ < χ < 1

θ . Therefore, we have the
following observations:
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Lemma 1.4. If Δ > 1/θ > 0 and (μ1,μ2) ∈ I , then system (1.57) has a mixed
mode (r̃1, r̃2). Moreover, it is a sink (respectively, source) if μ is in the sector I1

(respectively, I2), where

I1 =

{ {μ: χμ1 < μ2 < μ1/θ} if θ > 1,
{μ: μ2 < χμ1 and μ2 < μ1/θ} if θ < 1,

I2 =

{ {μ: μ2 < χμ1 and μ2 < Δ μ1} if θ > 1,
{μ: χμ1 < μ2 < Δ μ1} if θ < 1.

Lemma 1.5. If Δ < 1/θ < 0 and (μ1,μ2) ∈ I , then system (1.57) has a mixed
mode (r̃1, r̃2). Moreover, it is a sink (respectively, source) if μ is in the sector I3

(respectively, I4), where

I3 = {μ: μ1/θ < μ2 < χμ1},
I4 = {μ: χμ1 < μ2 < Δ μ1}.

The following result describes the phase portrait of (1.57).

Theorem 1.15. Assume θΔ > 1. Then for some points μ ∈ I , system (1.57) has
closed orbits surrounding the mixed mode (r̃1, r̃2).

Proof. Here, we consider only the case θ > 1 > Δ > 1/θ > 0, because other cases
can be handled similarly. If θΔ > 1 and θ > 1, then μ ∈ I and system (1.57)
has a mixed mode (r̃1, r̃2). We follow a directional arc in the μ-parameter plane
that starts from a point in the sector μ1/θ < μ2 < Δ μ1, then crosses the line μ1 =
θ μ2 > 0 into the sector I1, and finally successively crosses the line μ2 = χμ1 >
0 and the positive μ1-axis. When the point μ is in the sector μ1/θ < μ2 < Δ μ1,
system (1.57) has a source (0,0) and a sink (0,

√μ2). As μ crosses the line μ1 =
θ μ2 > 0, a mixed mode (r̃1, r̃2) (which is a sink) bifurcates from (0,

√μ2), and the
unstable separatrix of the saddle (0,

√μ2) limits the newly bifurcated mixed mode.
Thus, immediately after bifurcation, no closed orbit can surround the mixed mode.
However, as μ crosses the line μ2 = χμ1 > 0, the mixed mode (r̃1, r̃2) loses its
stability, and hence system (1.57) undergoes a Hopf bifurcation, i.e., a stable closed
orbit appears in the positive quadrant. Moreover, as μ crosses the positive μ1-axis,
the pure mode (0,

√μ2) collides with (0,0) and disappears. �

Theorem 1.15 implies that crossing the line μ2 = χμ1 in the sector I results
in the branching of a three-dimensional torus from the two-dimensional torus of
system (1.52).

Finally, for the case A11 < 0 and A22 > 0, we can obtain the reparameterized
equation of the form (1.57) by reversing time, and hence the details are omitted.
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1.10 Some Other Bifurcations

1. Nontransversal homoclinic orbit to a hyperbolic cycle. Consider a
three-dimensional system (1.1) with a hyperbolic limit cycle Γμ . Its stable
and unstable two-dimensional invariant manifolds, W s(Γμ) and W u(Γμ), can
intersect along homoclinic orbits, tending to Γμ as t →±∞. Generically, such an
intersection is transversal. It implies the presence of an infinite number of saddle
limit cycles near the homoclinic orbit. However, at a certain parameter value,
say μ = μ0, the manifolds can become tangent to each other and then no longer
intersect. At μ = μ0, there is a homoclinic orbit to Γ0 along which the manifolds
W s(Γμ) and W u(Γμ) generically have a quadratic tangency. It has been proved
that an infinite number of limit cycles can exist for sufficiently small |μ − μ0|,
even if the manifolds do not intersect. Passing the critical parameter value is
accompanied by an infinite number of period-doubling and fold bifurcations
of limit cycles. See, for example, Poincaré [246], Birkhoff [34], Smale [268],
Neimark [229], and Shil’nikov [263], Gavrilov and Shilnikov [110], Palis and
Takens [243].

2. Homoclinic orbits to a nonhyperbolic limit cycle. Suppose a three-dimensional
system (1.1) has at μ = μ0 a nonhyperbolic limit cycle Γ0 with a simple
multiplier λ1 = 1, while the second multiplier satisfies |λ2| < 1. Under generic
perturbations, this cycle Γ0 will either disappear or split into two hyperbolic
cycles (i.e., via fold bifurcation for cycles). However, the locally unstable man-
ifold W u(Γ0) of the cycle can return to the cycle Γ0 at the critical parameter
value μ = μ0, forming a set composed of homoclinic orbits that approach Γ0 as
t → ±∞. Thus, at the critical parameter value, there may exist a smooth invari-
ant torus or a strange attracting invariant set that contains an infinite number
of saddle and stable limit cycles, or a blue-sky catastrophe. See, for example,
Afraimovich and Shil’nikov [4], Palis and Pugh [242], Medvedev [218], Turaev
and Shil’nikov [279].

3. Bifurcations on invariant tori. Continuous-time dynamical systems with
phase-space dimension n > 2 can have invariant tori. For example, a stable
cycle in R

3 can lose stability when a pair of complex-conjugate multipliers
crosses the unit circle. It will be much more interesting to discuss changes of
the orbit structure on an invariant 2-torus under variation of the parameters of
the system. These bifurcations are responsible for such phenomena as frequency
and phase locking. See, for example, Arnold [19], Fenichel [95, 96], Kuznetsov
[200].
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