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Preface

A functional differential equation (FDE) describes the evolution of a dynamical sys-
tem for which the rate of change of the state variable depends on not only the current
but also the historical and even future states of the system. FDEs arise naturally in
economics, life sciences, and engineering, and the study of FDEs has been a major
source of inspiration for advancement of nonlinear analysis and infinite-dimensional
dynamical systems. Therefore, FDEs provide an excellent theoretical platform for
developing an interdisciplinary approach to understanding complex nonlinear phe-
nomena via appropriate mathematical techniques.

Unfortunately, the study of FDEs is difficult for newcomers, since a background
in nonlinear analysis, ordinary differential equations, and dynamical systems is a
prerequisite. On the other hand, the novelty and challenge of fundamental research
in the field of FDEs has often been underappreciated. This is especially so in our
effort to describe the qualitative behaviors of solutions near equilibria or periodic
orbits: these qualitative behaviors can be derived from those of finite-dimensional
(ordinary differential) systems obtained through a center and center-unstable man-
ifold reduction process, and hence the (local) bifurcation theory that deals with
significant changes in these qualitative behaviors is in principle a consequence of
the corresponding theory for finite-dimensional (ordinary differential) systems. The
highly nontrivial and often lengthy calculation of center manifold reduction, how-
ever, not only leads to enormous duplication of calculation efforts, but also prevents
us from discovering simple and key mechanisms behind observed bifurcation phe-
nomena due to the infinite-dimensionality of FDEs. This, in turn, makes it difficult
to express bifurcation results explicitly in terms of model parameters and to compare
and validate different results. Another challenge is the study of the birth and global
continuation of bifurcation of periodic solutions and the coexistence of multiple
periodic solutions when the parameters are far from the bifurcation/critical values.
There has been substantial progress dedicated to this global bifurcation problem,
and remarkably, the presence of a delayed or advanced argument in the nonlinearity
can sometimes facilitate the application of topological methods such as equivalent
degrees to examine the global continua of branches of periodic solutions, and this
has inspired interesting developments in the spectral analysis of circulant matrices.
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vi Preface

On the other hand, the study of dynamical systems with symmetries has become
well established as a major branch of nonlinear systems theory. The current interest
in the field dates mainly to the appearance of the equivariant branching lemma of
Vanderbauwhede and Cicogna and the equivariant Hopf bifurcation theorem of Gol-
ubitsky and Stewart, both of which are reviewed in the book by Golubitsky, Stewart
and Schaeffer. Since then, important new theories have been developed for more
complex dynamical phenomena, including the existence, stability, and bifurcations
of systems of heteroclinic connections, and the symmetry groups and bifurcations
of chaotic attractors.

To a large extent, the phenomenal growth in the subject has been due to its effec-
tiveness in explaining the bifurcations and dynamical phenomena that are seen in
a wide range of physical systems including coupled oscillators, reaction–diffusion
systems, convecting fluids, and mechanical systems. A local symmetric bifurca-
tion theory for FDEs can be derived from that of but since some special properties
of spatiotemporal symmetry of FDEs may be reflected generically in the reduced
finite-dimensional systems, one can and should make general observations about
the particular bifurcation patterns of symmetric FDEs.

The purpose of this book is to summarize some practical and general approaches
and frameworks for the investigation of bifurcation phenomena of FDEs depending
on parameters. The book aims to be self-contained, so the reader should find in
this book all relevant materials on bifurcation, dynamical systems with symmetry,
functional differential equations, normal forms, and center manifold reduction. This
material was used in graduate courses on functional differential equations at Hunan
University (China) and York University (Canada). We want to thank all students
in these courses for their careful reading and some helpful comments. We would
like especially to thank Dr. Jing Fang and Dr. Xiang-Sheng Wang for their careful
reading of an early version of the manuscript and for their critical comments.

This work was supported in part by the National Natural Science Foundation
(China), the Program for New Century Excellent Talents in University of Ministry
of Education (China), the Research Fund for the Doctoral Program of Higher Edu-
cation of China, the Hunan Provincial Natural Science Foundation, the NCE Cen-
tre Mathematics for Information Technology and Complex Systems, Mprime, the
Canada Research Chairs Program, and the Natural Sciences and Engineering Re-
search Council of Canada.

Changsha, Hunan, China Shangjiang Guo
Toronto, ON, Canada Jianhong Wu
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Chapter 1
Introduction to Dynamic Bifurcation Theory

1.1 Introduction

The change in the qualitative behavior of solutions as a control parameter (or control
parameters) in a system is varied and is known as a bifurcation. When the solutions
are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often
when the zero solution of the linearization of the system at the equilibrium changes
its stability. To illustrate the basic concepts of bifurcation phenomena, we consider
the following continuous dynamical system defined by the Cr (r≥ 1) vector field f :
Λ ×U →R

n:

ẋ = f (μ ,x), μ ∈Λ ⊆ R
m, x ∈U ⊆ R

n, (1.1)

where U and Λ are open sets, x is the state variable, and μ is the (bifurcation)
parameter.

Continuously varying μ may change the qualitative behavior of the solutions
of (1.1). A value μ ∈ Λ for which such a change occurs is called a bifurcation
(critical) value. The set of all bifurcation values is called the bifurcation set in the
parameter space R

m. We may use a bifurcation diagram to schematically show the
considered solutions (equilibria/fixed points, closed orbits/periodic orbits, invariant
tori) of a system as a function of a bifurcation parameter in the system. It is normal to
represent stable solutions with solid lines and unstable solutions with dashed lines.

Local bifurcations are relevant to the birth or initiation of bifurcations when the
bifurcation parameter is close to a bifurcation value. A local bifurcation from a given
solution (an equilibrium, a periodic orbit, etc.) can normally be detected from a local
stability analysis at the given solution. The global bifurcation thereby concerns the
continuation of a local bifurcation when the bifurcation parameter is away from the
bifurcation value.

The bifurcation phenomena is linked closely to the concepts of topological
equivalence, structural stability, and genericity, which are described in the next
section.

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction to Dynamic Bifurcation Theory

1.2 Topological Equivalence

In the study of dynamical systems, we are interested in not only specific solutions of
a specific system, but also classification of solutions of a particular system and clas-
sification of systems according to general qualitative behaviors, that is, the number,
position, and stability of equilibria, periodic orbits, and other isolated invariant sets.

In what follows, we will not distinguish a flow and a dynamical system. This
means that we consider a continuous mapping Φ: R×U → U over an open set
U ⊆R

n such that Φ(0,x) = x and Φ(t,Φ(s,x)) = Φ(t +s,x) for t, s ∈R, and x ∈U .
Sometimes, we write it as Φt := Φ(t, ·): U →U for t ∈ R.

We consider two dynamical systems to be (locally) equivalent if their (local)
phase portraits are similar in a qualitative sense, that is, if they can be locally
transformed into each other through a continuous transformation. More precisely,
we introduce the following definition.

Definition 1.1. A dynamical system Φ in R
n is said to be topologically equivalent

in a region U ⊂ R
n to a dynamical system Ψ in a region V ⊂ R

n if there exists a
homeomorphism h: U → V that maps the orbits of Φ in U onto the orbits of Ψ in
V , preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse
are continuous. A homomorphism is called a diffeomorphism if it is C1-smooth
and its inverse is also C1-smooth. The definition of topological equivalence can be
generalized to cover more general cases in which the state space is a complete met-
ric or, in particular, a Banach space. The definition also remains meaningful when
the state space is a smooth finite-dimensional manifold in R

n, for example, a two-
dimensional torus T2 or sphere S

2. The phase portraits of topologically equivalent
systems are often said to be topologically equivalent.

Example 1.1. Consider the flows Φt and Ψ t associated with the differential
equations

ẋ =−x and ẏ =−3y,

respectively. The homeomorphism h: R→R given by h(x) = x3 for x ∈R maps the
orbits of Φ onto those of Ψ .

Definition 1.2. Two flows Φt (on U) and Ψ t (on V ) are called topologically
conjugate if there exists a homeomorphism h: U →V such that

Ψ t = h ◦Φt ◦ h−1 for t ∈ R.

We also use the term smoothly conjugate (or diffeomorphic) if the involved homeo-
morphism is a diffeomorphism and the flows are smooth.

For example, for a continuous-time system

ẋ = f (x), x ∈ R
n, (1.2)



1.2 Topological Equivalence 3

if h is a diffeomorphism from R
n to R

n, and x = h(y), then the system

ẏ = g(y), y ∈ R
n (1.3)

with g(y) = [Dh(y)]−1 f (h(y)) for all y ∈ R
n is smoothly equivalent (or diffeomor-

phic) to system (1.2). In fact, denoting by Φt (x) the flow associated with system
(1.2), and letting Ψ t(y) = h−1(Φt (h(y))), we have

Dh(Ψ t(y))
d
dt

Ψ t(y) = f (Φt (h(y))),

and so
d
dt

Ψ t(y) = [Dh(Ψ t(y))]−1 f (Φt (h(y))) = g(Ψ t(y)),

which implies that Ψ t(y) is the flow associated with system (1.3). Therefore,
systems (1.2) and (1.3) are smoothly equivalent (or diffeomorphic).

In what follows, if the degree of smoothness of h is of interest, we also use the
term Ck-equivalent or Ck-diffeomorphic.

Two diffeomorphic systems are practically identical and can be viewed as the
same system written using different coordinates. Two diffeomorphic systems have
similar qualitative behaviors. For such systems, the eigenvalues of corresponding
equilibria are the same: Let x0 and y0 = h(x0) be such equilibria and let A(x0) and
B(y0) denote corresponding Jacobian matrices. Then we have

A(x0) = M−1(x0)B(y0)M(x0),

where M(x) = Dh(x). Therefore, the characteristic polynomials for the matrices
A(x0) and B(y0) coincide.

It is easy to construct nondiffeomorphic but topologically equivalent flows.
To see this, consider a smooth scalar position function μ : Rn→ (0,∞) and assume
that the right-hand sides of (1.2) and (1.3) are related by

f (x) = μ(x)g(x) for x ∈ R
n. (1.4)

Then systems (1.2) and (1.3) are topologically equivalent since their orbits are
identical, and it is the velocity of the motion that makes them different. Thus,
the homeomorphism h in Definition 1.1 is the identity map h(x) = x. In other
words, these two systems are distinguished only by the time parameterization along
the orbits. We say that two systems (1.2) and (1.3) satisfying (1.4) for a smooth pos-
itive function μ are orbitally equivalent. Usually, two orbitally equivalent systems
can be nondiffeomorphic, having cycles that look like the same closed curve in the
phase space but different periods. For example, the system

ṙ = r(1− r), θ̇ = 1

and the system

ρ̇ = 2ρ(1−ρ), ϕ̇ = 2
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in R
2 using polar coordinates are topologically equivalent, but not topologically

conjugate, because their periodic orbits r = 1 and ρ = 1 have periods 2π and π ,
respectively.

Let x0 be an equilibrium of the system (1.2), that is, f (x0) = 0, and let A denote
the Jacobian matrix D f (x) evaluated at x = x0. Let n−, n0, and n+ be the numbers
of eigenvalues of A (counting multiplicities) with negative, zero, and positive real
part, respectively. Recall that an equilibrium is called hyperbolic if n0 = 0, that
is, if A has no purely imaginary eigenvalues. A hyperbolic equilibrium is called a
hyperbolic saddle if n−n+ �= 0.

Topological equivalence of linear systems is generally easy to determine. If the
linearized flow near an equilibrium is asymptotically stable, then the equilibrium
is asymptotically stable. Moreover, two asymptotically stable n-dimensional linear
flows are topologically equivalent.

Example 1.2. Consider two linear planar systems:

ẋ =−x, ẏ =−y, (1.5)

and

ẋ =−x− y, ẏ = x− y. (1.6)

Clearly, the origin is a stable equilibrium in both systems. All other trajectories
of (1.5) are straight lines, while those of (1.6) are spirals. The equilibrium of
the first system is a node, while in the second systems it is a focus. These two
systems are neither orbitally nor smoothly equivalent. However, they are topologi-
cally equivalent.

We can further claim that near a hyperbolic equilibrium p, the system behaves
essentially like the linearized one. In other words, Φt is topologically equiva-
lent to eD f (p)t in a sufficiently small neighborhood of a hyperbolic equilibrium p
(Grobman–Hartman theorem). See Grobman [123], Hartman [161, 162], Hirsch
[163], Hale and Kocak [152] for details. As a result, determining topological equiv-
alence near hyperbolic equilibria boils down to counting the dimensions of the local
stable and unstable subspaces (manifolds).

Theorem 1.1. Two systems of differential equations with hyperbolic equilibria are
topologically equivalent near these equilibria if and only if their linearizations have
the same number n+ of eigenvalues with positive real parts and the same number
n− of eigenvalues with negative real parts.

1.3 Structural Stability

There are dynamical systems whose phase portrait (in some domain) does not
change qualitatively under all sufficiently small perturbations. For example, suppose
that (1.1) has an equilibrium x0 when μ = μ0, that is,

f (μ0,x0) = 0. (1.7)
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It is natural to ask about the stability of this equilibrium and how the stability or
instability is affected as μ is varied. Thus, we first linearize (1.1) at (μ0,x0) to get

ẋ = Dx f (μ0,x0)x, x ∈ R
n. (1.8)

If the eigenvalues of the linearized matrix Dx f (μ0,x0) are all nonzero, then the
linearized matrix is invertible, and by an application of the implicit function
theorem, there is a curve μ→ β (μ) in R

n such that β (μ0) = x0 and f (μ ,β (μ))≡ 0
for all sufficiently small |μ−μ0|. In other words, for each μ in the domain of β , the
point β (μ) ∈ R

n corresponds to an equilibrium point for the member of the family
(1.1) at the parameter value μ .

If the equilibrium x0 is hyperbolic, that is, none of eigenvalues of the linearized
matrix Dx f (μ0,x0) lie on the imaginary axis, then the linearized matrix of (1.1)
at (μ ,β (μ)) is Dx f (μ ,β (μ)) it depends smoothly on μ and coincides with
Dx f (μ0,x0) at μ = μ0. Recall that if Dx f (μ0,x0) has no eigenvalues on the imag-
inary axis, then neither does Dx f (μ ,β (μ)) for each μ in a sufficiently small
neighborhood of μ0. In other words, β (μ) is a hyperbolic equilibrium of (1.1) for
all μ in a sufficiently small neighborhood of μ0. Moreover, the numbers n+ and
n− of the positive and negative eigenvalues of Dx f (μ ,β (μ)) are fixed for these
values of μ . In view of Theorem 1.1, system (1.1) is locally topologically equiva-
lent to ẋ = f (μ0,x) near the equilibria. This means that a hyperbolic equilibrium is
structurally stable under smooth perturbations.

Inspired by the above property, we now can define a structurally stable system,
which means that every sufficiently close system is topologically equivalent to the
structurally stable one.

Definition 1.3. A flow Φ is said to be structurally stable in a region D ⊂ R
n if for

every flow Ψ that is sufficiently C1-close to Φ , there exist regions U and V with
D⊂U such that Ψ is topologically equivalent in V to Φ in U .

The following theorem results from the previous discussion.

Theorem 1.2. A flow with a hyperbolic equilibrium is structurally stable in a
neighborhood of the equilibrium.

In Definition 1.3, we require the C1 metric, instead of C0, because two C0 curves
may be arbitrarily close to each other but have different numbers of equilibria.
Moreover, it would be nice to show that structurally stable systems are generic.
The following classical theorem gives necessary and sufficient conditions for a
continuous-time system in a plane to be structurally stable.

Theorem 1.3 (Andronov and Pontryagin [16]). A smooth dynamical system

ẋ = f (x), x ∈ R
2,

is structurally stable in a region D0 ⊂ R
2 if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points.



6 1 Introduction to Dynamic Bifurcation Theory

Furthermore, for two-dimensional vector fields on compact manifolds, we have
the following result due to Peixoto [244].

Theorem 1.4 (Peixoto’s theorem [244]). Let D be a compact two-dimensional
manifold without boundary and let X k(D) denote the Ck (k ≥ 1) vector fields
defined on D . Then f ∈X k(D) is structurally stable on D if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points;

(iii) The nonwandering set consists of equilibria and periodic orbits.

Moreover, if D is orientable, then the set of such vector fields is open and dense in
X k(D).

This theorem is useful because it spells out precise conditions for structural
stability on the dynamics of a vector field on a compact two-manifold without
boundary under which it is structurally stable. Unfortunately, we do not have a sim-
ilar theorem in higher dimensions. This is in part due to the presence of complicated
recurrent motions (e.g., the Smale horseshoe). In light of this theorem, it appears
to be practically convenient to ignore more structurally unstable vector fields de-
fined on a compact two-dimensional manifold without boundary, because an arbi-
trarily small perturbation will usually turn a structurally unstable vector field into a
structurally stable one. However, as we shall see, if this vector field depends on a
parameter, more complicated dynamics will take place.

1.4 Codimension-One Bifurcations of Equilibria

Let x0 be a hyperbolic equilibrium point of (1.1) for μ = μ0. As we have seen in the
previous section, under a small parameter variation, the equilibrium moves slightly
but remains hyperbolic. Therefore, we can vary the parameter further and control
the equilibrium. It is clear that there are, generically, only two ways in which the
hyperbolicity condition can be violated. Either a simple real eigenvalue approaches
zero, or a pair of simple complex eigenvalues reaches the imaginary axis for some
values of the parameter.

If the equilibrium x0 of (1.1) is not hyperbolic, that is, Dx f (μ0,x0) has some
eigenvalues on the imaginary axis, then the topology of the local phase portrait of
the corresponding differential equation (1.1) at this equilibrium point may change
under perturbation, that is, a bifurcation occurs. For example, equilibria can be cre-
ated or destroyed, and time-dependent behavior such as periodic, quasiperiodic, ho-
moclinic, heteroclinic, or even chaotic dynamics can be created. Moreover, the more
eigenvalues on the imaginary axis, the more complicated the dynamics will be.

For equilibria of flows, a (generic) codimension-one bifurcation means that the
crossing of the stability region (the imaginary axis) is taking place with either one
eigenvalue of the linear part going through 0 or one pair of complex conjugate eigen-
values crossing the imaginary axis. This section will be devoted essentially to the
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proof that a nonhyperbolic equilibrium satisfying one of these two conditions is
structurally unstable and to the analysis of the corresponding bifurcations of the
local phase portrait under variation of the parameter.

Definition 1.4. The bifurcation associated with the appearance of eigenvalue 0 is
called a fold (or tangent) bifurcation.

This bifurcation is also associated with a lot of other names, including limit point
and turning point.

Definition 1.5. The bifurcation corresponding to the presence of a pair of complex
purely imaginary eigenvalues is called a Hopf (or Andronov–Hopf, or Poincaré–
Andronov–Hopf ) bifurcation.

As pointed out repeatedly by Arnold [19], examples of Hopf bifurcation can be
found in the work of Poincaré [248]. The first specific study and formulation of
a theorem in this area was due to Andronov [14]. However, the work of Poincaré
and Andronov was concerned with two-dimensional vector fields. The existence
of such a bifurcation was found in the context of general n-dimensional ordinary
differential equations (ODEs) by Hopf [167] in 1942. This was before the discovery
of the center manifold theorem. For these reasons, we usually refer to this kind of
bifurcation as a Poincaré–Andronov–Hopf bifurcation.

In the 1970s, Hsu and Kazarinoff [169], Poore [250], Marsden and McCracken
[217], and others discussed in their works the computation of important features of
the Hopf bifurcation, especially the direction of bifurcation and dynamical aspects
(stability, attractiveness, etc.), both from theoretical and numerical standpoints.
A very important new achievement was the proof by Alexander and Yorke [10]
of what is known as the global Hopf bifurcation theorem, which, roughly speaking,
describes the global continuation of the local branch. The theory was also extended
to allow further degeneracies (more than two eigenvalues crossing the imaginary
axis, or multiplicity higher than one, etc.), leading notably to the development
of the generalized Hopf bifurcation theory (Bernfeld et al. [31, 32], Negrini and
Salvadori [228]).

Now, if these phenomena were taking place in a linear system, then there would
be just a low-dimensional (1 or 2, respectively) invariant subspace to be affected
by the bifurcations. In what follows, we first study these bifurcations in systems of
smallest possible dimension for the bifurcations to take place. Here, the effort will
be to obtain expressions for these systems that are as simple as possible while still
capturing the bifurcations of interest, and at the same time to show that other sys-
tems undergoing the same bifurcation are locally topologically equivalent to these
simple ones. In subsequent chapters, we shall see that center manifold reduction
can transform the bifurcation problem in general functional differential equations
(of course, general n-dimensional ODEs) into that of ordinary differential equa-
tions on a one- or two-dimensional invariant manifold. Therefore, this part of study
is basic and crucial for discussing bifurcations in general functional differential
equations (see Chap. 7).
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1.4.1 Fold Bifurcation

Consider the following one-parameter scalar ODE:

ẋ = f (μ ,x), x, μ ∈ R, (1.9)

where f (0,0) = 0. That is, (1.9) has an equilibrium x0 = 0 when μ = μ0 = 0.
The condition ensuring a fold bifurcation of (1.9) is that fx(0,0) = 0. Usually, we
may encounter three situations, as discussed in this section.

Example 1.3. Consider the family of differential equations

ẋ = μ− x2, x,μ ∈R.

We see that μ = 0 is the bifurcation value. In particular, if μ > 0, then there are
two equilibria: an unstable equilibrium −√μ and a stable one

√μ . At the bifurca-
tion value μ = 0, there is only one equilibrium, which is not hyperbolic. If μ < 0,
there are no equilibria. The bifurcation diagram is the parabola μ = x2 labeled as
in Fig. 1.1. Notice that the parameter μ is assigned to the horizontal axis, while the
stable equilibria are drawn in solid lines and the unstable equilibria in dashed lines.

−4 0 4 8

−3

3

μ

x*

stable

unstable

Fig. 1.1 Bifurcation diagram of a saddle-node bifurcation

The type of bifurcation described in Example 1.3—on one side of a parameter
value there are no equilibria, and on the other side there are two equilibria—is
referred to as a saddle-node bifurcation. The next theorem lists sufficient conditions
for a saddle-node bifurcation to occur at (μ ,x) = (0,0) in the scalar system (1.9).
A more general theorem on saddle-node bifurcation will be formulated and proved
later for general delay differential equations.
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Theorem 1.5. Suppose f in (1.9) is sufficiently smooth and satisfies

f (0,0) = 0, fx(0,0) = 0, fμ(0,0) fxx(0,0) �= 0. (1.10)

Then there are smooth invertible local changes of coordinate and parameter that
transform the system (1.9) into the following normal form:

ẏ = γ± y2 +O(|y|3). (1.11)

Therefore, if fμ(0,0) fxx(0,0)< 0 (respectively, > 0), then near the origin, only two
equilibria exist for μ > 0 (respectively, < 0), only one equilibrium x = 0 exists for
μ = 0, and no equilibria exist for μ < 0 (respectively, > 0). In the case that two
equilibria exist, one is asymptotically stable and the other is unstable.

Proof. Expanding f with respect to x around μ = 0 yields

f (μ ,x) = f0(μ)+ f1(μ)x+ f2(μ)x2 +O(x3),

where

f j(μ) =
1
j!

∂ j f
∂x j (μ ,0), j = 0,1,2, . . . .

Obviously, f0(0) = f (0,0) = 0 and f1(0) = fx(0,0) = 0. Set ξ = x+ δ , where δ is
a constant independent of t. Then (1.9) can be transformed into

ξ̇ = f0(μ)− f1(μ)δ + f2(μ)δ 2 +O(δ 3)

+[ f1(μ)− 2 f2(μ)δ +O(δ 2)]ξ +[ f2(μ)+O(δ )]ξ 2 +O(ξ 3). (1.12)

Noting that f1(0) = 0 and f2(0) = 1
2 fxx(0,0) �= 0, and using the implicit function

theorem, we can find δ (μ) for small μ such that f1(μ)− 2 f2(μ)δ +O(δ 2) = 0.
This gives

δ (μ) =
fμx(0,0)

fxx(0,0)
μ +O(μ2).

Using this δ (μ), we have

ξ̇ = β (μ)+ [ f2(μ)+O(μ)]ξ 2 +O(ξ 3), (1.13)

where β (μ) = f ′0(0)μ +O(μ2). Recall that f ′0(0) = fμ(0,0) �= 0. Then the function
β is invertible near the origin. Hence, we can obtain μ(β ) with μ(0) = 0. Thus,
(1.13) can be changed into the form

ξ̇ = β ± c(β )ξ 2 +O(ξ 3),

where the sign is that of fxx(0,0) and c is a smooth positive function. Take y= c(β )ξ
and γ = c(β )β . Then we obtain (1.11), which is obviously topologically equivalent
to ẏ = γ± y2. The rest of the proof follows from Example 1.3. �

Remark 1.1. In the study of bifurcations, we usually have bifurcation conditions and
genericity conditions (nondegeneracy conditions). For the saddle-node bifurcation
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of (1.9), the bifurcation conditions are f (0,0) = 0 and fx(0,0) = 0, and the gener-
icity conditions are fμ(0,0) = 0 and fxx(0,0) = 0. The bifurcation conditions will
be used to numerically search for bifurcation points, while the genericity conditions
will be used to verify whether a bifurcation point is really of the type we are looking
for, i.e., to guarantee that locally, nothing more complicated can occur.

1.4.2 Poincaré–Andronov–Hopf Bifurcation

We start with a simple example in which a pair of simple complex conjugate eigen-
values cross the imaginary axis.

Example 1.4. Consider the following planar system:

ẋ = μx− y− x(x2+ y2),
ẏ = x+ μy− y(x2+ y2),

(1.14)

where x,y,μ ∈R. Using the complex and polar coordinates z = x+ iy= reiθ , system
(1.14) takes the forms

ż = (μ + i)z− z|z|2

and

ṙ = r(μ− r2), θ̇ = 1,

which can be solved for (r,θ ):

r =

{√
μ(1+Ce−2μt)−1, μ �= 0,√
(2t +C)−1, μ = 0,

θ = t− t0,
(1.15)

where C and t0 are determined by the initial condition. Variations of the phase
portrait of system (1.14) as μ passes through zero can be easily analyzed using
the polar form (1.15), since the equations for r and θ are uncoupled. We can see that
system (1.14) always has a unique equilibrium at the origin, which is a stable focus
for μ < 0 and an unstable focus for μ > 0. This equilibrium is surrounded for μ > 0
by an isolated closed orbit (limit cycle) that is unique and stable. This bifurcation is
supercritical because the closed orbit (limit cycle) appears after the bifurcation.

The bifurcation diagram for periodic solutions of (1.14) is simply a plot of the
solutions of μ = r2 in the (μ ,r)-plane together with the line r = 0 (see Fig. 1.2).
As usual, stable periodic orbits are indicated by solid curves, and unstable ones with
dashed curves.

Similarly, the system

ẋ = μx− y+ x(x2+ y2), (1.16)

ẏ = x+ μy+ y(x2+ y2),
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µ<0 µ>0
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stable unstable

stable

Fig. 1.2 A supercritical Hopf bifurcation

can be rewritten as

ż = (μ + i)z+ z|z|2

or

ṙ = r(μ + r2), θ̇ = 1.

This has an unstable periodic solution (limit cycle) for μ < 0. Hence this bifurcation
is subcritical.

As described in Example 1.4, in a Poincaré–Andronov–Hopf bifurcation, an
equilibrium of a system loses stability as a pair of complex conjugate eigenvalues
of the linearization around the equilibrium cross the imaginary axis of the com-
plex plane. Under reasonably generic assumptions about the dynamical system, we
can expect a small-amplitude limit cycle branching from the fixed point. Either the
limit cycle is orbitally stable and the bifurcation is supercritical, or the limit cycle is
unstable and the bifurcation is subcritical.

The next theorem lists sufficient conditions for a Poincaré–Andronov–Hopf
bifurcation to occur in a planar system.

Theorem 1.6 (Hassard and Wan [159]). Consider the following system:[
ẋ
ẏ

]
=

[
μ ω
−ω μ

][
x
y

]
+

[
f 1(x,y)
f 2(x,y)

]
, (1.17)
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where ω > 0 and f j is three times differentiable, satisfying f j
x (0,0) = f j

y (0,0) = 0,
j = 1,2. Then there exists a branch of periodic solutions of (1.17) bifurcating
from the trivial solution x = 0, and the Poincaré–Andronov–Hopf bifurcation is
supercritical (subcritical), i.e., bifurcating periodic solutions exist for μ > 0 (re-
spectively, < 0) if ϒ < 0 (respectively, > 0), where

ϒ = f 1
xxx + f 1

xyy + f 2
xxy + f 2

yyy

+
1
ω
[ f 1

xy( f 1
xx + f 1

yy)− f 2
xy( f 2

xx + f 2
yy)− f 1

xx f 2
xx + f 1

yy f 2
yy].

More generally, in order to investigate Poincaré–Andronov–Hopf bifurcations in
high-dimensional ODEs, even in infinite-dimensional ODEs generated by partial
differential equations (PDEs) and functional differential equations (FDEs), we may
employ center manifold reduction and normal form theory to obtain the following
system:

ż = λ (μ)z+C(μ)z|z|2 +O(|z|5), (μ ,z) ∈ R×C, (1.18)

where λ (0) = iω and ω > 0. Detailed analysis can be found in Sects. 3.4.1, 4.3.1,
and 7.3.2. Also see [54, 55, 74, 152, 200, 257, 282, 302] for more background on
Poincaré-Andronov-Hopf bifurcation.

Definition 1.6. The first Lyapunov coefficient of a Hopf bifurcation is defined by
l1(0) = Re{C(0)}/ω .

As stated in Lemma 3.7 of Kuznetsov [200], if Re{λ ′(0)}Re{C(0)} �= 0, then
(1.18) can be transformed by a parameter-dependent linear coordinate transforma-
tion, a time rescaling, and a nonlinear-time reparameterization into an equation of
the form

ż = (β + i)z+ sz|z|2 +O(|z|5), (μ ,z) ∈ R×C, (1.19)

where s = sgnRe{C(0)} = sgnl1(0) and β is the new parameter. Obviously, the
truncated system of (1.19) is equivalent to either (1.14) (in the cases in which s =
−1) or (1.16) (in the cases in which s = 1). Thus, the bifurcation direction and
stability of bifurcated periodic solutions are determined by the signs of Re{λ ′(0)}
and Re{C(0)} (or equivalently, l1(0)).

1.5 Transcritical and Pitchfork Bifurcations of Equilibria

In a saddle-node bifurcation, on one side of a parameter value there is no
equilibrium, and on the other side there are two equilibria. In some examples,
we may meet another type of bifurcation: both equilibria exist before and after
the bifurcation value, and there is one unstable equilibrium and one stable one;
however, their stability is exchanged when they collide. So the unstable equilibrium
becomes stable and vice versa. We refer to this type as a transcritical bifurcation,
as shown in the following example.
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Example 1.5. Consider a vector field

ẋ = μx− x2, x,μ ∈ R.

If μ < 0, there are two equilibria: x = 0, which is stable, and x = μ , which is
unstable. These two equilibria coalesce at the bifurcation value μ = 0. If μ > 0,
there are also two equilibria: x = 0 is unstable, while x = μ is stable. The bifurcation
diagram is depicted in Fig. 1.3.
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Fig. 1.3 Bifurcation diagram of a transcritical bifurcation

Similarly to the proof of Theorem 1.5, we may list sufficient conditions for a
transcritical bifurcation for the scalar system (1.9).

Theorem 1.7. Suppose f in (1.9) is sufficiently smooth and satisfies

f (μ ,0) = 0, fx(0,0) = 0, fxμ(0,0) fxx(0,0) �= 0. (1.20)

Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

ẏ = γy± y2 +O(|y|3). (1.21)

Therefore, besides the trivial solution, system (1.9) has a nonzero equilibrium,
which continuously depends on μ for all sufficiently small |μ | and is stable for all
sufficiently small μ such that μ fxμ(0,0)> 0.

To illustrate another generic equilibrium bifurcation, we consider the following
example.
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Fig. 1.4 Bifurcation diagram of a pitchfork bifurcation

Example 1.6. The vector field

ẋ = μx− x3, x,μ ∈ R

has one stable equilibrium x = 0 if μ < 0, and it has an unstable equilibrium x = 0
and two stable equilibria x =±√μ if μ > 0. See Fig. 1.4.

The bifurcation diagram is shown in Fig. 1.4, and this kind of bifurcation is
known as a pitchfork bifurcation. Note that x = 0 is always an equilibrium. How-
ever, as the parameter μ passes through the bifurcation value μ = 0, the equilibrium
at the origin loses its stability and two new stable equilibria are bifurcated from the
origin. This is also an example of spontaneous symmetry breaking, because the two
bifurcated equilibria do not have the symmetry Z2 possessed by the system. More-
over, this pitchfork bifurcation is called supercritical because new equilibria exist
for a parameter μ that is greater than the bifurcation value μ = 0. When additional
equilibria exist for a parameter μ smaller than the bifurcation value μ = 0, the bi-
furcation is called subcritical. An example of a subcritical pitchfork bifurcation can
be seen in the equation ẋ = μx+ x3.

Similarly, we may list sufficient conditions for a pitchfork bifurcation in the
scalar system (1.9). A more general theorem on pitchfork bifurcation will be
formulated and proved in Sect. 7.2.

Theorem 1.8. Suppose f in (1.9) is sufficiently smooth and satisfies

f (μ ,−x) =− f (μ ,x), fx(0,0) = 0, fxμ(0,0) fxxx(0,0) �= 0. (1.22)
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Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

ẏ = γy± y3 + o(|y|3). (1.23)

Therefore, if fxμ (0,0) fxxx(0,0) < 0 (respectively, > 0), then two nontrivial
equilibria exist for μ > 0 (respectively, < 0), and only the trivial equilibrium con-
tinues to exist for μ < 0 (respectively, > 0). Moreover, the two nontrivial equilibria
coalesce into zero as μ goes to 0.

Remark 1.2. The codimension of a bifurcation is the number of parameters that must
be varied for the bifurcation to occur. It coincides with the number of transversal-
ity conditions. This also corresponds to the codimension of the parameter set for
which the bifurcation occurs within the full space of parameters. Saddle-node bi-
furcations and Hopf bifurcations are the only generic local bifurcations that are re-
ally of codimension one, while transcritical and pitchfork bifurcations both have a
higher codimension. However, transcritical and pitchfork bifurcations are also often
thought of as begin of codimension one, because the normal forms (1.21) and (1.23)
can be written with only one parameter.

Remark 1.3. In Theorems 1.7 and 1.8, we study the transcritical and pitchfork
bifurcations of equilibria in the one-parameter scalar system (1.9). Based on
center manifold reduction (Chap. 3) and normal form theory (Chap. 4), we can
discuss these bifurcations in high-dimensional systems, even in infinite-dimensional
systems such as functional differential equations. See Sect. 7.2 for more details.

1.6 Bifurcations of Closed Orbits

When (1.1) has a periodic orbit Γ0 when μ = μ0, one may also be interested in the
qualitative behaviors of solutions of (1.1) in a neighborhood of the periodic orbit Γ0

for the parameter μ near μ0.
The so-called Poincaré map is a technical tool for studying the local behaviors

of solutions of (1.1) near a periodic orbit. To describe this tool, we consider a local
transversal section Lε to the periodic orbit Γ0 (see Fig. 1.5). There are α0 > 0 and δ >
0 such that for 0≤ |μ−μ0|< α0 and x0 ∈ Lδ , there is a first time T (μ ,x0)> 0 such
that the solution x(t; μ ,x0) of (1.1) satisfies x(T (μ ,x0); μ ,x0) ∈ Lε . Therefore, we
define the Poincaré map depending on parameters as Π(μ ,x0) = x(T (μ ,x0); μ ,x0)
mapping Lδ to Lε . Periodic orbits near Γ0 correspond to fixed points of Π(μ ,x0).
The periodic orbit through the point x0 ∈ Lδ is said to be hyperbolic if x0 is a hy-
perbolic fixed point of the Poincaré map Π(μ0, ·), that is, none of the eigenvalues of
the linearized operator DxΠ(μ0,x0) (also referred to as Floquet multipliers) lie on
the unit circle.
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x* xn+1 xn

Γ0

Lε

Fig. 1.5 An illustration of the Poincaré map for a periodic orbit, where xn+1 is the image of xn

under the Poincaré map

By means of the Poincaré map, we can investigate the behavior of solutions near
a periodic solution. If Γ0 is hyperbolic, then for each μ with |μ− μ0| small, there is
a unique periodic orbit Γμ near Γ0, and Γμ is also hyperbolic. When Γ0 is nonhyper-
bolic, the bifurcations near the periodic orbit Γ0 can be determined from those of the
Poincaré map Π(μ ,x0).

Example 1.7 (Saddle-node bifurcation of periodic orbits). Consider the planar
system

ẋ = μx− y+ x(x2+ y2)(1− x2− y2), (1.24)

ẏ = x+ μy+ y(x2+ y2)(1− x2− y2),

where x,y,μ ∈ R. In polar coordinates x+ iy = reiθ , the system (1.24) has the form

ṙ = r(μ + r2− r4),
θ̇ = 1.

(1.25)

Since the two equations above are uncoupled, we may investigate directly the
local fold bifurcations for the r-equation using the general arguments in Sect. 1.4.
However, the r-equation is so special that we can employ the following arguments
to depict the global bifurcation explicitly and directly.

Indeed, if μ = −0.25, then the periodic orbit is given by r =
√

2
2 , and the

transversal section L becomes

L = {(r,θ ) ∈R×S
1 : r > 0, θ = 0}.

So the poincaré map Π(−0.25,r) has a fixed point at r =
√

2
2 . Moreover, it is easy

to see that DrΠ(−0.25,
√

2
2 ) = 1. Consequently, the corresponding periodic orbit

is nonhyperbolic. Moreover, since the first equation is independent of θ , it is easy
to see that in the radial direction, system (1.25) undergoes a saddle-node bifurca-
tion as the parameter μ passes through−0.25. If μ ∈ (−0.25,0), system (1.25) has
two periodic orbits: a stable periodic orbit r =

√
0.5+

√
μ + 0.25 and an unsta-

ble periodic orbit r =
√

0.5−√μ + 0.25. If μ < −0.25, then system (1.25) has no
periodic orbits, because ṙ < 0 and all the solutions tend to the origin as t → ∞; see
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Fig. 1.6. At the bifurcation value μ = −0.25, there is only one semistable periodic

orbit r =
√

2
2 , which is not hyperbolic and has a Floquet multiplier equal to one.

For a nonhyperbolic periodic orbit of a higher-dimensional continuous dynamical
system, there may be some bifurcations of closed orbits, which cannot happen in a
planar system. For example, if at μ = μ0, the closed orbit has a Floquet multiplier
−1 and the modulus of all the remaining Floquet multipliers are not equal to 1, then
a period-doubling bifurcation (also referred to as flip or subharmonic bifurcation)
of the closed orbit may take place (see Fig. 1.7). Namely, as μ passes through μ0,
the closed orbit Γ0 becomes another closed orbit Γμ with approximately twice the
period of Γ0. See Arnold [19], Newhouse–Palis–Takens [230], Feigenbaum [94] for
further information. If at μ = μ0 the closed orbit Γ0 has a pair of complex conjugate
Floquet multipliers on the unit circle, then as μ passes through μ0, this nonhyper-
bolic closed orbit may bifurcate into a two-dimensional invariant torus Γμ (or T2).
This bifurcation has many names. Some call it Neimark–Sacker bifurcation, while
others call it the secondary Andronov–Hopf bifurcation due to its similarity to that
for flows discussed in the previous section. Detailed analysis of Neimark–Sacker
bifurcations can be found in Ruelle and Takens [256], Sacker [258], and Kuznetsov
[200]. For details and further results on periodic orbits and their bifurcations, see,
for example, [17, 63, 64, 98–102, 121, 122, 143, 151–155, 185, 212–214, 225, 288].

1.7 Homoclinic Bifurcation

A homoclinic orbit of a system is given by the intersection of the stable and
unstable manifolds of a saddle-type invariant set (see Andronov and Leontovich
[15], Kuznetsov [200]). Recall that the stable manifold is defined as the set of all
trajectories that tend to the invariant set in forward time, and the unstable manifold
is defined as the set of all trajectories that tend to the invariant set in backward time.
Here, the invariant sets that we consider are steady states (equilibria) and/or periodic
solutions.

For example, an orbit Γ0 starting at a point x ∈ R is called homoclinic to the
equilibrium x0 of system (1.1) with μ = μ0 if the solution ϕ(t;x,μ0) tends to x0

as t →±∞. In particular, if at μ = μ0, system (1.1) has a homoclinic loop Γ0, and
the intersection of the stable and unstable manifolds of equilibria or closed orbits
of system is not transversal,1 then system (1.1) is not structurally stable. A slight
perturbation of the parameter μ makes the stable and unstable manifolds either non-
intersecting or transversally intersecting, and so may change the topological struc-
ture of the vector field of (1.1). Thus, closed orbits can be created or destroyed, and
time-dependent behaviors such as invariant tori and even chaotic dynamics can be
created. Therefore, a homoclinic orbit to a steady state is of codimension one; it may
be destroyed by small perturbations to the system parameters.

1 Two smooth manifolds M, N ∈ Rn intersect transversally if there exist n linearly independent
vectors that are tangent to at least one of these manifolds at every intersection point.
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μ<−0.25 μ=−0.25

−0.25<μ<0 μ ≥ 0
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Fig. 1.6 The bifurcation phenomena of system (1.24)

Γ0

Γ1Γ0

Fig. 1.7 Period-doubling bifurcation of a closed orbit
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However, if a homoclinic orbit to a periodic solution is the transversal
intersection of the stable and unstable manifolds of the periodic solution (Kuznetsov
[200, Sects. 6.1 and 7.2.1]), then it cannot be destroyed by a small perturbation, but
it can be destroyed through a codimension-one homoclinic tangency. This occurs
when the intersection of the stable and unstable manifolds becomes tangential,
and thus a small perturbation can separate the manifolds completely. A transition
between a homoclinic orbit of a saddle-focus-type steady state and a homoclinic
orbit of a periodic solution occurs at a codimension-two Shil’nikov–Hopf bifurca-
tion (see Hirschberg and Knobloch [165]). At the Shil’nikov–Hopf bifurcation, the
homoclinic orbit is transferred from the steady state to the periodic solution.

Example 1.8 (Periodic orbit from a homoclinic loop). Consider the planar system

ẋ = 2y, (1.26)

ẏ = 2x− 3x2− y(x3− x2 + y2− μ),

where x,y,μ ∈ R. For all values of μ , system (1.26) always has two equilibria: one
saddle (0,0) and one source (2/3,0) when μ >−4/27. When μ = 0, we can employ
Lyapunov functions V (x,y) = x3− x2 + y2 and phase portrait analysis to show that
system (1.26) has a homoclinic orbit loop through the origin and attracts from inside,
as seen in Fig. 1.8. For−4/27< μ < 0, using the invariance principle, one can show
that there is an orbitally asymptotically stable periodic orbit lying on the curves
x3−x2 +y2−μ = 0. As μ increases and tends to zero, the periodic orbit grows until
it collides with the saddle point. At the bifurcation point μ = 0, the period of the
periodic orbit has grown to infinity, and it has become a homoclinic orbit. For μ > 0,
the homoclinic loop is broken, and also there is no periodic orbit. This sequence of
bifurcations is illustrated in Fig. 1.8. Therefore, there is a homoclinic bifurcation
at μ = 0.

A homoclinic bifurcation often occurs when a periodic orbit collides with a
saddle point. Homoclinic bifurcations can occur supercritically or subcritically.
In three or more dimensions, bifurcations of higher codimension can occur, pro-
ducing complicated, possibly chaotic, dynamics [297, 298].

1.8 Heteroclinic Bifurcation

An orbit Γ0 starting at a point x ∈ R is called heteroclinic to the equilibria x1 and
x2 �= x1 of system (1.1) with μ = μ0 if the solution ϕ(t;x,μ0) tends to x1 as t → ∞
and to x2 as t → ∞. The nontransversal heteroclinic case is somehow trivial, since
the disappearance of the connecting orbit is the only essential event in a sufficiently
small neighborhood of Γ0∪{x1,x2} (see Example 1.9).

Example 1.9 (Heteroclinic bifurcation). Consider the planar system

ẋ = x2− y2− 1, (1.27)

ẏ = μ + y2− xy,
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μ<0 μ=0

μ>0
μ

T

Fig. 1.8 Bifurcation phenomena in (1.26)

where x,y,μ ∈ R. When μ = 0, system (1.27) has a heteroclinic trajectory
connecting the two saddle points (1,0) and (−1,0). However, there is no hete-
roclinic trajectory when μ �= 0. Therefore, there is a heteroclinic bifurcation at
μ = 0 (Fig. 1.9).

1.9 Two-Parameter Bifurcations of Equilibria

Here we briefly review the generic bifurcations in two-parameter families of
differential equations. We only give a list for them, and refer to Kuznetsov
[200, 201], Guckenheimer [126], or Guckenheimer and Holmes [125] for anal-
ysis. There are two categories of generic bifurcations in two-parameter families: (1)
extra eigenvalues can approach the imaginary axis; (2) some of the genericity con-

μ=0 μ ≠ 0

Fig. 1.9 Bifurcation phenomena in (1.27)
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ditions for the codimension-one bifurcations can be violated. Thus, we can identify
five bifurcation (Bogdanov–Takens bifurcation, cusp bifurcation, Bautin bifurca-
tion, fold-Hopf bifurcation, and Hopf–Hopf bifurcation) points that one can meet
in generic two-parameter systems while moving along codimension-one curves.
Each of these bifurcations is characterized by two independent conditions. This
section is devoted to the study of these bifurcations in the least possible phase-space
dimensions.

1.9.1 Bogdanov–Takens Bifurcation

The Bogdanov–Takens bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue of (algebraic) multiplicity two. It is named after Rifkat Bogdanov
and Floris Takens, who independently and simultaneously described this bifurca-
tion. The main features of Bogdanov–Takens bifurcation were known to mathemati-
cians of the Andronov school in the late 1960s. However, the complete picture is due
to Bogdanov [35], as announced by Arnold [20] and Takens [274]. Their analysis is
based on the Pontryagin [249] technique.

The usual normal form of the Bogdanov–Takens bifurcation is

ẋ = y,

ẏ = μ1 + μ2x+ x2± xy+O(
√
(x2 + y2)3),

which was introduced by Bogdanov (see Sect. 7.4.2 for more details), while the
normal form derived by Takens is

ẋ = y+ μ2x+ x2 +O(
√
(x2 + y2)3),

ẏ = μ1± x2 +O(
√
(x2 + y2)3).

These two systems are equivalent, and their detailed analysis can be found, for
example, in Guckenheimer and Holmes [125] and Kuznetsov [200]. In the above
systems, four associated bifurcation curves meet at the Bogdanov–Takens bifur-
cation: two branches of the saddle-node bifurcation curve, an Andronov–Hopf
bifurcation curve, and a saddle homoclinic bifurcation curve. Moreover, these
bifurcations are nondegenerate, and no other bifurcations occur in a small fixed
neighborhood of (x,y) = (0,0) for parameter values sufficiently close to μ = 0.
In this neighborhood, the system has at most two equilibria and one limit cycle.

If system (1.1) has a fixed equilibrium x = x0 for all parameters μ , and the
equilibrium x0 has a zero eigenvalue of (algebraic) multiplicity two at μ = 0, then
the normal form of (1.1) at (μ ,x) = (0,x0) is not equivalent to the above two systems
derived by Bogdanov or Takens. See Sect. 7.4.3 for more details. Therefore, the goal
of this subsection is to investigate the following two-parameter system:

ẋ = y, (1.28)

ẏ = μ1x+ μ2y+ x2 + xy,
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where (μ1,μ2) ∈ R
2. At (μ1,μ2) = (0,0), the linearization of (1.28) at the

equilibrium O = (0,0) has exactly one eigenvalue 0 of geometric multiplicity
one and algebraic multiplicity two. The critical point (μ1,μ2) = (0,0) is referred to
as a Bogdanov–Takens point.

It is easy to see that system (1.28) always has two equilibria: O = (0,0) and
E = (−μ1,0). Moreover, the characteristic equation of (1.28) at the equilibria O
and E are λ 2− μ2λ − μ1 = 0 and λ 2− (μ2− μ1)λ + μ1 = 0, respectively. Each
of these two equations can have between zero and two real roots. However, the
discriminant parabolas {(μ1,μ2) : μ2

2 +4μ1 = 0} and {(μ1,μ2) : (μ2−μ1)
2−4μ1 =

0} are not bifurcation curves at which the equilibrium O or E undergoes a node to
focus transition. Moreover, it is easy to see that the equilibrium O (respectively, E)
is a saddle for all parameters μ1 > 0 (respectively, μ1 < 0).

We can check that the equilibria O and E have a pair of purely imaginary
eigenvalues on the lines l1 = {(μ1,μ2) : μ1 < 0, μ2 = 0} and l2 = {(μ1,μ2) : μ1 =
μ2≥ 0}, respectively. This implies that the equilibrium O (or E) undergoes a nonde-
generate Hopf bifurcation along the line l1 (respectively, l2), giving rise to an unsta-
ble limit cycle, since the first Lyapunov coefficients are both 1/|μ1|> 0. The cycle
exists near l1 (or l2) for μ2 < 0 (respectively, μ2 < μ1). We have the following results
on the existence of a homoclinic bifurcation.

Theorem 1.9. There exist exactly two smooth curves m1 and m2 corresponding to
saddle homoclinic bifurcations in system (1.28) that originate at (μ1,μ2) = (0,0)
and have the following local representation:

m1 =

{
(μ1,μ2) : μ2 =

1
7

μ1 + o(|μ1|), μ1 ≤ 0

}

Fig. 1.10 Bifurcation sets for (1.28)

and

m2 =

{
(μ1,μ2) : μ2 =

6
7

μ1 + o(|μ1|), μ1 ≥ 0

}
.

Moreover, for ‖(μ1,μ2)‖ small, system (1.28) has a unique and hyperbolic unstable
cycle for parameter values inside the region bounded by the Hopf bifurcation curve
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l1 (or l2) and the homoclinic bifurcation curve m1 (respectively, m2), and no cycles
outside these regions.

Proof. First, we restrict our attention to the parameter region J2 in Fig. 1.10.
Performing a singular rescaling and introducing a new time

u = x/(−μ1), v = y/
√
(−μ1)3, s = t

√
(−μ1),

reduces (1.28) to

u̇ = v, (1.29)

v̇ = u(u− 1)− (γ1v+ γ2uv),

where the dots mean derivatives with respect to the new time s and

γ1 =−μ2/
√
(−μ1), γ2 =−

√
(−μ1). (1.30)

Clearly, system (1.29) is orbitally equivalent to a system induced by (1.28) with
the help of (1.30). Studying the limit cycles and homoclinic orbits of (1.29) for
(γ1,γ2) �= (0,0) provides complete information on these objects in (1.28). As stated
in Kuznetsov 1998 [200, Sect. 8.8], there is a unique smooth curve m corresponding
to a saddle homoclinic bifurcation in system (1.29) that originates at (γ1,γ2) = (0,0)
and has the following local representation:

m =

{
(γ1,γ2) : γ1 =−1

7
γ2 + o(|γ2|), γ2 ≤ 0

}
.

This homoclinic curve is mapped by (1.30) into the curve m1. Using arguments
similar to those in Kuznetsov 1998 [200, Sect. 8.8], we see that the cycle in (1.28)
is unique and hyperbolic within the region bounded by l1 and m1.

In what follows, we focus on the parameter region J5, where O is a saddle and E
is a stable focus. Translate the origin of the coordinate system to the left (antisaddle)
equilibrium E of system (1.28):

ξ1 = x+ μ1, ξ2 = y.

This obviously gives

ξ̇1 = ξ2, (1.31)

ξ̇2 = −μ1ξ1 +(μ2− μ1)ξ2 + ξ 2
1 + ξ1ξ2.

Performing a singular rescaling and introducing a new time

u = x/μ1, v = y/
√

μ3
1 , s = t

√
μ1

reduces (1.31)–(1.29) with

γ1 = (μ1− μ2)/
√

μ1, γ2 =−√μ1. (1.32)
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Thus, the homoclinic curve m is mapped by (1.32) into the curve m2. Similarly, the
cycle in (1.28) is unique and hyperbolic within the region bounded by l2 and m2. �

Thus, for (μ1,μ2) ∈ m2 (or (μ1,μ2) ∈ m1), there is an orbit homoclinic to the
equilibrium O (respectively, E). In fact, we can also have nearly explicit expressions
for the homoclinic orbits. Scaling system (1.28) by

t∗ = εt, x∗ = x/ε2, μ∗1 = μ1/ε2, μ∗2 = μ2/ε2,

and then dropping the ∗ gives

x′′ − ε[μ2x′+ xx′]− (μ1x+ x2) = O(ε2). (1.33)

Letting ε = 0, the equation has an explicit homoclinic orbit for μ1 > 0:

x =−2μ1

2

[
1− tanh2

(√μ1

2
t

)]
.

Using the Melnikov method (see, for example, Guckenheimer and Holmes 1983
[125]), we can compute parameter values for which the homoclinic orbit to the
equilibrium O persists for ε . Moreover, the nearly explicit expressions for the
homoclinic orbit to the equilibrium E can be discussed analogously.

Make a round trip near the Bogdanov–Takens point (μ1,μ2) = (0,0)
(see Fig. 1.10), starting from region J1, where equilibrium E is a saddle. There is
a nonbifurcation curve (not shown in the figure) located in J1 and passing through
the origin at which the equilibrium O undergoes an unstable node to an unstable
focus transition. Entering from region J1 into region J2 through the Hopf bi-
furcation boundary l1, the unstable focus O gains stability, and an unstable limit
cycle O1 is present for sufficiently small parameters |μ1| and |μ2| satisfying μ1 < 0
and μ2 < 0. If we continue the journey counterclockwise, the unstable limit cycle
O1 grows and approaches the saddle, turning into a homoclinic orbit at m1. There
are no cycles in region J3, where the equilibrium E remains a saddle while the
stable focus O becomes a stable node. Entering from region J3 into region J4

through the negative μ2-axis, the two equilibria O and E coalesce into zero and then
exchange their properties, i.e., the stable node O becomes a saddle, while the saddle
E becomes a stable node. In region J4, the equilibrium O remains a saddle, while
the stable node E becomes a stable focus. Due to Theorem 1.9, system (1.28) has a
homoclinic orbit at the curve m2. As (μ1,μ2) continues moving counterclockwise
in region J5, the homoclinic orbit turns into an unstable limit cycle, which shrinks
and collides with equilibrium E and then disappears at the curve l2. In region J6,
the unstable focus E turns into an unstable node, while O remains a saddle.
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1.9.2 Cusp Bifurcation

Cusp bifurcation is a bifurcation of equilibria in a two-parameter family of
autonomous ODEs at which the critical equilibrium has one zero eigenvalue and
the quadratic coefficient for the saddle-node bifurcation vanishes. Let us begin by
considering the following example.

Example 1.10. Consider the following two-parameter system

ẋ = μ1 + μ2x− x3, (x,μ1,μ2) ∈ R
3. (1.34)

At (μ1,μ2) = (0,0), the linearization of (1.34) at the equilibrium 0 has exactly a
simple eigenvalue 0. The critical point (μ1,μ2) = (0,0) is referred to as a cusp
point. The local bifurcation diagram of (1.34) is presented in Fig. 1.11. The cusp
point (μ1,μ2) = (0,0) is the origin of two branches of the saddle-node bifurcation
curve:

LP± = {(μ1,μ2) : μ1 =∓ 2

3
√

3
μ3/2

2 , μ2 > 0},

which divides the parameter plane into two regions J1,2. Inside the region J1,
there are three equilibria, two stable and one unstable. In the region J2, there is a
single equilibrium, which is stable. A nondegenerate fold bifurcation (with respect
to the parameter μ1) takes place if we cross either LP+ or LP− at any point other
than the origin. More precisely, if the curve LP+ is crossed from region J1 to re-
gion J2, the right stable equilibrium collides with the unstable one, and then both
disappear. The same happens to the left stable equilibrium and the unstable equi-
librium at the curve LP−. In the symmetric case μ1 = 0, one observes a pitchfork
bifurcation as μ2 is reduced, with one stable solution suddenly splitting into two
stable solutions and one unstable solution as the physical system passes to μ2 > 0
through the cusp point μ = 0 (an example of spontaneous symmetry breaking). In
other words, if we approach the cusp point from inside the region J1, all three equi-
libria merge together into a triple root of the right-hand side of (1.34). Away from
the cusp point, there is no sudden change in a physical solution being followed:
when passing through the curve of saddle-node bifurcations, all that happens is that
an alternative second solution becomes available.

In view of the above example, at the cusp bifurcation point, two branches of
the saddle-node bifurcation curve meet tangentially, forming a semicubic parabola.
For nearby parameter values, the system can have three equilibria that collide and
disappear pairwise via the saddle-node bifurcations. The cusp bifurcation implies
the presence of a hysteresis phenomenon.

Cusp bifurcation occurs also in infinite-dimensional ODEs generated by PDEs
and DDEs, to which the center manifold theorem (see Chap. 3) applies. See Arrow-
smith and Place [21] for details. The nomenclature and analysis of cusp bifurcations
is based on cusps in singularity theory, where they appear as one of Thom’s seven el-
ementary catastrophes [275, 276]. The following theorem lists sufficient conditions
for a general one-dimensional ODE.
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Fig. 1.11 Bifurcation sets for (1.34)

Theorem 1.10. Suppose the system

ẋ = f (μ ,x), x ∈ R, μ = (μ1,μ2) ∈ R
2, (1.35)

with a smooth function f , has at μ = 0 the equilibrium x = 0 for which the cusp
bifurcation conditions are satisfied, namely, fx(0,0) = fxx(0,0) = 0. Assume that
the following genericity conditions are satisfied:

fxxx(0,0) �= 0, det

[
fμ1 fμ2

fxμ1 fxμ2

]
(μ,x)=(0,0)

�= 0. (1.36)

Then there are smooth invertible coordinate and parameter changes transforming
the system into

ẏ = β1 +β2y+ sy3 +O(y4), (1.37)

where the s = sign fxxx(0,0) and O(y4) terms depend smoothly on (β1,β2).

Proof. Expand f with respect to x around μ = 0:

f (μ ,x) = f0(μ)+ f1(μ)x+ f2(μ)x2 + f3(μ)x3 +O(x3),

where

f j(μ) =
1
j!

∂ j f
∂x j (μ ,0), j = 0,1,2, . . . .

Obviously, f0(0) = f (0,0) = 0, f1(0) = fx(0,0) = 0, and f2(0) = 1
2 fxx(0,0) = 0.

Set ξ = x+δ (μ), where δ is a constant independent of t. Then (1.35) can be trans-
formed into

ξ̇ = [ f0(μ)− f1(μ)δ + δ 2ϕ(μ ,δ )]+ [ f1(μ)− 2 f2(μ)δ + δ 2φ(μ ,δ )]ξ
+[ f2(μ)− 3 f3(μ)δ + δ 2ψ(μ ,δ )]ξ 2 +[ f3(μ)+ δθ (μ ,δ )]ξ 3 +O(ξ 4)

(1.38)
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for some smooth functions ϕ , φ , ψ , and θ . Since f2(0) = 0, we cannot use the
implicit function theorem to select a function δ (μ) to eliminate the linear terms in
ξ in the above equation. However, in view of f3(0) = 1

6 fxxx(0,0) �= 0, there is a
smooth shift function δ (μ), δ (0) = 0, that annihilates the quadratic terms in the
equation for all sufficiently small ‖μ‖. Indeed, let F(μ ,δ ) = f2(μ)− 3 f3(μ)δ +
δ 2ψ(μ ,δ ). Then we have F(0,0) = 0 and Fδ (0,0) = −3 f3(0) �= 0. Therefore, the
implicit function theorem gives the (local) existence and uniqueness of a smooth
scalar function δ = δ (μ) such that δ (0) = 0 and F(μ ,δ (μ)) = 0 for ‖μ‖ small
enough. Now with δ (μ) as constructed above, (1.38) contains no quadratic terms.
Let γ(μ) = (γ1(μ),γ2(μ)) be defined as

γ1(μ) = f0(μ)− f1(μ)δ (μ)+ δ 2(μ)ϕ(μ ,δ (μ)),
γ2(μ) = f1(μ)− 2 f2(μ)δ (μ)+ δ 2(μ)φ(μ ,δ (μ)).

Clearly, γ(0) = 0, and the Jacobian matrix of the map γ = γ(μ) is nonsingular at
μ = 0:

det

(
∂γ
∂ μ

)∣∣∣∣
μ=0

= det

[
fμ1 fμ2

fxμ1 fxμ2

]
μ=0
�= 0. (1.39)

Thus, the inverse function theorem implies the local existence and uniqueness of a
smooth inverse function μ = μ(γ) with μ(0) = 0. Therefore, the equation for ξ now
reads

ξ̇ = γ1 + γ2ξ + c(γ)ξ 3 +O(ξ 4),

where c(γ) = f3(μ(γ))+ δ (μ((γ))θ (μ(γ),δ (μ(γ))) is a smooth function of γ and
c(0) = f3(0) = 1

6 fxxx(0,0) �= 0. Finally, the above equation can be transformed into

(1.37) by performing a linear scaling y= ξ
√|c(γ)| and introducing new parameters:

β1 = γ1
√|c(γ)|, β2 = γ2. �

1.9.3 Fold–Hopf Bifurcation

The fold–Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue and a pair of purely imaginary eigenvalues. This phenomenon
is also called the zero–Hopf bifurcation or Gavrilov–Guckenheimer bifurcation.
An early example of this bifurcation in a specific system is provided by the Brus-
selator reaction–diffusion system in one spatial dimension (Guckenheimer [124],
Wittenberg and Holmes [299]).
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The usual norm form of the fold–Hopf bifurcation is

ẏ = μ1 + b(u2 + v2)− y2 + h.o.t.,

u̇ = μ2u− v+ ayu+ h.o.t., (1.40)

v̇ = u+ μ2v+ ayv+ h.o.t.,

where μ = (μ1,μ2) and h.o.t. stands for “higher-order terms.” System (1.40) has
been studied by Broer and Vegter [44], Chow–Li–Wang [66], Dumortier and Ibáñez
[84], Gamero–Freire–Rodrı́guez–Luis [106], Gaspard [107], Gavrilov [108, 109],
Guckenheimer [124], Keener [187], Langford [202], Takens [272–274]. The bi-
furcation point μ = 0 in the μ-parameter plane lies at a tangential intersection
of curves of saddle-node bifurcations and Poincaré–Andronov–Hopf bifurcations.
Depending on the system, a branch of torus bifurcations can emanate from the fold–
Hopf bifurcation point. In such cases, other bifurcations occur for nearby parameter
values, including saddle-node bifurcations of periodic orbits on the invariant torus,
torus breakdown, and bifurcations of Shil’nikov homoclinic orbits to saddle-foci
and heteroclinic orbits connecting equilibria. See Guckenheimer and Holmes [125]
for more details.

If system (1.1) has a fixed equilibrium x = x0 for all parameters μ , and the
equilibrium x0 has a zero eigenvalue and a pair of purely imaginary eigenvalues
at μ = 0, then the normal form of (1.1) at (μ ,x) = (0,x0) is not equivalent to sys-
tem (1.40). Therefore, in this subsection we consider the following two-parameter
system:

ẏ = μ1y+ y2+ u2 + v2,

u̇ = μ2u− v+ ayu+ y2u, (1.41)

v̇ = u+ μ2v+ ayv+ y2v,

where 0 �= a ∈ R, μ = (μ1,μ2) ∈ R
2, and (y,u,v) ∈ R

3. At μ = 0, the linearization
of (1.41) at the equilibrium (0,0,0) has a zero eigenvalue λ1 = 0 and a pair of purely
imaginary eigenvalues λ2,3 = ±i. Let z = u+ iv =

√ρeiθ . Then system (1.41) can
be rewritten as

ẏ = μ1y+ y2+ |z|2, (1.42)

ż = (μ2 + i)z+ ayz+ y2z,

and

ẏ = μ1y+ y2+ρ ,
ρ̇ = 2ρ(μ2 + ay+ y2), (1.43)

θ̇ = 1.

The first two equations of (1.43) are decoupled from the third one. The equation for
θ describes a rotation around the y-axis with constant angular velocity θ̇ = 1. Thus,
to understand the bifurcations in (1.43), we only need to study the planar system for
(y,ρ) with ρ ≥ 0:
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ẏ = μ1y+ y2 +ρ ,
ρ̇ = 2ρ(μ2 + ay+ y2). (1.44)

It is easy to see that system (1.44) always has two equilibria, E1 = (0,0) and
E2 = (−μ1,0), and that there always exists one orbit connecting E1 and E2 due to
the symmetry that the y-axis is always invariant. Other equilibria (y,ρ) of (1.44)
with ρ > 0 satisfy

μ1y+ y2+ρ = 0 and μ2 + ay+ y2 = 0, (1.45)

which can have zero, one, or two solutions in the interior of the quadrants with
ρ > 0. Since we consider the dynamics of (1.44) only with μ sufficiently close to
0, we can require the parameters μ to be in J = {μ = (μ1,μ2): |μ1| < 1

2 |a| and
|μ2| < 1

4 a2}. Thus, the second equation of (1.45) has two solutions y1 and y2 with
y1 < y2. Moreover, y1 < y2 < 0 if μ2 > 0 and a > 0, while y1 < 0 < y2 if μ2 < 0
and a > 0. Next, we determine the signs of ρ j = −y2

j − μ1y j, j = 1,2, because we
consider the equilibrium (y,ρ) of (1.44) only with ρ ≥ 0.

We first consider the case a > 0. We divide the region J into six parts:

J11 = {μ ∈J : μ1 < 0 and μ2 > 0} ,
J12 =

{
μ ∈J : μ1 < 0 and μ2 < 0 and μ2

1 − aμ1 + μ2 > 0
}
,

J13 =
{

μ ∈J : μ1 < 0 and μ2
1 − aμ1 + μ2 < 0

}
,

J14 =
{

μ ∈J : μ1 > 0 and μ2
1 − aμ1 + μ2 > 0

}
,

J15 =
{

μ ∈J : μ1 > 0 and μ2 > 0 and μ2
1 − aμ1 + μ2 < 0

}
,

J16 = {μ ∈J : μ1 > 0 and μ2 < 0} .
These regions are illustrated in Fig. 1.12a, where the bold curve l4 represents the
parabola μ2

1 − μ1a+ μ2 = 0.

Lemma 1.1. Suppose a> 0. Then in the interior of the quadrants of the (y,ρ)-plane
with ρ > 0, system (1.45) has no solution (respectively, one solution (y2,ρ2) with
y2 > 0, one solution (y2,ρ2) with y2 < 0) for parameters μ in J \ (J12 ∪J15)
(respectively, J12, J15).

Proof. We distinguish two cases:
Case 1: μ1 < 0. Then y2 +μ1y is negative if 0 < y <−μ1 and positive otherwise.

If μ ∈J11, then y1 < y2 < 0, and hence ρ j =−y2
j−μ1y1 < 0, j = 1,2. If μ ∈J12,

then y1 < 0 < y2 < −μ1, and hence ρ1 < 0 and ρ2 > 0. If μ ∈J13, then y1 < 0 <
−μ1 < y2, and hence ρ j =−y2

j− μ1y1 < 0, j = 1,2.
Case 2: μ1 > 0. Then y2 +μ1y is negative if −μ1 < y < 0 and positive otherwise.

If μ ∈J14, then y1 < y2 <−μ1 < 0, and hence ρ j < 0, j = 1,2. If μ ∈J15, then
y1 <−μ1 < y2 < 0, and hence ρ1 < 0 and ρ2 > 0. If μ ∈J16, then y1 <−μ1 < 0 <
y2, and hence ρ1 < 0 and ρ2 < 0. The proof is complete. �



30 1 Introduction to Dynamic Bifurcation Theory

a b

Fig. 1.12 Bifurcation sets for (1.44)

Moreover, for parameters μ ∈J12 ∪J15, the characteristic equation of (1.44)
at the equilibrium E3 = (y2,ρ2) is

ς2− (μ1 + 2y2)ς − 2ρ2(a+ 2y2) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ2(a+ 2y2). For μ ∈J12, it follows
from the proof of Lemma 1.1 that y2 > 0, and so ς1ς2 < 0. For μ ∈J15, it follows
from the proof of Lemma 1.1 that− 1

2 a <−μ1 < y2 < 0, and hence ς1ς2 < 0. Thus,
we obtain the following:

Proposition 1.1. Suppose a > 0. Then, in the quadrants of the (y,ρ)-plane with
ρ ≥ 0, we have the following information on the equilibria of system (1.44):

(i) There are two equilibria E1 and E2 for μ ∈J11, where E1 is a saddle and E2

is a source.
(ii) There are three equilibria E1, E2, and E3 for μ ∈J12, where E1 is a sink, E2 is

a source, E3 = (y2,ρ2) satisfying y2 > 0 and ρ2 > 0 is a saddle.
(iii) There are two equilibria E1 and E2 for μ ∈J13, where E1 is a sink and E2 is a

saddle.
(iv) There are two equilibria E1 and E2 for μ ∈J14, where E1 is a source and E2

is a saddle.
(v) There are three equilibria E1, E2, and E3 for μ ∈J15, where E1 is a source, E2

is a sink, E3 = (y2,ρ2) satisfying y2 < 0 and ρ2 > 0 is a saddle.
(vi) There are two equilibria E1 and E2 for μ ∈J16, where E1 is a saddle and E2

is a sink.

The following theorem follows immediately from the equivalence mentioned
before.

Theorem 1.11. Suppose a > 0. Then a semistable limit cycle of (1.41) appears as μ
crosses the negative μ1-axis from J11 to J12, which is always present for μ ∈J12,
and then disappears as μ crosses the parabola l4 from J12 to J13. Similarly, a
semistable limit cycle of (1.41) appears as μ crosses the parabola l4 from J14 to
J15, which is always present for μ ∈J15, and then disappears as μ crosses the
positive μ1-axis from J15 to J16.
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Now we consider the case a < 0. Again, we divide the region J into six parts:

J21 = {μ ∈J : μ1 > 0 and μ2 > 0} ,
J22 =

{
μ ∈J : μ1 > 0 and μ2 < 0 and μ2

1 − μ1a+ μ2 > 0
}
,

J23 =
{

μ ∈J : μ1 > 0 and μ2
1 − μ1a+ μ2 < 0

}
,

J24 =
{

μ ∈J : μ1 < 0 and μ2
1 − μ1a+ μ2 > 0

}
,

J25 =
{

μ ∈J : μ1 < 0 and μ2 > 0 and μ2
1 − μ1a+ μ2 < 0

}
,

J26 = {μ ∈J : μ1 < 0 and μ2 < 0} .

These regions are illustrated in Fig. 1.12b, where the bold curve l4 and the dot-
ted curve l5 represent the parabolas μ2

1 − μ1a+ μ2 = 0 and μ2
1 − 2μ1a+ 4μ2 = 0,

respectively. Similarly, we have the following result.

Lemma 1.2. Suppose a< 0. Then, in the interior of the quadrants of the (y,ρ)-plane
with ρ > 0, system (1.45) has no solution (respectively, one solution (y1,ρ1) with
y1 < 0, one solution (y1,ρ1) with y1 > 0) for parameters μ in J \ (J22 ∪J25)
(respectively, J22, J25).

Moreover, for parameters μ ∈J22∪J25, the characteristic polynomial of (1.44)
at the equilibrium E4 = (y1,ρ1) is

ς2− (μ1 + 2y1)ς − 2ρ1(a+ 2y1) = 0.

The two eigenvalues ς1,2 satisfy ς1ς2 = −2ρ1(a+ 2y1), which can be shown to be
positive. Then, we need to consider the sign of ς1+ς2 in order to discuss the stability
of the equilibrium E4. In fact,

ς1 + ς2 = μ1 + 2y1 = μ1− a−
√

a2− 4μ2.

It follows from 2|μ1|< |a| and a < 0 that μ1− a > 0, and hence

sign(ς1 + ς2) = sign{(μ1− a)2− a2 + 4μ2}
= sign{μ2

1 − 2μ1a+ 4μ2}.
Let

J + =
{

μ : μ2
1 − 2μ1a+ 4μ2 > 0

}
and

J − =
{

μ : μ2
1 − 2μ1a+ 4μ2 < 0

}
.

Then we have the following:

Lemma 1.3. Suppose a < 0. For parameters μ ∈J22∪J25, besides equilibria E1

and E2, system (1.45) has a third equilibrium E4, which is a sink if μ ∈J − ∩
(J22∪J25) and a source if μ ∈J +∩ (J22∪J25).
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Proposition 1.2. Suppose a < 0. Then, in the quadrants of the (y,ρ)-plane with
ρ ≥ 0, we have the following information about equilibria of system (1.44):

(i) There are two equilibria E1 and E2 for μ ∈J21, where E1 is a source and E2

is a saddle.
(ii) There are three equilibria E1, E2, and E4 for μ ∈ J22, where E1 and E2

are saddles, and E4 = (y1,ρ1) satisfying y1 < 0 and ρ1 > 0 is a sink if
μ2

1 − 2μ1a+ 4μ2 < 0 and a source otherwise. Namely, in the region J22, as
μ crosses the parabola l5 from the region J22∩J + to the region J22∩J −,
the equilibrium E4 gains stability, and hence system (1.44) undergoes a Hopf
bifurcation, and a stable limit cycle appears; as μ varies further, this limit cycle
can approach a heteroclinic cycle formed by the separatrices of the two saddles
E1 and E2, i.e., its period tends to infinity and the cycle disappears.

(iii) There are two equilibria E1 and E2 for μ ∈J23, where E1 is a saddle and E2

is a sink.
(iv) There are two equilibria E1 and E2 for μ ∈J24, where E1 is a saddle and E2

is a source.
(v) There are three equilibria E1, E2, and E4 for μ ∈J25, where E1 and E2 are

saddles, and E4 = (y1,ρ1) satisfying y1 > 0 and ρ1 > 0 is a sink if μ2
1 −2μ1a+

4μ2 < 0 and a source otherwise. Namely, in the region J25, as μ crosses the
parabola l5 from the region J25 ∩J + to the region J25∩J −, equilibrium
E4 gains stability, and hence system (1.44) undergoes a Hopf bifurcation, and
a stable limit cycle appears; as μ varies further, this limit cycle can approach a
heteroclinic cycle formed by the separatrices of the two saddles E1 and E2, i.e.,
its period tends to infinity, and the cycle disappears.

(vi) There are two equilibria E1 and E2 for μ ∈J26, where E1 is a sink and E2 is a
saddle.

Theorem 1.12. Suppose that a < 0. Then the following statements are true:

(i) An unstable limit cycle O1 of (1.41) appears as μ crosses the positive μ1-axis
from J21 to J22. As μ crosses the parabola l5 from J22∩J + to J22∩J −,
this limit cycle O1 becomes stable and generates an unstable torus T1. Under
further variation of the parameter μ in J22 ∩J −, this torus T1 degenerates
to a sphere-like surface S1 and then disappears. As μ crosses the parabola l4
from J22∩J − to J23, the stable limit circle O1 disappears.

(ii) An unstable limit cycle O2 of (1.41) appears as μ crosses the parabola l4 from
J24 to J25. As μ crosses the parabola l5 from J25 ∩J + to J25 ∩J −,
this limit cycle O2 becomes stable and generates an unstable torus T2. Under
further variation of the parameter μ in J25∩J −, this torus T2 degenerates to
a sphere-like surface S2 and then disappears. As μ crosses the negative μ1-axis
from J25∩J − to J26, the stable limit circle O2 disappears.



1.9 Two-Parameter Bifurcations of Equilibria 33

1.9.4 Bautin Bifurcation

Consider the following two-parameter system:

ẋ1 = μ1x1− x2 + μ2x1(x
2
1 + x2

2)+σx1(x
2
1 + x2

2)
2, (1.46)

ẋ2 = x1 + μ1x2 + μ2x2(x
2
1 + x2

2)+σx2(x
2
1 + x2

2)
2,

where σ =±1, μ = (μ1,μ2) ∈R2, and x = (x1,x2)∈R2. At μ = 0, the linearization
of (1.46) at the equilibrium (0,0) has a pair of purely imaginary eigenvalues±i. Let
z = u+ iv =

√ρeiθ . Then system (1.46) can be rewritten as

ż = (μ1 + i)z+ μ2z|z|2 +σz|z|4, z ∈C (1.47)

and

ρ̇ = 2ρ(μ1 + μ2ρ +σρ2), (1.48)

θ̇ = 1.

The first equation in (1.48) is uncoupled from the second one. Thus, to understand
the bifurcations in (1.48), it suffices to study the scalar equation for ρ , that is,

ρ̇ = 2ρ(μ1 + μ2ρ +σρ2). (1.49)

It follows that the trivial equilibrium ρ = 0 of (1.49) corresponds to the equilibrium
x = 0 of (1.46), and the existence and stability of positive equilibria of (1.49) deter-
mine the existence and stability of periodic solutions of (1.47) and hence of the orig-
inal system (1.46). In the remaining part of this subsection, we depict the complete
bifurcation diagrams of (1.49) on the μ-parameter plane.

We first consider the case σ = −1. Positive equilibria of (1.49) satisfy μ1 +
μ2ρ−ρ2 = 0, which can have zero, one, or two positive solutions. These solutions
branch from the trivial one along the line l1 on the μ-parameter plane and collide
and disappear at the half-parabola l2 (see Fig. 1.13a),

where
l1 : μ1 = 0 and l2 : μ2

2 + 4μ1 = 0 with μ2 > 0.

The details are summarized below.

1. In the region D11 = {μ : μ2
2 + 4μ1 < 0 or μ1 < 0 and μ2 < 0}, (1.49) has no

positive equilibria. Thus, the equilibrium ρ = 0 is globally asymptotically stable,
which means that system (1.46) has no periodic solutions in a sufficiently small
neighborhood of the stable equilibrium z = 0.

2. In the region D12 = {μ : μ1 > 0}, (1.49) has only one positive equilibrium, which
is stable. This means that system (1.46) has exactly one stable periodic solution
in a sufficiently small neighborhood of the unstable equilibrium x = 0.

3. In the region D13 = {μ : μ1 < 0, μ2 > 0, and μ2
2 + 4μ1 > 0}, (1.49) has two

positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the stable equilibrium x = 0.
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a b

Fig. 1.13 Bifurcation sets for (1.49)

Therefore, on the μ-parameter plane, the line l1 and the half-parabola l2 are
bifurcation curves. The bifurcation scenario is explained below.

(a) On the μ-parameter plane, if the point μ crosses the line l1 from region D11 to
region D12, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(b) On the μ-parameter plane, if the point μ crosses the line l1 from region D12

to region D13, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(c) On the μ-parameter plane, if the point μ crosses the line l2 from region D13 to
region D11, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

Now we come to the complete bifurcation diagram of (1.49) with σ = 1. Positive
equilibria of (1.49) satisfy μ1 + μ2ρ + ρ2 = 0, which can have zero, one, or two
positive solutions. These solutions branch from the trivial one along the line l1 on the
μ-parameter plane and collide and disappear at the half-parabola l3 : μ2

2 − 4μ1 = 0
and μ2 < 0 (see Fig. 1.13b). We have the following conclusions:

1. In the region D21 = {μ : μ2
2 − 4μ1 < 0 or μ1 > 0 and μ2 > 0}, (1.49) has no

positive equilibria. Thus, the equilibrium ρ = 0 is unstable. This means that sys-
tem (1.46) has no periodic solutions in a sufficiently small neighborhood of the
unstable equilibrium z = 0.

2. In the region D22 = {μ : μ1 < 0}, (1.49) has only one positive equilibrium, which
is unstable. This means that system (1.46) has exactly one unstable periodic
solution in a sufficiently small neighborhood of the stable equilibrium x = 0.

3. In the region D23 = {μ : μ1 > 0, μ2 < 0, and μ2
2 − 4μ1 > 0}, (1.49) has two

positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the unstable equilibrium x = 0.

Therefore, on the parameter plane μ , the line l1 and the half-parabola l3 are
bifurcation curves. More specifically, we have the following:
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(a) On the μ-parameter plane, if the point μ crosses the line l1 from region D21

to region D22, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(b) On the μ-parameter plane, if the point μ crosses the line l1 from region D22 to
region D23, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(c) On the μ-parameter plane, if the point μ crosses the line l3 from region D23 to
region D21, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

1.9.5 Hopf–Hopf Bifurcation

The Hopf–Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium
has two pairs of purely imaginary eigenvalues. This phenomenon is also called
the double Hopf bifurcation. For example, consider the following two-parameter
system:

ẋ1 = μ1x1−ω1x2 +(A11x1−B11x2)(x
2
1 + x2

2)+ (A12x1−B12x2)(x
2
3 + x2

4),

ẋ2 = ω1x1− μ1x2 +(A11x2 +B11x1)(x
2
1 + x2

2)+ (A12x2 +B12x1)(x
2
3 + x2

4),

ẋ3 = μ2x3−ω2x4 +(A21x3−B21x4)(x
2
1 + x2

2)+ (A22x3−B22x4)(x
2
3 + x2

4),

ẋ4 = ω2x3− μ2x4 +(A21x4 +B21x3)(x
2
1 + x2

2)+ (A22x4 +B22x3)(x
2
3 + x2

4),

(1.50)

where σ = ±1, μ = (μ1,μ2) ∈ R
2, and x = (x1,x2,x3,x4) ∈ R

4. At μ = 0, the lin-
earization of (1.50) at the equilibrium (0,0,0,0) has two pairs of purely imaginary
eigenvalues±iω1 and±iω2. Let x1+ ix2 = ρ1eiθ1 and x3+ ix4 = ρ2eiθ2 . Then system
(1.50) can be rewritten as

ρ̇1 = ρ1(μ1 +A11ρ2
1 +A12ρ2

2 ),

ρ̇2 = ρ2(μ2 +A21ρ2
1 +A22ρ2

2 ), (1.51)

θ̇1 = ω1 +B11ρ2
1 +B12ρ2

2 ,

θ̇2 = ω2 +B21ρ2
1 +B22ρ2

2 .

Note that the amplitude and phase variables of (1.51) decouple. As a result, the
bifurcation and asymptotic behavior of solutions of (1.50) can be studied via the
following two-dimensional amplitude equations alone:

ρ̇1 = ρ1(μ1 +A11ρ2
1 +A12ρ2

2 ), (1.52)

ρ̇2 = ρ2(μ2 +A21ρ2
1 +A22ρ2

2 ).
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The relation between equilibria of (1.52) and bifurcations of (1.50) is as follows:

(a) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium (r,0)
(respectively, (0,r)) on either axis, then (1.50) has an asymptotically stable (re-
spectively, unstable) periodic orbit of frequency close to ω1 (respectively, ω2).

(b) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium
(r1,r2) in the interior of the positive quadrant, then (1.50) has an asymptoti-
cally stable (respectively, unstable) two-dimensional invariant torus, i.e., (1.50)
has a quasiperiodic solution in a neighborhood of the origin.

(c) If (1.52) has an asymptotically stable (respectively, unstable) limit cycle in the
interior of the positive quadrant, then (1.50) has an asymptotically stable (re-
spectively, unstable) three-dimensional invariant torus in a neighborhood of the
origin.

From the above, we see that sufficiently close to the Hopf–Hopf bifurcation point
μ = 0, system (1.50) will exhibit either periodic or quasiperiodic motions. Thus, if
we can find combinations of parameters μi and Ai j (i, j = 1,2) that yield stable equi-
libria (r1,r2) with r1r2 �= 0, we can conclude that the stable quasiperiodic motions
should occur for the corresponding parameter values of system (1.50). Therefore,
from now on, we concentrate on describing the behavior of the coupled amplitude
equation (1.52) in the μ-parameter plane. The mode interaction equations (1.52)
have been investigated by many researchers. See, for example, Guckenheimer and
Holmes [125, Sect. 7.5]. Here, for the sake of completeness, we shall employ some
techniques from the above-mentioned classical work of Guckenheimer and Holmes
(including rescaling in time and variables) to investigate the qualitative behavior of
the mode interaction equations (1.52) in the parameter ranges of interest. We discuss
these case by case.

First, we consider the case that A11 < 0 and A22 < 0. Introducing new phase
variables according to

r1 =
√
|A11|ρ1, r2 =

√
|A22|ρ2, (1.53)

yields

ṙ1 = μ1r1− r3
1−θ r1r2

2, (1.54)

ṙ2 = μ2r2− r3
2−Δr2r2

1,

where θ = A12/A22 and Δ = A21/A11. Notice that the r1- and r2-axes are invariant
lines for the flow of (1.54). Simple linear analysis reveals the following results about
equilibria of (1.54):

(a) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{μ1,μ2}< 0,
a saddle if μ1μ2 < 0, and an unstable source if min{μ1,μ2}> 0.

(b) (r1,r2) = (
√μ1,0) is an equilibrium if μ1 > 0. If, in addition, Δ μ1 > μ2, then

it is a sink; otherwise, it is a saddle.
(c) (r1,r2) = (0,

√μ2) is an equilibrium if μ2 > 0. If, in addition, θ μ2 > μ1, then it
is a sink; otherwise, it is a saddle.
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(d) (r1,r2) = (
√

[μ1−θ μ2]/[1−θΔ ],
√
[μ2−Δ μ1]/[1−θΔ ]) is an equilibrium if

both radicands are positive. It is a saddle if θΔ > 1 and a sink if θΔ < 1.

Therefore, we deduce that bifurcations to the pure modes (
√μ1,0) and (0,

√μ2)
occur on the lines μ1 = 0 and μ2 = 0, whereas bifurcations to the mixed mode occur
on the lines μ1 = θ μ2 and μ2 = Δ μ1 if they exist. In addition, we need check that
no closed orbits (or limit cycles) can occur. Since the r1- and r2-axes are invariant,
any such closed orbit would have to lie in the interior of the positive quadrant and
must enclose at least one equilibrium with Poincaré index equal to 1.

If θΔ > 1 and μ1 − θ μ2 < 0 and μ2 − Δ μ1 < 0, then system (1.54) has an
equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0. Recall that (r̃1, r̃2) is a saddle with Poincaré in-
dex equal to −1. We immediately see that no closed orbit can occur around (r̃1, r̃2).
If θΔ < 1 and μ1−θ μ2 > 0 and μ2−Δ μ1 > 0, then system (1.54) has an equilibrium
(r̃1, r̃2) with r̃1 r̃2 �= 0, which is a sink. In what follows, we distinguish several cases
to conclude that no closed orbits can occur around the sink (r̃1, r̃2) when θΔ < 1
and μ ∈ E = {μ : μ1−θ μ2 > 0 and μ2−Δ μ1 > 0}.

Case 1: θ > 0 and Δ > 0. We follow a directional arc
−→
l1 crossing the line μ1 =

θ μ2 > 0 and then passing through the sector E and finally crossing the line μ2 =

Δ μ1 > 0. When μ ∈ −→l1 crosses the line μ1 = θ μ2 > 0, the sink (0,
√μ2) becomes

a saddle, a sink (r̃1, r̃2) bifurcates from (0,
√μ2), and the unstable separatrix of the

saddle (0,
√μ2) limits this bifurcated sink (r̃1, r̃2). Thus, after bifurcation there is

no closed orbit around this sink. The only way whereby the closed orbit can appear
in the positive quadrant is by Hopf bifurcation from (r̃1, r̃2). But this is impossible,
because (r̃1, r̃2) remains stable for all μ ∈ E .

Case 2: θ > 0 > Δ . Similar arguments as those in Case 1 show that there is
no closed orbit in the positive quadrant when μ is in the sector 0 < μ2 < μ1/θ .
In order to rule out the existence of closed orbits in the positive quadrant when
μ is in the sector Δ μ1 < μ2 < 0, we follow another directional arc

−→
l2 crossing

the line μ2 = Δ μ1 and then passing through the sector Δ μ1 < μ2 < 0. When μ ∈−→
l2 crosses the line μ2 = Δ μ1, the sink (

√μ1,0) becomes a saddle, a sink (r̃1, r̃2)
bifurcates from (

√μ1,0), and the unstable separatrix of the saddle (
√μ1,0) limits

this bifurcated sink (r̃1, r̃2). Thus, after bifurcation there is no closed orbit around
this sink. Similarly, no Hopf bifurcation can occur from (r̃1, r̃2), since it remains
stable for all μ ∈ E .

Case 3: θ < 0 < Δ . Similar arguments as those in Case 1 tell us that there is no
closed orbit in the positive quadrant when μ is in the sector θ μ2 < μ1 < 0, while
arguments like those in Case 2 yield that there is no closed orbit in the positive
quadrant when μ is in the sector 0 < μ1 < μ2/Δ .

Case 4: θ < 0 and Δ < 0. The discussion is similar to that in Case 1 and hence
is omitted.

In summary, we have proved the following theorem.

Theorem 1.13. No closed orbit of system (1.54) can occur around the mixed mode
(r̃1, r̃2).
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Second, for the case that A11 > 0 and A22 > 0, we introduce new phase variables
and rescale time in (1.52) according to

r1 =
√
|A11|ρ1, r2 =

√
|A22|ρ2, t∗ =−t. (1.55)

After dropping ∗, we obtain

ṙ1 = −μ1r1− r3
1−θ r1r2

2, (1.56)

ṙ2 = −μ2r2− r3
2−Δr2r2

1,

where θ and Δ are the same as before. System (1.56) is quite similar to (1.54), and
hence similar arguments can be employed. We omit the details here.

Third, for the case that A11 > 0 and A22 < 0, we introduce new phase variables
and rescale time in (1.52) as (1.53). After dropping ∗, we obtain

ṙ1 = μ1r1 + r3
1−θ r1r2

2, (1.57)

ṙ2 = μ2r2− r3
2 +Δr2r2

1,

where θ and Δ are the same as before. Simple linear analysis produces the following
results:

(a) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{μ1,μ2}< 0,
a saddle if μ1μ2 < 0, and an unstable source if min{μ1,μ2}> 0.

(b) (r1,r2) = (
√−μ1,0) is an equilibrium if μ1 < 0. If, in addition, Δ μ1 < μ2, then

it is a source; otherwise, it is a saddle.
(c) (r1,r2) = (0,

√μ2) is an equilibrium if μ2 > 0. If, in addition, θ μ2 > μ1, then it
is a sink; otherwise, it is a saddle.

(d) (r1,r2) = (
√

[μ1−θ μ2]/[θΔ − 1],
√
[Δ μ1− μ2]/[θΔ − 1]) is an equilibrium if

both radicands are positive. If θΔ < 1, then it is a saddle; if θΔ > 1 and r̃1 > r̃2,
then it is a source; if θΔ > 1 and r̃1 < r̃2, then it is a sink.

It follows from the above results that bifurcations to the pure modes (
√−μ1,0)

and (0,
√μ2) occur on the lines μ1 = 0 and μ2 = 0, whereas bifurcations to the

mixed modes occur on the lines μ1 = θ μ2 and μ2 = Δ μ1 if they exist. Since the r1-
and r2-axes are invariant, any such closed orbit would have to lie in the interior of
the positive quadrant and must enclose at least one equilibrium with Poincaré index
equal to 1. If θΔ < 1, μ1− θ μ2 < 0, and μ2− Δ μ1 > 0, then system (1.57) has
an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0, which is a saddle with Poincaré index equal
to −1. We immediately conclude the following result.

Theorem 1.14. Assume that θΔ < 1, μ1− θ μ2 < 0, and μ2− Δ μ1 > 0. Then no
closed orbit of system (1.57) can occur around (r̃1, r̃2).

If θΔ > 1, (μ1,μ2) is in the sector I = {μ : μ1−θ μ2 > 0, and μ2−Δ μ1 < 0},
then system (1.57) has an equilibrium (r̃1, r̃2) with r̃1r̃2 �= 0. It follows from the
expressions for r̃1 and r̃2 that sign(r̃1− r̃2) = sign(1− θ )sign{μ2− χμ1}, where
χ = (1−Δ)/(θ − 1). Furthermore, if θ > 1, then χ < 1/θ and χ < Δ ; if 0 < θ <
1, then χ > 1/θ and χ > Δ ; if θ < 0, then Δ < χ < 1

θ . Therefore, we have the
following observations:
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Lemma 1.4. If Δ > 1/θ > 0 and (μ1,μ2) ∈ I , then system (1.57) has a mixed
mode (r̃1, r̃2). Moreover, it is a sink (respectively, source) if μ is in the sector I1

(respectively, I2), where

I1 =

{ {μ: χμ1 < μ2 < μ1/θ} if θ > 1,
{μ: μ2 < χμ1 and μ2 < μ1/θ} if θ < 1,

I2 =

{ {μ: μ2 < χμ1 and μ2 < Δ μ1} if θ > 1,
{μ: χμ1 < μ2 < Δ μ1} if θ < 1.

Lemma 1.5. If Δ < 1/θ < 0 and (μ1,μ2) ∈ I , then system (1.57) has a mixed
mode (r̃1, r̃2). Moreover, it is a sink (respectively, source) if μ is in the sector I3

(respectively, I4), where

I3 = {μ: μ1/θ < μ2 < χμ1},
I4 = {μ: χμ1 < μ2 < Δ μ1}.

The following result describes the phase portrait of (1.57).

Theorem 1.15. Assume θΔ > 1. Then for some points μ ∈ I , system (1.57) has
closed orbits surrounding the mixed mode (r̃1, r̃2).

Proof. Here, we consider only the case θ > 1 > Δ > 1/θ > 0, because other cases
can be handled similarly. If θΔ > 1 and θ > 1, then μ ∈ I and system (1.57)
has a mixed mode (r̃1, r̃2). We follow a directional arc in the μ-parameter plane
that starts from a point in the sector μ1/θ < μ2 < Δ μ1, then crosses the line μ1 =
θ μ2 > 0 into the sector I1, and finally successively crosses the line μ2 = χμ1 >
0 and the positive μ1-axis. When the point μ is in the sector μ1/θ < μ2 < Δ μ1,
system (1.57) has a source (0,0) and a sink (0,

√μ2). As μ crosses the line μ1 =
θ μ2 > 0, a mixed mode (r̃1, r̃2) (which is a sink) bifurcates from (0,

√μ2), and the
unstable separatrix of the saddle (0,

√μ2) limits the newly bifurcated mixed mode.
Thus, immediately after bifurcation, no closed orbit can surround the mixed mode.
However, as μ crosses the line μ2 = χμ1 > 0, the mixed mode (r̃1, r̃2) loses its
stability, and hence system (1.57) undergoes a Hopf bifurcation, i.e., a stable closed
orbit appears in the positive quadrant. Moreover, as μ crosses the positive μ1-axis,
the pure mode (0,

√μ2) collides with (0,0) and disappears. �

Theorem 1.15 implies that crossing the line μ2 = χμ1 in the sector I results
in the branching of a three-dimensional torus from the two-dimensional torus of
system (1.52).

Finally, for the case A11 < 0 and A22 > 0, we can obtain the reparameterized
equation of the form (1.57) by reversing time, and hence the details are omitted.
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1.10 Some Other Bifurcations

1. Nontransversal homoclinic orbit to a hyperbolic cycle. Consider a
three-dimensional system (1.1) with a hyperbolic limit cycle Γμ . Its stable
and unstable two-dimensional invariant manifolds, W s(Γμ) and W u(Γμ), can
intersect along homoclinic orbits, tending to Γμ as t→±∞. Generically, such an
intersection is transversal. It implies the presence of an infinite number of saddle
limit cycles near the homoclinic orbit. However, at a certain parameter value,
say μ = μ0, the manifolds can become tangent to each other and then no longer
intersect. At μ = μ0, there is a homoclinic orbit to Γ0 along which the manifolds
W s(Γμ) and W u(Γμ) generically have a quadratic tangency. It has been proved
that an infinite number of limit cycles can exist for sufficiently small |μ − μ0|,
even if the manifolds do not intersect. Passing the critical parameter value is
accompanied by an infinite number of period-doubling and fold bifurcations
of limit cycles. See, for example, Poincaré [246], Birkhoff [34], Smale [268],
Neimark [229], and Shil’nikov [263], Gavrilov and Shilnikov [110], Palis and
Takens [243].

2. Homoclinic orbits to a nonhyperbolic limit cycle. Suppose a three-dimensional
system (1.1) has at μ = μ0 a nonhyperbolic limit cycle Γ0 with a simple
multiplier λ1 = 1, while the second multiplier satisfies |λ2| < 1. Under generic
perturbations, this cycle Γ0 will either disappear or split into two hyperbolic
cycles (i.e., via fold bifurcation for cycles). However, the locally unstable man-
ifold W u(Γ0) of the cycle can return to the cycle Γ0 at the critical parameter
value μ = μ0, forming a set composed of homoclinic orbits that approach Γ0 as
t →±∞. Thus, at the critical parameter value, there may exist a smooth invari-
ant torus or a strange attracting invariant set that contains an infinite number
of saddle and stable limit cycles, or a blue-sky catastrophe. See, for example,
Afraimovich and Shil’nikov [4], Palis and Pugh [242], Medvedev [218], Turaev
and Shil’nikov [279].

3. Bifurcations on invariant tori. Continuous-time dynamical systems with
phase-space dimension n > 2 can have invariant tori. For example, a stable
cycle in R

3 can lose stability when a pair of complex-conjugate multipliers
crosses the unit circle. It will be much more interesting to discuss changes of
the orbit structure on an invariant 2-torus under variation of the parameters of
the system. These bifurcations are responsible for such phenomena as frequency
and phase locking. See, for example, Arnold [19], Fenichel [95, 96], Kuznetsov
[200].



Chapter 2
Introduction to Functional Differential
Equations

There are different types of functional differential equations (FDEs) arising from
important applications: delay differential equations (DDEs) (also referred to as re-
tarded FDEs [RFDEs]), neutral FDEs (NFDEs), and mixed FDEs (MFDEs). The
classification depends on how the current change rate of the system state depends
on the history (the historical status of the state only or the historical change rate and
the historical status) or whether the current change rate of the system state depends
on the future expectation of the system. Later we will also see that the delay in-
volved may also depend on the system state, leading to DDEs with state-dependent
delay.

2.1 Infinite Dynamical Systems Generated by Time Lags

In Newtonian mechanics, the system’s state variable changes over time, and the law
that governs the change of the system’s state is normally described by an ordinary
differential equation (ODE). Assuming that the function involved in this ODE is
sufficiently smooth (locally Lipschitz, for example), the corresponding Cauchy ini-
tial value problem is well posed, and thus knowing the current status, one is able to
reconstruct the history and predict the future of the system.

In many applications, a close look at the physical or biological background of
the modeling system shows that the change rate of the system’s current status often
depends not only on the current state but also on the history of the system, see, for
example, [50, 76, 198, 199]. This usually leads to so-called DDEs with the following
prototype:

ẋ(t) = f (x(t),x(t− τ)), (2.1)

where x(t) is the system’s state at time t, f : Rn×R
n→ R

n is a given mapping, and
the time lag τ > 0 is a constant.

Such an equation arises naturally, for example, from the population dynamics of
a single-species structured population. In such an example, if x(t) denotes the pop-

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6 2,
© Springer Science+Business Media New York 2013

41



42 2 Introduction to Functional Differential Equations

ulation density of the mature/reproductive population, and if the maturation period
is assumed to be a constant, then we have

f (x(t),x(t− τ)) =−dmx(t)+ e−diτ b(x(t− τ)), (2.2)

where dm and di are the death rates of the mature and immature populations, respec-
tively, and b: R→ R is the birth rate. Death is instantaneous, so the term −dmx(t)
is without delay. However, the rate into the mature population is the maturation
rate (not the birth rate), that is, the birth rate at time τ , multiplied by the survival
probability e−diτ during the maturation process.

Clearly, to specify a function x(t) of t ≥ 0 that satisfies (2.1) (called a solution
of (2.1)), we must prescribe the history of x on [−τ,0]. On the other hand, once the
initial value data

ϕ : [−τ,0]→R
n (2.3)

is given as a continuous function and if f : Rn×R
n � (x,y)→ f (x,y) ∈Rn is contin-

uous and locally Lipschitz with respect to the first state variable x ∈ R
n, then (2.1)

on [0,τ] becomes an ODE for which the initial value problem

ẋ(t) = f (x(t),ϕ(t− τ)), t ∈ [0,τ], x(0) = ϕ(0), (2.4)

is solvable. If such a solution exists on [0,τ], we can repeat the argument to the
initial value problem

⎧⎨
⎩

ẋ(t) = f (x(t),x(t− τ)︸ ︷︷ ︸
given

), t ∈ [τ,2τ],

x(τ) is given in the previous step,
(2.5)

to obtain a solution on [τ,2τ]. This process may be continued to yield a solution of
(2.1) subject to x|[−τ,0] = ϕ given in (2.3).

Let Cn,τ = C([−τ,0];Rn) be the Banach space of continuous mappings from
[−τ,0] to R

n equipped with the supremum norm

‖φ‖= sup
−τ≤θ≤0

|φ(θ )| for φ ∈Cn,τ ,

and if we define xt : Cn,τ→Cn,τ by the segment of x on the interval [t−τ, t] translated
back to the initial interval [−τ,0], namely,

xt(θ ) = x(t +θ ), θ ∈ [−τ,0], (2.6)

then (2.1) subject to x0 = ϕ ∈ Cn,τ gives a semiflow [0,∞] � t �→ xt ∈ Cn,τ . This
clearly shows that an appropriate state space of a DDE is Cn,τ and that a DDE gives
an infinite-dimensional dynamical system on this phase space.

Many applications call for the study of asymptotic behaviors (as t → ∞) of
solutions of (2.1), and such a study seems to be very difficult due to the infinite-
dimensionality of the phase space and the generated semiflow, even for a scalar
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DDE (2.1) (that is, when n = 1). Even to restrict the study of the asymptotic behav-
iors of solutions near a specified solution is highly nontrivial. Take a steady state as
an example. A vector x∗ ∈R

n is called an equilibrium of (2.1) if

f (x∗,x∗) = 0. (2.7)

This vector gives a state x̂∗ ∈Cn,τ , which is a constant mapping on [−τ,0] with the
constant value x∗ ∈ R

n, and a solution of (2.1) with the initial value x̂∗ is a constant
function x: [0,∞)→ R

n with the constant value x∗. Behaviors of solutions of (2.1)
in a neighborhood of x̂∗ may be determined by the zero solution of the linearization

ẋ(t) = Dx f (x∗,x∗)x(t)+Dy f (x∗,x∗)x(t− τ) (2.8)

with

Dx f (x∗,x∗) def
=

∂
∂x

f (x,y)

∣∣∣∣
x=x∗,y=x∗

,

Dy f (x∗,x∗) def
=

∂
∂y

f (x,y)

∣∣∣∣
x=x∗,y=x∗

.

In the case τ > 0, even when n = 1, the behaviors of solutions of (2.8) can be
more complicated than any given linear system of ODEs, since (2.8) even when
n = 1 may have infinitely many linearly independent solutions eλ t with λ being
given by the so-called characteristic equation

λ = Dx f (x∗,x∗)+Dy f (x∗,x∗)e−λ τ . (2.9)

In particular, the infinite-dimensionality of the problem (2.1) leads to a transcen-
dental equation (rather than a polynomial), which can have multiple zeros on the
imaginary axis, giving rise to complicated critical cases.

On the other hand, some special features (specially the eventual compactness of
the solution semiflow) of DDEs ensure that the sequence of zeros of the characteris-
tic equation on the imaginary axis (counting multiplicity, either algebraically or ge-
ometrically, as will be specified later) must be finite. This gives a finite-dimensional
center manifold of system (2.1) in a neighborhood of the equilibrium state x̂∗, so
that the asymptotic behaviors of solutions of (2.1) in a neighborhood of x̂∗ can be
captured by the reduced system on the center manifold, and this reduced system is
an ODE system even though its dimension can be high.

We aim to introduce systematically the approach that enables us to derive the
specific form of the reduced ODE system on the center manifold, explicitly in terms
of the original system (2.1). Some forms of system (2.1) from application prob-
lems come with a parameter, and since the asymptotic behaviors of solutions near a
given equilibrium may change qualitatively when the parameter varies (the so-called
bifurcation), our focus will be on how the center manifold and the reduced ODE
system on the center manifold change when the parameter is varied.
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We should mention the step-by-step method in solving (2.1) on [0,τ], [τ,2τ], . . .
inductively, which, though effectively numerically, may not give useful qualitative
information about asymptotic behaviors of solutions. This method is also not useful
in solving the kind of DDE with distributed delay such as

ẋ(t) =
∫ 0

−τ
f (x(t),x(t +θ ))dθ

or

ẋ(t) = f

(
x(t),

∫ 0

−τ
g(x(t +θ ))dθ

)

with g: Rn → R
n. One should also mention that in case the change rate of x(t)

depends on the historical value of ẋ(t +θ ) with θ ∈ [−τ,0], such as

ẋ(t) = cẋ(t− τ)+ f (x(t),x(t− τ)),

we encounter additional difficulties, which shall be discussed later.

2.2 The Framework for DDEs

2.2.1 Definitions

Assume that Rn is equipped with the Euclidean norm | · |. For a given constant

τ ≥ 0, Cn,τ
def
= C([−τ,0],Rn) denotes the Banach space of continuous mappings

from [−τ,0] into R
n equipped with the supremum norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ )|

for φ ∈Cn,τ . Moreover, if t0 ∈R, A≥ 0, and x : [t0− τ, t0 +A]→ R
n is a continuous

mapping, then for every t ∈ [t0, t0 +A], xt ∈Cn,τ is defined by xt(θ ) = x(t + θ ) for
θ ∈ [−τ,0].

If f : Cn,τ →R
n is a mapping, we say that the equation

ẋ = f (xt) (2.10)

is a retarded functional differential equation (RFDE), or a delay differential equation
(DDE). A function x is said to be a solution of (2.10) on [t0, t0+A) if there are t0 ∈R
and A > 0 such that x ∈C([t0−τ, t0 +A),Rn), and x(t) is differentiable and satisfies
(2.10) for all t ∈ [t0, t0 +A). If f is locally Lipschitz (i.e., for every ϕ ∈ Cn,τ there
exist a neighborhood U ⊆ Cn,τ of ϕ and a constant L such that ‖ f (φ)− f (ψ)‖ ≤
L‖φ −ψ‖ for all φ , ψ ∈U), then for each given initial condition (t0,ϕ) ∈R×Cn,τ ,
system (2.10) has a unique mapping xϕ : [t0−τ,β )→R

n such that xϕ |[t0−τ,t0]=ϕ , xϕ

is continuous for all t ≥ t0− τ , is differentiable, and satisfies (2.10) for t ∈ (t0,β ),
the maximal interval of existence of the solution xϕ . Furthermore, if β < ∞, then
there exists a sequence tk→ β− such that |xϕ (tk)| →∞ as k→∞. For further results
on existence, uniqueness, continuation, and continuous dependence of solutions for
DDEs, see, for example, [18, 30, 51, 70, 120, 144–147, 154, 206, 208, 300, 302].
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System (2.10) includes the following DDE with distributed delay

ẋ(t) =
∫ 0

−τ
g(θ ,x(t +θ ))dθ , (2.11)

and the following DDE with discrete delay

ẋ(t) = h(x(t),x(t− τ1), . . . ,x(t− τk)), (2.12)

where τ = max{τ1, . . . ,τk}, g: [−τ,0] × R
n → R

n, and h: R
n × ·· · × R

n(=
R

n(k+1))→R
n are continuous. In these cases, for ϕ ∈Cn,τ ,

f (ϕ) =
∫ 0

−τ
g(θ ,ϕ(θ ))dθ

and

f (ϕ) = h(ϕ(0),ϕ(−τ1), . . . ,ϕ(−τk)),

respectively. It can be shown that if h is locally Lipschitz (in (2.12)), then so is f .
Similarly, if for every x ∈R

n there exist a neighborhood U of x ∈R
n and a constant

L > 0 such that |g(θ ,z)−g(θ ,y)| ≤ L|z−y| for all θ ∈ [−τ,0] and z,y ∈U , then the
corresponding f is locally Lipschitz.

2.2.2 An Operator Equation

Throughout this chapter, we always assume that f : Cn,τ→R
n is continuously differ-

entiable. Without loss of generality, assume that f (0) = 0, that is, 0 is an equilibrium
point of (2.10). Let L be the linearized operator of f at this equilibrium point. Then
the linearization of system (2.10) at this equilibrium point is

ẋ(t) = Lxt . (2.13)

We will consider the above linear system with a general linear operator L :
Cn,τ → R

n. Such an operator is clearly locally Lipschitz. For ϕ ∈ Cn,τ , let x = xϕ

be the unique solution of (2.13) satisfying xϕ
0 = ϕ . Then we have |x(t)| ≤ |ϕ(0)|+∫ t

0 |L|||xs||ds for all t ≥ 0, from which it follows that ||xt || ≤ ||ϕ ||+
∫ t

0 |L|||xs||ds for
t ≥ 0 and hence ||xt || ≤ ||ϕ ||e|L|t for t ≥ 0. This implies that the solution is defined
for all t ≥ 0. Here we use |L| to denote the operator norm of the bounded operator L.

Define the solution operators T (t) : Cn,τ →Cn,τ by the relation

(T (t)ϕ)(θ ) = xϕ
t (θ ) = x(t +θ ) (2.14)

for ϕ ∈Cn,τ , θ ∈ [−τ,0], t ≥ 0. Then (2.13) can be thought of as maps from Cn,τ to
Cn,τ . Moreover,

(i) T (t) is bounded and linear for t ≥ 0;
(ii) T (0)ϕ = ϕ or T (0) = Id;
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(iii) lim
t→t+0

‖T (t)ϕ−T(t0)ϕ‖ = 0 for ϕ ∈Cn,τ .

Note that the inverse of T (t), t ≥ 0, does not necessarily exist. Therefore, T (t), t ≥ 0,
is a strongly continuous semigroup.

An infinitesimal generator of a semigroup T (t) is defined by

A ϕ = lim
t→0+

T (t)ϕ−ϕ
t

for ϕ ∈Cn,τ .

In the case of the linear system (2.13), the infinitesimal generator can be
constructed as

(A ϕ)(θ ) =
{

dϕ/dθ , if θ ∈ [−τ,0),
Lϕ , if θ = 0.

(2.15)

We can show that the domain of A is given by

dom(A ) = {ϕ : φ ∈C1
n,τ ,ϕ ′(0) = Lϕ}.

Then T (t)ϕ satisfies

d
dt

T (t)ϕ = A T (t)ϕ ,

where
d
dt

T (t)ϕ = lim
h→0

T (t + h)ϕ−T(t)ϕ
h

.

We may enlarge the phase space Cn,τ in such a way that (2.10) can be written
as an abstract ODE in a Banach space. To accomplish this, for a positive integer n,
let BCn be the set of all functions from [−τ,0] to R

n that are uniformly continuous
on [−τ,0) and may have a possible jump discontinuity at 0. We also introduce X0 :
[−τ,0]→ BL(Rn) defined by

X0(θ ) =
{

Idn, θ = 0
0, θ ∈ [−τ,0). (2.16)

Then every ψ ∈ BCn can be expressed as ψ = ϕ +X0ξ with ϕ ∈Cn,τ and ξ ∈ R
n.

Thus BCn can be identified with Cn,τ ×R
n. Equipped with the norm |ϕ +X0ξ |BCn =

‖ϕ‖+ |ξ |, BCn is a Banach space. In BCn, we consider an extension of the infinites-
imal generator of {T (t)}t≥0, still denoted by A ,

A : C1
n,τ � ψ �→ ψ̇ +X0[Lψ− ψ̇(0)] ∈ BCn,

where ψ̇ = d
dθ ψ . Thus, the abstract ODE in BCn associated with (2.10) can be rewrit-

ten in the form

d
dt

xt = A xt +X0F(xt), (2.17)
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where F(xt) = f (xt )− Lxt . For θ ∈ [−τ,0), (2.17) is just the trivial equation
dut/dt = dut/dθ ; for θ = 0, it is (2.10).

2.2.3 Spectrum of the Generator

If the linear operator L: Cn,τ →R
n defined in (2.13) is continuous, then by the Riesz

representation theorem, there exists an n× n matrix-valued function η : [−τ,0]→
R

n2
whose elements are of bounded variation such that (see, for example, Hale and

Verduyn Lunel [154] for more details)

Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ), ϕ ∈Cn,τ . (2.18)

For example, consider x′(t) = −x(t)+ bx(t − 1). Let η : [−1,0]→ R be given
such that η(θ ) = 0 for all η ∈ (−1,0) and η(0) = −1 and η(−1) = −b. Then∫ 0
−1 dη(θ )ϕ(θ ) =−ϕ(0)+ bϕ(−1) for ϕ ∈C1,1.

In general, the spectrum of an operator may consist of three different types of
points, namely, the residual spectrum, the continuous spectrum, and the point spec-
trum. Moreover, points of the point spectrum are called eigenvalues of this operator.
It is interesting to see that the spectrum σ(A ) of A consists of only the point spec-
trum. This implies that σ(A ) consists of eigenvalues of A and that λ is in σ(A )
if and only if λ satisfies the characteristic equation

detΔ(λ ) = 0, (2.19)

where Δ(λ ) is the characteristic matrix of (2.13) and is given by

Δ(λ ) = λ Idn−
∫ 0

−τ
eλ θ dη(θ ). (2.20)

Here and in what follows, Idn is the n× n identity matrix. We will not use the sub-
script n if that does not cause confusion.

For any λ ∈ σ(A ), the generalized eigenspace Mλ (A ) is finite-dimensional,
and there exists an integer k such that Mλ (A ) = Ker((λ Id−A )k) and we have the
direct sum decomposition

Cn,τ = Ker((λ Id−A )k)⊕Ran((λ Id−A )k),

where Ker((λ Id−A )k) and Ran((λ Id−A )k) represent the kernel and image of
(λ Id−A )k, respectively. Clearly, A Mλ (A )⊆Mλ (A ).

The dimension Mλ (A ) is the same as the order of zero for detΔ(λ ) = 0.
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Let d = dimMλ (A ), let ϕ1, . . . ,ϕd be a basis for Mλ (A ), and let Φλ =
(ϕ1, . . . ,ϕd). Then there exists a d×d constant matrix Bλ such that A Φλ = Φλ Bλ .
Moreover, we have the following properties:

(i) the only eigenvalue of Bλ is λ ;
(ii) Φλ (θ ) = Φλ (0)e

Bλ θ ;
(iii) T (t)Φλ = Φλ eBλ t .

Therefore, we have the following result.

Theorem 2.1 (Hale and Verduyn Lunel [154]). Suppose Λ is a finite set
{λ1, . . . ,λp} of eigenvalues of (2.13), and let ΦΛ = (Φλ1

, . . . ,Φλp) and BΛ =
diag(Bλ1

, . . . ,Bλp), where Φλ j
is a basis for the generalized space of A associated

with λ j and Bλ j
is the matrix defined by A Φλ j

= Φλ j
Bλ j

, j = 1,2, . . . , p. Then the
only eigenvalue of Bλ j

is λ j , and for every vector v of the same dimension as the
space PΛ spanned by ΦΛ , the solution T (t)ΦΛ v with initial value ΦΛ v at t = 0 may
be defined on (−∞,∞) by the relations

T (t)ΦΛ v = ΦΛ eBΛ t v

and

ΦΛ (θ ) = ΦΛ (0)e
BΛ θ , −τ ≤ θ ≤ 0.

Furthermore, there exists a subspace QΛ of Cn,τ such that T (t)QΛ ⊆QΛ for all t ≥ 0
and

Cn,τ = PΛ ⊕QΛ . (2.21)

2.2.4 An Adjoint Operator

We now describe a formal adjoint operator associated with (2.15). Let C∗n,τ =
C([0,τ];Rn∗) be the space of continuous functions from [0,τ] to R

n∗ with

‖ψ‖= sup
t∈[0,τ]

|ψ(t)|

for ψ ∈C∗n,τ , where Rn∗ is the space of n-dimensional real row vectors. The formal
adjoint equation associated with the linear RFDE (2.13) is given by

ẏ =−
∫ 0

−τ
y(t−θ )dη(θ ). (2.22)

For ψ ∈ C∗n,τ , let yψ be the unique solution of (2.22) satisfying yψ
0 = ψ (in this

subsection, yt ∈C∗n,τ is defined as yt(s) = y(t + s) for s ∈ [0,τ]).
If we define

(T ∗(t)ψ)(θ ) = yψ
t (θ ) = y(t +θ ) (2.23)
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for ψ ∈C∗n,τ , θ ∈ [0,τ], t ≤ 0, then (2.23) defines a strongly continuous semigroup
with the infinitesimal generator

(A ∗ψ)(ξ ) =
{−dψ(ξ )/dξ , if ξ ∈ (0,τ],∫ 0
−τ ψ(−θ )dη(θ ), if ξ = 0.

(2.24)

Note that although the formal infinitesimal generator for (2.23) is defined as

A∗ψ = lim
t→0−

T (t)ψ−ψ
t

for ϕ ∈Cn,τ ,

Hale [144], for convenience, takes A ∗ = −A∗ in (2.24) as the formal adjoint to
(2.15). This family of operators (2.23) satisfies

d
dt

T ∗(t)ψ =−A ∗T ∗(t)ψ .

In addition, it is easy to obtain the following results.

Theorem 2.2. The following hold:

(i) λ is an eigenvalue of A if and only if λ is an eigenvalue of A ∗.
(ii) The dimensions of the eigenspaces of A and A ∗ are finite and equal.

(iii) The dimensions of the generalized eigenspaces of A and A ∗ are finite and
equal.

2.2.5 A Bilinear Form

In contrast to R
n, the space Cn,τ does not have a natural inner product associated

with its norm. However, following Hale [144], one can introduce a substitute device
that acts like an inner product in Cn,τ . This is an approach that is often taken when
a function space does not have a natural inner product associated with its norm.
Throughout, we will be assuming the complexification of the spaces so that we can
work with complex eigenvalues and eigenvectors.

Define two operators Π : C1(R;Rn)→C(R;Rn) and Ω : C1(R;Rn∗)→C(R;Rn∗)
as follows:

(Πx)(t) = ẋ(t)−
∫ 0

−τ
dη(θ )x(t +θ )

and

(Ωy)(t) = ẏ(t)+
∫ 0

−τ
y(t−θ )dη(θ ).

Then we have

y(t)(Πx)(t)+ (Ωy)(t)x(t) =
d
dt
〈y,x〉(t),
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where

〈y,x〉(t) = y(t)x(t)−
∫ 0

−τ

∫ θ

0
y(t + ξ −θ )dη(θ )x(t + ξ )dξ . (2.25)

Thus, if x ∈C1(R;Rn) and y ∈C1(R;Rn∗) satisfy Πx = 0 and Ωy = 0, then 〈y,x〉(t)
is constant, and one can set t = 0 in (2.25) to define the bilinear form

〈ψ ,ϕ〉= ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ , ψ ∈C∗n,τ ,ϕ ∈Cn,τ . (2.26)

In terms of (2.15) and (2.24), we see that

〈ψ ,A ϕ〉= 〈A ∗ψ ,ϕ〉

for ϕ ∈Cn,τ and ψ ∈C∗n,τ .

Let Λ be a set of some eigenvalues of A satisfying λ ∈Λ if λ ∈Λ . Denote by P
and P∗ the generalized eigenspaces of A and A ∗ associated with Λ , respectively. It
follows from Theorem 2.2 that dimP = dimP∗. If ϕ1,ϕ2, . . . ,ϕm is a basis for P and
ψ1,ψ2, . . . ,ψm is a basis for P∗, then construct the matrices Φ = (ϕ1,ϕ2, . . . ,ϕm)
and Ψ = (ψ1,ψ2, . . . ,ψm)

T . Define the bilinear form between Ψ and Φ by

〈Ψ ,Φ〉=

⎡
⎢⎣
〈ψ1,ϕ1〉 . . . 〈ψ1,ϕm〉

...
. . .

...
〈ψm,ϕ1〉 . . . 〈ψm,ϕm〉

⎤
⎥⎦ .

This matrix is nonsingular and can be chosen so that 〈Ψ ,Φ〉 = Idm. In fact, if
〈Ψ ,Φ〉 is not the identity, then a change of coordinates can be performed by set-
ting K = 〈Ψ ,Φ〉−1 and Ψ̃ = KΨ . Then 〈Ψ̃ ,Φ〉 = 〈KΨ ,Φ〉 = K〈Ψ ,Φ〉 = Idm. The
decomposition (2.21) of Cn,τ given by Theorem 2.21 may be written explicitly as

ϕ = ϕp +ϕq,

where ϕp = ΦΛ 〈ΨΛ ,ϕ〉 ∈ PΛ , ϕq ∈ QΛ = {φ : 〈ΨΛ ,φ〉= 0}.
Remark 2.1. The bilinear form in C∗n,τ ×Cn,τ given by (2.26) can be extended in a
natural way to C∗n,τ × BCn by setting 〈ψ ,X0〉 = ψ(0). We defer to Sect. 2.3 for a
discussion how this extended bilinear form allows us to cast a functional differential
equation to a system defined on the spaces P and QΛ .

2.2.6 Neural Networks with Delay: A Case Study
on Characteristic Equations

In this section, we provide a detailed case study for the characteristic equation of the
linearization at the trivial equilibrium of a coupled network of neurons with delayed
feedback. Such a network with feedback with different interneuron and intraneu-
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ron time lags arises naturally in biological neural populations and their hardware
implementation, and such a network also provides a simple-looking delay differen-
tial system that can exhibit complicated dynamics due to the existence of multiple
eigenvalues of the infinitesimal generator of the linearized system at a given equi-
librium when the synaptic connections and signal transmission delays are in certain
ranges.

2.2.6.1 General Additive Neural Networks with Delay

We first describe an artificial neural network consisting of electronic neurons (am-
plifiers) interconnected through a matrix of resistors. Here an electronic neuron, the
building block of the network, consists of a nonlinear amplifier that transforms an
input signal ui into the output signal vi, and the input impedance of the amplifier
unit is described by the combination of a resistor ρi and a capacitor Ci. We assume
that the input–output relation is completely characterized by a voltage amplification
function vi = fi(ui). The synaptic connections of the network are represented by
resistors Ri j that connect the output terminal of the amplifier j with the input part of
the neuron i. In order for the network to function properly, the resistances Ri j must
be able to take on negative values. This can be realized by supplying each amplifier
with an inverting output line that produces the signal −v j. The number of rows in
the resistor matrix is doubled, and whenever a negative value of Ri j is needed, this
is realized using an ordinary resistor that is connected to the inverting output line.

The time evolution of the signals of the network is described by the Kirchhoff’s
law. Namely, the strengths of the incoming and outgoing current at the amplifier
input port must balance. Consequently, we arrive at

Ci
dui

dt
+

ui

ρi
=

n

∑
j=1

1
Ri j

(v j− ui).

Let
1
Ri

=
1
ρi

+
n

∑
j=1

1
Ri j

.

We get

CiRi
dui

dt
+ ui =

n

∑
j=1

Ri

Ri j
v j.

In the above derivation of the model equation for an artificial neural network,
we implicitly assumed that the neurons communicate and respond instantaneously.
Consideration of the finite switching speed of amplifiers requires that the input–
output relation be replaced by vi = fi(ui(t − τi)) with a positive constant τi > 0,
and thus we obtain the following system of delay differential equations (see also
[168, 209, 252, 267, 278]):

CiRi
dui(t)

dt
=−ui(t)+

n

∑
j=1

Ri

Ri j
f j(u j(t− τ j)), 1≤ i≤ n.
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In what follows, for the sake of simplicity, we assume that

Ci =C, Ri = R, 1≤ i≤ n,

and thus all local relaxation times CiRi =CR are the same. Rescaling the time delay
with respect to the network’s relaxation time and rescaling the synaptic connec-
tion by

xi(t) = ui(CRt), r j =
τ j

RC
, wi j =

R
Ri j

,

we get

x′i(t) =−xi(t)+
n

∑
j=1

wi j f j(x j(t− r j)).

It is now easy to observe that it is the relative size of the delay r j that determines
the dynamics and the computational performance of the network, and designing a
network to operate more quickly will increase this relative size of the delay.

It is therefore important to examine the effect of signal delays on the network
dynamics. An important issue that has been addressed in the literature is how signal
delays change the stability of equilibria, causing nonlinear oscillations and inducing
periodic solutions. It will be shown that increasing the delay is among many mech-
anisms to create a network that exhibits periodic oscillations. Obviously, whether
delay can generate oscillation also depends on the network connection topology.
We refer to the monographs [224, 304] and a book chapter [52] for discussions
about the relevance of this type of artificial neural network for the study of bio-
logical neural populations. In particular, we emphasize the importance of temporal
delays in the coupling between cells, since in many chemical and biological oscil-
lators (cells coupled via membrane transport of ions), the time needed for transport
or processing of chemical components or signals may be of considerable length.

2.2.6.2 Special Case: Two Neurons

We now consider the following system of two neurons:
{

ẋ1(t) = −x1(t)+β f (x1(t− τ))+ a12 f (x2(t− τ1)),
ẋ2(t) = −x2(t)+β f (x2(t− τ))+ a21 f (x1(t− τ2)),

(2.27)

where x1(t) and x2(t) denote the activations of the two neurons, τi(i = 1,2) and
τ denote the synaptic transmission delays, a12 and a21 are the synaptic coupling
weights, f :R→R is the activation function. Throughout this subsection, we always
assume that τ1 + τ2 = 2τ > 0 and f : R→ R is a C1-smooth function with f (0)=0.
Without loss of generality, we also assume that τ1≥ τ2 and f ′(0) = 1. Letting x(t) =
(x1(t),x2(t))T and xt(θ ) = x(t +θ ) for θ ∈ [−τ1,0], we can rewrite (2.27) as

ẋ(t) = Lxt +F(xt)
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with
Lϕ =−ϕ(0)+B1ϕ(−τ1)+B2ϕ(−τ2)+Bϕ(−τ)

and

F(ϕ) = f ′′(0)
2

[
a11ϕ2

1 (−τ)+ a12ϕ2
2 (−τ1)

a21ϕ2
1 (−τ2)+ a22ϕ2

2 (−τ)

]

+ f ′′′(0)
6

[
a11ϕ3

1 (−τ)+ a12ϕ3
2 (−τ1)

a21ϕ3
1 (−τ2)+ a22ϕ3

2 (−τ)

]
+ o(‖ϕ‖3)

for ϕ = (ϕ1,ϕ2)
T ∈C2,τ1 , where

B1 =

[
0 a12

0 0

]
, B2 =

[
0 0

a21 0

]
, B =

[
β 0
0 β

]
.

The linearized system of (2.27) can be written as

ẋ = Lxt =

∫ 0

−τ1

dη(θ )x(t +θ ), (2.28)

where the matrix function η(θ ) is given by

η(θ ,μ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1 +B+B2− Idn, θ = 0,
B1 +B+B2, θ ∈ [−τ2,0),
B1 +B, θ ∈ [−τ,−τ2),
B1, θ ∈ (−τ1,−τ),
0, θ =−τ1,

and δ (θ ) is the Dirac delta function. The formal adjoint equation associated with
(2.28) is given by

ẏ(t) = y(t)− y(t + τ1)B1− y(t + τ2)B2− y(t + τ)B.

The bilinear form is

〈ψ ,ϕ〉 = ψ(0)ϕ(0)+
∫ 0
−τ1

ψ(s+ τ1)B1ϕ(s)ds

+
∫ 0
−τ2

ψ(s+ τ2)B2ϕ(s)ds+
∫ 0
−τ ψ(s+ τ)Bϕ(s)ds.

(2.29)

The operators A and A ∗ are given by

(A ϕ)(θ ) =
{

dϕ(θ)
dθ , if θ ∈ [−τ1,0),
−ϕ(0)+B1ϕ(−τ1)+B2ϕ(−τ2)+Bϕ(−τ), if θ = 0,

and

(A ∗ψ)(θ ) =

{
− dψ(ξ )

dξ , if ξ ∈ (0,τ1],

−ψ(0)+ψ(τ1)B1 +ψ(τ2)B2 +ψ(τ)B, if ξ = 0.



54 2 Introduction to Functional Differential Equations

Moreover, ϕ is in Ker(λ Id−A ) if and only if ϕ(θ ) = eλ θ v, −τ1 ≤ θ ≤ 0, where v
is a vector in R

2 such that Δ(λ )v = 0 and the characteristic matrix Δ(λ ) is

Δ(λ ) =
[

λ + 1−β e−λ τ −a12e−λ τ1

−a21e−λ τ2 λ + 1−β e−λ τ

]
.

Thus, the characteristic equation is

detΔ(λ ) = [λ + 1−β e−λ τ]2− a12a21e−2λ τ = 0. (2.30)

Also, ψ is in Ker(λ Id−A ∗) if and only if ψ(ξ ) = eλ ξ u, 0 ≤ ξ ≤ τ1, where u is a
vector in R

2∗ such that uΔ(−λ ) = 0.
Let γ± = β ±√a12a21, where

√
a12a21 is a real if a12a21 > 0 and purely imagi-

nary otherwise. Then, detΔ(λ ) can be decomposed as

detΔ(λ ) = [λ + 1− γ+e−λ τ ][λ + 1− γ−e−λ τ ].

Thus, in order to investigate the distribution of zeros of detΔ(λ ), we first consider
the distribution of zeros of the following function:

Pz(λ ) = λ + 1− ze−λ τ, (2.31)

where z ∈ C. Define a parametric curve Σ with the parametric equations
{

u(t) = cosτt− t sinτt,
v(t) = t cosτt + sinτt,

t ∈ R. (2.32)

It is easy to see that the curve Σ is symmetric about the u-axis. Let θ (t) = v(t)/u(t).
Then θ ′(t) = u−2(t)[1+ τ + τt2] > 0 for all t ∈ R such that u(t) �= 0. This im-
plies that as t increases, the corresponding point (u(t),v(t)) on the curve Σ moves
counterclockwise about the origin. Moreover, it follows from u2(t)+ v2(t) = 1+ t2

that Σ+ = {(u(t),v(t)) : t ∈ R
+} is simple, i.e., it cannot intersect itself. Let

{tn}+∞
n=0 be the monotonic increasing sequence of the nonnegative zeros of v(t),

and cn = u(tn) for all n ∈ N0 := {0,1,2, . . .}. Obviously, we have t0 = 0 and
tn ∈ ((2n− 1)π/(2τ),nπ/τ) for all n ∈ N. Therefore, the curve Σ intersects with
the u-axis at (cn,0), n ∈ N0. It follows from the counterclockwise property of the
curve Σ that (−1)ncn > 0 for all n∈N0. In addition, we have |cn|=

√
1+ t2

n , which
implies that cn =(−1)n

√
1+ t2

n for n∈N0 and {|cn|}n∈N0 is an increasing sequence.
In particular, c0 = 1 and c1 = secτt1 <−1. Moreover, we claim that

(−1)nv′(tn)> 0 and (−1)nu′(tn)≥ 0 for n ∈ N0. (2.33)

Equality in the second formula of (2.33) holds if and only if n = 0. In fact, we can
check that v′(tn) �= 0 when v(tn) = 0. This, combined with the counterclockwise
property of the curve Σ , gives the first inequality in (2.33). From u2(t)+ v2(t) =
1+ t2, we have u′(t)u(t)+ v′(t)v(t) = t for t ∈ R

+. Particularly, u′(tn)cn = tn for
all n ∈ N0. This, combined with (−1)ncn > 0 for n ∈ N0, immediately implies the
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second inequality in (2.33). This proves the claim. Finally, u2(t)+v2(t) = 1+ t2≥ 1
also implies that the curve is not inside the unit circle and it has only one intersection
point (1,0) with the unit circle.

For each n ∈ N0, let Σn = {(u(t),v(t)) : t ∈ [−tn+1,−tn]∪ [tn, tn+1]}, which is a
closed curve with (0,0) inside. The curve Σ is schematically illustrated in Fig. 2.1.
In the sequel, we will identify Σ with {u(t)+ iv(t) : t ∈ R} ⊂ C. The following

�

�

u

v

0

for t ≥ 0
for t ≤ 0

c0c1 c2c3 c4

Σ0

Σ1

Σ2

Σ3

Fig. 2.1 The parametric curve Σ

lemma will play an important role in analyzing the distributions of the roots of (2.1).

Lemma 2.1. Consider Pz(λ ) defined in (2.31) with z ∈C. Then the following state-
ments are true:

(i) Pz(λ ) has a purely imaginary zero if and only if z ∈ Σ . Moreover, if z =
u(θ )+ iv(θ ), then the purely imaginary zero is iθ except that there is a pair
of conjugate purely imaginary zeros ±itn if z = cn for n ∈ N.

(ii) For each fixed z0 = u(θ0) + iv(θ0) ∈ Σ , there exist an open δ -neighborhood
of z0 in the complex plane, denoted by B(z0,δ ), and an analytic function λ :
B(z0,δ ) → C such that λ (z0) = iθ0 and λ (z) is a zero of Pz(λ ) for all z ∈
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B(z0,δ ). Moreover, along the outward-pointing normal vector to the curve Σ at
z0, the directional derivative of Re{λ (z)} at z0 is positive.

(iii) Pz(λ ) has only zeros with strictly negative real parts if and only if z is inside
the curve Σ0, exactly j ∈ N zeros with positive real parts if z is between Σ j−1

and Σ j . In particular, if z ∈ Σ0, Pz(λ ) has either a simple real zero 0 (if z = 1)
or a simple purely imaginary zero (if Im(z) �= 0), or a pair of simple purely
imaginary zeros (if z = c1), and all other zeros has strictly negative real parts.

Proof. (i) Pz(λ ) has a purely imaginary zero, say λ = iθ , if and only if eiτθ (1+
iθ ) = z, which is equivalent to z ∈ Σ by separating the real and imaginary parts
of eiτθ (1+ iθ ).

(ii) Note that Pz0(iθ0) = 0 and iθ0 is a simple zero of Pz0(λ ). The existence of δ
and the mapping λ follow from the implicit function theorem. Moreover, λ (z)
is analytic with respect to z. Thus,

λ ′(z) =
∂

∂a
Re{λ (z)}+ i

∂
∂a

Im{λ (z)}= ∂
∂b

Im{λ (z)}− i
∂
∂b

Re{λ (z)},

where a = Re(z) and b = Im(z). On the other hand, differentiating Pz(λ ) = 0
with respect to z and using Pz0(iθ0) = 0, we have

λ ′(z0) = ε1 [u0ε2 +θ0v0 + i(θ0u0− v0ε2)] ,

where ε1 = [(1+ τ)2 +(τθ0)
2]−1(1+ θ 2

0 )
−1 and ε2 = 1+ τ + τθ 2

0 . It follows
that

∇Re{λ (z0)} =
(

∂
∂a

Re{λ (z0)}, ∂
∂b

Re{λ (z0)}
)T

= ε1 (u0ε2 +θ0v0,v0ε2−θ0u0)
T .

Let ϑ(ξ ) = (v′(θ0),−u′(θ0))M(ξ ), where ξ ∈ (−π/2,π/2) and

M(ξ ) =
[

cosξ sinξ
−sinξ cosξ

]
.

Obviously, for each fixed ξ ∈ (−π/2,π/2), ϑ(ξ ) is an outward-pointing vector
to the curve Σ at z0, Thus, the directional derivative along the vector ϑ(ξ ) at
z0 is

d
dϑ(ξ )

Re{λ (z0)} = ε3(v
′(θ0),−u′(θ0))M(ξ )∇Re{λ (z0)}

= ε1ε3(ε2
2 +θ 2

0 )cosξ > 0,

where ε3 = 1/
√
(1+ τ)2 + τ2θ 2

0 .

(iii) Note that P0(λ ) has exactly one zero −1, which obviously has a negative real
part. Since zeros of Pz(λ ) depend continuously on z, there exists a region Ω0
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containing z = 0 such that for z ∈ Ω0, all zeros of Pz(λ ) have negative real
parts. Moreover, as z varies and passes through the boundary ∂Ω0, only one
(or two if z is real) zero point of Pz(λ ) varies from a complex number with a
negative real part to a purely imaginary number and then to a complex number
with a positive real part. By (i), ∂Ω0 = Σ0. Therefore, Pz(λ ) has only zeros
with negative real parts if z in inside the curve Σ0. If z is a real number between
Σ j−1 and Σ j, then one can easily show that Pz(λ ) has exactly j zeros with
positive real parts (see, for example, the discussion in Chen and Wu [59]).
This, combined with (i) and the continuous dependence of zeros of Pz(λ ) on z,
completes the proof. �

In view of Lemma 2.1, we have the following conclusions:

(1) All zeros of detΔ(λ ) have negative real parts if and only if both of γ± are inside
the curve Σ .

(2) If and only if 1 �= γ+ ∈ Σ or 1 �= γ− ∈ Σ , detΔ(λ ) has a pair of simple conjugate
purely imaginary zeros ±iω , where ω > 0 satisfies either u(ω)+ iv(ω) = γ+
or u(ω)+ iv(ω) = γ−. In particular, ω = tn if either γ+ or γ− is equal to cn for
some n ∈ N.

(3) If and only if only one of γ+ and γ− is equal to 1, detΔ(λ ) has a simple zero
λ = 0. Moreover, if c1 < γ− < γ+ = 1, then all zeros but λ = 0 of detΔ(λ ) have
strictly negative real parts.

If a12a21 > 0 and only one of γ± lies on the curve Σ , or a12a21 < 0 and γ± ∈
Σ , then on the imaginary axis, the infinitesimal generator A has only one pair of
simple purely imaginary eigenvalues±iω . Let Φ = (ϕ1,ϕ2) and Ψ = (ψ1,ψ2)

T be
bases for the generalized eigenspaces P±iω and P∗±iω of A and A ∗ associated with
eigenvalues±iω , respectively. In fact, we can choose

ϕ1(θ ) = ϕ2(θ ) = (1,d)T eiωθ , θ ∈ [−τ1,0],
ψ1(ξ ) = ψ2(ξ ) = D

(
d,1

)
eiωξ , ξ ∈ [0,τ1],

and
d = (1+ iω−β e−iωτ)eiωτ1/a12,

D = {2d [1+ τ(1+ iω)]}−1 .

Moreover, 〈ψ j,ϕk〉= δ jk, j,k = 1,2, where 〈·, ·〉 is defined in (2.29) and

δ jk =

{
1, if j = k,
0, if j �= k.

Assume that a12a21 > 0. If γ+ = 1 and γ− = cn or γ− = 1 and γ+ = cn for some
n ∈ N, then on the imaginary axis, the infinitesimal generator A has only simple
eigenvalues 0, itn, and −itn. Here, we consider only the first case. Namely, assume
that a12a21 > 0 and γ+ = 1 and γ− = cn for some n ∈ N. Let Φ = (q0,q1, q̄1), and
Ψ = (p0, p1, p̄1)

T be bases for the generalized eigenspaces PΛ and P∗Λ of A and A ∗
associated with Λ = {0, itn,−itn}. In fact, we can choose
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q0(θ ) = (1,d0)
T , q1(θ ) = (1,d1)

T eitnθ , θ ∈ [−τ1,0],

and

p0(ξ ) = D0 (d0,1) , p1(ξ ) = D1
(
d1,1

)
eitnξ , ξ ∈ [0,τ1],

where d0 =(1−β )/a12, d1 =(1+ itn−β e−itnτ )eitnτ1/a12, D0 = [2d0 (1+ τ)]−1, and
D1 = {2d1 [1+ τ(1+ itn)]}−1. Moreover, 〈p j,qk〉= δ jk and 〈p j, q̄k〉= 0, j,k = 0,1.

Assume that a12a21 > 0. If γ+ = cn and γ− = cm for n,m ∈ N such that cn >
cm, then on the imaginary axis, the infinitesimal generator A has only two pairs
of simple purely imaginary eigenvalues ±iω1 and ±iω2, where ω1 = tn and ω2 =
tm. Let Φ = (q1, q̄1,q2, q̄2), and Ψ = (p1, p̄1, p2, p̄2)

T be bases for the generalized
eigenspaces PΛ and P∗Λ of A and A ∗ associated with Λ = {iω1,−iω1, iω2,−iω2}.
In fact, we can choose

q j(θ ) = (1,d j)
T eiω jθ , θ ∈ [−τ1,0], j = 1,2,

and

p j(ξ ) = D j
(
d j,1

)
eiω jξ , ξ ∈ [0,τ1], j = 1,2,

where d1 =(1+ iω j−β e−iω jτ)eiω jτ1/a12 and D j =
{

2d j [1+ τ(1+ iω j)]
}−1

. More-
over, 〈p j,qk〉= δ jk and 〈p j, q̄k〉= 0, j,k = 1,2.

2.3 General Framework of NFDEs

Suppose that f , h: Cn,τ → R
n are given continuous mappings. The relation

d
dt

h(xt) = f (xt ) (2.34)

is called a neutral functional differential equation (NFDE). The mapping h will be
called the difference operator for NFDE (2.34). If h(ϕ) = ϕ(0) for all ϕ , then (2.34)
becomes (2.10). Consequently, DDEs are special cases of NFDEs.

A function x is said to be a solution of (2.34) on [t0, t0 + A) for some t0 ∈ R

and A > 0 if x ∈ C([t0 − τ, t0 + A),Rn), xt ∈ Cn,τ for all t ∈ [t0, t0 + A), h(xt) is
continuously differentiable, and x(t) satisfies (2.34) for all t ∈ [t0, t0 +A).

Let D, L: Cn,τ → R
n be the two linearized operators of h and f at some equilib-

rium point, respectively. Without loss of generality, we assume that there exist two
n× n matrix-valued functions μ ,η : [−τ,0]→ R

n2
whose components each have

bounded variation and such that for ϕ ∈Cn,τ ,

Dϕ = ϕ(0)−
∫ 0

−τ
dμ(θ )ϕ(θ ), Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ).
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Moreover, we assume that D is atomic at zero, that is, Var[s,0]μ(θ )→ 0 as s→ 0
(see Hale and Verduyn Lunel [154] for more details). The linear system

d
dt

Dxt = Lxt (2.35)

generates a strongly continuous semigroup of linear operators with infinitesimal
generator A . The spectrum of A , denoted by σ(A ), is the point spectrum. More-
over, λ is an eigenvalue of A , i.e., λ ∈σ(A ), if and only if λ satisfies detΔ(λ ) = 0,
where the characteristic matrix Δ(λ ) is given by

Δ(λ ) = λ D(eλ (·)Id)−L(eλ (·)Id).

It is well known that φ ∈Cn,τ is an eigenvector of A associated with the eigenvalue
λ if and only if φ(θ ) = eλ θ b for θ ∈ [−τ,0] and some vector b ∈ C

n such that
Δ(λ )b = 0. Here and in the sequel, for the sake of convenience, we shall also allow
functions with range in C

n.
Let Λ be a set of some eigenvalues of A , and denote by EΛ the generalized

eigenspace of A associated with Λ . It is known that dimEΛ = m, where m is the
number of zeros of detΔ(λ ) in Λ , counting multiplicities. As we did earlier for
DDEs, we define a bilinear form

〈ψ ,ϕ〉 = ψ(0)ϕ(0)−
∫ 0

−τ

[
d
ds

∫ s

0
ψ(ξ − s)dμ(θ )ϕ(ξ )dξ

]
s=θ

(2.36)

−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ

for ψ ∈ C∗n,τ and ϕ ∈ Cn,τ . Let Φ be a basis for EΛ and Ψ the basis for the dual
space E∗Λ in C∗n such that 〈Ψ ,Φ〉 = Idm. The phase space Cn,τ is decomposed by Λ
as Cn,τ = EΛ ⊕QΛ , where QΛ = {φ ∈Cn,τ : 〈Ψ ,φ〉= 0}. Moreover, there exists an
m×m constant matrix B with σ(B) = Λ such that

Φ̇ = ΦB and Ψ̇ =−BΨ .

Similarly to the previous sections for DDEs, we may enlarge the phase space Cn,τ
such that (2.34) can be written as an abstract ODE in the Banach space BCn. First, in
BCn, we consider an extension of the infinitesimal generator A , still denoted by A ,

A : BCn ⊃C1
n,τ � ϕ �→ ϕ̇ +X0[Lϕ−Dϕ̇] ∈ BCn,

where Dom(A ) = C1
n,τ

def
= {ϕ ∈ Cn,τ : ϕ̇ ∈ Cn,τ}. The bilinear form in C∗n,τ ×Cn,τ

given by (2.36) is extended in a natural way to C∗n,τ×BCn by setting 〈ψ ,X0〉=ψ(0).
Thus, the abstract ODE in BCn associated with (2.34) can be rewritten in the form

d
dt

u = A u+X0G(u), (2.37)
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where

G(u) = f (u)−Lu− d
dt

[h(u)−Du] . (2.38)

Consider the projection π : BCn→ EΛ given by

π(ϕ +X0ξ ) = Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ]. (2.39)

Obviously, π is a continuous projection onto EΛ , which commutes with A in C1
n,τ .

This allows us to decompose BCn as a topological direct sum, BCn = EΛ ⊕Kerπ ,
where QΛ ⊂ Kerπ .

Due to the decomposition of BCn, we can decompose u in (2.37) in the form

u = Φx+ y, with x ∈ R
m, y ∈ Q

def
= Kerπ ∩C1

n,τ . Then (2.37) is equivalent to the
system

ẋ = Bx+Ψ(0)G(Φx+ y),
dy
dt = AQy+(I−π)X0G(Φx+ y),

(2.40)

where AQ is the restriction of A to Q interpreted as an operator acting in the Banach
space Kerπ . The spectrum of AQ will be very important for the construction of nor-
mal forms. Similarly, AQ has only a point spectrum. Moreover, σ(AQ) =σ(A )\Λ .



Chapter 3
Center Manifold Reduction

A center manifold at a given nonhyperbolic equilibrium is an invariant manifold
of a given differential equation that is tangent at the equilibrium point to the
(generalized) eigenspace of the neutrally stable eigenvalues. Since the local dynamic
behavior transverse to the center manifold is relatively simple, the potentially com-
plicated asymptotic behaviors of the full system are captured by the flows restricted
to the center manifolds.

Center manifold theory plays an important role in the study of the stability of
dynamical systems when the equilibrium point is not hyperbolic. The combination
of center manifold reduction with the normal form approach has been used exten-
sively to study bifurcations of parameterized dynamical systems. The center man-
ifold theorem provides the theoretical foundation for systematically reducing the
dimension of the state spaces.

The classical center manifold theory of equilibria, since first introduced by Pliss
[245] and Kelley [189] in the 1960s, has been well developed and treated by Carr
[53], Hirsch et al. [164], Sijbrand [266], Hassard et al. [159, 160], Ruelle et al.
[255, 256], Ait Babram et al. [5–7], Guo and Man [138], Guckenheimer and Holmes
[125], Vanderbauwhede [285], and others [91–93, 147, 183, 184, 211, 286].

3.1 Some Examples of Ordinary Differential Equations

To illustrate the concept and importance of invariant manifolds, we examine some
examples of ordinary differential equations (ODEs).

Example 3.1. Consider the system of ODEs

ẋ = x, ẏ =−y+ x2, (x,y) ∈ R
2, (3.1)

which has a hyperbolic fixed point at (x,y) = (0,0). The associated linearized sys-
tem is given by

ẋ = x, ẏ =−y,

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6 3,
© Springer Science+Business Media New York 2013
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with stable and unstable subspaces given by

Es = {(x,y) ∈ R
2 : x = 0}, Eu = {(x,y) ∈ R

2 : y = 0}.

For the nonlinear vector field (3.1), the solution can be obtained explicitly as fol-
lows. Eliminating time as the independent variable gives

dy
dx

=
x2− y

x
if x �= 0,

which can be solved to obtain

y(x) =
x2

3
+

c
x

if x �= 0,

where c is some constant.
The local unstable manifold of (3.1), denoted by W u

loc(0,0), is a one-dimensional
manifold that is tangent to the unstable subspace at the origin such that solutions
starting from this manifold will stay in the manifold for t ≥ 0 and converge to the
origin as t →−∞. This unstable manifold can be represented by a graph over the x
variable, that is, y = h(x) with h(0) = h′(0) = 0. The unstable manifold is given by
letting c = 0:

W u
loc(0,0) =

{
(x,y) ∈R

2 : y =
x2

3

}
.

Note that every solution starting in W u
loc(0,0) remains in W u

loc(0,0), so this is also
the global unstable manifold of the origin.

We can similarly define stable manifolds. Note that if we have initial conditions
on the y-axis, then the solution stays on the y-axis and approaches (0,0) as t → ∞.
Thus, the local stable manifold and its global extension (global stable manifold) are
both W s

loc(0,0) =W s(0,0) = {(x,y) ∈ R
2 : x = 0} (see Fig. 3.1).

x

y

Fig. 3.1 Stable and unstable manifolds of (x,y) = (0,0) in system (3.1)
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In Chap. 1, we studied bifurcations of equilibria in one-parameter dynamical
systems having the minimum possible phase dimensions. Indeed, the systems we
analyzed were either one- or two-dimensional. The corresponding bifurcations
occur in essentially the same way for higher-dimensional systems. As we shall
see, there are certain parameter-dependent one- or two-dimensional invariant mani-
folds on which the system exhibits the corresponding bifurcations, while the behav-
ior off the manifolds is somehow trivial. Therefore, such manifolds (called center
manifolds) are very important in describing dynamic behavior of high-dimensional
systems.

The following example shows that the center manifold need not be unique.

Example 3.2. Consider the following ODE system:

ẋ = x2, ẏ =−y, (x,y) ∈ R
2. (3.2)

The trajectory through point (x0,y0) is (see Fig. 3.2) given by

x(t) =
x0

1− tx0
, y(t) = y0e−t .

After eliminating time t, we obtain

y = (y0e−1/x0)e1/x.

It is easy to see that all trajectories starting from the left half of the (x,y)-plane
(x < 0) tend to (0,0) as x→ 0. The center space Ec of the linearized system (3.2) is
the x-axis. System (3.2) possesses a family of one-dimensional manifolds:

W c
β = {(x,y) ∈ R

2: y = ψβ (x)},

where

ψβ (x) =

{
β e1/x, if x < 0,
0, if x≥ 0.

Obviously, W c
β is tangent to Ec at the origin, and it is a family of C∞ manifolds.

According to the definition to be introduced in the next section, these are all center
manifolds.

We conclude this section with an example to show how to reduce the dimension
and simplify the corresponding bifurcation problem.

Example 3.3. Consider the following two-dimensional system:

ẋ = μx+ 2μy+ x2+ y2,
ẏ = −y+ μx+ x2+ xy.

(3.3)

By the center manifold theorem, there should be an invariant manifold of the form

y = h(x,μ) = a(μ)x+ b(μ)x2 + c(μ)x3 +O(|x|4). (3.4)
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x

y

Fig. 3.2 Center manifolds of (x,y) = (0,0) in system (3.2)

To compute the coefficients, we simply differentiate the equation and obtain

ẏ = a(μ)ẋ+ 2b(μ)xẋ+ 3c(μ)x2ẋ+O(|x|3)ẋ.

Now we use the differential equation (3.3) to replace ẏ and ẋ. This yields

−y+ μx+ x2+ xy = [a(μ)+ 2b(μ)x+ 3c(μ)x2+O(|x|3)][μx+ 2μy+ x2+ y2].

Next, we use (3.4) to substitute for y, and we compare terms of order x, x2, and x3

to obtain

−a(μ)+ μ = a(μ)μ + 2μ [a(μ)]2,
−b(μ)+ 1+ a(μ) = 2b(μ)μ + 6μa(μ)b(μ)+ a(μ)+ [a(μ)]3,
−c(μ)+ b(μ) = 8μa(μ)c(μ)+ 4[a(μ)]2b(μ)+ 4μ [b(μ)]2+ 2b(μ)+ 3μc(μ).

It follows that a(μ) = μ +O(μ2), b(μ) = 1+O(μ). Finally, we can insert (3.4)
back into the first equation of (3.3) and obtain

ẋ = x f (μ ,x),

where

f (μ ,x) = μ+2μa(μ)+[2μb(μ)+1+(a(μ))2]x+[2μc(μ)+2a(μ)b(μ)]x2+O(x3).

Notice that fx(0,0) = 1 and fμ(0,0) = 1, so that according to the implicit func-
tion theorem, we can solve uniquely for either variable in a neighborhood of (0,0):
x = −μ +O(μ2) or μ = −x+O(x2). We have thus established the existence of a
bifurcating branch of steady solutions.
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3.2 Invariant Manifolds of RFDEs

We now state the invariant manifold theory for the DDE

ẋ = f (xt ), (3.5)

where f : Cn,τ → R is sufficiently smooth and satisfies f (0) = 0. The linearization
of system (3.5) at this equilibrium point x = 0 takes the form

ẋ(t) = Lxt , (3.6)

which generates a strongly continuous semigroup with the infinitesimal generator
A : Cn,τ →Cn,τ . Let σ s, σ c, and σu be the sets of eigenvalues of the infinitesimal
generator A with negative, zero, and positive real parts, respectively. Obviously,
σ = σ s∪σ c∪σu. Let Es, Ec, and Eu be the generalized eigenspaces corresponding
to σ s, σ c, and σu, respectively. Obviously, Es, Ec, and Eu are A -invariant subspaces
of Cn,τ , and are referred to as the stable, unstable, and center subspaces, respectively.
Moreover, solutions starting in Es approach x = 0 asymptotically as t → ∞, and
solutions starting in Eu approach x = 0 asymptotically as t →−∞.

The space M = Es⊕Ec⊕Eu is precisely the space of initial functions such that
the corresponding solution of (3.6) has a finite expansion in characteristic solutions.
In fact, the solution through φ ∈M exists for all time, and the semigroup T (t) ex-
tends to a flow on M . In general, the closure of M is (possibly properly) contained
in Cn,τ , and the space Cn,τ can be decomposed as

Cn,τ = S⊕Ec⊕Eu, (3.7)

where S contains Es and is possibly infinite-dimensional.

Definition 3.1. For a given neighborhood V , the local strongly stable set (or mani-
fold) Mss

loc(0) and the local strongly unstable set (or manifold) Msu
loc(0) of the equi-

librium point 0 of system (3.5) are defined as

Mss
loc(0)

def
= {ϕ∈Cn,τ : xt(·,ϕ)∈V for t ≥ 0 and approaches 0 exponentially as t→ ∞},

Msu
loc(0)

def
= {ϕ∈Cn,τ : xt(·,ϕ)∈V for t ≤ 0 and approaches 0 exponentially as t→−∞}.

Definition 3.2. For a given neighborhood V , a local center manifold Mc
loc(0) of the

equilibrium point 0 of system (3.5) is a C1 submanifold that is a graph over V ∩Ec

in Cn,τ , tangent to Ec at 0, and locally invariant under the flow defined by (3.5).
Namely,

Mc
loc(0)∩V = {ϕ ∈Cn,τ : ϕ = φ + h(φ), φ ∈V ∩Ec},

where h: Ec→ S⊕Eu is a C1 mapping with h(0) = 0, Dφ h(0) = 0. Moreover, every
orbit that begins on Mc

loc(0) remains in this set as long as it stays in V .

Definition 3.3. For a given neighborhood V , a local center-stable manifold Mcs
loc(0)

of the equilibrium point 0 of system (3.5) is a set in Cn,τ such that Mcs
loc(0)∩V is a
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C1 submanifold that is a graph over V ∩ (Ec⊕S), tangent to Ec⊕S at 0, and locally
invariant under the semiflow defined by (3.5). Namely,

Mcs
loc(0)∩V = {ϕ ∈Cn,τ : ϕ = φ + h(φ), φ ∈V ∩ (Ec⊕ S)},

where h: Ec⊕S→ Eu is a C1 mapping with h(0) = 0, Dφ h(0) = 0. Moreover, every
orbit that begins on Mcs

loc(0) remains in this set as long as it stays in V . Furthermore,
every orbit that stays in V for all t ≥ 0 must belong to Mcs

loc(0). In the same way, we
define the local center-unstable manifold Mcu

loc(0) of the equilibrium point 0 of (3.5)
by replacing t ≥ 0 by t ≤ 0, the set Ec⊕ S by Ec⊕Eu, and the set Eu by S.

We have the following basic result on the existence of invariant manifolds.

Theorem 3.1. If f in (3.5) is a Ck function such that f (0) = 0, then there is a neigh-
borhood V of 0 ∈ Cn,τ such that the sets Mss

loc(0), Msu
loc(0), Mc

loc(0), Mcu
loc(0), and

Mcs
loc(0) exist and are Ck submanifolds of Cn,τ . The manifolds Mss

loc(0) and Msu
loc(0)

are uniquely defined, whereas the manifolds Mc
loc(0), Mcu

loc(0), and Mcs
loc(0) might

not be.

Local stable and unstable manifolds can be extended to global stable and unstable
manifolds. In addition, the existence of invariant manifolds for partial functional
differential equations was established by Memory [219–221].

Very often, one talks about stable manifolds, unstable manifolds, or center mani-
folds without specific reference to a particular equilibrium. However, this is a misuse
of the term, because the addition of of an equilibrium is key: one must speak about
the stable, unstable, or center manifolds of something in order for the terminology
to make sense. The something studied thus far has been an equilibrium.

3.3 Center Manifold Theorem

Let Φ be a basis for Ec and Ψ the basis for the dual space Ec∗ in C∗n,τ such that
〈Ψ ,Φ〉= Idm, where m= dimEc. There exists an m×m matrix B such that Φ̇ =ΦB.
It follows from (3.7) that we have BCn = Ec⊕Kerπ and Es⊕Eu ⊂ Kerπ , where
π : BCn→ Ec is the projection defined by

π(ϕ +X0ξ ) = Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ] (3.8)

for ϕ ∈Cn,τ and ξ ∈ R
n.

As we know, the abstract ODE in BCn associated with (3.5) can be rewritten in
the form

d
dt

xt = A xt +X0F(xt), (3.9)

where F(xt) = f (xt)−Lxt . Due to the decomposition of BCn, we can decompose xt

in (3.9) in the form xt = Φz+ y, with z ∈ R
m, y ∈ Q

def
= Kerπ ∩C1

n,τ . Then (3.9) is
equivalent to the system
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ż = Bz+Ψ(0)F(Φz+ y),
dy
dt = AQy+(I−π)X0F(Φz+ y),

(3.10)

where AQ is the operator from Q to Kerπ , i.e.,

AQψ = ψ̇ +X0[Lψ− ψ̇(0)] for ψ ∈ Q.

In view of Theorem 3.1, we have the following result.

Theorem 3.2 (Center manifold theorem). There exist W ∈ Ck(Rm,Kerπ) with
W (0) = 0 and DzW (0) = 0 and a neighborhood V of u = 0 in Cn,τ such that the
center manifold

Mc
loc(0)∩V = {Φz+W(z) : z ∈ R

m}
has the following properties:

(i) Mc
loc(0) is locally invariant with respect to (3.5). More precisely, if ϕ ∈

Mc
loc(0)∩V and ut(ϕ) ∈ V for t ∈ I, then ut(ϕ) ∈ Mc

loc(0) for t ∈ I, where
I = I(ϕ) is an interval containing t = 0.

(ii) Mc
loc(0) contains all solutions of (3.5) remaining in V for all t ∈ R. That is, if

ϕ ∈V and ut(ϕ) ∈V for t ∈ R, then ut(ϕ) ∈Mc
loc(0).

(iii) If σu = /0, then Mc
loc(0) is locally attractive. More precisely, all solutions of

(3.5) remaining in V for all t > 0 tend exponentially to some solution of (3.5)
on Mc

loc(0). That is, if ϕ ∈ V and ut(ϕ) ∈ V for t ≥ 0, then there exist t̃ ∈ R,
ϕ̃ ∈Mc

loc(0)∩V, and γ > 0 such that

u(t;ϕ) = u(t− t̃; ϕ̃)+O(e−γt) (t → ∞).

Remark 3.1. The domain of definition of Mc
loc(0) may depend on the degree of

smoothness k of f in (3.5). Moreover, for analytic (or C∞) f , the center manifold is
not necessarily analytic (C∞).

In Theorem 3.2, Mc
loc(0) is a Ck manifold of (3.5) parameterized by z ∈ R

m.
Hence Mc

loc(0) has the same dimension as Ec; Mc
loc(0) passes through u = 0 and is

tangent to Ec at u = 0.
Next, we consider the reduced equation of (3.5) on the center manifold Mc

loc(0).
If ϕ ∈Mc

loc(0)∩V , then ut(ϕ) ∈Mc
loc(0) for t close to t = 0. Defining

z0 = 〈Ψ ,ϕ〉, z(t;z0) = 〈Ψ ,ut(ϕ)〉,

we can write
ut(ϕ) = Φz(t;z0)+W(z(t;z0)).

Using (3.5), we obtain the following characterizations:

(i) z(·;z0) satisfies the m-dimensional nonlinear differential equation

ż = Bz+G(z), (3.11)

where G(z) =Ψ(0)F(W (z)+Φz).
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(ii) The map W satisfies
d
dt

W = AQW +H(z), (3.12)

where H(z) = [X0−ΦΨ(0)]F(W (z)+Φz).

The reduced system (3.11) governs the flow of (3.5) on the center manifold
Mc

loc(0). The next theorem shows that (3.11) contains all the necessary information
needed to determine the asymptotic behavior of small solutions of (3.5).

Theorem 3.3. (i) Suppose that σu = /0 and the zero solution of (3.11) is stable (re-
spectively, asymptotically stable, unstable). Then the zero solution of (3.5) is
stable (respectively, asymptotically stable, unstable).

(ii) Suppose that the zero solution of (3.5) is asymptotically stable. Let u(t;ϕ) be
a solution of (3.5) with the initial value ϕ sufficiently close to the origin of the
phase space. Then there exists a solution z(t) of (3.11) such that

ut(ϕ) = Φz(t)+W (z(t))+O(e−γt)

as t→ ∞, where γ is a positive constant.

3.4 Calculation of Center Manifolds

In order to calculate W in (3.12), we expand G and W in their Taylor series around
z = 0. To avoid awkward formulas, we use a concise representation of Taylor series
throughout this book. That is, we write the Taylor series of G as

G(z) =
k

∑
j=2

1
j!

G j(z)+ o(‖z‖k). (3.13)

In this representation, G j is a symmetric j-linear map from R
m×·· ·×R

m ( j times)
into R

m, and z( j) stands for the repetition of j identical arguments of z. Namely,

G j(z) = ∑
j1+···+ jm= j

j!
j1!··· jm! · ∂ jG(0)

∂ z
j1
1 ···∂ z jm

m
z j1

1 · · · z jm
m .

The m components of G j(z) are real-valued homogeneous polynomials of degree j
in the m components of z. The analogous expansions for W and H read

W (z) =
k

∑
j=2

1
j!

Wj(z)+ o(|z|k), H(z) =
k

∑
j=2

1
j!

Hj(z)+ o(|z|k). (3.14)

Using (3.12), we have d
dt W = DzW (z)ż = DzW (z)(Bz+G(z)), and so
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[
k
∑
j=2

1
j! DWj(z)

][
Bz+

k
∑
j=2

1
j! G j(z)

]
=

k
∑
j=2

1
j!A Wj(z)+

k
∑
j=2

1
j! Hj(z)+ o(|z|k).

There are no terms of order 1. At order 2, we obtain

DzW2(z)Bz−A W2(z) = H2(z).

At order 3, we have

2DzW3(z)Bz− 2A W3(z) = 2H2(z)− 3DzW2(z)G2(z).

At order s≤ k, we have

DzWs(z)Bz−A Ws(z) = Hs(z)−
s−2

∑
l=1

s!
(l + 1)!(s− l)!

DWl+1(z)Gs−l(z).

The equations have to be solved step by step with increasing s, starting with s = 2.
In the subsequent subsections, we consider the restriction of (3.5) to the center

manifold at the critical parameter values when the dimension of the center space is
not too high. Assuming sufficient smoothness of f of (3.5), we write

f (ϕ) = Lϕ + 1
2F 2(ϕ ,ϕ)+ 1

6F 3(ϕ ,ϕ ,ϕ)+ 1
24F 4(ϕ ,ϕ ,ϕ ,ϕ)

+ 1
120F 5(ϕ ,ϕ ,ϕ ,ϕ ,ϕ)+ · · · ,

where

F j(v1,v2, · · · ,v j) =
∂ j

∂ t1∂ t2 · · ·∂ t j
f

(
j

∑
s=1

tsvs

)∣∣∣∣∣
t1=t2=···=t j=0

for j ∈ N.

3.4.1 The Hopf Case

We first recall that the eigenvalues of A are solutions of the characteristic equation
detΔ(λ ) = 0, where

Δ(λ ) = λ Id−
∫ 0

−τ
eλ θ dη(θ ), (3.15)

and η : [−τ,0]→ R
n2

is an n× n matrix-valued function whose elements are of
bounded variation such that

Lϕ =
∫ 0
−τ dη(θ )ϕ(θ ), ϕ ∈Cn,τ . (3.16)
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Throughout this subsection, we always assume that on the imaginary axis, the
infinitesimal generator A has only one pair of simple purely imaginary eigenvalues
±iω . Thus, the center space Ec is spanned by q and q, and its dual space Ec∗ is
spanned by p and p, where p and q satisfy

p(0)Δ(iω) = 0, Δ(iω)q(0) = 0,

and
〈p,q〉= 1, 〈p,q〉= 0.

For a solution ut of (3.9), we define z(t) = 〈p,ut〉 and then define w(t,θ ) =
ut(θ ) − 2Re{z(t)q(θ )}. In fact, z and z are local coordinates for Mc

loc in the
directions of p and p. Note that w is real if ut is, which allows us to deal with
real solutions only.

It is easy to see that 〈p,w〉= 0. Note that 〈p, u̇t〉= 〈p,A ut〉+〈p,X0F(ut)〉. Then
we have

ż = iωz+ g(z), z ∈C, (3.17)

where g(z) = p(0)F(w(z)+ 2Re{zq}), and

w(z) = ∑
j+k≥2

1
j!k!

wjkz jzk

satisfies
d
dt

w = A w+H(z), θ ∈ [−τ,0], (3.18)

with H(z) =−2Re{g(z)q}+X0F(w(z)+ 2Re{zq}). Let

g(z) = ∑
j+k≥2

1
j!k!

g jkz jzk.

Then we have

g20 = p(0)F 2(q,q), g11 = p(0)F 2(q,q), g02 = p(0)F 2(q,q),

and

g21 = p(0)F 3(q,q,q)+ p(0)F 2(w20,q)+ 2p(0)F 2(w11,q),

g30 = p(0)F 3(q,q,q)+ 3p(0)F 2(w20,q),

g32 = p(0)F 5(q,q,q,q,q)+ p(0)F 4(q,q,q,w20)+ 3p(0)F 4(q,q,q,w20)

+6p(0)F 4(q,q,q,w11)+ p(0)F 3(q,q,w30)+ 3p(0)F 3(q,q,w21)

+6p(0)F 3(q,q,w21)+ 3p(0)F 3(q,w20,w20)+ 6p(0)F 3(q,w11,w11)

+6p(0)F 3(q,w20,w11)+ 2p(0)F 2(q,w31)+ 3p(0)F 2(q,w22)

+p(0)F 2(w20,w30)+ 3p(0)F 2(w21,w20)+ 6p(0)F 2(w11,w21).
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Let

H(z) = ∑
j+k≥2

1
j!k!

Hjkz jzk.

Then we have

H20 = −g20q− g02q+X0F
2(q,q),

H11 = −g11q− g11q+X0F
2(q,q),

H30 = −g30q− g03q+X0F
3(q,q,q)+ 3X0F

2(q,w20),

H21 = −g21q− g12q+X0F
3(q,q,q)+X0F

2(q,w20)+ 2X0F
2(q,w11),

H31 = −g31q− g13q+X0F
4(q,q,q,q)+ 3X0F

3(q,q,w11)+ 3X0F
3(q,q,w20)

+3X0F
2(w20,w11)+X0F

2(q,w30)+ 3X0F
2(q,w21),

H22 = −g22q− g22q+X0F
4(q,q,q,q)+ 4X0F

3(q,q,w11)+X0F
3(q,q,w20)

+X0F
3(q,q,w20)+ 2X0F

2(w11,w11)+ 2X0F
2(q,w21)+ 2X0F

2(q,w21)

+X0F
2(w20,w20).

Comparing the coefficients of (3.18), we have

(A − 2iω)w20 +H20 = 0,

A w11 +H11 = 0,

(A − 3iω)w30 +H30 = 3w20g20 + 3w11g02,

(A − iω)w21 +H21 = 2w20g11 +w11g20 + 2w11g11 +w20g02,

(A − 2iω)w31 +H31 = 3w20g21 +w11(g30 + 3g12)

+3w30g11 + 3w21(g20 + g11)+w20g03 + 3w12g02,

A w22 +H22 = 2(w20g12 +w20g12)+ 2w11(g21 + g21)+w30g02 +w30g02

+w21(4g11 + g20)+w21(4g11 + g20),

from which it follows that

ẇ20(θ ) = 2iωw20(θ )+ g20q(θ )+ g02q(θ ),
ẇ11(θ ) = g11q(θ )+ g11q(θ ).

Solving for w20(θ ) and w11(θ ), we obtain

w20(θ ) = − g20q(θ)
iω − g02q(θ)

3iω + h20e2iωθ ,

w11(θ ) = g11q(θ)
iω − g11q(θ)

iω + h11,
(3.19)

where h20 and h11 are both n-dimensional vectors that can be determined by set-
ting θ = 0 in H(z,z,θ ). In view of [(A − 2iω)w20](0) = −H20(0) and [(A −
2iω)w11](0) =−H11(0), we have

h20 = Δ−1(2iω)F 2(q,q)
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and

h11 = Δ−1(0)F 2(q,q).

Some other terms of w30, w21, w31, and ww22 can be calculated similarly. Note that
not every term will be needed to apply the Hopf bifurcation theory, to be introduced
in the following chapters.

3.4.2 The Fold–Hopf Case

Throughout this subsection, we always assume that on the imaginary axis, the in-
finitesimal generator A has only simple eigenvalues 0, iω , and −iω . Thus, the
center space Ec is spanned by q0, q1, and q1, and its dual space Ec∗ is spanned by
p0, p1, and p1, where p0, p1, q0, and q1 satisfy

p0(0)Δ(0) = 0, p1(0)Δ(iω) = 0, Δ(0)q0(0) = 0, Δ(iω)q1(0) = 0,

and
〈p j,qk〉= δ jk, 〈p j,qk〉= 0,

for j,k = 0,1. Let Φ = (q0,q1, q̄1), and Ψ = (p0, p1, p̄1)
T . Then 〈Ψ ,Φ〉= Id3.

For a solution ut of (3.9), we define x(t)= 〈p0,ut〉, z(t)= 〈p1,ut〉, and w(x,z,z)=
ut − x(t)q0− 2Re{z(t)q1}. In fact, x, z, and z are local coordinates for Mc

loc in the
directions of p0, p1, and p1. It is easy to see that 〈p0,w〉= 0 and 〈p1,w〉 = 0. Then
on the center manifold Mc

loc, we have

ẋ(t) = g0(x,z,z),
ż(t) = iωz(t)+ g1(x,z,z),

(3.20)

where g j(x,z,z) = p j(0)F(w(x,z,z)+ xq0 + 2Re{zq1}) for j = 0,1 and

w(x,z,z) = ∑
j+s+k≥2

1
j!s!k!

wjskx jzszk

satisfies

d
dt

w = A w+(X0−ΦΨ(0))F(w(x,z,z)+ xq0 + 2Re{zq1}). (3.21)

Let
g j(x,z,z) = ∑

r+s+k≥2

1
r!s!k! g j

rskxrzszk, j = 0,1.

Since g0 must be real, we have g0
rsk = g0

rks. Therefore, g0
rsk is real for s = k. We have

g j
200 = p j(0)F

2(q0,q0), g j
110 = p j(0)F

2(q0,q1), g j
011 = p j(0)F

2(q1,q1),
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and

g j
300 = p j(0)F

3(q0,q0,q0)+ 3pj(0)F
2(q0,w200),

g j
111 = p j(0)F

3(q0,q1,q1)+ pj(0)F
2(q0,w011)+ pj(0)F

2(q1,w110)

+p j(0)F
2(q1,w110),

g j
210 = p j(0)F

3(q0,q0,q1)+ 2pj(0)F
2(q0,w110)+ pj(0)F

2(q1,w200),

g j
021 = p j(0)F

3(q1,q1,q1)+ 2pj(0)F
2(q1,w011)+ pj(0)F

2(q1,w020).

Obviously, in order to determine the cubic terms, we need to calculate w200,w110,
w011, and w020. In fact, it follows from (3.21) that

A w200 +(X0−ΦΨ(0))F 2(q0,q0) = 0, (3.22)

(A − iω)w110 +(X0−ΦΨ(0))F 2(q0,q1) = 0, (3.23)

A w011 +(X0−ΦΨ(0))F 2(q1,q1) = 0, (3.24)

(A − 2iω)w020 +(X0−ΦΨ(0))F 2(q1,q1) = 0. (3.25)

It follows from (3.22) that

ẇ200 = g0
200q0 + 2Re{g1

200q1} (3.26)

and

Lw200 = g0
200q0 + 2Re{g1

200q1}−F 2(q0,q0). (3.27)

Solving (3.26) for w200, we have

w200(θ ) = g0
200q0θ + 2Re{g1

200

iω
q1(θ )}+E200,

where E200 is a constant vector in R
n. Substituting the above equation into (3.27)

yields

Δ(0)E200 = F 2(q0,q0)− g0
200q0 + g0

200

∫ 0

−τ
θdη(θ )q0. (3.28)

Since Δ(0)q0 = 0 and p0Δ(0) = 0, we see that Δ(0) is a singular matrix, and so
(3.28) cannot be solved easily. By Keller [188], the unique solution E200 to (3.28)
satisfying p0E200 = 0 can be obtained by solving the following nonsingular (n+1)-
dimensional bordered system:

[
Δ(0) q0

p0 0

][
x
y

]
=

[
F 2(q0,q0)− g0

200q0 + g0
200

∫ 0
−τ θdη(θ )q0

0

]
. (3.29)

See also Govaerts and Pryce [119] for further generalizations. We write

E200 = [Δ(0)]inv[F 2(q0,q0)− g0
200q0 + g0

200

∫ 0

−τ
θdη(θ )q0].
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Similarly, it follows from (3.23), (3.24), and (3.25) that

w110(θ ) =−g0
110q0

iω
+ g1

110q1(θ )θ − g1
101q1(θ )

2iω
+E110eiωθ ,

w011(θ ) = g0
011q0θ +

g1
011q1(θ )

iω
− g1

011q1(θ )
iω

+E011,

w020(θ ) =−g0
020q0

2iω
− g1

020q1(θ )
iω

− g1
002q1(θ )

3iω
+E020e2iωθ ,

where E110, E011, and E020 are n-dimensional constant vectors given by

E110 = [Δ(iω)]inv
[
F 2(q0,q1)− g1

110q1(0)+ g1
110

∫ 0

−τ
θdη(θ )q1(θ )

]
,

E011 = [Δ(0)]inv
[
F 2(q1,q1)− g0

011q0 + g0
011

∫ 0

−τ
θdη(θ )q0

]
,

E020 = [Δ(2iω)]−1F 2(q1,q1).

3.4.3 The Double Hopf Case

Throughout this subsection, we always assume that on the imaginary axis, the in-
finitesimal generator A has only two pairs of simple purely imaginary eigenvalues
±iω1 and ±iω2, where ω1 > ω2 > 0 and kω1 �= lω2 for all integers k, l > 0 satisfy-
ing k+ l ≤ 5. Since the eigenvalues are simple, there are two complex eigenvectors
q1, q2 ∈Cn,τ corresponding to these eigenvalues,

A q j = iω jq j, j = 1,2.

Introduce the adjoint eigenvectors p1, p2 ∈C∗n,τ by

A ∗p j =−iω j p j, j = 1,2.

These eigenvectors can be normalized using the bilinear norm 〈·, ·〉: C∗n,τ ×Cn,τ →
R, so that 〈p j,qk〉 = δ jk and 〈p j, q̄k〉 = 0, j,k = 1,2. Let Φ = (q1, q̄1,q2, q̄2) and
Ψ = (p1, p̄1, p2, p̄2)

T . Then 〈Ψ ,Φ〉 = Id4.
For a solution ut of (3.9), we define z j(t) = 〈p j,ut〉, j = 1,2, and w(z) = ut −

2Re{z1(t)q1 + z2(t)q2}, where z = (z1,z2) ∈ C
2. In fact, z j and z j are local coordi-

nates for the center manifold Mc
loc in the directions of p j and p j, j = 1,2. It is easy to

see that 〈p j,w〉= 0. For solutions ut ∈Mc
loc of (3.9), 〈p j, u̇t〉= 〈p j,A ut +X0F(ut)〉,

j = 1,2. Then on the center manifold Mc
loc, we have

ż j(t) = iω jz j(t)+ g j(z), j = 1,2, (3.30)
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where g j(z) = pj(0)F(w(z) + 2Re{z1q1 + z2q2}) for z = (z1,z2) ∈ C
2, and w(z)

satisfies

d
dt

w = A w+(X0−ΦΨ(0))F(w(z)+ 2Re{z1q1 + z2q2}). (3.31)

Let

g j(z) = ∑
l+s+r+k≥2

1
l!s!r!k!

g j
lsrkzl

1zs
1zr

2zk
2, w(z) = ∑

l+s+r+k≥2

1
l!s!r!k!

wlsrkzl
1zs

1zr
2zk

2.

Then we have

g j
2000 = pj(0)F

2(q1,q1), g j
0200 = p j(0)F

2(q1,q1),

g j
0020 = pj(0)F

2(q2,q2), g j
0002 = p j(0)F

2(q2,q2),

g j
1100 = pj(0)F

2(q1,q1), g j
0011 = p j(0)F

2(q2,q2),

g j
1010 = pj(0)F

2(q1,q2), g j
0101 = p j(0)F

2(q1,q2),

g j
1001 = pj(0)F

2(q1,q2), g j
0110 = p j(0)F

2(q2,q1),

and

g j
2100 = p j(0)F

3(q1,q1,q1)+ 2pj(0)F
2(q1,w1100)+ pj(0)F

2(q1,w2000),

g j
1011 = p j(0)F

3(q1,q2,q2)+ pj(0)F
2(q1,w0011)

+pj(0)F
2(q2,w1001)+ pj(0)F

2(q2,w1010),

g j
1110 = p j(0)F

3(q1,q1,q2)+ pj(0)F
2(q1,w1001)

+pj(0)F
2(q2,w1100)+ pj(0)F

2(q1,w1010),

g j
0021 = p j(0)F

3(q2,q2,q2)+ 2pj(0)F
2(q2,w0011)+ pj(0)F

2(q2,w0020).

In what follows, we need to determine w1100, w2000, w1010, w1001, w0002, and w0011.
In view of (3.31), we have

(A − 2iω1)w2000 +(X0−ΦΨ(0))F 2(q1,q1) = 0.

This is equivalent to the following system:

ẇ2000(θ ) = 2iω1w2000 + g1
2000q1(θ )+ g1

0200q1(θ ) (3.32)

+g2
2000q2(θ )+ g2

0200q2(θ ),
Lw2000 = 2iω1w2000(0)+ g1

2000q1(0)+ g1
0200q1(0) (3.33)

+g2
2000q2(0)+ g2

0200q2(0)−F 2(q1,q1).

From (3.33), we have

w2000(θ ) = − g1
2000q1(θ)

iω1
− g1

0200q1(θ)
3iω1

+
g2

2000q2(θ)
i(ω2−2ω1)

− g2
0200q2(θ)

i(ω2+2ω1)
+E2000e2iω1θ , (3.34)
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with E2000 ∈ R
n. Substituting (3.34) into (3.34), we have

w2000 = [Δ(2iω1)]
−1F 2(q1,q1).

Similarly, we have

w1100(θ ) =
g1

1100q1(θ )
iω1

− g1
1100q1(θ )

iω1
+

g2
1100q2(θ )

iω2
− g2

1100q2(θ )
iω2

+E1100,

w1010(θ ) = −g1
1010q1(θ)

iω2
−g1

0101q1(θ )
i(2ω1+ω2)

−g2
1010q2(θ )

iω1
−g2

0101q2(θ)
i(ω1+2ω2)

+E1010ei(ω1+ω2)θ ,

w1001(θ ) =
g1

1001q1(θ )
iω2

+
g1

0110q1(θ )
i(ω2−2ω1)

+
g2

1001q2(θ )
i(2ω2−ω1)

−g2
0110q2(θ )

iω1
+E1001ei(ω1−ω2)θ ,

w0020(θ ) =
g1

0020q1(θ )
i(ω1− 2ω2)

− g1
0002q1(θ )

i(ω1 + 2ω1)
− g2

0020q2(θ )
iω2

− g2
0002q2(θ )

3iω2
+E0020e2iω2θ ,

w0011(θ ) =
g1

0011q1(θ )
iω1

− g1
0011q1(θ )

iω1
+

g2
0011q2(θ )

iω2
− g2

0011q2(θ )
iω2

+E0011,

where

E1100 = [Δ(0)]−1F 2(q1,q1),

E2000 = [Δ(2iω1)]
−1F 2(q1,q1),

E1010 = [Δ(iω1 + iω2)]
−1F 2(q1,q2),

E1001 = [Δ(iω1− iω2)]
−1F 2(q1,q2),

E0020 = [Δ(2iω2)]
−1F 2(q2,q2),

E0011 = [Δ(0)]−1F 2(q2,q2).

3.5 Center Manifolds with Parameters

Consider the following parameterized DDE:

ẋ(t) = f (α,xt ), (3.35)

where α ∈ R
r is the parameter, f ∈ Ck(Rr ×Cn,τ ,R

n) for a large enough integer
k, f (0,0) = 0. In most of the literature [27–29, 49, 58–61, 91–93, 113, 114, 128–
141, 232–238, 252, 253, 262, 293–296], it is assumed that f (α,0) = 0 for all α , i.e.,
the equilibrium point is always fixed at the origin. In fact, this is not true in a general
physical system or an engineering problem. Here, we introduce the work [138] to
provide a general framework to obtain the reduced equation on the center manifold
in the case that f (0,0) = 0 and there is no assumption that f (α,0) = 0 for all α .

Let L be the linearized operator of f with respect to xt at (α,xt) = (0,0). By
the Riesz representation theorem, there exists an n× n matrix-valued function η :
[−τ,0]→R

n2
whose elements are of bounded variation such that
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Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ), ϕ ∈Cn,τ . (3.36)

Thus, we can define a bilinear form

〈ψ ,ϕ〉= ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ (3.37)

for ψ ∈C∗n,τ and ϕ ∈Cn,τ . Let A be the infinitesimal generator associated with the
linear system ẋ(t) = Lxt , and let Δ(λ ) be the characteristic matrix of the operator
A , i.e.,

Δ(λ ) = λ Idn−
∫ 0

−τ
eλ θ dη(θ ).

If 0 /∈ σ(A ), then detΔ(0) = det[−L(1̂)] �= 0. Here and in the sequel, for every
s ∈ N and ζ ∈ R

s, ζ̂ ∈ Cs,τ is a constant map with the value ζ . In fact, L(1̂) is
the Jacobian matrix of f (α, x̂) with respect to x̂ at (α,x) = (0,0). Thus, accord-
ing to the implicit function theorem, there exists, for small |α|, a unique x(α) such
that x(0) = 0 and f (α, x̂(α)) = 0 for all small |α|. This means that (3.35) has a
unique equilibrium x̂(α) in some neighborhood of the origin for all sufficiently
small |α|. Thus, we can perform a coordinate shift to place this equilibrium at
the origin. Therefore, in this case, we may assume without loss of generality that
x̂ = 0 is the equilibrium point of (3.35) for all sufficiently small |α|. Unfortunately,
it is not always true that (3.35) has a unique equilibrium x̂(α) for small |α|. In
fact, if 0 ∈ σ(A ), then difficulties arise here. In what follows, we will not assume
0 /∈ σ(A ).

Let Φ be a basis for the center space Ec of A , and let Ψ be the basis for its dual
space Ec∗ in C∗n,τ such that 〈Ψ ,Φ〉 = Idm, where m = dimEc. Then there exists an
m×m constant matrix such that Φ̇ = ΦB and Ψ̇ =−BΨ . It follows from (3.7) that
we have BCn = Ec⊕Kerπ , where π : BCn→ Ec is the projection defined by

π(ϕ +X0ξ ) = Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ] (3.38)

for ϕ ∈Cn,τ and ξ ∈ R
n. For convenience, let πh = I−π . It is easy to see that

〈Ψ , ϕ̇〉=Ψ(0)[ϕ̇(0)−Lϕ ]+B〈Ψ,ϕ〉

for all ϕ ∈C1
n,τ . Thus, we have

πhϕ̇ = ϕ̇h +ΦΨ(0)[Lϕ− ϕ̇(0)] (3.39)

for all ϕ ∈C1
n,τ , where ϕh = πhϕ .

One way to consider the center manifold for system (3.35) for small |α| is to
study the following DDE without parameters:

α̇(t) = 0,
ẋ(t) = f (α,xt ).

(3.40)
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Define

u(t) =

[
α(t)
x(t)

]
∈R

n+r and f̃ (ut) =

[
0

f (α(t),xt )

]
∈ R

n+r.

Then (3.40) becomes
u̇(t) = f̃ (ut), (3.41)

where f̃ ∈Ck(Cn+r,τ ,R
n+r), f̃ (0)= 0, and the linearized operator L̃ of f̃ with respect

to ut at the equilibrium point u = 0 is given by

L̃ =

[
0 0

fα (0,0) L

]
.

Similarly, we can define the formal adjoint equation of the linearized equation of
(3.40) by

β̇ (t) = −β (t) fα(0,0),
ẏ(t) = −∫ 0

−τ y(t−θ )dη(θ ).

Thus, the bilinear form in C∗n+r,τ ×Cn+r,τ is given by

� ψ̃ , ϕ̃ �= β (0)α(0)+ 〈ψ ,ϕ〉 (3.42)

for ψ̃ = (β ,ψ) ∈C∗n+r,τ and ϕ̃ = (αT ,ϕT )T ∈Cn+r,τ . Note that (αT ,ϕT )T ∈Cn+r,τ
denotes a generic point in Cn+r,τ with α ∈Cr,τ and ϕ ∈Cn,τ .

Similarly, we have to enlarge the phase space Cn+r,τ of (3.41) to BCn+r = BCr×
BCn (which can be identified with Cn+r,τ ×R

n+r). Thus, the abstract ODE in BCn+r

associated with (3.41) can be rewritten in the form

d
dt

u = ˜A u+ X̃0F̃(u), u ∈ BCn+r, (3.43)

where ˜A ψ = ψ̇ + X̃0[L̃ψ− ψ̇(0)], F̃(u) = f̃ (u)− L̃u, X̃0 = diag(Y0,X0), and

Y0(θ ) =
{

Idr, θ = 0,
0, θ ∈ [−τ,0).

Namely, for ϕ̃ = (αT ,ϕT )T ∈C1
n+r,τ ,

˜A ϕ̃ =

[
α̇−Y0α̇(0)

ϕ̇ +X0[ fα(0,0)α +Lϕ− ϕ̇(0)]

]
.

The spectrum of ˜A is σ( ˜A ) = {λ ∈ C: Δ̃(λ )v = 0 for some v ∈ C
n+r \ {0}},

where

Δ̃(λ ) =
[

λ Idr 0
− fα(0,0) Δ(λ )

]
.
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Hence 0 ∈ σ( ˜A ), with a multiplicity at least r. Moreover, it is easy to see that
σ(A ) ⊆ σ( ˜A ). Let Ẽc, Ẽu, and let Ẽs be defined as in the previous section. Then,
we have the following result.

Lemma 3.1. Ẽs = {(0,vT )T : v ∈ Es} and Ẽu = {(0,vT )T : v ∈ Eu}.
Proof. Clearly, we have {(0,vT )T : v ∈ Es} ⊂ Ẽs = and {(0,vT )T : v ∈ Eu} ⊂ Ẽu.

For a fixed δ ∈ σ( ˜A ), consider the equation ( ˜A −δ Id)ϕ = 0. Then, ϕ(t) = ueδ t

with u = (αT ,xT )T satisfying

Δ̃(δ )u = 0, (3.44)

namely, δα = 0 and− fα(0,0)α+Δ(δ )x = 0. Thus, when δ �= 0, solutions of (3.44)
are given by {(0,xT )T ∈ R

n+r : Δ(δ )x = 0}.
When the generalized eigenspace of δ for ˜A is larger than the eigenspace, we

first consider the equation ( ˜A − δ Id)ψ = ϕ , where ϕ(t) = ueδ t with u = (0,xT )T

satisfying Δ(δ )x = 0. Then ψ(t) = (v+ tu)eδ t, where v = (αT ,yT )T satisfies

Δ̃λ (δ )u =−Δ̃(δ )v. (3.45)

When δ �= 0, it follows from (3.45) that α = 0 and Δλ (δ )x =−Δ(δ )y.
This process can be repeated if δ is a nonzero eigenvalue of A with higher

multiplicity to conclude that Ẽs⊂{(0,vT )T : v∈Es} and Ẽu⊂{(0,vT )T : v∈Eu}. �

Now we consider the structure of Ẽc. Obviously, Ẽc = Ẽc
0⊕ Ẽc

1, where Ẽc
0 and Ẽc

1
are generalized eigenspaces associated with the eigenvalue 0 and the purely imag-
inary eigenvalues different from 0, respectively. The above calculation proves that
Ẽc

1 = {(0,vT )T : v ∈ Ec
1}.

For every ϕ̃ = (αT ,ϕT )T ∈ Ẽc, we have α̇ = 0 and

πhϕ̇ +πhX0[ fα (0,0)α +Lϕ− ϕ̇(0)] = 0. (3.46)

It follows from (3.39) and (3.46) that

ϕ̇h +X0[ fα(0,0)α +Lϕ− ϕ̇(0)]−ΦΨ(0) fα (0,0)α = 0. (3.47)

Notice that
ϕ̇(0) = ϕ̇h(0)+Φ(0)B〈Ψ ,ϕ〉

and

Lϕ = Lϕh +Φ(0)B〈Ψ ,ϕ〉.
Then it follows from (3.47) that

{
ϕ̇h = ΦΨ(0) fα (0,0)α,

Lϕh = Φ(0)Ψ(0) fα (0,0)α− fα(0,0)α.
(3.48)

Note that the restriction of L on Kerπ is invertible. Then we may solve the above
system for a unique solution ϕh, which linearly depends on α . Thus, we write
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ϕh = Ωα , where Ω is a linear operator such that ϕh = Ωα is the solution to (3.48).
Thus, every u ∈ Ẽc takes the form

u =

[
α

x+Ωα

]
,

where x ∈ Ec and α ∈ R
r. In particular, every u ∈ Ẽc

0 takes the form

u =

[
α

x+Ωα

]
,

where x ∈ Ec
0 and α ∈ R

r.
We can then consider a basis for Ẽc∗ in a similar way. Here we present another

approach. For δ ∈ σ( ˜A ), consider ( ˜A ∗+δ Id)ψ = 0. Then ψ(t) = (v1,v2)eδ t with
v1 ∈ R

r∗ and v2 ∈ R
n∗ satisfying (v1,v2)Δ̃ (−δ ) = 0, that is,

δv1 =−v2 fα(0,0), v2Δ(−δ ) = 0. (3.49)

When δ �= 0, then (3.49) has solutions {(−δ−1v fα (0,0),v): vΔ(−δ ) = 0}. If δ is
nonsemisimple, then we consider the equation ( ˜A ∗+ δ Id)ψ = ϕ , where ϕ(t) =
(v1,v2)eδ t with (v1,v2) satisfying (3.49). Then ψ(t) = (u1− tv1,u2− tv2)eδ t , where
u1 ∈R

r∗ and u2 ∈R
n∗ satisfy

(v1,v2)Δ̃λ (−δ ) =−(u1,u2)Δ̃(−δ ). (3.50)

When δ �= 0, it follows from (3.50) that u1 = δ−1(v1−u2 fα (0,0)) and v2Δλ (−δ )x=
−u2Δ(−δ ). This process can be repeated if δ is a nonzero nonsemisimple multiple
eigenvalue of A . Finally, if δ = 0, then (3.49) has solutions {(u,0): u ∈ R

r∗}. This
implies that (u,0)∈ Ec∗

0 for all u∈Rr∗. Obviously, ˜A ∗(u1,u2) = (u2 fα(0,0),0) for
all u1 ∈ R

r∗ and u2 ∈ R
n∗ satisfying u2Δ(0) = 0. This process can be repeated if 0

is a nonsemisimple multiple eigenvalue of A .
In summary, there exists some m× r matrix Ω ∗ such that the bases of the center

space Ẽc and its adjoint space Ẽc∗ are given by

Φ̃ =

[
Idr 0
Ω Φ

]
and Ψ̃ =

[
Idr 0
Ω ∗ Ψ

]
,

respectively. Obviously,� Ψ̃ ,Φ̃ �= Idm+r. Moreover, ˙̃Φ = Φ̃B̃, where

B̃ =

[
0 0

Ψ(0) fα(0,0) B

]
.

Consider the projection π̃: BCn+r→ Ẽc given by

π̃(ϕ̃ + X̃0η) = Φ̃ [� Ψ̃ , ϕ̃ �+Ψ̃(0)η ] for all ϕ̃ ∈Cn+r,τ and η ∈ R
n+r.



3.5 Center Manifolds with Parameters 81

For ϕ̃ ∈ Cn+r,τ and η = (ηT
1 ,η

T
2 )

T ∈ R
n+r with η1 ∈ R

r and η2 ∈ R
n, there exist

β ∈ R
r and ϕ ∈Cn,τ such that ϕ̃ = (β T ,ϕT )T , and hence

π̃(ϕ̃ + X̃0η) =
[

β +η1

(Ω +ΦΩ ∗)(β +η1)+π(ϕ +X0η2)

]
.

Due to the decomposition of BCn+r, we can decompose ũ in (3.43) in the form

u = Φ̃ z̃+ ỹ, with z̃ ∈R
m+r, ỹ ∈ Q̃

def
= Ker π̃ ∩C1

n+r,τ . Then (3.43) is equivalent to the
following system:

˙̃z = B̃z̃+Ψ̃(0)F̃(Φ̃ z̃+ ỹ),
d
dt ỹ = ˜AQ̃ỹ+(Ĩ− π̃)X̃0F̃(Φ̃ z̃+ ỹ),

(3.51)

where ˜AQ̃ is the operator from Q̃ to Ker π̃ , i.e.,

˜AQ̃ψ = ψ̇ + X̃0[L̃ψ− ψ̇(0)] for ψ ∈ Q̃.

Namely, for ψ = (αT ,ϕT )T with α ∈R
r and ϕ ∈Q

def
= Kerπ ∩C1

n,τ ,

˜AQ̃ψ =

[
α̇−Y0α̇(0)

AQϕ +X0 fα (0,0)α

]
,

where AQ : Q⊂ Kerπ → Kerπ is given by AQϕ = ϕ̇ +X0[Lϕ− ϕ̇(0)] for ϕ ∈ Q.
We rewrite z̃ = (αT ,zT )T with α ∈ R

r and z ∈ R
m. Since π̃ ỹ = 0, it follows that

ỹ = (0,y)T with y ∈Q. Then system (3.51) is equivalent to the following system:

α̇ = 0,

ż = Bz+Ψ(0)F(α,Φz+Ωα + y), (3.52)
dy
dt

= AQy− (I−π)X0 fα(0,0)α +(I−π)X0F(α,Φz+Ωα + y),

where F(α,ϕ) = f (α,ϕ)− Lϕ . Applying the center manifold theorem (Theo-
rem 3.2), there exists w ∈ Ck(Rr ×R

m,Q) with w(0,0) = 0, Dα w(0,0) = 0, and
Dzw(0,0) = 0 such that for (α,z) close to (0,0), the manifold

{Φz+Ωα +w(α,z) : α ∈ R
r, z ∈ R

m}

is locally invariant with respect to system (3.52) and contains all solutions of (3.52)
remaining near (α,z,y) = (0,0,0) for all t ∈ R. In general, fα (0,0) �= 0, so we
incorporate Ωα and w(α,z), and then have the following theorem.

Theorem 3.4. There exists W ∈Ck(Rr×R
m,Q) with W (0,0) = 0 and DzW (0,0) =

0 such that for (α,z) close to (0,0), the manifold

Mc,α
loc = {Φz+W(α,z) : z ∈ R

m}

is locally invariant with respect to system (3.35) and contains all solutions of (3.35)
remaining near x = 0 for all t ∈R.



82 3 Center Manifold Reduction

Remark 3.2. If f (α,0) = 0 for all α ∈ R
r, then Ωα = 0 and W ∈ Ck(Rr×R

m,Q)
may satisfy W (α,0) = 0 for all α ∈ R

r and DzW (0,0) = 0.

Note that W (α,z) = w(α,z) +ϕh and that ϕh = Ωα is the unique solution to
(3.48). Then we have

AQW = Ẇ +X0[LW −Ẇ (0)]
= AQy+ ϕ̇h +X0[Lϕh− ϕ̇h(0)]
= AQy− (I−π)X0 fα (0,0)α.

Thus, it follows from the second equation of (3.52) that the reduced equation is

ż = Bz+G(α,z), (3.53)

where G(α,z) =Ψ(0)F(α,Φz+W (α,z)), where W (α,z) satisfies

d
dt

W = AQW +H(α,z), (3.54)

where H(α,z) = [X0−ΦΨ(0)]F(α,Φz+W (α,z)). We therefore need to calculate
W , which depends on the parameter α .

3.6 Preservation of Symmetry

Throughout this section, we further assume that there exists an invertible linear map
T on R

n commuting with (3.35), that is,

f (α,T φ) = T f (α,φ) (3.55)

for (α,φ) ∈ R
r ×Cn,τ , where T φ ∈ Cn,τ is given by (T φ)(θ ) = T φ(θ ) for θ ∈

[−τ,0]. Condition (3.55) is equivalent to saying that (3.35) is invariant under the
transformation (u, t)→ (Tu, t) in the sense that u(t) is a solution of (3.35) if and
only if Tu(t) is. Obviously,

A T = TA (3.56)

and
〈ψ ,T ϕ〉= 〈ψT,ϕ〉 for ψ ∈C∗n,τ and ϕ ∈Cn,τ . (3.57)

Furthermore, we have the following result.

Lemma 3.2. The spaces Ec, Q, and Ec∗ are invariant under T , while the matrix
B commutes with M, where M is the matrix representation of the restriction of T
on Ec.
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Proof. For every ϕ ∈ Ec, there exist λ ∈ σ c and a positive integer j such that
(A − λ Id) jϕ = 0, where Id is the identity mapping on Cn,τ . This, together with
(3.56), implies that (A −λ Id) jT ϕ = 0. Therefore, Ec is invariant under T . A sim-
ilar argument shows that Ec∗ is also invariant under T . This implies that there exist
invertible m×m matrices M and N such that

T Φ = ΦM and ΨT = NΨ . (3.58)

It follows from (3.57) that

M = 〈Ψ ,Φ〉M = 〈Ψ ,ΦM〉 = 〈Ψ ,T Φ〉
= 〈ΨT,Φ〉= 〈NΨ ,Φ〉 = N.

Therefore, M is a matrix representation of T on the spaces Ec and Ec∗, i.e., M = Tc.
Since Q = Kerπ = {ϕ ∈Cn,τ : 〈Ψ ,ϕ〉= 0}, for each ϕ ∈Q, we have

〈Ψ ,T ϕ〉= 〈ΨT,ϕ〉= 〈MΨ ,ϕ〉= M〈Ψ ,ϕ〉= 0,

i.e., Tϕ ∈ Q. This means that Q is invariant under T .
It follows from (3.58) that T Φ̇ = Φ̇M. This, combined with Φ̇ = ΦB, gives

T ΦB = ΦBM, i.e., ΦMB = ΦBM. Therefore, MB = BM, that is, B commutes
with Tc. �

Next, we consider the symmetry of π : BCn → Ec given by (3.38). In view of
Lemma 3.2, we have

π(T ϕ +TX0ξ ) = Φ[〈Ψ ,T ϕ〉+Ψ(0)T ξ ]
= Φ[〈ΨT,ϕ〉+Ψ(0)T ξ ]
= Φ[〈MΨ ,ϕ〉+MΨ(0)ξ ]
= ΦM[〈Ψ ,ϕ〉+Ψ(0)ξ ]
= T Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ]
= T π(ϕ +X0ξ ).

Thus, we have proved the following result.

Lemma 3.3. The projection operator π: BCn→ Ec commutes with T .

In what follows, we assume that Tc is unitary, i.e., T ∗c = T−1
c . Then we have the

following result:

Theorem 3.5 (Symmetric center manifold theorem). The map W in Theorem 3.4
may be chosen such that W (α,Tcz) = TQW (α,z), where TQ and Tc are the restric-
tions of T on Q and Ec, respectively. As a result, Tc commutes with the reduced
system (3.53).



Chapter 4
Normal Form Theory

4.1 Introduction

Normal forms theory provides one of the most powerful tools in the study of
nonlinear dynamical systems, in particular in stability and bifurcation analysis. In
the context of finite-dimensional ordinary differential equations (ODEs), this theory
can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were
the first to bring forth the theory in a more definite form. Since then, many sys-
tematic procedures for constructing normal forms have been developed. A method
of Lie brackets is given by Chow and Hale [65], Takens [274], and Ushiki [280]; a
method using an inner product in the space of homogeneous polynomials is given by
Elphick et al. [87] and Ashkenazi and Chow [22]; a method for direct computations
is given by Bruno [48], Sanders [259], and Chen and Della Dora [57]; a method
using the Carleman linearization is given by Tsiligiannis and Lyberatos [277] and
Chen and Della Dora [56]. The nilpotent case is treated by Cushman and Sanders
[78, 79] using the representation theory of sl2(R). Recently, the normal form for
a generalized Hopf bifurcation is expressed as a four-dimensional real system by
Cushman and Sanders [77] and as a two-dimensional complex system by Elphick
et al. [87] and Iooss and Adelmeyer [175].

The basic idea of normal form theory consists of employing successive
near-identity nonlinear transformations that lead to a differential equation in a
simpler form, qualitatively equivalent to the original system in the vicinity of a
fixed equilibrium point, thus, one hopes, greatly simplifying the dynamics analysis.
As we develop the method, three important characteristics should become appar-
ent: (i) The method is local in the sense that the coordinates are generated in a
neighborhood of a known solution. For our purposes, the known solution will be an
equilibrium. (ii) In general, the coordinate transformations will be nonlinear in the
dependent variables. However, the important point is that coordinate transforma-
tions are found by solving a sequence of problems. (iii) The structure of the norm
form is determined entirely by the linear part of the vector field. A key notion in
normal form reduction is that of resonance. In particular, the Jacobian matrix of
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the system evaluated at the equilibrium point determines which monomials in the
formal expansion of the system are resonant and cannot be removed by any smooth
coordinate transformation.

Concerning functional differential equations, the principal difficulty in develop-
ing a normal form theory is the fact that the phase space is not finite-dimensional.
The first work in the direction of overcoming this difficulty is due to Faria and Ma-
galhães [91, 92], who considered retarded functional differential equation (RFDE)
as an abstract ODE in an adequate infinite-dimensional phase space, which was
first presented in the work of Chow and Mallet-Paret [68]. This infinite-dimensional
ODE was then handled in a similar way as in the finite-dimensional case. Through
a recursive process of nonlinear transformations, Faria and Magalhães [91, 92] suc-
ceeded in reducing to a simpler infinite-dimensional ODE defined as a normal form
of the original RFDE. Faria and Magalhães [91, 92] illustrated that their method
provides an efficient algorithm for approximating normal forms for an RFDE di-
rectly without computing beforehand a local center manifold near the singularity.
This is important because this approach does not lead to the loss of the explicit rela-
tionships between the coefficients in the normal form obtained and the coefficients
in the original RFDE. We shall see in this chapter how calculating certain Taylor
coefficients of the center manifold can be used to carry out this algorithm. In addi-
tion, normal form have also been developed by Guo [128] and Weedermann [292]
for neutral functional differential equations.

In this chapter, we are concerned with RFDEs having a general singularity, and
we assume the existence of a local center manifold by requiring finitely many eigen-
values with zero real part.

4.2 Unperturbed Vector Fields

In this section, we present a basic framework for the normal form theory of the
following vector field:

ẋ = Bx+G(x), x ∈ R
m, (4.1)

where B is in Jordan canonical form, G is Ck, with k to be made specific as we go
along, G(0) = 0, and DxG(0) = 0. The next step is to transform the vector field to a
simpler form. The resulting simplified vector field is a normal form of (4.1).

For the sake of convenience, we introduce the following notation. For each j≥ 2,
let H j(R

m) denote the linear space of homogeneous polynomials of degree j in m
variables, x = (x1,x2, . . . ,xm), with coefficients in R

m, i.e.,

H j(R
m) =

{
∑
|q|= j

c(q)x
q : q ∈ N

m
0 ,cq ∈R

m

}
,

which is equipped with the norm |∑|q|= j cqxq|= ∑|q|= j |cq|. Here and in the sequel,
for a given positive integer p, a p-tube β = (β1, . . . ,βp) ∈ N

p
0 , and p variables w =

(w1, . . . ,wp), we define |β |= ∑p
s=1 βs and wβ = wβ1

1 · · ·w
βp
p .
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Example 4.1. H2(R
2) = span{x2

1e1,x1x2e1,x2
2e1,x2

1e2,x1x2e2,x2
2e2}, where {e1,e2}

is the canonical basis for R2. Usually, e1 = (0,1)T and e2 = (1,0)T .

4.2.1 The Poincaré–Birkhoff Normal Form Theorem

First, we have the Taylor expansion of G(z), so that (4.1) becomes

ż = Bz+
k−1

∑
j=2

G j(z)+O(|z|k), (4.2)

where G j ∈H j(R
m), j = 2, . . . ,k−1. The basic idea of the normal form theory is to

use a near-identical transformation at an equilibrium to form a Lie bracket operator
and then repeatedly employ the operator to remove as many higher-order nonlinear
terms as possible.

We next introduce the coordinate transformation

z = x+ h2(x), (4.3)

where h2 ∈H2(R
m) is to be determined later. Substituting (4.3) into (4.2) gives

(Idm +Dh2(x))ẋ = Bx+Bh2(x)+
k−1

∑
j=2

G j(x+ h2(x))+O(|x|k). (4.4)

Notice that G j(x+ h2(x)) = G j(x)+O(|x| j+1) for each 2 ≤ j ≤ k− 1. Moreover,
when x is sufficiently small, (Idm +Dh2(x))−1 exists and can be represented in a
series expansion as follows:

(Idm +Dh2(x))
−1 = Idm−Dh2(x)+O(|x|2). (4.5)

Thus, (4.4) gives

ẋ = Bx+Bh2(x)−Dh2(x)Bx+G2(x)+
k−1

∑
j=3

G̃ j(x)+O(|x|k), (4.6)

where G̃s ∈Hs(R
m), s = 3,4, . . . ,k. Up to this point, h2(x) has been completely

arbitrary. However, now we will choose a specific form for h2(x) to simplify the
O(|x|2) terms as much as possible. In fact, this would be possible if we chose h2(x)
such that

Dh2(x)Bx−Bh2(x) = G2(x), (4.7)

which would eliminate G2(x) from (4.6). Equation (4.7) can be regarded as an
equation for the unknown h2(x). We want to motivate the fact that when viewed
in an appropriate way, it is in fact a linear operator acting on a linear vector space.
This will be accomplished by defining the appropriate linear vector space as well
as the linear operator on the vector space, and also by describing the equation to be
solved in this linear vector space (which will turn out to be (4.7)).
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Now let us reconsider (4.7). It should be clear that h2 is in H2(R
m). The reader

should easily be able to verify that the map h2(x) �→ Dh2(x)Bx−Bh2(x) is a linear
map of H2(R

m) to H2(R
m). Indeed, for h j ∈H j , it similarly follows that

h j(x) �→Dh j(x)Bx−Bh j(x)

is a linear map of H j(R
m) to H j(R

m). Therefore, we define a linear map L j:
H j(R

m)→H j(R
m) by

(L j p)(x) = [B, p](x),

where [·, ·] denotes the Lie bracket, in fact, [B, p](x) = Dx p(x)Bx−Bp(x). Here L j

is a homological operator. Now (4.7) takes the form

L2h2 = G2.

From elementary linear algebra, we know that H2(R
m) can be (nonuniquely) rep-

resented as

H2(R
m) = RanL2⊕ (RanL2)

c,

where (RanL2)
c represents a space complementary to RanL2. If G2 ∈ RanL2, then

(4.7) can be solved for h2 ∈H2(R
m), and hence all O(|x|2) terms can be eliminated

from (4.6). In any case, we can choose h2(x) to take away from G2(x) its component
in RanL j such that only the component in (RanL2)

c, denoted by g2(x), remains.
Thus, (4.6) can be simplified to

ẋ = Bx+ g2(x)+
k−1

∑
j=3

G̃ j(x)+O(|x|k). (4.8)

Using a similar argument as above, we can simplify the vector field step by step.
We assume that after computing the vector field up to terms of order j− 1, the

equations become

ẋ = Bx+
j−1

∑
s=2

gs(x)+
k−1

∑
l= j

fl(x)+O(|x|k), (4.9)

where gs ∈ (RanLs)
c and fl ∈Hs(R

m) for 2 ≤ s ≤ j− 1 and j ≤ l ≤ k− 1. Next,
let us simplify the O(|x| j) terms. Introducing the coordinate change

x �→ x+ h j(x), (4.10)

where h j ∈H j(R
m), and performing the same algebraic manipulations as with the

second-order terms, we see that (4.9) becomes

ẋ = Bx+
j−1

∑
s=2

gs(x)+ f j(x)−L jh j(x)+
k−1

∑
l= j+1

f̃l(x)+O(|x|k), (4.11)

where f̃s ∈Hs(R
m), j+ 1≤ s≤ k− 1. Decompose f j ∈H j(R

m) as

f j(x) = p j(x)+ g j(x) with p j ∈ RanL j and g j ∈ (RanL j)
c.
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Therefore, we choose h j ∈H j(R
m) such that L jh j = p j, and hence (4.11) becomes

ẋ = Bx+ g2(x)+ · · ·+ g j(x)+ f̃ j+1(x)+ · · ·+ f̃k−1(x)+O(|x|k). (4.12)

Thus, by induction, we obtain the following normal form theorem.

Theorem 4.1 (Poincaré–Birkhoff normal form theorem). By a sequence of ana-
lytic coordinate changes, (4.1) can be transformed into

ẋ = Bx+
k

∑
j=2

g j(x)+ o(|x|k), (4.13)

where g j(x) ∈ (RanL j)
c, 2≤ j ≤ k, are called the resonant terms. Equation (4.13)

is said to be in normal form through order k.

We call the system

ẋ = Bx+
k

∑
j=2

g j(x) (4.14)

the (kth-)order truncated Birkhoff normal form of (4.1). The dynamics of the
truncated normal form (4.14) are related to, but not identical with, the local
dynamics of the system (4.1) around the equilibrium point x = 0.

4.2.2 Computation of Normal Forms

The key part of computing the normal form is to find (RanL j)
c, which represents a

space complementary to RanL j in H j(R
m).

Definition 4.1. Suppose that matrix B has eigenvalues λ1, λ2, . . ., λm (including
multiple eigenvalues). Eigenvalues λ1, λ2, . . ., λm are called resonant if there exists
a tuple q = (q1, . . . ,qm) ∈ N

m
0 satisfying |q| ≥ 2 (which is called the order of reso-

nance) such that

(q,λ ) = λs (4.15)

for some 1≤ s≤m, where λ = (λ1, . . . ,λm) and (q,λ ) =∑m
j=1 q jλ j. Eigenvalues λ1,

λ2, . . ., λm are called nonresonant of order j ( j ≥ 2) if (4.15) does not hold for each
s and q ∈ N

m
0 satisfying |q|= j. Eigenvalues λ1, λ2, . . ., λm are called nonresonant

if (4.15) doesn’t hold for each s and q ∈N
m
0 satisfying |q| ≥ 2.

It is well known that the spectrum of L j is

σ(L j) = {(q,λ )−λs : s = 1, . . . ,m, q ∈ N
m
0 , |q|= j}.

Therefore, if the eigenvalues of B are nonresonant of order j, then 0 is not an
eigenvalue of L j, and so L j is invertible on H j(R

m). This means that for every
G j ∈H j(R

m), equation L jh = G j can be solved for h ∈H j(R
m). Thus, RanL j =
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H j(R
m), and the complementary space (RanL j)

c equals {0}. Hence, there are no
j-order terms in the normal form. In particular, if the eigenvalues of B are nonres-
onant, then for all j ≥ 2, (RanL j)

c = {0}, and so g j = 0. In this case, the normal
form of (4.1) becomes

ẋ = Bx+O(|x|k).
Therefore, only if eigenvalues of B are resonant do some nonlinear terms of the
normal form remain. While computing the normal form, we need to know about the
structure of the complementary spaces (RanL j)

c of RanL j in H j(R
m), j = 2,3, . . ..

If (RanL j)
c has a basis {ϑ1, . . . ,ϑl}, then in the normal form (4.13),

g j = a1ϑ1 + · · ·+ alϑl ∈ (RanL j)
c,

where l = dim(RanL j)
c, a1, . . . ,al , are constants. We should note that the comple-

mentary space (RanL j)
c is not unique; a different choice of (RanL j)

c leads to a
different normal form.

4.2.2.1 The Matrix Method

Note that H j(R
m) is finite-dimensional. Assume that {ei} is a basis of H j(R

m),
on which Lj is the matrix representation of the linear operator L j. It follows from
the Fredholm alternative theorem that KerL∗j = (RanLj)

⊥, where L∗j denotes the
complex conjugate transpose of Lj and Ker(L∗j) is the null space of L∗j . Thus, we can
choose (RanL j)

c ∼= KerL∗j to compute normal forms. In what follows, we illustrate
this in system (4.1) with m = 2 and B equal to each of the following matrices:

B1 =

[
0 0
0 0

]
, B2 =

[
0 1
0 0

]
, B3 =

[
0 −ω
ω 0

]
, (4.16)

where ω ∈R, ω > 0.

Example 4.2. Consider

ẋ = B1x+ f2(x)+O(|x|3), (4.17)

where x = (x1,x2)
T ∈R

2, B1 is given in (4.16), and f2 ∈H2(R
2).

In view of Example 4.1, consider a basis {e1, . . . ,e6} of H2(R
2), where e1(x) =

x2
1e1, e2(x) = x1x2e1, e3(x) = x2

2e1, e4(x) = x2
1e2, e5(x) = x1x2e2, e6(x) = x2

2e2.
It is easy to see that L2 = 0, and hence its representation matrix L2 is equal to 0.
So, KerL∗2 = R

6 and (RanL2)
c = H2(R

2). We regard {e1, . . . ,e6} as a basis of
(RanL2)

c. Then every g2 ∈ (RanL2)
c can be written as

g2(y) =
6

∑
i=1

aiei(y).

Thus, the 2-order normal form of (4.17) is
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ẏ = B1y+ g2(y)+O(|y|3), y = (y1,y2)
T ∈ R

2,

or

ẏ1 = a4y2
1 + a5y1y2 + a6y2

2 +O(|y|3),
ẏ2 = a1y2

1 + a2y1y2 + a3y2
2 +O(|y|3),

where a1, . . . ,a6 are constants. Using a similar argument as above, we have

(RanL j)
c = H j(R

2) for all j ≥ 3.

Therefore, the k-order normal form is exactly the k-order Taylor expansion.

Example 4.3. Consider

ẋ = B2x+ f2(x)+O(|x|3), (4.18)

where x = (x1,x2)
T ∈R

2, B2 is given in (4.16), and f2 ∈H2(R
2).

Similarly to Example 4.2, we still regard {e1, . . . ,e6} as a basis of H2(R
2). For

p = (p1, p2)
T ∈H2(R

2),

L2 p(x) = [Dp(x)]B2x−B2p(x) =

[
x2

∂ p1
∂x1
− p2

x2
∂ p2
∂x1

]
.

So we have

L2e1 = 2e2− e4, L2e2 = e3− e5,
L2e3 =−e6, L2e4 = 2e5,
L2e5 = e6, L2e6 = 0.

Thus, on the basis {e1, . . . ,e6}, the matrix representation of L2 is

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 −1 0 2 0 0
0 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In order to find KerL∗2, we need to solve the following linear algebraic equation:

L∗2ξ = 0, ξ ∈ R
6. (4.19)

In view of L∗2 = LT
2 , we obtain a group of fundamental solutions: {e2 + 2e4,e1},

which is a basis of Ker(L∗2) and corresponds to a basis of (RanL2)
c, denoted by

{ẽ1, ẽ2}. Here,

ẽ1(x) =

[
2x2

1
x1x2

]
, ẽ2(x) =

[
0
x2

1

]
.
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Hence, we can choose a suitable transformation x = y+ p2(y) with p2 ∈H2(R
2) to

reduce (4.18) to a 2-order normal form

ẏ = B2y+ g2(y)+O(|y|3), y = (y1,y2) ∈ R
2,

that is,

ẏ1 = y2 + 2a1y2
1 +O(|y|3),

ẏ2 = a1y1y2 + a2y2
1 +O(|y|3),

where a1 and a2 are constants. Using a similar argument as above, we can obtain a
higher-order normal form.

As we know, the choice of (RanL2)
c is not unique. If ẽ1 and ẽ2 are supplemented

by some vectors in RanL2 to form a new basis for a new complementary space
(RanL2)

c, then we can obtain another 2-order normal form. For example, consider
a vector

ε(y) = 2L2e1(y) = (−2y2
1,4y1y2)

T ,

in RanL2 and let ê1(y) = ẽ1(y)+ε(y), ê2(y) = ẽ2(y). Then, using {ê1, ê2} as a basis
of the new space complementary to RanL2 yields the following 2-order normal
form:

ẏ1 = y2 +O(|y|3),
ẏ2 = a1y1y2 + a2y2

1 +O(|y|3).
By a similar argument as that given above, we can obtain another normal form of
(4.18), such as

ẏ1 = y2 + a1y2
1 +O(|y|3),

ẏ2 = a2y2
1 +O(|y|3).

Example 4.4. Consider

ẋ = B3x+ f2(x)+O(|x|3), (4.20)

where x = (x1,x2)
T ∈R

2, B3 is given in (4.16), and f2 ∈H2(R
2).

Similarly to Example 4.2, we still regard {e1, . . . ,e6} as a basis of H2(R
2).

For p = (p1, p2)
T ∈H2(R

2),

L2 p(x) = ω

[
−x2

∂ p1
∂x1

+ x1
∂ p1
∂x2

+ p2

−x2
∂ p2
∂x1

+ x1
∂ p2
∂x2
− p1

]
.

Thus, on the basis {e1, . . . ,e6}, the matrix representation of L2 is
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L2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ω 0 −ω 0 0
−2ω 0 2ω 0 −ω 0

0 −ω 0 0 0 −ω
ω 0 0 0 ω 0
0 ω 0 −2ω 0 2ω
0 0 ω 0 −ω 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is easy to see that L2 and therefore also L∗2 are invertible. Hence, L∗2ξ = 0 has
only one solution ξ = 0. Namely, (RanL2)

c ∼= KerL∗2 = {0}. That is, for every
g2 ∈ (RanL2)

c, g2 = 0. Therefore, the 2-order normal form of (4.20) is

ẏ = B3y+O(|y|3), y = (y1,y2) ∈ R
2,

that is,

ẏ1 = −ωy2 +O(|y|3), (4.21)

ẏ2 = ωy1 +O(|y|3),
which does not contain the two-order terms. Obviously, the truncated equation of
(4.21) is linear and cannot inherit the qualitative properties of (4.20) near the non-
hyperbolic equilibria x = 0. Thus, we need to compute the 3-order normal form.

The space H3(R
2) has a basis {x3

1e1, x2
1x2e1, x1x2

2e1,x3
2e1, x3

1e2, x2
1x2e2,

x1x2
2e2,x3

2e2}, on which the operator L3 has the following matrix representation

L3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ω 0 0 −ω 0 0 0
−3ω 0 2ω 0 0 −ω 0 0

0 −2ω 0 3ω 0 0 −ω 0
0 0 −ω 0 0 0 0 −ω
ω 0 0 0 0 ω 0 0
0 ω 0 0 −3ω 0 2ω 0
0 0 ω 0 0 −2ω 0 3ω
0 0 0 ω 0 0 −ω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Equation L∗3ξ = 0 has a group of fundamental solutions in R
6, which corresponds

to a basis of (RanL3)
c:
[

x1(x2
1 + x2

2)
x2(x2

1 + x2
2)

]
,

[−x2(x2
1 + x2

2)
x1(x2

1 + x2
2)

]
.

Hence, the 3-order normal form of (4.20) is

ẏ1 = −ωy2 +(ay1− by2)(y2
1 + y2

2)+O(|y|3),
ẏ2 = ωy1 +(ay2 + by1)(y2

1 + y2
2)+O(|y|3).

In polar coordinates, the above normal form can be rewritten as

ṙ = ar3 +O(r4),
θ̇ = 1+ br2 +O(r3).
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Finally, we remark that the absence of two-order terms of (4.21) can be concluded
from the nonresonance of order 2. Indeed, matrix B3 has two eigenvalues ±iω ,
which are nonresonant of order 2.

In conclusion, the method of matrix representation is practical in computing
low-order resonant terms of a normal form. However, the dimension of H j(R

m)
increases rapidly as m and j increase, which brings more and more difficulties
in computing normal forms. Moreover, when computing resonant terms of a nor-
mal form, we have to resort to a lengthy computation of different linear alge-
braic equations. See Guckenheimer and Holmes [125], Arrowsmith and Place [21],
Wiggins [298] for further readings.

4.2.2.2 The Adjoint Operator Method

We define a suitable inner product in H j(R
m). Let

f (x) = ∑
|β |= j

cβ xβ , x ∈ R
m,

where β ∈N
m
0 . Define

f (∂ ) = ∑
|β |= j

cβ
∂ j

∂xβ1
1 · · ·∂xβm

m

.

Define an inner product� ·, · �: H j(R
m)×H j(R

m)→ R as

� p,q�=
m

∑
i=1

pi(∂ )qi(x)

∣∣∣∣∣
x=0

for p = (p1, . . . , pm)
T , q = (q1, . . . ,qm)

T ∈ H j(R
m). Let L ∗

j denote the adjoint
operator of L j with respect to the inner product� ·, · �. It turns out that L ∗

j is
just the homological operator associated with the adjoint of B. In other words, we
have the following result.

Lemma 4.1. (L ∗
j p)(x) = [B∗, p](x) for all p ∈H j(R

m).

Proof. Notice that for every p = ∑|q|= j cqxq ∈H j(R
m),

[B, p](x) = Dx
[
∑|q|= j cqxq

]
Bx−B∑|q|= j cqxq

= d
dt

[
e−tB ∑|q|= j cq(etBx)q

]∣∣
t=0

.
(4.22)

For all p1, p2 ∈H j(R
m), we have



4.2 Unperturbed Vector Fields 95

� e−tB(p1 ◦ etB), p2� =� p1 ◦ etB, (e−tB)∗p2�
=� p1, (e

−tB)∗(p2 ◦ (etB)∗)�
=� p1, e−tB∗(p2 ◦ etB∗)� .

Differentiating with respect to t at t = 0 gives us

� [B, p1], p2�=� p1, [B
∗, p2]�,

which yields the conclusion of this lemma. �

Due to the Fredholm alternative theorem, we have

H j(R
m) = RanL j⊕KerL ∗

j , RanL j ⊥ KerL ∗
j ,

and

H j(R
m) = KerL j⊕RanL ∗

j , KerL j ⊥ RanL ∗
j .

Let Pj be the projection from H j(R
m) onto RanL j. Therefore, in order to com-

pute the normal form, we can choose (RanL j)
c = KerL ∗

j , which consists of all the
solutions to

[B∗, p] = 0, p ∈H j(R
m). (4.23)

For example, we consider the computation of the 2-order normal form of (4.18).
Obviously, B∗2 = BT

2 . For x = (x1,x2)
T ∈ R

2 and p = (p1, p2)
T ∈H2(R

2), (4.23) is[
∂ p1
∂x1

∂ p1
∂x2

∂ p2
∂x1

∂ p2
∂x2

][
0
x1

]
−

[
0
p1

]
= 0,

that is,

x1
∂ p1

∂x2
= 0, x1

∂ p2

∂x2
= p1, (4.24)

all of whose solutions in H2(R
2) are

p1(x) = ax2
1, p2(x) = ax1x2 + bx2

1, (4.25)

where a and b are arbitrary constants. Since the family of solutions p = (p1, p2)
T

given by (4.25) is the space KerL ∗
2 , we can choose g2(x) = p(x) to obtain the 2-

order normal form

ẋ1 = x2 + ax2
1 +O(|x|3),

ẋ2 = ax1x2 + bx2
1 +O(|x|3).

Here, the choice of (RanL2)
c is different from those in Example 4.3, and as a

consequence, the normal form is different from those given in Example 4.3.
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4.2.3 Internal Symmetry

We now try to study the characteristics of KerL ∗
j and those of g j. First, recall that

every linear operator A on a finite-dimensional vector space has a unique Jordan–
Chevalley decomposition into commuting semisimple and nilpotent parts: A = AS +
AN , where ASAN =ANAS. The semisimple part AS is diagonalizable (overC), and the
nilpotent part AN satisfies the condition that Ak

N = 0 for some positive integer k (see
Humphreys [173]). Furthermore, the operator A induces the following Lie group:

GA = {etA : t ∈ R}.

Next, we can show that g j is equivariant with respect to the action of the Lie group
GB∗ = GB∗S ×GB∗N . More precisely, we may state the following lemma.

Lemma 4.2. For j ≥ 2, each g j ∈ KerL ∗
j is GB∗-equivariant, that is, etB∗g j(x) =

g j(etB∗x) for all x ∈R
m and t ∈ R.

Proof. For j ≥ 2, since g j ∈ KerL ∗
j , we have [B∗,g j](x) = 0 for x ∈ R

m. It follows
that

d
dt

[
e−tB∗g j(etB∗x)

]
= e−tB∗ [B∗,g j](etB∗x) = 0

for all x and t. Therefore, for fixed x, e−tB∗g j(etB∗x) is a constant, which is g j(x) by
taking t = 0. Then we have g j(etB∗x) = etB∗g j(x), as required. �

Remark 4.1. Lemma 4.2 implies that:

(i) If B is semisimple, then we can choose a suitable inner product < ·, · > on R
m

such that B is skew-symmetric. That is, B∗S =−B and B∗N = 0. Then GB∗ = G−B

is a torus Tk for some k. Therefore, g j, j ≥ 2, is Tk-equivariant, i.e., etBg j(x) =
g j(etBx) for all x ∈R

m and t ∈ R.
(ii) If B is not semisimple, then we can choose a suitable inner product < ·, · > on

R
m such that B∗S =−BS. It follows that for all t ∈R, we have

etBS g j(x) = g j(etBS x) and etB∗N g j(x) = g j(etB∗N x).

In summary, we obtain another version of the normal form theorem as follows.

Theorem 4.2 (Elphick et al. [87]). For every j ≥ 2, there are polynomials

p,h : Rm→ R
m, p(0) = h(0) = 0, Dp(0) = Dh(0) = 0,

of degree less than j such that by the change of variable x �→ x+h(x), (4.1) becomes

ẋ = Bx+ p(x)+O(|x| j+1), (4.26)

where p satisfies etB∗ p(x) = p(etB∗x) for all x ∈ R
m and t ∈ R, or equivalently,

Dp(x)B∗x = B∗p(x) for all x ∈ R
m.
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Proposition 4.2.1 For system (4.1) with m = 2 and B equal to B2 given in (4.16),
the normal form (4.26) is

ẋ1 = x2 + x1ϕ1(x1), (4.27)

ẋ2 = x2ϕ1(x1)+ϕ2(x1),

where ϕ1 and ϕ2 are polynomials such that ϕ1(0) = ϕ2(0) = Dϕ2(0) = 0.

Proof. By Theorem 4.2, p is characterized by Dp(x)B∗2x = B∗2 p(x), where x =
(x1,x2)

T ∈ R
2 and p(x) = (p1(x), p2(x))T . Namely, (4.24) holds. We immediately

have p1(x) = χ(x1). Since p1 is a polynomial in x1, x2, χ is a polynomial in x1. So

∂ p2

∂x2
=

χ(x1)

x1
.

Since p2 is a polynomial, so is ∂ p2/∂x2. Hence χ takes the form of χ(x1) =
x1ϕ1(x1), where ϕ1 is a polynomial. Integration now yields p2(x) = x2ϕ1(x1) +
ϕ2(x1). Since p2 and x2ϕ1 are polynomials, so is ϕ2. Therefore, our normal form
is (4.27). �

In Proposition 4.2.1, KerL ∗
j is two-dimensional and is spanned by

[
x j

1

x j−1
1 x2

]
,

[
0
x j

1

]
.

Changing the projection Pj onto RanL j corresponds to adding a certain vector of
RanL j to our vector field KerL ∗

j . Indeed, let Pj and P′j be two projections from

H j(R
2) onto RanL j. Then for R j ∈H j(R

2),

g j− g′j = (I−Pj)R j− (I−P′j)R j ∈ RanL j.

Notice that (−x j
1, jx2x j−1

1 )T ∈ RanL j for all j ≥ 2, since it is orthogonal to KerL ∗
j .

Indeed,

� (−x j
1, jx2x j−1

1 )T ,(x j
1,x2x j−1

1 )T �= 0

and

� (−x j
1, jx2x j−1

1 )T ,(0,x j
1)

T �= 0.

Thus, it is possible to choose a projection P′j such that

p′1(x) = 0, p′2(x) = x2ϕ(x1)+φ(x1),

where ϕ and φ are polynomials such that ϕ(0) = φ(0) = Dφ(0) = 0. Hence, the
system

ẋ1 = x2,

ẋ2 = x2ϕ(x1)+φ(x1)

is also a normal form of system (4.1) with m = 2 and B = B2.
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Proposition 4.2.2 For system (4.1) with m = 3 and

B =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ ,

the normal form (4.26) is

ẋ1 = x2 + x1ϕ1(x1,x
2
2− 2x1x3),

ẋ2 = x1 + x2ϕ1(x1,x
2
2− 2x1x3)+ x1ϕ2(x1,x

2
2− 2x1x3), (4.28)

ẋ3 = x3ϕ1(x1,x
2
2− 2x1x3)+ x2ϕ2(x1,x

2
2− 2x1x3)+ϕ3(x1,x

2
2− 2x1x3),

where ϕ1, ϕ2, and ϕ3 are polynomials in their arguments.

Proof. By Theorem 4.2, p is characterized by Dp(x)B∗x = B∗p(x), where x =
(x1,x2,x3)

T ∈ R
3 and p(x) = (p1(x), p2(x), p3(x))T . Thus, we have

x1
∂ p1
∂x2

+ x2
∂ p1
∂x3

= 0, x1
∂ p2
∂x2

+ x2
∂ p2
∂x3

= p1, x1
∂ p3
∂x2

+ x2
∂ p3
∂x3

= p2. (4.29)

Hence the characteristic system is

dx1

0
=

dx2

x1
=

dx3

x2
=

d p1

0
=

d p2

p1
=

d p3

p2
,

and the first integrals are

x1, x2
2− 2x1x3, p1, x1 p2− x2p1, x1 p3 + x3 p1− x2 p2.

Introduce new variables

u1 = x1, u2 = x2
2− 2x1x3, u3 = x2,

and define p̃ j for j = 1,2,3 by

p̃ j(u1,u2,u3) = p j(x1,x2,x3).

Then the partial differential system (4.29) can be written as

u1
∂ p̃1

∂u3
= 0, u1

∂ p̃2

∂u3
= p̃1, u1

∂ p̃3

∂u3
= p̃2.

The equation for p̃1 yields p1(x) = φ(u1,u2). It is easy to see that φ is a polynomial
in u1 and u2, and so can be rewritten as φ(u1,u2) = u1ϕ1(u1,u2)+ψ1(u2), where
ϕ1 and ψ1 are polynomials and ψ1(u2) = φ(0,u2). Solving the equation for p̃2, we
obtain

p2(x) = x2ϕ1(u1,u2)+
x2ψ1(u2)

u1
+ u1ϕ2(u1,u2)+ψ2(u2),

where ϕ1 and ψ2 are polynomials. Multiplying by u1 and setting u1 = 0, we obtain
x2ψ1(x2

2) = 0 for all x2. This implies that ψ1(u2) = 0 for all u2. Thus,

p2(x) = x2ϕ1(u1,u2)+ x1ϕ2(u1,u2)+ψ2(u2),
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where ϕ1 and ψ2 are polynomials. Solving the equation for p̃3, we now obtain

p3(x) =

(
x3 +

u2

2u1

)
ϕ1(u1,u2)+ u3ϕ2(u1,u2)+

u3ψ2(u2)

u1
+φ(u1,u2),

where φ is a polynomial. Multiplying by u1 and setting u1 = 0, we have
x2

2ϕ1(0,x2
2) + 2x2ψ2(x2

2) = 0 for all x2. This implies that ϕ1(0,u) = ψ2(u) = 0
for all u ∈ R. Thus, ϕ1(u1,u2)/u1 is a polynomial in u1 and u2. By writing

u2

2u1
ϕ1(u1,u2)+φ(u1,u2) = ϕ3(u1,u2),

we obtain p3(x) = x3ϕ1(u1,u2)+ x2ϕ2(u1,u2)+ϕ3(u1,u2), where ϕ3 is a polyno-
mial. Therefore, our normal form is (4.28). �

Similarly, for the system described in Proposition 4.2.2, it is possible to choose
an alternative projection P′j such that our normal form is

ẋ1 = x2,
ẋ2 = x1,
ẋ3 = x3ϕ1(u1,u2)+ x2ϕ2(u1,u2)+ϕ3(u1,u2),

where u1 and u2 are given as above, and ϕ1, ϕ2, and ϕ3 are polynomials in u1 and u2.

Proposition 4.2.3 For system (4.1) with m = 4 and

B =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

the normal form (4.26) is

ẋ1 = x2 + x1ϕ1(x1,x3,v)+ x3ϕ2(x1,x3,v),

ẋ2 = x2ϕ1(x1,x3,v)+ x4ϕ2(x1,x3,v)+ϕ3(x1,x3), (4.30)

ẋ3 = x4 + x3ϕ4(x1,x3,v)+ x1ϕ5(x1,x3,v),

ẋ4 = x4ϕ4(x1,x3,v)+ x2ϕ5(x1,x3,v)+ϕ6(x1,x3),

where v = x2x3− x1x4 and ϕ j ( j = 1, . . . ,6) are polynomials in their arguments.
Furthermore, by choosing an alternative projection P′j , we can obtain the following
normal form:

ẋ1 = x2,

ẋ2 = x2h1(x1,x3,v)+ x4h2(x1,x3,v)+w1(x1,x3),

ẋ3 = x4,

ẋ4 = x4h3(x1,x3,v)+ x2h4(x1,x3,v)+w2(x1,x3),

where h j ( j = 1, . . . ,4) are polynomials in their arguments starting at degree 1, and
w1 and w2 are polynomials in x1 and x2 starting at degree 2.
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Proof. By Theorem 4.2, p is characterized by Dp(x)B∗x = B∗p(x), where x =
(x1,x2,x3,x4)

T ∈ R
4 and p(x) = (p1(x), p2(x), p3(x), p4(x))T . Hence, the charac-

teristic system is

dx1

0
=

dx2

x1
=

dx3

0
=

dx4

x3
=

d p1

0
=

d p2

p1
=

d p3

0
=

d p4

p3
,

and the first integrals are

x1, x3, v = x2x3− x1x4, p1, p3, x1 p2− x2 p1, x3 p4 + x4p3.

The remaining part of the proof is similar to that of Proposition 4.2.2 and hence is
omitted. �

Proposition 4.2.4 For system (4.1) with m = 2 and B equal to B3 given in (4.16),
the normal form (4.26) is

ẋ1 = −ωx2 + x1Q1(x
2
1 + x2

2)− x2Q2(x
2
1 + x2

2), (4.31)

ẋ2 = ωx1 + x1Q2(x
2
1 + x2

2)+ x2Q1(x
2
1 + x2

2),

where Q1 and Q2 are polynomials such that Q1(0) = Q2(0) = 0.

Proof. We complexify, i.e., we identify R
2 with {(z,z); z ∈ C} ⊆ C

2 by the map
(x1,x2) �→ (x1 + ix2,x1− ix2). We have B3 = diag(iω ,−iω). The operator

etB∗3 =

[
e−iωt 0

0 eiωt

]

has to commute with (p(z,z), p(z,z)):

p(ze−iωt ,zeiωt) = e−iωt p(z,z)

for all z and t, where p(z,z) = p1(x1,x2)+ ip2(x1,x2). This implies that p(z,z) is
S

1-equivariant, where S
1 = {e−iωt : t ∈ R}. Thus, we see that there is a polynomial

Q such that p(z,z) = zQ(|z|2). In real coordinates (x1,x2), we have

p1(x1,x2) = x1Q1(x2
1 + x2

2)− x2Q2(x2
1 + x2

2),

p2(x1,x2) = x1Q2(x2
1 + x2

2)+ x2Q1(x2
1 + x2

2),

where Q1 and Q2 are the real and imaginary parts of Q and hence polynomials.
Therefore, our normal form is (4.31). �

Proposition 4.2.5 For system (4.1) with m = 4 and

B =

⎡
⎢⎢⎣

0 1 −ω 0
0 0 0 −ω
ω 0 0 1
0 ω 0 0

⎤
⎥⎥⎦ ,

where ω ∈R, ω > 0, the normal form (4.26), in complex coordinates (z1,z2), is
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ż1 = iωz1 + z2 + z1ϕ1(u1,u2), (4.32)

ż2 = iωz2 + z2ϕ1(u1,u2)+ z1ϕ2(u1,u2),

where u1 = |z1|2, u2 = z1z2 − z1z2, and ϕ j ( j = 1,2) are polynomials in their
arguments such that ϕ j(0,0) = 0. Furthermore, by choosing an alternative
projection P′j, we can obtain the following normal form:

ż1 = iωz1 + z2,

ż2 = iωz2 + z2ϕ1(u1,u2)+ z1ϕ2(u1,u2),

where ϕ j ( j = 1,2) are polynomials in their arguments such that ϕ j(0,0) = 0.

Proof. We complexify, i.e., we identify R
4 with {(z1,z2,z1,z2); (z1,z2) ∈C2}⊆C

4

by the map (x1,x2,x3,x4) �→ (z1,z2) = (x2 + ix4,x1 + ix3). We have

B =

⎡
⎢⎢⎣

iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω

⎤
⎥⎥⎦ .

Let us denote by D the following operator

D =−iωz1
∂

∂ z1
+(z1− iωz2)

∂
∂ z2

+ iωz1
∂

∂ z1
+(z1 + iωz2)

∂
∂ z2

.

Then the partial differential equation Dp(z)B∗z = B∗p(z) reads

D p1 =−iω p1, D p2 =−iω p2 + p1,

where p = (p1, p2, p1, p2) and z = (z1,z2,z1,z2). Similarly to the proofs of the
previous propositions, we may solve the above partial differential system for p.
On the other hand, it follows from etB∗ p(z) = p(etB∗z) for all z ∈ C

4 and GB∗ =
S

1×R that p is S1×R-equivariant under the following S
1×R-action on C

2:

θ · (z1,z2) = (e−iωθ z1,e
−iωθ z2), σ · (z1,z2) = (z1,z2 +σz1)

for all θ ∈ S1 = {e−iωt : t ∈R} and σ ∈R. Now we need to find the S1×R-invariants
and -equivariants.

We derive the S
1×R-invariants by starting with the S

1-invariants. The complex
S

1-invariants are generated by

z1z1, z2z2, z2z1, z1z2

with the relation (z1z1)(z2z2) = (z2z1)(z1z2). Next, the R-action on (z1z1, z2z2, z2z1)
is generated by

σ · (z1z1) = z1z1, σ · (z2z2) = (z2 +σz1)(z2 +σz1), σ · (z2z1) = (z2 +σz1)z1.
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Thus, we obtain the following minimal set of generators of S1-invariants:

u1 = z1z1, u2 = z1z2− z1z2.

The commutativity of p with S
1 implies that we can write (p1, p2) in the form

p1 = az1 + bz2, p2 = cz1 + dz2,

where a, b, c, and d are complex-valued S
1-invariant functions of u = (z1z1,

z2z2,z2z1). Commutativity with R additionally requires that

a(σ ·u)z1 + b(σ ·u)(z2 +σz1) = a(u)z1 + b(u)z2, (4.33)

c(σ ·u)z1 + d(σ ·u)(z2 +σz1) = [c(u)+σa(u)]z1+[d(u)+σb(u)]z2.

(4.34)

Hence, b(u) = 0 and a(u) = d(u) for all u. Moreover, a and c are R-equivariant.
Therefore, there exist polynomials ϕ1 and ϕ2 such that

p1 = z1ϕ1(u1,u2), p1 = z1ϕ2(u1,u2)+ z2ϕ1(u1,u2).

Thus, the normal form reads (4.32). �

Proposition 4.2.6 For system (4.1) with m = 3 and

B =

⎡
⎣ 0 0 0

0 0 −ω
0 ω 0

⎤
⎦ ,

where ω ∈R, ω > 0, the normal form (4.26), in coordinates (x,z) ∈ R×C, is

ẋ = ϕ1(x, |z|2), (4.35)

ż = iωz+ zϕ2(x, |z|2),
where ϕ1 is a real polynomial such that ϕ1(0,0) = (∂ϕ1/∂x)(0,0) = 0, and ϕ2 is a
complex polynomial such that ϕ2(0,0) = 0.

Proof. We complexify, i.e., we identify R
3 with {(x,z,z): x ∈ R, z ∈ C} ⊆ R×

C
2, by the map (x1,x2,x3) �→ (x,x2 + ix3,x2− ix3). We have B = diag(0, iω ,−iω).

The operator

etB∗ = diag(0,e−iωt ,eiωt)

has to commute with (p1(x,z,z), p2(x,z,z), p2(x,z,z)):

p1(x,ze−iωt ,zeiωt) = p1(x,z,z), p2(x,ze−iωt ,zeiωt) = e−iωt p2(x,z,z)

for all x, z, and t. By a similar argument to that in the proof of Proposition 4.2.4, we
have

p1(x,z,z) = ϕ1(x, |z|2), p2(x,z,z) = zϕ2(x, |z|2),
where ϕ1 is a real polynomial and ϕ2 is a complex polynomial. Hence, the normal
form reads (4.35). �
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4.3 Perturbed Vector Fields

Consider the following vector field:

ẋ = Bx+G(α,x), x ∈ R
m, α ∈ R

r, (4.36)

where B is in Jordan canonical form, and does not depend on α , and G is sufficiently
smooth and satisfies G(α,0) = 0 and DxG(0,0) = 0. Similarly to the discussion in
the previous section, the most straightforward way to put (4.36) into normal form
would be to follow the same procedure as for systems without parameters except
to allow the coefficients of the transformation to depend on the parameters. In the
subsequent subsections, we first seek the normal form for Hopf bifurcation and then
present a general approach to the normal form of (4.36).

4.3.1 Normal Form for Hopf Bifurcation

As stated earlier, through center manifold reduction we may obtain the following
one-parameter family of vector fields on a two-dimensional center manifold:

ż = λ (α)z+ ∑
2≤ j+s≤k−1

1
j!s!

Gα
jsz

jzs +O(|z|k), z ∈ C, α ∈R, (4.37)

where λ (α) = iω +Gα
1 is continuous in α ∈ R.

Lemma 4.3. Equation (4.37) can be transformed by an invertible parameter-
dependent change of complex coordinates

z = w+
1
2

hα
20w2 + hα

11ww+
1
2

hα
02w2 (4.38)

for all sufficiently small |α| into an equation without quadratic terms: ẇ = λ (α)w+
O(|w|3).
Proof. The inverse change of variables is given by the expression

w = z− 1
2

hα
20z2− hα

11zz− 1
2

hα
02z2 +O(|z|2).

Therefore,

ẇ = ż− hα
20zż− hα

11(żz+ zż)− hα
02zż+ · · ·

= λ (α)z+[
1
2

Gα
20−λ (α)hα

20]z
2 +[Gα

11−λ (α)hα
11−λ(α)hα

11]zz

+[
1
2

Gα
02−λ(α)hα

02]z
2 + · · ·

= λ (α)w+
1
2
[Gα

20−λ (α)hα
20]w

2 +[Gα
11−λ(α)hα

11]ww

+
1
2
[Gα

02− (2λ(α)−λ (α))hα
02]w

2 +O(|w|3).



104 4 Normal Form Theory

Thus, by setting

hα
20 =

Gα
20

λ (α)
, hα

11 =
Gα

11

λ (α)
, hα

02 =
Gα

02

2λ(α)−λ (α)
, (4.39)

we will remove all the quadratic terms in (4.37). Obviously, hα
20, hα

11, and hα
02 are well

defined for sufficiently small |α|, because λ (0) = iω and the above denominators
are nonzero. �

In view of Lemma 4.3, by the invertible parameter-dependent transformation
(4.38) with the hα

jk given by (4.39), (4.37) becomes

ẇ = λ (α)w+ ∑
j+s=3

1
j!s!

G̃α
jsw

jws +O(|w|4). (4.40)

In particular, we have

G̃α
21 =

Gα
20Gα

11(2λ (α)+λ(α))

|λ (α)|2 +
2|Gα

11|2
λ (α)

+
|Gα

02|2
2λ (α)−λ(α)

+Gα
21.

Next, let us try to eliminate the cubic terms as well. Namely, we have the following
result.

Lemma 4.4. Equation (4.40) can be transformed by an invertible parameter-
dependent change of complex coordinates

w = z+ ∑
j+s=3

1
j!s!

hα
jsz

jzs

for all sufficiently small |α| into an equation with only one cubic term:

ż = λ (α)z+
1
2

C1(α)z|z|2 +O(|z|4). (4.41)

Proof. The inverse change of variables is given by the expression

z = w− ∑
j+s=3

1
j!s!

hα
jsw

jws +O(|z|4).

Therefore,

ż = ẇ− 1
2

hα
30w2ẇ− 1

2
hα

21(2wwẇ+w2ẇ)− 1
2

hα
12(2wwẇ+w2ẇ)− 1

2
hα

03w2ẇ+ · · ·

= λ (α)w+
1
6
[Gα

30− 3λ (α)hα
30]w

3 +
1
2
[Gα

21− 2λ (α)hα
21−λ(α)hα

21]w
2w

+
1
2
[Gα

12−λ (α)hα
12− 2λ(α)hα

12]ww2 +
1
6
[Gα

03− 3λ(α)hα
03]w

3 + · · ·
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= λ (α)z+
1
6
[Gα

30− 2λ (α)hα
30]z

3 +
1
2
[Gα

21− (λ (α)+λ(α))hα
21]z

2z

+
1
2
[Gα

12− 2λ(α)hα
12]zz2 +

1
6
[Gα

03 +(λ (α)− 3λ(α))hα
03]z

3 +O(|z|4).

Thus, by setting

hα
30 =

G̃α
30

2λ (α)
, hα

12 =
G̃α

12

2λ (α)
, hα

03 =
G̃α

02

3λ(α)−λ (α)
,

we can annihilate all cubic terms in the resulting equation except the z2z-term, which
we have to treat separately. The substitutions are valid, since all the involved denom-
inators are nonzero for all sufficiently small α . One can also try to eliminate the z2z
term by formally setting

hα
21 =

G̃α
21

λ (α)+λ (α)
.

This is possible for small |α| �= 0, but the denominator vanishes at α = 0: λ (0)+
λ (0) = 0. To obtain a transformation that is smoothly dependent on α , set hα

21 = 0,

which results in the 3-order normal form (4.41) with C1(α) = G̃α
21. �

We now combine the two previous lemmas.

Theorem 4.3 (Poincaré normal form for the Hopf bifurcation). Equation (4.37)
can be transformed by an invertible parameter-dependent change of complex coor-
dinates, smoothly depending on the parameter,

z �→ z+ ∑
2≤ j+s≤3

1
j!s!

hα
jsz

jzs (4.42)

for all sufficiently small |α| into an equation with only the resonant cubic term (4.41)
with

C1(α) =
Gα

20Gα
11(2λ (α)+λ(α))

|λ (α)|2 +
2|Gα

11|2
λ (α)

+
|Gα

02|2
2λ (α)−λ(α)

+Gα
21.

In particular,

C1(0) =
i
ω

[
G0

20G0
11− 2|G0

11|2−
1
3
|G0

02|2
]
+G0

21. (4.43)



106 4 Normal Form Theory

4.3.2 Norm Form Theorem

Motivated by the previous subsection, we consider the formal Taylor expansions

G(α,x) = ∑
j≥2

1
j!

G j(α,x) (4.44)

for α ∈ R
r and x ∈ R

m, where G j is the jth Fréchet derivative of G with respect to
α ∈R

r and x ∈R
m. Then (4.36) can be rewritten as

ẋ = Bx+ ∑
j≥2

1
j!

G j(α,x), (4.45)

where x ∈ R
m.

For convenience, we introduce the following notation. For a normed space Y ,
H m+r

j (Y ) denotes the linear space of homogeneous polynomials of degree j in
m+ r variables, x = (x1,x2, . . . ,xm) and α = (α1,α2, . . . ,αr), with coefficients in
Y , i.e.,

H m+r
j (Y ) =

{
∑

|(q,l)|= j

c(q,l)x
qα l : (q, l) ∈ N

m+r
0 ,c(q,l) ∈Y

}
,

which is equipped with the norm∣∣∣∣∣ ∑
|(q,l)|= j

c(q,l)x
qα l

∣∣∣∣∣= ∑
|(q,l)|= j

|c(q,l)|Y .

Define the operators L j: H m+r
j (Rm)→H m+r

j (Rm), j ≥ 2, by

(L j p)(α,x) = [B, p(α, ·)](x), (4.46)

where [·, ·] denotes the Lie bracket.
Next, we try to introduce a suitable inner product in H m+r

j (Rm) in order to
decompose it. Let

f (α,x) = ∑
|(q,l)|= j

c(q,l)x
qα l , (q, l) ∈ N

m+r
0 ,c(q,l) ∈R.

Define

f (∂ ,∂ ) = ∑
|(q,l)|= j

c(q,l)
∂ j

∂xq1
1 · · ·∂xqm

m ∂α l1
1 · · ·∂α lr

r

,

and define an inner product� ·, · �: H m+r
j (Rm)×H m+r

j (Rm)→R as
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� p,q�=
m

∑
i=1

pi(∂ ,∂ )qi(α,x)

∣∣∣∣∣
(x,α)=(0,0)

for all p = (p1, p2, . . . , pm)
T , q = (q1,q2, . . . ,qm)

T ∈H m+r
j (Rm).

It is easy to see that for all p, q∈H m+r
j (Rm) and every invertible map ζ on R

m,
we have

� p ◦ ζ ,q�=� p,q ◦ ζ ∗ �,

where ζ ∗ is the adjoint of ζ . Let Pj be the (unique) orthogonal projection from
H m+r

j (Rm) onto RanL j. Note that

H m+r
j (Rm) = RanL j⊕KerL ∗

j , RanL j ⊥ KerL ∗
j ,

and

H m+r
j (Rm) = KerL j⊕RanL ∗

j , KerL j ⊥ RanL ∗
j ,

where ∗ denotes the adjoint map with respect to the inner product�·, ·�. Similarly
to Lemma 4.1, L ∗

j is just the homological operator associated with the adjoint of
B, i.e.,

(L ∗
j p)(α,x) = [B∗, p(α, ·)](x) for all p ∈H m+r

j (Rm). (4.47)

Following the approach in the case of no parameters, the normal forms can be
obtained by computing at each step the terms of order j≥ 2 in the normal form from
the terms of the same order in the original equation and the terms of lower orders
already computed for the normal form in previous steps, through a transformation
of variables

x = x̂+ 1
j!Uj(α, x̂), (4.48)

where x, x̂ ∈ R
m, α ∈ R

r, and Uj : Rm+r → R
m is a homogeneous polynomial of

degree j in x and α .
We assume that after computing the normal form up to terms of order j− 1, the

equations become

ẋ = Bx+
j−1
∑

s=2

1
s! gs(α,x)+ 1

j! Gj(α,x)+ · · · , (4.49)

where gi ∈H m+r
i (Rm), Gj ∈H m+r

j (Rm). With the change of variables (4.48) and
dropping the hats for simplicity of notation, (4.49) becomes

ẋ = Bx+
j

∑
s=2

1
s!

gs(α,x)+ · · · , (4.50)

where g j = G j −L jUj. System (4.50) is called the normal form for (4.36) near
(u,α) = (0,0).
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If L j is invertible, then we simply put g j = 0 and Uj = L −1
j G j. In this case, all

jth-order terms are removed by the normalization procedure. In general, L j need
not (and will not) be invertible. Note that

L jUj = G j− g j = PjG j +(I−Pj)G j− g j.

We will choose Uj ∈ H m+r
j (Rm) such that Uj ∈ L −1

j PjG j, which allows us to

take away from G j its component in RanL j. Therefore, the above equation can be
solved by

g j(α,x) = (I−Pj)G j(α,x). (4.51)

In particular, we have

g j(α,x) = ProjKerL ∗j G j(α,x). (4.52)

Moreover, we have the following results.

Lemma 4.5. For j ≥ 2, g j(α, ·) is GB∗-equivariant, that is, etB∗g j(α,x) =

g j(α,etB∗x) for all x ∈ R
m and t ∈ R.

The proof is similar to that of Lemma 4.2 and hence is omitted. Thus, we
summarize the above discussion as follows.

Theorem 4.4. There are polynomials U: Rm×R
r → R

m and g: Rm×R
r → R

m of
degree ≤ k with U(0,0) = 0, DxU(0,0) = 0 such that by the change of variables
x �→ x+U(α,x), (4.1) becomes

ẋ = Bx+ g(α,x)+O(|(α,x)|k+1), (4.53)

where g satisfies etB∗g(α,x) = g(α,etB∗x) for all α ∈ R
r, x ∈ R

m, and t ∈ R, or
equivalently, Dxg(α,x)B∗x = B∗g(α,x) for all α ∈ R

r and x ∈ R
m.

4.3.3 Preservation of External Symmetry

Assume that there exists a linear invertible operator T : Rm → R
m that commutes

with system (4.36), i.e.,

BT = T B, G(α,T x) = T G(α,x)

for all α ∈ R
r and x ∈ R

m. We define the linear map

T j : H m+r
j (Rm)→H m+r

j (Rm)

by

T j p(α,x) = T−1 p(α,T x).

We have the following result.
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Lemma 4.6. KerL j and RanL j are invariant under T j .

Proof. Since B commutes with T , we have

T jL j p(α,x) = T−1Dx p(α,T x)BTx−T−1Bp(α,T x)

= T−1Dx p(α,T x)T Bx−BT−1 p(α,T x)

= Dx
(
T−1 p(α,T x)

)
Bx−BT−1 p(α,T x)

= L jT j p(α,x).

This means that T j commutes with L j. Therefore, KerL j and RanL j are invariant
under T j. �

In what follows, we always assume that T is unitary. Then T ∗ = T−1 and hence
T−1B = BT−1. Namely, B∗T = T B∗. In addition, using similar arguments as in the
proof of Lemma 4.6, T j commutes with RanL ∗

j . Therefore, we have the following
lemmas.

Lemma 4.7. KerL ∗
j and RanL ∗

j are invariant under T j .

Lemma 4.8. For j ≥ 2, Tg j(α,x) = g j(α,T x) and TUj(α,x) = Uj(α,T x) for all
x ∈ R

m.

Proof. Since H m+r
j (Rm) = RanL j ⊕KerL ∗

j , RanL j, and KerL ∗
j are invariant

under T j, it follows that T j commutes with Pj and I− Pj, where I denotes the
identity on H m+r

j (Rm).

Next, we prove inductively that G j(α, ·), Uj, and g j(α, ·) commute with T . Since
G2 = G2, we immediately have T2G2 = G2. Assume that TlGl =Gl for some l ≥ 2.
It follows from (4.51) that

Tlgl = (I−Pl)Gl and LlTlUl = PlGl .

Since RanL ∗
l is invariant under Tl and TlUl ∈ RanL ∗

l , by uniqueness we have

TlUl =Ul and Tlgl = gl .

Since Gl+1(α, ·) is composed of B, G j (2 ≤ j ≤ l + 1), Uj(α, ·), and g j(α, ·) (2 ≤
j ≤ l), we have

Tl+1Gl+1 = Gl+1.

This completes the proof. �

In view of the Lemmas 4.6, 4.7, 4.8, and Theorem 4.4, we arrive at the following
theorem.

Theorem 4.5. Suppose that T : Rn→ R
n is unitary, and the vector field (4.36) has

the symmetry T . Then the normal form (4.53) also has the symmetry T .
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4.4 RFDEs with Symmetry

Consider the following parameterized RFDE:

u̇(t) = L(α)ut + f (α,ut), (4.54)

where α ∈Rr, the linear operator L(α): Cn,τ→R
n is continuous with respect to α ∈

R
r, f ∈Ck(Rr×Cn,τ ,R

n) for a large enough integer k, f (α,0) = 0, and Dϕ f (α,0) =
0 for all α ∈ R

r. We further assume that Γ is a given topological group and (4.54)
is Γ -equivariant. Namely, there exists a representation ρ of Γ such that

f (α,ρ(γ)φ) = ρ(γ) f (α,φ) and L(α)ρ(γ)φ = ρ(γ)L(α)φ (4.55)

for (α,γ,φ) ∈ R
r × Γ ×Cn,τ , where ρ(γ)φ ∈ Cn,τ is given by (ρ(γ)φ)(θ ) =

ρ(γ)φ(θ ) for θ ∈ [−τ,0]. Recall that a representation ρ of Γ is a group homo-
morphism ρ : Γ →GL(n,R). Condition (4.55) is equivalent to saying that (4.54) is
invariant under the transformation (u, t)→ (ρ(γ)u, t) in the sense that u(t) is a so-
lution of (4.54) if and only if ρ(γ)u(t) is (see [41, 118, 193, 284] for more details).

Since an RFDE generates a semiflow in an infinite-dimensional Banach space,
one naturally first reduces the semiflow to a flow in the finite-dimensional center
manifold, and then calculates the normal form of the reduced flow. However, it is
not necessary to compute the center manifold before evaluating the normal form for
the ODE on the center manifold. Faria and Magalhães [91, 92] developed a method
for obtaining normal forms for RFDEs directly, which allows us to obtain the coeffi-
cients in the normal form explicitly in terms of the original system. Based on results
of Faria and Magalhães [91, 92], our purpose in this section is to obtain explicit nor-
mal forms for the equation describing the flow on subcenter manifolds, which not
only inherit the symmetry of the original system but also are invariant with respect
to some torus actions induced by the imaginary roots of the characteristic equation
of the linearization at the steady state. The final outcome of our procedure is the
normal forms whose coefficients are explicitly given in terms of the parameters of
the original RFDE. As shall be seen, the procedure we develop here for the calcula-
tion of normal forms can be easily adapted for high-codimension singularities, and
therefore this technique for deriving normal forms may find further applications in
addition to those addressed here.

4.4.1 Basic Assumptions

By the Riesz representation theorem, there exists an n× n matrix-valued function
η(α, ·) : [−τ,0]→ R

n2
whose elements are of bounded variation in θ ∈ [−τ,0] for

each α such that

L(α)ϕ =
∫ 0
−τ dη(α,θ )ϕ(θ ), ϕ ∈Cn,τ .
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For each α ∈ R, let Aα be the infinitesimal generator associated with the linear
system u̇(t) = L(α)ut . The dynamics of (4.54) near the singularity α = 0 at
the origin can be completely described through the restriction of the flow to the
associated center manifold, which is necessarily finite-dimensional. Therefore, it is
important to consider a subcenter manifold relative to a subset Λ of σ c = {λ ∈
σ(A0) : Reλ = 0}. Without loss of generality, suppose Λ = {λ1,λ2, . . . ,λk} is a
nonempty set satisfying the following assumptions:

(H1) λ ∈Λ if and only if λ ∈Λ .
(H2) If 0 ∈ σ(A0), then 0 ∈Λ .

Assumption (H1) is generic, because we are interested in real subcenter
manifolds relative to Λ . There are many reasons for assumption (H2), one of
which will be given in Remark 4.5.

Denote by EΛ the generalized eigenspace of A0 associated with Λ . If m is the
number of eigenvalues of A0 in Λ counting multiplicities, then dimEΛ =m. In order
to construct coordinates on the center submanifold relative to Λ near the origin, we
define a bilinear form

〈ψ ,ϕ〉= ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(0,θ )ϕ(ξ )dξ (4.56)

for ψ ∈C∗n,τ and ϕ ∈ Cn,τ . Here and in the sequel, for the sake of convenience, we
shall also allow functions with range in C

n. It follows from the Γ -equivariance of
the operator L(0) that

〈ψ ,ρ(γ)ϕ〉= 〈ψρ(γ),ϕ〉 (4.57)

for ψ ∈ C∗n,τ , ϕ ∈ Cn,τ , and γ ∈ Γ . Let Φ be a basis for EΛ and let Ψ be the basis
for the dual space E∗Λ in C∗n,τ such that 〈Ψ ,Φ〉 = Idm. We denote by B the m×m
constant matrix such that Φ̇ = ΦB. Note that σ(B) = Λ . In order to analyze the
symmetry of the normal form on center manifolds relative to Λ , the following result
about the Γ -invariance of these spaces is fundamental.

Lemma 4.9. For each γ ∈ Γ , there exists an m×m matrix Mγ such that

ρ(γ)Φ = ΦMγ , Ψρ(γ) = MγΨ , and MγB = BMγ . (4.58)

In other words, the spaces EΛ , QΛ , and E∗Λ are Γ -invariant, where QΛ is defined as
in (2.21).

The proof of Lemma 4.9 is similar to Lemma 3.2 of Sect. 3.6 and hence is
omitted.

Lemma 4.10. Let π : BCn→ EΛ be given by

π(ϕ +X0ξ ) = Φ[〈Ψ ,ϕ〉+Ψ(0)ξ ]. (4.59)

Then BCn = EΛ ⊕Kerπ and QΛ ⊂ Kerπ . Moreover, the projection operator π:
BCn→ EΛ is Γ -equivariant.
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Define AQ : Q⊂ Kerπ→ Kerπ by

AQϕ = ϕ̇ +X0[L(0)ϕ− ϕ̇(0)]

for ϕ ∈ Q
def
= Kerπ ∩C1

n,τ . Moreover, define

F(α,ϕ) = L(α)ϕ−L(0)ϕ + f (α,ϕ)

for all α ∈ R
r and ϕ ∈Cn,τ . As stated in Chap. 3, system (4.54) is equivalent to the

system

α̇ = 0,

ẋ = Bx+Ψ(0)F(α,Φx+ y),
dy
dt

= AQy+(I−π)X0F(α,Φx+ y),

or simply

ẋ = Bx+Ψ(0)F(α,Φx+ y), (4.60)
dy
dt

= AQy+(I−π)X0F(α,Φx+ y),

where x ∈ R
m and y ∈ Q.

Lemma 4.11 (Faria and Magalhães [92]). σ(AQ) = σp(AQ) = σ(A )\Λ , where
σp(AQ) denotes the point spectrum of AQ.

4.4.2 Computation of Symmetric Normal Forms

We now describe the computation of normal forms using formal series, though we
are interested in situations in which only a few terms of those series are computed.
We consider the formal Taylor expansions

F(α,u) = ∑
j≥2

1
j!

Fj(α,u) (4.61)

for α ∈ R
r and u ∈ Cn,τ , where Fj is the jth Fréchet derivative of F with respect

to α ∈ R
r and u ∈ Cn,τ . It follows from the Γ -equivariance of (4.54) that Fj(α, ·),

j ≥ 2, is Γ -equivariant. Then (4.60) can be rewritten as

ẋ = Bx+ ∑
j≥2

1
j!

f 1
j (α,x,y), (4.62)

dy
dt

= AQy+ ∑
j≥2

1
j!

f 2
j (α,x,y),

where x ∈ R
m, y ∈ Q, and
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f 1
j (α,x,y) = Ψ (0)Fj(α,Φx+ y),

f 2
j (α,x,y) = (I−π)X0Fj(α,Φx+ y),

j ≥ 2.

In particular, f 1
j (α,x,0) =Ψ (0)Fj(α,Φx) for x∈Rm and j≥ 2. In addition, in view

of Lemma 4.10, we have the following result.

Lemma 4.12. f 1
j (α, ·,0) is Γ -equivariant. Moreover,

f 1
j (α,Mγ x,0) = Mγ f 1

j (α,x,0) and f 2
j (α,Mγ x,0) = ρ(γ) f 2

j (α,x,0).

Proof. For γ ∈ Γ ,

f 1
j (α,Mγ x,0) = Ψ(0)Fj(α,ΦMγ x)

= Ψ(0)Fj(α,ρ(γ)Φx)

= Ψ(0)ρ(γ)Fj(α,Φx)

= MγΨ (0)Fj(α,Φx)

= Mγ f 1
j (α,x,0)

and

f 2
j (α,Mγ x,0) = (I−π)X0Fj(α,ΦMγ x)

= (I−π)X0Fj(α,ρ(γ)Φx)

= (I−π)X0ρ(γ)Fj(α,Φx)

= ρ(γ) f 2
j (α,x,0),

that is, f 1
j (α, ·,0) is Γ -equivariant and f 2

j (α,Mγ x,0) = ρ(γ) f 2
j (α,x,0). �

Define the operators M j(p,h) = (M1
j ,M

2
j), j ≥ 2, by

M1
j : H m+r

j (Rm)→H m+r
j (Rm),

M2
j : H m+r

j (Q)⊂H m+r
j (Kerπ)→H m+r

j (Kerπ), (4.63)

(M1
j p)(α,x) = [B, p(α, ·)](x),

(M2
j h)(α,x) = Dxh(α,x)Bx−AQh(α,x),

where [·, ·] denotes the Lie bracket.
Next, we need to introduce a suitable inner product in H m+r

j (Rm×Kerπ) for
the convenience of decomposition. In fact, we can extend the definition of the in-
ner product� ·, · �: H m+r

j (Rm)→H m+r
j (Rm), which was given in the previous

sections, to H m+r
j (Rm×Kerπ) and choose Pj as the (unique) orthogonal projec-

tion from H m+r
j (Rm×Kerπ) onto RanM j. Let Pj = (P1

j ,P
2
j ), where P1

j and P2
j are

projections from H m+r
j (Rm×Kerπ) to RanM1

j and RanM2
j , respectively. Note that

H m+r
j (Rm×Kerπ) = RanM j⊕KerM∗j , RanM j ⊥ KerM∗j ,
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and

H m+r
j (Rm×Kerπ) = KerM j⊕RanM∗j , KerM j ⊥ RanM∗j ,

where ∗ denotes the adjoint map with respect to the inner product� ·, · �. It turns
out that M1∗

j is just the homological operator associated with the adjoint B∗ of B. In
other words, we have

(M1∗
j p)(α,x) = [B∗, p(α, ·)](x) for all p ∈H m+r

j (Rm). (4.64)

The normal forms can be obtained by computing at each step the terms of order
j ≥ 2 in the normal form from the terms of the same order in the original equation
and the terms of lower orders already computed for the normal form in previous
steps, through a transformation of variables

(x,y) = (x̂, ŷ)+ 1
j!(U

1
j (α, x̂),U2

j (α, x̂)), (4.65)

where x, x̂ ∈ R
m, y, ŷ ∈ Q, α ∈ R

r, U1
j : Rm+r → R

m, and U2
j : Rm+r → Q are

homogeneous polynomials of degree j.
We assume that after computing the normal form up to terms of order j− 1, the

equations become

ẋ = Bx+
j−1

∑
s=2

1
s!

g1
s (α,x,y)+

1
j!

f
1
j(α,x,y)+ · · · , (4.66)

dy
dt

= AQy+
j−1

∑
s=2

1
s!

g2
s (α,x,y)+

1
j!

f
2
j(α,x,y)+ · · · ,

where g1
s ∈H m+r

i (Rm), f
1
j ∈H m+r

j (Rm), g2
s ∈ Hm+r

i (Kerπ), f
2
j ∈ Hm+r

j (Kerπ).
With the change of variables (4.65) and dropping the hats for simplicity of notation,
(4.66) becomes

ẋ = Bx+
j

∑
s=2

1
s!

g1
s (α,x,y)+ · · · , (4.67)

dy
dt

= AQy+
j

∑
s=2

1
s!

g2
s (α,x,y)+ · · · ,

where g j = f j −M jUj, g j = (g1
j ,g

2
j), f j = ( f

1
j , f

2
j). System (4.67) is called the

normal form for (4.54) near (u,α) = (0,0) relative to the center space EΛ .
If M j is invertible, then we simply put g j = 0 and Uj = M−1

j f j. In this case,
all the jth-order terms are removed by the normalization procedure. In general, M j

need not (and will not) be invertible. Note that

M jUj = f j− g j = Pj f j +(I−Pj) f j− g j.

We will choose Uj = (U1
j ,U

2
j ) ∈V m+r

j (Rm)×V m+r
j (Q) such that
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Uj ∈M−1
j Pj f j, (4.68)

which allows us to take away from f j its component in RanM j. Therefore, the above
equation can be solved by

g j(α,x,y) = (I−Pj) f j(α,x,y). (4.69)

In particular, we have

g1
j(α,x,0) = ProjKerM1∗

j
f

1
j(α,x,0). (4.70)

We first mention the following important results about the equivariance of g1
j and

U1
j , j ≥ 2. In fact, by a similar argument to that in the proof of Lemma 4.8, we have

the following.

Lemma 4.13. For j ≥ 2, g1
j(α, ·,0) and U1

j (α, ·) are Γ -equivariant, i.e.,

Mγ g1
j(α,x,0) = g1

j(α,Mγ x,0) and MγU1
j (α,x) =U1

j (α,Mγ x)

for all γ ∈ Γ and x ∈ R
m.

Lemma 4.14. For j ≥ 2, g1
j(α, ·,0) is GB∗-equivariant, that is,

etB∗g1
j(α,x,0) = g1

j(α,etB∗x,0) for all x ∈ R
m and t ∈ R.

The proof of Lemma 4.14 is almost the same as that of Lemma 4.2.

Lemma 4.15. For j ≥ 2, U2
j (α, ·) satisfies ρ(γ)U2

j (α,x) = U2
j (α,Mγ x) for γ ∈ Γ

and x ∈R
m.

Proof. We define the linear map

R j : V m+r
j (Q)→V m+r

j (Kerπ)

by

R jh(α,x) = ρ(γ−1)h(α,Mγ x).

Since B commutes with Mγ for all γ ∈ Γ , we have

R jM2
j h(α,x) = ρ(γ−1)Dxh(α,Mγx)BMγ x−ρ(γ−1)AQh(α,Mγ x)

= ρ(γ−1)Dxh(α,Mγx)Mγ Bx−AQρ(γ−1)h(α,Mγ x)

= Dx
(
ρ(γ−1)h(α,Mγ x)

)
Bx−AQρ(γ−1)h(α,Mγ x)

= M2
jR jh(α,x).

This means that R j commutes with M2
j . Therefore, KerM2

j and RanM2
j are invariant

under R j. Then, using similar arguments to those in the proof of Lemma 4.13, we

can show inductively that f
2
j(α, ·,0), U2

j , and g2
j(α, ·,0) are fixed points of R j,

j ≥ 2. This completes the proof. �
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4.4.3 Nonresonance Conditions

If we want to obtain normal forms in a finite-dimensional local center submanifold
tangent to the center subspace EΛ of the linearized equation at (u,α) = (0,0), then
in the normal form, all the terms g2

j(α,x,y) must vanish at y = 0, i.e., g2
j(α,x,0) = 0

for all j ≥ 2. Therefore, we require that RanM2
j be the whole space H m+r

j (Kerπ),
j ≥ 2. This situation can be characterized in spectral terms by nonresonance condi-
tions appropriate for guaranteeing that y = 0 in the normal form (4.67) is a locally
invariant manifold. It is well known that

σ(M1
j) = {(q̃, λ̃ )−λs : s = 1, . . . ,m+ r, q̃ ∈ N

m+r
0 , |q̃|= j},

where λ1, λ2, . . ., λm are the elements of Λ , each of them appearing as many times
as its multiplicity as a root of the associated characteristic equation, λ j = 0 for j =
m+ 1,m+ 2, . . . ,m+ r, λ = (λ1, . . . ,λm), λ̃ = (λ1, . . . ,λm+r), (q, λ̄) = ∑m

j=1 q jλ j,

(q̃, λ̃ ) = ∑m+r
j=1 q jλ j. Obviously, (q̃, λ̃ ) = (q, λ̄). We expect that the nonresonance

conditions appropriate for guaranteeing that y = 0 in the normal form (4.67) is a
locally invariant manifold can be expressed by relationships between the spectral
values of AQ and B. So it is essential to pay due attention to the topology of the
space on which AQ acts and to its domain as an operator in that space. In what
follows, we first establish relationships between the spectra σ(A0) and AQ. For the
sake of convenience, for an operator A, let σp(A) denote the point spectrum of A.
Clearly, σ(AQ) = σp(AQ).

Lemma 4.16. The spectra of the operator M2
j , j ≥ 2, are

σ(M2
j) = {(q̃, λ̃ )− μ : μ ∈ σ(A0)\Λ , q ∈N

m+r
0 , |q|= j}.

We refer to Faria and Magalhães [91, 92] for the proof of Lemma 4.16. Therefore,
the appropriate nonresonance conditions are the following.

Definition 4.2. System (4.54) satisfies the nonresonance conditions relative to Λ if

m
∑

k=1
qkλk �∈ σ c \Λ for (q1, . . . ,qm) ∈ N

m
0 ,

where λ1, λ2, . . ., λm are all eigenvalues in Λ , each repeated as many times as its
multiplicity.

We then have the following results.

Theorem 4.6. For the Γ -equivariant system (4.54), suppose that Λ is a nonempty
subset of σ c satisfying (H1) and (H2). If system (4.54) further satisfies the non-
resonance conditions relative to Λ , then there exists a formal change of variables
x = x̂+ p(α, x̂), y = ŷ+ h(α, x̂), where p and h satisfy p(α,Mγ x) = Mγ p(α,x) and
h(α,Mγ x) = ρ(γ)h(α,x) for all γ ∈ Γ and x ∈ R

m, such that
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(i) system (4.54) is transformed into a normal form relative to Λ in the form of
(4.67), where g1

j(α, ·,0) is Γ ×GB∗-equivariant and g2
j satisfies g2

j(α,x,0) = 0
for all α ∈R

r and x ∈R
m, j ≥ 2;

(ii) there exists a local center submanifold for (4.54) at zero satisfying y = 0, and
the flow on it is given by the m-dimensional Γ ×GB∗S-equivariant ODEs

ẋ(t) = Bx(t)+ 1
2 g1

2(α,x,0)+ 1
3! g1

3(α,x,0)+ h.o.t., (4.71)

which is in normal form (in the usual sense of ODEs), where m is the sum of the
multiplicities of the elements in Λ as eigenvalues of A0.

Remark 4.2. Theorem 4.6 means that if the finite-dimensional system (4.71) has
a (periodic) solution x(t) with symmetry Σ ≤ Γ × S

1, then system (4.60) has a
(periodic) solution (x+ p(x,α),h(x,α)), and hence system (4.54) has a (periodic)
solution u(t) with symmetry Σ .

Remark 4.3. In Theorem 4.6, we obtain an alternative characterization in terms of
additional equivariance conditions similar to those in Elphick et al. [87], which has
advantages as described below. First, we can choose coordinates in EΛ so that B is in
Jordan normal form and B commutes with BT

S . Then the normal form (4.71) (includ-
ing the linear terms) is Γ ×GB∗S-equivariant. However, the GB∗N -equivariance applies
only to the nonlinear terms of (4.71). This Γ ×GB∗S-equivariance of the normal form
is important understanding the local dynamics, such as generic local branching pat-
terns of equilibria and periodic solutions. Finally, the normal form procedure does
not converge, and terms in the tail (beyond all polynomial orders) may affect the
qualitative dynamics (see, for example, Guckenheimer and Holmes [125, Sects. 7.4
and 7.5]).

Remark 4.4. If Λ = σ c, then system (4.54) obviously satisfies the nonresonance
conditions relative to Λ , and hence Theorem 4.6 applies to the whole center
manifold of system (4.54).

Remark 4.5. Assumption (H2) is a necessary condition in ensuring the
nonresonance conditions in Definition 4.2. In fact, if±iω ∈Λ , 0 /∈Λ but 0∈σ(A0),
then obviously iω + (−iω) = 0 ∈ Λ0 \Λ , which implies that system (4.54) is
resonant.



Chapter 5
Lyapunov–Schmidt Reduction

The main objective of this chapter is to introduce the Lyapunov–Schmidt reduction
method and show how this reduction can be performed in a way compatible with
symmetries. The Lyapunov–Schmidt reduction results in the so-called bifurcation
equations, a finite set of equations equivalent to the original problem. This finite
set of equations may inherit the symmetry properties of the original system if the
reduction is done properly.

5.1 The Lyapunov–Schmidt Method

Let X, Y, and Λ be real Banach spaces. Let F : X×Λ →Y be a Ck map (k≥ 1) such
that F(0,0) = 0 (possibly after a change of origin in X×Λ ). We want to study the
solution set of the equation

F(x,α) = 0 (5.1)

in a neighborhood of (0,0) in X×Λ .
Define L =DxF(0,0). If the linear operator L is invertible and L −1 is bounded

(i.e., continuous) from Y to X, then the implicit function theorem applies. Therefore
in this case, in a neighborhood of the point (0,0), there exists a unique solution
branch x = φ(α) for the equation, and φ is a Ck function of α . Note that if L is
bounded and invertible, then L −1 is bounded, thanks to the closed graph theorem;
see Kato [186]. The challenging case is that in which L is not invertible. Since we
are considering maps in Banach spaces, not just finite-dimensional vector spaces,
we need to be more precise about the way L is noninvertible.

Denote by KerL and RanL the kernel and range of L , respectively. Assume
that KerL has a topological complement X0 in X, while RanL is closed and has a
topological complement Y0 in Y. Thus, we have the following decompositions:

X = KerL ⊕X0, Y = RanL ⊕Y0. (5.2)

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
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In particular, if L is a Fredholm operator,1 then (5.2) holds obviously.
It follows from (5.2) that there exist two continuous projections P ∈ L(X,KerL )

and Q ∈ L(Y,Y0) such that

KerL = RanP, RanL = KerQ. (5.3)

We can write x ∈Ω in the form x = u+v, where u = Px∈KerL and v = (I−P)x∈
X0. Then we can rewrite (5.1) as

(I−Q)F(u+ v,α) = 0, QF(u+ v,α) = 0. (5.4)

Thus, the first equation of (5.4) can be rewritten as

G(u,v,α)≡ (I−Q)F(u+ v,α) = 0.

Notice that G(0,0,0) = (I−Q)F(0,0) = 0 and DvG(0,0,0) = (I−Q)L = L .
When L is restricted in KerP, it is an isomorphism between KerP and RanL , and
then so is DvG(0,0,0). Applying the implicit function theorem, we obtain an open
neighborhood Ω of the origin in KerL , an open neighborhood Ξ of the origin in Λ ,
and a Ck map W : Ω ×Ξ → KerP such that W (0,0) = 0 and

(I−Q)F(u+W(u,α),α)≡ 0 (5.5)

for all (u,α) ∈Ω ×Ξ . Substituting w =W (u,α) into the second equation of (5.4),
we have

B(u,α)
def
= QF(u+W(u,α),α) = 0, (5.6)

where B is a Ck map from Ω ×Ξ to Y0. Moreover, it follows that B(0,0) = 0 and
Bu(0,0) = 0. The following theorem summarizes the essential result of Lyapunov–
Schmidt reduction.

Theorem 5.1. There exists a neighborhood U of (0,0) ∈KerL ×Ω such that each
solution to B(u,α) = 0 in U corresponds one to one some solution to (5.1).

Equation (5.6) is called the bifurcation equation corresponding to (5.1), and B
the bifurcation map. In particular, it would be interesting to know for what values of
α solutions disappear or are created. These particular values of α are called bifurca-
tion values. Now there exists an extensive mathematical machinery called singular-
ity theory (see Golubitsky et al. [115–118] and Sattinger [260, 261]) that deals with
such questions. Singularity theory is concerned with the local properties of smooth
functions near a zero of the function. It provides a classification of the various cases
based on codimension. The reason this is possible is that the codimension-k sub-
manifolds in the space of all smooth functions having zeros can be described al-
gebraically by imposing conditions on derivatives of the functions. This gives us a
way of classifying the various possible bifurcations and of computing the proper
unfoldings.

1 L is a Fredholm operator if (i) the kernel KerL is finite-dimensional, (ii) the range RanL is
closed, and (iii) RanL has finite codimension in Y. The index of a Fredholm operator L is defined
to be the integer IndL = dimKerL − codimRanL .



5.2 Derivatives of the Bifurcation Equation 121

5.2 Derivatives of the Bifurcation Equation

In applications, to solve and study (5.6), it is important to choose a suitable subspace
Y0 and to choose suitable coordinates in KerL and Y0. Throughout this section, we
always assume the following:

(i) α = (α1,α2, . . . ,αm) ∈Λ = R
m.

(ii) There is an inner product < ·, ·> in Y, and Y0 = (RanL )⊥, that is,

Y0 = {y ∈ Y : < y,z >= 0 for all z ∈ RanL }.
(iii) dim(RanL )⊥ = dimKerL = n.

If L is a Fredholm operator with index 0, then assumption (iii) holds. Sup-
pose that {v1,v2, . . . ,vn} and {v∗1,v∗2, . . . ,v∗n} are bases for KerL and (RanL )⊥,
respectively. For u ∈ KerL , u = ∑n

i=1 xivi with scalars xi, i = 1,2, . . . ,n. Substitut-
ing u = ∑n

i=1 xivi into (5.6) and calculating the inner product with v∗j , we have

0 =
〈

v∗j ,B(∑n
i=1 xivi,α)

〉
=

〈
v∗j ,QF(∑n

i=1 xivi +W(∑n
i=1 xivi,α),α)

〉
=

〈
v∗j ,F(∑n

i=1 xivi +W(∑n
i=1 xivi,α),α)

〉
−
〈

v∗j ,(I−Q)F(∑n
i=1 xivi +W(∑n

i=1 xivi,α),α)
〉

=
〈

v∗j ,F(∑n
i=1 xivi +W(∑n

i=1 xivi,α),α)
〉
.

Hence, the bifurcation equation can be rewritten as the following system of n equa-
tions:

g(x,α) = 0, (5.7)

where x = (x1, . . . ,xn)
T ∈ R

n, g(x,α) = (g1(x,α), . . . ,gn(x,α))T , and for
j = 1,2, . . . ,n,

g j(x,α) =

〈
v∗j ,F(

n

∑
i=1

xivi +W(
n

∑
i=1

xivi,α),α)

〉
. (5.8)

Obviously, (5.7) is equivalent to (5.6). Hence, we also refer to (5.7) as the bifurcation
equation of the system (5.1).

To find zeros of g in a neighborhood of the origin, it is not necessary to figure
out a concrete expression for g. In fact, it is enough to know about some low-order
terms of g. In what follows, we aim to relate the derivatives of the reduced functions
g j(x,α), j = 1,2, . . . ,n, to the derivatives of the original equation (5.1). If we know
the derivatives of the bifurcation function B, then we can find the derivatives of
g j by substitution into (5.8). Calculation of derivatives of B is a straightforward
application of the chain rule. However, the resulting formulas contain derivatives of
W , and these must be determined by implicit differentiation of (5.5).
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We will use the notation for the k-fold differential of F as follows. For v1,v2, . . . ,
vk ∈X, we define

F k
(u,α)(v1,v2, . . . ,vk) =

∂ k

∂ t1∂ t2···∂ tk
F
(

u+∑k
j=1 t jv j,α

)∣∣∣
t1=t2=···=tk=0

.

Obviously, F k
(u,α)(v1,v2, . . . ,vk) is a symmetric k-linear function of (v1,v2, . . . ,vk).

Define Fα j = ∂F(0,0)/∂α j.
Using similar arguments to those in Golubitsky and Schaeffer [117], we can ob-

tain the following results:

∂
∂x j

gi(0,0) = 0,

∂ 2

∂x j∂xk
gi(0,0) =

〈
v∗i ,F 2

(0,0)(v j,vk)
〉
,

∂ 3

∂x j∂xk∂xl
gi(0,0) =

〈
v∗i ,Vjkl

〉
,

∂
∂α j

gi(0,0) =
〈
v∗i ,Fα j

〉
,

∂ 2

∂x j∂αk
gi(0,0) =

〈
v∗i ,Fαk · v j−F 2

(0,0)(v j ,L −1(I−Q)Fαk)
〉
,

where

Vjkl = F 3
(0,0)(v j,vk,vl)+F 2

(0,0)(v j,Wlk)+F 2
(0,0)(vk,Wl j)+F 2

(0,0)(vl ,Wk j), (5.9)

and Wsk =−L −1(I−Q)F 2(vs,vk), L −1: RanL → X0 is the inverse of L |X0.

5.3 Equivariant Equations

Let Γ be a compact topological group, let ρ : Γ → L(X) and ρ̃: Γ → L(Y) be the
representations of Γ over X and Y, respectively. We say that F : X×Λ → Y is
equivariant with respect to some triple (Γ ,ρ , ρ̃) if

F(ρ(γ)x,α) = ρ̃(γ)F(x,α) (5.10)

for all γ ∈ Γ and α ∈Λ . Although in many applications, X will be a subspace of Y,
we have not made such an assumption here. This forces us to consider two different
representations ρ and ρ̃ of Γ . Here, we reconsider the Lyapunov–Schmidt reduction
for the equation

F(x,α) = 0 (5.11)

as given in Sect. 5.1, under the supplementary condition that F is equivariant with
respect to some triple (Γ ,ρ , ρ̃) in the sense of (5.10). It follows that the linear oper-
ator L satisfies L ρ(γ) = ρ̃(γ)L for all γ ∈ Γ . Moreover, for each γ ∈ Γ , KerL
and RanL are invariant under ρ(γ) and ρ̃(γ), respectively. In particular, if we de-
fine XΓ = {x ∈ X, ρ(γ)x = x for all γ ∈ Γ } and YΓ = {y ∈ Y, ρ̃(γ)y = y for all
γ ∈ Γ }, then F(x,α) ∈ YΓ for x ∈XΓ and α ∈Λ .
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We further assume that the projections P ∈ L(X,KerL ) and Q ∈ L(Y,Y0) can
be chosen to satisfy (5.3) and also

ρ(γ)P = Pρ(γ), ρ̃(γ)Q = Qρ̃(γ) (5.12)

for all γ ∈ Γ . Therefore, in what follows, we always assume that (5.12) holds. In
fact, the case of Hilbert spaces provides a first, simple situation in which projections
can be chosen to be equivariant. Namely, we have the following result.

Lemma 5.1 (Chossat and Lauterbach [62]). Suppose the spaces X and Y are
Hilbert spaces, and the group Γ is compact. Then an inner product can be found in
X and in Y such that Γ acts isometrically in each space. In this case, the orthogonal
projections P ∈ L(X,KerL ) and Q ∈ L(Y,Y0) are Γ -equivariant.

Due to Vanderbauwhede [284], the continuously differentiable map W : Ω×Ξ →
KerP given by (5.5) is also Γ -equivariant, that is,

W (ρ(γ)u,α) = ρ(γ)W (u,α) (5.13)

for γ ∈ Γ and (u,α) ∈Ω ×Ξ .
Finally, it is easy to see that the bifurcation map B given in (5.6) is Γ -equivariant.

Namely,
B(ρ(γ)u,α) = ρ̃(γ)B(u,α) (5.14)

for all (u,α) ∈Ω ×Ξ . Therefore, we have the following result.

Theorem 5.2. There exists a Γ -invariant neighborhood U of (0,0) ∈ KerL ×Λ
such that each zero of the Γ -equivariant map B(u,α) in U corresponds one-to-one
to some solution to (5.11).

5.4 The Steady-State Equivariant Branching Lemma

Suppose F: X×Λ →Y is a Ck map (k > 1) in Banach spaces (X⊂Y). One can de-
fine the spectrum for the linear operator L = DxF(0,0) in the Banach space X: this
is the set of complex numbers λ such that L −λ I is not invertible. An eigenvalue
is an element of the spectrum such that Ker(L −λ I) �= {0}. Finite multiplicity of
an eigenvalue λ means that (L −λ I)k = 0 for some integer k. That the eigenvalues
are isolated means that there exists a closed curve C that separates λ from the rest
of the spectrum.

Throughout this section, we always assume that 0 is an isolated eigenvalue of
L with finite multiplicity. Due to Chossat and Lauterbach [62], we first have the
following.

Lemma 5.2. If 0 is an isolated eigenvalue of L with finite multiplicity, then L is a
Fredholm operator with index 0. If L is Γ -equivariant, then the projections P and
Q can be chosen to be Γ -equivariant.
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Let us now apply the equivariant Lyapunov–Schmidt reduction to (5.1). Let n
be the dimension of KerL . As stated in Sect. 5.2, the bifurcation equation has the
general form

B(u,α) = 0,

where B is a Ck map from KerL ×Λ to KerL . Since KerL is a real space of
dimension n, we may as well regard B as a map R

n×Λ → R
n that is equivariant

for the induced action of Γ on KerL .
Suppose now that the action of Γ on R

n possesses an isotropy subgroup Σ with
a one-dimensional fixed-point space Fix(Σ). If we look for solutions in Fix(Σ), we
consider the restriction mapping g : Fix(Σ)×R

m → R
n of B: Rn×R

m → R
n. In

view of the Γ -equivariance of F and W , it is easy to see that g: Fix(Σ)×R
m →

Fix(Σ) is also Γ -equivariant and Ran g ⊂ Fix(Σ). Namely, g maps Fix(Σ)×R
m

to Fix(Σ). So g is a scalar function. Now we can state the following equivariant
branching lemma.

Theorem 5.3. Suppose F: X×Λ → Y is a Ck map (k > 1) in Banach spaces
(X ⊂ Y). Suppose that the compact group Γ acts linearly in Y (and in X by re-
striction) and that F is Γ -equivariant. Suppose, finally, that F satisfies the follow-
ing bifurcation conditions: (i) F(0,0) = 0, (ii) L = DxF(0,0) has 0 as an isolated
eigenvalue with finite multiplicity. Then for each isotropy subgroup Σ of Γ such
that dimFix(Σ) = 1 in KerL , either one of the following situations occurs (where
g(x,α) = 0 denotes the bifurcation equation in Fix(Σ)):

(i) Σ = Γ . If Dαg(0,0) �= 0, there exists one branch of the solution x(α). If in
addition, Dxxg(0,0) �= 0, then x2 = O(|α|) (saddle-node bifurcation).

(ii) Σ ≤Γ , and the normalizer N(Σ) of Σ in Γ , i.e., the group {γ ∈Γ : γΣγ−1 = Σ},
acts trivially in Fix(Σ). Then g(x,α) = xh(x,α), and if Dxα g(0,0) �= 0, there
exists a branch of solutions x(α). If in addition, Dxx(0,0) �= 0, then x = O(|α|)
(transcritical bifurcation).

(iii) Σ <Γ , and the normalizer N(Σ) of Σ in Γ acts as−I in Fix(Σ). Then g(x,α) =
xh(x2,α), and if Dxα g(0,0) �= 0, there exist two branches of solutions ±x(α)
satisfying g(x,α) = 0. If in addition, Dxxx(0,0) �= 0, then x2 =O(|α|) (pitchfork
bifurcation).

The proof is a direct application of the implicit function theorem to the bifurca-
tion equation in Fix(Σ), and can be found in the book by Chossat and Lauterbach
[62]. Theorem 5.3, known as the equivariant branching lemma for steady-state bi-
furcation, was first stated by Cicogna [75] and Vanderbauwhede [283]. In the case
of variational problems, a nice geometric characterization for the existence of ex-
trema with a certain isotropy was stated by Michel [223]. This condition is closely
related to the equivariant branching lemma.

Remark 5.1. If dimFix(Σ) = 1, then Σ is a maximal isotropy subgroup, meaning
that there is no proper isotropy subgroup containing Σ . However the converse is not
true: there exist maximal isotropy subgroups for which dimFix(Σ) > 1. We may
encounter this situation in examples involving spherical symmetry; see Chossat and
Lauterbach [62].
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Remark 5.2. When Σ ≤ Γ , the bifurcating solutions in dim Fix(Σ) have
lower symmetry than the basic solution (x = 0). This effect is called spontaneous
symmetry breaking.

5.5 Generalized Hopf Bifurcation of RFDE

We consider the following parameterized RFDE:

u̇(t) = L(α)ut + f (α,ut), (5.15)

where the linear operator L(α) : Cn,τ →R
n is continuous with respect to α ∈R, f ∈

Cl(R×Cn,τ ,R
n) for a large enough integer l such that f (α,0) = 0, and Dϕ f (α,0) =

0 for all α ∈ R. As usual, there exists an n× n matrix-valued function η(α, ·) :
[−τ,0]→R

n2
whose elements are of bounded variation such that

L(α)ϕ =
∫ 0
−τ dη(α,θ )ϕ(θ ), ϕ ∈Cn,τ .

Denote by Aα the infinitesimal generator associated with the linear system u̇ =
L(α)ut . In this section, we introduce the work [141] to investigate the nonsemisim-
ple resonant case. Namely, throughout this section, we always assume that

(NS) A0 has a pair of purely imaginary eigenvalues ±iω and there exists some
k ≥ 1 such that dimCKer((A0− iωId) j) = min( j,k) for all j ∈ N. Moreover, all
other eigenvalues of A0 are not integer multiples of iω .

Assumption (NS) implies that eigenvalues±iω are of geometric multiplicity one
and algebraic multiplicity k ∈ N. In particular, if k = 1, then eigenvalues ±iω are
simple, and then the classical Hopf bifurcation theory applies. Here, our main con-
cern is the case k > 1. Thus, the generalized eigenspace is Ker((A0− iωId)k), which
is k-dimensional. Therefore, we have the following direct sum decomposition:

Cn,τ = Ker((A0− iωId)k)⊕Ran((A0− iωId)k).

Moreover, Ker((A0 − iωId)k) is k-dimensional and satisfies A0Ker((A0 −
iωId)k) ⊆ Ker((A0− iωId)k). Let {ϕ1, . . . ,ϕk} be a basis for Ker((A0− iωId)k)
such that

(A0− iωId)ϕ1 = 0, (A0− iωId)ϕ j = ϕ j−1 (5.16)

for all j = 2,3, . . . ,k. In fact, we have the following result.

Lemma 5.3. ϕ j(t) = ∑ j−1
s=0

1
s! t

su j−seiωt , j = 1,2, . . . ,k, where u j ∈ C
n ( j =

1,2, . . . ,k) satisfy

j−1

∑
s=0

1
s!

Δs(0, iω)u j−s = 0, (5.17)

where Δs(α,λ ) denotes the sth partial derivative of Δ(α,λ ) with respect to λ , and
Δ0(α,λ ) = Δ(α,λ ).
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Proof. In view of (A0− iωId)ϕ1 = 0, we can choose ϕ1(t) = eiωt u1, where u1 ∈
C

n satisfies Δ(0, iω)u1 = 0. Assume that the statement of Lemma 5.3 holds for
j = 2,3, . . . ,m, where the integer m is less than or equal to k. In view of (A0−
iωId)ϕm+1 = ϕm, ϕm+1 satisfies the differential equation

ϕ̇(t)− iωϕ(t) = ϕm(t) (5.18)

with the boundary condition

L(0)ϕ− iωϕ(0) = ϕm(0). (5.19)

It follows from (5.18) that ϕ(t) = ϕm+1(t), where um+1 ∈ C
n. Substituting it into

(5.19) yields

0 = ∑m
s=0

1
s!

[∫ 0
−τ (t+θ)sdη(0,θ)um+1−seiωθ−iωtsum+1−s

]
−∑m−1

s=0
1
s! t

sum−s

= −Δ(0, iω)um+1+∑m−1
s=0

[∫ 0
−τ

(t+θ)s+1

(s+1)! dη(0,θ)um−seiωθ−iω ts+1

(s+1)! um−s− ts

s! um−s

]

= −Δ(0, iω)um+1−∑m−1
s=0 ∑s+1

l=0
tl

(s+1−l)!l! Δs+1−l(0, iω)um−s

= −∑m
s=0

1
s! Δs(0, iω)um+1−s−∑m−1

s=0 ∑s
l=0

tl+1

(s−l)!l! Δs−l(0, iω)um−s

= −∑m
s=0

1
s! Δs(0, iω)um+1−s−∑m−1

l=0

[
tl+1

l! ∑m−1
s=l

1
(s−l)! Δs−l(0, iω)um−s

]

= −∑m
s=0

1
s! Δs(0, iω)um+1−s−∑m−1

l=0

[
tl+1

l! ∑m−l−1
s=0

1
s! Δs(0, iω)um−l−s

]
= −∑m

s=0
1
s! Δs(0, iω)um+1−s.

Therefore, this lemma has been proved by induction. �

In order to coincide with the inner product introduced later, we here define the
following bilinear form (which is a little bit different from what we defined previ-
ously):

(ψ ,ϕ) = ψT (0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψT (ξ −θ )dη(0,θ )ϕ(ξ )dξ

for ψ ∈ C∗n,τ
def
= C([0,τ],Cn) and ϕ ∈ Cn,τ . Here and in the sequel, for the sake of

convenience, we shall also allow functions with range in C
n. The adjoint operator

A ∗
0 of A0 is defined by

(A ∗ψ)(ξ ) =
{−dψ(ξ )/dξ , if ξ ∈ (0,τ],∫ 0
−τ dηT (0,θ )ψ(−θ ), if ξ = 0.

Similarly, Ker((A ∗
0 + iωId)k) has a basis {ψ1, . . . ,ψk} such that

(A ∗
0 + iωId)ψk = 0, (A ∗

0 + iωId)ψ j = ψ j+1 (5.20)

for all j = 1,2, . . . ,k − 1. Similarly to the proof of Lemma 5.3, we have the
following.
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Lemma 5.4. ψ j(t) = ∑k− j
s=0

1
s!(−t)sv j+seiωt , j = 1,2, . . . ,k, where v j ∈ C

n ( j =
1,2, . . . ,k) satisfy

k− j

∑
s=0

1
s!

vT
j+sΔs(0,−iω) = 0. (5.21)

Since ϕk /∈Ran(A0− iωId) and ψk ∈Ran(A ∗
0 + iωId), we have (ψk,ϕk)= ν �= 0.

Moreover, it is easy to see that (ψ j,ϕs) = 0 for all j �= s, and (ψ j,ϕ j) = ν for all
j = 1,2, . . . ,k. In fact,

ν = ∑k−1
s=0 vT

1+s

[
(−t)s

s! Idn +
∫ 0
−τ

(−t)s+1−(−t+θ)s+1

(s+1)! dη(0,θ )eiωθ
]

u1

= ∑k−1
s=0 vT

1+s

[
(−t)s

s! Idn−∑s
m=0

(−t)m

m!(s+1−m)!

∫ 0
−τ θ s+1−mdη(0,θ )eiωθ

]
u1

= ∑k−1
s=0 ∑s

m=0
(−t)m

m!(s+1−m)! vT
1+sΔs+1−m(0, iω)u1

= ∑k−1
m=0 ∑k−1

s=m
(−t)m

m!(s+1−m)! vT
1+sΔs+1−m(0, iω)u1

= ∑k−1
m=0

[
(−t)m

m! ∑k−1
s=m

1
(s+1−m)! vT

1+sΔs+1−m(0, iω)u1

]

= ∑k−1
m=0

[
(−t)m

m! ∑k−m
s=1

1
s! vT

m+sΔs(0, iω)u1

]

= ∑k
s=1

1
s! vT

s Δs(0, iω)u1 +∑k−1
m=1

[
(−t)m

m! ∑k−m
s=1

1
s! vT

m+sΔs(0, iω)u1

]

= ∑k
s=1

1
s! vT

s Δs(0, iω)u1−∑k−1
m=1

[
(−t)m

m! vT
mΔ(0, iω)u1

]

= ∑k
s=1

1
s! vT

s Δs(0, iω)u1.

In what follows, we develop the Lyapunov–Schmidt procedure for (5.15) to find
a periodic solution with period near the constant 2π

ω . We start with the normalization
of the period. Let β ∈ (−1,1), x(t) = u((1+β )t). Then (5.15) can be rewritten as

(1+β )u̇(t) = L(α)ut,β + f (α,ut,β ),

where ut,β (θ ) = u(t +(1+β )θ ), θ ∈ [−τ,0]. To fix a functional setting for the
above equation, consider the Banach subspace Cω (respectively, C 1

ω ) of C(R,Rn),
2π
ω -periodic continuous (respectively, differentiable) functions equipped with their

usual sup-norms. It is easy to see that Cω is an isometric Banach representation of
the group S

1 with the action given by

θ ·u(t) = u(t +θ ) for θ ∈ S
1.

Here and in what follows, we do not distinguish θ ∈ S
1 and its realization χ such

that θ = exp{iχ}. Define a scalar product on the complexification of Cω by 〈·, ·〉 :
Cω ×Cω → R defined by

〈v,u〉= ω
2π

∫ 2π/ω

0
vT (t)u(t)dt (5.22)
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for u,v ∈ Cω . Define F : C 1
ω ×R

2→ Cω by

F(u,α,β ) =−(1+β )u̇(t)+L(α)ut,β + f (α,ut,β ). (5.23)

By varying the newly introduced small variable β , one keeps track not only of so-
lutions of (5.15) with period ω but also of solutions with nearby period. In fact,
solutions to F(u,α,β ) = 0 correspond to 2π

ω(1+β ) -periodic solutions of (5.15). It is

easy to see that F is S1-equivariant:

θ ·F(u,α,β ) = F(θ ·u,α,β ),

for all θ ∈ S1. The operator L u=−u̇+L(0)ut is the linearization of F at the origin.
Obviously, the elements of KerL correspond to solutions of the linear system u̇ =
L(0)ut satisfying u(t) = u(t + 2π

ω ). It is easy to see that the adjoint operator of L is
given by

L ∗u = u̇+
∫ 0

−τ
dηT (0,θ )u(t−θ ),

that is, 〈v,L u〉= 〈L ∗v,u〉 for all u,v ∈ C 1
ω . It follows from condition (NS) that

KerL = {Re(zϕ1); z ∈C}, KerL ∗ = {Re(zψk); z ∈C}.

Let P and Q be projections defined by

Pφ = 2Re{〈v1eiωt ,φ〉ϕ1}, Qφ = 2Re{〈vkeiωt ,φ〉ϕk}

for φ ∈Cω . Obviously, P and Q are S1-equivariant and KerL =RanP and RanL =
KerQ.

The equation F(u,α,β ) = 0 is equivalent to the following system:

(I−Q)F(v+w,α,β ) = 0,
QF(v+w,α,β ) = 0.

(5.24)

Here we have written u ∈ Cω in the form u = v+w, with v = Pu ∈ KerL and
w = (I−P)u ∈ Cω ∩KerP. Near the critical point (u,α,β ) = (0,0,0), the implicit
function theorem implies that the first equation of (5.24) can be solved for w =
W (v,α,β ), where W : KerL ×R

2 → Cω ∩KerP is a continuously differentiable
S

1-equivariant map satisfying W (0,0,0) = 0. Substituting w = W (v,α,β ) into the
second equation of (5.24), we have

ϑ(v,α,β ) def
= QF(v+W(v,α,β ),α,β ) = 0. (5.25)

Thus, we can reduce our bifurcation problem to the problem of finding zeros of the
map ϑ : KerL ×R

2→ RanQ. We refer to ϑ as the bifurcation map of the system
(5.15). It follows from the S

1-equivariance of F and W that the bifurcation map ϑ
is also S

1-equivariant. Moreover,

ϑ(0,0,0) = 0, ϑv(0,0,0) = 0.
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Therefore, we obtain that there exists a S
1-invariant neighborhood U of (0,0,0) ∈

KerL ×R×R such that each solution to F(u,α,β ) = 0 in U corresponds one-
to-one to some zero of the S

1-equivariant map ϑ defined in (5.25). In other words,
small-amplitude periodic solutions of (5.15), of period near 2π

ω , correspond to solu-
tions to system (5.25).

For v = zϕ1 + zϕ1 ∈ KerL , with z = 〈v1eiωt ,v〉, using this in (5.25) and then
calculating the inner product with ψk, we have

g(z,α,β ) = 0, (5.26)

where g: C×R
2→C is explicitly given by

g(z,α,β ) = 〈ψk,F(σ(z,α,β ),α,β )〉, (5.27)

and σ(z,α,β ) = zϕ1 + zϕ1 +W (zϕ1 + zϕ1,α,β ). Obviously, g(·,α,β ) is also S
1-

equivariant and so can be written as

g(z,α,β ) = zh(|z|2,α,β ),

where the smooth function h: R3→C is Z2-equivariant. It follows that for the non-
trivial solutions, the bifurcation problem reduces to the equation h(r2,α,β ) = 0,
where r = |z|.

First, we notice that

〈v1eiωt ,σ(z,α,β )〉 ≡ z (5.28)

and
(I−Q)F(σ(z,α,β ),α,β ) ≡ 0 (5.29)

for all (z,α,β ) ∈ C×R
2. Differentiation of (5.28) and (5.29) at z = 0 gives

〈v1eiωt ,σz(0,α,β )〉= 1

and
(I−Q)Fu(0,α,β ) ·σz(0,α,β ) = 0. (5.30)

In particular, σz(0,0,0) = ϕ1.
It follows from (5.27) that zh(|z|2,α,β ) = 〈ψk,F(σ(z,α,β ),α,β )〉. Differentia-

tion at z = 0 gives

h(0,α,β ) = 〈ψk,Fu(0,α,β ) ·σz(0,α,β )〉. (5.31)

Thus, we obtain the following results.

Lemma 5.5. hα(0,0,0)=−vT
k Δα(0, iω)u1 and h(0,0,β )=−(iβ ω)kν+O(|β |k+1).

Proof. In view of (5.31), we have h(0,0,0) = 0. Differentiation of (5.31) at α = 0
gives

hα(0,0,0) = 〈ψk,Fuα(0,0,0) ·σz(0,0,0)〉
= vT

k

∫ 0
−τ dηα(0,θ )ϕ1(θ )

= −vT
k Δα(0, iω)u1.
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Letting α = 0 in (5.30) and taking the inner product with v jeiωt , we have

0 = 〈v jeiωt ,Fu(0,0,β ) ·σz(0,0,β )〉
= 〈(1+β )iωv jeiωt +

∫ 0
−τ dηT (0,θ )v jeiω(t−θ−β θ),σz(0,0,β )〉

= 〈(1+β )iωv jeiωt +∑∞
s=0

(−iωβ )s

s!

∫ 0
−τ θ sdηT (0,θ )v jeiω(t−θ),σz(0,0,β )〉

= −〈∑k−1
s=0

(−iβ ω)s

s! Δ T
s (0,−iω)v jeiωt ,σz(0,0,β )〉+O(|β |k).

Hence,

〈Δ T(0,−iω)v je
iωt ,σz(0,0,β )〉 =−〈

k−1

∑
s=1

(−iβω)s

s!
Δ T

s (0,−iω)v je
iωt ,σz(0,0,β )〉+O(|β |k).

(5.32)
Similarly, we can use (5.31) to get

h(0,0,β ) =−〈
k

∑
s=1

(−iβ ω)s

s!
Δ T

s (0,−iω)vkeiωt ,σz(0,0,β )〉+O(|β |k+1).

In view of (5.32), we have

〈∑k−1
l=1 (−iβ ω)lΔ T (0,−iω)vk−leiωt ,σz(0,0,β )〉

= −〈∑k−1
l=1 ∑k−1

s=1
(−iβ ω)l+s

s! Δ T
s (0,−iω)vk−leiωt ,σz(0,0,β )〉

= −〈∑k−1
s=1 ∑k−1+s

m=s+1
(−iβ ω)m

s! Δ T
s (0,−iω)vk−m+seiωt ,σz(0,0,β )〉

= −〈∑k−1
s=1 ∑k

m=s+1
(−iβ ω)m

s! Δ T
s (0,−iω)vk−m+seiωt ,σz(0,0,β )〉+O(|β |k+1)

= −〈∑k
m=2 ∑m−1

s=1
(−iβ ω)m

s! Δ T
s (0,−iω)vk−m+seiωt ,σz(0,0,β )〉+O(|β |k+1)

= −〈∑k
l=2 ∑l−1

s=1
(−iβ ω)l

s! Δ T
s (0,−iω)vk−l+seiωt ,σz(0,0,β )〉+O(|β |k+1).

Thus, it follows from (5.21) and the expression of ν that

h(0,0,β ) = 〈∑k−1
l=1 ∑l−1

s=0
(−iβ ω)l

s! Δ T
s (0,−iω)vk−l+seiωt ,σz(0,0,β )〉+O(|β |k+1)

= 〈∑k−1
l=2 ∑l−1

s=1
(−iβ ω)l

s! Δ T
s (0,−iω)vk−l+seiωt ,σz(0,0,β )〉

+〈∑k−1
l=1 (−iβ ω)lΔ T (0,−iω)vk−leiωt ,σz(0,0,β )〉+O(|β |k+1)

= 〈∑k−1
l=2 ∑l−1

s=1
(−iβ ω)l

s! Δ T
s (0,−iω)vk−l+seiωt ,σz(0,0,β )〉

−〈∑k
l=2 ∑l−1

s=1
(−iβ ω)l

s! Δ T
s (0,−iω)vk−l+seiωt ,σz(0,0,β )〉+O(|β |k+1)

= −(iβ ω)k〈∑k−1
s=1

1
s! Δ T

s (0,−iω)vseiωt ,σz(0,0,β )〉+O(|β |k+1)

= −(iβ ω)kν +O(|β |k+1).

�
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In order to consider the first-order partial derivative h1(0,0,0) of h(u,α,β ) with
respect to u at (u,α,β ) = (0,0,0), we need to write the function f (α,ϕ) of (5.15)
in the form of a Taylor expansion in ϕ at α = 0:

f (0,ϕ) =
1
2
B(ϕ ,ϕ)+

1
6
E (ϕ ,ϕ ,ϕ)+ o(‖ϕ‖3) (5.33)

for ϕ ∈ Cn,τ , where B(·, ·) and C (·, ·, ·) are second- and third-order derivatives of
f (0, ·), and so are symmetric 2- and 3-linear functions, respectively. Obviously,

h1(0,0,0) =
∂ 3

∂ z2∂ z̄
g(0,0,0).

Using a similar argument to that in [117], we have

h1(0,0,0) = 〈ψk,E (ϕ1,ϕ1,ϕ1)〉+ 2〈ψk,B(ϕ1,W11)〉+ 〈ψk,B(ϕ1,W20)〉, (5.34)

where W11 and W20 are the coefficients of zz̄ and z2

2 in the Taylor expansion of
σ(z,0,0), respectively. In view of (5.29), we have W20 = −L −1(I−Q)B(ϕ1,ϕ1)
and W11 = −L −1(I−Q)B(ϕ1,ϕ1). Note that B(ϕ1,ϕ1), B(ϕ1,ϕ1) ∈ RanL .
Then the projections (I−Q) on B(ϕ1,ϕ1) and B(ϕ1,ϕ1) act as the identity. There-
fore,

LW20 +B(ϕ1,ϕ1) = 0, L W11 +B(ϕ1,ϕ1) = 0.

In addition, it follows from RanW ⊆ KerP that

〈v1eiωt ,W20〉= 0, 〈v1eiωt ,W11〉= 0.

Therefore, we have

W20 = Δ−1(0,2iω)B(ϕ1,ϕ1), W11 = Δ−1(0,0)B(ϕ1,ϕ1). (5.35)

In view of (5.34) and Lemma 5.5, the reduced equation h(r2,α,β ) = 0 takes the
form

−(iβ ω)kν− vT
k Δα(0, iω)u1α + r2h1(0,0,0)+ h.o.t.= 0.

Since ν �= 0, we can rewrite the above equation as

β k−Aα +Br2 + h.o.t.= 0, (5.36)

where

A =
vT

k Δα(0, iω)u1

−(iω)kν
, B =

h1(0,0,0)
−(iω)kν

. (5.37)

Separating the real and imaginary parts of equation (5.36) gives us

β k−αRe{A}+ r2Re{B}+ h.o.t.= 0 (5.38)
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and

−αIm{A}+ r2Im{B}+ h.o.t.= 0. (5.39)

If Im{A} �= 0, i.e.,
Im{ikνvT

k Δα(0, iω)u1} �= 0, (5.40)

then by the implicit function theorem, we may solve (5.39) for α to get

α = α(r2,β ) :=
Im{B}
Im{A}r2 +O(r4,β ). (5.41)

Substituting this into (5.38) gives an equation of the form

β k = μ0r2 +O(r4,β ), (5.42)

where

μ0 =
Im(BA)
Im(A)

. (5.43)

Let β = ε k
√

r2. Then (5.42) becomes εkr2 = μ0r2 +O(r4,ε), which yields

εk = μ0 +O(r2,ε). (5.44)

When k is odd and μ0 �= 0, then (5.44) has for r = 0 the unique solution ε = k
√μ0.

Thus, the implicit function theorem implies that this solution can be continued for r
near 0, giving a unique solution branch ε = ε(r) of (5.44), satisfying ε(0) = k

√μ0.
If we define β (r) = k

√
r2ε(r) and α(r) = α(r2,β (r)), where the function α(r2,β )

is given in (5.41), then h(r2,α,β ) = 0 has unique solution branches of the form
(r,α(r),β (r)), which pass through (0,0,0) for r = 0 and exist for sufficiently small
r > 0.

When k is even and μ0 < 0, then (5.44) has no solutions for r = 0 and hence
also no solutions for |r| sufficiently small. This implies that no bifurcation occurs.
On the other hand, if k is even and μ0 > 0m then (5.44) has for r = 0 two solutions
ε = ± k

√μ0, each of which can be continued for small r, giving rise to two solution
branches ε = ε±(r), where the functions ε±: [0,∞)→ R are smooth in a neigh-
borhood of the origin and satisfy ε±(0) = ± k

√μ0. If we define β±(r) =
√

r2ε±(r)
and α±(r) = α(r2,β±(r)), where the function α(r2,β ) is given in (5.41), then
h(r2,α,β ) = 0 has two solution branches of the form (r,α±(r),β±(r)) that pass
through (0,0,0) for r = 0 and exist for sufficiently small r > 0. Therefore, we have
the following results.

Theorem 5.4. In addition to (NS), assume that inequality (5.40) holds and that A,
B, and μ0 are defined by (5.37) and (5.43), respectively.

(i) If k is odd and μ0 �= 0, then for (u,α,β ) near (0,0,0), (5.15) has exactly one
branch of nontrivial 2π

(1+β )ω -periodic solutions, which exists for α > 0 (respec-

tively, α < 0) when Im{A}Im{B}> 0 (respectively, Im{A}Im{B}< 0).
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(ii) If k is even and μ0 < 0, then (5.15) has no nontrivial 2π
(1+β )ω -periodic solutions

with (u,α,β ) near (0,0,0).
(iii) If k is even and μ0 > 0, then for (u,α,β ) near (0,0,0), (5.15) has exactly

two branches of nontrivial 2π
(1+β )ω -periodic solutions, which exist for α > 0

(respectively, α < 0) when Im{A}Im{B}> 0 (respectively, Im{A}Im{B}< 0).

If assumption (NS) holds for k = 1, then the infinitesimal generator Aα has a
pair of simple complex conjugate eigenvalues λ (α) and λ (α) satisfying λ (0) =
iω . Moreover, there exists a C1-continuous function u(α) such that u(0) = u1 and
Δ(α,λ (α))u(α) ≡ 0 for all sufficiently small α . We differentiate it with respect to
α and obtain

[
Δα(α,λ (α))+λ ′(α)Δ1(α,λ (α))

]
u(α)+Δ(α,λ (α))u′(α) = 0.

In particular, we have
[
Δα(0, iω)+λ ′(0)Δ1(0, iω)

]
u1 +Δ(0, iω)u′(0) = 0.

This, together with the fact that vT
1 Δ(0, iβ0) = 0 and vT

1 Δ1(0, iω)u1 = (ψ1,ϕ1) = ν ,
implies that vT

1 Δα(0, iω)u1 +λ ′(0)ν = 0. Thus, the quantities A and B in (5.37) can
be figured out:

A =
λ ′(0)

iω
, B =

h1(0,0,0)
−iων

.

Hence, (5.40) is equivalent to Re{λ ′(0)} �= 0 and

sgn{Im{A}Im{B}}=−sgn
{

Re{λ ′(0)}Re{νh1(0,0,0)}
}
.

Moreover,

sgn{μ0}=−sgn
{

Re{λ ′(0)}Im{λ ′(0)νh1(0,0,0)}
}
.

Therefore, Theorem 5.4 reduces to the following standard Hopf bifurcation theorem.

Corollary 5.1. If assumption (NS) holds for k = 1 and Re{λ ′(0)} �= 0, then there
exists a unique branch of periodic solutions, parameterized by α , bifurcating from
the trivial solution x = 0 of (5.15). Moreover,

(i) Re{λ ′(0)}Re{νh1(0,0,0)} determines the direction of the bifurcation: the bi-
furcation is supercritical (respectively, subcritical), i.e., the bifurcating periodic
solutions exist for α > 0 (respectively, < 0), if Re{λ ′(0)}Re{νh1(0,0,0)} < 0
(respectively, > 0);

(ii) Re{λ ′(0)}Im{λ ′(0)νh1(0,0,0)} determines the period of the bifurcating peri-
odic solutions along the branch: the period is greater than (respectively, smaller
than) 2π

ω if it is positive (respectively, negative).
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5.6 Equivariant Hopf Bifurcation of NFDEs

In this section, we introduce the work [136] on equivariant Hopf bifurcation for the
following parameterized system of NFDEs:

d
dt

h(α,xt) = f (α,xt ), (5.45)

where h, f : R×Cn,τ →R
n are two continuously differentiable mappings satisfying

f (α,0) = 0 for all α ∈ R. We say that (5.45) is equivariant with respect to a group
Γ if there exists a representation ρ of Γ such that

h(α,ρ(γ)φ) = ρ(γ)h(α,φ), f (α,ρ(γ)φ) = ρ(γ) f (α,φ) (5.46)

for (α,γ,φ) ∈ R×Γ ×C([−τ,0];Rn), where ρ(γ)φ ∈ C([−τ,0];Rn) is given by
(ρ(γ)φ)(s) = ρ(γ)φ(s) for s ∈ [−τ,0]. Recall that a representation ρ of a group Γ
is a group homomorphism ρ : Γ → GL(n,R). Condition (5.46) implies that system
(5.45) is invariant under the transformation (x, t)→ (ρ(γ)x, t). Namely, x(t) is a
solution of (5.45) if and only if ρ(γ)x(t) is a solution. Throughout this section, we
always assume that Γ is a compact Lie group and system (5.45) is Γ -equivariant.

Linearizing (5.45) at the equilibrium point x = 0 yields

d
dt

D(α)xt = L(α)xt . (5.47)

Without loss of generality, we assume that there exist two n× n matrix-valued
functions μ ,η : [−τ,0]→ R

n2
whose components each have bounded variation in

θ ∈ [−τ,0] for each α and such that for ϕ ∈Cn,τ ,

D(α)ϕ = ϕ(0)−
∫ 0

−τ
dμ(α,θ )ϕ(θ ), L(α)ϕ =

∫ 0

−τ
dη(α,θ )ϕ(θ ).

Moreover, we assume that D(α) is atomic at zero, that is, Var[s,0]μ(α,θ )→ 0 as
s→ 0 (see Hale and Verduyn Lunel [154] for more details). Denote by Aα the
infinitesimal generator associated with the linear system (5.47). The spectrum of
Aα , denoted by σ(Aα), is the point spectrum. Moreover, λ is an eigenvalue of Aα ,
i.e., λ ∈ σ(Aα), if and only if λ satisfies detΔ(α,λ ) = 0, where the characteristic
matrix Δ(α,λ ) is given by

Δ(α,λ ) = λ D(α)(eλ (·)Id)−L(α)(eλ (·)Id).

It is well known that φ ∈Cn,τ is an eigenvector of Aα associated with the eigenvalue
λ if and only if φ(θ ) = eλ θ b for θ ∈ [−τ,0] and some vector b ∈ R

n such that
Δ(α,λ )b = 0. Let Eα ,λ be the eigenspace of Aα associated with the eigenvalues

λ and λ . Assume that A0 has a pair of purely imaginary eigenvalues ±iω . The
symmetry group Γ often causes purely imaginary eigenvalues to be multiple. So,
we always assume the following:
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(NHB1) A0 has a pair of purely imaginary eigenvalues±iω , each of multiplicity
m, and no other eigenvalue of A0 is an integer multiple of iω .

In studying the bifurcation problem, we wish to consider how the eigenvalues of
Aα cross the imaginary axis at α = 0 and to describe the structure of the associ-
ated eigenspace Eα ,λ . We consider the following nontrivial restrictions on the cor-
responding imaginary eigenspace of A0:

(NHB2) The imaginary eigenspace E0,iω of A0 is Γ -simple.

Thus, we make use of the implicit function theorem and Lemma 1.5 on Page 265 of
Golubitsky et al. [118] and obtain the following results about the multiplicity of this
eigenvalue and its associated eigenvectors of Aα .

Theorem 5.5. Under conditions (NHB1)–(NHB2), for sufficiently small α , the in-
finitesimal generator Aα has one pair of complex conjugate eigenvalues σ(α)±
iρ(α), each of multiplicity m. Moreover, σ and ρ are smooth functions of α and
satisfy σ(0) = 0 and ρ(0) = ω .

In view of (NHB1), the purely imaginary eigenvalues of A0 have high multiplic-
ity, so the standard Hopf bifurcation theorem cannot be applied directly. So, we first
develop the equivariant Lyapunov–Schmidt reduction for (5.45) to consider the ex-
istence of periodic solutions. Let Cω (respectively, C 1

ω ) be the Banach spaces of con-
tinuous (respectively, differentiable) n-dimensional 2π

ω -periodic functions equipped
with their usual sup-norms. It is easy to see that Cω is a Banach representation of
the group Γ ×S

1 with the action given by

(γ,θ )u(t) = ρ(γ)u(t +θ ), for (γ,θ ) ∈ Γ ×S
1.

In view of the complexity in analyzing NFDEs, we introduce two kinds of bilinear
forms. One is the inner product 〈·, ·〉 : Cω ×Cω →R defined by (5.22). The other is
(·, ·) : Cn,τ ×Cn,τ →R defined by

(ψ ,ϕ) = ψT (0)ϕ(0)− ∫ 0
−τ

[
d
ds

∫ s
0 ψT (ξ − s)dμ(0,θ )ϕ(ξ )dξ

]
s=θ

−∫ 0
−τ

∫ θ
0 ψT (ξ −θ )dη(0,θ )ϕ(ξ )dξ

(5.48)

for ψ ∈Cn,τ and ϕ ∈Cn,τ . Let β ∈ (−1,1), x(t) = u((1+β )t). Then (5.45) can be
rewritten as

(1+β )
d
dt

h(α,ut,β ) = f (α,ut,β ),

where ut,β (θ ) = u(t +(1+β )θ ) for θ ∈ [−τ,0]. Define F : C 1
ω ×R

2→ Cω by

F(u,α,β ) =−(1+β )
d
dt

h(α,ut,β )+ f (α,ut,β ), (5.49)

so solutions to F(u,α,β ) = 0 correspond to 2π
(1+β )ω -periodic solutions of (5.45).

It follows that the Γ -equivariance of L and f that F is Γ ×S
1-equivariant:

(γ,θ )F(u,α,β ) = F((γ,θ )u,α,β ),
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for all (γ,θ ) ∈ Γ × S
1. The linearized operator L of F with respect to u at

(u,α,β ) = (0,0,0) is given by

L u =− d
dt

D(0)ut +L(0)ut .

With respect to the inner product 〈·, ·〉 : Cω ×Cω → R, the adjoint operator of L is

L ∗u =
d
dt

[
u(t)−

∫ 0

−τ
dμT (0,θ )u(t−θ )

]
+

∫ 0

−τ
dηT (0,θ )u(t−θ ).

It follows from (NHB1) that KerL ∼= E0,iω and KerL ∗ ∼= E∗0,iω , both of which are
2m-dimensional. Furthermore, we have the following result.

Lemma 5.6. Spaces KerL , RanL , and W =(KerL ∗)⊥
⋂

C 1
ω are Γ ×S

1-invariant
subspaces of Cω . Moreover, Cω = KerL ⊕RanL and C 1

ω = KerL ⊕W .

Let P and I−P denote the projection operators defined by

P : Cω → RanL , I−P : Cω → KerL .

Obviously, P and I−P are Γ ×S
1-equivariant. Thus, F(u,α,β ) = 0 is equivalent to

the following system:

PF(u,α,β ) = 0, (I−P)F(u,α,β ) = 0. (5.50)

According to the above direct sum decomposition, for each u∈C 1
ω , there is a unique

decomposition such that u = v+w, where v ∈KerL and w ∈W . Applying the im-
plicit function theorem, we obtain a continuously differentiable Γ ×S

1-equivariant
map W : KerL ×R

2→W such that W (0,0,0) = 0 and

PF(v+W(v,α,β ),α,β ) ≡ 0. (5.51)

Substituting w =W (v,α,β ) into the second equation of (5.50), we have

ϑ(v,α,β ) def
= (I−P)F(v+W(v,α,β ),α,β ) = 0. (5.52)

Thus, we reduce our Hopf bifurcation problem to the problem of finding zeros of the
map ϑ : KerL ×R

2→ KerL . We refer to ϑ as the bifurcation map of the system
(5.45). It follows from the Γ ×S

1-equivariance of F and W that the bifurcation map
ϑ is also Γ ×S

1-equivariant. Moreover, ϑ(0,0,0) = 0 and ϑv(0,0,0) = 0.
Finding periodic solutions to (5.45) rests on prescribing in advance the symme-

try of the solution we seek. This can often be used to select a subspace on which
the eigenvalues are simple. In addition, we should take temporal phase-shift sym-
metries in terms of the circle group S

1 into account as well as spatial symmetries.
Here, we place emphasis on two-dimensional fixed-point subspaces and assume the
following:
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(NHB3) dimFix(Σ ,E0,iβ ) = 2 for some subgroup Σ of Γ ×S
1.

(NHB4) σ ′(0) �= 0.

Assumption (NHB4) is the transversality condition analogous to those of the stan-
dard Hopf bifurcation theorem. Now we can present our main results about equiv-
ariant Hopf bifurcation.

Theorem 5.6. Under conditions (NHB1)–(NHB4), in every neighborhood of (x =
0,α = 0), system (5.45) has a bifurcation of periodic solutions whose spatiotempo-
ral symmetry can be completely characterized by Σ .

Proof. We consider the restriction mapping ϑ̃ : Fix(Σ ,KerL )×R
2→KerL of ϑ :

KerL ×R
2→ KerL on Fix(Σ ,KerL )×R

2, i.e.,

ϑ̃(v,α,β ) = (I−P)F(v+W(v,α,β ),α,β )

for v ∈ Fix(Σ ,KerL ), α ∈R, and β ∈R. Clearly, ϑ̃ is also Γ ×S
1-equivariant and

satisfies
ϑ̃(0,0,0) = 0, ϑ̃v(0,0,0) = 0. (5.53)

Moreover, it is easy to see that Ranϑ̃ ⊆ Fix(Σ ,KerL ). Namely, ϑ̃ maps
Fix(Σ ,KerL )×R

2 to Fix(Σ ,KerL ). Therefore, we only need to consider the
existence of nontrivial zeros of ϑ̃ .

Without loss of generality, assume that Fix(Σ ,KerL ) = span{q,q}, where
q(θ ) = Aeiωθ and A ∈ C

n satisfies Δ(0, iβ )A = 0. Thus, there exists p ∈
Fix(Σ ,KerL ∗) such that (p,q) = 1, where p(θ ) = Beiωθ and B ∈ C

n sat-

isfies B
T Δλ (0, iω)A = 1 and B̄T Δ(0, iβ ) = 0. Obviously, Fix(Σ ,KerL )∗ =

Fix(Σ ,KerL ∗) = span{p, p}. As stated in Theorem 5.5, for sufficiently small
α , the infinitesimal generator Aα has one pair of complex conjugate eigenvalues
λ (α) and λ (α), each of multiplicity m, satisfying λ (0) = iω . By a similar argument
to that in the proof of Corollary 5.1, we have

B
T Δα(0, iω)A+λ ′(0) = 0. (5.54)

For each φ ∈ Fix(Σ ,KerL ), φ = zq+ zq, where z = 〈p,φ〉. Let

g(z,α,β ) def
= 〈p, ϑ̃(zq+ zq,α,β )〉.

Thus, we only need to consider the existence of nontrivial solutions to g(z,α,β ) = 0.
It follows from (5.53) that

gz(0,0,0) = 0, gz(0,0,0) = 0. (5.55)

It is easy to see that g(z,α,β )) is S1-equivariant. Thus, we can find two functions
ℜ,ℑ : R3→ R such that

g(z,α,β ) = ℜ(|z|2,α,β )z+ℑ(|z|2,α,β )iz. (5.56)

It follows from gz(0,0,0) = 0 that ℜ(0,0,0) = 0 and ℑ(0,0,0) = 0. Let z =
reiθ . Then solving g is equivalent to solving either r = 0 or ℜ(r2,α,β ) = 0 and
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ℑ(r2,α,β ) = 0. In view of the implicitly defined function W (v,α,β ), which van-
ishes through first order in v = zq+ zq, we have

F(v+W(v,α,β ),α,β ) =−(1+β ) d
dt D(α)vt,β +L(α)vt,β +O(|z|2).

Fα(v+W(v,0,0),0,0) = Ωvt +O(|z|2)
Fβ (v+W(v,0,0),0,0) = Ξvt +O(|z|2),

where we have Ω = − d
dt D′(0)+L′(0), Ξvt =

∂
∂β [−(1+β ) d

dt D(α)vt,β+L(α)vt,β ]

β=0, D′(0) = d
dα D(α)|α=0, and L′(0) = d

dα L(α)|α=0. Notice that

〈p,Ωq〉 = 〈Beiωt , iω
∫ 0
−τ dμα(0,θ )Aeiω(t+θ) +

∫ 0
−τ dηα(0,θ )Aeiω(t+θ)〉

= B
T ∫ 0
−τ [iωdμα(0,θ )+ dηα(0,θ )]Aeiωθ

= −B
T Δα(0, iω)A,

〈p,Ξq〉 = −〈Beiωt , iωeiωt − iω
∫ 0
−τ dμ(0,θ )A[1+ iωθ ]eiω(t+θ)〉

+iωB
T ∫ 0
−τ dη(0,θ )Aθeiωθ

= −iωB
T

A+ iωB
T ∫ 0
−τ dμ(0,θ )A[1+ iωθ ]eiωθ

+iωB
T ∫ 0
−τ dη(0,θ )Aθeiωθ

= −iω .

It follows from (5.54) that 〈p,Ωq〉= λ ′(0). Similarly, we have 〈p,Ωq〉=〈p,Ξq〉=0.
Therefore,

gα(z,0,0) = 〈p,Fα(v,0,0)〉= zλ ′(0)+O(|z|2),
gβ (z,0,0) = 〈p,Fβ (v,0,0)〉=−iωz+O(|z|2).

Then

ℜα(0,0,0) = Re{λ ′(0)}, ℑα(0,0,0) = Im{λ ′(0)},
ℜβ (0,0,0) = 0, ℑβ (0,0,0) =−ω .

So the Jacobi determinant of the functions ℜ and ℑ with respect to α and β is

det

[
ℜα(0,0,0) ℜβ (0,0,0)
ℑα(0,0,0) ℑβ (0,0,0)

]
= −ωRe{λ ′(0)}.

Thus, under condition (NHB4), the above Jacobi determinant is nonzero. The im-
plicit function theorem implies that there exists a unique function α = α(r2) and
β = β (r2) satisfying α(0) = 0 and β (0) = 0 such that

ℜ(r2,α(r2),β (r2))≡ 0, ℑ(r2,α(r2),β (r2))≡ 0 (5.57)
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for all sufficiently small r. Therefore, g(z,α(|z|2),β (|z|2))≡ 0 for z sufficiently near
0. Therefore, system (5.45) has a bifurcation of periodic solutions whose spatiotem-
poral symmetry can be completely characterized by Σ . This completes the proof of
Theorem 5.6. �

Remark 5.3. Theorem 5.6 implies that a Hopf bifurcation for (5.45) occurs at α = 0.
Namely, in every neighborhood of (x = 0,α = 0), there is a branch of Σ -symmetric
periodic solutions x(t,α) with x(t,α)→ 0 as α→ 0. The period Tα of x(t,α) satis-
fies Tα→ 2π

ω as α→ 0. Moreover, Γ -equivariance implies that there are (Γ ×S
1)/Σ

different periodic solutions, which have isotopy subgroups conjugate to Σ in Γ ×S
1.

In what follows, we consider the bifurcation direction. Assuming sufficient
smoothness of h and f , we write

h(0,ϕ) = D(0)ϕ +
1
2
H 2(ϕ ,ϕ)+

1
6
H 3(ϕ ,ϕ ,ϕ)+ o(‖ϕ‖3)

f (0,ϕ) = L(0)ϕ +
1
2
F 2(ϕ ,ϕ)+

1
6
F 3(ϕ ,ϕ ,ϕ)+ o(‖ϕ‖3).

In view of (5.51), we have PF(zq+ zq+W (zq+ zq,α,β ),α,β )≡ 0. Write W (zq+
zq,0,0) and g(z,0,0) as

W (zq+ zq,0,0) = ∑
s+l≥2

1
s!l!

Wslz
szl g(z,0,0) = ∑

s+l≥2

1
s!l!

gslz
szl .

It follows from (5.56) that g21 = ℜ1(0,0,0) + iℑ1(0,0,0), where ℜ1(u,α,β ) =
ℜu(u,α,β ) and ℑ1(u,α,β ) = ℑu(u,α,β ). Therefore, ℜ1(0,0,0) = Re{g21} and
ℑ1(0,0,0) = Im{g21}. From (5.57), we can calculate the derivatives of α(r2) and
β (r2) and evaluate at r = 0:

α ′(0) =− Re{g21}
Re{λ ′(0)} , β ′(0) =− Im{λ ′(0)g21}

Re{λ ′(0)} .

The bifurcation direction is determined by signα ′(0), and the monotonicity of the
period of the bifurcating closed invariant curve depends on signβ ′(0). Using a sim-
ilar argument to that in [117], we have

g21 = 〈p,F 3(q,q,q)− d
dt H

3(q,q,q)〉
+2〈p,F 2(q,W11)− d

dt H
2(q,W11)〉

+〈p,F 2(q,W20)− d
dt H

2(q,W20)〉.
We still need to compute W11 and W20. In fact, it follows that

W20 =−L −1P
{− d

dt H
2(q,q)+F 2(q,q)

}
,

W11 =−L −1P
{− d

dt H
2(q,q)+F 2(q,q)

}
.
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In order to evaluate the function W20, we must solve the following differential
equations:

d
dt

D(0)W20−L(0)W20 = P

{
− d

dt
H 2(q,q)+F 2(q,q)

}
. (5.58)

Note that

H 2(q,q) = H 2(Aeiω(·),Aeiω(·))e2iωt

and

F 2(q,q) = F 2(Aeiω(·),Aeiω(·))e2iωt .

So, g20 = 〈p,− d
dt H

2(q,q)+F 2(q,q)〉 = 0. Namely, − d
dt H

2(q,q)+F 2(q,q) ∈
RanL . Hence, the projection P on− d

dt H
2(q,q)+F 2(q,q) acts as the identity, and

(5.58) is an inhomogeneous difference equation with constant coefficients. Thus,
there is a particular solution of (5.58) of the form W ∗20(t) = D2e2iωt . Substituting
W ∗20 into (5.58) and comparing the coefficients, we obtain

D2 = Δ−1(0,2iω)
{
F 2(Aeiω(·),Aeiω(·))− 2iωH 2(Aeiω(·),Aeiω(·))

}
. (5.59)

In addition, W ∗20 is orthogonal to p, so it belongs to RanL . Thus W20(0,0,0) is equal
to W ∗20 with D2 determined by (5.59). Similarly, we have

g02 = g11 = 0, W02 = D2e−2iωt , W11 = D0,

where D0 = Δ−1(0,0)F 2(Aeiω(·),Ae−iω(·)). Therefore,

g21 = B
T
F 3(Aeiω(·),Aeiω(·),Ae−iω(·))− iωB

T
H 3(Aeiω(·),Aeiω(·),Ae−iω(·))

+2B
T
F 2(Aeiω(·),D0)− 2iωB

T
H 2(Aeiω(·),D0)

+B
T
F 2(Ae−iω(·),D2e2iω(·))− iωB

T
H 2(Ae−iω(·),D2e2iω(·)).

We summarize the above discussion as follows.

Theorem 5.7. In addition to conditions (NHB1)–(NHB4), assume that L(α) and
f (α, ·) are sufficiently smooth. Then there exists a branch of Σ -symmetric periodic
solutions, parameterized by α , bifurcating from the trivial solution x = 0 of (5.45).
Moreover,

(i) Re{λ ′(0)}Re{g21} determines the direction of the bifurcation: the bifurcation
is supercritical (respectively, subcritical), i.e., the bifurcating periodic solutions
exist for α > 0 (respectively, < 0), if Re{λ ′(0)}}Re{g21} < 0 (respectively,
> 0);

(ii) Re{λ ′(0)}Im{λ ′(0)g21} determines the period of the bifurcating periodic so-
lutions along the branch: the period is greater than (respectively, smaller than)
2π
ω if it is positive (respectively, negative).
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5.7 Application to a Delayed van der Pol Oscillator

The van der Pol oscillator is an oscillator with nonlinear damping governed by the
second-order differential equation

ẍ− ε(1− x2)ẋ+ x = 0, (5.60)

where x is the dynamical variable and ε > 0 a parameter. This model was proposed
by Balthasar van der Pol [281], and the dynamics of the van del Pol oscillator with
delayed feedback

ẍ− ε(1− x2)ẋ+ x = f (x(t− τ)) (5.61)

has recently been studied. For convenience, throughout this section, we always
assume that the function f : R→R is a C3-smooth odd function satisfying

f (0) = f ′′(0) = 0, f ′(0) = γ , and f ′′′(0) = δ . (5.62)

The characteristic equation of the linearization of (5.61) about the equilibrium point
x = 0 is

λ 2− ελ + 1 = γe−λ τ . (5.63)

Thus, the Hopf bifurcation surface is given by

H = {(ε,τ,γ) : 1−ω2 = γ cosτω , εω = γ sinτω , ω ∈ R\ {0}}.

Now we seek the nonsemisimple 1 : 1 resonant Hopf bifurcation points of (5.61)
on the surface H . Differentiating both sides of (5.63) with respect to λ , we have

2λ − ε =−γτe−λ τ . (5.64)

Substituting λ = iω (ω > 0) into (5.63) and (5.64), we obtain the following system:

1−ω2− iεω = γ cosτω− iγ sinτω ,
2ω i− ε = iτγ sinτω− τγ cosτω .

(5.65)

This system can be written by equating real and imaginary parts to yield the system
of equations

1−ω2 = γ cosτω ,
εω = γ sinτω ,

ε = τγ cosτω ,
2ω = τγ sinτω .

(5.66)

From this system, we have
ετ = 2,

τ(1−ω2) = ε,
τω = ξ ,

(5.67)
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where x = ξ is a solution to the equation x = tanx. Obviously, it follows from (5.67)
that τ =

√
2+ ξ 2, ε = 2/

√
2+ ξ 2, and ω = ξ/

√
2+ ξ 2. Let {ξn}∞

n=1 be the mono-
tonic increasing sequence of positive solutions of x = tanx, and

εn =
2√

2+ ξ 2
n

, τn =
√

2+ ξ 2
n , γn =

2
(2+ ξ 2

n )cosξn
, ωn =

ξn√
2+ ξ 2

n

(5.68)

for all n ∈ N. Then we have the following result.

Lemma 5.7. At and only at (ε,τ,γ) = (εn,τn,γn) for some n ∈ N does (5.63) have
a pair of double purely imaginary solutions, which are ±iωn.

We rewrite the van der Pol equation (5.61) as the system

ẋ = y, ẏ =−x+ f (x(t− τ))− ε(x2− 1)y. (5.69)

Then the linearization equation and characteristic matrix at the trivial equilibrium
of (5.69) are

ẋ = y, ẏ =−x+ γx(t− τ)+ εy (5.70)

and

Δ(ε,τ,γ,λ ) =
[

λ −1
1− γe−λ τ λ − ε

]
.

Consider a fixed (ε0,τ0,γ0)∈H \{(εn,τn,γn)}∞
n=1, which corresponds to ω0 > 0

satisfying ⎧⎨
⎩

1−ω2
0 = γ0 cosτ0ω0,

ε0ω0 = γ0 sinτω0,
2iω0− ε0 + τ0γ0e−iω0τ0 �= 0.

(5.71)

This means that (5.63) has a pair of simple purely imaginary solutions ±iω0. Thus,
detΔ(ε0,τ0,γ0,±iω0) = 0. It is easy to see that u1 = (1, iω0)

T and v1 = (−iω0−
ε0,1)T satisfy Δ(ε0,τ0,γ0, iω0)u1 = 0 and vT

1 Δ(ε0,τ0,γ0, iω0) = 0. Moreover, ν =
vT

1 Δ1(0, iω0)u1 = 2iω0− ε0 + τ0γ0e−iω0τ0 �= 0. In addition, we may write (5.69) in
the form of (5.15) and (5.33) with

B(ϕ ,ψ) =

[
0
0

]
, E (ϕ ,ψ ,φ) =

[
0

C2(ϕ ,ψ ,φ)

]

for ϕ = (ϕ1,ϕ2)
T , ψ = (ψ1,ψ2)

T , φ = (φ1,φ2)
T ∈C([−τ0,0],R2), where

C2(ϕ ,ψ ,φ) = δϕ1(−τ0)ψ1(−τ0)φ1(−τ0)− 2ε0ϕ1(0)ψ1(0)φ2(0)
−2ε0ϕ1(0)φ1(0)ψ2(0)− 2ε0φ1(0)ψ1(0)ϕ2(0).

Thus, h1(0,0,0) = δe−iω0τ0 − 2iω0ε0. Regarding ε (respectively, τ or γ) as a bi-
furcation parameter and fixing (τ,γ) = (τ0,γ0) (respectively, (ε,γ) = (ε0,γ0), or
(ε,τ) = (ε0,τ0)), we have λ ′(ε0) = iω0/ν (respectively, λ ′(τ0) =−iω0γ0e−iω0τ0/ν ,
or λ ′(γ0) = e−iω0τ0/ν). It follows that
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sgn{Re[λ ′(ε0)]}= sgn{2− τ0ε0},
sgn{Re[λ ′(τ0)]}= sgn{ε2

0 + 2ω2
0 − 2},

sgn{Re[λ ′(γ0)]}= sgn{γ0[τ0γ2
0 − ε0(1+ω2

0)]}.

In addition, we have

sgn{Re[νh1(0,0,0)]}= sgn{ δ
γ0
[τ0γ2

0 − ε0(1+ω2
0)]+ 2ε0ω2

0 (τ0ε0− 2)}

and

sgn{Im[λ ′(ε0)νh1(0,0,0)]}= sgn{δγ0(1−ω2
0)},

sgn{Im[λ ′(τ0)νh1(0,0,0)]}=−sgn{γ0δ + 2ε2
0 ω2

0},
sgn{Im[λ ′(γ0)νh1(0,0,0)]}= sgn{γ0(1−ω2

0)}.

Therefore, in view of Corollary 5.1, we have the following results.

Theorem 5.8. For fixed (ε0,τ0,γ0) ∈H \ {(εn,τn,γn)}∞
n=1 with ω0 > 0 satisfying

(5.71), we have the following:

(1) If (τ,γ) = (τ0,γ0), then there exists a unique branch of periodic solutions, pa-
rameterized by ε , bifurcating from the trivial solution x = 0 of (5.69), which
exists for ε > ε0 (respectively, < ε0) when

δ
γ0
[τ0γ2

0 − ε0(1+ω2
0)](2− τ0ε0)− 2ε0ω2

0 (2− τ0ε0)
2 < 0

(respectively, > 0), and whose period is greater than (respectively, smaller
than) 2π

ω0
when δγ0(1−ω2

0)(2− τ0ε0)> 0 (respectively, < 0).
(2) If (ε,γ) = (ε0,γ0), then there exists a unique branch of periodic solutions, pa-

rameterized by τ , bifurcating from the trivial solution x = 0 of (5.69), which
exists for τ > τ0 (respectively, < τ0) when

{
δ
γ0
[τ0γ2

0 − ε0(1+ω2
0)]+ 2ε0ω2

0 (τ0ε0− 2)

}
(ε2

0 + 2ω2
0 − 2)< 0

(respectively, > 0), and whose period is greater than (respectively, smaller
than) 2π

ω0
when (ε2

0 + 2ω2
0 − 2)(γ0δ + 2ε2

0 ω2
0 )< 0 (respectively, > 0).

(3) If (ε,τ) = (ε0,τ0), then there exists a unique branch of periodic solutions, pa-
rameterized by γ , bifurcating from the trivial solution x = 0 of (5.69), which
exists for γ > γ0 (respectively, < γ0) when

δ [τ0γ2
0 − ε0(1+ω2

0)]
2 + 2ε0ω2

0 γ0(τ0ε0− 2)[τ0γ2
0 − ε0(1+ω2

0)]< 0

(respectively, > 0), and whose period is greater than (respectively, smaller
than) 2π

ω0
when (1−ω2

0)[τ0γ2
0 − ε0(1+ω2

0)]> 0 (respectively, < 0).
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In view of Lemma 5.7, detΔ(εn,τn,γn,±iωn) = 0. Moreover, it is easy to see that
u1 = (1, iωn)

T , v1 = (1,0)T , and v2 = (−iωn− εn,1)T satisfy

Δ(εn,τn,γn, iωn)u1 = 0,

vT
2 Δ(εn,τn,γn, iωn) = 0,

vT
1 Δ(εn,τn,γn, iωn) = −vT

2 Δλ (εn,τn,γn, iωn).

Thus, it follows that ν = iξn. Moreover,

vT
2 Δε(εn,τn,γn, iωn)u1 = −iωn,

vT
2 Δτ(εn,τn,γn, iωn)u1 = iωnγne−iξn ,

vT
2 Δγ(εn,τn,γn, iωn)u1 = −e−iξn .

Similarly, we have h1(0,0,0) = δe−iξn − 2iωnεn. It follows from (5.37) that B =
−(2ωnεn + iδe−iξn)/(ξnω2

n ) and (−1)nδ Im(B)> 0.
We denote by Aε (respectively, Aτ and Aγ ) the corresponding quantity A in (5.37)

when ε (respectively, τ and γ) is regarded as a bifurcation parameter. In fact, we
have

Aε =
−1

ξnωn
, Aτ =

εn(1−iξn)

ξ 2
n

, Aγ =
(ξn+i)cosξn

ξnω2
n

.

It follows that Im(Aε) = 0, Im(Aτ ) < 0, but (−1)nIm(Aγ ) < 0. Therefore, Theo-
rem 5.4 is applicable only to the case in which either τ or γ is a bifurcation parame-
ter.

In what follows, we calculate μ0 given by (5.43) by regarding either τ or γ as a
parameter. In the case in which τ is a parameter, we have

sgn{μ0} = −sgn
{

Im(h1(0,0,0)vT
2 Δτ(εn,τn,γn,−iωn)u1)

}
= sgn{Im[iγneiξn(δe−iξn − 2iωnεn)]}
= sgn{δγn + 2ε2

n ω2
n}.

In the case in which γ is regarded as a parameter, we have

sgn{μ0} = (−1)n−1sgn
{

Im(h1(0,0,0)vT
2 Δγ (εn,τn,γn,−iωn)u1)

}
= (−1)nsgn{Im[eiξn(δe−iξn − 2iωnεn)]}
= 1.

Applying Theorem 5.4, we have the following results.

Theorem 5.9. For a fixed n ∈ N, at (ε,τ,γ) = (εn,τn,γn), (5.61) undergoes a Hopf
bifurcation with nonsemisimple 1 : 1 resonance. More precisely:
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(i) For γ near γn, (5.61) with (ε,τ) = (εn,τn) has exactly two nontrivial periodic
solutions bifurcated from the equilibrium point x = 0, which exist for γ > γn

(respectively, γ < γn) if δ < 0 (respectively, δ > 0).
(ii) If δγn + 2ε2

n ω2
n < 0, then for τ near τn, (5.61) with (ε,γ) = (εn,γn) has no

nontrivial periodic solutions bifurcated from the equilibrium point x = 0.
(iii) If δγn + 2ε2

n ω2
n > 0, then for τ near τn, (5.61) with (ε,γ) = (εn,γn) has ex-

actly two nontrivial periodic solutions bifurcated from the equilibrium point
x = 0, which exist for τ > τn (respectively, τ < τn) if (−1)nδ < 0 (respectively,
(−1)nδ > 0).

5.8 Applications to a Ring Network

To illustrate the general results presented in the previous sections of this chapter, we
now consider a ring network consisting of n identical elements with time-delayed
nearest-neighbor coupling:

[u j(t)− cu j(t− 1)]′ = g(u j+1(t− 1))+ g(u j−1(t− 1))− 3g(u j(t− 1)), (5.72)

where i (mod n), g ∈ C3(R;R) with g(0) = g′′(0) = 0 and g′(0) = b > 0, and c ∈
[0,1) is the bifurcation parameter. Define the action of the dihedral group Dn on
R

n by

(ρ ·u) j = u j+1 and (κ ·u) j = u2− j (5.73)

for all j (modn) and u∈RN . It is easy to see that system (5.72) is Dn-equivariant (see
[128, 133]). Let A (c) be the infinitesimal generator of the linear operator generated
by the linearization of (5.72) about the trivial solution u = 0. It can be shown that
λ ∈ C is an eigenvalue of A (c) if and only if ∏n−1

j=0 p j(λ ,c) = 0, where p j(λ ,c) =
λ +(ϑ j− cλ )e−λ and ϑ j = b+ 4bsin2(2 jπ/n)> 0.

For a given j, p j(·,c) has a pair of purely imaginary zeros ±β0 if c = cosβ0

and ϑ j = β0 sinβ0. This results in a family of bifurcation values c j,k in the interval
[0,1), where c j,k = cosβ j,k for k ∈N, and {β j,k}∞

k=1 is a strictly increasing sequence
of positive numbers satisfying ϑ j = β j,k sinβ j,k for all k ∈ N and limk→∞ β j,k = ∞.
Moreover, if λ (c) is a smooth curve of zeros of p j(·,c) with λ (c j,k) = iβ j,k, it is
easy to see that

λ ′(c j,k) = D(c j,kβ 2
j,k− iϑ jβ j,k), (5.74)

where D = |(cosβ j,k + i sinβ j,k)(1 + β j,k)− c j,k|−2. Therefore, for fixed j and
k, A (c j,k) has a pair of purely imaginary eigenvalues ±iβ j,k with the associ-
ated eigenspace E0 spanned by the eigenvectors eiβ j,k(·)v j, eiβ j,k(·)v j, e−iβ j,k(·)v j,
and e−iβ j,k(·)v j, where v j = (1,e2iπ j/n, . . . ,e2i(n−1) jπ/n). Thus, assumptions (NHB1),
(NHB2), and (NHB4) hold. If j �= 0 and j �= n/2, it furthermore follows [133] that
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Fix(Σ+
κ ) = span{w1 cos(β j,kt),w1 sin(β j,kt)},

Fix(Σ−κ ) = span{w2 cos(β j,kt),w2 sin(β j,kt)},
Fix(Σ+

ρ ) = span{Re(v jeiβ j,kt), Im(v jeiβ j,kt)},
Fix(Σ−ρ ) = span{Re(v jeiβ j,kt), Im(v jeiβ j,kt)},

(5.75)

where w1 = Re(v j), w2 = Im(v j), and Σ±κ = (κ ,±1) and Σ±ρ = (ρ ,e±2i jπ/(nβ j,k))

are subgroups of Dn×S
1. Thus, all conditions of the equivariant Hopf bifurcation

theorem (Theorem 5.6) are satisfied. Therefore, we apply Theorem 5.6 to system
(5.72) and obtain the following results.

Theorem 5.10. (i) Near c= c0,k for each k∈N, there exists a branch of synchronous
periodic solutions of period ω near (2π/β0,k) bifurcated from the zero solution
of the system. (ii) Near c = c j,k, for each j ∈ {1,2, . . . , [(n− 1)/2]} and k ∈ N,
there exist 2(n+ 1) branches of asynchronous periodic solutions of period ω near
(2π/β j,k) bifurcated from the zero solution of the system, and these are two phase-
locked waves, n mirror-reflecting waves, and n standing waves.

In what follows, we start with the two phase-locked oscillations mentioned
above, which are characterized by Σ±ρ . In view of (5.75), for the vectors A and B
defined in Sect. 5.6, we choose A = nB = v j or A = nB = v j. We have

Re{(p,q)g21}= ϑ 2
j g′′′(0) and Im{λ ′(0)(p,q)g21}=−g′′′(0)ϑ jβ j,k. (5.76)

Similarly, we choose A = n
2 B = w1 for the mirror-reflecting waves characterized

by Σ+
κ , and A = n

2 B = w2 for the mirror-reflecting waves characterized by Σ−κ . By a
direct computation, we have

Re{(p,q)g21}= m
4 ϑ 2

j g′′′(0) and Im{λ ′(0)(p,q)g21}=−m
4 g′′′(0)ϑ jβ j,k, (5.77)

where m = 4 if 4 j = 0 (mod n), and m = 3 otherwise.
Finally, for the synchronous periodic solution mentioned in Theorem 5.10, we

can show that (5.76) holds for j = 0. Thus, applying Theorem 5.7, we have the
following results.

Theorem 5.11. Near c= c j,k, for each j ∈ {0,1, . . . ,n−1} and k ∈N, system (5.72)
undergoes a Hopf bifurcation, whereby both the bifurcation direction and the pe-
riod of bifurcating periodic solutions are determined by the sign of g′′′(0). More
precisely, if g′′′(0) < 0 (or > 0), then (i) the Hopf bifurcation is supercritical (re-
spectively, subcritical), and all the bifurcating periodic solutions exist for c > c j,k

(respectively, < c j,k); (ii) the period of each branch of bifurcating periodic solutions
is greater (respectively, less) than (2π/β j,k).
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5.9 Coupled Systems of NFDEs and Lossless Transmission Lines

Coupled systems of neutral functional differential equations also arise very naturally
from distributed transmission lines, specially lossless transmission lines [37–40].
The main idea used to obtain such neutral difference–differential equations is the
reduction of the classical telegrapher’s partial differential equation, which describes
the voltage and current changes in a transmission line by introducing the d’Alembert
solution of the wave equation and using the boundary condition at terminals. This
idea goes back at least as far as Abolinia and Mishkis [1, 2], who demonstrated the
existence and uniqueness of solutions to a mixed problem for hyperbolic systems
by converting them to integral–functional equations, with integration along charac-
teristics. Self-sustained periodic solutions of small amplitude were established by
Brayton [37, 38] for a single lossless transmission, which has been widely investi-
gated in the literature.

Often used in industrial applications are, however, multiconductor lines. As an
electric circuit, a self-contained single transmission line is assumed to be removed
far enough from other lines so that it is not affected by any electrical changes occur-
ring in the latter. As soon as a second transmission line is placed close to the first
one, the fields of the first line induce a voltage and a current on the second. Capac-
itive coupling is then produced by the electric field, and inductive coupling results
from the magnetic field. The classical applications of telephone (or telegraph) line
and high-voltage power transmission line are examples of coupling. The coupling
phenomenon is also used in practice to realize directional couplers and interdigital
filters. Moreover, in modern high-speed integrated circuit (IC) technology, coupling
among a group of physically close transmission lines is very common, and inter-
connects in high-density ICs are usually treated as transmission lines. We refer to
the work [305] for some relevant references for coupled electric circuits and trans-
mission lines. Here, we present how a coupled system of neutral equations can be
derived.

Following [305], we consider a ring array of mutually coupled lossless trans-
mission lines. For simplicity, we assume that the transmission lines are resistively
coupled and the capacitive and inductive couplings among the system are neglected.
We also assume that each linked transmission line is identical and terminates at each
end by a lumped linear or nonlinear circuit element. By employing a telegrapher’s
equation at each line together with a coupling term in the initial–boundary condi-
tion, we derive a symmetric difference–differential system of neutral type that is
equivalent to the original partial differential equations governing the coupled lines.

Let N be a positive integer. We consider a ring of N mutually coupled lossless
transmission line (LLTL) networks that are interconnected by a common resistor R.
We assume that all coupled LLTL networks are identical, each of which is a uni-
formly distributed lossless transmission line with series inductance Ls and parallel
capacitance Cs per unit length of the line. To derive the network equations, let us
take an x-axis in the direction of the line, with two ends of the normalized line at
x = 0 and x = 1. Let ik(x, t) denote the current flowing in the kth line at time t and
distance x down the line and let vk(x, t) denote the voltage across the line at t and x.



148 5 Lyapunov–Schmidt Reduction

Then we obtain the following partial differential equations (telegrapher’s equations)

Ls
∂ ik
∂ t =− ∂vk

∂x ,

Cs
∂vk
∂ t =− ∂ ik

∂x , k = 1, · · ·N.

We now couple the network resistively so that the middle lines have coupling terms
from the preceding and succeeding lines. At two ends x = 0 and x = 1, the line gives
rise to the boundary conditions

0 = E− vk(0, t)−R0ik(0, t),

−C d
dt vk(1, t) =−ik(1, t)+ f (vk(1, t))− (Ik−1− Ik),

vk(1, t)− vk+1(1, t) = RIk(t),

where E is the constant DC bias voltage, f (vk(1, t)) is the current (V − I charac-
teristic) through the nonlinear resistor, and Ik is the network current coupling term.
Under equilibrium conditions, we have ik(0, t)= ik(1, t) and vk(0, t)= vk(1, t). Thus,
we have the following equilibrium equations:

E− vk−R0ik = 0,

ik = f (vk)− 1
R(vk+1− 2vk + vk−1),

which are assumed to have a unique homogeneous solution (v∗, i∗), homogeneous
for 1≤ k≤N. By changing variables, the equilibrium can be shifted from (v∗, i∗) to
(0,0), and we obtain

Ls
∂ ik
∂ t =− ∂vk

∂x ,

Cs
∂vk
∂ t =− ∂ ik

∂x ,k = 1, · · ·N,

subject to the boundary condition

0 = vk(0, t)+R0ik(0, t),

−C d
dt vk(1, t) =−ik(1, t)+ g̃(vk(1, t))− 1

R (vk+1− 2vk + vk−1)(1, t),

with g̃(v) = f (v+ v∗)− f (v∗).
The above problem has the unique solution (d’Alembert solution) ik(x, t) and

vk(x, t), which are of the form

vk(x, t) =
1
2 [φk(x−σ t)+ψk(x+σ t)],

ik(x, t) =
1

2Z [φk(x−σ t)−ψk(x+σ t)],

with

σ =
√

1/LsCs, Z =
√

Ls/Cs

respectively the propagation velocity of waves and the characteristic impedance of
the line, and both φk and ψk are C1-smooth.
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Let φk1 = φk(1− σ t),φk0 = φk(−σ t),ψk1 = ψk(1+ σ t),φk0 = φk(σ t), and let
Vk(t) = vk(1, t). Then we have

φk1(t) =Vk(t)+Zik(1, t), φk0(t) = vk(0, t)+Zik(0, t),

ψk1(t) =Vk(t)−Zik(1, t), ψk0(t) = vk(0, t)−Zik(0, t).

Note that φk1(t) = φk0(t− 1/σ) and ψk1(t) = ψk0(t + 1/σ). We thereby obtain

Vk(t)+Zik(1, t) =−qψk1(t− r),

Vk(t)−Zik(1, t) = ψk1(t),

with

r =
2
σ
, q =

Z−R0

Z +R0
.

The second boundary condition gives

ik(1, t) =CV ′k(t)+ g̃(Vk(t))− 1
R
(Vk+1(t)− 2Vk(t)+Vk−1(t)).

Substituting this into the equation for Vk(t)+Zik(1, t) and eliminating ψk−1(t− r)
leads to

Vk(t)+Z[CV ′k + g̃(Vk)− 1
R(Vk+1(t)− 2Vk(t)+Vk−1(t))]

=−qVk(t− r)+ qZ[CV ′k(t− r)+ g̃(Vk(t− r))]

− qZ
R [Vk+1(t− r)− 2Vk(t− r)+Vk−1(t− r)].

Finally, we arrive at the following neutral functional differential equations:

d
dt [Vk(t)− qVk(t− r)] = − 1

ZCVk(t)− q
ZCVk(t− r)

−g(Vk)+ qg(Vk(t− r))

+ 1
RC [Vk+1(t)− qVk+1(t− r)− 2(Vk(t)

−qVk(t− r))+Vk−1(t)− qVk−1(t− r)]

with g(Vk) = (1/C)g̃(Vk).
Under suitable conditions, Wu and Xia [305, 306] proved that there is a sequence

of critical values q1 < q2 < · · · in (0,1) at which the neutral system has a Hopf
bifurcation of periodic solutions bifurcating from the trivial equilibrium, and these
periodic solutions take the form of synchronized or phase-locked, mirror-reflecting,
and standing waves as discussed in the previous section. It should be possible to
conduct the stability and bifurcation direction analysis as well, and this is left to
the interested reader. An important problem of interest to applications is whether
coupling can generate stable asynchronous periodic solutions. This issue has also
been addressed by Hale in [148–150]. Finally, notice that the amplitude of the
bifurcated periodic solution obtained using the theory developed so far must be
small. To obtain periodic solutions of potentially large amplitudes, the bifurcation
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parameter should be away from the bifurcation values, and we are led to a discussion
of global Hopf bifurcation theory, which will be discussed in the next chapter.

5.10 Wave Trains in the FPU Lattice

The FPU lattice was introduced in [97] as a model for a nonlinear string formed
by identical point masses that interact with their nearest neighbors. It consists of an
infinite set of ordinary differential equations for the particle positions q j:

q̈ j =W ′(q j+1− q j)−W ′(q j− q j−1) , j ∈ Z . (5.78)

Note that (5.78) are Hamiltonian with respect to the formal Hamiltonian function

H = ∑
j∈Z

1
2

q̇2
j +W(q j+1− q j) .

Usually, we assume that the interaction potential has a Taylor expansion of the form

W (z) =
1
2

z2 +
α
3!

z3 +
β
4!

z4 + · · · .

We note that the FPU lattice is Z-equivariant with respect to the group of simulta-
neous particle shifts: {q j(t)} j∈Z is a solution of the equations of motion if and only
if {q̃ j(t)} j∈Z defined by q̃ j(t) = q j+1(t) is a solution of the equations of motion. We
now say that a solution to (5.78) is a wave train if it is a time-periodic solution that
is relatively periodic with respect to the maximal particle-shift symmetry. In other
words, it satisfies

• ∃ T > 0, such that q j(t) = q j(t +T).
• ∃ τ > 0, such that q j+1(t) = q j(t + τ).

Such solutions have the form

q j(t) = u(ωt− k j), (5.79)

where ω = 1/T > 0, k = ωτ , and u is a one-periodic function. One sees that the
ansatz (5.79) produces solutions of (5.78) precisely when u satisfies the advance–
delay differential equations

ω2 d2u(s)
ds2 =W ′(u(s− k)− u(s))−W ′(u(s)− u(s+ k)). (5.80)

It is easy to see that wave trains exist in the linear FPU lattice, i.e., the lattice for
which α = β = . . .= 0. Indeed, for every ε > 0 and φ0 ∈ R/Z, the functions

q j(t) = ε cos(2πωt− 2πk j+φ0) (5.81)
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are solutions of the linear FPU equations of motion, exactly when ω and k are related
by the dispersion relation

ω =±ω(k)
def
= ± 1

π
sin(kπ).

The above wave trains are monochromatic, and it follows from a Fourier transfor-
mation that every motion of the linear lattice are a superposition of such monochro-
matic wave trains. Some of these superpositions are actually wave trains themselves,
for instance if k is “resonant” in the sense that

sin(qkπ)
sin(pkπ)

=
q
p

for some integers p,q ∈ Z. Writing ω def
= sin(qkπ)

q = sin(pkπ)
p , we have that

q j(t) = ε1 cos(2π pωt− 2π pk j+φ0)+ ε2 cos(2πqωt− 2πqk j+φ1)

are wave train solutions of the linear lattice with temporal period T = qp/ω and
relative spatial period τ = k/ω . We call these bichromatic wave trains.

An elementary question is whether the monochromatic and bichromatic wave
trains of the linear FPU lattice continue to exist in the nonlinear lattice. Guo–Lamb
–Rink [137] have addressed this elementary question by means of a Lyapunov–
Schmidt reduction. This is a way of reducing the advance–delay differential
equations (5.80) to a finite-dimensional bifurcation equation. The work [137]
also shows how the particle-shift Z-equivariance, the time reversal symmetry, and
the Hamiltonian structure manifest themselves in the reduced bifurcation equation,
following ideas set out in [116]. Other existence results for wave trains in the FPU
lattice can be found in Iooss [174], where, among others, wave trains of small
amplitude and long wave length are found by means of a center manifold reduction.
Nonperturbative existence results for wave trains also exist; cf. Filip et al. [104] for
the case that the potential energy function W is convex. In the latter paper, both a
variational proof and a degree-theoretic argument are given.



Chapter 6
Degree Theory

6.1 Introduction

Many applications, including some bifurcation problems of functional differential
equations, lead to the problem of finding all zeros of a mapping f : U ⊆ X → X ,
where X is some (real) Banach space. In this type of nonlinear problem, we are
interested in the solutions of

f (x) = 0, x ∈U. (6.1)

In most cases, it turns out that it is too much to ask to determine the zeros analyti-
cally and explicitly. Hence one looks for a more qualitative study of the zeros, such
as the number, location, and multiplicity.

To illustrate this and to motivate the topological degree, we consider the case
f ∈H (C), where H (C) denotes the set of holomorphic functions on a domain
U ⊂C. Recall that the winding number of a path γ: [0,1]→C around a point z0 ∈C
is defined by

n(γ,z0) =
1

2π i

∫
γ

dz
z− z0

∈ Z. (6.2)

It gives the number of times that z0 is encircled, taking orientation into account (that
is, encirclings in opposite directions are counted with opposite signs).

In particular, if we pick f ∈H (C), we compute (assuming 0 /∈ f (γ))

n( f (γ),0) =
1

2π i

∫
γ

f ′(z)
f (z)

dz = ∑
k

n(γ,zk)αk, (6.3)

where zk denotes zeros of f , and αk their respective multiplicity. Moreover, if γ
is a Jordan curve encircling a simply connected domain U ⊂ C, then n(γ,zk) = 0
if zk /∈U and n(γ,zk) = 1 if zk ∈U . Hence n( f (γ),0) counts the number of zeros
inside U .

Let us also recall how we compute complex integrals along complicated paths
using homotopy invariance (see [23, 240, 241]). In this approach, we look for a
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simpler path along which the integral can be computed that is homotopic to the
original one. In particular, if f : γ →C\ {0} and g: γ → C\ {0} are homotopic, we
have n( f (γ),0) = n(g(γ),0) (which is known as Rouché’s theorem). More explicitly,
we need to find a mapping g for which n(g(γ),0) can be computed and a homotopy
H: [0,1]× γ → C \ {0} such that H(0,z) = f (z) and H(1,z) = g(z) for z ∈ γ . For
example, to see how many zeros of f (z) = 1

2 z6 + z− 1
3 lie inside the unit circle, we

consider g(z) = z. Then H(t,z) = (1− t) f (z)+ tg(z) is the required homotopy, since
| f (z)−g(z)|< |g(z)|, |z|= 1, implying H(t,z) �= 0 on [0,1]× γ . Hence f (z) has one
zero inside the unit circle.

To summarize, given a (sufficiently smooth) domain U with enclosing Jordan
curve ∂U , we have defined a degree deg( f ,U,z0) = n( f (∂U),z0) = n( f (∂U)−
z0,0) ∈ Z that counts the number of solutions of f (z) = z0 inside U . The invariance
of this degree with respect to certain deformations of f allow us to explicitly com-
pute deg( f ,U,z0) even in nontrivial cases. Degree theory has been developed for
various classes of mappings, not all of which are mentioned in the chapter. For rel-
evant results on topological degree, see, for example, [24, 25, 177–182, 191–195].
Moreover, similar ideas also appears in the definitions of Fuller index. See, for ex-
ample, Chow and Mallet-Paret [69].

6.2 The Brouwer Degree

In 1912, Brouwer [47] introduced the so-called Brouwer degree in R
n. See

Brouwder [46], Alexander et al. [8–10], Chow et al. [71], Krasnosel’skii [191],
Sieberg [265] for historical developments. In this section, we introduce Brouwer
degree theory. Throughout this section, U will be a bounded open subset of Rn. For

f ∈ C1(U,Rn), the Jacobi matrix of f at x ∈U is f ′(x) = (
∂ f j(x)

∂xi
)1≤i, j≤n, and the

Jacobi determinant of f at x ∈U is

Jf (x) = det f ′(x).

The set of regular values is

RV( f ) = {y ∈ R
n : Jf (x) �= 0 for all x ∈ f−1(y)}.

Its complement CV( f ) = R
n \ RV( f ) is called the set of critical values. Set

Cr(Ū ,Rn) = { f ∈Cr(U,Rn) : d j f ∈C(Ū ,Rn) for all 0≤ j ≤ r} and

Dr
y(Ū ,Rn) = { f ∈Cr(Ū ,Rn) : y /∈ f (∂U)},

D0
y(Ū ,Rn) = { f ∈C(Ū ,Rn) : y /∈ f (∂U)}

for y ∈R
n.

Lemma 6.1 (Sard’s lemma). Let U ⊂ R
n be open and f ∈ C1(U,Rn). Then μn

( f (CV( f ))) = 0, where μn is the n-dimensional Lebesgue measure.
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A function deg that assigns each f ∈ D0
y(U,Rn), y ∈ R

n, a real number
deg( f ,U,y) will be called a degree if it satisfies the following conditions:

(BD1) (translation invariance) deg( f ,U,y) = deg( f − y,U,0).
(BD2) (normalization) deg(I,U,y) = 1 if y ∈U , where I denotes the identity op-

erator when the space involved is clear.
(BD3) (additivity) If U1 and U2 are open, disjoint subsets of U such that y /∈ f (U \

(U1∪U2)), then deg( f ,U,y) = deg( f ,U1,y)+ deg( f ,U2,y).
(BD4) (homotopy invariance) If H : [0,1]× Ū → R

n is continuous, so that y /∈
H(t,∂U) for evert t ∈ [0,1], and f = H(0, ·),g = H(1, ·), then deg( f ,U,y) =
deg(g,U,y).

To compute the degree of a nonsingular matrix, we need the following lemma.

Lemma 6.2. Two nonsingular matrices M1,M2 ∈ GL(n) are homotopic in GL(n) if
and only if sgndetM1 = sgndetM2.

Using this lemma, we can prove the following theorem.

Theorem 6.1. Suppose f ∈ D1
y(Ū ,Rn) and y /∈ CV( f ). Then a degree satisfying

(BD1)–(BD4) satisfies

deg( f ,U,y) = ∑
x∈ f−1(y)

sgnJf (x), (6.4)

where the sum is finite.

In fact, the determinant formula (6.4) can be extended to all f ∈ D0
y(Ū ,Rn), that

is, deg( f ,U,y) as defined in (6.4) is locally constant with respect to both y and f . In
particular, we have the following result.

Theorem 6.2. There is a unique degree deg satisfying (BD1)–(BD4). Moreover, for
each given f ∈D0

y(Ū ,Rn), we have

deg( f ,U,y) = ∑
x∈ f̃−1(y)

sgnJ f̃ (x), (6.5)

where f̃ ∈D2
y(Ū ,Rn) is sufficiently close to f (with respect to the sup-norm topology

in Cr(Ū ,Rn) ), and y ∈ RV( f̃ ), and the above calculation is independent of the
choice of f̃ .

To extend the formula (6.4) to all f ∈ D0
y(Ū ,Rn), we first note that ε :=

min{| f (x)− y| : x ∈ ∂U} > 0, and then apply the Weierstrass theorem to obtain
g̃ ∈ C2(Ū ,Rn), so that max{| f (x)− g̃(x)| : x ∈ Ū} < ε/2. We then use Sard’s the-
orem to find a regular value y0 ∈ R

n of g̃ such that |y− y0| < ε/2. We then define
g : Ū → R

n as g(x) = g̃(x)− y0. Then g ∈C2(Ū ;Rn),max{|g(x)− f (x)|} < ε , and
0 is a regular value of g. We can define

deg( f ,U,y) = ∑
x∈g−1(0)

sgnJg(x),

and we need to check that this definition is independent of the choice of such g.
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6.3 The Leray–Schauder Degree

In 1934, Leray and Schauder [207] generalized Brouwer degree theory to an infinite
Banach space and established the so-called Leray–Schauder degree. It turns out that
the Leray–Schauder degree is a powerful tool in proving various existence results
for nonlinear differential equations (see, for example, [89, 90]). The objective of this
section is to extend the Brouwer degree to general Banach spaces. We first extend
the Brouwer degree to general finite-dimensional spaces.

Let X be a (real) Banach space of dimension n, and let n be an isomorphism
between X and R

n. Then for f ∈ Dy(Ū ,X), U ⊂ X open, y ∈ X , we can define

deg( f ,U,y) = deg(φ ◦ f ◦φ−1,φ(U),φ(y)), (6.6)

provided this definition is independent of the basis chosen. To see this, let ψ be
a second isomorphism. Then A = ψ ◦ φ−1 ∈ GL(n). Abbreviate f ∗ = φ ◦ f ◦ φ−1,
y∗ = φ(y), and pick f̃ ∗ ∈ D1

y(φ(Ū),Rn) in the same component of Dy(φ(Ū),Rn) as
f ∗ such that y∗ ∈ RV( f ∗). Then A◦ f̃ ∗ ◦A−1 ∈D1

y(ψ(U),Rn) is the same component
of Dy(ψ(Ū),Rn) as A◦ f ∗ ◦A−1 = ψ ◦ f ◦ψ (since A is also a homeomorphism) and

JA◦ f̃ ∗◦A−1(Ay∗) = det(A)J f̃ ∗(y
∗)det(A−1) = J f̃ ∗(y

∗) (6.7)

by the chain rule. Thus we have deg(ψ ◦ f ◦ ψ−1,ψ(U),ψ(y)) = deg(φ ◦ f ◦
φ−1,φ(U),φ(y)), and our definition is independent of the basis chosen. In addi-
tion, it inherits all properties from the mapping degree in R

n. Note also that the
reduction property holds if Rm is replaced by an arbitrary subspace X1, since we can
always choose φ : X → R

n such that φ(X1) = R
m.

Our next aim is to tackle the infinite-dimensional case. The general idea is to
approximate F by finite-dimensional operators (in the same spirit as we approxi-
mated continuous f by smooth functions). To do this, we need to know which oper-
ators can be approximated by finite-dimensional operators. Hence we have to recall
some basic facts first.

Let X and Y be Banach spaces and U ⊂ X . An operator F : U ⊂ X → Y is called
finite-dimensional if its range is finite-dimensional. In addition, it is called compact
(completely continuous) if it is continuous and maps bounded sets into relatively
compact ones. The set of all compact operators is denoted by C (U,Y ), and the set
of all compact finite-dimensional operators is denoted by F (U,Y ). Both sets are
normed linear spaces, and we have F (U,Y )⊆C (U,Y )⊆C(U,Y ). If U is compact,
then C (U,Y ) =C(U,Y ) (since the continuous image of a compact set is compact),
and if dim(Y ) < ∞, then F (U,Y ) = C (U,Y ). In particular, if U ⊂ R

n is bounded,
then F (U,Y ) = C (U,Rn) =C(U,Rn).

For U ⊂X , we set Dy(Ū ,X) = {F ∈C (Ū ,X): y /∈ (I+F)(∂U)} and Fy(Ū ,X) =
{F ∈ F (Ū ,X): y /∈ (I+ F)(∂U)}. Note that for F ∈ Dy(Ū ,X), we have ρ =
dist(y,(I+F)(∂U))> 0, since I+F maps closed sets to closed sets.
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Pick F1 ∈ F (Ū ,X) such that |F − F1| < ρ . Hence, F1 ∈ Fy(Ū ,X). Next, let
X1 be a finite-dimensional subspace of X such that F1(U) ⊂ X1, y ∈ X1, and set
U1 =U ∩X1. Then we have F1 ∈Fy(Ū1,X1), and we may define

deg(I+F,U,y) = deg(I+F1,U1,y). (6.8)

It is easy to verify that this definition is independent of F1 and X1.

Theorem 6.3. Let U be a bounded open subset of a (real) Banach space X and let
F ∈Fy(Ū ,X), y ∈ X. Then the following hold.

(i) deg(I+F,U,y) = deg(I+F− y,U,0).
(ii) deg(I,U,y) = 1 if y ∈U.

(iii) If U1,2 are open, disjoint subsets of U such that y /∈ f (Ū \ (U1 ∪U2)), then
deg(I+F,U,y) = deg(I+F,U1,y)+ deg(I+F,U2,y).

(iv) If H: [0,1]× Ū → X and y: [0,1]→ X are both continuous such that H(t) ∈
Dy(t)(U,Rn), t ∈ [0,1], then deg(I+H(0),U,y(0)) = deg(I+H(1),U,y(1)).

6.4 Global Bifurcation Theorem

As in Sect. 5.1, we study the nonlinear parameter-dependent problem

F(u,α) = 0, (6.9)

where F : E×R→ X is a C1-map such that F(0,α) = 0 for all α ∈ R, and E ⊆ X
is an open neighborhood of 0 (possibly E = X). Note that (6.9) has the trivial so-
lution for all values of α . We shall now consider the question of bifurcation from
this trivial branch of solutions and demonstrate the existence of global branches of
nontrivial solutions bifurcating from the trivial branch. If X = R

n, then we use the
Brouwer degree; if X is an infinite-dimensional (real) Banach space, then we assume
that F(x,α) = x+ f (x,α) and that f : E×R→X is completely continuous. Thus for
F(·,α), the Leray–Schauder degree is applicable. The application of degree theory
to bifurcation theory goes back to Krasnosel’skii [191]. Global bifurcation theorem
of the following type were first proved by Rabinowitz [251]. Several generaliza-
tions have been given by Ize et al. [177–182], Krawcewicz et al. [192–195], and
Nussbaum et al. [232–236].

Theorem 6.4. Let there exist a, b ∈ R with a < b such that u = 0 is an isolated
solution of (6.9) for α = a and α = b, where a and b are not bifurcation points.
Furthermore, assume that

deg(F(·,a),Br(0),0) �= deg(F(·,b),Br(0),0), (6.10)

where Br(0) = {u∈ E: ‖u‖< r} is an isolating neighborhood of the trivial solution.
Let

S = {(u,α): (u,α) solves (6.9) with u �= 0}∪{0}× [a,b],

and let C be the maximal connected subset of S that contains {0}× [a,b]. Then
either
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(i) C is unbounded in E×R,

or else

(ii) C ∩{0}× (R\ [a,b]) �= /0.

Proof. Define a class U of subsets of E×R as follows:

U = {Ω ⊂ E×R: Ω = Ω0∪Ω∞},
where Ω0 = Br(0)× [a,b], and Ω∞ is a bounded open subset of (E \ {0})×R.
We shall first show that (6.9) has a nontrivial solution (u,α) ∈ ∂Ω for every such
Ω ∈U . To accomplish this, let us consider the following sets:⎧⎨

⎩
K = F−1(0)∩ Ω̄ ,
A = {0}× [a,b],
B = F−1(0)∩{∂Ω \ [Br(0)×{a}∪Br(0)×{b}]}.

(6.11)

We observe that K may be regarded as a compact metric space, and A and B are
compact subsets of K. We hence may apply Whyburn’s lemma to deduce that either
there exists a continuum in K connecting A to B, or else there is a separation KA,
KB of K, with A ⊂ KA, B ⊂ KB. If the latter holds, we may find open sets U , V in
E×R such that KA ⊂U , KB ⊂ V , with U ∩V = /0. We let Ω ∗ = Ω ∩ (U ∪V ) and
observe that Ω ∗ ∈U . It follows by construction that there are no nontrivial solutions
of (6.9) that belong to ∂Ω ∗; this, however, is impossible, since it would imply, by the
generalized homotopy and the excision principle of the Leray–Schauder degree, that
deg(F(·,a),Br(0),0) = deg(F(·,b),Br(0),0), contradicting (6.10). We hence have
that, for each Ω ∈U , there is a continuum C of solutions of (6.9) that intersects ∂Ω
in a nontrivial solution.

We assume now that neither of the alternatives of the theorem holds, that is, we
assume that C is bounded and C ∩{0}×(R\ [a,b]) = /0. In this case, we may, using
the boundedness of C , construct a set Ω ∈U containing no nontrivial solutions in
its boundary, thus arriving once more at a contradiction. �

6.5 S
1-Equivariant Degree

Let E be a real isometric Banach representation of the group G = S
1. The isotypical

direct sum decomposition is denoted by

E= E0⊕E1⊕·· ·⊕Ek⊕·· · , (6.12)

where E0 = E
G def
= {x ∈ E;gx = x for all g ∈ G} is the subspace of G-fixed points,

and for k ≥ 1, x ∈ Ek\{0} implies that Gx, the isotropy group of x, is Zk
def
= {g ∈

G;gk = 1}. Throughout this section, we assume the following:

(SD1) For each integer k = 0,1, . . ., the subspace Ek is of finite dimension.

All subspaces Ek, k≥ 1, admit a natural structure of complex vector spaces such
that an R-linear operator A : Ek → Ek is G-equivariant if and only if it is C-linear
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with respect to this complex structure. Therefore, by choosing a C basis in Ek, k≥ 1,
we can define an isomorphism between the group of all G-equivariant automor-
phisms of Ek, denoted by GLG(Ek), and the general linear group GL(mk,C), where
mk = dimCEk.

Let F be another Banach isometric representation of G, and L : E→ F a given
equivariant linear bounded Fredholm operator of index zero. We say that an equiv-
ariant compact operator K : E → F is an equivariant compact resolvent of L if
L+K : E→ F is an isomorphism. We shall denote by CRG(L) the set of all equiv-
ariant compact resolvents of L, and assume that

(SD2) CRG(L) �= /0.

In what follows, a point of the Banach space E×R
2 is denoted by (x,λ ) with

x ∈ E and λ ∈ R
2, and the action of G on E×R

2 is defined by g(x,λ ) = (gx,λ ) for
every g ∈G.

We consider a G-equivariant continuous map f : E×R
2→ F such that

f (u,λ ) = Lu−Q(u,λ ), (u,λ ) ∈ E×R
2, (6.13)

where Q : E×R2→F is a completely continuous map and the following assumption
is satisfied:

(SD3) There exists a two-dimensional submanifold M ⊂ E0×R
2 such that (i)

M ⊂ f−1(0); (ii) if (u0,λ0) ∈M, then there exist an open neighborhood Uλ0
of

λ0 in R
2, an open neighborhood Uu0 of u0 in E0, and a C1-map η : Uλ0

→ E0

such that M∩ (Uu0×Uλ0
) = {(η(λ ),λ );λ ∈Uλ0

}.
In relation to the bifurcation problem of (6.13), we consider the structure of the

set of solutions to the following equation:

f (u,λ ) = 0, (u,λ ) ∈ E×R
2. (6.14)

All points (u,λ ) ∈ M are called trivial solutions of (6.13) or (6.14), and all other
solutions in f−1(0)\M are called nontrivial solutions. A point (u0,λ0)∈M is called
a bifurcation point if in every neighborhood of (u0,λ0) ∈ M there is a nontrivial
solution for (6.14).

Equation (6.14) can be transformed into the equivariant fixed-point problem

u = (L+K)−1 ◦ [K +Q(·, λ )](u), (u, λ ) ∈ E×R
2. (6.15)

Let F (u, λ ) = u− (L+K)−1 ◦ [Q(·, λ ) +K](u), (u, λ ) ∈ E×R
2. Then (6.14) is

equivalent to the equation

F (u, λ ) = 0, (u, λ ) ∈ E×R
2. (6.16)

The idea of finding nontrivial solutions to (6.16) in an open G-invariant
neighborhood U ⊆ E×R

2 of (u0,λ0) ∈ M is based on an auxiliary function ψ
to (6.16), which is introduced to distinguish nontrivial solutions from trivial solu-
tions. Here U is said to be G-invariant if (gx, λ ) ∈ U for all g ∈ G, (x, λ ) ∈ U .
An auxiliary function to (6.16) on the set U is an equivariant function (i.e.,
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ψ(gx) = gψ(x) for all g ∈ G and x ∈ U , where U denotes the closure of U ;
here and in what follows G acts on R

2 trivially) ψ : U ⊂ E×R
2 → R satisfying

ψ(u, λ )< 0 for all (u, λ ) ∈U ∩M. Then every solution to the system
{

F (u, λ ) = 0,
ψ(u, λ ) = 0,

(u, λ ) ∈U , (6.17)

is a nontrivial solution to (6.13). This leads to the equivariant map Fψ : U →E×R

defined by

Fψ (u, λ ) = (F (u, λ ), ψ(u, λ )), (u, λ ) ∈U , (6.18)

and the problem of finding a nontrivial solution to (6.13) in U can be reduced to
the problem of finding a solution to the equation Fψ(u, λ ) = 0 in U , which may be
solved by the so-called S

1-equivariant degree as a topological invariant associated
with the problem (6.17).

To describe the definition and basic properties of S1-degree, we assume that V
is an isometric Hilbert representation of G = S

1. If U is an open bounded invariant
subset of V ⊕R (where S

1 acts trivially on R) and F : (U ,∂U)→ (V,V \ {0}) is
an equivariant compact vector field on U , then there is defined the S

1-equivariant
degree of F with respect to U , which is a sequence of integers

S
1-deg(F,U) : = {degk(F,U)}∞

k=1 ∈
∞⊕

k=1

Z

such that degk(F,U) �= 0 for only a finite number of indices k. The basic properties
of S1-deg are as follows (see [24, 25, 112, 180, 194] for details):

(i) Existence: If S1-deg(F,U) : = {degk(F,U)}∞
k=1 �= 0, i.e., there exists k ∈ N

such that degk(F,U) �= 0, then F−1(0)∩UH �= /0, where H = Zk and

UH : = {v ∈U : gv = v for any g ∈ H}.
(ii) Additivity: If U1 and U2 are two open invariant subsets of U such that U1 ∩

U2 = /0 and F−1(0) ∩U ⊆ U1 ∪U2, then S
1-deg(F,U) = S

1-deg(F,U1) +
S

1-deg(F,U2).
(iii) Homotopy invariance: If H : (U ,∂U) × [0,1] → (V,V \ {0}) is an S

1-
equivariant homotopy of compact vector fields, then S

1-deg(H0,U) =
S

1-deg(H1,U), where Ht(θ ) = H (t,θ ) for t ∈ [0,1] and θ ∈U .
(iv) Contraction: Suppose that W is another isometric Hilbert representation of S1

and let Ω be an open, bounded, invariant subset of W such that 0 ∈ Ω . De-
fine Φ : Ω ×U →W ⊕V by Φ(y,x, t) = (y,F(x, t)). Then S

1-deg(Φ,U) =
S

1-deg(F,U).

Now we return to the problem (6.17). If the mapping Fψ : U → E×R has no
solution on ∂U and F : U → E is a condensing field (i.e., π−F is a condensing
map, where π : U → E is the natural projection on E), then the S

1-equivariant
degree S

1-deg(Fψ , U ) is well defined, and its nontriviality implies the existence
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of solutions of Fψ (u, λ ) = 0 in U . Global continuation of the branch of nontrivial
solutions (solutions in f−1(0) \M) bifurcating from (u0, λ0) can be characterized
by the above S

1-degree at all bifurcation points along the closure of the branch if
such a branch is bounded in E×R

2 (the so-called Fuller space).
To describe precisely this S

1-degree-based bifurcation theory, we need some
additional information about: (i) the construction of the open neighborhood U , (ii)
the auxiliary function ψ , (iii) the computation of S1-deg(Fψ ,U ).

If F (u, λ ) is differentiable with respect to u, we are able to define singular points
of system (6.16) through its linearization at the trivial solutions of (6.14). This is
unfortunately not so for state-dependent DDEs. Therefore, we shall distinguish two
cases.

6.5.1 Differentiability Case

Throughout this subsection, we further assume that at all points (u0,λ0) ∈ M, the
derivative Du f (u0,λ0) : E→ F of f with respect to u exists and is continuous on M.
We say that (u0,λ0)∈M is E-singular if Du f (u0,λ0) : E→F is not an isomorphism.
An E-singular point (u0,λ0) is isolated if there are no other E-singular points in
some neighborhood of (u0,λ0). It follows from the implicit function theorem that if
(u0,λ0) is a bifurcation point, then (u0,λ0) is an E-singular point.

We start with the construction of the open neighborhood U . We consider the
open neighborhood of (u0,λ0) ∈M defined by

BM(u0,λ0;r,ρ) def
= {(u,λ ) ∈ E×R

2 : |λ −λ0|< ρ ,‖u−η(λ )‖< r}, (6.19)

where r > 0 is chosen such that

(i) F (u, λ ) �= 0 for all (u, λ ) ∈ BM(u0,λ0;r,ρ) such that |λ − λ0| = ρ ,‖u−
η(λ )‖ �= 0;

(ii) (u0, λ0) is the only E-singular point of F in BM(u0, λ0;r, ρ).
We call BM(u0,λ0;r,ρ) a special neighborhood of F determined by r and ρ .

The existence of a special neighborhood U
def
= BM(u0,λ0;r,ρ) follows from the

assumption that the E-singular point (u0, λ0) of F is isolated. Note that the equiv-
ariant version of Dugundji’s extension theorem (see [193, p. 197]) implies that there
exists a continuous S1-equivariant function θ : U → R such that

(i) θ (η(λ ), λ ) =−|λ −λ0| for all (η(λ ), λ ) ∈U ∩M;
(ii) θ (u, λ ) = r if ‖u−η(λ )‖= r.

Such a function θ is called a completing function (or Ize’s function). Clearly, if θ
is a completing function, then ψδ (u, λ ) def

= θ (u, λ )− δ is negative on the subset of
trivial solutions U ∩M, provided that δ > 0. So ψδ is an auxiliary function to (6.16).
For δ > 0 small enough, we can define Fψδ : U → E×R by

Fψδ (u, λ ) def
= (F (u, λ ),ψδ (u, λ )),
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and define the S1-equivariant degree S1-deg(Fψδ ,U ). By the homotopy invariance
of the S

1-degree, S1-deg(Fψδ ,U ) = S
1-deg(Fθ ,U ). Therefore, the nontriviality

of S1-deg(Fθ ,U ) implies the existence of a nontrivial solution of (6.14) in U .
We now turn to the computation of S1-deg(Fθ ,U ). We identify R

2 with C, and

for sufficiently small ρ > 0, we define α : D→M, D
def
= {z ∈ C : |z| ≤ 1}, by

α(z) = (η(λ0 +ρz),λ0 +ρz) ∈ E0×R
2.

Since we have assumed that (x0,λ0) = (η(λ0),λ0) ∈ M is an isolated E-singular
point, it is clear that we can choose sufficiently small ρ > 0 such that α(D)
contains only one E-singular point, namely (x0,λ0). Consequently, the formula

Ψ(z)
def
= DuF (α(z)),z ∈ S

1 ⊆ D, defines a continuous map Ψ : S1 → GLG(E),
which has the decomposition (see [88] for details) Ψ = Ψ0⊕Ψ1⊕ ·· · ⊕Ψk⊕ ·· · ,
where Ψk = Ψ |Ek : S1 → GLG(Ek) for k = 1,2, · · · and Ψ0 : S1 → GL(E0), with
GL(E0) the set of linear automorphisms of E0. We now define⎧⎨

⎩
ε0(u0, λ0) = sgndetΨ0(z),
μk(u0, λ0) = degB(detC[Ψk]), k = 1,2, · · · ,
μ(u0, λ0) = {μk(u0, λ0)} ∈ ⊕∞

k=1Z.
(6.20)

It is clear that ε0 does not depend on the choice of z ∈ S
1.

We need one more notion, the crossing number, to calculate degB(detC[Ψk]):

Lemma 6.3 ([88]). Suppose α0, β0, δ , ε are given numbers with α0, δ , ε > 0. Let

Ω def
= (0, α0)× (β0− ε, β0 + ε) ⊆ R

2. Assume that H : [σ0− δ , σ0 + δ ]× Ω̄ → R
2

is a continuous function satisfying:

(i) H(σ , α, β ) �= 0 for all σ ∈ [σ0− δ , σ0 + δ ] and (α, β ) ∈ ∂Ω \ {(0, β );β ∈
(β0− ε, β0 + ε)};

(ii) if (α, β ) ∈Ω and Hσ0±δ (α, β ) = 0, then α �= 0.

Let Ω1
def
= (σ0−δ , σ0 +δ )× (β0−ε, β0+ε) and define the function ΨH : Ω̄1→R

2

by ΨH(σ ,β ) = H(σ ,0,β ), for σ ∈ [σ0−δ , σ0 +δ ], and β ∈ [β0− ε, β0 + ε]. Then
ΨH(σ ,β ) �= 0 for (σ ,β ) ∈ ∂Ω1 and degB(ΨH ,Ω1) = γ , where γ is the crossing
number given by

γ def
= degB(Hσ0−δ ,Ω)− degB(Hσ0+δ ,Ω).

Lemma 6.4. Let U = BM(u0, λ0;r′,ρ)⊆ E×R
2 be a special neighborhood of F ,

and θ a completing function. Then the S
1 degree S

1-deg(Fθ , U ) is well defined,
and

S
1-deg(Fθ , U ) = ε0 ·μ(u0, λ0).

That is,

S
1-degk(Fθ , U ) = ε0 ·μk(u0, λ0), k = 1, 2, · · · ,

where μ(u0, λ0) is defined by (6.20).
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By Lemma 6.4, we have the following local bifurcation theorem of Krasnosel’skii
type [191].

Theorem 6.5. Suppose that f : E⊕R
2 → F is a G-equivariant continuous map

that is continuously differentiable with respect to x at points (x,λ ) ∈ M and
satisfies (SD1)–(SD3). If (u0,λ0) ∈ M is an isolated E-singular point such that
ε0μk(u0,λ0) �= 0 for some k≥ 1, then (u0, λ0) is a bifurcation point of (6.13). More
precisely, there exists a sequence (un, λn) of nontrivial solutions to (6.13) such that
the isotropy group of un contains Zk and (un, λn)→ (u0, λ0) as n→ ∞.

We remark that the above results hold when R
2 is replaced by an open subset of

R
2. Geba and Marzantowicz [111] established the following global bifurcation the-

orem of Rabinowitz type [251] by applying the S1-degree theory due to Dylawerski,
Geba, Jodel, and Marzantowicz [85].

Theorem 6.6. Suppose that f : E⊕R
2→ F is as in Theorem 6.5 and suppose fur-

ther that M is complete and every E-singular point in M is isolated. Let S ( f )
denote the closure of the set of all nontrivial solutions of (6.13). Then for each
bounded component C of S ( f ), the set C∩M is a finite set, i.e.,

C∩M = {(u1, λ1), (u2, λ2), · · · ,(uq, λq)},
and

q

∑
i=1

S
1-deg(Fθi , Ui) =

q

∑
i=1

εi ·μ(ui, λi) = 0,

where Ui is a special neighborhood of (ui, λi), θi is a completing function defined
on U i, and εi and μ(ui, λi) are defined by (6.20).

Proof. If C is a bounded component of S ( f ), then every point of C ∩M is a
bifurcation point that is also a E-singular point of f . Since every E-singular point
of f is isolated and M is complete, C ∩M is a bounded and closed subset of
E0×R

2⊃M. By (SD1), E0×R
2 is finite-dimensional, and hence C∩M is compact.

Therefore, C∩M is a finite set.
Choose r, ρ > 0 sufficiently small that for each i=1, 2, · · · ,q, Ui =BM(ui, λi;r, ρ)

is a special neighborhood of (ui, λi) for f and Ui ∩Uj = /0 if i �= j. Let
U = U1 ∪U2 ∪ ·· · ∪Uq and find a bounded open set Ω1 ⊂ E× R

2 such that
C \U ⊆ Ω1 and Ω1

⋂
M = /0. Put Ω2 = U ∪Ω1. Then C ⊆ Ω2. We can (e.g.,

see [193, p. 174]) find an open invariant subset Ω ⊆ E×R
2 such that C ⊆ Ω ⊆Ω2

and ∂Ω ∩S ( f ) = /0.
Note that Ω is an open, bounded, invariant subset. We now choose r0 ∈ (0, r)

and ρ0 ∈ (0, ρ) such that for every i = 1, 2, · · · , q, we have

(i) BM(ui, λi;r0, ρ0)⊆Ω ;

(ii) Ui
def
= BM(ui, λi;r0, ρ0) is a special neighborhood of (ui, λi) for f .
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Set U = U1∪U2∪·· ·∪Uq and

∂Ur0

def
= {(u, λ ) ∈ Ω̄ : ‖u−η(λ )‖= r0, (η(λ ), λ ) ∈U ∩M}.

We note that r0 > 0, and define an invariant function by

θ (u, λ ) =

{
|λ −λi| ‖u−η(λ )‖−r0

r0
+ ‖u−η(λ )‖, if (u,λ ) ∈ Ūi,

r0, if (u,λ ) ∈C \U .
(6.21)

Now, Ui is a special neighborhood, and hence we have (C \U )∩ Ūi =C∩∂Ui ⊆
∂Ur0 , where we have θ (u, λ ) = r0. Then by (6.21), θ (u, λ ) is continuous on (C \
U )∩ Ūi. Also, by the construction of Ui, we have Ūi ∩ Ū j = /0 if i �= j. Therefore,
θ : C∪ Ū → R is continuous.

By the equivariant version of Dugundji’s extension theorem (see [193, p. 197]),
we can extend θ : C∪ Ū → R to a continuous invariant function θ : Ω → R such
that

(iii) θ (u, λ ) =−|λ −λi| if (u, λ ) ∈U i
⋂

M;
(iv) θ (u, λ ) = r0 if (u, λ ) ∈ (C \U )∪∂Ur0 .

Let Fθ (u, λ ) = (F (u, λ ), θ (u, λ )). Then F−1
θ (0) = F−1(0)

⋂
θ−1(0). By (iii),

we know that F−1
θ (0) ⊆ C. Since C ∩ ∂Ω = /0, F−1

θ (0) ∩ ∂Ω = /0. Therefore,
S

1-deg(Fθ , Ω) is well defined.
We now construct a homotopy H : Ω × [0, 1]→ E×R as follows:

H(u, λ , α) = (F (u, λ ), (1−α)θ (u, λ )−αρ0), (u, λ , α) ∈Ω × [0, 1].

Note that trivial solutions (u, λ ) ∈ Ω̄ outside S ( f ) are contained in Ūi ∩M for
some i = 1, 2, · · · , q, and by (iii), we have

(1−α)θ (u, λ )−αρ0 =−(1−α)|λ −λi|−αρ0 < 0.

Then by the fact that ∂Ω ∩S ( f ) = /0, we have H(u, λ , α) �= 0 for all (u, λ , α) ∈
∂Ω × [0, 1]. Note that θ is invariant and F is equivariant. So H is an S

1-homotopy.
Since H(u, λ , 0) =Fθ (u, λ ) and H(u, λ , 1) = (F (u, λ ),−ρ0) �= 0 for all (u, λ )∈
Ω × [0, 1], by the existence and homotopy invariance of the S

1-degree, we have
S

1-deg(Fθ , Ω) = 0. But (i)–(iv) imply that F−1
θ (0)⊆C∩U . Then it follows from

the excision property of the S1-degree that

S
1-deg(Fθ , U ) = S

1-deg(Fθ , Ω) = 0.

On the other hand, by the additivity property of the S
1-degree, we have

q

∑
i=1

S
1-deg(Fθ , Ui) = S

1-deg(Fθ , U ) = 0.
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Let θi(u, λ ) = θ (u, λ )|U i
. Note that U ⊆Ω implies that ((C \U )∪∂Ur0)

⋂
U i =

∂Ui∩∂Ur0 . Then θi(u, λ ) is a completing function on U i, and we have

q

∑
i=1

S
1-deg(Fθi , Ui) = S

1-deg(Fθ , U ) = 0.

Therefore, it follows from Lemma 6.4 that

q

∑
i=1

εi ·μ(ui, λi) =
q

∑
i=1

S
1-deg(Fθi , Ui) = 0.

The proof is complete. �

6.5.2 Nondifferentiability Case

If f (u, λ ) is not differentiable with respect to u, then we need to justify that the for-
mal linearization can be utilized to detect the local Hopf bifurcation and to describe
the global continuation of periodic solutions for such a system with state-dependent
delay. Our approach to this justification of formal linearization is through a simple
homotopy argument. Namely, we will consider the equation

F̃ (u, λ ) = 0, (u, λ ) ∈ Ū , (6.22)

for an S
1-equivariantC1-map F̃ : U →E that is S1-homotopic to F in a sense to be

detailed below. For the functional-analytic setting of the Hopf bifurcation of state-
dependent DDEs, such a C1-map is attained by extending a linear operator obtained
through the formal linearization from a C1-space to a C-space, an idea previously
used by Eichmann [86] and Mallet-Paret–Nussbaum–Paraskevopoulos [215]. To be
more precise, we assume that such a C1-map is given by

F̃ (u, λ ) = u− (L+K)−1◦ [Q̃(·, λ )+K](u), (u, λ ) ∈ Ū , (6.23)

where Q̃ : U → E is an S
1-equivariant C1-map and

(SD4) M ⊆ F̃−1(0), and for every λ ∈ R
2, (L+K)−1 ◦ (Q̃(·,λ )+K) : E→ E is

a condensing map.

By the implicit function theorem, if (u0, λ0) ∈ M is a bifurcation point of system
(6.23), then the derivative DuF̃ (u0, λ0), which is G-equivariant, is not an automor-
phism of E. Therefore, all bifurcation points of (6.23) are contained in the set

Λ def
= {(u, λ ) ∈M : DuF̃ (u, λ ) �∈ GLG(E)}.

Let (u0, λ0) be an isolated E-singular point of F̃ . To tie the S1-equivariant degree
of F to that of F̃ , we assume that:
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(SD5) We can choose the constants r > 0 and ρ > 0 such that BM(u0,λ0;r,ρ) is
a special neighborhood of F̃ and there exists 0 < r′ ≤ r such that F (u, λ ) �= 0
for all (u, λ ) ∈ BM(u0,λ0;r′,ρ) with |λ −λ0|= ρ and ‖u−η(λ )‖ �= 0.

If ψ is an auxiliary function to (6.16), then by the construction of the S
1-degree

and the assumptions (SD2), (SD4), and (SD5), there exists a special neighbor-

hood U
def
= BM(u0,λ0;r′,ρ) of F̃ such that the continuous G-equivariant maps Fψ

and F̃ψ are nonzero on the boundary of U , and therefore both S
1-deg(F̃ψ , U )

and S
1-deg(Fψ , U ) are well defined.

For a completing function θ defined on U , if F̃θ = (F̃ , θ ) is homotopic
to Fθ on U , then the homotopy invariance of the S

1-degree ensures that S
1-

deg(Fθ ,U ) = S
1-deg(F̃θ ,U ). On the other hand, we can follow the approach

presented in the previous subsection to calculate S1-deg(F̃θ , U ).
Finally, in order to exclude bifurcation of solutions of (6.22) in E0 ×R

2, we
assume that

(SD6) DuF̃ (u0, λ0)|E0 : E0→ E0 is an isomorphism.

Theorem 6.7 ([170]). Assume that (SD1)–(SD6) hold and let U =BM(u0, λ0;r′,ρ)⊆
E×R

2 be a special neighborhood for F̃ and θ a completing function. If F̃θ is
homotopic to Fθ on U and there exists k ≥ 1 such that S1-degk(F̃θ , U ) �= 0,
then (u0, λ0) is a bifurcation point for (6.13). That is, there exists a sequence of
nontrivial solutions (un, λn) of (6.13) such that the isotropy group of un contains
Zk and (un, λn)→ (u0, λ0) as n→ ∞.

For global bifurcation, we assume further that both F and F̃ are defined on
E×R

2, and that:

(SD7) Every bifurcation point of (6.13) is a E-singular point of F̃ .
(SD8) F̃θ is homotopic to Fθ on some special neighborhood U of each isolated

E-singular point of F̃ , where θ is a completing function defined on U .

Now we can state the following global bifurcation theorem of Rabinowitz type.

Theorem 6.8 ([170]). Assume that (SD1)–(SD8) hold and (SD5)–(SD6) hold for
every E-singular point (u0, λ0) of F̃ . Assume further that every E-singular point of
F̃ in M is isolated and M is complete. Let S denote the closure of the set of all
nontrivial solutions of (6.13). Then for each bounded component C of S , the set
C∩M is a finite set, i.e., C∩M = {(u1, λ1), (u2, λ2), · · · ,(uq, λq)}, and

q

∑
i=1

S
1-deg(F̃θi , Ui) = 0,

where Ui is a special neighborhood of (ui, λi), and θi is a completing function
defined on U i.



6.6 Global Hopf Bifurcation Theory of DDEs 167

6.6 Global Hopf Bifurcation Theory of DDEs

In this section, we employ the S
1-equivariant degree to establish global Hopf

bifurcations for general functional differential equations of mixed type with two
parameters. We state our theory in a very general setting to allow for mixed type to
ensure that the general theory can be used to address the issue of global bifurcations
of bifurcated periodic solutions with additional features, such as spatial–temporal
symmetry, for systems of DDEs with special symmetries.

Let X denote the Banach space of bounded continuous mappings x : R→ R
n

equipped with the supremum norm. For reasons mentioned above, we will consider
functional differential equations with both delayed and advanced arguments. There-
fore, for x ∈ X and t ∈ R, we will use xt to denote an element in X defined by
xt(s) = x(t + s) for s ∈ R.

Consider the functional differential equation

ẋ(t) = F(xt ,α, p) (6.24)

parameterized by two real numbers (α, p) ∈ R × R+, where R+ = (0,∞),
and F : X × R × R+ → R

n is completely continuous. Identifying the sub-
space of X consisting of all constant mappings with R

n, we obtain a mapping
F̂ = F |Rn×R×R+ : Rn×R×R+→ R

n. We require the following assumption:

(GHB1) F̂ is twice continuously differentiable.

Denote by x̂0 ∈ X the constant mapping with the value x0 ∈ R
n. We call

(x̂0,α0, p0) a stationary solution of (6.24) if F̂(x0,α0, p0) = 0. We assume that:

(GHB2) At each stationary solution (x̂0,α0, p0), the derivative of F̂(x,α, p) with
respect to the first variable x, evaluated at (x̂0,α0, p0), is an isomorphism of Rn.

Under (GHB1)–(GHB2), for each stationary solution (x̂0,α0, p0), there exist
ε0 > 0 and a continuously differentiable mapping y : Bε0(α0, p0)→ R

n such that
F̂(y(α, p),α, p) = 0 for (α, p)∈Bε0(α0, p0) = (α0−ε0,α0+ε0)×(p0−ε0, p0+ε0).

We need the following smoothness condition:

(GHB3) F(ϕ ,α, p) is differentiable with respect to ϕ , and the n× n complex
matrix function Δ(ŷ(α ,p),α ,p)(λ ) is continuous in (α, p,λ ) ∈ Bε0(α0, p0)×C.
Here, for each stationary solution (x̂0,α0, p0), we have Δ(x̂0,α0,p0)(λ ) =

λ Id−DF(x̂0,α0, p0)(eλ ·Id), where DF(x̂0,α0, p0) is the complexification of
the derivative of F(ϕ ,α, p) with respect to ϕ , evaluated at (x̂0,α0, p0).

For easy reference, we will again call Δ(x̂0,α0,p0)(λ ) the characteristic matrix and
the zeros of detΔ(x̂0,α0,p0)(λ ) = 0 the characteristic values of the stationary solution
(x̂0,α0, p0). So (GHB2) is equivalent to assuming that 0 is not a characteristic value
of any stationary solution of (6.24).
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Definition 6.1. A stationary solution (x̂0,α0, p0) is called a center if it has purely
imaginary characteristic values of the form im 2π

p0
for some positive integer m. A cen-

ter (x̂0,α0, p0) is said to be isolated if (i) it is the only center in some neighborhood
of (x̂0,α0, p0); (ii) it has only finitely many purely imaginary characteristic values
of the form im 2π

p0
, m an integer.

Assume now that (x̂0,α0, p0) is an isolated center. Let J(x̂0,α0, p0) denote the
set of all positive integers m such that im 2π

p0
is a characteristic value of (x̂0,α0, p0).

We assume that there exists m ∈ J(x̂0,α0, p0) such that:

(GHB4) There exist ε ∈ (0,ε0) and δ ∈ (0,ε0) such that on [α0− δ ,α0 + δ ]×
∂Ωε,p0 , detΔ(ŷ(α ,p),α ,p)(u+ im 2π

p ) = 0 if and only if α = α0, u = 0, p = p0,
where Ωε,p0 = {(u, p) : 0 < u < ε, p0− ε < p < p0 + ε}.
Let

H±(x̂0,α0, p0)(u, p) = detΔ(ŷ(α0±δ ,p),α0±δ ,p)

(
u+ im

2π
p

)
.

Then (GHB4) implies that H±m (x̂0,α0, p0) �= 0 on ∂Ωε,p0 . Consequently, the integer

γm(x̂0,α0, p0) = degB(H
−
m (x̂0,α0, p0),Ωε,p0)− degB(H

+
m (x̂0,α0, p0),Ωε,p0)

is well defined.

Definition 6.2. γm(x̂0,α0, p0) is called the mth crossing number of (x̂0,α0, p0).

We will show that γm(x̂0,α0, p0) �= 0 implies the existence of a local bifurcation
of periodic solutions with periods near p0/m. More precisely, we have the following:

Theorem 6.9. Assume that (GHB1)–(GHB3) are satisfied, and that there exist an
isolated center (x̂0,α0, p0) and an integer m∈ J(x̂0,α0, p0) such that (GHB4) holds
and γm(x̂0,α0, p0) �= 0. Then there exists a sequence (αk, pk) ∈R×R+ such that

(i) limk→∞(αk, pk) = (α0, p0);
(ii) at each (α, p) = (αk, pk), (6.24) has a nonconstant periodic solution xk(t) with

period pk/m;
(iii) limk→∞ xk(t) = x̂0, uniformly for t ∈R.

To describe the global continuation of the local bifurcation obtained in Theorem
6.9, we need to assume that:

(GHB5) All centers of (6.24) are isolated and (GHB4) holds for each center
(x̂0,α0, p0) and each m ∈ J(x̂0,α0, p0).

(GHB6) For each bounded set W ⊆ X×R×R+, there exists a constant l > 0 such
that |F(ϕ ,α, p)−F(ψ ,α, p)|≤l sups∈R |ϕ(s)−ψ(s)| for (ϕ ,α, p),(ψ ,α, p)∈ W .

Theorem 6.10. Let

Σ(F) =Cl{(x,α, p); x is a p-periodic solution of (6.24)} ⊂ X×R×R,

N(F) = {(x̂,α, p);F(x̂,α, p) = 0}.
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Assume that (x̂0,α0, p0) is an isolated center satisfying the conditions in Theo-
rem 6.9. Denote by C(x̂0,α0, p0) the connected component of (x̂0,α0, p0) in Σ(F).
Then either

(i) C(x̂0,α0, p0) is unbounded, or
(ii) C(x̂0,α0, p0) is bounded, C(x̂0,α0, p0)∩N(F) is finite, and

∑
(x̂,α ,p)∈C(x̂0,α0,p0)∩N(F)

γm(x̂,α, p) = 0 (6.25)

for all m = 1,2, . . . , where γm(x̂,α, p) is the mth crossing number of (x̂,α, p) if
m ∈ J(x̂,α, p), and zero otherwise.

Proof of Theorems 6.9 and 6.10: Put S1 =R/2πZ,E= L1(S1;Rn), F=L2(S1;Rn).
Define L : E→ F and Q : E×R×R+→ F by

Lz = ż(t), Q(z,α, p)(t) =
p

2π
F(zt,p,α, p),

where

zt,p(θ ) = z

(
t +

2π
p

θ
)
, θ ∈ R.

Clearly, x(t) is a p-periodic solution of (6.24) if and only if z(t) = x( p
2π t) is a solution

in E of the operator equation Lz = Q(z,α, p).
The representations E and F are isometric Hilbert representations of the group

S
1, where S

1 acts by shifting the argument. With respect to these S
1-actions, L is

an equivariant bounded linear Fredholm operator of index zero with an equivariant
compact resolvent K, and Q is an S

1-equivariant compact mapping. Moreover, at

(ŷ(α, p),α, p) with (α, p) ∈D
def
= (α0−δ ,α0+δ )× (p0−ε, p0+ε), the derivative

of Q with respect to the first variable is given by

DzQ(ŷ(α, p),α, p)z(t) =
p

2π
DF(ŷ(α, p),α, p)zt,p.

Identifying ∂D with S
1, since (x̂0,α0, p0) is an isolated center, we can easily show

that the mapping Id− (L+K)−1[K +DzF(ŷ(α, p),α, p)] is an isomorphism of E
and that the mapping Ψ : S1→GL(E) defined by

(α, p) ∈ ∂D ∼= S
1→ Id− (L+K)−1[K +DzF(ŷ(α, p),α, p)] ∈ GL(E)

is continuous.
The representationE has the well-known isotypical decompositionE=

⊕∞
k=0Ek,

where E0
∼= R

n and for each k ≥ 1, Ek is spanned by cos(kt)ε j and sin(kt)ε j , 1 ≤
j ≤ n, where {ε1, . . . ,εn} is the standard basis of Rn. So we have Ψ(α, p)Ek ⊆ Ek.
Let Ψk(α, p) =Ψ(α, p)|Ek . It is not difficult to show that

Ψk(α, p) =
p

i2kπ
Δ(ŷ(α ,p),α ,p)

(
ik

2π
p

)
.
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Let

ε = signdetΨ0(α, p), (α, p) ∈ ∂D ,

nk(x̂0,α0, p0) = ε degB(detΨk(·),D), k = 1,2, . . . .

Then one can show, as in Erbe, Geba, Krawcewicz, and Wu [112], that
γk(x̂0,α0, p0) = nk(x̂0,α0, p0), and therefore Theorems 6.9 and 6.10 are sim-
ply immediate consequences of Theorems 6.5 and 6.6 with M = {(x̂0,α0, p0) ∈
R

n×R×R+;F(x̂0,α0, p0) = 0}. This completes the proof. �
For ease of applications, we describe below the local and global Hopf bifurcation

theory for parameterized DDEs. Let X =Cn,τ and consider the following functional
differential equation:

ẋ(t) = F(xt ,α) (6.26)

with parameter α ∈R, F : X ×R→R
n is completely continuous.

Identifying the subspace of X consisting of all constant mappings with R
n, we ob-

tain a mapping F̂ = F |Rn×R : Rn×R→ R
n. We now describe conditions (GHB1)–

(GHB6) in relatively simple form:

(SGHB1) F̂ is twice continuously differentiable.

Denote by x̂0 ∈ X the constant mapping with the value x0 ∈ R
n. We call (x̂0,α0)

a stationary solution of (6.26) if F̂(x0,α0) = 0. We assume that:

(SGHB2) At each stationary solution (x̂0,α0), the derivative of F̂(x,α) with re-
spect to the first variable x, evaluated at (x̂0,α0), is an isomorphism of Rn.

Under (SGHB1)–(SGHB2), for each stationary solution (x̂0,α0), there exist
ε0 > 0 and a continuously differentiable mapping y : Bε0(α0) → R

n such that
F̂(y(α),α) = 0 for α ∈ Bε0(α0) = (α0− ε0,α0 + ε0).

We need the following smoothness condition:

(SGHB3) F(ϕ ,α) is differentiable with respect to ϕ , and the n× n complex
matrix function Δ(ŷ(α),α)(λ ) is continuous in (α,λ ) ∈ Bε0(α0)×C. Here, for

each stationary solution (x̂0,α0), we have Δ(x̂0,α0)(λ ) = λ Id−DF(x̂0,α0)(eλ ·Id),
where DF(x̂0,α0) is the complexification of the derivative of F(ϕ ,α) with re-
spect to ϕ , evaluated at (x̂0,α0).

For easy reference, we will again call Δ(x̂0,α0)(λ ) the characteristic matrix and
the zeros of detΔ(x̂0,α0)(λ ) = 0 the characteristic values of the stationary solution
(x̂0,α0). So (SGHB2) is equivalent to assuming that 0 is not a characteristic value
of any stationary solution of (6.26).

The concepts of isolated centers and crossing numbers are now simplified as
follows:

Definition 6.3. A stationary solution (x̂0,α0) is called a center if it has purely imag-
inary characteristic values ±iβ0 for some positive β0 > 0. A center (x̂0,α0) is said
to be isolated if it is the only center in some neighborhood of (x̂0,α0).
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Assume that (x̂0,α0) is an isolated center. We assume that:

(SGHB4) There exist ε ∈ (0,ε0) and δ ∈ (0,ε0) such that on [α0− δ ,α0 + δ ]×
∂Ωε,p0 , detΔ(ŷ(α),α)(u+ iβ ) = 0 if and only if α = α0, u = 0, β = β0, where
Ωε,β0

= {(u, p) : 0 < u < ε,β0− ε < β < β0 + ε}.
Let

H±(x̂0,α0)(u,β ) = detΔ(ŷ(α0±δ ),α0±δ ) (u+ iβ ).

Then (SGHB4) implies that H±(x̂0,α0,β0) �= 0 on ∂Ωε,β0
. Consequently, the integer

γ(x̂0,α0,β0) = degB(H
−(x̂0,α0,β0),Ωε,β0

)− degB(H
+(x̂0,α0,β0),Ωε,β0

)

is well defined; it is called the first crossing number of (x̂0,α0,β0).
The local Hopf bifurcation theory below shows that γ(x̂0,α0,β0) �= 0 implies the

existence of a local bifurcation of periodic solutions with periods near 2π/β0. More
precisely, we have the following theorem:

Theorem 6.11. Assume that (SGHB1)–(SGHB3) are satisfied, and that there exists
an isolated center (x̂0,α0) such that (SGHB4) holds and γ(x̂0,α0,β0) �= 0. Then
there exists a sequence (αk,βk) ∈ R×R+ such that

(i) limk→∞(αk,βk) = (α0,β0);
(ii) at each α = αk, (6.26) has a nonconstant periodic solution xk(t) with a

period 2π
βk

;
(iii) limk→∞ xk(t) = x̂0, uniformly for t ∈ R.

The global Hopf bifurcation theorem can now be stated as follows:

(SGHB5) All centers of (6.26) are isolated and (SGHB4) holds for each center
(x̂0,α0) with the corresponding β0.

(SGHB6) For each bounded set W ⊆ X×R, there exists a constant l > 0 such that
|F(ϕ ,α)−F(ψ ,α)| ≤ l sups∈R |ϕ(s)−ψ(s)| for (ϕ ,α),(ψ ,α) ∈W .

Theorem 6.12. Set

Σ(F) =Cl{(x,α,β ); x is a 2π/β -periodic solution of (6.26)} ⊂ X×R×R,

N(F) = {(x̂,α,β );F(x̂,α) = 0,detΔ(ŷ(α),α)(iβ ) = 0}.

Assume that (x̂0,α0,β0 is an isolated center satisfying the conditions in Theo-
rem 6.11. Denote by C(x̂0,α0,β0) the connected component of (x̂0,α0,β0) in Σ(F).
Then either

(i) C(x̂0,α0,β0) is unbounded, or
(ii) C(x̂0,α0,β0) is bounded, C(x̂0,α0,β0)∩N(F) is finite, and

∑
(x̂,α ,β )∈C(x̂0,α0,β0)∩N(F)

γ(x̂,α,β ) = 0, (6.27)

where γ(x̂,α,β ) is the crossing number of (x̂,α,β ).
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6.7 Application to a Delayed Nicholson Blowflies Equation

6.7.1 The Nicholson Blowflies Equation

Gurney et al. [142] proposed the following simple-looking delay differential equa-
tion to explain the oscillatory behavior of the observed sheep blowfly Lucilia cup-
rina population in the experimental data collected by the Australian entomologist
Nicholson [231]:

N′(t) = f (N(t− τ))− γN(t)

with f (N) = pNe−αN , where N(t) denotes the population of sexually mature adults
at time t, p is the maximum possible per capita egg production rate, 1/α is the pop-
ulation size at which the whole population reproduces at its maximum rate. In the
model, τ is the generation time, or the time from egg to sexually mature adult, and γ
is the per capita mortality rate of adults. This model is now commonly called Nichol-
son’s blowflies equation. It was used by Oster and Ipatkchi [239] for the develop-
ment of an insect population, and its modifications have been intensively studied in
the literature of theoretical biology and delay differential equations. Notably, it has
been shown that a unique positive equilibrium of the model is globally asymptoti-
cally stable (with respect to nonnegative and nontrivial initial conditions) for every
τ ≥ 0, provided that 1 < p/γ < e2 (see, for example, [198]). In the case p/γ > e2, the
positive equilibrium loses its local stability, and Hopf bifurcations occur at an un-
bounded sequence of critical values. In the next subsection, we introduce the work
of Wei and Li [294] that uses the global Hopf bifurcation theorem coupled with
Bendixson’s criterion for higher dimensional ordinary differential equations to es-
tablish the existence of periodic solutions when the delay τ is not necessarily near
the local Hopf bifurcation values.

6.7.2 The Global Hopf Bifurcation Theorem of Wei–Li

In this subsection, we consider the equation

N′(t) =−γN(t)+ pN(t− τ)e−aN(t−τ), t ≥ 0. (6.28)

We introduce the theorem of Wei–Li [294] that shows that under the assumption
p > γe2, as the delay τ increases, the positive equilibrium N∗ loses its stability, a
sequence of Hopf bifurcations occurs at N∗, and these periodic solutions persist for
τ far away from these Hopf bifurcation values. Wei and Li established this theorem
using a global Hopf bifurcation result (Theorem 6.12). A key step in establishing
the global extension of the local Hopf branch at τ = τ0 is to show that (6.28) has
no nonconstant periodic solutions of period 4. This is accomplished by applying a
higher-dimensional Bendixson criterion for ordinary differential equations due to Li
and Muldowney [210].
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The positive equilibrium N∗ = 1
a log p

γ of (6.28) exists if and only if a > 0 and

p > γ. These relations are assumed throughout this section. Set N(t) = N∗+ 1
a y(t).

Then x(t) satisfies

y′(t) =−γy(t)− aγN∗
[
1− e−y(t−τ)]+ γy(t− τ)e−y(t−τ). (6.29)

The linearization of (6.29) at y = 0 is

Y ′(t) =−γY (t)− γ [aN∗ − 1]Y (t− τ),

whose characteristic equation is

λ = γ− γ [aN∗ − 1]e−λ τ . (6.30)

For τ = 0, the only root of (6.30) is λ =−aN∗ < 0, since p > γ . For ω �= 0, iω is a
root of (6.30) if and only if

iω =−γ− γ[aN∗− 1] (cosωτ− i sinωτ).

Separating the real and imaginary parts, we obtain

γ (aN∗ − 1) cosωτ =−γ,
γ (aN∗ − 1)sinωτ = ω ,

which leads to

γ2(aN∗ − 1)2 = γ2 +ω2,

namely,

ω =±γ
√

aN∗(aN∗ − 2).

This is possible if and only if aN∗ > 2, or equivalently, if p > γ e2.
For p > γ e2, let

τk =
1

γ
√

aN∗(aN∗ − 2)

[
sin−1

(√
aN∗(aN∗ − 2)

aN∗ − 1

)
+ 2kπ

]
,

k = 0,1,2, · · · . Set

ω0 = γ
√

aN∗(aN∗ − 2). (6.31)

Let λk = αk(τ) + iωk(τ) denote a root of (6.30) near τ = τk such that αk(τk) =
0, ωk(τk) = ω0. Obviously, αk

′(τk)> 0. Therefore, we have obtained that when γ <
p≤ γe2, all roots of the characteristic equation (6.30) have negative real parts; when
p > γe2, (6.30) has a pair of simple imaginary roots±iω0 at τ = τk, k = 0,1,2, · · · .
Furthermore, if τ ∈ [0,τ0), then all roots of (6.30) have negative real part; if τ = τ0,
then all roots of (6.30) except±iω0 have negative real part; and if τ ∈ (τk, τk+1) for
k = 0,1,2, · · · , then (6.30) has 2(k+1) roots with positive real part. In particular, we
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have shown that under the condition p > γe2, N = N∗ is asymptotically stable for
τ ∈ [0,τ0) and unstable for τ > τ0. Furthermore, (6.28) undergoes a Hopf bifurcation
at N∗ when τ = τk, for k = 0,1,2, · · · .

Let x(t) = y(τt). Then (6.29) becomes

x′(t) =−γτ
[
x(t)+ aN∗(1− e−x(t−1))− x(t− 1)e−x(t−1)]. (6.32)

Lemma 6.5. All periodic solutions to (6.32) are uniformly bounded.

Proof. Let x(t) be a nonconstant periodic solution to (6.32), and let x(t1) =
M, x(t2) = m be its maximum and minimum, respectively. Then, x′(t1) = x′(t2) = 0,
and by (6.32),

M = x(t1− 1)e−x(t1−1)− aN∗[1− e−x(t1−1)], (6.33)

m = x(t2− 1)e−x(t2−1)− aN∗[1− e−x(t2−1)]. (6.34)

We claim that x(t1− 1)< 0 and x(t2− 1)> 0. In fact, if x(t1− 1) = 0, then (6.33)
implies M = 0, and thus m < 0 and x(t2−1)≤ 0. Using (6.34), we know that x(t2−
1)< 0, and thus

m > x(t2− 1)e−x(t2−1),

which contradicts the fact that m is the minimum. If x(t1− 1) > 0, then by (6.33),
we arrive at

M ≤M− aN∗(1− e−x(t1−1))< M,

a contradiction. Therefore, x(t1−1)< 0. A similar argument shows that x(t2−1)>
0. Therefore, we have m < 0 and M > 0. Again by (6.33) and (6.34), we have

m > aN∗[e−M− 1]>−aN∗. (6.35)

Also by (6.33), we have

M =−aN∗+(x(t1− 1)+ aN∗)e−x(t1−1)

=−aN∗+ eaN∗ (x(t1− 1)+ aN∗)e−(x(t1−1)+aN∗) (6.36)

≤−aN∗+ eaN∗e−1 =−aN∗+ eaN∗−1.

Here we have used the fact that x(t1−1)+aN∗ > m+aN∗ > 0 and that xe−x < e−1

for x ≥ 0. Relations (6.35) and (6.36) imply uniform boundedness of the periodic
solutions. �

Lemma 6.6. Assume that γ e2 < p <
√

2γ e2. Then (6.32) has no periodic solutions
of period 4.

Proof. Let x(t) be a periodic solution to (6.32) of period 4. Set u j(t) = x(t − j+
1), j = 1,2,3,4. Then u(t) = (u1(t),u2(t),u3(t),u4(t)) is a periodic solution of the
following system of ordinary differential equations:
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u′1(t) =−γτ [u1(t)+ aN∗(1− e−u2(t))− u2(t)e
−u2(t)],

u′2(t) =−γτ [u2(t)+ aN∗(1− e−u3(t))− u3(t)e
−u3(t)],

u′3(t) =−γτ [u3(t)+ aN∗(1− e−u4(t))− u4(t)e
−u4(t)],

u′4(t) =−γτ [u4(t)+ aN∗(1− e−u1(t))− u1(t)e
−u1(t)],

(6.37)

whose orbit belongs to the region

G = {u ∈R
4 : m̄ < |uk|< M̄, k = 1,2,3,4}, (6.38)

where m̄ and M̄ are a pair of uniform bounds for periodic solutions of (6.32) obtained
in Lemma 6.5. To rule out 4-periodic solutions of (6.32), it suffices to prove the
nonexistence of nonconstant periodic solutions of (6.37) in the region G. To do the
latter, we use a general Bendixson’s criterion in higher dimensions developed in Li
and Muldowney [210]. More specifically, we will apply Corollary 3.5 in [210]. The
Jacobian matrix J = J(u) of (6.37), for u ∈R

4, is

J(u) =−γτ

⎛
⎜⎜⎝

1 f (u2) 0 0
0 1 f (u3) 0
0 0 1 f (u4)

f (u1) 0 0 1

⎞
⎟⎟⎠,

where

f (v) = (aN∗+ v− 1)e−v. (6.39)

The second additive compound matrix J[2](u) of J(u) is (see [103] and [226])

J[2](u) =−γτ

⎛
⎜⎜⎜⎜⎜⎜⎝

2 f (u3) 0 0 0 0
0 2 f (u4) f (u2) 0 0
0 0 2 0 f (u2) 0
0 0 0 2 f (u4) 0

− f (u1) 0 0 0 2 f (u3)
0 − f (u1) 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Choose a vector norm in R
6 as

|(x1,x2,x3,x4,x5,x6)|= max{
√

2|x1|, |x2|,
√

2|x3|,
√

2|x4|, |x5|,
√

2|x6|}.

Then with respect to this norm, the Lozinskiı̆ measure μ(J[2](u) of the matrix J[2](u)
is, see [73],

μ(J[2](u)) =

max{
√

2γτ(−
√

2+ | f (u3)|),
√

2γτ(−
√

2+ | f (u4)|/2+ | f (u2)|/2),√
2γτ(−

√
2+ | f (u2)|),

√
2γτ(−

√
2+ | f (u4)|),√

2γτ(−
√

2+ | f (u1)|/2+ | f (u3)|/2),
√

2γτ(−
√

2+ | f (u1)|)}.

(6.40)
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By Corollary 3.5 in [210], system (6.37) has no periodic orbits in G if μ(J[2](u))< 0
for all u ∈ G. From (6.40), we see that μ(J[2](u))< 0 if and only if

| f (u j)|<
√

2, j = 1,2,3,4, (6.41)

for u ∈ G.
To establish (6.41), we first use the assumption eaN∗ = p/γ <

√
2e2 to improve

the lower bound m given in Lemma 6.5. In (6.34), we now have

x(t2− 1)+ aN∗< M+ aN∗ < eaN∗−1 <
√

2e.

Using the fact that the function xe−x is monotonically decreasing for x > 1 and that
x(t2− 1)+ aN∗> 1, we have

m =−aN∗+ eaN∗(x(t2− 1)+ aN∗)e−(x(t2−1)+aN∗)

>−aN∗+ eaN∗√2ee−
√

2e >−aN∗+ 2e2
√

2ee−
√

2e

=−aN∗+ 2
√

2e3−√2e.

Therefore, u ∈G satisfies

|ui|>−aN∗+ 2
√

2e3−√2e.

For δ = 2
√

2e3−√2e > 1, we can verify

| f (−aN∗+ δ )|= eaN∗−δ |δ − 1|= eaN∗−2 e2−δ (δ − 1)< eaN∗−2.

From the graph of f (v), we know that f (v) has a global maximum eaN∗−2 = e−2 p/γ.
Therefore, for u ∈ G,

| f (uk)| ≤max{eaN∗−2, | f (−aN∗+ δ )|} ≤ eaN∗−2 =
p
γ

e−2 <
√

2,

and (6.41) is satisfied, completing the proof. �

Lemma 6.7. Assume that γ e2 < p. Then (6.32) has no periodic solutions of period
1 or 2.

Proof. First note that every nonconstant 1-periodic solution u(t) of (6.32) is also a
nonconstant periodic solution of the ordinary differential equation

u′(t) =−γτ(1− e−u(t))(u(t)+ aN∗). (6.42)

A simple phase-line analysis shows that (6.42) has no nonconstant periodic solu-
tions.

As in the proof of Lemma 6.6, if u(t) is a periodic solution of (6.32) of period
2, then u1(t) = u(t) and u2(t) = u(t − 1) are periodic solutions of the system of
ordinary differential equations
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u′1(t) =−γτ [u1(t)+ aN∗(1− e−u2(t))− u2(t)e
−u2(t)]

u′2(t) =−γτ [u2(t)+ aN∗(1− e−u1(t))− u1(t)e
−u1(t)].

(6.43)

Let (P(u1,u2), Q(u1,u2)) denote the vector field of (6.43). Then

∂P
∂u1

+
∂Q
∂u2

=−2γτ < 0

for all (u1,u2). Thus the classical Bendixson’s negative criterion implies that (6.43)
has no nonconstant periodic solutions. �

Theorem 6.13. Suppose that γe2 < p <
√

2γe2 holds. Then for each τ > τk, k =
0,1,2, · · · , (6.32) has at least k+ 1 periodic solutions.

Proof. First note that

F(xt ,τ)
def
= −γτ[x(t)+ aN∗(1− ex(t−1))− y(t− 1)e−x(t−1)]

satisfies hypotheses (SGHB1), (SGHB2), and (SGHB3) of Sect. 6.6, with

(x̂0,α0) = (0,τk),

Δ(0,τk)
(z) = z+ τγ + τγ[aN∗ − 1]e−z.

It can also be verified that (0,τk) are isolated centers with the corresponding imagi-
nary characteristic values±iτkω0. We have shown that there exist ε > 0, δ > 0, and
a smooth curve z : (τk− δ , τk + δ )→ C such that Δ(z(τ)) = 0, |z(τ)− iτkω0| < ε
for all τ ∈ [τk− δ , τk + δ ], and

z(τk) = iτkω0,
dRez(τ)

dτ

∣∣∣
τ=τk

> 0.

Set βk = τkω0 and let

Ωε = {(0,β ) : 0 < u < ε, |β −βk|< ε}.

Clearly, if |τ−τk| ≤ δ and (u, p)∈ ∂Ωε such that Δ0,τ)(u+ iβ )= 0, then τ = τk, u=
0, and β = βk. This satisfies assumption (SGHB4) in Sect. 6.6. Moreover, if we put

H±(0,τk)(u,β ) = Δ(0,τk±δ )(u+ iβ ),

then we have the cross number

γ(0,τk) = degB(H
−(0,τk,τkω0), Ωε)

− degB(H
+(0,τk,τkω0), Ωε) =−1.

By Theorem 6.12, we conclude that the connected componentC(0,τk,τkω0) through
(0,τk,τkω0) in Σ(F) is nonempty. Meanwhile, we have
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∑
(x̂,τ,β )∈C(0,τk,τkω0)∩N(F)

γ(ŷ,τ,T ) < 0,

and hence C(0,τk,τkω0) is unbounded.
Lemma 6.5 implies that the projection of C(0,τk,τkω0) onto the x-space is

bounded. It can be verified using a phase-line analysis that when τ = 0, (6.32) has
no nonconstant periodic solutions. Therefore, the projection of C(0,τk,τkω0) onto
the τ-space is bounded below. From the definitions of τk and ω0, we obtain

τkω0 = sin−1
(√

aN∗(aN∗−2)
aN∗−1

)
+ 2kπ (6.44)

for k ≥ 0. Also, we know that sin ω0τk > 0 and cosω0τk < 0, for k ≥ 0. Hence

π
2
< ω0τ0 < π , and 2π < ω0τk < (2k+ 1)π , k ≥ 1.

Therefore

2 <
2π

τ0ω0
< 4, and

1
k+ 1

<
2π

ω0τk
< 1, k ≥ 1. (6.45)

Applying Lemmas 6.6 and 6.7, we know that 2 < 2π/β < 4 if (x,τ,β ) ∈
C(0,τ0,τ0ω0), and that 1/(k + 1) < 2π/β < 1 if (x,τ,β ) ∈ C(0,τk,τkω0) for
k ≥ 1. This shows that in order for C(0,τk,τkω0) to be unbounded, its projection
onto the τ-space must be unbounded. Consequently, the projection of C(0,τk,τkω0)
onto the τ-space includes [τk,∞). This shows that for each τ > τk, (6.32) has k+ 1
nonconstant periodic solutions, completing the proof of the theorem. �
Remark 6.1. (i) From the proof of Theorem 6.13, we know that the first global

Hopf branch contains periodic solutions of period between 2 and 4. These are
the slowly oscillating periodic solutions. See [13, 60, 197, 291] for more details
about the existence of slowly oscillating periodic solutions in delay differential
equations. The τk branches, for k ≥ 1, since the periods are less than 1, contain
fast-oscillating periodic solutions.

(ii) For k ≥ 1,
1

k+ 1
<

2π
τkω0

< 1

automatically holds. The bounds on the period 2π/β for (x,τ,β )∈C(0,τk,τkω0)
hold without resort to Lemma 6.6. Thus, the global extension of the τk-branch
for k ≥ 1 can be proved without the restriction p <

√
2γe2.

6.7.3 Nicholson’s Blowflies Equation Revisited: Onset
and Termination of Nonlinear Oscillations

In [264], the authors reexamined the Nicholson’s blowflies model with natural death
rate explicitly incorporated into the delay feedback, obtaining the following delay
differential equation with a delay-dependent coefficient

N′(t) = e−δτ f (N(t− τ))− γN(t), (6.46)
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where δ > 0 is the death rate of the immature population, and f (N) = pNe−αN .
One can derive this, as was done in [82, 222], from a structured population model
for u(t,a) (the population density at age a and time t) as follows:

∂
∂ t

u(t,a)+
∂

∂a
u(t,a) =−μ(a)u(t,a),

with the stage-specific mortality rate

μ(a) =

{
γ, t > τ,
δ , t < τ.

A simple application of the integration along characteristic lines leads to the model
equation for the mature population N(t) =

∫ ∞
τ u(t,a)da with the Ricker’s-type birth

function f .
The additional term e−δτ is the probability of the immature population surviv-

ing τ time units before becoming mature. This addition, as shown in [264], leads
to rather different dynamics for model (6.46): as the delay τ increases, the positive
equilibrium loses its stability and undergoes local Hopf bifurcations at a finite even
number of critical values, and as τ passes a critical threshold, the positive equilib-
rium regains its stability. In other words, as τ keeps increasing and passes another
threshold value, the positive equilibrium disappears, and the species becomes ex-
tinct (the zero solution is globally asymptotically stable). Shu, Wang, and Wu [264]
also observed the coexistence of multiple stable periodic solutions.

As we did in the last subsection, Shu, Wang, and Wu [264] considered the delay
a bifurcation parameter and examined the onset and termination of Hopf bifurca-
tions of periodic solutions from a positive equilibrium. They proved that the model
has only a finite number of Hopf bifurcation values and that these branches of Hopf
bifurcations are paired, so that the existence of periodic solutions with specific oscil-
lation frequencies occurs only in bounded delay intervals. The bifurcation analysis
then guided some numerical simulations to identify ranges of parameters for coex-
isting multiple attractive periodic solutions.

6.8 Rotating Waves and Circulant Matrices

We have noticed that a key step in applying the global Hopf bifurcation theory is
to exclude the existence of nonconstant periodic solutions with a certain prescribed
period, normally the integer multiplier of the delay if the delay is constant. A gen-
eral approach outlined in [237] is as follows: If one assumes that y(t) is a periodic
solution of a prototype equation x′(t) = f (x(t),x(t − τ)) for some scalar function
f , of period mτ for a certain integer m, and defines u j(t) = y(t − ( j− 1)τ)) for
1≤ j ≤m, one then discovers that u(t) = (u1(t), . . . ,um(t)) satisfies a cyclic system
of ordinary differential equations u′(t) = g(u(t)), and we shall show that solutions
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of such a cyclic system satisfy limt→∞ |u(t)| = 0 or ∞, and the key step in proving
the latter statement will be the construction of appropriate Lyapunov functions for
the cyclic system. This will normally require the estimation of the spectral radius of
a so-called circulant matrix. If we linearize this cyclic system at the trivial solution,
we are led to a linear system with a real circulant matrix. Here and in what follows,
an n× n matrix is called circulant if its (i, j)-element is given by a j−i+1 for n real
numbers a1, · · ·an. This matrix will be written as A = circ(a1,a2, · · ·an). For such a
matrix, it was shown in [237] that

inf{〈Ay,y〉 : y ∈ R
n,

n

∑
j=1

y2
j = 1}= min{Re

( n

∑
j=1

a jz
j−1) : z ∈C; zn = 1}.

In this section, we will demonstrate the use of the approach outlined by Nussbaum
based on the above-mentioned spectral property of circulant matrices.

We consider the following partial NFDE:

∂
∂ t

[u(t,x)− qu(t− τ,x)] = d
∂ 2

∂x2 [u(t,x)− qu(t,x)]

− au(t,x)− aqu(t− τ,x)− g[u(t,x)− qu(t− τ,x)],
(6.47)

where x ∈ S
1, a,d,τ are positive constants, g : R→ R is continuously differentiable

with g(0) = 0, q ∈ (0,1) is the bifurcation parameter. This partial NFDE can be
obtained from the coupled lossless transmission line NFDE introduced in Sect. 5.9
by letting the number of coupled oscillators go to infinity.

We are interested in the Hopf bifurcation of rotating waves from the trivial solu-
tion. Rotating wave solutions are solutions that satisfy

u(t,x) = u(t +
p

2π
x,0), u(t + p,x) = u(t,x), (t,x) ∈R×S

1, (6.48)

where p > 0 is a constant.
Let y(t) = u(t p

2π ,0). Then using the spatiotemporal relation (6.48) of the rotating
waves, we can show that u is a rotating wave if and only if y is a 2π-periodic solution
of an NFDE with two parameters (q, p). This two-parameter NFDE is very much
similar to (6.24), and a global Hopf bifurcation has been established (see [193] for
details). Here we describe how Wu and Xia [306] applied this theory to establish the
existence of rotating waves, and how this is related to circulant matrices.

Let g′(0) = −γ and assume that 0 < γ < a in what follows. The characteristic
equation of (6.47) at the trivial solution takes the form

(λ + dk2 + a− γ)eλ τ− q(λ + dk2− a− γ) = 0, k ≥ 1. (6.49)

Letting λ = iβ in (6.49), we get
{
− (dk2 + a− γ)cosβ τ +β sinβ τ = q(a+ γ− dk2),

β cosβ τ +(dk2 + a− γ)sinβ τ = qβ ,
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or equivalently,

⎧⎪⎪⎨
⎪⎪⎩

tan(β τ) =
2αβ

β 2− (a+ dk2− γ)(a− dk2+ γ)
,

q2 =
β 2 +(a− γ + dk2)2

β 2 +(a+ γ− dk2)2 .

(6.50)

It is easy to show that for a real number β > 0, the second equation of (6.50) has a
solution q ∈ (0,1) only if

dk2 < γ. (6.51)

Therefore, there are only finitely many k ≥ 1 such that (6.50) has a pair of purely
imaginary solutions.

For each fixed k≥ 1 such that dk2 < γ , we can easily show graphically that there
exists a sequence of positive numbers βk,1 < βk,2 < · · · such that the first equation
of (6.50) is satisfied by βk, j, j = 1,2, . . .. Substituting this βk, j into the second equa-
tion of (6.50) gives

qk, j =

√√√√β 2
k, j +(a− γ + dk2)2

β 2
k, j +(a+ γ− dk2)2

. (6.52)

Therefore, we can conclude that the set {(q, p)∈ (0,1)×(0,∞); (6.49) has a solution
i(2π/p)m for some m≥ 1} is discrete.

Let λ = λ (q) be a smooth curve of zeros of (6.49) such that λ (qk, j) = iβk, j.
Differentiating (6.49) with respect to q, we get

λ ′(q)eλ + τ(λ + dk2 + a− γ)eλ τλ ′(q) = λ + dk2− γ− a+ qλ ′(q).

That is,

λ ′(q) =
λ + dk2− γ− a

τ(λ + dk2 + a− γ)eλ τ + eλ − q
.

This leads to

sgnReλ ′(q)|q=qk, j

= sgnRe
1

λ ′(q)
|q=qk, j

= sgn

{
τ +

2aβ 2
k, j

[(dk2 + a− γ)2+β 2
k, j][(dk2− γ− a)2 +β 2

k, j]

}
= 1 > 0.

From the definition of the crossing number in Sect. 6.6, we can see that this will be
crucial in ruling out bounded connected components of rotating waves of (6.47).

For the sake of later application, let us look at the location of β0 = β1,1. We
assume that

0 < d < γ. (6.53)
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Then β0 is the first positive solution of

tan(β τ) =
2aβ

β 2− (a− γ + d)(a+ γ− d)
, (6.54)

and hence iβ0 is a solution of (6.49) with k = 1 and

q0 = q1,1 =

√
β 2

0 +(a− γ + d)2

β 2
0 +(a+ γ− d)2

. (6.55)

Lemma 6.8. If
π
2τ

<
√
(a+ γ− d)(a− γ + d), (6.56)

then π/2τ < β0 <
√
(a+ γ− d)(a− γ + d), and hence

2π√
(a+ γ− d)(a− γ + d)

<
2π
β0

< 4τ. (6.57)

In particular, if
π
2τ

<
√
(a+ γ− d)(a− γ + d)<

π
τ
, (6.58)

then

2τ <
2π
β0

< 4τ. (6.59)

In order to apply the global bifurcation theorem to establish the global existence
of rotating waves, we need to obtain a priori bounds for rotating waves. Assume that
u(t,x) is a rotating wave of (6.47) satisfying (6.48). Let [u(t0,x0)− qu(t0− τ,x0)]

2

be the maximum value of [u(t,x)− qu(t− τ,x)]2 over R×S
1. Then

0 =
∂
∂ t

[u(t0,x0)− qu(t0− τ,x0)]
2

= 2[u(t0,x0)− qu(t0− τ,x0)]
∂
∂ t

[u(t0,x0)− qu(t0− τ,x0)],

0 =
∂
∂x

[u(t0,x0)− qu(t0− τ,x0)]
2

= 2[u(t0,x0)− qu(t0− τ,x0)]
∂
∂x

[u(t0,x0)− qu(t0− τ,x0)],

0≤ ∂ 2

∂x2 [u(t0,x0)− qu(t0− τ,x0)]
2

= 2{ ∂
∂x

[u(t0,x0)− qu(t0− τ,x0)]}2

+ 2[u(t0,x0)− qu(t0− τ,x0)]
∂ 2

∂x2 [u(t0,x0)− qu(t0− τ,x0)].
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Without loss of generality, we may assume that u(t0,x0)−qu(t0−τ,x0) �= 0. There-
fore, from (6.47) it follows that

[u(t0,x0)− qu(t0− τ,x0)]{−au(t0,x0)− aqu(t0− τ,x0)

− g[u(t0,x0)− qu(t0− τ,x0)]} ≥ 0.

That is,

−2aqu(t0− τ,x0)[u(t0,x0)− qu(t0− τ,x0)]

≥{a[u(t0,x0)− qu(t0− τ,x0)]

+ g[u(t0,x0)− qu(t0− τ,x0)]}[u(t0,x0)− qu(t0− τ,x0)].

(6.60)

Note that

|u(t,x)− qu(t− τ,x)| ≤ |u(t0,x0)− qu(t0− τ,x0)|, t ∈R, x ∈ S
1

implies

|u(t,x)| ≤ 1
1− q

|u(t0,x0)− qu(t0− τ,x0)|, t ∈ R, x ∈ S
1. (6.61)

Therefore, by (6.60), we obtain

a+
g[u(t0,x0)− qu(t0− τ,x0)]

u(t0,x0)− qu(t0− τ,x0)
≤ 2aq

1− q
. (6.62)

If we assume that

lim
z→∞

g(z)
z

= ∞, (6.63)

then (6.62) implies the existence of Q = Q(2aq/(1− q)), so that

|u(t0,x0)− qu(t0− τ,x0)| ≤ Q,

and hence from (6.61), it follows that

|u(t,x)| ≤ 1
1− q

Q(
2aq

1− q
), t ∈ R, x ∈ S

1. (6.64)

Summarizing the above discussion, we get the following.

Lemma 6.9. If (6.63) is satisfied, then there exists a nondecreasing function Q :
(0,∞)→ (0,∞) such that every rotating wave u(t,x) of (6.47) satisfies |u(t,x)| ≤
(1/(1− q)Q(2aq/(1− q)) for t ∈ R and x ∈ S

1. In particular, for fixed q∗ ∈ (0,1),
the set of rotating waves of (6.47) corresponding to q∈ [0,q∗) is uniformly bounded
in the sup-norm.
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Now we try to exclude nontrivial 4τ-periodic rotating waves. Assume that u(t,x)
is a nontrivial rotating wave of (6.47) satisfying (6.48) with p = 4τ . Then

u(t,0) = u(t + 4τ,0),
u(t,x) = u(t− 4τ

2π x,0) = u(t− 2
π x,0), t ∈ R, x ∈ S

1.

So, v(t) = u(t,0) satisfies

d
dt
[v(t)− qv(t− τ)]

=

(
2τ
π

)2

d
d2

dt2 [v(t)− qv(t− τ)]

− a[v(t)− qv(t− τ)]− 2aqv(t− τ)− g[v(t)− qv(t− τ)],

(6.65)

t ∈ R. Let ⎧⎪⎪⎨
⎪⎪⎩

x1(t) = v(t)− qv(t− τ),
x2(t) = v(t− τ)− qv(t− 2τ),
x3(t) = v(t− 2τ)− qv(t− 3τ),
x4(t) = v(t− 3τ)− qv(t).

(6.66)

Then ⎛
⎜⎜⎝

v(t− τ)
v(t− 2τ)
v(t− 3τ)

v(t)

⎞
⎟⎟⎠=

1
1− q4 B

⎛
⎜⎜⎝

x1(t)
x2(t)
x3(t)
x4(t)

⎞
⎟⎟⎠ , (6.67)

where we have the following circulant matrix:

B =

⎛
⎜⎜⎝

q3 1 q q2

q2 q3 1 q
q q2 q3 1
1 q q2 q3

⎞
⎟⎟⎠ .

Substituting (6.66) and (6.67) into (6.65), we get

ẋi =

(
2τ
π

)2

dẍi− axi− 2aq
1− q4 (Bx)i− g(xi), 1≤ i≤ 4.

Its similarity to the Liénard equation suggests a transformation that leads to an
equivalent system,{

ẋi = yi +
( π

2τ
)2 1

d xi,

ẏi =
( π

2τ
)2 1

d

[
axi +

2aq
1−q4 (Bx)i + g(xi)

]
, 1≤ i≤ 4,

(6.68)

and a related Lyapunov function,

V =
4

∑
i=1

[
1
2

y2
i −

( π
2τ

)2 1
d

∫ xi

0
g(s)ds− axiyi− 2aq

1− q4 yi(Bx)i

]
.
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The derivative of V along solutions of (6.68) is given by

V̇ =− a
4

∑
i=1

y2
i −

2aq
1− q4

4

∑
i=1

yi(By)i

−
[
(

π
2τ

)2 1
d

]2 4

∑
i=1

xig(xi)− a
d

( π
2τ

)2 4

∑
i=1

xig(xi)

− a2

d

4

∑
i=1

( π
2τ

)2
x2

i −
4a2q

1− q4

( π
2τ

)2 1
d

4

∑
i=1

xi(Bx)i

−
(

2aq
1− q4

)2( π
2τ

)2 1
d

4

∑
i=1

(Bx)i(Bx)i− 2aq
1− q4

( π
2τ

)2 1
d

4

∑
i=1

g(xi)(Bx)i.

We need the following lemma.

Lemma 6.10. ∑4
i=1 zi(Bz)i ≥−(1− q)(1+ q2)∑4

i=1 z2
i , zi ∈ R, 1≤ i≤ 4.

Proof. Using the aforementioned spectral property of circulant matrices, we have
∑4

i=1 zi(Bz)i ≥ Γ ∑4
i=1 z2

i ,zi ∈R,≤ i≤ 4, where

Γ = min{Re
4

∑
j=1

a jz
j−1 : z4 = 1,a1 = q3,a2 = 1,a3 = q,a4 = q2}

= min{Re
(
q3 + ei(2π/4) j + qei(4π/4) j+ q2ei(6π/4) j : j = 0,1,2,3}

= min{(1+ q)(1+ q2),−q(1− q2),−(1− q)(1+ q2)}
=−(1− q)(1+ q2).

�

We also need to compute the eigenvalues of BT B. While this can be done directly,
Wu and Xia [306] have presented an approach that can be extended to general cir-
cular matrices.

Lemma 6.11. The minimal eigenvalue of BT B is λmin(BT B) = (1− q4)2/(1+ q)2,
and the maximal eigenvalue of BT B is λmax(BT B) = (1− q4)2/(1− q)2.

Proof. Let

v j = (1,ei(π/2) j,ei(2π/2) j,ei(3π/2) j), j = 0,1,2,3.

It can be shown that v j is an eigenvector of B corresponding to the eigenvalue

α j = ei(π/2) j(1+ qei(π/2) j+ q2ei(2π/2) j + q3ei(3π/2) j) = ei(π/2) j 1− q4

1− qei(π/2) j

and an eigenvector of BT corresponding to the eigenvector

β j = e−i(π/2) j(1+qe−i(π/2) j+q2e−i(2π/2) j+q3e−i(3π/2) j) = e−i(π/2) j 1− q4

1− qe−i(π/2) j
.
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Assume that x∈C4 is an eigenvector of BT B corresponding to an eigenvalue λ ∈C.
Then x = a0v0 + a1v1 + a2v2 + a3v3, and BT Bx = λ x is equivalent to

3

∑
j=0

α jβ ja jv j = λ
3

∑
j=0

a jv j,

from which it follows that λ = α jβ j for some j = 0,1,2,3. Therefore, all eigenval-
ues of BT B are given by

(1− q4)2

(1− qei(π/2) j)(1− qe−i(π/2) j)
, j = 0,1,2,3,

from which the conclusion follows. �
We also note the following result; see [306]

Lemma 6.12. Assume that

−K ≤ g(x)
x

, g(−x) =−g(x) f or x �= 0, (6.69)

g(x)
x

is nondecreasing in x ∈ (0,∞). (6.70)

Let xi(t), i = 1, . . . ,4, be given by (6.66). Then
∣∣∣∣g(xi(t))

xi(t)

∣∣∣∣≤max

{
K,

a(3q− 1)
1− q

}
. (6.71)

We now return to the estimation of V̇ . Using Lemma 6.11, we get

4

∑
i=1

(Bx)i(Bx)i ≥ λmin(B
T B)

4

∑
i=1

x2
i =

(1− q4)2

(1+ q)2

4

∑
i=1

x2
i .

By Lemma 6.12, we have∣∣∣∣∣
4

∑
i=1

g(xi)(Bx)i

∣∣∣∣∣≤
√

4

∑
i=1

g2(xi)

√
4

∑
i=1

x2
i λmax(B

T B)

≤ (1− q4)2

(1+ q)2 max

{
K,

a(3q− 1)
1− q

} 4

∑
i=1

x2
i .

Therefore, using Lemma 6.10, we get

V̇ ≤ −a
4

∑
i=1

[
1− 2q(1− q)(1+ q2)

1− q4

]
yi

−
( π

2τ

)2 1
d

{
(

1
d

( π
2τ

)2
+ a

) 4

∑
i=1

xig(xi)

−
4

∑
i=1

1
d

( π
2τ

)2
{

a2
[

1− 4q
1− q4 (1− q)(1+ q2)
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+
4q2

(1− q4)2

(1− q4)2

(1+ q)2

]
x2

i

− 2aq
1− q4

(1− q4)2

(1− q)2 max

{
K,

a(3q− 1)
1− q

} 4

∑
i=1

x2
i

}

≤ −a
4

∑
i=1

(
1− q
1+ q

)
y2

i

−
( π

2τ

)2 1
d

4

∑
i=1

[
a2

(
1− q
1+ q

)2

−
(

1
d

( π
2τ

)2
+ a

)
K

− 2aq(1+ q)(1+ q2)

1− q
max

{
K,

a(3q− 1)
1− q

}]
x2

i .

Consequently, if we assume that

0≤ q < 1− δ for some δ ∈ (0,1), (6.72)

1
4

a2δ 2 >

[
1
d
(

π
2τ

)2 + a

]
K +

8a(1− δ )max
{

K, 4a
δ
}

δ
, (6.73)

then V̇ is a strictly negative function of (x1, . . . ,x4,y1, . . . ,y4) unless xi = yi = 0
for 1 ≤ i ≤ 4. Therefore, under assumptions (6.69), (6.70), (6.72), and (6.73), sys-
tem (6.68) has no nontrivial periodic solution. This implies that system (6.47) has
no nontrivial rotating wave of period 4τ . That is, we have proved the following.

Lemma 6.13. Under assumptions (6.69), (6.70), (6.72), and (6.73), the partial neu-
tral functional differential equation (6.47) has no nontrivial 4π-periodic rotating
wave for q ∈ [0,1− δ ).

We can then use global bifurcation theory to obtain the following result, for
which we refer to [306] for more details of the proof.

Theorem 6.14. Assume that

(i) g′(0) =−γ,d < γ < a,π/2 <
√
(a+ γ− d)(a− γ + d);

(ii) infy�=0g(y)/y >−a, limy→∞ g(y)/y = ∞;
(iii) g(−y) =−g(y) for y ∈R and g(y)/y is nondecreasing in y ∈ (0,∞);
(iv) there exist constants δ ∈ (0,1) and K ≥ 0 such that

−K ≤ g(x)/x for x �= 0,
1
4 a2δ 2 >

[
1
d

(π
2

)2
+ a

]
K + 8a

(
1−δ

δ

)
max

{
K, 4a

δ
}
,

and

q0
def
=

√
β 2

0 +(a+ γ− d)2

β 2
0 +(a− γ + d)2

< 1− δ ,
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where β0 is the first solution in ((π/2τ),
√
(a+ γ− d)(a− γ + d)) of the

equation

tan(β τ) =
2aβ

β 2− (a+ γ− d)(a− γ + d)
.

Then for each q ∈ (q0,1− δ ), system (6.47) has a rotating wave with a period less
than 4. If, in addition, we assume

(iv)
π
2
<

√
(a+ γ− d)(a− γ + d)<

π
τ
,

then for each q ∈ (q0,1− δ ), system (6.47) has a slowly oscillating rotating wave,
that is, a rotating wave with a period in (2τ,4τ).

6.9 State-Dependent DDEs

State-dependent DDEs arises from a number of applications such as electrodynam-
ics, automatic and remote control, machine cutting, neutral networks, population
biology, mathematical epidemiology, and economics. They describe the evolution
of systems in which the rate of change depends on the history of the rate, and the
delay depends on the system’s status in a complicated manner, such as by an explicit
or implicit algebraic equation or a differential or integral equation.

Early results on the existence of periodic solutions for state-dependent DDEs in-
clude work by Smith [269] that considered bifurcations of periodic solutions from
a stationary state for a system of integral equations with state-dependent delay,
and work on the existence of periodic solutions by Nussbaum, Mallet-Paret, and
Paraskevopoulos [215]. These studies address the aspect of global continuation of
Hopf bifurcations of periodic solutions, especially the existence of periodic solu-
tions in which the bifurcation parameter is away from the critical value where a
local Hopf bifurcation is born. The work of Nussbaum et al. [215] focuses on im-
portant prototype classes of state-dependent delay differential equations with nega-
tive feedback and provides some detailed information on slowly oscillating periodic
solutions. Here we introduce the work [170, 171] to provide a general tool and
framework for studying the Hopf bifurcation problem, and in particular, the global
continuation of local bifurcation of periodic solutions of the following parameter-
ized state-dependent DDEs from an equivariant-degree point of view:

(
ẋ(t)
τ̇(t)

)
=

(
f (x(t), x(t− τ(t)), σ)

g(x(t), τ(t), σ)

)
, (6.74)

where x ∈ R
N , τ ∈ R, t ∈ R and σ ∈ R, f : RN ×R

N ×R→ R
N , and g : RN ×R×

R→ R are given maps. A stationary state of (6.74) with parameter σ is a vector
(x, τ) ∈R

N ×R such that f (x, x, σ) = 0 and g(x, τ, σ) = 0.
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The major problem in developing such a global Hopf bifurcation theory for the
system of state-dependent DDEs (6.74) is that in the spaces of continuous pe-
riodic functions CT (R;RN) = {x ∈ C(R;RN) : x(t + T ) = x(t) for all t ∈ R} and
CT (R;R) = {τ ∈C(R;R) : τ(t +T ) = τ(t) for all t ∈R} with a fixed period T > 0,
the composition operator

χ : CT (R;RN)×CT (R;R)→CT (R;RN),
χ(x, τ)(t) = x(t− τ(t)), t ∈ R,

(6.75)

is generally not a C1 (continuously differentiable) map with respect to τ in the supre-
mum norm. This causes difficulty in formulating linearization at a stationary state,
and such a linearization is usually necessary in the functional-analytic setting for
Hopf bifurcation problems in which a topological index such as an S

1-equivariant
degree can be calculated and applied to investigate the birth and continuation of
periodic solutions bifurcating from a stationary state.

In [72], a system of auxiliary equations obtained through a formal linearization
technique was used in the study of local stability of state-dependent DDEs in the
space of continuously differentiable functions. This formal linearization technique
is only heuristic and can be described in the following way: the state-dependent
delay τ(t) in x(t − τ(t)) is first fixed at a given stationary state, and then the re-
sulting nonlinear system with frozen constant delay is linearized. Other applications
of systems of auxiliary equations obtained through a formal linearization process
can be found in [26, 45, 156] and [157]. None of these results is sufficient for us
to develop a global Hopf bifurcation theory based on the S

1-equivariant degree for
state-dependent DDEs (6.74). However, the above-mentioned results strongly indi-
cate that the system of auxiliary equations obtained through the heuristic technique
of formal linearization can be used to detect the local Hopf bifurcation and to de-
scribe its global continuation for state-dependent DDEs.

In this section, we use the homotopy invariance property of the S
1-equivariant

degree to relate the Hopf bifurcation problem of (6.74) to the change of stability
of stationary states of the corresponding system of auxiliary equations obtained
through formal linearization. As such, much of the effort has been dedicated to
justifying that the detection of Hopf bifurcation can be achieved through the formal
linearization technique: the state-dependent delay τ(t) in x(t − τ(t)) is first fixed
at a given stationary state; then the resulting nonlinear system with frozen constant
delay is linearized. This linearization technique is used in the functional-analytic
setting that converts the Hopf bifurcation problem of system (6.74) to solving an
operator equation (6.13) involving S

1-equivariant maps with two parameters, in the
space of periodic functions with a fixed period. Implicitly used is the C1-smoothness
of the operator defined in Lemma 6.17 in the space E (the space of periodic func-
tions with fixed period 2π). The formal linearization leads to this operator naturally
in the space of continuously differentiable periodic functions with period 2π , and
the fact that this operator can be extended to a bounded operator in the space E

is essential in our homotopy argument. This technique of extending the linearized
operator of a state-dependent delay differential equation from the space C1 to the
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space C has previously been used in other contexts; see, for example, Mallet-Paret–
Nussbaum–Paraskevopoulos [215], Krisztin [196], Walther [290], and the survey
paper by Hartung–Krisztin–Walther–Wu [158].

6.9.1 Local Hopf Bifurcation

We turn to the Hopf bifurcation of (6.74), with its solution denoted by u(t) =
(x(t),τ(t)). Denote by C(R; RN) the normed space of continuous functions from
R to R

N equipped with the usual supremum norm ‖x‖ = supt∈R |x(t)| for x ∈
C(R; RN), where | · | denotes the Euclidean norm. We also denote by C1(R; RN)
the normed space of continuously differentiable bounded functions from R to R

N

equipped with the usual C1 norm

‖x‖C1 = max{sup
t∈R
|x(t)|, sup

t∈R
|ẋ(t)|}

for x ∈C(R; RN). For a stationary state (u0,τ0) of (6.74) with the parameter σ0, we
say that (u0, σ0) is a Hopf bifurcation point of system (6.74) if there exist a sequence
{(uk, σk, Tk)}+∞

k=1 ⊆C(R;RN+1)×R
2 and T0 > 0 such that

lim
k→+∞

‖(uk, σk, Tk)− (u0, σ0, T0)‖C(R;RN+1)×R2 = 0,

and (uk, σk) is a nonconstant Tk-periodic solution of system (6.74).
We assume that:

(SHB1) The map f : RN×R
N×R� (θ1,θ2,σ)→ f (θ1,θ2,σ) ∈RN and the map

g: RN ×R×R � (γ1, γ2, σ)→ g(γ1, γ2, σ) ∈ R are C2 (twice continuously dif-
ferentiable).

(SHB2) There exists L0 > 0 such that g(γ1, γ2, σ) < L0
L0+1 for γ1 ∈ R

N , γ2 ∈ R,
σ ∈ R.

In what follows, we write ∂i f = ∂
∂θi

f for i = 1, 2, and similarly we define ∂ig for
i = 1, 2.

We shall study the Hopf bifurcation of (6.74) through its formal linearization.
We assume that for a fixed σ0 ∈ R, (xσ0 ,τσ0) (or abusing notation, (xσ0 ,τσ0 , σ0)) is
a stationary state of (6.74). That is,

f (xσ0 , xσ0 , σ0) = 0, g(xσ0 , τσ0 , σ0) = 0.

We also assume that

(SHB3) ( ∂
∂θ1

+ ∂
∂θ2

) f (θ1, θ2, σ)|σ=σ0,θ1=θ2=xσ0
is nonsingular and

∂
∂γ2

g(γ1, γ2, σ)|σ=σ0,γ1=xσ0 ,γ2=τσ0
�= 0.
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This assumption implies that there exist ε0 > 0 and a C1-smooth curve (σ0−ε0, σ0+
ε0)� σ �→ (xσ , τσ )∈RN+1 such that (xσ , τσ ) is the unique stationary state of (6.74)
in a small neighborhood of (xσ0 , τσ0) for σ close to σ0.

We now consider, for σ ∈ (σ0− ε0, σ0 + ε0), the following formal linearization
of system (6.74) at the stationary point η(σ) = (xσ , zσ ):

(
ẋ(t)
τ̇(t)

)
=

[
∂1 f (σ) 0
∂1g(σ) ∂2g(σ)

](
x(t)− xσ
τ(t)− τσ

)

+

[
∂2 f (σ) 0

0 0

](
x(t− τσ )− xσ
τ(t− τσ )− τσ

)
, (6.76)

where

∂1 f (σ)
def
= ∂1 f (xσ , τσ , σ), ∂2 f (σ)

def
= ∂2 f (xσ , τσ , σ),

∂1g(σ)
def
= ∂1g(xσ , τσ , σ), ∂2g(σ)

def
= ∂2g(xσ , τσ , σ).

Then we obtain the following characteristic equation of the linear system corre-
sponding to the inhomogeneous linear system (6.76):

detΔ(xσ ,τσ ,σ)(ω) = 0, (6.77)

where Δ(xσ ,τσ ,σ)(ω) is an (N + 1)× (N+ 1) complex matrix defined by

Δ(xσ ,τσ ,σ)(ω) = ωI−
[

∂1 f (σ) 0
∂1g(σ) ∂2g(σ)

]
−

[
∂2 f (σ) 0

0 0

]
e−ωτσ . (6.78)

A solution ω0 to the characteristic equation (6.77) is called a characteristic value
of the stationary state (xσ0 , τσ0 , σ0). We call (xσ0 , τσ0 , σ0) a nonsingular station-
ary state if and only if zero is not a characteristic value of (xσ0 , τσ0 , σ0). Here
(xσ0 , τσ0 , σ0) is a center if the set of nonzero purely imaginary characteristic values
of (xσ0 , τσ0 , σ0) is nonempty and discrete. We call (xσ0 , τσ0 , σ0) an isolated center
if it is the only center in some neighborhood of (xσ0 , τσ0 , σ0) in R

N+1×R.
If (xσ0 , τσ0 , σ0) is an isolated center of (6.76), then there exist β0 > 0 and δ ∈

(0, ε0) such that

detΔ(xσ0 ,τσ0 ,σ0)(iβ0) = 0, detΔ(xσ ,τσ ,σ)(iβ ) �= 0, (6.79)

for every σ ∈ (σ0− δ , σ0)∪ (σ0, σ0 + δ ) and β ∈ (0,+∞). Hence, we can choose
constants α0 = α0(σ0, β0) > 0 and ε = ε(σ0, β0) > 0 such that the closure of

the set Ω def
= (0, α0) × (β0 − ε, β0 + ε) ⊂ R

2 ∼= C contains no other zero of
detΔ(xσ0 ,τσ0 ,σ0)(·). The quantity p0 = 2π/β0 is called the virtual period associ-
ated with the center (xσ0 , τσ0 , σ0). We note that detΔ(xσ ,τσ ,σ)(ω) is analytic in
ω and is continuous in σ . If δ > 0 is small enough, then there is no zero of
detΔ(xσ0±δ ,τσ0±δ ,σ0±δ)(ω) in ∂Ω . So we can define the number

γ±(xσ0 , τσ0 , σ0, β0) = degB(detΔ(xσ0±δ ,τσ0±δ ,σ0±δ)(·), Ω),
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and the crossing number of (xσ0 , τσ0 , σ0, β0) as

γ(xσ0 , τσ0 , σ0, β0) = γ−(xσ0 , τσ0 , σ0, β0)− γ+(xσ0 , τσ0 , σ0, β0). (6.80)

This crossing number counts the number of characteristic values (with multiplici-
ties) escaping from the region Ω as α increases and crosses α0. Define the function
H : [σ0− δ , σ0 + δ ]×Ω →R

2 � C by

H(α, u, β ) def
= detΔ(xσ ,τσ ,σ)(u+ iβ ),

and

deg(ΨH ,D(σ0, β0)) = γ(xσ0 , τσ0 , σ0, β0), (6.81)

where ΨH : D(σ0, β0)→ R
2 � C is defined by ΨH(σ ,β ) = detΔ(xσ ,τσ ,σ)(iβ ) and

D(σ0, β0) = (σ0− δ , σ0 + δ )× (β0− c, β0 + c).

Let E
def
= C2π(R; Rn) be the normed space of continuous 2π-periodic functions

from R to R
n equipped with the usual supremum norm. Then S

1 acts on E by argu-

ment shift. Namely, for ξ = eiν ∈ S
1, u ∈ E, (ξ u)(t)

def
= u(t +ν). For the isotypical

direct sum decomposition (6.12) of E, we see that E0
∼= R

n and for each k ≥ 1,
Ek is spanned by cos(kt)ε j and sin(kt)ε j, 1 ≤ j ≤ n, where {ε1, . . . ,εn} is the stan-
dard basis of Rn. Therefore, Ek, k≥ 0, are real 2n-dimensional and so satisfy (SD1)
of Sect. 6.5. To formulate the Hopf bifurcation problem as a fixed-point problem
in the space of continuous functions of period 2π , we normalize the period of the
2π/β -periodic solution (x, τ) in (6.74) by (x(t),τ(t)) = (y(β t), z(β t)) and obtain

u̇(t) = Q(u, σ , β )(t), (6.82)

where u = (y, z)T and (σ , β ) ∈D(σ0, β0), and

Q(u, σ , β )(t) =
1
β

[
f (y(t), y(t−β z(t)), σ)

g(y(t), z(t), σ)

]
.

Correspondingly, (6.76) is transformed into

u̇(t) = Q̃(u, σ , β )(t), (6.83)

where Q̃: E×D(σ0, β0)→ E is defined by

Q̃(u, σ , β )(t) =
1
β

[
∂1 f (σ)(y(t)− yσ )+ ∂2 f (σ)(y(t−β zσ )− yσ)
∂1g(σ)(y(t)− yσ)+ ∂2g(σ)(z(t)− zσ )

]

and (yσ , zσ ) = η(σ) = (xσ , τσ ).
Before we state and prove the local Hopf bifurcation theorem, we need some

technical preparations. We denote by C1
2π(R; RN+1) the Banach space of 2π-

periodic and continuously differentiable functions equipped with the C1 norm

‖x‖C1 = max{ sup
t∈[0,2π ]

|x(t)|, sup
t∈[0,2π ]

|ẋ(t)|}.
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Lemma 6.14. Let L: C1
2π(R; RN+1)→ E and K: E→R

N+1 be defined by

Lu(t) = u̇(t), Ku(t) =
1

2π

∫ 2π

0
u(t)dt

for t ∈R. Then L+K has a compact inverse (L+K)−1 : E→ E, which is given by

(L+K)−1(v)(t) =
∫ t

0
v(s)ds+

1
2π

∫ 2π

0
(1−π− t + s)v(s)ds.

This lemma can be found in [170] and is omitted here. It follows from
Lemma 6.14 that (L+K)−1 ◦ [Q(·,α,β )+K] : E→ E and (L+K)−1 ◦ [Q̃(·,α,β )+
K] : E→ E are completely continuous. That is, (SD2) and (SD4) are satisfied. Thus,
finding a 2π/β -periodic solution for the system (6.74) is equivalent to finding a
solution of the following fixed-point problem:

u = (L+K)−1 [Q(u, σ , β )+K(u)] , (6.84)

where (u, σ , β ) ∈ E×R×R+. Define the maps F : E×R×R+ → E and F̃ :
E×R×R+→ E by

F (u, σ , β ) def
= u− (L+K)−1 [Q(u, σ , β )+K(u)] ,

F̃ (u, σ , β ) def
= u− (L+K)−1[Q̃(u, σ , β )+K(u)

]
,

which are equivariant compact fields. Finding a 2π/β -periodic solution of sys-
tem (6.74) is equivalent to finding the solution of the problem

F (u, σ , β ) = 0, (u, σ , β ) ∈ E×R×R+.

It is an easy exercise to verify the following results.

Lemma 6.15. For σ ∈ R and β > 0, the map Q(·, σ , β ) : E→ E defined by (6.82)
is continuous.

Lemma 6.16. If system (6.76) has a nonconstant periodic solution with period T >
0, then there exists an integer m≥ 1, m ∈ N such that ±im2π/T are characteristic
values of the stationary state (xσ , τσ , σ).

Lemma 6.17. Assume (SHB1)–(SHB3) hold. If BM(u0, σ0, β0;r, ρ) ⊆ E×R
2 is a

special neighborhood of F̃ , where 0 < ρ < β0, then there exists r′ ∈ (0, r] such that
the neighborhood

BM(u0, σ0, β0;r′, ρ) = {(u, σ , β ) : ‖u−η(σ)‖< r′, |(σ , β )− (σ0, β0)|< ρ}

satisfies u̇(t) �≡ Q(u,σ ,β ) for (u, σ , β ) ∈ BM(u0, σ0, β0;r′, ρ) with u = (y,z)T �=
η(σ) and |(σ , β )− (σ0,β0)|= ρ .
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Proof. Suppose not. Then for all 0< r′ ≤ r, there exists (u, σ , β ) such that 0< ‖u−
η(σ)‖< r′, |(σ , β )− (σ0, β0)|= ρ and u̇(t) = Q(u,σ ,β ) for t ∈R. Then there ex-
ists a sequence of nonconstant periodic solutions {(uk, σk, βk) = (yk, zk, σk, βk)}∞

k=1
such that

lim
k→+∞

‖uk−η(σk)‖= 0, |(σk, βk)− (σ0, β0)|= ρ , (6.85)

and

u̇k(t) =
1
βk

(
f (yk(t),yk(t−βkzk(t)), σk)

g(yk(t), zk(t), σk)

)
for t ∈ R. (6.86)

Note that 0 < ρ < β0 implies that βk ≥ β0−ρ > 0 for every k ∈ N. Also, since
the sequence {(σk, βk)}∞

k=1 belongs to a bounded neighborhood of (σ0, β0) in R
2,

there exists a subsequence, denoted by {(σk, βk)}∞
k=1, that converges to (σ∗, β ∗),

so that |(σ∗, β ∗)− (σ0, β0)|= ρ and β ∗ > 0. Without loss of generality, we denote
this sequence by {(σk,βk)}∞

k=1. Our strategy here is to show that the system

v̇(t) =
1

β ∗

[
∂1 f (σ∗) 0
∂1g(σ∗) ∂2g(σ∗)

]
v(t)+

1
β ∗

[
∂2 f (σ∗) 0

0 0

]
v(t−β ∗zσ∗) (6.87)

has a nonconstant periodic solution, which contradicts the assumption that u0 =
(yσ0 , zσ0)

T is the only center of (6.83) in BM(u0, σ0, β0;r, ρ).
Put

vk(t) =
uk(t)−η(σk)

‖uk−η(σk)‖ .

Then we have

v̇k(t) =
1
βk

∫ 1

0

[
∂1 fk(σk, s)(t) 0
∂1gk(σk, s)(t) ∂2gk(σk, s)(t)

]
dsvk(t)

+
1
βk

∫ 1

0

[
∂2 fk(σk, s)(t) 0

0 0

]
dsvk(t−βkzk(t)), (6.88)

where

∂ j fk(σk, s)(t)
def
= ∂ j f (yσk + s(yk(t)− yσk),yσk + s(yk(t− zk(t))− yσk), σk)),

∂ jgk(σk, s)(t)
def
= ∂ jg(yσk + s(yk(t)− yσk),zσk + s(zk(t)− zσk), σk)

for all j = 1,2. We claim that there exists a convergent subsequence of {vk}+∞
k=1.

Indeed, by (6.85), we know that {(zk, βk)}+∞
k=1 is uniformly bounded in C(R;R)×R,

and hence limt→+∞[t−βkzk(t)] = +∞. Then, we have

‖vk‖= 1, ‖vk(·−βkzk(·))‖= 1.
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Recall that ∂i f (σ∗) and ∂ig(σ∗), i = 1, 2, are defined in (6.76). By (6.85), we know
that (yσk +s(yk(t)−yσk),yσk +s(yk(t−zk(t))−yσk), σk) converges to the stationary
state (xσ∗ , τσ∗ , σ∗) in C(R;R)×R uniformly for all s∈ [0,1]. By (SHB1), we know
that f (θ1, θ2, σ) is C2 in (θ1, θ2) and ∂1 f (θ1, θ2, σ) is C1 in σ . Also, by (6.85),
the sequence {(uk, βk, σk)}+∞

k=1 is uniformly bounded in C(R;RN+1)×R
2. Then we

obtain {
limk→+∞ ‖∂ j fk(σk, s)− ∂ j f (σ∗)‖= 0,
limk→+∞ ‖∂ jgk(σk, s)− ∂ jg(σ∗)‖= 0

(6.89)

uniformly for s ∈ [0,1], j = 1,2. It is clear from (6.89) that ‖∂ j fk(σk, s)‖ and
‖∂ jgk(σk, s)‖ ( j = 1,2) are all uniformly bounded for all k ∈N and s ∈ [0, 1]. Then
it follows from (6.88) that there exists a constant L̃2 > 0 such that ‖v̇k‖ < L̃2 for
every k ∈ N. By the Arzelà–Ascoli theorem, there exists a convergent subsequence
{vkj}+∞

j=1 of {vk}+∞
k=1. That is, there exists v∗ ∈ {v ∈V : ‖v‖= 1} such that

lim
j→+∞

‖vkj − v∗‖= 0. (6.90)

By the integral mean value theorem, we have

|vkj (t−βk j zk j (t))− vkj(t−β ∗zσ∗)|

=

∣∣∣∣
∫ 1

0
v̇k j (t−θ (βk j zk j (t)−β ∗zσ∗))dθ (βk j zk j (t)−β ∗zσ∗)

∣∣∣∣
≤‖v̇k j‖ · |βk j zk j (t)−β ∗zσ∗ |
≤L̃2(βk j |zk j (t)− zσ∗|+ |βk j −β ∗|zσ∗). (6.91)

By (6.85) and (6.91), we have

lim
j→+∞

‖vkj(·−βk j zk j (·))− vkj(·−β ∗zσ∗)‖= 0. (6.92)

Therefore, it follows from (6.90) and (6.92) that

lim
j→+∞

‖vkj (·−βk j zk j (·))− v∗(·−β ∗zσ∗)‖ = 0. (6.93)

It follows from (6.85), (6.89), (6.90), and (6.93) that the right-hand side of (6.88)
converges uniformly to the right-hand side of (6.87). Therefore, v∗ is differentiable
and satisfies (6.87). Moreover, we have

lim
k→+∞

|v̇k(t)− v̇∗(t)|= 0.

Since by (SHB3), the matrix
[

∂1 f (σ∗)+ ∂2 f (σ∗) 0
∂1g(σ∗) ∂2g(σ∗)

]
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is nonsingular, v = 0 is the only constant solution of (6.87). Also, we have v∗ ∈
{v ∈ V : ‖v‖ = 1}, ‖v∗‖ �= 0. Therefore, (v∗(t), σ∗, β ∗) is a nonconstant peri-
odic solution of the linear equation (6.87). Then by Lemma 6.16, (η(σ∗), σ∗, β ∗)
is also a center of (6.83) in BM(u0, σ0, β0;r, ρ). This contradicts the assumption
that BM(u0, σ0, β0;r, ρ) is a special neighborhood of (6.82). This completes the
proof. �

As preparation for the proof of the local Hopf bifurcation theorem, we need the
following lemma.

Lemma 6.18. Assume that (SHB1)–(SHB3) hold. If U = BM(u0, σ0, β0;r, ρ) ⊆
E×R

2 is a special neighborhood of F̃ with 0 < ρ < β0, then there exists r′ ∈ (0, r]
such that Fθ = (F , θ ) and F̃θ = (F̃ , θ ) are homotopic on BM(u0, σ0, β0;r′, ρ),
where θ is a completing function defined on BM(u0, σ0, β0;r′, ρ).

Proof. Since U = BM(u0, σ0, β0;r, ρ) ⊆ E×R
2 is a special neighborhood of F̃

with 0 < ρ < β0, then by Lemma 6.17, both Fθ = (F , θ ) and F̃θ = (F , θ ) are
U -admissible.

Suppose that the conclusion is not true. Then for every r′ ∈ (0, r], Fθ = (F , θ )
and F̃θ = (F , θ ) are not homotopic on BM(u0, σ0, β0;r′, ρ). That is, every homo-
topy map between Fθ and F̃θ has a zero on the boundary of BM(u0, σ0, β0;r′, ρ).
In particular, the linear homotopy h(·, α)

def
= αFθ + (1− α)F̃θ = (αF + (1−

α)F̃ ,θ ) has a zero on the boundary of BM(u0, σ0, β0;r′, ρ), where α ∈ [0, 1].
Note that θ (u, σ , β )< 0 if ‖u−η(σ)‖= r′. Then there exist (u, σ , β ) and α ∈

[0, 1] such that ‖u−η(σ)‖< r′, |(σ , β )− (σ0, β0)|= ρ and

H(u, σ , β , α)
def
= αF +(1−α)F̃ = 0. (6.94)

Since r′ > 0 is arbitrary in the interval (0, r], there exists a nonconstant sequence
{(yk, zk, σk, βk, αk)}∞

k=1 of solutions of (6.94) such that

lim
k→+∞

‖uk−η(σk)‖= 0, |(σk, βk)− (σ0, β0)|= ρ , 0≤ αk ≤ 1, (6.95)

and

u̇k = αkQ(uk,σk,βk)+ (1−αk)Q̃(uk,σk,βk, for all k ∈ N. (6.96)

Note that 0 < ρ < β0 implies that βk ≥ β0− ρ > 0 for every k ∈ N. From (6.95),
we know that {(σk, βk, αk)}∞

k=1 belongs to a compact subset of R3. Therefore, there
exist a convergent subsequence, denoted still by {(σk, βk, αk)}∞

k=1 without loss of
generality, and (σ∗, β ∗, α∗) ∈ R

3 such that β ∗ ≥ β0−ρ > 0, α∗ ∈ [0, 1] and

lim
k→+∞

|(σk, βk, αk)− (σ∗, β ∗, α∗)|= 0.
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Similarly to the proof of Lemma 6.17, we can show that the system

v̇(t) =
1

β ∗

[
∂1 f (σ∗) 0
∂1g(σ∗) ∂2g(σ∗)

]
v(t)+

1
β ∗

[
∂2 f (σ∗) 0

0 0

]
v(t−β ∗zσ∗)

with ∂i f (σ∗), ∂ig(σ∗), i = 1,2, defined after (6.76), has a nonconstant periodic so-
lution, which contradicts the assumption that BM(u0, σ0, β0;r, ρ) is a special neigh-
borhood that contains an isolated center of (6.83). This completes the proof. �

Now we are able to state and prove the local Hopf bifurcation theorem.

Theorem 6.15. Assume that (SHB1)–(SHB3) hold. Let (xσ0 , τσ0 , σ0) be an isolated
center of system (6.76). If the crossing number defined by (6.80) satisfies

γ(xσ0 , τσ0 , σ0, β0) �= 0,

then there exists a bifurcation of nonconstant periodic solutions of (6.74) near
(xσ0 ,τσ0 , σ0). More precisely, there exists a sequence {(xn, τn, σn,βn)} such that
σn → σ0, βn → β0 as n→ ∞, and limn→∞ ‖xn− xσ0‖ = 0, limn→∞ ‖τn− τσ0‖ = 0,
where

(xn, τn, σn) ∈C(R;RN+1)×R

is a nonconstant 2π/βn-periodic solution of system (6.74).

Proof. By (SHB1), we know that the linear operator Q̃ is continuous. By
Lemma 6.15, we know that Q(·, σ , β ): E→E is continuous. Moreover, as stated be-

fore, by Lemma 6.14, (SD2) and (SD4) are satisfied. Since (u0, σ0)
def
= (xσ0 , τσ0 , σ0)

is an isolated center of system (6.76) with a purely imaginary characteristic value
iβ0, β0 > 0, (u0, σ0, β0)∈E×R×(0,+∞) is an isolated E-singular point of F̃ . One
can define the following two-dimensional submanifold M ⊂ E

G×R× (0,+∞) by

M
def
= {(η(σ), σ , β ) : σ ∈ (σ0− δ , σ0 + δ ), β ∈ (β0− ε, β0 + ε)}

such that the point (η(σ0), σ0, β0)) = (u0, σ0, β0) is the only E-singular point of F̃
in M, which is the set of trivial solutions to the system (6.76); it satisfies assumption
(SD3).

Moreover, (u0, σ0, β0) ∈ E×R× (0,+∞) is an isolated E-singular point of F̃ .
That is, for ρ > 0 sufficiently small, the linear operator DuF̃ (η(σ), σ , β ) : E→ E

with |(σ , β )− (σ0, β0)|< ρ is not an isomorphism only if (σ , β ) = (σ0, β0). Then
by the implicit function theorem, there exists r > 0 such that for all (u, σ , β ) ∈
E×R× (0,+∞) with |(σ , β )− (σ0, β0)| = ρ and 0 < ‖u−η(σ)‖ ≤ r, we have
F̃ (u, σ , β ) �= 0. Then the set BM(u0, σ0, β0;r,ρ) defined by

{(u, σ , β ) ∈ E×R× (0,+∞) : |(σ , β )− (σ0, β0)|< ρ ,‖u−η(σ)‖< r}
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is a special neighborhood for F̃ . By Lemma 6.17, there exists a special neighbor-
hood U = BM(u0, σ0, β0;r′,ρ) such that F and F̃ are nonzero for (u, σ , β ) ∈
BM(u0, σ0, β0;r′,ρ) with u �= η(σ) and |(σ , β )− (σ0, β0)| = ρ . That is, (SD5) is
satisfied.

Let θ be a completing function on U . It follows from Lemma 6.18 that (F , θ )
is homotopic to (F̃ , θ ) on U .

For (σ , β ) ∈ D(σ0, β0), we denote by Ψ(σ , β ) the map DuF̃ (u(σ), σ , β ) :
E → E. It is easy to see that Ψ(σ , β )(Ek) ⊂ Ek for all k = 0, 1, 2, · · · . Define
Ψk : D(σ0, β0)→ L(Ek, Ek) by

Ψk(σ , β ) def
= Ψ(σ , β )|Ek .

Thus, the matrix representation [Ψk] of Ψk(σ , β ) {eik·ε j}N+1
j=1 is given by

1
ikβ

Δ(u(σ),σ)(ikβ ).

For the application of Theorem 6.7, we now show that there exists some k∈Z, k≥ 1,
such that ε0μk(u(σ0), σ0,β0) = ε0 degB(detC[Ψk]) �= 0, where ε0 = sgndetΨ0(σ , β )
for (σ ,β ) ∈D(σ0, β0). For a constant map v0 ∈ E0,

Ψ0(σ , β )v0 =− 1
β

[
∂1 f (σ)+ ∂2 f (σ) 0

∂1g(σ) ∂2 g(σ)

]
v0.

Then by (SHB3), we have ε0 �= 0, and therefore (SD6) is satisfied. In view of (6.81),
we have

μ1(u(σ0), σ0, β0) = γ(xσ0 , τσ0 , σ0, β0) �= 0,

which by Theorem 6.7, implies that (u(σ0), σ0, β0) is a bifurcation point of the
system (6.82). Consequently, there exists a sequence of nonconstant periodic so-
lutions (un, σn, βn) = (xn, τn, σn, βn) such that σn → σ0, βn → β0 as n→ ∞, and
(xn(t), τn(t)) is a 2π/βn-periodic solution of (6.74) such that limn→+∞ ‖(xn, τn)−
(xσ0 , τσ0)‖= 0. �

Remark 6.2. A local Hopf bifurcation theory for FDEs with state-dependent delays
was developed by Eichmann [86], where the existence of a local Hopf bifurcation is
guaranteed by a transversality condition. This transversality implies that the crossing
number defined by (6.80) is not zero, and hence the existence of a local Hopf bifur-
cation is also established in Theorem 6.15. Note that even in the case of a constant
delay, one can have nontrivial crossing number while the transversality condition is
not satisfied. Note also that the work of Eichmann gives more information about the
local Hopf bifurcation such as smoothness of the bifurcation curve with respect to
the parameter.
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6.9.2 Global Bifurcation

To use Theorem 6.8 to describe the maximal continuation of bifurcated periodic
solutions with large amplitudes when the bifurcation parameter σ is far away from
the bifurcation value, we need to prove that there is a lower bound for the periods of
periodic solutions of system (6.74).

Lemma 6.19 (Vidossich [287]). Let X be a Banach space and v : R → X a p-
periodic function with the following properties:

(i) v ∈ L1
loc(R, X);

(ii) there exists U ∈ L1([0, p
2 ];R+) such that |v(t)− v(s)| ≤ U(t − s) for almost

every (in the sense of the Lebesgue measure) s, t ∈R such that s≤ t, t− s≤ p
2 ;

(iii)
∫ p

0 v(t)dt = 0.

Then

p‖v‖L∞ ≤ 2
∫ p

2

0
U(t)dt.

We make the following assumption on system (6.74):

(SHB4) There exist constants Lf > 0, Lg > 0 such that

| f (θ1, θ2, σ)− f (θ 1, θ 2, σ)| ≤ Lf (|θ1−θ1|+ |θ2−θ2|)
|g(γ1, γ2, σ)− g(γ1, γ2, σ)| ≤ Lg(|γ1− γ1|+ |γ2− γ2|)

for every θ1, θ2, θ 1, θ 2, γ1, γ1 ∈ R
N , γ2, γ2 ∈R, σ ∈ R.

Lemma 6.20. Assume that system (6.74) satisfies the assumption (SHB4). If u =
(x, τ) is a nonconstant periodic solution of (1.1), then the minimal period of u
satisfies

p≥ 4(|ẋ|L∞ + |τ̇|L∞)

(2Lf +Lg)|ẋ|L∞ +Lg|τ̇|L∞ +Lf |ẋ|L∞ |τ̇|L∞
.

Moreover, suppose g(x, τ, σ) satisfies

(SHB5) for every σ ∈ R, there exists L0 > 0 such that −L0 ≤ g(x, τ, σ) < 1 for
all (x, τ) ∈R

N+1.

Then the minimal period p of u satisfies

p≥ 4
max{L0, 1}+ 2(Lf +Lg)

.

Proof. Let v(t) = u̇(t). Then
∫ p

0 v(t)dt = 0, since u(t) is a p-periodic solution. For
s≤ t, by (SHB4) and the integral mean value theorem, we have

|v(t)− v(s)| ≤ |ẋ(t)− ẋ(s)|+ |τ̇(t)− τ̇(s)|
≤ Lf (|x(t)− x(s)|+ |x(t− τ(t))− x(s− τ(s))|)
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+Lg(|x(t)− x(s)|+ |τ(t)− τ(s)|)
≤ Lf |ẋ|L∞(t− s)+Lf |ẋ|L∞(t− s+ |τ(t)− τ(s)|)
+Lg|ẋ|L∞(t− s)+Lg|τ̇|L∞(t− s)

≤ [
(2Lf +Lg)|ẋ|L∞ +Lg|τ̇|L∞ +Lf |ẋ|L∞ · |τ̇|L∞

]
(t− s).

Let

U(t) =
[
(2Lf +Lg)|ẋ|L∞ +Lg|τ̇ |L∞ + |ẋ|L∞ · |τ̇|L∞

]
t.

Then by Lemma 6.19, we obtain

p|(ẋ, τ̇)|L∞ ≤ 2
∫ p

2

0
U(t)dt =

p2

4

[
(2Lf +Lg)|ẋ|L∞ +Lg|τ̇|L∞ + |ẋ|L∞ · |τ̇|L∞

]
.

Therefore,

p≥ 4|(ẋ, τ̇)|L∞

(2Lf +Lg)|ẋ|L∞ +Lg|τ̇|L∞ +Lf |ẋ|L∞ |τ̇|L∞
.

Moreover, if −L0 ≤ g(x(t), τ(t), σ)< 1, then

|ẋ|L∞ · |τ̇|L∞ ≤max{L0, 1}|ẋ|L∞ ,

and hence

p≥ 4|(ẋ, τ̇)|L∞

(2Lf +Lg)|ẋ|L∞ +Lg|τ̇|L∞ +max{L0, 1}|ẋ|L∞

≥ 4|(ẋ, τ̇)|L∞

(2Lf +Lg)|(ẋ, τ̇)|L∞ +Lg|(ẋ, τ̇)|L∞ +max{L0, 1}|(ẋ, τ̇)|L∞

=
4

max{L0, 1}+ 2(Lf +Lg)
.

�

The following result was first established by Mallet-Paret and Yorke [216] for
ordinary differential equations and was extended to neutral equations by Wu [301].

Lemma 6.21. Suppose that system (6.74) satisfies (SHB1)–(SHB2) and (SHB4)–
(SHB5). Assume further that there exists a sequence of real numbers {σk}∞

k=1 such
that:

(i) For each k, system (6.74) with σ = σk has a nonconstant periodic solution
uk = (xk, τk) ∈C(R;RN+1) with minimal period Tk > 0;

(ii) lim
k→∞

σk = σ0 ∈ R, lim
k→∞

Tk = T0 < ∞, and lim
k→∞
‖uk− u0‖ = 0, where u0 : R→

R
N+1 is a constant map with the value (x0, τ0).

Then (u0, σ0) is a stationary state of (6.74), and there exists m≥ 1, m ∈N such that
±im2π/T0 are the roots of the characteristic equation (6.77) with σ = σ0.
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Proof. By Lemma 6.20, we conclude that Tk ≥ 4
max{L0,1}+2(Lf+Lg)

and therefore

T0 ≥ 4
max{L0,1}+2(Lf+Lg)

> 0.

Now we show that (u0, σ0) is a stationary state of (6.74). Since by (ii), lim
k→∞

σk =

σ0 and lim
k→∞
‖uk− u0‖ = 0, we have only to show that the derivatives {u̇k}+∞

k=1 con-

verge uniformly to the right-hand side of system (6.74). That is,

‖ f (xk, xk(·− τk),σk)− f (x0, x0,σ0)‖+ ‖g(xk, τk,σk)− g(x0, τ0,σ0)‖→ 0 (6.97)

as k → +∞. Note that we have used f (xk,xk(· − τk),σk) to denote the function
f (xk(·),xk(· − τk),σk). In fact, it follows from (SHB1) and assumption (ii) that
lim
k→∞
‖g(xk, τk,σk)− g(x0, τ0,σ0)‖ = 0. Moreover, by the integral mean value the-

orem, we have ‖ f (xk, xk(· − τk),σk)− f (x0, x0,σ0)‖ → 0 as k → +∞. This com-
pletes the proof of (6.97). Therefore, (u0, σ0) = (xσ0 , τσ0 , σ0) is the stationary state
of (6.74) with σ = σ0.

Next, we show that the linear system

v̇(t) =

[
∂1 f (σ0) 0
∂1g(σ0) ∂2g(σ0)

]
v(t)+

[
∂2 f (σ0) 0

0 0

]
v(t− τ0) (6.98)

has a nonconstant periodic solution.
For ρ ∈ (0, 1), define

εk,ρ = max
t∈R
|uk(t +ρTk)− uk(t)|,

vk(t) = ε−1
k,ρ [uk(t +ρTk)− uk(t)].

Then ‖vk‖= 1, and vk(t)
def
= (yk(t), zk(t)) satisfies

v̇k(t) =

[
∂1 f (σ0) 0
∂1g(σ0) ∂2g(σ0)

]
vk(t)+

[
∂2 f (σ0) 0

0 0

]
vk(t− τ0)+

(
δ1k(t)
δ2k(t)

)
,

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ1k(t) = ε−1
k,ρ [ f (xk(t +ρTk),xk(t +ρTk− τk(t +ρTk)),σk)

− f (xk(t),xk(t− τk(t)),σk)− ∂1 f (σ0)(xk(t +ρTk)− xk(t))
−∂2 f (σ0)(xk(t +ρTk− τ0)− xk(t− τ0))],

δ2k(t) = ε−1
k,ρ [g(xk(t +ρTk), τk(t +ρTk), σk)− g(xk(t), τk(t), σk)

−∂1g(σ0)(xk(t +ρTk)− xk(t))− ∂2g(σ0)(τk(t +ρTk)− τk(t))].

Using the integral mean value theorem, we can show that |δ1k(t)| → 0, |δ2k(t)| → 0
as k→ +∞ uniformly for t ∈ R. This, together with the fact that ‖vk‖ = 1, implies
that there exists L̃6 > 0 such that ‖v̇k‖ ≤ L̃6 for all k ∈ N. Also, by assumption (ii),
the set of periods {Tk}+∞

k=1 is bounded. Then by the Arzelà–Ascoli theorem, {vk}+∞
k=1

has a convergent subsequence, denoted by {vkj}+∞
j=1. Let

vρ(t) = lim
j→+∞

vkj (t).
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Then vρ is a periodic solution of (6.98) with period T0. Since ‖vk‖ = 1 and the
average value of each vk is zero, the same is true for vρ . So vρ is a nonconstant T0-
periodic solution of (6.98). Then by Lemma 6.16, there exists m ≥ 1, m ∈ N, such
that ±im2π/T0 are characteristic values of (6.77). This completes the proof. �

Now we can describe the relation between 2π/βk and the minimal period of uk

in Theorem 6.15.

Theorem 6.16. Assume that (SHB1)–(SHB5) hold. In Theorem 6.15, every limit
point of the minimal period of uk = (xk, τk) as k→+∞ is contained in the set

{
2π

(nβ0)
:±imnβ0 are characteristic values of (u0, σ0),m, n≥ 1, m, n ∈N

}
.

Moreover, if ±imnβ0 are not characteristic values of (u0, σ0) for any integers
m, n ∈N such that mn > 1, then 2π/βk is the minimal period of uk(t) and 2π/βk→
2π/β0 as k→ ∞.

Proof. Let Tk denote the minimal period of uk(t). Then there exists a positive integer
nk such that 2π/βk = nkTk. Since Tk ≤ 2π/βk→ 2π/β0 as k→∞, there exist a subse-
quence {Tkj}∞

j=1 and T0 such that T0 = lim j→∞ Tkj . Since 2π/βk j → 2π/β0, Tkj → T0

as j→∞, nkj is identical to a constant n for k large enough. Therefore, 2π/β0 = nT0.
Thus Tkj → 2π/(nβ0) as j→ ∞. By Lemma 6.21, ±im2π/T0 = ±imnβ0 are char-
acteristic values of (u0, σ0) for some m≥ 1, m ∈ N.

Moreover, if ±imnβ0 are not characteristic values of (u0, σ0) for any integers
m∈N and n∈N with mn> 1, then m= n= 1. Therefore, for k large enough, nkj = 1
and 2π/βk = Tk is the minimal period of uk(t) and 2π/βk→ 2π/β0 as k→ ∞. This
completes the proof. �

The following lemma shows that we can locate all possible Hopf bifurcation
points of system (6.74) with state-dependent delay at the centers of its corresponding
formal linearization.

Lemma 6.22. Assume that (SHB1)–(SHB3) hold. If (u0, σ0) is a Hopf bifurcation
point of system (6.74), then it is a center of (6.76).

Proof. If (u0, σ0) is a Hopf bifurcation point of system (6.74), then there
exist a sequence {(uk, σk, Tk)}+∞

k=1 ⊆ C(R;RN+1) × R
2 and T0 ≥ 0 such that

limk→+∞ ‖(uk, σk, Tk) − (u0, σ0, T0)‖ = 0, where (uk, σk) is a nonconstant Tk-
periodic solution of system (6.74). Using a similar argument to that in the proof of
Lemma 6.17, we see that the system

v̇(t) =

[
∂1 f (σ0) 0
∂1g(σ0) ∂2g(σ0)

]
v(t)+

[
∂2 f (σ0) 0

0 0

]
v(t− τσ0) (6.99)

has a nonconstant periodic solution v∗. Therefore, (v∗+ u0, σ0) is a nonconstant
periodic solution of (6.76). Then, by Lemma 6.16, (u0, σ0) is a center of (6.76). �
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Now we are able to consider the global Hopf bifurcation problem of sys-
tem (6.74). Letting (x(t),τ(t)) = (y( 2π

p t), z( 2π
p t)), we can reformulate the problem

as a problem of finding 2π-periodic solutions to the following equation:

u̇(t) = Q(u(t), σ , 2π/p), (6.100)

where u(t) = (y(t), z(t)). Accordingly, the formal linearization (6.76) becomes

u̇(t) = Q̃(u(t), σ , 2π/p). (6.101)

Using the same notation as in the proof of Theorem 6.15, we can define
N0(u, σ , p) = Q(u, σ , 2π/p), ˜N0(u, σ , p) = Q̃(u, σ , 2π/p). Then the system

Lu = N0(u, σ , p), p> 0, (6.102)

is equivalent to (6.100), and

Lu = ˜N0(u, σ , p), p> 0, (6.103)

is equivalent to (6.101). Let S denote the closure of the set of all nontrivial pe-
riodic solutions of system (6.102) in the space E×R×R+, where R+ is the set
of all nonnegative real numbers. It follows from Lemma 6.20 that the constant so-
lution (u0, σ0, 0) does not belong to this set. Consequently, we can assume that
problem (6.102) is well posed on the whole space E×R

2, in the sense that if S
exists in E×R

2, then it must be contained in E×R×R+.
On the other hand, assume that (SHB3) holds at every center of (6.103). Then

from the proof of Theorem 6.15, we know that the assumptions (SHB1–SHB3) are
sufficient for the systems (6.102) and (6.103) to satisfy the conditions (SD1)–(SD6).
Also, under the same assumptions, Lemma 6.22 implies (SD7), and Lemma 6.18 im-
plies (SD8). Then by Theorem 6.8, we obtain the following global Hopf bifurcation
theorem for system (6.102) with state-dependent delay.

Theorem 6.17. Suppose that system (6.74) satisfies (SHB1)–(SHB5) and (SHB3)
holds at every center of (6.103). Assume that all the centers of (6.103) are iso-
lated. Let M be the set of trivial periodic solutions of (6.102) and suppose that M
is complete. If (u0, σ0, p0) ∈M is a bifurcation point, then either the connected
component C(u0, σ0, p0) of (u0, σ0, p0) in S is unbounded, or

C(u0, σ0, p0)∩M = {(u0, σ0, p0), (u1, σ1, p1), · · · ,(uq, σq, pq)},

where pi ∈ R+, (ui, σi, pi) ∈M , i = 0, 1, 2, · · · ,q. Moreover, in the latter case, we
have

q

∑
i=0

εiγ(ui, σi, 2π/pi) = 0,

where γ(ui, σi, 2π/pi) is the crossing number of (ui, σi, pi) defined by (6.80) and

εi = sgndet

[
∂1 f (σi)+ ∂2 f (σi) 0

∂1g(σi) ∂2 g(σi)

]
.
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Definition 6.4. Let C be a connected component of the closure of all nonconstant
periodic solutions of (6.74) in the Fuller space C(R;RN+1)×R

2. We call C a con-
tinuum of slowly oscillating periodic solutions if for every (x, τ, σ , p) ∈ C , there
exists t0 ∈ R such that p > τ(t0) > 0. Similarly, we call C a continuum of rapidly
oscillating periodic solutions if for every (x, τ, σ , p) ∈ C , there exists t0 ∈ R such
that 0 < p < τ(t0).

Theorem 6.17 shows that for a given trivial solution (x∗, τ∗, σ∗) with virtual pe-
riod p∗, either the connected component C(x∗, τ∗, σ∗, p∗) has finitely many bifur-
cation points with the sum of S1-equivariant degrees being zero or C(x∗, τ∗, σ∗, p∗)
is unbounded in the Fuller space C(R;RN+1)×R

2. Therefore, if global persistence
of periodic solutions when the parameter is far away from the local Hopf bifur-
cation value σ∗ is desired, we should find conditions to ensure that the connected
component C(x∗, τ∗, σ∗, p∗) of Hopf bifurcation is unbounded in the Fuller space
C(R;RN+1)×R

2 and C(x∗, τ∗, σ∗, p∗) will not blow up to infinity at any given σ
in the norm of the Fuller space C(R; RN+1)×R

2. That is, there exists a continuous
function M : R � σ →M(σ)> 0 such that for every (x,τ,σ , p) ∈C(x∗, τ∗, σ∗, p∗),
we have

‖(x,τ, p)‖C(R;RN+1)×R ≤M(σ). (6.104)

To achieve this goal, we shall give some sufficient geometric conditions ensuring
the uniform boundedness of all possible periodic solutions (x, τ, σ) of (6.74), that
is, we show that there exists a continuous function M1 : R � σ →M1(σ) > 0 such
that for every (x,τ,σ , p) ∈C(x∗, τ∗, σ∗, p∗), we have

‖(x,τ)‖C(R;RN+1) ≤M1(σ). (6.105)

Then we seek a continuous function M2 : R � σ →M2(σ) > 0 such that for every
(x,τ,σ , p) ∈C(x∗, τ∗, σ∗, p∗), we have

|p| ≤M2(σ). (6.106)

6.9.3 Uniform Bounds for Periods of Periodic Solutions in a
Connected Component

In order, by way of contradiction, to exclude certain values of the period of the pe-
riodic solutions in a given connected component, we need some analytic properties
of an interval map under the following assumptions:

(SHB6) For every (σ , τ) ∈ R
2, ∂g

∂τ (xσ , τ, σ) �= 0.

(SHB7) ∂g
∂x (x, τ, σ) f (x, x, σ) �= 0 for (x, τ, σ) ∈ R

N+1×R such that x �= xσ and
g(x, τ, σ) = 0.
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In this section, to avoid notational complications, we use superscripts to denote
function compositions, e.g., l j(t) denotes the jth composition of l evaluated at
time t.

The following result can be found in [171].

Lemma 6.23. Suppose that (6.74) satisfies (SHB1)–(SHB2) and (SHB6)–(SHB7)
and (x, τ, σ0) is a nonconstant periodic solution of (6.74). If (x, τ) is τ(t0)-periodic
and if τ(t0) �= τσ0 , then the function l(t) = t− τ(t)+ τ(t0) defined on [t0, t0 + τ(t0)]
satisfies the following properties:

(a) l(t) is a self-mapping on [t0, t0 + τ(t0)].
(b) l(t) has only finitely many fixed points {ti}n

i=1 in [t0, t0 + τ(t0)] with ti < ti+1 for
every i ∈ {1, 2, · · · , n− 1}.

(c) For every t ∈ (ti, ti+1)⊆ [t0, t0 + τ(t0)],

lim
j→+∞

l j(t) =

{
ti, if there exists t̄ ∈ [ti, ti+1] such that t̄ > l(t̄),
ti+1, if there exists t̄ ∈ [ti, ti+1] such that t̄ < l(t̄).

(d) Let {tik}k0
k=1 ⊆ {ti}n

i=1 be all the fixed points such that lim j→+∞ l j(t) = tik for
every t ∈ [tik , tik+1). Then for δ > 0 small enough,

lim
j→+∞

sup
t∈[tik ,tik+1−δ ]

|l j(t)− tik |= 0,

lim
j→+∞

sup
t∈[ti+δ ,ti+1],ti∈{t1,t2, ··· ,tn}\{tik}

k0
k=1

|l j(t)− ti+1|= 0.

(e) Let h(t) = t− τ(t). Then l j(t) = h j(t)+ jτ(t0) for every t ∈ [t0, t0 + τ(t0)] and
j ∈N;

(f) h j(t + τ(t0)) = h j(t)+ τ(t0) for all t ∈R and j ∈ N.

Recall that C(x∗, τ∗, σ∗, p∗) denotes the connected component of the closure of
all the nonconstant periodic solutions of system (6.74) bifurcated at (x∗, τ∗, σ∗, p∗)
in the Fuller space C(R; RN+1)×R

2. We hope to exclude, for each periodic solution
(x0,τ0, σ0, p0), certain values of the period. To be specific, we find an open interval
I and a small open neighborhood U � (x0,τ0, σ0, p0) such that every (x,τ, σ , p) ∈
U ∩C(x∗, τ∗, σ∗, p∗) satisfies τ(t) �= mp for all t ∈ I and m ∈N. Then we will glue
up these local exclusions to a global upper bound for the period along the rescaled
(by period normalization) connected component C(y∗, z∗, σ∗, p∗).

We first consider the periods of the solutions in a neighborhood of a periodic
solution that does not assume a certain period.

Lemma 6.24. If a solution (x0, τ0, σ0, p0)∈C(x∗, τ∗, σ∗, p∗) satisfies τ0(t0) �=mp0

for some t0 ∈R and for all m ∈N, then there exist an open neighborhood I � t0 and
an open neighborhood U � (x0, τ0, σ0, p0) in C(R; RN+1)×R

2 such that every so-
lution (x, τ, σ , p)∈U ∩C(x∗, τ∗, σ∗, p∗) satisfies τ(t) �= mp for all m∈N and t∈I.
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Proof. By way of contradiction, we suppose that for every open interval I � t0 and
every open neighborhood U � (x0, τ0, σ0, p0) in C(R; RN+1)×R

2, there exist t ∈ I,
m ∈N, and a periodic solution (x, τ, σ , p) ∈U ∩C(x∗, τ∗, σ∗, p∗) such that τ(t) =
mp. Then there exist sequences {(xk, τk, σk, pk, tk)}+∞

k=1 ⊆U∩C(x∗, τ∗, σ∗, p∗) and
{mk : mk ∈ N}+∞

k=1 such that

{
τk(tk) = mk pk,

lim
k→+∞

(xk, τk, σk, pk, tk) = (x0, τ0, σ0, p0, t0).
(6.107)

Without loss of generality, we assume mk→m0 ∈N as k→+∞ (otherwise, we take
a subsequence). Then it follows from (6.107), (SHB2), and (SHB5) that

m0 = lim
k→+∞

mk = lim
k→+∞

τk(tk)
pk

=
τ0(t0)

p0
. (6.108)

Therefore, we have τ0(t0) = m0 p0, which is a contradiction to the assumption. �

We note that for a nonconstant periodic solution (x, τ, σ) of system (6.74), it is
allowed that τ(t) assume its stationary value τσ , or even τ(t) = τσ for all t ∈ R.
Ruling out these cases turns out to be crucial for us to exclude certain values of
periods of the periodic solutions.

Now we consider the periods of the periodic solutions in a neighborhood of
a given nonconstant periodic solution in the Fuller space for which the delay τ-
component is not equal to the corresponding stationary value at some time t. We
need the following condition:

(SHB8) (i) f (0, 0, σ) = 0 for all σ ∈ R;
(ii) x f (x, x, σ) is positive (or negative) if f (x, x, σ) �= 0.

Theorem 6.18. Suppose that system (6.74) satisfies (SHB6)–(SHB8). Let (x0, τ0,
σ0, p0) be a nonconstant periodic solution in C(x∗, τ∗, σ∗, p∗). If τ0(t0) �= τσ0

for some t0, then there exist an open interval I and an open neighborhood U
of (x0, τ0, σ0, p0) in C(R; RN+1)× R

2 such that every solution (x, τ, σ , p) in
U ∩C(x∗, τ∗, σ∗, p∗) satisfies τ(t) �= mp for all m ∈ N and t ∈ I.

Proof. We first show that there exist an open neighborhood U of (x0, τ0, σ0, p0)
and an open neighborhood I0 of t0 such that τ(t) �= τσ0 for every (x, τ, σ , p) ∈
U ∩C(x∗, τ∗, σ∗, p∗) and t ∈ I0.

By way of contradiction, suppose that for every neighborhood Ĩ of t0 and
neighborhood U of (x0, τ0, σ0, p0), there exist t ∈ Ĩ and a nonconstant solution
(x, τ, σ , p)∈U∩C(x∗, τ∗, σ∗, p∗) such that τ(t) = τσ0 . Then there exist a sequence
of periodic solutions {(xk, τk, σk, pk)}+∞

k=1 and {tk}+∞
k=1 such that

{
τk(tk) = τσk ,

lim
k→+∞

(xk, τk, σk, pk, tk) = (x0, τ0, σ0, p0, t0).
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This, together with assumption (SHB2), implies that

|τk(tk)− τ0(t0)| ≤ |τk(tk)− τk(t0)|+ |τk(t0)− τ0(t0)|
≤ |tk− t0|+ sup

t∈R
‖τk− τ0‖

→ 0 as k→+∞.

Therefore, we have

τ0(t0) = lim
k→+∞

τk(tk) = lim
k→+∞

τσk = τσ0 .

This is a contradiction to the assumption that τ0(t0) �= τσ0 , and hence the claim is
proved.

If (x0, τ0, σ0, p0) satisfies τ0(t0) �= mp0 for all m ∈N, then the existence of I and
U is followed from Lemma 6.24. Otherwise, (x0, τ0, σ0, p0) is τ0(t0)-periodic. Let
Γσ0 be the nonempty solution set of the equation f (x, x, σ0) = 0 for x ∈ R

N . Then
by (SHB6), for every x ∈Γσ0 , τσ0 is the unique solution of g(x, τ, σ0) = 0 for τ ∈R.
Now we distinguish two cases:

Case 1. x0(t0) = xσ0 for some xσ0 ∈ Γσ0 . Since τ0(t0) �= τσ0 , by system (6.74) and
by (SHB6), we have {

ẋ0(t0) = f (xσ0 , xσ0 , σ0) = 0,

τ̇0(t0) = g(xσ0 , τ0(t0), σ0) �= 0.
(6.109)

Without loss of generality, we suppose τ̇0(t)> 0 for t in some open neighborhood of
t0. Then, by the continuity and local monotonicity of τ0(t), there exists δ > 0 small
enough that

0 < τ0(t)− τ0(t0)< pmin, t ∈ (t0, t0 + δ ),

where pmin > 0 is the minimal period of (x0, τ0). Then τ0(t) �= m pmin for every
m ∈ N. Therefore, (x0, τ0) is not τ0(t)-periodic for all t ∈ (t0, t0 + δ ). So we have
τ0(t) �= mp0 for all t ∈ (t0, t0 + δ ) and m ∈ N.

By Lemma 6.24, for every t∗ ∈ (t0, t0 + δ ), there exist an open interval I of t∗
and an open neighborhood U of (x0, τ0, σ0, p0) in C(R; RN+1)×R

2 such that every
solution (x, τ, σ , p) in U ∩C(x∗, τ∗, σ∗, p∗) satisfies τ(t) �= mp for all m ∈ N and
t ∈ I.

Case 2. x0(t0) �= xσ for every xσ ∈ Γσ0 . By Lemma 6.23 (c), there are finitely many
fixed points {ti}n

i=1 of l(t) = t−τ0(t)+τ0(t0) in [t0, t0+τ0(t0)] that are in ascending
order (we assume in the proof that all the sequences of the fixed points of l are in
ascending order). And we can let the subsequence {tik}k0

k=1 ⊆ {ti}n
i=1 be all the fixed

points such that lim j→+∞ l j(t) = tik for every t ∈ [tik , tik+1). Note that τ0(ti) = τ0(t0)
and τ0(t0) �= τσ0 implies that τ0(ti) �= τσ0 for all i ∈ {1, 2, · · · , n}. If x0(ti0) = xσ0

for some i0 ∈ {1, 2, · · · , n} and for some xσ0 ∈ Γσ0 . Then the conclusion follows by
Case 1 with t0 replaced by ti0 .

Now we exclude that x0(ti) �= xσ for every i ∈ {0, 1, 2, · · · , n} and for every
xσ ∈ Γσ0 . Assume that the contrary is true. We want to obtain a contradiction under
the assumption that (x0, τ0) is τ0(t0)-periodic.
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For δ > 0 small enough, we consider the following compact subset Iδ of [t0, t0 +
τ0(t0)]:

Iδ =
⋃

tik∈{ti1 ,ti2 , ··· ,tik0
}
[tik , tik+1− δ ]

⋃ ⋃
ti∈{t1,t2, ··· ,tn}\{tik}

k0
k=1

[ti + δ , ti].

Note that for each interval [ti, ti+1], only one of the endpoints is the limit of
lim j→+∞ l j(t) for every t ∈ (ti, ti+1). Note also that when δ goes to zero, Iδ goes to
[t0, t0 + τ0(t0)] in the sense of Lebesgue measure.

Now for δ > 0 small enough, we introduce the following piecewise constant
function χ(t) on the compact subset Iδ of [t0, t0 + τ0(t0)]:

χ(t) =

{
tik , if t ∈ [tik , tik+1− δ ], tik ∈ {tik}k0

k=1,

ti+1, if t ∈ [ti + δ , ti+1], ti ∈ {t1, t2, · · · , tn} \ {tik}k0
k=1.

Since the number of intervals with endpoints the fixed points of l(t) is finite, it is
clear from Lemma 6.23 (d) that

lim
j→+∞

sup
t∈Iδ

|l j(t)− χ(t)|= 0. (6.110)

Note that (x(t), τ(t)) is a periodic solution of system (6.74). There exists M̃ > 0
such that |ẋ(t)| ≤ M̃ for every t ∈ [t0, t0 + τ(t0)]. Let Ii with i ∈ {1, 2, · · · ,n} be the
subinterval of Iδ that is either [ti−1, ti−δ ] or [ti−1 +δ , ti]. Then we have χ(t) = ti−1

or χ(t) = ti for t ∈ Ii, and hence we have

x0(χ(t)) = x0(ti−1) or x0(χ(t)) = x0(ti) for every t ∈ Ii. (6.111)

Since x0(ti) �= xσ for every i ∈ {0, 1, 2, · · · , n} and for every xσ ∈ Γσ0 , by (6.111),
we have

x0(χ(t)) �∈ Γσ0 for every t ∈ Iδ . (6.112)

By (6.110), for every ε > 0, there exists N0 > 0 large enough that

sup
t∈Iδ

|l j(t)− χ(t)| ≤ ε, for every j > N0. (6.113)

Let (x j(t), τ j(t)) = (x0(h j(t)), τ0(h j(t)) for j = 0, 1, 2, · · · , where we define
h0(t) = t. Then by Lemma 6.23 (e), we have (x j(t), τ j(t)) = (x0(l j(t)), τ0(l j(t)).
Note that Iδ is composed of finitely many subintervals. By applying the integral
mean value theorem to each subinterval of Iδ and by (6.113), we have for every
j > N0 that

sup
t∈Iδ

|x0(l
j(t))− x0(χ(t))| ≤ sup

t∈Iδ

|ẋ0(t)|sup
t∈Iδ

|l j(t)− χ(t)| ≤ M̃ ε. (6.114)
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Differentiating x j(t) for j = 1, 2, · · · , we can obtain from system (6.74) that

ẋ j(t) =
j−1

∏
m=0

(1− g(xm(t), τm(t)), σ0) f (x j(t), x j+1(t), σ0). (6.115)

Since g(x, τ, σ)< 1, we have

j−1

∏
m=0

(1− g(xm(t), τm(t)), σ0)> 0, t ∈ R. (6.116)

Also by (ii) of (SHB8), x f (x, x, σ0)> 0 as long as x �∈Γσ0 . Then by (6.112) we have

x0(χ(t)) f (x0(χ(t)), x0(χ(t)), σ0)> 0 (6.117)

for every t ∈ Iδ . By (6.114), (6.117), and by the continuity of f , it follows that there
exists N1 > N0 such that

x j(t) f (x j(t), x j+1(t), σ0)> 0 for j > N1 and t ∈ Iδ . (6.118)

Therefore, for every t ∈ Iδ and j > N1, by (6.115), (6.116), and (6.118), we have

x j(t) · ẋ j(t) =
j−1

∏
m=0

(1− g(xm(t), τm(t)), σ0)x j(t) f (x j(t), x j+1(t), σ0)> 0. (6.119)

Since δ > 0 is arbitrary and Iδ goes to I in measure as δ → 0, by the continuity of
x j · ẋ j, we have x j(t) · ẋ j(t)≥ 0 for every t ∈ I and j > N1. By (6.119), we know that
x j · ẋ j �≡ 0 on I with j > N1. Therefore, x j · x j is a nonconstant increasing contin-
uous function. But this is impossible, since x j · x j is continuous and periodic. This
completes the proof. �

We now consider the periods of nonconstant periodic solutions, where the delay
coincides with the corresponding stationary value for every t ∈R.

Lemma 6.25. Suppose system (6.74) satisfies (SHB7). Let (x, τ, σ , p) be a non-
constant p-periodic solution of system (6.74). If τ(t) = τσ for every t ∈ R, then
(x, τ, σ , p) is not τσ -periodic.

Proof. Suppose, by way of contradiction, that (x, τ, σ , p) is τσ -periodic. If τ(t) =
τσ for every t ∈ R, then we have

{
ẋ(t) = f (x(t), x(t), σ),

0 = τ̇(t) = g(x(t), τσ , σ).
(6.120)

It follows from (6.120) that

τ̈(t) =
∂g
∂x

(x(t), τσ , σ) · f (x(t), x(t), σ) = 0. (6.121)
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Then by (SHB7) and (6.121), x(t) = xσ for every t ∈ R. Thus, (x, τ, σ , p) is a
constant periodic solution of (6.74). This is a contradiction. �

We now formulate our next assumption:

(SHB9) For every Hopf bifurcation point (x, τ, σ , p)∈C(x∗, τ∗, σ∗, p∗), mp �= τ
for every m ∈ N.

Theorem 6.19. Assume that system (6.74) satisfies (SHB6)–(SHB9). Then for every
solution (x0, τ0, σ0, p0) ∈ C(x∗, τ∗, σ∗, p∗), there exist an open interval I and an
open neighborhood U � (x0, τ0, σ0, p0) such that every solution

(x, τ, σ , p) ∈U ∩C(x∗, τ∗, σ∗, p∗)

satisfies τ(t) �= mp for all m ∈ N and t ∈ I.

Proof. For a given σ0 ∈ R, if (x0, τ0, σ0, p0) ∈ C(x∗, τ∗, σ∗, p∗) is a constant
periodic solution, then it is a Hopf bifurcation point of system (6.74) (See
Lemma 6.21). Thus the existence of an open interval I and an open neighborhood
U � (x0, τ0, σ0, p0) follows immediately from (SHB9) and Lemma 6.24.

If (x0, τ0, σ0, p0) ∈ C(x∗, τ∗, σ∗, p∗) is a nonconstant periodic solution and
τ0(t) = τσ0 for all t ∈ R, then by Lemma 6.25, (x0, τ0, σ0, p0) is not τσ0 -periodic.
The conclusion is implied by Lemma 6.24.

If (x0, τ0, σ0, p0) is a nonconstant periodic solution and τ0(t) �= τσ0 for some
t ∈ R, then the conclusion follows from Theorem 6.18. �

We now start the process that uses the local exclusion of periods developed above
to construct a uniform upper bound for periods of solutions in the Fuller space. To
achieve this goal, we need to “glue” the local exclusion of periods along the con-
nected component. Now we shall show that (6.106) is valid, provided that (6.105)
holds.

Theorem 6.20. Let C(y∗, z∗, σ∗, p∗) be a connected component of the closure
of all the nonconstant periodic solutions of system (6.100), bifurcated from
(y∗, z∗, σ∗, p∗) in the Fuller space C(R/2π ; RN+1) × R

2. Suppose that sys-
tem (6.74) satisfies (SHB6)–(SHB9). Then for every (y0,z0,σ0, p0)∈C(y∗,z∗,σ∗, p∗),
there exist an open interval I and an open neighborhood U � (y0, z0, σ0, p0) such
that mp �= z(t) for every solution (y, z, σ , p) ∈ U ∩C(y∗, z∗, σ∗, p∗), m ∈ N and
t ∈ I.

Proof. Note that p > 0 for every solution (y, z, σ , p) in C(y∗, z∗, σ∗, p∗). We show
that the mapping

ι : C(y∗, z∗, σ∗, p∗)→C(x∗, τ∗, σ∗, p∗) (6.122)

(y(·), z(·), σ , p)→
(

y

(
2π
p
·
)
, z

(
2π
p
·
)
, σ , p

)
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is continuous, where C(x∗, τ∗, σ∗, p∗)⊆C(R;RN+1)×R
2. Indeed, if

lim
n→+∞

‖(yn(·), zn(·), σn, pn)− (y0(·), z0(·), σ0, p0)‖C(R/2π ;RN+1)×R2 = 0,

then we have

‖ι(yn(·), zn(·), σn, pn)− ι(y0(·), z0(·), σ0, p0)‖C(R;RN+1)×R

= |yn

(
2π
pn
·
)
− y0

(
2π
p0
·
)
|C + |zn

(
2π
pn
·
)
− z0

(
2π
p0
·
)
|C

+ |σn−σ0|+ |pn− p0|

≤ |yn− y0|C + 2π |ẏ0|
∣∣∣∣ 1

pn
− 1

p0

∣∣∣∣+ |zn− z0|C + 2π |ż0|
∣∣∣∣ 1

pn
− 1

p0

∣∣∣∣
+ |σn−σ0|+ |pn− p0|

→ 0 as n→+∞,

where | · |C denotes the supremum norm in either C(R/2π ; RN) or C(R/2π ; R).
Therefore, C(x∗, τ∗, σ∗, p∗) is a connected component of periodic solutions
of (6.74).

Let (x0, τ0, σ0, p0) = ι(y0, z0, σ0, p0) ∈ C(x∗, τ∗, σ∗, p∗). Then by Theo-
rem 6.19, there exist an open interval I′ and an open neighborhood U ′ �
(x0, τ0, σ0, p0) such that every solution (x, τ, σ , p) ∈U ′ ∩C(x∗, τ∗, σ∗, p∗) satis-
fies τ(t) �= mp for all m ∈ N and t ∈ I′.

Since ι is continuous, we can choose an open set U ⊆ C(R/2π ; RN+1)×R
2

small enough that (y0, z0, σ0, p0) ∈U ⊆ ι−1(U ′) and the open set

I
def
=

⋂
{p:(y,z,σ , p)∈U}

p
2π
· I′

is nonempty. Then by the definition of ι , mp �= z(t) for every (y, z, σ , p) ∈ U ∩
C(y∗, z∗, σ∗, p∗), m ∈ N, and t ∈ I. �

Lemma 6.26 (The generalized intermediate value theorem [227]). Let f : X→Y
be a continuous map from a connected space X to a linearly ordered set Y with
order topology. If a,b ∈ X and y ∈ Y lies between f (a) and f (b), then there exists
x ∈ X such that f (x) = y.

Definition 6.5. Let C(y∗, z∗, σ∗, p∗) be a connected component of the closure
of all the nonconstant periodic solutions of system (6.100), bifurcated from
(y∗, z∗, σ∗, p∗) in the Fuller space C(R/2π ; RN+1)×R

2. Let I ⊂ R be an in-
terval and U a subset in C(y∗, z∗, σ∗, p∗). We call I × (U ∩C(y∗, z∗, σ∗, p∗)) a
delay-period disparity set if every solution

(y, z, σ , p) ∈U ∩C(y∗, z∗, σ∗, p∗)

satisfies mp �= z(t) for every t ∈ I and m ∈ N. We call I× (U ∩C(y∗, z∗, σ∗, p∗))
a delay-period disparity set at (t0, y0, z0, σ0, p0) if (t0, y0, z0, σ0, p0) ∈ I × (U ∩
C(y∗, z∗, σ∗, p∗)).
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In the remainder of this subsection, the following assumption is sometimes
needed:

(SHB10) Every periodic solution (x, τ, σ) of (6.74) satisfies τ(t) > 0 for every
t ∈R.

Lemma 6.27. Suppose that system (6.74) satisfies (SHB6)–(SHB7) and (x, τ, σ) is
a nonconstant periodic solution. If

(i) τ �≡ τσ and there exists t0 ∈R such that τ(t0) = τσ , and
(ii) (x, τ) is τσ -periodic,

then there exists t1 ∈R such that τ(t1)> τσ .

Proof. We prove the result by contradiction. Suppose that

τ(t)≤ τσ for every t ∈ R. (6.123)

Then since τ �≡ τσ , there exists t∗ ∈R such that τ(t∗)< τσ . We can choose a maxi-
mal interval [a, b]⊂ R that contains t∗ in the sense that

τ(t)< τσ for any t ∈ (a, b), (6.124)

τ(t) = τσ for any t = a and t = b. (6.125)

If τ̇(a) �= 0 or τ̇(b) �= 0, then it follows from the local monotonicity of τ(t) (at a or
b) that there exists t1 ∈R in some neighborhood of a or b such that τ(t1)> τσ . This
is a contradiction to (6.123).

If τ̇(a) = τ̇(b) = 0, then we have

g(x(a), τσ , σ) = g(x(b), τσ , σ) = 0. (6.126)

We distinguish the following two cases:

Case 1. x(a) �= xσ or x(b) �= xσ . Without loss of generality, we suppose x(a) �= xσ .
Then by (ii), we have

τ̈(a) =
∂g
∂x

(x(a), τσ , σ) f (x(a), x(a), σ). (6.127)

It follows from (SHB7), (6.126), and (6.127) that τ̈(a) �= 0. Therefore, we have that
τ̇(t) is strictly monotonic in some neighborhood of a. Hence there exists t1 ∈R such
that τ(t1)> τσ . This is also a contradiction to (6.123).

Case 2. x(a) = x(b) = xσ . By (S5), we have ∂g
∂τ (xσ , τσ , σ) �= 0. Without loss of

generality, we assume that

∂g
∂τ

(xσ , τσ , σ)< 0. (6.128)

Then by (6.124), (6.126), (6.128), and the continuity of x(t) and τ(t), we can choose
ε > 0 small enough that
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τ̇(t) = g(x(t), τ(t), σ)> 0 for every t ∈ (a, a+ ε)∪ (b− ε, b). (6.129)

Therefore, we have τ(a)< τ(a+ε). That is, there exists t1 = a+ε such that τ(a) =
τσ < τ(t1). This is a contradiction to (6.123). The proof is complete. �

Lemma 6.28. Suppose that (6.74) satisfies (SHB6)–(SHB10). Let C(y∗, z∗, σ∗, p∗)
be a connected component of the closure of all the nonconstant periodic so-
lutions of system (6.100), bifurcated from (y∗, z∗, σ∗, p∗) in the Fuller space

C(R/2π ; RN+1) × R
2. Let I ⊂ R be an open interval and v̄

def
= (ȳ, z̄, σ̄ , p̄) ∈

C(y∗, z∗, σ∗, p∗). If there is no delay-period disparity set at (t, ū) for any t ∈ I,
then

(i) there exists m ∈ N such that m p̄ = z̄(t) = zσ̄ for every t ∈ I;
(ii) v̄ is a nonconstant solution with z̄(t) = zσ̄ for every t ∈ I;
(iii) there exist an open interval I′ ⊆ R and an open neighborhood U ′ of v̄ such

that I′ × (U ′ ∩C(y∗,z∗,σ∗, p∗)) is a delay-period disparity set with v̄ ∈U ′ ∩
C(y∗,z∗,σ∗, p∗), and the inequality zσ̄ < z̄(t) holds for every t ∈ I′.

Proof. (i) By Definition 6.5, for every t ∈ I, there exists m ∈N such that z̄(t) = m p̄.
Note that z̄(t) is continuous, z̄(t) = m p̄ for every t ∈ I. Then for every t ∈ I, we
have

˙̄y(t) =
p̄

2π
f (ȳ(t), ȳ(t), σ̄), (6.130)

˙̄z(t) =
p̄

2π
g(ȳ(t), mp̄, σ̄) = 0. (6.131)

By (6.131), we have

¨̄z(t) =
p̄2

4π2

∂g
∂x

(ȳ(t), mp̄), σ̄) · f (ȳ(t), ȳ(t), σ̄) = 0. (6.132)

By (SHB7), (6.131), and (6.132), we have ȳ(t) = yσ̄ on I. Hence by (SHB6)
and by (6.131), we have z̄(t) = zσ̄ = mp̄ on I. This finishes the proof of (i).

(ii) Note that the stationary solutions of (6.74) and (6.100) are equal. That is,
(xσ , τσ ) = (yσ , zσ ) for every σ ∈ R.
If v̄ is a constant solution, then by (i) we have z̄(t) = zσ̄ = mp̄ and ȳ(t) = yσ̄
for all t ∈ R. Then (yσ̄ , zσ̄ , σ̄ , p̄) is a bifurcation point in C(y∗,z∗,σ∗, p∗) that
satisfies zσ̄ = mp̄ for some m ∈ N. This contradicts assumption (SHB9). So v̄
is a nonconstant solution with z̄(t) = zσ̄ for all t ∈ I.

(iii) Now we show that there exists t0 ∈ R such that z̄(t0) �= zσ̄ . If not, that is, if
z̄(t) = zσ̄ for all t ∈ R, then

(x̄(·), τ̄(·), σ̄)
def
= (ȳ(

2π
p̄
·), z̄(

2π
p̄
·), σ̄) = (ȳ(

2π
p̄
·), zσ̄ , σ̄) = (ȳ(

2π
p̄
·), τσ̄ , σ̄)

is a solution of (6.74). Then by Lemma 6.25, (x̄, τ̄) is not τσ̄ -periodic. Then
we have mp̄ �= zσ̄ for every m ∈N. This is a contradiction to (i).
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Therefore, there exists t0 ∈ R such that z̄(t0) �= zσ̄ . That is, τ̄( p̄
2π t0) �= τσ̄ . Note

that by (i), (x̄, τ̄) is τσ̄ -periodic and τ̄(t) = τσ̄ on p̄
2π I. Then by Lemma 6.27, there

exists t1 ∈ R such that

τ̄(t1)> τσ̄ . (6.133)

By the continuity of τ̄ and by (6.133), there exists a finite interval (a, b) � t1 such
that for every t ∈ (a, b),

τ̄(t)> τσ̄ . (6.134)

We claim that there exists t0 ∈ (a, b) such that v̄ is not τ̄(t0)-periodic. Indeed, if
not, then v̄ would be τ̄(t)-periodic for every t ∈ (a, b). Then by the continuity of τ̄
and by (6.134), there would exist t1, t2 ∈ (a, b) and an interval (τ̄(t1), τ̄(t2)) with
τ̄(t2)> τ̄(t1), so that τ̄ would be p-periodic for all p∈ (τ̄(t1), τ̄(t2)). Hence v̄ would
be a constant solution. This is a contradiction to (ii), and the claim is proved.

Then we have τ̄(t0) �= mp̄ for all m ∈ N. By Lemma 6.24, there exist an open
interval I1 � t0 and an open neighborhood U1 � (x̄, τ̄, σ̄ , p̄) such that every solution
(x, τ, σ , p) of (6.74) in U1∩C(x∗, τ∗, σ∗, p∗) satisfies τ(t) �= mp for all m ∈N and
t ∈ I1. Note that τ̄ is continuous at t = t0. We can therefore choose I1 small enough
that (6.134) holds for all t ∈ I1.

Let ι be the continuous mapping defined by (6.122). Then we can choose an open
set U ′ ⊆C(R/2π ; RN+1)×R

2 small enough that v̄ ∈U ′ ⊆ ι−1(U1) and

I′ def
=

⋂
{p:(y,z,σ , p)∈U ′}

p
2π
· I1

is nonempty. It follows from the definition of ι that mp �= z(t) for every solu-
tion (y, z, σ , p) ∈ U ′ ∩C(y∗, z∗, σ∗, p∗), m ∈ N, and t ∈ I′. In particular, noting
that (6.134) holds for all t ∈ I1 and I′ ⊆ p̄

2π I1, we have

z̄(t)> zσ̄ (6.135)

for every t ∈ I′. This completes the proof. �

Now we are able to state our main result.

Theorem 6.21. Let C(y∗, z∗, σ∗, p∗) be a connected component of the closure
of all the nonconstant periodic solutions of system (6.100), bifurcated from
(y∗, z∗, σ∗, p∗) in the Fuller space C(R/2π ; RN+1)×R

2. Suppose that (6.74) sat-
isfies (SHB6)–(SHB10). If p∗ < z∗, then for every (y, z, σ , p) ∈ C(y∗, z∗, σ∗, p∗),
p < z(t) for some t ∈ R.

Proof. By Theorem 6.20 and (SHB9), there exist an open interval I∗ ⊆ R and an
open set U∗ in C(R/2π ; RN+1)×R

2 such that I∗ × (U∗ ∩C(y∗, z∗, σ∗, p∗)) is a
delay-period disparity set with (y∗, z∗, σ∗, p∗) ∈U∗.
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Let A∗ � (y∗, z∗, σ∗, p∗) be a connected component of (U∗ ∩C(y∗, z∗, σ∗, p∗)).
Then I∗×A∗ is connected in R×C(R/2π ;RN+1)×R2. Define S :R×C(R/2π ;RN+1)×
R

2→ R by

S(t, y, z, σ , p) = p− z(t).

Note that we have p∗ < z∗. Then it follows that S(t, y∗, z∗, σ∗, p∗) = p∗ − z∗ < 0.
Note that S is continuous. By Lemma 6.26, we have

S(t, y, z, σ , p) = p− z(t)< 0 (6.136)

for every (t, y, z, σ , p)∈ I∗×A∗, for otherwise, there would exist (t0, y0, z0, σ0, p0)
∈ I∗×A∗ such that p0 = z0(t0), which contradicts the fact that I∗ ×A∗ is a subset of
the forbidden range of delay I∗ × (U∗ ∩C(y∗, z∗, σ∗, p∗)).

Now we show that there exists a sequence of connected subsets of C(y∗, z∗, σ∗, p∗),
denoted by {An}n0

n=1, n0 ∈ N or n0 =+∞, that satisfies

(i) A∗ ⊆ A1 ⊂ A2 ⊂ ·· · ⊂ An0 and ∪n0
n=1An =C(y∗, z∗, σ∗, p∗);

(ii) for every (y, z, σ , p) ∈ An with n ∈ {1, 2, · · · , n0}, p < z(t) at some t ∈ R.

Let A1
def
= A∗. If A1 = C(y∗, z∗, σ∗, p∗)), then we are done by (6.136). If not,

since the only sets that are both closed and open in the connected topological space
C(y∗, z∗, σ∗, p∗) are the empty set and the connected component C(y∗, z∗, σ∗, p∗)
itself, A1 � (y∗, z∗, σ∗, p∗) is not both closed and open. Then the boundary of A1 in
the sense of the relative topology induced by C(y∗, z∗, σ∗, p∗) is nonempty. That is,

∂A1 �= /0. (6.137)

Let v̄ = (ȳ, z̄, σ̄ , p̄) ∈ ∂A1. If there exist t1 ∈ I1
def
= I∗ and a delay-period disparity

set I′ × (U ′ ∩C(y∗, z∗, σ∗, p∗)) such that (t1, v̄) ∈ Ī′ × (U ′ ∩C(y∗, z∗, σ∗, p∗), and
if Av̄ � v̄ is the connected component of U ′ ∩C(y∗, z∗, σ∗, p∗), then it is clear that
A1∪Av̄ is connected. Since A1 is closed, we have p̄ < z̄(t1). Then by Lemma 6.26,
we have

S(t, y, z, σ , p) = p− z(t)< 0 for every (t, y, z, σ , p) ∈ I′ ×Av̄. (6.138)

If for every t ∈ I1, there is no delay-period disparity set at (t, ū), then by
Lemma 6.28, there exists a delay-period disparity set I′′ × (U ′′ ∩C(y∗, z∗, σ∗, p∗)
with v̄ ∈U ′ ∩C(y∗, z∗, σ∗, p∗) and

mp̄ = zσ̄ < z̄(t) for every t ∈ I′′ and m ∈ N. (6.139)

Let Av̄ � v̄ be the connected component of U ′′ ∩C(y∗, z∗, σ∗, p∗). It is clear that
A1∪Av̄ is connected. Then by (6.139) and Lemma 6.26,

S(t, y, z, σ , p) = p− z(t)< 0 for any (t, y, z, σ , p) ∈ I′′ ×Av̄. (6.140)
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By (6.138) and (6.140), we know that if v̄ ∈ ∂A1, then there exists a delay-period
disparity set Ĩ× (Ũ ∩C(y∗, z∗, σ∗, p∗)) with Av̄ � v̄ the connected component of
Ũ ∩C(y∗, z∗, σ∗, p∗) such that

S(t, y, z, σ , p) = p− z(t)< 0 for any (t, y, z, σ , p) ∈ Ĩ×Av̄. (6.141)

For every v̄ ∈ ∂A1, we find a Av̄ satisfying (6.141). Then we define

A2 = A1∪
⋃

v̄∈∂A1

Av̄.

It follows from (6.136), (6.138), and (6.140) that for every (y, z, σ , p)∈ A2, p< z(t)
for some t ∈ R. Note that for every v̄ ∈ ∂A1, A1∪Av̄ is connected. Therefore, A2 is
connected.

Note that the existence of A2 depends only on the fact that ∂A1 �= /0, in the sense
of the relative topology induced by C(y∗, z∗, σ∗, p∗). Beginning with n = 1, we can
always recursively construct a connected subset for each n≥ 1, n∈N, with ∂An �= /0,

An+1 = An∪
⋃

v̄∈∂An

Av̄, (6.142)

satisfying that for every (y, z, σ , p) ∈ An+1,

p < z(t) for some t ∈ R, (6.143)

where In×(Un∩C(y∗, z∗, σ∗, p∗)) is a delay-period disparity set at (t, v̄)∈ In×∂An

and Av̄ is the connected component of Un.
If the construction in (6.142) stops at some n0 ∈ N with ∂An0 = /0, then An0 =

C(y∗, z∗, σ∗, p∗), and we are done. If not, then n0 =+∞, and we obtain a sequence
of sets {An}+∞

n=1 that is a totally ordered family of sets with respect to the set inclu-
sion relation ⊆. Note that ∪+∞

n=1An is the upper bound of {An}+∞
n=1. Then by Zorn’s

lemma, there exists a maximal element A∞ for the sequence {An}+∞
n=1.

Now we show that ∂A∞ = /0, in the sense of the relative topology induced by
C(y∗, z∗, σ∗, p∗). Suppose not. Then there exist v̄ ∈ ∂A∞ and Av̄, which is the con-
nected component of U∞, where I∞× (U∞×C(y∗, z∗, σ∗, p∗)) is a delay-period dis-
parity set at (t, v̄) ∈ I∞× ∂A∞. We distinguish two cases:

Case 1. Av̄ \ A∞ = /0 for all v̄ ∈ ∂A∞. Then A∞ is a connected component of
C(y∗, z∗, σ∗, p∗). Recall that C(y∗, z∗, σ∗, p∗) itself is a connected component of
the closure of all the nonconstant periodic solutions of system (6.100). So we have
A∞ =C(y∗, z∗, σ∗, p∗). That is, ∂A∞ = /0. This is a contradiction.

Case 2. Av̄ \A∞ �= /0. But this means that A∞ ⊂ A∞∪Av̄, which contradicts the max-
imality of A∞.

These contradictions show that ∂A∞ = /0, and hence A∞ = C(y∗, z∗, σ∗, p∗).
Therefore, (6.143) holds for all (y, z, σ , p) ∈ C(y∗, z∗, σ∗, p∗). This completes the
proof. �
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Theorem 6.22. Let C(y∗, z∗, σ∗, p∗) be a connected component of the closure of all
the nonconstant periodic solutions of system (6.100), bifurcated at (y∗, z∗, σ∗, p∗)
in the Fuller space C(R/2π ; RN+1)×R

2. Suppose that (6.74) satisfies (S5)–(S9).
If there exists a continuous function M1 : R � σ →M1(σ) > 0 such that for every
(y, z,σ , p) ∈C(y∗, z∗, σ∗, p∗), we have

‖(y, z)‖C(R;RN+1) ≤M1(σ), (6.144)

then p∗ < z∗ implies that p < M1(σ) for every (y, z, σ , p) ∈C(y∗, z∗, σ∗, p∗).

Proof. By Theorem 6.21, we have, for every (y, z, σ , p) ∈ C(y∗, z∗, σ∗, p∗), that
p < z(t) for some t ∈R. Then by (6.144), we have p < M1(σ). �

6.9.4 Uniform Boundedness of Periodic Solutions

We refer to [254] for the concepts of balanced, convex, and absorbing subsets and
the Minkowski functional.

Lemma 6.29. Let G be a convex absorbing subset of a locally convex linear topo-
logical space X that defines a Minkowski functional pG : X → R with pG(x) =

inf{α > 0 : α−1x
def
= x/α ∈ G}. For each γ > 0, define

Gγ = {x : pG(x)< γ}. (6.145)

Then x ∈ ∂Gγ if and only if pG(x) = γ .

Proof. It is clear that Gγ = γG. By linearity, the Minkowski functional pGγ : X→R

determined by Gγ is well defined. By (6.145) and by the definition of Minkowski
functional, we have

x ∈ ∂Gγ ⇐⇒ pGγ (x) = 1

⇐⇒ inf{α > 0 : x/α ∈ Gγ}= 1

⇐⇒ inf{α > 0 : pG(x/α)< γ}= 1

⇐⇒ inf{α > 0 : pG(x)/γ < α}= 1

⇐⇒ pG(x) = γ.
�

Lemma 6.30. Let G1 and G2 be convex absorbing subsets of locally convex linear
topological spaces X1 and X2, respectively. Let the Minkowski functionals associ-
ated with G1 and G2 be pG1(x) and pG2(τ), respectively. Then the Minkowski func-
tional defined by G = G1×G2 exists and satisfies

pG(x, τ) = max{pG1(x), pG2(τ)}.
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Proof. The existence of pG(x, τ) is clear from the definition of a Minkowski
functional. Let A = {α : x/α ∈ G1}, B = {α : τ/α ∈ G2}. Then it is clear that
infA∩B≥ infA and infA∩B≥ infB. It follows that infA∩B≥ max{infA, infB},
that is,

pG(x, τ)≥max{pG1(x), pG2(τ)}. (6.146)

On the other hand, if αA = infA ≥ αB = infB, since G1 and G2 are absorbing, we
have for every ε > 0 that αA + ε ∈ A, αA + ε ∈ B. Therefore, infA∩B ≤ αA + ε .
Similarly, if αA = infA≤ αB = infB, we have infA∩B≤ αB + ε . Hence we obtain
infA∩ B ≤ max{αA, αB}+ ε . By the arbitrariness of ε > 0, we get infA∩ B ≤
max{αA, αB}, that is,

pG(x, τ)≤max{pG1(x), pG2(τ)}. (6.147)

By (6.146) and (6.147), we have

pG(x, τ) = max{pG1(x), pG2(τ)}.

This completes the proof. �

An immediate corollary of Lemmas 6.29 and 6.30 is the following.

Corollary 6.1. Let G1 and G2 be convex absorbing subsets of locally convex linear
topological spaces X1 and X2, respectively. Let pG1(x) and pG2(τ) be the Minkowski
functionals associated with G1 and G2, respectively. Let G = G1×G2, and for every
γ > 0, define

Gγ = {(x, τ) : pG(x, τ)< γ},
Gγ

1 = {x : pG1(x)< γ},
Gγ

2 = {τ : pG2(τ) < γ}.

Then Gγ = Gγ
1×Gγ

2 and Ḡγ = Ḡγ
1× Ḡγ

2.

In this section, we use “·” to denote the usual inner product of a Euclidean space,
and we use Gc and Dc to denote the complementary sets of G and D, respectively.

We can now state and prove the geometric conditions for uniform boundedness
of the periodic solutions of (6.74) with σ ∈ Σ , where Σ ⊆ R is a given subset.

Theorem 6.23. Suppose that G1 ⊂ R
N and G2 ⊂ R are bounded, balanced, con-

vex, and absorbing open subsets with associated Minkowski functionals pG1(x) and
pG2(τ). Let G =G1×G2 and (x, τ) = 1

pG(x,τ)
(x, τ)∈ ∂G for (x, τ) �= 0. Assume that

there exists a vector-valued function N : ∂G\(∂G1×∂G2)→R
N+1 \{0} satisfying

(i) : G⊆U1∪U2, where

U1 =
⋂

(x,τ)∈∂G\(∂G1×∂G2)

{(u, v) : N(x, τ) · (u− x, v− τ)≤ 0};
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U2 =
⋂

(x,τ)∈∂G1×∂G2

{(u, v) : x · (u− x)≤ 0, τ · (v− τ)≤ 0};

(ii) : N(x, τ) · ( f (x, x̃, σ), g(x, τ, σ)) is positive (or negative) for all (x, τ) ∈ Gc

with (x, τ) �∈ ∂G1× ∂G2, and all (x̃, τ) ∈ R
N ×R with pG(x̃, τ) ≤ pG(x, τ)

and σ ∈ Σ ;
(iii) : x · f (x, x̃, σ) and τ ·g(x, τ, σ) are both positive (or negative) for all (x, τ) ∈

Gc with (x, τ)∈ ∂G1×∂G2, and all (x̃, τ)∈RN×R with pG(x̃, τ)≤ pG(x, τ)
and σ ∈ Σ .

Then the range of all the periodic solutions of (6.74) with σ ∈ Σ is contained in G.

Remark 6.3. The prototype of the vector-valued function N(x, τ) is the (outer or
inner) normal of G, which is not defined on ∂G1× ∂G2. If G is a rectangle in a
planar space, ∂G1× ∂G2 are the four corner points of G. Conditions (ii)–(iii) of
Theorem 6.23 require that the vector field determined by the right-hand side of
system (6.74) have positive (or negative) inner product with respect to the normal
of a given rectangle G, where the vector field is evaluated at (x, τ) ∈ R

N+1, which
satisfies (x, τ) ∈ Gc and pG(x̃, τ)≤ pG(x, τ).

Proof. Letting (x, τ)(t) = (y, z)(β t) with a normalization parameter β > 0, we only
need to consider the 2π-periodic solutions of the following system:

{
ẏ(t) = 1

β f (y(t), y(t−β z(t)), σ),

ż(t) = 1
β g(y(t), z(t), σ),

(6.148)

where x ∈ R
N and τ ∈ R. It is clear that if (x(t), τ(t)) and (y(t), z(t)) are solutions

of (6.74) and (6.148), respectively, then (x(t), τ(t)) ∈ G for all t ∈ R if and only if
(y(t), z(t)) ∈ G for all t ∈ R.

For simplicity, we denote y(t − β z(t)) by ỹ(t) for each solution (y(t), z(t))
of (6.148). Let (y, z) be the positive constant multiple of (y, z) such that (y, z) ∈ ∂G.
That is, for every (y, z) ∈ R

N+1 \ {0}, there exists (ȳ, z̄) ∈ ∂G such that (y, z) =
pG(y, z)(ȳ, z̄).

Suppose there exists a 2π-periodic solution of (6.148) such that (y(t0), z(t0)) �∈
G for some t0 ∈ [0, 2π ] and define the map γ : R � t → pG(y(t), z(t)) ∈ R. Since
R

N+1 � (y, z) �→ pG(y, z) ∈ R and R � t �→ (y(t), z(t)) ∈ R
N+1 are continuous, the

map γ : t→ pG(y(t), z(t)) is continuous and there exist γ∗ ≥ 1 and t∗ ∈ [0, 2π ] such
that

γ∗ = pG(y(t
∗), z(t∗)) = max

t∈[0,2π ]
pG(y(t), z(t)). (6.149)

Then by Lemma 6.29 and (6.149), we have (y(t∗), z(t∗)) ∈ ∂Gγ∗ and Gγ(t) ⊆ Gγ∗

for all t ∈ R. Therefore, by Corollary 6.1, (y(t), z(t)) ∈ Ḡγ∗ = Ḡγ∗
1 × Ḡγ∗

2 for
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all t ∈ [0, 2π ]. In particular, by the periodicity of (y(t), z(t)), we obtain (y(t −
β z(t)), z(t)) ∈ Ḡγ∗ for all t ∈ [0, 2π ] and β > 0. Therefore, we have

pG(y(t
∗ −β z(t∗), z(t∗))≤ pG(y(t

∗), z(t∗)). (6.150)

We first suppose that (ȳ(t∗), z̄(t∗)) = 1
pG(y(t∗),z(t∗)) (y(t

∗), z(t∗)) ∈ U1. Then
by (6.149), (6.150), and assumption (ii), we have (we use the positivity assumption
in the proof; the proof is similar if we use the negativity assumption; see Remark 6.4
for details)

N(ȳ(t∗), z̄(t∗)) ·
[

1
β

f (y(t∗), y(t∗ −β z(t∗)), σ),
1
β

g(y(t∗), z(t∗), σ)

]
> 0. (6.151)

Let us write

[
y(t∗+ h)

z(t∗+ h)

]
=

[
y(t∗)
z(t∗)

]
+

⎡
⎢⎢⎣
∫ 1

0
ẏ(t∗+ sh)dsh

∫ 1

0
ż(t∗+ sh)dsh

⎤
⎥⎥⎦ , (6.152)

and choose h > 0 small enough that

N(ȳ(t∗), z̄(t∗)) ·
[

1
β

f (y(t), y(t−β z(t)), σ),
1
β

g(y(t), z(t), σ)

]
> 0 (6.153)

for t∗ ≤ t < t∗+ h. Then by (6.148), (6.152), and (6.153), we have

N(ȳ(t∗), z̄(t∗)) · (y(t∗+ h)− y(t∗), z(t∗+ h)− z(t∗))> 0. (6.154)

Now we distinguish the following two cases in order to deduce contradictions:

Case 1. If (y(t∗+h), z(t∗+h))∈ Ḡ, then γ∗−1(y(t∗+h), z(t∗+h))∈ Ḡ, since γ∗ ≥ 1.
Also, we have (y(t∗), z(t∗)) = (γ∗ȳ(t∗), γ∗z̄(t∗)) with (ȳ(t∗), z̄(t∗)) ∈ ∂G. Then by
assumption (i), we have

N(ȳ(t∗), z̄(t∗)) ·
(

γ∗−1y(t∗+ h)− ȳ(t∗), γ∗−1z(t∗+ h)− z̄(t∗)
)
≤ 0. (6.155)

On the other hand, we have by (6.154),

0 <N(ȳ(t∗), z̄(t∗)) · (y(t∗+ h)− y(t∗), z(t∗+ h)− z(t∗))

=γ∗N(ȳ(t∗), z̄(t∗)) ·
(

γ∗−1y(t∗+ h)− ȳ(t∗), γ∗−1z(t∗+ h)− z̄(t∗)
)
,

(6.156)

which contradicts (6.155).

Case 2. If (y(t∗+ h), z(t∗+ h)) �∈ Ḡ, then by (6.149), we have

1≤ γh = pG(y(t
∗+ h), z(t∗+ h))≤ pG(y(t

∗), z(t∗)) = γ∗. (6.157)
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Also, we have (y(t∗+h), z(t∗+h)) = γh(ȳ(t∗+h), z̄(t∗+h)) with (ȳ(t∗+h), z̄(t∗+
h)) ∈ ∂G. By the convexity of Ḡ and by the inequality γh/γ∗ ≤ 1, we have

(
γh

γ∗
ȳ(t∗+ h),

γh

γ∗
z̄(t∗+ h)

)
∈ Ḡ.

Then by assumption (i), we have

N(ȳ(t∗), z̄(t∗)) ·
(

γh

γ∗
ȳ(t∗+ h)− ȳ(t∗),

γh

γ∗
z̄(t∗+ h)− z̄(t∗)

)
≤ 0. (6.158)

On the other hand, we have by (6.154),

0 <N(ȳ(t∗), z̄(t∗)) · (y(t∗+ h)− y(t∗), z(t∗+ h)− z(t∗))

=γ∗N(ȳ(t∗), z̄(t∗)) ·
(

γh

γ∗
ȳ(t∗+ h)− ȳ(t∗),

γh

γ∗
z̄(t∗+ h)− z̄(t∗)

)
,

(6.159)

which contradicts (6.158).
Second, we suppose that (ȳ(t∗), z̄(t∗)) = 1

pG(y(t∗),z(t∗)) (y(t
∗), z(t∗)) ∈U2. By as-

sumption (iii), we have
⎧⎪⎪⎨
⎪⎪⎩

ȳ(t∗) · 1
β

f (y(t∗), y(t∗ −β z(t∗)), σ)> 0,

z̄(t∗) · 1
β

g(y(t∗), z(t∗), σ)> 0.
(6.160)

Therefore, we can choose h > 0 small enough that for t∗ ≤ t < t∗+ h,
⎧⎪⎪⎨
⎪⎪⎩

ȳ(t∗) · 1
β

f (y(t), y(t−β z(t)), σ)> 0,

z̄(t∗) · 1
β

g(y(t), z(t), σ)> 0.
(6.161)

Then by (6.148), (6.152), and (6.161), we have
{

ȳ(t∗) · (y(t∗+ h)− y(t∗))> 0,

z̄(t∗) · (z(t∗+ h)− z(t∗))> 0.
(6.162)

We distinguish the following two cases in order to deduce contradictions:

Case 1′. If (y(t∗+h), z(t∗+h))∈ Ḡ, then γ∗−1(y(t∗+h), z(t∗+h))∈ Ḡ, since γ∗ ≥
1. Also, we have (y(t∗), z(t∗)) = (γ∗ȳ(t∗), γ∗z̄(t∗)) with (ȳ(t∗), z̄(t∗)) ∈ ∂G. Then
by assumption (i), we have

{
ȳ(t∗) · (γ∗−1y(t∗+ h)− ȳ(t∗))≤ 0,

z̄(t∗) · (γ∗−1z(t∗+ h)− z̄(t∗))≤ 0.
(6.163)
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On the other hand, we have by (6.162),
{

ȳ(t∗) · (y(t∗+ h)− y(t∗)) = γ∗ȳ(t∗) · (γ∗−1y(t∗+ h)− ȳ(t∗))> 0,

z̄(t∗) · (z(t∗+ h)− z(t∗)) = γ∗z̄(t∗) · (γ∗−1z(t∗+ h)− z̄(t∗))> 0,
(6.164)

which contradicts (6.163).

Case 2′. If (y(t∗+ h), z(t∗+ h)) �∈ Ḡ, then by (6.157) and the convexity of Ḡ, we
have (

γh

γ∗
ȳ(t∗+ h),

γh

γ∗
z̄(t∗+ h)

)
∈ Ḡ,

where γh = pG(y(t∗+ h), z(t∗+ h)). Then by assumption (i), we have
⎧⎪⎨
⎪⎩

ȳ(t∗) · ( γh

γ∗
ȳ(t∗+ h)− ȳ(t∗))≤ 0,

z̄(t∗) · ( γh

γ∗
z̄(t∗+ h)− z̄(t∗))≤ 0.

(6.165)

On the other hand, we have by (6.162),⎧⎪⎨
⎪⎩

ȳ(t∗) · (y(t∗+ h)− y(t∗)) = γ∗ȳ(t∗) · ( γh

γ∗
ȳ(t∗+ h)− ȳ(t∗))> 0,

z̄(t∗) · (z(t∗+ h)− z(t∗)) = γ∗z̄(t∗) · ( γh

γ∗
z̄(t∗+ h)− z̄(t∗))> 0,

(6.166)

which contradicts (6.165). Therefore, contradictions are obtained in all cases, and
the proof is complete. �

Remark 6.4. If we use < 0 instead of > 0 in the inequality (6.151), we need to
change (6.152) to be the difference between (y(t∗), z(t∗)) and (y(t∗ −h), z(t∗−h)).
That is,

[
y(t∗)
z(t∗)

]
=

[
y(t∗ − h)

z(t∗ − h)

]
+

⎡
⎢⎢⎣
∫ 1

0
ẏ(t∗ − sh)dsh

∫ 1

0
ż(t∗ − sh)dsh

⎤
⎥⎥⎦ .

Then the rest of the proof is similar.

Corollary 6.2. Suppose that G1 ⊂ R
N and G2 ⊂ R are bounded, balanced, con-

vex, and absorbing open subsets that define the Minkowski functionals pG1(x) and
pG2(τ). Suppose N : ∂G\ (∂G1×∂G2)→R

N+1 \{0} is the outer normal of G. Fix
σ ∈ Σ and let G = G1×G2 and

Fmax(x, σ) = max
{x̃: pG1

(x̃)≤pG1
(x)}

x · f (x, x̃, σ),

Fmin(x, σ) = min
{x̃: pG1

(x̃)≤pG1
(x)}

x · f (x, x̃, σ).
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Then the range of all the periodic solutions of (6.74) are contained in G if either of
the following conditions holds:

(H1) Fmax(x, σ)< 0 for every x∈Gc
1 and τ ·g(x, τ)< 0 for every τ ∈Gc

2, x∈RN.
(H2) Fmin(x, σ)> 0 for every x∈Gc

1 and τ ·g(x, τ)> 0 for every τ ∈Gc
2, x ∈RN.

Proof. We prove the conclusions by applying Theorem 6.23. By Corollary 6.1,
there exist Minkowski functionals pG(x, τ), pG1(x), and pG2(τ) defined on R

N×R,
R

N , and R, respectively. For every (x, τ) ∈ Gc, let (x̄, τ̄) = (x, τ)/pG(x, τ) ∈ ∂G.
Recall that N : ∂G \ (∂G1× ∂G2)→ R

N+1 \ {0} is the outer normal of the convex
set G. Then condition (i) of Theorem 6.23 is satisfied.

Suppose (H1) holds. Then we have

x · f (x, x̃, σ)< 0,for all (x, x̃) ∈ Gc
1×R

N with pG1(x̃)≤ pG1(x), (6.167)

τ ·g(x, τ, σ)< 0, for all τ ∈ Gc
2, x ∈ R

N . (6.168)

For every (x, τ) ∈ Gc with pG(x̃, τ) ≤ pG(x, τ), let (x̄, τ̄) = (x, τ)/pG(x, τ) ∈
∂G. Note that ∂G = (G1× ∂G2)∪ (∂G1×G2)∪ (∂G1× ∂G2). We distinguish the
following three cases:

Case 1: If (x̄, τ̄) ∈G1×∂G2, then N(x̄, τ̄) = (0, τ)/pG(x, τ) �= 0 is an outer normal
of G. We claim that τ ∈ Gc

2 holds.
Indeed, since x̄ ∈ G1, we have pG1(x̄) = pG1(x/pG(x, τ)) < 1. Therefore,

pG1(x)< pG(x, τ). By Lemma 6.30, we know that pG(x, τ)=max{pG1(x), pG2(τ)}.
Then we have pG1(x) < pG2(τ) and pG(x, τ) = pG2(τ) > 1. Then by Lemma 6.29,
we have τ ∈Gc

2.
Then by (6.168), we have

N(x̄, τ̄) · ( f (x, x̃, σ), g(x, τ, σ)) = τ ·g(x, τ, σ)/pG(x, τ)< 0.

Case 2: If (x̄, τ̄) ∈ ∂G1×G2, then N(x̄, τ̄) = (x, 0)/pG(x, τ) �= 0 is an outer normal
of G. We claim that x ∈Gc

1 and pG1(x̃)≤ pG1(x).
Indeed, since τ̄ ∈ G2, we have pG2(τ̄) = pG2(τ/pG(x, τ)) < 1. Therefore,

pG2(τ)< pG(x, τ). By Lemma 6.30, we know that pG(x, τ)=max{pG1(x), pG2(τ)}.
Then we have pG2(τ) < pG1(x) and pG(x, τ) = pG1(x) > 1. Then by Lemma 6.29,
we have x∈Gc

1. Moreover, it follows again by Lemma 6.30 that pG(x̃, τ)≤ pG(x, τ)
implies pG1(x̃)≤ pG1(x). This proves the claim.

By (6.167), we have

N(x̄, τ̄) · ( f (x, x̃, σ), g(x, τ, σ)) = x · f (x, x̃, σ)/pG(x, τ)< 0.

From Case 1 and Case 2, we know that N(x̄, τ̄) · ( f (x, x̃, σ), g(x, τ, σ)) is negative
definite for all (x, τ) ∈ Gc and σ ∈ Σ with (x, τ) �∈ ∂G1× ∂G2, and all (x̃, τ) ∈
R

N×R with pG(x̃, τ)≤ pG(x, τ). That is, condition (ii) of Theorem 6.23 is satisfied.
Case 3: If (x̄, τ̄) ∈ ∂G1×∂G2, we claim that (x, τ) ∈Gc

1×Gc
2 and pG1(x̃) = pG1(x)

hold.
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Indeed, since (x̄, τ̄) ∈ ∂G1× ∂G2, we have pG1(x̄) = pG1(x/pG(x, τ)) = 1 and
pG2(τ̄) = pG2(τ/pG(x, τ)) = 1. Therefore, pG(x, τ) = pG1(x) = pG2(τ). Since
(x, τ) ∈ Gc, we have pG1(x) = pG2(τ) = pG(x, τ) > 1. Then by Lemma 6.29, we
have (x, τ) ∈ Gc

1×Gc
2. Moreover, it follows again by Lemma 6.30 that pG(x̃, τ) ≤

pG(x, τ) implies pG1(x̃)≤ pG1(x). This proves the claim.
Then by (6.167) and (6.168), we have

x · f (x, x̃, σ)< 0 and τ ·g(x, τ, σ)< 0.

From Case 3, we know that x · f (x, x̃, σ) and τ ·g(x, τ, σ) are both negative definite
for all (x, τ) ∈Gc and σ ∈ Σ with (x, τ) ∈ ∂G1×∂G2, and all (x̃, τ) ∈R

N×R with
pG(x̃, τ)≤ pG(x, τ). That is, condition (iii) of Theorem 6.23 is satisfied.

It follows from Theorem 6.23 that the range of all the periodic solutions of (6.74)
with σ ∈ Σ is contained in G. Similarly, if (H2) holds, we can obtain from Theo-
rem 6.23 the same conclusion. This completes the proof. �

6.9.5 Global Continuation of Rapidly Oscillating Periodic
Solutions: An Example

In this section, we illustrate the general results in the previous subsections by apply-
ing them to the study of the global continua of rapidly oscillating periodic solutions
for the following differential equations with state-dependent delay:

{
ẋ(t) =−μx(t)+σ2b(x(t− τ(t))),
τ̇(t) = 1− h(x(t)) · (1+ tanhτ(t)),

(6.169)

where tanh(τ) = (e2τ−1)/(e2τ +1) and μ > 0 is a constant. We make the following
assumptions:

(α1) b, h : R→R are C2 functions with b′(0) =−1;
(α2) There exist h0 < h1 in (1/2, 1) such that h1 > h(x)> h0 for all x ∈ R;
(α3) b is decreasing on R;
(α4) xb(x) < 0 for x �= 0, and there exists a continuous function M : R � σ →

M(σ) ∈ (0,+∞) such that
b(x)

x
>− μ

σ2

for every x ∈ R with |x| ≥M(σ);
(α5) There exists M0 > 0 such that |b′(x)|< M0 for every x ∈ R;
(α6) h′(x) = 0 only if x satisfies −μx+σ2b(x) = 0.

Remark 6.5. We use tanh(τ) just for the sake of simplicity. Other types of functions
can be used with minor changes in our arguments below.

We start with the uniform boundedness of periodic solutions (x(t), τ(t)) of (6.169).
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Lemma 6.31. Assume that (α1)–(α4) hold. Then the range of every periodic
solution (x, τ) of (6.169) with σ ∈ R is contained in

Ω1 = (−M(σ), M(σ))×
(

0,− ln(2h0− 1)
2

)
.

Proof. If σ = 0, the only periodic solution is
(

0,− ln(2h(0)−1)
2

)
, which is contained

in Ω1. Now we assume that σ �= 0. If x > 0, then by assumptions (α3) and (α4), we
have

max
y∈{y:|y|≤|x|}

x · (−μx+σ2b(y)) =−σ2x2
(

μ
σ2 −

b(−x)
x

)
< 0

for every x ∈ R with x≥M(σ). It follows that

max
y∈{y:|y|≤|x|}

x · (−μx+σ2b(y))< 0 for x≥M(σ).

Similarly, we have

max
y∈{y:|y|≤|x|}

x · (−μx+σ2b(y))< 0 for x≤−M(σ).

Thus,

max
y∈{y:|y|≤|x|}

x · (−μx+σ2b(y))< 0 if x �∈ (−M(σ), M(σ)). (6.170)

It is clear from (α2) that for all x ∈ R,

lim
τ→±∞

τ · (1− h(x)(1+ tanhτ))< 0.

To obtain an upper bound for τ , where (x, τ) is a periodic solution of (6.169), we
introduce the following change of variable:

z(t) = τ(t)+
ln(2h0− 1)

4
. (6.171)

Then system (6.169) is transformed to

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) =−μx(t)+σ2b

(
x

(
t− z(t)+

ln(2h0− 1)
4

))
,

ż(t) = 1− h(x(t))

(
1+ tanh

(
z(t)− 1

4
ln(2h0− 1)

))
.

(6.172)

By (α2) and the monotonicity of tanhτ , we have, for every z �∈
(

ln(2h0−1)
4 ,

− ln(2h0−1)
4

)
and for all x ∈ R,

z ·
(

1− h(x)

(
1+ tanh

(
z− 1

4
ln(2h0− 1)

)))
< 0. (6.173)
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Thus it follows from Corollary 6.2, (6.170), and (6.173) that the range of all
the periodic solutions (x, z) of (6.172) is contained in (−M(σ), M(σ)) ×(

ln(2h0−1)
4 , − ln(2h0−1)

4

)
. Then by (6.171), all periodic solutions (x, τ) of (6.169)

with σ �= 0 are contained in Ω1. The proof is complete. �

Now we consider the global Hopf bifurcation problem of system (6.169) under
the assumptions (α1)–(α6). By (α4), (x, τ) = (0, τ∗) is the only stationary solution
of (6.169), where τ∗ = − 1

2 ln(2h(0)− 1) > 0. Freezing the state-dependent delay
τ(t) at τ∗ for the term x(t − τ(t)) of (6.169) and linearizing the resulting system
with constant delay at the stationary solution (0, τ∗), we obtain the following formal
linearization of system (6.169):

{
Ẋ(t) =−μX(t)−σ2X(t− τ∗),
Ṫ (t) =−ρX(t)− qT(t),

(6.174)

where

ρ =
h′(0)
h(0)

, q = 2− 1
h(0)

> 0. (6.175)

In the following, we regard σ as the bifurcation parameter. We obtain the character-
istic equation of the linear system corresponding to (6.174):

(λ + μ +σ2e−τ∗λ )(λ + q) = 0. (6.176)

Since the zero of λ +q = 0 is −q, which is real, Hopf bifurcation points are related
to zeros of only the first factor (λ +μ +σ2e−τ∗λ ). To locate local Hopf bifurcation
points, we let λ = iβ , β > 0, in λ + μ + σ2e−τ∗λ = 0 and express the resulting
equation in terms of its real and imaginary parts as

{
β = σ2 sin(τ∗β ),

μ =−σ2 cos(τ∗β ).
(6.177)

It is easy to verify the following lemma.

Lemma 6.32. (i) All the positive solutions of (6.177) can be represented by an infi-
nite sequence {βn}+∞

n=1 that satisfies 0<β1 < β2 < · · ·< βn < · · · , limn→+∞ βn =
+∞, and

βn ∈
(
(4n− 3)π

2τ∗
,
(4n− 2)π

2τ∗

)
for n≥ 1.

(ii) ±iβn are characteristic values of the stationary solution (0, τ∗, σn), where

σn =±(β 2
n + μ2)1/4.

If σ �=σn, then the stationary solution (0, τ∗, σ) has no purely imaginary char-
acteristic value.
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(iii) Let λn(σ) = un(σ)+ ivn(σ) be the root of (6.176) for σ close to σn such that
un(σn)+ ivn(σn) = iβn. Then

u′n(σ) σ=σn =
2

σn

(μ2 +β 2
n )τ∗+ μ

(1+ μτ∗)2 +(βnτ∗)2 .

Now we are able to state our main results.

Theorem 6.24. Assume that (α1)–(α6) hold. Let βn ∈
(
(4n−3)π

2τ∗ ,
(4n−2)π

2τ∗
)
, n ≥ 1,

be as given in (i) of Lemma 6.32. Let σn =±(μ2 +βn)
1/4 for n≥ 1. Then:

(a) There exists an unbounded connected component C
(

0, τ∗, σn,
2π
βn

)
of the clo-

sure of all the nonconstant periodic solutions of system (6.169), bifurcated from
(0, τ∗, σn,

2π
βn
) in the Fuller space where σ satisfies sgn(σn)σ > 0.

(b) (0, τ∗, σ1,
2π
β1
) �∈C

(
0, τ∗, σn,

2π
βn

)
for every n≥ 2.

(c) For every n≥ 2, the projection of C
(

0, τ∗, σn,
2π
βn

)
onto the parameter space R

is unbounded in (0,+∞) if σn > 0 and is unbounded in (−∞, 0) if σn < 0.

Proof. (a) We apply Theorem 6.15. We first verify assumptions (SHB1)–(SHB3)
and (SHB5). It is clear that (α2) and (α1) imply (SHB1), (SHB2), and (SHB5).
Let us check (SHB3). Indeed, noticing that σn = ±(μ2 +β 2

n )
1/4, b′(0) = −1, and

βn > 0, we have
(

∂
∂θ1

+
∂

∂θ2

)[−μθ1 +σ2b(θ2)
]

σ=σn,θ1=θ2=0 =−μ−σ2
n < 0. (6.178)

Also, it follows from τ∗ =− ln(2h(0)−1)
2 that

∂
∂γ2

(1− h(γ1)(1+ tanh(γ2)) σ=σn,γ1=0,γ2=τ∗ =−h(0) · 4e2τ∗

(e2τ∗ + 1)2 < 0. (6.179)

Therefore, condition (SHB3) is satisfied by system (6.169).
We note from Lemma 6.32 (i), (ii), and (iii) that every center (including those

with σ < 0) of system (6.174) is isolated. We now calculate the crossing number of
(0, τ∗, σn, βn). Let un(σ)+ ivn(σ) be the characteristic value of (6.174) such that
un(σn)+ ivn(σn) = iβn. By (iv) of Lemma 6.32, we have

d
dσ

un(σ) σ=σn = u′n(σn) σ=σn

=
2

σn

(μ2 +β 2
n )τ∗+ μ

(1+ μτ∗)2 +(βnτ∗)2 . (6.180)

That is, d
dσ un(σ) σ=σn has the same sign as σn, since τ∗ > 0 and μ > 0. We note

from (6.80) that the crossing number γ(0, τ∗, σn,
2π
βn
) counts the difference, as σ

varies from σ−n to σ+
n , of the number of imaginary characteristic values with positive
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real parts in a small neighborhood of iβn in the complex plane, where σ−n <σn <σ+
n

are numbers in a small neighborhood of σn. Then by (6.180), the crossing number
of the isolated center (0, τ∗, σn,

2π
βn
) in the Fuller space C(R; R2)×R

2 satisfies

γ(0, τ∗, σn,
2π
βn

) =−sgn(σn) for every n ∈ N. (6.181)

Then by Theorem 6.15, there exists a connected component C
(

0, τ∗, σn,
2π
βn

)
of

the closure of all the nonconstant periodic solutions of system (6.169), bifurcated
from the stationary solution (0, τ∗, σn,

2π
βn
) in the Fuller space. Note that there is

no nonconstant periodic solution for the system (6.169) if σ = 0, since in this case,
x satisfies a scalar ordinary differential equation. Moreover, there is no bifurcation

point at σ = 0. Therefore, C
(

0, τ∗, σn,
2π
βn

)
is located in the Fuller space where σ

satisfies sgn(σn)σ > 0.

To prove the unboundedness of C
(

0, τ∗, σn,
2π
βn

)
in the Fuller space, we apply

the global Hopf bifurcation Theorem 6.17 to exclude the case that there are finitely

many bifurcation points in C
(

0, τ∗, σn,
2π
βn

)
.

Now we suppose there are finitely many bifurcation points {(0, τ∗, σn j ,
2π
βn j

)}q
j=1,

q ∈ N, in C
(

0, τ∗, σn,
2π
βn

)
. We know that C

(
0, τ∗, σn,

2π
βn

)
is located in

the Fuller space where σ satisfies sgn(σn)σ > 0. Then the bifurcation points
{(0, τ∗, σn j ,

2π
βn j

)}q
j=1 satisfy sgn(σn)σn j > 0 for all j ∈ {1, 2, · · · , q}.

Let εn j be the value of

sgndet

[(
∂

∂θ1
+ ∂

∂θ2

)
f̃ (θ1, θ2, σ) 0

∂
∂γ1

g̃(γ1, γ2, σ) ∂
∂γ2

g̃(γ1, γ2, σ)

]

evaluated at (θ1, θ2, σ) = (0, 0, σn j ) and (γ1, γ2, σ) = (0, τ∗, σn j ), where

f̃ (θ1, θ2, σ) =
[−μθ1 +σ2b(θ2)

]
, g̃(γ1, γ2, σ) = (1− h(γ1)(1+ tanh(γ2)) .

Then by (6.178) and (6.179), we have

εn j = 1 for all j = 1, 2, · · · ,q. (6.182)

By (6.181) and (6.182), we have

q

∑
j=1

εn j γ((0, τ∗, σn j ,
2π
βn j

) =−qsgn(σn) �= 0. (6.183)

Note that (α5) and (α6) implies (SHB4). Then by Theorem 6.17, (6.183) is a con-

tradiction. The unboundedness of C
(

0, τ∗, σn,
2π
βn

)
follows.
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(b) In order to verify assumption (SHB7), we claim that the virtual period pn of
every bifurcation point (0, τ∗, σn, 2π/βn) satisfies

mpn �= τ∗ for every m ∈N. (6.184)

Suppose that there exist m0, n0 ∈ N such that m0 pn0 = m0 · 2π/βn0 = τ∗. We
note that

βn ∈
(
(4n− 3)π

2τ∗
,
(4n− 2)π

2τ∗

)
for all n≥ 1. (6.185)

Then we have
4n0− 3 < 4m0 < 4n0− 2.

This is a contradiction, and the claim is proved.
We note that by (6.185), a sufficient condition for pn = 2π

βn
< τ∗, is that 2π

βn
<

4τ∗/(4n− 3)< τ∗, that is, n≥ 7/4. Therefore, every (0, τ∗, σn, pn) with n≥ 2 is a
bifurcation point of system (6.169) satisfying

pn < τ∗ for all n≥ 2. (6.186)

For the bifurcation point (0, τ∗, σ1, p1), we can conclude from (6.185) that

2τ∗ < p1 < 4τ∗. (6.187)

We want to obtain the uniform boundedness of the period in C(0, τ∗, σn,
2π
βn
)

with n ≥ 2. We only need to check the conditions (SHB6)–(SHB10) for applying
Theorems 6.21 and 6.22.

It is clear that (α4), (6.184), and (6.179) imply (SHB8), (SHB9), and (SHB6),
respectively. Also we conclude from (SHB2), (SHB4), and Lemma 6.20 that

p > 0 (6.188)

for every (x, τ, σ , p) ∈C(0, τ∗, σn,
2π
βn
). Also, by Lemma 6.31, we have

0 < τ(t)<−1
2

ln(2h0− 1) (6.189)

for every t ∈ R, and hence (SHB10) is satisfied. To check (SHB7), we let
{

1− h(x)(1+ tanhτ) = 0,

(1+ tanhτ)h′(x)
(−μx+σ2b(x)

)
= 0.

(6.190)

Then by (α1), (α4), and (α6), the solutions of (6.190) are stationary solutions
of (6.169). This verifies (SHB7).
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Therefore, we can use Theorems 6.21, 6.22, (6.186), (6.188), and (6.189) to
conclude that there exists some t ∈ R such that

0 < p < τ(t)<−1
2

ln(2h0− 1) (6.191)

for every (x, τ, σ , p) ∈ C(0, τ∗, σn,
2π
βn
) with n ≥ 2. Then by (6.187) and (6.191),

we know that (0, τ∗, σ1,
2π
β1
) �∈C

(
0, τ∗, σn,

2π
βn

)
for every n≥ 2. This proves (b).

(c) Let Σ be the projection of C
(

0, τ∗, σn,
2π
βn

)
on the σ -parameter space R. By

(a), we know that Σ ⊆ (0,+∞) if σn > 0 and Σ ⊆ (−∞, 0) if σn < 0. By Lemma 6.31,
we know that for every σ ∈ Σ , there exists a constant Mn(σ)> 0 such that

‖(x, τ)‖C(R;RN+1) ≤Mn(σ), (6.192)

where (x, τ, σ , p) is the solution associated with σ in C
(

0, τ∗, σn,
2π
βn

)
and Mn :

R � σ →Mn(σ) ∈ (0,+∞) is a continuous function on R.

We know from (6.191) that the projection of C
(

0, τ∗, σn,
2π
βn

)
on the p-

parameter space R is bounded. If Σ is bounded, then it follows from (a) that

the projection of C
(

0, τ∗, σn,
2π
βn

)
on the (x, τ)-space C(R; RN+1) must be

unbounded in the supremum norm. But by the continuity of Mn on R and

by (6.192), the projection of C
(

0, τ∗, σn,
2π
βn

)
on the (x, τ)-space C(R; RN+1)

is uniformly bounded with respect to σ ∈ Σ . This is a contradiction, and the proof is
complete. �

We conclude by noting that the global continuation of slowly oscillating periodic
solutions is addressed in [172].



Chapter 7
Bifurcation in Symmetric FDEs

7.1 Introduction

In the local theory of one-parameter families of nonlinear dynamical systems with a
loss of stability of an equilibrium, two types of bifurcation generically occur. These
are fold (also referred to as steady-state) bifurcations, for which the linearization has
a zero eigenvalue, and Hopf bifurcations, for which the eigenvalue is complex with
zero real part. Typically, branches of solutions bifurcate from the original equilib-
rium and are approximated to leading order by the corresponding eigenfunctions at
singularities; these branches are often referred to as modes. Generically we expect,
in a one-parameter system, to have only one critical mode. Multiple critical modes
are expected in systems with more than one parameter. A secondary bifurcation is
thought of as resulting from an interaction of several critical modes, called mode in-
teraction. Since there are two types of critical modes (steady-state and Hopf), there
may exist four types of mode interactions in two-parameter systems: (a) Bogdanov–
Takens bifurcations, (b) fold–fold bifurcation, (c) Hopf–fold, (d) Hopf–Hopf. For
example, the interaction of a fold bifurcation with a Hopf bifurcation can lead to
much richer dynamics than just the expected equilibria and periodic solutions, in-
cluding the possibility of an invariant 2-torus on which the flow may be periodic
or quasiperiodic; see Gavrilov [108], Langford [202], Guckenheimer [124], Broer
et al. [36, 42, 43], Kielhöfer [190], Kuznetsov [200, 201], Iooss and Langford [176].
As this torus grows fatter, generic perturbations can also lead to chaotic dynamics;
see Guckenheimer [126], Holmes [166], Langford [203–205].

If in addition the system is symmetric, that is, equivariant with respect to the
action of some group Γ , then generically, the eigenspace corresponding to a sin-
gle steady-state mode is irreducible under the action of the symmetry group, while
the eigenspace corresponding to a single Hopf mode is Γ -simple. However, in the
context of mode interactions, either the sum of zero eigenspaces can be assumed
nonirreducible actions, or there may be a degeneracy in the imaginary eigenspace,
which can split as the direct sum of two Γ -simple spaces.

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6 7,
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7.2 Fold Bifurcation

Consider the following one-parameter family of retarded functional differential
equations (RFDEs):

ẋ(t) = f (α,xt ), α ∈ R, (7.1)

where f ∈ Ck(R×Cn,τ ,R
n) for a large enough integer k, and f (0,0) = 0. We will

make use of the invariant notation for higher-order derivatives of functions of several
variables. If v1,v2, · · · ,v j ∈Cn,τ , we define

F j(α,v1,v2, · · · ,v j) =
∂ j

∂ t1∂ t2···∂ t j
f
(

α,∑ j
s=1 tsvs

)∣∣∣
t1=t2=···=t j=0

for j ∈ N. Then we have

f (α,ϕ) = f (α,0)+F 1(α,ϕ)+ · · ·+ 1
k!

F k(α,ϕ , · · · ,ϕ)+ o(‖ϕ‖k).

Obviously, L = F 1(0, ·) is the linearized operator of f (α,ϕ) with respect to ϕ at
(α,ϕ) = (0,0). By the Riesz representation theorem, there exists an n× n matrix-
valued function η : [−τ,0]→ R

n2
whose elements are of bounded variation such

that

Lϕ =

∫ 0

−τ
dη(θ )ϕ(θ ), ϕ ∈Cn,τ . (7.2)

Let A be the infinitesimal generator associated with the linear equation ẋ(t) = Lxt ,
and let Δ(λ ) be the characteristic matrix of the operator A . Recall that the bilinear
form 〈·, ·〉 is defined as

〈ψ ,ϕ〉= ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ −θ )dη(θ )ϕ(ξ )dξ (7.3)

for ψ ∈C∗n,τ and ϕ ∈Cn,τ .
If 0 /∈ σ(A ), that is, x = 0 is a hyperbolic equilibrium in the system for α = 0,

then under a small parameter variation, the equilibrium moves slightly but remains
hyperbolic.

7.2.1 Standard Fold Bifurcation

In this subsection, we always assume that:

(FB) The infinitesimal generator A has a simple eigenvalue 0.

Then detΔ(0) = 0, and hence there exist p ∈ R
n∗ and q ∈ R

n such that pΔ(0) = 0,
Δ(0)q= 0, and pΔλ (0)q= 1. Thus, the eigenspace of A associated with eigenvalue
0 is spanned by q̂, with the adjoint space spanned by p̂. Moreover, 〈p̂, q̂〉= 1.
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By the center manifold theorem, the reduced equation on the center manifold
Mc,α

loc is

ẋ(t) = G(α,x), x ∈ R, (7.4)

where G(α,x) = pF(α,qx+W(α,x)), F(α,ϕ) = f (α,ϕ)−Lϕ for α ∈R and ϕ ∈
Cn,τ , and W satisfies

d
dt

W = AQW +H(α,x), W (0,0) = 0, DxW (0,0) = 0,

and H(α,x) = [X0− qp]F(α,qx+W(α,x)). Let

G(α,x) =
k
∑

j+s=1

1
j!s! G jsα jxs + o(|(α,x)|k),

W (α,x) =
k
∑

j+s=1

1
j!s!Wjsα jxs + o(|(α,x)|k),

H(α,x) =
k
∑

j+s=1

1
j!s! Hjsα jxs + o(|(α,x)|k).

Obviously, G01 =W01 = H01 = 0, and

G10 = p fα(0,0),

G11 = pF 1
α(0,q),

G02 = pF 2(0,q,q),

G03 = p{3F2(0,q,W02)+F3(0,q,q,q)},
H10 = [X0− qp] fα(0,0),

H11 = [X0− qp]F 1
α(0,q),

H02 = [X0− qp]F 2(0,q,q).

We still need to compute Wjs, j+ s = 1,2, . . .. Noticing that

d
dt

W = DxW (α,x)ẋ = DxW (α,x)G(α,x),

we have [
∑

j+s≤k

1
j!(s−1)!Wjsα jxs−1

][
∑

j+s≤k

1
j!s! G jsα jxs

]

= ∑
j+s≤k

1
j!s! [AQWjs +Hjs]α jxs + o(|(α,x)|k).

Comparing coefficients, we obtain

AQWjs +Hjs = ∑
(p+r,q+l)=( j,s+1)

j!l!
p!(q−1)!r!s!WpqGrl (7.5)
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for j+ s≤ k. In particular,

AQW10 +H10 = 0,
AQW02 +H02 = 0.

(7.6)

It follows from the first equation that

Ẇ10 = qG10 (7.7)

and
LW10 = qG10− fα(0,0). (7.8)

From (7.7), we have W10(θ ) = qG10θ +E0, θ ∈ [−τ,0]. Substituting this into (7.8)
yields

Δ(0)E0 = fα(0,0)− qG10+

∫ 0

−τ
θdη(θ )qG10. (7.9)

Because of Keller [188], we know that the unique solution E0 to (7.9) satisfying
pE0=0 is

E0 = [Δ(0,0)]inv[ fα(0,0)− qG10+

∫ 0

−τ
θdη(θ )qG10].

Namely,

W10 = qG10θ +[Δ(0,0)]inv[ fα(0,0)− qG10+
∫ 0

−τ
θdη(θ )qG10].

Similarly, it follows from the second equation that

W02 = qG02θ +[Δ(0)]inv[F 2(0,q,q)− qG02+
∫ 0

−τ
θdη(θ )qG02].

Thus, we can evaluate G03.
Note that G(0,0) = 0 and Gx(0,0) = 0, the reduced equation (7.4) can undergo a

saddle-node bifurcation near (α,x) = (0,0) under the following condition:

(SN) G10G02 �= 0.

Thus, we have the following results.

Theorem 7.1. Under assumptions (FB) and (SN), system (7.1) undergoes a saddle-
node bifurcation near (α,x) = (0,0). Moreover, if G10G02 < 0 (respectively, > 0),
then near the origin, only two equilibria exist for α > 0 (respectively, < 0), only one
equilibrium x = 0 exists for α = 0, and no equilibria exist for α < 0 (respectively,
> 0).

If f (α,0) = 0 for all α ∈ R, then the function G(α,x) in the reduced equa-
tion (7.4) satisfies G(α,0) = 0 for all α ∈R. Thus, we have the following theorem.
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Theorem 7.2. In addition to condition (FB), assume that

(TR) f (α,0) = 0 for all α ∈ R, and G11G02 �= 0.

Then system (7.1) undergoes a transcritical bifurcation near (α,x) = (0,0). Namely,
besides the trivial solution, system (7.1) has a nonzero equilibrium, which continu-
ously depends on α for all sufficiently small |α|. Moreover, this nonzero equilibrium
is stable if the remaining eigenvalues of A have negative real parts and αG11 > 0,
and is unstable otherwise.

Furthermore, if f (α,−ϕ) = − f (α,ϕ) for all α ∈ R and ϕ ∈ Cn,τ . Then the
map W may be chosen such that W (α,−x) = −W (α,x). As a result, G(α,−x) =
−G(α,x). Therefore, we have the following result.

Theorem 7.3. In addition to condition (FB), assume that

(PF) f (α,−ϕ) =− f (α,ϕ) for all α ∈ R and ϕ ∈Cn,τ , G11G03 �= 0.

Then system (7.1) undergoes a pitchfork bifurcation near (α,x) = (0,0). Moreover,
if G11G03 < 0 (respectively, > 0), then two nontrivial equilibria exist for α > 0
(respectively, < 0), and only the trivial equilibrium continues to exist for α < 0
(respectively, > 0). Moreover, the two nontrivial equilibria coalesce into zero as α
goes to 0.

7.2.2 Fold Bifurcations with Z2-Symmetry

In this subsection, we consider system (7.1) under condition (FB) and the following
assumption:

(FBZ) System (7.1) is Z2-equivariant, where the group Z2 is equal to {Id,κ}with
κ �= Id and κ2 = Id.

Then we know that either κ ·q = q or κ ·q = −q. If κ ·q = q, then Z2 induces only
the identity map on R, and hence the symmetry provides no additional condition
on the reduced equation (7.4). Therefore, we can employ the same arguments as
in the previous subsection and obtain Theorems 7.1–7.3. However, the bifurcated
equilibria u(α) are invariant under κ , i.e., κ ·u(α) = u(α).

Now we consider the case κ · q = −q. Then the induced action of Z2 on R is
given by κ · x = −x for all x ∈ R. It follows from the symmetric center manifold
theorem that the function G(α,x) in the reduced equation (7.4) satisfies G(α,−x) =
−G(α,x) for all α and x ∈R. In view of Theorem 7.3, we have the following result.

Theorem 7.4. Under assumptions (FB), (FBZ), and G11G03 �= 0, if κ ·q =−q, then
system (7.1) undergoes a pitchfork bifurcation near α = 0. More precisely, we have
the following statements:
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(i) If G11G03 < 0, then two nontrivial equilibria u∗1,2(α) exist for α > 0 (which
are stable if G11 > 0 and all the remaining eigenvalues of A have negative
real parts, and unstable otherwise), and only the trivial equilibrium continues
to exist for α < 0. Moreover, the two nontrivial equilibria u∗1,2(α) satisfy κ ·
u∗1(α) = u∗2(α) and coalesce into the trivial equilibrium as α → 0+.

(ii) If G11G03 > 0, then two nontrivial equilibria u∗1,2(α) exist for α < 0 (which
are stable if G11 < 0 and all the remaining eigenvalues of A have negative
real parts, and unstable otherwise), and only the trivial equilibrium continues
to exist for α > 0. Moreover, the two nontrivial equilibria u∗1,2(α) satisfy κ ·
u∗1(α) = u∗2(α) and coalesce into the trivial equilibrium as α → 0−.

7.2.3 Fold Bifurcations with O(2)-Symmetry

Assume that system (7.1) is O(2)-equivariant, where the representation of O(2) on
R

n is given by the linear maps κ (flip) and {Rθ : θ ∈ R} ∼= S
1 (rotation) with Rθ ◦

Rυ = Rθ+υ , R0 = Idn, κ2 = I, and κRθ = R−θ κ . Namely,

(FBO1) f (α,Rθ ϕ) = Rθ f (α,ϕ) and f (α,κϕ) = κ f (α,ϕ) for all α ∈ R, ϕ ∈
Cn,τ , and θ ∈ S

1.

Moreover, assume that:

(FBO2) The infinitesimal generator A has a double eigenvalue 0.

Assumption (FBO2) means that the eigenspace P is two-dimensional. There ex-
ist ζ̂1 ∈ P and k ∈ Z such that Rθ ζ1 = eikθ ζ1. Setting ζ2 = κζ1, we have P =

span{ζ̂1, ζ̂2}. Hence, the action of O(2) on P∼= R
2 is given by

Rθ |P =

[
eikθ 0

0 e−ikθ

]
, κ |P =

[
0 1
1 0

]
.

Furthermore, it is possible to choose ζ̂ ∈ P such that κζ = ζ . Indeed, Rθ ζ = Rθ ζ =
e−ikθ ζ , so there is c ∈ C with κζ = cζ , which together with κ2 = Id, implies that
ζ = |c|2ζ . Thus, κζ = e2iε ζ for some ε . Defining ζ ′ = e−iε ζ , we have ζ ′ ∈ P and

κζ ′ = ζ ′. Therefore, we have P = {zζ̂ + zζ̂ : z ∈C}, and the reduced action of O(2)
on C is given by

Rθ z = eikθ z and κz = z. (7.10)

Thus, the reduced equation takes the form

ż = G(α,z,z), (7.11)

where G is a complex function satisfying

G(α,eikθ z,e−ikθ z) = eikθ G(α,z,z), G(α,z,z) = G(α,z,z)
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for all α ∈ R and z ∈C. Now we assume that k in (7.10) is not equal to 0, i.e.,

(FBO3) {Rθ : θ ∈R} ∼= S
1 acts nontrivially on P.

Then the first equation yields G(α,z,z) = zQ(α, |z|2), where Q is a complex func-
tion. The second function implies that the function Q is real. Therefore, in polar
coordinates z = reiφ , we have

ṙ = rQ(α,r2), φ̇ = 0.

The equation for r is a standard pitchfork bifurcation equation. Thus, if

∂Q
∂ r2 (0,0) �= 0, (7.12)

then there exists r(α) with Q(α,r2(α)) ≡ 0 for all small α . Thus, for every α ,

system (7.11) has solutions: z = z(α,φ) def
= r(α)eiφ . We have

R2π/kz(α,φ) = z(α,φ), κz(α,sπ) = z(α,sπ)

for all α ∈ R, φ ∈ R, and s ∈ Z. This, together with symmetric center manifold
theorem, implies the following result.

Theorem 7.5. Under assumptions (FBO1)–(FBO3), assume that (7.12) holds. Then
system (7.1) undergoes a cyclic pitchfork bifurcation near α = 0. Namely, there
exists a circle of equilibria parameterized by φ , denoted by x(α,φ), that satisfies
R2π/kx(α,φ) = x(α,φ) and κx(α,sπ) = x(α,sπ) for all α ∈ R, φ ∈R, and s ∈ Z.

7.3 Hopf Bifurcation

We now turn to the next simple case, in which the infinitesimal generator A as-
sociated with the linear system of (7.1) about the equilibrium has a pair of purely
imaginary eigenvalues ±iω with ω > 0, and all other eigenvalues of A are not
integer multiples of iω . Thus, system (7.1) may undergo a Hopf bifurcation. The
phenomenon of Hopf bifurcation concerns the birth of a periodic solution from an
equilibrium solution through a local oscillatory instability. Since 0 is not an eigen-
value of the infinitesimal generator A , the equilibrium in general moves as α varies
but remains isolated and close to the origin for all sufficiently small |α|. Thus, we
can perform a coordinate shift, placing this equilibrium at the origin. Therefore,
we may assume without loss of generality that f (α,0) = 0 for all α ∈ R, Thus,
system (7.1) can be written as

u̇ = L(α)ut + f̃ (α,ut), α ∈ R, (7.13)

where L(α)ϕ = F 1(α,ϕ) and f̃ (α,ϕ) = f (α,ϕ)−L(α)ϕ for (α,ϕ) ∈ R×Cn,τ .
Denote by Aα the infinitesimal generator associated with the linear system
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ẋ = L(α)xt . Obviously, L = L(0) and A = A0, where L and A are as defined
in the previous section. Let Δ(α,λ ) be the characteristic matrix of the operator Aα ,
i.e.,

Δ(α,λ ) = λ Idn−L(α)eλ (·).

In the subsequent subsections, we assume that f̃ (α,ϕ) has the Taylor expansion

f̃ (α,ϕ) =
1
2
F 2(α,ϕ ,ϕ)+ · · ·+ 1

k!
F k(α,ϕ ,ϕ , . . . ,ϕ)+ o(‖ϕ‖k), (7.14)

in ϕ and the Taylor expansion

f̃ (α,ϕ) =
1
2!

f2(α,ϕ)+ · · ·+ 1
k!

fk(α,ϕ)+O(|(α,ϕ)|k), (7.15)

in (α,ϕ), where f j(α,u) =H j((α,u), . . . ,(α,u)), and H j is a continuous multilin-
ear symmetric map from (R×Cn,τ)× ·· ·× (R×Cn,τ) ( j times) to R

n. Finally, we
also rewrite L(α) in the Taylor expansions

L(α) = L(0)+αL′(0)+ 1
2 α2L′′(0)+O(α3).

7.3.1 A Little History

The first results on Hopf bifurcation for retarded FDEs date back to work by Chafee
[54] in 1971. However, according to Hale [146], the first proof of the Hopf bifurca-
tion theorem for RFDEs under analytically computable conditions was presented by
Chow and Mallet-Paret [68] in 1977. Since then, a considerable number of studies
have been done by many authors, treating many aspects related to bifurcation of pe-
riodic solutions. For existence, uniqueness and regularity of the bifurcating branch,
several approaches have been undertaken: the averaging method was notably de-
veloped by Gumowski [127] and Chow and Mallet-Paret [68]. Another approach,
based on integral manifolds, was developed by Hale [154] and was further extended
to the case of infinite delay by Stech [271]. Arino [12] treated the same problem by
formulating an adapted implicit function theorem. Stech [271] used the Lyapunov–
Schmidt reduction method and generalized a proof given by De Oliveira and Hale
[80] in the case of ODEs to infinite delay differential equations. He also gaves a
computational scheme of bifurcation elements via an asymptotic expansion of the
bifurcation function. Staffans [270] established the theorem in a case analogous to
Stech’s for neutral functional differential equations, using the Lyapunov–Schmidt
reduction method. Adimy [3] proved a Hopf bifurcation theorem using integrated
semigroup theory. Diekmann et al. [81] tackled the problem of a lack of regularity
of the solution operator associated with a delay equation. Using the sun–star theory
of dual semigroups, they reduced the problem of bifurcation on a center manifold to
a planar ordinary differential equation. In [91, 92], Faria and Magalhães studied the
Hopf bifurcation problem by developing a normal form theory for retarded FDEs.
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If a system of FDEs is symmetric, i.e., it has a nontrivial group of symme-
tries, one expects that the system has symmetric orbits, symmetric fixed points, and
periodic orbits as well as symmetric attractors or repellers. Also, symmetric steady
states can generate symmetric patterns in the state space of the system. In 1998, Wu
[303] employed the same techniques as those in [146] to establish a Hopf bifurca-
tion for RFDEs with symmetry under the condition that the imaginary eigenspace is
isomorphic to the direct sum of two copies of the same absolutely irreducible rep-
resentation. Guo and Lamb [136] developed the theory of equivariant Lyapunov–
Schmidt procedures in NFDEs with symmetry to set up a more general equivariant
Hopf bifurcation theory and obtained some important explicit formulas giving the
relevant coefficients for the determinations of the monotonicity of the periods and
Hopf bifurcation direction of the bifurcating symmetric periodic solutions directly
in terms of the coefficients of the original equations.

The first results on bifurcation from periodic solutions in retarded FDEs dates
back to a work by Walther [289], who considered the bifurcation from slowly oscil-
lating periodic solutions of the scalar retarded FDE

d
dt

x(t) =−α f (x(t− 1)) (7.16)

under some symmetry conditions on f . Dormayer [83] considered (7.16) with a
class of nonmonotone functions f , periodic solutions y with the more general sym-
metry (S) y(·+ τ) = −y, for some τ > 0, that bifurcate from the primary branch at
some critical parameter. Their initial values lie on a smooth curve, and τ �= 2 except
at the bifurcation point. An example is f (x) =−x/(1+ x2).

7.3.2 Standard Hopf Bifurcation

We assume that

(HB1) Aα has a pair of simple complex conjugate eigenvalues λ (α) and λ (α),
satisfying λ (0) = iω with ω > 0 and crossing the imaginary axis transversely at
α = 0 (i.e., Reλ ′(0) �= 0).

(HB2) All other eigenvalues of A0 are not integer multiples of iω .

Assume that q is the eigenfunction of A0 associated with eigenvalue iω . Then
the associated eigenspace P is spanned by q and q. Assume that the adjoint space P∗
of P is spanned by p and p, where p ∈C∗n,τ satisfies 〈p,q〉 = 1 and 〈p,q〉 = 0. Let
Φ = (q,q) and Ψ = (p, p)T . By the center manifold theorem, we obtain the reduced
equation

ż = iωz+G(α,z,z), (7.17)

where z ∈ C, G(α,z,z) = p(0)F(α,zq + zq +W (α,z,z)), F(α,ϕ) = f̃ (α,ϕ) +
L(α)ϕ−Lϕ for (α,ϕ) ∈ R×Cn,τ , and W (α,z,z) satisfies
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d
dt

W = A W +H(α,z,z) (7.18)

with H(α,z,z) = [X0−ΦΨ(0)]F(α,zq+ zq+W(α,z,z)). Let

G(α,z,z) = ∑
s+k≥1

1
s!k!

Gα
skzszk and W (α,z,z) = ∑

s+k≥1

1
s!k!

W α
sk zszk.

Obviously, Gα
10 = λ ′(0)α + O(|α|2) and Gα

01 = O(|α|2). Moreover, in view of
Sect. 3.4.1, we have

G0
20 = p(0)F 2(0,q,q),

G0
11 = p(0)F 2(0,q,q),

G0
02 = p(0)F 2(0,q,q),

G0
21 = p(0)F 3(0,q,q,q)+ p(0)F 2(0,W 0

20,q)+ 2p(0)F 2(0,W 0
11,q),

where

W 0
20(θ ) =

i
ω

G0
20q(θ )+

i
3ω

G0
02q(θ )+E1e2iωθ ,

W 0
11(θ ) =

1
iω

G0
11q(θ )+

i
ω

G0
11q(θ )+E2,

and E1 and E2 are both n-dimensional vectors given by

E1 = [Δ(0,2iω)]−1F2(0,q,q), E2 = [Δ(0,0)]−1F2(0,q,q).

Therefore,

G0
21 = p(0)F 3(0,q,q,q)+ p(0)F 2(0,E1e2iω(·),q)+ 2p(0)F 2(0,E2,q)

+ i
3ω

{
6|G0

11|2 + |G0
02|2− 3G0

20G0
11

}
.

Next, employing the normalization as in Sect. 4.2.1, we obtain the following nor-
mal form:

ż = (iω +Gα
10)z+

1
2

C1(0)z|z|2 +O(α2|z|+ |(α,z)|4), (7.19)

where

C1(0) =
i
ω

[
G0

20G0
11− 2|G0

11|2−
1
3
|G0

02|2
]
+G0

21. (7.20)

Substituting the expressions for G0
20, G0

11, G0
02, and G0

21 into (7.20) gives

C1(0) = p(0)F 3(0,q,q,q)+ p(0)F 2(0,E1e2iω(·),q)+ 2p(0)F 2(0,E2,q).

(7.21)
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In polar coordinates z = riξ , we have

ṙ = Re{λ ′(0)}αr+ 1
2 Re{C1(0)}r3 +O(α2r+ |(r,α)|4),

ξ̇ = ω + Im{λ ′(0)}α + 1
2 Im{C1(0)}r2 +O(|(r,α)|3). (7.22)

We consider the following truncated system of (7.22):

ṙ = Re{λ ′(0)}αr+ 1
2 Re{C1(0)}r3,

ξ̇ = ω + Im{λ ′(0)}α + 1
2 Im{C1(0)}r2.

(7.23)

System (7.23) exhibits the same local bifurcation in a small neighborhood of the
origin with sufficiently small α . We first consider the amplitude equation,

ṙ = Re{λ ′(0)}αr+
1
2

Re{C1(0)}r3, (7.24)

since it is decoupled from ξ . Equation (7.24) always has the trivial equilibrium
r0 = 0. Other equilibria r of (7.24) satisfy 2Re{λ ′(0)}αr+Re{C1(0)}r3 = 0, which
has exactly one positive solution

r1 =

√
−2Re{λ ′(0)}α

Re{C1(0)} (7.25)

if and only if αRe{λ ′(0)}Re{C1(0)}< 0. Obviously, r1→ 0 as α→ 0. This implies
that system (7.19) has a branch of periodic solutions bifurcated from the origin that
exists for α > 0 (respectively, α < 0) if Re{λ ′(0)}Re{C1(0)} < 0 (respectively,
Re{λ ′(0)}Re{C1(0)}> 0).

The stability of the bifurcated periodic solutions is the same as that of r1. Note
that the eigenvalue of the linearized operator of the right-hand side of (7.24) at
r = r1 is r2

1Re{C1(0)}. It follows that the bifurcated periodic solutions are stable if
Re{C1(0)}< 0 and unstable otherwise.

Finally, we consider the phase equation for the bifurcated periodic solution
of (7.23) corresponding to the equilibrium r1. Namely,

ξ̇ = ω + Im{λ ′(0)}α +
1
2

Im{C1(0)}r2. (7.26)

It follows from (7.25) that

α =− r2
1Re{C1(0)}
2Re{λ ′(0)} .

Substituting the above expression of α into (7.26) yields

θ̇ = ω +
1
2

r2
1T2,
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where

T2 = Im{C1(0)}− Im{λ ′(0)}
Re{λ ′(0)}Re{C1(0)}.

Therefore, the period of the bifurcated periodic solutions is greater than 2π
ω (respec-

tively, < 2π
ω ) if T2 < 0 (respectively, > 0).

We summarize the above discussion as follows.

Theorem 7.6. In addition to conditions (HB1)–(HB2), assume that Re{C1(0)} �= 0.
Then system (7.19) undergoes a Hopf bifurcation. Moreover, Re{λ ′(0)}Re{C1(0)}
determines the directions of the Hopf bifurcation: if Re{λ ′(0)}Re{C1(0)} < 0
(respectively, > 0), then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solutions exist for α > 0 (respectively, < 0); Re{C1(0)}
determines the stability of the bifurcating periodic solutions: the periodic solu-
tions are orbitally stable (unstable) if Re{C1(0)} < 0 (respectively, > 0); and T2

determines the period of the bifurcating periodic solutions: the period increases
(respectively, decreases) if T2 < 0 (respectively, > 0).

To apply this theorem to specific systems, we need to know Re{λ ′(0)} and
Re{C1(0)}. In principle, Re{C1(0)} is relatively straightforward to calculate. We
simply carefully keep track of the coefficients in the normal form transformation in
terms of our original vector field. However, in practice, the algebraic manipulations
are horrendous.

7.3.3 Equivariant Hopf Bifurcation

In this section we consider system (7.13) with α ∈ R under the following assump-
tions:

(EHB1) Aα has a pair of complex conjugate eigenvalues λ (α) and λ (α), each of
multiplicity m, satisfying λ (0) = iω with ω > 0 and crossing the imaginary axis
transversely at α = 0 (i.e., Reλ ′(0) �= 0).

(EHB2) All other eigenvalues of A0 are not integer multiples of iω .
(EHB3) System (7.13) is Γ -equivariant, and the eigenspace P associated with

eigenvalue±iω is Γ -simple, where Γ is a compact Lie group.

Assume that ϕ j ∈ Cn,τ , j = 1,2, . . . ,m, are the eigenfunctions of A0 associated
with eigenvalue iω . Then the associated eigenspace P is spanned by ϕ j and ϕ j,
j = 1,2, . . . ,m. Assume that the adjoint space P∗ of P is spanned by ψ j and ψ j,
j = 1,2, . . . ,m, where ψ j ∈C∗n,τ satisfies 〈ψ j,ϕs〉= δ js and 〈ψ j,ϕs〉= 0 for all j,s ∈
{1,2, . . . ,m}. Let Φ = (ϕ1, . . . ,ϕm,ϕ1, . . . ,ϕm) and Ψ = (ψ1, . . . ,ψm,ψ1, . . . ,ψm)

T .
Then 〈Ψ ,Φ〉 = Id2m. By the center manifold theorem, we obtain the reduced Γ -
equivariant equation

ż j = iωz j +G j(α,z), (7.27)
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where z = (z1,z2, . . . ,zm)
T ∈ C

m, G j(α,z) = ψ j(0)F(α,2∑m
j=1 Re{z jϕ j}

+W(α,z)), and W (α,z) satisfies

d
dt

W = A W +H(α,z) (7.28)

with H(α,z) = [X0 − ΦΨ (0)]F(α,2∑m
j=1 Re{z jϕ j} + W (α,z)). In view of

F(α,0) = 0 for all α = 0, we have W (α,0) = 0 for all α ∈ R. Therefore,

∂ 2

∂α∂ zs
G j(0,0) = ψ j(0)L

′(0)ϕs = λ ′(0)δ js

and
∂ 2

∂α∂ z̄s
G j(0,0) = ψ j(0)L

′(0)ϕs = 0.

Therefore, the eigenvalue of the Jacobian matrix of G(α,z) = (G1(α,z), . . . ,Gm

(α,z))T at z = 0 is σ(α), of multiplicity m, where σ(α) = iω +αλ ′(0)+ o(|α|).
It follows from assumption (EHB1) that σ ′(0) �= 0. Therefore, all the conditions of
the equivariant Hopf bifurcation theorem for ODE (7.27) established by Golubitsky
et al. [118] are satisfied. Thus, we have established the corresponding equivariant
Hopf bifurcation theorem for the RFDE (7.13).

Theorem 7.7. Under assumptions (EHB1)–(EHB3), let Σ ≤ Γ ×S
1 be such that Σ

is a maximal isotropy subgroup of Γ ×S
1 with respect to their representations on

P. Then there exists a unique branch of small-amplitude periodic solutions to (7.13)
with period near 2π

ω having Σ as their group of symmetry.

It is easy to see that the Hopf-bifurcating periodic solutions of (7.13) have the
same bifurcation direction as those of the corresponding Hopf-bifurcating periodic
solutions of (7.27) on the center manifold. However, there is a little difference in
their stability. If A0 has one eigenvalue with positive real part, then there exists
an unstable manifold containing the trivial solution of (7.13), and hence all Hopf-
bifurcating periodic solutions of (7.13) near α = 0 are unstable; even the corre-
sponding Hopf-bifurcating periodic solutions of (7.27) on the center manifold are
stable. If all eigenvalues but ±iω have strictly negative real parts, then the Hopf-
bifurcating periodic solutions of (7.13) have the same stability as those of the corre-
sponding Hopf-bifurcating periodic solutions of the reduced ODE (7.27).

In the following, we look for periodic solutions to (7.27) with period approxi-
mately 2π

ω by rescaling time as

s = (1+ ς)t (7.29)

for a new period-scaling parameter ς near 0. This yields the system

(1+ ς)
d
ds

ν = iων +G(α,ν), (7.30)

where ν(s) = ν((1+ς)t) = z(t). Then 2π
ω -periodic solutions to (7.30) correspond to

2π
(1+ς)ω -periodic solutions to (7.27). It follows from the S1-equivariance of the above
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normal form that the S1-action on a solution is identified with the phase shift. Hence
ν(t) = eiωtν(0), where ν(0) satisfies the steady-state equation:

iωςν = G(α,ν). (7.31)

Therefore, the bifurcations of small-amplitude periodic solutions of (7.27) are com-
pletely determined by the solutions of (7.31), and their orbital stability is determined
by the signs of the eigenvalues of

− iως Idm +Gν(α,ν(0)). (7.32)

According to Theorem 6.5 on the Page 297 of Golubitsky et al. [118], we have the
following results.

Theorem 7.8. In addition to assumptions (EHB1)–(EHB3), assume that all
eigenvalues but ±iω of A0 have strictly negative real parts. Let u(t;α) be a
small-amplitude Σ -symmetric T -periodic solution of (7.13), which corresponds
to the solution ν(α,ς) of (7.31). Then u(t;α) is orbitally asymptotically stable
if the (2m− 1− dimΓ + dimΣ)-eigenvalues of (7.32) that are not forced to zero
by the group action have negative real parts, while it is unstable if one of these
eigenvalues has positive real part.

7.3.4 Application to Dn-Equivariant Hopf Bifurcation

In this subsection, we consider a special case in which m = 2 and Γ is the 2n-order
dihedral group Dn with n ≥ 3. Recall that Dn is generated by the permutation γ of
order n and the flip κ of order 2. Thus, assumptions (EHB1)–(EHB3) reduce to the
following assumptions:

(DHB1) Aα has a pair of complex conjugate eigenvalues λ (α) and λ (α), each
of multiplicity 2, satisfying λ (0) = iω with ω > 0 and Re{λ ′(0)}> 0.

(DHB2) All other eigenvalues of A0 have strictly negative real parts.
(DHB3) System (7.13) is Dn-equivariant (n≥ 3).

Assumptions (DHB1) and (DHB2) imply that the trivial solution of (7.13) is
subcritically stable and loses stability as α passes through 0. Let P and P∗ be the
eigenspaces of A0 and A ∗

0 associated with ±iω , respectively. Let 2π
n denote a gen-

erator of Zn. Then there exist v1 ∈ C
n and u1 ∈ C

n∗ such that 2π
n · v1 = ei 2kπ

n v1 for
some positive integer k < n, and

Δ(0, iω)v1 = 0, u1Δ(0, iω) = 0, u1Δλ (0, iω)v1 = 1.

Setting u2 = κ · u1 and v2 = κ · v1, we have P = span{ϕ1,ϕ1,ϕ2,ϕ2} and P∗ =
span{ψ1,ψ1,ψ2,ψ2}, where ϕ j(θ ) = v jeiωθ and ψ j(θ ) = u jeiωθ for θ ∈ [−τ,0],
j = 1,2. Then 〈ψ j,ϕs〉 = δ js and 〈ψ j,ϕs〉 = 0 for all j,s ∈ {1,2}. Let Φ =

(ϕ1,ϕ1,ϕ2,ϕ2) and Ψ = (ψ1,ψ1,ψ2,ψ2)
T . Then 〈Ψ ,Φ〉= Id4.
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Clearly, P and P∗ are Dn×S
1-invariant. Let γ = 2kπ

n . Then γ can be regarded as
a generator of Zn∗ , where

n∗ =
n

gcd(k,n)
, (7.33)

and gcd(k,n) denotes the greatest common divisor of k and n. Then the action Dn×
S

1 on P induces the action of Dn∗ ×S
1 on C

2, which is given by

γ · (z1,z2) = (eiγ z1,e−iγ z2), γ ∈ Zn∗ ,
κ · (z1,z2) = (z2,z1), κ ∈ Z2,
θ · (z1,z2) = (z1eiθ ,z2eiθ ), θ ∈ S

1.
(7.34)

Obviously, C2 and so P are Dn-simple.
In order to apply Theorem 7.7, we need to find all the maximal isotropy sub-

groups of Dn∗ ×S
1. In fact, Dn∗ ×S

1 always has three maximal isotropy subgroups,
see Table 7.1, where Z̃n∗ = {(γ,−γ):γ ∈ Zn∗}, Z2(κ) = {(0,0),κ}, Z2(κ ,π) =
{(0,0),(κ ,π)}, and Z

c
2 = {(0,0),(π ,π)}, Z2(κ) ⊕ Z

c
2 = {(0,0),(π ,π),(κ ,0),

(κπ ,π)}, Z2(κ ,π) ⊕ Z
c
2 = {(0,0),(κ ,π),(κπ ,0),(π ,π)}. It follows from the

equivariant Hopf theorem, Theorem 7.7, that there are (at least) three branches
of periodic solutions occurring generically in Hopf bifurcation with Dn∗ symmetry.
In what follows, we discuss the stabilities along those branches.

Table 7.1 Isotropy subgroups of Dn∗ ×S1 acting on C2

n∗ Isotropy subgroups Fixed-point subspace Dimensions
Dn∗ ×S

1 (0,0) 0
Z̃n∗ {(z1 ,0)} 2

n∗ is odd Z2(κ) {(z1 , z1)} 2
Z2(κ ,π) {(z1 ,−z1)} 2
I C

2 4
Dn∗ ×S1 (0,0) 0
Z̃n∗ {(z1 ,0)} 2

n∗ = 2 (mod4) Z2(κ)⊕Zc
2 {(z1 , z1)} 2

Z2(κ ,π)⊕Zc
2 {(z1 ,−z1)} 2

Z
c
2 C

2 4
Dn∗ ×S

1 (0,0) 0
Z̃n∗ {(z1 ,0)} 2

n∗ = 0 (mod4) Z2(κ)⊕Z
c
2 {(z1 , z1)} 2

Z2(κγ)⊕Z
c
2 {(z1 ,eiγz1)} 2

Zc
2 C2 4

The nonresonance conditions are obviously satisfied. Thus, we can obtain the
following Dn∗ ×S

1-equivariant normal form:

ż j = iωz j +G j(α,z1,z2), j = 1,2. (7.35)
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It follows from the Dn∗ ×S
1-equivariance that G = (G1,G2)

T takes the form

G(α,z1,z2) = B

[
z1

z2

]
+C

[
z2

1z1

z2
2z2

]
+D

[
zk∗−1

1 zk∗
2

zk∗
1 zk∗−1

2

]
+E

[
zk∗+1

1 zk∗
2

zk∗
1 zk∗+1

2

]
, (7.36)

where k∗ = n∗ if n∗ is odd and n∗
2 otherwise, and B, C, D, E are complex-

valued Dn∗ × S
1-invariant functions. Namely, B, C, D, E are functions of α , � j,

j = 1,2,3,4, where �1 = |z1|2 + |z2|2, �2 = |z1|2|z2|2, �3 = (z1z2)
k∗ + (z1z2)

k∗ ,
�4 = i(|z1|2−|z2|2)[(z1z2)

k∗ − (z1z2)
k∗ ].

For the simplification of notation, we introduce the operatorΘ :V 5
j (C)→V 5

j (C
4)

defined by

Θ(czq1
1 zq2

1 zq3
2 zq4

2 α l) =

⎡
⎢⎢⎣

czq1
1 zq2

1 zq3
2 zq4

2 α l

czq2
1 zq1

1 zq4
2 zq3

2 α l

czq3
1 zq4

1 zq1
2 zq2

2 α l

czq4
1 zq3

1 zq2
2 zq1

2 α l

⎤
⎥⎥⎦

for c ∈ C, q = (q1,q2,q3,q4) ∈ N
4
0, and l ∈ N0 with |(q, l)| = j. Obviously, Θ(z+

y) =Θ(z)+Θ(y) for z,y ∈V 5
j (C). Let

Θ (G1(α,z1,z2)) =
1
2

g1
2(α,z,0)+

1
6

g1
3(α,z,0)+ · · · .

Then g1
2(α,z,0) =Θ(J0αz1), and

g1
3(α,z,0) =Θ

(
K0α2z1 +K1z1|z1|2 +K2z1|z2|2

)

if n∗ ≥ 3 and n∗ �= 4, or

g1
3(α,z,0) =Θ

(
K0α2z1 +K1z1|z1|2 +K2z1|z2|2 +K3z1z2

2

)

if n∗ = 4. In the sequel, we will not calculate K0, because it does not have much
effect in our bifurcation analysis. Our main purpose is to obtain concrete formulas
of the complex coefficients J0, K1, K2, and K3.

Let

f 1
j (α,z,y) = Ψ(0)Fj(α,Φz+ y),

f 2
j (α,z,y) = [X0−ΦΨ(0)]Fj(α,Φz+ y),

for j ≥ 2, z ∈C
4, y ∈ Q, where Φz = 2Re{ϕ1z1 +ϕ2z2}, Q denotes the space com-

plementary to P in BCn, Fj is the jth Fréchet derivative of F(α,ϕ) with respect to
α ∈R and ϕ ∈Cn,τ . As in Sect. 4.3.2, we write (7.13) as

ż = Ωz+ ∑
j≥2

1
j! f 1

j (α,z,y),

dy
dt = AQy+ ∑

j≥2

1
j! f 2

j (α,z,y),
(7.37)
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where Ω = diag(iω ,−iω , iω ,−iω). With the change of variables

(z,y) = (ẑ, ŷ)+ 1
j!(U

1
j (α, ẑ),U2

j (α, ẑ)), (7.38)

and dropping the hats for simplicity of notation, (7.37) becomes

ż = Ωz+ 1
2 g1

2(α,z,y)+ 1
3! f

1
3(α,z,y)+ · · · ,

dy
dt = AQy+ 1

2 g2
2(α,z,y)+ 1

3! f
2
3(α,z,y)+ · · · , (7.39)

where g2 = (g1
2,g

2
2), f̂2 = ( f 1

2 , f 2
2 ), and f̄3 = ( f 1

3 , f 2
3 ) satisfy

g2 = f2−M2U2 (7.40)

and

f̄3 = f3 +
3
2
[(Dz,y f2)U2− (Dz,yU2)g2] . (7.41)

Here, the operator M2 = (M1
2,M

2
2) is defined in Chap. 4. Thus, we may have

g1
2(α,z,y) = ProjKerM1∗

2
f 1
2 (α,z,y).

Let

f j(α,Φz) = ∑
|(q,l)|= j

A(q,l)z
qα l . (7.42)

Obviously,

A(q1,q2,q3,q4,l) = A(q2,q1,q4,q3,l)

for all q= (q1,q2,q3,q4)∈N4
0 and l ∈N0 with |(q, l)| ≥ 2. It follows from f̃ (α,0) =

0 and f̃ϕ (α,0) = 0 for all α ∈R that A(q, j−1) = A(0, j) = 0 for all q with |q|= 1 and
j ≥ 2. Moreover, by the equivariance of f j,

κ ·A(q1,q2,q3,q4,l) = A(q3,q4,q1,q2,l)

for all q = (q1,q2,q3,q4) ∈N4
0 and l ∈N0 with |(q, l)| ≥ 2. Notice that f 1

2 (α,z,0) =
Ψ(0) f2(α,Φz)+ 2αΨ (0)L′(0)Φz. Then we have

f 1
2 (α,z,0) =Θ

(
2αu1L′(0)Φz+∑|q|=2 u1A(q,0)z

q
)
.

Note that

M1
j(z

qα lek) = iω
[
q1− q2 + q3− q4 +(−1)k

]
zqα lek

for all 1 ≤ k ≤ 4, q ∈ N
4
0, and l ∈ N0 with |(q, l)| = j, where {e1,e2,e3,e4} is the

canonical basis for C4. Thus,

g1
2(α,z,0) = 2αΘ

(
λ ′(0)z1

)
,
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i.e., J0 = 2λ ′(0). Moreover, we have U2(α,z) = M−1
2 [ f̂2(α,z,0)− g(α,z,0)], that

is,

U1
2 (α,z)=Θ

(
u1
iω

[−αL′(0)(z1ϕ2 + z2ϕ4)+∑|q|=2(q1−q2+q3−q4−1)−1A(q,0)z
q
])

,

and U2
2 (α,z) = h(α,z) is the unique solution in V 5

2 (Q) of the equation

(M2
2h)(α,z) = [X0−ΦΨ(0)]

[
2αL′(0)(Φz)+ f2(α,Φz)

]
. (7.43)

Namely,

iω [z1Dz1h− z1Dz1 h+ z2Dz2h− z2Dz2h]− ḣ+X0[ḣ(0)−L(0)h]
= [X0−ΦΨ(0)] [2αL′(0)(Φz)+ f2(α,Φz)] .

We write U2
2 (z,α) in the form

U2
2 (α,z) = ∑

|(q,l)|=2

h(q,l)z
qα l .

Then (7.43) is equivalent to the following equations:

ḣ(2,0,0,0,0)(θ )− 2iωh(2,0,0,0,0)(θ ) = ΦΨ (0)A(2,0,0,0,0),

ḣ(0,0,2,0,0)(θ )− 2iωh(0,0,2,0,0)(θ ) = ΦΨ (0)A(0,0,2,0,0),

ḣ(1,0,1,0,0)(θ )− 2iωh(1,0,1,0,0)(θ ) = ΦΨ (0)A(1,0,1,0,0),

ḣ(1,1,0,0,0)(θ ) = ΦΨ (0)A(1,1,0,0,0),

ḣ(0,0,1,1,0)(θ ) = ΦΨ (0)A(0,0,1,1,0),

ḣ(1,0,0,1,0)(θ ) = ΦΨ (0)A(1,0,0,1,0),

ḣ(0,1,1,0,0)(θ ) = ΦΨ (0)A(0,1,1,0,0),

(7.44)

with the boundary conditions

ḣ(2,0,0,0,0)(0)−L(0)h(2,0,0,0,0) = A(2,0,0,0,0),

ḣ(0,0,2,0,0)(0)−L(0)h(0,0,2,0,0) = A(0,0,2,0,0),

ḣ(1,0,1,0,0)(0)−L(0)h(1,0,1,0,0) = A(1,0,1,0,0),

ḣ(1,1,0,0,0)(0)−L(0)h(1,1,0,0,0) = A(1,1,0,0,0),

ḣ(0,0,1,1,0)(0)−L(0)h(0,0,1,1,0) = A(0,0,1,1,0),

ḣ(1,0,0,1,0)(0)−L(0)h(1,0,0,1,0) = A(1,0,0,1,0),

ḣ(0,1,1,0,0)(0)−L(0)h(0,1,1,0,0) = A(0,1,1,0,0).

(7.45)

With U2 at our disposal, we can find g1
3(α,z,0), which is the projection of

f̄3(α,z,0) on KerM1∗
3 . It follows that the complex coefficients K1, K2, and K3 are

given as follows:

K1 = u1A(2,1,0,0,0) +
3

2iω
[−u1A(2,0,0,0,0)u1A(1,1,0,0,0) + |u1A(1,1,0,0,0)|2

+ 2
3 |u1A(0,2,0,0,0)|2 + u1A(0,1,1,0,0)u1A(0,0,2,0,0)− u1A(1,0,1,0,0)u1A(0,0,1,1,0)
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+u1A(1,0,0,1,0)u1A(0,0,1,1,0) +
1
3 u1A(0,1,0,1,0)u1A0,0,2,0,0

]
+3u1H2((0,ϕ1),(0,h(1,1,0,0,0)))+ 3u1H2((0,ϕ1),(0,h(2,0,0,0,0))),

K2 = u1A(1,0,1,1,0) +
3

2iω
[−2u1A(2,0,0,0,0)u1A(0,0,1,1,0)

+u1A(1,1,0,0,0)u1A(0,0,1,1,0) +
1
3 |u1A(0,1,0,1,0)|2

+|u1A(0,1,1,0,0)|2 + u1A(0,0,1,1,0)u1A(1,0,1,0,0)

−2u1A(0,0,2,0,0)u1A(0,1,1,0,0)− u1A(1,0,1,0,0)u1A(1,1,0,0,0)

+u1A(1,0,0,1,0)u1A(1,1,0,0,0) +
2
3 u1A(0,0,0,2,0)u1A(1,0,1,0,0)

+u1A(0,0,1,1,0)u1A(0,1,1,0,0)
]
+ 3u1H2((0,ϕ1),(0,h(0,0,1,1,0)))

+3u1H2((0,ϕ2),(0,h(1,0,0,1,0)))+ 3u1H2((0,ϕ2),(0,h(1,0,1,0,0))),

K3 = u1A(0,1,2,0,0) +
3

2iω
[
u1A(1,1,0,0,0)u1A(0,0,2,0,0)− u1A(1,0,1,0,0)u1A(0,1,0,1,0)

+ 2
3 u1A(0,2,0,0,0)u1A(0,0,2,0,0) + u1A(0,1,1,0,0)u1A(2,0,0,0,0)

−2u1A(0,0,2,0,0)u1A(1,0,0,1,0) + u1A(0,1,1,0,0)u1A(0,1,1,0,0)

+ 1
3 u1A(0,1,0,1,0)u1A(2,0,0,0,0) + u1A(0,0,1,1,0)u1A(1,0,0,1,0)

]
+3u1H2((0,ϕ1),(0,h(0,0,2,0,0)))+ 3u1H2((0,ϕ2),(0,h(0,1,1,0,0))).

Consequently, we can obtain the coefficients for up to third-order terms of G
in (7.36) as follows:

Bα(0) = λ ′(0), B�1(0) =
1
6

K2, C(0) =
1
6
(K1−K2). (7.46)

In particular, if n∗ = 4, then D(0) = K3/6.
It follows from Theorem 7.8 that bifurcations of small-amplitude Σ -symmetric

periodic solutions of (7.13) correspond to the zeros of the function H : C2×R×
R→ C

2 given by

H(ν,α,ς) =−iςων +G(α,ν1,ν2), (7.47)

and their orbital stability is determined by the signs of the eigenvalues of

DνH(ν,α,ς) =−iςωId2 +DνG(α,ν1,ν2). (7.48)

By (7.46),

H(ν,α,ς) =
[
αλ ′(0)− iςω + 1

6 K0α2 + 1
6 K2(|ν1|2 + |ν2|2)

][ν1

ν2

]

+ 1
6(K1−K2)

[
ν2

1 ν1

ν2
2 ν2

]
+O(|α,ν|3)

(7.49)
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if n∗ ≥ 3 and n∗ �= 4, and

H(ν,α,ς) =
[
αλ ′(0)− iςω + 1

6 K0α2 + 1
6 K2(|ν1|2 + |ν2|2)

][ν1

ν2

]

+ 1
6(K1−K2)

[
ν2

1 ν1

ν2
2 ν2

]
+ 1

6 K3

[
ν1ν2

1
ν2

1 ν2

]
+O(|α,ν|3)

(7.50)

if n∗ = 4. According to the properties of the Dn∗-symmetric Hopf bifurcation equa-
tion (see [118, Theorem 3.1 on Page 382] for more details), we have the following
results.

Theorem 7.9. Under assumptions (DHB1)–(DHB3), assume that the following non-
degeneracy condition holds:

Re{K1}Re{K1 +K2}Re{K1−K2}Re{(K1−K2)D(0)} �= 0. (7.51)

If n∗ ≥ 3 and n∗ �= 4, then near α = 0, system (7.13) undergoes Hopf bifurcations
and has at least one branch of small amplitude, near- 2π

ω -periodic solutions, for each
of the isotropy subgroups Z̃n∗ , Z2(κ) (when n∗ is odd), or Z2(κ)⊕Z

c
2 (when n∗ is

even); and Z2(κ ,π) (when n∗ is odd), Z2(κ ,π)⊕Z
c
2 (when n∗ = 2(mod4)), or

Z2(κγ)⊕Z
c
2 (when n∗ = 0(mod4)). The bifurcation direction and stability of each

branch of bifurcated periodic solutions are completely determined by K1, K2, and
D(0):

(i) The Z̃n∗ branch is supercritical (respectively, subcritical) if Re(K1) < 0 (re-
spectively, > 0). It is stable if Re(K2)< Re(K1)< 0.

(ii) The Z2(κ) branch is supercritical (respectively, subcritical) if Re(K1 +K2)< 0
(respectively, > 0). It is stable if Re(K1) < Re(K2) < −Re(K1) and Re{(K1−
K2)D(0)}< 0.

(iii) The Z2(κ ,π), Z2(κ ,π)⊕ Z
c
2, or Z2(κγ)⊕ Z

c
2 branch is supercritical (re-

spectively, subcritical) if Re(K1 +K2) < 0 (respectively, > 0). It is stable if
Re(K1)< Re(K2)<−Re(K1) and Re{(K1−K2)D(0)}> 0.

Remark 7.1. As for D(0), we have to resort to a more complicated calculation of
(2k∗ −1)-order terms of the normal form (7.35). Nevertheless, it is not necessary to
do so, because D(0) has nothing to do with the bifurcation direction for each branch
of bifurcated periodic solutions of (7.13) with n∗ ≥ 3 and n∗ �= 4. As for stability,
the stability of the Z̃n∗ branch does not depend on D(0). Even for other types of
branches, Re(K1) < Re(K2) < −Re(K1) is a necessary condition for stability. If
this condition fails, we can immediately conclude that such branches are unstable
without computing D(0).

Remark 7.2. If the nondegeneracy condition (7.51) does not hold, then we must pro-
ceed with computing the coefficients of g1

j ( j≥ 4) in the normal form, up to the first
nonvanishing coefficients.
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Theorem 7.10. Under assumptions (DHB1)–(DHB3), assume that the following
nondegeneracy conditions hold:

Re{K1}Re{K1−K2} �= 0,

Re{K1 +K2 +K3}Re{K1 +K2−K3} �= 0,

Re{K1−K2 + 3K3}Re{K1−K2− 3K3} �= 0,

|K3|2 +Re{(K1−K2)K3} �= 0,

|K3|2−Re{(K1−K2)K3} �= 0,

|K1−K2|2 �= |K3|2.
If n∗ = 4, then near α = 0, system (7.13) undergoes Hopf bifurcations and has
at least one branch of small amplitude, near- 2π

ω -periodic solutions, for each of the
isotropy subgroups Z̃4, Z2(κ)⊕Z

c
2, and Z2(κγ)⊕Z

c
2. The bifurcation direction and

stability of each branch of bifurcated periodic solutions are completely determined
by K1, K2, and K3:

(i) The Z̃4 branch is supercritical (respectively, subcritical) if Re(K1)< 0 (respec-
tively, > 0). It is stable if Re(K2)< Re(K1)< 0 and |K1−K2|2 > |K3|2.

(ii) The Z2(κ)⊕Z
c
2 branch is supercritical (respectively, subcritical) if Re(K1 +

K2 +K3)< 0 (respectively, > 0). It is stable if Re(K1 +K2 +K3)< 0, Re(K1−
K2− 3K3)< 0, and |K3|2−Re{(K1−K2)K3}> 0.

(iii) The Z2(κγ)⊕Z
c
2 branch is supercritical (respectively, subcritical) if Re(K1 +

K2−K3)< 0 (respectively, > 0). It is stable if Re(K1 +K2−K3)< 0, Re(K1−
K2 + 3K3)< 0, and |K3|2 +Re{(K1−K2)K3}> 0.

7.3.5 Hopf Bifurcation in a Ring Network

In this section, we consider the influence of the delay on the behavior of a ring
network modeled by the following system of delay differential equations:

u̇i(t) =−ui(t)+ f (ui(t− τ))− [g(ui−1(t− τ))+ g(ui+1(t− τ))], (7.52)

where i (mod n), f ,g ∈ C1(R;R) with f (0) = g(0) = 0. It can be seen that system
(7.52) is bidirectional in the sense that the growth rate of the ith neuron depends
on the excitatory (positive) self-feedback and the inhibitory (negative) feedback
from the (i− 1)th and the (i+ 1)th neurons. Thus, if the transfer functions f and
g are monotonically increasing, then the network modeled by (7.52) has on-center
off-surround characteristics.

We note that with the transformation xi(t) = ui(τt) for i(mod n) and h = f − 2g,
we can rewrite (7.52) as the following system of delay differential equations:

ẋi = −τxi(t)+ τh(xi(t− 1))
−τ[g(xi−1(t− 1))+ g(xi+1(t− 1))− 2g(xi(t− 1))],

(7.53)

where i(mod n).
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We denote a symmetric circulant matrix by J = circ(a1,a2, · · · ,an), where Ji j =
a j−i+1 and ai = an−i+2, i(mod n). Clearly, we have the following properties (for
more details about the proof, we refer to [133]).

Lemma 7.1. Denote by ρ the generator of the cyclic subgroup Zn and κ the flip.
Define the action of Dn on R

n by

(ρx)i = xi+1, (κx)i = xn+2−i

for all i(mod n) and x ∈ R
n. Then system (7.53) is Dn-equivariant.

The linearization of (7.53) at the origin leads to

ẋi =−τxi(t)+ τζxi(t− 1)− τη [xi−1(t− 1)+ xi+1(t− 1)− 2xi(t− 1)], (7.54)

where i(mod n), ζ = h′(0), and η = g′(0). The associated characteristic equation
of (7.54) takes the form

detΔ(τ,λ ) = 0,

where the characteristic matrix Δ(τ,λ ) is given by

Δ(τ,λ ) = (λ + τ)Id− τMe−λ , λ ∈ C

with Id denoting the identity matrix and M = circ(ζ + 2η ,−η ,0, · · · ,−η). We put
χ = e2π i/n and vk = (1,χk,χ2k, · · · ,χ (n−1)k)T , k ∈ {0,1, . . . ,n− 1}. Clearly, v0 =
(1,1, · · · ,1)T and vk = vn−k. It is easy to see that Mvk = (ζ +4η sin2 kπ

n )vk for all k.
Thus, we have

detΔ(τ,λ ) =
n−1

∏
k=0

[λ + τ− (ζ + 4η sin2 kπ
n
)τe−λ ].

Throughout this section, we always assume that there exists some
k ∈ {0,1,2, . . . ,n− 1} such that

∣∣∣∣ζ + 4η sin2 kπ
n

∣∣∣∣> 1. (7.55)

Define

βk,s
def
=

⎧⎨
⎩

2sπ + arccos 1
ζ+4η sin2 kπ

n
ζ + 4η sin2 kπ

n <−1,

2(s+ 1)π− arccos 1
ζ+4η sin2 kπ

n
ζ + 4η sin2 kπ

n > 1;

τk,s
def
=

βk,s√
{ζ+4η sin2 kπ

n }2−1
,

for all s ∈N0 = {0,1,2, · · ·}. In view of Guo and Huang [133], we have the follow-
ing observations:
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(a) At (and only at) τ = τk,s, s ∈ N0, detΔ(τ, ·) has purely imaginary eigenvalues.
These eigenvalues are given by ±iβk,s.

(b) All other eigenvalues of detΔ(τk,s,λ ) are not integer multiples of ±iβk,s.
(c) For each fixed k, τk,s is monotonically increasing in s.

Let α = τ − τk,s and Aα be the infinitesimal generator associated with (7.54).
Then we can rewrite (7.53) in the form of (7.13) and (7.14) with

L(α)ϕ =−(τk,s +α)ϕ(0)+ (τk,s+α)Mϕ(−1)

and

F 2(α,u,w) = (τk,s+α)M ′′(0)(u1(−1)w1(−1), · · · ,un(−1)wn(−1))T ,

F 3(α,u,w,v) = (τk,s+α)M ′′′(0)(u1(−1)w1(−1)v1(−1), · · ·,un(−1)wn(−1)vn(−1))T

for u, w, v ∈Cn,1, where M (u) is an n× n matrix function defined by

M (u) = circ(h(u)+ 2g(u),−g(u),0, · · · ,−g(u)) .

In what follows, we distinguish three cases to discuss the exact form of the bifurcat-
ing periodic solutions.

Case I: k = 0 (mod n) in (7.55). Let ϕ j(θ ), j = 1,2, be the eigenvector for A0

associated with iβ0,s and −iβ0,s, respectively; namely,

A0ϕ1(θ ) = iβ0,sϕ1(θ ), A0ϕ2(θ ) =−iβ0,sϕ2(θ ). (7.56)

In view of Δ(τ0,s, iβ0,s)v0 = 0, we can choose ϕ1(θ ) = ϕ2(θ ) = v0eiβ0,sθ for θ ∈
[−1,0]. So at τ = τ0,s, the center space is X = span{ϕ1,ϕ2}. Hence Φ = (ϕ1,ϕ2) is
a basis for the center space X . Since ±iβ0,s are also eigenvalues for A ∗

0 , there are
two nonzero row-vector functions ψ j(ξ ), ξ ∈ [0,1], j = 1,2, such that

A ∗
0 ψ1(ξ ) =−iβ0,sψ1(ξ ), A ∗

0 ψ2(ξ ) = iβ0,sψ2(ξ ).

Then, Ψ = (ψ1,ψ2)
T is a basis for the adjoint space X∗. We normalize ψ j ( j = 1,2)

by the condition 〈ψ1,ϕ1〉= 0 and 〈ψ2,ϕ1〉= 0. We then obtain

ψ1(ξ ) = ψ2(ξ ) = D0vT
0 eiβ0,sξ , ξ ∈ [0,1],

where D0 =
1
n(1+ τ0,s+ iβ0,s)

−1.
It is obvious that the action of Dn on the center space X is trivial, and so the

maximal isotropy subgroup is Dn, which corresponds to a standard Hopf bifurcation
in which Dn symmetry is preserved. Thus, all neurons are synchronous (i.e., have
the same waveform and move in phase). Namely, the state (x1(t),x2(t), · · · ,xn(t))
of system (7.53) satisfies x j(t) = u(t) for all j, where u(t) is the periodic solution to
the system

u̇(t) =−τu(t)+ τh(v(t− 1)), (7.57)

with period near 2π
β0,s

.
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In view of Sect. 7.2, we have

E1 = [Δ(τ0,s,2iβ0,s)]
−1F 2(0,ϕ1,ϕ1)

and
E2 = [Δ(τ0,s,0)]

−1F 2(0,ϕ1,ϕ1)

and hence

E1 =
τ0,sh′′(0)v0e−2iβ0,s

2iβ0,s + τ0,s− τ0,sζe−2iβ0,s
, E2 =

h′′(0)v0

1− ζ
.

Thus, it follows from (7.21) that

C1(0) = nD
2

{
τ0,sh′′′(0)e−iβ0,s +(h′′(0)τ0,s)

2

[
2e−iβ0,s

1−ζ + e−3iβ0,s

2iβ0,s+τ0,s−τ0,sζe−2iβ0,s

]}
.

Notice that

Re{λ ′(τ0,s)}=
β 2

0,s

τ0,s[(1+ τ0,s)2 +β 2
0,s]

> 0.

It follows from Theorem 7.6 that Re{C1(0)} determines the directions of the Hopf
bifurcation: if Re{C1(0)}< 0 (respectively,> 0), then the Hopf bifurcation is super-
critical (respectively, subcritical) and bifurcating periodic solutions exist for τ > τ0,s

(respectively,< τ0,s). Of course, we can determine the stability of the bifurcating pe-
riodic solutions. By a direct computation, if ζ <−1, then

Re{C1(0)} = τ0,sh′′′(0)
2 · 1+ζ 2τ0,s

ζ (1+2τ0,s+ζ 2τ2
0,s)

− τ0,s(h
′′(0))2

2 · ζ 2τ0,s(11ζ 2+6ζ−2)+(2ζ 3+13ζ 2+4ζ−4)

ζ 2(5ζ+4)(ζ−1)(1+2τ0,s+ζ 2τ2
0,s)

;

if ζ > 1, then

Re{C1(0)} = τ0,sh′′′(0)
2 · 1+ζ 2τ0,s

ζ (1+2τ0,s+ζ 2τ2
0,s)

− τ0,s(h
′′(0))2

2 · ζ 2τ0,s(11ζ 3+35ζ 2+24ζ−6)+(−2ζ 4+11ζ 3+43ζ 2+24ζ−12)

ζ 2(ζ−1)(5ζ 2+15ζ+12)(1+2τ0,s+ζ 2τ2
0,s)

.

Therefore,
Re{C1(0)}< 0⇔ h′′′(0)h′(0)< [h′′(0)]2Cs(ζ );
Re{C1(0)}> 0⇔ h′′′(0)h′(0)> [h′′(0)]2Cs(ζ );
Re{C1(0)}= 0⇔ h′′′(0)h′(0) = [h′′(0)]2Cs(ζ ),

where

Cs(ζ ) =

⎧⎨
⎩

11ζ 2+6ζ−2
(5ζ+4)(ζ−1) +

2(ζ+1)2

(5ζ+4)(1+ζ 2τ0,s)
, if ζ <−1,

11ζ 3+35ζ 2+24ζ−6
(ζ−1)(5ζ 2+15ζ+12)

− 2(ζ+1)(ζ 2−3)
(1+ζ 2τ0,s)(5ζ 2+15ζ+12)

, if ζ > 1.
(7.58)
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Thus, we obtain the following results.

Theorem 7.11. If (7.55) holds for k = 0, then for all s ∈ N0, near τ = τ0,s,
system (7.53) undergoes a Hopf bifurcation. The direction of Hopf bifurcation
and stability of bifurcating synchronous periodic solutions satisfy the following
properties:

(i) Assume that h′′′(0)h′(0) > [h′′(0)]2Cs(ζ ). Then the bifurcating branch of peri-
odic solutions exists for τ < τ0,s (subcritical bifurcation). Moreover, all periodic
solutions on this branch are unstable.

(ii) Assume that h′′′(0)h′(0) < [h′′(0)]2Cs(ζ ). Then the bifurcating branch of pe-
riodic solutions exists for τ > τ0,s (supercritical bifurcation). (i) If there exists
some j ∈ {0,1,2, . . . ,n−1} such that ζ +4η sin2 jπ

n > 1, or η < 0 and ζ <−1,
then all periodic solutions on this branch are unstable. (ii) If ζ <−1 and η > 0
and ζ +4η sin2 jπ

n < 1 for all j ∈ {1,2, · · · ,n−1}, then only the slowly oscillat-
ing periodic solution arising at τ0,0 is stable; all the periodic solutions arising
at τ = τ0,s (s≥ 1) are unstable.

Notice that the sequence {Cs(ζ )}s∈N0 has the following properties:

(a) For ζ < −1 or ζ >
√

3, the sequence {Cs(ζ )}s∈N0 is positive, bounded, and
strictly increasing.

(b) For 1 < ζ <
√

3, the sequence {Cs(ζ )}s∈N0 is positive, bounded, and strictly
decreasing.

(c) For ζ =
√

3, the sequence {Cs(ζ )}s∈N0 is a constant sequence.

(d) For ζ <−1, 2(126+125
√

7)
(2+5

√
7)(35+2

√
7)
<Cs(ζ ) < 2.2. For ζ > 1, Cs(ζ )> 2.1.

From the boundedness of {Cs(ζ )}s∈N0 , we have the following.

Corollary 7.1. If (7.55) holds for k = 0, then for all s ∈ N0, near τ = τ0,s, sys-
tem (7.53) undergoes a Hopf bifurcation. The direction of Hopf bifurcation satisfies
the following:

(i) If ζ <−1 and h′′′(0)h′(0) < 2(126+125
√

7)
(2+5

√
7)(35+2

√
7)
[h′′(0)]2, then all bifurcations are

supercritical.
(ii) If ζ <−1 and h′′′(0)h′(0)> 2.2[h′′(0)]2, then all bifurcations are subcritical.

(iii) If ζ > 1 and h′′′(0)h′(0)< 2.1[h′′(0)]2, then all bifurcations are supercritical.

Case II: k = n
2 (mod n) with even n in (7.55). Similar to the analysis in Case I,

the purely imaginary eigenvalues associated with a Hopf bifurcation are simple,
and the Dn× S

1-action on C is given by ρ · z = −z, κ · z = z, and θ · z = eiβk,sθ z
for z ∈ C. Obviously, the maximal isotropy subgroup is Z̃2, generated by (ρ ,π)
and κ , which corresponds to an equivariant Hopf bifurcation involving a branch of
symmetry-breaking oscillations with isotropy subgroup Z̃2. Every neuron has the
same waveform but is half a period out of phase with (i.e., antisynchronous to)
its nearest neurons. Namely, the state (x1(t), · · · ,xn(t)) of system (7.53) satisfies
x j−1(t) = x j(t + ω

2 ) = u(t) for all j (mod n), where u(t) is an ω-periodic function
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with period ω near 2π
βk,s

. The analysis of bifurcation direction and stability of bifur-

cated periodic solution can be investigated similarly to Case I.

Case III: n≥ 3 and 2k �= 0 (mod n) in (7.55). Let ϕ j(θ ), j = 1,2,3,4, be the eigen-
vectors of A0 associated with iβk,s and−iβk,s, respectively. Since Δ(τk,s, iβk,s)vk = 0
and Δ(τk,s, iβk,s)vk = 0, we can choose

ϕ1(θ ) = vkeiβk,sθ , ϕ2(θ ) = vkeiβk,sθ

for θ ∈ [−1,0]. So the center space at μ = 0 is X = span{ϕ1,ϕ1,ϕ2,ϕ2}. Hence,
Φ = (ϕ1,ϕ1,ϕ2,ϕ2) is a basis for the center space X . Let Ψ = (ψ1,ψ1,ψ2,ψ2)

T be
a basis for the adjoint space X∗. Similarly, we normalize ψ1 and ψ2 to obtain

ψ1(θ ) = DkvT
k eiβk,sθ , ψ2(θ ) = DkvT

k eiβk,sθ

for ξ ∈ [0,1], where Dk = 1
n (1+ τk,s + iβk,s)

−1. Similarly to the last subsection,
define n∗ as (7.33). Now we discuss the spatiotemporal patterns of these bifurcated
periodic solutions according to their corresponding isotropy subgroups of Dn∗ ×
S

1 ≤ Dn×S
1.

First, the isotropy subgroup Z̃n∗ corresponds to discrete waves of (7.53), which
take the form x j(t) = x j+1(t − kω

n ), t ∈ R, j (modn), where ω > 0 is a period of
x(t). The discrete waves are also called synchronous oscillations (if k = 0(modn))
or phase-locked oscillations (if k �= 0(modn)), since each neuron oscillates just like
the others except not necessarily in phase with one another.

Next, the isotropy subgroups Z2(κ) (when n∗ is odd), Z2(κ)⊕Z
c
2 (when n∗ is

even) correspond to mirror-reflecting waves of (7.53), which take the form x j(t) =
xn+2− j(t), t ∈ R, j (modn).

Finally, the isotropy subgroups Z2(κ ,π) (when n∗ is odd), Z2(κ ,π)⊕Z
c
2 (when

n∗ = 2(mod4)), Z2(κγ)⊕Z
c
2 (when n∗ = 0(mod4)) correspond to standing waves

of (7.53), which take the form x j(t) = x2+n− j(t− ω
2 ), t ∈R, j (modn), where ω > 0

is a period of u.
Applying the equivariant Hopf bifurcation theorem to (7.53) yields the following

theorem.

Theorem 7.12. Assume that n≥ 3 and 2k �= 0 (mod n) in (7.55). Then system (7.53)
undergoes Hopf bifurcation. More precisely, near each τ = τk,s, s ∈ N0, sys-
tem (7.53) has 2(n+ 1) distinct branches of asynchronous periodic solutions of
period near 2π

βk,s
, bifurcated from the trivial solution, including two phase-locked

oscillations, n mirror-reflecting waves, and n standing waves.

In order to discuss bifurcation direction and stability of bifurcated periodic so-
lutions, we need to find a concrete expression for the coefficients Kj, j = 1,2,3. In
view of (7.42), we have
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A(1,1,0,0,0) = A(0,0,1,1,0) = 2τk,sh′′(0)v0

A(1,0,1,0,0) = A(0,1,0,1,0) = 2τk,sh′′(0)v0e−2iβk,s

A(1,0,0,1,0) = A(0,1,1,0,0) = τk,sH2v2k,

A(2,0,0,0,0) = A(0,2,0,0,0) = τk,sH2v2ke−2iβk,s ,

A(0,0,2,0,0) = A(0,0,0,2,0) = τk,sH2v2ke−2iβk,s ,

A(1,0,1,1,0) = 2A(2,1,0,0,0) = 6τk,sH3vke−iβk,s,

A(0,1,2,0,0) = 3τk,sH3v3ke−iβk,s ,

where Hj = h( j)(0)+ 4g( j)(0)sin2 jkπ
n , ( j ≥ 1). Moreover, it follows from (7.44)

and (7.45) that

h(q,0)(θ ) = iβ−1
k,s

[
ψ1(0)A(q,0)ϕ1+

1
3 ψ1(0)A(q,0)ϕ1+ψ2(0)A(q,0)ϕ2+

1
3 ψ2(0)A(q,0)ϕ2

]
+[Δ(τk,s,2iβk,s)]

−1A(q,0),

h(p,0)(θ ) = iβ−1
k,s

[−ψ1(0)A(p,0)ϕ1+ψ1(0)A(p,0)ϕ1−ψ2(0)A(p,0)ϕ2+ψ2(0)A(p,0)ϕ2

]
+[Δ(τk,s,0)]−1A(p,0)

for all q ∈ {(2,0,0,0), (0,0,2,0), (1,0,1,0)} and p ∈ {(1,1,0,0), (0,0,1,1),
(1,0,0,1), (0,1,1,0)}. Thus, Kj, j = 1,2,3, can be evaluated according to the
formula given in the previous subsection.

In particular, we make a further assumption on functions h and g as follows:

H2 = 0, H1H3 �= 0. (7.59)

Then K2 = 2K1 = nDτk,sH3e−iβk,s . Recall that

Re(K2) =
H3(τk,s + τ2

k,s +β 2
k,s)

2

H1[(1+ τk,s)2 +β 2
k,s]

.

We have signRe(K1) = signRe(K2−K1) = signRe(K1 +K2) = sign(H1H3). In view
of Theorem 7.9, we have the following corollary.

Corollary 7.2. Assume that n≥ 3 and 4k �= 0 (mod n) in (7.55) and that (7.59) holds.
Then near τ = τk,s, system (7.53) undergoes Hopf bifurcations. The bifurcation di-
rection and stability of each branch of bifurcated periodic solutions are completely
determined by the sign of H1H3:

(i) Assume that H3H1 < 0 (respectively, > 0). Then the bifurcating branch of peri-
odic solutions exists for τ > τk,s (respectively, τ < τk,s).

(ii) Each one of the following conditions ensures that all bifurcated periodic
solutions near τk,s are unstable: (i) n is even; (ii) there exists some j ∈
{0,1,2, · · · ,n− 1} such that ζ + 4η sin2 jπ

n > 1; (iii) n is odd, H1 < −1, and
η > 0; (iv) n is odd, H1 <−1, η < 0, k �= [

n
2

]
; (v) n is odd, H1 < −1, H3 < 0,

η < 0.
(iii) Assume that n is odd, H1 < −1, ζ < 1, η < 0, and k =

[
n
2

]
, and H3 > 0. Then

only near τk,0 can the Hopf bifurcation provide two orbitally asymptotically
stable phase-locked waves, n orbitally asymptotically unstable standing waves,
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and n orbitally asymptotically unstable mirror-reflecting waves. However, near
τ = τk,s (s≥ 1), all the bifurcated periodic solutions are unstable.

Proof. Conclusion (i) follows easily from Theorem 7.9. We prove only (ii) and (iii).
As stated in Theorem 7.9, the orbital stability of the bifurcated periodic solutions
is determined by eigenvalues of AQ, signs of Re(K1), signs of Re(K1 +K2), and
Re(K1−K2). Each of conditions (i)–(v) of conclusion (ii) ensures that AQ has at
least one eigenvalue with positive real part. Here, we consider only the case that n is
even. The other cases can be dealt with analogously. In what follows, we distinguish
two cases to show that near τk,s(≥ τk,0), AQ has at least one eigenvalue with positive
real part.

Case 1: ζ + 4η sin2 kπ
n > 1. We have ζ > ζ + 4η sin2 kπ

n > 1 (if η < 0) or ζ +

4η > ζ + 4η sin2 kπ
n > 1 (if η > 0). If ζ > ζ + 4η sin2 kπ

n > 1 (or ζ + 4η > ζ +

4η sin2 kπ
n > 1), then λ + τ − τζe−λ = 0 (respectively, λ + τ − (ζ + 4η)τe−λ =

0) has at least one solution with positive real part if τ ∈ [0,τ0,0)(respectively, τ ∈
[0,τn/2,0)). It follows from the fact that τ0,0 < τk,0 (respectively, τn/2,0 < τk,0) that
near τk,s(≥ τk,0), AQ has at least one eigenvalue with positive real part.

Case 2: ζ +4η sin2 kπ
n <−1. We have ζ < ζ +4η sin2 kπ

n <−1 (if η > 0) or ζ +

4η < ζ +4η sin2 kπ
n <−1 (if η < 0). If ζ < ζ +4η sin2 kπ

n <−1 (or ζ +4η < ζ +

4η sin2 kπ
n <−1), then λ +τ−τζe−λ = 0 (respectively, λ +τ−(ζ +4η)τe−λ = 0)

has at least two solutions with positive real part if τ ∈ [τ0,0,τ0,1) (respectively, τ ∈
[τn/2,0,τn/2,1)). It follows form the fact that τ0,0 < τk,0 (respectively, τn/2,0 < τk,0)
that near τk,s(≥ τk,0), AQ has at least one eigenvalue with positive real part.

To prove (ii), assume that n is odd, H1 <−1, η < 0, k =
[

n
2

]
, and H3 > 0. Then

ζ + 4η sin2 kπ
n

< ζ + 4η sin2 (k− 1)π
n

< · · ·< ζ < 1.

Thus if ζ + 4η sin2 jπ
n <−1 for some j ∈ {0,1,2, · · · ,k− 1}, then

τk,s < τk−1,s < τk−2,s < · · ·< τ j,s.

Namely, τk,0 is the first critical value of τ in [0,+∞). The characteristic equation
of (7.54) has only solutions with negative real part if 0 ≤ τ < τk,0. Therefore, near
τk,0, all eigenvalues of AQ have negative real part. This, together with H1H3 < 0,
implies that conclusion (iii) holds and completes the proof of Corollary 7.2. �

Remark 7.3. Assume that n ≥ 3 and 2k �= 0 (mod n) but 4k = 0 (mod n) in (7.55)
and that (7.59) holds. Then we have K2 = 2K1 = 2K3 = nDτk,sH3e−iβk,s . Therefore,
near τ = τk,s, system (7.53) undergoes Hopf bifurcations. If H3H1 < 0 (respectively,
> 0), then the entire bifurcating branch of periodic solutions exists for τ > τk,s (re-
spectively, τ < τk,s). We conclude that under the assumption that H1 <−1, H3 > 0,
and H1 < ζ + 4η sin2 jπ

n < 1, only at τk,0 are the bifurcated mirror-reflecting waves
stable. As for the stability of bifurcated phase-locked waves and standing waves, we
need to calculate higher-order terms of the normal form, because |K1−K2|2 = |K3|2
and |K3|2 +Re{(K1−K2)K3}= 0.
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7.4 Bogdanov–Takens Bifurcation

Consider the following two-parameter family of RFDEs:

ẋ(t) = f (α,xt ), α = (α1,α2) ∈R
2, (7.60)

where f ∈ Ck(R2×Cn,τ ,R
n) for a large enough integer k, f (0,0) = 0. As in the

previous sections, we expand the function f as

f (α,ϕ) = f (α,0)+F 1(α,ϕ)+ · · ·+ 1
k!

F k(α,ϕ , · · · ,ϕ)+ o(‖ϕ‖k)

for (α,ϕ)∈R2×Cn,τ . Obviously, L =F 1(0, ·) is the linearized operator of f (α,ϕ)
with respect to ϕ at (α,ϕ) = (0,0). Let

F(α,ϕ) = f (α,ϕ)−Lϕ

for (α,ϕ) ∈R
2×Cn,τ , and let 〈·, ·〉: C∗n,τ ×Cn,τ →R be the bilinear form associated

with the operator L. Let
Δ(λ ) = λ Idn−L(eλ (·)),

and let A be the infinitesimal generator associated with the linear system ẋ(t) = Lxt .
As we mentioned before, system (7.60) may undergo standard or equivariant

fold bifurcation if A has a semisimple eigenvalue 0. What happens to the case
of a nonsemisimple eigenvalue 0? In fact, in this case, system (7.60) will undergo
multiple-zero bifurcation (see, for example, [11, 105, 130]).

7.4.1 Center Manifold Reduction

In this subsection, we always assume that:

(BT1) The infinitesimal generator A has a nonsemisimple double eigenvalue 0.

At this bifurcation, there exist two real linearly independently (generalized)
eigenvectors q1, q2 ∈Cn,τ such that

A q1 = 0, A q2 = q1.

Obviously, q1 is actually a constant column-vector function satisfying Lq1 = 0.
Moreover, there exist similar vectors p1, p2 ∈C∗n,τ of the adjoint operator A ∗:

A ∗p2 = 0, A ∗p1 = p2.

Obviously, p1 is actually a constant row-vector function satisfying p1Δ(0) = 0. One
can select these vectors to satisfy

〈p j,qs〉= δ js, j,s = 1,2.
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Let Φ = (q1,q2) and Ψ = (p1, p2)
T . Then 〈Ψ ,Φ〉= Id2 and Φ̇ = ΦB, where

B =

[
0 1
0 0

]
.

By the center manifold theorem, the reduced equation on the center manifold Mc,α
loc is

ẋ(t) = Bx+G(α,x), x = (x1,x2)
T ∈R

2, (7.61)

where G(α,x) =Ψ(0)F(α,Φx+W (α,x)), W satisfies

d
dt

W = AQW +H(α,x), W (0,0) = 0, DxW (0,0) = 0, (7.62)

and H(α,x) = [X0−ΦΨ(0)]F(α,Φx+W (α,x)). Let

G(α,x) =
k

∑
j+s=0

1
j!s!

G js(α)x j
1xs

2 + o(|x|k).

Then we have

G00(α) = Ψ (0) fα1(0,0)α1 +Ψ(0) fα2(0,0)α2 +O(|α|2),
G10(α) = Ψ (0)F 1

α1
(0,q1)α1 +Ψ(0)F 1

α2
(0,q1)α2 +O(|α|2),

G01(α) = Ψ (0)F 1
α1
(0,q2)α1 +Ψ(0)F 1

α2
(0,q2)α2 +O(|α|2),

G20(α) = Ψ (0)F 2(0,q1,q1)+O(|α|),
G11(α) = Ψ (0)F 2(0,q1,q2)+O(|α|),
G02(α) = Ψ (0)F 2(0,q2,q2)+O(|α|).

Using the near-identity transformation

u = x1, v = x2 + p1(0)F(α,Φx+W (α,x)), (7.63)

we transform (7.61) into

u̇ = v,

v̇ = g00(α)+g10(α)u+g01(α)v+
1
2

g20(α)u2+g11(α)uv+
1
2

g02(α)v2+o(u2+v2),

(7.64)

where

g20(0) = p2(0)F
2(0,q1,q1),

g11(0) = p1(0)F
2(0,q1,q1)+ p2(0)F

2(0,q1,q2),

g02(0) = p2(0)F
2(0,q2,q2)+ 2p1(0)F

2(0,q1,q2),
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and

g00(α) = p2(0) fα1(0,0)α1 + p2(0) fα2(0,0)α2 +O(|α|2),
g10(α) = p2(0)[α1F

1
α1
(0,q1)+α2F

1
α2
(0,q1)]

+p1(0)F
2(0,q1,q2)p2(0)[α1 fα1(0,0)+α2 fα2(0,0)]

−p2(0)F
2(0,q1,q2)p1(0)[α1 fα1(0,0)+α2 fα2(0,0)]+O(|α|2),

g01(α) = p2(0)[α1F
1
α1
(0,q2)+α2F

1
α2
(0,q2)]

+p1(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]

+p1(0)F
2(0,q2,q2)p2(0)[α1 fα1(0,0)+α2 fα2(0,0)]

−p2(0)F
2(0,q2,q2)p1(0)[α1 fα1(0,0)+α2 fα2(0,0)]

−p1(0)F
2(0,q1,q2)p1(0)[α1 fα1(0,0)+α2 fα2(0,0)]+O(|α|2).

7.4.2 Bogdanov Normal Form

According to Bogdanov (see Kuznetsov [200]), we can annihilate the term propor-
tional to v2 in the equation for v2 under the following assumption:

(BT2) g11(0) �= 0.

Namely, then there exists a parameter-dependent shift of coordinates in the u-
direction that transforms (7.64) into

u̇ = v,

v̇ = h00(α)+ h10(α)u+
1
2

h20(α)u2 + h11(α)uv+
1
2

h02(α)v2 + o(u2 + v2),

(7.65)

where h jk(0) = g jk(0) for all j+ k = 2, and

h00(α) = glin
00(α)+O(|α|2)

h10(α) = glin
10(α)− g20(0)

g11(0)
glin

01(α)+O(|α|2).

Here glin
jk (α) denotes the linear parts of g jk(α), j,k = 0,1.

By some time reparameterization and second-coordinate transformation (see
Kuznetsov [200]), we can eliminate the v2-term and obtain

u̇ = v,
v̇ = μ1(α)+ μ2(α)u+A(α)u2 +B(α)uv+ o(u2+ v2),

(7.66)

where

μ1(α) = h00(α), μ2(α) = h10(α)− 1
2

h00(α)h02(α), (7.67)
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and

A(α) =
1
2
[h20(α)− h10(α)h02(α)], B(α) = h11(α). (7.68)

By performing a scaling of time and variables, we may transform (7.66) into

u̇ = v,
v̇ = β1 +β2u+ u2+ suv+ o(u2+ v2),

(7.69)

where
s = sgn{A(0)B(0)}= sgn{G2

20(0)[G
1
20(0)+G2

11(0)]} (7.70)

and

β1(α) =
B4(α)

A3(α)
μ1(α), β2(α) =

B2(α)

A2(α)
μ2(α). (7.71)

Thus, we have proved the following result.

Theorem 7.13. In addition to conditions (BT1) and (BT2), assume that the Jaco-
bian matrix of (β1,β2) with respect to (α1,α2) is nonsingular at α = 0. Then sys-
tem (7.60) is locally topologically equivalent to the normal form (7.69).

Fig. 7.1 Bifurcation sets for (7.72)

In what follows, we take s = −1 and consider system (7.69) without o(u2 + v2)
terms:

u̇ = v,
v̇ = β1 +β2u+ u2− uv.

(7.72)
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The bifurcation diagram of system (7.72) is presented in Fig. 7.1. Every equilibrium
(u,v) of (7.72) is located on the line v = 0 and satisfies the equation β1+β2u+u2 =
0. Hence, the fold bifurcation curve is

T = {(β1,β2) : β 2
2 = 4β1}.

Along this curve system, (7.72) has an equilibrium with a zero eigenvalue. If β2 �= 0,
then crossing T from right to left implies the appearance of two equilibria. Let us
denote the left one by E1 and the right one by E2. In particular, passing through T−
implies the coalescence of a stable node E1 and a saddle point E2, while crossing T+

generates an unstable node E1 and a saddle point E2. The Hopf bifurcation curve is

H = {(β1,β2) : β1 = 0, β2 < 0}.

Along H , the equilibrium E1 has a pair of purely imaginary eigenvalues. The Hopf
bifurcation gives rise to a stable limit cycle, which exists near H for β1 < 0. More-
over, we have the following result (see Kuznetsov [200] for the proof)

Theorem 7.14. There is a unique smooth curve Γ corresponding to a saddle homo-
clinic bifurcation in system (7.72) at β = 0. It has the following local representation:

Γ =
{
(β1,β2) : 25β1 =−6β 2

2 + o(β 2
2 )
}
.

For ‖β‖ small, system (7.72) has a unique and hyperbolic stable cycle for param-
eter values inside the region bounded by the Hopf bifurcation curve H and the
homoclinic bifurcation curve Γ , and no cycles outside this region.

Thus, the stable limit cycle born via the Hopf bifurcation does not bifurcate in
region J3. As we move clockwise, it grows and approaches the saddle, turning into
a homoclinic orbit at Γ .

7.4.3 Normal Form of System (7.60) with a Fixed Equilibrium

In what follows, we investigate the normal form of Bogdanov–Takens bifurcation
under condition (BT1) and the following assumption:

(BT3) f (α,0) = 0 for all α ∈ R
2.

This implies that x = 0 is always an equilibrium of system (7.60). Then g00(α)≡ 0
in (7.64). A truncated normal form up to second order for this equation is given by

ẋ1 = x2,
ẋ2 = c10(α)x1 + c01(α)x2 + c20(α)x2

1 + c11(α)x1x2,
(7.73)
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where

c10(α) = p2(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]+O(|α|2),

c01(α) = p2(0)[α1F
1
α1
(0,q2)+α2F

1
α2
(0,q2)]

+p1(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]+O(|α|2),

c20(α) = g20(0)+O(|α|),
c11(α) = g11(0)+O(|α|).

Now we assume that

(BT4) g20(0)g11(0) �= 0.

Then, using the linear scalings

x =
c2

11(α)

c20(α)
x1, y =

c3
11(α)

c2
20(α)

x2, t∗ =
c20(α)

c11(α)
t,

of the variables and time and then dropping ∗, we obtain the following system:

ẋ = y,
ẏ = γ1x+ γ2y+ x2 + xy,

(7.74)

where

γ1 =
c10(α)c2

11(α)

c2
20(α)

γ2 =
c01(α)c11(α)

c20(α)
.

We assume that:

(BT5) The mapping (α1,α2) �→ (γ1,γ2) is regular at α = 0, that is, the Jacobian
matrix of (γ1,γ2) with respect to (α1,α2) is nonsingular at (α1,α2) = (0,0).

Then, using the implicit function theorem, we can show that for sufficiently small
|γ|, system (7.74) exhibits the same local bifurcations in a small neighborhood of the
origin in the phase plane as (7.73) does with sufficiently small |α|. In fact, an equi-
librium (or limit cycle, homoclinic orbit, heteroclinic orbit) of (7.74) corresponds
to an equilibrium (or limit cycle, homoclinic orbit, heteroclinic orbit) of (7.60).
Moreover, they have the same stability if the trivial solution is stable before the
bifurcation. Therefore, we have the following result.

Theorem 7.15. Under assumptions (BT1), (BT3), (BT4), and (BT5), system (7.60)
is locally topologically equivalent to the normal form (7.74).

7.4.4 D3-Equivariant Bogdanov–Takens Bifurcation

In this section, we always assume that:
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(DBT1) System (7.60) is D3-equivariant, this is, f (α,ρ ·ϕ) = ρ · f (α,ϕ) for all
(α,ϕ) ∈ R

2×Cn,τ and ρ ∈ D3. Moreover, f (α,0) = 0 for all α ∈ R
2.

(DBT2) The infinitesimal generator A has a nonsemisimple eigenvalue 0, with
geometric multiplicity two and algebraic multiplicity four.

Let γ denote a generator of Z3 and let κ be the flip. Assumption (DBT1) means that
the geometric eigenspace E0 is two-dimensional. There exist ζ1 ∈ E0 and k ∈ Z such
that γ ·ζ1 = eikγζ1. Setting ζ2 = κ ·ζ1, we have E0 = span{ζ1,ζ2}. Furthermore, it
is possible to choose q1 ∈ E such that κ ·q1 = q1. Indeed, γ ·q1 = γ ·q1 = e−ikγq1,
so there is c ∈ C with κ ·q1 = cq1, which together with κ2 = Idn implies that q1 =
|c|2q1. Thus, κ · q1 = e2iε q1 for some ε . Defining ζ = e−iε q1, we have ζ ∈ E0 and
κ ·ζ = ζ . Therefore, we have E0 = {zq1 + zq1: z ∈C}. Since the zero eigenvalue of
A has the algebraic multiplicity four, there exists q2 ∈Cn,τ such that γ ·q2 = eikγ q2

and A q2 = q1. Thus, the generalized eigenspace P is spanned by q1, q2, q̄1, and q̄2,
and the reduced action of D3 on C

2 ∼= P is given by

γ · (z1,z2) = (eikγ z1,e
ikγ z2), κ · (z1,z2) = (z1,z2). (7.75)

Similarly, there exist eigenvectors p1 and p2 ∈C∗n,τ of the adjoint operator A ∗ such
that γ · p j = eikγ p j and κ · p j = p̄ j for j = 1,2, and

A ∗p2 = 0, A ∗p1 = p2.

One can select these vectors to satisfy 〈p j,qk〉 = δ jk and 〈p̄ j,qk〉 = 0, j,k = 1,2.
Let Φ = (q1, q̄1,q2, q̄2) and Ψ = (p1, p̄1, p2, p̄2)

T . Then 〈Ψ ,Φ〉= Id4 and Φ̇ = ΦB,
where

B =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

The reduced equation on the center manifold Mc,α
loc is

ż1 = z2 +G1(α,z),
ż2 = G2(α,z),

(7.76)

where z = (z1, , z̄1,z2, z̄2)∈C4 and G j(α,z) = p j(0)F(α,Φz+W (α,z)), W satisfies
W (0,0) = 0, DzW (0,0) = 0, W (α,ρ · z) = ρ ·W (α,z) for all ρ ∈ D3 and z ∈ C

4,

d
dt

W = AQW +H(α,z),

and H(α,z) = [X0−ΦΨ(0)]F(α,Φz+W (α,z)).
Now we assume that in (7.75), k �= 0, i.e.,

(DBT3) Z3 acts nontrivially on P.

Then by the symmetric center manifold theorem, the reduced equation (7.76) is D3-
equivariant. So we need to consider the D3-invariants and -equivariants.
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Lemma 7.2. (i) The ring of all D3-invariant germs acting on C
2 as in (7.75) is

generated by s1 = z1z1, s2 = z2z2, s3 = z1z2 + z1z2, and t j = 2Re(z j
1z3− j

2 ), j ∈
{0,1,2,3}.

(ii) The module of D3-equivariant smooth mappings of C2→C
2 is generated by

[
0
z1

]
,

[
0
z2

]
,

[
z1

0

]
,

[
z2

0

]
,

[
0

z j
1z2− j

2

]
,

[
z j

1z2− j
2
0

]

for j ∈ {0,1,2}.
In view of the D3-equivariance of G(α,z) = (G1(α,z),G2(α,z))T , we see that

the reduced equation (7.76) has the following Taylor expansion up to third order:

ż1 = z2 +η1z1 + ζ1z2

+a1z̄2
1 + b1z̄1z̄2 + c1z̄2

2
+z1[d1z1z̄1 + e1z2z̄2 + f1(z1 z̄2 + z̄1z2)]
+z2[g1z1z̄1 + h1z2 z̄2 + i1(z1 z̄2 + z̄1z2)]+ o(|z1,z2|2),

ż2 = η2z1 + ζ2z2

+a2z̄2
1 + b2z̄1z̄2 + c2z̄2

2
+z1[d2z1z̄1 + e2z2z̄2 + f2(z1 z̄2 + z̄1z2)]
+z2[g2z1z̄1 + h2z2 z̄2 + i2(z1 z̄2 + z̄1z2)]+ o(|z1,z2|2),

(7.77)

where the coefficients η1, η2, ζ1, ζ2, a1, a2, . . . , depend on α ∈R
2. In fact, we have

for j = 1,2,

η j = p̄ j(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]+O(|α|2),

ζ j = p̄ j(0)[α1F
1
α1
(0,q2)+α2F

1
α2
(0,q2)]+O(|α|2),

a j = p̄ j(0)F 2(0, q̄1, q̄1)+O(|α|),
b j = p̄ j(0)F

2(0, q̄1, q̄2)+O(|α|),
c j = p̄ j(0)F

2(0, q̄2, q̄2)+O(|α|).

Next, by some near-identity coordinate transformation, we can remove as many
second-order terms as possible to obtain the following normal form to third order:

u̇ = v,
v̇ = μ1u+ μ2v+Eū2 +Fūv̄+[A|u|2 +B|v|2 +C(uv̄+ ūv)]u+D|u|2v,

(7.78)

where the coefficients μ1, μ2, E , F , A, B, and C depend on α ∈R
2. In fact, we have

μ1(α) = p̄2(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]+O(|α|2),

μ2(α) = p̄2(0)[α1F
1
α1
(0,q1)+α2F

1
α2
(0,q1)]

+ p̄2(0)[α1F
1
α1
(0,q2)+α2F

1
α2
(0,q2)]+O(|α|2),

E(α) =
1
2

p̄2(0)F
2(0, q̄1, q̄1)+O(|α|),
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F(α) =
1
2

p̄2(0)F
2(0, q̄1, q̄2)+ p̄1(0)F

2(0, q̄1, q̄1)+O(|α|).

Now we assume that

(DBT4) E(0)F(0) �= 0.

Then using the linear scalings

z1 =
F2

E
u, z2 =

F3

E2 v, t∗ =
E
F

t

of the variables and time and then dropping ∗, we obtain

ż1 = z2,
ż2 = δ1z1 + δ2z2 + z̄2

1 + z̄1z̄2

+[a|z1|2 + b|z2|2 + c(z1z̄2 + z̄1z2)]u+ d|z1|2z2,
(7.79)

where δ1 = μ1F2/E2 and δ2 = μ2F/E . Thus, we have proved the following result.

Theorem 7.16. In addition to conditions (DBT1)–(DBT4), assume that the Jacobian
matrix of (γ1,γ2) with respect to (α1,α2) is nonsingular at α = 0. Then system (7.60)
is locally topologically equivalent to the normal form (7.79).

In what follows, we neglect the cubic terms in (7.79) and consider the truncated
system

ż1 = z2,
ż2 = δ1z1 + δ2z2 + z̄2

1 + z̄1z̄2,
(7.80)

which always has four equilibria: O = (0,0), E = (−δ1,0), γ · E = (−δ1eikγ ,0),
and γ2 ·E = (−δ1e−ikγ ,0). Moreover, the characteristic polynomials of (7.80) at
the equilibria O and E are (λ 2− δ2λ − δ1)

2 = 0 and [λ 2− (δ2− δ1)λ + δ1][λ 2−
(δ2 + δ1)λ − 3δ1] = 0, respectively. This implies that δ1 = 0 is a bifurcation line
of secondary steady state, along which system (7.80) undergoes a D3-equivariant
transcritical bifurcation. We can check that the equilibrium O (or E) has a pair of
double (respectively, simple) purely imaginary eigenvalues for (δ1,δ2) on the line
l1 (respectively, either l2 or l3), where

l1 = {(δ1,δ2) : δ1 < 0, δ2 = 0},
l2 = {(δ1,δ2) : δ1 = δ2 ≥ 0},
l3 = {(δ1,δ2) : δ1 =−δ2 ≤ 0}.

Thus, we have the following results (Fig. 7.2).

Theorem 7.17. (i) The equilibrium O undergoes a nondegenerate D3-equivariant
Hopf bifurcation along the line l1, giving rise to three different types of periodic
solutions: isotropy types Σ±γ = 〈(γ,± 2π

3 )〉 for δ2 > 0, isotropy type Σ+
κ = 〈κ〉,

and isotropy type Σ−κ = 〈(κ ,π)〉 both for δ2 < 0. All these solutions are of
saddle type. In particular, the bifurcated periodic solutions of isotropy type Σ+

κ
are inside Fix(κ).
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Fig. 7.2 Bifurcation sets for (7.80)

(ii) Along the line l2 (or l3), each of the equilibria E, γ ·E, and γ2 ·E undergoes
a nondegenerate Z2-equivariant Hopf bifurcation, giving rise to an unstable
periodic solution of isotropy type Σ+

κ (respectively, Σ−κ ), which exists for δ2−
δ1 < 0 (respectively, δ2 + δ1 < 0).

In view of Sect. 1.8.1, inside the invariant fixed-point space Fix(κ), system (7.80)
has an orbit homoclinic to the equilibrium O (or E) for (δ1,δ2) in m1 (respectively,
m2), where m1 and m2 are homoclinic bifurcation curves defined by

m1 =

{
(δ1,δ2) : δ2 =

1
7

δ1 + o(|δ1|), δ1 ≤ 0

}

and

m2 =

{
(δ1,δ2) : δ2 =

6
7

δ1 + o(|δ1|), δ1 ≥ 0

}
.

By symmetry, we have the following results.

Theorem 7.18. (i) For (δ1,δ2) ∈m2, there are three orbits homoclinic to the equi-
librium O, and these three homoclinic orbits are inside the three invariant fixed-
point spaces Fix(κ), γFix(κ), and γ2Fix(κ), respectively.

(ii) For (δ1,δ2) ∈ m1, there are three orbits homoclinic to the equilibria E, γ ·E,
and γ2 ·E, respectively. Moreover, the orbit homoclinic to the equilibrium E (or
γ ·E, γ2 ·E) is inside Fix(κ) (respectively, γFix(κ), γ2Fix(κ)).

7.5 Double Hopf Bifurcation

Consider
u̇(t) = L(α)ut + f (α,ut), (7.81)

where α ∈ R
2, the linear operator L(α) : Cn,τ → R

n is continuous with respect to
α ∈ R

2, f ∈ Cl(R2×Cn,τ ,R
n) for a large enough integer l such that f (α,0) = 0,
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and fϕ (α,0) = 0 for all α ∈ R
2. The infinitesimal generator Aα : Cn,τ → Cn,τ is

given by

(Aαϕ)(θ ) =
{

dϕ(θ )/dθ , if θ ∈ [−τ,0),
L(α)ϕ , if θ = 0.

(7.82)

Moreover, λ ∈ σ(Aα) if and only if Δ(α,λ )v = 0 for some v ∈ C
n \ {0}, where

Δ(α,λ ) = λ Idn−L(α)(eλ (·)).

In this section, we consider a type of codimension-two bifurcation: double Hopf
bifurcation , i.e., the infinitesimal generator A0 has at least two pairs of purely imag-
inary eigenvalues. The main dynamic feature of this bifurcation is the occurrence of
an invariant 3-torus. Our purpose here is to obtain the normal form for the general
system (7.81) at the nonresonant double Hopf bifurcation point α = 0 and then ex-
press the coefficients of low-order terms in terms of the coefficients of (7.81). These
expressions are expected to be of importance for a detailed discussion of the double
Hopf interaction in ODEs. Throughout this section, we assume that:

(HHB1) Aα has two pairs of simple complex conjugate eigenvalues, λ1(α),
λ 1(α), λ2(α), and λ 2(α), satisfying λ j(0) = iω j with ω j > 0, j = 1, 2.

(HHB2) kiω1+siω2 /∈σ(A0)\Λ for all k, s∈Z, where Λ = {iω1,−iω1, iω2,−iω2}.
(HHB3) ω1/ω2 is irrational.

Here, the nonresonance conditions are guaranteed by (HHB2). Assumption
(HHB3) means that the double Hopf bifurcation discussed here is nonresonant. As-
sumption (HHB3) plays a key role in the form of the normal form. Assumption
(HHB1) implies that there exist v j ∈C

n and u j ∈ C
n∗ ( j = 1,2) such that

Δ(0, iω j)v j = 0, u jΔ(0, iω j) = 0, u jΔλ (0, iω j)v j = 1.

Let P (respectively, P∗) be the center space of A0 (respectively, A ∗
0 ) relative to

the set Λ . Then we have P = span{ϕ1,ϕ1,ϕ2,ϕ2} and P∗ = span{ψ1,ψ1,ψ2,ψ2},
where ϕ j(θ ) = v jeiωθ and ψ j(θ ) = u jeiωθ for θ ∈ [−τ,0], j = 1,2. Then 〈ψ j,ϕs〉=
δ js and 〈ψ j,ϕs〉= 0 for all j,s ∈ {1,2}. Let Φ = (ϕ1,ϕ1,ϕ2,ϕ2) and Ψ = (ψ1,ψ1,

ψ2,ψ2)
T . Then 〈Ψ ,Φ〉 = Id4. Obviously, P and P∗ are S

1-invariant. Assumption
(HHB3) implies that the action of S1 on P induces the following action of T2 on
C

2 ∼= P:

θt · (z1,z2) = (z1eiω1t ,z2eiω2t) for θt = (eiω1t ,eiω2t) ∈ T
2. (7.83)

Thus, we can obtain the following T
2-equivariant normal form:

ż j = iω jz j +G j(α,z1,z2), j = 1,2, (7.84)
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where G(α,z1,z2) = (G1(α,z1,z2),G2(α,z1,z2))
T is T

2-equivariant. Therefore,
there exist complex-valued polynomials W1 and W2 such that

G j(α,z1,z2) = z jWj(|z1|2, |z2|2,α) for j = 1, 2.

Thus, we obtain the coefficients for up to third-order terms of G in (7.84) as follows:

ż j = iω jz j +
1
2 ∑2

l=1 Cjlαlz j +
1
6 ∑k+s=2 E jksαkαsz j

+ 1
6 D j1z j|z1|2 + 1

6 D j2z j |z2|2 +O(|(α,z1,z2,z1,z2)|4)
(7.85)

for j = 1,2. If we change to polar coordinates z1 = ρ1eiξ1 and z2 = ρ2eiξ2 , sys-
tem (7.85) can be rewritten as

ρ̇1 = γ1ρ1 + a11ρ3
1 + a12ρ1ρ2

2 +O(|(α,ρ1,ρ2)|4),
ρ̇2 = γ2ρ2 + a21ρ2ρ2

1 + a22ρ3
2 +O(|(α,ρ1,ρ2)|4),

ξ̇1 = ω1 +σ1 + b11ρ2
1 + b12ρ2

2 +O(|(α,ρ1,ρ2)|3),
ξ̇2 = ω2 +σ2 + b21ρ2

1 + b22ρ2
2 +O(|(α,ρ1,ρ2)|3),

(7.86)

where γ j, σ j, a js, b js ( j, s = 1, 2) are all real such that γ j + iσ j =
1
2 ∑2

l=1 Cjlαl +
1
6 ∑k+s=2 E jksαkαs and a js + ib js =

1
6 D js for all j, s = 1,2. System (7.86) allows

us to decouple the amplitude equations and the phase equations. In particular, the
dynamics of (7.86) is determined by the amplitude equations:

ρ̇1 = γ1ρ1 + a11ρ3
1 + a12ρ1ρ2

2 +O(|(α,ρ1,ρ2)|4),
ρ̇2 = γ2ρ2 + a21ρ2ρ2

1 + a22ρ3
2 +O(|(α,ρ1,ρ2)|4).

(7.87)

If α → (γ1,γ2) is regular at α = 0, i.e., if the rank of the Jacobian matrix

∂ (γ1,γ2)

∂ (α1,α2)

evaluated at α = 0 is 2, then we can unfold this degenerate case by varying γ1 and γ2

in a full neighborhood of (0,0). Usually, phase-plane analysis can be employed to
discuss the steady-state solutions and bifurcation phenomena of (7.86) (see Guck-
enheimer and Holmes [125] and Kuznetsov [200] for more details).

Let us focus here on the symmetry of (7.87). In the entire (ρ1,ρ2)-plane, sys-
tem (7.87) is Z2⊕Z2-equivariant, since the reflection ρ1→−ρ1 or ρ2→−ρ2 leaves
it invariant. Hence, we can employ the equivariant Hopf theorem to seek periodic
solutions for each maximal isotropy subgroup of Z2⊕Z2. Obviously, Z2⊕Z2 has
only four isotropy subgroups: Z2⊕Z2, Z2(−1,1), Z2(1,−1), and I. Only the two
isotropy subgroups Z2(−1,1) and Z2(1,−1) are maximal, with fixed-point sub-
spaces {(0,ρ2)} and {(ρ1,0)}, respectively. This means that periodic solutions with
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pure mode (0,ρ2) or pure mode (ρ1,0) may be expected to bifurcate from the triv-
ial solution of (7.81). This also implies that bifurcations of periodic solutions with
periods near 2π

ω1
and 2π

ω2
are primary in system (7.81).

Since mixed mode {(ρ1,ρ2) : Wj(ρ2
1 ,ρ2

2 ,α) = 0, j = 1,2} with trivial isotropy I

can be expected, there probably exists an invariant 2-torus in system (7.81). Varying
α may lead to an exchange of stability of mixed mode solutions of (7.87), and hence
a limit cycle can appear in its neighborhood via Hopf bifurcation. This means that a
branch of invariant 3-tori of (7.86) and hence of (7.81) may exist for α near 0. See
Takens [274] for further details of Hopf–Hopf interaction.

In the remaining part of this section, we aim to figure out concrete expressions
for the coefficients of (7.85). Again, for simplicity of notation, we introduce the
operator Θ : V 5

j (C
2)→V 5

j (C
4) defined by

Θ
[

c1zqα l

c2zpαk

]
=

(
c1zqα l ,c1zqα l ,c2zpαk,c2zpαk

)T

for q, p ∈ N
4
0 and l,k ∈N

2
0 such that |(q, l)|= |(p,k)|= j. Let

Θ
[

G1(α,z1,z2)
G2(α,z1,z2)

]
=

1
2

g1
2(α,z,0)+

1
6

g1
3(α,z,0)+ · · · .

Then g1
2(z,0,α) and g1

3(z,0,α) in (7.84) take the form

g1
2(α,z,0) = Θ

[
∑r

j=1 C1 jα jz1

∑r
j=1 C2 jα jz2

]
,

g1
3(α,z,0) = Θ

[
D11z1|z1|2 +D12z1|z2|2 +∑ j+k=2 E1 jkα jαkz1

D21z2|z1|2 +D22z2|z2|2 +∑ j+k=2 E2 jkα jαkz2

]
.

For Φz = 2Re{ϕ1z1 +ϕ2z2}, let

f j(α,Φz) = ∑
|(q,l)|= j

A(q,l)z
qα l (7.88)

and
f 1

j (α,z,y) = Ψ(0)Fj(α,Φz+ y),
f 2

j (α,z,y) = [X0−ΦΨ(0)]Fj(α,Φz+ y),

for j ≥ 2, z ∈ C
4, y ∈ Q, where Q denotes the space complementary to P in

BCn, f j and Fj are the jth Fréchet derivatives of f (α,ϕ) and F(α,ϕ) = L(α)ϕ −
L(0)ϕ + f (α,ϕ) with respect to (α,ϕ) ∈ R

2×Cn,τ , respectively. As in Sect. 4.3.2,
we write (7.81) as

ż = Ωz+ ∑
j≥2

1
j! f 1

j (α,z,y),

dy
dt = AQy+ ∑

j≥2

1
j! f 2

j (α,z,y),
(7.89)
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where Ω = diag(iω1,−iω1, iω2,−iω2). With the change of variables

(z,y) = (ẑ, ŷ)+ 1
j!(U

1
j (α, ẑ),U2

j (α, ẑ)), (7.90)

and dropping the hats for simplicity of notation, (7.37) becomes

ż = Ωz+ 1
2 g1

2(α,z,y)+ 1
3! f

1
3(α,z,y)+ · · · ,

dy
dt = AQy+ 1

2 g2
2(α,z,y)+ 1

3! f
2
3(α,z,y)+ · · · , (7.91)

where g2 = (g1
2,g

2
2), f̂2 = ( f 1

2 , f 2
2 ), and f̄3 = ( f 1

3 , f 2
3 ) satisfy

g2 = f2−M2U2 (7.92)

and

f̄3 = f3 +
3
2
[(Dz,y f2)U2− (Dz,yU2)g2] . (7.93)

Here, the operator M2 = (M1
2,M

2
2) is as defined in Chap. 4. In fact,

M1
j(z

qα lek) =
{

iω1[q1− q2 +(−1)k]+ iω2[q3− q4]
}

zqα lek

and
M1

j (z
qα le2+k) =

{
iω1[q1− q2]+ iω2[q3− q4 +(−1)k]

}
zqα le2+k

for all k = 1,2, q ∈ N
4
0, and l ∈ N

2
0 with |(q, l)| = j, where {e1,e2,e3,e4} is the

canonical basis for C4, z = (z1,z1,z2,z2) ∈ C
4.

Because f 1
2 (α,z,0) =Ψ(0) f2(α,Φz)+ 2Ψ(0)L1(α)Φz, we have

f 1
2 (α,z,0) =Θ

[
2u1L1(α)Φz+∑|q|=2 u1A(q,0)z

q

2u2L1(α)Φz+∑|q|=2 u2A(q,0)z
q

]
,

where L1(α) = α1Lα1(0)+α2Lα2(0) denotes the linear part of L(α)−L(0) with
respect to α = (α1,α2)

T ∈ R
2. Then

Ck j = 2
∂λk(0)

∂α j
, j,k = 1,2.

Moreover, U2(z,α) = M−1
2 P2 f2(z,0,α), that is,

U1
2 (z,α) = Θ

[
u1L1(α)

(
iω−1

1 ϕ1z1− 2iω−1
2 ϕ2z2 + 2iω−1

2 ϕ1z1
)

u2L1(α)
(−2iω−1

1 ϕ1z1 + 2iω−1
1 ϕ1z1 + iω−1

2 ϕ2z2
)
]

+Θ
[

∑|q|=2[iω1(q1− q2− 1)+ iω2(q3− q4)]
−1u1A(q,0)z

q

∑|q|=2[iω1(q1− q2)+ iω2(q3− q4− 1)]−1u2A(q,0)z
q

]
,

and U2
2 (z,α) = h(z,α) is the unique solution in V 5

2 (Q) of the equation

(M2
2h)(z,α) = [X0−ΦΨ(0)]

[
2L1(α)(Φz)+ f2(α,Φz)

]
. (7.94)
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We write U2
2 (z,α) as

U2
2 (z,α) = ∑

|(q,l)|=2

h(q,l)z
qα l .

After computing up to order 2, the term of order 3 of the normal form becomes
f̃3 = f3 +

3
2 [(Dz,y f2)U2− (Dz,yU2)g2]. Thus, the complex coefficients D jk ( j, k = 1,

2) are given as follows:

D11 = u1A(2,1,0,0,0)− 3
2iω1

u1A(2,0,0,0,0)u1A(1,1,0,0,0) +
3

2iω1
|u1A(1,1,0,0,0)|2

+ 1
iω1
|u1A(0,2,0,0,0)|2− 3

2iω2
u1A(1,0,1,0,0)u2A(1,1,0,0,0)

+ 3
2i(2ω1−ω2)

u1A(0,1,1,0,0)u2A(2,0,0,0,0) +
3

2iω2
u1A(1,0,0,1,0)u2A(1,1,0,0,0)

+ 3
2i(2ω1+ω2)

u1A(0,1,0,1,0)u2A(0,2,0,0,0) + 3u1H2((0,ϕ1),(0,h(1,1,0,0,0)))

+3u1H2((0,ϕ1),(0,h(2,0,0,0,0))),

D12 = u1A(1,0,1,1,0)+
3

2i(2ω1−ω2)
|u1A(0,1,1,0,0)|2 + 3

2i(2ω1+ω2)
|u1A(0,1,0,1,0)|2

+ 3
iω1−2iω2

u1A(0,0,2,0,0)u2A(1,0,0,1,0)+
3

2iω1
u1A(0,0,1,1,0)u2A(1,0,1,0,0)

+ 3
2iω1

u1A(0,0,1,1,0)u2A(1,0,0,1,0)+
3

iω1+2iω2
u1A(0,0,0,2,0)u2A(1,0,1,0,0)

+ 3
2iω1

u1A(1,1,0,0,0)u1A(0,0,1,1,0)− 3
iω1

u1A(2,0,0,0,0)u1A(0,0,1,1,0)

+ 3
2iω2

u1A(1,0,0,1,0)u2A(0,0,1,1,0)− 3
2iω2

u1A(1,0,1,0,0)u2A(0,0,1,1,0)

+3u1H2((0,ϕ1),(0,h(0,0,1,1,0)))+ 3u1H2((0,ϕ2),(0,h(1,0,0,1,0)))

+3u1H2((0,ϕ2),(0,h(1,0,1,0,0))),

D21 = u2A(1,1,1,0,0)+
3

2i(2ω2−ω1)
|u2A(1,0,0,1,0)|2 + 3

2i(2ω2+ω1)
|u2A(0,1,0,1,0)|2

+ 3
iω2−2iω1

u2A(2,0,0,0,0)u1A(0,1,1,0,0)+
3

2iω2
u2A(1,1,0,0,0)u1A(1,0,1,0,0)

+ 3
2iω1

u2A(1,1,0,0,0)u1A(0,1,1,0,0)+
3

iω2+2iω1
u2A(0,2,0,0,0)u1A(1,0,1,0,0)

+ 3
2iω1

u2A(0,1,1,0,0)u1A(1,1,0,0,0)− 3
2iω1

u2A(1,0,1,0,0)u1A(1,1,0,0,0)

+ 3
2iω2

u2A(0,0,1,1,0)u2A(1,1,0,0,0)− 3
iω2

u2A(0,0,2,0,0)u2A(1,1,0,0,0)

+3u1H2((0,ϕ1),(0,h(0,1,1,0,0)))+ 3u1H2((0,ϕ1),(0,h(1,0,1,0,0)))

+3u1H2((0,ϕ2),(0,h(1,1,0,0,0))),

D22 = u1A(0,0,2,1,0)− 3
2iω2

u2A(0,0,2,0,0)u2A(0,0,1,1,0) +
3

2iω2
|u2A(0,0,1,1,0)|2

+ 1
iω2
|u2A(0,0,0,2,0)|2− 3

2iω1
u2A(1,0,1,0,0)u1A(0,0,1,1,0)

+ 3
2i(2ω2−ω1)

u2A(1,0,0,1,0)u1A(0,0,2,0,0) +
3

2iω1
u2A(0,1,1,0,0)u1A(0,0,1,1,0)

+ 3
2i(ω1+2ω2)

u2A(0,1,0,1,0)u1A(0,0,2,0,0) + 3u1H2((0,ϕ2),(0,h(0,0,1,1,0)))

+3u1H2((0,ϕ2),(0,h(0,0,2,0,0))).
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(1937) (in Russian).

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations,
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6,
© Springer Science+Business Media New York 2013

275



276 References

17. Arino, O., Hbid, M.L.: Existence of periodic solutions for a delay differential equation via
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Lichnérowicz, A. (eds.) Bifurcation Theory, Mechanics and Physics. Mathematics and Its
Applications, pp. 177–208. Reidel, Dordrecht (1983)



References 277

44. Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector
fields having low codimension. Ergod. Theor. Dyn. Syst. 4, 509–525 (1984)

45. Brokate, M., Colonius, F.: Linearizing equations with state-dependent delays. Appl. Math.
Optim. 21, 45–52 (1990)

46. Brouwder, F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 1, 1–39
(1983)
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Phys. Kl. Säch. Akad. Wiss. Leipzig 94, 1–22 (1942)

168. Hopfield, J.J.: Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81, 3088–3092 (1984)

169. Hsu, I.D., Kazarinoff, N.D.: An applicable Hopf bifurcation formula and instability of small
periodic solutions of the Field-Noyes model. J. Math. Anal. Appl. 55, 61–89 (1976)

170. Hu, Q., Wu, J.: Global Hopf bifurcation for differential equations with state-dependent delay.
J. Differ. Equat. 248, 2801–2840 (2010)

171. Hu, Q., Wu, J.: Global continua of rapidly oscillating periodic solutions of state-dependent
delay differential equations. J. Dynam. Differ. Equat. 22, 253–284 (2010)

172. Hu, Q., Wu, J., Zou, X.: Estimates of periods and global continua of periodic solutions of dif-
ferential equations with state-dependent delay. SIAM J. Math. Anal. 44, 2401–2427 (2012)



282 References

173. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Springer, New
York (1978)

174. Iooss, G.: Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13, 849–866 (2000)
175. Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific,

Singapore (1992)
176. Iooss, G., Langford, W.F.: Conjectures on the routes to turbulence via bifurcation. In: Helle-

man, R.H.G. (ed.) Nonlinear Dynamics, pp. 489–505. New York Academy of Science, New
York (1980)

177. Ize, J., Bifurcation Theory for Fredholm Operators, vol. 174. Memoirs of the American
Mathematical Society, Providence (1976)

178. Ize, J.: Obstruction theory and multiparameter Hopf bifurcation. Trans. Am. Math. Soc. 289,
757–792 (1985)
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Pures Appl. 1, 167–244 (1885)

248. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. I. Cauthier-Villars, Paris
(1892)

249. Pontryagin, L.: On the dynamical systems close to Hamiltonian systems. J. Exp. Theor. Phys.
4, 234–238 (1934) (in Russian)

250. Poore, A.B.: On the theory and application of the Hopf-Friedrichs bifurcation theory. Arch.
Ration. Mech. Anal. 60, 371–393 (1976)



References 285

251. Rabinowitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7,
487–513 (1971)

252. Ruan, S., Filfil, R.F.: Dynamics of a two-neuron system with discrete and distributed delays.
Phys. D 191, 323–342 (2004)

253. Ruan, S., Wei, J.: Periodic solutions of planar systems with two delays. Proc. Math. Roy.
Soc. Edinb. 129, 1017–1032 (1999)

254. Rudin, W.: Functional Analysis. McGraw-Hill Science, New York (1991)
255. Ruelle, D.: Bifurcations in the presence of a symmetry group. Arch. Ration. Mech. Anal. 51,

136–152 (1973)
256. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192, and

23, 343–344 (1971)
257. Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dy-

nam. Differ. Equat. 1, 145–177 (1989)
258. Sacker, R.: On invariant surfaces and bifurcations of periodic solutions of ordinary differen-

tial equations. Report IMM-NYU 333, New York University (1964)
259. Sanders, J.: On the computation of normal forms. Computational aspects of Lie group repre-

sentations and related topics. In: Cohen, A.M. (ed.) Proceedings of the 1990 Computational
Algebra Seminar, CWI Tracts 84, Amsterdam, pp. 129–142 (1991)

260. Sattinger, D.H.: Bifurcation of periodic solutions of the Navier-Stokes equations. Arch. Ra-
tion. Mech. Anal. 41, 66–80 (1971)

261. Sattinger, D.H.: Bifurcation and symmetry breaking in applied mathematics. Bull. Am. Math.
Soc. 3, 779–819 (1980)

262. Shayer, L.P., Campbell, S.A.: Stability, bifurcation, and multistability in a system of two
coupled neurons with multiple time delays. SIAM J. Appl. Math. 61, 673–700 (2000)
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Poincaré–Birkhoff normal form theorem, 89

quasiperiodic, 6, 36, 231

reduced equation (see also reduced system),
67, 76, 82, 233–236, 239, 260, 265, 266

reduced system, 43, 68, 83
representation

isometric, 127, 158–160, 169
matrix, 83, 91–94, 198
Riesz, 47, 76, 110, 232

RFDE, 65, 86, 238, 239
ring, 147, 251, 266
rotating wave, 180

saddle-node bifurcation, 8, 9, 12, 16, 21, 25,
124, 234

Sard’s lemma, 154
semisimple, 96
separatrix, 37, 39
singular point, 161–163, 165, 166, 197
singularity, 86, 111
sink, 30–32, 36–39

solution operator, 45
source, 19, 30–32, 36, 38, 39
special neighborhood, 161–164, 166, 193,

196–198
spectrum, 47, 59, 60, 78, 89, 112, 116, 123,

134
spontaneous symmetry breaking, 14, 25, 125
stable manifold, 17, 62
standing wave, 146, 149, 256–258
state-dependent delay, 165, 188, 189, 203, 224
stationary solution, 167, 170
strongly continuous semigroup, 46, 49, 59, 65
structurally stable, 5, 6, 17
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subharmonic bifurcation, 17
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equivalent, 2, 4, 5, 9, 262, 267
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2-torus, 40, 231, 271
3-torus, 269
invariant, 17, 28, 36, 40

transcritical bifurcation, 12, 13, 124, 235
equivariant, 267

transversality condition, 15, 137, 198

unstable manifold, 17, 40, 62, 66, 243

van der Pol oscillator, 141
virtual period, 191, 204

wave train, 150, 151
winding number, 153

Zorn’s lemma, 216
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