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Preface

A functional differential equation (FDE) describes the evolution of a dynamical sys-
tem for which the rate of change of the state variable depends on not only the current
but also the historical and even future states of the system. FDEs arise naturally in
economics, life sciences, and engineering, and the study of FDEs has been a major
source of inspiration for advancement of nonlinear analysis and infinite-dimensional
dynamical systems. Therefore, FDEs provide an excellent theoretical platform for
developing an interdisciplinary approach to understanding complex nonlinear phe-
nomena via appropriate mathematical techniques.

Unfortunately, the study of FDEs is difficult for newcomers, since a background
in nonlinear analysis, ordinary differential equations, and dynamical systems is a
prerequisite. On the other hand, the novelty and challenge of fundamental research
in the field of FDEs has often been underappreciated. This is especially so in our
effort to describe the qualitative behaviors of solutions near equilibria or periodic
orbits: these qualitative behaviors can be derived from those of finite-dimensional
(ordinary differential) systems obtained through a center and center-unstable man-
ifold reduction process, and hence the (local) bifurcation theory that deals with
significant changes in these qualitative behaviors is in principle a consequence of
the corresponding theory for finite-dimensional (ordinary differential) systems. The
highly nontrivial and often lengthy calculation of center manifold reduction, how-
ever, not only leads to enormous duplication of calculation efforts, but also prevents
us from discovering simple and key mechanisms behind observed bifurcation phe-
nomena due to the infinite-dimensionality of FDEs. This, in turn, makes it difficult
to express bifurcation results explicitly in terms of model parameters and to compare
and validate different results. Another challenge is the study of the birth and global
continuation of bifurcation of periodic solutions and the coexistence of multiple
periodic solutions when the parameters are far from the bifurcation/critical values.
There has been substantial progress dedicated to this global bifurcation problem,
and remarkably, the presence of a delayed or advanced argument in the nonlinearity
can sometimes facilitate the application of topological methods such as equivalent
degrees to examine the global continua of branches of periodic solutions, and this
has inspired interesting developments in the spectral analysis of circulant matrices.
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On the other hand, the study of dynamical systems with symmetries has become
well established as a major branch of nonlinear systems theory. The current interest
in the field dates mainly to the appearance of the equivariant branching lemma of
Vanderbauwhede and Cicogna and the equivariant Hopf bifurcation theorem of Gol-
ubitsky and Stewart, both of which are reviewed in the book by Golubitsky, Stewart
and Schaeffer. Since then, important new theories have been developed for more
complex dynamical phenomena, including the existence, stability, and bifurcations
of systems of heteroclinic connections, and the symmetry groups and bifurcations
of chaotic attractors.

To a large extent, the phenomenal growth in the subject has been due to its effec-
tiveness in explaining the bifurcations and dynamical phenomena that are seen in
a wide range of physical systems including coupled oscillators, reaction—diffusion
systems, convecting fluids, and mechanical systems. A local symmetric bifurca-
tion theory for FDEs can be derived from that of but since some special properties
of spatiotemporal symmetry of FDEs may be reflected generically in the reduced
finite-dimensional systems, one can and should make general observations about
the particular bifurcation patterns of symmetric FDEs.

The purpose of this book is to summarize some practical and general approaches
and frameworks for the investigation of bifurcation phenomena of FDEs depending
on parameters. The book aims to be self-contained, so the reader should find in
this book all relevant materials on bifurcation, dynamical systems with symmetry,
functional differential equations, normal forms, and center manifold reduction. This
material was used in graduate courses on functional differential equations at Hunan
University (China) and York University (Canada). We want to thank all students
in these courses for their careful reading and some helpful comments. We would
like especially to thank Dr. Jing Fang and Dr. Xiang-Sheng Wang for their careful
reading of an early version of the manuscript and for their critical comments.

This work was supported in part by the National Natural Science Foundation
(China), the Program for New Century Excellent Talents in University of Ministry
of Education (China), the Research Fund for the Doctoral Program of Higher Edu-
cation of China, the Hunan Provincial Natural Science Foundation, the NCE Cen-
tre Mathematics for Information Technology and Complex Systems, Mprime, the
Canada Research Chairs Program, and the Natural Sciences and Engineering Re-
search Council of Canada.

Changsha, Hunan, China Shangjiang Guo
Toronto, ON, Canada Jianhong Wu
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Chapter 1
Introduction to Dynamic Bifurcation Theory

1.1 Introduction

The change in the qualitative behavior of solutions as a control parameter (or control
parameters) in a system is varied and is known as a bifurcation. When the solutions
are restricted to neighborhoods of a given equilibrium, a bifurcation occurs often
when the zero solution of the linearization of the system at the equilibrium changes
its stability. To illustrate the basic concepts of bifurcation phenomena, we consider
the following continuous dynamical system defined by the C” (r > 1) vector field f:
AxU— R

$=f(u,x), HEACR" xeUCR", (1.1)

where U and A are open sets, x is the state variable, and u is the (bifurcation)
parameter.

Continuously varying ¢ may change the qualitative behavior of the solutions
of (1.1). A value u € A for which such a change occurs is called a bifurcation
(critical) value. The set of all bifurcation values is called the bifurcation set in the
parameter space R”. We may use a bifurcation diagram to schematically show the
considered solutions (equilibria/fixed points, closed orbits/periodic orbits, invariant
tori) of a system as a function of a bifurcation parameter in the system. It is normal to
represent stable solutions with solid lines and unstable solutions with dashed lines.

Local bifurcations are relevant to the birth or initiation of bifurcations when the
bifurcation parameter is close to a bifurcation value. A local bifurcation from a given
solution (an equilibrium, a periodic orbit, etc.) can normally be detected from a local
stability analysis at the given solution. The global bifurcation thereby concerns the
continuation of a local bifurcation when the bifurcation parameter is away from the
bifurcation value.

The bifurcation phenomena is linked closely to the concepts of topological
equivalence, structural stability, and genericity, which are described in the next
section.

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, 1
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6_1,
© Springer Science+Business Media New York 2013



2 1 Introduction to Dynamic Bifurcation Theory

1.2 Topological Equivalence

In the study of dynamical systems, we are interested in not only specific solutions of
a specific system, but also classification of solutions of a particular system and clas-
sification of systems according to general qualitative behaviors, that is, the number,
position, and stability of equilibria, periodic orbits, and other isolated invariant sets.

In what follows, we will not distinguish a flow and a dynamical system. This
means that we consider a continuous mapping @: R x U — U over an open set
U CR" such that @(0,x) =xand @(tr, D(s,x)) = (¢ +s,x) fort, s e R,andx € U.
Sometimes, we write it as @' := @(z,-): U — U fort € R.

We consider two dynamical systems to be (locally) equivalent if their (local)
phase portraits are similar in a qualitative sense, that is, if they can be locally
transformed into each other through a continuous transformation. More precisely,
we introduce the following definition.

Definition 1.1. A dynamical system @ in R” is said to be fopologically equivalent
in a region U C R” to a dynamical system ¥ in a region V C R” if there exists a
homeomorphism h: U — V that maps the orbits of @ in U onto the orbits of ¥ in
V, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse
are continuous. A homomorphism is called a diffeomorphism if it is C'-smooth
and its inverse is also C'-smooth. The definition of topological equivalence can be
generalized to cover more general cases in which the state space is a complete met-
ric or, in particular, a Banach space. The definition also remains meaningful when
the state space is a smooth finite-dimensional manifold in R”, for example, a two-
dimensional torus T2 or sphere S?. The phase portraits of topologically equivalent
systems are often said to be topologically equivalent.

Example 1.1. Consider the flows @' and Y¥' associated with the differential
equations

X=—x and y= -3y,

respectively. The homeomorphism 4: R — R given by /(x) = x* for x € R maps the
orbits of @ onto those of V.

Definition 1.2. Two flows @' (on U) and ¥' (on V) are called topologically
conjugate if there exists a homeomorphism s: U — V such that

Y =hodoh ! for teR.

We also use the term smoothly conjugate (or diffeomorphic) if the involved homeo-
morphism is a diffeomorphism and the flows are smooth.

For example, for a continuous-time system

i=f(x), xeR", (1.2)
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if i is a diffeomorphism from R” to R”, and x = A(y), then the system

y=g), yeR" (1.3)

with g(y) = [Dh(y)] "' f(h(y)) for all y € R" is smoothly equivalent (or diffeomor-
phic) to system (1.2). In fact, denoting by @’ (x) the flow associated with system
(1.2), and letting ¥'(y) = h~' (@' (h(y))), we have

d

Dh(¥'(y) 3, ') = F(@' (h())),

and so

%‘P‘(y) = [DR(P' ()]~ F(@' (h())) = (¥ (),

which implies that ¥'(y) is the flow associated with system (1.3). Therefore,
systems (1.2) and (1.3) are smoothly equivalent (or diffeomorphic).

In what follows, if the degree of smoothness of % is of interest, we also use the
term C*-equivalent or C¥-diffeomorphic.

Two diffeomorphic systems are practically identical and can be viewed as the
same system written using different coordinates. Two diffeomorphic systems have
similar qualitative behaviors. For such systems, the eigenvalues of corresponding
equilibria are the same: Let xo and yo = h(xo) be such equilibria and let A(xp) and
B(yo) denote corresponding Jacobian matrices. Then we have

A(xo) =M™ (x0)B(yo)M(xo),

where M(x) = Dh(x). Therefore, the characteristic polynomials for the matrices
A(xo) and B(yo) coincide.

It is easy to construct nondiffeomorphic but topologically equivalent flows.
To see this, consider a smooth scalar position function t: R” — (0,0) and assume
that the right-hand sides of (1.2) and (1.3) are related by

f(x)=ux)glx) for xeR". (1.4)

Then systems (1.2) and (1.3) are topologically equivalent since their orbits are
identical, and it is the velocity of the motion that makes them different. Thus,
the homeomorphism /4 in Definition 1.1 is the identity map i(x) = x. In other
words, these two systems are distinguished only by the time parameterization along
the orbits. We say that two systems (1.2) and (1.3) satisfying (1.4) for a smooth pos-
itive function u are orbitally equivalent. Usually, two orbitally equivalent systems
can be nondiffeomorphic, having cycles that look like the same closed curve in the
phase space but different periods. For example, the system

F=r(l—r), 6=1
and the system

p=2p(1—p), ¢=2
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in R? using polar coordinates are topologically equivalent, but not topologically
conjugate, because their periodic orbits r = 1 and p = 1 have periods 27 and 7,
respectively.

Let xo be an equilibrium of the system (1.2), that is, f(xo) = 0, and let A denote
the Jacobian matrix Df(x) evaluated at x = xo. Let n_, ng, and n. be the numbers
of eigenvalues of A (counting multiplicities) with negative, zero, and positive real
part, respectively. Recall that an equilibrium is called hyperbolic if ny = 0, that
is, if A has no purely imaginary eigenvalues. A hyperbolic equilibrium is called a
hyperbolic saddle if n_n, # 0.

Topological equivalence of linear systems is generally easy to determine. If the
linearized flow near an equilibrium is asymptotically stable, then the equilibrium
is asymptotically stable. Moreover, two asymptotically stable n-dimensional linear
flows are topologically equivalent.

Example 1.2. Consider two linear planar systems:

s Y=» (1.5)

and

X=—x—y, y=x—). (1.6)

Clearly, the origin is a stable equilibrium in both systems. All other trajectories
of (1.5) are straight lines, while those of (1.6) are spirals. The equilibrium of
the first system is a node, while in the second systems it is a focus. These two
systems are neither orbitally nor smoothly equivalent. However, they are topologi-
cally equivalent.

We can further claim that near a hyperbolic equilibrium p, the system behaves
essentially like the linearized one. In other words, @' is topologically equiva-
lent to e?/(P)" in a sufficiently small neighborhood of a hyperbolic equilibrium p
(Grobman—Hartman theorem). See Grobman [123], Hartman [161, 162], Hirsch
[163], Hale and Kocak [152] for details. As a result, determining topological equiv-
alence near hyperbolic equilibria boils down to counting the dimensions of the local
stable and unstable subspaces (manifolds).

Theorem 1.1. Twwo systems of differential equations with hyperbolic equilibria are
topologically equivalent near these equilibria if and only if their linearizations have
the same number n.. of eigenvalues with positive real parts and the same number
n_ of eigenvalues with negative real parts.

1.3 Structural Stability

There are dynamical systems whose phase portrait (in some domain) does not
change qualitatively under all sufficiently small perturbations. For example, suppose
that (1.1) has an equilibrium xo when p = o, that is,

f(to,x0) = 0. (L.7)
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It is natural to ask about the stability of this equilibrium and how the stability or
instability is affected as p is varied. Thus, we first linearize (1.1) at (to,xo) to get

x = Dyf(Ho,x0)x, x€R" (1.8)

If the eigenvalues of the linearized matrix D, f(lo,xo) are all nonzero, then the
linearized matrix is invertible, and by an application of the implicit function
theorem, there is a curve g — B (i) in R such that B (o) = xp and f(u,B(1)) =0
for all sufficiently small |i — tp|. In other words, for each u in the domain of 3, the
point B(1) € R" corresponds to an equilibrium point for the member of the family
(1.1) at the parameter value .

If the equilibrium xg is hyperbolic, that is, none of eigenvalues of the linearized
matrix D, f(Uo,xo) lie on the imaginary axis, then the linearized matrix of (1.1)
at (u,B(u)) is Dyf(u,B(u)) it depends smoothly on p and coincides with
D.f(to,xo) at L = Up. Recall that if Dy f(Uo,xo) has no eigenvalues on the imag-
inary axis, then neither does Dyf(u,B(u)) for each u in a sufficiently small
neighborhood of . In other words, B(u) is a hyperbolic equilibrium of (1.1) for
all i in a sufficiently small neighborhood of py. Moreover, the numbers ny and
n_ of the positive and negative eigenvalues of D, f(u,B(u)) are fixed for these
values of u. In view of Theorem 1.1, system (1.1) is locally topologically equiva-
lent to X = f(Uo,x) near the equilibria. This means that a hyperbolic equilibrium is
structurally stable under smooth perturbations.

Inspired by the above property, we now can define a structurally stable system,
which means that every sufficiently close system is topologically equivalent to the
structurally stable one.

Definition 1.3. A flow @ is said to be structurally stable in a region D C R" if for
every flow ¥ that is sufficiently C!-close to @, there exist regions U and V with
D C U such that 'V is topologically equivalentin V to @ in U.

The following theorem results from the previous discussion.

Theorem 1.2. A flow with a hyperbolic equilibrium is structurally stable in a
neighborhood of the equilibrium.

In Definition 1.3, we require the C ! metric, instead of C?, because two C? curves
may be arbitrarily close to each other but have different numbers of equilibria.
Moreover, it would be nice to show that structurally stable systems are generic.
The following classical theorem gives necessary and sufficient conditions for a
continuous-time system in a plane to be structurally stable.

Theorem 1.3 (Andronov and Pontryagin [16]). A smooth dynamical system
X=f(x), xeR?
is structurally stable in a region Dy C R? if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points.
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Furthermore, for two-dimensional vector fields on compact manifolds, we have
the following result due to Peixoto [244].

Theorem 1.4 (Peixoto’s theorem [244]). Let & be a compact two-dimensional
manifold without boundary and let 2°%(9) denote the C* (k > 1) vector fields
defined on 9. Then f € 2°%(D) is structurally stable on 9 if and only if

(i) The number of equilibria and periodic orbits is finite and each is hyperbolic;
(ii) There are no orbits connecting saddle points;
(iii) The nonwandering set consists of equilibria and periodic orbits.

Moreover; if D is orientable, then the set of such vector fields is open and dense in

2D,

This theorem is useful because it spells out precise conditions for structural
stability on the dynamics of a vector field on a compact two-manifold without
boundary under which it is structurally stable. Unfortunately, we do not have a sim-
ilar theorem in higher dimensions. This is in part due to the presence of complicated
recurrent motions (e.g., the Smale horseshoe). In light of this theorem, it appears
to be practically convenient to ignore more structurally unstable vector fields de-
fined on a compact two-dimensional manifold without boundary, because an arbi-
trarily small perturbation will usually turn a structurally unstable vector field into a
structurally stable one. However, as we shall see, if this vector field depends on a
parameter, more complicated dynamics will take place.

1.4 Codimension-One Bifurcations of Equilibria

Let xg be a hyperbolic equilibrium point of (1.1) for 4 = uy. As we have seen in the
previous section, under a small parameter variation, the equilibrium moves slightly
but remains hyperbolic. Therefore, we can vary the parameter further and control
the equilibrium. It is clear that there are, generically, only two ways in which the
hyperbolicity condition can be violated. Either a simple real eigenvalue approaches
zero, or a pair of simple complex eigenvalues reaches the imaginary axis for some
values of the parameter.

If the equilibrium xy of (1.1) is not hyperbolic, that is, D, f(to,xo) has some
eigenvalues on the imaginary axis, then the topology of the local phase portrait of
the corresponding differential equation (1.1) at this equilibrium point may change
under perturbation, that is, a bifurcation occurs. For example, equilibria can be cre-
ated or destroyed, and time-dependent behavior such as periodic, quasiperiodic, ho-
moclinic, heteroclinic, or even chaotic dynamics can be created. Moreover, the more
eigenvalues on the imaginary axis, the more complicated the dynamics will be.

For equilibria of flows, a (generic) codimension-one bifurcation means that the
crossing of the stability region (the imaginary axis) is taking place with either one
eigenvalue of the linear part going through O or one pair of complex conjugate eigen-
values crossing the imaginary axis. This section will be devoted essentially to the
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proof that a nonhyperbolic equilibrium satisfying one of these two conditions is
structurally unstable and to the analysis of the corresponding bifurcations of the
local phase portrait under variation of the parameter.

Definition 1.4. The bifurcation associated with the appearance of eigenvalue O is
called a fold (or tangent) bifurcation.

This bifurcation is also associated with a lot of other names, including limit point
and turning point.

Definition 1.5. The bifurcation corresponding to the presence of a pair of complex
purely imaginary eigenvalues is called a Hopf (or Andronov—Hopf, or Poincaré-
Andronov-Hopf) bifurcation.

As pointed out repeatedly by Arnold [19], examples of Hopf bifurcation can be
found in the work of Poincaré [248]. The first specific study and formulation of
a theorem in this area was due to Andronov [14]. However, the work of Poincaré
and Andronov was concerned with two-dimensional vector fields. The existence
of such a bifurcation was found in the context of general n-dimensional ordinary
differential equations (ODEs) by Hopf [167] in 1942. This was before the discovery
of the center manifold theorem. For these reasons, we usually refer to this kind of
bifurcation as a Poincaré—Andronov—Hopf bifurcation.

In the 1970s, Hsu and Kazarinoff [169], Poore [250], Marsden and McCracken
[217], and others discussed in their works the computation of important features of
the Hopf bifurcation, especially the direction of bifurcation and dynamical aspects
(stability, attractiveness, etc.), both from theoretical and numerical standpoints.
A very important new achievement was the proof by Alexander and Yorke [10]
of what is known as the global Hopf bifurcation theorem, which, roughly speaking,
describes the global continuation of the local branch. The theory was also extended
to allow further degeneracies (more than two eigenvalues crossing the imaginary
axis, or multiplicity higher than one, etc.), leading notably to the development
of the generalized Hopf bifurcation theory (Bernfeld et al. [31, 32], Negrini and
Salvadori [228]).

Now, if these phenomena were taking place in a linear system, then there would
be just a low-dimensional (1 or 2, respectively) invariant subspace to be affected
by the bifurcations. In what follows, we first study these bifurcations in systems of
smallest possible dimension for the bifurcations to take place. Here, the effort will
be to obtain expressions for these systems that are as simple as possible while still
capturing the bifurcations of interest, and at the same time to show that other sys-
tems undergoing the same bifurcation are locally topologically equivalent to these
simple ones. In subsequent chapters, we shall see that center manifold reduction
can transform the bifurcation problem in general functional differential equations
(of course, general n-dimensional ODEs) into that of ordinary differential equa-
tions on a one- or two-dimensional invariant manifold. Therefore, this part of study
is basic and crucial for discussing bifurcations in general functional differential
equations (see Chap. 7).
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1.4.1 Fold Bifurcation

Consider the following one-parameter scalar ODE:

i=f(ux), x HER, (1.9)

where f(0,0) = 0. That is, (1.9) has an equilibrium xo = 0 when u = yy = 0.
The condition ensuring a fold bifurcation of (1.9) is that f,(0,0) = 0. Usually, we
may encounter three situations, as discussed in this section.

Example 1.3. Consider the family of differential equations

i=u—x>, xucR.
We see that 1 = 0 is the bifurcation value. In particular, if t > 0, then there are
two equilibria: an unstable equilibrium —, /it and a stable one /. At the bifurca-
tion value u = 0, there is only one equilibrium, which is not hyperbolic. If 1 < 0,
there are no equilibria. The bifurcation diagram is the parabola u = x> labeled as
in Fig. 1.1. Notice that the parameter U is assigned to the horizontal axis, while the
stable equilibria are drawn in solid lines and the unstable equilibria in dashed lines.

X
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Fig. 1.1 Bifurcation diagram of a saddle-node bifurcation

The type of bifurcation described in Example 1.3—on one side of a parameter
value there are no equilibria, and on the other side there are two equilibria—is
referred to as a saddle-node bifurcation. The next theorem lists sufficient conditions
for a saddle-node bifurcation to occur at (i,x) = (0,0) in the scalar system (1.9).
A more general theorem on saddle-node bifurcation will be formulated and proved
later for general delay differential equations.
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Theorem 1.5. Suppose f in (1.9) is sufficiently smooth and satisfies

f(0,0)=0, £:(0,0)=0, fu(0,0)f(0,0) # 0. (1.10)

Then there are smooth invertible local changes of coordinate and parameter that
transform the system (1.9) into the following normal form:

y=y£y*+0(y). (1.11)

Therefore, if f.(0,0)f(0,0) < O (respectively, > 0), then near the origin, only two
equilibria exist for L > 0 (respectively, < 0), only one equilibrium x = O exists for
u =0, and no equilibria exist for i < 0 (respectively, > 0). In the case that two
equilibria exist, one is asymptotically stable and the other is unstable.

Proof. Expanding f with respect to x around ¢ = 0 yields
Flux) = folw) + fi(w)x+ fo(u)x* + 0,

where
_1dif

—ﬁﬁ(ﬂ,()), j=0,1,2,....

Obviously, f5(0) = £(0,0) = 0 and f1(0) = £,(0,0) = 0. Set & = x+ &, where 9 is
a constant independent of #. Then (1.9) can be transformed into

& = folk) = fi()8 + fo(u) 8% + 0(87)
+Hfi() = 2/()8 + 0(8*)]E + [A (1) + 0(8))&* +0(8%).  (1.12)
Noting that f1(0) = 0 and f>(0) = § f(0,0) # 0, and using the implicit function

theorem, we can find &(u) for small g such that f;(u) — 2/ (1) + 0(8°) = 0.
This gives

fi(w)

_ fw(0,0)
£a(0,0)

8(u) u+0(u?).

Using this 0(u), we have

E=B(u)+ A1) +0(u)E*+0(E), (1.13)

where B (i) = £3(0) 4+ O(u?). Recall that £;(0) = £,,(0,0) # 0. Then the function
B is invertible near the origin. Hence, we can obtain u(f3) with u(0) = 0. Thus,
(1.13) can be changed into the form

E=B£c(B)E*+0(&),

where the sign is that of f,,(0,0) and ¢ is a smooth positive function. Take y = c(3)&
and ¥ = ¢(P)B. Then we obtain (1.11), which is obviously topologically equivalent
to y = y=y2. The rest of the proof follows from Example 1.3. (]

Remark 1.1. In the study of bifurcations, we usually have bifurcation conditions and
genericity conditions (nondegeneracy conditions). For the saddle-node bifurcation
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of (1.9), the bifurcation conditions are f(0,0) = 0 and f,(0,0) = 0, and the gener-
icity conditions are fj,(0,0) =0 and f(0,0) = 0. The bifurcation conditions will
be used to numerically search for bifurcation points, while the genericity conditions
will be used to verify whether a bifurcation point is really of the type we are looking
for, i.e., to guarantee that locally, nothing more complicated can occur.

1.4.2 Poincaré-Andronov—Hopf Bifurcation

We start with a simple example in which a pair of simple complex conjugate eigen-
values cross the imaginary axis.

Example 1.4. Consider the following planar system:

%= pr—y—x(+?),

. 1.14
y=x+uy—y(’+y?), (19

where x,y, u € R. Using the complex and polar coordinates z = x +iy = re'?, system
(1.14) takes the forms

= (U+1i)z— 2z
and
};':}’(‘LL—}"Z), 6:17

which can be solved for (r,0):

. { V(1 +Ce 271 10,
Vo), u=0, (1.15)

0=t—r,

where C and #y are determined by the initial condition. Variations of the phase
portrait of system (1.14) as p passes through zero can be easily analyzed using
the polar form (1.15), since the equations for r and 6 are uncoupled. We can see that
system (1.14) always has a unique equilibrium at the origin, which is a stable focus
for 4 < 0 and an unstable focus for tt > 0. This equilibrium is surrounded for y > 0
by an isolated closed orbit (limit cycle) that is unique and stable. This bifurcation is
supercritical because the closed orbit (limit cycle) appears after the bifurcation.

The bifurcation diagram for periodic solutions of (1.14) is simply a plot of the
solutions of u = rZ in the (u,r)-plane together with the line » = 0 (see Fig. 1.2).
As usual, stable periodic orbits are indicated by solid curves, and unstable ones with
dashed curves.

Similarly, the system

X = ux—y+x(x>+y?), (1.16)
¥ =x+py+y*+y%),
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n<0 u>0

stable

-1 0 1 2

Fig. 1.2 A supercritical Hopf bifurcation

can be rewritten as
= (U +i)z+zlz?

or

F=r(u+r?), =1
This has an unstable periodic solution (limit cycle) for u < 0. Hence this bifurcation
is subcritical.

As described in Example 1.4, in a Poincaré—Andronov—Hopf bifurcation, an
equilibrium of a system loses stability as a pair of complex conjugate eigenvalues
of the linearization around the equilibrium cross the imaginary axis of the com-
plex plane. Under reasonably generic assumptions about the dynamical system, we
can expect a small-amplitude limit cycle branching from the fixed point. Either the
limit cycle is orbitally stable and the bifurcation is supercritical, or the limit cycle is
unstable and the bifurcation is subcritical.

The next theorem lists sufficient conditions for a Poincaré—Andronov—Hopf
bifurcation to occur in a planar system.

Theorem 1.6 (Hassard and Wan [159]). Consider the following system:

DT I
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where ® > 0 and f/ is three times differentiable, satisfying fi(0,0) = f£7(0,0) =0,
Jj = 1,2. Then there exists a branch of periodic solutions of (1.17) bifurcating
from the trivial solution x = 0, and the Poincaré—Andronov—Hopf bifurcation is
supercritical (subcritical), i.e., bifurcating periodic solutions exist for u > 0 (re-
spectively, < 0) if Y < 0 (respectively, > 0), where

1 1 2 2
r= fxxx+fxyy+fxxy+.fyyy

1
= (e ) = S L+ £y) = Fusfe+ Fynfp)-

More generally, in order to investigate Poincaré—Andronov—Hopf bifurcations in
high-dimensional ODEs, even in infinite-dimensional ODEs generated by partial
differential equations (PDEs) and functional differential equations (FDEs), we may
employ center manifold reduction and normal form theory to obtain the following
system:

=2A(W)z+C(u)zlz* +0(2f), (u.2) eRxC, (1.18)

where A(0) = iw and @ > 0. Detailed analysis can be found in Sects.3.4.1, 4.3.1,
and 7.3.2. Also see [54, 55, 74, 152, 200, 257, 282, 302] for more background on
Poincaré-Andronov-Hopf bifurcation.

Definition 1.6. The first Lyapunov coefficient of a Hopf bifurcation is defined by
11(0) =Re{C(0)}/ .

As stated in Lemma 3.7 of Kuznetsov [200], if Re{A'(0)}Re{C(0)} # 0, then
(1.18) can be transformed by a parameter-dependent linear coordinate transforma-
tion, a time rescaling, and a nonlinear-time reparameterization into an equation of
the form

:=(B+1)z+szz>+0(z), (u,2) e RxC, (1.19)

where s = sgnRe{C(0)} = sgn/;(0) and B is the new parameter. Obviously, the
truncated system of (1.19) is equivalent to either (1.14) (in the cases in which s =
—1) or (1.16) (in the cases in which s = 1). Thus, the bifurcation direction and
stability of bifurcated periodic solutions are determined by the signs of Re{1/(0)}
and Re{C(0)} (or equivalently, [, (0)).

1.5 Transcritical and Pitchfork Bifurcations of Equilibria

In a saddle-node bifurcation, on one side of a parameter value there is no
equilibrium, and on the other side there are two equilibria. In some examples,
we may meet another type of bifurcation: both equilibria exist before and after
the bifurcation value, and there is one unstable equilibrium and one stable one;
however, their stability is exchanged when they collide. So the unstable equilibrium
becomes stable and vice versa. We refer to this type as a transcritical bifurcation,
as shown in the following example.



1.5 Transcritical and Pitchfork Bifurcations of Equilibria 13

Example 1.5. Consider a vector field

¥=ux—x*, x,ueR.
If u <0, there are two equilibria: x = 0, which is stable, and x = u, which is
unstable. These two equilibria coalesce at the bifurcation value 4 = 0. If u > 0,
there are also two equilibria: x = 0 is unstable, while x = u is stable. The bifurcation
diagram is depicted in Fig. 1.3.

X
3 L
stable
0
N2 7/
X 7
Qé{b/
s
s
7
/
/
s
-3 : —
-3 0 3

Fig. 1.3 Bifurcation diagram of a transcritical bifurcation

Similarly to the proof of Theorem 1.5, we may list sufficient conditions for a
transcritical bifurcation for the scalar system (1.9).

Theorem 1.7. Suppose f in (1.9) is sufficiently smooth and satisfies
f(1,0)=0, fx(0,0)=0, fu(0,0)/x(0,0) #0. (1.20)

Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

y=m=y+0(yP). (1.21)

Therefore, besides the trivial solution, system (1.9) has a nonzero equilibrium,
which continuously depends on L for all sufficiently small ||| and is stable for all
sufficiently small [ such that i f,(0,0) > 0.

To illustrate another generic equilibrium bifurcation, we consider the following
example.
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X

3 -

0 stable - _unfta_ble_ -
Stab/e

_3 1 1 H

4 0 4

Fig. 1.4 Bifurcation diagram of a pitchfork bifurcation

Example 1.6. The vector field

x:ux—x3, xueR
has one stable equilibrium x = 0 if 4 < 0, and it has an unstable equilibrium x = 0
and two stable equilibria x = &, /1 if u > 0. See Fig. 1.4.

The bifurcation diagram is shown in Fig. 1.4, and this kind of bifurcation is
known as a pitchfork bifurcation. Note that x = 0 is always an equilibrium. How-
ever, as the parameter U passes through the bifurcation value y = 0, the equilibrium
at the origin loses its stability and two new stable equilibria are bifurcated from the
origin. This is also an example of spontaneous symmetry breaking, because the two
bifurcated equilibria do not have the symmetry Z, possessed by the system. More-
over, this pitchfork bifurcation is called supercritical because new equilibria exist
for a parameter u that is greater than the bifurcation value y = 0. When additional
equilibria exist for a parameter ¢ smaller than the bifurcation value u = 0, the bi-
furcation is called subcritical. An example of a subcritical pitchfork bifurcation can
be seen in the equation x = px + x°.

Similarly, we may list sufficient conditions for a pitchfork bifurcation in the
scalar system (1.9). A more general theorem on pitchfork bifurcation will be
formulated and proved in Sect. 7.2.

Theorem 1.8. Suppose f in (1.9) is sufficiently smooth and satisfies

fu,—x) = —f(u,x), f:(0,0)=0, Sau (0,0) fuxx(0,0) # 0. (1.22)
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Then there are smooth invertible local coordinate and parameter changes that
transform the system (1.9) into the following normal form:

y=p£y +o(ly]). (1.23)

Therefore, if fuu(0,0)fx(0,0) < O (respectively, > 0), then two nontrivial
equilibria exist for u > 0 (respectively, < 0), and only the trivial equilibrium con-
tinues to exist for L < 0 (respectively, > 0). Moreover, the two nontrivial equilibria
coalesce into zero as |1 goes to 0.

Remark 1.2. The codimension of a bifurcation is the number of parameters that must
be varied for the bifurcation to occur. It coincides with the number of transversal-
ity conditions. This also corresponds to the codimension of the parameter set for
which the bifurcation occurs within the full space of parameters. Saddle-node bi-
furcations and Hopf bifurcations are the only generic local bifurcations that are re-
ally of codimension one, while transcritical and pitchfork bifurcations both have a
higher codimension. However, transcritical and pitchfork bifurcations are also often
thought of as begin of codimension one, because the normal forms (1.21) and (1.23)
can be written with only one parameter.

Remark 1.3. In Theorems 1.7 and 1.8, we study the transcritical and pitchfork
bifurcations of equilibria in the one-parameter scalar system (1.9). Based on
center manifold reduction (Chap.3) and normal form theory (Chap.4), we can
discuss these bifurcations in high-dimensional systems, even in infinite-dimensional
systems such as functional differential equations. See Sect. 7.2 for more details.

1.6 Bifurcations of Closed Orbits

When (1.1) has a periodic orbit Iy when u = pp, one may also be interested in the
qualitative behaviors of solutions of (1.1) in a neighborhood of the periodic orbit I
for the parameter (U near L.

The so-called Poincaré map is a technical tool for studying the local behaviors
of solutions of (1.1) near a periodic orbit. To describe this tool, we consider a local
transversal section L to the periodic orbit I (see Fig. 1.5). There are oy > 0 and 6 >
0 such that for 0 < |1 — to| < 0 and xq € L, there is a first time 7' (1, xp) > 0 such
that the solution x(¢; i, xo) of (1.1) satisfies x(T(1,x0); 1, x0) € Lg. Therefore, we
define the Poincaré map depending on parameters as IT(t,xo) = x(T (1, x0); 1, Xo)
mapping Lg to L. Periodic orbits near Iy correspond to fixed points of TT(u,xp).
The periodic orbit through the point xo € Lg is said to be hyperbolic if xg is a hy-
perbolic fixed point of the Poincaré map IT (U, -), that is, none of the eigenvalues of
the linearized operator D, IT(ly,xo) (also referred to as Floquet multipliers) lie on
the unit circle.
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Fig. 1.5 An illustration of the Poincaré map for a periodic orbit, where x,,; is the image of x,
under the Poincaré map

By means of the Poincaré map, we can investigate the behavior of solutions near
a periodic solution. If Iy is hyperbolic, then for each y with |u — po| small, there is
a unique periodic orbit I'}; near I, and I, is also hyperbolic. When I is nonhyper-
bolic, the bifurcations near the periodic orbit I can be determined from those of the
Poincaré map IT(u,xo).

Example 1.7 (Saddle-node bifurcation of periodic orbits). Consider the planar
system

X = px—y+x(>+y) (1 —x>—y?), (1.24)
V= x4y +y(@ %) (1 -2 =),
where x,y, it € R. In polar coordinates x + iy = re'?, the system (1.24) has the form

};':}’(‘LL—F}’Z—}‘A),

o1 (1.25)

Since the two equations above are uncoupled, we may investigate directly the
local fold bifurcations for the r-equation using the general arguments in Sect. 1.4.
However, the r-equation is so special that we can employ the following arguments
to depict the global bifurcation explicitly and directly.

Indeed, if u = —0.25, then the periodic orbit is given by r = ‘/75, and the
transversal section L becomes

L={(rn0)eRxS':r>0,6=0}.

So the poincaré map IT(—0.25,r) has a fixed point at r = ‘/Ti Moreover, it is easy

to see that D,I1(—0.25, @) = 1. Consequently, the corresponding periodic orbit
is nonhyperbolic. Moreover, since the first equation is independent of 0, it is easy
to see that in the radial direction, system (1.25) undergoes a saddle-node bifurca-
tion as the parameter y passes through —0.25. If u € (—0.25,0), system (1.25) has

two periodic orbits: a stable periodic orbit r = 1/0.5 + /it +0.25 and an unsta-
ble periodic orbit r = /0.5 — /it +0.25. If u < —0.25, then system (1.25) has no

periodic orbits, because 7+ < 0 and all the solutions tend to the origin as t — oo; see
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Fig. 1.6. At the bifurcation value u = —0.25, there is only one semistable periodic

V2

orbit r = 5=, which is not hyperbolic and has a Floquet multiplier equal to one.

For a nonhyperbolic periodic orbit of a higher-dimensional continuous dynamical
system, there may be some bifurcations of closed orbits, which cannot happen in a
planar system. For example, if at y = U, the closed orbit has a Floquet multiplier
—1 and the modulus of all the remaining Floquet multipliers are not equal to 1, then
a period-doubling bifurcation (also referred to as flip or subharmonic bifurcation)
of the closed orbit may take place (see Fig. 1.7). Namely, as u passes through py,
the closed orbit I becomes another closed orbit I}, with approximately twice the
period of I. See Arnold [19], Newhouse—Palis—Takens [230], Feigenbaum [94] for
further information. If at 4 = g the closed orbit Iy has a pair of complex conjugate
Floquet multipliers on the unit circle, then as u passes through L, this nonhyper-
bolic closed orbit may bifurcate into a two-dimensional invariant torus I, (or T2).
This bifurcation has many names. Some call it Neimark—Sacker bifurcation, while
others call it the secondary Andronov—Hopf bifurcation due to its similarity to that
for flows discussed in the previous section. Detailed analysis of Neimark—Sacker
bifurcations can be found in Ruelle and Takens [256], Sacker [258], and Kuznetsov
[200]. For details and further results on periodic orbits and their bifurcations, see,
for example, [17, 63, 64,98-102, 121, 122, 143, 151-155, 185, 212-214, 225, 288].

1.7 Homoclinic Bifurcation

A homoclinic orbit of a system is given by the intersection of the stable and
unstable manifolds of a saddle-type invariant set (see Andronov and Leontovich
[15], Kuznetsov [200]). Recall that the stable manifold is defined as the set of all
trajectories that tend to the invariant set in forward time, and the unstable manifold
is defined as the set of all trajectories that tend to the invariant set in backward time.
Here, the invariant sets that we consider are steady states (equilibria) and/or periodic
solutions.

For example, an orbit I starting at a point x € R is called homoclinic to the
equilibrium x( of system (1.1) with g = o if the solution @(#;x, ) tends to xg
as t — =oo. In particular, if at 4 = o, system (1.1) has a homoclinic loop I, and
the intersection of the stable and unstable manifolds of equilibria or closed orbits
of system is not transversal,! then system (1.1) is not structurally stable. A slight
perturbation of the parameter (1t makes the stable and unstable manifolds either non-
intersecting or transversally intersecting, and so may change the topological struc-
ture of the vector field of (1.1). Thus, closed orbits can be created or destroyed, and
time-dependent behaviors such as invariant tori and even chaotic dynamics can be
created. Therefore, a homoclinic orbit to a steady state is of codimension one; it may
be destroyed by small perturbations to the system parameters.

I Two smooth manifolds M, N € R” intersect transversally if there exist n linearly independent
vectors that are tangent to at least one of these manifolds at every intersection point.
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Fig. 1.6 The bifurcation phenomena of system (1.24)

Fig. 1.7 Period-doubling bifurcation of a closed orbit
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However, if a homoclinic orbit to a periodic solution is the transversal
intersection of the stable and unstable manifolds of the periodic solution (Kuznetsov
[200, Sects. 6.1 and 7.2.1]), then it cannot be destroyed by a small perturbation, but
it can be destroyed through a codimension-one homoclinic tangency. This occurs
when the intersection of the stable and unstable manifolds becomes tangential,
and thus a small perturbation can separate the manifolds completely. A transition
between a homoclinic orbit of a saddle-focus-type steady state and a homoclinic
orbit of a periodic solution occurs at a codimension-two Shil’nikov—Hopf bifurca-
tion (see Hirschberg and Knobloch [165]). At the Shil’nikov—Hopf bifurcation, the
homoclinic orbit is transferred from the steady state to the periodic solution.

Example 1.8 (Periodic orbit from a homoclinic loop). Consider the planar system

X =2y, (1.26)
¥=2x=30 —y( =+ — ),

where x,y, 1 € R. For all values of u, system (1.26) always has two equilibria: one
saddle (0,0) and one source (2/3,0) when u > —4/27. When p = 0, we can employ
Lyapunov functions V (x,y) = x> — x?> + y? and phase portrait analysis to show that
system (1.26) has a homoclinic orbit loop through the origin and attracts from inside,
as seen in Fig. 1.8. For —4 /27 < u < 0, using the invariance principle, one can show
that there is an orbitally asymptotically stable periodic orbit lying on the curves
x® —x*+y? — 1 = 0. As u increases and tends to zero, the periodic orbit grows until
it collides with the saddle point. At the bifurcation point u = 0, the period of the
periodic orbit has grown to infinity, and it has become a homoclinic orbit. For p > 0,
the homoclinic loop is broken, and also there is no periodic orbit. This sequence of
bifurcations is illustrated in Fig. 1.8. Therefore, there is a homoclinic bifurcation

atu =0.

A homoclinic bifurcation often occurs when a periodic orbit collides with a
saddle point. Homoclinic bifurcations can occur supercritically or subcritically.
In three or more dimensions, bifurcations of higher codimension can occur, pro-
ducing complicated, possibly chaotic, dynamics [297, 298].

1.8 Heteroclinic Bifurcation

An orbit I starting at a point x € R is called heteroclinic to the equilibria x; and
Xy # x1 of system (1.1) with u = yy if the solution @(#;x, ly) tends to x| as t — oo
and to xp as t — oo. The nontransversal heteroclinic case is somehow trivial, since
the disappearance of the connecting orbit is the only essential event in a sufficiently
small neighborhood of Iy U {x1,x,} (see Example 1.9).

Example 1.9 (Heteroclinic bifurcation). Consider the planar system

i=x"—y' -1, (1.27)
V= pAy -,
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Fig. 1.8 Bifurcation phenomena in (1.26)

where x,y,ut € R. When u = 0, system (1.27) has a heteroclinic trajectory
connecting the two saddle points (1,0) and (—1,0). However, there is no hete-
roclinic trajectory when g # 0. Therefore, there is a heteroclinic bifurcation at
u =0 (Fig. 1.9).

1.9 Two-Parameter Bifurcations of Equilibria

Here we briefly review the generic bifurcations in two-parameter families of
differential equations. We only give a list for them, and refer to Kuznetsov
[200, 201], Guckenheimer [126], or Guckenheimer and Holmes [125] for anal-
ysis. There are two categories of generic bifurcations in two-parameter families: (1)
extra eigenvalues can approach the imaginary axis; (2) some of the genericity con-
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Fig. 1.9 Bifurcation phenomena in (1.27)
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ditions for the codimension-one bifurcations can be violated. Thus, we can identify
five bifurcation (Bogdanov-Takens bifurcation, cusp bifurcation, Bautin bifurca-
tion, fold-Hopf bifurcation, and Hopf—Hopf bifurcation) points that one can meet
in generic two-parameter systems while moving along codimension-one curves.
Each of these bifurcations is characterized by two independent conditions. This
section is devoted to the study of these bifurcations in the least possible phase-space
dimensions.

1.9.1 Bogdanov-Takens Bifurcation

The Bogdanov—Takens bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue of (algebraic) multiplicity two. It is named after Rifkat Bogdanov
and Floris Takens, who independently and simultaneously described this bifurca-
tion. The main features of Bogdanov—Takens bifurcation were known to mathemati-
cians of the Andronov school in the late 1960s. However, the complete picture is due
to Bogdanov [35], as announced by Arnold [20] and Takens [274]. Their analysis is
based on the Pontryagin [249] technique.
The usual normal form of the Bogdanov—Takens bifurcation is

X =y,

y=u —|-,uzx—|—xz:I:)cy—|—0(\/m)7

which was introduced by Bogdanov (see Sect.7.4.2 for more details), while the
normal form derived by Takens is

X =y+x+x>+ 0/ (x> +)2)3),
¥ = 00/ (2 7)),

These two systems are equivalent, and their detailed analysis can be found, for
example, in Guckenheimer and Holmes [125] and Kuznetsov [200]. In the above
systems, four associated bifurcation curves meet at the Bogdanov—Takens bifur-
cation: two branches of the saddle-node bifurcation curve, an Andronov—Hopf
bifurcation curve, and a saddle homoclinic bifurcation curve. Moreover, these
bifurcations are nondegenerate, and no other bifurcations occur in a small fixed
neighborhood of (x,y) = (0,0) for parameter values sufficiently close to u = 0.
In this neighborhood, the system has at most two equilibria and one limit cycle.

If system (1.1) has a fixed equilibrium x = xy for all parameters t, and the
equilibrium x( has a zero eigenvalue of (algebraic) multiplicity two at 1 = 0, then
the normal form of (1.1) at (11, x) = (0,xp) is not equivalent to the above two systems
derived by Bogdanov or Takens. See Sect. 7.4.3 for more details. Therefore, the goal
of this subsection is to investigate the following two-parameter system:

X =y, (1.28)
Y = Wix+ poy +x% +xy,
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where (u1,12) € R% At (u;,up) = (0,0), the linearization of (1.28) at the
equilibrium O = (0,0) has exactly one eigenvalue 0 of geometric multiplicity
one and algebraic multiplicity two. The critical point (i, ttp) = (0,0) is referred to
as a Bogdanov-Takens point.

It is easy to see that system (1.28) always has two equilibria: O = (0,0) and
E = (—p1,0). Moreover, the characteristic equation of (1.28) at the equilibria O
and E are 1% — oA — uy = 0 and A2 — (1 — p1)A + uy = 0, respectively. Each
of these two equations can have between zero and two real roots. However, the
discriminant parabolas { (i1, ) : 13 +4py =0} and {(f1, 1) : (U — p1)* — 41y =
0} are not bifurcation curves at which the equilibrium O or E undergoes a node to
focus transition. Moreover, it is easy to see that the equilibrium O (respectively, E)
is a saddle for all parameters pt; > 0 (respectively, u; < 0).

We can check that the equilibria O and E have a pair of purely imaginary
eigenvalues on the lines /j = {(uy,12) : 1 <O, up =0} and I = { (W, ) : Uy =
Uy > 0}, respectively. This implies that the equilibrium O (or E) undergoes a nonde-
generate Hopf bifurcation along the line /; (respectively, l»), giving rise to an unsta-
ble limit cycle, since the first Lyapunov coefficients are both 1/|u;| > 0. The cycle
exists near /| (or /) for 1 < O (respectively, up < t1). We have the following results
on the existence of a homoclinic bifurcation.

Theorem 1.9. There exist exactly two smooth curves my and my corresponding to
saddle homoclinic bifurcations in system (1.28) that originate at (U, 1) = (0,0)
and have the following local representation:

1
m = {(Nh#z) P = S o(lul) m s o}

N
15}
’q 76 s
)
I
Hi
0
P2 H4
my 3

Fig. 1.10 Bifurcation sets for (1.28)

and

6
my = {(val«lz) U= 7u1+0(lu1|),u1 20}.

Moreover, for ||(U, W2)|| small, system (1.28) has a unique and hyperbolic unstable
cycle for parameter values inside the region bounded by the Hopf bifurcation curve
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Iy (or 1) and the homoclinic bifurcation curve my (respectively, my), and no cycles
outside these regions.

Proof. First, we restrict our attention to the parameter region ¢, in Fig. 1.10.
Performing a singular rescaling and introducing a new time

u=x/(—p), v=y/\/(=m)* s=1y/(—m),

reduces (1.28) to
u=yv, (1.29)
v=u(u—1)—(nv+puv),

where the dots mean derivatives with respect to the new time s and

n=—m/V (=), n=-v(-w). (1.30)

Clearly, system (1.29) is orbitally equivalent to a system induced by (1.28) with
the help of (1.30). Studying the limit cycles and homoclinic orbits of (1.29) for
(71,7%) # (0,0) provides complete information on these objects in (1.28). As stated
in Kuznetsov 1998 [200, Sect. 8.8], there is a unique smooth curve m corresponding
to a saddle homoclinic bifurcation in system (1.29) that originates at (y;,72) = (0,0)
and has the following local representation:

m={tnm) n=—gn+oln)n<o}.

This homoclinic curve is mapped by (1.30) into the curve m;. Using arguments
similar to those in Kuznetsov 1998 [200, Sect. 8.8], we see that the cycle in (1.28)
is unique and hyperbolic within the region bounded by /; and m;.

In what follows, we focus on the parameter region _#s, where O is a saddle and E
is a stable focus. Translate the origin of the coordinate system to the left (antisaddle)
equilibrium E of system (1.28):

Si=x+w, &=y

This obviously gives

& =6, (131)
& =—mé+ (o —m)E+E+E&.

Performing a singular rescaling and introducing a new time
u=x/t, v=y/\/[uj, s=tJ/m
reduces (1.31)—(1.29) with
Y= —m2)/Vi, n=—Vi. (1.32)
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Thus, the homoclinic curve m is mapped by (1.32) into the curve m,. Similarly, the
cycle in (1.28) is unique and hyperbolic within the region bounded by /, and m,. [J

Thus, for (U1, ) € my (or (U, Up) € my), there is an orbit homoclinic to the
equilibrium O (respectively, E). In fact, we can also have nearly explicit expressions
for the homoclinic orbits. Scaling system (1.28) by

*

r=é, x*:x/gZ, ‘u;‘:ul/gZ, ”;:“2/827

and then dropping the * gives
X' — e[upx +xx'] — (x+x%) = O(e?). (1.33)

Letting € = 0, the equation has an explicit homoclinic orbit for @y > 0:
2 v/
x= —% {1 — tanh? <%t>} :

Using the Melnikov method (see, for example, Guckenheimer and Holmes 1983
[125]), we can compute parameter values for which the homoclinic orbit to the
equilibrium O persists for €. Moreover, the nearly explicit expressions for the
homoclinic orbit to the equilibrium E can be discussed analogously.

Make a round trip near the Bogdanov-Takens point (u;,u) = (0,0)
(see Fig. 1.10), starting from region _¢;, where equilibrium E is a saddle. There is
a nonbifurcation curve (not shown in the figure) located in _¢#; and passing through
the origin at which the equilibrium O undergoes an unstable node to an unstable
focus transition. Entering from region _#; into region ¢, through the Hopf bi-
furcation boundary /;, the unstable focus O gains stability, and an unstable limit
cycle @ is present for sufficiently small parameters || and || satisfying 1, <0
and u, < 0. If we continue the journey counterclockwise, the unstable limit cycle
0 grows and approaches the saddle, turning into a homoclinic orbit at m;. There
are no cycles in region _¢3, where the equilibrium E remains a saddle while the
stable focus O becomes a stable node. Entering from region _#3 into region ¢4
through the negative p,-axis, the two equilibria O and E coalesce into zero and then
exchange their properties, i.e., the stable node O becomes a saddle, while the saddle
E becomes a stable node. In region _Zy, the equilibrium O remains a saddle, while
the stable node E becomes a stable focus. Due to Theorem 1.9, system (1.28) has a
homoclinic orbit at the curve my. As (U1, ) continues moving counterclockwise
in region _#s, the homoclinic orbit turns into an unstable limit cycle, which shrinks
and collides with equilibrium E and then disappears at the curve /. In region _Z,
the unstable focus E turns into an unstable node, while O remains a saddle.
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1.9.2 Cusp Bifurcation

Cusp bifurcation is a bifurcation of equilibria in a two-parameter family of
autonomous ODESs at which the critical equilibrium has one zero eigenvalue and
the quadratic coefficient for the saddle-node bifurcation vanishes. Let us begin by
considering the following example.

Example 1.10. Consider the following two-parameter system
x:u1+“2x_x37 (-x7u1nu2)€R3' (134)

At (U1, 2) = (0,0), the linearization of (1.34) at the equilibrium O has exactly a
simple eigenvalue 0. The critical point (t;,u,) = (0,0) is referred to as a cusp
point. The local bifurcation diagram of (1.34) is presented in Fig. 1.11. The cusp
point (1, 4z) = (0,0) is the origin of two branches of the saddle-node bifurcation
curve:

/25 w2 > O}a

LP - 2 0
e = ) =F o0
which divides the parameter plane into two regions _#; . Inside the region ¢,
there are three equilibria, two stable and one unstable. In the region _#>, there is a
single equilibrium, which is stable. A nondegenerate fold bifurcation (with respect
to the parameter ;) takes place if we cross either LP, or LP_ at any point other
than the origin. More precisely, if the curve LP, is crossed from region #; to re-
gion _#,, the right stable equilibrium collides with the unstable one, and then both
disappear. The same happens to the left stable equilibrium and the unstable equi-
librium at the curve LP_. In the symmetric case (; = 0, one observes a pitchfork
bifurcation as U, is reduced, with one stable solution suddenly splitting into two
stable solutions and one unstable solution as the physical system passes to iy > 0
through the cusp point u = 0 (an example of spontaneous symmetry breaking). In
other words, if we approach the cusp point from inside the region _#1, all three equi-
libria merge together into a triple root of the right-hand side of (1.34). Away from
the cusp point, there is no sudden change in a physical solution being followed:
when passing through the curve of saddle-node bifurcations, all that happens is that
an alternative second solution becomes available.

In view of the above example, at the cusp bifurcation point, two branches of
the saddle-node bifurcation curve meet tangentially, forming a semicubic parabola.
For nearby parameter values, the system can have three equilibria that collide and
disappear pairwise via the saddle-node bifurcations. The cusp bifurcation implies
the presence of a hysteresis phenomenon.

Cusp bifurcation occurs also in infinite-dimensional ODEs generated by PDEs
and DDE:s, to which the center manifold theorem (see Chap. 3) applies. See Arrow-
smith and Place [21] for details. The nomenclature and analysis of cusp bifurcations
is based on cusps in singularity theory, where they appear as one of Thom’s seven el-
ementary catastrophes [275, 276]. The following theorem lists sufficient conditions
for a general one-dimensional ODE.
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H
LP, J1 LP_

Hi

Fig. 1.11 Bifurcation sets for (1.34)

Theorem 1.10. Suppose the system

X=f(u,x), xR, u=(u,u)ecR? (1.35)

with a smooth function f, has at i = 0 the equilibrium x = 0 for which the cusp
bifurcation conditions are satisfied, namely, f,(0,0) = f,x(0,0) = 0. Assume that
the following genericity conditions are satisfied:

fxxx(0,0) 75 07 det |: f/v‘l f/.lz

] £0. (1.36)
oy S (1,x)=(0,0)

Then there are smooth invertible coordinate and parameter changes transforming
the system into

y=Bi+Bay+sy’ + 00", (1.37)
where the s = signfy(0,0) and O(y*) terms depend smoothly on (Bi,3).

Proof. Expand f with respect to x around p = 0:

Fx) = fo(w) + fi(w)x+ fH(u)x* + f3(1)x* + 0(x),

where

19/ ,
- ﬁa_xjfc(“vo)v j=0,12,....

Obviously, fo(0) = £(0,0) =0, f1(0) = £(0,0) =0, and f>(0) = %fxx(0,0) =0.
Set & =x+ 6(u), where 6 is a constant independent of 7. Then (1.35) can be trans-
formed into

&= folw) — ()8 +8@(u,8)] + [fi1 () — 2/2(1)8 + 8 (1, 8))&
+Hf2(1) =3f3(1) 8+ 82y (1, 8)]E% + [f3(1) + 86, 8)IE° + O(£7)
(1.38)

fip)
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for some smooth functions @, ¢, v, and 6. Since f>(0) = 0, we cannot use the
implicit function theorem to select a function 6(it) to eliminate the linear terms in
& in the above equation. However, in view of f3(0) = £ fi(0,0) # 0, there is a
smooth shift function 6(u), 6(0) = 0, that annihilates the quadratic terms in the
equation for all sufficiently small ||u||. Indeed, let F(u,8) = fa(u) —3f3(1)d +
8%y (u,8). Then we have F(0,0) = 0 and F5(0,0) = —3£3(0) # 0. Therefore, the
implicit function theorem gives the (local) existence and uniqueness of a smooth
scalar function 8 = 6(u) such that 6(0) =0 and F(u,6(u)) = 0 for ||u|| small
enough. Now with 6(ut) as constructed above, (1.38) contains no quadratic terms.

Let y(1) = (n (1), 2(1t)) be defined as

() = folw) — fi(u)d(u)+ 8*(u)p(u, 8(1)),
) = fi(n) —2£(1)8 () + 8 (1) o (1, 5(u)).

Clearly, y(0) = 0, and the Jacobian matrix of the map y = y(u) is nonsingular at

'LL :0:
dy
det (@)

Thus, the inverse function theorem implies the local existence and uniqueness of a
smooth inverse function g = p(y) with ((0) = 0. Therefore, the equation for & now
reads

:det[f“‘ fﬁ‘z} £0. (1.39)
u=0

u=0 X f X

E=y+pt+tcnE+0(EY),

where ¢(y) = f3(1(y)) + 6(u((7))0(1(y), 6(1(y))) is a smooth function of y and
¢(0) = £3(0) = £ fxxx(0,0) # 0. Finally, the above equation can be transformed into

(1.37) by performing a linear scaling y = & \/|c(y)| and introducing new parameters:
Br=nIcn)l. B2 =n. 0

1.9.3 Fold-Hopf Bifurcation

The fold—Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium has
a zero eigenvalue and a pair of purely imaginary eigenvalues. This phenomenon
is also called the zero—Hopf bifurcation or Gavrilov—Guckenheimer bifurcation.
An early example of this bifurcation in a specific system is provided by the Brus-
selator reaction—diffusion system in one spatial dimension (Guckenheimer [124],
Wittenberg and Holmes [299]).
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The usual norm form of the fold—Hopf bifurcation is

y = i +b(u®+1v*) —y*+ho.t.,
= Wu—v+ayu+h.o.t, (1.40)
vV =u+Wv+ayv+ho.t.,

where = (U1, ) and h.o.t. stands for “higher-order terms.” System (1.40) has
been studied by Broer and Vegter [44], Chow—Li—Wang [66], Dumortier and Ibafiez
[84], Gamero—Freire—Rodriguez—Luis [106], Gaspard [107], Gavrilov [108, 109],
Guckenheimer [124], Keener [187], Langford [202], Takens [272-274]. The bi-
furcation point ¢ = 0 in the p-parameter plane lies at a tangential intersection
of curves of saddle-node bifurcations and Poincaré—Andronov—Hopf bifurcations.
Depending on the system, a branch of torus bifurcations can emanate from the fold—
Hopf bifurcation point. In such cases, other bifurcations occur for nearby parameter
values, including saddle-node bifurcations of periodic orbits on the invariant torus,
torus breakdown, and bifurcations of Shil’nikov homoclinic orbits to saddle-foci
and heteroclinic orbits connecting equilibria. See Guckenheimer and Holmes [125]
for more details.

If system (1.1) has a fixed equilibrium x = xy for all parameters t, and the
equilibrium xy has a zero eigenvalue and a pair of purely imaginary eigenvalues
at 4 = 0, then the normal form of (1.1) at (u,x) = (0,xp) is not equivalent to sys-
tem (1.40). Therefore, in this subsection we consider the following two-parameter
system:

V= ty+y il 40

= [,Lzu—v—i—ayu—i—yzu, (1.41)

V= u—i—,uzv—i-ayv—i—yzv,
where 0 #a € R, i = (u;, 1p) € R?, and (y,u,v) € R3. At u = 0, the linearization
of (1.41) at the equilibrium (0,0, 0) has a zero eigenvalue 4; =0 and a pair of purely
imaginary eigenvalues Ay 3 = &i. Let z = u+iv = \/ﬁele. Then system (1.41) can
be rewritten as

¥ = my+y + |z, (1.42)

2= (W +i)z+ayz+ yzz,

and

V= my+y +p,
p=2p(a+ay+y), (1.43)
6=1.
The first two equations of (1.43) are decoupled from the third one. The equation for
6 describes a rotation around the y-axis with constant angular velocity @ = 1. Thus,

to understand the bifurcations in (1.43), we only need to study the planar system for
(y.p) with p > 0:
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V=my+y +p,
p =2p(ua+ay+y>). (1.44)

It is easy to see that system (1.44) always has two equilibria, E; = (0,0) and
E> = (—11,0), and that there always exists one orbit connecting E; and E, due to
the symmetry that the y-axis is always invariant. Other equilibria (y,p) of (1.44)
with p > 0 satisfy

wy+yY +p=0 and pr+ay+y*=0, (1.45)

which can have zero, one, or two solutions in the interior of the quadrants with
p > 0. Since we consider the dynamics of (1.44) only with u sufficiently close to
0, we can require the parameters it to be in _# = {u = (i1, 12): |w1] < 1|a| and
|| < Ya?}. Thus, the second equation of (1.45) has two solutions y; and y, with
y1 < ¥y2. Moreover, y; <y, < 0if t > 0 and a > 0, while y; <0 <y, if up <0
and a > 0. Next, we determine the signs of p; = —y? — Wyj, j = 1,2, because we
consider the equilibrium (y,p) of (1.44) only with p > 0.
We first consider the case a > 0. We divide the region ¢ into six parts:

Ju={ue 7:u <0andu, >0},

J={ue 7w <0and u <Oand ui —apy + i, >0},
Fn={ue g:m<0andu?—ap +u, <0},
Ju={ne g w>0anduf—au + >0},
Jis={ue 7w >0andu >0and ui —apy + i, <0},
Jwe={ue 7 :u >0andu, <0}.

These regions are illustrated in Fig. 1.12a, where the bold curve /4 represents the
parabola u? — wya+ = 0.

Lemma 1.1. Suppose a > 0. Then in the interior of the quadrants of the (y, p)-plane
with p > 0, system (1.45) has no solution (respectively, one solution (y,p,) with
y2 > 0, one solution (y;,p2) with y, < 0) for parameters i in _# \ (_#12U Zis)
(respectively, 712, 715).

Proof. We distinguish two cases:

Case 1: y < 0. Then y? + uyy is negative if 0 < y < —u; and positive otherwise.
If g € g1, theny; <y, <0,andhence pj = —y3 —piy; <0, j=1,2.1fu € f1,
then y; <0 <y, < —py, and hence p; <0and pp >0.If p € #j3,theny; <0<
—U1 < y2,and hence p; = —y? — iy <0, j=1,2.

Case 2: 1 > 0. Then y? + iy is negative if —u; < y < 0 and positive otherwise.
If £ € Fia, theny; <yy < —py <0, and hence p; <0, j=1,2.If u € 75, then
y1 < —U <y <0,andhence p; <Oand p, >0.If u € _Zi6, theny; < —p; <0<
¥2, and hence p; < 0 and py < 0. The proof is complete. O
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Fig. 1.12 Bifurcation sets for (1.44)

Moreover, for parameters it € _#1o U _Zs, the characteristic equation of (1.44)
at the equilibrium E3 = (y5,p2) is

¢* — (1 +2y2)¢ —2pa(a+2y2) = 0.

The two eigenvalues ¢ » satisfy g6 = —2pa(a+2y2). For p € 715, it follows
from the proof of Lemma 1.1 that y, > 0, and so g1, < 0. For u € _¢#s, it follows
from the proof of Lemma 1.1 that —%a < —U; <y2 <0, and hence g6 < 0. Thus,
we obtain the following:

Proposition 1.1. Suppose a > 0. Then, in the quadrants of the (y,p)-plane with
p > 0, we have the following information on the equilibria of system (1.44):

(i) There are two equilibria E\ and E; for L € _#11, where E, is a saddle and E

is a source.

(ii) There are three equilibria Ey, E», and E3 for L € 12, where Ej is a sink, E; is
a source, E3 = (y2,p2) satisfying y» > 0 and py > 0 is a saddle.

(iii) There are two equilibria E1 and E; for i € _#13, where Ey is a sink and E5 is a
saddle.

(iv) There are two equilibria Ey and E, for |t € _#14, where E| is a source and E,
is a saddle.

(v) There are three equilibria Ey, E,, and E3 for |1 € 715, where E\ is a source, E»
is a sink, E3 = (y2,p2) satisfying y2 < 0 and p; > 0 is a saddle.

(vi) There are two equilibria Ey\ and E» for |t € 16, where Ey is a saddle and E»
is a sink.

The following theorem follows immediately from the equivalence mentioned
before.

Theorem 1.11. Suppose a > 0. Then a semistable limit cycle of (1.41) appears as |
crosses the negative [11-axis from _f#11to _f#12, which is always present for L € _#1,
and then disappears as | crosses the parabola ly from 715 to _#13. Similarly, a
semistable limit cycle of (1.41) appears as |L crosses the parabola l4 from 14 to
J1s, which is always present for L € 15, and then disappears as L crosses the

positive [1-axis from _#1s5to _Zie.
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Now we consider the case a < 0. Again, we divide the region ¢ into six parts:

S ={ue 7w >0andpy, >0},
In={ne g w>0and <0and uf — fa+ >0},
3 ={pe 7 >0andu?—pwa+ <0},
Sa={pe F:m<0andpu?—pa+ >0},
s ={ne _F:w<0and>0and uf — fa+ <0},
Srw=1{0€ < 0andp, <0}.
These regions are illustrated in Fig. 1.12b, where the bold curve /4 and the dot-

ted curve /5 represent the parabolas ,ulz —Ma+ U =0 and ,LLI2 —2ua+4u; =0,
respectively. Similarly, we have the following result.

Lemma 1.2. Suppose a < 0. Then, in the interior of the quadrants of the (y, p)-plane
with p > 0, system (1.45) has no solution (respectively, one solution (y1,p1) with
y1 <0, one solution (yi,p1) with yi > 0) for parameters @ in 7 \ ( 22U _Zrs)
(respectively, 725, #25).

Moreover, for parameters [t € _#20U _#>s, the characteristic polynomial of (1.44)
at the equilibrium E4 = (y1,p1) is

¢ — (u1+2y1)g —2pi(a+2y1) = 0.

The two eigenvalues g » satisfy ¢1 6 = —2pi(a+2y1), which can be shown to be
positive. Then, we need to consider the sign of ¢; 4 &, in order to discuss the stability
of the equilibrium E4. In fact,

Cl+C = +2y1 = —a—/a— 4.
It follows from 2|p| < |a] and @ < O that y —a > 0, and hence
sign(¢y + @) = sign{ (1 —a)? —a® + 4}
= sign{p — 2pa+ 4o},
Let
I ={u:uf-2ma+4 > 0}
and
I = {0 uf —2ma+4pn <0}

Then we have the following:

Lemma 1.3. Suppose a < 0. For parameters L € _#20U _#»s, besides equilibria E}
and Ej, system (1.45) has a third equilibrium E4, which is a sink if p € 7~ N

(F2U _fs) and a source if L € 7N (_InU _2s).
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Proposition 1.2. Suppose a < 0. Then, in the quadrants of the (y,p)-plane with
p > 0, we have the following information about equilibria of system (1.44):

(i) There are two equilibria E1 and E, for i € 751, where E\ is a source and E»
is a saddle.

(ii) There are three equilibria E\, E,, and E4 for |1 € $2, where E; and E,
are saddles, and E4 = (y1,p1) satisfying yy < 0 and p; > 0 is a sink if
,ulz —2uia+4uy < 0 and a source otherwise. Namely, in the region #, as
U crosses the parabola ls from the region #2 N _# 7 to the region #»nN 7,
the equilibrium E4 gains stability, and hence system (1.44) undergoes a Hopf
bifurcation, and a stable limit cycle appears; as L varies further, this limit cycle
can approach a heteroclinic cycle formed by the separatrices of the two saddles
E| and Ey, i.e., its period tends to infinity and the cycle disappears.

(iii) There are two equilibria E\ and E; for |1 € _#23, where Ey is a saddle and E>
is a sink.

(iv) There are two equilibria Ey and E; for |1 € 4, where E| is a saddle and E,
is a source.

(V) There are three equilibria Ey, E>, and E4 for @ € _#5s, where Ey and E; are
saddles, and E4 = (y1,p1) satisfying y; > 0 and p; > 0 is a sink ifl,tl2 —2uia+
41 < 0 and a source otherwise. Namely, in the region #»s, as | crosses the
parabola s from the region 75N ¢ to the region #>sN 7, equilibrium
Ey4 gains stability, and hence system (1.44) undergoes a Hopf bifurcation, and
a stable limit cycle appears; as | varies further, this limit cycle can approach a
heteroclinic cycle formed by the separatrices of the two saddles E| and E», i.e.,
its period tends to infinity, and the cycle disappears.

(vi) There are two equilibria Ey and E, for |1 € _#»6, where E is a sink and E; is a
saddle.

Theorem 1.12. Suppose that a < 0. Then the following statements are true:

(1) An unstable limit cycle O of (1.41) appears as L crosses the positive [11-axis
from #y to _#a. As U crosses the parabola ls from _#nN F 1 to FnN 77,
this limit cycle O becomes stable and generates an unstable torus 7). Under
further variation of the parameter | in 2N 7, this torus 71 degenerates
to a sphere-like surface /1 and then disappears. As |l crosses the parabola ly
from Z»nN _F 7 to P, the stable limit circle Oy disappears.

(ii) An unstable limit cycle O, of (1.41) appears as L crosses the parabola ly from
o to _Fhs. As U crosses the parabola ls from _ZrsN 71 to _FosN 77,
this limit cycle O, becomes stable and generates an unstable torus 5. Under
further variation of the parameter | in _rs _7 ~, this torus 7 degenerates to
a sphere-like surface ., and then disappears. As UL crosses the negative [11-axis
from _ZrsN _F~ to P, the stable limit circle O, disappears.
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1.9.4 Bautin Bifurcation

Consider the following two-parameter system:
X1 = Wx) — X2+ fox1 (] +x3) + 01 (4] +x3)%, (1.46)
Ky = X1+ i + [ (¥ +03) + 0 (x] +33)°,

where 6 = 1, u = (U, 42) € R?, and x = (x1,x;) € R%. At y = 0, the linearization
of (1.46) at the equilibrium (0,0) has a pair of purely imaginary eigenvalues =+i. Let
Z=u+iv= \/ﬁele. Then system (1.46) can be rewritten as

2= (U +1)z+ wzlz* + ozlz)*, zeC (1.47)
and
p =2p(ui+p +0p?), (1.48)
0=1.

The first equation in (1.48) is uncoupled from the second one. Thus, to understand
the bifurcations in (1.48), it suffices to study the scalar equation for p, that is,

p=2p (11 + op +0p?). (1.49)

It follows that the trivial equilibrium p = 0 of (1.49) corresponds to the equilibrium
x =0 of (1.46), and the existence and stability of positive equilibria of (1.49) deter-
mine the existence and stability of periodic solutions of (1.47) and hence of the orig-
inal system (1.46). In the remaining part of this subsection, we depict the complete
bifurcation diagrams of (1.49) on the y-parameter plane.

We first consider the case 0 = —1. Positive equilibria of (1.49) satisfy u; +
Lop — p? = 0, which can have zero, one, or two positive solutions. These solutions
branch from the trivial one along the line /; on the u-parameter plane and collide
and disappear at the half-parabola l, (see Fig. 1.13a),

where
Li:uy =0 and I:pud+4u; =0 with up > 0.

The details are summarized below.

1. In the region 2} = {u : ,uzz +4u; < O0oryy <0and y, <0}, (1.49) has no
positive equilibria. Thus, the equilibrium p = 0 is globally asymptotically stable,
which means that system (1.46) has no periodic solutions in a sufficiently small
neighborhood of the stable equilibrium z = 0.

2. Intheregion 2y, = {u : 1 > 0}, (1.49) has only one positive equilibrium, which
is stable. This means that system (1.46) has exactly one stable periodic solution
in a sufficiently small neighborhood of the unstable equilibrium x = 0.

3. In the region 213 = {u : g <0, tp >0, and p3 +44; > 0}, (1.49) has two
positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the stable equilibrium x = 0.
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Fig. 1.13 Bifurcation sets for (1.49)

Therefore, on the p-parameter plane, the line /; and the half-parabola I, are
bifurcation curves. The bifurcation scenario is explained below.

(a) On the u-parameter plane, if the point i crosses the line /; from region Z;; to
region 2y, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(b) On the u-parameter plane, if the point i crosses the line /; from region %,
to region 23, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(c) On the u-parameter plane, if the point i crosses the line /, from region Z;3 to
region 1, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

Now we come to the complete bifurcation diagram of (1.49) with ¢ = 1. Positive
equilibria of (1.49) satisfy u; + tpp + p? = 0, which can have zero, one, or two
positive solutions. These solutions branch from the trivial one along the line /; on the
u-parameter plane and collide and disappear at the half-parabola /3 : ,uzz —4u; =0
and U, < 0 (see Fig. 1.13b). We have the following conclusions:

1. In the region 25 = {u : u3 —4p; <O0or py >0 and 4 > 0}, (1.49) has no
positive equilibria. Thus, the equilibrium p = 0 is unstable. This means that sys-
tem (1.46) has no periodic solutions in a sufficiently small neighborhood of the
unstable equilibrium z = 0.

2. Intheregion 25, = {1 : 41 <0}, (1.49) has only one positive equilibrium, which
is unstable. This means that system (1.46) has exactly one unstable periodic
solution in a sufficiently small neighborhood of the stable equilibrium x = 0.

3. In the region Z»3 = { : py >0, i <0, and u? —4u; >0}, (1.49) has two
positive equilibria, one stable and the other unstable. This means that system
(1.46) has one stable periodic solution and one unstable periodic solution in a
sufficiently small neighborhood of the unstable equilibrium x = 0.

Therefore, on the parameter plane u, the line /; and the half-parabola /3 are
bifurcation curves. More specifically, we have the following:
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(a) On the p-parameter plane, if the point u crosses the line /; from region %,
to region %y, then (1.46) undergoes a Hopf bifurcation, and an unstable limit
cycle bifurcates from x = 0.

(b) On the u-parameter plane, if the point u crosses the line /; from region %, to
region 2,3, then (1.46) undergoes a Hopf bifurcation, and a stable limit cycle
bifurcates from x = 0.

(c) On the u-parameter plane, if the point i crosses the line /3 from region 2,3 to
region %1, then limit cycles of (1.46) undergo a fold bifurcation, i.e., the two
limit cycles collide and then disappear.

1.9.5 Hopf-Hopf Bifurcation

The Hopf-Hopf bifurcation is a bifurcation of an equilibrium point in a
two-parameter family of autonomous ODEs at which the critical equilibrium
has two pairs of purely imaginary eigenvalues. This phenomenon is also called
the double Hopf bifurcation. For example, consider the following two-parameter
system:

X1 = WX — @1x2 + (Aq1x1 — Biixa) (37 +x3) + (A1ax1 — Biox2) (63 +43),

)
Xy = 01x1 — W1x2 + (A11x2 + Byixy)
X3 = ox3 — x4 + (A21x3 — Bagxa) (x] + x
)

(x] +23) + )(
(o +33) + (A12x2 + Biox1 ) (35 +3),
(o] +3) + (Anaxs — Booxy ) (x5 +x3),
(0 +23) + (Agaxs + Bopxs ) (3 +13),

(1.50)

X4 = W3 — ox4 + (A21x4 + B21x3) (x] + 23

where 6 = £1, 4 = (U, 42) € R?, and x = (x1,x2,x3,x4) € R*. At u = 0, the lin-
earization of (1.50) at the equilibrium (0,0,0,0) has two pairs of purely imaginary
eigenvalues i@, and +im,. Letx; +ix; = pleie1 and x3 +ixy = pgei62. Then system
(1.50) can be rewritten as

p1 = pi(W +Apf+A12p3),
P2 = P2y + Az pi 4+ Anp3), (1.51)
6,

@) +B11pi + B12p3,
6 = @+ Bo1pi +Bxnp3.

Note that the amplitude and phase variables of (1.51) decouple. As a result, the
bifurcation and asymptotic behavior of solutions of (1.50) can be studied via the
following two-dimensional amplitude equations alone:

p1 = p1(u1 +Anpi+A1p3), (1.52)
P2 = P2l +Az1pi +Axp3).
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The relation between equilibria of (1.52) and bifurcations of (1.50) is as follows:

(a) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium (7,0)
(respectively, (0,r)) on either axis, then (1.50) has an asymptotically stable (re-
spectively, unstable) periodic orbit of frequency close to @ (respectively, @,).

(b) If (1.52) has an asymptotically stable (respectively, unstable) equilibrium
(r1,ry) in the interior of the positive quadrant, then (1.50) has an asymptoti-
cally stable (respectively, unstable) two-dimensional invariant torus, i.e., (1.50)
has a quasiperiodic solution in a neighborhood of the origin.

(c) If (1.52) has an asymptotically stable (respectively, unstable) limit cycle in the
interior of the positive quadrant, then (1.50) has an asymptotically stable (re-
spectively, unstable) three-dimensional invariant torus in a neighborhood of the
origin.

From the above, we see that sufficiently close to the Hopf—Hopf bifurcation point
u =0, system (1.50) will exhibit either periodic or quasiperiodic motions. Thus, if
we can find combinations of parameters y; and A;; (i, j = 1,2) that yield stable equi-
libria (r,rp) with rir, # 0, we can conclude that the stable quasiperiodic motions
should occur for the corresponding parameter values of system (1.50). Therefore,
from now on, we concentrate on describing the behavior of the coupled amplitude
equation (1.52) in the p-parameter plane. The mode interaction equations (1.52)
have been investigated by many researchers. See, for example, Guckenheimer and
Holmes [125, Sect. 7.5]. Here, for the sake of completeness, we shall employ some
techniques from the above-mentioned classical work of Guckenheimer and Holmes
(including rescaling in time and variables) to investigate the qualitative behavior of
the mode interaction equations (1.52) in the parameter ranges of interest. We discuss
these case by case.

First, we consider the case that Aj; < 0 and Aj; < 0. Introducing new phase
variables according to

ri=+/|Aulpr, r2=+/|A2|p2, (1.53)

yields

. 3 2
i1 = Wry—ri —0rry, (1.54)
. 3 2
Py = Upry — 15 — Arary,

where 6 = A1, /Ay and A = Ay /A1;. Notice that the r- and rp-axes are invariant
lines for the flow of (1.54). Simple linear analysis reveals the following results about
equilibria of (1.54):

(a) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{u;, up} <0,
a saddle if p; Uy < 0, and an unstable source if min{y;, up } > 0.

(b) (r1,r2) = (v/H1,0) is an equilibrium if gy > 0. If, in addition, Ay; > py, then
it is a sink; otherwise, it is a saddle.

(¢) (r1,r2) = (0,y/H2) is an equilibrium if 1, > 0. If, in addition, O, > i, then it
is a sink; otherwise, it is a saddle.
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@) (ri,r2) = (v/[1 — O] /[1 = OA],\/[p2 — Apu]/[1 — OA]) is an equilibrium if
both radicands are positive. It is a saddle if A > 1 and a sink if 0A < 1.

Therefore, we deduce that bifurcations to the pure modes (,/fi1,0) and (0, /fi2)
occur on the lines t; = 0 and y, = 0, whereas bifurcations to the mixed mode occur
on the lines ) = O, and uy = Ay, if they exist. In addition, we need check that
no closed orbits (or limit cycles) can occur. Since the r|- and rp-axes are invariant,
any such closed orbit would have to lie in the interior of the positive quadrant and
must enclose at least one equilibrium with Poincaré index equal to 1.

If 6A > 1 and gy — Oy < 0 and pp — Ay < 0, then system (1.54) has an
equilibrium (7,7,) with 77 # 0. Recall that (7|, 7,) is a saddle with Poincaré in-
dex equal to — 1. We immediately see that no closed orbit can occur around (7, 7).
If0A <1and u; —0Ouy >0and uy — Ay > 0, then system (1.54) has an equilibrium
(F1,72) with 717, # 0, which is a sink. In what follows, we distinguish several cases
to conclude that no closed orbits can occur around the sink (7,7,) when 0A < 1
andpu € & ={pu: 3 —Oup >0and u, —Ay; > 0}.

Case 1: 6 > 0 and A > 0. We follow a directional arc l_l) crossing the line y; =
Ou, > 0 and then passing through the sector & and finally crossing the line t, =
Apy > 0. When u € l—f crosses the line yy = Oy > 0, the sink (0, /M) becomes
a saddle, a sink (7, 7,) bifurcates from (0,/112), and the unstable separatrix of the
saddle (0,/17) limits this bifurcated sink (7,7,). Thus, after bifurcation there is
no closed orbit around this sink. The only way whereby the closed orbit can appear
in the positive quadrant is by Hopf bifurcation from (7, 7,). But this is impossible,
because (71, 7,) remains stable for all yt € &.

Case 2: 8 > 0 > A. Similar arguments as those in Case 1 show that there is
no closed orbit in the positive quadrant when g is in the sector 0 < U < /6.
In order to rule out the existence of closed orbits in the positive quadrant when

W is in the sector Ay; < up < 0, we follow another directional arc [, crossing
the line yp = Ay and then passing through the sector Ay < tp < 0. When u €
l_; crosses the line u, = Apy, the sink (,/f11,0) becomes a saddle, a sink (7{,7)
bifurcates from (,/11,0), and the unstable separatrix of the saddle (/i,0) limits
this bifurcated sink (7,7,). Thus, after bifurcation there is no closed orbit around
this sink. Similarly, no Hopf bifurcation can occur from (7,7,), since it remains
stable for all u € &.

Case 3: 0 <0 < A. Similar arguments as those in Case 1 tell us that there is no
closed orbit in the positive quadrant when y is in the sector O, < u; < 0, while
arguments like those in Case 2 yield that there is no closed orbit in the positive
quadrant when y is in the sector 0 < u; < p/A.

Case 4: 8 < 0 and A < 0. The discussion is similar to that in Case 1 and hence
is omitted.

In summary, we have proved the following theorem.

Theorem 1.13. No closed orbit of system (1.54) can occur around the mixed mode
(F1,72).
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Second, for the case that Aj; > 0 and A, > 0, we introduce new phase variables
and rescale time in (1.52) according to

ri=+IAulp1, rn=+/|Anlp2, t"=-t. (1.55)
After dropping *, we obtain

. 3 2
7= —mr—ry —0rr, (1.56)
5 3 2
iy = —Uory — 15 — Arry,

where 0 and A are the same as before. System (1.56) is quite similar to (1.54), and
hence similar arguments can be employed. We omit the details here.

Third, for the case that Aj; > 0 and Aj> < 0, we introduce new phase variables
and rescale time in (1.52) as (1.53). After dropping *, we obtain

o= [,Llrl—i—r%— 9}’1}’%, (1.57)
7y = ,LLZ}’Q—F%—FA}’Q}’%,

where 0 and A are the same as before. Simple linear analysis produces the following
results:

(@) (r1,r2) = (0,0) is always an equilibrium. It is a stable sink if max{u;, up} <0,
a saddle if y; tp < 0, and an unstable source if min{u;, tr } > 0.

(b) (r1,r2) = (v/—H1,0) is an equilibrium if y; < 0. If, in addition, Aty < i, then
it is a source; otherwise, it is a saddle.

(¢) (r1,r2) = (0,y/M2) is an equilibrium if 1, > 0. If, in addition, O, > uy, then it
is a sink; otherwise, it is a saddle.

@) (ri,r2) = (v/[1 — O] /[6A — 1],\/[Apy — pa] /[6A — 1]) s an equilibrium if
both radicands are positive. If A < 1, then it is a saddle; if 0A > 1 and r| > 13,
then it is a source; if 6A > 1 and | < r3, then it is a sink.

It follows from the above results that bifurcations to the pure modes (1/—;,0)
and (0,,/H12) occur on the lines ; = 0 and u, = 0, whereas bifurcations to the
mixed modes occur on the lines (; = O, and Uy = Ay, if they exist. Since the 7;-
and rp-axes are invariant, any such closed orbit would have to lie in the interior of
the positive quadrant and must enclose at least one equilibrium with Poincaré index
equal to 1. If 0A < 1, u; —0Ouy <0, and pup — Apy > 0, then system (1.57) has
an equilibrium (7|,7,) with 717 # 0, which is a saddle with Poincaré index equal
to —1. We immediately conclude the following result.

Theorem 1.14. Assume that 0A < 1, u; — Ouy < 0, and Uy — Apy > 0. Then no
closed orbit of system (1.57) can occur around (Fy, 7).

If 0A > 1, (U1, ) is in the sector & = {u: uy — O >0, and U, — Ay < 0},
then system (1.57) has an equilibrium (7,7,) with 77, # 0. It follows from the
expressions for 7 and 7, that sign(7; — 7») = sign(1 — 0)sign{u, — y u;}, where
x=(1—A)/(6—1). Furthermore, if 6 > 1, then y < 1/6 and y < A;if0< 6 <
1, then y > 1/6 and y > A; if 6 <0, then A < y < %. Therefore, we have the
following observations:
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Lemma 14.If A > 1/0 > 0 and (u1,U2) € Z, then system (1.57) has a mixed
mode (Fi,F2). Moreover, it is a sink (respectively, source) if [ is in the sector .9}
(respectively, .%,), where

7 :{{u:xul<uz<u1/9} if0>1,
{: a <y and pp <y )0} if 6 <1,

y _{{u:uz<xu1 and jt, < A}y if 6> 1,
27 U {we am < g2 < A} ifo<1.

Lemma 1.5. [f A < 1/0 < 0 and (u1,U2) € Z, then system (1.57) has a mixed
mode (Fy,F,). Moreover, it is a sink (respectively, source) if [l is in the sector 3
(respectively, 9y), where

Sy ={: /0 <o <y},
Iy ={px <o <A}

The following result describes the phase portrait of (1.57).

Theorem 1.15. Assume 0A > 1. Then for some points U € &, system (1.57) has
closed orbits surrounding the mixed mode (Fy, 7).

Proof. Here, we consider only the case 6 > 1 > A > 1/60 > 0, because other cases
can be handled similarly. If 6A > 1 and 8 > 1, then yu € . and system (1.57)
has a mixed mode (7;,7,). We follow a directional arc in the y-parameter plane
that starts from a point in the sector /6 < Uy < Auy, then crosses the line y; =
Ou, > 0 into the sector .7, and finally successively crosses the line t, = yu; >
0 and the positive p-axis. When the point y is in the sector /60 < pp < Ay,
system (1.57) has a source (0,0) and a sink (0,,/f2). As p crosses the line u; =
Ou, > 0, a mixed mode (7,7,) (which is a sink) bifurcates from (0, /i), and the
unstable separatrix of the saddle (0,/i2) limits the newly bifurcated mixed mode.
Thus, immediately after bifurcation, no closed orbit can surround the mixed mode.
However, as u crosses the line p, = yu; > 0, the mixed mode (7,7,) loses its
stability, and hence system (1.57) undergoes a Hopf bifurcation, i.e., a stable closed
orbit appears in the positive quadrant. Moreover, as u crosses the positive u-axis,
the pure mode (0, /12) collides with (0,0) and disappears. O

Theorem 1.15 implies that crossing the line yp = yu; in the sector .# results
in the branching of a three-dimensional torus from the two-dimensional torus of
system (1.52).

Finally, for the case Aj; < 0 and Ay; > 0, we can obtain the reparameterized
equation of the form (1.57) by reversing time, and hence the details are omitted.
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1.10 Some Other Bifurcations

1. Nontransversal homoclinic orbit to a hyperbolic cycle. Consider a
three-dimensional system (1.1) with a hyperbolic limit cycle Iy,. Its stable
and unstable two-dimensional invariant manifolds, W*(I;) and W*(I), can
intersect along homoclinic orbits, tending to I, as t — Zo. Generically, such an
intersection is transversal. It implies the presence of an infinite number of saddle
limit cycles near the homoclinic orbit. However, at a certain parameter value,
say U = Uo, the manifolds can become tangent to each other and then no longer
intersect. At i = Uy, there is a homoclinic orbit to Iy along which the manifolds
WS(I};) and W"(I};) generically have a quadratic tangency. It has been proved
that an infinite number of limit cycles can exist for sufficiently small |g — p|,
even if the manifolds do not intersect. Passing the critical parameter value is
accompanied by an infinite number of period-doubling and fold bifurcations
of limit cycles. See, for example, Poincaré [246], Birkhoff [34], Smale [268],
Neimark [229], and Shil’nikov [263], Gavrilov and Shilnikov [110], Palis and
Takens [243].

2. Homoclinic orbits to a nonhyperbolic limit cycle. Suppose a three-dimensional
system (1.1) has at u = yp a nonhyperbolic limit cycle Iy with a simple
multiplier A; = 1, while the second multiplier satisfies |4;| < 1. Under generic
perturbations, this cycle Iy will either disappear or split into two hyperbolic
cycles (i.e., via fold bifurcation for cycles). However, the locally unstable man-
ifold W"(Ij) of the cycle can return to the cycle Ij at the critical parameter
value U = Uy, forming a set composed of homoclinic orbits that approach I as
t — ®oo. Thus, at the critical parameter value, there may exist a smooth invari-
ant torus or a strange attracting invariant set that contains an infinite number
of saddle and stable limit cycles, or a blue-sky catastrophe. See, for example,
Afraimovich and Shil’nikov [4], Palis and Pugh [242], Medvedev [218], Turaev
and Shil’nikov [279].

3. Bifurcations on invariant tori. Continuous-time dynamical systems with
phase-space dimension n > 2 can have invariant tori. For example, a stable
cycle in R3 can lose stability when a pair of complex-conjugate multipliers
crosses the unit circle. It will be much more interesting to discuss changes of
the orbit structure on an invariant 2-torus under variation of the parameters of
the system. These bifurcations are responsible for such phenomena as frequency
and phase locking. See, for example, Arnold [19], Fenichel [95, 96], Kuznetsov
[200].



Chapter 2

Introduction to Functional Differential
Equations

There are different types of functional differential equations (FDEs) arising from
important applications: delay differential equations (DDEs) (also referred to as re-
tarded FDEs [RFDEs]), neutral FDEs (NFDEs), and mixed FDEs (MFDEs). The
classification depends on how the current change rate of the system state depends
on the history (the historical status of the state only or the historical change rate and
the historical status) or whether the current change rate of the system state depends
on the future expectation of the system. Later we will also see that the delay in-
volved may also depend on the system state, leading to DDEs with state-dependent
delay.

2.1 Infinite Dynamical Systems Generated by Time Lags

In Newtonian mechanics, the system’s state variable changes over time, and the law
that governs the change of the system’s state is normally described by an ordinary
differential equation (ODE). Assuming that the function involved in this ODE is
sufficiently smooth (locally Lipschitz, for example), the corresponding Cauchy ini-
tial value problem is well posed, and thus knowing the current status, one is able to
reconstruct the history and predict the future of the system.

In many applications, a close look at the physical or biological background of
the modeling system shows that the change rate of the system’s current status often
depends not only on the current state but also on the history of the system, see, for
example, [50, 76, 198, 199]. This usually leads to so-called DDEs with the following
prototype:

xX(t) = f(x(t),x(t = 7)), (2.1)

where x(7) is the system’s state at time 7, f: R” x R" — R” is a given mapping, and
the time lag 7 > 0 is a constant.

Such an equation arises naturally, for example, from the population dynamics of
a single-species structured population. In such an example, if x(7) denotes the pop-
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ulation density of the mature/reproductive population, and if the maturation period
is assumed to be a constant, then we have

Fx(0),x(t = 7)) = —dpx(t) + ¢4 b(x(1 — 7)), (2.2)

where d,,, and d; are the death rates of the mature and immature populations, respec-
tively, and b: R — R is the birth rate. Death is instantaneous, so the term —d,,x(t)
is without delay. However, the rate into the mature population is the maturation
rate (not the birth rate), that is, the birth rate at time 7, multiplied by the survival
probability e %7 during the maturation process.

Clearly, to specify a function x(¢) of 7 > 0 that satisfies (2.1) (called a solution
of (2.1)), we must prescribe the history of x on [—7,0]. On the other hand, once the
initial value data

0:[-1,00 > R" (2.3)

is given as a continuous function and if f: R" x R" 3 (x,y) — f(x,y) € R" is contin-
uous and locally Lipschitz with respect to the first state variable x € R", then (2.1)
on [0, 7] becomes an ODE for which the initial value problem

() = f(x(1),0(t = 7)), 1 €0,7], x(0) = 9(0), (2.4)

is solvable. If such a solution exists on [0, 7], we can repeat the argument to the
initial value problem

i) = fx(t),x(t — 1)), telr,21],
W—/
given

x(7) is given in the previous step,

2.5)

to obtain a solution on [7,27]. This process may be continued to yield a solution of
(2.1) subject to x[[_; o) = ¢ given in (2.3).

Let Cy,r = C(|—7,0];R") be the Banach space of continuous mappings from
[—17,0] to R" equipped with the supremum norm

o[l = sup [9(6)] for ¢ € Cyr,

—71<60<0

and if we define x,: C, . — C,, ¢ by the segment of x on the interval [r — 7,¢] translated
back to the initial interval [—7,0], namely,

x(0)=x(t+06), 6¢c[-r1,0] (2.6)

then (2.1) subject to xg = @ € G, ¢ gives a semiflow [0,00] 5 ¢+ x; € C,, ;. This
clearly shows that an appropriate state space of a DDE is C, ; and that a DDE gives
an infinite-dimensional dynamical system on this phase space.

Many applications call for the study of asymptotic behaviors (as ¢ — o) of
solutions of (2.1), and such a study seems to be very difficult due to the infinite-
dimensionality of the phase space and the generated semiflow, even for a scalar
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DDE (2.1) (that is, when n = 1). Even to restrict the study of the asymptotic behav-
iors of solutions near a specified solution is highly nontrivial. Take a steady state as
an example. A vector x* € R”" is called an equilibrium of (2.1) if

F(x*.x*)=0. 2.7

This vector gives a state £ € C,, ¢, which is a constant mapping on [—7,0] with the
constant value x* € R”, and a solution of (2.1) with the initial value £* is a constant
function x: [0,0) — R" with the constant value x*. Behaviors of solutions of (2.1)
in a neighborhood of £* may be determined by the zero solution of the linearization

x(t) = Dxf(x",x")x(t) + Dy f (x*,x")x(t — T) (2.8)
with

ef 0
Def (3 x) £ - f(x.)

)
x=x* y=x*

ef 0
D)’f(X*v)C*) d:f a_yf(xay)

x=x* y=x*

In the case T > 0, even when n = 1, the behaviors of solutions of (2.8) can be
more complicated than any given linear system of ODEs, since (2.8) even when
n = 1 may have infinitely many linearly independent solutions e*’ with A being
given by the so-called characteristic equation

A = Dof (X", x*) + Dy f(x*,x")e AT (2.9)

In particular, the infinite-dimensionality of the problem (2.1) leads to a transcen-
dental equation (rather than a polynomial), which can have multiple zeros on the
imaginary axis, giving rise to complicated critical cases.

On the other hand, some special features (specially the eventual compactness of
the solution semiflow) of DDEs ensure that the sequence of zeros of the characteris-
tic equation on the imaginary axis (counting multiplicity, either algebraically or ge-
ometrically, as will be specified later) must be finite. This gives a finite-dimensional
center manifold of system (2.1) in a neighborhood of the equilibrium state £*, so
that the asymptotic behaviors of solutions of (2.1) in a neighborhood of £* can be
captured by the reduced system on the center manifold, and this reduced system is
an ODE system even though its dimension can be high.

We aim to introduce systematically the approach that enables us to derive the
specific form of the reduced ODE system on the center manifold, explicitly in terms
of the original system (2.1). Some forms of system (2.1) from application prob-
lems come with a parameter, and since the asymptotic behaviors of solutions near a
given equilibrium may change qualitatively when the parameter varies (the so-called
bifurcation), our focus will be on how the center manifold and the reduced ODE
system on the center manifold change when the parameter is varied.
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We should mention the step-by-step method in solving (2.1) on [0, 1], [7,27], ...
inductively, which, though effectively numerically, may not give useful qualitative
information about asymptotic behaviors of solutions. This method is also not useful
in solving the kind of DDE with distributed delay such as

x(t) = . ;Orf(x(t),x(t +6))dé
or

0
)= 7 (x0). | gtat +0)a0)
J =T
with g: R” — R”. One should also mention that in case the change rate of x()
depends on the historical value of x(z 4+ 6) with 6 € [—1,0], such as

(1) =cx(t — 1)+ f(x(t),x(t — 1)),

we encounter additional difficulties, which shall be discussed later.

2.2 The Framework for DDEs

2.2.1 Definitions

Assume that R” is equipped with the Euclidean norm |- |. For a given constant

7>0,Cyz e ([~7,0],R") denotes the Banach space of continuous mappings

from [—7,0] into R” equipped with the supremum norm ||@|| = sup_,- 9|0 (0)]
for ¢ € C, . Moreover, iftp € R,A >0, and x : [fo — 7,70 +A] = R" is a continuous
mapping, then for every ¢ € [to,to +A], x; € Cp 7 is defined by x,(0) = x(¢ + 0) for
0 € [-1,0].

If f: Cy,: — R" is a mapping, we say that the equation

i = f(x) (2.10)

is a retarded functional differential equation (RFDE), or a delay differential equation
(DDE). A function x is said to be a solution of (2.10) on [fo, 7+ A) if there are fp € R
and A > 0 such thatx € C([to — 7,79 +A),R"), and x(¢) is differentiable and satisfies
(2.10) for all ¢ € [tg, o+ A). If f is locally Lipschitz (i.e., for every ¢ € C, ¢ there
exist a neighborhood U C C,, ; of ¢ and a constant L such that || f(¢) — f(y)|| <
L||¢ — y| forall ¢, y € U), then for each given initial condition (fo, ¢) € R X G, 1,
system (2.10) has a unique mapping x®: [to — 7, 8) — R" such that x? |, _; 1= ¢, x?
is continuous for all 1 > #9 — 7, is differentiable, and satisfies (2.10) for 1 € (1o, ),
the maximal interval of existence of the solution x?. Furthermore, if B < oo, then
there exists a sequence t; — ~ such that |x? ()| — oo as k — . For further results
on existence, uniqueness, continuation, and continuous dependence of solutions for
DDEs, see, for example, [18, 30, 51, 70, 120, 144-147, 154, 206, 208, 300, 302].
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System (2.10) includes the following DDE with distributed delay

0
i(t)= [ g(6,x(t+6))do, (2.11)

and the following DDE with discrete delay
(1) = h(x(t),x(t —11),...,x(t — T)), (2.12)

where T = max{7,..., %}, & [-7,0] x R" — R", and h: R" x --- x R*(=
R”(k“)) — R" are continuous. In these cases, for ¢ € G, ¢,

1(0)= [ 4(0.0(0))d0

-7
and

f((p) = h((P(O),(P(—Tl),---,(P(—Tk)),

respectively. It can be shown that if 4 is locally Lipschitz (in (2.12)), then so is f.
Similarly, if for every x € R” there exist a neighborhood U of x € R" and a constant
L > 0 such that |g(0,z) — g(6,y)| < L|z—y| forall 6 € [-7,0] and z,y € U, then the
corresponding f is locally Lipschitz.

2.2.2 An Operator Equation

Throughout this chapter, we always assume that f: C, ; — R" is continuously differ-
entiable. Without loss of generality, assume that f(0) =0, that is, 0 is an equilibrium
point of (2.10). Let L be the linearized operator of f at this equilibrium point. Then
the linearization of system (2.10) at this equilibrium point is

(1) = Lx;. (2.13)

We will consider the above linear system with a general linear operator L :
Cy.r — R”. Such an operator is clearly locally Lipschitz. For ¢ € G, ¢, let x = x?
be the unique solution of (2.13) satisfying x; = ¢. Then we have |x(¢)| < | (0)| +
o IL|[|xs|ds for all £ > 0, from which it follows that ||x,|| < ||@||+ Jo |L|||xs||ds for
¢ >0 and hence ||x;|| < ||¢@||e!" for t > 0. This implies that the solution is defined
for all # > 0. Here we use |L| to denote the operator norm of the bounded operator L.

Define the solution operators 7'(¢) : Cp.r — Cy ¢ by the relation

(T(1)9)(8) =x/(6) = x(1+6) (2.14)

for ¢ € Cy.z, 6 € [—7,0], ¢ > 0. Then (2.13) can be thought of as maps from C, ; to
Gy, Moreover,

(i) T(¢) is bounded and linear for ¢ > 0;
(i) T(0)p = ¢ or T(0) = 1d;



46 2 Introduction to Functional Differential Equations
(iif) lim || 7(t)p —T(t0) @] = 0 for ¢ € .
1—stg

Note that the inverse of T'(¢), ¢ > 0, does not necessarily exist. Therefore, T'(¢), r > 0,
is a strongly continuous semigroup.
An infinitesimal generator of a semigroup 7 (¢) is defined by

/@ = lim

T(t)p—¢
ATA S ' €Cphr.
t—0+ t or ¢ T

In the case of the linear system (2.13), the infinitesimal generator can be
constructed as

(woye)={ 40100 oL

We can show that the domain of .7 is given by
dom(«) ={¢p: 9 €C),.¢'(0)=Lo}.

Then T (¢) @ satisfies

(2.15)

d
ST =T,

where
Tt+h)o—T@)e
dr h—0 h '

We may enlarge the phase space C, ¢ in such a way that (2.10) can be written
as an abstract ODE in a Banach space. To accomplish this, for a positive integer n,
let BC,, be the set of all functions from [—7,0] to R”" that are uniformly continuous
on [—7,0) and may have a possible jump discontinuity at 0. We also introduce X :
[—7,0] — BL(R") defined by

Id,, 6=0
Xo(e):{o, 6cl-1,0). (2.16)

Then every y € BC, can be expressed as y = ¢ + Xo& with ¢ € C, ;r and & € R”.
Thus BC, can be identified with C,, ; x R". Equipped with the norm |¢ + Xo& |p¢, =
llol| + |&|, BC, is a Banach space. In BC,, we consider an extension of the infinites-
imal generator of {7 (¢)},>0, still denoted by <,

o :Cp o3 W Y+ Xo[Ly — (0)] € BC,,

where {r = % y. Thus, the abstract ODE in BC, associated with (2.10) can be rewrit-
ten in the form

d
axt = A x + XoF (x), (2.17)
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where F(x;) = f(x) — Lx,. For 6 € [—71,0), (2.17) is just the trivial equation
du, /dt = du, /d@; for 6 = 0, it is (2.10).

2.2.3 Spectrum of the Generator

If the linear operator L: G, ; — R" defined in (2.13) is continuous, then by the Riesz
representation theorem, there exists an n X n matrix-valued function 1 : [—7,0] —
an whose elements are of bounded variation such that (see, for example, Hale and
Verduyn Lunel [154] for more details)

0
Lo=| dn(0)p(6),  ¢€C (2.18)

For example, consider x'(r) = —x(t) + bx(t — 1). Let n : [—1,0] — R be given
such that n(0) = 0 for all n € (—1,0) and (0) = —1 and n(—1) = —b. Then
J2,dn(0)9(6) = —¢(0)+be(—1) for g € C 1.

In general, the spectrum of an operator may consist of three different types of
points, namely, the residual spectrum, the continuous spectrum, and the point spec-
trum. Moreover, points of the point spectrum are called eigenvalues of this operator.
It is interesting to see that the spectrum o(27) of 7 consists of only the point spec-
trum. This implies that o(2/) consists of eigenvalues of &/ and that A is in o ()
if and only if A satisfies the characteristic equation

detA() =0, (2.19)

where A (A) is the characteristic matrix of (2.13) and is given by

0
A(L) :Md,,—/ *0dn(e). (2.20)
—T

Here and in what follows, Id, is the n x n identity matrix. We will not use the sub-
script n if that does not cause confusion.

For any A € o(«), the generalized eigenspace .#) (<) is finite-dimensional,
and there exists an integer k such that ./ (<) = Ker((A1d — .7 )¥) and we have the
direct sum decomposition

Cn.r = Ker((Ald — 7)*) @ Ran((A1d — &7 )¥),

where Ker((AId — 7)) and Ran((AId — .« )¥) represent the kernel and image of
(A1d — o)X, respectively. Clearly, o7 4 (<7 ) C M) ().
The dimension .#) (/) is the same as the order of zero for detA (1) = 0.
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Let d = dim.#) (o), let @1,...,@0,; be a basis for .#) (<), and let @) =
(@1,...,04). Then there exists a d x d constant matrix B, such that &/ ®, = @, B;.
Moreover, we have the following properties:

(i) the only eigenvalue of B) is A;
(i) @;(0) = @;(0)e”;
(iii) T(¢)®, = @yebr’.

Therefore, we have the following result.

Theorem 2.1 (Hale and Verduyn Lunel [154]). Suppose A is a finite set
{A1,...,Ap} of eigenvalues of (2.13), and let @y = ((DM,...,(D%) and B, =
diag(By,,. .- ,B;Lp), where D), is a basis for the generalized space of </ associated
with Aj and By, is the matrix defined by .;zfd)xj =®y,By,, j= 1,2,...,p. Then the
only eigenvalue of B;Lj is Aj, and for every vector v of the same dimension as the
space Py spanned by @y, the solution T (t) @4 v with initial value @, v at t = 0 may
be defined on (—eoo,0) by the relations

T(1)Dpv = DyeBaly

and
D, (0) = Dy (0)B19, —1<0<0.

Furthermore, there exists a subspace Qp of Cy 1 such that T (t)Qp C Qa forallt >0
and

Cit =Py D0). (2.21)

2.2.4 An Adjoint Operator

We now describe a formal adjoint operator associated with (2.15). Let Cy, ; =
C(]0, 7];R™) be the space of continuous functions from [0, 7] to R™ with

lwll = sup [w(r)|
+€[0,7]

for y € G, , where R™ is the space of n-dimensional real row vectors. The formal
adjoint equation associated with the linear RFDE (2.13) is given by

0
== yt=0)dn(o). (2.22)

For y € G, ;, let y¥ be the unique solution of (2.22) satisfying yg/ = v (in this
subsection, y, € C; . is defined as y, (s) = y(t +s) for s € [0, 7).
If we define

(T*(1)w)(0) =y (6) = y(t+6) (2.23)
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for y € G, 1, 8 € [0, 7], <0, then (2.23) defines a strongly continuous semigroup
with the infinitesimal generator

_dl,/(é)/déa if é € (Oa T]a
o = i (2.24)
@ ={ 0y oyanien it &0
Note that although the formal infinitesimal generator for (2.23) is defined as
A*[I[ = lim M for (0] S Cn‘r,
t—0~ t i

Hale [144], for convenience, takes &/ = —A* in (2.24) as the formal adjoint to
(2.15). This family of operators (2.23) satisfies

d

g Oy =-"T 1)y

In addition, it is easy to obtain the following results.
Theorem 2.2. The following hold:

(i) A is an eigenvalue of <7 if and only if A is an eigenvalue of <7 *.
(ii) The dimensions of the eigenspaces of </ and <" are finite and equal.
(iii) The dimensions of the generalized eigenspaces of </ and <o/* are finite and
equal.

2.2.5 A Bilinear Form

In contrast to R", the space C, ; does not have a natural inner product associated
with its norm. However, following Hale [144], one can introduce a substitute device
that acts like an inner product in C, ;. This is an approach that is often taken when
a function space does not have a natural inner product associated with its norm.
Throughout, we will be assuming the complexification of the spaces so that we can
work with complex eigenvalues and eigenvectors.

Define two operators IT: C! (R; R") — C(R;R") and Q: C! (R; R"™) — C(R; R™)
as follows:

(Mx)(r) =x(t) — . ;OT dn(0)x(t+0)

and
@)1 =50+ [yt~ 0)dn(6).

J—=T

Then we have
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where
0 0
00 =300~ [ ['50+E- 0o+ s @25)

Thus, if x € C!(R;R") and y € C! (R;R"™) satisfy ITx = 0 and Qy = 0, then (y,x)(¢)
is constant, and one can set = 0 in (2.25) to define the bilinear form

0 0
(v.0) =709~ [ ["W(E-0)an(6)9(E)dE, wECi ol 226)
In terms of (2.15) and (2.24), we see that

(v, Q) = (T y,0)

forp € Cyrand y € C ..

Let A be a set of some eigenvalues of .o/ satisfying A € Aif A € A. Denote by P
and P* the generalized eigenspaces of &7 and .&/* associated with A, respectively. It
follows from Theorem 2.2 that dim P = dim P*. If ¢y, @2, ..., @y, is a basis for P and
V1, V2,..., Wy, is a basis for P*, then construct the matrices @ = (@1, @2, ..., On)
and ¥ = (y1,¥2,..., ¥, . Define the bilinear form between ¥ and @ by

(vi,o1) - (w1, 0m)

(W @1) - (W Om)

This matrix is nonsingular and can be chosen so that (¥,®) = Id,,. In fact, if

(¥, ®) is not the identity, then a change of coordinates can be performed by set-

ting K = (¥, ®) ! and ¥ = K¥. Then (¥, ®) = (K¥, @) = K(¥, ®) = Id,,. The

decomposition (2.21) of C,, ; given by Theorem 2.21 may be written explicitly as
©=¢pt ¢y,

where @, = @5 (¥4, 9) € Pr, @5 € 0r ={9: (¥4,9) =0}

Remark 2.1. The bilinear form in C, ; x G, 1 given by (2.26) can be extended in a

natural way to C;, . x BC, by setting (y,Xo) = W(0). We defer to Sect.2.3 for a

discussion how this extended bilinear form allows us to cast a functional differential
equation to a system defined on the spaces P and Q4 .

2.2.6 Neural Networks with Delay: A Case Study
on Characteristic Equations

In this section, we provide a detailed case study for the characteristic equation of the
linearization at the trivial equilibrium of a coupled network of neurons with delayed
feedback. Such a network with feedback with different interneuron and intraneu-
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ron time lags arises naturally in biological neural populations and their hardware
implementation, and such a network also provides a simple-looking delay differen-
tial system that can exhibit complicated dynamics due to the existence of multiple
eigenvalues of the infinitesimal generator of the linearized system at a given equi-
librium when the synaptic connections and signal transmission delays are in certain
ranges.

2.2.6.1 General Additive Neural Networks with Delay

We first describe an artificial neural network consisting of electronic neurons (am-
plifiers) interconnected through a matrix of resistors. Here an electronic neuron, the
building block of the network, consists of a nonlinear amplifier that transforms an
input signal u; into the output signal v;, and the input impedance of the amplifier
unit is described by the combination of a resistor p; and a capacitor C;. We assume
that the input—output relation is completely characterized by a voltage amplification
function v; = f;(u;). The synaptic connections of the network are represented by
resistors R;; that connect the output terminal of the amplifier j with the input part of
the neuron i. In order for the network to function properly, the resistances R;; must
be able to take on negative values. This can be realized by supplying each amplifier
with an inverting output line that produces the signal —v;. The number of rows in
the resistor matrix is doubled, and whenever a negative value of R;; is needed, this
is realized using an ordinary resistor that is connected to the inverting output line.

The time evolution of the signals of the network is described by the Kirchhoff’s
law. Namely, the strengths of the incoming and outgoing current at the amplifier
input port must balance. Consequently, we arrive at

du[ u; L |

C—+2 =Y —(v;i—u).
4 pi j:IRij (Vj Ml)
Let
1 1 21
— =4 i
Rl Pi ;R”
We get
du,' L R,‘
CRi— +u;=Y =*
i ldl‘ + u; jzzthijVj

In the above derivation of the model equation for an artificial neural network,
we implicitly assumed that the neurons communicate and respond instantaneously.
Consideration of the finite switching speed of amplifiers requires that the input—
output relation be replaced by v; = f;(u;(t — 7;)) with a positive constant 7; > 0,
and thus we obtain the following system of delay differential equations (see also
[168, 209, 252, 267, 278]):

du;(t “ R; .
W )+ Y R pg-). 1<i<n
j=1 1%

CiR;
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In what follows, for the sake of simplicity, we assume that
Ci=C, Ri=R, 1<i<n,

and thus all local relaxation times C;R; = CR are the same. Rescaling the time delay
with respect to the network’s relaxation time and rescaling the synaptic connec-
tion by
T.
xi(t) = u;(CRt ri=—L w=—
l( ) l( )7 J RC? i Rij7
we get

n

xXi(t) = —xi(t) + _let‘jfj (xj(t = 17))-
Jj=

It is now easy to observe that it is the relative size of the delay r; that determines

the dynamics and the computational performance of the network, and designing a

network to operate more quickly will increase this relative size of the delay.

It is therefore important to examine the effect of signal delays on the network
dynamics. An important issue that has been addressed in the literature is how signal
delays change the stability of equilibria, causing nonlinear oscillations and inducing
periodic solutions. It will be shown that increasing the delay is among many mech-
anisms to create a network that exhibits periodic oscillations. Obviously, whether
delay can generate oscillation also depends on the network connection topology.
We refer to the monographs [224, 304] and a book chapter [52] for discussions
about the relevance of this type of artificial neural network for the study of bio-
logical neural populations. In particular, we emphasize the importance of temporal
delays in the coupling between cells, since in many chemical and biological oscil-
lators (cells coupled via membrane transport of ions), the time needed for transport
or processing of chemical components or signals may be of considerable length.

2.2.6.2 Special Case: Two Neurons

We now consider the following system of two neurons:

{)&1 (t) = —xl(t) +ﬁf(x1(t — T)) +a12f(x2(t— Tl)), 2.27)
Xo(t) = —xa(t) + Bf(x2(t — 7)) + axr f(x1 (t — 12)), ’

where x;(¢) and x,(¢) denote the activations of the two neurons, 7;(i = 1,2) and
T denote the synaptic transmission delays, aj» and ay; are the synaptic coupling
weights, f : R — R s the activation function. Throughout this subsection, we always
assume that 7 + 7, = 27 > 0 and f : R — R is a C'-smooth function with f(0)=0.
Without loss of generality, we also assume that 7} > 7, and f7(0) = 1. Letting x(r) =
(x1(2),x2(t))T and x;(8) = x(t + ) for 8 € [—11,0], we can rewrite (2.27) as

#(t) = L + F(x)
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with
Lo =—0¢(0)+B19(—71) +B2¢(—72) + Bo(—1)
and

F(p) = 1) [allfpf(—f)"‘alﬂpzz(—fl)}
2 a9 (—n) +angi(—1)

3 3
7(0) | a1 @ (—r)+a12(p2(_11)] X
* 6 [aZI(PIB(—Tz)—I—aZZ(pg(_T) +0(||(PH )

for @ = (@1,92)" € Caq,, where

. 0 ain . 00 o ﬁ 0
m=[o ] mmlamel o= [05]
The linearized system of (2.27) can be written as

0
i=Lg= [ dn(0)x(t+6), (2.28)
.

where the matrix function 11(0) is given by

Bi+B+B,—1d,, 6 =0,

Bi+B+ B>, 0 € [—1,0),

n(6,u) =< B +B, 0e[-1,—1n),
By, 0 e (—Tl,—T),
0, 0= —T1,

and 6(0) is the Dirac delta function. The formal adjoint equation associated with
(2.28) is given by

y(t) = y(t) = y(t+71)B1 —y(t + 72) B2 — y(t + T)B.
The bilinear form is

(v.0) =W(0)p(0)+ [°, W(s+171)Bi¢(s)ds
(2.29)

+ 2, Wls + ©)B2g(s)ds + [* W (s + 1) Bo(s)ds.
The operators .o/ and «/* are given by

d0(6) if 6e[-1,0),

(9)(6) = { p(0)+ Bip(—11) + Bog(— ) + Bo(—1), if 6=0,

and
dy (&) i
i N _T7 if é S (071-1]7
("y)(6) { y(0) + (B w(E)Ba (DB, i =0,
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Moreover, @ is in Ker(Ald — &) if and only if ¢(6) = ety —1, < 6 <0, where v
is a vector in R? such that A(A)v = 0 and the characteristic matrix A(A) is

. )L-i—l—ﬁei}w —012671T1

A(4) —azle*)”2 A+1 —ﬁe’“

Thus, the characteristic equation is
detA(A) = [A+1—Be 7> —apaye T =0. (2.30)

Also, v is in Ker(A1d — .7*) if and only if w(&) = e*5u, 0 < & < 1y, where u is a
vector in R?* such that uA(—1) = 0.

Let y» = B £ \/aazi, where \/ajsay; is a real if ajpaz; > 0 and purely imagi-
nary otherwise. Then, detA(4) can be decomposed as

detA(A) =[A+1—ye A +1—ye*7.

Thus, in order to investigate the distribution of zeros of detA (1), we first consider
the distribution of zeros of the following function:

PA)=A+1—z 7, (2.31)

where z € C. Define a parametric curve X with the parametric equations

{ u(t) = cos Tt —tsin 1z, teR. (2.32)

v(t) = tcos Tt + sin Tt,

It is easy to see that the curve X is symmetric about the u-axis. Let 0(¢) = v(¢) /u(t).
Then 6'(t) = u2(t)[1 + T+ 12] > 0 for all # € R such that u(t) # 0. This im-
plies that as 7 increases, the corresponding point (u(¢),v(¢)) on the curve £ moves
counterclockwise about the origin. Moreover, it follows from u?(¢) +v*(t) = 1 +1>
that £ = {(u(r),v(r)) : t € R"} is simple, i.e., it cannot intersect itself. Let
{t.},=% be the monotonic increasing sequence of the nonnegative zeros of v(r),
and ¢, = u(t,) for all n € Ny := {0,1,2,...}. Obviously, we have #p = 0 and
th € (2n—1)m/(27),nm/7T) for all n € N. Therefore, the curve X intersects with
the u-axis at (c,,0), n € Ny. It follows from the counterclockwise property of the
curve X that (—1)"c, > 0 for all n € Ny. In addition, we have |c,| = \/1 +12, which
implies that ¢, = (—1)"y/1 412 for n € Np and {|c| }neny, is an increasing sequence.
In particular, cp = 1 and ¢; = sec 7t < —1. Moreover, we claim that

(-D)"(t,) >0  and  (=1)"d(t,) >0  forne Ny. (2.33)

Equality in the second formula of (2.33) holds if and only if n = 0. In fact, we can
check that v/(1,) # 0 when v(z,,) = 0. This, combined with the counterclockwise
property of the curve X, gives the first inequality in (2.33). From u?(t) + (1) =
1 +12, we have ' (t)u(t) +v'(t)v(t) =t for t € R*. Particularly, «/(t,)c, = t, for
all n € Ny. This, combined with (—1)"¢c, > 0 for n € Ny, immediately implies the
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second inequality in (2.33). This proves the claim. Finally, u?(¢) +v*(t) = 1+1> > 1
also implies that the curve is not inside the unit circle and it has only one intersection
point (1,0) with the unit circle.

For each n € Ny, let X, = {(u(t),v(¢)) : t € [~tyr1, —tn] U [tn,t4+1]}, which is a
closed curve with (0,0) inside. The curve X is schematically illustrated in Fig. 2.1.
In the sequel, we will identify ¥ with {u(z) +iv(r) : t € R} C C. The following

5

— fort >0

Fig. 2.1 The parametric curve X

lemma will play an important role in analyzing the distributions of the roots of (2.1).

Lemma 2.1. Consider P.(A) defined in (2.31) with z € C. Then the following state-

ments are true:

(i) P.(L) has a purely imaginary zero if and only if z € X. Moreover, if z =
u(0)+1iv(0), then the purely imaginary zero is 10 except that there is a pair
of conjugate purely imaginary zeros =*it, if z = ¢, forn € N.

(ii) For each fixed zo = u(6y) +1iv(6y) € X, there exist an open 6-neighborhood
of 7o in the complex plane, denoted by B(zo,0), and an analytic function A :
B(z0,0) — C such that A(z9) = 16y and A(z) is a zero of P,(A) for all z €
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(iii)
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B(z0,0). Moreover, along the outward-pointing normal vector to the curve X at
20, the directional derivative of Re{A(z)} at z is positive.

P.(L) has only zeros with strictly negative real parts if and only if 7 is inside
the curve Xy, exactly j € N zeros with positive real parts if z is between X;_;
and Xj. In particular, if z € Xy, P.(A) has either a simple real zero 0 (if z=1)
or a simple purely imaginary zero (if Im(z) # 0), or a pair of simple purely
imaginary zeros (if z = c1), and all other zeros has strictly negative real parts.

Proof. (i) P,(1) has a purely imaginary zero, say A = i6, if and only if e'*®(1 +

(ii)

(iii)

i6) = z, which is equivalent to z € X by separating the real and imaginary parts
of el™0(1418).

Note that P, (i6y) = 0 and i6 is a simple zero of P, (A). The existence of &
and the mapping A follow from the implicit function theorem. Moreover, A(z)
is analytic with respect to z. Thus,

A(z) = %Re{l(z)} +i%lm{k(z)} = %Im{l(z)} —i%Re{l(z)},

where a = Re(z) and b = Im(z). On the other hand, differentiating P,(1) =0
with respect to z and using P, (i6p) = 0, we have

/'V(Zo) =& [uoé‘z + 6yvo +i(90u0 — V()é‘z)] ,

where & = [(1+17)2+ (160)?] '(1+63) ! and & = 1 + T+ 76]. It follows
that

T
(%Re{l(zg)}, %Re{l(zo)})

T
= &1 (up& + Ogvo,vo&r — Boup)” .

VRe{A(z0)}

Let 9(&) = (V/(6o),—1/'(60))M(E), where € € (—m/2,7/2) and

mE)=| <o .

—siné cos&

Obviously, for each fixed & € (—m/2,7/2), ¥ (&) is an outward-pointing vector
to the curve X at zo, Thus, the directional derivative along the vector (&) at
20 1S
d
MRC{MZO)} = &(v/(6), 1 (60))M(§)VRe{A(z0)}

= e183(e5 +63)cos& >0,

where &3 = 1/4/(1+17)2+726;.
Note that Py(A) has exactly one zero — 1, which obviously has a negative real
part. Since zeros of P.(A1) depend continuously on z, there exists a region £



2.2 The Framework for DDEs 57

containing z = 0 such that for z € €, all zeros of P.(1) have negative real
parts. Moreover, as z varies and passes through the boundary d€2y, only one
(or two if z is real) zero point of P,(A) varies from a complex number with a
negative real part to a purely imaginary number and then to a complex number
with a positive real part. By (i), d€2y = Xy. Therefore, P,(A1) has only zeros
with negative real parts if z in inside the curve Xy. If z is a real number between
%,y and X;, then one can easily show that P,(A) has exactly j zeros with
positive real parts (see, for example, the discussion in Chen and Wu [59]).
This, combined with (i) and the continuous dependence of zeros of P,(1) on z,
completes the proof. O

In view of Lemma 2.1, we have the following conclusions:

(1) All zeros of det A (1) have negative real parts if and only if both of ¥4 are inside
the curve X.

(2) Ifandonlyif 1 £y, € Zor1#v_ € X, detA(A) has a pair of simple conjugate
purely imaginary zeros i@, where @ > 0 satisfies either u(®) +iv(®) = y;
or u(®)+iv(w) = y_. In particular, @ = t, if either y; or y_ is equal to ¢, for
some n € N.

(3) If and only if only one of y; and y_ is equal to 1, detA(A) has a simple zero
A = 0. Moreover, if ¢; < - < ¥4 = 1, then all zeros but A = 0 of detA (1) have
strictly negative real parts.

If ajpaz; > 0 and only one of 4 lies on the curve X, or ajpaz; < 0 and y1 €
Y, then on the imaginary axis, the infinitesimal generator ./ has only one pair of
simple purely imaginary eigenvalues +iw. Let @ = (¢, @) and ¥ = (w1, )" be
bases for the generalized eigenspaces Py and Py, of </ and &/* associated with
eigenvalues +i@, respectively. In fact, we can choose

¢1(0) =
vi(§) =

() (Ld)'e,  6€[-1,0],
=D(@1)¢, &c[0,m)

€| Sl

and ) )
d = (1 —l—iw—ﬁeﬂwr)elwrl/du,
D={2d[1+1(1+io)]} "

Moreover, (y;, x) = Ojk, j,k = 1,2, where (-,-) is defined in (2.29) and

s L ifj=k
*TN0, ifj#k

Assume that ajpap; > 0. If y, =1 and Y- =c¢, or Y- =1 and y; = ¢, for some
n € N, then on the imaginary axis, the infinitesimal generator ./ has only simple
eigenvalues 0, it,, and —if,,. Here, we consider only the first case. Namely, assume
that ajpaz; > 0 and ¥y = 1 and y- = ¢, for some n € N. Let @ = (q0,41,41), and
¥ = (po, p1,p1)" be bases for the generalized eigenspaces Py and Py of &/ and &/'*
associated with A = {0, if,,, —it, }. In fact, we can choose
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90(6) = (1,do)",  q1(8) = (1,d1)" ", 6 € [~7,0],

and
po(&) =Do(do,1), p1(€) =Dy (dy,1)e"5, & €[0,11],

where dp = (1 —ﬁ)/dlz, d| = (1 +it, —ﬁefit”‘[)eit”‘rl /alz, Dy = [Zd() (1+ T)]il, and

= {2d; [1+7(1 +it,)]} '. Moreover, (p;,q;) = Ojx and (pj,qx) =0, j,k=0,1.

Assume that ajpaz; > 0. If ¥4 = ¢, and Y- = ¢, for n,m € N such that ¢, >
¢m» then on the imaginary axis, the infinitesimal generator ./ has only two pairs
of simple purely imaginary eigenvalues +i®@; and +iw,, where ®; =1, and @, =
tm. Let @ = (q1,41,92,32), and ¥ = (p1, p1,p2,p2)" be bases for the generalized
eigenspaces P, and P} of .7 and .&/* associated with A = {iw;, —iw,im, —iw, }.
In fact, we can choose

q;(0) = (1,d))" e®,  6€[-7,0, j=12,

and
pj(é):l_)j(gjvl)eleéa 56[071-1]7 j:1727

whered) = (1+iw;—Be®i7)e®™ /aj and D; = {2d;[1 + (1 +iwj)]}71. More-
over, <p17Qk> = 6jk and <pjuqk> = O’ ]7k: 172

2.3 General Framework of NFDEs

Suppose that f, h: C, ; — R" are given continuous mappings. The relation

D) = () (2.34)

dt
is called a neutral functional differential equation (NFDE). The mapping & will be
called the difference operator for NFDE (2.34). If 2(¢) = ¢(0) for all @, then (2.34)
becomes (2.10). Consequently, DDEs are special cases of NFDEs.

A function x is said to be a solution of (2.34) on [fy,7p + A) for some 7y € R
and A >0 if x € C([to — 7,00 +A),R"), x; € Cy 7 for all ¢ € [tg, 10+ A), h(x;) is
continuously differentiable, and x(¢) satisfies (2.34) for all 7 € [tg,70+ A).

Let D, L: C, ; — R" be the two linearized operators of 4 and f at some equilib-
rium point, respectively. Without loss of generality, we assume that there exist two
n x n matrix-valued functions p,n : [—7,0] — R" whose components each have
bounded variation and such that for ¢ € C, 1,

0
Do =¢(0 /du ), Lo= 7Tdn(9)¢(9)-
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Moreover, we assume that D is atomic at zero, that is, Var[&o],u(e) —0ass—0
(see Hale and Verduyn Lunel [154] for more details). The linear system

d

—Dx, = Lx 2.35

dr Xt t ( )
generates a strongly continuous semigroup of linear operators with infinitesimal
generator 7. The spectrum of <7, denoted by o(<7), is the point spectrum. More-
over, A is an eigenvalue of <7, i.e., A € (&), if and only if A satisfies detA (A1) =0,
where the characteristic matrix A () is given by

A(L) = AD(e*V1d) — L(e*V1d).

It is well known that ¢ € C, ; is an eigenvector of .27 associated with the eigenvalue
2 if and only if ¢(8) = e*®b for @ € [~7,0] and some vector b € C" such that
A(A)b = 0. Here and in the sequel, for the sake of convenience, we shall also allow
functions with range in C".

Let A be a set of some eigenvalues of <7, and denote by E, the generalized
eigenspace of &7 associated with A. It is known that dimE, = m, where m is the
number of zeros of detA(A4) in A, counting multiplicities. As we did earlier for
DDEs, we define a bilinear form

0
(v.0) = TF(0)p(0) - [

[% JA VE-aO)9@E)dE| 236

0

[ [Twe - on@oa

for y € G ; and @ € G, 7. Let @ be a basis for £y and ¥ the basis for the dual
space E in C, such that (¥, ®) = Id,,. The phase space C, ; is decomposed by A
as Gy = E5 & Qp, where Qp ={¢ € Cy.r : (¥, 9) = 0}. Moreover, there exists an
m X m constant matrix B with 6(B) = A such that

&d=®B and ¥ = —BY.

Similarly to the previous sections for DDEs, we may enlarge the phase space C,,
such that (2.34) can be written as an abstract ODE in the Banach space BC,. First, in
BC,, we consider an extension of the infinitesimal generator .7, still denoted by <7,

o :BC, D Cy 1> @ ¢+Xo[Lo — D] € BC,,

where Dom(.«7) = C,lm &f {@ € Cur: @ € Cyr}. The bilinear form in C;; ; X Cp ¢
given by (2.36) is extended in a natural way to C, ; X BC, by setting (y,Xo) = ¥(0).

Thus, the abstract ODE in BC, associated with (2.34) can be rewritten in the form

d
= Fu+XoG(u), (2.37)
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where

G(u) = f(u) — Lu— % lh(u) — D (2.38)

Consider the projection & : BC,, — E4 given by
m(@+Xo§) = ¥, ) + P(0)&]. (2.39)

Obviously, 7 is a continuous projection onto E,, which commutes with o7 in C}”.
This allows us to decompose BC,, as a topological direct sum, BC, = E4 & Ker,
where Q4 C Kerr.

Due to the decomposition of BC,, we can decompose u« in (2.37) in the form

u= dx+y, withx e R", yeQ & Kermn Cy ¢~ Then (2.37) is equivalent to the
system
% = Bx+¥(0)G(Dx+y),

! (2.40
&~ Aoy + (1— 1)XeG(Dx +), )

where 7 is the restriction of .27 to Q interpreted as an operator acting in the Banach
space Ker 7. The spectrum of .« will be very important for the construction of nor-
mal forms. Similarly, .7 has only a point spectrum. Moreover, 6(27g) = 6 (7 )\ A.



Chapter 3
Center Manifold Reduction

A center manifold at a given nonhyperbolic equilibrium is an invariant manifold
of a given differential equation that is tangent at the equilibrium point to the
(generalized) eigenspace of the neutrally stable eigenvalues. Since the local dynamic
behavior transverse to the center manifold is relatively simple, the potentially com-
plicated asymptotic behaviors of the full system are captured by the flows restricted
to the center manifolds.

Center manifold theory plays an important role in the study of the stability of
dynamical systems when the equilibrium point is not hyperbolic. The combination
of center manifold reduction with the normal form approach has been used exten-
sively to study bifurcations of parameterized dynamical systems. The center man-
ifold theorem provides the theoretical foundation for systematically reducing the
dimension of the state spaces.

The classical center manifold theory of equilibria, since first introduced by Pliss
[245] and Kelley [189] in the 1960s, has been well developed and treated by Carr
[53], Hirsch et al. [164], Sijbrand [266], Hassard et al. [159, 160], Ruelle et al.
[255, 256], Ait Babram et al. [5—7], Guo and Man [138], Guckenheimer and Holmes
[125], Vanderbauwhede [285], and others [91-93, 147, 183, 184, 211, 286].

3.1 Some Examples of Ordinary Differential Equations

To illustrate the concept and importance of invariant manifolds, we examine some
examples of ordinary differential equations (ODEs).

Example 3.1. Consider the system of ODEs
i=x, y=-y+a, (ny) €R?, 3.1)

which has a hyperbolic fixed point at (x,y) = (0,0). The associated linearized sys-
tem is given by

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, 61
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6_3,
© Springer Science+Business Media New York 2013
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with stable and unstable subspaces given by
E*={(x,y) eR*: x=0}, E“={(xy)€R*:y=0}.

For the nonlinear vector field (3.1), the solution can be obtained explicitly as fol-
lows. Eliminating time as the independent variable gives

dy 22—
DT Y ex+o,

dx x

which can be solved to obtain
YR =S5 ifx A0,
X

where ¢ is some constant.

The local unstable manifold of (3.1), denoted by W} (0,0), is a one-dimensional
manifold that is tangent to the unstable subspace at the origin such that solutions
starting from this manifold will stay in the manifold for + > 0 and converge to the
origin as t — —oo. This unstable manifold can be represented by a graph over the x
variable, that is, y = h(x) with #(0) = 4’(0) = 0. The unstable manifold is given by
letting ¢ = 0:

2
Ws.(0,0) = {(x,y) eR?:y= ?}

Note that every solution starting in W} (0,0) remains in W} _(0,0), so this is also
the global unstable manifold of the origin.

We can similarly define stable manifolds. Note that if we have initial conditions
on the y-axis, then the solution stays on the y-axis and approaches (0,0) as r — oo.
Thus, the local stable manifold and its global extension (global stable manifold) are
both W .(0,0) = W*(0,0) = {(x,y) € R?: x =0} (see Fig.3.1).

y

s SN

Fig. 3.1 Stable and unstable manifolds of (x,y) = (0,0) in system (3.1)
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In Chap. 1, we studied bifurcations of equilibria in one-parameter dynamical
systems having the minimum possible phase dimensions. Indeed, the systems we
analyzed were either one- or two-dimensional. The corresponding bifurcations
occur in essentially the same way for higher-dimensional systems. As we shall
see, there are certain parameter-dependent one- or two-dimensional invariant mani-
folds on which the system exhibits the corresponding bifurcations, while the behav-
ior off the manifolds is somehow trivial. Therefore, such manifolds (called center
manifolds) are very important in describing dynamic behavior of high-dimensional
systems.

The following example shows that the center manifold need not be unique.

Example 3.2. Consider the following ODE system:

x=x3, y=-y (xy) eR%. (3.2)

The trajectory through point (xg,yo) is (see Fig. 3.2) given by

X0
1—tx0’

y(t) =yoe .

x(1)

After eliminating time ¢, we obtain
-1 1
= (yoe~ )l

It is easy to see that all trajectories starting from the left half of the (x,y)-plane
(x < 0) tend to (0,0) as x — 0. The center space E€ of the linearized system (3.2) is
the x-axis. System (3.2) possesses a family of one-dimensional manifolds:

W§ = {(x,y) e R* y = yp(x)},

where
[ Be'r, ifx <0,
V) = {0, if x > 0.

Obviously, Wg is tangent to E¢ at the origin, and it is a family of C* manifolds.
According to the definition to be introduced in the next section, these are all center
manifolds.

We conclude this section with an example to show how to reduce the dimension
and simplify the corresponding bifurcation problem.

Example 3.3. Consider the following two-dimensional system:

X = px+20y+x7+y?,

33
Y= —y+ux+x"+xy. G-3)

By the center manifold theorem, there should be an invariant manifold of the form

y=h(x, 1) = a()x+b(u)x* +c(u)x’ +0(|x[*). (3.4)
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\ 4
x

Fig. 3.2 Center manifolds of (x,y) = (0,0) in system (3.2)

To compute the coefficients, we simply differentiate the equation and obtain
¥ = a(u)i+2b(u)xi+ 3e(p)x% -+ O(|x*)x.
Now we use the differential equation (3.3) to replace y and x. This yields
—y+ px 427 xy = [a() +2b()x + 3c(1)x” + O(|x )] [ux + 24y +x7 + 7).

Next, we use (3.4) to substitute for y, and we compare terms of order x, X2, and X3
to obtain

—a(u)+u = a(p)u+2pufa(u))?,

—b(u) + 1 +a(p) = 2b(u)u + 6ua(p)b(u) +a(u) + [a(w)),
—c(p) +b(u) = 8ua(p)e(u) +4a(u)Pb(w) +4pb(r)]* +2b(w) +3pe(w).

It follows that a(u) = u + O(u?), b(u) = 1+ O(u). Finally, we can insert (3.4)
back into the first equation of (3.3) and obtain

X =xf(u,x),

where

F(,%) = u2pa(u)+2ub(p)+1+(a(w)) et 2uc(p)+2a()b(u) | +0().

Notice that f;(0,0) =1 and f;(0,0) = 1, so that according to the implicit func-
tion theorem, we can solve uniquely for either variable in a neighborhood of (0,0):
x=—p+0(u?) or u = —x+ O(x?). We have thus established the existence of a
bifurcating branch of steady solutions.
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3.2 Invariant Manifolds of RFDEs

We now state the invariant manifold theory for the DDE

x=f(x), (3.5)

where f: C,; — R is sufficiently smooth and satisfies f(0) = 0. The linearization
of system (3.5) at this equilibrium point x = 0 takes the form

() = Lx;, (3.6)

which generates a strongly continuous semigroup with the infinitesimal generator
o Cpr — Cpr. Let 0°, 0¢, and 0* be the sets of eigenvalues of the infinitesimal
generator o/ with negative, zero, and positive real parts, respectively. Obviously,
o=0'Uoc‘Uc”. Let E°, E¢, and E" be the generalized eigenspaces corresponding
to o°, 0, and ¢“, respectively. Obviously, E°, E€, and E" are .<7 -invariant subspaces
of C,, 7, and are referred to as the stable, unstable, and center subspaces, respectively.
Moreover, solutions starting in E* approach x = 0 asymptotically as ¢t — o, and
solutions starting in E* approach x = 0 asymptotically as t — —oe.

The space .# = E° @ E°® E" is precisely the space of initial functions such that
the corresponding solution of (3.6) has a finite expansion in characteristic solutions.
In fact, the solution through ¢ € .# exists for all time, and the semigroup 7'(¢) ex-
tends to a flow on .. In general, the closure of .# is (possibly properly) contained
in C,, ¢, and the space G, ; can be decomposed as

Cn,T:S@EC@Eu, 3.7
where S contains E* and is possibly infinite-dimensional.

Definition 3.1. For a given neighborhood V, the local strongly stable set (or mani-
fold) M;.(0) and the local strongly unstable set (or manifold) M (0) of the equi-
librium point O of system (3.5) are defined as
M;s.(0) &f {9€C, 1: x:(-, )€V for t > 0 and approaches 0 exponentially as t — oo},

e.(0) &f {9€C, 12 x:(-, )€V for r <0 and approaches 0 exponentially as  — —oo}.
Definition 3.2. For a given neighborhood V, a local center manifold M;, (0) of the
equilibrium point 0 of system (3.5) is a C' submanifold that is a graph over V N E¢
in C, ¢, tangent to E¢ at 0, and locally invariant under the flow defined by (3.5).
Namely,

Mipe(0)NV ={p €Crr: 9 =0 +1(9), 9 € VNETY},

where i: E€ — S& E" is a C! mapping with 7(0) =0, Dy/1(0) = 0. Moreover, every

orbit that begins on M{, (0) remains in this set as long as it stays in V.

Definition 3.3. For a given neighborhood V/, a local center-stable manifold M. (0)
of the equilibrium point 0 of system (3.5) is a set in G, ; such that M{* (0)NV is a

loc
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C! submanifold that is a graph over V N (E€ @ S), tangent to E€ @ S at 0, and locally
invariant under the semiflow defined by (3.5). Namely,

e (0)NV ={p € Cor: 9 =0 +h(9). ¢ €VN(E B S)},

where h: E°@ S — E" is a C' mapping with 7(0) = 0, Dyh(0) = 0. Moreover, every
orbit that begins on M;> (0) remains in this set as long as it stays in V. Furthermore,
every orbit that stays in V for all # > 0 must belong to M{ (0). In the same way, we
define the local center-unstable manifold M (0) of the equilibrium point 0 of (3.5)

by replacing r > 0 by ¢ <0, the set E“@® S by E¢ @ E*, and the set E* by S.
We have the following basic result on the existence of invariant manifolds.

Theorem 3.1. If f in (3.5) is a C* function such that f(0) = 0, then there is a neigh-
borhood V of 0 € Cy ¢ such that the sets M;5.(0), M* (0), M (0), M (0), and
M¢ (0) exist and are C* submanifolds of Cy,r. The manifolds M;S,(0) and M;"(0)
are uniquely defined, whereas the manifolds M;, (0), M. (0), and M{>.(0) might

loc loc
not be.

Local stable and unstable manifolds can be extended to global stable and unstable
manifolds. In addition, the existence of invariant manifolds for partial functional
differential equations was established by Memory [219-221].

Very often, one talks about stable manifolds, unstable manifolds, or center mani-
folds without specific reference to a particular equilibrium. However, this is a misuse
of the term, because the addition of of an equilibrium is key: one must speak about
the stable, unstable, or center manifolds of something in order for the terminology
to make sense. The something studied thus far has been an equilibrium.

3.3 Center Manifold Theorem

Let @ be a basis for E and ¥ the basis for the dual space E“* in C, ; such that

(¥, ®) =1d,,, where m = dim E€. There exists an m x m matrix B such that & = ®B.
It follows from (3.7) that we have BC,, = E° ® Kerm and E* ® E* C Kerm, where
7 : BC, — E€ is the projection defined by

T(9+Xo&) = P, )+ ¥ (0)E] (3.8)

for ¢ € G, r and § € R".
As we know, the abstract ODE in BC, associated with (3.5) can be rewritten in
the form

d
5)@ = x + XoF (x;), 3.9

where F(x;) = f(x;) — Lx;. Due to the decomposition of BC,, we can decompose x;

in (3.9) in the form x;, = @z+y, withze R™, y € O © Kerm ﬁC,%vr. Then (3.9) is
equivalent to the system
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;= Bz+¥(0)F(Dz+y),

3.10
% = oy + (1- 1) XoF (Pz+), (3.10)

where 7 is the operator from Q to Kerr, i.e.,

Aoy =y +Xo[Ly —y(0)]  foryeQ.
In view of Theorem 3.1, we have the following result.

Theorem 3.2 (Center manifold theorem). There exist W € CK(R™ Kerr) with
W(0) =0 and D;W (0) = 0 and a neighborhood V of u =0 in C, ¢ such that the
center manifold

oc(0)NV ={Dz4+W(z): z€ R"}
has the following properties:

(i) M (0) is locally invariant with respect to (3.5). More precisely, if ¢ €

M (0)NV and u (@) € V for t € I, then u,(¢) € M, (0) for t € I, where
I =1(9) is an interval containing t = 0.

(ii) M{ . (0) contains all solutions of (3.5) remaining in'V for all t € R. That is, if
o €Vandu (@) €V fort € R, then u;(¢) € M{,_(0).

(iii) If 0" = 0, then M, (0) is locally attractive. More precisely, all solutions of
(3.5) remaining in'V for all t > 0 tend exponentially to some solution of (3.5)

on M, (0). That is, if @ €V and u;(¢) €V fort > 0, then there exist T € R,

@ e Mf, .(0)NV, and y > 0 such that
ult;0) =u(t—50)+0(™ ") (t — o).

Remark 3.1. The domain of definition of M (0) may depend on the degree of
smoothness k of f in (3.5). Moreover, for analytic (or C”) f, the center manifold is
not necessarily analytic (C).

In Theorem 3.2, M{, (0) is a C* manifold of (3.5) parameterized by z € R™.
Hence M|

(. (0) has the same dimension as E¢; M{, (0) passes through u = 0 and is
tangent to E€ at u = 0.

Next, we consider the reduced equation of (3.5) on the center manifold Mj, (0).
If o € M{ .(0)NV, then u, (@) € Mf, .(0) fort close to r = 0. Defining

loc
20 = <lPa (P>= Z(I;ZO) = <lf’7”l((p)>7

we can write
u (@) = Pz(t:20) +W(z(t:20))-

Using (3.5), we obtain the following characterizations:

(i) z(-;z0) satisfies the m-dimensional nonlinear differential equation
z=Bz+G(z), (3.11)

where G(z) = W(0)F (W (z) + @z).
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(ii)) The map W satisfies

%w — oW +H(2), (3.12)

where H(z) = [Xo — ®¥(0)]F (W (z) + ®z).

The reduced system (3.11) governs the flow of (3.5) on the center manifold
M. (0). The next theorem shows that (3.11) contains all the necessary information
needed to determine the asymptotic behavior of small solutions of (3.5).

Theorem 3.3. (i) Suppose that 6" = 0 and the zero solution of (3.11) is stable (re-
spectively, asymptotically stable, unstable). Then the zero solution of (3.5) is
stable (respectively, asymptotically stable, unstable).

(ii) Suppose that the zero solution of (3.5) is asymptotically stable. Let u(t; ) be
a solution of (3.5) with the initial value @ sufficiently close to the origin of the
phase space. Then there exists a solution z(t) of (3.11) such that

u (@) = z(t) + W(z(1)) + O0(e ™)

ast — oo, where Y is a positive constant.

3.4 Calculation of Center Manifolds

In order to calculate W in (3.12), we expand G and W in their Taylor series around
z=0. To avoid awkward formulas, we use a concise representation of Taylor series
throughout this book. That is, we write the Taylor series of G as

ko1
ZJ— 2) +o(||z]%). (3.13)

In this representation, G, is a symmetric j-linear map from R™ x --- x R™ (j times)
into R”, and z\/) stands for the repetition of j identical arguments of z. Namely,

Gi)= % gl 5O

. R TN e jm *1
it =g I 9z 9z

The m components of G (z) are real-valued homogeneous polynomials of degree j
in the m components of z. The analogous expansions for W and H read

k k
W)=Y %Wj(z)+0(|z|k), Hiz) =Y %Hj(z)+0(|z|k). (3.14)

=2 =2

Using (3.12), we have $W = D, W (z)z = D,W(z)(Bz+ G(z)), and so
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Loy
Bz+ ¥ G (@) =
=

k
2 #DW;(2)
P

k
2 79 Wj(2) + _ZZ%Hj(Z)ﬂLO(lZl")-
J=

There are no terms of order 1. At order 2, we obtain
D W, (z)Bz— oW>(z) = Hy(2).
At order 3, we have
2D W5(z)Bz — 29/ Ws(z) = 2H(z) — 3D, W1 (2) G2 (z).

At order s < k, we have

D.W,(z)Bz — o/ W(z) = H. DWW 1(2) Gy (2)-

_ E
; (+Dl(s=1)!

The equations have to be solved step by step with increasing s, starting with s = 2.

In the subsequent subsections, we consider the restriction of (3.5) to the center
manifold at the critical parameter values when the dimension of the center space is
not too high. Assuming sufficient smoothness of f of (3.5), we write

(@) = Lo+ 570, 0)+ +7%(0,0,0) + 5.7 (0,0,0,0)

+12357°(0,0,0,0,0) +

where

. o)
yj(vla\}Za"'avj) m <Ztsvs>
J

s=1 t=ty=-+=t;=0

for j e N.

3.4.1 The Hopf Case
We first recall that the eigenvalues of .<7 are solutions of the characteristic equation
detA(A) =0, where

0
AL =Ald— [ e*Pdn(e), (3.15)

-7

2 . . .
and 1 : [-7,0] - R is an n x n matrix-valued function whose elements are of
bounded variation such that

Lo=[.dn(0)p(0), ¢@€Cyr (3.16)
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Throughout this subsection, we always assume that on the imaginary axis, the
infinitesimal generator <7 has only one pair of simple purely imaginary eigenvalues
+iw. Thus, the center space E€ is spanned by ¢ and ¢, and its dual space E* is
spanned by p and p, where p and g satisfy

P(0)A(iw) =0, A(iw)g(0) =0,
and
(p.q)=1, (p.g)=0.

For a solution u; of (3.9), we define z(t) = (p,u;) and then define w(z,0) =
u;(0) — 2Re{z(t)q(6)}. In fact, z and Z are local coordinates for M, in the
directions of p and p. Note that w is real if u, is, which allows us to deal with
real solutions only.

It is easy to see that (p,w) = 0. Note that (p, i) = (p, Zu;) + {p, XoF (u;)). Then
we have

z=iwz+g(z), z€C, (3.17)

where g(z) = P(0)F (w(z) +2Re{zq}), and
1
w(z) = Z Vk'wjkz izt
j+k>2

satisfies

%w:dw—i—H(z), 0 € [—7,0], (3.18)

with H(z) = —2Re{g(z)q} + XoF (w(z) + 2Re{zq}). Let

1 k
HOEEDY ,k,g,sz
]+k>2

Then we have

220 =7(0)7%(q.q), g1 =p0)F*(q,9), 802=7(0)F*(7,9),

and
g1 = p(0)7(4,4,9) + P(0).F*(w20,9) +25(0).F*(w11,q),
g30 = P(0)7(q,9,9) +35(0).7* (w0,q),
832 = P(0).7°(4,4,9,3,9) + P(0)-7*(q.4.4.W20) + 3P(0).7*(¢,4,G,w20)

+6p(0).7*(q,4,3,w11) + P(0)-F> (4,4, w30) + 3P(0).7> (9,4, W21

+6p(0).7 (q.G,wa1) + 3P(0)-7 (¢, W20, wao) + 6p(0).F > (q, W11, wi1)

+65(0)93(Q7W20,W11) +2p(0).72(g,w31) + 3P(0).7>(q,w22)
7(0).7%(Wa1,wa0) + 65(0).F2 (w11, wa1).
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Let

Then we have

Ha = — 8209 — 200G + X077 (4,9),

Hy| = —gnq—319+X07"(4,9),

H3o = —g30q — 3030 + X7 (q.4,9) + 3X07* (g, w20),

Hy = —g219— 212G+ X077 (4,4,9) + X07* (G, w20) + 2X0.F (g, wn1),

Hs = —g319— 2150+ %07 (4,4,4:9) + 3%0.77 (¢, ¢, wn1) + 3X0.F " (4., w20)
+3X0. 72 (Wa0,wi1) + X0 (G, w30) + 3X0.F*(q,w21),

Hy = —82q —80nq+X07*(4,4:9,3) +4X0 7> (4,3, w11) + X0 7> (4,4, w20)
+X0.7° (4.9, W20) + 2X0.7 > (w11, wi1) + 2X0.7 2 (q,721) +2X0.7 > (G, w21)
+Xo.F 2 (W0, w20).-

Comparing the coefficients of (3.18), we have

(o7 —2i@)wyo + Hy = 0,
w1 +Hy =0,
(& —3iw)wso + Hzo = 3wa0820 + 3w11202,
(o —iw)war + Hyy = 2waog11 +w11820 +2w11811 + W20802:
(o —2iw)ws1 + Hz1 = 3waog21 +wi1(g30 +3812)
+3w30g11 + 3wa1(g20 + &11) + W20803 + 3W12802,
Awa + Hy = 2(wag12 +W20812) +2wi1(821 +821) +W30802 + W30802
+w21 (4811 +820) + W21 (4811 + 820),

from which it follows that

Wao(8) = 2iow(0) + g209(0) +202q(0),
wi1(0) = g119(0) +281,9(0).

Solving for wyo(6) and wy; (6), we obtain

w0 (0) = _gzoitlll;(@) _ ?(%?(9) +h2062m9,
0 2119(6
wi1(0) = —g“iz)( ——g“iZj +hi1,

(3.19)

where hyo and hj; are both n-dimensional vectors that can be determined by set-
ting 6 = 0 in H(z,Z,0). In view of [(&/ — 2i®)wa|(0) = —Hap(0) and [(& —
2i®)w;1](0) = —H,1(0), we have

hy = A~ (2iw).7*(q,q)
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and
hiy =A"'(0).7%(¢,9).

Some other terms of w39, w21, w31, and w,,, can be calculated similarly. Note that
not every term will be needed to apply the Hopf bifurcation theory, to be introduced
in the following chapters.

3.4.2 The Fold-Hopf Case

Throughout this subsection, we always assume that on the imaginary axis, the in-
finitesimal generator .7 has only simple eigenvalues 0, i®, and —i®. Thus, the
center space E¢ is spanned by go, g1, and g, and its dual space E* is spanned by
po, P1, and py, where pg, p1, qo, and g satisfy

Po(0)A(0) =0, Ppi(0)A(i@) =0, A(0)q(0) =0, A(i@)q1(0) =0,

and
<pjaqk> = 6jk7 <pjvqk> = Oa

for ]7k = 07 l.Let @ = (61075]1@1), and ¥ = (p()upluﬁl)T' Then <lf17 ¢> =Ids.

For a solution i, of (3.9), we define x(¢) = (po, u;), z(t) = (p1,us), and w(x,z,Z) =
u; — x(t)go — 2Re{z(t)q1 }. In fact, x, z, and 7 are local coordinates for M[,  in the
directions of pg, p1, and p;. It is easy to see that (pg,w) =0 and (p;,w) = 0. Then
on the center manifold M|, ., we have

x(t) = go(x,z,Z),

: 3.20
2(1) = ioz(r) + ¢! (x.2.2), 320

where g/ (x,2,2) = P;(0)F (w(x,2,%) + xqo + 2Re{zq1 }) for j = 0,1 and

1 .
wx,z,z)= Y ———wigx/Z'?
k= IStk

satisfies

d —

V= gw+ (Xo— PY(0))F (w(x,z,Z) +xq0 + 2Re{zq1 }). (3.21)
Let . L

g2 = ¥ &', Jj=0,1
r4s+k>2

Since g must be real, we have g(r)sk = g‘r)ks. Therefore, g(r)sk is real for s = k. We have

géoo:ﬁj(o)yz(‘loﬂo)a g'{lo:ﬁj(o)yz(‘loﬂl)a g'(])u :ﬁj(o)yz(‘hﬁl)a
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and
8300 =P,(0)77(g0.90,40) + 3P;(0)-F> (g0, w200)
gl = 7;(0).7%(q0,41,d1) +7,(0) 7 (qo,won1) +7;(0)- Gy, wi1o)
+7,;(0).F%(q1,%110);
gz1o =P,(0)77(q0.q0,91) + 2P;(0)-F>(qo, w110) + P,;(0).Z (g1, wa00),
8ho1 = P;(0).73(q1,41,d1) +25;(0) 72 (q1,wo11) +7,(0)-F (G, wono)-

Obviously, in order to determine the cubic terms, we need to calculate wygg, w110,
wo11, and wopag. In fact, it follows from (3.21) that

2/ Wopo + (X() — (D?(O))yz (q(), CI()) =0, (3.22)
(o —iw)wii0+ (Xo— PF(0)).72(q0,q1) = 0, (3.23)
dwori + (Xo— @F(0)).7(q1,4;) = 0, (3.24)
(o —2iw)wozo + (Xo — ®F(0)).F2(q1.q1) = 0. (3.25)

It follows from (3.22) that
W200 = 890090 + 2Re{ 83001 } (3.26)

and

Lwaoo = 890090 + 2Re{ g200q1} — -7 2(q0,0). (3.27)

Solving (3.26) for wyog, we have

|
w200(8) = 8300400 + 2Re{%¢]1 (6)} + Exo,

where E»q is a constant vector in R”. Substituting the above equation into (3.27)
yields
0
A(0)E200 = F>(40,90) — 830090 +g(z)oo/ 0dn(6)qo. (3.28)
—T
Since A(0)go = 0 and ppA(0) = 0, we see that A(0) is a singular matrix, and so
(3.28) cannot be solved easily. By Keller [188], the unique solution E5g to (3.28)

satisfying poEa0o = 0 can be obtained by solving the following nonsingular (n+ 1)-
dimensional bordered system:

{A(O) QO} [x] _ {3‘\2(40,(]0)—g(z)oofJo-i-g(z)oofor 9dn(9)qo} (3.29)
po O ][y 0 ' '

See also Govaerts and Pryce [119] for further generalizations. We write

. 0
Exn = [A(0)]™ 72 (q0:40) — ghoodo + 5o |0 (©)ao]
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Similarly, it follows from (3.23), (3.24), and (3.25) that

831090 21019:1(0
wiio(0) = =102 ol 01(6)6 — %4—&106
201191(0)  20119:1(0
W011(9)=g811%0+ Olliw( )_ 011101( )+Eo11,
0 1 =1 =
80090  802091(0)  8p02q:1(0
Wor(6) = — %21(;) _ ozoiw( ) oogi(i)( )+Eozoezlw9

where E1190, Eo11, and Eqpg are n-dimensional constant vectors given by
BSNT 2 1 1 0
Euo = [4G0)™ | 72(a0.01) - ehon (0)+ eho | 6an(©)ar(6)].
—T

. 0
Eorp = [A(0))™ [yz(tmﬁl) — 801190 + 8011 [T Odn(ﬂ)qo] ,

Eoo = [A2i0)] ' Z*(q1.q1).-

3.4.3 The Double Hopf Case

Throughout this subsection, we always assume that on the imaginary axis, the in-
finitesimal generator .2/ has only two pairs of simple purely imaginary eigenvalues
+im; and tiw,, where @, > @, > 0 and k@, # [, for all integers k,[ > 0 satisfy-
ing k41 < 5. Since the eigenvalues are simple, there are two complex eigenvectors
q1, g2 € Cy ¢ corresponding to these eigenvalues,

ﬂqui(l)qu', j=1,2.
Introduce the adjoint eigenvectors py, p2 € G, ; by
JZf*pj:—ia)jpj, j: 1,2.

These eigenvectors can be normalized using the bilinear norm (-,-): C; ; X Gz —
R, so that (p;,qx) = 6 and (p;,qx) =0, j.k =1,2. Let @ = (q1,41,492.4>) and
¥ = (p1,p1,p2,p2)". Then (¥, @) = Id,.

For a solution u; of (3.9), we define z;(¢t) = (pj,u;), j = 1,2, and w(z) = u, —
2Re{z1(t)q1 +22(t)g2}, where z = (z1,22) € C?. In fact, z; and Z; are local coordi-
nates for the center manifold M| in the directions of pjandp;, j=1,2.1tis easy to
see that (pj,w) = 0. For solutions u; € M| loc of 3.9), (pj,uis) = (pj, & us +XoF (u;)),

J = 1,2. Then on the center manifold M|, we have

(1) = iwjzj(t) + &/ (z), j=1,2, (3.30)
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where g/(z) = p;(0)F (w(z) + 2Re{z1g1 + 2242 }) for z = (z1,22) € C?, and w(z)
satisfies

d _
3" = AW+ (Xo— @¥(0)F (w(z) +2Re{z1q1 +2242}). (3.31)
Let
gj (Z) = 2 %g{srkzﬁziZEZg W(Z) = %WlsrkZ112S1Z£Z§-
l+s+r+k221's'r'k' l+s+r+k221.s.r.k.

Then we have

and

g2100 7,007 (q1.91,1) +2P;(0)-F>(q1,wi100) + P;(0).F> (41, w000)

glont = 7,(0).7(q1,92,4>) +7;(0). (g1, woon1)
+7;(0).72(q2,wi001) + P,;(0).Z (@, wiono),

gh10 = 7;(0).7°(91,1,92) + 7,;(0)72(q1. Wio01)

7,(0).7%(q2,w100) + ;(0)-72(G1, wio10),

o1 = 7;(0)73(92,42.7) +25,(0). 72 (g2, woo11) + 7;(0).F2 (@, woo20)-

+

In what follows, we need to determine w1100, w2000, W1010> W1001> W0002, and woo11.
In view of (3.31), we have

(d - Ziwl)WZ()()() + (X() — (I)?(O))ﬁz (ql,ql) =0.

This is equivalent to the following system:

W2000(0) = 21012000 + 8300091 (0) + To200d1 (6) (3.32)
+8500092(0) + Z520022(6),
Lwooo = 2i@1w2000(0) + g00041 (0) + Bb20071 (0) (3.33)

+8300092(0) + 820092(0) — F>(q1,41)-
From (3.33), we have

1 0 =1 7. (0 2 0
w2000(0) = —gmi(fll( . gozg(i)g)ll< Lt ﬁ?ﬁ‘lqéili f’((ﬁ(fzz;li + Exopoe® 7, (3.34)
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with E>oo0 € R”. Substituting (3.34) into (3.34), we have

w000 = [A(2iwr)] ' Z2(q1,91).
Similarly, we have

8110091(0)  81i0091(0) | 8110092(6)  Fi10092(6)

wii00(0) = - - + - - + E1100,
i i im im
1 0) szl (0 2 0) g%,,,G,(0 .
wio10(6) = _g101.OCI1( )__80101%( )_8101.0@( )_30101‘12( )+Eloloel(wl+wz)97
i i(201+a,) i i(02m)
I 0) zl..g,(0 2 0) g%,,G,(0 .
wioo1(8) = gloql‘ll( ) fgouoql( ) 31001‘12( )_3011.0512( )+Eloolel(w17wz)e,
iy i(m—2m)) 12m—or) i
! 0 b3, (0 2 0) 27 (0 -
Wo020(8) = .goozoql( ) o .g000241( ) _3002.0‘12( )_goooz.%( )+E0020621a)29,
i(o —2m) (o +20) im, 3iw,
! 0) TG (0 2 0) %2113,(0
woor1(8) = 8001.1‘11( )_8001.141( )+goo1.1f12( )_8001_1‘12( )+E0011,
101 101 10n 10
where
Eno0 = [A(0)] " 7% (q1.9)),
Exo0 = [AQ2i01)] " F2(q1,q1),
Eio10 = [A(io) +imn)] 197 (q1,92),
Eioo1 = [A(ior —im)] ' F2(q1.3),
Eono = [AQ2im)] ' F2(q2,92),
Eoon1 = [A(0)] ' F%(q2, %)
3.5 Center Manifolds with Parameters
Consider the following parameterized DDE:
x(t) = flo,x), (3.35)

where o € R” is the parameter, f € CK(R" x C, ,R") for a large enough integer
k, £(0,0) = 0. In most of the literature [27-29, 49, 58-61, 91-93, 113, 114, 128~
141, 232-238, 252, 253, 262, 293-296], it is assumed that f(c,0) =0 for all ¢, i.e.,
the equilibrium point is always fixed at the origin. In fact, this is not true in a general
physical system or an engineering problem. Here, we introduce the work [138] to
provide a general framework to obtain the reduced equation on the center manifold
in the case that £(0,0) = 0 and there is no assumption that f(o,0) = 0 for all o.
Let L be the linearized operator of f with respect to x; at (a,x) = (0,0). By
the Riesz representation theorem, there exists an n x n matrix-valued function 7 :

2 o L.
[—7,0] — R"™ whose elements are of bounded variation such that
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0
Lo= [ dn(0)e(6), ¢ €Cpy. (3.36)
-7

Thus, we can define a bilinear form

0 (0
(v.0) =T0)00) — [ [ WE-0)m(©)0@E)dE  (337)

for y € C;, ; and ¢ € G, 7. Let &/ be the infinitesimal generator associated with the
linear system x(¢) = Lx;, and let A(A) be the characteristic matrix of the operator
o, ie.,

A(L) = Ald, — /0 *0dn(0).

-7

If 0 ¢ o(<7), then detA(0) = det[—L(1)] # 0. Here and in the sequel, for every
seNand { eRs, ¢ € Cs.¢ is a constant map with the value ¢. In fact, L(1) is
the Jacobian matrix of f(o,£) with respect to £ at (o,x) = (0,0). Thus, accord-
ing to the implicit function theorem, there exists, for small |¢|, a unique x(¢r) such
that x(0) = 0 and f(a,%(c)) = O for all small |cz|. This means that (3.35) has a
unique equilibrium £(¢) in some neighborhood of the origin for all sufficiently
small |a|. Thus, we can perform a coordinate shift to place this equilibrium at
the origin. Therefore, in this case, we may assume without loss of generality that
£ =0 is the equilibrium point of (3.35) for all sufficiently small |cz|. Unfortunately,
it is not always true that (3.35) has a unique equilibrium £(¢t) for small ||. In
fact, if 0 € o(«7), then difficulties arise here. In what follows, we will not assume
0¢o(A).

Let @ be a basis for the center space E€ of <7, and let ¥ be the basis for its dual
space E* in C, . such that (¥, ®) = Id,,, where m = dim E€. Then there exists an
m X m constant matrix such that @ = @B and ¥ = —BY. It follows from (3.7) that
we have BC,, = E° @ Kerw, where 7 : BC,, — E° is the projection defined by

(@ +X08) = @[(¥, ) +F(0)¢] (3.38)
for ¢ € G, ; and & € R". For convenience, let m, = I — 7. It is easy to see that
(¥.9) =P(0)[9(0) —Lo] + B(¥, 9)
forall ¢ € C,LT. Thus, we have
1,9 = @+ PF(0)[Lp — ¢(0)] (3.39)
forall ¢ € C,LT, where @, = m,¢.

One way to consider the center manifold for system (3.35) for small || is to
study the following DDE without parameters:

(3.40)
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Define

u(t)_[ic((tt))}eﬂ%”“ and f(””—[f(a(?),x,)]emw

Then (3.40) becomes

u(t) = fu), (3.41)
where f € CK(Cyyr,c, R™7), £(0) =0, and the linearized operator L of f with respect
to u; at the equilibrium point u = 0 is given by

L= [m(%@ﬂ'

Similarly, we can define the formal adjoint equation of the linearized equation of
(3.40) by

B(t) = —B(1)fa(0,0),
¥(1) = — [, y(t — 0)dn(6).

Thus, the bilinear form in C;; 1 X Cuy 1,7 1s given by

<Y, 0 >=B(0)e(0) + (v, ¢) (3.42)

for = (B,y) €C}y,rand ¢ = (el ,@")T € Cpiyr. Note that (o, 9T)T € Copre
denotes a generic point inCyqrrwitho€C.rand ¢ € G, 1.

Similarly, we have to enlarge the phase space C, .7 of (3.41) to BC,, 1, = BC, x
BC,, (which can be identified with Cy, ¢ X R"™). Thus, the abstract ODE in BC,,,
associated with (3.41) can be rewritten in the form

d . " o~
au:du—i—XoF(u), u€ BCyyr, (3.43)

where o7y = yr + Xo[Ly — y(0)], F (1) = f(u) — Lu, Xo = diag(Yo, Xo), and

d,, 6=0,
YO(G)_{O, 6 € [~1,0).

Namely, for ¢ = (o, ¢")" € CL,, .,

T & — Yy6e(0) }

[(P +Xo[fa(0,0)a+ Lo — 9(0)]

The spectrum of o7 is (/) = {A € C: A(1)v =0 for some v € C**"\ {0}},
where

e [_ftl((g)r,()) A(Ol)]
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Hence 0 € G(fzf ), with a multiplicity at least r. Moreover, it is easy to see that
o(e) Co(). Let E., E,, and let E; be defined as in the previous section. Then,
we have the following result.

Lemma 3.1. £ = {(0v")T : v € ES} and E* = {(0,v")T : v € E¥}.

Proof. Clearly, we have {(Ooy") :veES} CES = and {(0v1)T 1 ve E*} C EX.
For a fixed § € 6(&7), consider the equation (7 — 81d)¢ = 0. Then, ¢(r) = ue®
with u = (of ,xT)7 satisfying

A(8)u =0, (3.44)
namely, 00t =0 and — f,(0,0)cx + A (6)x = 0. Thus, when & # 0, solutions of (3.44)
are given by {(0,x7)7 € R*": A(8)x = 0}.
When the generalized eigenspace of § for <7 is larger than the eigenspace, we
first consider the equation (&7 — 8Id)y = @, where () = ue® with u = (0,x7)”
satisfying A(8)x = 0. Then y(t) = (v+tu)e®, where v = (o ,y")7 satisfies

Ay (8)u=—A(S)v. (3.45)

When § # 0, it follows from (3.45) that o = 0 and A, (6)x = —A(5)y.
This process can be repeated if 0 is a nonzero eigenvalue of </ with higher
multiplicity to conclude that ESC{(0,v")T : v€E*} and E*C{(0,v")T : veE"}. O

Now we consider the structure of £¢. Obviously, E¢ = E§ & E¢, where ES and E¢
are generalized eigenspaces associated with the eigenvalue O and the purely imag-
inary eigenvalues different from 0, respectively. The above calculation proves that
ES={(0 )T :veES}.

For every ¢ = (o’ ,¢")T € E€, we have ¢ = 0 and

¢ + mXo[fo (0,0)a+ Lo — ¢(0)] = 0. (3.46)
It follows from (3.39) and (3.46) that
Pn+Xo[fo(0,0) 0+ Lo — ¢(0)] — @¥(0) £ (0,0) 0 = 0. (3.47)
Notice that
?(0) = ¢,(0) + ®(0)B(¥, 9)
and
Lo =Ly + ®(0)B(¥, ).
Then it follows from (3.47) that
{ o = OF(0)£4(0,0)0x a8
Lo, = @(0)¥(0) fa(0,0) — f(0,0)cx.

Note that the restriction of L on Kerz is invertible. Then we may solve the above
system for a unique solution ¢y, which linearly depends on o. Thus, we write
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o, = Qo, where (2 is a linear operator such that ¢, = Qo is the solution to (3.48).
Thus, every u € E° takes the form

- o
“ZlxrQal’

where x € E€ and o € R". In particular, every u € Eg takes the form

B o
“ZlxrQal’

where x € Ej and o0 € R".

We can then consider a basis for £* in a similar way. Here we present another
approach. For § € 6(47), consider (.o7* 4 81d)y = 0. Then y(t) = (v{,v2)e® with
v € R™ and v, € R™ satisfying (vi,v2)A(—8) = 0, that is,

6vi = —12fa(0,0), »A(=6) =0. (3.49)

When § # 0, then (3.49) has solutions {(—8'vf,(0,0),v): vA(—8) = 0}. If § is

nonsemisimple, then we consider the equation (&* + 81d)y = @, where @(¢) =

(vl,v2)e5’ with (vy,v,) satisfying (3.49). Then y(t) = (u; — tvy,up —tvz)e&, where
u; € R™ and up € R™ satisty
(vl,VZ)A,l(—5) = —(ul,uz)j(—5). (3.50)

When & # 0, it follows from (3.50) that u; = 8 ! (v; —us £ (0,0)) and vrA; (—8)x =
—upA(—3). This process can be repeated if d is a nonzero nonsemisimple multiple
eigenvalue of 27. Finally, if § = 0, then (3.49) has solutions {(«,0): u € R™}. This
implies that (u,0) € E§* for all u € R™. Obviously, o7 (u;,u2) = (u2fe(0,0),0) for
all u; € R™ and up € R™ satisfying upA(0) = 0. This process can be repeated if 0
is a nonsemisimple multiple eigenvalue of <7

In summary, there exists some m X r matrix €2* such that the bases of the center

space E¢ and its adjoint space E¢* are given by

= Id, 0 5 |1d- 0
CD_[Q(D} and 'P_[Q*lj—'}’

respectively. Obviously, < ‘I~’, D >= Id,;,+». Moreover, &= @B, where

B= 0

0
[W(O)fa(QO) B } '
Consider the projection #: BC,,,, — E€ given by

A(G+Xon) = D[< P, > +PO)n]  forall § € Cpyrrand 1 € R
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For ¢ € Gy and n = (an,nzT)T € R""" with n; € R” and 1, € R", there exist
B €R"and ¢ € C, ¢ such that ¢ = (BT, ¢7)7, and hence

o B+n
7(@+Xon) = (Q+q)g*)([3+n1)l+n((p+Xoﬂ2) '

Due to the decomposition of BC,,+,, we can decompose i in (3.43) in the form

u= @7+, with 7 R"", 5 0 ¥ KerznC) +r.r- Then (3.43) is equivalent to the
following system:

t= B2+ P(0)F(d2+7), (3.51)
35 = dpy+ (1)K F (D7 +7),

where .;zfQ is the operator from Q to Ker7, i.e.,
ey =Y+ XLy —y(0)]  forye .
Namely, for v = (a!, )" with o € R" and ¢ € O Cf Kern Loty

. [ a—Ya)
YoV = | ety + Xofu(0,0)ct |

where <7y : O C Kerm — Ker is given by ¢ = ¢ + Xo[Lo — ¢(0)] for ¢ € Q.
We rewrite 7 = (a!,z7)T with a € R” and z € R™. Since #§ = 0, it follows that
7= (0,y)T with y € Q. Then system (3.51) is equivalent to the following system:

& =0,
;= Bz+¥P(0)F(a,Pz+ Qo +y), (3.52)
dy

a = JZny— (I— n)Xofa(0,0)a+ (I— n)XOF(a,tbz+.ro+y),

where F (o, @) = f(o,9) — L. Applying the center manifold theorem (Theo-
rem 3.2), there exists w € CK(R” x R™ Q) with w(0,0) = 0, Dgw(0,0) = 0, and
D,w(0,0) = 0 such that for (¢, z) close to (0,0), the manifold

{Pz+Qo+w(a,z): o eR", zeR"}

is locally invariant with respect to system (3.52) and contains all solutions of (3.52)
remaining near (c,z,y) = (0,0,0) for all # € R. In general, f4(0,0) # 0, so we
incorporate Qo and w(o,z), and then have the following theorem.

Theorem 3.4. There exists W € CK(R” x R™, Q) with W (0,0) = 0 and D,W(0,0) =
0 such that for (a.,z) close to (0,0), the manifold

My ={®z+W(o,2): z€R"}

is locally invariant with respect to system (3.35) and contains all solutions of (3.35)
remaining near x =0 for all t € R.
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Remark 3.2. If f(e,0) =0 for all o € R”, then Qo = 0 and W € CX(R” x R™, Q)
may satisfy W(ct,0) = 0 for all o € R" and D,W (0,0) = 0.

Note that W(a,z) = w(et,z) + @, and that ¢, = Qo is the unique solution to
(3.48). Then we have
dgW = W + Xo[LW — W (0)]
= Aoy + @+ Xo[Lon — ¢(0)]
= JZ{Qy — (I — ﬂ)Xofa (0, O)OC
Thus, it follows from the second equation of (3.52) that the reduced equation is
z=Bz+G(a,2), (3.53)
where G(,z) = V(0)F (o, ®z+ W (e, z)), where W(a,z) satisfies

d
W =AW +Ha.z), (3.54)

where H(o,z) = [Xo — ®¥(0)]F (o, @z + W (0t,z)). We therefore need to calculate
W, which depends on the parameter .

3.6 Preservation of Symmetry

Throughout this section, we further assume that there exists an invertible linear map
T on R" commuting with (3.35), that is,

fle,To) =Tf(a,9) (3.55)

for (ot,9) € R" x G, ¢, where T9 € Cy, 7 is given by (T¢)(0) = T¢(0) for 6 €
[—1,0]. Condition (3.55) is equivalent to saying that (3.35) is invariant under the
transformation (u,7) — (Tu,t) in the sense that u(¢) is a solution of (3.35) if and
only if Tu(r) is. Obviously,

AT =T (3.56)
and
(y,To) = (yT, ) fory € C, ;and ¢ € Gy 1. (3.57)
Furthermore, we have the following result.
Lemma 3.2. The spaces E€, Q, and E* are invariant under T, while the matrix

B commutes with M, where M is the matrix representation of the restriction of T
on E€.
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Proof. For every ¢ € E€, there exist A € 0¢ and a positive integer j such that
(o7 — A1d)/ @ = 0, where Id is the identity mapping on C, ;. This, together with
(3.56), implies that (&7 — Md)f T @ = 0. Therefore, E€ is invariant under 7. A sim-
ilar argument shows that E* is also invariant under 7. This implies that there exist
invertible m x m matrices M and N such that

TO =M and YT =NY. (3.58)
It follows from (3.57) that
M= (¥, O)M = (¥, OM) = (¥, TD)
= (WYT,®D) = (N¥,®) =N.

Therefore, M is a matrix representation of 7 on the spaces E€ and E*, i.e., M = T,.
Since Q =Kerm = {¢ € C,.r : (¥, @) =0}, for each ¢ € Q, we have

<va T(p> = <IPT7 (P> = <MlP’ (P> = M<lPa (P> =0,

i.e., T ¢ € Q. This means that Q is invariant under 7.

It follows from (3.58) that 7d = ®M. This, combined with & = @B, gives
T®B = ®BM, i.e., PMB = ®BM. Therefore, MB = BM, that is, B commutes
with T¢. O

Next, we consider the symmetry of & : BC,, — E° given by (3.38). In view of
Lemma 3.2, we have

(W, T o)+ F(0)TE]
[(¥T, ) + P (0)TE]
[(M¥, @) +MF(0)E]
M[(¥, ) +F(0)E]
P, 0) +F(0)¢]
(@ +Xo&).

IT(T(P + TX()&)

D
D
D

T
T

Thus, we have proved the following result.
Lemma 3.3. The projection operator n: BC, — E¢ commutes with T.

In what follows, we assume that 7, is unitary, i.e., T = T[l. Then we have the
following result:

Theorem 3.5 (Symmetric center manifold theorem). The map W in Theorem 3.4
may be chosen such that W (e, T,z) = ToW (., z), where Ty and T, are the restric-
tions of T on Q and E°, respectively. As a result, T, commutes with the reduced
system (3.53).



Chapter 4
Normal Form Theory

4.1 Introduction

Normal forms theory provides one of the most powerful tools in the study of
nonlinear dynamical systems, in particular in stability and bifurcation analysis. In
the context of finite-dimensional ordinary differential equations (ODEs), this theory
can be traced back as far as Euler. However, Poincaré [247] and Birkhoff [33] were
the first to bring forth the theory in a more definite form. Since then, many sys-
tematic procedures for constructing normal forms have been developed. A method
of Lie brackets is given by Chow and Hale [65], Takens [274], and Ushiki [280]; a
method using an inner product in the space of homogeneous polynomials is given by
Elphick et al. [87] and Ashkenazi and Chow [22]; a method for direct computations
is given by Bruno [48], Sanders [259], and Chen and Della Dora [57]; a method
using the Carleman linearization is given by Tsiligiannis and Lyberatos [277] and
Chen and Della Dora [56]. The nilpotent case is treated by Cushman and Sanders
[78, 79] using the representation theory of sl (R). Recently, the normal form for
a generalized Hopf bifurcation is expressed as a four-dimensional real system by
Cushman and Sanders [77] and as a two-dimensional complex system by Elphick
et al. [87] and Iooss and Adelmeyer [175].

The basic idea of normal form theory consists of employing successive
near-identity nonlinear transformations that lead to a differential equation in a
simpler form, qualitatively equivalent to the original system in the vicinity of a
fixed equilibrium point, thus, one hopes, greatly simplifying the dynamics analysis.
As we develop the method, three important characteristics should become appar-
ent: (i) The method is local in the sense that the coordinates are generated in a
neighborhood of a known solution. For our purposes, the known solution will be an
equilibrium. (ii) In general, the coordinate transformations will be nonlinear in the
dependent variables. However, the important point is that coordinate transforma-
tions are found by solving a sequence of problems. (iii) The structure of the norm
form is determined entirely by the linear part of the vector field. A key notion in
normal form reduction is that of resonance. In particular, the Jacobian matrix of

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, 85
Applied Mathematical Sciences 184, DOI 10.1007/978-1-4614-6992-6_4,
© Springer Science+Business Media New York 2013
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the system evaluated at the equilibrium point determines which monomials in the
formal expansion of the system are resonant and cannot be removed by any smooth
coordinate transformation.

Concerning functional differential equations, the principal difficulty in develop-
ing a normal form theory is the fact that the phase space is not finite-dimensional.
The first work in the direction of overcoming this difficulty is due to Faria and Ma-
galhaes [91, 92], who considered retarded functional differential equation (RFDE)
as an abstract ODE in an adequate infinite-dimensional phase space, which was
first presented in the work of Chow and Mallet-Paret [68]. This infinite-dimensional
ODE was then handled in a similar way as in the finite-dimensional case. Through
a recursive process of nonlinear transformations, Faria and Magalhaes [91, 92] suc-
ceeded in reducing to a simpler infinite-dimensional ODE defined as a normal form
of the original RFDE. Faria and Magalhaes [91, 92] illustrated that their method
provides an efficient algorithm for approximating normal forms for an RFDE di-
rectly without computing beforehand a local center manifold near the singularity.
This is important because this approach does not lead to the loss of the explicit rela-
tionships between the coefficients in the normal form obtained and the coefficients
in the original RFDE. We shall see in this chapter how calculating certain Taylor
coefficients of the center manifold can be used to carry out this algorithm. In addi-
tion, normal form have also been developed by Guo [128] and Weedermann [292]
for neutral functional differential equations.

In this chapter, we are concerned with RFDEs having a general singularity, and
we assume the existence of a local center manifold by requiring finitely many eigen-
values with zero real part.

4.2 Unperturbed Vector Fields

In this section, we present a basic framework for the normal form theory of the
following vector field:

£=Bx+G(x), xeR", “.1)

where B is in Jordan canonical form, G is C¥, with k to be made specific as we go
along, G(0) =0, and D,G(0) = 0. The next step is to transform the vector field to a
simpler form. The resulting simplified vector field is a normal form of (4.1).

For the sake of convenience, we introduce the following notation. For each j > 2,
let 7Z;(R™) denote the linear space of homogeneous polynomials of degree j in m
variables, x = (x1,x2,...,Xn ), with coefficients in R, i.e.,

%(Rm) = { Z C(q)x" qc Ngl,cq S Rm} ,
lgl=J
which is equipped with the norm | X ;—; cgx?| = X4 |cq|- Here and in the sequel,

for a given positive integer p, a p-tube B = (Bi,...,Bp) € NJ, and p variables w =

(Wi,...,wp), we define |B| = X7, By and wh = wlfl ---wg”.
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Example 4.1. 56(R?) = span{x%el ,xlxgel,x%el,x%q,xlxgez,x%ez}, where {e1,e,}
is the canonical basis for R?. Usually, e; = (0,1) and e, = (1,0)7.

4.2.1 The Poincaré-Birkhoff Normal Form Theorem

First, we have the Taylor expansion of G(z), so that (4.1) becomes

k—1
:=Bz+ Y Gj(z)+0(|z"), 4.2)
j=2

where G; € 7 (R™), j=2,...,k— 1. The basic idea of the normal form theory is to
use a near-identical transformation at an equilibrium to form a Lie bracket operator
and then repeatedly employ the operator to remove as many higher-order nonlinear

terms as possible.
‘We next introduce the coordinate transformation

z=x+hy(x), (4.3)

where hy € 7% (R™) is to be determined later. Substituting (4.3) into (4.2) gives
k—1
(Idyy + Dhy(x))x = Bx+ Bhy(x) + Y, G;(x+ ha(x)) + O(|x["). (4.4)
j=2

Notice that G;(x+ ha(x)) = G;(x) + O(|x|[/*1) for each 2 < j < k — 1. Moreover,
when x is sufficiently small, (Id,, + Dho(x))~! exists and can be represented in a
series expansion as follows:

(Id,, + Dhy(x)) "' =1d,, — Dhy(x) + O(|x|?). (4.5)
Thus, (4.4) gives

% = Bx + Bhy(x) — Dhy(x)Bx + G, (x +2G ) +0(|x[), (4.6)

where G; € 74(R™), s = 3,4,...,k. Up to this point, /;(x) has been completely
arbitrary. However, now we will choose a specific form for A, (x) to simplify the
O(|x|?) terms as much as possible. In fact, this would be possible if we chose &, (x)
such that

Dhy(x)Bx — Bhy(x) = Ga(x), 4.7

which would eliminate G;(x) from (4.6). Equation (4.7) can be regarded as an
equation for the unknown 7, (x). We want to motivate the fact that when viewed
in an appropriate way, it is in fact a linear operator acting on a linear vector space.
This will be accomplished by defining the appropriate linear vector space as well
as the linear operator on the vector space, and also by describing the equation to be
solved in this linear vector space (which will turn out to be (4.7)).
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Now let us reconsider (4.7). It should be clear that A, is in % (R™). The reader
should easily be able to verify that the map %, (x) — Dhy(x)Bx — Bhy(x) is a linear
map of % (R™) to s (R™). Indeed, for h; € 7, it similarly follows that

hj(x) — Dh;j(x)Bx — Bh(x)
is a linear map of J¢;(R™) to ¢ (R™). Therefore, we define a linear map .Z;:
HG(R™) = H;(R™) by
(”%p)(x) = [B,p](x),

where [-, -] denotes the Lie bracket, in fact, [B, p](x) = Dyp(x)Bx — Bp(x). Here .Z;
is a homological operator. Now (4.7) takes the form

DLrhy =Gy,

From elementary linear algebra, we know that % (R™) can be (nonuniquely) rep-
resented as

6 (R™) = Ran% @ (Ran.%3)¢,

where (Ran.% )¢ represents a space complementary to Ran.%. If G, € Ran.%, then
(4.7) can be solved for 1y € % (R™), and hence all O(|x|?) terms can be eliminated
from (4.6). In any case, we can choose h(x) to take away from G (x) its component
in Ran.Z; such that only the component in (Ran.%>)¢, denoted by g»(x), remains.
Thus, (4.6) can be simplified to

%= Bx+g(x +2G )+ O0(|x["). (4.8)

Using a similar argument as above, we can simplify the vector field step by step.
We assume that after computing the vector field up to terms of order j — 1, the
equations become

j—1

X=Bx+ Y gx +2f, )+ 0(|x]%), (4.9)
s=2

where g, € (Ran.%)¢ and f; € 4 (R™) for2<s < j—1land j <I<k—1. Next,
let us simplify the O(|x|/) terms. Introducing the coordinate change

x> x+hj(x), (4.10)

where h; € 2 (R™), and performing the same algebraic manipulations as with the
second-order terms, we see that (4.9) becomes

-1
£ B g0+ 00— L0+ 3, i) +0(sf), @.11)
s=2 I=j+1
where f; € 4 (R™), j+1 <5 <k— 1. Decompose f; € 7;(R™) as

filx)=pj(x)+gj(x) with p;€eRan?; and g;< (Ran.%)) .
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Therefore, we choose 1; € 7 (R™) such that Zjh; = p;, and hence (4.11) becomes

£ =Bx+g(x)+ -+ +&;(x) + i1 (x) + -+ i1 (x) + O(|x ). (4.12)
Thus, by induction, we obtain the following normal form theorem.

Theorem 4.1 (Poincaré-Birkhoff normal form theorem). By a sequence of ana-
lytic coordinate changes, (4.1) can be transformed into

k
Xx=Bx+ Y gj(x)+o(x["), (4.13)
j=2

where gj(x) € (Ran.Z)¢, 2 < j <k, are called the resonant terms. Equation (4.13)
is said to be in normal form through order k.

We call the system

k
X=Bx+ Y g;(x) (4.14)
j=2
the (kth-)order truncated Birkhoff normal form of (4.1). The dynamics of the
truncated normal form (4.14) are related to, but not identical with, the local
dynamics of the system (4.1) around the equilibrium point x = 0.

4.2.2 Computation of Normal Forms

The key part of computing the normal form is to find (Ran.%;)¢, which represents a
space complementary to Ran.Z; in J¢;(R™).

Definition 4.1. Suppose that matrix B has eigenvalues 41, A», ..., A, (including
multiple eigenvalues). Eigenvalues 41, Ay, ..., Ay, are called resonant if there exists
atuple g = (q1,...,qm) € Nj satisfying |g| > 2 (which is called the order of reso-
nance) such that

(CI’A') = A (4.15)

for some 1 < s < m, where A = (A1y... s Ap) and (q,x) = ;”:1 g;jA;. Eigenvalues A1,
A2, - .., A are called nonresonant of order j (j > 2) if (4.15) does not hold for each
s and g € N satisfying |¢| = j. Eigenvalues 41, A, ..., A4, are called nonresonant
if (4.15) doesn’t hold for each s and ¢ € N} satisfying |g| > 2.

It is well known that the spectrum of . is

o(Z) ={(gA)=As:s=1,....m,g e NJ, |q| = j}.
Therefore, if the eigenvalues of B are nonresonant of order j, then O is not an
eigenvalue of .7}, and so .} is invertible on .j(R™). This means that for every
Gj € /;(R™), equation .Zjh = G can be solved for h € 5;(R™). Thus, Ran.%; =
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¢ (R™), and the complementary space (Ran.Z)¢ equals {0}. Hence, there are no
j-order terms in the normal form. In particular, if the eigenvalues of B are nonres-
onant, then for all j > 2, (Ran.,Sfj)C = {0}, and so g ;= 0. In this case, the normal
form of (4.1) becomes
% = Bx+O(|x[").

Therefore, only if eigenvalues of B are resonant do some nonlinear terms of the
normal form remain. While computing the normal form, we need to know about the
structure of the complementary spaces (Ran.%;)¢ of Ran.Z; in 24;(R™), j=2,3,....
If (Ran.%;)¢ has a basis {¥,..., %}, then in the normal form (4.13),

gi= a9+ -+ aqy € (Raniﬂj)c,

where [ = dim(Ran.%})¢, ai, ... ,a;, are constants. We should note that the comple-
mentary space (Ran.Z;)¢ is not unique; a different choice of (Ran.Z}) leads to a
different normal form.

4.2.2.1 The Matrix Method

Note that Z;(R™) is finite-dimensional. Assume that {e;} is a basis of JZ;(R™),
on which L; is the matrix representation of the linear operator .. It follows from
the Fredholm alternative theorem that KerL} = (RanL;)*, where L} denotes the
complex conjugate transpose of L; and Ker(L;) is the null space of L;. Thus, we can
choose (Ran.Z})¢ = KerL’ to compute normal forms. In what follows, we illustrate
this in system (4.1) with m = 2 and B equal to each of the following matrices:

00 01 0 —w

where ® € R, > 0.

Example 4.2. Consider
&= Bix+ fr(x) + O(x]), (4.17)
where x = (x1,x2)7 € R?, By is given in (4.16), and f> € J%(R?).
In view of Example 4.1, consider a basis {ey,...,es} of 74 (R?), where e; (x) =
x%el, e (x) = xixzeq, €3(x) = x%el, es(x) = x%ez, es(x) = x1xze2, eg(x) = x%ez.
It is easy to see that % = 0, and hence its representation matrix L; is equal to 0.

So, KerL; = R® and (Ran.%)¢ = % (R?). We regard {ey,..., e} as a basis of
(Ran.%%)¢. Then every g, € (Ran.%3)¢ can be written as

6
82 (y) = Z aiei()’)-
i=1

Thus, the 2-order normal form of (4.17) is
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y=Biy+&)+0(), y=(1.y)" €R?,

or
Y1 = asyi +asyi1ya+aey; + O(|yP),
V2 = aly% +axy1y2 + a3y% + 0(|y|3)7

where ay, ..., a¢ are constants. Using a similar argument as above, we have

(Ran.%Z))¢ = #}(R?) forall j > 3.
Therefore, the k-order normal form is exactly the k-order Taylor expansion.

Example 4.3. Consider
X = Box+ fo(x) +0(]x]?), (4.18)
where x = (x1,x2)7 € R?, B, is given in (4.16), and f> € J%(R?).

Similarly to Example 4.2, we still regard {ey,...,es} as a basis of .73 (R?). For
p=(p1,p2)" € BR),

Ipi
X255 — P2
25p(x) = [Dp(x)]Box — Bop(x) = l M, 1
Xza—xl
So we have
e =2e; —ey, Lre) = e3 —es,
Lre3 =—e5,  Lre4 = 2es,
de5 = €p, $2e6 =0.
Thus, on the basis {ey,...,eq}, the matrix representation of .% is
0 0 0000
2 0 0000
I, — 0 1 0000
27 1-10 0000
0 —-10200
0 0 —-1010

In order to find KerL;, we need to solve the following linear algebraic equation:
LyE=0, &eR°. (4.19)

In view of L = Lg , we obtain a group of fundamental solutions: {e, + 2e4,€;},
which is a basis of Ker(L}) and corresponds to a basis of (Ran.%3)¢, denoted by

{&€,€,}. Here,
a-[ 21 ww-[2]
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Hence, we can choose a suitable transformation x = y -+ p,(y) with p; € 4 (R?) to
reduce (4.18) to a 2-order normal form
y=Bay+g200) +0(yP), y=(1.2) €R?,
that is,
i =y2+2a1i +0(yP),
Y2 = aryiyz +azyi + O([yl?),

where a; and a; are constants. Using a similar argument as above, we can obtain a
higher-order normal form.

As we know, the choice of (Ran.%)¢ is not unique. If &; and &, are supplemented
by some vectors in Ran.%, to form a new basis for a new complementary space
(Ran.%3)¢, then we can obtain another 2-order normal form. For example, consider
a vector

e(y) =2%e1(y) = (=27, 4v1»2)",

inRan.%5 and let &, (y) = &;(y) +&(y), €2(y) = €,(y). Then, using {€;,&, } as a basis
of the new space complementary to Ran.%5 yields the following 2-order normal
form:

y1 =y +0(y]),
Y2 = ary1y2 +axyt +O(y)?).

By a similar argument as that given above, we can obtain another normal form of
(4.18), such as

yi =y +ayi+0(y),
y2 = ayt +O(y?).

Example 4.4. Consider
X = Byx+ fa(x) + O(|x*), (4.20)
where x = (x1,x2)7 € R?, B; is given in (4.16), and f> € J%(R?).

Similarly to Example 4.2, we still regard {ej,...,es} as a basis of % (R?).
For p = (p1,p2)" € 76(R?),

_x28p1+xlgpl+p2
—x23m+ 152 —p

Zp(x) =0 [

Thus, on the basis {ey,...,es}, the matrix representation of % is
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0 o 0 —o 0 O
20 0 20 0 - O
0O o0 0 0 —-o
o 0 0 0 o O
0 o 0 20 0 2w
0 0 o 0 —w 0

L=

It is easy to see that L, and therefore also L3 are invertible. Hence, L3 = 0 has
only one solution & = 0. Namely, (Ran.%3) = KerL; = {0}. That is, for every
g2 € (Ran%)¢, go = 0. Therefore, the 2-order normal form of (4.20) is

y=Byy+0(y]), y= (1) €R?,
that is,

1 = —wy+O(|yP), (4.21)
y2 = @y +0(|yP),

which does not contain the two-order terms. Obviously, the truncated equation of
(4.21) is linear and cannot inherit the qualitative properties of (4.20) near the non-
hyperbolic equilibria x = 0. Thus, we need to compute the 3-order normal form.
The space .s%4(R?) has a basis {x%el, x%xgel, xlx%el ,x%el, x%eg, x%xzez,
xlx%ez,x%ez}, on which the operator .#3 has the following matrix representation

0 o 0 0 —o 0 0 0]
3w 0 20 0 0 - 0 O
0 2w 0 3w O 0 —ow O

Ls— 0 0 —ow 0 0 0 0 —w
o 0 0 0 0 o 0 0
0 o 0 0 -3w 0 20 O
0 0 o 0 0 20 0 3w
0 0 0 oo O 0 -0 0 |

Equation L& = 0 has a group of fundamental solutions in R®, which corresponds
to a basis of (Ran.%3)¢:

x1 (af +23) —1(x] +13)
nai+x) | | abg+ag) |
Hence, the 3-order normal form of (4.20) is

1 = —oy>+(ay — byz)gy% +2y§) + 0(|3y|3),
Y2 = @y1+ (ay2 +by1) (v +3) + O(|y[”).
In polar coordinates, the above normal form can be rewritten as
i =ar’ +0(r),
6 =1+br>+0(r).
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Finally, we remark that the absence of two-order terms of (4.21) can be concluded
from the nonresonance of order 2. Indeed, matrix B3 has two eigenvalues i@,
which are nonresonant of order 2.

In conclusion, the method of matrix representation is practical in computing
low-order resonant terms of a normal form. However, the dimension of .7Z;(R™)
increases rapidly as m and j increase, which brings more and more difficulties
in computing normal forms. Moreover, when computing resonant terms of a nor-
mal form, we have to resort to a lengthy computation of different linear alge-
braic equations. See Guckenheimer and Holmes [125], Arrowsmith and Place [21],
Wiggins [298] for further readings.

4.2.2.2 The Adjoint Operator Method

We define a suitable inner product in .7;(R™). Let

fx) =73 cﬁxﬁ, xeR™,
1Bl=J
where 8 € NjJ'. Define
o/
f0) =3 gt
7o

Define an inner product < -,- >: J;(R™) x J(R™) — R as

< p,g>= Y pi(d)qi(x)
i=1 x=0

for p = (p1,--spm)’s = (q1,-..,qm)T € S;(R™). Let &} denote the adjoint
operator of .Z; with respect to the inner product < -,- >>. It turns out that .Z7" is
just the homological operator associated with the adjoint of B. In other words, we
have the following result.

Lemma 4.1. (£ p)(x) = [B*, p|(x) for all p € 7;(R™).

Proof. Notice that for every p =¥, —;c,x? € 7(R™),

B, p](x) = Dy [E\ql\;j cqx?] Bx B
a [eil Xgl=j cq(e’ x)q] ’t:O :

For all py, p» € 7 (R™), we have

(4.22)

=
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< eftB(p1 oetB)7 P > =< P OetB, (eftB)*pz >
=< pr. (€F) (p2o(e®)) >
= <pre P (proe) >
Differentiating with respect to ¢ at = 0 gives us
< [B,pil;p2 >=<p1,[B", pa] >,
which yields the conclusion of this lemma. (]
Due to the Fredholm alternative theorem, we have
Hj(R") =RanZ; ©Ker.Z;, Ran?; | Ker.Z},
and
K (R") = Ker.Z; ®Ran.Z;, KerZ; | RanZ}.

Let P; be the projection from .7¢;(R™) onto Ran.Z;. Therefore, in order to com-
pute the normal form, we can choose (Rani”j)c = Ker‘,i’f]-*, which consists of all the
solutions to

[B*,p] =0, pe5R"). (4.23)

For example, we consider the computation of the 2-order normal form of (4.18).
Obviously, By = BY. For x = (x1,x2)T € R? and p = (p1,p2)T € 55(R?), (4.23) is

dpy dp
58]12-12)-
4 P ’
9_)6123_/\’22 X1 P1

that is,
xlg—zzl =0, xlg—zzzzpl, (4.24)
all of whose solutions in 7% (R?) are
p1(x) =ax?, pa(x) = ax;xy + bl (4.25)

where a and b are arbitrary constants. Since the family of solutions p = (p1, p2)”
given by (4.25) is the space Ker.%;", we can choose g»(x) = p(x) to obtain the 2-
order normal form

X1 = xa+axt+0(|x?),
X = ax1xa +bx? + O(|x)?).

Here, the choice of (Ran.%) is different from those in Example 4.3, and as a
consequence, the normal form is different from those given in Example 4.3.
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4.2.3 Internal Symmetry

We now try to study the characteristics of Ker.Zj* and those of g;. First, recall that
every linear operator A on a finite-dimensional vector space has a unique Jordan—
Chevalley decomposition into commuting semisimple and nilpotent parts: A = Ag +
Ay, where AgAy = AyAs. The semisimple part Ag is diagonalizable (over C), and the
nilpotent part Ay satisfies the condition that Aﬁ‘v = 0 for some positive integer k (see
Humphreys [173]). Furthermore, the operator A induces the following Lie group:

Gy ={e": teR}.

Next, we can show that g; is equivariant with respect to the action of the Lie group
Gp+ = GB§ X GB;«V. More precisely, we may state the following lemma.

Lemma 4.2. For j > 2, each g; € Ker.,ZG.* is Gpe-equivariant, that is, e'® g i(x) =
g€ x) forallx e R™ andt € R.

Proof. For j > 2, since g; € Ker.Z}', we have [B*,g;](x) = 0 for x € R™. It follows

that

d _px * _px % %

a e tB gj(etB x)} —e tB [B ,gj](etB x) -0
for all x and . Therefore, for fixed x, e "5 g (e’ x) is a constant, which is g;(x) by

taking £ = 0. Then we have g;(e'8"x) = '8 g(x), as required. O
Remark 4.1. Lemma 4.2 implies that:

(i) If B is semisimple, then we can choose a suitable inner product < -,- > on R™
such that B is skew-symmetric. That is, By = —B and By, = 0. Then Gp- = G p
is a torus T for some k. Therefore, gj»J=>2,1s ’I['k-equivariant, ie., e’ng (x) =
gj(e'®x) forallx e R™ and r € R.

(i1) If B is not semisimple, then we can choose a suitable inner product < -,- > on
R™ such that By = —By. It follows that for all # € R, we have

eBsgi(x) = gj(e®sx) and e’Bf*ng(x) = gj(etB;/x).

In summary, we obtain another version of the normal form theorem as follows.
Theorem 4.2 (Elphick et al. [87]). For every j > 2, there are polynomials
p,h: R"—=R"  p(0)=h(0)=0, Dp(0)=Dh(0)=0,
of degree less than j such that by the change of variable x — x+ h(x), (4.1) becomes
%= Bx+ p(x)+O(]x]'™), (4.26)

where p satisfies ¢'® p(x) = p(e’® x) for all x € R" and t € R, or equivalently,

Dp(x)B*x = B*p(x) for all x € R™.
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Proposition 4.2.1 For system (4.1) with m = 2 and B equal to B, given in (4.16),
the normal form (4.26) is
K = x2+x101(x1), (4.27)
X2 = X201 (x1) + @2(x1),
where @ and @, are polynomials such that ¢1(0) = 2(0) = Dg>(0) = 0.

Proof. By Theorem 4.2, p is characterized by Dp(x)B3x = B;p(x), where x =
(x1,%2)7 € R? and p(x) = (p1(x), p2(x))T. Namely, (4.24) holds. We immediately
have p;(x) = x(x1). Since p; is a polynomial in x1, x,, ¥ is a polynomial in x;. So

9p2 _ x(x1)
8x2 X1

Since p; is a polynomial, so is dp,/dx;. Hence x takes the form of y(x;) =
x191(x1), where @; is a polynomial. Integration now yields ps(x) = x2¢;(x1) +
@2(x1). Since py and x,¢@; are polynomials, so is ¢,. Therefore, our normal form
is (4.27). 0

In Proposition 4.2.1, Ker.Z" is two-dimensional and is spanned by

4] [

Changing the projection P; onto Ran.#; corresponds to adding a certain vector of
Ran.Z; to our vector field Ker.,?j‘. Indeed, let P; and PJ’. be two projections from

2;(R?) onto Ran.Z;. Then for R; € 7;(R?),
gj—g;=(I—P)R;— (I—P)R; € Ran.%}.

Notice that (—x{ , jxgx'{fl)T € Ran.j for all j > 2, since it is orthogonal to Ker.Z;".
Indeed,

< (=, oo DT (o o )T =0
and
< (=, jrax] T (0,2)T >=0.
Thus, it is possible to choose a projection Pj'- such that
Pi(x) =0, py(x) =x20(x1)+ (x1),

where ¢ and ¢ are polynomials such that ¢(0) = ¢(0) = D¢ (0) = 0. Hence, the
system

X1 = x2,
X2 = x20(x1) + ¢ (x1)

is also a normal form of system (4.1) with m =2 and B = B».
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Proposition 4.2.2 For system (4.1) with m = 3 and

010
B=|001],
000

the normal form (4.26) is
X1 = X2+ X101 (xl,x2 2)C1)C3)
X = x1+x0; (xl,xz 2x1x3) —i—xl(pz(xl,xz 2x1x3), (4.28)
X3 = X301 (x1,25 — 2x1x3) -+ X2 (X1, X5 — 2x1x3) + @3 (x1, 25 — 2x1x3),

where @1, @2, and @3 are polynomials in their arguments.

Proof. By Theorem 4.2, p is characterized by Dp(x)B*x = B*p(x), where x =
(x1,%2,%3)" € R? and p(x) = (p1(x), p2(x), p3(x))". Thus, we have

a a
X1 8P1 +x 8;1 =0, x apz —i-XQa =p1, X ax% +x2 95; = ps. (4.29)

Hence the characteristic system is

dx; dxy dx3 dpy dpy dp3

0 xx x 0 p p’
and the first integrals are
X, X —2X\X3, P, Xipa—X2p1, X1p3+X3pi—Xxapa.
Introduce new variables
Uy =xy, Uy —xz 2X1X3, U3z =X7,
and define p; for j =1,2,3 by
Pjlur,uz,u3) = pj(x1,%2,%3).

Then the partial differential system (4.29) can be written as

The equation for p; yields p;(x) = ¢(uy,us). Itis easy to see that ¢ is a polynomial
in uy and u,, and so can be rewritten as ¢ (uy,up) = uy @1 (uy,uz) + yi(u2), where
¢ and v are polynomials and y;(up) = ¢(0,uz). Solving the equation for p,, we
obtain

oy (u2)

m +ur@a(ur,uz) + yo(un),

P2(x) =x201 (ur,u2) +

where @; and y» are polynomials. Multiplying by u; and setting u; = 0, we obtain
Xy (x%) = 0 for all x,. This implies that y; (u2) = 0 for all u,. Thus,

P2(x) = %201 (ur,u2) +x102 (ur,u2) + Yo (u2),
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where ¢; and y» are polynomials. Solving the equation for p3, we now obtain

uz Yo (uz)

ui

p3(x) = (X3 + ﬂ) @1 (ur,uz) +uz@a(uy,u2) + + 0 (ur,uz),

2M1
where ¢ is a polynomial. Multiplying by u; and setting u; = 0, we have
$01(0,x3) + 2x2y5(x3) = 0 for all x,. This implies that ¢;(0,u) = y(u) = 0
for all u € R. Thus, @ (u1,uz)/u; is a polynomial in u; and u,. By writing

u
2—2(P1 (u1,u2) + ¢ (ur,u2) = @3(ur,u2),
u
we obtain p3(x) = x3¢) (u1,u2) +x202 (uy,uz) + @3(uy,uz), where @3 is a polyno-
mial. Therefore, our normal form is (4.28). O
Similarly, for the system described in Proposition 4.2.2, it is possible to choose
an alternative projection P; such that our normal form is
X1 = x2,
Xo = X1,
X3 = 2301 (ur,u2) + 202 (ur,u2) + @3 (1, u2),
where u; and u; are given as above, and @y, ¢, and @3 are polynomials in u; and u,.
Proposition 4.2.3 For system (4.1) with m = 4 and
0100
0000

0001 |’
0000

B=

the normal form (4.26) is

X1 = X2 +x101(x1,X3,V) + X302 (x1,%3,V),

Xy = X201 (x1,X3,V) + X402 (x1,X3,V) + @3(x1,%3), (4.30)

X3 = X4 +x304(x1,X3,V) + X105 (x1,%3,V),

X4 = x4Q4(x1,%3,V) + X205 (x1,X3,V) + @6 (x1,%3),
where v = xpx3 — x1x4 and @; (j = 1,...,6) are polynomials in their arguments.
Furthermore, by choosing an alternative projection P,, we can obtain the following
normal form:

x| = x,

Xy = xohy(x1,x3,v) +x4ho (x1,%3,v) +wi(x1,%3),

X3 = x4,

X4 = xgh3(x1,%3,v) +x2h4 (x1,%3,v) +wa(x1,%3),

where hj (j=1,...,4) are polynomials in their arguments starting at degree I, and
w1 and wy are polynomials in x| and x, starting at degree 2.
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Proof. By Theorem 4.2, p is characterized by Dp(x)B*x = B*p(x), where x =

(x1,%2,%3,24)" € R* and p(x) = (p1(x), p2(x), p3(x), pa(x))". Hence, the charac-
teristic system is

dx; _ dx; _ dxs dxq dp; . dp> B dp; - dps

)

0 xi 0 x3 0 Pi 0 P3

and the first integrals are
X1, X3, V=2XpX3—X1X4, P1, P3, X1P2—X2P1,  X3P4tX4p3.

The remaining part of the proof is similar to that of Proposition 4.2.2 and hence is
omitted. O

Proposition 4.2.4 For system (4.1) with m = 2 and B equal to Bz given in (4.16),
the normal form (4.26) is

X = —0x +x1Q1(x%+x%) —szz(x%—i—x%), (4.31)
X = wx1 +x10> (x% —l—x%) +x01 (x% —l—x%),

where Q1 and Q; are polynomials such that Q1(0) = 0»(0) =0

Proof. We complexify, i.e., we identify R? with {(z,Z); z € C} C C? by the map
(x1,x2) — (x1 +1ixp,x; —ixp). We have Bz = diag(i®w, —iw). The operator

—iwt
R
0 elw

has to commute with (p(z,2), p(z,2)):

p(zeiiwt , Zeiwt) _ efiootp(Z7 Z)

for all z and 7, where p(z,2) = pi(x1,x2) +ip2(x1,x2). This implies that p(z,z) is
S'-equivariant, where S! = {e71": t € R}. Thus, we see that there is a polynomial
Q such that p(z,Z) = zQ(|z|?). In real coordinates (x1,x;), we have

)-
p1(x1,x2) = X101 (x] +x3) — 205 (x7 +13),
p2(x1,x) = 1Q2(x1 +x2)+x2Q1(x1 +x2)

where Q; and Q, are the real and imaginary parts of Q and hence polynomials.
Therefore, our normal form is (4.31). ]

Proposition 4.2.5 For system (4.1) with m = 4 and

01 -w 0
00 0 —o
B=1wo o0 1|
0w 0 0

where @ € R, @ > 0, the normal form (4.26), in complex coordinates (z1,22), is
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21 = i0z1 + 22+ 2101 (U1, u2), (4.32)
2 = 1020+ 2201 (ur,u2) + 2102 (u1,u2),

where uy = |z; 2wy =717 — 2120, and ©; (j = 1,2) are polynomials in their
arguments such that ¢;(0,0) = 0. Furthermore, by choosing an alternative
projection P;, we can obtain the following normal form:

21 = iwz1 + 22,
2 =10z + 2201 (u1,u2) + 2102 (u1,u2),
where @; (j = 1,2) are polynomials in their arguments such that ¢;(0,0) = 0.

Proof. We complexify, i.e., we identify R* with {(z1,22,21,22); (z1,20) € C*} C C*
by the map (x1,x2,x3,%4) — (z1,22) = (X2 +ixg,x] +ix3). We have

i1l 0
io 0
0 —iw
0 0 —-iw

B =

cocog
= oo

Let us denote by & the following operator

. 0 ) Jd . _ d L
9 = —la)z1a—Zl +(z1— la)zz)&—Zz +1m18_21 +(z1 +iwz)

Then the partial differential equation Dp(z)B*z = B* p(z) reads

8_22 .

9Dp1 = —iop1, ZDpr=—iopr+pi,

where p = (p1,p2,P1,P,) and z = (21,22,21,Z2). Similarly to the proofs of the
previous propositions, we may solve the above partial differential system for p.
On the other hand, it follows from e'?" p(z) = p(e'?'z) for all z € C* and Gp+ =
S! x R that p is S! x R-equivariant under the following S' x R-action on C2:

0-(z1,22) = (efiwezlvefiwem), 0-(z21,22) = (21,22 + 021)

forall @ € S' = {e "'t € R} and o € R. Now we need to find the S! x R-invariants
and -equivariants.

We derive the S! x R-invariants by starting with the S'-invariants. The complex
S'-invariants are generated by

2121, 2222, 2221, <2122

with the relation (z;Z1)(2222) = (22Z1)(21Z2)- Next, the R-action on (z1Z1, 2222, 22%1)
is generated by

o-(1171) =271, 0-(022)=(2+02)(Z2+071), 0-(27)=(22+02)%.
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Thus, we obtain the following minimal set of generators of S!-invariants:
Uy =z1z1, U2 =212 —222.
The commutativity of p with S! implies that we can write (py, p») in the form
pr=azi+bzm, pr=cu+dzn,

where a, b, ¢, and d are complex-valued Sl-invariant functions of u = (2171,
72,2071 ). Commutativity with R additionally requires that
a(o-u)z1+b(o-u)(za+0z1) = alu)z1 + b(u)z, (4.33)
c(o-u)z1+d(o-u)(z2+0z1) = [c(u) + oa(u)|z1 + [d(u) + ob(u)]z2.
(4.34)

Hence, b(«) = 0 and a(u) = d(u) for all u. Moreover, a and ¢ are R-equivariant.
Therefore, there exist polynomials ¢ and ¢, such that

pr=a¢i(u,uw), pr=zu@(ur,u2)+ 2201 (ur,u2).
Thus, the normal form reads (4.32). ]

Proposition 4.2.6 For system (4.1) with m = 3 and

00 O
B=100-w],
Ow O
where @ € R, @ > 0, the normal form (4.26), in coordinates (x,z) € R x C, is
i = i(x,[2), (4.35)
2 = ioz+z¢2(x,|2%),
where @y is a real polynomial such that ¢,(0,0) = (d¢@;/dx)(0,0) =0, and ¢ is a
complex polynomial such that ¢,(0,0) = 0.

Proof. We complexify, i.e., we identify R with {(x,z,Z): x € R, z€ C} C R x
C2, by the map (x1,x2,x3) — (x,x3 +ix3,x, — ix3). We have B = diag(0,im, —io).
The operator

elB* — dlag(O, e*iﬂ)[7ei(0l)
has to commute with (p1(x,2,2), p2(x,2,2), p2(x,2,2)):

pi(x,ze 76 = pi(x,2,2), palx,ze ', Ze'?) = e ¥ py(x,2,2)

for all x, z, and 7. By a similar argument to that in the proof of Proposition 4.2.4, we
have

p1(x,2,2) = @i(x,]2?),  pa(x.2.2) =22 (x,|2]),

where ¢ is a real polynomial and ¢, is a complex polynomial. Hence, the normal
form reads (4.35). [l
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4.3 Perturbed Vector Fields

Consider the following vector field:
Xx=Bx+G(o,x), xeR" oaeR, (4.36)

where B is in Jordan canonical form, and does not depend on ¢, and G is sufficiently
smooth and satisfies G(a,0) = 0 and D,G(0,0) = 0. Similarly to the discussion in
the previous section, the most straightforward way to put (4.36) into normal form
would be to follow the same procedure as for systems without parameters except
to allow the coefficients of the transformation to depend on the parameters. In the
subsequent subsections, we first seek the normal form for Hopf bifurcation and then
present a general approach to the normal form of (4.36).

4.3.1 Normal Form for Hopf Bifurcation

As stated earlier, through center manifold reduction we may obtain the following
one-parameter family of vector fields on a two-dimensional center manifold:

1 :
= Alo)z+ —=G%Z7+0(]7"), z€C, aeR, (4.37)
2<jts<k—1J"5
where A (o) = iw + G{ is continuous in ¢ € R.

Lemma 4.3. Equation (4.37) can be transformed by an invertible parameter-
dependent change of complex coordinates

1 1
z=w+ 5hgfowz + R ww + Ehgzwz (4.38)

Sor all sufficiently small |¢t| into an equation without quadratic terms: w = A (o)w+
O(wP).

Proof. The inverse change of variables is given by the expression
w=z— %hg‘ozz —hYzZ— %hgzzz +0(|z%).
Therefore,
W=z —hShzz—h{ (224 Z) —hZZ+ -
= @)+ [5G% — Al + [GF; — 2 (o0hd — ()b ]z2
+l3G — el + -+

1 _
= Ala)w+ E[Ggo — A(@)hSolw* +[GSy — M)y Jww

+5 (68 — (2 (ar) — A(0) 1w + O(|wP).

N —
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Thus, by setting

GY% G% G¥
he — 20 , /5 — 11 , Y 02 , 4.39
270 TN T @) T 24 () — Aa) (4-39)

we will remove all the quadratic terms in (4.37). Obviously, 1%, h{;, and hg, are well
defined for sufficiently small |a|, because A(0) = i® and the above denominators
are nonzero. ]

In view of Lemma 4.3, by the invertible parameter-dependent transformation
(4.38) with the h % given by (4.39), (4.37) becomes

aw+ Y —G“w/w +O0(jw[*). (4.40)
Jts= 3J
In particular, we have
& GG (24 () +A(a)) | 2|G |Ge,? o
Ggl = 2 — +G21.
A (o) o) 24(a) —A(a)

Next, let us try to eliminate the cubic terms as well. Namely, we have the following
result.

Lemma 4.4. Equation (4.40) can be transformed by an invertible parameter-
dependent change of complex coordinates

o
w=z+ Z s ,h,s
Jjts= 3J

for all sufficiently small || into an equation with only one cubic term:

¢ = A(e)z-+ 5Ci (00 + O(1ef). (441)

Proof. The inverse change of variables is given by the expression

1
I=w-— 2 Th;xywj +0(|Z|)
Jj+s=3

Therefore,

1 : 1
I=W— —h30w W— hg‘l 2w + w?iv) — Eh?‘z(ZWW—i—sz) - zho3w2w+ e

= e+ 6% — 32 (RG]’ + 3[GE, — 2 (), — () P

+[G% — A(0)h$y — 22 () hy | wiv? +6[Go3 3A()hG W + -+

N =
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= A(o)e-+ g[G5~ 2R (Rl + 5165 — (A(@) + (@)hgi ]2
456t~ 2T ()hsl + ¢ [G8 + (2(0) 3R (@)is ]2+ O(1ef).

Thus, by setting

we can annihilate all cubic terms in the resulting equation except the z°Z-term, which
we have to treat separately. The substitutions are valid, since all the involved denom-
inators are nonzero for all sufficiently small ¢c. One can also try to eliminate the zZ
term by formally setting

o)+ M)

o

This is possible for small || # 0, but the denominator vanishes at o¢ = 0: I(O) +
A(0) = 0. To obtain a transformation that is smoothly dependent on o, set 4| =0,
which results in the 3-order normal form (4.41) with Cy (o) = G%;. O

We now combine the two previous lemmas.

Theorem 4.3 (Poincaré normal form for the Hopf bifurcation). Equation (4.37)
can be transformed by an invertible parameter-dependent change of complex coor-
dinates, smoothly depending on the parameter,

1 .
2=zt Yy, —h$d? (4.42)
2<jts<3 /S

for all sufficiently small |a| into an equation with only the resonant cubic term (4.41)
with

G%4LG% (2 (o) +A(a))  2|G¥ |2 |G& |2
Ci(a) = 20~11 4 11 02_ -i-Ga.
@) AP 70 22 (o) —T@) O
In particular,

i 1
C1(0)=5 G(z)oG?l—2|G(1)1|2—§|G82|2 +GY,. (4.43)
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4.3.2 Norm Form Theorem
Motivated by the previous subsection, we consider the formal Taylor expansions

Glo,x) =Y, iGj(a,x) (4.44)
=Y

for oo € R” and x € R™, where G; is the jth Fréchet derivative of G with respect to
o € R"and x € R™. Then (4.36) can be rewritten as

1
X Bx—i—jzzzle](a,x), (4.45)
where x € R™.

For convenience, we introduce the following notation. For a normed space Y,
jfj’"”(Y) denotes the linear space of homogeneous polynomials of degree j in
m+ r variables, x = (x1,x2,...,X,) and & = (04, 0p,..., 0 ), with coefficients in
Y,ie.,

A = { > cgpxia i (q.0) NG e € Y}7
l(g.1)=j

which is equipped with the norm

Y, cgnlal
(g D=j

Define the operators & """ (R™) — /""" (R™), j > 2, by

("gjp)(avx) = [B,p(oc,-)](x), (4.46)

where [-, -] denotes the Lie bracket.
Next, we try to introduce a suitable inner product in %’”*’(Rﬂ in order to
decompose it. Let

ﬂa?ﬂ:\(zﬂ' cuxtel,  (q,1) NG e R
ql)|=j

= X le@nlr

(g.1)=J

Define

By,
f,0)="Y, g

q1 qm 7 1 Iy’
l(g.0)=j 8x1 b i 80(1 - doy

and define an inner product < -,- 3> 7" (R") x A" (R") — R as
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< p.qg>= Y pi(d,d)qi(a,x)
i=1 (x,0)=(0,0)

forall p= (p1,p2,--spm)’» ¢ =(q1,q2, -, qm)" € %‘f]-m“(R’").
It is easy to see that for all p, g € j‘fj’”” (R™) and every invertible map { on R”,
we have

L pol,g>=<Kp,qol* >,

where * is the adjoint of {. Let P; be the (unique) orthogonal projection from
""" (R™) onto Ran.Z}. Note that

A (R") =RanZ; @ Ker.Z], Ran; | Ker.Z},
and
jfjm”(R”’) = Ker.Z; ® Ran.Z;, Ker.Z; | Ran.Z},

where * denotes the adjoint map with respect to the inner product < -, - >>. Similarly
to Lemma 4.1, .} is just the homological operator associated with the adjoint of
B, ie.,
(Z} p)(ot,x) = [B", p(ar,)](x) forall p € 2" " (R™). (4.47)
Following the approach in the case of no parameters, the normal forms can be
obtained by computing at each step the terms of order j > 2 in the normal form from
the terms of the same order in the original equation and the terms of lower orders
already computed for the normal form in previous steps, through a transformation
of variables

x =%+ 5Uj(0, %), (4.48)
where x, £ € R”, oo € R”, and U, : R""" — R™ is a homogeneous polynomial of
degree j in x and 0.

We assume that after computing the normal form up to terms of order j — 1, the
equations become

j—1 _
Xx=Bx+ Y égs(oc,x)—i—%Gj(oc,x)—i—--- , (4.49)
s=2

where g; € " (R™), G, € z%’j-’"”(Rm). With the change of variables (4.48) and
dropping the hats for simplicity of notation, (4.49) becomes

/1
X=Bx+ 2 ;gs(ot,x)—i—--- , (4.50)
s=2""

where g; = Ej — Z,U;. System (4.50) is called the normal form for (4.36) near
(u,a) = (0,0).
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If .Z; is invertible, then we simply put g; =0and U; = 92” G In this case, all
Jjth- order terms are removed by the normalization procedure In general Z; need
not (and will not) be invertible. Note that

ZjUj=Gj—g;j=PiGj+(1-P)G;—g,.

We will choose U; € %’”H(R’”) such that U; € Z]fll’f,f}j, which allows us to
take away from G ; its component in Ran.&;. Therefore, the above equation can be

solved by _
gj(e,x) = (1= P)G (e, x). (4.51)
In particular, we have
gjlo,x) = ProjKerz);E}j(a,x). (4.52)

Moreover, we have the following results.

Lemma 4.5. For j > 2, g;(a, ) is Gpe-equivariant, that is, e® g;(o,x) =
gj(o,eB x) forall x e R™ and t € R.

The proof is similar to that of Lemma 4.2 and hence is omitted. Thus, we
summarize the above discussion as follows.

Theorem 4.4. There are polynomials U: R™ x R” — R™ and g: R" x R" — R" of
degree < k with U(0,0) =0, D,U(0,0) = 0 such that by the change of variables
x—x+U(a,x), (4.1) becomes

% = Bx+g(a,x) +0(|(a,x) <), (4.53)

where g satisfies ¢ g(ot,x) = g(o, e x) for all o € R”, x € R™, and t € R, or
equivalently, D g(ot,x)B*x = B*g(a.,x) for all a € R” and x € R™.

4.3.3 Preservation of External Symmetry
Assume that there exists a linear invertible operator 7: R” — R™ that commutes
with system (4.36), i.e.,
BT =TB, G(o,Tx)=TG(a,x)
for all oo € R” and x € R™. We define the linear map
T« AR < A (R
by
Tip(o,x) =T 'p(a, Tx).

We have the following result.
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Lemma 4.6. Ker.Z; and Ran.Z; are invariant under ;.
Proof. Since B commutes with 7', we have
T.%ip(o,x) = T 'Dyp(0t, Tx)BTx— T~ 'Bp(et, Tx)
=T 'D.p(a,Tx)TBx— BT ' p(at, Tx)
=D, (T 'p(a,Tx)) Bx— BT ' p(ct, Tx)
= Z/%p(aax)

This means that .7; commutes with .#;. Therefore, Ker.#; and Ran.Z; are invariant
under 7. O

In what follows, we always assume that T is unitary. Then 7% = 7! and hence
T-'B=BT~'. Namely, B*T = TB*. In addition, using similar arguments as in the
proof of Lemma 4.6, ﬂj commutes with Ranfl-*. Therefore, we have the following
lemmas. '

Lemma 4.7. Ker.Z and Ran.Z’}" are invariant under 7.

Lemma 4.8. For j > 2, Tg;(o,x) = gj(o,Tx) and TU;(a,x) = U;(o, Tx) for all
x e R™

Proof. Since jfjm“ (R™) = Ran.Z; & Ker.Z/, Ran.¢}, and Ker.Z are invariant
under .7}, it follows that .7; commutes with P; and I — P;, where I denotes the
identity on """ (R™).

Next, we prove inductively that G;(a, ), U;, and g;(¢t, -) commute with 7'. Since
G, = G,, we immediately have .7 G, = G,. Assume that .7,G; = G, for some [ > 2.
It follows from (4.51) that

Jig=0-PR)G, and LU =PRG;.
Since Ran.%}" is invariant under .7; and .7;U; € Ran.Z}", by uniqueness we have
U =U; and Jjg =g

Since Gy (@, -) is composed of B, Gi2<j<I+1),Uj(a,-), and gj(a,-) 2 <
j <), we have

T141Gr41 = Gry1.
This completes the proof. O

In view of the Lemmas 4.6, 4.7, 4.8, and Theorem 4.4, we arrive at the following
theorem.

Theorem 4.5. Suppose that T: R" — R”" is unitary, and the vector field (4.36) has
the symmetry T. Then the normal form (4.53) also has the symmetry T.
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4.4 RFDEs with Symmetry

Consider the following parameterized RFDE:
i(t) = L(a)u + f(ot,uy), (4.54)

where oo € R”, the linear operator L(¢): C, - — R” is continuous with respect to o €
R, f € CK(R" x C, 7, R") for a large enough integer k, f(cr,0) =0, and Dy f(t,0) =
0 for all o € R". We further assume that I" is a given topological group and (4.54)
is I'’-equivariant. Namely, there exists a representation p of I" such that

fla,p()9) =p(1)f(o,9) and L(a)p(y)¢ = p(y)L(a)¢ (4.55)

for (at,7,¢) € R" X I' x Cyr, wWhere p(y)¢ € C, ¢ is given by (p(y)¢)(0) =
p(y)¢9(0) for 6 € [—7,0]. Recall that a representation p of I' is a group homo-
morphism p : I’ — GL(n,R). Condition (4.55) is equivalent to saying that (4.54) is
invariant under the transformation (u,#) — (p(¥)u,t) in the sense that u(z) is a so-
lution of (4.54) if and only if p(y)u(z) is (see [41, 118, 193, 284] for more details).

Since an RFDE generates a semiflow in an infinite-dimensional Banach space,
one naturally first reduces the semiflow to a flow in the finite-dimensional center
manifold, and then calculates the normal form of the reduced flow. However, it is
not necessary to compute the center manifold before evaluating the normal form for
the ODE on the center manifold. Faria and Magalhaes [91, 92] developed a method
for obtaining normal forms for RFDEs directly, which allows us to obtain the coeffi-
cients in the normal form explicitly in terms of the original system. Based on results
of Faria and Magalhaes [91, 92], our purpose in this section is to obtain explicit nor-
mal forms for the equation describing the flow on subcenter manifolds, which not
only inherit the symmetry of the original system but also are invariant with respect
to some torus actions induced by the imaginary roots of the characteristic equation
of the linearization at the steady state. The final outcome of our procedure is the
normal forms whose coefficients are explicitly given in terms of the parameters of
the original RFDE. As shall be seen, the procedure we develop here for the calcula-
tion of normal forms can be easily adapted for high-codimension singularities, and
therefore this technique for deriving normal forms may find further applications in
addition to those addressed here.

4.4.1 Basic Assumptions

By the Riesz representation theorem, there exists an n X n matrix-valued function

n(e,-): [—1,0] — R” whose elements are of bounded variation in @ € [—17,0] for
each a such that

La)p=[2.dn(c,0)9(0),  ¢€Cpr.
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For each o € R, let o7, be the infinitesimal generator associated with the linear
system #(¢) = L(ot)u;. The dynamics of (4.54) near the singularity o = 0 at
the origin can be completely described through the restriction of the flow to the
associated center manifold, which is necessarily finite-dimensional. Therefore, it is
important to consider a subcenter manifold relative to a subset A of 0¢ = {4 €
o () : ReA = 0}. Without loss of generality, suppose A = {A;,A2,..., A4} is a
nonempty set satisfying the following assumptions:

(H1) AeAifandonlyif € A.
(H2) If0€ o(a), then0 e A.

Assumption (H1) is generic, because we are interested in real subcenter
manifolds relative to A. There are many reasons for assumption (H2), one of
which will be given in Remark 4.5.

Denote by E, the generalized eigenspace of o7 associated with A. If m is the
number of eigenvalues of <7 in A counting multiplicities, then dim £, = m. In order
to construct coordinates on the center submanifold relative to A near the origin, we
define a bilinear form

0 r0
v.0) =T(0)90) - [ [ FE-0)an©.0)pE)as @56

for y € G, ; and ¢ € Gy . Here and in the sequel, for the sake of convenience, we
shall also allow functions with range in C”. It follows from the I"-equivariance of
the operator L(0) that

(w,p(Me) = (yp(7),0) (4.57)

for y € C,?T, @ €Cyr,and yeTI'. Let @ be a basis for £, and let ¥ be the basis
for the dual space £} in G ; such that (¥, @) = Id,,. We denote by B the m x m

constant matrix such that @ = ®B. Note that 6(B) = A. In order to analyze the
symmetry of the normal form on center manifolds relative to A, the following result
about the I'-invariance of these spaces is fundamental.

Lemma 4.9. For each 'y € T', there exists an m x m matrix My such that
p(y)® =dM,, Y¥p(y)=M,¥, and M,B=BM,. (4.58)

In other words, the spaces Ex, Qa, and E}; are I'-invariant, where Q is defined as
in(2.21).

The proof of Lemma 4.9 is similar to Lemma 3.2 of Sect.3.6 and hence is
omitted.

Lemma 4.10. Let w : BC,, — E5 be given by
n(@+Xo8) = @Y, ) +F(0)E]. (4.59)

Then BC, = Ex ® Kerm and Qp C Kerm. Moreover, the projection operator m:
BC, — E, is I'-equivariant.
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Define #7p : Q C Kerm — Kerm by
Do = ¢ +Xo[L(0)¢ — ¢(0)]
forp € Q M Kernn C,LT. Moreover, define

F(av(P) = L(OC)(p _L(O)(p+f(a7¢)

forall @ € R" and ¢ € C, ;. As stated in Chap. 3, system (4.54) is equivalent to the
system

o=0,
X = Bx+¥(0)F (o, Dx +y),

d
& Aoy + (1—m)XoF (o, Px+y),

dr
or simply
% = Bx+¥(0)F (o, Dx+y), (4.60)
dt = oy + (I—1)XoF (a, Px +),

where x € R" and y € Q.

Lemma 4.11 (Faria and Magalhées [92]). () = 0,(p) = 6(«/) \ A, where
0,(<lp) denotes the point spectrum of <7p.

4.4.2 Computation of Symmetric Normal Forms

We now describe the computation of normal forms using formal series, though we
are interested in situations in which only a few terms of those series are computed.
We consider the formal Taylor expansions

Flau) = Y, ~Fi(ou) .61)
j>2

for oo € R" and u € G, ¢, where F; is the jth Fréchet derivative of F' with respect
toax € R andu € G, ¢. It follows from the I'- -equivariance of (4.54) that Fj(a,-),
j > 2, is I'-equivariant. Then (4.60) can be rewritten as

x—Bx—f—Z—f, (a,x,y), (4.62)
j>2

d

d—y y+2 /7 (0x.y),
/>2

where x € R™, y € Q, and
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fjl(a,x,y) Y(0)Fj(a, Dx+y),

fi(o,x,y) = (I— m)XoFj (o, @x +), jz2

In particular, fj1 (a,x,0) = ¥(0)F;( 0o, @x) for x € R™ and j > 2. In addition, in view
of Lemma 4.10, we have the following result.

Lemma 4.12. fj1 (a,-,0) is I'-equivariant. Moreover,

fjl (a,MyX,O) = Mijl (aaxvo) and sz(a,MyX,O) = p(Y)sz(aaxvo)

Proof. Forye I,

i (0, Myx,0) = ¥(0)Fj(ct, PMyx)
= F(0)F; (0 p (1))
— F(0)p()F;(0t, Dx)
= My¥(0)F;(ar, Px)
= Myfj(a,x,0)
and
[i (o, Myx,0) = (I— 1) XoFj (0, @Myx)
= (I—m)XoFj(a, p(7)Px)
= (I=m)Xop(v)Fj(o, Px)
= p(Nf7(a,x,0),
that is, fjl(a, -,0) is I'-equivariant and sz(oc,Myx,O) = p(j/)sz(a,x,O). O

Define the operators M;(p,h) = (M}.,Mf), j>2,by

Mjl . c%?err(Rm)—h}fjmJﬁ(Rm),
2, m+r m+r m—+r
M; : #"(Q) C A" (Kerm) — " (Ker ), (4.63)

(Mjp)(er,x) = [B, p(er,)] (x),
(M?h)(ot,x) = D.h(a,x)Bx — “ph(ct,x),

where [, -] denotes the Lie bracket.

Next, we need to introduce a suitable inner product in %’”*’(R”’ x Kerr) for
the convenience of decomposition. In fact, we can extend the definition of the in-
ner product < -, - >>: jfj’"”(]l%’”) f%ﬂjm” (R™), which was given in the previous
sections, to %””“(Rm x Kerm) and choose P; as the (unique) orthogonal projec-

tion from 7 s (R™ x Kerm) onto RanM;;. Let P; = (PJI,PJZ) where le and sz are

projections from f%’j’”“(Rm x Kerr) to RanM} and Raan respectively. Note that

l%ﬂjmqtr(Rm x Ker n') = RanMj P KerM}f7 RanMj 1 KCI'M;,
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and
ji’j'mH(Rm x Ker 77:) = Keer D RanMj'a Keer 1 RanM;,

where * denotes the adjoint map with respect to the inner product < -,- >>. It turns
out that M}-* is just the homological operator associated with the adjoint B* of B. In
other words, we have

(Mjl-*p)(oc,x) = [B*, p(a,")](x) for all p € 7" (R™). (4.64)

The normal forms can be obtained by computing at each step the terms of order
j > 2 in the normal form from the terms of the same order in the original equation
and the terms of lower orders already computed for the normal form in previous
steps, through a transformation of variables

(%,y) = (£,9) + (U} (e, %), U} (e, 2)), (4.65)

where x, £ € R"™, y, $ € 0, o € R, Uj1 : R 5 R™, and sz R 5 O are
homogeneous polynomials of degree j.

We assume that after computing the normal form up to terms of order j — 1, the
equations become

ol 1-
£= Bt 3 (@) £ T (eny) 4o (4.66)
§=2"" :

dy | 12
a = JZ{Qy_'— 2 _'g?(aaxvy) + Tfj(avxay) + - 5

= s! J!
where g! € 2" (R™), ]_C; e A" (R™), g5 € H" (Kerm), ]_‘3 € Hj""'(Kerm).
With the change of variables (4.65) and dropping the hats for simplicity of notation,
(4.66) becomes

1
x:3x+2s—,g§(a,x,y)+---, (4.67)
s=2""

dy L1,
a :JZ{Qy'i_z_,gs(aaxvy)'i_”'v
S:ZS'

where g; = J_‘j -M;U;, gj = (g},g?), 71' = (7;,7?) System (4.67) is called the
normal form for (4.54) near (u, o) = (0,0) relative to the center space Ej, .
If M; is invertible, then we simply put g; = 0 and U; = M;l fj- In this case,

all the jth-order terms are removed by the normalization procedure. In general, M
need not (and will not) be invertible. Note that

M,Uj = f;—gj=Pif j+1=P)f;—s;

We will choose U; = (U}, U7) € V" (R™) x V"*'(Q) such that
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71 3
UjeM; Fif;, (4.68)

which allows us to take away from f ; its component in RanM;;. Therefore, the above
equation can be solved by

gj(0x,y) = (1= P))f;(0,x.). (4.69)
In particular, we have

. —1
81(0,%,0) = Projyepyg1- £(,%,0). (4.70)

We first mention the following important results about the equivariance of g}- and

U jl , j 2> 2.1In fact, by a similar argument to that in the proof of Lemma 4.8, we have
the following.

Lemma 4.13. For j > 2, g}((x, -,0) and Uj1 (a,-) are I'-equivariant, i.e.,
Myg;(oc,x,O) = g}(oc,Myx,O) and Mijl(oc,x) = U}(Ot,Myx)

forall yeI andx € R™.

Lemma 4.14. For j > 2, g}(a, -,0) is Gp«-equivariant, that is,

etB*gjl-(oc,x,O) = g}((x,e’B*x,O) forallx e R™ andt € R.

The proof of Lemma 4.14 is almost the same as that of Lemma 4.2.

Lemma 4.15. For j > 2, sz(oc, \) satisfies p(j/)sz(a,x) = sz(oc,Myx) foryel
and x € R™.

Proof. We define the linear map

i VI(Q) = Vi (Kerm)
by

() = p(y " h(or, My).

Since B commutes with My for all y € I', we have

ZiMGh(o,x) = p(y")Dyh(ot, Myx)BMyx — p (v~ ") /ph( o, Myx)
= p(v"")Dxh(o, Myx)MyBx — clop (v )h(ot, Myx)
=Dy (p(y " )h(or,Myx)) Bx— lop (v~ )h(o, Myx)
= M;Zh(a,x).

This means that %; commutes with M? Therefore, KerM? and RanM? are invariant
under % ;. Then, using similar arguments to those in the proof of Lemma 4.13, we

can show inductively that 75(06,-,0), U?, and g5(a,-,0) are fixed points of Z;,
j > 2. This completes the proof. O



116 4 Normal Form Theory

4.4.3 Nonresonance Conditions

If we want to obtain normal forms in a finite-dimensional local center submanifold
tangent to the center subspace E, of the linearized equation at (u, o) = (0,0), then
in the normal form, all the terms g7(ct,x,y) must vanish at y =0, i.e., g3(a,x,0) = 0
for all j > 2. Therefore, we require that Raan be the whole space %’?’"*’(Ker ),
j > 2. This situation can be characterized in spectral terms by nonresonance condi-
tions appropriate for guaranteeing that y = 0 in the normal form (4.67) is a locally
invariant manifold. It is well known that
oM}))={(G.A)—Ac:s=1,....m+rGgeNy", |g] = j},

where A1, Ay, ..., Ay, are the elements of A, each of them appearing as many times
as its multiplicity as a root of the associated characteristic equation, A; = 0 for j =

mA1m+2,. . om4+r, A=A An)s A=Ay dnir)s (@A) = 2 qihs
(G, ) = ;.";L{q iAj. Obviously, (4,A) = (g,4). We expect that the nonresonance
conditions appropriate for guaranteeing that y = 0 in the normal form (4.67) is a
locally invariant manifold can be expressed by relationships between the spectral
values of %7y and B. So it is essential to pay due attention to the topology of the
space on which 7 acts and to its domain as an operator in that space. In what
follows, we first establish relationships between the spectra ¢(.2%) and .7p. For the
sake of convenience, for an operator A, let 6,,(A) denote the point spectrum of A.
Clearly, 6 () = 0,(p).

Lemma 4.16. The spectra of the operator M?, Jj>2, are

o(M2) ={(g, 1) —1: peo(h)\A, geNI g = j}.

We refer to Faria and Magalhaes [91, 92] for the proof of Lemma 4.16. Therefore,
the appropriate nonresonance conditions are the following.

Definition 4.2. System (4.54) satisfies the nonresonance conditions relative to A if
m
kzlqk/'Lk Zo°\A for(qi,...,qm) € NJ,

where Ay, Az, ..., Ay are all eigenvalues in A, each repeated as many times as its
multiplicity.

We then have the following results.

Theorem 4.6. For the I'-equivariant system (4.54), suppose that A is a nonempty
subset of o¢ satisfying (H1) and (H2). If system (4.54) further satisfies the non-
resonance conditions relative to A, then there exists a formal change of variables
x =%+ p(a,X), y =39 +h(a,x), where p and h satisfy p(o., Myx) = Myp(ot,x) and
h(o,Myx) = p(y)h(a,x) forall y € I" and x € R", such that
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(1) system (4.54) is transformed into a normal form relative to A in the form of
(4.67), where g}(a, -,0) is I' X Gp+-equivariant and g% satisfies g?((x,x,O) =0
foralloc e R" andx € R™, j > 2;

(ii) there exists a local center submanifold for (4.54) at zero satisfying y = 0, and
the flow on it is given by the m-dimensional I" X GB§-equivariant ODEs

x(1) = Bx(t) + 1g3 (e, x,0) + L gy (a,x,0) + hoo.t, (4.71)

which is in normal form (in the usual sense of ODEs), where m is the sum of the
multiplicities of the elements in A as eigenvalues of <%).

Remark 4.2. Theorem 4.6 means that if the finite-dimensional system (4.71) has
a (periodic) solution x(z) with symmetry ¥ < I" x S!, then system (4.60) has a
(periodic) solution (x+ p(x, o), h(x, o)), and hence system (4.54) has a (periodic)
solution u() with symmetry X.

Remark 4.3. In Theorem 4.6, we obtain an alternative characterization in terms of
additional equivariance conditions similar to those in Elphick et al. [87], which has
advantages as described below. First, we can choose coordinates in £4 so that B is in
Jordan normal form and B commutes with Bg. Then the normal form (4.71) (includ-
ing the linear terms) is I" x Ggg-equivariant. However, the G -equivariance applies
only to the nonlinear terms of (4.71). This I" x GB§-equivariance of the normal form
is important understanding the local dynamics, such as generic local branching pat-
terns of equilibria and periodic solutions. Finally, the normal form procedure does
not converge, and terms in the tail (beyond all polynomial orders) may affect the
qualitative dynamics (see, for example, Guckenheimer and Holmes [125, Sects. 7.4
and 7.5]).

Remark 4.4. If A = o€, then system (4.54) obviously satisfies the nonresonance
conditions relative to A, and hence Theorem 4.6 applies to the whole center
manifold of system (4.54).

Remark 4.5. Assumption (H2) is a necessary condition in ensuring the
nonresonance conditions in Definition 4.2. In fact, if +iw € A,0 ¢ A but 0 € 6 (=),
then obviously i®w + (—i®w) = 0 € Ag \ A, which implies that system (4.54) is
resonant.



Chapter 5
Lyapunov—-Schmidt Reduction

The main objective of this chapter is to introduce the Lyapunov—Schmidt reduction
method and show how this reduction can be performed in a way compatible with
symmetries. The Lyapunov—Schmidt reduction results in the so-called bifurcation
equations, a finite set of equations equivalent to the original problem. This finite
set of equations may inherit the symmetry properties of the original system if the
reduction is done properly.

5.1 The Lyapunov-Schmidt Method

Let X, Y, and A be real Banach spaces. Let F: X x A — Y be a ck map (k > 1) such
that F(0,0) = 0 (possibly after a change of origin in X x A). We want to study the
solution set of the equation

Fr,0) =0 5.1)

in a neighborhood of (0,0) in X x A.

Define . = D, F(0,0). If the linear operator % is invertible and .~ is bounded
(i.e., continuous) from Y to X, then the implicit function theorem applies. Therefore
in this case, in a neighborhood of the point (0,0), there exists a unique solution
branch x = ¢ () for the equation, and ¢ is a C* function of o. Note that if .Z is
bounded and invertible, then .2~ is bounded, thanks to the closed graph theorem;
see Kato [186]. The challenging case is that in which . is not invertible. Since we
are considering maps in Banach spaces, not just finite-dimensional vector spaces,
we need to be more precise about the way . is noninvertible.

Denote by Ker.Z and Ran.Z the kernel and range of ., respectively. Assume
that Ker.Z has a topological complement X, in X, while Ran_Z is closed and has a
topological complement Y in Y. Thus, we have the following decompositions:

X=KerZ?®Xy, Y=RanZDY,. (5.2)

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, 119
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In particular, if L is a Fredholm operator,' then (5.2) holds obviously.
It follows from (5.2) that there exist two continuous projections P € L(X,Ker.%)
and Q € L(Y,Yy) such that

KerZ =RanP, Ran.Z =KerQ. (5.3)

We can write x € Q in the form x = u+v, where u = Px € Ker.Z andv= (I—-P)x €
Xp. Then we can rewrite (5.1) as

(I-Q)F(u+v,a)=0, QF(u+v,a)=0. 5.4
Thus, the first equation of (5.4) can be rewritten as
G(H,V, a) = (I_ Q)F(M+ v, a) = 0

Notice that G(0,0,0) = (I— Q)F(0,0) =0 and D,G(0,0,0) = (I- Q). = Z.
When & is restricted in KerP, it is an isomorphism between KerP and Ran.%, and
then so is D,G(0,0,0). Applying the implicit function theorem, we obtain an open
neighborhood €2 of the origin in Ker.Z, an open neighborhood = of the origin in A,
and a C¥ map W : Q x £ — Ker P such that W(0,0) = 0 and

(I-Q)F(u+W(u,o), ) =0 (5.5)

for all (u,0) € Q x Z. Substituting w = W (u, o) into the second equation of (5.4),
we have
def

PBu,a) = QF (u+W(u,a),a) =0, (5.6)
where % is a Ck map from Q x = to Y. Moreover, it follows that 2(0,0) = 0 and
2,(0,0) = 0. The following theorem summarizes the essential result of Lyapunov—
Schmidt reduction.

Theorem 5.1. There exists a neighborhood U of (0,0) € Ker.Z x Q such that each
solution to B(u,a) =0 in U corresponds one to one some solution to (5.1).

Equation (5.6) is called the bifurcation equation corresponding to (5.1), and Z
the bifurcation map. In particular, it would be interesting to know for what values of
o solutions disappear or are created. These particular values of o are called bifurca-
tion values. Now there exists an extensive mathematical machinery called singular-
ity theory (see Golubitsky et al. [115-118] and Sattinger [260, 261]) that deals with
such questions. Singularity theory is concerned with the local properties of smooth
functions near a zero of the function. It provides a classification of the various cases
based on codimension. The reason this is possible is that the codimension-k sub-
manifolds in the space of all smooth functions having zeros can be described al-
gebraically by imposing conditions on derivatives of the functions. This gives us a
way of classifying the various possible bifurcations and of computing the proper
unfoldings.

'L is a Fredholm operator if (i) the kernel Ker.Z is finite-dimensional, (ii) the range Ran.Z is
closed, and (iii) Ran.Z has finite codimension in Y. The index of a Fredholm operator .& is defined
to be the integer Ind.Z = dimKer.#Z — codimRan.Z.
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5.2 Derivatives of the Bifurcation Equation

In applications, to solve and study (5.6), it is important to choose a suitable subspace
Y and to choose suitable coordinates in Ker.# and Y. Throughout this section, we
always assume the following:

1) a=(oy,00,...,0) € A =R"
(ii) There is an inner product < -,- > in Y, and Yo = (Ran.Z)*, that is,

Yo={ye€Y:<yz>=0forall z€ RanZ}.
(iii) dim(Ran.#)* = dimKer.? = n.

If £ is a Fredholm operator with index 0, then assumption (iii) holds. Sup-
pose that {vi,va,...,v,} and {v},v},...,v:} are bases for Ker. and (Ran.?)*,
respectively. For u € Ker.Z, u = Y, x;v; with scalars x;, i = 1,2,...,n. Substitut-
ing u =Y | x;v; into (5.6) and calculating the inner product with vj, we have

0= vj,%(zg’:lx,-vi,a)>
= (Vi,OF (ZiL xivi + W(Z xvi, @), oc)>
— vj,F(Zf‘:lxivi + W( ?:lx,'v,', OC), OC)>
- <v§, I—Q)F XL xivi+ W (T, xvi,a), Oc)>
— <v;f,F(2f’:1xivi + W(z:-lzlx,'v,', OC), OC)> .

Hence, the bifurcation equation can be rewritten as the following system of n equa-
tions:

glx,a) =0, (5.7
where x = (x1,...,%)7 € R", g(x, ) = (g1(x,),...,gu(x,&))T, and for
j=12,....n,

n n
gjlx,o) = vj,F(invi—i—W(invi,oc),a) ) (5.8)
i=1 i=1

Obviously, (5.7) is equivalent to (5.6). Hence, we also refer to (5.7) as the bifurcation
equation of the system (5.1).

To find zeros of g in a neighborhood of the origin, it is not necessary to figure
out a concrete expression for g. In fact, it is enough to know about some low-order
terms of g. In what follows, we aim to relate the derivatives of the reduced functions
gj(x,00), j=1,2,...,n, to the derivatives of the original equation (5.1). If we know
the derivatives of the bifurcation function 4, then we can find the derivatives of
gj by substitution into (5.8). Calculation of derivatives of % is a straightforward
application of the chain rule. However, the resulting formulas contain derivatives of
W, and these must be determined by implicit differentiation of (5.5).
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We will use the notation for the k-fold differential of F as follows. For vi,v,,...,
Vi € X, we define

Tk _ ok koo
J(”a“) (Vl y V250 ey Vk) - 8t18t2---8th (“ =+ 2]:1 tlv.la (X) II:ZZ:---:tk:O.
Obviously, a@(ku a) (vi,v2,...,V) is a symmetric k-linear function of (vy,vy,...,vk).

Define Fy; = dF(0,0)/da;.
Using similar arguments to those in Golubitsky and Schaeffer [117], we can ob-
tain the following results:

%gi(0,0) =0,
7-4i(0,0) <v* 72 0/( v,,vk)>

Wg,OO <V,Vj >,
aocg’oo <V’F0‘J>’

mgt < Koy -vj— (2()0)(V17$71(I_Q)Fock)>,
where
ijl=ffo,o)(vjavkavz)+9§),0>(Vjamk)+y(2<),o)(vk,"sz')+y(2<),o)(vz7ij)a (5.9)

and Wy = — 27 11— 0).7%(vy, %), L~ ': Ran.Z — X, is the inverse of ZLIx,-

5.3 Equivariant Equations

Let I" be a compact topological group, let p: I' — L(X) and p: I’ — L(Y) be the
representations of I over X and Y, respectively. We say that F: X X A — Y is
equivariant with respect to some triple (I, p,p) if

F(p(y)x,0) =p(y)F (x, ) (5.10)

forall y € I" and o € A. Although in many applications, X will be a subspace of Y,
we have not made such an assumption here. This forces us to consider two different
representations p and p of I". Here, we reconsider the Lyapunov—Schmidt reduction
for the equation

Flx,00) =0 (5.11)

as given in Sect. 5.1, under the supplementary condition that F' is equivariant with
respect to some triple (I', p, p) in the sense of (5.10). It follows that the linear oper-
ator . satisfies Zp(y) = p(y)Z for all y € I'. Moreover, for each y € I', Ker.Z
and Ran.Z are invariant under p(7y) and p(y), respectively. In particular, if we de-
fine XI' = {xeX, p(y)x=xforall ye '} and Y ={y €Y, p(y)y =y for all
ye '}, then F(x,o0) € Y forx € X! and o € A.
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We further assume that the projections P € L(X,Ker.Z) and Q € L(Y,Y() can
be chosen to satisfy (5.3) and also

p(nP="Pp(y), p(¥Q=0p(7) (5.12)

for all y € I'. Therefore, in what follows, we always assume that (5.12) holds. In
fact, the case of Hilbert spaces provides a first, simple situation in which projections
can be chosen to be equivariant. Namely, we have the following result.

Lemma 5.1 (Chossat and Lauterbach [62]). Suppose the spaces X and Y are
Hilbert spaces, and the group I is compact. Then an inner product can be found in
X andinY such that I' acts isometrically in each space. In this case, the orthogonal
projections P € L(X,Ker.Z) and Q € L(Y,Y) are I'-equivariant.

Due to Vanderbauwhede [284], the continuously differentiable map W: Q x 5 —
KerP given by (5.5) is also I'-equivariant, that is,

W(p(Y)u,a) = p ()W (u,x) (5.13)

foryerI and (u,0) € Q x E.
Finally, it is easy to see that the bifurcation map 2 given in (5.6) is I"-equivariant.
Namely,

Bp(Vu,0) = p(v)AB(u,a) (5.14)

for all (u, ) € Q x E. Therefore, we have the following result.

Theorem 5.2. There exists a I'-invariant neighborhood U of (0,0) € Ker.Z x A
such that each zero of the I'-equivariant map %B(u, ) in U corresponds one-to-one
to some solution to (5.11).

5.4 The Steady-State Equivariant Branching Lemma

Suppose F: X x A — Y is a C* map (k > 1) in Banach spaces (X C Y). One can de-
fine the spectrum for the linear operator . = D, F(0,0) in the Banach space X: this
is the set of complex numbers A such that . — A1 is not invertible. An eigenvalue
is an element of the spectrum such that Ker(.Z — AI) # {0}. Finite multiplicity of
an eigenvalue A means that (. — A1)¥ = 0 for some integer k. That the eigenvalues
are isolated means that there exists a closed curve € that separates A from the rest
of the spectrum.

Throughout this section, we always assume that 0 is an isolated eigenvalue of
% with finite multiplicity. Due to Chossat and Lauterbach [62], we first have the
following.

Lemma 5.2. If 0 is an isolated eigenvalue of £ with finite multiplicity, then £ is a
Fredholm operator with index 0. If £ is I -equivariant, then the projections P and
Q can be chosen to be I'-equivariant.
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Let us now apply the equivariant Lyapunov—Schmidt reduction to (5.1). Let n
be the dimension of Ker.Z. As stated in Sect. 5.2, the bifurcation equation has the
general form

B(u,00) =0,

where % is a CK map from Ker.Z x A to Ker.?. Since Ker.Z is a real space of
dimension n, we may as well regard # as a map R"” x A — R” that is equivariant
for the induced action of I" on Ker.Z.

Suppose now that the action of I" on R" possesses an isotropy subgroup X with
a one-dimensional fixed-point space Fix(X). If we look for solutions in Fix(X), we
consider the restriction mapping g : Fix(Z) x R” — R" of #: R" x R" — R". In
view of the I'-equivariance of F and W, it is easy to see that g: Fix(X) x R" —
Fix(X) is also I'-equivariant and Ran g C Fix(X). Namely, g maps Fix(X) x R™
to Fix(X). So g is a scalar function. Now we can state the following equivariant
branching lemma.

Theorem 5.3. Suppose F: X x A — Y is a C* map (k > 1) in Banach spaces
(X C Y). Suppose that the compact group I' acts linearly in Y (and in X by re-
striction) and that F is I -equivariant. Suppose, finally, that F satisfies the follow-
ing bifurcation conditions: (i) F(0,0) = 0, (ii) £ = D,F(0,0) has 0 as an isolated
eigenvalue with finite multiplicity. Then for each isotropy subgroup X of I such
that dimFix(X) = 1 in Ker.%, either one of the following situations occurs (where
g(x, &) = 0 denotes the bifurcation equation in Fix(X)):

(i) X =T. If Deg(0,0) # 0, there exists one branch of the solution x(a). If in
addition, D,,g(0,0) # 0, then x* = O(|«t|) (saddle-node bifurcation).

(ii) £ <T, and the normalizer N(X) of £ in T, i.e., the group {ye I': yXy ' =X},
acts trivially in Fix(X). Then g(x,0) = xh(x, @), and if Dyx¢8(0,0) # O, there
exists a branch of solutions x(a). If in addition, Dy (0,0) # 0, then x = O(|a|)
(transcritical bifurcation).

(iii) X < T, and the normalizer N(X) of X in I acts as —1in Fix(X). Then g(x, o) =
xh(x*, &), and if Dyxg(0,0) # 0, there exist two branches of solutions +x(c)
satisfying g(x, o) = 0. If in addition, Dy(0,0) # 0, then x> = O(|at|) (pitchfork
bifurcation).

The proof is a direct application of the implicit function theorem to the bifurca-
tion equation in Fix(X), and can be found in the book by Chossat and Lauterbach
[62]. Theorem 5.3, known as the equivariant branching lemma for steady-state bi-
furcation, was first stated by Cicogna [75] and Vanderbauwhede [283]. In the case
of variational problems, a nice geometric characterization for the existence of ex-
trema with a certain isotropy was stated by Michel [223]. This condition is closely
related to the equivariant branching lemma.

Remark 5.1. If dimFix(X) = 1, then X is a maximal isotropy subgroup, meaning
that there is no proper isotropy subgroup containing X. However the converse is not
true: there exist maximal isotropy subgroups for which dimFix(X) > 1. We may
encounter this situation in examples involving spherical symmetry; see Chossat and
Lauterbach [62].
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Remark 5.2. When X < I', the bifurcating solutions in dim Fix(X) have
lower symmetry than the basic solution (x = 0). This effect is called spontaneous
symmetry breaking.

5.5 Generalized Hopf Bifurcation of RFDE

We consider the following parameterized RFDE:
i(t) = L(ot)u; + f (0t ur), (5.15)

where the linear operator L(ot) : C,,; — R” is continuous with respectto ot € R, f €
C'(R x Gy ¢, R") for a large enough integer / such that f(c,0) =0, and D f(t,0) =
0 for all @ € R. As usual, there exists an n x n matrix-valued function n(e,-) :
[—7,0] — R" whose elements are of bounded variation such that

L(a)(P:fi)Tdﬂ(a,e)(P(e)v (Pecn,‘c-

Denote by o7, the infinitesimal generator associated with the linear system i =
L(ot)u;. In this section, we introduce the work [141] to investigate the nonsemisim-
ple resonant case. Namely, throughout this section, we always assume that

(NS) . has a pair of purely imaginary eigenvalues +i® and there exists some
k > 1 such that dim¢Ker((#% — iwld)’) = min(j, k) for all j € N. Moreover, all
other eigenvalues of 7 are not integer multiples of im.

Assumption (NS) implies that eigenvalues +iw are of geometric multiplicity one
and algebraic multiplicity k£ € N. In particular, if kK = 1, then eigenvalues +iw are
simple, and then the classical Hopf bifurcation theory applies. Here, our main con-
cern is the case k > 1. Thus, the generalized eigenspace is Ker((.«% —iwId)¥), which
is k-dimensional. Therefore, we have the following direct sum decomposition:

Cn.r = Ker(( — iold)*) @ Ran((. — iold)").

Moreover, Ker((.#% — iold)*) is k-dimensional and satisfies .a%Ker((.2% —
ioId)¥) C Ker((o% — iwld)¥). Let {@y,..., @} be a basis for Ker((.o — iwId)¥)
such that

(o —iold)g; =0, (o —iold)e;=g@; (5.16)

forall j =2,3,... k. In fact, we have the following result.

Lemma 5.3. ;(1) = Y/") Lsuj e, j = 1,2,....k, where u; € C* (j =
1,2,...,k) satisfy

=1
D =450, i@)uj—s =0, (5.17)
= s!
where Ag(0t, A) denotes the sth partial derivative of A(a, L) with respect to A, and
Ao(o, L) = A(a, ).
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Proof. In view of (.o —iwId)@; = 0, we can choose @ (¢) = e u;, where u; €
C" satisfies A(0,i®)u; = 0. Assume that the statement of Lemma 5.3 holds for
Jj=2,3,...,m, where the integer m is less than or equal to k. In view of (&%) —
i0Id) Q1 = Qm, Q1 satisfies the differential equation

¢(1) —i0@(1) = ou(r) (5.18)

with the boundary condition

L(0)p —iw@(0) = ¢n(0). (5.19)

It follows from (5.18) that @(¢) = @y,+1(¢), where u,,; € C". Substituting it into
(5.19) yields

0= 3 0 :u {f&("“e)sdﬂ (079)“m+17veiw9_iwt3um+17v} _ern ()1 élvtbum s

r+9 tH»l s

= A1) 1+ 50 [ 10 SN (0,0)- €0 —i0 Lt Syt

. 1 ! .
= —A(0, 1w)”m+1 D i mAwl 1(0,10) s
/+l

= -3 05| As(0,i0) 1 -5— Zx:o i omAsfl((),iw)Mmﬁv

_ 1
= v 0 g“ ( )Mm+l —s |:t+l z y [(0 1(0)um 5i|
= 3 0 5| ( ,lw)um+1 s 0 |:r]+l zm =1 lA (0 1a))um,l,s}
= v 0 g“ ( ,1a))um+1 s
Therefore, this lemma has been proved by induction. O

In order to coincide with the inner product introduced later, we here define the
following bilinear form (which is a little bit different from what we defined previ-
ously):

(v0) =¥ 000~ [ [ 7 (& - 0)an(0.0)p(&)a

for y €C; ; &f C([0,7],C") and ¢ € G, ;. Here and in the sequel, for the sake of

convenience, we shall also allow functions with range in C". The adjoint operator
oy of a7 is defined by

* _d"ll(é)/déa if 56(0,1’],
o "’)(5)‘{f%dnf<o,e>w<—e>,if ¢

Similarly, Ker((«7; +iwld)¥) has a basis {1,..., y;} such that
(g +i0ld)y =0, (o +iold)y; = Yy (5.20)

for all j = 1,2,...,k— 1. Similarly to the proof of Lemma 5.3, we have the
following.
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Lemma 5.4. y;(t) = Y} L(—1)v,el®, j = 1,2,....k where v; € C" (j =
., k) satisfy
k=j 4
Y —'VJT~+SAs(O, —iw) =0. (5.21)
s=0%"
Since ¢ ¢ Ran(.« —iwld) and y; € Ran(.<7; +iwld), we have (i, ¢x) = v #0.
Moreover, it is easy to see that (y;, ¢,) = 0 for all j # s, and (yj,@;) = v for all
j=12,... k. In fact,

s+1 .
v= 3ol [ S+ 0 (;j—l;”’”dn(o,e)elwe] u

e T L A N A L (R I
= S S0 e At (0, i)y

= 3 e T A (0, i)y

= [ g =4 sAs1-m (0, 10))”1}

= i [ E A o)

= S A0, i)y + 3! [(j;?mz’;_;";,vgﬂ (o,iw)ul}
= vk, 5T A0, i@)u; — 35 [%mv;A(o,iw)ul}

= Zs 1 Y,vTA (0,i0)u;

In what follows, we develop the Lyapunov— Schmidt procedure for (5.15) to find
a periodic solution with period near the constant ~ We start with the normalization
of the period. Let B € (—1,1), x(¢) = u((1+ B)t ) Then (5.15) can be rewritten as

(1+B)ult) = L(a)u g + f (0t 1y ),

where u; g(6) = u(t+(1+8)0), 6 € [-71,0]. To fix a functional setting for the
above equation, consider the Banach subspace %, (respectively, €,)) of C(R,R"),
2E’r-periodic continuous (respectively, differentiable) functions equipped with their
usual sup-norms. It is easy to see that €, is an isometric Banach representation of
the group S! with the action given by

0-u(t)=u(t+6) for 6ecS.

Here and in what follows, we do not distinguish 6 € S' and its realization y such
that 6 = exp{iy }. Define a scalar product on the complexification of €y, by (,-) :
G X Gp» — R defined by

o Zn/w_T
(v,u) = I v (f)u(t)dt (5.22)
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for u,v € €. Define F : €} x R? — %, by

Fluyo, B) = — (14 Bii(r) + L(ct)uy g + F(0t,uy ). (5.23)

By varying the newly introduced small variable 3, one keeps track not only of so-

lutions of (5.15) with period @ but also of solutions with nearby period. In fact,

solutions to F(u, o, 3) = 0 correspond to ﬁ-periodic solutions of (5.15). It is

easy to see that F is S'-equivariant:
0-F(u,0,B) = F(6-u,a,B),

forall @ € S'. The operator .£u = —ii+L(0)u, is the linearization of F at the origin.
Obviously, the elements of Ker.Z correspond to solutions of the linear system 1 =
L(0)u; satisfying u(t) = u(r + %”) It is easy to see that the adjoint operator of .Z is
given by

Lru—i+ 'OrdnT(o, 0)uli—6),
that is, (v, Lu) = (L*v,u) for all u,v € €. It follows from condition (NS) that
KerZ = {Re(z¢); z€ C}, KerZ* = {Re(zy;); z€ C}.
Let P and Q be projections defined by

Py =2Re{(vie' ™ )1}, Q¢ =2Re{(ne'™,9) ¢y}

for ¢ € €. Obviously, P and Q are S'-equivariant and Ker.Z = RanP and Ran.¥ =
KerQ.
The equation F (u,, 3) = 0 is equivalent to the following system:

(I-Q)F(v+wa,B) =0,
OF v+w,o,) =0.

Here we have written u € %, in the form u = v+ w, with v = Pu € Ker.Z and
w = (I— P)u € 6, NKerP. Near the critical point (u, o, ) = (0,0,0), the implicit
function theorem implies that the first equation of (5.24) can be solved for w =
W(v,a,B), where W : Ker.Z x R? — %, NKerP is a continuously differentiable
S!-equivariant map satisfying W(0,0,0) = 0. Substituting w = W (v, &, 8) into the
second equation of (5.24), we have

(5.24)

9(na.B) & QF (v+ W (v, 0. B), . B) = 0. (5.25)
Thus, we can reduce our bifurcation problem to the problem of finding zeros of the
map ¥ : Ker.Z x R? — RanQ. We refer to 1 as the bifurcation map of the system
(5.15). It follows from the S'-equivariance of F and W that the bifurcation map
is also S!-equivariant. Moreover,

9(0,0,0) =0, ,(0,0,0) = 0.
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Therefore, we obtain that there exists a S'-invariant neighborhood U of (0,0,0) €
KerZ x R X R such that each solution to F(u,o,3) = 0 in U corresponds one-
to-one to some zero of the S'-equivariant map ¥ defined in (5.25). In other words,
small-amplitude periodic solutions of (5.15), of period near %’r, correspond to solu-
tions to system (5.25).

For v = z¢; +70, € Ker.?, with z = (v1e!® V), using this in (5.25) and then
calculating the inner product with y;, we have

g(z,0,B) =0, (5.26)
where g: C x R? — C is explicitly given by

g(z,a,ﬁ)z <l[/k,F(G(Z,OC,ﬁ),OC,ﬁ)>, (5.27)

and o(z,a,B) = 201 + 70, + W (291 +7¢,, o, B). Obviously, g(-,c, B) is also S'-
equivariant and so can be written as

g(z, o, B) = zh(|z*, . B),

where the smooth function 4: R? — C is Z,-equivariant. It follows that for the non-
trivial solutions, the bifurcation problem reduces to the equation 4(r?, o, ) = 0,
where r = [z].

First, we notice that

(el o(z,a,B)) =z (5.28)
and
for all (z,, B) € C x R?, Differentiation of (5.28) and (5.29) at z = 0 gives
(e, 0,(0,0,B)) = 1
and
(I-Q)F,(0,a,B)-0.(0,a,B) =0. (5.30)
In particular, 6;(0,0,0) = ¢.
It follows from (5.27) that zi(|z|?, &, B) = (i, F (0(z, @, B), &, B)). Differentia-
tion at z = 0 gives
h(O,a,ﬁ): <'~I/k7Fu(07a7ﬁ)'GZ(Ovauﬁ»' (5.31)
Thus, we obtain the following results.
Lemma 5.5. 114,(0,0,0) = —! Ay (0,i@)u; and h(0,0, ) = —(iBw)*v+O(|B[F1).
Proof. In view of (5.31), we have /(0,0,0) = 0. Differentiation of (5.31) at & =0
gives

he(0,0,0) = (yi, Fue(0,0,0) - 0,(0,0,0))

=37 [ dne(0,60)9(6)

= —V] Aa(0,im)u;.
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Letting ov = 0 in (5.30) and taking the inner product with v jei“”, we have
0= (vje',F,(0,0,8) 0:(0,0,8))
= ((1+B)iwv;el® + [0 .dnT(0,0)v;ei® 0B 5.(0,0,B))
= (1 +B)iwv;e® + 37 o H2BY 10 95anT (0,0)v;6°09),5,(0,0,))
= —(zko) LB AT (0, @)y, 6,(0,0,)) + O(IBIF).

Hence,

(AT(0, —iw)v,6™  6,(0,0,B)) g AT (0, ~i)v e, 0:(0,0,8))+O(BY).

(5.32)
Similarly, we can use (5.31) to get

ko (_; s .
10,0.8) = (3, TP AT (0, —iwpuie, 0:(0.0,6)) + 0B,

s=1

In view of (5.32), we have
(S5 (~iBw)'AT (0, ~io)v_ €, 5:(0,0, B))
gk LEBOT AT (0 _i)vy_ el 6.(0,0, )
z';_lzi; A EEEEAT (0, —i0)ve 51", 6:(0,0,8))

—(zf
~(
— (st CIBOE AT (0, ~i0)vi—mise', 6:(0,0,8)) + O(|B[+)
—(zk,
—(zk

m s+1
st G W AT (0, i®)vi_ i s€', 02(0,0,B)) + O(|B[*1)
z’ LEBOL AT (0, —iw)vyi5e ", 0,(0,0, 8)) + O BIHH).
Thus, it follows from (5.21) and the expression of v that
1(0,0,B) = (Xi- 51 CBLAT (0, ~iw)vi11.€, 6:(0.0,8)) + O(B[)
= (A3} CBONAT (0, —iw)vy145€",02(0,0,))
+(E] (—1Bw) ‘AT (0, —iw)vi_ €', 6:(0,0,8)) + O(|B[H1)
= (A3 AT (0, —iw)vy 4, 0:(0,0. 8))
—(3k, 31} GBS AT (0, —i0)vy_ 14", 6:(0,0,8)) + O(B[<1)

= —(iBo)"(Z- 11Sl'AT(O,—iw)vsei“”,ﬁz(O,O,ﬁ)>+0(|13|"“)
—(iBw)tv+O(IB[).
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In order to consider the first-order partial derivative 4 (0,0,0) of A(u, &, B) with
respect to u at (u,a, ) = (0,0,0), we need to write the function f(c, @) of (5.15)
in the form of a Taylor expansion in ¢ at oc = 0:

1 1
10,9) = 52(90,0) + £&(0,0,0) +o(llol) (5.33)
for ¢ € G, ¢, where Z(-,-) and €(-,-,-) are second- and third-order derivatives of
f(0,-), and so are symmetric 2- and 3-linear functions, respectively. Obviously,

3

h1(0,0,0) = Fazé’(

0,0,0).
Using a similar argument to that in [117], we have
hl(oaoao) = <Wka£)((pla(p17¢1)> +2<Wka<@(q)lawll)> + <Wka%(¢17W20)>v (534)

where W and W, are the coefficients of zZ and % in the Taylor expansion of
6(z,0,0), respectively. In view of (5.29), we have Wy = — 7! (I—0)%(¢1,01)
and Wi, = - '(1— 0)%(¢1,®,). Note that B(¢1, 1), B(¢1,9,) € Ran.Z.
Then the projections (I— Q) on Z(¢1,¢;) and B(¢;1,®,) act as the identity. There-
fore,

LWa+B(Q1,01) =0, LW+ B(¢1,0,)=0.

In addition, it follows from RanW C KerP that
(vie' Wag) =0, (v, Wip) =0.
Therefore, we have
Wao = A~1(0,2i0)B(@1,01), Wi =A"1(0,0)%(¢;,9,). (5.35)

In view of (5.34) and Lemma 5.5, the reduced equation h(r?, &, B) = O takes the
form

—(iB@)*v =5} Ag(0,i@)uy 0t + r*h1(0,0,0) +h.o.t. = 0.
Since v # 0, we can rewrite the above equation as
B¥—Ao+Br* +h.o.t. =0, (5.36)
where

v Ag (0, i) g 1(0.0.0

A= —(imkv 7 T —(iw)kv

(5.37)
Separating the real and imaginary parts of equation (5.36) gives us

B* — aRe{A} + r’Re{B} +h.o.t. =0 (5.38)
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and
—adm{A} + ’Im{B} +h.o.t. = 0. (5.39)

If Im{A} #0,i.e.,
I {i*V! Ay (0,i0)u; } #0, (5.40)

then by the implicit function theorem, we may solve (5.39) for « to get

o= Ot(rz,ﬁ) o Im{B}

2 4
= mgay” OB (5.41)

Substituting this into (5.38) gives an equation of the form

B = wor* +0(r*, B), (5.42)
where (BR)
Im(BA

Let B = ev/r2. Then (5.42) becomes £12 = g2 + O(r*, €), which yields
ek = o+ 0(*, ). (5.44)

When k is odd and pg # 0, then (5.44) has for r = 0 the unique solution & = /1.
Thus, the implicit function theorem implies that this solution can be continued for r
near 0, giving a unique solution branch & = &(r) of (5.44), satisfying £(0) = /Ho.
If we define B(r) = V/r2e(r) and a(r) = a(r2, B(r)), where the function ct(r2, B)
is given in (5.41), then h(r*, o, ) = 0 has unique solution branches of the form
(r,ae(r),B(r)), which pass through (0,0,0) for » = 0 and exist for sufficiently small
r>0.

When £ is even and uy < 0, then (5.44) has no solutions for » = 0 and hence
also no solutions for |r| sufficiently small. This implies that no bifurcation occurs.
On the other hand, if k is even and tty > Om then (5.44) has for » = 0 two solutions
€ = £{/lly, each of which can be continued for small r, giving rise to two solution
branches € = €4 (r), where the functions e4: [0,0) — R are smooth in a neigh-
borhood of the origin and satisfy €1 (0) = £¥/lg. If we define B+ (r) = Vi2e(r)
and o (r) = o(r?, B+(r)), where the function o(r?,B) is given in (5.41), then
h(r*, o, B) = 0 has two solution branches of the form (r,oee(r), B+(r)) that pass
through (0,0, 0) for r = 0 and exist for sufficiently small » > 0. Therefore, we have
the following results.

Theorem 5.4. In addition to (NS), assume that inequality (5.40) holds and that A,
B, and L are defined by (5.37) and (5.43), respectively.

(i) If k is odd and uy # 0, then for (u, o, ) near (0,0,0), (5.15) has exactly one
branch of nontrivial (Ij%-periodic solutions, which exists for o. > 0 (respec-

tively, o < 0) when Im{A}Im{B} > 0 (respectively, In{A}Im{B} < 0).
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(ii) If k is even and Uy < O, then (5.15) has no nontrivial (Ii%-perlbdic solutions
with (u,a, ) near (0,0,0).

(iii) If k is even and Uy > 0, then for (u,a, ) near (0,0,0), (5.15) has exactly
two branches of nontrivial (Hz%-periodic solutions, which exist for o > 0
(respectively, oo < 0) when Im{A}Im{B} > O (respectively, In{A}Im{B} < 0).

If assumption (NS) holds for & = 1, then the infinitesimal generator .27, has a
pair of simple complex conjugate eigenvalues A () and A(a) satisfying A(0) =
im. Moreover, there exists a C'-continuous function u(c) such that u(0) = u; and
Ao, A(o))u(or) = 0 for all sufficiently small o.. We differentiate it with respect to
o and obtain

[Ag (o, A(00) + A () Ay (0, A ()] u(er) + Ao, Aer))u (o) = 0.
In particular, we have
[Ax(0,iw) + A'(0)A; (0,im)] us + A(0,im)u'(0) = 0.

This, together with the fact that v/ A(0,ify) = 0 and ¥! A, (0,i0)u; = (y1,¢1) = v,
implies that ¥ Ay (0,i®)u; + A'(0)v = 0. Thus, the quantities A and B in (5.37) can
be figured out:

!
Ao )L'(O), B hl(Q’O’O),
10 —10V
Hence, (5.40) is equivalent to Re{A/(0)} # 0 and
sgn{Im{A}Im{B}} = —sgn {Re{A'(0)}Re{Vh;(0,0,0)} }.
Moreover,

sgn{po} = —sgn {Re{A'(0)}Im{A'(0)vh,(0,0,0)}}.
Therefore, Theorem 5.4 reduces to the following standard Hopf bifurcation theorem.

Corollary 5.1. If assumption (NS) holds for k =1 and Re{1’(0)} # 0, then there
exists a unique branch of periodic solutions, parameterized by o, bifurcating from
the trivial solution x =0 of (5.15). Moreover,

(i) Re{A'(0)}Re{Vh;(0,0,0)} determines the direction of the bifurcation: the bi-
furcation is supercritical (respectively, subcritical), i.e., the bifurcating periodic
solutions exist for o > 0 (respectively, < 0), if Re{A’(0) }Re{Vh;(0,0,0)} <0
(respectively, > 0);

(ii) Re{A'(0) Im{A/(0)vh1(0,0,0)} determines the period of the bifurcating peri-
odic solutions along the branch: the period is greater than (respectively, smaller
than) %” if it is positive (respectively, negative).
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5.6 Equivariant Hopf Bifurcation of NFDEs

In this section, we introduce the work [136] on equivariant Hopf bifurcation for the
following parameterized system of NFDE:s:

d

Eh(aaxt) :f(avxl)v (545)
where i, f: R x G, ; — R" are two continuously differentiable mappings satisfying
f(a,0) =0 for all o € R. We say that (5.45) is equivariant with respect to a group
I if there exists a representation p of I" such that

h(o,p(7)0) =p(h(a,¢), flo,p(v)9) =p(¥)f(e, ¢) (5.46)

for (o, 7,¢) € R x I' x C([—7,0];R"), where p(y)¢ € C([—7,0];R") is given by

(p(V)9)(s) = p(y)¢(s) for s € [—1,0]. Recall that a representation p of a group I

is a group homomorphism p : I' — GL(n,R). Condition (5.46) implies that system

(5.45) is invariant under the transformation (x,¢) — (p(7)x,t). Namely, x(z) is a

solution of (5.45) if and only if p(y)x(¢) is a solution. Throughout this section, we

always assume that I" is a compact Lie group and system (5.45) is I'-equivariant.
Linearizing (5.45) at the equilibrium point x = 0 yields

d

ED(OC)X, = L(Oc)xt. (547)
Without loss of generality, we assume that there exist two n X n matrix-valued
functions p,n : [-7,0] — R"™ whose components each have bounded variation in

0 € [—1,0] for each o and such that for ¢ € C, ¢,

0 0

D(c)p = 9(0) = [ du(e.0)9(8). Lic)g= [ dn(c.0)p(6).
Moreover, we assume that D(a) is atomic at zero, that is, Vary, g u(a,8) — 0 as
s — 0 (see Hale and Verduyn Lunel [154] for more details). Denote by .7, the
infinitesimal generator associated with the linear system (5.47). The spectrum of
Ay, denoted by o (), is the point spectrum. Moreover, A is an eigenvalue of <7,
ie., A € (%), if and only if A satisfies detA (o, A) = 0, where the characteristic
matrix A(o,A) is given by

Ao, 1) = AD(a)(e*V1d) — L(ar) (e*1d).

Itis well known that ¢ € C, ¢ is an eigenvector of 7, associated with the eigenvalue
A if and only if ¢(8) = e*®b for 6 € [~7,0] and some vector b € R” such that
A(a,A)b = 0. Let E, 5 be the eigenspace of .7, associated with the eigenvalues
A and A. Assume that <% has a pair of purely imaginary eigenvalues +iw. The
symmetry group I" often causes purely imaginary eigenvalues to be multiple. So,
we always assume the following:
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(NHB1) . has a pair of purely imaginary eigenvalues +i®, each of multiplicity
m, and no other eigenvalue of <) is an integer multiple of i®.

In studying the bifurcation problem, we wish to consider how the eigenvalues of
g cross the imaginary axis at oo = 0 and to describe the structure of the associ-
ated eigenspace E, 3. We consider the following nontrivial restrictions on the cor-
responding imaginary eigenspace of .2:

(NHB2) The imaginary eigenspace E ¢ of <7 is I"-simple.

Thus, we make use of the implicit function theorem and Lemma 1.5 on Page 265 of
Golubitsky et al. [118] and obtain the following results about the multiplicity of this
eigenvalue and its associated eigenvectors of .o7,.

Theorem 5.5. Under conditions (NHB1)—(NHB2), for sufficiently small o, the in-
finitesimal generator oy has one pair of complex conjugate eigenvalues o (o) +
ip(a), each of multiplicity m. Moreover, ¢ and p are smooth functions of o and
satisfy 6(0) = 0 and p(0) = .

In view of (NHB1), the purely imaginary eigenvalues of .o%) have high multiplic-
ity, so the standard Hopf bifurcation theorem cannot be applied directly. So, we first
develop the equivariant Lyapunov—Schmidt reduction for (5.45) to consider the ex-
istence of periodic solutions. Let %, (respectively, %) ) be the Banach spaces of con-
tinuous (respectively, differentiable) n-dimensional %-periodic functions equipped
with their usual sup-norms. It is easy to see that 6, is a Banach representation of
the group I" x S! with the action given by

(7,0)u(t) = p(Pu(t+06), for (y,0)el xS

In view of the complexity in analyzing NFDEs, we introduce two kinds of bilinear
forms. One is the inner product (-,-) : € X G, — R defined by (5.22). The other is
(+,) : Cnr X Cpr — R defined by

(v.0) =¥ (0)9(0) — [°, [ [sW" (& —5)du(0,0)p(&)dE] _,
— 2 JE T (& —68)dn(0,0)9(&)déE

fory € C,rand ¢ € C, 1. Let B € (—1,1), x(r) = u((1 4 B)r). Then (5.45) can be
rewritten as

(5.48)

(14 B) (et ) = flot ).

where u, g(8) = u (t+ (1+ B)0) for 6 € [—7,0]. Define F : €, x R* — 6, by

F,0B) = — (1 B) (e, ) + F (ot ). (5.49)

so solutions to F(u, o, ) = 0 correspond to (Hz%-periodic solutions of (5.45).

It follows that the I'-equivariance of L and f that F is I" x S'-equivariant:
(7,0)F (u, 0, ) = F((7,0)u, 0, B),
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for all (y,0) € I' x S!. The linearized operator . of F with respect to u at
(u,ct, ) = (0,0,0) is given by

Lu= —%D(O)ut +L(0)u.

With respect to the inner product (-, ) : G, X 6 — R, the adjoint operator of .Z is

7d
T dr

L u

0 0
[u(t)— d,uT(O,G)u(t—G)] + [ dn’(0,0)u(r—0).
—T —T
It follows from (NHB1) that Ker.Z = E j, and Ker.Z* = E; , both of which are
2m-dimensional. Furthermore, we have the following result. '

Lemma 5.6. Spaces Ker.Z, Ran.¥, and W = (Ker.£*)* N6, are I x S'-invariant
subspaces of €. Moreover, €y = Ker ®Ran and € = KerL o W

Let P and I — P denote the projection operators defined by
P:%y» — Ran.?, I-P:%, — KerZ.

Obviously, P and I — P are I" x S'-equivariant. Thus, F (1, o, ) = 0 is equivalent to
the following system:

PF(u,0,f) =0,  (I—P)F(u, 0, ) =0. (5.50)

According to the above direct sum decomposition, for each u € €}, there is a unique
decomposition such that u = v+ w, where v € Ker.Z and w € #'. Applying the im-
plicit function theorem, we obtain a continuously differentiable I x S'-equivariant
map W : Ker.Z x R? — # such that W(0,0,0) = 0 and

PF(v+W(v,o,f),a,8)=0. (5.51)

Substituting w = W (v, ct, ) into the second equation of (5.50), we have

dv,a.B) E 1= P)Fv+W(v,a,B),a,B) = 0. (5.52)

Thus, we reduce our Hopf bifurcation problem to the problem of finding zeros of the
map ¥: Ker.Z x R? — Ker.. We refer to ¥ as the bifurcation map of the system
(5.45). It follows from the I" x S'-equivariance of F and W that the bifurcation map
¥ is also I" x S'-equivariant. Moreover, (0,0,0) = 0 and ©,(0,0,0) = 0.

Finding periodic solutions to (5.45) rests on prescribing in advance the symme-
try of the solution we seek. This can often be used to select a subspace on which
the eigenvalues are simple. In addition, we should take temporal phase-shift sym-
metries in terms of the circle group S' into account as well as spatial symmetries.
Here, we place emphasis on two-dimensional fixed-point subspaces and assume the
following:
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(NHB3) dimFix(Z,E 3) = 2 for some subgroup X of I" x St
(NHB4) 0¢'(0) #0.
Assumption (NHB4) is the transversality condition analogous to those of the stan-

dard Hopf bifurcation theorem. Now we can present our main results about equiv-
ariant Hopf bifurcation.

Theorem 5.6. Under conditions (NHB1)-(NHB4), in every neighborhood of (x =
0,0 = 0), system (5.45) has a bifurcation of periodic solutions whose spatiotempo-
ral symmetry can be completely characterized by X.

Proof. We consider the restriction mapping 9: Fix(Z,Ker.Z) x R? — Ker.Z of ¥:
Ker.Z x R? — Ker.Z on Fix(Z,Ker.Z) x R?, i.e.,

d(v,a,B) = (I-P)F(v+W(v,a,B), o, p)

for v € Fix(Z,Ker.Z), o € R, and B € R. Clearly, 9} is also I x S'-equivariant and
satisfies

$(0,0,0)=0, 3,(0,0,0) = 0. (5.53)

Moreover, it is easy to see that Rand C Fix(X,Ker.Z). Namely, 9 maps
Fix(Z,Ker.Z) x R? to Fix(Z,Ker.Z). Therefore, we only need to consider the
existence of nontrivial zeros of 9.

Without loss of generality, assume that Fix(X,Ker.¥) = span{q,q}, where
q(0) = Ae!®® and A € C" satisfies A(0,iB)A = 0. Thus, there exists p €
Fix(Z,Ker.Z*) such that (p,q) = 1, where p(0) = Bel®® and B € C" sat-
isfies ETA;L(O,ia))A =1 and BTA(0,iB) = 0. Obviously, Fix(Z,Ker.?)" =
Fix(Z,Ker.Z*) = span{p,p}. As stated in Theorem 5.5, for sufficiently small
o, the infinitesimal generator .7, has one pair of complex conjugate eigenvalues
A (o) and A (o), each of multiplicity m, satisfying 1 (0) = i®. By a similar argument
to that in the proof of Corollary 5.1, we have

B' Ay (0,i®)A + 2/(0) = 0. (5.54)
For each ¢ € Fix(Z,Ker.?), ¢ = zq+7q, where z= (p,¢). Let

g(z,0,8) € (p, B (zq+79,0,B)).

Thus, we only need to consider the existence of nontrivial solutions to g(z, ¢, ) =0.
It follows from (5.53) that

gZ(O,O,O) = 07 gz(0,0,0) =0. (555)

It is easy to see that g(z,c,3)) is S'-equivariant. Thus, we can find two functions
R,3 : R? — R such that

gz, B) = R(|z]*, e, B)z+3(|z]*, &, B)iz. (5.56)

It follows from g.(0,0,0) = 0 that 9t(0,0,0) = 0 and $(0,0,0) = 0. Let z =
re'®. Then solving g is equivalent to solving either » = 0 or R(r?, &, ) = 0 and
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3(r?,at,B) = 0. In view of the implicitly defined function W (v, ct, ), which van-
ishes through first order in v = zg + 7g, we have

Fv+W(v,aB),o,B) =—(1+B)$D(a)v, g+ L(ot)v, g+ O(|z?).

Fo(v+W(v,
Fg(v+W(v,

where we have Q = —$D'(0)+L'(0), Zv, = %[—(1+[3)%D((x)vtﬁ—i—L(a)v,ﬁ]
=0, D'(0) = “LD(0t)|g—0, and L'(0) = L L(c)| 0. Notice that
(p,Qq) = (Be' [im [ dpie(0,0)Ae®+0) 1 [0 ane,(0,0)Aei @ +0))
=B [, i0dpe(0,0) +dna(0,0)Ac?
= —B A (0,i0)A,
(p,2q) = —(Be” ioe'® —im [°_ du(0,0)A[l +iw6]ei®!+0)
+ioB' [°_dn(0,0)A6¢®?
= —iwB' A+ioB' [°.du(0,0)A[l +iw6]c@?
+ioB" [°,dn(0,0)A6¢2?

= —iw.

It follows from (5.54) that {p, Qq) = A'(0). Similarly, we have (p, Qg)={(p,=Eq)=0.
Therefore,

ga(z,0,0) = <paFOC(V7070)> = ZA‘/(O) + 0(|Z|2)7

88(2,0,0) = (p, F3(v,0,0)) = —iwz+ O(|z]?).

Then

R (0,0,0) =Re{A/(0)}, S$4(0,0,0) = Im{1'(0)},
R(0,0,0) =0, 35(0,0,0) = —o.

So the Jacobi determinant of the functions R and S with respect to o« and 3 is

R (0,0,0) Rg(0,0,0)

34(0,0,0) 35(0,0,0) | ~ —oRe{1'(0)}.

det

Thus, under condition (NHB4), the above Jacobi determinant is nonzero. The im-
plicit function theorem implies that there exists a unique function ¢ = a(r?) and
B = B(r?) satisfying &(0) = 0 and 3(0) = 0 such that

R, a(P),B() =0, S(Pa(2).B(P) =0 (5.57)
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for all sufficiently small r. Therefore, g(z, &(|z|*), B(|z|*)) = 0 for z sufficiently near
0. Therefore, system (5.45) has a bifurcation of periodic solutions whose spatiotem-
poral symmetry can be completely characterized by X. This completes the proof of
Theorem 5.6. O

Remark 5.3. Theorem 5.6 implies that a Hopf bifurcation for (5.45) occurs at o = 0.
Namely, in every neighborhood of (x = 0, o = 0), there is a branch of X-symmetric
periodic solutions x(z, &) with x(7, ) — 0 as o — 0. The period T, of x(¢, o) satis-
fies Ty — %” as o — 0. Moreover, I"-equivariance implies that there are (I" x S') /X
different periodic solutions, which have isotopy subgroups conjugateto X in I" x S'.

In what follows, we consider the bifurcation direction. Assuming sufficient
smoothness of 4 and f, we write

1 1
h(0,9) = D(0)g+572(9,0) + = #7(0,0,0) +o(o])
1

1(0,9) = LO)p+57(9,0) + .7 (¢0,0,0) +o(lloll).

AN =

In view of (5.51), we have PF(zqg+7Zg+ W (zq+7q,, ), a, ) = 0. Write W(zq +
7q,0,0) and g(z,0,0) as

1 1
W(zg+7q,0,0)= > B 127 g(z,0,0) = D Wgslzszl.
=2 S siz2 5

It follows from (5.56) that go; = R;(0,0,0) +i3,(0,0,0), where R (u,0,B) =
Ru(u,0,B) and 3y (u, 0, B) = 3y (u, o, B). Therefore, R;(0,0,0) = Re{gz} and
$1(0,0,0) = Im{gs; }. From (5.57), we can calculate the derivatives of o(r?) and
B(r?) and evaluate at r = 0:

R Im{A’(0)g21
o' (0) = — iy, B'(0)=-550k0.

The bifurcation direction is determined by signo/’(0), and the monotonicity of the
period of the bifurcating closed invariant curve depends on signf3’(0). Using a sim-
ilar argument to that in [117], we have

g1 = (. 7(4,4,9) — §7¢°(4,4:9))
+2<p7fg.2(qawll) _%%Z(QJ/VII))
+<p7fg~2(317W20) - %%Z(auwﬂ)))'

We still need to compute Wy and Wpg. In fact, it follows that
Wy = —2L'P{-§%(q,9)+7*(4,9)},

Wi = —gflp{_%f%ﬂz(%?)+jz(%7)}'
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In order to evaluate the function W»y, we must solve the following differential
equations:

d d
4 Do)y — LO)Wa = P{—sz(q,q) ; 3ﬂ<q,q>} L 659)

Note that
H2(q.q) = H*(AS?0) | Aei®0))e2ior

and
F2(q,q) = F(Ae®) Ael®V))eHO

So, 820 = (p,— §*(4,9) + F(q.4)) = 0. Namely, —§.77(q.q) + 7*(q,q) €
Ran.Z. Hence, the projection P on — $.5#2(q,q) +.7%(q.q) acts as the identity, and
(5.58) is an inhomogeneous difference equation with constant coefficients. Thus,
there is a particular solution of (5.58) of the form Wy, (t) = D,e*®". Substituting
W55 into (5.58) and comparing the coefficients, we obtain

D> = A71(0,2i) {3«‘2 (A6i°0) Al®0)) 2ig 2 (Aei@0) ,Aeiw<'>)} . (5.59)

In addition, Wy, is orthogonal to p, so it belongs to Ran.Z’. Thus W»(0,0,0) is equal
to W5, with D, determined by (5.59). Similarly, we have

gn=g11=0, Wp=Dye >, W=Dy,
where Dy = A~1(0,0).72(Ae'®(), Ae 1)), Therefore,

821 = B 73 (Aei“’('>,Aei“’('),Ze’i“’(')) —ioB A3 (Aei“’('>,Aei“’('),Ze’iw('>)
+2B" 72(Ae®0) Dy) — 2i0B" A#2(A®0), Dy)
B 7 (Ae 00, Do) — 0B A(Fe 00, Dyeio0)

We summarize the above discussion as follows.

Theorem 5.7. In addition t