
CHAPTER 6

Stationary Stochastic Processes

6.1. Weak Definition of a Stochastic Process

This chapter is devoted to further topics in the theory of stochastic
processes and their applications. We start with a weaker definition of a
stochastic process that is sufficient in the study of stationary processes.
We said before that a stochastic process is a function u of both a vari-
able ω in a probability space and a continuous parameter t, making u
a random variable for each t and a function of t for each ω. We made
statements about the kind of function of t that was obtained for each ω.
The definition here is less specific about what happens for each ω.

Consider a collection of random variables u(t, ω) ∈ C parametrized
by t.

Definition. We say that u(t, ω) is a real-valued stochastic process
if for every finite set of points t1, . . . , tn, the joint distribution of u(t1, ω),
. . ., u(tn, ω) is known:

Ft1,...,tn(y1, . . . , yn) = P (u(t1) ≤ y1, . . . , u(tn) ≤ yn).

The family of functions Ft1,...,tn(y1, . . . , yn) must satisfy some natural
requirements:

1. F ≥ 0.
2. F (∞, . . . ,∞) = 1 and F (−∞, . . . ,−∞) = 0.
3. Ft1,...,tn(y1, . . . , ym,∞, . . . ,∞) = Ft1,...,tm(y1, . . . , ym).
4. If (i1, . . . , in) is a permutation of (1, . . . , n), then

Fti1 ,...,tin
(yi1, . . . , yin) = Ft1,...,tn(y1, . . . , yn).

This definition has a natural extension to complex-valued processes, in
which one assumes that one knows the joint distribution of the real and
complex parts of u.
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110 6. STATIONARY STOCHASTIC PROCESSES

A moment of u(t, ω) of order q is an object of the form

Mi1,...,in = E[ui1(t1) · · ·uin(tn)],
n∑

j=1

ij = q.

If a stochastic process has finite moments of order q, it is a process of
order q. The moment

E[u(t, ω)] = m(t)

is the mean of u at t. The function

E
[
(u(t1, ω)−m(t1))(u(t2, ω)−m(t2))

]
= R(t1, t2)

is the covariance of u. Let us list the properties of the covariance of u:

1. R(t1, t2) = R(t2, t1).
2. R(t1, t1) ≥ 0.

3. |R(t1, t2)| ≤
√

R(t1, t1)R(t2, t2).
4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑

i=1

n∑

j=1

R(ti, tj)zizj ≥ 0.

The first three properties are easy to establish; the fourth is proved as
follows: For any choice of complex numbers zj, the sum

n∑

i=1

n∑

j=1

R(ti, tj)zizj

is by definition equal to

E

⎡

⎣
∣∣∣∣∣

n∑

j=1

(u(tj)−m(tj)) zj

∣∣∣∣∣

2
⎤

⎦ ≥ 0

(i.e., to the expected value of a nonnegative quantity).

Definition. A process is stationary in the strict sense if for every
t1, . . . , tn and T ∈ R,

Ft1,...,tn(y1, . . . , yn) = Ft1+T,...,tn+T (y1, . . . , yn).

For a stochastic process that is stationary in this sense, all moments
are constant in time, and in particular, m(t) = m and R(t1, t2) =
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R(t1+T, t2+T ) for all T . Choose T = −t2; then R(t1, t2) = R(t1−t2, 0),
and it becomes reasonable to define

R(t1 − t2) = R(t1, t2),

where the function R on the left side, which has only one argument,
is also called R in the hope that there is no ambiguity. Note that
R(T ) = R(t+ T, t).

The above properties become, for the new function R,

1. R(t) = R(−t).
2. R(0) ≥ 0.
3. |R(t)| ≤ R(0).
4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑

i

n∑

j

R(ti − tj)zizj ≥ 0. (6.1)

Definition. A stochastic process is stationary in the wide sense if
it has a constant mean and its covariance depends only on the difference
between the arguments, i.e.,

1. m(t) = m.
2. R(t1, t2) = R(t1 − t2).

If a stochastic process is stationary in the wide sense and Gaussian,
then it is stationary in the strict sense (because a Gaussian process is
fully determined by its mean and covariances). Brownian motion is not
stationary. White noise is stationary (but ill defined without appeal to
distributions).

We now consider some instances of processes that are stationary
in the wide sense. Pick ξ ∈ C to be a random variable and h(t) a
nonrandom function of time, and consider the process u(t, ω) = ξh(t).
Assume for simplicity that h(t) is differentiable, and determine when a
process of this type is stationary in the wide sense. Its mean is

m(t) = E[ξh(t)] = h(t)E[ξ],

which is constant if and only if h(t) is constant or E[ξ] = 0. Suppose
E[ξ] = 0. The covariance

R(t1, t2) = E[ξh(t1)ξ h(t2)] = E[ξξ]h(t1)h(t2)

must depend only on the difference t1 − t2. Consider the special case
t1 = t2 = t. In this case, the covariance E[ξξ]h(t)h(t) must be R(0);



112 6. STATIONARY STOCHASTIC PROCESSES

hence h(t)h(t) must be constant. Therefore, h(t) is of the form

h(t) = Aeiφ(t), (6.2)

where A is a constant and φ(t) a function of t that remains to be
determined. Now we narrow the possibilities some more. Suppose
A �= 0. Then

R(t1 − t2) = |A|2E[ξξ]eiφ(t1)−iφ(t2).

Set t1 − t2 = T and t2 = t. Then

R(T ) = |A|2E[ξξ]ei[φ(t+T )−φ(t)]

for all t, T . Since R(T ) = R(−T ), we see that

φ(t+ T )− 2φ(t) + φ(t− T )

T 2
= 0.

Letting T → 0 gives φ′′(t) = 0 for all t, so φ(t) = λt+β, where λ, β are
constants. Also eiβ is a constant. We have therefore shown that the
process u(t, ω) = ξh(t) is stationary in the wide sense if h(t) = Ceiλt

(where C, λ are constants) and E[ξ] = 0.

6.2. Covariance and Spectrum

In the last section, we presented an example of a stationary sto-
chastic process in the wide sense, given by u(t, ω) = ξeiλt, where ξ is a
random variable with mean 0. This stochastic process has a covariance
of the form

R(T ) = R(t1, t2) = R(t1 − t2) = E[|ξ|2]eiλT ,
where T = t1 − t2. Now we want to generalize this example. First, we
try to construct a process of the form

u(t, ω) = ξ1e
iλ1t + ξ2e

iλ2t,

with λ1 �= λ2. Then E[u] = E[ξ1]e
iλ1t+E[ξ2]e

iλ2t, which is independent
of t if E[ξ1] = E[ξ2] = 0. The covariance is

E
[
(ξ1e

iλ1t1 + ξ2e
iλ2t1)(ξ1e

−iλ1t2 + ξ2e
−iλ2t2)

]

= E
[|ξ1|2eiλ1T + |ξ2|2eiλ2T + ξ1ξ2e

iλ1t2−iλ2t2 + ξ1ξ2e
iλ1t1−iλ2t2

]
,
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which can be stationary only if E[ξ1ξ2] = 0. Then u(t, ω) is stationary
and

R(T ) = E[|ξ1|2]eiλ1T + E[|ξ2|2]eiλ2T .

More generally, a process u =
∑

j ξje
iλjt is stationary in the wide

sense if E[ξjξk] = 0 when j �= k and E[ξi] = 0. In this case,

R(T ) =
∑

E
[|ξj|2

]
eiλjT .

This expression can be rewritten in a more useful form as a Stieltjes in-
tegral. Recall that when q is a nondecreasing function of x, the Stieltjes
integral of a function h with respect to q is defined to be

∫
h dq = lim

max{xi+1−xi}→0

∑
h(x∗

i )[q(xi+1)− q(xi)],

where xi ≤ x∗
i ≤ xi+1. If q is differentiable, then

∫ b

a

h dq =

∫ b

a

hq′ dx.

Suppose q(x) is the step function

q(x) =

{
0, x < c,

q0 x ≥ c,

with a ≤ c ≤ b. Then
∫ b

a
h dq = h(c)q0 if h is continuous at c. We

define the function G = G(k) by

G(k) =
∑

{j|λj≤k}
E[|ξj|2];

i.e., G(k) is the sum of the expected values of the squares of the ampli-
tudes of the complex exponentials with frequencies less than or equal
to k. Then R(T ) becomes

R(T ) =

∫ +∞

−∞
eikTdG(k).

We shall now see that under some technical assumptions, this rela-
tion holds for all stochastic processes that are stationary in the wide
sense. Indeed, we have the following theorem.
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Theorem 6.1 (Khinchin).

1. If R(T ) is the covariance of a stochastic process u(t, ω),
stationary in the wide sense such that

lim
h→0

E
[|u(t+ h)− u(t)|2] = 0,

then R(T ) =
∫
eikTdG(k) for some nondecreasing function

G(k).
2. If a function R(T ) can be written as

∫
eikTdG(k) for some

nondecreasing function G, then there exists a stochastic pro-
cess, stationary in the wide sense, satisfying the condition in
part (1) of the theorem, that has R(T ) as its covariance.

Khinchin’s theorem follows from the inequalities we have proved
for R; indeed, one can show (but we will not do so here) that a
function that satisfies these inequalities is the Fourier transform of a
nonnegative function. If it so happens that dG(k) = g(k) dk, then
R(T ) =

∫
eikTg(k) dk, and g(k) is called the spectral density of the

process. Thus, Khinchin’s theorem states that the covariance function
is a Fourier transform of the spectral density. Hence, if we know R(T ),
we can compute the spectral density by

g(k) =
1

2π

∫ +∞

−∞
e−ikTR(T ) dT.

For a nonrandom periodic function, one can define an energy per
wave number k as the squared amplitude of the kth Fourier coefficient;
for a nonrandom aperiodic function, one can define the energy per wave
number as the squared magnitude of the Fourier transform. The sam-
ples of a stationary stochastic process do not have Fourier transforms
in the usual sense, because they do not tend to zero at ±∞, but one
can still define an average energy per wave number for a stationary
stochastic process by the Fourier transform of the covariance.

Example. Consider white noise, the derivative (in a sense we have
not discussed) of Brownian motion. One can show that R(T ) = δ(T )
(see the exercises). Its spectral density (interpreted carefully) is φ(k) =
1/2π; thus, all frequencies have the same amplitude. The adjective
“white” comes from the fact that in white light, all frequencies are
present with the same amplitude. A stationary random function that
is not white noise is called colored noise.
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6.3. The Inertial Spectrum of Turbulence

To illustrate these constructions, we now derive the spectrum of
fully developed turbulence. We do not write down the equations of
motion; the only properties of these equations that will be used here
are that (a) they are nonlinear, and (b) energy dissipation by viscosity
is proportional to an integral over the domain of the sum of the squares
of the derivatives of the velocity field (a quantitive description of this
property will be given below).

Consider turbulence in a fluid, far from any solid boundaries, with
the Reynolds number Re = U	0/ν very large, where U is a typical ve-
locity difference in the flow, 	0 is a length scale for the flow, and ν is
the viscosity; the dimensionless number Re is large when the velocity
differences are large and the viscosity is small, which are the circum-
stances when turbulence appears; U is chosen to be a typical velocity
difference rather than a typical velocity because a velocity component
common to the whole flow field is not relevant when one is studying
turbulence. The large scales of turbulent flow are typically driven by
large-scale forcing (e.g., in the case of meteorology, by the rotation of
the earth around its axis and around the sun); turbulence is charac-
terized by the transfer of energy from large scales to smaller scales at
which the energy is dissipated. One usually assumes that as the energy
moves to large wave numbers k (i.e., small scales), the specifics of the
forcing are forgotten and the flow can be viewed as approximately ho-
mogeneous (translation-invariant) and isotropic (rotation-invariant) at
small scales, and that the properties of the flow at small scales are uni-
versal (i.e., independent of specific geometry and forcing). One further
assumes that the solutions of the equations of fluid mechanics can be
viewed as random; how nonrandom equations produce solutions that
can be viewed as random is an interesting question that we will not
discuss here.

Assume that the velocity field is homogeneous, i.e., statistically
translation-invariant in space (not in time, as was implicitly assumed
in the previous section through the choice of the letter t for the pa-
rameter). The velocity field in three space dimensions is a vector
quantity: u = (u1, u2, u3). Each of these components is a function
of the three spatial variables x1, x2, x3. A Fourier transform in three-
dimensional space can be defined and is a function of three Fourier
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variables k1, k2, k3 that correspond to each of the spatial variables, and
we write k = (k1, k2, k3). One can define a covariance matrix

Rij(r) = E[ui(x)uj(x+ r)],

where r is a three-component vector; then Khinchin’s theorem becomes

Rii(r) =

∫ ∞

−∞
eik·r dGii(k), (6.3)

where k = (k1, k2, k3), k ·r is the ordinary Euclidean inner product, and
the functions Gii are nondecreasing. Without loss of generality in what
follows, one can write dGii(k) = gii(k) dk1 dk2 dk3 (this is so because
all we will care about is the dimensions of the various quantities, which
are not affected by a possible lack of smoothness). Setting r = 0 in
Eq. (6.3) and summing over i, we find that

E[u2
1 + u2

2 + u2
3] =

∫ ∞

−∞
(g11 + g22 + g33)dk1 dk2 dk3.

We define the left-hand side of this equation to be the specific en-
ergy (i.e., energy per unit volume) of the flow and denote it by E[u2].
Splitting the integration into an integration in a polar variable k and
integrations over angular variables, one can write

E[u2] =

∫ ∞

0

E(k)dk,

with

E(k) =

∫

k21+k22+k23=k2
(g11 + g22 + g33) dS(k),

where dS(k) is an element of area on a sphere of radius k. We de-
fine E(k) to be the energy spectrum; it is a function only of k =√
k2
1 + k2

2 + k2
3. The energy spectrum can be thought of as the por-

tion of the energy that can be imputed to motion with wave numbers
of magnitude k.

The kinetic energy of the flow is proportional to the square of the
velocity, whereas energy dissipation is proportional to the square of the
derivatives of the velocity; in spectral variables (i.e., after Fourier trans-
formation), differentiation becomes multiplication by k, the Fourier
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variable. A calculation, which we skip, shows that D, the energy
dissipation per unit volume D, can be written as

D =

∫ ∞

0

k2E(k)dk,

where E(k) is the energy spectrum. This calculation requires some
use of the equations of motion, and this is the only place where those
equations are made use of in the argument of this section.

It is plausible that when Re is large, the kinetic energy resides in a
range of k’s disjoint from the range of k’s where the dissipation is taking
place, and indeed, experimental data show it to be so; specifically, there
exist wave numbers k1 and k2 such that

∫ k1

0

E(k) dk ∼
∫ ∞

0

E(k) dk,

∫ ∞

k2

k2E(k) dk ∼
∫ ∞

0

k2E(k) dk,

with k1 	 k2. This observation roughly divides the spectrum into three
pieces: (a) the range between 0 and k1, the energy range, where most of
the energy resides; what happens in this range depends on the bound-
ary and initial conditions and must be determined separately for each
turbulent flow; (b) the dissipation range k > k2, where the energy is
dissipated; and (c) the intermediate range between k1 and k2; this range
is the conduit through which turbulence moves energy from the energy
range to the dissipation range, and it is responsible for the enhanced
dissipation produced by turbulence (see Fig. 6.1). One can hope that
the properties of turbulence in the intermediate range are universal, i.e.,
independent of the particular flow one is studying. The nonlinearity of
the equations couples the energy range to the intermediate range, and
if one can find the universal properties of the intermediate range, one
can use them to compute in the energy range. We now determine these
universal properties.

We will be relying on dimensional analysis (see Chap. 1). The spec-
trum in the intermediate range E(k) is a function of k, the viscosity
ν, the length scale of the turbulence 	0, the amplitude U of the typi-
cal velocity difference in the flow, and the rate of energy dissipation ε.
This last variable belongs here because energy is transferred from the
low-k domain through the intermediate range into the large-k domain,
where it is dissipated; the fact that ε belongs in the list was the brilliant
insight of Kolmogorov.
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kk1 k2

k2E(k)E(k)

Figure 6.1. Sketch of the energy, inertial, and dissipa-
tion ranges in turbulence.

Our basic units are the units of length and of time. Suppose the
former is reduced by a factor L and the latter by a factor T . The di-
mension of the viscosity is L2/T , that of ε is L2/T 3, that of k is 1/L,
and the equation E[u2] =

∫
E(k) dk shows that the dimension of E

is L3/T 2. Dimensional analysis yields E(k)(ε−2/3k5/3) = Φ(Re, 	0k) for
some unknown function Φ of the two large arguments Re and 	0k; Re is
large because this is the condition for fully developed turbulence to ap-
pear, and 	0k is large in the intermediate range of scales. If the function
Φ has a finite nonzero limit C as its arguments grow (an assumption of
complete similarity), one can deduce E(k) = Cε2/3k−5/3, which is the
famous Kolmogorov–Obukhov scaling law for the intermediate range of
fully developed turbulence, the cornerstone of turbulence theory. Note
that the viscosity has dropped out from this result, leading to the con-
clusion that the dynamics of the intermediate range are purely inertial,
i.e., independent of viscosity; this is why the intermediate range is usu-
ally called the inertial range.

This law is not fully satisfactory for various reasons, and a number of
correction schemes have been proposed over the years. In recent years,
it has been argued that the unknown function Φ behaves, as its argu-
ments tend to infinity, like C(Re)(	0k)

−d/ log(Re)Φ0(Re, 	0k), where it is
Φ0 that tends to a nonzero constant as its arguments grow, C(Re) is a
function of Re, and d is a positive constant; the exponent −d/ log(Re)
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is an anomalous exponent. This is an assumption of incomplete simi-
larity, which leads, for large Re and 	0k, to the relation

E(k) = C(Re)ε2/3k−5/3(	0k)
−d/ log(Re).

The exponent −5/3 is corrected by the small quantity −d/ log(Re); this
quantity is a function of the Reynolds number Re, but its variation with
Re is slow. However, this correction violates the assumption that the
intermediate range is purely inertial. Other proposals for the anomalous
exponent, without a dependence on Re, have also been made.

6.4. Time Series

Suppose we are observing a stochastic process u(t, ω), have been
observing it long enough to know that it is stationary and to determine
its temporal covariances, and suppose we are given observed values
U(s) of u(t, ω) for s ≤ t (we denote observed values by capital letters).
The question we address in this section is how to predict a value for
u(t + T, ω) based on the information we have. For simplicity, we shall
do so only for a stationary random sequence.

Definition. A stationary random sequence is a collection u(t, ω) of
random variables for t = 0, 1, 2, 3, . . . as well as for t = −1,−2,−3, . . .
such that the joint distribution of every subset is known, subject to the
obvious compatibility conditions, and such that all the distributions are
invariant under the transformation t → t+ T for T an integer. Such
sequences are also known as time series.

Assume E[u(t)] = 0. The covariance is

R(T ) = E[u(t+ T )u(t)],

where T ∈ Z satisfies, as before, the following conditions:

1. R(0) ≥ 0.
2. |R(T )| ≤ R(0).

3. R(T ) = R(−T ).
4.
∑

i,j R(i− j)zizj ≥ 0.

If u(t, ω) = ξ(ω)h(t) is stationary, we can repeat the arguments in
Sect. 4.1. Since R(0) = E[|u|2] = E[|ξ|2]|h(t)|2, we see that h(t) =

Aeiφ(t) for t = 0,±1, . . .. Since R(1) = R(−1), we obtain

φ(t+ 1)− φ(t) = −(φ(t− 1)− φ(t)) mod 2π



120 6. STATIONARY STOCHASTIC PROCESSES

for t = 0,±1, . . .. Setting φ(0) = α and φ(0) − φ(−1) = λ, we find by
induction that φ(t) = α+λt mod 2π. Consequently, h(t) = Aei(α+λt) =
Ceiλt for all integers t, where C = Aeiα is a possibly complex constant
and λ is an integer.

Define a periodic function g of the argument k by

g(k) =
1

2π

+∞∑

T=−∞
R(T )e−iTk,

where T takes on integer values. Note that if R(T ) does not converge
rapidly enough to 0 as |T | increases, g may not be smooth. Then
R(T ) =

∫ π

−π
eiTkg(k)dk. (The factor 2π of Fourier theory is broken up

here differently from how we did it before.)
One can show that if R(T ) is a covariance for a time series,

then g ≥ 0. Conversely, if R(T ) is given for all integers T , and if
1
2π

∑
T R(T )e−iTk ≥ 0, then there exists a time series for which R(T ) is

the covariance. This is Khinchin’s theorem for a time series.
Consider the problem of finding an estimate for u(t + m,ω) when

one has values u(t−n), u(t− (n−1)), . . ., u(t−1). Nothing is assumed
here about the mechanism that produces these values; all we are going
to use is the assumed fact that the time series is stationary, and that
we know the covariance. If the covariance vanishes whenever T �= 0,
then the u(t) are uncorrelated, and no useful prediction can be made.
We would like to find a random variable û(t+m,ω) with m = 0, 1, 2, . . .
such that

E
[|u(t+m,ω)− û(t +m,ω)|2]

is as small as possible. We know from Sect. 2.3 that

û(t+m,ω) = E[u(t+m,ω)|u(t− 1), u(t− 2), . . . , u(t− n)].

The way to evaluate û is to find a basis {φi} in the space of functions
of {u(t− n), . . . , u(t− 1)}, expand û in this basis, i.e.,

û =
n∑

j=1

ajφj(u(t− 1), . . . , u(t− n)),

and calculate the coefficients aj of the expansion. This is hard
in general. We simplify the problem by looking only for the best
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approximation in the span of {u(t − 1), . . . , u(t − n)}, i.e., we look
for a random variable

û(t+m,ω) =

n∑

j=1

aju(t− j, ω).

This is called linear prediction. The span L of the u(t− j, ω) is a closed
linear space; therefore, the best linear prediction minimizes

E
[|u(t+m,ω)− û(t +m,ω)|2]

for û in L. What we have to do is to find {aj}nj=1 such that

E

⎡

⎣
∣∣∣∣∣u(t+m,ω)−

n∑

j=1

aju(t− j, ω)

∣∣∣∣∣

2
⎤

⎦

is as small as possible. We have

E[|u− û|2]

= E

⎡

⎣
(
u(t+m)−

∑

j

aju(t− j)

)(
u(t+m)−

∑

l

alu(t− l)

)⎤

⎦

= E

[
u(t+m)u(t+m)−

∑

l

alu(t+m)u(t− l)

−
∑

j

aju(t+m)u(t− j) +
∑

j

∑

l

ajalu(t− j)u(t− l)

]

= R(0)− 2Re

(
∑

j

ajR(m+ j)

)
+
∑

j

∑

l

ajalR(l − j),

which is minimized when

1

2

∂E [|u− û|2]
∂aj

= −R(m+ j) +
n∑

l=1

alR(j − l) = 0 (6.4)

for j = 1, . . . , n. Here we use the fact that if q(x, y) =
Q(x+ iy, x− iy) = Q(z, z̄) is real, then qx = qy = 0 if and only if
Qz̄ = 0 or Qz = 0 (see also Exercise 6, Chap. 1). The uniqueness of
the solution of the system (6.4) and the fact that this procedure gives
a minimum are guaranteed by the orthogonal projection theorem for
closed linear spaces (see Sect. 1.1). The problem of prediction for time
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series has been reduced (in the linear approximation) to the solution of
n linear equations in n unknowns. This concludes our general discussion
of prediction for time series.

We now turn to a special case in which this linear system of equa-
tions can be solved analytically with the help of complex variables.
The reader not familiar with contour integration should fast forward
at this point to the next section. Rewrite (6.4) in terms of the Fourier
transform. The spectral representation of R(T ) is

R(T ) =

∫ π

−π

eikTg(k) dk.

Then (6.4) becomes

∫ π

−π

(
−ei(j+m)k +

n∑

l=1

ale
i(j−l)k

)
g(k) dk = 0.

Moving eijk outside the parentheses, we get

∫ π

−π

eijk

(
eimk −

n∑

l=1

ale
−ilk

)
g(k) dk = 0. (6.5)

So far, (6.5) is just a reformulation of (6.4). To continue, we need an
explicit representation of g(k). Consider the special case R(T ) = Ca|T |

for T = 0,±1,±2, . . ., where C > 0 and 0 < a < 1. Is R the covariance
of a stationary process? It certainly satisfies conditions 1, 2, 3. To
check condition 4, we compute

g(k) =
1

2π

∞∑

n=−∞
R(n)e−ink

=
C

2π

[ ∞∑

n=1

(ae−ik)n + 1 +

∞∑

n=1

(aeik)n

]

=
C

2π

[
ae−ik

1− ae−ik
+ 1 +

aeik

1− aeik

]

=
C

2π

1− a2

(1− ae−ik)(1− aeik)
> 0.

This shows that R(T ) is the Fourier transform of a nonnegative func-
tion, and consequently the covariance of a stationary process.
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Assume for simplicity that C(1−a2)/(2π) = 1. We solve (6.5) using
complex variables. Let eik = z. Then z̄ = z−1, dk = dz/(iz), and (6.5)
becomes

1

2π

∫

|z|=1

zj

(
zm −

n∑

�=1

a�z
−�

)
1

(z − a)
(
1
z
− a
) dz
iz

= 0

for j = 1, 2, . . . , n. We must therefore determine a1, . . . , an such that

n∑

�=1

a�
1

2πi

∫

|z|=1

zj−�(1− az)−1

z − a
dz =

1

2πi

∫

|z|=1

zj+m(1− az)−1

z − a
dz.

We find the coefficients recursively by comparing two consecutive values
of j, starting from the back. Let j = n and j = n − 1. Using residue
theory, we get

n∑

�=1

a�a
n−�

1− a2
=

an+m

1− a2
,

n−1∑

�=1

a�a
n−1−�

1− a2
+ an

[
a−1

1− a2
+

(1− a · 0)−1

0− a

]
=

an−1+m

1− a2
.

Multiplying the last equation by a and subtracting, we get an = 0. This
simplifies the next step with j = n− 1 and j = n− 2 substantially, and
using similar arguments, we obtain an−1 = 0. In the last step,

a1
2πi

∫

|z|=1

z

z

(1− az)−1

z − a
dz =

1

2πi

∫

|z|=1

z1+m(1− az)−1

z − a
dz,

which yields a1(1 − a2)−1 = a1+m(1 − a2)−1, or a1 = a1+m. We have
therefore shown that if R(T ) = Ca|T | with 0 < a < 1, then the best
approximation of u(t+m,ω) for m = 0, 1, . . . is a1+mu(t− 1, ω). This
is intuitively obvious: the correlations between variables decays like a
to the power of the distance between them, so the predictive power of
the last-measured quantity decays in the same way.

6.5. Random Measures and Random Fourier Transforms

We showed previously that the covariance of a wide-sense stationary
stochastic process can be written as the Fourier transform of a spec-
tral density. We now use this fact to find useful representations for
the process itself, including a stochastic generalization of the Fourier
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transform that does not require that the process have samples to which
the Fourier transform can be applied individually. These representa-
tions will be convolutions of nonrandom functions with certain simple
processes.

The reader may wish to know that the material in the present sec-
tion will not be used in the remainder of the book, and therefore can
be skipped on a first reading.

Given a probability space (Ω,B, P ), consider the set of random
variables f(ω), where ω is in Ω, such that E[f f̄ ] < ∞. We refer
to this set as L2(Ω,B, P ). We now construct a one-to-one mapping
L2(Ω,B, P ) → L2(A, μ), where A is a subset of the t-axis and μ is a
measure on A. Consider A, an algebra of subsets of A, i.e., a collection
of sets with the property that if the sets Ai are in A, then so are their
complements, as well as their finite unions and intersections; an alge-
bra is much like a σ-algebra, with the exception that we do not require
that the union of a countably infinite family of subsets belong to the
algebra, a detail that is important in a rigorous analysis, but which we
will disregard here.

Consider the triple (A,A, μ), where μ is a rule that to each subset
Ai ∈ A assigns a number such that

1. μ(Ai) ≥ 0.
2. μ(Ai) is finite.
3. μ(∅) = 0.
4. Ai ∩Aj = ∅ ⇒ μ(Ai ∪Aj) = μ(Ai) + μ(Aj).

(Again, note that we are concerned only with finitely many Ai.) Next,
construct a random variable ρ = ρ(Ai, ω), where Ai ∈ A and ω ∈ Ω
(recall that a random variable is a function defined on Ω), that has the
following properties:

1. Ai ∩Aj = ∅ ⇒ ρ(Ai ∪ Aj , ω) = ρ(Ai, ω) + ρ(Aj , ω).
2. ρ(Ai, ω) is square integrable, i.e., E[ρ(Ai, ω)ρ̄(Ai, ω)] < ∞.
3. ρ(∅, ω) = 0.
4. Ai, Aj ⊂ A ⇒ E[ρ(Ai, ω)ρ̄(Aj, ω)] = μ(Ai ∩Aj).

The properties listed above imply that μ(Ai) ≥ 0 for all Ai ∈ A, since

μ(Ai) = μ(Ai ∩Ai) = E[ρ(Ai, ω)ρ̄(Ai, ω)] ≥ 0.
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We call μ the structure function of ρ. Just as a stochastic process is
a function of both ω and t, a random measure is a function of both ω
and the subsets Ai of A.

Now define χAi
= χAi

(t), the characteristic function of the subset
Ai of the t-axis, to be

χAi
(t) =

{
1, t ∈ Ai,

0, otherwise,

and consider a function q(t) of the form

q(t) =
∑

ciχAi
(t).

We consider the case in which {Ai} is a finite partition of A, i.e., there
are only finitely many Ai, Ai ∩Aj = ∅, for i �= j, and

⋃
Ai = A. Thus,

q(t) takes on only a finite number of values. To this function q(t) assign
the random variable

f(ω) =
∑

ciρ(Ai, ω).

Hence, each characteristic function of a subset is replaced by the ran-
dom variable that the random measure assigns to the same subset; thus,
this substitution transforms a function of t into a function of ω (i.e.,
into a random variable).

Now consider the product q1(t)q2(t) of two functions of the form

q1 =

n∑

j=1

cjχAj
(t), q2 =

m∑

k=1

dkχBk
(t),

where {Bi} is another finite partition of A. It is not necessary for n
and m to be equal. There is a finite number of intersections of the Aj

and Bk, and on each of these subsets, the product

q1q2 =

(
n∑

j=1

cjχAj

)(
m∑

k=1

dkχBk

)

=

n∑

j=1

m∑

k=1

cjdkχAj∩Bk
,

takes on a constant value cjdk. Thus, the same construction allows us

to assign a random variable f1f2 to the product q1q2. Since

f1(ω) =
∑

cjρ(Aj, ω), f2(ω) =
∑

dkρ(Bk, ω),
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we conclude that

E[f1f2] = E

[
n∑

j=1

m∑

k=1

cjdkρ(Aj , ω)ρ̄(Bk, ω)

]

=

n∑

j=1

m∑

k=1

cjdkE [ρ(Aj , ω)ρ̄(Bk, ω)]

=
n∑

j=1

m∑

k=1

cjdkμ(Aj ∩Bk)

=

∫
q1q2μ(dt). (6.6)

Thus we have established a mapping between random variables with
finite mean squares and functions of time with finite square integrals
(i.e., between the random variables f(ω) and functions q(t) such that∫
q1(t)q2(t)μ(dt) is finite). Although we have defined the mapping only

for functions q(t) =
∑

ciχAi
(t), an argument that we omit enables us

to extend the mapping to all random variables and functions of t with
the square integrability properties listed above.

Example. We now show in detail how this construction works for
a very special case. Say we are given a probability space (Ω,B , P ) and
three subsets of the t-axis: A1 = [0, 1), A2 = [1, 3), and A3 = [3, 31

2
].

Each Ai is assigned a real-valued random variable ρi(ω) = ρ(Ai, ω) that
has mean 0 and variance equal to the length of Ai. For example, ρ1(ω)
has mean 0 and variance 1, and so forth. The variables ρ1, ρ2, and ρ3
are independent, and E[ρiρj ] = 0 for i �= j, where E[ρ2i ] is the length
of the ith interval. Moreover,

χ1(t) =

{
1, 0 ≤ t < 1,

0, elsewhere,

χ2(t) =

{
1, 1 ≤ t < 3,

0, elsewhere,

χ3(t) =

{
1, 3 ≤ t ≤ 31

2
,

0, elsewhere,

where
∫
χiχj dt = 0 for i �= j and

∫
χ2
i dt is the length of the ith interval.
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Now take a function of the form q1(t) =
∑

i ciχi(t), where the ci are
constants. Clearly,

f1(ω) =

3∑

i=1

ciρi(ω).

Suppose we have another function q2(t) on the same partition:

q2(t) =

3∑

j=1

djχj(t) → f2(ω) =

3∑

j=1

djρj(ω).

Then

E[f1f2] = E

[
3∑

i=1

3∑

j=1

cidjρiρj

]

=

3∑

j=1

cjdjE
[
ρ2j
]

=
3∑

j=1

cjdjμ(Aj),

where μ(Aj) is the length of Aj. Notice also that

∫ 3 1
2

0

q1(t)q2(t) dt =

∫ 3 1
2

0

3∑

i=1

3∑

j=1

cidjχi(t)χj(t) dt

=
∑

j

cjdjμ(Aj),

which verifies that q(t) → f(ω), so E[f1f2] =
∫
q1(t)q2(t)μ(dt) as

in (6.6).

Now approximate every square integrable function q on A by a step
function, construct the corresponding random variable, and take the
limit, as the approximation improves, of the sequence of random vari-
ables obtained in this way. This makes for a mapping of square inte-
grable functions on A onto random variables with finite mean squares.
This mapping can be written as

f(ω) =

∫
q(s)ρ(ds, ω)
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(the right-hand side is an integral with respect to the measure ρ), where
the variable t has been replaced by s for convenience. Now view a
stochastic process u as a family of random variables labeled by the
parameter t (i.e., there is a random variable u for every value of t) and
apply the representation just derived at each value of t. Therefore,

u(t, ω) =

∫
q(t, s)ρ(ds, ω).

Assume that u(t, ω) is stationary in the wide sense. Then the covariance
of u is

R(t1 − t2) = E[u(t1, ω)u(t2, ω)]

= E

[∫
q(t1, s1)ρ(ds1)

∫
q̄(t2, s2)ρ̄(ds2)

]

= E

[∫
q(t1, s1)q̄(t2, s2)ρ(ds1)ρ̄(ds2)

]

=

∫
q(t1, s1)q̄(t2, s2)E[ρ(ds1)ρ̄(ds2)]

=

∫
q(t1, s)q̄(t2, s)μ(ds).

One can show that the converse is also true: if the last equation holds,
then u(t, ω) =

∫
q(t, s)ρ(ds, ω) with E[ρ(ds)ρ̄(ds)] = μ(ds). Note that

in all of the above, equality holds in a mean square (L2) sense, and
little can be said about the higher moments.

Example. If u = u(t, ω) is a wide-sense stationary stochastic pro-
cess, then it follows from Khinchin’s theorem that

R(T ) = E[u(t+ T, ω)u(t, ω)] (6.7)

=

∫
eikTdG(k). (6.8)

Conversely, if E[ρ(dk)ρ(dk)] = dG(k), we see that if

u(t, ω) =

∫
eiktρ(dk, ω),
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then

E[u(t+ T, ω)u(t, ω)] =

∫
eik(t+T−t)E[ρ(dk)ρ(dk)]

=

∫
eikTdG(k).

We have just shown that dG(k) is the energy density in the interval dk.
This ρ(k) is the stochastic Fourier transform of u. The inverse Fourier
transform does not exist in the usual sense (i.e.,

∫
u(t, ω)e−ikt dt for each

ω does not exist), but for (6.5) to hold, it is sufficient for E[|u(t)|2] to
exist for each t.

One can summarize the construction of the stochastic Fourier trans-
form as follows: For the ordinary Fourier transform, the Parseval iden-
tity is a consequence of the definitions. To generalize the Fourier trans-
form, we started from a general form of Parseval’s identity and found
a generalized version of the Fourier transform that satisfies it.

Example. Suppose dG(k) = g(k) dk. Then
∫

eik(t2−t1)dG(k) =

∫
eikt2

√
g(k)e−ikt1

√
g(k) dk.

Recall that g(k) ≥ 0. Write
√
g(k) = ĥ(k) = ĥ(t)(k), where h(t) is the

inverse Fourier transform of ĥ(k), ĥ(k) = 1√
2π

∫
h(t)e−iktdt. Then

e−ikt2
√

g(k) = e−ikt2
1√
2π

∫
h(t)e−iktdt

=
1√
2π

∫
h(t)e−ik(t+t2)dt

=
1√
2π

∫
h(t− t2)e

−iktdt

= ̂h(t− t2)(k),

where the (k) at the very end is there to remind you that ̂h(t− t2) is
a function of k. Since the Fourier transform preserves inner products,
we find that

R(t1, t2) =

∫
h̄(t− t1)h(t− t2) dt,
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and by changing t to s, we obtain

R(t1, t2) =

∫
h̄(s− t1)h(s− t2)μ(ds),

where μ(ds) = ds. Applying our representation, we get u(t, ω) =∫
h̄(s − t)ρ(ds), where E[|ρ(ds)|2] = ds. The random measure con-

structed as increments of Brownian motion at instants ds apart has
this property. Thus, any wide-sense stationary stochastic process with
dG(k) = g(k) dk can be approximated as a sum of translates (in time)
of a fixed function, each translate multiplied by independent Gaussian
random variables. This is the moving average representation.

6.6. Exercises

1. Find some way to show nonrigorously that the covariance function
of white noise is a delta function. Suggestion: Approximate Brown-
ian motion by a random walk with Gaussian increments of nonzero
length, find the time series of the difference quotients of this walk,
calculate its covariance, and take a formal limit.

2. Consider the stochastic process u = ξ cos(t), where ξ is a ran-
dom variable with mean 0 and variance 1. Find the mean and
the covariance functions. Obviously, this is not a stationary pro-
cess. However, cos(t) = (eit + e−it)/2. How do you reconcile this
with the construction we have of stationary processes as sums of
exponentials?

3. Consider the differential equation (u2)x = εuxx on the real line,
with the boundary conditions u(−∞) = u0, u(+∞) = −u0, where
ε and u0 are constants. Assume that u is a velocity, with dimension
L/T , where L is the dimension of length and T the dimension of
time. Find the dimension of ε. Because of the boundary conditions,
u does not have a usual Fourier transform, but one can define one
by taking the Fourier transform of u′ and dividing it by ik. Let
û(k) be this Fourier transform of u. Define the energy spectrum
by E(k) = |û(k)|2. Find the dimension of E(k); show that the di-
mensionless quantity E(k)k2/u2

0 must be a function of the variable
kε/u0. Assume complete similarity, and deduce that as you pass to
the limit ε → 0, the spectrum converges to E(k) = C/k2 for some
constant C.
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4. Consider the wide-sense stationary stochastic process u = ξeit,
where ξ is a Gaussian variable with mean 0 and variance 1. What
is its stochastic Fourier transform? What is the measure ρ(dk)?

5. Consider a stochastic process of the form u(ω, t) =
∑

j ξje
iλjt, where

the sum is finite and the ξj are independent random variables with
mean 0 and variance vj. Calculate the limit as T → ∞ of the

random variable (1/T )
∫ T

−T
|u(ω, s)|2 ds. How is it related to the

spectrum as we have defined it? What is the limit of (1/T )
∫ T

−T
u ds?

6. Suppose you have to construct on the computer (for example, for
the purpose of modeling the random transport of pollutants) a
Gaussian stationary stochastic process with mean 0 and a given
covariance function R(t1 − t2). Propose a construction.

7. Show that there is no stationary (in the wide sense) stochastic pro-
cess u = u(ω, t) that satisfies (for each ω) the differential equation
y′′ + 4y = 0 as well as the initial condition y(t = 0) = 1.

8. Let η be a random variable. Its characteristic function is defined
as φ(λ) = E[eiλη]. Show that φ(0) = 1 and that |φ(λ)| ≤ 1 for
all λ. Show that if φ1, φ2, . . . , φn are the characteristic functions
of independent random variables η1, . . . , ηn, then the characteristic
function of the sum of these variables is the product of the φi.

9. Show that if φ(λ) is the characteristic function of η, then

E[ηn] = (−i)n
dn

dλn
φ(0),

provided both sides of the equation make sense. Use this fact to
show that if ξi, i = 1, . . . , n, are Gaussian variables with mean 0,
not necessarily independent, then

E[ξ1ξ2 · · · ξn] =
{
ΣΠE[ξikξjk ], n even,

0, n odd.

On the right-hand side, ik and jk are two of the indices, the product
is over a partition of the n indices into disjoint groups of two, and
the sum is over all such partitions (this is Wick’s theorem). Hints:
Consider the variable Σλjξj; its moments can be calculated from
the derivatives of its characteristic function. By assumption, this
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variable is Gaussian and its characteristic function, i.e., the Fourier
transform of its density, is given by a formula we have derived.

10. Consider the following functions R(T ); which ones are the covari-
ances of some wide-sense stationary stochastic process, and why?
(here T = t1 − t2, as usual):

1. R(T ) = e−T 2
.

2. R = Te−T 2
.

3. R = e−T 2/2(T 2 − 1).

4. R = e−T 2/2(1− T 2).
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