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Prefaces

Preface to the Third Edition

Since the second edition of this book, we have taught the course on
which it is based several more times and have tried to learn from the
experience. We have thoroughly reorganized the material to make the
connections between topics clearer; we have completely rewritten the
sections on data assimilation and filtering, renormalization, and Markov
chain Monte Carlo; we have simplified the presentation of generalized
Langevin equations; we have rewritten many explanations; we have
added a discussion of sampling algorithms; we have added figures and
exercises. We hope that this edition is easier to read and use, and that
it brings the user closer to current research.

We would like to thank Dr. Matthias Morzfeld for his help with
proofreading and figures and for his helpful comments and questions.
We are grateful to Dr. Jakub Kominiarczuk for permission to use results
from his work on renormalization prior to its journal publication.

Berkeley, CA, USA Alexandre J. Chorin
April 2013 Ole H. Hald
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vi PREFACES

Preface to the Second Edition

In preparing the second edition, we have tried to improve and clarify the
presentation, guided in part by the many comments we have received,
and also to make the various arguments more precise, as far as we could
while keeping this book short and introductory.

There are many dozens of small changes and corrections. The more
substantial changes from the first edition include: a completely rewrit-
ten discussion of renormalization, and significant revisions of the sec-
tions on prediction for stationary processes, Markov chain Monte Carlo,
turbulence, and branching random motion. We have added a discussion
of Feynman diagrams to the section on Wiener integrals, a discussion
of fixed points to the section on the central limit theorem, a discussion
of perfect gases and the equivalence of ensembles to the section on en-
tropy and equilibrium. There are new figures, new exercises, and new
references.

We are grateful to the many people who have talked with us or
written to us with comments and suggestions for improvement. We
are also grateful to Valerie Heatlie for her patient help in putting the
revised manuscript together.

Berkeley, CA, USA Alexandre J. Chorin
March 2009 Ole H. Hald
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Preface to the First Edition

This book started out as a set of lecture notes for a first-year gradu-
ate course on the “stochastic methods of applied mathematics” at the
Department of Mathematics of the University of California at Berke-
ley. The course was started when the department asked a group of its
former students who had gone into nonacademic jobs, in national labs
and industry, what they actually did in their jobs, and found that most
of them did stochastic things that had not appeared anywhere in our
graduate course lineup; over the years the course changed as a result
of the comments and requests of the students, who have turned out to
be a mix of mathematics students and students from the sciences and
engineering. The course has not endeavored to present a full, rigorous
theory of probability and its applications, but rather to provide math-
ematics students with some inkling of the many beautiful applications
of probability, as well as introduce the nonmathematical students to
the general ideas behind methods and tools they already use. We hope
that the book, too, can accomplish these tasks.

We have simplified the mathematical explanations as much as we
could everywhere we could. On the other hand, we have not tried to
present applications in any detail either. The book is meant to be an
introduction, hopefully an easily accessible one, to the topics on which
it touches.

The chapters in the book cover some background material on least
squares and Fourier series, basic probability (with Monte Carlo meth-
ods, Bayes’s theorem, and some ideas about estimation), some applica-
tions of Brownian motion, stationary stochastic processes (the Khinchin
theorem, an application to turbulence, prediction for time series and
data assimilation), equilibrium statistical mechanics (including Markov
chain Monte Carlo), and time-dependent statistical mechanics (includ-
ing optimal prediction). The leitmotif of the book is conditional ex-
pectation (introduced in a drastically simplified way) and its uses in
approximation, prediction, and renormalization. All topics touched
upon come with immediate applications; there is an unusual emphasis
on time-dependent statistical mechanics and the Mori–Zwanzig formal-
ism, in accordance with our interests and our convictions. Each chapter
is followed by references; it is, of course, hopeless to try to provide a
full bibliography of all the topics included here; the bibliographies are
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simply lists of books and papers we have actually used in preparing
notes and should be seen as acknowledgments as well as suggestions for
further reading in the spirit of the text.

We thank Dr. David Bernstein, Dr. Maria Kourkina-Cameron,
and Professor Panagiotis Stinis, who wrote down and corrected the
notes on which this book is based and then edited the result; the book
would not have existed without them. We are profoundly indebted
to many wonderful collaborators on the topics covered in this book,
in particular Professor G.I. Barenblatt, Dr. Anton Kast, Professor Raz
Kupferman, and Professor Panagiotis Stinis, as well as Dr. John Barber,
Dr Alexander Gottlieb, Dr. Peter Graf, Dr. Eugene Ingerman, Dr. Paul
Krause, Professor Doron Levy, Professor Kevin Lin, Dr. Paul Okunev,
Dr. Benjamin Seibold, and Professor Mayya Tokman; we have learned
from all of them (but obviously not enough) and greatly enjoyed their
friendly collaboration. We also thank the students in the Math 220
classes at the University of California, Berkeley, and Math 280 at the
University of California, Davis, for their comments, corrections, and
patience, and in particular Ms. K. Schwarz, who corrected errors and
obscurities. We are deeply grateful to Ms. Valerie Heatlie, who per-
formed the nearly Sisyphean task of preparing the various typescripts
with unflagging attention and good will. Finally, we are thankful to
the US Department of Energy and the National Science Foundation for
their generous support of our endeavors over the years.

Berkeley, CA, USA Alexandre J. Chorin
September 2005 Ole H. Hald
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CHAPTER 1

Preliminaries

1.1. Least Squares Approximation

Let V be a vector space with vectors u, v, w, . . . and scalars α, β, . . . .
The space V is an inner product space if one has defined a function (·, ·)
from V × V to the real numbers (if the vector space is real) or to the
complex numbers (if V is complex) such that for all u, v ∈ V and all
scalars α, the following conditions hold:

(u, v) = (v, u),

(u+ v, w) = (u, w) + (v, w),

(αu, v) = α(u, v), (1.1)

(v, v) ≥ 0,

(v, v) = 0 ⇔ v = 0,

where the overbar denotes the complex conjugate. Two elements u, v
such that (u, v) = 0 are said to be orthogonal.

The most familiar inner product space is R
n with the Euclidean

inner product. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then

(u, v) =

n∑

i=1

uivi.

Another inner product space is C[0, 1], the space of continuous functions

on [0, 1], with (f, g) =
∫ 1

0
f(x)g(x) dx.

When you have an inner product, you can define a norm, the L2

norm, by

‖v‖ =
√

(v, v).

A.J. Chorin and O.H. Hald, Stochastic Tools in Mathematics and Science,
Texts in Applied Mathematics 58, DOI 10.1007/978-1-4614-6980-3 1,
© Springer Science+Business Media, LLC 2013
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2 1. PRELIMINARIES

This norm has the following properties, which can be deduced from the
properties of the inner product:

‖αv‖ = |α|‖v‖,
‖v‖ ≥ 0,

‖v‖ = 0 ⇔ v = 0,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.
The last, called the triangle inequality, follows from the Cauchy–
Schwarz inequality

|(u, v)| ≤ ‖u‖‖v‖.
In addition to these three properties, common to all norms, the L2

norm has the parallelogram property (so called because it is a property
of parallelograms in plane geometry)

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2),
which can be verified by expanding the inner products.

Let {un} be a sequence in V .

Definition. A sequence {un} is said to converge to û ∈ V if ‖un−
û‖ → 0 as n → ∞ (i.e., for every ε > 0, there exists some N ∈ N such
that n > N implies ‖un − û‖ < ε).

Definition. A sequence {un} is a Cauchy sequence if given ε > 0,
there exists N ∈ N such that if m,n > N , then ‖un − um‖ < ε.

A sequence that converges is a Cauchy sequence, although the con-
verse is not necessarily true. If the converse is true for all Cauchy
sequences in a given inner product space, then the space is called com-
plete. All of the spaces we work with from now on are complete.

A few more definitions from real analysis:

Definition. The open ball centered at x with radius r > 0 is the
set Br(x) = {u : ‖u− x‖ < r}.

Definition. A set S of points in a space V is open if for all x ∈ S,
there exists an open ball Br(x) such that Br(x) ⊂ S.

Definition. A set S is closed if every convergent sequence {un}
such that un ∈ S for all n converges to an element of S.
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An example of a closed set is the closed interval [0, 1] ⊂ R. An
example of an open set is the open interval (0, 1) ⊂ R. The complement
of an open set is closed, and the complement of a closed set is open.
The empty set is both open and closed, and so is Rn.

Given a set S in a real vector space V and some point b in V outside
of S, we want to determine under what conditions there is a point
b̂ ∈ S closest to b. Let d(b, S) = infx∈S ‖x− b‖ be the distance from b
to S. The quantity on the right of this definition is the greatest lower
bound of the set of numbers ‖x − b‖, and its existence is guaranteed
by the properties of the real number system. What is not guaranteed
in advance, and must be proved here, is the existence of an element b̂
that satisfies ‖b̂ − b‖ = d(b, S). To see the issue, take S = (0, 1) ⊂ R

and b = 2; then d(b, S) = 1, yet there is no point b̂ ∈ (0, 1) such that

‖b̂− 2‖ = 1.

Definition. A set S is a linear subspace of a vector space V if it
is both a subset of V and a vector space.

Theorem 1.1. If S is a closed linear subspace of V and b is an
element of V, then there exists b̂ ∈ S such that ‖b̂− b‖ = d(b, S).

Proof. There exists a sequence of elements {un} ⊂ S such that
‖b− un‖ → d(b, S) by definition of the greatest lower bound. We now
show that this sequence is a Cauchy sequence.

From the parallelogram law, we have
∥∥∥∥
1

2
(b−um)

∥∥∥∥
2

+

∥∥∥∥
1

2
(b−un)

∥∥∥∥
2

=
1

2

∥∥∥∥b−
1

2
(un+um)

∥∥∥∥
2

+
1

8
‖un−um‖2. (1.2)

Since S is a vector space, it follows that

1

2
(un + um) ∈ S ⇒

∥∥∥∥b−
1

2
(un + um)

∥∥∥∥
2

≥ d2(b, S).

Then since ‖b− un‖ → d(b, S), we have
∥∥∥∥
1

2
(b− un)

∥∥∥∥
2

→ 1

4
d2(b, S).

From (1.2),

‖un − um‖ → 0,
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and thus {un} is a Cauchy sequence by definition; our space is complete,

and therefore this sequence converges to an element b̂ in this space, and
b̂ is in S because S is closed. Consequently,

‖b̂− b‖ = lim ‖un − b‖ = d(b, S).

�

We now wish to describe further the relation between b and b̂.

Theorem 1.2. Let S be a closed linear subspace of V , let x be any
element of S, b any element of V , and b̂ an element of S closest to b.
Then

(x− b̂, b− b̂) = 0.

Proof. If x = b̂, we are done. Otherwise, set

θ(x− b̂)− (b− b̂) = θx+ (1− θ)b̂− b = y − b.

Since y is in S and ‖y − b‖ ≥ ‖b̂− b‖, we have

‖θ(x− b̂)− (b− b̂)‖2 = θ2‖x− b̂‖2 − 2θ(x− b̂, b− b̂) + ‖b− b̂‖2
≥ ‖b− b̂‖2.

Thus θ2‖x − b̂‖2 − 2θ(x − b̂, b − b̂) ≥ 0 for all θ. The left-hand side

attains its minimum value when θ = (x−b̂, b−b̂)/‖x−b̂‖2, in which case

−(x− b̂, b− b̂)2/‖x− b̂‖2 ≥ 0. This implies that (x− b̂, b− b̂) = 0. �

Theorem 1.3. (b− b̂) is orthogonal to x for all x ∈ S.

Proof. By Theorem 1.2, (x − b̂, b − b̂) = 0 for all x ∈ S. When

x = 0 we have (b̂, b− b̂) = 0. Thus (x, b− b̂) = 0 for all x in S. �

Corollary 1.4. If S is a closed linear subspace, then b̂ is unique.

Proof. Let b = b̂+ n = b̂1 + n1, where n is orthogonal to b̂ and n1

is orthogonal to b̂1. Therefore,

b̂− b̂1 ∈ S ⇒ (b̂− b̂1, n1 − n) = 0

⇒ (b̂− b̂1, b̂− b̂1) = 0

⇒ b̂ = b̂1.

�
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One can think of b̂ as the orthogonal projection of b on S and write
b̂ = Pb, where the projection P is defined by the foregoing discussion.

We will now give a few applications of the above results.

Example. Consider a matrix equation Ax = b, where A is anm×n
matrix and m > n. This kind of problem arises when one tries to fit
a large set of data by a simple model. Assume that the columns of A
are linearly independent. Under what conditions does the system have
a solution? To clarify ideas, consider the 3× 2 case:

⎡

⎣
a11 a12
a21 a22
a31 a32

⎤

⎦
[
x1
x2

]
=

⎡

⎣
b1
b2
b3

⎤

⎦.

Let A1 denote the first column vector of A, A2 the second column
vector, etc. In this case,

A1 =

⎡

⎣
a11
a21
a31

⎤

⎦, A2 =

⎡

⎣
a12
a22
a32

⎤

⎦.

If Ax = b has a solution, then one can express b as a linear combina-
tion of A1, A2, . . . , Am; for example, in the 3×2 case, x1A1+x2A2 = b.
If b does not lie in the column space of A (the set of all linear combina-
tions of the columns of A), then the problem has no solution. It is often
reasonable to replace the unsolvable problem by the solvable problem
Ax̂ = b̂, where b̂ is as close as possible to b and yet lies in the column
space of A. We know from the foregoing that the “best b̂” is such that
b − b̂ is orthogonal to the column space of A. This is enforced by the
m equations

(A1, b̂− b) = 0, (A2, b̂− b) = 0, . . . , (Am, b̂− b) = 0.

Since b̂ = Ax̂, we obtain the equation

AT (Ax̂− b) = 0 ⇒ x̂ = (ATA)−1AT b,

where AT is the transpose of A.

One application of the above is to “fit” a line to a set of points in
the Euclidean plane. Given a set of points, (x1, y1), (x2, y2), . . . , (xn, yn)
that come from some experiment and that we believe would lie on a
straight line if it were not for experimental error, what is the line that
“best approximates” these points? We hope that if it were not for the
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errors, we would have yi = axi + b for all i and for some fixed a and b;
so we seek to solve a system of equations

⎡

⎣
x1 1
...

...
xn 1

⎤

⎦
[
a
b

]
=

⎡

⎣
y1
...
yn

⎤

⎦ .

Example. Consider the system of equations given by Ax = b,
where A is an n × m matrix and n < m (there are more unknowns
than equations). The system has infinitely many solutions. Suppose
you want the solution of smallest norm; this problem arises when one
tries to find the most likely solution to an underdetermined problem.

Before solving this problem, we need some preliminaries.

Definition. S ⊂ V is an affine subspace if S = {y : y = x+ c, c �=
0, x ∈ X}, where X is a closed linear subspace of V . Note that S is
not a linear subspace.

Lemma 1.5. If S is an affine subspace and b′ /∈ S, then there exists
x̂ ∈ X such that d(b′, S) = ‖x̂ + c − b′‖. Furthermore, x̂ − (b′ − c) is
orthogonal to x for all x ∈ X. (Note that here we use b′ instead of b,
to avoid confusion with the system’s right-hand side.)

Proof. We have S = {y : y = x + c, c �= 0, x ∈ X}, where X is a
closed linear subspace of V . Now,

d(b′, S) = inf
y∈S

‖y − b′‖ = inf
x∈X

‖x+ c− b′‖
= inf

x∈X
‖x− (b′ − c)‖ = d(b′ − c,X)

= ‖x̂− (b′ − c)‖ = ‖x̂+ c− b′‖.
The point x̂ ∈ X exists, since X is a closed linear subspace. It follows
from Theorem 1.3 that x̂− (b′ − c) is orthogonal to X. Note that the
distance between S and b′ is the same as that between X and b′−c. �

From the proof above, we see that x̂+ c is the element of S closest
to b′. For the case b′ = 0, we find that x̂+ c is orthogonal to X.

Now we return to the problem of finding the “smallest” solution
of an underdetermined problem. Assume that A has maximum rank ;
that is, m of the column vectors of A are linearly independent. We can
write the solutions of the system as x = x0+ z, where x0 is a particular
solution and z is a solution of the homogeneous system Az = 0. So the
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solutions of the system Ax = b form an affine subspace. As a result, if
we want to find the solution with the smallest norm (i.e., closest to the
origin), we need to find the element of this affine subspace closest to
b′ = 0. From the above, we see that such an element must satisfy two
properties. First, it has to be an element of the affine subspace (i.e., a
solution to the system Ax = b), and second, it has to be orthogonal to
the linear subspace X, which is the null space of A (the set of solutions
of Az = 0). Now consider x′ = AT (AAT )−1b; this vector lies in the affine
subspace of the solutions of Ax = b, as one can check by multiplying
it by A. Furthermore, it is orthogonal to every vector in the space of
solutions of Az = 0, because (AT (AAT )−1b, z) = ((AAT )−1b, Az) = 0.
This is enough to make x′ the unique solution of our problem.

1.2. Orthonormal Bases

The problem presented in the previous section, of finding an element
in a closed linear space that is closest to a vector outside the space,
lies in the framework of approximation theory, where we are given a
function (or a vector) and try to find an approximation to it as a linear
combination of given functions (or vectors). This is done by requiring
that the norm of the error (difference between the given function and the
approximation) be minimized. In what follows, we shall find coefficients
for this optimal linear combination.

Definition. Let S be a linear vector space. A collection of m
vectors {ui}mi=1 belonging to S are linearly independent if and only if
λ1u1 + · · ·+ λmum = 0 implies λ1 = λ2 = · · · = λm = 0.

Definition. Let S be a linear vector space. A collection {ui}mi=1

of vectors belonging to S is called a basis of S if {ui} are linearly inde-
pendent and every vector in S can be written as a linear combination
of them.

Note that the number of elements of a basis can be finite or infinite
depending on the space.

Theorem 1.6. Let S be an m-dimensional linear inner product
space with m finite. Then every collection of m linearly independent
vectors of S is a basis.

Definition. A set of vectors {ei}mi=1 is orthonormal if the vectors
are mutually orthogonal and each has unit length (i.e., (ei, ej) = δij ,
where δij = 1 if i = j and δij = 0 otherwise).
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The set of all the linear combinations of the vectors {ui} is called
the span of {ui} and is written as Span{u1, u2, . . . , um}.

Suppose we are given a set of vectors {ei}mi=1 that are an orthonormal
basis for a subspace S of a real vector space. If b is an element outside
the space, we want to find the element b̂ ∈ S, where b̂ =

∑m
i=1 ciei such

that ‖b−∑m
i=1 ciei‖ is minimized. Specifically, we have

∥∥∥∥b−
m∑

i=1

ciei

∥∥∥∥
2

=

(
b−

m∑

i=1

ciei , b−
m∑

j=1

cjej

)

= (b, b)− 2

m∑

i=1

ci(b, ei) +

(
m∑

i=1

ciei ,

m∑

j=1

cjej

)

= (b, b)− 2

m∑

i=1

ci(b, ei) +

m∑

i,j=1

cicj(ei, ej)

= (b, b)− 2
m∑

i=1

ci(b, ei) +
m∑

i=1

c2i

= ‖b‖2 −
m∑

i=1

(b, ei)
2 +

m∑

i=1

(ci − (b, ei))
2,

where we have used the orthonormality of the ei to simplify the ex-
pression. As is readily seen, the norm of the error is a minimum when
ci = (b, ei), i = 1, . . . , m, so that b̂ is the projection of b onto S. It is

easy to check that b − b̂ is orthogonal to every element in S. Also, we
see that the following inequality, called Bessel’s inequality, holds:

m∑

i=1

(b, ei)
2 ≤ ‖b‖2.

When the basis is not orthonormal, steps similar to the above yield
∥∥∥∥∥b−

m∑

i=1

cigi

∥∥∥∥∥

2

=

(
b−

m∑

i=1

cigi, b−
m∑

j=1

cjgj

)

= (b, b)− 2
m∑

i=1

ci(b, gi) +

(
m∑

i=1

cigi,
m∑

j=1

cjgj

)

= (b, b)− 2
m∑

i=1

ci(b, gi) +
m∑

i,j=1

cicj(gi, gj).
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If we differentiate the last expression with respect to ci and set the
derivatives equal to zero, we get

Gc = r,

where G is the matrix with entries gij = (gi, gj), c = (c1, . . . , cm)
T , and

r = ((g1, b), . . . , (gm, b))
T . This system can be ill conditioned, so that

its numerical solution presents a problem. The question that arises is
how to find, given a set of vectors, a new set that is orthonormal. This
is done through the Gram–Schmidt process, which we now describe.

Let {ui}mi=1 be a basis of a linear subspace. The following algo-
rithm will give an orthonormal set of vectors e1, e2, . . . , em such that
Span{e1, e2, . . . , em} = Span{u1, u2, . . . , um}.

1. Normalize u1 (i.e., let e1 = u1/‖u1‖).
2. We want a vector e2 that is orthonormal to e1. In other words,

we look for a vector e2 satisfying (e2, e1) = 0 and ‖e2‖ = 1.
Take e2 = u2 − (u2, e1)e1 and then normalize.

3. In general, ej is found recursively by taking

ej = uj −
j−1∑

i=1

(uj, ei)ei

and normalizing.

The Gram–Schmidt process can be implemented numerically very
efficiently. The solution of the recursion above is equivalent to finding
e1, e2, . . . , em, such that the following holds:

u1 = b11e1,

u2 = b12e1 + b22e2,

...

um = b1me1 + b2me2 + · · ·+ bmmem;

that is, what we want to do is decompose the matrix U with columns
u1, u2, . . . , um into a product of two matrices Q and R, where Q has as
columns the orthonormal vectors e1, e2, . . . , em, and R is the matrix

R =

⎡

⎢⎢⎣

b11 b12 . . . b1m
0 b22 . . . b2m
. . . . . . . . . . . .
0 0 . . . bmm

⎤

⎥⎥⎦ .
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This is the well-known QR decomposition, for which there exist very
efficient implementations.

1.3. Fourier Series

Let L2[0, 2π] be the space of square integrable functions in [0, 2π]

(i.e., functions such that
∫ 2π

0
f 2dx < ∞). Define the inner product of

two functions f and g belonging to this space as (f, g) =
∫ 2π

0
fg dx

and the corresponding norm ‖f‖ =
√

(f, f). The Fourier series of a
function f(x) in this space is defined as

a0 +

∞∑

n=1

an cos(nx) +

∞∑

n=1

bn sin(nx), (1.3)

where

a0 =
1

2π

∫ 2π

0

f(x) dx,

an =
1

π

∫ 2π

0

cos(nx)f(x) dx,

bn =
1

π

∫ 2π

0

sin(nx)f(x) dx.

Alternatively, consider the set of functions
{

1√
2π
,

1√
π
cos(nx),

1√
π
sin(nx), . . .

}
, n = 1, 2, . . . .

This set is orthonormal in [0, 2π], and the Fourier series (1.3) can be
rewritten as

ã0√
2π

+

∞∑

n=1

ãn√
π
cos(nx) +

∞∑

n=1

b̃n√
π
sin(nx), (1.4)

with

ã0 =
1√
2π

∫ 2π

0

f(x) dx,

ãn =
1√
π

∫ 2π

0

cos(nx)f(x) dx,

b̃n =
1√
π

∫ 2π

0

sin(nx)f(x) dx.
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Whether a function equals its Fourier series depends on the function and
on the norm used to define equality. For every function in L2[0, 2π] (the
set of square integrable functions on [0, 2π]), the series (1.4) converges
to f in the L2 norm. That is, let

S0 =
ã0√
2π
, Sn =

ã0√
2π

+

n∑

m=1

ãm√
π
cosmx+

n∑

m=1

b̃m√
π
sinmx (for n ≥ 1).

Then ‖Sn − f‖ → 0 as n→ ∞.
For every finite truncation of the series (1.4), we have

ã20 +
n∑

i=1

(
ã2i + b̃2i

)
≤ ‖f‖2. (1.5)

This is Bessel’s inequality, which becomes an equality (the Parseval’s
identity) as n→ ∞.

The above series (1.4) can be rewritten in complex notation. Recall
that

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
. (1.6)

After substitution of (1.6) into (1.4) and collection of terms, the Fourier
series becomes

f(x) =

∞∑

k=−∞

ck√
2π
eikx,

where f is now complex-valued. (Note that f will be real-valued if for
k ≥ 0, we have c−k = ck.) Consider a vector space with complex scalars
and introduce an inner product that satisfies axioms (1.1), and define

the norm ‖u‖ =
√
(u, u). For the special case that the inner product

is given by

(u, v) =

∫ 2π

0

u(x)v̄(x) dx,

the functions (2π)−1/2 eikx with k = 0,±1,±2, . . . form an orthonormal
set with respect to this inner product. Then the complex Fourier series
of a complex function f(x) is written as

f(x) =
∞∑

k=−∞
ck

1√
2π
eikx, ck =

(
f(x),

eikx√
2π

)
.
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Let f(x) and g(x) be two functions with Fourier series given respec-
tively by

f(x) =

∞∑

k=−∞

ak√
2π
eikx,

g(x) =

∞∑

k=−∞

bk√
2π
eikx.

Then for their inner product, we have

(f, g) =

∫ 2π

0

f(x)ḡ(x)dx =

∫ 2π

0

∞∑

k=−∞

∞∑

l=−∞

ak b̄l
2π

ei(k−l)x =
∞∑

k=−∞
ak b̄k

(this is known as Parseval’s identity), and for their ordinary product,
we have

f(x)g(x) =

∞∑

k=−∞

ck√
2π
eikx,

where

ck =

∫ 2π

0

( ∞∑

n=−∞

∞∑

m=−∞

anbm
2π

ei(n+m)x

)
e−ikx

√
2π

dx

=
1√
2π

∞∑

n=−∞

∞∑

m=−∞
anbmδ(n+m− k)

=
1√
2π

∞∑

n=−∞
anbk−n =

1√
2π

∞∑

n=−∞
ak−nbn.

1.4. Fourier Transform

Consider the space of periodic square integrable functions defined
on the interval [−τ/2, τ/2]. The functions τ−1/2 exp(2πikx/τ) form an
orthonormal basis for this space. For a function f(x) in this space, we
have

f(x) =

∞∑

k=−∞
ckek(x), ck = (f, ek(x)),

where

ek(x) =
exp(2πikx/τ )√

τ
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and

ck = (f, ek) =

∫ τ
2

− τ
2

f(x)ek(x) dx.

Substituting the expression for the coefficient in the series, we obtain

f(x) =

∞∑

k=−∞

(∫ τ
2

− τ
2

f(s)
exp(−2πiks/τ)√

τ
ds

)
exp(2πikx/τ)√

τ

=

∞∑

k=−∞

1

τ

(∫ τ
2

− τ
2

f(s) exp(−2πiks/τ ) ds

)
exp(2πikx/τ ).

Define

f̂(l) =

∫ τ
2

− τ
2

f(s)e−ils ds.

Then the quantity in parentheses above becomes f̂(l = 2πk/τ), and we
have

f(x) =

∞∑

k=−∞

1

τ
f̂(2πk/τ) exp(2πikx/τ). (1.7)

Pick τ large and assume that the function f tends to zero at ±∞ fast
enough that f̂ is well defined and that the limit τ → ∞ is well defined.
Write Δ = 1/τ . From (1.7), we have

f(x) =

∞∑

k=−∞
Δf̂(2πkΔ) exp(2πikΔx).

As Δ → 0, this becomes

f(x) =

∫ ∞

−∞
f̂(2πt) exp(2πitx) dt,

where we have replaced kΔ by the continuous variable t. By the change
of variables 2πt = l, this becomes

f(x) =
1

2π

∫ ∞

−∞
f̂(l)eilx dl.
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Collecting results, we have

f̂(l) =

∫ ∞

−∞
f(s)e−ils ds,

f(x) =
1

2π

∫ ∞

−∞
f̂(l)eilx dl.

The last two expressions are the Fourier transform and the inverse
Fourier transform, respectively. There is no universal agreement on
where the quantity 2π that accompanies the Fourier transform should
be. It can be split between the Fourier transform and its inverse as
long as the product remains 2π. In what follows, we use the splitting

f̂(l) =
1√
2π

∫ ∞

−∞
f(s)e−ils ds,

f(x) =
1√
2π

∫ ∞

−∞
f̂(l)eilx dl.

Instead of L2[0, 2π], now our space of functions is L2(R) (i.e., the space
of square integrable functions on the real line).

Consider two functions u(x) and v(x) with Fourier series given re-
spectively by

∑
ak exp(ikx)/

√
2π and

∑
bk exp(ikx)/

√
2π. Then as we

saw above, the Fourier coefficients for their product are

ck =
1√
2π

∞∑

k′=−∞
ak′bk−k′.

We now consider what this formula becomes as we go to the Fourier
transform; for two functions f and g with Fourier transforms f̂ and ĝ,
we have

f̂ g(k) =
1√
2π

∫ ∞

−∞
f(x)g(x)e−ikxdx

=
1√
2π

∫ ∞

−∞

1√
2π

∫ ∞

−∞
f̂(k′)eik

′xdk′ g(x) e−ikxdx

=
1√
2π

∫ ∞

−∞
f̂(k′)

1√
2π

∫ ∞

−∞
g(x)e−i(k−k′)xdx dk′

=
1√
2π

∫ ∞

−∞
f̂(k′)ĝ(k − k′)dk′

=
1√
2π

(f̂ ∗ ĝ)(k),
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where ∗ stands for convolution, which is defined by the last equality.
This means that up to a constant, the Fourier transform of a product
of two functions equals the convolution of the Fourier transforms of the
two functions.

Another useful property of the Fourier transform concerns the trans-
form of the convolution of two functions. Assuming that f and g are
bounded, continuous, and integrable, the following result holds for their
convolution h(x) = (f ∗ g)(x):

(̂f ∗ g)(k) = 1√
2π

∫ ∞

−∞

(∫ ∞

−∞
f(ξ)g(x− ξ)dξ

)
e−ikx dx

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ)e−iξxg(x− ξ)e−ik(x−ξ)dx dξ

=
√
2π

1√
2π

∫ ∞

−∞
f(ξ)e−ikξ 1√

2π

∫ ∞

−∞
g(y)e−ikydy dξ

=
√
2πf̂(k)ĝ(k).

We have proved that up to a constant, the Fourier transform of a con-
volution of two functions is the product of the Fourier transforms of
the functions.

In addition, Parseval’s equality carries over to the Fourier transform,
and we have ‖f‖2 = ‖f̂‖2, where ‖ · ‖ is the L2 norm on R. This is a
special case (f = g) of the following identity:

(f, g) =

∫ ∞

−∞
f(x)g(x) dx

=

∫ ∞

−∞

1√
2π

∫ ∞

−∞
f̂(ξ)eiξxdξ g(x) dx

=

∫ ∞

−∞
f̂(ξ)

1√
2π

∫ ∞

−∞
g(x) e−iξxdx dξ

=

∫ ∞

−∞
f̂(ξ)ĝ(ξ)dξ = (f̂ , ĝ).

Furthermore, consider a function f and its Fourier transform f̂ .
Then for the transform of the function f(x/a), we have

̂
f
(x
a

)
(k) =

1√
2π

∫ ∞

−∞
f
(x
a

)
e−ikx dx.
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By the change of variables y = x/a, we obtain

̂
f
(x
a

)
(k) =

a√
2π

∫ ∞

−∞
f(y)e−iaky dy

= af̂(ak).

Finally, consider the function f(x) = exp(−x2/2t), where t > 0 is a
parameter. For its Fourier transform we have

f̂(k) =
1√
2π

∫ ∞

−∞
exp

(
−x

2

2t

)
e−ikx dx

=
1√
2π

∫ ∞

−∞
exp

[
−
(
x2

2t
+ ikx

)]
dx.

By completing the square in the exponent, we get

f̂(k) =
1√
2π

∫ ∞

−∞
exp

⎡

⎣−
(

x√
2t

+ ik

√
t

2

)2

− tk2

2

⎤

⎦ dx

=
1√
2π
e−tk2/2

∫ ∞

−∞
exp

⎡

⎣−
(

x√
2t

+ ik

√
t

2

)2
⎤

⎦ dx. (1.8)

The integral in the last expression can be evaluated by a change of
variables, but we have to justify that such a change of variables is
legitimate. To do that, we quote a result from complex analysis.

Lemma 1.7. Let φ(z) be an analytic function in the strip |y| < b
and suppose that φ(z) satisfies the inequality |φ(x+ iy)| ≤ Φ(x) in the
strip, where Φ(x) ≥ 0 is a function such that lim|x|→∞Φ(x) = 0 and∫∞
−∞Φ(x) dx < ∞. Then the value of the integral

∫∞
−∞ φ(x + iy) dx is

independent of the point y ∈ (−b, b).
The integrand in (1.8) satisfies the hypotheses of the lemma, and

so we are allowed to perform the change of variables

y =
x√
2t

+ ik

√
t

2
.
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Thus, (1.8) becomes

f̂(k) =
1√
2π
e−tk2/2

∫ ∞

−∞
exp(−y2)

√
2t dy

=
1√
2π
e−tk2/2

√
2tπ

=
√
t e−tk2/2.

By setting t = 1, we see in particular that the function f(x) =
exp(−x2/2) is invariant under the Fourier transform.

1.5. Dimensional Analysis and Scaling

Every physical quantity is expressed in terms of units. For exam-
ple, the statement “the distance between Berkeley and San Francisco is
17” is meaningless. The missing information is “17 what.” There is a
difference between 17 kilometers and 17 miles; “mile” and “kilometer”
are examples of units. To provide units adequate for conveying quan-
titative information in a given field of science, one has to pick some
basic variables to which one assigns units, for example, one can choose
to assign units to variables that describe lengths, for example inches or
kilometers, and/or to variables that describe time, for example hours or
milliseconds. Once one has units for length and time, one can use them
to define units for velocity, which is the distance covered divided by the
time used; a possible unit for velocity is miles per hour: the velocity of
a car that covers one mile in one hour at a constant velocity is one mile
per hour; a car’s velocity is 60 miles per hour if it is 60 times this unit.
In this construction, the units of time and length are fundamental, and
the unit of velocity is a derived unit. In every field of knowledge, one
picks a certain number of variables to which one assigns fundamental
units in such a way that these units, plus the ones derived from them,
suffice to provide units for all the variables of interest in the field. How
many fundamental units are needed depends on the subject; usually
for mechanics one needs three, for example units of length, time, and
mass. If one wishes also to consider electrical forces, one needs to add
a unit of charge, and if the result of one’s efforts is to be sold, one may
need a unit of money. We assume that the variables to which the fun-
damental units are assigned are picked once and for all, and consider
what happens when the sizes of these units are changed,
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It is obvious that if the size of the unit in which a quantity is
expressed is decreased by a factor α, then the numerical value of that
quantity is multiplied by α, so that 20 kilometers equal 20,000 meters.
Suppose there are three fundamental units, as in mechanics, and that
the size of the first is decreased by a factor L, the size of the second
is decreased by a factor T , and the size of the third by a factor M .
The dimension of a variable is the function ψ = ψ(L, T,M) by which
the numerical size of this variable is changed; for example, if the first
fundamental unit is a unit of length, the second a unit of time, and the
third a unit of mass, then the dimension of velocity is LT−1. A vari-
able is dimensionless if its numerical size is invariant when the units
are changed, for example, the Mach number M = u/us, where u is
a velocity and us is the speed of sound, is dimensionless. Two vari-
ables have independent dimensions if the dimension of one cannot be
expressed as the dimension of the other raised to some power. We write
the dimension of a variable u as [u].

An equation relating physical quantities makes sense only if the di-
mensions on both sides are equal, for otherwise, the equation becomes
false when the size of the units changes. For example, the heat equa-
tion, if written as ut = uxx, makes no sense at first sight, because the
dimension of the left-hand side is [ut] = [u]/T , while on the right-hand
side, it is [uxx] = [u]/L2, so that if the equation is true when time is
measured in seconds and distance is measured in centimeters, it will
be false if time is measured in minutes. The equation ut = uxx must
be understood as the equation ut = κuxx, where the coefficient κ has
dimension [κ] = L2/T , and where L, T have been chosen so that the
numerical value of κ is 1. This last equation will then remain true when
the units are changed, provided the numerical value of κ changes in the
appropriate manner.

Suppose a1, a2, . . . , an are variables with independent units, and
that these variables have numerical values a′1, a

′
2, . . . , a

′
n. We now show

that it is possible to pick sizes for the units that will assign to a1 a
new numerical value larger than the previous one by a factor A, while
keeping the numerical values of all the other variables unchanged. As-
sume again that there are three basic units. The number of variables
with independent units can then be 1, 2, or 3 (see the exercises). We
write things out in the case of two variables; the case of three variables
is similar. Let the dimension of a1 be Lα1T β1Mγ1 , and that of a2 be
Lα2T β2Mγ2 . We claim that it is possible to pick L, T , M so that the
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new numerical value of a1 is Au′1, where A is an arbitrary nonnegative
constant, while the other numerical values are unchanged, i.e.,

Lα1T β1Mγ1 = A

and

Lα2T β2Mγ2 = 1.

Taking logarithms, one finds a pair of linear equations for the vari-
ables logL, log T, logM :

α1 logL+ β1 log T + γ1 logM = logA, (1.9)

α2 logL+ β2 log T + γ2 logM =0. (1.10)

This system of equations fails to have a solution only if the left-hand
side of the first equation is a multiple of the left-hand side of the second
equation, in which case the units of a1 are the units of a2 raised to some
power, i.e., the units of a1, a2 are not independent.

Suppose a variable a depends on variables a1, a2, . . . , am,
b1, b2, . . . , bk, i.e.,

a = f(a1, a2, . . . , am, b1, b2, . . . , bk),

where the function f is what one is looking for and where the am have
independent units (for example, a1 could be a length and a2 could be
a time), while the units of b1, . . . , bk, can be formed from the units of
a1, a2, . . . , am; for example, b1 could be a velocity. Then one can find
dimensionless variables

Π =
a

aα1
1 · · ·aαm

m

, Πi =
bi

aαi1
1 · · · aαim

m
, i = 1, . . . , k,

where the αi, αij are numbers; the relation between a and the ai, bi
becomes

Π = Φ(a1, . . . , am,Π1, . . . ,Πk). (1.11)

where Φ is some unknown dimensionless function to be determined.
Now change the size of the units of measurement. The dimensionless
quantities are unchanged, but each of the quantities a1, . . . , am can take
any value one wishes, as we have just shown. This means that Φ cannot
be a function of a1, . . . , am, and we have

Π = Φ(Π1, . . . ,Πk), (1.12)
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and the number of variables has been decreased. This device,
dimensional analysis, can be a useful way to simplify problems; see
the example in the exercises.

Further simplification may occur if one or more of the variables
Π1, . . . ,Πk is very large or very small (and note that it makes sense to
speak of variables being large or small only when the variables are di-
mensionless; otherwise, their numerical size depends on the size of the
units). Suppose for simplicity that the dimensionless function Φ has a
single argument Π1 that is either small or large (the two cases are in-
distinguishable, because an unknown function of Π1 is also an unknown
function of 1/Π1) and assume that the function Φ has a nonzero finite
limit C as Π1 tends to zero or to infinity; then Π is approximately con-
stant, and one obtains a power monomial relation between a and the
ai: a = Caα1

1 · · · aαm
m , where c is a constant. This is called a complete

similarity relation. In this case, the variable that is small (or large) can
be safely neglected if it is sufficiently small (or large).

If the function Φ does not have the assumed limit, it may happen
that for Π1 small or large, Φ(Π1) = Πα

1Φ1(Π1) + · · · , where the dots
denote lower-order terms, α is a constant, and Φ1 is assumed to have
a finite nonzero limit. One can then obtain a monomial expression
for a in terms of the ai and b1, with powers that must be found by
means other than dimensional analysis. The resulting power relation
is an “incomplete” similarity relation. The exponent α is known in the
physics literature as an anomalous scaling exponent; in physics, incom-
plete similarity is usually discussed in the context of the renormalization
group; see Chap. 8 below. Of course, one may well have functions Φ
with neither kind of similarity. For instances of incomplete similarity,
see Chaps. 6 and 8. Observe that if one has incomplete similarity and
the anomalous exponent α is negative, one may reach the disquieting
conclusion that a small parameter increases in influence as it becomes
smaller; this is a real possibility, as the examples will demonstrate.

1.6. Exercises

1. Find the polynomial of degree less than or equal to 2 that best
approximates the function f(x) = e−x in the interval [0, 1] in the
L2 sense.
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2. Find the Fourier coefficients ûk of the function u(x) defined by

u(x) =

{
x, 0 ≤ x < π,

x− 2π, π ≤ x ≤ 2π.

Check that |kû(k)| → a constant as |k| → ∞.

3. Construct a sequence of functions in C[0, 1] that converges in the
L2 norm to a discontinuous function (carefully calculating the dis-
tances between the members of the sequence and the limit), thus
showing that in this norm, C[0, 1] is not complete.

4. Find the Fourier transform of the function e−|x|.

5. Find the point in the plane x+ y + z = 1 closest to (0, 0, 0). Note
that this plane is not a linear space, and explain how our standard
theorem applies.

6. Let x = (x1, x2, . . . ) and b = (b1, b2, . . . ) be vectors with complex
entries and define ‖x‖2 =

∑
xixi, where xi is the complex conju-

gate of xi. Find the minimum of ‖x − λb‖ with respect to λ by
differentiating with respect to the real and imaginary parts of λ.
For use in a later chapter, note that one obtains the same result by
differentiation with respect to λ, treating λ, λ̄ as independent.

7. Denote the Fourier transform by F , so that the Fourier transform
of a function g is Fg. A function g is an eigenvector of F with an
eigenvalue λ if Fg = λg (we have seen that e−x2/2 is such an eigen-
function with eigenvalue 1). Show that F can have no eigenvalues
other than ±1,±i. (Hint: what do you get when you calculate
F 4g?)

8. Assuming that all the integrals are meaningful, derive the following
equalities and inequalities:

(a)
∫
x2|f(x)|2dx ∫ k2|f̂(k)|2dk =

∫ |xf(x)|2dx ∫ |f ′(x)|2dx, where
f̂ is the Fourier transform of f , f ′ is the derivative of f , and
all integrals are from −∞ to +∞.

(b)
∫ |xf(x)|2dx ∫ |f ′(x)|2dx ≥ [∫ |xf ′f ∗|dx]2, where the ∗ denotes
a complex conjugate. (Hint: |(f, g)| ≤ ||f || · ||g||.)

(c)
[∫ |xf ′f ∗|dx]2 = (1/4)

[∫
x(|f |2)′dx]2.

(d) (1/4)
[∫
x(|f |2)′dx]2 = (1/4)

[∫ |f(x)|2]2 = (1/4)||f ||4.
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Putting all these statements together, you get the Heisenberg
inequality of quantum mechanics, which asserts that there is a lower
bound on the error in the simultaneous measurement of the position
and the momentum of a particle.

9. Show that if n fundamental units suffice to define the units of a set
of variables u1, u2, . . . , then at most n of these variables can have
independent units.

10. The δ “function” (more precisely, the δ distribution), is defined
by (i)δ(x) = 0 for x �= 0, and (ii)

∫∞
−∞ δ(x)f(x)dx = f(0) for any

smooth function f . Show that the dimension of δ is 1/L (assuming
that the dimension of x is L).

11. Solve the heat equation ut = (κ/2)uxx, u(x, 0) = f(x), where ν is
a constant, by dimensional analysis, as follows:

(a) First consider the case f(x) = u0H(x), where u0 is a constant
and H(x) is the Heaviside function H = 0 for x < 0, H = 1 for
x ≥ 0. Show that u/u0 = Φ(η), where η = x/

√
κt and Φ is an

unknown function of a single argument.
(b) Substitute this into the heat equation; you will get an ordinary

differential equation; solve this equation.
(c) Require that the solution tend to 1 at +∞ and 0 at−∞ (why?),

which fixes the constant.
(d) Differentiate this solution with respect to x, and check that

you get a solution of the heat equation with initial data
f(x) = δ(x), where δ(x) is the Dirac delta: δ(x) = 0 for x �= 0,∫∞
−∞ δ(x)g(x)dx = g(0) for any nice function g. Call this solu-

tion G(x, t).
(e) Verify, by substituting into the heat equation, that G ∗ f (the

convolution is in x) is the solution of the heat equation with
initial data u(x, 0) = f(x).
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CHAPTER 2

Introduction to Probability

2.1. Definitions

In weather forecasts, one often hears a sentence such as, “the
probability of rain tomorrow is 50 percent.” What does this mean?
Something like, “if we look at all possible tomorrows, in half of them
there will be rain” or “if we make the experiment of observing to-
morrow, there is a quantifiable chance of having rain tomorrow, and
somehow or other this chance was quantified as being 1/2.” To make
sense of this, we formalize the notions of experimental outcome, event,
and probability.

Suppose that you make an experiment and imagine all possible
outcomes.

Definition. A sample space Ω is the space of all possible outcomes
of an experiment.

For example, if the experiment is “waiting until tomorrow, and then
observing the weather,” Ω is the set of all possible weathers tomorrow.
There can be many weathers, some differing only in details we cannot
observe and with many features we cannot describe precisely.

Suppose you set up a thermometer in downtown Berkeley and decide
you will measure the temperature tomorrow at noon. The set of possible
weathers for which the temperature is between 65◦ and 70◦ is an event,
an outcome that is specified precisely and about which we can think
mathematically. An event is a subset of Ω, a set of outcomes, a subset
of the set all possible outcomes, that corresponds to a well-defined
property that can be measured.

Definition. An event is a subset of Ω.

The set of events we are able to consider is denoted by B; it is a
set of subsets of Ω. We require that B (the collection of events) be a
σ-algebra; that is, B must satisfy the following axioms:

A.J. Chorin and O.H. Hald, Stochastic Tools in Mathematics and Science,
Texts in Applied Mathematics 58, DOI 10.1007/978-1-4614-6980-3 2,
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1. ∅ ∈ B and Ω ∈ B (∅ is the empty set).
2. If B ∈ B, then CB ∈ B (CB is the complement of B in Ω).
3. If A = {A1, A2, . . . , An, . . .} is a finite or countable collection

in B, then every union of elements of A is in B.
It follows from these axioms that every intersection of a countable
number of elements of B also belongs to B.

Consider the tosses of a die. In this case, Ω = {1, 2, 3, 4, 5, 6}.
1. If we are interested only in whether something happened or

not, we may consider a set of events

B = {{1, 2, 3, 4, 5, 6}, ∅}.
The event {1, 2, 3, 4, 5, 6} means “something happened,” while
the event ∅ means “nothing happened.”

2. If we are interested in whether the outcome is odd or even,
then we may choose

B = {{1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}, ∅}.
3. If we are interested in which particular number appears,

then B is the set of all subsets of Ω; B is generated by
{{1}, {2}, {3}, {4}, {5}, {6}}.

Observe that B in case (1) is the smallest σ-algebra on the sample
space (in the sense of having fewest elements), while B in case (3) is
the largest.

Definition. A probability measure P (A) is a function P : B → R

defined on the sets A ∈ B such that:

1. P (Ω) = 1.
2. 0 ≤ P ≤ 1.
3. If {A1, A2, . . . , An, . . .} is a finite or countable collection of

events such that Ai ∈ B and Ai ∩ Aj = ∅ for i �= j, then
P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai) (the probability of the simultaneous
occurrence of incompatible events is the sum of the probabili-
ties of the individual events).

Definition. The triple (Ω,B, P ) is called a probability space.

In brief, the σ-algebra B defines the objects to which we assign
probabilities and P assigns probabilities to the elements of B.

Definition. A random variable η : Ω → R is a B-measurable
function defined on Ω, where B-measurable means that the subset of
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elements ω in Ω for which η(ω) ≤ x is an element of B for every x. In
other words, it is possible to assign a probability to the occurrence of
the inequality η ≤ x for every x.

Loosely speaking, a random variable is a variable whose numerical
values are determined by experiment, with the proviso that it is possible
to assign probabilities to the occurrence of the various values.

Given a probability measure P (A), the probability distribution
function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

The existence of such a function is guaranteed by the definition of a
random variable. The function Fη satisfies the following conditions,
which are consequences of the axioms: Fη(−∞) = 0, Fη(+∞) = 1, and
Fη(x) is a nondecreasing function of its argument x.

Now consider several examples.

Example. Let B = {A1, A2, A1 ∪ A2, ∅}, where A1 ∩ A2 = ∅. Let
P (A1) = P (A2) = 1/2. Define a random variable

η(ω) =

{
−1, ω ∈ A1,

+1, ω ∈ A2.

Then

Fη(x) =

⎧
⎪⎨

⎪⎩

0, x < −1,

1/2, −1 ≤ x < 1,

1, x ≥ 1.

Example. Suppose that we are tossing a die; Ω = {1, 2, 3, 4, 5, 6}
and η(ω) = ω. Take B to be the set of all subsets of Ω. The probability
distribution function of η is the one shown in Fig. 2.1.

Suppose that Ω is the real line and the range of a random variable
η also is the real line (e.g., η(ω) = ω). In this case, one may want to
take a σ-algebra B large enough to include all of the sets of the form
{ω ∈ Ω | η(ω) ≤ x}. The minimal σ-algebra satisfying this condition
is the σ-algebra of the Borel sets formed by taking all the possible
countable unions and complements of all the half-open intervals in R

of the form (a, b]. To construct a probability on this σ-algebra, pick a
nondecreasing function G = G(x) such that G(−∞) = 0, G(+∞) = 1,
and assign to the interval (a, b] the probability G(b) − G(a). One can
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see that if this is done, the function η = ω is a random variable and its
probability distribution function equals G.

Suppose that F ′
η(x) exists. Then fη(x) = F ′

η(x) is called the proba-
bility density of η. Since Fη(x) is nondecreasing, fη(x) ≥ 0. Obviously,

∫ ∞

−∞
fη(x)dx = Fη(∞)− Fη(−∞) = 1.

1

5/6

2/3

1/2

1/3

1/6

1 2 3 4 5 6 7

F

x

Figure 2.1. Probability distribution for a fair six-sided die

If F ′
η(x) exists and is continuous, then

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x) dx.

The following probability density functions (pdfs) are often encoun-
tered:

1. Equidistribution density

f(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.
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2. Gaussian density

f(x) =
1√
2πσ2

exp

(
−(x−m)2

2σ2

)
, (2.1)

where m and σ are constants.
3. Exponential density

f(x) =

{
e−x, x ≥ 0,

0, x < 0.

2.2. Expected Values and Moments

Definition. Let (Ω,B, P ) be a probability space and η a random
variable. Then the expected value, or mean, of the random variable η
is defined as the integral of η over Ω with respect to the measure P :

E[η] =

∫

Ω

η(ω) dP.

In this notation, the symbol dP is a reminder of the measure with
respect to which the integral is taken; when there is a need for more
specificity, we shall also sometimes write P (dω) instead of dP . When
Ω is a discrete set, this integral is just the sum of the products of the
values of η with the probabilities that η assumes these values.

This definition can be rewritten in another way involving the Stielt-
jes integral. Let F be a nondecreasing and bounded function. Define
the Stieltjes integral of a function g(x) on an interval [a, b] as follows.
Let a = x0 < x1 < · · · < xn−1 < xn = b, Δi = xi+1 − xi, and
x∗i ∈ [xi, xi+1]. Then

∫ b

a

g(x) dF (x) = lim
Δi→0

n−1∑

i=0

g(x∗i )(F (xi+1)− F (xi))

(where we have written F instead of Fη for short). Let x∗i = xi =
−k + i/2k for i = 0, 1, . . . , n = k · 2k+1, when k is an integer, so that
−k ≤ xi ≤ k. Define the indicator function χB of a set B by χB(x) = 1
if x ∈ B, χB(x) = 0 if x /∈ B. Set Δi = 1/2k. The expected value of η
is, by definition,
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∫

Ω

η(dω)P (dω) =

∫

Ω

lim
n→∞

n−1∑

i=0

xiχ{ω|xi<η≤xi+1}P (dω)

= lim
n→∞

n−1∑

i=0

xi P ({ω|xi < η(ω) ≤ xi+1})

= lim
n→∞

n−1∑

i=0

x∗i (F (xi+1)− F (xi))

= lim
k→∞

∫ k

−k

x dF (x) +O

(
1

2k

)

=

∫ ∞

−∞
x dF (x).

If η is a random variable, then so is aη, where a is a constant. If η
is a random variable and g(x) is a continuous function defined on the
range of η, then g(η) is also a random variable, and

E[g(η)] =

∫ ∞

−∞
g(x) dF (x).

The special cases

E[ηn] =

∫ ∞

−∞
xn dF (x)

and

E[(η − E[η])n] =

∫ ∞

−∞
(x−E[η])n dF (x)

are called the nth moment and the nth centered moment of η, respec-
tively. (Of course, these integrals may fail to converge for some random
variables.) The second centered moment is the variable of η.

Definition. The variance Var(η) of the random variance η is

Var(η) = E[(η −E[η])2],

and the standard deviation of η is

σ =
√
Var(η).

Example. The Gaussian pdf (2.1) has E[η] = m and Var(η) = σ2.
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Definition. Two events A and B are independent if P (A ∩ B) =
P (A)P (B). Two random variables η1 and η2 are independent if the
events {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y} are independent
for all x and y.

Definition. If η1 and η2 are random variables, then the joint dis-
tribution function of η1 and η2 is defined by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1 ≤ x, η2 ≤ y).

If the second mixed derivative ∂2Fη1η2(x, y)/∂x ∂y exists, it is called
the joint probability density of η1 and η2 and is denoted by fη1η2 . In
this case,

Fη1η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(s, t) dt ds.

Clearly, if η1 and η2 are independent, then

Fη1η2(x, y) = Fη1(x)Fη2(y)

and

fη1η2(x, y) = fη1(x)fη2(y).

We can view two random variables η1 and η2 as a single vector-
valued random variable η = (η1, η2) = η(ω) for ω ∈ Ω. We say that
η is measurable if the event η ∈ S with S ⊂ R

2 is measurable for a
suitable family of S’s (i.e., the event Z = {ω ∈ Ω : η(ω) ∈ S} ∈
B, where B is a σ-algebra on Ω). Suppose that the joint probability
distribution function of the two random variables exists and is denoted
by Fη1η2(x, y) = P (η1 ≤ x, η2 ≤ y). Note that Fη1η2(x, y) = Fη2η1(y, x)
and Fη1η2(∞, y) = Fη2(y).

Suppose one is given the joint pdf fη1η2(x, y) of the random variables
η1, η2, but one is interested only in the variable η1 and its pdf fη1(x).
Clearly, the probability that η1 is between x and x+dx is the probability
that η1 is between x and x+ dx while η2 is anywhere, so that

fη1(x) =

∫ +∞

−∞
fη1η2(x, y)dy. (2.2)

In this equation, fη1 is called a marginal of fη1η2 , and the variable η2 is
said to have been integrated out.

Suppose η is a random variable with pdf fη, and g is a monoton-
ically increasing function of its argument. What is the pdf fξ of the
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variable ξ = g(η)? The probability that ξ is between a and b (a < b)

is
∫ b

a
fξ(x)dx, which, by the change of variables formula of calculus,

equals
∫ g−1(b)

g−1(a)
fξ(g(t))Jdt, where J = dg/dt is the Jacobian of the map-

ping from t to x defined by x = g(t). On the other hand, since ξ is a

function of η, the probability that ξ is between a and b is
∫ g−1(b)

g−1(a)
fη(t)dt.

Equating the two integrals, and noting that the equality holds for all
a, b, one obtains

fξ(x) = fη(t)J, (2.3)

where J = dx/dt is the Jacobian of the map t → x, which can rewrit-
ten as

fξ(x)dx = fη(t)dt.

In this last form, the result is obvious: the mapping by a monotonic
function preserves probability. A similar result holds when g is mono-
tonically decreasing, provided one defines J as |dg/dt|, as well as when
the variables η, ξ are vector-valued and J is the appropriate Jacobian
determinant.

Definition. The covariance of two random variables η1 and η2 is

Cov(η1, η2) = E[(η1 − E[η1])(η2 −E[η2])].

If Cov(η1, η2) = 0, then the random variables are uncorrelated. It
is in general not true that uncorrelated variables are independent.

Example. Let η1 and η2 be two random variables with joint prob-
ability distribution

(η1, η2) =

⎧
⎪⎨

⎪⎩

(1
2
, 1
4
) with probability 1

4
,

(1
2
,−1

4
) with probability 1

4
,

(−1
2
, 0) with probability 1

2
.

Then we have E[η1] = 0, E[η2] = 0, and E[η1η2] = 0. However, the
random variables are not independent, because P

(
η1 = −1

2
, η2 =

1
4

) �=
P
(
η1 = −1

2

)
P
(
η2 =

1
4

)
.
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In particular, a vector-valued random variable is Gaussian (or equiv-
alently, a sequence of random variables is jointly Gaussian) if

P (x1 ≤ η1 ≤ x1 + dx1, . . . , xn ≤ ηn ≤ xn + dxn)

=
1

Z
e−

1
2
(x−m)TA−1(x−m) dx,

where x = (x1, x2, . . . , xn), m = (m1, m2, . . . , mn), dx = dx1 · · · dxn,
and A is a symmetric positive definite n×n matrix. The normalization
constant Z can be shown to be Z = (2π)n/2|A|1/2, where |A| is the
determinant of A. In the case of jointly Gaussian random variables, the
covariance matrix C with entries Cij = E[(ηi−E[ηi])(ηj−E[ηj ])] equals
the matrix A. If Cij = 0, then ηi and ηj are uncorrelated. Furthermore,
two Gaussian variables that are uncorrelated are also independent.

We now discuss some properties of the mathematical expectation E.

Lemma 2.1. E[η1 + η2] = E[η1] + E[η2].

Proof. We assume for simplicity that the joint density fη1η2(x, y)
exists. Then the density fη1(x) of η1 is given by

fη1(x) =

∫ ∞

−∞
fη1η2(x, y) dy,

and the density fη2(y) of η2 is given by

fη2(y) =

∫ ∞

−∞
fη1η2(x, y) dx;

therefore,

E[η1 + η2] =

∫
(x+ y)fη1η2(x, y) dx dy

=

∫
xfη1η2(x, y) dx dy +

∫
yfη1η2(x, y) dx dy

=

∫
x dx

∫
fη1η2(x, y) dy +

∫
y dy

∫
fη1η2(x, y) dx

=

∫
xfη1(x) dx+

∫
yfη2(y) dy = E[η1] + E[η2].

�
Lemma 2.2. If η1 and η2 are independent random variables, then

Var[η1 + η2] = Var[η1] + Var[η2].
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Proof. For simplicity, we assume that η1 and η2 have densities
with mean zero. Then

Var[η1 + η2] = E[(η1 + η2 −E[η1 + η2])
2] = E[(η1 + η2)

2]

=

∫
(x+ y)2fη1η2(x, y) dx dy

=

∫
x2fη1η2(x, y) dx dy +

∫
y2fη1η2(x, y) dx dy

+ 2

∫
xyfη1η2(x, y) dx dy.

The first two integrals are equal to Var(η1) and Var(η2), respectively.
The third integral is zero. Indeed, because η1 and η2 are independent,
fη1η2(x, y) = fη1(x)fη2(y) and

∫
xyfη1η2(x, y) dx dy =

∫
xfη1(x) dx

∫
yfη2(y) dy = E[η1]E[η2] = 0.

�

Another simple property of the variance is that Var(aη) = a2Var(η),
where a is a constant. Indeed,

Var(aη) =

∫
(ax− E[aη])2fη(x) dx

=

∫
(ax− aE[η])2fη(x) dx

= a2
∫
(x− E[η])2fη(x) dx

= a2Var(η).

We now prove a very useful estimate due to Chebyshev.

Lemma 2.3. Let η be a random variable. Suppose g(x) is a nonnega-
tive, nondecreasing function (i.e., g(x) ≥ 0 and a < b ⇒ g(a) ≤ g(b)).
Then for every a,

P (η ≥ a) ≤ E[g(η)]

g(a)
.
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Proof.

E[g(η)] =

∫ ∞

−∞
g(x)f(x) dx ≥

∫ ∞

a

g(x)f(x) dx

≥ g(a)

∫ ∞

a

f(x) dx = g(a)P (η ≥ a).

�

Suppose η is a nonnegative random variable. We define g(x) to be
0 when x ≤ 0 and x2 when x ≥ 0. Let a be any positive number. Then

P (η ≥ a) ≤ E[g(η)]

g(a)
=
E[η2]

a2
.

Consider now a special case. Let η be a random variable and define
ξ = |η −E[η]|. Then we obtain the following inequality:

P (|η −E[η]| ≥ a) ≤ Var(η)

a2

for every a > 0. Now take a = σk, where k is an integer and σ2 is the
variance of η. Then

P (|η − E[η]| ≥ σk) ≤ Var(η)

(σk)2
=

1

k2
.

In other words, it is very unlikely that η differs from its expected value
by more than a few standard deviations.

The set of random variables η on a fixed probability space can be
viewed as an inner product space, with the inner product (η, ξ) = E[ηξ]

and the norm ||η|| =
√
(η, η). Suppose one wants to find the best

approximation (in the sense of this norm) of a random variable η by a
constant c, i.e., find c such that E[(η− c)2] is as small as possible. One
has E[(η− c)2] = E[η2]− 2cE[η] + c2, which is smallest when c = E[η].
If you want to guess the value of η before the next time you make the
experiment on which this value depends, your best guess is E[η]. The
standard deviation is a measure of how far off this estimate can be.

Suppose η1, η2, . . . , ηn are independent, identically distributed ran-
dom variables. Let

η =
1

n

n∑

i=1

ηi.
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Then

E[η] = E[η1], Var(η) =
1

n
Var(η1), σ(η) =

σ(η1)√
n
.

Therefore,

P
(|η − E[η]| ≥ kn−1/2σ(η1)

) ≤ 1

k2
.

This tells us that if we use the average of n independent samples of a
given distribution to estimate the mean of the distribution, then the
error in our estimates decreases as 1/

√
n. This discussion brings the

notion of expected value closer to the intuitive, everyday notion of
“average.”

2.3. Conditional Probability and Conditional Expectation

Suppose we make an experiment and observe that event A has hap-
pened, with P (A) �= 0. How does this knowledge affect the probability
that another event B also happens? We define the probability of B
given A to be

P (B|A) = P (A ∩B)

P (A)
.

If A and B are independent, then P (A ∩ B) = P (A)P (B) and so

P (B|A) = P (A ∩ B)

P (A)
=
P (A)P (B)

P (A)
= P (B).

If A is fixed and B is any member of B (i.e., any event), then P (B|A)
defines a perfectly good probability measure on B; this is the probability
conditional on A:

(Ω,B, P ) → (Ω,B, P (B|A)).
Suppose η is a random variable on Ω. Then the average of η given A is

E[η|A] =
∫
η(ω)P (dω|A).

Thus if η =
∑
ciχBi

, then

E[η|A] =
∫ ∑

ciχBi
(ω)P (dω|A) =

∑
ci P (Bi|A).
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Example. Suppose we throw a die. Let η be the value of the top
face of the die. Then

E[η] =
1

6

6∑

i=1

i = 3.5.

Suppose we know that the outcome is odd. Then the probability that
the outcome is 1, given this information, is

P ({1}|outcome is odd] =
P ({1} ∩ {1, 3, 5})

P ({1, 3, 5}) =
1/6

1/2
=

1

3
;

and the average of η given A = {1, 3, 5} is

E[η|outcome is odd] =
1

3
(1 + 3 + 5) = 3.

The probability of a particular even outcome given A is

P (2|A) = P (4|A) = P (6|A) = 0,

whereas the total probability of an odd outcome given A is

P (1|A) + P (3|A) + P (5|A) = 1.

Suppose Z = {Zi} is an at most countable disjoint measurable
partition of Ω. This means that the number of Zi’s is finite or countable,
each Zi is an element of B, Ω =

⋃
iZi, and Zi ∩ Zj = ∅ if i �= j.

Example. Z = {A,CA}, where A is a measurable subset of Ω and
CA is the complement of A.

Definition. Suppose B is an event. Then χB(ω) is a random
variable equal to 1 when ω ∈ B and 0 when ω /∈ B.

Observe that E[χB(ω)] = P (B) and E[χB|A] = P (B|A).
Definition. Let Z = {Zi} be a partition of Ω as above. Let η be a

random variable and construct the random variable E[η|Z] as follows:

E[η|Z] =
∑

i

E[η|Zi]χZi
.
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This is a function of ω, whose definition depends on the choice of
partition Z. In words, we average η over each element Zi of the partition
and then we assign this average to be the value of the variable E[η|Z]
for all ω in Zi. If one could think of the elements of ω as people and
the values of η as those people’s heights, one could then partition the
people by ethnic origin and assign an average height to each ethnic
group. Given a person, the new variable would assign to that person
not his or her real height but the average height of his or her ethnic
group.

Note that Z generates a σ-algebra. It is a coarser σ-algebra than
B (i.e., it is contained in B). The variable E[η|Z] is the best estimate
of the original random variable when the instruments you use to mea-
sure the outcomes (which define the σ-algebra generated by Z) are too
coarse.

Example. Return to the example of the die. Let η be the number
on top. Let A be the event that the outcome is odd. Let Z = {A,CA}.
Then

E[η|A] = 1

3
(1 + 3 + 5) = 3,

E[η|CA] = 1

3
(2 + 4 + 6) = 4,

and finally,

E[η|Z] = 3χA + 4χCA,

where χA, χCA are the indicator functions of the sets A,CA.

We now want to define the notion of conditional expectation of one
random variable η given another random variable ξ. For simplicity, we
assume at first that ξ takes only finitely many values ξ1, ξ2, . . . , ξn. Let
Zi be the inverse image of ξi (the set of ω such that η(ω) = ξi). Then
Z = {Z1, Z2, . . . , Zn} is a finite disjoint partition of Ω. Thus, we can
construct E[η|Z] as defined above.

Definition. We define E[η|ξ] to be the random variable E[η|Z].
We observe that E[η|ξ] is a random variable and, at the same time,

a function of ξ. Indeed, when ξ has value ξi, then E[η|ξ] = E[η|Zi];
thus, E[η|ξ] is a function of ξ. We now show that E[η|ξ] is actually the
best least squares approximation of η by a function of ξ. This property
can serve as an alternative definition of conditional expectation.
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Theorem 2.4. Let g(ξ) be any function of ξ. Then

E[(η − E[η|ξ])2] ≤ E[(η − g(ξ))2].

Proof. We remind the reader that E[(η − c)2], where c is a con-
stant, is minimized when c = E[η]. Similarly, we want to minimize

E[(η − g(ξ))2] =

∫

Ω

(η(ω)− g(ξ(ω)))2P (dω)

=
∑

i

P (Zi)

∫

Zi

(η(ω)− g(ξ(ω)))2
P (dω)

P (Zi)
.

Since g(ξ(ω)) = g(ξi) for all ω in Zi, each of the integrals
∫

Zi

(η(ω)− g(ξ(ω)))2P (dω)/P (Zi)

is minimized when g(ξi) = E[η|Zi] (i.e., when g(ξ(ω)) is the average of
η on Zi). Thus, E[η|ξ] is the best least squares approximation of η by
a function of ξ. �

Let h(ξ) be a function of ξ. Then

E [(η − E[η|ξ])h(ξ)] = 0.

To see this, assume α = E [(η − E[η|ξ])h(ξ)] �= 0 for some function h(ξ)
and set ε = α/E[(h(ξ))2]. Then

E
[
(η −E[η|ξ]− εh(ξ))2

]
= E

[
(η − E[η|ξ])2]

+ ε2E[(h(ξ))2]− 2εE [(η − E[η|ξ])h(ξ)]

= E
[
(η − E[η|ξ])2]− α2/E[(h(ξ))2].

But this contradicts Theorem 2.4, so α = 0 for all h(ξ). We can give
this result a geometric interpretation.

Consider the space of all square integrable random variables. It is a
vector space, and the functions of ξ form a linear subspace. Let η1 and
η2 be random variables and define the inner product by

(η1, η2) = E[η1η2].

Since E [(η −E[η|ξ])h(ξ)] vanishes for all h(ξ), we see that η − E[η|ξ]
is perpendicular to all functions h(ξ). Set Pη = E[η|ξ]. Then η =
Pη + (η − Pη) with (η − Pη, Pη) = 0, and we can interpret Pη as the
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orthogonal projection of η onto the subspace of random variables that
are functions of ξ and have finite variance.

We now generalize this construction to define and calculate condi-
tional expectations when the conditioning variable ξ has a continuous
range. Let η and ξ be random variables with known joint pdf fηξ(s, t):

P (s < η ≤ s+ ds, t < ξ ≤ t + dt) = fηξ(s, t) ds dt.

We want to define and calculate E[g(η, ξ)|ξ], where g(η, ξ) is some func-
tion of η and ξ. Then E[g(η, ξ)|ξ] is a random variable and a function of
ξ. What is this function? Specifically, what is the value of this random
variable when ξ = a?

To answer this question, define a partition of the space Ω by the
Zi = {ω|ih < ξ ≤ (i + 1)h}, where h is a small parameter and i is an
integer varying between −∞ and +∞. When h is small, the variable ξ
is approximately constant on each Zi. Then

E[g(η, ξ)|Zi] =
∑∫∞

−∞
∫ (i+1)h

ih
g(s, t)f(s, t) dt ds

∫∞
−∞
∫ (i+1)h

ih
f(s, t) dt ds

· χZi
,

which converges to ∫∞
−∞ g(s, a)f(s, a) ds
∫∞
−∞ f(s, a) ds

as h→ 0 and ih remains fixed, ih = a. Thus,

E[g(η, ξ)|ξ]ξ=a =

∫∞
−∞ g(s, a)f(s, a) ds
∫∞
−∞ f(s, a) ds

, (2.4)

and one can write

E[g(η, ξ)|ξ] =
∫∞
−∞ g(s, ξ)f(s, ξ) ds
∫∞
−∞ f(s, ξ) ds

. (2.5)

This is just what one would expect: E[g(η, ξ)|ξ] is the mean of g(η, ξ)
when we keep the value of ξ fixed but allow η to take any value it wants.

2.4. The Central Limit Theorem

Suppose that η1, η2, . . . , ηn are independent, identically distributed
random variables with finite variance and mean zero. We can assume
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without loss of generality that they have variance 1. Suppose the ηi’s
have a pdf f . Define a new random variable

Sn =
1√
n

n∑

i=1

ηi.

What can we say about the pdf of Sn? The answer to this question is
given by the following theorem.

Theorem 2.5 (The central limit theorem). Let η1, η2, . . . , ηn be
independent and identically distributed random variables with finite
variance and zero mean. Let us also assume for simplicity that
Var(ηi) = 1. Then

Sn =
1√
n

n∑

i=1

ηi

converges weakly to a Gaussian variable with mean 0 and variance 1.

Proof. We will assume that the ηi have pdf f and that f (n) is the
pdf of Sn. We want to show that

lim
n→∞

∫ b

a

f (n)(x) dx =

∫ b

a

e−x2/2

√
2π

dx

for every a, b. Note that n−1
∑
ηi = n−1/2(n−1/2

∑
ηi), where

n−1/2
∑
ηi tends to a Gaussian; thus, the central limit theorem con-

tains information as to how n−1
∑
ηi → 0 (i.e., for large n, n−1

∑
ηi ≈

Gaussian/
√
n). Suppose η1 and η2 are random variables with respective

pdfs f1 and f2. What is the density of η1 + η2? We know that

P (η1 + η2 ≤ x) = Fη1+η2(x) =

∫ ∫

x1+x2≤x

f1(x1)f2(x2) dx1 dx2.

With the change of variables x1 = t and x1 + x2 = y (note that the
Jacobian is 1), we obtain

Fη1+η2(x) =

∫ x

−∞
dy

∫ ∞

−∞
f1(t)f2(y − t) dt.

Thus, the density of η1+ η2 = fη1+η2 is just
∫
f1(t)f2(y− t) dt = f1 ∗ f2,

and therefore, f̂η1+η2 =
√
2π f̂1f̂2.

Hence, if we assume that the random variables ηi have the same
density function for all i, then

∑n
i=1 ηi has density f

(n) = f ∗ f ∗ · · · ∗ f
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(f appears n times), where ∗ is convolution. Furthermore,

P (a < Sn ≤ b) = P

(
a <

1√
n

∑
ηi ≤ b

)
= P (

√
na <

∑
ηi ≤

√
nb)

=

∫ √
nb

√
na

f (n)(x) dx =

∫ b

a

√
nf (n)(y

√
n) dy. (2.6)

The last step involves the change of variables y = x/
√
n.

What we want to show is that
∫ b

a

√
nf (n)(y

√
n) dy converges to

∫ b

a

e−x2/2

√
2π

dx.

Pick some nice function φ and consider

I =

∫ ∞

−∞

√
nf (n)(x

√
n)φ(x) dx.

Let φ̌(k) = φ̂(−k) be the inverse Fourier transform of φ; that is,

φ(x) =
1√
2π

∫ ∞

−∞
φ̌(k)e−ikx dk.

Then

I =

∫ ∞

−∞

√
nf (n)(x

√
n)φ(x) dx

=

∫ ∞

−∞

√
nf (n)(x

√
n)

1√
2π

∫ ∞

−∞
φ̌(k) e−ikx dk dx

=

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞

√
nf (n)(x

√
n)e−ikxdx

)
φ̌(k) dk

=

∫ ∞

−∞
f̂ (n)

(
k/

√
n
)
φ̌(k) dk

=
1√
2π

∫ ∞

−∞

[√
2π f̂

(
k√
n

)]n
φ̌(k) dk.

Here

f̂

(
k√
n

)
=

1√
2π

∫ ∞

−∞
f(x) e−ikx/

√
n dx,
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and we used that f̂ ∗ g = √
2πf̂ · ĝ. Expand e−ikx/

√
n in a Taylor series:

e−ikx/
√
n = 1− ixk√

n
− x2k2

2n
+O

(
1

n3/2

)
.

Recall that∫
f(x) dx = 1,

∫
xf(x) dx = 0,

∫
x2f(x) dx = 1.

Hence,

f̂

(
k√
n

)
=

1√
2π

∫ ∞

−∞

(
1− k2x2

2n
+ · · ·

)
f(x) dx

=
1√
2π

(
1− k2

2n

)
+ small terms.

Recall that

lim
n→∞

(
1− a

n

)n
= e−a.

The contribution of the small terms in the expansion can be shown to
be negligible, and we get

lim
n→∞

[√
2π f̂

(
k√
n

)]n
= lim

n→∞

(
1− k2

2n
+ small

)n

= e−k2/2.

Returning to the integral I, we obtain

I → 1√
2π

∫ ∞

−∞
e−k2/2 φ̌(k) dk

=
1√
2π

∫ ∞

−∞
e−k2/2

(
1√
2π

∫ ∞

−∞
φ(x)eikxdx

)
dk

=
1√
2π

∫ ∞

−∞
φ(x)

(
1√
2π

∫ ∞

−∞
e−k2/2eikx dk

)
dx

=
1√
2π

∫ ∞

−∞
φ(x)e−x2/2 dx.

Now, taking φ to be a smooth function that approximates

Φ(x) =

{
1, a ≤ x ≤ b,

0, otherwise,

we get the desired result. �
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It is useful for later use to consider the central limit theorem in a
slightly different form. Let the random variables ηi for i = 1, 2, . . . be
independent and have each the pdf f , with mean 0 and variance 1 as
above, and construct the following sequence of random variables:

T0,1 = η1, T0,2 = η2, T0,3 = η3, . . . (2.7)

T1,1 =
1√
2
(η1 + η2), T1,2 =

1√
2
(η3 + η4), T1,3 =

1√
2
(η5 + η6), . . . (2.8)

and

Tn+1,1 =
1√
2
(Tn,1 + Tn,2), Tn+1,2 =

1√
2
(Tn,3 + Tn,4), . . . (2.9)

for n ≥ 1, where Tn,1, Tn,2 are disjoint sums of 2n variables in the set.
It is easy to see that Tn = S2n , where S2n are the sums of 2n of the
random variables that appeared in the statement of the central limit
theorem. Let the pdf of Tn be fn with f0 = f ; if the pdf’s of the Sn

converge to a limit as n tends to infinity, then so do the fn. We have
a formula for the pdf of a sum of two variables, and we know that if a
variable ξ has the pdf g(x) and a is a positive constant, then ξ/a has
the pdf ag(ax); this yields

fn+1(x) =
√
2

∫ +∞

−∞
fn(t)fn(

√
2 x− t)dt. (2.10)

If the fn converge to a limit f∞, this equation becomes

f∞(x) =
√
2

∫ +∞

−∞
f∞(t)f∞(

√
2x− t)dt. (2.11)

The central limit theorem says that if the variance of the ηi is finite, this
last equation has a solution, which is Gaussian. The iteration (2.11)
converges to that solution, and its limit is independent of the starting
point f , just as a convergent iterative solution of an algebraic equation
converges to a limit independent of the starting point.

2.5. Exercises

1. Let η be a random variable that takes the value 1/2 with prob-
ability 1/2 and the value −1/2 also with probability 1/2. Let
Ξn = (

∑n
1 ηi)/

√
n, where the ηi are independent variables with the
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same distribution as η. Find the values that Ξn can take and their
probabilities for n = 3, 6, 9, and plot their histograms together with
the pdf of the limit of Ξn as n→ ∞.

2. Let η be again a random variable that takes the value 1/2 with
probability 1/2 and the value −1/2 with probability 1/2, and form
the variable Ξα

n = (
∑n

1 ηi)/n
α, where α ≥ 0. Find the limit of the

pdf of Ξα
n as n→ ∞, as a function of α.

3. Consider a vector-valued Gaussian random variable ξ1, ξ2, with pdf

f(x1, x2) = f(x) =
α

2π
exp(−(x−m,A(x−m)/2)),

where A is a symmetric positive definite matrix. Show that α =√
detA and A = C−1, where C is the covariance matrix.

4. Let (Ω,B, P ) be a probability space, A an event with P (A) > 0,
and PA(B) = P (B|A) for every event B in B. Show that (Ω,B, PA)
satisfies the axioms for a probability space.

5. Let η1, η2 be two random variables with joint pdf

Z−1 exp(−x21 − x22 − x21x
2
2),

where Z is a normalization constant. Evaluate E[η1η
2
2|η1].

6. Let η be the number that comes up when you throw a die. Evaluate
E[η|(η− 3)2] (you may want to present it as a table of its values for
different values of (η − 3)2).
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CHAPTER 3

Computing with Probability

3.1. Sampling and Monte Carlo Integration

In this chapter we present some of the ways in which probability
can be put to use in scientific computation. We begin with a class of
Monte Carlo methods (so named in honor of that town’s gambling casi-
nos) where one evaluates a nonrandom quantity, for example a definite
integral, as the expected value of a random variable.

We first have to be able to sample a given pdf on the computer,
i.e., to construct an experiment on a computer that yields a sequence
of numbers η1, η2, . . . , such that the probability of any one of them

being in the interval [a, b] is
∫ b

a
f(x)dx, where f is a given pdf, and

two successive η’s are independent. The resulting sequence produced
by a computer is pseudorandom, i.e., it is a computer-generated se-
quence that cannot be distinguished by simple tests from a random
sequence with independent entries, yet is the same each time one runs
the appropriate program. For a random variable with the equidistri-
bution density, number theory allows us to construct the appropriate
pseudorandom sequence. Suppose that we want to generate a sequence
of independent samples η1, η2, . . . of a random variable η with a given
probability distribution function F (x). This can be done in the follow-
ing way. Pick independent samples ξ1, ξ2, . . . of a random variable ξ
equidistributed on [0, 1]; then for each ξi, solve the equation F (ηi) = ξi,
i.e., ηi = F−1(ξi) (if there are multiple solutions, pick one arbitrar-
ily). This is the sequence we want. To see this, consider the following
example. Let η be a random variable with

η =

⎧
⎪⎨

⎪⎩

α1 with probability p1,

α2 with probability p2,

α3 with probability p3,

A.J. Chorin and O.H. Hald, Stochastic Tools in Mathematics and Science,
Texts in Applied Mathematics 58, DOI 10.1007/978-1-4614-6980-3 3,
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p1+p2+p3=1

p1+p2

p1

h

a1 a2 a3

x

Figure 3.1. Sampling a random variable

where
∑3

i=1 pi = 1 and pi ≥ 0 for i = 1, 2, 3. Then F (η) = ξ implies

η =

⎧
⎪⎨

⎪⎩

α1 if ξ∈[0, p1],
α2 if ξ∈(p1, p1 + p2],

α3 if ξ∈(p1 + p2, 1].

See Fig. 3.1. This can be generalized to any countable number of dis-
crete values in the range of η, and since every function can be ap-
proximated by a step function, the results hold for every probability
distribution function F . The relation between η and ξ can be written
in the differential form f(η)dη = dξ, which is, of course, a special case
of Eq. (2.3) of Chap. 2; we could have derived it in that way.

Example. Let η be a random variable with the exponential pdf
f(x) = 0 for x < 0, f(x) = e−x for x > 0. Then F (η) = ξ gives

∫ η

0

e−s ds = ξ =⇒ η = − log(1− ξ).

Example. If f exists, then by differentiating
∫ η

−∞ f(s) ds = ξ,
we get f(η)dη = dξ. The following algorithm (known as the Box–
Muller algorithm) allows us to sample pairs of independent variables
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with Gaussian densities with zero mean and variance σ2. Let

η1 =
√

−2σ2log ξ1 cos(2πξ2),

η2 =
√

−2σ2log ξ1 sin(2πξ2),

where ξ1 and ξ2 are equidistributed in [0, 1]; then η1, η2 are Gaussian
variables with means zero and variances σ2, as one can see from the
identity

|

∣∣∣∣∣∣∣

∂η1
∂ξ1

∂η1
∂ξ2

∂η2
∂ξ1

∂η2
∂ξ2

∣∣∣∣∣∣∣

−1

|dη1 dη2 = dξ1 dξ2

(the short outer vertical lines denote an absolute value, while the tall
inner vertical lines denote a determinant), which becomes, with the
equations above,

1

2πσ2
exp

(
−η

2
1 + η22
2σ2

)
dη1 dη2 = dξ1 dξ2.

Now we present the Monte Carlo method. Consider the problem

of evaluating the integral I =
∫ b

a
g(x)f(x) dx, where f(x) ≥ 0 and∫ b

a
f(x) dx = 1. We have

I =

∫ b

a

g(x)f(x) dx = E[g(η)],

where η is a random variable with pdf f(x). Suppose that we can sample
η; that is, make n independent experiments with outcomes η1, . . . , ηn.
Then, as can be seen from the Chebyshev inequality, we can approxi-
mate E[g(η)] by

E[g(η)] ∼ 1

n

n∑

i=1

g(ηi).

The error in this approximation will be of the order of σ(g(η))/
√
n,

where σ(g(η)) is the standard deviation of the variable g(η). The in-
tegral I is the estimand, g(η) is the estimator, and n−1

∑n
i=1 g(ηi) is

the estimate. The estimator is unbiased if its expected value is the
estimand.
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Example. Let

I =
1√
2π

∫ ∞

−∞
g(x)e−x2/2 dx.

If η is a Gaussian random variable with mean 0 and variance 1, then

I = E[g(η)] ∼ 1

n

n∑

i=1

g(ηi).

There are two ways to reduce the error of a Monte Carlo method,
as can be seen from the error estimate. One way is to take a larger
number of samples. The other way is to reduce the variance of the
function g(η). One way to reduce the variance is importance sampling.

We start with an extreme case. Suppose we want to evaluate the

integral I =
∫ b

a
g(x)f(x) dx as above. Suppose that the function g is

nonnegative; then the quantity q(x) given by q(x) = f(x)g(x)/I has
the following properties:

q(x) ≥ 0,

∫ b

a

q(x) dx = 1.

Further, suppose we can generate a pseudorandom sequence with pdf
q(x). Then we have

∫ b

a

g(x)f(x) dx = I

∫ b

a

g(x)f(x)

I
dx = I

∫ b

a

q(x) dx = IE[1],

where 1 is the function that takes the value 1 for all samples. Then
the Monte Carlo method has zero error. However, we need to know the
value of I, which is exactly what we want to compute. If we know the
value of the quantity that we want to compute, Monte Carlo can give
us the exact result with no error.

However, it is possible to reduce the error of the Monte Carlo
method along similar lines without knowing the result we want to com-
pute. Suppose that we can find a function h(x) with the following
properties:

1. The integral I1 =
∫ b

a
f(x)h(x) dx is easily evaluated.

2. h(x) ≥ 0.
3. We can sample a variable with pdf f(x)h(x)/I1 easily.
4. g(x)/h(x) varies little.
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Then we have

I =

∫ b

a

g(x)f(x) dx =

∫ b

a

g(x)

h(x)
f(x)h(x) dx = I1

∫ b

a

g(x)

h(x)

f(x)h(x)

I1
dx

= I1E
[g
h
(η)
]
∼ I1

n

n∑

i=1

g(ηi)

h(ηi)
, (3.1)

where η has pdf f(x)h(x)/I1. Since g(η)/h(η) varies little, its variation
and the error will be smaller. The new random variable puts more
points where g is large, hence the name of the method importance
sampling ; one puts more samples where g is large, or important.

Example. Suppose that we want to compute via Monte Carlo the

integral I =
∫ 1

0
cos(x/5)e−5x dx. We can do that by applying the basic

Monte Carlo formula without any attempt at importance sampling.
That would mean sampling n times an equipartitioned variable ξ and
then approximating I by

I ≈ 1

n

n∑

i=1

cos(ξi/5)e
−5ξi,

where the ξi are the successive independent samples of ξ. However, due
to the large variation of the function cos(x/5)e−5x, the corresponding
error would be large (the large variation of the function is due to the
presence of the factor e−5x). Alternatively, we can perform the Monte
Carlo integration using importance sampling. There are different ways

of doing this, and one of them is as follows. Let I1 =
∫ 1

0
e−5x dx =

(1− e−5)/5. Then we have

I =

∫ 1

0

cos(x/5)e−5x dx = I1

∫ 1

0

cos(x/5)
e−5x

I1
dx.

Let η be a random variable with pdf

f(x) =

⎧
⎨

⎩

e−5x

I1
, 0 ≤ x ≤ 1,

0, elsewhere.

Then I can be written as I = I1E[cos(η/5)]. As can be readily seen,
the function cos(x/5) has smaller variation in the range of integration
[0, 1] than the previous integrand. In order to perform the Monte Carlo
integration, we need to sample the variable η. As shown above, this
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can be done by solving the equation
∫ η

0
e−5x/I1 dx = ξ, where ξ is

equidistributed in [0, 1]. An easy calculation gives η = −1
5
log(1−5I1ξ).

We can use this formula to sample η n times, and then the Monte Carlo
approximation to I will read

I ≈ I1
n

n∑

i=1

cos(ηi/5).

3.2. Rejection, Weighted, and Implicit Sampling

It should be obvious from the previous section that one’s ability to
do probability on a computer hinges on one’s ability to sample given
pdfs, those that arise naturally in applications or those that arise when
one is attempting to do importance sampling. In the previous section
we presented an algorithm that allows one to express a given scalar
random variable as a function of an equidistributed random variable.
In practice, this algorithm may be expensive to use even in the scalar
case whenever the pdf one is trying to sample is complicated enough,
and it is very hard to generalize it to multidimensional pdfs. We now
provide some suggestions for sampling arbitrary pdfs, which can be
generalized to multidimensional problems.

3.2.1. Rejection Sampling. The idea is to modify a sampling
scheme that is easy to use by rejecting some of the samples. For
example, suppose one wants to sample the two-component variable
η = (η1, η2) with the joint pdf fη1η2(x1, x2) = 1/π if x21 + x22 ≤ 1,
otherwise fη1η2(x1, x2) = 0 (this is a vector variable distributed uni-
formly inside the unit circle). An easy way to do it is to generate
a vector variable equidistributed inside the unit square, i.e., a vector
variable (α1, α2), where αi = 2(ξi − 0.5) for i = 1, 2, and ξ1, ξ2 are
equidistributed on [0, 1] and independent, and then reject all samples
for which α2

1 + α2
2 > 1. It is easy to check that the fraction of samples

rejected is less than 1/4.
This construction obviously generalizes to the sampling of variables

equidistributed over spheres in Rn, or indeed equidistributed over any
bounded shapes in Rn, but as n increases, the fraction of rejected sam-
ples increases, because the ratio of the volume of the unit sphere to the
volume of the unit cube decreases rapidly as n increases. A general and
powerful form of rejection sampling will be presented in Chap. 8.
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3.2.2. Weighted Sampling. Suppose you want to evaluate

I =

∫ b

a

g(x)f(x)dx,

where f can be viewed as a pdf; as we have seen,

I = E[g(η)],

where η has the pdf f and can be approximated as

N−1
∑

g(ηi),

where the ηi have been sampled from f . Now suppose you cannot
sample f , but you can find a pdf f0 that you know how to sample and
such that (a) f = 0 whenever f0 = 0, and (b) the ratio f/f0 varies
little. Then

∫ b

a

g(x)f(x)dx =

∫ b

a

g(x)
f(x)

f0(x)
f0(x)dx,

which can be approximated as

N−1
∑

g(ξi)wi(ξi),

where the quantities wi(ξi) = f(ξi)/f0(ξi) are sampling weights and the
ξi are sampled from the pdf f0. The weighted estimate is sometimes
written as W−1

∑
g(ξi)wi(ξi), where W =

∑
wi(ξi); the two versions

are equivalent when there are enough samples, as one can check by
looking at the case g = 1. The pdf f0 is called a proposal density or an
importance density.

The condition that f = 0 whenever f0 = 0 (in other words, the sup-
port of f must be contained in the support of f0) is needed, or else some
of the weights may be infinite and blow up the calculation. If the ratio
f/f0 is not roughly constant, in particular if f0 can be small when f is
large, the calculation will waste time on samples of little significance.
The catch is that in general, one does not know in advance where f
is large (for example, in the problem of data assimilation discussed in
Chap. 5, the whole purpose of the sampling is to identify the region
where f is large), and finding a suitable f0 may be difficult.
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3.2.3. Implicit Sampling. Implicit sampling is weighted sam-
pling where a proposal density is defined implicitly by a minimization
followed by the solution of algebraic equations. The region where the
pdf is large does not have to be known in advance.

Suppose you want to sample the pdf f = f(x). Define a function
G by G = − log f . If f is nowhere zero, this presents no problem; if
f can vanish, one should either modify it slightly at the points where
f = 0 or restrict its domain to where it does not vanish. Find the
minimum of G (if it exists) and call it φ. This minimum is achieved
at some point xmin, so that φ = G(xmin). Pick an arbitrary reference
variable ξ that is easy to sample; here we pick a Gaussian variable ξ
with mean zero and variance one; its pdf is exp(−x2/2)/√2π. Since one
knows how to sample ξ, by definition most of the samples of ξ will be
high-probability samples (i.e., they will take values in the region where
their pdf is large); since the expected value of ξ is zero, most of the
samples will be within a few standard deviations of zero.

Suppose first that the function G is convex upward and that its
domain is the whole line. At ±∞, G must be infinite (or else the
integral of f is not 1). We find a sample η of f by first picking a
sample of ξ and then solving the algebraic equation G(η) − φ = ξ2/2.
The presence of the minimum φ in this equation guarantees that a
solution exists. One also requires that the solution be unique for every
ξ, so that the mapping ξ → η is one-to-one and onto. A sketch of the
function G (see Fig. 3.2) shows how this is to be done: for each value of

G(h)-j

xmin

G(h)-j = x2/2

x < 0 x > 0
h

Figure 3.2. Finding a new sample by implicit sampling
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ξ2, the equation has two solutions, one corresponding to x ≤ xmin, one
to x > xmin. Pick the first value if ξ ≤ 0 and the second value if ξ > 0.

By construction, ξ2 will be small with high probability, so that
with high probability, G will be close to its minimum φ, and then
f = exp(−G) is close to its maximum, and we have a high-probability
sample. The whole domain of the pdf will be sampled, because the
mapping from ξ is one-to-one and onto. However, we are not yet done;
the pdf of η is not identical to f , and we still have to find the sampling
weight.

We want the sample η to have the probability density f = e−G(η) =
e−φe−ξ2/2/

√
2π, where φ = min (− log f). The sample we got has the

probability of ξ times the Jacobian J of the mapping from ξ to η (see
Eq. (2.3) in Chap. 2). The ratio is e−φJ , which is therefore the sampling
weight.

Example. In the special case f = e−x2/(2b)/
√
2πb, where b is a

constant, the equation G(η) − φ = ξ2/2 reduces to η =
√
bξ. The

weight is the constant
√
b, which is immaterial because it is common to

all the samples; in averaging, one normalizes the weights so that their
sum is equal to 1, and every common factor in the weights cancels out.

Example. Suppose you want to sample the pdf f(x) = exp(−x2 −
x4)/Z, where Z =

∫
exp(−x2 − x4)dx (the value of Z is not needed for

the sampling). Then

G(x) = − log f(x) = x2 + x4,

and min G = 0. The equation G(η)−φ = ξ2/2 becomes η2+η4 = ξ2/2.
Setting α = η2, one obtains α2 + α = ξ2/2; the solution is

α = (−1 +
√

1 + 2ξ2)/2.

(The other solution is negative and therefore irrelevant because α ≥ 0.)
The mapping ξ → η is one-to-one and onto if one sets η = +

√
α when

ξ ≥ 0 and η = −√
α otherwise. The Jacobian | dξ

dη
| can be found by

implicit differentiation of the equation that connects η and ξ: (2η +
4η3)dη = ξdξ. Each weight also has an additional irrelevant factor
common to all the samples.

Now consider nonconvex functions G. The task is to create a one-
to-one and onto mapping from ξ to η. One simple (but not always
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optimal) way to deal with this possibility is to expand G(x) in powers
of x− xmin:

G(x) = φ+ (A/2)(x− xmin)
2 +R(x),

where R(x) is a remainder; the linear term is absent because first deriva-
tives vanish at a minimum. A, the second derivative of G at the mini-
mum xmin, is nonnegative; assume that it is positive.

Define the function

G0(η) = φ+ (1/2)A(xmin)(η − xmin)
2.

Replace the equation G(η)− φ = ξ2/2 by

G0(η)− φ = (1/2)A(xmin)(η − xmin)
2 = ξ2/2.

The function G0 is convex and quadratic, so this equation is easy to
solve. It has the same minimum as G, so the samples are still with high
probability in the neighborhood of xmin. To get the weight right, note
that G0 = G− (G−G0), so that if one sets φ0 = φ+G(η)−G0(η), one
has G(η)− φ0 = ξ2/2, and the weight is e−φ0J.

Finally, note that if f has the form exp(−G(x))/Z, where Z is un-
known (a situation we shall encounter in later chapters), this construc-
tion still works: when one takes the logarithm of G, Z appears as the
additive constant logZ, which appears also in the minimum of G and
cancels out in the difference G−φ. If the density f is multidimensional,
the variable η is a vector variable, while the equation G− φ = ξ2/2 re-
mains a single equation, of which one is happy to accept any solution,
provided the mapping ξ → η is one-to-one and onto. This degeneracy
can exploited to simplify calculations.

3.3. Parametric Estimation and Maximum Likelihood

In the next several sections, we will be concerned with a different
computational task: an experiment has been performed over and over
and has yielded a set of values x1, x2, . . . , xn of a random variable η.
The set of numbers (x1, x2, . . . , xn) is called a sample.’ Your task is to
figure out the pdf of the variable η. One way to do this is to make a
histogram of the samples and use it to observe the pdf. This is often
tedious and inaccurate, and we consider cases in which one can do
better.

Suppose you know the type of distribution you have, but need only
to find the parameters in that distribution. For example, suppose you
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know that the distribution is Gaussian, but you do not know the mean
and the variance.

Definition. A function of a sample is called a statistic.

Suppose you want to estimate a parameter θ of the pdf by a statistic
θ̂(x1, x2, . . . , xn).

Definition. An estimate of θ by a statistic θ̂(x1, x2, ..., xn) is un-
biased if

E[θ̂(η1, η2, . . . , ηn)] = θ

(i.e., if on average, the estimate is exact).

For example, the sample mean defined by

x̄ =
1

n

n∑

i=1

xi

is an unbiased estimate of the mean, whereas the sample variance

1

n

n∑

i=1

(xi − x̄)2

is not an unbiased estimate of the variance (see the exercises). However,
one can check that

1

n− 1

n∑

i=1

(xi − x̄)2

is an unbiased estimate of the variance. It is, of course, desirable that
one use unbiased estimators.

We now present a useful method for finding estimators. Suppose
you know that the pdf of η that gave you the independent sample
x̂ = (x1, x2, . . . , xn) is f(x, θ) (a function of x and of the parameter θ).
What is a good estimate of θ given the sample x̂? Suppose you know θ.
Then the probability of getting the given sample is proportional to

L =
n∏

i=1

f(xi, θ).

The function L is called a likelihood function. It is plausible that a good
estimate of θ is the one that maximizes L (i.e., that makes the outcome
you see as likely as possible). This is the maximum likelihood estimate.
In general, it is easier to maximize logL, which has a maximum at the
same value of the argument.
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Example. Suppose you think that x1, x2, . . . , xn are independent
samples of a Gaussian distribution with mean m and variance σ2. Then

L =

n∏

i=1

e−(xi−m)2/2σ2

√
2πσ2

.

Find the maximum of logL as a function of m:

logL =
n∑

i=1

(
−(xi −m)2

2σ2
− 1

2
log 2π − log σ

)
,

∂logL

∂m
=

n∑

i=1

xi −m

σ2
= 0.

Hence,
n∑

i=1

xi − nm = 0,

and we get the sample mean as the maximum likelihood estimate of m̂:

m =
1

n

n∑

i=1

xi.

Similarly,

∂logL

∂σ
= −n

σ
+

n∑

i=1

(xi −m)2

σ3
= 0;

hence, the maximum likelihood estimate of the variance of a Gaussian
variable is the sample variance (which, as we know, is not unbiased):

σ̂2 =
1

n

n∑

i=1

(xi − m̂)2.

In general, there is no assurance that a maximum likelihood esti-
mate is unbiased. It is instructive to reconsider here what is done in
implicit sampling. Suppose one wants to estimate the expected value
of a random variable η by sampling it a number of times and averaging
the results. If one does this by implicit sampling, one first estimates φ,
the minimum of − log fη, i.e., one calculates the maximum likelihood
estimate of the variable, which may be biased, and then one uses this
estimate to find samples. Implicit sampling uses the maximum likeli-
hood estimate as a stepping stone to a sampling that yields an expected
value.
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3.4. Bayesian Estimation

Recall the definition of conditional probability:

Definition. Let A and B be two events with P (A) �= 0 and
P (B) �= 0. The conditional probability P (B|A) of B given A is

P (B|A) = P (A ∩B)

P (A)
. (3.2)

Similarly, the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
. (3.3)

Combining (3.2) and (3.3), we get Bayes’s theorem:

Theorem 3.1. Let A and B be two events with P (A) �= 0 and
P (B) �= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)
. (3.4)

Suppose Z = {Zj}, j = 1, 2, . . ., is a finite or countable partition
of the sample space Ω as above; then for the probability P (A) of an
event A, we have

P (A) =
∑

j

P (A ∩ Zj) =
∑

j

P (A ∩ Zj)

P (A)
P (A) =

∑

j

P (Zj|A)P (A).

Suppose that P (Zj) �= 0 for all j. Then we can also rewrite P (A) as

P (A) =
∑

j

P (A ∩ Zj) =
∑

j

P (A ∩ Zj)

P (Zj)
P (Zj) =

∑

j

P (A|Zj)P (Zj).

(3.5)

Using Bayes’s theorem (3.4) for the events A and Zj and expressing
P (A) by (3.5), we get

P (Zj|A) = P (A|Zj)P (Zj)∑
i P (A|Zi)P (Zi)

. (3.6)

This is the second form of Bayes’s theorem. We can use the second
form to address the following question: suppose we have an experi-
mental sample and we know that we have sampled some probability
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distribution that depends on a parameter θ. We do not know what
value θ takes in the case at hand, but we have an idea a priori (i.e.,
a “prior” idea) that the set of possible values of θ can be viewed as a
random variable with density gold (the prior distribution). Now that we
have performed an experiment and obtained data, we should be able to
learn from these data how to improve the prior ideas and obtain a new
density gnew, the posterior density, which improves the “prior” density
in light of the data. We show how to do this in an example.

Example. Let η1 and η2 be two independent and identically dis-
tributed random variables with

η1, η2 =

{
1 with probability p,

0 with probability 1− p.

For the sum η1 + η2, we can deduce that

η1 + η2 =

⎧
⎪⎨

⎪⎩

2 with probability p2,

1 with probability 2p(1− p),

0 with probability (1− p)2.

Suppose that before the experiment we thought that the parameter p
had the value p = 1/4 with probability 1/4 and the value p = 1/2 with
probability 3/4. This is the prior distribution. Now we perform an
experiment and find that η1 + η2 = 1. We want to use the second form
of Bayes’s theorem (3.6) to see how the experiment affects our beliefs
about the distribution of the parameter p. To do so, let A be the event
that η1 + η2 = 1, let Z1 be the event that p = 1/4, and let Z2 be the
event that p = 1/2 (note that Z1 ∪ Z2 = Ω). Then we have

P (Z1|A) = P (A|Z1)P (Z1)∑
j P (A|Zj)P (Zj)

=

(
2× 1

4
× 3

4

)× 1
4(

2× 1
4
× 3

4

)× 1
4
+
(
2× 1

2
× 1

2

)× 3
4

=
1

5
,

as opposed to 1/4 a priori. In words, the probability that p = 1/4 now
that we know the outcome of the experiment equals the ratio of the
product of the probability that the outcome is what it is when p = 1/4
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and the prior probability that p = 1/4, normalized by the sum of the
probabilities of the outcome we have for the various prior probabilities.

Of course, the taint of possible error in the prior ideas has not
completely disappeared.

3.5. Exercises

1. Consider the integral
∫ 1

0
e−

√
1−x2√
x

dx. Evaluate it by Monte Carlo, (a)

as is, i.e., as E[e−
√

1−ξ2/
√
ξ], where ξ is an equidistributed random

variable, and (b) with variance reduction, in which the denomina-
tor

√
x is absorbed into the pdf. In each case, make several runs

with different numbers of samples, estimating the variance of the
estimates and the error each time; use these estimates to estimate
how many samples you need in order to obtain an error of less than
1%. When you are done, compare the two algorithms.

2. Let H0, H1, H2, . . . be Hermite polynomials: Hn is a polynomial of
degree n with

∫ +∞

−∞

HmHne
−x2

√
π

dx = δnm.

Suppose you want to evaluate I = π−1/2
∫ +∞
−∞ g(x)e−x2

dx, where g
is a given function; let ξ be a Gaussian variable with mean 0 and
variance 1/2. Show that for all a, b, I = E[g(ξ) + aH1(ξ) + bH2(ξ)].
However, the variance of the estimator is not independent of a, b.
What values should a, b take to yield an estimator of least variance?

3. Check the derivation of the Box–Muller sampling scheme.

4. An exponential variable with parameter λ has density f = λe−λx,
λ > 0. If you are given n independent samples of such a variable,
how do you find the maximum likelihood estimate of λ?

5. Suppose you have n independent samples x1, . . . , xn of a random
variable η; show that if m = n−1

∑n
i=1 xi, then n

−1
∑

(xi−m)2 is not
an unbiased estimate of the variance of η, whereas (n− 1)−1

∑
(xi −

m)2 is an unbiased estimate. Suggestion: to see what is going on,
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try first the case n = 2. Note: these calculations are independent of
any assumed form for the density.

6. Write a computer program for sampling a variable whose pdf is
f(x) = exp(−x2−x4)/Z, where Z is the constant required to enforce
the condition

∫
fdx = 1. You do not have to find Z.

7. Suppose η is a random variable such that η = 0 with probability p
and η = 1 with probability 1− p. Suppose your prior distribution of
p is P (p = 1/2) = 0.5 and P (p = 3/4) = 0.5. Now, you perform an
experiment and obtain η = 1. What is the posterior distribution of
p? Suppose you make another, independent, experiment, and find,
again, η = 1. What happens to the posterior distribution? Suppose
you keep on performing experiments and keep on obtaining η = 1.
What happens to the posterior distributions? Why does this make
sense?
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CHAPTER 4

Brownian Motion with Applications

4.1. Definition of Brownian Motion

In the chapters that follow, we will provide a reasonably systematic
introduction to stochastic processes; we start here by considering a
particular stochastic process that is important both in the theory and
in applications, together with some applications.

Definition. A stochastic process (in the strict sense) is a function
v(ω, t) of two arguments, where (Ω,B, P ) is a probability space, ω ∈ Ω,
and t ∈ R, such that for each ω, v(ω, t) is a function of t, and for each
t, v(ω, t) is a random variable.

If t is a space variable, the stochastic process is also often called a
random field.

Definition. Brownian motion (in mathematical terminology) is a
stochastic process w(ω, t), ω ∈ Ω, 0 ≤ t ≤ 1, that satisfies the following
four axioms:

1. w(ω, 0) = 0 for all ω.
2. For each ω, w(ω, t) is a continuous function of t.
3. For each 0 ≤ s ≤ t, w(ω, t) − w(ω, s) is a Gaussian variable

with mean zero and variance t− s.
4. w(ω, t) has independent increments; i.e., if 0 ≤ t1 < t2 < · · · <
tn then w(ω, ti)−w(ω, ti−1) for i = 1, 2, . . . , n are independent.

Note that what is called in mathematics Brownian motion is called
in physics the Wiener process. Also, what is called Brownian motion
in physics is a different process, which in mathematics is called the
Ornstein–Uhlenbeck process, which we shall discuss later.

First, one must show that a process that satisfies all of these condi-
tions exists. This is not a trivial issue; we shall see shortly that if the
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second condition is replaced by the requirement that w be differentiable,
then there is no way to satisfy the conditions. The original proof given
by Wiener consisted in showing that the Fourier series

π

2
√
2

∞∑

k=1

ak
k

sin(πkt/2),

where the ak are independent Gaussian variables with mean 0 and
variance 1, converges, and its sum satisfies the above conditions for
0 ≤ t ≤ 1. Each coefficient is a random function defined on some
probability space (Ω,B, P ), and the resulting Brownian motion is also
a function on the very same Ω. For longer times, one can construct the
process by stringing the processes constructed by this series end to end.
We refer the reader to the literature.

Next, we derive some consequences of the definition of Brownian
motion:

1. The correlation function of Brownian motion is E[w(t1)w(t2)]
= min{t1, t2}. Indeed, assuming t1 < t2, we get

E[w(t1)w(t2)] = E[w(t1)(w(t1) + (w(t2)− w(t1))]

= E[w(t1)w(t1)]+E[w(t1)(w(t2)−w(t1)))]=t1.
In this equation, the variables w(t1) and w(t2) − w(t1) are
independent, and each has mean 0.

2. Consider the variable

w(ω, t+Δt)− w(ω, t)

Δt
.

It is Gaussian with mean 0 and variance (Δt)−1, which tends
to infinity as Δt tends to zero. Therefore, one can guess that
the derivative of w(ω, t) for any fixed ω exists nowhere with
probability 1.

Nondifferentiable functions may have derivatives in the sense of dis-
tributions. The derivative in the sense of distributions v(ω, s) of a
Brownian motion w(ω, t) is called white noise and is defined by the
property ∫ t2

t1

v(ω, s) ds = w(ω, t2)− w(ω, t1).

The origin of the name will be clarified in the next chapter.
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Two-dimensional Brownian motion is the vector (w1(ω, t), w2(ω, t)),
where w1, w2 are independent Brownian motions, and similarly for n-
dimensional Brownian motions.

We also consider Brownian random walks, constructed as follows:
consider the time interval [0, 1] and divide it into n pieces of equal
length; define Wn(0) = 0 andWn(i/n) = Wn((i−1)/n)+Wi, where the
Wi without an argument are independent Gaussian variables with mean
0 and variance 1/n, and i is a positive integer. Then define Wn(t) for
intermediate values of t by linear interpolation. Clearly, Wn(t) for large
n resembles Brownian motion: for all t, Wn(t) is a Gaussian random
variable with mean 0; for large n, its variance is at least approximately
equal to t. Furthermore, if t1, t2, t3, and t4 in [0, t] are such that t4 >
t3 > t2 > t1 and furthermore, t3 ≥ (t2 + 1/n), then the variables
Wn(t4)−Wn(t3) andWn(t2)−Wn(t1) are independent. The discussion of
the precise relation between Wn(t) and Brownian motion is outside the
scope of this volume, but we shall take for granted that the convergence
ofWn(t) to Brownian motion is good enough for the limiting arguments
presented below to be valid.

4.2. Brownian Motion and the Heat Equation

We first solve the heat equation

vt =
1

2
vxx, v(x, 0) = φ(x), (4.1)

on −∞ < x <∞, t > 0, by Fourier transforms. Let

v(x, t) =
1√
2π

∫ ∞

−∞
eikxv̂(k, t)dk.

Then

vx(x, t) =
1√
2π

∫ ∞

−∞
ikeikxv̂(k, t)dk,

vxx(x, t) =
1√
2π

∫ ∞

−∞
(ik)2eikxv̂(k, t)dk,

vt(x, t) =
1√
2π

∫ ∞

−∞
eikx∂tv̂(k, t)dk.



66 4. BROWNIAN MOTION WITH APPLICATIONS

Inserting in (3.1), we obtain

∂tv̂(k, t) = −1

2
k2v̂(k, t),

v̂(k, 0) = φ̂(k).

The solution of this ordinary differential equation is

v̂(k, t) = e−
1
2
k2tφ̂(k).

Using the expression for v̂ in the formula for v and completing the
square, we get

v(x, t) =
1√
2π

∫ ∞

−∞
eikxe−

1
2
k2t 1√

2π

∫ ∞

−∞
e−ikx′

φ(x′)dx′dk

=

∫ ∞

−∞

e−
(x−x′)2

2t√
2πt

φ(x′)
∫ ∞

−∞

e
− 1

2

(
k
√
t−i
(
x−x′√

t

))2

√
2π

dk
√
t dx′

=

∫ ∞

−∞

e−
(x−x′)2

2t√
2πt

φ(x′)dx′

=

∫ ∞

−∞

e−
(x′)2
2t√

2πt
φ(x+ x′)dx′. (4.2)

The function

G(x) =
e−x2/2t

√
2πt

is the Green function of the heat equation, and we have shown that the
solution of the heat equation is the convolution of the initial data with
the Green function.

Since the Green function G is also the probability density func-
tion for a random variable η with mean zero and variance t, we can
rewrite (3.2) as

v(x, t) = E[φ(x+ η(ω))].

Recall that if w(ω, t) is Brownian motion, then for a fixed t, w(ω, t) is
a Gaussian variable with mean 0 and variance t. Hence

v(x, t) = E[φ(x+ w(ω, t))]. (4.3)

This result has a geometric interpretation: Consider the point (x, t) at
which we want to evaluate w. Start Brownian motions going backward
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in time from (x, t); they intersect the x-axis at time t at the points
x + w(ω, t). Find the initial values of v at the points of intersection,
and average them over all Brownian motions. This average is v(x, t).

4.3. Solution of the Heat Equation by Random Walks

We now rederive the result above in a more instructive way that
will be useful in the analysis of a more general situation. We con-
struct a grid on which to approximate the heat equation (4.1), solve the
resulting discrete equations by a random walk, and take a limit that
will reproduce the result of the previous section. To construct the grid,
draw horizontal and vertical lines in the (x, t)-plane. The distance be-
tween the horizontal lines is k (not the Fourier variable!), and between
the vertical lines is h. The points at which these lines intersect will
carry values of an approximation V of the solution v(x, t) of the heat
equation. That is, each grid point (ih, nk) carries a value of the grid
function V n

i ∼ v(ih, nk) = vni . Construct a difference approximation of
the derivatives in (4.1):

vt ∼ vn+1
i − vni

k
∼ V n+1

i − V n
i

k
, (4.4)

vxx ∼ vni+1 + vni−1 − 2vni
h2

∼ V n
i+1 + V n

i−1 − 2V n
i

h2
. (4.5)

Substituting (4.4) and (4.5) into (4.1), we obtain an equation for the V n
i :

V n+1
i − V n

i

k
=

1

2

V n
i+1 + V n

i−1 − 2V n
i

h2
. (4.6)

Starting from the initial data V 0
i = φ(ih), we can find a solution of (4.6)

at time t = nk for any n by the recurrence formula

V n+1
i = V n

i +λ(V n
i+1+V

n
i−1−2V n

i ) = (1−2λ)V n
i +λV n

i+1+λV
n
i−1, (4.7)

where

λ =
1

2

k

h2
.

Define the local truncation error

τni =
vn+1
i − vni

k
− 1

2

vni+1 + vni−1 − 2vni
h2

,

where v is a smooth solution of the differential equation (3.1). Using
Taylor’s formula, one finds that

τni = O(k) +O(h2).
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In numerical analysis, the fact that τni tends to zero as h→ 0, k → 0 is
called consistency. Thus the exact solution of the differential equation
satisfies the difference equations, up to a small error.

Now we show that for λ ≤ 1/2, the approximate solution V con-
verges to the exact solution v as h and k tend to zero. It is easy to
check that the error eni = vni − V n

i satisfies the equation

en+1
i = (1− 2λ)eni + λeni+1 + λeni−1 + kτni .

Taking the absolute value of both sides, we get

|en+1
i | ≤ (1− 2λ)|eni |+ λ|eni+1|+ λ|eni−1|+ k|τni |,

where we have assumed that 1− 2λ ≥ 0 (or λ ≤ 1/2). Define

En = max
i

|eni | (4.8)

and let

τn = max
i

|τni |, τ = max
nk≤t

|τn|. (4.9)

Then

En+1 ≤ En + kτn ≤ En + kτ,

and thus

En+1 ≤ En + kτ ≤ En−1 + 2kτ ≤ · · · ≤ E0 + (n+ 1)kτ.

If we start from the exact solution, then E0 = 0, and hence

En ≤ nkτ = tτ.

Recall that the local truncation error tends to zero as h, k → 0 and
consider the solution of the heat equation on a finite time interval 0 ≤
t ≤ T for some finite T ; then En tends to zero as h and k tend to zero,
provided λ = k/(2h2) is less than or equal to 1/2. This means that the
approximate solution converges to the exact solution for λ ≤ 1/2.

Choose λ = 1/2. Then (4.7) becomes

V n+1
i =

1

2
(V n

i+1 + V n
i−1). (4.10)
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Using (4.10) and iterating backward in time, we can write V n
i in terms

V 0
i = φ(ih):

V n
i =

1

2
V n−1
i+1 +

1

2
V n−1
i−1

=
1

4
V n−2
i−2 +

2

4
V n−2
i +

1

4
V n−2
i+2

...

=

n∑

j=0

Cj,nφ((−n + 2j + i)h).

It is easy to see that the numbers Cj,n are the binomial coefficients
divided by 2n:

Cj,n =
1

2n

(
n

j

)
. (4.11)

Thus

V n
i =

n∑

j=0

1

2n

(
n

j

)
φ((−n+ 2j + i)h). (4.12)

We can interpret the numbers Cj,n as follows: Imagine that a drunk-
ard makes a step h to the left with probability 1/2 or a step h to the
right with probability 1/2 starting from the point (ih, nk) (see Fig. 4.1).
Assume that her successive steps are independent. The probability that

1

1/2 1/2

2/41/4 1/4

1/8 1/83/8 3/8

1/16 1/164/16 4/166/16

t

x

k

5k

4k

3k

2k

-4h -3h 2h 3h 4h-2h -h h0

Figure 4.1. Backward walk for the heat equation and
the weights of the points.
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she will reach the point ((−n + 2j + i)h, 0) after n steps is exactly Cj,n.
We can represent this drunken walk as a sum of n random variables

ηk =

{
h probability 1

2
,

−h probability 1
2
,

with k = 1, 2, . . . , n. This representation gives us another expression
for Cj,n:

Cj,n = P

(
n∑

k=1

ηk = (−n + 2j)h

)
. (4.13)

According to the central limit theorem, the sum
∑n

k=1 ηk tends to a
Gaussian variable with mean 0 and variance nh2 as n→ ∞. Recall that
λ = k/(2h2) = 1/2; consequently, h2 = k, and hence nh2 = nk = t. So∑n

k=1 ηk tends to a Gaussian variable with mean 0 and variance t as
n→ ∞, h→ 0 and nh2 = t. Hence

P

(
n∑

k=1

ηk = (−n+ 2j)h

)
∼ e−(x′)2/2t

√
2πt

· 2h,

where x′ = (−n + 2j)h. Therefore,

V n
i =

n∑

j=0

Cj,nφ((−n + 2j + i)h) →
∫ ∞

−∞

e−(x−x′)2/2t
√
2πt

φ(x′) dx′ (4.14)

as n → ∞. We have used the central limit theorem to derive the
solution formula for the heat equation.

4.4. The Wiener Measure

In the preceding sections, we saw that the solution of the heat equa-
tion can be written as v(x, t) = E[φ(x + w(ω, t))]. This can be inter-
preted as follows: sample a large number of Brownian motions w(ω, s)
for 0 ≤ s ≤ t, and attach to each of them the number φ(x + w(ω, t)).
This rule, which assigns a number to each Brownian motion, defines
a function on the space of Brownian motions; for historical reasons,
in this setting this function is called a functional ; call this functional
F , so that F = F [w(ω, ·)]. Also for historical reasons, square brackets
are used instead of parentheses. The dot replaces the argument of w,
which is immaterial, because F is a function of the function w, and
not of its argument. Then v(x, t) = E[F ]. We are used to expected
values being integrals over a sample space with respect to a probability
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measure. The sample space here is evidently the space of Brownian
motions. What is the probability measure? The goal in the present
section is to construct this probability measure; this construction will
make it possible to calculate expected values of more general function-
als. The difficulty in the general case is that Brownian motion is an
infinite-dimensional object, so an expected value should be an integral
over a space with an infinite number of dimensions, something that we
have not yet discussed.

Consider the space of continuous functions u(t) such that u(0) = 0.
This collection is now our sample space Ω. It is the space of experi-
mental outcomes in the experiment consisting in creating instances of
a continuous function with u(0) = 0. The measure we will define will
be compatible with the definition of Brownian motion, so that an av-
erage with respect to that measure will be an average over Brownian
motions; the continuous functions that are not Brownian motions will
have negligible weight.

Next, we need to define a σ-algebra. Pick an instant in time, say
t1, and associate with this instant a window of values (a1, b1 ], where
−∞ ≤ a1, b1 ≤ ∞. Consider the subset of all the continuous func-
tions that pass through this window and denote it by C1. This subset
is called a cylinder set. For every instant and every window, we can
define a corresponding cylinder set; i.e., Ci is the subset of all contin-
uous functions that pass through the window (ai, bi ] at the instant ti.
Next, consider two cylinder sets C1 and C2. Then C1 ∩C2 is the set of
functions that pass through both windows. Similarly, C1∪C2 is the set
of functions that pass through either C1 or C2. It can be shown that
the class of finite disjoint unions of intersections of cylinders is closed
under finite unions, intersections, and complements, i.e., they form an
algebra on the space of continuous functions u in [0, 1] with u(0) = 0.

The next step in our construction is to define a measure (i.e., a rule
by which to attach probabilities to the cylinder sets). We want to define
the measure in a way that is appropriate for Brownian motions. Take
the cylinder set C1. If the functions that belong to this cylinder set are
Brownian motions, the probability of the cylinder set is

P (C1) =

∫ b1

a1

e−s21/2t1√
2πt1

ds1.

Assign this P to this set, and similarly for other cylinder sets con-
structed in the same way at different values of t.
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Next, consider the intersection C1∩C2 of two cylinder sets C1 and C2

with t2 > t1. By the property of Brownian motion that nonoverlapping
increments are independent random variables with Gaussian distribu-
tions, we conclude that the probability we should assign to C1 ∩ C2 is

P (C1 ∩ C2) =

∫ b1

a1

e−s21/2t1√
2πt1

ds1

∫ b2

a2

e−(s2−s1)2/2(t2−t1)

√
2π(t2 − t1)

ds2.

Similarly, we can define a probability for the intersection of any
finite number of cylinder sets. The cylinder sets can be embedded
in a several different of σ-algebras. These are not equivalent, but we
choose a σ-algebra that contains the set of all continuous functions with
u(0) = 0.

It can be shown that the measure defined in this way can be
extended to a probability measure on the σ-algebra. We shall not give
the details but refer the reader to the literature. The identity P (Ω) = 1
can be seen from the evaluation of the Gaussian integrals in the inter-
val (−∞,+∞). The measure we defined was introduced by Wiener and
carries his name.

Suppose that F is a functional defined on the space of continuous
functions, i.e., a number attached to a continuous function. For ex-
ample, if u(s) is a continuous function with u(0) = 0 and 0 ≤ s ≤ 1,

then we could define F = F [u] =
∫ 1

0
u2(s) ds. We want to define the

expected value E[F ] of the functional with respect to Wiener measure
as an integral. If one has a measure, one has an integral. Denote the
integral with respect to the Wiener measure by

∫
dW . In particular, if

χC is the indicator function of the set C (χC = 1 if ω is in C, χC = 0
otherwise), then

∫
χC dW = P (C). If we attach to each Brownian

motion w a number F [w(·)] (the number is attached to the Brownian
motion viewed as a whole, not to particular point values), then the in-
tegral

∫
F [w(·)] dW is, by definition, the expected value of F as w runs

over all the possible Brownian motions.

Example. Suppose F [w(·)] = w2(1); that is, we take a Brownian
motion w, look at the value of w when t = 1, and square that number.
This is a number attached to w. By definition, w(1) is a Gaussian
random variable with mean 0 and variance 1. Then

∫
F dW =

∫ +∞

−∞
u2
e−u2/2

√
2π

du = 1.
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Fubini’s theorem can be extended to integrals more abstract than
the elementary finite-dimensional integral, and in particular, we can
show that it is legitimate, under appropriate conditions, to interchange
the order of integration with respect to the Wiener measure and or-

dinary integration. For instance, if F [w(·)] = ∫ 1

0
w2(s) ds (a perfectly

reasonable way to attach a number to the function w(t)), then
∫
dW

∫ 1

0

w2(s) ds =

∫ 1

0

ds

∫
dWw2(s) =

∫ 1

0

s ds =
1

2
,

because w(s) is a Gaussian variable with variance s and mean 0.

Example. Consider the functional F [w(·)] = w2(1/2)w2(1). This
is a function of two random variables, w(1/2), w(1), both Gaussian with
mean 0, the first with variance 1/2 and the second with variance 1, and
not independent. Their Wiener integral equals

∫ ∫
x2y2f(x, y) dx dy,

where f(x, y) is the joint pdf of these variables, which can be deduced
from the discussion above. It is easier to notice that w(1) = w(1/2)+η,
where η = w(1)−w(1/2). The variables η and w(1/2) are independent,
each with variance 1/2, so that

∫
FdW =

∫ ∫
x2(x+ y)2

e−x2−y2

π
dx dy = 1.

4.5. Heat Equation with Potential

Now consider the initial value problem

vt =
1

2
vxx + U(x)v, v(x, 0) = φ(x). (4.15)

(Note that with the addition of the imaginary unit i in front of the
time derivative, this would be a Schrödinger equation, and U would be
a potential.) Generalizing what has been done before, approximate this
equation by

V n+1
i − V n

i

k
=

1

2

V n
i−1 + V n

i+1 − 2V n
i

h2
+

1

2

(
Ui−1V

n
i−1 + Ui+1V

n
i+1

)
, (4.16)

where Ui = U(ih) and V n
i is, as before, a function defined on the nodes

(ih, nk) of a grid. Note the split of the term Uv into two halves. We
now show that the additional terms do not destroy the convergence of
the approximation to the solution of the differential equation. To check
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consistency, we let vni be the exact solution evaluated at the grid points
(ih, nk). As before,

vn+1
i − vni

k
= vt +O(k),

vni+1 + vni−1 − 2vni
h2

= vxx +O(h2).

For the potential term we obtain

1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
=

1

2

(
2Uiv

n
i + h2(Uv)xx + h2O(h2)

)

= Uiv
n
i +O(h2).

We can therefore define the truncation error by

τni =
vn+1
i − vni

k
− 1

2

vni+1 + vni−1 − 2vni
h2

− 1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)

= vt − 1

2
vxx − U(x)v +O(k) +O(h2)

= O(k) +O(h2).

Thus the truncation error is small.
Now we show that the approximate solution converges to the exact

solution as k and h tend to zero. Let λ = k/(2h2), as before. The exact
solution of (4.15) satisfies

vn+1
i = (1− 2λ)vni + λvni+1 + λvni−1 +

k

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
+ kτni ,

while the approximate solution satisfies

V n+1
i = (1− 2λ)V n

i + λV n
i+1 + λV n

i−1 +
k

2

(
Ui+1V

n
i+1 + Ui−1V

n
i−1

)
.

Thus the error eni = vni − V n
i satisfies

en+1
i = (1− 2λ)eni + λeni+1 + λeni−1 +

k

2
(Ui+1e

n
i+1 + Ui−1e

n
i−1) + kτni .

Taking the absolute value of both sides and choosing λ ≤ 1/2, we get

|en+1
i | ≤ (1− 2λ)|eni |+ λ|eni+1|+ λ|eni−1|+

+
k

2
(|Ui+1||eni+1|+ |Ui−1||eni−1|) + k|τni |.

Assume that the potential is bounded,

|U(x)| ≤M,
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and recall the definitions of En (4.8) and τn (4.9). It follows that

En+1 ≤ En +MkEn + kτn ≤ En(1 +Mk) + kτ,

and hence
En+1 ≤ ekMEn + kτ.

Then

En+1 ≤ ekMEn + kτ

≤ ekM(ekMEn−1 + kτ) + kτ

= e2kMEn−1 + kτ(1 + ekM)

≤ · · ·
≤ e(n+1)kME0 + kτ

(
1 + ekM + e2kM + · · ·+ enkM

)

= e(n+1)kME0 + kτ
e(n+1)kM − 1

ekM − 1
.

Since we start to compute the approximate solution from the given
initial condition v(x, 0) = φ(x), we may assume that E0 = 0. Therefore,
at time t = nk, En is bounded by

En ≤ kτ
etM − 1

ekM − 1
≤ τ

M
(etM − 1).

We see that En tends to zero as k and h tend to zero with λ ≤ 1/2.
Thus, the approximation is convergent.

Now set λ = 1/2. Then for the approximate solution, we have

V n+1
i =

1

2
(V n

i−1 + V n
i+1) +

k

2
(Ui+1V

n
i+1 + Ui−1V

n
i−1)

=
1

2
(1 + kUi+1)V

n
i+1 +

1

2
(1 + kUi−1)V

n
i−1.

By induction, the approximate solution V can be expressed as

V n
i =

∑

�1=±1,...,�n=±1

1

2n
(1 + kUi+�1) · · · (1 + kUi+�1+···+�n)V

0
i+�1+···+�n.

Here, in contrast to the case U = 0, each movement to the right or to
the left brings in not just a factor 1

2
but a factor 1

2
(1 + kU(x)). Each

choice of �1, . . . , �n corresponds to a path. We simply connect the points
(ih, nk), (ih+ �1h, (n− 1)k), . . . , (ih+ �1h + · · ·+ �nh, 0); see Fig. 4.2.

We will interpret the approximate solution probabilistically.
Let {ηm} be a collection of independent random variables with P (ηm =
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h) = P (ηm = −h) = 1
2
. Since P (η1 = �1h, . . . , ηn = �nh) =

1
2n
, we see

that

V n
i = Eall paths

{
n∏

m=1

(1 + kU(ih+ η1 + · · ·+ ηm))φ(ih+ η1 + · · · + ηn)

}
.

To describe the random paths, we use linear interpolation. Let tn = nk
and sm = mk. If sm−1 ≤ s ≤ sm, set

w̃(s) = η1 + · · ·+ ηm−1 +
s− sm−1

k
ηm.

Each path starting at (x, t) = (ih, nk) is then of the form (x+w̃(s), t−s)
for 0 ≤ s ≤ t, and

V n
i = Eall broken

line paths

{
n∏

m=1

(1 + kU(x + w̃(sm)))φ(x+ w̃(t))

}
.

If k|U | < 1/2, then (1 + kU) = exp(kU + ε), where |ε| ≤ Ck2, so we
can write the product as

n∏

m=1

(1 + kU(x+ w̃(sm))) = exp

(
k

n∑

m=1

U(x+ w̃(sm)) + ε′
)
,

where |ε′| ≤ nCk2 = Ctk. Since k
∑n

m=1 U(x + w̃(sm)) is a Riemann

sum for the integral
∫ t

0
U(x+ w̃(s)) ds, it follows that

V n
i = Eall broken

line paths

{
e
∫ t
0 U(x+w̃(s))dsφ(x+ w̃(t))

}
+ small terms.

As h, k tend to zero, the broken line paths x+w̃(s) look more and more
like Brownian motion paths x+ w(s), so in the limit,

v(x, t) = Eall Brownian
motion paths

{
e
∫ t
0
U(x+w(s))dsφ(x+ w(t))

}

=

∫
dWe

∫ t
0
U(x+w(s))dsφ(x+ w(t)). (4.17)

This is the Feynman–Kac formula. It reduces to the solution formula
for the heat equation when U = 0. This result is useful in quantum
mechanics and in other fields.
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Figure 4.2. Backward walk for the heat equation with
potential, with the weights of the segments.

4.6. The Physicists’ Path Integrals and Feynman Diagrams

In physics books, the Wiener integral is often presented in a dif-
ferent way. Consider the integral

∫
F dW , where F = exp(

∫ 1

0
U(x +

w(s))ds)φ(x+ w(1)), as in the solution of the heat equation with po-
tential. Discretize the integral in the exponent as

∑n
i=1 kU(x+w(i/n))

with k = 1/n. The discrete integral is now an average over a finite
set of dependent variables. As in the example at the end of the previ-
ous section, define the independent variables τi = w(ik)− w((i− 1)k),

i = 1, 2, . . . , n, so that wi =
∑i

1 τj . We then obtain

∫
F dW =

∫
dτ1 · · ·

∫
dτnφ(x+ wn) exp(

n∑

1

kU(x+ wi))

× exp(−∑n
1 τ

2
i /(2k))

(2πk)n/2
dτ1 · · · dτn, (4.18)
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or, rearranging the sums in the exponentials and using the definition of
the τi,

∫
F dW =

∫
dτ1 · · ·

∫
dτnφ(x+ wn)

× exp−∑n
1 (τ

2
i /(2k)− kU(x+ wi))

(2πk)n/2
dτ1 · · · dτn. (4.19)

Physicists often define the Wiener integral as the limit as n → ∞
of this last expression, and write the limit as

1

Z

∫
e
− ∫ t

0

[
1
2(

dw
ds )

2−U(x+w(s))
]
ds
φ(x+ w(t))[dw], (4.20)

where Z is viewed as a constant and [dw] symbolizes the measure.
The ratio dw/ds appears because τi/k = (w(ik) − w((i − 1)k)))/k,

which looks like an approximation to dw/ds, and
∫ t

0
(dw/ds)2ds can be

thought of as approximately
∑
k(dwi/ds)

2. This way of writing seems

to suggest that Z is the limit of the product of the factors
√
2πk, and

[dw] is the limit of the product of the dτi. None of these limits makes
sense by itself, but the limit of the whole expression does make sense,
as we already know. The expression defined by this limit is often called
a path integral.

This procedure has some advantages. It is possibly more intuitive,
and it extends to Feynman integrals, another kind of sum over paths
that appears in physics, whereby factors such as exp(−x2/2) are re-
placed by exp(−ix2/2) (i is the imaginary unit), and which cannot be
interpreted as an expected value over a probability measure; finally, the
expression in brackets in Eq. (4.20) has an interesting physical interpre-
tation, as will be discussed briefly in Chap. 7.

In physics, one often evaluates Wiener (as well as Feynman)
integrals via a perturbation expansion, which we now present. This
expansion comes with extremely useful graphical representations of
the various terms, known as Feynman diagrams. First introduce
an ε in front of the potential U in the equation, so that it reads
vt = 1

2
vxx + εU(x)u, with the Feynman–Kac formula acquiring an ε

in the obvious place; the presence of this ε suggests that our calcula-
tions are more likely to be useful when ε is small, but more important,
it allows us to label the various terms by the power of ε that precedes
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them. Next, expand exp
(∫ t

0
εU(x + w(s))ds

)
in a Taylor series:

exp

(∫ t

0

εU(x + w(s))ds

)
=1 + ε

∫ t

0

U(x+ w(s))ds

+
1

2
ε2(

∫ t

0

U(x+ w(s))ds)2 + · · · (4.21)

and substitute the series into the Wiener integral representation of
u(x, y). Write

K(z, s) =
1√
2πs

e−z2/2s, (4.22)

so that the first term in the series, which would be the whole solution
in the absence of U , becomes

T0 =

∫ ∞

−∞

e−(x−z)2/2t

√
2πt

φ(z)dz (4.23)

=

∫ +∞

−∞
K(x− z, t)φ(z)dz. (4.24)

Here K is the vacuum propagator ; indeed, one can think of the Brow-
nian motions that define the solution as propagating in space, with a
motion modified by the potential U along their paths; if U = 0 as in
this first term, one can think of them propagating in a “vacuum.” Fur-
thermore, T0 can be represented graphically as in the Feynman diagram
(i) of Fig. 4.3; the straight line represents vacuum propagation, which
starts from (x, t) and goes to (z, 0) in the plane, it being understood
that an integration over z is to be performed.

The second term T1 in the expansion has a coefficient ε multiplying
the integral

∫
dW

∫ t

0

U(x+ w(s))φ(x+ w(t))ds =

∫ t

0

ds

∫
dW U(x+ w(s))φ(x+ w(t)). (4.25)

The variables x + w(s), x + w(t) are both Gaussian, but they are not
independent, so that in order to average, one has to find their joint pdf.
It is easier to express the integrand as a function of two independent
variables; clearly, s ≤ t, so that w(t) = w(s) + (w(t) − w(s)), and
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w(s), w(t)−w(s) are independent, by the definition of Brownian motion.
Now x+ w(s) is a Gaussian variable with mean x and variance s, and
w(t)− w(s) is a Gaussian variable with mean 0 and variance t − s, so
T1 becomes

T1 =ε

∫ t

0

ds

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2K(z1 − x, s) ·

·U(z1)K(z2, t− s)φ(z1 + z2). (4.26)

This term can be represented graphically as in part (ii) of Fig. 4.3:
vacuum propagation from (x, t) to (z1, t− s), interaction with the po-
tential U at z1 (represented by a wavy line), followed by a vacuum
propagation from (z1, t−s) to (z1+z2, 0), it being understood that one
integrates over all intermediate quantities s, z1, z2.

To evaluate the second term, we need the identity

(∫ t

0

f(s)ds

)2

= 2

∫ t

0

dt2

∫ t2

0

dt1f(t1)f(t2), (4.27)

which is easily proved by differentiating both sides; note that in this
formula, t ≥ t2 ≥ t1. The second term T2 then becomes ε2 multiplying

∫
dW

∫ t

0

dt2

∫ t2

0

dt1U(x+ w(t1))U(x+ w(t2))φ(x+ w(t)). (4.28)

As before, write x+ w(t2) = x+ w(t1) + w(t2)− w(t1) and x+ w(t) =
x+w(t1)+w(t2)−w(t1)+w(t)−w(t2) to create independent variables,
and note that x+w(t1) is Gaussian with mean x and variance t1, w(t2)−
w(t1) is Gaussian with mean 0 and variance t2 − t1, and w(t) − w(t2)
is Gaussian with mean 0 and variance t− t2. Then T2 becomes

T2 =ε
2

∫ t

0

dt2

∫ t2

0

dt1

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz3 ·

·K(z1 − x, t1)U(z1)K(z2, t2 − t1)U(z1 + z2)·
·K(z3, t− t2)φ(z1 + z2 + z3). (4.29)

This can be represented by diagram (iii) of Fig. 4.3. Higher-order terms
follow the same pattern. The point of the diagrams is that they are
much easier to generate and visualize than the corresponding integral
expressions.
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Figure 4.3. Feynman diagrams.
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4.7. Solution of a Nonlinear Differential Equation
by Branching Brownian Motion

So far, with the exception of the short comments at the end of
the previous section, all the equations we have been solving have been
linear. Now we give an example of how a variant of Brownian motion
can be used to solve a nonlinear partial differential equation. The
equation we work with is the Kolmogorov–Petrovskii–Piskunov (KPP)
equation,

vt − 1
2
vxx = v2 − v,

for which we prescribe initial data v(x, t = 0) = φ(x). This equation
is an important model in combustion theory and in biology. We are
looking for a representation of the solution v at a point (x, t) that relies
on Brownian motion, as in earlier sections.

Start a Brownian motion w going backward in time from (x, t) and
let it run until time t−t1, with t1 drawn at random from the exponential
density, P (y < t1 ≤ y + dy) = exp(−y) dy. Start two independent
Brownian motions running backward from (x+w(t1), t− t1) until new
times t− t1 − t11 and t− t1 − t12 with t11 and t12 drawn independently
from the exponential density. At each stopping time, split the branch
of the Brownian motion into two independent Brownian motions. If the
time becomes negative for any branch, stop. The result is a backward
tree with roots that cross the x-axis. Let the intersections of the tree
with the x-axis be x1, x2, . . . , xn, n ≥ 1, and associate with the tree the
product of initial values Ξ = φ(x1)φ(x2) · · ·φ(xn); the claim is that the
expected value of this product is the solution we want:

v(x, t) = E[Ξ] = E[φ(x1) · · ·φ(xn)]
(see Fig. 4.4).

We take this opportunity to introduce a notation that will be widely
used in Chap. 9. Let Δ be the second derivative operator in the space
variable x: Δψ = ψxx for a smooth function ψ. Just as the solution
of the equation v′ − av = 0, v(0) = v0, a = constant, is eatv0, we
symbolically write the solution of the heat equation vt − 1

2Δv = 0,
v(x, 0) = φ(x), as v(t) = e

1
2 tΔφ (this is the semigroup notation). For

v(x, t), which is the function v(t) evaluated at x, we write v(x, t) =
(e

1
2 tΔφ)(x). We know that (e

1
2 tΔφ)(x) = E[φ(x + w(t))], where as be-

fore, w is Brownian motion. One can readily understand the identity
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e
1
2 (t+s)Δ = e

1
2 tΔe

1
2sΔ and check its validity (this is the semigroup prop-

erty).
We first check that the function E[Ξ] = E[φ(x1) · · ·φ(xn)] satisfies

the KPP equation. Write V (x, t) = E[Ξ] with the backward branching
walk starting at (x, t). The probability that the first branching occurs at
a time t1 larger than t (so there is only one branch) is

∫∞
t
e−s ds = e−t

by definition; if this happens, the number Ξ attached to the tree is
φ(x+ w(t)), whose expected value is (e

1
2 tΔφ)(x).

Suppose to the contrary that t1 occurs in a time interval (s, s+ ds)
earlier than t (this happens with probability e−s ds by construction).
Two branches of the tree start then at the point (x+w(t1), t− t1). The
two branches are independent by construction, and if we treat the point
(x+w(t1), t− t1) as fixed, the mean value of the product E[Ξ] attached
to each branch is V (x + w(t1), t − t1), so that the mean value of E[Ξ]
at (x + w(t1), t − t1) is V 2((x + w(t1), t − t1). Now average V 2((x +
w(t1), t − t1) over w(t1), recalling the solution of the heat equation.
This yields e

1
2sΔV 2(t− s). Multiply this expression by the probability

that the branching occurs at the time assumed, and sum over all first
branching times between 0 and t.

t

xx1 x2 x3

t

x4

t-t1

t-t1-t12

t-t1-t11

(x,t)

Figure 4.4. Branching backward Brownian motion.
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Collecting all terms, we obtain

V = E[Ξ] = e−te
1
2 tΔφ+

∫ t

0

e−se
1
2sΔV 2(t− s) ds

= e−te
1
2 tΔφ+

∫ t

0

es−te
1
2 (t−s)ΔV 2(s) ds,

where the last identity is obtained by making the change of variables
s′ = t−s and then dropping the prime on s. All that remains to be done
is to differentiate this expression for V = E[Ξ] with respect to t, noting
that Δe−t = e−tΔ (differentiation with respect to x and multiplication
by a function of t commute), and then to calculate ΔE[Ξ] using the
fact that e

1
2 tΔφ and e

1
2 (t−s)ΔV 2(s) are solutions of the heat equation;

the equation we wish to solve appears. It is obvious that at t = 0,
E[Ξ] = φ(x), and therefore v(x, t) = V = E[Ξ], provided the solution
of the KPP equation with given initial data is unique (and it is).

Figure 4.4 can be interpreted as a Feynman diagram (see Sect. 4.6).
In picturesque language, one can say that an interaction with the non-
linear potential u2 − u has the effect of destroying an old particle and
creating two new ones in its stead. Such interpretations are commonly
encountered in physics.

4.8. Exercises

1. Consider the partial differential equation ut = ux, with initial data
u(x, 0) = φ(x). Solve it approximately as follows: Put a grid on the
(x, t) plane with mesh length h in the x-direction and k in the t-

direction. Set u0i = φ(ih). To calculate u
(n+1/2)k
(i+1/2)h (halfway between

mesh points and halfway up the time interval k), proceed as follows:
Pick a random number θ from the equidistribution density, one such
choice for the whole half-step. Set

u
(n+1/2)k
(i+1/2)h =

{
uni , θ ≤ 1

2 − k
2h
,

uni+1, otherwise.

The half-step from time (n+1/2)k to (n+1)k is similar. Show that
if k/h ≤ 1, the solution of this scheme converges to the solution
of the differential equation as h → 0. (This is a special case of
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the Glimm, or random choice, scheme.) Hint: The solution of the
differential equation is φ(x+ t) (i.e., initial values propagate along
the lines t = −x+ constant). Examine how the scheme propagates
initial values by showing that an initial value u0i moves in time t
by an amount η, where η is a random variable whose mean tends
to −t and whose variance tends to zero.

2. Consider the heat equation vt = (1/2)vxx inside the region D : t >
0, 0 ≤ x ≤ 1, with data v(x, 0) = φ(x) for 0 ≤ x ≤ 1, and v(0, t) =
v(1, t) = 0 for t > 0. Show that the solution at a point (x0, t0)
inside D is v(x0, t0) =

∫
[F [w(ω, ·)]dW , where

∫
dW is a Wiener

integral, and the functional F assigns to each Brownian motion
defined on [0, t0] the number 0 if the curve x = x0+w(ω, s), t = t0−s
(0 ≤ s ≤ t0), crosses either of the lines x = 0 or x = 1 before it
reaches the x-axis, and F = φ(x0 + w(ω, t0)) otherwise.

3. Suppose you are solving the heat equation vt = (1/2)Δv inside
a bounded domain D in the plane, where Δ is the Laplace oper-
ator Δ = ∂2

∂x2 + ∂2

∂y2
and x, y are the two spatial variables, with

given initial data inside D and the boundary condition v = F on
the boundary of D. Generalize the construction of the previous
problem to the present case, and use it to construct a stochastic
algorithm for solving the Laplace equation Δu = 0 inside D, with
u = 0 on the boundary of D.

4. Evaluate exactly
∫
F dW for the following functionals F : (a)

F [w(·)] =
∫ 1

0
w4(s) ds; (b) F = sin(w3(1)), (c) F =

sin(w2(1/2)) cos(w(1)), (d) F =
∫ 1/2

0
w2(s)w2(0.5 + s)ds.

5. Show that

∫
dW (

∫ t

0

wn(s)ds) =

∫ +∞

−∞
du

∫ t

0

ds(
√
su)n exp(−u2/2)/

√
(2π)

for all nonnegative integers n.

6. Write the solution of the partial differential equation

vt = (1/2)vxx − xv,

with data v(x, 0) = sin x, as a Wiener integral.
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7. Evaluate
∫
F dW , where

F [w(·)] = e−
∫ 1
0 w2(s) ds cos(w(1)),

by Monte Carlo, along the following lines: divide the time interval
[0, 1] into n pieces and construct random walks wn as follows: for
t a multiple of 1/n, set wn((i + 1)h) = wn(ih) + q, where q is a
Gaussian variable with mean 0 and variance 1/n (and, of course,
wn(0) = 0). For t between the multiples of 1/n, construct wn by
linear interpolation. For each such wn, evaluate F and average over
many walks, until the error (as measured by the difference between
runs) is less than 1%. Do this for n = 5 and n = 10. Note that
this integral is the solution at (0, 1) of some initial value problem
for a differential equation. What is this problem?

8. In the previous problem, we discretized a Wiener integral by
approximating the Brownian motions by walks with n Gaussian
increments. Write the solution of this discretized problem as an
n-fold ordinary integral. (We shall see in Chap. 5 how to evalu-
ate such n-fold integrals, even for n large, by efficient Monte Carlo
algorithms.)

9. Consider the differential equation vt = Lv, where L is the differen-
tial operator defined by Lv = (1/2)vxx +U(x)v, with U(x) a given
potential. Define as Green’s function for this equation the function
G(x, x′, t) that has the following properties: (a) for every value of
the parameter x′ and every t > 0, G is a solution of the equation;
(b) as t→ 0, G(x, x′, t) → δ(x−x′), where δ is the Dirac delta; for
every smooth function ψ, one has

∫ ∞

−∞
δ(x− x′)ψ(x)dx = ψ(x′).

(a) Use Eq. (4.17) to express G(x, x′, t) as a Wiener integral.
(b) Suppose U(x) < 0 is such that the operator L on the real
line has a complete set of eigenfunctions φn and eigenvalues λn (for
example, U(x) = −x2). Check that the eigenfunctions must be or-
thogonal. Choose them so they are orthonormal, and arrange them
so that

· · · ≤ λn < λn−1 ≤ λ1 < 0.
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Show that

G(x, x′, t) =
∑

φn(x)φn(x
′)eλnt.

(c) Use these facts to suggest a way to find φ1 and λ1 by Monte
Carlo sampling.

10. Consider the tree in Fig. 4.4. Let n be the (random) number of its
intersections with the x−axis. Consider the function u(t) = E[an],
where a > 0 is a given constant. Show that u satisfies the equation
du/dt = u2 − u with initial datum u(0) = a.

11. Consider again the tree in Fig. 4.4. The set of branching points
plus the set of intersections with the x-axis is the set of nodes of
the tree. Associate with each intersection with the x-axis the given
number a > 0. Each branching point X is attached to two nodes
below it, say Y and Z. If the number associated with Y is A and
the number associated with Z is B, associate with X the number
AB +A (it is immaterial which point is Y and which is Z). Let D
be the number associated with the first (from the top) branching
point. Define u(t) = E[D]. Show that u satisfies the equation
du/dt = u2 with u(0) = a.

12. Prove that esΔetΔ = e(s+t)Δ, where Δ = ∂2/∂x2. (You first have to
figure out what this means and then check by means of formulas.)

13. Evaluate et ∂/∂xf for f = sin x at the point x = 1, t = 1.
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CHAPTER 5

Time-Varying Probabilities

5.1. Stochastic Differential Equations

There are many situations in which one needs to consider differential
equations that contain a stochastic element, for example, equations in
which the value of some coefficient depends on a measurement. The
solution of the equation is then a function of the independent variables
in the equation as well as of a point ω in some probability space; i.e.,
it is a stochastic process.

Very often, the stochastic element in differential equations of prac-
tical interest consists of white noise (derivative of Brownian motion—
BM) multiplied by a coefficient; the corresponding equations are called
stochastic ordinary differential equations (SODEs). Some of the rea-
sons that such equations are important will be discussed in Chap. 9.
We consider first a special case of such equations,

du

dt
= a(t, u(t)) dt+

dw

dt
, (5.1)

where w is Brownian motion. An initial datum u(0) is given, and may
be random, and the function a = a(t, u(t)) is assumed to be smooth.
The first question is, what does this equation mean? In particular,
Brownian motion has no derivative, so the meaning of the last term
is unclear. To interpret equation (5.1), integrate it from a time t to a
time t+ k, yielding

u(t+ k)− u(t) =

∫ t+k

t

a(s, u(s))ds+ w(t+ k)− w(t), (5.2)

keeping in mind that w(t+ k)−w(t) is a Gaussian variable with mean
zero and variance k. This makes sense for any finite k, and Eq. (5.1)
is interpreted as meaning that Eq. (5.2) holds for every k > 0. As a
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reminder of this interpretation, Eq. (5.1) is written symbolically in the
form

du = a(t, u(t))dt+ dw. (5.3)

If one thinks of the variable u as a velocity, this equation says that the
acceleration du/dt is made up of a smooth part plus powerful uncorre-
lated and frequent Gaussian punches. Equation (5.3) can be discretized
by taking finite steps of length k and calculating an approximation for
un = u(nk) by the finite difference formula

un+1 = un + a(nk, un)k +W n, (5.4)

where W n is a Gaussian variable with mean zero and variance k. A
special case of Eq. (5.3) is the equation du = dw, whose solution is
u(t) = w(t) + u(0).

The discussion just presented can be readily extended to the equa-
tion

du = a(t, u(t)) + b(t)dw, (5.5)

where b = b(t) is a function of t only (see the exercises). The more
general equation

du = a(t, u(t)) + b(t, u(t))dw, (5.6)

where the function b depends on u as well as on t, presents an additional
difficulty. The meaning of this equation should be defined as before by

u(t)− u(0) =

∫ t

0

a(s, u(s)) ds+

∫ t

0

b(s, u(s)) dw.

The first integral is well defined, whereas, as we shall see, the second
is now ambiguous. Integrals of the second form are called stochastic
integrals. Let us figure out in what sense we can understand them.

Let f(t) be a function defined on an interval [a, b]. A partition of
[a, b] is a set of points {ti}ni=0 such that

a = t0 < t1 < t2 < · · · < tn = b.

Definition. The variation of f(t) on [a, b] is defined by

Variation(f(t)) = sup
all partitions

n−1∑

i=0

|f(ti+1)− f(ti)|, (5.7)

where sup means supremum, or equivalently, least upper bound.
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If the sup is finite, f is said to have bounded variation; Brownian
motion does not have bounded variation. Stieltjes integrals of the form∫
g(t) df(t) make sense for a wide of class of functions g only when the

increment function f has bounded variation, and therefore,

∫ t

0

b(s, u(s)) dw

is in general not well defined as a Stieltjes integral.
The way to make sense of the stochastic integrals is to approximate

b(t, u(s)) by a piecewise constant function, i.e.,

∫ t

0

b(s, u(s)) dw ≈
n−1∑

i=0

bi dwi =

n−1∑

i=0

bi(w(ti+1)− w(ti)),

where {ti}ni=0 is a partition of [0, t], and then consider the limits of
the sum as one makes the largest interval ti − ti−1 in the partition go
to zero. Now one has to decide how to pick the bi’s. There are two
common choices:

1. The bi’s are evaluated at the left ends of the intervals, i.e.,

bi = b(ti, u(ti)).

2. The bi’s are the average of the endpoints,

bi =
1

2
[b(ti, u(ti)) + b(ti+1, u(ti+1))] .

Choice 1 defines the Itô stochastic integral, whereas choice 2 defines the
Stratonovich stochastic integral.

Example. Suppose b(t, u(t)) = w(t). Then in the Itô case,

I1 =

∫ t

0

w dw ≈
n−1∑

i=0

w(ti)(w(ti+1)− w(ti)).

This is, of course, a random variable; the expected value of this random
variable is zero, as one can see from the properties of Brownian motion:

E[I1] = 0.
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In the Stratonovich case, we find for the stochastic integral

I2 =

∫ t

0

w dw ≈
n−1∑

i=0

1

2
(w(ti+1) + w(ti))(w(ti+1)− w(ti))

=

n−1∑

i=0

1

2
(w2(ti+1)− w2(ti))

=
1

2

[
w2(t1)− w2(t0) + w2(t2)− w2(t1) + · · ·+ w2(tn)− w2(tn−1)

]

=
1

2

[
w2(tn)− w2(t0)

]
=

1

2
w2(t),

and the expected value of this integral is

E[I2] =
t

2
.

The fact that the expected values of the two integrals are so different
is, of course, enough to show that the integrals themselves are different.
This is unlike the situation in ordinary calculus, where the value of an
integral is independent of the choice of points in the Riemann sums.
How the stochastic integral is defined makes a big difference to the
meaning of a stochastic differential equation. In this book, we shall
have no occasion to use stochastic differential equations in which the
coefficient of dw depends on the solution, and we shall discuss this case
no further. A term of the form dw or f(t)dw is often called additive
noise, and a term of the form b(t, u(t))dw is called multiplicative noise.
We restrict ourselves below to SODEs with additive noise.

5.2. The Langevin and Fokker–Planck Equations

Consider a stochastic process u = u(ω, t) as it evolves in time. At an
initial time t = 0, its pdf is presumably known (in the case of Brownian
motion, its value is zero at the initial time), and then the pdf changes
as time unfolds. We now consider a differential equation, the Fokker–
Planck equation, that describes the evolution of the pdf defined by a
stochastic differential equation.

First we need a definition and an observation. A stochastic process
is called a Markov process if what happens after time t is independent
of what happened before time t; that is, if t′ > t, then

E[u(ω, t′)|u(ω, t)] = E[u(ω, t′)|u(ω, s), s ≤ t].
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In other words, if we know u(ω, t), then knowing in addition u(ω, s)
for s < t does not help us to predict u(ω, t′) for t′ > t. Brownian
motion is a Markov process by construction, because its increments are
independent. So is the solution of a stochastic differential equation of
the type we are considering; if you know where a stochastic process is
at a time t, you can use the SODE to trace out future sample paths for
times t′ > t, and what happened before t does not matter.

Consider a stochastic process u = u(ω, t), and for a given t, let
W (x, t)dx be the probability that u is between x and x + k, where k
is a small increment, P (x < u(t) ≤ x+ k) = W (x, t) k. The relation
between W (x, t) andW (x, t+k) is given by the Chapman–Kolmogorov
equation

W (x, t+ k) =

∫
W (x+ y, t)Ψ(x, y, k) dy,

where Ψ is the transition probability that the value of u changes from
x + y at time t to x at time t + k. This equation states that the
probability that u equal x at time t + k is the sum, over all y, of the
probabilities that u equals x+y at time t times the transition probability
from x+ y to x. For a Markov process, the transition probability does
not depend on W (x, s) for s < t.

We continue the analysis in the special case of the SODE

du = −au dt+ dw, (5.8)

where dw is the increment of Brownian motion and a > 0 is a constant.
This is the Langevin equation (also known in some mathematical circles
as the Ornstein–Uhlenbeck equation). The solution of this equation is
known to mathematicians as the Ornstein–Uhlenbeck process.

If we omit the noise term in this equation and retain only the damp-
ing term −au and set u(0) = A, the solution is Ae−at, a pure decay.
If, on the other hand, we keep the noise term but set a = 0, the solu-
tion of the equation is A + w(t), where w(t) is Brownian motion. The
Langevin equation can be used, for example, to model the motion of a
heavy particle under bombardment by lighter particles (see Chap. 9);
the collisions with the lighter particles provide random instantaneous
bursts of added momentum, while the mean effect of the collisions is to
slow the heavy particle. We will see in Sect. 9.2 that when this equation
is used as a physical model, the coefficient a, as well as the coefficient of
the noise term that we have arbitrarily set equal to 1, acquire a direct
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physical meaning. The solution of this equation, with the coefficients
interpreted correctly, is what physicists call Brownian motion.

We want to find the equation satisfied by the probability density
function of u. This equation is the Fokker–Planck equation for this
problem, also known to mathematicians as the Kolmogorov equation.
We choose an approximation for (5.8): Integrating from nk to (n+1)k,
where k is the time step, we obtain

un+1 − un = −akun + wn+1 − wn. (5.9)

We choose k small enough that ak < 1. Equation (5.9) says that
un+1 − un + akun is a Gaussian variable with mean 0 and variance k.
If un is known, then P (x < un+1 ≤ x+ dx) is

P (x < un+1 ≤ x+ dx) =
exp
(
− (x−un+akun)2

2k

)

√
2πk

dx. (5.10)

Since un is known, this is exactly the probability of the event that after
a time step k, u will have a value un+1 between x and x + k. If we
write un = x + y, this is exactly the transition probability Ψ(x, y, k)
that appeared in the Chapman–Kolmogorov equation, which becomes

W (x, t+ k) =

∫ +∞

−∞
W (x+ y, t)

exp
(
− (−y+ak(x+y))2

2k

)

√
2πk

dy.

After rearranging the exponent in the above, we have

W (x, t+ k) =

∫ +∞

−∞
W (x+ y, t)

exp
(
− ((1−ak)y−akx)2

2k

)

√
2πk

dy, (5.11)

where t = nk. The next step is to expand W (x+ y, t) around x. Up to
fourth order, we have

W (x+y, t) = W (x, t)+yWx(x, t)+
y2

2
Wxx(x, t)+

y3

6
Wxxx(x, t)+O(y

4).

The expansion ofW (x+y, t) is substituted into (5.11), and we evaluate
the integrals that appear one by one. Consider

I1 =

∫ +∞

−∞
W (x, t)

exp
(
− ((1−ak)y−akx)2

2k

)

√
2πk

dy.
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To evaluate I1, we make the change of variables z = (1 − ak)y and
obtain

I1 = W (x, t)

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)

√
2πk

dz

1− ak

=
W (x, t)

1− ak

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)

√
2πk

dz

=
W (x, t)

1− ak

= W (x, t)(1 + ak +O(k2))

= W (x, t)(1 + ak) +O(k2).

The second integral is

I2 =

∫ +∞

−∞
yWx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)

√
2πk

dy.

With the same change of variables, we get

I2 =Wx(x, t)

∫ +∞

−∞

z

1− ak

exp
(
− (z−akx)2

2k

)

√
2πk

dz

1− ak

=
Wx(x, t)

(1− ak)2
akx

=Wx(x, t)(1 + 2ak +O(k2))akx

=Wx(x, t)akx+O(k2).

The third integral is

I3 =

∫ +∞

−∞

y2

2
Wxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)

√
2πk

dy.
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The same change of variables gives

I3 =Wxx(x, t)

∫ +∞

−∞

z2

2(1− ak)2

exp
(
− (z−akx)2

2k

)

√
2πk

dz

1− ak

=Wxx(x, t)
1

2(1− ak)3
(k + (akx)2)

=Wxx(x, t)
k

2
+O(k2).

The fourth integral is

I4 =

∫ +∞

−∞

y3

6
Wxxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)

√
2πk

dy,

which becomes

I4 =Wxxx(x, t)

∫ +∞

−∞

z3

6(1− ak)3

exp
(
− (z−akx)2

2k

)

√
2πk

dz

1− ak

=Wxxx(x, t)
1

6(1− ak)4
(3axk2 + (akx)3)

=Wxxx(x, t)O(k
2).

W(x,t)

t

x

Figure 5.1. The time evolution of the pdf of Brownian motion.
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The fourth integral contributes only terms of order O(k2) and
higher; the same is true of all the following terms in the expansion.
Collecting terms, and neglecting terms that are O(k2) or smaller, we
obtain

W (x, t+k) = W (x, t)+W (x, t)ak+Wx(x, t)akx+
k

2
Wxx(x, t)+O(k

2).

Consequently,

W (x, t+ k)−W (x, t)

k
=W (x, t)a+Wx(x, t)ax+

1

2
Wxx(x, t) +O(k),

and finally, we let k → 0 and obtain

Wt(x, t) = (axW (x, t))x +
1

2
Wxx(x, t). (5.12)

This is the Fokker–Planck equation corresponding to the Langevin
equation (5.8).

In the special case that the Brownian motion term in the Langevin
equation is assigned the coefficient zero, so that the Langevin equation
becomes du = −audt, the Fokker–Planck equation reduces to Wt =
aW + axWx. Solving this equation by the method of characteristics
shows that the solution satisfies the equation dW/dt = aW , i.e., W =
W0e

at, whereW0 is an initial value, along curves such that dx/dt = −ax,
so that the solution concentrates near the origin in physical space, as
it should. In the other extreme case a = 0, the Langevin equation
is du = dw, whose solution is w(t) + c, where c is the initial datum,
and the corresponding Fokker–Planck equation is the heat equation;
the support of W spreads in time, as one would expect. In Fig. 5.1, we
display the evolution of the pdf in this simple case.

A balance between concentration and spreading is reached when
∂W/∂t = 0; the corresponding stationary solution for W is a Gaussian
function, a fact that will be significant in Chap. 7. The Langevin equa-
tion and the corresponding Fokker–Planck equation are two equivalent
ways to propagate probability in time; given a Langevin equation, one
can find the corresponding Fokker–Planck equation, and vice versa.

In the previous chapter, the heat equation was solved via a back-
ward Brownian motion; here it has been related to a Brownian motion
that runs forward in time. The backward algorithm yielded estima-
tors for the solution at given points that could readily be used in a
Monte Carlo computation. The forward construction is very awkward
to use numerically, because it does not produce pointwise estimators
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with small variance. Fokker–Planck equations are often used to esti-
mate pdfs in problems for which the modeling of physical or biological
phenomena naturally produces SODEs, rather than as a tool for solving
differential equations.

One can find Fokker–Planck equations (i.e., equations for the time
evolution of the pdf) for a richer class of stochastic processes than have
been considered so far, for example for a random walk with killing,
as follows. Let U(x, t) be a smooth function of x and of time t such
that 0 ≤ U(x) ≤ A, where A is a finite bound, and let k be a time
increment small enough that 1−kA ≥ 0. Let un = u(nk), n = 0, 1, . . . ,
be a random walk such that u(0) = 0 (the corresponding density is a δ
function), and un+1 = un + η with probability 1 − kU(un), where η is
a Gaussian variable with mean zero and variance k, and un+1 = ∗ with
probability kU(un, nk), where un+1 = ∗ means that the walk is killed,
i.e., it disappears from the calculation. We now calculate W (x), the
density of walkers at time t. Clearly,

W (x, t+ k) =

∫ +∞

−∞
W (x+ y, t)(1−U(x+ y, t)k)

exp−y2/(2k)

√
2πk

dy, (5.13)

which equals
∫ +∞

−∞
W (x+ y, nk)

exp−y2/(2k)

√
2πk

dy − k

∫ +∞

−∞
W (x+ y, nk)U(x+ y, nk)

× exp−y2/(2k)

√
2πk

dy.

Writing the last expression as I1 − kI2, we find from the preceding
analysis that

I1 = W (x, t) + (k/2)Wxx +O(k2),

while

I2 = e(k/2)
∂2

∂x2U(x, nk)W (nk),

where the semigroup notation has been used. Expanding the last ex-
pression in powers of k, collecting terms, and letting k → 0, we obtain

Wt = (1/2)Wxx − UW. (5.14)

This is the heat equation with potential, solved in Chap. 4 by the
Feynman–Kac formula. The representation here is particularly use-
ful in problems in which U is time-dependent and changes very quickly
in time.
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An interesting pair of a stochastic ordinary differential equations
and an associated Fokker–Planck equation arises in two-dimensional
incompressible fluid mechanics. In this case, the stochastic differential
equation can be used to calculate solutions of the partial differential
equation. Consider a fluid with velocity u = (u, v) and vorticity ξ =
vx − uy, where (x, y) represents a point in physical space; the equation
for the evolution of the vorticity is

∂ξ

∂t
+ (u · ∇)ξ =

1

Re
Δξ, (5.15)

where Re is the Reynolds number of the flow (1/Re is a dimensionless
measure of the viscosity, i.e., of the friction). If we assume that ξ ≥ 0
and

∫
ξ dx dy = 1, then (5.15) is the Fokker–Planck equation of the

following system of stochastic ordinary differential equations:

dx = u dt+

√
2

Re
dW.

Here x is the position of the point where the vorticity is ξ, and W is
a two-dimensional Brownian motion. Each of these particles carries a
fixed amount of vorticity. The corresponding evolution of the density
solves the vorticity partial differential equation. There is one equation
per point in the support of ξ (i.e., one equation for every point (x, y)
such that ξ(x, y) �= 0). The velocity u depends on the whole vortic-
ity field at each instant t, so this equation is nonlinear and couples
the Brownian motions that correspond to different points in physical
space, as one would expect, given that the original equation of motion
is nonlinear. This construction yields estimators for the vorticity that
are quite noisy, but the velocity is computed from the vorticity via an
integral operator that averages the vorticity, so that the velocity esti-
mator has a variance that shrinks as the number of vortex elements
increases.

5.3. Filtering and Data Assimilation

Consider the following situations:

(a) You are a meteorologist; you make a weather forecast for to-
morrow and predict that the sun will shine. You wake up the
next morning, open the window, and see pouring rain. What
should you do? You cannot leave things as they are, because
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Initial position
of the dinghy

Actual trajectory

Possible trajectories based
on wind and current model

Position of dinghy

Data

Figure 5.2. Trying to rescue the dinghy.

your prediction for today is the starting point for your predic-
tion for tomorrow, and if the former is wrong, the latter will
be even worse. On the other hand, redoing the calculations of
the previous day will not change things—presumably you had
done the best you could.

(b) You are trying to assess the health of the plankton in the Pa-
cific Ocean. Your information comes from large-scale numeri-
cal models of the ocean, which are uncertain; much about the
ocean is not fully understood, and the ocean is vast and can-
not be fully described in a computer program. However, you
have satellite photos of the surface of the ocean that contain a
considerable amount of biological information, and you would
like to obtain an estimate using both sources of information.

(c) (An artificial but easily visualized example) You are working
for the Coast Guard. You have heard an SOS call from a
ship that has sunk in the ocean at some known location, and
you would like to rescue the passengers who are floating in a
dinghy. You have information about the ocean currents and
the wind patterns that allow you to guess possible trajectories
for the dinghy. In addition, a ham radio operator has received
a signal that locates the dinghy at some location Q but with
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considerable uncertainty. You would like to use both sources
of information to locate the dinghy with as much certainty as
possible. The situation is depicted in Fig. 5.2, which shows the
possible trajectories, the additional datum, and the best guess
for the location of the dinghy.

These three situations are instances of the following general situ-
ation: one is given an uncertain model of some system and a stream
of uncertain data about its state, and one wants to use both to esti-
mate the current state of the system. Doing this is known as filtering
or data assimilation. Using the data and the model to determine the
past states of the system is known as smoothing, and using them to
determine a future state is known as prediction. We focus here on the
filtering problem. This situation arises in many areas of science and
engineering.

As a model of this situation, consider a variable x, the state variable,
that evolves in time, x = x(t), and assume that its evolution can be
described by a stochastic differential equation

dx = f(x, t)dt+ dw, (5.16)

where f is a given (generally nonlinear) function of x and t, w is Brown-
ian motion, and x(0) is given (and may be random as well); the variable
x is assumed here to be scalar. The Brownian motion w encapsulates
all the uncertainty in the model. In addition, at times tn, n = 1, 2, . . . ,
the system is observed, and the observations bn are noisy functions of
the state of the system:

bn = h(xn) +W n, (5.17)

where h is a (generally nonlinear) function of its argument, each W n

is a Gaussian random variable with mean zero and variance s, the W n

are independent, and xn = x(tn); the variables W n are independent of
each other and of the Brownian motion in the SODE. The problem is
to estimate xn given x(0) and b1, b2, . . . , bn.

First we discretize the SODE in the simple form

xn+1 = xn + kf(xn, tn) + V n, (5.18)

where k is a time step, tn = kn, and V n is a Gaussian random variable
with mean 0 and variance k. Assume for simplicity that tn = nk
in the observation equation (5.17) as well. We now have a discrete
recursion for the xn. If there are no observations, the model creates
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an ever wider range of possible states; the observations narrow the
range of possibilities. In general, there is no way to do the calculations
analytically, so one resorts to numerical approximation.

Before beginning the analysis, we introduce an abusive but useful
notation. Probabilities are assigned to events. Consider a random
variable η. Suppose η is a discrete variable that can take the values
a1, a2, . . . with probabilities p1, p2, . . . respectively. The probability of
the event η = ai is pi, and we write P (η = ai) = pi as P (η) for
brevity (i.e., we do not specify the event explicitly). If η is a continuous
variable, we know how to assign a probability to the event A = {ω|x <
η ≤ x + dx}; we write P (A) = P (η) (again not specifying the event).
If the pdf of η is f , then we have by definition P (A) = P (η) = f(η)dx,
where f(η) is the value of the function f(x) at the point x = η, and we
further write P (A) = P (η) = f(η) (omitting the dx). In brief, we write
P (η) for an event defined by values of the random variable η without
specifying the event. Similarly, if η is a discrete variable as above and ξ
is a discrete variable that can take the values b1, b2, . . . , we write P (η|ξ)
for P (η = ai|ξ = bj), and if η is a continuous variable as above and ξ is
also a continuous variable, we write P (η|ξ) for P (x < η ≤ x + dx|y <
ξ ≤ y + dy). The equalities derived below are meant to hold for all
values of the elided variables x, y, dx, dy. These notations shorten the
equations and make them easier to read.

At each discrete time tn, the SODE by itself defines a probability
density for xn, and the observations bi, i ≤ n, together with the SODE
define the conditional probability of the xn given the data, P (x0:n|b1,n),
where x0:n is a shorthand for x1, x2, . . . , xn. We are looking for the
conditional expectation of the xn given the data, which is the expected
value of the variables xn with respect to the conditional probability
P (x0:n|b1,n). Bayes’s theorem asserts here that

P (x0:n+1|b1:n+1) = P (x0:n|b1:n)P (xn+1|xn)P (bn+1|xn+1)/Z, (5.19)

where Z = P (bn+1|bn) does not depend on x and is therefore an (un-
known) constant. In this equation, P (xn+1|xn) is defined by the SODE,
and P (bn+1|xn+1) is defined by the observation equation (5.17). A sam-
ple of this pdf is a large-dimensional object X0, X1, . . . , Xn that de-
scribes a possible evolution of the system, and is called a particle. The
plan is to find particles (= samples) of the pdf (5.19) recursively (i.e.,
step by step); one assumes that all the particles have reached time
t = nk, and then one moves each of the particles one step forward in



5.3. FILTERING AND DATA ASSIMILATION 103

time. We denote by Xn
k , k = 1, . . . ,M , the coordinates of the kth par-

ticle at the nth step. The estimate of the location of the system at each
time step will be the average of the locations of the particles at that
time. The problem is reduced to the problem of sampling a given pdf
for each particle at each step. This construction constitutes a particle
filter. The difficulty, discussed in Chap. 3, is in finding high-probability
samples at each step.

Heuristically, the data are taken into account by producing a collec-
tion of possible evolutions (i.e., particles), assessing the probability of
each in light of the data, and averaging so that the more likely particles
make a larger contribution to the average. The risk is that many of
the particles will turn out to be unlikely once the data are taken into
account, leading to wasted effort or even missing the best ones com-
pletely. The challenge is therefore to produce particles that already take
the data into account, which is what implicit sampling is all about.

We do the sampling here by implicit sampling (see Chap. 3). Given
the trajectory X1:n

k = X0
k , X

1
k , . . . , X

n
k of the kth particle (1 ≤ k ≤M),

the pdf of the location Xn+1 of the kth particle at step (n + 1)k is
given by the right-hand side of Eq. (5.19), where the arguments xj ,
1 ≤ j ≤ n + 1, are replaced by the coordinates Xj

k of a particle. All
the arguments other than Xn+1

k have already been sampled and are
known; the variables we have to sample are the Xn+1

k . The factor
P (X1:n|b1,n) is known from the previous step, and the factor P (bn+1|bn),
though unknown, is common to all the particles, so the product of these
factors is just an unknown constant, which is not an obstacle to implicit
sampling. Write X = Xn+1

k for the variable we are trying to sample,
and

G(X) = − logP (X|Xn
k )P (b

n+1|X)

as in Chap. 3 (all arguments other than X are suppressed in G to save
writing, but one should not forget that the function G differs from
particle to particle).

Now find φ = minG, the minimum of G, and pick a reference
variable ξ, say a Gaussian with mean zero and variance 1. Assume
for a moment that G is convex, and obtain a sample X = Xn+1

k by
solving the equation G(X)− φ = ξ2/2, as discussed in Chap. 3. If G is
not convex, replace it by a suitable function G0 that is convex and has
the same minimum. Make sure that the mapping ξ → X is one-to-one
and onto. As in Chap. 3, the sampling weight is e−φJ , where J is the
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Jacobian of the mapping ξ → X, with suitable modifications if G is not
convex. This yields high-probability particles.

Example. Suppose the model has the form (5.18) above, and the
function h in the noise model (5.17) is linear, e.g., h(x) = x. Then the
observation equation says that bn+1−Xn+1 is a Gaussian with mean zero
and variance s, so that P (bn+1|Xn+1

k ) = P (bn+1|X) = e−(X−bn+1)2/(2s)).
The SODE says that Xn+1 = Xn+kf(Xn, tn) is a Gaussian with mean
zero and variance k. The noises in the SODE and in the observations
are assumed to be independent, so

G = (X −Xn − kf(Xn, tn))2/(2k) + ((X − bn+1)2/(2s),

which can be written in the form G = (X−a)2/(2v)+c, with constants
a, c, v found by completing squares. Once a, c, v are found, we have
φ = min G = c. The solution of the equation G − φ = ξ2/2 is X =
a+

√
vξ, the Jacobian J is J = 1/

√
v and is a constant independent of

the particle and therefore irrelevant, and the mapping from ξ to X is
obviously one-to-one and onto.

The sampling weights will differ from particle to particle, and one
would want not to follow further in time those particles whose weights
are very small; also, one would like to get more particles in the neighbor-
hood of particles that have high weights, because these are important
regions where more detail may be needed. This can be accomplished by
resampling, to suppress low-weight particles and split up high-weight
particles without changing the pdf that the set of particles describes.
One way of resampling goes as follows (see Fig. 3.1 in Chap. 3): Let
Wi, i = 1, N , be the weights. Divide each by the sum

∑
Wi, so that

the sum of the weights equals 1, and retain the name Wi for the new
scaled weights. PickM independent samples z1, z2, . . . , zM of a random
variable z equidistributed on [0, 1], and for each zk, pick a new location

X̂n+1
k = Xn+1

� , where
j=�−1∑

j=1

Wj < zk ≤
j=M∑

j=�

Wj.

Once you are done, remove the hats. One can see that particles
with large weights will be picked often, on average with frequency pro-
portional to their weights, while particles with small weights are likely
to disappear, all this while averages remain invariant. However, if the
particles are all in regions of low probability, then resampling will not
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improve them; it is important that the particles be well chosen before
resampling. Finally, resampling sets the constant P (x1:n|b1:n) to 1 in
Eq. (5.19).

One can avoid the minimization of G (which may be onerous
in some nonlinear problems with many variables) by setting φ =
− log P (bn+1|Xn+1); the particles are then chosen by sampling the pdf
P (Xn+1|Xn), i.e., by advancing the SODE (5.16) one step in time.
The weight of the ith particle is then proportional to P (bn+1|Xn+1

i ),
i.e., the data are used only to provide weights and do not affect the
location of the samples. This is commonly done. If the observations
are approximately consistent with the observations and do not bring in
a lot of new information, this simpler algorithm is workable and much
less expensive.

Suppose both the SODE and the function h in the observation equa-
tion are linear and the initial pdf at time t = 0 is Gaussian. Then the
pdf we are looking for is Gaussian at every step and is fully determined
by its mean and variance. Suppose at time nk, we have a single particle
located at the mean of the pdf; the machinery above will determine the
mean and the variance of its next location. One can move the single
particle to the next mean and repeat. The optimal choice of reference
variable ξ is obviously ξ = 0. The resulting filter is the celebrated
Kalman filter, a mainstay of engineering.

5.4. Exercises

1. Consider the stochastic integral
∫ b

a
g(t)dw, where g is a smooth func-

tion of its argument t and w is Brownian motion. Interpret it as a
limit of a finite sum, calculate the mean and the variance of this
finite sum, and take a suitable limit. Show that the integral is

a Gaussian random variable of mean zero and variance
∫ b

a
g2(t)dt.

Conclude that the solution of the stochastic differential equation
du = f(t, u)dt+ g(t)dw is well defined.

2. Find the Fokker–Planck equation for the process that satisfies the
equation du = −dt + dw, where w is Brownian motion. Does the
pdf ever settle to a steady state?

3. Find a stochastic differential equation whose Fokker–Planck equa-
tion is Wt = 5W + 5xWx + 16Wxx.
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4. Consider particles moving in the plane, with coordinates that satisfy
the pair of stochastic differential equations

dx1 = a1 dt+ dw1, dx2 = a2 dt+ dw2,

where a1, a2 are constants and dw1, dw2 independent Brownian mo-
tions. The density function W =W (x, y, t) is the joint density of x1
and x2; find the partial differential equation (Fokker–Planck equa-
tion) that it satisfies.

5. Show that the solution of Eq. (5.8) is u(ω, t) = e−atu(0) + w(ω, t)−
a
∫ t

0
e−a(t−τ)w(ω, τ) dτ .

6. Show that the solution of (5.9) is given by un = (1− ak)nu0 +wn −
ak (wn+1 + (1− ak)wn−2 + · · ·+ (1− ak)n−2w1).

7. Consider the SODE dx = x dt + dw describing the evolution of the
state x of some system; discretize this SODE by the usual scheme
with time step k, and assume that at every step, you have an obser-
vation bn = xn +W n, where bn is the observation at the nth step,
xn is the state at step n, and W n is a Gaussian variable with mean
zero and variance s. Suppose the conditional probability given the
observations is computed using M particles. Find the function G
(defined in the text) for the jth particle in the (n+1)st step, find an
expression for the new position of a particle given the old position,
and find the corresponding sampling weight.
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CHAPTER 6

Stationary Stochastic Processes

6.1. Weak Definition of a Stochastic Process

This chapter is devoted to further topics in the theory of stochastic
processes and their applications. We start with a weaker definition of a
stochastic process that is sufficient in the study of stationary processes.
We said before that a stochastic process is a function u of both a vari-
able ω in a probability space and a continuous parameter t, making u
a random variable for each t and a function of t for each ω. We made
statements about the kind of function of t that was obtained for each ω.
The definition here is less specific about what happens for each ω.

Consider a collection of random variables u(t, ω) ∈ C parametrized
by t.

Definition. We say that u(t, ω) is a real-valued stochastic process
if for every finite set of points t1, . . . , tn, the joint distribution of u(t1, ω),
. . ., u(tn, ω) is known:

Ft1,...,tn(y1, . . . , yn) = P (u(t1) ≤ y1, . . . , u(tn) ≤ yn).

The family of functions Ft1,...,tn(y1, . . . , yn) must satisfy some natural
requirements:

1. F ≥ 0.
2. F (∞, . . . ,∞) = 1 and F (−∞, . . . ,−∞) = 0.
3. Ft1,...,tn(y1, . . . , ym,∞, . . . ,∞) = Ft1,...,tm(y1, . . . , ym).
4. If (i1, . . . , in) is a permutation of (1, . . . , n), then

Fti1 ,...,tin
(yi1, . . . , yin) = Ft1,...,tn(y1, . . . , yn).

This definition has a natural extension to complex-valued processes, in
which one assumes that one knows the joint distribution of the real and
complex parts of u.

A.J. Chorin and O.H. Hald, Stochastic Tools in Mathematics and Science,
Texts in Applied Mathematics 58, DOI 10.1007/978-1-4614-6980-3 6,
© Springer Science+Business Media, LLC 2013

109



110 6. STATIONARY STOCHASTIC PROCESSES

A moment of u(t, ω) of order q is an object of the form

Mi1,...,in = E[ui1(t1) · · ·uin(tn)],
n∑

j=1

ij = q.

If a stochastic process has finite moments of order q, it is a process of
order q. The moment

E[u(t, ω)] = m(t)

is the mean of u at t. The function

E
[
(u(t1, ω)−m(t1))(u(t2, ω)−m(t2))

]
= R(t1, t2)

is the covariance of u. Let us list the properties of the covariance of u:

1. R(t1, t2) = R(t2, t1).
2. R(t1, t1) ≥ 0.

3. |R(t1, t2)| ≤
√
R(t1, t1)R(t2, t2).

4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑

i=1

n∑

j=1

R(ti, tj)zizj ≥ 0.

The first three properties are easy to establish; the fourth is proved as
follows: For any choice of complex numbers zj, the sum

n∑

i=1

n∑

j=1

R(ti, tj)zizj

is by definition equal to

E

⎡

⎣
∣∣∣∣∣

n∑

j=1

(u(tj)−m(tj)) zj

∣∣∣∣∣

2
⎤

⎦ ≥ 0

(i.e., to the expected value of a nonnegative quantity).

Definition. A process is stationary in the strict sense if for every
t1, . . . , tn and T ∈ R,

Ft1,...,tn(y1, . . . , yn) = Ft1+T,...,tn+T (y1, . . . , yn).

For a stochastic process that is stationary in this sense, all moments
are constant in time, and in particular, m(t) = m and R(t1, t2) =
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R(t1+T, t2+T ) for all T . Choose T = −t2; then R(t1, t2) = R(t1−t2, 0),
and it becomes reasonable to define

R(t1 − t2) = R(t1, t2),

where the function R on the left side, which has only one argument,
is also called R in the hope that there is no ambiguity. Note that
R(T ) = R(t+ T, t).

The above properties become, for the new function R,

1. R(t) = R(−t).
2. R(0) ≥ 0.
3. |R(t)| ≤ R(0).
4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑

i

n∑

j

R(ti − tj)zizj ≥ 0. (6.1)

Definition. A stochastic process is stationary in the wide sense if
it has a constant mean and its covariance depends only on the difference
between the arguments, i.e.,

1. m(t) = m.
2. R(t1, t2) = R(t1 − t2).

If a stochastic process is stationary in the wide sense and Gaussian,
then it is stationary in the strict sense (because a Gaussian process is
fully determined by its mean and covariances). Brownian motion is not
stationary. White noise is stationary (but ill defined without appeal to
distributions).

We now consider some instances of processes that are stationary
in the wide sense. Pick ξ ∈ C to be a random variable and h(t) a
nonrandom function of time, and consider the process u(t, ω) = ξh(t).
Assume for simplicity that h(t) is differentiable, and determine when a
process of this type is stationary in the wide sense. Its mean is

m(t) = E[ξh(t)] = h(t)E[ξ],

which is constant if and only if h(t) is constant or E[ξ] = 0. Suppose
E[ξ] = 0. The covariance

R(t1, t2) = E[ξh(t1)ξ h(t2)] = E[ξξ]h(t1)h(t2)

must depend only on the difference t1 − t2. Consider the special case
t1 = t2 = t. In this case, the covariance E[ξξ]h(t)h(t) must be R(0);
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hence h(t)h(t) must be constant. Therefore, h(t) is of the form

h(t) = Aeiφ(t), (6.2)

where A is a constant and φ(t) a function of t that remains to be
determined. Now we narrow the possibilities some more. Suppose
A �= 0. Then

R(t1 − t2) = |A|2E[ξξ]eiφ(t1)−iφ(t2).

Set t1 − t2 = T and t2 = t. Then

R(T ) = |A|2E[ξξ]ei[φ(t+T )−φ(t)]

for all t, T . Since R(T ) = R(−T ), we see that

φ(t+ T )− 2φ(t) + φ(t− T )

T 2
= 0.

Letting T → 0 gives φ′′(t) = 0 for all t, so φ(t) = λt+β, where λ, β are
constants. Also eiβ is a constant. We have therefore shown that the
process u(t, ω) = ξh(t) is stationary in the wide sense if h(t) = Ceiλt

(where C, λ are constants) and E[ξ] = 0.

6.2. Covariance and Spectrum

In the last section, we presented an example of a stationary sto-
chastic process in the wide sense, given by u(t, ω) = ξeiλt, where ξ is a
random variable with mean 0. This stochastic process has a covariance
of the form

R(T ) = R(t1, t2) = R(t1 − t2) = E[|ξ|2]eiλT ,
where T = t1 − t2. Now we want to generalize this example. First, we
try to construct a process of the form

u(t, ω) = ξ1e
iλ1t + ξ2e

iλ2t,

with λ1 �= λ2. Then E[u] = E[ξ1]e
iλ1t+E[ξ2]e

iλ2t, which is independent
of t if E[ξ1] = E[ξ2] = 0. The covariance is

E
[
(ξ1e

iλ1t1 + ξ2e
iλ2t1)(ξ1e

−iλ1t2 + ξ2e
−iλ2t2)

]

= E
[|ξ1|2eiλ1T + |ξ2|2eiλ2T + ξ1ξ2e

iλ1t2−iλ2t2 + ξ1ξ2e
iλ1t1−iλ2t2

]
,
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which can be stationary only if E[ξ1ξ2] = 0. Then u(t, ω) is stationary
and

R(T ) = E[|ξ1|2]eiλ1T + E[|ξ2|2]eiλ2T .

More generally, a process u =
∑

j ξje
iλjt is stationary in the wide

sense if E[ξjξk] = 0 when j �= k and E[ξi] = 0. In this case,

R(T ) =
∑

E
[|ξj|2

]
eiλjT .

This expression can be rewritten in a more useful form as a Stieltjes in-
tegral. Recall that when q is a nondecreasing function of x, the Stieltjes
integral of a function h with respect to q is defined to be

∫
h dq = lim

max{xi+1−xi}→0

∑
h(x∗i )[q(xi+1)− q(xi)],

where xi ≤ x∗i ≤ xi+1. If q is differentiable, then

∫ b

a

h dq =

∫ b

a

hq′ dx.

Suppose q(x) is the step function

q(x) =

{
0, x < c,

q0 x ≥ c,

with a ≤ c ≤ b. Then
∫ b

a
h dq = h(c)q0 if h is continuous at c. We

define the function G = G(k) by

G(k) =
∑

{j|λj≤k}
E[|ξj|2];

i.e., G(k) is the sum of the expected values of the squares of the ampli-
tudes of the complex exponentials with frequencies less than or equal
to k. Then R(T ) becomes

R(T ) =

∫ +∞

−∞
eikTdG(k).

We shall now see that under some technical assumptions, this rela-
tion holds for all stochastic processes that are stationary in the wide
sense. Indeed, we have the following theorem.



114 6. STATIONARY STOCHASTIC PROCESSES

Theorem 6.1 (Khinchin).

1. If R(T ) is the covariance of a stochastic process u(t, ω),
stationary in the wide sense such that

lim
h→0

E
[|u(t+ h)− u(t)|2] = 0,

then R(T ) =
∫
eikTdG(k) for some nondecreasing function

G(k).
2. If a function R(T ) can be written as

∫
eikTdG(k) for some

nondecreasing function G, then there exists a stochastic pro-
cess, stationary in the wide sense, satisfying the condition in
part (1) of the theorem, that has R(T ) as its covariance.

Khinchin’s theorem follows from the inequalities we have proved
for R; indeed, one can show (but we will not do so here) that a
function that satisfies these inequalities is the Fourier transform of a
nonnegative function. If it so happens that dG(k) = g(k) dk, then
R(T ) =

∫
eikTg(k) dk, and g(k) is called the spectral density of the

process. Thus, Khinchin’s theorem states that the covariance function
is a Fourier transform of the spectral density. Hence, if we know R(T ),
we can compute the spectral density by

g(k) =
1

2π

∫ +∞

−∞
e−ikTR(T ) dT.

For a nonrandom periodic function, one can define an energy per
wave number k as the squared amplitude of the kth Fourier coefficient;
for a nonrandom aperiodic function, one can define the energy per wave
number as the squared magnitude of the Fourier transform. The sam-
ples of a stationary stochastic process do not have Fourier transforms
in the usual sense, because they do not tend to zero at ±∞, but one
can still define an average energy per wave number for a stationary
stochastic process by the Fourier transform of the covariance.

Example. Consider white noise, the derivative (in a sense we have
not discussed) of Brownian motion. One can show that R(T ) = δ(T )
(see the exercises). Its spectral density (interpreted carefully) is φ(k) =
1/2π; thus, all frequencies have the same amplitude. The adjective
“white” comes from the fact that in white light, all frequencies are
present with the same amplitude. A stationary random function that
is not white noise is called colored noise.
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6.3. The Inertial Spectrum of Turbulence

To illustrate these constructions, we now derive the spectrum of
fully developed turbulence. We do not write down the equations of
motion; the only properties of these equations that will be used here
are that (a) they are nonlinear, and (b) energy dissipation by viscosity
is proportional to an integral over the domain of the sum of the squares
of the derivatives of the velocity field (a quantitive description of this
property will be given below).

Consider turbulence in a fluid, far from any solid boundaries, with
the Reynolds number Re = U�0/ν very large, where U is a typical ve-
locity difference in the flow, �0 is a length scale for the flow, and ν is
the viscosity; the dimensionless number Re is large when the velocity
differences are large and the viscosity is small, which are the circum-
stances when turbulence appears; U is chosen to be a typical velocity
difference rather than a typical velocity because a velocity component
common to the whole flow field is not relevant when one is studying
turbulence. The large scales of turbulent flow are typically driven by
large-scale forcing (e.g., in the case of meteorology, by the rotation of
the earth around its axis and around the sun); turbulence is charac-
terized by the transfer of energy from large scales to smaller scales at
which the energy is dissipated. One usually assumes that as the energy
moves to large wave numbers k (i.e., small scales), the specifics of the
forcing are forgotten and the flow can be viewed as approximately ho-
mogeneous (translation-invariant) and isotropic (rotation-invariant) at
small scales, and that the properties of the flow at small scales are uni-
versal (i.e., independent of specific geometry and forcing). One further
assumes that the solutions of the equations of fluid mechanics can be
viewed as random; how nonrandom equations produce solutions that
can be viewed as random is an interesting question that we will not
discuss here.

Assume that the velocity field is homogeneous, i.e., statistically
translation-invariant in space (not in time, as was implicitly assumed
in the previous section through the choice of the letter t for the pa-
rameter). The velocity field in three space dimensions is a vector
quantity: u = (u1, u2, u3). Each of these components is a function
of the three spatial variables x1, x2, x3. A Fourier transform in three-
dimensional space can be defined and is a function of three Fourier
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variables k1, k2, k3 that correspond to each of the spatial variables, and
we write k = (k1, k2, k3). One can define a covariance matrix

Rij(r) = E[ui(x)uj(x+ r)],

where r is a three-component vector; then Khinchin’s theorem becomes

Rii(r) =

∫ ∞

−∞
eik·r dGii(k), (6.3)

where k = (k1, k2, k3), k ·r is the ordinary Euclidean inner product, and
the functions Gii are nondecreasing. Without loss of generality in what
follows, one can write dGii(k) = gii(k) dk1 dk2 dk3 (this is so because
all we will care about is the dimensions of the various quantities, which
are not affected by a possible lack of smoothness). Setting r = 0 in
Eq. (6.3) and summing over i, we find that

E[u21 + u22 + u23] =

∫ ∞

−∞
(g11 + g22 + g33)dk1 dk2 dk3.

We define the left-hand side of this equation to be the specific en-
ergy (i.e., energy per unit volume) of the flow and denote it by E[u2].
Splitting the integration into an integration in a polar variable k and
integrations over angular variables, one can write

E[u2] =

∫ ∞

0

E(k)dk,

with

E(k) =

∫

k21+k22+k23=k2
(g11 + g22 + g33) dS(k),

where dS(k) is an element of area on a sphere of radius k. We de-
fine E(k) to be the energy spectrum; it is a function only of k =√
k21 + k22 + k23. The energy spectrum can be thought of as the por-

tion of the energy that can be imputed to motion with wave numbers
of magnitude k.

The kinetic energy of the flow is proportional to the square of the
velocity, whereas energy dissipation is proportional to the square of the
derivatives of the velocity; in spectral variables (i.e., after Fourier trans-
formation), differentiation becomes multiplication by k, the Fourier
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variable. A calculation, which we skip, shows that D, the energy
dissipation per unit volume D, can be written as

D =

∫ ∞

0

k2E(k)dk,

where E(k) is the energy spectrum. This calculation requires some
use of the equations of motion, and this is the only place where those
equations are made use of in the argument of this section.

It is plausible that when Re is large, the kinetic energy resides in a
range of k’s disjoint from the range of k’s where the dissipation is taking
place, and indeed, experimental data show it to be so; specifically, there
exist wave numbers k1 and k2 such that

∫ k1

0

E(k) dk ∼
∫ ∞

0

E(k) dk,

∫ ∞

k2

k2E(k) dk ∼
∫ ∞

0

k2E(k) dk,

with k1 � k2. This observation roughly divides the spectrum into three
pieces: (a) the range between 0 and k1, the energy range, where most of
the energy resides; what happens in this range depends on the bound-
ary and initial conditions and must be determined separately for each
turbulent flow; (b) the dissipation range k > k2, where the energy is
dissipated; and (c) the intermediate range between k1 and k2; this range
is the conduit through which turbulence moves energy from the energy
range to the dissipation range, and it is responsible for the enhanced
dissipation produced by turbulence (see Fig. 6.1). One can hope that
the properties of turbulence in the intermediate range are universal, i.e.,
independent of the particular flow one is studying. The nonlinearity of
the equations couples the energy range to the intermediate range, and
if one can find the universal properties of the intermediate range, one
can use them to compute in the energy range. We now determine these
universal properties.

We will be relying on dimensional analysis (see Chap. 1). The spec-
trum in the intermediate range E(k) is a function of k, the viscosity
ν, the length scale of the turbulence �0, the amplitude U of the typi-
cal velocity difference in the flow, and the rate of energy dissipation ε.
This last variable belongs here because energy is transferred from the
low-k domain through the intermediate range into the large-k domain,
where it is dissipated; the fact that ε belongs in the list was the brilliant
insight of Kolmogorov.
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kk1 k2

k2E(k)E(k)

Figure 6.1. Sketch of the energy, inertial, and dissipa-
tion ranges in turbulence.

Our basic units are the units of length and of time. Suppose the
former is reduced by a factor L and the latter by a factor T . The di-
mension of the viscosity is L2/T , that of ε is L2/T 3, that of k is 1/L,
and the equation E[u2] =

∫
E(k) dk shows that the dimension of E

is L3/T 2. Dimensional analysis yields E(k)(ε−2/3k5/3) = Φ(Re, �0k) for
some unknown function Φ of the two large arguments Re and �0k; Re is
large because this is the condition for fully developed turbulence to ap-
pear, and �0k is large in the intermediate range of scales. If the function
Φ has a finite nonzero limit C as its arguments grow (an assumption of
complete similarity), one can deduce E(k) = Cε2/3k−5/3, which is the
famous Kolmogorov–Obukhov scaling law for the intermediate range of
fully developed turbulence, the cornerstone of turbulence theory. Note
that the viscosity has dropped out from this result, leading to the con-
clusion that the dynamics of the intermediate range are purely inertial,
i.e., independent of viscosity; this is why the intermediate range is usu-
ally called the inertial range.

This law is not fully satisfactory for various reasons, and a number of
correction schemes have been proposed over the years. In recent years,
it has been argued that the unknown function Φ behaves, as its argu-
ments tend to infinity, like C(Re)(�0k)

−d/ log(Re)Φ0(Re, �0k), where it is
Φ0 that tends to a nonzero constant as its arguments grow, C(Re) is a
function of Re, and d is a positive constant; the exponent −d/ log(Re)
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is an anomalous exponent. This is an assumption of incomplete simi-
larity, which leads, for large Re and �0k, to the relation

E(k) = C(Re)ε2/3k−5/3(�0k)
−d/ log(Re).

The exponent −5/3 is corrected by the small quantity −d/ log(Re); this
quantity is a function of the Reynolds number Re, but its variation with
Re is slow. However, this correction violates the assumption that the
intermediate range is purely inertial. Other proposals for the anomalous
exponent, without a dependence on Re, have also been made.

6.4. Time Series

Suppose we are observing a stochastic process u(t, ω), have been
observing it long enough to know that it is stationary and to determine
its temporal covariances, and suppose we are given observed values
U(s) of u(t, ω) for s ≤ t (we denote observed values by capital letters).
The question we address in this section is how to predict a value for
u(t + T, ω) based on the information we have. For simplicity, we shall
do so only for a stationary random sequence.

Definition. A stationary random sequence is a collection u(t, ω) of
random variables for t = 0, 1, 2, 3, . . . as well as for t = −1,−2,−3, . . .
such that the joint distribution of every subset is known, subject to the
obvious compatibility conditions, and such that all the distributions are
invariant under the transformation t → t+ T for T an integer. Such
sequences are also known as time series.

Assume E[u(t)] = 0. The covariance is

R(T ) = E[u(t+ T )u(t)],

where T ∈ Z satisfies, as before, the following conditions:

1. R(0) ≥ 0.
2. |R(T )| ≤ R(0).

3. R(T ) = R(−T ).
4.
∑

i,j R(i− j)zizj ≥ 0.

If u(t, ω) = ξ(ω)h(t) is stationary, we can repeat the arguments in
Sect. 4.1. Since R(0) = E[|u|2] = E[|ξ|2]|h(t)|2, we see that h(t) =

Aeiφ(t) for t = 0,±1, . . .. Since R(1) = R(−1), we obtain

φ(t+ 1)− φ(t) = −(φ(t− 1)− φ(t)) mod 2π
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for t = 0,±1, . . .. Setting φ(0) = α and φ(0) − φ(−1) = λ, we find by
induction that φ(t) = α+λt mod 2π. Consequently, h(t) = Aei(α+λt) =
Ceiλt for all integers t, where C = Aeiα is a possibly complex constant
and λ is an integer.

Define a periodic function g of the argument k by

g(k) =
1

2π

+∞∑

T=−∞
R(T )e−iTk,

where T takes on integer values. Note that if R(T ) does not converge
rapidly enough to 0 as |T | increases, g may not be smooth. Then
R(T ) =

∫ π

−π
eiTkg(k)dk. (The factor 2π of Fourier theory is broken up

here differently from how we did it before.)
One can show that if R(T ) is a covariance for a time series,

then g ≥ 0. Conversely, if R(T ) is given for all integers T , and if
1
2π

∑
T R(T )e

−iTk ≥ 0, then there exists a time series for which R(T ) is
the covariance. This is Khinchin’s theorem for a time series.

Consider the problem of finding an estimate for u(t + m,ω) when
one has values u(t−n), u(t− (n−1)), . . ., u(t−1). Nothing is assumed
here about the mechanism that produces these values; all we are going
to use is the assumed fact that the time series is stationary, and that
we know the covariance. If the covariance vanishes whenever T �= 0,
then the u(t) are uncorrelated, and no useful prediction can be made.
We would like to find a random variable û(t+m,ω) with m = 0, 1, 2, . . .
such that

E
[|u(t+m,ω)− û(t +m,ω)|2]

is as small as possible. We know from Sect. 2.3 that

û(t+m,ω) = E[u(t+m,ω)|u(t− 1), u(t− 2), . . . , u(t− n)].

The way to evaluate û is to find a basis {φi} in the space of functions
of {u(t− n), . . . , u(t− 1)}, expand û in this basis, i.e.,

û =
n∑

j=1

ajφj(u(t− 1), . . . , u(t− n)),

and calculate the coefficients aj of the expansion. This is hard
in general. We simplify the problem by looking only for the best
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approximation in the span of {u(t − 1), . . . , u(t − n)}, i.e., we look
for a random variable

û(t+m,ω) =

n∑

j=1

aju(t− j, ω).

This is called linear prediction. The span L of the u(t− j, ω) is a closed
linear space; therefore, the best linear prediction minimizes

E
[|u(t+m,ω)− û(t +m,ω)|2]

for û in L. What we have to do is to find {aj}nj=1 such that

E

⎡

⎣
∣∣∣∣∣u(t+m,ω)−

n∑

j=1

aju(t− j, ω)

∣∣∣∣∣

2
⎤

⎦

is as small as possible. We have

E[|u− û|2]

= E

⎡

⎣
(
u(t+m)−

∑

j

aju(t− j)

)(
u(t+m)−

∑

l

alu(t− l)

)⎤

⎦

= E

[
u(t+m)u(t+m)−

∑

l

alu(t+m)u(t− l)

−
∑

j

aju(t+m)u(t− j) +
∑

j

∑

l

ajalu(t− j)u(t− l)

]

= R(0)− 2Re

(
∑

j

ajR(m+ j)

)
+
∑

j

∑

l

ajalR(l − j),

which is minimized when

1

2

∂E [|u− û|2]
∂aj

= −R(m+ j) +
n∑

l=1

alR(j − l) = 0 (6.4)

for j = 1, . . . , n. Here we use the fact that if q(x, y) =
Q(x+ iy, x− iy) = Q(z, z̄) is real, then qx = qy = 0 if and only if
Qz̄ = 0 or Qz = 0 (see also Exercise 6, Chap. 1). The uniqueness of
the solution of the system (6.4) and the fact that this procedure gives
a minimum are guaranteed by the orthogonal projection theorem for
closed linear spaces (see Sect. 1.1). The problem of prediction for time
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series has been reduced (in the linear approximation) to the solution of
n linear equations in n unknowns. This concludes our general discussion
of prediction for time series.

We now turn to a special case in which this linear system of equa-
tions can be solved analytically with the help of complex variables.
The reader not familiar with contour integration should fast forward
at this point to the next section. Rewrite (6.4) in terms of the Fourier
transform. The spectral representation of R(T ) is

R(T ) =

∫ π

−π

eikTg(k) dk.

Then (6.4) becomes

∫ π

−π

(
−ei(j+m)k +

n∑

l=1

ale
i(j−l)k

)
g(k) dk = 0.

Moving eijk outside the parentheses, we get

∫ π

−π

eijk

(
eimk −

n∑

l=1

ale
−ilk

)
g(k) dk = 0. (6.5)

So far, (6.5) is just a reformulation of (6.4). To continue, we need an
explicit representation of g(k). Consider the special case R(T ) = Ca|T |

for T = 0,±1,±2, . . ., where C > 0 and 0 < a < 1. Is R the covariance
of a stationary process? It certainly satisfies conditions 1, 2, 3. To
check condition 4, we compute

g(k) =
1

2π

∞∑

n=−∞
R(n)e−ink

=
C

2π

[ ∞∑

n=1

(ae−ik)n + 1 +

∞∑

n=1

(aeik)n

]

=
C

2π

[
ae−ik

1− ae−ik
+ 1 +

aeik

1− aeik

]

=
C

2π

1− a2

(1− ae−ik)(1− aeik)
> 0.

This shows that R(T ) is the Fourier transform of a nonnegative func-
tion, and consequently the covariance of a stationary process.
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Assume for simplicity that C(1−a2)/(2π) = 1. We solve (6.5) using
complex variables. Let eik = z. Then z̄ = z−1, dk = dz/(iz), and (6.5)
becomes

1

2π

∫

|z|=1

zj

(
zm −

n∑

�=1

a�z
−�

)
1

(z − a)
(
1
z
− a
) dz
iz

= 0

for j = 1, 2, . . . , n. We must therefore determine a1, . . . , an such that

n∑

�=1

a�
1

2πi

∫

|z|=1

zj−�(1− az)−1

z − a
dz =

1

2πi

∫

|z|=1

zj+m(1− az)−1

z − a
dz.

We find the coefficients recursively by comparing two consecutive values
of j, starting from the back. Let j = n and j = n − 1. Using residue
theory, we get

n∑

�=1

a�a
n−�

1− a2
=

an+m

1− a2
,

n−1∑

�=1

a�a
n−1−�

1− a2
+ an

[
a−1

1− a2
+

(1− a · 0)−1

0− a

]
=
an−1+m

1− a2
.

Multiplying the last equation by a and subtracting, we get an = 0. This
simplifies the next step with j = n− 1 and j = n− 2 substantially, and
using similar arguments, we obtain an−1 = 0. In the last step,

a1
2πi

∫

|z|=1

z

z

(1− az)−1

z − a
dz =

1

2πi

∫

|z|=1

z1+m(1− az)−1

z − a
dz,

which yields a1(1 − a2)−1 = a1+m(1 − a2)−1, or a1 = a1+m. We have
therefore shown that if R(T ) = Ca|T | with 0 < a < 1, then the best
approximation of u(t+m,ω) for m = 0, 1, . . . is a1+mu(t− 1, ω). This
is intuitively obvious: the correlations between variables decays like a
to the power of the distance between them, so the predictive power of
the last-measured quantity decays in the same way.

6.5. Random Measures and Random Fourier Transforms

We showed previously that the covariance of a wide-sense stationary
stochastic process can be written as the Fourier transform of a spec-
tral density. We now use this fact to find useful representations for
the process itself, including a stochastic generalization of the Fourier
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transform that does not require that the process have samples to which
the Fourier transform can be applied individually. These representa-
tions will be convolutions of nonrandom functions with certain simple
processes.

The reader may wish to know that the material in the present sec-
tion will not be used in the remainder of the book, and therefore can
be skipped on a first reading.

Given a probability space (Ω,B, P ), consider the set of random
variables f(ω), where ω is in Ω, such that E[f f̄ ] < ∞. We refer
to this set as L2(Ω,B, P ). We now construct a one-to-one mapping
L2(Ω,B, P ) → L2(A, μ), where A is a subset of the t-axis and μ is a
measure on A. Consider A, an algebra of subsets of A, i.e., a collection
of sets with the property that if the sets Ai are in A, then so are their
complements, as well as their finite unions and intersections; an alge-
bra is much like a σ-algebra, with the exception that we do not require
that the union of a countably infinite family of subsets belong to the
algebra, a detail that is important in a rigorous analysis, but which we
will disregard here.

Consider the triple (A,A, μ), where μ is a rule that to each subset
Ai ∈ A assigns a number such that

1. μ(Ai) ≥ 0.
2. μ(Ai) is finite.
3. μ(∅) = 0.
4. Ai ∩Aj = ∅ ⇒ μ(Ai ∪Aj) = μ(Ai) + μ(Aj).

(Again, note that we are concerned only with finitely many Ai.) Next,
construct a random variable ρ = ρ(Ai, ω), where Ai ∈ A and ω ∈ Ω
(recall that a random variable is a function defined on Ω), that has the
following properties:

1. Ai ∩Aj = ∅ ⇒ ρ(Ai ∪ Aj , ω) = ρ(Ai, ω) + ρ(Aj , ω).
2. ρ(Ai, ω) is square integrable, i.e., E[ρ(Ai, ω)ρ̄(Ai, ω)] <∞.
3. ρ(∅, ω) = 0.
4. Ai, Aj ⊂ A⇒ E[ρ(Ai, ω)ρ̄(Aj, ω)] = μ(Ai ∩Aj).

The properties listed above imply that μ(Ai) ≥ 0 for all Ai ∈ A, since

μ(Ai) = μ(Ai ∩Ai) = E[ρ(Ai, ω)ρ̄(Ai, ω)] ≥ 0.
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We call μ the structure function of ρ. Just as a stochastic process is
a function of both ω and t, a random measure is a function of both ω
and the subsets Ai of A.

Now define χAi
= χAi

(t), the characteristic function of the subset
Ai of the t-axis, to be

χAi
(t) =

{
1, t ∈ Ai,

0, otherwise,

and consider a function q(t) of the form

q(t) =
∑

ciχAi
(t).

We consider the case in which {Ai} is a finite partition of A, i.e., there
are only finitely many Ai, Ai ∩Aj = ∅, for i �= j, and

⋃
Ai = A. Thus,

q(t) takes on only a finite number of values. To this function q(t) assign
the random variable

f(ω) =
∑

ciρ(Ai, ω).

Hence, each characteristic function of a subset is replaced by the ran-
dom variable that the random measure assigns to the same subset; thus,
this substitution transforms a function of t into a function of ω (i.e.,
into a random variable).

Now consider the product q1(t)q2(t) of two functions of the form

q1 =

n∑

j=1

cjχAj
(t), q2 =

m∑

k=1

dkχBk
(t),

where {Bi} is another finite partition of A. It is not necessary for n
and m to be equal. There is a finite number of intersections of the Aj

and Bk, and on each of these subsets, the product

q1q2 =

(
n∑

j=1

cjχAj

)(
m∑

k=1

dkχBk

)

=

n∑

j=1

m∑

k=1

cjdkχAj∩Bk
,

takes on a constant value cjdk. Thus, the same construction allows us

to assign a random variable f1f2 to the product q1q2. Since

f1(ω) =
∑

cjρ(Aj, ω), f2(ω) =
∑

dkρ(Bk, ω),
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we conclude that

E[f1f2] = E

[
n∑

j=1

m∑

k=1

cjdkρ(Aj , ω)ρ̄(Bk, ω)

]

=

n∑

j=1

m∑

k=1

cjdkE [ρ(Aj , ω)ρ̄(Bk, ω)]

=
n∑

j=1

m∑

k=1

cjdkμ(Aj ∩Bk)

=

∫
q1q2μ(dt). (6.6)

Thus we have established a mapping between random variables with
finite mean squares and functions of time with finite square integrals
(i.e., between the random variables f(ω) and functions q(t) such that∫
q1(t)q2(t)μ(dt) is finite). Although we have defined the mapping only

for functions q(t) =
∑
ciχAi

(t), an argument that we omit enables us
to extend the mapping to all random variables and functions of t with
the square integrability properties listed above.

Example. We now show in detail how this construction works for
a very special case. Say we are given a probability space (Ω,B , P ) and
three subsets of the t-axis: A1 = [0, 1), A2 = [1, 3), and A3 = [3, 31

2
].

Each Ai is assigned a real-valued random variable ρi(ω) = ρ(Ai, ω) that
has mean 0 and variance equal to the length of Ai. For example, ρ1(ω)
has mean 0 and variance 1, and so forth. The variables ρ1, ρ2, and ρ3
are independent, and E[ρiρj ] = 0 for i �= j, where E[ρ2i ] is the length
of the ith interval. Moreover,

χ1(t) =

{
1, 0 ≤ t < 1,

0, elsewhere,

χ2(t) =

{
1, 1 ≤ t < 3,

0, elsewhere,

χ3(t) =

{
1, 3 ≤ t ≤ 31

2
,

0, elsewhere,

where
∫
χiχj dt = 0 for i �= j and

∫
χ2
i dt is the length of the ith interval.
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Now take a function of the form q1(t) =
∑

i ciχi(t), where the ci are
constants. Clearly,

f1(ω) =

3∑

i=1

ciρi(ω).

Suppose we have another function q2(t) on the same partition:

q2(t) =

3∑

j=1

djχj(t) → f2(ω) =

3∑

j=1

djρj(ω).

Then

E[f1f2] = E

[
3∑

i=1

3∑

j=1

cidjρiρj

]

=

3∑

j=1

cjdjE
[
ρ2j
]

=
3∑

j=1

cjdjμ(Aj),

where μ(Aj) is the length of Aj. Notice also that

∫ 3 1
2

0

q1(t)q2(t) dt =

∫ 3 1
2

0

3∑

i=1

3∑

j=1

cidjχi(t)χj(t) dt

=
∑

j

cjdjμ(Aj),

which verifies that q(t) → f(ω), so E[f1f2] =
∫
q1(t)q2(t)μ(dt) as

in (6.6).

Now approximate every square integrable function q on A by a step
function, construct the corresponding random variable, and take the
limit, as the approximation improves, of the sequence of random vari-
ables obtained in this way. This makes for a mapping of square inte-
grable functions on A onto random variables with finite mean squares.
This mapping can be written as

f(ω) =

∫
q(s)ρ(ds, ω)
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(the right-hand side is an integral with respect to the measure ρ), where
the variable t has been replaced by s for convenience. Now view a
stochastic process u as a family of random variables labeled by the
parameter t (i.e., there is a random variable u for every value of t) and
apply the representation just derived at each value of t. Therefore,

u(t, ω) =

∫
q(t, s)ρ(ds, ω).

Assume that u(t, ω) is stationary in the wide sense. Then the covariance
of u is

R(t1 − t2) = E[u(t1, ω)u(t2, ω)]

= E

[∫
q(t1, s1)ρ(ds1)

∫
q̄(t2, s2)ρ̄(ds2)

]

= E

[∫
q(t1, s1)q̄(t2, s2)ρ(ds1)ρ̄(ds2)

]

=

∫
q(t1, s1)q̄(t2, s2)E[ρ(ds1)ρ̄(ds2)]

=

∫
q(t1, s)q̄(t2, s)μ(ds).

One can show that the converse is also true: if the last equation holds,
then u(t, ω) =

∫
q(t, s)ρ(ds, ω) with E[ρ(ds)ρ̄(ds)] = μ(ds). Note that

in all of the above, equality holds in a mean square (L2) sense, and
little can be said about the higher moments.

Example. If u = u(t, ω) is a wide-sense stationary stochastic pro-
cess, then it follows from Khinchin’s theorem that

R(T ) = E[u(t+ T, ω)u(t, ω)] (6.7)

=

∫
eikTdG(k). (6.8)

Conversely, if E[ρ(dk)ρ(dk)] = dG(k), we see that if

u(t, ω) =

∫
eiktρ(dk, ω),
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then

E[u(t+ T, ω)u(t, ω)] =

∫
eik(t+T−t)E[ρ(dk)ρ(dk)]

=

∫
eikTdG(k).

We have just shown that dG(k) is the energy density in the interval dk.
This ρ(k) is the stochastic Fourier transform of u. The inverse Fourier
transform does not exist in the usual sense (i.e.,

∫
u(t, ω)e−ikt dt for each

ω does not exist), but for (6.5) to hold, it is sufficient for E[|u(t)|2] to
exist for each t.

One can summarize the construction of the stochastic Fourier trans-
form as follows: For the ordinary Fourier transform, the Parseval iden-
tity is a consequence of the definitions. To generalize the Fourier trans-
form, we started from a general form of Parseval’s identity and found
a generalized version of the Fourier transform that satisfies it.

Example. Suppose dG(k) = g(k) dk. Then
∫
eik(t2−t1)dG(k) =

∫
eikt2
√
g(k)e−ikt1

√
g(k) dk.

Recall that g(k) ≥ 0. Write
√
g(k) = ĥ(k) = ĥ(t)(k), where h(t) is the

inverse Fourier transform of ĥ(k), ĥ(k) = 1√
2π

∫
h(t)e−iktdt. Then

e−ikt2
√
g(k) = e−ikt2

1√
2π

∫
h(t)e−iktdt

=
1√
2π

∫
h(t)e−ik(t+t2)dt

=
1√
2π

∫
h(t− t2)e

−iktdt

= ̂h(t− t2)(k),

where the (k) at the very end is there to remind you that ̂h(t− t2) is
a function of k. Since the Fourier transform preserves inner products,
we find that

R(t1, t2) =

∫
h̄(t− t1)h(t− t2) dt,
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and by changing t to s, we obtain

R(t1, t2) =

∫
h̄(s− t1)h(s− t2)μ(ds),

where μ(ds) = ds. Applying our representation, we get u(t, ω) =∫
h̄(s − t)ρ(ds), where E[|ρ(ds)|2] = ds. The random measure con-

structed as increments of Brownian motion at instants ds apart has
this property. Thus, any wide-sense stationary stochastic process with
dG(k) = g(k) dk can be approximated as a sum of translates (in time)
of a fixed function, each translate multiplied by independent Gaussian
random variables. This is the moving average representation.

6.6. Exercises

1. Find some way to show nonrigorously that the covariance function
of white noise is a delta function. Suggestion: Approximate Brown-
ian motion by a random walk with Gaussian increments of nonzero
length, find the time series of the difference quotients of this walk,
calculate its covariance, and take a formal limit.

2. Consider the stochastic process u = ξ cos(t), where ξ is a ran-
dom variable with mean 0 and variance 1. Find the mean and
the covariance functions. Obviously, this is not a stationary pro-
cess. However, cos(t) = (eit + e−it)/2. How do you reconcile this
with the construction we have of stationary processes as sums of
exponentials?

3. Consider the differential equation (u2)x = εuxx on the real line,
with the boundary conditions u(−∞) = u0, u(+∞) = −u0, where
ε and u0 are constants. Assume that u is a velocity, with dimension
L/T , where L is the dimension of length and T the dimension of
time. Find the dimension of ε. Because of the boundary conditions,
u does not have a usual Fourier transform, but one can define one
by taking the Fourier transform of u′ and dividing it by ik. Let
û(k) be this Fourier transform of u. Define the energy spectrum
by E(k) = |û(k)|2. Find the dimension of E(k); show that the di-
mensionless quantity E(k)k2/u20 must be a function of the variable
kε/u0. Assume complete similarity, and deduce that as you pass to
the limit ε → 0, the spectrum converges to E(k) = C/k2 for some
constant C.
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4. Consider the wide-sense stationary stochastic process u = ξeit,
where ξ is a Gaussian variable with mean 0 and variance 1. What
is its stochastic Fourier transform? What is the measure ρ(dk)?

5. Consider a stochastic process of the form u(ω, t) =
∑

j ξje
iλjt, where

the sum is finite and the ξj are independent random variables with
mean 0 and variance vj. Calculate the limit as T → ∞ of the

random variable (1/T )
∫ T

−T
|u(ω, s)|2 ds. How is it related to the

spectrum as we have defined it? What is the limit of (1/T )
∫ T

−T
u ds?

6. Suppose you have to construct on the computer (for example, for
the purpose of modeling the random transport of pollutants) a
Gaussian stationary stochastic process with mean 0 and a given
covariance function R(t1 − t2). Propose a construction.

7. Show that there is no stationary (in the wide sense) stochastic pro-
cess u = u(ω, t) that satisfies (for each ω) the differential equation
y′′ + 4y = 0 as well as the initial condition y(t = 0) = 1.

8. Let η be a random variable. Its characteristic function is defined
as φ(λ) = E[eiλη]. Show that φ(0) = 1 and that |φ(λ)| ≤ 1 for
all λ. Show that if φ1, φ2, . . . , φn are the characteristic functions
of independent random variables η1, . . . , ηn, then the characteristic
function of the sum of these variables is the product of the φi.

9. Show that if φ(λ) is the characteristic function of η, then

E[ηn] = (−i)n d
n

dλn
φ(0),

provided both sides of the equation make sense. Use this fact to
show that if ξi, i = 1, . . . , n, are Gaussian variables with mean 0,
not necessarily independent, then

E[ξ1ξ2 · · · ξn] =
{
ΣΠE[ξikξjk ], n even,

0, n odd.

On the right-hand side, ik and jk are two of the indices, the product
is over a partition of the n indices into disjoint groups of two, and
the sum is over all such partitions (this is Wick’s theorem). Hints:
Consider the variable Σλjξj; its moments can be calculated from
the derivatives of its characteristic function. By assumption, this
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variable is Gaussian and its characteristic function, i.e., the Fourier
transform of its density, is given by a formula we have derived.

10. Consider the following functions R(T ); which ones are the covari-
ances of some wide-sense stationary stochastic process, and why?
(here T = t1 − t2, as usual):

1. R(T ) = e−T 2
.

2. R = Te−T 2
.

3. R = e−T 2/2(T 2 − 1).

4. R = e−T 2/2(1− T 2).
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CHAPTER 7

Statistical Mechanics

7.1. Mechanics

The goal of this chapter is to show how mechanics problems with a
very large number of variables can be reduced to the solution of a single
linear partial differential equation, albeit one with many independent
variables. Furthermore, under conditions that define a thermal equilib-
rium, the solution of this partial differential equation can be written
down explicitly. We begin by a quick review of classical mechanics.
Consider N particles whose position coordinates are given by a set of
scalar quantities q1, . . . , qn. In a d-dimensional space, one needs d num-
bers to specify a location, so that n = Nd. The rate of change of the
position is

d

dt
qi = q̇i.

(This dot notation for the time derivative goes back to Newton and
makes some of the formulas below look less cluttered.) A good way to
write down the laws of motion is to specify a Lagrangian L = L(qi, q̇i, t)
and follow the steps that will now be described; this procedure can be
used for laws other than those of Newtonian mechanics as well. For any
path q(s), t0 ≤ s ≤ t, that could take the particles from their locations
at time t0 to their locations at time t, we define an action by

A =

∫ t

t0

L(q(s), q̇(s), s) ds,

and we require that the motion (according to the mechanics embodied
in the Lagrangian) that takes us from q(t0) to q(t) be along a path that
is an extremal of the action. In other words, for the motion described
by the functions q(t) to obey the physics in the Lagrangian, it has to
be such that perturbing it a little, say from q(t) to q(t)+ δq(t), changes
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the action A =
∫ t

t0
L ds very little. We simplify the analysis here by

assuming that L does not explicitly depend on t. Then

δA = δ

∫ t

t0

L(q, q̇) ds =
∫ t

t0

(L(q + δq, q̇ + δq̇)− L(q, q̇)) ds

= 0 +O(δq2, δq̇2),

where

L(q + δq, q̇ + δq̇) = L(qi, q̇i) +
∑

δqi
∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+ 0(δq2, δq̇2).

By integration by parts, we obtain

δ

∫ t

t0

L ds =
∫ t

t0

(∑
δqi

∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+O(δq2, δq̇2)

)
ds

=

∫ t

t0

(∑
δqi

(
∂L
∂qi

− d

dt

∂L
∂q̇i

)
+O(δq2, δq̇2)

)
ds.

For the path q(t) to be extremal, the first term has to vanish, and we
conclude that

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0,

for all i = 1, . . . , n. These are the Lagrange equations of motion.

Example. Change notation so that x = q, ẋ = q̇, and think of x as
a coordinate in a one-dimensional space. Assume that a particle of mass
m at x is acted on by a force F of the form F = −∂U

∂x
, where U = U(x)

is a potential. Specify the laws of motion by setting L = 1
2
mẋ2 −U(x).

The Lagrange equation of motion is

∂L
∂x

− d

dt

∂L
∂ẋ

= 0,

or equivalently,

−∂U
∂x

− d

dt
(mẋ) = 0,

which is Newton’s second law, F = mẍ.

Parenthetically, we note that this Lagrangian formalism can be used
to relate quantum mechanics to classical mechanics. In quantum me-
chanics, the probability density of going from q(t0) to q(t) is the square
of the path integral

v(x, t) =
1

Z

∫
e−(i/�)

∫ t
0 [

1
2(

dw
ds )

2−U(w(s))] ds[dw],
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where the integration is over all Brownian motions w that go from q(t0)
to q(t); this expression is analogous to Eq. (4.20) of Chap. 4, except for
the additional factor i/� in front of the integral, where i is

√−1 and
� is Planck’s constant divided by 2π. One can see the action appear
in the exponent. On scales where h cannot be viewed as very small,
this is an oscillatory integral that produces wavelike motion; on scales
where the h can be viewed as very small, the main contribution to this
integral comes from trajectories for which the exponent is stationary,
leading back to the action formulation of classical mechanics.

Define a momentum pi conjugate to qi by pi = ∂L/∂q̇i. The Hamil-
tonian function is

H =
∑

piq̇i − L.

By differentiating H with respect to q̇i and using the definition of the pi
and the Lagrange equations of motion, one sees that H is not a function
of q̇i, and therefore it is a function of only the qi, pi. By differentiating
H with respect to the qi and then the pi, one can see that the equations
of motion can be written as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (7.1)

In what follows, we shall use this Hamiltonian form of the equations.

Example. Let L = 1
2
mẋ2 − U(x) as before, with q = x. Then

p = mẋ and

H = pq̇ − L = (mẋ)ẋ−
(
1

2
mẋ2 − U(x)

)
=

1

2

(mẋ)2

m
+ U.

The Hamiltonian equations of motion are

ẋ =
∂H

∂p
=

p

m

and

ṗ = m
d2x

dt2
= −∂H

∂q
= −∂U

∂x
= F.
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If the Hamiltonian does not depend explicitly on time, then it is a
constant during the motion; indeed,

dH

dt
=

n∑

i=1

∂H

∂pi

dpi
dt

+
n∑

i=1

∂H

∂qi

dqi
dt

=

n∑

i=1

∂H

∂pi

(
−∂H
∂qi

)
+
∂H

∂qi

∂H

∂pi

= 0.

The constant value of the Hamiltonian is the energy E of the system. A
system of equations that can be put into the form (7.1) is a Hamiltonian
system.

As an illustration, consider a particle of mass m that can move on
the line, with a rubber band anchoring it to the origin. The force on
the particle is F = −Kx, where K measures the elasticity of the band
and x is the position of the particle. The momentum of the particle
is p = mẋ, and the equation of motion is ṗ = −Kx. These equations
are reproduced if one sets H = 1

2m
p2 + 1

2
Kq2, where the variable x has

been renamed q to conform with the general notation above. These
equations of motion can be solved explicitly. Set ω =

√
K/m (not to

be confused with a point in a probability space); the solution is q(t) =
A cos(ωt) +B sin(ωt); p(t) = −Amω sin(ωt) + Bmω cos(ωt), where the
coefficients A,B are determined by the initial values of q, p. This system
is known as a harmonic oscillator. With a suitable change of units, one
can make K,m have the numerical values 1, 1, and then ω = 1 and
H = q2/2 + p2/2.

Quite often the energy, i.e., the value of the function H , is the
sum of a contribution that is quadratic in the momenta p (the kinetic
energy) and a second contribution that is a function of the positions q
(the potential energy), as in the case of the harmonic oscillator. The
Hamiltonian is then the sum of the kinetic energy and the potential
energy, while the Lagrangian L is the kinetic energy minus the potential
energy. The particle trades kinetic energy for potential energy and back
again, without loss. In real life, one expects to lose energy through
friction. We have just seen that Newtonian mechanics, as we have
developed it so far, does not allow for friction; a question we will answer
implicitly in the following sections is, where does friction, and more
generally, irreversibility, come from?



7.2. STATISTICAL MECHANICS 137

7.2. Statistical Mechanics

Consider a Hamiltonian system with n degrees of freedom (q1, p1),
. . .,(qn, pn), where H does not depend explicitly on the time t. From
now on, we will denote the vector of positions by q and the vector of
momenta by p, so that H = H(q, p). A microscopic state of the system
(a microstate for short) is a set of values of the q1, . . . qn, p1, . . . , pn. The
system evolves in a 2n-dimensional space, which is denoted by Γ and
is often called the phase space. The sequence of points in Γ that the
system visits as it evolves from an initial condition is called a trajectory.

If the system has many degrees of freedom, then it is impossible
to follow its exact evolution in time, since specification of all the ini-
tial conditions is impossible and the numerical solution of the very
large systems that arise in practice is also out of reach. One often
assumes that the equations of motion are known with certainty and
deals with the uncertainty in the initial data by assuming that the ini-
tial data q(0) and p(0) are drawn from an initial probability density
W = W (q, p, t = 0). Then, instead of considering single trajectories,
we look at the collection, or ensemble, of trajectories that are initially
distributed according toW . We note that standard theorems about the
existence and uniqueness of solutions of ordinary differential equations
guarantee that trajectories cannot intersect or stop, provided H is a
smooth enough function of the q and p.

As the trajectories evolve individually, the probability density nat-
urally changes; let the density of microstates at time t be W (t), where
each microstate is the location of a trajectory at that time. Here W (t)
describes the ensemble at time t; it is the macrostate of the ensemble.
Thus, the microstate is a list of numbers, or a vector in Γ, and the
macrostate is a probability density in Γ. The set of all macrostates
corresponds to Ω, the sample state of our earlier discussion.

For simplicity, we assume from now on that the Hamiltonian H
is not explicitly a function of t. We now derive an equation of
motion for W (t) = W (q, p, t) (where the shorthand q, p stands for
q1, . . . , qn, p1, . . . , pn). Consider the vector u = (q̇1, . . . , ṗn). First, note
that its divergence is zero:
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div u =

n∑

i=1

∂

∂qi

(
dqi
dt

)
+

n∑

i=1

∂

∂pi

(
dpi
dt

)

=
n∑

i=1

∂

∂qi

(
∂H

∂pi

)
+

n∑

i=1

∂

∂pi

(
−∂H
∂qi

)

= 0.

This vector field can be said to be incompressible, in analogy with fluid
dynamics.

Consider a volume V in Γ-space and a probability density of systems
W . The number of microstates in V at a given time t is, on average,∫
V
W dV , where dV is the element of volume in Γ. When the position

variables q are Cartesian coordinates, then we have dV = dq dp (where
dq = dq1 · · · dqn and similarly for dp). If microstates neither appear
nor disappear, then the only change in the density W of systems in V
can come from the inflow/outflow of systems across the boundary of V .
Therefore, as in fluid mechanics,

d

dt

∫

V

Wdq dp = −
∫

∂V

Wu · n dS = −
∫

V

div(Wu) dV,

where n is normal to the boundary ∂V of V , and dS is an element of
area on ∂V . If we assume that the density is smooth, we can deduce
from the above that

∂W

∂t
+ div(Wu) = 0, (7.2)

and, using the incompressibility of u,

∂W

∂t
+ u · gradW = 0. (7.3)

This last equation is known as the Liouville equation. One can
define a linear differential operator (the Liouville operator)

L =

n∑

i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
,

and then (7.3) becomes
∂W

∂t
= −LW. (7.4)

This equation is linear even when the original system is not. It is
analogous to the Fokker–Planck equation. Indeed, it can be derived
via a Chapman–Kolmogorov equation, along the lines of the earlier
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derivation of the Fokker–Planck equation (see Exercise 4). By finding
an equation for W , we have traded in a problem in mechanics, where
the unknowns were locations and momenta for a mechanical system
with particular initial data, for a problem in which the unknown is a
probability density for an ensemble of systems, i.e., we have gone from
mechanics to statistical mechanics.

As an example, consider again a single particle with Hamiltonian
H = (1/2)(q2 + p2). The equations of motion are q̇ = p, ṗ = −q; the
Liouville equation is Wt = −pWq + qWp, where the subscripts denote
partial derivatives. To solve this equation by the method of charac-
teristics, we need to find a curve with parametric equations t = t(s),
q = q(s), p = p(s) along which dW/ds = Wt · (dt/ds) +Wq · (dq/ds) +
Wp · (dp/ds) = 0, so that W (s) is a constant. Identifying coefficients,
we obtain dt/ds = 1, so we can set t = s, and then dp/dt = −q
and dq/dt = p, i.e., we recover the Hamiltonian equations of motion.
The Liouville equation is the linear partial differential equation whose
characteristics are the Hamilton equations we started with. The big
difference between the latter and the Liouville equation is that the so-
lution of the Liouville equation is well defined for all q, p in Γ, not only
for those q, p that lie on a trajectory that issues from a specific initial
datum.

Once we have the density W (t), we can define physical observables
for the ensemble, which are averages of physical quantities over the
ensemble. The energy of each microstate is the value of the Hamiltonian
H for that microstate; the energy of the ensemble is

E(t) = E[H(t)] =

∫

Γ

H(q, p)W (q, p, t) dV,

where dV is an element of volume in the phase space Γ. Similarly, if
Φ = Φ(q, p) is a property of a microstate, its macroscopic version is

E[Φ] =

∫

Γ

Φ(q, p)W (q, p, t) dV.

A probability density W is invariant in time if it is a stationary
solution of (7.2); that is, if we draw the initial data from W , solve the
equations for each initial datum, and look at the density of solutions at
some later time t, it is still the same W . In other words, sampling the
density and evolving the systems commute. We now give two examples
of time-invariant densities for a Hamiltonian system.
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Suppose that initially, W is zero outside a region V and suppose
that the system has no way of leaving V . Further suppose that W is
constant inside V . Then from (7.3), we conclude that W is invariant.
We apply this in the following construction. Consider in Γ-space a
surface H(q, p) = E0 as well as the surface H(q, p) = E0 +ΔE0, where
E0,ΔE0 are constants. The volume enclosed between these two surfaces
is called an energy shell. Consider the following initial density:

W (q, p) =

{
(volume of shell)−1, (q, p) ∈ shell,

0, otherwise.

Since no systems can leave the energy shell (because the energy is a
constant of the motion), this density is invariant in time. If we let the
thickness ΔE0 of the energy shell go to zero, we get a microcanonical
density (see Sect. 7.2). The resulting surface density on the energy
surface H = E need not be uniform.

Suppose φ(H) is a function of H such that
∫
Γ
φ(H) dq dp = 1 and

φ(H) ≥ 0. Then W (q, p) = φ(H) is invariant in time. Note first that
u · gradW vanishes. Indeed,

u · gradW =

n∑

i=1

dqi
dt

∂W

∂qi
+

n∑

i=1

dpi
dt

∂W

∂pi

=
∂φ

∂H

(
n∑

i=1

dqi
dt

∂H

∂qi
+

n∑

i=1

dpi
dt

∂H

∂pi

)

= 0.

Therefore, from (7.3), ∂W/∂t = 0. In particular, one can choose as
an invariant density W (q, p) = Z−1 exp(−βH(q, p)), where β > 0 is
a constant and Z =

∫
Γ
exp(−βH) dq dp. A density of this form is

called canonical. In the next few sections, we explain why, under often
encountered circumstances, the stationary solutions we have just found
are the relevant solutions, and all one has to do (though it may still be
very difficult) is evaluate these solutions in particular circumstances.

A property of the Liouville operator that will be used later is the
following: Let E[·] be the expectation with respect to a canonical den-
sity; we have seen that if u, v are two functions defined on the relevant
probability space, then E[uv] defines an inner product, (u, v) = E[uv],
and then

(Lu, v) = E[(Lu)v] = −E[u(Lv)] = −(u, Lv)
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(i.e., L is skew-symmetric). This can be checked by writing down the
definitions and integrating by parts.

7.3. Entropy

So far, our mechanics has been perfectly reversible: potential energy
was traded in for kinetic energy and flowed back again into potential
energy without loss, and a particle could fly from point A to point B,
have its velocity reversed, and return exactly to point A. Irreversibility
(for example, friction) will now come in through the notion of entropy.

First, a heuristic discussion. Suppose one has N objects and one
wants to divide them among M bins. Suppose the placement of any
one of these objects in any one particular bin has the same probability
p0 = 1/M . What distribution of particles among bins is most likely
to be observed? In the simplest case, suppose you have two objects,
object 1 and object 2, and two bins, bin A and bin B, so that p0 = 1/2.
There are three ways to distribute the objects: (i) both objects in A,
(ii) both objects in B, and (iii) one in A and one in B. There is only one
way to accomplish (i), so its probability is p20. The same is true for (ii).
However, for (iii) there are two choices: one can first put object 1 in
bin A (and then object 2 will go into bin B), or first put object 1 in bin
B, so that the probability of case (iii) is 2p20; case (iii) is more probable
than the others. One can check that the sum of the probabilities is 1.

In the general case, with N objects and M bins, the number of
choices one has when one tries to arrange the objects inM bins so that
for each i, bin number i contains ni objects, with

∑
ni = N , is

W =
N !

n1!n2! . . . nM !
, (7.5)

where 0! = 1. In some sense, this result is obvious—this is the well-
known number of different ways to divide objects among bins so that the
ith bin contains ni objects. However, it is not perfectly obvious that the
number of arrangements equals the number of ways each arrangement
can be made, so we prove that it is. We know this is true for N = 2
objects. Suppose we know this is true for N−1 objects; we prove that it
is true for N objects. To get ni objects in each bin with

∑
ni = N , one

has to start with N − 1 objects in the bins and do one of the following:
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1. Add one object to bin 1 when bin 1 holds n1 − 1 objects while
bin 2 holds n2 objects, bin 3 holds n3 objects, etc., a situation
reached after W1 = (N − 1)!/((n1 − 1)!n2! . . . ) choices.

2. Add one object to bin 2 when bin 2 holds n2 − 1 objects while
bin 1 holds n1 objects, bin 3 holds n3 objects, etc., a situation
reached after W2 = (N − 1)!/(n1!(n2− 1)!n3! . . . ) choices, etc.,
adding one object at a time to each arrangement in which one
of the bins is missing one object.

The number of ways of distributing the N objects into these bins
with the constraint that for each i, bin i contains ni objects, is then
the sum of these Wi, i = 1,M ; noting that 1/((ni − 1)!) = ni/ni! and∑
ni = N , we find that this sum is as promised.
Assume in addition that N is much larger than M , so each bin

contains many objects. For large N , N ! ≈ (N/e)N . To see this, start
with

logN ! ≈ log 1 + log 2 + log 3 + · · ·+ logN ≈
∫ N

1

log xdx

and
∫ N

1

log xdx = [x(log x− 1)]N1 = N(logN − 1) + 1 ≈ N log(N/e);

exponentiating the first and the last expressions, one gets the promised
result. Hence

W ≈ (N/e)N

(n1/e)n1 . . . (nM/e)nM
,

and
logW = N logN −

∑
ni log ni. (7.6)

After subtraction of the constant N logN , logW is defined as the en-
tropy in this combinatorial setting. Physicists call entropy this quantity
times a dimensional coefficient k (Boltzmann’s constant). We assume
here that the units are such that k = 1.

The arrangement that occurs most often is the one that maximizes
W and logW . To see which one it is, perturb each ni by δni with∑
δni = 0 to preserve

∑
ni = N . One can readily check, using a

Lagrange multiplier, that the maximum of logW occurs when all the
ni are equal, i.e., the most likely arrangement is the one in which all
the bins contain an equal number of objects. This result is not affected
by the omission of the factor pN0 in Eq. (7.5).
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Suppose the objects are particles and the total energy of the system
is E, while the ith box, which contains ni particles, has energy niεi,
with E =

∑
niεi (an example in which this assumption holds will be

presented in a later section). Another application of Lagrange multi-
pliers shows that the entropy is maximum when each ni is proportional
to exp(−βεi).

This construction demonstrates how equal probabilities at one scale
(each particle can be put into any bin with equal probability) give rise
to one particular configuration being overwhelmingly more probable
than others on another scale. If one knows that on the macroscopic
scale (i.e., for a set of configurations of the bins labeled by the numbers
ni, i = 1,M), the system is in one of these states, then the larger
the entropy for the state, the less certainty as to where the individual
particles are. In this sense, the entropy is a measure of uncertainty.

One can write Pi = ni/N for 1 ≤ i ≤ M (so that
∑
Pi = 1), and

define the entropy S as

S = −
∑

Pi logPi. (7.7)

This entropy differs from logW by a multiplicative constant and an
additive constant, and is maximum at the same configurations as logW .
This is the definition of entropy we shall use.

A more formal definition of entropy can be given along the following
lines: Consider a probability space Ω consisting of a finite number of
points ω1, ω2, . . . , ωn with probabilities P1, P2, . . . , Pn (whose sum must
be 1). We define an entropy on this space, denoted by S, where S is a
function of the Pi, that is, S = S(P1, . . . , Pn), and we consider the case
in which n may vary. We want S to be a measure of the uncertainty in
the probability density and, to that end, satisfy the following axioms:

1. For each n, S is a continuous function of all its arguments.
2. If all of the Pi are equal (Pi = 1/n for all i), one can define
Sn = S(1/n, . . . , 1/n) and require that Sn be a monotonically
increasing function of n (the more points in Ω, the more un-
certainty if all points are equally likely).

3. Let 0 = k0 ≤ k1 ≤ k2 ≤ · · · ≤ kM = n be a partition of [1, n]
and let Qj = Pkj−1+1 + · · · + Pkj (i.e., Q1 = P1 + · · · + Pk1,
Q2 = Pk1+1 + · · ·+ Pk2, etc). Then
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S(P1, . . . , Pn) = S(Q1, . . . , QM) +

M∑

j=1

QjS

(
Pkj−1+1

Qj
, . . . ,

Pkj

Qj

)
.

In other words, the uncertainty is the sum of the uncertain-
ties inherent in any grouping of points plus the average of the
uncertainties within each grouping.

A function S with these properties should be small if all the proba-
bility is concentrated at a few points, and it should become ever larger
as there is more doubt as to where an arbitrary point would lie. One can
prove that a function S that satisfies these requirements is determined
uniquely up to a multiplicative constant and is

S = −
∑

i

Pi logPi.

This is the entropy associated with the probability space we started
from. As mentioned before, in physics, one multiplies this expression
for S by the constant k (Boltzmann’s constant). The entropy associated
with a pdf f is, similarly, S = − ∫ f(x) log f(x) dx. The entropy is a
number attached to the pdf that measures, in the way described above,
the uncertainty implicit in the pdf. If S = 0 and one performs the
experiment that defines the density f , one knows in advance what the
result will be: the larger S, the less one knows in advance.

Now consider the sample space for an evolving statistical mechan-
ics system described by a probability density W . Suppose we have
measured M macroscopic quantities, say E[Φ1], E[Φ2], . . . , E[ΦM ], for
some finite M . These are averages with respect to a density W of a
set of microscopic (i.e., relating to each microstate) quantities Φi. A
pdf W is compatible with these measurements (admissible for short)
if E[Φi] =

∫
Φi(q, p)W (q, p) dV for 1 ≤ i ≤ M (note that p here is

a momentum, not a probability). We expect there to be many ad-
missible pdfs. We now establish the following: if there exist a vector
β = (β1, . . . , βM) and a number Z > 0 such that

Wβ = Z−1 exp
(
−
∑

βiΦi(q, p)
)

is an admissible probability density, then Wβ is the admissible density
that has the largest entropy among all admissible densities.
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It is an exercise in calculus to show that ψ(x) = x log x− x+ 1 ≥ 0
for a scalar x ≥ 0, with equality only for x = 1. Put x =W/Wβ in this
inequality, where W is an arbitrary admissible density. Then

−W logW +W logWβ ≤Wβ −W.

Integrate this inequality over Γ and use the fact that both W and Wβ

are densities; this gives

−
∫

Γ

W logW dV ≤ −
∫

Γ

W logWβ dV.

However, from the definition of Wβ, we find that logWβ = − logZ −∑
βiΦi, and since W is compatible with the measurements, we obtain

−
∫

Γ

W logWβ dV = −
∫

Γ

Wβ logWβ dV = logZ +
∑

βiE[Φi],

because the integral of any density is 1; therefore, the entropies of all
the W ’s are less than the entropy of Wβ:

S(W ) ≤ S(Wβ),

where S(W ) is the entropy associated with a density W . Furthermore,
the inequality is strict unless W = Wβ.

As an example, suppose one has a single measurement, that of E,
the energy of the ensemble, E = E[H ]; then Wβ = Z−1e−βH , where the
β in the exponent is a scalar, and Z =

∫
Γ
e−βH dV . The parameter β

is determined from the equation

E = E[H ] =

∫

Γ

Z−1He−βH dV = − ∂

∂β
logZ.

With this density, the entropy is S = βE + logZ. Note that this
conclusion resembles the conclusion about the dependence of ni on the
εi in the heuristic discussion at the beginning of the chapter, but of
course, the energy here is not necessarily local, and can involve an
interaction between distant particles. A calculation we omit produces
the microcanonical density in the absence of any measurements.

It is a physical principle that the entropy of a physical system al-
ways increases; a construction that explains how this can be compatible
with reversible mechanics will be discussed in the next section. It is
reasonable to assume that a density for a physical system will evolve
in time into one that maximizes the entropy. We already know that a
canonical density is time-invariant, so the canonical density is a good
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candidate for an asymptotic, invariant density, which is called a ther-
mal equilibrium. This is particularly satisfying from the point of view
of statistics as well: one can show that estimates based on partial in-
formation are unbiased if one assumes that the density that gives rise
to them maximizes the entropy.

The temperature T of a system is defined by the equation

T−1 =
∂S

∂E
;

one can check that if the density is the canonical density above, then
T = 1/β (in physics, there is an additional factor of k from the physi-
cists’ definition of entropy). Then the canonical density can be written
as W = Z−1 exp(−H/T ). For a system of N noninteracting particles,
T/m can be seen to be the variance of the velocity of each particle (m
is the mass of each particle). The canonical density has T as a fixed
parameter and is the right density to use when the system under study
allows no exchange of mass through its walls and has walls kept at a
fixed temperature T . For the sake of simplicity, in this volume we shall
always place ourselves in this case.

One can now proceed to derive all of thermodynamics from our
definitions, but we forbear to do so. We merely pause to note that the
normalization constant Z varies when T varies, and is known as the
partition function.

7.4. Equipartition, Equivalence of Ensembles, Ergodicity,
and Mixing

7.4.1. Equipartition. We now perform some useful calculations
for a system of noninteracting particles. Consider N particles of mass
m in a cube of side L (and volume V = L3). Make the system periodic
in space, so that if there is a particle at the point x1, x2, x3, 0 ≤ xi < L,
there are particles with the same mass and momenta at the points
xi + kiL for any integers ki (and we use the letter x rather than q to
denote location). If a particle leaves the box, another particle enters
from the opposite side. The Hamiltonian is H = 1

2m
Σ3N

1 p2i , where the
momenta p have been relabeled consecutively regardless of the particle
to which they belong. The partition function Z is

Z =

∫ ∫
· · ·
∫
dx1 dx2 · · · dx3N

∫
· · ·
∫
dp1 · · · dp3Ne−βH ;
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the x integrations are trivial and yield V N ; the p integrals can be fac-
tored into a product of the 3N integrals

∫
dpe−βp2/2m =

√
2πm/β,

so that

Z = V N(2πm/β)3N/2

and

E = E[H ] = −∂(logZ)
∂β

=
3N

2
T.

In a system of noninteracting particles, the mean energy is the number
of degrees of freedom (i.e., the number of parameters required to specify
the spatial configuration) times T/2 (in physics books, the Boltzmann
constant k appears as a prefactor of T/2).

The temperature T has been defined above by an equation based
on an assumption of thermal equilibrium. The observation that T is
also proportional to the energy per degree of freedom in a system in
which the particles do not interact opens the door to a definition of
temperature in situations of nonequilibrium.

7.4.2. Equivalence of Ensembles. Consider again the integral∫ · · · ∫ dp1 · · · dp3Ne−βH . Consider the 3N -dimensional space in which
the coordinates are the moments pi, i = 1, 3N . In polar coordinates
in this space, where the radial variable is r defined by r2 =

∑3N
1 p2i ,

this integral can be written as
∫
dr
∫
dφr3N−1e−βr2/(2m), where dφ is an

element of area on the unit sphere. The pdf of r is therefore proportional
to A(r) = r3N−1e−βr2/(2m); A(r) is maximum when

A′(r) =
[
(3N − 1)r3N−2 − r3N2β/(2m)

]
e−βr2/(2m) = 0,

i.e., when r20 = (3N − 1)m/β ≈ 3Nm/β. Note that in the absence of
a potential, r2 is proportional to the energy E. One can also check,
by plotting A(r) against r with larger and larger values of N , that
the maximum of A(r) becomes sharper and sharper, so that values
of the energy that differ markedly from the value

∑
p2i = r20 become

increasingly unlikely; the energy is constant, and the system behaves
as if its probability density were the microcanonical density on the
surface where H(q, p) is a constant. When there are many particles
in a finite volume, the canonical and microcanonical densities give the
same averages, and in this sense they are equivalent. This conclusion



148 7. STATISTICAL MECHANICS

can be shown to hold in situations in which the particles do interact.
This is the equivalence of ensembles.

The facts just described have some unexpected consequences in
quite mundane situations. Suppose you sample a Gaussian random
variable with mean zero. You rightfully expect the samples to clus-
ter near the origin. Suppose you sample a pair of such variables and
plot the samples in a two-dimensional plane. You still expect, still cor-
rectly, that the sample will cluster near the origin. Suppose you sample
100 such variables, all independent. You may still expect the sam-
ples to cluster near the origin, but you would be wrong. They collect
on a sphere at some significant distance from the origin. This seem-
ing paradox often surprises people, for example in the context of data
assimilation.

7.4.3. Ergodicity and Equilibrium. Consider a set of initial
data for the Hamilton equations of motion, set on a common surface
H = E, where H = H(q, p) is a Hamiltonian and E is a constant.
Each initial datum (consisting of a vector of q ’s and a vector of p’s)
gives rise to a trajectory that will remain on the surface, and trajec-
tories that start close to each other do not necessarily stay close; one
often observes that they separate significantly and eventually look, at
least through blurry glasses, as if the corresponding systems covered the
surface H = E, with the density of points in any neighborhood being
proportional to the microcanonical density in this neighborhood. This
is a mixing property of the system. To explain why this happens, one
often mentions that mechanical systems may be chaotic, which indeed
they often are; however, one does expect that even when a system is
not chaotic, the trajectories that issue from initial data that are quite
close can separate considerably as time unfolds. For example, a small
change in initial data can decide whether a specific pair of particles col-
lides; a collision can cause these particles to exchange their momenta,
and an exchange of momenta can cause the point that represents the
system in Γ space to take a significant leap. We know from the heuris-
tic discussion at the beginning of the chapter that when objects spread
uniformly, the entropy of their probability density increases. The para-
doxical fact that a reversible process can appear to be irreversible is
resolved along the lines suggested by the heuristic theory of entropy
presented at the beginning of the chapter. It is not really true that
the set of points representing various copies of a mechanical system
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spreads over the sphere of constant energy and has a density that con-
verges to the microcanonical density—if one looks carefully enough, one
will see persistent inhomogeneities—but if one does not look carefully
and one is interested only in the behavior of the system on scales large
in comparison with the microscopic scales, the spreading looks uniform
enough.

The mixing property is plausible, and the consequences of the as-
sumption that it does hold generally agree with experimental data.
There are cases in which the assumed property is false; for example, if
the particles do not interact, there is no mechanism for their momenta
to change, and they cannot spread out in Γ space. If there is some
nontrivial function other than H that is a constant of the motion, it
too may prevent the spreading.

There are also systems (usually quite simple) in which the prop-
erty can be established rigorously. The mixing properties of solutions
of differential equations are studied in a branch of mathematics called
ergodic theory, and the assumption just made is often called an ergodic
assumption, though ergodicity in mathematics is something slightly dif-
ferent. A mechanical system is ergodic if it has the following property
(with probability 1): suppose x = x(t) is a trajectory and φ = φ(x) is
a nice function of x; then the average of φ over a trajectory equals its
average over the sphere H = E. A simple example of an ergodic system
is the following: consider the motion on the circle of radius 1/2π cen-
tered at the origin in two-dimensional space, defined by xn+1 = (xn+γ)
modulo 1, with x0 given. One can readily check that if γ is irrational,
the average of any smooth function φ over the circle equals its average
over any trajectory.

One may suspect that the agreement between experimental results
and calculations based on a mixing assumption has a simpler expla-
nation than the validity of the mixing assumption. When a system
consists of many particles, there exist many transformations of the sys-
tem that do not change its macroscopic behavior but do move it around
on the sphere H = E; for example, one may exchange the momenta
of two particles; one may change the signs of several momenta in such
a way that the total momentum is unchanged; and so on. One may
suspect that the sphere is riddled with points that are macroscopically
indistinguishable, so that averaging on the sphere ends up being very
similar to looking at many copies of a single system.
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There can be no mixing strictly speaking when the pdf is canonical,
because the canonical pdf assigns nonzero probabilities to subsets of Γ
with different values of the Hamiltonian H , while H is constant in the
motion. However, we have seen in the previous subsection that when
there are many variables, the canonical density can be well approxi-
mated by a microcanonical density, and the consequences of mixing for
the latter carry over to the former.

7.5. The Ising Model

In the previous sections it has been shown that under the condition
of thermal equilibrium, one can assume that the pdf of a system in Γ
space is e−βH/Z; to find out what the macroscopic properties of the
system are, all one has to do is average the microscopic properties with
respect to the pdf (but this may still be a very nontrivial task). We now
give an example of a system in thermal equilibrium, the Ising model in
two space dimensions, where this idea will be used. The Ising model is
a simplified representation of a system of magnets; we do not care how
equilibrium was reached, and do not allow ourselves to be surprised
that the Hamiltonian is discrete and the q, p variables of mechanics can
no longer be identified at first sight. If one has a Hamiltonian, one has
a canonical density, and one can start to calculate. The Ising model
makes it possible to demonstrate in a relatively simple way some of the
most important statistical properties of physical systems in thermal
equilibrium.

Consider an N ×N regular lattice in the plane with lattice spacing
1, and at each node (i, j), set a variable si,j (a spin) that can take only
one of two values: si,j = 1 (spin up) and si,j = −1 (spin down). Make
the problem periodic, so that si+N,j = si,j and si,j+N = si,j. Associate
with this problem the Hamiltonian

H = −1

2

∑
si,j(si+1,j + si−1,j + si,j+1 + si,j−1)

(i.e., the negative of the sum of the products of each spin with its four
nearest neighbors).

The microstates of the system are the 2N
2
ways of arranging the up

and down spins. The phase space, the space Γ in the present situation,
is the set of all the microstates. We assign to microstate the probability
Z−1 exp(−H/T ), where, as above, T is the temperature and Z is the
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partition function. A function of the microstate that is of interest is
the magnetization

μ =
1

N2

∑

i,j

si,j.

Clearly, if all the spins are aligned, μ = +1 or μ = −1. With the above
definitions, one may think that m = E[μ] = 0, because a microstate
with a given set of values for the spins and a microstate with exactly
the opposite values have equal probabilities.

The covariance function is

Cov(i′, j′) = E[(si,j −m)(si+i′,j+j′ −m)],

where the expected value of μ has been taken into account in prepara-
tion for the possibility, soon to be discussed, that it may be nonzero.
The covariance length is a number ξ such that for

√
i′2 + j′2 > ξ, the

covariance is not significant (and we do not explain further how large
“significant” is).

One can show, and check numerically as explained below, that the
Ising model has the following properties: for T very large or very small,
ξ is small, of order 1. There is an intermediate value Tc of T for which ξ
is very large. The behavior of the magnetization μ, when N is large, is
very different when T < Tc from what it is when T > Tc. In the former
case, the likely values of μ hover around two nonzero values ±μ∗; the
space Γ separates into two mutually inaccessible regions that correspond
to μ positive and μ negative. The averages of μ over each region have
one sign. On the other hand, when T > Tc, this separation does not
occur. The value T = Tc is a critical value of T , and the parameter E[μ]
is an order parameter that can be used to detect the partial order in
which spins are partially aligned in each of the two mutually inaccessible
regions of Γ. As T passes from above this value Tc to below the critical
value Tc, one has a phase transition in which the system goes from a
disordered phase to a partially ordered phase. If one averages μ over
one of these halves of the appropriate part of Γ space when T < Tc
but |T − Tc| is small, in the limit of very large array size, one finds
that m is proportional to |Tc − T |b, where b = 1/6 is an instance of a
critical exponent. One can have such exponents only if the covariance
length ξ is infinite; for example, if ξ is finite, one can calculate m by
a sequence of operations that involve only manipulations of a finite
number of exponential functions; these functions are analytic, and no
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noninteger power-dependence can appear. Indeed, ξ is proportional to
|T − Tc|−ν , where ν > 0 is another critical exponent.

To understand why Γ space splits into two mutually exclusive parts
in two (and higher) dimensions, compare Ising models in one space di-
mension and in two space dimensions. A one-dimensional Ising model
is just the obvious one-dimensional analogue of what we have just
discussed—a periodic chain of spins indexed by a single integer vari-
able with a Hamiltonian involving near-neighbor interactions. In either
dimension, the microstates in which all the spins point in the same di-
rections are minima of the Hamiltonian. Suppose β is large (T is small),
you are in one dimension, and all the spins point up; how much energy
do you have to invest (i.e., by how much do you have to change the value
of the Hamiltonian) to flip all the spins from up to down? Clearly, to
flip one spin, you must increase the Hamiltonian by 2β; once you have
flipped one of the spins, you can flip its neighbors one after the other
without further changes in the value of the Hamiltonian, until there
is only one pointing up; then you flip that last holdout and recover
your energy investment. The conclusion is that in one dimension, these
minima in the Hamiltonian are not very deep.

By contrast, to flip all the spins in two dimensions on an N × N
lattice, you have to invest at least 2Nβ units of energy; thus the minima
in the Hamiltonian in two dimension are deep and get deeper as N
increases, to the point of mutual unreachability as N → ∞.

If the temperature T is lowered from a temperature above Tc to one
below Tc, the spin system goes from having no macroscopic magneti-
zation E[μ] to having such magnetization. This transition is similar in
some ways to the transition from water to ice at 0◦C. It is an example
of the fact that a system with many variables may have more than one
possible large-scale behavior, and which behavior is observed depends
discontinuously on the values of some global parameters such as the
temperature. At the transition, the system exhibits symmetry break-
ing : the Hamiltonian is invariant if all the spins are made to change
signs; for T > Tc, the magnetization has the same symmetry—it does
not change when all the spins change signs. For T < Tc, this is no
longer true. There are two possible magnetizations, and one gets either
one or the other. This is somewhat similar to what happens when one
sets a round table for a number of diners, and one places a glass of
water between every two plates. The diners may use the cups on their
left, or they may use the ones on their right, but no mixture of the
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two choices is allowed. The first diner to reach for a glass breaks the
symmetry.

7.6. Exercises

1. Consider complex variables uj = qj + ipj (j is an in-
dex, i is

√−1) at the points jh, where j takes the values
−N/2, . . . ,−1, 0, 1, 2, . . . , N/2 − 1, and h = 2π/N , N is an integer,
and uj+N = uj. Consider the Hamiltonian

H =
1

2

N∑

j=1

[(
qj+1 − qj

h

)2

+

(
pj+1 − pj

h

)2

+
1

2
(q4j + p4j)

]
.

Treat the q, p as conjugate variables (i.e., pj is the momentum as-
sociated with the position variable qj) and derive the equations of
motion. Check formally that as h → 0, these equations converge
to the nonlinear Schrödinger equation iut = −uxx + q3 + ip3. Sup-
pose a thermal equilibrium has been reached with h finite at some
temperature T . As h → 0, does this canonical density remain well
defined? How should T change to keep the canonical density well
defined? What happens to the energy per degree of freedom? What
does this say about the smoothness of the solutions?

2. Write a program that generates all 2N
2

microstates of a two-
dimensional periodic Ising model. Define the magnetization μ as the
sum of all the spins divided by N2. For N = 3 and β = 1, β = 0.01,
make a histogram of the probabilities of the various values of μ; note
the different qualitative behaviors at low β and at high β. Estimate
the fraction of microstates that have probabilities less than 10−6.
Observe that it is difficult to estimate the histogram above by a
Monte Carlo program whereby microstates are sampled at random
rather than examined one after the other.

Note that the large probabilities of extreme values at high β
(small T ) come from the fact that the probabilities of the extreme
microstates are very high; at low β, each microstate with small |μ|
is still less likely than a microstate with an extreme value, but the
small values of |μ| win because there are many such microstates.
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Programming notes: You have to be careful, because eβH may
be large even when N = 3; you may have to use double-precision
arithmetic. To find the fraction of microstates with very low proba-
bilities, you need the partition function, which has to be computed;
you may therefore need to run your program twice.

3. Calculate the entropy of the pdf f(x) = e−x2
/
√
π. Do the same

for the microcanonical density for the Hamiltonian H =
∑

i p
2
i /2m,

where m is a (constant) mass. (The second question is not trivial;
one way to go is to think of the equivalence of ensembles.)

4. Consider a particle with position q, momentum p, and Hamiltonian
H = (1/2)(q2+p2). Derive the equations of motion and the Liouville
equation. Then derive a Fokker–Planck equation for the equations
of motion by the methods of Chap. 4 and check that it coincides with
the Liouville equation.

5. Check the identity (Lu, v) = −(u, Lv) at the end of Sect. 7.2.

6. Consider the partial differential equation ut = (u2/2)x (the sub-
scripts denote differentiations) in 0 ≤ x ≤ 2π, with the periodic
boundary condition u(x + 2π) = u(x) and with an initial condi-

tion such that
∫ 2π

0
u(x, 0)dx = 0. Assume that the solution can be

written as u =
∑N

−N uke
ikx, where N is fixed (i.e., neglect all Fourier

coefficients beyond the Nth). Since u is real, u−k is the complex con-
jugate of uk. Check that at for all t, u0(t) = 0. Write uk = αk + iβk,
and find the equations of motion for the αk, βk. Check that the flow
in the 2N -dimensional space of the αk, βk is incompressible, and that
the energy E =

∑
(α2

k + β2
k) is invariant. Given N and E, what is

the microcanonical density for this system? Show that if N → ∞
and equilibrium has been reached, then E → ∞ unless E = 0.

(This problem illustrates the difficulty in extending equilibrium
statistical mechanics to problems described by partial differential
equations.)

7. Consider a Hamiltonian system with two particles, with locations
q1, q2, momenta p1, p2, and Hamiltonian H = H(q1, q2, p1, p2). Write
down the equations of motion for the first particle. This is not
a closed system, because its right-hand sides depend on q2, p2,
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which are unknown. Close this smaller system by approximat-
ing all functions of all the variables by their best approximations
by functions of q1, p1, e.g., replace ∂H/∂q1 by E[∂H/∂q1|q1, p1],
where the probability density is the canonical density with tem-
perature T (see also Problem 5, Chap. 2). Show that the re-
duced system you obtained is also Hamiltonian with a Hamiltonian
Ĥ = −T log

∫
exp (−H(q1, q2, p1, p2)/T ) dq2 dp2. Carry out this con-

struction for the special case H = (1/2)(q21 + q22 + q21q
2
2 + p21 + p22).

(We shall see in Chap. 9 that this is not a legitimate way to reduce
the dimension of Hamiltonian systems.)
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CHAPTER 8

Computational Statistical Mechanics

8.1. Markov Chain Monte Carlo

In the last chapter, we showed that in many cases, the computation
of properties of mechanical systems with many variables reduces to the
evaluation of averages with respect to the canonical density e−βH/Z.
We now show how such calculations can be done, using the Ising model
as an example.

Denote by S a microstate of the model; S is a list whose members
are +1 and −1. Let φ(S) be a scalar function of S. We want to compute
the expected value of φ with respect to the canonical density:

E[φ] =
∑

φ(S)
e−H(S)/T

Z
.

The estimation of such sums is difficult, first because the number of
states S is usually colossal (for example, in a two-dimensional Ising
model with N = 20, there are 2400 distinct microstates), so there is no
way to go through them all. One might think that one could sample
them at random, as when one samples potential voters before an elec-
tion, but this also fails, because e−βH(S) is usually very small except
on a very small part of Γ, which sampling at random will rarely find.
Indeed, consider a one-dimensional Ising model. The Hamiltonian H
associated with a microstate is

H = −
N∑

i=1

sisi+1,

where as before, the domain is periodic, so that si+N = si. Take the
case n = 4. There are 24 = 16 possible microstates of the chain; for
instance, one of the microstates is S = (+1,−1,−1,+1). The possible
values of the Hamiltonian are −4, 0, and 4. There are 2 microstates
with H = −4 (these are the microstates for which all si’s are of the
same sign), 12 microstates with H = 0, and 2 microstates with H = 4
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(the microstates with alternating signs). Suppose the temperature is
T = 1; then the two microstates with all si’s of the same sign have
probability about e−H/T/Z = 0.45. Together, they have probability 0.9
of appearing. The next most likely microstate has a probability of only
0.008. The situation becomes ever more dramatic as the number of
sites in the Ising lattice increases. In general, there will be a relatively
small number of microstates with significant probabilities and a huge
number of microstates with probabilities so small that they play no role
in an average.

Thus one must find a way to sample the states in such a way that
the high-probability states are encountered much more frequently that
those with low probability; optimally, one would like to construct a
sampling algorithm that samples the states so that the frequency with
which one visits any given state is proportional to that state’s probabil-
ity. This is what we called importance sampling in Chap. 2. A method
for doing this is Markov chain Monte Carlo, or Metropolis sampling ,
or rejection sampling, which we explain in the case of the Ising model.
We begin with a definition.

Definition. A random chain on Γ (the space of microstates
S1, S2, S3, . . . ) is a discrete-time stochastic process Xt, t = 1, 2, . . .
(see Chap. 6) such that at each integer time t, Xt is a microstate, i.e.,
Xt = Sj for some j.

Definition. The probability

P (Xt = Sj |Xt−1 = Sj1 , Xt−2 = Sj2 , . . .)

is called the transition probability of the chain. The chain is a Markov
chain if

P (Xt = Sj|Xt−1 = Si, Xt−2 = Si2, . . .) = P (Xt = Sj |Xt−1 = Si).

For a Markov chain, we write

P (Xt = Sj|Xt−1 = Si) = pij = P (Si → Sj),

where
∑

j pij = 1 and pij ≥ 0. The matrixM with elements pij is called

the transition matrix (or Markov matrix ).
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Suppose that we know P (Si → Sj) = pij. The probability of going
from state Si to state Sj in two steps is

P (Xt = Sj |Xt−2 = Si) =
∑

k

P (Si → Sk)P (Sk → Sj)

=
∑

k

pikpkj,

which is the (i, j) entry of the matrix M2. If M (2) is the matrix whose
entries are the probabilities of going from Si to Sj in two steps, then
M (2) =M2.

Definition. A Markov chain is ergodic in Γ if given any two mi-
crostates Si and Sj in Γ (where we may have i = j), there is a nonzero
probability of the chain going from Si to Sj in n steps for some n. In
other words, a chain is ergodic if the ij element of Mn is, for every pair
i, j, nonzero for some n.

The following theorem holds.

Theorem 8.1. If a Markov chain is ergodic in Γ, then there exist
numbers πi such that πi ≥ 0,

∑
i πi = 1, and πj =

∑
i πipij.

The numbers πi define a discrete probability distribution on the
space of microstates, which is analogous to the equilibrium densities
examined in the previous chapter. This discrete distribution is attrac-
tive. Suppose one makes L steps along the chain, and suppose the state
Si is visited ni times; then as L→ ∞, ni/L→ πi; asymptotically, each
microstate is visited with a frequency equal to its probability. Note
that here we can assert that this asymptotic distribution exists and is
eventually reached, in contrast to the more nuanced assertions about
equilibrium densities in the previous chapter; the difference is that here,
the chain is assumed at the outset to be ergodic.

We have probabilities (given by e−βH(Si)/Z) we wish to sample. To
achieve importance sampling, i.e., to visit each site with a frequency
proportional to its probability, we identify the probabilities we have
with the πi, i.e., set πi = e−βH(Si)/Z, and then look for the transition
probabilities p∗ij that define a Markov chain for which these given πi
are the attractive invariant distribution (the reason for the notation
p∗ instead of p will appear shortly). The condition for the πi to be
invariant in the resulting chain is πj =

∑
i πip

∗
ij . This condition may be

hard to impose and to check, but one can easily see that it is implied
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by the condition πip
∗
ij = πjp

∗
ji, known as the detailed balance condition,

which is easier to use.
Consider now the sum 1

L
Σt=L

t=1 φ(Xt), where φ is a function we are
trying to average and Xt is the ergodic random chain we have con-
structed. As L → ∞, this sum expression converges to the sum∑n

i=1 φ(Si)
e−H(Si)/T

Z
, i.e., the average over the chain converges to the

average over the equilibrium density.
We now provide an example of a practical way for finding transition

probabilities that define a Markov chain for which the given weights
e−βH/Z are the invariant weights. The construction has two steps.

Step 1. Construct an arbitrary ergodic symmetric Markov chain (a
Markov chain is symmetric if pij = pji). This chain goes
through all the microstates but can spend a lot of time in
unimportant microstates.

Step 2. Let the Markov process defined in Step 1 have transition prob-
abilities pij . Construct a modified Markov chain by defining
new transition probabilities p∗ij as follows:

If i �= j,

p∗ij = pij
πj
πi
, if

πj
πi
< 1, (8.1)

= pij, if
πj
πi

≥ 1. (8.2)

If i = j,

p∗ii = pii +
∑

pij

(
1− πj

πi

)
, (8.3)

where the sum is over all j such that πj/πi < 1. It is easy to check
that this modified Markov chain satisfies the detailed balance condi-
tion πip

∗
ij = πjp

∗
ji, so that πj =

∑
i πip

∗
ij , where πi = e−βH(Si)/Z, and

importance sampling has been achieved.
Specialize this to the Ising model as follows. First, one needs a

symmetric ergodic chain. One choice is to construct a chain in which
each step consists in flipping one spin picked at random, with every spin
having an equal probability of being picked (“flipping” means changing
the sign from + to − or vice versa). It is easy to see that this chain
is ergodic and symmetric. To modify this chain as in Step 2 above,
proceed as follows: if the new state (after a flip) Sj is such that πj/πi ≥
1, accept the new state as the next state in the chain; if, on the contrary,
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πj/πi < 1, pick a number ξ from the equidistributed distribution on
[0, 1] and accept the new value of the spin if ξ < πj/πi, while if ξ ≥
πj/πi, go back to the state before the proposed flip and label that
previous state as the next state in the chain. This procedure produces
the desired transition probabilities p∗ij.

For the Ising model,

πj
πi

= exp

(
−H(Sj)

T
+
H(Si)

T

)
= exp

(
−ΔH

T

)
,

where ΔH is the difference in energy between the microstates Si and
Sj, so that the value of Z is never needed. When one tries to flip the
spin si,j , the change ΔH depends only on the values of the neighboring
spins and is therefore easy to calculate.

This construction is easy to program and quite efficient in general.
The exception is in more than one space dimension for T near the
critical value Tc. We have seen that the error in Monte Carlo methods
depends on the number of independent samples that are generated.
However, successive microstates generated by a Markov chain are not
independent. This is not a big problem if the covariances between the
successive microstates die out quickly, and they usually do. However,
near Tc in two or more dimensions, the spatial covariance length is
very large, and so is the temporal covariance time of the Monte-Carlo
samples—more and more Metropolis moves are needed to obtain a spin
microstate independent of a previous one (this effect is known as critical
slowing down). In addition, as the covariance length increases, more
and more spins are needed to describe the statistics correctly. As a
result, as T approaches Tc, the calculation becomes too expensive. A
remedy is described in the next section.

8.2. Renormalization

This section is a little more difficult than much of the rest of the
book, and on a first reading, it may be advisable to go directly to the
next chapter. The results of the present section are used in the next
chapter only by way of contrast. They contain a recipe for reducing the
number of variables in a system in thermal equilibrium with the help
of conditional expectations. In the next chapter, we consider nonequi-
librium problems, and the fact that this recipe no longer works there
will be one of the ways to demonstrate the differences between the two
situations.
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Consider again the one-dimensional Ising model, with N spins in-
dexed by the integer i (there are no critical points in one dimension, so
this case is here for pedagogical reasons). For simplicity, assume that
N is a power of 2, N = 2� for some �. We start by presenting an al-
ternative algorithm for sampling the resulting probability distribution.
Let the spins with an odd index, s1, s3, . . . , be collectively called Ŝ,
while the others, with an even index, s2, s4, . . . , will be called S̃. Now
we look for the marginal distribution of the spins in Ŝ, where the spins
in S̃ have been eliminated. This pdf fŜ, the marginal density of the
odd-i variables, is the sum of the joint pdf of all the variables over all
values of the even-i variables,

fŜ =
∑

s2=±1,s4=±1,...

e−βH(S)/Z.

This summation looks laborious, but there exists a beautiful shortcut.
It is convenient at this point to introduce some new notation. Let

W = −βH , where H is the Hamiltonian (this W is not to be confused
with the probability density in the discussion of the Fokker–Planck
equation in Chap. 3). We shall refer to W as a Hamiltonian as well.
The introduction of W frees us of the need to keep track of β and of
stray minus signs in the calculations to come. Also, we define K0 = β.
We now make the bold assumption that the marginal fŜ can be written

in the form eW
(1)
/Z1, where the new Hamiltonian W (1) is of the same

form as the original Hamiltonian W (0) = W = K0

∑
i sisi+1 but with

fewer spins, i.e., W (1) = K1

∑
i=1,3,... sisi+2, where K1 is some constant,

i.e., we are hoping that

eW
(1)

/Z1 =
∑

s2=±1,...

eW
(0)

/Z, (8.4)

where W (0) is the Hamiltonian we started with, and Z1 is the new nor-
malization constant on the left. It is convenient to write Z = Z/eNA0,
where A0 = 0 and N is the number of spins (the reason for this notation
will become apparent below) and Z1 = Z/e(N/2)A1 (this relation defines
A1). The hope will be realized if one can find constants A1, K1 such
that

e(N/2)A1+K1
∑

sisi+2 =
∑

S̃

eNA0+K0
∑

sisi+1, (8.5)
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where
∑

S̃ is the sum over s2 = ±1, s4 = ±1, . . . . This last equation is
satisfied if the following equations hold for all values of s1, s3:

eA1+K1s1s3 =
∑

s2=±1

(eA0+K0s1s2 · eA0+K0s2s3). (8.6)

This gives four equations for the two parameters A1, K1, one for each
pair of values of s1, s3, but fortunately, one gets the same equation
for both cases in which s1s3 = 1, and again for both cases in which
s1s3 = −1. These equations yield:

K1 =
1

2
log cosh(2K0), (8.7)

A1 = log 2 + 2A0 +K1. (8.8)

Once the constants A1, K1 have been found, the marginal has been
found. This process of calculating marginals for a smaller set of vari-
ables can be repeated an arbitrary number of times, with the param-
eters An, Kn after n iterations computable from An−1, Kn−1 (and now
An−1 is no longer zero). One obtains a nested sequence of smaller sub-
systems, with the probabilities of the configurations in each equal to
their marginals in the original spin system. The Kn can be viewed
as the inverse temperatures of the subsystems; the calculus inequality
1
2
log cosh 2x − x < 0 for x > 0 shows that Kn < Kn−1, and the sub-

systems become “hotter” as n increases. The sequence of Hamiltonians
that define marginal distributions for smaller subsets converges to a
fixed point at infinite temperature, where the spins are independent
of each other. The important parameter in this calculation is Kn, and
one can see that as one keeps marginalizing, the values of Kn “flow”
on a “temperature” axis toward the T = ∞ point, or on a β axis to-
ward zero. This is a parameter flow. The point β = 0 is a fixed point:
marginalizing at β = 0 reproduces a system with β = 0. There is also
an unstable fixed point at T = 0.

Suppose ξ is the covariance length in any one of these systems,
defined as the distance such that the covariance of si, sj is negligible
if |i − j| > ξ but not if |i − j| < ξ. Each time we marginalize, the
covariance length in units of interspin separation decreases by a factor
of 2. Indeed, one can start from the original spin problem, marginalize
once, and then move the third spin to location 2—no harm is done,
because spin 2 is out of the game—then move spin 5 to location 3, etc.
Now one has a smaller system, identical to the original system apart
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from the labeling of the spins and the value of the coefficient K1, whose
covariance length is obviously half of the original one. As the covariance
length shrinks to zero, the system approaches a system of independent
spins.

The construction just presented also makes it possible to sample the
one-dimensional Ising model effectively without Markov chains. Indeed,
keep calculating marginals until the reduced system has two spins and
four microstates whose probabilities can be calculated, and each of them
can be easily chosen with a frequency equal to its probability. Having
done that, go to the level with twice the number of spins. Each one of
the new spins is connected to two spins whose values have already been
sampled; it has two possible values (+1 and −1), whose probabilities
are easily computed, and each of those states can be chosen with a
frequency equal to that probability. Repeat this construction at each
finer level. This produces a state for the original lattice that is visited
with a frequency equal to its probability—and importance sampling has
been achieved without a Markov chain.

For future reference, we sketch a different, more complicated, deriva-
tion of the formula for W (1). Start from the definition eW

(1)
/Z1 =

(1/Z)
∑

S̃ e
W (0)

, Eq. (8.4), where
∑

S̃ is the sum over all values of S̃.
Take the logarithm of both sides:

W (1) = logZ1 − logZ + log(
∑

S̃

eW
(0)(S)). (8.9)

Pick one of the spins in Ŝ, say s3, and replace it by a variable t that
takes all values in [−1, 1], so that

W (1) = −β(s1t+ ts5 + s5s7 + · · · )
and W (1) is a function, as yet unknown, of s1, t, s5, . . . . The probabil-
ity of finding particular values of s1, s2, . . . and of t is assumed to be
given by the same formulas as before. Differentiate equation (8.9) with
respect to t:

d

dt
W (1) =

∑
S̃

d
dt
W (0)(S)eW

(0)(S)

∑
S̃ e

W (0)(S)
. (8.10)

One notices (see Chap. 2) that the right-hand-side of Eq. (8.10) is the

conditional expectation of d
dt
W (0) given Ŝ,

d

dt
W (1) = E[

d

dt
W (0)|Ŝ]. (8.11)
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A conditional expectation given Ŝ is a projection on the space of func-
tion of Ŝ, and can be implemented by picking a basis of functions of
Ŝ and projecting on it. The resulting series can be integrated term
by term in t (the integration constant is generally a function of all the

spins in Ŝ), and the result can be evaluated at t = ±1. This yields

a representation of W (1) as a series of functions of Ŝ. The previous
derivation of W (1) shows that one basis function, namely t(s1 + s5),

is sufficient; repeating the projection for all spins in Ŝ and comparing
terms, we can recover the result we already know.

We now look for an analogous construction in the far more inter-
esting case of an Ising problem in two dimensions. In one dimension,
we used a marginalization to replace the original system of spins by a
system with half the number of spins, half the covariance length, and
a different parameter. There are several ways to generalize this to two
dimensions, and we pick one that is widely used. Divide the spins into
blocks of 2× 2 spins, and assign to each block a new spin by majority
rule: if the sum of the spins in the block is positive, then the spin as-
signed to the block (the block spin) is +1, while if the sum of the spins
in the block is negative, the block spin is −1, and if the sum of the
spins in the block is zero, the block spin is either +1 or −1 with equal
probability. Call the set of block spins Ŝ. Let f̂ be the pdf of the block
spins. Clearly,

f̂(Ŝ) =
∑

eW
(0)

/Z, (8.12)

where W (0) is the given Hamiltonian −βH of the Ising spins, and the
summation is over all arrangements of spins compatible with the values
of Ŝ whose probability is being evaluated. Assume that the pdf f̂ of the
block spins Ŝ is nonzero for every choice of block spins, so that it can

be written in the form f̂ = eW
(1)
/Z for some Hamiltonian W (1). Pick

one particular block, and assume that each of the spins in it can have a
value t in the interval [−1,+1]. The resulting majority rule produces a
block spin equal to ±t. Take the logarithm and differentiate the result
with respect to t, as above; this produces an analogue of Eq. (8.11), so
that after an integration and an evaluation of the integral at t = ±1,
W (1) can be written as a sum of polynomials in Ŝ. In addition, this
series should not involve too many spins; indeed, consider two groups
of block spins distant from each other in space, say Ŝ1 and Ŝ2. The
variables in these groups should be approximately independent of each
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other, so that their joint pdf is approximately the product of their
separate pdfs. The logarithm of their joint pdf is then approximately
the sum of the logarithms of their separate pdfs, and the derivative of
that logarithm with respect to a variable in Ŝ1 should not be a function
of the variables in S2. As a result, if one expands ∂W

∂t
, where t is a

continuation of a block spin that takes only the values −1,+1 to a
block spin that takes all values in [−1,+1], one should be able to get
an acceptable approximation by projecting only on a set of functions
of that particular block spin and a few neighbors.

For example, if one chooses t = si,j for a particular choice of i, j, one
should be able project on the span of the polynomials ψ1 =

∑
ŝi,jσi,j

and ψ2 =
∑
ŝi,jσ

3
i,j , where σi,j = ŝi+1,j + ŝi−1,j + ŝi,j−1 + ŝi,j+1, the

variables with hats are the new renormalized spins, and the summa-
tion is over those new spins that will be near neighbors of ŝi,j after the
projection. Note that H is invariant under a change of the sign of all
the spins, so only polynomials that have the same property need be
included, and that the fact that s2i,j = 1 further reduces the number of
polynomials needed. With this choice of polynomials, we have approxi-
matelyW (1) = L1ψ1+M1ψ2, where M1, L1 are computed by projection
as in Chaps. 1 and 2.

This sequence of operations can be repeated. The block spins at
the next step can be gathered into new block spins, a new Hamiltonian
W (2) can be found, and so on (note the similarity between this succes-
sive gathering of spins and the constructions in the proof of the central
limit theorem in Chap. 2). It is convenient to use the same polynomials
at every level; when this is done, the coefficients Ln,Mn of the polyno-
mials at the nth step fully characterize the Hamiltonian W (n) at that
step. The coefficients Ln,Mn change as n increases, and they describe
trajectories in the parameter space where the coordinates are (L,M).
The starting point of each trajectory is the point where the Hamilton-
ian is W (0) and L0 = β = 1/T and M0 = 0. We label each trajectory
by the value of T at its initial point. The set of trajectories defines a
parameter flow in the parameter space. The transformation from W (n)

to W (n+1) that defines the new parameter values is a renormalization
group (RNG) transformation. The qualitative picture of the parameter
flow induced by the renormalization group is sketched in Fig. 8.1. There
are stable fixed points at T = ±∞, and there is an unstable fixed point
W ∗ with finite values L∗,M∗ of L,M . This unstable point is a saddle
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Figure 8.1. Sketch of the parameter flow for the Ising model.

point, and one of the trajectory that enters it starts from T = Tc. If
one starts from other values of T , one may first go in the direction of
the fixed point, but then one veers one way or the other.

We now relate this picture to the properties of the Ising point near
Tc in two space dimensions, where the mean value m = E[

∑
sij/N

2]
of the magnetization goes from being nonzero (for T < Tc) to zero. As
we saw in the previous chapter, at T = Tc, the covariance length is
infinite, and the properties of the system of spins near Tc are described
by critical exponents; for example, for T smaller than Tc but close to it,
m is proportional to |T − Tc|b, where b = 1/6; b is a critical exponent.
The covariance length must be infinite at the fixed point, because after
each RNG transformation, ξ is halved, so that a point where ξ is finite
cannot be invariant. One can see that when L,M are finite, ξ �= 0, and
therefore at W ∗, one must have ξ = ∞. Let the result of applying the
RNG to W be denoted by R(W ); if W (n) is near that fixed point, so
that ξ is large but finite, then W (n+1) = R(W (n)) has a smaller ξ and
is farther from the fixed point. At the fixed point, R(W ∗) =W ∗.

Let W (n) for some n be close to W ∗; one can write

W (n) =W ∗ + δW,

where one thinks of a function W as the set of its coefficients in the
polynomial expansion, and δW is a vector of increments in these coef-
ficients. Apply the RNG:

W (n+1) = R(W ∗ + δW ) = R(W ∗) + AδW,



168 8. COMPUTATIONAL STATISTICAL MECHANICS

where the matrix A is the matrix of the derivatives of the coefficients of
W (n+1) with respect to the coefficients of W (n), evaluated at W ∗; it is a
constant matrix. One can calculateW (n+1) for every δW , and therefore
A can be determined. The claim is that the critical exponents can be
found once A is known.

We demonstrate this in the special case of the exponent ν in the
relation ξ = constant · |T − Tc|−ν . Suppose you find yourself near the
unstable fixed point on some trajectory that started from a system
with T near Tc but not equal to Tc. Your covariance length has value
ξ. Start renormalizing. At each step, ξ is reduced by a factor b = 2
(determined by the block size). You leave the neighborhood of the fixed
point when ξ/2n = u, where u is a number of order 1 (the exact value
of u does not matter). Now find the eigenvalues and eigenvectors of the
matrix A. A calculation we do not reproduce reveals that λ, the largest
eigenvalue of A in absolute value, is real and larger than one; let e be
the corresponding eigenvector of length one. Write the coefficients of
the δW that you started from in a basis in which e is one of the basis
vectors,

W =W ∗ + AδW

= W ∗ + AΔe + · · ·
= W ∗ + λΔe+ · · · ,

where Δ is the component of δW along e, and the dots denote terms
that are relatively small. Apply R; the new W is

R(W ∗ + AΔe) = W ∗ + λ2Δe;

after n steps, you will be at W ∗ + λnΔe, and you if you leave the
neighborhood after n steps, the quantity λnΔ should be of order one.

The coefficient Δ depends on the trajectory on which you are lo-
cated, and therefore depends on the temperature T at its starting
point, Δ = Δ(T ); if you start at Tc, the trajectory enters the fixed
point and has no component along the vector that leaves the fixed
point, Δ(Tc) = 0. Assuming some smoothness in Δ(T ), we can write
Δ = c(T −Tc), where near the fixed point c can be viewed as constant.
Taking the logarithm of the two equations that characterize n (one in
terms of ξ and the other in terms of Δ), and assuming that the analysis
is the same just above Tc and just below Tc, so that Δ = c|T − Tc|, we
find that
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ξ = constant · |T − Tc|−ν ,

where ν = log2/logλ, an expression that is known if the matrix A is
known.

We now relate the calculation we just made to dimensional analysis,
discussed in Chap. 1. Try to find ξ, the covariance length for the Ising
model, by dimensional analysis. The value of ξ can depend on �, the
interspin distance, s, the magnitude of the spins (which so far has
always been 1), and the temperature T (or T − Tc for convenience). In
dimensionless variables, we obtain

ξ/� = Φ(|T − Tc|/s2), (8.13)

where Φ is an unknown dimensionless function and we assumed that
the relationship is the same for T < Tc and T > Tc. This relation shows
that ξ should be measured in units of interspin distance, as we have
implicitly done earlier, and that ξ is a function of T .

Consider now what happens when T is near Tc. The dimensionless
equation should be valid in a limiting form as T−Tc → 0. In particular,
we may find complete or incomplete similarity.

Try a complete similarity assumption Φ(0) = B, where B is a
nonzero constant. The result is ξ/� = B at Tc, which we know not to be
true. Try then an incomplete similarity assumption, Φ(|T − Tc|/s2) =
(|T −Tc|/s2)γΦ1(|T −Tc|/s2), where Φ1(0) is a nonzero constant and γ
is an anomalous exponent, which cannot be determined by dimensional
analysis. This conclusion fits the conclusions from the RNG analysis,
with γ = −ν. The exponent calculated by the RNG is an anomalous
exponent in the sense of dimensional analysis.

It should have been clear from the outset that complete similarity
would not be the answer. If it were, the list of variables important near
T = Tc would not contain s, which is unreasonable. The fact that s
is a discrete variable remains important even when the size of the spin
system is much larger than the interspin distance.

8.3. Exercises

1. Compute the magnetization m in the Ising model in two dimensions
by Markov chain Monte Carlo on a 30 × 30 lattice, for β = 1 and
β = 0.2, and compare with the exact answer
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m = [1− sinh(2β)−4]1/8

for β larger than the critical value βc = 1/Tc = 0.4408 and m = 0
otherwise.

2. Consider the n-fold integral that we found as an approximation to a
Wiener integral; discuss how to evaluate it by Markov chain Monte
Carlo.

3. Carry out the construction of the matrix A introduced in the dis-
cussion of the RNG (this is not trivial).
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CHAPTER 9

Generalized Langevin Equations

9.1. Outline of Goals

We now turn to problems in statistical mechanics where the as-
sumption of thermal equilibrium does not apply. In nonequilibrium
problems, one should in principle solve the full Liouville equation, at
least approximately. There are many situations in which one attempts
to do that under different assumptions and conditions, giving rise to
the Euler and Navier–Stokes equations, the Boltzmann equation, the
Vlasov equation, etc. We do not consider these equations in this book,
and concentrate on a particular time-dependent problem of practical
interest: estimating the behavior of a small subset of variables in sit-
uations in which there are many variables but one cannot solve the
equations for all the variables.

Consider a (not necessarily Hamiltonian) system described by a set
of ordinary differential equations

d

dt
φ(t) = R(φ(t)), (9.1)

where φ is an n-dimensional vector with components φi, i = 1, . . . , n,
where n may be infinite, R is an n-dimensional vector function of φ with
components Ri(φ), and the initial values φ(0) = x are given. Suppose
n is so large that the solution of this system is beyond the capabilities
of available computers. But suppose one cares only about the first m
components of the solution, where m is much smaller than n, m � n.
Let φ̂ be the vector φ̂ = (φ1, φ2, . . . , φm) made up of these first m
components. What can one say about these m components without
solving the full system?

First, one must think about the initial data. Suppose initial data
x̂ = (x1, . . . , xm) for φ̂ are available. Unless the data for the other
components are also specified in some way, the solution of Eq. (9.1) is
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172 9. GENERALIZED LANGEVIN EQUATIONS

indeterminate, and nothing can be said about any of its components.
On the other hand, it may be too much to ask for exact initial values for
all the components. It is natural to assume that the initial values for
the components beyond the mth are drawn from some known pdf; such
pdfs may be deduced from past observations of the system described by
the differential equations. We are thus trying to find out what happens
to a small number of components of a system of equations for which
the data are only partially known. Even if the initial pdf for some of
the components is an equilibrium pdf, the problem we are solving is
not an equilibrium problem. The moment one assumes that the first
m components of the solution have definite values at time t = 0, the
system is not in equilibrium at t = 0 (at equilibrium, the values of all
the components have to be sampled from the equilibrium pdf). What
is likely to happen is that the full system will decay to equilibrium, and
the distribution of the values of all the components, including φi(t) for
i ≤ m, will converge to an equilibrium distribution. In general, one
cannot distinguish between a situation in which all the components
of x are sampled from an initial pdf, but once this has been done,
the components of x̂ are kept fixed while the others are repeatedly
resampled, and a situation in which the components of x not in x̂ are
repeatedly resampled while the components of x̂ are chosen once and
for all in some other way.

We have already implicitly encountered this problem of extracting
information about a small number of variables from a large system of
equations without solving the large system. In Chap. 5, we discussed
Brownian motion and Langevin equations, and suggested that these
simple equations describe physical Brownian motion, for example the
motion of grains of pollen on the surface of the water in a glass. How-
ever, according to Chap. 7, the correct description of the motion of the
pollen requires that one solve a Hamiltonian for all the water molecules
in the glass as well as for the pollen, and then extract the motion of the
pollen from this solution. It is natural to wonder how the two descrip-
tions are related. More generally, finding ways to solve for subsets of
variables can be useful in prediction and in modeling. For example, one
may be interested in forecasting the future value of a particular finan-
cial portfolio given its present composition, without trying to predict
the future of the whole market. In the discussion of data assimilation
in Chap. 5, we assumed that the model consisted of a stochastic differ-
ential equation driven by white noise, which, in the boat example, was
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supposed to represent the motion of a boat in distress in a particular
part of the ocean, but we never examined whether this was a reasonable
model.

Consider, for example, a two-particle system in one space dimension
with HamiltonianH = 1

2
(q21+q

2
2+q

2
1q

2
2+p

2
1+p

2
2), where qi, pi, i = 1, 2, are

positions and momenta (see Problem 7 in Chap. 7). This is a system of
two noninteracting harmonic oscillators coupled by a quartic interaction
term. The harmonic oscillators, once set in motion, oscillate forever.
The equations of motion are

q̇1 = p1,

ṗ1 = −q1(1 + q22),

q̇2 = p2,

ṗ2 = −q2(1 + q21). (9.2)

Suppose we have initial values q1(0), p1(0). Assume that q2(0), p2(0)
are sampled from the pdf W = e−H(q,p)/Z (a canonical density
with temperature T = 1), where q1(0), p1(0) are known. This
sampling can be readily done, e.g., by Markov chain Monte Carlo.
Given a sample of q2(0), p2(0), the system (9.2) can be solved;
for each sample of q2(0), p2(0), one has a different trajectory for
q1(t), p1(t). In particular, one may want to calculate the expected
values E[q1(t)|q1(0), p1(0)], E[p1(t)|q1(0), p1(0)] of q1, p1 at time t given
their values at time t = 0, which are the best estimates of q1(t), p1(t)
given their initial values. In this simple problem, this can be done:
once q2, p2 have been sampled, one can solve the full system of four
equations. One can do this repeatedly, and then one can average the
values of q1(t), p1(t) over the many runs. The result for q1(t) is shown
in Fig. 9.1.

Note that the expected values tend to zero, because as time un-
folds, the unresolved degrees of freedom randomize the variables we
care about, and as the uncertainty grows, the best estimate of q1, p1
converges to the best estimate in the absence of information, which
is the (unconditional) expected value, which in the present problem is
zero. The predictive power of partial data decays with time. For ex-
ample, the partial information about the atmosphere one has today is
good enough to allow a forecast for tomorrow, but not for a year from
now. Any scheme for solving for a subset of variables has to allow for
this decay.
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To observe the pitfalls in the problem, consider the following at-
tempt at solving the first two equations in the four-variable problem
(9.2). These equations are not closed, because the second equation
contains the variable q2 that we are not solving for. It is natural to
approximate these two equations by their best approximations given
q1, p1 in the least squares norm defined by the invariant canonical
density, which are the conditional expectations E[p1|q1, p1] = p1 and
E[−q1(1+ q22)|q1, p1] = −q1/(1+ q21). Let us call the solutions of the re-
sulting system Q1, P1 to distinguish them from the solutions of the full

E [q1(t) | q1(0), p1(0)]

Sample trajectories

time

Figure 9.1. Decay of the expected value of resolved variables.

system, so that the equations for the conditional expectations become

Q̇1 = P1,

Ṗ1 = −Q1/(1 +Q2
1), (9.3)

where Q1(0) = q1(0) and P1(0) = p1(0). This is a Hamiltonian sys-

tem with Hamiltonian Ĥ = log
∫
e−H(q1,p1,q2,p2)dq2 dp2 (see Problem 7

in Chap. 7). The solution of a Hamiltonian system oscillates forever,
and the decay we expect does not occur, making the result completely
wrong, with an error O(1) (as discussed in more detail later in this
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chapter). This conclusion is disquieting, because averaging unresolved
variables in nonlinear equations is standard procedure in many areas of
physics, for example in plasma physics and in turbulence theory. The
averaging here is flawed, even though at first sight, it seems plausi-
ble to average with respect to the invariant equilibrium density, and
though the conditional expectation is the best possible approximation
by a function of the subset of variables given that density, as discussed
in Chap. 2. Note also that the averaging of the preceding paragraph re-
sembles what was done in the calculation of renormalized Hamiltonians
at thermal equilibrium (compare with formula (8.11)). The equilibrium

pdf e−Ĥ(Q1,P1)/Z of Q1, P1 is the correct marginal pdf of q1, p1 at equi-
librium in the original full system. It is the nonequilibrium features of
the present problem that cause the difficulty.

9.2. More on the Langevin Equation

We now turn to an analysis of the problem set in the previous sec-
tion. The next two sections are devoted to special cases, which will
be used to build up experience with the methods one can use and the
answers one may expect. A general formalism will follow.

Consider again the Langevin equation, already discussed in Chap. 5,
which we now write as

du = −au dt+
√
2D dw, (9.4)

where w is a Brownian motion. A constant factor
√
2D has been in-

serted in front of the noise. We want (9.4) to model the velocity of
a heavy particle bombarded by light particles. The intensity of the
bombardment increases as the energy of the bombarding particles, pro-
portional to D, increases. We now solve this equation explicitly.

After multiplication of (9.4) by eat, we get

d(ueat) =
√
2Deat dw. (9.5)

Integrating both sides from 0 to t gives
∫ t

0

d(ueas) =
√
2D

∫ t

0

eas dw.

Let u(0) = b. Then

u(t)eat − b =
√
2D

∫ t

0

eas dw.



176 9. GENERALIZED LANGEVIN EQUATIONS

After multiplying both sides by e−at, we obtain

u(t)− be−at =
√
2D

∫ t

0

ea(s−t)dw.

The last integral may be rewritten in the form

∫ t

0

ea(s−t)dw = lim
Δ→0

n−1∑

j=0

ea(jΔ−t)(w((j + 1)Δ)− w(jΔ))

(where one does not have to worry about the Itô/Stratonovich di-
chotomy, because the integrand is not random, and hence the two
formalisms are equivalent). The summands of the last sum are in-
dependent Gaussian variables with mean 0. The variance of the sum is
the sum of variances of its summands, i.e.,

Var

(
n−1∑

j=0

ea(jΔ−t)(w((j + 1)Δ)− w(jΔ))

)
=

n−1∑

j=0

Δe2a(jΔ−t).

Taking the limit Δ → 0, we obtain

Var

(∫ t

0

ea(s−t)dw

)
=

∫ t

0

e2a(s−t)ds =
1

2a
− 1

2a
e−2at.

As t → ∞, this variance tends to 1/(2a). Also, as t → ∞, be−at tends
to zero. Therefore, the solution u(t) of the Langevin equation (9.4)
tends to a Gaussian variable with mean 0 and variance D/a.

If the particle we are observing has mass m and if we interpret u
as its velocity, then its energy is 1

2
mu2. According to what we found in

Chap. 7, the probability that the particle has velocity u is proportional
to exp(−mu2/2T ). Thus, we must have

a =
Dm

T
.

The coefficient a is a friction coefficient, and the relation between the
friction and the temperature is an instance of a fluctuation–dissipation
theorem. It is a consequence of the requirement that the system tend
to equilibrium for long times, and it relates the rate of dissipation and
the driving random input to the amplitude T of the “thermal fluctua-
tions” at the ultimate equilibrium. The larger the input, the higher the
equilibrium temperature, while the more dissipation there is, the lower
the final temperature.
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If a system is maintained at a known temperature T in the presence
of damping and outside random forces, the damping and the forcing
must be in a suitable balance. The damping and random input are
related, because they are the consequences of a single cause, the inter-
action of the watched particle with all the rest, just as a runner who
collides with a milling crowd is both slowed down and deflected from
his original course; the two effects come from the single cause, the inter-
action with the crowd; their ratio is dictated by the temperature (the
agitation of the crowd).

9.3. A Coupled System of Harmonic Oscillators

In the previous section, we considered a particle acted on by noise;
the noise presumably represents an interaction with other particles, but
the properties of the interaction and the validity of its description as
white noise were not questioned. In this section, we consider, in a
simple case, the interaction of a singled-out particle, the tagged, or re-
solved, particle, with other particles in the framework of a Hamiltonian
description of the entire system.

The particles are all in a one-dimensional space; the resolved particle
is located at x, has velocity v and unit mass, and is acted on by a
potential U(x). It interacts with n other particles, located at qj and
having momenta pj , with j = 1, . . . , n. The Hamiltonian is

H =
1

2
v2 + U(x) +

1

2

∑

j

p2j +
1

2

∑

j

f 2
j

(
qj − γj

f 2
j

x

)2

, (9.6)

where the fj and γj are constants. The γj are coupling constants, and
one can check that in the absence of interaction (i.e., if one sets the cou-
pling constants to zero), the fj would be the frequencies of oscillation
of the various particles. This Hamiltonian is quadratic (except perhaps
for U), so that the equations of motion for the unresolved particles are
linear; this is what makes the problem solvable explicitly. The particles
other than the tagged particle are harmonic oscillators.

The equations of motion are

ẋ = v,

v̇ = −dU
dx

+
∑

j

γj

(
qj − γj

f 2
j

x

)
,
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q̇j = pj ,

ṗj = −f 2
j qj + γjx.

The equations of motion for the unresolved particles can be solved
explicitly by the method of variation of constants:

qj(t) = qj(0) cos(fjt) + pj(0)
sin(fjt)

fj
+
γj
fj

∫ t

0

x(s) sin(fj(t− s)) ds,

where qj(0) and pj(0) are initial conditions (about which nothing has
been said as yet). The integral term in this equation can be rewritten
after integration by parts as

γj
f 2
j

(x(t)− x(0) cos(fjt))− γj

∫ t

0

v(s)
cos(fj(t− s))

f 2
j

ds.

Collecting terms and inserting them into the equation for x and v,
one obtains

ẋ(t) = v(t), v̇(t) = −U ′(x) +
∫ t

0

Kn(t− s)v(s) ds+ Fn(t), (9.7)

where

Kn(t) = −
∑

j

γ2j
f 2
j

cos(fjt)

and

Fn(t) =
∑

j

γj

(
qj(0)− γj

f 2
j

x(0)

)
cos(fjt) +

∑

j

γjpj(0)
sin(fjt)

fj
.

Suppose that the goal is to follow the motion of the resolved particle
(the one at x with velocity v) without following the motion of all the
others. Specific initial values qj(0), pj(0) cannot be taken into account.
The best one can do is to sample these initial values for the unresolved
particles from some probability density, which makes the evolution sto-
chastic. The first term on the right-hand side of Eq. (9.7) is the effect
of a potential that acts on the resolved particle alone at time t, and
it has no analogue in the Langevin equations of the previous section.
The second term on the right-hand side of (9.7) is analogous to the
dissipation term −au in the previous Langevin equation and represents
not only dissipation but also a memory, because through this term, the
velocity at previous times affects the current velocity. That a reduced
description of the motion of the resolved variable involves a memory
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should be intuitively obvious: suppose you have n > 3 billiard balls
moving about on top of a table and are trying to describe the motion
of just three; the second ball may strike the seventh ball at time t1,
and the seventh ball may then strike the third ball at a later time. The
third ball then “remembers” the state of the system at time t1, and
if this memory is not encoded in the explicit knowledge of where the
seventh ball is at all times, then it has to be encoded in some other
way. The analogue of this term in the following sections will be called
a memory term, to emphasize the possibly unfamiliar memory effect.
The kernel of this integral term, Kn, does not depend on the initial
data, and therefore, this term is not random.

The last term involves the random initial data and is a random
function, analogous to the white noise in the Langevin equation of
Sect. 9.2, and we shall call this last term the noise term. In general, this
noise is not white noise. White noise can be expanded in terms of sines
and cosines, but except under very special conditions, the coefficients
in this expansion will not be those in the above expression for Fn.
Equation (9.7) generalizes the Langevin equation of Sect. 9.2.

Suppose the initial density W of the initial values of the qi and pi
is the canonical W = Z−1e−H/T , with H given by (9.6) and x, v (the
initial data for the tagged particle) kept fixed. One can readily check
that with this choice, E [pj(0)pk(0)] = Tδjk, where δjk is the Kronecker
δ symbol. Also,

E

[(
qj(0)− γj

f 2
j

x(0)

)(
qk(0)− γk

f 2
k

x(0)

)]
=
Tδjk
f 2
j

,

where x(0) is the nonrandom initial value of x(t). With this choice of
initial W , one can also check that

E[Fn(t)Fn(t− t′)] = −TKn(t− t′).

This is the fluctuation–dissipation theorem relevant to the present prob-
lem. It emerges as a consequence of the equations of motion combined
with the canonical choice of initial density.

The problem in this section is not an equilibrium problem, because
we assign a specific initial value to x rather than sample it from the
canonical density. As time advances, the values of the variable x be-
come increasingly uncertain, and the system “decays” to equilibrium;
the causes of this decay are summarized by the memory and the noise.
The motion of part of a Hamiltonian system, interacting with the rest of
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the system that remains undescribed, is not Hamiltonian or even Mar-
kovian, and is not described in general by a differential equation. The
reduction in the level of detail in the description changes the equations
of motion profoundly.

9.4. Mathematical Addenda

A pattern has emerged in the questions asked so far in the present
chapter: We consider problems with many variables. We are looking for
a reduced description of a subset of variables—the analogue of what was
called renormalization in the equilibrium case. The reduced equations
replace those parts of the system that are not fully described by a pair
of terms, a stochastic term that can be called noise and a damping,
or memory, term. We now derive these results in the general case.
Before we can embark on this analysis, some mathematical addenda
are needed.

9.4.1. How to Write a Nonlinear System of Ordinary Dif-
ferential Equations as a Linear Partial Differential Equation.
Consider a system of ordinary differential equations

d

dt
φ(x, t) = R(φ(x, t)), φ(x, 0) = x, (9.8)

where R, φ, and x are (possibly infinite-dimensional) vectors with com-
ponents Ri, φi, and xi, respectively.

We claim that this nonlinear system can be rewritten as a linear
partial differential equation. This is not an approximation, but an
exact representation; the cost of getting a linear system is the greater
conceptual and practical complexity of having to deal with a partial
differential equation.

Define the Liouville operator (as in Chap. 7) by

L =
∑

i

Ri(x)
∂

∂xi
.

It is not assumed here that the system (9.8) is Hamiltonian, so that the
coefficient functions in L need not be derivatives of a Hamiltonian H , as
in Sect. 7.2. The variables in the coefficients and in the differentiations
belong to a space with as many dimensions as the space of initial data
for (9.8). Now form the linear partial differential equation

ut = Lu, (9.9)
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with initial data u(x, 0) = g(x). This is also called a Liouville equation,
although the sign of the right-hand side is the opposite of the sign in
front of the right-hand side of the Liouville equation for the probability
density in Chap. 7. We will show that the solution of this equation
is u(x, t) = g(φ(x, t)), where φ(x, t) is the solution of the system (9.8)
with initial data x. One can therefore solve the partial differential equa-
tion (9.9) if one can solve the system of ordinary differential equations.
We will further show that the Liouville equation (with the sign used
here) is equivalent to the system of ordinary differential equations. In
Chap. 7, we showed that the ordinary differential equations (9.8) are
the characteristic equations for the Liouville equation for the pdf of the
random flow induced by random data; the relation between Eq. (9.8)
and the Liouville equation discussed here is slightly more complicated,
and we are going to derive it in a different way.

First we prove the following identity:

R(φ(x, t)) = Dxφ(x, t)R(x). (9.10)

In this formula, Dxφ(x, t) is the Jacobian matrix of φ(x, t) with entries

Dxj
φi(x, t) =

∂φi

∂xj
,

and the multiplication on the right-hand side is a matrix–vector multi-
plication; the left-hand side is the vector R evaluated when its argument
is φ, while on the right, the argument of R is x, the initial datum of φ;
φ is assumed to satisfy (9.8).

Define F (x, t) to be the difference between the left-hand side and
the right-hand side of (9.10):

F (x, t) = R(φ(x, t))−Dxφ(x, t)R(x).

Then at t = 0, we have

F (x, 0) = R(φ(x, 0))−Dxφ(x, 0)R(x)

= R(x)−Dx(x)R(x)

= R(x)− IR(x)

= 0. (9.11)
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Differentiating F with respect to t, we get, using the chain rule repeat-
edly,

∂

∂t
F (x, t) =

∂

∂t
R(φ(x, t))− ∂

∂t
(Dxφ(x, t)R(x))

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx

(
∂

∂t
φ(x, t)

)
R(x)

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx(R(φ(x, t)))R(x)

= (DxR)(φ(x, t))R(φ(x, t))− (DxR)(φ(x, t))Dxφ(x, t)R(x)

= (DxR)(φ(x, t)) (R(φ(x, t))−Dxφ(x, t)R(x))

= (DxR)(φ(x, t))F (x, t). (9.12)

From (9.11) and (9.12), one can conclude that F (x, t) ≡ 0. Indeed, the
initial value problem defined by (9.11) and (9.12) has a unique solution
given that R and φ are smooth. Since F (x, 0) = 0, F (x, t) = 0 solves
this problem, and we have proved (9.10).

Take an arbitrary smooth function g(x) on Γ and form the function
u(x, t) = g(φ(x, t)). Clearly, u(x, 0) = g(x). Differentiate this function
with respect to t using the chain rule:

∂u

∂t
=
∑

i

∂g(φ(x, t))

∂xi

∂φi(x, t)

∂t
=
∑

i

Ri(φ(x, t))
∂g(φ(x, t))

∂xi
.

Using (9.10), this last expression becomes

∑

i

(
∑

j

∂φi(x, t)

∂xj
Rj(x)

)
∂g(φ(x, t))

∂xi

=
∑

j

Rj(x)

(
∑

i

∂g(φ(x, t))

∂xi

)
∂φi(x, t)

∂xj

=
∑

j

Rj(x)
∂g(φ(x, t))

∂xj

= Lu. (9.13)

Hence, u(x, t) = g(φ(x, t)) is the (unique) solution of the Liouville
equation

ut = Lu, u(x, 0) = g(x). (9.14)
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Clearly, if one can solve the system (9.8) for all x, one can solve the Li-
ouville equation (9.14) for any initial datum g. Conversely, suppose one
can solve the Liouville equation for all initial data g and pick g(x) = xj ;
the solution of the Liouville equation is then φj(x, t), the jth component
of the solution of the system of ordinary differential equations (9.8).
The Liouville equation is a scalar equation, so one has to write an
equation for each φj separately. More generally, if g = g(x) is a func-
tion of the initial vector x, then one can write its value at each later
instant in time by replacing each component of x in the function by a
corresponding component of φ (but of course, to find these components
of φ, one has to solve the system of ordinary differential equations).

If L is skew-symmetric, the Liouville equation for the probability
density introduced in Chap. 7 and the Liouville equation here, which
is equivalent to the original system, differ by a sign, as was already
pointed out; loosely speaking, the microstates and their probability
density move in opposite directions; see the exercises for simple exam-
ples.

9.4.2. More on the Semigroup Notation. In Sect. 4.7, we in-
troduced the semigroup notation, according to which the solution
of (9.14) is denoted by etLg; the time-dependence is explicitly noted,
and the value of this solution at a point x is denoted by etLg(x). With
this notation, the formula for the solution u(x, t) = g(φ(x, t)) of (9.14)
becomes

etLg(x) = g(etLx). (9.15)

Note that etLx is not etL evaluated at x but etL acting on the vector
whose components are the functions xi; the time propagation of a func-
tion g commutes with the time propagation of the initial conditions xi.
In particular, if g is a time-invariant function of the variables that de-
scribe a physical system, it changes in time only because these variables
change. Equation (9.13) above becomes, in the semigroup notation,

LetL = etLL. (9.16)

The analogous formula for matrices is, of course, well known (this is one
of the few times in this chapter that we do not jump to the conclusion
that a fact about some operators is true just because the analogous fact
is true for matrices).
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Let A,B be two matrices; the following formula holds for their ex-
ponentials:

et(A+B) = etA +

∫ t

0

e(t−s)(A+B)BesA ds. (9.17)

The best way to see that this identity holds is first to form the difference
z(t) between the right-hand side and the left-hand side,

z(t) = et(A+B) − etA −
∫ t

0

e(t−s)(A+B)BesA ds, (9.18)

and check that z(0) = 0 and z′(t) = (A + B)z(t); by the uniqueness
of the solution of the ordinary differential equation, z(t) = 0 for all t.
This formula is often called the Duhamel formula or in physics, the
Dyson formula. We assume, without proof, that the analogues of these
formulas hold for more complicated operators and for exponentials of
these operators.

9.4.3. Hermite Polynomials and Projections. The polynomi-
als orthonormal with respect to the inner product

(u, v) =

∫ +∞

−∞

e−x2/2

√
2π

u(x)v(x) dx

are called Hermite polynomials. One can generalize them to spaces with
more dimensions: if one defines the inner product

(u, v) =

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
(2π)−n/2 e−(

∑
x2
i )/2u(x)v(x) dx1 · · · dxn,

then one finds that the following polynomials form an orthonormal
family: first the constant polynomial 1; then the n linear Hermite poly-
nomials x1, x2, . . . , xn; then the products of these, Hij(xi, xj) = xixj ;
and so on. More generally, if H(q, p) is a Hamiltonian, one can de-
fine a family of polynomials in the variables q, p that are orthonormal
with respect to the canonical density Z−1e−H/T . We still call these
polynomials Hermite polynomials.

Consider an n-dimensional space Γ with a given probability density.
Divide the coordinates into two groups: x̂ and x̃. Let g be a function
of x; then Pg = E[g|x̂] is an orthogonal projection onto the subspace of
functions of x̂ (see Chap. 2). One can perform this projection by span-
ning that subspace by those Hermite polynomials that are functions of
x̂ and projecting on these polynomials.
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9.5. The Mori–Zwanzig (MZ) Formalism

We return now to the system

dφ(x, t)

dt
= R(φ(x, t)), φ(x, 0) = x. (9.19)

Suppose one is interested only in the first m components of φ,
φ1, . . . , φm, with m < n. Partition the vector φ as in Sect. 9.1 into
“resolved” variables φ̂ and “unresolved” variables φ̃ so that

φ = (φ̂, φ̃), φ̂ = (φ1, . . . , φm), φ̃ = (φm+1, . . . , φn),

and similarly, x = (x̂, x̃) and R = (R̂, R̃). We are looking for equations

for the components φ̂(t) for which we have fixed (nonrandom) initial

conditions φ̂(0) = x̂. We further assume that at time t = 0, we know
the joint pdf of all the variables x but the initial data x̂ are picked once
and for all; the pdf of the variables in x̃ is the joint pdf of all the x
variables with x̂ fixed.

Note that this is the third time in this book that we are trying to
make a prediction or draw a conclusion on the basis of uncertain or
statistical information. In Sect. 9.5, we made predictions for a process
for which we had a noisy model and a stream of noisy observations. In
Chap. 6, we made predictions on the assumption that we had observa-
tions for a process that we knew to be stationary and whose covariances
were known. Now we make predictions from a model that we can solve
only in part, and for which we have only partial initial data.

Form the Liouville equation ut = Lu; the components φj, 1 ≤ j ≤
m, of φ̂ can be written in the semigroup notation as

φ̂j(x, t) = etLxj

(note that each φ̂j depends on all the data x; if x̃ is random, φ̂(t) for
t > 0 is random as well). In the semigroup notation, the equation for
these components is

∂

∂t
etLxj = LetLxj = etLLxj , (9.20)

where the last equality is the commutation rule (9.16). Let P be the
projection Pg(x) = E[g|x̂]. The probability density in this projection is
the one used in the initial conditions; in a nonequilibrium situation, we
do not know the pdf of the solution at any other time. The projection
P here is a projection on a space of functions of a fixed set of variables
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and is therefore time-independent. Functions such as Pφ̂(t) = E[φ̂(t)|x̂]
are of great interest: they are the best estimates of the future values
of a reduced system of variables given partial information about the
present. This is the kind of thing a meteorologist, for example, wants
to calculate: the best prediction of a set of interesting features of the
future weather given limited information about the present state of the
atmosphere.

Define a projection Q by Q = I − P and keep in mind that P2 = P,
Q

2 = Q, and PQ = 0, as must be true for any orthogonal projection.
Equation (9.20) can be rewritten as

∂

∂t
etLxj = etLPLxj + etLQLxj . (9.21)

Consider the first term. We have

Lxj =
∑

i

Ri(∂/∂xi)xj = Rj(x); (9.22)

PLxj = E[Rj(x)|x̂] is a function of x̂ only. Call this function R̄j(x̂).

Then etLPLxj = R̄j(φ̂(x, t)) by the time-propagation rule (9.15).
Suppose one sets Q = 0 in Eq. (9.21) and suppose for a moment

that the full system (9.19) is a Hamiltonian system. A short calculation
shows that the resulting equation is identical to the equation obtained
by taking the original system (9.19), dropping the equations for ∂

∂t
φ̃,

and replacing the equations for ∂
∂t
φ̂ by their conditional expectations

with respect to the invariant probability density of the Hamiltonian
system. This is the approximation that yielded a disastrous result in
the example at the end of Sect. 9.1. It is obviously not a legitimate
approximation, because Q �= 0 except when φ̂ = φ, i.e., except when
P = I and one is solving for all the variables.

We now split the second term in (9.21) using Dyson’s formula with
A = QL and B = PL:

etL = etQL +

∫ t

0

e(t−s)L
PLesQL ds. (9.23)

Here, the linearity of the Liouville equation is being used. This step
is the reason for the introduction of that equation into the analysis.
Using (9.23), (9.21) becomes

∂

∂t
etLxj = etLPLxj + etQL

QLxj +

∫ t

0

e(t−s)L
PLesQL

QLxj ds. (9.24)
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This is the Mori–Zwanzig (MZ) equation. One applies this equation
in turn to xj , j = 1, . . . , m, obtaining an exact (no approximations!)

equation of motion for φ̂.
Now examine the different terms that appear on the right-hand

side of (9.24). The first term is a function only of φ̂(x, t) and represents
the self-interaction of the resolved variables; it is a Markovian term,
inasmuch as it is evaluated at the same time t as the left-hand side of
the equation.

To decode the second term, define functions wj by

wj = etQL
QLxj .

The functions wj(x, t) satisfy, by definition, the equations

∂

∂t
wj(x, t) = QLwj(x, t),

wj(x, 0) = QLxj = (I − P)Rj(x) = Rj(x)− E[Rj|x̂].
(9.25)

These are the orthogonal dynamics equations. If one calls E[Rj |x̂] the
initial average of the right-hand-side of the equations, then wj(x, 0) is
the fluctuating part of this initial average (according to the often used
terminology, in which the “fluctuating part” of a random variable η is
η − E[η]). Obviously, Pwj(x, 0) = 0. If one took this initial function
and applied the operator etL to it, the result would in general have a
nontrivial mean part (i.e., it would not be in the null space of P). The
equation for wj removes the nonzero mean part at each instant of time.
As a result, Pwj(x, t) = 0 for all time t.

Call the space of functions of x̂ the resolved subspace and its or-
thogonal complement (with respect to the inner product defined by the
initial density) the noise subspace. Then P applied to any element of
the noise subspace gives zero, and similarly, Q applied to any element
of the resolved subspace gives zero. The functions wj(x, t) = etQL

QLxj
are in the noise space; we shall call the vector of which they are the
components the noise for short. The noise is determined by the initial
data and by the system (9.19), and in general is not white noise.

The third term in (9.24) is the memory term, because it involves
integration over quantities that depend on the state of the system at
earlier times. Perform the projection P by projecting on the span of
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Hermite polynomials H1, H2, . . . with arguments in x̂, so that for an
arbitrary function ψ, one has Pψ =

∑
(ψ,Hk)Hk. Then

PLesQL
QLxj = PL(P+Q)esQL

QLxj

= PLQesQL
QLxj

=
∑

k

(LQesQL
QLxj , Hk(x̂))Hk(x̂).

The inner product here is of course the one defined as an expected value
with respect to the initial probability density. To simplify the analysis,
assume that L is skew-symmetric, (u, Lv) = −(Lu, v). We have seen
that this includes the case in which the system (9.19) we started from
was Hamiltonian. Then we obtain

(LQesQL
QLxj , Hk(x̂)) = −(QesQL

QLxj , LHk)

= −(esQL
QLxj ,QLHk).

Both QLxj and QLHk are in the noise subspace, and esQL
QLxj is a

solution at time s of the orthogonal dynamics equation with data in
the noise subspace; PLesQL

QLxj is then a sum of temporal covari-
ances of noises (i.e., of functions in the noise subspace). The operator
e(t−s)L commutes with each (LQesQL

QLxj , Hk(x̂)) because the latter
expression is an inner product that does not evolve in time, and by the
propagation rule (9.15), one obtains e(t−s)LHk(x̂) = Hk(φ̂(t− s)). If
one makes the change of variables t′ = t − s and drops the prime, one
finds that the memory integral has an integrand that is a sum of terms
each of which is the product of a temporal covariance of a noise (i.e., a
variable that lives in the null space of P), evaluated at the time (t− s),
multiplied by a variable that depends on the state of the system at the
time s. Such terms represent both memory and dissipation. The Dyson
formula has split the interaction of the resolved variables with the un-
resolved variables into two terms analogous to those on the right-hand
side of the Langevin equation of Sect. 9.1.

One can introduce an apparent simplification by multiplying (9.24)

by the projection P. Since P is time-invariant, it follows that P(∂/∂t)φ̂

becomes (∂/∂t)E[φ̂|x̂]. This produces equations for the conditional
expectations of a few components of the solution given their initial
data. Knowing that P operating on the noise term gives zero, one
obtains
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∂

∂t
PetLxj = PetLPLxj +

∫ t

0

Pe(t−s)L
PLesQL

QLxj ds, (9.26)

where PetLxj = E[φ̂(x, t)|x̂] by definition. However, the remaining
terms are now more complicated. We have seen that etLPLxj is in

general a nonlinear function R̄(φ̂(t)); however, PR̄(φ̂(t)) is in general

not equal to R̄(Pφ̂(t)), and some approximation scheme must be devised
(see below).

The equations derived in this section so far are exact. If one has a
system of equations for φ, a pdf for the initial data, specific initial data
for φ̂(t = 0), and one wants to find φ̂(t), one can either solve the full
system for φ(t) and ignore all the components one is not interested in, or
one can solve (9.24). One can average in either case. Equations (9.24)
are fewer in number, but this advantage is outweighed by the need
to solve the orthogonal dynamics equations to find the noise and its
covariances. What equations (9.24) do provide is a starting point for
various approximations.

It is instructive to consider a simple example of the Mori–Zwanzig
equations. Suppose there is a single resolved variable, say φ1, so that
m = 1 and φ̂ has a single component. The MZ equations reduce to the
single equation

∂

∂t
etLx1 = etLPLx1 + etQL

QLx1 +

∫ t

0

e(t−s)L
PLesQL

QLx1 ds.

The projection P projects on the span of a basis of functions of the
single variable x1. Suppose the single basis function x1 suffices, i.e.,
suppose a linear projection suffices. This happens in particular if x1 is
small enough, so that powers of x1 can be neglected. For any function
ψ(x1) of x1, one has Pψ = α(ψ, x1)x1, where α = 1/(x1, x1) (the inner
product is defined by the initial probability density). The MZ equation
becomes

∂

∂t
φ1(x, t) = α(Lx1, x1)φ1(x, t) + etQL

QLx1

+

∫ t

0

(LQesQL
QLx1, x1)αφ1(x, t− s) ds. (9.27)

The integral on the right-hand side of this equation equals

−
∫ t

0

α(esQL
QLx1,QLx1)φ1(x, t− s) ds, (9.28)
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where we have assumed that L is skew-symmetric. The noise term
w(t) = eQL

QLx1 is defined by the orthogonal dynamics equations
(9.25), and in general is not white. The kernel in the integral term
is proportional to a covariance of the noise. If the noise happens to be
white, then this covariance is a delta function; the integral term reduces
to −Cφ1(t), where C = α(QLx1(s),QLx1(0)); and we have recovered
the usual Langevin equation (9.4).

9.6. When Is the Noise White?

There are situations in which the noise term in the Mori–Zwanzig
equations can in fact be approximated by white noise. This happens
in particular when there is scale separation between the resolved and
unresolved variables, i.e., when the temporal frequencies of the resolved
components φ̂ are much smaller than the frequencies of the unresolved
components φ̃. The heuristic reason for the emergence of white noise is
clear: suppose the resolved variables take time of order 1 to vary signif-
icantly; during this time interval, the unresolved variables make many
contributions to the motion of the resolved variables; if these contribu-
tions are not too strongly correlated, their effect can then be described
by Gaussian variables (by the central limit theorem), with correlations
that decay fast on the time scale of the resolved components, and hence
they can be summarized as the effect of a white noise. A closely related
situation is that of weak coupling, whereby the variations of φ̃ affect φ̂
in an interval of order 1 by a small amount; it takes many of them to
have a significant effect, and their cumulative effect over a long time
interval is that of a large number of independent contributions. The
detailed description of these situations requires the asymptotic solution
of singular perturbation problems, as we illustrate by an example.

Consider a particle at a point x whose velocity v can be either +1
or −1; it jumps from one value to the other in every short time interval
dt with probability dt, with independent probabilities for a jump on
two disjoint intervals. Let the position x of the particle be given by

ẋ = εv(t),

or

x(t) = ε

∫ t

0

v(s) ds.
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The presence of the parameter ε, which will soon be made small, em-
bodies a weak coupling assumption; the velocity is of order 1, while
the displacement of the particle is of order ε, i.e., we have separation
of scales. The variable x is the resolved variable. For simplicity, we
are presenting a model in which the unresolved “fast” variable v is not
determined by an equation but is a given.

We now derive the Fokker–Planck equation for this model. The
probability density functionW (x,±1, t) is the probability that the par-
ticle is between x and x + dx, while v is either +1 or −1. It can be
thought of as a vector W = (W+,W−), whereW+(x, t) is the probabil-
ity that the particle is between x and x+dx with v = +1, with a similar
definition for W−. Here W+(x, t+ δt) equals (1− εδt) (the probability
that there is no change in velocity) times W (x− εδt) (because particles
moving at speed ε go from x − εδt to x in time δt), plus δtW−(x, t)
(because of jumps from the minus state). Collecting terms, expanding
W (x− εδt), dividing by δt, and letting δt→ 0 as in Sect. 5.2 yields

W+
t = −εW+

x +W− −W+,

and similarly,
W−

t = εW−
x +W+ −W−,

where the subscripts x and t denote differentiation. Define

U =W+ −W−, V = W+ +W−.

One obtains
Ut = −εVx − 2U, Vt = −εUx,

and hence
Utt = ε2Uxx − 2Ut.

Once U is found, V , W+, and W− follow immediately.
One does not expect, with the weak coupling when ε is small, to

have a significant displacement x of a particle when t is of order 1. We
therefore introduce a slow time scale such that when a unit time has
passed on this slower scale, one can expect a significant displacement
to have occurred; we do this by setting τ = ε2t. The equation for
U = U(x, τ) becomes

ε2Uττ = Uxx − 2Uτ ,

and in the limit ε → 0, we obtain Uτ = 1
2
Uxx, a heat equation. The

corresponding stochastic differential equation is du = dw, where w is
Brownian motion. The other variables can be found once one has U .
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9.7. An Approximate Solution of the Mori–Zwanzig
Equations

The full MZ equations are very difficult to solve. Their use is pred-
icated on one’s ability to find suitable simplifications in specific prob-
lems. In the present section, we present a simple example where this
can be done. Two approximations are discussed and are used to solve
a simple problem without reliance on an assumption of separation of
scale.

The problem solved is one already discussed: a Hamiltonian system
with Hamiltonian H = (1/2)(q21 + q22 + q21q

2
2 + p21 + p22) (two harmonic

oscillators with a nonlinear coupling). The equations of motion are
again Eq. (9.2). The Liouville operator is

L = p1
∂

∂q1
− q1(1 + q22)

∂

∂p1
+ p2

∂

∂q2
− q2(1 + q21)

∂

∂p2
. (9.29)

We assume, as before, that the initial values q1(0), p1(0) of q1, p1 are
given, while q2, p2 are sampled from the pdf W (x) = e−H(q1,p1,q2,p2)/Z
(a canonical density with temperature T = 1). Our goal is to evaluate
q1(t), p1(t) from the MZ equations (9.24).

Approximation 1: Simplified Orthogonal Dynamics. The
first approximation is to replace etQL by etL in the memory term. In
words, we assume that as far as the evolution of the noise is concerned,
the orthogonal dynamics in Eq. (9.25) are roughly the same as the cor-
rect dynamics; the orthogonal dynamics are not sensitive to the resolved
variables. There are problems, in particular in hydrodynamics, in which
this is a justifiable assumption. In the present application, the justifica-
tion is unclear: the evolution of the resolved variables cannot ignore the
unresolved variables, and the equations for the unresolved variables are
similar to the equations for the resolved variables. One way to argue is
that if the noise and the memory terms make up a fraction γ of the rate
of change of the resolved variables, and ignoring them produces an error
γ, then ignoring the effect of the resolved variables on the unresolved
variables produces an error O(γ2), which may be smaller.

Accepting this approximation, one can reason as follows: By defi-
nition,

PLesQL = LesQL −QLesQL.
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An operator commutes with every function of itself, so that

QLesQL = esQL
QL.

Using this last identity and then substituting esQL → esL on the right-
hand side of the equality, one obtains

PLesQL ≈ LesL − esLQL.

Then

e(t−s)L
PLesQL ≈ e(t−s)LLesL − e(t−s)LesLQL = etLPL,

making the integrand in the integral term of the MZ independent of s,
so that ∫ t

0

etLPLQLxjds = tetLPLQLxj ,

where x̂ is the vector with components x1 = q1 and x2 = p1. The
memory term has been reduced to a differential operator multiplied by
the time t; the time starts at t = 0 when the initial value of q1(t), p1(t)
is assigned and when there is no uncertainty. One can also derive this
approximation by assuming that the integrand in the memory term
does not depend on s and therefore can be evaluated at s = 0, but it is
hard to visualize conditions under which this more drastic assumption
holds. The equations with the simplified integral term constitute the
t-model.

Collecting terms, the t-model equations are

d

dt
etLx̂ = etLPLx̂+ tetLPLQLx̂ + etQL

QLxj , (9.30)

where the noise term is left unmodified for later convenience.
In the particular case under consideration, in which the components

xj are q1, p1, one obtains

Lq1 = p1,

PLq1 = p1,

QLq1 = 0,

LQLq1 = 0,

PLQLq1 = 0, (9.31)



194 9. GENERALIZED LANGEVIN EQUATIONS

and

Lp1 = −q1(1 + q22),

PLp1 = −q1(1 + 1

1 + q21
),

QLp1 = −q1(1 + q22) + q1(1 +
1

1 + q21
)

LQLp1 = p1(−(1 + q22) + (1 +
1

1 + q21
)− 2q21

(1 + q21)
2
)− 2q1q2p2,

PLQLp1 = − 2q21p1
(1 + q21)

2
. (9.32)

The approximate equations of motion for q1, p1 are

d

dt
q1 = p1,

d

dt
p1 = −q1(1 + 1

1 + q21
)− 2t

q21p1
(1 + q21)

2
+ etQL

QLp1, (9.33)

where the noise term has not been made explicit. It is instructive to
compare these equations with the naive equations (9.3) derived for the
same problem in Sect. 9.1.

Suppose all one wants to know are the quantities

E[q1(t)|q1(0), p1(0)], E[p1(t)|q1(0), p1(0)],
the conditional expectations of q1(t), p1(t) given q1(0), p1(0). An equa-
tion for these quantities can be obtained by premultiplying equations
(9.33) by the constant operator P (keeping in mind that by definition,
Pq1(t) = E[q1(t)|q1(0), p1(0)], etc.). The noise term drops out. Now
one faces a difficulty: an average of a function of a variable does not
generally equal the same function of the average; for example, it is not
true in general that E[q2] = (E[q])2. An additional simplification is
needed. This difficulty is avoided when one looks for sample paths of
the resolved variables, when it is replaced by the difficulties in solving
the orthogonal dynamics equations for the noise.

Approximation 2: A “Mean Field” Approximation. As-
sume that for the functions on the right-hand side of equations (9.33),
averaging and function evaluation commute, so that, for example,
E[(1 + q21(t))

−1|q1(0), p1(0)] ≈ (1 + E[q1(t)|·]2)−1. This mean field ap-
proximation is legitimate when the noise is small enough. If the noise
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is zero, the approximation is exact. In the specific problem under con-
sideration, it should be a good approximation if the initial data are
sampled from a canonical density with low temperature. We use it
here at the initial temperature T = 1.

Define Q1(t) = E[q1(t)|q1(0), p1(0)], P1(t) = E[p1(t)|q1(0), p1(0)].
The approximate equations of motion become

d

dt
Q1 = P1,

d

dt
P1 = −Q1(1 +

1

1 + Q2
1

)− t
2Q2

1P1

(1 +Q2
1)

2
. (9.34)

These equations can be solved numerically; results are shown in Fig. 9.2
and compared with the truth. Notwithstanding the approximations,
these graphs display the features one may expect in the solutions of the
MZ equations in general: the amplitude of the noise grows in time (we
have not calculated this amplitude explicitly, but it is reflected in the
growing magnitude of the dissipation term), and the averages of the
solutions decay to zero.

time
0 2 4 6 8 10 12 14 16 18 20

E[q1(t) |q1(0), p1(0)]

MZ approximation
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-1

-0.8

Figure 9.2. Approximate solution of the Mori–Zwanzig
equation in the t-model approximation.
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9.8. Exercises

1. Consider a particle of mass m subjected to noise, with the following
stochastic equations of motion:

dq =
∂H

∂p
dt,

dp = −∂H
∂q

dt− a
∂H

∂p
dt+

√
2D dw(t),

where H = p2/2m+Kq2/2, a,D are constants, and w is Brownian
motion. If a,D were both zero, this would be a harmonic oscillator;
we have added a random driving force and a dissipation. Derive the
corresponding Fokker–Planck equation; put it in the form

∂W

∂t
=
∂J1
∂q

+
∂J2
∂p

,

where (J1, J2) is the probability flux vector. Find a condition for
the resulting Fokker–Planck equation to have as stationary solution
the function W = Z−1e−H/T , and compare this condition to the
fluctuation/dissipation theorem for the Langevin equation.

2. Check the relationships

E

[(
qj(0)− γjx(0)

f 2
j

)(
qk(0)− γkx(0)

f 2
k

)]
= δjkT,

E[pj(0)pk(0)] = Tδjk,

E[Fn(t)Fn(t− t′)] = TKn(t− t′),
at the end of Sect. 9.3.

3. Consider the ordinary differential equation dφ(x, t)/dt = 1, φ(x, 0) =
x, construct the corresponding Liouville equation, solve this Liouville
equation (as defined in this chapter) explicitly when the initial datum
is u(x, 0) = x, and verify that u(x, t) = φ(x, t) = x+ t. Now find the
Liouville equation for the probability density W of the particles as
a function of time, prescribe the initial condition W (x, 0) = W0(x),
and check that the solution is W (x, t) = W0(x − t), illustrating the
remark at the end of Sect. 9.4.1 to the effect that the states and the
probability density move in opposite directions.
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4. Consider a “mechanical” system described by the equation d
dt
φ =

−aφ, with initial condition φ(0) = x, where a is a constant. Verify
that its solution is φ(x, t) = xe−at. Find the equivalent Liouville
equation, and check that this equation with u(x, 0) = x has the
same solution.

5. For the four-variable test problem in the last section of the chapter,
determine Q1, P1 (defined in the text) for 0 ≤ t ≤ 2 by repeatedly
sampling q2(0), p2(0) from the initial density given q1(0), p1(0) by
Markov chain Monte Carlo, solving the 4× 4 system and averaging.
Carry out the comparison with the results of the t-model reported
in the text.
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