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Abstract  There are many diagnoses of the bad state of U.S. mathematics educa-
tion, ranging from incoherent curricula to low-quality teaching. In this chapter I will 
address a foundational reason for the many manifestations of failure—a systemic, 
cultural inattention to mathematical meaning and coherence. The result is teachers’ 
inability to teach for understanding and students’ inability to develop personal 
mathematical meanings that support interest, curiosity, and future learning.  
In developing this argument I discuss the subtle ways in which actual meanings with 
which teachers currently teach and actual meanings students currently develop in 
interaction with instruction contribute to dysfunctional mathematics education.  
I end by proposing a long-term strategy to address this situation.

I hope to address the issue of meaning in mathematics education in a way that con-
veys its nature and importance and also that conveys ramifications of addressing this 
issue for teaching, learning, and research in mathematics education. One ramifica-
tion is to become aware of how deeply meaningless mathematics teaching and 
learning are in the United States. We must be aware of the depth of the problem as 
a prelude to devising solutions for it.

In this chapter I discuss meanings of “meaning,” the creation of meaning through 
teaching, and difficulties that students have in creating mathematical meanings.  
I hasten to note that an incoherent meaning is a meaning, so please do not read 
“creating meaning through teaching” as pointing only to rosy outcomes.
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I also share some consequences of systemic inattention to mathematical meaning 
in the United States and a positive outcome of one teacher’s attempt to help students 
build coherent meanings in algebra. My hope is that inspecting these examples will 
clarify ways that attending to issues of meaning allows us to see problems of math-
ematics learning as emergent from fundamental cultural orientations as much as 
from epistemological problems of learning sophisticated ideas. I end with a pro-
posed agenda for how to move forward so that a focus on meaning is central to 
improving mathematics teaching and learning in the United States.

�Meanings of “Meaning”

I have yet to find anyone who finds the phrase the meaning of “meaning” odd. They 
might ask, “What do you mean?” but they do not act as if I’ve spoken nonsense. 
What this points to is something that is innately human. Any time that we invoke the 
idea of meaning we invoke the idea of meaning. The idea of meaning is so deeply 
recursive that when we talk about issues of meaning we are talking about an intel-
lectual capacity that is unique to humans. The recursive nature of attempts to exam-
ine the nature of meaning suggests, in line with Dewey (1910, 1933), that reflection 
and abstraction are at its core.

Philosophical disputes about the nature of meaning have centered historically 
around the referential relationship between language and reality. Ogden and 
Richards (1923/1989) offered their well-known semantic triangle (Fig. 4.1), which 
places referents in the world, but the relationship between a symbol and a referent 
exists only by way of a person making the association. Putnam (1973, 1975) argued 
strongly that meanings cannot be characterized by individuals’ psychological states. 
“Meanings just ain’t in the head,” he famously said (Putnam, 1975, p. 227).

A second perspective on meaning focuses on what people intend to convey via 
an utterance, and what people imagine being conveyed as they hear an utterance. 
Grice (1957) presented an entertaining analysis of this perspective. He first distin-
guished between natural meanings and nonnatural meanings. A natural meaning, in 

Fig. 4.1  Ogden and Richards 
(1923/1989) semiotic triangle
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Grice’s usage, is an inference one makes from observing something in the world 
(e.g., “red spots mean measles”). He was not much interested in this type of mean-
ing, focusing instead on what he called nonnatural meanings—“meaning

NN
”—ideas 

and ways of thinking that someone intends to convey to someone else and uses signs 
or symbols to do so. Grice distinguished among three ways that meaning

NN
 can be 

seen at play in typical uses of “to mean”: 

(1) “A meant
NN

 something by x” is (roughly) equivalent to “A intended the utterance of 
x to produce some effect in an audience by means of the recognition of this intention”; and 
we may add that to ask what A meant is to ask for a specification of the intended effect 
(though, of course, it may not always be possible to get a straight answer involving a “that” 
clause, for example, “a belief that …”).

(2) “x meant something” is (roughly) equivalent to “Somebody meant
NN

 something by 
x.” Here again there will be cases where this will not quite work. I feel inclined to say that 
(as regards traffic lights) the change to red meant

NN
 that the traffic was to stop; but it would 

be very unnatural to say, “Somebody (e.g., the Corporation) meant
NN

 by the red-light 
change that the traffic was to stop.” Nevertheless, there seems to be some sort of reference 
to somebody’s intentions.

(3) “x means
NN

 (timeless) that so-and-so” might as a first shot be equated with some 
statement or disjunction of statements about what “people” (vague) intend (with qualifica-
tions about “recognition”) to effect by x. (Grice, 1957, p. 385)

The significance of Grice’s position for mathematics education is that the “mathe-
matics on the page” cannot be the conveyor of meaning. Meanings reside in the 
minds of the person producing it and the person interpreting it.

Walker Percy, in his famous Delta Factor (Percy, 1975a, 1975b), expressed the 
result of his years-long puzzlement over the nature of man through an analysis of 
Helen Keller learning the word “water.” He began from the perspective of Ogden 
and Richards’ triangle, but later abandoned that approach because of the difficulty 
he had arguing that Keller had access to a real-world material called “water.” Percy 
realized that Keller’s connections were not between water and a sign. Rather, the 
connections were between experiences that she was having. Instead of the causal 
relations that Ogden and Richards posited between symbol and thought, Percy 
insisted that there was no causation at all—that the triangle was irreducible, and that 
the links in the triangle were all made by Helen. Percy called Keller’s irreducible 
construction an instance of The Delta Phenomenon. He reflected upon his attempt 
to use Ogden and Richards’ triangle to capture “what happened” when Keller 
learned the word “water”:

The longer one thought about the irreducible triangle and its elements and relations, the 
queerer they got.

Compare Delta Δ phenomenon with the pseudo triangle of Ogden and Richards: 
buzzer → dog → food. The latter is a pseudo triangle because one needn’t think of it as a 
triangle at all but can conceive the event quite easily as a series of energy exchanges begin-
ning with buzzer and ending in the dog’s salivation and approaching food.

But consider the Delta phenomenon in its simplest form. A boy has just come into the 
naming stage of language acquisition and one day points to a balloon and looks question-
ingly at his father. The father says, “That’s a balloon,” or perhaps just, “Balloon.”

Here the Delta phenomenon is as simple as Helen’s breakthrough in the well-house, the 
main difference being that the boy is stretching out over months what Helen took by storm 
in a few hours.

4  In the Absence of Meaning…



60

But consider.
Unlike the buzzer-dog-salivation sequence, one runs immediately into difficulty when 

one tries to locate and specify the Delta elements—balloon (thing), balloon (word), boy 
(organism).

In a word, my next discovery was bad news. It was the discovery of three mystifying 
negatives. In the Delta phenomenon it seems: The balloon is not the balloon out there. The 
word balloon is not the sound in the air. The boy is not the organism boy. (Percy, 1975a, 
Kindle Locations 661–673).

In other words, Percy saw Keller’s construction of meaning as an epiphenomenon, 
an emergent unification created by Keller’s association of her tactile experience of 
what an observer would call water pouring over her hand and the tactile experience 
of what Anne Sullivan would have called signing into her hand. Keller made her 
experiences whole through an act of naming. It was Keller’s connecting these expe-
riences that made Sullivan’s sign have a referent, and the meaning within Keller was 
irreducible. It had all three components simultaneously.

Dewey (1910, 1933) considered meaning and understanding to be synonymous, 
and either to be the product of thinking. His idea of thinking was very special, how-
ever. His interest was in what he sometimes called reflective thinking. To Dewey, 
coherence is a characteristic outcome of thinking—thinking leads to “the organiza-
tion of facts and conditions which, just as they stand, are isolated, fragmentary, and 
discrepant, the organization being effected through the introduction of connecting 
links, or middle terms” (Dewey, 1910, p. 79). Dewey also considered thinking to be 
the primary mechanism for the construction and refinement of meaning: “That 
thinking both employs and expands notions, conceptions, is then simply saying that 
in inference and judgment we use meanings, and that this use also corrects and 
widens them” (Dewey, 1910, p. 125). He also emphasized the role of meaning in 
human communication:

It is significant that one meaning of the term understood is something so thoroughly 
mastered, so completely agreed upon, as to be assumed; that is to say, taken as a matter 
of course without explicit statement. The familiar “goes without saying” means “it is 
understood.” If two persons can converse intelligently with each other, it is because com-
mon experience supplies a background of mutual understanding upon which their respec-
tive remarks are projected. To dig up and to formulate this common background would 
be imbecile; it is “understood,” that is, it is silently sup-plied and im-plied as the 
taken-for-granted.

If, however, the two persons find themselves at cross purposes, it is necessary to dig up 
and compare the presuppositions, the implied context, on the basis of which each is speak-
ing. The im-plicit is ex-plicit; what was unconsciously assumed is exposed to the light of 
conscious day. (Dewey, 1910, p. 214).

Meaning and understanding were synonymous to Piaget, also. But he put it differ-
ently than Dewey. Though I know of no place where Piaget said this directly, I agree 
with Skemp (1961, 1962, 1979) that, to Piaget, “to understand” was synonymous 
with “to assimilate to a scheme.” Of course, this is entirely unhelpful if we do not 
know what Piaget meant by a scheme.

My understanding of what Piaget meant by “scheme” differs from that pro-
posed by Cobb and Glaersfeld (1983) and by Glasersfeld (1995, 1998). They 
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proposed that, to Piaget, a scheme was a three-part mental structure: a condition 
that would trigger a scheme, an action or a system of actions, and an anticipation 
of what the action should produce. I believe what Cobb and Glasersfeld described 
fits better with Piaget called a schema of action (Piaget, 1968, p. 11; Piaget & 
Inhelder, 1969, p. 4). Piaget spoke of a child’s sucking schema, for example. I 
believe Piaget had larger organizations in mind when he spoke of schemes—orga-
nizations of operations, images, schemata, and schemes—that did not have easily 
identified entry points that might trigger action.1 I have spoken, for example, of a 
rate of change scheme (Thompson, 1994a, 1994c; Thompson & Thompson, 1992, 
1996) that entails a complex coordination of understandings of quantity, variation, 
relative change, accumulation, and proportionality. Thompson and Saldanha 
(2003) wrote about a coordination among understandings of quantity, measure, 
proportionality, multiplication, and division as comprising a fraction scheme. So, 
in Piaget’s system, to understand means to assimilate to a scheme, but this is still 
somewhat unsatisfactory because we need to understand Piaget’s meaning of 
assimilation.

Standard meanings of “assimilate” all entail some sense of something being 
absorbed by something else. As Piaget famously said, “A rabbit that eats a cabbage 
doesn’t become cabbage; it is the cabbage that becomes rabbit—that’s assimilation. 
It’s the same thing at the psychological level. Whatever a stimulus is, it is integrated 
with internal structures” (Bringuier, 1980, p. 42). Piaget’s use of “assimilate” is in a 
cognitive sense. It does not entail energy transfer. Rather, it emphasized absorption 
of information. A physical stimulation on a retina creates information that is pro-
cessed by the nervous system. What looks like absorption is actually imbuement. 
Montangero and Maurice-Naville (1997, p. 72) quoted Piaget as saying,

Assimilating an object to a scheme involves giving one or several meanings to this object, 
and it is this conferring of meanings that implies a more or less complete system of infer-
ences, even when it is simply a question of verifying a fact. In short, we could say that an 
assimilation is an association accompanied by inference. (Johnckheere, Mandelbrot, & 
Piaget, 1958, p. 59)

So, to understand is to assimilate to a scheme. But whence schemes? From assimila-
tion. From a Piagetian viewpoint, to construct a meaning is to construct an under-
standing—a scheme—and to construct a scheme requires applying the same 
operations of thought repeatedly to understand situations being made meaningful by 
that scheme. “Assimilation … is the source of schemes …. Assimilation is the oper-
ation of integration of which the scheme is the result” (Piaget, 1977, p. 70). Put 
another way, we construct stable understandings by repeatedly constructing them 
anew.

Hiebert and Carpenter (Carpenter, 1986; Hiebert & Carpenter, 1992; Hiebert & 
Lefevre, 1986) characterized mathematical understandings similarly to Piaget. They 
spoke of desirable understandings as rich networks of connections among concepts 

1 The concept of scheme is recursive. A scheme can entail other schemes.
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and procedures. Their characterization of concepts, however, is largely noncogni-
tive. They did not address how someone thinks to have them and their notion of 
meaning is static. I find Piaget’s ideas on understanding (meaning) to do more work 
for thinking about teaching and learning. As Piaget and Garcia (1991) made clear, 
their notion of meaning is implicative—meaning comes from an assimilation’s 
implications for further action. Moreover, Piaget’s genetic epistemology entails a 
rich conception of ways that understandings can be made and how they work in 
reasoning.

�Why Attending to Meaning Matters

In one sense, the issue of meaning is irrelevant to mathematics education—if we 
accept the current state of mathematics education. It is rare for a mathematics 
teacher, at least one in the United States, to be concerned with meaning, either 
intended or conveyed. If we believe the results of TIMSS classroom studies (e.g., 
Hiebert et  al., 2005; Schmidt, Houang, & Cogan, 2002; Schmidt, Wang, & 
McKnight, 2005; Stigler & Hiebert, 1999), the main goal of most U.S. mathematics 
teachers is that students learn to perform prescribed procedures. Issues of meaning 
are largely irrelevant. But if we intend that students develop mathematical under-
standings that will serve them as creative and spontaneous thinkers outside of 
school, then issues of meaning are paramount.

I am therefore speaking to educators who are concerned about the conveyance of 
mathematical meaning. To convey meaning is one of the most important goals 
towards which teachers can strive. As we think about teaching and the conveyance 
of mathematical meaning, it will be productive to look for useful ways to imagine 
how “conveyance” happens. Is meaning on a printed page? Written on a white-
board? Does it appear on a computer screen? Is meaning conveyed to students by 
directing their attention to “real-world” referents? Each of these stances puts mean-
ing in the world so that there are “correct” meanings to be had and any meanings 
that depart from them are incorrect. Simon, Tzur, Heinz, Kinzel, and Smith (2000) 
characterized this image of conveying mathematical meaning “perception-based” 
mathematics. They claimed that this is the predominant view of mathematics 
schoolteachers and that teachers expect students to see in mathematical statements 
what they see. It is “there” for students to take up.

I concur with Cobb (2007) in taking the stance that we should adopt theoretical 
perspectives only to the extent that they help us do our work. I maintain that any 
stance that puts meaning outside of individuals is less helpful for purposes of 
instructional and curricular design, teacher preparation, and professional develop-
ment than a stance that puts meaning within individuals. This is because most of 
our efforts in working with students occur at a time when they do not possess 
mathematical meanings that we hope they will have eventually. Ogden and 
Richards’ triangle is of little use in this case. Their triangle offers no guidance. The 
meanings that matter at the moment of interacting with students are the meanings 
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that students have, for it is their current meanings that constitute the framework 
within which they operate and it is their personal meanings that we hope students 
will transform. Our making explicit the meanings we intend that they have eventu-
ally is important, because they comprise our instructional and curricular goals. But 
those targeted meanings must come to exist within individual students—in the 
sense that Percy (1975a) described Helen Keller’s acquisition of “water”—for us 
to have succeeded.

There is empirical evidence that the mathematical meanings a teacher pos-
sesses matter in regard to what students learn. For example, Branca (1980) studied 
the communication of semantic structure from teacher to student regarding the 
content of a unit on operational systems. He studied six high school mathematics 
teachers over the duration of the instructional unit. At the beginning of the unit 
there was little resemblance between what teachers meant and what students 
meant by key terms and phrases. By the end of the study, students’ meanings 
regarding operational systems very much resembled their teacher’s—including 
inappropriate meanings. Teachers’ and students’ meanings became aligned even 
about ideas that were not taught. So, even tacit meanings that teachers carry can 
be conveyed to students. (I address how this might happen in the next section.) 
Branca’s study, however, was tightly focused on definitions and theorems having 
to do with systems defined by operations on sets, so issues of meaning were cen-
tral to the subject matter being taught. Examples given later in this chapter show 
that students develop understandings and ways of thinking about the mathematics 
they learn even when meaning is not central to the teachers’ subject matter. But 
the understandings that students develop in those settings are not propitious for 
later learning.

�Conveying Meaning Through Teaching

If we maintain the stance that meanings are entirely within individuals, we face the 
immediate question of how people can appear to learn a meaning from someone 
else. How shall we explain the seemingly evident fact that teachers can convey 
meanings to students? I find two sources immensely helpful in conceptualizing 
human communication so that we can speak sensibly about the conveyance of 
meaning without violating our self-imposed stance that all meanings lay within 
individuals. The first is Piaget’s notion of intersubjectivity (Glasersfeld, 1995; 
Piaget, 1995; Thompson, 2000) and the other is Pask’s conversation theory (Pask, 
1975, 1976; Scott, 2009). Piaget placed great emphasis on the idea of decentering, 
or attempting to adopt a viewpoint that differs from your own. He used the term 
intersubjective operations to describe thoughts that are directed at another. As 
Glasersfeld (1995) put it, once a child starts to think that another person “thinks like 
me,” he or she can then also notice occasions where the person seems not to think 
like her. This is at the root of what Glasersfeld called “the construction of others” 
(Glasersfeld, 1995, Chap. 6).
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Pask’s conversation theory attempted to explain how social interaction can lead 
to participants’ construction of knowledge. His theory was rather technical, but the 
important part for this chapter is his concept of a conversation. To Pask (1975, 
1976), a conversation is more than face-to-face verbal exchanges confined to a spe-
cific place and time. Rather, a conversation involves all the actions entailed in con-
versants’ attempts to convey and discern meaning. So, a classroom conversation, in 
Pask’s sense, could include an exchange that involved the teacher introducing an 
idea, handing out a worksheet, and discussing how he or she expects students to use 
it. The teacher’s soliloquy can be considered part of an ongoing conversation, as can 
students asking questions about a worksheet or about what the teacher expects. It 
goes without saying that conversations are most productive when each participant is 
oriented to understand what others have in mind and is oriented to have others 
understand what he or she intends.

What follows is an amalgam of Piaget’s notion of intersubjective operations and 
Pask’s conversation theory. The amalgam is necessary simply because neither 
Piaget nor Pask focused squarely on the construction of mathematical meaning. 
Pask’s theory was quite technical, and it was more interested in conversations than 
in participants. His interest in teaching expressed itself largely in the form of adap-
tive teaching machines that made decisions about problems that a student should 
work given the student’s performance on prior problems. He paid little attention to 
imagery and its role in meaning, and he did not consider specific mathematical 
meanings, such as what it might mean for someone to understand the idea of quan-
tity. On the other hand, Piaget’s theory embraced imagery as a key component of 
cognitive development (see Thompson, 1994a, 1996), but he was not interested in 
specific mathematical ideas.

Figure 4.2 shows Persons A and B attempting to have a meaningful conversation. 
Person A intends to convey something to Person B. The intention is constituted by 
a thought that A holds that he wishes B to hold as well. The figure shows A not just 

Fig. 4.2  Summary of 
intersubjective operations 
involved in the 
communication of meaning
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considering how to express his thought, but considering how B might interpret A’s 
utterances and actions. It is worthwhile noting that A’s action towards B is not really 
towards B. A’s action towards B is towards A’s image of B. In a sophisticated con-
versation A’s action towards B is not just towards B, but it’s towards B with some 
understanding of how B might hear A. Likewise, B is doing the same thing. He 
assimilates A’s utterances, imbuing them with meanings that he would have were he 
to say the same thing. But B then colors those understandings with what he knows 
about A’s meanings and according to the extent to which A said something differ-
ently than B would have said it to mean what B thinks A means. B then formulates 
a response to A with the intent of conveying to A what B now has in mind, but B 
colors his intention with his model of how he thinks A might hear him, where the 
model is updated by anything he has just learned from attempting to understand A’s 
utterance. And so on.

The process of mutual interpretation and accommodation described above, 
which Steffe and Thompson (2000) also called reciprocal assimilations, is what I 
understand Piaget to have meant by the negotiation of meaning. The negotiation is 
not sitting down and developing a contract, like negotiation of meaning is often 
portrayed. The negotiations that happen are rarely negotiated explicitly. The nego-
tiations that happen involve each person monitoring the other’s responses, compar-
ing them to the responses he anticipated, and then adjusting his model of the other 
to make better decisions about how to act and what to expect in the future. This, I 
believe, is what Bauersfeld (1980, 1988) meant by communication as interactions 
among mutually reflexive systems. Both A and B adjust their understandings of the 
other’s understanding, and possibly adjust their personal understandings in the pro-
cess. In Piaget’s and Glasersfeld’s usage, A’s and B’s conversation enters a state of 
intersubjectivity when neither of them has a reason to believe that he has misunder-
stood the other. They may in fact have completely misunderstood each other, but 
they have not discerned any evidence of such. As Glasersfeld (1995) makes clear, a 
conversation being in a state of intersubjectivity has no implication for whether the 
participants’ meanings align. Rather, the nature of a conversation that is in a state of 
intersubjectivity is that neither participant has any reason to believe that he has mis-
understood the other. It is important to note that it is a conversation that is in a state 
of intersubjectivity. It is a category error to say that the participants are in a state of 
intersubjectivity.

The above description of conversation assumes that all participants really are 
participants—that they care to understand other participants. If, for some reason, B 
were to not care what A meant, then there is no conversation. This observation has 
important implications for teachers’ management of classroom conversations: stu-
dents must intend to discern meaning in order to construct meaning from a conver-
sation. The teacher’s guidance in creating an atmosphere where making meaning is 
valued and expected is central to students’ construction of meaning through conver-
sations (Cobb, Boufi, McClain, & Whitenack, 1997). It is also important to distin-
guish between a conversation of equals and a classroom conversation. The teacher 
is a very special participant in classroom conversations. A teacher has power and 
trust in a conversation that students do not have. Teachers can manage 
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conversations; students are rarely positioned to manage a conversation. Teachers 
can manage a conversation so that students do have power and trust, but it is teach-
ers who allow and nurture those opportunities.

Many people take the case of intersubjectivity in a two-participant conversation 
as being completely unlike a conversation that involves many participants. “It is 
impossible for each participant to have a model of every other participant’s under-
standing,” they might say. This stance, however, misses the essential character of a 
conversation that is in a state of intersubjectivity. A conversation is in a state of 
intersubjectivity when it is in a state of equilibrium—when each participant takes 
for granted that no one has misunderstood anyone else’s understanding. 
Disagreements do not necessarily puncture a conversation’s equilibrium. Two peo-
ple can disagree with what they discern the other to mean, but if neither person feels 
that he or she has misunderstood the other, then the equilibrium persists. In a sense, 
each person has created an epistemic “other” to which he or she can attach a variety 
of ways of thinking about the conversation’s subject.

We can return now to Branca’s (1980) study and the question of how teachers 
conveyed meaning to students. The teachers needn’t have said, “No, no, no, that 
meaning is wrong, I want you to have this meaning.” The teachers probably rarely 
said anything like this. Rather, by focusing their attention on their meaning of an 
operational system, students adapted their understandings to fit what they discerned 
the teacher to have in mind. This would account for students ending with meanings 
that were compatible with their teachers’ meanings even when those meanings were 
either normatively inappropriate or never discussed explicitly.

The notion of intersubjectivity, as described above, can also give us insight into 
how miscommunication happens. The example given below illustrates a conversa-
tion that was in a state of intersubjectivity for a relatively long period of time even 
though the participants had misinterpreted each other quite severely.

Mindi is a ninth-grader enrolled in Algebra I. Her teacher, Sheila, is a participant 
in a professional development project that emphasizes student-oriented instruction 
that focuses on supporting students’ creation of meaningful, coherent mathematics. 
Sheila’s review of arithmetic at the beginning of the year emphasized meanings and 
ways of thinking that underlie arithmetical operations (e.g., division as measuring 
or partitioning, multiplication as multiple copies or as dilation, fractions as a recip-
rocal relation of relative size, order of operations as a system of conventions that 
imposes structure on arithmetic and symbolic expressions, and so on). Prior to 
where this example starts, Sheila had drawn on these meanings of addition, subtrac-
tion, multiplication, division, and order of operations to help students build ways to 
think about expressions and equations. For example, instead of teaching “do the 
same to both sides” Sheila emphasized inferences one could make about numerical 
relationships that would allow you to see numerical relationships that were not 
directly stated. For instance, when discussing what value or values of x makes 
x/5 + 15 = 30 true, she guided students to reason about what the equation is saying:

If x/5 + 15 is 30, then x/5 must be 15, because 15 + 15 is 30. Now x/5 means “one-fifth of the 
number represented by x.” If one-fifth of the number x is 15, and since there are five 1/5ths 
of x in x, then x must contain five fifteens, and therefore must be five times as large as 15.
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Sheila used diagrams and illustrations to accompany her statements, and she con-
sciously designed her instruction so that students would generate equation-solving 
methods as abstractions from their experiences of repeated reasoning.

Many of Sheila’s students seemed to thrive in the context of her instruction; 
some did not. Sheila asked that I interview Mindi, a hardworking, bright girl who 
did well in class until the section on solving linear equations. Several excerpts of 
that interview follow.

�Excerpt 1: Meaning of Equations. P: Pat; M: Mindy

	1.	 P: Before we start, could you tell me what pops into your head when you see an 
equation?

	2.	 M: Well, you are supposed to isolate the variable so that it equals a number or 
another expression. If it equals another expression, then you try again to isolate 
the variable so that it equals a number.

In a sense, Mindi’s description of her meaning for equations seems quite stan-
dard. When you see an equation you think to solve it. Excerpt 2, however, reveals 
that Mindi did not interpret equations as stating numerical relationships. It reveals 
the depth of her procedural perspective.

�Excerpt 2: w/3 = 11. P: Pat; M: Mindy

	1.	 P: I’m not asking you to solve this equation. Instead, just tell me what it says.
	2.	 M: It says that when you divide some number by 3, you get 11.
	3.	 P: Okay. Now, can you tell me what this expression stands for (circles w/3)?
	4.	 M: It stands for a number.
	5.	 P: Any idea what that number is?
	6.	 M: No. I’d have to solve for w. Then I could tell you what w slash three stands 

for.2

Mindi revealed the same way of thinking when discussing 8 m − 4 = 8 (I circled 
8 m − 4) and a/5 + 15 = 30 (I circled a/5 + 15). Thus, it seems safe to say that the 
meaning of an equation, for Mindi, was that it was a symbolic form that she was 
expected to act on to end with another form x = number. This was confirmed again 
when she actually solved the equation 8 4 8m − = , getting m = 12/8 (“12 over 8, 

2 Sheila’s expectation was that students would understand that, in the context of the equation 
w/3 = 11, w/3 stood for the number 11. Though she expected this interpretation, she never stated it.
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which reduces to 3 over 2”). I asked her whether the answer is “12 over 8” or “12 
eighths.” She stated that she preferred saying “12 over 8” because it made more 
sense to her than “12 eighths.”

I then asked Mindi to revisit the intermediate result 8 m = 12 that she had written, 
and which appeared immediately above “m = 3/2.” I said, “This says that 12 is some 
number of times as large as 8. Twelve is how many times as large as 8?” No answer. 
“Is it 25 % larger, 100 % larger?” Mindi thought that 100 % was too much. I then 
asked, “What is 150 % of 8?” Mindi replied that she had difficulty finding 150 % of 
a number. In other words, Mindi’s meaning for equations did not entail seeing them 
as an expression of numerical relationships. She did not see that her answer m = 3/2 
meant that 12 is 3/2 times as large as 8. Her numerical reasoning did not support 
seeing equations that way. She could not imbue an equation with meanings drawn 
from numerical relationships. Her scheme for equations entailed actions for operat-
ing on them and little else.

Excerpt 3, below, was about the equation a/5 + 15 = 30. It reveals more about 
Mindi’s schemes—not just her scheme for equations, but her schemes for engaging 
with classroom mathematical instruction. It picks up after I had led Mindi to the 
conclusion that a/5 had to be 15 because 15 + 15 is 30.

�Excerpt 3: a/5 + 15 = 30. P: Pat; M: Mindy

	 1.	 P: You said that a divided by 5 is 15. Can you interpret a/5 as a fraction?
	 2.	 M: It is 1/5 of a.
	 3.	 P: C an you draw a diagram to show 1/5 of a?
	 4.	 M: ( Draws the upper part of this diagram. Pat writes “1/5 a” below it.)
	 5.	

	 6.	 P: Does this tell you anything about what a is?
	 7.	 M: No. Not really.
	 8.	 P: How many fifths of a are in a?
	 9.	 M: Five.
	10.	 P: Can you draw them? (See below.)
	11.	

	12.	 […]
	13.	 P: You figured out that 1/5 of a is 15, and therefore that 5 of those things make a.
	14.	 M: Yeah.
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	15.	 P: Does that make sense?
	16.	 M: Yeah, kind of.
	17.	 P: What’s the “kind of” part?
	18.	 M: Well, I just would probably never do it that way, ‘cause // it’s kind of confus-

ing. Like it kinda makes sense, but it’s still kinda confusing.
	19.	 P: Well, notice here (on a quiz she took the prior week) what you wrote. (Mindi 

had written a/5 = 45, and a = 45/5). So, even doing it your way there was some-
thing confusing about it.

	20.	 M: Yeah.
	21.	 P: So, let me ask you a question. You seem to be reluctant to figure things out, 

without a rule. Is that right?
	22.	 M: Yeah.
	23.	 P: Why is that?
	24.	 M: I don’t know. Well, whenever I do it this way (reasoning with numerical 

relationships) I feel like I’m doing it wrong. You know, like I mean, with a rule, 
I can be sure. Because a rule says to do this, I know what I’m supposed to do 
and I know I’m doing it right, but with this way there is too much room for 
error. I think.

	25.	 P: Okay. What about all these places where you used rules (pointing to errors 
she made on her quiz) and …

	26.	 M: Most of them are stupid mistakes. Like here I added 15 instead of subtract-
ing 15. With that one (another error) // a stupid mistake.

	27.	 P: So, how can you avoid stupid mistakes?
	28.	 M: Just by practicing more. Studying more.
	29.	 P: Do you practice a lot?
	30.	 M: No, not really. But I never needed to! Because I’d always just got // done it, 

like perfect.
	31.	 P: So it’s a little more complicated now?
	32.	 M: Yeah, but I’ll just practice more and I’m sure I’ll do okay.
	33.	 P: Okay. So you have more faith in practicing the rules than you do in practicing 

reasoning it through?
	34.	 M: Yes.
	35.	 […]
	36.	 P: Well, this has been very useful for me. I hope it’s been useful for you.
	37.	 M: Yeah.
	38.	 P: Is there anything you would like to ask me?
	39.	 M: (Pause.) Ummm. Well, maybe just like // why do you want us to do it this 

way (reasoning) so much?

It is clear from Excerpt 3 that Mindi had little faith that reasoning was a reliable 
problem-solving technique and that she had much greater trust in using procedures 
that she had memorized.

In answering Mindi’s last question I explained the benefits of reasoning—making 
fewer mistakes and catching mistakes when you make them. I also explained that by 
practicing reasoning students often found learning new ideas to be easier. I then 
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asked Mindi about what she did when Sheila tried to teach her to reason about 
problems. It turned out that Mindi understood the reasoning that Sheila thought she 
was teaching as just the steps that Sheila wanted Mindi to remember. Mindi found 
the steps to be confusing—she couldn’t remember them. So Mindi waited until 
Sheila taught “the rule.” “The rule” from Sheila’s perspective was a generalization of 
the reasoning she thought she had taught, but from Mindi’s perspective it was the 
meat of the lesson, and Mindi could not understand why Sheila waited so long to tell it.

To summarize, Mindi’s scheme for equations (apply procedures to isolate a vari-
able) existed within a larger scheme that anticipated what she should get from 
instruction (rules) and how she should participate in lessons (remember the rule). 
Mindi saw her role as remembering steps; the teacher’s role was to provide steps. 
Successful participation, for Mindi, was that she had a clear idea of the rules she 
was supposed to use. This is the way Mindi assimilated Sheila’s actions and utter-
ances—even though Sheila intended her actions and utterances to help students 
construct meanings. Mindi assimilated Sheila’s reasoning steps as “new rules”—
rules that were harder for her to remember than the bottom-line rules that she even-
tually discerned. Despite its dysfunctional nature, the conversation constituted by 
Sheila–Mindi interactions was in a state of intersubjectivity until Sheila discerned 
that something was amiss with her understanding of Mindi’s understanding.

Sheila was aghast as she listened to Mindi’s interview. She had no idea that 
Mindi was hearing her as she was. Sheila decided to find out whether other students 
had understood her instruction as Mindi did—as just providing steps they should 
memorize. She opened up classroom discussions to include several questions I’d 
asked in Mindi’s interview. As a result, she found that Mindi’s perspective was com-
mon, even among students who Sheila thought had been solving problems from a 
basis of meanings of equations and meanings of operations.

I suspect that Mindi’s predominant experience in mathematics classrooms prior 
to entering Sheila’s had been such that understanding was equated with correct per-
formance, and that classroom conversations, even when everyone thought they were 
about understanding, were actually about procedures. Once Mindi developed her 
way of thinking about what mathematics is, she then heard her teachers projecting 
that same way of thinking, and she found no occasion to believe otherwise. Similarly, 
her teachers thought that Mindi understood what they intended because Mindi per-
formed successfully, and the conversations in which Mindi participated were such 
that her teachers saw no occasion to believe otherwise.

The final comment to be made here is about teachers’ expectations for students’ 
understanding. Branca’s (1980) study, mentioned earlier, suggests that teachers’ 
meanings create a space for students’ meanings. If a teacher’s image of what stu-
dents are to learn entails weak meanings, or no meanings, then intersubjectivity can 
be attained with students collectively possessing a wide variety of meanings that fit 
the discourse, many of which we would identify as problematic. When a teacher’s 
image of what students should learn entails a strong system of meanings, then the 
space for possible student meanings is much smaller, assuming that teacher and 
students mutually adapt their understanding of the other. The teacher will find more 
occasions to discern that students’ meanings differ from what he or she intends, and 
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students will find more occasions to discern that what the teacher has in mind differs 
from what they understand. If the classroom culture is such that participants expect 
that noticed differences in meaning should be resolved, then it is more likely that 
students will develop coherent systems of meaning that guide their mathematical 
performance.

The discerning reader might object to the previous paragraph—Sheila had strong 
meanings and yet Mindi’s thinking seemed unconstrained by them. How is this pos-
sible? It is possible because the conversations that Sheila managed had strong over-
tones of “what should we do,” not “what should we mean.” Sheila told students what 
they should mean, and then too quickly moved the discussion to how to answer 
questions in the worksheets “meaningfully.” She demonstrated ways to answer 
questions using the meanings she had told them, but the conversation allowed stu-
dents to think that she was simply showing them how to answer the questions. 
Students could safely ignore those occasions when Sheila asked them questions 
they couldn’t answer (e.g., “How does the meaning of division tell us to multiply 
both sides by 5?”). The conversation’s bottom line, in the students’ eyes, was that 
you should multiply both sides by 5.

�What Happens in the Absence of Meaning?

The case of Mindi illustrates how a well-meaning teacher who has a fairly strong 
system of meanings can nevertheless fail to influence a student in the way he or she 
intends. Another case, though, is when a teacher does not have a strong system of 
meanings regarding a particular body of ideas. A teacher with a weak system of 
meanings for an idea cannot help being vague or confusing when he or she speaks 
about ideas, and naturally avoids issues of meaning. However, even if he or she 
avoids speaking about ideas explicitly, his or her actions will be unconstrained by a 
strong system of meanings, and a conversation’s meaning-spaces will have a high 
probability of entailing many inappropriate possibilities. As Dewey (1910) said, 
vagueness of meaning is a source of misunderstanding, misapprehension, and mis-
taking. Confused meanings (i.e., undifferentiated, vague, confounded) are “too 
gelatinous” to support students’ productive analysis and reflection: “Vagueness dis-
guises the unconscious mixing of different meanings, and facilitates the substitution 
of one for the other” (Dewey, 1910, p. 129ff).

Dewey’s point is illustrated by a group of high school teachers who were work-
ing together in weekly Professional Learning Community (PLC) meetings that they 
used to discuss material that they taught in common. At the time of this meeting, 
January 20, 2006, they were in the midst of teaching a unit on trigonometry to tenth-
graders. The current topics were angle and angle measure.

An outside facilitator met with the group in the role of a consultant. The teachers 
and facilitator were arranged in a semicircle. The camera was about 20  ft away, 
directly in front of them. Excerpt 4 begins with the facilitator asking, offhandedly, 
“What is an angle measure?”
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�Excerpt 4: Teachers Discuss the Meaning of Angle Measure.  
F: Facilitator; T: Teacher

	 1.	 F: So, what is angle measure? You might raise this issue …
	 2.	 T1: (Interrupting) What is angle measure? I think that is a good question.
	 3.	 F: What is angle measure?
	 4.	 T2: It is very different from measuring the length of a side // I had a couple of 

students who thought they could be the same thing.
	 5.	 F: What did you say to them?
	 6.	 T2: You can’t do that! They’re not the same thing!
	 7.	 T1: So, how would you define it [angle measure]?
	 8.	 T3: How do you // how do you define angle measure?
	 9.	 T1: The ray sweeps // isn’t the angle created when the terminal ray sweeps from 

the initial side to the terminal side // so angle measure is defined as what?
	10.	 T3: Are you talking about, then you start getting into that thing of are you talk-

ing about arc length?
	11.	 T1: Well, I don’t know. How do you define angle measure?
	12.	 T4: The curvature.
	13.	 T3: (To T1) You mean your initial ray?
	14.	 F: How do you [say], “Angle measure means this.”
	15.	 T3: (Reading from a textbook.) “The measure of angle A is denoted by // The 

measure of an angle can be approximated with a protractor using units called 
degrees. For instance” // they don’t ever get into what is a degree.

	16.	 T1: (Reading) An angle consists of two different rays.
	17.	 T3: That’s just defining an angle.
	18.	 T1: It’s the portion of a complete rotation that you take out as the terminal side 

sweeps (stops).

The teachers’ only meaning for angle measure was to lay a protractor down and 
read off a number. They realized, however, that reading off a number from a protrac-
tor does not explain what an angle measure is. The teachers’ meaning for angle 
measure (or lack thereof) had consequences for students’ learning.

We asked the teachers to give this question to their students: “What are you mea-
suring when we measure an angle?” Students’ responses are summarized in 
Table 4.1, which shows that 93 % of the students thought that an angle measure was 
measuring something between the sides, either a distance from one side to the other 
or an area bounded by the angle’s sides. Only one student said anything related to 
an arc, and even this answer seems to be oriented towards a distance. We should 
note that teachers never discussed with students what an angle measure is, or what 
one measures when measuring an angle. The answers students gave might have 
been preformed, in the sense that these are meanings that they created prior to their 
geometry class. However, even if their meanings existed prior to taking geometry, it 
seems that there was nothing in their experiences within their geometry class to alert 
them that their particular ways of thinking might be problematic. We must also 
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Table 4.1  Students’ 
responses to “What are you 
measuring when you measure 
an angle?” (n = 110)

Student response Percentage (%)

Distance between sides 51
Distance between labeled points 2
Shape of the angle (directions of the 

rays)
3

Diameter of the angle 2
“Arc of the angle (how wide it is)” 1
Area of the angle 42

Fig. 4.3  Problem included in 
teachers’ student interview 
protocol

entertain the possibility that students had never thought about what they were mea-
suring when finding an angle measure. This interpretation seems sensible if their 
only experience with measuring angles was simply to follow a procedure that 
employed a protractor.

Independently of our question in Table 4.1, teachers created a set of geometry 
questions and an interview protocol as part of their PLC work, and they each inter-
viewed three students from their respective class. One of the interview questions is 
given in Fig. 4.3. The teachers were to ask students to solve the problem and then 
were to discuss the students’ solutions.

The interviews took place in mid-March, 2006, at the end of this particular 
instructional unit. In their March 26 PLC meeting they discussed students’ responses 
to the interview questions. Excerpt 5 presents the portion of that meeting in which 
they discussed students’ answers to the problem shown in Fig. 4.3.

�Excerpt 5: Teachers Discuss Results of Student Interviews

	1.	 T4: I was really surprised at the interviews. Two of the three students I inter-
viewed really mixed information. They mixed 180° in a triangle // They confused 
180 with a side length. They subtracted 180 − 43 and got 137. Then they sub-
tracted 80 from 137 to get 57 for the other side length.

	2.	 T3: Triangles have to add up to 180.
	3.	 T2: My kids make no distinction between angles and sides.
	4.	 T5: My honors kids today were going to take 360 and subtract a length, and I told 

them you are mixing angles and lengths! You can’t do that!!
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I find it remarkable in Excerpt 5 that none of the teachers considered the possibil-
ity that the students’ confusions were rooted in the teachers’ teaching. Why should 
students not confuse (what we take as) angle measures and (what we take as) side 
lengths when, to the students, numbers rarely have any meaning? By the teachers’ 
own admission in Excerpt 4, they paid no attention to the meaning of an angle mea-
sure. Moreover, it is ironic that in the context of complaining that students cannot 
differentiate between angle measures and side lengths that T3 uttered, “Triangles 
have to add up to 180.” I do not know what it means to add up triangles. If this is the 
level of precision T3 used in class, then it is no wonder that her students cannot 
distinguish between angle measures and side lengths.

I suspect that, in the context of classroom instruction, the teachers’ students 
could easily succeed in the moment without paying any attention to the meanings of 
the numbers that appeared in problems. Within the context of the problems they 
were working in a particular section, students simply applied the procedure that was 
being taught at that moment. A number was a number was a number. When different 
numbers mean different things within the context of one situation, to distinguish 
between numbers that are side lengths and numbers that are angle measures stu-
dents must have a system of meanings that keep them separate.

�An Example of a Teacher Attending to Meaning

To construct a meaning requires repeatedly constructing and using the operations 
(ways of thinking) whose organization constitutes that meaning. But constitutes that 
meaning. The most usable meanings are those that are richly connected with imag-
ery action and that tie into other meanings.

In 2006–2007, I had the pleasure of working with a ninth-grade Algebra I teacher, 
Augusta, who took seriously the matter of students learning mathematics meaning-
fully and coherently. She structured the subject over the year so that students would 
build ways of thinking that would constitute an understanding of algebra that had a 
clear trajectory for supporting their future learning of calculus. I share a sample 
drawn from her unit on polynomial functions to illustrate what I have said about 
constructing a meaning by repeatedly constructing and using the operations (ways 
of thinking) whose organization constitutes that meaning. But to make this sample 
understandable, I must first describe how she prepared students to participate in the 
conversations about the idea of polynomial function that I will share.

Augusta was conscientious about helping students build meanings that would 
lend coherence to their algebraic thinking and provide a foundation for later learn-
ing. She

•	 Began with building variation as a way of thinking about quantities changing. 
Students could imagine a quantity changing continuously. Variables varied. 
Always.

•	 Built covariation as a way of thinking about two quantities varying simultane-
ously. Time on a clock varies while a runner runs. The clock doesn’t cause a 
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runner to run. We simply keep track of how far she has run in relation to how 
much time has elapsed on the clock.

•	 Built the idea of function as an invariant relationship between the values of 
covarying quantities. The perimeter of a circle is always 2π times the length 
of its radius no matter how we change either (assuming that it remains a 
circle).

•	 Built the idea of linear function as a function that has a constant rate of change.
•	 Built the idea of a graph as having points, where the coordinates of each point tell 

us the value that each quantity has in relation to the other. Each point provides a 
“snapshot” of the quantities’ covariation.

•	 Built an understanding of constant rate of change as a relationship between two 
quantities that are changing simultaneously such that all changes in the value of 
one quantity are proportional to changes in the value of the other.

•	 Built an understanding of average rate of change. First, two quantities, A and B, 
need to change simultaneously, and each has a total change. The average rate of 
change of Quantity A with respect to Quantity B is that constant rate of change 
of A with respect to B would produce the same change in A in relation to the 
change in B that actually happened.

Augusta also had an agenda with regard to symbolic facility and representational 
equivalence. To explain what she did in regard to symbol sense is not important for 
this example, though I will say more about it later.

Augusta intended that students understand a polynomial function as a function 
that is the sum of monomial functions (Dugdale, Wagner, & Kibbey, 1992). That is, 
she wanted them to think of f x x x x( ) = − + +2 5 23 2  as the sum of f x x1

32( ) = , 
f x x2

2( ) = − , f x x3 5( ) = , and f x4 2( ) = , and hence that 
f x f x f x f x f x( ) ( ) ( ) ( ) ( )= + + +1 2 3 4 . She aimed for this understanding so that stu-

dents could anticipate the behavior of a polynomial function, expressed in standard 
form, by examining its addends. To develop this way of thinking about polynomial 
functions, Augusta needed to help students understand the meaning of a sum of two 
functions. This is the focus of the example I share below—Augusta is introducing 
the idea of a function that is the sum of two functions.

The sum of two functions f and g is often defined as f g x f x g x+( ) = +( ) ( ) ( ) 3 
which emphasizes how you would calculate the value of a sum for a given value of x. 
Augusta’s aim was that students could also imagine the sum of two functions in a 
way that was nonsymbolic, yet true to the definition. She wanted her students to 
have a way of thinking about making a function that is a sum.

The example enters a lesson at the time that Augusta is displaying the graphs of 
two functions within the same coordinate system. A special feature of her display is 
that she has not included any numbers and she designed the functions so that their 
graphs were unlike anything the students might recognize and be able to name. Her 
reason for doing this is that she had discovered in the past that when she placed 

3 The “+” in “(f + g)” does not mean the same thing as “+” in “f(x) + g(x)”. The first instance of “+” 
is part of the function’s name; the second instance is the arithmetic operation of addition.
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numbers on the axes, students tried to estimate points’ coordinates and add them 
numerically to get a value of the sum function. They then used that number to plot 
a point, again with great concern for accuracy. When she included numbered axes, 
students became bogged down trying to be highly accurate and they also often made 
addition errors. In the process of all this focus on accuracy, they lost the image of 
combining the values of two functions to get the value of a third.

To draw students’ attention away from numbers and accurate placement of 
points, Augusta gave students blank straightedges (rulers with no markings). She 
showed them how to use the rulers to estimate the functions’ values simply as  
magnitudes, and to imagine the value of the sum as putting one magnitude on top  
of the other. Excerpt 6 picks up Augusta’s lesson after she has estimated the value of 
the sum function at several places along the horizontal axis. Students have a copy  
of the displayed graph and are attempting to replicate Augusta’s placement of points 
on the sum’s graph.

�Excerpt 6: Augusta Attempts to Convey Meaning of “Sum of Two 
Functions.” A: Augusta; S: Student

	 1.	 A: Let’s go forward some more. I don’t know how much more, but go forward 
some more (see Fig. 4.4a). Uhhhhhm. Again, you can use your ruler to help you 
estimate. How positive is function A?

	 2.	 Ss: It’s positive.
	 3.	 A: It’s positive. Is it very positive?
	 4.	 Ss: A little bit.
	 5.	 A: Yeah maybe. It depends on how you scale it. But, it’s about // we can pinch 

it that much positive (see Fig.  4.4b). So you guys, on your scales, on your 
graphs can pinch off just how positive the A value, the A function is. (She waits 
for students to “pinch off” the value of A.) What about the B function?

	 6.	 S: It’s positive.

Fig. 4.4  Augusta indicates (a) a value in the domain of both functions, (b) the value of one func-
tion, and (c) that value added to the value of the other function
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	 7.	 A: It’s also positive. How can I show with my ruler how I’m going to add this 
to the value of the B function?

	 8.	 A: So that’s how positive A is. Now I need to add that to the value of B. So how 
so? What do I want to do with this length? To show the sum? // How do you 
show adding with two lengths?

	 9.	 S: Mark another one.
	10.	 A: How, next to it?
	11.	 S: No, down farther.
	12.	 A: Yeah! Right on top of it! So, if this is how much positive my A function is, 

and that’s how positive the B function is, I’m going to take this and … add it! 
You can literally think of stacking it. So here, that’s maybe how positive the 
value of A is. That’s perhaps how positive the value of B is. So their sum? How 
would you show it?

	13.	 S: It’s bigger.
	14.	 A: How much bigger?
	15.	 S: Add ′em.
	16.	 A: That on top of that. Exactly! It’s that much bigger. So you’re stacking these 

magnitudes now, because they’re positive. You’re literally stacking the lengths 
that you’re estimating, because they’re positive. So you can still use your ruler 
to help you pinch, so that’s how positive A is, and that’s how positive B is. So 
stack it, and you are actually up … about here (see Fig. 4.4c).

In Excerpt 6 we see Augusta employing covariation (“Let’s move forward a little 
bit,” Line 1) and thinking in magnitudes (“Pinch off just how much positive it is,” 
Line 5) and thinking of combining magnitudes (“you’re literally stacking the 
lengths,” Line 16).

After Excerpt 6, Augusta turned responsibility over to the students to complete 
sketching the sum function’s graph. Her motive for asking students to complete the 
sketch was that they create the value of the sum function as the result of an action of 
combining. She wanted students to develop what Dubinsky and Harel (1992) called 
an action conception of a sum function—the image of actually combining the func-
tion’s values. Students’ action conception of a sum function prepared them to 
develop later what Dubinsky and Harel called a process conception of a sum 
function—the ability to envision the action of summing immediately, focusing on 
the outcome of the action.

Excerpt 7 captures an interaction between Augusta and a student as he attempts 
to complete the sketch. Prior to this excerpt, Augusta and the student had a some-
what rambling conversation in which the student expressed his confusion about 
where to look for the functions’ values (“there aren’t any numbers”) and how to 
think about adding them.4

4 Part of Augusta’s management of this conversation was to anticipate the difficulties students 
would experience making sense of what she demonstrated during the whole-class discussion of 
combining function’s magnitudes. She anticipated that they would find it odd not to have numbers. 
Thus, she was not surprised at the student’s comment.
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�Excerpt 7: Augusta Discusses Worksheet with Student  
Who Is Having Difficulty

	 1.	 A: Where are you looking? Maybe around here somewhere?
	 2.	 S: Yeah, down here.
	 3.	 A: Pinch off how negative the negative function is.
	 4.	 S: That right there.
	 5.	 A: That much. How much will the positive lift it?
	 6.	 S: It will get lower, won’t it? (Appearing to look at the positive function.) 

Because … less.
	 7.	 A: It will get less negative (looking at the negative function). Yeah, exactly. 

Right now it is this negative. But since you are adding a positive to it, it will be 
less negative. How much less negative?

	 8.	 S: This much (see Fig. 4.5a).
	 9.	 A: That much. So keep your finger where how negative it is. And then, lift with 

me, keep your finger on it, it will get lifted … that much. That much. I mean, 
this is estimation.

	10.	 S: So this (the value on the negative graph) goes up higher!
	11.	 A: Yeah! It used to be that negative, but it will get lifted that much. So take that 

negative value, and lift it … that much (see Fig. 4.5b).
	12.	 S: Oh, I get it.

Augusta’s language and actions while speaking with this student emphasized 
building an image of “stacking” function values, the same way of thinking she 
attempted to convey during the immediately prior whole-class discussion. The pay-
off of Augusta’s emphasis on having students solidify the action of combining two 
functions came in subsequent lessons. She asked students to imagine the location of 
points on the graph of a sum of two functions whose graphs were displayed simul-
taneously as she steadily moved her finger along the horizontal axis. She asked 

Fig. 4.5  Augusta and student discuss how to interpret “sum of functions” at a value of the domain
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students to imagine the sum’s graph “evolving” simultaneously with running 
through values in the addend functions’ domain. Students’ eventual ability to rap-
idly anticipate a visual estimation of the sum functions’ values were expressions of 
their process conception of a sum function and gave them opportunities to solidify 
an understanding of a function that is the sum of two functions. It paid off further 
when Augusta came to polynomial functions, where she asked students to envision 
the behavior of the sum of two or more monomial functions given their prior knowl-
edge of the monomials’ graphs.

This example from Augusta’s class focused on her attempt to create a meaning 
for a function that is the sum of two functions. I should point out that Augusta’s les-
son, which emphasized imagistic meaning, also reflects her year-long struggle with 
de-emphasizing talk about “what to do.” We often discussed the value of stepping 
back and talking with students about what she intended that they create and, once 
created, what they had created and what it meant.

I would be remiss not to point out that the meaning of function sum was just one 
part of a larger scheme that Augusta intended that students build. That scheme 
entailed their prior work on understanding functions defined as a product of factors 
and an understanding of producing an equivalent representation by using the dis-
tributive property of multiplication over addition. Put more broadly, Augusta’s 
intent was that students see a function’s graph as invariant across representations of 
the function, and to build meaning within each representation by focusing on 
schemes for imagining a function’s behavior. Her long-term instructional design 
was attentive to what Lehrer, Schauble, Carpenter, and Penner (2000) described as 
the inseparable, interrelated development of inscription and meaning. In the case of 
polynomial functions, she aimed to develop a scheme of meanings that entailed 
students’ abilities to transform one symbolic representation of a polynomial func-
tion into other symbolic representations, and that they take for granted that there 
was something called “the function” (a relationship expressed as a graph) that 
remained the same. Augusta’s approach to having one meaning be invariant across 
representations of a polynomial goes beyond the issue I raised in Thompson 
(1994b), where I questioned what was then called the “multiple representations” 
movement.

I believe that the idea of multiple representations, as currently construed, has not been 
carefully thought out, and the primary construct needing explication is the very idea of 
representation. Tables, graphs, and expressions might be multiple representations of func-
tions to us, but I have seen no evidence that they are multiple representations of anything to 
students. In fact, I am now unconvinced that they are multiple representations even to us, 
but instead may be, as Moschkovich, Schoenfeld, and Arcavi (1993) have said, areas of 
representational activity among which we have built rich and varied connections. It could 
well be a fiction that there is any interior to our network of connections, that our sense of 
“common referent” among tables, expressions, and graphs is just an expression of our 
sense, developed over many experiences, that we can move from one type of representa-
tional activity to another, keeping a current situation somehow intact. Put another way, the 
core concept of “function” is not represented by any of what are commonly called the 
multiple representations of function, but instead our making connections among represen-
tational activities produces a subjective sense of invariance.
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I do not make these statements idly, as I was one to jump on the multiple- representa-
tions bandwagon early on (Thompson, 1987, 1989), and I am now saying that I was mis-
taken. I agree with Kaput (1993) that it may be wrongheaded to focus on graphs, expressions, 
or tables as representations of function, but instead focus on them as representations of 
something that, from the students’ perspective, is representable, such as some aspect of a 
specific situation. The key issue then becomes twofold: (1) To find situations that are suf-
ficiently propitious for engendering multitudes of representational activity and (2) Orient 
students to draw connections among their representational activities in regard to the situa-
tion that engendered them. (Thompson, 1994b, pp. 39–40)

Augusta went beyond the concern I raised in 1994 by first addressing it squarely 
(developing students’ meanings for each form of expression in terms of ways to 
read it for information about joint variation) and then raising the question of how 
you could change to another form of expression while retaining the information 
students discerned originally. In this way, she helped students develop a “subjective 
sense of invariance” while moving from one representation of polynomial function 
to another, taking the graph of a function as the “most basic” representation of it.

Lastly, Augusta supported her class conversations with specially designed didactic 
objects (Thompson, 2002)—displays, diagrams, graphs, mathematical expressions, 
or class activities that she designed conscientiously to support specific reflective 
conversations she intended to have with students. For example, the graphs that she 
used during the function-stacking activity had blank axes and unfamiliar shapes. 
This design feature enabled Augusta to focus students’ attention on function’s mag-
nitudes at a common value of their domains instead of on points’ coordinates.

�Absence of Meaning in Mathematics Education

The preponderance of research on learning mathematics in the United States sug-
gests that my examples of meaningless learning and teaching are far from uncom-
mon and that meaningful instruction is rare. One study in particular stands out—the 
TIMSS eighth-grade video study (Stigler, Gonzales, Kawanaka, Knoll, & Serrano, 
1999; Stigler & Hiebert, 1999). They formed nationally representative samples con-
sisting of 81 U.S. classrooms, 50 Japanese classrooms, and 100 German classrooms. 
As part of this study a team of U.S. mathematicians and mathematics educators 
examined the lessons (which were blinded for national identity) with regard to the 
quality of the lessons:

They based their judgments on a detailed written description of the content that was altered 
for each lesson to disguise the country of origin (deleting, for example, references to cur-
rency). They completed a number of in-depth analyses, the simplest of which involved 
making global judgments of the quality of each lesson’s content on a three-point scale 
(Low, Medium, High). Quality was judged according to several criteria, including the 
coherence of the mathematical concepts across different parts of the lesson, and the degree 
to which deductive reasoning was included. Whereas 39 percent of the Japanese lessons and 
28 percent of the German ones received the highest rating, none of the U.S. lessons received 
the highest rating. Eighty-nine percent of U.S. lessons received the lowest rating, compared 
with 11 percent of Japanese lessons. (Stigler et al., 1999, p. iv)
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The rarity of meaningful, coherent mathematics instruction in the United States—
instruction that aims to develop students’ mathematical thinking in the sense of 
Dewey—is very troubling. The rarity with which popular textbooks, both elemen-
tary and secondary, and both traditional and reform, attempt to develop mathematics 
as a coherent system of meanings is also troubling.

What I find more troubling is the rarity of research in mathematics education that 
takes the issue of mathematical meaning seriously. Research that is ostensibly on 
knowing or understanding, whether the context is teaching or learning, too often 
examines performance instead of clarifying the meanings students or teachers have 
when they perform correctly or the meanings they are working from when they fail 
to perform correctly. Neither correct performance nor incorrect performance says 
anything about the nature of a person’s system of meanings that expresses itself 
therein. This is not to say that no research considers students’ or teachers’ mean-
ings. Rather, it is too rare.

Some publications fail to address the issue of meaning even when their titles say 
it is about meaning. The chapters in Kilpatrick, Hoyles, Skovsmose, and Valero 
(2005) discuss the many ways that “meaning” is used in mathematics education, but 
they do not explicate a meaning of “meaning” that does work for designing curricu-
lum or instruction that will improve mathematics learning. Kieran’s (2007) review 
of research on learning and teaching algebra is a case in point. Its subtitle is, 
“Building meaning for symbols and their manipulation.” The article is an astonish-
ing piece of scholarship in the scope of the research it reviews, but by the criteria 
I’ve set in this chapter, it fails to say what Kieran or any of the articles she reviews 
take “meaning” to mean, and the article gives few examples of anyone’s thinking 
that might constitute a meaning for symbols or their manipulation. Moreover, the 
article is devoid of references to research on quantitative reasoning as a source of 
meaning for arithmetic and algebra, and its review of research on function com-
pletely misses the research on ways of thinking that might constitute various under-
standings of function. Instead, it focuses on evidence that students find the concept 
of function, whatever it is, difficult.

Research on calculus learning is another case in point. Research on students’ 
understanding of the derivative (e.g., Clark et al., 1997; Ferrini-Mundy & Gauadard, 
1992; Ferrini-Mundy & Graham, 1994; Heid, 1988; Machín, Rivero, & Santos-
Trigo, 2010; Orton, 1983; Sofronos & DeFranco, 2010; White & Mitchelmore, 
1996) takes “slope of secant” as a primary meaning of average rate of change (the 
other is the computation ∆y/∆x) and takes “slope of tangent” as a primary meaning 
of instantaneous rate of change (the other is the limit of average rates of change, 
where average rate of change is defined as slope of a secant). I am puzzled by the 
approach of taking “slope of secant” and “slope of tangent” as fundamental mean-
ings for average rate of change and instantaneous rate of change, respectively. 
Secants and tangents are lines. They are geometric objects. I can easily imagine a 
thoughtful student asking, for example, “What do lines have to do with speed?” 
Clearly, there is a complex system of meanings behind thinking of a secant as some-
how embodying an average rate of change, and there is an even more complex sys-
tem of meanings behind taking a tangent as somehow embodying an instantaneous 
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rate of change. I outlined part of that system earlier, when I spoke of a rate of change 
scheme. However, none of these studies explicates such a system of meanings. 
Hence they do not investigate them.

Unfortunately, when researchers treat meanings for slope (whose computation 
students often take as an index of “slantiness”), secant (which students often think 
of as a piece of wire that is laid across a graph), and tangent (which students often 
think of as a line that “just touches” a curve) as primary meanings, not as emergent 
meanings, they cannot understand the sources of students’ success or failure to 
learn. Hackworth (1994) drove this point home. She studied 90 first-semester calcu-
lus students’ understandings of rate of change. Her question was, “What have cal-
culus students, after studying differentiation and derivatives, learned about rate of 
change?” By her measures, they learned nothing about rate of change. In some 
instances students understood more about rate of change before receiving instruc-
tion than they did after the course.

Carla Stroud (2010), in a follow-up to Hackworth’s (1994) study, interviewed 15 
students in Calculus 2 and Calculus 3 about their meaning of instantaneous speed. 
One question was this:

When the Discovery space shuttle is launched, its speed increases continually until its 
booster engines separate from the shuttle. During the time it is continually speeding up, the 
shuttle is never moving at a constant speed. What, then, would it mean to say that at pre-
cisely 2.15823 s after launch the shuttle is traveling at precisely 183.8964 miles per hour? 
(Hackworth, 1994, p. 108)

Consistent with Hackworth’s (1994) findings, the primary meaning held by students 
in Stroud’s study was that of a speedometer. The space shuttle’s instantaneous speed 
2.15823 s after launch is whatever number its speedometer points at. There are two 
problems with this way of thinking: (1) the space shuttle doesn’t have a speedometer, 
and (2) even if it did, what about the speedometer’s design guarantees that it is point-
ing at the correct number? Some students had a backup way of thinking—you would 
take the limit of the space shuttle’s average speed over smaller and smaller intervals or 
you would simply differentiate the shuttle’s position function. Carla asked, “And how 
would you do that?” The students presumed that there was some function they could 
act upon symbolically—and the shuttle’s speed would pop out of that.

The area of mathematics education research that is most wanting today regarding 
attention to meaning is research on teachers’ mathematical knowledge for teaching 
(MKT). First, the verb “to know” is used in this research as a primitive, undefined 
term. The question of what “to know” means in regard to knowing mathematics is 
unaddressed. Second, this area is quite taken with the idea that teachers’ knowledge, 
whatever that means, can be categorized (Ferrini-Mundy, Floden, McCrory, Burrill, 
& Sandow, 2005; Hill, 2010; Hill et al., 2008). I suspect that the desire to create 
instruments to assess teachers’ knowledge is the driving force behind this focus. 
Item specifications need categories. When you categorize a teacher’s knowledge 
based on an answer to an item, however, your attention is necessarily drawn away 
from the system of meanings by which the teacher was operating. Assessments that 
do not address teachers’ meanings can be summative, but they cannot be diagnostic. 
I’ll illustrate this point with an example.
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Before I can share this example I must review the idea of continuous variation. 
Castillo-Garsow (2010) identified two ways, in principle, that one can think about 
continuous variation, what he called “chunky” and “smooth.” A conception of con-
tinuous variation that is chunky is one where someone thinks of a variable varying in 
discretely continuous amounts. By “discretely continuous” I mean that they imagine 
that the variable varies, but they imagine “next” values and mentally connect the val-
ues. The variation comes in one chunk between current and next values. The value of 
x goes directly from initial to end without passing through the values in between. The 
values in between current and next values are “there,” but the person imagining the 
variation does not imagine passing through them. A conception of a variable varying 
smoothly is recursive. One might imagine a “next” value, but does so with the antici-
pation that the variable varies smoothly between current and next value by varying 
smoothly between values that exist between current and next (Thompson, 2011).

A ninth-grade algebra teacher, Sandra, was in the midst of teaching a lesson on 
the point–slope and point–point formulas. She was attempting to use a method that 
she had just learned which takes a rate-of-change approach to the point–slope for-
mula. The method works like this: Suppose a function has a constant rate of change 
r. You start by assuring that students have an appropriate meaning of constant rate 
of change, such as “r is the constant rate of change of y with respect to x” means that 
however much x changes, y changes r times as much.5 With this meaning in hand, if 
you know that a function with a constant rate of change of 1.7 passes through the 
point (3, 9), then if you decrease the value of x by 3 (i.e., increase it by −3), the func-
tion’s value will change by 1.7 times −3. Thus, the value of the function at x = 0 is 
9 + (1.7)(−3). The function’s definition is therefore y x= + + ( ) −( )( )1 7 9 1 7 3. . . The 
two-point method follows as a corollary by determining the function’s average rate 
of change between two points and realizing that you now have a situation where a 
function has a known constant rate of change and its graph passes through a known 
point. Sandra was excited to try this method with her class.

Sandra worked through several examples using this method to find a function 
definition when given one point and a rate of change. Things fell apart, though, 
when she moved to the case of having two points that the function’s graph passes 
through. Excerpt 8 picks up as she discusses the two-point case.

�Excerpt 8: Sandra Discusses the Two-Point Case

	1.	 S: (Plots the points (3,1) and (7,4) in a coordinate system on the board.) Now 
we’ll look at something that is a little bit different. Now all we’re given is two 

5 The phrase “assure that students have” can be misleading. It does not mean “teach this idea in the 
5 min before the point–slope lesson.” Rather, it means to assure that this meaning of constant rate 
of change has been the target of instruction over a long period of time, long enough so that students 
have this meaning and all its entailments.
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points, and we’re supposed to find the equation for the line that goes through 
them. Any ideas?

	2.	 (Silence)
	3.	 S: Well, let’s notice something. This function goes over 4 and up 3 (sketches seg-

ments). So if we do the same thing as before and move x back to 0 we’ll know 
what the y intercept is! So if we go 4 to the left (draws a horizontal segment of 
length 4 to the left from (3,1); see Fig. 4.6).

	4.	 S: (Long pause) We’ll pick this up tomorrow. (Pause) Here are some practice 
problems. Do just the ones with one point.

Though Sandra’s difficulty actually began in Line 3, where she described the 
change as “over 4 and up 3,” her entire difficulty resided in her schemes for varia-
tion, slope, division, and rate of change.6 First, she saw the change in x as a chunk. 
This was unproblematic in the case of one point. However, her chunk in this prob-
lem did not place her at x = 0 as she wished. Second, her meaning for slope was “rise 
over run,” where rise and run were both chunks. Third, her computation of slope, 
not evident in this excerpt but made clear later, was of a procedure that produced a 
number that is an index of a line’s “slantiness.” Division did not produce a quotient 
that has the meaning that the dividend is so many times as large as the divisor—3/4 
as a slope was not a number that gave a rate of change. It gave a “slantiness.” Fourth, 
her meaning for rate of change entailed neither smooth variation nor proportional-
ity. It was more akin to her meaning of slope—two things changing in chunks. 
These meanings not only failed to provide Sandra a connection between her current 
setting (two points) and prior method, but they also led her down the dead-end path 

2 4 6–2

4

2

(3,1)

(7,4)

Fig. 4.6  Sandra’s boardwork 
while working the two-point 
problem

6 It is important to notice that I said schemes. Sandra’s meanings for variation, slope, division, and 
rate of change did not exist within a single scheme. They were unrelated.
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she followed. Had Sandra reasoned proportionally and with smooth continuous 
variation, she might have said “… over 3/4 of 4 and up 3/4 of 3.” That would have 
given her the graph’s y-intercept.

I fail to see how categorizing Sandra’s knowledge would enhance our under-
standing of why her lesson fell apart. With our above understanding of what 
Sandra knew (i.e., the meanings from which she operated) we are positioned to 
help her improve. Putting her knowledge in categories like “curricular knowl-
edge,” “common mathematical knowledge,” or “specialized mathematical knowl-
edge” serves no practical purpose except to see whether her score on a test meets 
a benchmark. I feel strongly that assessments of MKT must be rooted in develop-
mental theories of MKT. Otherwise, despite being ostensibly rooted in the work 
teachers do, the assessments will have little explanatory power with regard to why 
teachers do what they do and will have little usefulness in helping them improve 
what they do.

I propose that we develop a new type of assessment, aimed at assessing teachers’ 
mathematical meanings for teaching (MMT). The enterprise of developing such 
assessments might redirect the field’s attention to the subtle, yet foundational, role 
that meanings play in what teachers and students do. It might also redirect the field’s 
attention towards an emphasis on explicating desirable, powerful systems of mean-
ings that we feel students should develop. Lest I be misinterpreted, I hasten to add 
that the issue of skill would still be paramount. But our conception of skilled perfor-
mance would change. Our descriptions of students’ skilled performance would nec-
essarily entail our intention that it be evidence that they have built powerful, rich, 
integrated systems of mathematical meanings.

A focus on MMT would also foster the field’s conceptualization of bridges 
among what teachers know (as a system of meanings), how they teach (their orien-
tation to high-quality conversations), what they teach (the meanings that an observer 
can reasonably imagine that students might construct, over time, from teachers’ 
actions), and what students learn (the meanings they construct).

Assessments of MMT would be more diagnostic than current assessments of 
MKT. Information from them would be useful for teachers’ professional develop-
ment. I imagine that such instruments would also be useful in designing profes-
sional development aimed at improving teachers’ ability to help their students learn. 
Sample items from an assessment of MMT might alert teachers to ways of under-
standing the ideas they teach that are expected of them and of their students. For 
example, can teachers explain a meaning of division that gives a meaning of quo-
tient? Are they inclined to teach a meaning of division that gives a meaning of 
quotient? Can they explain that 8 divided by 5 equaling 1.6 means that 8 is 1.6 times 
as large as 5? Do they think it is important for students to know this? Do they have 
a coherent system of meanings of multiplication, division, and fractions that allows 
them to explain that 43 × 18 = 774 means, at once, that 774 is 18 times as large as 43, 
that 774 is 43 times as large as 18, that 43 is 1/18 of 774, and that 18 is 1/43 of 774? 
Are they inclined to explain those meanings? Do they think these are important 
meanings for students to have? Are they inclined to ask students questions that force 
those connections?
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�An Agenda for Change

My intention in this chapter was to convey the nature of meaning as it relates to 
mathematics education and the importance of taking meaning as a foundational 
consideration in mathematics learning, teaching, and instructional design.7 How, 
though, might we as a nation bring about changes that resolve the lack of meaning-
ful mathematics in schools and colleges? I draw inspiration from Tucker (2011) to 
answer how we might move forward with such an agenda for change. Tucker exam-
ined the educational policies of Ontario, Finland, Japan, Shanghai, and Singapore to 
see what policies they either have in place to sustain an excellent educational system 
or put in place to pull themselves to a level of internationally elite educational sys-
tems. He pointed to five areas of policy that are central to elite systems attaining and 
sustaining excellence, and he turned each into a set of recommendations to be 
implemented at the state level. His recommendations are as follows: Benchmark the 
best, design for quality, design for equity, design for productivity, design for coher-
ence. These categories serve well as organizers for thinking about how to make 
meaning central to mathematics education.

�Benchmark the Best

Tucker pointed out that prior to World War II, the United States borrowed ideas and 
practices from other countries at a rapid rate, but after World War II we seemed to 
think that no one had anything to offer. Recently, there have been several efforts to 
benchmark international standards (e.g., National Mathematics Advisory Panel, 
2008). However, benchmarking standards is like surveying a landscape from 
50,000 ft. You might see broad outlines, but you have no sense of the details by 
which things are made to happen. Elsewhere (Thompson, 2008a), I stated that the 
National Mathematics Panel Report recommendations read like a table of contents. 
The Panel did not attend to what it might mean to understand the things in their lists. 
By that I meant that they paid little heed to how other countries actually imple-
mented their standards and that the Panel ignored the idea that attending carefully to 
issues of meaning was one way that elite countries attained excellence in mathemat-
ics education.

7 I did not emphasize issues of curriculum. I agree wholeheartedly with Marilyn Carlson et al. 
(2010), who has argued convincingly that a well-designed curriculum will play a central role in 
supporting teachers’ reconceptualization of the mathematics they teach and will be an essential 
component in efforts to make meaning central to teaching and learning. It is my experience, how-
ever, that teachers’ meanings trump curriculum, so I have emphasized teachers’ meanings for the 
purposes of this chapter. On the other hand, there is a large intersection between issues of instruc-
tional design and issues of curriculum, so I have not ignored curricular issues entirely.
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Funding agencies should commission studies to benchmark the systems of math-
ematical meanings towards which elite systems strive. They should also document 
how those meanings are achieved and the consequences of achieving them. For 
example,

•	 Singapore elementary education targets a deep understanding of speed as rate of 
change in grades 1–5 (as does Russia). This deep understanding entails ideas of 
variation, covariation, and proportionality. The Singapore curriculum outline 
does not state this specifically, but if you examine their texts and instructional 
guides it leaps at you. Their early attention to speed is later leveraged in develop-
ing students’ understanding of variable and linear function. What other meanings 
does Singapore target, how does it build them, and how does it leverage those 
meanings in students’ later learning?

•	 Japanese elementary education emphasizes whole-number numeration as a 
systematic way to represent numerical value—to a far great extent than in the 
United States. In Japan, numerical algorithms arise out of a system of meanings 
that constitute an understanding of place value. They are not taught as meaning-
less, memorized notational procedures. What other meanings does Japan target, 
how does it build them, and how does it leverage those meanings in students’ 
later learning?

•	 Russian elementary education emphasizes quantity and measurement (as, to a 
lesser extent, do Singapore and Japan). A deep understanding of measurement 
entails understanding ratio and proportion. Russians leverage this early learning 
by intermingling it with the idea of generalization, which necessitates ideas of 
representation and representational equivalence. What other meanings does 
Russia target, how does it build them, and how does it leverage those meanings 
in students’ later learning?

�Design for Quality

Tucker’s (2011) first bullet in this section is, “Get your goals clear, and get public 
and professional consensus on them” (p. 5). This feat will not be easily accom-
plished with regard to targeted systems of mathematical meanings, but it is essen-
tial. National funding agencies will play an essential role in the effort to clarify 
systems of meanings, and how they might be expressed skillfully, that mathematics 
education should take as its primary goals.

The clarification of goals will also address the matter of coherence in the math-
ematics curriculum. A number of studies have stated boldly that the typical judg-
ment of U.S. mathematics curricula at all levels is that they are conceptually 
incoherent (Cai, 2010; Oehrtman, Carlson, & Thompson, 2008; Schmidt et  al., 
2002, 2005; Thompson, 2008b; Thompson, Carlson, & Silverman, 2007). A focus 
on developing coherent meanings will not guarantee coherent curricula, but it surely 
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will increase the likelihood that a curriculum designed to support students’ develop-
ment of a coherent system of meanings will be coherent.

Another aspect of designing for quality is that targeted meanings must be worth 
having. We must be able to argue that having them will pay off in important ways, 
either in preparation for life or in preparation for future learning. The arguments 
must be specific in regard to how having them will be important. Research will play 
an essential role in the quest to design for quality, because we often realize the intri-
cacies of a targeted meaning’s “payoff,” or lack thereof, only in attempting to help 
students develop it. Research will also play an essential role in identifying and char-
acterizing important meanings that students and teachers should have, and convey-
ing those meanings to parties who can use that information. (Please understand that 
I use “convey” in the sense that I’ve described repeatedly in this chapter.)

�Design for Equity

Tucker’s (2011) emphasis on equity is largely in regard to allocation of resources. 
He argues that school systems and students should get resources according to their 
need. Hardest-to-educate students should receive sufficient resources necessary to 
enable them to attain the high standards set in the quest for quality already described.

With regard to issues of meaning, hardest-to-educate students will be those who 
are farthest from developing the meanings that we decide are essential. Designing 
for equity with regard to meaning requires that we identify ways of thinking and 
systems of meaning that are highly obstructive for constructing the meanings we 
intend, and then investigating means of support to effect change most efficiently. 
Just as we do not give steak to someone who is malnourished, we cannot expect 
someone who reasons additively to participate productively in instruction on mak-
ing multiplicative comparisons as a foundation for reasoning proportionally.

�Design for Productivity

Tucker (2011) characterized designing for productivity in terms of making frequent 
and timely checks for quality. With regard to a focus on meanings, this translates 
into helping teachers attend to the meanings that students are actually constructing 
and adjust instruction appropriately. Research will play a central role in identifying 
effective ways that teachers can do this and effective ways to help teachers do this. 
I am not speaking of grand assessment strategies or high-stakes tests, though I antic-
ipate that we will continue to have them—and that their character will change. 
Rather, the road to students building powerful, coherent, and useful systems of 
mathematical meaning will be built upon teachers’ ability to conduct constant, for-
mative assessments of students’ learning.
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�Design for Coherence

The coherence Tucker (2011) had in mind was that efforts to address the prior four 
areas cohere, and that they complement and draw from each other. The same is 
surely true for mathematics education. In regard to the issue of moving the field 
towards making meaning a primary concern, I see several additional ways in which 
we must design for coherence. The obvious one is designing coherent systems of 
meanings that we target for student learning. We also must coordinate efforts in 
instructional design, teacher preparation, and professional development around 
those meanings. We not only want school students to develop coherent meanings for 
arithmetic operations, but we also want future teachers to be prepared to convey and 
assess them and professional development programs that support continued teacher 
growth.

It is on the criterion of coherence that Tucker found the greatest strength in elite 
systems and the greatest fault in the U.S. system. Culture surely plays a large role in 
both cases. Cultures change over time, but they rarely change abruptly. They con-
tinually regenerate themselves through intersubjective operations among their par-
ticipants. An educational system is slow to change for the same reasons—entering 
teachers have images of mathematical teaching and learning that they formed as 
students. Lortie (1975) noted this when explaining why U.S. instruction seemed to 
change so little—adults who choose to enter teaching developed a deep resonance 
with their experience of schooling as students. We can leverage Lortie’s observation 
to gain insight into different educational systems’ clear differences in teachers’ and 
textbooks’ orientations to meaning. Ma (1999) observed Chinese elementary school 
teachers with the equivalent of high school education displaying what she called 
profound understandings of the mathematics they taught. The U.S. elementary 
teachers in her study, with college degrees, displayed superficial and fragmented 
understandings of the mathematics they taught. Why the difference? Because, I 
suspect, the Chinese teachers developed meanings while school students that they 
later refined as prospective and practicing teachers, while the U.S. teachers devel-
oped unproductive meanings while students—meanings that served them poorly as 
a foundation for conveying coherent mathematical understandings to their students. 
Coherence, and incoherence, is inherited as much as it is produced.

Tucker (2011) ended his report by noting that each of these elite educational 
systems took from 30 to 100 years to transform themselves and that the United 
States should not expect less. Also, he noted that each reform effort involved a high 
degree of experimentation within its policy frameworks without losing sight of its 
goals. We must take Tucker’s observation to heart—expect that it will take 30–100 
years of concerted, purposeful effort to transform the U.S. educational system so 
that coherent meanings are at the core of mathematics teaching, learning, and 
curriculum. At the same time, we cannot expect to succeed without striving to 
develop a clear vision of what we mean that meaning be at the core of mathematics 
teaching, learning, and curriculum.
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