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   Preface   

 As biomedical researchers working and living in Niagara, Canada’s preeminent 
wine region (apologies to the Okanagan Valley, Prince Edward County, and the 
Annapolis Valley), we have often been struck by how divergently researchers work-
ing in different fi elds approach the biology of grapevine polyphenols. Plant physi-
ologists focus their efforts on methods for isolating and quantifying these molecules. 
Plant molecular biologists attempt to map the synthetic pathways responsible for 
the production of grapevine polyphenols, and transgenically augment their produc-
tion, sometimes in other plant species, to assist in their further development into 
pharmaceuticals. Grape growers are interested in all of these activities, as they may 
lead to new markets and commercial applications for these molecules that are often 
found in abundance in some of the “waste” by-products of their annual harvest. 
Animal physiologists have revealed an increasing number of intriguing effects that 
might be harnessed to improve human health. Cell biologists have focused their 
attention on identifying specifi c molecular mechanisms that underlie the effects 
observed by their colleagues. At times, we have felt that researchers in these seem-
ingly disparate fi elds may be tracking a parallel course, and that a convergence of 
these diverse perspectives would be advantageous to both the interpretation of 
experimental results and the process of experimental design. For these reasons, a 
more comprehensive overview seems certain to improve our understanding of these 
molecules, how they work, and how they might be fruitfully used by us. These 
thoughts were our motivation in undertaking this project. 

 Our goal here is to bring together the results of research in these various fi elds 
into a single resource to facilitate a more comprehensive understanding of the bio-
logical activities of the grapevine phytoalexins. We have focused on resveratrol and 
its derivatives since these have attracted by far the most attention amongst research-
ers for their ability to positively modulate human physiology. However, we hope 
that this resource will aid researchers in recognizing the many molecules beyond 
resveratrol with the potential to be studied and perhaps developed into nutraceuti-
cals. To this end we feel that the book comes at an important moment in the fi eld, as 
resveratrol derivatives, such as pterostilbene, piceid, and viniferins, seem to be on 
the cusp of attracting the kind of attention hitherto reserved for resveratrol itself. 
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Indeed, we hope that this book will serve as a catalyst for more research on the 
biological activities of these structurally related molecules in mammals, particularly 
humans, since in many instances they are both more abundant than resveratrol in 
grapevine tissues, are less rapidly degraded and excreted in vivo, and appear capa-
ble of eliciting very similar biological activities in mammalian cells and tissues. We 
hope that readers will fi nd this book to be of use in their own research and develop-
ment endeavors. Cheers. 

 ON, Canada Jeffrey A. Stuart 
 Ellen L. Robb  

Preface
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1.1                        General Introduction 

 In this chapter we begin by providing an overview of the biochemistry of phyto-
alexin synthesis in  Vitis vinifera  and the signifi cance of these molecules in plant 
physiology. We then discuss the concentrations of these molecules in wines, the 
main dietary source of phytoalexins produced by  Vitis vinifera . Our goal in this fi rst 
chapter is to cultivate an appreciation for red wine polyphenols that extends beyond 
their effects in mammalian cells.  

1.2     Grapevine Phytoalexins 

 Phytoalexins are secondary metabolites produced by plants in response to biotic and 
abiotic stressors. Across plant species, an enormous range of phytoalexins is pro-
duced, and these generally have antifungal and antimicrobial activities (Ahuja et al. 
 2012 ). Phytoalexins, and related compounds termed phytoanticipins (constitutively 
produced secondary metabolites with similar properties), have been studied for their 
possible benefi cial effects on human health. Amongst these molecules are biologi-
cally active compounds with the potential to be further developed into functional 
food ingredients or dietary supplements (Boue et al.  2009 ). In the grapevine  Vitis 
vinifera , the predominant phytoalexins produced in response to stress belong to a 
family of compounds called stilbenes (Fig.  1.1 ), which are synthesized from the 
amino acid phenylalanine.

   One of the main stilbenes produced in grapevines is  trans -resveratrol ( trans - 
3 ,5,4'-trihydroxystilbene), which has been the subject of intensive investigation 
over the past two decades owing to its apparent health promoting properties. 
Although red wines are perhaps the best known dietary sources of resveratrol and its 
derivatives, these molecules are produced by a variety of phylogenetically diverse 
plant species, including peanut ( Arachis hypogaea ), Japanese knotweed ( Fallopia 
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japonica ), sorghum ( Sorghum bicolor ), and  Pinus  and  Picea  species (Parage et al. 
 2012 ). In instances where food or beverages are produced from these plants the 
biologically active phytoalexins are present in the consumed product, sometimes in 
negligible amounts and occasionally at concentrations suffi cient to perhaps elicit 
biological responses.  

1.3     Stilbene Synthesis 

  Trans -resveratrol is the initial stilbene product of  p -coumaroyl-CoA and three 
molecules of malonyl-CoA in a reaction catalyzed by stilbene synthase (full 
pathway shown in Fig.  1.2 ). While most plants are capable of producing malo-
nyl-CoA and CoA esters of cinnamic acid, the ability to synthesize stilbenes is 
limited to only a few plant species (reviewed in Chong et al.  2009 ). In  Vitis 
vinifera , stilbene synthase is encoded by between 20 and 40 stilbene synthase 
genes, which is considerably more genetic diversity within this gene family than 
has been found in any other plant species (Chong et al.  2009 ; Parage et al.  2012 ). 
 Trans -resveratrol serves as a precursor molecule that is further converted into a 
wide variety of compounds including piceid, pterostilbene, and viniferins by 
glycosylation, methoxylation, and oxidative oligomerization, respectively 
(Fig.  1.3 ). Some of these compounds, particularly piceid, are present at 
 signifi cantly higher concentrations than resveratrol in grapevine leaves (Boso 
et al.  2012 ), grape skins (Romero-Perez et al.  2001 ; Bavaresco et al.  2007 ), 
grape juices (Romero-Perez et al.  1999 ), and wines (Mark et al.  2005 ; Moreno-
Labanda et al.  2004 ; Naugler et al.  2007 ).

    Phytoalexins are produced in grapevines constitutively at low levels and are pres-
ent in root, stem, leaf, and grape tissues (Wang et al.  2010 ). However, production 
and accumulation of phytoalexins within leaf and grape tissues is strongly induced 
by stressors such as UV light, heavy metals, ozone, and fungal infection (Jeandet 
et al.  2002 ). The expression of at least 20 stilbene synthase genes is induced by 
inoculation with the downy mildew fungus  Plasmopara viticola  (reviewed in Chong 
et al.  2009 ), and increased abundance of stilbene synthase protein on the leaf epider-
mis following UV exposure has been demonstrated using immunolocalization (Pan 
et al.  2009 ).  Trans -resveratrol levels measured in leaf tissue vary with  Vitis vinifera  
variety, but in all varieties they are increased substantially (up to 30-fold) within 
several days of inoculation with  P. viticola  (Boso et al.  2012 ). Like  trans - resveratrol , 
the production of pterostilbene, piceid, and viniferins is also strongly enhanced by 
stress. Pterostilbene levels increase from undetectably low levels to a few µmol/mg 

  Fig. 1.1    Basic carbon skeleton structure of a stilbene       
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free weight within several days following infection with  P. viticola  (Boso et al. 
 2012 ), in parallel with an approximately fi vefold increase in the expression of res-
veratrol O-methyltransferase, the enzyme catalyzing  trans -pterostilbene synthesis 
from  trans -resveratrol (Schmidlin et al.  2008 ). Piceid, ε-viniferin, and δ-viniferin 
undergo similar increases of up to 100-fold within 3 days following  P. viticola  
infection. Although many of the measurements of polyphenol levels following 
infection have been made in grapevine leaves, similar increases have been shown 
also to occur in grape skins, which is relevant to the abundance of these molecules 
in red wines (Romero-Perez  2001 ; Montero et al.  2003 ).  

1.4     Roles of Stilbenes in Grapevines 

 Stilbene production in plants is a central component of their response to stress. 
Resistance of  Vitis  species to fungal infection is generally correlated with their abil-
ity to produce stilbene phytoalexins (Douillet-Breuil et al.  1999 ; Schnee et al.  2008 ; 
Malacarne et al.  2011 ). Exogenous application of  trans- resveratrol to grape berries 
is also an effective means of enhancing their resistance to fungal infection (Gonzalez 
Urena et al.  2003 ). Transgenic expression of stilbene synthase genes in non grape-
vine species is being utilized to enable stilbene production and in turn capture the 
potent antifungal properties of these molecules (   Thomzik et al.  2001 ; Coutos- 
Thevenot et al.     2001 ; Zhu et al.  2004 ; Liu et al.  2011 ). 

 Indeed, there is good experimental evidence for potent antibacterial, antifungal, 
and anti-nematodal activities of  trans- resveratrol and its derivatives (Chong et al. 
 2009 ). In laboratory experiments,  trans- resveratrol inhibits  P. viticola  growth and 
development, and exhibits similar suppressive activity against a number of other 
fungal pathogens, including  Cladosporium cucumerinum, Botrytis cinerea, Oidium 
tuckeri, Pyricularia oryzae,  and  Sphaeropsis sapinea  at concentrations that are 
roughly equivalent to those produced by grapevine (reviewed in Jeandet et al.  2002 ). 
Pterostilbene is actually a more potent inhibitor of fungal growth than  trans- 
resveratrol  (Jeandet et al.  2002 ), though it may not accumulate to levels required for 
this activity in grape skin. ε-viniferin has antifungal activity similar to that of 
pterostilbene, suggesting that  trans- resveratrol may be the least effective as an anti-
fungal agent of this family of stilbene compounds.  

1.5     Approaches to Increasing Stilbene Levels in Grapevines 

 Increased stilbene synthesis in  Vitis vinifera  is benefi cial on two levels: (1) elevated 
stilbene levels, particularly in grape skin, will lead to higher concentrations of these 
apparent health-promoting compounds in wine, and (2) the increased stilbene con-
centrations will impart greater resistance to environmental stressors. Strategies to 
achieve this goal are therefore the focus of much research. 
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 Application of exogenous stressors may be used to promote the endogenous 
production of  trans- resveratrol and its derivatives in grapevine leaves and grapes, 
and this is of interest as a means of enhancing the levels of these compounds in red 
wines. One approach to enhancing stilbene levels in grapes has been to stimulate the 
signalling pathways involved in upregulating stilbene production. The plant hor-
mone jasmonic acid is an effective inducer of phenylalanine ammonia lyase and 
stilbene synthase expression that signifi cantly enhances stilbene synthesis. Repeated 
application of methyljasmonate to growing vines substantially increases the levels 
of  trans- resveratrol and ε-viniferin in berries (Larronde et al.  2003 ; Vezzulli et al. 
 2007 ). In grapevine cell cultures, both methyljasmonate, and also cyclodextrins, 
stimulate stilbene synthesis (Lijavetzky et al.  2008 ; Zamboni et al.  2009 ). 
Interestingly, brief exposure to anoxia also appears to stimulate  trans- resveratrol 
synthesis in harvested grapes (Jimenez et al.  2007 ). Thus, several non-genomic 
approaches have proven effective in enhancing stilbene levels in wine grapes and 
wine grape cells. 

 Another experimental method being used to increase stilbene levels is transgenic 
engineering to promote the synthesis of  trans- resveratrol and its derivatives in plant 
species that do not naturally produce these molecules. Since all plant species pro-
duce the immediate precursors of  trans- resveratrol, 4-coumaroyl-CoA and malonyl- 
CoA, transgenic overexpression of stilbene synthase alone is suffi cient to instigate 
 trans- resveratrol synthesis. Transgenic lines overexpressing stilbene synthase and/
or O-methyltransferase have been engineered in a number of plant species, includ-
ing tomato ( Solanum lycopersicum ),  Arabidopsis thaliana,  and tobacco (   Nicotiana 
tabacum     ). Typically, when just stilbene synthase is overexpressed, the predominant 
polyphenol accumulating is  trans -piceid rather than  trans- resveratrol (Liu et al. 
 2006 ; Ingrosso et al.  2011 ). In transgenic plants co-expressing stilbene synthase and 
O-methyltransferase, pterostilbene accumulates as the major product, again with 
relatively low levels of  trans- resveratrol (Rimando et al.  2012 ; Xu et al.  2012 ). 
Although these studies indicate that engineered plants could be used to produce 
stilbenes, it is interesting to note that there is evidence that excessive levels of these 
molecules interferes also with normal plant development (Ingrosso et al.  2011 ). The 
application of transgenic engineering to enhance stilbene levels is an active and 
developing area of research.  

1.6     Stilbenes in Wines 

 Although resveratrol and its derivative molecules are found in a variety of wines, 
they are typically present at much higher levels in red wines due to a long fermentation 
process that includes contact with the grape skins. This allows the highly hydropho-
bic stilbene compounds to be extracted from grape skin into the forming ethanol. 
Although red wines are a relatively rich dietary source of resveratrol and its deriva-
tives, the absolute concentrations of these compounds are nonetheless low, ranging 
from undetectable to about 63 µM (Stervbo et al.  2007 ; Dourtoglou et al.  1999 ; 
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Naugler et al.  2007 ). Levels of resveratrol vary with wine variety, with relatively 
high levels identifi ed in some Pinot Noir and Merlot wines (Stervbo et al.  2007 ). 
Regional variation is also evident, and indeed environmental stresses unique to a 
given region are likely to affect resveratrol and stilbene production in grape skin, 
and therefore the levels present in wines produced from these grapes. 

 There has been a great deal of focus on the levels of resveratrol alone in red 
wines; however, it is important to note that some resveratrol derivatives are actually 
present at higher levels than resveratrol itself in red wines. For example, in studies 
of Hungarian (Mark et al.  2005 ), Spanish (Moreno-Labanda et al.  2004 ), and 
Canadian (Naugler et al.  2007 ) wines, piceid levels were found to be as much as 
tenfold higher than those of resveratrol. Piceid is also present at higher concentra-
tions than resveratrol in grape juices (Romero-Perez et al.  1999 ) and cocoa (Hurst 
et al.  2008 ). Several resveratrol oligomers similarly accumulate to quite high levels 
in grapevine leaves (Boso et al.  2012 ), particularly following fungal elicitation. 
However, the levels of ε-viniferin (Adrian et al.  2000a ,  b    ), hopeaphenol (Boutegrabet 
et al.  2011 ), and pallidol (Naugler et al.  2007 ) in red wines appear to be generally 
lower than those of resveratrol and piceid. Pterostilbene levels are particularly low 
in grape berries and in red wines (e.g., Adrian et al.  2000a ,  b ; Boso et al.  2012 ). 
Thus, resveratrol and piceid appear to be the major stilbenes present in red wines.  

1.7     Conclusions 

 Grapevines produce a variety of stilbene molecules in response to both biotic and 
abiotic stresses. Identifi cation of the signalling pathways and genes involved has led 
to strategies for targeting these with the goal of enhancing stilbene production both 
in  Vitaceae  and other plant species. Many of these strategies have now been shown 
to be quite effective at boosting the concentrations of resveratrol and its derivatives 
in wine grapes and instigating their production in other plant species. Given the 
accumulating evidence for applications of these compounds in human health con-
texts, ongoing research in this area is likely to yield increasingly high resveratrol 
grapes for wine production. Recent work has indicated that red wine supplemented 
with up to 200 mg/L resveratrol is palatable and stable (Gaudette & Pickering 
 2011 ), and therefore, high resveratrol wines should be an effective means of increas-
ing dietary intake of resveratrol and its stilbene derivatives.     
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2.1                        General Introduction 

 In this chapter we provide an overview of evidence for and against the putative 
benefi cial effects of resveratrol and its derivatives in human health. Relevant data 
come from in vitro studies with human cells in culture, in vivo studies using primar-
ily rodent models, and, where available, human clinical studies. While the detailed 
mechanisms underlying the observed effects are not discussed in detail here, these 
are the subject of considerable debate and are covered in Chap.   3    .  

2.2     Resveratrol and Cardiovascular Health 

 Resveratrol was initially identifi ed as a bioactive component of red wines respon-
sible for the “French Paradox,” i.e., an observation that cardiovascular disease is 
less common in the French than predicted on the basis of dietary intake of saturated 
fats (Renaud and de Lorgeril  1992 ; reviewed in Soleas et al.  1997 ). Thus, research 
into the health effects of resveratrol as an isolated compound was initially focused 
on its interactions with vascular endothelium and platelets to affect aggregation and 
deposition reactions. The cardioprotective effects that have been ascribed to resve-
ratrol include an ability to reduce the severity of damage incurred following a myo-
cardial infarction, antiatherogenic effects, and positive effects on blood lipid 
profi les. Although the observed cardiovascular effects were initially attributed to 
resveratrol’s chemical antioxidant capacity, more current research has focused on its 
ability to upregulate the expression of endogenous antioxidant enzymes, inhibit the 
infl ammatory activity of cyclo-oxygenases, and promote nitric oxide signalling and 
vasodilation by activating nitric oxide synthases (reviewed in Ramprasath and Jones 
 2010 ). There is a paucity of data describing the cardiovascular effects of the other 
more abundant stilbenes present in red wines. However, it appears that piceid elicits 
a very similar range of cardiovascular effects, including protection against ischemia 
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reperfusion events and vasodilation (reviewed in Long-tao et al.  2012 ). Few studies 
have focused on pterostilbene’s activities in the cardiovascular system, but the lim-
ited data available does support the idea that it may also be cardioprotective (e.g., 
Park et al.  2010 ). Understanding the actions of the host of stilbenes found in red 
wine will be a valuable contribution to the data describing the cardiovascular effects 
of red wines. 

 The cardiovascular effects of resveratrol established primarily in rodent models 
have also been the focus of human clinical trials. In arteries isolated from the adi-
pose tissue of normal human males, resveratrol induces relaxation and thus vasodi-
lation at micromolar concentrations (Cruz et al.  2006 ). Similar effects have been 
shown with unpurifi ed red wine polyphenol extract, which causes vasodilation of 
the brachial artery in males with coronary heart disease (Lekakis et al.  2005 ). 
Chronic dietary supplementation with a resveratrol-rich grape supplement attenu-
ates a variety of pro-infl ammatory markers in humans with cardiovascular disease 
(Tomé-Carneiro et al.  2012a ,  b ). In humans, the levels of resveratrol metabolites in 
urine, indicating relatively high dietary intake, correlate with biomarkers of cardio-
vascular health (Zamora-Ros et al.  2012 ). 

 The molecular mechanisms underlying these cardiovascular effects appear to 
include interactions with cardiomyocytes and the modulation of nitric oxide sig-
nalling in vascular endothelial and smooth muscle cells via regulation of nitric 
oxide synthase isoforms. These and other mechanisms are discussed in detail in 
Chap.   3    .  

2.3     Red Wine Polyphenols and Cancer 

 In 1997 the fi rst major study of resveratrol’s anticancer effects was published by 
Jang and colleagues, and since that time there have been over a 1,000 publications 
on this topic. Roles for resveratrol in the inhibition of tumor initiation, promotion, 
and progression have been reported (e.g., Jang et al.  1997 ). In vitro, resveratrol 
effectively slows the growth of a large number of individual cancer cell lines 
(Table  2.1 ). In vivo, dietary resveratrol supplementation has been shown to slow the 
growth of transplanted tumors (Table  2.1 ). There is far less data on the effects of 
resveratrol derivatives on cell growth, but the available data suggests that piceid and 
pterostilbene have similar anticancer activities. For example, piceid inhibited lung 
tumor growth in mice at oral doses of 300 mg/kg twice daily (Kimura and Okuda 
 2000 ). Pterostilbene has recently received considerable attention in this context, and 
appears to be an effective inhibitor of cell proliferation at low micromolar concen-
trations (e.g., Lin et al.  2012 ; Wang et al.  2012a ; reviewed by McCormack and 
McFadden  2012 ). In our experiments with C2C12 myoblasts, primary myoblasts, 
PC3 prostate cancer cells, SH-SY5Y neuroblastoma cells, and primary fi broblasts, 
both pterostilbene and piceid are at least as effective at inhibiting cell growth in vitro 
as resveratrol (unpublished data). Interestingly, the oligomeric resveratrol deriva-
tives, including α-viniferin, ε-viniferin, pallidol, and trans-miyabenol all inhibit 
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growth at low micromolar concentrations in multiple cell lines including HepG2 
liver cells (Colin et al.  2008 ), colon tumor cells (Marel et al.  2008 ), and B lympho-
cytic leukemia cells (Billard et al.  2002 ).

   To date there is limited data available from clinical trials of resveratrol’s antican-
cer effects in humans. However, resveratrol’s role as a putative anticancer agent in 
humans is supported by the results of a recent study in which patients with colorec-
tal cancer were given an oral resveratrol treatment for 8 days. Doses of 0.5 g/day 
and 1.0 g/day resveratrol signifi cantly reduced cell proliferation in cancerous colon 
tissue (Patel et al.  2010 ). Further research involving larger patient cohorts is neces-
sary before resveratrol can be applied to the prevention and treatment of human 
cancers. 

 Thus, many of the polyphenolic compounds identifi ed in red wines, including 
resveratrol, pterostilbene, viniferins, and piceid, can inhibit the growth of cancerous 
and normal cells in vitro, and tumor grafts in vivo. Since there are no reports of 
toxicity in humans, there is potential for their use as anticancer agents. However, 
additional research is required in this area, particularly given the estrogenic proper-
ties of these molecules (discussed in further detail in Chap.   3    ). The structurally 
related phytoestrogen genistein appears to affect normal development of rodents 
when dietary supplementation occurs in the neonatal period (reviewed in Jefferson 
et al.  2007 ,  2012 ). A full characterization of resveratrol’s physiological effects with 
an appreciation for its estrogen properties is necessary.  

2.4     Red Wine Polyphenols and Neuroprotection 

 Tredici and colleagues ( 1999 ) hypothesized that resveratrol possessed neuroprotec-
tive properties in parallel with its better characterized cardioprotective effects. This 
property of resveratrol was demonstrated in a rat model of in vivo excitotoxic brain 
damage, where it conferred signifi cant protection against systemic kainic acid injec-
tion (Virgili and Contestabile  2000 ). A similar protective effect of resveratrol against 
neuronal death in rat models of cerebral ischemia was subsequently shown (Huang 
et al.  2001 ; Sinha et al.  2002 ). There have now been many reports of resveratrol’s 
neuroprotective activities in a variety of contexts (Table  2.2 ). Although resveratrol’s 
neuroprotection was initially linked to its chemical antioxidant capacity, more recent 
reports have explored its biological activities, including the modulation of heme 
oxygenase (Zhuang et al.  2003 ), matrix metalloproteinase (Gagliano et al.  2005 ), 
nitric oxide synthase (Bi et al.  2005 ), and AMP kinase (Dasgupta and Milbrandt 
 2007 ) activities. More recently, the neuroprotective capacity of piceid has been eval-
uated, with similar outcomes. Acute piceid administration is protective in a similar 
rat model of brain ischemia/reperfusion injury as investigated with resveratrol 
(Cheng et al.  2006 ; Ji et al.  2012 ). Surprisingly, although the viniferin oligomers of 
resveratrol show neuroprotective properties in the same rat models of stroke (Kim 
et al.  2012 ), there is as yet no data published for pterostilbene.

2 Health Effects of Resveratrol and Its Derivatives
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   Pterostilbene and resveratrol have been investigated for their ability to  ameliorate 
the age-associated decline of cognitive function. In 19-month-old Fisher 344 rats 
(considered old for this strain) dietary pterostilbene administration for 12–13 weeks 
improved performance in the Morris water maze test, which is considered a test of 
working memory (Joseph et al.  2008 ). Resveratrol similarly preserved working 
memory in aged mice administered the pro-infl ammation agent lipopolysaccharide 
(Abraham and Johnson  2009 ), and in aged rats (Zhao et al.  2012 ). Twenty weeks of 
dietary resveratrol supplementation also prevented the cognitive defi cits caused by 
high fat feeding in mice, a model of the “cafeteria diet” in humans (Jeon et al.  2012 ). 
On the other hand, Park et al. ( 2012 ) report a negative effect of dietary resveratrol 
supplementation on spatial learning and memory in young mice. In the primate 
 Microcebus murinus  (grey mouse lemur), dietary supplementation with resveratrol 
for 18 months improved working and spatial memory (Dal-Pan et al.  2011a ). The 
potential for red wine polyphenols to confer protection against acute neuronal 
insults or to ameliorate the symptoms of chronic neurodegenerative diseases has not 
been investigated in humans. However, the evidence gathered to date appears prom-
ising for the ability of resveratrol and pterostilbene to prevent age-associated cogni-
tive impairments but more work, particularly in humans and with grapevine 
polyphenols other than resveratrol, is still needed.  

2.5     Red Wine Polyphenols and Energy Homeostasis 

 One of the most publicized health claims for resveratrol in the popular media is its 
ability to impact body composition and to improve the negative metabolic conse-
quences of high fat diets. In 2006, two high-profi le reports provided evidence for a 
benefi cial effect of dietary resveratrol supplementation in male mice fed a high fat 
diet (Baur et al.  2006 ; Lagouge et al.  2006 ). In male mice consuming a high fat diet, 
resveratrol supplementation at 22.4 mg/kg/day reduced body weight gains and 
decreased the incidence of spontaneous death over 60 weeks (Baur et al.  2006 ). 
Numerous markers of physiological well-being were evaluated and found to be 
improved with resveratrol supplementation in these mice. In high fat diet fed mice 
receiving 400 mg/kg/day resveratrol supplementation, the diet-induced body 
weight gain was reduced signifi cantly, as was overall percentage body fat (Lagouge 
et al.  2006 ). In this latter study, body temperature and energy expenditure were 
increased by resveratrol supplementation, as was apparent mitochondrial abun-
dance in skeletal muscle. Again, a wide variety of indicators of metabolic health 
were found to be positively altered by resveratrol supplementation in these obese 
male mice. Generally, resveratrol supplementation in male mice appears to confer 
protection against many of the negative physiological effects of high fat feeding, 
including adipogenesis and systemic markers of infl ammation (e.g., Kim et al. 
 2011 ; Jeon et al.  2012 ). 

 Resveratrol supplementation has recently been evaluated in primates. Mouse 
lemurs ( Microcebus murinus ) given 200 mg resveratrol/kg/day for 4 weeks during 

2 Health Effects of Resveratrol and Its Derivatives
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their seasonal body mass gain period (in preparation for winter) showed reduced 
body mass gain, increased resting metabolic rates, and elevated body temperatures, 
though no differences in activity were observed (Dal-Pan et al.  2010 ). Interestingly, 
in a yearlong study these results, obtained during the winter (short day) season, 
were different from those found in summer (long day), where no effect on body 
mass was observed (   Dal-Pan et al.  2011b ). In this latter study, resveratrol supple-
mentation increased 24 h energy expenditure and resting metabolic rate. 

 These results from primates were consistent with the notion that resveratrol sup-
plementation could be effective in treating human obesity, and results from a very 
few human studies have now been reported. In obese (mean body mass index ~ 31.5) 
human males taking 150 mg/day resveratrol supplements for 30 days (e.g., Timmers 
et al.  2011 ) similar changes in muscle mitochondrial metabolic parameters, includ-
ing apparent increases in mitochondrial abundance, were observed as had been 
reported in male mice fed a high fat diet (Lagouge et al.  2006 ; Baur et al.  2006 ). 
This result might suggest increased energy expenditure in human males consuming 
resveratrol supplements; however, no changes in body mass, percentage body fat, or 
24 h energy expenditure were observed. In postmenopausal women with normal 
BMIs taking 75 mg/day resveratrol for 12 weeks (Yoshino et al.  2012 ), no effects 
on body mass, percentage body fat, 24 h energy expenditure, or other markers of 
overall health were observed (Yoshino et al.  2012 ). Taken together, the few human 
studies completed to date offer somewhat equivocal support for resveratrol supple-
mentation, though longer-term studies in individuals of unhealthy weight are 
awaited. Also, at this time we are aware of no reports of the effects of other grape-
vine polyphenols on obesity and overweight.  

2.6     Red Wine Polyphenols and Diabetes 

 One of the more prominent sequelae of overweight and obesity is type 2 diabetes 
mellitus, and the potential benefi t of dietary resveratrol supplementation in normal-
izing glucose dyshomeostasis and reducing the side effects of diabetes has been 
studied (reviewed in Szkudelski and Szkudelska  2011 ). In rodent models with 
genetically or chemically induced diabetes, dietary resveratrol reduces many of the 
cardiovascular side effects of diabetes (Thirunavukkarasu et al.  2007 ; Silan  2008 ). 
There is evidence in the same experimental models that resveratrol can reduce 
hyperglycemia (Palsamy and Subramanian  2008 ; Penumathasa et al.  2008 ). Cellular 
studies suggest that this anti-hyperglycemic effect could be mediated by a stimula-
tion of glucose transporter activities (e.g., GLUT4; Penumathsa et al.  2008 ). Other 
in vitro cellular studies indicate effects on the stability and insulin secretion rates of 
pancreatic beta cells (Palsamy and Subramanian  2010 ). In a recent clinical trial, 
patients with type 2 diabetes mellitus were given 150 mg/day resveratrol supple-
ments (Bhatt et al.  2012 ). This regimen improved a variety of cardiovascular and 
blood parameters, including mean systolic blood pressure. These data support a 
benefi cial effect of resveratrol on energy homeotasis in humans.  

2.6 Red Wine Polyphenols and Diabetes
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2.7     Resveratrol and Lifespan 

 In 2003 Howitz et al. reported the ability of resveratrol to extend lifespan in the 
baker’s yeast  Saccharomyces cerevisiae . These unicellular yeast have been widely 
used as an experimental model of aging and longevity (reviewed in Kaberlein 
et al.  2007 ), despite sharing essentially no physiology with mammals. Interestingly, 
resveratrol was reported to impact replicative aging (number of daughter cells per 
mother cell), but not chronological aging (length of time yeast survive in the non-
dividing state) (Howitz et al.  2003 ). This observation motivated a series of studies 
in invertebrate and vertebrate metazoan species. Wood et al. ( 2004 ) reported that 
resveratrol signifi cantly extended lifespan in two well-studied models of aging, 
 Drosophila melanogaster  and  Caenorhabditis elegans . However, subsequent 
attempts to repeat these results yielded equivocal outcomes (Table  2.3 ). Bass 
et al. ( 2007 ) were unable to show an effect of resveratrol on longevity in  D. mela-
nogaster , despite using the same strain and dietary supplementation protocol. 
Wang et al. ( 2013    ) have recently provided data suggesting that, under some spe-
cifi c dietary regimens that differ from that reported by Wood et al. ( 2004 ), the 
lifespan of female  D. melanogaster  can be marginally affected. In this study, no 
effects were observed in males. In other species of fl ies, the effects of resveratrol 
appear to also be quite variable. In another species of fruit fl y,  Anastrepha ludens , 
dietary resveratrol supplementation had no effect on longevity in males and virtu-
ally no effects in females (Zou et al.  2009 ). In the honeybee, resveratrol increases 
average lifespan (Rascon et al.  2012 ). The original lifespan extension result 
reported for  C. elegans  (Wood et al.  2004 ) has proven more robust, though the 
magnitude of the effect reported in most experiments is generally quite small. 
Bass et al. ( 2007 ) showed a very subtle, but positive, effect of resveratrol on  C. 
elegans  longevity. Subsequently, modest lifespan extensions in  C. elegans  have 
been demonstrated by other researchers (Gruber et al.  2007 ; Greer and Brunet 
 2009 ; Zarse et al.  2010 ).

   Evidence for effects of resveratrol on aging and longevity in vertebrate species is 
more limited. The fi rst vertebrate model of aging and longevity in which an effect 
of resveratrol on lifespan was demonstrated was the short-lived annual fi sh species 
 Nothobranchius furzeri.  In this species, a highly signifi cant increase in lifespan of 
up to 50 % was associated with dietary resveratrol delivery (Valenzano et al.  2006 ). 
Lifespan extension has also been reported in the related species  N. guentheri  
(Genade and Lang  2013    ; Yu and Li  2012 ). Results for mammalian species have 
been available only relatively recently. In large, multicenter studies of genetically 
heterogeneous mice, dietary delivery of resveratrol failed to increase lifespan in 
males or females (Miller et al.  2011 ; Strong et al.  2013    ). A long-term study of 
dietary resveratrol supplementation has been initiated in the primate species 
 Microcebus murinus  (Dal-Pan et al.  2011b ), and this study should provide the best 
data with which to judge whether there is any potential for resveratrol to affect 
human longevity.  

2 Health Effects of Resveratrol and Its Derivatives
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2.8     Conclusions: Red Wine Polyphenols and Their Putative 
Health Effects 

 In the two decades since the fi rst putative human health effects of resveratrol were 
hypothesized and reported, a vast wealth of data has accumulated on the subject. 
Only relatively recently, this literature has expanded to include other grapevine 
polyphenols. Suffi cient data is now available to support clinical trials of resveratrol 
and other polyphenols, and several of these have been completed or are ongoing. 
Further development of grapevine polyphenols for human health applications will 
require continued research into the underlying cellular and molecular mechanisms 
of these compounds, and details of their bioavailability in vivo. These are the 
subjects of Chaps.   3     and   4    , respectively.     
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3.1                        Introduction 

 The list of molecular targets ascribed to resveratrol (there are relatively limited data 
at this time for resveratrol derivatives) has grown considerably over the past decade, 
due to the great interest in this compound’s putative health promoting effects. Direct 
physical interactions of resveratrol with estrogen receptors (ERs) (e.g., Gehm et al. 
 1997 ), protein deacetylases (e.g., SIRT1; reviewed in Hu et al.  2011 ), protein 
kinases (e.g., AMP kinase; Dasgupta and Milbrandt  2007 ), phosphodiesterase (e.g., 
Park et al.  2012 ), heat shock proteins (e.g., HSP25; Han et al.  2012 ), and regulators 
of cellular bioenergetics (e.g., PGC-1alpha; Lagouge et al.  2006 ) have all been 
reported. Resveratrol also exerts effects via transcriptional regulation of a wide 
range of genes, including nitric oxide synthases (e.g., Csiszar et al.  2009 ), p53 and 
other cell cycle regulatory proteins (e.g., Whyte et al.  2007 ), and the mitochondrial 
antioxidant enzyme manganese superoxide dismutase (MnSOD; e.g., Robb et al. 
 2008a ,  b ; Robb and Stuart  2011 ). Given this preponderance of reported molecular 
targets it can be diffi cult to arrive at a satisfying understanding of the compound’s 
biological activities in mammalian systems. 

 In our view, the most parsimonious explanation for resveratrol’s many and wide- 
ranging effects is that it stimulates ER signalling pathways. ER signalling elicits 
both acute and longer-term effects and targets hundreds of individual genes and 
cellular processes (reviewed in Barros and Gustafsson  2011 ; Leitman et al.  2010 ). 
While this does not exclude activities via other mechanisms, there is nonetheless an 
overwhelming concordance between the cellular and systemic effects elicited by 
resveratrol and its derivatives, and those elicited by natural endogenous estrogens 
such as 17β-estradiol. The earliest reports of resveratrol’s biological activities in 
animals showed it acting as an ER agonist (Gehm et al.  1997 ). Subsequently, resve-
ratrol’s ability to bind the classical ERs ERalpha and ERbeta has been demonstrated 
(Bowers et al.  2000 ) in vitro and in silico (Yuan et al.  2011 ). Some of resveratrol’s 
important cellular effects are mediated by ERbeta (e.g., Robb and Stuart  2011 , Robb 
and Stuart, unpublished data). In this chapter, we review the many of the reported 
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molecular mechanisms underlying the biological activities of resveratrol and other 
grapevine polyphenols in mammalian cells, and compare them to those associated 
with estrogens.  

3.2     Estrogen Receptors 

 The classical ERs, ERalpha and ERbeta, transcriptionally regulate hundreds of 
genes (reviewed in Leitman et al.  2010 ). ERalpha is highly expressed in reproduc-
tive tissues and ERalpha agonism plays a prominent role in reproductive physiol-
ogy. On the other hand, ERbeta is expressed in many tissues of both males and 
females, including brain, heart, lung, epithelium, gastrointestinal tract, and prostate 
gland (see Nilsson et al.  2011  for review). Whereas ERalpha agonism is generally 
pro-proliferative, ERbeta agonists are typically anti-proliferative (Fig.  3.1 ) 
(Sugiyama et al.  2010 ). In addition to transcriptional effects, estrogens also exert 
acute effects via a G-protein coupled ER (Nilsson et al.  2011 ). Here we focus less 
on these acute short-term effects than on the longer-term transcriptional effects 
exerted by estrogens and red wine polyphenols, since a major use of these latter 
compounds is as dietary supplements, which would presumably be consumed 
chronically. For most of the putative health promoting activities discussed in 
Chap.   2    , we draw comparisons between the effects elicited by resveratrol and those 
associated with estrogens.

3.3        Neuroprotective Mechanisms of Resveratrol, 
and the Parallels to Estrogen Signalling 

 There are dozens of papers describing the neuroprotective actions of both resvera-
trol and 17β-estradiol in essentially the same experimental models of brain injury 
and neurodegeneration. Treatment of rats with resveratrol by intraperitoneal injec-
tion for 7 days confers substantial protection in ischemic stroke models using 

ERalpha ERbeta

Breast, ovary, uterus*,
testis, pituitary, brain,
aorta, heart, skeletal
muscle, kidney,
pancreas, colon, small
intestine, bone, skin
* Highly abundant       

Ovary,* uterus, testis*,
pituitary, brain*, heart,
skeletal muscle, kidney*,
pancreas, colon, small
intestine, bone*, skin*
* Highly abundant    

Cell proliferation Cell proliferation

  Fig. 3.1    Tissue expression of ERalpha compared to ERbeta (based on data from Brandenberger 
et al.  1997 )       
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30 min of middle cerebral artery occlusion (Ren et al.  2011 ) or bilateral occlusion 
of the common carotid arteries for 10 min (Simão et al.  2011 ). Resveratrol pretreat-
ment also protects against neuronal death and brain damage caused by brain isch-
emia secondary to cardiac arrest (Della-Morte et al.  2009 ). Similar neuroprotective 
effects of resveratrol have been shown in vitro. Pretreatment of PC12 neuronal 
cells with 25 µM resveratrol for 24 h prior to oxygen–glucose deprivation amelio-
rated oxidative damaged caused by 6 h oxygen–glucose deprivation (Agrawal et al. 
 2011 ). Similarly, pretreatment of rat hippocampal slices with 75–500 µM resvera-
trol prior to oxygen–glucose deprivation was protective against neuronal death 
(Raval et al.  2006 ). 

 Although far less data is available for resveratrol derivatives, recent evidence 
suggests similar neuroprotective ability. Neuroprotective effects of piceid were 
demonstrated in rats using a permanent middle cerebral artery occlusion (pMCAO) 
model of stroke that was coincident with piceid administration by intraperitoneal 
injection. Infarct volume and neurological defi cit score were evaluated at 24 h and 
72 h post pMCAO, and a dose of 50 mg/kg piceid was found to be protective (Ji 
et al.  2012 ). These results are generally in agreement with an earlier study (Cheng 
et al.  2006 ) showing a neuroprotective effect of 30 mg/kg piceid in a transient focal 
ischemia model. The effects of longer-term dosing with pterostilbene and viniferins 
appear not to have been tested in the context of acute ischemic brain injury. 

 These neuroprotective effects of resveratrol and its derivatives are strikingly 
similar to those reported for 17β-estradiol and specifi c ER subtype agonists. 
17β-estradiol-mediated neuroprotection has been demonstrated in a wide variety of 
in vitro and in vivo experimental contexts, and protection from both acute trauma 
(e.g., ischemic/reperfusion injury; reviewed in Simpkins et al.  2012 ) and chronic 
degenerative diseases (Parkinson’s disease; reviewed in Bourque et al.  2009 ) have 
been shown. In vitro models of ischemic trauma have included glutamate excitotox-
icity and NMDA excitotoxicity. In cultured hippocampal slices, 24 h pretreatment 
with estrogen confers signifi cant protection against NMDA toxicity (Aguirre and 
Baudry  2009 ). This result can be duplicated using the ERbeta-specifi c agonist diar-
ylpropionitrile (DPN) but not with the ERalpha-specifi c agonist 4,4',4''-(4-Propyl-
[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), suggesting that it is mediated by 
ERbeta. Subsequent work by this research group confi rmed this in the same model 
system, showing the absence of effect in hippocampal slices from ERbeta knockout 
mice (Aguirre et al.  2010 ). In similar studies of hippocampal neuron cultures, a 48 h 
pretreatment with 17β-estradiol, DPN or PPT was shown to confer protection 
against glutamate excitotoxicity. Together these results indicate that pretreatment 
with ERbeta and ERalpha agonists can confer protection against neuronal death, 
though ERbeta may play a dominant role. 

 The effects of estrogens and selective estrogen receptor modulators (SERMs) in 
the brain are not specifi c to neurons. Pretreatment with 17β-estradiol protects glial 
cells against oxygen glucose deprivation-mediated cell death, though in this case 
ERalpha appears to play the dominant role since this protective effect is reproduced 
by the ERalpha-specifi c agonist PPT (Guo et al.  2010 ). Similarly, pretreatment of 
primary astrocyte cultures with 17β-estradiol for up to 48 h prevents cell death 
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caused by OGD (Guo et al.  2012 ). Again, this effect can be duplicated using PPT 
but not with DPN, suggesting that ERalpha is the critical receptor involved. 

 Similar protective effects of estrogen and SERM pretreatment have been shown 
in vivo. Using subcutaneous implants, Horsburgh et al. ( 2002 ) delivered estrogen or 
vehicle to ovariectomized mice continuously for 2 weeks, then subjected them to 
17 min of global cerebral ischemia, and allowed 72 h recovery. The authors found 
signifi cantly less damage in brains of estrogen treated animals. Carswell et al. 
( 2004 ) used osmotic minipumps to deliver either PPT or DPN continuously for 
1 week before subjecting mice to 15 min of global ischemia. In this instance, the 
ERbeta agonist DPN, but not the ERalpha agonist PPT, was found to limit tissue 
damage. 

 Taken together the examples outlined above indicate that resveratrol and estro-
gen confer protection in the same in vivo and in vitro ischemic injury paradigms. 
Both ERalpha and ERbeta appear to be involved in mediating protection in these 
contexts. A variety of molecular mechanisms have been proposed to underlie the 
neuroprotective effects of both resveratrol and estrogen, including actions within 
mitochondria (Simpkins et al.  2010 ). Both compounds interact directly with the 
mitochondrial ATP synthase (Zheng and Ramirez  1999 ,  2000 ), stimulate the tran-
scription of mitochondrial respiratory complexes, upregulate the mitochondrial 
superoxide dismutase enzyme MnSOD, ameliorate mitochondrial reactive oxygen 
species production and loss of membrane potential while inhibiting the apoptotic 
pathway (Simpkins et al.  2010 ). 

 Parkinson’s disease is a neurodegenerative condition characterized by the death 
of the dopaminergic neurons in the substantia nigra pars compacta, which is involved 
in coordinating movement. Dietary supplementation with resveratrol confers pro-
tection from neurodegeneration in a mouse MPTP model of Parkinson’s disease. 
Pretreatment with resveratrol for 8 days largely prevented the loss of dopamine and 
tyrosine hydroxylase in striatum, and tyrosine hydroxylase-immunopositive neu-
rons in the substantia nigra following MPTP injection (Blanchet et al.  2008 ). 
Similarly, in an alternative model of Parkinson’s disease involving direct injection 
of 6HO-dopamine into the striatum, a 15 day resveratrol pretreatment via dietary 
supplementation reduced neuronal death and preserved motor functions (Khan et al. 
 2010 ). Estrogen is similarly protective against Parkinson’s disease. The disorder is 
more prevalent in men than in women, and women are at greater risk postmeno-
pause as estrogen levels are reduced (reviewed in Bourque et al.  2009 ). Female mice 
are also less susceptible than males to MPTP, and methamphetamine (reviewed in 
Bourque et al.  2009 ). In both male and ovariectomized female mice, pretreatment 
with physiological levels of estrogen reduces the extent of injury caused by these 
neurotoxins. Thus, both estrogen and resveratrol are neuroprotective in similar 
Parkinson’s disease models. Both ERs appear to contribute to Parkinson’s disease 
resistance. Interestingly, ERbeta knockout mice experience degeneration of the sub-
stantia nigra in the absence of any exogenous stressor (Wang et al.  2001 ). In the 
absence of either ERalpha or ERbeta, estrogen fails to elicit full protection against 
MPTP injection (   Al Sweidi et al.  2012 ). Interestingly, the ability of resveratrol to 
upregulate dopamine transporter expression in human dopaminergic neurons is 
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abolished by ER antagonist ICI 182,780, suggesting that some of the relevant effects 
of resveratrol are exerted via this pathway (Di Liberto et al.  2012 ). 

 Thus, there is substantial overlap between the neuroprotective actions of estro-
gen and resveratrol, while very limited data are available for resveratrol derivatives. 
In a few instances, the effects of resveratrol have been shown to depend upon an 
intact ER signalling pathway. However, more directed tests are needed of the 
hypothesis that the neuroprotection conferred by chronic administration of resvera-
trol or its derivatives is exerted via ERs. In particular, experiments with resveratrol 
in ERalpha and ERbeta gene knockout mice will shed light on this hypothesis.  

3.4     Mechanisms of Cardioprotective Effects of Resveratrol 
and Their Relationship to Estrogen Signalling 

 Dietary resveratrol supplementation can produce a wide variety of benefi cial cardio-
vascular effects in animal models and humans, including protection of heart tissue 
against ischemic injury. Two weeks of daily intra-gastric resveratrol administration 
(Dernek et al.  2004 ) or 1 week of daily resveratrol administration to rats by intra-
peritoneal injection (Mokni et al.  2007 ) provides protection against ischemia/reper-
fusion injury in Langendorff perfused hearts. Recent human trials have also shown 
improved heart health associated with dietary resveratrol supplementation in post- 
cardiac infarct patients (Magyar et al.  2012 ). The benefi cial effects of resveratrol on 
heart function appear to be at least partially attributable to effects on cardiomyo-
cytes per se, as opposed to other cell types. Danz et al. ( 2009 ) have shown that 
cardiomyocytes pre-incubated with 10 µM resveratrol for 72 h are resistant to 
oxidant- induced injury, perhaps due in part to a substantial upregulation of MnSOD 
activity that occurs under these conditions. Direct cardioprotective effects of pre-
treatment with other red wine polyphenols have not yet been determined. 

 Similar cardioprotective effects have been associated with estrogens. In many 
mammalian species, cardiac injury from transient ischemic is less severe in females 
than males (reviewed in Ostadal et al.  2009 ), while ovariectomy predisposes female 
mouse hearts to increased ischemia-reperfusion damage (Nikolic et al.  2007 ). 
Effects of ovariectomy in mice can be reversed by 2 weeks of daily estrogen admin-
istration, which restores the cardioprotection that is lost in ovariectomized females 
(Nikolic et al.  2007 ). ERbeta appears to be involved in estrogen-mediated cardio-
protection in mice, since ERbeta −/−  mice are more susceptible than wild-type mice 
to ischemia/reperfusion injury (Gabel et al.  2005 ; Wang et al.  2008 ,  2009 ). Estrogen 
treatment continues to be cardioprotective in ERalpha −/− , but not ERbeta −/− , mice 
(Babiker et al.  2007 ). Furthermore, DPN administration is as effective as estrogen 
at protecting the hearts of ovariectomized female mice from ischemia/reperfusion 
injury (Nikolic et al.  2007 ). 

 Dietary supplementation with resveratrol lowers mean arterial blood pressure in 
humans and animal models of hypertension (see Chap.   2    ; reviewed in Li et al.  2012 ). 
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An important mechanism underlying this effect is the stimulation of endothelial 
nitric oxide synthase activity and expression, thus enhancing nitric oxide production 
in the endothelium (see Schini-Kerth et al.  2010  for review). Nitric oxide diffuses 
out of endothelial cells and into neighboring smooth muscle where it inhibits con-
traction by a cyclic GMP-mediated pathway. This mechanism of resveratrol’s actions 
in vascular tissue has been investigated using measurement of tension development 
in isolated aortic rings from a wide variety of species. Grapevine polyphenols elicit 
relaxation in this model (Fitzpatrick et al.  1993 ), and the effect is mediated by endo-
thelial cells, since it is absent in vasculature denuded of endothelium. Endothelial 
nitric oxide synthase activity is affected via two mechanisms: a phosphorylation of 
serine 1177, and increased protein levels via an induction of transcription. These 
effects of resveratrol are mediated by ERalpha and ERbeta, and abolished by the ER 
antagonist ICI 182,780 (Anter et al.  2005 ; Klinge et al.  2005 ). Indeed, estrogen exerts 
virtually identical effects, stimulating endothelial nitric oxide synthase activity via 
serine 1177 phosphorylation and increased protein synthesis (reviewed in Duckles 
and Miller  2010 ). Understanding the role of ER signalling in resveratrol and other 
wine polyphenols’ effects on cardiovascular health is particularly important to under-
standing the activities of these molecules in both males and females.  

3.5     Mechanisms of the Anti-proliferative Effects 
of Red Wine Polyphenols 

 A number of reports have linked the growth inhibitory effects of resveratrol to its 
interactions with ERs (e.g., Bowers et al.  2000 ; Bhat and Pezzuto  2001 ; Bhat et al. 
 2001 ). Resveratrol’s growth inhibitory effects are not restricted to cancer cells, and 
indeed appear to be rather broad, perhaps dependent upon the relative expression 
levels of ERalpha and ERbeta, which are generally pro- and anti-proliferative, 
respectively (Fig.  3.1 ). Interestingly, the anticancer activities of red wine polyphe-
nols are shared by specifi c pharmacological agonists of ERbeta. Similar to the anti- 
proliferative properties of resveratrol, DPN inhibits the growth of the murine colon 
cancer cell line MC38 in vitro (Motylewska et al.  2009 ), and of cells in the colon 
and small intestine of ovariectomized rats in an ERbeta-dependent manner 
(Schleipen et al.  2011 ). Loss of ERbeta function is a critical step in the development 
of prostate cancer (Muthusamy et al.  2011 ), and breast cancers that express ERbeta 
generally have a better prognosis than those that do not (Mandusic et al.  2012 ). 

 We have shown that resveratrol, pterostilbene, and piceid inhibit proliferation of 
MRC5 human lung epithelial cells, C2C12 mouse myoblasts, SH-SY5Y human 
neuroblastoma cells, and primary fi broblast and myoblast cell lines via an 
ER-dependent mechanism. Further, this effect appears to be mediated by ERbeta 
and involves mitochondrial redox metabolism as a downstream target (see below for 
further discussion). Thus, the growth inhibitory effects of resveratrol and related red 
wine polyphenols may be explained in part by their ability to interact with ERs, in 
particular ERbeta (Fig.  3.2 ).   
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  Fig. 3.2    Resveratrol, piceid, and pterostilbene increase population doubling time in an ERbeta- 
dependent manner. ( a ) Population doubling time in MRC5 fi broblasts treated with DMSO (dimeth-
ylsulfoxide; vehicle control), ethanol (EtOH; vehicle control), resveratrol (25 µM), 
resveratrol-4’-sulfate (RES-S; 50 µM), resveratrol-4’-O-glucuronide (RES-G; 50 µM), piceid 
(50 µM), or pterostilbene (20 µM) for 48 h ( n  = 3). ( b ) Population doubling time in primary fi bro-
blasts generated from wild-type and ERbeta null mice, treated with DMSO (vehicle control), DPN 
(ERbeta control; 10 µM), resveratrol (25 µM), piceid (50 µM), or pterostilbene (20 µM) for 48 h 
( n  = 5).  Error bars  represent ± SEM, * p  < 0.05       
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3.6        Mechanisms Underlying Effects of Grapevine Polyphenols 
on Mitochondrial Biogenesis and ROS Metabolism 

 Several of the signalling pathways affected by resveratrol impinge upon mitochon-
drial functions, including bioenergetics and biogenesis. Lagouge et al. ( 2006 ) 
reported increased mitochondrial abundance, mtDNA copy number and citrate syn-
thase activity in skeletal muscle of high fat diet fed mice given dietary resveratrol 
supplementation. Similarly, Csiszar et al. ( 2009 ) demonstrated increased mitochon-
drial biogenesis and upregulation of specifi c mitochondrial proteins in human coro-
nary artery endothelial cells treated with resveratrol. Resveratrol also increases 
mitochondrial abundance, based on citrate synthase activity in other cell types 
in vitro, including fi broblasts and myoblasts. Similar results are observed in fi bro-
blasts, myoblasts and prostate cancer cells treated for 24–72 h with pterostilbene or 
piceid (Fig.  3.3 ;    Robb and Stuart, unpublished data), though no data is yet available 
for other red wine polyphenols.

   Interestingly, virtually identical effects on mitochondrial function have been dem-
onstrated with estrogen (reviewed by Klinge  2008 ; Chen et al.  2009 ). For example, 
estrogen stimulates mitochondrial biogenesis via the transcriptional regulators 
nuclear respiratory factor-1 and PGC-1alpha. Estrogen administration in vitro upreg-
ulates NRF-1 transcription in cerebral blood vessels (Stirone et al.  2005 ), MCF-7 
breast cancer and H1793 lung adenocarcinoma cells (Mattingly et al.  2008 ). In the 
latter cells, 4–6d of    estrogen treatment also elicited increases in oxygen consump-
tion, and the effect was inhibited by the ERalpha/ERbeta antagonist ICI 182,780. 
Hsieh et al. ( 2006 ) also demonstrated an estrogen-mediated increase in mitochon-
drial activity in mouse hearts. In vivo, estrogen treatment also increases the expres-
sion of multiple mitochondrial genes in brain (reviewed in Brinton  2008 ), while 
ovariectomy reduces mitochondrial respiratory chain protein expression and activi-
ties in brain tissue (   Yao et al.  2010a ,  b ,  2012 ). Interestingly, estrogen induced mito-
chondrial biogenesis via PGC-1alpha, and Tfam appears to be required for DPN to 
confer protection against ischemia/reperfusion injury in rat brain (Hsieh et al.  2006 ). 

 Taken together, the results summarized above certainly indicate very similar 
effects of resveratrol and estrogens on mitochondrial biogenesis. In our experi-
ments, over a 48 h incubation period, estrogen, resveratrol, piceid, pterostilbene, 
and DPN, but not PPT, all increase apparent mitochondrial abundance based on 
citrate synthase activity (Fig.  3.4 ) in several cell lines. Therefore, at least under our 
experimental conditions, resveratrol and its derivatives appear to stimulate a similar 
increase in mitochondrial abundance to estrogen.

   Resveratrol also targets the mitochondrial antioxidant system in mammalian 
cells. Resveratrol induces an increase in MnSOD in cardiomyocytes, SK-N-BE 
neuroblastomas, the HT22 hippocampal neuronal cell line, coronary arterial endo-
thelial cells, PC6.3 pheochromocytoma cells, MRC5 lung fi broblasts, C2C12 myo-
blasts, SH-SY5Y neuroblastoma, and PC3 prostate cancer cells (Movahed et al. 
 2012 ; Albani et al.  2009 ; Fukui et al.  2010 ; Ungvari et al.  2009 ; Kairisalo et al. 
 2011 ; Robb and Stuart  2011 ). In many instances this induction occurs in parallel 
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  Fig. 3.3    Citrate Synthase activity as a marker of mitochondrial abundance in fi broblasts, C2C12 
mouse myoblasts and prostate cancer cells treated with DMSO (vehicle control), ethanol (vehicle 
control), 20 µM resveratrol, 10 µM pterostilbene, or 50 µM piceid for 48 h.  n  = 3,  error bars  
represent ± SEM. * p  < 0.05         
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  Fig. 3.4    Citrate Synthase activity as a marker of mitochondrial abundance in fi broblasts, myo-
blasts and prostate cancer cells treated with DMSO (vehicle control), Ethanol (vehicle control), 
20 µM resveratrol, 10 µM pterostilbene, 50 µM piceid, 1 µM estradiol, 10 µM DPN, 10 µM PPT 
for 48 h.  n  = 3,  error bars  represent ± SEM. * p  < 0.05         

with a slowing or complete inhibition of cell growth, which is interesting given 
the association between MnSOD activity and mitosis established over the past 
decade (Sarsour et al.  2012 ). If the induction of MnSOD elicited by resveratrol 
is prevented using an siRNA approach, the inhibition of growth is abolished 
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(Robb and Stuart  2011 ). Thus, MnSOD induction appears to play a pivotal role in 
the ability of resveratrol to regulate mitosis. Using ρ 0  PC3 cells devoid of mitochon-
drial respiration and therefore producing essentially no matrix superoxide 
(Hoffmann et al.  2004 ) we demonstrated the essential role of the superoxide dismu-
tation to hydrogen peroxide in regulating cell growth (Robb and Stuart, unpub-
lished). In ρ 0  cells, although resveratrol treatment elicited a MnSOD induction of 
similar magnitude to wild type, no effect on growth rate was observed. At this time, 
the specifi c redox modifi cation underlying the growth regulation of resveratrol is 
not known. 

 MnSOD and mitochondria generally are well-characterized downstream targets 
of estrogens. In cultured vascular smooth muscle cells estrogen treatment signifi -
cantly increases MnSOD activity in conjunction with a marked reduction in prolif-
erative cell growth (Sivritas et al.  2011 ). In rats estrogen treatment increases MnSOD 
levels in mitochondria isolated from brain tissue (Razmara et al.  2007 ), and a down-
regulation of MnSOD is observed in ovariectomized mice (Strehlow et al.  2003 ). 
Estrogens also exert rapid and direct effects on MnSOD activity. In mitochondria 
isolated from breast cancer cells (MCF7) estrogen treatment signifi cantly increases 
MnSOD activity through an ER-mediated mechanism (Pedram et al.  2006 ). 

 We have found that the effects of resveratrol on both MnSOD induction and in 
turn cell growth are prevented when the ER antagonist ICI 182,780 is included dur-
ing exposure to resveratrol, indicating that this effect is mediated by estrogen recep-
tors (Robb and Stuart  2011 ). Since the ERbeta-specifi c agonist DPN, but not the 
ERalpha-specifi c PPT, can phenocopy the growth inhibitory effects of resveratrol, it 
appears that the MnSOD induction and growth inhibition associated with resvera-
trol are mediated by ERbeta This hypothesis was confi rmed in fi broblasts and myo-
blasts from ERbeta knockout mice, in which resveratrol fails to induce MnSOD or 
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slow cell growth. Pterostilbene and piceid similarly induce MnSOD expression and 
slow cell growth (Robb and Stuart, unpublished data). As with resveratrol, when 
MnSOD induction is prevented using siRNA, ICI 182,780, or ERbeta knockout, 
neither of these responses occurs. Taken together, these results indicate that the 
growth inhibitory effects of resveratrol and its derivatives on mammalian cells are 
due to the induction of MnSOD in an ERbeta dependent manner.  

3.7     Anti-obesity Effects 

 Resveratrol has been termed a “caloric restriction mimetic” based on its ability to 
elicit some of the same benefi ts as caloric restriction in rodent models and humans. 
In an early study of this phenomenon, male mice receiving a high fat diet supplemented 
with resveratrol showed lower body mass increases and lower percentage body fat 
than mice receiving just high fat diet, despite having the same overall food intake 
(Lagouge et al.  2006 ). These results are concordant with the known effects of estrogens. 
Estrogen is a major effector of energy homeostasis, body mass, and percentage 
body fat (reviewed in Faulds et al.  2012 ). Ovariectomized mice and rats eat more, 
exercise less and gain more adipose mass than intact controls, effects which can be 
effectively reversed with regular estrogen treatment (Faulds et al.  2012 ). Similar 
effects are typically observed in human females postmenopause (Hirschberg  2012 ). 

 Both ERalpha and ERbeta contribute to the effects of estrogen on energy homeo-
stasis: ERalpha-null mice show increases in white adipose tissue mass, and ERbeta- 
null mice show increases in fatty liver and white adipose tissue mass when fed a 
high fat diet. ERbeta agonists prevent the increases in body mass, percentage body 
fat and white adipose tissue mass associated with high fat diet in normal male mice, 
even though food intake is unaltered (Yepuru et al.  2010 ). This result is virtually 
identical to that reported for dietary resveratrol supplementation in mice (Lagouge 
et al.  2006 ). Taken together, these results support the hypothesis that resveratrol 
affects whole body energy homeostasis via ER-mediated signalling.  

3.8     Resveratrol as a Sirtuin Activator 

 Up to this point in our discussion of molecular mechanisms we have focused on 
emphasizing the many parallels between estrogen signalling and red wine poly-
phenols. The ability of resveratrol to behave as an ER agonist was fi rst reported in 
1997, and for many years this mechanism was hypothesized to account for the 
pleiotropic effects of this molecule in human health (Gehm et al.  1997 ; Bowers 
et al.  2000 ). Research interest in resveratrol was renewed in 2003, when resvera-
trol was identifi ed as having antiaging properties in worms and fl ies (Howitz et al. 
 2003 ; Wood et al.  2004 ). This discovery sparked further investigation into the 
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molecular mechanisms of resveratrol, including the discovery of a controversial 
interaction with sirtuins that has directed much of the current research into resve-
ratrol’s cellular activities. 

 Sirtuins are a family of highly conserved protein deacetylase enzymes. In yeast, 
the deacetylase Sir2 was declared a longevity protein following an observation that 
its overexpression could extend lifespan in  Caenorhabditis elegans  (Tissenbaum 
and Guarente  2001 ). Its mammalian orthologue, SIRT1, was thus hypothesized to 
extend lifespan in mammals. In 2003, Howitz and colleagues identifi ed resveratrol 
as a potent activator of SIRT1 that increased its reported catalytic activity by 
approximately 13-fold over control. In yeast, resveratrol similarly increased Sir2 
activity, and in agreement with the purported pro-longevity role of Sir2 this was 
concurrent with a 70 % lifespan extension. Resveratrol was subsequently reported 
to increase lifespan in  C. elegans, Drosophila sp.  and a short lived vertebrate fi sh in 
a supposedly sirtuin-dependent manner (Wood et al.  2004 ; Valenzano et al.  2006 ). 

 In mammals, an activation of SIRT1 activity has been suggested as the molecular 
mechanism directly responsible for resveratrol’s positive effects on metabolism, 
and cardiovascular and neuronal health. For example, the ability of resveratrol 
 supplementation to increase the health and survival of mice challenged with a high fat 
diet was postulated to arise from its ability to stimulate sirtuin activity (Baur et al.  2006 ; 
Lagouge et al.  2006 ). The allosteric activation of SIRT1 by resveratrol is thus a preva-
lent mechanism suggested to account for resveratrol’s battery of cellular effects. 
However, a substantial body of more recent evidence challenges both the hypothesized 
role for sirtuins in longevity and this putative molecular mechanism of resveratrol. 

 The evidence to support a direct activation of SIRT1 by resveratrol is at best 
equivocal, and there are now abundant experimental data inconsistent with this 
claim. Experiments in which resveratrol treatment increased lifespan in  S. cerevi-
siae  and  D. melanogaster  in a sirtuin dependent manner similarly could not be rep-
licated, suggesting that the ability of resveratrol to increase lifespan is highly 
dependent on external factors such as animal husbandry conditions and genetic 
background (Burnett et al.  2011 ). In fact, recent studies have failed to corroborate 
the initial reports of lifespan extension by Sir2 overexpression in  C. elegans  and  D. 
melanogaster , concluding that observed effects on lifespan are either smaller than 
originally reported, strain dependent (Bass et al.  2007 ) or disappear when the effects 
of genetic background are adequately controlled for. 

 Serious questions have also arisen concerning the nature of the in vitro assay 
used to establish the interaction between resveratrol and SIRT1 (Pacholec et al. 
 2010 ; Beher et al.  2009 ; Borra et al.  2005 ; Kaeberlein et al.  2005 ). The initial exper-
iments that identifi ed resveratrol as a direct activator of SIRT1 were based on a 
deacetylation assay that relied on a fl uor-de-lys reporter system. It was later discov-
ered that the fl uor-de-lys fl uorophore interacts directly with resveratrol resulting in 
an artifi cially high signal in the presence of resveratrol (Kaeberlein et al.  2005 ). 
Resveratrol does not increase the deacetylase activity of SIRT1 when given its 
native substrate in the absence of the fl uorophore, and thus, data from assays involving 
the fl uor-de-lys fl uorophore, detected by both fl uorescence and mass spectrometry, 
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are therefore confounded by the artifactually high signal in the presence of resveratrol. 
A further consideration that challenges the role of a direct interaction between 
SIRT1 and resveratrol is the discrepancy in plasma and tissue concentrations achiev-
able by dietary dosing regimes and the concentrations shown to increase SIRT1 
activity in vitro via allosteric interaction. The concentrations shown to activate 
SIRT1 by an allosteric interaction in vitro were reported in the micromolar range in 
a cell free assay using isolated SIRT1 (Howtiz et al. 2003). The conditions of this 
in vitro experiment do not account for interactions with cell membranes and pro-
teins that substantially affect free concentrations of resveratrol, making the micro-
molar concentrations required diffi cult, if not impossible, to achieve in vivo. 

 There is limited support for a direct interaction with SIRT1 as a mechanistic basis 
of resveratrol’s biological activities. However, SIRT1 has a broad range of molecular 
targets. For example, acetylation and deacetylation regulate numerous intracellular 
processes, including various aspects of the cellular stress response (e.g., FOXO tran-
scription factors, heat shock protein factor 1), growth and development (e.g., ERalpha, 
mammalian target of rapamycin), and cell metabolism (e.g., estrogen-related receptor 
alpha, PGC1-alpha) (Brunet et al.  2004 ; Westerheide et al.  2009 ; Ghosh et al.  2010 ; 
Nemoto et al.  2005 ; Wilson et al.  2010 ; Yao et al.  2010a ,  b ,  c ). It is therefore likely that 
SIRT1 is indirectly involved in resveratrol’s cellular effects, since these molecular 
targets are involved in so many aspects of cell physiology. This diversity of potential 
targets of SIRT1 may also contribute to the challenge of fully unravelling its role in 
resveratrol’s cellular effects. While experiments in which SIRT1 is deleted have the 
potential to shed light on the putative SIRT1-resveratrol interaction, deletion of SIRT1 
in mammals is extremely harmful, resulting in metabolic deregulation, increased inci-
dence of autoimmune disease, and shortened lifespan (Seifert et al.  2012 ; Sequeira 
et al.  2008 ; Li et al.  2008 ). Thus, while SIRT1 activity is increased by resveratrol, and 
deletion of SIRT1 does abolish some of resveratrol’s effects on cancer prevention 
(Boily et al.  2009 ), this observation is diffi cult to interpret in light of the extreme phe-
notype associated with SIRT1 deletion. 

 In agreement with our argument that many of resveratrol’s effects are in fact 
related to its properties as an ER agonist, the increase in SIRT1 activity reported for 
resveratrol treatment is phenocopied by estrogen in vivo. In mice, estrogen admin-
istration in both old and young ovariectomized mice signifi cantly increased the 
expression of SIRT1 (Elbaz et al.  2009 ). Estrogen also stimulates the transcription 
of SIRT1 in breast cancer cell lines (Elangovan et al.  2011 ). The ability of resvera-
trol to activate SIRT1, as has been reported in numerous experimental contexts, may 
again be refl ective of its actions as an ER agonist. 

 Recently, resveratrol was tested in a conditional SIRT1 knockout that avoided some 
of the confounding effects of SIRT1 knockout on development. In the absence of SIRT1 
many of resveratrol’s effects on mitochondrial abundance and respiratory rate in skeletal 
muscle and adipose tissue were indeed eliminated (Price et al.  2012 ). However, other 
resveratrol effects persisted in the absence of SIRT1. Given the importance of sirtuins in 
biology and the expanding list of proteins whose functions are modifi ed by acetylation/
deacetylation, it is likely that signalling pathways regulated by SIRT1 and resveratrol 

3 Cellular and Molecular Mechanisms of Resveratrol and Its Derivatives



41

overlap, but the model of a simple, direct activation of SIRT1 activity originally 
proposed for resveratrol must be abandoned based on evidence accrued to date.  

3.9     Resveratrol as an AMP Kinase Activator 

 Many of resveratrol’s purported health benefi ts relate to its ability to ameliorate the 
negative effects of high fat, high calorie diets (i.e., reduced insulin sensitivity and 
hyperlipidemia). On a cellular level an activation of the AMP-activated kinase 
(AMPK) has been put forward as a mechanism to account for these metabolic 
effects. AMPK is an important regulator of cellular energy metabolism that is acti-
vated by phosphorylation at threonine 172 in response to an increase in the intra-
cellular AMP–ATP ratio, or by the upstream kinases LKB1 and  calcium/
calmodulin-dependent protein kinase beta. Activation of AMPK occurs in response 
to a variety of environmental cues including hypoxia, oxidative stress, glucose 
deprivation and through the actions of hormones relating to energy homeostasis 
(leptin, adiponectin) (reviewed in Hardie,  2011 ). Activators of AMPK are used in 
the treatment of type-2 diabetes, and many of the metabolic effects associated with 
AMPK activators are phenocopied by resveratrol. 

 Resveratrol treatment elicits a stimulation of AMPK activity in many cell types 
both in vitro and in vivo. For example, in cultured human hepatocytes (HepG2 cells) 
micromolar concentrations of resveratrol elicit a dramatic, and sustained increased 
in phosphorylated AMPK levels (Zang et al.  2006 ; Hou et al.  2008 ; Shin et al.  2009 ). 
Resveratrol stimulates AMPK activity in 3T3-L1 adipocytes, an effect that is con-
current with an AMPK dependent inhibition of lipogenesis (   Chen et al.  2011 ). In 
isolated mouse myotubes (C2C12), a twofold increase in AMPK phosphorylation 
and elevated glucose uptake are observed with resveratrol treatment (Park et al. 
 2007 ). Baur et al. ( 2006 ) reported higher levels of phosphorylated AMPK in the 
liver tissue of male mice supplemented with 400 mg/kg/day resveratrol in a high fat, 
high calorie diet. Similarly, in an experimental model of obesity, oral administration 
of 10 mg/kg/day resveratrol ameliorated dyslipidemia and insulin resistance in 
Zuker rats. These positive changes in metabolic health were associated with an 
increase in AMPK phosphorylation in liver tissue (Rivera et al.  2009 ). In skeletal 
muscle, an important site of glucose metabolism, dietary resveratrol increases the 
phosphorylation of AMPK in a SIRT1 dependent manner (Price et al.  2012 ). 

 Evidence for AMPK activation in humans given a supplemental dose of resveratrol 
is limited due to the low number of clinical trials that have been completed to date. In 
healthy, but obese men, 30 days of a 150 mg/day resveratrol supplement resulted in 
elevated levels of phosphorylated AMPK in skeletal muscle tissue (Timmers et al. 
 2011 ). However, in a 12-week trial of postmenopausal women a 75 mg/day dose of 
resveratrol failed to evoke a signifi cant change in phosphorylated AMPK levels in 
skeletal muscle or adipose tissue (Yoshino et al.  2012 ). More data is required to fully 
appreciate the relationship between AMPK and resveratrol in humans. 
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 AMPK activation has also been implicated in the neuroprotective effects of 
resveratrol. An activation of AMPK in primary neurons was fi rst reported by 
Dasgupta and Milbrandt in  2007 , who demonstrated that resveratrol treatment stim-
ulated AMPK phosphorylation and activation of its downstream targets in Neuro2a 
neuroblastoma cells. Resveratrol stimulates differentiation of the Neuro2a cells, and 
using a dominant negative of AMPK it was determined that a functional AMPK is 
required for this biological activity. In 2 month old male mice intraperitoneal injec-
tion of 20 mg/kg resveratrol stimulates an increase in phosphorylated AMPK in 
brain tissue (Dasgupta and Milbrandt  2007 ). Similarly, oral administration of resve-
ratrol for 15 weeks signifi cantly increases levels of phosphorylated AMPK in the 
brain tissue of mice, an effect that is associated with reduced levels of amyloid beta 
peptide (   Vingtdeux et al.  2010 ). 

 The activation of AMPK has also been cited as the mechanism responsible for 
resveratrol`s inhibition of cell growth. In neural progenitor cells isolated from mice 
RES treatment signifi cantly reduces proliferation in an AMPK dependent manner 
(Park et al.  2012 ). Fourteen days of resveratrol treatment in mice signifi cantly acti-
vates AMPK, and reduces the proliferation and survival of neural progenitor cells in 
the dentate gyrus of the hippocampus, which manifests at the organism level as a 
reduction in spatial learning and memory capacity (Park et al.  2012 ). Resveratrol 
activation of AMPK is also associated with the inhibition of proliferative cell growth 
in breast cancer cell lines (MDA-MB-231 and MCF7) (Lin et al.  2010 ), and in car-
diomyocytes which is hypothesized to confer protection against cardiac hypertro-
phy (Chan et al.  2008 ; Hwang et al.  2008 ). 

 There is relatively little data regarding the effect of other red wine polyphenols on 
AMPK activation. However, similar to resveratrol pterostilbene stimulates AMPK 
phosphorylation in prostate cancer cell lines (PC3, LNCaP) and suppresses prolifera-
tion (Lin et al.  2010 ,  2012 ). The inhibition of proliferation arising from pterostilbene 
treatment can be prevented with a pharmacological inhibitor of AMPK (Lin et al.  2012 ), 
which demonstrates that as is the case with resveratrol, this effect requires AMPK activ-
ity. A 5 µM mixture of resveratrol, quercetin, and catechin, increased AMPK activity in 
MD-MBA-231 breast cancer cell lines, and in vivo a 5 mg/kg/day dose of these com-
pounds for 1 week effectively reduces the growth mammary fat pad tumors in an 
AMPK-dependent manner (   Castillo-Pichardo and Dharmawardhane  2012 ). 

 AMPK activation is observed in, and required for many of the potentially posi-
tive effects of resveratrol and red wine polyphenols on human health (metabolic 
effects, neuroprotection, and anticancer properties). However, the mechanism 
responsible for the AMPK activation is contentious. Activation of AMPK by resve-
ratrol is not due to a direct interaction, as no direct stimulation of AMPK activity is 
observed in a cell free, in vitro assay (Baur et al.  2006 ). It also appears that the 
activation of AMPK by resveratrol is not a response to a change in intracellular 
AMP concentrations. In cultured neurons no signifi cant change in the ratio of 
AMP–ATP concentrations was detected in response to resveratrol treatment 
(Dasgupta and Milbrandt,  2007 ), suggesting that AMPK phosphorylation is down-
stream of another resveratrol stimulated pathway. Activation of AMPK through 
SIRT1 dependent and independent mechanisms have been reported (e.g., Price et al. 
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 2012 ; Dasgupta and Milbrandt  2007 ), but given the importance of both SIRT1 and 
AMPK to metabolic health experiments involving the deletion or knockdown of 
these proteins are complicated by the overall severity of the resulting phenotype. 

 An often overlooked but important connection is the relationship between estro-
gen and AMPK activity. Estrogen is a key regulator of energy homeostasis (reviewed 
in Faulds et al.  2012 ) and, similar to resveratrol, stimulates the activity of AMPK in 
cultured cells in vitro and in tissues in vivo. In mouse myoblasts (C2C12 cells) 
estradiol elicits a signifi cant and rapid increase in AMPK phosphorylation (D’Eon 
et al.  2008 ). Estradiol also increases AMPK phosphorylation in 3T3-L1 adipocytes, 
an effect that is inhibited by the ER antagonist ICI182,780 (Kim et al.  2012 ). In 
vivo, a fi vefold induction of phosphorylated AMPK in muscle tissue is observed in 
response to estradiol treatment of ovariectomized mice. The rapid activation of 
AMPK by estradiol is abolished by an ER antagonist in cultured myoblasts (D’Eon 
et al.  2005 ). An activation of AMPK is observed in skeletal muscle of ovariecto-
mized rats given PPT, but not DPN or oestradiol benzoate for 3 days (Gorres et al. 
 2011 ), which is suggestive of a critical role for ERalpha, but not ERbeta in this 
response. In freshly isolated rat soleus muscle 10 nM estradiol rapidly activates 
AMPK in an ER-dependent manner (   Rogers et al.  2009 ). Thus, estrogen is also a 
potent activator of AMPK both in vitro and in vivo. Indeed, many of the reported 
effects of red wine polyphenols on AMPK activity are very similar to those that 
have been associated with estrogen. Despite this, the contribution of ERs to the 
activation of AMPK by resveratrol and its derivatives remain surprisingly unex-
plored. In our opinion, it seems highly plausible that resveratrol’s effects on AMPK 
are at least partially mediated by ER signalling pathways.  

3.10     Effects of Resveratrol on Phosphodiesterase and AMP 

 In a recent publication, Park et al. ( 2012 ) reported another putative molecular 
mechanism associated with resveratrol as an inhibitor of phosphodiesterase activity. 
These authors reported a dramatic increase in cAMP levels in C2C12 myotubes 
treated with 10 µM resveratrol. cAMP levels may be increased by either a stimula-
tion of adenylate cyclase activity (the enzyme responsible for cAMP synthesis), or 
an inhibition of phosphodiesterase activity (which catalyzes cAMP degradation). 
Park et al. ( 2012 ) demonstrated that the metabolic effects of resveratrol in cultured 
myotubes were independent of adenylate cyclase activity, but could be replicated by 
rolipram, an inhibitor of phosphodiesterase activity. Using an in vitro assay of phos-
phodiesterase activity they reported that resveratrol acted as a competitive inhibitor 
of phosphodiesterase isoforms 1, 3, and 4. In vivo, the metabolic effects of resvera-
trol supplementation could be phenocopied with rolipram (Park et al.  2012 ). 

 This study was not the fi rst to describe a role for cAMP in resveratrol’s molecular 
mechanism. Resveratrol has been shown to increase cAMP levels in MCF7 breast 
cancer cells, and rolipram can reproduce resveratrol’s anti-proliferative activities in 
these cells (El-Mowafy and Alkhalaf  2003 ). However, in this study the authors 
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present evidence that resveratrol is activating adenylate cyclase, and not inhibiting 
phosphodiesterase activity (El-Mowafy and Alkhalaf  2003 ). In another study, low 
micromolar concentrations of resveratrol and piceid had negligible effects on 
phosphodiesterase (isoform 5) activity (Dell’Agli et al.  2005 ). 

 Similar to resveratrol, estrogen also appears to alter intracellular cyclic AMP 
levels, but this may be via a different mechanism than that observed for resveratrol 
above. In cultured differentiated monocytic leukemia cells (THP-1) estrogen treat-
ment increases cAMP concentrations via a stimulation of adenylate cylcase activity, 
but has no effect on phosphodiesterase activity (Kanda and Watanabe  2002 ). An 
increase in cAMP concentrations is also observed in rabbit proximal tubule cells 
treated with estrogen (Han et al.  2000 ). However, the available evidence suggests 
the effects of estrogen on cAMP levels are via adenylate cyclase activation rather 
than phosphodiesterase inhibition (e.g., Filardo et al.  2002 ). More research is needed 
to understand the potential contribution of phosphodiesterase inhibition to the 
actions of resveratrol and its derivatives in mammalian cells.  

3.11     Conclusions 

 The molecular mechanisms responsible for the effects of resveratrol and its deriva-
tives on human health continue to be the subject of much debate within the scientifi c 
community. Although a wide range of specifi c inter-molecular interactions have 
been proposed for resveratrol, it is interesting to note the striking parallels that exist 
between the effects of resveratrol and those of estrogens. Many of the signalling 
pathways hypothesized to account for resveratrol’s actions converge with estrogen 
signalling pathways. The possibility that resveratrol’s estrogenic properties underlie 
these purported mechanisms (as outlined in Fig.  3.5 ) has not been fully investigated, 

  Fig. 3.5    In mammals, resveratrol and its derivatives in grapevine may exert similar effects on a 
variety of downstream cellular targets via estrogen receptor-mediated signalling.  ERs  estrogen 
receptors,  MnSOD  Mn superoxide dismutase,  AMPK  AMP kinase,  eNOS  endothelial nitric oxide 
synthase,  SIRT1  sirtuin isoform 1,  PD  phosphodiesterase       
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and more resveratrol experiments should be undertaken in ER-null (particularly 
ERbeta-null) mice.

   In the expanse of data collected to date describing resveratrol and other red wine 
polyphenol’s cellular activities, mitochondria have emerged as a clear proximal tar-
get of the actions of these molecules (see, e.g., Fig.  3.6 ). Indeed, mitochondrial 
biogenesis and altered ROS metabolism are common observations made with both 
resveratrol and estrogen treatment in vitro and in vivo. Understanding how these 
changes in mitochondrial function manifest on an organismal level to yield the posi-
tive effects observed with these molecules will provide signifi cant insight into 
human health research.
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4.1                        Introduction 

 There is generally good agreement between the in vitro effects of resveratrol and 
derivatives observed in cell culture experiments using low micromolar concentra-
tions and those observed in vivo using either dietary supplementation or injection. 
This is somewhat surprising given the consistent observation of very low resveratrol 
bioavailability in vivo (see below). Resveratrol is rapidly and extensively metabo-
lized in vivo, such that concentrations measured in human or rodent plasma follow-
ing oral administration typically range from high nanomolar to just a few micromolar. 
In this chapter we present and review the available data on resveratrol bioavailabil-
ity in humans and rodents taking these polyphenols as dietary supplements or via 
alternative administration routes. We attempt to reconcile the relationships between 
concentrations and activities observed in vitro and in vivo. The more limited infor-
mation regarding bioavailability of resveratrol derivatives is reviewed. Further, the 
relatively recent literature on alternative delivery methods to boost bioavailability is 
explored.  

4.2     Resveratrol Metabolism In Vivo 

 Resveratrol undergoes extensive chemical modifi cation in the intestinal tract and is 
rapidly metabolized. In humans, plasma levels of resveratrol following a single 
25 mg oral dose peak at an average concentration of 2 µM, but the vast majority of 
this is metabolized derivatives of unknown biological activity (Walle et al.  2004 ). In 
rodents oral intake of resveratrol in the hundreds of milligrams range also yields 
only low nanomolar plasma levels of unmetabolized resveratrol (Teng et al.  2012 ; 
Marier et al.  2002 ). Tissue levels of resveratrol in rodents following a high oral dose 
are also in the nanomolar range, with the highest concentrations being observed in 
liver and kidney tissue (Juan et al.  2010 ). Resveratrol is capable of crossing the 
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blood–brain barrier, and pure resveratrol has been measured in brain tissues of rats 
and mice given oral doses of resveratrol (Juan et al.  2010 ; Vitrac et al.  2003 ) 
(Fig.  4.1    ).

   The limitations of resveratrol’s very low bioavailability can be at least partially 
overcome by increasing dose. Whereas a single 25 mg dose of resveratrol, corre-
sponding to moderate to high red wine consumption, resulted in marginal levels of 
plasma resveratrol in human subjects, a single 5 g dose increased this to up to 
2.4 µM (Boocock et al.  2007 ). In a second study by the same group, Brown et al. 
( 2010 ) showed that daily consumption of the same 5 g dose of resveratrol for several 
weeks further increased peak plasma concentrations to almost 5 µM. In a separate 
long-term study using lower daily doses of resveratrol, Almeida et al. ( 2009 ) also 
showed that repeated dosing can increase the plasma half-life of resveratrol by more 
than twofold. Thus, the possibility exists that chronic dietary intake of resveratrol in 
several gram per day quantities could boost plasma resveratrol to levels in the low 
micromolar range that can elicit some effects in vitro. In considering these data, it 
should be noted also that in virtually all in vitro experiments resveratrol concentra-
tions are typically 5–50 µM and the duration of treatment is almost always less than 
1 week. In comparison, in vivo studies may not achieve equally high concentrations 
in plasma, but the duration of exposure is often much longer. How this impacts cel-
lular interactions of resveratrol is not well enough understood, but presumably it 
would promote cellular uptake. In rabbits, rats and mice tissue levels of resveratrol 
following oral delivery closely parallel plasma levels (Asensi et al.  2002 ), 
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suggesting that higher daily doses of resveratrol will be communicated into the 
extravascular tissues and might reach levels high enough to be effective. That this 
does indeed occur is strongly suggested by the simple observation that dietary 
intake of resveratrol at high levels can elicit many of the same biological activities 
observed in vitro (e.g., Chap.   2    , Tables   2.1     and   2.2    ). In this context it is important to 
note that no serious adverse side effects have been associated with these higher 
levels of intake in humans (Edwards et al.  2011 ).  

4.3     Concentrations of Resveratrol In Vitro vs. In Vivo 

 Although the concentrations of resveratrol required to elicit its effects in vitro are 
often several fold higher than those measured in vivo following dietary supplemen-
tation or other delivery methods, several factors affecting free polyphenol concen-
trations must be considered in interpreting these apparent differences. Resveratrol 
and many other red wine polyphenols are highly lipophilic and bind to serum albu-
min and other proteins that are contained in the fetal calf serum used in virtually all 
culture media. Thus, the free concentrations of polyphenols to which cells are 
exposed will be much lower than the initial dose. Jannin et al. ( 2004 ) showed that 
the concentration of free resveratrol in a common cell culture medium containing 
10 % fetal calf serum follows an exponential extinction, reaching 50 % of the initial 
concentration added by 2 h, and falling to close to zero by 24 h. In the HepG2 cell 
line, a commonly used model for human hepatocytes, resveratrol uptake is thought 
to occur by a combination of passive transport and simple diffusion. Resveratrol 
uptake by simple diffusion is nearly twofold lower when serum is included in the 
culture medium, again suggesting that serum protein binding affects resveratrol’s 
cellular uptake (Delmas and Lin  2011 ). Thus, it is likely that an addition of 50 µM 
resveratrol in an experiment lasting 24 h might give an average concentration over 
the duration of the experiment in the low micromolar range. The presence of serum 
in culture media is thus a confounding factor that limits comparisons that must be 
considered when comparing in vitro and in vivo concentrations. 

 A second factor that infl uences resveratrol uptake in vitro and must be consid-
ered when making comparisons with in vivo experiments is the choice of vehicle 
solvent for resveratrol addition. Resveratrol is soluble in ethanol and dimethylsulf-
oxide (DMSO), and both are commonly used vehicles to deliver resveratrol in vitro. 
Ethanol, but not DMSO, can induce an expansion of lipid membranes that alters 
fl uidity and this modifi es resveratrol uptake. The concentration of resveratrol needed 
to observe its anti-proliferative effects in HepG2 cells is lower when ethanol is used 
as a solvent than with DMSO as a solvent (Delmas et al.  2000 ). Thus, specifi c prop-
erties of the culture medium including the means of introducing resveratrol (or other 
polyphenols) complicate the direct comparison of in vitro and in vivo resveratrol 
concentrations.  

4.3  Concentrations of Resveratrol In Vitro vs. In Vivo

http://dx.doi.org/10.1007/978-1-4614-6968-1_2
http://dx.doi.org/10.1007/978-1-4614-6968-1_2#Tab00021
http://dx.doi.org/10.1007/978-1-4614-6968-1_2#Tab00022


56

4.4     In Vivo Bioavailability of Resveratrol Metabolites 
and Derivatives 

 The low bioavailability of resveratrol in vivo is due largely to its rapid metabolism 
following ingestion, and the majority of the resveratrol detected in animal plasma 
and tissues exists as the sulfate and glucuronide metabolites (Wenzel and Somoza 
 2005 ). Wenzel et al. ( 2005 ) fed rats a 300 mg/kg body weight/day dose of resvera-
trol for 8 weeks. While plasma levels of free resveratrol were less than 0.3 µg/mL 
(~1.3 µM), the resveratrol-3-sulfate and glucuronide derivatives were detected at 
0.37 ± 0.09 µg/mL (~1.6 µM) and 3.13 ± 0.88 µg/mL (~15 µM), respectively. Given 
that oral doses of resveratrol have been shown to be effective in inhibiting the 
growth and progression of cancer, one might hypothesize that resveratrol’s more 
bioavailable metabolites contribute to this biological activity. However, in vitro 
experiments to date have used pure resveratrol almost exclusively, so only a few 
studies shed light on the possible biological activities of its most prominent metabo-
lites. We investigated the in vitro effects of resveratrol-3-sulfate and resveratrol- 4-
glucuronide, and found that unlike resveratrol, these compounds had no effect on 
cell proliferation rates in a mouse myoblast cell line (C2C12) and a human lung 
fi broblast cell line (MRC5) at concentrations up to 100 µM (Robb and Stuart, 
unpublished   ). In corroboration with our observations in myoblasts and fi broblasts, 
the proliferative rate of the cancerous mammary cell line MC-7 was similarly unaf-
fected by the 3′-sulfate and 4-sulfate resveratrol metabolites (Miksits et al.  2009 ). In 
contrast, however, sulfate metabolites were shown to have biological activity in 
cultured macrophage cells where, similar to what is observed with resveratrol, the 
3′-sulfate, 3,4′-sulfate, and 3-sulfate metabolites inhibited the activity of inducible 
nitric oxide synthase (Hoshino et al.  2010 ). The resveratrol-3-sulfate and glucuro-
nide metabolites, at concentrations of 10 µM, also exert effects on 3T3-L1 adipo-
cytes in vitro (Lasa et al.  2012 ). Thus, resveratrol metabolites may explain some of 
the biological activities in vivo that have been associated with resveratrol supple-
mentation. A complete evaluation of the biological activities of resveratrol metabo-
lites in different experimental contexts is an important step toward a more complete 
and accurate understanding of resveratrol’s in vivo effects. 

 Much of the existing literature surrounding red wine polyphenols has focused on 
isolated resveratrol, and the activities of related compounds or potential synergistic 
effects with the many other polyphenols found in red wine are a newer area of 
research. The potential activity of pterostilbene, a methylated derivative of resvera-
trol found in red wine, gained research interest recently after it was found to have 
anti-proliferative effects in cultured cells at lower concentrations than resveratrol 
(e.g., McCormack et al.  2011 ). In vitro, the concentration of pterostilbene required 
to reduce the proliferative growth rate of human colon cancer cell lines (HCT116, 
HT29, Caco-2) is approximately half that required for resveratrol (Nutakul et al. 
 2011 ). In addition to colon cancer cell lines, pterostilbene inhibits the proliferation 
of preadipocytes and breast cancer cell lines (Hsu et al.  2012 ; Lee et al.  2011 ; 
McCormack et al.  2011 ). In vivo, inclusion of pterostilbene in the diet of mice 
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signifi cantly decreased rates of pancreatic tumor growth (McCormack et al.  2012 ). 
In rats, oral administration of pterostilbene (10 mg/kg) resulted in higher serum 
concentrations (up to 100 ng/ml, or 0.4 µM) and plasma exposure, and lower clear-
ance than resveratrol at similar doses (Lin et al.  2009 ). A second rat study using up 
to 2 weeks of 170 mg/kg/day pterostilbene versus 150 mg/kg/day resveratrol showed 
that pterostilbene is up to tenfold more bioavailable, reaching peak plasma concen-
trations of over 20 µM. Some researchers have suggested that pterostilbene’s methyl 
groups might prevent the extensive metabolism observed with resveratrol in vivo, 
thus facilitating the higher circulating concentrations of pterostilbene (Wen and 
Walle  2006 ; Nutakul et al.  2011 ). In any case, these results certainly highlight 
pterostilbene as a potentially more attractive candidate for further development than 
resveratrol, particularly given its greater potency in some in vitro assays of biologi-
cal activity. Another abundant wine polyphenol, piceatannol, also shows in vivo 
biological activities with promising health effects, such as the ability to reduce 
infarct size and neural defi cits associated with middle cerebral artery occlusion in 
male rats (Wang et al.  2012 ). However, there is currently insuffi cient data to evalu-
ate its bioavailability in vivo. 

 Several other viniferins have recently been identifi ed for their potential therapeu-
tic use. For example, ε-viniferin causes a greater inhibition of proliferation in iso-
lated rat vascular smooth muscle cells than resveratrol at equivalent doses (Zghonda 
et al.  2011 ). In cultured neuronal cells (PC12) ε-viniferin is protective against the 
toxic effects of the β-amyloid peptide, and is thus thought to have neuroprotective 
properties (Richard et al.  2011 ). However, there is as yet no data available regarding 
the bioavailability of viniferins in vivo.  

4.5     Resveratrol Delivery Strategies to Increase Bioavailability 

 Two important factors impinging upon the bioavailability and in vivo activities of 
resveratrol and other red wine polyphenols are the delivery method and vehicle 
used. This is particularly true when considering data generated using rodent models, 
where a wider breadth of delivery methods is available that may not be plausible in 
humans. In the majority of studies using rodent models resveratrol is incorporated 
into the animal’s chow or drinking water, thus providing a chronic low dose expo-
sure. In contrast, in humans the current studies have relied on supplements to 
achieve the desired resveratrol intake. This is an important distinction from the ani-
mal studies, as a supplement model more closely represents a bolus dose of resve-
ratrol than chronic exposure. 

 The composition of the delivery matrix is also likely to impact the bioavailability 
of resveratrol and derivatives. In dietary resveratrol administration, signifi cant 
effects on metabolism and aerobic exercise endurance are observed when resvera-
trol is added to diets with fat contents equal to or greater than 40 %, but not when 
resveratrol is added to a standard composition diet (Baur et al.  2006 ; Lagouge et al. 
 2006 ). Similarly, resveratrol given in a high-fat diet increases brain antioxidant 
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enzyme activities by approximately twofold, while the same dose given in a stan-
dard mouse diet does not have a signifi cant effect (Robb et al.  2008b ). An often- 
overlooked factor in these studies is the fat source used to augment the animal diet. 
The use of oils high in monounsaturated and polyunsaturated fatty acids to increase 
the fat component of the diet can have substantial physiological effects that may 
alter the response to resveratrol (Lau et al.  2010 ). Alternatively, however, it may 
simply be that the high-fat diet directly affects the intestinal absorption, metabo-
lism, and transport of resveratrol, which is a highly lipophilic compound. Resveratrol 
undergoes extensive chemical modifi cation in the intestinal tract, and its inclusion 
in a high-fat diet may alter the degree to which it is modifi ed (Kuhnle et al.  2000 ). 

 Attempts to promote resveratrol delivery and uptake using specifi c matrices have 
as yet yielded limited success (reviewed in Santos et al.  2011 ; Amri et al.  2012 ). To 
circumvent the negative consequences of a high-fat diet, we developed a silicon- 
based encapsulation formula as a means of reducing chemical modifi cations of res-
veratrol during its ingestion. However, at a matching resveratrol dose the silicon 
formulation failed to replicate the effects on tissue antioxidant levels and mitochon-
drial abundance observed in mice when resveratrol is given in combination with a 
high-fat diet (Robb et al., unpublished   ). Alternative methods of shielding resvera-
trol from intestinal modifi cations have also been reported including encapsulation 
in a nanoparticle delivery system, liposome encapsulation, and the synthesis of 
more bioavailable derivatives (see Teskac and Kristl  2010 ; Gokce et al.  2012 ; 
Coimbra et al.  2011 ), but their ability to increase resveratrol’s bioavailability has not 
been thoroughly tested in vivo. 

 In light of these observations of an apparent requirement for delivery in a high- 
fat diet to elicit many of resveratrol’s effects in vivo, it would seem possible that 
dietary strategies could be used to improve resveratrol’s bioavailability in humans. 
However, to date, little research exploring this idea has been published. Vitaglione 
and colleagues ( 2005 ) observed that circulating levels of resveratrol following red 
wine intake were not infl uenced by the macromolecule composition of an accompa-
nying meal in healthy human subjects. While this result does not support the argu-
ment that diet composition infl uences resveratrol uptake, any conclusions based on 
this study are limited by the fact that the plasma concentrations of resveratrol 
detected in this study were extremely low, making the data diffi cult to interpret. 
Understanding the impact of diet composition on resveratrol’s effects is important 
for its potential to inform nutritional strategies and the development of new delivery 
methods with the goal of increasing bioavailability, and will be an area of ongoing 
research.  

4.6     Conclusions 

 In summary, it is clear that, while the relatively low resveratrol levels present in red 
wines are less likely to strongly elicit the biological effects observed in in vitro stud-
ies, dietary supplementation with higher doses might provide an effective plasma 
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concentration. The ongoing publication of data indicating that pterostilbene and 
other red wine polyphenols have similar activities in cultured cells strongly suggests 
that resveratrol is not unique but rather one of several grapevine compounds with 
benefi cial effects. Since some of these other compounds have greater bioavailability 
in vivo than resveratrol, future research should focus on more fully characterizing 
them, particularly pterostilbene and piceid.     
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                    Over the past 20 years, the level of scientifi c and public interest in grapevine polyphenols 
has increased exponentially. Over that period of time, continually more potential 
human health applications of these molecules have been suggested and experimental 
data supporting various uses has accumulated. The earliest indications of anticancer 
and cardioprotective effects of resveratrol were followed by a succession of reports 
detailing resveratrol’s anti-infl ammatory, antiobesity, antiaging, antidiabetic, and 
neuroprotective properties. The level of interest in resveratrol remains so high that 
over 5,000 articles on the topic are listed in PubMed at the time of writing. 

 Perhaps not surprisingly then, resveratrol has generated considerable contro-
versy amongst researchers. One of the most controversial areas has been the 
mechanism(s) of action of this molecule in mammalian cells. Early reports of resve-
ratrol as a phytoestrogen appear to have fallen out of favor. Later reports of resvera-
trol as a direct activator of SirT1 have also been cast into doubt due to the unreliability 
of the protein deacetylase assay used (Pacholec et al.  2010 ; Beher et al.  2009 ; Borra 
et al.  2005 ; Kaeberlein et al.  2005 ). Putative direct interactions of resveratrol with 
AMPK and phosphodiesterase published more recently occur at concentrations that 
cannot be reached in vivo, so these mechanisms too are uncertain. Thus, it is not 
entirely clear how to reconcile the very low bioavailability of resveratrol in vivo 
with the relatively high concentrations being used generally to show effects in vitro. 
Nonetheless many of the in vitro effects of resveratrol can be reproduced in vivo. 

 Many of resveratrol’s effects both in vitro and in vivo are virtually identical to 
those associated with 17β-estradiol. Thus, in our view the circumstantial evidence 
strongly suggests that an estrogenic mechanism contributes to the effects of resve-
ratrol in mammalian cells and tissues. While this does not disclude other possible 
mechanisms, it must be realized that in many instances no other explanation seems 
necessary, since resveratrol largely phenocopies the effects of 17β-estradiol or one 
of the specifi c ERalpha or ERbeta agonists in a variety of contexts, including inter-
actions with the proposed mechanisms outlined above (Table  5.1 ).

   While resveratrol’s inhibitory effects on cell growth appear to be primarily via 
ERbeta, which typically mediates anti-proliferative signals (Nilsson et al.  2011 ), it 
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is able to bind both ERs, so as with 17β-estradiol itself, whether cell growth is 
stimulated or inhibited will depend in part upon the relative levels of ERalpha versus 
ERbeta. Other effects of resveratrol in the cardiovascular system and brain appear 
to be mediated by both ERalpha and ERbeta, so the overall effect in any tissue or 
cell is likely to refl ect in part these relative receptor levels. 

 While resveratrol has captured the vast majority of attention amongst grapevine 
polyphenols, more recently attention has shifted to some of the resveratrol deriva-
tives that may actually be produced in higher amounts in grapevines. Pterostilbene 
shares resveratrol’s anti-proliferative and anticancer properties (McCormick & 
McFadden  2012 ; Robb and Stuart   , unpublished), and is effective at lower concentra-
tions than resveratrol in the limited studies that have been done to date. Pterostilbene 
bioavailability in vivo is also signifi cantly higher than resveratrol, making it a poten-
tially more attractive molecule for development as a health promoting nutraceutical. 
On the other hand, levels of pterostilbene in stressed grapevine leaves and grapes are 
lower than those of other polyphenols. Strategies to increase the production in 
grapes of this molecule in particular are therefore warranted. In general, on the basis 
of data collected to date, pterostilbene is a particularly interesting target for future 
development that will require additional research. 

 Piceid’s effects in mammalian cells and tissues are also relatively understudied, 
although again the limited (relative to resveratrol) available data suggests this mol-
ecule can elicit many of the same effects as resveratrol and pterostilbene, perhaps 
via the same ER signalling pathways. At this time, there appears to be no data on 
piceid’s bioavailability in vivo, which is an important defi cit that should be 
addressed. However, it is one of the most abundant resveratrol derivatives found in 
the leaves and grapes of stressed grapevine, and thus is also one of the more abun-
dant polyphenols present in red wines. Certainly, more research on the potential 
health effects of this molecule would shed light on its contribution to the effects of 
combined grapevine polyphenols and the potential for its further development as a 
nutraceutical. 

 The recent evidence of piceid and pterostilbene’s biological activities in mam-
malian cells indicate the importance of considering all of these grapevine polyphe-
nols, rather than focusing exclusively on resveratrol. While there are very few data 
on the effects of viniferins on mammalian biology, the small amount of available 
data is consistent with the hypothesis that these resveratrol oligomers are capable of 
eliciting some of the same cellular effects as resveratrol. Some viniferins are highly 

   Table 5.1    Protective effects of resveratrol and estrogen in various disease contexts   

 Disease  Protection by resveratrol  Protection by estrogens 

 Atherogenesis  √  √ 
 Hypertension  √  √ 
 Ischemic stroke  √  √ 
 Neurodegeneration  √  √ 
 Cancer  √  Tissue specifi c 
 Obesity  √  √ 
 Type 2 Diabetes  √  √ 
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abundant in grapevine tissues, particularly under stressful conditions, and indeed 
they are captured at high concentrations in red wines. Currently, research on the 
viniferins is restricted by their very limited commercial availability, but it is hoped 
that this will change as interest in these molecules continues to grow. Also, although 
we have focused on the resveratrol derivatives in this work, there are dozens of 
additional polyphenolic molecules found in grapevine tissues that have not yet been 
well characterized and which deserve further study. 

 In red wines produced from relatively unstressed grapes using conventional fer-
mentation approaches, the levels of resveratrol and its derivatives are probably so 
low, once their rapid in vivo metabolism is accounted for, that they could elicit 
marginal biological effects at best. Therefore, realizing signifi cant health benefi ts 
will not likely be possible with moderate wine consumption unless these levels are 
signifi cantly augmented. Continual refi nements to the grape harvest and fermenta-
tion processes aimed at maximizing the production and extraction of resveratrol- 
based polyphenols is thus certainly worthwhile. Stimulation of the endogenous 
stilbene biosynthetic pathway using hormone elicitors like methyljasmonate shows 
some promise, as do various means of inducing stress. UV stress is a strong inducer 
of stilbene synthesis that could be exploited, perhaps even after grape harvest. 
Continuing research in this area is warranted to produce “high polyphenol” grapes 
and/or wines with proven health benefi ts. Although more research is needed on how 
higher levels of these molecules affect the palatability of red wines, the results from 
initial experiments with resveratrol suggest they will indeed be acceptable. 
Therefore, their inclusion at higher concentrations in red wines could yield health 
benefi ts without unduly compromising the sensory experience. 

 In conclusion, despite the wealth of data that has accumulated over two decades 
of studying grapevine polyphenols, there is much work still to do before the chem-
istry and biology of these compounds are suffi ciently understood that they can be 
fully exploited as health promoting nutraceuticals. Many opportunities still exist for 
studying these molecules, particularly the many derivatives of resveratrol that have 
as yet been the focus of far less research effort than resveratrol itself. The limited 
available data for piceid, pterostilbene and viniferins available at this time are sup-
portive of the hypothesis that they are potentially as effective as resveratrol at elicit-
ing benefi cial effects on health. Thus, even as human clinical studies on resveratrol 
in a variety of disease contexts are only recently underway, it is becoming apparent 
that the scope of study should expand to include these other molecules. 

 One caveat to the application of resveratrol and its derivatives in humans is that 
the majority of in vivo work on humans and animal models has been carried out in 
males or post-reproductive females. Given the possibility explored in Chap.   3     that 
many of the biological effects of resveratrol are via its activity as an estrogen ago-
nist, its use in females of reproductive age is complicated. Similarly, since one of the 
most reproducible effects of resveratrol and its derivative is anti-proliferatiion, the 
potential for interference with developmental processes exists. This has been dem-
onstrated for other phytoestrogens with similar structure, like genistein. This must 
be better studied in grapevine polyphenols before they are used in contexts where 
interference with growth and developmental could be problematic.    
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