
Chapter 9
Spatial and Temporal Order Beyond the
Deterministic Limit: The Role of Stochastic
Fluctuations in Population Dynamics

Duccio Fanelli

Abstract Modeling the self-consistent dynamics of an ensemble made of
microscopic constituents can be tackled via deterministic or alternatively stochastic
viewpoints. The latter enables one to respect the discrete nature of the scrutinized
medium, a possibility which is conversely prevented when dealing with the former
idealized approximation. As we shall here discuss, stochastic finite-size fluctuations
can drive the emergence of regular spatiotemporal cycles that persist for moderate
and even large sizes of the population and which are not captured within the mean-
field descriptive scenario. The van Kampen system-size expansion is an elegant
mathematical approach that allows one to investigate the key role played by the
inherent stochasticity. We here provide a pedagogical introduction to such a method
and discuss its application to a model of autocatalytic reactions.

9.1 Introduction

Investigating the dynamical evolution of microscopic entities in mutual interaction
constitutes a rich and fascinating problem of paramount importance and cross-
disciplinary interest [1]. Molecules, with their chemical properties and distinct
diffusive abilities, can be ideally grouped into homogeneous families, whose
concentrations vary continuously with position and time, as follows the governing
dynamics [2, 3]. Similarly, families of organisms (animals, plants) can be identified
in any ecological system, competition, and cooperation driving their interlaced
evolution [1, 4]. Analogous concepts translate to the realm of social science
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applications and human communities models. In general terms, and irrespectively
of the specific context of investigation, it is customary to refer to a population
as to a macroscopic, extended group composition of a large sea of homologous
microscopic actors. From biology to biomedicine, passing through physics and
chemistry, the study of population dynamics is often tackled via a simplistic
approach: the scrutinized families are assumed to be composed of an infinite
collection of constitutive elements. Correlations are then neglected so to favor a
mean-field description, which in many cases enables for straightforward analytical
progress. The system is hence treated in the continuum limit and the interactions
link the families as a whole. However, single individual effects, stemming from
the intimate discreteness of the analyzed medium, can prove crucial by modifying
significantly the mean-field predictions and so opening up the perspective for
alternative explanations of a wide gallery of experimental observations [5, 6]. It
has been shown in fact that the stochastic component of the microscopic dynamics,
resulting from the aforementioned discreteness and thus associated to finite-size
corrections, can induce regular macroscopic patterns, both in time and space
[7–13]. The effect of the graininess materializes in an endogenous source of
disturbance, also termed demographic noise, opposed to other perturbations that
can be imagined to persist in the continuum limit. The fact that the demographic
noise, intrinsic to the system, can spontaneously drive the emergence of regular
structures, reflecting a degree of temporal and spatial macroscopic order, is in
some respect counterintuitive and intriguing per se. In this chapter we shall provide
an introductory description to population dynamics, highlighting the different
approaches, as outlined above. We will in particular discuss a simple birth/death
process, making explicit the distinct philosophies that inspire the deterministic and
stochastic paradigms, and introduce the relevant mathematical concepts. Then we
will move forward by reviewing a specific case study, for which both temporal and
spatial order manifests, as mediated by the microscopic stochastic component of the
dynamics.

9.2 On the Deterministic and Stochastic Viewpoints

The study of the dynamical evolution of interacting species of homologous quan-
tities defines the field of population dynamics [1, 14], which, as previously em-
phasized, finds particularly relevant applications in life science [2, 3]. Population
is indeed a technical wording which encompasses distinct fields of investigations
ranging from, e.g., the level of expression of a protein in a cell to the number of
animals in a finite ecosystem [1, 4]. The classical approach to population dynamics
relies on characterizing quantitatively the densities of species through a system of
ordinary differential equations which incorporates for the specific interactions being
at play. Pure competition, predator-prey interactions, or even cooperative effects
could be translated into dedicated interaction terms [1, 4] via a straightforward
application of the law of mass action. Specific delays might be required to account
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for the processing time which is often necessary to react to an external stimulus
or signal, a paradigmatic problem of many biological pathways. More than one
independent variable is often to be assumed, which in turn implies dealing with
systems of partial differential equations. As an example, when tracing the dispersion
of a diffusing chemical compound, space and time are to be explicitly represented
into the mathematical description. All these phenomena can be tackled via the
population viewpoint by focusing on the mutual evolution of the families in which
the elementary constituents are ideally grouped. It is customary to refer to this
level of description as to the deterministic theory. Noise and other disturbances
can be eventually hypothesized to alter the ideal deterministic, hence reproducible,
dynamics but always act as a macroscopic bias.

As opposed to this formulation, a different level of modeling can be invoked
focusing instead on the individual-based description [5, 6] which is intrinsically
stochastic. This amounts to characterizing the microscopic dynamics via transition
probabilities governing the interactions among individuals and with the surrounding
environment. This approach has been recently adopted in various contexts such
as predator-prey interactions, metabolic reactions, and epidemic models. The
stochasticity of the systems stems from the microscopic finiteness/discreteness of
the dynamical variables involved.

Deterministic and stochastic pictures, conceptually alternative, yield to different
descriptions of a scrutinized phenomenon. It is therefore of interest to highlight
similarities, and/or discrepancies, in the associated predictions. A viable method that
enables one to bridge the gap between the deterministic and stochastic scenarios is
the celebrated van Kampen’s system-size expansion [6]. The idea goes as follows.
Start from a stochastic, individual-based model, which formally corresponds to
dealing with a master equation for the probability of photographing the system in
a given configuration at a specific time. Then, perform a perturbative expansion
with respect to a small parameter which encodes for the amplitude of fluctuations,
or in other terms, the finite size of the system (e.g., total number of molecules
or organisms). At the leading order of the perturbative calculation one recovers
the mean-field equations, namely, the deterministic description alluded above.
Including the next-to-leading order corrections, one obtains a description of the
fluctuations, as a set of linear stochastic differential equations. Such a system can be
analyzed exactly, so allowing one to quantify the differences between the stochastic
formulation and its deterministic analogue. Let us emphasize again that fluctuations
do not arise from an externally imposed noise source. It is the intimate discreteness
of the system which results in an unavoidable intrinsic noise, a key contribution to
the dynamics that has to be considered in any sensible model of natural phenomena,
where a finite, though large, number of actors are simultaneously at play. These are
important aspects, often omitted in the literature, and, due to their common origin,
bear intriguing traits of universality across various disciplinary fields. Importantly,
the inner stochastic component, also termed demographic noise, can yield to regular
spatiotemporal patterns [7–13], signaling a degree of cooperativity and collective
organization which instead lacks in the corresponding mean-field description.
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The fact that fluctuations can be enhanced by a resonant effect was conjectured
by Bartlett [15] in the context of the modeling of measles epidemics and later
elaborated upon by Nisbet and Gurney [16], who called these stochastically induced
oscillations, quasi-cycles. However, it is only in the last few years that these effects
have been explained in rigorous terms, yielding to quantitative understanding of the
phenomenon [7]. In the following, we shall elaborate on these important, and rather
general, facts by selecting one specific case study. This is a scheme of autocatalytic
reaction thoroughly studied in [11, 12]. The analysis presented in [11, 12] will be
reviewed all along this chapter. Before that, next section is devoted to introducing
the concept of master equation and to briefly discussing the van Kampen expansion
technique.

9.3 The Van Kampen Expansion Applied to a Simple
Birth/Death Stochastic Model

Consider a microscopic element X , which belongs to a given population, hereafter
referred to as a species. Such an element can eventually die, leaving behind an
empty space, called E . This simple event is exemplified by the following chemical
equation:

X
d−→ E (9.1)

where d is the reaction rate for a death to occur. Similarly, the spontaneous
production of an individual element of type X is ruled by the chemical reaction

E
b−→ X (9.2)

where b stands for the birth reaction rate. Further, let us assume that the number of
microscopic entities, including the empties, totals in N, at time t = 0. N is clearly a
conserved quantity of the dynamics if the system is forced to obey to the above
chemical rules: every time one element of type X (resp. E) disappears, it gets
immediately replaced by one element E (resp. X), so keeping the global population,
sum of all individuals X and E , unchanged. Let us call n the number elements of
type X and nE the number of vacancies. Hence, nE = N − n and the system is fully
specified once the integer n is being assigned.

The process that obeys to chemical equations (9.1) and (9.2) is stochastic.
Mathematically, it can be described in terms of a master equation that governs the
evolution of the probability P(n, t) of seeing the system in a given configuration n at
time t. To write such an equation one needs to quantify the transition rates T (n′|n)
from an initial state n to a final one, labeled with n′ and compatible with the former.

The transition rate associated to, e.g. the chemical equation (9.1) can be readily
evaluated as the product of (i) the probability P1 of selecting one element of type X
with (ii) the reaction constant d, which ultimately quantifies the probability that the
selected individual eventually dies. Assume the individual entities, both the empties
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and the material elements X , to be uniformly distributed inside the volume that hosts
the system. Then, P1 = n/N and this immediately yields to

T (n− 1|n) = d
n
N

(9.3)

Similarly, the transition rate associated to reaction (9.2) can be evaluated as

T (n+ 1|n) = b
nE

N
= b

(
1− n

N

)

Under the above assumptions the system is Markov and the master equation for
the probability P(n, t) reads

dP(n, t)
dt

= −T (n− 1|n)P(n, t)+T(n|n+ 1)P(n+ 1, t)

−T (n+ 1|n)P(n, t)+T(n|n− 1)P(n− 1, t) (9.4)

This equation provides a self-consistent and fully rigorous representation of the
stochastic model defined by chemical Eqs. (9.1) and (9.2).

Starting from this setting, one can extract information on the average behavior
of the system by neglecting the finite-size fluctuations and focusing on the time
evolution of the mean-field concentration 〈n〉 defined as

〈n〉= ∑
n

nP(n, t)

To this end, multiply by n both sides of Eq. (9.4) and sum over all possible states.
The left-hand side takes the form

∑
n

n
dP(n, t)

dt
=

d
d(t/N) ∑

n

n
N

P(n, t) =
d〈n〉
dτ

(9.5)

where τ = t/N. Focus now on the right hand side of Eq. (9.4), modified by the
multiplicative factor n. Consider the first two terms:

∑
n

n [T (n|n+ 1)P(n+ 1, t)−T(n− 1|n)P(n, t)] (9.6)

= ∑
n′
(n′ − 1)T(n′ − 1|n′)P(n′, t)−∑

n
nT (n− 1|n)P(n, t) (9.7)

= −∑
n′

T (n′ − 1|n′)P(n′, t)

Changing n′ into n and recalling the definition of T (n − 1|n) one eventually
obtains

−∑
n

d
n
N

P(n, t) =−d
〈n〉
N

(9.8)

Proceeding in a similar way, the last two terms in the right-hand side of the
modified master equation yield to
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b

(
1− 〈n〉

N

)
(9.9)

Introduce now φ = 〈n〉/N. Then collecting together the above contributions one
eventually gets

dφ
dτ

= b− (b+ d)φ . (9.10)

The above ordinary differential equation governs the evolution of the continuum
concentration φ . The fluctuations have been in fact dropped out by performing the
ensemble average 〈·〉. Equation (9.10) can be solved analytically to yield

φ(τ) =
b

d+ b

[
1−
(

1−φ0
b+ d

b

)
exp [−(b+ d)τ]

]
(9.11)

Asymptotically the system converges to a stable fixed point, φ∗ = b
d+b . The

above solution constitutes an ideal representation of the exact dynamics (9.4).
Finite-size corrections materialize in fact in stochastic fluctuations that can sensibly
affect the observed dynamics. To bring into evidence such an important aspect
one can perform stochastic simulations of the chemical scheme (9.1) and (9.2) by
means of the celebrated Gillespie algorithm [17, 18]. Such an algorithm produces
realizations of the stochastic dynamics which are equivalent to those obtained from
the governing master Eq. (9.4). In Fig. 9.1 the result of the stochastic simulations
(wiggling line, black online) is compared to the deterministic solution (9.10)
(smooth line, red online). The stochastic, hence exact, dynamics follows closely
the idealized profile predicted by the mean-field theory. Fluctuations are however
present and reflect the probabilistic nature of the problem in its original formulation.
The statistics of the disturbances is investigated in Fig. 9.2 where the histograms of
the quantities n/N−φ , as recorded in direct Gillespie-based simulations, are plotted
for different choices of the total population amount N. The profiles are Gaussian, as
revealed by visual inspection. Importantly, the width of the distributions shrinks as
1/

√
N. Hence, the fluctuations virtually disappear in the limit of infinite system size

N → ∞ and consequently φ ≡ limN→∞ n/N.
Fluctuations prove however crucial for any physical system made of a finite,

though large, number of constitutive elements. Equations such as (9.4) are nonethe-
less difficult to analyze, and one has to rely on approximate techniques to elaborate
on the role of stochasticity. The famous system-size expansion, pioneered by van
Kampen [6] in the sixties, provides an elegant way of capturing the essential
aspects of the discrete model, thus enabling one to appreciate the contribution of
demographic, finite N, fluctuations. In the following and with reference to the simple
birth/death process here considered, we will discuss the main assumptions of the
method as well as its formal application. As a final result, we will be able to predict
the distribution of the fluctuations, as seen in numerical simulations.
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Fig. 9.1 Temporal evolution
of the species concentrations.
The wiggling line refers to
the stochastic simulations,
n/N vs. rescaled time τ . The
smooth profile is the
deterministic solution, φ (τ).
(9.10). Here, b = 0.1,
d = 0.05, and N = 100
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Fig. 9.2 Normalized
histograms of stochastic
fluctuations n/N −φ recorded
from the Gillespie-based
simulations. The dashed line
refers to N = 100 and the
solid line to N = 1000. The
parameters are b = 0.1,
d = 0.05

The van Kampen ansatz consists in splitting the finite-size concentration n/N into
two contributions. To the continuous (mean-field) concentration φ , it is superposed
a stochastic term which is supposed to scale as 1/

√
N. In formulae

n
N

= φ +
ξ√
N

(9.12)

where ξ is a stochastic variable. The quantity 1/
√

N is small for moderate or large
system sizes and hence plays the role of a perturbative parameter in the van Kampen
expansion.



276 D. Fanelli

Let us start by rewriting Equation (9.4) in the following compact form:

dP
dt

=
(
E +1 − 1

)
T (n− 1|n)P(n, t)

+
(
E −1 − 1

)
T (n+ 1|n)P(n, t) (9.13)

where the operators E ±1 are defined as

E ±1 f (n) = f (n± 1) (9.14)

f (·) being an arbitrary function of the discrete variable n. The above operators admit
a straightforward expansion with respect to 1/

√
N. A simple manipulation yields in

fact to

E ±1 = 1± 1√
N

∂
∂ξ

+
1

2N
∂ 2

∂ξ 2 + · · · , (9.15)

Hence, the first term in the right-hand side of the master equation (9.13) reads

(
E +1 − 1

)
T (n− 1|n)P(n, t)

=

(
1√
N

∂
∂ξ

+
1

2N
∂ 2

∂ξ 2

)
d

(
φ +

ξ√
N

)
Π(ξ , t) (9.16)

where explicit use has been made of the van Kampen ansatz (9.12). By organizing
the various terms in the above expressions, one gets:

1√
N

[
dφ

∂
∂ξ

Π
]
+

1
N

d

[
∂

∂ξ
(ξ Π)+

1
2

φ
∂ 2

∂ξ 2 Π
]
+ · · · (9.17)

up to 1/N contributions. Similarly, for the other contribution

− 1√
N

[
b(1−φ)

∂
∂ξ

Π
]
+

1
N

b

[
∂

∂ξ
(ξ Π)+

1
2
(1−φ)

∂ 2

∂ξ 2 Π
]
+ · · · (9.18)

Using the van Kampen ansatz (9.12) in the left-hand side of the master Eq. (9.13)
results in

dP(n, t)
dt

=
1
N

∂Π(ξ ,τ)
∂τ

− 1√
N

∂Π(ξ ,τ)
∂ξ

dφ
dτ

. (9.19)

where we have set P(n, t) equal to Π(ξ ,τ) and where τ = t/N. Then, one can plug
the contributions (9.17–9.19) into the master equation (9.13) and collect together
the various terms depending on their respective order in 1/

√
N. At the leading order,

and as expected, we recover the mean-field Eq. (9.10). At the next to leading order
instead we obtain the following Fokker–Planck equation [19] for the distribution of
fluctuations Π(ξ , t):
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∂Π
∂τ

= (d + b)
∂

∂ξ
(ξ Π)+

1
2
(dφ + b(1−φ))

∂ 2

∂ξ 2 Π (9.20)

The solution of the above one-dimensional Fokker–Planck equation is a Gaus-
sian, whose first and second moments can be readily characterized.

Multiply both sides of the Fokker Planck equation by ξ and integrate over the
real axis in dξ . A simple calculation yields to

d〈ξ 〉
∂τ

=−(d+ b)〈ξ 〉 (9.21)

where 〈ξ 〉 ≡ ∫ ξ Πdξ . The solution of (9.21) is 〈ξ 〉= 〈ξ 〉0 exp[−(d+b)t]. Asymp-
totically, when the system settles down to its deputed equilibrium, 〈ξ 〉stat =
limt→∞〈ξ 〉= 0.

A similar reasoning applies to the second moment. The latter is defined as 〈ξ 2〉 ≡∫
ξ 2Πdξ and obeys to the differential equation

d〈ξ 2〉
∂τ

=−2(d+ b)〈ξ 2〉+[(d− b)φ + b] (9.22)

Assume we are interested in the statistics fluctuations around the stationary point
when φ → φ∗. Clearly, because of stationary, d〈ξ 2〉/∂τ = 0 in Eq. (9.22) which
implies

〈ξ 2〉stat =
db

(d + b)2 (9.23)

where use has been made of the expression φ∗ = b
d+b . The knowledge of the first

two moments makes it possible to calculate the stationary (Gaussian) distribution
Π(ξ ) and draw a direct comparison with the results of the stochastic simulations.
This is done in Fig, 9.3: An excellent agreement is found. The van Kampen
expansion constitutes therefore a viable strategy to quantify the impact of finite-
size corrections that stem from the discrete nature of the simulated medium
and beyond the customarily adopted mean-field approximation. Notice that non-
Gaussian fluctuations can develop when the system is made to evolve close to an
absorbing barrier. Including higher order corrections in the van Kampen expansion,
beyond the next-to-leading approximation, allows one to capture the non-Gaussian
traits of the distribution [20–22].

In the simple applications that we have here discussed, the stochastic fluctuations
materialize in erratic disturbances of the mean-field trajectory. More complex
scenarios are however possible. Surprisingly enough, in fact, the microscopic noise
that is seeded by finite-size corrections can also yield to macroscopically organized
patterns, both in time and space. The van Kampen technique, illustrated above with
reference to a simple problem, provides us with an excellent tool to eventually
explain such a peculiar behavior. In the following, building on the general ideas
presented above, and with reference to a model of biological interest, we shall
discuss these intriguing dynamical features. The model that we will discuss has
been investigated in [11, 12] and can be seen as a minimal model of a (proto)cell.
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Fig. 9.3 The histogram of
rescaled stochastic
fluctuations ξ recorded from
the Gillespie-based
simulations is compared to
the analytical solution of the
Fokker-Planck equation (solid
line). The agreements are
excellent and point to
adequacy of the van Kampen
technique. Here, N = 100,
b = 0.1, and d = 0.05

Birth and death reactions, identical to the ones hypothesized above, are still assumed
to hold. The model deals however with an arbitrary large number of independent
populations, which are organized in a close autocatalytic cycle. These two additional
ingredients, dimensions and mutual interactions, will make the dynamics less trivial,
in particular as concerns the impact of the endogeneous fluctuations.

9.4 A Model of Autocatalytic Reactions

In this section, we will review the application of the system-size expansion to a
model of autocatalytic reactions, first introduced in the literature by Togashi and
Kaneko [23, 24]. The results that we are going to discuss have been presented
in [11, 12]. In the following, we shall start by providing a concise description
of the analysis carried out for the aspatial version of the model, which proves
less cumbersome from the mathematical viewpoint [11]. Then, we will turn to
illustrating the extension to the spatial case, as developed in [12].

In the original scheme devised by Togashi and Kaneko, the reactions are cyclic
and involve k constituents X1, . . . ,Xk. The latter react according to Xi+Xi+1 → 2Xi+1

with Xk+1 ≡X1, i= 1, . . . ,k. The chemicals are assumed to be in a container which is
well stirred, but with the possibility of diffusing across the surface of the container
into a particle reservoir. In [11] the above model has been slightly revisited via
explicit inclusion of the null constituents E .

More specifically, the autocatalytic reaction scheme investigated in [11] reads

Xi +Xi+1
ηi+1→ 2Xi+1, Xk+1 ≡ X1

E
βi→ Xi; Xi

γi→ E , i = 1, . . . ,k (9.24)
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where ri,γi and βi (with rk+1 ≡ r1) are the rates at which the reactions take place. As
explained in the preceding section, the pseudo-chemical elements E accounts for a
finite carrying capacity of the scrutinized system. By denoting the size of the system
with N and labeling ni the number of elements of type Xi, then ∑k

i=1 ni + nE = N,
where nE is the number of empties E . Clearly, as an obvious consequence of the
latter conservation law, nE is always replaced by N −∑k

i=1 ni. The rate constants γi

and βi in Eq. (9.24) control the interactions of the system with the particle reservoir
outside the container. In effect γi and βi are the rates at which molecules enter and
exit the system in stringent analogy with birth and death rates.

Besides their interest per se, it is speculated that autocatalytic cycles might
have been fundamental, back at the origin of life, in sustaining the development
of elementary cell-like entities, the so-called protocells. The shared view is that
protocell’s volume might have been occupied by interacting families of replicators,
organized in nested autocatalytic reactions. The latter have been invoked in fact
as a possible solution of the famous Eigen’s paradox, a simple logic argument that
implies limiting the size of self-replicating molecules to perhaps a few hundred base
pairs. At odd, almost all life on Earth requires much longer molecules to encode for
their genetic information. This problem is handled in living cells by the presence
of enzymes which repair mutations, allowing the encoding molecules to reach sizes
on the order of millions of base pairs. In primordial organisms, autocatalytic cycles
might have provided the necessary degree of microscopic cooperation to prevent
the Eigen’s drive to self-destruction to eventually take place. In this respect, model
(9.24) can constitute a sort of null model of a primordial cell. Hence, the volume
where the chemicals are confined can be imagined to be delimited by the cell wall,
the membrane.

In the following, we shall report about the study in [11], where the (aspatial)
model introduced above has been investigated via the van Kampen perturbative
technique. We will in particular show that the discreteness of the constituents that
take part to the autocatalytic cycle gives rise to large sustained oscillations, even
when the number of elementary units is quite large, and as opposed to mean-field
predictions.

9.5 The Aspatial Model: Deterministic and Stochastic
Dynamics

Let us consider the aspatial version of the autocatalytic cycle, as described by
Eq. (9.24). Molecules are supposed to be uniformly stirred inside a given volume.
A scalar quantity for each of the k species is therefore sufficient to unambiguously
photograph the state of the system. In other terms, the state of the system is
labeled by the k dimensional vector n ≡ (n1, . . . ,nk). Under the assumption that
the transitions from this state to any other compatible with the former only depend
on these integers, the system is Markov and can be described in terms of a master
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equation. As illustrated in the preceding sections, the master equation is specified
if the transition rates T (n′|n) from the state n to the to the state n′ are given. The
assumption of a uniform distribution inside the volume implies that the probability
of a reaction taking place is proportional to its rate and the number of reactant
molecules. For our case, see Eq. (9.24) the transition rates take the form

T (n1, . . . ,ni − 1,ni+1+ 1, . . . ,nk|n) = ηi+1
ni

N
ni+1

N

T (n1, . . . ,ni + 1, . . . ,nk|n) = βi

(
1− ∑k

j=1 n j

N

)

T (n1, . . . ,ni − 1, . . . ,nk|n) = γi
ni

N
(9.25)

The master equation for the probability that the system is in state n at time t, P(n, t),
can be hence written as

dP(n, t)
dt

=
k

∑
i=1

(
EiE

−1
i+1 − 1

)

× [T (n1, . . . ,ni − 1,ni+1+ 1, . . . ,nk|n)P(n, t)]

+
k

∑
i=1

(
E −1

i − 1
)
[T (n1, . . . ,ni + 1, . . . ,nk|n)P(n, t)]

+
k

∑
i=1

(Ei − 1)[T (n1, . . . ,ni − 1, . . . ,nk|n)P(n, t)] (9.26)

where E ±1
i are a generalization of the step operators previously introduced:

E ±1
i f (n) = f (n1, . . . ,ni ± 1, . . . ,nk) (9.27)

To progress in the analysis we put forward the aforementioned van Kampen
ansatz that, in this case, reads

ni

N
= φi(t)+

ξi(t)√
N

(9.28)

φi(t) refers to the deterministic contribution. It labels the fraction of the molecules
which are of type Xi at time t in the mean-field (N → ∞) limit. The fluctuations ξi(t),
i.e., the stochastic component of the dynamics, are multiplied by the scaling factor
1/

√
N. Inserting equation (9.28) into Eq. (9.26) allows one to expand the master

equation as a power series of 1/
√

N. By expanding the step operators (9.27) one
obtains the usual expressions:
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E ±1
i = 1± 1√

N

∂
∂ξi

+
1

2N
∂ 2

∂ξ 2
i

+ · · · (9.29)

If we set P(n, t) equal to Π(ξ ,τ), one can expand the left-hand side of the master
equation in analogy with what previously done, namely,

dP(n, t)
dt

=
1
N

∂Π(ξ ,τ)
∂τ

− 1√
N

k

∑
i=1

∂Π(ξ ,τ)
∂ξi

dφi

dτ
(9.30)

where τ = t/N. Substituting Eq. (9.28) into the right-hand side of the master
Eq. (9.26) and using the explicit form of the transition rates as reported in (9.25),
one may group together the terms of same order in 1/

√
N.

To leading order, the expanded master equation gives (see [11] for additional
information on the algebraic, intermediate steps involved)

dφi

dτ
= (ηiφi−1 −ηi+1φi+1)φi +βi

(
1−

k

∑
j=1

φ j

)
− γiφi (9.31)

The above equations represent a deterministic approximation to the stochastic model
(9.24). Assume ηi, γi and βi to be the same for each species, and so drop the index i.
The continuous, time-dependent, concentration φi of species i evolves starting from
the assigned initial condition and asymptotically converges to a (stable) solution φ∗,
which can be readily obtained by setting dφi/dτ = 0. One immediately gets

φ∗ =
β

γ + kβ
(9.32)

How accurate is the deterministic approximation for the stochastic model here
considered? To answer this question one can perform numerical simulations of the
chemical reaction system (9.24) by use of the exact Gillespie algorithm [17, 18].
In Fig. 9.4 the outcome of the stochastic simulations (solid line) is compared to
the solution of the deterministic equation (9.31) (dashed line). Once the initial
transient has died out the latter tends to relax to the deputed equilibrium φ∗.
At variance, the stochastic time series keeps on oscillating around the reference
value φ∗. Such regular oscillations, termed quasi-cycles, manifest because of the
finite-size corrections to the idealized mean-field dynamics. As we will make clear
in the following, the emergence of the quasi-cycles can be successfully explained
by retaining the higher order terms in the above perturbative analysis.

At next order of the perturbative development, one finds in fact the following
Fokker–Planck equation:

∂Π
∂τ

=−∑
i

∂
∂ξi

[Ai(ξ )Π ]+
1
2 ∑

i, j
Bi j

∂ 2Π
∂ξi∂ξ j

(9.33)
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Fig. 9.4 Temporal evolution of one of the species concentrations for a system composed by k = 4
species and parameters set as N = 8190, ri = 10, and αi = βi = 1/64 ∀i. The noisy line represents
one stochastic realization obtained via the Gillespie algorithm [17, 18]. The dashed line shows the
numerical solution of the deterministic system given by Eq. (9.31)

which governs the dynamics of the distribution function of fluctuations Π(ξ , t).
Here,

Ai(ξ ) = (ηiφi−1 −ηi+1φi+1)ξi +ηiφiξi−1

−ηi+1φiξi+1 −βi

k

∑
j=1

ξ j − γiξi (9.34)

and

Bi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ηiφi−1φi, if j = i− 1
ηi+1φiφi+1 +ηiφiφi−1

+βi

(
1−∑k

j=1 φ j

)
+ γiφi, if j = i

−ηi+1φiφi+1. if j = i+ 1

(9.35)

In Eqs. (9.34) and (9.35), φk+1 ≡ φ1 and ξk+1 ≡ ξ1, which follows from the cyclic
nature of the model.

Since the Ai(ξ ) are linear functions of the ξ j we may write them as

Ai(ξ ) =
k

∑
j=1

Mi jξ j (9.36)
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The probability distribution Π(ξ ,τ) is therefore entirely determined by the two
k × k matrices M and B, whose elements are solely functions of the mean-field
concentration φ j. In principle the matrices M and B are time dependent, since φ j

is. However, in practice we are interested in fluctuations about the stationary state,
and so replace φ j with its asymptotic constant analogue φ∗.

The Fokker–Planck Eq. (9.33) yields to the equivalent Langevin formulation:

dξi

dτ
=

k

∑
j=1

Mi jξ j(τ)+ηi(τ) (9.37)

where M follows from (9.36) and ηi is a Gaussian white noise with zero mean and
correlator

〈ηi(τ)η j(τ ′)〉= Bi jδ
(
τ − τ ′

)
(9.38)

To bring into evidence the oscillatory nature of the fluctuations, we take the
Fourier transform of Eq. (9.37):

k

∑
j=1

(−iωδi j −Mi j) ξ̃ j(ω) = η̃i(ω) (9.39)

where the f̃ stands for the Fourier transform of the function f . Introducing Φi j(ω) =
−iωδi j −Mi j the solution to Eq. (9.39) is

ξ̃i(ω) =
k

∑
j=1

Φ−1
i j (ω)η̃ j(ω) (9.40)

To identify the dominant frequency of the oscillating time series, one can
compute the power spectrum Pi(ω) for the ith species, from Eq. (9.40). In formulae,
one gets

Pi(ω)≡
〈
|ξ̃ (ω)|2

〉
=

k

∑
j=1

k

∑
l=1

Φ−1
i j (ω)B jl

(
Φ†)−1

li (ω) (9.41)

In Figs. 9.5 and 9.6, the theoretical power spectra are compared to the homol-
ogous quantities calculated from averaging over many realization of the Gillespie-
based simulations. The figures refer respectively to k = 4 and k = 8. One or two
peaks are displayed in the power spectra, pointing to the existence of regular oscil-
latory behaviors in the recorded signals. Ordered temporal oscillations can therefore
spontaneously emerge, driven by the stochastic component of the dynamics and as
opposed to what predicted within the idealized mean-field scenario.

In the next section we will briefly turn to discussing the generalized spatial
model. This setting has been studied in [12] via the van Kampen system-size
expansion. We shall hereafter provide a rather compact description of the analysis,
without insisting on the technical details of the calculation that can be found in [12].
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Fig. 9.5 Power spectrum of
species i = 2 when k = 4. The
analytical curve is shown as a
solid line and the simulation
(average over 500
independent realizations) as
symbols. Here r = 10,
γ = β = 5/32, and
N = 5,000. Reprinted with
permission from [11]
Copyright (2009) by the
American Physical Society
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Fig. 9.6 Power spectrum of
the time series for species
i = 2 when k = 8. The
analytical result (solid line) is
superimposed onto the
simulations (symbols),
averaged over 500
independent realizations.
Here r = 200, β = 1.9, γ = 2,
and N = 7,000. Reprinted
with permission from [11],
Copyright (2009) by the
American Physical Society

9.6 Spatial Model: Ordered Patterns Revealed by the van
Kampen System Size Expansion

Model (9.24) can be also straightforwardly extended so to explicitly account for
the notion of space, as done in [12]. The idea is to coarse-grain the volume where
molecules are confined, by partitioning it in Ω small micro-cells, within which
autocatalytic reactions do occur. Following [12], the k species are labeled X j

s . The
index s identifies the species, while j = 1, ..,Ω refers to the micro-cell to which the
element is bound. In analogy with the preceding discussion the reactions can be cast
in the form

X j
s +X j

s+1
ηs+1−→ 2X j

s+1, (9.42)

where X j
k+1 = X j

1 .
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Fig. 9.7 The volume of the cell is imagined to be partitioned into Ω micro-cells. Within micro-
cell j the molecular species interact according to the autocatalytic reactions specified by Eq. (9.24).
In addition, the molecules can migrate from micro-cell j to its nearest neighbors, e.g., micro-cell
j′, as depicted in the cartoon. A molecule of type X j

k (full circle) takes over a vacancy (dashed

empty circle) of micro-cell E j′ and so transforms into X j′
k , leaving behind a vacancy E j . Finally,

the chemical can also diffuse in from the environment, a reaction that in turn implies changing E j

into X j
k . The opposite holds for molecules that diffuse out into the environment. Reprinted with

permission from [12], Copyright (2010) by the American Physical Society

Indeed, only the region that is adjacent to the outer boundary, the cell membrane
as emphasized above, is given a detailed spatial structure. The remaining inner
volume acts instead as a particle reservoir. A cartoon of the setting here imagined
is depicted in Fig. 9.7. Molecules sitting in cell j can migrate towards the neighbors
micro-cell j′. This is a microscopic process that obeys to the following chemical
equations:

X j
s +E j′ αi−→ X j′

s +E j (9.43)

E j +X j′
s

αi−→ E j′ +X j
s (9.44)

where E j (resp. E j′ ) represents vacancies in cell j (resp. j′). The capacity of each
micro-cell is N: the sum of the number of molecules of each species plus the number
of vacancies equals N, for every micro-cell.
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Finally, a molecule X j
s can migrate from cell j towards the (outer) environment

or the inner region leaving behind an empty case E j. Alternatively, cell j can gain a
molecule X j

s from the environment or inner region. These processes are described as

X j
s

γs−→ E j; E j βs−→ X j
s (9.45)

When operating in this generalized setting, the mathematical analysis becomes
more complex, as compared to the aspatial model. One additional index has to be
forcefully introduced in the definition of the variables involved so to specify the
micro-cell to which the molecules belong. In other words, the discrete concentration
n j

s is not just function of time but also sensitive to the specific spatial location.
This additional degree of freedom will make it possible to eventually appreciate
the emergence of spatially organized patterns. The state of the system can be
characterized by the vector n = (n1,n2, . . . ,nΩ ) where n j = (n j

1,n
j
2, . . . ,n

j
k).

The model can be formulated in terms of a chemical master equation. Then,
by applying the van Kampen perturbative scheme, one can recover the mean-
field solution and determine as well the stochastic, finite N, corrections to it. The
transition rates associated to the migration from one cell to the neighbor one read

T (n j
s − 1,n j′

s + 1|n j
s ,n

j′
k ) =

αs

zΩ
n j

s

N

(
1−

k

∑
m=1

n j′
m

N

)

T (n j
s + 1,n j′

s − 1|n j
s ,n

j′
s ) =

αs

zΩ
n j′

s

N

(
1−

k

∑
m=1

n j
m

N

)
(9.46)

where z is the number of nearest neighbors that each micro-cell has. The reac-
tion rates associated to the autocatalytic cycles and to the diffusion from/to the
inner/outer bulk can be written as a trivial extension of the equivalent quantities
obtained for the aspatial model. For this reason, these are not given here explicitly.

The master equation for the probability P(n, t) can be cast in the form

dP(n, t)
dt

=
Ω

∑
j=1

T j
locP(n, t)+

Ω

∑
j=1

∑
j′∈ j

T j j′
migP(n, t)

+
Ω

∑
j=1

T j
envP(n, t), (9.47)

where the three terms on the right-hand side refer respectively to the local chemical
reactions, the migration of species between micro-cells, and the interaction with
the outer/inner environment. The notation j′ ∈ j indicates that cell j′ is a nearest
neighbor of the cell j.
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The van Kampen analysis requires introducing the ansatz

n j
s

N
= φ j

s +
1√
N

ξ j
s (9.48)

into the master equation and carrying out the perturbative analysis, by adopting
1/

√
N as a small parameter. The details of the calculations are given in [12] and we

shall here solely summarize the results for what concerns the leading and next-to-
leading approximations.

At the leading order, one finds the following equation for the concentration φ j
s of

species s in cell j:

dφ j
s

dτ
= ηsφ j

s−1φ j
s −ηs+1φ j

s φ j
s+1

+αs

(
Δφ j

s

(
1−

k

∑
m=1

φ j
m

)
+φ j

s

k

∑
m=1

Δφ j
m

)

+βs

(
1−

k

∑
m=1

φ j
m

)
− γsφ j

s (9.49)

where Δ stands for the discrete Laplacian operator Δ f j
s = (2/z)∑ j′∈ j( f j′

s − f j
s ).

In the limit where the size of the micro-cells tends to zero, the above equations
become partial differential equations, Δ converging to the more familiar Laplacian
operator. Notice that Eq. (9.49) constitutes the natural generalization of Eq. (9.31) to
the case where space is accounted for. Notice the cross-diffusion terms that reflect
the assumption of a finite carrying capacity in each micro-cell. The importance of
such additional contributions, which follows from a rigorous description of the
microscopic diffusion, has been elaborated on in [25]. Assuming ηs, βs and γs

to be identical for all species, we can drop the index s and obtain an explicit
expression for the homogeneous (uniform in space) fixed point of the dynamics,
namely φ∗ = β/(γ + kβ ). As expected, the latter coincides with the fixed point
obtained for the aspatial model.

The next-to-leading corrections yield as usual to a Fokker–Planck equation for
the distribution of fluctuations (see Eq. B1 in [12]). The Fokker–Planck is formally
equivalent to a Langevin equation, which upon spatial Fourier reads

dξ k
s

dτ
= ∑

r
Mk

srξ
k
r +λ k

s (τ) (9.50)

where

〈λ k
s (τ)λ

k′
r (τ ′)〉= Bk

srΩadδk+k′,0δ (τ − τ ′) (9.51)
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and where k is the wavevector. To derive the above result it was assumed in [12]
that the micro-cells form a hypercubic lattice in d-dimensions with linear spacing a.
The matrix Mk is

Mk
sr = M(NS)

sr +M(SP)
sr Δk (9.52)

where Δk is the Fourier transform of the discrete Laplacian

Δk =
2
d

d

∑
γ=1

[
cos(kγ a)− 1

]
(9.53)

and kγ is one of γth component of the vector k. The two matrices M(NS) and
M(SP) are

M(NS)
ss =−β − γ (9.54)

M(NS)
sr =

⎧⎨
⎩

−ηφ∗ −β , if r = s+ 1
ηφ∗ −β , if r = s− 1
−β , if |s− r|> 1

(9.55)

and

M(SP)
ss = αs [1+(1− k)φ∗] (9.56)

M(SP)
sr = αsφ∗ if s �= r (9.57)

NS stands for “non spatial,” while SP is the compact label for “spatial.” The matrix
Bk in Eq. (9.51) is given by

Bk
sr = B

(NS)
sr +B

(SP)
sr Δk (9.58)

where the two k× k matrices B(NS) and B(SP) are given by

B
(NS)
ss = ad

[
β (1− kφ∗)+ γφ∗+ 2η (φ∗)2

]
(9.59)

B
(NS)
sr =

⎧⎨
⎩

−adη (φ∗)2 , if r = s+ 1
−adη (φ∗)2 , if r = s− 1
0, if |s− r|> 1

(9.60)

and

B
(SP)
ss =−2adαsφ∗ (1− kφ∗) (9.61)

B
(SP)
sr = 0 if s �= r (9.62)
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As discussed above, fluctuations about the stationary state need to be taken into
account, as they can be relevant even if N is relatively large. Since the model
extends in space, the power spectrum of fluctuations should depend on both the
spatial wavenumber k and the frequency ω . Defining Φk

sr(ω) = (−iωδsr−Mk
sr), one

eventually obtains [12] the following compact expression for the power spectrum
Ps(k,ω) of the fluctuations of species s:

Ps(k,ω)≡ 〈|ξ k
s (ω)|2〉

= Ωad
k

∑
r=1

k

∑
u=1

[
Φk(ω)

]−1
sr Bk

ru

[
Φk†(ω)

]−1
us (9.63)

The analysis sketched above is a straightforward, though complex, generalization
of the study of [11] reviewed in the preceding section. We shall be here just
concerned with presenting the main conclusion of the analysis, comparing in
particular the theoretical power spectra to the homologous quantities obtained via
numerical simulations. The analysis is limited to the choice d = 1, i.e., a one-
dimensional frontier (membrane) of a two-dimensional compact domain (cell).

As reported in Fig. 9.8, a localized peak is predicted by the theory. This evidence
suggests that organized spatiotemporal patterns can spontaneously emerge, as
mediated by the endogenous stochasticity of the system. The plots in Fig. 9.8 refer
to two distinct species and are obtained by operating in the setting with k = 4. The
other two species display a similar degree of spatiotemporal self-organization.

The theory prediction, and thus the accuracy of the approximations involved, can
be tested via direct simulations. By averaging over many independent realizations,
one can calculate the power spectra of the recorded stochastic time series after
Fourier transformation. The numerical power spectra are depicted in Fig. 9.9 for the
same choice of parameters as in Fig. 9.8. The correspondence between the profiles
is remarkably good. Spatial, as well as temporal, order can spontaneously develop
as a collective amplification of the microscopic finite-size fluctuations.

9.7 Conclusion

Modeling the dynamical evolution of a large sea of mutually interacting entities
is a task of great importance and cross-disciplinary interest. The customarily
adopted scenario assumes dealing with continuous populations, whose concentra-
tions change in space and time according to the governing partial or ordinary
differential equations. In doing so, one neglects the intimate discreteness of the
investigated medium to favor a mean-field deterministic approach. In many cases,
however, the finite-size fluctuations stemming from the microscopic graininess,
and therefore endogenous to the system under scrutiny, prove crucial. They can
in fact amplify as follows a complex resonance mechanism and yield to organized
spatiotemporal patterns. More specifically, the measured concentrations which re-
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Fig. 9.8 Analytical power spectra calculated via the van Kampen system-size expansion; see [12]
for details. The theoretical profiles refer to the case with k = 4 species and to a two-dimensional
volume (one-dimensional periodic array of Ω micro-cells). Each three-dimensional plot (and its
corresponding two-dimensional projection) refers to a different chemical species. A localized peak
is shown, which implies the existence of regular spatiotemporal patterns. Here Ω = 256, η = 10,
β = 5/32, γ = 5/32, and α = [100,0.001,1,500]. Reprinted from [12]

flect the distribution of the interacting entities (e.g., chemical species, biomolecules)
can oscillate regularly in time and/or display spatially patched profiles, collective
phenomena which testify on a surprising degree of macroscopic order, as mediated
by the stochastic component of the dynamics.

These intriguing phenomena have been recently addressed and successfully
explained via rigorous analytical means. Among other techniques, the van Kampen
system-size expansion can be employed to bridge the gap between the determin-
istic and stochastic viewpoints. In this chapter, we have provided a pedagogical
introduction to such method, by considering a simple birth and death stochastic
process, which accounts for the finite carrying capacity of the embedding volume.
The theoretical calculations enabled us to quantify the probability distribution
function of fluctuations around the stationary fixed point. The adequacy of the
prediction was confirmed by direct comparison with the outcome of stochastic



9 Stochastic Spatial and Temporal Order 291

7
6
5
4
3
2
1

ω

7
6
5
4
3
2
1

ω

2.8 2.4 2.0 1.6 1.2 0.8 0.4

k1

2.8 2.4 2.0 1.6 1.2 0.8 0.4

k1

1.0

0.8

0.6

0.4

0.2

1.0
1.2

0.8
0.6
0.4
0.2

P1(ω,k1)

P2(ω,k1)

7

6

5

4

3

2

1

ω

2.8 2.4 2.0 1.6 1.2 0.8 0.4
k1

7

6

5

4

3

2

1

ω

2.8 2.4 2.0 1.6 1.2 0.8 0.4
k1

Fig. 9.9 Numerically calculated power spectra are obtained from averaging 800 realizations; see
[12] for further information. Stochastic simulations are performed via the Gillespie algorithm.
Parameters are set to the same values assigned when drawing the theoretical plots of Fig. 9.8. Here
N = 5,000. Reprinted from [12]

simulations. In this case the fluctuations result in random, Gaussian-distributed
disturbances around the stable fixed point of the dynamics.

More interestingly, it is the application of the van Kampen system-size ex-
pansion to a stochastic model of autocatalytic reactions. The model, introduced
by Togashi and Kaneko [23] and later on revisited by Di Patti and collaborators
[11], is presumably relevant for studies on the origin of life and exists into two
versions, respectively: the aspatial [11] and spatial one [12]. By operating in
these contexts and making use of the system-size expansion, one can show that
the chemical constituents can organize in regular spatiotemporal cycles, coherent
macroscopic structures that emerge from the microscopic disorder. In both cases,
the perturbative scheme pioneered by van Kampen turns out to be accurate and
versatile. It thus represents a powerful and reliable tool to inspect the role played
by demographic fluctuations in a finite-size population, beyond the idealized mean-
field approximation.
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