
Chapter 7
On the Occurrence of Elastic Singularities
in Compressed Thin Sheets: Stress Focusing
and Defocusing

Alain Pocheau

Abstract Compressing thin sheets usually yields the formation of singularities
which focus curvature and stretch on points or lines. In particular, following the
common experience of crumpled paper where a paper sheet is crushed in a paper
ball, one might guess that elastic singularities should be the rule beyond some
compression level. In contrast, we show here that, somewhat surprisingly, compress-
ing a sheet between cylinders makes singularities spontaneously disappear at large
compression. This “stress-defocusing” phenomenon is qualitatively explained from
scale invariance and further linked to a criterion based on a balance between stretch
and curvature energies on defocused states. This criterion is made quantitative
using the scalings relevant to sheet elasticity and compared to experiment. These
results are synthesized in a phase diagram completed with plastic transitions.
They end up with a renewed vision of elastic singularities as a thermodynamic
condensed phase where stress is focused, in competition with a regular diluted
phase where stress is defocused. Different compression routes may be followed
in this diagram by managing differently the two principal curvatures of a sheet,
as experimentally achieved here. In practice, besides the famous Elastica and
crumpled paper routes, this offers interesting alternatives for compressing a sheet
with an amazing spontaneous regularization of geometry and stress that repels the
occurrence of plastic damages.

A. Pocheau (�)
IRPHE, Aix-Marseille Université, 49, rue F. Joliot Curie, B.P. 146,
13384 Marseille Cedex 13, France
e-mail: alain.pocheau@irphe.univ-mrs.fr

X. Leoncini and M. Leonetti (eds.), From Hamiltonian Chaos to Complex Systems:
A Nonlinear Physics Approach, Nonlinear Systems and Complexity 5,
DOI 10.1007/978-1-4614-6962-9 7, © Springer Science+Business Media New York 2013

207

mailto:alain.pocheau@irphe.univ-mrs.fr


208 A. Pocheau

7.1 Introduction

Thin envelops, thin layers, or thin films stand as an efficient mean to separate
domains, treat surfaces, or confine volumes. Examples include graphene sheets [1],
epitaxial deposit at sub-micrometric scales [2], membranes at micrometric scales
[3], packaging at sub-millimeter scales [4], metallurgical structures at millimeters
scales and beyond, and geological layers at even larger scales [5], the scale meaning
here the thickness of the object. Their common feature is to display a weak
dimension, their thickness, in comparison to their length and width, according to
which most of their properties can be recovered by treating them as 2D surfaces
involving flexural effects. In many instances, however, these thin sheets undergo
geometrical constraints that force them to fit into a reduced space. They then have
to adapt their form to restrictive conditions, something they may do smoothly or
sharply, i.e., with small or large curvature as compared to their inverse thickness.
In the latter case, they then escape the 2D surface assumption, especially at
the locations of large curvature where they show up surface singularities. The
occurrence of these singularities is essential in various instances. In practice, they
involve large elastic stresses and 3D interactions that make them escape the 2D
modeling and possibly even the physical regime of the remainder of the sheet.
In particular, the sheet properties are usually altered there regarding electronic
properties, robustness, or even the elasticity regime, with a possible transition to
plasticity at the core of singularities.

On a more general viewpoint, these singularities enable the elastic stress to relax
in the remaining sheet parts: the bending stress for the so-called ridges [6–8] and the
stretching stress for the so-called developable cones (d-cones) [9–12]. In this sense,
they appear as inner degrees of freedom for adapting the geometric constraints
imposed to compressed sheets. Doing so, they thus focus the sheet’s stress on the
singularity cores, a phenomenon called stress focusing [13].

Stress focusing is a particular example of the phenomenon of energy focusing
which widely occurs in out-of-equilibrium systems beyond some distance to
equilibrium. Some of its manifestations are vorticity concentration in turbulent
fluids, rogue waves occurrence, shock wave formation in thermodynamic systems,
dielectric breakdown in media submitted to electrostatic field, fracture in stressed
solids, etc. (Fig. 7.1). In all these phenomena, the energy density which moved the
system far from equilibrium spontaneously turned from a homogeneous distribution
to a highly localized concentration. This phenomenon thus stands as an emblematic
example of self-organization.

Stress focusing is all the more surprising that one might have naively guessed
that energy seeks to spread over instead of concentrating on singular objects. In
particular, this energy focusing goes against the equidistribution of energy and
thus questions the statistical description of these systems. Moreover, the emergence
of definite locations or structures (sometimes called “coherent structures”) where
energy is concentrated, largely governs the system behavior and its properties. This
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Fig. 7.1 Examples of energy focusing : (a) vorticity concentration in the Jupiter red spot taken by
Voyager 2 (Credit NASA image), (b) rogue wave (Credit Toptenz.net) (c) shock wave produced
by blunt bodies (Credit NASA image) (d) dielectric breakdown yielding so-called lichtenberg
figures (Credit Theodore Gray as shown on http://www.capturedlightning.com) (e) fracture in solid
concrete

is why vast efforts have been devoted in all the above systems to characterize the
conditions for energy focusing as well as the resulting energetically dense structures
and their implications.

Here, we address this issue in the context of sheet compaction where forms
and stresses are governed by elasticity. Two major rules for self-organization are
then in order. First, as there is no intrinsic scale in elasticity, scale invariance and
scaling arguments apply. Second, as elasticity is non-dissipative in its elastic regime,
energy landscapes can be used to infer the preferred states, including those involving
elastic singularities. In particular, the occurrence of a stress-focused state may be
understood as the fact that it became energetically preferred as compared to a stress-
distributed state. Applying both these rules should then largely help elucidating
stress focusing, but with possible surprises. In particular, the popular example of
crumpled paper where the compaction of a sheet in a ball generates scars (Fig. 7.3-
right) usually yields the common guess that singularities and stress focusing should
irremediably persist when increasing compaction. On the opposite, we shall find
here that, surprisingly, the two above rules deny this belief, in the sense that scalings
imply that singular states should no longer be preferred at large compaction, if they
previously were: stress should thus defocus at large compaction.

This phenomenon of stress defocusing implies that the ultimate state of a
compressed sheet should be smooth and regular. Its actual existence will be
evidenced on a dedicated experiment and the apparent paradox regarding the usual
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experience of crumpled paper will be clarified [14]. This will enable us to identify
singularities as a thermodynamic condensed phase surrounded in phase space by
the regular diluted phase corresponding to regular geometries and defocused stress.
In particular, the persistence of singularities on some actual compression routes
will be shown to refer to plasticity instead of elasticity. In this regard, the popular
demonstration of paper crumpling by the hands will appear as a misleading example
of (linear) elasticity since the singularities that form should disappear at large
compression but actually do not because of plasticity only.

Altogether, this study will thus provide a modified vision of the nature of elastic
singularities and of sheet adaptation to compression. In particular, on compression
routes, singularities, instead of being the rule beyond some compression level, will
actually appear as a transient state.

In the following, we first emphasize in Sect. 7.2 the relevance of an intermediate
compression route between Elastica and crumpled paper to address singularity
occurrence. We then recall in Sect. 7.3 some basics on linear elasticity, especially
regarding the Gaussian curvature and its implications. We then report in Sect. 7.4 an
experiment of compression between cylinders and the resulting evidence of stress
defocusing. Energy arguments for stress focusing or defocusing are then addressed
in Sect. 7.5 together with scaling arguments. They are applied in Sect. 7.6 to show
the necessity of defocusing and derive a phase diagram for singularities, taking into
account plasticity. This is followed by a conclusion on the implications of this study
for the nature of singularities in elasticity.

7.2 On Singularity Occurrence in Sheet Elasticity: From
Elastica to Crumpled Paper

On thin sheets, two kinds of stresses may be defined: one related to the stretch of
a sheet viewed as a 2D surface and one related to the sheet’s curvature [11, 13, 15].
As regards to stress focusing, it appears that the stretch stress is the dominant stress
on singularities and on the non-singular states on which they appear. Accordingly,
singularity formation actually corresponds to focusing that stretch on singularities,
leaving in between unstretched but possibly curved domains.

Interestingly, stretch is generated by sheet deformations that involve a Gaussian
curvature G, actually equal to the product of the principal curvatures c1, c2, at
a point: G = c1c2 (see Sect. 7.3.2). Usually, compacting sheets cannot avoid
generating Gaussian curvatures, thus stretch, until provoking stress focusing in
singularities, as on crumpled paper (Fig. 7.3-right). To improve our understanding of
this phenomenon, the clue of this work is to notice that, as two principal curvatures
are involved in the Gaussian curvature G, several physically different compacting
routes may be explored depending on the correlations involved between them. In
particular, three different routes worth being distinguished:

• Elastica: G = 0, c2 = 0
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Fig. 7.2 Different compression routes regarding singularity occurrence: (a) Compression between
flat plates. Fold axes are straight so that a principal curvature c2 is forced to vanish: c2 = 0, G = 0.
The compression route shows no singularity. (b) Compression between cylinders. Fold axes are
bent by the cylinders so that a principal curvature c2 is forced to be that of the cylinders: c2 = 1/R,
G �= 0. (c) Compression by a shrinking sphere of radius Rs. This corresponds to the crumpled paper
configuration. Principal curvatures do not vanish and are about the same: c1 ≡ c2 ≡ 1/Rs, G �= 0.
This generates singularities

One may annihilate one curvature, simply by forbidding curvature on a direction
(Fig. 7.2a). This is achieved in practice by compressing sheets in between parallel
plates. Then, a family of parallel folds is generated by iterated bucklings, all
parallel to one direction of the plates along which they are thus uncurved
(Fig. 7.3a). One curvature, c1, is thus provided by folds but the other, c2 = 0,
vanishes since it corresponds to the uncurved fold axis direction. Then G = 0
so that no stretch is generated and, therefore, no singularity at any compression
level. The sheet is thus equivalent to a set of rods whose elastic evolutions are
modeled by the so-called Euler’s “Elastica” [16, 17].

• Isotropic compression and crumpled paper: G �= 0, c1 ≡ c2.
On the opposite, one may force the two principal curvatures not to vanish and
to take statistically similar values (Fig. 7.2c). This is achieved in practice by
compressing a sheet into a shrinking spherical domain, as when crumpling a
paper with hands (Fig. 7.3-right). Then, because of isotropy, the two principal
curvatures are both nonzero and statistically equivalent c1 ≡ c2, so the term
“isotropic” compression. A Gaussian curvature is thus generated and increases
with compaction until singularities occur.

• Anisotropic compression: G �= 0, c2 fixed
Finally, a third route, actually intermediate between the two above opposite
routes, may be designed by compressing sheets not between plates or a sphere
but between cylinders (Fig. 7.2b). Taking the cylinders curvature radius R large
compared to the gap between them, this looks locally similar to a compression
in between parallel plates so that a family of parallel folds is expected. However,
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Fig. 7.3 Left: buckling cascade on a sheet compressed between parallel plates [18]. Right:
crumpled paper crushed in hands

the fixed cylinder curvature nevertheless bends their fold axes and this makes all
the difference. The curvature c2, instead of being zero as on the Elastica route,
is fixed here to a nonzero value equal to the inverse cylinder curvature radius
c2 = 1/R. A nonzero Gaussian curvature is then generated yielding singularity
formation beyond a compression level. However, in contrast with crumpled
paper, the imposed curvature c2 of the fold axes is kept constant here. It is thus
decorrelated from the remaining fold curvature c1, so the term “anisotropic”
compression. Should this difference be relevant and yield a different sheet
evolution?

The experiment reported in Sect. 7.4 will provide the answer. Interestingly, we
note that the end result could be anticipated from scale invariance, but we postpone
the explanation to Sect. 7.6.1.

7.3 Basics on Linear Elasticity of Sheets

The linear response of materials to deformation has been synthesized by Robert
Hooke in the rule “ut tensio sic vis” which means that stresses and strains follow
each other proportionally. The development of elasticity generalized this to a
tensorial relationship between stress and strain whose possible forms can be simply
grasped by considering the elastic energy [11, 13, 15].

We shall call in the remainder γ and σ the strain tensor and the stress tensor,
(i, j) the indexes of the coordinates tangent to the sheet, and k the index of the
normal coordinate to the sheet. The volumic density of elastic energy ε will then
satisfy ∂ε/∂γi j = σi j .

Reducing attention to sheets here enables one to decompose stresses into their
average along the sheet depth, σ̄i j, and the complementary part σ ′

i j: σi j = σ̄i j +σ ′
i j.
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Fig. 7.4 Strain in a sheet
made of the uniform
stretching part γ̄ and the
flexural part γ ′ equal to the
difference of strains with
respect to the mid-height
surface (dotted line)

The former stress corresponds to viewing the sheet as a superposition of identical
2D surfaces and the latter stress expresses the actual differences undergone by these
surfaces depending on their position on the sheet depth: σ ′

i j depends on xk.
As 2D surfaces have zero thicknesses, their stresses only refer to stretching.

However, following sheet curvature, the different surfaces which compose a sheet
actually experience different strains since outer or inner surfaces stand at slightly
different distances from the curvature centers. They thus involve some differences
that are related to curvature. Within the thin sheet approximation, one can assume
a linear variation of the complementary stresses σ ′

i j with the normal component xk:
σ ′

i j ∝ xk, the origin xk = 0 being placed at the middle of the sheet thickness. Then
the stresses σi j involve a mean part σ̄i j independent of xk and a complementary part
σ ′

i j linearly varying with xk: σ ′
i j = xkσ̃ ′

i j. The same is true for the corresponding
strains γ = γ̄ + γ ′ with γ̄ and γ ′, respectively, independent of and proportional to xk:

γ ′i j = xk γ̃ ′i j(Fig. 7.4).
By definition, the surfacic energy density e satisfies δe =

∫
σi jδγi jdxk, the

integral being taken between ±h/2, h designing the sheet thickness. Integration

thus yields δe = δes + δeb with δes = hσ̄i jδ γ̄i j and δeb = h3

12 σ̃ ′
i jδ γ̃ ′i j. Here es

denotes a stretching energy density and eb a bending energy density. Interestingly,
es is proportional to h but eb is proportional to h3.

On this basis, the objective remains to clarify the link between stress and strain.
For this, a convenient way consists in using the elastic energy, thanks to its scalar
nature. This, together with an emphasis on the role of the Gaussian curvature,
will yield the expression of the link between sheet form and elastic stresses in
equilibrium states in the form of the Föppl–von Kármán equations.

7.3.1 Sheet Elastic Energy

Following the linear relationship between stress and strain, the volumic elastic
energy density ε is quadratically related to the strain tensor γ . However, the energy
density being scalar, it must be related to those parts of the strain tensor that are
scalar and, because of global rotational invariance, isotropic. These constraints
select two candidates only, the trace of the tensor square Tr(γ2) and the square of
the tensor trace [Tr(γ)]2, yielding a simple relationship with coefficients λ and μ
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called Lamé coefficients: ε = 1
2 λ [Tr(γ)]2 + μTr(γ2). Two coefficients only are thus

required to characterize an elastic medium. Formally, they are actually the analogous
of the two viscosities required to characterize a viscous fluid.

Given the expression of the elastic energy density of a volumic material, one
now wishes to apply it to the specific case of a thin sheet whose strain tensor γ can
be decomposed into a thickness-uniform strain tensor γ̄ and a linearly thickness-
dependent strain tensor γ ′: γ ′ = −xkC. Here, the tensor C corresponds to the
curvature tensor defined by Ci, j = n∂ 2r/(∂xi∂x j). The dependence on xk then states
that the sheet surface that is the farthest from the center of curvature is stretched
whereas that which is the nearest from this center is compressed, as compared to the
mid-thickness surface xk = 0 (Fig. 7.4).

Integration of the volumic energy density over the sheet thickness yields:

∗ No cross contribution between γ̄ and γ ′, i.e., between stretching and bending, for
parity reason in xk

∗ A surfacic stretching energy es =
h
2 [λ [Tr(γ̄)]2 + μTr(γ̄2)]

∗ A surfacic bending energy eb =
h3

24 [λ [Tr(C)]2 + μTr(C2)]

Here, both the strain tensors γ̄ and C only depend on the in-plane components
xi,x j and are thus 2D. Interestingly, the trace of their square then satisfies Tr(T 2) =
Tr(T )2 − 2Det(T ), as may be directly checked from the algebra of 2*2 matrices.
As their trace and their determinant easily express as the sum and the product of
their eigenvalues, it appears convenient to rewrite the surfacic energies in term of
them:

∗ es =
h
2

E
(1−ν2)

{[Tr(γ̄)]2 − 2(1−ν)Det(γ̄)}.

∗ eb =
h3

24
E

(1−ν2)
{[Tr(C)]2−2(1−ν)Det(C)} where ν = λ/2(λ +μ) is the Poisson

ratio and E = μ(3λ + 2μ)/(λ + μ) the Young modulus.

Regarding the bending energy density, we note that Tr(C) = c1 + c2 corresponds
to the sum of the principal curvature, c1, c2, and thus to twice the mean curvature
C = (c1 + c2)/2. On the other hand, Det(C) stands as the product of the principal
curvatures, i.e., the Gaussian curvature G. The bending energy density thus also
expresses as eb = B[2C2 − (1−ν)G] where B = h3

12
E

(1−ν2)
is the bending modulus.

7.3.2 Gaussian Curvature and Theorema Egregium

Among the deformations that can be undergone by a sheet, it will appear relevant
to determine the characteristics of those that induce no stretch, i.e., the isometric
deformations. In 2D, they correspond to global translations and rotations. In 3D,
they may also include curvature modes, i.e., bending, under conditions to clarify.

Quite generally, for a 3D volume, the evolution of its metrics may be deduced
from that of elementary distances ds between nearby points M and M+dM. Calling
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Fig. 7.5 (a) Gauss’ Theorema Egregium. One considers a mapping M → M′ from the plane (x,y)
to the surface z = ξ (x,y). For an isometric mapping to exist, the Gaussian curvature of the surface
must be equal to that of the plane, i.e., zero. (b) An axisymmetric mapping from the plane to
the paraboloı̈d that would preserve the perimeter of a circle would inevitably stretch its radius, as
expected from the difference of Gaussian curvature between the plane (G = 0) and the paraboloı̈d
(G > 0)

u(M) the displacement undergone by a point M, one gets dMi = dxi in the rest
state and dMi = dxi + ∂ui/∂x jdx j in the stretched state, the space directions being
indexed (i, j,k). The distance squared between nearby points ds2 = dM2 then reads
ds2 = dMidMi = gi jdxidx j and thus gi j = δi j in the rest state and gi j = δi j + 2γi j

in the stretched state, the strain tensor γ being γi j = 1/2(∂ui/∂x j + ∂u j/∂xi) +
1/2(∂uk/∂xi)(∂uk/∂x j).

Let us first start by determining to what conditions on a surface of cartesian
equation ξ (x,y) can an elementary isometric mapping exist between the plane z = 0
and this surface (Fig. 7.5a). Any mapping between the plane (x,y,0) and the surface
(x′,y′,z′ = ξ (x′,y′)) involves the displacement (u,v,w) = [x′ − x,y′ − y,ξ (x′,y′)].
Isometry imposes that the elementary length elements on the plane and on the
mapped surface are the same: ds2 = ds′2 with ds2 = dx2 + dy2 and ds′2 = dx′2 +
dy′2 + dz′2. To express this constraint, let us notice that the latter expression writes
ds′2 = dx2(1+a)+dy2(1+b)+2c dxdy with a= 2∂xu+(∂xξ )2, b= 2∂yv+(∂yξ )2,
c= ∂yu+∂xv+∂xξ ∂yξ . Isometry therefore imposes a= b= c= 0. This requirement
may be transposed to a constraint on the sole surface ξ (x,y) by noticing that the
mapping (u,v) disappears from the combination c− (a + b)/2 = 0 which reads:
∂ 2

x ξ ∂ 2
y ξ − (∂x∂yξ )2 = 0.

A simple geometrical interpretation of this condition may be obtained by
considering, up to a global rotation, the cartesian axes as the principal curvature
axes of the surface, so that ξ = 1

2 c1x2 + 1
2 c2y2 +h.o.t., c1, c2 denoting the principal

curvatures and h.o.t. “higher order terms”. The above criterion then reduces to
c1c2 = 0. More generally, the left-hand side of this criterion appears proportional to
the determinant of the curvature tensor, Det(C), and thus of the Gaussian curvature
G = c1c2. Accordingly, the condition for an isometric mapping to exist from a plane
to a surface is that its Gaussian curvature is zero: G = 0.

One may straightforwardly generalize this constraint to isometric mappings from
one surface, not necessarily a plane, to another, respectively, indexed 1 and 2. For
this, one simply has to state that the evolution of their metrics from their tangent
plane is the same: ds′12 = ds′22, this common length evolution being possibly not
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zero. The above algebra then shows that this turns back to the equality of their a,
b, and c terms and thus of their combination c− (a+ b)/2 or, equivalently, of their
Gaussian curvature.

One obtains this way the Gauss’ Theorema Egregium which states that isometric
mappings must conserve Gaussian curvatures. In turn, any change of Gaussian
curvature will indicate a change of metrics, i.e., a stretch. This way be illustrated
on the elementary surface ξ = 1

2 c1x2 + 1
2 c2y2 + h.o.t. considered above by noticing

that, for equal curvature c1 = c2 = c, and thus for nonzero G = c2, the axisymmetric
mapping from the plane to this surface which would preserve the perimeter of the
circle of radius r would inevitably stretch its radius (Fig. 7.5b).

7.3.3 Sheet Equilibrium and Föppl–von Kármán’s Equation

Consider a weakly distorted sheet from its planar state (x,y,0), its distortion being
described by the equation z = ξ (x,y), and focus attention to an elementary part of
it with normals n at the boundaries. Its equilibrium condition requires mechanical
equilibrium on the in-plane directions and on the normal direction:

∗ In-plane directions: no gain of momentum is allowed from the flux of stretching
stresses σ̄ = σ̄n at its boundaries: div(σ̄) = 0. This requirement for a 2D in-plane
tensor σ̄ imposes that it derives from a scalar potential, the Airy potential χ , such
that σ̄i j = (−1)i+ j∂ 2χ/∂xi∂x j.

∗ Normal direction: for a bent sheet, the normal component of the net contribution
of stretching stresses applied at its boundaries must equilibrate that provided by
bending. The former is proportional to h and may be expressed with the Airy
potential. This yields the first Föppl–von Kármán equation:

B�2ξ − h[ξ ,χ ] = 0 (7.1)

where the first term denotes bending contribution, the second the stretching con-
tribution, and the brackets, the Poisson brackets [U,V ] = ∂ 2

iiU∂ 2
j jV +∂ 2

iiV∂ 2
j jU −

2∂ 2
i jU∂ 2

i jV .

The second Föppl–von Kármán equation corresponds to a compatibility con-
dition for stresses to derive from strains induced by an actual displacement. This
condition corresponds to the above relationship c − (a + b)/2 = 0 for isometric
mappings and, more generally, c−(a+b)/2= G for mappings inducing a Gaussian
curvature. Relating strains to stresses and then to the Airy potential yields:

�2χ +E[ξ ,ξ ] = 0 (7.2)

where [ξ ,ξ ] = G for weakly distorted surfaces.
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These two equations describe the relationships between stresses (χ) and
geometry (ξ ) for weakly distorted sheets at equilibrium.

7.4 Experiment

The experiment aims at compressing a thin sheet while keeping one of its principal
curvature fixed at a nonzero value. For this, one seeks to compress a sheet in
between parallel cylinders so that their curvature radius R fixes one sheet’s principal
curvature [14]. To this end, the sheet is clamped by two of its sides on a cylinder
along a direction normal to the cylinder generatrix. This will then force the fold axes
to adopt the cylinder curvature (Fig. 7.6).

7.4.1 Setup

The compression setup is shown in Fig. 7.7. It consists in a fixed upper plate and
a moving lower plate in between which the sheet to compress is placed. The lower
plate is pushed up by a piston placed at the middle of the system but is blocked
by three stepper motors before touching the upper plate. These motors thus enable
to monitor the gap Y between the compressing plates to an accuracy of a tenth of
microns.

The upper plate is taken transparent so as to allow visualization from above.
For the present experiment, the plates, usually flat, have been replaced by cylinders
made of plexiglass for the upper plate and of polycarbonate for the lower plate. Thin
rulers enable the sheet to be clamped on the curved sides of the lower cylindrical
plate. Visualization of the sheet form has been achieved by illuminating it from the
sides with two different colors, red and blue. This way, the image recorded by a
camera fixed on top of the setup could make the difference between right and left
sides of the sheet folds, thus improving the contrast and the understanding of the
sheet form.

The sheet is made of polycarbonate and has the following dimensions: length
l = 155 mm, width L = 190 mm, and thickness h ranging from 0.05 mm to 0.5 mm.
It is clamped along its length onto the bottom cylinder. As the distance between
the clamping arches, X = 180 mm, is smaller than the sheet width L, the sheet is
thus already buckled before compression (Fig. 7.8). Finally, the cylinder curvature
radius, R = 50 cm, is taken large compared to the few millimeters gap Y and thus
to the fold sizes, so as to make the configuration locally close to a compression
between parallel plates.



218 A. Pocheau

a bR

X

y

Z

X

R1

R2 = R

Y 1

λ

Y

Fig. 7.6 A compressing device (a) involves cylindrical plates distant from a controlled gap Y with,
in between, a sheet clamped on their curved sides. (b) By iterative buckling, gap reduction yields
the generation of folds of ever smaller size λ , whose axis is bent by the cylinders. This results in
two principal curvatures c1 ∼ λ−1, c2 ∼R−1 and thus in Gaussian curvature and in-plane stretching

Fig. 7.7 Snapshot of the
setup used to perform and
study sheet compression. A
bottom plate is pushed up by
a piston and blocked by
stepper motors, leaving a gap
Y to a fixed top plate. Sheets
are clamped on one of the
plates and compressed as the
gap Y decreases.
Visualization is achieved
from above thanks to a
transparent top plate

7.4.2 Compression Route

The cylinder curvature radius being large, the compression route shares some
analogy with the Elastica route [18–20]. In particular, a buckling cascade is observed
with the fold number ever increasing as compression proceeds (Fig. 7.9). Following
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Fig. 7.8 (a) Clamped sheet prior compression showing two ridges at the contact lines between
the sheet and the cylinder. (b) Buckled ping-pong ball showing ridges where large curvature and
stretch are focused

the invariance of the compressing cylindrical plates on both the clamping direction
(same curvature along it) and its normal (straight cylinder axis), the sheet folds,
either smooth or singular, show the same shapes. In particular, their common width
λ follows the gap Y in the sense that the ratio λ/Y varies in a short range that
depends on the excess length L/X and which corresponds in practice here to the
range [20/3,9]. The largest bound corresponds to buckling folds and the lowest
bound to just buckled folds. Accordingly, the number n = X/λ of folds varies as
nY = XY/λ , with nY bounded in the range [X/9,3X/20], i.e., [20,27]mm here.

Without compression, the clamped sheet shows two domains in contact with the
cylinder with a fold in between (Fig. 7.8a). The frontier between them corresponds
to an elastic defect, the so-called “ridge”, on which curvature is focused. It is
analogous to that observed on a buckled ping-pong ball (Fig. 7.8b) [11, 21] and on
which stretching yields plastic deformation. However, it is actually weaker in the
sense that no plastic transition is triggered here.

As compression proceeds together with the resulting successive bucklings, the
sheet shows first ridges at its contact with cylinders (Fig. 7.9a, b), as on the
uncompressed state of Fig. 7.8. However, on further compression, another kind of
defect appears, the d-cone (Fig. 7.9c, d, e).

This kind of defect corresponds to those found when distorting a planar sheet
by pressing it with a sharp tip [10, 12]. All the stress is then focused on this tip,
leaving the remaining of the sheet unstretched. One may observe that the sheet is
not axisymmetric with respect to the tip axis but shows a folded circumference that
makes the difference with a cone. This traces back to the fact that the cone is not a
developable surface, i.e., that it cannot be continuously mapped onto a plane without
cutting it somewhere. This indicates that some Gaussian curvature is in order, not on
the cone sides since they are curved on a single direction but at the cone tip where
all the stretch is thus concentrated [9,10]. However, in comparison, the planar sheet
making a d-cone is actually developable since it was initially planar. The difference
between both is the folded part of the distorted planar sheet which, if removed, could
yield an actual cone.
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Fig. 7.9 Experimental pictures taken from above; h = 180 microns. Colors refer to left (red,
bright) or right (blue, bright) fold sides. Clamped sides are shown by black ticks. Compression
increases from (a) to (f). (a) Single fold with ridge. (b) Two folds with ridges. (c) (d) (e) Four, six,
and eight folds with ridges and d-cones. (f) Regular state of twelve folds involving no singularity

These d-cones thus involve a large curvature at the tip of the sharp tongue they
display (Fig. 7.9c, d, e) with, therefore, a large stretch there. In contrast, they enable
the stretch to be removed from the remaining of the sheet, as on the canonical
example of a sheet pressed with a tip [10].

The number of d-cones increases with the fold number, each fold displaying its
d-cone (Fig. 7.9a, b). Accordingly, focusing stress on the tip of elastic defects seems
to be the nominal mean for self-organizing the sheet so as to adapt compression.
Viewed this way, there should be no reason to self-organize differently when
compressing further. However, somewhat surprisingly, beyond a fold number n =
11, all d-cones spontaneously disappear from the bulk leaving a smooth, regular,
state, free of elastic defect (Fig. 7.9f) [14]. Then, further increasing simply yields
further buckling with no longer any defect occurrence.

It should be noticed that the regular state made of parallel defect-free folds
nevertheless involves stretch and nonzero Gaussian curvature G since the fold axes
are bent by the cylinders. However, the difference with the defect state is that this
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Fig. 7.10 Critical number of
folds nc at the uncrumpling
transition for different sheet
thicknesses h. Continuous
line corresponds to
2πγcnc = (hR/2X2)−1/2 with
γc = 0.55 as best fitting
coefficient. Inset: same data
in log-log scales

stretch is distributed on the whole sheet instead of being concentrated in localized
areas. The morphological transition on defect appearance/disappearance therefore
corresponds to a transition from a condensed stretch to a distributed stretch or,
equivalently, to a stress-defocusing process. The remaining of this study is devoted
to understand it.

7.4.3 Defocusing Scaling

At a defect core, the sheet can no longer be viewed as a 2D surface (or a collection
of superimposed 2D surfaces) and must be considered as three-dimensional.
This means that the sheet thickness should parametrize the defect occurrence or
disappearance and thus the stress-defocusing phenomenon. Similarly, the fact that
both stretch and curvature are involved in the sheet organization converges to the
same conclusion since they scale differently with the thickness h. These remarks
thus invite us to vary the sheet thickness and address the resulting modification of
stress defocusing.

Varying h by a factor of 10, from 0.05 to 0.5 mm at otherwise same length
and width, we observed similar routes exhibiting the same qualitative events and
only displaying quantitative variations. In particular, the fold number nc at which
stress defocusing occurs has been found to vary with h as a power law: nc ∝ h−1/2

(Fig. 7.10). The fact that nc scales with h gives confidence for using this relationship
to infer relevant information on stress defocusing. In particular, as the relevant
characteristic scales playing on nc are the cylinder radius R, the distances X
between arches, the sheet width L, and the sheet thickness h, one may expect from
dimensionality a scaling relationship of the kind nc ∝ (R/h)α(X/h)β (L/h)γ . The
objective of the modeling will thus be to determine these exponents and recover the
observed fact that their sum is 1/2.
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7.5 Energy Criterion for Stress Focusing and Scalings

In the introduction, we have argued that energy could help in clarifying the origin of
stress defocusing and more generally the self-organization of elastic sheets within
the prescribed boundaries. The argument consists in identifying the observed state
with the less energetic state, leaving aside the issue regarding the path required to
change state and, therefore, possible metastability. Here, we would like to make
this argument quantitative so as to recover the location of stress defocusing on the
compression route and especially the power law variation nc(h).

For this, we thus address the energy criterion for defocusing and express it by
using scaling arguments [14].

7.5.1 Energy Criterion for Stress Focusing or Defocusing

Our goal is to compare the sheet elastic energy E in a stress-focused state and in a
stress-defocused state. This energy expresses as the integral over the sheet surface
of its energy density e: E =

∫
sheet e ds. Here e can be decomposed in a bending

contribution eb, a stretching contribution es, and a defect contribution ed, the two
formers being referring to the sheet except the defect core and the latter to these
defect cores. To facilitate the comparison, we shall denote the stress-focused state
with the superscript “f” and the stress-defocused state with the superscript “d.”

As the less energetic state is favored, the criterion reads:

• Stress focusing: E f 	 Ed .
There is an energetic gain to focus stress in defects.

• Stress defocusing: Ed 	 E f .
There is an energetic gain to defocus stress on the whole sheet.

• Stress focusing/defocusing transition: Ed ∼ E f .
Both energies being similar, there is no clear advantage in one or the other state.

In the defocused states, the defect energy density vanishes by definition: ed
d = 0.

On the other hand, the absence of multiple characteristic scales on these states
allows the scaling of the evolutions with compression to be determined from
the Föppl–von Kármán equations for both the bending and the stretching energy
densities, ed

s , ed
b. Accordingly, in defocused states, one should be able to follow the

evolution of the sheet energy Ed with the fold number n, as compression proceeds.
By comparison, in the focused states, a similar determination is delicate owing

to a more complex geometry of the sheet states and to the difficulty in expressing
the energy density e f

d on a defect without solving for its inner structure. However,
denoting ρ the size of the defect core, its energy is about B(ρ/h)1/3 [13] and,
as ρ ∼ h, of the order of B, i.e., of the sheet bending energy. Accordingly, we
may omit this defect energy in the evaluation of E f without noticeable implication
on the determination of the transition. In particular, as we expect a variation of
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several orders of magnitude of the balance between the energies of the focused and
defocused states, order one differences between the different terms are irrelevant.
On the other hand, the stretching energy density e f

s in the focused states is for sure
largely reduced compared to its defocused value, so that it no longer stands as the
dominant energy density. We shall then assume that it is of the same order of the
bending energy density e f

b which, on the other hand, should remain comparable to

its defocused value: e f
s ∼ e f

b ∼ ed
b. Accordingly, we shall thus consider the bending

energy as representative of the order of magnitude of the energy density e f of the
focused state: e f ∼ e f

b ∼ ed
b.

The transition criterion E f ∼ Ed then reads ed
b ∼ ed

s +ed
b or, equivalently, ed

s ∼ ed
b.

Interestingly, it is thus expressed on the defocused state only, which we know and
can evaluate. Its physical meaning is that defects actually relax the stretching energy
density Es on the whole sheet, leaving the bending energy Eb plus the defect energy
Ed, which are of the same order. This is obviously energetically favorable when
the stretching energy is dominant on regular states, i.e., when ed

s >> ed
b, in which

case defects should occur. On the opposite, for ed
s ∼ ed

b, regular states should be
maintained. The criterion for a transition between focused and defocused states is
thus ed

s /ed
b ∼ O(1).

7.5.2 Scalings

The compression route shows two imbricated phenomena: buckling and defect
occurrence/disappearance. The former yet occurs on compression between parallel
plates, i.e., for R = ∞, and the latter is specific of a finite R. Let us address
them successively, first within the Elastica and then within the Föppl–von Kármán
equations.

Elastica involves no Gaussian curvature and no stretch. The only source of
stresses is thus bending via flexural terms. As a consequence, there is no longer
a scaling competition between stretching (∝ h) and bending (∝ h3), so that the sheet
thickness h only serves to gauge stresses and forces without implication on the sheet
state. In particular, the sheet behavior satisfies scale invariance with respect to h.

This scale invariance enables us to relate states by zooming them in and out.
Consider a n-fold solution obtained after several bucklings (e.g., a fourfold solution
in Fig. 7.3-left). Each fold is physically equivalent to the onefold solution found
prior to buckling. Both are connected by a zoom such that the fold of the fourfold
solution whose width is X/n is mapped onto the onefold whose width is X , i.e., by a
zoom factor of X/(X/n) = n. Accordingly, the folds corresponding to characteristic
lengths (Y/n,X/n) and (Y,X) are geometrically similar (and also dynamically
similar as shown in [18–20]). This, in particular, states that the fold width λ and
the fold height Y scale like n−1.
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Let us now consider curved plates, i.e., a large but finite R, and determine how
scalings operate in a situation where stretching and bending compete on a defocused
state. In particular, our objective is to express the evolution of the stretching and
bending energy densities as compression proceeds.

Regarding the bending energy density, eb = B[2C2 − (1− ν)G], one may notice
that, when integrated over the whole sheet, the contribution of the Gaussian
curvature is constrained by the Gauss–Bonnet theorem [22] which states that the
integral of G over a compact surface is related to a topological invariant, the Euler
characteristics of the surface, and to the boundary integral of the geodesic curvature
at the surface boundary. On the other hand, the small curvature of the cylinders
negligibly changes the sheet form at its boundaries so that the boundary integral
and finally the surfacic integral of G hold a value close to the one they have for a
compression between planes. However, as the Gaussian curvature vanishes in this
case, its net integral contribution would be zero for such a compression between
plane and, by extension, for the present compression between cylinders. For this
reason, we shall skip the contribution of G to the bending energy density eb hereafter
and reduce it to eb = 2BC2 ∼ Eh3C2.

Regarding the stretching energy density es, its definition δes = hσ̄i jδ γ̄i j with
γ̄ ∼ σ̄/E shows that its scalings follow those of the combination hσ̄2/E where
σ̄i j = (−1)i+ j∂ 2χ/∂xi∂x j, the Airy potential satisfying �2χ+EG= 0. To evaluate
them, let us model the regular folds by the surface ξ (x,z) = ξ0(x)+ z2/2R, where
ξ0 ≈ (Y/2)sin(2πx/λ ) is a λ -periodic function and where the dependence on z
conveys the fold curvature imposed by the cylinders. Spatial derivatives then extract
the length scale Λ = λ/(2π) so that Λ−4χ ∼ EG, σ ∼ Λ−2χ and, finally, es ∼
EhΛ 4G2.

Altogether, this yields the transition criterion es/eb = O(1) with es/eb ∼ γ4 =
O(1) and γ = Λ(G/hC)1/2. We stress that it applies on any compression route of
thin sheets.

On the original compression route between cylinders studied here, one has
c1 ∼ Y/Λ 2, c2 ∼ 1/R with c1 � c2 and thus C ∼ c1/2 and G/C ∼ 2c2. This, with
λ ∼ n−1, yields γ = (λ/2π)(2/hR)1/2 ∼ n−1 and thus an order parameter for the
transition varying sensitively with the fold number n as es/eb ∼ γ4 ∼ n−4. This
sensitivity to the fold number then relativizes the role of prefactors in the above
scaling relationships and therefore supports the analysis.

Calling γc the value of γ at the transition, the above expression of γ yields the
critical fold number at the transition: nc = (hR/2X2)−1/2/2πγc. One thus recovers
the experimental scaling evidenced in Fig. 7.10 with a computed value γc ∼ 0.76 of
order one, as expected for the transition.

7.6 Phase Diagram and Nature of Singularities

Following the above criterion, we are now able to determine the conditions required
for focusing or defocusing stress in a sheet and synthesize them in a phase diagram
[14]. This will be especially useful to interpret the three canonical compression
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routes that are compared in Sect. 7.2. However, before turning attention to this
quantitative view, it is instructive to realize that the surprising phenomenon of
defocusing is a simple logical consequence of scale invariance.

7.6.1 Scale-Invariance and Defocusing

Three characteristic lengths are in order on a sheet state: (1) a fold morphological
scale, the fold width λ , for instance, (2) the cylinder curvature radius R, and (3)
the sheet thickness h. These are in particular the three variables which enter the
transition criterion.

The fact that, in contrast to Elastica, h is a relevant scale here forbids the different
states of a given compressed sheet to be geometrically similar, since any homothety
would ask to change the sheet thickness. This, however, does not forbid to use scale
invariance to compare, at fixed thickness h, the evolutions undergone when varying
λ with respect to R or vice versa.

In particular, let us consider the change of fold width λ : (λ ,R,h)→ (αλ ,R,h).
Owing to the absence of intrinsic scale in elasticity, i.e., to its scale-invariant nature,
similar states may be obtained by changing the scale of all lengths by the same
factor. Accordingly, the latter state (αλ ,R,h) is equivalent to (λ ,R/α,h/α).

Moreover, in our configuration where a principal curvature c1 is much larger than
the other c2, the Föppl–von Kármán Eqs. (7.1) and (7.2) involve a scale invariance
focused on the couple of scales (R,h). This may be evidenced by noticing that,
as c1 >> c2, the laplacian operator reduces to �ξ ≈ ∂ 2ξ/∂x2, so that �2ξ ≈
∂ 4ξ/∂x4. Note that, in these relationships, the equality is even actually achieved
within the modeling of the sheet’s surface ξ (x,z) = ξ0(x)+z2/2R. As, from relation
(7.2), the Airy potential follows the modulations of the sheet’s surface, the same
conclusion may be drawn for it: �2χ ≈ ∂ 4χ/∂x4. In this instance, it then appears
that, as B ∼ Eh3, the Föppl–von Kármán Eqs. (7.1) and (7.2), respectively, agree
with the following scaling relationships χx2 ∼ h2z2 and χz2 ∼ x2ξ 2 where variables
are used here to denote their scale (e.g. ∂ 4χ/∂x4 ∼ χ/x4 or [ξ ,χ ]∼ ξ χ x−2 z−2).
These relationships are equivalent to χ ∼ x2 ∼ hz, since by definition ξ ∼ z.
A class of scale change which satisfies these scaling constraints is the following:
(x,z,ξ ,χ ,h)→ (x,β−1z,β−1ξ ,χ ,β h). It means that an increased thickness h, h →
β h, goes together with an anisotropic zoom (x,z)→ (x,β−1z). As the curvature R−1

corresponds here to ∂ 2ξ/∂ z2 ∼ z−1, one gets R ∼ z and thus the following change
for R, R → β−1R. This therefore corresponds to an actual invariance for both x (and
thus λ ) and the combination Rh: x → x, Rh → (β−1R)(β h) = Rh. An echo of this
property is found in the fact that, besides λ , the variables R and h enter the transition
parameter γ through this combination Rh.

According to this additional symmetry, the state (λ ,R/α,h/α) is also physically
equivalent to (λ ,R/α2,h). So are therefore the states (αλ ,R,h) and (λ ,R/α2,h)
which interestingly display the same thickness h. Accordingly a decrease of λ/R at
fixed h can be equally obtained in two physically equivalent ways:
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(1) By increasing R at fixed λ and h: (λ ,R,h)→ (λ ,R/α2,h), α < 1
(2) By decreasing λ at fixed R and h: (λ ,R,h)→ (αλ ,R,h), α < 1

With this in mind, we now compare two compression routes, the first route
referring to the sole variation of R at fixed λ and h, and the second route referring
to the sole variation of λ at fixed R and h (Fig. 7.11). One recognizes in the first
route the bending of a fold axis and in the second route, the compression between
cylinders worked out here. Both however refer to a variation of the ratio λ/R at
fixed h and should thus tell the same story.

• First route: fold bending
Bending the axis of a fold turns out increasing its principal curvature c2 = 1/R
from zero at a fixed λ , i.e., at a fixed principal curvature c1. As one may easily
figure out, this yields the generation of defects, actually d-cones, beyond some
critical value of c2.
This route, which corresponds to decreasing the ratio c1/c2 = λ/R, thus shows
us that stress focusing should be encountered this way.

• Second route: compression between cylinders
Compressing a sheet between cylinders turns out decreasing the fold width λ by
iterated buckling at fixed R, i.e., at fixed c2. This corresponds to increasing the
principal curvature c1 ∼ λ−1 at fixed c2 and, therefore, to increasing the ratio
c1/c2 ∼ λ/R. From this point of view, this route corresponds to an opposite
direction of compression as compared to the first route. Both routes being similar
as viewed with respect to the ratio c1/c2 at fixed h, this means that one should
encounter defocusing on the second route as surely as one encounters stress
focusing on the first route.

This simple reasoning naturally explains why compression between cylinders
should yield defocusing despite the general increase of stress undergone by the sheet
(Fig. 7.11). It emphasizes that the thing which matters regarding the occurrence or
not of defects is not the global amount of stress but its balance between stretch
and bending on regular states. In particular, reducing the fold width by iterated
buckling renders the curvature radius of their axis apparently larger, as compared
to their width. This corresponds to decreasing the effective bending of their axis,
i.e., to rendering them more straight, until this bending becomes small enough for
defocusing to occur.

7.6.2 Scalings and Phase Diagram for Singularities

The transition criterion γ = Λ(G/hC)1/2 = γc = O(1) derived in Sects. 7.5.1
and 7.5.2 applies to any states of thin sheets. It thus enables us to determine the
domains where focused or defocused stress are in order.

Before applying this to work out a phase diagram for stress focusing, we would
like to turn from the geometrical expression of the criterion in terms of mean
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Fig. 7.11 Equivalence between fold de-bending and compression between cylinders. Fold bending
increases λ/R and yields stress focusing. Fold de-bending therefore reduces λ/R by variation of
R and yields stress defocusing. Similarly, compression between cylinders together with iterated
buckling makes λ/R also decrease but by variation of λ . As for fold de-bending, this must therefore
also yield defocusing

curvature C and Gaussian curvature G to an expression in terms of typical strains
relative to curvature γC or stretch γG. The decomposition of strains in Sect. 7.3.1
shows that γC may be taken as hC.

The determination of stretching stresses from the Airy potential in Sect. 7.3.3
together with scaling arguments similar to those applied in Sect. 7.5.2 shows that
γG ∼ σ/E ∼ Λ−2χ/E with χ ∼ Λ 4EG, so that γG ∼ Λ 2G. Altogether this yields
the transition criterion to read γ = (γG/γC)

1/2 = γc = O(1).
In the variable space (γC,γG) and in logarithmic coordinates, the transition

criterion thus corresponds to a straight line whose slope is 1/2 and which is located
according to the experimental value 0.55 of γc. Above this line, one finds focussed
singular states and below it defocused regular states (Fig. 7.12).

Let us now place the compression routes in this diagram:

• Elastica
The Elastica corresponds to γG = 0 and thus to a horizontal line with an ordinate
repelled up to −∞. Whereas we cannot reproduce it on the diagram, we may
realize that it stands within the regular, defocused, domain.

• Crumpled paper
Because of isotropy, all the length scales and especially the fold widths and the
two principal curvature radii take similar values. Accordingly Λ2 ∼ 1/G so that
γG ∼ O(1). This compression route thus corresponds to a horizontal line located
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Fig. 7.12 Transition diagram in the variable space (γC ,γG), where γG = hC and γG = Λ2G are
the typical strains due to curvature and to in-plane stretching. The isotropic route always lies
in the plastic domain. In contrast, anisotropic crumpling yields elastic regularization and stress
defocusing before experiencing plastic deformation. The thick line corresponds to the uncrumpling
transition for γc = 0.55 and black ticks to the observed uncrumpling transition for h varying from
50 to 500 microns, including error bars. Note that the diagram would be similar in variables
(G/C2 ,hC)

at values of ordinates about unity. It thus stands within the singular, focused,
domain till the first stage of compression (Fig. 7.12). Accordingly, defects should
occur at the very beginning of the compression of a paper sheet in hands, as
may be directly confirmed in practice. However, they should also encounter the
transition to defocusing at large compression, a fact which is not corroborated in
practice, for reasons explained below.

• Compression between cylinders
Here c1 ∼ Y/Λ 2, c2 ∼ 1/R with c2 	 c1. This yields γC ∼ hY/Λ 2, γG ∼ Y/R.
In addition, following buckling, Λ and Y decrease similarly so that Λ ∼ Y . This
finally yields γG ∼ (h/R)γ−1

C , i.e., a line with slope −1 and located according to
the value of h/R. As displayed in Fig. 7.12, it crosses the transition diagram from
the singular, focused, domain to the regular, defocused, domain, as compression
proceeds.

These compression routes, which are reported in the phase diagram of Fig. 7.12,
thus well reproduce the experimental evidence, except for the crumpled paper which
is found to neither defocus stress nor remove defect at large compression. This
discrepancy will be explained below by plasticity.

This phase diagram provides a new vision of singularity occurrence in elasticity.
Instead of being viewed as objects forced by external means, by frustration, or by
boundary conditions, they simply appear here as a possible expression of a sheet
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state, besides an alternative one corresponding to a stress smoothly distributed
on a geometrically regular state. In particular, we note that the disappearance of
singularities under compression evidenced here differs from that observed when
pressing a fold with a sharp tip [23] in the sense that singularities disappear here
in the bulk whereas they are expelled to the sheet boundary in the latter case. This
difference emphasizes the fact that stress focusing or defocusing stands here as a
bulk matter, actually the spontaneous selection of a preferred phase under constraint.
This therefore makes this elastic issue close to a thermodynamic issue, the different
routes being simply different kinds of path followed in phase space.

Attached to this thermodynamic view is the requirement that forming singulari-
ties do not change physics irreversibly, since making a closed path in phase space
should yield back to the starting phase. This is actually satisfied in this experiment
of compression between cylinders since decompressing the sheet yields back to the
starting planar sheet without evidence of the history. Such a reversibility is however
not involved in paper crumpling since permanent scars are generated. This calls
for completing the phase diagram by taking into account plasticity. Of course, as
this complement will not concern the whole phase diagram but only a part of it,
it does not break the thermodynamic interpretation but simply complete it with an
additional phenomenon.

7.6.3 Plasticity

Plastic deformations occur at too large strains. Then the sheet escapes the linear
elasticity domain within which removing the stress makes the system return to
its initial strain. This therefore results in irreversible deformations that are located
where the strains were too large, i.e., here, at the defect cores.

A criterion for a transition to plasticity is the occurrence of strains larger than
a threshold value, typically a few percent, actually 5% here [24]. This yields us to
complete the phase diagram by restricting the linear elasticity domain to a square
domain located at low strains. Interestingly, this discriminates the different routes
addressed here since the isotropic compression route corresponding to crumpled
paper entirely lays in the plastic domain whereas the anisotropic route provided by
compression between cylinders stands in the elastic one. Their different behaviors
regarding stress defocusing are then naturally explained: whereas both should
display defocusing at large compression, the isotropic route will not since the
plastic transition preempts the defocusing transition; however, the anisotropic route
will, provided the regular states are not too much compressed before experiencing
defocusing.
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As for other thermodynamic transitions, this complete phase diagram opens
strategic choices to achieve sheet compressions that might avoid plasticity or not,
visit the singularity domain or not, keep within the regular domain or not, etc. These
different strategies might correspond to interesting practical issues in mechanics,
electronics, or in compaction.

7.7 Conclusion

Crushing a paper in a ball yields the generation of scars which denote a transition
from a regular geometry to a singular geometry. Meanwhile the stress distribution
changes from regularly distributed to condensed on singularities, a phenomenon
called stress focusing. The relevant stress part in this focusing refers to the stretch
induced by a nonzero Gaussian curvature G = c1c2 where ci denotes the principal
curvatures at a point. Usually, two compression routes are investigated, the Elastica
routes where G = 0 and the isotropic compression routes where c1 ∼ c2. The
former then yields no singularity whereas the latter corresponds to crumpled paper.
However, as two curvatures are in order in G, intermediate routes may exist to
explore the full bi-dimensionality of the issue. The objective of this study has been to
manage the compression configuration so as to address one of them here. It consists
in compressing a sheet between cylinders so as to increase a principal curvature c1

only, while keeping the other one c2 constant.
Interestingly, compressing a sheet this way generated singularities which sur-

prisingly spontaneously all disappeared at large compression. This unintuitive stress
defocusing by compression is at variance with the view that could be inherited from
crumpled paper. We explained it qualitatively by showing from scale invariance of
the Föppl–von Kármán equations that the reduction by buckling of the width of the
folds that are bent by the cylinders is physically equivalent to decreasing the bending
of the axes of folds of fixed width. As the latter route removes the singularities that
could have appeared at large axis bending, it corresponds to a stress defocusing. The
same phenomenon is thus in order by compressing folds between cylinders and may
be qualitatively understood by the fact that cylinders seem all the more flat as the
folds are small.

This interpretation has been made quantitative from scaling arguments which
have been applied on a criterion for defocusing. This criterion states that, as defects
relax stretch and decrease the stretching energy, it is advantageous to focus stress
only if the stretching energy is large compared to the bending energy. This was
synthesized on a phase diagram in which a transition line separates the domain
where stress is focused from the one where it is defocused. The bidimensionality
of this diagram echoes the existence of two relevant modes for stresses (stretch and
bending) or for strains (Gaussian curvature and mean curvature). In particular, the
different routes addressed here highlight the existence of two principal curvatures
whose features vary according to the compression protocol.
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To explain the formation of irreversible scars, the phase diagram has been
completed with plastic domains. This shows that the plastic transition may preempt
or not the defocusing transition depending on the compression route. In particular, it
actually preempts it on the isotropic configuration of crumpled paper but not on the
anisotropic compression routes investigated here since defocusing occurs on them
prior to plasticity. Accordingly, crumpled paper appears as a misleading example
of elasticity since the structures it shows, the singularities, should have disappeared
if the plastic transition had not occurred. In this sense, it is a combined example
of elasticity plus plasticity. On the opposite, the defocusing phenomenon exhibited
here by compression between cylinders fully refers to linear elasticity from which it
naturally derives thanks to scale invariance.

These results provide a renewed view of singularities according to which they
are understood as the expression of an elastic singular phase in competition
with a regular defocused phase. Within this thermodynamic interpretation, the
bidimensionality of the phase diagram allows the elaboration of strategies regarding
crushing. In particular, using cylinders instead of plates to compress sheets enabled
us to remove singularities before encountering plastic transition. This could find
interesting practical applications for instance for compressing more material sheets
without altering them.
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