
Chapter 6
Turbulent Thermal Convection and Emergence
of Isolated Large Single Vortices in Soap
Bubbles

Hamid Kellay

Abstract Experiments using a novel thermal convection cell consisting of half
a soap bubble heated at the equator to study turbulent thermal convection and
the movement of isolated vortices are reviewed. The soap bubble, subject to
stratification, develops thermal convection at its equator. A particular feature of
this cell is the emergence of isolated vortices. These vortices resemble hurricanes
or cyclones and similarities between these structures and their natural counterparts
are found. This is brought forth through a study of the mean square displacement
of these objects showing signs of superdiffusion. In addition to these features, the
study of the statistical properties of the turbulence engendered in these soap bubbles
shows a clear indication for the existence of the so-called Bolgiano–Obukhov
scaling both for the temperature and the velocity fluctuations. A remarkable
transition is uncovered: the temperature and the velocity structure functions show
intermittency for small temperature gradients; this intermittency then disappears for
large gradients.

6.1 Introduction

Turbulent thermal convection is ubiquitous in several natural settings such as the
atmosphere or the inner core of planets and has attracted and continues to attract
considerable attention from experimentalists and theorists [1, 2]. Experiments have
demonstrated several robust features of this phenomenon such as the importance
of thermal plumes and the onset of a large-scale circulation [3]. Several experi-
ments use three-dimensional geometries, but recent experiments have demonstrated
similar features in two dimensions [4–6]. These experiments use vertical, stably

H. Kellay (�)
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stratified, soap films or soap bubbles [7, 8] as two-dimensional fluids. The flow
occurs in the plane of the film and the velocity in the third dimension is strongly
inhibited due to viscous dissipation. Soap films have now become good model
systems to study two-dimensional hydrodynamics and turbulence [9] and these
recent experiments extend their use to turbulent thermal convection. Interest in
two-dimensional turbulence stems from the fact that atmospheric turbulence at
large scales displays two-dimensional features due to the small thickness of the
atmosphere [10]. According to some authors, this two dimensionality may have
strong repercussions: The great red spot of Jupiter has been brought forth as a sign
of the two-dimensional nature of atmospheric turbulence for example [11].

Besides its importance for the geophysical context, other fundamental issues
arise. As for three-dimensional hydrodynamic turbulence [12–14], the statistical
properties of temperature and velocity fluctuations in turbulent thermal convection,
a state which can be reached for a high enough temperature difference between
the bottom and the top of the container, can also be described by scaling laws
[15,16]. While several experiments have been carried out to measure these statistical
properties, a number of issues regarding the scaling properties remain unresolved
[17]. In the two-dimensional version, which has been put forth recently using either
vertical soap films or soap bubbles [5–7], a detailed examination of the statistical
properties of the velocity fluctuations, the temperature fluctuations, and the density
variations [5–8] showed that they indeed display scaling laws predicted by Bolgiano
and Obukhov for stratified turbulence in the 1950s [15–17]. Such scaling laws have
so far been elusive in three-dimensional experiments for reasons still debated today
[17, 18].

This paper reviews the two-dimensional experiments carried out in a soap bubble
and focuses both on the emergence of isolated vortices and on the statistical
properties of the turbulent thermal convection produced. The paper is organized as
follows: first we bring forth the emergence of these large-scale vortices and outline
their specific properties, then we describe the main features of thermal convection
and its statistical properties in this novel setup.

6.2 Isolated Vortices

A specific feature of recent experiments on soap bubbles subjected to thermal
convection is the emergence and persistence of large isolated single vortices. The
soap bubble (actually a half bubble is used) is heated at the equator giving rise to
thermal convection. A prominent feature of this setup is the emergence of long-lived
isolated vortices reminiscent of natural ones such as the red spot or hurricanes and
cyclones. As we will see below, these vortices wander around the bubble randomly.
The mean square displacement of these vortices varies as a power law in time. This
scaling is different from the one expected for diffusive behavior and shows signs
of superdiffusion. Surprisingly, analysis of the trajectories of natural hurricanes in
the earth’s atmosphere gives rise to a similar scaling law for their mean square
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displacement versus time. Thus, the properties of these isolated vortices in this novel
experimental system mimic some features of the position fluctuations of natural
hurricanes. This suggests that a small experimental setup such as the one used
here may allow a careful study of such large-scale phenomena of importance for
atmospheric science and for meteorology. A major difference between this two-
dimensional setup and previously used cells to study thermal convection is the
absence of lateral walls. We believe that this absence of walls is at the origin of
the emergence of long-lived isolated vortices as opposed to a large-scale circulation
in cells with lateral walls.

The setup consists of a hollow brass ring with an inlet and outlet for water
circulation to thermostat the full apparatus at the desired temperature. This brass
ring has a circular slot which can be filled with soap water. The middle part of
the ring was covered with a Teflon disk. The half bubble was blown with a straw
using the soap solution in the circular slot. The ring could be kept at the desired
temperature to a precision of ±0.1 ◦C using the water circulation thermostat. The
temperature of the solution (the soap solution is water at different concentrations c of
detergent ranging from 0.2 % to 5 %) in contact with the ring and the temperature at
the top of the bubble were measured using a needlelike thermistor. The temperature
difference between the bottom and the top parts of the half bubble will be denoted
ΔT which is our control parameter. The room was kept at a constant temperature of
17 ◦C. The difference in temperature ΔT can be changed in the range 5–45 ◦C. The
ring has two concentric slots so we could vary the diameter of the half bubble which
could be fixed to either 8 or 10 cm. Typical half bubbles with strong convective
patterns are shown in Fig. 6.1. The patterns are filmed using a 3CCD camera.

Figure 6.1 shows typical half bubbles heated at the equator at different temper-
atures and illuminated with white light. Interference colors mark the surface of the
bubble indicating variations in the thickness of the soap film. When no temperature
gradient or a small gradient is present the thickness of the bubble decreases as the
height increases giving rise to the horizontal bands seen in the photograph. The
two-dimensional density of the soap film being ρh, where ρ is the density of soap
water and h its thickness, the film is stably stratified with dense fluid at the bottom
and lighter fluid at the top. When a sufficient temperature gradient is applied, the
region near the equator is host to rising plumes just like in conventional thermal
convection. This convection zone extends all around the equator and grows in height
as the gradient increases as shown in Fig. 6.1. The upper part of the bubble is more
quiescent than the zone near the equator. No particular difference appears at this
stage with conventional thermal convection. A major difference is the absence of a
large-scale circulation and the emergence and persistence of single isolated vortices
in the upper part of the half bubble as displayed in Fig. 6.1d. Their presence is more
frequent as the temperature difference increases.

These isolated vortices emerge randomly on the surface of the bubble, grow in
size rapidly as illustrated in Fig. 6.2, and persist for relatively long times almost
equivalent to the lifetime of the half bubble itself which could last several minutes.
The occurrence of these vortices becomes more probable for higher ΔT while they
are almost absent for small ΔT . At first sight, these isolated vortices move around
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Fig. 6.1 Images of bubbles at different temperature gradients. ΔT increases from (a) to (c) with
ΔT = 9,17, and 31 ◦C, respectively. The convection zone grows in extent as ΔT increases. Plumes
can be seen in this zone. (d) A bubble with a convection zone and an isolated vortex near the top
for ΔT = 45 ◦C

Fig. 6.2 Birth and growth of a single vortex. The time between successive images is 0.16 s, 0.44 s,
and 0.76 s. The image of a transparent ruler (in cm) was projected on the bubble
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Fig. 6.3 Mean square displacement of the isolated vortices for different ΔT . Upper inset: a track
of an isolated vortex. Lower inset: the pdf of the increment Δx and Δy for a fixed time interval Δt

the bubble randomly. A typical trajectory is shown in Fig. 6.3. These vortices move
around the bubble with velocities near 1 cm/s. We analyze these trajectories by
calculating the mean square displacement < r2(τ) >=< (r(t + τ)− r(t))2 > for
different time increments τ . This analysis shows that < r2(τ)>∼ τα with α ∼ 1.6.
This scaling law is to be contrasted with Brownian motion for which the scaling
exponent is 1. Figure 6.3 shows this result for different temperature differences ΔT .

Here we plot <r2(τ)>
<r2(τc)>

versus τ
τc . The characteristic time τc is the correlation time

obtained from the correlation function < r(t + τ)r(t) >. The rescaling by τc and
the corresponding mean squared displacement < r2(τc) > collapses all of the data
for different temperature differences ΔT . The scaling law observed is valid for more
than a decade in timescales below τc. Above τc the mean square displacement seems
to flatten with no systematic dependence. Despite the complexity of the problem,
a single scaling law summarizes all of the data and strongly suggests that these
vortices are superdiffusive, a behavior observed here for the first time as far as
we know. Superdiffusion arises in the so-called Lévy flights [19, 20] for which the
spatial steps for a fixed time increment are distributed according to a power law
pdf(δ r)∼ r−β . The exponent of this power law is directly related to the exponent α
by the relation β = 1+2/α . A pdf of the displacements Δx and Δy in the horizontal
and vertical directions is shown in the inset to Fig. 6.3. A small power law range can
be observed here with an exponent β = 2.2 in good agreement with that obtained
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Fig. 6.4 Mean squared displacement for natural hurricanes plotted along with some of the data
from the isolated vortices in this experiment. Lower inset: two hurricane tracks

from the mean square displacement as indicated by the solid line. This indicates that
the movement of the vortices can be recast into the random walks known as Lévy
flights.

Isolated vortices occur in natural settings as well. Because of the similarities
between our isolated vortices and hurricanes or cyclones we have analyzed the
trajectories of certain natural hurricanes along similar lines. It should be signalled
here that natural hurricanes seem to travel along relatively well-defined mean
trajectories for which the Coriolis force and the beta-effect play a central role.
However, they do show fluctuations around this mean trajectory. An analysis of the
mean square displacement of different hurricanes including Nicholas (2003), Jeanne
(2004), and Ivan (2004) shows a very similar behavior as our isolated vortices. The
hurricane trajectories were obtained from the National Hurricane Center web site
and consist of either satellite observations or of radar data. Their trajectories are
sampled every 6 h for satellite data and every 15 min for radar data. The analysis of
these trajectories is summarized in Fig. 6.4 where the trajectories are displayed in
the inset. Here, the data of Fig. 6.3 are replotted so as to illustrate the similarity. This
plot shows that the hurricanes and our isolated vortices display very similar features
especially the power law scaling at times smaller than τc. The scaling exponent turns
out to be very close to the value extracted from our vortices, namely, α = 1.6.

Superdiffusive behavior can be traced to a nontrivial interaction between the
moving object and the medium. An example of entities that interact with the medium
itself has been illustrated through a study of the superdiffusion of passive beads in
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a bath of self-propelling bacteria [21]. Another example concerns the movement of
passive beads in a laminar rotating flow where vortices may trap and release the
particles giving rise to superdiffusion [22]. The isolated vortices here are kicked by
the turbulent agitation of the surrounding flow. These vortices, being part of the flow,
must have an important reaction on the medium itself. In addition, the movement
of vortices is sensitive to the sign of vorticity gradients [23] which in a turbulent
medium may show a complicated spatial and temporal distribution and a nontrivial
interaction with the moving vortex giving rise to a complex trajectory and dynamics.

6.3 Statistical Properties of the Temperature
and Velocity Fields

As stated above, the turbulent convection produced in such a cell can be character-
ized with respect to the velocity and temperature fluctuations. And a question that
needs to be answered is about the relevance of known scaling laws to this situation.
The two-dimensional nature of the system allows for tests that are difficult to carry
out in three dimensions. We therefore explored the temperature field in this unusual
thermal convection cell: half a soap bubble heated from below (see Fig. 6.1) [7]. As
mentioned above, this geometry has the advantage of avoiding the presence of side
walls and therefore the presence of the large-scale circulation often observed when
lateral walls are present. By focusing on the structure functions of the temperature
field a transition from an intermittent to a non-intermittent behavior has been
observed. The results show that the scaling of these functions switches regimes
from the so-called Obukhov–Corrsin-like scaling [13, 14] with intermittency at
low temperatures to Bolgiano–Obukhov-like scaling without intermittency at higher
temperatures. Our results are unique and surprising since previous numerical work
indicated the presence of strong intermittency for the temperature field [24, 25].
Intermittency in fluid turbulence is an important problem in hydrodynamics and our
experiments bring to light how a simple system evolves from an intermittent to a
non-intermittent state.

The setup is in a room kept at a constant temperature of 17 ◦C with a humidity
rate of nearly 75 % near the bubble. The temperature gradient between the bottom
and the top of the half bubble ΔT could be varied up to 55 ◦C. The temperature
measurements used a calibrated 14 bit infrared camera (resolution 256 × 360)
working in the spectral range 3.6–5 μm with a sensitivity of 20 mK and an adjustable
exposure time set between 0.5 and 1 ms. Images of the same region (between 100
and 500 images at a rate of 50 or 100 frames/second) were recorded and a homemade
program was used to calculate temperature differences across different scales r.
Averaging over the area of interest and over several images allowed us to improve
the statistics (between 1 and 2.5 million points were used) and calculate the high-
order moments of these differences. The temperature field was recorded for periods
of up to 10 s which is greater than the temperature correlation time (of order 0.1 s).
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Fig. 6.5 Infrared images of the bubble (top ΔT = 50 ◦C) and a region near the bottom: ΔT = 21 ◦C
(bottom left) and 50 ◦C (bottom right). The region delimited by a rectangle in the upper image
indicates the area covered by the temperature and velocity measurements. The brass ring is located
a few millimeters from the bottom of the images

The error in r, introduced by the curved geometry of the bubble, turned out to be
less than a few percent over a 1 cm region. The effect of evaporation was estimated
to be small and the lifetime of the bubble, which should decrease with increased
evaporation, actually increases by a factor of about 4 when a temperature gradient
is imposed indicating that convection is more important than both evaporation and
draining by gravity.

Figure 6.5 shows a full view of the bubble as well as images obtained with the
infrared camera in a region near the bottom of the half bubble where the thermal
convection is strongest. One can easily identify thermal plumes rising from the
bottom of the cell which are clearly visible for the low temperature gradient. The
thermal convection becomes more intense as the temperature gradient increases and
well-defined thermal plumes are difficult to discern. From such spatial images we
extract the temperature difference δT (rx) = T (x+ rx)−T (x) and δT (ry) = T (y+
ry)− T (y) and calculate the nth moments as < |δT (rx)|n > and <

∣
∣δT (ry)

∣
∣n >.

Here x and y refer to the horizontal and vertical coordinates and the brackets
refer to an average over space and time. The temperature structure functions are
important quantities in the study of turbulence and different scaling relations have
been proposed for their variation versus the scale r. In 3D turbulent flows, where
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Kolmogorov-like scaling is believed to prevail for the low-order moments, Obukhov
and Corrsin [13, 14] generalized the scaling arguments of Kolmogorov to a scalar
field like the temperature and used both the energy dissipation rate ε and the scalar
dissipation rate εθ to predict that the second-order structure functions should scale as
εθ ε−1/3r2/3. Similar scaling arguments can be used, as suggested by Bolgiano and
Obukhov [15–17] for stably stratified turbulence, to the case of Rayleigh-Benard
convection for which the fluid thermal expansion rate β , the gravity constant g, and
the dissipation rate εθ fix the scaling relation of the second-order structure function

of the temperature as ε4/5
θ (β g)−2/5r2/5 [17]. The nth order moments are expected to

vary as a power law of the separation distance r with an exponent ζ T
n of n/5 in the

Bolgiano–Obukhov regime and n/3 for the Obukhov–Corrsin regime. To compare
the experimental conditions here to their classical counterparts, we estimated the
Rayleigh number (Ra = β ΔTgR3/νκ where ν and κ are the kinematic viscosity
and the thermal diffusivity of water) to be between 7 × 107 and 2 × 108 while
the Reynolds number (Re = VmeanR/ν where Vmean is the characteristic horizontal
velocity) is estimated to be about 3,000.

The temperature structure functions are displayed in Fig. 6.6a, b for two different
ΔT : 21 ◦C and 50 ◦C. For the low ΔT , Fig. 6.6a, the temperature structure functions
are roughly isotropic as the values of the differences for the two orthogonal spatial
increments rx and ry are similar. These functions display power law scaling for
spatial scales between roughly 1 and 10 mm as the compensated moments show.
The scaling exponents vary in a nontrivial manner versus the order n of the moment.
This exponent is in agreement with predictions of Obukhov and Corrsin [13, 14]
for low n in Kolmogorov-like turbulence [12]. However, for higher moments, the
exponents deviate from this prediction. The growth is nonlinear versus n which is
the hallmark of intermittency. The relation between the higher-order moments and
the low-order ones is nontrivial indicating that the functional shape of the probability
distribution functions of the increments varies with rx or ry. This behavior is similar
to that observed in three-dimensional experiments where Bolgiano-like scaling has
not been observed so far; rather Obukhov–Corrsin scaling with deviations, just like
passive scalar fields in three-dimensional hydrodynamic turbulence, is observed
[17, 18, 26].

The high ΔT results are shown in Fig. 6.6b. While the structure functions show
isotropy and power law scaling versus r, the variation of the exponents versus
n turns out to be different from the previous results. Bolgiano–Obukhov-like
scaling is observed in the range 1–10 mm as shown in Fig. 6.6b which displays
the compensated moments as well as the scaling exponents extracted from such
an analysis. Estimates of the Bolgiano length scale (above which such a scaling is
believed to prevail) give LB ∼ 1 mm which is in good agreement with the range
observed here and in previous experiments using vertical films [5,6]. The surprising
aspect is that a linear variation of the exponents versus n is observed. This linear
variation indicates that intermittency is absent. This behavior has been observed for
an imposed ΔT higher than about 35 ◦C.
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Additional insight into this transition comes from an examination of the
probability density functions (pdfs) of the temperature increments in the range of
scales for which power laws are observed. These results are shown in Fig. 6.7. The
horizontal axis has been rescaled by the standard deviation σ(=

√

< |δT (r)|2 >) of
the temperature increment at the scale r while the vertical axis has been normalized
in such a way that the integral of the function is unity. Note that for the small
gradient, the pdfs start out as a stretched exponential with an exponent near 0.7
at the small-scale end of the scaling range (1 mm) and end up as an exponential
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for the large-scale end (9 mm). The pdfs evolve gradually as the scale increases
from 1 to 10 mm, indicating a change of the functional shape of the pdf across the
scales. For the high ΔT , the pdfs remain roughly Gaussian as the scale changes from
0.9 up to 8 mm. The normalization of the pdfs by σ collapses all the pdfs together
indicating that they depend solely on the width of the distribution. An examination
of the flatness of these pdfs shows that for the low ΔT , the flatness decreases from
roughly 10 to 5 as the scale increases from 1 to 10 mm. On the other hand, the
flatness for the high ΔT case remains roughly constant near a value of 2.8 which is
not far from the flatness of a Gaussian distribution. These features are at the origin
of the dependence of the scaling exponents versus n. In short, intermittency of the
scaling exponents is associated with the gradual change of the functional shape of
the probability density of temperature increments. On the other hand, the absence
of intermittency is related to the Gaussian pdfs of the increments all through the
scaling range.

To complement these observations, we measured the velocity fluctuations at a
single point and constructed the one-dimensional velocity spectra as well as the
horizontal velocity structure functions of order n as < |δV (δ t)|n > where δ t is
a temporal increment. These measurements use a Laser Doppler Velocimeter and
a soap solution seeded with 1 μm-sized polystyrene spheres. We record between
5×105 and 5×106 points over a total period of time of nearly 100 s which is greater
than the velocity correlation time (0.2 s). The choice of the horizontal component of
the velocity V is justified by the presence over sufficiently long periods of time of a
mean flow in this direction, at the location of the measurements, allowing the use of
the Taylor frozen turbulence hypothesis to convert δ t to a scale r as r =Vmeanδ t. This
hypothesis is not tested here however. The velocity structure functions are expected
to vary as power laws of r with an exponent ζV

n = 3n/5 following similar arguments
as for the temperature in the Bolgiano–Obukhov regime.

The properties of the convective zone share some similarities with those observed
in experiments of convection in vertical soap films. A common feature is the scaling
of the velocity field. The results of Zhang and Wu [6] show that in the turbulent
regime obtained for high ΔT , the second-order structure function of the velocity
differences scales as <δv2(r) >=< (v(r)− v(0))2 >∼ r. This scaling is consistent
with Bolgiano’s prediction [15] for the energy density spectrum which reads:
E(k) ∼ k−11/5. Our results for the velocity spectra are displayed in Fig. 6.8. The
horizontal axis is frequency because the one-point measurements are time series of
the velocity. The frequency axis can be converted to a wave number in the direction
of the mean flow using Taylor’s frozen turbulence assumption. The mean velocity
here is horizontal so the wave number is in the horizontal direction and is given by
kx = 2π f/Vmean. A histogram of the horizontal velocity fluctuations is shown in the
inset to Fig. 6.8 showing a well-defined nonzero velocity. The scaling obtained from
our data gives an exponent of −2.2 which is consistent with the findings of Zhang
and Wu [6] and is in agreement with the Bolgiano scaling expected for the buoyancy
subrange of turbulence in stably stratified fluids [15].
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The structure functions of the velocity differences are displayed in Fig. 6.9a, b
for the low and high ΔT , respectively. Power laws are obtained for the different
moments examined. The variation of the exponents, obtained from an analysis of
the compensated moments, is nonlinear for the low ΔT case and linear for the
higher one. The expected 3n/5 variation is shown as a solid line. The scaling
range in r, determined using the Taylor hypothesis, turns out to be similar to that
obtained from the temperature structure functions. The variation of the exponents
for the low ΔT case (as well as the flatness of the distributions which decreases
from roughly 10 to nearly 3) is similar to that obtained by Zhang and Wu [6].
The agreement between our results and the spatial measurements of Zhang and Wu
seems to validate our use of the Taylor hypothesis for this case. The low temperature
gradient statistics therefore show that intermittency is observed for both the velocity
and the temperature. For the high ΔT , the scaling exponents vary linearly with n
and follow the 3n/5 law in good agreement with the predictions of Bolgiano and
Obukhov for the same range of scales r as the temperature. The flatness of the
distributions in this case remains roughly constant near a value of 5. These results
are therefore consistent with the temperature measurements and indicate an absence
of intermittency for the velocity as well. The Taylor hypothesis in this case has not
been tested however and the results of Zhang and Wu did not show an absence of
intermittency in their rectangular cells for similar temperature gradients. Our results,
even though consistent with the temperature measurements, would need additional
confirmation. We noted by examining the pdfs of velocity differences that their
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evolution with ΔT is less convincing than that of the temperature: while a better
collapse can be achieved for the high ΔT case, the pdfs are not Gaussian and show
roughly exponential tails.

6.4 Conclusion

In conclusion, our novel quasi two-dimensional convection cell allows for a detailed
study of the statistical properties of temperature fluctuations in turbulent thermal
convection. These properties show that a transition from an intermittent state to
a non-intermittent one occurs as the temperature gradient increases. Bolgiano–
Obukhov-like scaling with no intermittency is recovered for the high-gradient case.
Our results raise fundamental questions about the role of lateral walls and the
ensuing large-scale circulation often observed in traditional convection cells as well
as the role of thermal plumes in setting the properties of temperature fluctuations in
turbulent thermal convection.

In addition, our experiments show that the curved nature of the bubble used
allows for isolated vortices to emerge. The absence of walls is the most probable
reason for the emergence of such structures. These isolated vortices resemble natural
hurricanes for certain aspects. In particular, when the mean squared displacement of
the eye is examined superdiffusion is recovered. This superdiffusion is probably
indicative of Lévy flights and calls for further theoretical work on the movement of
isolated vortices in a turbulent medium which is important for turbulence in general
and for atmospheric and meteorological studies in particular.
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