
Chapter 1
Weak Chaos, Infinite Ergodic Theory,
and Anomalous Dynamics

Rainer Klages

Abstract This book chapter introduces to the concept of weak chaos, aspects of
its ergodic theory description, and properties of the anomalous dynamics associated
with it. In the first half of the chapter we study simple one-dimensional deterministic
maps, in the second half basic stochastic models, and eventually an experiment. We
start by reminding the reader of fundamental chaos quantities and their relation to
each other, exemplified by the paradigmatic Bernoulli shift. Using the intermittent
Pomeau–Manneville map the problem of weak chaos and infinite ergodic theory is
outlined, defining a very recent mathematical field of research. Considering a spa-
tially extended version of the Pomeau–Manneville map leads us to the phenomenon
of anomalous diffusion. This problem will be discussed by applying stochastic
continuous time random walk theory and by deriving a fractional diffusion equation.
Another important topic within modern nonequilibrium statistical physics are
fluctuation relations, which we investigate for anomalous dynamics. The chapter
concludes by showing the importance of anomalous dynamics for understanding
experimental results on biological cell migration.

1.1 Introduction

Deterministic dynamical systems involving only a few variables can exhibit com-
plexity reminiscent of many-particle systems if the dynamics is chaotic, as is
quantified by the existence of a positive Lyapunov exponent [1–4]. Such systems,
which may be called small because of their small number of degrees of freedom [5],
can display an intricate interplay between nonlinear microscopic dynamical prop-
erties and macroscopic statistical behavior leading to highly nontrivial fluctuations
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Fig. 1.1 Conceptual foundations of a theory of nonequilibrium statistical physics based on
dynamical systems theory by motivating the topic of this book chapter, which is represented by
the third column

of physical observables. This becomes particularly interesting in nonequilibrium
situations when these systems are exposed to external gradients or fields. Despite
their complexity, examples of these systems are still amenable to detailed analysis
by means of dynamical systems theory in combination with stochastic theory.
Hence, they provide important paradigms to construct a theory of nonequilib-
rium statistical physics from first principles: Based on the chaotic hypothesis,
which generalizes Boltzmann’s ergodic hypothesis, SRB measures were studied
as nonequilibrium equivalents of the Gibbs ensembles of equilibrium statistical
mechanics. This novel approach led to the discovery of fundamental relations
characterizing nonequilibrium transport in terms of microscopic chaos [6–9], such
as formulas expressing transport coefficients in terms of Lyapunov exponents and
dynamical entropies, equations relating the nonequilibrium entropy production to
the fractality of SRB measures, and fluctuation relations, which are now widely
studied as a fundamental property of nonequilibrium processes [5, 8, 10, 11].

The interplay between these different levels of description in modern nonequilib-
rium statistical mechanics is illustrated by the second column in Fig. 1.1, in analogy
to the theory of equilibrium statistical mechanics sketched in the first column. As
is represented by the third column, however, more recently scientists learned that
random-looking evolution in time and space also occurs under conditions that are
weaker than requiring a positive Lyapunov exponent [12, 13]. It is now known that
there is a wealth of systems exhibiting zero Lyapunov exponents, meaning that the
separation of nearby trajectories is weaker than exponential. This class of dynamical
systems is called weakly chaotic. Examples include maps with indifferent fixed
points, polygonal particle billiards, and Hamiltonian systems with sticky islands
in phase space [8, 12–14].

Weakly chaotic systems exhibit anomalous dynamics characterized by novel
properties such as ageing, which reflects an extremely weak relaxation towards
equilibrium involving more than one time scale in the decay of correlations.
Other surprising properties are the existence of Lévy-type probability distributions
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obeying generalized central limit theorems [15, 16] and the non-equivalence of
time and ensemble averages, called weak ergodicity breaking [17]. These physical
phenomena were observed experimentally in a wide variety of systems, such as in
the anomalous statistics of blinking quantum dots, in the anomalous diffusion of
atoms in optical lattices, in plasma physics, and even in cell and animal migration
[14, 17–19].

Recent work in ergodic theory, on the other hand, has led to mathematically
rigorous results about some of the physically relevant phenomena mentioned above.
It turned out that there is an intimate connection between the mechanism generating
weakly chaotic dynamics and the existence of non-normalizable, so-called infinite
invariant measures [12, 20, 21]. The ergodic theory of generalized random walks
driven by weak chaos and of other systems exhibiting infinite invariant measures,
which is called infinite ergodic theory, has thus the potential of providing a sound
mathematical basis for some of the physical phenomena displayed by anomalous
dynamics.

This book chapter gives a brief introduction to important aspects of the above
topics in four sections: As a warm-up, the beginning of Sect. 1.2 briefly reminds us
of the concept of deterministic chaos in simple dynamical systems as quantified by
a positive Lyapunov exponent. On this basis, we will introduce to the phenomenon
of weak chaos, and the idea of infinite ergodic theory will be outlined. The
chapter concludes by putting different forms of deterministic chaos into perspective.
Section 1.3 relates these concepts and ideas to the problem of anomalous diffusion
in deterministic systems. Here we make a transition to stochastic theory by studying
these systems also from a stochastic point of view. For this purpose we use a
generalization of ordinary random walk theory, called continuous time random
walk (CTRW) theory. In a scaling limit, this theory leads to generalized diffusion
equations involving fractional derivatives. Section 1.4 introduces to the topic of
fluctuation relations, which generalize the Second Law of Thermodynamics and
other fundamental thermodynamic relations to small systems far away from equi-
librium. After discussing transient fluctuation relations (TFRs) for a very basic type
of stochastic dynamics as an example, we explore the validity of such relations for
generalizations of this dynamics yielding anomalous diffusion. In Sect. 1.5 we relate
this line of theoretical reasoning about anomalous dynamics to biophysical reality
by studying the case of biological cell migration. After briefly introducing to the
problem of cell migration, we report experimental results on fundamental statistical
physical properties of migrating cells, extracted from statistical data analysis. We
conclude this section with a stochastic modeling of these experimental results by
using a generalized, fractional Fokker-Planck type equation. We summarize our
discussion of this book chapter in the final Sect. 1.6.

The title of this review is inspired by a conference that the author had the pleasure
to organize together with R. Zweimüller, E. Barkai, and H. Kantz at the Max Planck
Institute for the Physics of Complex Systems, Dresden, in Summer 2011, which
bears exactly the same title [22]. However, naturally this chapter reflects the author’s
very personal take on this topic and his own research. The subsequent second section
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is to some extent based on the review [23] by combining it with ideas from [8, 24].
The third section builds on [25, 26]. The fourth section incorporates material from
the review [27] and from [28], the fifth one draws on [29].

1.2 Chaos and Anomalous Dynamics

In this section we focus on purely deterministic dynamics modeled by two
simple but paradigmatic one-dimensional maps: the famous Bernoulli shift, as
a model for strong chaos characterized by a positive Lyapunov exponent, and
the Pomeau–Manneville map, as an example exhibiting weak chaos with zero
Lyapunov exponent. We start by briefly reminding the reader of basic concepts
of dynamical systems theory and ergodic theory such as Lyapunov exponents,
ergodicity, SRB measures, and Pesin’s theorem, illustrated for the Bernoulli shift.
Reference [23] provides a more tutorial exposition of most of these ideas. By
switching to the Pomeau–Manneville map we find that generalizations of these
concepts are needed in order to describe the model’s weakly chaotic dynamics. This
motivates the mathematical problem of infinite ergodic theory, which is intimately
related to defining suitably generalized chaos quantities assessing weak chaos, and
a generalization of Pesin’s theorem. In the final part of this chapter we propose
a generalized hierarchy of chaos, based on the existence of different types of
stretching between two nearby trajectories, which we use to characterize chaotic
dynamics.

1.2.1 Deterministic Chaos in a Simple Map

The main vehicle of our approach in this and the next section are one-dimensional
time-discrete maps F : J → J , J ⊆ R obeying

xn+1 = F(xn) , n ∈N0 , (1.1)

which defines the equations of motion of our deterministic dynamical systems. For
a given initial condition x0 we have xn = Fn(x0). A particularly simple example of
F are piecewise linear maps, such as the paradigmatic Bernoulli shift [1, 2, 4, 6]

B : [0,1)→ [0,1) , B(x) := 2x mod 1 =

{
2x , 0 ≤ x < 1/2
2x− 1 , 1/2 ≤ x < 1

(1.2)

depicted in Fig. 1.2. This simple system exhibits a very complicated dynamics
governed by sensitivity to initial conditions, as can be quantified by calculating its
Lyapunov exponent [2, 30]: Consider two points that are initially displaced from
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Fig. 1.2 The Bernoulli shift
Eq. (1.2) and two trajectories
starting from two nearby
initial conditions x0 and
x′0 = x0 +Δx0 displaced by
Δx0 � 1

each other by Δx0 := |x′0 − x0| with Δx0 “infinitesimally small” such that x0,x′0 do
not hit different branches of the Bernoulli shift B(x) around x = 1/2.1 We then have

Δxn := |x′n − xn|= 2Δxn−1 = 22Δxn−2 = · · ·= 2nΔx0 = en ln2Δx0. (1.3)

We thus see that there is an exponential separation between two nearby points as
we follow their trajectories, where the rate of separation λ (x0) := ln2 is the (local)
Lyapunov exponent of B(x). Since λ (x0) > 0, the system displays an exponential
dynamical instability and is hence called chaotic (in the sense of Lyapunov) [2–
4, 30].

Writing down the analogue of Eq. (1.3) for a given differentiable map F , we get

Δxn = |x′n − xn|= |Fn(x′0)−Fn(x0)|=: enλ (x0)Δx0 (Δx0 → 0), (1.4)

which we can take as the definition of the Lyapunov exponent λ (x0) that comes in
as the exponential stretching rate on the right-hand side. Solving this equation for
λ (x0) by using the chain rule, it is not too hard to see [4] that this simple procedure
of calculating λ can be generalized in terms of the time (or Birkhoff) average

λ (x) = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣F ′(xi)

∣∣ (1.5)

1This condition could be eliminated by defining a metric on a circle [4].
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with x = x0. If the dynamical system defined by the map F is ergodic, the time
average does not depend on the initial condition for a typical x, λ = λ (x) = const. It
can be shown that the Bernoulli shift is ergodic [6], and indeed, following Eq. (1.5),
for B we trivially find that λ = ln2 for all x. In particular, according to Birkhoff’s
theorem [6, 31–33], for ergodic systems the time average is equal to the ensemble
average, which for the Lyapunov exponent of one-dimensional maps reads

λ = 〈ln |F ′(x)|〉μ∗ :=
∫

J
dμ∗ ln |F ′(x)| . (1.6)

Here μ∗ is the invariant measure of the map. If the map exhibits an SRB measure
[34–36], we have

dμ∗ = ρ∗(x)dx, (1.7)

where ρ∗(x) holds for the invariant density of the map. That is, the measure μ∗ has
the nice property that it can be obtained by integrating a density,

μ∗(A) =
∫

A
dx ρ∗(x) , A ⊆ J, (1.8)

which simplifies the calculation of the ensemble average Eq. (1.6). For the Bernoulli
shift it is not too difficult to see [3] that, for typical initial conditions, the invariant
density is ρ∗(x) = 1. By combining Eqs. (1.6) and (1.7), we get

λ =

∫ 1

0
dxρ∗(x) ln2 = ln2. (1.9)

This result is equal to the time average calculated above and confirms the result
obtained from our handwaving argument Eq. (1.3).

Lyapunov exponents are not the only quantities assessing the chaotic character
of a dynamical system. Pesin’s Theorem [6,34,35] states that for closed C2 Anosov
[6,35] systems the Kolmogorov-Sinai (or metric) entropy hKS is equal to the sum of
positive Lyapunov exponents. For one-dimensional maps that are expanding [3, 4],

∀ x ∈ J |F ′(x)|> 1, (1.10)

this theorem boils down to
λ = hKS, (1.11)

where [2, 6]

hKS := lim
n→∞

−1
n ∑

w∈{Wn
i }

μ∗(w) ln μ∗(w). (1.12)

Here μ∗(w) is the SRB measure of an element w of the partition {W n
i }, and n defines

the level of refinement of the partition. Note that in Eq. (1.12) we have assumed that
the partition is generating [31,35,37]. If hKS > 0 one sometimes speaks of measure-
theoretic chaos [3]. For the Bernoulli shift it is not too hard to calculate hKS from
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Fig. 1.3 The
Pomeau–Manneville map Eq.
(1.13) for a = 1 and z = 3.
Note that there is a marginal
fixed point at x = 0 leading to
the intermittent behavior
depicted in Fig. 1.4

first principles leading to hKS = ln2 [2,3], which combined with our previous result
for the Lyapunov exponent is in line with Pesin’s theorem. This theorem can be
formulated under weaker assumptions, and it is believed to hold for a wider class
of dynamical systems than stated above. We remark that typically the KS-entropy is
much harder to calculate for a given dynamical system than Lyapunov exponents.
Hence, Pesin’s theorem is often employed in the literature for indirectly calculating
the KS-entropy.

1.2.2 Weak Chaos and Infinite Ergodic Theory

Let us now consider a nonlinear generalization of our previous piecewise linear
model, which is known as the Pomeau–Manneville map [38],

Pa,z(x) = x+ axz mod 1, (1.13)

see Fig. 1.3, where following Eq. (1.1) the dynamics is defined by xn+1 = Pa,z(xn).
This map has the two control parameters a ≥ 1 and the exponent of nonlinearity
z ≥ 1. For a = 1 and z = 1 the map reduces to the Bernoulli shift Eq. (1.2) for z > 1
it provides a nontrivial nonlinear generalization of it. The nontriviality is due to
the fact that in this case the stability of the fixed point at x = 0 becomes marginal
(sometimes also called indifferent, or neutral), P′

a,z(0) = 1. This implies that the map
is non-hyperbolic, because [39],

 ∃N > 0 such that∀x∀n ≥ N |(Pn
a,z)

′(x)| = 1, (1.14)
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Fig. 1.4 Phenomenology of intermittency in the Pomeau–Manneville map Fig. 1.3: The plot
shows the time series of position xn versus discrete time step n for an orbit generated by the map
Eq. (1.13) which starts at a typical initial condition x0

which is related to the fact that the map is not expanding anymore according to
Eq. (1.10). Since the map is smooth around x = 0, the dynamics resulting from the
left branch of the map is determined by the stability of this fixed point, whereas the
right branch is still of “Bernoulli shift type” generating ordinary chaotic dynamics.
There is thus a competition in the dynamics between these two different branches
as illustrated by the time series displayed in Fig. 1.4: One can observe that long
periodic “laminar phases” determined by the marginal fixed point around x = 0 are
interrupted by “chaotic bursts” reflecting the Bernoulli shift-type part of the map
with slope a > 1 around x = 1. This phenomenology is the hallmark of what is
called intermittency [1, 2].

This seemingly small nonlinear modification of the Bernoulli shift has dramatic
consequences for the whole dynamics of the new system. We discuss them step by
step following our exposition of the Bernoulli shift dynamics in Sect. 1.2.1: The
invariant density of the Pomeau–Manneville map can be calculated to [24, 40–43]

ρ∗(x)∼ x1−z (x → 0). (1.15)

This singularity reflects the stickiness of trajectories to the marginally unstable fixed
point at x = 0. Correspondingly, the measure obtained by integrating this density is
non-normalizable for z ≥ 2 yielding the infinite invariant measure

μ∗(x) =
∫ 1

x
dy ρ∗(y)→ ∞ (x → 0). (1.16)

The branch of ergodic theory exploring the ergodic properties of infinite measure
preserving dynamical systems is thus called infinite ergodic theory; see [20, 44, 45]
for introductions to this topic and [12] for an in-depth mathematical treatment. The
marginal fixed point has also an impact on the dispersion of nearby trajectories,
which can be calculated to [24, 42, 43, 46]:
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Δxn ∼ exp
(

n
1

z−1

)
Δx0 (z > 2). (1.17)

In contrast to the Bernoulli shift, which according to Eq. (1.3) exhibits exponential
sensitivity to initial conditions, here we thus have a weaker stretched exponential
sensitivity. By repeating the calculation leading to Eq. (1.5), it is not hard to see that
Eq. (1.17) yields a zero Lyapunov exponent,

λ = 0, (1.18)

despite the fact that Fig. 1.4 displays irregular dynamics. Dynamical systems
where the separation of nearby trajectories grows weaker than exponential, which
implies that the corresponding Lyapunov exponents are zero, have been coined
weakly chaotic [13, 47–49]. We remark, however, that this denotation is not used
unambiguously in the literature. Most importantly, the standard definitions of
Lyapunov exponents for expanding and hyperbolic systems Eqs. (1.5) and (1.6)
yield no good indicators of irregular dynamics anymore, because they do not capture
the sub-exponential dispersion of trajectories. It is thus desirable to come up with
generalized definitions of ordinary chaos quantities, which enable us to still assess
this different type of chaotic behavior by calculating quantities that yield nonzero
values.

The way to achieve this goal is shown by advanced concepts of infinite ergodic
theory and corresponding generalized ergodic theorems. Recall that Birkhoff’s
theorem implies that for observables which are Lebesgue integrable, f ∈ L1, we
have [6, 31–33]

1
n

n−1

∑
i=0

f (xi) = 〈 f 〉μ∗ . (1.19)

However, it turns out that for z ≥ 2 the Birkhoff sum on the left-hand side does
not converge anymore. Surprisingly, it becomes a random variable that depends on
initial conditions, and the equation breaks down. This non-equivalence between
time and ensemble averages became known as weak ergodicity breaking in the
physics literature, see, e.g., [14, 17, 50] and further references therein. It was
observed experimentally in the anomalous statistics of blinking quantum dots and
plays also a crucial role for the anomalous diffusion of atoms in optical lattices
[14,17,50]. Note that physicists typically refer to ergodicity as the equality between
time and ensemble average, whereas mathematicians usually define ergodicity via
indecomposability [31, 32]. Equation (1.19) then follows from this definition by
using Birkhoff’s theorem. This should be kept in mind when referring to a weak
ergodicity breaking.

In case of z ≥ 2 and f ∈ L1 for our map, the nature of the breakdown of Eq. (1.19)
is elucidated by the Aaronson-Darling-Kac theorem [21, 45, 51] :

1
an

n−1

∑
i=0

f (xi)
d→ Mα〈 f 〉μ∗ (n → ∞), (1.20)
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where the arrow holds for convergence in distribution. Here Mα , α ∈ [0,1], denotes
a nonnegative real random variable distributed according to the normalized Mittag-
Leffler distribution of order α , which is characterized by its moments:

〈M r
α〉= r!

(Γ (1+α))r

Γ (1+ rα)
, r ≥ 0. (1.21)

For the Pomeau–Manneville map Pa,z one can prove [51] that an ∼ nα with α :=
1/(z− 1). Integrating Eq. (1.21) with respect to Lebesgue measure m suggests

1
nα

n−1

∑
i=0

〈 f (xi)〉m ∼ 〈 f 〉μ∗ . (1.22)

Note that for z < 2 one has to choose α = 1, because the map still exhibits an
SRB measure, and Eq. (1.22) becomes an equality. However, for z ≥ 2 we have an
infinite invariant measure that cannot be normalized; hence here Eq. (1.22) remains
a proportionality, unless we fix this constant by other constraints.

These known facts from infinite ergodic theory motivate to suitably define
generalized chaos quantities, which assess weakly chaotic dynamics by yielding
nonzero values. Following the left-hand side of Eq. (1.22), by choosing f (x) =
ln |P′

a,z(x)|, we define the generalized Lyapunov exponent as

Λ := lim
n→∞

Γ (1+α)

nα

n−1

∑
i=0

〈ln ∣∣M′(xi)
∣∣〉m. (1.23)

The inclusion of the gamma function in the numerator is not obvious at this
point; however, it turns out to be convenient when calculating Λ for the Pomeau–
Manneville map [24]. Interestingly, it is precisely the same canonical choice as is
made in other areas of anomalous dynamics [26]. Analogously, we amend Eq. (1.12)
to define the generalized KS entropy as

HKS := lim
n→∞

−Γ (1+α)

nα ∑
w∈{W n

i }
m(w) lnm(w). (1.24)

Note that here we define HKS with respect to the Lebesgue measure m. Both
quantities can be calculated independently for the piecewise linearization of Pa,z

proposed in [46] by applying the thermodynamic formalism [3, 52] in combination
with transfer operator methods [53–55]. As a result, one obtains [24]

HKS = Λ , (1.25)

which may be considered as a generalization of Pesin’s formula Eq. (1.11) to anoma-
lous dynamics. Related generalizations of chaos quantities, and other versions of
a generalized Pesin formula, have been discussed in [42, 43, 56, 57]. We remark,
however, that in the mathematical literature there is the well-known formula by
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Fig. 1.5 Illustration of the
interplay between weak
chaos, infinite measures, and
anomalous dynamics in the
Pomeau–Manneville map Eq.
(1.13) shown by the thick bent
lines: Anomalous dynamics is
indicated by the irregular
behavior of the two single
trajectories. Weak chaos is
exemplified by the divergence
of the two trajectories starting
at nearby initial conditions.
The grey area in the lower
left corner depicts the shape
of the infinite invariant
density, which diverges at the
marginal fixed point of the
map [22]

Rokhlin [58], which for the Pomeau–Manneville map reads [40, 51]

hKr = 〈ln |P′
a,z(x)|〉μ∗ . (1.26)

Here the left-hand side holds for the so-called Krengel entropy. In case of finite
invariant measures one can show that hKS = hKr, the right hand is the Lyapunov
exponent defined via the ensemble average Eq. (1.6), and Rokhlin’s formula boils
down to Pesin’s formula Eq. (1.11). For infinite invariant measures, one can show
that hKr = HKS [24]. Combining Rokhlin’s formula with the integrated form of the
Aaronson-Darling-Kac theorem Eq. (1.22) by using f (x) = ln |P′

a,z(x)|, exploiting
the definition Eq. (1.23) for the generalized Lyapunov exponent, and by fixing the
constant of proportionality in Eq. (1.22) with respect to Lebesgue initial measure,
one recovers Eq. (1.25). One may thus argue that, within this setting, Rokhlin’s
formula is a generalization of Pesin’s formula for infinite measure-preserving
transformations and that Eq. (1.25) is an illustration of it, worked out for the example
of the Pomeau–Manneville map [24].

The main theoretical objects of discussion in this subsection are shown together
in Fig. 1.5. This figure actually represents the logo of the conference about Weak
chaos, infinite ergodic theory, and anomalous dynamics that was referred to in the
introduction [22], from which the title of this book chapter derives.



14 R. Klages

1.2.3 A Generalized Hierarchy of Chaos

We conclude this section by embedding the previous results into the more general
context of irregular deterministic dynamics [8]. There exist in fact further fundamen-
tal types of dynamics that are intermediate between strongly chaotic, in the sense
of exponential sensitivity quantified by a positive Lyapunov exponent, and trivially
being non-chaotic in terms of purely regular dynamics. These different types of
irregular dynamics can be characterized by suggesting a classification of chaotic
behavior based on the dispersion of initially infinitesimally close trajectories.

We start from the general expression for the asymptotic growth of the displace-
ment Δ(t) of two trajectories generated by dynamics in continuous time t in the form
of [46]

lnΔ(t)∼ tν0(ln t)ν1 , 0 ≤ ν0 , ν1 ∈R. (1.27)

If ν0 = 1 , ν1 = 0 we recover the usual exponential dynamical instability of Eq. (1.3),

Δ(t)∼ exp(λ t), (1.28)

representing Lyapunov chaos [2], whose strength is well quantified by the maximal
positive Lyapunov exponent λ . As discussed before, if Δ(t) grows weaker than
exponential, one speaks of weak chaos [13, 47–49]. The regime of Eq. (1.27) with
0 < ν0 < 1 or ν0 = 1 and ν1 < 0, which is typical for intermittent dynamics,
was characterized as sporadic by Gaspard and Wang [46]; cf. Eq. (1.17) and our
respective discussion, as well as further details of this dynamics as presented in the
following section. Here the dynamical instability is either of stretched exponential
type or exponential with logarithmic corrections,

Δ(t)∼ exp(tν0(ln t)ν1). (1.29)

Equation (1.27) with ν0 = 0 and ν1 = 1, on the other hand, yields purely algebraic
dispersion,

Δ(t)∼ tν2 , 0 < ν2, (1.30)

for which Zaslavsky and Edelman [59, 60] suggested the term pseudochaos.2 Note
that algebraic dispersion with logarithmic corrections may also exist,

Δ(t)∼ tν2(ln t)ν3 ,ν3 ∈ R, (1.31)

covering a slightly larger class of dynamical systems. A prominent class of
dynamical systems exhibiting algebraic dispersion are polygonal billiards; two
examples are depicted in Fig. 1.6. They represent the special case of pseudochaotic
dynamics with ν2 = 1 for which the dispersion is strictly linear in time:

2We remark that in [59–61] one finds several slightly different definitions of pseudochaos. Here
we refer to the first one stated in [59].
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a b

Fig. 1.6 Two simple examples of two-dimensional polygonal billiards [8]: A particle with
unit velocity moves inside the depicted geometric domains by scattering elastically with their
boundaries. (a) Shows a right triangular billiard [62] and (b) the triangle channel, where a unit
cell with triangular scatterers is spatially continued along the line [63]

Δ(t)∼ t. (1.32)

However, in contrast to Lyapunov chaos and our weakly chaotic generalizations,
here the linear dispersion does not actually capture the essential mechanism leading
to dynamical randomness. For example, according to this classification both free
flights and polygonal billiards of genus one, which clearly exhibit regular dynamics,
are also pseudochaotic. As is discussed for the example of rational billiards, e.g., in
[8], in polygonal billiards complicated topologies reflecting the existence of corners,
which yield pseudohyperbolic fixed points and pseudointegrability, provide the
source of nontrivial irregular dynamics. One is thus tempted to speak of topology-
induced chaos3 as a subclass of pseudochaos if there is linear dispersion on surfaces
that are not integrable. Pseudointegrable rational billiards then form a subclass
of topology-induced chaotic dynamical systems. Surprisingly, systems with linear
dispersion generating nontrivial dynamics due to complicated topological structures
may still exhibit ergodic and transport properties as they are usually associated with
Lyapunov unstable chaotic dynamical systems. The trivial end point of this attempt
of a generalized classification of chaotic dynamics on the basis of dispersion is
simply the purely regular, or periodic, case of Δ(t) = const.

1.3 Anomalous Diffusion

We now establish a cross-link between weakly chaotic dynamics as discussed in
the previous section and the problem of deterministic diffusion. The main question
we address is what type of diffusion arises if we suitably spatially extend a simple

3This should not be confused with topological chaos as defined in [7].
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dynamical system exhibiting anomalous dynamics. We first set up our model, which
can be considered as a purely deterministic, anomalous version of a random walk on
the line, and introduce the concept of anomalous diffusion. We then outline CTRW
theory, a standard tool in the theory of stochastic processes to study anomalous
diffusion. The results obtained from this theory, worked out for our model, are
compared to results from computer simulations. We conclude this chapter by
deriving on the basis of this theory a generalized, fractional diffusion equation that
approximately reproduces the probability density function (PDF) of our model.

1.3.1 A Simple Model Generating Anomalous Diffusion

A straightforward way to define a spatially extended dynamical system based on the
Pomeau–Manneville map discussed in Sect. 1.2.2 is as follows: By using

Pa,z(x) = x+ axz , 0 ≤ x <
1
2

(1.33)

of Eq. (1.13) without the modulus, as well as reflection symmetry,

Pa,z(−x) =−Pa,z(x), (1.34)

we continue this map onto the whole real line by a lift of degree one [64–66]:

Pa,z(x+ 1) = Pa,z(x)+ 1. (1.35)

The resulting model [67, 68] is displayed in Fig. 1.7. Here points are not restricted
anymore onto the unit interval. Due to the coupling between different unit cells
by eliminating the modulus, there are now “jumps” possible from unit interval to
unit interval. One may thus think of this dynamical system as a fully deterministic,
anomalous version of a simple random walk on the line. A basic question is now
which type of diffusion is generated by this model? As usual, the diffusive behavior
is quantified by the mean square displacement (MSD) defined by

〈x2〉 :=
∫

dx x2ρn(x), (1.36)

where 〈x2〉 is the second moment of the position PDF ρn(x) at time step n. Starting
from a given initial PDF ρ0(x) at time step n = 0, points, or point particles,
will spread out over the whole real line, as quantified by ρn(x). Surprisingly, by
calculating this MSD both analytically and from computer simulations, one finds
[67, 68] that for z > 2

〈
x2〉∼ nα , α < 1 (n → ∞). (1.37)
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Fig. 1.7 The Pomeau–Manneville map Fig. 1.3, Eq. (1.13), lifted symmetrically onto the whole
real line such that it generates subdiffusion

If one defines the diffusion coefficient of the system in the standard way by

D := lim
n→∞

〈x2〉
2n

, (1.38)

Eq. (1.37) implies that D = 0, despite the fact that particles can go anywhere on the
real line as illustrated in Fig. 1.7. While a process like Brownian motion leads to
D > 0, here we thus encounter a very different type of diffusion: If the exponent
α in the temporal spreading of the MSD Eq. (1.37) of an ensemble of particles is
not equal to one, one speaks of anomalous diffusion [14, 18]. If α < 1 one says that
there is subdiffusion, for α > 1 there is superdiffusion. In case of linear spreading
with α = 1 one refers to normal diffusion. The constant

K := lim
n→∞

< x2 >

nα , (1.39)
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where in case of normal diffusion in one dimension K = 2D, is called the generalized
diffusion coefficient.4 For our simple map model depicted in Fig. 1.7 we will first
calculate the MSD analytically by means of stochastic CTRW theory. By comparing
the analytical formula with results from computer simulations, we will then focus
on how K behaves as a function of z for fixed a revealing some interesting, nontrivial
properties.

1.3.2 Continuous Time Random Walk Theory

Pioneered by Montroll, Weiss, and Scher [69–71], CTRW theory yields perhaps the
most fundamental theoretical approach to explain anomalous diffusion [72–74]. In
further groundbreaking works by Geisel et al. and Klafter et al., this method was
then adapted to sub- and superdiffusive deterministic maps [67, 68, 75, 76]:

The basic assumption of this approach is that diffusion can be decomposed into
two stochastic processes characterized by waiting times and jumps, respectively.
Thus one has two sequences of independent identically distributed random vari-
ables, namely, a sequence of positive random waiting times T1,T2,T3, . . . with PDF
w(t) and a sequence of random jumps ζ1,ζ2,ζ3, . . . with PDF λ (x). For example,
if a particle starts at point x = 0 at time t0 = 0 and makes a jump of length
ζn at time tn = T1 + T2 + · · ·+ Tn, its position is x = 0 for 0 ≤ t < T1 = t1 and
x = ζ1 + ζ2 + · · ·+ ζn for tn ≤ t < tn+1. The probability that at least one jump is
performed within the time interval [0, t) is then

∫ t
0 dt ′w(t ′) while the probability for

no jump during this time interval reads Ψ (t) = 1− ∫ t
0 dt ′w(t ′). The master equation

for the PDF P(x, t) to find a particle at position x and time t is then

P(x, t) =
∫ ∞

−∞
dx′λ (x− x′)

∫ t

0
dt ′ w(t − t ′) P(x′, t ′)+Ψ(t)δ (x), (1.40)

which has the following probabilistic meaning: The PDF to find a particle at position
x at time t is equal to the PDF to find it at point x′ at some previous time t ′ multiplied
with the transition probability to get from (x′, t ′) to (x, t) integrated over all possible
values of x′ and t ′. The second term accounts for the probability of remaining at
the initial position x = 0. The most convenient representation of this equation is in
Fourier-Laplace space:

ˆ̃P(k,s) =
∫ ∞

−∞
dx eikx

∫ ∞

0
dt e−stP(x, t), (1.41)

where the hat stands for the Fourier transform and the tilde for the Laplace
transform. Respectively, this function obeys the Fourier-Laplace transform of

4In detail, the definition of a generalized diffusion coefficient is a bit more subtle [26].
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Eq. (1.40), which is called the Montroll-Weiss equation [69–71]:

ˆ̃P(k,s) =
1− w̃(s)

s
1

1− λ̂(k)w̃(s)
. (1.42)

The Laplace transform of the MSD can be obtained by differentiating the Fourier-
Laplace transform of the PDF:

〈̃x2(s)〉 =
∫ ∞

−∞
dx x2P̃(x,s) = −∂ 2 ˆ̃P(k,s)

∂k2

∣∣∣∣∣
k=0

. (1.43)

In order to calculate the MSD within this theory, it thus suffices to know λ (x) and
w(t) generating the stochastic process. For one-dimensional maps of the type of
Eqs. (1.33) and (1.34), by exploiting the symmetry of the map, the waiting time
distribution can be calculated from the approximation

xn+1 − xn � dxt

dt
= axz

t , x � 1, (1.44)

where we have introduced the continuous time t ≥ 0. This equation can be solved
for xt with respect to an initial condition x0. Now one needs to define when a particle
makes a “jump,” as will be discussed below. By inverting the solution for xt , one can
then calculate the time t a particle has to wait before it makes a jump as a function
of the initial condition x0. This information determines the relation between the
waiting time PDF w(t) and the as yet unknown PDF of injection points:

w(t)� Pin(x0)

∣∣∣∣dx0

dt

∣∣∣∣ . (1.45)

Making the assumption that the PDF of injection points is uniform, Pin � 1, the
waiting time PDF is straightforwardly calculated from the knowledge of t(x0). The
second ingredient that is needed for the CTRW approach is the jump PDF. Standard
CTRW theory takes jumps between neighboring cells only into account leading to
the ansatz [67, 68]:

λ (x) = δ (|x|− 1). (1.46)

It turns out that in order to qualitatively reproduce the dependence of the generalized
diffusion coefficient K = K(z,a) Eq. (1.39) on the map’s two control parameters z
and a, one needs to modify the standard theory at three points [25, 26]: Firstly,
the waiting time PDF must be calculated according to the unit interval [0,1], not
according to [−0.5,0.5], which is an alternative but not appropriate choice [77, 78],
yielding

w(t) = a(1+ a(z− 1)t)−
z

z−1 . (1.47)
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However, this PDF also accounts for attempted jumps to another cell, since after a
step the particle may stay in the same cell with a probability of (1− p). The latter
quantity is roughly determined by the size of the escape region p = (1− 2xc) with
xc as a solution of the equation xc + axz

c = 1. We thus model this fact, secondly, by
a jump length distribution in the form of

λ (x) =
p
2

δ (|x|− l)+ (1− p)δ (x). (1.48)

Thirdly, in order to capture the dependence of K on z for fixed a, we define a typical
jump length as

l = {|[Ma,z(x)]|} , (1.49)

where the square brackets stand for the floor function, which gives the coarse-
grained displacement in units of elementary cells. The curly brackets denote both
a time and ensemble average over points leaving a box. Note that for capturing
the dependence of K on a for fixed z a different definition of the jump length
is appropriate [25, 26]. Working out the modified CTRW approximation sketched
above by taking these three details into account one obtains the result for the
exponent α of the MSD, Eq. (1.37):

α =

{
1, 1 ≤ z < 2,

1
z−1 , 2 ≤ z,

(1.50)

which matches to the standard theory [67, 68]. This result is in excellent agreement
to simulations for a broad range of control parameters z and a. Building on this
result, the generalized diffusion coefficient can be calculated to

K = pl2 ×
{

aγ sin(πγ)/πγ1+γ, 0 < γ < 1,
a(1− 1/γ), 1 ≤ γ < ∞,

(1.51)

with γ := 1/(z− 1), which for z ≥ 2 is identical to α of Eq. (1.50). In Fig. 1.8 this
analytical approximation for K is compared with computer simulation results as a
function of z for fixed a. There is good qualitative agreement between theory and
simulations for z > 2, which converge asymptotically to each other for large z. For
z < 2 there is a reasonable qualitative agreement, though quantitative deviations, for
z close to 2, while the theory does not work anymore for z → 0, a problem that is
discussed in [26].

Remarkably, the K(z) obtained from simulations does not appear to be a smooth
function of the control parameter, which is at variance with the prediction of CTRW
theory Eq. (1.51). This non-smooth parameter dependence is not due to numerical
errors (which here are very difficult to assess, as discussed below) but a well-known
phenomenon for this type of systems. It has first been discovered for the normal
diffusive case of this map with z = 1, where the diffusion coefficient D = K/2 has
been studied both numerically and analytically as a function of the slope a as a
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Fig. 1.8 The generalized diffusion coefficient K, Eq. (1.39), for the spatially extended Pomeau–
Manneville map displayed in Fig. 1.7 as a function of z for a = 5. The bold black line depicts
computer simulation results. The dashed line corresponds to the modified CTRW approximation
Eqs. (1.49) and (1.51) [26]

control parameter [79, 80]. Note that for z = 1 the Pomeau–Manneville map boils
down to a parameter-dependent, generalized version of the Bernoulli shift Eq. (1.2).

We do not wish to further elaborate on the fractal parameter dependencies of
transport coefficients in simple deterministic dynamical systems, an interesting
phenomenon that has been discussed in detail in [8, 77]. Rather, we focus on the
behavior of the generalized diffusion coefficient at the point z = 2. According to
the exponent α of the MSD given by Eq. (1.50), here the map exhibits a transition
from normal to anomalous diffusion, which one may classify as a dynamical phase
transition [3, 81]. As can be seen in Fig. 1.8, right around this transition point, there
are significant deviations between CTRW theory and the simulation results. Most
notably, at z = 2, the CTRW approximation forms a non-differentiable little wedge
by predicting K(2) = 0, whereas the simulations yield K(2)> 0. By increasing the
computation time one indeed finds very slow convergence of the simulation data
towards the CTRW solution [26].

The explanation of these deviations, and of the phenomenon of a complete
suppression of the generalized diffusion coefficient right at the transition point, is
obtained by carrying out a refined analysis by means of CTRW theory. For a long
time it was known already that at z = 2, the MSD behaves like 〈x2〉 ∼ n/ lnn(n→∞)
[67,68]. Note that according to our definition of the generalized diffusion coefficient
Eq. (1.39) this logarithmic dependence was incorporated into the strength of the
diffusion coefficient, otherwise our analytical CTRW approximation would not
have been continuous at z = 2. By taking into account higher-order terms when
performing the CTRW theory calculations, which correspond to lower-order terms
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in time for the MSD, one arrives at

〈x2〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

n
lnn , n < ncr and ∼ n , n � ncr , z < 2,
n

lnn , z = 2,
nα

lnn , n < ñcr and ∼ nα , n � ñcr , z > 2.

(1.52)

Here ncr and ñcr are crossover times that can be calculated exactly in terms of
the map’s control parameters. For z → 2 both these crossover times diverge, and
one arrives at the asymptotic n/ lnn dependence mentioned before. The perhaps
surprising fact is that around the transition point these multiplicative logarithmic
corrections still survive for long but finite time, in agreement with computer
simulation results. In other words, these logarithmic corrections lead to an ultraslow
convergence of the simulation results thus explaining the deviations between long-
time CTRW theory and simulations shown in Fig. 1.8. But more importantly, these
logarithmic terms dominate the strength of the generalized diffusion coefficient
around the transition point from normal to anomalous diffusion eventually yielding
a full suppression of this quantity right at the transition point. It can be conjectured
that the presence of such multiplicative logarithmic corrections around transition
points between normal and anomalous diffusion is a typical scenario in this type of
systems [26].

1.3.3 A Fractional Diffusion Equation

We now turn to the PDFs generated by the lifted map Eq. (1.13). As we will show
now, CTRW theory not only predicts the power α correctly but also the form of
the coarse grained PDF P(x, t) of displacements. Correspondingly the anomalous
diffusion process generated by our model is not described by an ordinary diffusion
equation but by a generalization of it. Starting from the Montroll-Weiss equation
and making use of the expressions for the jump and waiting time distributions Eqs.
(1.46) and (1.47), we rewrite Eq. (1.42) in the long-time and large-space asymptotic
form:

sγ ˆ̃P− sγ−1 =− pl2
i

2cbγ k2 ˆ̃P (1.53)

with c = Γ (1− γ) and b = γ/a. For the initial condition P(x,0) = δ (x) of the PDF
we have P̂(k,0) = 1. Interestingly, the left-hand side of this equation corresponds to
the definition of the Caputo fractional derivative of a function G [82, 83],

∂ γ G
∂ tγ :=

1
Γ (1− γ)

∫ t

0
dt

′
(t − t

′
)−γ ∂G

∂ t ′
, (1.54)

in Laplace space,
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Fig. 1.9 Comparison of the probability density obtained from simulations of the lifted map Eq.
(1.13) (oscillatory structure) with the analytical solution Eq. (1.57) of the fractional diffusion
equation Eq. (1.56) (continuous line in the middle) for z = 3 and a = 8. The probability density
was computed from 107 particles after n = 103 iterations. For the generalized diffusion coefficient
in Eq. (1.57) the simulation result was used. The crosses (x) represent the numerical results coarse
grained over unit intervals. The upper and the lower curves correspond to fits with a stretched
exponential and a Gaussian distribution, respectively. The inset depicts the probability density
function for the map on the unit interval with periodic boundaries

∫ ∞

0
dt e−st ∂ γG

∂ tγ = sγG̃(s)− sγ−1G(0). (1.55)

Thus, fractional derivatives come naturally into play as a suitable mathematical
formalism whenever there are power law memory kernels in space and/or time
generating anomalous dynamics; see, e.g., [18, 84] for short introductions to
fractional derivatives and [82] for a detailed exposition. Turning back now to real
space, we thus arrive at the time-fractional diffusion equation

∂ γ P(x, t)
∂ tγ = D

∂ 2P
∂x2 (1.56)

with D = KΓ (1+ γ)/2, 0 < γ < 1, which is an example of a fractional diffusion
equation generating subdiffusion. Note the existence of the gamma function in the
numerator defining D, which is analogous to the appearance of the gamma function
in our generalized chaos quantities Eqs. (1.23) and (1.24). For γ = 1 we recover the
ordinary diffusion equation. The solution of Eq. (1.56) can be expressed in terms of
an M-function of Wright type [83] and reads
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P(x, t) =
1

2
√

Dtγ/2
M
(

ξ ,
γ
2

)
. (1.57)

Figure 1.9 demonstrates an excellent agreement between the analytical solution
Eq. (1.57) and the PDF obtained from simulations of the map Eq. (1.13) if it is
coarse grained over unit intervals. However, it also shows that the coarse graining
eliminates a periodic fine structure that is not captured by Eq. (1.57). This fine
structure derives from the “microscopic” invariant density of an elementary cell
(with periodic boundaries) as shown in the inset of Fig. 1.9 [77]. The singularities
are due to the marginal fixed points of the map, where points are trapped for long
times. Remarkably, that way the microscopic origin of the intermittent dynamics is
reflected in the shape of the PDF on the whole real line: From Fig. 1.9 it is seen that
the oscillations in the density are bounded by two functions, the upper curve being
of a stretched exponential type while the lower is Gaussian. These two envelopes
correspond to the laminar and chaotic parts of the motion, respectively.

1.4 Anomalous Fluctuation Relations

After having accomplished a transition from deterministic dynamics to stochastic
modeling in the previous section, for the remainder of this chapter we fully focus
on stochastic systems. First, we discuss a remarkable finding in nonequilibrium
statistical mechanics that was widely investigated over the past two decades, which
are fluctuation relations. After providing a brief outline of what they are and why
they are important, we first study an example of them for one of the most simple
types of stochastic dynamics, which is Brownian motion modeled by an ordinary
Langevin equation. Along these lines, we then consider generalized versions of
Langevin dynamics exhibiting anomalous diffusion. For these types of dynamics
we check again for fluctuation relations and in one case obtain a different, new form
of such a formula. We argue that generalized, anomalous fluctuation relations should
be important to understand nonequilibrium fluctuations in glassy dynamics.

1.4.1 Fluctuation Relations

Fluctuation relations (FRs) denote a set of symmetry relations describing large-
deviation properties of the PDFs of statistical physical observables far from
equilibrium. First forms defining one subset of them, often referred to as Fluctuation
Theorems, emerged from generalizing fluctuation–dissipation relations to nonlinear
stochastic processes [85, 86]. They were then discovered as generalizations of
the Second Law of Thermodynamics for thermostated dynamical systems, i.e.,
systems interacting with thermal reservoirs, in nonequilibrium steady states [87–
90]. Another subset, called work relations, generalizes a relation between work and
free energy, known from equilibrium thermodynamics to nonequilibrium situations



1 Weak Chaos, Infinite Ergodic Theory, and Anomalous Dynamics 25

[91, 92]. These two fundamental classes were later on amended and generalized by
a variety of other FRs from which they can partially be derived as special cases
[93–96]. Research performed over the past ten years has shown that FRs hold
for a great variety of systems thus featuring one of the rare statistical physical
principles that is valid even very far from equilibrium; see, e.g., [5, 8, 10, 97–100]
and further references therein. Many of these relations have meanwhile been verified
in experiments on small systems, i.e., systems on molecular scales featuring only a
limited number of relevant degrees of freedom [11, 101–105].

So far FRs have mostly been studied for dynamics exhibiting normal diffusion.
This raises the question to which extent the “conventional” FRs derived for these
cases are valid for anomalous dynamics [27,28]. Theoretical results for generalized
Langevin equations [106–109], Lévy flights [110,111], and continuous-time random
walk models [112] as well as computer simulations for glassy dynamics [113]
showed both validity and violations of the various types of conventional FRs
referred to above, depending on the specific type of anomalous dynamics considered
and the nonequilibrium conditions that have been applied [28].

In this section we outline how the two different fields of FRs and anomalous
dynamics can be cross-linked in order to explore to which extent conventional forms
of FRs are valid for anomalous dynamics. With the term anomalous fluctuation
relations we thus refer to deviations from conventional forms of FRs, which are due
to anomalous dynamics. Here we focus on generic types of stochastic anomalous
dynamics by only checking TFRs, which describe the approach from a given initial
distribution towards a (non)equilibrium steady state. As a warm-up, we first derive
the conventional TFR for the trivial case of Brownian motion of a particle moving
under a constant external force modeled by standard Langevin dynamics. We then
consider a straightforward generalization of this type of dynamics in form of
long-time correlated Gaussian stochastic processes. For two fundamental, different
versions of this dynamics, we check for the existence of conventional TFRs under
the simple nonequilibrium condition of a constant external force.

1.4.2 Fluctuation Relations for Ordinary Langevin Dynamics

Consider a particle system evolving from some initial state at time t = 0 into a
nonequilibrium steady state for t → ∞. A famous example that has been investigated
experimentally [101] is a colloidal particle immersed into water and confined by an
optical harmonic trap, see Fig. 1.10. The trap is first at rest but then dragged through
water with a constant velocity v∗.

The key for obtaining FRs in such systems is to compute the PDF ρ(ξt) of
suitably defined dimensionless entropy production ξt over trajectory segments of
time length t. The goal is to quantify the asymmetry between positive and negative
entropy production in ρ(ξt) for different times t since, as we will demonstrate in a
moment, this relation is intimately related to the Second Law of Thermodynamics.
For a very large class of systems and under rather general conditions, it was shown
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Fig. 1.10 Sketch of a
colloidal particle confined
within a harmonic trap that is
dragged through water with a
constant velocity v∗, cf. the
experiment by Wang et al.
[101]

t3
t2

r x t

x t

t1

Fig. 1.11 Illustration of the
dynamics of the probability
density function for entropy
production ρ(ξt) for different
times t1 < t2 < t3

that the following equation holds [10, 98, 114]:

ln
ρ(ξt)

ρ(−ξt)
= ξt . (1.58)

Given that here we consider the transient evolution of a system from an initial into
a steady state, this formula became known as the TFR. We may call the left-hand
side the fluctuation ratio. Relations exhibiting this functional form have first been
proposed in the seminal work by Evans et al. [87], although in the different situation
of considering nonequilibrium steady states. Such a steady state relation was proved
a few years later on by Gallavotti and Cohen for deterministic dynamical systems,
based on the chaotic hypothesis [89, 90]. The idea to consider such relations for
transient dynamics was first put forward by Evans and Searles [88].

Figure 1.11 displays the temporal evolution of the PDF for entropy production
in such a situation. The asymmetry of the evolving distribution, formalized by the
fluctuation relation Eq. (1.58), is in line with the Second Law of Thermodynamics.
This easily follows from Eq. (1.58) by noting that

ρ(ξt) = ρ(−ξt)exp(ξt)≥ ρ(−ξt), (1.59)

where ξt is taken to be positive or zero. Integration from zero to infinity over
both sides of this inequality after multiplication with ξt and defining the ensemble
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average over the given PDF as 〈. . .〉= ∫ ∞
−∞ dξt ρ(ξt) . . . yields

〈ξt〉 ≥ 0. (1.60)

As a warm-up, we may first check the TFR for the ordinary overdamped
Langevin equation [115]

ẋ = F + ζ (t), (1.61)

with a constant external force given by F and Gaussian white noise ζ (t). Note that
for the sake of simplicity, here we set all the other constants that are not relevant
within this specific context equal to one. For Langevin dynamics with a constant
force the entropy production ξt defined by the heat, or equivalently the dissipative
work, is simply equal to the mechanical work [116]

Wt = Fx(t). (1.62)

It follows that the PDF of entropy production, which here is identical to the one for
the mechanical work, is trivially related to the PDF of the position x of the Langevin
particle via

ρ(Wt) = F−1ρ(x, t). (1.63)

This is very convenient, since it implies that all that remains to be done in order to
check the TFR Eq. (1.58) is to solve the Fokker-Planck equation for the position
PDF ρ(x, t) for a given initial condition. Here and in the following, we choose
x(0) = 0, i.e., in terms of position PDFs we start with a delta-distribution at
x = 0. Note that for ordinary Langevin dynamics in a given potential, typically the
equilibrium density is taken as the initial density [116, 117]. However, since in the
following we will consider dynamics that may not exhibit a simple equilibrium state,
without loss of generality here we make a different choice.

For the ordinary Langevin dynamics Eq. (1.61) modeling a linear Gaussian
stochastic process, the position PDF is Gaussian exhibiting normal diffusion
[115, 118]:

ρ(x, t) =
1√

2πσ2
x,0

exp

(
− (x−〈x〉)2

2σ2
x,0

)
. (1.64)

With the subscript zero we denote ensemble averages in case of zero external field.
By using the PDF-scaling Eq. (1.63) and plugging this result into the TFR Eq.
(1.58), we easily derive that the TFR for the work Wt holds if

〈Wt〉=
σ2

Wt ,0

2
, (1.65)

which is nothing else than an example of the fluctuation–dissipation relation of the
first kind (FDR1) [115,119]. We thus arrive at the seemingly trivial but nevertheless
important result that for this simple Gaussian stochastic process, the validity of
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FDR1 Eq. (1.65) implies the validity of the work TFR Eq. (1.58). For a full analysis
of FRs of ordinary Langevin dynamics we refer to van Zon and Cohen [116, 117].

Probably inspired by the experiment of [101], typically Langevin dynamics
in a harmonic potential moving with a constant velocity has been studied in the
literature [107–109, 120], cf. Fig. 1.10. Note that in this slightly more complicated
case the (total) work is not equal to the heat [116]. While for the work one recovers
the TFR in its conventional form Eq. (1.58) in analogy to the calculation above,
surprisingly the TFR for heat looks different for large enough fluctuations. The
origin of this phenomenon has been discussed in detail in [117]; related effects
have been reported in [98, 121, 122]. However, in the following we check for
another source of deviations from the conventional TFR Eq. (1.58) that is due to
the existence of microscopic correlations in form of anomalous dynamics. In order
to illustrate the main ideas it suffices to consider a nonequilibrium situation simply
generated by a constant external force.

1.4.3 Fluctuation Relations for Anomalous
Langevin Dynamics

In our presentation of this section we follow [28], which may be consulted for
further details. Our goal is to check the TFR Eq. (1.58) for Gaussian stochastic
processes generating anomalous diffusion. These processes are defined by the
overdamped generalized Langevin equation

∫ t

0
dt ′ẋ(t ′)γ(t − t ′) = F + ζ (t) (1.66)

with Gaussian noise ζ (t) and friction that is modeled with a memory kernel γ(t).
By using this equation a stochastic process can be defined that exhibits normal
statistics but with anomalous memory properties in form of non-Markovian long-
time correlated Gaussian noise. Equations of this type can be traced back at least
to work by Mori and Kubo around 1965 (see [119] and further references therein).
They form a class of standard models generating anomalous diffusion that has been
widely investigated, see, e.g., [115, 123, 124]. FRs for this type of dynamics have
more recently been analyzed in [106–109]. Examples of applications for this type
of stochastic modeling are given by generalized elastic models [125], polymer
dynamics [126], and biological cell migration [29]. We split this class into two
specific cases:

1.4.3.1 Correlated Internal Gaussian Noise

We speak of internal Gaussian noise in the sense that we require the system to
exhibit the fluctuation–dissipation relation of the second kind (FDR2) [115, 119]:
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〈ζ (t)ζ (t ′)〉 ∼ γ(t − t ′), (1.67)

again by neglecting all constants that are not relevant for the main point we wish to
make here. We now consider the specific case that both the noise and the friction are
correlated by a simple power law:

γ(t)∼ t−β , 0 < β < 1. (1.68)

Because of the linearity of the generalized Langevin equation (1.66) the position
PDF must be the Gaussian Eq. (1.64), and by the scaling of Eq. (1.63) we have
ρ(Wt) ∼ ρ(x, t). It thus remains to solve Eq. (1.66) for mean and variance, which
can be done in Laplace space [28] yielding subdiffusion,

σ2
x,F ∼ tβ , (1.69)

by preserving the FDR1 Eq. (1.65). Here and in the following we denote ensemble
averages in case of a nonzero external field with the subscript F . For Gaussian
stochastic processes we have seen in the previous section that the conventional
work TFR follows from FDR1. Hence, for the above power-law correlated internal
Gaussian noise, we recover the conventional work TFR Eq. (1.58).

1.4.3.2 Correlated External Gaussian Noise

As a second case, we consider the overdamped generalized Langevin equation

ẋ = F + ζ (t), (1.70)

which represents a special case of Eq. (1.66) with a memory kernel modeled by a
delta-function. Again we use correlated Gaussian noise defined by the power law

〈ζ (t)ζ (t ′)〉 ∼ |t − t ′|−β , 0 < β < 1, (1.71)

which one may call external, because in this case we do not postulate the existence
of FDR2. The position PDF is again Gaussian, and as before ρ(Wt) ∼ ρ(x, t).
However, by solving the Langevin equation along the same lines as in the previous
case, here one obtains superdiffusion by breaking FDR1:

〈Wt〉 ∼ t, σ2
Wt ,F ∼ t2−β . (1.72)

Calculating the fluctuation ratio, i.e., the left-hand side of Eq. (1.58), from these
results yields the anomalous work TFR:
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Fig. 1.12 The fluctuation ratio ln(Πτ (Jτ )/Πτ (Jτ )) for the entropy production Wτ = EJτ with
particle current Jτ and field strength E for particle density ρ at different times τ . The full line,
with slope one, displays the result of the conventional FR Eq. (1.58) in a nonequilibrium steady
state. The figure is from [113]

ln
ρ(Wt)

ρ(−Wt)
=Cβ tβ−1Wt 0 < β < 1, (1.73)

where Cβ is a constant that depends on physical parameters [28]. Comparing this
equation with the conventional form of the TFR Eq. (1.58) one observes that the
fluctuation ratio is still linear in Wt thus exhibiting an exponential large-deviation
form [111]. However, there are two important deviations: (1) the slope of the
fluctuation ratio as a function of Wt is not equal to one anymore, and in particular
(2) it decreases with time. We may thus classify Eq. (1.73) as a weak violation of the
conventional TFR.

We remark that for driven glassy systems FRs have already been obtained
displaying slopes that are not equal to one. Within this context it has been suggested
to capture these deviations from one by introducing the concept of an “effective
temperature” [120, 127, 128]. As far as the time dependence of the coefficient is
concerned, such behavior has recently been observed in computer simulations of a
paradigmatic two dimensional lattice gas model generating glassy dynamics [113].
Figure 1.12 shows the fluctuation ratio as a function of the entropy production at
different times τ as extracted from computer simulations of this model, where the
PDF has first been relaxed into a nonequilibrium steady state. It is clearly seen that
the slope decreases with time, which is in line with the prediction of the anomalous
TFR Eq. (1.73). To which extent the nonequilibrium dynamics of this lattice gas
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model can be mapped onto the generalized Langevin equation Eq. (1.70) is an open
question.

In summary, for Gaussian stochastic processes with correlated noise, the ex-
istence of FDR2 implies the existence of FDR1, and FDR1 in turn implies the
existence of work TFR in conventional form. That is, the conventional work TFR
holds for internal noise. However, there is a weak violation of the conventional form
in case of external noise yielding a pre-factor that is not equal to one and in particular
depends on time.

1.5 Anomalous Dynamics of Biological Cell Migration

In order to illustrate the importance of anomalous dynamics for realistic situations,
in this final section of our book chapter we discuss experiments and theory
about the migration of single biological cells crawling on surfaces as an example.
Here we focus on cells in an equilibrium situation, i.e., not moving under the
influence of any external gradients or fields. This case is investigated by extracting
results for the MSD and for the position PDFs from experimental data. We then
show how the experimental results can be understood by a mathematical model
in form of a fractional Klein-Kramers equation. As far as MSD and velocity
autocorrelation function are concerned, this equation bears some similarity to a
generalized Langevin equation that is of the same type as the one that has been
discussed in Sect. 1.4.3. Our presentation in this section is based on [29].

1.5.1 Cell Migration

Nearly all cells in the human body are mobile at a given time during their life
cycle. Embryogenesis, wound-healing, immune defense, and the formation of tumor
metastases are well-known phenomena that rely on cell migration [129–131]. Figure
1.13 depicts the path of a single biological cell crawling on a substrate measured in
an in vitro experiment [29]. At first sight, the path looks like the trajectory of a
Brownian particle generated, e.g., by the ordinary Langevin dynamics of Eq. (1.61).
On the other hand, according to Einstein’s theory of Brownian motion, a Brownian
particle is passively driven by collisions from the surrounding fluid molecules,
whereas biological cells move actively by themselves converting chemical into
kinetic energy. This raises the question whether the random-looking paths of
crawling biological cells can really be understood in terms of simple Brownian
motion [132,133] or whether more advanced concepts of dynamical modeling have
to be applied [134–138].
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Fig. 1.13 Overlay of a biological cell migrating in vitro on a substrate. The cell frequently changes
its shape and direction during migration, as is shown by several cell contours extracted during the
migration process. The inset displays phase contrast images of the cell at the beginning and to the
end of its migration process [29]

1.5.2 Experimental Results and Statistical Analysis

The cell migration experiments that we now discuss have been performed on two
types of tumorlike migrating transformed renal epithelial Madin Darby canine
kidney (MDCK-F) cell strains: wild-type (NHE+) and NHE-deficient (NHE−)
cells. Here NHE+ stands for a molecular sodium hydrogen exchanger that either
is present or deficient. It can thus be checked whether this microscopic exchanger
has an influence on cell migration, which is a typical question asked by cell phys-
iologists. The cell diameter is about 20–50 μm and the mean velocity of the cells
about 1 μm/min. Cells are driven by active protrusions of growing actin filaments
(lamellipodial dynamics) and coordinated interactions with myosin motors and
dynamically reorganizing cell-substrate contacts. The leading edge dynamics of a
polarized cell proceeds at the order of seconds. Thirteen cells were observed for
up to 1,000 min. Sequences of microscopic phase contrast images were taken and
segmented to obtain the cell boundaries shown in Fig. 1.13; see [29] for full details
of the experiments.

According to the Langevin description of Brownian motion outlined in
Sect. 1.4.2, Brownian motion is characterized by a MSD σ2

x,0(t) ∼ t (t → ∞)
designating normal diffusion. Figure 1.14 shows that both types of cells behave
differently: First of all, MDCK-F NHE− cells move less efficiently than NHE+

cells resulting in a reduced MSD for all times. As is displayed in the upper part of
this figure, the MSD of both cell types exhibits a crossover between three different
dynamical regimes. These three phases can be best identified by extracting the time-
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given in [29]. The dashed lines indicate the uncertainties of the MSD values according to Bayes
data analysis. Lower part: logarithmic derivative β (t) of the MSD for both cell types as defined by
Eq. (1.74)

dependent exponent β of the MSD σ2
x,0(t) ∼ tβ from the data, which can be done

by using the logarithmic derivative

β (t) =
d lnmsd(t)

d lnt
. (1.74)

The results are shown in the lower part of Fig. 1.14. Phase I is characterized
by an exponent β (t) roughly below 1.8. In the subsequent intermediate phase
II, the MSD reaches its strongest increase with a maximum exponent β . When
the cell has approximately moved beyond a square distance larger than its own
mean square radius (indicated by arrows in the figure), β (t) gradually decreases
to about 1.4. Both cell types therefore do not exhibit normal diffusion, which would
be characterized by β (t)→ 1 in the long-time limit, but move anomalously, where
the exponent β > 1 indicates superdiffusion.

We next study the PDF of cell positions. Since no correlations between x and y
positions could be found, it suffices to restrict ourselves to one dimension. Figure
1.15a, b reveals the existence of non-Gaussian distributions at different times. The
transition from a peaked distribution at short times to rather broad distributions
at long times suggests again the existence of distinct dynamical processes acting
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Fig. 1.15 Spatiotemporal probability distributions P(x, t). (a), (b) Experimental data for both cell
types at different times in semilogarithmic representation. The dark lines, labeled FKK, show
the long-time asymptotic solutions of our model Eq. (1.76) with the same parameter set used
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saturates at a value different from the one of Brownian motion (line at κ = 3). The other two lines
represent κ(t) obtained from the model Eq. (1.76) [29]

on different time scales. The shape of these distributions can be quantified by
calculating the kurtosis:

κ(t) :=
〈x4(t)〉
〈x2(t)〉2 , (1.75)
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which is displayed as a function of time in Fig. 1.15c. For both cell types κ(t) rapidly
decays to a constant that is clearly below three in the long-time limit. A value of
three would be the result for the spreading Gaussian distributions characterizing
Brownian motion. These findings are another strong manifestation of the anomalous
nature of cell migration.

1.5.3 Stochastic Modeling

We now present the stochastic model that we have used to reproduce the experimen-
tal data yielding the fit functions shown in the previous two figures. The model is
defined by the fractional Klein-Kramers equation [139]:

∂ρ
∂ t

=− ∂
∂x

[vρ ]+
∂ 1−α

∂ t1−α γα

[
∂
∂v

v+ v2
th

∂ 2

∂v2

]
ρ , 0 < α < 1. (1.76)

Here ρ = ρ(x,v, t) is the PDF depending on time t, position x, and velocity v in one
dimension, γα is a friction term; and v2

th = kBT/M stands for the thermal velocity
squared of a particle of mass M = 1 at temperature T , where kB is Boltzmann’s
constant. The last term in this equation models diffusion in velocity space. In
contrast to Fokker-Planck equations, this equation features time evolution both in
position and velocity space. What distinguishes this equation from an ordinary
Klein-Kramers equation, the most general model of Brownian motion [118], is the
presence of the Riemann-Liouville fractional derivative of order 1−α ,

∂ 1−α

∂ t1−α ρ =
∂
∂ t

[
1

Γ (α)

∫ t

0
dt ′

ρ(t ′)
(t − t ′)1−α

]
, (1.77)

in front of the terms in square brackets. Note that for α = 1 the ordinary Klein-
Kramers equation is recovered. The analytical solution of this equation for the MSD
has been calculated in [139] to

σ2
x,0(t) = 2v2

tht2Eα ,3(−γαtα) → 2
Dα t2−α

Γ (3−α)
(t → ∞) (1.78)

with Dα = v2
th/γα and the two-parametric or generalized Mittag-Leffler function

(see, e.g., Chap. 4 of [14] and References [82, 140]):

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
, α , β > 0 , z ∈C. (1.79)

Note that E1,1(z) = exp(z); hence Eα ,β (z) is a generalized exponential function. We
see that for long times Eq. (1.78) yields a power law, which reduces to the long-time
Brownian motion result in case of α = 1.
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In view of the experimental data shown in Fig. 1.14, Eq. (1.78) was amended by
including the impact of random perturbations acting on very short time scales for
which we take Gaussian white noise of variance η2. This leads to [141]

σ2
x,0;noise(t) = σ2

x,0(t)+ 2η2. (1.80)

The second term mimics both measurement errors and fluctuations of the cell
cytoskeleton. In case of the experiments with MDCK-F cells [29], the value of
η can be extracted from the experimental data and is larger than the estimated
measurement error. Hence, this noise must largely be of a biological nature and may
be understood as being generated by microscopic fluctuations of the lamellipodia in
the experiment.

The analytical solution of Eq. (1.76) for ρ(x,v, t) is not known; however, for large
friction γα this equation boils down to a fractional diffusion equation for which
ρ(x, t) can be calculated in terms of a Fox function [142]. The experimental data in
Figs. 1.14 and 1.15 was then fitted consistently by using the above solutions with
the four parameters v2

th,α,γ , and η2 in Bayesian data analysis [29].
In summary, by statistical analysis of experimental data, we have shown that

the equilibrium migration of the biological cells under consideration is anomalous.
Related anomalies have also been observed for other types of migrating cells [134–
138]. Our experimental results are coherently reproduced by a mathematical model
in form of a stochastic fractional equation. We now elaborate on possible physical
and biological interpretations of our findings.

First of all, we remark that the solutions of Eq. (1.76) for both the MSD and the
velocity autocorrelation function match precisely to the solutions of the generalized
Langevin equation [124]:

v̇ =−
∫ t

0
dt ′ γ(t − t ′)v(t ′)+ ξ (t). (1.81)

Here ξ (t) holds for Gaussian white noise and γ(t) ∼ t−α for a time-dependent
friction coefficient with a power law memory kernel, which alternatively could be
written by using a fractional derivative [124]. For γ(t)∼ δ (t) the ordinary Langevin
equation is recovered. Note that the position PDF generated by this equation is
Gaussian in the long-time limit and thus does not match to the one of the fractional
Klein-Kramers equation Eq. (1.76). However, alternatively one could sample from
a non-Gaussian ξ (t) to generate a non-Gaussian position PDF. Strictly speaking,
despite equivalent MSD and velocity correlations, Eqs. (1.76) and (1.81) define
different classes of anomalous stochastic processes. The precise cross-links between
the Langevin description and the fractional Klein-Kramers equation are subtle [143]
and to some extent still unknown. The advantage of Eq. (1.81) is that it allows more
straightforwardly a possible biophysical interpretation of the origin of the observed
anomalous MSD and velocity correlations, at least partially, in terms of the existence
of a memory-dependent friction coefficient. The latter, in turn, might be explained
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by anomalous rheological properties of the cell cytoskeleton, which consists of a
complex biopolymer gel [144].

Secondly, what could be the possible biological significance of the observed
anomalous cell migration? There is an ongoing debate about whether biological
organisms such as albatrosses, marine predators, and fruit flies have managed to
minimize the search time for food in a way that matches to optimizing search
strategies in terms of stochastic processes; see [145, 146] and further references
therein. In particular, it has been argued that Lévy flights are superior to Brownian
motion in order to find sparsely, randomly distributed, replenishing food sources
[145]. However, it was also shown that in other situations intermittent dynamics
is more efficient than pure Lévy motion [145]. For our cell experiment, both the
experimental data and the theoretical modeling suggest that there exists a slow
diffusion on short time scales, whereas the long-time motion is much faster, which
resembles intermittency as discussed in [145]. Hence, the results on anomalous
cell migration presented above might be biologically relevant in view of suitably
optimized foraging strategies.

1.6 Summary

This chapter highlighted some fundamental aspects of anomalous dynamics: The
scene was set by Sect. 1.2, which reviewed basic ideas of weak chaos by establishing
cross-links to infinite ergodic theory. This branch of ergodic theory provides a
rigorous mathematical approach to study weakly chaotic dynamical systems. In
particular, we proposed suitable definitions of generalized chaos quantities assessing
weakly chaotic dynamics by yielding a generalized version of Pesin’s theorem. We
also outlined a generalized hierarchy of chaos on the basis of different functional
forms of the dispersion exhibited by nearby trajectories of a deterministic dynamical
system. In Sect. 1.3 we related these concepts to the problem of anomalous diffusion
by spatially extending our previously discussed simple map model. Applying
stochastic CTRW theory to this model in comparison to computer simulations,
we learned about an intricate dynamical phase transition between normal and
anomalous diffusion, governed by multiplicative logarithmic corrections in the
MSD. We also derived a fractional diffusion equation that reproduced the subdif-
fusive diffusive dynamics of this model on coarse scales. The subsequent Sect. 1.4
elaborated on fluctuation relations, here understood as a large-deviation symmetry
property of the work probability distributions generated by a given stochastic dy-
namics far from equilibrium. We familiarized ourselves with the conventional form
of transient work fluctuation relations derived from standard Langevin dynamics
before exploring anomalous generalizations of Langevin equations. One of them
reproduced the conventional form of fluctuation relations, whereas the other one
yielded a generalized, anomalous fluctuation relation. The precise form of the
resulting fluctuation relation appeared to be intimately related to whether or not
fluctuation–dissipation relations are broken. In our final main section we related
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our previous theoretical ideas to the experimental problem of studying biological
cell migration. By extracting the MSD and the position probability distributions
from experimental data, we found that the dynamics exhibited by these cells was
anomalous, showing different behavior on different time scales, by eventually
yielding superdiffusion for long times. On the basis of these experimental results
we suggested a stochastic theoretical model of cell migration in form of a fractional
Klein-Kramers equation, which coherently reproduced our experimental findings.

In summary, we traversed quite an anomalous scientific landscape of different
but related topics: Starting from simple deterministic maps and their ergodic theory
description we switched to basics of anomalous stochastic processes, studied both
normal and anomalous stochastic fluctuations very far from equilibrium in terms
of Langevin dynamics by ending up with anomalously crawling biological cells.
We thus meant to illustrate the third column displayed in the very first Fig. 1.1 of
the introduction, by also explaining the title of this contribution. Within a larger
scientific context, one may consider our discussion as an indication that a novel
theory of anomalous nonequilibrium processes is presently emerging. In contrast
to standard nonequilibrium statistical mechanics, this dynamics is inherently non-
stationary, due to the weak chaos by which it is generated. This mechanism
leads to important physical consequences like anomalous transport, which can be
tested in experiments. On the side of theoretical physics this approach asks for
further generalizations of recently developed fundamental concepts, perhaps leading
to a weakly chaotic hypothesis, to the identification of the physically relevant
measures characterizing such systems, and to deriving experimentally measurable
consequences such as generalizations of ordinary large-deviation properties and
fluctuation relations. However, these questions also motivate further mathematical
work in upcoming directions of infinite ergodic theory to provide a formal frame-
work and rigorous results for parts of the physical theory.
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