Chapter 7
q-Complex Operators

In the recent years applications of g-calculus in the area of approximation theory
and number theory are an active area of research. Several researchers have proposed
the g-analogue of exponential, Kantorovich- and Durrmeyer-type operators. Also
Kim [106] and [105] used g-calculus in the area of number theory. Recently, Gupta
and Wang [94] proposed certain g-Durrmeyer operators in the case of real variables.
The aim of this present chapter is to present the recent results [5] on g-Durrmeyer
operators to the complex case. The main contributions for the complex operators
are due to Sorin G. Gal; in fact, several important results have been complied in his
recent monograph [76]. Also very recently, Gal and Gupta [78,79], and [80] have
studied some other complex Durrmeyer-type operators, which are different from the
operators considered in the present article.

7.1 Summation-Integral-Type Operators in Compact Disks

In this section we shall study approximation results for the complex g-Durrmeyer
operators (introduced and studied in the case of real variable by Gupta—Wang [94]),
defined by

n

1
Myg(f;2)=n+113 Y, 4" *pur(g:2) /0 F(O)pni-1 (q:qt)dgt + £(0) pao(q:2),
=1 .
7.1

where z€ C,n=1,2,...;q € (0,1) and (a — D)y = H;f’;ol(a — ¢'b), q-Bernstein
basis functions are defined as

Pai(q3z) = m F—z)n*
q
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224 7 g-Complex Operators

and also in the above g-beta functions [104] are given as

1
B, (m,n) :/O (1= ) dyt, mon >0,

This section is based on [94]. Throughout the present section we use the notation
Dr = {z€ C: |z] <R}, and by H(Dg), we mean the set of all analytic functions on
f:Dr — C with f(z) = ¥_oax* for all z € Dg. The norm || f||, = max{|f(z)| :
|z] < r}. We denote ) ,(q;2) = My 4(ep;2) forall e, =17, p € NU{0}.

7.1.1 Basic Results

To prove the results of next subsections, we need the following basic results.

Lemma 7.1. Let g € (0,1). Then, my,(q;z) is a polynomial of degree < min
(m,n), and

[n+1],! &

ﬂmm(q;Z) [n+m+1 zcs ’q (es;Z)u

where cg(m) > 0 are constants depending on m and q, and B, 4(f;z) is the q

Bernstein polynomials given by By, 4(f32) = Xji—o Pnk(q:2)f ([k]q/[n] ).

Proof. By definition of g-beta function, with By (m,n) = % we have

n 1
Tnn(@:2) = I+ 14 Y, 4" *pus(:2) /0 Prjt (g3 qt)t"dgt
k=1

n

1 n _
=[n+1] 2 p,,qu/o [k—l] (gt) ' (1 —qt)i " eyt
k=1 q

< [n]q!
=[n+1] gpnqu l]q![n—k—i—1]q!BQ(k+m’n_k+2)

L k—l—m—l]q!
_[n+m+1 ;p”"q’ k—1],!
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Form =1, we find

n+1],! & 1

(]
[n+2],! kzll’mk(q;z)[k]q —

1&g
[n+2]q];z)Pnk 4:2)[nlg ol

1
Z e?a ’

nl,n(q;z) =

q

thus, the result is true for m = 1 with ¢;(1) =1 > 0.
Next for m = 2, with [k+ 1], = 1+ g[k],, we get

m.n(¢:2) [ 3] ,ki)l’nk q:2) (1 + qlk]q)[k]4
q° k=
n+1] !
- {ni%q' [[”]qB qle1:z) +q[n];Bnq(e2 Z)}
g
n+1] 12
= {ni:ﬁfl' 2165(2) [n]f]Bn,q (es;Z);
q° s=

thus the result is true for m =2 with ¢;(2) =1 >0, ¢2(2) = ¢ > 0.
Similarly for m = 3, using [k + 2], = [2], + ¢*[k], and [k + 1], = 1 + g[k],, we
have

[n+1],! 3

ol 2 OliBug (esi2).

77:3,)1(51;2) =

where ¢ (3) = 2], >0, c2(3) =2¢* +¢ > 0, and c3(3) = ¢* > 0.
Continuing in this way the result follows immediately for all m € N. |

Lemma 7.2. Let g € (0,1). Then, for all m,n € N, we have the inequality

h+1],! &
[n+m+1 ch

Proof. By Lemma 7.1, with ¢, = """, we have

n+1] ! m o
[n+ ]q] _zcs(m)[n]f]Bw(es;l):[ n+1],

;1 = — S.
ﬂ'mm(q ) [n+m+1q'szl n+m+1]q!S:21€s(m) [n]q

Also

pn,k(q;Z) = |:Z:| Zk(l —2)(1—¢gz)(1 _qzz) (1 _qnfk—lz).
q
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It immediately follows that p, x(¢;1) =0, k=0,1,2,....,n—1,and p,,(g;1) = 1.
Thus, we obtain

1
B ) = [0+ 1)y (@100 [ o (@)t

=1, [ 0 )y

tn+m tn+m+1 1
= b+ Uglnlg {[n—i—m]q _q[n—l-m—l— 1]J
et b
[n+mlgn+m+1], = |

Corollary 7.1. Letr > 1and g € (0,1). Then, for allm,n € NU{0} and |z| < r, we
have |Ttmu(q;2)| < ™.

Proof. By using the methods [76], p. 61, proof of Theorem 1.5.6, we have
}Bn’q (es;z)} <r°.By Lemma 7.2 and for allm € N and |z| <r,

n+1]! m
|nm7n(q;z)| < % ; cs(m) [n]; ‘qu (es;z)’

n+1],! &

<"
_[n—l—m—i—l ZCT a" [ ]

Lemma 7.3. Let q € (0,1); then for z € C, we have the following recurrence
relation:

qPz(1 —2)

4" [nlgz+ [Pl
n+p+2],

D ;
gTpn(4:2) + n+p+2,

pn(q32)-

Tp1a(q:2) =

Proof. By simple computation, we have

2(1 =)Dy (pus(:2) = (K, = ), 2) pos (a:2)
and
((1=a0)Dq (pusc 1 (g3a1)) = (T =11, = 1], at) P 1 (1)
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Using these identities, it follows that
< 1-k !
2(1=2) Dy (Tpn(g:2)) = [n+1], D, q'~ ([k]q—[n]qZ) Pnik (q;Z)/O Prk—1(q:qt)t7dgt
k=1
1k 'l 2 2
=[n+1], > ¢ Pk (q;Z)/O <1+q[k* 1], =[l,q°t+nl,q t) Prj—1(q:qt) tPdgt
k=1
1
J,n+1], 261 P (432 )/0 Pj—1 (q:qt) tPdgt

1
Zq Pk qZ/O (DgPu—1(g:qt))t (1—qt) P dgt

+ T n(4:2) + [y P Tp 10 (432) — 2 (), Tp n(32)-

P
Let us denote (1) = ¢ (1 —1) (fl) = qu (tP™1 —PT2). Then, the last g-integral
becomes

/01 Dy (pui-1(g5q1)) 1 (1 —qt) 17 dgt = /01 Dy (pui—1(g:qt)) 8 (qt) dyt

1
= 80 pascr (@3a0) = | puicr (@300 Dy3 (1) dyt
1
””1/0 Pui—1(@:qt) Dy (171! —1712) dyt
] 1
—q " [p+1]q/0 Pui—1(gsqt)t7dgt

1
+q 7 p+2], /0 Pk (q:qt) 1" dyt,

and hence,
2(1=2)Dgmpn(q:z) = —q " [p+ 1], Tpn(@:2) +q 7 [P+ 2], Tpi1(4:2)

+ 7 n(932) + [0, 4 7p s 1.0(432) — 2 [0 (43 2)-

Therefore,

z(1—2)
“P[p+2]g + [nlyq?

[")gz+q Plp+1]4—1 :
2y g

Tpi1a(q;2) = p Dymtpn(q;2) +

qPz (1 —2)

T p+2,+ g q,,Han,,n q’[nlqz+ [plq

) T2y Tl ™
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Finally, using the identity [p + 2], + [n],¢" "2 = [n+ p +2],, we get the required
recurrence relation. |

7.1.2 Upper Bound

If P,(z) is a polynomial of degree m, then by the Bernstein inequality and the
complex mean value theorem, we have

[DoPu @)] < [Pl < 1Pl forall 2] < r

The following theorem gives the upper bound for the operators (7.1):
Theorem 7.1. Let f(z) = X _oapz” for all |z| <R and let 1 < r <R; then for all
lz2] <r,qe(0,1)andn €N,

K (f)
[n+2]

Mg (fi2)— f(2)] <

3

q

where K,(f) = (1+ 1) 25, laplp(p+ D)rP ! < oo,

Proof. Fi.rst we shall show that M, 4 (f;2) = X7 apTp.a(q;z). If we denote f(z) =
3 oajz,|z| <rwith m € N, then by the linearity of M, 4, we have

Mn,q(fm;z) = 2 apnp,n(q;Z)-
p=0

Thus, it suffice to show that for any fixed n € N and |z] < r with r > 1,
1imyy—se0 My g (fin:2) = My g(f;2). But this is immediate from limy, e || fin — f]|, =0
and by the inequality

|Mn,q (fm3z) — M 4 (f:2)]

< (@) SO 112+ 01Ty 3 pas2la ™ [ o 1(ar)nte) — £yt

k=1
S Cr,n”fm _f“h

where

1
Con=>14r)"+n+ 1]q;§1 [ZL (1 +r)”7krk /0 Prj—1(q:qt)dyt.
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Since, m ,(g;z) = 1, we have
My q(f32) = f(2)] < Z lapl - [7pn(q;2) — ep(2)]-
p=1

Now using Lemma 7.3, for all p > 1, we find

B g" 'z2(1-72)

Tpn(q:z) —ep(z) = tpt 1]q Dy (7p-1,(4:2))

¢ [,z +[p—1],
n+p+1],

(npfl,n(q;z) —€p—1 (2))

-1
qP [n]qz+[p_1]q p—1_
n+p+1],

11—
- %(:—I]Z)Dq (Tp—1.0(4:2))
q

7P

q" ', z+[p—1],
n+p+ l]q

(Tp—1(q:2) —€p-1(2))

=1, .\ @ 'My—lntp+l],,
n+p+1], n+p+1],

However,

qpil["]q —[p—1]4— ‘]’Fl[n]q — gt —gntr
[n+p+1],

q" 'lnly—In+p+1ly ,
n+p+1],

7P

[P"‘l]q .
~ [ntp+1],

Combining the above relations and inequalities, we find

r(l+r) p—1
‘npm(CI;Z)_ep(Z” < [n+2]q . - Hﬂpfl,n(q;Z)Hr
P+, ,
(@i —e, LTS N
+r‘7rp 1n(q;2) —ep 1(z)|+[n+2]qr (1+7r)

_ 10 (=1

.l .
> [n+2]q rP +r‘np717n(472)—ep71 (Z)|
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lp+1, o
[n+2]

(I+7)

=2,

(L+7)

Pl —I—r‘np,lm(q;z) —ep (z)‘ )

From the last inequality, inductively it follows that

|Tpn(q:2) —ep(2)| < r <r\7rpz,n(q;z) —ep2(2)|+ 2r(lp i) (1+7r) r"2>

n+2],
(1 +r) 1
+2p rP
[n+2],
2 . (1 —|—}’)
=r ‘nl’*zan(q’z)_eP*Z(Z)‘—i_z[n_i_z]q r ( 1+P)
(I+r 1
<...< (p+1)r”
[n+2],
Thus, we obtain
1+r
[Mag (f12) = f ()] < ZPM\%n% —er@l <y ZPHPP+UW5
which proves the theorem. |

Remark 7.1. Let g € (0,1) be fixed. As, limy,_e m = 1—g¢, Theorem 7.1 is not
a convergence result. To obtain the convergence, one can choose 0 < g, < 1 with

qn /1 as n — oo, In that case, m— — 0 as n — oo (see Videnskii [152], formula

(2.7)); from Theorem 7.1 we get M4, (f32) — f(z), uniformly for |z| < r and for
any 1 <r <R.

7.1.3 Asymptotic Formula and Exact Order
The following result is the quantitative Voronovskaja-type asymptotic result:

Theorem 7.2. Suppose that f € H(Dg),R > 1. Then, for any fixed r € [1,R] and
foralln e N,|z| <rand g€ (0,1), we have

z(1—-2)f"(z) —2zf'(2) < M(f) +2(1—¢q) i | |kr*

[nlq - [

My 4(f52) — f(z) —



7.1 Summation-Integral-Type Operators in Compact Disks 231

where M. (f) = X7, |ak|kBk’rrk < oo, and
Bi, = (k—1)(k—2) (2k —3) +8k(k— 1)*+6 (k — 1) k* + +4k(k — 1)*(1 +r).

Proof. In view of the proof of Theorem 7.1, we can write M, ,(f;z) = 25 ak
T n(g:2). Thus,

2(1-2)f"(z) = 22f'(2)

[n]q

‘Mn,qof;z) ) -

oo

Z lax

(k(k—1) —k(k+1)z)z5!

[n]q

Tn(q:2) — ex(z) —

for all z € Dg,n € N. If we denote

(k(k—1) = k(k+1)z)zZ"!

[n]q

Exn(9:2) = Min(q:2) — ex(z) —

then Ey ,(g;z) is a polynomial of degree < k, and by simple calculation and using
Lemma 7.3, we have

k1,01 _ k-1 k1
Ek,n(q;Z):q[n%quEk17n(q;Z)+q [L ]jZIH-[l] ]qu 10(4:2)+Xkn(¢:2),
where

Xien( 'Z)=L[ k= 1) (k—2)[k—2]g + [k— 1] (k— 1) (k—2)

k8 = Ll k10, L a

+z<qk*1 (gl —1]g — ¢ (k—1)(k—2) [k — 2]y — ¢ Tk(k— 1) [k — 1],
+q" g (k= 1) (k= 2) + [k — 1]g[n]g — [k — 1gk(k— 1) —k(k—1)[n+k+ I]q)
2 (k(k+l)[n+k+ 1y — [nlgln+k+1]y — ¢ [nlgk(k—1)

+q 7 4 ¢ (k= 1)k —1]g — ¢ n]glk— 1](1)}

Zk72

T k1], (Xl-fm (k) + X2, (k) + 2 X340 (k)) .

Obviously as 0 < g < 1, it follows that

|X1.qn (k)] < (k=1)(k—2)(2k = 3).
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Next with [n+k+ 1], = [k— 1], +¢* 1], + ¢! + g"**, we have

Xo (k) = nly (¢ o= 1], + k= 1], = 24" (k= 1))
— ¢ k= 1) (k= 2)k—2)— ¢ k(k = 1) [k~ 1],

— [k Ugk(k = 1) = k(k = 1)k — 1], — k(k = 1)~ — k(k — 1)

and
g (4 k= 1]+ k= 1), 26" (k= 1)
(g (= 1lg = (= 1)+ [y (= 1) — ¢ (k= 1))
k=2 k—1
=[nled " (g-1) Y U, + g (1 =) X, [i],4 "
Jj=0 j=1
k=2 k—1
=¢" " -0 Y U, + =) X [1,4
Jj=0 j=1
Thus,

X2 g0 ()] < (k= 1) [k=2],+ (k— 1) [k—1],

+ (k= 1) (k= 2)[k — 2] g+ k(k — 1) [k — 1]+ [k — 1] k(k— 1)
+h(k—1)k—1],+k(k—1)+k(k—1)
< 8k(k—1)%

Now we will estimate X3 , , (k) :
Xagn (k) = k(k+ D) n+k+1], — [nlyn+k+1]y — ¢ ngh(k—1)
+q T g+ (k= 1) [k — 1] — ¢ nlg[k— 1],
:k(k+ 1) ([k— Hq_i_qkfl [n]q-i-q”k*l +qn+k)
—[nly ([k— 1,+4¢" [, +¢"! +q”+k) — 4" [n]k(k—1)
+q T Mg+ (k= 1) [k — 1] — ¢ n]g[k— 1],
= k(k+ 1)k = 1] +k(k+1) (¢ ") = [ e 1],
_ [n}q <qn+k71 +qn+k> +2qu71[n]q

+ ¢ (k= D)k — 1], — ¢l [k—1],
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_ [n}q (_qkfl [k— l]q _ [k— l]q +qk71 (2]{) _qu»kfl _qn+k>
k(e Dlk— 1+ k(e+ 1) (7571 ) 4 gk — 1) e 1],
= g™ (k= 1]y (k= 1))+ [y (1= + g (ke — k1], — )
(k4 D)= 1y k(1) (¢ 470 ) 4 ¢ kle— 1)k 1
= —lnlgd ™" (k= 1)y (k= 1)+ [nlgd* ™ (1 ")~ [nlg (6= 1)y — (k= 1))
Il (4% =g 1) k(e k= 1 ke 1) (¢ ) g k= Dk 1],
k=2 k=1
== " - XU, - (=) X U, d "+ (=g,
j=0 j=1
=g (4" = g 1) kG 1= 1] k1) (@ ") g (k= 1 k= 1]

Hence, it follows that

X3 g0 (k)| < (k=1) [k=2],+ (k= 1) [k=1],+ (1 —¢") [1],
+ (1=¢"") [nlg +k(k+ 1) [k — 1)+ 2k(k+1) +k(k — 1) [k — 1],
<6(k— 1)k +(1—¢") [n],+ (1—¢""") [n],-
Thus,
,1(72
Xin(g:2)] < e ((k—1)(k—2)(2k—3) + r8k(k—1)*+r*6 (k— 1)k?)
q
i _.n _ n+l
+[n]q(1 Q)+["+1]q( 1 )
_% ((k—1)(k—2)(2k—3)+r8k(k—1)*+r76 (k—1)k*) +2r* (1—q)
q

forallk>1,neNand|z| <r.
Next, using the estimate in the proof of Theorem 7.1, we have

(14 r)k(k+ 1) "
[n+2],

1T n(q32) — ex(z)] <

)

forall k,n € N |z] <r,with 1 <r.
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Hence, for all k,n € N,k > 1 and |z| < r, we have

g Hnlgr+[k—1]
[n+k+1],

¢ r(1+r)

1 q
E;_ ; X ;2)].
fEE Bt |+ Xiea(4:2)|

|Exn(g:2)|<

|E]/(717n(6];2)|+

Aren) o ) d ]

¢ .
tk+1], = Tntkri]y CETam)p < r, it follows that

Howeyver, since

r(l+7r)

E o (g7)| < 0
[Bn(:2)] < n+k+1],

|Ep 1 1(q:2)| 4 Tl Ex—1,0(q:2)| + [ Xicn(g:2)].-

Now we shall compute an estimate for |E;_, ,(g;z)|, k > 1. For this, taking into
account the fact that E;_ ,(¢;z) is a polynomial of degree < k — 1, we have

k—1
|E]/(717n(q;z)| < THEkfhrz”r

< k;l |:||7rk1,n_ek1||r+ H{(k_l)(k_z) [;]k(k_ l)el}ekfz] :|
q r
k(k—1) [(14r)(k— Dk*=2 A 2k(k—1)(1+7)
= r { [n+2], - [n]q ]
k(k—1)2 7. 4 5 e  dk(k—1)2%2
S T R e T
Thus, , -
r(1+r , 4k(k—1)(1+r)r—
[,H(_k——i—+i]q|Ek1,n(Cl2Z)|§ ( )[n(]?l—i_)
and
—1)2 r)rk
IEk,n(q;Z)IS4k(k 1[31]?“ +r|E-12(:2) [+ [Xicn(932)],
q
where

rk
Xin(q:2)| < =5 A +2r* (1—q),
[n]3
forall |z] <rk>1,n €N, where
Ap = (k—1)(k—2) (2k —3) +8k(k— 1) +6 (k— 1)k*.

Hence, forall |z| <rk>1,n €N,

Vk
Bk (4:2)] < rlEk10(@3 )] + £z Bir + 24 (1—q),
q
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where By, is a polynomial of degree 3 in k defined as
By, = Ag+4k(k—1)%(1+7).
But Ey,(q;z) = 0, for any z € C, and therefore by writing the last inequality for
k=1,2,..., we easily obtain step by step the following:
r* krk
Exal9:2) < £ ZB,r+2r (1-q)< WBk,rHr"k(l —q).
q j= q

Therefore, we can conclude that

M=9FQ 2@ o § | | Een(as2)]

[n]y k=1

My 4(f32) — f(z) —

| = o0
< 0 2 |ag[kBy .7 +2(1—q) Y |a|kr*.
q =1 k=1
As fM)(z) = 35y ark(k— 1) (k—2)(k — 3)z** and the series is absolutely conver-
gentin |z| < r, it easily follows that 3, ax|k(k— 1) (k —2)(k — 3)r*~* < o, which
implies that 37| |ax|kBy ,r* < 0. This completes the proof of theorem. |
Remark 7.2. For q € (0,1) fixed, we have o ] — 1 —g as n — oo; thus Theorem 7.2
does not provide convergence. But this can be 1mpr0ved by choosing 1 — 5 < ¢, <1
with q,, 1 as n — oo, Indeed, since in this case Tl ] —0asn— e and 1—g, <

1L < L from Theorem 7.2, we get
n [”]‘hl

2(1-2)f"(z) = 22f'(2) <Mr(f) : 2|ak|krk

[nlg, LIPS [ ]qn k=1

My q,(f32) = f(2) =
Our next main result is the exact order of approximation for the operator (7.1).

Theorem 7.3. Let 1 — 5 < g, <1,ne€N,R> 1, andlet f € H(Dg),R> 1. If f is
not a polynomial of degree 0, then for any r € [1,R), we have

1Mnq,(f3) = £l =

where the constant C.(f) > 0 depends on f, r and on the sequence (qn)nen, but it is
independent of n.
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Proof. For all z € Dg and n € N, we have

Mua (1:2) = 1(0) = |21 - 9F @) -2 (2)
LS A7) Ay A =2)f"(@) —22f'(2)
* [”]qn {[ ]q" (Mmq,, (f,Z) f(Z) ["]qn ) H '

We use the following property:

IF+Gll- = [[IF]l = IGll-| = [Fll- = Gl

to obtain
[|[My g, (f5) = fllr
> o1 - e’ =201,
qn
1 2 . el(l—el)f”—Zelf/ }:|
o M, () — f— )
[n]LIn {[n]qn o (f ) f [n]qn r

By the hypothesis, f is not a polynomial of degree 0 in Dg; we get ||e; (1 —eq) f” —
2e1f'||, > 0. Supposing the contrary, it follows that z(1 —z)f”(z) — 2zf'(z) = 0
for all |z] < r, that is, (1 —2)f"(z) —2f'(z) = 0 for all |z| < r with z # 0. The
last equality is equivalent to [(1 —z)f"(z)]' — f'(z) = 0, for all |z| < r with z # 0.
Therefore, (1 —z)f'(z) — f(z) = C, where C is a constant, that is, f(z) = {=, for
all |z| < r with z # 0. But since f is analytic in D, and r > 1, we necessarily have
C =0, a contradiction to the hypothesis.
But by Remark 7.2, we have

e1(1 — el)f” — 2e1f’
[n]Qn

[n]5,

Mg, (f5) = f =

< M(f)+2 Y |aglkr,
k=1

r

with Wl_ — 0 as n — oo, Therefore, it follows that there exists an index ny depending
qn
only on f, r and on the sequence (g, )n, such that for all n > ng, we have

)

ller(1—e1)f" —2erf'||

_ 81(1 — el)f” — 261f/
[n]q,

1
> §||€1(1 —e)f" —2e1f']],

{07
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which implies that

1
||Mn7qn( )= f||r—2 ||el(1_el)f”_zelf,”raV”Z”O-

[nlg,

For 1 <n <ng— 1, we clearly have

1Mnq, (f3) = £l =

where ¢, (f) = [nlg, - [|Mng,(f3-) — f]|» > 0, which finally implies

Cr(f)
[nlg,

Mg, (f5) = fllr = , foralln € N,

where

Cr(f) = min{c,1(f),cr2(f)- 7Cr,n071(f)7%||e1(1 —en)f"=2eif'll;}. m

Combining Theorem 7.3 with Theorem 7.1, we get the following.

Corollary 7.2. Let 1 — niz < gn <1 forall n € N, R > 1 and suppose that f €
H(Dg). If f is not a polynomial of degree O, then for any r € [1,R), we have

1Mo, (f5) = fllr ~ 755 n€N,

1
[n]LIn
where the constants in the above equivalence depend on f,r,(qn)n, but are
independent of n.

The proof follows along the lines of [80].

Remark 7.3. For 0 < oo < 3, we can define the Stancu-type generalization of the
operators (7.1) as

n 1 n
M) = et S ot [ (B

k=1

+f<[ » +ﬁ)Pn,0(q;Z)'

The analogous results can be obtained for such operators. As analysis is different, it
may be considered elsewhere.

> Prk—1(q:qt)dgt
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7.2 g-Gauss—Weierstrass Operator

In this section we study a complex g-Gauss—Weierstrass integral operators taking
into consideration the operators introduced by Anastassiou and Aral in [17]. We
show that these operators are an approximation process in some subclasses of
analytic functions giving Jackson-type estimates in approximation. Furthermore, we
give g-calculus analogues of some shape-preserving properties for these operators
satisfied by classical complex Gauss—Weierstrass integral operators. The results of
this section were discussed in [36].

7.2.1 Introduction

In a recent study, Anastassiou and Aral [17] introduced a new g-analogue of Gauss—
Weierstrass operators, which forn € N, g € (0, 1), xeé R, and f: R — R be a
function, defined as

], (g+1) ,——— 2
Wa (f3q, x) Z—H;W/O\/W\/ﬁf(x—i-t)qu <_q2[n]qtz>dqt. (7.2)

The goal of the present section is to introduce complex g-Gauss—Weierstrass

operators and to obtain Jackson-type estimates in approximation by these operators.
Also, we prove shape-preserving properties and some geometric properties of the
operators using g-derivative.
Note that geometric and approximation properties of some complex convolution
polynomials, complex singular integrals, and complex variant of well known
operators were studied in detail in [76]. Also shape-preserving approximation by
real or complex polynomials in one or several variables was given in [75].

Definition 7.1. Let D = {z€ C;|z| <1} be the open unit disk and AD) =
{r: D— C; f isanalytic on D, continuous on D, f(0) =0, D,f (0) = =1}. For

& >0, ge (0,1), the complex g-Gauss—Weierstrass integral of f € A(D) is
defined as

Wg(f;q,Z):—\/(— 0 /\/:f “NE, <—ng>dqt (7.3)
2

forz € .

Remark 7.4. Noting that the complex g-Gauss—Weierstrass operators W (f) (z)
given by (7.3) can be rewritten via an improper integral, we can easily see that
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E, (— %) = 0 for n < 0. Thus, we may write

e )
W9 = s [ e (<o )

qg+1
\/Erq2 (

NI—

7.2.2 Approximation Properties

In this section, we obtain Jackson-type rate in approximation by complex operators
given (7.3) and global smoothness preservation properties of them.

Lemma 7.4. We have
We (1;9,2) = 1.

Proof. We can write the g-derivative of the equality t = \/E \u as

— \/E; (7.4)

(g+1)Vu
Also, using the change of variable formula for g-integral with 8 = %, we have
\/E 2 1
2 o \/E -2 _1 2
[ (o= B [ s e
1
_ Ve (L)

(g+1) T\2

which proves W (1;¢, z) = 1. [ |

Theorem 7.4. Let f € A(D).
(i) ForzeD, & €(0,1], we have

1
W (f:.2) = f(2)| < an (f;\/g)m (1+ r (%))
where

o1 (£:8)50 = sup{ [ (¢47) = £ ()

;xeR,ogtgg}.
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(if) We have
o1 (We (f39,2):6)5 < Coy (f38)5,V8 >0, & >0,
where

o1 (f;8)y =sup{|f (z1) — f (z2)|; 21,2

Proof.
(i) Since We (1:q,z) = 1, forz € D, we get

(@) < \/—L?Ll% /\/ﬁ}f ) —f ()| Ep ( g)dqt-

By the maximum modulus principle we can restrict our considerations to
|z| = 1, and we can write

We (f39,2

IWe (f1q.2) — £ (2)]

(g+1) /— , 1?
< \/_F / = oy (3|2l |1 =€) op By (—ng> dgt
Combined this with the inequality

| t—e| <2fsin| <1, v >0,

it follows that

W (f:19,2) — f(2)
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—on(1vE),, [ 1+ daxl) /mtE( g)d

Also, using the change of variable formula for g-integral with = %, we have

\/E tz & l2
) 2 . = 2
/0\/1 TIEp (—q E) dgt = (q+1)/() q Ep (—q u)dqzu

= ——_T
PEE

Thus, we have

We (f39,2) = f(2)| < o (f;\/g)m <1+F ! )

(i) Forzy,22 €D, |z1 — 22| < 8, we have following:

(W (f1q,21) = We (14, 2)|

< i) | aet) e (-5 )

<o (f |Z1 2|)5We (134, 2)
<o (f;0)p

From which, we derive by passing supremum over |z; — 23| < &

o1 (We (£34,2)38)5 < o1 (f;8)p u

7.2.3 Shape-Preserving Properties

In this section, we deal with some properties of the complex operators given in
Definition 7.1. Firstly we present following function classes:

{f is analyticon D, f(z Zakz z€D, |a1|>2|ak|}

Sq*{feA( ) }D }<1 foralle]D)}
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and

P={f:D—C;f isanalyticonD, f(0) =1, Re[f (z)] >0, Vz€ D} .

Theorem 7.5. If f(z) = E a;7" is analytic in D, then for & > 0, We (f) (2) is
k=0

analytic in D, and we have
e (f39,72) zakdkngk VzeD

where

dk(éu@)_\/—qu_l /me”“E( tg)dqt. (7.5)

Also, if f is continuous on DD, then We (f) is continuous on D.

Proof. For the continuity at zg € D, let z, € D be with z, — zo as n — co. From (7.3),
we can write

\We (f1d, 2n) = We (f34, 20) |

e 2
< ) /M ‘f(zneiit) _f(Zoeiit)‘qu (—6]2%) dyt

\/Erq2 (%) 0
(g+1 , , 1?
A Pt

Ve

= (q+1> 1-¢2 . _ — _ ﬁ
_m~/°\/_wl(f"z” Z°|>DEq2< qzs)dqt

= o (f3]z—20)5,

from which the continuity of f at zy € D immediately implies the continuity of
WE (f) too at zo.

Since f(z) = 3 axZt, z € D, we get
k=0

(6]+1) 1—-¢2 wte —ikt o [ —g?—
Welsians) = s /v z e ME, ( €>qu
— o0 i VE 2n

! qZZZakzke k\/nfq‘quqz <—q2 q_q2)q”. (7.6)

qu (3) S5
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If g, is absolutely summable, that is, if Y, 3 ] g,,)k‘ < oo, then we know from
0k=0

Fubini’s theorem:
2 2 8nk = 2 2 8n k-
n=0k= =0n=0
Since
—ik v q"

aie = | = la|,

for all n € N, the series ¥, ayz* is convergent, and it follows that the series

k=0
oo —ik Ve q"
2 . . . .
Y aitfe V' isuniformly convergent with respect to n. Also, we can write
k=0

1

VIi—¢? & ( L > | . 2

E "\ / e (g

T () ZE) < )T T M 2 (=d’t)dpt
= 1.

These immediately imply that the series in (7.6) can be interchangeable by Fubini’s
theorem, that is,

/1 — o —jk Ve 2n
1 Zakz z l "qquqz (_ng_ )‘I”

We (fiq,2) =
: qu(%) k=0 n=0 1-¢
= zakdk(§7Q)Z
k=0
where
VE  n

1-¢> & oo 7"
dk(&vq)_ T (l) e I-? qu <_q21_ 2 q”

q2 3) n=0 q

(q+ 1) /M efiktqu <—ng> dqt.

&’_]
]
—~
NI'—-
~—

Theorem 7.6. For & > 0, it holds that

W;; (Sz) CS> and W;; (m) 3.
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Proof. By Theorem 7.5, we get

e (f34,72) zakdk (€,9)z

and

Since f € S, it follows that
D ladi (&) < Y || < ay.
k=2 k=2

Thus we have,

We (f) € Sa.

Let f(z) = Zakz € B, that is, ap = f£(0) = 1 and if f(z) =

U(x,y)+iV(x,y), z—x—i-lyE]D) then U (x,y) > 0, for all z =x+iy € D.
We have

We (£)(0) =ao =1

with the condition ag = f (0) = 1 and for Vz = re',

We (f34,2)

= \/_(ZF_Zzl% /mU (reos(t —u),rsin(t —u))Ep <—q2%2) dqu

-\/_qu—l% /MV (reos(t—u),rsin(t —u))Ep ( qz%) dqu,

which implies that

Re [We (f3q,2)]

- \/_qu_l% /mU (reos(t —u),rsin(t —u))Ep ( %2> dgu >0,

that is, W (f3q,2) €B. |
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Remark 7.5. By [11], if f € Sy, then f is starlike (and univalent) on D. According
to Theorem 7.6, the operators W possess this property.

7.2.4 Applications of q-Derivative to Operators
In this section, we present some properties of the complex operators W f (2),£>0

via g-derivative.

Lemma 7.5. The di (€,q) is defined as (7.5). We have

limd, =1.
lim i (&,9)

Proof. We can write

V1—gq 2 ﬂkm 7 <_ q2 an) 7"
=T, () 2 gl )7

Since the series of above equality is uniform convergent, it follows that the series
can be interchangeable with limit, that is,

1 q =) ,iiqn qz
: _ — : 1—¢2 _ 2n\ n
60 = gy S e e ()
— \/l_q iE2<_ qz q2n>qn
I'p (%) =0 I-q
1 - 2
- Ep(—q?u)d
o [

Theorem 7.7. Forall & >0,

1 1
W (s cSsl W (s1) ST,
di(&,9) 5(3""(5”’)) 7 di(&,q) e (i) Tt

where

o = ESLIDLf (@) <di(E.9)}
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and

s, _{feSI‘{l,

d(8.,9)

M
q””—m@@}

Proof. Let f €S9 (g Since fEA (D), we know that f(0) =ag =0, Dgf (0) =
a; = 1. Also since We (f3q, z) is continuous from Theorem 7.5, we can take g-
derivative of it. Thus, we have

L
dl (57Q)

Also, since

WZ; (f;%o):o quig (f;q,O):alzl.

1
L di(&,9)

2 : _(g+1) ,/ lz 2 ¢ (L oit) o2 2t
D)W (f3q,2) = \/_1" 0 / = Dy f (ze ") e 'E,2 < q €>dqt,

and [D2f ()| < |d1 (§,q)]. it follows that

1 2
d, (€, )D We (f34.2)
(g+1) ,/1 qz 2 =it [ |2 E _zﬁ
|d1§q|\/_1“ %/ |D3f (ze")]] |Eq<q§>dqt

that is, 7-=—We (f) € s4.
Now letf es?,

(z)| <M . It follows that

1
meWzg (f39,2)

+1) 2 —it ’
0t [ el (25
2

|d1§q|\/_l“ S
M (q+l) [ 2N M
= Eal Ver, %/ E( &)W di (E,q)]

which implies that 7k—We (f) € qu y u
dy(&,q
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7.2.5 Exact Order of Approximation

For exact order of approximation, we give a modification of the operator (7.3).
For & >0, ¢ € (0, 1), the complex g-Gauss—Weierstrass integral of f € A (D) is
defined as

2
W (f39,2) = 2\/2;—11 /\/_ i’)+f(zei’))qu<—q2%)dqt
(3)

for z € D. The approximation properties of the W (f3q,z) are expressed by the
following theorem.

Theorem 7.8. (i) Let f€A (ﬁ) Forall & € (0,1] and z €D, it follows

‘Wg (f34, z)—f(Z)‘ <Cw (f;\/g)au)

(if) Let us suppose that f(z) z ayZ* for all z € Dg, R > 1. Iffis not constant for
k=0
s = 0 and not a polynomial of degree < s—1 for s € N, then for all 1 <r <

r <R, &€ (0;1], and s e NU{0}

~&

r

"0

where the constants in the equivalence depend only on f, g, p, r, ry.

Proof. (i) We get

We (f19,2) = f(2)

_ g+l 1 7 (e u ﬁ
2\/_F B /\/_ ) —2f(2)+ f (ze ))qu (—qzé)dqt.

For |z| = 1, we can write

Wi (24, z>—f<z>\

(g+1) \/ﬁ i 2)
N %/ 1 (ze ) = 2£ (2) +  (2¢") | E2 ( g ) di

(g+1) \/ﬁ ﬁ)
Sz\/_l“ %/ a)zft)aDE< 5 dgt
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Ve

<o) i 7 () e e

We can write the g-derivative of the equality # = \/E Vu as

t):\/g\/ﬁ_—\{qz_u

1
- ﬂ(qﬂ)ﬁ'

Also, using the change of variable formula for g-integral with 8 = %, we have

12 1

(g+1) /mﬂE < ) 1 /ﬁ 1 2
dyt = ———— YE , (—u)d
26/ET, (1) T )h . (Db " 7 (=qu)dpu

1
2
_ rtﬁ(%) < oo
Zqu(%)
and

G [ ik (5 i = o [T ()

&z (3) Jo AN 2 (3) Do

qu(%)

Thus, we have desired result.
(if) We follow here the ideas in the proof of [76, pp. 269-272]. We can easily see
that forr > 1,

o (f:VE) < Coy (1)

where

[03) (f; \/E)(mr = sup {Aﬁf (re") : Ju) < \/E}
From (i) we have

Wz -1|| <cane

for all € € (0,1] and z € D, (see [76]).
Now, we find the upper estimate in (if) by using the Cauchy’s formulas. Let ¥ be
a circle of radius r; > 1 and center 0. For u € y, we get
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du|.

; /f(u)— (W) 1w
(u

ﬁ . s+1
g )

£ @) - Wi () ()] =

—Z

This equality implies that

P r—pPwz 0| < s -wi ()
slry

r

<Crg(f)6

For the lower estimate in (ii), firstly, let us show the Wg operator as series. Using
(i), for the W (f) operator, we get

W ()0 = i (€.0):

where

d,f(&,q)* ‘”1 /I‘IZCoskt < §>dqt

By the mean value theorem apphed to i (¢) = coskt on [0,1], we get

g+l (=7 L
S\/Erqz(%)/o (1+kt)Eq2< q >dqt
Ve
=1+k : (7.7)
! I'p (%)

Using g-derivative and taking z = re'® , we have

D f (@) =Dy (We) (@] e

= Y ac[k] [k—1],...[k—s+1], /7 EPO[1 —dr (& ,q)].

Ms

q
k

A\

Integrating from —7 to 7, we obtain



250 7 g-Complex Operators
L ) (= i
o [ [P r@ =i (wz) (1 @) e roaq
-
= asipls+pl,ls+p—1],...[p+1],r"[1-d},,(&,9)].
Then, passing to absolute value and using (7.7), we easily obtain for £ € (0,1]
|Di 7= (Wz) ()

> |asip| [s+pl, [s+p—1,... [p+ 1,7 |1 =di,,(&,q)|

> ’as+p’[s+p]q[s+p_1]q"'[p+lqrpll_ ’derp ’q)H

> agyp|ls+pl,[s+p—1],...[p+1],7" (s+p)

> |agip|[s+pl,s+p—1],...[p+1],7" (s+p)

Using this inequality, we have for p > 1 and £ € (0, 1]

S
-
Lp (7)
Thus, we can say that if there exists a subsequence (&), in (0, 1] with limy_,.. & =0

b= ol,

lr=wz ()] = lap|

and such that lim;_,,, ——=—*

onD,.
Therefore, if f is not constant, then for £ € (0,1], there exists a constant

=0, thena, =0forall p > 1, that s, f is constant

Crq (f) >0 such that ] W (f)Hr > ECoy ().
Now, we consider s > 1. We can write
[0 =D (We) (1), = lasep| 5+l Is+p =11y Ip+ 11,7 5+ p) = f(l)
2

q
for & € (0,1] and for all p > 0. Similarly, if there exists a subsequence (&), in (0, 1]
-0t (o
&
for all p > 0, that is, f is a polynomial degree < s— 1 on D;,.
Therefore, if f is not a polynomial of degree < s — 1, then for £ € (0, 1], there
exists a constant Cy,4 (f) > 0 such that

with limy_,.. & = 0 and such that lim;_,., £ =0, then ay , =0

|07 =D (Wz) ()], = &€ ) .
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