Chapter 5
g-Summation-Integral Operators

5.1 g¢-Baskakov—-Durrmeyer Operators

Aral and Gupta [32], proposed a g-analogue of the Baskakov operators and
investigated its approximation properties. In continuation of their work they in-
troduced Durrmeyer-type modification of g-Baskakov operators. These operators,
opposed to Bernstein—Durrmeyer operators, are defined to approximate a function
f on [0, «). The Durrmeyer-type modification of the g-Bernstein operators was
first introduced in [48]. Some results on the approximation of functions by the g-
Bernstein—Durrmeyer operators were recently studied in [94]. In [62], some direct
local and global approximation theorems were given for the g-Bernstein—-Durrmeyer
operators. We may also mention that some article related to Baskakov—Durrmeyer
operators and different generalizations of them given in [61, 83, 153].

The main motivation of this section is to present a local approximation theorem
and a rate of convergence of these new operators as well as their weighted
approximation properties. The resulting approximation processes turn out to have
an order of approximation at least as good as the classical Baskakov—Durrmeyer
operators in certain subspace of continuous functions.

Recently, in [32], we introduced the following g-generalization of the classical
Baskakov operators. For f € C[0, ), ¢ > 0 and each positive integer n, the g-
Baskakov operators are defined as

Endk—1] wen  x ( kg )
Buo(f,x) = 2
alf:x) kzo[ k Lq (1+x)g+"f ¢ [nlg

= in,k (x) f (qk[kl]fn b) : (5.1)

k=0
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146 5 g-Summation—Integral Operators

Lemma 5.1 ([32]). For qu(t’”,x), m=0,1,2, one has the following:

Byg(1,x) = 1.
By g(t,x) = x,
1
By (1*.x) = x>+ x <1 + —x) .
. [n]q q

5.1.1 Construction of Operators

For every n € N, ¢ € (0, 1), the positive linear operator Dj, is defined by

oo oo /A
DI(f (t) ,X) 1= [” - 1]q z P:ik (x) A P:ik (t)f(t)dqta (5.2)
k=0
where
k
o~ :: {n—i—k—l] 2 b
e AR

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, =) (see [31]).

These operators satisfy linearity property. Also it can be observed that in case g = 1
the above operators reduce to the Baskakov—Durrmeyer operators discussed in [139]
and [142]. Also see [144] for similar type of operators.

Lemma 5.2. The following equalities hold:
(i) Di(l,x)=1.
.. 2],
(ii) Djf (t,x) = (1 + 42[,,,1

1
Z]q) X+ T forn>2.

(3] 2], q(2],(3],+[1]
(iii) DZ (l27X) = (1 + 513[”:13]4 + q2[n,12]q + et )xz-

Pn-2,ln3,

2l
3[n=2,

[n]q+q(1+[2]g) 1]

)
T 2yl

q
x+ 7 n73]q,f0rn > 3.

n
q
Proof. The operators Di are well defined on the function 1, 1, t2. Then for every
n>3and x € [0, ), we obtain

oo oo /A
DI(1,2) = n—1], ¥ P, (%) /0 PY (1) dyt
k=1

— n+k—1 2 /A 1k
=[n—1] ’Pg (x) [ } q? / ————d,t.
qub ¢ L P

Using (1.15) and (1.17), we can write
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n+k—1] 2Bg(k+1,n—1)
k K(Ak+1)

Skl Wyt -2,

Di(1,x) =[n— l]q i'Pik(x) [
=0

= [n—1] Zpgk

[n— 1], k]! n+k— l]q!qk(kH)

= =1, X Pl )

k=0
i[njtk—l} ey b
5 k qq (1+ )Hk
=Bi(l,x) =1,

where B! (f,x) is the g-Baskakov operator defined by (5.1).
Similarly

oo oo /A
D4 (1,0 = n=1], ¥ P /0 Pl (01t
k=0 k

_ /A thtl
q 0 (1+1),

- (k42,02
= n—1] zpjk [”*k 1} g8, (k+2,n-2)
1

S TK@kT)

. - |n+k—1 2o 3= 2[k+ ]q xk
_Z‘{ k L [ =2]y (1)

Using the equality [k + 1], = [k], + q~

k(k—1)

o0 B 3 k N
D4 (1,x) Z{ +]]§ 1] g 7 ¢ ¢ Ky
k=0 q

[n—=2], (14217

& [ntk—1] k) 0 o, 4~ Xk
+2{ 1] e

q 1 [n— 2]q(l+x)"+k

[ i{njtk—l] q"“‘%”q IR LI P
q

q k=0

1 > {n—i—k—l] ) Xk
q k=0 q (1+ )thk

1 antk ‘/t

n] (1 + x)n+k
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From Lemma 5.1, we can write

Finally
’DZ(tz,x) =[n—1] Z / 1)12d,t

oo +k_1 E oo/A tk+2
=[n-1 P (x {n ] 2 / — 7 et
[ ]quz) n,k( ) 0 (1+I)Z+k q

.| e
q
n+k—1 ng(k+3,n—3)
I PR SV W)
q-

=[n-1], qu
k=0

U TS N
= 2P )

Using [k+2], = [k]q—|—qk (2] and [k+1], = [k]q—l—qk, we have

} e (Wral,) (W,
.

2 o - n—|—k—1
P ‘k_zo[ ko 2], -3,
x| ntk—1 x* k255k73 [k]?,
‘kzo[ k } AT =2 =3,
i [ +k—l} xk k253k73 (1+[2]q) [k]q
& T =2 =3,
S [n+k—1 K 2o g 2],
+k26[ k } ,(1+ )"*"q [n—2],[n—3],
Again using (5.1) and Lemma 5.1, we have
=5 n 2 —4 1+[2] [I’l]
PR = e B [ngzmn i)3] K
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q 2] N
_ 61[”]?;"‘[”]4 2 [n]g+q(1+ [z]q)[”]qx [2]61
q°[n —2]4[n -3, ¢°[n—2]4[n -3, 7 ["—2]q [”—3]5,-

Since [n], = [3]; + ¢’*[n — 3], and [n], = [2], + ¢*[n — 2],, we have the desired
result. |

Remark 5.1. If we put ¢ = 1, we get the moments of Baskakov-Durrmeyer
operators as

142x
DMt —x,x) = —) n>2
1+nx

n—2’n>

D,ll(t,x) =

and

(s — xx _2[(n—|—3)x2—|—(n—|—3)x+1] .
e S e

(n? 4+n)x* +dnx+2 ;
(n—=2)(n—=3) ~’

Lemma 5.3. Let n > 3 be a given number. For every q € (0,1) we have

15 1
DZ ((t—x)z,x> < m ((pz(x)—i— m>a

where @?(x) = x(1+x),x € [0,0).

DY(? x) = >3

Proof. By Lemma 5.2, we have

e (Bl B, Rl Bl, )
&G )’)‘<q3[n—31q qZ[n—z]ﬁqﬁ[n—z]q[n—s]q)
[n]g +q(1 +[2]g)[n] _ 2 x mq
*( ¢ 2Jqln 3], q[n—21q> T2, 3,

q°[n—2],[n—3]

q

_ <q3 [3]4[n—2], —q*[n 3], [2], +q[2], 3], + [n]q> 2

f][”]q""f(1+[2]q)[n]q_2‘15[”—3]q N [2]61
*( 2,3, ) T2, -3,
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= x(1+x) <q3 By =21, — 4"l 3], 2, +4[2], Bl, + Mq)

q°In—2],[n-3],

+x<q[n]q+ ¢*(1+[2)9)[nlg —24°[n = 3] — 4’ [3], [n — 2],

q°n—2]4ln— 3]
q*[n-3], 2], —q[2],[3], - [n], N 2],
q4°ln—2],[n-3], ¢’ n—2],[n-3],

By direct computation, for n > 3, we have

¢*[3lyln =21 - q*[n—3], 2], +4q[2],[3],+ [n],

— (q3+q4+q5) ([n—3]q+q”’3> - (q4+q5) n=3],+(¢+q") (1+q9+4°)

_ n—3]q(q3+q +q5_(q4+q5)+1)+qn+qn+l+qn+2

1+q+q2) +qn73+qn72+qn71

'Q/\

+1) +6] +qn+l+qn+2+(q+q2) (1+q+q2) +qn73+qn72+qn71 >0

for every ¢ € (0, 1). Furthermore
qlnlg+q*(1+ 2]y [nly —2¢°[n 3],

=q(1+29+¢") (1+q+...+¢"") =2¢° (1 +q+...+4" %
=q(1+¢%) (14+g+...+¢" ") +2 [(q2+q3+...+q"“) - (q5+q6+...+q"“ﬂ
—(g+¢) (1 +q+ ... +¢" NV +2 [+ +4"]

and
[+ (1+210)] [Py —24° =30y~ [ B, [n=2], ~a* -3, (2], +4 121, 3], + b,

= (q+4") 1], +2 [P +a +4") — (a+a*+4") (1], (1+9))
+(q+4%) ([n]q— (1+q+q2)) —q(1+q) (1+q+4*) — [,
= (q—1)[n], +4"—4<0

for every g € (0,1).
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Thus we have

3 n— 4 n— .
Df (1= %) < x(1+9) (q Dl 2l =2, ol | L,)

q[ q

for every g € (0,1) and x € [0, o). Thus the result holds. |

5.1.2 Local Approximation

In this section we establish direct and local approximation theorems in connection
with the operators Dj. Let Cp[0,0) be the space of all real-valued continuous and
bounded functions f on [0,0) endowed with the norm ||f| = sup{|f(x)| : x €
[0,0)}. Further let us consider the following K-functional:

K:(£,8) = inf {5 =gll+3g"ll },

where § > 0 and W? = {g € Cp[0,) : g/,g" € Cp[0,)}. By [50, p. 177,
Theorem 2.4] there exists an absolute constant C > 0 such that

K(£.8) < Can (£.V5), (5.3)
where

wz(f,\/E) = sup  sup |f(x+2h)—2f(x+h)+ f(x)]

0<h<v/§ X€[0.)
is the second-order modulus of smoothness of f € Cg[0,). By

o(f,8) = sup sup [f(x+h)—f(x)|

0<h<d x€[0,00)

we denote the usual modulus of continuity of f € Cg[0,2). In what follows we shall

[
use the notations ¢ (x) = \/x(1+x) and §7(x) = ¢?(x) + m—, where x € [0,0)
and n > 4.
Our first result is a direct local approximation theorem for the operators Dj..
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Theorem 5.1. Let g € (0,1) and n > 4. We have

8, (x) g 22x+q !
|DZ(fax)_f(x>| SC(DZ <f,m> + <f,[nz—2]q) ,

forevery x € [0,00) and f € Cg[0,e0), where C is a positive constant.

Proof. Let us introduce the auxiliary operators 53 defined by

q *2x+q!

D7) = i) f (4 T

R
x € [0,0). The operators ﬁz are linear and preserve the linear functions:
Dt —x,x)=0 (5.5)

(see Lemma 5.2).
Let g € W2. From Taylor’s expansion

60) =)+ @~ + [ (—0) " du, 1€ [0,)
and (5.5), we get
D!(g.1) = glx) + D ( [ 0w d> |

Iﬁ:nce, by (5.4) one has
D} (g,x) —g(x)| <

gs
< | Dl (/ (t—u) g" (u) du,x) +

. X+ 472[2]q1‘+¢/71 _2 -1
<z>z(’ [ a1 d ,x)+ [ ’+‘1F]‘12]*q‘ ¢ () du

X X q

q 2 q72[2]4x+‘171 ? "
< |Di((r—x)%x) + oz, ) |1 (5.6)
q

Using Lemma 5.3 and n > 4, we obtain

_2 X 1N 2
DZ((t—x)z,x)+<q[[nz]z—;];q) <
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Since
) 1N\ 2
q “[2lgx+q ) 2
— ] 5, (x
( [”—2]q )
_ (149’ +2q(1+q)x+q -3,
N q*n—2]2 =3l x(x+1)+1
< 1 ["—3]q 4’ +dx+1
_q4[n—2]q'[n—2]q'[n—3]qx(x—|—1)+1’
we have

2001 b a1\ 2
oile-o)+ (SREE) < e

Then, by (5.6), we get

15 2 "
m@l g™ lI- (5.7

D (g,%) —g(x)| <
On the other hand, by (5.4) and (5.2) and Lemma 5.2, we have
DL(f,x)] < IDESOI+2 1AL < IAIDELx) +2 < 30f (58)
Now (5.4), (5.7), and (5.8) imply
DL(fx) = f)] < [Da(f —g.%) = (f = 8) ()|

f (x+M> —f(x)

+ [D(g,x) — g(x)|+ n—2],

_ 15 2 "
<4If =8l + g S WIs’

+

qRlgx+a N
f(x—!— [n—2], ) f()|

Hence taking infimum on the right-hand side over all g € W2, we get

IDi(f,x) = f(x)] <

< 15K, <f, m53(x)> o <f’ -2y
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In view of (5.3), for every g € (0,1) we get

X —202] x —1
IDA(f,3) — f(x)] < Can Q%) ‘o <f, q[ﬂ_w) |
n—~2q

This completes the proof of the theorem.

5.1.3 Rate of Convergence

Let B,» [0, =) be the set of all functions f defined on [0, <o) satisfying the condition

|f (x)] < My (14x?), where My is a constant depending only on f. By Cy2 [0, o),

we denote the subspace of all continuous functions belonging to B2 [0, o). Also,

let C%, [0, <) be the subspace of all functions f € C,2 [0, ), for which lim I’Iﬁxx) is
X—00

finite. The norm on C; [0, ) is || f]| .2 = sup,cfo, «) % For any positive a, by

@ (f, 6)= sup  sup |f(t) — f(x)]

[t—x|<& x,t€0, d]

we denote the usual modulus of continuity of f on the closed interval [0, a]. We
know that for a function f € C,2 [0, o), the modulus of continuity @, (f, &) tends
to zero.

Now we give a rate of convergence theorem for the operator Dj..

Theorem 5.2. Let f € C,2[0, =), ¢ =g, € (0, 1) such that g, — 1 as n — o and
0q+1 (f, 8) be its modulus of continuity on the finite interval [0, a+ 1] C [0, o),
where a > 0. Then for every n > 3,

K [k
D5 (f) = fllcp, o) < m+2“’a+l <f, m) =

where K = 90Mf(1 +a2) (1 +a—|—a2).

Proof. Forx € [0, a]andt > a+ 1, since t —x > 1, we have
F(6) = F ] < My (2427 +7)
< My (2438 +2(- %))
< 6My (1+d%) (t—x)*. (5.9)

Forx € [0, a] andt < a—+ 1, we have

rO-r@ <an - (145 a0 G0

with 6 > 0.
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From (5.9) and (5.10) we can write

| — x|

|f(t)—f(x)|§6Mf(l+a2)(t—x)2+<l+ 5 )wa+1(f, d) (5.11)

forx € [0, a] and ¢ > 0. Thus
D (f,%) = £ ()] < D (1f (1) = f (0] ,%)
< 6M; (1+a®) Df (1 -2 x)

a1 (f, 6) (1 +%D,‘§ ((t—x)z,x)%> .

Hence, by Schwarz’s inequality and Lemma 5.3, for every g € (0,1) and x € [0, 4

90Ms (1+a*) [ , 1
q°[n—2], <(P (X)+[”_3]q>

a1 (1, 8) (Hé\/ﬁ ("’2@* [n—13]q)>

K

1 K
m+@a+1(f, o) (14-3 m)

By taking 6 = /ﬁ, we get the assertion of our theorem. ]
q

Corollary 5.1. If f € Lipyo on [0, a+ 1], then forn > 3

D (f%) = f ()] <

<

K

1D () = Fllco, o < (1+2M) Fh—3,

Proof. For a sufficiently large n,

K K
<

q°[n—3] q°ln—3],’

q q

because of lim,_;e. [n — 3] = Hence, by f € Lipy o, we obtain the assertion of
the corollary. |
5.1.4 Weighted Approximation

Now we shall discuss the weighted approximation theorem, where the approxima-
tion formula holds true on the interval [0, o).
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Theorem 5.3. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
fec; [0, o), we have
1 qn _ —
lim (D (£) ~ £l =O0.

Proof. Using the theorem in [65] we see that it is sufficient to verify the following
three conditions

lim | Df" (1¥,x) =x'||,o =0, v=0,1,2. (5.12)
Nn—yo0

Since Dji" (1,x) = 1, the first condition of (5.12) is fulfilled for v = 0.
By Lemma 5.2 we have for n > 2

D (1,x) — x|
Dq" t7 — — S ’Vl;
|| n ( X) Xsz xe[gpm) 1+x2
[z]qn X 1

< sup +
61% [l’l - 2](/,, x€(0, o) 142 qn [}’l - 2](/,,

2] 1
< 5——+
qn [Vl - 2](],, dn [Vl - 2]L]n

)

and the second condition of (5.12) holds for v =1 as n — co.
Similarly we can write for n > 3

. < (q3 [3]61,, + [2]q,, qn [2]61,, [3]q,, + [n]q,, ) sup x2

[nf?’]q,, qlzl [n72]q” qg [n_z]q,, [n_3]q,, x€[0, o) l+x2

HDZ" <t2,x> -

(Ve an (1421, ) 11, N 2
a2, =3, ) seore 142 @31-2], [1-3],,

[3]q,, [2](1” qn [2](1” [3]%, + [n]q,,
~qpn-3,  @h-2, ¢nh-2,0h-3],
g, +an (1+121,,) I, 2,
g n—2], [n=3], apn—2], [n-3],"

which implies that

Jim || (#2,x) =] o = 0.

Thus the proof is completed. |

We give the following theorem to approximate all functions in C2 [0, ). This
type of results are given in [71] for locally integrable functions.
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Theorem 5.4. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
f€C2l0, ) and o > 0, we have

|DZ" (fax) _f(x)|

lim sup =0.
5% e, @) (1+a2)

Proof. For any fixed xo > 0,
DI (f,x) — f (x)] < D" (f,x) = f (%) D" (f,x) — f (x)]
sup sup

w0, ) (1427 Ty (14a2) ex (1422)7

Din (1—0—1‘2 x)’
< IDI(F)— + su ‘—7
< IPE) ~ Fleto I s0p -

v

x>x0 (1 —I—x2)1+a '

The first term of the above inequality tends to zero from Theorem 5.2. By Lemma 5.2
| D" (144 x) |

for any fixed xp > 0, it is easily seen that sup 2)1 —— tends to zero as n — oo,

x>x) (1+x
We can choose xp > 0 so large that the last part of above inequality can be made
small enough.

Thus the proof is completed. ]

5.1.5 Recurrence Relation and Asymptotic Formula

The g-Baskakov—Durrmeyer operators Djl (f,x) can be defined in alternate form as
S =k a
Dg (f(t),x) = [n_l]qun‘k(-x)‘/o q pn’k(t)f(t)dqta (513)
k=0
where
Pik (x) ==

{n—f—k—l] 2k Xk
q

x
k (1 —I—x)g+

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, =) (see [88]). Also

(1+x)(1+gx)... (144" %),

(10 = -z~ { |
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Lemma 5.4. [fwe define the central moments as

oo oo /A
Tom(x) = Djf (1 = x)7,x) = [n—1]¢ Y, PZ,/((X)/O CIkPZ,k(t) (t —x)gdyt,
=0
then

Tn,O(x) = lan,l(x> = qz[[}f]Z 2]x+ q[nl_Z]’

and for n > m+ 2, we have the following recurrence relation:

(k= 0021 ) o) = 030140 [ D4 0) 010
(Bl a2 ) b Tl

+|2leq"x( Blyg"x+q—x ) = Blog™" % = gx| [m]gTom-1(g%)
(s ) |

| s (Blas + ) - Bl 10 -
r 2 Bt g i 1 2(a0)

+x(1 = g™ N[l Tom(qx) + gx(1 = ¢" )l T m(gx)
=g (1—=¢" ") (1 = ¢")[n)g T m—1(gx),
and we consider T,, _ye(x) = 0.

Proof. Using the identity

gx(1 +x)Dq[pz7k(x)] = <qk[kl][qn]q —QX) [n]ql’z,k(qx)

and g-derivatives of product rule, we have
S q = kg
(60D, Tyn(3)] = =1}y 3, ax(1+20D o, (0] [ ¢l (0) =
k=0

m
"yt

- o/
- [m]q[nfl]ql;)qX(lﬂ)pZ,k(w) /0 q pl (1) (t—q)ydyt.
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Thus

E = gx(1+7) [Dq Tym(0)] + [quTW(qx)}

- K /A
— [n)yln— mgo P gv) (Qk[l]f;]q _ qx> /O G () — )t

oo DQ/A
= [n}q[n—l]qu;)pzyk(qx)/o qk (qk* [n}qitht q"x—qx+q x)p () (= x)’”d t

=[n- 1]q§0p3,k(qX) /:/A d'q B (1 + é)] D, {PZ,k (2)] (r = x)gdgt

/A
+nlg n—lqunk qx/ q'pl ()t —x)pdg
k=0

JA
+[n]q[n —1]4qx(¢" Z Pn x(qx / qkpzk(t)(t —x)gdgt
oo OO/A
=[n- 1]qk§0p2,k(m /0 q(1q+1*)D, {PZ,k (2) ] (1 = x)g dgt
S q /A k q m+1
+nlgln—11g Y pi i (gx) /0 q Py ()t = x)g " dyt
k=0 h

oo /A
+[n]g[n — 1) 4qx(q"™ 2 pn (ax / qkpik(t)(t —x);”dqt.

Using the identities
(t—q")(t—q""'x) = 1* — [2)yq"xt + g™

and

(1= ")t — " x) 1= " 2) = 1 = (g™ + By 1% — P,
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we obtain the following identity after simple computation:

(gt + tz) (t—x)g = (gt + tz)(t —x)(t— qx);"fl = [l3 +(g— x)t2 - qxt} (r— qx);"*l

— -y (Bt g ) - g0
[ las{ Blads g} - 812 - 00 -
e (Bl a ) - Bla? 5 - |

st e - g -

Using the above identity and g-integral by parts

b b
[ Dy (v dgt = e ) = [ vian)Dyfute)lds,

we have

E = —{m+ 2}y Ty e (g) ([3Jqqu+ g —x> [+ 1] Toom(4)

[l (Blaas+ g ) = Bl = ] T2 00

Jone{ s (Bl a-x) - Bl - o

+q2m+1x2{q2x_ [3]qqu_ q —|—x}:| [m — 1]an7m72 (qx)

I oo /A
Hliln =11 X plaa0) [ a0 =07
k=0

/A,
q" Py (1) (t = x)gdgt.

ol = Uegr(1 =" ) 3 Pyl |
k=0

Jo
Finally using

(t=x)g = (=x)( —gqx)y = (1 —qx)y ™ —x(1 —¢" ") (1 — g
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and

(t—x)=(—x)(t—qx)y " = (t—qx)) —x(1—g")(t —qx)i ",

we get

E = —{m+ 2}y Ty e (g) ([3Jqqu+ g —x) [+ 1] Toom(4)

[l Blaas+ g ) = Bl = o] W T2 09
e s (Bl a-x) - Bl - o

—l—qz’”“xz{qzx —[3l4¢"x—q —i—xH [m—1]4T,m—2(gx)

g Tns1(gx) = x(1 = ¢ 1) ] Ty ()
—gx(1=¢" ")nlgTum(gx) + (1 =" ) (1 = ¢") [l Ton—1(g)-

Thus, we have

(= 0121 ) T (09 = 5140 | DT (0) Il o109

(Bl a2 b Tonlan)

+|las (Bt g x) = Bl 2 o] i T2 00

+[are] s (Blads ) ~ Bla 2 - |
+g" {qzx —[34q"x—q +X}] m— 1] T m—2(gx)

+x(1 =" 1) gTon(gx) + qx(1 — ¢" ) )y Tm(gx)
—gx* (1= q" ) (1 = ¢")[nlg Tnm—1(qx).

This completes the proof of recurrence relation.
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Theorem 5.5 ([88]). Let f € C[0,) be a bounded function and (q,) denote a
sequence such that 0 < g, < 1 and g, — 1 as n — oo. Then we have for a point
x € (0, )

lim [, (D" (£,x) = f () = (2x-+ 1) lim Dy, f (x) +x(1+x) lim D2,/ (x).

n—yoo

Proof. By g-Taylor formula [49] for f we have

1

f(t)=f(x)+Dgf (x)(t —x)+ @Df,f(x) (t—x)2 4+ @y (x:1) (t — ),

for 0 < g < 1 where

S0~ F(0)=Dy () (1=3) ~ pf DG/ (x) =) "
D, (x;1) = )2 , ifxgy (5.14)
0, if x=y.

We know that for n large enough

Lim®,, (x;1) =0. (5.15)

t—x

That is, for any € > 0, A > 0, there exists a 6 > 0 such that
| D, (x;1)] <€ (5.16)

for | — x| < & and n sufficiently large. Using (5.14) we can write

D, f ()
D (f:) = f () = Dy f () Tt () + =15

() + B3 (x).
qn

where
q N 7 " kg 2
B4 () =ln— 1), Xl @) [ a0l (0@ () (=)}t
k=0

We can easily see that

lim [n],, T, 1 (x) =2x+1 and lim[n]y, T2 (x) = 2x (1 +x).
n—seo

n—yoo

In order to complete the proof of the theorem, it is sufficient to show that
limyses ], Ey" (x) = 0. We proceed as follows:
Let

an()_[] [_1] i dn °<’/Akqn . 2
0 = [l In =11, 3 w05 ) [ bl (0@, (300 (=20 s (1)t
k=0 b
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and
i /A
R (=l = 1y, 3o 00 [ dhplic (0@, (1) 6 =05, (1= 20 ot

so that
(], EX" (%) = Ry, (x) + Ry'5 (x)

where y, (t) is the characteristic function of the interval {7 : [t —x| < 8}.
It follows from (5.14)

o (x)’ <€2x(x+1) asn—oo.
If | — x| > &, then ’d)qn (x; t)’ < 5% (t —x)*, where M > 0 is a constant. Since

(t—x)* = (t—q2x+q2x—x) (t—q3x+q3x—x)
= (t—qzx) (t—q3x) +x(q3 - 1) (t—qzx) +x(q2 — 1) (t—qzx)
+2 (= 1) (=) +2 (1) (¢ 1),

we have

‘an2(x ’ =5 [”} n=1l,, Zzﬂ” / qspln () (1—x); dgt
/A
*%"(‘(qi”) (@)l b1, S0 [ dho )0, d

M /A
+532 (@2=1) " [y, [n— llq,,ZPq” / i (1) (1 = x)g, dgt

and

RIS

{11y, Tns () +x (=23 I, T3 () (£2-1)7 ), T2 ()}

Using Lemma 5.4, we have

RY (%) ‘ <

Cn G C
7 Tn73 (x) m n .
Algn

We have the desired result. |

Tn,4( ) <

IN

Corollary 5.2. Let f € C[0,) be a bounded function and (g,) denote a sequence
such that 0 < q, < 1 and g, — 1 as n — oo. Suppose that the first and second
derivatives f (x) and f" (x) exist at a point x € (0, ), we have

tim [n],, (D" (f,%) = f (1)) = f () 26+ 1) +x(1+2) " (x).

n—yoc0
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5.2 ¢-Szasz-Beta Operators

Very recently Radu [136] established the approximation properties of certain
g-operators. She also proposed the g-analogue of well-known Szdsz—Mirakian oper-
ators, different from [29]. After the Durrmeyer variants of well-known exponential-
type operators, namely, Bernstein, Baskakov, and Szdsz—Mirakian operators, several
researchers proposed the hybrid operators. In this direction Gupta and Noor [90]
introduced certain Szdsz-beta operators, which reproduce constant as well as
linear functions. In approximation theory because of this property, the convergence
becomes faster. Very recently Song et al. [143] observed that signals are often of
random characters and random signals play an important role in signal processing,
especially in the study of sampling results. For this purpose, one usually uses
stochastic processes which are stationary in the wide sense as a model [141].
A wide-sense stationary process is only a kind of second-order moment processes.
They obtained a Korovkin-type approximation theorem and mentioned the operators
such as Bernstein, Baskakov, and Szdsz operators and their Kantorovich variants
as applications. Here we extend the study and consider more complex operators
by dealing with the g-summation—integral operators. In the present study, as an
application of g-beta functions [49], we introduce the g- analogue of the Szasz-
beta operators and obtain its moments up to second order to study their convergence
behaviors.
Radu [136] proposed g-generalization of the Szasz operators as

k
7‘] f7 zsnk k(k g f (qk[l]f;]c) ) (517)

where

sz,k (x) = %Eq (—[n]qqu) )

Lemma 5.5 ([136]). We have the following:

Sng(l,x) = 1.

Spq(t,x) = x.

Spa(t*,x =x2—|—i.
;L]( ) [n]q

5.2.1 Construction of Operators

For every n € N, g € (0, 1), the linear positive operators Dj are defined by
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—  3k2-3k oo /A

DL 0)2)i= X0 T 5040 [ a0 (a0 dat +Ey (il £(0) 519
where

J e 1 tk71

pn,k( ) T Bq (I’l+ 1;k> (1+I)Z+k+1
and
k
SZ,k (x) = ([[ll]qq!) E, (—[n]qqu)

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, o) (see [87]). In case g = 1 the above operators reduce to the Szdsz-beta
operators discussed in [90] .

Lemma 5.6 ([87]). The following equalities hold:

(i) Di(l,x)=1.
(ii) Di(t,x) = x.
(iii) DI (2,x) = M 2lex S,

Proof. For x € [0, o) by (5.18), we have

oo q3k22—3k wo/A -1
Di(1,x) = s (x) ———— ————d g+ E;(—|n|x
n( ) /Zi mk( )Bq(n—i—l,k) o (1+I)Z+k+1 q CI( [ ]CI )
— Y (x)—/ 4+ E, (~[n)).
,Zl By (n+ 1K) Jo (1R

Using (1.15) and (1.17), we can write

DY1LE) = 3ot ) g o+ e (Il

k=1
< -3k 1
= ZsZ,k x)q D) +E;(—[n]gx)
k=1 q
= Y50 (g By (=[n]g)
k=1
_ 5 W) e ) _
= Wq!q Eq (—[n]qq x) =Sng(l,x) =1,

where S)! (f,x) is the g-Szdsz operator defined by (5.17).
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Similarly

oo o /A
Di(t,x) =Y, sZ’k (x)/o pZ,k (1) qtdyt

k=1
o £ B N
= ZSZ,k (x) B Cé / 1 it dat
k=1 g(n+1Lk)Jo (141);
3k2 3k

:isq () q 2 qBy (n,k+1)
nk B, (n+1,k) K(Ak+1)

_ S s7 (x % [n+k]‘]' [k]q
_kgl i () g ]! k—1],! [n+k,lq 2

o [k ) it k 2
- Zz)& st g =Y —k[l][]n] st (0 =8 q(t,%) = x.
> 1, w

Un—1],!

(k+1)

k=049 q

Finally for n > 1, we have

hnd 3k2 3k oo /A
DL = X0 T [ 0
3k2—3k

7 () /W/A ar! dyt
M By (n+1,k) Jo (14t 1

Il
M

3k2 3k

g 7 ¢By(n—1,k+2)
= By(n+1,k) K(A,k+2)g 23412

S o B, ¢
= D su(g ] [n—1], 2z
q aq 2

Using [k+ 1], = [k]q—i-qk, we have
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Remark 5.2. Letn > 1 and x € [0,e0), and then for every ¢ € (0,1), we have
DI((t —x),x) =0

and

. X%+ [2gx

DZ((I—X)Z,X) q[}’l—l] .
q

5.2.2 Direct Theorem

By Cg[0,0), we denote the space of real-valued continuous and bounded functions
f defined on the interval [0, ). The norm-||.|| on the space Cg[0,<0) is given by

1l = sup |f(x)].

0<x<eo
The Peetre K-functional is defined as
K>(f,8) =inf{||f —g||+ 8]¢"|| : g € W2},

where W2 = {g € Cp[0,) : g’,g" € Cp[0,%0)}. For f € Cp[0,) the modulus of
continuity of second order is defined by

o (f,V8) = sup sup |f(x+2h) = 2f(x+h)+ f(x)].

0<h</8§0=x<eo

By [50], there exists a positive constant C > 0 such that

K>(f,8) < Can(f,8"%),6 > 0.

Theorem 5.6. Let f € Cp[0,0) and 0 < g < 1. Then for all x € [0,°) and n > 1,
there exists an absolute constant C > 0 such that

Di(f,x) = f(x)] < Cop (f, M) :

2q[n—1]q

Proof. Let g € W2 and x,t € [0,0). By Taylor’s expansion, we have

0 = )+ ¢ () =)+ [ (=)

Applying Remark 5.2, we obtain

Dyl ) = Df [~ ).
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Obviously, we have | [ (t —u)g" (u)du| < (t — x)?||g"||. Therefore

Xz X
ID9(g,x) — g(x)| < DI((1 —x)2,2)|"] = = 2l

"
— g .
ripldl

Using Lemma 5.6, we have
q hnd 3k 3k oo /A q
D3 (f,x) Z /0 Py )11 (qt) |dgt + Eq (= [nlgx) | £ (0) | < [ f]].

Thus
I DA(fx) — f(O)] < [DI(f —g.x) = (f —8) ()| + D (g,x) — g(x)]

A 2gx
m”g IE

q

<2lf—gll+

Finally taking the infimum over all g € W2 and using the inequality K>(f,8) <
Can(f,8'?),8 > 0, we get the required result. This completes the proof of
Theorem 5.6. ]

We consider the following class of functions.

Let H2 [0, o) be the set of all functions f defined on [0, =) satisfying the
condition |f (x)| < My (1+x?), where My is a constant depending only on f.
By C,2 [0, =), we denote the subspace of all continuous functions belonging to
H [0, ). Also, let C5, [0, =) be the subspace of all functions f € Cy2 [0, ),

lf (“;)2 is finite. The norm on C3, [0, =) is || fl,2 = Sup,cfo, o) ‘{i“?z‘

for which lim
x| oo

We denote the modulus of continuity of f on closed interval [0, a],a > 0 as by

@ (f; 8) = sup  sup [f(t) = f(x)].

[t—x|<& x,t€(0, d]

We observe that for function f € C2 [0, ), the modulus of continuity @, (f, 0)
tends to zero.

Theorem 5.7. Let f € C2[0, ), g € (0,1) and @y41(f, 8) be its modulus of
continuity on the finite interval [0, a+ 1] C [0, o), where a > 0. Then for every
n>1,

a a? a P
ID8(f) ~ fleg g < U F D+ <f, a2+ >>.

‘1[”—1]61 [”—1]61

Proof. Forx € [0, a] andt > a+ 1, since t —x > 1, we have
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()= F ()] < My (245" +17)
< My (2438 +2(- %))
< 6My (1+d%) (t—x)*. (5.19)

Forx € [0, a] andt < a—+ 1, we have

rO-r@<an - (145 oo G0

with 6 > 0.
From (5.19) and (5.20), we can write

|t — x|

0@l <omy (4 -7+ (145 @ 8) 621

forx € [0, a] and # > 0. Thus
Dt (f,) = f ()| < D (1f (1) = fF ()], %)
< 6M; (1+a) DY ((t—x)2 ,x)

+0us1 (f, 8) <1+%D,‘{ ((t—x)z,x))%.

Hence, by using Schwarz inequality and Remark 5.2, for every ¢ € (0,1) and x €
[05 a]7

6My (14 a?) (x> + [2]4x)

1D (fx) = f ()] <

qln— 1)
1 [x24+2]4x
§) (142, |t
+wa+l (f7 ) < + K q[n—l]q
6Ma(1+a?)(2+a) 1 [a(2+a)
< + a1 (f, 0) | 1+ 54| —= |-
gln—1]q 41 ) 6\ gln—1]4
By taking § = %, we get the assertion of our theorem. This completes the
proof of the theorem. |

Remark 5.3. 1t is observed that under the assumptions of Theorem 5.7, the point-

wise convergence rate of the operators (5.18) to f is ﬁ for0< g, < 1and
qnin—1Lig,

qn — 1 as n — co. Also this convergence rate can be made better depending on the
choice of g, and is at least as fast as than T
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5.2.3 Weighted Approximation

Now, we shall discuss the weighted approximation theorem as follows:

Theorem 5.8. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
[ €C510, =), we have

lim (D (£) ~ £l =0.

Proof. Using Korovkin’s theorem (see [65]), it is sufficient to verify the following
three conditions:

lim | D§" (1¥,x) =x'||,o =0, v=0,1,2. (5.22)
Nn—yo0

Since D} (1,x) = 1 and D" (¢,x) = x, (5.22) holds for v=0and v = 1.
Next for n > 1, we have

] 2 2] x
DI (12 x) —x* —2__ 1] sup + 4 sup
H " ( ) sz <qn[”_l]qn x€0, o) 1+x2  guln— 1], xe[0, =) 1 +x?

1 2],

< +
gnln—1]g,  gnln—1]g,
which implies that
1 n 2 2 _
tim [ Dff (2,) 22 =0,
Thus the proof is completed. |

Next we give the following theorem to approximate all functions in C,2 [0, oo).
This type of result is given in [70] for locally integrable functions.

Theorem 5.9. Let g = q, satisfies 0 < q, < 1 and let g, — 1 as n — oo. For each
f€C2]0, ) and o > 0, we have

i D" (%) = f ()]
im sup

—0.
1, (1422)1

Proof. For any fixed xo > 0,
DI (f,x) — f (x)] DI (f,x) — f (x)] DI (f,x) — f (x)]
e < sup I sup e
) v<xg (14x2)F wxy  (1+4x2) ¢

|Di" (1+1%,x) |
W

sup
x€l0, ) (142

<P () = Flicpo, x) + I1f1l,2 sup

x>x0 (1 =+ X

f ()l

+sup )Ha.

x>x0 (1 +x2
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Obviously, the first term of the above inequality tends to zero, which is evident
from Theorem 5.6. By Lemma 5.6 for any fixed xo > 0O, it is easily seen that
sup | D (1442 x) |
xX>x0 (1+x2)l+a

that the last part of above inequality can be made small enough. ]

tends to zero as n — oo. Finally, we can choose xy > 0 so large

5.3 ¢-Szasz—Durrmeyer Operators

In this section we present direct approximation result in weighted function space
with the help of a weighted Korovkin-type theorem for new g-Szasz—Durrmeyer
operators (see [33]). Then we give the weighted approximation error of these
operators in terms of weighted modulus of continuity. Finally, we establish an
asymptotic formula.

Recently for 0 < g < 1, Aral [25] (also see [29]) defined the g-Szasz—Mirakian
operators as

¥) = —n x < [k]gbn ([”]qx)k
s =6 (bl ) 37 (550 gt O

where 0 < x < o (n), 0y(n) := (lle—';[m,f € C([0,0) and (by) is a sequence of
positive numbers such that lim,,_,.. b, = c. Some approximation properties of these
operators are studied in [29].

Based on this, we now propose the g-Szdsz—Durrmeyer operators for 0 < g < 1 as

qbn

B0 =223 [ st 0 f ) (5.24)

where

(0 = (”—)kE (-t )

kil k
q 2 [kl,! (bn)
Remark 5.4. Note that the g-Szdsz—Durrmeyer operators can be rewritten via an
improper integral by using Definition (1.13). We can easily see that £, (—%) =0

for n < 0. Thus for 0 < g < 1 we can write

ZA(f(t),x) = [Z]q ZSZ,k (x) /0 abn sZ,k (t) f (1) dyt.
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By [29], we have

b
SO = L Sflen) =5 SHP0) = g+
n
q
Sz(ﬁ’x) =g+ ([2]q+1) qﬁxz-l-ﬁx,
[, [,

2
%“M=ffﬂmwﬂwm+@@%MM+mmb<m)L

where

5.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results.

Lemma 5.7. We have

b
Z1(1,x) =1, Z,‘f(t,x):qzx—i—q =,
[,

2

b b

92 ) — 62 5.4, 3\ O o bn
Z1(1*,x) = ¢°x +(q +2¢*+q ) DR (1+q)<[n]q> :

where
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gbn

k
- [Zlq IEHE kl(Lq))k P (— [n]qb%) .

=0 " g7 [k, (bn
Using (5.19) and change of variable formula for g-integral with t = g [z]” y, then we
q
have
[n], & b =
2000 = 34 Y st 01— [TV E, () dyy
S g, I,

()L

&0 K], ! (bn)
=87 (1,x)=1.
Also, using a similar technique, from (5.24) with t = q[fl’—}”y, we have
q

gbn
1—4"

Zl(tx) =LY 51, (x) SZJc (r)rdgt
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From (5.24) and (5.23), it follows that

)5 (W) s,

b
S0k, ()" [y

)5 ()" (a6, +1)

S0k, )k Il

28(1.2) = gk, (— ],

SHES

@‘lk

— ot (-1,

= P8I (1,x) + qb "S9(1,x) = ¢
[n],

qbn
[n],
On the other hand

(1) g
20" g K, () ([n]q)k+3

l
/0 V2E, (—qy)dgy

k
n| q) g3 ( bn)k+3

b, &= X s [k]q!(bn)k ([n k+3

I, (k+3)

k
()" @aP s 11, 42,

- JE, (— qu%) ZE) K () ([n]q>2
oy (1) 62 (alk, +1) (1, + 01,
= ¢’E, (— [n]qb—n> ZE) K], (b ([n]q)z
b

by
=¢8I (Px) +4 (q 2], + q2) »

= ¢% +(q +24* +q)[b] x+gq (1+q)<

Other moments can be calculated similarly.

Lemma 5.8. We have the following:

L 2}t —xx) = (¢ —1)x+qpt.

2. 21 ((t—x)z,x) (( O2P+1) P4 (¢ 424 +9-2) fxta (14) (ﬁ;)z)

3z ((t—x)4,x) =x* (q20 —4g"?2 +6¢4° —4q* + 1)
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gai (g )+d3( Ja —4 (121, +1) Lea'®—ddi (g ))x3

+ bVl
+6(q°+2¢" +4°) g —4fr
q"a (g ( 2 +q%ax(q) +ds(q)q ([2]q+1)[—2f; 5
+ 2 | X
+ds (q) g 4¢° (T) ~dds (q) 4 () {1 +6(1+a) ¢ ()
2 2
g"ar(g) () +a"a (q) e +s (g) () +da(a)
+ q , . ’I3 q q X
—4g* () 12,13],

5.3.2 Approximation Properties

Let B, be the set of all functions f defined on [0, o) satisfying the condition
|f (x)| < Mg (1 —l—xz), where My is a constant depending only f. C, denotes the
subspace of all continuous function in B, and C; denotes the subspace of all

functions f € C, for which lim ‘{f;)z‘ exists finitely.
X—yoo

Let (0y,) be a sequence of positive numbers, such that lim a, = e and
n—yoo

s )

<x<oy 1+ 2

2,[0,a,]

for f € B;. These type functions are mentioned in [71].

Theorem 5.10. Let f€C; and g = q, satisfies 0 < g, < 1 such that g, — 1 as
n — oo, Ifhm,Hw W =0, we have

1 (12 (F) = fll o o, ] =0

Proof. On account of Theorem 1 in [71], it is enough to show the validity of the
following:

lim | Zdm (1Y, x) — 2[00, ()] = 0, v=0,1,2. (5.25)
Since, Z" (1,x) = 1, it obvious that
hm 2 (1,x) = 1|, (0.0 (m)] = 0.
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Using Lemma 5.7, we obtain

. X qnbn
lim || Z2" (¢t,x) — x <(1-¢ su +
28 00 = oo ) = (1= 9P | =

ann
<(l—-gp)+
o,
and
. ) 2
,}gﬁ,HZ’? (1) —x ||27[0,Ocqn(n)]
Zin tz,x —x?
= lim sup Lw
”*)OOOSXSOQM(V!) 1+x
2
X b X
< (1 — q6) sup + (qs + 2q4+ q3) " sup
n 0<x<atg, () 1+x2 n n n [n]t]n 0<x< gy (n) 1+x2
b ? 1
+@2(1+q,) | — sup —
" ! [n]qn 0<x<ay, (n) 1+x?
b b 2
< (1-48) ++ (a2 +2a0+a) o=+ == | 4 (1+a0).
[]g, ~ \ [nl,,

. . b, __ . . . qn _ .
Since ,{Lni[ = 0 and ’{gniqn =1, we have ’}grgo"zn (t,x) tzy[O,aqn(n)] =0and
lim || D" (12,x) —x*|, [0.04,(n)] = - Hence the conditions of (5.25) are fulfilled and
n—yoo |V Yn
we get ’}g{}oHZﬁ (f) —le[O’aqn(”)] =0 for every f € C}. [ |

Now, we find the order of approximation of the functions f € C; by the operators
Z, with the help of following weighted modulus of continuity (see [153]).
Let

Qz(f;3)= sup |f(x+h)_f(x)|

5—, foreach f€C;.
0<h<dxel0a(m) 14 (x+h)

The weighted modulus of continuity has the following properties which are similar
to usual first modulus of continuity.

Lemma 5.9. Let f € C5. Then, we have the following:

(i) Qo (f;98) is a monotone increasing function of 6.
(ii) Foreach f € C3, limg_,o+ Q, (f;9).
(iii) Foreach A >0, Qy (f;18) < (1+A1)Qy(f;0).

Now we give the main theorem of this section.



5.3 ¢-Szasz—Durrmeyer Operators 177

Theorem 5.11. Let f € C; and q = g, satisfies 0 < g, < 1 such that q, — 1 as

. by,
n— Ifnltﬁnzo o

=0, then there exists a positive constant A such that the inequality
ZI(f.x)— f(x —
sup M SAQZ (f, aq (n)>
xE[Oqun (n)] (1 —I—xz)?

3 by
[,

holds, where a, (n) = max {1 —q } and A is a positive constant.

Proof. Fort >0, x € [0,04,(n)] and 8 > 0, using the definition of Q; (f;8) and
Lemma 5.9 (iii), we get

| — x|

0=l < (1 re-?) (1450 ) e (19

| — x|

<2(1+2) (1+(r—x)2) (1+ 5 )Qz(f;3).

Since Z7 is linear and positive, we have

|27 (f,x) = f ()]
<2(14+22) Qy (f:8)

X {1 + Z8((t —x)%,x) + Z4((1+ (t —x)?) i ;x| ,x)} . (5.26)

To estimate the first term of above inequality, using Lemma 5.7, we have

z4 ((t—x)z,x) = 29 (2,x) — 2629 (t,%) + 229 (1,%)

b
= (q6—2q2+1)x2+ (q5+2q4+q3—2q) 2 x

[n],
b 2
+4*(1+q) (ﬁ)

2
2b, by,
g(q6—2q2+1)x2+ x+2
o\,

2
< (1 —q3)2x2+ 2b"x+2 ( b )

[l [,

<A10(ag(n) (1+x+x%), (5.27)
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where A; > 0 and a4 (n) = max{l -, [1;—?} Since lim 2
q

=0and limg, =1,
n—soo g, n—so0

there exists a positive constant A, such that
zd ((t —x)? ,x) <Ay (1+x%).

To estimate the second term of (5.26), applying the Cauchy—Schwarz inequality,
we have

(1) S50e) <z (e ) (22 5204) )

Using (5.27) and Lemma 5.8, by direct computation we get

(Z,‘f (1 + (t—x)4,x))% <A;(1+x+x%)

and

<Zg <<t ;;)Zax>> 2 < %(’)(aq (n))% (1 —i—x—l—xz)%

for A3 > 0 and A4 > 0. If we take 0 = a,, (n)%, A=2(1+A,+2A3A4) and combine
above estimates, we have the inequality of the theorem. |

Now we give an asymptotic formula with respect to weighted norm. The symbol
U C% will stand for the space of all twice-differentiable functions on [0,e) with
uniformly continuous and bounded second derivative.

Theorem 5.12. Let f € UC3, q = g, satisfies 0 < g, < | such that g, — 1 asn — o

and lim 2 = 0 then
Nn—yo0 [n]qn

g (20010 () =0

uniformly on [0, o, (n)]. Particularly

Jim 2 (z;gn (f,x) = F (x) — (xf'+f')) —0

nvee [,

uniformly on compact subsets of oy, (n).

Proof. On account of Theorem 1 in [12], we need the show that:

1. Timy e (1+—12)2 ([”;q" 2zt (-2 x) —2x) =0,

n

2. 1imn%ﬁz ([’%Zgn ((=x),x) = 1) =0, for k=0,1.
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1 [ ] n n
3. hmnﬁm Wl—:zg ((l —_x)4 ,.X) =0.
n

Mgy Zan
4. SUPsc[0,0,0(q)) SUPn>1 m—bj—Z;f ((l —_x)z 7x) < oo,

n 6 2
Since lim,,_se [IQZ” (qg —2¢2+ 1) =lim, e 1;5” (%) =0, we have

fim, e L (%zq (=27 x) —2x)

(1+2)

2

X N L 2
e 2

X .
+—— lim (qf,+2qi+qf,—2q,,—2)

(1+4x2) n
1 bn
+——— lim ¢*> (1+q,) =0
(1+4x2)%no"" "I,

uniformly on [0, ay, (n)]. Also, for every x € [0, oy, (n)]

- d (g Zan
limy e m‘ (b—ZZ,? ((t=x),x)— 1)

xk : [n]% 2
e e

xk i 1—4q}
) m
1 +x2) n—e b,

=0

for k = 0, 1 uniformly on [0, oy, (n)]. Since

n—voo

14, (Q5°4q}12+6QS4613+1) —o

My, a0 s 2 .
lim B, (qn —4q,"+6q f4qn+1) = ,}5‘30 —ar

n
we have

1 n
lim — [ ]qn
oo (1 +x2) by

Z4n ((t—x)4,x) ~0.
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Finally

SUPxe(0,04(q)) SUPn>1 (sz)z By Zin ((t —x)2 ,x)

= sup sup—
x€[0,0m(q)) n=>1 (1 —|—x2)2

b
+ (q3+2qi+q,3—2qn)+qﬁ(l+qn) . 1

n
< sup [[bi (qﬁ—Zqﬁ+ 1)

n

b
+ (q3+2qi+q,3—2qn)+qﬁ(l+qn) [n]" 1 <o,
qn

and hence the result follows. |

5.4 ¢q-Phillips Operators

Phillips [135] defined the well-known linear positive operators

oo kok k—1 k-1
P,(f;x) = nZef”XQ/e*"’—n ! F@)dt+ e f(0),

. n!
0

where x € [0,0). Some approximation properties of these operators were studied
by Gupta and Srivastava [93] and by May [123]. Bézier variant of these Phillips
operators was proposed and studied by Gupta [85], where the rate of convergence
for the Bézier variant of the Phillips operators for bounded variation functions was
discussed. Very recently, Mahmudov in [119] introduced the following g-Szdsz—
Mirakian operator

1 - (k] k(k—1) [n]kxk
Sng(fix) = q ; o~
A j=0 (1 +(1-q)q’ [n]qx) gbf <f1"2 [n]q> 1 [] !

where x € [0,), 0 < g < 1, f € C[0,0), and investigated their approximation
properties.

Definition 5.1 ([118]). For f € R**), we define the following g-parametric Phillips
operators
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oo

/(1)
Pug(fix)=[n], >4 " Sur(g:qx) /0 ! Sni—1(q:1)f(t)dgt+eq (— [n]qCJX) 1(0),
k=1
(5.28)

_ kxk
where x € [0,e0) and S, 4(q;x) = e,(— [n] x)qk(kz 1) [’Ellii' .

These operators generalize the sequence of classical Phillips operators.

In this section we present the approximation properties of the g-Phillips operators
defined by (5.28), establish some local approximation result for continuous func-
tions in terms of modulus of continuity, and obtain inequalities for the weighted
approximation error of g-Phillips operators. Furthermore, we study Voronovskaja-
type asymptotic formula for the g-Phillips operators.

5.4.1 Moments

There are two g-analogues of the exponential function e*; see [104]:

e (Z)—ii—; |z|<; gl <1
AW -9 T—¢ 450
and
E@)=Tl(1+1-q)¢s) = 3 ¢E V2 e = (14 (1-q)2), lal <1,
=0 k=0 q
(5.29)
where (1 —x) =TT7- (1—g’x).
We set
[k
sl = — gt P
E, ([n]qx) [K],!
L [nlk
:eq(—[n]qx)qk(kzl) ['[%", n=102,.... (5.30)
N

It is clear that s, x (¢;x) > 0 for all ¢ € (0,1) and x € [0,0) and moreover

S o (1)
kg,osn,k (g:x) = ¢4 (— [n]qx) kgbq@ Tq' =1.

q
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The two g-gamma functions are defined as

= 1 ~/A(l=q)
L= [ Cande, g @ = [ e e (andat
For every A,x > 0 one has
Ty (x) = K (Aix) 75 (x),0

where K (A;x) = ﬁAx (1+ %)Z (1 —l—A);*x. In particular for any positive integer n

n(n—1) n(n—1)

K(Asn)=q 7 and Ty(n)=q 2 7 (n);

see [49].
In this section, we will calculate Pn7q(ti;x) for i = 0,1,2. By the definition of
g-gamma function 7/; , we have

</(1-q) </(1-q) q
L esatanda= [ el Ty

k(k—1 oo /(1—q) s
_M%ﬁq!q(z)/o 9 ([n]qt)k+ eq(_[n]qt> [n]qdqt
q

1 1 xkey [=/(1—q) e
- g 2 Se (—u)d
[n]‘;H [k]q!q /0 ()" eq(—u)dqu

1 I Kk=D)
= T=q Z Ylk+s+1)
[”]2“ [K], ! !

11 sy [kts]!

= T 4 4’ ZEF N E)2

1 [kt 1
_[”];H k],] g2

Lemma 5.10. We have

Prg(lix) =1, Ppg(t;x) =x,

1 (1+¢q)
Pag(t30) = =27 + :
A=,
1 (I4+q)
P, t—xz;x —<——1 2+ X.
761(( ) ) qz 6]2 [n]q
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Proof. For f(t) =

=

1 o/ (1—q)
Pug(li) = lnl, X "Suclaian) [ Suxr(gin)dyt + e, (= lnlyax)
k:

> 11
=[nY.q" 1Sn7k(q;qX)@F +eq (— [n]qqx)

=

2 «(q:qx —i—eq( [n]qqx) :Ii)Smk(q;qx) =1

For f(r) =
S oo/ (1-q)
Paglt0) = 1 X0 Suslaian) [ 1S (i
k=1
< H 1 < k] 1
Suk(439%) —5 = = D Snk(439x%) 75—
; k []2q2k1 kgf) ( )n]qk
1 & k] 1 1,
== D) Sk g9x) = —F— = =g x=x.
qzkg(,) J{(q q )[n] qk,z qzq
For f(r) =
5 & g1 =/(1-q) ,
Pug(t?x) = [n], D4 Sni(q:9x) /0 t°Snk—1(qst)dgt
k=1
- k+1], [k, 1 - k+1][k] 1
= ZSn,k(q;qx)#— = ZSn,k(LI?qx)—_
o] [n]z T = WP g
- (W, )W, G
=Y S, t(q:9x Sn, X
Z x(q39%) [”]f, e 2 (44 )["]2 g7+
k
- q [k, 1
+ zsn,k(‘]vqx) !
k=0 [”]2 g
1 K2 1 = [k] 1
= — > Suk(q:9x) 3 Suk(4:9%) T~ ==
615,25 « )[n]f,q e [n], 4"~
1 3 1 1 1 1
=—= q3x2+q—x + x:—zxz—i-z—x—i——x
q [n], nl,a ¢ q*[n],  [n],q
_ ixz—i— (12+61)x -
q q*[n],
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Lemma 5.11. For all 0 < g < 1 the following identity holds:

1 2 -

m, _ .
Pnaﬂ(t ,X) - [n];nq(mzimvz‘g, ;;o }’l m+l nk(q7qx)'
Proof. We have
i oo/ (1—q)
Paglt™s0) = lil, T.a Suelgzan) [ " Suxr(gindyt
k=1 ‘
o 1 1 k@2 [k—1+m]!
_ k—1 —— q
= [”]qulq Sn(@39%) —my [n];nJrl k— 1]ng : O k= T5m) 2
= [k—1 +m] [, 1
- ; ]q q(m2+2mk+2k7m)/2 Sn(4:9%)
i —1+m],...[k],
- kga m2+2mk+2k m) /2 Snk(q:4x).
Using [k + 5], = [s], + ¢’ [k], , we obtain
m—1 m
W, k+1],... k+m—1], =[] ([s]q+qs [k]q) =3¢ (m) K]
s=0 s=1
where C; (m) >0, s = 1,2,...,m are the constants independent of k. Hence
oo m
Pog(t™x) = e 2 ey Z (m) [k],, Snx(q5 )
q k=0 =1
1 .
- [ ] m2 /Zkz‘z)zc C[ k m+1)Sﬂ,k(q’qx)
s

B 1

1 m = (k,\’
=———YC SN | =L | ———Sux(q: ).
e “”'””%([n]q) g i) .

5.4.2 Direct Results

Let Cp[0,0) be the space of all real-valued continuous and bounded functions f
on [0,), endowed with the norm ||f]| = sup |f(x)|. The Peetre K-functional is

x€[0,00)

defined by
K>(f;8)= inf - S’V
2(f396) geclan[olw){l\f gll+6]g"|}
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where C3[0,0) := {g € Cp[0,) : g',g" € Cp[0,)}. By [50, Theorem 2.4] there
exists an absolute constant M > 0 such that

K (f,8) < Man(f; V), (5.31)
where 8 > 0 and the second-order modulus of smoothness is defined as

w2 (f:V/8) = sup sup |f(x+2h) —2f(x+h)+f(x)],

0<h<8x€[0,00)

where f € Cg[0,°0) and 6 > 0. Also, we let

o(f;8) = sup sup |flx+h)—f(x)[.

0<h<8 x€[0,00)

Lemma 5.12. Let f € Cp[0,). Then, for all f € C5[0,), we have

7 1+ "
Prg(fx) 1_{( )xzﬁﬁfjx}y\f I 632

Proof. Let x € [0,0) and f € C3[0,0). Using Taylor’s formula

£ = 10 = (=0 )+ [ (= wf" W)
we can write

t

Paglf53) = F(5) = Pag(t =) () + P [ (= )" ()duz)

= £ )Pl = 2):) + Pag( [ (1= )f" )dix) = [ (= )f" ()

On the other hand, since

t

s

t

</ qu” |du<Hf”H/|t u|du < (¢ ||f”H

X
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we conclude that

t

— Pra( [ (1= )¢ (w)du)

X

< Prgl(t—x

N l_qz v (1+Q)x 1
_{< 7 ) vy }Hf I u

Lemma 5.13. For f € C[0,), we have

|Pn7q(f;x) _f('x)

1/

[ Puaf || < I1-

Theorem 5.13. Let f € Cp[0,0). Then, for every x € [0,0), there exists a constant
M > 0 such that

|Pug(f:x) = £(x)] < Man(fi\/8(x)),

Su(x) = (1_—f2) k)

q q*[n],

where

Proof. Now, taking into account boundedness of P, ,, we get

}an fix) | = |73n q (fsx) — Pn,q(gvx) —f(x)+g(x) —I—'Pn,q(g,X) —g(x)|
Pag(f — %) = (f = &) (%) + [ Pug(gix) — g(x)]
< Pug(f = g5%) + (f = &) (x) | + |Pugl(g:%) — 2(%)|

_ 2
§2||f—g||+{(l qzq >x2+ (qlzJ[;]Q)x} Hg”H
q
<2(If —gll+ 8. [ ¢"|)-

Now, taking infimum on the right-hand side over all g € Cl% [0,00) and using (5.31),
we get the following result

|Puq(f3x) = F(x)] < 2Ka(f38,(x)) < 2Ma(f51/ 8 (x)).- u

IN

N

Theorem 5.14. Let 0 < o < 1 and E be any subset of the interval [0,c0). Then, if
f € Cgl0,0) is locally Lip(a), i.e., the condition

If(y) = f(x)] <

holds, then, for each x € [0,0), we have

“ yEE andx € [0,0) (5.33)
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[Pug(fi0) = f)] <L{87 (1) +2(d (v, E)"},

where L is a constant depending on o, and f ; and d (x,E) is the distance between x
and E defined as

d(x,E)=inf{lr—x|:t € E}.

Proof. Let E denote the closure of E in [0,). Then, there exists a point xo € E |
such that |x — x| = d (x, E). Using the triangle inequality

1f (1) = F @) < |7 (@) = f (o) [+ [f (x) = f (x0)]
we get, by (5.33)

|Pag(f3%) = FX)| < Pug (£ ) = £ (x0)[5) + Pug(|f (x) = f (x0)] 3%)
< LA{Pug(|t —x0l” 32) + |x = x0/* }
S L{Pug(t — x|+ |x —x0|* ;%) + [x — x0|* }
=L{Pug(|t —x|%:x) +2]x—x0[*} .

Using the Holder inequality with p = % 4= a, we find that
|Pug(fix) = f(x)| < L{ [Puglt =21 :20)] 7 [Pog(19:x)]4 +2(d (va))“}
_M{ [Paallt=xP3)] R (x,E))“}
CXAENIETNY
7 q*[n],

:M{aﬁ(x)+z(d(x,15))“}. m

We consider the following classes of functions:

IN

M +2(d (x,E))*

Cn[0,00) := {feC[O,eo):HMf>0 If ()| <Mz (14+x") and ||f]],, := sup |f(x)|}

xe[Ow) 14

. If ()l
C;r[0,00) := {feC [0,00) : Hw1+x}ﬂ< , meN.
Next, we obtain a direct approximation theorem in Cj [0,°) and an estimation in
terms of the weighted modulus of continuity. It is known that if f is not uniformly
continuous on the interval [0, ), then the usual first modulus of continuity @ (f, )
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does not tend to zero, as § — 0. For every f € C};, [0,0) the weighted modulus of
continuity is defined as follows

_ |f (x+h)— f(x)]
n(f:0) = xzo,sgghgs T4+ (x4+m)"

See [112].
Lemma 5.14 ([112]). Let f € C;,[0,), m € N. Then, we have the following:

1. Q,, (f,0) is a monotone increasing function of 6.
2. limg_,g+ Qy (f,0) =0.
3. Forany o € [0,00), Q,, (f,00) < (1 4+ )y (f,90).

In the next theorem we give an expression of the approximation error with the
operators S, , by means of Q.

Theorem 5.15. If f € C{[0,e), then the inequality

1
[Pug (F) = fll, < k(@@ | f;—— |,

[nl,
where k is a constant independent of f and n.
Proof. From the definition of Q; (f, ) and Lemma 5.14, we may write

|t — x|

0= £@) = @) (5 1) 20 0.9)

| — x|

< (1+2x+t)( = +1) Qi (f.6).

Then

|Pug (f36) = f ()| < Pug (1f (1) = f (0)]5) < Qu(f,8) (Pug (1+2x+1)5x)
|t — x|

+ Pug ((1 +2x+t)T;x)> :

Applying the Cauchy—Schwarz inequality to the second term, we get

1/2
_ 1/2 —x?
Pug ((1—|—2x+t) |t6x| ;x> < (73,1,(, ((1+2x+t)2;x)) (Pn,q <%,x>> .
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Consequently

|Pag (f32) =f ()] < Qi (f,8) (Pug (142x+1) 1)

, 2 =\
+ (qu ((1+2x+t) ;x)) (Pn,q <T;x>> .

(5.34)

On the other hand, there is a positive constant K (g) such that

Prg (14+2x+1)5x) = 143x < 3 (1+x),

1/2
) 1L, (I+gq)
(qu ((1+2x+l)2 ,X)) = <<(1 +2x)% + (142x) x + ?xz + q*[nl, X,x>>

<K(q)(1+x), (5.35)

and
) b e
nl, g\ [, [n],
2 o< (1+x). (5.36)

_5\/E ~ 8q,/[n]

Now from (5.34)—(5.36), we have

2
|Pug (i) = f (x)| < Qi (£.8) (3(1+x)+K(CI)M)

< (1+22) Qi (f,8) | 3Ki +K(q) : :
q6,/n],

where

14+ X"+ x + xmH
Ky =sup——ir—
x>0 1—|—x

If we take 5:[n]‘17%, then from the above inequality we obtain the desired
result. |
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5.4.3 Voronovskaja-Type Theorem

In this section, we proceed to state and prove a Voronovskaja-type theorem for the
g-Phillips operators. We first prove the following lemma:

Lemma 5.15. Let 0 < g < 1. We have

o L Bl s
Pra(t2) = q° " [”]qq o [n]* ¢
1 2],8,(0+¢%) 5 [2,BLE0+¢) , R3]0+
Pn,q(l‘4;x) = px“—l— d [n]qqqlz x4+ — [n]qsq“ X 4 [n(]]2q9 X.
Proof. Simple calculations show that
1 & k+2], [k+1], k]
P”:Q(IB;X) = [n]3q3k§) qq3k c quk(CI;CIx)
= [k + gk (2+q) [K]2 + ¢ (1 +q) [k
_ [n]§q3k 0[ J;ta ( +q)[q]3qk+q (1+4)] L,S”’k(q;qx)
74 k=
(e lM] = (2+q) K]
i Bt 09 L Sl
o Utak, .
+l§6 pa O )}

1 2+q) < K
P g Ty G 2 S (4
< |k
+(1+q3)2 quSn,k(q;qX)

el W N eroe( W\
=3 z I S,,’k(q,qx) + 7 2 k—2 Sﬂ,k(q’ qx)
q [n]qq k=0 [n]qq
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k

]
5 Suk(q:9x)
qq

”]q ¢ iz

(I+g) < |
e &
_1 q—4x+(2q4+q3)i+q3x3 +(2+q) qx—i—q—x +(l+q)qzx
¢\ [n]; [n], ], 4’ [n], 245
1

[n],q
2g+1 1
( f6] )x2+—6x3—|—
q°[n], q

o R+g) ., C+a)  (40)
T Wt e e

Lo, (4294247 +q) 5 (1+29+2¢°+¢")

—X
q° q®[n], @)

1o, (+a)(1+q+q") > (1+a)(1+g+¢)
[n],4° n];q°

1 & k+3], [k+2], [k+1],[K]

q
- > Sn(q3%)
["]?, ¢®=o q*

= K, \ e K, )
_ L“g ( - ) Sni(q;qx) + (34—2(]41'261 ) v ({n][ 6];{2> S i(q;qx)

nlqq k=0 \ g

(B3+49+3¢4*+4°) &

s 2
[n]Z 10 2( [](]Icz> Sn,k(q;qx)

g4 k=0 [”]qq
(14+29+2¢*°+¢°) &

W, o
S e

1 5 1 3
=7 q—x+(3q +3q +q)q—2 2 <3q+2+—) 1 0 + g%
' \ [n]] [n]; q) [nl,

(3+2¢+4%) q_4x Zx .
T, <[n1q Ferra) g )

3+49+3¢7+4° 3 1429+ 24+ ¢°) ¢
o qZIqO q)<q3x2+q_x (1+29 ngq)q
n];q Il [nl,q

1 14+2g+342+ B3+ 29+ PG
_ L al q+3q (12 9+49)q 5
[n],q

q12
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N 143¢+3¢%+ (B +29+¢»)2q+ 1)¢*+ (3 +4q+3qz+q3)q4x2
n]5q"
L1 (342¢+¢*)g+ (3 +49+3¢>+ %) >+ (1 +2q+2q2+q3)q3x
nl; ¢°

s U+ 4+ +9+4%) 3.
g [n],q" )
q

| =

(I+9)(1+a)(1+9+4°)°
n]; q"!

Theorem 5.16. Let g, € (0,1). Then the sequence {Pngq,(f)} converges to f
uniformly on [0,A] for each f € C; [0,0) if and only if lijn qn=1.
Nn—soo

Proof. The proof is similar to that of Theorem 2 [86]. ]
Lemma 5.16. Assume that g, € (0,1), g, — 1, and ¢} — a as n — . For every

x € [0,0) there hold

lim [n],, Pg, ((t —x)*:x) =2(1 — a)x® +2x,

n—yo0

lim [n]} P, (1 —x)*:x) = 1222 +24(1 — @) + 12(1 — a)x*.

n—soo

Proof. First, we have

1im [n],, Pag, ((t —x)*5x) = lim [1],, { (iz - 1) o (ql;[rni )x}

n—yoo n—yoo i
1—-¢")(1 1
(( qn)g tan) o ( +2qn)x)
qn qn
=2(1—a)x* +2x.

= lim
n—eo

In order to calculate the second limit, we need expression for P, 4, ((r — x)*:x) :

Pnaﬂn ((t - X)4 7x)
=Pugn (t4;x) —4xPy g, (t3 3X) + 6x273,,,qn (tz;x) — 4x373,,,qn (%) +x*

o DB PR +R) PR, (+a)
IR e 2 e R

a5’
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—4x{ ! —x+ [2]% mq"xz + [2]4"2[3]4%} +6x% {lzxz + Lz]q" x} —3x*

qn [l’l an Qn [n] n q,5, qn qn [l’l]qn

o (1_4qg+6qulo_3q}l2)x4+ { [2]L]n [3](],, (1+q%)_4 [2](],, [3]L]n q2+6q}l0 [2](],, }x3
- 12
n ]

+

{ 21, Bl2. (1+42) —44512],,, 3], }x2
a\' ],
217 13, (1 +qﬁ)x

+ 3
n,, 45

_ (1+2q5+3q2—3q§,)(1—43)2(4n+1)2x4
a2,
+{(qﬁ—1)(qn+l) (2q) — 4q2—543—6q—645—245 — 24, + 645+ 64— 1) }xs
a2l

N { [2],,, 315, (1 +43) — 4452, B, }xz N 215, 31, (1 + q,zl)x'

2 3
a3t [nl,, [l 4
Thus
. 2 4
Jim [n]; Pog, (1 —x)75x)
i =) [ 244300303+ 1) (4= 1) (@ + 1)
n—es (1 — gp)? a?

(gn—1) (qn+1) (29, — 493 — 5q; — 644 —64,—245—2q, + 645 + 64, — 1) | 4

+ 7 X
9, [n],,

(gn+1) (gn+242+ a0+ — 4613+1)(qn+qﬁ+1)>xz
ai [l

o
( 1+g,)? 1+qn)(1+qn+qi)>x}
—12

[l

(1—a)*x*+24(1 —a)x> + 124%. [
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Theorem 5.17. Assume that g, € (0,1), g, — 1, and ¢ — a as n — . For any
f€C5[0,00) such that f', f" € C5 [0,e0), the following equality holds

lim [n],, (P, (f%) = f(x)) = (1 —a)x” +x) f"(x)

n—yoo

uniformly on any [0,A], A > 0.

Proof. Let f,f,f" € C5]0,%) and x € [0,0) be fixed. By the Taylor formula we
may write

SO =)+ F @ =2+ 3 W=+ 63D

where r(t;x) is the Peano form of the remainder, r(.; x) € C; [0,0), and }imr(t;x):O.
—X

Applying P, 4, to (5.37) we obtain

Wl Pran (F5) = F(2)) = 5.7 3) I, Py (6 —2)%5)
+ [n]qn Pr.qg. (r (t;%) (¢ —x)2 ;x) .

By the Cauchy—Schwarz inequality, we have

Prgn (r(t;x) (¢ —x)z;x) <A/ P, (7 (t;x);x)\/ s ((t—x)4;x) . (5.38)

Observe that r? (x;x) = 0 and 72 (.;x) € C; [0, ). Then it follows from Theorem 5.16
that

nlg?op”*‘/" (r2 (t;x) ;x) =7 (x;x)=0 (5.39)
uniformly with respect to x € [0,A]. Now from (5.38) and (5.39) and Lemma 5.16,

we get immediately

lim [1], Pag, (r(t;x) (t—x) ;x) ~0.

n—se0

Then we get the following

lim [n], (Png,(f3%) = f(x))

n—yoo
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