Chapter 4 q-Bernstein-Type Integral Operators

4.1 Introduction

In order to approximate integrable functions on the interval [0,1], Kantorovich gave modified Bernstein polynomials. Later in the year 1967 Durrmeyer [58] considered a more general integral modification of the classical Bernstein polynomials, which were studied first by Derriennic [47]. Also some other generalizations of the Bernstein polynomials are available in the literature. The other most popular generalization as considered by Goodman and Sharma [82], namely, genuine Bernstein–Durrmeyer operators. In this chapter we discuss the q analogues of various integral modifications of Bernstein polynomials. The results were discussed in recent papers [45, 62, 86, 89, 92, 94, 121], etc.

4.2 *q*-Bernstein–Kantorovich Operators

Recently, Dalmanoglu [45] proposed the q-Kantorovich-Bernstein operators as

$$K_{n,q}(f,x) = [n+1]_q \sum_{k=0}^n p_{n,k}(q;x) \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} f(t) d_q t, \ x \in [0,1]$$
(4.1)

where

$$p_{n,k}(q;x) := \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x).$$

In case q = 1, the operators (4.1) reduce to well-known Bernstein–Kantorovich operators

$$K_n(f,x) = (n+1) \sum_{k=0}^n p_{n,k}(x) \int_{k/(n+1)}^{(k+1)/(n+1)} f(t) dt, \ x \in [0,1]$$

where $p_{n,k}(x)$ is the Bernstein basis function given by

$$p_{n,k}(x) := \binom{n}{k} x^k (1-x)^{n-k}.$$

4.2.1 Direct Results

For the operators (4.1), Dalmanoglu [45] obtained the following theorems:

Theorem 4.1. If the sequence (q_n) satisfies the conditions $\lim_{n\to\infty} q_n = 1$ and $\lim_{n\to\infty} \frac{1}{[n]q_n} = 0$ and $0 < q_n < 1$, then

$$||K_{n,q}(f,x)-f|| \to 0, n \to \infty,$$

for every $f \in C[0, a], 0 < a < 1$.

Proof. First, we have

$$K_{n,q}(1,x) = [n+1]_q \sum_{k=0}^n q^{-k} {n \brack k}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x) \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} d_q t.$$

Also by definition of q-integral

$$\begin{split} &\int_{[k]q/[n+1]_q}^{[k+1]_q/[n+1]_q} d_q t = \int_0^{[k+1]_q/[n+1]_q} d_q t - \int_0^{[k]_q/[n+1]_q} d_q t \\ &= (1-q) \frac{[k+1]_q}{[n+1]_q} \sum_{j=0}^\infty q^j - (1-q) \frac{[k]_q}{[n+1]_q} \sum_{j=0}^\infty q^j \\ &= \frac{1-q}{[n+1]_q} ([k+1]_q - [k]_q) \sum_{j=0}^\infty q^j = \frac{q^k}{[n+1]_q}. \end{split}$$

Thus $K_{n,q}(1,x) = 1$. Next

$$K_{n,q}(t,x) = [n+1]_q \sum_{k=0}^n q^{-k} {n \brack k}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x) \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} t d_q t.$$

Again by definition of q-integral

$$\begin{split} &\int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} t d_q t = \int_0^{[k+1]_q/[n+1]_q} t d_q t - \int_0^{[k]_q/[n+1]_q} t d_q t \\ &= (1-q) \frac{[k+1]_q}{[n+1]_q} \sum_{j=0}^\infty q^{2j} \frac{[k+1]_q}{[n+1]_q} - (1-q) \frac{[k]_q}{[n+1]_q} \sum_{j=0}^\infty q^{2j} \frac{[k]_q}{[n+1]_q} \\ &= \frac{1-q}{[n+1]_q^2} ([k+1]_q^2 - [k]_q^2) \sum_{j=0}^\infty q^{2j} = \frac{q^k}{[n+1]_q^2} \frac{1}{1+q} ([k]_q(1+q)+1). \end{split}$$

Therefore

$$K_{n,q}(t,x) = [n+1]_q \sum_{k=0}^n {n \brack k}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x) \frac{1}{[n+1]_q^2} \frac{1}{1+q} ([k]_q (1+q)+1)$$
$$\frac{[n]_q}{[n+1]_q} x + \frac{1}{1+q} \frac{1}{[n+1]_q}.$$

To estimate $K_{n,q}(t^2, x)$, we have

$$\begin{split} \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} t^2 d_q t &= \int_0^{[k+1]_q/[n+1]_q} t^2 d_q t - \int_0^{[k]_q/[n+1]_q} t^2 d_q t \\ &= \frac{1}{[n+1]_q^3} \frac{1}{1+q+q^2} (q^k [k+1]_q^2 + [k]_q [k+1]_q + [k]_q^2). \end{split}$$

Therefore using $[k+1]_q = q[k]_q + 1$ and using the similar methods as above, we have

$$K_{n,q}(t^2,x) = \frac{[n]_q[n-1]_q}{[n+1]_q^2} \frac{q^3 + q^2 + q}{1+q+q^2} x^2 + \frac{[n]_q}{[n+1]_q^2} \frac{q^2 + 3q + 2}{1+q+q^2} x + \frac{1}{[n+1]_q^2} \frac{1}{1+q+q^2}$$

Replacing q by a sequence $\{q_n\}$ such that $\lim_{n\to\infty} q_n = 1$, it is easily seen that $K_{n,q}(t^i, x), i = 0, 1, 2$ converges uniformly to t^i . Thus the result follows by Korovkin's theorem.

Theorem 4.2. If the sequence (q_n) satisfies the conditions $\lim_{n\to\infty} q_n = 1$ and $\lim_{n\to\infty} \frac{1}{[n]q_n} = 0$ and $0 < q_n < 1$, then

$$|K_{n,q}(f,x) - f(x)| \le 2\omega(f,\sqrt{\delta_n}),$$

for all $f \in C[0,a]$ and $\delta_n = K_{n,q}((t-x)^2,x)$.

Proof. Let $f \in C[0,a]$. From the linearity and monotonicity of $K_{n,q}(f,x)$, we can write

$$|K_{n,q}(f,x) - f(x)| \le K_{n,q}(|f(t) - f(x)|, x)$$

= $[n+1]_q \sum_{k=0}^n q^{-k} {n \brack k}_q x^k \prod_{s=0}^{n-k-1} (1 - q^s x) \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} |f(t) - f(x)| d_q t$

On the other hand

$$|f(t) - f(x)| \le \omega(f, |t - x|).$$

If $|t - x| < \delta$, it is obvious that

$$|f(t) - f(x)| \le \left(1 + \frac{(t-x)^2}{\delta^2}\right)\omega(f,\delta)$$
(4.2)

If $|t - x| > \delta$, we use the property of modulus of continuity

$$\omega(f,\lambda\delta) \le (1+\lambda)\omega(f,\delta) \le (1+\lambda^2)\omega(f,\delta), \lambda \in \mathbb{R}^+$$

as $\lambda = \frac{|t-x|}{\delta}$. Therefore, we have

$$|f(t) - f(x)| \le \left(1 + \frac{(t-x)^2}{\delta^2}\right)\omega(f,\delta)$$
(4.3)

for $|t - x| > \delta$. Consequently by (4.2) and (4.3), we get

$$\begin{aligned} |K_{n,q}(f,x) - f(x)| &\leq [n+1]_q \sum_{k=0}^n q^{-k} \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \\ \prod_{s=0}^{n-k-1} (1 - q^s x) \int_{[k]_q/[n+1]_q}^{[k+1]_q/[n+1]_q} \left(1 + \frac{(t-x)^2}{\delta^2} \right) \omega(f,\delta) d_q t \\ &= \left(K_{n,q}(1,x) + \frac{1}{\delta^2} K_{n,q}((t-x)^2,x) \right) \omega(f,\delta). \end{aligned}$$

Taking $q = (q_n)$ satisfies the conditions $\lim_{n\to\infty} q_n = 1$, $\lim_{n\to\infty} \frac{1}{[n]q_n} = 0$, and $0 < q_n < 1$, using the methods of Theorem 4.1, that

$$\lim_{n\to\infty}K_{n,q_n}((t-x)^2,x)=0,$$

letting $\delta_n = K_{n,q_n}((t-x)^2, x)$ and taking $\delta = \sqrt{\delta_n}$, we finally get the desired result. This completes the proof of theorem.

4.3 *q*-Bernstein–Durrmeyer Operators

For $f \in C[0,1], x \in [0,1], n = 1,2,..., 0 < q < 1$, very recently Gupta [86] defined the *q*-Durrmeyer-type operators as

$$D_{n,q}(f,x) \equiv (D_{n,q}f)(x) = [n+1]_q \sum_{k=0}^n q^{-k} p_{n,k}(q;x) \int_0^1 f(t) p_{n,k}(q;qt) d_q t \quad (4.4)$$

where

$$p_{n,k}(q;x) := \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x).$$

It can be easily verified that in the case q = 1, the operators defined by (4.4) reduce to the well-known Bernstein–Durrmeyer operators

$$D_n(f,x) = (n+1) \sum_{k=0}^n p_{n,k}(x) \int_0^1 f(t) p_{n,k}(t) dt,$$

where

$$p_{n,k}(x) := \binom{n}{k} x^k (1-x)^{n-k}$$

4.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results:

Lemma 4.1. For $n, k \ge 0$, we have

$$D_q(1-x)_q^{n-k} = -[n-k]_q(1-qx)_q^{n+k-1},$$
(4.5)

Proof. Using the *q*-derivative operator, we can write

$$D_q(1-x)_q^{n-k} = \frac{1}{(q-1)x} \left(\prod_{j=0}^{n-k-1} (1-q^{j+1}x) - \prod_{j=0}^{n-k-1} (1-q^jx) \right)$$
$$= -\frac{(q^{n-k}-1)}{(q-1)} \prod_{j=0}^{n-k-2} (1+q^{j+1}x)$$
$$= -[n-k]_q (1-qx)_q^{n-k-1}.$$

Remark 4.1. By using (4.5) and $D_q x^k = [k]_q x^{k-1}$, we get

$$\begin{aligned} D_q(x^k(1-x)_q^{n-k}) &= [k]_q x^{k-1}(1-x)_q^{n-k} - q^k x^k [n-k]_q (1-qx)_q^{n-k-1} \\ &= x^{k-1}(1-qx)_q^{n-k-1} ((1-x)[k]_q - q^k x [n-k]_q) \\ &= x^{k-1}(1-qx)_q^{n-k-1} ([k]_q - [n]_q x). \end{aligned}$$

Hence, we obtain

$$x(1-x)D_q\left(x^k(1-x)_q^{n-k}\right) = x^k(1-x)_q^{n-k}[n]_q\left(\frac{[k]_q}{[n]_q} - x\right).$$
(4.6)

Lemma 4.2. We have the following equalities:

$$x(1-x)D_q(p_{n,k}(q;x)) = [n]_q p_{n,k}(q;x) \left(\frac{[k]_q}{[n]_q} - x\right),$$
(4.7)

$$t(1-qt)D_q(p_{n,k}(q;qt)) = [n]_q p_{n,k}(q;qt) \left(\frac{[k]_q}{[n]_q} - qt\right).$$
(4.8)

Proof. Above equalities can be obtained by direct computations using definition of operator and (4.6).

Theorem 4.3 ([92]). If m-th $(m > 0, m \in \mathbb{N})$ order moments of operator (4.4) is defined as

$$D_{n,m}^{q}(x) := D_{n,q}(t^{m}, x) = [n+1]_{q} \sum_{k=0}^{n} q^{-k} p_{n,k}(q; x) \int_{0}^{1} p_{n,k}(q; qt) t^{m} d_{q}t, x \in [0,1],$$

then $D_{n,0}^q(x) = 1$ and for n > m+2, we have the following recurrence relation: $[n+m+2]D_{n,m+1}^q(x)$

$$= ([m+1]_q + q^{m+1}x[n]_q)D^q_{n,m}(x) + x(1-x)q^{m+1}D_q(D^q_{n,m}(x)).$$
(4.9)

Proof. By (4.7), we have $x(1-x)D_q(D_{n,m}^q(x))$

$$= [n+1]_q \sum_{k=0}^n q^{-k} x(1-x) D_q(p_{n,k}(q;x)) \int_0^1 p_{n,k}(q;qt) t^m d_q t$$

$$= [n+1]_q [n]_q \sum_{k=0}^n q^{-k} p_{n,k}(q;x) \int_0^1 \left(\frac{[k]_q}{[n]_q} - qt\right) p_{n,k}(q;qt) t^m d_q t$$

$$+ q[n+1]_q [n]_q \sum_{k=0}^n q^{-k} x(1-x) D_q(p_{n,k}(q;x)) \int_0^1 p_{n,k}(q;qt) t^{m+1} d_q t$$

$$- x[n+1]_q[n]_q \sum_{k=0}^n q^{-k} x(1-x) D_q(p_{n,k}(q;x)) \int_0^1 p_{n,k}(q;qt) t^m d_q t$$

= $I + [n]_q D_{n,m+1}^q(x) - x[n]_q D_{n,m}^q(x),$

Set

$$u(t) = \frac{t^{m+1}}{q^{m+1}} - \frac{t^{m+2}}{q^{m+1}},$$

by q-integral by parts, we get $\int_0^1 u(qt) D_q(p_{n,k}(q;qt)) d_q t$

$$= [u(t)p_{n,k}(q;qt)]_0^1 - \frac{1}{q^{m+1}} \int_0^1 p_{n,k}(q;qt)([m+1]_q t^m - [m+2]_q t^{m+1}) d_q t$$

$$= -\frac{1}{q^{m+1}} \int_0^1 p_{n,k}(q;qt)([m+1]_q t^m - [m+2]_q t^{m+1}) d_q t,$$

therefore

$$I = -\frac{1}{q^{m+1}} \left([m+1]_q D^q_{n,m}(x) - [m+2]_q D^q_{n,m+1}(x) \right)$$

by combining the above two equations, we can write

$$q^{m+1}x(1-x)D_q(D^q_{n,m}(x)) = -\left([m+1]_q D^q_{n,m}(x) - [m+2]_q D^q_{n,m+1}(x)\right) + q^{m+1}\left([n]_q D^q_{n,m+1}(x) - x[n]_q D^q_{n,m}(x)\right).$$

Hence we get the result.

Corollary 4.1. We have

$$D_{n,1}^{q}(x) = \frac{(1+qx[n]_{q})}{[n+2]_{q}},$$

$$D_{n,2}^{q}(x) = \frac{q^{3}x^{2}[n]_{q}([n]_{q}-1) + (1+q)^{2}qx[n]_{q} + 1+q}{[n+2]_{q}[n+3]_{q}}.$$
(4.10)
(4.11)

The corollary follows from (4.9).

Lemma 4.3. For $f \in C[0,1]$, we have $||D_{n,q}f|| \le ||f||$. *Proof.* By definition (4.4) and using Theorem 4.3, we have

$$\begin{aligned} |D_{n,q}(f;x)| &\leq [n+1]_q \sum_{k=0}^n q^{-k} p_{n,k}(q;x) \int_0^1 |f(t)| p_{n,k}(q;qt) d_q t \\ &\leq ||f| |D_{n,q}(1;x) = ||f||. \end{aligned}$$

Lemma 4.4. Let n > 3 be a given natural number and let $q_0 = q_0(n) \in (0,1)$ be the least number such that $q^{n+2} - q^{n+1} - 2q^n - 2q^{n-1} - \dots - 2q^3 - q^2 + q + 2 < 0$ for every $q \in (q_0, 1)$. Then

$$D_{n,q}((t-x)^2,x) \leq \frac{2}{[n+2]_q} \left(\varphi^2(x) + \frac{1}{[n+3]_q} \right),$$

where $\varphi^2(x) = x(1-x), x \in [0,1].$

Proof. In view of Theorem 4.3, we obtain

$$D_{n,q}((t-x)^2, x) = x^2 \cdot \frac{q^3[n]_q([n]_q - 1) - 2q[n]_q[n+3]_q + [n+2]_q[n+3]_q}{[n+2]_q[n+3]_q} + x \cdot \frac{q(1+q)^2[n]_q - 2[n+3]_q}{[n+2]_q[n+3]_q} + \frac{1+q}{[n+2]_q[n+3]_q}$$

By direct computations, using the definition of the q-integers, we get

$$q(1+q)^{2}[n]_{q} - 2[n+3]_{q} = q(1+q)^{2}(1+q+\dots+q^{n-1}) - 2(1+q+\dots+q^{n+2})$$
$$= -q^{n+2} + q^{n+1} + 2q^{n} + 2q^{n-1} + \dots + 2q^{3} + q^{2} - q - 2 > 0,$$

for every $q \in (q_0, 1)$. Furthermore

$$\begin{split} q(1+q)^2[n]_q - 2[n+3]_q &\leq 4[n] - q - 2[n+3]_q \\ &= 4([n+3]_q - q^n - q^{n+1} - q^{n+2}) - 2[n+3]_q \\ &\leq 4[n+3]_q - 2[n+3]_q = 2[n+3]_q \end{split}$$

and

$$\begin{split} q(1+q)^2[n]_q - 2[n+3]_q + q^3[n]_q([n]_q - 1) - 2q[n]_q[n+3]_q + [n+2]_q[n+3]_q \\ &= q(1+q)^2[n]_q - 2(1+q+q^2+q^3[n]_q) + q^3[n]_q^2 - q^3[n]_q \\ &- 2q[n]_q(1+q+q^2+q^3[n]_q) + (1+q+q^2[n]_q)(1+q+q^2+q^3[n]_q) \\ &= q^3(1-q)^2[n]_q^2 - (q-q^2+2q^3-2q^4)[n]_q - (1-q^3) \\ &= q^3(1-q)^2 \cdot \left(\frac{1-q^n}{1-q}\right)^2 - q(1-q)(1+2q^2) \cdot \frac{1-q^n}{1-q} - (1-q^3) \\ &= q^{2n+3} + q^{n+1} - q - 1 \le 0. \end{split}$$

In conclusion, for $x \in [0, 1]$, we have $D_{n,q}((t-x)^2, x)$

$$\begin{split} &= \frac{q(1+q)^2[n]_q - 2[n+3]_q}{[n+2]_q[n+3]_q} \cdot x(1-x) + \left(\frac{q(1+q)^2[n]_q - 2[n+3]_q}{[n+2]_q[n+3]_q} \right. \\ &+ \frac{q^3[n]_q([n]_q - 1) - 2q[n]_q[n+3]_q + [n+2]_q[n+3]_q}{[n+2]_q[n+3]_q} \right) \cdot x^2 + \frac{1+q}{[n+2]_q[n+3]_q} \\ &\leq \frac{2[n+3]_q}{[n+2]_q[n+3]_q} \cdot \varphi^2(x) + \frac{2}{[n+2]_q[n+3]_q} \leq \frac{2}{[n+2]_q} \cdot \left(\varphi^2(x) + \frac{1}{[n+3]_q}\right), \end{split}$$

which was to be proved.

For $\delta > 0$ and $W^2 = \{g \in C[0,1] : g', g'' \in C[0,1]\}$, the *K*-functional are defined as

$$K_2(f, \delta) = \inf\{||f - g|| + \eta ||g''|| : g \in W^2\},$$

where norm-||.|| is the uniform norm on C[0,1]. Following [50], there exists a positive constant C > 0 such that

$$K_2(f,\delta) \le C\omega_2(f,\sqrt{\delta}),\tag{4.12}$$

where the second-order modulus of smoothness for $f \in C[0, 1]$ is defined as

$$\omega_2(f,\sqrt{\delta}) = \sup_{0 < h \le \sqrt{\delta}} \sup_{x,x+h \in [0,1]} |f(x+h) - f(x)|.$$

We define the usual modulus of continuity for $f \in C[0, 1]$ as

$$\omega(f, \delta) = \sup_{0 < h \le \delta} \sup_{x, x+h \in [0,1]} |f(x+h) - f(x)|.$$

4.3.2 Direct Results

Our first main result is the following local theorem:

Theorem 4.4. Let n > 3 be a natural number and let $q_0 = q_0(n) \in (0,1)$ be defined as in Lemma 4.4. Then there exists an absolute constant C > 0 such that

$$|D_{n,q}(f,x) - f(x)| \le C \omega_2 \left(f, [n+2]_q^{-1/2} \delta_n(x) \right) + \omega \left(f, \frac{1-x}{[n+2]_q} \right),$$

where $f \in C[0,1]$, $\delta_n^2(x) = \varphi^2(x) + \frac{1}{[n+3]_q}$, $x \in [0,1]$, and $q \in (q_0,1)$.

4 q-Bernstein-Type Integral Operators

Proof. For $f \in C[0,1]$ we define

$$\tilde{D}_{n,q}(f,x) = D_{n,q}(f,x) + f(x) - f\left(\frac{1+q[n]_q x}{[n+2]_q}\right).$$

Then, by Corollary 4.1, we find

$$\tilde{D}_{n,q}(1,x) = D_{n,q}(1,x) = 1$$
(4.13)

and

$$\tilde{D}_{n,q}(t,x) = D_{n,q}(t,x) + x - \frac{1+q[n]_q x}{[n+2]_q} = x.$$
(4.14)

Using Taylor's formula

$$g(t) = g(x) + (t - x) g'(x) + \int_{x}^{t} (t - u) g'^{2}$$

we obtain

$$\begin{split} \tilde{D}_{n,q}(g,x) &= g(x) + \tilde{D}_{n,q} \left(\int_{x}^{t} (t-u) g''(u) \, du, x \right) \\ &= g(x) + D_{n,q} \left(\int_{x}^{t} (t-u) g''(u) \, du, x \right) \\ &- \int_{x}^{\frac{1+q[n]qx}{[n+2]q}} \left(\frac{1+q[n]qx}{[n+2]q} - u \right) g''(u) \, du \end{split}$$

Hence $|\tilde{D}_{n,q}(g,x) - g(x)| \leq$

$$\leq D_{n,q} \left(\left| \int_{x}^{t} |t-u| \cdot |g''(u)| \, du \right|, x \right) + \left| \int_{x}^{\frac{1+q[n]qx}{[n+2]q}} \left| \frac{1+q[n]qx}{[n+2]q} - u \right| \cdot |g''(u)| \, du \right| \\\leq D_{n,q}((t-x)^{2}, x) \cdot ||g''|| + \left(\frac{1+q[n]qx}{[n+2]q} - x\right)^{2} \cdot ||g''||$$
(4.15)

On the other hand

$$D_{n,q}((t-x)^{2},x) + \left(\frac{1+q[n]_{q}x}{[n+2]_{q}} - x\right)^{2} \leq \\ \leq \frac{2}{[n+2]_{q}} \left(\varphi^{2}(x) + \frac{1}{[n+3]_{q}}\right) + \left(\frac{1-([n+2]_{q}-q[n]_{q})x}{[n+2]_{q}}\right)^{2}, \quad (4.16)$$

by Lemma 4.4. Because $[n+2]_q - q[n]_q = (1+q+\ldots+q^{n+1}) - q(1+q+\ldots+q^{n-1}) = 1+q^{n+1}$, we have

$$1 \le [n+2]_q - q[n]_q \le 2 \tag{4.17}$$

Then using (4.17), we have

$$\left(\frac{1 - ([n+2]_q - q[n]_q)x}{[n+2]_q}\right)^2 \cdot \delta_n^{-2}(x) \leq \\
= \frac{1 - 2([n+2]_q - q[n]_q)x + ([n+2]_q - q[n]_q)^2 x^2}{[n+2]_q^2} \cdot \frac{[n]_q}{[n]_q x(1-x) + 1} \\
\leq \frac{1 - 2x + 4x^2}{[n+2]_q} \cdot \frac{[n]_q}{[n+2]_q} \cdot \frac{1}{[n]_q x(1-x) + 1} \leq \frac{3}{[n+2]_q},$$
(4.18)

for n = 1, 2, ... and 0 < q < 1. In conclusion, by (4.16) and (4.18), we get

$$D_{n,q}((t-x)^2, x) + \left(\frac{1+q[n]_q x}{[n+2]_q} - x\right)^2 \le \frac{5}{[n+2]_q} \cdot \delta_n^2(x), \tag{4.19}$$

where $x \in [0, 1]$. Hence, by (4.15),

$$|\tilde{D}_{n,q}(g,x) - g(x)| \le \frac{5}{[n+2]_q} \cdot \delta_n^2(x) \cdot \|g''\|,$$
(4.20)

where n > 3 and $x \in [0, 1]$. Furthermore, by Theorem 4.3, we have

$$|\tilde{D}_{n,q}(f,x)| \le |D_{n,q}(f,x)| + |f(x)| + \left| f\left(\frac{1+q[n]_q x}{[n+2]_q}\right) \right| \le 3||f||.$$

Thus

$$\|\tilde{D}_{n,q}(f,x)\| \le 3 \|f\|, \tag{4.21}$$

for all $f \in C[0,1]$.

Now, for $f \in C[0,1]$ and $g \in W^2$, we obtain $|D_{r,r}(f,r) - f(r)| \leq 1$

$$\begin{aligned} &= \left| \tilde{D}_{n,q}(f,x) - f(x) + f\left(\frac{1 + q[n]_q x}{[n+2]_q}\right) - f(x) \right| \\ &\leq |\tilde{D}_{n,q}(f-g,x)| + |\tilde{D}_{n,q}(g,x) - g(x)| + |g(x) - f(x)| + \left| f\left(\frac{1 + q[n]_q x}{[n+2]_q}\right) - f(x) \right| \end{aligned}$$

4 q-Bernstein-Type Integral Operators

$$\leq 4 \|f - g\| + \frac{5}{[n+2]} \cdot \delta_n^2(x) \cdot \|g''\| + \omega \left(f, \left|\frac{1 - ([n+2]_q - q[n]_q)x}{[n+2]_q}\right|\right)$$

$$\leq 5 \left(\|f - g\| + \frac{1}{[n+2]_q} \cdot \delta_n^2(x) \cdot \|g''\|\right) + \omega \left(f, \frac{1 - x}{[n+2]_q}\right),$$

where we used (4.20) and (4.21). Taking the infimum on the right hand side over all $g \in W^2$, we obtain

$$|D_{n,q}(f,x) - f(x)| \le 5 K_2 \left(f, \frac{1}{[n+2]_q} \delta_n^2(x) \right) + \omega \left(f, \frac{1-x}{[n+2]_q} \right).$$

In view of (4.12), we find

$$|D_{n,q}(f,x)-f(x)| \leq C \omega_2\left(f,[n+2]_q^{-1/2}\delta_n(x)\right) + \omega\left(f,\frac{1-x}{[n+2]_q}\right),$$

this completes the proof of the theorem.

For the next theorem we shall use some notations: for $f \in C[0,1]$ and $\varphi(x) = \sqrt{x(1-x)}$, $x \in [0,1]$, let

$$\omega_2^{\varphi}(f,\sqrt{\delta}) = \sup_{0 < h \le \sqrt{\delta}} \sup_{x \pm h\varphi \in [0,1]} |f(x + h\varphi(x)) - 2f(x) + f(x - h\varphi(x))|$$

be the second-order Ditzian-Totik modulus of smoothness, and let

$$\overline{K}_{2,\varphi}(f,\delta) = \inf\{\|f-g\| + \delta\|\varphi^2 g''^2\|g''^2(\varphi)\}$$

be the corresponding K-functional, where

$$W^{2}(\varphi) = \{g \in C[0,1] : g' \in AC_{loc}[0,1], \varphi^{2}g'' \in C[0,1]\}$$

and $g' \in AC_{loc}[0, 1]$ means that g is differentiable and g' is absolutely continuous on every closed interval $[a, b] \subset [0, 1]$. It is well known (see [51, p. 24, Theorem 1.3.1]) that

$$\overline{K}_{2,\varphi}(f,\delta) \le C \,\omega_2^{\varphi}(f,\sqrt{\delta}) \tag{4.22}$$

for some absolute constant C > 0. Moreover, the Ditzian–Totik moduli of first order is given by

$$\omega_{\psi}(f,\delta) = \sup_{0 < h \le \delta} \sup_{x,x \pm h\psi(x) \in [0,1]} |f(x+h\psi(x)) - f(x)|,$$

where ψ is an admissible step-weight function on [0, 1]. Now we state our next main result. **Theorem 4.5.** Let n > 3 be a natural number and let $q_0 = q_0(n) \in (0,1)$ be defined as in Lemma 4.3. Then there exists an absolute constant C > 0 such that

$$||D_{n,q}f - f|| \le C \omega_2^{\varphi}(f, [n+2]_q^{-1/2}) + \omega_{\psi}(f, [n+2]_q^{-1}),$$

where $f \in C[0,1]$, $q \in (q_0,1)$, and $\psi(x) = 1 - x$, $x \in [0,1]$.

Proof. Again, let

$$\tilde{D}_{n,q}(f,x) = D_{n,q}(f,x) + f(x) - f\left(\frac{1+q[n]_q x}{[n+2]_q}\right),$$

where $f \in C[0, 1]$. Using Taylor's formula:

$$g(t) = g(x) + (t-x) g'(x) + \int_x^t (t-u) g''^2(\varphi),$$

the formulas (4.13) and (4.14), we obtain

$$\tilde{D}_{n,q}(g,x) = g(x) + D_{n,q}\left(\int_x^t (t-u) g''(u) du, x\right) - \int_x^{\frac{1+q[n]qx}{[n+2]-q}} \left(\frac{1+q[n]qx}{[n+2]q} - u\right) g''(u) du$$

Hence

Because the function δ_n^2 is concave on [0, 1], we have for $u = t + \tau(x - t)$, $\tau \in [0, 1]$, the estimate

$$\frac{|t-u|}{\delta_n^2(u)} = \frac{\tau|x-t|}{\delta_n^2(t+\tau(x-t))} \le \frac{\tau|x-t|}{\delta_n^2(t)+\tau(\delta_n^2(x)-\delta_n^2(t))} \le \frac{|t-x|}{\delta_n^2(x)}.$$

Hence, by (4.23), we find

$$\begin{split} \tilde{D}_{n,q}(g,x) &- g(x)| \leq \\ &\leq D_{n,q} \left(\left| \int_{x}^{t} \frac{|t-u|}{\delta_{n}^{2}(u)} du \right|, x \right) \cdot \|\delta_{n}^{2} g''\| + \left| \int_{x}^{\frac{1+q[n]qx}{[n+2]q}} \frac{\left| \frac{1+q[n]qx}{[n+2]q} - u \right|}{\delta_{n}^{2}(u)} du \right| \cdot \|\delta_{n}^{2} g''\| \\ &\leq \frac{1}{\delta_{n}^{2}(x)} \cdot D_{n,q}((t-x)^{2}, x) \cdot \|\delta_{n}^{2} g''\| + \frac{1}{\delta_{n}^{2}(x)} \cdot \left(\frac{1+q[n]qx}{[n+2]q} - x \right)^{2} \cdot \|\delta_{n}^{2} g''\| \end{split}$$

In view of (4.19) and

$$\delta_n^2(x) \cdot |g''^2(x)g''(x)| + \frac{1}{[n+3]_q} \cdot |g''^2g''|| + \frac{1}{[n+3]_q} \cdot ||g''||,$$

where $x \in [0, 1]$, we get

$$|\tilde{D}_{n,q}(g,x) - g(x)| \le \frac{5}{[n+2]_q} \cdot \left(\|\varphi^2 g''\| + \frac{1}{[n+3]_q} \cdot \|g''\| \right)$$
(4.24)

Using
$$[n]_q \leq [n+2]_q$$
, (4.21), and (4.24), we find for $f \in C[0,1]$,
 $|D_{n,q}(f,x) - f(x)| \leq |\tilde{D}_{n,q}(f-g,x)| + |\tilde{D}_{n,q}(g,x) - g(x)| + |g(x) - f(x)| + \left| f\left(\frac{1+q[n]_q x}{[n+2]_q}\right) - f(x) \right|$
 $\leq 4 \|f-g\| + \frac{5}{[n+2]_q} \cdot \|\varphi^2 g''\| + \frac{5}{[n+2]_q} \cdot \|g''\| + \left| f\left(\frac{1+q[n]_q x}{[n+2]_q}\right) - f(x) \right|$

Taking the infimum on the right hand side over all $g \in W^2(\varphi)$, we obtain

$$|D_{n,q}(f,x) - f(x)| \le 5\overline{K}_{2,\varphi}\left(f, \frac{1}{[n+2]_q}\right) + \left|f\left(\frac{1+q[n]_q x}{[n+2]_q}\right) - f(x)\right|$$
(4.25)

On the other hand

$$\left| f\left(\frac{1+q[n]x}{[n+2]}\right) - f(x) \right| = \\ = \left| f\left(x + \psi(x) \cdot \frac{1 - ([n+2]_q - q[n]_q)x}{[n+2]_q \psi(x)}\right) - f(x) \right| \\ \le \sup_{t,t+\psi(t) \cdot (1 - ([n+2]_q - q[n]_q)x)/[n+2]_q \in [0,1]} \left| f\left(t + \psi(t) \cdot \frac{1 - ([n+2]_q - q[n]_q)x}{[n+2]_q \psi(x)}\right) - f(t) \right| \\ \le \omega_{\psi} \left(f, \frac{|1 - ([n+2]_q - q[n]_q)x|}{[n+2]_q \psi(x)}\right) \le \omega_{\psi} \left(f, \frac{1-x}{[n+2]_q \psi(x)}\right) = \omega_{\psi} \left(f, \frac{1}{[n+2]_q}\right).$$

Hence, by (4.25) and (4.22), we get

$$||D_{n,q}f - f|| \leq C \,\omega_2^{\varphi}(f, [n+2]_q^{-1/2}) \,+\, \omega_{\Psi}(f, [n+2]_q^{-1}),$$

 $x \in [0, 1]$, which completes the proof of the theorem.

Remark 4.2. In [86] it is proved for $q = q(n) \rightarrow 1$ as $n \rightarrow \infty$ that the sequence $\{D_{n,q}f\}$ converges to f uniformly on [0,1] for each $f \in C[0,1]$. The same result follows from Theorem 4.5, because

$$\lim_{n \to \infty} [n+2]_{q_n} = \lim_{n \to \infty} \frac{1 - (q(n))^{n+2}}{1 - q(n)} = \infty,$$

if $\lim_{n\to\infty} q(n) = 1$.

4.3.3 Applications to Random and Fuzzy Approximation

Let (X, ||.||) be a normed space over *K*, where K = R or K = C. Similar to the case of real-valued functions can be introduced the following concepts.

Definition 4.1 (Gal [74]).

(i) For $f:[0,1] \to X$, the first-order Ditzian–Totik modulus of continuity $\omega_{\psi}(f,\delta)$ and the second-order Ditzian–Totik modulus of smoothness $\omega_2^{\varphi}(f,\delta)$ are respectively defined as

$$\omega_{\psi}(f,\delta) = \sup_{0 < h \le \delta x, x \pm h \psi(x) \in [0,1]} \|f(x+h\psi(x)) - f(x)\|$$

and

$$\omega_{2}^{\psi}(f, \delta) =$$

$$\sup\{\sup\{||f(x+h\varphi(x)) - 2f(x) + f(x-h\varphi(x))||, x \in I_{2,h}\}, h \in [0, \delta]\}$$
where $I_{2,h} = \left[-\frac{1-h^{2}}{1+h^{2}}, \frac{1-h^{2}}{1+h^{2}}\right], \varphi(x) = \sqrt{x(1-x)}, \psi(x) = 1-x, 0 < \delta \leq 1.$
(ii) $f: [0,a] \to X$ is called *q*-integrable $(0 < q < 1)$ on $[0,a]$ if there exists $I \in X$

denoted by $I := \int_0^a f(u) d_q u$ with the property

$$\lim_{n \to \infty} \|I - (1 - q) \sum_{k=1}^{n} q^k f(aq^k)\| = 0.$$

Remark 4.3. Let (X, ||.||) be a Banach space. If $f : [0,a] \to X$ is continuous on [0,a], then it is *q*-integrable. Indeed, denoting $S_n(f) = (1-q)\sum_{k=1}^n q^k f(aq^k)$, we get $S_{n+p}(f) - S_n(f) = (1-q)\sum_{k=n}^{n+p} q^k f(aq^k)$ and since ||f(x)|| is bounded (by continuity) by a positive constant denoted by M, for all $n, p \in \mathbb{N}$ it follows

$$||S_{n+p}(f) - S_n(f)|| \le M(1-q) \sum_{k=n}^{n+p} q^k \le M(1-q)q^n \sum_{j=0}^{\infty} q^j = Mq^n,$$

which shows that $(S_n(f))_{n \in \mathbb{N}}$ is a Cauchy sequence. Since X is a Banach space, it follows that this sequence is convergent and therefore f is q-integrable.

Definition 4.2 (see Gupta [86] for real-valued functions). For $f: [0,1] \rightarrow X, 0 < q < 1$, *q*-integrable on [0,1], the *q*-Durrmeyer operators attached to *f* can be defined as

$$D_{n,q}(f,x) \equiv (D_{n,q}f)(x) = [n+1] \sum_{k=0}^{n} q^{-k} p_{n,k}(q;x) \int_{0}^{1} f(u) p_{n,k}(q;qu) d_{q} u \quad (4.26)$$

where

$$p_{n,k}(q;x) := \begin{bmatrix} n \\ k \end{bmatrix} x^k (x;q)_{n-k}.$$

Theorem 4.6 (see, e.g., [124], p. 183). Let (X, ||.||) be a normed space over K, where K = R or K = C and denote by $X^* = \{x^* : X \to K, x^* \text{ is linear and continuous}\}$. Then

$$||x|| = \sup\{|x^*(x)| : x^* \in X^*, ||x^*|| < 1\}.$$

Gal and Gupta [77] established the following theorem:

Theorem 4.7. Let $(X, \|\cdot\|)$ be a Banach space and suppose that $f : [0,1] \to X$ is continuous on [0,1]. Then under the conditions on *q* as given in Lemma 4.4, we have

$$||D_{n,q}f - f||_{u} \le C \,\omega_{2}^{\varphi}(f, [n+2]^{-1/2}) + \omega_{\psi}(f, [n+2]^{-1}),$$

where $||f||_u = \sup\{||f(x)|| : x \in [0,1]\}.$

Proof. Let $x^* \in X^*, 0 < |||x^*||| \le 1$ and define $g : [0,1] \to \mathbb{R}, g(x) = x^*(f(x))$. Obviously g is continuous on [0,1]. First, we have

$$\begin{split} \omega_{\psi}(g, \frac{1}{[n+2]}) &= \sup_{0 < h \le 1/[n+2]} \sup_{x, x \pm h \psi(x) \in [0,1]} |x^*[f(x+h\psi(x)) - f(x)]| \\ &\leq \sup_{0 < h \le 1/[n+2]} \sup_{x, x \pm h \psi(x) \in [0,1]} ||x^*|| | \cdot ||[f(x+h\psi(x)) - f(x)]|| \\ &\leq \sup_{0 < h \le 1/[n+2]} \sup_{x, x \pm h \psi(x) \in [0,1]} ||[f(x+h\psi(x)) - f(x)]|| \\ &= \omega_{\psi}(f, \frac{1}{[n+2]}), \end{split}$$

and

$$\begin{split} & \omega_2^{\varphi}(g, [n+2]^{-1/2}) \\ &= \sup\{\sup\{|x^*[f(x+h\varphi(x))-2f(x)+f(x-h\varphi(x))]|, \ x \in I_{2,h}\}, h \in [0, [n+2]^{-1/2}]\} \\ &\leq \sup\{\sup\{\||x^*\|| \cdot \|f(x+h\varphi(x))-2f(x)+f(x-h\varphi(x))\|, x \in I_{2,h}\}, h \in [0, [n+2]^{-1/2}]\} \\ &\leq \omega_2^{\varphi}(f, [n+2]^{-1/2}). \end{split}$$

Now, by Theorem 4.5, for all $x \in [0, 1]$ and $n \in \mathbb{N}$, we have

$$|D_{n,q}g(x) - g(x)| \le C[\omega_2^{\varphi}(g, [n+2]^{-1/2}) + \omega_{\psi}(g, [n+2]^{-1})].$$

But by the linearity and the continuity of x^* (the continuity allows to x^* to commutes with the integral), we easily get $D_{n,q}g(x) - g(x) = x^*[D_{n,q}f(x) - f(x)]$, which combined with the above inequalities lead to

$$|x^*[D_{n,q}f(x) - f(x)]| \le C[\omega_2^{\varphi}(f, [n+2]^{-1/2}) + \omega_{\psi}(f, [n+2]^{-1})],$$

for all $x \in [0,1]$. Passing to supremum with $|||x^*||| \le 1$ and taking into account Theorem 4.6, it follows

$$\|D_{n,q}f(x) - f(x)\| \le C[\omega_2^{\varphi}(f, [n+2]^{-1/2}) + \omega_{\psi}(f, [n+2]^{-1})],$$

for all $x \in [0, 1]$, which proves the theorem.

Some applications to the approximation of random functions by q-Durrmeyer random polynomials and of fuzzy-number-valued functions by q-Durrmeyer fuzzy polynomials were discussed in [77] as

If (S,B,P) is a probability space (*P* is the probability), then the set of almost sure (a.s.) finite real random variables is denoted by L(S,B,P) and it is a Banach space with respect to the norm $||g|| = \int_{S} |g(t)| dP(t)$. Here, for $g_1, g_2 \in L(S,B,P)$, we consider $g_1 = g_2$ if $g_1(t) = g_2(t)$, a.s. $t \in S$.

A random function defined on [0,1] is a mapping $f : [0,1] \to L(S,B,P)$ and we denote $f(x)(t) \in \mathbb{R}$ by f(x,t). For this kind of f, the q-Durrmeyer random polynomials are defined by

$$(D_{n,q}f)(x,t) = [n+1] \sum_{k=0}^{n} q^{-k} p_{n,k}(q;x) \int_{0}^{1} f(u,t) p_{n,k}(q;qu) d_{q}u.$$

Corollary 4.2. If $f : [0,1] \rightarrow L(S,B,P)$ is continuous on [0,1], then

$$||D_{n,q}f - f||_{u} \le C \,\omega_{2}^{\varphi}(f, [n+2]^{-1/2}) + \omega_{\Psi}(f, [n+2]^{-1}),$$

where $||f||_u = \sup\{||f(x)||; x \in [0,1]\} = \sup\{\int_S |f(x,t)| dP(t); x \in [0,1]\}.$

Given a set $X \neq \emptyset$, a fuzzy subset of *X* is a mapping $u : X \rightarrow [0, 1]$, and obviously any classical subset *A* of *X* can be considered as a fuzzy subset of *X* defined by $\chi_A : X \rightarrow [0, 1], \chi_A(x) = 1$, if $x \in A, \chi_A(x) = 0$ if $x \in X \setminus A$. (see, e.g., Zadeh [154]).

Let us denote by $\mathbb{R}_{\mathcal{F}}$ the class of fuzzy subsets of real axis \mathbb{R} (i.e., $u : \mathbb{R} \to [0,1]$), satisfying the following properties:

- (i) $\forall u \in \mathbb{R}_{\mathcal{F}}, u \text{ is normal, i.e., } \exists x_u \in \mathbb{R} \text{ with } u(x_u) = 1.$
- (ii) $\forall u \in \mathbb{R}_{\mathcal{F}}, u \text{ is convex fuzzy set (i.e., } u(tx + (1-t)y) \ge \min\{u(x), u(y)\}, \forall t \in [0,1], x, y \in \mathbb{R}).$
- (iii) $\forall u \in \mathbb{R}_{\mathcal{F}}, u \text{ is upper semicontinuous on } \mathbb{R}.$
- (iv) $\{x \in \mathbb{R} : u(x) > 0\}$ is compact, where \overline{A} denotes the closure of A.

Then $\mathbb{R}_{\mathcal{F}}$ is called the space of fuzzy real numbers (see, e.g., Dubois–Prade [56]).

Remark 4.4. Obviously $\mathbb{R} \subset \mathbb{R}_{\mathcal{F}}$, because any real number $x_0 \in \mathbb{R}$ can be described as the fuzzy number whose value is 1 for $x = x_0$ and 0 otherwise.

For $0 < r \leq 1$ and $u \in \mathbb{R}_{\mathcal{F}}$, define $[u]^r = \{x \in \mathbb{R}; u(x) \geq r\}$ and $[u]^0 = \overline{\{x \in \mathbb{R}; u(x) > 0\}}$. Then it is well known that for each $r \in [0, 1], [u]^r$ is a bounded closed interval. For $u, v \in \mathbb{R}_{\mathcal{F}}$ and $\lambda \in \mathbb{R}$, we have the sum $u \oplus v$ and the product $\lambda \odot u$ defined by $[u \oplus v]^r = [u]^r + [v]^r, [\lambda \odot u]^r = \lambda [u]^r, \forall r \in [0, 1]$, where $[u]^r + [v]^r$ means the usual addition of two intervals (as subsets of \mathbb{R}) and $\lambda [u]^r$ means the usual product between a scalar and a subset of \mathbb{R} (see, e.g., Dubois–Prade [56], Congxin–Zengtai [44]).

Let $D: \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \to \mathbb{R}_+ \cup \{0\}$ by

$$D(u,v) = \sup_{r \in [0,1]} \max\left\{ \left| u_{-}^{r} - v_{-}^{r} \right|, \left| u_{+}^{r} - v_{+}^{r} \right| \right\},\$$

where $[u]^r = [u_-^r, u_+^r], [v]^r = [v_-^r, v_+^r]$. The following properties are known (Dubois– Prade [56]):

 $D(u \oplus w, v \oplus w) = D(u, v), \forall u, v, w \in \mathbb{R}_{\mathcal{F}}$

 $D(k \odot u, k \odot v) = |k| D(u, v), \forall u, v \in \mathbb{R}_{\mathcal{F}}, \forall k \in \mathbb{R};$

 $D(u \oplus v, w \oplus e) \le D(u, w) + D(v, e), \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}} \text{ and } (\mathbb{R}_{\mathcal{F}}, D) \text{ is a complete metric space.}$

Also, we need the following concept of *q*-integral. A function $f : [0,a] \to \mathbb{R}_{\mathcal{F}}$, $[0,a] \subset \mathbb{R}$ will be called *q*-integrable on [0,a], if there exists $I \in \mathbb{R}_{\mathcal{F}}$, denoted by $I = \int_{0}^{a} f(u)d_{q}u$ with the property

$$\lim_{n\to\infty} D[I, (1-q)\odot \Sigma_{k=1}^{*n} q^k \odot f(aq^k)] \| = 0.$$

Here the sum Σ^* is considered with respect to the operation \oplus .

Remark 4.5. If $f : [0,a] \to \mathbb{R}_{\mathcal{F}}$ is continuous on [0,a], then it is *q*-integrable. Indeed, denoting $S_n(f) = (1-q) \odot \Sigma_{k=1}^{*n} q^k \odot f(aq^k)$, from the above properties of the metric *D*, we can write

$$D[S_n(f), S_{n+p}(f)] = (1-q)D[0_{\mathbb{R}_{\mathcal{F}}}, \Sigma_{k=n}^{n+p} q^k \odot f(aq^k)] \le (1-q)\sum_{k=n}^{n+p} q^k D[0_{\mathbb{R}_{\mathcal{F}}}, f(aq^k)] \le M(1-q)\sum_{k=n}^{n+p} q^k,$$

where the continuity implies that *f* is bounded and that there exists M > 0 such that $D[0_{\mathbb{R}_{\mathcal{F}}}, f(x)] \leq M$ for all $x \in [0, a]$. In continuation, taking into account that $(\mathbb{R}_{\mathcal{F}}, D)$ is a complete metric space, the reasonings are similar to those in the Remark 4.3.

Theorem 4.8 (see [44]). $\mathbb{R}_{\mathcal{F}}$ can be embedded in $\mathbb{B} = \overline{C}[0,1] \times \overline{C}[0,1]$, where $\overline{C}[0,1]$ is the class of all real-valued bounded functions $f : [0,1] \to \mathbb{R}$ such that f is left continuous for any $x \in (0,1]$, f has right limit for any $x \in [0,1)$, and f is right continuous at 0. With the norm $\|\cdot\| = \sup_{x \in [0,1]} |f(x)|, \overline{C}[0,1]$ is a Banach space. Denote $\|\cdot\|_{\mathbb{B}}$ the usual product norm, i.e., $\|(f,g)\|_{\mathcal{B}} = \max\{\|f\|, \|g\|\}$. Let us denote the embedding by $j : \mathbb{R}_{\mathcal{F}} \to \mathbb{B}, j(u) = (u_{-}, u_{+})$. Then $j(\mathbb{R}_{\mathcal{F}})$ is a closed convex cone in \mathbb{B} and j satisfies the following properties:

- (*i*) $j(s \odot u \oplus t \odot v) = s \cdot j(u) + t \cdot j(v)$ for all $u, v \in \mathbb{R}_{\mathcal{F}}$ and $s, t \ge 0$ (here "·" and "+" denote the scalar multiplication and addition in \mathbb{B})
- (ii) $D(u,v) = ||j(u) j(v)||_{\mathbb{R}}$ (i.e., j embeds $\mathbb{R}_{\mathcal{F}}$ in \mathbb{B} isometrically)

Let $f : [0,1] \to \mathbb{R}_F$ be a continuous fuzzy-number-valued function. The fuzzy *q*-Durrmeyer polynomials attached to *f* can be defined by

$$(D_{n,q}f)(x) = [n+1] \sum_{k=0}^{n} q^{-k} p_{n,k}(q;x) \odot \int_{0}^{1} p_{n,k}(q;qu) \odot f(u) d_{q}u.$$

Also, let us define the following moduli of continuity and smoothness of f:

$$\omega_{\psi}(f,\delta) = \sup_{0 < h \le \delta x, x \pm h \psi(x) \in [0,1]} D[f(x + h\psi(x)), f(x)],$$

$$\omega_2^{\phi}(f;\delta) = \sup\{D[f(x+h\phi(x)) \oplus f(x-h\phi(x)), 2 \odot f(x)]; x, x+h\phi(x), x-h\phi(x) \in [0,1], 0 \le h \le \delta\}.$$

Here $\phi^2(x) = x(1-x), \ \psi(x) = 1-x.$

Theorem 4.9. Let $f : [0,1] \to \mathbb{R}_F$ be continuous on [0,1]. There exist the absolute constant *C*, such that for all $n \in \mathbb{N}$ we have

$$\sup\{D[(D_{n,q}f)(x), f(x)]; x \in [0,1]\} \le C \,\omega_2^{\varphi}(f, [n+2]^{-1/2}) \,+\, \omega_{\psi}(f, [n+2]^{-1}).$$

4.4 Discretely Defined *q*-Durrmeyer Operators

For $f \in C[0,1]$, Gupta and Wang [94] proposed the following q-Durrmeyer operators as

$$M_{n,q}(f;x) = [n+1]_q \sum_{k=1}^n q^{1-k} p_{n,k}(q;x) \int_0^1 f(t) p_{n,k-1}(q;qt) d_q t + f(0) p_{n,0}(q;x)$$
(4.27)

It can be easily verified that in the case q = 1, the operators defined by (4.27) reduce to the Durrmeyer-type operators recently introduced and studied in [3].

4.4.1 Moment Estimation

By the definition of *q*-Beta function, we have

$$\int_{0}^{1} t^{s} p_{n,k}(q;qt) d_{q}t = \begin{bmatrix} n \\ k \end{bmatrix} q^{k} \int_{0}^{1} t^{k+s} (1-qt)_{q}^{n-k} d_{q}t$$
$$= \frac{q^{k}[n]_{q}!}{[k]_{q}![n-k]_{q}!} \frac{[k+s]_{q}![n-k]_{q}!}{[k+s+n-k+1]_{q}!} = \frac{q^{k}[n]_{q}![k+s]_{q}!}{[n+s+1]_{q}![k]_{q}!}$$
(4.28)

and

$$\int_{0}^{1} t^{s} p_{\infty,k}(q;qt) d_{q}t = \frac{q^{k}}{(1-q)^{k}[k]_{q}!} \int_{0}^{1} t^{k+s} (1-qt)_{q}^{\infty} d_{q}t$$
$$= \frac{q^{k}}{(1-q)^{k}[k]_{q}!} [k+s]_{q}! (1-q)^{k+s+1} = (1-q)^{s+1} \frac{q^{k}[k+s]_{q}!}{[k]_{q}!}.$$
 (4.29)

Lemma 4.5. We have

$$M_{n,q}(1;x) = 1, \quad M_{n,q}(t;x) = x \frac{[n]_q}{[n+2]_q}$$

and

$$M_{n,q}(t^2;x) = \frac{(1+q)x[n]_q}{[n+3]_q[n+2]_q} + x^2 \frac{q[n]_q([n]_q-1)}{[n+3]_q[n+2]_q}.$$

Proof. In order to prove the theorem we shall use the following identities:

$$\sum_{k=0}^{n} p_{n,k}(q;x) = 1, \quad \sum_{k=0}^{n} \frac{[k]_q}{[n]_q} p_{n,k}(q;x) = x,$$
$$\sum_{k=0}^{n} \left(\frac{[k]_q}{[n]_q}\right)^2 p_{nk}(q;x) = x^2 + \frac{x(1-x)}{[n]_q}.$$

By (4.28) and (4.29), it can easily be verified that $M_{n,q}(1;x) = 1$. Next, using the above, we have

$$M_{n,q}(t;x) = [n+1]_q \sum_{k=1}^n q^{1-k} p_{n,k}(q;x) \frac{q^{k-1}[n]_q![k]_q}{[n+2]_q!}$$
$$= \frac{1}{[n+2]_q} \sum_{k=1}^n [k]_q p_{n,k}(q;x) = x \frac{[n]_q}{[n+2]_q}.$$

Finally, using $[a+1]_q = 1 + q[a]_q$, we have

$$\begin{split} M_{n,q}(t^2;x) &= \frac{1}{[n+3]_q [n+2]_q} \sum_{k=1}^n p_{n,k}(q;x) [k+1]_q [k]_q \\ &= \frac{1}{[n+3]_q [n+2]_q} \left\{ \sum_{k=1}^n p_{n,k}(q;x) (1+q[k]_q) [k]_q \right\} \\ &= \frac{1}{[n+3]_q [n+2]_q} \left\{ \sum_{k=1}^n p_{n,k}(q;x) [k]_q + q \sum_{k=1}^n p_{n,k}(q;x) [k]_q^2 \right\} \\ &= \frac{1}{[n+3]_q [n+2]_q} \left\{ x[n]_q + q(x^2[n]_q^2 + x(1-x)[n]_q) \right\} \\ &= \frac{x[n]_q (1+q)}{[n+3]_q [n+2]_q} + \frac{q^2 x^2}{[n+3]_q [n+2]_q} \left[\frac{[n]_q^2 - [n]_q}{q} \right]. \end{split}$$

Thus,

$$M_{n,q}(t^2;x) = \frac{x[n]_q(1+q)}{[n+3]_q[n+2]_q} + \frac{qx^2[n]_q([n]_q-1)}{[n+3]_q[n+2]_q}.$$

This completes the proof of the lemma.

Remark 4.6. By simple computation, it can easily be verified that

$$M_{n,q}(t^r;x) = \frac{[n+1]_q!}{[n+r+1]_q!} \sum_{k=1}^n [k]_q [k+1]_q \cdots [k+r-1]_q p_{n,k}(q;x), \quad r \ge 1.$$

Using $[k+s]_q = [s]_q + q^s[k]_q$, we get

$$[k]_q[k+1]_q \cdots [k+r-1]_q = \prod_{s=0}^{r-1} ([s]_q + q^s[k]_q) = \sum_{s=1}^r c_s(r)[k]_q^s,$$

where $c_s(r) > 0$, s = 1, 2, ..., r are the constants independent of k. Hence

$$M_{n,q}(t^r;x) = \frac{[n+1]_q!}{[n+r+1]_q!} \sum_{s=1}^r c_s(r) \sum_{k=1}^n [k]_q^s p_{n,k}(q;x) = \frac{[n+1]_q!}{[n+r+1]_q!} \sum_{s=1}^r c_s(r) [n]_q^s B_{n,q}(t^s;x).$$

Since $c_s(r) > 0$ for s = 1, 2, ..., r and $B_{n,q}(t^s; x)$ is a polynomial of degree $\leq \min(s, n)$ (see [7]), we get $M_{n,q}(t^r; x)$ is a polynomial of degree $\leq \min(r, n)$.

4.4.2 Rate of Approximation

Theorem 4.10. Let $q_n \in (0,1)$. Then the sequence $\{M_{n,q_n}(f)\}$ converges to f uniformly on [0,1] for each $f \in C[0,1]$ if and only if $\lim_{n\to\infty} q_n = 1$.

Proof. Since the operators M_{n,q_n} are positive linear operators on C[0,1] and preserve constant functions, the well-known Korovkin theorem [113] implies that $M_{n,q_n}(f;x)$ converges to f(x) uniformly on [0,1] as $n \to \infty$ for any $f \in C[0,1]$ if and only if

$$M_{n,q_n}(t^i;x) \to x^i \ (i=1,2),$$
 (4.30)

uniformly on [0, 1] as $n \to \infty$. If $q_n \to 1$, then $[n]_{q_n} \to \infty$ (see [151]) and for s = 1, 2, 3, $\lim_{n\to\infty} \frac{[n+s]_{q_n}}{[n]_{q_n}} = 1$, hence (4.30) follows from Lemma 4.5.

On the other hand, if we assume that for any $f \in C[0,1]$, $M_{n,q_n}(f,x)$ converges to f(x) uniformly on [0,1] as $n \to \infty$, then $q_n \to 1$. In fact, if the sequence (q_n) does not tend to 1, then it must contain a subsequence (q_{n_k}) such that $q_{n_k} \in (0,1)$, $q_{n_k} \to q_0 \in [0,1)$ as $k \to \infty$. Thus, $\frac{1}{[n_k+s]_{qn_k}} = \frac{1-q_{n_k}}{1-(q_{n_k})^{n_k+s}} \to (1-q_0)$ as $k \to \infty$, s = 0,1,2,3. Taking $n = n_k$, $q = q_{n_k}$ in $M_{n,q}(t^2; x)$, by Lemma 4.5, we get

$$M_{n_k,q_{n_k}}(t^2;x) \to x(1-q_0^2) + x^2 q_0^2 \not\to x^2 \quad (k \to \infty) \ ,$$

which leads to a contradiction. Hence, $q_n \rightarrow 1$. This completes the proof of Theorem 4.10.

Let $q \in (0,1)$ be fixed. We define $M_{\infty,q}(f,1) = f(1)$ and for $x \in [0,1)$

$$M_{\infty,q}(f,x) := \frac{1}{1-q} \sum_{k=1}^{\infty} p_{\infty,k}(q;x) q^{1-k} \int_{0}^{1} f(t) p_{\infty,k-1}(q;qt) d_{q}t + f(0) p_{\infty,0}(q;x)$$
$$=: \sum_{k=0}^{\infty} A_{\infty k}(f) p_{\infty,k}(q;x).$$
(4.31)

4.4 Discretely Defined *q*-Durrmeyer Operators

Using (4.29), (4.31), and the fact that (see [125])

$$\sum_{k=0}^{\infty} p_{\infty,k}(q;x) = 1, \quad \sum_{k=0}^{\infty} (1-q^k) p_{\infty,k}(q;x) = x$$

and

$$\sum_{k=0}^{\infty} (1-q^k)^2 p_{\infty,k}(q;x) = x^2 + (1-q)x(1-x),$$

it is easy to prove that

$$M_{\infty,q}(1;x) = 1, \qquad M_{\infty,q}(t;x) = x,$$

and

$$M_{\infty,q}(t^2;x) = \sum_{k=0}^{\infty} (1-q^k)(1-q^{k+1})p_{\infty,k}(q;x)$$
$$= (1-q)x + q(x^2 + (1-q)x(1-x)) = (1-q^2)x + q^2x^2$$

For $f \in C[0,1]$, t > 0, we define the modulus of continuity $\omega(f,t)$ as follows:

$$\omega(f,t) := \sup_{\substack{|x-y| \le t\\x,y \in [0,1]}} |f(x) - f(y)|.$$

Lemma 4.6. *Let* $f \in C[0,1]$ *and* f(1) = 0*. Then we have*

$$|A_{nk}(f)| \le A_{nk}(|f|) \le \omega(f,q^n)(1+q^{k-n})$$

and

$$A_{\infty k}(f)| \leq A_{\infty k}(|f|) \leq \omega(f,q^n)(1+q^{k-n}).$$

Proof. By the well-known property of modulus of continuity (see [4], pp. 20)

$$\omega(f,\lambda t) \le (1+\lambda)\omega(f,t), \ \lambda > 0,$$

we get

$$|f(t)| = |f(t) - f(1)| \le \omega(f, 1-t) \le \omega(f, q^n)(1 + (1-t)/q^n).$$

Thus,

$$\begin{aligned} |A_{nk}(f)| &\leq A_{nk}(|f|) := [n+1]_q \int_0^1 q^{1-k} |f(t)| p_{n,k-1}(q;qt) d_q t \\ &\leq [n+1]_q \int_0^1 q^{1-k} \omega(f,q^n) (1+(1-t)/q^n) p_{n,k-1}(q;qt) d_q t \\ &= \omega(f,q^n) (1+q^{-n}(1-\frac{[k]_q}{[n+2]_q})) \\ &= \omega(f,q^n) \Big(1+\frac{q^k(1-q^{n+2-k})}{q^n(1-q^{n+2})} \Big) \leq \omega(f,q^n) (1+q^{k-n}). \end{aligned}$$

Similarly,

$$\begin{aligned} |A_{\infty k}(f)| &\leq A_{\infty k}(|f|) := \frac{q^{1-k}}{1-q} \int_0^1 |f(t)| p_{\infty,k-1}(q;qt) d_q t \\ &\leq \omega(f,q^n) \frac{q^{1-k}}{1-q} \int_0^1 (1+(1-t)/q^n) p_{\infty,k-1}(q;qt) d_q t \\ &= \omega(f,q^n) (1+(1-(1-q^k))/q^n) = \omega(f,q^n) (1+q^{k-n}). \end{aligned}$$

Lemma 4.6 is proved.

Theorem 4.11. Let 0 < q < 1. Then for each $f \in C[0,1]$ the sequence $\{M_{n,q}(f;x)\}$ converges to $M_{\infty,q}(f;x)$ uniformly on [0,1]. Furthermore,

$$\|M_{n,q}(f) - M_{\infty,q}(f)\| \le C_q \ \omega(f,q^n).$$
(4.32)

Remark 4.7. When $f(x) = x^2$, we have

$$\|M_{n,q}(f) - M_{\infty,q}(f)\| \ge c_1 q^n \ge c_2 \ \omega(f,q^n),$$

where $c_1, c_2 > 0$ are the constants independent of *n*. Hence, the estimate (4.32) is sharp in the following sense: The sequence q^n in (4.32) cannot be replaced by any other sequence decreasing to zero more rapidly as $n \to \infty$.

Proof. The operators $M_{n,q}$ and $M_{\infty,q}$ preserve constant functions, that is,

$$M_{n,q}(1,x) = M_{\infty,q}(1,x) = 1.$$

Without loss of generality, we assume that f(1) = 0. If x = 1, then by Lemma 4.1, we have

$$|M_{n,q}(f;1) - M_{\infty,q}(f;1)| = |A_{nn}(f) - f(1)| = |A_{nn}(f)| \le 2\omega(f,q^n).$$

For $x \in [0,1)$, by the definitions of $M_{n,q}(f;x)$ and $M_{\infty,q}(f;x)$, we know that

$$\begin{split} |M_{n,q}(f;x) - M_{\infty,q}(f;x)| &= \Big| \sum_{k=0}^{n} A_{nk}(f) p_{n,k}(q;x) - \sum_{k=0}^{\infty} A_{\infty k}(f) p_{\infty,k}(q;x) \Big| \\ &\leq \sum_{k=0}^{n} |A_{nk}(f) - A_{\infty k}(f)| p_{n,k}(q;x) + \sum_{k=0}^{n} |A_{\infty k}(f)| |p_{n,k}(q;x) - p_{\infty,k}(q;x)| \\ &+ \sum_{k=n+1}^{\infty} |A_{\infty k}(f)| |p_{\infty,k}(q;x) =: I_1 + I_2 + I_3. \end{split}$$

First we have

$$\begin{split} |p_{n,k}(q;x) - p_{\infty,k}(q;x)| &= \left| \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x) - \frac{x^k}{(1-q)^k [k]_q !} \prod_{s=0}^{\infty} (1-q^s x) \right| \\ &= \left| \begin{bmatrix} n \\ k \end{bmatrix}_q x^k (\prod_{s=0}^{n-k-1} (1-q^s x) - \prod_{s=0}^{\infty} (1-q^s x)) + x^k \prod_{s=0}^{\infty} (1-q^s x) (\begin{bmatrix} n \\ k \end{bmatrix}_q - \frac{1}{(1-q)^k [k]_q !}) \right| \\ &\leq p_{n,k}(q;x) \left| 1 - \prod_{s=n-k}^{\infty} (1-q^s x) \right| \\ &+ p_{\infty k}(q;x) \left| 1 - \prod_{s=n-k+1}^{\infty} (1-q^s) - 1 \right| \\ &\leq \frac{q^{n-k}}{1-q} (p_{n,k}(q;x) + p_{\infty k}(q;x)), \end{split}$$

where in the last formula, we use the following inequality, which can be easily proved by the induction on n (see [100]):

$$1 - \prod_{s=1}^{n} (1 - a_s) \le \sum_{s=1}^{n} a_s, \quad (a_1, \dots, a_n \in (0, 1), \ n = 1, 2, \dots, \infty).$$

Using the above inequality we get

$$\begin{aligned} |A_{nk}(f) - A_{\infty k}(f)| &\leq \int_0^1 q^{1-k} |f(t)| |[n+1]_q p_{n,k-1}(q;qt) - \frac{1}{1-q} p_{\infty,k-1}(q;qt) |d_qt \\ &\leq \int_0^1 q^{1-k} |f(t)| \Big| [n+1]_q - \frac{1}{1-q} \Big| p_{\infty,k-1}(q;qt) d_qt \end{aligned}$$

$$\begin{split} + \int_{0}^{1} q^{1-k} |f(t)| [n+1]_{q} \Big| p_{n,k-1}(q;qt) - p_{\infty,k-1}(q;qt) \Big| d_{q}t \\ &\leq \frac{q^{n+1}}{1-q} \int_{0}^{1} q^{1-k} |f(t)| p_{\infty,k-1}(q;qt) d_{q}t \\ &+ \frac{q^{n-k}}{1-q} \int_{0}^{1} q^{1-k} |f(t)| [n+1] (p_{n,k-1}(q;qt) + p_{\infty,k-1}(q;qt)) d_{q}t \\ &= q^{n+1} A_{\infty k}(|f|) + \frac{q^{n-k}}{1-q} A_{nk}(|f|) + q^{n-k} [n+1]_{q} A_{\infty k}(|f|) \\ &\leq q^{n+1} \omega(f,q^{n}) (1+q^{k-n}) + 2 \frac{q^{n-k}}{1-q} \omega(f,q^{n}) (1+q^{k-n}) \leq \frac{5\omega(f,q^{n})}{1-q}. \end{split}$$

Now we estimate I_1 and I_3 . We have

$$I_1 \le \frac{5\omega(f,q^n)}{1-q} \sum_{k=0}^n p_{n,k}(q;x) = \frac{5\omega(f,q^n)}{1-q}$$

and

$$I_{3} \leq \omega(f,q^{n}) \sum_{k=n+1}^{\infty} (1+q^{k-n}) p_{\infty,k}(q;x) \leq 2\omega(f,q^{n}) \sum_{k=n+1}^{\infty} p_{\infty,k}(q;x) \leq 2\omega(f,q^{n}).$$

Finally we estimate I_2 as follows:

$$I_{2} \leq \sum_{k=0}^{n} \omega(f,q^{n})(1+q^{k-n}) \frac{q^{n-k}}{1-q} (p_{n,k}(q;x)+p_{\infty,k}(q;x))$$
$$\leq \frac{2\omega(f,q^{n})}{1-q} \sum_{k=0}^{n} (p_{n,k}(q;x)+p_{\infty,k}(q;x)) \leq \frac{4\omega(f,q^{n})}{1-q}.$$

We conclude that for $x \in [0, 1)$,

$$|M_{n,q}(f;x) - M_{\infty,q}(f;x)| \le C_q \omega(f,q^n),$$

where $C_q = 2 + \frac{9}{1-q}$. This completes the proof of Theorem 4.11.

Since $M_{\infty,q}(t^2, x) = (1 - q^2)x + q^2x^2 > x^2$ for 0 < q < 1, as a consequence of Lemma 3.10, we have the following:

Theorem 4.12. Let 0 < q < 1 be fixed and let $f \in C[0,1]$. Then $M_{\infty,q}(f;x) = f(x)$ for all $x \in [0,1]$ if and only if f is linear.

Remark 4.8. Let 0 < q < 1 be fixed and let $f \in C[0,1]$. Then by Theorem 4.11 and Theorem 4.12, it can easily be verified that the sequence $\{M_{n,q}(f;x)\}$ does not

approximate f(x) unless f is linear. This is completely in contrast to the classical Bernstein polynomials, by which $\{B_{n,1}(f;x)\}$ approximates f(x) for any $f \in C[0,1]$.

At last, we discuss approximating property of the operators $M_{\infty,q}$.

Theorem 4.13. For any $f \in C[0,1]$, $\{M_{\infty,q}(f)\}$ converges to f uniformly on [0,1] as $q \to 1-$.

Proof. The proof is standard. We know that the operators $M_{\infty,q}$ are positive linear operators on C[0,1] and reproduce linear functions. Also,

$$M_{\infty,q}(t^2;x) = (1-q^2)x + q^2x^2 \to x^2$$

uniformly on [0,1] as $q \rightarrow 1-$. Theorem 4.5 follows from the Korovkin theorem.

4.5 Genuine *q*-Bernstein–Durrmeyer Operators

For $f \in C[0,1]$, Mahmudov and Sabancigil [121] defined the following genuine *q*-Bernstein–Durrmeyer operators as

$$U_{n,q}(f;x) = [n-1]_q \sum_{k=1}^{n-1} q^{1-k} p_{n,k}(q;x) \int_0^1 f(t) p_{n-2,k-1}(q;qt) d_q t$$

+ $f(0) p_{n,0}(q;x) + f(1) p_{n,n}(q;x)$
=: $\sum_{k=0}^n A_{nk}(f) p_{n,k}(q;x), \quad 0 \le x \le 1.$ (4.33)

It can be easily verified that in the case q = 1, the operators defined by (4.33) reduce to the genuine Bernstein–Durrmeyer operators [82].

4.5.1 Moments

Lemma 4.7 ([121]). We have

$$U_{n,q}(1;x) = 1, U_{n,q}(t;x) = x$$
$$U_{n,q}(t^2;x) = \frac{(1+q)x(1-x)}{[n+1]_q} + x^2$$

and

$$U_{n,q}((t-x)^2;x) = \frac{(1+q)x(1-x)}{[n+1]_q} \le \frac{2}{[n+1]_q}x(1-x).$$

Lemma 4.8 ([121]). $U_{n,q}(t;x)$ is a polynomial of degree less than or equal to $\min\{m,n\}$.

Proof. By simple computation,

$$\begin{aligned} U_{n,q}(t^m;x) &= [n-1]_q \sum_{k=1}^{n-1} q^{1-k} p_{n,k}(q;x) \int_0^1 f(t) p_{n-2,k-1}(q;qt) t^m dqt + p_{n,n}(q;x) \\ &= [n-1]_q \sum_{k=1}^{n-1} p_{n,k}(q;x) \frac{[n-2]_q![k+m-1]_q!}{[k-1]_q![n+m-1]_q!} + p_{n,n}(q;x) \\ &= \frac{[n-1]_q!}{[n+m-1]_q!} \sum_{k=1}^{n-1} p_{n,k}(q;x) \frac{[k+m-1]_q!}{[k-1]_q!} + p_{n,n}(q;x) \\ &= \frac{[n-1]_q!}{[n+m-1]_q!} \sum_{k=1}^{n} p_{n,k}(q;x) [k]_q [k+1]_q \cdots [k+m-1]_q + p_{n,n}(q;x). \end{aligned}$$

Next using

$$[k]_q[k+1]_q \cdots [k+m-1]_q = \prod_{s=0}^{m-1} (q^s[k]_q + [s]_q) = \sum_{s=1}^m c_c(m)[k]_q^s,$$

where $c_s(m) > 0, s = 1, 2, 3, \dots, m$ are the constants independent of k, we get

$$U_{n,q}(t^m;x) = \frac{[n-1]_q!}{[n+m-1]_q!} \sum_{k=1}^n \sum_{s=1}^m c_s(m)[n]_q^s B_{n,q}(t^s;x),$$

where $B_{n,q}$ is the *q* Bernstein operator. Since $B_{n,q}(t^s;x)$ is a polynomial of degree less than or equal to min $\{s,n\}$ and $c_s(m) > 0, s = 1, 2, 3, ..., m$, it follows that $U_{n,q}(t^m;x)$ is a polynomial of degree less than or equal to min $\{m,n\}$.

4.5.2 Direct Results

The following theorems were established by [121]:

Theorem 4.14. Let $0 < q_n < 1$. Then the sequence $\{U_{n,q}(f;x)\}$ converges to f uniformly on [0,1] for each $f \in C[0,1]$, if and only if $\lim_{n\to\infty} q_n = 1$.

Theorem 4.15. Let 0 < q < 1 and n > 3. Then for each $f \in C[0,1]$ the sequence $\{U_{n,q}(f;x)\}$ converges to f(x) uniformly on [0,1]. Furthermore

$$||U_{n,q}(f;.) - U_{\infty,q}(f;.)|| \le c_q \omega(f,q^{n-2}),$$

where $c_q = \frac{10}{1-q} + 4$ and ||.|| is the uniform norm on [0, 1].

Theorem 4.16. There exists an absolute constant C > 0 such that

$$|U_{n,q}(f;x)-f(x)| \leq C \omega_2\left(f,\sqrt{\frac{x(1-x)}{[n+1]_q}}\right),$$

where $f \in C[0, 1]$, 0 < q < 1, and $x \in [0, 1]$.

Proof. Using Taylor's formula

$$g(t) = g(x) + (t - x) g'(x) + \int_{x}^{t} (t - u) g''^{2}[0, 1],$$

we obtain

$$U_{n,q}(g;x) = g(x) + U_{n,q}\left(\int_x^t (t-u) g''(u) du; x\right), g \in C^2[0,1]$$

Hence

$$\begin{aligned} |U_{n,q}(g;x) - g(x)| &\leq U_{n,q} \left(\left| \int_x^t |t - u| \cdot |g''(u)| \, du \right|, x \right) \\ &\leq U_{n,q}((t - x)^2;x) \cdot ||g''|| \leq ||g''|| \frac{2}{[n+1]_q} x(1 - x). \end{aligned}$$

Now for $f \in C[0,1]$ and $g \in C^2[0,1]$ and with the fact $||U_{n,q}(f,;.)|| \leq ||f||$, we obtain

$$|U_{n,q}(f;x) - g(x)| \le |U_{n,q}(f - g;x)| + |U_{n,q}(g;x) - g(x)| + ||f(x) - g(x)||$$

$$\leq 2 \|f - g\| + \|g''\| \frac{2}{[n+1]_q} x(1-x).$$

Taking the infimum on the right hand side over all $g \in C^2[0, 1]$, we obtain

$$|U_{n,q}(f;x) - f(x)| \le 2K_2\left(f, \frac{1}{[n+1]_q}x(1-x)\right).$$
(4.34)

The desired results follow from (4.12), (4.34). This completes the proof of the theorem.

4.6 q-Bernstein Jacobi Operators

In the year 2005, Derriennic [48] introduced the generalization of modified Bernstein polynomials for q-Jacobi weights using the q-Bernstein basis functions. For $q \in (0,1)$ and $\alpha, \beta > -1$

$$L_{n,q}^{\alpha,\beta}(f;x) = \sum_{k=0}^{n} f_{n,k,q}^{\alpha,\beta} p_{n,k}(q;x)$$
(4.35)

where

$$p_{n,k}(q;x) := \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x)$$

and

$$f_{n,k,q}^{\alpha,\beta} = \frac{\int_0^1 t^{k+\alpha} (1-qt)_q^{n-k+\beta} f(q^{\beta+1}t) d_q t}{\int_0^1 t^{k+\alpha} (1-qt)_q^{n-k+\beta} d_q t}$$

It is observed in [48] that for any $n \in N$, $L_{n,q}^{\alpha,\beta}(f;x)$ is linear and positive and preserves the constant functions.

It is self adjoint. It preserves the degree of polynomials of degree $\leq n$.

The polynomial $L_{n,q}^{\alpha,\beta}(f;x)$ is well defined if there exists $\gamma \ge 0$ such that $x^{\gamma}f(x)$ is bounded on (0,A] for some $A \in 90,1]$ and $\alpha > \gamma - 1$. Indeed $x^{\alpha}f(x)$ is then *q*-integrable for the weight $w_q^{\alpha,\beta}(x) = x^{\alpha}(1-qx)_q^{\beta}$. Thus we call that *f* is said to satisfy the condition $C(\alpha)$. Also $< f, g >_q^{\alpha,\beta}$ is well defined if the product fg satisfies $C(\alpha)$, particularly if f^2 and g^2 do it, where

$$< f,g>_q^{\alpha,\beta} = \int_0^{q^{\beta+1}} t^{\alpha} (1-q^{-\beta}t)_q^{\beta} f(t)g(t)d_q t$$

and

$$< f,g>_q^{\alpha,\beta} = q^{(\alpha+1)(\beta+1)} \int_0^1 t^{\alpha} (1-qt)_q^{\beta} f(q^{\beta+1}t) g(q^{\beta+1}t) d_q t.$$

4.6.1 Basic Results

Proposition 4.1. If f verifies the condition $C(\alpha)$, we have

$$D_q L_{n,q}^{\alpha,\beta}(f;x) = \frac{[n]_q}{[n+\alpha+\beta+2]_q} q^{\alpha+\beta+2} L_{n-1,q}^{\alpha+1,\beta+1} D_q \left(f\left(\frac{\cdot}{q}\right);qx \right), x \in [0,1]$$

Proposition 4.2. *For any* $m, n \in N, x \in [0, 1]$ *and* $q \in [1/2, 1]$ *if*

$$T_{n,m,q}(x) = \sum_{k=0}^{n} p_{n,k}(q;x) \frac{\int_0^1 t^{k+\alpha} (1-qt)_q^{n-k+\beta} (x-t)^m d_q t}{\int_0^1 t^{k+\alpha} (1-qt)_q^{n-k+\beta} d_q t}$$

Lemma 4.9. For any $m, n \in N, x \in [0, 1]$ and $q \in [1/2, 1]$ if

$$T_{n,m,q}^{1}(x) = \sum_{k=0}^{n} p_{n,k}(q;x) \frac{\int_{0}^{1} t^{k+\alpha} (1-qt)_{q}^{n-k+\beta} (x-t)_{q}^{m} d_{q}t}{\int_{0}^{1} t^{k+\alpha} (1-qt)_{q}^{n-k+\beta} d_{q}t}.$$

142

Then for $m \ge 2$, the following recurrence formula holds

$$\begin{split} & [n+m+\alpha+\beta+2]_q q^{-\alpha-2m-1} T^1_{n,m+1,q}(x) \\ & = \ (-x(1-x)D_q T^1_{n,m,q}(x) + T^1_{n,m,q}(x)(p_{1,m}(x) + x(1-q)[n+\alpha+\beta]_q [m+1]_q q^{1-\alpha-m}) \\ & = \ + T^1_{n,m-1,q}(x)p_{2,m}(x) + T^1_{n,m-2,q}(x)p_{3,m}(x)(1-q), \end{split}$$

where the polynomials $p_{i,m}(x)$, i = 1, 2, 3 are uniformly bounded with regard to n and q.

Lemma 4.10. For any $m \in N, x \in [0,1]$ and $q \in [1/2,1]$, the expansion of $(x-t)^m$ on the Newton basis at the points $x/q^i, i = 0, 1, 2, ..., m-1$ is

$$(x-t)^m = \sum_{k=1}^m d_{m,k} (1-q)^{m-k} (x-t)_q^k,$$
(4.36)

where the coefficient $d_{m,k}$ verify $|d_{m,k}| \le d_m, k = 1, 2, ..., m$ and d_m does not depend on x, t, q.

Remark 4.9. From Lemmas 4.9 and 4.10, we have for any *m* there exists a constant $K_m > 0$ independent of *n* and *q*, such that

$$\sup_{x \in [0,1]} |T_{n,m,q}(x)| \le \begin{cases} \frac{K_m}{[n]_q^{m/2}}, & \text{if } m \text{ is even} \\ \frac{K_m}{[n]_q^{(m+1)/2}}, & \text{if } m \text{ is odd}. \end{cases}$$

Remark 4.10. The sequence (q_n) has the property *S* if and only if there exists $n \in N$ and c > 0 such that for any $n > N, 1 - q_n < c/n$.

4.6.2 Convergence

Theorem 4.17. If f is continuous at the point $x \in (0, 1)$, then

$$\lim_{n \to \infty} L_{n,q_n}^{\alpha,\beta}(f;x) = f(x)$$

in the following cases:

- 1. If f is bounded on [0,1] and the sequence (q_n) is such that $\lim_{n\to\infty} q_n = 1$
- 2. If there exist real numbers $\alpha', \beta' \ge 0$ and a real k' > 0 such that, for any $x \in (0,1), |x^{\alpha'}(1-x)^{\beta'}f(x)| \le k', \alpha' < \alpha + 1, \beta' < \beta + 1$ and the sequence (q_n) owns the property S

Theorem 4.18. If the function f admits a second derivative at the point $x \in [0,1]$, then as in cases 1 and 2 of Theorem 4.17, we have

$$\lim_{n \to \infty} [n]_{q_n} [L_{n,q}^{\alpha,\beta}(f;x) - f(x)] = \frac{d}{dx} \frac{\left(x^{\alpha+1}(1-x)^{\beta+1}f'x\right)}{x^{\alpha}(1-x)^{\beta}}$$
(4.37)

Proof. By Taylor's formula, we have

$$f(t) = f(x) + (t-x)f'(x) + \frac{(t-x)^2}{2!}f''(x) + (t-x)^2\varepsilon(t-x),$$

where $\lim_{u\to 0} \varepsilon(u) = 0$. Thus

$$L_{n,q_n}^{\alpha,\beta}(f;x) - f(x) = -f'(x)T_{n,1,q_n}(x) + \frac{f''(x)}{2!}T_{n,2,q_n}(x) + R_n(x),$$

where $R_n(x) = L_{n,q_n}^{\alpha,\beta}((t-x)^2 \varepsilon(t-x);x)$. Using $\lim_{q\to 1} [a]_q = a$ for any $a \in R$. Using Lemmas 4.9 and 4.10, we have $\lim_{[n]_{q_n}\to\infty} [n]_{q_n}T_{n,1,q_n}(x) = (\alpha+\beta+2)x-\alpha-1$ and $\lim_{[n]_{q_n}\to\infty} [n]_{q_n}T_{n,2,q_n}(x) = 2x(1-x)$. The result follows immediately if we show that $\lim_{[n]_{q_n}\to\infty} [n]_{q_n}R_n(x) = 0$. Proceeding along the same manner as in Theorem 4.17. For any $\eta > 0$ we can find a $\delta > 0$ such that for *n* large enough $\varepsilon(t-x) < \eta$ if $|x-q_n^{\beta+1}t| < \delta$.

We obtain the inequality $|(t-x)^2 \varepsilon(t-x)| \le \eta (x-t)^2 + (\rho_x + |f(t)|) I_{x,\delta}(q^{-(\beta+1)}t)$ for any $t \in (0, 1)$ where ρ_x is independent of t and δ . We deduce

$$[n]_{q_n}|R_n(x)| \le \begin{cases} [n]_{q_n} \left(\eta T_{n,2,q_n}(x) + (\rho_x + k) T_{n,4,q_n}(x)/\delta^4\right), & \text{in case 1} \\ [n]_{q_n} \left(\eta T_{n,2,q_n}(x) + \rho_x T_{n,4,q_n}(x)/\delta^4\right) + k' n E_n(x,\delta), & \text{in case 1} \end{cases}$$

The right hand side tends to $2\eta x(1-x)$ when *n* (hence $[n]_{q_n}$) tends to infinity is as small as wanted.