Chapter 4
q-Bernstein-Type Integral Operators

4.1 Introduction

In order to approximate integrable functions on the interval [0, 1], Kantorovich gave
modified Bernstein polynomials. Later in the year 1967 Durrmeyer [58] considered
a more general integral modification of the classical Bernstein polynomials, which
were studied first by Derriennic [47]. Also some other generalizations of the
Bernstein polynomials are available in the literature. The other most popular
generalization as considered by Goodman and Sharma [82], namely, genuine
Bernstein—Durrmeyer operators. In this chapter we discuss the g analogues of
various integral modifications of Bernstein polynomials. The results were discussed
in recent papers [45, 62, 86,89,92,94,121], etc.

4.2 g-Bernstein—-Kantorovich Operators

Recently, Dalmanoglu [45] proposed the g-Kantorovich-Bernstein operators as

[k+1]g/In+1]q

Koalfo0) = I+ 11, Y, puslai) | JOdt, xe0.1] @D

k=0 (Klg/In+1]q

where

Pnx(q:x) -—[ L ﬁ (1—g').

In case ¢ = 1, the operators (4.1) reduce to well-known Bernstein—Kantorovich
operators
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where p, x(x) is the Bernstein basis function given by

puste) = () 41—

4.2.1 Direct Results

For the operators (4.1), Dalmanoglu [45] obtained the following theorems:

Theorem 4.1. If the sequence (q,) satisfies the conditions lim, g, = 1 and
lim,, e ﬂlq— =0and0< g, <1, then

||Kﬂyt](f7'x)_f|| —>O,I’l—>°°,

forevery f € C[0,a], 0 <a < 1.

Proof. First, we have

1 n—k-1 [k+1]g/[n+1]4
gl =1, 07t || TT 0= | it
-0

k=0 q s Klq/[n+1]q

Also by definition of g-integral

(k+1]q/[n+1]q (k+1]q/[n+1]q [Klg/In+1]q
/ dgt = / dgt — / dgt
Jklq/[n+1]4 0 0

=(1—q)miqj—(l—Q) 7 iq"

[n—l—l]qj:O n+1], )
_1-g¢ - i_ 4
[+ 1]q([k+ o= [k]q)jg(')qj S

Thus K, 4(1,x) = 1. Next

(k+1]q/[n+1]q

n n—k—1
Knalt) =t 1), X0t 7] F T -0 .
q

k=0 5=0 (Klg/In+1]q
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Again by definition of g-integral

(k+1]q/[n+1]q (k+1]q/[n+1]q (Klg/In+1]q
/ tdgt = / tdgt — / tdgt
Mg/ In+1]q J0 0

o kg o oyl
=@ ‘1)[n+1]qj§)qj[n+1]q D5, &7 e,

n n—k—1
Kuglt) =+ 1,3 7| ¢ T 0= g+ D)
g 5=

[n]q ¥ 1 1
n+1],  14qn+1],

To estimate K, ,(¢%,x), we have

(k+1]q/[n+1]q 2 (k+1]q/[n+1]q 2 (Klg/In+1]q 2
/ tdqt:/ tdqt—/ todgt
[Klg/In+1]q 0 0

T e e T L 1 ),
q

Therefore using [k + 1], = g[k], + 1 and using the similar methods as above, we
have

[lgln—1]q @+¢°+q > | [y ¢*+3q+2 1 1
X
12 1+q+4¢? n+132 14+9+4° n+121+g+4¢*

Kn7q(t27x) =

Replacing g by a sequence {g,} such that lim, .g, = 1, it is easily seen that
Ky 4(t',x),i=0,1,2 converges uniformly to r'. Thus the result follows by Korovkin’s
theorem. |

Theorem 4.2. If the sequence (q,) satisfies the conditions lim, g, = 1 and
lim,, e ﬂlq— =0and0< g, <1, then

|Kﬂyt](f7'x) _f(x)| S 2w(f7 \/5_71)7
forall f € C[0,a] and 8, = Ky 4((t —x)?,x).
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Proof. Let f € C[0,a]. From the linearity and monotonicity of K, 4(f,x), we can
write

Kng (.2) — ()] < Karg (1) — F()]2)
n n n—k—1 [k+1]4/[n+1]q
=[n+1]q2qk[ ] ST 09 [ 0 - el
s=0 [

k=0 k q Klg/[n+1]q
On the other hand
1) = f)] < o(f, |t —x]).

If |t — x| < 8, it is obvious that

(t—x)?

-5l < (14550 ) 0.9 @2)

If | — x| > &, we use the property of modulus of continuity
o(f,A8) < (1+M)o(f,8) < (1+AM)a(f,8),A €RT

as A = ‘tgx‘ . Therefore, we have

(t—x)°

FORVIOIEY CRES= PR @3)

for [ — x| > 8. Consequently by (4.2) and (4.3), we get

[Kong(f) = f()] < [”"‘1]4&‘17]{ {n} xk
q

k=0 k
n—k—1 (k+1]q/[n+1]q (t - x)2

=g / 1+ L7 (7, 8)dyt
s:o( ) Ky /[n+1], ( 82 )w(f s

= | Kng(l,x)+ %Kn,q((t—x)z,x)) o(f,0).

Taking g = (g,) satisfies the conditions lim,_e g, = 1, lim, e qu_ =0,and 0 <
gn < 1, using the methods of Theorem 4.1, that

lim K, 4, ((t —x)*,x) =0,

n—soo

letting 8, = K 4, ((t —x)?,x) and taking § = /§,, we finally get the desired result.
This completes the proof of theorem. ]
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4.3 g-Bernstein—-Durrmeyer Operators

For f € C[0,1],x € [0,1],n=1,2,,,,;0 < g < 1, very recently Gupta [86] defined
the g-Durrmeyer-type operators as

n S|
Dy g(f,%) = (Dugf)(x) = [n+ 1] > g *pur(g:x) /0 FOpu(g:qt)dgt  (4.4)
k=0 b
where

Puk(g:x) == [Z]qunslil(l —¢'x).

It can be easily verified that in the case g = 1, the operators defined by (4.4) reduce
to the well-known Bernstein—Durrmeyer operators

DA =0+ 1) S pus) [ FOprs(ed
k=0 0

where

e

4.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results:

Lemma 4.1. For n,k > 0, we have

Dy(1—x)1 7 = —[n— klg(1 — qx)2 1, 4.5)

Proof. Using the g-derivative operator, we can write

1 n—k—1 ) n—k—1 .
Dy(1—x)y " = (q_l)x< [T (-¢"9- 11 (1—q’X)>

Jj=0 J

S
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Remark 4.1. By using (4.5) and Dk = [k], 251, we get

Dy (¢ (1= x); %) = [k (1= x)5 ™" — ¢ [n = Ky (1 — gy !
= (1= gy (1 = x) Ky — ¢'x[n — k)
=1 (1_qx)n = 1([k]q_[”]qx)'

Hence, we obtain

x(1-x)D, (xk(l —x);;*") — (1 =22 ], (% - x) . (4.6)

Lemma 4.2. We have the following equalities:
10D puslain) = blpnstaio) (15 ). @)
1(1—qt)Dy(pni(q:qt)) = [n]gpni(q:qt) (% - qt> : 4.8)

Proof. Above equalities can be obtained by direct computations using definition of
operator and (4.6). |

Theorem 4.3 ([92]). If m-th (m > 0,m € N) order moments of operator (4.4) is
defined as

n 1
Dz,m(x) ::Dn’q(l‘m,x) = [n+ 1]q 2 qikpn,k(q;x)/o Pn,k(q;qt)t'"dqt,x € [Ov l]a
k=0

then Dq o(x) = 1 and for n > m+ 2, we have the following recurrence relation:
[n+m+2] nmJ,»]( )

= ([m+1)g+4" " 'xlnl)Df 1 (x) +x(1 = x)g" ' Dy(Df . (). (4.9)
Proof. By (4.7), we have
X(1 = x)Dg(Djj.m(x))

n 1
= 1+ 1)y X, a7 x(1 = 0D, (puslai) [ puslazanid,s
k=0

= [n+1]y[n], Zq Puilg; X)/Ol (ﬁ —qf) Px(q:q1)i"dyt

k=0 [n]q

1
+ gq[n+1], Zq x(1-x)D (pn,k(q;x))/o Pug(qs g™ dgt
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n

1
x[n+1], qu x(1—x (pn,k(q;X))/o Puk(qsqr)t"dyt

=1+ [n]querl (x) _x[n]qu,m(x)v

Set
tm+1 tm+2

u(t) = gl - gt
by g-integral by parts, we get
1
Jo u(qt)Dg(pni(g:qt))dgt
1 1 ! m m+1
= [M(t)pn,k(q;qt)]o——qu /0 Puk(giqt)(fm+1]gt™ — [m+2]gt" " )dyt

1 1
- _W/O Pui(qiqt) ([m+1gt"™ — m+ 2]t ) dyt,

therefore

I =

et (04 11D ) = 20, )

by combining the above two equations, we can write
¢ 51 =3)Dy(D4,, () = = (I + 114D4 () = [+ 21D, ()

0" (11D 11 () = 3011, D))
Hence we get the result. ]

Corollary 4.1. We have

(1 +gx[n]y)
DZJ(X) = [n+—2]qq’ (4.10)
Dzyz(x) _ @x*nly([nly— 1) + (14 q)%gx[n), + 1 +q' @.11)

[n+2]4[n+3],

The corollary follows from (4.9).

Lemma 4.3. For f € C[0,1], we have ||Dy, 4f|| < ||f|]-
Proof. By definition (4.4) and using Theorem 4.3, we have

n 1
IDug(f3x)| < n+ 1] Y. ¢ *pus(asx) / |f(2) | Pk (qsqt)dyt
k=0 0

< IA11Dn g (1%) = (|11 u
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Lemma 4.4. Let n > 3 be a given natural number and let go = qo(n) € (0, 1) be the
least number such that ¢"*> — g"*' —=2¢" —2¢" ' — - = 2¢° — > +q+2 < 0 for
every q € (qo,1). Then

Dyg((t —x),x) <

= (v + ﬁ) |

where @*(x) = x(1 —x), x € [0,1].

Proof. In view of Theorem 4.3, we obtain

Dyg((t —2)%,x) = 22 ¢ [n)g([n)g — 1) = 2q[nlqln+ 3]y + [n +2]4[n + 3],

[n+2]g[n +3]q
Ly 40+ @)y = 2[n + 3] 1+gq
[n+2]4[n+3]4 [n+2],n+3],

By direct computations, using the definition of the g-integers, we get

g1+ lnlg—2ln+3]g = (1 +@* (1 +g+-+¢"") =21+ g+ +¢"*?)
= —¢"P " 2g" 4 2¢" 24P — g 2> 0,

for every g € (qo, 1). Furthermore

q(1+9)*[n)g—2[n+3], < 4
=4(n+3]—q" —¢""' —¢""*) —2[n+3],
<A4n+3]g-2n+3]; = 2[n+3],

and
q(1+ 51)2[”]4 —2[n+3],+ ‘13[”]4([”]4 — 1) =2g[nlg[n +3]g+ [n+2]4[n + 3],

=q(1+¢)[ny—2(1+q+ @+ nly) + @l — ¢’ [ng

= 2[nly(1+q+ 4+ ¢’ [ly) + (1 + g+ (1 + g+ ¢+ q[n)g)
=@ (1-q)’nls — (g— @ +24° —2¢")[n)y— (1 - ¢°)

2 n
=q(1-q)* (%) —q(1 —q)(1+2q2)-11_—2—(1—q3)

—q—1<0.
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In conclusion, for x € [0, 1], we have
Dy g((1 —x)*,x)

q(1+9)*[n)y —2[n+3],
[n+2]4[n+3]4

. ‘1(1""1)2["]61_2[”"‘3]61.)6 y
B [n+2]4[n+3]4 S )+<

s [n]¢([n]q — 1) — 2g(n]q[n + 3] + [n +2]g[n + 3]4) 2 l+gq
[n+2]q[n+3]q [n+2]q[n+3]q

+

2n+3]y
= [n+2]y[n+3],

2 2

20, Ao+ — L
)+ [n+2]4[n+3]4 = [n+2l4 ((P @)+ [”+3]q>,

which was to be proved. |
For 6 >0and W2 = {geC[0,1]:¢,¢" € C[0,1]}, the K-functional are defined as
Ka(f,8) = inf{||f —gll+nllg || : g € W?},

where norm-||.|| is the uniform norm on C[0,1]. Following [50], there exists a
positive constant C > 0 such that

where the second-order modulus of smoothness for f € C[0, 1] is defined as

o (f,V8)= sup  sup |f(xth)—fx).

0<h<V/§xx+he[0,1]

We define the usual modulus of continuity for f € C[0,1] as

o(f,6) = sup  sup [f(x+h)—f(x)].

0<h<d xx+he(0,1]

4.3.2 Direct Results

Our first main result is the following local theorem:

Theorem 4.4. Let n > 3 be a natural number and let gy = qo(n) € (0,1) be defined
as in Lemma 4.4. Then there exists an absolute constant C > 0 such that

Dag(fx) = F@)] < Can (£ In+2],'78,(0)) + 0 (f ’ —[1+_2]>

where f € C[0,1], 82(x) = ¢*(x) + TH_13E x €[0,1], and g € (qo,1).
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Proof. For f € C[0, 1] we define

Dug(fs) = Duglfon) 4100~ (252 ).
Then, by Corollary 4.1, we find
Dy g(1,x) =Dy g(1,x) =1 (4.13)
and
Dy 4(t,x) :qu(t,x)—l—x—l[:j_—[gfc =x. (4.14)

Using Taylor’s formula
t
80 =20+ (-0 g W+ [ (- g,
X
we obtain
- - t
Du(e.r) = 8-+ Doy [ =00 ") )
X

=g(x)+Dny (/xt (t—u)g"(u) du,x>

1+g(n]gx
[n+2]g I+gq [n] q* "
S d
[ (g )¢ wan
Hence |D,, 4(g,x) — g(x)| <
" 1+g(n]gx 1+ [n] N
<D f—ul-1e" d /["+2]q qiigX | d
< (/ - 1¢" ()| d ,x>+ LT s ] 1)
2 " 1+‘1[an ? "
< Dy y((t—x)7x) - ||g"]| + W—x lg”ll (4.15)
q
On the other hand
1+ g[n]yx 2
Duafi =P+ (5 ) <
e n+2],

< 2 <<pz(x)+[1 )+<1_([n;ﬂqz]_quq)x>z’ 1o



4.3 g-Bernstein—Durrmeyer Operators 123

by Lemma 4.4. Because [n+2],—¢q[nl, = (1+q+...+¢"") —q(l +q+... +
¢ ) =1+4¢""", we have

1< [n+2],—qln), <2 (4.17)

Then using (4.17), we have
(! —<[n+2]q—q[nlq>x)2, 520 <

[n+2], "
_ 1-2(In 42y — glnjg)x + ([n +2]g — gln]g)*x* _ 74
[n+2]2 [n]gx(1—x)+1
1—2x+4x>  [n], 1 3
. . < 4.18
nr2l, 2y Tl —n 1 2, 19
forn=1,2,... and 0 < g < 1. In conclusion, by (4.16) and (4.18), we get
Do g((t —x)%.2) + (M ‘x>2 < T 8 (.19)
" ’ n+2], ~ 42, "7 '
where x € [0, 1]. Hence, by (4.15),
g (8:%) = 8(00)] € ——-82(x)- ¢ (4.20)
e ~[n42, ’ ‘
where n > 3 and x € [0, 1]. Furthermore, by Theorem 4.3, we have
_ 1+g|n|x
a0 < Dn) + 101+ | 7 (S22 < 311,
[n+2],
Thus
1D (f,2)II <3 (£, (4.21)

forall f € C[0,1].
Now, for f € C[0,1] and g € W2, we obtain

|Dng(f>%) = f(x)] <

Duatr) 1)+ 5 (25 ) — 1) ’

< |Ding(f = 8:%)| + [Dnglg:x) — g(x)] +18(x) — f(x) |+




1 = ([n+2]g—qlnlg)x
n+2],
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<4l g+ g

<5 (I sl + gz -1 +o (£ o3 )

where we used (4.20) and (4.21). Taking the infimum on the right hand side over all
g € W2, we obtain

IDug(f 1) — ()] <5 Kz (fa[ T 0 )> (f’[1+_2)3 )

In view of (4.12), we find

5 [+ (f,

Dag(f:3) = ] < € @2 (f,In+2]8,(x ))—Hu(f,[l;; )

this completes the proof of the theorem. |
For the next theorem we shall use some notations: for f € C[0,1] and ¢(x) =
x(1—x),x€[0,1], let

of(f,V8) = sup  sup |f(x+hp(x)) = 2f(x)+ f(x—ho(x))]

0<h<+/8 x£he<[0,1]

be the second-order Ditzian—Totik modulus of smoothness, and let

Kyp(f,8) = inf{||f —g]| +8ll9*¢" " (¢)}

be the corresponding K-functional, where
W2(9) = {g € C[0,1]:¢' € AC1uc[0. 1], 9°¢" € C[0, 1]}

and g’ € ACy,.[0, 1] means that g is differentiable and g’ is absolutely continuous on
every closed interval [a,b] C [0,1]. It is well known (see [51, p. 24, Theorem 1.3.1])
that

Ka(f,8) < C0f(f,V3) (4.22)

for some absolute constant C > 0. Moreover, the Ditzian—Totik moduli of first order

is given by

oy(f,6) = sup  sup  |f(x+hy(x)) - f(x)],

0<h<&xxthy(x)€l0,1]

where v is an admissible step-weight function on [0, 1].
Now we state our next main result.
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Theorem 4.5. Let n > 3 be a natural number and let gy = qo(n) € (0,1) be defined
as in Lemma 4.3. Then there exists an absolute constant C > 0 such that
~1/2 —
IDngf = £l < Cof(£,ln+204 %) + oy (£ ln+2)"),

where f € C[0,1], g € (q0,1), and y(x) =1 —x, x € [0,1].
Proof. Again, let

Duglf) = Dugl1o0)+5(0) — (EL0E ).

n+2],

where f € C[0, 1]. Using Taylor’s formula:

60 =g+ (-0 ¢ )+ [ (1-0) (9,

the formulas (4.13) and (4.14), we obtain

" l+q[n]:]x 1
Drae.) =40y ([ =00 ') duce) - [0 (HABE ) ) a
X x [n+2]q
Hence
1D g(g,%) — g(x)]
: 1+g[n]gx 1
<Dn,q<‘ [l ) ,x>+ [ ;j—[gj“—u'wg”w)du

(4.23)

Because the function §? is concave on [0, 1], we have for u =t 4 t(x—t), T € [0, 1],
the estimate

lt —u| T|x — ¢ T|x — ¢ |t — x|
67 (u) — S(r+tlx—1)) T 8H1)+T(5(x) — 63(1)) ~ G}(x)’

Hence, by (4.23), we find

|Dn7q(g7x) - g(x)| <
1+g[n]gx _T9\gt

t |t — u| n+2] [n+2] ’
< qu ( /x 5”2(11) du /x ! —6,1221/!) du

Dl —2P0) 182"+ - (X V2
na((0=2%0) 18I+ 5\ T, 2

1+¢g[n]yx

2
(167"l

,x> 11628" 1+
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In view of (4.19) and

1
52 o2 " 162, !
n (%) -7 (08" (%) + 3L 8"¢ ||+[n+3]q &"l
where x € [0, 1], we get
D 5 2,0 1 "
q q

Using [n]y < [n+2]y, (4.21), and (4.24), we find for f € C[0,1],
IDng(f,x) = fx)] <

< |Dng(f = &%)+ [Dnglg:x) — g(x)] +18(x) — f(x) |+

|@W+¢f<1;f§f>—f@4

<4f—ell+ ol +

5 5
n+2], n+2],

Taking the infimum on the right hand side over all g € W?(¢), we obtain

Dyg(f,x) — £(x)] < 5Ka (f, m) + ‘ f ( l[x[’;]]ﬂ ) ‘ (4.25)
On the other hand
1+g[n]x B
‘f<pwa])‘ﬂ”“
(v o 2 gl
) ‘f< s = e e R ‘

IN

sup
14y (0)-(1=([142lg—qlnl)x) /In+2]4€[0,1]

<or(ra ) <o () =or )

Hence, by (4.25) and (4.22), we get

(o )

IDnaf = £l < Cof(f,ln+21,""%) + @y(f,ln+2);"),

x € [0, 1], which completes the proof of the theorem. |
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Remark 4.2. In [86] it is proved for g = g(n) — 1 as n — oo that the sequence
{Dnqf} converges to f uniformly on [0,1] for each f € C[0,1]. The same result
follows from Theorem 4.5, because

lim [n +2],, = lim M = oo

n—soo n—seo | — q(n) ’

if im0 g(n) = 1.

4.3.3 Applications to Random and Fuzzy Approximation

Let (X,]].|]) be a normed space over K, where K = R or K = C. Similar to the case
of real-valued functions can be introduced the following concepts.

Definition 4.1 (Gal [74]).

(i) For f:[0,1] — X, the first-order Ditzian—Totik modulus of continuity @y (f,d)
and the second-order Ditzian-Totik modulus of smoothness @5 (f,8) are
respectively defined as

oy(f,8) = sup  sup  [f(x+hy(x) - f()],

0<h<déxxxhy(x)€[0,1]

and
of (,8) =
sup{sup{[|f (x+h(x)) — 2/ (x) + f(x = ho(x))||,x € L}, h € [0, 8]}
where b, = 4225 2] 0 (x) = /AT =), w(x) = 1 —x,0< 8 < 1.

(ii) f:[0,a] — X is called g-integrable (0 < g < 1) on [0,qa] if there exists [ € X
denoted by I := [ f(u)d,u with the property

n
hm I — Z

Remark 4.3. Let (X,]|.||) be a Banach space. If f : [0,a] — X is continuous on
[0,a], then it is g-integrable. Indeed, denoting S,(f) = (1 —q)Xi_, ¢"f(aq"), we

get Suip(f) = Su(f) = (1 — @) 2" ¢ f(ag*) and since ||f(x)|| is bounded (by
continuity) by a positive constant denoted by M, for all n, p € N it follows

n+p

1Su+p(f) = Sa(N <M(1-q) ¥, 4" <M(1—q)q Zq =Mq",
k=n j=0
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which shows that (S,(f)),en is a Cauchy sequence. Since X is a Banach space, it
follows that this sequence is convergent and therefore f is g-integrable.

Definition 4.2 (see Gupta [86] for real-valued functions). For f:[0,1] = X,0 <
g < 1, g-integrable on [0,1], the g-Durrmeyer operators attached to f can be
defined as

Dy g(fx) = (Dugf)(x) = [n+1] i q *pui(g:x) / 1f () pni(q;qu)dgu  (4.26)
k=0 0

where

Z} ()i

Theorem 4.6 (see, e.g., [124], p.183). Ler (X,||.||) be a normed space over K,
where K = R or K = C and denote by X* = {x* : X — K,x* is linear and
continuous}. Then

Pui(qsx) = [

[Ixl| = sup{a” (x)] : " € X7, ||| < 1}.

Gal and Gupta [77] established the following theorem:
Theorem 4.7. Let (X,|| - ||) be a Banach space and suppose that f : [0,1] — X is
continuous on [0, 1]. Then under the conditions on q as given in Lemma 4.4, we have

1Dnaf = fllu <C @ (f,In+2]7"72) + @y (f,ln+2]7"),

where ||f]l. = sup{[|f(x)[| : x € [0,1]}.

Proof. Let x* € X*,0 < |[|x*||] < 1 and define g : [0,1] — R,g(x) = x*(f(x)).
Obviously g is continuous on [0, 1]. First, we have

1

Oy (g, )= sup sup X [f(x+hy(x)) — f(x)]|
[M+2]"  gch<t /e xathy(e,]
< sup sup [ I G+ Ay (x) = F]
0<h<1/[n+2]xxthy(x)€[0,1]
< sup sup |[[f(x+hy(x) = f(]]
0<h<1/[n+2]xxthy(x)€[0,1]
1
= wlll(fa )a

[n+2]
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and

of (g, [n+2]7'/?)
= sup{sup{|x"[f (x + ho(x)) — 2/ (x) + f(x = ho(x))]|, x € i}, h € [0, [n+2)71/2]}
< sup{sup{[[|x[|| - £ (x + h(x)) = 2/ (x) + £ (x — hp(x))[|,x € Ly}, h € [0, [n+2]7/]}
< of (f,ln+2]7'/?).

Now, by Theorem 4.5, for all x € [0, 1] and n € N, we have
IDngg(x) —g(x)] < Clf (g,[n+2]7) + wy(g,[n+2]7")).

But by the linearity and the continuity of x* (the continuity allows to x* to commutes
with the integral), we easily get D, g(x) — g(x) = x*[Dy4f(x) — f(x)], which
combined with the above inequalities lead to

b [Dugf (x) = f@)]] < CL@Y (f. [n+2]7') + @y (f,ln+2]7")],

for all x € [0,1]. Passing to supremum with |||x*||| < 1 and taking into account
Theorem 4.6, it follows

1Dugf (1) = FOON < CL@Y (f,In+2]712) + @y (f,In+2]7")],

for all x € [0, 1], which proves the theorem. ]

Some applications to the approximation of random functions by g-Durrmeyer
random polynomials and of fuzzy-number-valued functions by g-Durrmeyer fuzzy
polynomials were discussed in [77] as
If (S,B,P) is a probability space (P is the probability), then the set of almost
sure (a.s.) finite real random variables is denoted by L(S,B,P) and it is a Banach
space with respect to the norm ||g|| = [|g(¢)|dP(t). Here, for g1,g> € L(S,B,P),
we consider gy = g» if g1(¢) = g2(f), a.s. t € S.

A random function defined on [0,1] is a mapping f : [0,1] — L(S,B,P) and
we denote f(x)(¢) € R by f(x,t). For this kind of f, the g-Durrmeyer random
polynomials are defined by

n 1
(Dugf)x,t) =[n+1]1Y. g *pus(g;x) / S (u,t) poi(qs qu)dqu.
k=0 0
Corollary 4.2. If f : [0,1] — L(S, B, P) is continuous on [0,1], then
1Dngf = fllu <C 0f (f,[n+2]7"%) + @y(f,[n+2]),

where ||f]l. = sup{||f(x)[[;x € [0, 1]} = sup{ ¢ |/ (x,1)|dP(1);x € [0,1]}.
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Given a set X # 0, a fuzzy subset of X is a mapping u : X — [0, 1], and obviously
any classical subset A of X can be considered as a fuzzy subset of X defined by
xa:X = [0,1], xa(x) =1,ifx €A, xa (x) =0ifx € X\ A. (see, e.g., Zadeh [154]).

Let us denote by R £ the class of fuzzy subsets of real axis R (i.e., u : R — [0, 1]),
satisfying the following properties:

(1) VYu € Rx, uis normal, i.e., 3x, € R with u (x,) = 1.
(i) Vu € Rx, uis convex fuzzy set (i.e., u (tx+ (1 —1)y) > min{u (x),u(y)}, Vt €
[0,1], x,y € R).
(iii) Yu € Rz, u is upper semicontinuous on R.
(iv) {x € R:u(x) >0} is compact, where A denotes the closure of A.

Then R £ is called the space of fuzzy real numbers (see, e.g., Dubois—Prade [56]).

Remark 4.4. Obviously R C R, because any real number xo € R can be described
as the fuzzy number whose value is 1 for x = xy and 0 otherwise.

For 0 < r <1 and u € Ry, define [u]" = {xeRu(x)>r} and
[u]” = {x € R;u(x) > 0}. Then it is well known that for each r € [0,1], [u]" is a
bounded closed interval. For u,v € Rx and A € R, we have the sum u @ v and the
product A ® u defined by [u®v]" = [u]"+ [v]", [A ©u]" = A [u]", Vr € [0,1], where
[u]"+ [v]" means the usual addition of two intervals (as subsets of R) and A [u]"
means the usual product between a scalar and a subset of R (see, e.g., Dubois—Prade
[56], Congxin—Zengtai [44]).

LetDIR}‘XR}‘—}R+U{O}by

D (u,v) = s%pl]max{’ui—vi‘,’ui—vﬂ},
re|0,

where [u]" = [u" ,u", |, [v]" = [v" v, |. The following properties are known (Dubois—
Prade [56]):

D(udw,vdw)=D(u,v),Yu,v,w e Rr

D(k®u,k©v)=|k|D(u,v),Yu,v € Rr,Vk € R;

D(udv,wde) < D(u,w)+D(ve),Vu,v,we € Rr and (Rr,D) is a complete
metric space.

Also, we need the following concept of g-integral. A function f : [0,a] — R,
[0,a] C R will be called g-integrable on [0,a], if there exists / € Rz, denoted by
I = [y f(u)dqu with the property

lim D[I, (1 —q) ©Z%_ ¢ © f(ad")]|| = 0.

n—oo

Here the sum Y * is considered with respect to the operation &.

Remark 4.5. If f :[0,a] — R is continuous on [0, a], then it is g-integrable. Indeed,
denoting S,(f) = (1 —q) ® Z*}_,¢* ® f(ag’), from the above properties of the
metric D, we can write
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DISu(f),Snip(f)] = (1 = q)D[Or -, =7 24" © flaq")] <

n+p n+p
—q) Y, ¢'D[Or,. f(ag")] <M(1—¢q Zq,
k=n

where the continuity implies that f is bounded and that there exists M > 0 such that
D[Or -, f(x)] <M forall x € [0,q]. In continuation, taking into account that (R, D)
is a complete metric space, the reasonings are similar to those in the Remark 4.3.

Theorem 4.8 (see [44]). Rz can be embedded in B = C[0,1] x C[0,1], where
C[0,1] is the class of all real-valued bounded functions f : [0,1] — R such that
f is left continuous for any x € (0,1], f has right limit for any x € [0,1), and f
is right continuous at 0. With the norm ||-|| = sup,c(o 1 | f(x)], 2[0,1] is a Banach
space. Denote ||-||g the usual product norm, i.e., ||(f,8)|lz = max{||f]|,|lg||}. Let
us denote the embedding by j: Ry — B, j(u) = (u_,us). Then j(Rr) is a closed
convex cone in B and j satisfies the following properties:

(i) jsQudtoOv)=s-ju)+t-j(v)forall u,v € Rr and s,t >0 (here “-” and
“+7 denote the scalar multiplication and addition in B)
(ii) D(u,v) =|j(u) — j(v)|| (i.e., j embeds Rr in B isometrically)

Let f:[0,1] = Rz be a continuous fuzzy-number-valued function. The fuzzy
g-Durrmeyer polynomials attached to f can be defined by

(Dugf)(x) = [n+1] i q *pup(g:x) ® /0 1 Puk(qsqu) © f(u)dqu.

Also, let us define the following moduli of continuity and smoothness of f :

oy(f,6) = sup  sup  D[f(x+hy(x)),f(x)],

0<h<éxxthy(x)€(0,1]

of (f;8) = sup{D[f(x + ho(x)) ® f(x— hd(x)),2® f(x)]:
x,x+he(x),x—ho(x) €[0,1],0<h < §}.

Here ¢%(x) = x(1 —x), w(x) =1 —x.

Theorem 4.9. Let f: [0,1] — Rx be continuous on [0, 1]. There exist the absolute
constant C, such that for all n € N we have

sup{D[(Dngf) (%), f(X)]:x € [0,1]} < C 0f (f,[n+2]7'72) + oy (f,[n+2]7).
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4.4 Discretely Defined g-Durrmeyer Operators

For f € C[0, 1], Gupta and Wang [94] proposed the following g-Durrmeyer operators

as

<Mw0ﬂ%:M+Hqiqkﬂm&%@[:ﬂﬂm&ﬂ%mwﬁ+ﬂ®nm@m)
=1

4.27)

It can be easily verified that in the case ¢ = 1, the operators defined by (4.27)
reduce to the Durrmeyer-type operators recently introduced and studied in [3].

4.4.1 Moment Estimation

By the definition of g-Beta function, we have

1 n 1 )
/o £ puk(q:q1)dgt = [ Es /0 28 (1 —qr)t gt

_ qk[”]q! [k +s]q![n — k! _ qk[”]q![k"’s]q!
kg n—klgl k+s+n—k+1],!  [n+s+1],![k],!
and
1 k 1
A tspoo,k(q;qt)dqt = (1+)k[k]q'/0 tk+s(1 — ql‘);odqt
¢ o 14 [k +slg!
- ﬂT)"[k]q![lH—s]q!(l —q)" T =(1-¢q) HW!(I

Lemma 4.5. We have

[n]

Mypo(1x) =1, M, (t;x) =
"7‘1( 'x) "7‘1( X) x[n+2]q

and

(1+q)x[n], 2 q[nly(fnlg—1)

2.0 — .
Mg (75) [n+3]4[n+2], [n+3]y[n+2],

(4.28)

(4.29)
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Proof. In order to prove the theorem we shall use the following identities:

i Puk(g:x) =1, é& %Pmk(%x) =X,
L[k x(1—x)
Z (n_t]) pnk q; x) 7x + [n]q :

By (4.28) and (4.29), it can easily be verified that M, ,(1;x) = 1. Next, using the
above, we have

7 k=1,
M, 4(t:x) = [n+ l]qul1 “rpuila x)q[%];]'q[f]q
n [n]
= pnkqx _x[i’l‘F;]q'

Finally, using [a + 1], = 1 4+ ¢[a],, we have

1 n
M q(1%5x) = m kg,l]’nyk(q;x) [k+1],[k],

_ m{z (a0) (1 +qlkl) 1], }

- m {ank ;%) q"'QiPn,k(q;x)[k];}

k=1

1
“wraL it {xnlg+q([n]; +x(1 = x)[n],) }
__all(1+9) £ [l
[n+3],n+2],  [n+3],[n+2], q
Thus,
s All(+g) gl — 1)
Mg = 3] v ], T T3l e 2,

This completes the proof of the lemma. ]

Remark 4.6. By simple computation, it can easily be verified that

n

n+1],
M, (t"; glk+ 1] [k+r—1 X > 1.
mq( x) [n+r+1 t]'lgl + +r ]t]pnk(q ) r=
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Using [k +s]4 = [s]g + ¢°[k]4, we get
r—1

[k]q[k+ 1]q"' lk+r— l]q = H([s]q‘i‘qs[k]q) = i CS(V)[k]fJ’

s=0 s=1

where ¢s(r) >0, s = 1,2,...,r are the constants independent of k. Hence
n+1]! & d n+1]! . .

M, (" x) = —_ SBug(t*;x).

)= a1 00 2P = 1 2 OBl

Since ¢s(r) > 0 for s = 1,2,...,r and B, 4(t°;x) is a polynomial of degree <
min(s,n) (see [7]), we get M, 4(t";x) is a polynomial of degree < min(r,n).

4.4.2 Rate of Approximation

Theorem 4.10. Let g, € (0,1). Then the sequence {M,,,(f)} converges to f
uniformly on [0, 1] for each f € C[0,1] if and only if lim, .. q, = 1.

Proof. Since the operators M, 4, are positive linear operators on C[0, 1] and preserve
constant functions, the well-known Korovkin theorem [113] implies that M,, ,, (f>x)
converges to f(x) uniformly on [0, 1] as n — oo for any f € C[0, 1] if and only if

My, (t5x) = X (i =1,2), (4.30)
uniformly on [0, 1] as n — eo. If g, — 1, then [n],, — = (see [151]) and fors =1,2,3,
limy, e [”ﬁ‘j"" =1, hence (4.30) follows from Lemma 4.5.

On the other hand, if we assume that for any f € C[0,1], M, 4, (f,x) converges
to f(x) uniformly on [0, 1] as n — o, then ¢,, — 1. In fact, if the sequence (g,) does
not tend to 1, then it must contain a subsequence (g,, ) such that g,, € (0,1), g,, —

1 =gy
g0 €[0,1) as k — co. Thus, [nkﬁs}an = 17(%;@“ — (1—gqo)ask—oeo, s=0,1,2,3.

Taking n = ny, g = gy, in M,,7q(t2;x), by Lemma 4.5, we get

My g, (1%53) = x(1— q0) + g5 /2 (k— ) ,

which leads to a contradiction. Hence, g, — 1.
This completes the proof of Theorem 4.10. ]

Let g € (0,1) be fixed. We define M. 4(f,1) = f(1) and forx € [0,1)

o) = 7 B pegg’™ [ S0 iar)d+ £ O ool

=

=1 Y Ak () Peori (). (4.31)

k=0
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Using (4.29), (4.31), and the fact that (see [125])

> Pe(@x) =1, D (1—¢")purlg:x) =x
=0 k=0

and

=

> (1= ¢ pes(gix) =x+ (1 — g)x(1 —x),
k=0

it is easy to prove that
Mogy(lix) =1, Mey(t:x) =x,

and

=

Mo g(*:x) = Y (1= ¢ (1 = ¢ peoi(qix)
k=0

= (1= g+ g0+ (1= gx(1 —x)) = (1 - ¢*)x + g2
For f € C[0,1], t > 0, we define the modulus of continuity @(f,#) as follows:

o(f1) = sup [f(x) = f)l-
x,yé‘f()%lt]

Lemma 4.6. Let f € C[0,1] and f(1) = 0. Then we have

()] < A1) < o(f,q")(1+4"")

and

Ak (f)] < Ak (| f]) < O(F,4") (1 +47).
Proof. By the well-known property of modulus of continuity (see [4], pp. 20)

o(f,A1) < (1+A)o(f,1), A >0,
we get

IO =1f@) = fD < o(f;1-1) <o(f,q") 1+ (1 -1)/q").
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Thus,
Au(N AU =1 [ 4 U Olpascr (a0t
<ty [ 440001+ (100 1 (gt
— ol 1+ (0~ )
= a)(f,q”)(l + q;fll(l__—q};;;)) <o(f,¢")(1+4").
Similarly,

qlfk 1
AP < Acel1f1) = { [ 17O lpoicr (asar)ds

qlfk 1
<ofq){ =, [ 400/ peicr(g:an)dyt

=o(f,d") 1+ (1= (1-¢)/q") = o(f.q4") (1 +¢"").
Lemma 4.6 is proved. ]

Theorem 4.11. Let 0 < g < 1. Then for each f € C|0,1] the sequence {M, 4(f;x)}
converges to Me 4(fx) uniformly on [0, 1]. Furthermore,

[M.q(f) =M g(F)|| < Cq 0(f,4"). (4.32)

Remark 4.7. When f(x) = x*, we have

[M.q(f) = Moo g (/)| = €164" = €2 0(f,q"),

where c1,c, > 0 are the constants independent of n. Hence, the estimate (4.32) is
sharp in the following sense: The sequence ¢” in (4.32) cannot be replaced by any
other sequence decreasing to zero more rapidly as n — oo.

Proof. The operators M, 4 and M.. , preserve constant functions, that is,
My 4(1,x) = Mw 4(1,x) = 1.

Without loss of generality, we assume that f(1) = 0. If x = 1, then by Lemma 4.1,
we have

My g(f31) =Moo g (f3 1) = [Ann(f) = F(1)] = [Aun ()] < 200(f,¢").
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For x € [0,1), by the definitions of M, 4(f;x) and Mw 4(f;x), we know that

|M,,.4(f3x) — M. 3 k() Pnic(q3x) — iAwk(f)Pw,k(fﬁx)
-0 k=0
< 3 1AulF) — Ack(F) Puslaix +2 At () 1w (€)= o)
k=0 —

+ 2 |[Acoi (f |pm (g;x) =L +DL+L.
k=n+1

First we have
n—k oo

|Pnic(q:%) = peoi(q:x)| = ‘ {Z} o ]_Il(l —¢’x) — H 1—¢'x) ‘
q

s=0 ( =

—k— I
(AT 0= -TTa =)
q

s=0

0 “m([ZL‘ =

s=0

Spn,k(q;x)ll—l_[ lim (1 —¢%) ‘

s=n—k
n
+P«>k(‘]§x)‘ I 0-¢)- 1‘
s=n—k+1
n—k
< 1_q(pn,k(q;X)+pwk(q;x))7

where in the last formula, we use the following inequality, which can be easily
proved by the induction on # (see [100]):

n n
I_H(l _as) S zaS; (alv"'aan € (051)5 n= 1525"'500)'
s=1 s=1
Using the above inequality we get

1 1
1Ak (f) — Ak ()] < /0 a" I f O+ 1gps (g:qt) — TPkt (q:q1)|dgt

Lo 1
< [0l 11, - TP (@ andy
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1
[ a ol 11,

Pk—1(4:qt) — Peoi-1(q:qt ) |dyt

qn+1 llk
< — - )| poos—1(q;qt)d,t
_1—61/()q |f()|p ,kl(QQ)q

n—k

1
i]_q/o q" MO+ 1 (Pus1(:0t) + peoi1 (g3 1) gt

+

nfk

=q" A (If) + 14 An(|£1) +4" [n+ g (If1)

n—k 5 n
I R e O (R EE L

Now we estimate [} and I35. We have

| S0l

I < ank q;x 1—¢

and

oo

L<o(f.q") Y, (1+4")peilg:x) <20(f.q" Z Pei(g:x) <20(f,4").

k=n+1 k=n+1
Finally we estimate I, as follows:

n n—k
B < 3 0(f,4") (146" ) (Par(4:9) + pesld:)
k=0

}’L

4w(f,q”)_

n
ank 4:%) + pooi(q:x)) < =g

We conclude that for x € [0, 1),

My q(f3%) — Mo 4 (f3%)| < Co(f,4"),

where C; =2 + %1' This completes the proof of Theorem 4.11.

Since M..,(t*,x) = (1 — ¢*)x +¢*x*> > x* for 0 < g < 1, as a consequence of

Lemma 3.10, we have the following:

Theorem 4.12. Let 0 < g < 1 be fixed and let f € C[0,1]. Then Mo 4(f;x)
Sorall x € [0,1] if and only if f is linear.

= /()

Remark 4.8. Let 0 < g < 1 be fixed and let f € C[0,1]. Then by Theorem 4.11
and Theorem 4.12, it can easily be verified that the sequence {M, ,(f;x)} does not
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approximate f(x) unless f is linear. This is completely in contrast to the classical

Bernstein polynomials, by which {B,, 1 (f;x)} approximates f(x) for any f € C[0, 1].
At last, we discuss approximating property of the operators M. 4.

Theorem 4.13. For any f € C[0,1], {M..4(f)} converges to f uniformly on [0,1]
asq— 1—.

Proof. The proof is standard. We know that the operators M.. ;, are positive linear
operators on C|0, 1] and reproduce linear functions. Also,
M y(t%x) = (1 — x4 g% —

uniformly on [0,1] as ¢ — 1—. Theorem 4.5 follows from the Korovkin theorem. ll

4.5 Genuine g-Bernstein—-Durrmeyer Operators

For f € C[0,1], Mahmudov and Sabancigil [121] defined the following genuine
g-Bernstein—Durrmeyer operators as

n—1 .
Ung(f3x) =[n—1]q . q" *pux(q:x) / 1 FO)Pa2s_1(q:qt)dgt
= Jo
+£(0)pno(q:x) + f(1) pnn(g;x)

= Y A f)pni(g:x), 0<x<1. (4.33)
k=0

It can be easily verified that in the case g = 1, the operators defined by (4.33)
reduce to the genuine Bernstein—Durrmeyer operators [82].

4.5.1 Moments

Lemma 4.7 ([121]). We have

Ung(1ix) = 1,U, 4(t;x) = x

oy (T+g)x(1—x)
U”ﬂ(tz’x) - [n+ l]q — +x2
and (1+¢)x(1—x) 2
. o q X — X
Unal(t=x32) = (P50 < gl =)
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Lemma 4.8 ([121]). U, ,(t;x) is a polynomial of degree less than or equal to
min{m,n}.

Proof. By simple computation,

1
Ung(t":x) =[n—1]4 Y, ¢" *pur(q:x) /O FO)Pu—24-1(q:qt)t"dgt + pun(q;x)
k=1

S [n—2]g! [k +m—1]g!
=[(n=1 . q:
[Vl ]Clkglpn,k(q’ )[k 1]q'[n+m—1] +pﬂﬂ(q’ )
[n—1], [k+m—1],!
_[n—i-m—lq ,;1””"‘” T, Pl
n—l
= [n+m_1 zpnk q;x k+1] [k—l—m—l]q—l-pn’n(q;x),
q° k=1
Next using
m—1 m

[Wglle+1)g- - [e-m—1]g = TT(q'[Kg + [slg) = X ce(m) K],

where ¢;(m) > 0,5 = 1,2,3,--- ,m are the constants independent of k, we get
m [}’l B 1](1! C s s
Un,q(t ;X) = mtm—T111 2 Z cs(m) [”]an,q(t 3 X),

where B, , is the g Bernstein operator. Since By, 4(¢*;x) is a polynomial of degree less
than or equal to min{s,n} and ¢;(m) > 0,5 = 1,2,3,...,m, it follows that U, 4 (t""; x)
is a polynomial of degree less than or equal to min{m,n}. |

4.5.2 Direct Results

The following theorems were established by [121]:

Theorem 4.14. Let 0 < g, < 1. Then the sequence {U, q(f;x)} converges to f
uniformly on [0, 1] for each f € C[0,1], if and only if lim_seo gn = 1.

Theorem 4.15. Let 0 < g < 1 and n > 3. Then for each f € C[0,1] the sequence
{Unq(f;x)} converges to f(x) uniformly on [0,1]. Furthermore

1Ung(f3:) = U g(f: )l < cqoo(f.q" ),

where c; = % +4 and ||.|| is the uniform norm on [0, 1].
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Theorem 4.16. There exists an absolute constant C > 0 such that

_ x(1—x)
|Ung(f3x) = f(x)] < C o <f, m) )

where f € C[0,1],0< g <1, andx € [0,1].
Proof. Using Taylor’s formula
80 =)+ (=0 ¢+ [ (=) ¢[0,1],

we obtain

Ung(8:) = £(x) + Ung (/ ") ") du;x) £ C0.1]

it 1]qx(l —X).

Now for f € C[0,1] and g € C2[0,1] and with the fact ||U, 4(f,;.)]| < ||f]], we
obtain

Ung(f3%) = 8(X)| < |Ung(f = &X)| + [Ung(8:%) = g(x)[ + [ £ (x) — g ()|

Hence

[Unal85) = 8| < Ung <| [ le=ul-1g"w) du

< Ung((t =)%2) - Ig"ll < 118"l

<2 ”f_g” + Hg//H [l’l—|— 1]qX(l —X).

Taking the infimum on the right hand side over all g € C?[0, 1], we obtain

Un,g(f3x) — ()|<2Kz<f,[ Ji1] (1—x)). (4.34)

The desired results follow from (4.12), (4.34). This completes the proof of the
theorem. |

4.6 g-Bernstein Jacobi Operators

In the year 2005, Derriennic [48] introduced the generalization of modified Bern-
stein polynomials for g-Jacobi weights using the g-Bernstein basis functions. For
g€ (0,1)and o, > —1

LEP(f; Z £58 pralaix (4.35)



142 4 g-Bernstein-Type Integral Operators

where

Puk(q:x) == [Z]qunﬁl(l —q'x)

s=0
and

s _ ot e —any PP d
M e gy Py

It is observed in [48] that for any n € N, L ( f3x) is linear and positive and
preserves the constant functions.
It is self adjoint. It preserves the degree of polynomials of degree < n.

The polynomial L,‘i’f (f5x) is well defined if there exists ¥ > 0 such that x" f(x)

is bounded on (0,A] for some A € 90,1] and o > y— 1. Indeed x* f(x) is then g-
integrable for the weight wy P (x) =x%(1— qx)g . Thus we call that f is said to satisfy

the condition C(at). Also < f,g >q [3 is well defined if the product fg satisfies C(c),
particularly if £ and g2 do it, where

< rag= [7 g0 080y
and

1
<f.zg >Z"ﬁ:q(°‘“>(ﬂ“)/0 (1 —qt)B f(gP )8 (qP T 1)dgt.

4.6.1 Basic Results

Proposition 4.1. If f verifies the condition C(¢), we have

o, [}’l] o o 5 N .
DLEP (f3x) = mq +ﬁ+2Lnj11,£HDq <f <5) 7qx> x €10,1]

Proposition 4.2. For anym,n € N,x € [0,1] and g € [1/2,1] if

Vo =gy Pl—tyrdyt
Jo (1 —qnyg Py

nmq zpnk q;x

Lemma 4.9. Foranym,n€ N,x € [0,1] and q € [1/2,1] if

folt"“"(l gt)y P (x—t)rdgt
Jo tr (1 =gy Py

nmq ank q;x
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Then for m > 2, the following recurrence formula holds

ntm+o+B+2yq "0 ()
= (=31 =X)Dg T, 11, () + T g (X) (P1 (%) +x(1 = @) [n+ 0 + Blg[m+ 14" %)
= +Tnl,mfl,q (x)pZ,m (x)+ Tnl,m72,q (x)p3.,m (x)(L—q),
where the polynomials pim(x),i = 1,2,3 are uniformly bounded with regard to n
and q.

Lemma 4.10. For any m € N,x € [0,1] and g € [1/2,1], the expansion of (x —t)"
on the Newton basis at the points x/q',i =0,1,2,....m — 1 is

M=

(x=1)" =Y dus(1—q)" *(x—1)5, (4.36)

k=1

where the coefficient dy, . verify |dy k| < dm,k =1,2,...,m and d,, does not depend
onx,t,q.

Remark 4.9. From Lemmas 4.9 and 4.10, we have for any m there exists a constant
K, > 0 independent of n and g, such that

[?(T’”/z, if m is even
sup [Tumq(¥)] < 4 M, L
x€[0,1] W’ if mis odd.

q

Remark 4.10. The sequence (g,) has the property S if and only if there exists n € N
and ¢ > O such that forany n > N,1 —g, < ¢/n.

4.6.2 Convergence

Theorem 4.17. If f is continuous at the point x € (0, 1), then
lim L (f3x) = f(x)

in the following cases:

1. If f is bounded on [0,1] and the sequence (gy,) is such that lim,_,. g, = 1

2. If there exist real numbers o ,3' > 0 and a real k' > 0 such that, for any x €
(0,1),x* (1—x)P f(x)| <K,o < a+1,B' < B+ 1 and the sequence (q,) owns
the property S
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Theorem 4.18. [f the function f admits a second derivative at the point x € [0, 1],
then as in cases 1 and 2 of Theorem 4.17, we have

o+l _xﬂ+1 "y
lim [, (LB (1) — )] = LU= P D) g

n-ves : dx  x*(1—x)P

Proof. By Taylor’s formula, we have

Y
1) = 10+ (-0 @+ @) 4 (- el —),
where lim,_,o €(u) = 0. Thus
LEB(F2) — £3) =~ 0T, 0) + 500, 0) 4 R,

where R, (x) = ,‘i‘fn ((t —x)%&(t —x);x). Using limy_, [a], = a for any a € R. Using

Lemmas 4.9 and 4.10, we have lim,), ,..[nlg, T,1,4,(x) = (€ + B +2)x——1 and
limy, e [nlg, Tn2,q, (x) = 2x(1 —x). The result follows immediately if we show that
limy,) —..[nlg,Rn(x) = 0. Proceeding along the same manner as in Theorem 4.17.

For any 1 > 0 we can find a 6 > 0 such that for n large enough £(t —x) < n if
|x—qE+1t| < 4.

We obtain the inequality |(t —x)2e(t —x)| < 1 (x—1)2+ (px+ | £(t) ) .5 (g~ B+ r)
for any ¢ € (0, 1) where py is independent of # and 8. We deduce

[}’l] |R (X)| < { [n]LIn (n Tl‘l727qn ('x) + (px + k) Tn747‘In (.X)/64) ’ in case 1
I ) gn (MT2,00 (%) 4+ paTs g, (x)/8*) + K'nE, (x,8), in case 1

The right hand side tends to 21x(1 —x) when n (hence [n],,) tends to infinity is as
small as wanted. |
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