
Chapter 4
q-Bernstein-Type Integral Operators

4.1 Introduction

In order to approximate integrable functions on the interval [0,1], Kantorovich gave
modified Bernstein polynomials. Later in the year 1967 Durrmeyer [58] considered
a more general integral modification of the classical Bernstein polynomials, which
were studied first by Derriennic [47]. Also some other generalizations of the
Bernstein polynomials are available in the literature. The other most popular
generalization as considered by Goodman and Sharma [82], namely, genuine
Bernstein–Durrmeyer operators. In this chapter we discuss the q analogues of
various integral modifications of Bernstein polynomials. The results were discussed
in recent papers [45, 62, 86, 89, 92, 94, 121], etc.

4.2 q-Bernstein–Kantorovich Operators

Recently, Dalmanoglu [45] proposed the q-Kantorovich–Bernstein operators as

Kn,q( f ,x) = [n+ 1]q
n

∑
k=0

pn,k(q;x)
∫ [k+1]q/[n+1]q

[k]q/[n+1]q
f (t)dqt, x ∈ [0,1] (4.1)

where

pn,k(q;x) :=

[
n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx).

In case q = 1, the operators (4.1) reduce to well-known Bernstein–Kantorovich
operators

Kn( f ,x) = (n+ 1)
n

∑
k=0

pn,k(x)
∫ (k+1)/(n+1)

k/(n+1)
f (t)dt, x ∈ [0,1]
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114 4 q-Bernstein-Type Integral Operators

where pn,k(x) is the Bernstein basis function given by

pn,k(x) :=

(
n
k

)
xk(1− x)n−k.

4.2.1 Direct Results

For the operators (4.1), Dalmanoglu [45] obtained the following theorems:

Theorem 4.1. If the sequence (qn) satisfies the conditions limn→∞ qn = 1 and
limn→∞

1
[n]qn

= 0 and 0 < qn < 1, then

||Kn,q( f ,x)− f || → 0,n → ∞,

for every f ∈C[0,a], 0 < a < 1.

Proof. First, we have

Kn,q(1,x) = [n+ 1]q
n

∑
k=0

q−k
[

n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)
∫ [k+1]q/[n+1]q

[k]q/[n+1]q
dqt.

Also by definition of q-integral

∫ [k+1]q/[n+1]q

[k]q/[n+1]q
dqt =

∫ [k+1]q/[n+1]q

0
dqt −

∫ [k]q/[n+1]q

0
dqt

= (1− q)
[k+ 1]q
[n+ 1]q

∞

∑
j=0

q j − (1− q)
[k]q

[n+ 1]q

∞

∑
j=0

q j

=
1− q
[n+ 1]q

([k+ 1]q − [k]q)
∞

∑
j=0

q j =
qk

[n+ 1]q
.

Thus Kn,q(1,x) = 1. Next

Kn,q(t,x) = [n+ 1]q
n

∑
k=0

q−k
[

n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)
∫ [k+1]q/[n+1]q

[k]q/[n+1]q
tdqt.
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Again by definition of q-integral

∫ [k+1]q/[n+1]q

[k]q/[n+1]q
tdqt =

∫ [k+1]q/[n+1]q

0
tdqt −

∫ [k]q/[n+1]q

0
tdqt

= (1− q)
[k+ 1]q
[n+ 1]q

∞

∑
j=0

q2 j [k+ 1]q
[n+ 1]q

− (1− q)
[k]q

[n+ 1]q

∞

∑
j=0

q2 j [k]q
[n+ 1]q

=
1− q
[n+ 1]2q

([k+ 1]2q − [k]2q)
∞

∑
j=0

q2 j =
qk

[n+ 1]2q

1
1+ q

([k]q(1+ q)+ 1).

Therefore

Kn,q(t,x) = [n+ 1]q
n

∑
k=0

[
n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)
1

[n+ 1]2q

1
1+ q

([k]q(1+ q)+ 1)

[n]q
[n+ 1]q

x+
1

1+ q
1

[n+ 1]q
.

To estimate Kn,q(t2,x), we have

∫ [k+1]q/[n+1]q

[k]q/[n+1]q
t2dqt =

∫ [k+1]q/[n+1]q

0
t2dqt −

∫ [k]q/[n+1]q

0
t2dqt

=
1

[n+ 1]3q

1
1+ q+ q2(q

k[k+ 1]2q+[k]q[k+ 1]q+[k]2q).

Therefore using [k + 1]q = q[k]q + 1 and using the similar methods as above, we
have

Kn,q(t
2,x) =

[n]q[n−1]q
[n+1]2q

q3+q2 + q
1+ q+ q2 x2 +

[n]q
[n+ 1]2q

q2 + 3q+ 2
1+ q+ q2 x+

1
[n+ 1]2q

1
1+ q+ q2 .

Replacing q by a sequence {qn} such that limn→∞ qn = 1, it is easily seen that
Kn,q(ti,x), i= 0,1,2 converges uniformly to ti. Thus the result follows by Korovkin’s
theorem. �
Theorem 4.2. If the sequence (qn) satisfies the conditions limn→∞ qn = 1 and
limn→∞

1
[n]qn

= 0 and 0 < qn < 1, then

|Kn,q( f ,x)− f (x)| ≤ 2ω( f ,
√

δn),

for all f ∈C[0,a] and δn = Kn,q((t − x)2,x).
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Proof. Let f ∈ C[0,a]. From the linearity and monotonicity of Kn,q( f ,x), we can
write

|Kn,q( f ,x)− f (x)| ≤ Kn,q(| f (t)− f (x)|,x)

= [n+ 1]q
n

∑
k=0

q−k
[

n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)
∫ [k+1]q/[n+1]q

[k]q/[n+1]q
| f (t)− f (x)|dqt.

On the other hand

| f (t)− f (x)| ≤ ω( f , |t − x|).
If |t − x|< δ , it is obvious that

| f (t)− f (x)| ≤
(

1+
(t − x)2

δ 2

)
ω( f ,δ ) (4.2)

If |t − x|> δ , we use the property of modulus of continuity

ω( f ,λ δ ) ≤ (1+λ )ω( f ,δ )≤ (1+λ 2)ω( f ,δ ),λ ∈ R+

as λ = |t−x|
δ . Therefore, we have

| f (t)− f (x)| ≤
(

1+
(t − x)2

δ 2

)
ω( f ,δ ) (4.3)

for |t − x|> δ . Consequently by (4.2) and (4.3), we get

|Kn,q( f ,x)− f (x)| ≤ [n+ 1]q
n

∑
k=0

q−k
[

n
k

]
q

xk

n−k−1

∏
s=0

(1− qsx)
∫ [k+1]q/[n+1]q

[k]q/[n+1]q

(
1+

(t − x)2

δ 2

)
ω( f ,δ )dqt

=

(
Kn,q(1,x)+

1
δ 2 Kn,q((t − x)2,x)

)
ω( f ,δ ).

Taking q = (qn) satisfies the conditions limn→∞ qn = 1, limn→∞
1

[n]qn
= 0, and 0 <

qn < 1, using the methods of Theorem 4.1, that

lim
n→∞

Kn,qn((t − x)2,x) = 0,

letting δn = Kn,qn((t − x)2,x) and taking δ =
√

δn, we finally get the desired result.
This completes the proof of theorem. �
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4.3 q-Bernstein–Durrmeyer Operators

For f ∈ C[0,1],x ∈ [0,1],n = 1,2, , , , ;0 < q < 1, very recently Gupta [86] defined
the q-Durrmeyer-type operators as

Dn,q( f ,x) ≡ (Dn,q f )(x) = [n+ 1]q
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0
f (t)pn,k(q;qt)dqt (4.4)

where

pn,k(q;x) :=

[
n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx).

It can be easily verified that in the case q = 1, the operators defined by (4.4) reduce
to the well-known Bernstein–Durrmeyer operators

Dn( f ,x) = (n+ 1)
n

∑
k=0

pn,k(x)
∫ 1

0
f (t)pn,k(t)dt,

where

pn,k(x) :=

(
n
k

)
xk(1− x)n−k.

4.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results:

Lemma 4.1. For n,k ≥ 0, we have

Dq(1− x)n−k
q =−[n− k]q(1− qx)n+k−1

q , (4.5)

Proof. Using the q-derivative operator, we can write

Dq(1− x)n−k
q =

1
(q− 1)x

(
n−k−1

∏
j=0

(1− q j+1x)−
n−k−1

∏
j=0

(1− q jx)

)

= − (qn−k − 1)
(q− 1)

n−k−2

∏
j=0

(1+ q j+1x)

= −[n− k]q(1− qx)n−k−1
q . �
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Remark 4.1. By using (4.5) and Dqxk = [k]qxk−1, we get

Dq(x
k(1− x)n−k

q ) = [k]qxk−1(1− x)n−k
q − qkxk[n− k]q(1− qx)n−k−1

q

= xk−1(1− qx)n−k−1
q ((1− x)[k]q − qkx[n− k]q)

= xk−1(1− qx)n−k−1
q ([k]q − [n]qx).

Hence, we obtain

x(1− x)Dq

(
xk(1− x)n−k

q

)
= xk(1− x)n−k

q [n]q

(
[k]q
[n]q

− x

)
. (4.6)

Lemma 4.2. We have the following equalities:

x(1− x)Dq(pn,k(q;x)) = [n]q pn,k(q;x)

(
[k]q
[n]q

− x

)
, (4.7)

t(1− qt)Dq(pn,k(q;qt)) = [n]q pn,k(q;qt)

(
[k]q
[n]q

− qt

)
. (4.8)

Proof. Above equalities can be obtained by direct computations using definition of
operator and (4.6). �
Theorem 4.3 ([92]). If m-th (m > 0,m ∈ N) order moments of operator (4.4) is
defined as

Dq
n,m(x) := Dn,q(t

m,x) = [n+ 1]q
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0
pn,k(q;qt)tmdqt,x ∈ [0,1],

then Dq
n,0(x) = 1 and for n > m+ 2, we have the following recurrence relation:

[n+m+ 2]Dq
n,m+1(x)

= ([m+ 1]q+ qm+1x[n]q)D
q
n,m(x)+ x(1− x)qm+1Dq(D

q
n,m(x)). (4.9)

Proof. By (4.7), we have
x(1− x)Dq(D

q
n,m(x))

= [n+ 1]q
n

∑
k=0

q−kx(1− x)Dq(pn,k(q;x))
∫ 1

0
pn,k(q;qt)tmdqt

= [n+ 1]q[n]q
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0

(
[k]q
[n]q

− qt

)
pn,k(q;qt)tmdqt

+ q[n+ 1]q[n]q
n

∑
k=0

q−kx(1− x)Dq(pn,k(q;x))
∫ 1

0
pn,k(q;qt)tm+1dqt
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− x[n+ 1]q[n]q
n

∑
k=0

q−kx(1− x)Dq(pn,k(q;x))
∫ 1

0
pn,k(q;qt)tmdqt

= I +[n]qDq
n,m+1(x)− x[n]qDq

n,m(x),

Set

u(t) =
tm+1

qm+1 − tm+2

qm+1 ,

by q-integral by parts, we get∫ 1
0 u(qt)Dq(pn,k(q;qt))dqt

= [u(t)pn,k(q;qt)]10 −
1

qm+1

∫ 1

0
pn,k(q;qt)([m+ 1]qtm − [m+ 2]qtm+1)dqt

= − 1
qm+1

∫ 1

0
pn,k(q;qt)([m+ 1]qtm − [m+ 2]qtm+1)dqt,

therefore

I =− 1
qm+1

(
[m+ 1]qDq

n,m(x)− [m+ 2]qDq
n,m+1(x)

)

by combining the above two equations, we can write

qm+1x(1− x)Dq(D
q
n,m(x)) = −

(
[m+ 1]qDq

n,m(x)− [m+ 2]qDq
n,m+1(x)

)

+ qm+1
(
[n]qDq

n,m+1(x)− x[n]qDq
n,m(x)

)
.

Hence we get the result. �
Corollary 4.1. We have

Dq
n,1(x) =

(1+ qx[n]q)

[n+ 2]q
, (4.10)

Dq
n,2(x) =

q3x2[n]q([n]q − 1)+ (1+ q)2qx[n]q + 1+ q
[n+ 2]q[n+ 3]q

. (4.11)

The corollary follows from (4.9).

Lemma 4.3. For f ∈C[0,1], we have ||Dn,q f || ≤ || f ||.
Proof. By definition (4.4) and using Theorem 4.3, we have

|Dn,q( f ;x)| ≤ [n+ 1]q
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0
| f (t)|pn,k(q;qt)dqt

≤ || f ||Dn,q(1;x) = || f ||. �
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Lemma 4.4. Let n> 3 be a given natural number and let q0 = q0(n) ∈ (0,1) be the
least number such that qn+2 − qn+1 − 2qn − 2qn−1 − ·· ·− 2q3 − q2 + q+ 2 < 0 for
every q ∈ (q0,1). Then

Dn,q((t − x)2,x) ≤ 2
[n+ 2]q

(
ϕ2(x)+

1
[n+ 3]q

)
,

where ϕ2(x) = x(1− x), x ∈ [0,1].

Proof. In view of Theorem 4.3, we obtain

Dn,q((t − x)2,x) = x2 · q3[n]q([n]q − 1)− 2q[n]q[n+ 3]q+[n+ 2]q[n+ 3]q
[n+ 2]q[n+ 3]q

+ x · q(1+ q)2[n]q − 2[n+ 3]q
[n+ 2]q[n+ 3]q

+
1+ q

[n+ 2]q[n+ 3]q

By direct computations, using the definition of the q-integers, we get

q(1+ q)2[n]q − 2[n+ 3]q = q(1+ q)2(1+ q+ · · ·+ qn−1)− 2(1+ q+ · · ·+ qn+2)

= −qn+2 + qn+1+2qn+2qn−1+ · · ·+2q3+q2 − q− 2> 0,

for every q ∈ (q0,1). Furthermore

q(1+ q)2[n]q − 2[n+ 3]q ≤ 4[n]− q− 2[n+3]q

= 4([n+ 3]q− qn − qn+1 − qn+2)− 2[n+ 3]q

≤ 4[n+ 3]q− 2[n+ 3]q = 2[n+ 3]q

and

q(1+ q)2[n]q − 2[n+ 3]q+ q3[n]q([n]q − 1)− 2q[n]q[n+ 3]q+[n+ 2]q[n+ 3]q

= q(1+ q)2[n]q − 2(1+ q+ q2+ q3[n]q)+ q3[n]2q − q3[n]q

− 2q[n]q(1+ q+ q2+ q3[n]q)+ (1+ q+ q2[n]q)(1+ q+ q2+ q3[n]q)

= q3(1− q)2[n]2q − (q− q2+ 2q3 − 2q4)[n]q − (1− q3)

= q3(1− q)2 ·
(

1− qn

1− q

)2

− q(1− q)(1+ 2q2) · 1− qn

1− q
− (1− q3)

= q2n+3 + qn+1− q− 1≤ 0.
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In conclusion, for x ∈ [0,1], we have
Dn,q((t − x)2,x)

=
q(1+ q)2[n]q − 2[n+ 3]q

[n+ 2]q[n+ 3]q
· x(1− x)+

(
q(1+ q)2[n]q − 2[n+ 3]q

[n+ 2]q[n+ 3]q

+
q3[n]q([n]q − 1)− 2q[n]q[n+ 3]q+[n+ 2]q[n+ 3]q

[n+ 2]q[n+ 3]q

)
· x2 +

1+ q
[n+ 2]q[n+ 3]q

≤ 2[n+ 3]q
[n+ 2]q[n+ 3]q

·ϕ2(x)+
2

[n+ 2]q[n+ 3]q
≤ 2

[n+ 2]q
·
(

ϕ2(x)+
1

[n+ 3]q

)
,

which was to be proved. �
For δ > 0 and W 2 = {g∈C[0,1] : g

′
,g

′′ ∈C[0,1]}, the K-functional are defined as

K2( f ,δ ) = inf{|| f − g||+η ||g′′|| : g ∈W 2},

where norm-||.|| is the uniform norm on C[0,1]. Following [50], there exists a
positive constant C > 0 such that

K2( f ,δ ) ≤Cω2( f ,
√

δ ), (4.12)

where the second-order modulus of smoothness for f ∈C[0,1] is defined as

ω2( f ,
√

δ ) = sup
0<h≤

√
δ

sup
x,x+h∈[0,1]

| f (x+ h)− f (x)|.

We define the usual modulus of continuity for f ∈C[0,1] as

ω( f ,δ ) = sup
0<h≤δ

sup
x,x+h∈[0,1]

| f (x+ h)− f (x)|.

4.3.2 Direct Results

Our first main result is the following local theorem:

Theorem 4.4. Let n > 3 be a natural number and let q0 = q0(n) ∈ (0,1) be defined
as in Lemma 4.4. Then there exists an absolute constant C > 0 such that

|Dn,q( f ,x)− f (x)| ≤ C ω2

(
f , [n+ 2]−1/2

q δn(x)
)
+ω

(
f ,

1− x
[n+ 2]q

)
,

where f ∈C[0,1], δ 2
n (x) = ϕ2(x)+ 1

[n+3]q
, x ∈ [0,1], and q ∈ (q0,1).
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Proof. For f ∈C[0,1] we define

D̃n,q( f ,x) = Dn,q( f ,x)+ f (x)− f

(
1+ q[n]qx
[n+ 2]q

)
.

Then, by Corollary 4.1, we find

D̃n,q(1,x) = Dn,q(1,x) = 1 (4.13)

and

D̃n,q(t,x) = Dn,q(t,x)+ x− 1+ q[n]qx
[n+ 2]q

= x. (4.14)

Using Taylor’s formula

g(t) = g(x)+ (t − x) g′(x)+
∫ t

x
(t − u) g′′2,

we obtain

D̃n,q(g,x) = g(x)+ D̃n,q

(∫ t

x
(t − u) g′′(u) du,x

)

= g(x)+Dn,q

(∫ t

x
(t − u) g′′(u) du,x

)

−
∫ 1+q[n]qx

[n+2]q

x

(
1+ q[n]qx
[n+ 2]q

− u

)
g′′(u) du

Hence |D̃n,q(g,x)− g(x)| ≤

≤ Dn,q

(∣∣∣∣∣
∫ t

x
|t − u| · |g′′(u)| du

∣∣∣∣∣,x
)
+

∣∣∣∣∣
∫ 1+q[n]qx

[n+2]q

x

∣∣∣∣∣
1+ q[n]qx

[n+ 2]q
− u

∣∣∣∣∣ ·|g′′(u)| du

∣∣∣∣∣

≤ Dn,q((t − x)2,x) · ‖g′′‖+
(

1+ q[n]qx

[n+ 2]q
− x

)2

· ‖g′′‖ (4.15)

On the other hand

Dn,q((t − x)2,x)+

(
1+ q[n]qx
[n+ 2]q

− x

)2

≤

≤ 2
[n+ 2]q

(
ϕ2(x)+

1
[n+ 3]q

)
+

(
1− ([n+ 2]q− q[n]q)x

[n+ 2]q

)2

, (4.16)
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by Lemma 4.4. Because [n+ 2]q − q[n]q = (1+ q+ . . .+ qn+1)− q(1+ q+ . . .+
qn−1) = 1+ qn+1, we have

1 ≤ [n+ 2]q− q[n]q ≤ 2 (4.17)

Then using (4.17), we have(
1− ([n+ 2]q− q[n]q)x

[n+ 2]q

)2

·δ−2
n (x) ≤

=
1− 2([n+ 2]q− q[n]q)x+([n+ 2]q− q[n]q)2x2

[n+ 2]2q
· [n]q
[n]qx(1− x)+ 1

≤ 1− 2x+ 4x2

[n+ 2]q
· [n]q
[n+ 2]q

· 1
[n]qx(1− x)+ 1

≤ 3
[n+ 2]q

, (4.18)

for n = 1,2, . . . and 0 < q < 1. In conclusion, by (4.16) and (4.18), we get

Dn,q((t − x)2,x)+

(
1+ q[n]qx
[n+ 2]q

− x

)2

≤ 5
[n+ 2]q

·δ 2
n (x), (4.19)

where x ∈ [0,1]. Hence, by (4.15),

|D̃n,q(g,x)− g(x)| ≤ 5
[n+ 2]q

·δ 2
n (x) · ‖g′′‖, (4.20)

where n > 3 and x ∈ [0,1]. Furthermore, by Theorem 4.3, we have

|D̃n,q( f ,x)| ≤ |Dn,q( f ,x)|+ | f (x)|+
∣∣∣∣∣ f

(
1+ q[n]qx

[n+ 2]q

) ∣∣∣∣∣≤ 3‖ f‖.

Thus

‖D̃n,q( f ,x)‖ ≤ 3 ‖ f‖, (4.21)

for all f ∈C[0,1].
Now, for f ∈C[0,1] and g ∈W 2, we obtain

|Dn,q( f ,x)− f (x)| ≤

=

∣∣∣∣∣ D̃n,q( f ,x)− f (x)+ f

(
1+ q[n]qx

[n+ 2]q

)
− f (x)

∣∣∣∣∣

≤ |D̃n,q( f − g,x)|+ |D̃n,q(g,x)− g(x)|+ |g(x)− f (x)|+
∣∣∣∣∣ f

(
1+ q[n]qx

[n+ 2]q

)
− f (x)

∣∣∣∣∣
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≤ 4 ‖ f − g‖+ 5
[n+ 2]

·δ 2
n (x) · ‖g′′‖+ω

(
f ,

∣∣∣∣∣
1− ([n+ 2]q− q[n]q)x

[n+ 2]q

∣∣∣∣∣
)

≤ 5

(
‖ f − g‖+ 1

[n+ 2]q
·δ 2

n (x) · ‖g′′‖
)
+ω

(
f ,

1− x
[n+ 2]q

)
,

where we used (4.20) and (4.21). Taking the infimum on the right hand side over all
g ∈W 2, we obtain

|Dn,q( f ,x)− f (x)| ≤ 5 K2

(
f ,

1
[n+ 2]q

δ 2
n (x)

)
+ω

(
f ,

1− x
[n+ 2]q

)
.

In view of (4.12), we find

|Dn,q( f ,x)− f (x)| ≤ C ω2

(
f , [n+ 2]−1/2

q δn(x)
)
+ω

(
f ,

1− x
[n+ 2]q

)
,

this completes the proof of the theorem. �
For the next theorem we shall use some notations: for f ∈ C[0,1] and ϕ(x) =√
x(1− x), x ∈ [0,1], let

ωϕ
2 ( f ,

√
δ ) = sup

0<h≤
√

δ
sup

x±hϕ∈[0,1]
| f (x+ hϕ(x))− 2 f (x)+ f (x− hϕ(x))|

be the second-order Ditzian–Totik modulus of smoothness, and let

K2,ϕ( f ,δ ) = inf{‖ f − g‖+ δ‖ϕ2g′′2‖g′′2(ϕ)}

be the corresponding K-functional, where

W 2(ϕ) = {g ∈C[0,1] : g′ ∈ ACloc[0,1],ϕ2g′′ ∈C[0,1]}

and g′ ∈ ACloc[0,1] means that g is differentiable and g′ is absolutely continuous on
every closed interval [a,b]⊂ [0,1]. It is well known (see [51, p. 24, Theorem 1.3.1])
that

K2,ϕ( f ,δ ) ≤ C ωϕ
2 ( f ,

√
δ ) (4.22)

for some absolute constant C > 0. Moreover, the Ditzian–Totik moduli of first order
is given by

ωψ( f ,δ ) = sup
0<h≤δ

sup
x,x±hψ(x)∈[0,1]

| f (x+ hψ(x))− f (x)|,

where ψ is an admissible step-weight function on [0,1].
Now we state our next main result.
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Theorem 4.5. Let n > 3 be a natural number and let q0 = q0(n) ∈ (0,1) be defined
as in Lemma 4.3. Then there exists an absolute constant C > 0 such that

‖Dn,q f − f‖ ≤ C ωϕ
2 ( f , [n+ 2]−1/2

q ) + ωψ ( f , [n+ 2]−1
q ),

where f ∈C[0,1], q ∈ (q0,1), and ψ(x) = 1− x, x ∈ [0,1].

Proof. Again, let

D̃n,q( f ,x) = Dn,q( f ,x)+ f (x)− f

(
1+ q[n]qx
[n+ 2]q

)
,

where f ∈C[0,1]. Using Taylor’s formula:

g(t) = g(x)+ (t − x) g′(x)+
∫ t

x
(t − u) g′′2(ϕ),

the formulas (4.13) and (4.14), we obtain

D̃n,q(g,x) = g(x)+Dn,q

(∫ t

x
(t −u) g′′(u) du,x

)
−
∫ 1+q[n]qx

[n+2]−q

x

(
1+q[n]qx

[n+2]q
−u

)
g′′(u) du

Hence

|D̃n,q(g,x)−g(x)|

≤ Dn,q

(∣∣∣∣∣
∫ t

x
|t−u| · |g′′(u)| du

∣∣∣∣∣,x
)
+

∣∣∣∣∣
∫ 1+q[n]qx

[n+2]

x

∣∣∣∣∣
1+q[n]qx

[n+2]q
−u

∣∣∣∣∣ · |g′′(u)| du

∣∣∣∣∣
(4.23)

Because the function δ 2
n is concave on [0,1], we have for u = t + τ(x− t), τ ∈ [0,1],

the estimate

|t − u|
δ 2

n (u)
=

τ|x− t|
δ 2

n (t + τ(x− t))
≤ τ|x− t|

δ 2
n (t)+ τ(δ 2

n (x)− δ 2
n (t))

≤ |t − x|
δ 2

n (x)
.

Hence, by (4.23), we find

|D̃n,q(g,x)− g(x)| ≤

≤ Dn,q

(∣∣∣∣∣
∫ t

x

|t − u|
δ 2

n (u)
du

∣∣∣∣∣,x
)
· ‖δ 2

n g′′‖+
∣∣∣∣∣
∫ 1+q[n]qx

[n+2]q

x

∣∣∣ 1+q[n]qx
[n+2]q

− u
∣∣∣

δ 2
n (u)

du

∣∣∣∣∣ ·‖δ 2
n g′′‖

≤ 1
δ 2

n (x)
·Dn,q((t − x)2,x) · ‖δ 2

n g′′‖+ 1
δ 2

n (x)
·
(

1+ q[n]qx
[n+ 2]q

− x

)2

· ‖δ 2
n g′′‖
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In view of (4.19) and

δ 2
n (x) · |g′′2(x)g′′(x)|+

1
[n+ 3]q

· |g′′2g′′‖+ 1
[n+ 3]q

· ‖g′′‖,

where x ∈ [0,1], we get

|D̃n,q(g,x)− g(x)| ≤ 5
[n+ 2]q

·
(
‖ϕ2g′′‖+ 1

[n+ 3]q
· ‖g′′‖

)
(4.24)

Using [n]q ≤ [n+ 2]q, (4.21), and (4.24), we find for f ∈C[0,1],

|Dn,q( f ,x)− f (x)| ≤

≤ |D̃n,q( f − g,x)|+ |D̃n,q(g,x)− g(x)|+ |g(x)− f (x)|+
∣∣∣∣∣ f

(
1+ q[n]qx

[n+ 2]q

)
− f (x)

∣∣∣∣∣

≤ 4 ‖ f − g‖+ 5
[n+ 2]q

· ‖ϕ2g′′‖+ 5
[n+ 2]q

· ‖g′′‖ +

∣∣∣∣∣ f

(
1+ q[n]qx

[n+ 2]q

)
− f (x)

∣∣∣∣∣
Taking the infimum on the right hand side over all g ∈W 2(ϕ), we obtain

|Dn,q( f ,x)− f (x)| ≤ 5K2,ϕ

(
f ,

1
[n+ 2]q

)
+

∣∣∣∣∣ f

(
1+ q[n]qx

[n+ 2]q

)
− f (x)

∣∣∣∣∣ (4.25)

On the other hand∣∣∣∣∣ f

(
1+q[n]x
[n+2]

)
− f (x)

∣∣∣∣∣ =

=

∣∣∣∣∣ f

(
x+ψ(x) · 1− ([n+2]q −q[n]q)x

[n+2]qψ(x)

)
− f (x)

∣∣∣∣∣

≤ sup
t,t+ψ(t)·(1−([n+2]q−q[n]q)x)/[n+2]q∈[0,1]

∣∣∣∣∣ f

(
t +ψ(t) · 1− ([n+2]q −q[n]q)x

[n+2]qψ(x)

)
− f (t)

∣∣∣∣∣

≤ ωψ

(
f ,
|1− ([n+2]q −q[n]q)x|

[n+2]qψ(x)

)
≤ ωψ

(
f ,

1−x
[n+2]qψ(x)

)
= ωψ

(
f ,

1
[n+2]q

)
.

Hence, by (4.25) and (4.22), we get

‖Dn,q f − f‖ ≤ C ωϕ
2 ( f , [n+ 2]−1/2

q ) + ωψ( f , [n+ 2]−1
q ),

x ∈ [0,1], which completes the proof of the theorem. �
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Remark 4.2. In [86] it is proved for q = q(n) → 1 as n → ∞ that the sequence
{Dn,q f} converges to f uniformly on [0,1] for each f ∈ C[0,1]. The same result
follows from Theorem 4.5, because

lim
n→∞

[n+ 2]qn = lim
n→∞

1− (q(n))n+2

1− q(n)
= ∞,

if limn→∞ q(n) = 1.

4.3.3 Applications to Random and Fuzzy Approximation

Let (X , ||.||) be a normed space over K, where K = R or K =C. Similar to the case
of real-valued functions can be introduced the following concepts.

Definition 4.1 (Gal [74]).

(i) For f : [0,1]→ X , the first-order Ditzian–Totik modulus of continuity ωψ( f ,δ )
and the second-order Ditzian–Totik modulus of smoothness ωϕ

2 ( f ,δ ) are
respectively defined as

ωψ( f ,δ ) = sup
0<h≤δ

sup
x,x±hψ(x)∈[0,1]

‖ f (x+ hψ(x))− f (x)‖,

and

ωϕ
2 ( f ,δ ) =

sup{sup{|| f (x+ hϕ(x))− 2 f (x)+ f (x− hϕ(x))||,x ∈ I2,h},h ∈ [0,δ ]}
where I2,h =

[
− 1−h2

1+h2 ,
1−h2

1+h2

]
,ϕ(x) =

√
x(1− x),ψ(x) = 1− x,0 < δ ≤ 1.

(ii) f : [0,a]→ X is called q-integrable (0 < q < 1) on [0,a] if there exists I ∈ X
denoted by I :=

∫ a
0 f (u)dqu with the property

lim
n→∞

‖I− (1− q)
n

∑
k=1

qk f (aqk)‖= 0.

Remark 4.3. Let (X , ||.||) be a Banach space. If f : [0,a] → X is continuous on
[0,a], then it is q-integrable. Indeed, denoting Sn( f ) = (1− q)∑n

k=1 qk f (aqk), we
get Sn+p( f )− Sn( f ) = (1 − q)∑n+p

k=n qk f (aqk) and since ‖ f (x)‖ is bounded (by
continuity) by a positive constant denoted by M, for all n, p ∈ N it follows

‖Sn+p( f )− Sn( f )‖ ≤ M(1− q)
n+p

∑
k=n

qk ≤ M(1− q)qn
∞

∑
j=0

q j = Mqn,
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which shows that (Sn( f ))n∈N is a Cauchy sequence. Since X is a Banach space, it
follows that this sequence is convergent and therefore f is q-integrable.

Definition 4.2 (see Gupta [86] for real-valued functions). For f : [0,1]→ X ,0 <
q < 1, q-integrable on [0,1], the q-Durrmeyer operators attached to f can be
defined as

Dn,q( f ,x) ≡ (Dn,q f )(x) = [n+ 1]
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0
f (u)pn,k(q;qu)dqu (4.26)

where

pn,k(q;x) :=

[
n
k

]
xk(x;q)n−k.

Theorem 4.6 (see, e.g., [124], p. 183). Let (X , ||.||) be a normed space over K,
where K = R or K = C and denote by X∗ = {x∗ : X → K,x∗ is linear and
continuous}. Then

||x||= sup{|x∗(x)| : x∗ ∈ X∗,‖x∗‖< 1}.

Gal and Gupta [77] established the following theorem:

Theorem 4.7. Let (X ,‖ · ‖) be a Banach space and suppose that f : [0,1] → X is
continuous on [0,1]. Then under the conditions on q as given in Lemma 4.4, we have

||Dn,q f − f ||u ≤C ωϕ
2 ( f , [n+ 2]−1/2) + ωψ( f , [n+ 2]−1),

where || f ||u = sup{|| f (x)|| : x ∈ [0,1]}.

Proof. Let x∗ ∈ X∗,0 < |||x∗||| ≤ 1 and define g : [0,1] → R,g(x) = x∗( f (x)).
Obviously g is continuous on [0,1]. First, we have

ωψ(g,
1

[n+ 2]
) = sup

0<h≤1/[n+2]
sup

x,x±hψ(x)∈[0,1]
|x∗[ f (x+ hψ(x))− f (x)]|

≤ sup
0<h≤1/[n+2]

sup
x,x±hψ(x)∈[0,1]

‖|x∗‖| · ‖[ f (x+ hψ(x))− f (x)]‖

≤ sup
0<h≤1/[n+2]

sup
x,x±hψ(x)∈[0,1]

‖[ f (x+ hψ(x))− f (x)]‖

= ωψ( f ,
1

[n+ 2]
),
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and

ωϕ
2 (g, [n+2]−1/2)

= sup{sup{|x∗[ f (x+hϕ(x))−2 f (x)+ f (x−hϕ(x))]|, x ∈ I2,h},h ∈ [0, [n+2]−1/2]}
≤ sup{sup{‖|x∗‖| · ‖ f (x+hϕ(x))−2 f (x)+ f (x−hϕ(x))‖,x ∈ I2,h},h ∈ [0, [n+2]−1/2]}
≤ ωϕ

2 ( f , [n+2]−1/2).

Now, by Theorem 4.5, for all x ∈ [0,1] and n ∈ N, we have

|Dn,qg(x)− g(x)| ≤C[ ωϕ
2 (g, [n+ 2]−1/2) + ωψ (g, [n+ 2]−1)].

But by the linearity and the continuity of x∗ (the continuity allows to x∗ to commutes
with the integral), we easily get Dn,qg(x)− g(x) = x∗[Dn,q f (x) − f (x)], which
combined with the above inequalities lead to

|x∗[Dn,q f (x)− f (x)]| ≤C[ ωϕ
2 ( f , [n+ 2]−1/2) + ωψ( f , [n+ 2]−1)],

for all x ∈ [0,1]. Passing to supremum with ‖|x∗‖| ≤ 1 and taking into account
Theorem 4.6, it follows

‖Dn,q f (x)− f (x)]‖ ≤C[ ωϕ
2 ( f , [n+ 2]−1/2) + ωψ( f , [n+ 2]−1)],

for all x ∈ [0,1], which proves the theorem. �
Some applications to the approximation of random functions by q-Durrmeyer

random polynomials and of fuzzy-number-valued functions by q-Durrmeyer fuzzy
polynomials were discussed in [77] as
If (S,B,P) is a probability space (P is the probability), then the set of almost
sure (a.s.) finite real random variables is denoted by L(S,B,P) and it is a Banach
space with respect to the norm ||g|| = ∫

S |g(t)|dP(t). Here, for g1,g2 ∈ L(S,B,P),
we consider g1 = g2 if g1(t) = g2(t), a.s. t ∈ S.

A random function defined on [0,1] is a mapping f : [0,1] → L(S,B,P) and
we denote f (x)(t) ∈ R by f (x, t). For this kind of f , the q-Durrmeyer random
polynomials are defined by

(Dn,q f )(x, t) = [n+ 1]
n

∑
k=0

q−k pn,k(q;x)
∫ 1

0
f (u, t)pn,k(q;qu)dqu.

Corollary 4.2. If f : [0,1]→ L(S,B,P) is continuous on [0,1], then

||Dn,q f − f ||u ≤C ωϕ
2 ( f , [n+ 2]−1/2) + ωψ( f , [n+ 2]−1),

where || f ||u = sup{|| f (x)||;x ∈ [0,1]}= sup{∫S | f (x, t)|dP(t);x ∈ [0,1]}.
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Given a set X �= /0, a fuzzy subset of X is a mapping u : X → [0,1], and obviously
any classical subset A of X can be considered as a fuzzy subset of X defined by
χA : X → [0,1], χA (x) = 1, if x ∈ A, χA (x) = 0 if x ∈ X \A. (see, e.g., Zadeh [154]).

Let us denote by RF the class of fuzzy subsets of real axis R (i.e., u : R→ [0,1]),
satisfying the following properties:

(i) ∀u ∈ RF , u is normal, i.e., ∃xu ∈ R with u(xu) = 1.
(ii) ∀u ∈RF , u is convex fuzzy set (i.e., u(tx+(1− t)y)≥ min{u(x) ,u(y)}, ∀t ∈

[0,1] , x,y ∈ R).
(iii) ∀u ∈ RF , u is upper semicontinuous on R.
(iv) {x ∈ R : u(x)> 0} is compact, where A denotes the closure of A.

Then RF is called the space of fuzzy real numbers (see, e.g., Dubois–Prade [56]).

Remark 4.4. Obviously R⊂RF , because any real number x0 ∈R can be described
as the fuzzy number whose value is 1 for x = x0 and 0 otherwise.

For 0 < r ≤ 1 and u ∈ RF , define [u]r = {x ∈ R;u(x)≥ r} and
[u]0 = {x ∈R;u(x)> 0}. Then it is well known that for each r ∈ [0,1], [u]r is a
bounded closed interval. For u,v ∈ RF and λ ∈ R, we have the sum u⊕ v and the
product λ � u defined by [u⊕ v]r = [u]r + [v]r, [λ � u]r = λ [u]r, ∀r ∈ [0,1], where
[u]r + [v]r means the usual addition of two intervals (as subsets of R) and λ [u]r

means the usual product between a scalar and a subset of R (see, e.g., Dubois–Prade
[56], Congxin–Zengtai [44]).

Let D : RF ×RF →R+∪{0} by

D(u,v) = sup
r∈[0,1]

max
{∣∣ur

−− vr
−
∣∣ , ∣∣ur

+− vr
+

∣∣} ,

where [u]r =
[
ur−,ur

+

]
, [v]r =

[
vr−,vr

+

]
. The following properties are known (Dubois–

Prade [56]):
D(u⊕w,v⊕w) = D(u,v), ∀u,v,w ∈ RF
D(k� u,k� v) = |k|D(u,v) ,∀u,v ∈ RF ,∀k ∈ R;
D(u⊕ v,w⊕ e)≤ D(u,w)+D(v,e) ,∀u,v,w,e ∈ RF and (RF ,D) is a complete

metric space.
Also, we need the following concept of q-integral. A function f : [0,a] → RF ,

[0,a] ⊂ R will be called q-integrable on [0,a], if there exists I ∈ RF , denoted by
I =

∫ a
0 f (u)dqu with the property

lim
n→∞

D[I,(1− q)�Σ∗n
k=1qk � f (aqk)]‖= 0.

Here the sum ∑∗ is considered with respect to the operation ⊕.

Remark 4.5. If f : [0,a]→RF is continuous on [0,a], then it is q-integrable. Indeed,
denoting Sn( f ) = (1 − q)� Σ∗n

k=1qk � f (aqk), from the above properties of the
metric D, we can write
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D[Sn( f ),Sn+p( f )] = (1− q)D[0RF ,Σ
∗n+p

k=n qk � f (aqk)]≤

(1− q)
n+p

∑
k=n

qkD[0RF , f (aqk)]≤ M(1− q)
n+p

∑
k=n

qk,

where the continuity implies that f is bounded and that there exists M > 0 such that
D[0RF , f (x)]≤ M for all x ∈ [0,a]. In continuation, taking into account that (RF ,D)
is a complete metric space, the reasonings are similar to those in the Remark 4.3.

Theorem 4.8 (see [44]). RF can be embedded in B = C̄[0,1]× C̄[0,1], where
C̄[0,1] is the class of all real-valued bounded functions f : [0,1] → R such that
f is left continuous for any x ∈ (0,1], f has right limit for any x ∈ [0,1), and f
is right continuous at 0. With the norm ‖·‖ = supx∈[0,1] | f (x)|, C̄[0,1] is a Banach
space. Denote ‖·‖

B
the usual product norm, i.e., ‖( f ,g)‖B = max{‖ f‖ ,‖g‖}. Let

us denote the embedding by j : RF → B, j(u) = (u−,u+). Then j(RF ) is a closed
convex cone in B and j satisfies the following properties:

(i) j(s� u⊕ t � v) = s · j(u)+ t · j(v) for all u,v ∈ RF and s, t ≥ 0 (here “·” and
“+” denote the scalar multiplication and addition in B)

(ii) D(u,v) = ‖ j(u)− j(v)‖
B

(i.e., j embeds RF in B isometrically)

Let f : [0,1] → RF be a continuous fuzzy-number-valued function. The fuzzy
q-Durrmeyer polynomials attached to f can be defined by

(Dn,q f )(x) = [n+ 1]
n

∑
k=0

q−k pn,k(q;x)�
∫ 1

0
pn,k(q;qu)� f (u)dqu.

Also, let us define the following moduli of continuity and smoothness of f :

ωψ ( f ,δ ) = sup
0<h≤δ

sup
x,x±hψ(x)∈[0,1]

D[ f (x+ hψ(x)), f (x)],

ωφ
2 ( f ;δ ) = sup{D[ f (x+ hφ(x))⊕ f (x− hφ(x)),2� f (x)];

x,x+ hφ(x),x− hφ(x) ∈ [0,1],0 ≤ h ≤ δ}.

Here φ2(x) = x(1− x), ψ(x) = 1− x.

Theorem 4.9. Let f : [0,1]→ RF be continuous on [0,1]. There exist the absolute
constant C, such that for all n ∈ N we have

sup{D[(Dn,q f )(x), f (x)];x ∈ [0,1]} ≤C ωϕ
2 ( f , [n+ 2]−1/2) + ωψ( f , [n+ 2]−1).
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4.4 Discretely Defined q-Durrmeyer Operators

For f ∈C[0,1], Gupta and Wang [94] proposed the following q-Durrmeyer operators
as

Mn,q( f ;x) = [n+ 1]q
n

∑
k=1

q1−k pn,k(q;x)
∫ 1

0
f (t)pn,k−1(q;qt)dqt + f (0)pn,0(q;x)

(4.27)

It can be easily verified that in the case q = 1, the operators defined by (4.27)
reduce to the Durrmeyer-type operators recently introduced and studied in [3].

4.4.1 Moment Estimation

By the definition of q-Beta function, we have

∫ 1

0
ts pn,k(q;qt)dqt =

[
n
k

]
qk
∫ 1

0
tk+s(1− qt)n−k

q dqt

=
qk[n]q!

[k]q![n− k]q!
[k+ s]q![n− k]q!

[k+ s+ n− k+ 1]q!
=

qk[n]q![k+ s]q!
[n+ s+ 1]q![k]q!

(4.28)

and

∫ 1

0
ts p∞,k(q;qt)dqt =

qk

(1− q)k[k]q!

∫ 1

0
tk+s(1− qt)∞

q dqt

=
qk

(1− q)k[k]q!
[k+ s]q!(1− q)k+s+1 = (1− q)s+1 qk[k+ s]q!

[k]q!
. (4.29)

Lemma 4.5. We have

Mn,q(1;x) = 1, Mn,q(t;x) = x
[n]q

[n+ 2]q

and

Mn,q(t
2;x) =

(1+ q)x[n]q
[n+ 3]q[n+ 2]q

+ x2 q[n]q([n]q − 1)
[n+ 3]q[n+ 2]q

.
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Proof. In order to prove the theorem we shall use the following identities:

n

∑
k=0

pn,k(q;x) = 1,
n

∑
k=0

[k]q
[n]q

pn,k(q;x) = x,

n

∑
k=0

( [k]q
[n]q

)2
pnk(q;x) = x2 +

x(1− x)
[n]q

.

By (4.28) and (4.29), it can easily be verified that Mn,q(1;x) = 1. Next, using the
above, we have

Mn,q(t;x) = [n+ 1]q
n

∑
k=1

q1−k pn,k(q;x)
qk−1[n]q![k]q
[n+ 2]q!

=
1

[n+ 2]q

n

∑
k=1

[k]q pn,k(q;x) = x
[n]q

[n+ 2]q
.

Finally, using [a+ 1]q = 1+ q[a]q, we have

Mn,q(t
2;x) =

1
[n+ 3]q [n+ 2]q

n

∑
k=1

pn,k(q;x) [k+ 1]q [k]q

=
1

[n+ 3]q [n+ 2]q

{
n

∑
k=1

pn,k(q;x)(1+ q[k]q)[k]q

}

=
1

[n+ 3]q [n+ 2]q

{
n

∑
k=1

pn,k(q;x)[k]q + q
n

∑
k=1

pn,k(q;x)[k]2q

}

=
1

[n+ 3]q [n+ 2]q

{
x[n]q + q(x2[n]2q + x(1− x)[n]q)

}

=
x[n]q(1+ q)

[n+ 3]q [n+ 2]q
+

q2x2

[n+ 3]q [n+ 2]q

[
[n]2q − [n]q

q

]
.

Thus,

Mn,q(t
2;x) =

x[n]q(1+ q)
[n+ 3]q [n+ 2]q

+
qx2[n]q([n]q − 1)
[n+ 3]q [n+ 2]q

.

This completes the proof of the lemma. �
Remark 4.6. By simple computation, it can easily be verified that

Mn,q(t
r;x) =

[n+ 1]q!
[n+ r+ 1]q!

n

∑
k=1

[k]q[k+ 1]q · · · [k+ r− 1]qpn,k(q;x), r ≥ 1.
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Using [k+ s]q = [s]q + qs[k]q, we get

[k]q[k+ 1]q · · · [k+ r− 1]q =
r−1

∏
s=0

([s]q + qs[k]q) =
r

∑
s=1

cs(r)[k]
s
q,

where cs(r)> 0, s = 1,2, . . . ,r are the constants independent of k. Hence

Mn,q(t
r;x) =

[n+1]q!
[n+ r+1]q!

r

∑
s=1

cs(r)
n

∑
k=1

[k]sq pn,k(q;x) =
[n+1]q!

[n+ r+1]q!

r

∑
s=1

cs(r)[n]
s
qBn,q(t

s;x).

Since cs(r) > 0 for s = 1,2, . . . ,r and Bn,q(ts;x) is a polynomial of degree ≤
min(s,n) (see [7]), we get Mn,q(tr;x) is a polynomial of degree ≤ min(r,n).

4.4.2 Rate of Approximation

Theorem 4.10. Let qn ∈ (0,1). Then the sequence {Mn,qn( f )} converges to f
uniformly on [0,1] for each f ∈C[0,1] if and only if limn→∞ qn = 1.

Proof. Since the operators Mn,qn are positive linear operators on C[0,1] and preserve
constant functions, the well-known Korovkin theorem [113] implies that Mn,qn( f ;x)
converges to f (x) uniformly on [0,1] as n → ∞ for any f ∈C[0,1] if and only if

Mn,qn(t
i;x)→ xi (i = 1,2), (4.30)

uniformly on [0,1] as n→∞. If qn → 1, then [n]qn →∞ (see [151]) and for s= 1,2,3,

limn→∞
[n+s]qn
[n]qn

= 1, hence (4.30) follows from Lemma 4.5.

On the other hand, if we assume that for any f ∈ C[0,1], Mn,qn( f ,x) converges
to f (x) uniformly on [0,1] as n → ∞, then qn → 1. In fact, if the sequence (qn) does
not tend to 1, then it must contain a subsequence (qnk) such that qnk ∈ (0,1), qnk →
q0 ∈ [0,1) as k → ∞. Thus, 1

[nk+s]qnk
=

1−qnk
1−(qnk )

nk+s → (1−q0) as k →∞, s = 0,1,2,3.

Taking n = nk, q = qnk in Mn,q(t2;x), by Lemma 4.5, we get

Mnk,qnk
(t2;x)→ x(1− q2

0)+ x2q2
0 �→ x2 (k → ∞) ,

which leads to a contradiction. Hence, qn → 1.
This completes the proof of Theorem 4.10. �

Let q ∈ (0,1) be fixed. We define M∞,q( f ,1) = f (1) and for x ∈ [0,1)

M∞,q( f ,x) :=
1

1− q

∞

∑
k=1

p∞,k(q;x)q1−k
∫ 1

0
f (t)p∞,k−1(q;qt)dqt + f (0)p∞,0(q;x)

=:
∞

∑
k=0

A∞k( f )p∞,k(q;x). (4.31)
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Using (4.29), (4.31), and the fact that (see [125])

∞

∑
k=0

p∞,k(q;x) = 1,
∞

∑
k=0

(1− qk)p∞,k(q;x) = x

and
∞

∑
k=0

(1− qk)2 p∞,k(q;x) = x2 +(1− q)x(1− x),

it is easy to prove that

M∞,q(1;x) = 1, M∞,q(t;x) = x,

and

M∞,q(t
2;x) =

∞

∑
k=0

(1− qk)(1− qk+1)p∞,k(q;x)

= (1− q)x+ q(x2+(1− q)x(1− x)) = (1− q2)x+ q2x2.

For f ∈C[0,1], t > 0, we define the modulus of continuity ω( f , t) as follows:

ω( f , t) := sup
|x−y|≤t
x,y∈[0,1]

| f (x)− f (y)|.

Lemma 4.6. Let f ∈C[0,1] and f (1) = 0. Then we have

|Ank( f )| ≤ Ank(| f |)≤ ω( f ,qn)(1+ qk−n)

and

|A∞k( f )| ≤ A∞k(| f |) ≤ ω( f ,qn)(1+ qk−n).

Proof. By the well-known property of modulus of continuity (see [4], pp. 20)

ω( f ,λ t)≤ (1+λ )ω( f , t), λ > 0,

we get

| f (t)|= | f (t)− f (1)| ≤ ω( f ,1− t)≤ ω( f ,qn)(1+(1− t)/qn).
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Thus,

|Ank( f )| ≤ Ank(| f |) := [n+ 1]q

∫ 1

0
q1−k| f (t)|pn,k−1(q;qt)dqt

≤ [n+ 1]q

∫ 1

0
q1−kω( f ,qn)(1+(1− t)/qn)pn,k−1(q;qt)dqt

= ω( f ,qn)(1+ q−n(1− [k]q
[n+ 2]q

))

= ω( f ,qn)
(

1+
qk(1− qn+2−k)

qn(1− qn+2)

)
≤ ω( f ,qn)(1+ qk−n).

Similarly,

|A∞k( f )| ≤ A∞k(| f |) :=
q1−k

1− q

∫ 1

0
| f (t)|p∞,k−1(q;qt)dqt

≤ ω( f ,qn)
q1−k

1− q

∫ 1

0
(1+(1− t)/qn)p∞,k−1(q;qt)dqt

= ω( f ,qn)(1+(1− (1− qk))/qn) = ω( f ,qn)(1+ qk−n).

Lemma 4.6 is proved. �
Theorem 4.11. Let 0 < q < 1. Then for each f ∈C[0,1] the sequence {Mn,q( f ;x)}
converges to M∞,q( f ;x) uniformly on [0,1]. Furthermore,

‖Mn,q( f )−M∞,q( f )‖ ≤Cq ω( f ,qn). (4.32)

Remark 4.7. When f (x) = x2, we have

‖Mn,q( f )−M∞,q( f )‖ ≥ c1qn ≥ c2 ω( f ,qn),

where c1,c2 > 0 are the constants independent of n. Hence, the estimate (4.32) is
sharp in the following sense: The sequence qn in (4.32) cannot be replaced by any
other sequence decreasing to zero more rapidly as n → ∞.

Proof. The operators Mn,q and M∞,q preserve constant functions, that is,

Mn,q(1,x) = M∞,q(1,x) = 1.

Without loss of generality, we assume that f (1) = 0. If x = 1, then by Lemma 4.1,
we have

|Mn,q( f ;1)−M∞,q( f ;1)|= |Ann( f )− f (1)|= |Ann( f )| ≤ 2ω( f ,qn).
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For x ∈ [0,1), by the definitions of Mn,q( f ;x) and M∞,q( f ;x), we know that

|Mn,q( f ;x)−M∞,q( f ;x)| =
∣∣∣

n

∑
k=0

Ank( f )pn,k(q;x)−
∞

∑
k=0

A∞k( f )p∞,k(q;x)
∣∣∣

≤
n

∑
k=0

|Ank( f )−A∞k( f )|pn,k(q;x)+
n

∑
k=0

|A∞k( f )||pn,k(q;x)− p∞,k(q;x)|

+
∞

∑
k=n+1

|A∞k( f ))|p∞,k(q;x) =: I1 + I2 + I3.

First we have

|pn,k(q;x)− p∞,k(q;x)| =
∣∣∣
[

n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)− xk

(1− q)k[k]q!

∞

∏
s=0

(1− qsx)
∣∣∣

=
∣∣∣
[

n
k

]
q

xk(
n−k−1

∏
s=0

(1− qsx)−
∞

∏
s=0

(1− qsx))

+ xk
∞

∏
s=0

(1− qsx)(

[
n
k

]
q

− 1
(1− q)k[k]q!

)
∣∣∣

≤ pn,k(q;x)
∣∣∣1−∏

∞
lim

s=n−k
(1− qsx)

∣∣∣

+p∞k(q;x)
∣∣∣

n

∏
s=n−k+1

(1− qs)− 1
∣∣∣

≤ qn−k

1− q
(pn,k(q;x)+ p∞k(q;x)),

where in the last formula, we use the following inequality, which can be easily
proved by the induction on n (see [100]):

1−
n

∏
s=1

(1− as)≤
n

∑
s=1

as, (a1, . . . ,an ∈ (0,1), n = 1,2, . . . ,∞).

Using the above inequality we get

|Ank( f )−A∞k( f )| ≤
∫ 1

0
q1−k| f (t)||[n+ 1]qpn,k−1(q;qt)− 1

1− q
p∞,k−1(q;qt)|dqt

≤
∫ 1

0
q1−k| f (t)|

∣∣∣[n+ 1]q− 1
1− q

∣∣∣p∞,k−1(q;qt)dqt
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+

∫ 1

0
q1−k| f (t)|[n+ 1]q

∣∣∣pn,k−1(q;qt)− p∞,k−1(q;qt)
∣∣∣dqt

≤ qn+1

1− q

∫ 1

0
q1−k| f (t)|p∞,k−1(q;qt)dqt

+
qn−k

1− q

∫ 1

0
q1−k| f (t)|[n+ 1](pn,k−1(q;qt)+ p∞,k−1(q;qt))dqt

= qn+1A∞k(| f |)+ qn−k

1− q
Ank(| f |)+ qn−k[n+ 1]qA∞k(| f |)

≤ qn+1ω( f ,qn)(1+ qk−n)+ 2
qn−k

1− q
ω( f ,qn)(1+ qk−n)≤ 5ω( f ,qn)

1− q
.

Now we estimate I1 and I3. We have

I1 ≤ 5ω( f ,qn)

1− q

n

∑
k=0

pn,k(q;x) =
5ω( f ,qn)

1− q
.

and

I3 ≤ ω( f ,qn)
∞

∑
k=n+1

(1+ qk−n)p∞,k(q;x)≤ 2ω( f ,qn)
∞

∑
k=n+1

p∞,k(q;x)≤ 2ω( f ,qn).

Finally we estimate I2 as follows:

I2 ≤
n

∑
k=0

ω( f ,qn)(1+ qk−n)
qn−k

1− q
(pn,k(q;x)+ p∞,k(q;x))

≤ 2ω( f ,qn)

1− q

n

∑
k=0

(pn,k(q;x)+ p∞,k(q;x))≤ 4ω( f ,qn)

1− q
.

We conclude that for x ∈ [0,1),

|Mn,q( f ;x)−M∞,q( f ;x)| ≤Cqω( f ,qn),

where Cq = 2+ 9
1−q . This completes the proof of Theorem 4.11. �

Since M∞,q(t2,x) = (1− q2)x+ q2x2 > x2 for 0 < q < 1, as a consequence of
Lemma 3.10, we have the following:

Theorem 4.12. Let 0 < q < 1 be fixed and let f ∈ C[0,1]. Then M∞,q( f ;x) = f (x)
for all x ∈ [0,1] if and only if f is linear.

Remark 4.8. Let 0 < q < 1 be fixed and let f ∈ C[0,1]. Then by Theorem 4.11
and Theorem 4.12, it can easily be verified that the sequence {Mn,q( f ;x)} does not
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approximate f (x) unless f is linear. This is completely in contrast to the classical
Bernstein polynomials, by which {Bn,1( f ;x)} approximates f (x) for any f ∈C[0,1].

At last, we discuss approximating property of the operators M∞,q.

Theorem 4.13. For any f ∈ C[0,1], {M∞,q( f )} converges to f uniformly on [0,1]
as q → 1−.

Proof. The proof is standard. We know that the operators M∞,q are positive linear
operators on C[0,1] and reproduce linear functions. Also,

M∞,q(t
2;x) = (1− q2)x+ q2x2 → x2

uniformly on [0,1] as q → 1−. Theorem 4.5 follows from the Korovkin theorem. �

4.5 Genuine q-Bernstein–Durrmeyer Operators

For f ∈ C[0,1], Mahmudov and Sabancigil [121] defined the following genuine
q-Bernstein–Durrmeyer operators as

Un,q( f ;x) = [n− 1]q
n−1

∑
k=1

q1−k pn,k(q;x)
∫ 1

0
f (t)pn−2,k−1(q;qt)dqt

+ f (0)pn,0(q;x)+ f (1)pn,n(q;x)

=:
n

∑
k=0

Ank( f )pn,k(q;x), 0 ≤ x ≤ 1. (4.33)

It can be easily verified that in the case q = 1, the operators defined by (4.33)
reduce to the genuine Bernstein–Durrmeyer operators [82].

4.5.1 Moments

Lemma 4.7 ([121]). We have

Un,q(1;x) = 1,Un,q(t;x) = x

Un,q(t
2;x) =

(1+ q)x(1− x)
[n+ 1]q

+ x2

and

Un,q((t − x)2;x) =
(1+ q)x(1− x)

[n+ 1]q
≤ 2

[n+ 1]q
x(1− x).



140 4 q-Bernstein-Type Integral Operators

Lemma 4.8 ([121]). Un,q(t;x) is a polynomial of degree less than or equal to
min{m,n}.

Proof. By simple computation,

Un,q(t
m;x) = [n− 1]q

n−1

∑
k=1

q1−k pn,k(q;x)
∫ 1

0
f (t)pn−2,k−1(q;qt)tmdqt + pn,n(q;x)

= [n− 1]q
n−1

∑
k=1

pn,k(q;x)
[n− 2]q![k+m− 1]q!
[k− 1]q![n+m− 1]q!

+ pn,n(q;x)

=
[n− 1]q!

[n+m− 1]q!

n−1

∑
k=1

pn,k(q;x)
[k+m− 1]q!
[k− 1]q!

+ pn,n(q;x)

=
[n− 1]q!

[n+m− 1]q!

n

∑
k=1

pn,k(q;x)[k]q[k+ 1]q · · · [k+m− 1]q+ pn,n(q;x).

Next using

[k]q[k+ 1]q · · · [k+m− 1]q =
m−1

∏
s=0

(qs[k]q +[s]q) =
m

∑
s=1

cc(m)[k]sq,

where cs(m)> 0,s = 1,2,3, · · · ,m are the constants independent of k, we get

Un,q(t
m;x) =

[n− 1]q!
[n+m− 1]q!

n

∑
k=1

m

∑
s=1

cs(m)[n]sqBn,q(t
s;x),

where Bn,q is the q Bernstein operator. Since Bn,q(ts;x) is a polynomial of degree less
than or equal to min{s,n} and cs(m)> 0,s = 1,2,3, . . . ,m, it follows that Un,q(tm;x)
is a polynomial of degree less than or equal to min{m,n}. �

4.5.2 Direct Results

The following theorems were established by [121]:

Theorem 4.14. Let 0 < qn < 1. Then the sequence {Un,q( f ;x)} converges to f
uniformly on [0,1] for each f ∈C[0,1], if and only if limn→∞ qn = 1.

Theorem 4.15. Let 0 < q < 1 and n > 3. Then for each f ∈ C[0,1] the sequence
{Un,q( f ;x)} converges to f (x) uniformly on [0,1]. Furthermore

||Un,q( f ; .)−U∞,q( f ; .)|| ≤ cqω( f ,qn−2),

where cq =
10

1−q + 4 and ||.|| is the uniform norm on [0,1].
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Theorem 4.16. There exists an absolute constant C > 0 such that

|Un,q( f ;x)− f (x)| ≤ C ω2

(
f ,

√
x(1− x)
[n+ 1]q

)
,

where f ∈C[0,1], 0 < q < 1, and x ∈ [0,1].

Proof. Using Taylor’s formula

g(t) = g(x)+ (t − x) g′(x)+
∫ t

x
(t − u) g′′2[0,1],

we obtain

Un,q(g;x) = g(x)+Un,q

(∫ t

x
(t − u) g′′(u) du;x

)
,g ∈C2[0,1]

Hence

|Un,q(g;x)− g(x)| ≤Un,q

(∣∣∣∣∣
∫ t

x
|t − u| · |g′′(u)| du

∣∣∣∣∣,x
)

≤Un,q((t − x)2;x) · ‖g′′‖ ≤ ‖g′′‖ 2
[n+ 1]q

x(1− x).

Now for f ∈ C[0,1] and g ∈ C2[0,1] and with the fact ||Un,q( f , ; .)|| ≤ || f ||, we
obtain

|Un,q( f ;x)− g(x)| ≤ |Un,q( f − g;x)|+ |Un,q(g;x)− g(x)|+ ‖ f (x)− g(x)‖

≤ 2 ‖ f − g‖+ ‖g′′‖ 2
[n+ 1]q

x(1− x).

Taking the infimum on the right hand side over all g ∈C2[0,1], we obtain

|Un,q( f ;x)− f (x)| ≤ 2K2

(
f ,

1
[n+ 1]q

x(1− x)

)
. (4.34)

The desired results follow from (4.12), (4.34). This completes the proof of the
theorem. �

4.6 q-Bernstein Jacobi Operators

In the year 2005, Derriennic [48] introduced the generalization of modified Bern-
stein polynomials for q-Jacobi weights using the q-Bernstein basis functions. For
q ∈ (0,1) and α,β >−1

Lα ,β
n,q ( f ;x) =

n

∑
k=0

f α ,β
n,k,q pn,k(q;x) (4.35)
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where

pn,k(q;x) :=

[
n
k

]
q

xk
n−k−1

∏
s=0

(1− qsx)

and

f α ,β
n,k,q =

∫ 1
0 tk+α(1− qt)n−k+β

q f (qβ+1t)dqt∫ 1
0 tk+α(1− qt)n−k+β

q dqt
.

It is observed in [48] that for any n ∈ N, Lα ,β
n,q ( f ;x) is linear and positive and

preserves the constant functions.
It is self adjoint. It preserves the degree of polynomials of degree ≤ n.

The polynomial Lα ,β
n,q ( f ;x) is well defined if there exists γ ≥ 0 such that xγ f (x)

is bounded on (0,A] for some A ∈ 90,1] and α > γ − 1. Indeed xα f (x) is then q-

integrable for the weight wα ,β
q (x) = xα(1−qx)β

q . Thus we call that f is said to satisfy

the conditionC(α). Also < f ,g>α ,β
q is well defined if the product f g satisfies C(α),

particularly if f 2 and g2 do it, where

< f ,g >α ,β
q =

∫ qβ+1

0
tα(1− q−β t)β

q f (t)g(t)dqt

and

< f ,g >α ,β
q = q(α+1)(β+1)

∫ 1

0
tα(1− qt)β

q f (qβ+1t)g(qβ+1t)dqt.

4.6.1 Basic Results

Proposition 4.1. If f verifies the condition C(α), we have

DqLα ,β
n,q ( f ;x) =

[n]q
[n+α +β + 2]q

qα+β+2Lα+1,β+1
n−1,q Dq

(
f

(
.

q

)
;qx

)
,x ∈ [0,1]

Proposition 4.2. For any m,n ∈ N,x ∈ [0,1] and q ∈ [1/2,1] if

Tn,m,q(x) =
n

∑
k=0

pn,k(q;x)

∫ 1
0 tk+α(1− qt)n−k+β

q (x− t)mdqt∫ 1
0 tk+α(1− qt)n−k+β

q dqt
.

Lemma 4.9. For any m,n ∈ N,x ∈ [0,1] and q ∈ [1/2,1] if

T 1
n,m,q(x) =

n

∑
k=0

pn,k(q;x)

∫ 1
0 tk+α(1− qt)n−k+β

q (x− t)m
q dqt∫ 1

0 tk+α(1− qt)n−k+β
q dqt

.
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Then for m ≥ 2, the following recurrence formula holds

[n+m+α +β +2]qq−α−2m−1T 1
n,m+1,q(x)

= (−x(1−x)DqT 1
n,m,q(x)+T 1

n,m,q(x)(p1,m(x)+x(1−q)[n+α +β ]q[m+1]qq1−α−m)

= +T 1
n,m−1,q(x)p2,m(x)+T 1

n,m−2,q(x)p3,m(x)(1−q),

where the polynomials pi,m(x), i = 1,2,3 are uniformly bounded with regard to n
and q.

Lemma 4.10. For any m ∈ N,x ∈ [0,1] and q ∈ [1/2,1], the expansion of (x− t)m

on the Newton basis at the points x/qi, i = 0,1,2, . . . .m− 1 is

(x− t)m =
m

∑
k=1

dm,k(1− q)m−k(x− t)k
q, (4.36)

where the coefficient dm,k verify |dm,k| ≤ dm,k = 1,2, . . . ,m and dm does not depend
on x, t,q.

Remark 4.9. From Lemmas 4.9 and 4.10, we have for any m there exists a constant
Km > 0 independent of n and q, such that

sup
x∈[0,1]

|Tn,m,q(x)| ≤
⎧⎨
⎩

Km

[n]m/2
q

, if m is even

Km

[n]
(m+1)/2
q

, if m is odd .

Remark 4.10. The sequence (qn) has the property S if and only if there exists n ∈ N
and c > 0 such that for any n > N,1− qn < c/n.

4.6.2 Convergence

Theorem 4.17. If f is continuous at the point x ∈ (0,1), then

lim
n→∞

Lα ,β
n,qn

( f ;x) = f (x)

in the following cases:

1. If f is bounded on [0,1] and the sequence (qn) is such that limn→∞ qn = 1
2. If there exist real numbers α ′,β ′ ≥ 0 and a real k′ > 0 such that, for any x ∈

(0,1), |xα ′
(1−x)β ′

f (x)| ≤ k′,α ′ <α +1,β ′ < β +1 and the sequence (qn) owns
the property S
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Theorem 4.18. If the function f admits a second derivative at the point x ∈ [0,1],
then as in cases 1 and 2 of Theorem 4.17, we have

lim
n→∞

[n]qn [L
α ,β
n,q ( f ;x)− f (x)] =

d
dx

(
xα+1(1− x)β+1 f ′x)

)
xα(1− x)β (4.37)

Proof. By Taylor’s formula, we have

f (t) = f (x)+ (t − x) f ′(x)+
(t − x)2

2!
f ′′(x)+ (t − x)2ε(t − x),

where limu→0 ε(u) = 0. Thus

Lα ,β
n,qn

( f ;x)− f (x) =− f ′(x)Tn,1,qn(x)+
f ′′(x)

2!
Tn,2,qn(x)+Rn(x),

where Rn(x) = Lα ,β
n,qn((t − x)2ε(t − x);x). Using limq→1[a]q = a for any a ∈ R. Using

Lemmas 4.9 and 4.10, we have lim[n]qn→∞[n]qnTn,1,qn(x) = (α +β +2)x−α−1 and
lim[n]qn→∞[n]qnTn,2,qn(x) = 2x(1−x). The result follows immediately if we show that
lim[n]qn→∞[n]qnRn(x) = 0. Proceeding along the same manner as in Theorem 4.17.
For any η > 0 we can find a δ > 0 such that for n large enough ε(t − x) < η if

|x− qβ+1
n t|< δ .

We obtain the inequality |(t−x)2ε(t−x)| ≤η(x−t)2+(ρx+ | f (t)|)Ix,δ (q
−(β+1)t)

for any t ∈ (0,1) where ρx is independent of t and δ . We deduce

[n]qn |Rn(x)| ≤
{

[n]qn

(
ηTn,2,qn(x)+ (ρx + k)Tn,4,qn(x)/δ 4

)
, in case 1

[n]qn

(
ηTn,2,qn(x)+ρxTn,4,qn(x)/δ 4

)
+ k′nEn (x,δ ) , in case 1

The right hand side tends to 2ηx(1− x) when n (hence [n]qn) tends to infinity is as
small as wanted. �
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