
Chapter 1
Introduction of q-Calculus

In the field of approximation theory, the applications of q-calculus are new
area in last 25 years. The first q-analogue of the well-known Bernstein polyno-
mials was introduced by Lupas in the year 1987. In 1997 Phillips considered
another q-analogue of the classical Bernstein polynomials. Later several other
researchers have proposed the q-extension of the well-known exponential-type
operators which includes Baskakov operators, Szász–Mirakyan operators, Meyer–
König–Zeller operators, Bleiman, Butzer and Hahn operators (abbreviated as BBH),
Picard operators, and Weierstrass operators. Also, the q-analogue of some standard
integral operators of Kantorovich and Durrmeyer type was introduced, and their
approximation properties were discussed. This chapter is introductory in nature;
here we mention some important definitions and notations of q-calculus. We give
outlines of q-integers, q-factorials, q-binomial coefficients, q-differentiations, q-
integrals, q-beta and q-gamma functions. We also mention some important q-basis
functions and their generating functions.

1.1 Notations and Definitions in q-Calculus

In this section we mention some basic definitions of q-calculus, which would be
used throughout the book.

Definition 1.1. Given value of q > 0, we define the q-integer [n]q by

[n]q =

{
1−qn

1−q , q �= 1

n, q = 1
,

for n ∈ N.

We can give this definition for any real number λ . In this case we call [λ ]q a
q-real.
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2 1 Introduction of q-Calculus

Definition 1.2. Given the value of q > 0, we define the q-factorial [n]q! by

[n]q! =

{
[n]q [n− 1]q · · · [1]q , n = 1, 2, . . .
1 n = 0.

,

for n ∈ N.

Definition 1.3. We define the q-binomial coefficients by

[
n
k

]
q

=
[n]q!

[k]q! [n− k]q!
, 0 ≤ k ≤ n, (1.1)

for n,k ∈ N.

The q-binomial coefficient satisfies the recurrence equations

[
n
k

]
q

=

[
n− 1
k− 1

]
q

+ qk
[

n− 1
k

]
q

(1.2)

and [
n
k

]
q

= qn−k
[

n− 1
k− 1

]
q

+

[
n− 1

k

]
q

. (1.3)

Definition 1.4. The q-analogue of (1+ x)n
q is the polynomial

(1+ x)n
q :=

{
(1+ x)(1+ qx). . .

(
1+ qn−1x

)
n = 1, 2, . . .

1 n = 0.

A q-analogue of the common Pochhammer symbol also called a q-shifted factorial
is defined as

(x;q)0 = 1,(x;q)n =
n−1

∏
i=0

(1− qix),(x;q)∞ =
∞

∏
i=0

(1− qix).

Definition 1.5. The Gauss binomial formula:

(x+ a)n
q =

n

∑
j=0

[
n
j

]
q

q j( j−1)/2a jxn− j.

Definition 1.6. The Heine’s binomial formula:

1
(1− x)n

q
= 1+

∞

∑
j=1

[n]q[n+ 1]q . . . [n+ j− 1]q
[ j]q!

x j .
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Also, we have the following important property:

xn =
n

∑
j=0

[
n
j

]
q

(x− 1) j
q.

1.2 q-Derivative

Definition 1.7. The q-derivative Dq f of a function f is given by

(Dq f ) (x) =
f (x)− f (qx)
(1− q)x

, if x �= 0, (1.4)

and (Dq f ) (0) = f
′
(0) provided f

′
(0) exists.

Note that

lim
q→1

Dq f (x) = lim
q→1

f (qx)− f (x)
(q− 1)x

=
d f (x)

dx

if f is differentiable.
It is obvious that the q-derivative of a function is a linear operator. That is, for

any constants a and b, we have

Dq {a f (x)+ bg(x)}= aDq{ f (x)}+ bDq{g(x)} .
Now we calculate the q-derivative of a product at x �= 0, using Definition 1.7, as

Dq { f (x)g(x)} =
f (qx)g(qx)− f (x)g(x)

(q− 1)x

=
f (qx)g(qx)− f (qx)g(x)+ f (qx)g(x)− f (x)g(x)

(q− 1)x

=
f (qx)(g(qx)− g(x))

(q− 1)x
+

( f (qx)− f (x))g(x)
(q− 1)x

= f (qx)Dqg(x)+Dq f (x)g(x) .

We interchange f and g and obtain

Dq { f (x)g(x)}= f (x)Dqg(x)+Dq f (x)g(qx) . (1.5)

The Leibniz rule for the q-derivative operator is defined as

D(n)
q ( f g)(x) =

n

∑
k=0

[
n
k

]
q

D(k)
q f (xqn−k)D(n−k)

q g(x).
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If we apply Definition 1.7 to the quotient f (x) and g(x), we obtain

Dq

{
f (x)
g(x)

}
=

1
(q− 1)x

{
f (qx)
g(qx)

− f (x)
g(qx)

+
f (x)

g(qx)
− f (x)

g(x)

}

=
1

g(qx)

{
f (qx)− f (x)
(q− 1)x

}
+

1
(q− 1)x

{
f (x)g(x)− f (x)g(qx)

g(qx)g(x)

}

=
1

g(qx)
Dq f (x)+

f (x)
g(qx)g(x)

{
g(x)− g(qx)
(q− 1)x

}

=
g(x)Dq f (x)− f (x)Dqg(x)

g(qx)g(x)
. (1.6)

The above formula can also be written as

Dq

{
f (x)
g(x)

}
=

g(qx)Dq f (x)− f (qx)Dqg(x)

g(qx)g(x)
.

Note that there does not exist a general chain rule for q-derivative. We can give a
chain rule for function of the form f (u(x)), where u = u(x) = αxβ with α , β being
constant. For this chain rule, we can write

Dq { f (u(x))} = Dq

{
f
(

αxβ
)}

=
f
(
αqβ xβ)− f

(
αxβ )

(q− 1)x

=
f
(
αqβ xβ)− f

(
αxβ )

αqβ xβ −αxβ .
αqβ xβ −αxβ

(q− 1)x

=
f
(
qβ u

)− f (u)

qβ u− u
.
u(qx)− u(x)
(q− 1)x

and, hence,

Dq { f (u(x))}=
(

Dqβ f
)
(u(x))Dq (u(x)) .

Proposition 1.1. For n ≥ 1,

Dq(1+ x)n
q = [n]q (1+ qx)n−1

q

Dq

{
1

(1+ x)n
q

}
=− [n]q

(1+ x)n+1
q

.
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Proof. According to the definition of q-derivative we have

Dq(1+ x)n
q =

(1+ qx)n
q − (1+ x)n

q

(q− 1)x

= (1+ qx)n−1
q

{(1+ qnx− (1+ x)}
(q− 1)x

= [n]q (1+ qx)n−1
q .

According to (1.6), we have

Dq

{
1

(1+ x)n
q

}
= − Dq(1+ x)n

q

(1+ qx)n
q(1+ x)n

q

= − [n]q
(1+ qnx) (1+ x)n

q

= − [n]q
(1+ x)n+1

q
. �

Remark 1.1. Suppose n ≥ 1 and a,b,r,s ∈ ℜ, then by simple computation, we
immediately have the following:

Dq(a+ bx)n
q = [n]qb(a+ bqx)n−1

q ,

Dq(ax+ b)n
q = [n]qa(ax+ b)n−1

q ,

and

Dq
(1+ ax)r

q

(1+ bx)s
q
= [r]qa

(1+ aqx)r−1
q

(1+ bqx)s
q

− b[s]q
(1+ ax)r

q

(1+ bx)s+1
q

.

1.3 q-Series Expansions

Theorem 1.1. For |x|< 1, |q|< 1,

∞

∑
k=0

(1− a)k
q

(1− q)k
q

xk =
(1− ax)∞

q

(1− x)∞
q
,

where (1− x)∞
q = ∏∞

k=0

(
1− qkx

)
.
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Proof. Let

fa (x) =
∞

∑
k=0

(1− a)k
q

(1− q)k
q

xk.

Clearly

fa (x)− fa (qx)
x

=
∞

∑
k=0

(1− a)k
q

(1− q)k
q

(
1− qk

)
xk−1

= (1− a)
∞

∑
k=1

(1− aq)k−1
q

(1− q)k−1
q

xk−1

= (1− a)
∞

∑
k=0

(1− aq)k
q

(1− q)k
q

xk = (1− a) fa (qx)

or

fa (x)− fa (qx) = (1− a)x fa (qx) .

Also

fa (x)− fa (qx) =
∞

∑
k=0

(1− qa)k−1
q

(1− q)k
q

(
1− a− 1+ aqk

)
xk

= −ax faq (x)

or

fa (x) = (1− ax) faq (x) .

Combining the above two equations, we get

fa (x) =
1− ax
1− x

fa (qx) .

Iterating this relation n times and letting n → ∞ we have

fa (x) =
(1− ax)n

q

(1− x)n
q

fa (q
nx) =

(1− ax)∞
q

(1− x)∞
q
.

Thus we have the desired result. �
Corollary 1.1. (a) Taking a = 0 in Theorem 1.1, we have

∞

∑
k=0

xk

(1− q)k
q

=
1

(1− x)∞
q
, |x|< 1, |q|< 1.
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(b) Replacing a with 1
a , and x with ax, and then taking a = 0 in Theorem 1.1, we

have

∞

∑
k=0

(−1)n q
k(k−1)

2 xk

(1− q)k
q

= (1− x)∞
q , |q|< 1.

(c) Taking a = qN in Theorem 1.1, we have

∞

∑
k=0

[
N − k− 1

k

]
q

xk =
1

(1− x)N
q

, |x|< 1.

We consider Corollary 1.1(a). We can write

∞

∑
k=0

xk

(1− q)k
q

=
∞

∑
k=0

(
x

1−q

)k

(
1−q2

1−q

)(
1−q3

1−q

)
. . .

(
1−qk

1−q

)

=
∞

∑
k=0

(
x

1−q

)k

[k]q!

which resembles Taylor’s expansion of classical exponential function ex.

Definition 1.8. A q-analogue of classical exponential function ex is

eq (x) =
∞

∑
k=0

xk

[k]q!
.

Using Corollary 1.1, (a) and (b), we see that

eq

(
x

1− q

)
=

1
(1− x)∞

q

and

eq (x) =
1

(1− (1− q)x)∞
q
. (1.7)

Definition 1.9. Another q-analogue of classical exponential function is

Eq (x) =
∞

∑
k=0

q
k(k−1)

2
xk

[k]q!
= (1+(1− q)x)∞

q . (1.8)

The q-exponential functions satisfy following properties:

Lemma 1.1. (a) Dqeq (x) = eq (x) , DqEq (x) = Eq (qx).
(b) eq (x)Eq (−x) = Eq (x)eq (−x) = 1.
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Note that for q ∈ (0,1) the series expansion of eq (x) has radius of convergence
1

1−q . On the contrary, the series expansion of Eq (x) converges for every real x.

1.4 Generating Functions

In this section we present the generating functions for some of the important q-basis
functions, namely, q-Bernstein basis function, q-MKZ basis function, and q-beta
basis functions (see [95]).

We can consider the q-exponential function in the following form:

lim
n→∞

1
(1− x)n

q
= lim

n→∞

∞

∑
k=0

[
n+ k− 1

k

]
q

xk

= lim
n→∞

∞

∑
k=0

(1− qn+k−1) . . . .(1− qn)

(1− q)(1− q2) . . . (1− qk)
xk

=
∞

∑
k=0

xk

(1− q)(1− q2) . . . (1− qk)
= eq(x).

Another form of q-exponential function is given as follows:

lim
n→∞

(1+ x)n
q =

∞

∑
k=0

qk(k−1)/2xk

(1− q)(1− q2) . . . (1− qk)
= Eq(x).

Based on the q-integers Phillips [132] introduced the q-analogue of the well-
known Bernstein polynomials. For f ∈ C[0,1] and 0 < q < 1, the q-Bernstein
polynomials are defined as

Bn,q ( f ,x) =
n

∑
k=0

bq
k,n(x) f

(
[k]q
[n]q

)
, (1.9)

where the q-Bernstein basis function is given by

bq
k,n(x) =

[
n
k

]
q

xk(1− x)n−k
q ,x ∈ [0,1]

and (a− b)nq = ∏n−1
s=0 (a− qsb), a,b ∈ R.

Also Trif [150] proposed the q-analogue of well-known Meyer–König–Zeller
operators. For f ∈ C[0,1] and 0 < q < 1, the q-Meyer–König–Zeller operators are
defined as

Mn,q ( f ,x) =
∞

∑
k=0

mq
k,n(x) f

(
[k]q
[n]q

)
, (1.10)

where the q-MKZ basis function is given by
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mq
k,n(x) =

[
n+ k+ 1

k

]
q

xk(1− x)n
q,x ∈ [0,1].

For f ∈C[0,∞) and 0 < q < 1, the q-beta operators are defined as

Vn ( f ,x) =
∞

∑
k=0

vq
k,n(x) f

(
[k]q

qk−1[n]q

)
, (1.11)

where the q-beta basis function is given by

vq
k,n(x) =

qk(k−1)/2

Bq(k+ 1,n)
xk

(1+ x)n+k+1
q

,x ∈ [0,∞)

and Bq(m,n) is q-beta function.
Now we give the generating functions for q-Bernstein, q-Meyer–König–Zeller,

and q-beta basis functions.

1.4.1 Generating Function for q-Bernstein Basis

Theorem 1.2. bq
k,n(x) is the coefficient of tn

[n]q! in the expansion of

xktk

[k]q!
eq((1− q)(1− x)qt).

Proof. First consider

xktk

[k]q!
eq((1− q)(1− x)qt) =

xktk

[k]q!

∞

∑
n=0

(1− x)n
qtn

[n]q!

=
1

[k]q!

∞

∑
n=0

xk(1− x)n
qtn+k

[n]q!

=
∞

∑
n=0

[n+ 1]q[n+ 2]q . . . ..[n+ k]qxk(1− x)n
qtn+k

[n+ k]q![k]q!

=
∞

∑
n=0

[
n+ k

k

]
q

xk(1− x)n
qtn+k

[n+ k]q!

=
∞

∑
n=k

[
n
k

]
q

xk(1− x)n−k
q tn

[n]q!
=

∞

∑
n=0

bq
k,n(x)

tn

[n]q!
.

This completes the proof of generating function for bq
k,n(x). �
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1.4.2 Generating Function for q-MKZ

Theorem 1.3. mq
k,n(x) is the coefficient of tk in the expansion of

(1−x)n
q

(1−xt)n+2
q

.

Proof. It is easily seen that

(1− x)n
q

(1− xt)n+2
q

=
∞

∑
k=0

[
n+ k+ 1

k

]
q

(1− x)n
qxktk =

∞

∑
k=0

mq
k,n(x)t

k.

This completes the proof. �

1.4.3 Generating Function for q-Beta Basis

Theorem 1.4. It is observed by us that vq
k,n(x) is the coefficient of tk

[n+k]q! in the

expansion of 1
(1+x)n+1

q
Eq

(
(1−q)xt

(1+qn+1x)q

)
.

Proof. First using the definition of q-exponential Eq(x), we have

1

(1+ x)n+1
q

Eq

(
(1− q)xt

(1+ qn+1x)q

)
=

1

(1+ x)n+1
q

∞

∑
k=0

qk(k−1)/2 xk

(1+ qn+1x)k
q

tk

[k]q!

=
∞

∑
k=0

qk(k−1)/2 xk

(1+ x)n+k+1
q

tk

[k]q!

=
∞

∑
k=0

qk(k−1)/2 xktk

(1+x)n+k+1
q

[k+1]q[k+2]q . . . [n+k]q
[n+k]q!

=
∞

∑
k=0

qk(k−1)/2 xk

(1+ x)n+k+1
q

[
n+ k

n

]
q

[n]qtk

[n+ k]q!

=
∞

∑
k=0

1
Bq(k+ 1,n)

qk(k−1)/2 xk

(1+ x)n+k+1
q

tk

[n+ k]q!

=
∞

∑
k=0

vq
k,n(x)

tk

[n+ k]q!
.

This completes the proof of generating function. �



1.5 q-Integral 11

1.5 q-Integral

The Jackson definite integral of the function f is defined by (see [103], [149]):

∫ a

0
f (x)dqx = (1− q)a

∞

∑
n=0

f (aqn)qn, a ∈ R. (1.12)

Notice that the series on the right-hand side is guaranteed to be convergent as soon
as the function f is such that for some C > 0, α > −1, | f (x)| < Cxα in a right
neighborhood of x = 0.

One defines the Jackson integral in a generic interval [a,b] :

∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx.

Now we give the fundamental theorem of quantum calculus.

Theorem 1.5. (a) If F is any anti q-derivative of the function f , namely, DqF = f ,
continuous at x = 0, then∫ a

0
f (x)dqx = F (a)−F (0) .

(b) For any function f one has

Dq

∫ x

0
f (t)dqt = f (x) .

Remark 1.2. (a) The q-analogue of the rule of integration by parts is∫ a

0
g(x)Dq f (x)dqx = f (x)g(x)|ba −

∫ a

0
f (qx)Dqg(x)dqx.

(b) If u(x) = αxβ , change of variable formula is

∫ u(b)

u(a)
f (u)dqu =

∫ b

a
f (u(x))Dq1/β u(x)dq1/β x.

Definition 1.10. For m,n > 0 the q-beta function [104] is defined as

Bq(m,n) =
∫ 1

0
tm−1(1− qt)n−1

q dqt.

It can be easily seen that for m > 1,n > 0 after integrating by parts:

Bq(m,n) =
[m− 1]q
[n]q

Bq(m− 1,n+ 1).
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Also from Definition 1.10, we have

Bq(m,n+ 1) =
∫ 1

0
tm−1(1− qt)n−1

q (1− qnt)dqt

=
∫ 1

0
tm−1(1− qt)n−1

q dqt − qn
∫ 1

0
tm(1− qt)n−1

q dqt

= Bq(m,n)− qnBq(m+ 1,n).

The improper integral of function f is defined by [49, 107]:

∫ ∞/A

0
f (x)dqx = (1− q)

∞

∑
n=−∞

f

(
qn

A

)
qn

A
, A ∈ R. (1.13)

Remark 1.3. If the function f satisfies the conditions | f (x)|<Cxα , ∀x ∈ [0,ε), for
some C > 0, α >−1, ε > 0 and | f (x)|<Dxβ , ∀x∈ [N,∞), for some D> 0, β <−1,
N > 0, then the series on the right hand side is convergent. In general even though
when these conditions are satisfied, the value of sum in the right side of (1.13) will
be dependent on the constant A. In order to get the integral independent of A, in the
anti q-derivative, we have to take the limits as x → 0 and x → 1, respectively.

Definition 1.11. The q-gamma function defined by

Γq (t) =
∫ 1/1−q

0
xt−1Eq (−qx)dqx, t > 0 (1.14)

satisfies the following functional equation:

Γq (t + 1) = [t]q Γq (t) ,

where [t]q =
1−qt

1−q and Γq (1) = 1.

Remark 1.4. Note that the q-gamma integral given by (1.14) can be rewritten via
an improper integral by using definition (1.13). From (1.8) we can easily see that

Eq

(
− qn

1−q

)
= 0 for n ≤ 0. Thus, we can write

Γq (t) =
∫ ∞/1−q

0
xt−1Eq (−qx)dqx, t > 0.

Definition 1.12. The q-beta function is defined as

Bq (t,s) = K (A, t)
∫ ∞/A

0

xt−1

(1+ x)t+s
q

dqx, (1.15)
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and the q-gamma function is defined as

Γq(t) = K (A, t)
∫ ∞/A(1−q)

0
xt−1eq(−x)dqx, (1.16)

where K (x, t) = 1
x+1 xt

(
1+ 1

x

)t
q (1+ x)1−t

q .

Remark 1.5. The q-gamma and q-beta functions are related to each other by the
following identities:

Bq (t,s) =
Γq (t)Γq (s)

Γq (t + s)
(1.17)

and

Γq (t) =
Bq (t,∞)

(1− q)t
.

The function K(x, t) is a q-constant, i.e., K(qx, t) = K(x, t). In particular, for any
positive integer n

K (x,n) = q
n(n−1)

2 , K (x,0) = 1.

Also

lim
q→1

K(x, t) = 1,∀x, t ∈ ℜ

and

lim
q→0

K(x, t) = xt + xt−1,∀t ∈ (0,1), x ∈ ℜ.

It also satisfies K(x, t + 1) = qtK(x, t) (see [49]).
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