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Preface

Simply, quantum calculus is ordinary classical calculus without the notion of
limits. It defines g-calculus and h-calculus. Here h ostensibly stands for Planck’s
constant, while g stands for quantum. A pioneer of g-calculus in approximation
theory is the former Professor Alexandru Lupas [117], who first introduced the g-
analogue of Bernstein polynomials. Ten years later Phillips [133] introduced another
generalization on Bernstein polynomials [113] based on g-integers. Ostrovska
[125, 127] studied g-Bernstein polynomials. After that several researchers have
estimated the approximation properties of several operators. This book is an attempt
to compile and present some papers on g-calculus in approximation theory.

We divide the book into seven chapters. In Chap. 1, we mention some notations
and basic definitions of g-calculus, which will be used throughout the book. We
also present the generating functions of some of the important g-basis functions.
In Chap.2, we present some discrete g-operators, which include the g-Bernstein
polynomials, g-Baskakov operators, ¢g-Szdsz operators, g-Blemian—Butzer—Hahn
operators, and g-Meyer—Konig and Zeller operators. We present the approximation
properties of such operators.

In Chap. 3, we present the g-analogue of integral operators which include g-
Picard and g-Weierstrass-type singular integral operators and study their rate of
convergence and weight approximation. We also discuss error estimation and global
smoothness preservation property of such operators. In the last section of this
chapter, we study generalized Picard operators and pointwise convergence, order of
pointwise convergence, and norm convergence of the generalized operators. In the
last section, we study the g-Meyer—Konig—Zeller—Durrmeyer operators and estimate
the moments and some direct results.

In Chap.4, we study the integral modifications of Bernstein operators using
the g-beta functions of the first kind. We present the approximation properties of
the g-Bernstein—Kantorovich operators, g-Bernstein—-Durrmeyer polynomials, dis-
cretely defined g-Durrmeyer-type operators, and genuine g-Bernstein—Durrmeyer
operators. We mention the moment estimation, direct results, and the limiting con-
vergence of such operators. We have also included a section on fuzzy approximation
and applications.



vi Preface

In Chap. 5, we discuss some other recently introduced g-integral operators on the
positive real axis. To tackle such operators, we generally use g-beta functions of
the second kind. This chapter includes g-Baskakov—Durrmeyer operators, g-Szész-
beta operators, g-Szadsz—Durrmeyer operators, and g-Phillips operators. We present
moments, recurrence relations for moments, asymptotic formula, and weighted
approximations for such operators.

In Chap. 6, we study the statistical convergence of the g-operators. We mention
results for a general class of positive linear operators and present statistical
approximation properties in weighted space. We also present the results for g-Szész—
King-type operators and g-Baskakov—Kantorovich operators and the study rate of
convergence.

In the last chapter, we present the quantitative Voronovskaja-type estimate for
certain g-Durrmeyer polynomials. In this way, we put in evidence the overconver-
gence phenomenon for these g-Durrmeyer polynomials, namely, the extensions of
approximation properties (with quantitative estimates) from the real interval [0, 1]
to compact disks in the complex plane. Also, we study the complex g-Gauss—
Weierstrass integral operators. We show that these operators are an approximation
process in some subclasses of analytic functions giving Jackson-type estimates
in approximation. Furthermore, we give g-calculus analogues of some shape-
preserving properties for these operators satisfied by the classical complex Gauss—
Weierstrass integral operators.

Kirikkale, Turkey Ali Aral
New Delhi, India Vijay Gupta
Kingsville, TX Ravi P. Agarwal
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Introduction

Nowadays there is a significant increase of activities in the area of g-calculus due
to its applications in various fields such as mathematics, mechanics, and physics. In
1910, Jackson [103] defined and studied the g-integral. He was the first to develop
g-integral in a systematic way. Later the integral representations of g-gamma and
g-beta functions were proposed by De Sole and Kac [49].

The applications of g-calculus in the area of approximation theory were initiated
by Lupas [117], who first introduced g-Bernstein polynomials. Also in the last
decade, Phillips [133] proposed other g-Bernstein polynomials, which became
popular. Later several researchers obtained the interesting properties of g-Bernstein
polynomials and their Durrmeyer variants; we mention some of the papers in
this direction as [45, 86, 94, 129, 130]. The g-Bernstein—Durrmeyer-type operators
are based on g-beta function of the first kind. The approximation of vector-
valued functions by g-Durrmeyer operators with applications to random and fuzzy
approximation was discussed by Gal and Gupta [77]. Another important operator,
namely, g-Bleimann, Butzer, and Hahn operators, was discussed in [27] and also
in [10, 60, 120]. The g-Baskakov operators in two different setups were proposed
and studied in [30, 32]; also some direct results in terms of Ditzian—Totik modulus
of continuity were discussed in [63]. Recently we [31] proposed the g-analogue of
Baskakov—Durrmeyer operators, which is based on g-improper integral, namely, g-
analogue of beta function of the second kind. Another important g-generalization of
the well-known Szdsz—Mirakyan operators was proposed by Aral [25] and studied
in detail by Aral and Gupta [29]. The authors have also proposed the g-analogue of
Szasz—Mirakyan—Durrmeyer operators in [33]. Several mixed g-analogues of hybrid
summation-integral-type operators were proposed, some of them are discussed in
this book.

Other g-analogues of integral operators are the g-Picard and g-Weierstrass-
type singular integral operators. It can be observed that the g-Picard and the
g-Gauss—Weierstrass singular integral operators give better approximation results
than the classical ones. Trif [150] studied some approximation properties of the
operators A7In,qf (x). Also, Dogru and Gupta [55] proposed some other bivariate g-
Meyer—Konig and Zeller operators having different test functions and established

xi



xii Introduction

some approximation properties. Govil and Gupta [84] considered g-Meyer—Konig—
Zeller—Durrmeyer operators which are discussed here.

In the recent years, many researchers have studied the statistical convergence
for linear positive operators. Here, we present statistical convergence results for a
general class of operators. We also discuss results for g-Szasz—King-type operators
and g-Baskakov—Kantorovich operators and study rate of convergence.

For the quantitative Voronovskaja-type estimates for certain complex operators,
we put in evidence the overconvergence phenomenon, namely, the extensions of
approximation properties (with quantitative estimates) from the real interval to
compact disks in the complex plane. We study complex operators of g-Durrmeyer-
type and complex g-Gauss—Weierstrass integral operators. We show that these
operators satisfy approximation process in some subclasses of analytic functions
giving Jackson-type estimates in approximation. Furthermore, we give g-calculus
analogues of some shape-preserving properties for these operators satisfied by the
classical complex Gauss—Weierstrass integral operators.



Chapter 1
Introduction of g-Calculus

In the field of approximation theory, the applications of g-calculus are new
area in last 25 years. The first g-analogue of the well-known Bernstein polyno-
mials was introduced by Lupas in the year 1987. In 1997 Phillips considered
another g-analogue of the classical Bernstein polynomials. Later several other
researchers have proposed the g-extension of the well-known exponential-type
operators which includes Baskakov operators, Szdsz—Mirakyan operators, Meyer—
Konig—Zeller operators, Bleiman, Butzer and Hahn operators (abbreviated as BBH),
Picard operators, and Weierstrass operators. Also, the g-analogue of some standard
integral operators of Kantorovich and Durrmeyer type was introduced, and their
approximation properties were discussed. This chapter is introductory in nature;
here we mention some important definitions and notations of g-calculus. We give
outlines of g-integers, g-factorials, g-binomial coefficients, g-differentiations, g-
integrals, g-beta and g-gamma functions. We also mention some important g-basis
functions and their generating functions.

1.1 Notations and Definitions in g-Calculus

In this section we mention some basic definitions of g-calculus, which would be
used throughout the book.

Definition 1.1. Given value of g > 0, we define the g-integer [n], by

1—¢"
[nlg=q "9 171 )
n, g=1

forn € N.

We can give this definition for any real number A. In this case we call [1], a
g-real.

A. Aral et al., Applications of q-Calculus in Operator Theory, 1
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2 1 Introduction of g-Calculus

Definition 1.2. Given the value of g > 0, we define the g-factorial [n], ! by

[n] !:{[n]q[n_l]q"'[l]q,n—1,2,... ,
! 1 n=0.
forn € N.

Definition 1.3. We define the g-binomial coefficients by

H :L, 0<k<n, (1.1)
k), K, n—A,!

for n,k € N.

The g-binomial coefficient satisfies the recurrence equations

ni _|n—1 r|n—1
iRty 2
q q q

n| a4 ln—1 n—1
el e
q q q

Definition 1.4. The g-analogue of (1 —l—x)Z is the polynomial

and

X X)... n—ly n=

A g-analogue of the common Pochhammer symbol also called a g-shifted factorial
is defined as

|
—

n

(9)o=1,(x:q)n = [T(1 —4'%), (x:9)= = [T(1 — ¢'%).

i i=0

oo

I}
=}

Definition 1.5. The Gauss binomial formula:

(x+a) —i[ } JU=D12gi =,

Definition 1.6. The Heine’s binomial formula:

1 - 1 i—1
_ 2 I’l+ [n+.] ]qxj
i=1 []]q!

1-



1.2 g-Derivative 3

Also, we have the following important property:

-3 [1] e

q

1.2 g-Derivative

Definition 1.7. The g-derivative D, f of a function f is given by

_ S flgx) .
(qu)(x)—w, 1fx7£0, (14)

and (D, f) (0) = f (0) provided f (0) exists.
Note that

fla)—F() _df ()
(g-Dx  dx

if f is differentiable.
It is obvious that the g-derivative of a function is a linear operator. That is, for
any constants a and b, we have

Dy{af (x) +bg(x)} = aDg{f (x)} +bDg{g(x)}.

Now we calculate the g-derivative of a product at x # 0, using Definition 1.7, as

f(gx)g(gx) — f(x) g (x)

Dy{f(x)g(x)} =

(¢—1)x
_ flav)g(gx) = flgx)g () +f(gx) g (x) — f(¥) ¢ (%)
(g—1)x
_ flax)(8(g) —g(x) | (f(g%) = fx))g(x)
(¢—1)x (g—1)x

= f(qx)Dgg (x) + Dyf (x) g (x) .

We interchange f and g and obtain

Dy {f(x)g(x)} = f (x) Dyg (x) + Dy f (x) & (¢). (1.5)

The Leibniz rule for the g-derivative operator is defined as

D =3 | 1] D st 0 et

k=0 q



4 1 Introduction of g-Calculus

If we apply Definition 1.7 to the quotient f (x) and g (x), we obtain

Dq{ﬁg} _ (q_ll)x{f(qx) S S _f(X)}

glgx) glgx) glgx) &)
1 [ flgx)—f(x) 1 f(x)g(x)— f(x)g(gx)
{ b }

glgx) | (g—1)x —1)x g (qx)g(x)
N BN f(x)  fgx)—glg)
B g(qX)qu( )+g(qX)g(X) { (g—1)x }
~ 8(x)Dyf (x) — f (x) Dyg (x)
B g(gx)g (x) ' (1

The above formula can also be written as

f(x)\ _ 8(gx)Dyf (x)— f(gx) Dyg (x)
Dq{g(X) } B g (gx) g (x) '

Note that there does not exist a general chain rule for g-derivative. We can give a
chain rule for function of the form f (1 (x)), where u = u (x) = axP with o, B being
constant. For this chain rule, we can write

D, {7 ()} = D, { () }
f(0gPxP) — f (oxP)

(g—1)x
[ (agPxP) — f(arP) 0gPxP — oxP
B oghxP —axP T (g—1)x
F (60— W) ulg)—ut
Fuu (g Tx

and, hence,

Dy {f ()} = (Dya f) () Dy (u(x))

Proposition 1.1. Forn > 1,

Dy(1+x), = [n]q (1 —l—qx)zfl

1 [n]
DQ{(H%} :_(1+x§g+1'




1.3 g-Series Expansions 5

Proof. According to the definition of g-derivative we have

(1+gx)y—(1+x);
(g—1)x

_ p1 {0 4g"x—(1+x)}
= (1+gx)y ! TEE

Dy(1+x)! =

— ], (1 +q)) .

According to (1.6), we have

Dq{ 1 }:_ Dy(1+x)s

(1+x)2 (1+gx)a(1+x)

],
(1 +g"x) (1+)

],
(1+x)2t u
Remark 1.1. Suppose n > 1 and a,b,r,s € R, then by simple computation, we
immediately have the following:

Dy(a+bx)y = [n]gb(a+bgx)y ",

Dy(ax+b)y = [n]qa(ax—i—b)zfl,
and
(I+ax), (1 —|—aqx)f]’1

D (1+ax)y
CUHbryy T (T bgr),

— b[s]q(lTx)f]H

1.3 g-Series Expansions

Theorem 1.1. For x| < 1,|q| <1,

where (1 —x); =TT (1—q*x).



6 1 Introduction of g-Calculus

Proof. Let

Clearly

x S (1-q);
PRI o (1-aq)y ",
R
1—aq)
= (1—a)2( quxk*(l—a)fa(qx}
k=0 ( —Q)q
or
Ja (%) = fa(gx) = (1 —a)xfa (gx).
Also
fa (@) = fa(qx) = i%(l—a—waq")x"
‘ ‘ & (1-q);
= —axfaq (x)
or

Ja(x) = (1 = ax) fag (x) .

Combining the above two equations, we get

- 1—ax

Ja(x) = fa(gx).

1—x

Iterating this relation n times and letting n — o we have

(1 —ax), ) (I —ax);
Ja(x) = Wfa (q"x) = W-
Thus we have the desired result. |

Corollary 1.1. (a) Taking a =0 in Theorem 1.1, we have

o 1
= =, x| < 1,|q| < 1.
S(1—qy (=)




1.3 g-Series Expansions 7

(b) Replacing a with %, and x with ax, and then taking a = 0 in Theorem 1.1, we

have
k(k—1)
o (=D)"g 7 A -
Y————F—=0-x7, l4d<L
= (1—4q),

(c) Taking a = q" in Theorem 1.1, we have

] N’ :

We consider Corollary 1.1(a). We can write

oo & - (L)k
B A ) ()
- (%J)k

"4,

which resembles Taylor’s expansion of classical exponential function e*.

Definition 1.8. A g-analogue of classical exponential function ¢* is

Using Corollary 1.1, (a) and (), we see that

eq(lfc) - (1—1x>:;

1
eq(x) = (SR (1.7)

Definition 1.9. Another g-analogue of classical exponential function is

and

Kk=1) xK -
E,(x) = 2q¥m=<1+(1—q)x>q- (1.8)
y

The g-exponential functions satisfy following properties:

Lemma 1.1. (a) Dye,(x) =eq4(x), DyE, (x) = E, (gx).
(b) eq(x)Eq(—x) = Eq(x)eq(—x) =1.
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Note that for g € (0,1) the series expansion of e, (x) has radius of convergence
ﬁ. On the contrary, the series expansion of E, (x) converges for every real x.

1.4 Generating Functions

In this section we present the generating functions for some of the important g-basis
functions, namely, g-Bernstein basis function, g-MKZ basis function, and g-beta
basis functions (see [95]).

We can consider the g-exponential function in the following form:

1 o —
lim = lim E ntk—1 X+
n—poo (1 — X)Z n—ye S k .

T e ) BN U O
_’}gggb(l—qxl—qz)...(l_qk)

S xf
:kgé(l—Q)(l—qz)...(l_qk):eq(x)-

Another form of g-exponential function is given as follows:

k(k—1)/2 ok

. < q

lim (14+x)2 =

A= 2 =) (=)
Based on the g-integers Phillips [132] introduced the g-analogue of the well-

known Bernstein polynomials. For f € C[0,1] and 0 < g < 1, the g-Bernstein

polynomials are defined as

=E,(x).

Bug(f,x)= 2 b, (x)f <@> : (1.9)
k=0

[n]q

where the g-Bernstein basis function is given by

n _
b, (x) = M H(1=x)pFkxelo,1]
q
and (a— b)) =TTiZg(a—¢q'b), a,beR.
Also Trif [150] proposed the g-analogue of well-known Meyer—Konig—Zeller

operators. For f € C[0,1] and 0 < ¢ < 1, the g-Meyer—Konig—Zeller operators are
defined as

Mg (f.x) = i m{ ,(x)f (@> : (1.10)

k=0 [n]y

where the g-MKZ basis function is given by
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n+k+1
="t

] F(1=x)hxe(0,1].

q

For f € C[0,0) and 0 < g < 1, the g-beta operators are defined as

s k
V(= St f (). (1.11)
k=0 g nly
where the g-beta basis function is given by
k(k—1)/2 k
q X
Vi (%) € [0,e0)

= s X
By(k+1,n) (14 x)pthtt

and By(m,n) is g-beta function.
Now we give the generating functions for g-Bernstein, g-Meyer—Konig—Zeller,
and g-beta basis functions.

1.4.1 Generating Function for g-Bernstein Basis

Theorem 1.2. bz ,(X) is the coefficient of Wl]% in the expansion of

k
E%,eq((l—q)(l—mf)-

Proof. First consider

ﬁe — —x = ik 3 (I_X)Zf"
[k]q' ‘]((1 q)(l )qt) - [k]q'n:() [n]q'

1 ”xk(l—x)’;t”“

CKgtE [l

_ i [+ 1]gln+2]g.....[n+ K] x* (1 —x)2e
= [n+k]g! k]!

x| ntk (1 —x)pt

_20[ k ] CE

o n xk(l—x)g’kt”i S g xi

‘%hL FE

This completes the proof of generating function for bz LX) |
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1.4.2 Generating Function for g-MKZ

1—x)2

Theorem 1.3. m{ (x) is the coefficient of t* in the expansion of (1( t)niz .
s —xt)q

Proof. It is easily seen that

(l_x)g - [n—l—k—i—l] nkk
3 It = 3 o
(1-x)y & k P "
This completes the proof. |

1.4.3 Generating Function for g-Beta Basis

Theorem 1.4. It is observed by us that vZ‘n(x) is the coefficient of Tﬂ_JiF in the

1—
expansion of )n+l E, ((liqn‘i)fz)q) .

Proof. First using the definition of g-exponential E,(x), we have

1 E ( =) ) Z k(k—1)/ x* i
(1+x5 "\ (1 +gm ), 1+x"+1 1+q"+1x)§[ T
N
k=0 (1+x)g ! (k]!
< Kek k1] [k+2], . [0tk
k=0 (14x)g e [n+k]q!

& _ xk n+k]  [nlgtt
LN 1)) q
2.4 F

k=0 (1+x)5" L n q”"'k]q!

k

_ i 1 qk(kq)/z x 4
~ By(k+1,n) (1+x)20 0 [+ k!

This completes the proof of generating function. |
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1.5 g-Integral
The Jackson definite integral of the function f is defined by (see [103], [149]):

/Oaf(x)dqx:(1—q)aif(aq")q", a€eR. (1.12)

n=0

Notice that the series on the right-hand side is guaranteed to be convergent as soon
as the function f is such that for some C > 0, oo > —1, |f(x)| < Cx* in a right
neighborhood of x = 0.

One defines the Jackson integral in a generic interval [a,b] :

/abf(x)dqx:/Obf(x)dqx—/oaf(x)dqx,

Now we give the fundamental theorem of quantum calculus.

Theorem 1.5. (a) If F is any anti g-derivative of the function f, namely, D,F = f,
continuous at x = 0, then

[ r@dp=F@-F).

(b) For any function f one has
D, [ 10yt = ).
Remark 1.2. (a) The g-analogue of the rule of integration by parts is
| e 0Dus @ dpx= £ 0801~ [ (@) Dug ().

(b) If u(x) = axP, change of variable formula is

u(b) b
Ly Fda= [ 7 ) D) o

Definition 1.10. For m,n > 0 the g-beta function [104] is defined as
1
By(m,n) = / (1= gyt
0

It can be easily seen that for m > 1,n > 0 after integrating by parts:

By(m,n) = [ By(m—1,n+1).
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Also from Definition 1.10, we have
(m,n+1) :/ —qt)y "1 —q"t)dyt

= M1 —qr)i 1dt—q/ (1—qt))~dyt
B( n) —q"By(m+1,n).

The improper integral of function f is defined by [49, 107]:

./Ow/Af(x) 2 f( )— A€ER. (1.13)

Nn=—oo

Remark 1.3. If the function f satisfies the conditions |f (x)| < Cx%, Vx € [0,€), for
some C >0, 0> —1,&>0and |f (x)| < DxP, Vx € [N, ), forsome D >0, B < —1,
N > 0, then the series on the right hand side is convergent. In general even though
when these conditions are satisfied, the value of sum in the right side of (1.13) will
be dependent on the constant A. In order to get the integral independent of A, in the
anti g-derivative, we have to take the limits as x — 0 and x — 1, respectively.

Definition 1.11. The g-gamma function defined by
1/1—q
T, (t):/ X VE, (—gx)dyx, >0 (1.14)
Jo
satisfies the following functional equation:
rq (t+ 1) = [t]qrq (t)a

where [t], = 11%‘5 and T, (1) =1.

Remark 1.4. Note that the g-gamma integral given by (1.14) can be rewritten via
an improper integral by using definition (1.13). From (1.8) we can easily see that

E, (—%) =0 for n < 0. Thus, we can write

</l-q |
L, (1) = / X TE (—gx)dgx, t>0.
Jo
Definition 1.12. The g-beta function is defined as

/A 41
Bq(t,s) :K(A,l‘)‘/o mdq s (1.15)
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and the g-gamma function is defined as
</A(-q)
Ty() =K(A,t)/ Xl eg(—x)dyx, (1.16)
0

where K (x,t) = ﬁx’ (1+ %)tq (1 ‘f’x)cl,it-

Remark 1.5. The g-gamma and g-beta functions are related to each other by the
following identities:

By (t,s) = % (1.17)
and
_ By (t,%)
Ty (1) = (:_q)z :

The function K (x,7) is a g-constant, i.e., K(gx,7) = K(x,t). In particular, for any
positive integer n

n(n—1)

K(x,n)=q =z , K(x,0)=1.
Also

limK (x,t) = 1,Vx,t € R
qg—1

and

limK(x,t) =x +X"" Vre(0,1), xeR.
q—0

It also satisfies K (x,t + 1) = ¢'K(x,t) (see [49]).



Chapter 2
q-Discrete Operators and Their Results

This chapter deals with the g-analogue of some discrete operators of exponential
type. We study some approximation properties of the g-Bernstein polynomials,
g-Szész—Mirakyan operators, g-Baskakov operators, and g-Bleimann, Butzer, and
Hahn operators. Here, we present moment estimation, convergence behavior, and
shape-preserving properties of these discrete operators.

2.1 g-Bernstein Operators

After the development of quantum calculus, A. Lupas was the first who gave the
g-analogue of the Bernstein polynomials. Let f € C[0, 1]. The linear operator L, g :
C[0,1] — CJ0, 1], defined by

Lug(f3x) = Z f ([3> by (%), 2.1)

k=0 n]

where

{Z} qk(kfl)/Zxk(l _x)nfk

ITj=5(1 —x+g¢/x)

bg,k(x) =

is called Lupag g-analogue of Bernstein polynomials. He established some direct
results for the operators L, 4, which were later studied in details by Ostrovska [127].

In the year 1997 Phillips [133] introduced another g-analogue of Bernstein
polynomials by using the g-binomial coefficients and the g-binomial theorem.
Phillips and his colleagues have intensively studied these operators and many
applications and generalizations have been investigated (see [134] and references
therein). Also Ostrovska (see [125, 126, 129, 130]) established some interesting
properties on such operators. In [128], she gave a systematic study on these

A. Aral et al., Applications of q-Calculus in Operator Theory, 15
DOI 10.1007/978-1-4614-6946-9_2, © Springer Science+Business Media New York 2013
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operators on the completion of one of the decade on g-Bernstein polynomials. Also
the other researcher who worked on g-Bernstein polynomials, we mention the work
of Wang Heping and collaborators [96-98, 100]. Recently II’inski and Ostrovska
[102, 125] obtained new results about convergence properties of the g-Bernstein
polynomials. This section is based on the g-Bernstein polynomials by Phillips [133].

2.1.1 Introduction

We can verify by induction, using (1.2) or (1.3), that

k -
(14+x)(1+gx)...(1+4x) = g == [k} X (2.2)
q

r=0 r

which generalizes the binomial expansion.
For any real function f we define g-differences recursively from

0
AYfi = fi
fori=0,1,...,n, where n is a fixed positive integer, and

AT = AL fiy — AL £ (2.3)

i
for k=0,1,...,n—i— 1, where f; denotes f(%). When g = 1, these reduce
q
to ordinary forward differences. It is easily established by induction that the g-
differences satisfy

k

8= 31" 4] s o4
q

r=0
See Schoenberg [140], Lee and Phillips [108] and [134, p. 46].

2.1.2 Bernstein Polynomials

Theorem 2.1. For each positive integer n, we define

n—r—1

Bn(f;x>—i0fr[’j] ¥ T (1=a%), 2.5)

q r=0
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r
where an empty product denotes 1 and, as above, f, = f(%) When g =1, we
n
q

obtain the classical Bernstein polynomial. We observe immediately from (2.5) that,
independently of q,

By(f30) = £(0), Bu(f;1) = f(1) (2.6)

for all functions f. We now state a generalization of the well-known forward
difference form (see, e.g., Davis [46]) of the classical Bernstein polynomial.

Theorem 2.2. The generalized Bernstein polynomial defined by (2.5) may be
expressed in the g-difference form

n

B =3 | "] Ao e
q

r=0

Proof. The coefficient of x*in (2.5) is

- n s b in—k+s| _|n k s b Tk
S|, n) o [P <] Sene [ s

s g s=0
We see immediately from the expansion of the g-difference (2.4) that the coefficient
of x* in (2.5) simplifies to give [Z} A];fo, thus verifying (2.7). |
q

We note in passing that (2.7) provides an efficient means of computing B, (f;x),
using (1.2) or (1.3) to evaluate the g-binomial coefficient recursively and (2.3) to
compute the g-difference recursively. Let us write the interpolating polynomial for
f at the points x, ..., x, in the Newton divided difference form

n r—1
pu(x) = X2 ([T —x))f o, x].
r=0 s=0
r
where the empty product denotes 1. For the choice of points x, = %, 0<r<n,
n
q

we can express the divided differences in the form of g-differences. Specifically, we
may verify by induction on k that

k
—k@itk=1) A fi
Floxd =a=F gy 2.38)
(See Schoenberg [140], Lee and Phillips [108].) From the uniqueness of the
interpolating polynomial it is clear that if f is a polynomial of degree m, then
Ay fo =0 for r >mand A7 fo # 0. Thus it follows from (2.7) that, if f is a polynomial
of degree m, then B,(f;x) is a polynomial of degree min(m, n). In particular, we will
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evaluate B, (f;x) explicitly for f(x) = 1,x and x*. First we obtain

By(1;x) =1 (2.9)
and with f(x) = x, we have fy =0 and
[, [, 1
Agfo=fi— fO—W—WZ:m.
Since [T] = [n],, we deduce from (2.7) that
q
By (x;x) = x. (2.10)
For f(x) = x?, we compute fy =
UANIACATEE
A, = = Y i & -
o ( "]q> < nl, [l
and using (2.4),
2 2 2
Aéfoz & _{2} & +q & :(14'4)2—2(1‘*“1):!1(14;(])
["]q 1 q ”]q [n]q [”]q [”]q
Thus
2o L [y n =1, q(1+4) ,
B, (x"3x) = [n], [n]§x+ 2], [n]é
and, since [2], = 1 +gand g[n— 1], = [n], — 1, we obtain
By(x%;x) I Gt} 2.11)

We note that the relations (2.9) and (2.10) are identical to those obtained for the
classical Bernstein polynomials (corresponding to the case ¢ = 1), while (2.11)

differs only in having [n], in place of n.

2.1.3 Convergence

In the classical case, the uniform convergence of B, (f;x) to f(x) on [0,1] for each

f €CJ0,1] is assured by the following two properties:

1. By is a positive operator.
2. By(f;x) converges uniformly to f € C[0,1] for f(x) = 1,x and x.
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Recall that if a linear operator L maps an element f € C[0,1] to Lf € C[0,1], then
L is said to be monotone if f(x) > 0 on [0, 1] implies that Lf(x) > 0 on [0,1]. We
observe that the generalized Bernstein operator defined by (2.5) is monotone for
0 < g < 1. On the other hand, for a fixed value of g with 0 < g < 1, we see that

and in the case it is clear from (2.11) that B, (x*;x) does not converge to x*. To obtain
a sequence of generalized Bernstein polynomials with ¢ % 1 which converges, we
let ¢ = ¢, depend on n. We then choose a sequence (g,) such that

1
1--<gp<1.
n

Then we have

I-l<gi<liforl<r<n-—1
n

and thus
2 n—1 1 1
g, =1+t guttay  Zn—s(n=1)=(n+1),

so that [n], — coasn — oo
We now state formally our result on convergence.

Theorem 2.3. Let g = (g,) satisfy 0 < g, < 1 and let g, — 1 as n — . Then, if
f e C [07 1])

n—r—1

R WA IES | KR

4qn s=0
converges uniformly to f on [0,1].

Proof. This is a special case of the Bohman—Korovkin theorem. (See, e.g., Cheney
[42], Lorentz [114].) Alternatively, we may follow the proof given in Rivlin [138§]
for the convergence of the classical Bernstein polynomials, except that n must be
replaced by [n] 4 When estimating how closely B, (x?;x) approximates to x2, as in
(2.11) above. |

Given a function f defined on [0, 1], let

w()= sup |f(x1)—f(x2)],

|x;—x2|<d

the usual modulus of continuity, where the supremum is taken over all x1,x; € [0, 1]
such that | x; —x, |< 0. Then we have:
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Theorem 2.4. If f is bounded on [0,1] and B, denotes the generalized Bernstein
operator defined by (2.5), then

3 1
£ =Buf - 30, i) 2.12)
q

Proof. Rivlin [138] states this theorem for the case where g, = 1 for all n, and his
proof is easily adapted to justify (2.12). ]

2.1.4 Voronovskaya’s Theorem

In this section we will follow Davis [46], beginning with the sums
n n n—r—1
S (x) = Z([r]q — [n],x)" [ ] x H (1 —¢°x). (2.13)
q s=0

Let us write

Sul) =y 32 (") (0B, .14

We have already noted that B, (x*;x) is a polynomial of degree min(s,n) in x. Thus
Su(x) is a polynomial of degree at most m in x. Since B, is a linear operator we also
obtain from (2.14) that

Sm(1) = [n];"B,,((x—l)m;l):O, (2.15)
using the property (2.6) that B, (f;x) interpolates f(x) at x =0 and x = 1. We deduce

from (2.15) that (1 —x) is a factor of S,,(x), for m > 0. From (2.7) we find by direct
calculation (using the symbolic language Maple) that S¢ has the form

5
Se(x) = (1—x) Y, ax"[n],, (2.16)
r=1

where a, is a polynomial in x and ¢. In the lemma below, we are concerned with the
dependence of S on [n] P The coefficients ay,a; and a3 are as follows:
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a; = 1—(4+10g+104*+ 5¢° + ¢*)x+
(620G + 3542+ 39g° +29¢* + 15¢° + 5¢° + g7 )x* —
(44 15¢+31q%+46¢° + 51¢* +44¢° +29¢° + 1497 + 548 + ) +
(1+4g+9g*+ 15¢> + 20g* +22¢° + 20¢° + 15¢" + 95+ 4¢° + ¢'°)x*,

ay = (=1 4104 104>+ 5¢° + ¢*) +
(3—4g —36¢*—52¢° —40q* — 19¢° — 6¢° — ¢")x
(=3 —3q+12¢°+46¢° + 72¢* + 67¢° + 43¢° +19¢" + 64° + ¢°)x* +
(142q—7¢> —20g* —30¢° — 32¢4° — 25¢" — 13¢% — 5¢° — ¢'*)x°,

and
ay = (1=16q+q*+13¢° + 11¢* +4¢° +¢°) +
(=246 +30¢° +5¢° — 22¢* — 26¢° — 15¢° — 5" — ¢®)x
(1—6¢>—14¢> — 64" +9¢° + 15¢° + 114" + 4% + ¢°)»°.
We have quoted the values of a;,a, and a3 for the sake of completeness, although
we do not need to know their values. However, we do require the values of
ay = (1-¢)*(q(10+10g+5¢*+ ¢*)(1 — gx) — 1 +x) (2.17)
and
as = (1—q)*. (2.18)

The presence of the factors (1 —¢)? and (1 —¢)* in (2.17) and (2.18), respectively,
proves to be significant. For we observe that, with 0 < g < 1, we have

1
0<l—g< — (2.19)
i,
for any positive integer n. Thus if [n], — e as n — o, we see from (2.16) that

Se(x) behaves like [”]3n for large n and not like [”]2,, We now give a generalization
of Lemma 6.3.5 of Davis [46] as a prelude to a generalization of Voronovskaya’s
theorem.

Lemma 2.1. Let g = g, satisfy 0 < g, < 1 and let g, — 1 as n — oo. Then there
exists a constant C independent of n such that, for all x € [0, 1],

I

n s=0 [}’l]

R ol

n
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Proof. From the inequality (2.19), together with (2.16)—(2.18), we deduce that there
exists a constant C independent of » such that

6
r ri—\n X
N
[n],, n2,
it follows that
n—r—1
n r s 1 C
z [r] X H (1 _an) < % S6(x) < % : [ ]
[ [[L]M x> [”] 7% qn s=0 [n]qn [}’l] qn

n]LIn

Theorem 2.5. Let f be bounded on [0,1] and let xo be a point of [0,1] at which
" (xo) exists. Further, let g = gy, satisfy 0 < g, < 1 and let g, — 1 as n — . Then
the rate of convergence of the sequence of generalized Bernstein polynomials is
governed by

. 1
lim [n], (Ba(f3%0) — f(x0)) = 5%0(1 —x0).f" (x0)- (2.20)
n—soo n 2

Proof. We replace Lemma 6.3.5 of Davis [46] by the lemma stated above and then
the proof of Theorem 6.3.6 of Davis is readily extended to justify (2.20). Thus the

error B, (f;x) — f(x) tends to zero like ﬁ At best this is like 1, for the classical
qn

Bernstein polynomials. However, through our choice of the sequence (g, ), we can
achieve a rate of convergence which is slower than % and indeed may be as slow as
we please. Such a birthday gift! |

2.2 g-Szasz Operators

In this section, we give a generalization of Szdsz—Mirakyan operators based on g-
integers that we call g-Szdsz—Mirakyan operators. Depending on the selection of
g, these operators are more flexible than the classical Szdsz—Mirakyan operators
while retaining their approximation properties. For these operators, we give a
Voronovskaya-type theorem related to g-derivatives. Furthermore, we obtain con-
vergence properties for functions belonging to particular subspaces of C [0, o) and
give some representation formulae of g-Szdsz—Mirakyan operators and their rth g-
derivatives. This section is based on [25, 29].
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2.2.1 Introduction

In this section, as Phillips has done for Bernstein operators, we introduce a similar
modification of the Szdsz—Mirakyan operators [148] that we call g-Szdsz—Mirakyan
operators and examine the main properties of this new approximation process.
Recall that the Bernstein operators were defined with the aid of the functions defined
on [0, 1] as opposed to the classical Szdsz—Mirakyan operators which are defined
on Ry := [0, o) in order to analyze the approximation problems for the functions
defined on the same interval. Although, from the structural point of view g-Szdsz—
Mirakyan operators have some resemblances to classical Szdsz—Mirakyan operators,
they have some similarities to Bernstein—Chlodowsky operators from the properties
of convergence standpoint. That is, the interval of convergence grows as n — co as
in Bernstein—Chlodowsky operators. Our new operators with this construction are
sensitive or flexible to the rate of convergence to f. That is, the proposed estimate
with rates in terms of modulus of continuity tells us that, depending on our selection
of g, the rates of convergence in weighted norm of the new operators are better than
the classical Bernstein—Chlodowsky operators.

2.2.2 Construction of Operators

For 0 < g < 1, we now define new operators that we call the g-Szdsz—Mirakyan
operators as follows:

Sn(f5 g5 %) = ST (f; x)

: ()
= q(—[n]q%)];f<[k]qb”> ’ 2.21)

nly ) (K], ()"
where 0 < x < oy (n), oy (n) = (lf;—’g[n]q, f € C(Ry), and (b,) is a sequence of
positive numbers such that lim b, = .

n—soo
We observe that these operators are positive and linear. Furthermore, in the case

of g = 1, the operators (2.21) are similar to the classical Szdsz—Mirakyan operators.

By the properties of the series in (1.7), the interval of domain of operators (2.21)
is the interval 0 < x < oy (n) for 0 < ¢ < 1; in the mean while the operators are
interpolating the function f on R(. Note that the interval of convergence grows as
n — oo, A similar situation arises for Bernstein-Chlodowsky operators (see [35,43,
70, 113]).

We denote by ey, the test functions defined by ey, () := ¢ for every integer m > 0
and for each x > 0, ¢, (¢) :=¢ — x such that —x > 0.
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2.2.3 Auxiliary Result

In the sequel, we need the following results:
Lemma 2.2. For 0 <x <oy (n), when 0 < g < 1 and integer m > 0, we have
iG=1)

i~ mt (5 \" 4
S (emix) =g T A"+ Y (W) Sy(m. j)g" T o, (2.22)
Jj=1 q

where Sy (m, j) are g-Stirling polynomials of the second kind.

Proof. Using (1.8) and the Cauchy rule for multiplication of two series [21, p. 376],
from (2.21) we have the representation

o ] - i(i—1 j— 1 b” [l’l] xj
SZ(f;X)—Zi(—l)’q(z)fC] ks >[l.]€.".)
J!

= (1, . &
= A fo—— 2.23
126< bn ) qfo [j]q! ( )

where Aé fo asin (2.4).
We can easily see from (2.4) for f (x) =x", m=0,1,2,...

8 © =3 -1/ 1] (”" ) il

i]\ [,

for j > 0. .
Also we know that the connection with g-differences A} fo and jth derivative f ()
is the following:

Abfo ()

R T R

)

where & € (0, [j]) (see [134, p. 268]). From this equality, it is obvious that g-
differences of monomial " of order greater than m are zero. Thus, we have

U=

m b m=j .
S (emsx) = Y, <#> Sq(m, j)g T x!
=0 q




2.2 ¢-Szasz Operators 25

where

. 1 J ;ii=1) J am
Sq(ma.]): . JG—-1) 2(_1) q ? i [J_l]q
lilgta™ > =0
are the Stirling polynomials of the second kind satisfying the equality

Sq(m+1aj) :Sq(mvj_1)+[j]ng(mv J)a

form>0and j > 1 with S, (0,0) =1, S, (m,0) =0 form > 0. Also S, (m, j) =0
for j > m. Thus the proof is completed. |

Lemma 2.2 gives the explicit expression of S} (e, ;x) form = 0,1, 2:

ST (eg;x) =1 (2.24)

ST(e1;x) =x (2.25)

S9 (e2; x) = gx® + b (2.26)
[],

The equality (2.24) can also be obtained from (1.1, b).
Remark 2.1. Since for a fixed value of ¢ with 0 < g < 1,

Jim fnly = 1=

to ensure the convergence properties of (2.21), we will assume g = g, as a sequence
such that g, — 1 as n — oo for 0 < g, < 1 and so that [n], — coasn — c.

2.2.4 Convergence of St (f)

Proposition 2.1 (¢-L’Hopital’s Rule). Suppose that throughout some interval con-
taining a, each of f and g are g-differentiable and continuous functions and

(Dgg) (x) # 0 for g € (0,1) U(1,00). If

limf (x) = limg (x) =0

xX—a xX—a

and there exists g € (0,1) such that for all g € (g,1)U (1,5")

GG

x—a (Dqg) X ’
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then

limﬁ =L

x—a g (x)
Proof. Suppose that x is close enough to a so that throughout the interval between a
and x, f and g are g-differentiable with (D,g) (x) # 0. Then by g-Lagrange theorem

(see [137]), there exists g € (0,1) such that forall ¢ € (g,1)U (1,4 ')

where Uy, i € (a,x).
Since u; and U, are between a and x, x — a implies that (; — a and y, — a.
Hence forall g € (§,1)U (1,7 "),

W) (D) ()
M) ~ N Dye) ()
(D) i
¥ Dyg) ()

Now we give a Voronovskaya-type relation for the operator (2.21).

Theorem 2.6. Let f € C(Ry) be a bounded function and (q,) denote a sequence
such that 0 < g, < 1 and q, — 1 as n — oo. Suppose that the second derivative

Dénf (x) exists at a point x € [0, ay, (n)) for n large enough. If lim [Yﬁ" =0, then
n—roo lgn

tim U8 (590 (755) — £ () = S Tim D2, 3.

n—eo n 2 ‘In‘>1
Proof. By the g-Taylor formula [137] for f, we have

1

@Dg’ F @) (= x)2 4+ @y (x:1) (t —x);

q

[ (@) = f(x)+Dyf (x) (£ —x)+

for0 < g < 1 where (1 — x);f; = (r —x) (t — gx). By application of ¢g-L’Hopital’s Rule,
there exists g1 € (0, 1) such that for all ¢ € (g1,1)

i, )= i 2L =2 0= D3 00—
q

where we use the equality
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where
n—1
r—x)' = t—qkx
(5 ,Eo( )
(see [59)).

By applying again of g-L’Hopital’s Rule, there exist ¢; € (0,1) (g1 < ¢2) such
that for all g € (g2, 1)

2 2
limd, (x; 1) = Jim 2l () = Daf (%)

f—x t—x [2]

=0. (2.27)
q

By assumption the function @, (¢) := @, (1; x) is a bounded function for all g €
(g2,1). Consequently, we can write

[’Zj" (% (f5) — £ ()
Wy o DEFO) [, |
= Dy (9 ST (i) + = 5 (1=, 34)
+ ['Z]—nq"sgn CMOIERE)
Wy oo DEF D,
:Dt]nf('x) b_:Sg ((Px,x)+ sz]qn bZ SZ ((p)%"x)

n D2 f(x
e (7‘%&’““ ~ )1 (95 ) + 1 (@4, (1) (=), ;x)>

qn

By (2.24)-(2.26), we get

[,
lim — =8 (@; x) = 0 (2.28)
lim %S% (pf:x) =x (2.29)
Prasirent bn n X0 .
and thus
lim Il (S (fsx) = f (%)
n—es b, n ’
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Now, the last term on the right-hand side can be estimated in the following way.

Since }211‘1)% (r) = 0, then for all € > 0, there exists 8 > 0 such that |t —x| < 6
X

implies | @y, (1)| < & for x € [0, e, (n)) where n is large enough. While if |r — x| >

8, then |®@,, (1)] < %’Iz(pxz (t), where M > 0 is a constant. Hence we can infer

[’24 (507 (@4, (1) (t—x)2, 5 x))
_ [';]Z" (St (g, (1) 973 %))
. [”b]znxa — ) (82 (@4, (1) i )
<e [’Z,]:" (S (@Fsx) +x(1 = ga) ST (93 %))
+1 [Z]Z" (S () +x(1 =) S (93:%) ). 239

If we calculate Sp" (@f; x) by using Lemma 2.2, we get

Sin (@f;x) = x* (42 — 443+ 64, — 3)

L0 (‘Ifl (1 + 02, + [3]4,,) —4 (1 + [2]%) qn+6> b,

Since lim b,, = « then we have
n—yoo

0443 14-64,—3
lim = lim =0.
n—yeo bn n—yoo bn

We thus obtain

n
lim [bﬁsgn (px) =0 (2.31)

n—e b,
for fixed x € [0, oy, (n)) where n is large enough. Using Lemma 2.2 we can easily

see that

lim (1 —g,) ",

n—oo b,

(Sin (@d;x)) =0 (2.32)



2.2 ¢-Szasz Operators 29

and therefore by (2.31), (2.32), and (2.30), we conclude that

im 2 (53 (@, ()3, :3)) =0

n—soo
for fixed x € [0, o, (n)) where n is large enough and therefore, we have the desired
result. ]
We know that if f is differentiable n times, then lim Dy f (x) = £ (x) (see [81,
q—
p. 22]). Using this property we have the following corollary.

Corollary 2.1. Let f € C(Ry) be a bounded function and (g,) denote a sequence
such that 0 < g, < 1 and g, — 1 as n — . Suppose that the second derivative f" (x)

exists at a point x € [0, oy, (qn)) for n large enough. If lim [rﬁ” =0, then
n—oo Wlgn

B (53 (72— £ () = 2" (9.

lim
n—yoo

Recall that a continuous function on an interval, which does not include O,
is continuous g-differentiable. According to this, for every x in an interval not
including 0, since g-derivatives of f become finite, we deduce the g-differentiable
condition in Theorem 2.6. In other words, Voronovskaya-type theorem is valid only
for continuous and bounded functions.

Corollary 2.2. Letr f € C(Ry) be a bounded functlon and (gyn) denote a sequence
such that 0 < q, < land g, — 1 as n — oo. Ifll}’l’lﬂ— 0, then
qn

n—seo

lim —=
n—soo

[ ]qn (qu, (fx)_f(x)): %x lim Dz f( )

n gn—1

Sor every point x € (0, oy, (qn)), where n is large enough.

Remark 2.2. 1f the assumption of Theorem 2.6 holds for the function f, then the
pointwise convergence rate of the operators (2.21) to f is O ([ o ) Also this

convergence rate can be made better depending on the chosen g, and is at least
as fast as =* which is the convergence rate of the classical Bernstein—-Chlodowsky
operators (see [35, 133]).

2.2.5 Convergence Properties in Weighted Space

As we mentioned above, when g, — 1 as n — oo, the interval [0, oy, (1)) which
is the domain of the operator Si" (f) grows. In this case the uniform norm is not
valid to compute the rate of convergence for these operators. So we will consider
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weighted function spaces and the weighted norm. In this section, we obtain a direct
approximation theorem in weighted norm and an estimate in terms of the modulus
of continuity. These types of theorems are given in [65, 66]. Now we recall this
theorem.

Let ¢ be a continuous and monotonically increasing function on the positive real
axis, such that xlgl;(p (x) = oo and p (x) = 1 + @ (x).

Let B, (Ro) be the set of all functions f satisfying the condition |f (x)| <
Myp (x),x € R with some constant M, depending only on f. We denote by C,, (Ry)
the space of all continuous functions belongs B, (Ro) with the norm

Hﬂb:mm%%§

x€Rg

and €0 (Ro) = {fecp (Ro) : lim £ <oo}.

Theorem 2.7 ([65]). Let {A,} be a sequence of positive linear operators acting
from Cp (Ro) to By (Ro) satisfying the following three conditions:

. V. \4 . —
},}E;IOIOHA” ((p 7x) -0 (x)”p _07 V= Oa 152
Then
lim 4, (f22) — £ (5], 0
for any function f € Cg (Ro).

The definitions of the spaces C, (Rg) and Cg (Ro) are the same as Gy, (Rg) and
CY (Ry), respectively, if we take p (x) = 1 +x™ (m > 2) instead of p (x) = 1 + ¢ (x).

Theorem 2.8. Let (q,) denote a sequence such that 0 < g, < 1 and g, — 1 as

n — e, For any function f € C9, (Ry), if lim [rﬁ" =0, then
n—reo lgn

i |SE" (f: ) — f ()]
im  sup

oo 2
n— OSXSOan(Vl) 1+.xm

=0.

Moreover, for n large enough

- \%%fm»—fung(2+vﬁ)w<ﬂ bn>

0<x< Ogp (”) 1 + xzm [n] dn

where @ (f;-) is the classical modulus of continuity.

Proof. Applying Theorem 2.7 with @ (¢) = e, (t), m > 1, to the operators

o Sm(fix) iF 0<x< 0y, (n)
wi={ ™
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to complete the proof, it is sufficient to show that the conditions

[t (en (00 =™ 0 (2.33)

lim  sup o
=20 < 3 tgy () 1+x

are satisfied. As a consequence of Lemma 2.2, since }SZ” (1 +12m; x) | <C (1 —l—xz’”)
for x € [0, o, (n)) where n is large enough and C is a positive constant, {Si"} is a
sequence of linear positive operators acting from C,,, (Rg) to Ca,, (Ry).

From (2.24)

] ’SZ" (eo;x)—l}
lim  sup ————=0
"R0<i<og,(n) 1Y

holds. Thus the condition (2.33) holds for v = 0. Since lim by — 0, then there

. n—yoo [”]qn
m—j
exists ng € N such that (#) < # forn>npand j=1, 2,...,m—1. By
qn qn
Lemma 2.2 we have, for n > n,

‘Sg” (em; x) —x'"‘

sup 1+ x2m

xe [0, Oy (n))

m—1 b m—j =
z ( 5 ) SQn (ma J)q" x]

m(m—1) j=1 [n]tm
< (1 —qn ° ) + sup .
xe[O,(an (n))

mm—1) b m=1 iG=1)
§<1_qﬂ2 )+_”<ZSQn(maJ)q”2 )
[n]%z Jj=1

Hence we obtain

1 4 x2m

|SZ" (em; x) —x’”‘ _

1 4 x2m 0.

lim  sup
e [07 Ogy, (n))

Thus the condition (2.33) holds for v = 1.
Similarly, we have, for n > ng

‘S,,” (e2m; X) —xzm‘

1 4 x2m
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That is, for v = 2, the condition (2.33) is satisfied. Therefore, the proof is completed
from Theorem 2.7.

For the second part of the theorem, using the property of the modulus of
continuity @ (f,-) for every 6 >0, t >0 and x > 0,

FO—f @I < (148721 =0?) 0 (/,8).

Using this inequality we can write

ISP (1) — F ()] < 20 (f, s <<p3;x>>

for f € CY, (Ry). Since

St (@23 x)
1+ x2m

sup
xe [0, Oy (n))

= (1=qn)+ (1 —qn) o, (n)
< 2(1—qn) 0, (n)

for n large enough, we have the desired result. ]
Remark 2.3. In [35, Theorem 2.1] it has been shown that for any function f
satisfying Theorem 2.8, the weighted rate of convergence of classical Bernstein—
Chlodowsky operators is O (1’7") . As a consequence of Theorem 2.8 we say that the

rate of convergence of Sin (f) to f in the weighted norm is ﬁ"—, which is at least as
dqn

by
fast as o,

2.2.6 Other Properties

In this section, we give two representations of the rth g-derivative of g-Szdsz—
Mirakyan operators in terms of the g-differences and the divided difference and
then obtain a representation of g-Szasz—Mirakyan operators in terms of the divided
differences which is the modified form of the representation of the classical Szasz—
Mirakyan operator given in [145, pp. 1183—-1184]. Note that these representations
are not obtained using classical derivatives and forward differences.
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Proposition 2.2. For each integer r > 0

e N ()
D! (S1(f:2) = E, (— [n]qqrb—n> ) (L}j) Af% (2.34)

Proof. The proof is by induction on r. According to (1.4) we set Dy (Eq (— [n] ﬁ))

bn
Lemma 1.1, (1.5), and (2.3) we find

= —MEq (— [n] q%) Applying the D,-differential operator to (2.21) and using

[n] N = (] b [n]xj
o) =S, (o) () L
j
I, o) S [j+1],bn ([n]qX)
+bn Eq( []qun)jzbf< I, )[j]q!(bn)j
J
() $ e () (U (1)
= £ ”qun),%bn (f( i, ) f( ], ))[ﬂqubn)f

(
~E, (* [n] qi) Ji‘b [n]chl,fj <.[:]qx>]..

Similarly,

Dg (S%(f:x))
= Dy (Dy (S5 (/%))
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Thus (2.34) holds for » = 1 and r = 2. Let us assume that it holds for some r > 3.
Applying the g-differential operator to (2.34) we find

Dy (D (S3(f:x)))
=Dy (4 (f20)

=0 [i14! (bn)’
o - [n] r+1 ) ([}’l] , x) J
+E, (— nl,q +1b_n> j;)( b:) Aqu+1—[j]q!(bn)j

_ rliwﬂmrl.M
—E, (— [, 4" bn>j2;)< b,,q> AL, Ul (bn)?

by using (2.3). This shows that (2.34) holds when r is replaced by r 4 1, which
completes the proof. |

Using the following connection between the divided differences and the
g-differences given in [134, p. 44]

- [bn[j] balj+1]  balj+7] (2.35)

b\ ;
Arf': (_") [V]'q”qTf 9 [ )
0\ (] ] (]
then we have the following representation formula.

Corollary 2.3. For each integer r > 0

Dy (S (f3%))

B r(r;l) D g W rj by ljl balj+1] by [j+7] ([n]qx)j
=49 [V]!Eq(_[i’l]qq b_n);)q f[ [n]jv [Jn] T [Jn] ] [j]q!(bn)j'

Corollary 2.4. The g-Szdsz—Mirakyan operator can be represented as

Wit i)
[2] 777 [

St =Yg [o,
Jj=0

Proof. From the equalities (2.23) and (2.35), the proof is obvious. |
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2.3 g-Baskakov Operators

In this section we propose a generalization of the Baskakov operators, based on
g-integers. We also estimate the rate of convergence in the weighted norm. We
also study some shape-preserving and monotonicity properties of the g-Baskakov
operators and also different generalizations of classical Baskakov operators based
on g-integers defined in [30, 136].

First, we recall classical Baskakov operators [37], which for f € C[0, «) are

defined as
B =3 (" e (5)

k=0
This section is based on [32].

2.3.1 Construction of Operators and Some Properties of Them

For f € C[0, =), g > 0, and each positive integer n, a new g-Baskakov operators
can be defined as

Byg(f:%) = ;0 {n—i—/}i—l] qk<k21>xk(_x,q)n+1kf(qk[k+]["n]q)
= q
_ NP7y [Kq
- I;)Pn,k( ) f (qkl[n]q) : (2.36)

While for ¢ = 1 these polynomials coincide with the classical ones.

Definition 2.1. Let f be a function defined on an interval (a,b) and & be a positive
real number. The g-forward differences A of f are defined recursively as

A (x)) = f(x)
AVF ()t =g AL f (xj1) — ALS (xj)

forr > 0.
Note that the above definition is different from definition given in [134, p. 44].
As usual, we show divided differences with f [xg,xi,...,x,] at the abscissas
X0y X1y---9Xn-

We now show the following general relation that connect the divided differences
f[x0,x1,...,x,] and g-forward differences.
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Lemma 2.3. Forall j,r > 0, we have

f[xj',x.j+1,...,xj'+r} =q 2 BN , (2.37)
4!

il

where x; = —.
=T

Proof. Let us use induction on r. By Definition 2.1, the result is obvious for r = 0.
Let us assume that the equality (2.37) is true for some » > 0 and all j > 0. Since

[r+1],
Xjprel —Xj = Wﬂ
we have

Flxjst - osxjrst] = g, ]

Xjtr+1 = Xj

A (,L,-SLI)A{If(le)_ @ﬁ%f(%‘))

Flxjxjsts o Xjgr] =

R ! I,

i) gy, (478G (xj41) = AL (x))
[r+ l]q!

q

=4q

@i AFTLE (x;)
p— q‘ﬁ —q - . .
[r+1],!

Lemma 2.4. Forn, k>0, we have

Dy [ (—x.a),ly] = W, (cxa), = Ik (xa) e 238)

Proof. First, we prove that D,(—x,q), = [n]q(—gx,q),_,.- Using g-derivative
operator (1.5) we have

n—1 n—1
Dy(—x,q), = ﬁ ( (1+¢%) - T1 (1+qu)>

j=0 J=0

ﬁ(l+q/+1) (14¢"x) — (1+x))

n__ .
- qq—11H(1+‘1Hlx)

[nlq (—4x:4),
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The g-derivative formula for a quotient (1.6) imply that

- - [n+k] (_qxaq)nJrkfl
D —X,q ! = 4
! ( )”+k (_x7q)n+k (_qxvq)n+k
—[n+ k]q (—x, Cl)y;ikﬂ . (2.39)
Also it is obvious that
Dyt =[], ¥ (2.40)

Then using (2.40) and (2.39), the result follows by (1.5)

Dy [ (—xa)le] = W ¥ ()l = 4k (vl

We wish to calculate the moments. For this purpose we give g-derivative of
B, 4. Next theorem gives a representation of the rth derivative of B, , in terms of
g-forward differences.

Theorem 2.9. Let r > 0. Then the rth derivative of q-Baskakov operator has the
representation

k
DyBny(f,x) = [n+r 2 rkpg+rk f(q"[f][(ia]q) (2.41)

Proof. We use induction on r. Equality (2.38),

n—i—k} n+k
1l =0, | " 7]
{k+1 . k],
and
n+k—1 n+k
T we =, T
q q
imply that
+k71

Bugtr) = 3" S e ()

i ["]q

q

+k—1 MU ke (L _ Ky
Lq g« [n+k,( 7q)n+k+lf(qk71[n]q)

qq“kzl)*k)d‘ (—2,0) (f ( [Z’j[niq ) - (q’ik‘]fn]q ) )

0,5 oo ().

-2
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Itis clear that (2.41) holds for » = 1. Let us assume that (2.41) holds for some r > 2.
Applying g-derivative operator to (2.41), we have

Dy (Bugl0) = Lo gme 5| ey,

q

_ k
xxk71 (_xvq)nikJrrA;f (qk[l][ql’l]q>
[n+r—1

Q‘ q

- k
X (X, @)1 (qk[f][qn])

k(kl
n—|—k—|—r} q (,qu)xk
q

Il
B
I+
==
S
DM
| —

-1
k (_-xa Q)n+k+r+1

This completes the proof of the theorem.
Corollary 2.5. g-Baskakov operators can be represented as

=

x) = [n+r ]q r
Bualf0) = 3, A O

Proof. By Theorem 2.9, we have

I‘

Dy Bl = o P 007 0)

b ity o)
—1j,

for r > 1. By using the above equality in g-Taylor formula given in [137], we get

=

Bglf) = 3 el ) X (2.42)
2, GE

r

]
From Lemma 2.3 and Corollary 2.5, we have the following corollary.
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Corollary 2.6. The g-Baskakov operators can be represented as

f Oa_ [2]qa"'7
q

1 [r]fl r
[nlg " gln

nd _ '
[n+r—1],! _rr) 1 .
q"[nlq

qu(f,x) = z [}’l— 1]q' q

r=0

We are now in a position to give the moments of the first and second orders of
the operators B;, 4.

Lemma 2.5. For B, ,(t"",x), m=0,1,2, one has

B, 4(1,x) = 1.
B g(t,x) = x,
1
B tz,x zxz—i—i (l—i——x) .
na(l:%) [n]q q
Proof. 1t is well known [134, p. 10] that
_ Y@

S xo0,x1y- .- xr] , (2.43)

r!

where & € (xg, x,). We also see from Lemma 2.3 and (2.43)

w0 Agf (o) 9 (8)
SR CHCR R

Thus it is observed that rth g-forward differences of x™,m > r are zero. From (2.42),
we have

By y(1,x) = 1. (2.44)
For f (x) = x we have A2 £ (0) = £ (0) =0 and AL£ (0) = f (ﬁ;) — £(0) =g and
it follows from (2.42)

B, 4(t,x) =x (2.45)

For f (x) = x> we have AO£(0) = £(0) = 0 and AL £ (0) = f (ﬁ) —£(0) = ¢k and
82f (0 =af (o)~ (1+a)f (55 ) = £(0)

oyl = e (Qpy, 1)

_ q[”[]nq];l <%1(1+q)—1)x2+i
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1
=x*+ X+ 2~
qlnlg” [nlg

— 24 ﬁ (1 n éx) . (2.46)
q

The following proposition is another application of g-derivatives, which enables
us to give the estimation of moments:

Proposition 2.3. If we define

PR P LTI
Ut (@) 1= Buglt”.) = 3 P ()

then U}l \(x) = 1,U | (x) = x and there holds the following recurrence relation:
[1]qU i 1(a%) = gx(1 4+ x)DgU . (x) + qx[nlgUl,, (qx),m > 1.
Proof. Obviously 37 (P, (x) = 1; thus, by this identity and (2.1), the values

of Uly(x) and UY | (x) easily follow. From Lemma 2.4, it is obvious that x(1 +
g x)DyP? (x) = ([k]q — ¢¥[n]gx) PY, (x), which implies that

x(14x) DCIPZ,k (x) = <qk1—[n]q

[K] ]
1 — qx _q,PZJ{ (qx)
q
Thus using this identity, we have

gx(1+X)DUL,(x) = ¥ gx(1+2)D,PY, (x)< [k]q] )

k=0 g [n,
e (M Npa (Mg Y
- 3 (i o) P ()

= [nlgUY 111 (%) — gx[nlgUy,,(q%).

This completes the proof of the recurrence relation. ]

2.3.2 Approximation Properties

We set

Er(Ry):= {f e C(Ry) xlgg 1f—|(-);)2 exist}
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and
By(Ry):={f: |f ()| < By (1+27)}
where By is a constant depending on f, endowed with the norm || |, := sup"lfT(?;‘.
x>0

As a consequence of Lemma 2.5, the operators (2.36) map E» (R into E; (R.).
Since for a fixed value of g with g > 0,

1
O
> —q

B, 4(t?,x) does not converge to x> as n — 0. According to well-known Bohman—
Korovkin theorem, relations (2.44), (2.45), and (2.46) don’t guarantee that
1imy,—se0 B g, f = f uniformly on compact subset of R for every f € E> (R,). To
ensure this type of convergence properties of (2.36) we replace g = g, as a sequence
such that g, — 1 as n — oo for g, > 0 and so that [n], — o asn — . Also, By g, f
are linear and positive operators for g, > 0. In this situation, we can apply Bohman—
Korovkin theorem to B, 4,. That is:

Theorem 2.10. Let (g,) be a sequence of real numbers such that g, > 0 and
limy,—ye g = 1. Then for every f € E» (Ry)

,}E&qunf = f

uniformly on any compact subset of R .

Theorem 2.11. Let g = g, satisfies g, > 0 and let g, — 1 as n — oo. For every
fe€B(Ry),

timsup B SO =L@ 2.47)

noesg o (14x2)°

Proof. Since f is continuous, it is also uniformly continuous; on any closed interval,
there exist a number & > 0, depending on € and f; for |t — x| < § we have

If (1) —f(x)]<e.
Since f € B (R ), we can write for |t —x| > 0
PO =0 < Ag(3){ =5+ (1+5) |t =}

where A (6) is a positive constant depending on f and 4.
On combining above results, we obtain

FO) = F @] <e+a7(8) {1 =07+ (1+2) [t —xl],
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where 7,x € R,.. Thus, we have

[Bug, (13 = (5)] < &+ 47 (8) { Bug, (=) 5x) + (142) Bug, (=21 |

and from Lemma 2.5

o | Bran (1) = £ () 1 1 1 1
ng 1+x? <etar(o) [n]q, <1+ ‘In) * [n]g, <1+ Qn> 7

and this completes the proof. ]

Remark 2.4. Using the similar method given in [12, p. 301], we have

|Bug, (f3x) — f ()] < Max, <f; = (1+ : )) :

My \ g

where @, (f; 0) is classical second modulus of smoothness of f and f is bounded
uniformly continuous function on R... Thus, we say that the rate of convergence of

Bu.g, (f) to f in any closed subinterval of R is #, which is at least as fast as
qn
4

7 which is the rate of convergence of classical Baskakov operators.

2.3.3 Shape-Preserving Properties

Definition 2.2 ([115,116, 131]). Let f be continuous and a nonnegative function
such that f(0) = 0. A function f is called star-shaped in [0,a]; a is a positive real
number, if

(o) < of (x)
foreach a, o € [0, 1] and x € (0,q].
From the definition of g-derivative (1.5), the following lemma is obvious.

Lemma 2.6. The function f is star-shaped if and only if xD, (f) (x) > f(x) for
each g € (0,1) and x € [0,d].

Theorem 2.12. If f is star-shaped, then B, 4 (f) is star-shape.
Proof. From Theorem 2.9, we can write

_ Bug (f:x)

X

et ) 1] e e
= q

g '[nl

Dy (Bug(f:%))
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k=1

_ if<qk[k+]g1]q> {n—i—llz— 1](](]@)6’(1 (_xvq)r;ik

~W3 {"ﬂq T ra
k

k=0
k+1]g\ Ky \ 1 k41,

(f< q*[nly > f<qk1[n]q) [k+1]qf< ZTl, >)

Since
- ! — qlklq
[k+1]q [k+ 1]q7

we have

D, (B .)) — 2l

g () () e

Since f is star-shaped, we have

i () = (i)

From this inequality and (2.48), we have the desired result. ]

Now we give a certain monotonicity property of the g-Baskakov operators
defined by (2.36). Similar results for the classical Baskakov operators were given
in [41].

Theorem 2.13. Suppose f (x) is defined on (0,0) and f (x) > 0 for x € (0,0). If
f(Tx> is decreasing for all x € (0,e0), then D, (M) <0 for x € (0,°0) and for
all g € (0, o).

Proof. From (2.36) we get

By, bBn, ¢\J>X) f x i f (
If we take g-derivative of above equality and using Lemma 2.4, then we have

’D‘I( a2 ) 2f( q> [n—i_]/i_l} q@[k_l]qu’z(—x,q);ik
q

n _ (k=1 _ 0 _
) [ +I]§ 1:|qq(2)xk1 (_xvq)nlk—i_g (_xvq)nl'
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q

=1
40, (12 (x0) ).

Also using (1.5) and (1.6), we get

2, (10 (") = L8 (" -

)

nt+k k(k=1) _
)[ ] T M (—x)

Therefore,

k+1

ntk—17] ke e .
) [ ] ¢ I K A (<)
q

n+k—1 n+k
= 1
we have
D, (Bn q)Ef;X)> - Ii [n:quk(kzl)xk 1( X q) k1
k+1),\ ¢‘lnly K, \ 4 ',
<f () v, 7 (i) w, )M
L o - L il

Since f(x) > 0 and L e )1s nonincreasing for x € (0, o),
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forall g € (0, ) and x € (0, ). [ ]

2.3.4 Monotonicity Property

Now we give the following relation between two consecutive terms of the sequence
B, (f)- Note that similar result for classical Baskakov operators was given in [122].

Theorem 2.14. If f € C(R™"), then the following formula is valid

! q
n+k+1], (K] k1], [k+1],

n+1], * [ n+1]y ¢ n+1]y ¢ nlq
Proof. Using the equality
1= 1+qn+kx_qn+kx,

from (2.36) we can write

Bre1(fix) = Zf( k= 1n]—|—1]q> [n;:k} qk(kgl)xk(—%q)ﬁkﬂ
q

- +k] k=) _
-z () | Lq PR

n+k k(k—1) Sk k41 —1
S () ] e

_ LS [K]q nk| KD g
—f(O)( 761);1 +,§‘1f<qk1[n+1]q){ k :|qq -xk( 7Q)n+k

—Zf( k- 1[n]+1] > [n_l:k] a T (=X, @) k1
q
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Thus, we have

d [k+1
Byi14(f3x) = £(0) +Zf< n+—|—]1] )
k+1| &
m Lf e

n+k k(kl . B
_Zf< k— 1[n+1] ){ _]L— }qq +kAJc+1( xv‘])ni/@r]-

Since
¥ = . ) hnd [k]q n+k—1 k(k;l) x 1
o) = 10 xa ' + (e ) | ]qq  (—xa)ys
v o (K1) [n+k] s .
- FO)(~x) +I;0f(qk[n]qq)[k+l]qq ¢ (xa) b

we have

By (fu-x) —Bug (f,x)

"(“ kk+1 -1
XH ( xaQ)n+k+1

I
Mx

~
I

0

UG ] o Gt ]

() i3]

Using the equalities

(7 T

and
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we can write
Bn+1,q (f,x) - qu (fax)

> k(k+l _ n+k
= 2 q xk+l )nJikJrl [ k ]
q

(s (o)~ v Gt o (o))

Using the inequalities

[+ 1], K, [k,
¢, ¢+, dnl,m+1],

k+1, W, 1
¢+, ¢ 'n+1], ¢n+1]’
and
k+1],  [k+1], g"[k+1],

), Fh+1), i1,

we can easily see that

Ky Tktty kttly] _ @b+l W
f[qk1[n—|—l]q’qk[n—i—l]q7 q~[nl, } B q"n+k+1], ( f( kl[n—i—l]q)
[n+k+1]g [k+1]q [n]q [k+1]q
e, (o) e ()
This proves the theorem. ]

We know that a function f is convex if and only if all second-order divided
differences of f are nonnegative. Using this property and Theorem 2.14, we have
the following result:

Corollary 2.7. If f (x) is a convex function defined on R, then the g-Baskakov
operator By, 4 (f,x) defined by (2.36) is strictly monotonically nondecreasing in n,
unless f is the linear function (in which case By 4 (f,Xx) = Bpi1,4 (f,x) for all n).
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2.4 Approximation Properties of g-Baskakov Operators

We establish direct estimates for the g-Baskakov operator given by (2.36), using the
second-order Ditzian—Totik modulus of smoothness. Furthermore, we define and
study the limit g-Baskakov operator.

This section based on [63].

2.4.1 Introduction

We denote by Cg[0,°) the space of all real valued, continuous, and bounded
functions defined on [0, ). This space equipped with the norm || f|| = sup{|f(x)] :
x€1]0,00)}, f € Cp[0,o0) is a Banach space.

We know that from (2.36), g-analogue of Baskakov operators, which for g €
(0,1), n=1,2,..., f €Cp[0,) and x € [0, o), is defined as

k=0 -1 [”] q

< — k(k—1 k
Bralf2) = 2 [”‘H; 1} q(z)xk(_x"ﬁnikf(qk[ : )
q

S (e
-2 res ()

For g = 1, we recover the well-known Baskakov operators [37].
Here, to obtain direct global estimates for the g-Baskakov operators, we use the
second-order Ditzian—-Totik modulus of smoothness, defined for f € Cg[0, ) by

@, (f:8)= sup  sup  [f(x+hp(x) = 2f(x)+fx—hp(x))l, (249)
0<h<&xthe(x)€[0,)

where @(x) = \/x(1 +x), x € [0,00), let us consider the following K-function:

K ;5 — inf _ S 2.1 52 " ,
20f:8) = _inf {17 =gl +3ll 0% + 87"l

where g’ € ACj,.[0,0) means that g is differentiable and g’ is absolutely continuous

in every closed finite interval [a,b] C [0,0). In view of [51, pp. 24-25], we have
known that @y (f;8) and Kz o (f; 6%) are equivalent, i.e., there exists C > 0 such that

C g (f:8) < Ky o(f:6%) < Cang(£:6). (2.50)

Here we mention that C will denote throughout this paper an absolute positive
constant which can be different at each occurrence. Analogously, for the K-function
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K2(f36) inf[0w>{|\f—g||+5||<Pzg”||},

g'€AC;,

we have the equivalence of wép(f;5) and K> o(f; 62) (see [51, p. 11, Theo-
rem 2.1.1], i.e., there exists C > 0 such that

Cl o) (f38) < Koo (f38%) < Cwy (f36). @.51)

Furthermore, for f € Cg[0,0), g € (0,1), and x € [0, ), we define the limit g-
Baskakov operator as

oo ok
Buog (1) = (Bugf) ) = 3 verl@:)f (1 4 ) , 2.52)

k=0

where
boi(gix) = V21— g) 1= . (1-gH7!

xxkﬁ (1+xq)" . (2.53)
s=0

By Euler’s identity (see [20, Chap. 10, Corollary 10.2.2]), we have

oo oo

S FE = 1= (=) = [T 450,

k=0 s=0

where x € [0,%0) and ¢ € (0,1). Due to (2.53), the last identity implies that

=

Y beoy(gix) =1 (2.54)
k=0

for g € (0,1) and x € [0, ). Hence
Booig (£32)] < IfI1 Y beoe(qsx) = I £1],
k=0

i.e., ||Begfll < || f|l for f € Cg[0,e0). This means that the limit g-Baskakov operator
is well defined.

In what follows we shall estimate the rate of approximation ||B, 4 f — Be 4 f|| by
the second-order Ditzian—Totik modulus of smoothness of f (see (2.49)).
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2.4.2 Main Results

We introduce the space Cp[0,c0) = {f € CB[0,c0) : there exists limy, f(x) = O}
Obviously Cp[0,0) C Cp[0,0) and Cg[0, o) is also a Banach space. The following
theorems were studied in [63].

Theorem 2.15. Let Cy € (0,1) be an absolute constant with the property that g =
q(n) € (Cé/n, 1) for every n=1,2,.... Then there exists C > 0 such that

1Braf — fIl < CR(fslnly %) (2.55)

forall f € Cpl0,00) andn=3,4,....

In the next theorem we estimate the rate of approximation ||B, 4 f — B 4f|| for
f € Cg[0,20), using the modulus of smoothness (2.49).

Theorem 2.16. There exists C > 0 such that

1Bugf = Beogf Il < Cog(fir/a"~" /(1 —g")), (2.56)

forall f € Cpl0,00), n=1,2,...and g € (0,1).

2.4.3 Proofs

The g-forward differences lead us to the moments of the first and second orders
of By 4.

Lemma 2.7. We have
1Buaf Il <[]l
forall f € Cpl0,00), n=1,2,...and g € (0,1).

Proof. Forx € [0,0) onehas |B, 4(f;x)| < || f|| Bng(1:x) = || f]], taking into account
Lemma 2.5. Thus ||B,4f|| < || f||, which completes the proof.

Proof of Theorem 2.15. Let g € Cg[0,0) with g’ € ACj,.[0,0) be arbitrary. From
Taylor’s expansion

60 =4+ W00+ [ & @ —u)du, 1€ 0)

we have, by Lemma 2.5, that

By g(g5x) — Bg (/ g (u)(t —u)du; x)
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[ 1" @l )

(t_x)z 1 1 2 1
<
—B”"’( X 1—|—x+1—|—t * |l

Hence, in view of [51, p. 140, Lemma 9.6.1], we obtain

1Bng(8:x) —g(x)| < Bug (

_ 1 2.1
= Bl 0 0%
1 (t_x)z 2 n
+;Bn7q(1—+t >||(P - (2.57)
But, by Lemma 2.5
Byg(( —x)z;x) = qu(tz;x) —2xB4(t;x) +xﬁ’ql’5’(l;x) (2.58)
1 1,
—x(g+x) < O (x).
TS G, )

Furthermore, by Holder’s inequality, we have

N2
qu(%,> (Bug((148) 20} {Bug(t =050} 7. (259

Using (2.36), we find that
_ - k—1 _
qu((l-i-l) 2;)6) _ 2 |:7’l+k :| qk(k 1)/2
k=0 q

K142 A 4+x9) . (1 4xg" !
2

qk71 [y
<[k]q+qkl[nlq> | (260

Because

(1+an+k72)(l+an+k71)(l+q72n72k+3)
_ (1 +q72n72k+3)+ (1 +q72n72k+3)(qn+k72+qn+k71)x
+ (1 +q72n72k+3)q2n+2k73x2

> 14+2x+x>=(1+x)°
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for x € [0,00), we get, by (2.60),
Byq((1 +1) %)

d n—l—k—3] [n+k—2] n+k—1], k(k—1)/2
<
—k_zo{ k =2 n—1], ¢

q
K1 +x) YA 4x9) 7 (1 +xg" 3!
ﬂ_ (2.61)
([Klg +4* 1 [nlg)?

Using the identities [n+k —2], = [kl +¢*[n—2], and [n+k— 1], = [k], + ¢ [n— 1],
we obtain

(1+q72n72k+3)(1+x)72

[n+k—2]gln+k— 1] = [k]; + g klg([n— 2]g+ [n— 1],)
+q* [ —2)yln — 1]
< K7+ 24 [Klgnlg + 472 [n];
= (kg +4""nly)*.

Hence
k—2 k—1
n+ ]"k[ff . o . (2.62)
([klg +4*"n]y)
Analogously, the identities [n], = 1+ ¢g[n — 1], and [n], = 1 + g + ¢*[n — 2], for
n=3,4,... imply that

[n]é _ [”]q [n]q
[”—2]q["— 1]q [”—2]q [”—1]61

_ ({;qu]q+q2> <[n_11]q+q) <6. (2.63)

The condition ¢ = g(n) € (Cé/ " 1) implies

Con _ 2 2
(1+¢ 2n 2k+3)q2k 2 < <= (2.64)
q C()
Now combining (2.61)—(2.64), we obtain
12 1
B 1 tfz; < =
"7‘1(( + ) X) = C(Q) (1—|—X)2
12 1
Gy (1+x)?

anz,q(l;x)
(2.65)

forx € [0,00) andn =13,4,....
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On the other hand

Bug((t = x)*:x) = Bug(thx) — 4xB,, 4(t:x) + 6x5 B(1*:x)
—4x;, B(1;x) + 33  B(13). (2.66)

To compute By, 4(t";x), m=0,1,2,3,4, we use Lemma 2.5 and the definition of the
g-forward differences given above. Then, by direct computations, we get
1 14+2g+1 1 1 2
B,,,q(t3;x): +2q+ 2 _3[n+ ]q[”"’ ]t]x3

M2 T gmE g ]2
and

Bn,q(t“;x)

11 n+1
= —3x+ (1 +3q+3q2)[ by 2

" g (3
[n+1gn+ Z]qx3

[l

1
——— (14+3g+5¢*+3¢°
q5(1+q)(+q+q+q)

1
_|_
#1+9)(1+g9+¢>)(1+g9+¢*+4°)

(143q+54*+64°

1 5qt+ 35+ 6 L el ¥ 3lg 0
[
Hence, by (2.66),
Bug((t —x)%x)
= %H L {q(14+3q—¢*)[n]y+ (1 +3q+3¢>) } x*

g @nlg

+ﬁ {4’ (1= a)*[n; +4(1 +49+3¢° = 2¢°) ],
q

+ (143454 +34)} ¥
+% {1 —q)z[n]é—l-q(l +39—¢)[nl
q [n]q

+(1+2g+2¢°+¢°) } x*.

Taking into account the condition g € (Cé/ " 1), we obtain that ¢ € (Cy, 1). Then,

forx > ﬁ, we have
q
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L 2 1 1o
Cg[n]é {q(1—|—3q+q )+ (143g+3¢q )[n]q}

1
{q3(1 —4") p Ha(l+4a 434 +2)
q

1
+ (1+3q+5q2+3q3)—}x3
[n]q

1 o1
+C8[n]§ {43(1 —q )zm +q(1+3q+4q)

Glnlg

1
+(1 +2q—|—2q2+q3)—}x4

[n]y
1 2 2 3 4
< Cg[n]g {x + 12x° 4+ 23x" 4+ 12x }
C 4
< =07 (x).
[n]3

Hence, in view of (2.57)—(2.60), we find for x > ﬁ that

1 1

) 2 2.1
Bralgi) =8| < s @ @197
1 ¢ C 2 2 1
T @ Wl
C
< —lo*¢"|- (2.67)
]

For0<x < %] we have, by Taylor’s expansion,

60 =4+ W00+ [ & @ —u)du, 1€ 0)

1
< Byg((t =0)%:20)[18"|| < ———x(1+x)[|"

qlnly

C
< =g 2.68
< pale’l .68

and Lemma 2.5 and (2.58) that

t
IBn,q<g;x)—g(x)|§Bw< / 8" (u)||t — u| du
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Then (2.67) and (2.68) imply

1Brq(g:x) —glx)| <C {[ » lp*s "||+[ ]zllg”ll}

for all x € [0,0). Hence, by Lemma 2.7, we obtain, for f € C‘B[O,oo),
1Bngf = fIl < |Bngf — Bnggll+ 1 Buqg — gl + g — fll

<|If- g||+C{W||<P2 ”II+[ B IIg’/II}JrIIg—fII

1 N2 "
{Ilf gH+H lo~e ||+H I8 II}-

Using the definition of the K-functional K> (f31/[n]y), we have ||B,4f — f|| <
CK, 4(f31/[nly)- Then, in view of (2.50), we get (2.55), which was to be proved.

Proof of Theorem 2.16. Let g € Cp[0,) with g € ACj,.[0,0) be arbitrary. By
Taylor’s formula, we have

(i) = (i)
(7w - amet)? (705 )

Klg/q*~ n 1] K]
—|—/ (—q—u> "(u) du
ket 1) /g 1), \g* [+ 1] &)

() = (@)
(e et ) (Gaer)

lk-+1]/q[n]
+/ B ([k:_—l]q - u) g (u)du.
ket 1]g/gknt 1]y \ q¥[n)q

and
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Hence, by Theorem 2.14 and [n+ k+ 1], = [n],+ ¢"[k+ 1],, we obtain

By g(g:x) = Bui1,4(8:x)

=Y GED2E ) (1 4ag) L (1 g™ !
k=0

{n:k}q{{qn (q"l[[kn]: 1, q’[‘T:ﬂLI]Iq]q)

[n]q [k+1]q_ k+1]q o [k+1g
- k+1]q ( ¢ty g+ 1]q> }g (qk[”+ l]q)

[Klg /¢ n+1], K]
+ g _ ") d
T S gsamen, <qk1[n+1] “>g (i) du

k n
N [nl, /{[kﬂ]q/q [nlg ([/H— 1], . u> ¢ (u) du} _ (2.69)

e+ 1]g Jik+1)g/ak i1, \ g¥[nlq

Because

qn<qkl[k]q [k+1]4 >+[ [l ([k+1]q [k+1]4 >

[n+1]4 qk[”+1]q k+1]q qk[”]q qk[”+1]q
gt Tt —n)g
n+1], ¢ [n+1],
qnfk qnfk

[n+1]qJr n+1], =0,

we get, by (2.69),

|Bﬂ,t](g;x) - Bn+1,q(g;x)|

< 2 qk(kH)/zka(l —|—x)71(1 —l—xq)f1 .1 —I—xq"“‘)fl
k=0
{n-i—k} J /[k]q/flkl[’“rl]q
k q (k+1]g/q [n+1]4
k+1]g

/[lﬁLl]q/qk [n]q
kg /g1l | ¥ [l

[K]q

7
—_— d
| 18 Wl

} . (2.70)

—Uu

u||g" (u)|du
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Taking into account the estimate

[ - wa

1 1 1
<971 (1 + ) 19l

t,x € [0,00) (see [51, p. 140, Lemma 9.6.1]), we find that

(Klg/q* ' [n+1]4 k
ay s I
ket 1]g/gknt1]g | @5 Hn+1]g
<qn< kg [k+1]y >zqk[n+1]q
- ¢ n+1], g*n+1], k+1],
( q [n+1] + qkil[n"’l]t] >||(P2 //H
k4+1]g+gkn+1],  [Kg+¢ " n+1],
1 2 "
2.71
and
[k+1]4/4"[n]
[”]q / a/q g [k:_ 1]‘] —u |g//(bt)|dbt
k+1]q | Jikr11/¢k 1), | g¥[nlg

[n]g ([k+1]q_ k+1]q >2‘1k[n+1]q
Tkt 1 \ ¢l Gn+1], [k+1]q

qk[n + 1] qk[n] "
(et e e ) 197

B " [n+1] [n], )
g+ 1], (6]"+[n+kq—|— 1, + F+n+k, ) lo*"| (2.72)

Then (2.70)—(2.72) imply
1Big(8:%) = Bri1,4(85%)]

< Z qk(k+1)/2xk+l(l_i_x)fl(l+xq)71-__(1+an+k)fl
k=0

{Ziﬂq [k[j;];]q {qnl <q"+ [nik+ 0, +1[n+k]q>

q2n [""’ 1]q [n] 2 0
T T, <qk+[n+k+1]q+qk+[n+k]q)}”"’ ”
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<Y DR ) T (1 xg) L (1 xg" !
k=0

] (et )

2n L [k+1]q 1 [k+1] 2,0
T4 ([nlq[n+k+uq+[n+11[n+qu>}”"’ |
1

14" &
< q zq k+1 /2xk+1(1_|_x) (1+xq) 1 (1+an+k) 1
[n]q k=0
n+ ] 2 1
lo~g"|l
)
49" ! 2 n 2 n
< By q(Lix)[@7g ||— ||<P |
[y ™1 [ ]

(see Lemma 2.5). Hence

2 //||

4,
||Bn,qg_8n+17qg|| < [ ]

Now for p =1,2,..., we obtain

1B — Bt pagll < [1Buqg = Bui1.g8ll+ 11Bus1.08 — Buszgsl
+ oo A Bt p-148 — Buipagll

< 4qn71 1 n+p—2 2.1
< (I+g+...+¢q e~g"|l
[n]q
4qn71 2 n 4q 2 n
S g alletslll= ||<P I
[n]4(1—q)

Then, by Lemma 2.7 for f € Cp[0,), we have

1Bnaf = Buipaf |l < 1Bugf — Buggll + |1Bngg — Butpggll
+1Bntpqg — Bn+p of

<If- gllﬂL ||<P2 "I+ 11—l

<4{ 2 "||}.
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Hence, in view of (2.51), we obtain

1Braf = Buspaf |l < 4Kap(fiq""/(1-¢"))

< Caoy(firn/a'/(1—q")) (2.73)
forevery n,p=1,2,.

On the other hand hm o, ( " 1/(1—g") = 0, because of f € Cp[0,)

(see [51, pp. 36-37]). Then (2.73) implies that {V, ,f} is a Cauchy-sequence in
the Banach space Cg[0,0). Thus it converges in Cg[0,°). In conclusion, by (2.73),
there exists an operator L : Cg[0,50) — Cp[0,0) such that

|1 Bugf —LfIl < Cog(fir/q" " /(1 —q")) (2.74)

forall f € Cp[0,0) andn=1,2,....
Finally, we prove that Lf = Be,f for f € Cp[0,0). Let x € [0,0) be arbitrary.
Then

IL(f3%) = Booyg(f32)| < |L(f3x) = Bug(f:x)]
+Bug(f3x) — Boo g (f3)]-
By (2.36), (2.52), and (2.53), we have

|Big(f3X) = Beo g (f3X)]

oo +k—1 3 ntk—1 o
2 {n . } g2k H (14x¢°)""
q

k=0 s=0

oo ok

s=n+k
+2{[n+k_1} —(1—q)1(1—612)1---(1—61")1}
q
K020 T (1 a1 £ [ -2
! XkEJ(H 7) f(q“(l—q”)>

e i § ) e O B Y § B
k=0

e (i) ()|
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oo n+k—1
<7y, {[”+Z_l]qk(kl)/2xk T (1 +xg")"

k=0 s=0
(- I ey e 3 | 7! -0
s=n-+k k=0 q

(1= (1=g)" | V2T (1 424"
s=0

=

+Y VA - =) (1=

k=0
1—qk l—qk
f(a“(l—q")) _f( g ) |

X ﬁ (1 —I—xqs)71
s=0

=L+L+5 (2.75)

Furthermore, the infinite product H (14xq*)~" is convergent; thus for every
s=0

€ > 0 there exists nj, such that

= =

o<1- ] (1+xq‘)*1§1—]'[(1+xqs)*1§L
s=n+k s=n 3||f”

forn>nj andk=0,1,2,.... Hence, by Lemma 2.5,
I < gqu(l;x) - g (2.76)

In view of (2.54), we have B..4(1;x) = 1. By [99, p. 156, (2.8)], we know that
the inequality '
q’ 1
In——
qg(l—q) 1-¢q

1-TI-¢") <
s=j
holds for 0 < g < 1 and j=1,2,.... Then we obtain

L= Hf||i 1—g)(1—¢*)...(1—¢" {n—i—lli—l} .
k=0 )

dEVRA—g) (1= (=) T+ xg) !
s=0

= |I£ll i (1=g"(1—¢")...(=¢g"* ) —1]
k=0
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=

g1 —g) =) (=) T[T (1 +xg) !
s=0

=

< |f||§<1 Ny (O

s=n

dEVR1—g) (1 =) (=) T T (1 +g) !
s=0
q" 1
In——V.,(1;x
g(1—q) 1—¢q 4(1:%)

" 1
In — .
n Il

< Il

_ g
q(1—-q)

In conclusion, if € > 0 is arbitrary, then there exists nj such that ¢" < eq(1 —
q)/(If|In(1 —g)~") for every n > nl. Thus

L<®. 2.77)
3
Finally, because f € Cp [0,0) and € > 0 is arbitrary, there exists ye > 0 such that
1— k 1— k
kj S oo 1 n
¢t a (1-q")

|f(y)] < €/12 fory > ye. Because forall k=0,1,2,... and

1 —
n=1,2,..., there exists k. such that 4 > yg for k > k. Then

gk 1
1—g* £
— 2.78
(54 o
and
1—4F £
_— — 2.79
|f<61“(1—61")) |< 12 @7
for k > k..
On the other hand
1-4 1-¢*  (1-¢"q"

¢ (1-q7) ¢ ¢ (1-q")

therefore we obtain for k =0,1,... k¢ that

‘ ! (q"}(_lcikq”)) _f(lq;ql]k> ‘
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()< ()15

(1-g+¢ Mo (f 1 )

< (l—g+q %™ (

IN

> (2.80)

where o(f;8) = sup{|f(x) — f(»)| : x,y € [0,00),]x —y| < 8} is the modulus of
continuity of f € Cp[0,0). Then, for every & > 0 there exists n2’ such that

n
1— —ke+1 : q €
(I-g+q )w(f )%

for n > n}!'. Hence, by (2.78)—(2.80) and (2.54), we get

ke
L<Y dED2(1—g) (1= (1-¢9"

k=0

n

xkf[(lﬂqs)1(1—q+q"5“)w<f; 1 ,,)
s=0 1_61

+ Y Vg =D (19!
k=l +1

x"ﬁ)ﬂ“qs)l{‘f(#q—qu ‘+ >f<1q;qlk> ‘}

€ €
< ng7q(l;x) + ng7q(1;x) =

2.81)

W] m

Now combining (2.74)—(2.77) and (2.81), we find that

IL(f1%) = Boog (f32)] < Cag(f31/q" 71 /(1 =q")) + &

for arbitrary &€ > 0 and n > max{n,ny,n}'}. Thus L(f;x) = Be4(f;x), which was

to be proved.

2.5 g-Bleimann-Butzer-Hahn Operators

There are several studies related to the approximation properties of the Bleimann,
Butzer, and Hahn operators (or, briefly, BBH). There are many approximating op-
erators that their Korovkin-type approximation properties and rates of convergence
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are investigated. The results involving Korovkin-type approximation properties can
be found in [13] with details. In [68], A.D. Gadjiev and O. Cakar gave a Korovkin-
type theorem using the test function (1 +t) for v =0, 1, 2. Some generalization of
the operators (2.82) were given in [6,7,52].

2.5.1 Introduction

In [39], Bleimann, Butzer, and Hahn introduced the following operators:

B, (f) (x e gf (n—k+1> (Z)xk x>0,neN. (2.82)

Here we derive a g-integers-type modification of BBH operators that we call
g-BBH operators and investigate their Korovkin-type approximation properties
by using the test function (#[)v for v =0, 1,2. Also, we define a space of
generalized Lipschitz-type maximal function and give a pointwise estimation. Then
a Stancu-type formula of the remainder of ¢g-BBH is given. We shall also give a
generalization of these operators and study on the approximation properties of this
generalization. We emphasize that while Bernstein and Meyer—Konig and Zeller
operators based on g-integers depend on a function defined on a bounded interval,
these operators defined on unbounded intervals. Also, these operators are more
flexible than classical BBH operators. That is, depending on the selection of ¢, the
rate of convergence of the g-BBH operators is better than the classical one.

We refer to readers for additional information on g-Bleimann, Butzer, and Hahn
operators to [10, 60, 120]. This section is based on [27].

2.5.2 Construction of the Operators

Also, let us recall the following Euler identity (see [134, p. 293])

n—1 n -
[T0+do=Yq [Z] <. (2.83)
q

k=0 k=0

It is clear that when g = 1, these g-binomial coefficients reduce to ordinary
binomial coefficients.

According to these explanations, similarly in [53], we defined a new Bleimann,
Butzer, and Hahn-type operators based on g-integers as follows:

klq MeDin| k
Ln( Zf(n_kH] )q ? qu, (2.84)
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where
n—1

la(x) = [T(1+¢’x)

s=0
and f defined on semiaxis [0, o).

Note that taking f ( [njlzh‘il]q) instead of f (%) in (2.84), then we obtain
"kt

usual generalization of Bleimann, Butzer, and Hahn operators based on g-integers.
But in this case it is impossible to obtain explicit expressions for the monomials
t¥ and (t/(1+1¢)) for v = 1,2. If we define the Bleimann, Butzer, and Hahn-
type operators as in (2.84), then we can obtain explicit formulas for the monomials
(¢/(1+1))Y forv=0,1,2.

By a simple calculation, we have

dn—k+1],=[n+1],— [klqlk—1],= [k, —1. (2.85)
From (2.83) to (2.85), we have
L,(l;x)=1 (2.86)

and

n+1], £u(x) ) k .
X [”]q
Cox+1ln+ 1], (287)

We can also write

Ly (
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_ [n]g[n—1] x [n]y  x
- [Z—i—l]g qq2(1+x)(l+qx)+[n—i—ci]%]x—i-l' (2.88)

Remark 2.5. Note that, if we choose ¢ = 1 then L, operators turn out into the
classical Bleimann, Butzer, and Hahn operators given by (2.82). Also using the
similar methods as in [53, 54, 133], to ensure the convergence properties of L,, we
will assume g = ¢, as a sequence such that g, — 1 asn — oo for 0 < g, < 1.

2.5.3 Properties of the Operators

In this section we will give the theorems on uniform convergence and rate of
convergence of the operators (2.82). As in [68], for this purpose we give a space
of function w of the type of modulus of continuity which satisfies the following
condition:

(a) o is a nonnegative increasing function on [0, ).
(®) ©(6+&)<w(d)+ ().
(©) éin})w (86)=0.

—

And Hy, is the subspace of real-valued function and satisfies the following condition:
For any x,y € [0, o)

- <o (|2 - 12 ) 259

Also Hyy C Cg [0, o), where Cg [0, ) is the space of functions f which is continuous
and bounded on [0, ) endowed with norm || f{|, = sup|f (x)|.
x>0

It is easy to show that from the condition (b), the function ® satisfies the
inequality
o ((nd) <nw(d) neN,

and from condition (a) for A > 0, we have
®(A8) < o((1+[[7[])5)
(1+21)o(8) (2.90)

IN

where [|4]] is the greatest integer of A.
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Remark 2.6. The operator L, maps H into Cg[0, o) and it is continuous with
respect to sup-norm.

The properties of linear positive operators acting from Hy, to Cg [0, =) and the
Korovkin-type theorems for them have been studied by Gadjiev and Cakar who have
established the following theorem (see [68]).

Theorem 2.17. If A, is the sequence of positive linear operators from Hg to
Cg 0, ) satisfy the following conditions for U =0, 1, 2.

|( (7))o~ (55)

then, for any function f in Hy, one has

—0 forn— oo
Cp

[Anf = fllcy, =0 forn — oo

Theorem 2.18. Let g = g, satisfies 0 < g, <1 and let g, =+ 1 asn — oo If L, is
defined by (2.84), then for any f € Hg,

lim Ly~ fllc, =0.

Proof. Using Theorem 2.17 we see that it is sufficient to verify the following three

conditions:
t v X v
L, — ) x| =
((+5) =) ()

From (2.86), the first condition of (2.91) is fulfilled for v = 0. Now it is easy to see
that from (2.87)

=0, v=0,1,2. (2.91)
Cp

lim
n—yoo

t X [n]y
L — |ix )= ———1
(7)) -, <l
o —
qn Qn[n"‘l]qn

and since [n+ 1],, — o, g, — 1 as n — oo, the condition (2.91) holds for v = 1. To
verify this condition for v = 2, consider (2.88). We see that

w(() ) - (),

— xz [Vl]qy,[”*l]qn 2 14x B )
_,Svl>ll(:))((1+x)2( [n+1]2, DnTrgur 1

ol )

[n+1]Z, T+x
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A small calculation shows that

[Plosf2 = 1la, _ 1 (1_[2+q,, L 1+, )

B ESIPNESTF

[n+1]2, q;

Thus, we have

2 2
t X 1 2 1
L[ (—) ] - <5 |1-a- :
”(<1+t> x) <1+x) _q,%< O ["+1]qn+["+1]3n>

This means that the condition (2.91) holds also for v = 2 and the proof is completed
by Theorem 2.17. |

Cp

Theorem 2.19. Let g = g, satisfies 0 < g, < 1 with g, — 1 as n — . If L, is
defined by (2.84), then for each x > 0 and for any f € Hy,, the following inequality
holds

L (20 = £ @] <20 (Vi ()

where

.y gy Blyli=tlgy 2 (140 \ | by
() = (75)° (1= 25y + Pl i) + e o @92)

Proof. Since L, (1; x) = 1, we can write
ILn (f3 %) = f ()| S Ly (I () = £ (2)]5 %) (2.93)

On the other hand from (2.89) and (2.90)

0 - F) < w( ‘o

1+1 1+4x
|15 — 5
< [ 14+ |w(s
< 1+ 0 (),
where we choose A = § ! = ‘ This inequality and (2.93) imply

1
Lo (F3) = £ (x)] < @(8) (”EL" (’#_ﬁ

).
z;x>§

According to the Cauchy—Schwarz inequality we have

1 t X
Iy (f;x) = f(x)] < @0 (0) 1+3L,, (’1_+t_ ——
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By choosing 6 = U, (x) = L, (’1%; -

2 ; x) , we obtain the desired result. |

Now we will give an estimate concerning the rate of convergence as given in
[8,52, 109]. We define the space of general Lipschitz-type maximal functions on
E C[0,0) by Wy f as

1
m,xEOandyEE},

where f is bounded and continuous on [0, o), M is a positive constant, 0 < o« < 1,
and f{, is the following function:

Wy = {f sup (1 +3) fu (x, ¥) < M

ey = L0161

Also, let d (x, E) be the distance between x and E, that is

d(x,E)=inf{|x—y|;y € E}.
Theorem 2.20. Forall f € W g we have

Lal(f5) = £ (0] <M (i () +2(d (x, E))"). 2949

where L, (x) defined in (2.92).

Proof. Let E denote the closure of the set E. Then there exists a xy € E such that
|x —xo| =d (x, E), where x € [0, o). Thus we can write

lf =) < 1f = f(xo)l+1f (x0) = f (x)].

Since L, is a positive and linear operator and f € W', by using the above inequality
we have

ILn(f3%) = f ()] < Lu(|f = f (x0)[32) + | (x0) = f (x)]

o
t
< ML,( LU

1+t 14x

|x — x0|*
(1+x)%(14x0)*
(2.95)

If we use the classical inequality (@ +5)* < a®*+b% for a >0, b > 0, one can write

o o

t X
1+t 1+x

X X0

t X0 i
1+x 14x9

1+t 1+xo

S ’

a ‘

for0 < a < 1andz € [0, ). Consequently we obtain
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o
) < Lol —

x—xo|*
(T4x)* (14x0)*

t X0

Ln ( 1+ T4+xg

x) +

Since L,(1; x) = 1, applying Holder inequality with p = % and g = ﬁ, we have

o 2 o _ o
L[ = 55| 50 < Lol(vh — v2) 590 F + it
Thus in view of (2.95), we have (2.94). |

As a particular case of Theorem 2.20, when E = [0, ), the following is true:

Corollary 2.8. If f e W 0,0) then we have

ILa(£%) — £ (x)] < MpE (x),

where |, (x) defined in (2.92).

In the following theorem a Stancu-type formula for the remainder of g-BBH
operators is obtained which reduces to the formula of the remainder of classical
BBH operators (see [2, p. 151]). Similar formula is obtained for g-Szdsz—Mirakyan
operators in [29].

Here, [xp,x1...,%n;f] = f[x0,X1...,%,] denotes the divided difference of the
function f given in Lemma 2.3.

Theorem 2.21. Ifx € (0, =)\ { L

k=0,1,2,... ,n}, then the following

[n7k+1]qqk
identity holds:
X
L,(f:x)— —
-1 (%)
X Ty [n
Y
b(x) Lg" q
x S [Klq [k+1]q qk(k;le n+1
“aw e R ] 4 e

Proof. By using (2.84), we have

Ln(f;x>—f<’—q‘) - gix)éo [f (%) -/ (3)] - [kL"k
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Since
[k]q [n] [ n ]
n—k+1], | k q_ k—1 q’
we have
) — X\ _ 1 & x [k]q ] k(k21)1|:n:| e
L) - (%) gn(x)lgo[q,[n_kﬂ]qqk,f =i}
1 & x kg ] k(kzl)k|: n :| '
+€n(x)k§'1 [q,[”_k+1]qqk,f 1 k—1 *

Rearranging the above equality, we can write

o 1(2) - e

n(x) q"
IR RS 21
(e

) M)‘k -

Using the equality

k+1], (kg B n+1],

=K n—k+1,g5  [n—kgn—k+1],450

we have following formula for divided differences:

[f (K], k+1], f] [n+1]
g’ [n—k+1gq"" [n—kgg"™ " | [n—Klg[n —k+1],g*!

sl Fir et B P sty

and therefore, we obtain that the remainder formula for g-BBH operators, which is
expressible in the form (2.96). ]

We know that a function is convex on an interval if and only if all second-order
divided differences of f are nonnegative. From this property and Theorem 2.21 we
have the following result:

Corollary 2.9. If f is convex and nonincreasing, then

f@)gguw (n=0,1,...)
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2.5.4 Some Generalization of L,

In this section, similarly as in [52], we shall define some generalization of the
operators L.
We consider a sequence of linear positive operators as follows:

[

where b, ; satisfies the following condition:

n
Hq—>1 for n — oo.
Cn

LY (f;x)=

Jk

) “21>[Z] * (yeR) (2.97)
q

k], + bu,x = cn and

It is easy to check that if b, ; = [n —k+ 1]¢* + f for any n, k and 0 < g < 1, then
¢n = [n+1],+ B and these operators turn out into D.D. Stancu-type generalization
of Bleimann, Butzer, and Hahn operators based on g-integers (see [145]). If we
choose ¥ = 0 and g = 1, then the operators become the special case of the Baldzs-
type generalization of the operators (2.82) given in [52].

Theorem 2.22. Let q = g, satisfies 0 < g, < 1 and let g, -+ 1 asn — . If f €
W(; 0,e0)’ then the following inequality holds for a large n

1L (f5%) = f ()l

< 3M max ﬂ 14 ,
¢t Y [n]qn

s, " Mo (a1,

Proof. Using (2.84) and (2.97) we have

K]y, +7 (K],
f< bmk ) _f<’y+bn7k>

] k) [ n ] .
4n X
k qn

1,
cnt+7v

LE(3 0~ )] < !

k(k—1)
w1,
g,

n

ep V(ﬁﬁﬂ 7 (et

+|Ln (f5%) = f (%]
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Since f e W 0,0) and by using Corollary 2.8, we can write

‘Ly f X ’ M []q,,+y - [k]q,, aqk(kz;l) n Xk

T An(x )k —0 [k]q,, Y+bux 7+[k]q"+bn,k " k g

M < q'x [k]qn ¢ @ n )/( %

e kZO H/HM T | M|k q + 1 (x)
< ( b Ny " _[41],, :
“\aty [n]q,, ety

TN A1 P Ny VST p

xgn(x)kg(f) (["+l]q,, n p + i (x)

qn

Using the Holder inequality for p = 1, g = 1; and (2.87), we obtain

o’
LAWY [n+1] x [ *
V(g _ < 4n i 4n 4n
L (f3 %) = f ()] M(cn+y F A o I e P
Thus the inequality (2.98) holds for x € [0, o). |

1—

+ /Jn% (x).



Chapter 3
g-Integral Operators

3.1 g¢-Picard and ¢-Gauss—Weierstrass Singular
Integral Operator

For many years scientists have been investigating to develop various aspects of
approximation results of above operators. The recent book written by Anastassiou
and Gal [18] includes great number of results related to different properties of these
type of operators and also includes other references on the subject. For example,
in Chapter 16 of [18], Jackson-type generalization of these operators is one among
other generalizations, which satisfy the global smoothness preservation property
(GSPP). It has been shown in [19] that this type of generalization has a better rate
of convergence and provides better estimates with some modulus of smoothness.
Beside, in [22, 23], Picard and Gauss—Weierstrass singular integral operators
modified by means of nonisotropic distance and their pointwise approximation
properties in different normed spaces are analyzed. Furthermore, in [40,110], Picard
and Gauss Weierstrass singular integrals were considered in exponential weighted
spaces for functions of one or two variables.

3.1.1 Introduction

Let f be a real-valued function in R. For A > 0 and x € R , the well-known Picard
and Gauss—Weierstrass singular integral operators are defined as

oo

P =5 [Flatne bar

—oo

A. Aral et al., Applications of q-Calculus in Operator Theory, 73
DOI 10.1007/978-1-4614-6946-9_3, © Springer Science+Business Media New York 2013
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and

oo

W, (fsx) == \/;_A/f(x—i—t)e*%dt,

T

respectively.

In this section, we introduce a new generalization of Picard singular integral
operator and Gauss—Weierstrass singular integral operator which we call the g-
Picard singular integral operator and the g-Gauss—Weierstrass singular integral
operator, respectively. As a result, a connection has been constructed between g-
analysis and approximation theory.

To be able to construct the generalized operators, we need the following g-
extension of Euler integral representation for the gamma function given in [14,34]
for0<g<1:

oo

1— e x—1
¢ (0T, (%) g <21)/Et—dt, Rx > 0 G.1)

Ting T E (=g

where Iy (x) is the g-gamma function defined by

and ¢, (x) satisfies the following conditions:
L. cq(x+1)=c4(x).
2.¢4(n)=1,n=0,1,2,....

3. lim ¢4 (x) = 1.
q—1-

When x = n 4 1 with n a nonnegative integer, we obtain

Iy(n+1)= [n]q!. (3.2)
In [38], Berg evaluated the following integral:
7 £ dt:n( 12, ) é( 12, ) k=01,2...  (33)
E,(©?) 959 1/2q °549),> ) 1
where
(1-a)
(a;:9) g = m

for any real number o.
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The integrals (3.1) and (3.3) are the starting point of our work. Note that these
definitions are kinds of g-deformation of usual ones and are reduced to them in the
limit g — 1.

Definition 3.1. Let f : R — R be a function. For A > 0 and 0 < ¢ < 1, the
g-generalizations of Picard and Gauss—Weierstrass singular integrals of f are

+
P (30,9 =P (70 = gt ff;ﬂ G4
and
1 Tfet
Wy (f;q,x) =W, (f; x) == - fix tzt) dt, (3.5)
T [A’]q (q / ;Q)l/z ﬂx,Eq (m)
respectively.

Note that this construction is sensitive to the rate of convergence to f. That is,
the proposed estimate with rates in terms of L,-modulus of continuity tells us that,
depending on our selection of ¢, the rates of convergence in L,-norm of the g-Picard
and the g-Gauss—Weierstrass singular integral operators are better than the classical
ones.

3.1.2 Rate of Convergence in L, (R)

For f € L, (R), the modulus of continuity of f is defined by

@ (f58) = sup |f (-+h)=F (),

n|<8

1/p

where |71, = ( T 5o a)
Here are some auxiliary lemmas.

Lemma 3.1. For every A > 0,
@ [Py (f;x)dx=
®) [ Wy (f;x)dx=1.

Proof. The proof is obvious from (3.1) and (3.3). |



76 3 g-Integral Operators

By using Lemma 3.1, for every function f € L, (R) with 1 < p < o, the operators
defined by (3.4) and (3.5) are well defined as expressed in the following lemma.

Lemma 3.2. Let f € L, (R) for some 1 < p < oo. Then we have

122 (Fs M, < NI,
and

W (F5 M, < NI, -

Now we give convergence rates for these new operators. A similar approach for
classical Picard and Gauss—Weierstrass singular integral operators can be found in
[147, Th. 1.18].

Theorem 3.1. If f € L, (R) for some 1 < p < o, then we have

““ﬁ)—ﬂﬂuﬁq(ﬁmb)0+é>

and

W = £ Ol < 0y (15 RL) (1o 2 (=0) ).

Proof. From Lemma 3.1, we get

Py (f3%) = f(x) =

Thus

1/p
f x—|—t
1 q\t\

. (-
122 (72 ) =S Ol < 37 T m1 /

(generalized Minkowski mequahty, see [146, p. 271])
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where we use (3.1) and (3.2) and the well-known inequality

@, (f:CO) < (14+C)w, (f30)

for C > 0.
Similarly,
Wi (f5-) = O,
(6 7, 0 )
w1l @20, L\ ) B ()
o 1/2
<o, (1) [ 1+ ! /i dt
w4, (0% a), ), L Mok, (1)
<, (f3/11,) (1+ Jr 2 _ql/Z)) ,
where we use (3.3). |

Since for a fixed value of g with 0 < g < 1,

1
lim [A], = —
Jim [A], T

the above theorem does not give a rate of convergence for Py (f;-) — f(-) in

L,—norm. However, if we choose ¢, such that 0 < g; < 1l and g; — 1 as A — oo,

we have [A], — 0 as A — co. Thus we express Theorem 3.1 as follows.

Theorem 3.2. Let g, € (0, 1) such that g5 — 1 as A — oo If f € L, (R) for some
1 < p < oo, then we have

1P (frq2,7) = F O, = @ (f§ M]ql) (1 +é)

|p§w,,(f; qu) <1+ /qll/z(l_qiﬁ)).

This theorem tells us that depending on the selection of g, the rate of
convergence of Py (f;-) to f(-) in the Ly-norm is [A], ~that is at least so faster
than A which is the rate of convergence for the classical Picard singular integrals.
Similar situation arises when approximating by W, (f; -) to f (*).

and

Wi (f3q2,) —f ()
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3.1.3 Convergence in Weighted Space

Now we recall the following Korovkin-type theorem in weighted L, space given
in [67].

Let o be a positive continuous function on real axis R = (—eoo, oo}, satisfying the
condition

/ 2P0 (1) dt < oo. (3.6)
R

We denote by L, o (R) the linear space of p-absolutely integrable functions on R
with respect to the weight function @, i.e., for 1 < p < oo,

/|f OFo@d | <=

Theorem 3.3. Let (L,),cy be a uniformly bounded sequence of linear positive
operators from Ly, o (R) to Ly o (R), satisfying the conditions

Lyo®) =13 f RSB |f] 0= |for| =

Tim ||Ly (' x) =], , =0, i=0,1,2.

Then for every f € Ly o (R),

B ([Laf — £, =

p
By choosing o (x) = (ﬁ) , p>1, and working on L, 4 (R) space that

we denote it by L, ,(R), we shall obtain direct approximation result by using
Theorem 3.3. Note that this selection of @ (x) satisfies the condition (3.6). Also
note that for 1 < p < oo,

Lon(®) = {5 iR B (142%) " fw e 1,

where m is a positive integer.

Lemma 3.3. If f € L, » (R) for some 1 < p < e and positive integer m, then

YR
1 (3 )] < 27 <1+Tmﬁ> 111,
and
W (f: )l < 2! (1+m§'"q"’ (4% q), )||f||p,

forO0<g< 1.
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Proof. Using (1 +(x+ t)Gm) < 26m=1 (1 +x6m) (1+ t6’”) for all positive integer m
and x, t € R and (3.1)—(3.3), the proof is obvious. |

Theorem 3.4. Let q; € (0, 1) such that q;, — 1 as A — . Then for every f €
Lpm (R),

lim |Py (f:qy, ) — =
Lim 1P (f3425 ) = llpm

Proof. Using Theorem 3.3, it is sufficient to verify that the conditions

/{ig})HP;L (ti;qk,-)—xi"p’mzo, i=0,1,2. (3.7)

are satisfied. Since Py (1;¢,,+) = L and Py (#;q,, -) = x, the conditions of (3.7) are
fulfilled fori =0 and i = 1.
Direct calculation shows that

2] A
P ( 1 )—x +[ ]QAE ]%
9
and then we obtain
2], AL
HPX (IZZQJLa ) _szp,m = % ||1||p,m

This means that the condition in (3.7) for i = 2 also holds and by Theorem 3.3 the
proof is completed. ]

Theorem 3.5. Let g € (0, 1) such that qj — 1 as A — oo. For every f € Ly n (R),
im [Wy (f:q2, ) = £l m =
i [ (7542, )~ 1

For f € L, » (R) with some positive integer m, we define the weighted modulus
of continuity @ . (f; 8) as

£ 17 1/p
x+h
©pm(f30) = sup /’ 1 767) (1 -+ 10m)
fC+hm)—f()
= Sup —_—— .
m<sll  (L+REm) [

Now, we show that this modulus of continuity satisfies some classical properties of
L,—modulus. For f € L, , it is guaranteed that @), ,, (f; 0) is bounded as § tends
to oo and also, @, (f; §) < 2™ [ £1l,,,, for any integer m.
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3.1.4 Approximation Error

The next Lemmas 3.4 and 3.5 will allow us to obtain the approximation error of
generalized operators by means of the weighted modulus of continuity @, . (f; )

and weighted norm |-, ,,
Lemma 3.4. Given f € L, ,, (R) and C >0,
Opon (£5C8) <21 (140" (148%) @y (1 8)

for 6 > 0.

Proof. For positive integer n, we can write

1) — sup ||LCE = O)
wp,m(f’ 6) \Z\<p8 (1 " 6m)

p,m

= sup

i (-+kh)—f(-+ (k—1)h)

ni< || (1 + (nh)‘"") L
<20y (£58) Y (14 ((k—1)8)™)
k=1

< 26m=1p (1 +((n— 1)5)6’") @pom (3 8)
< 6m=1p6m1 (1 +8) @ (£: 5).
Using this estimation
Opn (£:€8) <21 (141" (146°") @ (£ )
< 26m=1 (1 4 ¢)mH! (1 +56m) Opom (1 5),

where | |C|]| is the greatest integer less than C.
Lemma 3.5. If f € L, » (R), then éin})wpm (f;6)=0
—

(3.8)

Proof. For a positive real number a, let x{ (t) be a characteristic function of the
interval [a, o), x5 (t) = 1 — x{ (t)and (1) = %, “(t) N x5 (¢). Since f € L, , for

each € > 0 there exists a € R large enough such that
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1
—a > o
fx | f ) £
./’1+x6m d.X + / 1+x6m dx <Z
— o0 a
That is,
_ €
126+ 112N o < 3
Similarly, for § >0
I
HfXZ p’m"’ fX1 pom < 26m+1 (1 +56m)

can be written. Hence for |4 < &
—(a+68 £
[resmm o) +|rermrto] <%
p,m p,m
Thus, we have

(f ) = FO) ()

®p,m (f;0) < sup (5 7o)

Ih| <8

£
= 39
+2 (3.9)
p,m
for 6 > 0. By the well-known Weierstrass theorem, there exist sequences ¢, (x) €

C* (the space of function having continuous derivatives of any order in the interval
[-a—20, a+28]) such that

tim [|(£() = @u ()22 () o0,
n—oo p,m
That is, given € > 0, there exists ny € N such that
a+28 €
|rO=ox 0| < sers (3.10)
whenever n > ng and 6 > 0. Thus we have
|reem=—outamz? o <2 |rO-enz P
€
< = A1
<% (3.1D

for n > ny.
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Applying the Minkowski inequality yields

H (F(+h) = F () 2 ( H ) O

(14 nom)

p,m

+H<<pn<-+h>—%(-»x“*@(-)HM

S (ISR IOIPAIC!

From (3.10) and (3.11) it follows that

(fE+R—FO)x () € atd
sup - <—+sup [|[(@(-+h)—0u (1)) x . ,
sup v syt (@u M=o
(3.12)
for & > 0. By the properties of ¢, (x), for |h| < & and n > ny, we can write
[ () = 9 ()| < -
—6lxerel,,
where x € [—a — 28, a+26]. Thus, we obtain
a+6 €
sup [|(@n (- +1)=@n(N2P0)]| <2 G.13)
|h|<é& p.m
By (3.12) and (3.13) we get
(fEHm—FE)x () €
sup < =, (3.14)
|h|<6 (1 +h6m) oo 2
for 6 > 0. From (3.9) and (3.14), we get
0p.m(f;0) <e
which shows that limg .o @y (f; 0) =0. |

Theorem 3.6. Let g; € (0, 1) such that qj — 1 as A — 0. For every f € L, » (R),

123 (F30 ) = F Ol < Ay (£ 121, )

and

IWa (£33 )= F Ol < Beopn (£: /2], )
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where

B (6m)1[A]S" 6mt1)! (12m+ 1)1 A% 6
A= 212m ! <1 =+ q3m(6m+ql§ + q(3£nﬁ;6r21+1) + (12m+l)(6m+1)L (1 + [)L] m) (3'15)
A A qx

and

m? (6m+1)2
_ sl2m—1 6m 1/2, = ( 1/2
B=2 (1+m%)( T+ (a) ,%>3m+\/6];L T (),
(12m+l)2
om | —SEEE 12
+[Alg; \/ql ’ (ql ’q}”)nmﬂ)'

Proof. Part (a) of Lemma 3.1 implies that

' -  (1—qy) flx+1) fx)
Py (f3a2,%) f(x)—z[,x]%m% , ((1 W)
= o\ T,

Then we have

P 1/p

P (Fian )= O <z | [ [_Uarn=r@) )
122 (F542) = £ Ol < 3] /m /m . ((WM)(IHM); x

a
(1-g2)
= 20, Ing;! / (/

fet) s @],
(l+x6’")

—oo

(g | oy ()
< A, ﬁlqzl/wp,m(f’t)ﬁ
0 Eq( qr )

an

By using (3.8) and taking C = /lt , we have

am

. 26m71 (1 —q ) m .
182 1) = £ Ol < 58 (14 ) 0 (7141, )
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_ 2 (1-g)
o Ay, g

6 1om+1 (12m+1
o 1+ + gt + e
AT

/ .
0 EqC?LZ)I)

From (3.1) and (3.2) it follows that

1B (Fi2: )= F (Vi < Apn (£:12],, ).

where A is defined as in (3.15).
For W, (f; -), the proof is similar.

3.1.5 Global Smoothness Preservation Property

(1 + mf{;") Op.m (f; W%)

Further information on GSPP for different linear positive operators and also singular

integral operators can be found in [18].

Theorem 3.7. Let g € (0, 1) such that q; — 1 as A — oo. For every f € L, ,, (R)

and 6§ >0,

Wpm (P (f): 8) < Caypm(f:6)
and

@p,m (Wy, (f)3 8) < D@y, (f3 6)
where

(67”)![1]?" —on? 1/2 3m
C_<1+Wm+1f ad D=q,* (45 ), I

q
Proof. Part (a) of Lemma 3.1 implies that

=

(3.16)

Py (f3qp, x+h) =Py (f3q2,%) =

9x

(1-qa) / (fet1+h) = flxt1)
2], ey (uqm

dt.
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By this equality, we get

- 1/p
/ P?L(f;qlwx—’—h)_P)L(f;q}Lu-x) pdx
(14 x5m) (14 ho™)
p 1/p

B I

[ ]q,1 ng, |\ 7, qu((l[)L‘]I;)f>(1_|_x6m)(1_|_h6m)

, 1/p

< C(=-a) /’ x—l—t—éi—h f()é—i—t)) g 1 "
2[&] lnq J_ (14 x5m) (1 4 hom)

d=q)lt
E% ( [AC]I;‘ >

| 4 x0m < 96m—1 (1+(x—t)6'") (1+t6m)7

Using the inequality for x, r € R

we have

1/p

P?L(fQ?uux+h)_P7L(f;Q7L7x) pdx

(1+x5m) (14 ho™)

26m-1 (1 — (1o
< %a)pym(ﬂ h)/gdt.
[A)y, Ing; / Eq(“}j'”’)
Besides, from (3.1) and (3.2) it follows that

@p,m (Py (f)3 ) < Cpm (f5 1),

where C is defined as in (3.16).
For W, (f; -), the proof is similar. |

3.2 Generalized Picard Operators

In this section, we continue the study of the generalized Picard operator P g [16]
depending on nonisotropic -distance, in the direction of weighted approximation
process. For this purpose, we first define weighted n-dimensional L, space by
involving weight depending on nonisotropic distance. Then we introduce a new
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weighted f3-Lebesgue point depending on nonisotropic distance and study pointwise
approximation of P, g to the unit operator at these points. Also, we compare
the order of convergence at the weighted (-Lebesgue point with the order of
convergence of the operators to the unit operator. Finally, we show that this type
of convergence also occurs with respect to nonisotropic weighted norm.

3.2.1 Introduction

In some recent papers, various results for the g-modification of approximation
operators have been increasingly studied. For the brief knowledge, it may be useful
to refer to the work of Anastassiou and Aral [16] and references therein. As it is
known, one of the central research directions of approximation theory is singular
integral operators. Among others, we are interested in Picard singular operator in
multivariate setting defined as

1 o o S TS
Px(f)(x)W/w.../wf(xﬁ“’ g—i_t)dtl...dtn (3.17)

- n
=1 -
' H,"lzl Iz

for A =(41,...,A4,) > 0, which means that each component A;(i=1,...,n) is
positive and x = (xp,...,x,) € R". For a general framework related to this operator,
[15, 18, 19, 72, 73] may be referred. In [22, 23], multivariate Picard and Gauss—
Weierstrass operators with kernels including nonisotropic distance were introduced,
and pointwise convergence results were given. Yet, g-generalization of Picard
and Gauss—Weierstrass singular integral operators has been stated, and some
approximation properties in weighted space have been discussed; also complex
variants of them have been studied [24, 26, 28]. Recently, another interesting
improvement related to the multivariate g-Picard singular operators depending on
nonisotropic norm, P, g, has been subsequently stated in [16]. Here, the authors
have investigated pointwise convergence of the family of P) g(f) to f at the
so called B-Lebesgue points depending on nonisotropic f-distance. Moreover,
they have introduced a suitable modulus of continuity, depending on nonisotropic
distance with supremum norm to measure the rate of convergence. Also they have
proved the global smoothness preservation property of these operators.

In this work, for a weight depending on nonisotropic distance, we give analogue
definitions of n-dimensional nonisotropic weighted-L, space and nonisotropic
weighted -Lebesgue point at which we obtain a pointwise convergence result for
the family of ), g (f) to f for f belonging to this weighted space. We also give the
measure of the rate of this pointwise convergence. Convergence in the norm of this
space is also discussed.
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Suppose that R” is the n-dimensional Euclidean space of vectors x = (xy,...,x,)
with real components, and let n € N and 8 = (B1,B2,---,Bn) € R"” with each
component as positive, i.e., f; >0 (i = 1,...,n). Using standard notation, we denote
|B] = Bi+ B2+ - + By Recall that the nonisotropic 3-distance between x and 0 is
defined as

Iil

n

L 1
||x||ﬁ=(|x1|ﬁl+---+|x,,|ﬁn) xeR"

Note that, for 7 > 0, |[x|| is homogeneous, namely,

(-

and has the following properties:

i =\ B
‘3l+---+]t’3"xnﬁ"> = ||x]|g

L |[x][g=0&x=0,
18]
2. [|Pxlg =1 [[x]],
3. lix+yllp < Mg (Iixlls +[1¥llg )

1
where Bin = min{f1,B2,... B} and Mg = Z(H%) 0 (see [101]).
We should note here that when f; = % (i=1,2,...,n), the nonisotropic f3-
distance |[x||g becomes the ordinary Euclidean distance [x| and also that ||.|[5 does
not satisfy the triangle inequality.

Now, we reproduce here the following result and subsequent definition from [16]
(see Lemma 1 and Definition 1 of [16]):

Lemma 3.6. ForallA >0, n€ Nand ; € (0,00) (i=1,2,...,n) with
|Bl=PBi1+ B2+ + By we have

c(n, B, q)
— | P ) dt=1,
[l]‘qm ]14/1([3 )
where
1— t
Pi(B,t) =1/E, % : (3.18)
lq"
and
Ing™!

c(n,B,q) " = ﬁwﬁ,mrq (n) (3.19)

n(n—1) 7’

(1-q)q 2
with T'y (n) is given as in (3.1) and g,y will be given by (3.23) below.
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Definition 3.2. Let f : R" — R be a function. For 0 < ¢ < 1,A > 0, n € N and
Bi € (0,0) (i =1,2,...,n) with [B| = Bi+ B>+ -+ B,. The generalized g-Picard
singular integral depending on nonisotropic f3-distance, attached to f, is defined as

Pap(fi9,%) = 7’A /3 (f:x)

\m /f (x+ )P, (B.1)dt, (3.20)

where P, (B,t) and ¢(n, B,q) are defined as in (3.18) and (3.19), respectively.

The case f3; = % (i=1,2,...,n) clearly gives the operators 7?/l (f3q,x) in-
troduced in [24]. Letting ¢ — 1 implies that P)L’ ! (f;1,x) will be the classical
multivariate Picard singular integrals (3.17).

Now, we present the following definition.

Definition 3.3. Let p, I < p < o, be fixed. By L, g (R") we denote the weighted
space with nonisotropic distance of real-valued functions f defined on R” for which
is p-absolutely Lebesgue integrable on R” such that the norm

/

x)
T+x[Ts

f(x)

p
———— dx
1+ Ix]g

is finite.
For the case p = oo, we also have

£l p =sup{

Lemma 3.7. LetA >0,n€N, and fi € (0,0) (i=1,2,...n) with
IBl = B1+ B2+ -+ Bu. Prpg(f) is a linear positive operator from the space
L,p(R")to L, g (R"). That is,

f(x)
1+ [|x[[ 5

X = (xl, . ,,)ER"}.

[Pap (D, 5 <K.B.a) £l 5

where

1 n(n+1
Knp.q) = max{lMﬁ}(sz (1.8 @) ALy @51 Tg(n+ 1) l?qqq*%)’

in which Mg is the number appeared in the property 3 of nonisotropic distance.
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Proof. Using the generalized Minkowski inequality we have

P\ 7P
HP“; (fs X)Hpﬁ - (/ dx)
RV!
’ o\
c(n, B, q)
A1 (n{ L+ IIg/f (x+)P3 (B, t)dt dx)

c(n, B, q) f(x+¢)
P /</

1+ [|x[[ 5
From the property 3 of ||.||, we have

Prp(f3x)
1+ x|

IN

1
P\ P
dx ) P, (B.t)dt.  (3.21)

Uty Mg (Il + el
T P A

T+ x|lg ) (1+1]tl]
< max{l,Mﬁ ( ﬂ) ( ﬁ) . (3.22)
1+ [Ix[

Taking into account (3.22) and Lemma 3.6, the inequality (3.21) reduces to

[Prp (£:%)]],, 5

< max {1, Mﬁ}%‘”/ (/ X”)”m(ﬁ,t)(1+||t||ﬁ)dt
Rr \R"

< |Ifll, pmax{1,Mg} ( ‘m /P;L |t||ﬁdt)

f(x+t)

—
L+ [[x+tf

By substitution t = [?L]g x, it follows that

181 IIx|lp
Pop (0] 4 <IIfI 7 max {1,Mg } (1+C(”7B7 9) (Al dx) '
P2 (7330l ,p < 171155 P ! H{ (=) lIxlly)
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Now, we shall use generalized 3-spherical coordinates [101] by taking the following
transformation into account:

x1 = (ucos 61)2[31

x2 = (usin 6; cos 92)2[32

Xp—1 = (usinO; sin 6 - - -sin 6,_, cos Gn,l)zﬁnfl

Xn = (usin 0; sin62~~~sin6,,,1)zﬁ",

where 0 < 61,0,,---,6, » < m,0< 6, 1 <2m, u > 0. The Jacobian of this
transformation is denoted by Jg (u, 61, ..., 6,_1) and obtained as

Jﬁ (u,01,...,6,_1) = uz\ﬁ\—lgﬁ (9),

z 2B-1
where Qg (0) = 2" .. ﬁ,, (cos Oj)zﬁf' " (sin @) . . Clearly the integral
j=

wpu 1= [ (6)do (3.23)
sn—1

is finite. Here §" ! is the unit sphere in R”. Thus we have

[Pap (3%, 5

‘m

¥ zwmﬁ“” 1Q, ( )d6
<171l max {1,Mg} | 1+¢(n, / o
0g

)

s
< |IfIl,, g max {1,Mp } HZIBI c(n, B, q)| / u
0
1 -1 nn+1
< Wl pmax{ 1.y} (14 570, B, DAL g iTy 041 ;‘q )

The lemma is proved. ]
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3.2.2 Pointwise Convergence

This section provides a result related to pointwise convergence. Below, we first give
the definition of the points at which pointwise convergence will be observed.

Definition 3.4. Let f € L, (R"), 1 < p < oo, and f; € (0,0) (i =1,...,n) with
IB| = Bi + B2+ ...+ Bn. We say that x €R" is weighted B-Lebesgue point of f

provided
1
1 "7
m<{ —— n_ dt =0.
h—0 hz‘ﬁ‘ Ht“glﬁl <h

Next, we give a pointwise approximation of the generalized Picard operators
Py p (f) to the function f € L, g, at any weighted 3-Lebesgue point of f.
Theorem 3.8. Let f € L,g(R"), 1 < p < oo, with B; € (0,0) (i =1,...,n), and
|Bl=PB1+B2+...+ Bu Then we have

fx+9—F(x)
1+ lt][5

lim Py p (f39,x) = f(x)

at any weighted [-Lebesgue point x of f.

Proof. Let x be a weighted B-Lebesgue point of f. Then for any € > 0, there exists
an 1M1 > 0 such that 4 < 1 implies that

Y

dt} < E,

dt <ePh2Bl.

fx+1)-f(x)
1+t

1
{Wﬁnﬁﬁd
which clearly means that

Fx+—r|
I+ [ell

It ;7P <

Transforming the last integral into the generalized $-spherical coordinates, for # <
n, we get

fu
el <n

p
S+t = f(x) Qg (8) 2P d0du

x+ (uB) )
1+HtHB 24

1+un

[ )

7/ W21 g (1) du < P28,
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where

Q4 (6)d6. (3.24)

B
+BA | F(x+t)— £ (%) Py (BLt)dt
A" el 5Pl =n
_ cnB.a) Fxt)—F(x)
- W\ﬁ\ f||t||j 1+||t|| P?L (th) (1 + ”tHﬁ> dt

B [ teat) |
TP f“t@mmlf( t) — £ (x)| P (B.t)dt

Applying Holder’s inequality to the first integral, then we have

1

rcorl" p g dt} ’

AP 1+|ItIIB
1
q
C("7ﬁlq)
{ 37" fnté”'<n( ) 780 }
+c<r;[|"élq)f g (x+t—f(x)[Py(B.t)at
(Alg litl5 "™ =n
1
21B| c(n,B.q) fx+t)—f ’
§(1+” ) w T, (B0t
(Alg Ikl <n
el g ()= f ()P (B )t
TR
=1 (A)+ 4 Q)

Now passing to the generalized f3-spherical coordinates, J; (1) gives rise to

x+(u9 —f(x) i r
Ji(4) 1+n*ﬂ {/ /Snl o m Qﬁ(e)uzﬁlpg(ﬁ,u)dedu} :
(3.25)
where
c(npq9) . (3.26)
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Therefore taking into account (3.24) , (3.25) can be expressed as

Ha)= (1 +n@) {./O"gw)u”lpﬁ <ﬁ,u>du}’l’.

Integrating by parts two times gives that there exists a constant A, such that J; (1) <

(1 e ) €A, (see [16]).

For J; (1), from (3.22) we get

c(n,B.q)
)= o Aﬁﬁmvw+w—ﬂmmunwm

IA

C(n,l%q)/ If (x+t)]
BT i on 1 lx+tll

c(n.B,q) ‘
7 P01 o Pa (B0

2
lle];" >n

c(n.p.q9) |f (x+1)
A max{l,MB}<l+\|x\|ﬁ)/‘mlﬁznm(l+\|t\|ﬁ)P;L(l3,t)dt

c(n,B,q)
T TS

(1+|\x+t|\ﬁ)m (B, t)dt

IN

Further applying Hélder’s inequality J, (1) gives that

h) < SP-a) max {1, Mﬁ}(1+||x||ﬁ)

i
dt},, { | (1 ) P (8.0

) { [
LB o P (B0,

[M\m

_ C([’;]ﬁﬁq max{l Mﬁ} (1+ ”X”B) Hf“Pﬁ

L[| (11415 P2 B0

c(n,B,q)
s

1
f(x+t) th}q
L+ [x+t|g

1

(1-+1tl) P (B.0) e}

n F®[xnPr (B0,

where yy, is the characteristic function of the set of t such that ||t|| 2Pl > n.



94 3 g-Integral Operators

Taking into account the fact that (1 + ||t|\ﬁ) Py (B,t) € L, g, then the above
inequality takes the following form:

220 < & P max (1t} (1 1315) U
q

1

x w!@ﬂwﬁwmf@ﬁKum@mmwm
R

c(n,B,q)
TP

If &) [l2nPa (B V)],

-

:max{LMﬁ} (1+‘|X‘|ﬁ> HfHPﬁ C([’Z[l}lgq)
q

sup | (1+11tl5) P2 (B0
It >n

- {C(mﬁﬁ?lq) [ (1 1tl5) 2 (lmHl}q i C(M\;ﬁ?lq) £ Gl o (B9
(Alq Mg 3.27)
a3.

The first factor including supremum norm on the right-hand side of (3.27) tends
to zero as A — 0; Indeed,

Aa™ g

ey o (1+1)

Y o
Ala 1029 20 £, | 00

[A)g"

18]

B 1 2" (1=g+ =gt

Bl 1—gq [
Aa T sn T (M]q" +(1—q)q"||t|ﬁ)

1Bl 21

o [1 v (9 +a-on®)

(3.28)

which clearly tends to zero as A — 0.
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For the second factor in (3.27) we have

c(n,B,q)
AP

‘Xn<1+|t|ﬁ)7)l(ﬂ7t)‘1§(Wﬁl / (1-+11tlg) P2 (8. dt

115"

—¢(n. B. I S
b / ((1—q>||t||ﬁ)dt

12

+c(n, B, q) [)L]J/‘L" / Ml dt.

E,((1-a)1t]g)

(3.29)

;
l1t15"" >

=
&7

Since the function ) is integrable on [0,0), the first and last terms of

1
Eq((1-q)lltl|g
(3.29) tend to zero as A — 0. Finally, from the final proof of Theorem 2 in [16], the
last term of (3.27) also approaches zero as 4 — 0.

Hence we obtain the assertion of the theorem. |

3.2.3 Order of Pointwise Convergence

Now, we shall discuss the order of pointwise convergence that we have already
presented above. For this purpose we give the following generalization of the
concept of weighted B-Lebesgue point.

Definition 3.5. Let f € L, 3 (R"), 1 < p < oo and B,y € (0,0) (i =1,...,n) with
Bl =B1+ B2+ ...+ Bu We say that x €ER” is weighted ¥, 3-Lebesgue point of f

provided
1 L
lim —/ n_ dty =0.
hﬁo{hzﬁJﬂ/ ”lHé‘m<h }

Theorem 3.9. Let f € L, g (R"), 1 < p < oo, with i € (0,0) (i =0,1,...,n), and
Bl =PB1+ B2+ ...+ B Then we have

fx+9-f(x)
1+ |t

Y
|Prp(fiq,%)—f(x)] =0 ( 2”>(?L—>0)

at every weighted v, B-Lebesgue point x of f for y < mln{ \ﬁ\ }

Proof. Let x be a weighted v, B-Lebesgue point of f; then for any € > 0, there exists
an 1 > 0 such that 4 < 1 implies that
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/tllﬁ'ﬁ <h

Transforming into the generalized -spherical coordinates, if & < 11, we get

/t|| g <h
p

h X+ (u0) )
- / / 28| Qp (Q)MZ\ﬁHde du < ePp2Bl+Y.
sn 1 1+u I

Fx)—rx)]

dt <ePh?Blr. (3.30)
1+|t]

Fx+—rx)|

dt
1+ |t][5

For our future correspondence we can simplify the above expression by setting
n
Gg(n):= / P~ (u)du < ePn?PHY, (3.31)
Jo

where g (u) is given by (3.24).

Now, as in Theorem 3.8, we need to estimate J; (1) and J, (A) similarly. For
this aim, integrating by parts twice and taking account of (3.31), then J; (1) can be
estimated as

1
ep/" P10 (B ) du}p
0

) IBI+7)? {83 (B}, (3.32)

2IB|
n

where Ay (B,7) := [5 u?PHY=1PY (B, u)du, with P (B,u) given by (3.26). Note
that Ay (B,y) > 0as A — 0. Indeed

mmw=fﬂWHﬁmwm

% %)71511,[
= ietn.0 5 | =g
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For J, (1), from (3.27) we have

-

120 = max {15} (1+xll5) 11,5 (M’fﬁ‘” wup | (1 1tl) P2 (B.)

2
TP 0

1

« {C(’“Bvq) [ (14 1t15) P2 ([“)Hl}q + C(’“%‘q) £ o Pr (B,

g Ha
where
c(n,B.q) su ‘(1+Ht|| )7) (B t)‘—o [)L]% (A —0) (3.33)
WP P | |
I3 =n

Indeed, from (3.28) we can reach to the following Inequality:

c(np.a)
—5 - sup |{1+]ltllg) Pr(B.t)
M]qi[)t]l;m t||§|‘yb[>n’( ﬁ) ‘

vk (1 + -0

1Bl 2

ITi—o (M]q" +(1-g) qknf) ’

<c(nB.q) Ay

S

which gives that (3.33) holds for y < @ For the last term of J, (1) we get that

c(n,B,q)

AP |f(")|H%nPA(ﬁ=t)H1=0(M]3¥’) (A—0). (334
q

Actually, by taking into account the fact that HtH? > 1 and making the substitution
t :[A]gx, it follows that
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c(n.B.q) X dt

C(”vﬂﬁ)
—7 5 L@l Pr (B, 1)l = @ o ———
wimp ‘ M]“’W‘B‘ " =n Eq(w';m)
[Alg"
c(n I3 at
< PO g [ P
nAZ ALy lItl;"™ >n Eq((lq)ﬁnh,
[Alg"
_clnba) a1 16157 at
1 ) /th

> o (1= a) )

tends to zero as A — 0, which indicates that (3.34) is satisfied. Finally for the other
factor of J, (1), we get

LD | (141t 2 (B0 =0

lim —————=
2o !

as in (3.29) and this completes the proof. ]

3.2.4 Norm Convergence

In this section, we give a convergence result in the norm of L,, g (R").

Theorem 3.10. Let f € L, g(R"), 1 < p < oo, with B € (0,00) (i=0,1,--- ,n) and
|Bl = B1+ Ba+ -+ Bn If the following condition

1
i [ x+ 0~ F )], pdt =0, (335)
1057 <n
is satisfied, then we have
11mH73M3 fix) Hpﬁ

Proof. From (3.35), we have for any € > 0, there exists a § > 0 such that & <
implies that

[ 10— ], gt <erP

4" <
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Transforming the integral in the above inequality into generalized (-spherical
coordinates, then we get for 4 < §

|+ r el pat

ol
2
167" <n

= it

hence, for simplicity, using the similar setting as in the proof of Theorem 2 of [16],

we denote
kw=[ |7 (x+wo)) s

and considering k (u), we get that

Qg (0)u*P171a6 du < en?Pl;

x+(u6 ﬁ) f(x)Hpﬁ

Qr(0)d6 3.36
iy 5 (6) (3.36)

/ 1f x4+ = F )], 5 dt:/ohuz\ﬂ\*lk(u)du < en?lbl

[HER

Using generalized Minkowski inequality we conclude that

. p %
st rt= ] )
R?
1 ~
1+uxuﬁﬁ£ 1 (x+) = (¥)] Py (B, ) d

_ < B, q)
[;L]‘\Iﬁ\ (Hé

cnBq) [ [lrx+y—rmi|”
[M\ﬁ\ 114(/ L+ [xl[g

Rn

Pap (fix)— f(x)
1+ [x|[g

1

P P
dx)

1

dx) P, (B.t)dt

IN

- /Hf (x+8) = F (.5 P (B, dt

W\ﬁ\

ZC(Tiﬁf;‘q) [ &+ 70l 575 (B0 at
T s

cmnB.a) [ .

A / 17 (0 — £, 5P (Bot)dt

HtHW>5

= L)+ L2 (2).
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Therefore using generalized f3-spherical coordinates, L; (1) can be estimated as

L) = S [ I f WP (B0
q

n
208 _s

1413

h
< [ k1P (8w du

where k(1) is given by (3.36). Using two times integration by parts, we easily
obtained that there exists a constant Cy, such that L; (1) < £C;.
Since

P p
1f (x40 = f ()], < /W "

R

Fix+t) | ’

= /m dx
]Rn
f(X) p P
- /m dx
Rn

< max {1,Mp} (1+||t||ﬁ) L1818

then, from (3.29) L, (1) tends to zero as A — 0. The theorem is proved. [ |

3.3 g-Meyer-Konig-Zeller-Durrmeyer Operators

Trif [150] studied some approximation properties of the operators Mn,q S (x). Very
recently Heping [97] established some approximation properties based on g-
hypergeometric series of these operators. Also Dogru and Gupta [55] proposed some
other bivariate g-Meyer—Konig and Zeller operators having different test function
and established some approximation properties. This section is based on [84].
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3.3.1 Introduction

Trif [150] introduced the g-Meyer—Konig and Zeller operators as

A

Mg f(1) = f(1),
where
i) = [0 - | "]
j=0 q

Govil and Gupta [84] introduced a new sequence of the Durrmeyer type integrating
g-Meyer—Konig—Zeller operators as follows:

Definition 3.6. For f € C|0, 1], we define the g-Meyer—Ko6nig—Zeller—Durrmeyer
operators (g-MKZD operators) as

L my,
My q(f) =My g(fix) =[nly 2 My kg (X /0 %f@)dqt*‘mm&q(@f(o)

=

= 2 Wo e (f ) e g (%) (3.37)

k=0

Alternately we can rewrite the operators (3.37) as
oo 1 1
M, 4(f3x) = z mn,k.,q(x)/ —tkil(qt;‘I)nflf([)dqt"‘mn,o-,q(x)f(o)»0 <x <1,
k=1 0 By(n,k)

where 1, i 4(x) = (q(;g;i%(x;q)”ﬂxk.

We may note here that the Meyer-Konig—Zeller basis function m,,  ,(x) consid-
ered in (3.37) and Mn’q f(x) are the two alternative forms having the same value.

3.3.2 Estimation of Moments

Theorem 3.11. For all x € [0,1], we have the following identities:

My g(1:x) =1, My, 4(t:x) = x
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and for all integers n > 3, we have

[2]gx(1 —x)(1 - q"x)
[n—1]q

Mg (1) = x° + = Eng(x),

where

x[2]4[3]4q" ! n
0<Euq(x) < m(l —x)(1—gx)(1—4"x).

Proof. Clearly by definition, we have M, ,(1;x) = 1. Also by easy computation,
we have

L | o—1/ k1] ks — 1],
/o}ﬁeqm,k)tk+ 1(‘”’q)”*ldqt_[k gl It k+s— 1,0

Thus

© Tnak] k=1, K"
i = a3 | }xk ERRIETR

— (x < |n+k [k]4
_( v‘Z)nJrlkz,l[ k LXk[n—i—k]q

(X@)n+1 Z |:i’l+k—1] F =
q

Next for the estimation of M, ,(t%;x), we fix an integer n > 3 as well as x € [0,1)
(the result is trivial for x = 1). We proceed as follows:

) (e < [n+k n+k—1],! [k+1],!
Mn,q(tz’x)_(x,‘Z)nJrl];l{ k } Xk[k—l]q! [nq+k+l]z!

n+k—1 [k+1]
R v e

- n+k:| k [k+2]q
=x(X;¢)nt1 X
(i)t kz;){ ko], Inrk+2,

On the other hand, as above we have

- |n+k—1
R
k=1 q
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and on using this, we get

M 4 (t%x) — x*

o 3. gy |k | A Rk 2
+(45q)nt1 [n[ﬂq;]q

n+k—1
xq”“z n+k+2]{ k ka

([n+k]q(1+4+qz[k]q)—[k]q(H‘q+qz[n+k]q)) +(X5q)n1 [n[i]-q;]fl
X(X:q)ns1 Z m {n+1]§— 1ka((1+q){[n+k]q— ko))
: (1+q)x
+(X’Q)n+lm

X(Xq)nt1 2 m {HH;_ l]qu ((1+61)61k[n]q)

(1+q)x
(XLI)nJrl[ 2]
n+k 1 k
(an+12n+k+2 { ] 1+q)q)-
Thus
1+ q) (5911 o glnt+k=1g[n+k—2
Mo (2 = 2o X ikl _
O e e T 2 mrk+2, | & qﬂc
Since
k1] 1 Blyg" !
[n+k+2], n+k+2],
we get

1+q)(x;
M,,7q(t2;x) — 2 + ( 6] 61 n+1 Z [ ] qx)k

CE q

Cx(1+9)Blgg" (@)n1 & 1 ntk—=21 2
11, k_zomkmq{ ! L(“'
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By the Corollary 1.1(c), we have

i[n+k—ﬂ = L (-x(-g%)
q

k=0 k 4%;q)n—1 B (6q)nt1
Hence
Mn‘q(tz;x) :X2—|— [z]flx(l _x)(l _qnx) _En‘q(x)7
' [n—1]q '
where
x(1+4)Bleg" ' (g)ni1 & 1 [n+k—2} .
0<E,q() [n—l]q kzo[n+k+2]q k q(q-x)
(14 q)Blgg" " (5 @)ni1 & 1 [n—i—k—Z] (P
= n—1], Sh+k=2d | k],
(14 q)Blgg" " 5 @)ni1 & [n+k—3} )
[n—1]y[n—2], kgb k q(q %)
x(1+q)Blyq" " (@)t 1
n=1gln=2ly (5@
_ x[Z]q[?)]qq”*l "
= S (00 g (1 =)
This completes the proof of Theorem 3.11. ]
Definition 3.7. For ¢ € (0,1), we define M. ,(f,1) = f(1) and for x € [0,1) and
m‘x’ykaq(x) = 4:q ) (X;q)w7
Meog(f) = Mg 2 Moo g (¥)q'~ k/ Moo 1,4 (qt) f (1) dgt + Mes 0.4 (x) £ (0)
= 2 W k(£ 1.4 (5)- (3.38)

Lemma 3.8. Forq € (0,1), we have
M. 4(1;x) =1, M 4(t;x) = x.
Forx € (0,1) and s > 2, we have the following recurrence relation:

M 4(t%x) = Mw7q(t“1;x) —g*! (1— x)Mw,q(tsfl;qx).
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Proof. By simple computation, we have
> Meoieq() =1, 3 (1= e g x) = .
k=0

Thus by Definition 3.7, we have
Mo 4(1:x) =1, Moo 4(t;x) = x.

Also it can be easily observed that

/1tsm kq(qt)dgt = A /1 155 (gt3q)wdyt
o PR (giqhk Jo
— k [k+s] ( q)k+s+l _ (1 _q)quk[k—I—s]q!

(q ) [K],!
Using the formula (see [100, pp. 76-79]) jol *(qt;q)wdyt = [K]'(1 — g)**! and
G Mo g (x) = (1 = X)me i g (qx), we get

e i (1= ) gk — 145,
(4:9)k—1

i(l— 1= ) (1= g5 g ().

k=1
=S 1) (1= Do) = 3 (1 =45 (1= )by ).
k=1 k=1
Mg (P50 — g (1= 2) D (1= ) (1= 5 D g ()

_ Mm,q(l‘xil;x) _ q‘Y71(1 —X)Moo#(l‘sil;qx).
This completes the proof of recurrence relation. |

Remark 3.1. Using the recurrence relation of the above lemma, we obtain
Me y(t%3x) = x — g*x(1 — x),

Mw,q(ﬁ;x) =x—q2x(1 —X) —q3x(1 —X) +q5x(l —x)(1—gx),

and

Me g(t*,x) = x—*[3]x(1 =) +¢° [3]x(1—x) (1 —gx) —¢°x(1—x) (1 — gx) (1 — g*x).
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Remark 3.2. For the limiting operators, if T gm(x) = Mew 4((f —x)™;x), then by
Lemma 3.8, it can be easily seen that

Togo(x) =1,T0 g1(x) =0,T 42 (x) =x(1 —x)(1 — qz),
T g3(x) =x(1=x)[1 = ¢* = ¢+ ¢ (1 — qx) — 2x+ 3¢
and

T ga(x) =x(1—x) [q5 [3]4(1 —gx) — [3]qq2 — q9(1 —gx)(1— qzx)
+4¢°x(1 — x) +4¢°x — 4g°x(1 — gx) — 2¢°x*] + x — 4x> + 6x° — 3x*.

3.3.3 Convergence

Theorem 3.12. Let g, € (0,1). Then the sequence {M,4,(f)} converges to f
uniformly on [0, 1] for each f € C[0,1] if and only if lim,,_,e q, = 1.

Proof. Since the operators M, 4, are linear positive operators defined in C[0, 1], the
well-known theorem due to Korovkin (see [113, pp. 8-9]) implies that M, 4, (f;x)
converges to f(x) uniformly, [x € [0,1);n — oo] for any f € C[0,1] if and only if

My g, (t5x) = x' i=1,2 [x€[0,1);n— o] (3.39)

If g, — 1, then [n],, — oo; hence, (3.39) follows from Theorem 3.11.

On the other hand, if we assume that for any f € C[0,1], My 4,(f,x) converges to
f(x) uniformly [x € [0,1);n — o], then ¢, — 1. In fact, if the sequence (g,) does
not tend to 1, then by Theorem 3.1, E, 4(x) — 0 as n — oo for all x € [0, 1). Also for
0<g<1,wehave [n—1], — ﬁ as n — oo; thus,

Mg (%) = x° + [2x(1 =2)(1 = q) 22> (n— ),

which leads to a contradiction. Hence, g, — 1, and the proof of Theorem 3.12 is
thus complete. ]

For f € C[0,1], ¢ > 0, we define the modulus of continuity @ (f,#) as follows:

olf.a):= s /()= f0)]
/:)TE)[VO%II]

Theorem 3.13. Forany f € C[0,1], we have

Meog(f) — ()| < 20(f,27'V1—¢2),

where @(f,8) denotes the modulus of continuity of the function f on the segment
[0,1].
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The proof of Theorem 3.13 follows along the lines of [151, p. 13]; we omit the
details.

Lemma 3.9. Let f € C[0,1] and f(1) = 0. Then we have

Wk ()] < Wi (1) < o(f,") (146,
and for any n,k, we have

Weei ()] < Wear(1£]) < @(f,¢") (144",
Proof. By the well-known property of modulus of continuity (see [113, p. 20])

o(f,At) <(1+A)o(f,t), A >0,
we get
IO =1f@) = fD < o(f;1-1) <o(f,q") 1+ (1-1)/q").

Thus,

My k1,9 (qt)
(1—q")(1—q"*1r) ™

Was 1) < Was(111) =l [ a*4170)

1 My j—
<y [ a1+ (=0

o[ (1- )]

q'(1—-¢")
q”(l _ qn+k)

:w(f,q”)(1+ )Sw(f,cI”)(qu’”)

Similarly,

1=k ,1
Wer < WslD) = T [ 10 (o)t

gk 1
<of.g) = [+ 0 -0)/a g (ar)dyt
=o(f,d") 1+ (1= (1-¢)/q") = o(f.¢") (1 +¢" ).
Lemma 3.9 is proved. |

Theorem 3.14. Let 0 < g < 1. Then for each f € C[0,1] the sequence {M, 4(f;x)}
converges t0 M 4(f;x) uniformly on [0, 1]. Furthermore,
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||Mn7q(f) _M°°7q(f)|| S Cq (J)(f, qn)u (340)

11-2¢
1—q
Proof. The operators M, , and M., , reproduce constant functions, that s,

where C; =

My q(15x) = Mo 4(1;x) = 1.

Note that, without loss of generality, we may assume that f(1) = 0. If x = 1, then
by Lemma 3.9, we have

(Mg (f31) = Moo g (f5 1) = W n(f) = F(D)| = W ()] < 200(F,4")-
For x € [0,1), by the definitions of M, 4(f;x) and M. 4(f;x), we know that

n =

|Mn,q(f;x) g (f3 x)| = z n k(f)mn,hq(x) - zAwk(f)mwk,q (x)
k=0 k=0
< 2 |Wn7k(f)_W°° ( |mnkq + 2 |W ||mnkq( ) moo7k,q(x)|
k=0
+ 2 [Weo i () |Meo g (x) =2 11 + o+ 5.
k=n+1
First we have
k Xk
[y kg (%) — Moo e g (X) ] := HH LX"(x;q)nH—@(x;q)w’

="V Ao - o+ twaed "] -l

oo ) n+tk .
< My g g(x) ‘1 - JJ a —q’x)‘ e pg(x) | [T1—47) — 1}
j=ntl j=n
qnfk
< :1 (M ke g (X) + Moo g (X))

where in the last formula, we use the following inequality, which can be easily
proved by the induction on 7 (see [100]):

n

1-T](1—a) <

s=1 K

as, (ar,...,a, €(0,1), n=1,2,... 00).

M:,

1
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Using the above inequality we get

(gt 1
Mk lg(d) Poojit (@:qt) | dgt

At
|Wn.,k(f) 7Ww,k(f)| < /0 qlik|f(t)| ‘["]‘1 (1 —q”t)(l _qn+lt) 1—

1 1
< 1=k t’ ——’w, t)dyt
< [ a1y~ = e glandy

_1l(qt
1y k—1,4(qt) mm_k,l,q(qt)‘dqt

Uk
+/0 q lf(t)l["]q’(1fqn;)(1,qn+1t)*
qn+l 1 Ik
< [ O o)yt

(1] (i p1,4(qt) + Moo k1 4(qt) )dgt

qnfk "1 B
g d e

—k
= ¢" Wi (If1) + 1 A+ "1l gWee i (I11)

n—k n
q n k—n 5w(f7q )
l_qw(ﬁq )1 +q )éil_q :

Mo(f.q")(1+47") +2

Now we estimate /; and I5. We have

n n 5(1) ,n
I — Z nk,q 1(53)7

and

LE<o(f,q") Y, (144" ") meyy(x) <20(f.q" 2 Pei(q:%) < 200(f,
k=n+1 k=n+1

Finally we estimate I, as follows:

n n—k
< Y 0(f,q") (146 ) T (Mg (1) + e (5)
k=0 4

< M i (M g (X) + Moo 4 (%)) < élwl(ff’qq”)

B S A
Combining the estimates of 11,1, 5 for each x € [0, 1), we conclude that

11-2
Mg () = Moy ()] < S 0(f,").

This completes the proof of Theorem 3.14.

q").
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Remark 3.3. As a special case when f(x) = x>,0 < ¢ < 1, we have

[M.q(f) = Moo g (/)| = €164" = €2 0(f,4"),

where ¢| and ¢, are positive constants independent of n. Hence, the estimate (3.40)
is sharp as the sequence ¢" in (3.40) cannot be replaced by any other sequence,
which decreases to zero more rapidly as n — co.

Lemma 3.10. Let L be a positive linear operator on C|0, 1] which reproduces linear
functions. If L(t?,x) > x? for all x € (0,1), then L(f) = f if and only if f is linear.

As an application of Lemma 3.10, we have the following theorem for our
operator:

Theorem 3.15. Let 0 < g < 1 be fixed and let f € C[0,1]. Then M., 4(f:x) = f(x)
forall x € [0,1) if and only if f is linear.

Theorem 3.16. For any f € C[0,1], the sequence {M..,(f)} converges to f
uniformly on [0,1] as g — 1—.

Proof. The proof is standard. We know that the operators M., , are positive linear
operators on C[0, 1] and reproduce linear functions. Also, by Lemma 3.8, we have
Mo 4(t;x) =x

Moo y(1%%) = (1 — P)x+ g7 — X2
uniformly on [0,1] as ¢ — 1—. Thus M. 4(¢';x) — x',i = 0,1,2, and by the well-
known theorem due to Korovkin, we obtain the desired result. |

Theorem 3.17. If f € C)[0, 1], then

Tm’q74 (x)
l—gq

Mg (52 = 1) = 5 L FO (1 = 2)| < 207, /T=9) | Tuga()+

)

where T.. 42 (x) and T. 4 4(x) are given in Remark 3.2.

Proof. Letx € [0,1] and f € C?)[0,1] and then by Taylor’s expansion, we have

P (x)
2!

G~ o

(t—x)>+ 5

(t—x)+

where & lies between x and ¢. By Definition 3.7, we have

_ @)(£)_ @)y
Moy () = ) = 5 PO )1 =) < My (M(r —x>2;x> .




3.3 g-Meyer—Konig—Zeller—-Durrmeyer Operators 111

Also we have

Mg (w(t —x)z;x> < %w (f(2), \/qu) [Tw,q,z(x) + T""q—“(x)} :

l—gq
and this completes the proof of Theorem 3.17. ]

Our next direct theorem is in terms of the second-order modulus of continuity,
for this firstly we introduce some basic definitions:
For § >0and W? = {g€ C[0,1]: g ,g € C]0,1]}, the K—functional are defined as

Ka(f,8) = inf{||f —g|[+nllg || : g € W2},

where norm-||.|| is the uniform norm on C[0, 1]. Following [50, p. 177], there exists
a positive constant C > 0 such that

Ka(f,8) < Can(f, V), (3:41)
where the second-order modulus of smoothness for f € C[0, 1] is defined as

o (f,V8)= sup  sup [f(x+2h) =2f(x+h)+ f(x)].

0<h<\/8& xx+hel0,1]

Theorem 3.18. Let n > 1 be a natural number and let go = qo(n) € (0, 1). Then for
f€C[0,1],q € (q0,1), there exists an absolute constant C > 0 such that

[Mag(f1) = f(x)] < Con (£.V5),
_ [2gr(1=x)(1=¢"x)
where 6 = L[mq—
Proof. Letx € [0,1] and g € W2. Applying Taylor’s formula

80 = ¢+ (-0 )+ [ (=) ') du

and using Theorem 3.11, we obtain

My 4(g5x) — g(x) = My 4 (/xt (t—u)g"(u) du;x) )
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On the other hand

[ =0 ¢ du| < =221

Thus

Mg (8:%) = ()| < My gt —x)*10)18" -
Also by Theorem 3.11, we have

1 k— t
M) < ly 3oy (a'~ | e )yt (5O < 11

Therefore,
(Mg (f3x) = f(X)| < Mg (f — g:x) = (f — ) ()| + [ M 4(g5x) — g(x)]

[Z]qx(l —x)(1=¢"), ,
)

Taking the infimum on the right side over all g € W? and using (3.41), we get

<2||f—gll+

< Can(f:V§),
and the proof of Theorem 3.18 is thus complete. ]

Remark 3.4. Tt may be observed that for ¢ = go(n) — 1 as n — o, the sequence
{M,,4(f)} converges to f uniformly on [0, 1] for each f € C[0, 1], because

1— n+1
lim [n+ 1], = lim 1= (golm)"" = oo,
n—eo n—e 1 —qo(n)

if lim go(n) = 1.

n—seo



Chapter 4
q-Bernstein-Type Integral Operators

4.1 Introduction

In order to approximate integrable functions on the interval [0, 1], Kantorovich gave
modified Bernstein polynomials. Later in the year 1967 Durrmeyer [58] considered
a more general integral modification of the classical Bernstein polynomials, which
were studied first by Derriennic [47]. Also some other generalizations of the
Bernstein polynomials are available in the literature. The other most popular
generalization as considered by Goodman and Sharma [82], namely, genuine
Bernstein—Durrmeyer operators. In this chapter we discuss the g analogues of
various integral modifications of Bernstein polynomials. The results were discussed
in recent papers [45, 62, 86,89,92,94, 121], etc.

4.2 g-Bernstein—-Kantorovich Operators

Recently, Dalmanoglu [45] proposed the g-Kantorovich-Bernstein operators as

[k+1]g/In+1]q

Koalfo0) = I+ 11, Y, puslai) | JOdt, xe0.1] @D

k=0 (Klg/In+1]q

where
—k—

Pnx(q:x) -—[ L H (1—g').

In case ¢ = 1, the operators (4.1) reduce to well-known Bernstein—Kantorovich
operators

n (k+1)/(n+1)
K70 = 00 S e [ o, o)

k=0 /(ﬂ+1)

A. Aral et al., Applications of q-Calculus in Operator Theory, 113
DOI 10.1007/978-1-4614-6946-9_4, © Springer Science+Business Media New York 2013
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where p, x(x) is the Bernstein basis function given by

puste) = () 41—

4.2.1 Direct Results

For the operators (4.1), Dalmanoglu [45] obtained the following theorems:

Theorem 4.1. If the sequence (q,) satisfies the conditions lim, g, = 1 and
lim,, e ﬂlq— =0and0< g, <1, then

||Kﬂyt](f7'x)_f|| —>O,I’l—>°°,

forevery f € C[0,a], 0 <a < 1.

Proof. First, we have

1 n—k-1 [k+1]g/[n+1]4
gl =1, 07t || TT 0= | it
-0

k=0 q s Klq/[n+1]q

Also by definition of g-integral

(k+1]q/[n+1]q (k+1]q/[n+1]q [Klg/In+1]q
/ dgt = / dgt — / dgt
Jklq/[n+1]4 0 0

=(1—q)miqj—(l—Q) 7 iq"

[n—l—l]qj:O n+1], )
_1-g¢ - i_ 4
[+ 1]q([k+ o= [k]q)jg(')qj S

Thus K, 4(1,x) = 1. Next

(k+1]q/[n+1]q

n n—k—1
Knalt) =t 1), X0t 7] F T -0 .
q

k=0 5=0 (Klg/In+1]q
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Again by definition of g-integral

(k+1]q/[n+1]q (k+1]q/[n+1]q (Klg/In+1]q
/ tdgt = / tdgt — / tdgt
Mg/ In+1]q J0 0

o kg o oyl
=@ ‘1)[n+1]qj§)qj[n+1]q D5, &7 e,

n n—k—1
Kuglt) =+ 1,3 7| ¢ T 0= g+ D)
g 5=

[n]q ¥ 1 1
n+1],  14qn+1],

To estimate K, ,(¢%,x), we have

(k+1]q/[n+1]q 2 (k+1]q/[n+1]q 2 (Klg/In+1]q 2
/ tdqt:/ tdqt—/ todgt
[Klg/In+1]q 0 0

T e e T L 1 ),
q

Therefore using [k + 1], = g[k], + 1 and using the similar methods as above, we
have

[lgln—1]q @+¢°+q > | [y ¢*+3q+2 1 1
X
12 1+q+4¢? n+132 14+9+4° n+121+g+4¢*

Kn7q(t27x) =

Replacing g by a sequence {g,} such that lim, .g, = 1, it is easily seen that
Ky 4(t',x),i=0,1,2 converges uniformly to r'. Thus the result follows by Korovkin’s
theorem. |

Theorem 4.2. If the sequence (q,) satisfies the conditions lim, g, = 1 and
lim,, e ﬂlq— =0and0< g, <1, then

|Kﬂyt](f7'x) _f(x)| S 2w(f7 \/5_71)7
forall f € C[0,a] and 8, = Ky 4((t —x)?,x).
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Proof. Let f € C[0,a]. From the linearity and monotonicity of K, 4(f,x), we can
write

Kng (.2) — ()] < Karg (1) — F()]2)
n n n—k—1 [k+1]4/[n+1]q
=[n+1]q2qk[ ] ST 09 [ 0 - el
s=0 [

k=0 k q Klg/[n+1]q
On the other hand
1) = f)] < o(f, |t —x]).

If |t — x| < 8, it is obvious that

(t—x)?

-5l < (14550 ) 0.9 @2)

If | — x| > &, we use the property of modulus of continuity
o(f,A8) < (1+M)o(f,8) < (1+AM)a(f,8),A €RT

as A = ‘tgx‘ . Therefore, we have

(t—x)°

FORVIOIEY CRES= PR @3)

for [ — x| > 8. Consequently by (4.2) and (4.3), we get

[Kong(f) = f()] < [”"‘1]4&‘17]{ {n} xk
q

k=0 k
n—k—1 (k+1]q/[n+1]q (t - x)2

=g / 1+ L7 (7, 8)dyt
s:o( ) Ky /[n+1], ( 82 )w(f s

= | Kng(l,x)+ %Kn,q((t—x)z,x)) o(f,0).

Taking g = (g,) satisfies the conditions lim,_e g, = 1, lim, e qu_ =0,and 0 <
gn < 1, using the methods of Theorem 4.1, that

lim K, 4, ((t —x)*,x) =0,

n—soo

letting 8, = K 4, ((t —x)?,x) and taking § = /§,, we finally get the desired result.
This completes the proof of theorem. ]
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4.3 g-Bernstein—-Durrmeyer Operators

For f € C[0,1],x € [0,1],n=1,2,,,,;0 < g < 1, very recently Gupta [86] defined
the g-Durrmeyer-type operators as

n S|
Dy g(f,%) = (Dugf)(x) = [n+ 1] > g *pur(g:x) /0 FOpu(g:qt)dgt  (4.4)
k=0 b
where

Puk(g:x) == [Z]qunslil(l —¢'x).

It can be easily verified that in the case g = 1, the operators defined by (4.4) reduce
to the well-known Bernstein—Durrmeyer operators

DA =0+ 1) S pus) [ FOprs(ed
k=0 0

where

e

4.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results:

Lemma 4.1. For n,k > 0, we have

Dy(1—x)1 7 = —[n— klg(1 — qx)2 1, 4.5)

Proof. Using the g-derivative operator, we can write

1 n—k—1 ) n—k—1 .
Dy(1—x)y " = (q_l)x< [T (-¢"9- 11 (1—q’X)>

Jj=0 J

S
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Remark 4.1. By using (4.5) and Dk = [k], 251, we get

Dy (¢ (1= x); %) = [k (1= x)5 ™" — ¢ [n = Ky (1 — gy !
= (1= gy (1 = x) Ky — ¢'x[n — k)
=1 (1_qx)n = 1([k]q_[”]qx)'

Hence, we obtain

x(1-x)D, (xk(l —x);;*") — (1 =22 ], (% - x) . (4.6)

Lemma 4.2. We have the following equalities:
10D puslain) = blpnstaio) (15 ). @)
1(1—qt)Dy(pni(q:qt)) = [n]gpni(q:qt) (% - qt> : 4.8)

Proof. Above equalities can be obtained by direct computations using definition of
operator and (4.6). |

Theorem 4.3 ([92]). If m-th (m > 0,m € N) order moments of operator (4.4) is
defined as

n 1
Dz,m(x) ::Dn’q(l‘m,x) = [n+ 1]q 2 qikpn,k(q;x)/o Pn,k(q;qt)t'"dqt,x € [Ov l]a
k=0

then Dq o(x) = 1 and for n > m+ 2, we have the following recurrence relation:
[n+m+2] nmJ,»]( )

= ([m+1)g+4" " 'xlnl)Df 1 (x) +x(1 = x)g" ' Dy(Df . (). (4.9)
Proof. By (4.7), we have
X(1 = x)Dg(Djj.m(x))

n 1
= 1+ 1)y X, a7 x(1 = 0D, (puslai) [ puslazanid,s
k=0

= [n+1]y[n], Zq Puilg; X)/Ol (ﬁ —qf) Px(q:q1)i"dyt

k=0 [n]q

1
+ gq[n+1], Zq x(1-x)D (pn,k(q;x))/o Pug(qs g™ dgt
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n

1
x[n+1], qu x(1—x (pn,k(q;X))/o Puk(qsqr)t"dyt

=1+ [n]querl (x) _x[n]qu,m(x)v

Set
tm+1 tm+2

u(t) = gl - gt
by g-integral by parts, we get
1
Jo u(qt)Dg(pni(g:qt))dgt
1 1 ! m m+1
= [M(t)pn,k(q;qt)]o——qu /0 Puk(giqt)(fm+1]gt™ — [m+2]gt" " )dyt

1 1
- _W/O Pui(qiqt) ([m+1gt"™ — m+ 2]t ) dyt,

therefore

I =

et (04 11D ) = 20, )

by combining the above two equations, we can write
¢ 51 =3)Dy(D4,, () = = (I + 114D4 () = [+ 21D, ()

0" (11D 11 () = 3011, D))
Hence we get the result. ]

Corollary 4.1. We have

(1 +gx[n]y)
DZJ(X) = [n+—2]qq’ (4.10)
Dzyz(x) _ @x*nly([nly— 1) + (14 q)%gx[n), + 1 +q' @.11)

[n+2]4[n+3],

The corollary follows from (4.9).

Lemma 4.3. For f € C[0,1], we have ||Dy, 4f|| < ||f|]-
Proof. By definition (4.4) and using Theorem 4.3, we have

n 1
IDug(f3x)| < n+ 1] Y. ¢ *pus(asx) / |f(2) | Pk (qsqt)dyt
k=0 0

< IA11Dn g (1%) = (|11 u
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Lemma 4.4. Let n > 3 be a given natural number and let go = qo(n) € (0, 1) be the
least number such that ¢"*> — g"*' —=2¢" —2¢" ' — - = 2¢° — > +q+2 < 0 for
every q € (qo,1). Then

Dyg((t —x),x) <

= (v + ﬁ) |

where @*(x) = x(1 —x), x € [0,1].

Proof. In view of Theorem 4.3, we obtain

Dyg((t —2)%,x) = 22 ¢ [n)g([n)g — 1) = 2q[nlqln+ 3]y + [n +2]4[n + 3],

[n+2]g[n +3]q
Ly 40+ @)y = 2[n + 3] 1+gq
[n+2]4[n+3]4 [n+2],n+3],

By direct computations, using the definition of the g-integers, we get

g1+ lnlg—2ln+3]g = (1 +@* (1 +g+-+¢"") =21+ g+ +¢"*?)
= —¢"P " 2g" 4 2¢" 24P — g 2> 0,

for every g € (qo, 1). Furthermore

q(1+9)*[n)g—2[n+3], < 4
=4(n+3]—q" —¢""' —¢""*) —2[n+3],
<A4n+3]g-2n+3]; = 2[n+3],

and
q(1+ 51)2[”]4 —2[n+3],+ ‘13[”]4([”]4 — 1) =2g[nlg[n +3]g+ [n+2]4[n + 3],

=q(1+¢)[ny—2(1+q+ @+ nly) + @l — ¢’ [ng

= 2[nly(1+q+ 4+ ¢’ [ly) + (1 + g+ (1 + g+ ¢+ q[n)g)
=@ (1-q)’nls — (g— @ +24° —2¢")[n)y— (1 - ¢°)

2 n
=q(1-q)* (%) —q(1 —q)(1+2q2)-11_—2—(1—q3)

—q—1<0.



4.3 g-Bernstein—Durrmeyer Operators 121

In conclusion, for x € [0, 1], we have
Dy g((1 —x)*,x)

q(1+9)*[n)y —2[n+3],
[n+2]4[n+3]4

. ‘1(1""1)2["]61_2[”"‘3]61.)6 y
B [n+2]4[n+3]4 S )+<

s [n]¢([n]q — 1) — 2g(n]q[n + 3] + [n +2]g[n + 3]4) 2 l+gq
[n+2]q[n+3]q [n+2]q[n+3]q

+

2n+3]y
= [n+2]y[n+3],

2 2

20, Ao+ — L
)+ [n+2]4[n+3]4 = [n+2l4 ((P @)+ [”+3]q>,

which was to be proved. |
For 6 >0and W2 = {geC[0,1]:¢,¢" € C[0,1]}, the K-functional are defined as
Ka(f,8) = inf{||f —gll+nllg || : g € W?},

where norm-||.|| is the uniform norm on C[0,1]. Following [50], there exists a
positive constant C > 0 such that

where the second-order modulus of smoothness for f € C[0, 1] is defined as

o (f,V8)= sup  sup |f(xth)—fx).

0<h<V/§xx+he[0,1]

We define the usual modulus of continuity for f € C[0,1] as

o(f,6) = sup  sup [f(x+h)—f(x)].

0<h<d xx+he(0,1]

4.3.2 Direct Results

Our first main result is the following local theorem:

Theorem 4.4. Let n > 3 be a natural number and let gy = qo(n) € (0,1) be defined
as in Lemma 4.4. Then there exists an absolute constant C > 0 such that

Dag(fx) = F@)] < Can (£ In+2],'78,(0)) + 0 (f ’ —[1+_2]>

where f € C[0,1], 82(x) = ¢*(x) + TH_13E x €[0,1], and g € (qo,1).
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Proof. For f € C[0, 1] we define

Dug(fs) = Duglfon) 4100~ (252 ).
Then, by Corollary 4.1, we find
Dy g(1,x) =Dy g(1,x) =1 (4.13)
and
Dy 4(t,x) :qu(t,x)—l—x—l[:j_—[gfc =x. (4.14)

Using Taylor’s formula
t
80 =20+ (-0 g W+ [ (- g,
X
we obtain
- - t
Du(e.r) = 8-+ Doy [ =00 ") )
X

=g(x)+Dny (/xt (t—u)g"(u) du,x>

1+g(n]gx
[n+2]g I+gq [n] q* "
S d
[ (g )¢ wan
Hence |D,, 4(g,x) — g(x)| <
" 1+g(n]gx 1+ [n] N
<D f—ul-1e" d /["+2]q qiigX | d
< (/ - 1¢" ()| d ,x>+ LT s ] 1)
2 " 1+‘1[an ? "
< Dy y((t—x)7x) - ||g"]| + W—x lg”ll (4.15)
q
On the other hand
1+ g[n]yx 2
Duafi =P+ (5 ) <
e n+2],

< 2 <<pz(x)+[1 )+<1_([n;ﬂqz]_quq)x>z’ 1o
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by Lemma 4.4. Because [n+2],—¢q[nl, = (1+q+...+¢"") —q(l +q+... +
¢ ) =1+4¢""", we have

1< [n+2],—qln), <2 (4.17)

Then using (4.17), we have
(! —<[n+2]q—q[nlq>x)2, 520 <

[n+2], "
_ 1-2(In 42y — glnjg)x + ([n +2]g — gln]g)*x* _ 74
[n+2]2 [n]gx(1—x)+1
1—2x+4x>  [n], 1 3
. . < 4.18
nr2l, 2y Tl —n 1 2, 19
forn=1,2,... and 0 < g < 1. In conclusion, by (4.16) and (4.18), we get
Do g((t —x)%.2) + (M ‘x>2 < T 8 (.19)
" ’ n+2], ~ 42, "7 '
where x € [0, 1]. Hence, by (4.15),
g (8:%) = 8(00)] € ——-82(x)- ¢ (4.20)
e ~[n42, ’ ‘
where n > 3 and x € [0, 1]. Furthermore, by Theorem 4.3, we have
_ 1+g|n|x
a0 < Dn) + 101+ | 7 (S22 < 311,
[n+2],
Thus
1D (f,2)II <3 (£, (4.21)

forall f € C[0,1].
Now, for f € C[0,1] and g € W2, we obtain

|Dng(f>%) = f(x)] <

Duatr) 1)+ 5 (25 ) — 1) ’

< |Ding(f = 8:%)| + [Dnglg:x) — g(x)] +18(x) — f(x) |+




1 = ([n+2]g—qlnlg)x
n+2],
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<4l g+ g

<5 (I sl + gz -1 +o (£ o3 )

where we used (4.20) and (4.21). Taking the infimum on the right hand side over all
g € W2, we obtain

IDug(f 1) — ()] <5 Kz (fa[ T 0 )> (f’[1+_2)3 )

In view of (4.12), we find

5 [+ (f,

Dag(f:3) = ] < € @2 (f,In+2]8,(x ))—Hu(f,[l;; )

this completes the proof of the theorem. |
For the next theorem we shall use some notations: for f € C[0,1] and ¢(x) =
x(1—x),x€[0,1], let

of(f,V8) = sup  sup |f(x+hp(x)) = 2f(x)+ f(x—ho(x))]

0<h<+/8 x£he<[0,1]

be the second-order Ditzian—Totik modulus of smoothness, and let

Kyp(f,8) = inf{||f —g]| +8ll9*¢" " (¢)}

be the corresponding K-functional, where
W2(9) = {g € C[0,1]:¢' € AC1uc[0. 1], 9°¢" € C[0, 1]}

and g’ € ACy,.[0, 1] means that g is differentiable and g’ is absolutely continuous on
every closed interval [a,b] C [0,1]. It is well known (see [51, p. 24, Theorem 1.3.1])
that

Ka(f,8) < C0f(f,V3) (4.22)

for some absolute constant C > 0. Moreover, the Ditzian—Totik moduli of first order

is given by

oy(f,6) = sup  sup  |f(x+hy(x)) - f(x)],

0<h<&xxthy(x)€l0,1]

where v is an admissible step-weight function on [0, 1].
Now we state our next main result.
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Theorem 4.5. Let n > 3 be a natural number and let gy = qo(n) € (0,1) be defined
as in Lemma 4.3. Then there exists an absolute constant C > 0 such that
~1/2 —
IDngf = £l < Cof(£,ln+204 %) + oy (£ ln+2)"),

where f € C[0,1], g € (q0,1), and y(x) =1 —x, x € [0,1].
Proof. Again, let

Duglf) = Dugl1o0)+5(0) — (EL0E ).

n+2],

where f € C[0, 1]. Using Taylor’s formula:

60 =g+ (-0 ¢ )+ [ (1-0) (9,

the formulas (4.13) and (4.14), we obtain

" l+q[n]:]x 1
Drae.) =40y ([ =00 ') duce) - [0 (HABE ) ) a
X x [n+2]q
Hence
1D g(g,%) — g(x)]
: 1+g[n]gx 1
<Dn,q<‘ [l ) ,x>+ [ ;j—[gj“—u'wg”w)du

(4.23)

Because the function §? is concave on [0, 1], we have for u =t 4 t(x—t), T € [0, 1],
the estimate

lt —u| T|x — ¢ T|x — ¢ |t — x|
67 (u) — S(r+tlx—1)) T 8H1)+T(5(x) — 63(1)) ~ G}(x)’

Hence, by (4.23), we find

|Dn7q(g7x) - g(x)| <
1+g[n]gx _T9\gt

t |t — u| n+2] [n+2] ’
< qu ( /x 5”2(11) du /x ! —6,1221/!) du

Dl —2P0) 182"+ - (X V2
na((0=2%0) 18I+ 5\ T, 2

1+¢g[n]yx

2
(167"l

,x> 11628" 1+
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In view of (4.19) and

1
52 o2 " 162, !
n (%) -7 (08" (%) + 3L 8"¢ ||+[n+3]q &"l
where x € [0, 1], we get
D 5 2,0 1 "
q q

Using [n]y < [n+2]y, (4.21), and (4.24), we find for f € C[0,1],
IDng(f,x) = fx)] <

< |Dng(f = &%)+ [Dnglg:x) — g(x)] +18(x) — f(x) |+

|@W+¢f<1;f§f>—f@4

<4f—ell+ ol +

5 5
n+2], n+2],

Taking the infimum on the right hand side over all g € W?(¢), we obtain

Dyg(f,x) — £(x)] < 5Ka (f, m) + ‘ f ( l[x[’;]]ﬂ ) ‘ (4.25)
On the other hand
1+g[n]x B
‘f<pwa])‘ﬂ”“
(v o 2 gl
) ‘f< s = e e R ‘

IN

sup
14y (0)-(1=([142lg—qlnl)x) /In+2]4€[0,1]

<or(ra ) <o () =or )

Hence, by (4.25) and (4.22), we get

(o )

IDnaf = £l < Cof(f,ln+21,""%) + @y(f,ln+2);"),

x € [0, 1], which completes the proof of the theorem. |
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Remark 4.2. In [86] it is proved for g = g(n) — 1 as n — oo that the sequence
{Dnqf} converges to f uniformly on [0,1] for each f € C[0,1]. The same result
follows from Theorem 4.5, because

lim [n +2],, = lim M = oo

n—soo n—seo | — q(n) ’

if im0 g(n) = 1.

4.3.3 Applications to Random and Fuzzy Approximation

Let (X,]].|]) be a normed space over K, where K = R or K = C. Similar to the case
of real-valued functions can be introduced the following concepts.

Definition 4.1 (Gal [74]).

(i) For f:[0,1] — X, the first-order Ditzian—Totik modulus of continuity @y (f,d)
and the second-order Ditzian-Totik modulus of smoothness @5 (f,8) are
respectively defined as

oy(f,8) = sup  sup  [f(x+hy(x) - f()],

0<h<déxxxhy(x)€[0,1]

and
of (,8) =
sup{sup{[|f (x+h(x)) — 2/ (x) + f(x = ho(x))||,x € L}, h € [0, 8]}
where b, = 4225 2] 0 (x) = /AT =), w(x) = 1 —x,0< 8 < 1.

(ii) f:[0,a] — X is called g-integrable (0 < g < 1) on [0,qa] if there exists [ € X
denoted by I := [ f(u)d,u with the property

n
hm I — Z

Remark 4.3. Let (X,]|.||) be a Banach space. If f : [0,a] — X is continuous on
[0,a], then it is g-integrable. Indeed, denoting S,(f) = (1 —q)Xi_, ¢"f(aq"), we

get Suip(f) = Su(f) = (1 — @) 2" ¢ f(ag*) and since ||f(x)|| is bounded (by
continuity) by a positive constant denoted by M, for all n, p € N it follows

n+p

1Su+p(f) = Sa(N <M(1-q) ¥, 4" <M(1—q)q Zq =Mq",
k=n j=0
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which shows that (S,(f)),en is a Cauchy sequence. Since X is a Banach space, it
follows that this sequence is convergent and therefore f is g-integrable.

Definition 4.2 (see Gupta [86] for real-valued functions). For f:[0,1] = X,0 <
g < 1, g-integrable on [0,1], the g-Durrmeyer operators attached to f can be
defined as

Dy g(f,%) = (Dugf)(x) = [n+1] i q *pui(g:x) / 1f () pni(q;qu)dgu  (4.26)
k=0 0

where

Z} ()i

Theorem 4.6 (see, e.g., [124], p.183). Ler (X,||.||) be a normed space over K,
where K = R or K = C and denote by X* = {x* : X — K,x* is linear and
continuous}. Then

Pui(qsx) = [

[Ixl| = sup{a” (x)] : " € X7, ||| < 1}.

Gal and Gupta [77] established the following theorem:
Theorem 4.7. Let (X,|| - ||) be a Banach space and suppose that f : [0,1] — X is
continuous on [0, 1]. Then under the conditions on q as given in Lemma 4.4, we have

1Dnaf = fllu <C @ (f,In+2]7"72) + @y (f,ln+2]7"),

where ||f]l. = sup{[|f(x)[| : x € [0,1]}.

Proof. Let x* € X*,0 < |[|x*||] < 1 and define g : [0,1] — R,g(x) = x*(f(x)).
Obviously g is continuous on [0, 1]. First, we have

1

Oy (g, )= sup sup X [f(x+hy(x)) — f(x)]|
[M+2]"  gch<t /e xathy(e,]
< sup sup [ I G+ Ay (x) = F]
0<h<1/[n+2]xxthy(x)€[0,1]
< sup sup |[[f(x+hy(x) = f(]]
0<h<1/[n+2]xxthy(x)€[0,1]
1
= wlll(fa )a

[n+2]
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and

of (g, [n+2]7'/?)
= sup{sup{|x"[f (x + ho(x)) — 2/ (x) + f(x = ho(x))]|, x € i}, h € [0, [n+2)71/2]}
< sup{sup{[[|x[|| - £ (x + h(x)) = 2/ (x) + £ (x — hp(x))[|,x € Ly}, h € [0, [n+2]7/]}
< of (f,ln+2]7'/?).

Now, by Theorem 4.5, for all x € [0, 1] and n € N, we have
IDngg(x) —g(x)] < Clf (g,[n+2]7) + wy(g,[n+2]7")).

But by the linearity and the continuity of x* (the continuity allows to x* to commutes
with the integral), we easily get D, g(x) — g(x) = x*[Dy4f(x) — f(x)], which
combined with the above inequalities lead to

b [Dugf (x) = f@)]] < CL@Y (f. [n+2]7') + @y (f,ln+2]7")],

for all x € [0,1]. Passing to supremum with |||x*||| < 1 and taking into account
Theorem 4.6, it follows

1Dugf (1) = FOON < CL@Y (f,In+2]712) + @y (f,In+2]7")],

for all x € [0, 1], which proves the theorem. ]

Some applications to the approximation of random functions by g-Durrmeyer
random polynomials and of fuzzy-number-valued functions by g-Durrmeyer fuzzy
polynomials were discussed in [77] as
If (S,B,P) is a probability space (P is the probability), then the set of almost
sure (a.s.) finite real random variables is denoted by L(S,B,P) and it is a Banach
space with respect to the norm ||g|| = [|g(¢)|dP(t). Here, for g1,g> € L(S,B,P),
we consider gy = g» if g1(¢) = g2(f), a.s. t € S.

A random function defined on [0,1] is a mapping f : [0,1] — L(S,B,P) and
we denote f(x)(¢) € R by f(x,t). For this kind of f, the g-Durrmeyer random
polynomials are defined by

n 1
(Dugf)x,t) =[n+1]1Y. g *pus(g;x) / S (u,t) poi(qs qu)dqu.
k=0 0
Corollary 4.2. If f : [0,1] — L(S, B, P) is continuous on [0,1], then
1Dngf = fllu <C 0f (f,[n+2]7"%) + @y(f,[n+2]),

where ||f]l. = sup{||f(x)[[;x € [0, 1]} = sup{ ¢ |/ (x,1)|dP(1);x € [0,1]}.
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Given a set X # 0, a fuzzy subset of X is a mapping u : X — [0, 1], and obviously
any classical subset A of X can be considered as a fuzzy subset of X defined by
xa:X = [0,1], xa(x) =1,ifx €A, xa (x) =0ifx € X\ A. (see, e.g., Zadeh [154]).

Let us denote by R £ the class of fuzzy subsets of real axis R (i.e., u : R — [0, 1]),
satisfying the following properties:

(1) VYu € Rx, uis normal, i.e., 3x, € R with u (x,) = 1.
(i) Vu € Rx, uis convex fuzzy set (i.e., u (tx+ (1 —1)y) > min{u (x),u(y)}, Vt €
[0,1], x,y € R).
(iii) Yu € Rz, u is upper semicontinuous on R.
(iv) {x € R:u(x) >0} is compact, where A denotes the closure of A.

Then R £ is called the space of fuzzy real numbers (see, e.g., Dubois—Prade [56]).

Remark 4.4. Obviously R C R, because any real number xo € R can be described
as the fuzzy number whose value is 1 for x = xy and 0 otherwise.

For 0 < r <1 and u € Ry, define [u]" = {xeRu(x)>r} and
[u]” = {x € R;u(x) > 0}. Then it is well known that for each r € [0,1], [u]" is a
bounded closed interval. For u,v € Rx and A € R, we have the sum u @ v and the
product A ® u defined by [u®v]" = [u]"+ [v]", [A ©u]" = A [u]", Vr € [0,1], where
[u]"+ [v]" means the usual addition of two intervals (as subsets of R) and A [u]"
means the usual product between a scalar and a subset of R (see, e.g., Dubois—Prade
[56], Congxin—Zengtai [44]).

LetDIR}‘XR}‘—}R+U{O}by

D (u,v) = s%pl]max{’ui—vi‘,’ui—vﬂ},
re|0,

where [u]" = [u" ,u", |, [v]" = [v" v, |. The following properties are known (Dubois—
Prade [56]):

D(udw,vdw)=D(u,v),Vu,v,w e Rr

D(k®u,k©v)=|k|D(u,v),Yu,v € Rr,Vk € R;

D(udv,wde) < D(u,w)+D(ve),Vu,v,we € Rr and (Rr,D) is a complete
metric space.

Also, we need the following concept of g-integral. A function f : [0,a] — R,
[0,a] C R will be called g-integrable on [0,a], if there exists / € Rz, denoted by
I = [y f(u)dqu with the property

lim D[I, (1 —q) ©Z%_ ¢ © f(ad")]|| = 0.

n—oo

Here the sum Y * is considered with respect to the operation &.

Remark 4.5. If f :[0,a] — R is continuous on [0, a], then it is g-integrable. Indeed,
denoting S,(f) = (1 —q) ® Z*}_,¢* ® f(ag’), from the above properties of the
metric D, we can write
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DISu(f),Snip(f)] = (1 = q)D[Or -, =7 24" © flaq")] <

n+p n+p
—q) Y, ¢'D[Or,. f(ag")] <M(1—¢q Zq,
k=n

where the continuity implies that f is bounded and that there exists M > 0 such that
D[Or -, f(x)] <M forall x € [0,q]. In continuation, taking into account that (R, D)
is a complete metric space, the reasonings are similar to those in the Remark 4.3.

Theorem 4.8 (see [44]). Rz can be embedded in B = C[0,1] x C[0,1], where
C[0,1] is the class of all real-valued bounded functions f : [0,1] — R such that
f is left continuous for any x € (0,1], f has right limit for any x € [0,1), and f
is right continuous at 0. With the norm ||-|| = sup,c(o 1 | f(x)], 2[0,1] is a Banach
space. Denote ||-||g the usual product norm, i.e., ||(f,8)|lz = max{||f]|,|lg||}. Let
us denote the embedding by j: Ry — B, j(u) = (u_,us). Then j(Rr) is a closed
convex cone in B and j satisfies the following properties:

(i) jsQudtoOv)=s-ju)+t-j(v)forall u,v € Rr and s,t >0 (here “-” and
“+7 denote the scalar multiplication and addition in B)
(ii) D(u,v) =|j(u) — j(v)|| (i.e., j embeds Rr in B isometrically)

Let f:[0,1] = Rz be a continuous fuzzy-number-valued function. The fuzzy
g-Durrmeyer polynomials attached to f can be defined by

(Dugf)(x) = [n+1] i q *pup(g:x) ® /0 1 Puk(qsqu) © f(u)dqu.

Also, let us define the following moduli of continuity and smoothness of f :

oy(f,6) = sup  sup  D[f(x+hy(x)),f(x)],

0<h<éxxthy(x)€(0,1]

of (f;8) = sup{D[f(x + ho(x)) ® f(x— hd(x)),2® f(x)]:
x,x+he(x),x—ho(x) €[0,1],0<h < §}.

Here ¢%(x) = x(1 —x), w(x) =1 —x.

Theorem 4.9. Let f: [0,1] — Rx be continuous on [0, 1]. There exist the absolute
constant C, such that for all n € N we have

sup{D[(Dngf) (%), f(X)]:x € [0,1]} < C 0f (f,[n+2]7'72) + oy (f,[n+2]7).
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4.4 Discretely Defined g-Durrmeyer Operators

For f € C[0, 1], Gupta and Wang [94] proposed the following g-Durrmeyer operators

as

<Mw0ﬂ%:M+Hqiqkﬂm&%@[:ﬂﬂm&ﬂ%mwﬁ+ﬂ®nm@m)
=1

4.27)

It can be easily verified that in the case ¢ = 1, the operators defined by (4.27)
reduce to the Durrmeyer-type operators recently introduced and studied in [3].

4.4.1 Moment Estimation

By the definition of g-Beta function, we have

1 n 1 )
/o £ puk(q:q1)dgt = [ Es /0 28 (1 —qr)t gt

_ qk[”]q! [k +s]q![n — k! _ qk[”]q![k"’s]q!
kg n—klgl k+s+n—k+1],!  [n+s+1],![k],!
and
1 k 1
A tspoo,k(q;qt)dqt = (1+)k[k]q'/0 tk+s(1 — ql‘);odqt
¢ o 14 [k +slg!
- ﬂT)"[k]q![lH—s]q!(l —q)" T =(1-¢q) HW!(I

Lemma 4.5. We have

[n]

Mypo(1x) =1, M, (t;x) =
"7‘1( 'x) "7‘1( X) x[n+2]q

and

(1+q)x[n], 2 q[nly(fnlg—1)

2.0 — .
Mg (75) [n+3]4[n+2], [n+3]y[n+2],

(4.28)

(4.29)
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Proof. In order to prove the theorem we shall use the following identities:

i Puk(g:x) =1, é& %Pmk(%x) =X,
L[k x(1—x)
Z (n_t]) pnk q; x) 7x + [n]q :

By (4.28) and (4.29), it can easily be verified that M, ,(1;x) = 1. Next, using the
above, we have

7 k=1,
M, 4(t:x) = [n+ l]qul1 “rpuila x)q[%];]'q[f]q
n [n]
= pnkqx _x[i’l‘F;]q'

Finally, using [a + 1], = 1 4+ ¢[a],, we have

1 n
M q(1%5x) = m kg,l]’nyk(q;x) [k+1],[k],

_ m{z (a0) (1 +qlkl) 1], }

- m {ank ;%) q"'QiPn,k(q;x)[k];}

k=1

1
“wraL it {xnlg+q([n]; +x(1 = x)[n],) }
__all(1+9) £ [l
[n+3],n+2],  [n+3],[n+2], q
Thus,
s All(+g) gl — 1)
Mg = 3] v ], T T3l e 2,

This completes the proof of the lemma. ]

Remark 4.6. By simple computation, it can easily be verified that

n

n+1],
M, (t"; glk+ 1] [k+r—1 X > 1.
mq( x) [n+r+1 t]'lgl + +r ]t]pnk(q ) r=
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Using [k +s]4 = [s]g + ¢°[k]4, we get
r—1

[k]q[k+ 1]q"' lk+r— l]q = H([s]q‘i‘qs[k]q) = i CS(V)[k]fJ’

s=0 s=1

where ¢s(r) >0, s = 1,2,...,r are the constants independent of k. Hence
n+1]! & d n+1]! . .

M, (" x) = —_ SBug(t*;x).

)= a1 00 2P = 1 2 OBl

Since ¢s(r) > 0 for s = 1,2,...,r and B, 4(t°;x) is a polynomial of degree <
min(s,n) (see [7]), we get M, 4(t";x) is a polynomial of degree < min(r,n).

4.4.2 Rate of Approximation

Theorem 4.10. Let g, € (0,1). Then the sequence {M,,,(f)} converges to f
uniformly on [0, 1] for each f € C[0,1] if and only if lim, .. q, = 1.

Proof. Since the operators M, 4, are positive linear operators on C[0, 1] and preserve
constant functions, the well-known Korovkin theorem [113] implies that M), ,, (f>x)
converges to f(x) uniformly on [0, 1] as n — oo for any f € C[0, 1] if and only if

My, (t5x) = X (i =1,2), (4.30)
uniformly on [0, 1] as n — eo. If ¢, — 1, then [n],, — = (see [151]) and fors =1,2,3,
limy, e [”ﬁ‘j"" =1, hence (4.30) follows from Lemma 4.5.

On the other hand, if we assume that for any f € C[0,1], M, 4, (f,x) converges
to f(x) uniformly on [0, 1] as n — o, then ¢,, — 1. In fact, if the sequence (g,) does
not tend to 1, then it must contain a subsequence (g,, ) such that g,, € (0,1), g,, —

1 =gy
g0 €[0,1) as k — co. Thus, [nkﬁs}an = 17(%;@“ — (1—gqo)ask—oeo, s=0,1,2,3.

Taking n = ny, g = gy, in M,,7q(t2;x), by Lemma 4.5, we get

My g, (1%53) = x(1— q0) + g5 /2 (k— ) ,

which leads to a contradiction. Hence, g, — 1.
This completes the proof of Theorem 4.10. ]

Let g € (0,1) be fixed. We define M. 4(f,1) = f(1) and forx € [0,1)

o) = 7 B pegg’™ [ S0 iar)d+ £ O ool

=

=1 Y Ak () Peori (). (4.31)

k=0
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Using (4.29), (4.31), and the fact that (see [125])

> Pe(@x) =1, D (1—¢")purlg:x) =x
=0 k=0

and

=

> (1= ¢ pes(gix) =x+ (1 — g)x(1 —x),
k=0

it is easy to prove that
Mogy(lix) =1, Mey(t:x) =x,

and

=

Mo g(*:x) = Y (1= ¢ (1 = ¢ peoi(qix)
k=0

= (1= g+ g0+ (1= gx(1 —x)) = (1 - ¢*)x + g2
For f € C[0,1], t > 0, we define the modulus of continuity @(f,#) as follows:

o(f1) = sup [f(x) = f)l-
x,yé‘f()%lt]

Lemma 4.6. Let f € C[0,1] and f(1) = 0. Then we have

()] < A1) < o(f,q")(1+4"")

and

Ak (f)] < Ak (| f]) < O(F,4") (1 +47).
Proof. By the well-known property of modulus of continuity (see [4], pp. 20)

o(f,A1) < (1+A)o(f,1), A >0,
we get

IO =1f@) = fD < o(f;1-1) <o(f,q") 1+ (1 -1)/q").
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Thus,
Au(N AU =1 [ 4 U Olpascr (a0t
<ty [ 440001+ (100 1 (gt
— ol 1+ (0~ )
= a)(f,q”)(l + q;fll(l__—q};;;)) <o(f,¢")(1+4").
Similarly,

qlfk 1
AP < Acel1f1) = { [ 17O lpoicr (asar)ds

qlfk 1
<ofq){ =, [ 400/ peicr(g:an)dyt

=o(f,d") 1+ (1= (1-¢)/q") = o(f.q4") (1 +¢"").
Lemma 4.6 is proved. ]

Theorem 4.11. Let 0 < g < 1. Then for each f € C|0,1] the sequence {M, 4(f;x)}
converges to Me 4(fx) uniformly on [0, 1]. Furthermore,

[M.q(f) =M g(F)|| < Cq 0(f,4"). (4.32)

Remark 4.7. When f(x) = x*, we have

[M.q(f) = Moo g (/)| = €164" = €2 0(f,q"),

where c1,c, > 0 are the constants independent of n. Hence, the estimate (4.32) is
sharp in the following sense: The sequence ¢” in (4.32) cannot be replaced by any
other sequence decreasing to zero more rapidly as n — oo.

Proof. The operators M, 4 and M.. , preserve constant functions, that is,
My 4(1,x) = Mw 4(1,x) = 1.

Without loss of generality, we assume that f(1) = 0. If x = 1, then by Lemma 4.1,
we have

My g(f31) =Moo g (f3 1) = [Ann(f) = F(1)] = [Aun ()] < 200(f,¢").
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For x € [0,1), by the definitions of M, 4(f;x) and Mw 4(f;x), we know that

|M,,.4(f3x) — M. 3 k() Pnic(q3x) — iAwk(f)Pw,k(‘Z;x)
-0 k=0
< 3 1AulF) — Ack(F) Puslaix +2 At () 1w (€)= o)
k=0 —

+ 2 |[Acoi (f |pm (g;x) =L +DL+L.
k=n+1

First we have

n—k o

|Pnic(q:%) = peoi(q:x)| = ‘ {Z} o ]_Il(l —¢’x) — H 1—¢'x) ‘
q

s=0 ( =

—k— I
(AT 0= -TTa =)
q

s=0

0 “ZS”([ZL‘ =

s=0
< Puk(g:x) ’1 —vagl 1-4%) ‘

n

+Peot (45 %) ‘ I 0-¢)- 1‘

s=n—k+1
n—k
<{o . (P (@:%) + Pook(43))

where in the last formula, we use the following inequality, which can be easily
proved by the induction on # (see [100]):

n n
I_H(l _as) S zaS; (alv"'aan € (051)5 n= 1525"'500)'
s=1 s=1
Using the above inequality we get

I 1
Ak (f) — Ak ()| < /0 a" I f O+ 1gps (g:qt) — TP (g:qt)|dyt

L 1
< [ a0l fin 1y = [pesr(andy
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1
[ a ol 11,

Pk—1(4:qt) — Peoi-1(q:qt ) |dyt

qn+1 llk
< — - )| poos—1(q;qt)d,t
_1—61/()q |f()|p ,kl(QQ)q

n—k

1
i]_q/o q" MO+ 1 (Pus1(:0t) + peoi1 (g3 1) gt

+

nfk

=q" A (If) + 14 An(|£1) +4" [n+ g (If1)

n—k 5 n
I R e O (R EE L

Now we estimate [} and I35. We have

| S0l

I < ank q;x 1—¢

and

oo

L<o(f.q") Y, (1+4")peilg:x) <20(f.q" Z Pei(g:x) <20(f,4").

k=n+1 k=n+1
Finally we estimate I, as follows:

n n—k
B < 3 0(f,4") (146" ) (Par(4:9) + pesld:)
k=0

}’L

4w(f,q”)_

n
ank 4:%) + pooi(q:x)) < =g

We conclude that for x € [0, 1),

My q(f3%) — Mo 4 (f3%)| < Co(f,4"),

where C; =2 + %1' This completes the proof of Theorem 4.11.

Since M..,(t*,x) = (1 — ¢*)x +¢*x*> > x* for 0 < g < 1, as a consequence of

Lemma 3.10, we have the following:

Theorem 4.12. Let 0 < g < 1 be fixed and let f € C[0,1]. Then Mo 4(f;x)
Sorall x € [0,1] if and only if f is linear.

= /()

Remark 4.8. Let 0 < g < 1 be fixed and let f € C[0,1]. Then by Theorem 4.11
and Theorem 4.12, it can easily be verified that the sequence {M, ,(f;x)} does not
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approximate f(x) unless f is linear. This is completely in contrast to the classical

Bernstein polynomials, by which {B,, 1 (f;x)} approximates f(x) for any f € C[0, 1].
At last, we discuss approximating property of the operators M. 4.

Theorem 4.13. For any f € C[0,1], {M..4(f)} converges to f uniformly on [0,1]
asq— 1—.

Proof. The proof is standard. We know that the operators M.. ;, are positive linear
operators on C|0, 1] and reproduce linear functions. Also,
M y(t%x) = (1 — x4 g% —

uniformly on [0,1] as ¢ — 1—. Theorem 4.5 follows from the Korovkin theorem. ll

4.5 Genuine g-Bernstein—-Durrmeyer Operators

For f € C[0,1], Mahmudov and Sabancigil [121] defined the following genuine
g-Bernstein—Durrmeyer operators as

n—1 .
Ung(f3x) =[n—1]q . q" *pux(q:x) / 1 FO)Pa2s_1(q:qt)dgt
= Jo
+£(0)pno(q:x) + f(1) pnn(g;x)

= Y A f)pni(g:x), 0<x<1. (4.33)
k=0

It can be easily verified that in the case g = 1, the operators defined by (4.33)
reduce to the genuine Bernstein—Durrmeyer operators [82].

4.5.1 Moments

Lemma 4.7 ([121]). We have

Ung(1ix) = 1,U, 4(t;x) = x

oy (T+g)x(1—x)
U”ﬂ(tz’x) - [n+ l]q — +x2
and (1+¢)x(1—x) 2
. o q X — X
Unal(t=x32) = (P50 < gl =)
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Lemma 4.8 ([121]). U, ,(t;x) is a polynomial of degree less than or equal to
min{m,n}.

Proof. By simple computation,

1
Ung(t":x) =[n—1]4 Y, ¢" *pur(q:x) /O FO)Pu—24-1(q:qt)t"dgt + pun(q;x)
k=1

S [n—2]g! [k +m—1]g!
=[(n=1 . q:
[Vl ]Clkglpn,k(q’ )[k 1]q'[n+m—1] +pﬂﬂ(q’ )
[n—1], [k+m—1],!
_[n—i-m—lq ,;1””"‘” T, Pl
n—l
= [n+m_1 zpnk q;x k+1] [k—l—m—l]q—l-pn’n(q;x),
q° k=1
Next using
m—1 m

[Wglle+1)g- - [e-m—1]g = TT(q'[Kg + [slg) = X ce(m) K],

where ¢;(m) > 0,5 = 1,2,3,--- ,m are the constants independent of k, we get
m [}’l B 1](1! C s s
Un,q(t ;X) = mtm—T111 2 Z cs(m) [”]an,q(t 3 X),

where B, , is the g Bernstein operator. Since By, 4(¢*;x) is a polynomial of degree less
than or equal to min{s,n} and ¢;(m) > 0,5 = 1,2,3,...,m, it follows that U, 4 (t""; x)
is a polynomial of degree less than or equal to min{m,n}. |

4.5.2 Direct Results

The following theorems were established by [121]:

Theorem 4.14. Let 0 < g, < 1. Then the sequence {U, q(f;x)} converges to f
uniformly on [0, 1] for each f € C[0,1], if and only if lim_seo gn = 1.

Theorem 4.15. Let 0 < g < 1 and n > 3. Then for each f € C[0,1] the sequence
{Unq(f;x)} converges to f(x) uniformly on [0,1]. Furthermore

1Ung(f3:) = U g(f: )l < cqoo(f.q" ),

where c; = % +4 and ||.|| is the uniform norm on [0, 1].
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Theorem 4.16. There exists an absolute constant C > 0 such that

_ x(1—x)
|Ung(f3x) = f(x)] < C o <f, m) )

where f € C[0,1],0< g <1, andx € [0,1].
Proof. Using Taylor’s formula
80 =)+ (=0 ¢+ [ (=) ¢[0,1],

we obtain

Ung(8:) = £(x) + Ung (/ ") ") du;x) £ C0.1]

it 1]qx(l —X).

Now for f € C[0,1] and g € C2[0,1] and with the fact ||U, 4(f,;.)]| < ||f]], we
obtain

Ung(f3%) = 8(X)| < |Ung(f = &X)| + [Ung(8:%) = g(x)[ + [ £ (x) — g ()|

Hence

[Unal85) = 8| < Ung <| [ le=ul-1g"w) du

< Ung((t =)%2) - Ig"ll < 118"l

<2 ”f_g” + Hg//H [l’l—|— 1]qX(l —X).

Taking the infimum on the right hand side over all g € C?[0, 1], we obtain

Un,g(f3x) — ()|<2Kz<f,[ Ji1] (1—x)). (4.34)

The desired results follow from (4.12), (4.34). This completes the proof of the
theorem. |

4.6 g-Bernstein Jacobi Operators

In the year 2005, Derriennic [48] introduced the generalization of modified Bern-
stein polynomials for g-Jacobi weights using the g-Bernstein basis functions. For
g€ (0,1)and o, > —1

LEP(f; Z £58 pralaix (4.35)
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where

Puk(q:x) == [Z]qunﬁl(l —q'x)

s=0
and

s _ ot e —any PP d
M e gy Py

It is observed in [48] that for any n € N, L ( f3x) is linear and positive and
preserves the constant functions.
It is self adjoint. It preserves the degree of polynomials of degree < n.

The polynomial L,‘i’f (f5x) is well defined if there exists ¥ > 0 such that x" f(x)

is bounded on (0,A] for some A € 90,1] and o > y— 1. Indeed x* f(x) is then g-
integrable for the weight wy P (x) =x%(1— qx)g . Thus we call that f is said to satisfy

the condition C(at). Also < f,g >q [3 is well defined if the product fg satisfies C(c),
particularly if £ and g2 do it, where

< rag= [7 g0 080y
and

1
<f.zg >Z"ﬁ:q(°‘“>(ﬂ“)/0 (1 —qt)B f(gP )8 (qP T 1)dgt.

4.6.1 Basic Results

Proposition 4.1. If f verifies the condition C(¢), we have

o, [}’l] o o 5 N .
DLEP (f3x) = mq +ﬁ+2Lnj11,£HDq <f <5) 7qx> x €10,1]

Proposition 4.2. For anym,n € N,x € [0,1] and g € [1/2,1] if

Vo =gy Pl—tyrdyt
Jo (1 —qnyg Py

nmq zpnk q;x

Lemma 4.9. Foranym,n€ N,x € [0,1] and q € [1/2,1] if

folt"“"(l gt)y P (x—t)rdgt
Jo tr (1 =gy Py

nmq ank q;x



4.6 g-Bernstein Jacobi Operators 143

Then for m > 2, the following recurrence formula holds

ntm+o+B+2yq "0 ()
= (=31 =X)Dg T, 11, () + T g (X) (P1 (%) +x(1 = @) [n+ 0 + Blg[m+ 14" %)
= +Tnl,mfl,q (x)pZ,m (x)+ Tnl,m72,q (x)p3.,m (x)(L—q),
where the polynomials pim(x),i = 1,2,3 are uniformly bounded with regard to n
and q.

Lemma 4.10. For any m € N,x € [0,1] and g € [1/2,1], the expansion of (x —t)"
on the Newton basis at the points x/q',i =0,1,2,....m — 1 is

M=

(x=1)" =Y dus(1—q)" *(x—1)5, (4.36)

k=1

where the coefficient dy, . verify |dy k| < dm,k =1,2,...,m and d,, does not depend
onx,t,q.

Remark 4.9. From Lemmas 4.9 and 4.10, we have for any m there exists a constant
K, > 0 independent of n and g, such that

[?(T’”/z, if m is even
sup [Tumq(¥)] < 4 M, L
x€[0,1] W’ if mis odd.

q

Remark 4.10. The sequence (g,) has the property S if and only if there exists n € N
and ¢ > O such that forany n > N,1 —g, < ¢/n.

4.6.2 Convergence

Theorem 4.17. If f is continuous at the point x € (0, 1), then
lim L (f3x) = f(x)

in the following cases:

1. If f is bounded on [0,1] and the sequence (gy,) is such that lim,_,. g, = 1

2. If there exist real numbers o ,3' > 0 and a real k' > 0 such that, for any x €
(0,1),x* (1—x)P f(x)| <K,o < a+1,B' < B+ 1 and the sequence (q,) owns
the property S
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Theorem 4.18. [f the function f admits a second derivative at the point x € [0, 1],
then as in cases 1 and 2 of Theorem 4.17, we have

o+l _xﬂ+1 "y
lim [, (LB (1) — )] = LU= P D) g

n-ves : dx  x*(1—x)P

Proof. By Taylor’s formula, we have

Y
1) = 10+ (-0 @+ @) 4 (- el —),
where lim,_,o €(u) = 0. Thus
LEB(F2) — £3) =~ 0T, 0) + 500, 0) 4 R,

where R, (x) = ,‘i‘fn ((t —x)%&(t —x);x). Using limy_, [a], = a for any a € R. Using

Lemmas 4.9 and 4.10, we have lim,), ,..[nlg, T,1,4,(x) = (€ + B +2)x——1 and
limy, e [nlg, Tn2,q, (x) = 2x(1 —x). The result follows immediately if we show that
limy,) —..[nlg,Rn(x) = 0. Proceeding along the same manner as in Theorem 4.17.

For any 1 > 0 we can find a 6 > 0 such that for n large enough £(t —x) < n if
|x—qE+1t| < 4.

We obtain the inequality |(t —x)2e(t —x)| < 1 (x—1)2+ (px+ | £(t) ) .5 (g~ B+ r)
for any ¢ € (0, 1) where py is independent of # and 8. We deduce

[}’l] |R (X)| < { [n]LIn (n Tl‘l727qn ('x) + (px + k) Tn747‘In (.X)/64) ’ in case 1
I ) gn (MT2,00 (%) 4+ paTs g, (x)/8*) + K'nE, (x,8), in case 1

The right hand side tends to 21x(1 —x) when n (hence [n],,) tends to infinity is as
small as wanted. |



Chapter 5
g-Summation-Integral Operators

5.1 g¢-Baskakov—-Durrmeyer Operators

Aral and Gupta [32], proposed a g-analogue of the Baskakov operators and
investigated its approximation properties. In continuation of their work they in-
troduced Durrmeyer-type modification of g-Baskakov operators. These operators,
opposed to Bernstein—Durrmeyer operators, are defined to approximate a function
f on [0, «). The Durrmeyer-type modification of the g-Bernstein operators was
first introduced in [48]. Some results on the approximation of functions by the g-
Bernstein—Durrmeyer operators were recently studied in [94]. In [62], some direct
local and global approximation theorems were given for the g-Bernstein—-Durrmeyer
operators. We may also mention that some article related to Baskakov—Durrmeyer
operators and different generalizations of them given in [61, 83, 153].

The main motivation of this section is to present a local approximation theorem
and a rate of convergence of these new operators as well as their weighted
approximation properties. The resulting approximation processes turn out to have
an order of approximation at least as good as the classical Baskakov—Durrmeyer
operators in certain subspace of continuous functions.

Recently, in [32], we introduced the following g-generalization of the classical
Baskakov operators. For f € C[0,), ¢ > 0 and each positive integer n, the g-
Baskakov operators are defined as

Endk—1] wen  x ( kg )
Buo(f,x) = 2
alf:x) kzo[ k Lq (1+x)g+"f ¢ [nlg

= in,k (x) f (qk[kl]fn b) : (5.1)

k=0

A. Aral et al., Applications of q-Calculus in Operator Theory, 145
DOI 10.1007/978-1-4614-6946-9_5, © Springer Science+Business Media New York 2013
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Lemma 5.1 ([32]). For qu(t’”,x), m=0,1,2, one has the following:

Byg(1,x) = 1.
By g(t,x) = x,
1
B g(t%,x) = X+ = <1 + —x) .
1 [n]y q

5.1.1 Construction of Operators

For every n € N, ¢ € (0, 1), the positive linear operator Dj, is defined by

ad oo /A
DI(f(t),x):=[n— 1]q z P:ik (x) A P:ik (t)f(t)dqta (5.2)
k=0
where
k
,’Dq — |:n+k_ 1:| 2 X
e AR

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, =) (see [31]).

These operators satisfy linearity property. Also it can be observed that in case ¢ = 1
the above operators reduce to the Baskakov—Durrmeyer operators discussed in [139]
and [142]. Also see [144] for similar type of operators.

Lemma 5.2. The following equalities hold:
(i) Di(l,x)=1.
.. 2],
(ii) Djf (t,x) = (1 + 42[,,,1

1
Z]q) X+ T forn>2.

(3] 2], q(2],(3],+[1]
(iii) DZ (l27X) = (1 + 513[”:13]4 + q2[n,12]q + et )xz-

Pn-2,ln3,

2l
3[n=2,

[n]q+q(1+[2]g) 1]

)
T 2yl

q
x+ 7 n73]q,f0rn > 3.

n
q
Proof. The operators Di are well defined on the function 1, 1, t2. Then for every
n>3and x € [0, ), we obtain

oo oo /A
DI(1,2) = n—1], ¥ P, (%) /0 PY (1) dyt
k=1

— n+k—1 2 /A 1k
=[n—1] ’Pg (x) [ } q? / ————d,t.
qub « L P

Using (1.15) and (1.17), we can write
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n+k—1] 2Bg(k+1,n—1)
k K(Ak+1)

Skl Wyt -2,

Di(1,x) =[n— l]q i'Pik(x) [
=0

= [n—1] Zpgk

[n— 1], k]! n+k— l]q!qk(kH)

= =1, X Pl )

k=0
i[njtk—l} ey b
5 k qq (1+ )Hk
=Bi(l,x) =1,

where B! (f,x) is the g-Baskakov operator defined by (5.1).
Similarly

oo oo /A
D4 (1,0 = n=1], ¥ P /0 Pl (01t
k=0 k

_ /A thtl
q 0 (1+1),

- (k42,02
= n—1] zpjk [”*k 1} g8, (k+2,n-2)
1

S TK@kT)

. - |n+k—1 2o 3= 2[k+ ]q xk
_Z‘{ k L [ =2]y (1)

Using the equality [k + 1], = [k], + q~

k(k—1)

o0 B 3 k N
D4 (1,x) Z{ +]]§ 1] g 7 ¢ ¢ Ky
k=0 q

[n—=2], (14217

& [ntk—1] k) 0 o, 4~ Xk
+2{ 1] e

q 1 [n— 2]q(l+x)"+k

[ i{njtk—l] q"“‘%”q IR LI P
q

q k=0

1 > {n—i—k—l] ) Xk
q k=0 q (1+ )thk

1 antk ‘/t

n] (1 + x)n+k

147
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From Lemma 5.1, we can write

Finally
’DZ(tz,x) =[n—1] Z / 1)12d,t

oo +k_1 E oo/A tk+2
=[n-1 P (x {n ] 2 / — 7 et
[ ]quz) n,k( ) 0 (1+I)Z+k q

.| e
q
n+k—1 ng(k+3,n—3)
I PR SV W)
q-

=[n-1], qu
k=0

U TS N
= 2P )

Using [k+2], = [k]q—|—qk (2] and [k+1], = [k]q—l—qk, we have

} e (Wral,) (W,
.

2 o - n—|—k—1
P ‘k_zo[ ko 2], -3,
x| ntk—1 x* k255k73 [k]?,
‘kzo[ k } AT =2 =3,
i [ +k—l} xk k253k73 (1+[2]q) [k]q
& T =2 =3,
S [n+k—1 K 2o g 2],
+k26[ k } ,(1+ )"*"q [n—2],[n—3],
Again using (5.1) and Lemma 5.1, we have
=5 n 2 —4 1+[2] [I’l]
PR = e B [ngzmn i)3] K
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q 2] N
_ 61[”]?;"‘[”]4 2 [n]g+q(1+ [z]q)[”]qx [2]61
q°[n —2]4[n -3, ¢°[n—2]4[n -3, 7 ["—2]q [”—3]5,-

Since [n], = [3]; + ¢’*[n — 3], and [n], = [2], + ¢*[n — 2],, we have the desired
result. |

Remark 5.1. If we put ¢ = 1, we get the moments of Baskakov-Durrmeyer
operators as

142x
DMt —x,x) = —) n>2
1+nx

n—2’n>

D,ll(t,x) =

and

(s — xx _2[(n—|—3)x2—|—(n—|—3)x+1] .
e S e

(n? 4+n)x* +dnx+2 ;
(n—=2)(n—=3) ~’

Lemma 5.3. Let n > 3 be a given number. For every q € (0,1) we have

15 1
DZ ((t—x)z,x> < m ((pz(x)—i— m>a

where @?(x) = x(1+x),x € [0,0).

DY(? x) = >3

Proof. By Lemma 5.2, we have

e (Bl B, Rl Bl, )
&G )’)‘<q3[n—31q qZ[n—z]ﬁqﬁ[n—z]q[n—s]q)
[n]g +q(1 +[2]g)[n] _ 2 x mq
*( ¢ 2Jqln 3], q[n—21q> T2, 3,

q°[n—2],[n—3]

q

_ <q3 [3]4[n—2], —q*[n 3], [2], +q[2], 3], + [n]q> 2

f][”]q""f(1+[2]q)[n]q_2‘15[”—3]q N [2]61
*( 2,3, ) T2, -3,
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= x(1+x) <q3 By =21, — 4"l 3], 2, +4[2], Bl, + Mq)

q°In—2],[n-3],

+x<q[n]q+ ¢*(1+[2)9)[nlg —24°[n = 3] — 4’ [3], [n — 2],

q°n—2]4ln— 3]
q*[n-3], 2], —q[2],[3], - [n], N 2],
q4°ln—2],[n-3], ¢’ n—2],[n-3],

By direct computation, for n > 3, we have

¢*[3lyln =21 - q*[n—3], 2], +4q[2],[3],+ [n],

— (q3+q4+q5) ([n—3]q+q”’3> - (q4+q5) n=3],+(¢+q") (1+q9+4°)

_ n—3]q(q3+q +q5_(q4+q5)+1)+qn+qn+l+qn+2

1+q+q2) +qn73+qn72+qn71

'Q/\

+1) +6] +qn+l+qn+2+(q+q2) (1+q+q2) +qn73+qn72+qn71 >0

for every ¢ € (0, 1). Furthermore
qlnlg+q*(1+ 2]y [nly —2¢°[n 3],

=q(1+29+¢") (1+q+...+¢"") =2¢° (1 +q+...+4" %
=q(1+¢%) (14+g+...+¢" ") +2 [(q2+q3+...+q"“) - (q5+q6+...+q"“ﬂ
—(g+¢) (1 +q+ ... +¢" NV +2 [+ +4"]

and
[+ (1+210)] [Py —24° =30y~ [ B, [n=2], ~a* -3, (2], +4 121, 3], + b,

= (q+4") 1], +2 [P +a +4") — (a+a*+4") (1], (1+9))
+(q+4%) ([n]q— (1+q+q2)) —q(1+q) (1+q+4*) — [,
= (q—1)[n], +4"—4<0

for every g € (0,1).
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Thus we have

3 n— 4 n— .
Df (1= %) < x(1+9) (q Dl 2l =2, ol | L,)

q[ q

for every g € (0,1) and x € [0, o). Thus the result holds. |

5.1.2 Local Approximation

In this section we establish direct and local approximation theorems in connection
with the operators Dj. Let Cp[0,0) be the space of all real-valued continuous and
bounded functions f on [0,0) endowed with the norm ||f| = sup{|f(x)| : x €
[0,0)}. Further let us consider the following K-functional:

K:(£,8) = inf {5 =gll+3g"ll },

where § > 0 and W? = {g € Cp[0,) : g/,g" € Cp[0,)}. By [50, p. 177,
Theorem 2.4] there exists an absolute constant C > 0 such that

K(£.8) < Can (£.V5), (5.3)
where

wz(f,\/E) = sup  sup |f(x+2h)—2f(x+h)+ f(x)]

0<h<v/§ X€[0.)
is the second-order modulus of smoothness of f € Cg[0,). By

o(f,8) = sup sup [f(x+h)—f(x)|

0<h<d x€[0,00)

we denote the usual modulus of continuity of f € Cg[0,2). In what follows we shall

[
use the notations ¢ (x) = \/x(1+x) and §7(x) = ¢?(x) + m—, where x € [0,0)
and n > 4.
Our first result is a direct local approximation theorem for the operators Dj..
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Theorem 5.1. Let g € (0,1) and n > 4. We have

8, (x) g 22x+q !
|DZ(fax)_f(x>| SC(DZ <f,m> + <f,[nz—2]q) ,

forevery x € [0,00) and f € Cg[0,e0), where C is a positive constant.

Proof. Let us introduce the auxiliary operators 53 defined by

q *2x+q!

D7) = i) f (4 T

R
x € [0,0). The operators ﬁz are linear and preserve the linear functions:
Dt —x,x)=0 (5.5)

(see Lemma 5.2).
Let g € W2. From Taylor’s expansion

60) =)+ @~ + [ (—0) " du, 1€ [0,)
and (5.5), we get
D!(g.1) = glx) + D ( [ 0w d> |

Iﬁ:nce, by (5.4) one has
D} (g,x) —g(x)| <

gs
< | Dl (/ (t—u) g" (u) du,x) +

. X+ 472[2]q1‘+¢/71 _2 -1
<z>z(’ [ a1 d ,x)+ [ ’+‘1F]‘12]*q‘ ¢ () du

X X q

q 2 q72[2]4x+‘171 ? "
< |Di((r—x)%x) + oz, ) |1 (5.6)
q

Using Lemma 5.3 and n > 4, we obtain

_2 X 1N 2
DZ((t—x)z,x)+<q[[nz]z—;];q) <
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Since
) 1N\ 2
q “[2lgx+q ) 2
— ] 5, (x
( [”—2]q )
_ (149’ +2q(1+q)x+q -3,
N q*n—2]2 =3l x(x+1)+1
< 1 ["—3]q 4’ +dx+1
_q4[n—2]q'[n—2]q'[n—3]qx(x—|—1)+1’
we have

2001 b a1\ 2
oile-o)+ (SREE) < e

Then, by (5.6), we get

15 2 "
m@l g™ lI- (5.7

D (g,%) —g(x)| <
On the other hand, by (5.4) and (5.2) and Lemma 5.2, we have
DL(f,x)] < IDESOI+2 1AL < IAIDELx) +2 < 30f (58)
Now (5.4), (5.7), and (5.8) imply
DL(fx) = f)] < [Da(f —g.%) = (f = 8) ()|

f (x+M> —f(x)

+ [D(g,x) — g(x)|+ n—2],

_ 15 2 "
<4If =8l + g S WIs’

+

qRlgx+a N
f(x—!— [n—2], ) f()|

Hence taking infimum on the right-hand side over all g € W2, we get

IDi(f,x) = f(x)] <

< 15K, <f, m53(x)> o <f’ -2y
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In view of (5.3), for every g € (0,1) we get

X —202] x —1
IDA(f,3) — f(x)] < Can Q%) ‘o <f, q[ﬂ_w) |
n—~2q

This completes the proof of the theorem.

5.1.3 Rate of Convergence

Let B,» [0, =) be the set of all functions f defined on [0, <o) satisfying the condition

|f (x)] < My (14x?), where My is a constant depending only on f. By Cy2 [0, o),

we denote the subspace of all continuous functions belonging to B2 [0, o). Also,

let C%, [0, <) be the subspace of all functions f € C,2 [0, ), for which lim I’Iﬁxx) is
X—00

finite. The norm on C; [0, ) is || f]| .2 = sup,cfo, «) % For any positive a, by

@ (f, 6)= sup  sup |f(t) — f(x)]

[t—x|<& x,t€0, d]

we denote the usual modulus of continuity of f on the closed interval [0, a]. We
know that for a function f € C,2 [0, o), the modulus of continuity @, (f, &) tends
to zero.

Now we give a rate of convergence theorem for the operator Dj..

Theorem 5.2. Let f € C,2[0, =), ¢ =g, € (0, 1) such that g, — 1 as n — o and
0q+1 (f, 8) be its modulus of continuity on the finite interval [0, a+ 1] C [0, o),
where a > 0. Then for every n > 3,

K [k
D5 (f) = fllcp, o) < m+2“’a+l <f, m) =

where K = 90Mf(1 +a2) (1 +a—|—a2).

Proof. Forx € [0, a]andt > a+ 1, since t —x > 1, we have
F(6) = F ] < My (2427 +7)
< My (2438 +2(- %))
< 6My (1+d%) (t—x)*. (5.9)

Forx € [0, a] andt < a—+ 1, we have

rO-r@ <an - (145 a0 G0

with 6 > 0.
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From (5.9) and (5.10) we can write

| — x|

|f(t)—f(x)|§6Mf(l+a2)(t—x)2+<l+ 5 )wa+1(f, d) (5.11)

forx € [0, a] and ¢ > 0. Thus
D (f,%) = £ ()] < D (1f (1) = f (0] ,%)
< 6M; (1+a®) Df (1 -2 x)

a1 (f, 6) (1 +%D,‘§ ((t—x)z,x)%> .

Hence, by Schwarz’s inequality and Lemma 5.3, for every g € (0,1) and x € [0, 4

90Ms (1+a*) [ , 1
q°[n—2], <(P (X)+[”_3]q>

a1 (1, 8) (Hé\/ﬁ ("’2@* [n—13]q)>

K

1 K
m+@a+1(f, o) (14-3 m)

By taking 6 = /ﬁ, we get the assertion of our theorem. ]
q

Corollary 5.1. If f € Lipyo on [0, a+ 1], then forn > 3

D (f%) = f ()] <

<

K

1D () = Fllco, o < (1+2M) Fh—3,

Proof. For a sufficiently large n,

K K
<

q°[n—3] q°ln—3],’

q q

because of lim,_;e. [n — 3] = Hence, by f € Lipy o, we obtain the assertion of
the corollary. |
5.1.4 Weighted Approximation

Now we shall discuss the weighted approximation theorem, where the approxima-
tion formula holds true on the interval [0, o).
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Theorem 5.3. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
fec; [0, o), we have
1 qn _ —
lim (D (£) ~ £l =O0.

Proof. Using the theorem in [65] we see that it is sufficient to verify the following
three conditions

lim | D§" (1¥,x) =x'||,o =0, v=0,1,2. (5.12)
Nn—yo0

Since Dji" (1,x) = 1, the first condition of (5.12) is fulfilled for v = 0.
By Lemma 5.2 we have for n > 2

D (1,x) — x|
Dq" t7 — — S ’Vl;
|| n ( X) Xsz xe[gpm) 1+x2
[z]qn X 1

< sup +
61% [l’l - 2](/,, x€(0, o) 142 qn [}’l - 2](/,,

2] 1
< 5——+
qn [Vl - 2](],, dn [Vl - 2]L]n

)

and the second condition of (5.12) holds for v =1 as n — co.
Similarly we can write for n > 3

. < (q3 [3]61,, + [2]q,, qn [2]61,, [3]q,, + [n]q,, ) sup x2

[nf?’]q,, qlzl [n72]q” qg [n_z]q,, [n_3]q,, x€[0, o) l+x2

HDZ" <t2,x> -

(Ve an (1421, ) 11, N 2
a2, =3, ) seore 142 @31-2], [1-3],,

[3]q,, [2](1” qn [2](1” [3]%, + [n]q,,
~qpn-3,  @h-2, ¢nh-2,0h-3],
g, +an (1+121,,) I, 2,
g n—2], [n=3], apn—2], [n-3],"

which implies that

Jim || (#2,x) =] o = 0.

Thus the proof is completed. |

We give the following theorem to approximate all functions in C2 [0, ). This
type of results are given in [71] for locally integrable functions.



5.1 g-Baskakov-Durrmeyer Operators 157

Theorem 5.4. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
f€C2l0, ) and o > 0, we have

|DZ" (fax) _f(x)|

lim sup =0.
5% e, @) (1+a2)

Proof. For any fixed xo > 0,
DI (f,x) — f (x)] < D" (f,x) = f (%) D" (f,x) — f (x)]
sup sup

w0, ) (1427 Ty (14a2) ex (1422)7

Din (1—0—1‘2 x)’
< IDI(F)— + su ‘—7
< IPE) ~ Fleto I s0p -

v

x>x0 (1 —I—x2)1+a '

The first term of the above inequality tends to zero from Theorem 5.2. By Lemma 5.2
| D" (144 x) |

for any fixed xp > 0, it is easily seen that sup 2)1 —— tends to zero as n — oo,

x>x) (1+x
We can choose xp > 0 so large that the last part of above inequality can be made
small enough.

Thus the proof is completed. ]

5.1.5 Recurrence Relation and Asymptotic Formula

The g-Baskakov—Durrmeyer operators Djl (f,x) can be defined in alternate form as
S =k a
Dg (f(t),x) = [n_l]qun‘k(-x)‘/o q pn’k(t)f(t)dqta (513)
k=0
where
Pik (x) ==

{n—f—k—l] 2k Xk
q

x
k (1 —I—x)g+

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, =) (see [88]). Also

(1+x)(1+gx)... (144" %),

(10 = -z~ { |
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Lemma 5.4. [fwe define the central moments as

oo oo /A
Tom(x) = Djf (1 = x)7,x) = [n—1]¢ Y, PZ,/((X)/O CIkPZ,k(t) (t —x)gdyt,
=0
then

Tn,O(x) = lan,l(x> = qz[[}f]Z 2]x+ q[nl_Z]’

and for n > m+ 2, we have the following recurrence relation:

(k= 0021 ) o) = 030140 [ D4 0) 010
(Bl a2 ) b Tl

+|2leq"x( Blyg"x+q—x ) = Blog™" % = gx| [m]gTom-1(g%)
(s ) |

| s (Blas + ) - Bl 10 -
r 2 Bt g i 1 2(a0)

+x(1 = g™ N[l Tom(qx) + gx(1 = ¢" )l T m(gx)
=g (1—=¢" ") (1 = ¢")[n)g T m—1(gx),
and we consider T,, _ye(x) = 0.

Proof. Using the identity

gx(1 +x)Dq[pz7k(x)] = <qk[kl][qn]q —QX) [n]ql’z,k(qx)

and g-derivatives of product rule, we have
S q = kg
(60D, Tyn(3)] = =1}y 3, ax(1+20D o, (0] [ ¢l (0) =
k=0

m
"yt

- o/
- [m]q[nfl]ql;)qX(lﬂ)pZ,k(w) /0 q pl (1) (t—q)ydyt.
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Thus

E = gx(1+7) [Dq Tym(0)] + [quTW(qx)}

- K /A
— [n)yln— mgo P gv) (Qk[l]f;]q _ qx> /O G () — )t

oo DQ/A
= [n}q[n—l]qu;)pzyk(qx)/o qk (qk* [n}qitht q"x—qx+q x)p () (= x)’”d t

=[n- 1]q§0p3,k(qX) /:/A d'q B (1 + é)] D, {PZ,k (2)] (r = x)gdgt

/A
+nlg n—lqunk qx/ q'pl ()t —x)pdg
k=0

JA
+[n]q[n —1]4qx(¢" Z Pn x(qx / qkpzk(t)(t —x)gdgt
oo OO/A
=[n- 1]qk§0p2,k(m /0 q(1q+1*)D, {PZ,k (2) ] (1 = x)g dgt
S q /A k q m+1
+nlgln—11g Y pi i (gx) /0 q Py ()t = x)g " dyt
k=0 h

oo /A
+[n]g[n — 1) 4qx(q"™ 2 pn (ax / qkpik(t)(t —x);”dqt.

Using the identities
(t—q")(t—q""'x) = 1* — [2)yq"xt + g™

and

(1= ")t — " x) 1= " 2) = 1 = (g™ + By 1% — P,
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we obtain the following identity after simple computation:

(gt + tz) (t—x)g = (gt + tz)(t —x)(t— qx);"fl = [l3 +(g— x)t2 - qxt} (r— qx);"*l

— -y (Bt g ) - g0
[ las{ Blads g} - 812 - 00 -
e (Bl a ) - Bla? 5 - |

st e - g -

Using the above identity and g-integral by parts

b b
[ Dy (v dgt = e ) = [ vian)Dyfute)lds,

we have

E = —{m+ 2}y Ty e (g) ([3Jqqu+ g —x> [+ 1] Toom(4)

[l (Blaas+ g ) = Bl = ] T2 00

Jone{ s (Bl a-x) - Bl - o

+q2m+1x2{q2x_ [3]qqu_ q —|—x}:| [m — 1]an7m72 (qx)

I oo /A
Hliln =11 X plaa0) [ a0 =07
k=0

/A,
q" Py (1) (t = x)gdgt.

ol = Uegr(1 =" ) 3 Pyl |
k=0

Jo
Finally using

(t=x)g = (=x)( —gqx)y = (1 —qx)y ™ —x(1 —¢" ") (1 — g
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and

(t—x)=(—x)(t—qx)y " = (t—qx)) —x(1—g")(t —qx)i ",

we get

E = —{m+ 2}y Ty e (g) ([3Jqqu+ g —x) [+ 1] Toom(4)

[l Blaas+ g ) = Bl = o] W T2 09
e s (Bl a-x) - Bl - o

—l—qz’”“xz{qzx —[3l4¢"x—q —i—xH [m—1]4T,m—2(gx)

g Tns1(gx) = x(1 = ¢ 1) ] Ty ()
—gx(1=¢" ")nlgTum(gx) + (1 =" ) (1 = ¢") [l Ton—1(g)-

Thus, we have

(= 0121 ) T (09 = 5140 | DT (0) Il o109

(Bl a2 b Tonlan)

+|las (Bt g x) = Bl 2 o] i T2 00

+[are] s (Blads ) ~ Bla 2 - |
+g" {qzx —[34q"x—q +X}] m— 1] T m—2(gx)

+x(1 =" 1) gTon(gx) + qx(1 — ¢" ) )y Tm(gx)
—gx* (1= q" ) (1 = ¢")[nlg Tnm—1(qx).

This completes the proof of recurrence relation.

161
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Theorem 5.5 ([88]). Let f € C[0,) be a bounded function and (q,) denote a
sequence such that 0 < g, < 1 and g, — 1 as n — oo. Then we have for a point
x € (0, )

lim [, (D" (£,x) = f () = (2x-+ 1) lim Dy, f (x) +x(1+x) lim D2,/ (x).

n—yoo

Proof. By g-Taylor formula [49] for f we have

1

f(6)=f(x)+Dgf (x)(t —x)+ @Df,f(x) (t—x)2 4+ @y (x:1) (t — ),

for 0 < g < 1 where

S0~ F(0)=Dy () (1=3) ~ pf DG/ (x) =) "
D, (x;1) = )2 , ifxgy (5.14)
0, if x=y.

We know that for n large enough

Lim®,, (x;1) =0. (5.15)

t—x

That is, for any € > 0, A > 0, there exists a 6 > 0 such that
| D, (x;1)] <€ (5.16)
for | — x| < & and n sufficiently large. Using (5.14) we can write

D, f ()
D (f:) = f () = Dy f () Tt () + =15

() + B3 (x).
qn

where
q N 7 " kg 2
B4 () =ln— 1), Xl @) [ a0l (0@ () (=)}t
k=0

We can easily see that

lim [n],, T, 1 (x) =2x+1 and lim[n]y, T2 (x) = 2x (1 +x).
n—seo

n—yoo

In order to complete the proof of the theorem, it is sufficient to show that
limyses ], Ey" (x) = 0. We proceed as follows:
Let

oo oo /A
R () = [l In =11, T i) [ ahplle (000, () (1= 02, 2 (1)
k=0 k
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and
i /A
R (=l = 1y, 3o 00 [ dhplic (0@, (1) 6 =05, (1= 20 ot

so that
(], EX" (%) = Ry, (x) + Ry'5 (x)

where y, (t) is the characteristic function of the interval {7 : [t —x| < 8}.
It follows from (5.14)

o (x)’ <€2x(x+1) asn—oo.
If | — x| > &, then ’d)qn (x; t)’ < 5% (t —x)*, where M > 0 is a constant. Since

(t—x)* = (t—q2x+q2x—x) (t—q3x+q3x—x)
= (t—qzx) (t—q3x) +x(q3 - 1) (t—qzx) +x(q2 — 1) (t—qzx)
+2 (= 1) (=) +2 (1) (¢ 1),

we have

‘an2(x ’ =5 [”} n=1l,, Zzﬂ” / qspln () (1—x); dgt
/A
*%"(‘(qi”) (@)l b1, S0 [ dho )0, d

M /A
+532 (@2=1) " [y, [n— llq,,ZPq” / i (1) (1 = x)g, dgt

and

RIS

{11y, Tns () +x (=23 I, T3 () (£2-1)7 ), T2 ()}

Using Lemma 5.4, we have

RY (%) ‘ <

Cn G C
7 Tn73 (x) m n .
Algn

We have the desired result. |

Tn,4( ) <

IN

Corollary 5.2. Let f € C[0,) be a bounded function and (g,) denote a sequence
such that 0 < q, < 1 and g, — 1 as n — oo. Suppose that the first and second
derivatives f (x) and f" (x) exist at a point x € (0, ), we have

tim [n],, (D" (f,%) = f (1)) = f () 26+ 1) +x(1+2) " (x).

n—yoc0
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5.2 ¢-Szasz-Beta Operators

Very recently Radu [136] established the approximation properties of certain
g-operators. She also proposed the g-analogue of well-known Szdsz—Mirakian oper-
ators, different from [29]. After the Durrmeyer variants of well-known exponential-
type operators, namely, Bernstein, Baskakov, and Szdsz—Mirakian operators, several
researchers proposed the hybrid operators. In this direction Gupta and Noor [90]
introduced certain Szdsz-beta operators, which reproduce constant as well as
linear functions. In approximation theory because of this property, the convergence
becomes faster. Very recently Song et al. [143] observed that signals are often of
random characters and random signals play an important role in signal processing,
especially in the study of sampling results. For this purpose, one usually uses
stochastic processes which are stationary in the wide sense as a model [141].
A wide-sense stationary process is only a kind of second-order moment processes.
They obtained a Korovkin-type approximation theorem and mentioned the operators
such as Bernstein, Baskakov, and Szdsz operators and their Kantorovich variants
as applications. Here we extend the study and consider more complex operators
by dealing with the g-summation—integral operators. In the present study, as an
application of g-beta functions [49], we introduce the g- analogue of the Szasz-
beta operators and obtain its moments up to second order to study their convergence
behaviors.
Radu [136] proposed g-generalization of the Szasz operators as

k
7‘] f7 zsnk k(k g f (qk[l]f;]c) ) (517)

where

sz,k (x) = %Eq (—[n]qqu) )

Lemma 5.5 ([136]). We have the following:

Sng(l,x) = 1.

Spq(t,x) = x.

Spa(t*,x =x2—|—i.
;L]( ) [n]q

5.2.1 Construction of Operators

For every n € N, g € (0, 1), the linear positive operators Dj are defined by
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—  3k2-3k oo /A

DL 0)2)i= X0 T 5040 [ a0 (a0 dat +Ey (il £(0) 519
where

J e 1 tk71

pn,k( ) T Bq (I’l+ 1;k> (1+I)Z+k+1
and
k
SZ,k (x) = ([[ll]qq!) E, (—[n]qqu)

for x € [0, =) and for every real-valued continuous and bounded function f on
[0, o) (see [87]). In case g = 1 the above operators reduce to the Szdsz-beta
operators discussed in [90] .

Lemma 5.6 ([87]). The following equalities hold:

(i) Di(l,x)=1.
(ii) Di(t,x) = x.
(iii) DI (2,x) = M 2lex S,

Proof. For x € [0, o) by (5.18), we have

oo q3k22—3k wo/A -1
Di(1,x) = s (x) ———— ————d g+ E;(—|n|x
n( ) /Zi mk( )Bq(n—i—l,k) o (1+I)Z+k+1 q CI( [ ]CI )
— Y (x)—/ 4+ E, (~[n)).
,Zl By (n+ 1K) Jo (1R

Using (1.15) and (1.17), we can write

DY) = 3ot ) g o+ e (Il

k=1
< -3k 1
= ZsZ,k x)q D) +E;(—[n]gx)
k=1 q
= Y50 (g By (=[n]g)
k=1
_ 5 W) e ) _
= Wq!q Eq (—[n]qq x) =Sng(l,x) =1,

where S)! (f,x) is the g-Szdsz operator defined by (5.17).
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Similarly

oo o /A
Di(t,x) =Y, sZ’k (x)/o pZ,k (1) qtdyt

k=1
o £ B N
= ZSZ,k (x) B Cé / 1 it dat
k=1 g(n+1Lk)Jo (141);
3k2 3k

:isq () q 2 qBy (n,k+1)
nk B, (n+1,k) K(Ak+1)

_ S s7 (x % [n+k]‘]' [k]q
_kgl i () g ]! k—1],! [n+k,lq 2

o [k ) it k 2
- Zz)& st g =Y —k[l][]n] st (0 =8 q(t,%) = x.
> 1, w

Un—1],!

(k+1)

k=049 q

Finally for n > 1, we have

hnd 3k2 3k oo /A
DL = X0 T [ 0
3k2—3k

7 () /W/A ar! dyt
M By (n+1,k) Jo (14t 1

Il
M

3k2 3k

g 7 ¢By(n—1,k+2)
= By(n+1,k) K(A,k+2)g 23412

S o B, ¢
= D su(g ] [n—1], 2z
q aq 2

Using [k+ 1], = [k]q—i-qk, we have
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Remark 5.2. Letn > 1 and x € [0,e0), and then for every ¢ € (0,1), we have
DI((t —x),x) =0

and

. X%+ [2gx

DZ((I—X)Z,X) q[}’l—l] .
q

5.2.2 Direct Theorem

By Cg[0,0), we denote the space of real-valued continuous and bounded functions
f defined on the interval [0, ). The norm-||.|| on the space Cg[0,<0) is given by

1l = sup |f(x)].

0<x<eo
The Peetre K-functional is defined as
K>(f,8) =inf{||f —g||+ 8]¢"|| : g € W2},

where W2 = {g € Cp[0,) : g’,g" € Cp[0,%0)}. For f € Cp[0,) the modulus of
continuity of second order is defined by

o (f,V8) = sup sup |f(x+2h) = 2f(x+h)+ f(x)].

0<h</8§0=x<eo

By [50], there exists a positive constant C > 0 such that

K>(f,8) < Can(f,8"%),6 > 0.

Theorem 5.6. Let f € Cp[0,0) and 0 < g < 1. Then for all x € [0,°) and n > 1,
there exists an absolute constant C > 0 such that

Di(f,x) = f(x)] < Cop (f, M) :

2q[n—1]q

Proof. Let g € W2 and x,t € [0,0). By Taylor’s expansion, we have

0 = )+ ¢ () =)+ [ (=)

Applying Remark 5.2, we obtain

Dyl ) = Df [~ ).
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Obviously, we have | [ (t —u)g" (u)du| < (t — x)?||g"||. Therefore

Xz X
ID9(g,x) — g(x)| < DI((1 —x)2,2)|"] = = 2l

"
— g .
ripldl

Using Lemma 5.6, we have
q hnd 3k 3k oo /A q
D3 (f,x) Z /0 Py )11 (qt) |dgt + Eq (= [nlgx) | £ (0) | < [ f]].

Thus
I DA(fx) — f(O)] < [DI(f —g.x) = (f —8) ()| + D (g,x) — g(x)]

A 2gx
m”g IE

q

<2lf—gll+

Finally taking the infimum over all g € W2 and using the inequality K>(f,8) <
Can(f,8'?),8 > 0, we get the required result. This completes the proof of
Theorem 5.6. ]

We consider the following class of functions.

Let H2 [0, o) be the set of all functions f defined on [0, =) satisfying the
condition |f (x)| < My (1+x?), where My is a constant depending only on f.
By C,2 [0, =), we denote the subspace of all continuous functions belonging to
H [0, ). Also, let C5, [0, =) be the subspace of all functions f € Cy2 [0, ),

lf (“;)2 is finite. The norm on C3, [0, =) is || fl,2 = Sup,cfo, o) ‘{i“?z‘

for which lim
x| oo

We denote the modulus of continuity of f on closed interval [0, a],a > 0 as by

@ (f; 8) = sup  sup [f(t) = f(x)].

[t—x|<& x,t€(0, d]

We observe that for function f € C2 [0, ), the modulus of continuity @, (f, 0)
tends to zero.

Theorem 5.7. Let f € C2[0, ), g € (0,1) and @y41(f, 8) be its modulus of
continuity on the finite interval [0, a+ 1] C [0, o), where a > 0. Then for every
n>1,

a a? a P
ID8(f) ~ fleg g < U F D+ <f, a2+ >>.

‘1[”—1]61 [”—1]61

Proof. Forx € [0, a] andt > a+ 1, since t —x > 1, we have
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()= F ()] < My (245" +17)
< My (2438 +2(- %))
< 6My (1+d%) (t—x)*. (5.19)

Forx € [0, a] andt < a—+ 1, we have

rO-r@<an - (145 oo G0

with 6 > 0.
From (5.19) and (5.20), we can write

|t — x|

0@l <omy (4 -7+ (145 @ 8) 621

forx € [0, a] and # > 0. Thus
Dt (f,) = f ()| < D (1f (1) = fF ()], %)
< 6M; (1+a) DY ((t—x)2 ,x)

+0us1 (f, 8) <1+%D,‘{ ((t—x)z,x))%.

Hence, by using Schwarz inequality and Remark 5.2, for every ¢ € (0,1) and x €
[05 a]7

6My (14 a?) (x> + [2]4x)

1D (fx) = f ()] <

qln— 1)
1 [x24+2]4x
§) (142, |t
+wa+l (f7 ) < + K q[n—l]q
6Ma(1+a?)(2+a) 1 [a(2+a)
< + a1 (f, 0) | 1+ 54| —= |-
gln—1]q 41 ) 6\ gln—1]4
By taking § = %, we get the assertion of our theorem. This completes the
proof of the theorem. |

Remark 5.3. 1t is observed that under the assumptions of Theorem 5.7, the point-

wise convergence rate of the operators (5.18) to f is ﬁ for0< g, < 1and
qnin—1Lig,

qn — 1 as n — co. Also this convergence rate can be made better depending on the
choice of g, and is at least as fast as than T
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5.2.3 Weighted Approximation

Now, we shall discuss the weighted approximation theorem as follows:

Theorem 5.8. Let g = g, satisfies 0 < g, < 1 and let g, — 1 as n — oo. For each
[ €C510, =), we have

lim (D (£) ~ £l =0.

Proof. Using Korovkin’s theorem (see [65]), it is sufficient to verify the following
three conditions:

lim [ D§" (1¥,x) =x'||,o =0, v=0,1,2. (5.22)
Nn—yo0

Since D} (1,x) = 1 and D" (¢,x) = x, (5.22) holds for v=0and v = 1.
Next for n > 1, we have

] 2 2] x
DI (12 x) —x* —2__ 1] sup + 4 sup
H " ( ) sz <qn[”_l]qn x€0, o) 1+x2  guln— 1], xe[0, =) 1 +x?

1 2],

< +
gnln—1]g,  gnln—1]g,
which implies that
1 n 2 2 _
tim [ Dff (2,) 22 =0,
Thus the proof is completed. |

Next we give the following theorem to approximate all functions in C,2 [0, oo).
This type of result is given in [70] for locally integrable functions.

Theorem 5.9. Let g = q, satisfies 0 < q, < 1 and let g, — 1 as n — oo. For each
f€C2]0, ) and o > 0, we have

i D" (%) = f ()]
im sup

—0.
1, (1422)1

Proof. For any fixed xo > 0,
DI (f,x) — f (x)] DI (f,x) — f (x)] DI (f,x) — f (x)]
e < sup I sup e
) v<xg (14x2)F wxy  (1+4x2) ¢

|Di" (1+1%,x) |
W

sup
x€l0, ) (142

<P () = Flicpo, x) + I1f1l,2 sup

x>x0 (1 =+ X

f ()l

+sup )Ha.

x>x0 (1 +x2
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Obviously, the first term of the above inequality tends to zero, which is evident
from Theorem 5.6. By Lemma 5.6 for any fixed xo > 0O, it is easily seen that
sup | D (1442 x) |
xX>x0 (1+x2)l+a

that the last part of above inequality can be made small enough. ]

tends to zero as n — oo. Finally, we can choose xy > 0 so large

5.3 ¢-Szasz—Durrmeyer Operators

In this section we present direct approximation result in weighted function space
with the help of a weighted Korovkin-type theorem for new g-Szasz—Durrmeyer
operators (see [33]). Then we give the weighted approximation error of these
operators in terms of weighted modulus of continuity. Finally, we establish an
asymptotic formula.

Recently for 0 < g < 1, Aral [25] (also see [29]) defined the g-Szasz—Mirakian
operators as

¥) = —n x < [k]gbn ([”]qx)k
s =6 (bl ) 37 (558 gt O

where 0 < x < o (n), 0y(n) := (lle—';[m,f € C([0,0) and (by) is a sequence of
positive numbers such that lim,,_,.. b, = c. Some approximation properties of these
operators are studied in [29].

Based on this, we now propose the g-Szdsz—Durrmeyer operators for 0 < g < 1 as

qbn

B0 =223 [ st 0 f ) (5.24)

where

4 (x)([Lx)kE (_[n] i)
AT e TN T )

Remark 5.4. Note that the g-Szdsz—Durrmeyer operators can be rewritten via an

improper integral by using Definition (1.13). We can easily see that £, (—%) =0

for n < 0. Thus for 0 < g < 1 we can write

ZA(f(t),x) = [Z]q ZSZ,k (x) /0 abn sZ,k (t) f (1) dyt.
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By [29], we have

b
SO = L Sflen) =5 SHP0) = g+
n
q
Sz(ﬁ’x) =g+ ([2]q+1) qﬁxz-l-ﬁx,
[, [,

2
%“M=ffﬂmwﬂwm+@@%MM+mmb<m)L

where

5.3.1 Auxiliary Results

In the sequel, we shall need the following auxiliary results.

Lemma 5.7. We have

b
Z1(1,x) =1, Z,‘f(t,x):qzx—i—q =,
[,

2

b b

92 ) — 62 5.4, 3\ O o bn
Z1(1*,x) = ¢°x +(q +2¢*+q ) DR (1+q)<[n]q> :

where
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gbn

k
- [Zlq IEHE kl(Lq))k P (— [n]qb%) .

=0 " g7 [k, (bn
Using (5.19) and change of variable formula for g-integral with t = g [z]” y, then we
q
have
[n], & b =
2000 = 34 Y st 01— [TV E, () dyy
S g, I,

()L

&0 K], ! (bn)
=87 (1,x)=1.
Also, using a similar technique, from (5.24) with t = q[fl’—}”y, we have
q

gbn
1—4"

Zl(tx) =LY 51, (x) SZJc (r)rdgt
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From (5.24) and (5.23), it follows that

)5 (W) s,

b
S0k, ()" [y

)5 ()" (a6, +1)

S0k, )k Il

28(1.2) = gk, (— ],

SHES

@‘lk

— ot (-1,

= P8I (1,x) + qb "S9(1,x) = ¢
[n],

qbn
[n],
On the other hand

(1) g
20" g K, () ([n]q)k+3

l
/0 V2E, (—qy)dgy

k
n| q) g3 ( bn)k+3

b, &= X s [k]q!(bn)k ([n k+3

I, (k+3)

k
()" @aP s 11, 42,

- JE, (— qu%) ZE) K () ([n]q>2
oy (1) 62 (alk, +1) (1, + 01,
= ¢’E, (— [n]qb—n> ZE) K], (b ([n]q)z
b

by
=¢8I (Px) +4 (q 2], + q2) »

= ¢% +(q +24* +q)[b] x+gq (1+q)<

Other moments can be calculated similarly.

Lemma 5.8. We have the following:

L 2}t —xx) = (¢ —1)x+qpt.

2. 21 ((t—x)z,x) (( O2P+1) P4 (¢ 424 +9-2) fxta (14) (ﬁ;)z)

3z ((t—x)4,x) =x* (q20 —4g"?2 +6¢4° —4q* + 1)
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gai (g )+d3( Ja —4 (121, +1) Lea'®—ddi (g ))x3

+ bVl
+6(q°+2¢" +4°) g —4fr
q"a (g ( 2 +q%ax(q) +ds(q)q ([2]q+1)[—2f; 5
+ 2 | X
+ds (q) g 4¢° (T) ~dds (q) 4 () {1 +6(1+a) ¢ ()
2 2
g"ar(g) () +a"a (q) e +s (g) () +da(a)
+ q , . ’I3 q q X
—4g* () 12,13],

5.3.2 Approximation Properties

Let B, be the set of all functions f defined on [0, o) satisfying the condition
|f (x)| < Mg (1 —l—xz), where My is a constant depending only f. C, denotes the
subspace of all continuous function in B, and C; denotes the subspace of all

functions f € C, for which lim ‘{f;)z‘ exists finitely.
X—yoo

Let (0y,) be a sequence of positive numbers, such that lim a, = e and
n—yoo

s )

<x<oy 1+ 2

2,[0,a,]

for f € B;. These type functions are mentioned in [71].

Theorem 5.10. Let f€C; and g = q, satisfies 0 < g, < 1 such that g, — 1 as
n — oo, Ifhm,Hw W =0, we have

1 (12 (F) = fll o o, ] =0

Proof. On account of Theorem 1 in [71], it is enough to show the validity of the
following:

lim | Zdm (1Y, x) — 2[00, ()] = 0, v=0,1,2. (5.25)
Since, Z" (1,x) = 1, it obvious that
hm 2 (1,x) = 1|, (0.0 (m)] = 0.
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Using Lemma 5.7, we obtain

. X qnbn
lim || Z2" (¢t,x) — x <(1-¢ su +
28 00 = oo ) = (1= 9P | =

ann
<(l—-gp)+
o,
and
. ) 2
,}gﬁ,HZ’? (1) —x ||27[0,Ocqn(n)]
Zin tz,x —x?
= lim sup Lw
”*)OOOSXSOQM(V!) 1+x
2
X b X
< (1 — q6) sup + (qs + 2q4+ q3) " sup
n 0<x<atg, () 1+x2 n n n [n]t]n 0<x< gy (n) 1+x2
b ? 1
+@2(1+q,) | — sup —
" ! [n]qn 0<x<ay, (n) 1+x?
b b 2
< (1-48) ++ (a2 +2a0+a) o=+ == | 4 (1+a0).
[]g, ~ \ [nl,,

. . b, __ . . . qn _ .
Since ,{Lni[ = 0 and ’{gniqn =1, we have ’}grgo"zn (t,x) tzy[O,aqn(n)] =0and
lim || D" (12,x) —x*|, [0.04,(n)] = - Hence the conditions of (5.25) are fulfilled and
n—yoo |V Yn
we get ’}g{}oHZﬁ (f) —le[O’aqn(”)] =0 for every f € C}. [ |

Now, we find the order of approximation of the functions f € C; by the operators
Z, with the help of following weighted modulus of continuity (see [153]).
Let

Qz(f;3)= sup |f(x+h)_f(x)|

5—, foreach f€C;.
0<h<dxel0a(m) 14 (x+h)

The weighted modulus of continuity has the following properties which are similar
to usual first modulus of continuity.

Lemma 5.9. Let f € C5. Then, we have the following:

(i) Qo (f;98) is a monotone increasing function of 6.
(ii) Foreach f € C3, limg_,o+ Q, (f;9).
(iii) Foreach A >0, Qy (f;18) < (1+A1)Qy(f;0).

Now we give the main theorem of this section.
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Theorem 5.11. Let f € C; and q = g, satisfies 0 < g, < 1 such that q, — 1 as

. by,
n— Ifnltﬁnzo o

=0, then there exists a positive constant A such that the inequality
ZI(f.x)— f(x —
sup M SAQZ (f, aq (n)>
xE[Oqun (n)] (1 —I—xz)?

3 by
[,

holds, where a, (n) = max {1 —q } and A is a positive constant.

Proof. Fort >0, x € [0,04,(n)] and 8 > 0, using the definition of Q; (f;8) and
Lemma 5.9 (iii), we get

| — x|

0=l < (1 re-?) (1450 ) e (19

| — x|

<2(1+2) (1+(r—x)2) (1+ 5 )Qz(f;3).

Since Z7 is linear and positive, we have

|27 (f,x) = f ()]
<2(14+22) Qy (f:8)

X {1 + Z8((t —x)%,x) + Z4((1+ (t —x)?) i ;x| ,x)} . (5.26)

To estimate the first term of above inequality, using Lemma 5.7, we have

z4 ((t—x)z,x) = 29 (2,x) — 2629 (t,%) + 229 (1,%)

b
= (q6—2q2+1)x2+ (q5+2q4+q3—2q) 2 x

[n],
b 2
+4*(1+q) (ﬁ)

2
2b, by,
g(q6—2q2+1)x2+ x+2
o\,

2
< (1 —q3)2x2+ 2b"x+2 ( b )

[l [,

<A10(ag(n) (1+x+x%), (5.27)
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where A; > 0 and a4 (n) = max{l -, [1;—?} Since lim 2
q

=0and limg, =1,
n—soo g, n—so0

there exists a positive constant A, such that
zd ((t —x)? ,x) <Ay (1+x%).

To estimate the second term of (5.26), applying the Cauchy—Schwarz inequality,
we have

(1) S50e) <z (e ) (22 5204) )

Using (5.27) and Lemma 5.8, by direct computation we get

(Z,‘f (1 + (t—x)4,x))% <A;(1+x+x%)

and

<Zg <<t ;;)Zax>> 2 < %(’)(aq (n))% (1 —i—x—l—xz)%

for A3 > 0 and A4 > 0. If we take 0 = a,, (n)%, A=2(1+A,+2A3A4) and combine
above estimates, we have the inequality of the theorem. |

Now we give an asymptotic formula with respect to weighted norm. The symbol
U C% will stand for the space of all twice-differentiable functions on [0,e) with
uniformly continuous and bounded second derivative.

Theorem 5.12. Let f € UC3, q = g, satisfies 0 < g, < | such that g, — 1 asn — o

and lim 2 = 0 then
Nn—yo0 [n]qn

g (20010 () =0

uniformly on [0, o, (n)]. Particularly

Jim 2 (z;gn (f,x) = F (x) — (xf'+f')) —0

nvee [,

uniformly on compact subsets of oy, (n).

Proof. On account of Theorem 1 in [12], we need the show that:

1. Timy e (1+—12)2 ([”;q" 2zt (-2 x) —2x) =0,

n

2. 1imn%ﬁz ([’%Zgn ((=x),x) = 1) =0, for k=0,1.
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1 [ ] n n
3. hmnﬁm Wl—:zg ((l —_x)4 ,.X) =0.
n

Mgy Zan
4. SUPsc[0,0,0(q)) SUPn>1 m—bj—Z;f ((l —_x)z 7x) < oo,

n 6 2
Since lim,,_se [IQZ” (qg —2¢2+ 1) =lim, e 1;5” (%) =0, we have

fim, e L (%zq (=27 x) —2x)

(1+2)

2

X N L 2
e 2

X .
+—— lim (qf,+2qi+qf,—2q,,—2)

(1+4x2) n
1 bn
+——— lim ¢*> (1+q,) =0
(1+4x2)%no"" "I,

uniformly on [0, ay, (n)]. Also, for every x € [0, oy, (n)]

- d (g Zan
limy e m‘ (b—ZZ,? ((t=x),x)— 1)

xk : [n]% 2
e e

xk i 1—4q}
) m
1 +x2) n—e b,

=0

for k = 0, 1 uniformly on [0, oy, (n)]. Since

n—voo

14, (Q5°4q}12+6QS4613+1) —o

My, a0 s 2 .
lim B, (qn —4q,"+6q f4qn+1) = ,}5‘30 —ar

n
we have

1 n
lim — [ ]qn
oo (1 +x2) by

Z4n ((t—x)4,x) ~0.
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Finally

SUPxe(0,04(q)) SUPn>1 (sz)z By Zin ((t —x)2 ,x)

= sup sup—
x€[0,0m(q)) n=>1 (1 —|—x2)2

b
+ (q3+2qi+q,3—2qn)+qﬁ(l+qn) . 1

n
< sup [[bi (qﬁ—Zqﬁ+ 1)

n

b
+ (q3+2qi+q,3—2qn)+qﬁ(l+qn) [n]" 1 <o,
qn

and hence the result follows. |

5.4 ¢q-Phillips Operators

Phillips [135] defined the well-known linear positive operators

oo kok k—1 k-1
P,(f;x) = nZef”XQ/e*"’—n ! F@)dt+ e f(0),

. n!
0

where x € [0,0). Some approximation properties of these operators were studied
by Gupta and Srivastava [93] and by May [123]. Bézier variant of these Phillips
operators was proposed and studied by Gupta [85], where the rate of convergence
for the Bézier variant of the Phillips operators for bounded variation functions was
discussed. Very recently, Mahmudov in [119] introduced the following g-Szdsz—
Mirakian operator

1 - (k] k(k—1) [n]kxk
Sng(fix) = q ; o~
A j=0 (1 +(1-q)q’ [n]qx) gbf <f1"2 [n]q> 1 [] !

where x € [0,), 0 < g < 1, f € C[0,0), and investigated their approximation
properties.

Definition 5.1 ([118]). For f € R**), we define the following g-parametric Phillips
operators
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oo

/(1)
Pug(fix)=[n], >4 " Sur(g:qx) /0 ! Sni—1(q:1)f(t)dgt+eq (— [n]qCJX) 1(0),
k=1
(5.28)

_ kxk
where x € [0,e0) and S, 4(q;x) = e,(— [n] x)qk(kz 1) [’Ellii' .

These operators generalize the sequence of classical Phillips operators.

In this section we present the approximation properties of the g-Phillips operators
defined by (5.28), establish some local approximation result for continuous func-
tions in terms of modulus of continuity, and obtain inequalities for the weighted
approximation error of g-Phillips operators. Furthermore, we study Voronovskaja-
type asymptotic formula for the g-Phillips operators.

5.4.1 Moments

There are two g-analogues of the exponential function e*; see [104]:

e (Z)—ii—; |z|<; gl <1
AW -9 T—¢ 450
and
E@)=Tl(1+1-q)¢s) = 3 ¢E V2 e = (14 (1-q)2), lal <1,
=0 k=0 q
(5.29)
where (1 —x) =TT7- (1—g’x).
We set
[k
sl = — gt P
E, ([n]qx) [K],!
L [nlk
:eq(—[n]qx)qk(kzl) ['[%", n=102,.... (5.30)
N

It is clear that s, x (¢;x) > 0 for all ¢ € (0,1) and x € [0,0) and moreover

S o (1)
kg,osn,k (g:x) = ¢4 (— [n]qx) kgbq@ Tq' =1.

q
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The two g-gamma functions are defined as
rw=[ T, (Catdy 7 () — | D et (atydg.
For every A,x > 0 one has

I, (x) =K (A;x) 7/; (x),0

where K (A;x) = ﬁAx (1+ %)Z (1 —I—A);*x. In particular for any positive integer n

n(n—1) n(n—1)
K(An)=q = and Ty(n)=q 2 ¥ (n);

see [49].
In this section, we will calculate Pn7q(ti;x) for i = 0,1,2. By the definition of
g-gamma function 7/; , we have

11 ey kst

= T 4 4’ ZEF N E)2

1 [kt 1
_[”];H k],] g2

Lemma 5.10. We have

Prg(lix) =1, Ppg(t;x) =x,

1 (1+¢q)
Pag(t30) = =27 + :
A=,
1 (I4+q)
P, t—xz;x —<——1 2+ X.
761(( ) ) qz 6]2 [n]q
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Proof. For f(t) =

=

1 o/ (1—q)
Pug(li) = lnl, X "Suclaian) [ Suxr(gin)dyt + e, (= lnlyax)
k:

> 11
=[nY.q" 1Sn7k(q;qX)@F +eq (— [n]qqx)

=

2 «(q:qx —i—eq( [n]qqx) :Ii)Smk(q;qx) =1

For f(r) =
S oo/ (1-q)
Paglt0) = 1 X0 Suslaian) [ 1S (i
k=1
< H 1 < k] 1
Suk(439%) —5 = = D Snk(439x%) 75—
; k []2q2k1 kgf) ( )n]qk
1 & k] 1 1,
== D) Sk g9x) = —F— = =g x=x.
qzkg(,) J{(q q )[n] qk,z qzq
For f(r) =
5 & g1 =/(1-q) ,
Pug(t?x) = [n], D4 Sni(q:9x) /0 t°Snk—1(qst)dgt
k=1
- k+1], [k, 1 - k+1][k] 1
= ZSn,k(q;qx)#— = ZSn,k(LI?qx)—_
o] [n]z T = WP g
- (W, )W, G
=Y S, t(q:9x Sn, X
Z x(q39%) [”]f, e 2 (44 )["]2 g7+
k
- q [k, 1
+ zsn,k(‘]vqx) !
k=0 [”]2 g
1 K2 1 = [k] 1
= — > Suk(q:9x) 3 Suk(4:9%) T~ ==
615,25 « )[n]f,q e [n], 4"~
1 3 1 1 1 1
=—= q3x2+q—x + x:—zxz—i-z—x—i——x
q [n], nl,a ¢ q*[n],  [n],q
_ ixz—i— (12+61)x -
q q*[n],
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Lemma 5.11. For all 0 < g < 1 the following identity holds:

1 2 -

m, _ .
Pnaﬂ(t ,X) - [n];nq(mzimvz‘g, ;;o }’l m+l nk(q7qx)'
Proof. We have
i oo/ (1—q)
Paglt™s0) = lil, T.a Suelgzan) [ " Suxr(gindyt
k=1 ‘
o 1 1 k@2 [k—1+m]!
_ k—1 —— q
= [”]qulq Sn(@39%) —my [n];nJrl k— 1]ng : O k= T5m) 2
= [k—1 +m] [, 1
- ; ]q q(m2+2mk+2k7m)/2 Sn(4:9%)
i —1+m],...[k],
- kga m2+2mk+2k m) /2 Snk(q:4x).
Using [k + 5], = [s], + ¢’ [k], , we obtain
m—1 m
W, k+1],... k+m—1], =[] ([s]q+qs [k]q) =3¢ (m) K]
s=0 s=1
where C; (m) >0, s = 1,2,...,m are the constants independent of k. Hence
oo m
Pog(t™x) = e 2 ey Z (m) [k],, Snx(q5 )
q k=0 =1
1 .
- [ ] m2 /Zkz‘z)zc C[ k m+1)Sﬂ,k(q’qx)
s

B 1

1 m = (k,\’
=———YC SN | =L | ———Sux(q: ).
e “”'””%([n]q) g i) .

5.4.2 Direct Results

Let Cp[0,0) be the space of all real-valued continuous and bounded functions f
on [0,), endowed with the norm ||f]| = sup |f(x)|. The Peetre K-functional is

x€[0,00)

defined by
K>(f;8)= inf - S’V
2(f396) geclan[olw){l\f gll+6]g"|}
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where C3[0,) := {g € Cp[0,) : g',g" € Cp[0,)}. By [50, Theorem 2.4] there
exists an absolute constant M > 0 such that

K (f,8) < Man(f; V), (5.31)
where 8 > 0 and the second-order modulus of smoothness is defined as

w2 (f:V/8) = sup sup |f(x+2h) —2f(x+h)+f(x)],

0<h<8x€[0,00)

where f € Cg[0,°0) and 6 > 0. Also, we let

o(f;8) = sup sup |flx+h)—f(x)[.

0<h<8 x€[0,00)

Lemma 5.12. Let f € Cp[0,). Then, for all f € C5[0,), we have

7 1+ "
Prg(fx) 1_{( )xzﬁﬁfjx}y\f I 632

Proof. Let x € [0,0) and f € C3[0,0). Using Taylor’s formula

£ = 10 = (=0 )+ [ (= wf" W)
we can write

t

Paglf53) = F(5) = Pag(t =) () + P [ (= )" ()duz)

= £ )Pl = 2):) + Pag( [ (1= )f" )dix) = [ (= )f" ()

On the other hand, since

t

s

t

</ qu” |du<Hf”H/|t u|du < (¢ ||f”H

X
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we conclude that

t

— Pra( [ (1= )¢ (w)du)

X

< Prgl(t—x

N l_qz v (1+Q)x 1
_{< 7 ) vy }Hf I u

Lemma 5.13. For f € C[0,), we have

|Pn7q(f;x) _f('x)

1/

[ Puaf || < I1-

Theorem 5.13. Let f € Cp[0,0). Then, for every x € [0,0), there exists a constant
M > 0 such that

|Pug(f:x) = £(x)] < Man(fi\/8(x)),

Su(x) = (1_—f2) k)

q q*[n],

where

Proof. Now, taking into account boundedness of P, ,, we get

}an fix) | = |73n q (fsx) — Pn,q(gvx) —f(x)+g(x) —I—'Pn,q(g,X) —g(x)|
Pag(f — %) = (f = &) (%) + [ Pug(gix) — g(x)]
< Pug(f = g5%) + (f = &) (x) | + |Pugl(g:%) — 2(%)|

_ 2
§2||f—g||+{(l qzq >x2+ (qlzJ[;]Q)x} Hg”H
q
<2(If —gll+ 8. [ ¢"|)-

Now, taking infimum on the right-hand side over all g € Cl% [0,00) and using (5.31),
we get the following result

|Puq(f3x) = F(x)] < 2Ka(f38,(x)) < 2Ma(f51/ 8 (x)).- u

IN

N

Theorem 5.14. Let 0 < o < 1 and E be any subset of the interval [0,c0). Then, if
f € Cgl0,0) is locally Lip(a), i.e., the condition

If(y) = f(x)] <

holds, then, for each x € [0,0), we have

“ yEE andx € [0,0) (5.33)
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[Pug(fi0) = f)] <L{87 (1) +2(d (v, E)"},

where L is a constant depending on o, and f ; and d (x,E) is the distance between x
and E defined as

d(x,E)=inf{lr—x|:t € E}.

Proof. Let E denote the closure of E in [0,). Then, there exists a point xo € E |
such that |x — x| = d (x, E). Using the triangle inequality

1f (1) = F @) < |7 (@) = f (o) [+ [f (x) = f (x0)]
we get, by (5.33)

|Pag(f3%) = FX)| < Pug (£ ) = £ (x0)[5) + Pug(|f (x) = f (x0)] 3%)
< LA{Pug(|t —x0l” 32) + |x = x0/* }
S L{Pug(t — x|+ |x —x0|* ;%) + [x — x0|* }
=L{Pug(|t —x|%:x) +2]x—x0[*} .

Using the Holder inequality with p = % 4= a, we find that
|Pug(fix) = f(x)| < L{ [Puglt =21 :20)] 7 [Pog(19:x)]4 +2(d (va))“}
_M{ [Paallt=xP3)] R (x,E))“}
CXAENIETNY
7 q*[n],

:M{aﬁ(x)+z(d(x,15))“}. m

We consider the following classes of functions:

IN

M +2(d (x,E))*

Cn[0,00) := {feC[O,eo):HMf>0 If ()| <Mz (14+x") and ||f]],, := sup |f(x)|}

xe[Ow) 14

. If ()l
C;r[0,00) := {feC [0,00) : Hw1+x}ﬂ< , meN.
Next, we obtain a direct approximation theorem in Cj [0,°) and an estimation in
terms of the weighted modulus of continuity. It is known that if f is not uniformly
continuous on the interval [0, ), then the usual first modulus of continuity @ (f, )
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does not tend to zero, as § — 0. For every f € C};, [0,0) the weighted modulus of
continuity is defined as follows

_ |f (x+h)— f(x)]
n(f:0) = xzo,sgghgs T4+ (x4+m)"

See [112].
Lemma 5.14 ([112]). Let f € C;,[0,), m € N. Then, we have the following:

1. Q,, (f,0) is a monotone increasing function of 6.
2. limg_,g+ Qy (f,0) =0.
3. Forany o € [0,00), Q,, (f,00) < (1 4+ )y (f,90).

In the next theorem we give an expression of the approximation error with the
operators S, , by means of Q.

Theorem 5.15. If f € C{[0,e), then the inequality

1
[Pug (F) = fll, < k(@@ | f;—— |,

[nl,
where k is a constant independent of f and n.
Proof. From the definition of Q; (f, ) and Lemma 5.14, we may write

|t — x|

0= £@) = @) (5 1) 20 0.9)

| — x|

< (1+2x+t)( = +1) Qi (f.6).

Then

|Pug (f36) = f ()| < Pug (1f (1) = f (0)]5) < Qu(f,8) (Pug (1+2x+1)5x)
|t — x|

+ Pug ((1 +2x+t)T;x)> :

Applying the Cauchy—Schwarz inequality to the second term, we get

1/2
_ 1/2 —x?
Pug ((1—|—2x+t) |t6x| ;x> < (73,1,(, ((1+2x+t)2;x)) (Pn,q <%,x>> .
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Consequently

|Pag (f32) =f ()] < Qi (f,8) (Pug (142x+1) 1)

, 2 =\
+ (qu ((1+2x+t) ;x)) (Pn,q <T;x>> .

(5.34)

On the other hand, there is a positive constant K (g) such that

Prg (14+2x+1)5x) = 143x < 3 (1+x),

1/2
) 1L, (I+gq)
(qu ((1+2x+l)2 ,X)) = <<(1 +2x)% + (142x) x + ?xz + q*[nl, X,x>>

<K(q)(1+x), (5.35)

and
) b e
nl, g\ [, [n],
2 o< (1+x). (5.36)

_5\/E ~ 8q,/[n]

Now from (5.34)—(5.36), we have

2
|Pug (i) = f (x)| < Qi (£.8) (3(1+x)+K(CI)M)

< (1+22) Qi (f,8) | 3Ki +K(q) : :
q6,/n],

where

14+ X"+ x + xmH
Ky =sup——ir—
x>0 1—|—x

If we take 5:[n]‘17%, then from the above inequality we obtain the desired
result. |
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5.4.3 Voronovskaja-Type Theorem

In this section, we proceed to state and prove a Voronovskaja-type theorem for the
g-Phillips operators. We first prove the following lemma:

Lemma 5.15. Let 0 < g < 1. We have

o L Bl s
Pra(t2) = q° " [”]qq o [n]* ¢
1 2],8,(0+¢%) 5 [2,BLE0+¢) , R3]0+
Pn,q(l‘4;x) = px“—l— d [n]qqqlz x4+ — [n]qsq“ X 4 [n(]]2q9 X.
Proof. Simple calculations show that
1 & k+2], [k+1], k]
P”:Q(IB;X) = [n]3q3k§) qq3k c quk(CI;CIx)
= [k + gk (2+q) [K]2 + ¢ (1 +q) [k
_ [n]§q3k 0[ J;ta ( +q)[q]3qk+q (1+4)] L,S”’k(q;qx)
74 k=
(e lM] = (2+q) K]
i Bt 09 L Sl
o Utak, .
+l§6 pa O )}

1 2+q) < K
P g Ty G 2 S (4
< |k
+(1+q3)2 quSn,k(q;qX)

el W N eroe( W\
=3 z I S,,’k(q,qx) + 7 2 k—2 Sﬂ,k(q’ qx)
q [n]qq k=0 [n]qq
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k

]
5 Suk(q:9x)
qq

”]q ¢ iz

(I+g) < |
e &
_1 q—4x+(2q4+q3)i+q3x3 +(2+q) qx—i—q—x +(l+q)qzx
¢\ [n]; [n], ], 4’ [n], 245
1

[n],q
2g+1 1
( f6] )x2+—6x3—|—
q°[n], q

o R+g) ., C+a)  (40)
T Wt e e

Lo, (4294247 +q) 5 (1+29+2¢°+¢")

—X
q° q®[n], @)

1o, (+a)(1+q+q") > (1+a)(1+g+¢)
[n],4° n];q°

1 & k+3], [k+2], [k+1],[K]

q
- > Sn(q3%)
["]?, ¢®=o q*

= K, \ e K, )
_ L“g ( - ) Sni(q;qx) + (34—2(]41'261 ) v ({n][ 6];{2> S i(q;qx)

nlqq k=0 \ g

(B3+49+3¢4*+4°) &

s 2
[n]Z 10 2( [](]Icz> Sn,k(q;qx)

g4 k=0 [”]qq
(14+29+2¢*°+¢°) &

W, o
S e

1 5 1 3
=7 q—x+(3q +3q +q)q—2 2 <3q+2+—) 1 0 + g%
' \ [n]] [n]; q) [nl,

(3+2¢+4%) q_4x Zx .
T, <[n1q Ferra) g )

3+49+3¢7+4° 3 1429+ 24+ ¢°) ¢
o qZIqO q)<q3x2+q_x (1+29 ngq)q
n];q Il [nl,q

1 14+2g+342+ B3+ 29+ PG
_ L al q+3q (12 9+49)q 5
[n],q

q12
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N 143¢+3¢%+ (B +29+¢»)2q+ 1)¢*+ (3 +4q+3qz+q3)q4x2
n]5q"
L1 (342¢+¢*)g+ (3 +49+3¢>+ %) >+ (1 +2q+2q2+q3)q3x
nl; ¢°

s U+ 4+ +9+4%) 3.
g [n],q" )
q

| =

(I+9)(1+a)(1+9+4°)°
n]; q"!

Theorem 5.16. Let g, € (0,1). Then the sequence {Pngq,(f)} converges to f
uniformly on [0,A] for each f € C; [0,0) if and only if lijn qn=1.
Nn—soo

Proof. The proof is similar to that of Theorem 2 [86]. ]
Lemma 5.16. Assume that g, € (0,1), g, — 1, and ¢} — a as n — . For every

x € [0,0) there hold

lim [n],, Pg, ((t —x)*:x) =2(1 — a)x® +2x,

n—yo0

lim [n]} P, (1 —x)*:x) = 1222 +24(1 — @) + 12(1 — a)x*.

n—soo

Proof. First, we have

1im [n],, Pag, ((t —x)*5x) = lim [1],, { (iz - 1) o (ql;[rni )x}

n—yoo n—yoo i
1—-¢")(1 1
(( qn)g tan) o ( +2qn)x)
qn qn
=2(1—a)x* +2x.

= lim
n—eo

In order to calculate the second limit, we need expression for P, 4, ((r — x)*:x) :

Pnaﬂn ((t - X)4 7x)
=Pugn (t4;x) —4xPy g, (t3 3X) + 6x273,,,qn (tz;x) — 4x373,,,qn (%) +x*

o DB PR +R) PR, (+a)
IR e 2 e R

a5’
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—4x{ ! —x+ [2]% mq"xz + [2]4"2[3]4%} +6x% {lzxz + Lz]q" x} —3x*

qn [l’l an Qn [n] n q,5, qn qn [l’l]qn

o (1_4qg+6qulo_3q}l2)x4+ { [2]L]n [3](],, (1+q%)_4 [2](],, [3]L]n q2+6q}l0 [2](],, }x3
- 12
n ]

+

{ 21, Bl2. (1+42) —44512],,, 3], }x2
a\' ],
217 13, (1 +qﬁ)x

+ 3
n,, 45

_ (1+2q5+3q2—3q§,)(1—43)2(4n+1)2x4
a2,
+{(qﬁ—1)(qn+l) (2q) — 4q2—543—6q—645—245 — 24, + 645+ 64— 1) }xs
a2l

N { [2],,, 315, (1 +43) — 4452, B, }xz N 215, 31, (1 + q,zl)x'

2 3
a3t [nl,, [l 4
Thus
. 2 4
Jim [n]; Pog, (1 —x)75x)
i =) [ 244300303+ 1) (4= 1) (@ + 1)
n—es (1 — gp)? a?

(gn—1) (qn+1) (29, — 493 — 5q; — 644 —64,—245—2q, + 645 + 64, — 1) | 4

+ 7 X
9, [n],,

(gn+1) (gn+242+ a0+ — 4613+1)(qn+qﬁ+1)>xz
ai [l

o
( 1+g,)? 1+qn)(1+qn+qi)>x}
—12

[l

(1—a)*x*+24(1 —a)x> + 124%. [
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Theorem 5.17. Assume that g, € (0,1), g, — 1, and ¢ — a as n — . For any
f€C5[0,00) such that f', f" € C5 [0,e0), the following equality holds

lim [n],, (P, (f%) = f(x)) = (1 —a)x” +x) f"(x)

n—yoo

uniformly on any [0,A], A > 0.

Proof. Let f,f,f" € C5]0,%) and x € [0,0) be fixed. By the Taylor formula we
may write

SO =)+ F @ =2+ 3 W=+ 63D

where r(t;x) is the Peano form of the remainder, r(.; x) € C; [0,0), and }imr(t;x):O.
—X

Applying P, 4, to (5.37) we obtain

Wl Pran (F5) = F(2)) = 5.7 3) I, Py (6 —2)%5)
+ [n]qn Pr.qg. (r (t;%) (¢ —x)2 ;x) .

By the Cauchy—Schwarz inequality, we have

Prgn (r(t;x) (¢ —x)z;x) <A/ P, (7 (t;x);x)\/ s ((t—x)4;x) . (5.38)

Observe that r? (x;x) = 0 and 72 (.;x) € C; [0, ). Then it follows from Theorem 5.16
that

nlg?op”*‘/" (r2 (t;x) ;x) =7 (x;x)=0 (5.39)
uniformly with respect to x € [0,A]. Now from (5.38) and (5.39) and Lemma 5.16,

we get immediately

lim [1], Pag, (r(t;x) (t—x) ;x) ~0.

n—se0

Then we get the following

lim [n], (Png,(f3%) = f(x))

n—yoo



Chapter 6
Statistical Convergence of g-Operators

One of the most recently studied subject in approximation theory is the
approximation of function by linear positive operators using A-statistical conver-
gence or a matrix summability method. In approximation theory by linear positive
operators, the statistical convergence has been examined for the first time by Gadjiev
and Orhan [69].

First of all, we recall the concept of statistical convergence.

Let us recall the concept of statistical convergence. The density of a set K C N is
defined by

= nlg{}o 2 xx(k
provided the limit exists, where yx is the characteristic function of K. Clearly,
the sum of the right-hand side represents the cardinality of the set {k <n:k € K}.
Following [69], a sequence x = (xx),~, is statistically convergent to a real number
L if, for every € > 0, B
0({keN:|xxy—L|>¢€})=0

In this case we write st — lim,x, = L. It is known that any convergent sequence
is statistically convergent, but not conversely. Closely related to this notion is A-
statistical convergence, where A = (a,,)k) is an infinite summability matrix. For
a given sequence x = (xi);~,, the A-transform of x denoted by (Ax), n € N is
defined by -

Ax), = Za,,)kxk, neN,
k=1

provided the series converges for each n. Suppose that A is nonnegative regular
summability matrix. Then x is A-statistically convergent to the real number L if, for
every € > 0, one has

lim z ang =

am
T kel (e

where I(e) = {k € N: |xy — L| > €}. We write st4 — lim,x = L, see, e.g., [64,69].

A. Aral et al., Applications of q-Calculus in Operator Theory, 195
DOI 10.1007/978-1-4614-6946-9_6, © Springer Science+Business Media New York 2013
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6.1 General Class of Positive Linear Operators

In this section, a general class of positive linear operators of discrete type based
on g-calculus is presented, and their weighted statistical approximation properties
are investigated by using a Bohman—Korovkin-type theorem. We also mark out two
particular cases of this general class of operators.

This section is based on [136].

6.1.1 Notations and Preliminary Results

We use the following notations:

n—1
(@+b)y=]](a+qh), neN, abecR, (6.1)
s=0
n—1
(1+a); =11 +g¢%) a€R, (6.2)
s=0
(1+a)”
l+a) = — "9 R. 6.3

Note that the infinite product (6.2) is convergent if g € (0, 1). Throughout the
section we consider g € (0,1).
We recall the g-Taylor theorem as it is given in [59, pp. 103].

Theorem 6.1. If the function f(x) is capable of expansion as a convergent power
series and q is not a root of unity, then

=3 ),
= [n]q
where
n n s : n k1) —k k
w-a=T-ga)=3 [k] ¢k —a (6.4
5=0 k=0 q

6.1.2 Construction of the Operators

Letting R = [0,%0) and Ny = {0} UN, by Cp(R), we denote the space of all
continuous real-valued functions on R and bounded on the entire positive axis.
Baskakov [37] introduced the operators L, : Cg(R;) — C(J),n € N,
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3 k
L@ =3 el (E> , (6.5)

k=0 n

which are generated by a sequence of functions (¢,) n>1>@n : € —> C, having the
following properties:

(1) @n,n € N are analytic on a domain D containing the disc {z€ C: |z—R| <R}
and J = [0,R)].

2) g.(0)=1,neN.

(3) @u,n € N are completely monotone on J, i.e., (—1)¥¢,(k) > 0 for x € J.k €
Np,n € N.

(4) There exists a positive integer m(n) such that

(p,(lk) (x) = —n(pr(nk(;;)(x)(l +ogn(x), xelJ, (nk)eNxN,

where 0y ,(x) converges to zero uniformly in & and x on J for n tending to
infinity.
(5) limy e ﬁ =1.

We set e;,e;(x) = x',i > 0.
Let (@), be a sequence of real functions on Ry which are continuously
infinitely g-differentiable on R satisfying the following conditions:
(P1)
¢.(0)=1, neN. (6.6)
P2)
(—1%)DE¢n(x) >0, n €N, k € No,x > 0. (6.7)

(P3) Forall (x,k) € N x Ny, there exists a positive integer ix,0 < iy <k, such that

D1 0u(x) = (= 1) DY 0, (q* 1 x) B ki g (%) (6.8)
where 5 )
st— 11;11% —1. (6.9)
;" q

Remark 6.1. Multiplying (6.8) by (—1)¥~2%*1 we get
(=D IDgH 0u(x) = (= 1) %D %0 (g™ 1) B i (1).
The last equality and (6.7) yield that
Bki.q(x) =0, (6.10)

forall x € R, (n,k) € Nx Ng,q € (0,1).
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We set

Cv(Ry) = {f €C(R,): () lim f)

x—>°<)1‘i‘)€1v<oo}7 NZZ

Endowed with the norm ||. |, this space is Banach space, where
If ()]
Iflly= P 6.11)

Inspired by the Baskakov operators (6.5), we introduce the announced
g-operators as follows:

8

k(k Do

(K],
f qx = P Dq(b,,(x)f [}’[](IT (612)

forall f € C(R4),x € Ry,q€(0,1),n €N, where (¢,), is a sequence of functions
satisfying (P1)—(P3).-
It is obvious that 7;,,n € N, are positive and linear operators.

Lemma 6.1. Foralln € N;x e Ry, and 0 < g < 1,we have

Tu(eoiqsx) =1, (6.13)
D, 6,(0
To(e1:9:x) = —X%() (6.14)
q
2
Ty (exign) =2 20D Latn(©) (6.15)
q[n], [n],

Proof. For a fixed x € R, by Theorem 6.1, we obtain

= i qD"¢n (x). (6.16)

Choosing ¢ = 0 in the above relation and taking into account (6.6), (6.1) and
(—x)f = (—0kg T, we get

kl)

Dyn(x) = 9a(0) = 1,
and (6.13) is proved.
Using (6.16) we can write the g-derivative of ¢, with respect to ¢ as

& - (1 —x)y ' Diu(x). (6.17)

D‘]¢”(t): ]

HMx
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For getting the above identity we used the formula D, (t +a)* =[], (t +a)*"!,
see (1.4).
Multiplying (6.17) by (—x) and choosing 7 = 0 we obtain

k (k=1)(k—2)
y (o e

) Dl (x), (6.18)

—xDyu(0) =

M3

which yields (6.14).
We use a similar technique to get (6.15). Differentiating (6.17) with respect to ¢
we get
[k—1],

(t—x); > Dk gn ().
G

0= £

Now choosing again ¢ = 0 one has
> [k, lk—1] Ly (3
D39,(0) = EW (=0 g2 Digu(x). (6.19)
From (6.18) and (6.19) we have
= [k] [k—1] (k-2)k-3)
D300 (0) 24Dy (0) = X W (—0)'q 7 Didn(x)
hind [ (k— )
q z ' Dq¢”( )
it k!
< [k]q K (=2)k=3) k k—1
S () (Ik=1],+4")
it [k]2 2 (k=3)
= Xt 0t Dl
where we used the fact that [k — 1], + ¢ 1= [k], for all k € N.
On the other hand
. 1 & [k]; o (k—z)z(k—3) t
T; (ez,q X) q[l’l]; ; [ ] ( 'x) q Dq¢ﬂ('x)
_ 2D2¢"(0) q‘Pn( )
=X 2 2
qlnl, ],

and (6.15) follows. The proof is complete. ]



200 6 Statistical Convergence of g-Operators

Remark 6.2. Since any linear and positive operator is monotone, relation (6.15)
guarantees that 7, f € C;(R.).

6.1.3 Statistical Approximation Properties in Weighted Space

In this section, by using a Bohman—Korovkin-type theorem proved in [57], we
present the statistical approximation properties of the operator 7, given by (6.12).
Let R denote the set of real numbers. A real function p is called a weight function
if it is continuous on R and lim|y|_,..p(x) = e,p(x) > 1 forall x € R
Let us denote by B, (R) the weighted space of real-valued functions f defined on
R with the property | f(x)| < Myp(x) for all x € R, where M is a constant depending
on the function f. We also consider the weighted subspace C, (R) of B, (R) given by

Cp(R) = {f € Bp(R) : f continous on R} .

Endowed with the norm [|. | ,, where || f[| , = sup,cp %, B, (R), and Cp(R) are
Banach spaces.

Using A-statistical convergence Duman and Orhan proved the following
Bohman-Korovkin-type theorem [57, Theorem 3].

Theorem 6.2. Let A = (ajn)].‘n be a non negative regular summability matrix and

let (Ly), be a sequence of positive linear operators from Cp, (R) into By, (R), where
p1 and py satisfy

lim 2L —o. (6.20)
el P2
Then
Sty —lirllnHL,,f—pr2 =0forall f € Cp, (R)
if and only if

sta —lim || L,F, — Fy|,, =0, v=0,1,2
n

where F,(x) = x;i‘)ﬁf) ,v=0,1,2.

Examining this result, clearly, replacing R by R, the theorem holds true.
Further on, we consider a sequence (gy)n, gn € (0, 1), such that

st —limg, = 1. 6.21)
n

Theorem 6.3. Let (gy)n be a sequence satisfying (6.21). Then for all f € Co(Ry),
we have

st —=im || T, (f3gn3-) = fllaq = 0, @ > 1.
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Proof. Tt is clear that

st—liy{nHTn(eo;qn;.)—eo||2 =0. (6.22)
Based on (6.8) we have

Dy, 0n(x) = = 01(qn¥)Br 00,4, (x) xERy, neEN,

where

ﬁﬂ70707‘In (O)

1 (6.23)
[n]%z

st —lim
n
Thus, by (6.14) and (6.6), we obtain

|Tu(e1;qn;x) —e1(x)]
1+ x2

Bﬂ,0,0,Qn (O)

i —1.

< lletll

Consequently,

1
| Tu(ersqn;.) —eill, < 3

Bﬂ,0,0,Qn (0)

,

and for any € > 0 we have 6(A) < 6(B) =0, where

A={neN:|Ti(e;qn.)—eill, > €}

B= {n en: [Pro0a @ 1 28}.
[nl,,

Hence, we get

sz‘—lirfn||Tn(el;qn;.)—el||2 =0. (6.24)
The condition (6.8) implies that for any n € N, we have
Dé,, On(x) = —Dy, n (qn'x)ﬁl‘l71707‘In (x) (6.25)
or

D3, 9n(x) = 0ng(¥)Bu 1.1, (x). (6:26)
]

Case 6.1. 1f (6.25) holds true, then D ¢,(0) = B,,.0,0.4,(0)Bn.1.0.4,(0). From (6.15)
we get

Tu(eziani) - ex(w)] < (P00 OPr100, @) 2| Proog©0),

Gnln]?, [,
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By using the elementary inequality

)

XY — 1] <max{|X*—1

Y?—1]}, X,Y eR, XY >0,

we can write

2
Tu(e2;qn;x) — 0
Tulezianid) =ea@l <l3n,k7o7q,,( >> i

142 k=01 gk [n]qn

)

ﬁn,O,O,CIn (O)
"l

Bn,k,O,q,, (0)

< max
k:W { q{’(l [}’l] qn

1 L Bro0an(0)

2 I,

+ [lerll

ﬁmk,O,q,, (0)

1
qas[nl,,

-1

)

(2

Since st — lim,, g,, = 1 we have

st —lim—— — 0. (6.27)
n[nlg,

From (6.9) and (6.27) we obtain

sz‘—1i£n||Tn(eg;qn;.)—e2||2 =0. (6.28)

Case 6.2. If (6.26) holds true, then Dfln 02(0) = Bn,1,1,4,(0). By using (6.15), we get

0 0
|Tn(ez;q;1;x) _ ez(x)| < ﬁn,lalaan( ) -1 xZ + ﬁn,o,o,gn( )x
Gn [n]‘]n [n]‘In
and
0 1 0
[Tilerign.) —eal, < [P _yf, 1 Prooa0)
4n [n]q,, [n]q,,

Taking into account (6.9) and (6.27), the last inequality implies
st—li’1ln||T,,(e2;q,,;.)—e2||2 =0. (6.29)

Finally, using (6.22), (6.24), and (6.28) or (6.29), the proof follows from
Theorem 6.2 by choosing A = Cj, the Cesdro matrix of order one and p;(x) =
1+22,p(x) =14+x2* xRy, a0 > 1.
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6.1.4 Special Cases of T, Operator

In this section we present two particular cases of operator 7,, given by (6.12),
which turn into the well-known Szdsz Mirakyan (also called Mirakjan) operator
and classical Baskakov operator, respectively, in the case ¢ — 1.

A g-Analogue of Szasz—Mirakyan Operator

For some ¢ € (0,1), let (04), be a sequence of positive real numbers satisfying
st —lim, 0 = 1 and let ¢, (x) = E, (— [n]qot,,x), x €Ry,n € N. Then, for all
(n,k) € N x N, we have ¢,(0) =1 and

k(k—1)
Dhu(x) = (~ ) ol > By (—[n], o), x>0,

It is obvious that under the assumption made upon sequence (¢,),, the condi-
tion (6.7) is fulfilled. Furthermore, for all k € N, we get

DI;A Pn(x) = —ng)n (qx)ﬁn,k,o,q (x),

where B, 1.04(x) = [n],, 0g*. Consequently,

Brko.q (x)

=0y, neN,
], g "

and (6.8), (6.9) are also satisfied.
In this case the operator 7, turns into S}, given as follows:

k
w (o [n], x K
S;(f’q’x): quk(knE‘q (_ [n]qqkanx)f< [ ](]]{1> : (630)

k=0 [k]q [n]qq
for f € G(Ry), xeRy,neN,ge(0,1).

Remark 6.3. Choosing o, = 1,n € N, the operator S;; given by (6.30) reduces to the
classical Szdsz—Mirakyan operator, when ¢ — 1™

Based on Lemma 6.1, we have

Sr(eo;q3x) =1
Sr(e1;g;x) = opx,

Oy

[,

S*(e2:q:x) = O2x% + —=x,

forxe Ry,neN,q€(0,1).
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We point out that our g-generalization S}, n € N, is different by the g-analogue
of Szdsz—Mirakyan operator, recently introduced by Aral (see [25]) as follows:

- ()’
st = £, (-l ) 3. (V‘]qb”) )

k=0 ], [],! (bn)*

where 0 < x < i f”q 7, by 1s a sequence of positive numbers such that lim,b,, = oo.

The approximation function S}(f;q;.) is defined on [0, for each n € N,
while the domain of Sg( f3.) depends on n. Moreover, in the case ¢, = 1,n € N,
since |S}(e2;g;x) —ea(x)| = ml};x and [S%(e2;q;x) —ea(x)| = (1 — g)x* + [lé—qu, the

behavior of S%(.;¢;.) on e, is better than S}, on e;.

A g-Analogue of Classical Baskakov Operator

In order to give second particular case of the operator 7, we consider the next
lemma. The proof follows immediately from (6.1)—(6.3) (see [104, pp. 106—107]).

Lemma 6.2. Lett,s,ac R

Dy(1+ ax), = [t]qa(l—i-aqx)ifl, (6.31)
(14x);" = (14+x)5(1+¢°x),, (6.32)
1

1 e, 6.33
( +x)q (1 —i—q*’x)’q ( )

By using (6.31) and the identity [—n], = [;Z]" ,n €N, itis easy to see that
Dy(1+ax)," = g nl 6.34
q(1+ax), —Ta( +agx)y . (6.34)

Let ¢, (x) = (1 +q”’1x)q’”,x € Ry, n € N. Taking into account (6.33), (6.34), and
definition of the high g-derivatives, we obtain

Dyn(x) = (=1)[n], i [n+k—1],¢°(1+ ¢ x)
k[n—i—k—l]q!qk 1
=10 7 (g™

= (-

forallx e R.,(n,k) e NxN,g € (0,1).
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Consequently, by using (6.32) we can write

D g, (x) = (_1)k+15i—ﬂjqk+l(l g2y ket
_ (_l)kﬂg:j—ﬂ:iqkﬂ(l g L (] 4 g2k
= (_1)kDCI¢”(qu)ﬁn,k,kfl,q(x)a
where Bk k—1,4(x) = [n;{j!"! ¢ (1+4"'x) %, and ﬁ”"‘[ﬁ}:ﬁ;’z(o) = [[;Zj]‘:!.

Since, for 0 < g < 1, we have lim,, [Tr—k}" =1,(3.4) and (6.9) are also verified

nl,
with iy =k—1.
In this case the operator 7, turns into V,’, given as follows:

| K
@ o ([n]qj”) (63

for fe (Ry), xe Ry ,neN,ge (0,1).

Vifiqix) =, L

hd [n—i—k— 1} k1)
k=0 q

Remark 6.4. The operator V,* given by (6.35) becomes the classical nth Baskakov
operator in the case ¢ — 1.

Based on Lemma 6.1 we have

Vo (eoiqix) =1,
Vi (er;q:x) = gx,
n+1
Vi (ex;q;5x) = [ B ]qqxz—l-ix, xeR ,neN.
q

],

6.2 ¢-Szasz—King-type Operators
6.2.1 Notations and Preliminaries

In order to introduce a g-variant for Szasz—Mirakjan operators, right from the start,
we present a construction due to Aral [25] and studied in deepness by Aral and
Gupta [29]. Let (b,),~; be a sequence of positive numbers such that lim, b, = eo.
Foreachn € N, g € (0,1), and f € C(R,), the authors defined
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k
) it (636

100 =, (<ol ) 31 (S

where 0 < x < 5 f n The following explicit expressions for Sfe;, k = 0,1,2 have
been established [29, (3.5)-(3.7)]:

by
Sleg =eg, Sleir=e1, ,Slex=qer+—ei
[n]
q

In [9] the classical Szasz—Mirakjan operators have been modified in King’s sense.
Following a similar route, we transform the operators defined at (6.36) in order to
preserve the quadratic function e;. Defining the functions

1
) = 5o (Sbat B dalalie) 520 (637)

we consider the linear and positive operators

oo k
(5100 ()= (ol ) 5 (S ) el om

where x € J,(¢) := {0, lf#)

Lemma 6.3. The operators defined at (6.38) verify for each x € J,(q) the following
identities

(S;;,qeo) (x) =1, (S;:,qel) (x) = qu(x)v (S;;,qez) (x) = x2 (6.39)

(Sz,q W)%) (x) = 2x (x— Vn,q(x)) (6.40)
where Yy(t) =t —x,t > 0.

Since the identities are easily obtained by direct computation, we omit the proof.

Examining relations (6.37), (6.39), and based on Bohman—Korovkin theorem, it
is clear that (Sj;! q)n>1 does not form an approximation process. The next step is to
transform it for employing of this property. For each n € N, the constant ¢ will be
replaced by a number g, € (0, 1) such that lim b, = 1. At this stage we also need a
connection between the involved sequences (by),~; , (¢n),>1-

Theorem 6.4. Let (qn),~;, 0 < gn < 1 be a sequence and let the operators
Sk ., n€N, be defined as in (6.38). If

n,qn’

b b
limg, =1, lim—"— = and lim— =0 (6.41)
n n l_qﬁ n [n]q
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then for any compact K C Ry and for each f € C(R..), one has

lim (S, .f) (x) = f(x), uniformly inx € K.

Proof. The second limit in (6.41) guarantees that | J;,_, J, (g,) = R4. Consequently,
the sequence of operators is properly defined, this meaning that it is suitable to
approximate functions defined on R, . The third limit in (6.41) implies lim, v, 4(x) =
x* uniformly in x € K. The result follows from Bohman-Korovkin criterion via
Lemma 6.3. |

Remark 6.5. For removing any doubt, we indicate pairs of sequences (gx),>
(bn),>1 which verify the plurality of requirements imposed in Theorem 6.4.

1 qlzx/iiandq,,:\,,% (n>2); b, = n* for any fixed A € (0,3).

2qi=4andg,=1-1 (n>2);b,= ([n]%))L for any fixed A € (0,1).

6.2.2 Weighted Statistical Approximation Property

A real-valued function p defined on R is usually called a weight function if it is
continuous on the domain satisfying the conditions p > ey and lim‘x‘ﬁm P (x) = oo,

For example, the mapping x — 1 +x2t*, A a nonnegative parameter, is often used
as weight function. Let us consider the spaces

By(R) = {f : R — RR| a constant My depending on f exists such that [f| < Mp}

Cp(R) ={f € Bp(R)]| f continuous on R}
endowed with the usual norm ||-|[ ,, this meaning
I/ ()]
1f1lp = sup ===
8 p(x)

xeR

Clearly, all the notations and results in Theorem 6.2 are still valid if we replace
the domain R by R.. The main result of this section is based on Theorem 6.2. We
choose the pair of weight functions (py, p, ), where

po(x) =1+x% py(x)=1+x>* xeR, (6.42)

A >0 being a fixed parameter. Relation (6.20) is fulfilled and By, (R ) C By, (R+).
Moreover, taking A the Cesaro matrix of first order, Theorem 6.2 implies
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Corollary 6.1. For any sequence (T,,)nZ 1 of linear positive operators acting from
Cpy(Ry) into Cp, (Ry), A >0, one has

sr—li’{n”Tnf_prl =0, fE Cpo.(R+) (6.43)

if and only if
st—lim||Tnek—ekaO =0, k=0,1,2 (6.44)
n
Next, we collect some elementary properties of the functions defined by (6.37).

Lemma 6.4. Letv, 4, n €N, be defined by (6.37), where g € (0,1) and b, >0, n €
N. The following statements are true:

. b b
— n _ n
ra0)=0, g (1—Q"> 1—g
(id)
0<vug(x)<x, x€ [0, - b } (6.45)

— g

(i)
b

X—Vng(x) <xp—vng(x0) < , x>0 (6.46)
where xg = =—21——.
0 2["]1] \% 17‘]

Proof. Both (i) and (if) are obtained by a straightforward calculation. Because S, ,
is a positive operator, actually, the inequality v, 4 (x) < x springs from (6.40).

For proving (iif) we can consider the function /1 : [0,00) — R, h(x) =x— vy 4 (x).
The unique solution of the equation %h(x) = 0 being xp, the monotonicity of A

implies A(x) < h(xo) = 2U_v=0) qu*") , and (6.46) follows. [ |
The main result of this section will be read as follows.

Theorem 6.5. Let the sequence (q")n217 0 < gn <1, be given such that st —
lim, g, = 1. Let the operators S;; , , n €N, be defined as in (6.38). If

n,qn’

b
st—lim—— =0 (6.47)
n[ny,

then, for each function f € Cp,(R..), one has
st—=lim||S; g,/ = f]|,, =0

where A > 0.
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Proof. Each function S, , f, f € Cp,(R+), is defined on J, (¢.). We extend it on
R in the classical manner. Let 5,’;#” be defined as follows

& ) = (S:;, ,,f) (x) , x€Jn(gn)
(Sn,qnf)()_{ f(;l) , x> l_ﬁnq_,,

n.qn
(Si 4f — f) in the space By, (J, (gn)), for any A > 0. Applying Corollary 6.1 to
the operators 7, = S~;‘l’ gn» the proof of Theorem 6.5 will be finished. In this respect, it
is sufficient to prove that, under our hypothesis, the operators verify the conditions
given at (6.44).

By the first and the third identity of relation (6.39), it is clear that

For each n € N, the norm HS’* f—f le coincides with the norm of the element

st — lirrln HS',*,’qnek - ekao =0

for k =0 and k = 2. The second identity of (6.39) and Lemma 6.4 allow us to write

* X = Vg, ('x)
sup —— | (S, 4,€1) (X) —x| = sup ———~
xEJn(qn) Po (x) ’ ( e ) ‘ xEJn(qn) 1 +x2
< sup = Vn,qnz(x)
x>0 I+x
< b
zqﬂ [n]qn

Based on (6.47) we get st —lim,, ||S}; , e1 — e HPO = 0, and the proof is completed.
|

6.2.3 Rate of Weighted Approximation

The g-Stirling numbers of the second kind denoted by S, (m, k) (m,k € N, m > k)
are described by the recurrence formula

Sq(m,k) = Sq(m—1,k—1)+[k],Sg(m—1,k), m>k>1

with $,(0,0) =1 and S, (m,0) = 1 for m € N. We agree S, (m,k) = 0 for k > m. The
closed form is the following

1 k .
Sum) = o 3 -1 5 || ey 1<k
q

Kl lq~ 7 j=0
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For ¢ — 17, S| (m,k) represents the number of ways of partitioning a set of m
elements into k nonempty subsets [4, pp. 824].

Lemma 6.5. Let the sequence (q,)n>1, 0 < gn < 1, be given and let the operators
Sk, n€N, be defined as in (6.38). One has

n.qn’

m(m—1) m—1 b, m—k Kion)
(Sngem) () =an > Vg, () + 3 B S (M k) gn = Vg, ()
k=1 qn

x € J,(qn), where S,, (m,k) are q,-Stirling numbers given by (6.48.) Here ey, stands
for the monomial of m degree.

Proof. Taking in view both (6.38) and (1.8) and using the Cauchy rule (or Mertens
formula) for multiplication of two series, we can write

* S . i 4l [k_i]nb"
(Shgnem) (@) = 2, 2 (=1) e’”( ) ) [, T —1,, 6%

m—k
oo k(k—1) b 1
= 2 Sqn (m7k) [k]‘In!qn ’ <[ - ) Wvﬁ,fln (.X)
k=0 :
m—k
k(k—1) '
) S‘]n (mvk)qﬂ : vn,qy, (x)
m(m—1)

. /s
& (M%
-2 ,m (x)

=S, (m,m)qn V

m( m—k LIS
+/§E) W S‘]n(mvk)q" Vign (x)

Knowing that S, (m,m) = 1 and Sy, (m,0) =0 (m > 1), one obtains (6.48). |

We mention that A. Aral proved a similar result [29, Lemma 1] for the operators
given at (6.36). His proof is based on the forward g-differences up to order m.

1 b m—k
SetAm(n;CImbn) = Zk:1 Sqn(mvk) (_n)

(],

Under the hypothesis lim,, ¢, = 1 and lim,, #, we get lim,, S, (m, k) = Sy (m, k),
qn

1 <k <m—1, and a real constant B,, depending only on m exists such that

SupA,;,(n;qn,bn) = By (6.49)
neN

Lemma 6.6. Let the sequence (qn),~1, 0 < gn <1, be given and let S, , , n €N,
be operators defined as in (6.38). If the condition (6.41) are fulfilled, then one has
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(i)
(SZ!qnem) (x) < (A +Bw) (14+x™), x € Jy(qn) (6.50)
where By, is given at (6.49.).
(ii) Foreachn €N, the operator S, , maps the space By, into Bp,,., A > 0. Here
[A] represents the ceiling of number A.
Setting (1) = 14 (x + | —x[)**1*1
(ii)

, t >0, the following inequalities hold:

Spsgn e < e (1+e24127) (6.51)

\/Sisan i < E(1+ex1127) (6.52)

where c) ,¢) are constants independent on x and n.

(iv)

Proof. (i) Based on Lemma 6.5, relation (6.45), and knowing that g, € (0, 1), for
each x € J,,(¢,), we can write

m—1 m—k
(S,’;qnem) (x) <A™+ 2 Sq, (m,k) < b ) x
k=1

[n],,
< X"+ A, (n;qn,by) max {1,x"}
< %"+ Bmax{1,x"}

and (6.50) follows:

(ii) If f € Bp,,, then |f| < My (1 —l—xz*W). S, 4, being linear and positive is
monotone. Relation (6.50) implies our statement.

(iii) Foreacht > 0and x € J,(g,) we get

L (l‘) < 1+(2x+t)2+“” < 1+21+M] ((2x>2+’—7t] +t2+’—m)

By using (6.50) and (6.39) we obtain (6.51).
(iv) Since u?(t) <2 (1 + (2x+t)4+zm), the same relations (6.50) and (6.39)
imply (6.52). n

We proceed with estimation of the errors }S;‘l‘qn f—r }, n € N, involving un-
bounded functions, by using a weighted modulus of smoothness associated to the
space By, . In this respect, we consider

|f (x+h)— f(x)]
Q :0) = —_— =
pa (/:9) f;E 1+ (x+h)*

0<h<é

5>0 (6.53)
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Clearly, Qp, (f;-) <2 ”f”m for each f € Bp, . Among some basic properties of this
modulus, we recall

Qp, (f;a8) = (a+1)Qp, (f;6), §>0, aa>0 (6.54)
Theorem 6.6. Let the sequence (qn), >, 0 <gn <1, be given and let S, , , n €N,

be operators defined as in (6.38) such that the conditions (6.41) are fulﬁlled For
each f € BPW’ the following inequality

[(Shgof) () = )] <y (14274T) @ (f; [:]” ) X € Ju(qn)
qn

holds, where k)_is a constant independent of f and n.

Proof. Letn € Nand f € BPW be fixed. For each r > 0 and 6 > 0, based both on
definition (6.53) and on property (6.54) with o := |t — x| !, we get

| — x|

1001 = (14 6= ) (241 0 (20)

= (0 + 5.0l =x1) 2 (:8)

where U, was introduced at Lemma 6.6.
Taking into account that S;, . is a linear positive operator preserving the
constants, we can write

[(Sng, ) () = F )] =[Sy, (f = f (6)3)]
< Spg, (IF = ®)]5)

< Sy (et 87 el yalix) Qpy (£:8)

- {(s:;_,q,, ) ()4 (851 (x)} Q, (£:0)

S{( 3\/ n,gn M \/ "qn‘/’x)(x)}gpw(f;‘s)

where Y, was introduced at Lemma 6.3.

The last increase is based on Cauchy—Schwarz inequality frequently used for
positive operators of discrete type. It was proved by Yuan-Chuan Li and Sen-Yen
Shaw [111] that this classical inequality has great and unexpected force.
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Relations (6.40) and (6.46) allow us to write (S}, w?) (x) < {%*. Further on, by

[ ]‘In

using inequalities (6.51) and, (6.52), we get

|(Spg,f) (¥) = F (0)]| < {c,l (1+x2+m)+é\/a\/1+xz+mﬁ /[nb]’;}gzpm (f36)

Ve .

choosing & =

i ’ﬁ” and setting k; := c, ++/C,, the conclusion follows. |
qn

Corollary 6.2. Under the assumptions of Theorem 6.6 the following global esti-
mate takes place:

b
5~ <5 (5[ ). ey

6.3 g-Baskakov—Kantorovich Operators

6.3.1 Introduction

Recently the Durrmeyer-type certain integrated operators based on g-integers were
studied in [48] and [86].

Lemma 6.7. Lett,s,a € R, then we have

D (1+ax)t = [t]qa(l—i—aqx)t*l, (6.55)
(14205 = (1425 (144,
1
4+
(14x)," = Tre (6.56)

The proof follows immediately from (6.1)-(6.3), (see [104, pp. 106-107]).

Aral and Gupta [30] introduced a g-analogue of Baskakov operators, which for
g€ (0,1), f€C([0,00)), x € R} :=[0,00), n € N is defined as

k
Vig(f3%) ank (g;x (q[—]ﬁa]) : (6.57)
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where by x(:x) i= [n—i—k— 1} qk(kz—l) y

k (1x)ithe

Remark 6.6. It is obvious that V,,, n € N, are positive and linear operators.
Furthermore, when ¢ — 17, the operators given by (6.57) reduce to the classical
Baskakov operators (see, e.g., [37]).

We set e;, e;(x) =x',i > 0.

Lemma 6.8. ForallneN,xe Ry, and0 < g < 1, we have

Vg (€0;x) =1, (6.58)

Vg (e15x) = x, (6.59)
L n+1]y , 1

Vig (€2:x) = e x —i—mx. (6.60)

Proof. For n € N, we consider the function g(x) := (1 +¢"x)", x € R;.
By using (6.56), (6.55), and (1.4), we get

ng(x) = (=D¥nlyn+1],... [n+k—1],(1 +¢" ™« e k keNp:={0}UN.
For a fixed x € R, by Theorem 6.1, we obtain

& —x)5 [n+k—1],!
(14+4"),;" = Igb(—l)k (t[k]q!)q | [:_ l]ﬂq

(1 + anrkx)(;nfk'

Choosing ¢ := 0 in the above relation and taking into account (—x) = (—x)fg~ 7,
we get

oo

Y bux(g:x) =1 (6.61)
k=0
and (6.58) is proved.
By definition (6.57) of the operators V), ;, and using (6.61) we have

[n+k—1],! (k 1)6-2) * [k,

B el, T Nk
Y ; n— 1], (14x)it* [n],

=X 2 bn+17k(q;x) =X
k=0

Next we estimate V,, 4(e2;x). Taking into account the relation [k], = [k — 1], +
¢!, k € N, we obtain (6.60) as follows:
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& — (k=2)(k=3) ke kg (k=1 k=1
uﬂﬁﬂzzr+k1qkw* S CHGRE Y
k=1 k q (1+x)g qlnl
_ i n+k—1),! =203 Xk [k, k—1],
=3 Kyt n— 14! (1+x)5t* qlnlg
& k
+ 2 buil(gsx) k£1]q 2
=1 [n]3
[n+ 1]t] ) d 1
= %" D bpi2x(q:x) + —Vagler.
q[n]q ]ZZ) n+ ( ) [n]q ’U]( X)
_ [n+ l]qxz_’_ix'
qlnly [n]q
This completes the proof of Lemma 6.8. ]

6.3.2 q-Analogue of Baskakov-Kantorovich Operators

Based on the g-integration, Gupta and Radu [91] proposed for ¢ € (0, 1), the
Kantorovich variant of the g-Baskakov operators as

> k+1]q/Inlq

Kugf:2) = [nly Y, bualai) |

flg ' t)dgt, (6.62)
k=0 qlklq/nlq

xeR;,neN.
It can be seen that for ¢ — 17, the g-Baskakov—Kantorovich operator becomes
the operator studied in [1].

Remark 6.7. By simple computation, it is observed from the definition of g-
integration that

(k-+1]q/[nlq 1
/ dyt = —, (6.63)
qlklg/nlg [n]q
lk+1]q/[n] k
/ " gt = Pt d (6.64)
4lKlg/Inlg [2]4[n]3

= . (6.65)

Lemma 6.9. Foralln e N, xR, and 0 < g < 1, we have

K g (e0;x) =1, (6.66)
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Kog(e1:%) = x+ m, (6.67)
erx) = [”+1]qx2 ‘1(1+[2]q)+[3]qx q2
Koglers) = T oot = “tEmp O

Proof. Letgq € (0,1). Using the definition (6.62) and the identities (6.63) and (6.58),
it is easy to see that (6.66) holds true.

Taking into account (6.64), (6.58) and (6.59), by direct computation, we ob-
tain (6.67) as follows:

d (k+1]q/[n]q

Kng(ersx) = [nlg Y, bus(gsx)g " / td,t
k=0 qlklq/[nlq

> k
=Y bui(g;x) qk[ 1][ . ank q:x

k=0 Qk 0

q

Vagleo;x) =x+ 2l4lnly

_ €13 x) + o
= Vnyﬂl( 1> )+ [Z]q[n]q

Based on (6.65) and Lemma 6.8 a similar calculus reveals

oo

[k+-1]4/[n]
Kuglei) = [nly ¥ buslgin)g 2 [
k=0 qlklq/nlq
< (k]2 <1+[2 c K,
= bui(g;x k(G5 X)
2, buslasX) ot + T, Z ) T,

k=0 k=

q
2
todgt

2 oo

9 .
m‘/mq(a),x)

[”+1]qx2+‘1(1+[2]q)+[3]q q
qlnly [

This completes the proof of Lemma 6.9. ]

Remark 6.8. 1t is observed from the above lemma that for ¢ — 17, we get the
moments of the Baskakov—Kantorovich operators (see, e.g., [3])

1

Kyleo:x) =1, Kn(erix) =x+ o,
x(2+x 1
Kn(eZQX):XZ—F ( )—FW
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Examining relations (6.67) and (6.68), it is clear that the sequence of the
operators (K, ,), does not satisfy the conditions of Bohman—Korovkin theorem.
Further on, we consider a sequence (gx),,, ¢» € (0, 1), such that

limg, = 1. (6.69)
n

Theorem 6.7. Let (gn)n be a sequence satisfying (6.69) and let the operators K,, 4,
n €N, be defined by (6.62). Then for any compact J C Ry and for each f € C(R,),
we have

nlgn Ky g, (f3x) = f(x), uniformly in x € J.

Proof. Replacing g by a sequence (gy), with the given conditions, the result
follows from Lemma 6.9 and the well-known Bohman—Korovkin theorem (see
[113, pp. 8-9]). |

6.3.3 Weighted Statistical Approximation Properties

In this section, by using a Bohman—Korovkin-type theorem proved in [57], we
present the statistical approximation properties of the operator K, , given by (6.62).

A real function p is called a weight function if it is continuous on R and
limy e, p(x) = o0, p(x) > 1 forall x € R.

Let us denote by B, (R) the weighted space of real-valued functions f defined on
R with the property | f(x)| < Myp(x) for all x € R, where M is a constant depending
on the function f. We also consider the weighted subspace C, (R) of B, (R) given
by

Cp(R) :={f €Bp(R): f continuous on R } .

Endowed with the norm |- || ,, where || f|| , := sup,cp %, By (R) and C, (R) are

Banach spaces.

Examining this result, clearly, replacing R by R, the theorem holds true.

Let us consider the weight functions py(x) = 1 +x%, pg(x) = 1 +x*T% x € R4,
o >0.

Further on, we consider a sequence (gx),,, ¢» € (0, 1), such that

st —limg, = 1. (6.70)
n

Theorem 6.8. Let (g,), be a sequence satisfying (6.70). Then for all f € Cp, (R),
we have
st—u’gnHKn,q ()= £, =0, a>0.

Proof. 1t is clear that

st-h;n”Kn,qn(eo;-)—eoHpO =0. (6.71)
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Based on (6.67) we have

foan(er0—e@] a1
1+'x2 - Po [2]‘]n [n]qn B [n]LIn
Since st — lim,, g, = 1 we get st — lim,, [n]lq =0, and thus,
st —lim (| K., (e1:) — elHPO =0. (6.72)
By using (6.68) we obtain
}Knvfln(ez;x)_ez(x)} < H || [n+1]4n 1 +H H qﬂ(1+[2]%1)+[3]fln
1112 = l1€zllpg €0llpy 3
+x ”[ ]Qn [ ]Qn[n]qn
2
qn
+lleollpy =7
P [3]g, )3,
< 1 n 3 n 1 < 4 n 1
B q"[n]qn [n]LIn [n]én - q”[n]q;'t [n]én '
Consequently,

st —lim||K, 4, (e2:") — 2|, = 0. (6.73)

Finally, using (6.71)—(6.73), the proof follows from Theorem 6.2 by choosing
A =Cj, the Cesaro matrix of order one and p; (x) =1 +x%,p2 (x)=1 +x7% xeRy,
a>0. |

6.3.4 Rate of Convergence

We can give estimates of the errors ]K,,,q( f3+)— f|, n € N, for unbounded functions
by using a weighted modulus of smoothness associated to the space By, (R ).
‘We consider

|f(x+h) = f(x)]
Qp, (f;68) = sup —a,5 >0, a>0. (6.74)
£>0 1+ (x+h)*t

0<h<d

It is evident that for each f € By, (R ), Qp,, (f;-) is well defined, and

QPa(f;a) S2”pr0(75>07 fEBPa (R+)u OCZO
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The weighted modulus of smoothness €2, (f;-) possesses the following properties
(see [112]):

Qp, (f3A8) < (A +1)Qp,(f:8), 6>0,4 >0, (6.75)
Qp, (f3n8) <nQp, (f;6), §>0,n€N,
Sim, po (f:6) =0

Theorem 6.9. Let g € (0,1) and o > 0. For all f € By, (R, ), we have

1
K720 = 109] < \ Ky in) (14 5/ KaaWE50)) 0 (1), 320,85 0,

)2+oc

where Uy o(t) =14+ (x+ |t —x|)7%, yi(t) ==t —x|, t>0.

Proof. Letn € Nand f € B, (R ). Based on (6.74) and (6.75), we can write

O = FE1 < (T4 (e =) (§|r—x|+1>9pa<f;6>

— teald) (14 5400)) 0, (1:8),

Taking into account the definition of integration (1.12) and the relation
Ja FO)dgx =[5 F(x)dgx = [ £(x)dg, we get

[k+1]4/[nlq [k+1]q/flk71 [nlq
flg*t)a t:q’H/ f(t)dgt.
/qmq/mq ! Klg/a2lnlg !

Consequently, the operators K, ;, can be expressed as follows:

& [ket11g/4* " [nlg

Ko (f3) = [, 3. bualaix)g"" | f)dyt

k=0 [klg/q*—2[nlq
By using the Cauchy inequality for linear positive operators, we obtain

> [k+1]4/ kil["]q
|Kng(f3x) — fx)| < [n]qzbmk(q;x)qk’l/ s |f (1) = f(x)] dgt

k=0 (Klq/q*2[nlq

| =

< (Kn,qu,a;x) ; —Kn,qwx,awx;x)) Qo (f:5)

1
< Kn,q(.u,%oc;x) (1 + 5 Kmq(‘l/xz;x)) Q,,, (f36). u
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Lemma 6.10. For m € N we have

X 2m=ly
Wy g

Vag(em;x) <

q" 1 2"(m+1)
[m~+1]g[nly (1+x)7  [m+1],
Proof. For k € Nand 0 < g < 1 the following inequality holds true:

Ky g(em;x) <

1< [k+1], < 2[K],

Let m € N. By (6.62) and (6.76), we get

c [Kg
Viglem:x) = D bni(q;x) ————
‘]( ) k_g() k( )qu [n]q
oo [k]mfl
= Y by ix1(g5x) ——— et
Z T
[k+1]3~
= D xbuy1(q; )—m,
-3 T

X [k—l—l]

< X 2m71xV '
T g (14t * g1 wi1q(em—13%).

lk+1]g/[n]
K, n,q em7 = q 2 bnk q;x / o em(qikJrlt)dqt
qlklg/[nlq
fd quker | | |
= [n]qkzbbmk(q; )m ([k-l—l];'“r —gmt [k];”+

Since

Vitig(em—13x), x€eRy,neN,

Viglemsx), xR ,neN,

(6.76)

)

k1] — g™ P ket = ([k+1]¢ — qlklg) ([k+ 17+ qlklg e+ 115"+ +q'"[k];")

< (m+ Dk+1]7 <2"(m+ 1), k€N
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we can write

q" 1 +2m(m+1)
m+1lgnln (1+x)2  [m+1],

K q(em;x) < [ Ving(ems:x)

which completes the proof. ]

Remark 6.9. Since any linear and positive operator is monotone, Lemma 6.10
guarantees that K, ;(f,-) € By, (R) for each f € By, (R), o € No.

Theorem 6.10. Ler (gy,), be a sequence satisfying (6.70) and o € Ny. For all f €
By, (Ry), we have
HK}'L‘Qn(f’) fHP(x <— 3Ca£2pa(f;6n)v

1

——— and Cq is a positive constant.
e alsap

where 6, :=

Proof. The identities (6.66)—(6.68) imply

2.0 = [n+1]g, 1) 2 1 gn(1+[2g,) + 3q. _ 2gn X qﬁ
Ko (vz:x) = ( PRI 1) " ( Bl m,,,) T Bl e,
1 xz 1 [z]q,,4n+[3]q,,*% N %21
= ol T, ( Bla, ) Bl

Lo, 2
N qn [n]qn [n]qn [n]z,, .

Let ov > 0 be fixed and f € Bp, (R;). Based on Theorem 6.9 and the above
inequality, we can write

Kng, (f3%) — Kng, (Mo 1| Kng, (W2
Ko (759~ 1) _ Ky (022 x>( v x))gpa(f;a)

1+ —
1+x2+a — 1+x2+a + S l+x2+°‘

Ko g, (203 %) 1 [1 2 1
< s 1+ =, [ — —— -
= 1 +x2+a + 5\ gn ["]qn HeZHpa + [n]qn HKZHpa + [n]g

i
Qp,, (f56).

Since 12, € Bp,, (R ), Lemma 6.10 and Remark 6.9 assure that K, g, (112 ,:-) €
By, (R ). Hence we get

|Kng, (1) = f(0)] 2 [ 1 ,
1 +x2+0£ S COC 1+ 3 qn[n]qn Qpa (f’ 6)7
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where Cy, := HKn,qn (uﬁa;x)Héa. Choosing 6 := , /m, the proof is finished. W

Since (gn),, satisfies (6.70), the sequence (8,),, is statistically null, which yields
that st —1im, Q,,, (f;6,) = 0. Therefore, Theorem 6.10 gives the rate of statistical
convergence of K, 4, (f;-) to f.



Chapter 7
q-Complex Operators

In the recent years applications of g-calculus in the area of approximation theory
and number theory are an active area of research. Several researchers have proposed
the g-analogue of exponential, Kantorovich- and Durrmeyer-type operators. Also
Kim [106] and [105] used g-calculus in the area of number theory. Recently, Gupta
and Wang [94] proposed certain g-Durrmeyer operators in the case of real variables.
The aim of this present chapter is to present the recent results [5] on g-Durrmeyer
operators to the complex case. The main contributions for the complex operators
are due to Sorin G. Gal; in fact, several important results have been complied in his
recent monograph [76]. Also very recently, Gal and Gupta [78,79], and [80] have
studied some other complex Durrmeyer-type operators, which are different from the
operators considered in the present article.

7.1 Summation-Integral-Type Operators in Compact Disks

In this section we shall study approximation results for the complex g-Durrmeyer
operators (introduced and studied in the case of real variable by Gupta—Wang [94]),
defined by

n

1
Myg(f;2) =n+113 Y, 4" *pur(g:2) /0 F(O)pni-1 (q:qt)dgt + £(0) pao(q:2),
=1 .
7.1

where z€ C,n=1,2,...;q € (0,1) and (a — D)y = H;f’;ol(a — ¢'b), q-Bernstein
basis functions are defined as

Pai(q3z) = m F—z)n*
q

A. Aral et al., Applications of q-Calculus in Operator Theory, 223
DOI 10.1007/978-1-4614-6946-9_7, © Springer Science+Business Media New York 2013
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and also in the above g-beta functions [104] are given as

1
B, (m,n) :/O (1= ) dyt, mon >0,

This section is based on [94]. Throughout the present section we use the notation
Dr = {z€ C: |z] <R}, and by H(Dg), we mean the set of all analytic functions on
f:Dr — C with f(z) = ¥_oax* for all z € Dg. The norm || f||, = max{|f(z)| :
|z] < r}. We denote ) ,(q;2) = My 4(ep;2) forall e, =17, p € NU{0}.

7.1.1 Basic Results

To prove the results of next subsections, we need the following basic results.

Lemma 7.1. Let g € (0,1). Then, my,(q;z) is a polynomial of degree < min
(m,n), and

[n+1],! &

ﬂmm(q;Z) [n+m+1 zcs ’q (es;Z)u

where cg(m) > 0 are constants depending on m and q, and B, 4(f;z) is the q

Bernstein polynomials given by By, 4(f32) = Xji—o Pnk(q:2)f ([k]q/[n] ).

Proof. By definition of g-beta function, with By (m,n) = % we have

n 1
Tnn(@:2) = I+ 14 Y, 4" *pus(:2) /0 Prjt (g3 qt)t"dgt
k=1

n

1 n _
=[n+1] 2 p,,qu/o [k—l] (gt) ' (1 —qt)i " eyt
k=1 q

< [n]q!
=[n+1] gpnqu l]q![n—k—i—1]q!BQ(k+m’n_k+2)

L k—l—m—l]q!
_[n+m+1 ;p”"q’ k—1],!
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Form =1, we find

n+1],! & 1

(]
[n+2],! kzll’mk(q;z)[k]q —

1&g
[n+2]q];z)Pnk 4:2)[nlg ol

1
Z e?a ’

nl,n(q;z) =

q

thus, the result is true for m = 1 with ¢;(1) =1 > 0.
Next for m = 2, with [k+ 1], = 1+ g[k],, we get

m.n(¢:2) [ 3] ,ki)l’nk q:2) (1 + qlk]q)[k]4
q° k=
n+1] !
- {ni%q' [[”]qB qle1:z) +q[n];Bnq(e2 Z)}
g
n+1] 12
= {ni:ﬁfl' 2165(2) [n]f]Bn,q (es;Z);
q° s=

thus the result is true for m =2 with ¢;(2) =1 >0, ¢2(2) = ¢ > 0.
Similarly for m = 3, using [k + 2], = [2], + ¢*[k], and [k + 1], = 1 + g[k],, we
have

[n+1],! 3

ol 2 OliBug (esi2).

77:3,)1(51;2) =

where ¢ (3) = 2], >0, c2(3) =2¢* +¢ > 0, and c3(3) = ¢* > 0.
Continuing in this way the result follows immediately for all m € N. |

Lemma 7.2. Let g € (0,1). Then, for all m,n € N, we have the inequality

h+1],! &
[n+m+1 ch

Proof. By Lemma 7.1, with ¢, = """, we have

n+1] ! m o
[n+ ]q] _zcs(m)[n]f]Bw(es;l):[ n+1],

;1 = — S.
ﬂ'mm(q ) [n+m+1q'szl n+m+1]q!S:21€s(m) [n]q

Also

pn,k(q;Z) = |:Z:| Zk(l —2)(1—¢gz)(1 _qzz) (1 _qnfk—lz).
q
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It immediately follows that p, x(¢;1) =0, k=0,1,2,....,n—1,and p,,(g;1) = 1.
Thus, we obtain

1
B ) = [0+ 1)y (@100 [ o (@)t

=1, [ 0 )y

tn+m tn+m+1 1
= b+ Uglnlg {[n—i—m]q _q[n—l-m—l— 1]J
et b
[n+mlgn+m+1], = |

Corollary 7.1. Letr > 1and g € (0,1). Then, for allm,n € NU{0} and |z| < r, we
have |Ttmu(q;2)| < ™.

Proof. By using the methods [76], p. 61, proof of Theorem 1.5.6, we have
}Bn’q (es;z)} <r°.By Lemma 7.2 and for allm € N and |z| <r,

n+1]! m
|nm7n(q;z)| < % ; cs(m) [n]; ‘qu (es;z)’

n+1],! &

<"
_[n—l—m—i—l ZCT a" [ ]

Lemma 7.3. Let q € (0,1); then for z € C, we have the following recurrence
relation:

qPz(1 —2)

4" [nlgz+ [Pl
n+p+2],

D ;
gTpn(4:2) + n+p+2,

pn(q32)-

Tp1a(q:2) =

Proof. By simple computation, we have

2(1 =)Dy (pus(:2) = (K, = ), 2) pos (a:2)
and
((1=a0)Dq (pusc 1 (g3a1)) = (T =11, = 1], at) P 1 (1)
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Using these identities, it follows that
< 1-k !
2(1=2) Dy (Tpn(g:2)) = [n+1], D, q'~ ([k]q—[n]qZ) Pnik (q;Z)/O Prk—1(q:qt)t7dgt
k=1
1k 'l 2 2
=[n+1], > ¢ Pk (q;Z)/O <1+q[k* 1], =[l,q°t+nl,q t) Prj—1(q:qt) tPdgt
k=1
1
J,n+1], 261 P (432 )/0 Pj—1 (q:qt) tPdgt

1
Zq Pk qZ/O (DgPu—1(g:qt))t (1—qt) P dgt

+ T n(4:2) + [y P Tp 10 (432) — 2 (), Tp n(32)-

P
Let us denote (1) = ¢ (1 —1) (fl) = qu (tP™1 —PT2). Then, the last g-integral
becomes

/01 Dy (pui-1(g5q1)) 1 (1 —qt) 17 dgt = /01 Dy (pui—1(g:qt)) 8 (qt) dyt

1
= 80 pascr (@3a0) = | puicr (@300 Dy3 (1) dyt
1
””1/0 Pui—1(@:qt) Dy (171! —1712) dyt
] 1
—q " [p+1]q/0 Pui—1(gsqt)t7dgt

1
+q 7 p+2], /0 Pk (q:qt) 1" dyt,

and hence,
2(1=2)Dgmpn(q:z) = —q " [p+ 1], Tpn(@:2) +q 7 [P+ 2], Tpi1(4:2)

+ 7 n(932) + [0, 4 7p s 1.0(432) — 2 [0 (43 2)-

Therefore,

z(1—2)
“P[p+2]g + [nlyq?

[")gz+q Plp+1]4—1 :
2y g

Tpi1a(q;2) = p Dymtpn(q;2) +

qPz (1 —2)

T p+2,+ g q,,Han,,n q’[nlqz+ [plq

) T2y Tl ™
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Finally, using the identity [p + 2], + [n],¢" "2 = [n+ p +2],, we get the required
recurrence relation. |

7.1.2 Upper Bound

If P,(z) is a polynomial of degree m, then by the Bernstein inequality and the
complex mean value theorem, we have

[DoPu @)] < [Pl < 1Pl forall 2] < r

The following theorem gives the upper bound for the operators (7.1):
Theorem 7.1. Let f(z) = X _oapz” for all |z| <R and let 1 < r <R; then for all
lz2] <r,qe(0,1)andn €N,

K (f)
[n+2]

Mg (fi2)— f(2)] <

3

q

where K,(f) = (1+ 1) 25, laplp(p+ D)rP ! < oo,

Proof. Fi.rst we shall show that M, 4 (f;2) = X7 apTp.a(q;z). If we denote f(z) =
3 oajz,|z| <rwith m € N, then by the linearity of M, 4, we have

Mn,q(fm;z) = 2 apnp,n(q;Z)-
p=0

Thus, it suffice to show that for any fixed n € N and |z] < r with r > 1,
1imyy—se0 My g (fin:2) = My g(f;2). But this is immediate from limy, e || fin — f]|, =0
and by the inequality

|Mn,q (fm3z) — M 4 (f:2)]

< (@) SO 112+ 01Ty 3 pas2la ™ [ o 1(ar)nte) — £yt

k=1
S Cr,n”fm _f“h

where

1
Con=>14r)"+n+ 1]q;§1 [ZL (1 +r)”7krk /0 Prj—1(q:qt)dyt.
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Since, m ,(g;z) = 1, we have
My q(f32) = f(2)] < Z lapl - [7pn(q;2) — ep(2)]-
p=1

Now using Lemma 7.3, for all p > 1, we find

B g" 'z2(1-72)

Tpn(q:z) —ep(z) = tpt 1]q Dy (7p-1,(4:2))

¢ [,z +[p—1],
n+p+1],

(npfl,n(q;z) —€p—1 (2))

-1
qP [n]qz+[p_1]q p—1_
n+p+1],

11—
- %(:—I]Z)Dq (Tp—1.0(4:2))
q

7P

q" ', z+[p—1],
n+p+ l]q

(Tp—1(q:2) —€p-1(2))

=1, .\ @ 'My—lntp+l],,
n+p+1], n+p+1],

However,

qpil["]q —[p—1]4— ‘]’Fl[n]q — gt —gntr
[n+p+1],

q" 'lnly—In+p+1ly ,
n+p+1],

7P

[P"‘l]q .
~ [ntp+1],

Combining the above relations and inequalities, we find

r(l+r) p—1
‘npm(CI;Z)_ep(Z” < [n+2]q . - Hﬂpfl,n(q;Z)Hr
P+, ,
(@i —e, LTS N
+r‘7rp 1n(q;2) —ep 1(z)|+[n+2]qr (1+7r)

_ 10 (=1

.l .
> [n+2]q rP +r‘np717n(472)—ep71 (Z)|
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lp+1, o
[n+2]

(I+7)

=2,

(L+7)

Pl —I—r‘np,lm(q;z) —ep (z)‘ )

From the last inequality, inductively it follows that

|Tpn(q:2) —ep(2)| < r <r\7rpz,n(q;z) —ep2(2)|+ 2r(lp i) (1+7r) r"2>

n+2],
(1 +r) 1
+2p rP
[n+2],
2 . (1 —|—}’)
=r ‘nl’*zan(q’z)_eP*Z(Z)‘—i_z[n_i_z]q r ( 1+P)
(I+r 1
<...< (p+1)r”
[n+2],
Thus, we obtain
1+r
[Mag (f12) = f ()] < ZPM\%n% —er@l <y ZPHPP+UW5
which proves the theorem. |

Remark 7.1. Let g € (0,1) be fixed. As, limy,_e m = 1—g¢, Theorem 7.1 is not
a convergence result. To obtain the convergence, one can choose 0 < g, < 1 with

qn /1 as n — oo, In that case, m— — 0 as n — oo (see Videnskii [152], formula

(2.7)); from Theorem 7.1 we get M4, (f32) — f(z), uniformly for |z| < r and for
any 1 <r <R.

7.1.3 Asymptotic Formula and Exact Order
The following result is the quantitative Voronovskaja-type asymptotic result:

Theorem 7.2. Suppose that f € H(Dg),R > 1. Then, for any fixed r € [1,R] and
foralln e N,|z| <rand g€ (0,1), we have

z(1—-2)f"(z) —2zf'(2) < M(f) +2(1—¢q) i | |kr*

[nlq - [

My 4(f52) — f(z) —
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where M. (f) = X7, |ak|kBk’rrk < oo, and
Bi, = (k—1)(k—2) (2k —3) +8k(k— 1)*+6 (k — 1) k* + +4k(k — 1)*(1 +r).

Proof. In view of the proof of Theorem 7.1, we can write M, ,(f;z) = 25 ak
T n(g:2). Thus,

2(1-2)f"(z) = 22f'(2)

[n]q

‘Mn,qof;z) ) -

oo

Z lax

(k(k—1) —k(k+1)z)z5!

[n]q

Tn(q:2) — ex(z) —

for all z € Dg,n € N. If we denote

(k(k—1) = k(k+1)z)zZ"!

[n]q

Exn(9:2) = Min(q:2) — ex(z) —

then Ey ,(g;z) is a polynomial of degree < k, and by simple calculation and using
Lemma 7.3, we have

k1,01 _ k-1 k1
Ek,n(q;Z):q[n%quEk17n(q;Z)+q [L ]jZIH-[l] ]qu 10(4:2)+Xkn(¢:2),
where

Xien( 'Z)=L[ k= 1) (k—2)[k—2]g + [k— 1] (k— 1) (k—2)

k8 = Ll k10, L a

+z<qk*1 (gl —1]g — ¢ (k—1)(k—2) [k — 2]y — ¢ Tk(k— 1) [k — 1],
+q" g (k= 1) (k= 2) + [k — 1]g[n]g — [k — 1gk(k— 1) —k(k—1)[n+k+ I]q)
2 (k(k+l)[n+k+ 1y — [nlgln+k+1]y — ¢ [nlgk(k—1)

+q 7 4 ¢ (k= 1)k —1]g — ¢ n]glk— 1](1)}

Zk72

T k1], (Xl-fm (k) + X2, (k) + 2 X340 (k)) .

Obviously as 0 < g < 1, it follows that

|X1.qn (k)] < (k=1)(k—2)(2k = 3).
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Next with [n+k+ 1], = [k— 1], +¢* 1], + ¢! + g"**, we have

Xo (k) = nly (¢ o= 1], + k= 1], = 24" (k= 1))
— ¢ k= 1) (k= 2)k—2)— ¢ k(k = 1) [k~ 1],

— [k Ugk(k = 1) = k(k = 1)k — 1], — k(k = 1)~ — k(k — 1)

and
g (4 k= 1]+ k= 1), 26" (k= 1)
(g (= 1lg = (= 1)+ [y (= 1) — ¢ (k= 1))
k=2 k—1
=[nled " (g-1) Y U, + g (1 =) X, [i],4 "
Jj=0 j=1
k=2 k—1
=¢" " -0 Y U, + =) X [1,4
Jj=0 j=1
Thus,

X2 g0 ()] < (k= 1) [k=2],+ (k— 1) [k—1],

+ (k= 1) (k= 2)[k — 2] g+ k(k — 1) [k — 1]+ [k — 1] k(k— 1)
+h(k—1)k—1],+k(k—1)+k(k—1)
< 8k(k—1)%

Now we will estimate X3 , , (k) :
Xagn (k) = k(k+ D) n+k+1], — [nlyn+k+1]y — ¢ ngh(k—1)
+q T g+ (k= 1) [k — 1] — ¢ nlg[k— 1],
:k(k+ 1) ([k— Hq_i_qkfl [n]q-i-q”k*l +qn+k)
—[nly ([k— 1,+4¢" [, +¢"! +q”+k) — 4" [n]k(k—1)
+q T Mg+ (k= 1) [k — 1] — ¢ n]g[k— 1],
= k(k+ 1)k = 1] +k(k+1) (¢ ") = [ e 1],
_ [n}q <qn+k71 +qn+k> +2qu71[n]q

+ ¢ (k= D)k — 1], — ¢l [k—1],
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_ [n}q (_qkfl [k— l]q _ [k— l]q +qk71 (2]{) _qu»kfl _qn+k>
k(e Dlk— 1+ k(e+ 1) (7571 ) 4 gk — 1) e 1],
= g™ (k= 1]y (k= 1))+ [y (1= + g (ke — k1], — )
(k4 D)= 1y k(1) (¢ 470 ) 4 ¢ kle— 1)k 1
= —lnlgd ™" (k= 1)y (k= 1)+ [nlgd* ™ (1 ")~ [nlg (6= 1)y — (k= 1))
Il (4% =g 1) k(e k= 1 ke 1) (¢ ) g k= Dk 1],
k=2 k=1
== " - XU, - (=) X U, d "+ (=g,
j=0 j=1
=g (4" = g 1) kG 1= 1] k1) (@ ") g (k= 1 k= 1]

Hence, it follows that

X3 g0 (k)| < (k=1) [k=2],+ (k= 1) [k=1],+ (1 —¢") [1],
+ (1=¢"") [nlg +k(k+ 1) [k — 1)+ 2k(k+1) +k(k — 1) [k — 1],
<6(k— 1)k +(1—¢") [n],+ (1—¢""") [n],-
Thus,
,1(72
Xin(g:2)] < e ((k—1)(k—2)(2k—3) + r8k(k—1)*+r*6 (k— 1)k?)
q
i _.n _ n+l
+[n]q(1 Q)+["+1]q( 1 )
_% ((k—1)(k—2)(2k—3)+r8k(k—1)*+r76 (k—1)k*) +2r* (1—q)
q

forallk>1,neNand|z| <r.
Next, using the estimate in the proof of Theorem 7.1, we have

(14 r)k(k+ 1) "
[n+2],

1T n(q32) — ex(z)] <

)

forall k,n € N |z] <r,with 1 <r.
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Hence, for all k,n € N,k > 1 and |z| < r, we have

g Hnlgr+[k—1]
[n+k+1],

¢ r(1+r)

1 q
E;_ ; X ;2)].
fEE Bt |+ Xiea(4:2)|

|Exn(g:2)|<

|E]/(717n(6];2)|+

Aren) o ) d ]

¢ .
tk+1], = Tntkri]y CETam)p < r, it follows that

Howeyver, since

r(l+7r)

E o (g7)| < 0
[Bn(:2)] < n+k+1],

|Ep 1 1(q:2)| 4 Tl Ex—1,0(q:2)| + [ Xicn(g:2)].-

Now we shall compute an estimate for |E;_, ,(g;z)|, k > 1. For this, taking into
account the fact that E;_ ,(¢;z) is a polynomial of degree < k — 1, we have

k—1
|E]/(717n(q;z)| < THEkfhrz”r

< k;l |:||7rk1,n_ek1||r+ H{(k_l)(k_z) [;]k(k_ l)el}ekfz] :|
q r
k(k—1) [(14r)(k— Dk*=2 A 2k(k—1)(1+7)
= r { [n+2], - [n]q ]
k(k—1)2 7. 4 5 e  dk(k—1)2%2
S T R e T
Thus, , -
r(1+r , 4k(k—1)(1+r)r—
[,H(_k——i—+i]q|Ek1,n(Cl2Z)|§ ( )[n(]?l—i_)
and
—1)2 r)rk
IEk,n(q;Z)IS4k(k 1[31]?“ +r|E-12(:2) [+ [Xicn(932)],
q
where

rk
Xin(q:2)| < =5 A +2r* (1—q),
[n]3
forall |z] <rk>1,n €N, where
Ap = (k—1)(k—2) (2k —3) +8k(k— 1) +6 (k— 1)k*.

Hence, forall |z| <rk>1,n €N,

Vk
Bk (4:2)] < rlEk10(@3 )] + £z Bir + 24 (1—q),
q
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where By, is a polynomial of degree 3 in k defined as
By, = Ag+4k(k—1)%(1+7).
But Ey,(q;z) = 0, for any z € C, and therefore by writing the last inequality for
k=1,2,..., we easily obtain step by step the following:
r* krk
Exal9:2) < £ ZB,r+2r (1-q)< WBk,rHr"k(l —q).
q j= q

Therefore, we can conclude that

M=9FQ 2@ o § | | Een(as2)]

[n]y k=1

My 4(f32) — f(z) —

| = o0
< 0 2 |ag[kBy .7 +2(1—q) Y |a|kr*.
q =1 k=1
As fM)(z) = 35y ark(k— 1) (k—2)(k — 3)z** and the series is absolutely conver-
gentin |z| < r, it easily follows that 3, ax|k(k— 1) (k —2)(k — 3)r*~* < o, which
implies that 37| |ax|kBy ,r* < 0. This completes the proof of theorem. |
Remark 7.2. For q € (0,1) fixed, we have o ] — 1 —g as n — oo; thus Theorem 7.2
does not provide convergence. But this can be 1mpr0ved by choosing 1 — 5 < ¢, <1
with q,, 1 as n — oo, Indeed, since in this case Tl ] —0asn— e and 1—g, <

1L < L from Theorem 7.2, we get
n [”]‘hl

2(1-2)f"(z) = 22f'(2) <Mr(f) : 2|ak|krk

[nlg, LIPS [ ]qn k=1

My q,(f32) = f(2) =
Our next main result is the exact order of approximation for the operator (7.1).

Theorem 7.3. Let 1 — 5 < g, <1,ne€N,R> 1, andlet f € H(Dg),R> 1. If f is
not a polynomial of degree 0, then for any r € [1,R), we have

1Mnq,(f3) = £l =

where the constant C.(f) > 0 depends on f, r and on the sequence (qn)nen, but it is
independent of n.
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Proof. For all z € Dg and n € N, we have

Mua (1:2) = 1(0) = |21 - 9F @) -2 (2)
LS A7) Ay A =2)f"(@) —22f'(2)
* [”]qn {[ ]q" (Mmq,, (f,Z) f(Z) ["]qn ) H '

We use the following property:

IF+Gll- = [[IF]l = IGll-| = [Fll- = Gl

to obtain
[|[My g, (f5) = fllr
> o1 - e’ =201,
qn
1 2 . el(l—el)f”—Zelf/ }:|
o M, () — f— )
[n]LIn {[n]qn o (f ) f [n]qn r

By the hypothesis, f is not a polynomial of degree 0 in Dg; we get ||e; (1 —eq) f” —
2e1f'||, > 0. Supposing the contrary, it follows that z(1 —z)f”(z) — 2zf'(z) = 0
for all |z] < r, that is, (1 —2)f"(z) —2f'(z) = 0 for all |z| < r with z # 0. The
last equality is equivalent to [(1 —z)f"(z)]' — f'(z) = 0, for all |z| < r with z # 0.
Therefore, (1 —z)f'(z) — f(z) = C, where C is a constant, that is, f(z) = {=, for
all |z| < r with z # 0. But since f is analytic in D, and r > 1, we necessarily have
C =0, a contradiction to the hypothesis.
But by Remark 7.2, we have

e1(1 — el)f” — 2e1f’
[n]Qn

[n]5,

Mg, (f5) = f =

< M(f)+2 Y |aglkr,
k=1

r

with Wl_ — 0 as n — oo, Therefore, it follows that there exists an index ny depending
qn
only on f, r and on the sequence (g, )n, such that for all n > ng, we have

)

ller(1—e1)f" —2erf'||

_ 81(1 — el)f” — 261f/
[n]q,

1
> §||€1(1 —e)f" —2e1f']],

{07
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which implies that

1
||Mn7qn( )= f||r—2 ||el(1_el)f”_zelf,”raV”Z”O-

[nlg,

For 1 <n <ng— 1, we clearly have

1Mnq, (f3) = £l =

where ¢, (f) = [nlg, - [|Mng,(f3-) — f]|» > 0, which finally implies

Cr(f)
[nlg,

Mg, (f5) = fllr = , foralln € N,

where

Cr(f) = min{c,1(f),cr2(f)- 7Cr,n071(f)7%||e1(1 —en)f"=2eif'll;}. m

Combining Theorem 7.3 with Theorem 7.1, we get the following.

Corollary 7.2. Let 1 — niz < gn <1 forall n € N, R > 1 and suppose that f €
H(Dg). If f is not a polynomial of degree O, then for any r € [1,R), we have

1Mo, (f5) = fllr ~ 755 n€N,

1
[n]LIn
where the constants in the above equivalence depend on f,r,(qn)n, but are
independent of n.

The proof follows along the lines of [80].

Remark 7.3. For 0 < oo < 3, we can define the Stancu-type generalization of the
operators (7.1) as

n 1 n
M) = et S ot [ (B

k=1

+f<[ » +ﬁ)Pn,0(q;Z)'

The analogous results can be obtained for such operators. As analysis is different, it
may be considered elsewhere.

> Prk—1(q:qt)dgt
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7.2 g-Gauss—Weierstrass Operator

In this section we study a complex g-Gauss—Weierstrass integral operators taking
into consideration the operators introduced by Anastassiou and Aral in [17]. We
show that these operators are an approximation process in some subclasses of
analytic functions giving Jackson-type estimates in approximation. Furthermore, we
give g-calculus analogues of some shape-preserving properties for these operators
satisfied by classical complex Gauss—Weierstrass integral operators. The results of
this section were discussed in [36].

7.2.1 Introduction

In a recent study, Anastassiou and Aral [17] introduced a new g-analogue of Gauss—
Weierstrass operators, which forn € N, g € (0, 1), xeé R, and f: R — R be a
function, defined as

], (g+1) ,——— 2
Wa (f3q, x) Z—H;W/O\/W\/ﬁf(x—i-t)qu <_q2[n]qtz>dqt. (7.2)

The goal of the present section is to introduce complex g-Gauss—Weierstrass

operators and to obtain Jackson-type estimates in approximation by these operators.
Also, we prove shape-preserving properties and some geometric properties of the
operators using g-derivative.
Note that geometric and approximation properties of some complex convolution
polynomials, complex singular integrals, and complex variant of well known
operators were studied in detail in [76]. Also shape-preserving approximation by
real or complex polynomials in one or several variables was given in [75].

Definition 7.1. Let D = {z€ C;|z| <1} be the open unit disk and AD) =
{r: D— C; f isanalytic on D, continuous on D, f(0) =0, D,f (0) = =1}. For

& >0, ge (0,1), the complex g-Gauss—Weierstrass integral of f € A(D) is
defined as

Wg(f;q,Z):—\/(— 0 /\/:f “NE, <—ng>dqt (7.3)
2

forz € .

Remark 7.4. Noting that the complex g-Gauss—Weierstrass operators W (f) (z)
given by (7.3) can be rewritten via an improper integral, we can easily see that
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E, (— %) = 0 for n < 0. Thus, we may write

e )
W9 = s [ e (<o )

qg+1
\/Erq2 (

NI—

7.2.2 Approximation Properties

In this section, we obtain Jackson-type rate in approximation by complex operators
given (7.3) and global smoothness preservation properties of them.

Lemma 7.4. We have
We (1;9,2) = 1.

Proof. We can write the g-derivative of the equality t = \/E \u as

— \/E; (7.4)

(g+1)Vu
Also, using the change of variable formula for g-integral with 8 = %, we have
\/E 2 1
2 o \/E -2 _1 2
[ (o= B [ s e
1
_ Ve (L)

(g+1) T\2

which proves W (1;¢, z) = 1. [ |

Theorem 7.4. Let f € A(D).
(i) ForzeD, & €(0,1], we have

1
W (f:.2) = f(2)| < an (f;\/g)m (1+ r (%))
where

o1 (£:8)50 = sup{ [ (¢47) = £ ()

;xeR,ogtgg}.
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(if) We have
o1 (We (f39,2):6)5 < Coy (f38)5,V8 >0, & >0,
where

o1 (f;8)y =sup{|f (z1) — f (z2)|; 21,2

Proof.
(i) Since We (1:q,z) = 1, forz € D, we get

(@) < \/—L?Ll% /\/ﬁ}f ) —f ()| Ep ( g)dqt-

By the maximum modulus principle we can restrict our considerations to
|z| = 1, and we can write

We (f39,2

IWe (f1q.2) — £ (2)]

(g+1) /— , 1?
< \/_F / = oy (3|2l |1 =€) op By (—ng> dgt
Combined this with the inequality

| t—e| <2fsin| <1, v >0,

it follows that

W (f:19,2) — f(2)
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—on(1vE),, [ 1+ daxl) /mtE( g)d

Also, using the change of variable formula for g-integral with = %, we have

\/E tz & l2
) 2 . = 2
/0\/1 TIEp (—q E) dgt = (q+1)/() q Ep (—q u)dqzu

= ——_T
PEE

Thus, we have

We (f39,2) = f(2)| < o (f;\/g)m <1+F ! )

(i) Forzy,22 €D, |z1 — 22| < 8, we have following:

(W (f1q,21) = We (14, 2)|

< i) | aet) e (-5 )

<o (f |Z1 2|)5We (134, 2)
<o (f;0)p

From which, we derive by passing supremum over |z; — 23| < &

o1 (We (£34,2)38)5 < o1 (f;8)p u

7.2.3 Shape-Preserving Properties

In this section, we deal with some properties of the complex operators given in
Definition 7.1. Firstly we present following function classes:

{f is analyticon D, f(z Zakz z€D, |a1|>2|ak|}

Sq*{feA( ) }D }<1 foralle]D)}
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and

P={f:D—C;f isanalyticonD, f(0) =1, Re[f (z)] >0, Vz€ D} .

Theorem 7.5. If f(z) = E a;7" is analytic in D, then for & > 0, We (f) (2) is
k=0

analytic in D, and we have
e (f39,72) zakdkngk VzeD

where

dk(éu@)_\/—qu_l /me”“E( tg)dqt. (7.5)

Also, if f is continuous on DD, then We (f) is continuous on D.

Proof. For the continuity at zg € D, let z, € D be with z, — zo as n — co. From (7.3),
we can write

\We (f1d, 2n) = We (f34, 20) |

e 2
< ) /M ‘f(zneiit) _f(Zoeiit)‘qu (—6]2%) dyt

\/Erq2 (%) 0
(g+1 , , 1?
A Pt

Ve

= (q+1> 1-¢2 . _ — _ ﬁ
_m~/°\/_wl(f"z” Z°|>DEq2< qzs)dqt

= o (f3]z—20)5,

from which the continuity of f at zy € D immediately implies the continuity of
WE (f) too at zo.

Since f(z) = 3 axZt, z € D, we get
k=0

(6]+1) 1—-¢2 wte —ikt o [ —g?—
Welsians) = s /v z e ME, ( €>qu
— o0 i VE 2n

! qZZZakzke k\/nfq‘quqz <—q2 q_q2)q”. (7.6)

qu (3) S5
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If g, is absolutely summable, that is, if Y, 3 ] g,,)k‘ < oo, then we know from
0k=0

Fubini’s theorem:
2 2 8nk = 2 2 8n k-
n=0k= =0n=0
Since
—ik v q"

aie = | = la|,

for all n € N, the series ¥, ayz* is convergent, and it follows that the series

k=0
oo —ik Ve q"
2 . . . .
Y aitfe V' isuniformly convergent with respect to n. Also, we can write
k=0

1

VIi—¢? & ( L > | . 2

E "\ / e (g

T () ZE) < )T T M 2 (=d’t)dpt
= 1.

These immediately imply that the series in (7.6) can be interchangeable by Fubini’s
theorem, that is,

/1 — o —jk Ve 2n
1 Zakz z l "qquqz (_ng_ )‘I”

We (fiq,2) =
: qu(%) k=0 n=0 1-¢
= zakdk(§7Q)Z
k=0
where
VE  n

1-¢> & oo 7"
dk(&vq)_ T (l) e I-? qu <_q21_ 2 q”

q2 3) n=0 q

(q+ 1) /M efiktqu <—ng> dqt.

&’_]
]
—~
NI'—-
~—

Theorem 7.6. For & > 0, it holds that

W;; (Sz) CS> and W;; (m) 3.



244 7 g-Complex Operators
Proof. By Theorem 7.5, we get

e (f34,72) zakdk (€,9)z

and

Since f € S, it follows that
D ladi (&) < Y || < ay.
k=2 k=2

Thus we have,

We (f) € Sa.

Let f(z) = Zakz € B, that is, ap = f£(0) = 1 and if f(z) =

U(x,y)+iV(x,y), z—x—i-lyE]D) then U (x,y) > 0, for all z =x+iy € D.
We have

We (£)(0) =ao =1

with the condition ag = f (0) = 1 and for Vz = re',

We (f34,2)

= \/_(ZF_Zzl% /mU (reos(t —u),rsin(t —u))Ep <—q2%2) dqu

-\/_qu—l% /MV (reos(t—u),rsin(t —u))Ep ( qz%) dqu,

which implies that

Re [We (f3q,2)]

- \/_qu_l% /mU (reos(t —u),rsin(t —u))Ep ( %2> dgu >0,

that is, W (f3q,2) €B. |
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Remark 7.5. By [11], if f € Sy, then f is starlike (and univalent) on D. According
to Theorem 7.6, the operators W possess this property.

7.2.4 Applications of q-Derivative to Operators
In this section, we present some properties of the complex operators W f (2),£>0

via g-derivative.

Lemma 7.5. The di (€,q) is defined as (7.5). We have

limd, =1.
lim i (&,9)

Proof. We can write

V1—gq 2 ﬂkm 7 <_ q2 an) 7"
=T, () 2 gl )7

Since the series of above equality is uniform convergent, it follows that the series
can be interchangeable with limit, that is,

1 q =) ,iiqn qz
: _ — : 1—¢2 _ 2n\ n
60 = gy S e e ()
— \/l_q iE2<_ qz q2n>qn
I'p (%) =0 I-q
1 - 2
- Ep(—q?u)d
o [

Theorem 7.7. Forall & >0,

1 1
W (s cSsl W (s1) ST,
di(&,9) 5(3""(5”’)) 7 di(&,q) e (i) Tt

where

o = ESLIDLf (@) <di(E.9)}
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and

s, _{feSI‘{l,

d(8.,9)

M
q””—m@@}

Proof. Let f €S9 (g Since fEA (D), we know that f(0) =ag =0, Dgf (0) =
a; = 1. Also since We (f3q, z) is continuous from Theorem 7.5, we can take g-
derivative of it. Thus, we have

L
dl (57Q)

Also, since

WZ; (f;%o):o quig (f;q,O):alzl.

1
L di(&,9)

2 : _(g+1) ,/ lz 2 ¢ (L oit) o2 2t
D)W (f3q,2) = \/_1" 0 / = Dy f (ze ") e 'E,2 < q €>dqt,

and [D2f ()| < |d1 (§,q)]. it follows that

1 2
d, (€, )D We (f34.2)
(g+1) ,/1 qz 2 =it [ |2 E _zﬁ
|d1§q|\/_1“ %/ |D3f (ze")]] |Eq<q§>dqt

that is, 7-=—We (f) € s4.
Now letf es?,

(z)| <M . It follows that

1
meWzg (f39,2)

+1) 2 —it ’
0t [ el (25
2

|d1§q|\/_l“ S
M (q+l) [ 2N M
= Eal Ver, %/ E( &)W di (E,q)]

which implies that 7k—We (f) € qu y u
dy(&,q
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7.2.5 Exact Order of Approximation

For exact order of approximation, we give a modification of the operator (7.3).
For & >0, ¢ € (0, 1), the complex g-Gauss—Weierstrass integral of f € A (D) is
defined as

2
W (f39,2) = 2\/2;—11 /\/_ i’)+f(zei’))qu<—q2%)dqt
(3)

for z € D. The approximation properties of the W (f3q,z) are expressed by the
following theorem.

Theorem 7.8. (i) Let f€A (ﬁ) Forall & € (0,1] and z €D, it follows

‘Wg (f34, z)—f(Z)‘ <Cw (f;\/g)au)

(if) Let us suppose that f(z) z ayZ* for all z € Dg, R > 1. Iffis not constant for
k=0
s = 0 and not a polynomial of degree < s—1 for s € N, then for all 1 <r <

r <R, &€ (0;1], and s e NU{0}

~&

r

"0

where the constants in the equivalence depend only on f, g, p, r, ry.

Proof. (i) We get

We (f19,2) = f(2)

_ g+l 1 7 (e u ﬁ
2\/_F B /\/_ ) —2f(2)+ f (ze ))qu (—qzé)dqt.

For |z| = 1, we can write

Wi (24, z>—f<z>\

(g+1) \/ﬁ i 2)
N %/ 1 (ze ) = 2£ (2) +  (2¢") | E2 ( g ) di

(g+1) \/ﬁ ﬁ)
Sz\/_l“ %/ a)zft)aDE< 5 dgt
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Ve

<o) i 7 () e e

We can write the g-derivative of the equality # = \/E Vu as

t):\/g\/ﬁ_—\{qz_u

1
- ﬂ(qﬂ)ﬁ'

Also, using the change of variable formula for g-integral with 8 = %, we have

12 1

(g+1) /mﬂE < ) 1 /ﬁ 1 2
dyt = ———— YE , (—u)d
26/ET, (1) T )h . (Db " 7 (=qu)dpu

1
2
_ rtﬁ(%) < oo
Zqu(%)
and

G [ ik (5 i = o [T ()

&z (3) Jo AN 2 (3) Do

qu(%)

Thus, we have desired result.
(if) We follow here the ideas in the proof of [76, pp. 269-272]. We can easily see
that forr > 1,

o (f:VE) < Coy (1)

where

[03) (f; \/E)(mr = sup {Aﬁf (re") : Ju) < \/E}
From (i) we have

Wz -1|| <cane

for all € € (0,1] and z € D, (see [76]).
Now, we find the upper estimate in (if) by using the Cauchy’s formulas. Let ¥ be
a circle of radius r; > 1 and center 0. For u € y, we get
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du|.

; /f(u)— (W) 1w
(u

ﬁ . s+1
g )

£ @) - Wi () ()] =

—Z

This equality implies that

P r—pPwz 0| < s -wi ()
slry

r

<Crg(f)6

For the lower estimate in (ii), firstly, let us show the Wg operator as series. Using
(i), for the W (f) operator, we get

W ()0 = i (€.0):

where

d,f(&,q)* ‘”1 /I‘IZCoskt < §>dqt

By the mean value theorem apphed to i (¢) = coskt on [0,1], we get

g+l (=7 L
S\/Erqz(%)/o (1+kt)Eq2< q >dqt
Ve
=1+k : (7.7)
! I'p (%)

Using g-derivative and taking z = re'® , we have

D f (@) =Dy (We) (@] e

= Y ac[k] [k—1],...[k—s+1], /7 EPO[1 —dr (& ,q)].

Ms

q
k

A\

Integrating from —7 to 7, we obtain
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L ) (= i
o [ [P r@ =i (wz) (1 @) e roaq
-
= asipls+pl,ls+p—1],...[p+1],r"[1-d},,(&,9)].
Then, passing to absolute value and using (7.7), we easily obtain for £ € (0,1]
|Di 7= (Wz) ()

> |asip| [s+pl, [s+p—1,... [p+ 1,7 |1 =di,,(&,q)|

> ’as+p’[s+p]q[s+p_1]q"'[p+lqrpll_ ’derp ’q)H

> agyp|ls+pl,[s+p—1],...[p+1],7" (s+p)

> |agip|[s+pl,s+p—1],...[p+1],7" (s+p)

Using this inequality, we have for p > 1 and £ € (0, 1]

S
-
Lp (7)
Thus, we can say that if there exists a subsequence (&), in (0, 1] with limy_,.. & =0

b= ol,

lr=wz ()] = lap|

and such that lim;_,,, ——=—*

onD,.
Therefore, if f is not constant, then for £ € (0,1], there exists a constant

=0, thena, =0forall p > 1, that s, f is constant

Crq (f) >0 such that ] W (f)Hr > ECoy ().
Now, we consider s > 1. We can write
[0 =D (We) (1), = lasep| 5+l Is+p =11y Ip+ 11,7 5+ p) = f(l)
2

q
for & € (0,1] and for all p > 0. Similarly, if there exists a subsequence (&), in (0, 1]
-0t (o
&
for all p > 0, that is, f is a polynomial degree < s— 1 on D;,.
Therefore, if f is not a polynomial of degree < s — 1, then for £ € (0, 1], there
exists a constant Cy,4 (f) > 0 such that

with limy_,.. & = 0 and such that lim;_,., £ =0, then ay , =0

|07 =D (Wz) ()], = &€ ) .
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