
Chapter 19

Dependence Comparison
of Multivariate Extremes
via Stochastic Tail Orders

Haijun Li

Abstract: A stochastic tail order is introduced to compare right tails
of distributions and related closure properties are established. The
stochastic tail order is then used to compare the dependence struc-
ture of multivariate extreme value distributions in terms of upper tail
behaviors of their underlying samples.

19.1 Introduction

Let Xn = (X1,n, · · · ,Xd,n), n = 1, 2, · · · be independent and iden-
tically distributed (i.i.d.) random vectors with common distribution
function (df) F . Define component-wise maxima Mi,n := ∨n

j=1Xi,j

and minima mi,n := ∧n
j=1Xi,j, 1 ≤ i ≤ d. Here and hereafter

∨ (∧) denotes the maximum (minimum). This paper focuses on
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364 Stochastic Tail Orders

dependence comparison of the limiting distributions of properly nor-
malized vectors of component-wise maxima Mn := (M1,n, . . . ,Md,n)
and of component-wise maxima mn := (m1,n, . . . ,md,n), as n → ∞.
The comparison method is based on asymptotic comparisons of upper
tails of F of the underlying sample (Xn, n ≥ 1).

For any two vectors a, b ∈ R
d, the sum a+b, product ab, quotient

a/b, and vector inequalities such as a ≤ b are all operated component-
wise. Let G and H be dfs defined on R

d with nondegenerate margins.
A df F is said to be in the domain of attraction of G for the maxima,
denoted as F ∈ DA∨(G), if there exist R

d-valued sequences an =
(a1,n, · · · , ad,n) with ai,n > 0, 1 ≤ i ≤ d, and bn = (b1,n, · · · , bd,n),
n = 1, 2, · · · , such that for any x = (x1, · · · , xd), as n→ ∞,

P

{
M1,n − b1,n

a1,n
≤ x1, · · · , Md,n − bd,n

ad,n
≤ xd

}

= Fn(anx+ bn) → G(x), (19.1.1)

and in this case, G is called a max multivariate extreme value (MEV)
distribution. Similar definitions for min MEV distributions and their
domain of attraction can be made. For minima, Eq. (19.1.1) is
replaced by

P

{
m1,n − b1,n

a1,n
> x1, · · · , md,n − bd,n

ad,n
> xd

}

= F
n
(anx+ bn) → H(x), (19.1.2)

which is denoted by F ∈ DA∧(H). Here and hereafter bars on the top
of dfs denote (joint) survival functions. A key property of an MEV
distribution G is that all positive powers of G are also distributions,
and max MEV distributions coincide with the max-stable distribu-
tions, which form a subclass of max-infinitely divisible distributions.
Similarly min MEV distributions coincide with the min-stable distri-
butions, which form a subclass of min-infinitely divisible distributions.
One needs only to study the case of maxima as the theory for minima
is similar.

LetX = (X1, . . . ,Xd) be a generic random vector with distribution
F and continuous, univariate margins F1, . . . , Fd. If F ∈ DA∨(G), then
G is closely related to the upper tail distribution of X, which often
possesses the heavy tail property of regular variation. Without loss
of generality, we may assume that X is nonnegative component-wise.
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Consider the standard case in which the survival functions F i(x) :=
1− Fi(x), 1 ≤ i ≤ d of the margins are right tail equivalent; that is,

F i(x)

F 1(x)
=

1− Fi(x)

1− F1(x)
→ 1, as x→ ∞, 1 ≤ i ≤ d. (19.1.3)

The distribution F or random vector X is said to be multivariate
regularly varying (MRV) at ∞ with intensity measure ν if there exists
a scaling function b(t) → ∞ and a nonzero Radon measure ν(·) such
that as t→ ∞,

tP

{
X

b(t)
∈ B

}
→ ν(B),∀ relatively compact sets B ⊂ R

d
+\{0},

with ν(∂B) = 0, (19.1.4)

where R
d
+ := [0,∞]d. The extremal dependence information of X

is encoded in the intensity measure ν that satisfies that ν(tB) =
t−αν(B), for all relatively compact subsets B that are bounded away
from the origin, where α > 0 is known as the tail index. Since the set

B1 = {x ∈ R
d : x1 > 1} is relatively compact within the cone R

d
+\{0}

and ν(B1) > 0 under Eq. (19.1.3), it follows from Eq. (19.1.4) that
the scaling function b(t) can be chosen to satisfy that F 1(b(t)) = t−1,
t > 0, after appropriately normalizing the intensity measure by ν(B1).

That is, b(t) can be chosen as b(t) = F
−1

(t−1) = F−1
1 (1 − t−1) under

the condition (19.1.3), and thus, Eq. (19.1.4) can be expressed equiv-
alently as

lim
t→∞

P{X ∈ tB}
P{X1 > t} = ν(B), ∀ relatively compact sets B ⊂ R

d
+\{0},
(19.1.5)

satisfying that μ(∂B) = 0. It follows from Eqs. (19.1.5) and (19.1.3)
that for 1 ≤ i ≤ d,

lim
t→∞

P{Xi > ts}
P{Xi > t} = ν((s,∞]× R

d−1
) = s−αν((1,∞] × R

d−1
), ∀ s > 0.

That is, univariate margins have regularly varying right tails. In gen-
eral, a Borel-measurable function g : R+ → R+ is regularly varying
with exponent ρ ∈ R, denoted as g ∈ RVρ, if and only if

g(t) = tρ�(t), with �(·) ≥ 0 satisfying that lim
t→∞

�(ts)

�(t)
= 1, for s > 0.

(19.1.6)
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The function �(·) is known as a slowly varying function and denoted
as � ∈ RV0. Since F 1 ∈ RV−α, 1/F 1 ∈ RVα, and thus, by Proposition
2.6 (v) of [387], the scaling function b ∈ RVα−1 .

Since all the margins are tail equivalent as assumed in Eq. (19.1.3),
one has

F i(t) = t−α�i(t), where �i ∈ RV0, and �i(t)/�j(t) → 1 as t → ∞, for any i �= j,

(19.1.7)
which, together with F 1(b(t)) = t−1, imply that

lim
t→∞ tP{Xi > b(t)s} = lim

t→∞
P{Xi > b(t)s}

F i(b(t))

F i(b(t))

F 1(b(t))
= s−α, s > 0, 1 ≤ i ≤ d.

(19.1.8)

The detailed discussions on univariate and multivariate regular
variations can be found in [61, 387]. The extension of MRV beyond
the nonnegative orthant can be done by using the tail probability of
||X||, where || · || denotes a norm on R

d, in place of the marginal tail
probability in Eq. (19.1.5) (see [387], Sect. 6.5.5). The case that the
limit in Eq. (19.1.3) is any nonzero constant can be easily converted
into the standard tail equivalent case by properly rescaling margins.
If the limit in Eq. (19.1.3) is zero or infinity, then some margins have
heavier tails than others. One way to overcome this problem is to stan-
dardize the margins via marginal monotone transforms (see Theorem
6.5 in [387]) or to use the copula method [281].

Theorem 19.1.1 (Marshall and Olkin [309]). Assume that Eq. (19.1.3)
holds. Then there exist normalization vectors an > 0 and bn such
that, as n→ ∞,

P
{Mn − bn

an
≤ x

}
→ G(x), ∀ x ∈ R

d
+,

where G is a d-dimensional distribution with Fréchet margins Gi(s) =
exp{−s−α}, 1 ≤ i ≤ d, if and only if F is MRV with intensity measure
ν([0,x]c) := − logG(x).

In other words, F ∈ DA∨(G) where G has Fréchet margins with
tail index α if and only if F is MRV with intensity measure ν([0,x]c) =
− logG(x).

Remark 19.1.2.

1. The normalization vectors an > 0 and bn in Theorem 19.1.1 can
be made precise so that bn=0 and an=(F

−1
1 (1/n), . . . , F

−1
d (1/n))

that depend only on the margins of F .
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2. If Eq. (19.1.3) does not hold, Theorem 19.1.1 can still be
established, but the nonstandard global regular variation with
different scaling functions among various margins needs to be
used in place of Eq. (19.1.5), which uses the same scaling function
among different margins.

3. One-dimensional version of Theorem 19.1.1 is due to Gnedenko
[184]. Note that the parametric feature enjoyed by univariate
extremes is lost in the multivariate context.

4. Let S
d−1
+ = {a : a = (a1, . . . , ad) ∈ R

d
+, ||a|| = 1}, where || · ||

is a norm defined in R
d. Using the polar coordinates, G can be

expressed as follows:

G(x) = exp
{
− c

∫
Sd+

max
1≤i≤d

{(ai/xi)α}Q(da)
}
,

where c > 0 and Q is a probability measure defined on S
d−1
+ .

This is known as the Pickands representation [374], and cQ(·) is
known as the spectral or angular measure.

5. Note that the spectral measure is a finite measure that can be
approximated by a sequence of discrete measures. Using this
idea, Marshall and Olkin [309] showed that the MEV distribution
G is positively associated. This implies that as n is sufficiently
large, we have asymptotically,

E
[
f
(
Mn

)
g
(
Mn

)] ≥ E
[
f
(
Mn

)]
E
[
g
(
Mn

)]

for all nondecreasing functions f, g : R
d �→ R. Observe that

the sample vector Xn could have any dependence structure, but
the strong positive dependence emerges among multivariate ex-
tremes.

6. Since G is max-infinitely divisible, all bivariate margins of G are
TP2, a positive dependence property that is even stronger than
the positive association of bivariate margins (see Theorem 2.6 in
[211]).

Since the normalization vectors an > 0 and bn in Theorem 19.1.1
depend only on the margins, dependence comparison of G can be eas-
ily established using the orthant dependence order on sample vectors.
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Recall that a d-dimensional random vector X = (X1, . . . ,Xd) with
df F is said to be smaller than another d-dimensional random vec-
tor X ′ = (X ′

1, . . . ,X
′
d) with df F ′ in the upper (lower) orthant order,

denoted as X ≤uo X
′ or F ≤uo F

′ (X ≤lo X
′ or F ≤lo F

′), if

P{X1 > x1, . . . ,Xd > xd} ≤ P{X ′
1 > x1, . . . ,X

′
d > xd}, (19.1.9)

P{X1 ≤ x1, . . . ,Xd ≤ xd} ≤ P{X ′
1 ≤ x1, . . . ,X

′
d ≤ xd}, (19.1.10)

for all (x1, . . . , xd) ∈ R
d. If, in addition, their corresponding univariate

margins are identical, then X is said to be smaller than X ′ in the
upper (lower) orthant dependence order, denoted as X ≤uod X ′ or
F ≤uod F

′ (X ≤lod X ′ or F ≤lod F
′). Clearly X ≤uod X ′ implies that

X ≤uo X ′, but the order ≤uod focuses on comparing scale-invariant
dependence among components. The detailed discussions on these
orders can be found in [335, 426]. The following result is immediate
due to the fact that the orthant order is closed under weak convergence.

Proposition 19.1.3. Let (Xn, n ≥ 1) and (X ′
n, n ≥ 1) be two

i.i.d. samples with dfs F and F ′, respectively. If F ∈ DA∨(G) and
F ′ ∈ DA∨(G′) with Fréchet margins, then Xn ≤lod X ′

n implies that
G ≤lod G

′.

Note, however, that the ordering Xn ≤lod X ′
n is strongly affected

by the behavior at the center and often too strong to be valid. The fact
that MRV is a tail property motivates us to focus on comparing only
upper tails of Xn and X ′

n, leading to weaker notions of stochastic tail
orders. In Sect. 19.2, we introduce a notion of stochastic tail order for
random variables and establish related closure properties and discuss
its relation with other asymptotic orders that are already available in
the literature. In Sect. 19.3, we extend the stochastic tail order to ran-
dom vectors and show that the stochastic tail order of sample vectors
sufficiently implies the orthant dependence order of the corresponding
MEV distributions.

19.2 Stochastic Tail Orders

Let X and Y be two R+-valued random variables. X is said to be
smaller than Y in the sense of stochastic tail order, denoted as X ≤sto

Y , if there exists a threshold constant t0 > 0 (usually large) such that

P{X > t} ≤ P{Y > t}, ∀ t > t0. (19.2.1)
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Remark 19.2.1.

1. The stochastic tail order ≤sto is reflexive and transitive. ≤sto is
antisymmetric if tail identically distributed random variables are
considered to be equivalent.

2. If X is smaller than Y in the usual stochastic order (denoted as
X ≤st Y ; see Sect. 1.A in [426]); that is, P{X > t} ≤ P{Y > t}
for all t, then X ≤sto Y .

3. X ≤sto Y if and only if there exists a small open neighborhood
of ∞ within which X is stochastically smaller than Y .

4. X ≤sto Y implies

lim sup
t→∞

P{X > t}
P{Y > t} ≤ 1. (19.2.2)

The stochastic tail orders using limiting inequalities such as
Eq. (19.2.2) have been introduced and studied in [43, 242, 243, 389–
391] and more recently in [300]. Most of these tail orders, however,
are based on limiting approaches rather than stochastic comparison
theory.

1. Mainik and Rüschendorf studied in [300] the following weak tail
order: A random variable X is said to be smaller than an-
other random variable Y in the asymptotic portfolio loss order,
denoted as X ≤apl Y , if the limiting inequality (19.2.2) holds.

Observe that sup
s>t

P{X>s}
P{Y >s} is decreasing in t, and as such, in the

case of X ≤apl Y with

lim sup
t→∞

P{X > t}
P{Y > t} = lim

t→∞

[
sup
s>t

P{X > s}
P{Y > s}

]
= 1,

one can find in any open neighborhood (c,∞] of ∞ that P(X >
s) ≥ P(Y > s) for some s > c. That is, neither X nor Y could
dominate the other in any open neighborhood (c,∞] of ∞, but
asymptotically, the right tail of X decays at the rate that is
bounded from above by the tail decay rate of Y .

2. Rojo introduced in [391] a stronger version of tail orders: Define
X <sq Y if
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lim sup
u→1

F−1(u)

G−1(u)
< 1

where F−1(·) and G−1(·) denote the left-continuous inverses of
dfs of X and Y , respectively. Obviously, X <sq Y implies that
X ≤sto Y . Note, however, that <sq is not a partial ordering.

The stochastic tail orders via limiting inequalities resemble the
idea of comparing the asymptotic decay rates that is often employed
in theory of large (and small) deviations [284]. In contrast, the notion
Eq. (19.2.1) compares stochastically random variables in a small open
neighborhood of ∞ within which theory of stochastic orders retains
its full power. For example, coupling remains valid in a small open
neighborhood of ∞.

Theorem 19.2.2. Let X and Y be two positive random variables with
support [0,∞). X ≤sto Y if and only if there exists a random variable
Z defined on the probability space (Ω,F ,P) with support [a, b], and
nondecreasing functions ψ1 and ψ2 with limz→b ψi(z) = ∞, i = 1, 2,

such that X
d
= ψ1(Z), Y

d
= ψ2(Z) and P{ψ1(Z) ≤ ψ2(Z) | Z ≥ z0} = 1

for some z0 > 0.

Proof : Let X and Y have distributions F and G with support [0,∞),
respectively, and let F−1(·) and G−1(·) denote the corresponding left-
continuous inverses. Recall that for any df H on R, the left-continuous
inverse of H is defined as

H−1(u) := inf{s : H(s) ≥ u}, 0 ≤ u ≤ 1.

The left-continuous inverse has the following desirable properties:

1. H(H−1(u)) ≥ u for all 0 ≤ u ≤ 1, and H−1(H(x)) ≤ x for all
x ∈ R.

2. H−1(u) ≤ x if and only if u ≤ H(x).

3. The set {s : H(s) ≥ u} is closed for each 0 ≤ u ≤ 1.

Necessity: Using Properties 1 and 2, X ≤sto Y implies that
F−1(u) ≤ G−1(u), ∀u > u0 for some 0 < u0 < 1. Let U be a random
variable with standard uniform distribution, and thus P{F−1(U) ≤
G−1(U) | U ≥ u0} = 1. Using Property 2, P{F−1(U) ≤ x} = P{U ≤
F (x)} = F (x). Similarly, P{G−1(U) ≤ x} = G(x).
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Sufficiency: For all t ≥ c, a constant with c > ψ1(z0),

P{X > t} = P{Z ≥ z0}P{ψ1(Z) > t | Z ≥ z0}
≤ P{Z ≥ z0}P{ψ2(Z) > t | Z ≥ z0}
≤ P{ψ2(Z) > t}
= P{Y > t}.

The tail coupling presented in Theorem 19.2.2 enables us to estab-
lish desirable closure properties for the stochastic tail order. A Borel
measurable function ψ : Rd → R is called a Radon function if ψ is
bounded on every compact subset of Rd. Obviously, any nondecreas-
ing function and any continuous function defined on R

d are Radon
functions.

Definition 19.2.3. A Borel measurable function ψ : R
d
+ → R is

said to be eventually increasing if there exists a compact subset
S ⊂ R

d
+ such that ψ is component-wise nondecreasing on Sc with

limxi→∞ ψ(x1, . . . , xi, . . . , xd) = ∞.

Proposition 19.2.4. Let X and Y be two positive random variables
with support [0,∞).

1. X ≤sto Y implies g(X) ≤sto g(Y ) for any Radon function g that
is eventually increasing.

2. If X1,X2 are independent, and X ′
1,X

′
2 are independent, then

X1 ≤sto X
′
1 and X2 ≤sto X

′
2 imply g(X1,X2) ≤sto g(X

′
1,X

′
2) for

any Radon function g that is eventually increasing.

Proof :

(1) Since g is a Radon function that is eventually increasing, there
exists a threshold x0 > 0 such that g(·) is increasing to ∞ on
[x0,∞). By Theorem 19.2.2, there exists a random variable Z de-
fined on the probability space (Ω,F ,P) and nondecreasing func-
tions ψ1 and ψ2 with limz→b ψi(z) = ∞, i = 1, 2, such that

X
d
= ψ1(Z) and Y

d
= ψ2(Z) and

P{ψ1(Z) ≤ ψ2(Z) | Z ≥ z0}=1 for some z0>0 with ψ1(z0)>x0.
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Thus,

P{g(ψ1(Z)) ≤ g(ψ2(Z)) | Z ≥ z0} = 1 for z0 > 0.

Clearly, g(X)
d
= g(ψ1(Z)) and g(Y )

d
= g(ψ2(Z)), and thus,

P{g(X) > t} = P{Z ≥ z0}P{g(ψ1(Z)) > t | Z ≥ z0}
≤ P{Z ≥ z0}P{g(ψ2(Z)) > t | Z ≥ z0}
≤ P{g(ψ2(Z)) > t} = P{g(Y ) > t}

for any t ≥ c where c is a constant with c > g(ψ1(z0)).

(2) Without loss of generality, assume that (X1,X2) and (X ′
1,X

′
2)

are independent. We only need to show that g(X1,X2) ≤sto

g(X ′
1,X2). Since g(·) is a Radon function that is eventually in-

creasing, there exists a (x1, x2) such that g(·) is bounded on
[0, x1]× [0, x2] and increasing on ([0, x1]× [0, x2])

c.

1. By Theorem 19.2.2, there exists a random variable Z1 defined
on the probability space (Ω1,F1,P1) and nondecreasing func-

tions ψ1 and ψ′
1 such that X1

d
= ψ1(Z1) and X ′

1
d
= ψ′

1(Z1) and
P1{ψ1(Z1) ≤ ψ′

1(Z1) | Z1 ≥ z1} = 1 for some z1 > 0 with
ψ1(z1) > x1.

2. Let (Ω2,F2,P2) denote the underlying probability space of X2.

Construct a product probability space (Ω,F ,P) = (Ω1 × Ω2,F ,P1 ×
P2), where F is the σ-field generated by F1 × F2. On this en-
larged product probability space, since P{ψ1(Z1) ≤ ψ′

1(Z1) | Z1 ≥
z1} = 1, and g(·) is increasing on ([0, x1] × [0, x2])

c, we have that
P{g(ψ1(Z1),X2) ≤ g(ψ′

1(Z1),X2) | Z1 ≥ z1 or X2 > x2} = 1. Clearly,

g(X1,X2)
d
= g(ψ1(Z1),X2) and g(X

′
1,X2)

d
= g(ψ′

1(Z1),X2), and thus

P{g(X1,X2) > t}
= P{Z1≥z1 or X2>x2}P{g(ψ1(Z1),X2) > t | Z1 ≥ z1 or X2 > x2}
≤ P{Z1≥z1 or X2>x2}P{g(ψ′

1(Z1),X2) > t | Z1 ≥ z1 or X2 > x2}
≤ P{g(ψ′

1(Z1),X2) > t}
= P{g(X ′

1,X2) > t}
for any t ≥ c where c is a constant with c > g(ψ1(z1), x2). That is,
g(X1,X2) ≤sto g(X

′
1,X2). Similarly, g(X ′

1,X2) ≤sto g(X
′
1,X

′
2).
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Corollary 19.2.5. If X1,X2 are independent and Y1, Y2 are
independent, then X1 ≤sto Y1 and X2 ≤sto Y2 imply

X1X2 ≤sto Y1Y2, X1 +X2 ≤sto Y1 + Y2,

X1 ∨X2 ≤sto Y1 ∨ Y2, X1 ∧X2 ≤sto Y1 ∧ Y2.
In particular, R1 ≤sto R2 implies that R1V ≤sto R2V for any non-

negative random variable V that is independent of R1, R2. Mainik and
Rüschendorf obtained this inequality in [300] for the random variable
V that is bounded using the ordering ≤apl, and their proof is based on
the method of mixture.

Proposition 19.2.6. Let X and Y be two positive random variables
with support [0,∞) and Θ be a random variable with bounded support
[θL, θU ]. Assume that:

1. Θ is a random variable with finite masses.

2. Θ is a continuous random variable such that P{X > t | Θ = θ}
and P{Y > t | Θ = θ} are continuous in θ.

If [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ in the support of Θ, then
X ≤sto Y .

Proof : Since [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ ∈ [θL, θU ], there
exists a threshold tθ that is given by

tθ := sup
{
s : P{X > s | Θ = θ} > P{Y > s | Θ = θ}}, (19.2.3)

such that

P{X > t | Θ = θ} ≤ P{Y > t | Θ = θ}, ∀ t > tθ.

Notice that the threshold tθ depends on the mixing value θ. Consider
the following two cases. Construct the threshold t[θL,θU ] as follows:

1. If Θ is discrete with finite masses, then define

t[θL,θU ] := max{tθ : θ ∈ [θL, θU ]} <∞.

2. If Θ is continuous, then tθ is continuous in θ due to the assump-
tion that P{X > t | Θ = θ} and P{Y > t | Θ = θ} are continuous
in θ. Define

t[θL,θU ] := sup{tθ : θ ∈ [θL, θU ]},
which is finite because of the continuity of tθ and the compactness
of [θ0, θn].
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In any case, for any θ ∈ [θL, θU ], any t > t[θL,θU ],

P{X > t | Θ = θ} ≤ P{Y > t | Θ = θ}.

Taking the integrations on both sides from θL to θU , we obtain P{X >
t} ≤ P{Y > t} for any t > t[θL,θU ].

Remark 19.2.7. The closure property under mixture when the mix-
ing variable has unbounded support, say [0,∞), becomes more subtle.
This is because the threshold tθ defined in Eq. (19.2.3) can approach
to infinity as θ goes to infinity. Our conjecture is that in the case of
unbounded support, [X | Θ = θ] ≤sto [Y | Θ = θ] for all θ in the

support of Θ implies that lim supt→∞
P{X>t}
P{Y >t} ≤ 1; that is, X ≤apl Y .

In the examples to be discussed below, all involved random vari-
ables fail to satisfy the usual stochastic order.

Example 19.2.8.

1. Let X have the Weibull distribution with unit scale parameter
and shape parameter k and Y have the exponential distribution
with unit (scale) parameter. If the shape parameter k > 1 (i.e.,
increasing hazard rate), then X ≤sto Y . If the shape parameter
k < 1 (i.e., decreasing hazard rate), then X ≥sto Y . Note that
both X and Y have exponentially decayed right tails.

2. Let X have the exponential distribution with unit (scale) pa-
rameter and Y have the distribution of Pareto Type II with tail
index α = 2; that is,

P{Y > t} = (1 + t)−2, t ≥ 0. (19.2.4)

Then X ≤sto Y . Note that Y has regularly varying right tail as
described in Eq. (19.1.6).

3. If X has the Fréchet distribution with tail index α = 3 (see
Theorem 19.1.1) and Y has the distribution Eq. (19.2.4) of Pareto
Type II with tail index α = 2, then X ≤sto Y . Note that X and
Y are regularly varying with respective tail indexes 3 and 2, but
Y has a heavier tail than that of X.
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4. Let X have the survival function of Pareto Type I as defined as
follows:

P{X > t} =

(
t

0.5

)−1

, t ≥ 0.5.

Let Y have the survival function of Pareto Type II with tail index
1; that is,

P{Y > t} = (1 + t)−1, t ≥ 0.

Then X ≤sto Y . Note that both X and Y have regularly varying
right tails with same tail index 1.

5. Let R1 and R2 have regularly varying distributions with tail
indexes α1 and α2, respectively. If α1 > α2, then R1 ≤sto R2.
That is, the random variable with heavier regularly varying right
tail is larger stochastically in the tail.

6. Let R be regularly varying with tail index α. If V1 and V2 are
random variables with finite moments of any order, independent
of R, such that E[V α

1 ] < E[V α
2 ]. By Breiman’s theorem (see

[387], p. 232),

lim
t→∞

P{RV1 > t}
P{R > t} = E[V α

1 ] < E[V α
2 ] = lim

t→∞
P{RV2 > t}
P{R > t}

Thus, for t > t0 where t0 is sufficiently large, P{RV1 > t} <
P{RV2 > t}, implying that RV1 ≤sto RV2.

A multivariate extension of scale mixtures discussed in Exam-
ple 19.2.8 (6) includes the multivariate elliptical distribution. A ran-
dom vector X ∈ R

d is called elliptically distributed if X has the
representation:

X
d
= μ+RAU (19.2.5)

where μ ∈ R
d, A ∈ R

d×d and U is uniformly distributed on S
d−1
2 :=

{x ∈ R
d : ||x||2 = 1} and R ≥ 0 is independent of U . We denote this

by X ∼ E(μ,Σ, R) where Σ = AA�.

Proposition 19.2.9. Let X∼E(μ1,Σ1, R1) and Y ∼E(μ2,Σ2, R2). If

μ1≤μ2, R1≤stoR2, and ξ�Σ1ξ ≤ ξ�Σ2ξ, for fixed ξ∈Sd−1
1 :={x∈Rd : ||x||1=1},

then |ξ�X| ≤sto |ξ�Y |.
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Proof : Let ai := ξ�Σiξ, i = 1, 2. Without loss of generality, we can
assume that μ1 = μ2 = 0 and a1 > 0. Let

vi :=
A�ξ
ξ�Σiξ

=
A�ξ
ai

, i = 1, 2.

Clearly v�
i vi = 1, i = 1, 2, and thus, by symmetry, v�

1 U and v�
2 U

have the same distribution. Let Θ := v�
1 U , and we have

|ξ�X| = R1a1|v�
1 U | d

= R1a1|Θ|, |ξ�Y | = R2a2|v�
2 U | d

= R2a2|Θ|.
The inequality then follows from Corollary 19.2.5 immediately.

This is our ≤sto-version of a similar result that is obtained in [300]
using the ≤apl order.

Remark 19.2.10. Anderson in [12], Fefferman, Jodeit, and Perlman

in [159] show that if μ1 = μ2, R1
d
= R2, and

ξ�Σ1ξ ≤ ξ�Σ2ξ, ∀ ξ ∈ R
d,

then E(ψ(X)) ≤ E(ψ(Y )) for all symmetric and convex functions ψ :
R
d �→ R, such that the expectations exist. This is known as dilatation,

which can be defined on any locally convex topological linear space
V (traced back to Karamata’s work in 1932; see [308], pp. 16–17).
Dilatation provides various versions of continuous majorization [308].

19.3 Tail Orthant Orders

Let X = (X1, . . . ,Xd) and X ′ = (X ′
1, . . . ,X

′
d) be nonnegative random

vectors with dfs F and F ′, respectively. Observe that X ≤lo X ′ is
equivalent to that max

1≤i≤d
{Xi/wi} ≥st max

1≤i≤d
{X ′

i/wi}, and X ≤uo X ′

is equivalent to that min
1≤i≤d

{Xi/wi} ≤st min
1≤i≤d

{X ′
i/wi}. In comparing

orthant tails of these random vectors, we focus on the cones R
d
+ and

R
d
+ := {(x1, . . . , xd) : xi > 0, 1 ≤ i ≤ d}. Note that x ∈ R

d
+ can have

some components taking +∞.

Definition 19.3.1.

1. X is said to be smaller than X ′ in the sense of tail lower orthant
order, denoted as X ≤tlo X ′, if for all w = (w1, . . . , wd) ∈ R

d
+,

max
1≤i≤d

{Xi/wi} ≥sto max
1≤i≤d

{X ′
i/wi}.
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2. X is said to be smaller than X ′ in the sense of tail upper orthant
order, denoted as X ≤tuo X ′, if for all w = (w1, . . . , wd) ∈ R

d
+,

min
1≤i≤d

{Xi/wi} ≤sto min
1≤i≤d

{X ′
i/wi}.

It follows from Eq. (19.2.1) that X ≤tlo X ′ is equivalent to for

w = (w1, . . . , wd) ∈ R
d
+,

P{X1 ≤ tw1, . . . ,Xd ≤ twd} ≤ P{X ′
1 ≤ tw1, . . . ,X

′
d ≤ twd} (19.3.1)

for all t > tw for some tw > 0 that may depend on w. Similarly,
X ≤tuo X

′ is equivalent to for w = (w1, . . . , wd) ∈ R
d
+,

P{X1 > tw1, . . . ,Xd > twd} ≤ P{X ′
1 > tw1, . . . ,X

′
d > twd} (19.3.2)

for all t > tw for some tw > 0 that may depend on w.
In comparing tail dependence, however, we assume that all the

margins of F and F ′ are tail equivalent. Since we need to compare
upper interior orthant tails given fixed marginal tails, consider the two
smaller cones:

1. Cl := R
d
+\ ∪d

j=1 {te−1
j , t ≥ 0}, where e−1

j , 1 ≤ j ≤ d, denotes the
vector with the j-th component being 1 and infinity otherwise.

2. Cu := R
d
+\ ∪d

j=1 {tej , t ≥ 0}, where ej , 1 ≤ j ≤ d, denotes the
vector with the j-th component being 1 and zero otherwise.

That is, Cl and Cu are the subsets of R
d
+ after eliminating all the

axes that correspond to the margins of a distribution. Note that w =
(w1, . . . , wd) ∈ Cl if and only if at least two components of w are finite,
and w = (w1, . . . , wd) ∈ Cu if and only if at least two components of
w are positive.

Definition 19.3.2.

1. X is said to be smaller than X ′ in the sense of tail lower orthant
dependence order, denoted as X ≤tlod X ′, if all the margins of
F and F ′ are tail equivalent, and for all w = (w1, . . . , wd) ∈ Cl,

max
1≤i≤d

{Xi/wi} ≥sto max
1≤i≤d

{X ′
i/wi}.

2. X is said to be smaller than X ′ in the sense of tail upper orthant
dependence order, denoted as X ≤tuod X ′, if all the margins of
F and F ′ are tail equivalent, and for all w = (w1, . . . , wd) ∈ Cu,

min
1≤i≤d

{Xi/wi} ≤sto min
1≤i≤d

{X ′
i/wi}.
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It follows from Eq. (19.2.1) that if all the margins of F and F ′

are tail equivalent, then X ≤tlod X ′ is equivalent to that Eq. (19.3.1)
holds for w = (w1, . . . , wd) ∈ Cl, and X ≤tuod X ′ is equivalent to that
Eq. (19.3.2) holds for w = (w1, . . . , wd) ∈ Cu.

Remark 19.3.3.

1. If

(w1, . . . , wd)∈
d⋃

j=1

{te−1
j , t≥0} or (w1, . . . , wd)∈

d⋃
j=1

{tej , t≥0},

then the inequalities in Definition 19.3.2 reduce to the stochastic
tail orders of the marginal distributions. Since the margins are
assumed to be tail equivalent, which may not satisfy stochastic
tail comparison, we need to eliminate the margins from consider-
ation. On the other hand, with given fixed marginal tails, what
really matters in dependence comparison is various interior or-
thant subsets of Cl or Cu.

2. If some corresponding margins of F and F ′ are not tail equiv-
alent, one can still define the tail orthant orders ≤tlo and ≤tuo

to compare their tail behaviors in orthants. But all correspond-
ing margins of F and F ′ have to be tail equivalent in order to
compare their tail dependence.

3. If some margins of F (or F ′) are not tail equivalent, then one
can still define the tail orthant dependence order, but scaling
functions would be different among the components.

4. Another alternative is to convert all the margins of F and F ′ to
standard Pareto margins, resulting in Pareto copulas [245], and
then compare their Pareto copulas using the ≤tlod and ≤tuod

orders.

The preservation properties under the ≤tlod and ≤tuod orders can
be easily established using Definitions 19.3.1 and 19.3.2, and Proposi-
tions 19.2.4 and 19.2.6. In particular, we have the following.

Proposition 19.3.4. Let X = (X1, . . . ,Xd), X
′ = (X ′

1, . . . ,X
′
d) and

Y = (Y1, . . . , Yd), Y
′ = (Y ′

1 , . . . , Y
′
d) be positive random vectors with

support R
d
+, and Θ be a random variable with bounded support. As-

sume that (X,X′) and (Y,Y ′) are independent, and the regularity
conditions of Proposition 19.2.6 are satisfied:
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1. X ≤tlo X ′ and Y ≤tlo Y ′ imply that X ∨ Y ≤tlo X′ ∨ Y ′.
X ≤tlod X ′ and Y ≤tlod Y ′ imply that X ∨ Y ≤tlod X′ ∨ Y ′.

2. X ≤tuo X ′ and Y ≤tuo Y ′ imply that X ∧ Y ≤tuo X′ ∧ Y ′.
X ≤tuod X ′ and Y ≤tuod Y ′ imply that X ∧ Y ≤tuod X′ ∧ Y ′.

3. If [X | Θ = θ] ≤tlo [X
′ | Θ = θ] for all θ in the bounded support

of Θ, then X ≤tlo X ′. If [X | Θ = θ] ≤tlod [X ′ | Θ = θ] for all
θ in the bounded support of Θ, then X ≤tlod X ′.

4. If [X | Θ = θ] ≤tuo [X
′ | Θ = θ] for all θ in the bounded support

of Θ, then X ≤tuo X ′. If [X | Θ = θ] ≤tuod [X ′ | Θ = θ] for all
θ in the bounded support of Θ, then X ≤tuod X ′.

Example 19.3.5. Let X ∼ E(0,Σ1, R1) and X ′ ∼ E(0,Σ2, R2) [see
Eq. (19.2.5)], where Σ1 = A1A

�
1 = (σij) and Σ2 = A2A

�
2 = (λij).

Consider X+ = X ∨ 0 and X ′
+ = X′ ∨ 0:

1. Suppose that

R1 ≤sto R2, Σ1 ≤ Σ2 component-wise with σii = λii, i = 1, . . . , d.

It follows from Example 9.A.8 in [426] thatX+ ≤uo R1(A2U∨0),
which implies that X+ ≤tuo R1(A2U ∨ 0). Clearly,

(R1, . . . , R1︸ ︷︷ ︸
d

) ≤tuo (R2, . . . , R2︸ ︷︷ ︸
d

),

which, together with Proposition 19.3.4 (4) and the fact that
A2U has a bounded support, imply that X+ ≤tuo R1(A2U ∨
0) ≤tuo R2(A2U ∨ 0). Thus X+ ≤tuo X

′
+.

2. Suppose that

R1 ≥sto R2, Σ1 ≤ Σ2 component-wise with σii = λii, i = 1, . . . , d.

It follows from Example 9.A.8 in [426] that X+ ≤lo R1(A2U∨0),
which implies that X+ ≤tlo R1(A2U ∨ 0). Clearly,

(R1, . . . , R1︸ ︷︷ ︸
d

) ≤tlo (R2, . . . , R2︸ ︷︷ ︸
d

),

which, together with Proposition 19.3.4 (3) and the fact that
A2U has a bounded support, imply that X+ ≤tlo R1(A2U ∨
0) ≤tlo R2(A2U ∨ 0). Thus X+ ≤tlo X

′
+.
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To construct a wide class of examples involving the ≤tlod and
≤tuod orders, we employ the copula approach. A copula C is a mul-
tivariate distribution with standard uniformly distributed margins on
[0, 1]. Sklar’s theorem (see, e.g., [211], Sect. 1.6) states that every
multivariate distribution F with margins F1, . . . , Fd can be written as
F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for some d-dimensional copula
C. In fact, in the case of continuous margins, C is unique and

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud))

where F−1
i (ui) are the quantile functions of the i-th margin, 1 ≤ i ≤ d.

Let (U1, . . . , Ud) denote a random vector with Ui, 1 ≤ i ≤ d, being
uniformly distributed on [0, 1]. The survival copula Ĉ is defined as
follows:

Ĉ(u1, . . . , un) = P{1−U1 ≤ u1, . . . , 1−Un ≤ un} = C(1−u1, . . . , 1−un)
(19.3.3)

where C is the joint survival function of C. The upper exponent and
upper tail dependence functions (see [207, 213, 244, 360]) are defined
as follows,

a(w;C) := lim
u→0+

P{∪d
i=1{Ui > 1− uwi}}

u
,

∀ w = (w1, . . . , wd) ∈ R
d
+\{0} (19.3.4)

b(w;C) := lim
u→0+

P{∩d
i=1{Ui > 1− uwi}}

u
,

∀ w = (w1, . . . , wd) ∈ R
d
+\{0} (19.3.5)

provided that the limits exist. Note that both a(w;C) and b(w;C)
are homogeneous of order 1 in the sense that a(cw;C) = ca(w;C) and
b(cw;C) = cb(w;C) for any c > 0.

Theorem 19.3.6. Let X = (X1, . . . ,Xd) and X ′ = (X ′
1, . . . ,X

′
d) be

two d-dimensional random vectors with respective copulas C and C ′

and their respective continuous margins F1, . . . , Fd and F ′
1, . . . , F

′
d.

1. If C = C ′ and Fi ≤sto F
′
i , 1 ≤ i ≤ d, then X ≤tuo X

′.

2. Assume that the upper tail dependence functions b(·;C) and

b(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi and F ′
i , 1 ≤ i ≤ d, are all tail equivalent, and b(w;C) <

b(w;C ′) for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then
X ≤tuod X ′.
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3. Assume that the upper tail dependence functions b(·;C) and

b(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi ≤sto F ′
i , 1 ≤ i ≤ d, and b(w;C) < b(w;C ′) for all

w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tuo X
′.

Proof :

(1) Since Fi(twi) ≥ F ′
i (twi), 1 ≤ i ≤ d, for all t > twi , we have, for

all t > max{twi , 1 ≤ i ≤ d}

P{X1 > tw1, . . . ,Xd > twd}
= P{F1(X1) > F1(tw1), . . . , Fd(Xd) > Fd(twd)}
≤ P{F1(X1) > F ′

1(tw1), . . . , Fd(Xd) > F ′
d(twd)}

= P{F ′
1(X

′
1) > F ′

1(tw1), . . . , F
′
d(X

′
d) > F ′

d(twd)}
= P{X ′

1 > tw1, . . . ,X
′
d > twd}.

(2) Write F i(t) = Li(t) t
−αi and F ′

i(t) = L′
i(t) t

−α′
i , 1 ≤ i ≤ d.

Since all the margins are tail equivalent, we have

αi = α′
i =: α, and lim

t→∞
Li(t)

L1(t)
= lim

t→∞
L′
i(t)

L1(t)
= 1, 1 ≤ i ≤ d.

In addition, since the functions Li(·)s and L′
i(·)s are slowly vary-

ing, then for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d,

lim
t→∞

Li(twi)

L1(t)
= lim

t→∞
L′
i(twi)

L1(t)
= 1, 1 ≤ i ≤ d.

That is, for any ε > 0, there exists tw that is sufficiently large,
such that, for 1 ≤ i ≤ d and all t > tw,

(1− ε)L1(t) ≤ Li(twi) ≤ (1 + ε)L1(t),

(1− ε)L1(t) ≤ L′
i(twi) ≤ (1 + ε)L1(t).

Observe that

P{X1 > tw1, . . . ,Xd > twd}
= P

{
Fi(Xi) > 1− Li(twi)t

−αw−α
i , 1 ≤ i ≤ d

}
≤ P

{
Fi(Xi) > 1− L1(t)t

−α(1 + ε)w−α
i , 1 ≤ i ≤ d

}
,

and thus
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lim sup
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

≤ lim
t→∞

P
{
Fi(Xi) > 1− F 1(t)(1 + ε)w−α

i , 1 ≤ i ≤ d
}

F 1(t)

= b
(
(1 + ε)w−α;C

)
= (1 + ε)b

(
w−α;C

)
.

Similarly,

lim inf
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

≥ (1− ε)b
(
w−α;C

)
.

Let ε→ 0, we have

lim
t→∞

P{X1 > tw1, . . . ,Xd > twd}
F 1(t)

= b
(
w−α;C

)
.

For X ′ with copula C ′, we have

lim
t→∞

P{X ′
1 > tw1, . . . ,X

′
d > twd}

F 1(t)
= b

(
w−α;C ′).

Since b
(
w−α;C

)
< b

(
w−α;C ′) for each w = (w1, . . . , wd) with

wi > 0, 1 ≤ i ≤ d, there exists tw such that, for all t > tw,

P{X1 > tw1, . . . ,Xd > twd} ≤ P{X ′
1 > tw1, . . . ,X

′
d > twd}.

(3) The stochastic tail order follows from (1) and (2).

For the ≤tlo order, we can establish a similar result.

Theorem 19.3.7. Let X = (X1, . . . ,Xd) and X ′ = (X ′
1, . . . ,X

′
d) be

d-dimensional random vectors with respective copulas C and C ′ and
respective continuous margins F1, . . . , Fd and F ′

1, . . . , F
′
d.

1. If C = C ′ and Fi ≥sto F
′
i , 1 ≤ i ≤ d, then X ≤tlo X

′.

2. Assume that the exponent functions a(·;C) and a(·;C ′) exist,

and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d. If Fi and F ′

i ,
1 ≤ i ≤ d, are all tail equivalent, and a(w;C) > a(w;C ′) for all
w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tlod X ′.

3. Assume that the upper tail dependence functions a(·;C) and

a(·;C ′) exist, and F i ∈ RV−αi and F
′
i ∈ RV−α′

i
, i = 1, . . . , d.

If Fi ≥sto F ′
i , 1 ≤ i ≤ d, and a(w;C) > a(w;C ′) for all

w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d, then X ≤tlo X
′.
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Example 19.3.8. The tail dependence functions of Archimedean
copulas were derived in [34, 84] (also see Propositions 2.5 and 3.3
in [213]). Let CArch(u;φ) = φ(

∑d
i=1 φ

−1(ui)) be an Archimedean cop-
ula with strict generator φ−1, where φ is regularly varying at ∞ with
tail index θ > 0. The upper tail dependence function of the survival
copula ĈArch is given by

b(w; ĈArch) =
( d∑
j=1

w
−1/θ
j

)−θ
.

Observe that b(w; ĈArch) is strictly increasing in θ. For θ < θ′, and
C and C ′ be two copulas with df ĈArch having parameters θ and θ′

respectively. Thus b(w;C) < b(w;C ′) for all w > 0. For 1 ≤ i ≤ d,
let Fi have the Fréchet df with tail index α (i.e., Fi(s) = exp{−s−α})
and F ′

i have the distribution of Pareto Type II with tail index α (i.e.,
F ′
i (s) = 1 − (1 + s)−α). Clearly, Fi and F

′
i are tail equivalent. Let X

and X ′ have the dfs of

C(F1(x1), . . . , Fd(xd)), and C ′(F ′
1(x1), . . . , F

′
d(xd)),

respectively, and by Theorem 19.3.6, X ≤tuod X ′.

Example 19.3.9. The exponent functions of Archimedean copulas
were derived in [34, 177] (also see Propositions 2.5 and 3.3 in [213]).
Let CArch(u;φ) = φ(

∑d
i=1 φ

−1(ui)) be an Archimedean copula, where
the generator φ−1 is regularly varying at 1 with tail index β > 1. The
upper exponent function of CArch is given by

a(w;CArch) =
( d∑
j=1

wβ
j

)1/β
.

Observe that a(w;CArch) is strictly decreasing in β. For β < β′, and
C and C ′ be two copulas with df CArch having parameters β and β′,
respectively. Thus a(w;C) > a(w;C ′) for all w > 0. For 1 ≤ i ≤ d,
let Fi have the Fréchet df with tail index α (i.e., Fi(s) = exp{−s−α})
and F ′

i have the distribution of Pareto Type II with tail index α (i.e.,
F ′
i (s) = 1− (1+ s)−α), such that Fi and F

′
i are tail equivalent. Let X

and X ′ have the dfs of

C(F1(x1), . . . , Fd(xd)) and C ′(F ′
1(x1), . . . , F

′
d(xd)),

respectively, and by Theorem 19.3.7, X ≤tlod X ′.
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Remark 19.3.10. Due to the homogeneity property, the conditions
on tail dependence and exponent functions used in Theorem 19.3.6
(2) and (3) and in Theorem 19.3.7 (2) and (3) can be simplified. For
example, it is sufficient in Theorem 19.3.6 (2) and (3) to verify that
b(w;C) < b(w;C ′) for all w = (w1, . . . , wd) with wi > 0, 1 ≤ i ≤ d,
and ||w|| = 1, where || · || denotes any norm on R

d
+.

Theorem 19.3.11. Let (Xn, n ≥ 1) and (X ′
n, n ≥ 1) be two i.i.d.

samples with dfs F and F ′, respectively. Assume that F ∈ DA∨(G)
and F ′ ∈ DA∨(G′) with tail equivalent Fréchet margins.

1. If Xn ≤tlod X ′
n, then G ≤lod G

′.

2. G ≤lod G
′ if and only if G ≤tlod G

′.

Proof : Let Y = (Y1, . . . , Yd) and Y ′ = (Y ′
1 , . . . , Y

′
d) denote two ran-

dom vectors that have the same distributions as these of Xn and X ′
n,

respectively.

(1) It follows from Theorem 19.1.1 and Remark 19.1.2 (1) that

[P{Xk ≤ anx}]n → G(x), ∀ x = (x1, . . . , xd) ∈ R
d
+,

where an = (a1,n, . . . , ad,n) = (F
−1
1 (1/n), . . . , F

−1
d (1/n)). Tak-

ing the logarithm on both sides, we have, as n→ ∞,

n log P{Xk ≤ anx} ≈ −nP{ ∪d
i=1 {Yi > ai,nxi}

} → logG(x).
(19.3.6)

Since the margins are tail equivalent, ai,n/a1,n → 1 as n → ∞.
Thus, for any small ε > 0, when n is sufficiently large,

(1− ε)a1,n ≤ ai,n ≤ (1 + ε)a1,n, i = 1, . . . , n, (19.3.7)

which imply that

− nP
{ ∪d

i=1 {Yi > a1,nxi}
} ≥ −nP{ ∪d

i=1 {Yi > ai,n(1+ε)
−1xi}

}
→ logG((1 + ε)−1x).

Observing that logG(x) is homogeneous of order −α, we have

lim inf
n→∞

[− nP
{ ∪d

i=1 {Yi > a1,nxi}
}] ≥ (1 + ε)α logG(x).
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Similarly,

lim sup
n→∞

[− nP
{ ∪d

i=1 {Yi > a1,nxi}
}] ≤ (1− ε)α logG(x).

Let ε→ 0, we obtain that

lim
n→∞

[− nP
{ ∪d

i=1 {Yi > a1,nxi}
}]

= logG(x). (19.3.8)

That is, using the tail equivalence Eq. (19.3.7), we can rewrite
the limit Eq. (19.3.6) in the form of Eq. (19.3.8), in which the
scaling a1,n is the same for all margins. Working on X ′

n in the
same way, we also obtain that

lim
n→∞

[− nP
{ ∪d

i=1 {Y ′
i > a′1,nxi}

}]
= logG′(x), (19.3.9)

where a′
n = (a′1,n, . . . , a′d,n) = (F ′

1

−1
(1/n), . . . , F ′

d

−1
(1/n)).

Again, since the margins are tail equivalent, a′1,n/a1,n → 1 as
n → ∞. Using the same idea as that of Eq. (19.3.7), the limit
Eq. (19.3.9) is equivalent to

lim
n→∞

[− nP
{ ∪d

i=1 {Y ′
i > a1,nxi}

}]
= logG′(x). (19.3.10)

Since Xn ≤tlod X ′
n, via Eq. (19.3.1), we have

P
{ ∪d

i=1 {Yi > a1,nxi}
} ≥ P

{ ∪d
i=1 {Y ′

i > a1,nxi}
}
.

It follows from Eqs. (19.3.8) and (19.3.10) that G(x) ≤ G′(x) for
all x ∈ R

d
+.

(2) It follows from the Pickands representation [see Remark 19.1.2
(4)] that

G(x) = exp
{
− c

∫
Sd+

max
1≤i≤d

{(ai/xi)α}Q(da)
}
, (19.3.11)

G′(x) = exp
{
− c′

∫
S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da)
}
, (19.3.12)

where c > 0, c′ > 0, and Q and Q
′ are probability measures

defined on S
d−1
+ . Taking the scaling function t for both dfs, we

have

G(tx) = exp
{
− c

tα

∫
S
d
+

max
1≤i≤d

{(ai/xi)α}Q(da)
}
,
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G′(tx) = exp
{
− c′

tα

∫
S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da)
}
.

For each fixed x, when t is sufficiently large,

1−G(tx)

1−G′(tx)
∼

c
∫
S
d
+
max1≤i≤d{(ai/xi)α}Q(da)

c′
∫
S
d
+
max1≤i≤d{(ai/xi)α}Q′(da)

.

If G ≤tlod G
′, then 1−G(tx) ≥ 1−G′(tx) for t > tx, where tx

is sufficiently large. That is,

c

∫
S
d
+

max
1≤i≤d

{(ai/xi)α}Q(da) ≥ c′
∫
S
d
+

max
1≤i≤d

{(ai/xi)α}Q′(da),

which, together with Eqs. (19.3.11) and (19.3.12), imply that
G(x) ≤ G′(x) for all x.

Conversely, it is trivial that G ≤lod G
′ implies that G ≤tlod G

′.
Using similar arguments, we can also establish the upper orthant

dependence comparisons for MEV distributions.

Theorem 19.3.12. Let (Xn, n ≥ 1) and (X ′
n, n ≥ 1) be two i.i.d.

samples with dfs F and F ′ respectively. Assume that F ∈ DA∧(H)
and F ′ ∈ DA∧(H ′) with tail equivalent, negative Fréchet margins (i.e.,
Fi(x) = F ′

i (x) = 1− exp{−(−x)−θ}).
1. If Xn ≤tuod X

′
n, then H ≤uod H

′.

2. H ≤uod H
′ if and only if H ≤tuod H

′.

As illustrated in Theorems 19.3.11 (2) and 19.3.12 (2), upper tail
comparisons of MEV dfs trickle down to comparisons of entire distri-
butions due to the scalable property of homogeneity.

We conclude this paper with an example to illustrate an idea for
obtaining asymptotic Fréchet bounds.

Example 19.3.13. Let (T1, T2) denote a random vector with a
Marshall-Olkin distribution [307] as defined as follows:

T1 = E1 ∧ E12, T2 = E2 ∧ E12,

where E1, E2, E12 are i.i.d. exponentially distributed with unit mean.
Clearly, for t1 > 0, or t2 > 0,
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P{T1 > t1, T2 > t2} = e−(t1+t2)−t1∨t2 < e−t1∨t2 = P{T1 > t1, T1 > t2}.

Hence (T1, T2) ≤uod (T1, T1), which is known as the Fréchet upper
bound for the class of dfs with fixed exponential margins.

Let R1 and R2 denote two nonnegative random variables that are
independent of (T1, T2). Assume that the survival functions of R−1

1

and R−1
2 are tail equivalent, regularly varying with tail index −α [see

Eq. (19.1.6)]. Since R−1
1 and R−1

2 are tail equivalent, the margins of
(R−1

2 T1, R
−1
2 T2) and (R−1

1 T1, R
−1
1 T1) are all tail equivalent. It follows

from Theorem 3.2 of [280] that the upper tail dependence functions of
(R−1

2 T1, R
−1
2 T2) and (R−1

1 T1, R
−1
1 T1) are given by

b(w1, w2) = 2α(w1 + w2 + w1 ∨ w2)
−α

b′(w1, w2) = 2α(w1 ∨ w2)
−α.

Clearly, b(w1, w2) < b′(w1, w2), and thus by Theorem 19.3.6 we
have (R−1

2 T1, R
−1
2 T2) ≤tuod (R−1

1 T1, R
−1
1 T1). Note that the df of

(R−1
1 T1, R

−1
1 T1) is viewed as an asymptotic Fréchet upper bound in

the sense of tail upper orthant order, because the respective margins
of (R−1

2 T1, R
−1
2 T2) and (R−1

1 T1, R
−1
1 T1) are only tail equivalent, rather

than being identical as required in the case of Fréchet bounds.
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