
Chapter 3
Diagnosis and Control of Nonlinear Oscillations
of a Fluttering Plate

Liming Dai, Lu Han, Lin Sun, and Xiaojie Wang

Abstract This chapter focuses on both diagnosing and controlling the nonlinear
dynamic responses of a fluttering plate excited by a high-velocity air flow. Six
modes of the motion are considered for obtaining the numerical solutions of the
system, and the modes are used to investigate the nonlinear dynamic responses of
the fluttering. Due to the different characteristics of the diagnosing methods for
nonlinear systems, Lyapunov Exponent method is employed to detect the system
motion of each mode, while the Periodicity Ratio method is utilized to detect the
behavior of entire system motion subjected to non-periodic excitations generated
by the air flow. A newly developed control strategy, modified FSMC method, is
applied to control the nonlinear oscillatory responses of the system. The approaches
presented in this chapter have research and engineering application significances in
the fields of aerodynamics, nonlinear dynamics, aircraft design, and design of space
vehicles.

3.1 Introduction

Flutter behavior of plates exposed to air flow has been a subject of major interest
and wide research attention because of its exceptional importance in the areas of
aerodynamics, aircraft design, and design of space vehicles. The life expectancy and
survivability of fluttering panels on high supersonic aircraft, for example, depend
substantially on their resistance to the nonlinear fluttering oscillations of the panels
subjected to excitations generated by high-speed air flow.
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Von Karman’s large deflection theory [1] has been employed by most researchers
in the field. The Galerkin method [2, 3] was utilized by Dowell [4, 5] and the latter
studies [6–8]. By the integration over the panel surface, these allow the numerical
integration to a system of nonlinear ordinary differential equations. The dynamic
behaviors, including deflection, stress, and frequency, under 2D and 3D, were
analyzed with respect to various parameters. In a survey reported by Garrick and
Reed [9], an overview of an aircraft flutter in historical retrospective is presented by
the authors. The influence of maneuvering on the nonlinear response of a fluttering
buckled plate on an aircraft has been studied by Sipcic [10], which suggests
amplitude modulation as a possible new mode of transition to chaos. The flutter
phenomenon in aeroelasticity and the mathematical analysis are given by Shubov
[11]. Models of fluid–structure interaction with precise mathematical formulations
available are selected and analytical results are obtained to explain flutter and its
treatments. Due to the high velocity of fluid, thermal effects caused by friction have
to be taken into consideration, which actually makes the problem more complicated.
Enormous work could be found in this area such as [12–16]. Due to the existence
of the effects of the aerodynamic, inertial, and elastic forces, the dynamic behaviors
of the fluttering plate become extremely complicated especially when the speed of
external fluid flow increases. One would expect that it would be of fundamental
importance to know the role of the system parameters related to the different
responses of the system.

Numerous research and great contributions have been made in investigating
the characteristics of fluttering plates by researchers and engineers as mentioned
above. The criteria for distinguishing the characteristics of the systems are crucial.
Techniques providing high efficiency and accuracy in diagnosing and quantifying
different characteristics such as chaos, periodicity, quasiperiodicity, and other
nonlinear characteristics are always demanded. There are several methods available
in the literature for determining the onset of chaotic oscillations and some predictive
and diagnostic criteria for chaos are also reported [17–21]. Power spectral density is
one of such methods that can be used to distinguish chaos from regular behavior
of deterministic systems or generic stationary stochastic behavior [22]. Fractal
Dimensions approach is able to identify the chaotic attractors’ dimension [23–27].
Among all the diagnosing approaches, Lyapunov Exponent approach is probably
the most popular approach [28, 29] due to its efficiency and simplicity. It measures
the sensitivity of a system to initial conditions and therefore classifies the system’s
responses as either convergent or divergent and it is suitable for describing whether
a response of the plate is convergent or divergent. However, Lyapunov Exponents
cannot be used to distinguish quasiperiodicity and non-periodicity of a system.
Periodicity Ratio method is developed Dai and Singh [30]. This approach and can
be used to identify almost all the nonlinear characteristics and to be employed to
plot the periodic–quasiperiodic–chaotic diagram efficiently for nonlinear dynamical
systems.
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In most applications of engineering, the nonlinear or irregular responses of the
beams are desired to be controlled. Numerous control techniques and theories are
available in the field. In 1992, a control theory, namely the theory of sliding modes
control (SMC), was proposed and it has been pointed out that this control theory
is of high efficiency in the control of multidimensional systems operating under
conditions of uncertainties [31]. A decade later, an improved control strategy, which
was developed on the basis of SMC, was developed with implementation of fuzzy
logic theories and named as fuzzy sliding mode control (FSMC). Many researchers
used the strategy and demonstrated the effectiveness of this control strategy in
suppressing the nonlinear response of the system [32–34]. The FSMC strategy was
also used in controlling the chaotic response of a micro mechanical resonator under
electrostatic forces applied at both sides of the resonator, modeled as a beam [35].
In their study, the FSMC strategy demonstrated high efficiency in stabilizing the
vibrations of the targeted system. It should be noticed the existing FSMC strategy
is merely suitable to be applied in the system derived by first-order discretization.
However, for the cases of second or higher order discretization and more reliable
and accurate solutions, the existing FSMC strategy is not applicable. Therefore, a
modified FSMC strategy [36] is developed.

This research is firstly to diagnose the characteristics of a plate subjected to
non-periodic excitations of high-velocity flow with both Lyapunov Exponent (LE)
and Periodicity Ratio (PR) methods. The responses of the fluttering plate are to be
analyzed with considerations of various varying systems parameters. Furthermore,
it would be interesting to apply the control theory to the nonlinear response of
the system to reduce the harm. As figured out by Dowell [4] corresponding to
the parameters selected in the study, 4–6 modes, rather than two modes, should
be employed for quantitative accuracy. Hence, in this section the modified FSMC
will be applied to control and stabilized the chaotic oscillation of the fluttering 2D
plate, which has been described in terms of six modes as mentioned in the previous
section. The main purpose of the present work focuses on the nonlinear influence
of the system and applying control theory such as FSMC to reduce the system
vibrations, where a chaotic case is used as the control example. The knowledge
of detecting and controlling the flutter behavior of a vibrating plate is useful.

3.2 Governing Equation for the Motion of a 2D Plate

Same as Dowell’s research, the fluttering plate considered in this research has
simply supported boundaries, is a flat thin plate with infinite length in the y-direction
and length L in the x-direction. The thickness is negligible in comparing with the
other geometric dimensions of the plate. The panel is subjected to a supersonic
flow over the outside surface with constant velocity U1. Gravity is perpendicular
to the plate. The plate is induced to vibrate along the z-direction due to the loading
generated by the interaction between the high-velocity flow and the plate, which is
dominating and thus of great importance.
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To obtain the governing equations of the motion of a 2D fluttering plate, some
assumptions adopted are presented first as follows:

• The von Karman’s large deflection plate theory is employed;
• The effects of in-plane load and static pressure differential are taken into

consideration;
• The plate is undergoing cylindrical bending but no span-wise bending.

Based on the assumptions above, the governing equation reads [9]:
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Applying the nondimensionalization as follows:
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Substituting Eqs. (3.2)–(3.4) into (3.1), the non-dimensionalized governing
equation can be expressed as
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For large Mach number, M � 1, the simplified relationship can be applied
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Following the Galerkin Method [37], for simply supported plate, the nondimen-
sional displacement W.�; �/ can be expressed as:
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Substituting Eqs. (3.6) and (3.7) into Eq. (3.5), Eq. (3.5) can be rewritten as:
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By multiplying Eq. (3.8) by sin m	� and integrating over the length of the panel,
Eq. (3.8) can be reduced into a set of ordinary differential equations.
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Equation (3.9) is comprised of a coupled set of ordinary, nonlinear differential
equations with respect to time. The equations will be numerically solved. It has
been reported by Garrick and Reed [9] that to obtain accurate solutions, at least four
modes must be used. When the in-plane or static pressure loading produces larger
tension in the plate, more modes would be taken into consideration. In this chapter,
under the range of parameters applied, all the calculations are performed using six
modes.
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3.3 Periodicity Ratio Method

It is widely acknowledged that the corresponding Poincare map for a steady state
periodic motion of a dynamic system consists of a finite number of visible points
[30, 38]. The visible points in the Poincare map are then the points overlapping
many points periodically appeared. On the other hand, the points in the Poincare
map of a chaotic case must distribute in an unpredictable manner. This implies that
the overlapping points in the Poincare map of a chaotic response are extremely
minimal. Quasiperiodic response is another type of phenomenon in nonlinear
dynamic systems. A quasiperiodic case may also contain negligibly small number
of overlapping points, though some regularity of the system responses can be
identified. Based on these findings, Dai and Singh [30, 39, 40] proposed an index
named Periodicity Ratio (PR) which counts the ratio of periodic points among all
the points in the Poincare map. The methodology of Periodicity Ratio approach is
based on the measure of periodicity of a response of a nonlinear system. The more
periodic a dynamic system is, the closer the corresponding PR value is to a unit.
When the PR approaches zero, the corresponding system has no periodicity at all
and therefore represents either chaotic or quasiperiodic response of the system. The
most significant advantage of the Periodicity Ratio method is that the PR value can
be used as a single value index in diagnosing the periodicity therefore the behavior
of a dynamic system. Moreover, Periodicity Ratio method reveals the fact that there
are infinite number of fashions of motion in between chaos and periodic responses
for a nonlinear dynamic system.

The Periodicity Ratio is defined as [30]:
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where NPP is the number of periodically overlapping points and n is designated as
the total number of all the points in the Poincare map. NPP in Eq. (3.10) can be
calculated by
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which represents the number of points periodically overlapping the lth point in the
Poincare map. In the above two equations, q, m, i, and l are all positive integers.
Note that q value in the above equation can be different from one group of points to
another group of points.
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In the above equations, two step functions Q.y/; P.z/ are introduced. The two
step functions are expressible in the form

Q.y/ D
(

1; if y D 0

0; if y ¤ 0
; P.z/ D

(
0; if z D 0

1; if z ¤ 0
(3.13)

In order to describe the visible and overlapping points in a Poincare map,

introduce Xi D
(

xi

Pxi

)

and denote it as a vector of both displacement and velocity.

With this designation, the determination of whether or not a point in the Poincare
map is an overlapping point is based on the judgment described by the following
equations.

Xki D xk � xi

PXki D Pxk � Pxi (3.14)

where k is an integer in the range of 1 � k � j and j represents the finite number of
points (known as visible points) appearing in the Poincare map corresponding to a
dynamic system, and PX is the time derivative of X . Points under consideration are
overlapping points if and only if the following conditions are satisfied.

Xki D 0

PXki D 0 (3.15)

In this case, the way to obtain the points in the Poincare map is to get several
points with same displacements since the fixed time step of the irregular excitation
system is hardly to be captured [20]. Specifically, the peak and bottom value in
every period of the wave form will be collected. If the system finally leads to a
periodic solution, after a long enough period of time, all the points of the Poincare
map will converge to a finite number of individual points which must have the form
fXm; XmC1; : : : ; XmCqg.

Thus, any overlapping point Xp in a Poincare map would be a periodic point, if
and only if the following condition is satisfied:
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Once the periodic points are determined completely, the Periodicity Ratio can be
determined accurately.

If the behavior of a system in a steady state is periodic, the points in the
corresponding Poincare map must all be overlapping points. Accordingly, the value
of the Periodicity Ratio, 
 , should simply be unity. For a chaotic response of a
system, on the other hand, the number of periodic points overlapped should be zero
or insignificant in comparing with n. This is to say, 
 approaches zero for chaos.
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With the definition of the Periodicity Ratio, 
 is clearly a quantified description
of periodicity for a dynamic system. This is to state that 
 indicates quantitatively
how close the response of a dynamic system is to a perfect periodic motion. For
example, a motion with 
 equals to 0.9 is more close to a periodic motion in
comparing with a motion to which 
 equals to 0.8. Contrastively, a motion with

 approaching zero will show no periodic behavior, and therefore is a perfectly
nonperiodic motion. When 
 takes a value such that 0 < 
 < 1, it implies that
some points in the Poincare map are periodically overlapping points while the others
are not. Nonperiodic cases in between chaos and periodic motions may include
the intermittent chaos in which chaotic motions occur between periods of regular
motion.

It should be noted, however, the expression shown in Eq. (3.10) is theoretical,
as it requires an infinitely large number of n for a perfect measurement of 
 and
the time range considered must be t 2 Œ0; 1/ such that t will be sufficient for
a perfect 
 . This implies that the Periodicity Ratio 
 can be precisely calculated
only in the cases for which the analytical solutions corresponding to the dynamical
systems are available. For most nonlinear dynamic systems, however, the calculation
for the Periodicity Ratio has been done on a numerical basis with the aid of a
computer, as analytical solutions for these systems are not available. As Q.y/;

P.z/ in the equations are step functions, the numerical calculation for ” can be
conveniently carried out. In numerically determining for 
 , therefore, a sufficiently
large n should be used in performing the actual numerical calculation for 
 in the
practice of numerical calculation. In computing the Periodicity Ratio, errors caused
by numerical calculation and by the mathematical models of numerical purpose
should also be considered. Furthermore, in numerically calculating for 
 , all of
the n points must be compared to see whether they are overlapping points or not.
Once a point is counted as an overlapping point, it should not be counted again in
the numerical calculations.

For nonlinear dynamic systems, a motion with Periodicity Ratio equals to zero
may not necessarily be a chaotic motion. By the definition of Periodicity Ratio,
a perfect quasiperiodic motion also has a Periodicity Ratio of zero. In this case,
another technique, Lyapunov Exponent approach can be employed.

3.4 Lyapunov Exponent Spectrum

The definition of Lyapunov Exponent is associated with a measure of the average
rates of expansion and contraction of trajectories surrounding a given trajectory.
They are asymptotic quantities, defined locally in state space, and describe the
exponential rate at which a perturbation to a trajectory of a system grows or decays
with time at a certain location in the state space. They are useful in characterizing the
asymptotic state of an evolution. The spectrum of Lyapunov Exponent has proven
to be one of the practically sound techniques for diagnosing chaotic systems. It is
probably the most widely used index in characterizing the behaviors of nonlinear
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dynamic systems. The approach is based on the important characteristic that chaos
of a nonlinear dynamic system is sensitivity to initial conditions, which counts the
average exponential rates of divergence or convergence of close orbits of a vibrating
object in the phase space of a dynamic system. Wolf et al. [29] gave a powerful
and efficient method for determining Lyapunov Exponents from time series. Rong
et al. [41] investigated the principal resonance of a stochastic Mathieu oscillator
to random parametric excitation and gave the conclusion that the instability of
the stochastic Mathieu system depends on the sign of the maximum Lyapunov
Exponent. Lyapunov Exponent was also used to analyze the numerical characteristic
[42]. It is usually determined by experiments or computer simulations. Nayfeh has
clearly described the definition of Lyapunov Exponent as followings [20].

Let X.t/ such that X.t D 0/ D X0 represent a trajectory of the system governed
by the following n-dimensional autonomous system:

Px D F.xI M/ (3.17)

where the vector x is made up of n state variables, the vector function F describes the
nonlinear evolution of the system, and M represents a vector of control parameters.
Denoting the perturbation provided to X.t/ by y.t/ and assuming it to be small,
an equation after linearization in the disturbance terms can be obtained. The
perturbation is governed by

dy.t/

dt
D Jy.t/ (3.18)

where, in general, J D DxF.x.t/I M/ is a n � n matrix with time dependent
coefficients. If we consider an initial deviation y.0/, its evolution is described by

y.t/ D ˆ.t/y.0/ (3.19)

where ˆ.t/ is the fundamental (transition) matrix solution of Eq. (3.18) associated
with the trajectory X.t/.

For an appropriately chosen y.0/ in Eq. (3.19), the rate of the exponential
expansion or contraction in the direction of y.0/ on the trajectory passing through
X0 is given by

N�i D lim
t!1

1

t
ln.

ky.t/k
ky.0/k / (3.20)

where the symbol kk denotes a vector norm. The asymptotic quantity N�i is then
defined as the Lyapunov Exponent. There are several different methods to calculate
the Lyapunov Exponent, such as the whole Lyapunov Exponent, global and local
Lyapunov Exponent, and Lyapunov Spectrum. The method of whole Lyapunov
Exponent also known as the Maximum Lyapunov Exponent is suitable for the
discrete differential system, whereas the Lyapunov Spectrum is more suitable for
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continuous differential systems [20]. The global Lyapunov exponent, on the other
hand, gives a measure for the total predictability of a system; whereas the Local
Lyapunov Exponent estimates the local predictability around a given point X0 in
phase space.

Specifically, to obtain the Lyapunov spectrum for a continuous dynamical
system, a set of n linearly independent vectors y1; y2; : : : ; yn may form the basis
for the n-dimensional state space. Choosing an initial deviation along each of these
n factors, n Lyapunov Exponent N�i .yi / can be determined. The set of n numbers
N�i .yi / is defined as the Lyapunov spectrum. For system (3.17), n orthonormal initial
vectors yi such that y1 D .1; 0; 0; : : :/; y2 D .0; 1; 0; : : :/; : : : ; yn D .0; 0; 0; : : : ; 1/

can be assigned. For each of these initial vectors, Eqs. (3.17) and (3.18) can be
integrated for a finite time Tf and a set of vectors y1.Tf /; y2.Tf /; : : : ; yn.Tf / can
then be obtained. The new set of vectors is orthonormalized using the Gram-Schmidt
procedure to produce

Oy1 D y1.Tf /
�
�y1.Tf /

�
�

Oyn D yn.Tf / � Pn�1
iD1 Œyn.Tf /: Oyi � Oyi�

�
�yn.Tf / � Pn�1

iD1 Œyn.Tf /: Oyi � Oyi

�
�
�

(3.21)

Subsequently, using X.t D Tf / as an initial condition for Eq. (3.18) and using
each of the Oyi as an initial condition for Eq. (3.19), Eqs. (3.18) and (3.19) can be
integrated again for a finite time and carry out the Gram-Schmidt procedure to obtain
a new set of orthonormal vectors. The norm in the denominator can be denoted
by N k

j . Thus, after repeating the integrations and the processes of Gram-Schmidt
orthonormalization r times, the Lyapunov Exponent can be obtained from

O�i D 1

rTf

rX

kD1

ln N k
j (3.22)

The Lyapunov spectrum can thus be determined.

3.5 Utilizing Lyapunov Exponent and Periodicity Ratio
Methods to Detect the System Motions

From the above description about Lyapunov Exponents, the Jacobi matrix which is
directly related to the expressions of the system equations is required for calculation
in every step. However, the system displacement in Eq. (3.7) cannot be obtained
by this way because the Jacobi matrix would vary with different mode whose
governing equation is stated in Eq. (3.9). And the Jacobi matrix for the whole
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system displacement cannot be combined by the individual matrix under each mode.
Therefore, Lyapunov Exponents could only measure the system behavior at each
mode other than the whole trend, which can disclose certain system properties while
still not enough to diagnose the real system behavior, since the involved modes
are only introduced by the mathematical transformation that in the real model the
behavior under single mode cannot be distinguished from each other. So it is not that
typical to use the behavior under each mode to represent the whole system. In the
meantime, the Periodicity Ratio Method does not have the difficulty to determine
the varied Jacobi matrix since it merely depends on the system solutions, which is
forward straight to be obtained once the system solutions are numerically solved in
this case.

Based on Eq. (3.9), the Jacobi matrix for calculating the Lyapunov Exponents at
each mode (s D 1, 2, 3, 4, 5, 6) is specifically formulized as
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Several typical motions and their corresponding PR values and LE values are
demonstrated as the following, with figures and descriptions. It should be notice
that the wave form and phase diagram figures for Lyapunov Exponent approach are
corresponding to each and every modes of the six modes of oscillatory responses
of the panel, as needed in determining for all the Lyapunov Exponents. Moreover,
the Lyapunov Exponents of each of the modes are different, i.e., can be positive
representing divergent responses of the panel or negative representing convergent
response of the panel. The PR approach considers the behavior of the plate system
as a whole. In the calculations of the PR approach, the motion in the first 15 s is
discarded to waive the initial effect.

A buckled motion is exhibited in the series figures of Figs. 3.1, 3.2, 3.3, and
3.4. In this case the plate is a stabilized at a position other than at the equilibrium.
Figure 3.1 illustrates the whole system motion in wave form and phase diagram. The
wave forms and phase diagrams for the first three modes are shown in the Figs. 3.2,
3.3, and 3.4. These three modes contribute most to the whole system responses
including displacements and velocities.

The series of figures in Figs. 3.5, 3.6, and 3.7 are showing the sectioning points
for calculating the PR index. The diamonds in Fig. 3.5 are the peak displacements
and the stars in Fig. 3.5 are the bottom displacements. They are both used to
calculate the PR values. Figure 3.6 shows the velocities of corresponding points,
from which it can be seen the velocities of all the collected peak and bottom
points are close to zero. The deviation from the theoretical zero value is due to the
numerical calculation errors. It seems a bit suspicious in Fig. 3.5 that the peak points
and bottom points are always a cluster without clear distinguishment. To test the way
to collect the peak and bottom points of the whole displacement, the displacements
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of peak and bottom are collected within mode 1 and mode 2 in Figs. 3.6 and 3.7
and verification explains the cluster of peak and bottom points is caused by the
supposition of the motion at different modes.

Figures 3.8, 3.9, 3.10, and 3.11 is about a chaotic case. Figure 3.8 is the whole
system motion in wave form and phase diagram. Figures 3.9, 3.10, and 3.11 are
respectively the wave forms and phase diagrams for the first three modes which
contribute most to the whole system displacement. The corresponding Lyapunov
Exponents are calculated under each mode other than the system whole motion.

Similar as before, in Fig. 3.12, peak points and bottom points are collected for
each period to calculate the PR index of the system whole motion. The diamonds
are the peak displacements and the stars are the bottom displacements.

Figure 3.13 is the whole system motion of a periodic case in wave form and
phase diagram. Different from the buckled and chaotic case which just include
the motion of first three modes, Figs. 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19 are
the wave forms and phase diagrams of each mode of all the six modes. This is
because none of six modes can be neglected for considering the system motion since
all of the displacement is not small. Another reason is to show some incompatible
cases of the results diagnosed by Lyaponov Exponents and Periodicity Ratio.
Again, sectioning points are collected in Fig. 3.20 which includes the diamonds
and the stars representing the peak displacements and the bottom displacements
respectively.
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Fig. 3.13 Wave form and phase diagram of a periodic motion. Rx D �4	2;� D 375
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Fig. 3.20 Maximum and minimum points sectioning of a periodic motion. Rx D �4	2;� D
375;PR D 0:9775

The last case is a stabilized motion case. Figure 3.21 is the whole system motion
in wave form and phase diagram. Same as the buckled and chaotic case which just
includes the motion of first three modes, Figs. 3.22, 3.23, and 3.24 are the wave
forms and phase diagrams of each mode of first three modes of the system motion.
And Fig. 3.25 is about the peak and bottom points in a 2 s time span, the reason for
considering such a small time span is to show the fluctuation of the curve in a very
limited displacement variation range.

From the above illustration of the different motions, several characters of the
behavior of the fluttering plate can be categorized

The diagnosed behavior of the system by LE and PR method most time reach the
compatible conclusions. By PR method, the buckled and flat motions all have
the PR value of 1. Their motions at most separated modes have negative or zero
Lyapunov Exponent which indicates convergence. And chaotic motion has the
expected zero values for the whole system displacement and positive Lyapunov
Exponent which indicates divergence. Both methods are powerful to distinguish
the system behavior, while PR method is much easier to calculate since the
calculation procedure is not affected by the forms of the system.
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Fig. 3.25 Wave form and phase diagram of a flat motion. Rx D �0:8;� D 210;PR D 0:9997

For the most stabilized static case like buckled and flat case, the displacement at
first three modes are much larger than the other modes that they are the main
contributors to the whole system displacement. Comparing Figs. 3.5, 3.6, and
3.7 with 3.21, 3.22, 3.23 and 3.24, though both stabilized at last, the flat motion
convergences more quickly than the buckled motion to the equilibrium position.
Therefore, the last three modes can be neglected. For the dynamic system like
periodic and chaotic case, all the six modes need to be included to consider the
system motion.

For the periodic case in Figs. 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19, although
each motion at mode 3 to mode 5 is more like divergent as the maximum
Lyapunov Exponent is a little bit larger than zero; the whole system motion is
diagnosed as periodicity. This is because the supposition effect of the system
motion at several modes may have canceling effect with others. This case exhibits
the advantage of PR method to LE method when the individual diagnosis of the
motion of each mode is not consistent with each other.
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3.6 Control of Nonlinear Oscillations with Modified Fuzzy
Sliding Mode Control Strategy

Equation (3.9) can be expressed as

d 2as
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where s D 1; : : : ; 1.
Thus, based on the modified FSMC [36], the control strategy of the 2D fluttering

plate can be derived as
8
<̂

:̂

das1

d�
D as2
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D fs .a; �/ C ds .a; �/ C us

8
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d�
D gs .x; �/

(3.25)

where s D 1; : : : ; 1, ds .a; �/ denotes the uncertain external disturbance corre-
sponding to the sth mode, us 2 R denotes the control input corresponding to the
sth mode, a is the column vector of the velocity and acceleration of the s modes
and is given as a D Œa11 a12 a21 a22 � s as1 as2�T , xs1 denotes the reference signal
corresponding to the sth mode, gs .x; �/ denotes the specific expression of dxs2

d�
, x is

the column vector of the velocity and acceleration of the control input corresponding
to the s modes and is given as x D Œx11 x12 x21 x22 � s xs1 xs2�

T , and fs .a; �/

denotes the specific expression of d2as

d�2 and is given below:
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Based on the FSMC ([32, 33]), the control input us is given as

us D ueqs � kfs � ufs (3.27)
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Table 3.1 The fuzzy rule of ufs

ueqs

ufs 1 2/3 1/3 0 �1/3 �2/3 �1

dueqs

d�
1 �1 �1 �1 �1 �2/3 �1 0
2/3 �1 �1 �1 �2/3 �1 0 1/3
1/3 �1 �1 �2/3 �1 0 1/3 2/3
0 �1 �2/3 �1 0 1/3 2/3 1
�1/3 �2/3 �1 0 1/3 2/3 1 1
�2/3 �1 0 1/3 2/3 1 1 1
�1 0 1/3 2/3 1 1 1 1

where ueqs is the equivalent control input corresponding to the sth mode and is
given as

ueqs D � Œ.as2 � xs2/ C �s � .as1 � xs1/� (3.28)

and �s 2 RC; kfs > jas1j is the normalization factor of a corresponding to the sth
mode, and ufs is determined by the fuzzy control rule shown in the Table 3.1.

In this section, the modified FSMC will be applied in controlling and stabilizing
the chaotic motion of the 2D fluttering plate, which has been identified with LE and
PR methods and shown in Figs. 3.8, 3.9, 3.10, and 3.11.

The initial condition is given below:

a11 D 0:01; a21 D 0:01; a31 D 0:01; a41 D 0:01; a51 D 0:01; a61 D 0:01

a12 D 0; a22 D 0; a32 D 0; a42 D 0:; a52 D 0; a62 D 0

The uncertain external disturbance is given below:

d1 .a; �/ D �0:01 sin .a11/ ;

d2 .a; �/ D �0:005 sin .a21/ ;

d3 .a; �/ D �0:001 sin .a31/ ;

d4 .a; �/ D �0:0001 sin .a41/ ;

d5 .a; �/ D �0:00002 sin .a51/ ;

d6 .a; �/ D �0:00001 sin .a61/

The reference signals are given below:

x11 D 0:8 sin .	�/ ; x21 D 0:3 sin .	�/ ; x31 D 0:03 sin .	�/

x41 D 0:005 sin .	�/ ; x51 D 0:001 sin .	�/ ; x61 D 0:0005 sin .	�/
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Fig. 3.26 Wave form and phase diagram of the motion at mode 1 after the modified FSMC applied.
Rx D �4	2 , � D 117

�s and kfs are given below:

�1 D �2 D �3 D �4 D �5 D �6 D 1500

kf1 D kf2 D kf3 D kf4 D kf5 D kf6 D 50

The responses corresponding to the six modes are presented in Figs. 3.32, 3.33,
3.34, 3.35, 3.36, and 3.37. It can be discovered: once the modified FSMC is applied,
the motion of the six modes will be synchronized to the corresponding reference
signals and gradually stabilized.

The control inputs corresponding to the six modes are presented in Figs. 3.32,
3.33, 3.34, 3.35, 3.36, and 3.37 from which it can be learned the control inputs
corresponding to the six modes would vary periodically. Besides, from Figs. 3.26,
3.27, 3.28, 3.29, 3.30, 3.31 and Figs. 3.32, 3.33, 3.34, 3.35, 3.36, 3.37, it can be
found the higher the number of the mode is, the lower the amplitude of the vibration
of the mode will be, and the smaller the control input corresponding to the mode
will be required.

The response of the specific point, which is located at 75% length of the beam, is
presented in Fig. 3.38. It can be discovered once the modified FSMC is applied, the
motion of the six modes will be synchronized and gradually stabilized, and thus the
response of the selected point of the fluttering 2D plate will be stabilized from the
chaotic motion into a periodic motion, amplitude of which will be reduced as well.
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Fig. 3.27 Wave form and phase diagram of the motion at mode 2 after the modified FSMC applied.
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Fig. 3.28 Wave form and phase diagram of the motion at mode 3 after the modified FSMC applied.
Rx D �4	2 , � D 117



94 L. Dai et al.

20 22 24 26 28 30 32 34 36 38 40
-0.01

-0.005

0

0.005

0.01

-8 -6 -4 -2 0 2 4 6 8

x 10-3

-0.4

-0.2

0

0.2

0.4

Fig. 3.29 Wave form and phase diagram of the motion at mode 4 after the modified FSMC applied.
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Fig. 3.30 Wave form and phase diagram of the motion at mode 5 after the modified FSMC applied.
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Fig. 3.31 Wave form and phase diagram of the motion at mode 6 after the modified FSMC applied.
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Fig. 3.37 Control input at mode 6
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Fig. 3.38 Wave form and phase diagram of the selected point located at the 75% length of the
beam after the application of the modified FSMC
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Key Symbols

D Plate stiffness
E Modulus of elasticity
h Plate thickness
K Spring constant
L Panel length
M Mach number
m Mode number
Nx In-plane force
N

.a/
x Applied in-plane force

p � p1 Aerodynamic pressure
�p Static pressure differential across the panel
P �pl4 =Dh

Rx N
.a/
x L2 =D

r Mode number
s Mode number
t Time
U1 Flow velocity
W w =h

w Plate deflection
˛ Spring stiffness parameter

ˇ .M 2 � 1/
1=2

� 2qa3 =ˇD

� �L =�mh

� Poisson’s ratio
� Air density
�m Plate density

� t.D=�mhl4/
1=2

as1 The displacement corresponding to the sth mode
as2 The velocity corresponding to the sth mode
xs1 The displacement of the reference signal of the sth mode
xs2 The velocity of the reference signal corresponding to the sth mode
a The column vector of the velocity and acceleration of the s modes
fs .a; �/ The expression of the acceleration corresponding to the sth modes
gs .a; �/ The expression of the reference signal acceleration of the sth mode
ds .a; �/ The uncertain external disturbance corresponding to the sth mode
us The control input corresponding to the sth mode
R Real number
ueqs The equivalent control input corresponding to the sth mode
�s A positive real number
kfs The normalization factor of a corresponding to the sth mode
n The number of points in Poincare map
NPP The number of periodically overlapped points in Poincare map
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Q.:/; P.:/ The step functions

 The periodicity ratio
fs.a; �/ The expression of the acceleration corresponding to the sth modes
J The Jacobian matrix
LE. O�/ Lyapunov Exponents
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